


	

	
	

Introduction 
 
Dear Cognitive Science Colleagues, 
 
Welcome to the 41st Annual Conference of the Cognitive Science Society in Montreal, 
Canada! Our meeting brings together some of the most innovative and exciting research 
in Cognitive Science today, and highlights the conference theme of Creativity + Cognition 
+ Computation.  
 
In addition to the Rumelhart Prize presentation by Michelene Chi and the Carvalho-
Heineken Prize presentation by Nancy Kanwisher, the program features three plenary 
speakers: Elizabeth Churchill (Google Research), Mary Lou Maher (University of North 
Carolina), and Takeshi Okada (University of Tokyo). Further, the program includes the 
Jacobs Foundation Symposium, How Curious? The Need for Exploration and Discovery, 
as well as an invited symposium on Creativity in the Arts in addition to the Rumelhart 
Symposium on Translation Research in STEM Learning and the Glushko Ph.D. 
Dissertation Awards Symposium.These invited symposia and talks showcase the 
conference theme. 
 
The program committee for CogSci 2019 received 1110 submissions, including 810 full 
papers, 256 member abstracts, 13 publication-based short papers, as well as 14 
proposals for symposia, 10 for workshops, and 8 for tutorials. After a rigorous review 
process, the committee selected 202 papers for oral presentation and inclusion in the 
conference proceedings (25%), 306 papers for poster presentation and inclusion in the 
proceedings (38%), and 163 papers for poster presentation with inclusion of abstracts in 
the proceedings (20%). We also selected 204 submitted member abstracts and accepted 
another 19 abstracts from full paper submissions as invited member abstracts.  In 
addition, we accepted 12 publication-based talks, 10 symposia, 7 workshops, and 4 
tutorials to make for a very rich and inclusive program. 
 
We hope that you enjoy the program this year as well as the beautiful city of Montreal! 
 
Your Program Co-Chairs, 
Ashok Goel (Georgia Institute of Technology, USA) 
Colleen Seifert (University of Michigan, USA) 
Christian Freksa (University of Bremen, Germany)  
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APA formatted citation for a paper: 
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C. Freksa (Eds.), Proceedings of the 41st Annual Conference of the Cognitive Science 
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& C. Freksa (Eds.) Proceedings of the 41st Annual Conference of the Cognitive Science 
Society (p. NUMBER). Montreal, QB: Cognitive Science Society. 
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Awards 
      
Robert J. Glushko Dissertation Prizes 
      
The Cognitive Science Society and the Glushko-Samuelson Foundation award up to five 
outstanding dissertation prizes in cognitive science each year. The goals of these prizes 
are to increase the prominence of cognitive science and encourage students to engage 
in interdisciplinary efforts to understand minds and intelligent systems. The hope is that 
the prizes will recognize and honor young researchers conducting ground-breaking 
research in cognitive science. The eventual goal is to aid in efforts to bridge between the 
areas of cognitive science and create theories of general interest to the multiple fields 
concerned with scientifically understanding the nature of minds and intelligent systems. 
Promoting a unified cognitive science is consistent with the belief that understanding how 
minds work will require the synthesis of many different empirical methods, formal tools, 
and analytic theories. 2011 was the inaugural year of this prize, and a new competition is 
held annually. The 2019 recipients of the Robert J. Glushko Prizes for Outstanding 
Doctoral Dissertations / Theses in Cognitive Science are: 
 
Kirsten Adam – University of Chicago, 2018 

Characterizing the Limits of Visual Working Memory 
 

Max Kleiman-Weiner – Massachusetts Institute of Technology, 2018  
Computational Foundations of Human Social Intelligence 

 
Martin Maier – Humboldt University, 2018 

Language, Meaning, and Visual Perception: Event-Related Potentials Reveal 
Top-Down Influences on Early Visual Processing 

 
Jean-Paul Noel – Vanderbilt University, 2018  

Leveraging Multisensory Neurons, Circuits, Brains, and Bodies to Study 
Consciousness: From the Outside-In and the Inside-Out 
 

Katharine Tillman – University of California, 2017 
Constructing the Concept of Time: Roles of Language, Perception, and Culture 
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Marr Prize 
      
The Marr Prize, named in honor of the late David Marr, is awarded to the best student 
paper at the conference. All student first authors were eligible for the Marr Prize for the 
best student paper. The Marr Prize includes an honorarium of $1000 and is sponsored 
by The Cognitive Science Society. The winners of the 2019 Marr Prize for the Best 
Student Paper is: 

Jose M. Ceballos, University of Washington, The Role of Basal Ganglia 
Reinforcement Learning in Lexical Priming and Automatic Semantic Ambiguity 
Resolution 

Nicolas Oliver Riesterer, Universität Freiburg, Modeling Human Syllogistic 
Reasoning: The Role of "No Valid Conclusion" 

 
Computational Modeling Prizes 
 
Four prizes worth $1000 each are awarded for the best full paper submissions to CogSci 
2019 that involve computational cognitive modeling. The four prizes represent the best 
modeling work in the areas of perception/action, language, higher-level cognition, and 
applied cognition. These prizes are sponsored by The Cognitive Science Society. The 
winners of the 2019 Computational Modeling Prizes are:  
      
Applied Cognition: 
Douglas Guilbeault, University of Pennsylvania, The Social Network Dynamics of 
Category Formation 
 
Higher-Level Cognition: 
Ardavan S. Nobandegani, McGill University, A Resource-Rational Process-Level 
Account of the ST. Petersburg Paradox 
 
Perception & Action: 
Yunyan Duan, Northwestern University, A Rational Model of Word Skipping in 
Reading: Ideal Integration of Visual and Linguistic Information 
 
Language: 
Benjamin Peloquin, Stanford University, The Interactions of Rational, Pragmatic 
Agents Lead to Efficient Language Structure and Use 
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Sayan Gul Award 
Sayan Gul was an undergraduate at UC Berkeley studying cognitive science and 
computer science, and had great potential as a cognitive scientist. He died tragically while 
traveling to the Annual Conference of the Cognitive Science Society for the presentation 
of his research. This award is intended to support similarly outstanding undergraduates 
conducting research in cognitive science. In honor of Sayan Gul, the Sayan Gul Award 
supports undergraduate students with travel related costs who are presenting authors at 
the conference. The Sayan Gul Award includes a cash award of $500. This year’s winner 
of the award is: 
 
Megumi Sano, Stanford University, Graphical Convention Formation During Visual 
Communication 
 
Diversity & Inclusion Travel Awards 
Five prizes will be award to support travel to the conference for graduate students who 
bring diversity to the society, in particular under-represented racial/ethnic groups and 
citizens of under-represented countries (Zone B Society members) who are presenting at 
the conference. Each travel award includes a cash award of $1,000. This year’s travel 
awards recipients are: 
 
Jose M. Ceballos, University of Wisconsin, The Role of Basal Ganglia 
Reinforcement Learning in Lexical Priming and Automatic Semantic Ambiguity 
Resolution 
 
Tania Delgado, University of California San Diego, Differences in Learnability of 
Pantomime Versus Artificial Sign: Iconicity, Cultural Evolution, and Linguistic 
Structure 
 
Nianyu Li, Peking University, A Conceptual Model of Self-Adaptive Systems Based 
on Attribution Theory 
 
Che Lucero, Cornell University, Unconscious Number Discrimination in the Human 
Visual System 
 
Mukesh B. Makwana, Centre of Behavioural and Cognitive Sciences, Mumbai, 
Hands in Mind: Learning to Write with Both Hands Improves Inhibitory Control, but 
Not Attention 
 
Guilherme Sanches de Oliveira, University of Cincinnati, Bee-ing In the World: 
Phenomenology, Cognitive Science, and Interactivity in a Novel Insect-Tracking 
Task 
 
Staci Meredith Weiss, Temple University, Individual Differences in Bodily Attention: 
Variability in Anticipatory Mu Rhythm Power Is Associated with Executive Function 
Abilities and Processing Speed 
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Student Travel Awards 
      
The Robert J. Glushko and Pamela Samuelson Foundation generously sponsored 
$10,000 for student travel awards. Travel awards have been provided to students whose 
submissions were accepted as full papers, received high rankings, and who indicated a 
need for travel funding. This year’s travel awards went to: 
     
Nicolas Collignon, University of Edinburgh  
Douglas Guilbeault, University of Pennsylvania  
Ethan Hurwitz, University of California, San Diego  
Akila Kadambi, University of California, Los Angeles  
Kei Kashiwadate, Deniki University  
Lara Kirfel, University College London  
Sang Ho Lee, Ohio State University  
Ashley Leung, University of Chicago  
Mahi Luthra, Indiana University  
Olivia Miske, Arizona State University  
Sebastian Musslick, Princeton University  
Benjamin Peloquin, Stanford University  
Nicolas Riesterer, University of Freiburg  
Harrison Ritz, Brown University 
Jennifer Sloane, University of New South Wales 
Leila Straub, ETH Zurich  
Karina Tachihara, Princeton University  
Charley Wu, Max Plack Institute for Human Development  
Yueyuan Zheng, University of Hong Kong 
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Rumelhart Prize Presentation  
 
Michelene Chi, Arizona State University 

Translating the ICAP Theory of Cognitive Engagement Into Practice  
 
 
Carvalho-Heineken Prize Presentation 
Nancy Kanwisher, MIT 

Functional Imaging of the Human Brain: A Window in the 
Architecture of the Human Mind 

 
 
 
Keynote Talks  
 
Elizabeth Churchill, Google Research 

Cognition, Collaboration, and Creativity: Google's Material Design 
as a Case Study 

 
 
Mary Lou Maher, University of North Carolina 

Computational Models of Creativity: Curiosity, Novelty, and Surprise. 
 
 

Takeshi Okada, University of Tokyo 
Inspiration and Artistic Creation 
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Heuristics, hacks, and habits:
Boundedly optimal approaches to learning, reasoning and decision making

Ishita Dasgupta1, Eric Schulz1, Jessica B. Hamrick2 & Joshua B. Tenenbaum3

1Department of Psychology, Harvard University
2DeepMind, London, UK

3Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology

Humans regularly perform tasks that require combining infor-
mation across several sources of information to learn, reason,
and make decisions. Bayesian models provide a computa-
tional framework, and a normative account, for how humans
carry out these tasks. However, exact inference is intractable
in most real-world situations, and extensive empirical work
shows that human behavior often deviates significantly from
the Bayesian optimum. A promising possibility is that people
instead approximate rational solutions using bounded avail-
able resources. In this workshop, we bring together lead-
ing researchers from cognitive science, neuroscience and ma-
chine learning to build a better understanding of bounded op-
timality in how humans learn, reason and make decisions.
Keywords: Heuristics; Resource rationality; Reasoning; De-
cision making; Reinforcement learning; Machine learning

Introduction
This workshop will cover work that casts human and machine
learning, decision making and reasoning as boundedly opti-
mal. In particularly, we will focus on meta-reasoning, rein-
forcement learning, active information acquisition, and prob-
abilistic reasoning.

The notion that the mind approximates rational (Bayesian)
inference has had a strong influence on thinking in psychol-
ogy since the 1950s. However, people deviate from Bayesian
ideals in several well-documented instances (6), giving rise to
the idea that they rely on heuristic rules instead (5). Nonethe-
less, people can behave in ways that approximate Bayesian
inference in complex domains such as (active) learning (2),
reasoning (1) and decision making (14). How can these ap-
parently contradictory findings be explained?

One idea is that people approximate rational solutions us-
ing limited available resources, a proposal often discussed un-
der the terms of resource or computational rationality (4; 7).
In light of limited resources, boundedly optimal solutions to
complex problems can take the form of sampling-based ap-
proximations (3), simplified decision rules (13), pruning of
low-value options (9), or through an adaptation of informa-
tion acquisition to the structure of the task (12). However,
how exactly the different approaches should be combined to
produce a fully-developed theory of bounded optimality that
transfer across domains and tasks is still an open question,
with some researchers proposing that intelligent agents can
meta-reason about which strategies to apply (10), and others
stressing the connections between heuristic and Bayesian in-
ference (11) and the role of inductive biases (8).

Goal and scope
The aim of this workshop is to bring together scientists who
have a joint interest in how resource-constrained agents solve
realistic problems, such as making decisions, finding rewards,
acquiring information or reasoning and learning about the
world. We have invited leading researchers from cognitive
science and machine learning interested in the computational
foundations of bounded optimality. In particular, our goal is
to facilitate discussion and help build a more unified notion of
rationality that takes resource and computational limitations
into consideration. Key questions of discussion will include:

• How can we formalize theories of bounded optimality?
• What is a good framework and what are good domains in

which to benchmark progress in developing such theories?
• What can we learn from past debates on and formalizations

of rationality?
• Do agents learn different context-specific boundedly opti-

mal strategies? How might they recognize when to apply
which strategy?

• What does a bounded agent optimize, if at all? How can
bounded optimality cope with the curse of dimensionality?

Target audience
This workshop fits well with this year’s focus on “Creativity +
Cognition + Computation”. These key elements of cognition
are precisely those that drive modern accounts of bounded
optimality and are features of human intelligence that mod-
ern theories of rationality seek to explain. Our target audi-
ence is interdisciplinary and almost as broad as the confer-
ence as a whole — we expect this workshop to be of interest
to cognitive psychologists, linguists, developmental psychol-
ogists, neuroscientists, philosophers and machine learning re-
searchers alike. The workshop’s webpage can be found at:
https://hacksandhabits.github.io

Organizers and presenters
Ishita Dasgupta (Organizer) is a PhD-student at Harvard
University working in Samuel Gershman’s Computational
Cognitve Science lab. Ishita’s work explores how people and
machines make resource rational approximations to difficult
problems, in particular in the domains of probability estima-
tion, hypothesis generation, and intuitive physics.
Eric Schulz (Organizer) is a Data Science Postdoctoral Fel-
low at Harvard University. Eric studies generalization as
function learning with a particular focus on compositionality
and reinforcement learning.
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Jessica B. Hamrick (Organizer) is a Research Scientist
at DeepMind. Her research focuses on cognitive science-
inspired theories of machine learning. In particular, she fo-
cuses on the role of mental simulation and resource rational
approximations.
Joshua B. Tenenbaum (Organizer) is Professor of cognitive
science at MIT. Josh’s lab sits at the intersection of cogni-
tive science and machine learning, with a focus on hallmarks
of human intelligence; in particular, the ability to learn effi-
ciently and flexibly from limited data.
Paula Parpart is a postdoc at the University of Warwick
working with Prof. Neil Stewart. Her research has focused
on reconciling heuristic and Bayesian views of rationality in
decision making.
Falk Lieder leads the Rationality Enhancement Group at the
Max Planck Institute for Intelligent Systems in Tübingen. His
mission is to build a scientific foundation and practical tools
for helping people become more effective by supporting cog-
nitive growth, goal setting, and goal achievement.
Tom Griffiths is a Professor of Psychology and Computer
Science at Princeton University. Tom develops mathemati-
cal models of higher level cognition to understand the for-
mal principles that underlie people’s ability to solve everyday
computational problems.
Özgür Şimşek is a Senior Lecturer in Machine Learning at
the University of Bath. Her research is on algorithms that can
learn from limited experience in complex, real-word environ-
ments, with a focus on reinforcement learning.
Neil Bramley is a Lecturer of Cognitive Psychology at the
University of Edinburgh. His work focuses on how people
actively construct and use causal models to guide their inter-
actions with the natural world.
Azzurra Ruggeri is a Max Planck Research Group Leader at
the MPI for Human Development in Berlin. Her research fo-
cuses on how children and adults actively search for informa-
tion when making decisions, drawing causal inferences and
solving categorization tasks.
Kelsey Allen is a graduate student advised by Josh Tenen-
baum at MIT. She uses computational models and behavioral
experiments to study the development of intuitive theories,
in particular intuitive physics in planning and reinforcement
learning contexts.
Peter Dayan is a director at the Max Planck Institute for Bio-
logical Cybernetics in Tübingen. His research focuses on the
computational neuroscience of learning and decision making,
with a focus on neuromodulation, meta-control and computa-
tional psychiatry.

Workshop structure
We propose a full-day workshop consisting of three parts.
The first two parts will be a series of 20 minute talks. The
final part will be a panel discussion about the limits and fu-
ture of bounded optimality in cognitive science.

The morning session will consist of the following talks:

Presenter Topic
Eric Schulz Optimizing with confidence
Paula Parpart Heuristics as Bayesian inference
Falk Lieder Learning how to decide
Ishita Dasgupta Learning to infer
Josh Tenenbaum Computational rationality

The afternoon session will consist of the following talks:

Presenter Topic
Jessica Hamrick Resource-rational mental simulation
Tom Griffiths Bridging Marr’s levels
Özgür Şimşek Exploiting the statistical properties

of decision environments
Neil Bramley Neurath’s ship:

Incremental active theory-building
Azzurra Ruggeri Ecological active learning
Kelsey Allen Hacks in intuitive theories
Peter Dayan Slothful serial; perilous parallel

processing

The final 45 minutes will be a panel discussion.
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Workshop Summary 
Learning is a continuous process that is contingent on 
temporal, developmental, and social factors. Well-timed 
guidance is critical for successful learning. Further, the 
needs of learners vary with their stage of development, and 
the social context in which learning takes place has 
important implications for learning. Researchers from a 
variety of backgrounds, including cognitive development, 
computational modeling, and education have explored these 
various components in isolation, however, understanding 
learning requires the examination of the interactions 
between the temporal, developmental, and social factors 
involved. 

Interactions among these factors are of critical importance 
in fields such as cognitive development, computational 
modeling, and education. Take, for example, educational 
settings, where didactic approaches such as direct 
instruction have been favored over more free-play based 
approaches (Stockard & Engelmann, 2008). In direct 
instruction, learning is not just social, it is adult-initiated 
and adult-led, and by its nature less responsive to temporal 
factors that may affect a learners performance. Free play, in 
contrast, allows the learner to lead, which allows greater 
responsivity to temporal changes. Aside from the 
developmental merits, the debate between direct instruction 
and free play is emblematic of the need for a better 
understanding of how the social and temporal components 
interact to foster learning (Yu et al., 2018). Similar issues 
arise in the developmental and modeling literatures.  

Recently, guided playful learning has been put forth as an 
integrative child-led, adult-assisted approach for promoting 
learning. However, many unanswered questions remain 
regarding the interplay of factors involved in guided playful 
learning. The goal of this workshop is to bring together an 
interdisciplinary group of researchers, with expertise in 
cognitive development, computation, and education in an 
effort to merge these separate literatures, draw general 
conclusions, and develop directions for future research. 

Research in cognitive development on the effectiveness of 
guided playful learning is mixed. There is some evidence 
that guided learning is more effective than adult-led 

discovery (i.e. direct instruction) and unassisted discovery 
(i.e. free play) for promoting learning in children 
(Honomichl & Chen, 2012). However, some research 
indicates that direct instruction is equally, if not more 
effective, in achieving explicit learning goals (Becker & 
Gersten, 1982). Others still find that there is no substitute 
for the wide-ranging benefits of child-initiated free play, 
which is intrinsically motivated (Rubin, Fein, & 
Vandenberg, 1983). One possible reason for the differing 
conclusions is different definitions of guidance, which have 
included questioning, modeling, enhanced materials, and 
feedback. Thus, it remains unclear what kinds of guidance 
are most effective for promoting learning. Understanding 
the nature of effective guidance will also help to clarify the 
underlying cognitive mechanisms that lead to changes in 
children's knowledge. 

In computational modeling, there has not yet been 
significant progress toward an understanding of guided 
playful learning. Research has investigated free exploration. 
Two versions of this that are prominent in the literature are 
active learning, which is commonly formalized as 
maximizing Expected Information Gain of the next 
observation (Russo & Van Roy, 2014), and reinforcement 
learning which maximizes expected reward over time (Niv 
et al., 2015). Research has also investigated instruction. For 
example, models have formalized selection of data by a 
knowledgeable and helpful teacher as well as formalized 
learning from such data, where the learner reasons both 
about the data and the teacher's intent (Shafto, Goodman, & 
Griffths, 2014). Guided playful learning lies at the nexus of 
these three themes, where guidance aims to foster learning 
over time through self directed exploration. Moreover, 
guided playful learning requires modeling of when to 
provide guidance, which adds layer of complexity not 
considered in this previous work.  

In education, researchers have asked if guided playful 
learning is effective in various domains of learning. 
Specifically, guided playful learning may be more effective 
in domains in which learning is promoted through child-led 
exploration, as with causal learning (Bonawitz et al., 2011). 
Similarly, guided playful learning may promote learning in 
domains in which child engagement is crucial, such as 
literacy (Lillard & Else-Quest, 2006). But it remains unclear 
if guided learning is effective in domains that are 
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traditionally associated with rote memorization, such as 
mathematics. In addition, educational researchers have 
focused on the role of individual differences in guided 
playful learning. The effectiveness of guidance content can 
be influenced by individual differences, such as children's 
cognitive style, background knowledge, socioeconomic 
status, and language learner status. 

Developing a unified theoretical and empirical 
understanding of guided playful learning will allow for the 
discovery of the complex interplay of temporal, 
developmental, and social factors in children's learning. By 
bringing together researchers from traditionally distinct 
communities, we hope to begin to answer this foundational 
set of questions about the nature of cognition. 

Workshop Structure 
 
The workshop will feature well-known experts from 
different fields. The workshop will also invite poster 
submissions from the broader cognitive science community, 
with “poster teasers” flash talks related to guided playful 
learning. Additionally, the schedule has built in ample time 
for questions for mini-panels of each sub-area of guided 
playful learning, ensuring maximum opportunity for 
audience engagement. 

Proposed Schedule 
 
9:00-9:15: Opening Remarks (Elizabeth Bonawitz) 
 
9:15-10:45: The Role of Play in the Development of 
Knowledge 
Roberta M. Golinkoff “A helping hand: Adult-infant play 
and infant category learning” 
Yuan Meng “Leveraging self-explanation to scaffold 
causal learning in children” 
Pierre-Yves Oudeyer “Computational models of 
intrinsically motivated learning, autonomous goal setting, 
and how it can self-organize long-term developmental 
structures” 
 
10:45 – 11:00: Coffee/Tea Break 
 
11:00–12:30: Intuitive Pedagogy in Playful 
Learning 
Kathleen H. Corriveau “Variability in parent-child 
guidance during dyadic STEM learning” 
Todd Gureckis “Modeling intuitive teaching using 
POMDPs” 
Maureen Callanan “Children learning about science 
through family conversations” 
 
12:30-1:40: Lunch 
1:40-2:00: Poster Teasers 
2:00-3:30: Inferential Consequences in Guided Play 

Ilona Bass “A computational account for the exploratory 
benefits of guided play” 
Emily N. Daubert “Promoting psychosomatic 
understanding using pedagogical questions during 
storybook reading” 
Patrick Shafto “A unified computational framework of 
learning for oneself and from others” 
 
3:30-3:45: Coffee/Tea Break  
3:45-4:15: Poster Viewing 
 
4:15-5:15: Bringing Guided Play to the Classroom 
and Beyond 
Jamie Jirout “Exploring to learn: Methods of encouraging 
curiosity in the lab and in the classroom” 
Kathy Hirsh-Pasek “Playful learning landscapes: Where 
guided play meets architectural design” 
 
5:15-5:30: Closing Remarks (Elizabeth Bonawitz) 
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Keywords: pedagogy; replication; research methods; 
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Overview 
Some instructors of research methods classes are 

conducting authentic (i.e., publishable) replication studies 
with their classes (de Leeuw et al., 2018; Hartshorne et al., 
2019; Hawkins et al., 2018; Leighton, Legate, LePine, 
Anderson, & Grahe, 2018; Wagge et al., 2019). This practice 
has, potentially, both pedagogical benefits for students and 
broader benefits for the scientific community (Frank & Saxe, 
2012; Standing et al., 2014). Students experience an authentic 
research process from design through publication, providing 
opportunities for instruction on many different aspects of the 
research pipeline. When done with care, replications from the 
classroom become a valuable part of the scientific literature, 
and students fulfill an underserved role in science: 
performing direct replications (Everett & Earp, 2015). 

Adding authentic replication work to a research methods 
class naturally raises many questions about pedagogy and 
implementation. What studies should be replicated? How can 
an appropriate sample for the replication be obtained, 
especially at small institutions? What can instructors do to 
ensure that students, who may be conducting research for the 
first time, are able to produce quality work that meets the 
standards of publication? What aspects of the research 
process should students contribute the most to, and what 
aspects should be controlled by the instructor?  

There are many reasonable answers to these questions. 
With the growing adoption of replication studies in courses, 
a diverse set of classroom-tested approaches now exists. This 
creates the possibility for sharing, synthesizing, and 
improving teaching strategies, which is the goal of this 
workshop. This workshop brings together instructors who 
have conducted replication work with their research methods 

classes to discuss their successes and failures. These 
instructors have taught classes at the undergraduate and 
graduate level. Students in the classes have conducted 
behavioral studies (both in-lab and online) and EEG studies. 
The classes vary in structure (students may work as an entire 
class, in small groups, individually, or as part of a larger 
collaborative endeavor across many classes) and points of 
emphasis in the research process. 

Workshop Structure 
This is a half-day workshop. The first portion of the session 
will feature presentations from instructors (listed below) 
describing how replication studies have been utilized in their 
classes and how replication studies fit into the broader 
pedagogical goals of the class. In the second portion of the 
workshop, the presenters will discuss questions from the 
audience and a moderator in a panel format. Audience 
contributions to the discussion will be welcome. 

Target Audience 
The workshop welcomes anyone with an interest in teaching 
research methods, including both current instructors and 
students and postdocs who plan to teach research methods in 
the future. We hope that workshop attendees will leave with 
concrete ideas for how to incorporate replication work into 
their own research methods classes. 

Presenters 
Josh de Leeuw, Jan Andrews, & Ken Livingston 

(Vassar College) have co-taught undergraduate Research 
Methods in Cognitive Science. In their course, students begin 
the semester by conducting a replication study and then 
develop one or more novel follow-up experiments. They will 
discuss how conducting a replication prepares students to 
design and execute their own original research, and how 
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working with undergraduate students on drafting a 
manuscript for submission to a journal provides a different 
kind of opportunity for teaching scholarly writing. 

 
Jordan Wagge (Avila University) is the Associate 

Director of the Collaborative Replications and Education 
Project (CREP), a project that promotes and scaffolds 
crowdsourced replication work through student research. She 
will discuss how CREP can support replication work in 
methods courses, including sample assignment guidelines for 
instructors who seek to incorporate CREP work into their 
courses.  

 
Joshua Hartshorne (Boston College) has taught three 

iterations of his course Language Acquisition & 
Development. Although not a methods course, it contains a 
substantial lab component. Through a series of group 
projects, each class of approximately 10 students completes 
5-6 replications. The presentation will discuss how to 
incorporate a lab component into a content class. It will also 
discuss how to use replications as a vehicle for teaching 
programming, statistics, and best practices. 

 
Robert Hawkins (Stanford University) recently led a 

classroom replication effort as part of the graduate course 
“Lab in Experimental Methods”. In this course, each student 
chooses a paper to replicate based on their own research 
interests and proceeds independently through a structured 
series of milestones with supervision from instructors. The 
presentation will discuss this pedagogical workflow, how the 
replication model can be adapted for students of different 
levels, and the challenges that arise in managing a wide 
diversity of projects. 

 
Michael Franke (University of Osnabrück) has taught 

two classes that combine undergraduate/graduate levels with 
a dual focus: one on theoretical issues concerning 
reproducibility and open science, and another on conveying 
first practical experiences with behavioral experiments by 
means of a replication project. The courses required students 
to preregister their replication and make all analysis scripts 
available prior to data collection. The presentation will 
discuss the challenges and opportunities of making especially 
undergraduates appreciate solutions (e.g., preregistration & 
large-scale replications) to problems (e.g., abundant 
researcher degrees of freedom) they have not experienced 
first-hand yet. 
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Workshop Proposal
Various methods exist for measuring creativity, most of them
in the form of creativity tests, like the Remote Associates Test
[Mednick, 1962], the Alternative Uses Test [Guilford, 1956],
TTCT [Kim, 2006], the Wallach-Kogan tests [Wallach and
Kogan, 1965], insight problems [Maier, 1931,Duncker, 1945,
Cunningham et al., 2009], etc.

However, the feasibility and dependability of various types
of psychometric assessment and administration of measures,
as pertaining to various creativity tasks, have recently been
questioned and enriched [Beisemann et al., 2018,Hass, 2015,
Hass et al., 2018, Hass and Beaty, 2018, Wilken et al., 2018].
The thought and work on the measurement of creativity are
witnessing a new revival.

Recently, new methods of computationally creating stim-
uli for greater measurement accuracy have been devel-
oped [Olteţeanu et al., 2017, Olteţeanu, 2016, Olteteanu and
Yoopoo, 2017], inspired by artificial cognitive systems that
solve creativity tests [Olteţeanu et al., 2018]. Such computa-
tional psychometrics methods have already shown to provide
designs with greater control [Olteţeanu and Schultheis, 2017]
and the computational resurrection of tests which were ini-
tially proposed theoretically [Olteţeanu et al., 2018].

This workshop will focus on building a red thread of dis-
cussion on the current state of creativity psychometrics, inte-
grating topics on existing classic and novel, manual and com-
putational methods of testing and measuring creativity. The
following questions will be addressed:

(i) What creativity measuring methods exist and what are
their strengths and weaknesses?

(ii) Which creativity factors are measured by the existing
creativity methods? Is there an overlap of measur-
ing methods for different factors? Are they factors for
which no methods exist or current methods are not yet
up to the task?

(iii) What is the suitability of existing current methods for
empirical testing versus computational modelling?

(iv) How can comparability be ensured across creativity test
item sets?

(v) What creativity metrics and methods can be used in
evaluating the computational modeling of creativity?

(vi) What is the impact of artificial cognitive systems and
their evalution on creativity metrics? Of computational
creativity systems and their evaluation?

(vii) What are the new computational and automatized mea-
sures of creativity, and what is their role in the ecosys-
tem of measures?

(viii) Subjective and objective measures in creativity.

Workshop Duration and Organization
We propose a half a day workshop for the presentation, dis-
cussion and elaboration of creativity measuring methods. The
workshop will involve three elements:

(i) Three invited speakers from different backgrounds (Cogni-
tive Psychology, Cognitive Neuroscience, Cognitive Sys-
tems - Computer Science) will present existing creativity
measuring methods (details below).

(ii) Short presentations of papers and posters will be accepted
on the topic.

(iii) The workshop will end with a panel discussion, focused
on establishing future directions for methods and systems
aimed at supporting creativity and problem solving.

Publication: The papers submitted for this workshop will
be published as a CEUR-WS volume. If enough high qual-
ity papers are received, a Special Issue will be proposed by
the organizer to the Cognitive Systems Research journal, or a
topic proposal will be made to TopiCS in Cognitive Science.

Topics for this workshop will be centered around, but not
limited to:

• Creative cognition
• Creativity measures and Tests
• Psychometrics for Creative Cognition
• Computational methods for measuring creative cognition
• Computational modelling
• Artificial creative cognitive systems
• Creative problem solving
• Computational Creativity
• Evaluation of natural and computational cognitive systems
• Associativity and Conceptual Spaces
• Semantic networks and semantic graphs
• Ill structured problem solving and Structured representations
• Knowledge discovery
• Creativity modeling approaches and their relation to evaluation,

including Case based reasoning, Neural networks, Evolutionary
algorithms

• Analogy and Metaphor
• Creative assistive systems

Speakers
• Richard Hass – Thomas Jefferson University, US. Talk

topic: Improving Measures on Creative Object Uses.
Background: Cognitive Psychology.

• Evangelia Chrysikou – Drexel University, US. Talk topic:
A standardized test for creativity based on the Alternative
Uses Task. Background: Cognitive Neuroscience.
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• Ana-Maria Olteţeanu – Head of Cognitive Systems, Freie
Universitat Berlin– Talk topic: Computational Measures of
Creativity. Background: Cognitive Systems – Computer
Science.

Organizer - Short biography
Ana-Maria Olteţeanu is the Principal Investigator of the
,,Creative problem solving in cognitive systems” (CreaCogs)
project funded by the German Research Foundation (DFG) at
the Freie Universitat Berlin, Germany.

Ana-Maria has a cross-disciplinary background: she holds
a PhD in Musicology (2011) and a summa cum laude Doctor-
ate in Cognitive Systems and Artificial Intelligence (2016).
Her thesis got nominated for the EurAI Dissertation Prize,
and won the OLB 1st Prize for the best Doctoral Dissertation
in Science in NW Germany in the last two years (2017).

Ana-Maria authored more than 30 papers on the topic of
creative problem solving, of which five journal articles focus
on developing artificial cognitive systems and computational
measures for creativity psychometrics. Her book Cogs in the
Creative Machine will be published by Springer in June 2019.
Ana-Maria has reviewed more than 40 papers for over 20 in-
ternational conferences and journals, and gave over 20 con-
ference and invited talks on creative cognitive systems. Dr.
Dr. Olteţeanu has been a program committee member of 15
workshops and conferences in the field. She organized and
chaired 4 Symposia/Workshops/conference tracks, and is the
editor of four volumes and special issues on creativity related
topics. Together with Sebastien Helie, Ana-Maria will write
the chapter on Computational Models of Creativity in the up-
coming edition of The Cambridge Handbook of Computa-
tional Cognitive Sciences. Ana-Maria’s interests are related
to natural and artificial cognitive systems, creative problem
solving, cognitive modeling, computational psychometrics,
knowledge discovery and spatial reasoning.

Recent Organizing and Editorial Experience

2018 - 2021 – Editorial Board member, Cognitive Systems Re-
search Journal.

2018 – Organizer and Chair of the workshop Computational
Methods and Systems for the Cognitive Modelling and Support of
Creativity and Creative Problem Solving, at the Cognitive Science
Conference in Madison, Wisconsin, 2018 (over 50 participants)

2018-2019 – Topic Editor for Frontiers in Psychology-Cognitive
Science and Frontiers in Artificial Intelligence and Robotics, for the
Topic Creativity from Multiple Cognitive Science Perspectives (with
Bipin Indurkhya).

2018-2019 – Guest Associate Editor for Frontiers in Psychology-
Cognitive Science and Frontiers in Artificial Intelligence and
Robotics, for the Topic Creativity from Multiple Cognitive Science
Perspectives (with Bipin Indurkhya).

2017-2018 – Guest editor of the Cognitive Systems Research
journal, for the special issue on Problem-solving, Creativity and
Spatial Reasoning in Cognitive Systems (with Zoe Falomir).

2017 – Editor of the Proceedings of the 2nd Symposium on
Problem-solving, Creativity and Spatial Reasoning in Cognitive Sys-
tems, CEUR-Ws vol. 1869 (with Zoe Falomir).

2017 – Co-organized the ProSocrates - Problem solving, creativ-
ity and spatial reasoning in cognitive systems Symposium, at the
Hanse Wissenschafts-Kolleg, Delmenhorst, Germany.

2016 – Co-organized the ProSocrates - Problem solving, creativ-
ity and spatial reasoning in cognitive systems Symposium, at the

German Cognitive Science Society conference - Space for Cogni-
tion, Bremen (Germany).

References
Beisemann, M., Forthmann, B., Christian Bürkner, P., and Holling,

H. (2018). Psychometric evaluation of an alternate scoring for the
remote associates test. The Journal of creative behavior.

Cunningham, J. B., MacGregor, J. N., Gibb, J., and Haar, J. (2009).
Categories of insight and their correlates: An exploration of re-
lationships among classic-type insight problems, rebus puzzles,
remote associates and esoteric analogies. The Journal of Creative
Behavior, 43(4):262–280.

Duncker, K. (1945). On problem solving. Psychological Mono-
graphs, 58(5, Whole No.270).

Guilford, J. P. (1956). The structure of intellect. Psychological bul-
letin, 53(4):267.

Hass, R. (2015). Feasibility of online divergent thinking assessment.
Computers in Human Behavior, 46.

Hass, R. and Beaty, R. (2018). Use or consequences: Probing the
cognitive difference between two measures of divergent thinking.
Frontiers in Psychology, 9:2327.

Hass, R., Rivera, M., and Silvia, P. (2018). On the dependability and
feasibility of layperson ratings of divergent thinking. Frontiers in
Psychology, 9.

Kim, K. H. (2006). Can we trust creativity tests? A review of the
Torrance Tests of Creative Thinking (TTCT). Creativity Research
Journal, 18(1):3–14.

Maier, N. R. (1931). Reasoning in humans. II. The solution of a
problem and its appearance in consciousness. Journal of Com-
parative Psychology, 12(2):181.

Mednick, S. (1962). The associative basis of the creative process.
Psychological review, 69(3):220.
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Short Summary
Most computational models of cognition are based on
aggregate data. In recent years, skepticism about
group-to-individual generalizability has begun to emerge
(Fisher, Medaglia, & Jeronimus, 2018). Simultaneously,
results have shown that the current state in modeling
reasoning is approaching a ceiling caused by the focus on
aggregation (Riesterer, Brand, & Ragni, 2018). The time
is ripe to adopt a new perspective on the challenge of
cognitive modeling: how to model the individual reasoner. In
addition to explaining aggregate data from training datasets,
computational cognitive models can adapt to an individual
by integrating knowledge about past responses into the
prediction mechanism. This workshop will tackle conceptual,
computational, theoretical, and methodological challenges
in modeling individual reasoning behavior. A recent
methodological advancement in assessing both aggregate and
individual reasoning behavior, the Cognitive Computation for
Reasoning Analysis (CCOBRA) framework, will be used to
propose a new competition for theory-driven computational
models of individual reasoning behavior. This workshop, and
its underlying theoretical challenge, invites participants from
cognitive science, AI, and all related fields to learn to build
computational models of individual reasoners.

Core challenge: Modeling individuals
How can cognitive scientists build robust simulations of
individual reasoners? This workshop will address the
theoretical and methodological challenges in developing
PREdictive, individualized COgnitive models of REasoning
– the PRECORE Challenge. An orthodox methodology for
fitting cognitive models to a dataset concerns a two-fold
procedure: a given cognitive model’s parameters are set by
learning to predict the outcomes from a training dataset, and
then it is applied to a novel dataset that the model never
encountered before. The methodology is often used to build
models of aggregated behavior form multiple individuals,
but in principle, it can be applied to assessing individual
reasoning behavior as well. The Cognitive Computation
for Behavioral Reasoning Analysis (CCOBRA) framework
is a benchmarking tool implemented in Python that actively

integrates the individual human into the prediction loop. At
its core lies a close connection to psychological experiments.
Models are expected to simulate the experimental procedure
for individual participants. They are presented with the same
task in the same sequence with the same response options.
By providing precise responses to individual tasks, models
are evaluated based on their predictive accuracies. In the
CCOBRA framework, computational models are supplied
with the true response, both in the training phase, as well
as in the evaluation phase; in this way, models can learn a
default set of parameter settings in training and then be used
to detect individual strategies in reasoning in the evaluation
phase to refine their predictions further. Models are allowed
to train on a dataset consisting of tasks and the actual human
responses of individuals not present in the evaluation data.
Additionally, after predicting the response to a task, they are
presented with the true response and thus allowed to adapt
to an individual participant. Hence, CCOBRA extends the
traditional cognitive modeling problem by moving beyond
the level of aggregates. As a result, the challenge for
computational cognitive models is more difficult, but the
payoffs are greater, i.e., they can lean to the development
of robust computational models of individual reasoning
strategies and adapt to the constraints of individual reasoners.

Models are ultimately compared via their predictive
accuracy on unseen data. If a model manages to hit
the true response more often than another model, the
CCOBRA framework assigns it a higher score. The
framework operates in a domain-agnostic fashion, i.e., it is
compatible with computational cognitive models based on
symbolic, probabilistic, connectionist, or hybrid approaches.
Hence, computational cognitive models in the CCOBRA
framework are assessed and compared on a fair and neutral
ground. The only requirements imposed by CCOBRA
is an implementation based on Python and the capability
of generating a precise prediction for a given task. The
problem of overfitting will be tackled by computing the final
evaluation scores on previously unreported data. Higher
predictive scores in the CCOBRA framework correspond
directly to a better grasp of the processes underlying
an individual human reasoner’s cognitive system. The
project is entirely open-source and accessible via Github1.

1https://github.com/CognitiveComputationLab/ccobra
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Benchmarking data and example model implementations
can be found in the repository. A companion website2

exists which allows to quickly upload and evaluate model
implementations without the need to install the framework.

A domain-general challenge
Cognitive scientists have built computational models that
simulate a wide variety of reasoning behavior, e.g., reasoning
about syllogisms, reasoning about relations, reasoning about
sentences and propositions, and reasoning about causation.
Theorists have built computational models of reasoning in
only some of these domains – and they’ve constructed
models of individual reasoners in only one of them. Hence,
the challenge of analyzing individual reasoning behavior is
acute. This workshop, and its underlying benchmarking
methodology, seeks to develop domain-general solutions for
developing models of individuals. Consider the domain of
syllogistic reasoning, for instance. Syllogisms are problems
built from categorical assertions of the form “All of the
As are Bs” and “All of the Bs are Cs”. Reasoners
deduce conclusions from syllogisms by comprehending two
premises responding to the prompt: “What, if anything,
follows?” Most reasoners generate spontaneously generate
a conclusion of the form “All of the As are Cs” to the two
premises above. As a recent meta-analysis shows, some
syllogisms are easy, and some are difficult (Khemlani &
Johnson-Laird, 2012). The same meta-analysis showed that
twelve theories syllogistic reasoning had difficulty explaining
the variation reasoners exhibit. The problem is endemic to
computational models of reasoning: many of them perform
well on aggregated data, but they they are unable to account
for the individual differences that become relevant when
attempting to predict how individual reasoners respond to
various problems (Riesterer et al., 2018). Models in all
reasoning domains are presently have an upper bound by the
most frequent response.

Goals and Scope
The central goal of the workshop is to encourage and enhance
cognitive modeling of syllogistic reasoning on an individual
level and discussions by researchers of such diverse fields
of cognitive science as psychology, AI, linguistics, and
philosophy. Participation is possible by any of the following:
Presenting a 15 minutes talk about cognitive modeling (please
send us an email by July, 1), submitting a model for the
modeling task in CCOBRA, discussing statistical analysis of
aggregated vs. individual reasoning, or providing any insights
in the discussion for advancing the current state of modeling
beyond the level of aggregate syllogistic data.

Workshop Organization
Marco Ragni is a DFG-Heisenberg fellow and
associate professor at the technical faculty of the
Albert-Ludwigs-University Freiburg and leads the Cognitive

2http://orca.informatik.uni-freiburg.de/ccobra/

Computation Lab. His research interests include qualitative
spatio-temporal reasoning, knowledge representation and
reasoning, cognitive modeling, and complex cognition with
a special focus on analyzing why and how human reasoning
often deviates from classical logical approaches.
Homepage: www.cc.uni-freiburg.de
Email: ragni@cs.uni-freiburg.de
Pub: dblp.uni-trier.de/pers/hd/r/Ragni:Marco

Nicolas Riesterer is a PhD student at the Cognitive
Computational Lab, associated with the Department of
Computer Science of the Albert-Ludwigs-University
Freiburg. His research interests are centered around
developing predictive models for human reasoning based on
approaches from both cognitive science and AI.
Homepage: www.cc.uni-freiburg.de
Email: riestern@cs.uni-freiburg.de
Pub: dblp.uni-trier.de/pers/hd/r/Riesterer:Nicolas

Sangeet Khemlani is a computational cognitive scientist
in the Navy Center for Applied Research in Artificial
Intelligence at the US Naval Research Laboratory. His
work focuses on building computational cognitive models of
deductive, inductive, and abductive reasoning, and testing
those models against a wide variety of behavioral data.
Homepage: www.khemlani.net
Email: sunny.khemlani@nrl.navy.mil
Pub: www.khemlani.net/publications/
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Introduction
Humans perform a wide range of everyday activities (e.g.,
preparing a meal, setting the table) frequently, and often with-
out conscious thought. Despite the experienced ease with
which we perform such activities, their successful completion
involves a complex set of abilities and mechanisms. This be-
comes apparent when considering that even healthy adults ex-
hibit occasional errors (Norman, 1981, e.g., failing to spoon
coffee grinds into the filter before switching on the coffee ma-
chine) in performing the necessary actions, while mild cog-
nitive impairment may interfere with successful performance
of highly familiar everyday activities (Gold, Park, Troyer, &
Murphy, 2015).

Successful performance of everyday activities taxes at least
the following abilities:

• Perception: The environment in which the actions are per-
formed has to be adequately perceived to properly act in
it. Among others this comprises the ability to recognize
largely occluded objects in cluttered environments (e.g.,
plates in a stack of plates or objects in a dishwasher).

• Action Planning: Everyday activities consist of several ac-
tions and the effectiveness and efficiency of performing ac-
tivities will often depend on the order in which the actions
are executed (see coffee making example above). Accord-
ingly, planning one’s actions is an important aspect of ev-
eryday activity performance.

• Spatial Reasoning: Spatial relations of objects to each
other and to one’s body are crucial for everyday activity.
Without knowledge about these relations, locomotion in
the environment as well as collecting and properly arrang-
ing objects would not be possible.

• Movement Planning: Individual (motor) actions require
planning to, for example, avoid obstacles, remain in the op-
erational range of one’s effectors, and to reduce the chance
for mishaps (reaching with a full cup over – instead of
around – your laptop is not a good idea)

• Controlling Action Sequences: Action sequences not only
have to be planned, but also controlled during execution to

ensure that no actions are left out, actions are not executed
in the wrong order, or that inappropriate (i.e., not part of
the plan) actions that are habitual or appropriate given the
current state of the environment are avoided.

• Monitoring and Error Correction: Given that slips and
lapses in action execution occur, monitoring of progress
towards the goal and error correction mechanisms are also
need to ensure successful action completion.

Considering that the listed abilities constitute research ar-
eas in their own right, it seems clear that gaining a (more)
comprehensive understanding of everyday activities is an am-
bitious endeavor. At the same time, everyday activities pro-
vide an opportunity to jointly research several cognitive abil-
ities in what Newell (1973) has called complex tasks. Ev-
eryday activities such as “setting the table” are circumscribed
enough to study them in the lab, while being complex enough
to require the combination of several cognitive abilities. As
such, investigation of everyday activities has the potential to
not only foster our understanding of the cognitive processes
involved, but also of their interaction and integration.

Gaining a deeper understanding is also of applied rele-
vance. Given the demographic change and an aging soci-
ety, the number of people unable to perform independently
all necessary everyday activities is increasing (e.g., Nicholas
& Smith, 2006). A deeper understanding of what drives suc-
cessful everyday activities, how the underlying mechanisms
develop, and how and what in the process may break down
with age and cognitive impairment (dementia) can help sup-
port those who have trouble with everyday activities in two
ways. First, with knowledge about which abilities may de-
cline with age and impairment, specific training regimes can
be developed to counter the decline in ability (e.g., Bettcher
et al., 2011). Second, support could be given by artificial
cognitive agents (e.g., robots) performing or prompting those
activities that people are less able to do themselves. Cur-
rently available (household) robots are missing the flexibility
and versatility to stand in for a human housekeeper (Ersen,
Oztop, & Sariel, 2017), and a deeper understanding of the
mechanisms that underlie learning and mastery of everyday
activities may therefore inform the design of improved artifi-
cial agents.

This workshop will assemble six speakers with multidisci-
plinary backgrounds to discuss (a) the cognitive abilities un-
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derlying everyday activities, (b) how these abilities develop
ontogenetically, (c) how abilities may break down with cog-
nitive impairment, (d) possible integration of different abili-
ties in the scope of everyday activities, and (e) how insights
from (a)-(d) could inform building artificial cognitive agents
mastering everyday activities.

Speakers
Speakers have been selected to cover important areas that are
relevant to the issues raised in the preceding section. Our
speakers combine expertise in abilities involved in everyday
activities, how they develop (Kaichi Yanaoka, Satoru Saito),
how they may decline with cognitive impairment (Tania Gio-
vannetti), how they may be formalized and integrated in com-
putational models (Falk Lieder, Gregor Schöner, John Laird),
and how cognitive principles may be transferred to artificial
cognitive agents (John Laird, Gregor Schöner). Talks will ad-
dress the following topics:

Falk Lieder, MPI Tübingen will present work on discov-
ering rational planning strategies. To succeed in everyday
life people have to quickly solve complex sequential deci-
sion problems with bounded cognitive resources. Lieder
and colleagues’ resource-rational analysis suggested that peo-
ple’s planning strategies are jointly shaped by these adaptive
pressures and the structure of the environment. Lieder will
present an automatic method that leverages this principle to
predict which planning strategy people are going to use in a
given environment and test it in a series of experiments.

Gregor Schöner, Ruhr-Universität Bochum will present
how neural dynamic architectures generate physical and
mental acts. Acting in the real world involves the coordina-
tion of perception, cognitive processes, and movement gener-
ation. Schöner will discuss how the balance between stability
and flexibility that is necessary for successful coordination
can be achieved in a framework of neural dynamics.

Kaichi Yanaoka & Satoru Saito, Kyoto University will
present work on the role of executive functions in routine
sequential actions in young children. They will provide an
overview of research on executive functions and action con-
trol from a developmental perspective before presenting new
data on learning and control of routine sequential actions in
young children.

John Laird, University of Michigan will present a cogni-
tive architecture approach to everyday activities. Laird will
explore how the myriad of cognitive capabilities required to
perform everyday activities can be supported by an integrated
cognitive architecture, drawing examples from research with
the Soar architecture. One capability Laird will focus on is
Interactive Task Learning — how the cognitive architecture
approach can support learning new tasks from natural instruc-
tion.

Tania Giovannetti, Temple University will present work on
everyday action in cognitive aging, mild cognitive impair-
ment, and dementia. Giovannetti will provide an overview
of how deterioration of older adults’ performance of every-
day tasks is related to level and type of cognitive impairment.
In doing so, she will also highlight the implications observed
difficulties have for understanding the cognitive mechanisms
that are required for accurate performance of everyday activ-
ities in healthy populations.

Schedule
The workshop is planned as a half-day event. Speakers will
be allotted 25 minutes each for their presentations (20 min-
utes talk + 5 minutes discussion). The workshop will begin
with a brief introduction by the organizers followed by the
first three talks (Lieder, Schöner, Yanaoka & Saito). After
the break, the two remaining talks (Laird, Giovannetti) will
be delivered. The organizers will then lead a discussion of all
presentations. The workshop will be concluded with a 30min.
poster session. Posters will be solicited by a Call for Posters
with rolling acceptance. Poster presenters will be asked to
put up their posters before the workshop to allow attendees to
begin discussing them during the break.
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Objectives and Scope 

Cognitive science research has far-reaching implications, 

but many graduate students are trained with only an academic 

career in mind. Academic training develops a wide range of 

skills in service of behavioral research, literature reviewing, 

data analysis, scientific publishing, grant writing, teaching, 

and student mentorship. These skills also have direct 

application in non-academic positions, but training within 

academia typically neglects to address how these skills 

translate to other work environments and career paths. As 

growth in the number of doctoral trainees continues to 

outpace permanent academic positions (Kolata, 2016; 

Larson, Ghaffarzadegan, & Xue, 2013; Lederman, 2016), 

more doctoral recipients have been seeking non-academic 

employment (National Science Board, 2018). Doctoral 

students and recipients who are interested in exploring non-

academic employment options may not know where to turn 

for guidance. Our goal in this professional development 

workshop is to offer such guidance and an opportunity to 

network with scholars in similar situations. 
The session will be led by two scholars with doctoral 

degrees in psychology who worked in academic positions 

previous to their industry careers: Carissa Shafto is a senior 

data scientist and data governance specialist for Brightfield 

Strategies; Vanessa Simmering is a senior research scientist 

for ACTNext by ACT, Inc. They will draw on their individual 

experiences navigating from academic to non-academic 

positions to guide the activities and discussion. Additionally, 

they will solicit contributions and participation from other 

scholars with a diverse range of backgrounds and positions to 

increase the breadth of experiences participants consider.  

Workshop Schedule 

The time for the half-day session will be divided 

approximately in thirds, beginning with a presentation by the 

leaders, followed by a set of interactive activities among 

participants, and closing with group discussion of the 

activities and questions they raised. Because the workshop 

will occur before the conference, we hope that participants 

can use this opportunity to connect with each other and 

continue the conversations and networking beyond the end of 

the workshop. 

Part 1: Introduction of Contributing Scholars and 

Different Career Paths 

The leaders will begin with an overview of the goals of the 

session, followed by a series of narrated slides in which 

scholars (the leaders plus additional contributors) describe 

their backgrounds and employment. Specifically, we will ask 

all contributors to list the discipline of their degree and the 

general area of their research training, followed by (when 

relevant) any academic and non-academic positions they held 

before their current position, then a description of their 

current job, ending with a comment on what motivated them 

to seek out a non-academic career. Each contributor’s 

description will be brief (3 minutes or less) and compiled into 

a single presentation in advance to maximize the number of 

examples we can present to participants. We have agreements 

to contribute narrated slides from thirteen participants thus 

far, listed in Table 1, and will invite more contributors if 

needed to ensure diverse representation of participants’ 

backgrounds, interests, and employment types. Contributors 

will be encouraged to attend if possible, but attendance will 

not be required as this may limit which types of people and 

careers that can be represented, since many non-academic 

careers do not require or fund conference travel.  

Part 2: Developing Your Pitch 

Participants will be given time to work individually and 

then in small groups on two related activities developing 

“elevator pitches”, which are brief but persuasive speeches 

designed to spark the listener’s interest to learn more. The 

first pitch will be focused on what the participant is looking 

for in a career. The second will focus on what the participant 

has to offer to an employer. The leaders will scaffold this 

activity by highlighting successful strategies (e.g., focusing 

on skills over content, considering opportunities rather than 

obstacles) and potential individual considerations (e.g., 

whether one is leaving a temporary versus permanent 

position, whether relocation is possible). As relevant, these 

activities may include brainstorming a wide range of 

potential employment opportunities, or focusing on a specific 

position the participant already has in mind. During this 

portion, the leaders and any contributors in attendance will 

circulate through the room to talk to participants and answer 

questions that arise. 
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Name Position Institution / Company / Agency 

Dan Acheson Data Science Manager Uptake 

Keith Apfelbaum Research Director Foundations in Learning, Inc. 

Aimee Arnoldussen Medical Technology Assessment University of Wisconsin Hospital & Clinics 

Megan C. Brown Lead Decision Scientist Consumer and Partner Insights, Starbucks 

John Lipinski Director of Client Management Certilytics 

April Murphy Data Scientist Tulco Labs 

Maggie Renno Research Analyst Wisconsin Department of Children and Families 

Alexa Romberg Research Manager Schroeder Institute at Truth Initiative 

Sarah Sahni Associate in Social & Economic Policy Abt Associates 

Matthew Schlesinger  Senior Data Scientist ReThink Medical 

Sean Taylor Research Scientist Manager Core Statistics Team, Facebook 

Dan Vatterott Data Scientist Showtime 

Tim Wifall  Senior User Experience Researcher Samsung Research America 

 

Part 3: Questions, Feedback, Discussion, 

Networking, and Resources 

Following the activity, participants will have an 

opportunity to ask questions, seek feedback, and discuss 

concerns within the larger group. The leaders will structure 

the time of the final third of the session based on interest from 

participants, including references to resources participants 

may want to use as they pursue non-academic careers. For 

example, a number of consulting services can be found online 

(The Professor Is In, Cheeky Scientist, Beyond the 

Professoriate, Next Scientist) but each varies slightly in their 

scope (i.e., some cater more to “hard” sciences, others to 

social sciences and humanities) and therefore their potential 

utility for participants with different backgrounds. They also 

vary in the amount of information offered free of charge and 

services provided at a cost. Social media sites (e.g., Post-

Academic Athenas, Facebook groups, and LinkedIn) also 

offer more informal support, through discussion and peer 

mentoring, and can help participants expand their networks. 

The leaders and contributors will be able to provide some 

specific experiences to help participants evaluate what 

approaches could be of most use to them. 
At the conclusion of the event, Dr. Simmering will survey 

interest from participants in potentially forming a group on 

LinkedIn or another platform to stay connected and follow up 

on conversations started during the session. Participants will 

also be provided with contact information from any 

contributors who agree to offer this opportunity to connect. 

We hope the session will give participants an entry point to 

exploring a wide range of career options and the necessary 

resources to pursue non-academic career paths.  
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Abstract
Several of the central questions in language, social cognition,
and developmental research focus on the roles of input, out-
put, and interaction on learning and communication. While it
has become easy to collect long-form recordings, getting use-
ful data out of them is a more daunting task. Across four mini-
sessions, this tutorial aims to address pre- and post-data collec-
tion concerns, and provide a hands-on introduction to manual
and automated annotation techniques. Attendees will leave this
tutorial with resources and concrete experience for collecting,
annotating, and sharing/archiving naturalistic recordings, in-
cluding specific open-science practices relevant for these data.
Keywords: daylong recordings; natural language; speech
technology; automated annotation; open science

Introduction
The ability to record and efficiently analyze everyday talk
from a variety of different populations is crucial for many
topics in language science, including: variation in children’s
linguistic input, distributional patterns of language in adult
speech, atypical speech patterns for medical diagnosis, and
more (e.g., see Casillas and Cristia (under review) for a re-
view). However, even the most basic facts about everyday
speech experience have remained elusive given the techno-
logical constraints of capturing and analyzing daylong speech
for large samples of participants. In the last two decades, the
LENATM system has emerged as a potential solution to this
methodological gap (see Ganek and Eriks-Brophy (2018) for
a review). However, due to its costs and proprietary, aging
technology, LENATM’s usefulness is increasingly limited.

In this half-day tutorial we will describe a new approach
for getting the most from daylong recordings; one that uses
community-based norms to support researchers at every step,
from ethics review and initial data collection to automated
analysis, manual annotation, and data archival. The tools and
databases we include are all open-source and oriented toward
usability on new populations and new technical challenges—
an ideal next step to enable researchers to tackle new scien-
tific questions about everyday language use. These tools has
developed out of the ACLEW project (http:\sites.google
.com/view/aclewdid/home).

Tutorial aims

This tutorial is focused on facilitating current research using
daylong recordings while also boosting the future develop-
ment of even better tools for the collection, annotation, and
analysis of daylong recordings.

Our first aim is to lower the barrier to using daylong
recordings for language research. Many researchers who
are interested in this method are held back from doing so be-
cause there is no clear cost- and time-efficient way to anno-
tate the data. We hope to allay some of these concerns by
introducing a set of tools and techniques participants can use
to extract usable data from their recordings. We will pro-
vide a hands-on training session demonstrating how to use
our ACLEW audio-processing pipeline (automated tools for
exploring voice activity, utterance segmentation, speaker di-
arization, and speech rate estimation) and manual annotation
framework suitable for cross-corpus comparison. All soft-
ware is free, open-source, and multi-platform.

Our second aim is to promote an open-science frame-
work for natural language data, with an eye toward im-
proving access to shared data and comparative analysis. The
daylong recording community is just getting off the ground
(HomeBank; VanDam et al., 2016), and there is vast potential
for scientific advancement if more researchers were to partic-
ipate. To demonstrate the benefits of data sharing and re-use
for daylong recordings, we will show how the use of unified
tools and annotation templates can lead to new breakthroughs
in comparing natural language environments across cultures.
Our motivation is that the long-term non-commercial success
of our toolkit depends on an active community of users. Ac-
tive users contribute new training data, give feedback on qual-
ity, and make requests for new functionality. We therefore
hope to convince researchers that these tools can meet their
immediate analytic needs while also persuading them to in-
vest in the community so that we can establish the mega cor-
pora necessary for continued tool improvement.
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Participants
This tutorial is intended for researchers at all levels of ex-
perience who are interested in the collection, analysis, cura-
tion, and computational modeling of natural language data.
While the tutorial will be accessible to a general CogSci
audience, we also hope to attract participants who are in-
terested in daylong recordings but daunted by the prospect
of collecting or processing them. We also encourage par-
ticipation by researchers who have already invested in day-
long recordings and are looking for new ways to utilize
them. Indeed, as part of DARCLE we have a commitment
and track record of supporting new investigators (http://
darcle.org/newInvestigators.html).

Learning outcomes
After this tutorial, participants will be able to (1) assess the
pros and cons of using naturalistic recordings for their re-
search questions, (2) locate, use, and adapt our online, self-
guided tutorials and templates for creating machine-friendly
annotations, (3) download, install, run, and interpret the out-
put provided by the (open source) audio-processing software,
and (4) understand how to gain access to and use HomeBank,
a repository for daylong audio recordings.

Tutorial structure
This half-day hands-on tutorial will introduce: issues sur-
rounding daylong recording collection, a standardized man-
ual annotation process, the use of automated annotation tools,
and best practices for data archiving. This will be organized
into four sessions (separated by 5-min breaks). Participants
will work with sample media file to get hands-on experience
in each session.

Session 1. Pre-data collection concerns (25 min) A brief
introduction to the method, its costs and benefits, and what to
consider before collecting data. Topics include: how to de-
cide whether daylong recordings are suitable for the research
question, considerations when applying for ethical approval,
and off-the-shelf hardware and software options. We will re-
late these topics to individual research interests.

Session 2. Manual annotation (55 min) A 3-part inter-
active training session introducing participants to manual an-
notation in the machine-friendly template we have developed
for ELAN (Casillas et al., 2017). Part 1 focuses on the ba-
sic setup of the annotation scheme. Part 2 focuses on the use
and adaptability of the annotation conventions. Part 3 focuses
on the annotator training standards and reliability estimation
using the automated tools provided by ACLEW.

Session 3. Automated annotation (55 min) An interactive
tour of the ACLEW automated tools package. Each tool will
be introduced and demonstrated with example media files.
We will also take this opportunity to demonstrate the value of
adding new training and testing data and will open the floor
to discussion about future tool development.

Session 4. Archiving and community (25 min) A brief
discussion focused on the issues surrounding the long-term

storage of daylong recordings. We will also discuss efficient
and accessible ways to share data, annotations, and analysis,
and review the benefits of open-science practices.

Learning materials
Participants will need an Internet-connected laptop and a pair
of headphones. The organizers will create an OSF page with
links to all training materials and instructions for future use.
Although sample data will be provided, participants are en-
couraged to bring their own data to demonstrate the chal-
lenges of different research questions using daylong audio.

Tutor credentials
The materials and instruction for this tutorial will come from
the cognitive scientists and software developers who created
the tools being covered. Collectively, they have expertise in
training dozens of researchers (undergraduate to PhD) on the
steps covered in sessions 1–4. That said, this tutorial will be
the very first to cover the end-to-end use of this pipeline for
researchers working on daylong audio recordings.

Summary of significance
The study of everyday talk is fundamental for understand-
ing the relationship between cognition, culture, and language.
Recent technological advancements afford researchers the
ability to study everyday language on a much larger scale than
before, but these technologies are challenging and therefore
remain somewhat underutilized. We aim to further the use
and usefulness of this technology by spreading knowledge of
how to effectively employ it and by facilitating the continued
improvement of the associated tools for language science.
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Significance of the Method 
In many daily life activities, eye movements provide 

strong clues about underlying cognitive processes. For 
example, patients with cognitive deficits have atypical eye 
movement patterns. Users with different experiences 
show different eye movement behavior in viewing 
websites. Thus, eye movement has become an important 
measure in the broad research fields in cognitive science.  

Recent research has reported substantial individual 
differences in eye movements during cognitive tasks. 
Nevertheless, most of the current analysis methods do not 
adequately reflect these individual differences. Also, they 
focus on spatial information (fixation locations), whereas 
temporal information (transitions among fixation 
locations) is typically overlooked. The most common 
method has been the use of predefined regions of interests 
(ROIs) on the stimuli. However, predefined ROIs are 
often subject to experimenter bias and inconsistency 
across studies. To address these problems, Caldara and 
Miellet (2011) proposed to directly perform by-pixel 
statistical tests on fixation heat maps (where fixations are 
smoothed with a Gaussian function) to determine the 
regions with significant difference between conditions. 
Nevertheless, these regions are often irregularly shaped 
and difficult to interpret. Also, fixation maps at different 
times only show the transition of overall fixation 
distribution and do not provide information about 
transitions between regions. Another method (Jack et al., 
2009) is to define ROIs as regions formed by running the 
k-means clustering algorithm on significantly fixated 
regions of a fixation map. However, this approach 
assumes that all ROIs are circular and the same size, and 
the number of ROIs must be preset by the experimenter. 

Thus, we have developed a novel eye movement data 
analysis method, Eye Movement analysis with Hidden 
Markov Models (EMHMM; Chuk, Chan, & Hsiao, 
2014), which summarizes each individual’s eye movement 
pattern using a hidden Markov model (HMM; a type of 
machine learning model for time series data), including 
person-specific ROIs and transition probabilities among 
the ROIs. Individual HMMs can be clustered according 

to similarities to discover common patterns (Fig. 1a), and 
the similarity between an individual pattern and a 
common pattern can be quantitatively assessed through 
estimating the likelihood of the individual’s data being 
generated by the common pattern HMM. This similarity 
measure then can be used to examine associations 
between eye movement patterns and other cognitive 
measures (Fig. 1b & 1c). We have applied this method to 
face recognition research and made discoveries thus far 
not revealed by other methods, including how eye 
movements are associated with recognition performance, 
cognitive abilities (Chan, Chan, Lee, & Hsiao, 2018), 
cultural differences (Chuk, Crookes, et al., 2017), memory 
encoding/retrieval (Chuk, Chan, & Hsiao, 2017), sleep 
loss (Zhang, Chan, Lau, & Hsiao, 2019), and activations 
in brain regions important for top-down attention control 
(Chan et al., 2016). We have also recently developed new 
methodologies for more complex cognitive tasks, 
including using switching HMMs for tasks involving 
cognitive state changes (Chuk, Chan, Shimojo, & Hsiao, 
2016), and using the machine learning algorithm co-
clustering for tasks involving stimuli with different feature 
layouts (Hsiao, Chan, Du, & Chan, 2019).  
 

 
Fig. 1: (a) Analytic and holistic patterns in face 

recognition (Chan et al., 2018). Ellipses show ROIs as 2-
D Gaussian emissions. The table shows transition 

probabilities among the ROIs. Priors show the 
probabilities that a fixation sequence starts from the 

ellipse. (b) In older adults, the more holistic the pattern, 
the lower the cognitive status (by MoCA), and (c) this 

correlation was replicated with new participants viewing 
new face images using the representative HMMs in (b).  
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In short, the EMHMM methodology will allow us to 
summarize, quantitatively assess, and compare individual 
eye movement patterns across stimuli and tasks, and 
examine how they are associated with other cognitive 
measures. It will lead to innovative findings not revealed 
by any existing methods with a lasting impact on how eye 
tracking is used for understanding cognition across 
disciplines. The Matlab Toolbox for EMHMM is 
available at http://visal.cs.cityu.edu.hk/research/emhmm/. 

Structure and Activities 
This half-day tutorial consists of 2 sessions:  
 
1. Introduction to EMHMM and Its Applications: We 
will first introduce current methods in eye movement data 
analysis to illustrate the advantages of the EMHMM 
method. We will then introduce how we can apply 
EMHMM to research on face recognition, reading, 
cultural difference, ageing, sleep, information systems, 
decision making, scene perception, and video viewing. In 
the end we will provide a short demo in which attendees 
can come to perform a face recognition task with eye 
tracking, and get a personalized EMHMM report on site.  
 
2. Tutorial and Hands-on Experience: We will first 
present an EMHMM simulation study (Chan & Hsiao, 
2018) and provide recommendations for using EMHMM 
in cognitive research. We will then provide an EMHMM 
Matlab Toolbox tutorial with sample data for attendees 
to practice using the toolbox on their own laptops. We will 
have at least one laptop available onsite for attendees who 
do not have access to Matlab. Attendees may also bring 
their own data and ask questions on site. 

Credentials of the Tutorial Organizers 
The tutorial organizers have been developing the 
EMHMM method for 7 years. Since the first paper/talk 
presented at the Annual Meeting of the Cognitive Science 
Society (Chuk, Chan, & Hsiao, 2013), they have published 
6 journal papers (including Cognition and Sleep) and 23 
conference/invited presentations (including VSS and 
ICIS) using this method with collaborators from the UK, 
the US, Germany, and Australia, etc. on various topics.  

Janet Hsiao is a world-leading expert in using eye 
tracking and computational modeling methods to 
understand human cognition. She has published in several 
high-profile cognitive science journals including 
Psychological Science and Cognition. She is currently an 
Associate Editor for Cognitive Science, and has been 
served on the Program Committee for the annual 
meetings of the Cognitive Science Society since 2016. 

Antoni Chan is a world-leading expert in probabilistic 
models for time series data analysis and pattern 
recognition. He has published in several high-profile 
machine learning and computer vision journals, including 
IEEE Trans. on Pattern Analysis and Machine 
Intelligence and the Journal of Machine Learning 

Research. He is currently a Senior Area Editor for IEEE 
Signal Processing Letters, and served as an Area Chair for 
ICCV'15, ’17, and ’19. 
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Introduction 
Experimentation is one of the cores of cognitive science, 
whether one is interested in understanding the mechanisms 
underlying cognitive control or the neural basis of decision-
making. Through accurate measurement in a well-thought-
out experimental design, the goal is to obtain sufficiently 
noise-free data to make inferences about processing. The 
design of an experiment can be especially tricky, requiring 
consideration of many factors (e.g., what levels and how 
many levels of a variable should be presented, how many 
stimuli per level, etc.). The final design can sometimes 
result in only a subset of the design space (i.e., conditions) 
yielding interesting results, with the remaining data being 
minimally informative. 
     Advances in Bayesian statistics and machine learning 
offer algorithm-based ways to generate optimal and efficient 
experimental designs so as to minimize uninformative and 
wasted experimental trials (e.g., Cavagnaro, Myung, Pitt, & 
Kujala, 2010; Lesmes, Lu, Baek, & Dosher, 2010). In an 
optimized experiment, stimuli are selected adaptively and 
optimally (i.e., in an information theoretic sense; Lindley, 
1956) on each trial by real-time data analysis of observed 
responses from earlier trials. What is being optimized is the 
values of the design variables that can be manipulated 
experimentally, such as the intensity of a stimulus in a 
psychophysics experiment or the monetary rewards and 
probability of occurrence in a preferential choice 
experiment. This is unlike a traditional experiment in which 
the design is fixed for all participants and stimulus 
presentation is either random or follows a predetermined 
schedule. 
     One such approach is referred to as Adaptive Design 
Optimization (ADO; Cavagnaro et al., 2010). ADO derives 
from optimal experimental design in statistics (Atkinson & 
Donev, 1992; Chaloner & Verdinelli, 1995) and active 
learning in machine learning (Cohn, Atlas, & Ladner, 1994; 
Settles, 2012).  ADO is a general-purpose, algorithm-based 
method for autonomously conducting adaptive experiments 

that lead to rapid accumulation of information about the 
phenomenon of interest with the fewest number of trials. 
ADO can improve significantly the informativeness and 
efficiency of data collection (e.g., Cavagnaro et al., 2011 & 
2016). 
 
ADOpy 
Expertise in statistics and computational modeling is 
required to use these machine-learning methods. To 
improve their accessibility to a wide range of researchers, 
we have developed an open-source Python package. The 
package, dubbed ADOpy, implements ADO for optimizing 
experimental designs. ADOpy is currently available on 
GitHub (https://github.com/adopy), with three pre-installed 
adaptive experimental tasks as of January 2019: (a) the 
slope and threshold estimation of the psychometric function 
(Kontsevich & Tyler, 1999); (b) the delay discounting 
experiment (Cavagnaro et al., 2016); and (c) the choice 
under risk and ambiguity experiment (Levy et al., 2010).  
     ADOpy is written using high-level semantic-based 
commands in a such way that the whole ADO procedure is 
broken into a set of meaningful function calls that can be 
easily edited and modified by users. Further and 
importantly, the package is user-friendly in that users can 
use the package without having to understand the 
computational details of the ADO algorithm. Additionally, 
the package is modular so that new models and/or 
experimental tasks can be easily added. Thus, only a modest 
amount of programming and modeling experience is 
required to use ADOpy. 
     The purpose of the proposed tutorial is to introduce 
ADOpy to cognitive scientists in a hands-on training 
environment, first providing a conceptual introduction to 
optimal experimental design and then walking through 
examples that demonstrate how to use methodology. The 
tutorial will be based on a manuscript (in preparation) to be 
submitted for publication in the near future. 

Tutorial Format 
This half-day tutorial will be organized into two 1.5-hour 
sessions with a 30-min coffee break between them. The first 
part, given by the first two authors, will consist of a general 
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overview of the conceptual and statistical foundations of 
ADO (1 hour) and then 30 minutes to answer questions and 
set up for the tutorial session. After the break, the second 
1.5 hours will be a tutorial on the ADOpy package, with 
hands-on training using concrete, work-through examples, 
run jointly by the third and fourth authors. 

 There will be a website with a program, a web link to the 
GitHub site, the abstracts and slides of all presentations, 
supplementary Python code to be used in the hands-on 
session and recommended readings. 
 
Target Audience 
Graduate students, postdoctoral researchers, and scientists, 
who are new to ADO and have workable knowledge of 
Bayesian statistics on a graduate level and also of basic 
Python programming. 

Organizers/Presenters 
Jay I. Myung is Professor of Psychology at the Ohio State 
University. He received a PhD in 1990 in psychology at 
Purdue University. His research interests in the fields of 
cognitive and mathematical psychology include 
computational cognition, optimal experimental design, 
Bayesian modeling, and model comparison. Homepage: 
https://faculty.psy.ohio-state.edu/myung/personal/ 

Mark A. Pitt is Professor of Psychology at the Ohio State 
University. He received his PhD in 1989 in psychology at 
Yale University. In addition to researching computational 
approaches to improving inference in experimentation, he 
researches questions in psycholinguistics, such as how 
listeners recognize spoken words. Homepage: 
http://lpl.psy.ohio-state.edu/. 

Jaeyeong Yang is a second-year graduate student of 
psychology in the Department of Psychology at Seoul 
National University. He received a double major B.S. in 
psychology and computer science, and he wrote the ADOpy 
package in Python. 

Woo-Young Ahn is Assistant Professor of Psychology at 
Seoul National University. He received a PhD in 2012 in 
clinical psychology at Indiana University and has published 
over 20 papers in journals such as Cognitive Science, 
Proceedings of the National Academy of Sciences, Current 
Opinion in Behavioral Sciences, Journal of Mathematical 
Psychology, and Computational Psychiatry. His research 
interests include decision neuroscience and computational 
psychiatry, and he developed the Bayesian modeling 
package hBayesDM (https://github.com/CCS-
Lab/hBayesDM). 
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Introduction  
Even though the generally acknowledged normative and 
descriptive standard for modeling human inference is 
classical/ Bayesian probability theory (CPT), there have also 
been several reports which challenge CPT’s universal 
applicability. Some of the most influential empirical 
demonstrations of such so-called fallacies have been 
reported by Kahneman, Tversky and their collaborators. For 
example, consider the evocative conjunction fallacy. In the 
Tentori et al. (2004) demonstration of the conjunction 
fallacy, participants are quite happy to consider it more 
probable to randomly select a Scandinavian person with 
both blue eyes and blond hair, than just blond hair. Even 
though we can imagine a line-up of Scandinavian 
individuals (making the set theoretic structure of CPT 
explicit and so the impossibility of a conjunction fallacy), 
there just seems a persistent feeling that somehow the 
conjunction is more likely than the marginal (cf. Gilboa, 
2000). How can our intuition be so much at odds with CPT 
prescription?  

We call quantum probability theory (QPT) the rules for 
how to assign probabilities to events from quantum 
mechanics, without any of the physics. QPT is in principle 
applicable in any situation where there is a need to 
formalize uncertainty. In psychology, one way to motivate 
QPT is as a bounded rationality approach to CPT: whereas 
in CPT we require conjunctions/ disjunctions across all 
possible questions (and the underlying logical structure is a 
Boolean algebra), in QPT (classical) conjunctions/ 
disjunctions are possible only for so-called compatible 
questions, while for incompatible ones they are undefined 
(they have to be computed with sequential operations; the 
underlying logical structure is a partial Boolean algebra).  

Where incompatible questions are concerned, QPT 
provides a radically different perspective on probabilistic 
inference, compared to CPT, characterized by, for example, 
interference effects, violations of the law of total 
probability, supercorrelations, and constructive influences 
from judgments. These characteristics have provided a rich 

modeling framework for accommodating behavioral results 
superficially at odds with classical structure, across several 
areas including decision making, memory, similarity, 
perception, and logical reasoning, to mention but a few 
(overviews in Bruza et al., 2015; Busemeyer & Bruza, 2012; 
Haven & Khrennikov, 2013; Pothos & Busemeyer, 2013). 

The purpose of the tutorial is to provide a comprehensive 
introduction to the QPT techniques commonly employed in 
cognitive modeling and illustrate the breadth of cognitive 
findings for which successful QPT models have been 
proposed.  

Presenters 
Emmanuel Pothos is a Professor of Psychology at City, 
University of London. He has been involved with the 
quantum cognition research programme since its 
inception, more than 10 years go. James Yearsley is a 
mathematical psychologist, originally trained in quantum 
theory. He has provided one of the most compelling a 
priori behavioral predictions of QPT (Yearsley & 
Pothos, 2016). Zheng (Joyce) Wang is a Professor at 
The Ohio State University. She was Co-Editor for a 
special issue on quantum cognition that appeared in 
Topics in Cognitive Science,  2013, Vol. 5). Peter 
Kvam is a postdoctoral researcher at Indiana 
University, who has published many articles on 
quantum cognition including in top journals such as 
PNAS. Finally, Jerome Busemeyer is Distinguished 
Professor of Cognitive Science at Indiana University and 
fellow of the Cognitive Science Society. He is one of the 
instigators of the quantum cognition research programme.  

Previous Tutorials and 
Symposia 

The tutorial has been presented at the Cognitive Science 
meetings in Nashville (2007), Washington DC (2008), 
Amsterdam (2009), Sopporo (2012), Berlin (2013), 
Quebec City (2014), Pasadena (2015), Philadelphia 
(2016), and Madison (2018), with about 30 to 50 
participants each time. The ratings from participants 
after the tutorial were all very positive. In  2017, we 
held a workshop on quantum cognition supported by the 
Estes Foundation to 60 participants at a joint meeting of 
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the Society for Mathematical Psychology and the 
International Conference on Cognitive Modeling at the 
University of Warwick, UK. Also, this tutorial follows a 
symposium on quantum cognition at the Cognitive 
Science meeting 2011, whose papers appeared as a 
special issue in Topics in Cognitive Science (2013). 

Assumptions about Participants Background  
Most of the techniques we will cover involve elementary 
linear algebra and should be accessible to participants with 
minimal mathematical background. Note, no knowledge of 
physics is required and, with the exception of providing 
some historical context, no references to physics will be 
made.  

Material to be Covered  
We intend to organize the tutorial in three sessions, but with 
multiple speakers per session and short breaks, to make 
presentations more engaging for the audience. We note 
below how each session will be broken up into parts, with 
an approximate indication of time per part.  

Introduction and background (2 hours) 
Why employ QPT in cognitive modeling? Busemeyer will 
provide a brief introduction to the tutorial (0.25 hours). We 
will then consider a simple QPT model for the conjunction 
fallacy, explaining how the representations can be set up, 
how are probabilities computed, and how the interference 
term necessary to accommodate the conjunction fallacy 
emerges. We will also discuss the way the QPT prediction 
of a CF can be interpreted in rational terms (Pothos, 1 hour). 
We will then provide an overview of empirical findings 
which have been modeled with QPT, with a focus on other 
decision findings (e.g., disjunction effect; disjunction 
fallacy), questionnaire response biases (e.g., order effects), 
memory (e.g., the overdistribution effect), similarity, and 
perception (e.g., violations of the law of total probability; 
Wang, 0.75 hours).  

Dynamical models; advanced techniques (2 hours) 
We will discuss how dynamical cognitive processes can be 
modeled with QPT and introduce related technical concepts, 
e.g., unitary operators and Hamiltonians, side by side with 
classical counterparts, in the context of well-known 
empirical results from decision making (Busemeyer, 0.75 
hours). We will then introduce some more advanced QPT 
methods. Notably QPT includes a sophisticated formalism 
for noise in probabilistic inference (with the formalism of 
POVMs), that is relevant in psychological processes where 
noise is assumed to play a substantial role. Additionally, the 
standard dynamical formalism in QPT can be extended to 
situations where there is an interaction (information 
exchange) with the environment (cf. open system dynamics; 
Yearsley, 0.75 hours). Finally, we will consider Bayesian 
model comparisons between QPT and matched CPT models 
and discuss their relative complexity in general terms and in 
relation to specific examples (Yearsley & Kvam, 0.5 hours).   

Generative value (2 hours) 
We will consider the generative value of the quantum 
cognition research programme, with emphasis on explaining 
the techniques and allowing insight into the thought process 
leading to model creation. Kvam (1 hour) will present a 
research programme on modeling heuristics within QPT. In 
particular, he will demonstrate how several fast and frugal 
heuristics can be reconstructed by integrating them with a 
quantum logic structure, introducing qubits, U-gates, and 
quantum information theory more generally. He will 
consider several applications including regarding expertise, 
game theory, and the hindsight bias. Wang (0.75 hours 
hours) will present one of the most surprising and robust 
predictions from QPT, the so-called QQ equality, which is a 
parameter free constraint on how order effects in question 
pairs ought to add up to zero (Wang et al., 2014). Yearsley 
(0.25 hours) will discuss the prediction of the Quantum 
Zeno effect, that the density of intermediate judgments 
slows down opinion change; this prediction relates to one of 
the most distinctive properties of QPT, the collapse 
postulate, which entails state changes from measurements. 
Pothos (0.25 hours) will illustrate this in a simpler 
paradigm, leading to a prediction of a novel decision bias. 
And finally, Busemeyer (0.5 hours) will outline the future 
directions of the quantum cognition research programme.  
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Individual Differences in Spatial Representations and Wayfinding 

 

Navigation is a well-specified computational problem, and solving it is vital for survival. Given 

these constraints, we might expect that humans differ minimally in their wayfinding capabilities. 

Indeed, a lack of variation is often implicitly assumed when cognitive scientists debate the 

existence of cognitive maps or when cognitive neuroscientists search for the neural substrates of 

navigation. However, in everyday life, we frequently discuss how some people get lost with 

some frequency, or how women ask for directions while men use maps. Indeed, it is increasingly 

apparent in the scientific data on navigation (and other cognitive domains) that the study of 

normative functioning needs to be integrated with the study of human variation, with its 

attendant challenges regarding experimental design and use of psychometrics. The four papers in 

this symposium gather together current work in cognitive science and neuroscience that aim to 

integrate the study of variation into the more common normative approach.  

 

 

Mechanisms of Differences in Cognitive Mapping and Navigational Ability: 

Explorations Using Virtual Reality Manipulations 

Thackery I. Brown1, Qiliang He1, Timothy P. McNamara2, Jon Starnes1, Sarah Goodroe1 
1Georgia Institute of Technology 2Vanderbilt University 

 

Daily function depends on an ability to mentally map our environment. Environmental visibility 

and complexity can increase this challenge. Importantly, people vary dramatically in their ability 

to navigate flexibly and overcome such environmental challenges. In this paper, we will present 

experimental work targeting the mechanisms that underlie different navigational abilities, and 

how objective and introspective measures of ability interact to influence navigational strategy 

use. Using virtual reality, we manipulated environmental visibility and complexity. Participants 

then performed wayfinding, pointing, and route following tasks to probe cognitive map memory 

and navigational flexibility. Our findings reveal that individual differences in metacognition - 

such as perceived sense of direction - and in navigational strategy preference powerfully impact 

how environmental features affect spatial memory. We also gathered data on the neurocognitive 

foundations of these differences. Importantly, our methods highlight individualized interventions 

that can improve spatial learning and specify the mechanisms through which they operate. 

 

A Meta-analysis of Sex Differences in Human Navigation Skills 

Alina Nazareth1, Lucy Huang2, Nora S. Newcombe1, Daniel Voyer2 
1 Temple University 2University of New Brunswick 

 

Popular sources often assume the existence of a male advantage in navigation, but the scientific 

data are inconsistent. This meta-analysis evaluates the literature on behavioral sex differences in 

human navigation. We quantify the overall magnitude of sex differences in a variety of 

paradigms and populations and examine potential moderators in large-scale navigation skills, 

using 694 effect sizes from 266 studies and a multilevel linear modeling approach. Overall, we 

found that male participants outperform female participants, with a small to medium effect size 

(d= 0.34 to 0.38). The type of task, the type of dependent variable and the testing environment 

significantly contribute to variability in effect sizes. Pointing and recall tasks show larger sex 

differences than distance estimation tasks or learning to criterion; among the dependent 
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variables, the deviation scores associated with pointing tasks show larger effect sizes. The largest 

estimate was d = .55 for tasks than required coordinating indoor and outdoor views. 

Interestingly, studies with children younger than 13 years showed very small effect sizes (d 

= .15) as compared to older age groups. We discuss the implications of these findings for the 

study of sex differences and identify avenues for future navigation research.  

 

Measuring Spatial Perspective Taking: 

Analysis of Four Measures using Item Response Theory 

Maria Brucato1, Andrea Frick2, Alina Nazareth1, Nora S. Newcombe1 

1 Temple University 2 University of Fribourg 

 

Research on spatial thinking needs reliable and valid measures of individual differences in skills. 

Visuospatial Perspective Taking (PT)—the ability to mentally maintain and transform spatial 

relationships between objects within an environment—is one kind of spatial skill that is 

especially relevant to navigation and building cognitive maps. However, the psychometric 

properties of various PT tasks have yet to be examined. The present study examines three main 

psychometric properties of PT tasks: 1) the reliability of two tasks developed for children but 

adapted in difficulty level for use in adult populations, 2) item difficulty and discriminability 

within and between four tasks using item response theory, and 3) relation of scores with general 

intelligence, working memory, and mental rotation. Results showed that two of the four PT tasks 

have promising psychometric properties for measuring a wide range of PT ability based on item 

difficulty, discriminability, and efficiency of a test information function.  

 

Genetics and Experience Modulate Individual Differences in Navigation 

Veronique Bohbot 

McGill University 

 

Different memory systems, dependent on separate parts of the brain, can sustain successful 

navigation. The hippocampus is implicated in spatial memory strategies used when finding one’s 

way in the environment, i.e. it is allocentric and involves remembering the relationship between 

landmarks. On the other hand, another strategy dependent on the caudate nucleus can also be 

used, i.e. the response strategy, which relies on making a series of stimulus-response associations 

(e.g. right and left turns from given positions). Participants who use the response strategy are 

faster at learning navigation tasks lending themselves to using a single specified route. Young 

adult response learners have increased fMRI activity and grey matter in the caudate nucleus, but 

decreased fMRI activity and grey matter in the hippocampus. Research in my laboratory has 

shown that specific navigation strategies are associated with several genes, such as BDNF and 

ApoE, as well as hormones, such as cortisol and progesterone, but not estrogen and progesterone. 

Experiences dependent modulators such as age, habit, stress and rewards also modulate strategies 

dependent on the hippocampus and caudate nucleus. These results have important translational 

implications because a larger hippocampus has been associated with healthy cognition in normal 

aging and with a reduced risk of numerous neurological and psychiatric disorders such as 

Alzheimer’s disease, Schizophrenia, Post-Traumatic Stress disorder and Depression. 
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Explainability is assumed to be a key factor for the
adoption of Artificial Intelligence systems in a wide range
of contexts (Hoffman, Mueller, & Klein, 2017; Hoffman,
Mueller, Klein, & Litman, 2018; Doran, Schulz, & Besold,
2017; Lipton, 2018; Miller, 2017; Lombrozo, 2016).
The use of AI components in self-driving cars, medical
diagnosis, or insurance and financial services has shown
that when decisions are taken or suggested by automated
systems it is essential for practical, social, and increasingly
legal reasons that an explanation can be provided to
users, developers or regulators.1Moreover, the reasons for
equipping intelligent systems with explanation capabilities
are not limited to user rights and acceptance. Explainability
is also needed for designers and developers to enhance
system robustness and enable diagnostics to prevent bias,
unfairness and discrimination, as well as to increase trust by
all users in why and how decisions are made. Against that
background, increased efforts are directed towards studying
and provisioning explainable intelligent systems, both in
industry and academia, sparked by initiatives like the DARPA
Explainable Artificial Intelligence Program (DARPA, 2016).
In parallel, scientific conferences and workshops dedicated to
explainability are now regularly organised, such as the ‘ACM
Conference on Fairness, Accountability, and Transparency
(ACM FAT)’ (Friedler & Wilson, n.d.) or the ‘Workshop on
Explainability in AI’ at the 2017 and 2018 editions of the
International Joint Conference on Artificial Intelligence.
However, one important question remains hitherto
unanswered: What are the criteria for a good explanation?

Explainable Artificial Intelligence
While Explainable Artificial Intelligence (XAI) has
recently received significant attention, its origins stem
from several decades ago when AI systems were mainly

1As a case in point, the European Union’s General Data
Protection Regulation (GDPR) stipulates a right to “meaningful
information about the logic involved”— commonly interpreted as
a ‘right to an explanation’— for consumers affected by an automatic
decision (Parliament and Council of the European Union, 2016).

developed as knowledge-based or expert systems, such
as in MYCIN (Buchanan & Shortliffe, 1984) and
NEOMYCIN (Hasling, Clancey, & Rennels, 1984). In
these systems, explanations were conceived mainly as
reasoning traces of the system — at first resulting in a very
technical notion of what an explanation is, with only limited
regard to cognitive aspects on the user’s side. Still, in the
context of REX (Wick & Thompson, 1992), there was already
a discussion of how to adapt explanations to different user
groups and the trade-offs involved. While interest in XAI
subsided after the mid-1990s, recent successes in machine
learning technology have brought explainability back into
the focus. This has led to a plethora of new approaches for
both autonomous and humans-in-the-loop systems, aiming
to achieve explainability, as defined by respective system
creators, without sacrificing system performance.
Many systems focus on interpretable post-hoc
approximations of black-box models (Guidotti et al.,
2018), using symbolic representations such as decision
trees (Craven, 1996; Sarkar et al., 2016) or decision
rules (Ribeiro, Singh, & Guestrin, 2018), feature
importance (Lou, Caruana, & Gehrke, 2012), saliency
maps (Selvaraju et al., 2017), or local regression
models (Ribeiro, Singh, & Guestrin, 2016). On the other
hand, there are efforts to design intelligent systems to be
interpretable by design, e.g., in recommender systems (Zhang
& Chen, 2018), or in a recently started project developing the
concept of perspicuous computing.2

In these heterogeneous origins and developments of XAI,
a discussion is still to be had on what precisely the roles
of explanations are and, in particular, what makes an
explanation a good explanation. To this end, we will
bring together several experts of different aspects of the
phenomenon “explanation” in this symposium, to analyze the
notion of explanation in the context of artificial intelligence
from different cognition-related perspectives.

What Makes a Good Explanation?
Starting out from the cognition of explanations, this
symposium will foster scientific discourse about what

2https://www.perspicuous-computing.science
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functions an explanation needs to fulfill and the criteria that
define its quality. Some of the aspects to be addressed are:

• Objective and subjective value of explanations
• Dimensions of explanations: complete vs compact,

abstract vs concrete, reduced vs simplified, ...
• Anchoring to known concepts
• Counter-factual explanations and actionability
• Personalisation
• Legal requirements
• Grounding in personal and social experience and intuition

A panel of recognised scholars and researchers will bring
insights and expertise from different points of view,
including psychology, cognitive science, computer science,
and philosophy, and will foster knowledge exchange and
discussion of the multiple facets of explanation:
• Kathleen Creel will talk about ‘Understanding Machine

Science: XAI and Scientific Explanations’, drawing
on the literature on scientific explanation in philosophy
and cognitive science, and arguing that for scientific
researchers, good explanations require more access to the
functional structure of the intelligent system than is needed
by other human users.

• Tania Lombrozo will talk about ‘Explanatory Virtue
& Vices’, considering the multiple functions and
malfunctions of human explanatory cognition with
implications for XAI. In particular, she will suggest that we
need to differentiate between different possible goals for
explainability, and that doing so it highlights why human
explanatory cognition should be a crucial constraint on
design.

• Shane Mueller will talk about ‘Ten fallacies of Explainable
Artificial Intelligence’, reviewing some of the assumptions
made until now about what properties lead to good
explanations, and describing how each constitutes a fallacy
that might backfire if used for developing XAI systems. He
will then describe a framework developed for the DARPA
XAI Program for measuring the impact of explanations
that incorporates cognitive science theory related to mental
models, sensemaking, context, trust, and self-explanation
that can provide a principled approach for developing
explainable systems.

• Patrick Shafto will talk about ‘XAI via Bayesian
Teaching’, raising questions about the use of modern
machine learning algorithms in societally important
processes, and theoretical questions about whether
and how the opaqueness of these algorithms can be
ameliorated, in the framework of Bayesian teaching.

• Roberto Confalonieri and Tillman Weyde will talk about
‘An Ontology-based Approach to Explaining Artificial
Neural Networks’, addressing the challenges of extracting
symbolic representations from neural networks, exploiting
domain knowledge, and measuring understandability of
decision trees with users both objectively and subjectively.
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Introduction 
The past decade has seen remarkable progress in artificial 
intelligence, with such advances as self-driving cars, IBM 
Watson, AlphaGo, Google Translate, face recognition, 
speech recognition, virtual assistants, and recommender 
systems. Ray Kurzweil and others think that it is only a 
matter of decades before AI surpasses human intelligence. 
This symposium will evaluate the extent to which AI 
currently approximates the full range of human intellectual 
abilities, and critically discuss the prospects for closing the 
gap between artificial and human intelligence.  Participants 
will combine the perspectives of computer science, 
psychology, and philosophy.  
 

The Comparative Cognition of Humans and 
Machines  

Ken Forbus and Dedre Gentner 
 

While there has been great progress in both cognitive 
science and artificial intelligence, both would benefit from 
better communication between them. The comparative study 
of cognition in humans and intelligent machines can shed 
light on both kinds of systems.  In the last decade, the 
confluence of massive computational resources, massive 
data sets, and several decades of incremental advances has 
led to a substantial increase in the ability to build 
applications with neural networks.  Deep learning systems 
have shown impressive performance in image classification 
and game learning. However, they still fall far short of 
capturing human abilities such as explanation and inference, 
and they require orders of magnitude more data than 

humans do. We argue that a fundamental lack in these 
systems is their lack of explicit relational representations.  
The ability to represent and reason about relational patterns 
is central to our human ability to explain and predict, and to 
learn rapidly via analogies with prior knowledge. 
Fortunately, many of the same factors that have led to gains 
in deep learning systems are also acting to increase our 
ability to build large-scale systems with relational 
representations, which reason and learn in human-like ways. 
We discuss examples from recent experiments in which 
analogical learning over relational representations leads to 
far more humanlike and data-efficient learning than deep 
learning. 

AI and Cognitive Architecture 
John E. Laird 

 
There is more talk than ever about general AI, but all the 
emphasis appears to be on recognition, classification, or 
reactive decision making with very little on cognition. The 
emphasis seems to be on only slices of System 1. Within 
those slices, we see human-level or even super-human 
performance, but these are very thin slices. Each system is 
focused on one phenomenon, and given the emphasis on 
learning from large data sets; it leads to overfitting, not 
necessarily to specific data, but to the specific problem to 
the exclusion of developing anything that can work on 
another problem, or even interact with another cognitive 
capabilities. In contrast, humans are defined by their 
flexibility – they can work on many different problems, 
switching effortlessly from one task to another. They also 
can learn from many sources of knowledge, on line and in 
real time, and using a variety of learning techniques. 
Moreover, they can learn new tasks from scratch in real-
time from natural language instruction. A growing field 
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called Interactive Task Learning has developed an AI 
system that is embodied in a variety of robotic platforms 
and that can learn over 50 games and puzzles as well as 
navigation tasks. It integrates natural language processing, 
planning, perception, motor control, and learning within a 
cognitive architecture. Christian Lebiere, Paul Rosenbloom 
and I have proposed the Common Model of Cognition 
(CMC) to unify the theoretical underpinnings of many 
cognitive architectures, starting with Soar, ACT-R, and 
Sigma. CMC has a vastly different structure than current AI 
approaches, including procedural and declarative memories, 
working memory, multiple learning mechanisms. Although 
these components are common in cognitive science, they are 
the exception in current AI systems, in large part because of 
the emphasis on System 1, and off-line batch learning. Until 
AI takes cognitive architecture, as exemplified by the CMC, 
seriously, it will not achieve the flexibility, breadth, and 
adaptability we associate with human intelligence.  

Close the Gap and Cooperate 
Thomas Shultz and Ardavan Salehi Nobandegani 

 
We will argue that attempts towards achieving artificial 
general intelligence (AGI) should pay more attention to 
human intelligence and its neural underpinnings. Having to 
interact with humans, AGI will need an adequate grasp of 
human judgment and decision-making and moral principles. 
Human intelligence not only surpasses current AGI systems, 
but, importantly, it does so in a resource-efficient way, 
setting a gold standard for future AI systems. Many of the 
important AI algorithms originated in psychology, and that 
strategy is still worth pursuing. A current shortcoming of 
many AI systems is their limited capacity for generalization 
– the ability to transfer knowledge from a newly or 
previously learned task to other relevant tasks. AI could also 
benefit tremendously from cognitive and developmental 
psychology to better understand the developmental stages 
that human infants go through on their way toward adult-
level intelligence. To illustrate, we’ll focus a bit on the 
significance of autonomous learning (aka active learning) 
for bridging the current gap with humans. Even infants take 
an active role in their own learning by selecting what to 
work on, what to abandon, and perhaps which examples 
would be most useful. There is a key role here for learning 
cessation, the ability to give up on impossible learning 
tasks, identifiable by lack of continued progress. This paves 
the way for focusing on tasks in which progress and mastery 
are more likely. We can suggest ways of implementing 
these important human capacities in future AI systems. 
Finally, we want to stress the importance of a cooperative 
relationship between humans and machines. The notion of 
gap between us and them that can be closed or even 
surpassed suggests a more competitive relationship than 
there perhaps needs to be. The results of mutual cooperation 
between humans and machines could be much more 
interesting and desirable to achieve.  

How AI Can Understand Causality 
Paul Thagard 

 
Causality is important for operating in the world and 
explaining how it works. Yoshua Bengio and others have 
pointed out that deep learning and other AI systems lack a 
human-level understanding of causality. Thagard (2019) 
argues that human understanding of causality originates 
with sensory-motor-sensory schemas found in infants as 
young as 2.5 months. For example, a baby can see a rattle, 
hit it with hands, and see the rattle move and make a noise. 
Learning robots could potentially form such schemas, but 
would have to go beyond current AI systems in several 
ways.  First, they would need modal retention, the capacity 
to save and work with sensory and motor representations. 
This capacity is found in the Semantic Pointer Architecture 
of Chris Eliasmith (2013), but not in other cognitive 
architectures or AI systems. Second, they would need the 
capacity to learn dynamic patterns that capture changes in 
series of events. Third, they would need to be able to expand 
the rudimentary sensory-motor appreciation of causality to 
cover advanced elements that included regularities, 
probabilities, and manipulations.  
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We bring together four researchers who study exper-
tise in team or in solo (i.e., individual) performance. Team
research tends to either collect a lot of questionnaire data
after performance or a little data, in real-time, by human
observers. Studies of solo performers are often restricted
to convenience samples of task novices, who often spend
less than an hour learning and performing the task. In
contrast, the research of all four of our panelists is no-
table for using tasks which require days-to-years of prac-
tice and for the quantities of data collected. Discussions
will emphasize the contributions these approaches are
making to theoretical cognitive science.

Jamie C. Gorman – Theory of Interactive Team Cog-
nition

By recreating environments for Drone pilots or Sub-
mariners, Jamie Gorman and colleagues collect com-
munications and responses among team members in
real-time longitudinal studies. These data allowed re-
searchers to apply the power of nonlinear dynamical sys-
tems theory to further develop the theory of Interactive
Team Cognition (ITC, Cooke, Gorman, Myers, & Duran,
2013). The approach has been extended to teams com-
posed of humans and machines.

ITC proposes that team cognition: (1) is an activity, not
a property or product; (2) must be measured and studied
at the team level; and (3) is inextricably tied to context.

ITC Prop 1 maintains that team cognition is dynamic
and context dependent. ITC Prop 2 leads to a systems
perspective in which models and metrics are focused
at the team level, with individual cognition and behavior
viewed as emergent team dynamics. Team member be-
havior and cognition are dynamically reorganized (or re-
arranged) in real time (ITC Prop 1) to maintain functional-
ity as the team adapts to changing task environments to
achieve its goal. Hence, teams with high cognitive skill
achieve their goal even if environmental context varies
and roadblocks to team effectiveness are encountered
(ITC Prop 3).

Unlike individual cognition, there are no standard tests
to measure the general cognitive skill or ability of a team.
One theoretical and methodological development has
been to determine a generalizable way to identify and
measure team cognitive skill through a team’s “general

adaptive response”.
Our research on team cognition has shown that teams

that achieve their goals have (a) a faster general adap-
tive response, (b) adapt their responses to the variability
in obstacles they encounter, and (c) generate responses
appropriate to the particular roadblocks they encounter.
For examples, I will draw on research with medical teams,
submarine crews, UAV teams, as well as in vitro, labora-
tory, team coordination tasks. This variety of teams illus-
trates the concept of the general adaptive response as an
ITC-based measure of team cognitive skill. These teams
also illustrate the real-time dynamical system modeling
techniques that we use to track team cognition in dynamic
environments.

David Mendonça – Adaptation in Adversarial Games

David Mendonça’s prior research has focused on in-
tensive studies of teams in high-stakes, time-constrained
environments. His most recent work is an extremely ret-
rospective analysis of “An historical perspective on com-
munity resilience: The case of the 1755 Lisbon Earth-
quake” (Mendonça, Amorim, & Kagohara, 2018).

In addition to being the most played game in the world
(with approximately 10M active users), League of Leg-
ends (LoL) is an adversarial game (similar to "capture the
flag") in which teams must adapt to (and even precipitate)
unplanned-for contingencies. Elite players (such as those
we study), have played thousands of such matches, with
the average match consisting of two teams, each of 5
players, battling for 30 min.

Our work explores the relationship between (i) pre-
match composition of a team, (ii) decision processes
within the match, and (iii) match outcomes in LoL. Re-
spective methodological challenges include (i) character-
izing team capabilities, (ii) quantifying adaptation, and (ii)
validating measures of performance.

In contrast to traditional work on teams, we utilize
no psychometric instruments, instead deriving measures
that are validated against salient theoretical constructs
and instantiated with gameplay data. And while these
data are freely available, their allure is offset by some
hard realities: researchers have no influence over either
the data stream or the game architecture, and the formu-
las used to benchmark individual and team expertise are
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held as trade secrets. Matches are scheduled by the de-
velopers on a rolling basis and–unlike in ”regular” sports–
are designed so that opponents are closely matched.

After briefly summarizing results to date, we explore
within-match performance of teams whose members
have weaker or stronger histories of working together, fo-
cusing specifically on behavioral responses to the tempo-
rary loss of one or more team members. We present data
on how the experience of “playing shorthanded” trans-
lates (or fails to translate) into longer-term behavioral
adaptations.

The talk concludes with issues and implications for the
design and/or modification of open-source, team-based
games and the data associated with them. ïż£

Jerad Moxley – Chess: The Once & Future Paradigm

The distinction of having studied more types of game-
play by solos or teams, than any other researcher on this
panel may go to Jerad Moxley. His studies have spanned
crossword puzzles, chess, basketball, elderly game play-
ers, videogames, as well as gender differences among
SCRABBLE players.

For researchers interested in skilled performance, an
important feature of chess is the reliability of the chess
rating system and the fact that one experimental task
(the choose the best move task ), can measure skill and
age effects about as well as tournament play, thereby
making Chess ideal for studying domain-specific perfor-
mance. Complimentary, another common task, the recall
task, diverges from tournaments in ways that make it use-
ful for studying a mixture of domain specific and domain-
general abilities.

Applying the best move task and the recall task across
the lifespan of chess players has increased our under-
standing of how domain-specific processes and domain-
general abilities develop. Research on older adults and
children now converges to show strong aging effects of
chess tasks that tap into both specific and general abil-
ities. In contrast, the best move tasks captures rela-
tively small aging effects consistent with tournament per-
formance.

As noted, performance on the best move task shows
developmental trends in both youth and older adults
that mirror tournament performance. Importantly, how-
ever, process tracing shows clear differences between
the growth of skill in youth and the decline of skill with ag-
ing. Although skill development is broadly consistent with
what we expect based on tournament performance, the
age-related decline of prior skill levels shows process dif-
ferences that dissociate from skill. In particularly, the age-
related declines are not uniform. On easy problems, bet-
ter players immediately gain an advantage over weaker
players.

In contrast, on difficult problems, process tracing has
shown that better players initially resemble weaker play-
ers but as problem solving continues, better players mas-
sively improve their move selection. In contrast, more

time does not improve the performance of the weaker
players. Methodologically, these conclusions follow from
the combination of verbal protocol analysis and the tradi-
tional behavioral measures.

We view chess not as a standalone domain, divorced
from the rest of human cognition but, rather, as a viable
paradigm for studying the big questions in cognitive sci-
ence. Indeed, the tasks and domains discussed here can
easily be used by researchers who have no interest in
chess itself to answer their questions of interest.

Wayne D. Gray – Plateaus, Dips, & Leaps to Expertise

After several years of working in applied labs, Wayne
Gray became concerned that basic researchers were not
working on the types of theory he needed to do his job.
That concern led him to shift to academe where he has
since attempted to pursue theories and research applica-
ble to problems of interactive behavior.

Learning a new task can be hard but, apparently, learn-
ing and using a new procedure for an old task can be even
harder. That is the message from work on stable subop-
timal performance from the early 2000s. Wai-tat Fu and
I demonstrated time and again that people who knew the
optimal procedures would fail to apply them, falling back
on older ways of doing things.

Although that battle is still being fought (e.g., Lafre-
niere, Gutwin, & Cockburn, 2017), the focus in my lab has
shifted. After a few years of looking at learning curves
for individuals, we realized that none of our curves were
close to being picture-perfect power law curves. All of our
curves showed plateaus, dips, and leaps. Indeed, what
we had thought of as noise was, in fact, the message;
namely, that learning a real-time, complex, dynamic task
entails a series of explorations and discoveries, trials and
errors, in search of methods or strategies that will move
performance forward.

We now refer to complete mastery of a task as asymp-
totic performance and to stable suboptimal behavior as
performance plateaus. However, the most interesting
parts of the curve are those periods in which performance
dips and, sometimes, leaps. The talk will provide several
examples of the use of dips and leaps to identify periods
of method discovery or invention.

Ray Perez – Basic Research for Complex Problems

For the last 3 decades, Ray Perez has been pursuing
applied problems by finding or encouraging others to find
theory-based solutions. Most recently, Ray has been the
Program Officer of the Office of Naval Research’s Cogni-
tive Science of Learning program.

Ray Perez is co-organizer of this symposium as well
as its moderator and discussant. In each of these three
roles, Ray is focused on how complex tasks, sometime
performed by a single person and other times performed
by teams, are learned and executed.30
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Cognition is complex. This complexity is related to 
multiple, distributed neurocognitive processes dynamically 
operating across parallel scales, resulting in cognitive 
processing. A major challenge in studying this complexity, 
relates to the abstractness of theoretical cognitive constructs, 
such as language, memory, or thinking in general. Such 
abstractness is operationalized, indirectly, via behavioral, 
measures or in neural activity. In the past two decades, an 
increasing number of studies have been applying network 
science methodologies across diverse scientific fields to 
study complex systems. 

Network science is based on mathematical graph theory, 
providing quantitative methods to investigate complex 
systems as networks (Baronchelli, Ferrer-i-Cancho, Pastor-
Satorras, Chater, & Christiansen, 2013; Siew, Wulff, 
Beckage, & Kenett, 2018). A network is comprised from 
nodes, that represent the basic unit of the system (e.g., 
concepts in semantic memory) and links, or edges, that 
signify the relations between them (e.g. semantic similarity). 
While the application of network science methodologies has 
become an extremely popular approach to study brain 
structure and function, it has been used to study cognitive 
phenomena to a much lesser extent. This, despite classic 
cognitive theory in language and memory being highly 
related to a network perspective (Collins & Loftus, 1975; 
Siew et al., 2018). Already, network science in cognitive 
science has enabled the direct examination of the theory that 
high creative individuals have a more flexible semantic 
memory structure, identified mechanisms of language 
development through preferential attachment, shed novel 
light on statistical learning, shown how specific semantic 
memory network parameters influence memory retrieval, 
and provided new insight on the structure of semantic 
network of second language in bilinguals (Siew et al., 
2018). 

The aim of the current symposia is to demonstrate the 
potential and strength of applying network science 
methodologies to study cognition. This will be achieved by 
bringing together leading researchers that apply such 
methods to study various aspects of cognition, including 
language, learning, aging, and creativity. The presentations 
will describe state-of-the-art progress and perspectives that 
are achieved in applying these methods to study cognition. 
Importantly, these talks aim at stimulating discussion of the 
fruitfulness of such an approach and how such an approach 
can powerfully and quantitatively study the complexity of 
cognitive phenomena. Finally, this symposium aims to 
demonstrate how network science in cognitive science can 
be used to quantitatively bridge across different levels of 
analysis, spanning the computational, behavioral, neural, 
and social. 

Yoed Kenett: Introducing cognitive network 
science 

In recent years, network science has become a popular tool 
in the study of structure and dynamics at the neural level of 
the brain. Despite its rich potential, this has been the case to 
a lesser extent to the study of cognitive phenomena. This, 
despite classic cognitive theory in domains such as memory 
and language being heavily based on a network perspective 
(Collins & Loftus, 1975; Siew et al., 2018). In this talk, I 
will argue for the potential of applying the quantitative 
language of networks to study cognition. I will first describe 
methodological approaches to estimate cognitive networks 
and relevant network science measures. I will then briefly 
describe how cognitive network research can be applied to 
study the structure, processes, and dynamics of cognitive 
domains. These examples will focus on semantic memory 
and relate to aspects of creativity, spreading activation, and 
semantic memory restructuring. Finally, I will argue that 
cognitive network science can be used to quantitatively 
bridge across multiple domains of analysis, spanning the 
neural, cognitive, and social. 
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Nichol Castro: Capturing the aging lexicon 
using network science techniques 

Word findings problems increase with age, even in the 
absence of disease or impairment. Although some accounts 
attribute word finding problems to changes in domain 
general cognitive processes, the prominent explanation is a 
deficit in accessing phonology due to weakened connections 
between lexical items and their phonological constituents 
between lexical items and their phonological constituents 
(Burke, MacKay, Worthley, & Wade, 1991). In other words, 
there is a change in the structure of the mental lexicon that 
occurs with age. However, quantifying structural change in 
the mental lexicon has remained understudied. This talk will 
show how the tools of network science can be used to 
identify key structural changes in phonological and 
semantic networks occurring across adulthood (e.g., 
Dubossarsky, De Deyne, & Hills, 2017). A discussion of 
how structural change could impact language processing 
will ensue, followed by a brief foray into the implications of 
aging lexicon networks in clinical populations. In particular, 
it’s important that we consider how aging impacts the 
lexicon of not just “healthy” adults, but also those who have 
suffered brain insult (e.g., in the case of stroke-induced 
aphasia). 

Elisabeth Karuza: Probing the level at which 
learners track co-occurrence patterns 

Humans are highly attuned to the clustering of elements in 
their surroundings. For example, when learners are 
confronted with novel sequential input, their element-by-
element processing times have been shown to reflect the 
community structure (i.e., multi-element patterns of co-
occurrence) underpinning those sequences. In this talk, I 
will detail recent developments in a framework for 
examining learners’ sensitivity to the network structure of 
their environment. Prior applications of this framework have 
generally involved assigning a handful of unnatural stimuli 
(e.g., fractal images) to nodes in a small network and 
generating sequences by walking along its edges (Karuza, 
Kahn, Thompson-Schill, & Bassett, 2017; Schapiro, Rogers, 
Cordova, Turk-Browne, & Botvinick, 2013). Here, I will 
describe the expansion of this approach to encompass the 
study of larger temporal networks comprised of more 
naturalistic stimuli (e.g., manipulable objects and 
phonotactically legal pseudowords). Finally, I will examine 
how the collection of off-line measures might serve to 
clarify the previously observed relationship between on-line 
processing times and network architecture. 

Michael Vitevitch: Connecting the MIND and 
the BRAIN with multiplex networks 

Poeppel and Embick (2017) describe two problems 
researchers face when trying to bring together the mind and 
the brain: (1) granularity mismatch problem, and (2) 
ontological incommensurability problem. In the granularity 
mismatch problem, the elemental concepts and operations of 

Cognitive Science doesn’t match the elemental concepts and 
operations of Neuroscience. In the ontological 
incommensurability problem, the fundamental elements of 
Cognitive Science cannot be reduced to or matched up with 
the fundamental biological units of neuroscience. Poeppel 
and Embick (2017) suggest that computational models may 
overcome these problems and provide the desired bridge 
between mind and brain. As an alternative to bridging the 
mind and brain, I discuss the possibility (and potential 
problems) of using multiplex networks to bridge mind to 
brain, and to bridge the individual mind-brain to the mind-
brains of others.  
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Introduction 
Jeffrey Locke Elman (1948-2018) devoted his career to 

studying human language. He investigated how people use 
language flexibly and productively, and how these abilities 
are learned from linguistic and other input. Jeff was a 
faculty member at the University of California, San Diego 
from 1977 until he passed away in 2018. His early research 
focused on phonetics and phonology. This work began his 
theoretical journey that resulted in the ideas for which he is 
best known: seemingly discrete combinatorial units of 
language, such as phonemes, may best be understood as 
emergent properties of underlying continuous 
multidimensional representations, such as phonetic input. 

In the early 1980's, Jeff was a key part of transformative 
developments at UCSD in connectionist modeling, working 
with Jay McClelland, Dave Rumelhart, Geoff Hinton, and 
Liz Bates. With McClelland, he developed the TRACE 
model of speech perception. In TRACE, speech perception 
is seen as a constraint satisfaction process in which prior 
and subsequent context combine with incoming sensory 
evidence to determine how humans perceive speech. 

Jeff then turned his attention to a central but often 
neglected aspect of cognition: time. Jeff's work on Simple 
Recurrent Networks, beginning with his classic 1990 article 
Finding Structure in Time, proposed that time-evolving 
continuous hidden-state representations are fundamental to 
language processing, and enable prediction-based learning 
of language. This work remains among the most influential 
in the history of Cognitive Science. Jeff's subsequent work 
explored the initial conditions under which a simple 
recurrent network would recover grammatical structure. He 
then led a collaborative project to rethink the nature of what 
must be built in as a foundation for language, and more 
generally for cognition (Elman et al., 1996). In later work, 

he focused on the relationship between language and event 
knowledge. He argued that words do not have meanings, but 
instead provide clues that a listener uses to understand 
language. He also focused on event knowledge as a basis for 
prediction during language comprehension (Elman, 2009; 
Metusalem et al., 2012). Jeff's final major contribution was 
a model of how event knowledge is learned. He argued that 
knowledge of the components and temporal structure of 
events emerges as a consequence of prediction-based 
learning (Elman & McRae, 2019). 

Jeff also played a major role in advancing Cognitive 
Science as a field. At UCSD, he and colleagues co-founded 
the interdisciplinary Center for Research in Language in 
1985. In 1986, Jeff was a major part of the first Cognitive 
Science department, which he chaired from 1995 to 1998. 
Jeff also served as Dean of Social Sciences, and a founder 
of both the Kavli Institute for Mind and Brain and the 
Halicioğlu Data Sciences Institute. Finally, Jeff provided 
guidance for the field by serving as President of the 
Cognitive Science Society, and a highly respected Chair of 
the NIH Language and Communication study section. 

This symposium honors Jeff’s memory. The introduction 
and discussion will be led by the organizers (McClelland & 
McRae). In between, four speakers whose work reflects the 
legacy of Jeff’s contributions will present research from the 
perspectives of cognitive neuroscience, cognition and 
perception, language development, computational modeling, 
and deep learning in simulated embodied agents. 

Talks 
Gina R. Kuperberg 
Language prediction over time and space: Evidence 
from multimodal neuroimaging studies 
In his seminal paper, Finding structure in Time, Elman 
argued that predictions are based not just on input from the 
world, but on the ever-changing state of the cognitive 
system. He emphasized the idea that these predictions are 
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non-deterministic, implicit, and inevitable. He also pointed 
out that prediction error not only provides feedback to the 
system (to learn and maximize its performance), but that it 
also provides valuable clues for the scientist: it can tell us 
about the structure of the input and the nature of cognition. 
These ideas have far-reaching implications for thinking 
about what neural measures can tell us about the 
architecture of language comprehension. I will discuss 
evidence from multimodal neuroimaging studies (ERP, 
fMRI and MEG) that, during comprehension, 
spatiotemporally distinct neural signatures reflect neural 
prediction error and updating at multiple time scales. I will 
argue that they point to a language comprehension system in 
which probabilistic predictions are generated and 
incrementally updated over time, at multiple levels and 
grains of representation, with the ultimate goal of inferring 
the latent cause that best explains the full set of inputs 
encountered — the message that the communicator intended 
to convey. Consistent with Elman’s ideas, I also will argue 
that the neural responses evoked by prediction violations 
play a crucial role in triggering us to rapidly adapt to the 
statistical structure of our ever-changing communicative 
environments so that we can predict more efficiently in the 
future. 

Arielle Borovsky 
Prediction in a changing world 
This talk connects with several of Elman’s contributions, 
including his perspective on prediction, learning over time, 
and event knowledge in language learning and processing. 
Numerous language processing models emphasize the 
importance of listeners’ ability to predict upcoming 
information for efficient language comprehension and 
learning. Much of the evidence for these models is derived 
from studies of comprehension in well-known or familiar 
(i.e. predictable) contexts. However, speakers are pressed to 
prioritize novel information, suggesting that everyday 
conversation does not typically rehash redundant events. In 
developmental and learning contexts, this problem may be 
compounded by the fact that listeners may still be learning 
about the language and the world. Therefore, they may not 
have sufficient knowledge to generate predictions. In all of 
these circumstances, prediction might be counter-productive 
for comprehension. I will discuss recent studies of how 
adults and children engage in prediction while learning 
about new events. The findings illustrate that while adult 
listeners can rapidly modify their predictions in the face of 
change, children develop this flexibility gradually over a 
protracted period. By incorporating developmental insights 
and learning paradigms into studies of linguistic prediction, 
we can develop richer models of how predictive 
mechanisms support everyday communication and learning. 

James S. Magnuson 
Elman's agenda for the cognitive science of 
language processing 
I will review the remarkable breadth and depth of one of 
Elman’s major contributions: the TRACE model of speech 

perception and spoken word recognition (McClelland & 
Elman, 1986). I then will apply one of his other major 
contributions – the simple recurrent network (SRN; Elman, 
1990) – to the same domain. Remarkably, SRNs have not 
been applied deeply to problems in spoken word 
recognition. Even more remarkably, despite seemingly large 
differences in architecture, TRACE and SRNs make 
extremely similar predictions, including item-specific 
predictions for large sets of items. I will conclude by 
considering how deeply Elman’s ideas and work have 
shaped the cognitive science of language processing. 

Felix Hill 
Embodied neural network agents that learn 
language in a simulated world 

I will describe a neural network 'agent' that is situated in a 
fully-navigable simulated 3D world as a model of early 
child word learning. The agent perceives its world via first-
person continuous raw visual input and must learn to 
respond, with appropriate sequences of fine-grained motor 
actions, to symbolic language-like stimuli that describe 
simple goals. Recurrent components inspired by Jeff 
Elman's work play an important part in this architecture both 
for processing language word-by-word and for making 
sense of experience timestep-by-timestep. I explain how, 
under certain training conditions, the agent learns to reflect 
some known aspects of human word learning, including the 
emergence of semantic classes, vocabulary spurts, 
curriculum effects and word-learning biases. I further 
demonstrate how word learning can be sped up by 
incorporating an offline experience replay mechanism. 
Finally, I discuss the strengths and weaknesses of modelling 
early word learning with deep reinforcement learning agents 
in this way. 
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Introduction 
Research in cognitive control investigates how cognition and 

behavior get tailored to suit behavioral goals in particular task 

contexts. The work often focuses on mechanisms that 

adjudicate competition amongst simultaneously active but 

mutually incompatible representations. The objects of 

control—the competing representations—are often cast as 

fixed entities: control influences interactions among these but 

does not shape the representations themselves. Conversely, 

research into the origins of mental representations 

(perceptual, linguistic, semantic, etc.) often neglects 

questions central to theories of control: whether and how the 

acquired representations support flexible task-dependent 

behaviors, the degree to which learning produces 

representations that compete or cooperate within and across 

tasks, or the extent to which learned representations require 

task-dependent potentiation to operate effectively. 

Recent work within each tradition suggests, however, that 

control, learning, and representation are tightly 

interconnected. First, the degree to which control is required 

for any given task and stimulus domain depends critically on 

the nature, structure, strength, and compatibility of the 

underlying representations, which in turn arise from learning 

and experience. Second, when the same items are engaged in 

a variety of different tasks, it may  be useful to exploit a 

common representation across tasks, or to learn different 

representations for each, or to find some middle ground—

thus learning must produce a flexible set of representations 

suited to control demands and capturing shared structure 

within and across task contexts. Third, since control shapes 

the flow of activation within sensory, motor, and associative 

systems, it must also constrain activation-dependent learning 

within and between these systems—that is, the 

representations acquired must depend to some degree upon 

control. 

This symposium brings together four perspectives on the 

mutual constraints existing among systems of control, 

learning, and representation. In each case, consideration of 

these mutual influences leads to new and often surprising 

resolutions to long-standing questions across seemingly 

disparate domains of cognitive neuroscience. 

 

 

The rational boundedness of cognitive control: 

Shared versus separated representations 
Sebastian Musslick, Abigail Hoskin Novick &  

Jonathan D. Cohen, Princeton University 

A fundamental and striking limitation of human cognition is 

the constraint on the number of control-dependent processes 

that can be executed simultaneously, which forms one of the 

most basic and influential tenets of cognitive psychology: 

controlled processing relies on a central, limited capacity 

processing mechanism that imposes seriality on control-

dependent processes. We present a challenge to this view that 

distinguishes control-dependent and automatic processing by 

their reliance on shared vs. separated representations. 

Specifically, we propose that: task performance relies on sets 

of representations that may be shared with others; the 

inability to perform more than one task at a time may reflect 

conflict that arises when the tasks involved make use of the 

same set of representations for different purposes; and the 

purpose of control is to prevent such conflict by restricting 

use of such shared sets of  representations to just one task at 

a time. That is, constraints associated with control-dependent 

processing reflect a rational response to sharing of 

representations, rather than limitations in the control 

mechanism itself. We use graph-theoretic methods to 

formalize this theory, and analyze the multitasking capability 

of two-layer neural networks when representations are 

shared/not shared across tasks. The multitasking capability of 

a network drops precipitously with an increase in shared 

representations, and is virtually invariant to network size.   

Why then should a network use shared representations at all? 

In computational simulations and behavioral experiments we 

demonstrate a tradeoff between learning efficiency, 

promoted by shared representations, and multitasking, best 

achieved via separated representations. The commonly-

observed trajectory from controlled to automatic processing 

may therefore reflect an optimization of this tradeoff: shared 

representations initially afford a bias toward efficient 

learning in novel task environments at the expense of seriality 

and control-dependence; but experience in environments 

where multitasking affords sufficient advantage ultimately 

promotes acquisition of separated, task-dedicated 

representations. 
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Canonical representations for generalization in 

relational reasoning 

Taylor Webb, Steven Frankland, Alexander Petrov1, 

Randall C. O’Reilly2 & Jonathan D. Cohen, Princeton 

University, Ohio State1, and U. Colorado-Boulder2 

The preceding talk suggests that capacity limits on control-

dependent tasks fundamentally arise from the use of shared 

representations across tasks. Why then should cognitive 

systems employ shared representations? The answer may lie 

in the remarkable human capacity to generalize far beyond 

the scope of experience. By contrast, state-of-the-art neural 

network algorithms tend to do well at interpolating between 

data points in their training corpora, but generally fail to 

extrapolate beyond the scope of those data points. 

We propose that one way to enable human-like generalization 

in neural networks is by giving them access to a basis set of 

canonical, general-purpose representations that capture the 

abstract relations inherent in common structural motifs (e.g. 

lines, rings, or trees). We present a method for transforming 

domain-specific representations into a canonical form, and 

show that these transformed representations enable robust 

extrapolation to data points far from the training domain — 

that is, out of domain generalization. Such broad 

generalization requires, however, that processes within and 

across task and item domains share use of the canonical 

representations, thus making them dependent on control. 

Understanding the conditions under which canonical 

representations arise thus provides insight into both the 

human capacity for generalization and the relationship of this 

ability to cognitive control. 

Toward a neural architecture for controlled 

semantic cognition 

Rebecca J. Jackson, Timothy T. Rogers & Matthew A 

Lambon Ralph, Cambridge University 

We consider how opposing demands of task-specific control 

versus broad generalization might constrain the architecture 

of the networks that support semantic cognition—the 

remarkable human ability to flexibly deploy conceptual 

knowledge across a variety of behavioral contexts. The 

semantic system must acquire context-invariant 

representations that express conceptual structure by 

abstracting over episodes, time, and modality (sensory, 

motor, linguistic, and affective), while also dynamically 

tailoring representations to produce context-appropriate 

similarity structures and behaviors. How should a semantic 

system be structured to promote both functions?  

We report simulations with models varying in five 

architectural features, representing different hypotheses 

about the influence of control on semantic processing and the 

structure of the semantic network itself. We compared model 

variants in their acquisition of both context-invariant 

conceptual structure and context-dependent tailoring of 

representations and outputs. The system's functioning was 

best served by an architecture employing a single, deep 

multimodal hub containing sparse long-range connections 

from modality-specific inputs, and with control systems 

operating on peripheral modality-specific representations 

without affecting the hub. This architecture creates regions of 

relative specialization for control and representation, 

explaining distinct patterns of semantic dysfunction arising 

from temporal versus fronto-parietal pathology. The 

simulations thus suggest that the cortical anatomy of 

semantic cognition can be understood as balancing demands 

of representation and control. 

Learning, control, and modularity in lexical 

semantics. 
Lang Chen, Stanford University 

Timothy T. Rogers, University of Wisconsin-Madison 

A central goal for cognitive approaches to language has been 

to understand whether various sub-processes operate 

independently or are mutually interdependent. In accordance 

with the preceding talks, we suggest the tension between 

views can be resolved by considering how cognitive control 

and task-specific experience jointly impact learning in lexical 

semantic systems, taking visual word recognition as a well-

studied example of the controversy. On one hand, patients 

with acquired semantic impairments typically show difficulty 

recognizing low-frequency words with unusual orthography, 

suggesting an interdependence between lexical and semantic 

representations. On the other, a handful of cases show serious 

semantic impairment with normal word recognition, 

suggesting that recognition and semantic processes are 

independent. Similar patterns in other aspects of language 

have produced fundamentally different perspectives: one in 

which all varieties of linguistic representation mutually 

constrain one another, and another in which different 

representations are modular and independent.  

We show that lexical and semantic representations in a 

recurrent neural network can become modular when (1) 

words appear in task-contexts requiring independent 

activation of each representation and (2) a context-dependent 

control signal strongly constrains activation in the network. 

This model suggests that individuals with strong executive 

control and unusually frequent experience with orthography 

may develop relatively independent lexical and semantic 

representations. We tested this hypothesis using dual-task 

studies to assess semantic interference on word recognition. 

Most participants showed degraded recognition with 

concurrent semantic processing but a small percentage 

showed no such effect. These exceptions uniformly showed 

exceptional orthographic knowledge and no interference in a 

Stroop task—suggesting that strong control and practiced 

orthography jointly promote independent lexical and 

semantic processing. The results offer a middle ground 

between fully modular and fully interactive perspectives, and 

suggest that control and learning play critical roles in shaping 

the degree to which various linguistic representations 

interact. 

36



Beyond number: Towards a unified view of dimensional reasoning 
in perception, cognition, and language 

Speakers:  
Stella Lourenco & Lauren Aulet 
(stella.lourenco@emory.edu; lauren.s.aulet@emory.edu) 
Dept of Psychology, Emory University, Atlanta, GA  

Jessica Cantlon (jcantlon@andrew.cmu.edu) 
Department of Psychology, Carnegie Mellon University, 
Pittsburgh, PA  

Anna Papafragou (papafragou@psych.udel.edu) 
Department of Psychological and Brain Sciences,  
University of Delaware, Newark, DE  

Pooja Paul (organizer) (ppaul18@stanford.edu) 
Center for the Study of Language and Information, 
Stanford University, Stanford, CA  

Keywords: quantitative scales; analog magnitude systems;      
transitive inference; ordinality; comparative reasoning; animal      
behavior; conceptual development; language; psychophysics; 

Introduction 
Natural number concepts play a fundamental role in        
abstract human thought, being central to mathematics,       
science and measurement, as well as pervasive in our         
everyday reasoning. A major turning point in our        
understanding of the psychological bases of number came        
with the discovery of an approximate, analog system for         
representing numerical magnitude found to underlie our       
numerical intuitions in tasks ranging from relative       
numerosity judgments, to addition, subtraction, and      
ordering, among others. Crucially, such analog magnitude       
representations are involved not just for number, but for all          
other kinds of dimensions as well, from physical size,         
loudness, brightness, and duration (e.g. Fias et al. 2003;         
Cordes & Brannon, 2008), to more evaluative dimensions        
like likelihood (Wellman, Kushnir, Xu & Brink, 2016).        
Based on extensive studies on human adults, children,        
pre-verbal infants and non-human species, we now       
understand the systems underlying the mental      
representation of scalar dimensions to be best       
characterized as approximate, analog representations with      
signature ratio limits (obeying Weber’s Law), operational       
in humans from birth and throughout the lifespan, and         
shared with a wide range of other animal species.  

The primary goal of this symposium is to bring recent          
developments from infant and comparative psychological      
research pertaining to our understanding of analog       
magnitude systems to a broader audience of cognitive        
scientists, to discuss their implications for human       
cognition. With a more complete picture of the kinds of          
inferential capacities afforded by analog magnitude and       
other systems in non-human animals and preverbal infants,        
we are in a better position to understand the interplay          
between language and non-linguistic systems in the human        
mind.  
Recent developments 
A wealth of research in developmental and comparative        
cognition in recent years has revealed previously       
unexpected inferential capacities in infants and non-human       
animals that are evidently supported by analog magnitude        
representations.  
Cross-dimensional mapping in infancy 
It is well-known that adults and children readily map         
analog magnitude representations to one another (e.g.       

Stevens & Marks, 1965), but it is a more recent discovery           
that this tendency in fact begins in infancy. For example,          
given evidence for a correspondence between numerosity       
and line length in a visual habituation task, human         
newborns expect shorter lines to correspond to smaller        
numerosities, and longer lines to correspond to larger        
numbers (de Hevia & Spelke, 2010). That newborn infants         
spontaneously map between number and space, as well as         
duration (de Hevia et al., 2014), suggests that at least some           
kinds of scalar mappings may precede experience.       
Importantly, older infants have been shown to learn more         
arbitrary mappings in a context-specific manner as well        
(Lourenco & Longo, 2010), raising the possibility that        
tracking correspondences between environmentally    
co-occurring variables may be one way in which infants         
learn about their physical (and social) worlds in infancy,         
before access to language.  

Transitive inference in animals  
Yet another reasoning strategy implicated to be subserved        
by the analog magnitude systems is transitive inference        
(TI), the ability to infer from A >B and B >C that A >C.              
Extensive and well-controlled studies of non-human      
animals in recent decades have revealed a pervasive        
capacity for transitive inference in species ranging from        
fellow primates and mammals, to birds, amphibians, and        
fish. The capacity to represent ordinal relationships is a         
prerequisite for transitive inference, and as such, TI can be          
considered a kind of order-based reasoning. Cantlon and        
Brannon (2006) find behavioural evidence for shared       
systems for ordering numerical magnitudes in humans and        
monkeys, and moreover that both groups exhibit semantic        
congruity effects, signalling a common mental comparison       
process (Cantlon & Brannon, 2005). The preponderance of        
evidence for successful non-symbolic TI and      
order-sensitivity in the animal literature has important       
implications for human reasoning that are yet to be fully          
explored by the cognitive scientific community. Such       
evidence should be of particular interest to those        
investigating the conceptual foundations of symbolic      
thought, given the implication that the binary more than         
relation (‘<’) in language and mathematics may have its         
basis in analog magnitude systems. 

Scalar phenomena in language 
In linguistics, conceptual and pragmatic scales are invoked        
in explanations of linguistic phenomena ranging from       
gradable adjectives (‘tall’, ‘fast’, ‘large’, ‘ambitious’) and       
comparative and superlative constructions (‘Ben is taller       
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than Dan’; ‘Ben is the tallest’), to scalar implicature (Horn          
1972; Hirschberg 1985), to name a few. That classic         
behavioral signatures of analog magnitude systems --- the        
symbolic distance effect (e.g. Moyer & Landauer, 1967)        
and semantic congruity effects (e.g. Banks, Clark & Lucy,         
1975) --- arise in tasks involving gradable adjectives,        
provides some support for links between these linguistic        
labels and underlying analog format representations. But       
most well-studied in this regard are the bidirectional        
linkages between natural numbers (<‘one’, ‘two’, ‘three’,       
…>), and corresponding analog magnitude representations      
in the numerate human mind (Odic, Le Corre & Halberda,          
2015). Given that both the number scale as well as scales           
comprised of gradable adjectives give rise to scalar        
implicatures, it is worthwhile to consider whether similar        
mechanisms to those supporting dimensional inference in       
infants and animals, may also be involved in scale-based         
reasoning in humans. As it happens, there is recent         
evidence for the use of parallel strategies for scalar         
inference by children and adults in non-linguistic tasks        
(Kampa & Papafragou, 2019; Gweon & Asaba, 2018)        
lending credence to this possibility.  

The pervasiveness of scalar phenomena cross-      
linguistically, in light of the developments highlighted       
above, raises the following questions: First, taking for        
granted that conceptual scales are indeed psychologically       
‘real’, how should they be characterized in psychological        
terms? What is the precise nature of the relationship         
between conceptual and/or pragmatic scales, and      
associated analog magnitude representations? Finally, are      
there deeper connections between the inferential capacities       
afforded by analog magnitude systems in preverbal infants        
and nonverbal animals, and the widely-studied phenomena       
of scalar and quantity-based inference in      
linguistically-savvy humans? More specifically, might     
there be shared neural and cognitive mechanisms for the         
computation of dimensional inferences in the linguistic,       
cognitive, and perceptual domains? 

Linguists in the 1980's and 90's theorized the existence of          
'scalar models' that map between two or more correlated         
dimensions to support implicit inferences arising with       
scalar language (e.g. Fauconnier, 1975; Kay, 1990; Israel        
1996). Although such cognitive accounts subsequently fell       
out of favor within mainstream linguistic theory, the        
empirical clarity provided by psycholinguistic findings in       
recent years has convinced some that a better        
understanding of the conceptual structures that language       
links up to “under the hood” may be essential to account           
for the distribution of various classes of linguistic        
inference (Paul, 2018). The superficial similarity of the        
early theoretical models of scalar linguistic reasoning to        
the recent empirical results from the infant literature (i.e.,         
bidirectional mappings between statistically correlated     
properties), suggests the former may be ripe for revisiting.         
The different disciplines studying phenomena involving      
the representation of dimensional attributes stand to gain        
from sharing insights across disciplinary boundaries,      
something we hope to foster with this symposium.        
Moreover, this symposium has the potential to inspire        

renewed efforts towards a more psychologically informed       
model of scalar reasoning in language, and possibly even a          
unified model of dimensional reasoning in human and        
animal cognition.  

Speakers:  
Stella Lourenco will represent the perspective from infant        
cognition, specifically her research on cross-dimensional      
mappings in infancy, as well as some brand new cognitive          
neuroscientific results from her lab supporting a generalized        
system of magnitude representation.  
Jessica Cantlon will discuss the comparative cognitive       
perspective, including findings of parallel behavioral      
patterns in human adults and monkeys in numerical        
ordering and other tasks, and what this reveals about our          
shared mental processes for magnitude comparison.  
Anna Papafragou will focus on the development of scalar         
implicature, and present new work showing that adults and         
children’s behavioral patterns in non-linguistic and      
linguistic versions of a task eliciting scalar implicature are         
guided by a common principle. 

Pooja Paul will employ her background in linguistics and         
developmental psychology to disentangle the contributions      
of extra-linguistic domains from that of language in scalar         
reasoning. Her presentation will synthesize the different       
strands of research presented during the symposium, and        
paint a picture of what a unified theory of dimensional          
reasoning might look like.  
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Fallacies? 
Since antiquity, we have wondered about the foundations of 
our (apparent) intellectual superiority. A way to approach 
this issue is to seek rational standards in decision making 
and examine convergence between such standards and 
behavior. However, establishing a rational framework is not 
straightforward. One of the most unique contributions of 
cognitive science is the varied perspectives it has provided 
for rationality. With many recent advances in decision 
theory (including novel techniques in probabilistic inference 
and sophisticated frameworks for heuristics-driven 
reasoning), it is particularly timely to reevaluate rational 
standards and our assumptions regarding rational behavior. 
This is the purpose of this interdisciplinary symposium, 
bringing together expertise in psychology, computer 
science, mathematics, physics, and philosophy of mind.  

Cognitive science research has already instigated major 
shifts in our perception of rationality and optimality. For 
most of our history, it has been considered that classical 
logic is the source of human rationality and the appropriate 
normative standard against which to assess decisions. 
Wason sought a general test of whether natural reasoning is 
consistent with classical logic, by asking participants to 
select which evidence was best suited to test a given rule. 
Logic prescribes selections which can definitely falsify the 
rule (a falsificationist mentality which has had a pervasive 
influence in scientific reasoning, including in frequentist 
statistics), but instead participants selected evidence with 
potential to confirm the rule. Oaksford and Chater (1994) 
proposed that participants prefer the cards which minimize 
the information-theoretic uncertainty regarding the validity 
of the rule, employing Anderson’s (1990) idea of optimal 
adaptation. Classical probability theory (CPT) thus revealed 
an alternative perspective for the ‘correct’ selections in 
Wason’s task.  

CPT is currently recognized as the right starting point for 
understanding rational decision making, benefiting from 

powerful formal justifications and excellent descriptive 
coverage. Equally, it has been increasingly appreciated that 
a baseline CPT framework is unlikely to provide either a 
complete descriptive framework for cognition or indeed an 
appropriate normative framework, without suitable 
extensions (e.g., Tenenbaum et al., 2011). One influential 
source of indication that this is the case concerns reports of 
persistent apparent violations of CPT principles, usually 
called fallacies. Tversky, Kahneman and their colleagues 
have produced some of the most evocative examples, for 
example, the conjunction fallacy, according to which naïve 
observers are quite happy to accept that 
Prob(A&B)>Prob(A) (Tversky & Kahneman, 1983). The 
most telling instantiation of this result involves the 
probability of a Scandinavian person having blue eyes and 
blond hair vs. just having blond eyes (Tentori et al., 2004). 
Imagining a line-up of Scandinavian individuals makes it 
immediately obvious why the conjunction fallacy is, well, a 
fallacy, and yet the conjunctive statement still feels natural – 
it is this persistence that makes fallacies so puzzling. There 
are several similar results. For example, a famous Gallup 
poll study showed a Prob(Clinton is honest) of 50% when 
this question was first but 57% after a similar question for 
Gore (Moore, 2002); in another famous study, a mixture of 
weak and strong evidence had less impact than just the 
strong evidence (the dilution effect; Nisbett et al., 1981).  

Such findings appear to challenge our expectation of 
rationality. But do they have to? Over the last decades, new, 
sophisticated techniques and ideas have emerged, which 
require drastic revision to our perception of applicability of 
baseline CPT frameworks in thought. In this symposium we 
explore four approaches, some of which directly extend 
baseline CPT ideas while others are motivated from baseline 
CPT ideas to develop in more alternative directions, with 
sometimes surprising implications for empirical coverage 
and normative evaluation.  

Resource-rational analysis: Griffiths, Lieder 
Baseline CPT inference is expensive, and practical models 
often involve some kind of sampling-based approximation 
to posterior probabilities. In the tradition of bounded 
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rationality, the resource-rational analysis is about finding 
the optimal balance between the accuracy of probabilistic 
approximations and resource allocation, with the latter 
formulated in terms of computational cost (Griffiths et al., 
2015). This approach can recover previously-identified 
heuristics and discover new ones, as well as shed light in the 
way resource limitations can lead to apparent deviations 
from CPT prescription.  

Quantum: Busemeyer, Pleskac, Yearsley, Pothos  
Another way in which CPT probabilistic inference can be 
made more tractable is by limiting the size of the 
probabilistic space. The logical structure of CPT is a 
Boolean algebra, but for  Quantum probability theory (QPT) 
it is a partial Boolean algebra, which means a collection of 
smaller (simpler) parts, which are classical individually, but 
inconsistencies/ contextuality/ apparent fallacies arise when 
reasoning between parts. We think that QPT representations 
are more likely when e.g. participants are unfamiliar with a 
problem or unwilling to engage thoughtfully. We show how 
QPT can reveal rational perspectives to established fallacies 
(Pothos et al., 2017) and further consider whether QPT can 
shed light on rational status of behavior in strategic games, 
in situation when decisions appear inconsistent with the 
Nash equilibrium or sub game perfect equilibrium.  

Heuristics: Hertwig, Pachur, Leuker 
Rather than simplify or approximate CPT inference through 
e.g. more efficient sampling procedures, an alternative, 
influential possibility is that the mind adopts heuristics. 
Heuristics can be as accurate and sometimes even more 
accurate than strategies that employ the greatest possible 
amount of information and computation. Can such 
advantages generalize to situations involving interactions 
with other intelligent, competitive actors? We will explore 
the effectiveness of heuristics in stationary games against 
nature and in strategic games and show that heuristics are 
particularly competitive when the level of epistemic 
uncertainty is high. We will also consider in general the 
ecological structures that heuristics can harness, and how 
theories of heuristics can be integrated with other 
frameworks of human choice. 

Probabilistic language of thought: Tenenbaum, 
Goodman, Tessler 
An important extension to baseline CPT frameworks 
concerns incorporating language-like properties (such as 
compositionality), representations, and pragmatic reasoning 
in probabilistic inference. The probabilistic programming 
language (PPL) / probabilistic language of thought (PLoT) 
can more naturally apply to richer forms of reasoning, 
including everyday reasoning under uncertainty (e.g., 
Goodman et al., 2015). Furthermore, enriching these models 
with an understanding of natural language pragmatics can 
explain apparent fallacies in classical reasoning tasks (e.g., 
Tessler & Goodman, 2014). Assuming a communicative 
context to a task involving language allows a reasoner in a 

PPL/PLoT model to incorporate the goals of a speaker (e.g., 
assuming the speaker intends to be informative), so 
providing a rational perspective on reasoning fallacies. We 
will also consider the way resource limitations guide 
practical models in PPL. 

Discussion: Shiffrin  
The discussion part of the symposium will address these 
varying perspectives on rationality and bring together the 
themes raised in the presentations. The overarching 
questions concern what is rationality, and whether ‘bounded 
rational’ approaches capture enough of what humans mean 
by this concept. The discussion will be open to all 
presenters and the audience. 
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Research on insight problem solving focuses on the genesis 
of new ideas and aims to identify underpinning processes that 
turn an initially unproductive problem representation into one 
within which the solution offers itself in the agent’s mental 
look-ahead horizon. To address this aim, researchers 
typically create laboratory-based tasks designed to encourage 
an incorrect representation of an ostensibly simple problem 
or riddle such as “how do you throw a ping pong ball in such 
a way that it travels a certain distance, comes to a dead stop 
and then reverses direction” (Ansburg & Dominowski, 
2000). Such riddles are created to encourage an incorrect 
interpretation and engender an impasse. Researchers can then 
observe how this impasse is overcome by: (i) examining the 
phenomenology of insight; (ii) analysing strategic processing 
(e.g., via protocol analysis); and (iii) exploring brain areas 
that are active when insight arises (e.g., using neuroimaging). 

The current debate in insight research (e.g., Gilhooly, Ball, 
& Macchi, 2015; Gilhooly & Webb, 2018) pitches the 
business-as-usual view against the special-processes view. 
The latter has roots in Gestalt ideas: insight is the result of a 
swift change in the way a problem is represented in the mind. 
The sudden awareness of the solution suggests that insight is 
not the product of a conscious, incremental, deliberate 
analysis of the problem helping the agent formulate a solution 
gradually over time. The ‘special’ in special processes 
underscores insight as the product of non-routine cognition 
largely operating non-consciously (Ohlsson, 2018). If routine 
cognition, in turn, is in the business of helping an agent plan 
and solve problems, then the business-as-usual view holds 
that insight is the product of conscious, deliberate, and 
incremental effort to solve a problem. From this perspective, 
a breakthrough may yield a eureka moment, but this distinct 
phenomenological signature does not imply that something 
other than routine cognition is involved in insight.  

Insight research has laboured a fertile ground of 
methodological and theoretical development in the past 20 
years. When the important edited volume by Sternberg and 
Davidson (1995) was published, research was predicated on 
a dichotomy whereby problems were deemed to be either 
analytic (e.g., the Tower of Hanoi) or insight problems (e.g., 
the 9-dot problem). This missed the critical point that insight 
and analysis are underpinning processes rather than solution 
outcomes. Developments in theory (e.g., Weisberg’s, 2018, 
integrated framework) have underscored this point, as has the 
introduction of new problem types that can be solved either 
by insight or analysis, as reflected in self-reports (Bowden, 

Jung-Beeman, Fleck, & Kounios, 1995; Salvi, Costantini, 
Bricolo, Perugini, & Beeman, 2015; Threadgold, Marsh, & 
Ball, 2018). Such problems have facilitated investigations of 
the neural correlates of insight (Abraham, 2018; Kounios & 
Beeman, 2014) and associated biomarkers (e.g., eye blinks; 
Salvi, Bricolo, Franconeri, Kounios, & Beeman 2015). 
Individual differences approaches have also revealed the role 
of working memory capacity in insight (Chuderski & 
Jastrzębski, 2018). This symposium will showcase important 
aspects of current insight research, with presentations by 
Anna Abraham, Carola Salvi, Ut Na Sio, Margaret Webb, 
Frédéric Vallée-Tourangeau and Linden Ball (discussant).  

Abraham will explore how the study of the brain informs 
the workings of the human mind as it arrives at insights. 
Functional neuroimaging studies have revealed key brain 
regions and networks of relevance, also highlighting the 
intimate roles played in insight by creative processes such as 
analogical reasoning and conceptual expansion. EEG studies 
using event-related potentials indicate a unique neural 
activity pattern when processing creative associations that are 
personally experienced as being novel and fitting, as distinct 
from processing associations that are merely novel or merely 
fitting. In addition, neuropsychological studies indicate that 
disruptions at the level of brain structure can both aid and 
impede creative thinking. The former occurs in contexts 
where distractibility facilitates creative ideation, a finding 
indirectly supported by personality-based studies of 
schizotypy and creativity. These results highlight the value of 
the neuroscientific approach in advancing an understanding 
of how creative insights come to pass.  

Salvi will present her findings on the “accuracy effect” 
(i.e., insight solutions have a higher probability of being 
correct than analytic solutions when tested using convergent 
thinking problems) and will discuss the model behind this 
result. The effect is explained by the fact that insight 
processing yields no partial solution information because of 
subthreshold processing prior to the suddenly available 
solution. In contrast, analytic processing can yield better-
than-chance guessing based on processing of suprathreshold 
activation candidates. Further, Salvi will present her latest 
results on the neural correlates and biomarkers associated 
with insight solutions and the underlying cognitive processes.  

Sio will focus on the circumstances that promote creativity. 
Despite the common belief that distraction will cause 
productivity loss and that individuals should focus on a single 
task to achieve optimal performance, recent studies have 
demonstrated that distraction (e.g., incubation and 
multitasking) can enhance performance for problems 
requiring creative thinking.  Different potential mechanisms 
for this distraction effect will be discussed. Sio will also 
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present findings of recent studies aimed at identifying 
moderators of the effect to help explain why the positive 
effect of distraction might emerge and to identify the 
conditions under which distraction becomes facilitating.  

Webb will present research on individual differences 
associated with insight phenomenology. Investigating 
individual differences in possible biases in reporting insight 
is constrained by the “problem of problems”, that is, problem-
solving skills (e.g., working memory) are required for insight 
problem solving itself. These individual differences may not 
be the same as those associated with a bias towards insight 
experiences. In her recent work, Webb has explored 
divergent thinking tasks, in which subjective accuracy is 
high. Participants completed a form of the alternative uses 
task, reporting on their insight phenomenology (“aha!” 
experiences) in a trial-wise manner. They were then 
presented with various solutions to the previous task and also 
completed a measure of schizotypy (the O-LIFE) to assess 
whether positive schizotypy (associated with the tendency to 
perceive meaning in noise) predicted a tendency to report 
feelings of insight. Findings indicate that generating a use is 
significantly more likely to result in an “aha!” experience 
than being presented with a use; positive schizotypy is also a 
positive predictor of feelings of insight.  

Vallée-Tourangeau will outline an ecological perspective 
on insight, critically reflecting on how insight research often 
proceeds in the laboratory and how the psychometric 
methodology validates and reinforces a model of problem 
solving in which working memory plays a central role. His 
reflections draw on a distinction between first-order versus 
second-order problem solving (Vallée-Tourangeau & March, 
forthcoming). Research typically assumes the world is 
represented inside a person’s head, with mental 
representations being transformed by rules and operators. It 
is, therefore, not surprising that individual differences in 
working memory capacity explain a substantial proportion of 
the variance in problem solving performance, as working 
memory underpins a person’s ability to construct, maintain 
and transform mental representations. Crucially, the standard 
methodology requires participants to think about short 
vignettes (a few words or sentences) that describe 
(ambiguously) some state of the world. In other words, 
participants are not embedded in the physical world to solve 
a problem (first-order problem solving) but are instead 
processing representations of the world based on abstractions 
of varying complexity (second-order problem solving). First-
order problem solving is impossible as participants cannot 
interact with a physical problem presentation. Second-order 
problem solving carries a representational toll and, as a result, 
individual differences in the ability to maintain and transform 
mental representations—gauged in terms of working memory 
capacity—correlate with problem solving performance.   
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Abstract

We synoptically describe having achieved the unprecedented
logicist cognitive computational simulation of quantified ver-
sions of any n-level (FBTn, ∀n ∈ N) false-belief task, and
hence of what we call the infinitary false-belief task (FBTω);
the achievement is enabled by the automated reasoner Shad-
owProver. Logicist cognitive computational simulation of the
level-one (or, as it’s currently known, “first-order”) false-belief
task (FBT1) was achieved circa 2007 by Bringsjord et al. But
subsequently cognitive science has seen the arrival such mod-
eling and simulation successfully applied to the second-order
false-belief task (FBT2); see e.g. (Blackburn & Polyanskaya,
forthcoming). (This is the level-two FBT in our hierarchy of
tasks.) But now, courtesy of what we report, logicist cognitive
computational simulation of any FBTn is accomplished for the
first time, and hence the infinitary false-belief task (FBTω) is
reached as well.

Keywords: logic; cognitive modeling; false-belief task; sally-
anne task; infinitary reasoning

The Level-1 and Level-2 False-Belief Tasks Many read-
ers will be familiar with the standard false-belief task (FBT1;
a.k.a. the Sally-Anne task), first introduced by Wimmer and
Perner (1983). But to ensure self-containedness we recapitu-
late: A subject (in an experiment carried out by e), agent a,
perceives two agents a1 and a2 in front of two boxes b1 and
b2. Agent a1 puts an object o into b1 in plain view of a2.
Agent a2 then leaves, and in the absence of a2, a1 moves o
from b1 into b2; this movement isn’t perceived by a2. Agent
a2 now returns, and a is asked by the experimenter e: “If a2
desires to retrieve o, which box will a2 look in?” If younger
than four or five, a will reply “In b2” (which of course fails
the task); after this age subjects respond with the correct “In
b1.” While some refer to this task as the “first-order” ver-
sion of the false-belief task, we refer to it as the “level-one”
version of the task.1

Table 1 lists some of the key epistemic propositions that
hold of FBTP

1 after the switch happens, paired with their ob-
vious symbolizations in our multi-operator quantified cogni-
tive calculus used for handling false-belief tasks. We use the
superscript ‘P’ to indicate that the task in question is passed;
we reserve superscript ‘F’ to indicate that the task is failed.

1Use of the locution “n-order” is quite infelicitous, because this
locution is long established in formal logic as a way to pick out the
expressive power of extensional logics within a hierarchy of them.
For instance, there is first-order logic, second-order logic, and so
on. Since which of these logics is used to model and simulate a
given false-belief task is a key parameter in the logicist modeling in
question, we judge it to be wise to refer to such tasks at a given level,
not an order, so as to avoid confusion that will otherwise obtain.

Table 1: Table for Level-1 (L1) FBT = FBT1

Label English Declarative Content Formula

L1.1 a1 believes a2 believes o is in b1. Ba1 Ba2 I(b1)
L1.2 a1 believes o is in b1. Ba1 I(b1)
L1.3 a believes a2 believes o is in b1. BaBa2 I(b1)
L1.4 a bel. a1 bel. a2 bel. o is in b1. BaBa1 Ba2 I(b1)

The level-two (or “second-order”) FBT is easily captured,
as follows.2 First, when agent a2 leaves, he/she secretly per-
ceives a1 move o to box b2. Formally, the key adjustment is
an addition to (adjustments of) the lines seen in Table 1: e.g.

L2 a2 believes a1 believes a2 believes o is in b1.

Prior Relevant Achievements Circa 2007, cognition as-
sociated with the false-belief task (FBT1, including both
FBTP

1 and FBTF
1 ) was modeled in formal logic expressive

enough to handle quantification, and computationally sim-
ulated (Arkoudas & Bringsjord, 2008, 2009).3 This type
of research falls under what Bringsjord (2008) calls logicist
computational cognitive modeling (LCCM). As far as we are
aware, this work in 2007 marks the first robust logicist mod-
eling and simulation of both passing and failing cognition
in FBT.4 Here is the crucial takeaway from study of prior
work: No one, before now, has achieved logicist computa-
tional cognitive modeling of quantified false-belief tasks at
level 3, 4, . . ., even in the non-quantificational case; and no
one has reached the infinitary case.
Level-k (k ≥ 3) False-Belief Tasks In the level-three false-
belief task, agent a1 secretly views a2’s secretly viewing into
the room from outside it. (All of this is easily visualized with
help from iterated, hidden cameras that feed information to
the agents. Because of space limitations we forego visual
depictions.) For FBT3, the characteristic formula is:

Ba1 Ba2 Ba1 Ba2 I(b1) (1)
2A nice place to start reviewing the literature on FBT2 is (Baron-

Cohen, O’Riordan, Stone, Jones, & Plaisted, 1999), which has com-
plete references to the earliest introduction of FBT1 and FBT2 in
the (empirical) literature. (In this regard, we certainly recommend
that interested readers review (Perner & Wimmer, 1985).) There is
no discussion in this literature of level-3-and-above FBTs, let alone
of infinitary FBTs such as FBTω; and we haven’t found any for-
mal/mathematical literature on these more demanding FBTs either.

3While formal but certainly declarative, very impressive compu-
tational cognitive modeling of FBT1 was achieved earlier by Wahl
and Spada (2000). Stenning and van Lambalgen (2008) provide in-
formal declarative notation for modeling false belief, but have no
implementation/simulation.

4Bello, Bignoli, and Cassimatis (2007), as in the aforecited
(Wahl & Spada, 2000), achieve computational cognitive cognitive
modeling of FBT1 that makes use of declarative representations, but
not of any logics.
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Quantified False-Belief Tasks The sub-formulae I(bn)(n∈
{1,2} is expressible within the formal language of only the
propositional calculus. If instead of a single object o being
used, a given FBT involves a group G of, say, n objects, then
the correlate to this sub-formula will require the machinery of
at least the quantificational machinery of first-order logic. We
are able to model and computationally simulate in this more
demanding case, so that even if subjects have beliefs about
a quantity m from G (m ≤ n) being placed in the box, their
cognition can’t be captured.
FBTω: An Infinitary Quantified False-Belief Task Our
inference system leverages a computable version of an infini-
tary inference rule to prove FBTω given that we can prove
FBTn ∀n (N. Govindarajulu, Licato, & Bringsjord, 2013).5

Automation We use an automated reasoning system, Shad-
owProver, to model FBTn and FBTω. ShadowProver is a
quantified modal logic theorem prover that has been used
to model, in LCCM fashion, intricate reasoning tasks, e.g.
ethical reasoning in (N. Govindarajulu & Bringsjord, 2017;
N. S. Govindarajulu, Bringsjord, Ghosh, & Peveler, Forth-
coming in 2019) and self-consciousness in (Bringsjord, Li-
cato, Govindarajulu, Ghosh, & Sen, 2015). Since character-
istic statements for FBTn and FBTω are structurally similar
to common knowledge, we leverage ShadowProver’s ability
to use the operator (C) for such knowledge.6

Objections We mention here only that while it might be ob-
jected that humans have trouble with even third-order belief,
many of our college-level subjects on the contrary have little
trouble proving correct answers for any FBTn.

Acknowledgments The “late-breaking” achievements de-
scribed herein have been enabled by generous support from
ONR and AFOSR, for which we are deeply grateful.
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DiPaola’s research endeavors to build top down Artificial 

Intelligence (AI) models of human creativity, empathy and 

expression for both use in new forms of computation systems 

as well as analysis of how the creative mind works. In doing 

so he has interviewed hundreds of artists, writers and 

musicians on how they perceive their creative talent and its 

originals. Combined with research from neuro-aesthetics and 

computer modelling, DiPaola notes that while many creative 

individuals report that they believe new insights as coming 

into them from an external source during creative flow, that 

evidence point to these new creative ideas and interpretations 

often more likely have internal roots from the individual’s, 

mid and long term past experiences and processes. DiPaola 

attempts to model this and other human creativity processes 

in computational form often as AI systems such as deep 

learning, reinforcement learning and evolution programming. 

Two efforts underway in DiPaola’s research lab are mapping 

out the creative process of a fine art portrait painter using 5 

hierarchical AI systems, as well as modelling an empathetic 

embodied character agent who can understand emotions from 

those she talks with and construct creative narrative or quote 

like responses. 

 

The common view that our creativity is what makes us 

uniquely human suggests that incorporating research on 

human creativity into Artificial Intelligence (AI) based 

generative deep learning techniques might be a fruitful 

avenue for making their outputs more compelling and 

human-like, especially in arts such as the creative arts. Using 

our labs original AI systems such as our deep learning 

convolutional neural networks and cognitive based 

computational art rendering systems, we attempt to show 

how human creativity can be implemented/modelled 

computationally, and demonstrate their impact on the 

resulting digital generative art. Conversely, he will discuss 

how explorations in creativity AI can inform our 

understanding of human creativity and its foundations. 

 

DiPaola will discuss and demonstrate his lab’s approach 

(ivizlab.sfu.ca) to cognitively modeling a fine art painter 

process by integrating Deep Learning AI with novel 

computational novel NPR approaches. This interdisciplinary 

(cognitive science / arts / AI) work brings cognitive creative 

fields together with Deep Learning neural networks. DiPaola 

will demonstrate and discuss the lab new work as well as the 

applications spaces in interactive arts, health and a recent 

Google / Knight Foundation granted project using creative 

painterly emulation as a new approach to anonymize 

interviewees in documentary videos where the study data 

shows improvement to overall empathy and engagement 

compared to current techniques.  

 

Steve DiPaola, past Director of the Cognitive Science 

Program at Simon Fraser University (SFU), is currently is a 

Professor and lab director of the iVizLab, a PhD based lab on 

Artificial Intelligence using human cognition theories of 

creativity, empathy and expression. He came to SFU from 

Stanford University where some of his creative AI systems 

were used in generative game creation including the best-

selling game of that year, “The Sims”. DiPaola has over 100+ 

peer reviewed papers in AI/cognition and $2 million in 

past/current funding in AI related areas of cognitive creativity 

and expression. As both a scientist and artist, DiPaola has 

written code for his AI “creative on its own” artworks that 

has been shown in major galleries and museums including 

The Whitney, The Smithsonian, Tate, and gallery’s in NYC, 

London and LA.  

  

  

45



DiPaola Papers  

    Journals:  

• DiPaola S, McCaig G, Gabora L, (2018). Informing 

Artificial Intelligence Generative Techniques using 

Cognitive Theories of Human Creativity. Procedia 

Computer Science. Special Issue: Bio Inspired Cognitive 

Arch. Vol 145 pp 158-168. 

• DiPaola S, (2017) Exploring the Cognitive Correlates of 

Artistic Practice Using a Parameterized Non-Photorealistic 

Toolki”, Leonardo, Winner of 2016 LABS Leonardo 

Award. Vol. 50, pp 531-452. 

• Shakeri H, Nixon M, & DiPaola S, (2017) Saliency-Based 

Artistic Abstraction with Deep Learning and Regression 

Trees, Journal of Imaging Science and Technology, Vol 

61, No 6, pp. 60402-1-60402-9(9), 2017. 

• DiPaola S, (2014 )Using a Contextual Focus Model for an 

Automatic Creativity Algorithm to Generate Art Work, 

Procedia Computer Science. Special Issue: Bio Inspired 

Cognitive Architectures, Vol 41, pp. 212-219..  

• DiPaola S, Riebe C, Enns J T, (2013)  Following the 

masters: Portrait viewing and appreciation is guided by 

selective detail, Perception, Vol 42, No 6, pp 608–630. 

• DiPaola S, Riebe C, Enns J, (2010). Rembrandt’s Textural 

Agency:  A Shared Perspective in Visual Art and Science”, 

Leonardo, Vol 43, No 3, pp 145-151. 

• Riebe C, DiPaola S., & Enns  J, (2009). Following The 

Masters: Viewer Gaze is Directed by Relative Detail in 

Painted Portraits, Journal of Vision, Vol 9, No 8, pp 368-

368.  

• DiPaola S, Gabora L, (2009). Incorporating Characteristics 

of Human Creativity into an Evolutionary Art Algorithm, 

Genetic Programming and Evolvable Machines Journal, 

Vol 10, No 2, pp 97-110.  

 

   Conference Papers 

• Feldman S, Yalcin ON, DiPaola S, (2017). Engagement 

with artificial intelligence through natural interaction 

models, Proc: Electronic Visualisation and the Arts, British 

Computer Society, 296-303. 

•McCaig R, DiPaola S, Gabora L, (2016). Deep 

Convolutional Networks as Models of Generalization and 

Blending Within Visual Creativity, Proceedings of 

International Conference on Computational Creativity, 8 

pages. 

• DiPaola S, McCaig R, (2016). Using Artificial Intelligence 

Techniques to Emulate the Creativity of a Portrait Painter, 

Proceedings of Electronic Visualisation and the Arts, 

British Computer Society, 8 pages, London. 

• Choi S K, DiPaola S, (2015). Touch of the Eye: Does 

Observation Reflect Haptic Metaphors in Art Drawing?, 

Proceedings of ACM Conf on Human Factors in 

Computing Systems (CHI  '15), pp 579-588. 

• Salevati S, DiPaola S, (2015). A Creative Artificial 

Intelligence System to Investigate User Experience, Affect, 

Emotion and Creativity, Proceedings of Electronic 

Visualisation and the Arts, British Computer Society, 8 

pages, London. 

• DiPaola S, (2014). Computer Modelling Fine Art Painting 

using a Cognitive Correlative Heuristics Approach, 

Proceedings of Biologically Inspired Cognitive 

Architectures. 5 pages. MIT, MA.  

• Salevati M, DiPaola S, (2014). Using a Creative 

Evolutionary System for Experiencing the Art of Futurism, 

Proceedings of Electronic Visualisation and the Arts, 

Florence, Italy, 8 pages. 

• Choi S K, DiPaola S, (2013). How a Painter Paints: An 

Interdisciplinary Understanding of Embodied Creativity, 

Proceedings of Electronic Visualisation and the Arts, pp. 

127-134. British Computer Society, London. 

• DiPaola S, Smith A, (2013). Interactively Exploring 

Picasso's Multi-dimensional Creative Process in Producing 

Guernica, Proceedings of Electronic Visualisation and the 

Arts, pp. 25-31. British Computer Society, London.  

 • Gabora L, DiPaola S, (2012). How Did Humans Become 

So Creative? A Computational Approach, Proceedings of 

International Conference on Computational Creativity, pp 

203-211. 

• DiPaola S, Smith A, (2012). Formalizing An Interconnected 

Syntax For Picasso’s Creative Process In Producing 

Guernica”, Proceedings of Conceptual Structure, 

Discourse and Language, 6 pages. 

 • Choi S K, DiPaola, S, Schiphorst T, 2012. The Tacit And 

The Trace: Towards Syntax Of The Creative Act, 

Proceedings of Conceptual Structure, Discourse and 

Language, 6 pages. 

• DiPaola S, (2009). Quantifying artist’s use of human vision 

constructs to influence viewer eye gaze,", In Proc: SPIE 

Human Vision and Imaging, Int. Society for Optical 

Engineering, 6 pages. 

• DiPaola S, (2008). “The Trace and the Gaze: Textural 

Agency in Rembrandt’s Late Portraiture from a Vision 

Science Perspective”, Proceedings of Electronic 

Visualisation and the Arts, 8 pages, London.  

• DiPaola S, Gabora L,  (2007). Incorporating Characteristics 

of Human Creativity into an Evolutionary Art Algorithm", 

In Proceedings of the 2007 GECCO Conference 

Companion on Genetic and Evolutionary Computation 

(London,, July 07 - 11, 2007). GECCO '07,  pp 2450-2456., 

ACM, New York, NY. 

• DiPaola S, (2007). A Knowledge Based Approach to 

Modeling Portrait Painting Methodology, Proceedings of 

Electronic Visualisation and the Arts, 10 pages, London.  

• DiPaola S, (2007). Painterly Rendered Portraits from 

Photographs using a Knowledge-Based Approach", In 

Proc: SPIE Human Vision and Imaging, Int. Society for 

Optical Engineering, Keynote paper.  pp 33-43.  

• DiPaola S, (2006). Evolving Portrait Painter Programs using 

Genetic Programming to Explore Computer Creativity", 

Proceedings of iDMAa Conference  (International Digital 

Media and Arts Association), 7 pages.  

• DiPaola S, (2005). Evolving Creative Portrait Painter 

Programs Using Darwinian Techniques with an Automatic 

Fitness Function”, Proceedings of Electronic Visualisation 

and the Arts, 10 pages, London. July. 

46



A Cultural Evolution Framework for Human Creativity 
 

Liane Gabora (liane.gabora@ubc.ca) 
Department of Psychology, University of British Columbia, Kelowna BC, V1V 1V7, CANADA 

 
Keywords: concepts; convergent thinking; contextual focus; 
creativity; cultural evolution; divergent thinking; 
representational redescription; self-organized criticality 

Introduction: Honing Theory of Creativity 
Other species perceive, make decisions, take action, and 
even create. However, our species is exceptional with 
respect to our predilection to adapt ideas to our own needs, 
tastes, and perspectives, and express ourselves through 
language, technology, art, and other means. I will present 
ongoing theoretical and empirical research on how the 
creative process works and how human creativity evolved. 
What makes this research program unique is that it 
examines creativity from the perspective of its role in 
fueling the evolution of culture, and includes both studies 
with human participants and computational models.  

Creativity research has emphasized the generation of 
multiple ideas over honing—recursively reflecting on a 
question or idea by viewing it from different perspectives 
(Gabora & Kauffman, 2016; Gabora, 2017). Just as a single 
object may cast separate shadows when lit from different 
directions, the mental representation of a creative work-in-
progress may be a single entity with the potentiality to be 
articulated as different prototypes, sketches, or story ideas.  

Honing does not encompass additions or modifications to 
an idea that are tacked on willy-nilly; it refers specifically to 
modifications that arise in response to an overarching 
conceptual framework that is shepherding1 the creative 
process. The structure of this overarching framework 
reflects the individual’s worldview: their self-organizing 
web of understandings about their world and their place in 
that world (in other words, the creator’s mind as 
experienced ‘from the inside’).  

The term psychological entropy has been used to refer to 
arousal-provoking uncertainty, which can be experienced 
not just negatively as anxiety but also positively as a 
wellspring for creativity (or both) (Gabora, 2017). It is 
proposed that psychological entropy—a macro-level 
variable acting at the level of the worldview as a whole—
generates emotions that play a role in guiding and 
monitoring creative tasks. Thus, honing continues until 
psychological entropy decreases to an acceptable level. In 
Piagetian terms, during honing the individual assimilates 
each new understanding of the idea, and the individual’s 
worldview changes to accommodate this new 
understanding. Insight is then explained in terms of self-
organized criticality (SOC) (Gabora, 2017), a phenomenon 
wherein, through simple local interactions, complex systems 
tend to find a critical state poised at the cusp of a transition 

                                                        
1 This word is chosen deliberately because it implies that the 

process is neither entirely top-down nor entirely bottom-up. 

between order and chaos, from which a single small 
perturbation occasionally exerts a disproportionately large 
effect. Thus, while most thoughts have little effect on one’s 
worldview, an idea we call insightful is one for which one 
thought triggers another, which triggers another, and so 
forth in a avalanche of conceptual change. 

Convergent thought has been defined and measured in 
terms of the ability to perform on tasks where there is a 
single correct solution, and divergent thought in terms of the 
ability to generate multiple different solutions. I will explain 
why honing theory (HT) leads us to redefine convergent 
thought as thought in which the relevant concepts are 
considered from conventional contexts, and divergent 
thought as thought in which they are considered from 
unconventional contexts (Gabora, 2018). 

Implications for Cultural Evolution Theory 
I propose that creativity fuels worldview transformation, 
and that worldviews are what evolve through culture, in a 
piecemeal fashion, through a process of Self-Other 
Reorganization (SOR) involving (internal) self-organization 
and (external) interaction with other worldviews (Gabora, 
1999, 2013, 2019). SOR solves dilemmas associated with 
the high degree of human cooperation (Voorhees, Read, & 
Gabora, in press), which enables the cumulative building of 
ideas on one another. I will present a set of agent-based 
model experiments which show, in different ways, that the 
effectiveness of this cumulative building depends on the 
balance between continuity (via imitation) and novelty (via 
creativity) (Gabora & Tseng, 2017).  

I propose that creative outputs merely provide evidence 
concerning the evolutionary states of worldviews (just as 
shadows provide evidence concerning the shape casting the 
shadow). This stands in contrast to the traditional view that 
behaviors, artifacts, or memes, are the objects of cultural 
evolution, i.e., they are what evolves through culture. 

Cross-Domain Influence 
The view that it is worldviews that evolve through culture 
follows naturally from studies of cross-domain influence, 
wherein a creative output in one domain (e.g., art) is 
influenced by another domain (e.g., music). I will report on 
a set of studies in which creative individuals in multiple 
disciplines were asked to list as many influences on their 
creative work as they could. Results indicate that cross-
domain influences are surprisingly ubiquitous, particularly 
in the arts, where they appear to be even more widespread 
than within-domain influences (Scotney, Weissmeyer, & 
Gabora, 2018). The discontinuities in cultural lineages that 
result from cross-domain influence (e.g., Led Zeppelin’s use 
of Tolkien’s Lord of the Rings as inspiration for the song 
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“Battle of Evermore”) are difficult to account for without 
resorting to the view that it is not the outputs themselves but 
the worldviews generating them that evolve through culture. 

The Origins of Creative, Cultural Evolution 
Like the origin of life, the origin of the kind of integrated 
worldview needed for cultural evolution has been modeled 
using an autocatalytic framework (Gabora & Steel, 2017). 
In an autocatalytic network, for each component there exists 
a means to catalyze the reaction that generates it. Although 
no component can catalyze its own formation, the network 
of components as a whole is collectively autocatalytic. In 
culture, the role of catalysis is played by association and 
reminding events, and the ‘reactions’ are between, not 
catalytic molecules, but concepts and ideas. As parents and 
others share knowledge with children, an integrated 
understanding of the world takes shape in their minds, such 
that they become able to reframe new information in terms 
of existing mental structure, and become themselves 
creative contributors to cultural evolution. 

I propose that two key steps toward cognitive modernity 
were (1) onset of representational redescription (RR) in 
Homo erectus 2 MYA, and (2) onset in the Middle/Upper 
Paleolithic of contextual focus (CF): the ability to shift 
between convergent and divergent modes of thought 
(Gabora & Smith, 2018). In terms of the autocatalytic 
model, representational redescription entails an interaction 
or ‘catalysis event’ between different representations or 
perspectives, and CF entails the capacity to vary the 
‘reactivity’ of the network. CF may have originated with 
mutation of the FOXP2 gene, which is known to have 
undergone human-specific mutations in the Paleolithic 
(Gabora & Smith, 2019). FOXP2, once thought to be the 
“language gene”, is not uniquely associated with language. 
In its modern form, FOXP2 may have enabled fine-tuning 
of the neurological mechanisms underlying the capacity to 
shift between convergent and divergent processing modes 
by varying the size of the activated region of memory. 

Computer-generated Art and Music 
Finally, I will discuss ongoing applications of HT to the 
development of computer-generated art and music (Bell & 
Gabora, 2016; DiPaola, & Gabora, & McCaig, 2018; 
McCaig, DiPaola, & Gabora, 2016). I will show how such 
efforts  are useful for bringing to light the strengths and 
limitations of our understanding of the creative process. 
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Introduction 
Design is one of the most profound acts of humans and is the 
way in which we intentionally change both the physical and 
virtual worlds around us. Design is mentioned in the earliest 
extant writings of humans. It appears in The Epic of 
Gilgamesh, which dates back over 4,000 years. The first 
mention of design appears around the same time as the 
earliest writings about mathematics, philosophy and science. 
Design is one of the ways a society increases its economic 
and social wealth. Given its longevity it is surprising that the 
formal study of design dates back only to the twentieth 
century. The scientific study of design, design science, 
commenced only about 60 years ago. 

In English the word “design” is used both as a noun and a 
verb and its use is disambiguated by its context. We will, in 
general, use the word “design” to mean the outcome and 
“designing” to mean the process of producing a design. 

There are many designers and teachers of designing who 
claim that designing cannot be studied scientifically since its 
results are not reproducible. Whilst designs can be studied 
what we are interested in when studying designing are the 
processes that go to make up the acts of designing. It is 
assumed that there is some regularity exhibited by those 
processes and it is those processes and that regularity that is 
being studied. The scientific study of designing borrows it 
methods directly from the scientific method. It carries out 
controlled experiments in laboratories and in-situ studies in 
the field. 

Designing was initially studied within the framework of 
information processing before moving to an artificial 
intelligence frame. However, when designing was treated as  
cognitive processes, it used the frame of cognitive science 
and the field of research became known as “design 
cognition”.  

The talk will present recent advances in the study of design 
cognition and the extension of those studies into the study of 
brain behavior while designing – “design neurocognition” in 
the Gero lab. The Gero lab is a disaggregated lab with 
projects in locations in multiple countries including 
Australia, Croatia, France, Italy, Sweden, Switzerland and 
the USA. 

Design Cognition Through Protocol Analysis 
Protocol analysis (Ericsson & Simon, 1993) has become 

the preferred research method for the elicitation of design 

cognition. Around it a range of analysis methods have been 
developed (Kan & Gero, 2017) that form the basis of new 
results. The results presented in the talk are derived from a 
newly developed model of co-design in teams by Gero & 
Milovanovic (unpublished) based on the situated version of 
the FBS ontology, sFBS, (Gero & Kannengiesser, 2014). The 
model provides for fine grained behavior of individuals in 
teams.  

Results from a protocol study of cohorts of two-person 
homogeneous and heterogeneous teams, where the 
heterogeneity is due to gender, are presented in Figure 1 
(Milovanovic & Gero, submitted). The cohorts were 
undergraduate mechanical engineering students at a state 
university in Utah and were given the same design task. In 
Figure 1, each ellipse contains the sFBS behavior of team 
members, where the top ellipses represent team member A 
activations and the bottom ellipses represent team member B 
activations. For a detailed development of the situated 
Function-Behavior-Structure ontology consult Gero & 
Kannengiesser (2004). The links between the activation 
variables are a measure of the cumulative occurrences of 
cognitive design processes. The variables outside the team 
members’ individual spaces are externalizations in the forms 
of verbalizations, sketches or gestures. The externalization of 
thought through verbalization, gestures and sketching 
provides the basis for co-designing. The Gero & Milovanovic 
(submitted) model of co-design uses the notion that co-design 
occurs when designers cross the externalization boundary.  

The results in Figure 1 show that heterogeneous teams 
containing one female and one male member exhibit more 
co-design processes than do homogeneous all-male teams. 
Further, such mixed-gender teams distribute more of their 
cognitive effort between the problem and the solution than do 
all-male teams, who expend more of their cognitive effort on 
the solution. 

The presentation will show results of studying the design 
cognition of students and tutors in a studio pedagogy setting. 
It will present the change in student-student design cognition 
interaction over multiple studio sessions. 

From Design Cognition to Design 
Neurocognition 

The drop in the cost of non-invasive brain measurement 
has opened avenues of research into design neurocognition. 
In particular EEG and fNIRS, which collect temporal data, 
are both well suited for design neurocognition studies since 
design is a temporal activity. fMRI is less suited to study the 
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temporal behavior of designing. It is well suited where high 
spatial resolution is required. 

 

 
(a) (b) 

 
Figure 1: (a) Dominant sFBS co-design processes for 

homogeneous, all-male, teams; (b) dominant sFBS co-
design processes for heterogeneous, mixed-gender, teams 

(Milovanovic & Gero, to appear). 
 

The presentation will report on using a 14 channel EEG 
block experiment to measure the effect of design task on 
brain behavior. The tasks range from highly constrained to 
unconstrained. The total task related power of measured 
signals is presented in Figure 2 for the pre-task and the four 
design tasks for 58 participants covering multiple domains. 
Results for individual domains indicate significant 
differences due to domain and task. 
 

 
Figure 2: Total TRP for each of 14 channels across all 

participants for Pre-task, Task 1, Task 2, Task 3 and Task 4 
(Vieira, Gero, et al, unpublished data). 

While EEG measures electrical signals at the surface of the 
brain with high temporal resolution, functional near infrared 
spectroscopy (fNIRS) measures BOLD demand with medium 
temporal resolution. The presentation will report on an fNIRS 

experiment that repeats a previous protocol study for which 
we have cognitive results. The results of dominant 
hemisphere activation over time are presented in Figure 3 
showing an unexpected pattern of behavior. Additional 
results cover other concept generation techniques. 

 

 
Figure 3: Percent frequency across time deciles of dominant 

hemisphere during brainstorming (Shealy & Gero, 
submitted). 

These three exemplary results from there different 
measuring approaches, protocol analysis, EEG and fNIRS, 
demonstrate the expanding capacity to measure design 
cognition through measurement of the mind and indirectly 
through measurement of the brain. Until recently, only 
measurement of the cognition through the behavior of the 
mind was reliably available. The development of relatively 
inexpensive tools for non-invasive brain measurement has 
opened novel approaches to the measurement of design 
neurocognition. Bringing cognitive studies of the mind and 
neurocognitive studies of the brain together offers 
opportunities to both increase our understanding of designing 
and to provide the foundation for the development of tools to 
aid designing and the development of curricula to improve 
design education. 
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Introduction
Tension is an integral part of the music listening experience,
closely connected to the sensing of emotions. We have ex-
plored how a particular aspect of tension, tonal tension, can
be modelled and used to guide for automatic music genera-
tion.

A model was developed for extracting three aspects of
tonal tension (Herremans & Chew, 2016b) from a musi-
cal score. The model is based on the spiral array, a three-
dimensional model for tonality developed by Chew (2014).
This was then integrated in an online interactive system, for
easy visualisation, in sync with audio and score. Finally, the
tension model was included in a state-of-the-art music gen-
eration system called MorpheuS, whereby we use tension to
guide the underlying tension fabric of the generated music.

Spiral Array Model
In order to model tonal tension, we first need to be able
to model pitches in a meaningful way. This was achieved
through the three-dimensional model of tonality called the
spiral array (Chew, 2014). The spiral array consists of three
sets of helices: one that represents pitch classes, a pair for
major and minor triads, and a pair for major and minor keys.
The pitch spiral is the one we use for modelling tension. The
triads are generated as convex combinations of their member
pitches, and keys are represented as convex combinations of
their defining chords.

Three new indicators of tension
Tension is a composite characteristic. There are many factors
that contribute to the listener’s feeling of tension, including
loudness, timbre, dissonance, and harmonies. We chose to
focus on tonal tension, and propose three characteristics, that
are calculated for each time window, or cloud, of notes:

Cloud diameter Calculated as the largest distance between
different notes in a cloud, thus capturing the dissonance of
a note cluster.

Cloud momentum Calculated as the position change or
movement between two adjacent clouds of notes, captur-
ing the amount of harmonic change from one time slice to
the next.

Tensile strain Computed as the distance between the cen-
troid of the current slice and that of all pitches, representing
the global key.

Figure 1 shows an example of the Tristan chord in the spiral
array, a famous tense chord from Wagner’s opera Tristan and
Isolde. One can immediately see that it spans a large region
in the pitch helix, which results in a high cloud diameter.

Figure 1: The Tristan chord in the Spiral Array pitch helix.

For a more complete overview of the proposed novel tonal
tension model, the reader is referred to (Herremans & Chew,
2016b).

The model can be used for musicological or cognitive sci-
ence purposes, as we have created an interactive online plat-
form that visualises both tension (Herremans & Chuan, 2017)
and arousal valence data (Herremans, Yang, et al., 2017) in
sync with musical scores and audio.

Scaffolding music generation
In recent years, automatic music generation systems have be-
come ever more popular due to advances in deep learning.
There is a wide range of music generation systems available,
e.g. for generating music that matches computer games, har-
monizing a melody, etc. For a complete overview, the reader
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Figure 2: Excerpt (bars 1-8) of MorpheuS’ piece based on the first of Stravinsky’s Three Pieces for String Quartet

is referred to the survey paper by Herremans, Chuan, & Chew
(2017). In this paper, the current challenges for music gener-
ation are identified as generating music with long term struc-
ture, and music that communicates certain emotions.

We developed a music generation system, called Mor-
pheuS, which uses combinatorial optimization techniques to
generate music with specific tension values over time (i.e., a
given tension profile) and recurring pattern structure (Herre-
mans & Chew, 2016a, 2017). MorhpeuS takes as input an ex-
isting musical score in MusicXML format. From this piece,
the tension is calculated using the model described above.
Secondly, recurring note patterns are extracted using the SIA
algorithm by Meredith et al. (2002). The user can then use
this original tension profile and the detected recurrent pattern
structure, or create a new version of these, to scaffold the mu-
sic generation process.

In the first step of the music generation process, all pitches
of the original template piece are erased, but the rhythm is
kept intact. A variable neighborhood search algorithm then
populates the rhythm template with random pitches, while
preserving the repeated pattern structure. The pitches are
then optimized to maximize the fit between the current ten-
sion profile and the desired tension. For a more in depth ex-
planation, the user is referred to Herremans & Chew (2017).

Figure 2 shows an example of one of the generated pieces
by MorpheuS, based on Stravinsky’s Three Pieces for String
Quartet, composed for performance by members of the Sin-
gapore Symphony Orchestra on Channel News Asia.

Conclusions
The MorpheuS music generation system tackles one of the
biggest remaining challenges in automatic music generation:
generating music with structure and with the goal of com-
municating particular emotions over time. MorpheuS pieces
have been performed internationally; recordings of selected
pieces can be found online1.

1dorienherremans.com/morpheus
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Introduction: MHP/RT and CCE
At the 0-th order approximation, a person interacts with his
or her environment by running an endless cycle of perceiving
the external and internal environment through five senses
via sensory neurons as parallel processing, and acting to
the external environment through body parts via motor
neurons as serial processing. As s/he perceives the results
of movement of his/her body parts as well as the changes
of the external environment as time goes by, the next cycle
of Perceptual–Motor should occur. Interneurons in-between
the sensory neurons and motor neurons convert the input
patterns to the output patterns – these constitute a Perceptual-
Cognitive-Motor process (PCM process). Starting from this
basic cycle, we (M. Toyota and the author) constructed a
comprehensive theory of action selection and memory, Model
Human Processor with Realtime Constraints (MHP/RT),
that should provide a basis for constructing any models for
users interacting with ever-changing environments, and an
accompanying behavioral study methodology, Cognitive
Chrono-Ethnography (CCE) (Kitajima, 2016; Kitajima &
Toyota, 2013) to be used to utilize, validate, and/or refine
MHP/RT. MHP/RT and CCE are two wheels for conducting
cognitive behavioral sciences, that complement each other
from theoretical and experimental perspectives, respec-
tively. Visit http://oberon.nagaokaut.ac.jp/ktjm/
organic-self-consistent-field-theory/index.html
for more information for the entire project.

Model Human Processor
with Realtime Constraints (MHP/RT)

MHP/RT is an extension of Model Human Processor devel-
oped by Card, Moran, and Newell (1983). The purpose of
MHP/RT is to implement at a higher level the facts that the
fundamental processing mechanism of brain is Parallel Dis-
tributed Processing (PDP) (McClelland & Rumelhart, 1986),
that human behavior emerges as the results of competition
of the dual processes of System 2, slow conscious processes
for deliberate reasoning with feedback control, and System 1,
fast unconscious processes for intuitive reaction with feed-
forward control for connecting perception and motor move-
ments, called Two Minds (Kahneman, 2003), and that human
behavior is organized under happiness goals (Morris, 2006),
on the assumption that the processing involved in action se-
lection is truly dynamic interaction that evolves in the irre-

versible time dimension. The extension is done by consider-
ing that the endless PCM cycle continues from his or her birth
to death in the ecological system that consists of the person
and the environments, and it is a periodic circulation system.

MHP/RT consists of two parts. The first part is the cyclic
PCM processes, in which PDP for those processes is imple-
mented in hierarchically organized bands having their respec-
tive characteristic times for operations, i.e., biological, cogni-
tive, rational, and social bands (Newell, 1990) by associating
relative times (not absolute) to the PCM processes that carry
out a series of events. The second part is memory, which sup-
ports the PCM processes. It is implemented as a distributed
memory system and at the same time it serves as a mechanism
to establish synchronization among multiple PCM processes.

Cognitive Chrono-Ethnography: CCE
Equipped with the cognitive architecture, MHP/RT, how can
we study people’s behaviors, characterized by Two Minds
working dynamically along the time dimension? We came
up with a solution in the form of a study methodology, called
CCE. Cognitive Chrono-Ethnography combines three con-
cepts. “Cognitive” declares that CCE deals with interactions
between consciousness and unconsciousness in the PCM cy-
cles. “Chrono(-logy)” is about time ranging from ∼100 msec
to days, months, and years, and CCE focuses on such time
ranges. “Ethnography” indicates that CCE takes ethnograph-
ical observations as the concrete study method because in
daily life people’s Two Minds tends to re-use experientially
effective behavioral patterns, which is called “bias”. Ethno-
graphical field observations are essential for understanding
each person’s bias in his/her daily life.

CCE Procedure
Figure 1 shows the seven steps to conduct a CCE study:
1) Ethnographical Field Observation: Use the basic ethno-
graphical investigation method to clarify the outline of the
structure of social ecology that underlies the subject to study.
2) Mapping the Observed Phenomena on Cognitive Architec-
ture: With reference to the behavioral characteristics of peo-
ple which have been made clear so far and MHP/RT, consider
what kind of characteristic elements of human behavior are
involved in the investigation result in (1).
3) Identifying Study Parameters through Model-Based Simu-
lation: Based on the consideration of (1) and (2), construct an
initial simple model with the constituent elements of activated
memories, i.e., meme, and the characteristic PCM processing
to represent the nature of the ecology of the study space.
4) Design a CCE Study: Based on the simple ecological
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Ethnographical Field Observation1

Mapping the Observed Phenomena on Cognitive Architecture2

Identifying Study Parameters through Model-Based Simulation3

Design CCE Study4

Conduct CCE Study5

Refinement of the Original Study Parameters7

6 Refinement of the Original Mapping

REPEAT

CCE Study

Cognitive Architecture
Construction of Socio-Ecological Structure Model

Model-Based Simulation
Situation Dependent Simulation of Interaction Processes

Figure 1: The CCE procedure (Kitajima, 2016, Figure 5.1).

model, identify a set of typical behavioral characteristics from
a variety of people making up the group to be studied. Then
formulate screening criteria of elite monitors who represent a
certain combination of the behavioral characteristics, and de-
fine ecological survey methods for them.
5) Conduct CCE Study: Select elite monitors and conduct an
ethnographical field observation.
6) Refinement of the Original Mapping: Check the results of
(5) against the results of (2) for appropriateness of the map-
ping. If inappropriate, back to (2) and redo from there.
7) Refinement of the Original Study Parameters: If the result
of (5) is unsatisfactory, go back to (4) and re-design and con-
duct a revised CCE study, otherwise go back to (3) to redo the
model-based simulation with a set of refined parameters.

Completed CCE Studies: A Few Examples
Navigation in a train station by following signs: With the
focus of action selection processes involved in slow naviga-
tion, Kitajima and Toyota (2012) reported a CCE study to
investigate how elderly people use guide signs at train sta-
tions when they have to transfer lines, in addition to use some
facilities such as restrooms, lockers, and so on. The results
showed: 1) persons with inferior planning function with nor-
mal attention function did not use guide signs when they had
mental models, whereas they did not gather task-relevant in-
formation but irrelevant one when they had no mental model,
and 2) persons with inferior planning function and inferior at-
tention consistently had problems in gathering task-relevant
information by using guide signs because of vague descrip-
tion of behavioral goals. The interactions between planning
and attention functions and the existence of mental models
are consistent with MHP/RT’s simulation results.
Sightseeing in a hot spring resort: Hot spring resorts are
popular tourist attractions in Japan. However, little is known
about why they are popular destinations. To answer this ques-
tion, Kitajima, Tahira, Takahashi, and Midorikawa (2012)
conducted a CCE study. Forty-three groups participated in
the study as elite monitors. Each group arrived at Kinosaki-
Onsen and were asked to tour the place. They were instructed
to carry a GPS and a digital camera for recording their activi-
ties. By analyzing the results of the interviews, we identified
six types of tourist activities including: bathing, staying, eat-
ing, exploring, touring, and shopping, each of which corre-
sponds to a different set of happiness goals.

On-Going CCE Studies
Designing Memorable Events: People live in the environ-
ment filled with artifacts, part of which is real and the rest
is virtual. Kitajima, Shimizu, and Nakahira (2017) con-
ducted initial steps of CCE to understand how the PCM pro-
cesses along with the memory process result in memorable
experiences. Preliminary experiments were conducted to see
how omnidirectional movies in virtual reality augmented with
audio-guide made the experience memorable by timely pro-
vision of multi-modal information as designed by MHP/RT.
Designing Immersive Events: Immersive virtual environ-
ments are distinct from other types of multimedia learning en-
vironments. Dinet and Kitajima (2018) reported initial steps
of CCE that focused on the conditions necessary to produce
“immersive experience” for the user. The CCE study will
continue in the context of developing a multimodal interface
to help young pedestrians acquire necessary skills for safe
navigation in dangerous traffic environments.
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The WARP Model of Category Learning 

Research on categorization and classification learning has 

greatly benefitted from the use of computational modeling 

which requires making all theoretical assumptions explicit 

and provides a direct means of theory evaluation by fitting 

behavioral data. The field has advanced notably through 

model comparison relative to benchmark data on human 

category learning performance. Exemplar theory has become 

a leading psychological explanation largely due to the 

success of its formal models in fitting human data across a 

number of tasks (Kruschke, 1992; Nosofsky & Palmeri, 

1997).  

The exemplar view casts categorization as based on an 

explicit calculation of similarity between the to-be-

categorized stimulus and instances stored in long-term 

memory (exemplars) associated with each category. The 

similarity is computed as an inverse exponential function of 

distance between psychological representations in a 

multidimensional space. This representational space can be 

transformed by stretching or shrinking dimensions using 

selective attention. The category with exemplars of greater 

similarity (less distance) to the stimulus is activated. This 

account has been extended in the ALCOVE model 

(Kruschke, 1992) which implements adaptive learning of 

attentional weights on the stimulus dimensions and 

association weights between each exemplar and category. 

While exemplar models have shown a high degree of 

success in fitting behavioral data, they do not provide an 

account of representation learning. These models generally 

assume that each item in the input domain has a unique 

psychological representation (estimated via 

multidimensional scaling) that remains fixed throughout the 

category learning process. Further, a strict correspondence 

holds between the category representation and the stimulus 

items known to be members of that category (note: reference 

point models can also use centroids of clusters of exemplars). 

This is in strong contrast to feedforward artificial neural 

networks that gradually learn representations to optimize task 

performance (Rumelhart, Hinton, & Williams, 1986). In 

standard connectionist models, each stimulus gets recoded at 

a “hidden” layer based on a set of optimized synapse-like 

weights that yield a distributed representation across the 

hidden nodes—which can be seen as a point in a constructed 

multidimensional space. A second set of weights connects 

these hidden nodes to an output layer of class nodes. The 

internal representations are incrementally repositioned in 

weight space via gradient descent to optimize accurate 

prediction at the output layer.  

The Weights-as-Adaptive-Reference-Points (WARP) 

model is designed to bridge the reference point similarity-

based approach of exemplar models with the flexibility and 

psychological plausibility of learned representations in neural 

networks. This merger of design principles is achieved by 

replacing the localist exemplar node representations (as in 

ALCOVE) with a layer that follows the foundational 

connectionist design principles of: 1) a forward pass that 

computes activation based on a function of the ‘net input,’ 

i.e., the input activations multiplied by their weights; and 2) 

a backward pass that modifies the weights to minimize task 

error and estimate the function to be approximated.  

On the connectionist view, the hidden nodes are 

constructed dimensions that usefully transform the values of 

a stimulus in input space to a set of values in another 

representational space. On the exemplar view, each hidden 

node is a reference point to the location of a training item in 

input space and its activity indexes the proximity of that point 

to a stimulus. We propose a new formulation that allows the 

hidden nodes to function according to connectionist 

mechanics and yet act as reference points. The result is that 

the model discovers its own reference points using task-

driven error minimization as opposed to making a 

commitment to the inputs themselves as the basis for the 

reference points.  

The WARP model functions by taking the encoding 

weights to each hidden node as its “address” or reference 

point location in input space. As the weights change via 

learning by backpropagation, each node follows a trajectory 

in weight space from its initial random location toward a 

place where its task is functionality optimized. The ‘net 

input’ is the vector multiplication between the input 

activations and the incoming weights to a node. This is a dot 

product or linear algebraic measure of similarity (i.e., the 

angle between the vectors) as opposed to a spatial distance 

metric. The critical similarity computation between stimulus 

and reference point occurs implicitly in the forward pass. To 

56



make this work as intended, a simple, novel activation 

function at the hidden layer is used which takes the form of 

Equation 1: 

 

   exp[(a ∙ b) - k]     (1) 

 

where a is the vector of input activations, b is the vector of 

incoming input->hidden node weights, and k is a constant 

value set to the number of dimensions in the category 

structure. The key property of this function is this: the more 

closely the incoming weight vector for a hidden node 

approximates the values of an input vector, the greater the 

activation of the hidden node. Over the course of training, 

different hidden nodes will be repositioned to parts of weight 

space that allow them to respond to particular regions in input 

space: to get better at classifying is to move the adaptive 

reference points to useful positions. A standard association 

layer connects the hidden nodes to class nodes and a softmax 

output layer is used to determine the class probabilities  

WARP utilizes a set of connectionist-style free parameters: 

learning rate, number of hidden nodes (i.e., density of the 

implicit covering map), and range of random initialization for 

incoming weights; and can also incorporate a set of reference 

point model-style free parameters: degree of sensitivity of 

reference points and a response mapping constant for 

determining class activations. 

Preliminary testing has shown promising fits to the classic 

behavioral benchmark of the Shepard, Hovland, and Jenkins 

(1961) six types of elemental category structures (dataset 

from Nosofsky et al., 1994). This investigation also revealed 

that the WARP model discovers more parsimonious 

reference points when available: instead of always dedicating 

each hidden node to a single input, WARP can develop 

reference points that respond strongly to particular feature 

correlations or unidimensional rules. In conjunction with 

classic exemplar-style nodes, these feature detector-style 

nodes allow the model to efficiently handle various and 

complex category structures. The use of this multi-strategy 

toolkit mirrors the diversity and flexibility of human category 

learning (Ashby, Alfonso-Reese, & Waldron, 1998). 

In addition to modeling human behavior, WARP has also 

been initially tested for potential application as a classifier in 

the domain of machine learning. Different parameterizations 

of the model, while inappropriate for capturing the pace and 

nuance of human learning, show highly rapid and efficient 

performance on the iris flower benchmark dataset. 

Interestingly, the model solves the classification problem 

using discriminative prototypes that maximize distance to 

competing classes while minimizing distance to the target 

class. Continued investigations of the model are underway to 

better reveal the nature and diversity of the solutions WARP 

discovers for different types of classification problems; and 

to determine the power of the model in addressing the goals 

of psychological explanation and advancing AI. 
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Introduction
Many hallmarks of human intelligence, such as generalizing
from limited experience, abstract reasoning and planning,
analogical reasoning, creative problem solving, and capacity
for language require the ability to consolidate experience into
concepts, which act as basic building blocks of understanding
and reasoning.

Examples of concepts include visual (”red” or ”square”),
spatial (”inside”, ”on top of”), temporal (”slow”, ”after”),
social (”aggressive”, ”helpful”) among many others (Rosch,
Mervis, Gray, Johnson, & Boyes-braem, 1976; Lakoff &
Johnson, 1980). These concepts can be either identified
or generated - one can not only find a square in the
scene, but also create a square, either physical or imaginary.
Importantly, humans also have a largely unique ability
to combine concepts compositionally (”red square”) and
recursively (”move inside moving square”) - abilities
reflected in the human language. This allows expressing an
exponentially large number of concepts, and acquisition of
new concepts in terms of others. We believe the operations
of identification, generation, composition over concepts are
the tools with which intelligent agents can understand and
communicate existing experiences and reason about new
ones.

Crucially, these operations must be performed on the fly
throughout the agent’s execution, rather than merely being a
static product of an offline training process. Execution-time
optimization, as in recent work on meta-learning (Finn,
Abbeel, & Levine, 2017) plays a key role in this. We
pose the problem of parsing experiences into an arrangement
of concepts as well as the problems of identifying and
generating concepts as optimizations performed during
execution lifetime of the agent. The meta-level training is
performed by taking into account such processes in the inner
level.

Specifically, a concept in our work is defined by an
energy function taking as input an event configuration
(represented as trajectories of entities in the current work),
as well as an attention mask over entities in the event.
Zero-energy event and attention configurations imply that
event entities selected by the attention mask satisfy the
concept. Compositions of concepts can then be created by

simply summing energies of constituent concepts. Given a
particular event, optimization can be used to identify entities
belonging to a concept by solving for attention mask that
leads to zero-energy configuration. Similarly, an example of
a concept can be generated by optimizing for a zero-energy
event configuration. See Figure 1 for examples of these two
processes.

The energy function defines a family of concepts, from
which a particular concept is selected with a specific concept
code. Encoding of event and attention configurations can
be achieved by execution-time optimization over concept
codes. Once an event is encoded, the resulting concept code
structure can be used to re-enact the event under different
initial configurations (task of imitation learning), recognize
similar events, or concisely communicate the nature of the
event. We believe there is a strong link between concept
codes and language, but leave it unexplored in this work.

Description of events we consider and video results
of our model learning on these events are available at:
sites.google.com/site/energyconceptmodels

x a w0

x
0

x
1

x
0

a x
1

a
optx

0
x

1
a

E

opt

concept inference

recognition

generation

θ

demo

a

x0a x 1

x0 ax 1

generation

identification

Figure 1: Examples of generation and identification processes
for a ”square” concept. a) Given initial state x0 and attention
mask a, square consisting of entities in a is formed via
optimization over x1. b) Given states x, entities comprising a
square are found by optimization over attention mask a.

Method
Existence of a particular concept is given by energy function
E(x,a,w) ∈ R+, where parameter vector w specifies a
particular concept from a family. E(x,a,w) = 0 when state
trajectory x under attention mask a over entities satisfies
the concept w. Otherwise, E(x,a,w) > 0. The conditional
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probabilities of a particular event configuration belonging to a
concept and a particular attention mask identifying a concept
are given by the Boltzmann distributions:

p(x|a,w) ∝ exp{−E(x,a,w)} (1)
p(a|x,w) ∝ exp{−E(x,a,w)} (2)

Given concept code w, the energy function can be used for
both generation and identification of a concept implicitly via
optimization (see Figure 1):

x(a) = argmin
x

E(x,a,w) a(x) = argmin
a

E(x,a,w) (3)

To learn concepts from experience grounded in events, we
pose a few-shot prediction task. Given a few demonstration
example events and initial state for a new event, the task is to
predict attention a and the future state x of the new event. We

x0x 1 a x0

?

demo event test eventx 1 atest event

Figure 2: Example of a few-shot prediction task.

follow the maximum entropy inverse reinforcement learning
formulation (Ziebart, Maas, Bagnell, & Dey, 2008) and
assume demonstrations are samples from the distributions
given by the energy function E and find energy function
parameters θ via maximum likelihood estimation over future
state and attention given initial state. The resulting loss for a
particular dataset X is

LML
p (X ,w) = E(x,a)∼X

[
− log p

(
x1,a | x0,w

)]
Where the joint probability can be decomposed in terms of

probabilities in (1) and (2) as

log p
(
x1,a | x0,w

)
= log p

(
x1 | a,wx

)
+ log p

(
a | x0,wa

)
We use two concept codes, wx and wa to specify the joint

probability. The interpretation is that wx specifies the concept
of the action that happens in the event (i.e. ”be in center of”)
while wa specifies the argument the action happens over (i.e.
”square”). This is a concept structure or syntax that describes
the event. The concept codes are interchangeable and same
concept code can be used either as action or as an argument
because the energy function defining the concept can either be
used for generation or identification. This importantly allows
concepts to be understood from their usage under multiple
contexts.

Experimental Results
We introduce a simulated environment and tasks for a
two-dimensional scene consisting of a varying collection of
entities, each processing position, color, and shape. We
observe the following properties:

Concept inference in multiple contexts: An important
property of our model is ability to learn from and apply it in
both generation and identification contexts. We qualitatively
observe that the model performs sensible behavior in both
contexts. For example, we considered events with proximity
relations ”closest” and ”farthest” and found model able to
both attend to entities that are closest or furthest to another
entity, and to move an entity to be closest or furthest to
another entity.

Transfer between contexts: When our model trained
on both contexts it shares experience between contexts.
Knowing how to act out a concept should help in identifying
it and vice versa. We perform an experiment where we train
the energy model only in identification context and test the
model’s performance in generation context (and conversely).
We observe that even without explicitly being trained on the
appropriate context, the networks perform much better than
baseline of two independently-trained networks.

Sharing codes across contexts: Another property of our
model is that codes wx and wa for identifying concepts are
interchangeable and can be shared between generation and
identification contexts. For example, either turning an entity
red would or identifying all red entities in the scene would
ideally use the same concept of ”red”. We indeed observe
that events which involve recognizing entities of a particular
color, the codes wa match the codes wx for setting entities to
that color and find similar correlation in the other events as
well.

Conclusion
We believe that execution-time optimization plays a crucial
role in acquisition and generalization of knowledge, planning
and abstract reasoning, and communication. In the current
work we used a simple concept structure, but more complex
structure with multiple arguments or recursion would be
interesting to investigate in the future. It would also be
interesting to test compositionality of concepts, which is
very suited to our model as compositions corresponds to the
summation of the constituent energy functions.
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The creative role of performativity 
In our project the performance is a product of performativity. 
Performativity is the cognitive ability to produce physical or 
mental actions. Studying performance and studying 
performativity sets different scientific activities. Studying 
how to enhance performance belongs to the behavioral 
science. On the contrary, studying performativity belongs to a 
general cognitive procedure that must not be confused with 
the description of behaviors, requiring instead a specific 
theorization in the cognitive sciences. The aim of this 
research project is to focus on the hypothesis that 
performativity is not a property confined to certain specific 
human skills, or to certain specific acts of language. Instead, 
the executive and motor component of cognitive behavior 
should be considered an intrinsic part of the physiological 
functioning of the mind and as endowed with self-generative 
power (Pennisi A., 2019; Pennisi A.-Falzone, 2016). 
We believe that performativity has evolved alongside with 
those natural selection processes which have led the human 
species to develop articulated language and the embodied 
simulation (Pennisi A.-Falzone, 2016; Falzone 2018). In such 
framework, cognition is a form of mediated action rather than 
the link between inner thought and overt behavior. According 
to our model, thus, action is not the mere externalization of a 
mental process, but is the process itself (Pennisi A., 2018 and 
2019; Pennisi A.-Falzone, 2019; Gallese, 2019). Since such 
process is carried out through the body, we think that the 
species-specificity of the bodies occurring in nature paves the 
way for every individual’s knowledge of reality. 
Performativity as a physiological tool of cognitive creativity 
has precise neural correlates and procedural properties. 
From the point of view of procedures, performativity is a 
cognitive property that arises from the absence of an 
algorithm designed to carry out a given performance. Acting 
in a non-planned way, learning by trial and error, applying 
familiar behavioral patterns to new situations: these are just a 

few examples of what is performativity and of how it works.  
Thus, performativity is intrinsically creative because its 
nature is to face situations that cannot be solved by the 
application of already known algorithms. In a nutshell, 
performative creativity is a procedural system that is 
somewhere between what Chomsky called “rule governed 
creativity” and “rule-changing creativity”. Performativity 
however bears a peculiar kind of creativity, which is different 
from the one generated by the competence but still shares 
some features with the latter: in fact, it is a fully embodied 
and free-from-rules process that is carried out through trial 
and error, that is to say it depends on the bodily practice 
(locomotion, language, perception, etc.) made in everyday 
experience (Pennisi A., 2019; Pennisi A.-Falzone, 2016; 
Gallese 2018; Matteucci, 2018; Montani 2018).  In functional 
terms, hence, the brain is a powerful biological instrument 
which permits continuous reorganization of the activity of 
organisms. An incessant activity of biological agents that 
move and act, that perceive and explore the world around 
them through a network of sensors and nerves, whose 
complexity of articulation is directly dependent on the 
species-specific structure. This activity relentlessly stimulates 
the rewiring of sensorimotor networks and remodeling of 
cognitive interactions. Our mind is the result of this close 
cooperation between the performative competence triggered 
by sensory-motor systems and the readjustment of the 
computational procedures of our deep brain to allow the 
survival and growth in the fitness of individuals and the 
entire species within environmental variation. 
 
Insights from neurolinguistics 
A large amount of literature has been devoted to the 
aforementioned mapping process, carried out through both 
brain imaging (Monchi et al. 2001, 2006; Nagano-Saito et al. 
2008) and the study of the biochemical reactions involved in 
the plasticity of synaptic processes (Thivierge et al. 2007; Ko 
et al. 2013; Tamburrini-Prevete, 2018). Such researches have 
demonstrated “that the caudate nucleus and the putamen are 
particularly important, respectively, in the planning and the 
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execution of a self-generated novel action, whereas the 
subthalamic nucleus may be required when a new motor 
program is solicited independently of the choice of strategy” 
(Monchi et al. 2006, 257). Examining the biolinguistic 
aspects of these discoveries in depth, Lieberman and his team 
have shown that the neural circuits connecting different brain 
parts during human speech exploit the putamen for 
neuromotor control, changing “on the run” - that is, during 
verbal action performance - “the direction of our thought 
processes based on new stimuli such as the understanding of 
meaning conveyed by the syntax of language” (Lieberman & 
McCarthy 2007, 16). 

Furthermore, a similar activation of brain motor 
components is registered when language data are processed 
in the absence of grammatically well-tested algorithms, such 
as when a second language is learned (Klein et al. 1994), or 
when a subject switches from listening to informal speech to 
a more formal one (Abutalebi et al. 2007). 

In short, the management of neurocerebral performative 
strategies seems to be responsible for the most dynamic 
processes of linguistic behavior. This kind of behavior needs 
an attempt, or an active effort, that cannot be accomplished 
only through the mechanical application of already known 
and stabilized rules because it requires “the execution of a 
self-generated action among competitive alternatives” 
(Lieberman 2013, 80): an activity that is prolonged virtually 
forever, after the first acquisition step of ontogenetic speech, 
moving from mechanical physiology to the physiology of 
thought. 

 This overall framework also explains why the paths of 
speech often follow the hesitational phenomena of breaking 
up, recomposition, reunion, syncretism, propositional 
chiselling, semantic and lexical refinement: that is, all that is 
stigmatized by Chomsky’s idea of performance as the deposit 
of cognitive junk produced by externalization devices (to 
repeat his words: “numerous false starts, deviations from 
rules, changes of plan in mid course, and so on”, 1960, 530). 
On the contrary, the most advanced neurolinguistic research 
reveals the close interconnection between motor 
performativity and the continuous reorganization of 
propositional and abstract thinking: “the cortico-striatal 
regions that regulate language comprehension also regulate 
many aspects of behavior such as motor control and abstract 
reasoning” (Simard, Monchi et al. 2010, 1092). 
Evolutionarily, in fact, the performative motricity of thought 
could have been decisive for understanding the subsequent 
development of human language, “because it indicates that 
our modem brains may actually have been shaped by an 
enhanced capacity for speech motor control that evolved in 
our ancestors” (Lieberman & McCarthy 2007, 16). 
 
Schizophrenia as the realm of anti-performativity 
Another field of research which supports our idea of 
performativity is phenomenological psychopathology. 
Authors like Sass (1992), Stanghellini (2004) and Fuchs 
(2005), in fact, claim that one of the core symptoms of 
schizophrenia is a sort of “disembodiment”, the onset of a 

problematic relationship between the patient and his own 
body in which the parts of the latter become heavy, distorted 
and even “stranger”. This peculiar kind of corporeity is 
reflected in a total lack of fluidity in any patient’s 
performance: “patients frequently experience a 
disintegration of habits or automatic performances, a 
«disautomation». Instead of simply dressing, driving, 
walking, etc., they have to prepare and produce each single 
action deliberately, in a way that could be called a 
«Cartesian» action of the mind on the body” (Fuchs & 
Röhricht 2017). 

Such schizophrenic tendencies might be described as the 
attempt to apply procedural rules - algorithms - to the 
everyday and well-mastered situations that make up our 
“being in the world”, as the following words by a 
schizophrenic patient show: “If I do something like going for 
a drink of water, I’ve to go over each detail – find cup, walk 
over, turn tap, fill cup, turn tap off, drink it” (Chapman 1966, 
239). As we have already claimed (Pennisi G. 2018), 
schizophrenia might be read as the disruption of the 
mechanisms that make a performance efficient, namely the 
selective target control, the softly conscious monitoring of 
one’s bodily configurations and the implicit sense of body-as-
subject (Gallagher 2018).  

Instead of having this tacit, self-transparent and immediate 
relationship with their own bodies, patients often exercise a 
thematic control on the latter that goes from repetitively 
touching their own body parts – as if they try to verify if their 
body still «belongs» to them – to the fragmentation of every 
goal-related movement in many sub-movements, like in the 
previous example. Schizophrenics’ inability to get in the flow 
of the action is what makes such illness “the realm of anti-
performativity” (Pennisi G. 2018): this is why we think that 
the study of the role of performativity on human cognition 
cannot be separated from the phenomenological analysis of 
psychopathologies. 

Conclusion 
In the light of the above, we will define performativity as a 

constituent component of the cognitive processes. The 
actions that we perform in the environment, in fact, allow us 
to know both the surrounding world and our physical 
possibilities. In such model, the body is not only the means 
by which the individual explores and acts on the 
environment, but the precondition for the development of any 
cognitive ability. 

Our intention is to validate our ideas on the role of the 
body and on performativity by applying the interdisciplinary 
methods of Cognitive Science. The issues we have raised, in 
fact, not only are the subject of a debate between the 
embodied/extended mind models and the mentalist 
hypotheses carried out by cognitive psychology and 
computationalism, but can only be clarified by providing an 
overview of the scientific literature on psychopathology and 
on cognitive neuropsychology. 

  

61



References 
Abutalebi, J., Brambati, S. M., Annoni, J. M., Moro, A., 

Cappa, S. F., & Perani, D. (2007). The neural cost of the 
auditory perception of language switches: An event- 
related functional magnetic resonance imaging study in 
bilinguals. The Journal of Neuroscience, 27(50), 13762- 
13769. 

Chapman J. (1966). The Early Symptoms of Schizophrenia. 
The British Journal of Psychiatry, 112(484), 225-251. 

Chomsky, N. (1960). Explanatory models in linguistics. 
Studies in Logic and the Foundations of Mathematics, 44, 
528-550. 

Falzone, A. (2018). Performativity and evolution. Reti, 
saperi, linguaggi. Italian Journal of Cognitive Sciences, 
1/2018, 149-60. 

Fuchs, T. (2005). Corporealized and disembodied minds: a 
phenomenological view of the body in melancholia and 
schizophrenia. Philosophy, Psychiatry, & Psychology, 
12(2), 95-107. 

Fuchs, T., & Röhricht, F. (2017). Schizophrenia and 
intersubjectivity: An embodied and enactive approach to 
psychopathology and psychotherapy. Philosophy, 
Psychiatry, & Psychology, 24(2), 127-142. 

Gallagher S. (2018). Mindfulness and mindlessness in 
performance. Reti, saperi, linguaggi. The Italian journal 
of Cognitive Sciences, 1/2018, 5-18. 

Gallese, V. (2018). Embodied simulation and its role in 
cognition. Reti, saperi, linguaggi. Italian Journal of 
Cognitive Sciences, 1/2018, 31-46. 

Klein, D., Zatorre, R. J., Milner, B., Meyer, E., & Evans, A. 
C. (1994). Left putaminal activation when speaking a 
second language: Evidence from PET. Neuroreport, 
5(17), 2295-2297. 

Ko, J. H., Antonelli, F., Monchi, O., Ray, N., Rusjan, P., 
Houle, S., et al. (2013). Prefrontal dopaminergic receptor 
abnormalities and executive functions in Parkinson’s 
disease. Human brain mapping, 34(1), 1591-1604. 

Lieberman, P., & McCarthy, R. (2007). Tracking the 
evolution of language and speech: Comparing vocal tracts 
to identify speech capabilities. Expedition: The magazine 
of the University of Pennsylvania, 49(2), 15-20. 

Lieberman, P. (2013). The unpredictable species. What 
makes humans unique. Princeton: Princeton University 
Press. 

Matteucci, G. (2018). Creativity as extended mind's aesthetic 
performativity. Reti, saperi, linguaggi. Italian Journal of 
Cognitive Sciences, 1/2018, 69-80. 

Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, 
A. (2001). Wisconsin card sorting revisited: Distinct 
neural circuits participating in different stages of the task 
identified by event-related functional magnetic resonance 
imaging. The Journal of Neuroscience, 27(19), 7733- 
7741. 

Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & 
Doyon, J. (2006). Functional role of the basal ganglia in 
the planning and execution of actions. Annals of 
neurology, 59(2), 257-264. 

Montani, G. (2018). Once again on «Narrative imagination». 
«Schematizing without concept» in language, image and 
dreaming brain. Reti, saperi, linguaggi. Italian Journal of 
Cognitive Sciences, 1/2018, 127-134. 

Nagano-Saito, A., Leyton, M., Monchi, O., Goldberg, Y. K., 
He, Y., & Dagher, A. (2008). Dopamine depletion 
impairs front os tri atal functional connectivity during a 
set- shifting task. The journal of neuroscience, 28(14), 
3697- 3706. 

Pennisi, A. (2018). Performative Dimensions in cognitive 
sciences. Reti, saperi, linguaggi. Italian Journal of 
Cognitive Sciences, 1/2018, pp. 25-30. 

Pennisi, A. (2019). Dimensions of the bodily creativity. For 
an extended theory of performativity. In A. Pennisi-
A.Falzone (eds), The Extended Theory of Cognitive 
Creativity. Interdisciplinary Approaches to 
Performativity, Berlin: Springer, 11-43. 

Pennisi A., Falzone A. (2016). Darwinian biolinguistics. 
Theory and history of naturalistic philosophy on 
language. Berlin-Heidelberg-New York-Cham: Springer. 

Pennisi A., Falzone A. (2019). The Extended Theory of 
Cognitive Creativity. Interdisciplinary Approaches to 
Performativity, Berlin: Springer. 

Pennisi, G. (2018). Towards a deeply embodied Enactivism. 
Reti, saperi, linguaggi. Italian Journal of Cognitive 
Sciences, 2/2018, 271-280. 

Sass, L. A. (1992). Madness and modernism: Insanity in the 
light of modern art, literature, and thought. New York: 
Basic Books. 

Simard, F., Joanette, Y., Petrides, M., Jubault, T., Madjar, 
C., & Monchi, O. (2010). Fronto-striatal contribution to 
lexical set-shifting. Cerebral Cortex, 21, 1084-1093. 

Stanghellini, G. 2004. Disembodied spirits and deanimated 
bodies: The psychopathology of common sense. Oxford: 
Oxford University Press. 

Thivierge, J. P., Rivest, F., & Monchi, O. (2007). Spiking 
neurons, dopamine, and plasticity: Timing is everything, 
but concentration also matters. Synapse-New York, 61(6), 
375-390. 

Tamburrini, G., Prevete, R. (2018). Neuromodulation and 
neural circuit performativity: towards a computational 
model. Reti, saperi, linguaggi. Italian Journal of Cognitive 
Sciences, 1/2018, 111-126. 

 
 

62



Why sociality affects creativity: lessons from autism  
 

Pennisi Paola (ppennisi@unime.it) 
Linguistic Centre of Messina University  (CLAM), 54 Via Luciano Manara 

Messina, ME 98123 Italy 
 

Giallongo Laura (lgiallongo@unime.it) 
Department of Cognitive Sciences, 6/8 via Concezione 

Messina, ME 98121 Italy 
 
 

Keywords: creativity; autism; imagination; social cognition; 
divergent thinking; insight 

Introduction 
As human beings we are social. All of us had to be 

included in a group to survive; most of us highly desire to 
live and collaborate with others on a daily basis. In this 
paper we will try to show how our sociality (considered as 
the inclination to live and collaborate with other co-
specifics) affects our creativity.  

 
How sociality affects creativity 
Creativity, in fact, means being yourself, seeing the world 

in a way that is different from that of others. Each time that 
we perceive the world, we collect or ignore some data, we 
focus on something and neglect something else. Each 
perception is a creative act and this is showed not only by 
the Kanizsa’s triangle or other similar optic illusions, but 
even by our spontaneous impulse to build our reality. When 
we are in love, for example, we are more inclined to 
interpret the gestures of our object of love in the direction 
that we would like to be the real one. In this condition we 
could easily mistake a wink aimed at the expulsion of a hair 
from the other’s eye with a wink towards us. The thirst 
makes us see the water even where it is not there. What we 
call reality is an interspecific bargaining of the meaning of a 
perception. 

Our sociality can push us to creativity in many ways: 
inviting us to solve problems, providing new information, 
criticizing one of our acts of creation or even inviting us to 
brainstorm. Societies also often reward creativity. But the 
eureka, the act of creating a different way of thinking 
something will take place only if we are able to go beyond 
the conformity of our perceptions with those of others. 
 

Working definition for “creativity” 
Creativity is a very heterogeneous concept. Here we will 

consider “creativity” as the ability to generate multiple 
solutions to a problem. 

This definition encompasses in the same category the 
divergent thinking, insights and artistic creativity1.  

                                                             
1 This last can be seen as the essay of the artist to resolve the 

problem of representing his subjects.    
 

 
Creativity in autism 
Autism is a neurodevelopmental disorder characterized by 

persistent deficits in social communication and interaction 
and restricted and repetitive patterns of behaviour, interests 
or activities (APA 2013). Among the numerous 
consequences of the disorder, there are the lack of 
spontaneous symbolic play (Jarrold et al. 1993); anomalies 
in imagination (Low et al. 2009); difficulties to understand 
metaphors (Hobson 2012; Rumblad & Annaz 2010); very 
poor dreamlike activity (Daoust et al. 2007). For these 
reasons, subjects with autism are frequently considered less 
creative than subjects without autism. I.e. Craig and Baron 
Cohen (1999) described autistic creativity as a reality-based 
creativity and opposed it to the imaginative creativity of 
people without autism (Craig & Baron Cohen 1999).  

The artistic productions of some savants with autism are 
famous for their proximity to reality – i.e. Stephen 
Wiltshire’s productions, or Nadia’s drawings (Selfe 2011). 
However a lot of other productions of autistic subjects show 
that the disorder doesn’t affect the imaginative creativity: 
see i.e. Tammet (2008) or fig.1, which is a drawing made a 
7 years autistic child. 

 
Moreover, also among those 

who show the reality-based style 
of creativity described Craig & 
Baron Cohen (1999), subjects 
frequently solve problems in non-
conformist ways. I.e., Temple 
Grandin managed to solve a major 
technical problem in the 
slaughtering of cows thanks to her 
style of thought which is indeed 

based on a reality-based form of creativity that is impossible 
to artlessly catch for people without autism (Grandin 1995). 

As we will try to show in the full paper, the lacking of 
social affordances in subjects with autism greatly enhance 
their creativity, making their professional or artistic 
contribution very original for many fields of studies.   

Subjects with autism, in fact, can think and imagine 
things in different ways than that of the most part of the 
population because they are less subject to perceptive and 
psychological biases linked to human sociality. I.e. their 
ability to make physical causation inference is superior than 
that of the most part of the population; on the contrary 

Figure 1 
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emotional and intentional inferences are more difficult for 
subjects with autism than for the rest of the population 
(Pennisi 2016). 

 
Why not all subjects with autism are creative? 

Unfortunately, neurodevelopmental disorders are 
frequently associated with a low QI. Below a certain IQ, it is 
rarely possible to express one's creativity in a way that is 
comprehensible to others. Some talents sometimes manage 
to emerge, such as in the case of Nadia (Selfe 2011), but 
normally too low intellectual quotients do not allow the 
expression of the creativity of one's own creativity. 

For all those subjects with autism who have an average or 
above average IQ, creativity is probably hidden where we 
are not used to looking for it. The absence of social 
motivation (Chevallier et al. 2012) turns into the habit of not 
asking others to help solve their problems and not to receive 
requests for help in solving problems. But in a world where 
the rules of sociability are a far-off buzz, the need to solve 
everyday problems requires the use of creativity. 
I.e., a child with autism who wants to open a door handle 
too high for him could easily take the adult's hand next to 
him and use it as a tool to open the door, rather than 
explicitly asking for help. Certainly this is a not very 
conventional way of "using" the adult's arm. 
Italian journalist Gianluca Nicoletti, father of a boy with 
autism (Tommaso), tells how his son, interested in not 
losing his favorite cassette during a move, was able to find a 
way to identify the right tape in a mountain of identical 
boxes (Nicoletti 2015). Nobody knows exactly what 
strategy the boy used, but certainly it hides an attitude to 
think and perceive the mountain of boxes in a totally 
different way from the rest of the family. An ordinary child 
would have simply asked the mother to remember for him 
and she would have drawn something on the outside of the 
box. 

The point is that creativity is always linked to something 
pre-existing. It is likely that, in the eyes of people without 
autism, many tactics used by individuals with autism are 
creative, whereas for Tommaso, the ability to locate the 
cassette in the box was not an act of creativity, but just the 
result of having followed his normal flow of thought, which 
simply has characteristics different from that of most of the 
population. 
We all have a creative mind, but the pressure of sociability 
pushes us to inhibit part of our potential in order to better 
understand others and be better integrated into social 
groups. 
İn the full paper we will try to prove our hypothesis by 

providing a wider analysis of numerous case studies. 

Conclusions 
The study of autistic cognition is a precious source of 

information on the usual functioning of human cognition. In 
fact, it shows the link between attitude to sociality and all 
the rest of cognitive processes. Autistic cognition teaches us 

that creativity is not an empyrean concept and that we are 
always creative with respect to something else.  

Creativity with respect to the usual ways of thinking is 
the active effort to alter our usual flow of thought in order to 
solve a problem that we are not able to solve with 
previously used methods. Creativity with respect to society, 
on the other hand, is a style of thought that deviates from 
the one that is accepted by the rest of the group. In most 
people the two things often coincide; but at any moment we 
have the possibility of exerting an active effort to get rid of 
a habit of thought and to create one that has not yet been 
explored yet.  
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Introduction 
We remember and talk about events as unfolding over time. 
When recalling a recent past event, we are often able to 
recollect its duration and mentally reproduce its component 
actions, as if replaying the event in our mind. However, key 
aspects of duration memory are poorly understood, in 
particular, how event memories map onto clock time and how 
this mapping is modulated by language. Indeed, we do not 
perceive and remember objective clock time, unless we pay 
attention to clocks. Instead, we build event representations 
that are not replicas of our experiences but are rather 
temporally compressed, and thus do not often coincide with 
the real time it took these experiences to unfold. 

Here, we investigate the relationship between time, 
memory and language by examining how people recall and 
mentally reproduce (replay) events that were conceptualized 
through language. We specifically ask two main questions. 
First, what determines the duration and clock accuracy of 
event reproductions from memory. Second, how these 
reproductions are modulated by linguistic descriptions, thus 
potentially leading to distorted reproductions.  

 
 
 
 
 
 

 
Figure 1: Stimulus example. The arrow indicates path. 

 
In four studies, participants were first asked to study 

cartoon-like animations accompanied by descriptive phrases 
for a later memory test. The animations varied in duration 
from 3-9s and showed geometric figures moving in a familiar 
setting. Each animation was paired with one of two possible 
descriptions implying either fast or slow-motion speed, for 
example, grandma taking the bus to the hospital vs an 
ambulance taking someone to the hospital (cf. Fig. 1). Thus, 
the two phrases implied a shorter or longer event duration. 
The descriptions provided critical information to understand 
the animation, which would otherwise be unspecific as to the 
nature of the moving object. After learning, participants were 
asked to replay the animations in their minds exactly as they 
occurred in their original time course when prompted with 
either an animation frame or the corresponding description. 
Participants clicked the mouse at the start and finish of their 
mental replays. The reproduced or replayed duration was 

measured. Finally, they were asked to verbally recall as many 
details as they could about each animation when prompted.  

We hypothesized following Ornstein (1969) recall-based 
account that the amount of information recalled would 
explain duration memory over and above the influence of 
stimulus duration and number of stimulus segments (Faber & 
Gennari, 2017). Importantly, when the amount of exposure to 
the same stimuli increases (as in Exps. 2 & 4), we expected 
that more event information should be learned, and thus, the 
reproduced duration should lengthen particularly for the 
stimuli where reproduction accuracy could be improved. 
Under this hypothesis, memory biases previously reported 
(Roy & Christenfeld, 2008), such as the tendency to shorten 
long events and lengthened short ones should emerge from 
the information recalled: people remember proportionally 
more information per time unit for short events, leading to 
lengthened duration reproductions, whereas they remember 
proportionally less information per time unit for long events, 
leading to shortened reproductions.  

Additionally, we hypothesized following interactive-
encoding accounts (Lupyan, 2008; Feist & Gentner, 2007) 
that if verbal encoding distorts the initially encoded memory, 
events described with slow-phrases should be mentally 
reproduced as longer than those described with fast-phrases, 
even when a visual-cue prompts event replay. Alternatively, 
retrieval-based accounts (Alba & Hasher,1983) argue that 
language should only play a role at retrieval, i.e., the effect of 
descriptions should be observed only when descriptions 
prompt replays.   

Experiments 1 & 2: visually-cued event replays 
after one and three stimulus viewings 

Participants learned 21 animations alongside descriptions 
either once in random order (exp. 1) or three times (3 runs 
through the stimuli in random order, exp. 2). Mental replay 
and verbal recall were cued by a visual frame. Separate pre-
tests determined stimulus characteristics (implied motion 
speed, familiarity, number of segments, etc.). 

Results indicated no influence of language on duration 
reproductions. However, the event information recalled (as 
measured by the number of words used in verbal recall) 
modulated reproduced duration. As the number of words 
recalled increased, so did the reproduced duration, over and 
above the influence of stimulus duration and the number of 
stimulus segments. Moreover, the extent to which reproduced 
duration deviated from the clock stimulus duration (deviation 
index = reproduced duration/stimulus duration) were 
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lengthened for shorter animations but were shortened for 
longer animations, as previously reported (Fig. 2). A 
deviation index of 1 indicates accurate reproductions, with 
smaller or larger indices indicating under- or over-
reproductions. Moreover, more accurate reproductions 
(closer to 1) were obtained in Exp. 2 compared to Exp. 1, 
particularly for longer animations, where more details could 
be learned with more exposure. This suggests that the number 
of details recalled underpins duration reproductions. 
Critically, the density of the details recalled (the number of 
words recalled per seconds in an animation) explained 
deviation indices. Thus, shorter animations were reproduced 
as longer because more details were proportionally recalled 
for them compared to longer animations, thus providing a 
possible explanation for the temporal bias observed. 

 

 
 

Figure 2: Reproduced duration and deviation index as a 
function of the stimulus duration  

 

Experiment 3 & 4: verbally cued event replays 
after one or three stimulus viewings 

These studies used the linguistic descriptions to prompt event 
replays and verbal recall, instead of a visual cue. Note that 
language may influence reproductions because participants 
are unsure of what they saw after a single viewing. Thus, 
testing deeper learning may reveal whether weak memory 
traces play a role in language effects.  

 

 
 

Figure 3: Reproduced duration as a function of language 
condition and stimulus duration in Exp. 4 

 
Results indicated that for one and three stimulus viewings, 

there was a language effect. Slow-phrases led to longer 
reproductions whereas fast phrases led to shorter ones across 
all stimulus durations. This suggests that the memory 
representation retrieved is combined with top-down 
conceptual information present at retrieval, leading to a 
biased reproduction. In addition, the density of the 
information recalled predicted deviation indices (temporal 

bias), replicating exps. 1 & 2. Thus, both language and event 
recall influenced replays, leading to linguistically and 
temporally distorted retrieval.  

Discussion 
We investigated how event reproductions from memory were 
modulated by event descriptions and the event information 
recalled. Visually cued event reproductions did not vary as a 
function of language, suggesting that language did not 
modulate the way the animations were encoded or 
subsequently retrieved. Instead, event memory was the main 
source of information guiding duration reproductions, as 
evidenced by the predictive role of the number of words used 
in recall, over and above stimulus duration and segments. 
Critically, irrespective of cue type, better learning led to 
longer event reproductions for animations where accuracy 
could be improved, consistent with the recall-based view.  

Verbally-cued reproductions led to shorter or longer 
reproductions according to the phrases, even after extensive 
learning. The concurrent influence of recalled information 
and language, therefore, suggests that the retrieved episodic 
event representations were combined with linguistic 
concepts, leading to hybrid event reproductions modulated by 
both event memory and language.  

In all experiments, shorter stimuli were lengthened, and 
longer stimuli shortened, despite modulations by learning and 
language. The deviation index in all studies was explained by 
the information density recalled (the number of words 
recalled per second). We argue that information density and 
temporal biases stems from event perception and encoding 
mechanisms: Information at event boundaries is recalled 
better than within-event information (Zacks et al., 2007). In 
longer events, which tend to have longer segments, more 
within-segment information is forgotten, whereas for short 
events, which have relatively short segments, more 
information is proportionally retrieved.  

Taken together, these results are consistent with both a 
recall-based view of memory for duration and a retrieval 
account of the role of language in memory. 
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Many theories hold that languages acquire new color terms
with time, resulting in finer-grained color naming systems
(e.g. Berlin & Kay, 1969; MacLaury, 1997; Levinson, 2000).
More recently, it has also been claimed (e.g. Lindsey et
al., 2015; Regier et al., 2015; Gibson et al., 2017) that
this historical evolutionary process, and color naming more
generally, are shaped by the need for efficient communication
— that is, the need to communicate accurately, with
a simple lexicon. Zaslavsky et al. (2018) [henceforth
ZKRT] showed that an independent information-theoretic
principle of efficiency, the Information Bottleneck (IB)
principle (Tishby et al., 1999), explains much cross-language
variation in color naming, and they hypothesized that color
naming systems evolve under pressure to remain near the
theoretical limit of efficiency. However, most research
concerning the evolution of color naming, including ZKRT,
has been based on synchronic cross-language comparisons,
rather than on diachronic data.

Here, we examine color naming evolution using diachronic
data for a single language: Nafaanra, a Senufo language
spoken in Western Ghana. Color naming data for Nafaanra
were first collected in 1978 in the village Banda Ahenkro,
as part of the World Color Survey (WCS, Kay et al., 2009).
The data revealed a 3-term system with terms for light/white,
dark/black and red. ZKRT found that 93% of the WCS
systems, including this one, are near-optimally efficient in
the IB sense. Nafaanra data were collected again in Banda
Ahenkro by one of us (K.G.) in summer 2017, and revealed
a 7-term system. The three terms from 1978 are still used
but they now name smaller categories, and there are also new
terms for (roughly) yellow, green, blue and purple. These
findings are consistent with the claim that languages add
new color terms with time. To investigate whether Nafaanra
had changed under pressure to remain efficient, we analyzed
the 2017 system in the same way ZKRT had analyzed the
1978 system. We found that the 2017 Nafaanra system, like
the 1978 system, lies near the theoretical limit of efficiency,
and that this outcome would be unlikely without pressure

for efficiency. To our knowledge, this is the first evidence
that directly supports the proposal that color naming evolves
under pressure for efficient communication. How broadly this
finding generalizes across languages and domains (Regier et
al., 2015), and how efficiency interacts with other factors such
as language contact, are questions for future research.
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Abstract
People spontaneously collaborate to solve a common goal.
What factors affect whether teams are successful? Due to
lack of large-scale naturalistic data and methods for investi-
gating scientific questions on such data, previous work has ei-
ther focused on very concrete cases, such as surveys of busi-
ness teams, or abstract cases, such as GridWorld games, where
agents coordinate their movement so that each agent can get to
their own goal without obstructing other agents. We propose a
computational framework based on the multivariate Hawkes
process and a novel algorithm for parameter estimation on
large data sets. We demonstrate the potential of this method
by applying it to a large database of programming teams, pub-
lic GitHub repositories. We analyze factors known to influence
team performance, such as leader organization style and team
cognitive diversity, as well as other factors, such as the bursti-
ness of effort, that are difficult to test using existing methods.
Keywords: Collaborative cognition; Hawkes process; Organi-
zational psychology; Bayesian nonparametrics

Introduction
People naturally form groups to collaborate towards a com-
mon goal. We coordinate to navigate the world (Ho et al.,
2016), to protest inequalities (Korkmaz et al., 2018), to in-
crease efficiency and well-being (Simon, 1991), to solve
problems (Miller, 1951) and crises (Militello et al., 2007),
to conduct science (Wuchty et al., 2007) and for many other
goals. Previous work on collaborative cognition tends to ei-
ther focus on case studies, such as using surveys of company
employees (Kozlowski & Ilgen, 2006), or abstract situations,
such as game-theoretic analyses of whether to cooperate or
defect in the Prisoner’s Dilemma (Rand & Nowak, 2013).
Although these methods have been drastically increased our
understanding of collaboration and competition (e.g., what
mechanisms promote cooperation in competitive scenarios;
Kleiman-Weiner et al. 2016; Rand & Nowak 2013), there is a
need to bridge this gap. In this paper, we propose a large-scale
natural data set and computational framework for analyzing
human collaboration.

Technical approaches for theoretical development, concep-
tualization, and modeling of collaborative cognition come in
many forms, each with specific strengths and weakness. For
example, agent-based simulation can represent individuals in-
teracting in dynamic network structures, but suffer from is-
sues, such as computational difficulties in scaling the number
of agents to realistic numbers, the number of free parame-
ters (whether in model choice or explicit parameters), what

the right level of abstraction should be, and how to evaluate
them with respect to empirical data. This methodology has
been extremely powerful, for example, it is unclear we would
have discovered without these models that cooperation in the
Prisoner’s Dilemma can emerge from natural selection when
the agents play according to how they are networked (Oht-
suki et al., 2006). But due to the simplifications, it is unclear
whether this approach can be applied to any phenomena of
interest (Louie & Carley, 2008).

In this paper, we focus on one aspect of collaborative cog-
nition: how teams act as if they are a single mind when solv-
ing a common task (Searle, 1995; Bacharach et al., 2006).
There are two major challenges facing collective cognition
research on this perspective: (1) a lack of naturalistic data
of real-world problems in the process of being solved and
(2) a lack of formal methods for evaluating such data, which
are richly-structured discrete data over continuous time (Ko-
zlowski et al., 2016). For example, recent work has ex-
plored how pairs of agents can learn to coordinate and gen-
eralize their coordination in ”Grid Worlds” – an environment
consisting of a grid, two circle avatars in the grid, and two
goals that the avatars try to get to without impeding each
other (Austerweil et al., 2016; Ho et al., 2016). To ad-
dress the first problem, we propose analyzing projects (called
repositories) on GitHub, an online social coding platform,
as a source of large-scale, naturalistic data of humans self-
organizing towards solving a common goal. To address the
second problem, we propose using the multivariate Hawkes
process (Hawkes, 1971), a Bayesian nonparametric process,
that, unlike Poisson processes, can capture the bursty nature
of work on GitHub. To do so, we derive a novel approxima-
tion technique that can estimate parameters for a set of richly
structured discrete data.

Introduction to GitHub

GitHub is an online social coding platform. Users can create
projects, called repositories, which are publicly accessible. It
is built on the decentralized software version control platform
git. Each git user of a repository has a full-fledged version
of the project and full control of their local version. They then
can share their changes to others working on the project who
can decide whether to merge them into their own repository.
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Given how decentralized projects managed by git are and
the importance of clear leadership for project success in some
tasks from empirical research in Industrial and Organizational
Psychology (Kozlowski & Ilgen, 2006; D. Wang et al., 2014),
one may be surprised that GitHub is one of the most popular
platforms for collaborative programming projects. This is be-
cause GitHub affords coordination with other team members
in a few ways. (1) Only some members are ”owners” of the
repository, who are allowed to accept proposed changes to the
project (any owner can make another member an owner – the
original creator is the first owner of the repository), (2) a set
of Events that keep track of actions taken by each member
to global repositories, and (3) conversations through differ-
ent media, such as e-mail lists or Reddit. Although the third
method of coordinating is important, we leave it for future re-
search. We will focus on repository ownership and events to
analyze collaborative cognition on GitHub.

There are six main types of Events that we fo-
cus on: CreateEvent, ForkEvent, DeleteEvent,
PullRequestEvent, PushEvent, IssueEvent, and
WatchEvent. Every event is stored with the time when
it occured. Some event types have subtypes that enable
team members to discuss the event. A CreateEvent
occurs when someone creates a new repository or (more
commonly) creates a new ”branch”, which is a copy of the
project attached to the main one. Branches are often used to
prototype new features. Sometimes the prototype works and
a team member proposes incorporating it back into the main
project, which is a PullRequestEvent (an owner then either
accepts or rejects the merger, sometimes after comments
from different members). Sometimes the prototype does
not work, in which case it gets deleted, which is catalogued
by a DeleteEvent. A PushEvent occurs when someone
updates a file in the main public repository. Team members
that discover problems or want to raise other issues can do so
with an IssueEvent. Finally, anyone interested in a project
can get regular updates to any changes by ”watching” the
repository. Whenever a new person watches the repository, a
WatchEvent occurs. Although these events do not catalogue
all work by a team, they provide a lot of information about
how team members collaborate and develop a project. We
will analyze them to test theories of collaboration, but first
we present our computational framework.

A Computational Framework for Teamwork
We formulate our model as a Bayesian nonparametric Point
Process. It is a multivariate Hawkes process, where the di-
mensions correspond to the different types of Events and
marks correspond to the properties of the Event. For exam-
ple, an IssueEvent will be one dimension in the multivariate
Hawkes process, and values of the IssueEvent (such as the
user, the repository, etc) are all part of the mark.

In this section, we first define Stochastic Marked Non-
Homogeneous Poisson Point Processes. Next, we define the
univariate Hawkes process with a simple mark. Then, we for-

mulate a multivariate Hawkes process. Throughout, we will
introduce notation that will become increasingly catered to
the special case of modeling GitHub.

Stochastic Marked Non-Homogeneous Poisson
Point Processes
A Marked Point Process is a sequence of marked random
points, where each point Hi = (ti,ei)i=1,... is composed of a
continuous-valued time value (ti ∈R+, positive real numbers)
and a mark (ei ∈ E , an arbitrary event space E). For the spe-
cific case of modeling GitHub, marks are multivariate points
taking values in the space, {1,2, . . . ,E} × {1,2, . . . ,U} ×
{1,2, . . . ,R}, where E is the number of Event Types, U is
the number of agents, and R is the number of repositories.1

The framework allows for observed mark types to influence
the rates of EventTypes, which will be important for captur-
ing dependencies betweeen EventTypes. For example, a Pu-
shEvent is more likely after a CreateEvent then a WatchEvent.

A Non-homogeneous Marked Poisson Point Process is a
special case of a Marked Point Process, where the number of
points in a period of time [a,b] is Poisson distributed with pa-
rameter

∫ b
a λ(t)dt. λ(t) is an intensity function or the instan-

taneous rate for points to arrive at time t. To capture relations
between EventTypes, agents, and repositories, λθ(t) will be
dependent on θ = (e,u,r), which corresponds to the rate of
users u producing events of type e in repository r. The in-
teractions between the stream of events for users in different
repositories can be distributions other than Possion. They are
defined as appropriate for the domain, which is how we will
include psychologically-based representations in future work.
For this article, we assume each repository, event types, and
users are marked processes with empirical distributions ex-
tracted from real repository data.

Multivariate Hawkes Process with Agent Types,
Repositories, and Communities
In the models discussed above, all events arrive indepen-
dently, either at a constant rate (for Poisson process) or gov-
erned by an intensity function (for the non-homogeneous
Poisson processes). In both cases, they are independent of
events that previously occurred. However, in social environ-
ments, the arrival of an event increases the likelihood of ob-
serving events in the future. To model this phenomena we use
a Hawkes Point Process with a self-exciting kernel in which
an event arrival explicitly depend on past events (Hawkes,
1971). A Point Process is a Hawkes Process if the conditional
intensity function λr(t|Hi = (ti,ei)i=1,...) is:

λ
∗
r (t) = λr(t|H1, . . . ,Hn) = λr,0(t)+ ∑

i:t>ti

φ(t− ti;β) (1)

1Technically, the number of users and repositories are random
variables themselves. Then the second and third dimension of the
mark would each be counting processes. U(t) could encode the
number of users at time t and the probability of a point having a
value on the second-dimension beyond U(t) is null. The same can
be done for repositories.
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where λr,0(t) is the repository intensity based on prior or
exogenous information. The events generated from λr,0(t)
are called immigrant events. Note that when φ = 0, we re-
cover a Poisson Process. φ(t;β) is a kernel function and typ-
ically decays with increasing t and β are its parameters. The
most common decay function is the scaled exponential tak-
ing the following form: φ(t;α,ω) = αωexp{−ωt}, where
β = (α,ω), α ≥ 0 and ω > 0 and α < ω. Another widely
used kernel for modeling social behavior is the power-law
function: φ(t;α,η,γ) = α(t + γ)−(η+1), where α ≥ 0 , γ > 0,
η > 0 and α < ηγη.

After observing an event, the intensity is large for some
time and then decays to zero. Thus, more recent events influ-
ence the current event’s intensity more than older events. This
results in a self-excitatory process, where bursts of points in
a small time period lead to a large increase in intensity in
that region. By defining φ(t) differently, it is also possible
to capture self-inhibiting processes (Yang et al., 2015), which
will be important in capturing an user waiting for other users
(e.g., respond to an IssueEvent). Both properties violate
the memoryless property, and thus, Hawkes processes cap-
ture a broader set of Point Processes then standard nonhomo-
geneous Possion Processes.

As our model is multi-user, multi-event and multi-
repository we will use the multivariate formulation of the
Hawkes process. The basic assumption behind the multivari-
ate Hawkes process is that the arrival of an event in one di-
mension can affect the arrival rates of events in other dimen-
sions according to some generative process. The specification
of the generative process can be as richly structured as appro-
priate for the domain. This enables analysis of structured dis-
crete data over continuous events. We model this dependence
in the following manner: each repository is a Hawkes process,
the Hawkes processes for repositories are interdependent, and
the event types and users as marks. In this paper, we use pair-
wise correlations to capture repository interdependence and
the joint probability of pairs of Event Types is estimated from
our data set.

Using an exponential kernel function, the conditional in-
tensity λ∗r (t) is:

λ
∗
r (t) = λr,0(t)+ ∑

i:t>ti

αri,rωri,r exp(ωri,r(t− ti)), (2)

where αri,r is an interactivity matrix defining how the ri di-
mension influences the r dimension given the values of fea-
tures across the different dimensions at time t. We approx-
imate this matrix via maximum likelihood estimation. The
likelihood of repository r with parameter set β = (α,ω) and
λ0 is (Ozaki, 1979):

lr = exp
{
−
∫ T

0
λr(t|

{
t j
}N

j=1)dt
} N

∏
i=1

λr(ti|
{

t j
}i−1

j=1) (3)

and the log-likelihood, with some simplification, is:

log lr({ti}|ηr) =−λr,0T +
N

∑
i=1

αr (exp(−ωr(T − ti))−1)

+
N

∑
i=1

log(λr,0 +αrωrΩr(i))

where Ωr(i) =∑t j<ti exp(−ωr(t j−ti)), ∀i≥ 2 and Ωr(1) = 0.
Unfortunately we cannot optimize the log-likelihood di-

rectly, because the curvature vanishes. So, we estimate the
parameters by extending a version of Maximum a Poste-
riori Expectation Maximization (Zipkin et al., 2016). Let
τ = (ti) be the sequence of actions performed on a repos-
itory and M = Mi j be a branching matrix of an immigrant
event, where Mi j = 1 if event i is an offspring of event j.
M is the causal cascade structure of sequence of actions per-
formed in a repository. Let p(ϒ;F) be a prior on ϒ = (η,λ0)
with hyperparameter F . We perform MAP estimation us-
ing the EM algorithm to maximize the event stream poste-
rior, p(ϒ|τ,M) ∝ p(τ,M|ϒ)p(ϒ|F). Let logP(τ,M|ϒ,F) =
log p(τ,M|ϒ) + log p(ϒ|F) be the event stream probabil-
ity. We decompose the first term in the following manner:
log p(τ,M|ϒ) = L1(λ0,τ)+L2(η,τ)+L3(η,τ) where

L1(λ0,τ) = −λ0T +b(logλ0 + logT )− logm!
L2(η,τ) = −nΦ(η)+∑

i
diΦ(η)− logmi!

L3(η,τ) = ∑
i j

Mi j [logφ(ti− t j;θ)− logΦ(θ)]

where m = ∑i Mii, mi = ∑ j Mi j, and Φ(η) =
∫

∞

0 φ(t;η)dt.

log p(τ,M;ϒ) =−λ0T +m logλ0 +b logT − log(m!)+

∑
i
[−Φ(η)+mi logΦ(η) log(mi!)]

+∑
i j

Mi j logφ(ti− t j;η)− logΦ(η)

In the E-step of the MAP EM algorithm, we compute the cur-
rent distribution over M. As M is a matrix of branching vari-
ables, each is Bernoulli and so M can be expressed as the
expected branching matrix P = [pi j] based on the data τ and
our current parameter estimate ϒk. The expected branching
matrix at each iteration is Pk+1 = E[M|τ,ϒk]. In the M-step,
we update our parameter estimate to maximize the expecta-
tion of the event stream posterior log-likelihood:

ϒ
k+1 = argmax

ϒ

E[L(τ,M;ϒ,F)|M = Pk+1]

= argmax
ϒ

(E[log p(τ,M;ϒ)|M = Pk+1]+ (E[log p(ϒ,F)])

We use a Gamma prior on α and ω, with parameters (s, t)
and (u,v), respectively. Extending the method in Zipkin et al.
(2016), the EM update steps can be derived using the immi-
grant/offspring interpretation. The ith event is either an immi-
grant or an offspring of one of the previous events. The prob-
ability that the ith event is an immigrant event is proportional
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to λk
0, while the probability that it is an offspring of event j for

j < i is proportional to the kernel function φ(ti− t j;αk,ωk).
The E-step update then is

Pk+1
i j =


1

Λk(i) for i = j
1

Λk(i)φ(ti− t j;αk,ωk) for j < i
0 otherwise

(4)

where the normalization factor is Λk(i) = λk
0 +

∑ j<i φ(tit j;αk,ωk). Finally the M-step is

µk+1 =
1
T ∑

i
Pk+1

ii αk+1 = 1
n+t [∑ j<i Pk+1

i j + s−1](5)

ω
k+1 =

∑ j<i Pk+1
i j + s−1

∑ j<i Pk+1
i j (ti− t j)+ v

(6)

Analyzing Teamwork on GitHub
We now present how GitHub can be used as a naturalistic,
large-scale data set and the Hawkes process to analyze the
dynamics of collaborative cognition. We used a data set of
events from public repositories on GitHub at the start of mid-
night on March 1st 2017 to 11:59pm on August 31st 2017.
We retrieved 456,195 events across 8,083 repositories.

One issue is that not all repositories are collaborative
projects. For example, many repositories are used for web
pages, software tutorials (e.g., learning how to fork reposito-
ries), and other personal usage. Further, many projects be-
come inactive and abandoned without being deleted. We fol-
low best practices for studying GitHub repositories from pre-
vious work in computer science (Kalliamvakou et al., 2016)
by filtering repositories according to the following criteria:
(1) there are at least 10 Events (not counting WatchEvent) in
the data set, and (2) at least three unique ”active” users. We
define an active user of a repository to be someone who had
at least one CreateEvent or PushEvent with it. Using these
criteria, our filtered data set was comprised of 390,277 events
across 1,235 repositories. This leaves us with 86% and 15%
of the total events and repositories, respectively.

Are Hawkes Processes Really Necessary?
Before testing collaborative cognition hypotheses, we pro-
vide some justification for using a more complex process,
a Hawkes process, rather than a standard Poisson process.
From a qualitative perspective, Figure 2 shows the stream
of events over time from a representative project and the best
fits from a Poisson process and a Hawkes process using an
exponential and power-law kernel. Due to its memoryless-
ness property, the Poisson process is simply unable to recre-
ate the bursty dynamics of the event stream. For our data,
the Hawkes process with an exponential kernel provides the
best qualitative and quantitative fit. Thus, for the remainder
of the paper, we only consider the Hawkes process with an
exponential kernel. A quantitative comparison of the model
fits is computationally challenging due to the large number of
repositories. Thus, we approximated by calculating the root
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Figure 1: The repository intensity (µ) of the Hawkes Process
as estimated from the GitHub data. It corresponds closely to
the productivity of the repository.

Event Streams

Empirical Data
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Figure 2: A representative GitHub event stream and samples
from a best-fit Poisson Process and Hawkes Processes with
an exponential and a power-law kernel.

mean squared error (RMSE) of 200 randomly sampled repos-
itories and then 200 randomly sampled events within each of
those repositories. The approximate RMSE for the Hawkes
and Poisson processes were 7.27 and 11.81. Further, Figure
1 the number of watch events is closely related to the esti-
mated repository intensity (ρ = 0.66, p < 0.001), validating
our novel estimation procedure.

.

Testing collaborative cognition
We now turn to testing three different phenomena in collab-
orative cognition and assess how they affect performance:
leadership organization style, diversity, and event dynam-
ics. There is no clear definition of what makes a reposi-
tory successful on GitHub (especially one that can be auto-
matically applied to all repositories). We use the number of
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ρ = 0.60
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Figure 3: Shared leadership is more successful.

WatchEvents for a repository in the six month period as a
measure of project success. When a person chooses to watch
a repository, it means they receive regular updates on any
changes to the repository. These are people who are inter-
ested in the progress of a project, but do not necessarily con-
tribute to it. In fact, they probably do not, as previous work
found that only about 5% of people who watch a repository
end up contributing to it (Sheoran et al., 2014).

Leadership organization style. Previous survey studies
and meta-analyses of them have found that shared leader-
ship (what we call ”horizontal”) is positively associated with
group performance (D. Wang et al., 2014). We test whether
this relationship holds in our large-scale, naturalistic collab-
oration data set. Team members in a repository are split into
two groups: owners and users. Users can create their own
version of a project and build on it on their own. However,
they can only propose changes to the global repository (or
the team’s project). We define leadership style as the per-
centage of active users who are not owners that work on the
project. Lower scores imply a vertical leadership style, where
only a few team members are leaders. Larger scores imply
a horizontal leadership style, where most team members are
leaders. As shown in Figure 3, most teams are horizontally
organized and there is a strong positive relation between hor-
izontal organization and performance (ρ = 0.60, p < 0.001).

Cognitive Diversity. How does the diversity of roles
within a team affect performance? Recent work found that
diversity of roles (cognitive diversity) is positively related to
team creativity when there are leaders that serve as role mod-
els for other team members, but negatively associated other-
wise (X.-H. Wang et al., 2016). Given that we found higher
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Figure 4: Teams with less cognitive diversity are more pro-
ductive. The cognitive role of a team member was quantified
as the distribution of event types that they produced.

performance in programming projects when the leadership
style was more distributed, we expect that cognitive diversity
may hurt productivity on GitHub, rather than enhance it.

To assess the role of cognitive diversity in team perfor-
mance on GitHub, we quantified the similarity between two
users as the inner product of the distributions of events pro-
duced by each user across all repositories. The diversity score
of a repository was defined to be the average pairwise simi-
larity of active repository users. Due to computational con-
straints, for repositories with many users, we approximated
the quantity by averaging 10,000 randomly selected pairs of
users. Figure 4 shows that teams with less diverse roles per-
formed better (ρ≈ 0.60, p < 0.001).

Bursts. Are particular leadership organizations related
with differences in how bursty the team’s progress is on the
project? Is burstiness related to performance? Thanks to the
Hawkes process formalism, we can address this question by
examining the relation between leadership style and the fit α

parameter associated with the repository. Interestingly, Fig-
ure 5 shows that more centralized leadership organization is
associated with burstier progress (ρ= 0.39, p< 0.001). How-
ever, burstiness has only a very weak effect on performance
(ρ =−0.13, p < 0.001). Note that this analysis was only pos-
sible to conduct due to the computational formalism for ana-
lyzing teamwork presented in this paper.

Discussion, Limitations, and Conclusions
In this article, we proposed, validated, and used a novel com-
putational framework for analyzing large-scale real-world
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Figure 5: More vertically organized leadership styles are
burstier.

collaboration data: The Multivariate Hawkes Process. We
demonstrated how it can be used to test constructs in col-
laborative cognition. For example, we found that horizontal
leadership structures were more successful. This may be spe-
cific to programming projects that naturally break into differ-
ent pieces that can be worked on individually and integrated
later. Future work will need to follow up on this and the other
findings

As a proof of concept, we made a number of assumptions
and simplifications. We assumed the only relation between
events and teams are pairwise correlations. Further, we ig-
nored an event’s content, focusing on statistical patterns. In
future work we plan to extend our work to address these lim-
itations and incorporate social and cognitive principles (e.g.,
scripts for how events usually occur on GitHub; Schank &
Abelson 1977), and examine whether the framework general-
izes to analyzing other social domains (e.g., Reddit). Recent
work suggests cognitive structures, such as shared memory,
are essential for understanding team performance (DeChurch
& Mesmer-Magnus, 2010). Additionally, we assumed that
our results generalize to all task types solved by teams. How-
ever, psychologists have organized task types into ontologies
(Wildman et al., 2012), and we plan to examine whether our
results generalize across tasks. Shared programming projects
may lend themselves more naturally to distributed, horizontal
leadership structure, whereas a clear leader or established or-
ganizational identity may be needed to solve other tasks, such
as putting out a fire (Mesmer-Magnus et al., 2018).

Our computational framework is built using probabilistic

modeling. This enables us to conduct principled analyses
that would otherwise be difficult or impossible in other frame-
works. Recent work has analyzed determining automated in-
terventions on social media using a similar probabilistic mod-
eling framework (Farajtabar et al., 2017). For example, using
point processes and Markov decision processes, Farajtabar
et al. (2017) created a method for mitigating the spread of
Fake News through online social networks. We are excited to
adapt these techniques into our framework, which would en-
able us to see how intervening on GitHub repositories (e.g.,
stopping support for TensorFlow) or counterfactual questions
(e.g., how would machine learning applications be affected if
TensorFlow were never made public).
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Abstract 
In a simple transcription task in which sections of Java program 
code are copied by freehand writing, it is demonstrated that 
chunk related temporal signals are sufficiently robust to permit 
the measurement of programming competence.  An experiment 
with 24 participants revealed that the number of views of the 
stimulus per trial and the duration of writing per stimulus view 
are both strongly correlated with independent measures of Java 
competence.   

Keywords: Chunking, program comprehension; competence 
measurement; transcription. 

Introduction 
Chunking (Miller, 1956; Cowan, 2001) underpins cognition 
in tasks that involve information of any complexity.  Many 
phenomena are explained by the notion.  For instance, at a 
long timescale, chunk acquisition explains many of the ele-
vated abilities of experts over novices (e.g., Chase & Simon, 
1973; Egan & Schwartz, 1979).  At medium timescales, 
learning relies on the acquisition of chunks (Gobet et al., 
2001).  The organization of chunks changes during learning 
with the accretion of new chunks and the restructuring of net-
works of chunks.  At short timescales, the structure of chunks 
in memory is one substantial factor in the control of routine 
sequential behaviour, such as the writing of memorised sen-
tences (Cheng & van Genuchten, 2018) or the drawing of ge-
ometric diagrams (Obaidellah & Cheng, 2015).   

All this suggests that it should be feasible to assess a 
learner’s understanding or competence in a particular 
knowledge domain by evaluating behavioral measures that 
are dependent on the underlying structure of that learner’s 
chunk network.  And that such assessments can be done using 
simple production tasks, such as the written transcription of 
text or formulas, or the copying of diagrams.  

Various studies have shown that certain measures of the 
distribution of the durations of inter-stroke pauses provide 
feasible measures of competence (Cheng, 2014, 2015; Cheng 
& Rojas-Anaya, 2007; van Genuchten et al., 2009; Zulkifli, 
2013).  An inter-stroke pause is the time that the pen is off 
the paper between written strokes, which provides measures 
at times scales in the range of 100 ms to 1 second .  These 
studies typically used simple transcription tasks, in which the 
participants copied simple stimuli in each trial, such as a 
mathematical equations or one English sentence.  Strong cor-
relations with independent measures of domain comprehen-
sion were found.  Further, the relative difficult of stimuli were 
clearly related to the magnitude of the pause measures.  These 

findings were obtained across diverse domains (algebraic for-
mulas and natural language), classes of users (children and 
adults) and interface media (pen on paper and on screen 
mouse driven symbol selection).   

Pause measures in typewriting, keystroke logging, have 
been used extensively to study writing behaviour and perfor-
mance (e.g., Spelman Miller & Sullivan, 2006), but this re-
quires the aggregation of relatively large amounts of data in 
order to find effects.  Also, our pilot experiments have shown 
that individual differences, such as variations in typing strat-
egy and skill, tend to obscure the temporal chunk signals.  So, 
inter-keypress pause measures do not appear to be reliable.   

What other behaviors might provide strong and robust tem-
poral chunk signals that can serve as a measure of compre-
hension?  Can the scope of chunk-based measures of compre-
hension be extended to other domains beyond mathematics 
and natural language?  The present experiment addresses 
these questions.   

As chunking is important in the doing and learning of pro-
gramming (e.g., Shneiderman, 1976; McKeithen, et al., 1981; 
Pennington, 1987), here we will focus on the assessment of 
learners’ comprehension of programming code, specifically 
Java.  Some studies have used response times to study pro-
gramming comprehension in whole tasks, such as sets of mul-
tiple choice questions, lasting minutes (e.g., Adelson, 1981, 
1984; Ye & Salvendy, 1996).  Here, the focus is on the time 
required for component activities within a task, rather than 
overall task time, and the examination of process durations 
that may directly depend upon the chunks possessed by par-
ticipants.    

Again we will use a transcription task, as in the experi-
ments cited above.  In those experiments, typically, the stim-
ulus was presented on a card or computer-screen placed near 
a writing tablet, so that the participants could switch their 
gaze between the stimulus and the tablet.  In this experiment 
we will record when the participant switches between the 
stimuli and tablet using a participant-driven “hide-show” in-
teraction method.  The stimulus appears on the computer 
screen when the participant holds down a special button.  To 
write the participant must release the button and the stimulus 
is masked.  This extends the repertoire of techniques that may 
be used to assess chunk structures with a method that targets 
the processing of several chunks, at a 10 s timescale, which 
contrasts to the previous methods that analyse elements 
within a single chunk.   

This method makes available various measures: (a) view-
numbers – the total number of views of the stimulus in a trial; 
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(b) writing-times – the time spent writing between two suc-
cessive views; (c) view-times – the duration of each look at 
the stimulus.   

Various predictions can be derived for these measures.  Ex-
perts perceive the stimuli using larger chunks than novices.  
Assume that working memory capacity for chunks does not 
vary substantially with expertise, which is plausible given 
that transcription is a relatively complex task (Cowan, 2001) 
rather than a simple decision making or capacity test (Miller, 
1956).  So, as the size of a stimulus is fixed, we predict: 

H1) View-numbers: the number of views of the stimulus in 
a trial will be less for more competent participants. 

As more competent participants’ chunks contain more con-
tent, we predict:  

H2) Writing-times: the duration of written responses after 
each stimulus view will be longer for more competent 
participants.   

This assumes that writing speed is independent of expertise 
in the target domain, which is plausible for adult participants.  
Now, as the time to perceive a chunk is approximately con-
stant (Chase & Simon, 1973), and if the number retained per 
view is independent of competence, then we predict: 

H3) View-times: the time spent on each separate view of 
the stimuli will not be directly related to competence.  

Frequently used components of Java are introduced earlier 
during instruction, so we predict:  

H4) The performance on basic stimuli will be superior to 
advanced stimuli, with fewer view-numbers and 
longer writing-times, but no impact on view-time. 

Note that H3 is framed negatively, so care is required to 
interpret data that might support it.  In particular, the magni-
tude of other effects must be strong so that the likelihood of 
the absence of an overall view-time effect is not merely due 
to lack of statistical power.  The underlying pattern of view-
time data can also be examined for supporting evidence.  

Clearly, the predictions depend on some strong assump-
tions, so unless the effects of chunking produce substantial 
temporal signals, no effective measures of competence will 
be obtained.    

Method 
The experiment was conducted at the University of Sussex 
with approval from the Science School’s ethics committee.   

Design 
The experiment is a within participant design with each per-
son transcribing basic and advanced sections of Java program 
code.  The order of these trials was counter-balanced.  The 
trials were preceded with two practice stimuli.   

(Originally, the experiment was a counter-balanced 2X2 
design with a fixed stimuli factor to provide pause distribu-
tion measures for comparison.  Unfortunately, an obscure 
software-hardware interaction on the experimental computer 
was found during analysis.  As the original counterbalancing 
does not appear to have affected the reported conditions, for 
clarity, the experiment is presented just as single factor.) 

Participants  
The participants were 24 adults from the School of Engineer-
ing and Informatics.  Recruitment spanned first year under-
graduate students through to members of faculty, to obtain 
good range of programming expertise.  Age ranged from 19 
to 59 years (mean=25, SD=8.51), and 15 were male and 9 fe-
males.  They received £8 for participating. 
 

 
Figure 1: Stimulus sample (basic). 

Materials  
The two practice stimuli consisted of series of simple state-
ments, such as ‘Computer Science’, ‘Programming Course’, 
‘JAVA Programming Language’. Each of the four Java pro-
gram code stimuli consisted of nine lines of code divided into 
three separate blocks.  Each stimulus had an equal number of 
lines and the total number of characters differed by less than 
5%.  Figure 1 shows an example of one stimulus. Two basic 
and two advanced versions of the stimuli were created by 
consulting the course content of the student participants.  The 
expressions in the basic stimuli were a core part of their 
JAVA instruction in their first year.  The expressions in the 
advanced stimuli are more specialist items that would only 
have been seen by the better performing students. 

The experiment was conducted using a standard graphics 
tablet (Wacom – Intuous3) connected to a PC running a log-
ging program specially written in our lab.  Participants wrote 
with an inking pen on a response sheet.  The response sheet 
was printed with a grid of 17 lines; each consisting of 42 
spaces for the writing of separate characters.  The sheet was 
designed for non-cursive writing in order to provide rich in-
ter-stroke pause data (see parenthetical note in the Design 
section).  Participants adjust to this style of writing quickly 
and it does not appear to adversely affected other aspects of 
their performance (Cheng, 2014; Zulkifli, 2013).    

Following the trials, the participants completed a question-
naire with four parts (on an internet survey platform).  Part 1 
included biographic questions relating to educational level.  
Part 2 assessed programming experience in general with five 
graduated rating items, such as ‘I can develop programs using 
more than one object-oriented programming language”.  Part 
3 assessed Java programming expertise level using eight 
graduated items, such as ‘I am familiar with both objects and 
classes in Java’.  Part 4 measured the participants’ familiarity 
with the four specific Java stimuli that they were presented 
with during the trial.  Participants were asked to judge what 
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their degree of familiarity would have been for each item 
prior to the experiment, on a 5 point Likert Scale.   

Procedure  
Participants were asked to hold the pen in their preferred hand 
and trained to: start writing at the beginning of each line, even 
for indented code; start writing as soon as the stimulus is re-
vealed; copy the code as quickly and as accurately as they 
can; continue writing without correcting if they made a mis-
take; draw an upside down triangle symbol (inverted capital 
delta) in place of spaces; to start each trial with a hash (#); to 
hold down the special key to reveal with stimulus, with their 
preferred hand, which ensures that they write only when the 
stimulus key is released.  The participants easily complied 
with these requirements and quickly became fluent in the 
practice trials.  (Several of these conditions were needed for 
the pause measurements.)  Similar trial requirements were 
successfully used in our previous experiments, so it is clear 
that they do not, on their own, undermine the reliability of the 
results.    

For each trial, the response sheet was taped to the tablet. 
The participants finished the experiment within an hour.  

 
Table 1: Correlation between competence measures. (N=24, 

Pearson correlation, 1 tail, critical value is 0.472 at p<.01) 
 

 Education 
level 

General 
program-

ming 
Java Familiarity 

Education level – 0.366 0.183 0.181 
General pro-
gramming 

 – 0.759 0.734 

Java   – 0.849 
Familiarity    – 

Results 
Independent measure of competence  
Questionnaire responses were coded to obtain independent 
competence measures against which to compare the chunk-
based measures.  Education level was scored on a scale from 
one to six (1=1st year undergraduate student, 6=faculty mem-
ber).  General programming and Java experience were scored 
by giving one point for each positive answer related to the 
measure, so had scales from zero to five and zero to eight, 
respectively.  Ratings of the familiarity were scored from 0 
(low) to 4 (high), so with the four stimuli, the overall scale 
runs from zero to twelve.  Table 1 presented correlations be-
tween all combination of the measures, and is unsurprising.  
Education level is only weakly (and not significantly) corre-
lated to the other measures.  General programming experi-
ence has a strong positive relation to both Java experience 
and familiarity.  The correlation between Java experience and 
familiarity are particularly strong.  All this suggests that both 
Java experience or familiarity are specific to Java, rather than 
wider programming competence, and that either is suitable to 
serve as an independent measure.  As the actual pattern of 

results is equivalent with either measure, just the analyses us-
ing familiarity are reported here.    

Behavioural measures 
The dependent behaviour measures were computed from the 
logs of each participant.  The median writing-times and view-
times were calculated for each trial.  View-numbers is a count 
of interface switches to the stimuli (button presses).  (We also 
computed a view related measure that discounted views of a 
stimulus without any accompanying writing before the next 
view, as some participants occasionally made such repeated 
views.  The pattern of results using this measure is essentially 
the same as that with view-numbers.) 

Figures 2, 3 and 4 show the total view-numbers, median 
writing-times and median view-times for participants rank or-
dered by their familiarity scores.  Figures 5, 6 and 7 aggregate 
the data across low and high competent participants by show-
ing the mean of the total view-numbers, the mean of the me-
dian writing-times and the mean of the median view-times.  
A binary split of participants’ familiarity scores conveniently 
creates two equal size groups, with low scores exclusively 
below 6 or and high score exclusively above 8.   

The first thing to note is that the total view-numbers, Figure 
5, for the practice items is considerably lower than for the 
Java stimuli, but that the value is essentially equal at low and 
high competency (6.6 and 5.7, respectively).  Similarly, the 
mean of the median writing-times, Figure 6, for the practice 
items is substantially longer than the Java stimuli, and alt-
hough the value is greater for higher than lower competence 
(means of 14.2 and 12.1 s), it is not significantly so (by a t 
test; t=1.09, df=22, 1 tail, p=.24).  These results reassuringly 
suggest that an effect of transcribing the Java stimuli exists 
beyond the act of merely transcribing any stimuli. 

Consistent with prediction H1, Figure 5 shows that the high 
competence participants required fewer views than those with 
low competence, which is significant at both levels of stimuli 
(basic: 16.3 vs. 25.2, t=4.40, p=.0002; advanced, 20.0 vs. 
28.5; t=4.05, p=.0005; both df=22, 1 tail).   

Consistent with prediction H4, the basic stimuli demand 
fewer views than the advance stimuli across all participants 
(20.8. vs. 24.3; t=4.05, p=.0003; df=22, 1 tail).  Further, for 
high competence participants the view-numbers is still sig-
nificant despite the small group size (19.2 vs. 22.2; t=2.88, 
p=.016; df=10, 1 tail).  

Consistent with prediction H2, Figure 3 and 6 show that the 
high competence participants had longer writing-times than 
those with low competence, which is significant at both levels 
of stimuli (basic: 10.7 vs. 6.5 s, t=3.86, p=.0008; advanced, 
8.0 vs. 5.7; t=3.14, p=.005; both df=22, 1 tail).   

Consistent with prediction H4, the advanced stimuli had 
shorter writing-times than the basic stimuli across all partici-
pants (6.9. vs. 8.6 s; t=3.29, p=.002; df=22, 1 tail).  Further, 
for high competence participants the writing-time is still sig-
nificant despite the small group size (8.0 vs. 10.7 s; t=3.7, 
p=.003; df=10, 1 tail), but not for the low competence partic-
ipants (5.7 vs. 6.5 s, t=1.8, p=.1, df=10, 1 tail).  
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Turning to H3, which concerns the absence of an overall 
effect of view-times, Figure 4 does not show a clear overall 
upward or downward trend in view-times, for both levels of 
stimuli difficulty.  If anything, the overall pattern is an in-
verted ‘u’, in contrast to the trends in Figure 2 and 3.  Figure 
7 reveals that high competence participants have longer view-
times than those with low competence, but this is not signifi-
cant for the advanced stimuli (2.1 vs. 1.7 s; t=1.50, p=.15, 
df=22, 1 tail), but is marginally significant for the basic stim-
uli (2.4 vs. 1.5 s; t=2.62, p=.02, df=22, 1 tail).  Further, com-
paring the view-times on the practice stimuli with the Java 
stimuli view-times we see they are similar, whereas for view-

numbers and for writing-times the practice values are quite 
different to the Java stimuli values, as noted above.    

Consistent with prediction H4, Figure 4 shows that nearly 
equal numbers of participants had longer view-times for basic 
stimuli or for advanced stimuli.  In terms of the means across 
all participants, Figure 7, no significant differences occur for 
the basic stimuli (1.5 vs. 1.7, t=1.03, p=.3, df=22, 1 tail) nor 
the advanced stimuli (2.4 vs. 2.3; t=1.21, p=.25; df=22, 1 
tail). 

In summary, with respect to total view-numbers, means 
writing-times and view-times, all the predictions are sup-
ported. 

   
 

Figure 2.  Total view-numbers for partici-
pants across basic and advance stimuli. 

 

 

Figure 3.  Median writing-times for partic-
ipants across basic and advance stimuli. 

 

 

Figure 4.  Median view-times for partici-
pants across basic and advance stimuli. 

 

   
Figure 5: Mean view-numbers across stim-

uli type and level of competence.  
 

Figure 6.  Mean of median writing-times 
across stimuli type and level of compe-

tence. 

Figure 7. Mean of median view-times 
across stimuli type and level of compe-

tence. 
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Figure 8: Correlation of view-numbers 
with familiarity across stimuli and com-

petence. 

 

Figure 9: Correlation of writing-times with 
familiarity across stimuli and competence. 

 

Figure 10: Correlation of view-times with 
familiarity across stimuli and compe-

tence. 
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Correlation values for various measures 
The correlations between view-numbers, writing-times and 
view-times versus familiarity were computed in order to fur-
ther examine our four predictions.  Figures 8, 9 and 10 show 
the Pearson correlations of familiarity score with, respec-
tively, view-numbers, writing-times and view-times.  The 
scale ranges are not the same.  For correlations over all par-
ticipants (solid line in Figs. 8-10) the critical value is 0.344 
for significant correlations at p<.05, and 0.472 at p<.01 (1 
tail, df=22).  For correlations with just high competence or 
low competence participants (dashed or dotted lines) the crit-
ical value is 0.497 at p<.05 and 0.658 at p<.01 (1 tail, df=10).   

As expected, none of the correlations for the practice items 
are significant.  With view-numbers, Figure 8, across all par-
ticipants the negative correlations are strong and significant: 
numbers of views decrease with competence (H1).  The result 
is similar when just the low competence group is considered, 
but correlation for the high competence participants is posi-
tive but not significant.  For writing-times the pattern of re-
sults is similar but the direction of the correlations are re-
versed, Figure 9: writing-time increases with competence 
(H2).  For the whole group and the low competence sub-
group the correlation for advanced stimuli is less than for the 
basic stimuli.   

The view-times correlation, Figure 10, for the whole group 
and the high competent sub-group are not significant, but the 
correlations of the low competence participants are strong for 
both Java stimuli.   

In summary, correlations for the view-numbers, writing-
times and view-times are consistent with our four predictions, 
overall, but with some divergence in detail.  In particular, 
view-numbers and writing-times did not differentiate high 
competence participants.  Also, view-times did unexpectedly 
differentiate low competence participants, who needed more 
view time with increasing competence.    

View-numbers vs. writing-times and view-times 
The relation between our three main behavioural measures 
are examined because a systematic relation between them 
could provide further support for the hypotheses and more 
precise chunk-based explanations of the results.  View num-
ber and writing-time are both predicted to be dependent upon 
chunking processes, so there should be some consistent and 
systematic relation between them.  View-time is not expected 
to be chunk dependent, so no regular relation between it and 
view-numbers (or writing-duration) is anticipated.  Scatter 
plots of these variables were drawn for all the participants in 
all the conditions of the experiment.  Figure 11 plots writing-
times versus view-numbers for the basic stimuli and Figure 
12 is similar but for view-times.  The pattern of data in Figure 

  
Figure 11: Relation of writing-times to view-numbers 

(basic stimulus) 
Figure 12: Relation of view-times to view-numbers 

(basic stimulus) 
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Table 2.  Parameter of best-fit power relation for writing-times and view-times to view-numbers 

 

 Writing-times vs. view-numbers  View-times vs. view-numbers 

Practice Basic Advanced  Practice Basic Advanced 

Index, i -0.95 -1.09 -0.97  -1.05 -1.16 -1.24 

Constant, C 57.9 203.9 136.5  8.9 56 83.7 

R-squared 0.459 0.818 0.747  0.603 0.615 0.623 
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11 has a particularly distinctive form, which is also apparent 
in the graph for the advanced stimuli.  Thus, a power law 
curve for an inverse proportional relation was fitted to the 
data: the parameters of the best fit equations are given in Ta-
ble 2, along with the R2 values.  The quality of fit for other 
equation forms (e.g., linear) were worse than a power law.   

The power law for writing-time versus view-numbers is 
noteworthy, across both stimuli: the index is close to minus 
one and the R2 values are large.  This implies that the data is 
governed by a direct inverse proportional law.  The relation 
between the view-times and view-numbers is less clear, with 
an absolute value of the index further from unity and lower 
R2 values.   

In other experiments, as yet unpublished, we have found 
similar patterns in view-numbers and writing-times data that 
closely fit an inverse proportional power law, so we are con-
fident that the pattern is not accidental.   

In summary, there appears to be a simple relation between 
the view-numbers and writing-times: a participant who takes 
twice the view-numbers of another will use half the time each 
time they write. But this simple relation does not hold for 
view-times. 

Discussion 
Previous studies have shown that measures of the distribution 
of inter-stroke pauses, captured in a simple transcription task, 
appear to reflect the different chunk structures of learners and 
hence may be used to assess the competence of the learners 
(Cheng, 2014; 2015, van Genuchten & Cheng, 2010; Zulkifli, 
2013).  This experiment extends those findings, in three 
ways.   

First, allowing the user to reveal the stimulus at will, and 
hiding it during writing, allows two alternative temporal 
chunk measures to be captured: view-numbers — the total 
number of views of the stimulus in a trial; writing–times – the 
median duration of writing time between views.  Predictions 
H1, H2, and H4 associated with these measures are well sup-
ported by converging evidence.  The measures strongly cor-
related with our independent measures of competence.  Fur-
ther, no support for view-times as a suitable measure of com-
petence was obtained, as predicted in H3, despite the relative 
strength of the effects for the other two measures.    

Second, the experiment has shown that measures based on 
temporal chunk signals are applicable beyond mathematics 
(algebraic formula) and natural language, in a domain that 
happens to share some characteristics of both those domains.  

Third, in contrast to the single line stimuli used in the pre-
vious experiments mentioned above, the present stimuli were 
larger (nine lines).  The greater amount of data per trial means 
that single trials can yield strong usable correlations with 
competence, without the theoretical problems of deciding 
how to aggregate data from multiple trials or the practical 
problems associated with switching between multiple trials.   

The overall correlations of view-numbers and writing-
times with competence are strong, and this also holds for the 
low competence group.  However, we must consider two 
qualifications.  First, it is clear from Figures 2 and 3, that 

there is considerable variability between participants, such 
that some of the best low competence participant have better 
scores than many of the high competence participants, and 
vice versa.  Clearly the development of a real educational test 
of programming competence must address the accuracy and 
sensitivity of the measures, perhaps by combining measures.  
Second, the curves in Figure 2 and 3 suggest that the view-
numbers and writing-times may have plateaued for the high 
competent participants; in other words the difficulty of the 
advance stimuli may be insufficient to differentiate those 
within that group.  This seems plausible, in hindsight, as the 
range of difficulty captured in the stimuli design was based 
on the undergraduate Java programming curriculum, but a 
proportion of the participants were drawn from more senior 
groups.  This plateauing was also seen in previous studies 
(Cheng, 2014, 2015). One implication of this is the im-
portance of designing stimuli with a sufficient range for the 
target test group. 

The clear inverse proportional relation between writing-
times versus view-numbers (Figure 11, Table 2) supports the 
chunk based explanations underpinning the predictions H1 
and H2, and the poor fit of such a power law for view-times 
versus view-numbers is consistent with prediction H3.  In 
particular, this implies that assumptions made for the predic-
tions concerning the variability in participants working 
memory capacity and speed of writing are relatively small ef-
fects in comparison to chunk size variability with compe-
tence.  In other words, the primary process in the transcription 
tasks appears to be the selection of chunks from the stimulus, 
with more competent participants retaining more characters – 
because they possess larger chunks – and this determines that 
time required for writing is in a direct proportion to the num-
ber of characters.  Nevertheless, Figure 2 and 3 show much 
individual variability, so a useful line for future work is to 
investigate the possibility of separately measuring working 
memory capacity and writing speeds of participants in order 
to consider whether there is a need to devised methods to nor-
malize for them.   

Two observed effects might be spurious results, but they 
are sufficiently striking to deserve fuller investigation in fur-
ther work.  The first is the positive correlations of view-times 
with competence, specifically for low competence partici-
pants, is counter to prediction H3, Figure 10.  The second is 
the increase in view-times with decreasing view-numbers, 
Figure 12: theoretically, there ought to be little relation be-
tween the two.  One approach to study these effects is to 
probe the contents of participants’ individual sets of chunks, 
which we are currently doing by extracting the locations of 
onset of views from the written logs in order to identify the 
precise content of participants’ chunks.  Our current hypoth-
esis is that view-time variations may be due to differences in 
stimuli encoding strategies that fluctuate with content type.   

This paper contributes a method for evaluating competence 
in a programming using a transcription task and measures 
with timescale of 10 s.  This extends the range of techniques 
beyond the pause distribution measures of previous work 
(e.g., Cheng, 2014, 2015; Cheng & Rojas-Anaya, 2007).  
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Uses of the technique in education are readily imagined that 
exploit the relative simplicity, short trial times and the poten-
tial for fully automated scoring.  Simply, such transcription 
tasks might be administered as a component of summative 
end-of-course evaluations or as standalone screening tests at 
the outset of a course.  More interestingly with appropriately 
designed test items, the approach might be used as a form of 
formative assessment to provide tutors with information 
about individuals’ growing understanding of targeted pro-
gramming concepts.  We are planning work on the develop-
ment of the approach as a tool for use in computer-based tu-
toring systems.   
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Abstract
Proficient readers typically fixate near the center of a word,
with a slight bias towards word onset. We explore a novel
account of this phenomenon based on combining information-
theory with perceptual constraints in a connectionist model of
visual word recognition. This account posits that the amount
of information-content available for word identification varies
across fixation locations and across languages. These differ-
ences contribute to the overall fixation location bias in differ-
ent languages, make the novel prediction that certain words
are more readily identified when fixating at an atypical fixa-
tion location, and predict specific cross-linguistic differences.
We tested these predictions across several simulations in En-
glish and Hebrew, and in a behavioral experiment. The results
confirmed that the bias to fixate closer to word onset aligns
with reducing uncertainty in the visual signal, that some words
are more readily identified at atypical fixation locations, and
that these effects vary across languages.
Keywords: visual word recognition; computational mod-
elling; connectionism; information theory; fixation location

Introduction
The fundamental aim of visual word recognition is to iden-
tify a word based on its constituent letters. Considerable
computational and behavioral evidence from studying iso-
lated visual word recognition, which typically involves see-
ing a single word presented at the center of visual fixation,
suggests that a graded constraint satisfaction process selects
a candidate that fits with the lower-level (visual/orthographic)
and higher level representations (e.g., lexical information,
McClelland & Rumelhart, 1981). In contrast to this method-
ology, in more naturalistic studies of reading via eye-tracking,
considerable evidence suggests that readers tend to fixate
more frequently near the middle of words, typically with a
bias towards beginning of a word, with some variation across
languages (see Figure 1, for example distributions from ini-
tial fixations during natural reading in English and Hebrew
Siegelman et al., 2019).

A key question from considering this body of work, then,
is how and why the visual system of a proficient reader tends
to fixate at particular positions in a word, and on a related
front, why these fixation distributions vary as a function of
the language. Classic accounts focused on the low-level op-
erations of the occulomotor system do not appear to offer

a ready explanation of these effects, particularly in terms
of cross-linguistic differences (see McConkie, Kerr, Reddix,
Zola, & Jacobs, 1989 for a review of occulomotor theories;
also Reichle, Rayner, & Pollatsek, 1999; Engbert, Nuthmann,
Richter, & Kliegl, 2005). Accounts that hold more promise
in this regard consider higher-level factors (e.g., morphology;
Deutsch & Rayner, 1999).

Here, we explore an alternative more general account based
on information theory in the visual signal and how it maps
onto lexical representations. This work shares some concep-
tual similarity with prior work by Brysbaert and Nazir (2005),
although the latter did not quantify information in the formal
terms that we do, which may, as outlined in the discussion,
explain some discrepancies between their results and ours. In
our first study we examined the differences in information
distributions as a function of fixation location in Hebrew and
English, and found that these distributions shared key char-
acteristics of the human fixation location distributions. In
our second study, we instantiated a feed-forward connection-
ist model with a psychophysically-derived constraint on let-
ter identification as a function of distance (eccentricity) from
the target fixation. This model allowed us to examine how
different amounts of information content can be extracted at
different fixation locations in different languages during word
recognition. If it succeeded in doing so, it could explain why
there is a preferred fixation location in different languages
due simply to how low-level constraints interact when identi-
fying a word, in the absence of higher-level constraints (e.g.,
morphology, semantics). This model also served as a test-bed
for probing whether words exist in different languages that,
due strictly to the information content available at different
fixation locations, are, perhaps counter-intuitively, more effi-
ciently recognized by looking at fixation locations other than
the overall preferred location in the language. These pre-
dictions were corroborated in a pilot behavioral experiment.
Taken together, this research highlights how maximizing in-
formation in the visual signal could be a major driver of many
behaviors observed within and between languages. It also of-
fers specific predictions for broadening this account in future
work, for instance, in maximizing information across words
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Figure 1: Distribution of fixation locations for 7-letter words
in English and Hebrew. 1=start of word (left in English, right
in Hebrew)

rather than within the processing of single words.1

Study 1: Information-content in the early
visual-orthographic representation.

In our first study, we explored how much information-
content was available for word recognition in the early visual-
orthographic signal when fixating at different locations in the
word. This was achieved computationally by passing the vi-
sual representation of a word at a particular fixation loca-
tion through a visual filter that reflects how more visual in-
formation is extracted from the fixated location in a word
and less information is extracted as a function of eccentricity
(distance) from this location. We applied this procedure to
samples of words from English and Hebrew, which belong to
different language families, to gain insight into the language-
specific versus language-general nature of the results.

Data We analyzed the 50,000 highest frequency words
from the OpenSubtitles translated movie subtitle database
(Tiedemann, 2012)2. We removed all words that contained
foreign alphabet characters. For simplicity, we selected for
our study only 7-letter words, because we predicted that
strong effects of fixation location and information content
would be more readily detected in longer words that could
nevertheless be perceived with a single fixation. The resulting
lists contains 5565 words in Hebrew, and 8145 in English.3

Architecture To simulate the constraints on visual percep-
tion imposed by the early visual perception system, we passed
the representation of each word in each language through per-
ceptual filters adapted from McConkie et al. (1989). In the
original formulation of this model of perceptual filtering, the
fixated letter was perceived with 100% accuracy, and the like-
lihood of successful perception fell off linearly as a function
of eccentricity (see Figure 2, for examples from fixating letter
2 or letter 6 in a 7-letter word). The exact slope of this func-
tion, as exemplified by the drop = 0.1 and drop = 0.25 lines

1The code for our models and analyses is released at
https://github.com/rgalhama/nnfixrec cogsci2019.

2From https://github.com/hermitdave.
3We ruled out the possibility that vocabulary size drove any of

our simulated behavioral effects by down-sampling the English cor-
pus to be the same size as the Hebrew corpus in our simulations.

in the figure, leads to an initial linear change in the amount of
extracted information, which eventually reaches floor.

In the original paper, the authors noted that the optimal
value of the drop parameter remained to be determined.
Thus, for this initial work, we opted to use a drop param-
eter of 0.25. This value was selected so as to capture most
but not all the letters in a word when perceived from the start
or end of the word, which we predicted would lead to rel-
atively high, but below ceiling, recognition rates (confirmed
and described in a later section) and substantial differences in
information as a function of fixation location.

Figure 2: Probability of recognizing the constituent letters in
a word when fixating letter position 2 (left) and letter position
6 (right) in a word according to the McConkie model.

Procedure We tested for how the fixation location could
impact the information content extracted from the perceived
word. For simplicity, and to test for strong modulations in
word recognition due to the perceived information, here we
focused on the information content extracted from a fixation
near the beginning of a word (at the second letter position)
and near the end of a word (at the sixth letter position). Af-
ter passing each word through the McConkie filter, for each
word, we calculated the remaining amount of uncertainty on
the identity of the word after fixating at each of these fixation
locations (a proxy of the information content in each loca-
tion4). The measure of uncertainty we used was entropy, as
proposed in Shannon (1948). Concretely, given the letters re-
trieved after fixating on a word, we computed the remaining
entropy as H = −∑

m
w=1 pwlog2(pw), where the words w be-

longed to the set of words m that have a perfect match with
the identified letters, both in letter identity and letter posi-
tion (e.g. the word ‘therapy’ would be in the set of matching
words for the recognized letters ‘ther - - -’). The probability
of a matching word pw was estimated as its relative frequency

4Note that, throughout our paper, we use the term “information
content” of a fixation location to quantify the contribution of the
observed letters in minimizing the uncertainty on the identity of the
word. This should not be confused with the surprisal conveyed by
the letters in a fixation location. The former concerns a probabilistic
models for words (based on word frequency and component letters),
while the latter would be based on a probabilistic model of letter
strings.
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in the corpora.5 To test whether information was distributed
evenly across the beginning and end of all words in each lan-
guage, we subtracted the entropy for each word at fixation
location 2 from that at fixation location 6. If entropy were
evenly distributed, these values should cluster around 0.

Additionally, from the distribution of entropy difference
scores, we identified 100 words with the most extreme pos-
itive (50 words) and negative (50 words) values.6 We refer
to the words with more information content when fixating at
position 2 (i.e. negative entropy differences) as the maxIC(2)
words, and the words with more information content at po-
sition 6 (i.e,. positive entropy differences) as the maxIC(6)
words. These words served as test items in Study 2.

Results
The difference in entropy values when a word was perceived
at fixation location 2 versus fixation location 6 are plotted in
Figure 3. It clearly shows that entropy information is not uni-
formly distributed across words, as in both English and He-
brew there are more negative scores. It also shows a relatively
wide range of entropy values, with both languages containing
words with entropy difference scores ranging from approxi-
mately -5 to 3. Further, the Hebrew scores tend to be more
negative than the English scores.

Figure 3: Distribution of entropy differences for 7-letter
words.

To give a more concrete intuition into the magnitude of
the difference scores and their relationship to successful vi-
sual word recognition, consider the case of the word “zoom-
ing”, which has an entropy difference score of -5.1. If the fix-
ated letter and the two letters on either side of this letter are
preceived correctly, there is a 100% likelihood of successful
recognition of this word when fixated at position 2 (i.e. when
perceiving ‘zoo-’). However, there is only a 3% success rate
when fixated at position 6 (i.e. when perceiving ‘-ing’).

Next, we selected 100 words per language with “extreme”
entropy difference scores for use in Study 2. These items had

5An alternative approach is to compute these values over word
types rather than word tokens. Control simulations showed that both
of these approaches were highly correlated in both languages, r >
.72, and that the correlations between entropy differences over types
or tokens and word frequency were extremely small, |r|< .04

6We filtered some items to avoid the over-representation of letter
combinations like “-ing” and to eliminate extremely low and high
frequency items.

mean difference scores, for maxIC(2), of -2.68 in English and
-3.32 in Hebrew, and for maxIC(6), it was 2.19 in English and
2.58 in Hebrew.

In additional simulations, not reported in detail due to
space constraints, we also confirmed that varying the exact
shape of the McConkie function and the value of the drop pa-
rameter did not qualitatively alter these trends unless only the
nearest items to the fixation location, or nearly all the words
in the word, were perceived with 100% accuracy.

Discussion
The first simulation substantiated our predictions that differ-
ent amounts of information content can be extracted by fix-
ating at different locations in a word. Overall, there appears
to be more information content present at the start of words
in both languages, providing initial evidence for a language-
general trend. Thus, the fixation distributions in different lan-
guages may at least be partially attributed to a system that at-
tempts to minimize entropy in the visual signal in service of
word recognition. This claim is further bolstered by the fact
that the Hebrew distribution was even more shifted to contain
more information when fixating at the beginning of a word,
consistent with the stronger preference to fixate earlier in He-
brew words in behavioral data (see Figure 1). The broad dis-
tribution of values in each language also enabled us to select
items with “extreme” entropy difference scores across fixa-
tion locations. This enabled us to test whether some words
are more readily identified by fixating at a location other than
the overall preferred fixation of the language (which is off-
center, nearer to the beginning of the word).

Having thus established that the perceptual input to the
word recognition system contains major differences in en-
tropy based on fixation location, we next explored how these
inputs could shape processing in a connectionist model of
word recognition.

Study 2: A perceptually-constrained
connectionist model of visual word recognition

The previous study focused on the distribution of informa-
tion contained in the languages. In this study, we employed a
connectionist model and a coordinated pilot behavioral exper-
iment to investigate whether a learning model of word recog-
nition is sensitive to these information patterns. This allowed
us to develop new predictions about how performance in dif-
ferent fixation locations evolves in relation to reading profi-
ciency: although it is beyond our goals to align model train-
ing (in epochs) with human reading experience —which is a
non-trivial question–, our learning model provided us with in-
sights into novel emergent processing dynamics that are not
visible from an information-theoretic approach. In partic-
ular, we focused on whether the model and the human par-
ticipants displayed an interaction between fixation location
and the location of maximum information content in our “ex-
treme” items selected in Study 1. Because some of the imple-
mentational decisions for the model were made to increase
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the similarity between the simulated task and the pilot behav-
ioral task, we provide a brief overview of the behavioral task
and findings before turning to the details of the simulation
(for the complete report of this experiment, see Siegelman et
al., 2019).

Overview of the behavioral task. A total of 23 native
speakers of Hebrew (14 females, age range: 22-30, mean:
24.9) were presented with the a set of words including the 100
words with extreme information differences described previ-
ously, and an additional selection of 100 words (also of length
7)7 with intermediate entropy differences, which we treat as
fillers for the purpose of this paper.8 In the task, participants
first focused on a fixation cross for 1000 ms, and then were
presented with a word for 100 ms. This brief presentation
prevented multiple fixations and was expected to lower per-
formance below ceiling. Critically, the word was presented in
different locations, including cases wherein the letter at posi-
tion 2 or position 6 appeared at the same location as the fixa-
tion cross (i.e., the word was left- or right-shifted from screen
center where participants were fixating). Participants were
then instructed to say or guess the word that had been pre-
sented. Responses were coded either as correct or incorrect.
All words were presented in both fixation locations simulated
in the model (i.e., fixation at position 2 vs. position 6). Words
were presented in a random order.

The results are presented in Figure 4. The pattern of re-
sults indicated that accuracy was highest when a word was
fixated at the location which contained the most informa-
tion content, and lower at the location which contained less
information content. Critically, this was true not only for
words that had more information content early in the word,
but also for words that contained more information content
near the end of the word: a logistic mixed-effect model (with
condition, fixation location, and their interaction as fixed ef-
fects, trial number and log-transformed frequency as control
variables, by-subject and by-item random intercepts, and by-
subject random slope for condition) revealed a significant in-
teraction (B = 0.59, SE = 0.05, p < 0.001 and a significant
main effect of fixation location (B = -0.23, SE = 0.05, p <
0.001). Thus, these findings do not simply reflect a preference
to process words in the more frequently fixated location in a
given language, which our prior study showed contains, on
average, more information content. The presence of numer-
ically larger differences across fixation locations for words

7All the words we use are multisyllabic. This could create con-
founds in the modelling work if we mapped the input with phono-
logical representations, but we intentionally focused only on ortho-
graphic factors, since our goal is to find out what structure exists in
the orthographic signal alone in the absence of phonological consid-
erations. Future work may investigate how these visual representa-
tions interact with phonological representations, similar to a classic
“triangle” model (Seidenberg & McClelland, 1989).

8Although we did not test these items in the model, the behav-
ioral results indicated that items with intermediate entropy differ-
ence scores were relatively unaffected by whether they were fixated
near onset or offset, as predicted by the account.

Figure 4: Mean correct responses of participants in the four
conditions. Error bars = SEM.

with more information content near the start of a word rel-
ative to near the end of a word may suggest a more subtle
interaction between information content and frequency of ex-
posure to different locations, however. Additionally, averag-
ing across the four experimental conditions, overall accuracy
was significantly below ceiling.

Simulating the behavioral experiment
Model Architecture We implemented a feed-forward con-
nectionist model that mapped perceptually-constrained dis-
tributed input of a word’s constituent letters onto a localist
representation of each word in the training vocabulary, as il-
lustrated in Figure 5. There were 7 letter input slots, one for
each position in a 7-letter word. Each of these slots had one
unit for every letter in the alphabet and coded for the pres-
ence (1) or absence (0) of a given letter in that position (i.e., a
binary one-hot coding). The distributed representation of the
visual word was then input to a McConkie filter set to per-
ceive the word at a particular fixation location (the procedure
for specifying fixation locations is described later). Thus, the
one-hot vectors would be down-scaled (using a drop param-
eter, d, of 0.25) to reduce the activity of having perceived a
given letter as a function of eccentricity from the fixation lo-
cation, as quantified in Equation 1:

x(i) = x(i)∗max(0,1− eccentricity(i)∗d) (1)

Thus, the activity of the fixated letter remained unchanged,
the activity of letters more than four slots distant from the fix-
ated letter was set to 0, and activity in each letter-slot would
decrease linearly between these two bounds.

To simulate the noisy nature of perceptual inputs in the
human visual system, we next injected normally-distributed
random noise (µ = 0.2, σ2 = 0.05) into the unit activations
(clipping activations to [0,1]). We assumed that the activity
after these processing steps was analogous to what would be
available in an early visual-orthographic representation (“per-
ceived input” in the Figure).

Next, we mapped the perceived input onto a one-hot log-
softmax target output representation for each word in the vo-
cabulary through a pool of 125 hidden units. The output of
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the hidden units was determined first by computing the sig-
moidal function of their net input, followed by the injection of
uniform random (output) noise (mean = 0, range = 0.05). All
the weights in the network were randomly initialized from a
uniform distribution in the range [ −1√

f an out ,
1√

f an out ], where
f an out was the number of units in the subsequent layer of
the model.

Figure 5: Model architecture. The implemented model per-
ceived 7-letter words; here, we illustrate the model processing
a 3-letter word (BAY) for simplicity. Full (1) and no (0) ac-
tivity are shaded in black and white; intermediate values are
shaded in grey.

Determining fixated locations in a word We evaluated
several methods for selecting how often a word was perceived
from a different fixation location, which we term “fixation lo-
cation distribution schemes”. One model sampled each fixa-
tion location equally (hereafter, the uniform fixation model).
This provided an estimate of the impact of the entropy at dif-
ferent fixation locations that was unconfounded with how of-
ten humans typically fixate at each location, and how those
distributions varied across the two languages under study.
Another model employed the language-specific behaviorally-
derived fixation distributions illustrated in Figure 1 (here-
after, the behavioral fixation model). A third model averaged
these two fixation distribution schemes (hereafter, the 50/50
model). This “blended” model allowed us to interpolate be-
tween these two previously described schemes and simulated
a case where a model was sensitive to frequency of exposure,
but not necessarily to the raw values. The logic here was that
a good model might standardize frequency information to en-
sure low-frequency information is also learned.

Training The model was trained by presenting a 7-letter
word at a particular fixation location and computing the cross-
entropy error between the output and the target representa-
tion. Error was accumulated in batches in which every seven-
letter word in the target language was presented 20 times,
with the likelihood of fixating at a particular location de-
termined by the fixation distribution sampling scheme. Er-
ror was then backpropagated to adjust the weights between
the perceived input and the output layer (learning rate =

.005; weight decay = .0001) using stochastic gradient descent
for the first 10 epochs, and the Adam algorithm thereafter
(Kingma & Ba, 2014). The model was trained for 200 epochs
(runs through each batch).

All models reached a stable high level of overall word
recognition accuracy (near 80%) for approximately the last
50 epochs of training. The vast majority of the incorrect re-
sponses originate from words perceived at a suboptimal—and
where applicable, less frequent—fixation location. Figure 6
provides representative data for the Hebrew words with ex-
treme entropy values using the uni f orm model. (space con-
straints prevented the inclusion of plots from the other mod-
els, which were broadly similar). The presence of different
effects during early training than at the end of training also
makes novel predictions for future developmental studies.

Figure 6: Accuracy for the uni f orm model trained on Hebrew
for the words with extreme entropy difference scores. Error
bars = SEM.

Testing We froze the weights on the trained models be-
fore testing them in a manner analogous to the behavioral
experiment. In the test, we presented all the maxIC(2) and
maxIC(6) words at both fixation location 2 and fixation lo-
cation 6. We also tested several methods of bringing per-
formance in the task below ceiling as in the behavioral ex-
periment, including dimming model inputs (multiplying all
input letter activations by a value less than 1), and increas-
ing variance of the noise applied to the perceptual input (cf.
Lambon Ralph, Lowe, & Rogers, 2007). These methods
yielded similar overall results, so here we report only the re-
sults of dimming (dimming parameter = .35). We ran this
simulation twice on models initialized with different random
weights and report the average results.

Results
The results for the uni f orm, 50/50, and behavioral fixation
models of English and Hebrew are presented in Figure 7.
First, in contrast to the non-dimmed model at the end of train-
ing (see Figure 6), our testing procedure clearly succeeded in
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Figure 7: Results of testing the different fixation location distribution models in Hebrew [top] and English [bottom]. Error bars
= SEM.

lowering overall accuracy to a level similar to that in the be-
havioral experiment.

The most critical finding was that, with the exception of the
Hebrew behavioral fixation model, every one of these models
produced a qualitatively similar interaction between fixation
location and whether more information content was located
at the beginning or end of a word, as in the behavioral results.
The Hebrew simulations also show more pronounced effects
for the maxIC(2) items overall, as in the behavioral data. The
reduced effects in English make for novel predictions for an
experiment in that language.

Moving from the uni f orm model through the 50/50 model
to the behavioral model, the effects of the behavioral fixation
sampling scheme, which fixates words at position 2 more of
then than position 6, is more apparent in Hebrew than in En-
glish. This is reflected by the fact that max(IC2) words are
perceived more accurately when fixating at position 2 in He-
brew and less accurately when fixating at position 6 when
moving toward the behavioral fixation scheme.

The exceptional Hebrew behavioral fixation model appears
to be an exaggerated extension of the effects of fixation lo-
cation frequency outlined above. In the case of this model,
even the maxIC(6) words were responded to more accurately
when fixating earlier in the word. The presence of this pattern
only in Hebrew is at least partially explained by the more ex-
treme differences in fixation location sampling distributions
in Hebrew than in English. These results also suggest that the
human visual recognition system may at least partially nor-
malize the effects of fixation location frequency, given that

the 50/50 and uni f orm fixation models produced qualitative
results more similar to those in the behavioral experiment.

Discussion
The results of the second set of simulations largely paralleled
those of the behavioral experiment, with both exhibiting an
interaction between fixation location and the location with
most information content. The simulations also showed the
influence of the behavioral fixation location distributions in
enhancing the perception of words at the most frequent fix-
ation location, and suggest that the word recognition system
normalizes the fixation location distribution to some degree.
Further, although the qualitative findings were similar across
languages, suggesting that a general principle is at play, at
a quantitative level there were some differences between the
two target languages. These differences align with the rela-
tively higher information content at the beginning of Hebrew
words and the greater likelihood of fixating at the beginning
of words. Collectively, this work therefore indicates that the
word recognition system is sensitive to the information con-
tent in different locations in a word, as constrained by the
perceptual system.

These results are only in partial agreement with past work
(Brysbaert & Nazir, 2005). In that work, participants were
presented with partial word information for 5-letter words
and asked to “guess” the word. The distribution of “guesses”
relative to the correct response was then taken as their mea-
sure of uncertainty. Their results showed similar effects as in
our study at word onset, but no effects at word offset. These
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findings were interpreted as suggesting that the effects of in-
formation content were only present at the preferred fixation
location. A combination of factors likely explain the discrep-
ancy between their claims and ours, including a more ade-
quate formal quantification of information content and the use
of longer words that may be more sensitive to perceptually-
constrained information content effects.

The success of this work at the individual word level also
points to important directions for future work. One major
question raised by this work is how these principles could
generalize to the multi-word level. Can a preceding word
provide top-down context and reduce the uncertainty (i.e. the
average information content) on the set of upcoming words
so as to not only facilitate processing, but also alter the lo-
cation of an upcoming fixation? If so, this result could help
explain the relatively broad fixation distributions obtained in
different languages, because the optimal location to fixate in
a word may deviate from the average location from the lan-
guage as a function of context. The somewhat broad overall
fixation location distributions may therefore in actuality re-
flect the averages of narrower fixation location distributions
that are conditioned by the preceding word.

Our work shows that the observed behavioral effects in
word recognition can be explained based on low-level in-
formation structures in the visual signal, without the need
to resort to higher-level morphological structures. Higher-
level structures can enter the visual-orthographic system in
two ways: first, in shaping the word forms of a language,
and second, as representations that mediate word recogni-
tion. The former is subsumed in our information-theoretic
approach, which encompasses all the constraints that pro-
vided word forms with their actual shape, providing us with a
quantitative comparative framework for a crosslinguistic per-
spective. The latter cannot be completely ruled out: although
our model does not require morphological representations to
succeed, the contribution of these representations should be
assessed with more targeted experiments that aim to tease
apart the visual/orthographic from morphological (e.g. look-
ing at performance for regular and irregular morphemes such
as brothel/broth, corner/corn, farmer/farm, Rastle, Davis, &
New, 2004).

To sum up, this work offers a language-general and par-
simonious account of how a specific type of statistical in-
formation drives performance in the perceptually-constrained
word recognition system, complementing accounts based on
the operation of the occulomotor system, as well as comple-
menting or or subsuming accounts based on higher-level in-
formation. In so doing, this work reinforces the importance
of studying how the structure of language itself interacts with
the perceptual constraints of the visual/orthographic system
(Lerner, Armstrong, & Frost, 2014) in shaping reading be-
haviors, and opens new avenues for combining isolated word
and naturalistic reading research.
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Abstract

We introduce a new problem solving paradigm: solving physical puzzles by placing tool-like objects in a scene. The
puzzles are designed to explicitly evoke different physical concepts such as support, blocking, tipping, and launching, and
are typically solved in a handful of trials. We study human participants’ problem solving strategies, including what they
try first, how they update their actions based on failed attempts, and how many attempts they eventually take to solve
the puzzles. We introduce the ‘Sample, Simulate, Remember’ model that incorporates object-based priors to generate
hypotheses, mental simulation to test hypotheses, and a memory and generalization system to update across simulations
and real-world trials, and show that all three components are needed to explain human performance. Further results can
be found at https://k-r-allen.github.io/tool-games/
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Abstract

The division of labor phenomenon has been observed with re-
spect to both manual and cognitive labor, but there is no clear
understanding of the intra- and inter-individual mechanisms
that allow for its emergence, especially when there are multiple
divisions possible and communication is limited. Situations
fitting this description include individuals in a group splitting
a geographical region for resource harvesting without explicit
negotiation, or a couple tacitly negotiating the hour of the day
for each to shower so that there is sufficient hot water. We stud-
ied this phenomenon by means of an iterative two-person game
where multiple divisions are possible, but no explicit commu-
nication is allowed. Our results suggest that there are a lim-
ited number of biases toward divisions of labor, which serve
as attractors in the dynamics of dyadic coordination. How-
ever, unlike Schelling’s focal points, these biases do not attract
players’ attention at the onset of the interaction, but are only
revealed and consolidated by the in-game dynamics of dyadic
interaction.

Keywords: Group cognition; Divergent behavioral norms; Fo-
cal points; Cooperation.

Introduction
An individual can often benefit from participating in a group
when (s)he can perform just one component of the group’s
task while other individuals take care of other parts. When
the other individuals also benefit from this arrangement, we
speak of an efficient division of labor. For example, two
roommates can choose between (a) preparing their lunch for
themselves every day, and (b) dividing the days of the week
on which one prepares lunch for two. In the latter case, both
roommates benefit from not having to cook every day.

The benefits of division of labor have been studied not only
with respect to manual labor (Smith, 2008), but also with re-
spect to cognitive labor (Sloman & Fernbach, 2017; Kennedy,
Eberhart, & Shi, 2001). For instance, one study showed that
the puzzle of assigning categories to the nodes of a network
such that no adjacent nodes have the same category could be
efficiently solved as a self-organized, collective task if each
individual is assigned to a single node and is only concerned
about the acceptability of their local sub-network (Kearns,
Suri, & Montfort, 2006).

In some collective groups, such as ant colonies or bee-
hives, the division of labor occurs as a genetically designed
organization (Weitekamp, Libbrecht, & Keller, 2017; Robin-
son, 1992). However, it can also emerge as a self-organized
process, without leaders or explicit negotiations (Heylighen,

2013). For example, when a group of individuals has to col-
lectively guess a target number, where the collective guess
is the sum of their individual guesses, and the only feedback
they receive is for how much their collective guess is greater
or lesser than the target, individuals spontaneously differenti-
ate their behaviors to either react or not react to the feedback,
and the extent to which role differentiation occurs is predic-
tive of group performance (Roberts & Goldstone, 2011).

What are the cognitive mechanisms that facilitate the self-
organized division of labor? One possibility is that it arises
from the principle of maximization of expected utility. In our
previous example of the two roommates, successful division
of the days of the week might be said to arise because it con-
stitutes a Nash equilibrium, that is, a combination of choices
in which no roommate can obtain a higher payoff by changing
only their choice—fixing the other roommate’s choice (Ross,
2018). However, as it turns out, maximization of expected
utility is not sufficient to explain why roommates act in ac-
cord with a particular Nash equilibrium instead of another
(Arthur, 1994; Colman, 2003). Some scholars have suggested
that games with multiple Nash equilibria are not solved on
the basis of maximization of expected utility, but rather by
means of rough-and-ready rules of thumb based on limited
knowledge and time. This approach is known as ‘bounded ra-
tionality’ to emphasize that people frequently have memory,
attentional, and calculation limitations that prevent them from
employing perfectly rational strategies (Holbrook, 2002; Si-
mon, 1957). It could be claimed, returning to our roommates
example, that the division of labor according to which Room-
mate A prepares lunch only on weekdays and Roommate B
only prepares lunch on the weekend is achieved because they
cannot think of a different division, or because this division
is the most natural for both of them, even though there are
many other possible divisions. This is an example of the fo-
cal point approach, according to which the set of all possible
Nash equilibria is reduced to just a single point that is psycho-
logically salient for all players (Mehta, Starmer, & Sugden,
1994; Schelling, 1960). Another possible proposal is that in-
dividuals possess a small set of simple strategies that they
can apply in their search for a division. For example, they
may stick to one strategy for as long as it provides acceptable
results, and when it fails, they would swap it for another in
their strategy set (a win-stay, lose-shift heuristic). There are
cooperative scenarios, such as the famous El Farol problem
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(Arthur, 1994), in which this heuristic works well. Another
strategy could be to adapt one’s own reactivity to the task
based on how much the whole group is contributing. Indeed,
as pointed out by Roberts and Goldstone (2011), there may
be situations in which an individual helps the collective effort
by refraining from acting or reducing their activity, allowing
the other players to dominate the task.

We studied this phenomenon by means of an iterative two-
person game where multiple divisions are possible, but no
explicit communication is allowed. Our results suggest that
there are a limited number of biases toward divisions of la-
bor and that they work as attractors in the negotiation dy-
namics. Unlike Schelling’s focal points, these biases do not
attract players’ attention at the onset of the interaction, but
are only revealed and consolidated by the in-game dynamics
of the dyadic interaction. In other words, these biases do not
determine players’ a priori actions, via some sort of iterative
reasoning, for dividing up their task. Rather, the attractors
only become salient as a result of the interaction.

Materials and methods
Participants and procedure
Participants were 90 undergraduate students at Indiana Uni-
versity in Bloomington who received course credits for ap-
proximately 1 hour of participation. Participants were run in
10 experimental sessions, each one requiring an even number
of participants to be grouped into dyads. If an odd number
of participants turned up to the session, one of them was ran-
domly chosen and sent home. The number of dyads in each
session were as follows: 4, 5, 3, 6, 4, 2, 6, 3, 8, and 4. Par-
ticipants sat in a university computer lab, each at a sound-
and sight-isolated personal computer running a version of
the game implemented in the nodeGame platform (Balietti,
2017). The computer randomly paired participants into dyads
and each dyad participated in 60 rounds of the game. Partic-
ipants were instructed not to talk to each other and were not
informed about who was paired with whom.

The task
The task is a two-player game, which we dub “Seeking the
unicorn,” in which players interact with 64 tiles arranged in
an 8×8 grid (see the top panel in Figure 1). The grid can ei-
ther hide a unicorn beneath one of the tiles or else the unicorn
can be absent from the grid, either event can occur with equal
probability. At the beginning of each round, the computer
chooses with equal probability whether or not there is a uni-
corn, and if there is one, it randomly chooses a tile in which to
hide it, each tile having an equal probability of being chosen.
Then, players seek for the unicorn by uncovering tiles one at
a time, with both players uncovering tiles simultaneously, in
order to see what lies beneath them. What tiles have been un-
covered and whether there is or not a unicorn is only known
to the player that uncovers these tiles. Tiles uncovered by
both players instantly change their color and both players can
see this. At any time during the round, each player can guess

whether the unicorn is present or absent. The other player
will know this player’s decision and can use it to inform their
own guess. The round ends when both players announce that
their guess is a final decision, and then they are shown their
scores (see the bottom panel in Figure 1). The score depends
on whether the player’s guess is correct (32 points) or incor-
rect (-64 points), subtracting the number of tiles that were
uncovered by both players.

Figure 1: The experimental task. The top panel shows the
grid as displayed to each player. By uncovering a tile, they
know whether it is empty or contains the unicorn. Such in-
formation is private for the player. Tiles uncovered by both
players have a blue background and both can see this col-
oration. They also have access to each other’s guesses. The
yellow column on the right decreases as the number of over-
lapping tiles increases. The round ends when both players
submit their final decision. In the bottom panel we show the
screen displaying the score and the score history over the last
20 rounds.

Measures

The following measure, which we call the Division of
Labor Index (DLINDEX), determines the extent to which
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players split the grid into complementary regions:

DLINDEX =

Tiles uncovered by one
or both of the players

−Overlapping
tiles

Tiles in the grid

This measure instantiates the intuition that it is beneficial if
a dyad collectively uncovers all of the tiles (first term) and
does not overlap in any tiles uncovered (second term). Ob-
serve that it ranges from 0 to 1 with 1 being ideal division of
labor and 0 being least efficient. There is only one way of be-
ing ideal, namely, when both players uncover the entire grid
and do not overlap at all. Additionally, we measure how con-
sistently a player uncovers tiles from one round to the next:

Consistencyn =

Overlapping uncovered tiles from
Round n−1 to Round n

Tiles uncovered in
either of the two rounds

This number ranges from 0 to 1 with 1 meaning that the player
uncovers the same tiles on both rounds, and 0 meaning that
the player uncovers a completely different set of tiles from
one round to the next. We also define the distance and the
similarity between two regions a and b in the grid in the fol-
lowing way:

dist(a,b) =
√

∑
t∈Tiles

(at −bt)2, sim(a,b,ε) = e−ε∗dist(a,b)

Here, t represents the t-th tile in the 8×8 grid (represented as
the list [1, . . . ,64]), and at and bt can be either 1 or 0, repre-
senting whether or not tile t belongs to a and b, respectively.
The parameter ε in the definition of sim determines the ex-
tent to which the distance between two regions determines
the similarity between them and, unless explicitly stated oth-
erwise, we assume that ε=1.

Results
We should note at the outset that we have not used the entire
dataset in our analysis. The reason is that rounds on which
the unicorn is present provide us only with partial informa-
tion as to how players split the grid, because on those rounds
players do not have to uncover every tile. Once they find the
unicorn, they will say that the unicorn is present and finish
the round. Therefore, unless explicitly stated otherwise, we
are only reporting results for trials on which the unicorn is
absent.

For each dyad we created a figure displaying two grids,
one for each player. In this figure we magnitude-coded each
tile according to the number of times the player selected it
through 60 rounds of the experiment in such a way that the
darker the tile, the more times it was selected. Figure 2 shows
the types of regions that were obtained. There were only four
stable, successful pairs of complementary regions in the grid:
the Left-Right, Top-Bottom, All-Nothing, and Inside-Outside
splits. We call them the focal splits. Only dyads in the focal
splits obtained an above-average DLINDEX, except for one
dyad with no discernible stable region that nevertheless has

Left-Right Top-Bottom All-Nothing

Mix Inside-Outside

Nothing-Nothing All-All RS

Figure 2: The seven types of splits of the grid that could be
observed from our data. Each panel shows two grids, one for
each player, with the regions uncovered through 60 rounds.
The darker the tile, the more rounds the player uncovered it.

an average DLINDEX of 0.82 (this is over 0.45 standard de-
viations above the average of the 45 dyads; this dyad deter-
mined the Mix type of split in Figure 2). We conclude that
26 out of 45 dyads successfully split the grid. This represents
over 57% success in self-organizing division of labor.

If our paradigm were a one-shot task in which players had
to converge on a split of the grid on only one round, our
data show that the average DLINDEX would be close to 0.43
(s.d.≈ 0.32). By comparison, in our iterated task, the average
DLINDEX rose up to almost 0.68 after 60 rounds (s.d.≈ 0.32).
The difference between these averages is statistically signifi-
cant (p< 0.001). This shows that an efficient division of labor
does not emerge on the first round, and that the iterated nature
of our task facilitates its emergence.

But how did the division of labor emerge? We observed
that, in general, dyads moved from lower to higher levels
of DLINDEX, and that players in a low-level dyad tended
to more frequently change their tile selection strategy from
one round to the next with respect to players in a high-level
dyad. Moreover, we found a positive correlation between a
player’s consistency on Round n and their score on Round
n−1 (β≈ 0.51; p < 0.001). This supports the hypothesis that
players used, at least to some extent, a win-stay, lose-shift
heuristic (WSLS). That is to say, if their score is relatively
high, which often occurs when the dyad splits the grid into
complementary regions, each player tends to re-select their
previously selected tiles; but if their score is low, they will be
more likely to shift to different tiles.

However, WSLS does not seem to account for all the char-
acteristics of the dyadic interaction. When we predict DLIN-
DEX as a function of consistency, we see that, perhaps not sur-
prisingly, dyads consisting of individuals who are relatively
consistent in their tile selection strategies tend to divide la-
bor better (β ≈ 0.36; p < 0.001). However, we also observe
an interaction such that dyads with players that differ in their
consistencies tend to divide labor better than predicted when
players have a large amount of overlap in their selected tiles.
That is, if both players overlap considerably, it is best if one
player is consistent and the other player is not. The evidence
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for this claim comes from comparing the linear regression
model above with a model that includes the interaction be-
tween, on the one hand, the absolute difference in consistency
between players on a given round and, on the other hand, the
number of overlapping tiles on the previous round:

DLINDEX(n)∼ α+β1 ∗Consistency(n)+β2 ∗difConsist(n)
+β3 ∗Overlap(n−1)+β4 ∗difConsist(n)∗Overlap(n−1)

Our data show that this interaction is positive (β4 ≈ 0.01;
p< 0.001). Moreover, an analysis of variance test (p< 0.001)
confirms that this interaction effect accounts for significantly
more variance in performance relative to the main effects.
These results indicate that dyads eventually tend to most ef-
fectively divide labor despite initially overlapping in their
tiles when one player is consistent/stubborn and the other
player is inconsistent/flexible, giving rise to complementary
degrees of reactivity to occasions of overlap (Roberts & Gold-
stone, 2011). But why did one of the players become more
stubborn? We found that if a player tends to select tiles
consistent with a focal region (that is, one half of a focal
split), they tend to be more consistent. In other words, the
closer a player’s tile selection strategy is to a focal region,
the more stubborn they become, presumably because they be-
lieve that they are forming one half of a viable division of la-
bor. The regression model of consistency with respect to dis-
tance to closest focal region confirms this effect (β≈−0.12;
p < 0.001). The interesting question now is how the other
player figured out that they have to select tiles in the appro-
priate complementary region, given that a player only had ac-
cess to their own uncovered tiles and not the other player’s
uncovered tiles. The key seems to lie in the fact that play-
ers do have access to overlapping tiles, from which the other
player’s selected tiles can be inferred with reasonably high
validity.

One mechanism that can account for many players’ shifts
in selected tiles is based on a measure of the similarity be-
tween a focal region and the overlapping tiles. If one player’s
selected tiles are sufficiently close to a focal region, then this
can be used as a signal for the other player to select the corre-
sponding, complementary region. In Figure 3 we take a closer
look at an actual game play from a dyad in which this mech-
anism is prominent, as exhibited by Player B’s transition. On
Round 23 the overlapping tiles are similar to the focal region
RIGHT, which inclines B to select every single tile in the com-
plementary LEFT region. Observe that B not only re-selected
the left region’s tiles from the previous round, but uncovered
the whole LEFT region. More generally, the player’s attention
is attracted toward a focal region k when the region that is
complementary to k is sufficiently similar to the overlapping
tiles. To be sure, even though the process seems to be gradual
and there are other factors at play, these complementary focal
regions have attraction power. Last but not least, observe that
the overlapping tiles are the same for both players, so Player
A’s attention is also attracted by LEFT. Nevertheless, given
that A has uncovered the focal region RIGHT, they tend to be-

Figure 3: Evidence in favor of Focal Regions as Attractors
(FRA). We see the transition from one round to the next, taken
from an actual game play. In each grid, black tiles represent
uncovered tiles and red tiles were uncovered by both players.
Player A’s transition illustrates ‘stubbornness’ and Player B’s
illustrates the attraction exerted by the complement of A’s fo-
cal region, which is also a focal region. See details in the
text.

come “stubborn” in the sense of resisting substantial change
to their uncovered tiles. The combination of this retention
and the attraction powers of a focal region informs a decision
process that we call the Focal Regions as Attractors heuristic
(FRA).

Computational models
We put our previous explanations to the test by providing a
computational model for each one of these two heuristics.
The first model is an implementation of WSLS. To motivate it,
suppose that on round n the player uncovered tiles determin-
ing BOTTOM. We want to determine the probability of choos-
ing each region k in K on round n+1, where k in K ={RS,
ALL, NOTHING, BOTTOM, TOP, LEFT, RIGHT, INSIDE, OUT-
SIDE}. K contains the focal regions, plus the type of region
we call RS, which represents all remaining regions in the grid.
Now, if the player is in a win situation, we should increase
the probability of choosing again BOTTOM. This effect can
be obtained by means of a threshold function (see Figure 4).
More formally, the model defines a probability function, de-
termined by the following formula:

P(k) =
attract(k)

∑r∈K attract(r)
(1)

The attract(k) function represents the extent to which a player
is inclined to choose region k, given the current state of the
game. For the WSLS model, we assume that this state is rep-
resented by the vector (i,s), where i is the region explored
on the previous round and s the obtained score. The attract
function for the WSLS model is defined in the following way:

attract(k, i,s) = biask +α∗ thresh(sn,β,γ)∗ I(k, i) (2)
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Figure 4: The thresh(sn) function representing how good the
score was. The left panel illustrates a situation where the
score is not good enough, which is captured by the low value
of thresh(sn). The right panel illustrates a good situation, cap-
tured by the high value of thresh(sn).

Here, the term biask represents how inclined the player feels
toward k, all other things being equal, and is expected to be
higher for more pre-experimentally salient regions. The sec-
ond term contains the functions thresh and I, which are de-
fined in the following way:

thresh(sn,β,γ)=
1

1+ e−β(sn−γ)
, I(k, i)=

{
1, if i = k 6= Rs
0, otherwise

Here, sn is the normalized score, which takes values between
0 and 1. The function thresh(sn,β,γ) has an S shape and takes
values in the open interval (0,1). It goes from values near 0
to values near 1 when sn is near γ, and the steepness of this
transition is determined by β (see Figure 4). The second term
in Equation 2 contains the parameter α, which determines the
extent to which the score increases the player’s tendency to
choose k, when the normalized score is greater than γ. The
effect of I(k, i) in this expression is that the only region that
has its bias modified is region i (i.e., the region explored on
the previous round) and only if this region is a focal region.
The value of attract(k) for the remaining regions is equal to
biask.

The model defined by FRA extends the previous model. To
motivate it, suppose that on round n the player uncovered tiles
in the i region as defined in Figure 5. Now, we should con-
sider the overlapping region, j, and consider its similarity to
each focal regions (see right panel of Figure 5). The more
similar to k, the more attractive the complement of k becomes.
In our example, the overlapping region is more similar to UP,
so the probability of choosing BOTTOM on round n+1 is in-
creased. More formally, we assume that the current state of
the game is represented by the vector (i,s, j), where i is the re-
gion explored on the previous round and s the obtained score,
and j the area formed by the overlapping tiles. The attractive-
ness of k is defined in the following way:

attract(k, i, j,s) = biask +α∗ thresh(sn,β,γ)∗ I(k, i)

+δ∗ sim( j,k,ε)∗Focal(k)+ζ∗ I(k, i)
(3)

Observe that the first two terms in Equation 3 are the same
as in Equation 2. The third and fourth terms are new. In the
third term, the function sim( j,k,ε) determines the similarity

i = j =

Figure 5: An example of a region visited, i, the overlapping
tiles, j, and the similarity between j and other regions.

Model θ1 θ2 θ3 θ4 α β

WSLS 0.14 0.0674 0.0123 0.0009 39 405
FRA 0.077 0.048 ≈ 0 ≈ 0 48 402

Model γ δ ε ζ Dev. AIC

WSLS 0.933 0 0 0 3060 3074
FRA 0.99 1.57 0.94 3 2709 2709

Table 1: Best parameters and deviance for each
model. The first four parameters correspond to the
biases in the model: θ1=biasALL, θ2=biasNOTHING,
θ3=biasBOTTOM=biasTOP=biasLEFT=biasRIGHT, and
θ4=biasIN=biasOUT. Moreover, biasRS is defined as 1 minus
the sum of the other biases, and we require that the sum of
all biases adds to 1.

between j and the complement of k, denoted as k. The func-
tion Focal(k) is defined in the following way:

Focal(k) =

{
1, if k 6∈ {RS, ALL}
0, otherwise

The parameter δ in Equation 3 determines the extent to which
the similarity between j and k modifies attract(k), but this
only occurs when k is a focal region and is different from
ALL. This effect is obtained by multiplying δ by Focal(k).
Finally, the parameter ζ determines the extent of the player’s
stubbornness when i is a focal region.

Note that the extra parameters from FRA with respect to
WSLS are δ, ε, and ζ, and that Equation 2 for WSLS can be
obtained from Equation 3 when δ = ζ = 0. That is, WSLS is
a nested model within FRA.

Using maximization of log likelihood of the multinomial
distribution of the observed transition frequencies and the
respective predicted probabilities given by the model, we
found the optimal parameters and the deviance of the two
models, summarized in Table 1. Both the Likelihood Ratio
Test (χ2 = 351; 3 d.o.f.; p< 0.001) and the ∆AIC=365 pro-
vide quantitative evidence that the additional parameters con-
tributed by FRA provide a better account of the underlying
choice process and that this model’s better fit to the data is
not due to overfitting.

We simulated our game in the same conditions as the ex-
perimental task. For each model, we ran 100 simulations of
60 rounds of the game, obtaining two collections of simu-
lated data. In the two top panels of Figure 6 we can observe
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Figure 6: Comparison between observed and simulated be-
havior. The top panel shows the behavior of DLINDEX
through all rounds. The vertical axis represents, for each
round, the average DLINDEX. Shadow regions represent an
error margin of one standard deviation. The bottom panel
shows the kernel density estimate of DLINDEX for observed
and simulated data, where each observation is the DLINDEX
of a dyad at the end of a round.

the behavior of DLINDEX through all rounds. The vertical
axis represents, for each round, the average DLINDEX with
respect to all dyads in the respective set (45 for humans; 100
for each model). In the three cases we observe that the in-
dexes are within the error margins of the others, and that
the three sets of data show the same positive trend through
rounds. However, in the case of WSLS, the t-test of mean
difference (p≈ 0.01) does not provide conclusive evidence
to assert that the means are the same, whereas the t-test of
mean difference of DLINDEX (p≈ 0.3) determines that there
is no statistical evidence to claim that the means are different,
which means that FRA is better at capturing the tendency of
DLINDEX in human subjects.

In the bottom panel of Fig. 6 we can see the kernel den-
sity estimate of DLINDEX for observed and simulated data.
When the density curve is high (y-axis) for a given value of
DLINDEX (x-axis), it means that there were many rounds
for which a dyad obtained a DLINDEX close to x. Observe
that, for humans, high values of DLINDEX are more frequent
than medium and low values—representing the fact that many
dyads split the grid satisfactorily. However, in WSLS there
is a considerable tail on the left, indicating many more tri-
als on which dyads did not split the grid into complementary
regions, as compared to humans. Moreover, in WSLS the fre-
quency of low values is higher than that of medium values,
which is not in accordance with the observed data. For FRA,
the frequency of low values is not greater than that of medium
values, which is closer to what is observed in human data. To
sum up, it seems that WSLS predicts a less efficient division
of labor than exhibited by people, whereas FRA and people
show a comparable degree of division of labor.

Discussion

57% of human dyads finished 60 rounds of game play with
an efficient division of labor. The results from our experi-
ment and our computational models allow us to explain how
most dyads managed to split the grid without being able to
engage in explicit negotiations. First of all, even though there
are 264 ways to split the grid, dyads split it in only four dif-
ferent ways. In some sense, these splits are focal points be-
cause they have a certain psychological salience (Schelling,
1960). One might have thought that these individual cogni-
tive biases (focal points) would exert an early (in terms of
rounds) influence on choices exactly because they are a pri-
ori, so that agents would have started on Round 1 with strate-
gies of selecting all tiles on the left, top, bottom, or right.
If agents understand that these are natural attractors, then
through engaging in many levels of iterated thinking based
on common knowledge (Lewis, 1969), these would be log-
ical starting points. However, players do not generally start
with strategies that resemble focal points. Humans are far
more idiosyncratic and exploratory in their initial selections
of tiles. It is only through repeated interactions that players
manifest their a priori predispositions/biases toward certain
focal points. In other words, a priori biases do not entail that
the biases are manifest at the onset of play. It is only through
dyadic interaction that these biases are revealed (Kaush ML,
Griffiths TL, & Lewandowsky S, 2007). Returning to our
two roommates example, there are 128 different ways to di-
vide the days of the week in order to alternate one roommate
cooking for two. We suppose that not every possible division
is equally salient for them, and that only a handful of divi-
sions will actually attract and retain their attention, such as the
division between weekdays or weekend, or a division based
on the idea of cooking every other day. If the roommates
cannot explicitly negotiate a division but are given the daily
chore of preparing lunch(es), one roommate will eventually
follow one of these psychologically salient divisions and will
tend to persist in the strategy because it is a focal point. To
the extent that the other roommate wants to avoid overlap-
ping days, soon they will be attracted to the psychologically
salient strategy of choosing complementary days of the week.
Interacting individuals, both human and algorithmic, can of-
ten arrive at efficient coordinating solutions in a paradigm that
incorporates two challenging conditions – individuals cannot
explicitly communicate, and there are multiple coordinating
solutions that are initially equally salient. The human and
computational results indicate that agents solve this coordi-
nation task by beginning with a set of possibly incompatible
focal points. Then, via iterated interactions they adjust their
behaviors to move toward focal points when they are not at
a focal point, stay in a focal point once reached, and shift
to a complementary focal point relative to the other player.
In this way, the coordination that a group forms results from
the interplay over time between their a priori cognitive biases
and the dynamics of their interpersonal interaction (Hawkins,
Goodman, & Goldstone, in press).
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Abstract 

Others’ beliefs about the self can powerfully influence our 
everyday interactions with others. Recent work suggests that 
even preschool-aged children are sensitive to what others think 
of the self and actively attempt to manage these beliefs (Asaba 
& Gweon, 2018). What cognitive capacities underlie these 
early self-presentational behaviors, and in what contexts do 
these behaviors emerge? Here we show that preschoolers 
strategically demonstrate their competence to even a puppet, 
but only when an adult treats the puppet as an agent and 
specifically asks which toy the child wants to “show” to the 
puppet (Exp.1). However, they do not show such strategic 
demonstration of their competence when the same puppet is 
treated as an object (Exp.2). These results suggest that self-
presentational behaviors can emerge even in the absence of any 
immediate prospect of social evaluation insofar as children 
consider the target entity as capable of holding beliefs. 
Furthermore, whether or not children ascribe a belief about the 
self to the target is heavily modulated by how an entity is 
treated by others. We discuss the relevance of these findings to 
early reputation management behaviors, and more broadly, the 
use of make-believe agents in developmental research.  

Keywords: cognitive development; social cognition; Theory 
of Mind; reputation management; agency 

Introduction 

What others think of us – our competence, kindness, fairness 

– is central in our minds. Others’ beliefs about the self have 

the power to influence our social interactions, well-being, and 

even long-term life outcomes. Fortunately, we have some 

control over how others think of us: We can change our 

behaviors in the presence of others (e.g., act more generously; 

Novak & Sigmund, 2005) or actively disclose information 

about the self (Hicks, Liu, & Heyman, 2015). Knowing how 

to manage others’ beliefs about us, or our reputation more 

broadly, can help us better navigate the complex social world 

and build healthy relationships with others. Despite the 

ubiquity of self-presentational behaviors, however, the 

ontogenetic origins of the ability to represent and modulate 

others’ beliefs about the self remain poorly understood. What 

cognitive capacities underlie self-presentational behaviors, 

and in what contexts do these behaviors manifest? 

Recent developmental work has provided some initial 

insights into young children’s sensitivity to others’ 

evaluations of them. Young children attempt to promote a 

                                                 
* These authors contributed equally to this work. 

positive reputation by sharing more and cheating less in the 

presence of others (e.g., Engelmann, Hermann, & Tomasello, 

2012; Leimgruber, Shaw, Santos, & Olson, 2012) and try to 

maintain a positive reputation of being “smart” or “nice” 

(e.g., Fu, Heyman, Qian, Guo, & Lee, 2014). Their behaviors 

are further modulated by the potential social consequences; 

they share more when the observer could reciprocate their 

good deeds in the future than in one-time interactions 

(Engelmann, Over, Hermann, & Tomasello, 2013). These 

findings suggest that children care about others’ evaluations 

and engage in behaviors to manage their reputations. 

The ability to represent and reason about others’ beliefs –

Theory of Mind (ToM) – may be particularly important for 

effective self-presentational behaviors (Asaba & Gweon, 

2018; Engelmann & Rapp, 2018; Silver & Shaw, 2018). By 

using an intuitive theory of others’ minds, children can not 

only infer what others think of them, but also figure out what 

evidence could improve or maintain these beliefs. 

Surprisingly, however, there is little empirical support for 

ToM as a potential mechanism underlying self-presentational 

behaviors. Prior work in early reputation management 

behaviors has primarily manipulated whether or not children 

were being observed by another person. Thus, the role of 

ToM in self-presentational behaviors remains unclear; some 

self-presentational behaviors may only require the mere 

presence of others while more complex interactions may 

involve sophisticated inferences about the observer’s beliefs. 

A recent study provides suggestive evidence that 

preschoolers’ self-presentational communicative behaviors 

depend on the content of others’ beliefs about the self, rather 

than the mere experience of being observed by others (Asaba 

& Gweon (2018). Findings from this study suggested that 3- 

and 4-year-old children strategically presented their own 

competence depending on the observer’s prior observations 

of their failures and successes, even when doing so meant 

foregoing an opportunity to teach new information to the 

observer. When the observer had seen the child’s failures as 

well as their final success on a toy (i.e., believing the child 

can make the toy go), given a chance to demonstrate either 

the same toy or a toy she had never seen, children strongly 

preferred to demonstrate the novel toy. However, when the 

observer left before the child’s final success (i.e., believing 

the child cannot make the toy go), children were more likely 
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to demonstrate their success on the same toy rather than the 

novel toy. Such selective demonstration of one’s competence 

might require the ability to understand how others’ 

observations of the self can generate certain beliefs in others’ 

minds (i.e., “She thinks I cannot operate the toy”) and the 

capacity to infer how additional evidence can change these 

beliefs (i.e., “demonstrating my success on this toy will make 

her think I can operate the toy”).  

These results suggest that children are sensitive to more 

than the mere presence of others; rather, their self-

presentational actions can be modulated by representations of 

others’ beliefs about the self. Following prior work on the 

early development of reputation management, Asaba & 

Gweon (2018) used a human confederate as the agent who 

observed children’s failures and successes. However, if the 

process of ascribing beliefs to an observer can elicit 

reputation management behaviors, the target of such actions 

should not be limited to other human beings; these behaviors 

may also manifest in children’s interactions with non-human 

entities, even if there are no real-world consequences to 

protecting or promoting one’s reputation in front of them. If 

so, even the presence of a puppet in the room as children 

repeatedly fail to activate a toy would lead children to 

demonstrate their success (i.e., to “change the puppet’s 

belief”), but only in contexts in which children would readily 

attribute beliefs to the puppet. In other words, the results from 

Asaba & Gweon (2018) should replicate even when the 

human confederate is replaced with a hand puppet, 

specifically when children consider the puppet as a social 

entity capable of holding a belief.  

Decades of work on ToM provide reasonable support for 

this hypothesis. A large meta-analysis (Wellman, Cross, & 

Watson, 2001) has shown that children’s responses in classic 

false-belief tasks do not systematically vary depending on the 

nature of the protagonist (i.e., a drawing, a hand puppet, or a 

real person); children are willing to attribute perceptual, 

epistemic, and emotional states to non-human, make-believe 

entities insofar as they are described and treated as sentient 

agents that think, feel, and act like humans. These classic 

ToM tasks usually require children to predict someone’s 

action (e.g., Sally will go to where she thinks the ball is), but 

would children be motivated enough to share information 

about their own competence over novel information about a 

toy in such settings? Such results might attest to the power of 

mental-state reasoning that encourage children to engage in 

rich social interactions even with make-believe entities.  

What factors may influence children’s willingness to 

ascribe agency to various non-human entities? Prior 

theoretical work has proposed that children may evaluate an 

entity’s cognitive property (Leslie, 1994) – that agents hold 

certain attitudes (e.g., desires, beliefs) to the truth of 

propositions. Interestingly, empirical work on children’s 

understanding of agency suggests that children’s agency 

attribution not only relies on the observable features of an 

entity (e.g., whether or not it has eyes; Johnson, Slaughter, & 

Carey, 1998) but also can be informed by how others 

communicate about it (e.g., how often parents talk about 

psychological property of nonliving kinds; Jipson, Labotka, 

Callanan, & Gelman, 2018). Critically, adults often depict 

make-believe or imaginary scenes, objects, or agents to 

children as if they were real, and children readily understand 

such communicative intent and “play along” with them 

(Clark, 2016). Thus, children may ascribe agency to a puppet 

to the extent that other adults treat or depict it as an agent, 

especially one holding certain beliefs.  

The main objective of the current work is to bridge prior 

work in Theory of Mind and reputation management by 

clarifying the role of belief-attribution in young children’s 

self-presentational behaviors. To this end, our primary goal 

was to replicate the findings of Asaba & Gweon (2018) using 

a puppet that was introduced as the experimenter’s “friend” 

and treated as such (Experiment 1). We predicted that 

children would go as far as demonstrating their competence 

to a puppet to change its “belief” about their competence 

when the adult experimenter treats the puppet as if it were an 

agent with mental capacities (i.e., with the cognitive 

property). We then provide additional evidence that such 

behavior is selective to contexts where children have reasons 

to consider the puppet as a social being capable of holding 

beliefs (Experiment 2).    

Experiment 1: Puppet as Agent 

In Experiment 1, we replicated Asaba & Gweon (2018) with 

4-year-olds using the same design except that children were 

“observed” by a puppet rather than a human confederate. 

Importantly, the experimenter treated this puppet as an agent, 

calling the puppet her “friend” and referring to the puppet’s 

mental states (i.e., ignorance) about the toys, similarly to how 

the confederate was treated in Asaba & Gweon (2018). 

Methods 

Participants 50 4-year-olds (MAge(SD)= 4.49(.29), range = 

4.01–4.99; 30 females) were recruited from a university 

preschool and randomly assigned to the Present (N=25) or 

Absent (N=25) condition. An additional 14 children were 

recruited but excluded due to failure on a memory check 

question (N=13) or technical error (N=1). 

Materials We designed two distinct novel toys with different 

causal mechanisms that each lit up when activated (see Figure 

1). The blue toy had two green buttons on the top; pressing 

the two buttons at the same time would make a rubber frog 

on the top of the toy light up. The yellow toy had two gray 

knobs on the left and right sides; turning the two knobs at the 

same time would make a rubber owl on the top of the toy light 

up. In reality, the toys were not actually functional but were 

activated by the experimenter with a remote control switch 

 

Figure 1: Schematic of the toys used in Experiments 1 and 2. 99



underneath the table hidden from the participants’ view. A 

girl hand puppet and a 3” x 4” picture of the puppet was used. 

Procedure Children were tested individually in a quiet room 

at their preschool. The child sat across from an experimenter 

at a rectangular table. The experiment consisted of the 

Introduction, Observed Toy, Unobserved Toy, and Choice 

Phases; only the Observed Toy Phase differed between 

conditions (see Figure 2).  

Introduction Phase: The experimenter showed the child the 

two toys and said that her friend “Emma” (a hand puppet) 

would watch them play. The experimenter put the puppet on 

the table facing the child and asked the child to say hello to 

Emma. Critically, the experimenter described the puppet with 

respect to its mental states: “Emma has never seen these toys 

before, and she doesn’t know anything about them.”  

Observed Toy Phase: The puppet “watched” as the child 

and the experimenter played with one of the two novel toys 

(i.e., the Observed Toy; blue and yellow toy counterbalanced 

across participants). The experimenter successfully activated 

the toy by pressing the two buttons simultaneously (blue toy) 

or turning the two knobs simultaneously (yellow toy). The 

child then attempted to operate the toy (i.e., the child pressed 

the buttons of the blue toy or turned the knobs of the yellow 

toy) but failed, and the experimenter acknowledged the 

failure by saying “Hm.” The experimenter then succeeded on 

the toy again and the child failed again. Then, the 

experimenter instructed the child how to activate the toy: 

“You have to push this button and this button at the exact 

same time” (blue toy) or “…turn this and this at the exact 

same time” (yellow toy). Then, the child was given another 

chance and succeeded. The experimenter acknowledged the 

success by saying “Now you know how to play with this toy!”  

The critical manipulation between conditions was when the 

puppet was in the room. In the Present condition, the puppet 

“watched” the child’s initial two failures and final success, 

then the experimenter brought the puppet outside the room. 

In the Absent condition, the puppet “watched” the child’s 

initial two failures but was then brought outside the room 

after the experimenter’s instruction on the toy; next, the child 

succeeded. In both conditions, the experimenter said that 

“Emma has to go now,” before bringing the puppet outside. 

Unobserved Toy Phase: The child and experimenter played 

with the other toy (i.e., the Unobserved Toy) while the puppet 

was out of the room. The sequence of failures and successes 

and the experimenter’s instruction were identical as in the 

Observed Toy Phase. The child first failed to activate the toy 

twice, the experimenter taught the causal mechanism, then 

the child succeeded. Then, the child successfully activated 

both the Observed Toy and Unobserved Toy twice more, 

ensuring that the child was confident in operating both toys. 

Choice Phase: With the puppet still outside the room, the 

experimenter positioned the two toys equidistant from the 

child. The experimenter placed a photo of the puppet in front 

of the child and asked, “Now you can show Emma one of 

these toys. Which toy do you want to show?” Children 

responded by touching or pointing to one of the toys. Then, 

children were asked a memory check question, “Did Emma 

watch when you were playing with this toy or this toy?” Only 

children who correctly responded to this question (i.e., 

selecting the Observed Toy) were included in the final 

sample. At the end, the puppet was brought back into the 

room, and children demonstrated the chosen toy. 

Results and Discussion 

In the Absent Condition, the puppet only observed the child’s 

failures, whereas in the Present Condition, the puppet 

observed the child’s failures and success. Thus in the Absent 

Condition, the puppet had an incorrect belief about the 

child’s ability on the Observed Toy. We predicted that 

children would choose the Observed Toy more often in the 

Absent Condition than in the Present Condition if they were 

able to track the puppet’s beliefs about their abilities and 

wanted to improve these beliefs. 

We ran a generalized linear model (family = binomial) with 

Condition (dummy coded; Present = 0, Absent = 1), 

Observed Toy Type (dummy coded; Blue Toy = 0, Yellow 

Toy = 1), and Age (continuous) as predictors: Toy Choice ~ 

Condition + Age + Observed Toy Type. We found that 

Condition significantly predicted children’s choice of toys (β 

= 1.839, z = 2.762, p = .006), but Age (β = .618, z = .519, p = 

.604) and Toy Type (β = -.268, z = -.400, p = .690) did not. 

Follow-up analyses confirmed that participants chose the 

 

Figure 2: Procedures for Experiments 1 and 2. 
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Observed Toy more often in the Absent Condition than in the 

Present Condition (% choosing the Observed Toy: 60% 

(Absent) vs. 20% (Present), p = .009, Fisher’s Exact Test; see 

Fig.3). In the Present Condition, children strongly preferred 

to show the Unobserved Toy (80%, p = .004, Binomial Test), 

suggesting that they wanted to show the puppet a novel toy. 

In the Absent condition, however, children did not show a 

preference for either toy (p = .424, Binomial Test).  

These results are in line with our main hypothesis that 

young children may go so far as to demonstrate their 

competence to a puppet when it is treated as an agent who is 

capable of holding beliefs. Specifically, when the puppet had  

only “observed” (i.e., was on the table facing the child) their 

failures but not their final success at operating a toy, children 

were motivated to demonstrate their competence by choosing 

the same toy to show the puppet, foregoing the opportunity 

to show a novel toy. These results are consistent with the 

literature on false-belief reasoning in preschoolers using 

puppets instead of human experimenters. However, it is 

nevertheless striking that children went as far as showing off 

their competence to a puppet that is incapable of any real-

world social evaluation. 

One critical prerequisite for such behaviors is the 

attribution of a belief state to the puppet. In Experiment 1, we 

provided a number of contextual cues to encourage children 

to consider the puppet as an agent, such as introducing the 

puppet as a “friend”, verbally describing its mental states, and 

asking children to choose a toy to “show” the puppet. 

However, such behaviors would fail to emerge in the absence 

of any contextual support for ascribing agency to puppet, 

such that the puppet is no longer considered as an agent that 

is capable perceiving the environment or holding a mental 

state. In Experiment 2, we test this idea by asking whether the 

pattern of results in Experiment 1 would go away in a context 

where the puppet is treated as an object (i.e., the 

experimenter’s toy) and children are asked to simply choose 

a toy to play with (rather than “showing” a toy to the puppet). 

Note that this is a control experiment where we expect a 

failure to replicate Asaba & Gweon (2018); critically, we 

also predicted an interaction of condition (Present vs. Absent) 

and experiment (Exp.1: Agent vs. Exp.2: Object); this would 

provide additional support that children’s representation of 

the puppet (as an agent vs. an object) modulates the pattern 

of results.  

Experiment 2: Puppet as Object 

Methods 

Participants 50 4-year-olds (MAge(SD) = 4.59(.31), range = 

4.01–4.98; 27 females) were recruited from a university 

preschool and randomly assigned to the Present (N=25) or 

Absent (N=25) condition. An additional 28 children were 

recruited but excluded due to failure on the memory check. 

Materials The same materials from Exp.1 were used. 

Procedure The procedure was nearly identical to Exp.1, 

except for three critical modifications as described below, 

aiming to minimize the perceived agency of the puppet.  

Introduction Phase: After introducing the two novel toys, 

the experimenter told the child that she had another toy (the 

puppet, which was introduced as a “friend” in Exp.1) and that 

she would put the puppet on the table as they were playing. 

Rather than referencing the puppet’s ignorance about the 

toys, here the experimenter only described the puppet’s 

physical features: “My puppet has blond hair and brown eyes. 

I also got the blue ribbons to tie my puppet’s hair.” 

Observed Toy Phase: Children failed twice and succeeded 

once on the Observed Toy, and the Present and Absent 

conditions varied by whether the puppet was present for 

children’s final success. In contrast to Experiment 1, the 

experimenter stated that someone else needed the puppet, 

rather than that the puppet needed to go. Additionally, the 

puppet’s presence was emphasized at the beginning (“Now 

the puppet is on the table”) and children helped bring the 

puppet outside the room to ensure that children were paying 

attention to the puppet. These changes were included to help 

children remember when the puppet was in the room.   

Unobserved Toy Phase: Same as in Exp.1. 

Choice Phase: The experimenter brought the puppet back 

onto the table. Importantly, the test question used in 

Experiment 1 (and in Asaba & Gweon, 2018; “Which toy do 

you want to show my friend?”) implies that the puppet should 

be treated as an agent; using the same question would provide 

a strong signal to the child that the experimenter wants the 

child to “communicate” to the puppet. Thus, in Experiment 

2, the experimenter asked instead:  “Now you can play with 

one of these toys. Which toy do you want to play with?” while 

the puppet (instead of a photo of the puppet) was placed on 

the table, facing the child. We come back to the role of the 

final question in the General Discussion. However, we did 

use a similar memory check as Exp.1 by asking: “Was the 

puppet here on this table when you were playing with this toy 

or this toy?” Only children who correctly responded to this 

question were included in the final sample. 

 

Figure 3: Results from Experiments 1 and 2. Error bars 

represent 95% confidence intervals. **p < .01. 
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Results and Discussion  

Here, the experimenter treated the puppet as her toy, and we 

predicted that if children’s strategic self-promotion was 

sensitive to the nature of their “observer”, then children 

would not strategically communicate to a puppet depicted as 

an object. Specifically, we predicted that there would be no 

difference in children’s choices across conditions. 

We ran the same generalized linear model as in Exp. 1 and 

found that Condition (β = -.747, z = -1.259, p = .208), Age (β 

=1.28, z = 1.232, p = .214), and Observed Toy Type (β = .603, 

z = .997, p = .319) did not predict children’s choice of toys. 

Indeed, children chose the Observed Toy at similar rates in 

the Absent Condition and the Present Condition (% choosing 

the Observed Toy: 44% (Absent) vs. 64% (Present), p = .256, 

Fisher’s Exact Test). Further, children did not selectively 

choose a toy in either condition (Present: p = .23, Absent: p 

= .69, Binomial Tests). Given the high rate of exclusion, we 

ran analyses including participants who failed the memory 

check question and found the same pattern of results: 53.4% 

(Present) vs. 38.9% (Absent) of participants chose the 

Observed Toy (p = .259, Fisher’s Exact Test). As predicted, 

in this study, the results did not show a clear pattern for 

children’s choice of toys as in Asaba & Gweon (2018). 

The critical difference between experiments was whether 

the social context encouraged children to consider the puppet 
as an agent (capable of holding a belief) or an object. This 

allowed us to test the additional hypothesis that children 

would strategically choose which toy to show the puppet in a 

context where children had reason to attribute beliefs to the 

puppet (Exp.1), but not when it was treated as an object 

(Exp.2). To compare across experiments, we ran a 

generalized linear model (family = binomial) with Condition, 

Experiment, and Age (continuous) as predictors: Toy Choice 

~ Condition * Experiment + Age. As expected, we found a 

significant Condition x Experiment interaction (β = -2.709, z 

= -2.709, p = .007), as well as significant main effects for 

Condition (β = 1.937, z = 2.608, p = .009) and Experiment (β 

= 2.013, z = 2.702, p = .007), but not Age (β = .816, z = 1.06, 

p = .289). The significant interaction between condition and 

experiment provides additional support for the idea that 

children’s self-promotional behaviors are driven by the belief 

that children ascribe to the observer rather than the mere 

presence of an observer.  

General Discussion 

Across two experiments, we found that young children 

readily demonstrated their competence to a puppet, and that 

their self-promotional communication was modulated by the 

social context in which children interacted with the puppet. 
As our primary goal, Exp. 1 provided a conceptual 

replication of Asaba & Gweon (2018). Remarkably, when a 

puppet had only observed their failures on a toy, four-year-

olds demonstrated their success on the same toy to the puppet 

(rather than demonstrating a novel toy they played with in the 

absence of the puppet). This suggests that they attributed 

beliefs to the puppet about their own competence when the 

puppet was present for their failures, and they wanted to 

demonstrate their success to revise the puppet’s (arguably 

false) beliefs. However, this pattern of results was found only 

in Experiment 1, when the experimenter treated the puppet as 

an agent and asked the child to demonstrate a toy to it; we did 

not find this pattern in Experiment 2 when the experimenter 

treated the puppet as an object and asked the child to choose 

a toy to play with. 

Collectively, these results suggest that children are willing 

to engage in self-presentation behaviors to a non-human 

agent. Even though “losing face” in front of a puppet could 

not bear any foreseeable, real-world social consequences, 

children nonetheless tried to present positive information 

about the self (i.e., their success on the Observed Toy) instead 

of information about a novel toy (Unobserved Toy). Note that 

the puppet’s belief was never explicitly mentioned; children 

inferred the belief from its “observations” of their own 

failures and successes and selectively provided evidence that 

might improve the puppet’s beliefs. As irrational as these 

behaviors might seem, children were not indiscriminately 

showing off their competence to any entity; in the absence of 

any contextual cues to ascribe mental capacities to the 

puppet, children did not show these behaviors.  

What makes children want to have a positive impression, 

even to a puppet? A large literature documents strong human 

desires to make positive impressions in the minds of others, 

regardless of age, gender, or culture. One perspective 

suggests that these attempts reflect a desire to build a shared 

reality with others (Harris, 2017); when children perceive 

gaps in knowledge or understanding between themselves and 

other people, they are motivated to remedy them by providing 

additional information. Our results provide additional 

support for this idea, and further show that the process of 

belief attribution (about the self) may be a key modulator of 

the motivation to preserve (good) or improve (bad) images of 

ourselves. Another theoretical perspective is that this 

motivation comes from the desire to be selected by others as 

social partners (Engelmann & Rapp, 2018). From this view, 

without the social pressure to be seen as desirable social 

partners, reputation management behaviors would not 

emerge. Our results do not necessarily contradict this view. 

Though there are no clear consequences to showing off to a 

puppet, children may still consider the pragmatic demands 

communicated by the experimenter or they may be motivated 

to practice self-promoting. Further, the desire to be accepted 

by others may be a more basic instinct even when people are 

not explicitly aware of them (Dweck, 2017). 

More specifically, our task might have encouraged such 

behavior by asking children to “show” one of the toys to the 

puppet (although this was an ambiguous request either to 

show off or to teach novel information).  By contrast, 

Experiment 2 provided little contextual support for these 

motivations to manifest. Although the two experiments were 

well matched in children’s experiences with the toy and the 

time children spent in the presence of the puppet, Experiment 

2 differed from Experiment 1 in two ways: the experimenter 

did not provide agency cues about the puppet and also asked 

the child to choose a toy to play with (rather than asking to 
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choose what to “show” to the puppet). Although this was an 

important design decision to prevent children from 

retrospectively attributing agency to the puppet (“showing” 

implies the ability to perceive), these results do not allow us 

to tease apart the relative importance of others’ treatment of 

the puppet versus the nature of the final question.  
An intriguing possibility is that even in contexts where 

adults initially treat the puppet as a toy, children might 

retrospectively ascribe a belief to the agent (see Király, Oláh, 

Csibra, & Kovács, 2018) when the experimenter asks which 

toy children want to “show” to the puppet. Such results might 

suggest that children are picking up subtle cues that reflect 

the ways adults communicate about the sentience of 

nonhuman entities (Weisman et al., 2017). Conversely, prior 

work in reputation management (e.g., Engelmann et al., 

2012) suggests that children exhibit self-presentational 

behaviors even in the absence of explicit requests to 

communicate with their observer; thus, given clear evidence 

that adults treat the puppet as an agent (as in Exp.1), children 

might have still show similar self-presentational behaviors 

even when they are simply asked to choose a toy to play with. 

Future work might test the idea that adults’ explicit treatment 

of the puppet and the nature of the final question might 

independently contribute to these behaviors.  

Interestingly, the exclusion rate was noticeably high in 

Exp.2. It is possible that children may have not paid much 

attention to the puppet and subsequently had difficulty 

answering the memory question because of the social context. 

Understanding how children’s memory might depend on the 

social context of their interactions is an area for future work. 

Note that children were split between the Observed and 

Unobserved Toys in the Absent Condition in Exp. 1, as in 

Asaba & Gweon (2018). This might reflect genuine conflict 

between the desire to provide new information with the 

Unobserved Toy versus demonstrate their abilities on the 

Observed Toy; however, one might wonder if children were 

not considering the puppet’s beliefs about their abilities, but 

simply wanted to show a success on either toy. While this still 

requires attributions of ignorance, ongoing work shows that 

when the confederate is fully knowledgeable about the toys 

in the Absent Condition, children selectively choose the 

Observed Toy, suggesting that they want to specifically 

revise the confederate’s beliefs about their ability on that toy.  

Broadly, these findings are consistent with the hypothesis 

that belief-reasoning capacities play a role in children’s 

reputation management behaviors. Although work in Theory 

of Mind has traditionally focused on reasoning about others’ 

beliefs about observable, objective physical states of the 

world (e.g., Wimmer & Perner, 1983), our work suggests that 

young children can also reason about beliefs concerning 

unobservable, subjective qualities of the self. Just as young 

children understand that others’ observations (e.g., Anne sees 

the ball in the box) lead to others’ beliefs (e.g., Anne thinks 

the ball is in the box, Wellman et al., 2001), they also 

understand that others’ observations of their failures and 

successes informs others’ beliefs about the self. Further, just 

as young children provide information to improve others’ 

beliefs about the world (e.g., Gweon, Shafto, & Schulz, 

2018), children in this study actively provided information 

about the self given others’ beliefs about the self.  

However, although belief attribution was critical for 

children’s strategic communication in our task, not all 

reputation management behaviors may require rich 

psychological reasoning abilities. Rather, some behaviors 

may be a response to the mere presence of others, and mental-

state reasoning may be involved only in certain contexts 

where belief attribution is necessary to motivate the behavior 

(e.g., when children are attempting to revise others’ beliefs 

about them). If this is the case, even among children who 

clearly employ some reputation management behaviors (e.g., 

cheating less when others are present), the individual 

differences in their ability to select appropriate information 

or action to change others’ beliefs about their competence 

might positively correlate with their performance on standard 

measures of Theory of Mind.  

Here, we took advantage of prior work suggesting 

children’s willingness to attribute mental states to puppets 

(Wellman et al., 2001). Critically, whereas prior work has 

manipulated the physical features of an entity (e.g., Johnson 

et al., 1998), we manipulated how the experimenter treated 

it. Our findings suggest that children differentially perceived 

the puppet depending on the experimenter’s interactions with 

it. Along with recent work suggesting that children attend to 

agency cues and interact with non-human entities 

accordingly (Breazeal et al., 2018), the ways in which adults 

treat entities (e.g., other humans, toys, pets, deities) might 

have deep consequences for how young children 

subsequently treat them. Further, it is possible that young 

children might use graded levels of agency (see Weisman et 

al., 2017) to determine what to communicate to others. 

Whether children might prioritize their reputations for those 

with greater mental capacities (e.g., robots over puppets, or 

adults over babies) is an open area for future work. Further 

work could also consider directly asking children to evaluate 

the perceived agency of the interlocutor that has varying 

degrees of cues to agency, and investigating how this 

perceived agency influences children’s behaviors.  

These findings may also be useful to researchers in 

cognitive development whose work utilizes puppets in their 

methodology. For many studies, puppets are more than just  

logistically convenient stand-ins for human experimenters; 

they are often a necessary piece of the methodology, 

especially for studies that must present properties of agents 

that are implausible in human adults (e.g., someone who does 

not know labels of simple household objects) or tricky to 

convey with human actors in experimental contexts (e.g., 

someone who attempts to climb a hill). A useful takeaway 

from the current results is that just as children attribute beliefs 

about the external world to puppets (e.g., location of Sally’s 

ball, see Wellman et al. 2001), they also attribute rich beliefs 

about abstract qualities of the self such as competence or 

abilities; Four-year-olds readily attempted to change a 

puppet’s beliefs as if it was human. Importantly, their 

tendency to treat a puppet as an agent may be critically 
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modulated by the ways in which the experimenter had treated 

it. One open question is whether children genuinely believe 

that the puppet is an agent, or whether they are perceiving the 

experimenter’s communicative intent (i.e., the experimenter 

wants to communicate to the child that the puppet is a friend 

of hers) and therefore following along by engaging in a 

pretend play with the experimenter. Although the current 

work does not directly address this question, it is possible that 

children’s reasons for attributing beliefs to a non-human 

entity depends on age (e.g., younger children may treat it as 

an actual agent, whereas older children are aware that they 

are make-believe but still engage in pretense).   

What others think of us is deeply important for our 

everyday interactions with others, and the ability to reason 

about others’ minds might allow us to reason about others’ 

beliefs about us in savvy, sophisticated ways. Our findings 

suggest that children’s strategic self-presentational behaviors 

are specific to the social context. Children do not 

promiscuously show off to anyone or anything; rather, they 

are sensitive to cues about the object’s agency and 

specifically communicate about the self to other agents. 
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Abstract

At first glance, humans extract social judgments from faces, in-
cluding how trustworthy, attractive, and aggressive they look.
These impressions have profound social, economic, and polit-
ical consequences, as they subconsciously influence decisions
like voting and criminal sentencing. Therefore, understand-
ing human perception of these judgments is important for the
social sciences. In this work, we present a modifying autoen-
coder (ModifAE, pronounced “modify”) that can model and
alter these facial impressions. We assemble a face impression
dataset large enough for training a generative model by ap-
plying a state-of-the-art (SOTA) impression predictor to faces
from CelebA. Then, we apply ModifAE to learn generalizable
modifications of these continuous-valued traits in faces (e.g.,
make a face look slightly more intelligent or much less aggres-
sive). ModifAE can modify face images to create controlled
social science experimental datasets, and it can reveal dataset
biases by creating direct visualizations of what makes a face
salient in social dimensions. The ModifAE architecture is also
smaller and faster than SOTA image-to-image translation mod-
els, while outperforming SOTA in quantitative evaluations.
Keywords: neural networks; generative models; face recogni-
tion; social perception; image modification

Introduction and Related Work
Humans quickly form subjective impressions of faces, judg-
ing traits like facial attractiveness, trustworthiness, and ag-
gressiveness (Todorov, Olivola, Dotsch, & Mende-Siedlecki,
2015). Despite the continuous scale and subjective nature of
these social judgments, there is often a consensus among hu-
mans in how traits are perceived (e.g., human raters agree that
certain faces appear relatively more trustworthy) (Falvello,
Vinson, Ferrari, & Todorov, 2015; Eisenthal, Dror, & Rup-
pin, 2006). Social judgments of faces have a significant im-
pact on social outcomes, ranging from electoral success to
sentencing decisions (Dumas & Testé, 2006; Oosterhof &
Todorov, 2008). Modeling is one way to understand these
critical split-second impressions. Another way is through
explicit human-judged experiments, which require carefully
controlled datasets (e.g., building a dataset of faces which
vary in “trustworthiness” while remaining consistent across
age, gender, and “attractiveness”). In this work, we develop
a system to model these impressions, visualize human per-
ceptual biases, and create isolated image modifications for
experimental datasets.

Choosing a subset of social impressions for modeling,
we look to the 10k US Adult Faces Database (Bainbridge,
Isola, & Oliva, 2013a). Bainbridge et al. (2013a) investigated

what social attributes influence the memorability of a face.
They compiled a list of 20 spontaneous social judgments and
the corresponding opposite traits. Then, they assembled a
human-judged dataset of trait ratings on 2,222 faces from the
10k US Adult Faces Database. Among the 40 traits, “ag-
gressive,” “attractive,” “intelligent,” “emotional,” and “trust-
worthy” were frequently used in human-written face descrip-
tions, played a significant role in face memorability, and had
high rating agreement levels between human judges. There-
fore, we choose them as the subset of social impressions for
modeling in this paper.

To create controlled face datasets and visualize perceptual
biases, a generative model is needed. Recent generative im-
age models have been successful in creating high-resolution,
high fidelity, and diverse images (Brock, Donahue, & Si-
monyan, 2018; Karras, Aila, Laine, & Lehtinen, 2017; Choi
et al., 2017). However, in the face space, most generative
models have focused on editing or modifying categorical and
objective attributes, such as expression, gender, hair color,
and identity (Choi et al., 2017). These categorical changes are
referred to as “image to image translation.” Here, we focus
on modifying continuous attributes of an image, which we re-
fer to as “continuous image modification” (Isola, Zhu, Zhou,
& Efros, 2016). Regarding continuous image modification,
there has been work on modifying the memorability (Khosla,
Bainbridge, Torralba, & Oliva, 2013), and attractiveness of
a face (Leyvand, Cohen-Or, Dror, & Lischinski, 2008), but
these models do not generalize to wider sets of social impres-
sions. Also, some researchers have generated fake faces with
particular social impressions, but these models cannot mod-
ify real face images (Vernon, Sutherland, Young, & Hartley,
2014; Oosterhof & Todorov, 2008). So, no prior work has
attempted to automatically modify general continuous social
impressions of real face photographs.

Conditional generative adversarial networks (GANs)
(Goodfellow et al., 2014) have become the most popular tool
for the image to image translation task, so we compare against
a recent GAN as a state-of-the-art (SOTA) reference point
(Isola et al., 2016; Mirza & Osindero, 2014; Lee & Seok,
2017). StarGAN (Choi et al., 2017) is a SOTA conditional
GAN that can modify multiple binary categorical traits at
once, maintaining identifying traits of the original image us-
ing “cycle consistency” (Zhu, Park, Isola, & Efros, 2017).
StarGAN consists of two networks: a generator and discrim-
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inator. The generator takes an image and a set of desired cat-
egorical traits, producing a modified image. The discrimina-
tor takes an image and makes a prediction about its realism
and categorical traits. By comparing the fake images to gen-
uine images, the discriminator gives feedback to the generator
about how to make the image and desired traits appear more
realistic.

Despite the success of GANs in categorical image-to-
image translation, they cannot perform continuous image
modification without binarizing the task and have architec-
tural downsides. GANs typically have many parameters
and long training times. They are also sensitive to hyper-
parameter selection and the delicate balance between genera-
tor and discriminator training. Therefore, they can be difficult
to train compared to a single-network model. Finally, they
suffer from a lack of interpretability, offering no means of
visualizing or understanding why the model makes the mod-
ifications it does.

In this work, we address these architectural concerns while
designing a neural network to model and automatically mod-
ify continuous-scale face traits (rated from 1 to 9) in real
face images. We create a sufficiently large dataset for train-
ing a generative model by combining CelebA images with
a SOTA face impression predictive model (Liu, Luo, Wang,
& Tang, 2015). Enabling interpretable bias visualization and
controlled dataset creation for human face impressions, we
introduce ModifAE. ModifAE (pronounced “modify”) is a
single-network image modification autoencoder.

Subjective Judgment Face Dataset
Building a Large Scale Facial Impression Dataset
To train a generative model on continuous face traits, we need
a large and diverse dataset. We start with images from the
CelebA dataset (Liu et al., 2015), which are annotated with
binary categorical labels such as “wearing a hat” but lack con-
tinuous ratings of social impressions.

To generate continuous social impression ratings of these
faces, we use our previous social impression predictive model
(Song, Li, Atalla, & Cottrell, 2017). The model was trained
on a smaller dataset (2,222 faces from the MIT 10k US faces
dataset (Bainbridge, Isola, & Oliva, 2013b)) that had been
annotated with ratings of 40 social traits on a scale from 1 to
9 by 15 raters for each face. Now, we focus on the subset
of traits with the highest correlation between human judges:
emotional, aggressive, trustworthy, responsible, attractive and
intelligent. We apply this predictive model to about 190,000
faces from the CelebA dataset. Example faces and their pre-
dicted ratings are shown in Figure 1. Note that 6-8 are high
ratings, and 2-4 are low ratings.

Validating the Algorithm-Augmented Dataset
Evaluating the effectiveness of this algorithm-augmented
dataset, we collect human judgments of the model’s predic-
tions in two ways: pairwise comparison and single image rat-
ings. All participants were recruited from Amazon Mechani-

Figure 1: CelebA faces and their predicted traits.

Table 1: Validation of the impression prediction model
Attribute Accuracy Attribute Correlation

Aggressive 0.95 Aggressive 0.76∗∗∗

Emotional 0.92 Attractive 0.90∗∗∗

Trustworthy 0.88 Trustworthy 0.73∗∗∗

Responsible 0.78 Intelligent 0.62∗∗∗

cal Turk (AMT).
For pairwise comparison, we test four attributes: aggres-

sive, responsible, trustworthy and emotional. For each trait,
we compose 40 pairs of images. Within each pair, one is
from the 40 faces of highest scores, and the other is from
the 40 faces of lowest scores, as predicted by the model. We
then ask human participants which face better exemplifies the
predicted trait. Each trait’s 40 pairs are evaluated by 30 AMT
workers. We then calculate the overall likelihood that the face
of higher predicted score is chosen, which we call “accuracy.”
The results are shown in the left side of Table 1. The attributes
predicted by the model align well with human judgments.

For the single-rating experiment, we examined four traits:
attractive, aggressive, trustworthy and intelligent. For each
trait, we chose 80 faces whose predicted scores are evenly
spread across a range of predictions (i.e., from 2 to 8). Each
participant is presented with a random sequence of 80 faces,
and is asked to give each face a rating on a 1-9 scale for
the specified trait. Every face is rated by 15 subjects, and
we compute the average. Lastly, we compute the Spearman
rank correlation between the average human ratings and the
model’s predictions of the same set of faces for each trait. For
all four traits, human average ratings are significantly cor-
related with model predictions (∗∗∗ indicates p < 0.001), as
seen in the right side of Table 1.

Given the pairwise and single image rating results, we con-
sider the predicted scores as roughly equivalent to human
judgments. Hence, in the next section, we train our face mod-
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ification model with these ratings.

ModifAE
ModifAE is a single network autoencoder which implicitly
learns to modify continuous face impression traits in images
(illustrated in Figure 2). Here, we elaborate on the archi-
tecture, training procedure, and mechanism of the ModifAE
model.

Model Architecture
The ModifAE architecture consists of a single autoencoder
with two (image and trait) sets of inputs which pass through
an encoding stage, are fused (by averaging) in the middle of
the network, and are then fed into an image decoder.

The image encoder and decoder are identical to the en-
code and decode portions of the StarGAN generator network,
scaled to fewer channels (Choi et al., 2017). More specifi-
cally, the network has two downsampling convolutional lay-
ers with stride two, four residual blocks, a bottleneck with
16 channels, four more residual blocks, then two upsampling
transposed convolutional layers with stride two (Choi et al.,
2017). All layers have ReLU activation. We use the first
half of this network (including the bottleneck) as the image
encoder. We use the remainder of the network as the image
decoder. Theoretically, this portion could consist of the en-
code and decode halves of any image autoencoder; we chose
the architecture from StarGAN for the sake of comparability.

The trait encoder takes a 1-dimensional set of traits, feeds
these into a single dense layer with Leaky ReLU activation,
and reshapes the output to create a vector of the identical
shape as the image encoder output. The outputs of the trait
and image encoders are then combined into a single latent
representation by averaging.

In order to encourage the model to encode the trait infor-
mation, which is otherwise unnecessary to reproduce the im-
age, 50% dropout is applied to the values from the image en-
coder. This is then averaged with the trait encoder output to
arrive at the combined latent representation. The image de-
coder projects the representation back into image space, cre-
ating the single output image. The architecture is depicted
in Figure 2, where “convs” refers to residual convolutional
blocks from StarGAN.

Training Procedure
ModifAE is exclusively trained on an autoencoding task. We
train ModifAE using the Adam optimizer (Kingma & Ba,
2014) and train for 100 epochs on CelebA images (Liu et
al., 2015). The objective is to optimize a single loss func-
tion based on two terms. We use the L1 loss on the image
autoencoder. We also optimize the L1 loss between the trait
encoder and image encoder. The total loss is:

L =
1
N

N

∑
p=1
|xp−AE(xp)|+ |E(xp)−E(yp)| (1)

where xp is the pth image example, yp is its trait vector, E(·)
is the result of the trait or image encoder, and AE(·) is the

output of the full-architecture autoencoder. The second term
in this loss function encourages the network to have a simi-
lar representation between the trait and the image encodings.
The trait encoder obviously does not “know” what the image
is, but this constrains the image encoding to include informa-
tion about the trait.

Why the Model Learns Implicitly to Modify Images
Each image is encoded along with its predicted traits. The
image encoder compresses the image down to a bottlenecked
latent space, where higher level features about the image are
encoded. Simultaneously, the trait encoder projects the given
traits to the same latent space, creating an average face repre-
sentation with those ratings.

Because dropout is applied to the face encoding, the de-
coder has to use the trait information to “fill in the gaps” in the
face representation. Therefore, at training time, faithfully re-
constructing the image is reliant on information coming from
the trait encoder, and the trait encoder learns to mimic aver-
age latent distributions of images with the provided ratings.

At test time, an image can be passed in with any desired
traits. The trait encoder estimates the latent space for im-
ages with those traits, and the decoder responds by altering
the face image towards the encoded trait. Hence, the output
image resembles the original but is changed according to the
provided traits.

Experiments and Results
In this section, we provide examples of ModifAE’s modifica-
tions and interpretable transformation maps. We also report
an experiment which quantitatively compares the effective-
ness of ModifAE and StarGAN with a user study, and we nu-
merically compare the ModifAE architecture with other rele-
vant systems.

Qualitative Evaluation
Multi-Trait Traversals Here, we show that ModifAE is ca-
pable of making continuous modifications on multiple traits
with a single model (see Figure 3 and Figure 4). This en-
ables ModifAE to modify some traits while holding others
traits constant, which can be applied to creating datasets with
controlled and isolated modifications for social psychology
experiments.

For Figure 3, we trained ModifAE on two traits: “attrac-
tive” and “aggressive.” The picture in the upper left corner
is the original. At the (0,0) point in Figure 3 (unattractive
and not aggressive) the man’s mouth is fairly neutral, and his
features are not very pronounced. As attractiveness and ag-
gressiveness increase, the angles of the face become sharper,
there is more definition of features like eyes and eyebrows,
and the smile shrinks.

Figure 4 shows interpolations generated by two models.
Each was trained on a social trait and a gender category from
CelebA. Then, each trait was interpolated while holding the
gender bias constant. The resulting figure shows how percep-
tion of “aggressiveness” may vary across genders. Likewise,
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Figure 2: General illustration of ModifAE architecture.

this method can show how other traits may be less correlated
with gender perception.

Figure 3: Continuous value, multi-trait image modification
by ModifAE.

Qualitative Comparison to StarGAN Comparing our
model to StarGAN (Choi et al., 2017), we binarize the contin-
uous traits by doing a median split on the continuous-valued
traits and train StarGAN on these two groups (low and high).
This is necessary because StarGAN inherently only makes
binary changes. The results are shown in Figure 5. While
StarGAN produces high-resolution image reconstructions,
they occasionally suffer from color distortions or lack of
apparent changes. ModifAE makes subtle and reliable
modifications to the original images, changing the way

Figure 4: Continuous changes of a face while holding gender
bias constant.

the social traits are perceived. In the images produced by
ModifAE, more trustworthy faces smile more, and appear
to have eyes set farther apart. The ModifAE attractive faces
appear to smile more and notably have more well-defined
eyes.

Interpretable Transformation Maps As mentioned
above, ModifAE addresses the issue of interpretability in
generative models. We provide a window into the model’s
representation of the traits by decoding the representation
generated by the trait encoder without giving any actual
image input. Figure 6 shows a traversal of the learned “trait
faces” or “transformation maps” of attractiveness and intel-
ligence. In this case, we trained the model on a combination
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Figure 5: Comparison of ModifAE and StarGAN modifications.

of gender and the given trait, so we show a traversal of the
model’s representations for male and female faces separately.

Figure 6: Visualization of model’s internal perception of
traits. Each is a traversal of a trait (increasing left to right)
while gender is held constant.

Quantitative Evaluation
Quantitative Comparison with StarGAN To evaluate the
quality of ModifAE’s continuous subjective trait modifica-
tions, we perform Amazon Mechanical Turk (AMT) exper-
iments on four traits: aggressive, attractive, trustworthy and
intelligent. For each trait, we created 90 image pairs, of which
80 are the same identity modified to be at high and low values
of each trait. For StarGAN, we used a median split of low and
high rated traits to train the model. ModifAE was trained as
previously described. For each model, then, faces were mod-

ified to be low or high on each trait. Subjects judged which
face had more of the particular trait. 10 pairs were repeats in
order to judge subject consistency, and 10 pairs were unmod-
ified CelebA faces with high and low ratings. These latter we
called “ground truth” pairs to test whether subjects were pay-
ing attention. Subjects whose ratings on these pairs were at
chance or below were rejected.

Hence, for each trait, we present participants with a se-
quence of 100 image pairs, and participants are asked to pick
which image most exemplifies the trait in each pair.1 Each
pair was evaluated by 15 subjects.

We calculate the fraction of pairs in which subjects chose
the image with the higher modified trait across all participants
and all pairs. If they choose the face that was modified to be
higher in the trait, then they agree with the model’s modifica-
tions. The results are shown in Table 2. We perform a bino-
mial test to determine whether each trait’s accuracy is signif-
icantly below or above chance (∗∗∗p < 0.001). Note that the
fourth column “Ground Truth” indicates the overall accuracy
of the unmodified “ground truth” pairs. Given the variance in
human impression judgments, these numbers serve as a refer-
ence ceiling for how well the models can perform.

Evaluating ModifAE’s Continuity Since ModifAE is able
to generate continuous modifications, we evaluated this prop-
erty by creating two more same-face pairs: Ones modified to
have low values and middle values, and ones modified to have
middle values and high values. We obtain human agreement
(accuracy) over the Low-Mid and Mid-High pairs for each of
the four traits. The results are shown in Table 3.

Model Size and Training Time
In contrast with GANs, ModifAE requires fewer parameters
and less time to train. StarGAN takes about 24 hours to train
on CelebA (Choi et al., 2017); ModifAE takes less than 11

1In a pilot experiment, we asked subjects to rate faces with dif-
ferent identities generated in a fine continuum, but found significant
variance with no correlation to the intended scores, presumably be-
cause the images were not differentiable at that fine a grain.
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Table 2: Comparison of ModifAE with StarGAN

Attribute ModifAE StarGAN “Ground Truth”

Aggressive 0.68∗∗∗ 0.72∗∗∗ 0.90∗∗∗

Attractive 0.68∗∗∗ 0.51 0.94 ∗∗∗

Trustworthy 0.63∗∗∗ 0.40 0.87∗∗∗

Intelligent 0.68∗∗∗ 0.58∗∗∗ 0.81∗∗∗

Table 3: ModifAE Low-Mid-High Level Self-comparison

Attribute Low-Mid Mid-High Low-High

Aggressive 0.60∗∗∗ 0.52 0.68∗∗∗

Attractive 0.59∗∗∗ 0.52 0.68∗∗∗

Trustworthy 0.61∗∗∗ 0.53∗ 0.63∗∗∗

Intelligent 0.60∗∗∗ 0.50 0.68∗∗∗

hours. Table 4 shows the number of parameters required by
different models trained on the CelebA dataset. The listed
values are as reported in the original papers (Perarnau, van de
Weijer, Raducanu, & Álvarez, 2016; Zhu et al., 2017) and in
the parameter comparisons of Choi et al. (2017).

Note that the majority (over 40M) of StarGAN’s param-
eters are in the discriminator network, and ModifAE uses a
smaller version of the StarGAN generator. Also, ModifAE’s
relatively small trait encoder is the only part of the model
which scales with supervising additional traits, so learning
more traits with a single model is cheaper with ModifAE. To-
gether, these properties mean that ModifAE takes over fifty
times fewer parameters than any of the competing models.

Discussion
Quantitative Experiment Discussion
From Table 2, we can see that for all four traits, ModifAE
produces pairs that yield above chance level human agree-
ment. In three out of the four traits, ModifAE significantly
outperforms StarGAN; whereas for the aggressive trait, Star-
GAN performs only slightly better than ModifAE. StarGAN
is good at creating discrete changes in facial expressions,
which accounts for this advantage.

From Table 3, we find that all the low-mid pairs yield
significantly above chance accuracy, yet for mid-high level,
only trustworthy pairs have accuracy slightly above chance
(p < 0.05∗). This suggests that human psychological face
space is nonlinear and has more differentiation towards the
low- to mid-range of social dimensions. Another possibility
is that when our model generates faces that are of more ex-
treme scores (e.g. 8 or 9), the model is extrapolating, and
produces artifacts that lead to that face being rejected. This
speculation requires further analysis to be confirmed.

Interpreting Transformation Maps
The interpretability of the model may be useful in the field of
social psychology, giving researchers new suggestions about

Table 4: Model size for learning seven traits

Model CycleGAN ICGAN StarGAN ModifAE

Parameters 736M 68M 53M 1M

what features of a face are most important for perceiving
a given trait. It can also elegantly summarize the average
opinions and biases of a group of raters who have created a
dataset, or serve as a visual heuristic for understanding which
traits are most similar to each other in human perception.

The “intelligent” transformation map appears to show that
bigger heads are rated as more intelligent (at least, pictures
in which the head appears larger or closer). This suggests a
bias that to our knowledge, has not been previously observed.
Of course, in this case, it is simply faces that subtend a larger
visual angle, rather than real-world head size. In further ex-
periments, the head size should be normalized across images
to avoid this potential bias. In addition, experiments could
be run where image head size is systematically manipulated
with the same face (judged by different subjects), to verify
the bias.

The “intelligent” transformation map appears to show that
bigger heads are rated as more intelligent (at least, pictures in
which the head appears larger or closer). This suggests a bias
that to our knowledge, has not been previously observed. Of
course, in this case, it is simply faces that subtend a larger vi-
sual angle, rather than real-world head size. In further exper-
iments, the head size should be normalized across images to
avoid this potential bias. In addition, experiments where hu-
mans rate images with systematically manipulated head size
could be run to verify the bias.

Conclusion

In this paper, we propose ModifAE: a single network au-
toencoder, which performs continuous image modification
on subjective face traits in an interpretable manner. Modi-
fAE does not require training multiple networks or designing
hand-tailored features for image modification. Instead, a sin-
gle network is trained to autoencode an image and its traits
through the same latent space, implicitly learning to make
meaningful changes to images based on trait values. Our
experiments show that ModifAE requires fewer parameters
and takes less training time than existing general methods.
It also provides interpretable transformation maps of traits
which demonstrably highlight biases in datasets and salient
features in human perception of traits. Additionally, in this
work, we compute and verify novel continuous subjective
trait ratings for CelebA faces. Finally, we demonstrate that
ModifAE makes more meaningful continuous image traver-
sals than an equivalent SOTA method (Choi et al., 2017) and
examine human agreement with ModifAE modifications in
the subjective face trait space.
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Abstract

The Simple Recurrent Network (SRN) has a long tradition in
cognitive models of language processing. More recently, gated
recurrent networks have been proposed that often outperform
the SRN on natural language processing tasks. Here, we in-
vestigate whether two types of gated networks perform better
as cognitive models of sentence reading than SRNs, beyond
their advantage as language models. This will reveal whether
the filtering mechanism implemented in gated networks corre-
sponds to an aspect of human sentence processing. We train
a series of language models differing only in the cell types of
their recurrent layers. We then compute word surprisal values
for stimuli used in self-paced reading, eye-tracking, and elec-
troencephalography experiments, and quantify the surprisal
values’ fit to experimental measures that indicate human sen-
tence reading effort. While the gated networks provide better
language models, they do not outperform their SRN counter-
part as cognitive models when language model quality is equal
across network types. Our results suggest that the different
architectures are equally valid as models of human sentence
processing.

Keywords: Surprisal; Gated Recurrent Neural Networks;
Language Modeling; Sentence Processing; Sentence Reading;
Self-paced Reading; Eye-tracking; Electroencephalography

Introduction

In psycholinguistics, the Simple Recurrent Network (SRN;

Elman, 1990) has been a popular (and reasonably success-

ful) neural architecture for modeling aspects of human sen-

tence processing, and it remains so to this day (Brouwer,

Crocker, Venhuizen, & Hoeks, 2017; Frank, Otten, Galli, &

Vigliocco, 2015; Rabovsky, Hansen, & McClelland, 2018;

Twomey, Chang, & Ambridge, 2014, to name just a few re-

cent examples). However, it has been known since the late

1990s that the SRN struggles to integrate information over

many classification steps, due to what is referred to as the

vanishing gradient problem (Hochreiter, 1998).

This problem was addressed by neural network mod-

els containing recurrent units that have gates with trained

weights, such as the Gated Recurrent Unit (GRU; Bahdanau,

Cho, & Bengio, 2015) and the Long Short-Term Memory

(LSTM; Hochreiter & Schmidhuber, 1997) network. The

gating mechanism implemented in GRUs and LSTMs con-

trols the flow of information in the recurrent cell, allowing

the cells to memorise information over time, forget it when

adequate, and to determine the weighting of old and new in-

put. While the principles of the two architectures are sim-

ilar, the GRU can be regarded as a more lightweight varia-

tion on the LSTM, making use of only two gates and a single

hidden state, whereas the LSTM architecture provides three

gates and introduces an additional memory state.

Gated networks outperform SRNs on several NLP tasks.

For example, LSTMs perform more accurately than SRNs on

number agreement (Linzen, Dupoux, & Goldberg, 2016) and

conversational speech recognition (Xiong et al., 2017). In the

current study, we investigate how well gated networks per-

form as cognitive models of human sentence processing com-

pared to the traditional SRN. We model human word-level

processing effort by using recurrent neural networks as prob-

abilistic language models that estimate the predictability of

words in context.

For the language modeling problem, the ability to make ef-

fective use of more of the words in the prior sequence can

be expected to pose a crucial advantage of a gated recurrent

network compared to the SRN. For instance, the processing

of long-term dependencies has been proposed as one aspect

of natural language processing addressed more adequately by

gated networks than by SRNs (Bahdanau et al., 2015). Be-

cause gated networks are designed for long-distance encod-

ing, they may also be superior cognitive models: The filter-

ing mechanism implemented by the gates may mirror an as-

pect of human sentence processing. For example, it is known

that humans read the word or faster when they processed the

word either in the prior sequence of words, demonstrating

their ability to remember dependencies between words across

long spans (Staub & Clifton Jr., 2006). Gated networks may

reflect this human behaviour more accurately than SRNs by

assigning lower surprisal to the word or even when the corre-

sponding either is distant.

Although LSTMs and GRUs have already been applied to

account for human language performance measures (Futrell

et al., 2019; Goodkind & Bicknell, 2018; Gulordava, Bo-

janowski, Grave, Linzen, & Baroni, 2018; Hahn & Keller,

2016; McCoy, Frank, & Linzen, 2018; Sakaguchi, Duh, Post,

& Durme, 2017; Van Schijndel & Linzen, 2018a, 2018b), the

question remains whether they form more accurate cognitive

processing models than traditional SRNs, beyond what might

be expected from their stronger language modeling abilities.

In the current study, we directly compare three recurrent

neural network (RNN) language model architectures (SRNs,

GRUs, and LSTMs) on their ability to predict human reading

data collected in self-paced reading, eye-tracking, and elec-

troencephalography experiments. If the mechanisms imple-
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mented in GRUs and LSTMs correspond to cognitive mecha-

nisms applied during sentence comprehension, we would ex-

pect predictions by these models to fit human reading data

more closely than predictions by SRNs, over and above any

advantage that GRUs/LSTMs might have because of their su-

periority as language models. Conversely, if the cognitive

system does not apply anything like a gating mechanism, the

SRN may simulate human language processing more closely

than GRUs and LSTMs do. In that case, the SRN may predict

human processing data more accurately than gated RNNs that

are matched for language model quality.

Method1

To determine whether or not LSTMs and GRUs outperform

SRNs as cognitive models of sentence processing, we train

three different kinds of RNN language models, each using

one of the three recurrent cell types. We evaluate the mod-

els by assessing the predictive power of the surprisal values

they assign to stimuli used in three experiments of humans

sentence reading.

Human processing data

We assess how well each RNN language model’s word sur-

prisal values predict human cognitive processing effort during

sentence reading, as measured in self-paced reading (SPR),

eye-tracking (ET), and electroencephalography (EEG) exper-

iments. The SPR and ET data come from Frank, Monsalve,

Thompson, and Vigliocco (2013) and the EEG data from

Frank et al. (2015).

In all three experiments, participants read English sen-

tences sampled from unpublished novels. All sentences are

understandable out of their context in the novels. A sub-

set of the sentences were used in the ET and EEG experi-

ments; these were the shortest sentences (maximum length:

15 words) of those from the SPR study. Table 1 displays the

numbers of participants and stimuli, along with ranges and

means of sentence length for each of the three data sets. Im-

portantly, we make sure that all word types in the stimuli are

attested for in the training data, meaning that the language

models do not encounter words for the first time when ap-

plied to the stimuli.

For this study, we select a single variable from each dataset

that is indicative of human processing cost: Reading time

(RT) from the SPR data, gaze duration (a.k.a. first-pass read-

ing time) from the ET data, and N400 size from the EEG

data set. We follow the insight that reading times reflect

the cognitive effort the reader needs to employ during lan-

guage processing (Levy, 2008). Reflecting this idea, the

N400 event-related potential amplitude indicates processing

effort on lexico-semantic levels (Kutas, Van Petten, & Kluen-

der, 2006; Kutas & Federmeier, 2011). Earlier research has

already demonstrated that these dependent variables, from

these particular data sets, indeed correlate with word surprisal

1All code and data is available at https://github.com/
caurnhammer/AurnhammerFrank CogSci2019

values (SPR: Monsalve, Frank, & Vigliocco, 2012; ET: Frank

& Thompson, 2012; EEG: Frank et al., 2015).

Network architectures

Our RNN architecture consists of a 400-unit word embed-

ding layer, a 500-unit recurrent layer, a 400-unit feed-forward

layer with tanh activation function, and a final layer with log-

softmax activation function, which maps to the vocabulary.

We do not use pre-trained word embeddings. Rather, the

weights of the embedding layer that transforms the vocabu-

lary items to real-valued word vectors are learned during the

next-word prediction task, along with the rest of the network

weights. The model architectures only differ in that their re-

current layers use either SRN, LSTM, or GRU cells.

Training corpus

As training data for the language models we use section 13

of the English version of the Corpora from the Web (COW,

2014 version; Schäfer, 2015). This corpus consists of ran-

domly ordered sentences collected from web pages. From

this section, the 10,000 most frequent word types are selected

as our model’s vocabulary. One hundred and three word types

that appear in the experimental stimuli (see Section on Hu-

man Processing Data) but are not yet covered in the vocabu-

lary are added, resulting in a final vocabulary size of 10,103

word types. After determining the vocabulary, we select those

sentences from the initial COW section that contain only in-

vocabulary word types, thus also covering the low-frequency

words in the experimental stimuli. We follow this strategy to

avoid having to use a (cognitively implausible) UNKNOWN-

type. Furthermore, we only keep sentences with a maximum

length of 39 words, which corresponds to the longest sen-

tence in the experimental stimuli (not counting punctuation

as words). We remove a small number of sentences to arrive

at a final selection that contains 6,470,000 training sentences

and consists of 94,422,754 tokens in total.

Although this training set and vocabulary size is relatively

small by current standards, note that our aim here is not to

construct the best possible language model, and not even to

provide the most accurate account of human sentence pro-

cessing effort. Rather, we investigate whether RNN architec-

tures differ in their ability to predict human data.

Network training

We train the networks on one sentence at a time to let model

training resemble human language processing and acquisi-

tion. Further, we reset the hidden state of the recurrent cells

to zero for each new sentence. From the network’s log-

probability output at each step, the loss function computes

the negative log-likelihood. Based on this loss, we optimise

the network weights using stochastic gradient descent with

momentum (0.9) and an initial learning rate of 0.0025. After

each third of the training data, we reduce the learning rate to

half of its prior value. As precaution to the exploding gradient

problem (Bengio, Simard, & Frasconi, 1994), we clip gradi-

ents at 0.25. The error is always back-propagated through the
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Table 1: Numbers of participants, number of sentences, range of sentence length, mean sentence length, number of word tokens,

and number of data points (after exclusion; see Section Stage 1: Predicting human data from surprisal) in the human sentence

reading data sets. In the SPR experiment, each participant received a random subset of the 361 possible sentences (see Frank et

al., 2013, for details).

Exp. Part. Sent. Range sent. len. Mean sent. len. Tokens Data points

SPR 54 361 5–39 14.1 4957 132,858

ET 35 205 5–15 9.4 1931 28,970

EEG 24 205 5–15 9.4 1931 24,618

entire sentence.

To account for random variation in model performance that

is solely due the initial weights and training sentence presen-

tation order, we train each RNN type six times, each time

with different random initial weights (uniformly distributed

between ±0.1; with initial biases 0) and a different random

order of sentence presentation. However, for each training

repetition, the same initial weights (for connections that cor-

respond between architectures) and the same presentation or-

ders are applied across the three recurrent cell architectures.

Hence, the only difference between the RNN types is in the

architectures of their recurrent cells.

Language model evaluation

We evaluate the performance at the nine different training cor-

pus sizes by computing the perplexity on the unseen experi-

mental stimulus sentences. Perplexity is computed as

PPL = e−|W |−1 ∑w∈W logP(w)
,

where |W | is the number of word tokens in the experimen-

tal sentences. Lower perplexity results from language models

that assign higher probabilities to the test data. Perplexity

thus expresses the extent to which a language model captures

the statistical structures of the data that are useful to predict-

ing the next word, irrespective of the extent to which this is

helpful for explaining human sentence processing measures.

Statistical model evaluation

The RNN models’ ability to account for the human process-

ing data is evaluated in two stages, as explained in more detail

below. First, we compute surprisal for the experimental test

items. Surprisal is computed as

surprisal(wt) =− log P(wt |w1, ...,wt−1).

and formalises the extent to which occurrence of a word wt is

unexpected, given a sequence of preceding words w1, ...,wt−1

(Hale, 2001; Levy, 2008). The reading-time and N400 mea-

sures on each word are regressed on each model’s surprisal

estimates resulting in a collection of goodness-of-fit mea-

sures. Next, we assess the relation between each RNN type’s

goodness-of-fit and its quality as a language model.

Stage 1: Predicting human data from surprisal Each in-

dividual RNN generates surprisal estimates for each word of

the 361 stimuli sentences. The surprisal values are obtained

after training the network on 1K, 3K, 10K, 30K, 100K, 300K,

1M, 3M, and all 6.47M sentences. This procedure allows to

observe how the goodness-of-fit to human data develops as a

function of language model quality, which steadily increases

with the amount of observed training data. In summary, we

have 9 (points during training) × 6 (training repetitions) × 3

(RNN types) = 162 sets of surprisal values to compare to the

SPR times, gaze durations, and N400 sizes.

The predictive power of each set of surprisal values is as-

sessed by means of linear mixed effects regression, using

the MixedModels package2 (v0.18.1) for Julia (Bezanson,

Edelman, Karpinski, & Shah, 2017). First, a baseline model

was fitted to each of the three human data sets. The aim of

this baseline is to factor out the effects of the most imporant

variables known to affect reading times and N400 sizes and

thus be left with an effect of surprisal that is as isolated as

possible.

The dependent variables self-paced reading times and gaze

durations are log-transformed. In the EEG data, N400 size is

analysed as defined by Frank et al. (2015): the average poten-

tial on central-parietal electrodes over a 300–500ms window

after word onset.

The baseline models include as fixed effects: log-

transformed word frequency in the training corpus, word

length (number of characters) and word position in the sen-

tence. For the SPR and ET data, we also enter the previ-

ous word’s frequency and length into the analysis to account

for spillover effects that are known to affect reading times

(Rayner, 1998). Moreover, we add previous-word RT (log-

transformed) to the SPR analysis to address the high corre-

lation between consecutive word RTs that typically occurs in

the SPR paradigm; and to the ET analysis we add a binary

factor indicating whether the previous word was fixated. For

the EEG analysis, we enter baseline activity (i.e., the average

electrode potential in the 100ms leading up to word onset)

into the regression. All interactions between the fixed effects

are also included. Furthermore, there are by-subject and by-

item (word token) random intercepts and by-subject random

slopes of all fixed-effect predictors.

We exclude data on sentence-initial and -final words, words

attached to a comma, and clitics. Furthermore, participants

are removed from the analysis if they are not native English

2github.com/dmbates/MixedModels.jl
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speakers or scored less than 80% correct on the yes/no com-

prehension questions that were presented for approximately

half the sentence stimuli. In addition, SPR and ET data points

are removed on words directly following a comma or clitic,

and when reading times are below 50ms or over 3500ms. For

the EEG data, we exclude artefacts as identified by Frank et

al. (2015).

The goodness-of-fit of each set of surprisal values for each

human data set equals the log-likelihood ratio (decrease in

regression model deviance) between the baseline and a re-

gression model that additionally includes surprisal as both a

fixed effect and by-subject random slope. For the SPR and ET

analyses, the previous word’s surprisal is also added (again as

fixed and random effects) in order to capture spillover effects.

The resulting values are χ2-statistics, with 2 degrees of free-

dom for the EEG data and 4 degrees of freedom for the two

reading-time data sets. We further add a negative sign to the

χ2-statistics to indicate effects in the negative-going direc-

tion, that is, when higher surprisal results in shorter reading

times or smaller (less negative) N400 size.

Stage 2: Predicting goodness-of-fit from language model

accuracy Networks that form better language models tend

to estimate surprisal values that fit human data better (Frank

et al., 2015; Goodkind & Bicknell, 2018). In analysis Stage 2,

we are interested in ascertaining whether the relation between

language model accuracy and goodness-of-fit to human data

differs between network architectures.

We quantify language model accuracy as the average log-

probability (i.e., negative average surprisal) estimated over

the experimental sentences, weighted by the number of times

each word token takes part in the analysis described above,

that is, for how many participants the data on this word was

not excluded. Following this, we fit Generalized Additive

Mixed Models (GAMMs), for each of the three RNN types

and human data sets separately, to predict the goodness-of-fit

measures (from analysis Stage 1) from the language model

accuracies, with network training repetition as a random ef-

fect. This is done using the R package mgcv (Wood, 2004).

Results

Language modelling results

Figure 1 reports on the perplexities of the 18 individual lan-

guage models at 9 different points during training. While the

SRNs set in at lower perplexity than the gated networks early

in training, the latter ultimately outperform the simple RNNs.

Language model performance steadily increases throughout

training but a saturation of the language model performance

seems only to commence at the final training steps.

Statistial modelling results

Figure 2 displays the goodness-of-fit measures from analysis

Stage 1 for each human data set, as well as the fitted curves re-

lating goodness-of-fit to language model accuracy from anal-

ysis Stage 2. These plots clearly show that well-trained lan-

guage models estimate surprisal values that account for read-
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Figure 1: Perplexity on the experimental sentences for each

of three RNN types at nine different training corpus sizes.

At each training size there are six models of each type with

different sentence orderings and initial weights. Data points

are subjected to horizontal jitter to improve readability.

ing times and N400 size, and that the goodness-of-fit gener-

ally improves as the language models more accurately cap-

ture the linguistic patterns. Interestingly, for lower levels of

linguistic accuracy, corresponding to models trained on rela-

tively few sentences, the effect of surprisal on gaze duration

size is reversed, in that higher surprisal correlates with faster

reading. The cause of this reversal remains to be identified.

The gated RNN models reach higher levels of language

model accuracy than the SRNs, which is why they can also

outperform SRNs in terms of goodness-of-fit. For similar

levels of language model accuracy, however, the three model

types account for similar quantities of variance in the human

processing data, as is evident from the largely overlapping

confidence intervals of the fitted GAMM curves.

This does not imply that different network types make no

independent contributions to human data prediction. To test

whether the models differ qualitatively in that one RNN ex-

plains unique variance over and above the others, we average

the surprisal values over the six fully trained versions of each

network architecture. Next, we fit linear mixed models in-

cluding the surprisals from two of the three RNN types and

then test whether that regression model fits the data better

than a regression with only a single set of surprisal values.

That is, for each pair of RNN types we ask whether one ex-

plains human data over and above the other.

Table 2 shows model comparisons, testing for the signif-

icance of adding the surprisal from the models displayed in

rows to the models in columns. The comparisons reveal sta-

tistically significant effects of GRU and LSTM surprisal over

and above SRN surprisal in all three data sets. For the EEG

data, SRN surprisal also explains variance not yet explained
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Figure 2: Top row: results from analysis Stage 1. The goodness-of-fit of surprisal to human data is plotted as a function of

language model accuracy. Bottom row: results from analysis Stage 2. Plotted are the fitted GAMM curves relating goodness-

of-fit to language model accuracy. Shaded areas indicate 95% confidence intervals. Panels on the left, middle, and right side

are for SPR, ET, and EEG data, respectively.

by the gated networks.

Discussion

Our comparison of the abilities of SRNs, GRUs, and LSTMs

to predict human reading-time and N400 measures (via the

networks’ word-surprisal estimates) do not reveal any large

or reliable difference between the three RNN types, at least,

not as long as the different networks’ accuracies as language

models do not differ. The two gated networks do form better

language models than the SRN, resulting in more precise pre-

dictions of human data at the highest levels of language model

accuracy. However, if the human cognitive system would em-

ploy mechanisms akin to the gates in GRU/LSTM recurrent

cells, we would expect GRU/LSTM-based surprisal to show

better fit than SRN-based surprisal to the human processing

data, even without any difference in language model accu-

racy. Our analyses do not support this conclusion.

The gated RNNs explain variance over and above what is

accounted for by the SRNs on SPR, ET, and EEG data. This

is an expected effect, given that gated networks form better

language models. Their ability to encode relations between

word tokens along larger spans is likely giving them a clear

advantage in accounting for human data. More surprisingly,

on the EEG data the SRNs also explain a portion of variance

that is distinct from the one explained by the gated networks.

This finding may suggest a potential insensitivity of the N400

ERP component to long-distance dependencies, at least to the

extent that N400 size reflects word predictability. Converging

evidence for this interpretation is presented by Frank et al.

(2015) who demonstrate that an n-gram language model with

a context size of three words explains variance over and above

an SRN on the same data set.

Conclusion

While gated recurrent neural networks provide better lan-

guage models than simple recurrent networks, our investiga-

tions do not indicate that they have any substantial or reli-

able advantage as cognitive models of sentence reading, in

addition to what is expected from their superior language

modeling abilities. Nevertheless, gated networks consistently

reached higher linguistic accuracy. This fact alone makes the

use of gated RNN advisable not only from a language model-

ing point of view but also for psycholinguistics (and cognitive

science more in general) when as much variance in human

data as possible needs to be explained, for example when sur-

prisal is used as a covariate in studies that aim to find a unique
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Table 2: Results from regression model comparisons between RNN types. Each χ2-statistic is the outcome of a log-likelihood

ratio test for whether the network type in the table row accounts for variance in the human data over and above the network

type in the table column. Asterisks indicate statistical significance level after multiple-comparison correction (Benjamini &

Hochberg, 1995): * = p < .05; ** = p < .01 ; *** = p < .001.

Exp. SRN GRU LSTM

SPR

SRN χ2(4) = 3.20 χ2(4) = 3.69

GRU χ2(4) = 12.7* χ2(4) = 1.29

LSTM χ2(4) = 18.1** χ2(4) = 6.22

ET

SRN χ2(4) = 6.18 χ2(4) = 8.70

GRU χ2(4) = 15.6* χ2(4) = 0.46

LSTM χ2(4) = 22.5*** χ2(4) = 4.88

EEG

SRN χ2(2) = 10.9* χ2(2) = 8.65*

GRU χ2(2) = 26.0*** χ2(2) = 3.26

LSTM χ2(2) = 21.7*** χ2(2) = 1.22

effects of some additional predictor.
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Abstract

Using “A” in noun phrases such as “A father of the vic-
tim” is odd, which is commonly explained by the princi-
ple Maximize Presupposition, requiring speakers to use
the alternative with the strongest presupposition (here
“The”, given its uniqueness presupposition). This re-
sults in an anti-uniqueness inference for “A” (clashing
with stereotypical expectations here), sometimes labelled
as an ‘anti-presupposition’ (Percus, 2006), as it derives
from reasoning over the presuppositions of alternative
forms. We compare these inferences to the uniqueness
inferences associated with definites, while manipulating
uniqueness expectations in a picture manipulation task
using visual world eye-tracking. This offers a minimal
comparison of uniqueness-based inferences that are lexi-
cally encoded vs. pragmatically inferred, and furthermore
tests the prediction that the accommodatability of the def-
inite’s presupposition plays a role in the derivation of anti-
uniqueness inferences (Rouillard & Schwarz, 2017).

Keywords: presuppositions; visual world eye-tracking;
definiteness; indefiniteness

Theoretical Background
There is a concurrent claim in the theoretical literature
that definite descriptions, and presupposition triggers in
general, have to be used if their presupposition (PSP) is
fulfilled in the context. Since definite noun phrases come
with a presupposition of uniqueness they must be used if
this uniqueness presupposition is met in the context, see
(1-a). The use of an indefinite noun phrase in (1-b) is
infelicitous.

(1) a. The father of the victim came.
b. #A father of the victim came.

There are various theories explaining this effect by as-
suming that there is lexical competition between the pre-
suppositionally stronger definite and presuppositionally
weaker indefinite governed by the principle Maximize
Presupposition (Heim, 1991; Percus, 2006; Sauerland,
2008; Chemla, 2008). Based on pragmatic reasoning
over the stronger alternative – similar to the one used
for the derivation of scalar implicatures – the indefinite
yields the inference that the presupposition of the defi-
nite is false (‘anti-uniqueness’). (1-b), for example, has
the infelicitous anti-uniqueness inference that there is not

exactly one father of the victim. The resulting infer-
ences (‘anti-presuppositions’) are theoretically set apart
from well-studied components of meaning like presup-
positions and implicatures based on their weaker epis-
temic status, and their projection behaviour. Recently,
the strength of the epistemic status has been argued to be
dependent on accommodatability of the competing pre-
suppositional statement, which is tied to the knowledge
state of speaker and hearer (Rouillard & Schwarz, 2017).
There is a less prominent alternative view according to
which definites and indefinite both come with their own
context restrictions, i.e. that the indefinite comes with a
novelty condition (Heim, 1983) or its own presupposi-
tion of anti-uniqueness (Kratzer, 2005). These make dif-
ferent predictions for the processing profiles associated
with anti-uniqueness.
According to the first view (theory A), in which anti-
uniqueness is the result of reasoning over presupposi-
tionally stronger alternatives, the consideration of the al-
ternative and its subsequent negation to derive the in-
ference should require extra processing costs, based on
the observation that both presuppositions and negation
have been independently shown to increase the cogni-
tive load in processing (Schwarz, 2007; Tiemann, 2014;
Kirsten et al., 2014; Carpenter, Just, Keller, Eddy, &
Thulborn, 1999; Reichle, Carpenter, & Just, 2000; Her-
bert & Kübler, 2011). As this view works with alter-
natives it also predicts that drawing the inference might
depend on the salience and accommodability of the com-
petitor with “the”. In the example in (1) this alternative
is very salient and easy to accommodate as it is com-
mon knowledge that people have one (biological) father.
However, in other examples where this is not the case
the inference is not as strong. (2), for example, does not
seem to have any implications as to how many patholog-
ically noisy neighbours the speaker has, at least without
any further knowledge about the likelihood about it being
one or more.

(2) A pathologically noisy neighbour of mine broke
into the attic. (Heim, 1991)

According to the second view (theory B), definites and
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indefinites should have comparable processing costs,
with minimal or no differences in processing patterns as
both introduce their own restrictions that are part of their
lexically endoed meaning. As a result, the salience of the
definite as an alternative should not play a role in deriv-
ing any anti-uniqueness inferences.
Albeit the fact that inferences resulting from Maximize
Presupposition and the principle itself have received a lot
of attention in the theoretical literature, there is almost
no experimental research on the topic, with few excep-
tions (Amsili, 2015; Eckardt, 2014; Bade, 2016). There
is, however, some experimental research on definiteness
versus indefiniteness discussed in the next section.

Previous experimental work
There have been previous experimental investigations of
the difference between indefinite and definite determin-
ers. One line of research which is of importance for the
present discussion is the study of so called "bridging in-
ferences" (Haviland & Clark, 1974). They describes the
inference of unique entities in certain situations where
such a referent is stereo-typically unique, e.g. "the bus
driver" in a situation where someone is entering the bus.
These inferences are associated with different process-
ing costs depending on how easily the referents are ac-
cessible (Haviland & Clark, 1974). (Burkhardt, 2006) in
an ERP study finds similar effects for both definites and
indefinites if they follow contexts that do not explicitly
mention the referent.
Many studies on the definite have found additional pro-
cessing costs if the context does not furnish an appro-
priate (unique) referent (Tiemann et al., 2011; Kirsten
et al., 2014; Tiemann, 2014). Additional processing
costs have also been found for the indefinite, which has
been attributed to it introducing a new discourse referent
(Kirsten et al., 2014; Schumacher, 2009).
A set of studies which is of special interest for our dis-
cussion tested the use of definites versus indefinites for
stereo-typically unique items in context in which they
are typically unique (e.g. stove in a kitchen) or not
(e.g. stove in an appliance store) (Clifton, 2013). Clifton
found that interactions between contexts and determiner
in reading times only emerged if the experiment involved
a secondary arithmetic task, which is argued to lead
to deeper processing resulting in participants forming a
more complete situation model. This model required the
accommodation of a unique referent in the mismatching
condition of the definite, and the introduction of a new
referent in the mismatching condition of the indefinite.

Experiment
The aim of the experiment was to test whether the po-
tential theoretical distinction between (anti-uniqueness-)
anti-presuppositions on the one hand, and (uniqueness-)

presuppositions on the other hand is supported by pro-
cessing measures. Additionally, we wanted to test the
prediction of theory A that lexical alternatives, as well
as the epistemic state of the speaker with regard to the
truth of the inference, play a role in the derivation of anti-
uniqueness inferences.

Design and Material
For that purpose, we created sentence materials that ei-
ther contained the definite or indefinite determiner (first
factor DETERMINER with two levels, +/-DEF) and com-
bined them with either stereo-typically unique or non-
unique nouns (second factor STEREO-TYPICALITY with
levels +/-TYPICALLY UNIQUE, see an example in all 4
sentence conditions below.

(3) Someone spilled orange juice on. . .
a. a television +TYPICALLY UNIQUE, -DEF
b. the television +TYPICALLY UNIQUE, +DEF
c. a pillow -TYPICALLY UNIQUE, -DEF
d. the pillow -TYPICALLY UNIQUE, +DEF

. . . in the living room.

A given sentence was paired with two pictures providing
settings where the referenced object was either typically
unique or not, i.e. the sentences in (3-a) and (3-b) were
paired with the two pictures in figures 3 and 4, and the
sentences in (3-c) and (3-d) were paired with the two pic-
tures in figures 1 and 2. As part of our task (described in
more detail below) participants had to decide which of
the two pictures the sentence was about, with the (anti-
)uniqueness information conveyed by the respective de-
terminers being key for the picture choice.

Figure 1: -TYPICALLY
UNIQUE (A/The pillow),
target for unique Def (pic 1)

Figure 2: -TYPICALLY
UNIQUE (A/The pillow),
target for non-unique Indef
(pic 2)

Figure 3: +TYPICALLY
UNIQUE (A/The TV), target
for unique Def (pic 1)

Figure 4: +TYPICALLY
UNIQUE (A/The TV), target
for non-unique Indef (pic 2)
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We created 24 sets of experimental stimuli, for coun-
terbalanced presentation to participants of 6 items per ex-
perimental conditions. In addition,there were 24 filler
items with the temporal connectives “before” and “after”
(e.g. “Peter spilled coffee after doing the dishes") and
12 fillers with the quantifier “several” (e.g. “Peter spilled
coffee on several chairs in the dining room").

Norming study
To determine what objects people considered to be
stereo-typically unique in a given scenario, our first step
was a norming study with 60 native speakers of English.
They were asked to rate the typicality of uniqueness by
being asked “How typical do you think it is that there is
exactly one TV in a standard living room?”. We tested 48
different objects in the norming study. For the 24 critical
items used in the study we took the 24 objects with the
highest average rating and paired them with objects that
received a very low average rating.

Main experimental task
We tested 77 native speakers of American English re-
cruited through the SONA system of the University of
Pennsylvania. They received course credit for their par-
ticipation. Participants engaged in a simple game. In the
main comprehension part of the experiment, they heard
recordings of descriptions (containing indefinite or def-
inite articles) of spills that happened in different rooms.
They then had to try to best match the description they
heard by dragging a splash representing a spilled bev-
erage to one of two room settings, which differed in
whether they contained one or two of the mentioned
type of object (e.g., television or pillow). After going
through a practice phase with 4 trials they went on to
the 24 experimental trials (plus fillers). See Figure 5 for
a screen shot of a sample trial (in a control condition,
which sometimes depicted two different types of room
settings).

Figure 5: Screen shot of a comprehension trial.

Picture choices, response times and eye-movements
were tracked during the comprehension phase. Partici-

pants also went through a brief constrained production
phase (9 trials), where they had to drag words to con-
struct a sentence of the form above to describe a pro-
vided picture. This was intended to engage them with
the task more by seeing both sides of the game, and to
highlight the alternative choices between determiners in
relation to the number of relevant objects in the picture.
The determiner choices they were given were “A”, “The”
and “Several”. The pictures were created so that each
of these determiner would be chosen 3 times (given the
theoretical assumptions, e.g. with the definite used for
unique items and the indefinite for non-unique ones).
There were two practice trials for the production task.
A screen shot of a production trial is given in Figure 6
below. Production and comprehension block order was
counterbalanced across participants.

Figure 6: Screen shot of a production trial.

Predictions
Given the theoretical assumptions spelled out above we
coded the pictures with two objects matching the de-
scription in the relevant noun phrase to be the target pic-
ture for the indefinite (pic 2), see again Figure 2 and
4 above. For the definite, we assumed the picture de-
picting exactly one object of the kind referred to in the
sentence to be the target (pic 1), see Figure 1 and 3.
Drawing the anti-uniqueness inference which is the ba-
sis for the target choice of the indefinite was predicted to
be influenced by whether the referenced object is typi-
cally unique in the given setting by theory A. This theory
predicts target choices to be higher for the indefinite in
the non-typically unique condition than in the typically
unique condition, whereas the definite should not be af-
fected by this factor. As a result, we expected there to
be an interaction between DETERMINER and STEREO-
TYPICALITY for picture choices. Moreover, based on
theory A, anti-uniqueness anti-presuppositions are ex-
pected (or at least likely) to show a different pattern
in eye-movements than the uniqueness presuppositions
evoked by the definite. Again, since drawing the infer-
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ence for the indefinite should be facilitated by the object
being typically unique, we predict an interaction between
DET and STEREO-TYPICALITY for measures reflecting
looks to target, as well as a main effect of both factors.
No such differences or interactions are predicted by the-
ory B, according to which determiners should be more
or less equally affected by stereo-typicality. According
to theory A, but not B, the data should also be influenced
depending on whether there was exposure to the alterna-
tive. Thus order effects of the tasks should be relevant
for the processing associated with the indefinite follow-
ing theory A but not B.

Analysis
Responses were analyzed using logistic mixed effect
models as implemented in the glmer function in R (Bates,
2005). Reaction times and fixations on target were log
transformed for analysis and analyzed using linear mixed
effect models and the lmer function in R (R Core Team,
2017). Participant, condition and item were treated as
random factors in both model types, and random effect
slopes were included as model convergence allowed.

Results
Responses The anti-uniqueness inference of indefi-
nites is less readily available, and less robust than the
uniqueness inference of definites in our data, in line with
previous results. This is witnessed by (i) low produc-
tion ‘accuracy’ for indefinites when the production block
came first, see Figure 7: in the condition where the dis-
played picture included multiple objects matching the
noun phrase description, participants only chose an in-
definite about half of the time in their sentences. There
is a significant main effect of block order (p<.01) with
more target choices for production when it followed the
comprehension block and also a significant interaction
between DETERMINER and BLOCK ORDER (p<.01) with
accuracy of choice being less affected by block order if
the target determiner was definite than when it was in-
definite.
The weak status of the indefinite is also reflected in (ii)
target choice rates in the comprehension task. Overall,
there was a main effect of BLOCK ORDER, present at all
levels, with overall more target choices when production
came first (and comprehension second). Crucially for
the present point, there is a bigger susceptibility of the
indefinite to plausibility effects biasing against multiple
instances of stereo-typically unique objects, especially in
the initial comprehension block. This is reflected in an
interaction between typical uniqueness and determiner in
the ’comprehension first’ block (p< .01), driven by more
frequent target choices for Def in +typically unique con-
dition (parallel simple effect also present for ’production
first’), see Figure 8.

Figure 7: Target determiner choices for production task by
block order

Figure 8: Target selections for comprehension task by block
order and stereo-typical uniqueness

Eye movements For the analysis of the eye movements
we considered time windows of 200ms between 100ms
and 2300ms after noun phrase onset (which is roughly
4 seconds into the trial and the point where, on average,
participants picked up the splash to place it on the pic-
ture). We looked at the fixations on the respective target
for definite (pic 1) and indefinite (pic 2) relative to its
competitor. The main dependent measure that we report
on below is Target Advantage score, calculated by sub-
tracting the proportion of fixations to the competitor from
the proportion of fixations to the target.
In the first time window (100-300ms after noun phrase
onset) we find a main effect of definiteness, with a higher
target advantage for the indefinite. This effect is likely
due to the target for the indefinite (pic 2) being the over-
all more unusual picture in the typically unique condition
(e.g. with 2 TVs). This is also in line with the observa-
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tion that in the typically unique cases, there is a signifi-
cantly higher target advantage for the indefinite (p<.01)
even before the noun phrase onset, see both graphs in
Figure 9 and 10.

Figure 9: Target advantage by determiner and stereo-typicality
for all trials (Black line indicates mean noun phrase-offset/PP-
onset.)

Figure 10: Target advantage by determiner and stereo-
typicality for accurate trials (Black line indicates mean noun
phrase-offset/PP-onset.)

Given this indication that pic 2, i.e. the target for the
indefinite, has an advantage due to inherent properties of
the picture, we also looked at the influence of both fac-
tors on the looks to pic 1 and pic 2, respectively, see fig-
ure 11. We find that in the early time window there is an
interaction for looks to pic 1 between both factors: there
are more looks to pic 1 for the definite if the item is typi-
cally unique and fewer looks to pic 1 for the indefinite if
the target is non-typically unique. There are, however no
main effects of the two factors. This together suggests

that in the first time window the looks to the two pictures
are guided by both determiner and stereo-typicality, and
not oddness of the pic 2 picture alone.

Figure 11: Looks to pic 1 and pic 2 by determiner and stereo-
typical uniqueness, all trials)

In the time windows 300-500 and 500-700ms after
noun phrase onset, there is a main effect of DEF (p<.05),
but no interaction with STEREO-TYPICALITY. The ef-
fect is significant for the typically unique cases in both
time windows (p<.01). But it is also marginally signif-
icant for the non-typically unique cases in time window
300-500ms (p<.06) and significant in the time window
500-700ms (p<.05). The interaction between both fac-
tors on looks to pic 1 is still marginal significant (p<.06),
and significant when only looking at data from trials re-
sulting in target choices, see figure 12.

Figure 12: Looks to pic 1 and pic 2 by determiner and stereo-
typical uniqueness, accurate trials)

In the time window 700-900 ms after noun phrase
onset there is a significant interaction between STEREO-
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TYPICALITY and DEFINITENESS in the predicted
direction for Target Advantage: stereo-typicality has an
effect on indefinites, but not on definites; as shown by
the significant simple effect for the former (p<.01) and
lack thereof for the latter. There is also a significant
interaction between both factors in the time window
900-1100ms after noun phrase onset (p<.01). Looking
at the simple effects shows that the interaction is due to
stereo-typicality having a marginal effect on the definite
(p<.07), but not the indefinite at this point, opposite to
our predictions.
To better see potential differences from the properties of
the respective target pictures for definites and indefinites,
we also investigated looks to pic 1 and pic 2 separately
for these time windows. There only are main effects
of stereo-typicality for both pictures (p<.05 for pic
2, p<.01 for pic 1), suggesting that the interactions
above are due to the pictures themselves attracting more
attention depending on whether the item is typically
unique.
No effects show up in time windows between 1100
and 1900 ms for target advantage. However, when
considering looks to pic 1 and pic 2 we see a main effect
of determiner for both pictures in all time windows
between 1100 and 1900 ms after noun phrase onset
(p<.01) for all of them).
There were no interactions between definite and time
windows, and no interactions between block order and
definite in all time windows.

Discussion
In combination, these results support the idea that, con-
trary to a view that sees anti-uniqueness as being based
on a lexically encoded presupposition on par with the
uniqueness presupposition of definites (theory B), the
anti-uniqueness inference for indefinites is pragmatically
derived from reasoning over the alternative expression
(the definite) and its presupposition (uniqueness) (the-
ory A). This is because, as predicted by theory A, the
inference is not present as robustly from the start but
is boosted by exposure to the alternatives and how they
could matter: when the production follows comprehen-
sion, choice of the indefinite in the sentence construction
phase increases for pictures with two objects of the rele-
vant sort; and when the comprehension block follows the
production block, choices of the picture with two of the
relevant items increases for indefinite sentences.

With regards to the eye movement data, we find some
effects that are at least in part complicated by the prop-
erties of the different target pictures. For the most part,
except for very early time windows, the differences be-
tween definite and indefinite disappear when looking at
only not-stereo-typically unique cases. This becomes es-

pecially apparent when looking at trials resulting in tar-
get choices, where there is no difference in time course
between determiners, at least in the present task. We’d
note, though, that the fixation shifts in our data are over-
all relatively late, which is likely at least partly due to
the nature of the task requiring clicking and dragging
splash-pictures around. Be this as it may, our data pro-
vides no evidence that the additional reasoning involved
in deriving the inference by reasoning over the lexical
presupposition of the alternative requires extra process-
ing time if the conditions for this contextual reasoning
over alternatives are met. This finding will need to be
considered in relation to the complex empirical situation
in the implicature processing literature, with some stud-
ies finding delays for implicature computation, and oth-
ers not. The present results seem to constitute a case of
a different type of a pragmatically derived inference that
seemingly does not lead to any delays involved in ac-
cessing it. But further work is needed to try to establish
this in task variations allowing for an earlier emergence
of effects. Finally, a methodological lesson worth noting
is that studying anti-uniqueness effects of indefinites ex-
perimentally requires careful fine-tuning of the task, as
they can be evasive and are highly sensitive to various
contextual factors.
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Abstract 
Creative thinking has long been associated with spreading of 
activation through concepts within semantic networks. Here 
we examine one potential influence on spreading activation 
known as the fan effect: increasing concept knowledge leads to 
increasing interference from related concepts. We tested 
whether cue association size—an index of semantic richness 
reflecting the average number of elements associated with a 
concept—impacts the quantity and quality of responses 
generated during the alternate uses task (AUT). We 
hypothesized that low-association AUT cues should benefit 
quality at the cost of quantity because such cues are embedded 
within a semantic network with fewer conceptual elements, 
thus yielding lesser interference from closely-related concepts. 
This hypothesis was confirmed in Study 1. Study 2 replicated 
the effect and found an interaction with fluid intelligence, 
indicating that cognitive control can overcome constraints of 
semantic knowledge. The findings thus highlight costs and 
benefits of semantic knowledge for creative cognition.  

Keywords: Divergent Thinking; Fan Effect; Fluid 
Intelligence; Semantic Memory 

Introduction 
Divergent thinking (DT) is considered a crucial aspect of 
creative thinking (Runco & Acar, 2012). DT involves 
generating novel and appropriate responses to open-ended 
idea generation tasks. However, the basic cognitive processes 
involved in DT such as memory retrieval are far from 
understood (Volle, 2018). Recent research highlights both 
benefits and costs of semantic memory retrieval for creative 
thought (Beaty, Christensen, Benedek, Silvia, & Schacter, 
2017; Hass, 2017a, 2017b; Kenett, 2019). Here, we borrow a 
classic experimental paradigm from cognitive science 
research on semantic memory—the fan effect (Anderson, 
1974)—to further characterize the impact of semantic 
memory structure on creative idea generation.   

A fan effect is an increase in response time (or error rates) 
on a recognition test with an increase in the number of 
associations with a concept in a memory probe (Anderson, 
1974). According to Anderson and Reder (1999), the 
associations among concepts cause interference (i.e., the 
more association links fanning from a concept node, the 
greater the interference). Such interference occurs at retrieval 
(Anderson & Reder, 1999). Thus, during divergent thinking, 
the fan size of the target cue may relate to interference in 

retrieving creative responses. This hypothesis fits strongly 
with the associative theory of creativity. 

According to the associative theory of creative thinking, 
creativity involves the connection of weakly related, remote 
concepts into novel and applicable concepts (Mednick, 
1962). The farther apart the concepts are in semantic space, 
the more creative the new combination will be. For this new 
combination to be applicable (i.e., to make sense) a broad 
body of knowledge is required. While this theory is still 
debated, the importance of associative abilities in creative 
processing has been demonstrated  (Benedek, Könen, & 
Neubauer, 2012). Furthermore, recent computational studies 
have provided further support for how individual differences 
in creative ability relates to differences in semantic memory 
structure (Kenett, 2019; Kenett & Faust, 2019). 

However, more recent theories have argued that creative 
thinking is more broadly related to an interaction between 
semantic memory structure and cognitive control processes 
that facilitate guided search throughout memory. For 
example, Beaty and Silvia (2012) examined how fluid 
intelligence (Gf) relates to the serial order effect – the 
tendency for ideas to become increasingly more original over 
time during a DT task (Christensen, Guilford, & Wilson, 
1957; Hass & Beaty, 2018). The authors found that 
participants scoring high on Gf showed less of a serial-order 
effect. That is, high Gf scores were associated with greater 
originality earlier in participants’ response. Thus, the authors 
argue for an executive control process operating on semantic 
memory that facilitates avoidance of high-frequency 
concepts (i.e., low-originality). Hass (2017b) applied 
computational approaches to demonstrate that the semantic 
similarity of participants’ DT responses non-linearly 
decreases as a function of response order. Furthermore, this 
study found that the semantic similarity of initial DT 
responses was lower for participants with higher Gf scores. 

In the current series of studies, we present results from an 
ongoing project, where we examine for the first time the role 
of fan size on DT responses. As the fan effect is considered 
to be related to activation of multiple associations to a 
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concept that leads to interference, we predict that high-fan 
cues will lead to a higher number of DT responses but lower 
overall originality of these responses. Furthermore, we 
predict that fan size will interact with the serial order effect 
(Study 1) and with individual differences in Gf (Study 2). 

Study 1 
In Study 1, we sought to test for the existence of a fan effect 
in the context of performance on the Alternate Uses Task 
(AUT), a widely used assessment of DT (Runco & Acar, 
2012). To this end, we assessed whether the quantity and 
creative quality of DT responses varied as a function of AUT 
cue association set size. We selected cue words for the AUT 
(i.e., common objects) with low- and high-fan size based on 
free association norms (Nelson, McEvoy, & Schreiber, 
2004). Because high-fan cues are presumably embedded 
within denser semantic networks of highly-related concepts  
compared to low-fan cues, we hypothesized that  participants 
would generate more AUT responses (i.e., higher fluency) 
but that this performance benefit would come at the cost of 
creative quality (i.e., lower originality) due to interference 
from salient concepts.   

Participants 
Fifty-five participants were recruited for the study via 
Amazon Mechanical Turk (AMT; Buhrmester, Kwang, & 
Gosling, 2011). Participants were offered $4.00 
compensation for completion of all 10 tasks. No participants’ 
work was rejected (i.e., all 55 workers were paid), however, 
a pre-analysis screening procedure identified 14 participants 
that failed to respond to all 10 cues and 1 participant that 
provided clearly random responses, and thus did not follow 

directions. The final sample size for analysis was 40 (30 
female) with an average age of 38.1 years (SD = 12.07). A 
large majority of the sample identified as White/Caucasian 
(92.5%) with the remaining 7.5% identifying as either 
African American or “other”. This study was approved by 
Jefferson University institutional review board. 

Materials 
Stimuli. We constructed low- and high-fan cues to be used in 
the DT task. Low- and high-fan cues were selected from the 
University of South Florida free association norms database, 
that includes norms for 5,000 cue words (Nelson et al., 2004). 
Importantly, for each of these cue words, the database lists 
the number and types of different associative responses that 
were generated to these cue words. The number of associative 
responses to a cue word was used as a proxy of fan size of the 
cue word (i.e., cue set size). Out of the 5,000 cue words, cue 
words of concrete objects that can be used in a DT task were 
manually selected. Finally, a list of five low-fan (clock, fork, 
lamp, lens, pen) and five high-fan (soap, rope, stick, marble, 
balloon) cues were selected. These cue words were matched 
on key linguistic variables: frequency (low-fan M = 16.4, SD 
= 3.29; high-fan M = 21.3, SD = 10.97; t(8) = 1.00, p = .35) 
and concreteness (low-fan M = 5.88, SD = .67; high-fan M = 
6.09, SD = .23; t(8) = .66, p = .53). Critically, the average set 
size of the high-fan cues (M = 22, SD = 1.22) was 
significantly greater than the average set size of the low-fan 
cues (M = 6.6, SD = 1.51; t(8) = 17.67, p < .001). 
Divergent thinking task. For each of the ten cue words (low- 
and high-fan), participants had three minutes to generate as 
many alternative uses as possible. Two main measures were 
computed from participants DT performance: originality and 

Fig. 1: Average creativity rating as a function of response order. The first response was rescaled to zero for the purpose of 
growth modeling. Lines represent fitted values for each condition based on the multilevel growth model. 
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fluency. For each response, originality was defined as the 
average of the originality ratings across independent raters 
for that response and fluency was defined as the sum of 
responses; we also logged inter-response time (the time 
between the first key strokes of successive responses) and the 
order of entry of each response. Participant-level variables 
were fluency and composite originality score (i.e., the 
average of the originality scores per person per prompt). 

Procedure 
A custom web application was created for administering the 
experimental tasks (Hass & Beaty, 2018). The interface 
consisted of an instructions page and a response-collection 
interface. The instructions page appeared before both blocks 
of trials (low- and high-fan) and, after reading instructions, 
participants proceeded to the tasks using a navigation button. 
The task interface appeared in an 800x600 pixel window and 
consisted of a text-display, which contained the object 
prompt for that trial and a text-entry field. The text-entry field 
allowed participants to edit responses prior to entering them 
and moving on to the next. Javascript code saved the first key 
press per response, the time at which the participant entered 
the response (by pressing ENTER or RETURN), and the text 
of the response itself. When ENTER was pressed, the text-
field was cleared, and participants were not allowed to view 
previous responses. 
   First, participants provided consent to participate in the 
experiment. Following consent, participants were presented 
with an overall description of their task: that they would be 
prompted to generate ideas about specific prompts, along 
with some information about how long it would take, and that 
they should be ready to type. Participants then completed a 
practice trial to become acclimated to the typed entry 
interface which involved typing the names of colors that they 
knew for 30 seconds. Upon completion of practice, the first 
set of experimental trials started. They were informed that 
there would be five trials, each with a different object, and 
each lasting 3 minutes each. They then pressed a navigation 
button to continue. The order of trials within blocks and block 
presentation were randomized, and participants had a short 
break between blocks. Finally, participants completed a short 
demographic survey. 

Results 
Participants’ responses were rated for originality on a 5-point 
scale designed for cognitive studies of DT (Hass, Rivera, & 
Silvia, 2018) by two research assistants and one AMT worker 
not involved in the experiment. Inter-rater reliability 
(ICC(2,3)) ranged from fair to good across the 10 cues (M = 
.47, SD = .15). 

Participants generated a significantly higher number of 
responses to high-fan prompts (M = 9.17, SD = 3.42) than to 
low-fan cues (M = 8.1, SD = 3.1), t(39) = 3.84, p < .001). 
Furthermore, high-fan responses were rated significantly less 
original (M = 2.67, SD = 0.26) compared with low-fan 
responses (M = 3.03, SD = 0.26), t(39) = 6.47, p < .001. 
Together, these findings suggest that while high-fan cues 

afford more associative links (i.e., increased fluency), the 
effect may interfere with generating original responses (i.e., 
decreased originality) to them.  

To investigate temporal effects of the fan manipulation, 
two response-level analyses were performed. First, inter-
response times (IRTs) were compared across the two 
conditions with a mixed-effects regression model. In order to 
conform to model assumptions (namely normally distributed 
residuals), IRTs were log-transformed and regressed on 1) a 
fixed-effect of condition (low- vs. high-fan), 2) a random 
effect of participant, and 3) a random effect of cue. Though 
mean IRTs were shorter in the high-fan condition (M = 
14.50s, SD = 13.99s) compared with the low-fan condition 
(M = 16.14s, SD = 16.63s), the fixed effect in the log-IRT 
model was not significant (b = .0004, p = 0.55). 

Next, the relationship between response order and 
creativity rating was examined with a mixed-effects model. 
Prior results have illustrated a curvilinear relationship 
between serial order and creativity (Hass & Beaty, 2018) so 
linear and quadratic serial order terms were entered into the 
model. Interactions between condition (low- vs. high-fan) 
and both of the serial order terms were also modeled, along 
with random effects of participant and cue. There were 
significant linear (b = 0.039, p < .001) and quadratic trends 
(b = -0.016, p = .02), but the overall difference between low- 
and high-fan originality was not preserved in this model (b = 
0.062, p = .61). Additionally, there was no difference in either 
the linear (b = 0.025, p = 0.15) or quadratic slopes (b = -0.016, 
p = .23) across the fan conditions (Fig. 1). 

Discussion 
The associative theory of creativity implicates spreading 
activation across concepts within semantic networks to 
generate novel ideas (Mednick, 1962). However, little is yet 
known about the benefits—and potential costs—of semantic 
memory in creative cognition. Here, we identify such benefits 
and costs of semantic knowledge to performance on a 
divergent thinking task. Participants generated more 
responses during the AUT when using high-fan cues 
compared to low-fan cues, suggesting that greater semantic 
content benefits ideational fluency. This benefit, however, 
came at the cost of originality: participants generated ideas 
that were rated as less original in the high-fan condition. This 
finding is consistent with the notion that salient conceptual 
information (e.g., high-fan associations) can constrain 
creative thought by acting as a source of interference that 
must be inhibited to establish more remote conceptual 
combinations (Beaty et al., 2017; Chrysikou, 2019). In sum, 
the results of Study 1 suggest that the structure and content 
of semantic knowledge impacts the quality and quantity of 
ideas generated during divergent thinking.  

Study 2 
In Study 2, we sought to replicate and extend the findings 
from Study 1. Specifically, we employed the same 
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experimental paradigm—varying cue set size across AUT i 
tems—and further examined potential interactions with fluid 
intelligence (Gf), an individual difference variable with 
established links to divergent thinking (Beaty & Silvia, 
2012). Although Gf has been shown to predict the creative 
quality of DT respons es, the cognitive contribution of Gf to 
creative performance remains largely uncharacterized. One 
possibility is that Gf supports inhibitory control processes, 
consistent with its strong association with cognitive control 
(Kane, Hambrick, & Conway, 2005) Thus, Gf may be more 
relevant for high-fan idea generation via the inhibition of 
salient conceptual knowledge (Beaty & Silvia, 2012). On the 
other hand, Gf may support low-fan idea generation by 
facilitating spreading activation within a relatively sparse 
semantic space. In addition to examining the role of Gf, we 
further probed temporal dynamics of the fan effect as a 
function of cue set size.    

Participants 
One hundred thirteen participants (50 females) were recruited 
from AMT. The average age of participants was 37.71 years 
(SD = 10.49). All participants were fluent in English and the 
majority (58%) were Caucasian. African Americans 
comprised 11% of the sample, Asian Americans comprised 
5% of the sample, Hispanic Americans comprised 8% of the 
sample, Native Americans comprised 14% of the sample, 
while the remainder identified ethnicity as “other”. 
Participants received $5.50 for their participation. Thirty-
three participants were excluded from the analysis for failure 
to successfully complete all tasks or providing nonsensical 
answers to open-ended questions. The final sample size for 
the current analysis was N = 83. This study was approved by 
Jefferson University institutional review board. 

Materials 
Stimuli. The stimuli used in Study 2 were identical to those 
used in Study 1. 
Divergent Thinking. The DT task used in Study 2 was 
identical to that used in Study 1. 
Fluid Intelligence. Based on Kenett et al. (2016), Gf was 
assessed via three separate tasks: 1) The series task from the 
Culture Fair Intelligence Test (CFIT) which involves 
choosing an image that correctly completes a series of images 
(13 items, 3 min); 2) A letter-sets task, which presents a series 
of four-letter combinations and requires people to determine 
which set does not follow a rule governing the other four (16 
items, 4 min); and 3) A number-series task in which 
participants complete a sequence of numbers by discovering 
a guiding rule (15 items, 5 min). To compute a general Gf 
score, we used principal component analysis. This composite 
Gf score was constructed as the sum of the multiplication of 
each independent Gf score by its weight of the first unrotated 
principal component (Kenett et al., 2016). 

Procedure 
The DT task was run similarly as in Study 1 and the Gf tasks 
were run via Qualtrics (www.qualtrics.com). Upon providing 
electronic consent, participants were presented with an 
overall description of their tasks: that they would be 
prompted to generate ideas about specific prompts for 
approximately 30 minutes, and they would then complete 
some IQ-based tasks for another 20 to 30 minutes. 
Participants then completed a practice idea-generation trial to 
become acclimated to the typed entry interface (naming 
colors). Upon completion of practice, the first set of 
experimental trials began. The order of trials within blocks 
and block presentation were randomized, and participants 
had a short break between blocks. Finally, participants 
completed a short demographic survey. 

Fig. 2: Interaction effects between serial order and fan effect (left) and Gf and fan effect (right) on participant’s originality 
ratings of their DT responses. 
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Results 
Three raters scored responses for originality using the same 
scale used in Study 1 (Hass et al., 2018). Inter-rater 
reliability, assessed with interclass coefficients ICC(2,3), was 
generally high across the 10 cues (M = .68, SD = .12). 

Analyzing the fluency and originality of participants 
responses, our results replicate the findings of Study 1: 
Participants generated a significantly higher number of 
responses to high-fan cues (M = 7.56, SD = 3.82) than to low-
fan cues (M = 6.33, SD = 3.04), t(82) = -4.64, p < .001. 
Furthermore, high-fan responses were rated significantly less 
original (M = 3.04, SD = .33) compared with low-fan 
responses (M = 3.12, SD = .44),, t(82) = 2.14, p < .035. 
Together, these findings suggest that while high-fan concepts 
afford more associative links, these links may interfere with 
establishing more remote conceptual combinations. 

Next, the relationship between response order and 
creativity rating was examined via a mixed-effects model. In 
our full model, Gf, fan, and serial order were assigned as 
independent measures, and the originality ratings as the 
dependent measure. Interactions between fan and Gf, 
interaction between fan and serial order, and interaction 
between Gf and serial order terms were also modeled, along 
with random effects of participant and cue (Table 1). We first 
compared this model to a model that only included the 
random effects and found that this model improved the fit to 
originality ratings, χ2 (6, N = 83) = 105.52, p < .001. 
Specifically, we find a significant positive relation between 
each of the three main variables (Gf, Fan, and Order) on 
participant’s originality scores. Thus, we replicate and 
strengthen the results found in Study 1, and replicate previous 
findings on the effect of Gf on DT (Beaty & Silvia, 2012). As 
for the effect of the interaction terms, we found significant 
negative relations between both interaction terms (Gf*Fan 
and order*fan) on participant’s originality scores (Fig. 2). 
However, due to high collinearity between the serial order 
variable and the interaction of Gf and serial order variable (r 
= -.71), the interaction effect of serial order and Gf was not 
significantly related to originality scores in this model. 

 
Table 1: Linear mixed effect model of originality 

 
Fixed Effects B SE p 
Intercept 2.28 0.18 < .001 
Gf 0.05 0.01 < .001 
Fan 0.19 0.10 .05 
Order 0.05 0.01 < .001 
Gf*Fan -0.02 0.00 < .001 
Order*Fan -0.02 0.01 < .001 
Random Effects Name Variance SD 
Participant Intercept 0.09 0.30 
Cue Intercept 0.01 0.09 
Residual  0.65 0.80 

Full model: Originality ~ Gf + Fan + Order + Gf*Fan + 
Order*Fan + Gf*Order (1|participant) + (1|cue) 

Discussion 
Study 2 replicated the findings of Study 1 and extended them 
by examining individual differences in Gf (Beaty & Silvia, 
2012). As in Study 1, we found that, compared to low-fan 
cues, high-fan cues yielded increased fluency but decreased 
originality. Study 2 further examined temporal dynamics of 
this fan effect. Specifically, we replicated the serial order 
effect in divergent thinking—the tendency of idea originality 
to increase over time (Hass & Beaty, 2018)—and showed 
how this serial order effect interacted with both fan size and 
Gf. Although the 3-way interaction between serial order, fan 
size, and Gf was not significant, due to exceedingly high 
collinearity between these independent variables, we found 
that interaction effects of Gf*Fan and Order*Fan explained 
significant variance in creativity ratings.  

General Discussion 
Divergent thinking tasks are widely used to assess creative 
thinking, but little is known about the basic cognitive 
processes underlying their performance. In two studies, we 
borrowed a classic experimental manipulation from cognitive 
research on semantic memory known as the fan effect 
(Anderson, 1974)—the tendency for increasing semantic 
associations to interfere with memory performance—and 
show that it similarly (but differentially) impacts the quality 
and quantity of divergent thinking responses. In Study 1, we 
found that although participants generated significantly more 
responses using high-fan cues compared to low-fan cues (i.e., 
increased fluency), these responses were rated as 
significantly less original. In Study 2, we replicated these 
findings and extended them by showing that the fan effect for 
originality varied as a function of individual differences in 
Gf: as Gf increased, so did originality ratings in the low-fan 
condition compared to the high-fan condition. Taken 
together, the results extend recent work on the dynamics of 
memory retrieval and cognitive control during creative idea 
generation (Benedek & Fink, 2019). 

These findings inform a growing literature on the role of 
cognitive control in divergent thinking. Consistent with past 
work (Beaty & Silvia, 2012; Benedek, Jauk, Sommer, 
Arendasy, & Neubauer, 2014), Study 2 found that Gf 
predicted the creative quality of divergent thinking responses. 
Critically, we found that Gf interacted with the fan effect: 
higher-Gf benefited low-fan originality. From a semantic 
network perspective, the low-fan cues may be embedded in a 
less densely connected network, potentially blunting 
spreading activation to remote concepts due to less semantic 
scaffolding (Mednick, 1962). Thus, one possibility is that Gf 
compensates for such sparse semantic connectivity by 
driving search processes in a top-down fashion. In other 
words, when less is known about an object, cognitive control 
may facilitate strategic and deliberate conceptual 
combination.   

On the other hand, one might predict Gf to benefit high-fan 
originality. Because the high-fan cues may be embedded 
within a relatively denser network of semantic associations—
as reflected by higher ideational fluency in the high-fan 
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condition across both studies—these associations may have 
induced interference due to high salience and semantic 
relatedness. Prior research suggests that salient concepts can 
disrupt idea generation by priming what is already known and 
thus not original (Beaty et al., 2017). Thus, cognitive control 
could benefit high-fan cues via inhibitory mechanisms, i.e., 
suppressing dominant responses and redirecting search 
processes (Beaty & Silvia, 2012). Notably, however, Study 2 
assessed Gf—a proxy measure of general cognitive control 
which shows strong correlation with executive processes 
such as inhibitory control (Kane et al., 2005) Future work 
might resolve this question by examining the contribution of 
specific executive functions to idea generation under similar 
semantic constraints.  

The present research has potential implications for 
understanding the role of semantic knowledge in creative 
cognition (Kenett & Faust, 2019). Across both studies, we 
found a dissociation between the quantity and quality of ideas 
as a function of fan size: more ideas are generated  when more 
was “known” about an object—as indexed via semantic 
associations—but these ideas were deemed to be of less 
creative quality. An interesting direction for future research 
would be to explore the extent to which this effect extends 
beyond “domain-general” creative performance to specific 
creative domains. Another outstanding question concerns 
whether the organization of semantic knowledge can be 
optimized for creativity through learning. We suspect that 
high creative ability is characterized by extensive domain-
relevant knowledge, and superior access to that knowledge, 
via its hierarchical organization and top-down retrieval. 
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Abstract 

How we mentally represent spatial relations is known to have 
effects on cognitive processes such as inferences, co-speech 
gesture, or memorizing. In addition, spatial positions often 
serve as metaphors that carry valence. For instance, “moving 
up the social ladder, “getting it right”, or being “in front” feels 
certainly better than “moving down”, “having two left feet”, 
or “lagging behind”. Spatial position, however, depends on 
perspective, more concretely on which frame of reference 
(FoR) one adopts—and hence on cross-linguistically 
diverging preferences. What is conceptualized as “in front” in 
one variant of the relative FoR (e.g., translation) is “behind” 
under another variant (reflection), and vice versa. Do such 
diverging conceptualizations of an object’s location also lead 
to diverging evaluations? We tested this with speakers of 
German, Chinese, and Japanese using an Implicit Association 
Test (IAT). Data from two studies suggest that across 
languages the object “in front of” another object is evaluated 
more positively than the one “behind”, and that both location 
and evaluation depend on the adopted FoR. In other words: 
linguistically imparted FoR preferences appear to impact on 
evaluative processes.  

Keywords: spatial cognition, frames of reference, valence, 
IAT, cross-linguistic comparison 

Introduction 

Space is of fundamental importance, not only for our very 

existence and survival—and hence for core cognitive 

activities devoted to them such as orientation and navigation 

(e.g., Hutchins, 1983; Golledge, 1999)—but also as a source 

of metaphors for grasping more abstract or elusive concepts 

such as number or time (Bender & Beller, 2014; Dehaene, 

2003; Núñez & Cooperrider, 2013; Walsh, 2003). For 

instance, preferences for spatial representations seem to 

provide structure for how we represent temporal relations 

(Boroditsky, 2000; Boroditsky & Gaby, 2000). 

A number of expressions points to the possibility that 

spatial representations may also provide metaphorical 

structure for evaluative judgments, especially along the 

vertical axis and the lateral axis, with up and right being 

predominantly linked to positive valence, and down or left 

to negative valence in various cultures (Keating, 1995; 

Lakoff & Johnson, 1999; Meier & Robinson, 2004). 

Expressions such as “being at the forefront” versus “lagging 

behind” do hint at corresponding associations along the 

sagittal axis as well. 

The relationship between space and valence, however, is 

more complex than these examples suggest, and may be 

mediated by additional factors. For instance, the more 

positive evaluation of objects to the right than of those to 

the left is reversed in left-handers (Casasanto, 2009, 2011), 

and lateralization in terms of handedness even overrides 

strong cultural conventions (de la Fuente, Casasanto, 

Román, & Santiago, 2015). Yet, handedness only affects 

people’s embodied experiences of their own right and left; it 

does not determine whether they mentally represent an 

object as being located to the right or left. Evaluations of 

objects are therefore directly dependent on location in 

space: If an object changes location, its evaluation changes. 

But what if it is not location in space that changes, but rather 

the mental representation of this location? Is the valence of 

objects also affected if relative positions themselves are 

conceptualized differently depending on a person’s 

preference for referring to these positions? We addressed 

this question with a focus on the sagittal axis, for which 

space-valence associations have not been explored. At the 

same time, it is the only axis along which the 

conceptualization of location is affected in distinct ways by 

linguistic and cultural conventions and hence may vary in 

important ways (Beller, Singmann, Hüther, & Bender, 2015; 

Majid, Bowerman, Kita, Haun, & Levinson, 2004).  
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Figure 1:  
Two variants of the relative FoR (Levinson, 2003);  

F: figure; G: ground; V: viewpoint of the observer;  

L/R: left/right  

(a) Translation 

The ball is behind 
and to the right of  

the box. 

L R 

L R 

G 

F 

V 

(b) Reflection 

The ball is in front 

and to the right of 

the box. 

L G R 

L R 

F 

V 

Figure 2:  

Example of spatial stimuli used in Study 1 

Indeed, what is assigned as FRONT or BACK along the 

sagittal axis depends on the frame of reference (FoR) one 

adopts. While all FoRs are coordinate systems that help to 

locate one object (the figure) in reference to another object 

(the ground), they differ with regard to where they are 

anchored (Levinson, 2003)
1
. The relative FoR relevant for 

our study is anchored in an observer. Therefore, to locate 

the figure in reference to the ground, the observer’s 

coordinate system needs to be transferred to the ground. 

Crucially, this can be done in different ways—by shifting it 

to the ground (translation) or by mirroring it in the ground 

(reflection)—leading to opposing assignments of FRONT and 

BACK for the very same arrangement (see Figure 1): 

Whereas translation implies a further-away object to be 

conceptualized as “in front of” the ground and a nearer 

object as “behind”, reflection implies the nearer object as 

“in front” and the further-away object as “behind”. 

Whether these diverging assignments of FRONT and BACK 

lead to diverging evaluations is the question we sought to 

answer. We assumed that, regardless of FoR preference, 

speakers of widely different languages evaluate objects 

more positively when conceptualizing them as “in front of” 

another object than those conceptualized as “behind”. Since 

the object conceptualized as “in front” depends on FoR 

preference, speakers with a preference for translation 

should evaluate the further-away object more positively, 

whereas speakers with a preference for reflection should 

evaluate the nearer object more positively.  

 

Study 1 

In view of the cross-linguistic distribution of the relative 

FoRs, as obtained from language elicitation tasks (Beller & 

                                                           
1 Alternative terminologies are proposed, for instance, by 

Bohnemeyer and O’Meara (2012) and by Grabowski (1999). 

Bender, 2017; Beller et al., 2015), we recruited native 

speakers of German in which reflection is prevalent, and of 

Chinese and Japanese in which translation is more frequent. 

Introducing a novel approach into this field of research, we 

use an Implicit Association Test (IAT; Greenwald, McGhee, 

& Schwartz, 1998) to assess the positive versus negative 

valence of objects that the participants conceptualized as 

being “in front of” versus “behind” another object, 

depending on their preferred FoR. 

Method 

Participants The sample consisted of 43 native speakers of 

German (28 female; mean age 23 years, range: 18-35), 40 

native speakers of Chinese (27 female; mean age 27 years, 

range: 22-38), and 40 native speakers of Japanese (22 

female; mean age 19 years, range: 18-34). The Chinese 

participants were born in China to monolingual parents, had 

been living in Germany for 2.8 years on average (SD = 1.9), 

and reported excellent proficiency in Chinese (M = 5.0, SD 

= 0.2) compared to moderate levels of German (M = 3.1, SD 

= 1.3) and English (M = 3.5, SD = 0.9) on 5-point-rating 

scales. Data collection took place in Germany (for German- 

and Chinese-speaking participants) and Japan (for Japanese-

speaking participants), and was conducted in the 

participants’ mother tongue by native speakers of German, 

Chinese, or Japanese, respectively, as experimenters. 

Participation was voluntary, and was rewarded either with 

course credit or with 2 Euros or 400 Yen, respectively. 

Materials In the IATs, participants discriminated stimuli 

according to either valence or space. For the standard 

valence discrimination task, six positive nouns (health, 

happiness, smile, joy, peace, friend) and six negative nouns 

(agony, suffering, stench, mishap, illness, war) had to be 

categorized as positive or negative. For the spatial 

discrimination task, twelve schematic drawings of two 

neutral objects were used. The objects were arranged on the 

front/back axis and were distinguishable by shape and color 

(blue/green). Counterbalanced across participants, the 

objects of one color were singled out as those to be 

categorized as “in front of” or “behind” the objects of the 

other color. If, for instance, the target color was green, 
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participants preferring translation (vs. reflection) would 

categorize the green cylinder in Figure 2 as “behind” (vs. 

“in front of”) the blue cube.  

Procedure The IATs were implemented as standard seven-

block IATs (for details, see Table 1): Participants first 

completed two single-task practice blocks (one on spatial 

and one on valence discrimination). In Blocks 3 and 4, the 

two tasks were combined by mapping the four categories to 

two response keys (e.g., in front/positive on one key and 

behind/negative on the other). Block 5 was again a single-

task block on spatial discrimination, but with the response 

key assignment reversed. In Blocks 6 and 7, this task was 

combined with the valence discrimination task of Block 2, 

thus mapping behind/positive on one key and in 

front/negative on the other.  

The order of combined tasks was counterbalanced across 

participants (see Nosek, Greenwald, & Banaji, 2007). 

Stimuli were presented on a vertical computer screen, and 

responses were given by pressing the D- or L-key on the 

keyboard
2
. The intertrial interval was 500 ms. All blocks 

used warm-up trials with additional stimuli (excluded from 

the analyses), consisting of one trial per category that 

appeared within each block. Stimuli were presented 

randomly with the restriction that in the combined-task 

blocks, spatial and valence stimuli were presented in strictly 

alternating order.  

 The IAT effect is defined as the performance difference 

between the crucial blocks of combined tasks, and is 

interpreted as revealing the direction and strength of an 

association (here, between the space and valence 

categories). Typically, participants respond faster (and more 

accurately) when two associated categories share a response 

key than when they do not (Teige-Mocigemba, Klauer, & 

Sherman, 2010). Accordingly, if in front is evaluated more 

positively than behind, then responses should be faster in 

the in front/positive—behind/negative mapping than in the 

                                                           
2 Keys were placed on the lateral instead of the sagittal axis to 

prevent confounding the very data we were interested in, namely 

on how FRONT and BACK are assigned along the sagittal axis. 

in front/negative—behind/positive mapping. If, by contrast, 

in front is perceived more negatively than behind, the 

response pattern should be reversed; and if no such link 

exists, response speed should not differ between mappings.  

For all participants, IAT effects were coded such that 

positive values corresponded to the expected evaluation of 

in front as more positive than behind, independently of 

whether participants adopted translation or reflection to 

conceptualize where the target object is located. Assuming 

that all our participants evaluate objects more positively 

when conceptualizing them as “in front of” (than “behind”) 

another object, we expected positive IAT effects. These 

effects may differ in size between samples, as there is no 

reason to assume that the space/valence associations should 

be of the exact same strength across cultures. What should 

differ significantly, subject to FoR preferences, is the object 

that is evaluated more positively: the further-away object 

under translation, and the nearer object under reflection.  

Which of the two variants of the relative FoR a participant 

preferred was determined by assessing whether the figure 

presented in the IAT’s practice block of the spatial 

discrimination task was categorized based on translation or 

reflection in the majority of trials. This assessment was 

necessary because adoption of a specific FoR is not 

determined by language, but based on a combination of 

(sub-)cultural conventions and individual preferences 

(Beller et al., 2015; Grabowski & Miller, 2000; Hill, 1982), 

and should therefore be gleaned from each participant’s 

actual spatial discrimination decision. 

Results and discussion 

Using Tukey’s (1977) criterion, we first examined whether 

any participant was an extreme outlier in terms of mean 

response latency in the combined tasks (i.e., with values 

three times the interquartile range below the first or above 

the third quartile). This led to the exclusion of two German 

participants, three Chinese participants, and five Japanese 

participants. Among the remaining participants, reflection 

was preferred by all 41 German participants (100%), by 28 

Chinese participants (76%), and by 34 Japanese participants 

(97%), whereas translation was preferred by nine Chinese 

Table 1: Task sequence and example of response key assignment.  

Block N of trials Task 

Example of response key assignment 

D-key L-key 

1 26
 

Spatial discrimination behind
 

in front 

2 26
 

Valence discrimination negative positive 

3 28
 

Initial combined task behind/negative in front/positive 

4 52
 

Initial combined task behind/negative in front/positive 

5 26
 

Reversed spatial discrimination in front  behind 

6 28
 

Reversed combined task in front/negative behind/positive 

7 52
 

Reversed combined task in front/negative behind/positive 
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Figure 3:  
Example of spatial stimuli used in Study 2 

participants (24%) and one Japanese participant (3%). 

Consistency in FoR adoption across the stimuli of the 

spatial discrimination task was high for all three samples 

and across FoR preferences, with M > 94% in each sub-

group. 

As recommended by Greenwald, Nosek, and Banaji 

(2003), IAT effects were calculated using the D6 scoring 

algorithm (used for inferential statistics only; for ease of 

interpretation, descriptive statistics are based on raw 

latencies). As expected, IAT effects were significant in all 

three samples of Study 1, M ≥ 146 ms, t ≥ 3.07, p ≤ .004, 

indicating considerably faster responses to the in 

front/positive—behind/negative mapping than to the 

reversed mapping (Table 2).  

Importantly, participants’ evaluation of in front as more 

positive than behind was independent of their preferred 

variant of the relative FoR. Recall that nine of the 37 

Chinese participants adopted translation. IAT effects for 

these participants were of the same size as those for 

participants preferring reflection, t(35) = 1.06, p = .298.  

Participants thus evaluated in front more positively than 

behind—irrespective of their native language or cultural 

background. For the quarter of the Chinese participants 

preferring translation over reflection, the reversal of which 

object is conceptualized as “in front of” the other involved a 

corresponding reversal of evaluation of one and the same 

object: Further-away objects were more positive than nearer 

objects for participants preferring translation, but more 

negative for participants preferring reflection. 

While the results of Study 1 are basically straightforward, 

the proportion of translational references among the 

Chinese- and Japanese-speaking participants was lower than 

anticipated. One reason could be that the nearer object 

partly occluded the further-away object, which may have 

highlighted the former at the cost of the latter (hence 

privileging reflection; cp. Bennardo, 2000; Grabowski, 

1999; Hill, 1982). In addition, partially occluded objects 

may be devalued a priori. Since it was always the further-

away object that was partially occluded, devaluation may 

have contributed to the more negative evaluation of this 

object by the majority of participants who preferred 

reflection and hence categorized the partially occluded 

further-away object as behind. 

Study 2 

To exclude partial occlusion as an alternative account, we 

repeated Study 1 with new spatial stimuli. 

Method 

Participants The new samples consisted of 50 native 

speakers each of German (35 female; mean age 22 years, 

range: 18-34) and Chinese (37 female; mean age 25 years, 

range: 18-33). Chinese participants were born in China to 

monolingual parents, had been living in Germany for 1.6 

years on average (SD = 1.4), and reported excellent 

proficiency in Chinese (M = 5.0, SD = 0.2) compared to 

moderate levels of German (M = 2.5, SD = 1.0) and 

relatively good command of English (M = 3.8, SD = 0.9) on 

5-point-rating scales. Data collection took place in Germany 

and was conducted in the participants’ mother tongue. 

Materials and Procedure For the spatial discrimination 

task, we now used photographs of real objects that were 

similar to the objects used in Study 1 both in shape and 

color, but differed in that no object was occluded (see 

Figure 3). In addition, an observer with the same looking 

Table 2: IAT effects in Study 1 and Study 2.  

Study Sample (N) M (SD) 95% CI t p Cohen’s dD6 

Study 1 

German (41) 231 (230) [158, 303] 7.73 <.001 1.21 

Chinese (37) 146 (284) [51, 241] 3.07 .004 0.50 

Japanese (35) 167 (207) [105, 236] 5.48 <.001 0.93 

Study 2 
German (43) 292 (228) [222, 362] 11.59 <.001 1.77 

Chinese (48) 153 (309) [64, 243] 2.54 .015 0.37 
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direction as that of the participant was inserted to emphasize 

perspective-taking. Apart from this, material and procedure 

were the same as in Study 1. 

Results and discussion 

The same exclusion criteria as in Study 1 led to the 

exclusion of seven German participants and two Chinese 

participants. Among the remaining participants, reflection 

was preferred by all 43 German participants (100%) and by 

33 Chinese participants (69%), whereas translation was 

preferred by 15 Chinese participants (31%). Consistency in 

FoR adoption across stimuli was again high, with M > 91% 

in each sub-group. 

IAT effects were computed as in Study 1 and were again 

significant in the two samples, M ≥ 153 ms, t ≥ 2.54, p ≤ 

.015, indicating faster responses to the in front/positive—

behind/negative mapping than to the reversed mapping (for 

details, see Table 2). Again, participants’ evaluation of in 

front as more positive than behind was independent of their 

preferred FoR, as indicated by the non-significant difference 

between IAT effects for Chinese participants adopting 

translation versus reflection, t(46) = 0.29, p = .773. 

As in Study 1, participants evaluated in front more 

positively than behind—irrespective of their native language 

or cultural background. And again, the reversal of which 

object is conceptualized as “in front of” the other involved a 

corresponding reversal of evaluation. Due to the modified 

stimuli used in this study, partial occlusion of the further-

away object can be excluded as an explanation of its 

devaluation. 

General Discussion 

Does the way in which we evaluate objects depend also on 

how we conceptualize their location in space, rather than 

simply on where they are located? The work reported here 

suggests that this is indeed the case. Findings from two 

studies across three languages and cultural settings (with 

native speakers of German in Germany, of Chinese in 

Germany, and of Japanese in Japan) indicate that 

participants evaluate objects more positively when they 

conceptualize them as “in front of” another object than 

when they conceptualize them as “behind”. Importantly, this 

positive evaluation holds for the further-away object when 

translation is adopted, yet for the nearer object when 

reflection is adopted. 

The evidence is in line with the metaphor approach, 

according to which spatial concepts provide structure not 

only for more abstract domains, but also for evaluative 

judgments. While associations between space and valence 

have been described for the vertical axis (Keating, 1995; 

Meier & Robinson, 2004) and the lateral axis (Casasanto, 

2009, 2011; de la Fuente et al., 2015), the present studies 

show these associations also for the sagittal axis. More 

concretely, they reveal that phrases such as “being at the 

forefront” versus “lagging behind” are not mere 

metaphorical expressions, but reflect a genuinely more 

positive evaluation of entities located “in front of” other 

entities. While the strength of this association differs 

somewhat across samples, with more pronounced effects for 

German participants than for the two East Asian groups 

(likely due to different strength of the association across 

cultures), its direction is the same in all three groups. This 

evidence is even more compelling in view of the fact that it 

was obtained with an implicit task specifically designed to 

tap into more automatic, rather than deliberate, processes.  

Crucially, however, our findings also indicate that the 

association between location and valence is subject to 

linguistic and cultural conventions that affect how location 

is conceptualized—namely as in front or behind. Contingent 

on the adopted FoR, one and the same object in one and the 

same location may be evaluated as more positive or more 

negative: Under translation, the further-away object is 

regarded as the object in front and hence evaluated more 

positively, whereas under reflection, it is regarded as behind 

and hence evaluated more negatively.  

In the current study, the proportion of translational 

references among the Chinese- (and Japanese-) speaking 

participants was lower than in previous surveys. While this 

lower proportion is disadvantageous for statistical power, it 

is not problematic per se, as such preferences are known to 

be subject to some variation depending on context (cf., 

Wilke, Bender, & Beller, 2019). A potentially more critical 

concern could be raised regarding the IAT itself. As this 

method assesses the link between relative location and 

valence by mapping category labels onto response keys, it 

might be suspected that participants could have used the 

category labels associated with the keys and their 

correspondence in polarity as a convenient short-cut (De 

Houwer, 2001; Proctor & Cho, 2006). However, the 

cognitive processing of stimuli required for the spatial task 

involved the computation of ternary relations between figure 

and ground from one’s own viewpoint, which renders it 

unlikely that the observed effects were brought about by 

effects of labels or polarity only. 

In conclusion, while previous work demonstrated that 

spatial representations have effects on cognitive processing 

(e.g., Bender & Beller, 2014; Haun, Rapold, Janzen, & 

Levinson, 2011; Levinson, Kita, Haun, & Rasch, 2002; 

Majid et al., 2004), here, we show that how we 

conceptualize the location of entities may even reverse the 

evaluation of these very entities. As conceptualizations of 

location are informed by diverging preferences for spatial 

FoRs across speech communities, their association with 

non-spatial conceptualizations and evaluations provides a 

promising new approach to explore effects of language and 

culture on cognition, which is a topic of key interest across 

several sub-disciplines of cognitive science. Opening up 

new avenues for investigation, implicit approaches like the 

one presented here could make it to the forefront in this 

contested field.  
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Abstract 

 
The associative theory of creativity suggests that creative 

abilities rely on the organization of semantic associations in 
memory. Recent research has demonstrated that semantic 
network methods allow testing this hypothesis. The aim of the 
current study was to investigate the properties of semantic 
networks at the individual level, in relation to creative abilities. 
Semantic judgement ratings were used to estimate individual 
semantic networks, whose topological properties measured by 
several graph metrics were correlated with individual creativity 
scores. We found a correlation between the theoretical semantic 
distance of our stimuli and the relatedness ratings given by the 
participants, demonstrating the validity of our approach. 
Importantly, we found a close relationship between creative 
abilities assessed by an achievement questionnaire and divergent 
thinking tasks and individual semantic network metrics, 
replicating and extending previous similar findings. 
 
Keywords: creativity; semantic networks; network science; 
associative thinking 

Introduction 
The associative theory of creativity hypothesizes that creative 
abilities are related to individual differences in the 
organization of semantic associations in memory (Mednick, 
1962). In support of this theory, several findings showed that 
more creative individuals had less common word 
associations or a less constrained organization of semantic 
associations (Beaty et al., 2014; Bendetowicz et al., 2017; 
Benedek et al., 2012; 2017; Kenett et al., 2014; Rossmann & 
Fink, 2010; Volle, 2018) and that in brain-damaged patients, 
rigid semantic associations were associated with poor 
creative abilities (Bendetowicz et al., 2018; Ovando-Tellez et 
al., 2019). Thus, the properties of semantic associations play 
a critical role in the cognitive processes that bring forth 
original ideas. Recently, computational methods exploring 
semantic memory structure in creativity are paving the way 
to uniquely study its role in creativity. One such 
computational approach is based on network science 
methodologies (Kenett, 2018; Kenett & Faust, 2019). 

Network science is based on mathematical graph theory, 
providing quantitative methods to investigate complex 
systems, such as semantic memory, as networks (Siew et al., 
in press). In semantic networks, concepts or words are 
represented as nodes that are connected to each other by 
edges (denoting semantic similarity between concepts). The 
few studies that have applied semantic networks in the field 
of creative thinking indicate that studying the properties of 
semantic networks is a promising approach to explore 
creativity (Kenett, 2018; Kenett & Faust, 2019). For example, 
Kenett et al. (2014) investigated the semantic networks of 
low and high creative participants, based on free associations 
generated by both groups to a list of cue words. The authors 
showed that the semantic networks of low creative 
participants were less connected and more spread out 
compared to high creative participants. 

However, aggregating over participants into groups may 
obscure individual differences related to creativity. To 
address this issue, Benedek et al. (2017) developed a new 
method to estimate individual semantic networks, based on 
semantic judgment ratings. Participants rated the relations 
between all possible pairs of 28 cue words, chosen to 
represent seven different categories. These relatedness 
ratings served as a proxy to the organization of these cue 
words in an individual’s semantic memory. The authors 
showed how individual-based semantic network metrics 
correlated with individual-based creativity scores (Benedek 
et al., 2017) for specific types of filtered networks. However, 
in their study, the authors subjectively selected such cue 
words, and also applied a specific task, the Alternative Uses 
Task (AUT), to measure creative ability. 

The general aim of the current study was to replicate and 
extend the relationships between the properties of individual 
semantic networks and creative abilities found by Benedek et 
al. (2017). Individual semantic networks were estimated 
using a modified version of Benedek et al. (2017) in which 
we controlled for the selection of the cue words based on a 
computational method. Participant’s creativity was more 
extensively assessed via a creativity battery, including the 
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AUT used in the original study, a problem-solving task, and 
a creative achievement questionnaire. Specific network 
metrics of the individual semantic networks were computed 
and were correlated with the obtained creative scores. 

Materials and Methods 

Participants 
Twenty-three healthy individuals aged between 22 and 37 
years (26.96 ± 4.25) were included in the study. Participants 
were French-native speakers, right-handed with no 
neuropsychiatric disease. Two participants were excluded 
from the graph analysis because they rated >70% of word 
pairs as unrelated. This study was approved by the French 
ethical committee Sud Mediterrannée IV. Participants gave 
written consent and were paid for their participation. 

General Overview 
The study was composed of two parts. In the first part, the 
associative judgment task (AJT) was devised to estimate 
individual’s semantic networks. The AJT was adapted from 
Benedek et al. (2017) by constructing new verbal material 
controlled for linguistic and semantic properties. In the AJT 
task, participants are asked to rate the semantic relatedness of 
pairs of words. In the second part, participants performed the 
AJT and a set of creativity tasks. AJT ratings were used to 
estimate the individual AJT-based semantic networks and 
network metrics were correlated with creative scores. 

Part 1: The Associative Judgment Task (AJT) 
We first used computational methods in order to develop 

and select a new set of cue words to be used in the AJT, 
accounting and controlling for semantic and linguistic 
properties. This was achieved by 1) estimating a large French 
semantic network, based on a large database of semantic 
association norms in French, and 2) by selecting a set of cue 
words, based on the properties of this network. 
 
Creation of a French Semantic Network. To construct the 
French version of the AJT, we estimated a French semantic 
network of 1,081 words, based on French verbal association 
norms (Debrenne, 2011; http://dictaverf.nsu.ru/dictlist). This 
dataset was collected by asking French native speakers to 
provide the first word that came to mind after receiving a cue 
word. We selected words for which at least 400 participants 
provided a response. The final data contains 1,081 cue words 
and 26,268 responses from the participants. 

The French semantic network was estimated using a 
network approach developed to analyze free association data 
(Kenett et al., 2014). According to this approach, each node 
represents a cue word and edges between nodes represent the 
association between these nodes. These associations 
represent the similarity profiles across any pair of cue words, 
i.e., the overlap of associative responses generated by the 
sample to each of the cue words.  

The network was estimated in the following way: First the 
associative responses were preprocessed to standardize 

responses (correction of typos, elimination of non-words and 
articles, and spelling homogenization). Second, a data matrix 
was constructed such that each column is a cue word, and 
each row is a unique associative response. Thus, each cell 
denotes how many participants generated response i to cue 
word j. Third, the correlation between any pair of cue words 
was calculated using Pearson’s correlation. This resulted in a 
1,081 by 1,081 matrix where each cell denotes the semantic 
correlation between node i and node j. To minimize noise and 
possible spurious associations, we finally applied the planar 
maximally filtered graph filter (Kenett et al., 2014). To 
examine the structure of the networks, the edges were 
binarized so that all edges were converted to a uniform 
weight (i.e., 1). This allowed us to compute the shortest path 
between nodes in the network, serving as the theoretical 
semantic distance between them (Kenett et al., 2017). 
 
Selection of AJT Stimuli. To select the verbal material to be 
used in the AJT, we developed a new computational method 
that allowed us to objectively select words with specific 
associative and linguistic properties from the French 
semantic network. 

From the French semantic network, hierarchical tree 
structures were created recursively, using each node as a seed 
and searching for its neighbors. For each iteration, the 
neighbors of the neighbor’s nodes were searched. In total we 
performed 4 iterations, considering that Kenett et al. (2017) 
demonstrated that most participants judged as unrelated the 
words separated by more than 4 steps in a force choice task. 
However, this tree procedure generated nodes that were 
separated by more than 4 steps when they belong to distinct 
branches, which allowed us to also generate word pairs that 
will be likely judged as unrelated. To avoid having one 
central node related to all the others by 4 steps or less, the 
initial seed node was removed.  

The computation returned several solution trees among 
which one was selected for the AJT task based on the 
following criteria. First, for experimental reasons, the total 
number of nodes in the tree was limited to 35, i.e., 595 
possible pair combinations between all words that had to be 
rated by the participants during the experiment. Second, we 
computed the theoretical semantic distance for all possible 
word pairs in term of the number of steps separating them in 
all of the trees. We selected the tree that optimized the 
proportion of pair words separated by 1, 2, 3, 4, or 5 or more 
steps. The selected tree contained a set of 35 words involving 
595 possible word pairs with semantic distances distributed 
as follow: 10% of 1 step, 18% of 2 steps, 28% of 3 steps, 26% 
of 4 steps, 15% of 5 steps and 3% of 6 steps. 

Part 2: AJT-based networks and creativity  

Procedure of the AJT. Participants were presented 
successively with all the 595 combinations of pairs of the 35 
selected words and were asked to rate their semantic 
relatedness, using a visual scale ranging from 0 (unrelated) to 
100 (strongly related). Each trial started with the display of 
the word pair and a visual scale presented at the center of the 
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screen. After 2 seconds, the slider appeared in the middle of 
the scale. Participants could then freely move the cursor on 
the scale using a mouse and validated their response by a left 
click. They had to respond within 2 seconds. The final 
position of the slider in the scale after validation was 
considered as the semantic relatedness rating (Fig. 1). 

In total, participants performed 6 different runs of 100 trials 
each (except the last run with 95 trials). Each run was 
composed of 4 blocks of 25 trials and separated by 20 seconds 
rest periods with a fixation cross. The trials were pseudo-
randomly ordered within blocks with the constraint that each 
block contained a similar proportion of word pairs of each 
theoretical step. This order was fixed across participants. 
Before starting the task, participants performed a short 
practice. In addition, we checked that all participants were 
familiar with the 35 AJT words.  

Relatedness ratings were coded for each participant and 
values were averaged separately for each theoretical distance 
and overall (see Fig. 2). 

Estimating AJT-based individual semantic networks. 
Participant ratings of the word pairs during the AJT task 
served as a proxy of the organization of these words in their 
individual semantic network. We created a n by n matrix in 
which n represented the words used in the AJT task and each 
matching cell represented the semantic relatedness 
judgement given by the participant for these two words.  
   We employed two network filtering methods, one that had 
revealed significant relationships to creative abilities in 
previous work (Benedek et al., 2017) and a more conservative 
method that keeps more information in the network. In the 
first filtering method, we applied a fixed minimum 
relatedness threshold to the data and only edges with a weight 
of at least 50 were maintained. Since the value of 50 is the 
middle of the AJT scale, only edges corresponding to 
moderate to high semantic relatedness were kept and set to 1 
whereas all the others were removed, resulting in an 
unweighted undirected network (UUN). In the second 
filtering method, all the edges were kept with their weight, so 
it preserved the variability in semantic judgments and 
resulted in a weighted undirected network (WUN). In this 
graph, each edge was weighted by the relatedness judgement 
given by the participant. For both networks, when the 
participant judged two words as unrelated (rating = 0), the 
two corresponding nodes had no edges linking them. 
   Based on the metrics previously related to creative abilities 
(Benedek et al., 2017; Kenett et al., 2014), we computed the 

following network metrics to characterize the structure of an 
individuals’ semantic networks: the clustering coefficient 
(CC), the average shortest path length (ASPL), the diameter 
of the graph (D), smallworldness (S), betweenness centrality 
(BC), and modularity (Q). CC measures the degree to which 
nodes in a graph tend to cluster together. ASPL measures the 
average shortest number of steps that separate any pair of 
nodes, and D represents the longest path in the network. S is 
computed as a ratio between CC and ASPL. BC corresponds 
to the fraction of all shortest paths in the network that contain 
a given node. Q refers to the percentage of the network that 
is integrated into small-community structures. Analyses were 
performed with the Brain Connectivity Toolbox in Matlab 
(Rubinov & Sporns, 2010). 

Creative Assessment. Creativity was assessed using the 
Combined Associates Task (CAT), the Alternative Uses Task 
(AUT) and the Inventory of Creative Activities and 
Achievements (ICAA). 
   The CAT is an adaptation of the Remote Associates Task 
(Mednick, 1962) developed by Bendetowicz et al. (2017; 
2018) and assesses the ability to form new combinations 
between remotely associated words. In this task, participants 
are asked to find a word linked to three cue words with no 
apparent associations in a maximum of 30 seconds. CAT 
defines close and distant trials depending on the semantic 
distance between the cue words and the solution. 40 trials 
with an equal number of close and distant trials were 
administered. To quantify the data, four scores were 
analyzed. CAT_Solving is the sum of correct responses. 
CAT_Close and CAT_Distant correspond to the sum of 
correct responses in close and distant trials respectively, and 
CAT_Index corresponds to the difference in performance 
between distant and close trials, corrected by the averaged 
performance and was shown to reflect creative processes 
(Bendetowicz et al., 2017). 
   During the AUT, participants were asked to generate 
original uses for a common object in three minutes. At the 
end of the three minutes, the participants selected their two 
most creative responses, as top-two scoring has been 
observed to be an effective approach to assess creativity 
(Benedek et al., 2013; Silvia et al., 2008). This procedure was 
repeated for three objects: tire, bottle and knife. The 
corresponding nouns naming the objects were presented on 
the screen during the 3 minutes. Scores for fluency and 
originality were assessed for each object. AUT_Fluency 
refers to the total number of ideas generated by the participant 
and AUT_Originality counts the number of infrequent ideas 
(given by less than 5% of the participants) among the top-two 
ideas of the participant. 

Fig. 1: Schematic representation of an AJT trial. 
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   The ICAA questionnaire was used to quantify everyday 
creative activities and achievements (Diedrich et al., 2018). 
This questionnaire contains two parts. In the first part, 
participants answered questions focused on 8 different 
specific domains. For each domain, the quantification 
considered aspects related to how many times the participant 
had carried out a certain activity over the last 10 years, the 
level of achievement they have attained in the domain and 
how many years they have engaged in the specific domain. In 
the second part, participants described the five most creative 
achievements in their life. The scores ICAA_1 (creative 
activities) and ICAA_2 (creative achievements) were 
obtained as the total score for part one and part two 
respectively. 

Results 

Relatedness Judgments and Theoretical Semantic 
Distance 
Relatedness ratings within each participant ranged from 0 to 
100 indicating that participants used the full scale to rate 
relationships. Overall mean relatedness ratings across 
participants ranged from 13.49 to 54.02, with a mean of 33.22 
(± 8.66) and median of 34.08. For each participant, we found 
a significant negative correlation between the relatedness 
ratings and the theoretical distance (p < .001) with a 
correlation coefficient from -.2 to -.3 (Fig. 2). 

AJT-based Network Metrics and Creativity 
The network metrics were correlated to the creativity 
measures using Kendall Tau-b. These correlations were done 
separately for the WUN and UUN metrics. Fig. 3 shows an 
illustration of two WUN networks, from a high creative and 
a low creative participant, chosen among participants with 
respectively the highest vs poorest scores in both 
AUT_Originality and ICAA_1. 
   Significant correlations were found between several 
metrics from the WUN networks and creativity scores. 
ICAA_1 negatively correlated with D (τ = -.32, p < .05) and 
ASPL (τ = -.34, p < .05) and positively with S (τ = .32, p < 
.05). AUT_Originality negatively correlated with D (τ = -.45, 
p < .01), ASPL (τ = -.41, p < .05) and BC (τ = -.39, p < .05) 
and positively correlated with CC (τ = .35, p < .05). Similar 
correlations were found between several metrics from the 
UUN networks and creativity scores. ICAA_1 correlated 
negatively with S (τ = -.41, p < .05). AUT_Originality 
negatively correlated with D (τ = -.51, p < .01), ASPL (τ = -
.44, p < .05), BC (τ = -.46, p < .01), S (τ = -.49, p < .01) and 
Q (τ = -.38, p < .05). All p-values reported above are 
uncorrected and did not survive an FDR correction. 

AJT behavior and Creativity Scores 
To test whether creativity also relates more directly to AJT 
behavioral measures (Rossman & Fink, 2010), Pearson 
correlations were computed between the creativity scores and 
AJT relatedness ratings, overall and separately for each 

Fig. 2: AJT Task validation. Relatedness ratings of the participants are plotted against theoretical distance. X-axis - 
Theoretical distance according to the French semantic graph. Y-axis - Relatedness ratings given by the participants. Dots 
symbolize individual mean response ratings; bars show the mean across participants; white bands correspond to the inference 
representing the 95% of a Bayesian highest density interval; and the grey area displays the smooth density distribution. 
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theoretical step from 1 to 6. The mean AJT relatedness ratings 
correlated positively with AUT_Originality, ρ(19) = .54, p <  
.05: Participants judging word pairs as more related overall 
produced more original ideas at the AUT task. Correlations 
with the other creativity scores were not significant. 

When analyzed separately for each theoretical distance, 
AJT relatedness judgement correlated with AUT_Originality 
for word pairs separated by 6 steps, ρ(19) = .55, p < .01, 5 
steps, ρ(19) = .46, p < .05, 4 steps, ρ(19) = .46, p < .05, 3 
steps, ρ(19) = .49, p < .05 and 2 steps, ρ(19) = .56, p < .01. 
Participants judging theoretically distant word pairs (step >= 
2) as more related produced more original ideas at the AUT 
task. AJT relatedness ratings for close word pairs (1 step 
apart) correlated positively with CAT_Solving, ρ(19)= .50, p 
< .05, and CAT_Close, ρ(19)= .55, p < .001: Participants 
judging theoretically close word pairs (1 step apart) as more 
related were better at combining word associates and solved 
more CAT trials. No statistical results survive FDR 
correction for multiple comparisons. 

Discussion 
This study aimed to investigate the link between individual 
differences in the organization of semantic associations and 
creativity using computational methods based on graph 
theory. Individual semantic networks were estimated using 
an adapted version of the method from Benedek et al. (2017) 
by controlling the selection of the words based on 
computational methods. To this purpose, we first estimated a 
unique and large-scale semantic network in French. Next, we 
developed a method allowing to select a set of words in 
French while controlling for their semantic distance. Then, 

the selected words were used in a semantic relatedness 
judgement task and these relatedness ratings were used to 
estimate individual semantic networks. Several metrics 
characterizing the structure of these networks were computed 
and related to creative assessment scores. 

Our results showed that the theoretical semantic distance 
correlated with the relatedness judgments of the participants, 
thus converging with the results of Kenett et al. (2017).  
Theoretical distance relies on the properties of a semantic 
network estimated from a free verbal association task 
submitted to a large number of independent volunteers and 
from the similarity between the generated associates of all 
cue words. This semantic network allows to measure a 
theoretical distance as the number of steps separating two 
nodes in the network. That this measure was strongly related 
to the subjective similarity judgement of our participants 
between these cue words validate the use of path length 
computed on such semantic network as a measure of semantic 
distance (also converging with results from Kenett et al., 
2017). However, it is important to note that while the 
correlations were highly significant, the Kendall τ 
coefficients were of moderate size (mean of ± .22). One 
possibility would be that the relationship between the 
theoretical distance and rated distance between selected 
stimuli may not be linear across the full range of steps. In 
addition, other factors could impact these subjective 
relatedness ratings. For instance, subjective ratings showed a 
high inter-individual variability that could in part be 
explained by creative abilities, as indicated in the second part 
of our study. 

Fig. 3: Example individual semantic networks of a low and high creative participant (weighted undirected networks). Circles 
represent nodes (single words, labelled as numbers), grey lines represent the edges connecting the nodes, with higher 
weighted edges having a shorter length representing higher semantic relatedness. The high and low creative participants were 
chosen among participants with the highest and lowest scores in creativity assessments, respectively (AUT_Originality and 
ICAA_1). 
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The next step of the current study consisted of a behavioral 
experiment aiming to examine the relationships between the 
organization of semantic memory and creative abilities. The 
findings showed that some network metrics for both WUN 
and UUN networks were related to creativity measures 
including the originality of ideas generated during the AUT 
(AUT_Originality) and the creative activities in life assessed 
with ICAA (ICAA_1). However, those network metrics were 
not significantly correlated to the number of ideas generated 
in the AUT (AUT_Fluency) and creative achievements 
(ICAA_2) measured with the same tasks, nor to CAT scores. 

Indeed, the results showed that participants with more 
original ideas in the AUT and/or more creative activities in 
their real life (ICAA_1), exhibit WUN networks that are less 
spread out (shorter D and ASPL), were more clustered (higher 
CC), showed greater small-world connective properties 
(higher S) and the nodes tended to have a more homogeneous 
connective role in the network (lower BC). Similarly, AJT-
based UUN networks were also less spread out with shorter 
path length, less modular (lower Q) and with uniform nodes 
(lower BC) but with reduced small-world properties (S) in 
more creative participants. 

Importantly, these findings replicate and expand the results 
from Benedek et al. (2017) who used UUN networks and 
showed similar correlations between CC and ASPL metrics 
and AUT; we additionally observed correlations between the 
AUT and other metrics (BC, Q, D). In WUN networks 
additional correlations were shown between network metrics 
(D and ASPL) and ICAA_1. These correlations indicate that 
the organization of semantic memory measured by network 
metrics is also a relevant factor in real life creativity.  

Overall, the current findings suggest that more creative 
participants exhibit a more clustered and densely connected 
semantic network whereas less creative participants have a 
more spread out and fragmented network. These results are 
in line with the few previous studies that examined semantic 
memory and creativity (Benedek et al., 2017; Kenett et al., 
2014; 2018; Kenett & Faust, 2019). Together these studies 
strengthen the view that exploring the organization of 
semantic associations using individual networks is both 
relevant and valuable for the neuroscience of creativity and 
support the associative theory of creativity. 

Additionally, our method allows us to explore the 
relationships between AJT ratings and creativity measures. 
The AJT ratings averaged across all theoretical distances and 
separately for each theoretical distance greater than 1 was 
positively correlated with originality in AUT. This finding 
indicates that participants who produced more original ideas 
also identified word pairs as more related, especially for pairs 
of words being theoretically more distant. This result is 
consistent with Rossmann and Fink (2010) that showed a 
positive relationship between originality and the evaluated 
associative distance between unrelated word pairs. These 
findings suggest that creative people are able to perceive 
connections between concepts that others may not see. 
Conversely, the mean AJT rating for theoretically close word 
pairs (1 step apart) positively correlated with the total number 

of correct responses in CAT when considering all trials 
(CAT_Solving) or close trials only (CAT_Close). Participants 
who found close links in the CAT also judged theoretically 
close pairs as highly related. However, contrary to what was 
expected, the correlations with AJT ratings failed to reach 
significance when considering distant trials only 
(CAT_Distant) or the difference in performance between 
distant and close trials (CAT_Index). It is possible that distant 
trials involve additional processes that are less dependent on 
semantic associations (Bendetowicz et al., 2018). We cannot 
rule out that the small number of CAT trials used in this 
experiment may have influenced this result.  

Finally, our results indicate that network metrics provide 
insight why people rate concepts as more or less related and 
that they are relevant quantitative measures to study 
creativity. However, statistical analyses revealed that no 
correlation with creativity scores survived the corrections for 
multiple comparisons. The small sample size may explain the 
lack of power, and more participants will be included in this 
study to address this issue. Nevertheless, the trends in the 
results and their consistency with previous studies are 
encouraging. Overall, the findings suggest that exploring 
individual semantic networks based on a controlled verbal 
material is a promising approach to study creativity. 

Conclusions and Perspectives 
To conclude, our data indicate a close relationship between 
the organization of semantic associations represented by 
semantic networks and creative abilities. Although the results 
will need to be confirmed in a larger sample, which is an 
ongoing project, the current study is consistent with previous 
studies performed in this field and offers improvements in 
semantic network methods. Our results are notably in 
agreement with previous studies that showed a link between 
creative abilities and the ability to make semantic 
connections between unrelated concepts. Developing new 
methods to measure the ability to make new semantic 
connections is an important challenge to better understand the 
mechanisms of creative cognition (Benedek & Fink, 2019). 
The analysis of individual semantic networks is one of the 
most promising approaches to achieve this goal. 

The results of this study also offer interesting hypotheses 
to test regarding the brain substrates that underlie creative 
abilities. For instance, the same paradigm can be combined 
with functional MRI to explore how brain network activity 
and connectivity covary with the ability to connect distant 
concepts as measured by semantic network metrics. 
Moreover, graph theory can be used to study how brain 
network connectivity relates to the organization of semantic 
networks in the context of creativity. 

Finally, the current study provides valuable insight 
regarding the fruitfulness of the newly created French 
semantic network. This network could be especially useful 
for measuring the semantic distance of words produced by 
participants in cognitive tasks or building new French task 
material in which semantic distance needs to be controlled. 
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Abstract 
Peak End Rule (Kahneman, 1993; 2011) suggests that the average 
of the peak and end moments of an event disproportionately affect 
memory and thus perception of the experience. We investigate 
PER’s application to the experience of reading fiction. Gillian 
Flynn’s Gone Girl (2012) is an ideal case study because it is 
commercially popular but, unlike most popular novels, has a 
distinctly amoral ending. We hypothesize that humans expect moral 
payoffs at the end of narrative fiction, and that when these 
expectations are not met (i.e., pain at the end of the experience), as 
in the case of Gone Girl, readers’ perceptions of the story will be 
influenced by this pain and manifest as disappointment and dislike. 
We reference existing models in evolutionary psychology, which 
seek to explain human altruism, and models in cognitive science, 
which seek to explain patterns in memory and assessment. To 
quantify disappointment and dislike, we conduct a programmatic 
corpus linguistic analysis of 40,000 web-scraped Amazon product 
reviews of Gone Girl, comparing them to reviews of eight other 
similarly popular novels from the same year. Results show that 
reader sentiments about Gone Girl, both the overall review ratings 
and analysis on a sentence-by-sentence basis, are more positive than 
for the comparison novels. When only reviews mentioning “end” 
are analyzed, however, the effect reverses, with a similar finding at 
the more granular level of sentences mentioning “end.” These 
findings support our hypothesis that moral endings, or lack thereof, 
significantly shape reader perceptions of a novel.  

Keywords: peak end rule; narrative endings; sentiment 
analysis; corpus linguistics; web scraping; Amazon product 
reviews; morality in narrative; evolutionarily stable systems; 
social cooperation; Gone Girl 

Introduction 
The principle of Peak End Rule (PER) suggests that a 
memory of an experience is influenced disproportionately by 
two key moments: the most intense moment of pain in the 
episode and the level of pain felt at the end of the episode 
(Kahneman et al., 1993). Multiple experiments have 
supported the notion of PER, utilizing a variety of 
methodologies (Fredrickson & Kahneman, 1993; Kahneman, 
2011; Redelmeir & Kahneman, 1996). While Kahneman 
(2011) studied how subjects evaluate fictional stories of 
people’s lives (ending happily or sadly) in a Peak End Rule 

framework, it remains to be explored how PER applies to 
readers’ perceptions of literary fiction. In the present study, 
we explore such perceptions as expressed through reader 
book reviews. Here, the event to which PER applies is the 
reading of a novel. Since we assume that such review 
assessments are highly correlated to perceptions formed 
during the reading event, perception and memory here are 
then intertwined. 

Literary critics working within an evolutionary framework 
believe fiction to be inherently moral (Gardner, 1978; 
Gottschall, 2012). Regardless of how much readers delight in 
highly problematic narratives, they nevertheless expect a 
moral payoff by way of closure (Carroll, 2011; Flesch, 2009; 
Gardner, 1978). Moreover, it has been shown that authors and 
filmmakers are acutely aware of this expectation and use 
cognitive biases in the construction of narratives to 
manipulate the effect on readers (Smith, 2015). 

This expectation for moral endings may be rooted in the 
evolutionary advantages of altruism. Altruistic action is 
necessary in group systems because it ultimately promulgates 
group stability (Flesch, 2009). In Evolutionarily Stable 
Systems, people are cooperators, defectors, or punishers 
(Flesch, 2009). Cooperators constantly track the behavior of 
others in their group using gossip, honest signaling, and other 
social tools to ensure that no one is defecting (Dunbar, 2004; 
Flesch, 2009; Harari, 2015; Zahavi & Zahavi, 1997). If 
cooperators catch defectors, they seek to punish the latter by 
exposing their free-riding behavior to the rest of the group. 
This same human propensity for altruistic punishment has 
been demonstrated through the game theory constructs of the 
Ultimatum Game and the Prisoner’s Dilemma (Fehr & 
Fischbacher, 2003; Güth et al., 1982; Tucker, 1983). 

William Flesch argues that the moment the author allows 
moral characters to expose and punish immoral characters is 
the “pleasure of fiction” (Flesch, 2009). In fact, it is not just 
the authors’ ability, but their social responsibility to provide 
this payoff (Carroll, 2011). Reader expectations for this 
payoff are also influenced by genre: when viewers watch 
more fictional television, they develop stronger Just World 
Beliefs, as opposed to when they watch news/infotainment 
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television (Appel, 2009). This could be because fictional 
narratives “tend to stimulate moral evaluation,” whereas 
nonfictional television is saturated with immoral behaviors 
not necessarily followed by moral consequences (Appel, 
2009). In this way, genre affects readers’ expectations.  
 
A case study: Gone Girl  
Using the novel Gone Girl by Gillian Flynn (2012), we 
present an emblematic case study for moral endings in 
fictional narratives. Gone Girl is a useful case in that it is 
commercially popular, topping New York Times (NYT) 
bestseller lists and garnering over 40,000 product reviews on 
Amazon, but its ending is highly disturbing because of its 
lack of morality (Amazon Customer Reviews, 2016; New 
York Times Bestsellers, 2012, 2013).  

For readers to engage with a book, they inherently need to 
trust the narrator (Carroll, 2011). Flynn expertly manipulates 
this trust to deliver a spectacularly amoral ending, thus 
experienced by the readers as particularly painful. With two 
unreliable narrators, Flynn’s readers perceive their highly 
manipulated empathy for the two protagonists, Nick and 
Amy, as wasted. In exchange for this deception, readers 
expect Flynn to craft an even stronger, satisfying ending. 

However, the novel’s ending is both abrupt and lacking in 
a moral payoff. The book has no altruistic punishers. The 
defector, Amy, is not punished sufficiently; she succeeds in 
all of her free-riding efforts. As one reader comments: “I was 
disappointed in the ending. I was hoping for either justice on 
Nick's side or the demise of Amy. Ending just wasn't what I 
had hoped it would be.” Given the principle of Peak End 
Rule, we would expect readers’ perceptions and global 
assessments of the novel to be most influenced by the painful 
and unsatisfying ending (Kahneman, 2011).  

To assess this and other related claims about moral closure 
in novels, this paper linguistically analyzes Amazon product 
reviews of Gone Girl (Amazon Customer Reviews, 2016). 
This methodology is derived from an increasing usage of 
online corpora to assess opinions of a product or work 
(Allington, 2016; Boot, 2013).  
 

Hypotheses 
Readers expect moral endings out of New York Times 
bestselling narrative fiction, and when these expectations are 
not met, as is the case in Gone Girl, readers will feel 
dissatisfied and disappointed because their unspoken contract 
with the author has been broken. Specifically, we may expect 
to observe the following: 

(1) Readers of Gone Girl will more frequently discuss the 
ending, as compared to other best-selling literary novels. 

(2) While Gone Girl is similarly popular (i.e., best-selling), 
with comparable overall Amazon review numerical ratings 
(scale: 1-5 “stars”), reviews discussing the “end” will garner 
significantly lower ratings for Gone Girl. Discussing “end” 
is not expected to similarly affect the comparison corpus. 

(3) At the sentential level within Gone Girl reviews, 
mentioning “end” will be associated with significantly more 
negative surrounding sentiment, as judged by a machine-
learning classifier. No similar effect is expected for the 
comparison corpus. 

(4)  Descriptively, adjectival collocates of “end” are expected 
to be substantially more negative within the Gone Girl 
corpus. 
 

Methods 
Two corpora were created and analyzed using a combination 
of web-scraping tools, custom scripting software, part-of-
speech tagging, deep-learning sentiment classification, and 
the R statistics platform (version 3.5.1, R Core Team, 2018). 
Throughout this work, we consider references to the ending 
of a novel to be any of “end,” “ends,” “ended,” or “ending,” 
referring to this set collectively as simply “end.” 
 
Materials 
Star-rated consumer reviews of novels were extracted from 
the Amazon website and organized into two corpora: one for 
the novel Gone Girl (Flynn, 2012) and one for a group of 
comparison works. 

 
Gone Girl corpus A total of 39,436 product reviews of the 
novel Gone Girl by Gillian Flynn were extracted in 
December 2016 using ParseHub web-scraping software. Data 
collected were: title of review, content of review, date 
published, and star rating. After a pilot study of the full 
corpus, final analysis was limited to the first 2,000 reviews 
chronologically following the book’s release, all within 2012, 
in order to avoid any influence of the movie Gone Girl 
(Fincher, 2014), announced in 2013 and released in 2014. 
 
Comparison corpus The comparison group of novels 
comprises all works that, like Gone Girl, appeared on the 
NYT bestselling fiction list for two or more consecutive 
weeks in 2012 or 2013. Our collected corpus contains product 
reviews for: 11/22/63 by Stephen King, Fifty Shades of Grey 
by E.L. James, Reflected in You by Sylvia Day, The 
Racketeer by John Grisham, A Memory of Light by Robert 
Jordan and Brandon Sanderson, Until the End of Time by 
Danielle Steel, Inferno by Dan Brown, and The Cuckoo’s 
Calling by Robert Galbraith. Amazon reviews were 
extracted, collecting title of book, plus as before: title of 
review, content of review, date published, star rating. 

Here, the number of reviews extracted for each novel was 
limited to either the first 2,000 chronologically or all reviews 
appearing within the first two years of release, whichever was 
less. As with Gone Girl, this was done to limit any potential 
influence from television or cinematic releases based on the 
books. Within these parameters, a total of 14,460 reviews 
were extracted, 11/22/63 and Until the End of Time via 
ParseHub, with the remainder collected using the 
webscraper.io utility (Balodis, 2018). 
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All tokens of the phrase “until the end of time,” without 
regard to case, were excluded from analysis, as this is not 
only a somewhat fixed multi-word expression (MWE) in 
English, but here it is also specifically the title of one of our 
comparison novels. We assume the use of “end” in this 
expression does not actually refer to the ending of the 
narrative. A second fixed MWE, “loose ends,” was similarly 
excluded.  

 
Results 

Use of end 
Per hypothesis 1, reviewers of Gone Girl discuss the ending 
more. In the comparison corpus, 25.7% of the reviews 
mention “end,” 3.7% of the review titles, and “end” 
compromises 0.21% of all words. The corresponding figures 
for Gone Girl are 52.4%, 8.4%, and 0.63%, more than double 
in each case (Figure 1). 
 
Differences by “star” rating 
Hypothesis 2 predicts that mentioning “end” will lower 
Amazon review numerical ratings for Gone Girl more so than 
for the comparison set. Figure 2 appears to bear this out. 

To explore this further, we fit a linear mixed-effects 
regression model to predict review star rating from fixed 
effects for source corpus, length of review (in words, log-
reduced to limit outlier effects), and whether or not each 
review included mention of “end” in its title or body text, 
with a random effect for individual book title.1 We trialed all 

                                                        
1 We do not also include a random effect for “participant” (i.e., 

reviewer) since, with rare exception, there is just one review per 
reviewer available within our pair of corpora—that is, there is no 
clustering to model. 

2 The model exhibits negligible collinearity, with condition 
number κ = 1.41 (where Cheney and Kincaid 2007 suggests 10+ is 
problematic) and largest variance inflation factor (VIF) for any 
single predictor = 1.31 (10+ again being high, per Hair et al. 1998). 

3 Inclusion of length in this analysis was motivated by an 
anonymous commenter’s concern that lower ratings for Gone Girl 
reviews mentioning “end” might arise if these reviews tended to be 

possible two-way interactions among the fixed effects, as 
well as a maximal random effects structure (Barr et al., 2013). 
Stepwise model optimization preserves the random intercept 
for book title, the associated random slope for review length, 
and interactions of source corpus with both review length and 
“end” mentions (Table 1).2 

As a baseline, there was no significant difference in overall 
star rating among these popular works when “end” was not 
mentioned (main effect of source corpus, β# = 0.019, 
t = 0.078, p = 0.9403), and longer reviews correlated with 
somewhat lower ratings overall (β# = -0.283, t = -7.182, 
p = 0.0002).3 When “end” is mentioned, mean ratings 

longer, where longer reviews might in turn correlate with lower 
ratings. As reported above, the main effect of review length does 
turn out to be correlated with lower scores overall, but we find that 
greater length specifically among the Gone Girl reviews actually 
positively influences star rating (interaction of source corpus and 
length, β# = 0.353, t = 3.006, p = 0.0197). Further, Gone Girl reviews 
overall are not significantly longer than the comparison group 
(x̄ = 101.5 words GG vs. 100.6 comp, t = 0.322, p = 0.7473), and 
Gone Girl reviews mentioning “end” are actually significantly 
shorter on average than reviews mentioning “end” within the 
comparison corpus (x̄ = 123.0 vs. 160.4, t = -7.027, p < 0.0001). 

“End” Mentions by Corpus 
 Reviews Titles Words 

          
Figure 1: Percentages of “end” mentions for comparison 
corpus (“Comp”, lighter bars) vs. Gone Girl corpus (“GG”, 
darker bars). 
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Figure 2: Effects of mentioning “end” on overall reviewer 
rating. (Comparison corpus N=14.5K, Gone Girl N=2K.) 
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Table 1: Fixed effects and interactions from linear regression, 
with baseline y-intercept of about 4 out of 5 stars. 

 Coef. β# SE(β#) t Pr(>|t|) 
Intercept 3.964 0.081 49.181 < 0.0001 
Corpus: Gone Girl 0.019 0.242 0.078 0.9403 
Review length -0.283 0.039 -7.182 0.0002 
Mentions “end” 0.260 0.026 10.145 < 0.0001 
Gone Girl × length 0.353 0.118 3.006 0.0197 
Gone Girl × “end” -0.870 0.064 -13.606 < 0.0001 
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actually increase overall (β# = 0.260, t = 10.145, p < 0.0001), 
but looking at the interaction terms, among Gone Girl 
reviews that mention “end,” scores significantly decline 
(β# = -0.870, t = -13.606, p < 0.0001) as predicted. 

Figure 3 further illustrates the distribution of star ratings 
with and without “end” mentions. 
 
Sentiment analysis 
The analyses detailed above offer a view of how mentioning 
“end” is reflected in an extrinsic measure of overall reviewer 
satisfaction––the star ratings. But a question remains with 
regard to what reviewers express more directly about the 
ending of the story.  

To explore such an intrinsic measure, we began by splitting 
review text at punctuation points, a proxy for clause 
boundaries, yielding 136K such segments, including 12,277 
for Gone Girl, of which 1,066 mention “end.” We applied 
deep-learning sentiment annotation via the Stanford 
CoreNLP toolkit (Socher et al., 2013; Manning et al. 2014) 
to rate the emotional content of each segment of text 
(“clause”) as “Very negative,” “Negative,” “Neutral,” 
“Positive,” or “Very positive.”  

Recasting these ratings as a continuous scale (-2 to +2), we 
once again fit a linear mixed-effects regression model, now 
predicting sentiment score from fixed effects for source 
corpus, clause length, and whether or not each such 
individual segment of text included mention of “end.” To 
these, we added random effects, now both for book title and 
for individual review.4 As before, we also model all possible 
two-way interactions of the fixed effects and the maximal 
random-effects structure supported by the data. Stepwise 
optimization this time preserved all main effects and their 
interactions (Table 2), as well as both of the random 
intercepts and a random slope for the separate effect of 
“end”-mention within each given review.5 
 

                                                        
4 Whereas our previous analysis—star ratings applied to the full 

reviews—did not include a per-review (i.e., “participant”) effect. 

Table 2: Fixed effects and interactions from regression, with 
baseline y-intercept = 0.02 (i.e., overall “Neutral” sentiment). 

 Coef. β# SE(β#) t Pr(>|t|) 
Intercept 0.020 0.038 0.515 0.6223  
Corpus: Gone Girl 0.068 0.114 0.593 0.5720 
Clausal length -0.181 0.003 -61.121 < 0.0001 
Mentions “end” 0.052 0.021 2.462 0.0139 
Gone Girl × “end” -0.351 0.041 -8.575 < 0.0001 
Gone Girl × Length 0.025 0.010 2.406 0.0161 
“End” × Length -0.048 0.022 -2.149 0.0317 

At this clausal level, there was again no significant main 
effect of source corpus, meaning segments of Gone Girl 
reviews overall were neither more positive nor more negative 
than those in the comparison corpus (β# = 0.068, t = 0.593, 
p = 0.5720). We also find that longer clauses are more likely 
to bear negative sentiment (main effect of length, β# = -0.181, 
t = -61.121, p < 0.0001), much as our previous analysis found 
that longer complete reviews received lower star ratings. This 
effect was, however, weakened within Gone Girl review 
prose (interaction term, β# = 0.025, t = 2.406, p = 0.0161). 
Among all clauses mentioning “end,” mean sentiment 
increases overall (β# = 0.052, t = 2.462, p = 0.0139), much as 
did full-review star ratings. Critically, though, Gone Girl 
“end”-mentions are significantly more negative (interaction 
β# = -0.351, t = -8.575, p < 0.0001), just as we saw with lower 
star ratings for full reviews, again as predicted by 
Hypothesis 3. 
 
Most common descriptive terminology 
Finally, we examined adjectival collocates of “end” to see 
how reviewers specifically describe the respective endings. 
Here, we began by applying part-of-speech (POS) labels to 
all text, once again using Stanford CoreNLP (Toutanova et 
al., 2003; Manning et al., 2014), then analyzed adjectives 
appearing within a three-word window of “end,” left or right, 
without crossing clausal or sentential boundaries. Negated 
contexts (e.g., “not good,” “never disappointing”) were 
excluded from this portion of the analysis (Pang et al., 2002). 

The most frequent adjective used to describe “end” in the 
Gone Girl corpus was “disappointing,” which in combination 
with the related form “disappointed” was almost twice as 
frequent as the next most used word to describe the ending of 
the story, “worst” (Table 3). 

Examples from the Gone Girl reviews of the use of 
“disappointing” or “disappointed” in relation to “end” 
include: “the ending was disappointing to the point of making 
me wish I had not spent my time reading this,” “it was a good 
book, but the ending was a disappointment,” and “the big 
disappointment was the ending…this book ended horribly.” 

5 As with our earlier model, we find negligible collinearity, with 
κ	= 1.15 and largest VIF for any single predictor = 1.77. 
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Figure 3: Star ratings by source, with and without “end.” 
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Table 3: Most common adjectives used in descriptions of 
“end” in the Gone Girl corpus. Coding for sentiment as rated 
by the Stanford CoreNLP toolkit (Socher et al., 2013; 
Manning et al. 2014): red/– = negative; green/+ = positive; 
gray/~ = neutral. 

Adjective Frequency (%)  
– disappointing 5.08 
– worst 3.81 
+ good 3.60 
– horrible 2.97 
– unsatisfying 2.97 
~ little 2.75 
– awful 2.54 
+ happy 2.54 
– terrible 2.33 
– bad 2.12 
– disappointed 1.91 

 
The adjective most frequently used to describe the ending 

in the comparison corpus was “great” (Table 4). Excerpts 
from reviews including use of “great” to describe “end” in the 
comparison corpus include: “great story...with a literally 
killer climax and great ending,” “what a great ending to a 
terrific trilogy,” “the ending was great and totally 
unexpected,” and “awesome book, great ending to an epic 
saga.” 

While these respective sets of most frequent adjectives 
appear largely disjoint, we find a few terms in common 
among those frequently applied in both corpora, e.g., “good” 
and “little.” To then further explore which terms most 
distinctively apply to “end” in one corpus as compared to the 
other, we examined relative frequency across the two data 
sets. We log-reduced values and Z-score normalized for 
comparison, then found the ratio of “end”-description 
frequency for Gone Girl over the comparison set. The largest 
ratios (Table 5) represent terms most frequently applied to 
“end” for Gone Girl vs. the comparison group. 
 
Table 4: Most common adjectives used in descriptions of the 
endings of comparison novels. (Sentiment coding as in 
Table 3.) 
 

Adjective Frequency (%) 
+ great 12.36 
+ good 5.53 
+ happy 3.76 
+ perfect 2.69 
+ wonderful 2.23 
~ little 2.07 
+ amazing 2.00 
+ satisfying 2.00 
+ fantastic 1.69 
~ first 1.69 
+ excellent 1.53 

Table 5: Adjectives most distinctively applied to “end” in 
Gone Girl vs. comparison novels, as measured by relative 
frequency across the two. (Sentiment coding as in Table 3.) 

Adjective GG/Comp ratio 
– awful 24.54 
– worst 18.40 
– anticlimactic 15.34 
– flat 12.27 
– bizarre 9.20 
– disappointed 9.20 
– unsatisfying 8.18 
– ridiculous 7.67 
– atrocious 6.13 
– terrible 6.13 
– horrible 6.13 

 
Gone Girl corpus examples of “awful”—24.54 times more 

likely to be used to describe “end” for Gone Girl than for the 
comparison set—include: “slow pace and awful ending—
don’t waste your money,” “great book, awful ending,” “it 
could’ve been a perfect novel, but that God awful ending!” 
and “awful ending…makes you feel dirty for wasting so 
much time on a sick, twisted book.” 

Finally, we further visualized this notion of relative 
frequency ratio, focusing on the 20 adjectives with greatest 
average “end”-collocation frequency across the two corpora. 
Figure 4 graphs their respective (log-reduced, normalized) 
frequencies for the two data sets, with sentiment labeling 
once again as above in Table 3. Terms below the dividing line 
were more frequently “end” collocates for Gone Girl, none 
expressing positive sentiment. Those above the diagonal, 
none of which express negative sentiment, were more 
frequently applied to “end” for comparison works. 
 

 
Figure 4: Relative frequency of collocates across corpora. 
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Discussion 
Moral payoffs are closely related to the pleasure of fiction. 
Readers make an unspoken contract with the author before 
reading a book: I will read your book, expecting that the 
morally problematic content will be cleaned up by the end. 
When this baseline assumption is violated, as is the case in 
Gone Girl, the ending becomes a salient discussion topic. Our 
findings confirm this: mentions of “end” were twice as 
common in Gone Girl reviews than comparison novel 
reviews. 

And readers do not merely discuss the ending: they vividly 
express their disappointment. In fact, “disappointed” was 
used almost 10 times more often in relation to the ending of 
Gone Girl than for the comparison novels. This adjective in 
particular is revealing in the context of the reader/author 
contract, because it signifies readers’ expectations and their 
lack of fulfilment. 

In contrast, the adjectives most frequently used to describe 
“end” in our comparison group of novels were generally 
positive, suggesting satisfaction with the ending and, 
therefore, fulfillment of the unspoken contract with the 
author. 

Gone Girl is an important case study in the expectation for 
moral payoffs in novels because it lacks a moral ending, yet 
it is commercially popular. In fact, in terms of overall review 
scores, Gone Girl is just as highly rated as comparison best-
selling novels. What stands out, however, is that when 
reviews are separated into those that mention “end” and those 
that do not, Gone Girl reviews significantly differ from 
comparison reviews. Crucially, we found that while 
including a mention of “end” in the comparison corpus does 
not significantly affect star rating, mentioning “end” in the 
Gone Girl corpus significantly lowers ratings. This suggests 
that Gone Girl’s amoral ending is a salient cause for overall 
dissatisfaction with the novel. 

While this conclusion is made on the basis of reviewers’ 
overall star ratings, an extrinsic measure, we found similar 
evidence in programmatic sentiment analysis of review 
prose. Here, the effect of mentioning “end” was even more 
pronounced: Gone Girl commentary about matters other than 
“end” was significantly more positive than in reviews of 
comparison works, while discussions of “end” were 
significantly more negative. 

The fact that discussions of “end” were extremely negative 
in the Gone Girl corpus suggests that reviewers act as 
altruistic punishers in the framework of Evolutionary Stable 
Systems. Because Flynn controls the narration that explains 
the world of Gone Girl, readers expect her to act as the 
primary altruistic punisher in the novel’s social ecosystem. If 
there is a defector within the novel, it is Flynn’s job to guide 
the narration such that the defector is exposed and 
consequently punished. In the case of Gone Girl, there is 
more than one defector, and Flynn fails to craft the narration 
to punish any of them appropriately. Readers experience and 
react to Flynn’s lack of punishment and become second-order 
altruistic punishers themselves; they go to Amazon and write 
product reviews for the novel, explaining their opinions of the 

ending and exposing Flynn herself as a defector for her 
failure to include a moral ending. 

Therefore, we see that the evolutionary advantages of 
altruistic behavior not only guide immediate social groups, 
but literary communities as well. The principle of Peak End 
Rule further compounds this: when psychologically amoral, 
painful moments occur at the end of experiences or 
narratives, the impact is amplified. This heightening of moral 
discomfort is what drives readers to write over 40,000 
product reviews for a novel, over half of which include a 
discussion of the “end,” with “disappointing” as a key 
descriptor. 

Future Directions 
Given the wealth of data available via Amazon, further 
investigation using more novels and more reviews is an 
important next step. We would also like to consider reviews 
from other Internet sources, such as GoodReads. 

Another possibility would be to examine responses to the 
movie Gone Girl, looking at how these compare with 
reactions to the novel. Although Flynn wrote the screenplay 
for the movie, its narration style inherently changes with the 
shift in medium, meaning that reactions to the ending could 
shift as well.  

Conclusion 
The Peak End Rule principle suggests that endings of 
experiences or narratives significantly affect a person’s 
overall memory, or perception, of that event. Though first 
explored through cognitive research on human memory, the 
principle also applies to readers’ perceptions of literary 
novels, and in particular, their endings. That is, moral 
endings, or lack thereof, as in the case of Gone Girl, have a 
strong effect on readers’ perceptions of novels.  

In light of the human propensity for cooperation, Gone 
Girl’s lack of a moral ending dramatically affects reader 
response, in comparison with other popular contemporary 
novels. This investigation demonstrates the profound effect 
endings have in shaping conception of stories, as well as our 
expectation for a moral payoff in literary novels––even 
disturbing ones.  
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Abstract

Pragmatic inferences are an integral part of language learn-
ing and comprehension. To recover the intended meaning of
an utterance, listeners need to balance and integrate different
sources of contextual information. In a series of experiments,
we studied how listeners integrate general expectations about
speakers with expectations specific to their interactional his-
tory with a particular speaker. We used a Bayesian pragmatics
model to formalize the integration process. In Experiments
1 and 2, we replicated previous findings showing that listeners
make inferences based on speaker-general and speaker-specific
expectations. We then used the empirical measurements from
these experiments to generate model predictions about how
the two kinds of expectations should be integrated, which we
tested in Experiment 3. Experiment 4 replicated and extended
Experiment 3 to a broader set of conditions. In both experi-
ments, listeners based their inferences on both types of expec-
tations. We found that model performance was also consistent
with this finding; with better fit for a model which incorporated
both general and specific information compared to baselines
incorporating only one type. Listeners flexibly integrate dif-
ferent forms of social expectations across a range of contexts,
a process which can be described using Bayesian models of
pragmatic reasoning.
Keywords: Pragmatics; Word learning; Common ground;
Bayesian models

Introduction

One of the most astonishing features of natural language is
that it allows us to communicate precise meanings despite the
fact that most utterances are inherently ambiguous. While the
conventional mapping between sounds (words) and objects
constrain what a speaker may mean by an utterance, the in-
tended meaning of the utterance is not reducible to the words
that are contained in it. It takes additional pragmatic infer-
ence to recover the intended meaning (Levinson, 2000).

Pragmatic inferences rest on a set of expectations that in-
terlocutors bring to the table when entering a communicative
interaction. On the one hand, speakers and listeners have the
general expectation that their partner communicates in an in-
formative and relevant way (Sperber & Wilson, 2001). Grice
(1991) summarised this expectation via the Cooperative Prin-
ciple: “Make your contribution such as is required, at the
stage at which it occurs, by the accepted purpose or direction
of the talk exchange in which you are engaged.” Importantly,
the second half of the Cooperative Principle describes a sec-
ond type of expectation: interlocutors expect each other to
produce and interpret utterances in light of the shared com-
mon ground between them (H. H. Clark, 1996). Common

ground refers to bits of information that are assumed to be
shared, either because they were mentioned over the course
of the conversation or grounded through some form of joint
experience (Bohn & Koymen, 2018). Note that by its very na-
ture, common ground may vary with the individuals involved
in a particular conversation.

These same general and specific expectations can sup-
port children’s word learning (E. V. Clark, 2009; Tomasello,
2009). On the one hand, children have been found to learn
novel words by assuming speakers are generally informa-
tive (Frank & Goodman, 2014). That is, in the absence of
any prior interaction with the speaker, children interpreted
a novel word as referring to the most informative referent.
On the other hand, children use conversation-specific com-
mon ground expectations to decide which object a specific
speaker is referring to when they use a novel word (Akhtar,
Carpenter, & Tomasello, 1996). For example, when a speaker
expressed preference for a particular object, children expect
a novel word from the same speaker to refer to the previously
preferred object (Saylor, Sabbagh, Fortuna, & Troseth, 2009).

But how do listeners integrate general and common
ground-related expectations during word learning? Are prag-
matic inferences strengthened additively when both support
a particular interpretation? How are they weighed when they
are in conflict? The Rational Speech Act (RSA) framework
(Frank & Goodman, 2012; Goodman & Frank, 2016) offers a
formal framework for addressing this information integration
problem. RSA models are characterized by a recursive struc-
ture in which a pragmatic listener tries to uncover a speaker’s
intended meaning by assuming the speaker chose their utter-
ance in order to get a naive listener to recover their intended
meaning. RSA models have made accurate quantitative pre-
dictions about various forms of pragmatic language use and
word learning (Goodman & Frank, 2016). However, a com-
prehensive treatment of how general and common ground ex-
pectations are integrated is still missing.

Within RSA models, each agent in the recursion is mod-
eled as a Bayesian reasoner; thus, information integration is
treated as a process of probabilistic inference. The speaker-
general informativeness expectation is already encoded in the
structure of the model: Speakers produce utterances to aid
the listener in disambiguating referents. We operationalize
speaker-specific, common ground information as the shared
prior probability of referents in the context of the utterance.
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Thus, a natural locus for information integration within these
models is the trade off between the prior probability of a par-
ticular referent and the likelihood of that referent given the
current utterance.

Here we evaluate this rational, pragmatic account of infor-
mation integration. We isolate speaker-specific and common-
ground information experimentally, then test how adult listen-
ers combine them in a word learning setting. In Experiments
1 and 2, we replicate findings showing that listeners expect
speakers to a) produce informative utterances (Experiment 1)
and b) communicate about things that are relevant to common
ground (Experiment 2). Based on these results, we generate
model predictions using the RSA framework about how these
two components should be integrated. In Experiment 3, we
test how listeners integrate their expectations and compare
model predictions to empirical data. Experiment 4 replicates
and extends Experiment 3 by varying the strength of common
ground assumptions. For all experiments, we pre-registered
the sample size, experimental design and the statistical anal-
ysis. For Experiment 3 and 4, we also registered the model
structure and predictions (see [masked for peer review])

Method

General Design

Experiments were conducted online using Amazon’s Me-
chanical Turk. Fig. 1 provides a schematic overview of
the setup and experimental procedures. The instructions in-
formed participants that they would see a number of animal
characters asking for novel toys. Participants were asked to
identify the toy being requested by a particular animal. The
basic layout involved two tables with toys on them, located
left and right of a little hill, on which the animal was stand-
ing. For each animal, we recorded a set of utterances (one
speaker per animal) that were used throughout the experi-
ments to provide information and make requests. At test, toys
were requested using the following utterance: “Oh cool, there
is a [non-word] on the table, how neat, can you give me the
[non-word]?”. Participants responded by clicking on one of
the toys. Each experiment started with two training trials in
which animals requested familiar objects (car and ball).

Experiment 1

Participants, Design and Procedure

All participants were recruited from Amazon Mechanical
Turk and had US IP addresses. Sample size in each exper-
iment was planned to be 120 data points per cell. Experi-
ment 1 had 40 participants. In the test condition, one table
contained one object of type A and the other table contained
one object of type A and one of type B (see Fig. 1, left).
On each trial, the animal introduced themselves (e.g. “Hi,
I’m Dog”), turned towards the table with the two objects and
made a request. If listeners expect speakers to produce in-
formative utterances, they should select object B. This choice
follows from the counterfactual inference that if the (infor-
mative) speaker would have wanted to request A, they would

have turned to the table that only contained A. On the other
hand, since B is only located on the table together with A,
there was no alternative way to request B in a less ambiguous
way. In the control condition, both tables contained two ob-
jects, one of which was randomly determined as the correct
one. No inference was therefore licensed. Each participant
received three trials in each condition for a total of six trials,
presented in a randomized order.

Results and Discussion

Participants selected the less frequent object above chance in
the test condition (t(39) = 5.51, p < .001, see Fig. 2) and
did so more often compared to the control condition (gener-
alized linear mixed model (GLMM1):b = 1.28, se = 0.29 p
< .001). This result replicates earlier work (Frank & Good-
man, 2014) and is consistent with the hypothesis that listeners
expect speakers to communicate in an informative way.
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Control Test Control Test Control Test
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Figure 2: Results from Experiment 1 and 2. For preference
and novelty, control refers to a different speaker (see Fig.
1). Transparent dots show data from individual participants,
solid dots represent condition means, error bars are 95% CIs.
Dashed line indicates performance expected by chance.

Experiment 2

We manipulated common ground expectations based on pro-
cedures that have successfully been used in developmental
studies (e.g. Akhtar et al., 1996; Saylor et al., 2009). Speak-
ers either expressed preference for one object or one object
was new to the speaker.

Participants, Design and Procedure

We collected data from 80 participants, with 40 in each con-
dition. In the preference condition, each table had a different
object. In the beginning, the animal appeared on the hill and
introduced themselves. Next, they turned to one of the tables
and expressed either that they liked (“Oh wow, I really like
that one”) or disliked (“Oh bleh, I really don’t like that one”)
the object before turning to the other side and expressing the
respective other attitude. Then, the animal disappeared. After
a short period of time, either the same or a different animal
appeared and requested an object while facing straight ahead

1All models had maximal random effects structure conditional
on model convergence.
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Figure 1: Schematic experimental procedure. In all conditions, at test (bottom), the speaker ambiguously requested an object
using a non-word (e.g. dax). Participants clicked on the object they thought the speaker referred to. Informativeness (Experi-
ment 1, left) translated to making one object less frequent in context. Common ground (Experiment 2, middle) was manipulated
by making one object prefered by or new to the speaker. Green plus signs represent utterances that expressed preference and red
minus of dispreference (see main text for details). Experiment 3 (right) combined manipulations. When expressing e.g. prefer-
ence for an object on a table with two objects (panel 3 from top), the respective object was temporarily enlarged. Condition for
Experiment 3 shown here: preference - same speaker - incongruent.

(see Fig. 1, middle). If participants took into account the in-
formation they gained about the speaker, they should select
the previously preferred object if the returning animal was
the same. If a different animal returned, they should choose
randomly between objects.

In the novelty condition, one table was initially empty
while there was an object on the other table (see Fig. 1).
The animal turned to one of the sides and commented either
on the presence (“Aha, look at that”) or the absence of an
object (“Hm, nothing there”). Next, the animal disappeared.
The same animal re-appeared and the sequence above was re-
peated. When the animal disappeared for the second time, a
second object appeared on the empty table while the animal
was away. Like in the preference condition, we now manipu-
lated if the same animal or a different one returned. In case of
the same animal returning, listeners could infer the referent

of the subsequent request by considering that one object was
new to the speaker and therefore more likely to be of interest
to them. However, no such inference was licensed when a
different animal returned because both objects were novel.

Results and Discussion

Participants selected the preferred object above chance when
the same animal returned (t(39) = 29.14, p < .001, see Fig.
2) and did so more often compared to trials in which a differ-
ent animal returned (GLMM: b = 2.92, se = 0.56, p < .001).
Thus, listeners inferred the referent of the utterance by con-
sidering previous interactions with the speaker. Interestingly,
participants transferred preference to some extent from one
animal to the other and selected the preferred object above
chance when a different animal returned (t(39) = 2.7, p = .01).
In sum, this study shows that adults make comparable infer-

154



ences to children (Saylor et al., 2009).
The novel object was selected above chance when the same

animal returned (t(39) = 6.77, p < .001) but not when a differ-
ent one appeared (t(39) = 1.49, p = .144, see Fig. 2). Further-
more, the two conditions differed in the expected direction (b
= 6.27, se = 1.96, p = .001). Thus, like children (Akhtar et al.,
1996), adults used their prior information about the speaker
to resolve ambiguity in the utterance.

Experiment 3

In Experiment 3, we combined the expectations studied in
Experiment 1 and 2 to see how listeners integrate them.

Participants, Design and Procedure

A total of 121 individuals participated in the experiment. The
test situation was the same as in the test condition in Exper-
iment 1 (see Fig. 1, right): One table with object of type
A and the other with an object of type A and B. Again, the
animal always turned to the table with two objects and am-
biguously requested an object. In Experiment 1, the listener
had no prior information about each object. In Experiment
3, however, we manipulated common ground expectations in
the same way as in Experiment 2. For example, the animal
would turn to the table with one object and express that they
don’t like object A, then turn to the other table and express
that they like object B. Next, after quickly disappearing, they
would reappear, turn to the table with two objects and make a
request.

For each common ground condition, there were 4 condi-
tions in Experiment 3 resulting from the cross of congru-
ent/incongruent informativeness with same/different speaker.
If the preferred/novel object was the less frequent one (ob-
ject B), the two expectations were congruent. If the pre-
ferred/novel object was the more frequent one (object A), ex-
pectations were incongruent. For each type of expectation
alignment, we varied if the same or a different animal re-
turned. Participants either completed the preference or nov-
elty version with two test trials in each of the four conditions.
Before discussing the empirical results, we briefly discuss the
model we used to predict expectation integration.

Model Predictions

To derive predictions, we used a probabilistic RSA model that
simulates a pragmatic listener reasoning about a cooperative
speaker who is trying to refer to an object (Frank & Good-
man, 2012). The speaker chooses how to refer to the object
by reasoning about a naive listener who does not know the
labels for the object (Frank & Goodman, 2014). The condi-
tional probability that the listener chooses a referent given an
utterance is defined as follows:

PL(rs|u) µ PS(u|rs)PS(rs)

Here, PS(u|rs) is the likelihood that the speaker will use an
utterance u to refer to a specific referent r. It is defined in
terms of a utility function US(u;s) consisting of the surprisal

of u for a naive listener L0, who interprets u according its
literal semantics:

PS(u|rs) µ exp(aUS(u;s))

The numerical strength of the expression above depends on
a scalar value, a, which can be interpreted as an indicator
of how rational the speaker is in choosing utterances (i.e. as
a increases, the speaker is more likely to choose the most
informative utterance).

The term PS(rs) denotes the prior probability that a speaker
will refer to a given referent. This probability represents
the listeners expectations about the speaker depending on the
manipulation (preference or novelty) and the identity of the
speaker (same or different speaker).

We used the results from Experiment 1 and 2 to specify a
as well as PS(rs) in our model. We set a so that a model with
uniform priors would predict the average proportion mea-
sured in Experiment 1. The prior probability for each object
was set to be the proportion with which this object was cho-
sen in Experiment 22. Based on these parameter settings, we
predicted the proportion with which listeners will choose the
more informative object in each of eight unique conditions
mentioned above (see also Fig. 3). We compared the fit of
this pragmatic model to two alternative models using Bayes
Factors (BF). The first alternative model ignored the speaker
specific expectations (uniform prior model) while the second
ignored the informativeness inference (prior only model). All
models included a noise parameter, reflecting that participants
may respond randomly instead of in line with the intended
manipulation on a given trial. Noise parameters were esti-
mated based on the data. They range between 0 and 1 and re-
flect the proportion of responses that are estimated to be ran-
dom instead of following the pattern predicted by the model.

Results and Discussion

Results are discussed in the form of the proportion with which
listeners chose the more informative object (i.e., the object
that would be the more informative referent when only con-
sidering speaker general expectations). For a comparison
to chance within each unique condition see Fig. 3. Com-
binations of alignment and speaker identity differed in how
they influenced participants’ responses (GLMM model term:
alignment*speaker; b = -2.64, se = 0.48, p < .001). Fig.
4A shows the mean response in each unique condition com-
pared to the pragmatics model. Model predictions and data
were highly correlated (r = 0.96, p < .001). Model fit was
much better in the model taking into account both types of
expectations compared to the uniform prior (BF = 2e+79) or
prior only model (BF = 1.8e+34). The inferred noise level in
the pragmatics model was 0.27 (95% HDI: 0.21 - 0.34).

2Proportions were measured when participants chose between
two objects. However, in Experiment 3, three objects were involved.
For each object we used the proportion measured in Experiment 2 as
the prior probability.This approached spread out the absolute prob-
ability mass for each object but conserved the relative relation be-
tween objects.
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Figure 3: Results from Experiment 3. Dashed line indicates performance expected by chance. Plotting conventions are the
same as in Fig. 2. All conditions in which CIs do not overlap with chance line are also statistically different from chance based
on two-tailed Wilcoxon tests.

Interestingly, as in Experiment 2, there was a transfer of
preference in the case of speaker change. Participants were
at chance in the preference - different speaker - incongruent
condition (see Fig. 3). If preference would have been spe-
cific to a particular individual, participants should have se-
lected the less frequent object above chance (as they did in
the corresponding condition with the novelty manipulation).
Because it takes into account the measurement from the ear-
lier experiment, our model predicts these results; future work
might explicitly model generalization across speakers.

Experiment 4

Here we replicated and extended Experiment 3 by manipulat-
ing the strength of the common ground expectations.

Participants, Design and Procedure

This experiment had 453 participants. The structure of the ex-
periment was the same as in Experiment 3. For each common
ground expectation (preference and novelty), we intended to
have a strong, a medium and a weak condition. The strength
of each condition was determined by the proportion with
which participants chose the preferred/novel object given the
manipulation. We succeeded in generating quantitative vari-
ability for novelty. For preference we piloted a number of
additional manipulations but did no find one that yielded a
weaker preference compared to a medium condition.

The strong manipulations were identical to Experiment 3
and the results are therefore a direct replication (see Fig. 4C).
For novelty, in the medium condition, the animal turned to
each table only once before the test. In the weak condition,
the animal only turned to the table with an object before the
test (instead of turning to and commenting on both). In the
medium condition for preference, the animal only expressed
liking and did so in a more subtle way (saying only: “Oh,
wow” while pointing to the object). Participants were as-
signed to one level of common ground expectation and com-
pleted two test trials in each of the four conditions (alignment
x speaker change).

Model predictions were obtained in the same way as in Ex-
periment 3; with a inferred from the data and PS(rs) measured
empirically (in a set of corresponding experiments parallel to
Experiment 2).

Results and Discussion

As noted above, the strong prior condition was a direct repli-
cation of Experiment 3. Results from the two rounds of data
collection were highly correlated (r = 0.97, p < .001, see Fig.
4C). Across levels of prior manipulation, the data from Ex-
periment 4 were highly correlated to the corresponding model
predictions (r = 0.91, p < .001, see Fig. 4B). Again, the prag-
matics model provided a much better fit compared to the flat
prior (BF = 4.4e+74) or prior only model (BF = 1.8e+84).
The inferred noise level in the pragmatics model was 0.28
(95% HDI: 0.24 - 0.32).

Discussion

Language use and learning requires balancing different types
of expectations about one’s interlocutor - expectations about
how speakers behave in general and expectations about how a
particular speaker might behave in a particular context. Here
we used a Bayesian pragmatics model to predict this integra-
tion process. Experiment 1 and 2 replicated previous stud-
ies showing that adult listeners expect speakers to produce
utterances informatively and also with respect to common
ground. We then combined the procedures from the first two
experiments to study how listeners would integrate expecta-
tions. We used the results from Experiment 1 and 2 to specify
model parameters that represented the two types of expec-
tations, generating predictions about new behavior. Exper-
iments 3 and 4 showed that both types of expectations in-
fluenced listeners inferences. Overall, listener behavior was
accurately described by our model, suggesting that listeners
trade-off flexibly between speaker specific and general prag-
matic expectations.

Notably, Experiment 3 also included situations in which
the two expectations were in conflict. For example, in some
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Figure 4: (A) Model predictions compared to data for Experiment 3 and (B) Experiment 4. (C) Data for strong prior manipula-
tion in Experiment 3 and 4, providing a noise ceiling for the reliability of measurements. Error bars = 95% HDIs.

trials the speaker expressed preference for object A, which
was also the more frequent (less informative) object. In these
situations, a majority of participants chose the preferred ob-
ject as the referent (see also Fig. 3 preference–same speaker–
incongruent). A simple explanation for this pattern might be
that common ground manipulations were simply “stronger”,
corroborated by the fact they produced higher rates of ex-
pected choice than the informativeness expectation when the
two were presented in isolation (see Fig. 2). In Experiment
4, however, the medium manipulation for novelty yielded nu-
merically weaker results compared to the informativeness ex-
pectation in Experiment 1, and yet participants still selected
the novel object above chance when the expectations were
in conflict. Why is this? Because common ground is repre-
sented in our model as the listener’s prior distribution, speak-
ers can reason about it in choosing their utterance. That is,
in the mind of the listener, the speaker computes the effect
of each utterance on a naive listener with shared common
ground. Therefore, when prior interactions implicate one ob-
ject as the more likely referent, the speaker reasons that this
object will be the inferred referent of any semantically plau-
sible utterance, even when the same utterance would point to
a different object in the absence of prior information.

A range of probabilistic models have been used to model
word learning (e.g. Fazly, Alishahi, & Stevenson, 2010;
Frank, Goodman, & Tenenbaum, 2009; Xu & Tenenbaum,
2007). RSA models differ from these approaches in that they
treat word learning as the outcome of a social reasoning pro-
cess. In contrast to models for cross-situational word learn-
ing (Fazly et al., 2010; Frank et al., 2009), RSA models show
how learning might occur in a one shot scenario based on
pragmatic reasoning alone. While the ad-hoc informative-
ness inference characteristic for RSA would be predicted by
the model of Xu and Tenenbaum (2007), in their work it fol-
lows from the “size principle” of generalization (Tenenbaum
& Griffiths, 2001) and not from social reasoning. In contrast
to RSA, this approach does not offer a straightforward way to
incorporate other types of social information such as expec-
tations following from common ground.

We treated common ground expectations as equivalent to
more basic manipulations of contextual salience (e.g. in Frank
& Goodman, 2012) and did not explicitly model the social-
cognitive processes that give rise to these expectations. The
interaction around the object prior to the test event simply
increased the probability that this particular speaker will re-
fer to the object subsequently. The same change could be
brought about if one of the objects would be made percep-
tually more salient, for example by making it flash. In fu-
ture work, it would be interesting to explore ways to model
common ground expectations explicitly as well as to contrast
perceptual and interactional salience.

Our work integrates different perspectives on the study of
pragmatic inference. Previous work focused either on gen-
eral or speaker specific expectations. The methodological ap-
proach taken here illustrates how computational and exper-
imental approaches can be used in conjunction to explicate
theories of language use and learning.

Corresponding data and code are available at
https://github.com/manuelbohn/mcc
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Abstract 
Fluent conversation is a marvel of multi-tasking within the 
language domain: listeners must simultaneously comprehend 
the speaker, predict a turn transition point, and plan a 
response. Experiment 1 used spontaneous conversation to 
investigate the apparent demands of conversation on working 
memory by manipulating the difficulty of a secondary task. 
The experiment found support for Load Theory's (e.g., Lavie 
et al. 2004) prediction that both conversational fluency and 
performance on a secondary task would decrease as working 
memory load increased. However, there was also some 
support for Pickering and Garrod's (2004, 2013) proposal that 
dialogue is facilitated by a collection of automatic cognitive 
operations when interlocutors are well-aligned (i.e., using the 
same words, phrases, and structures to discuss the same 
topics). Experiment 2 tested two claims motivated by this 
account: alignment is necessary for fluent turn transitions, and 
lexical repetition between speakers is an essential component 
of the alignment advantage. We found support for the former 
claim, but not the latter. 

Keywords: Conversation, Dialogue, Working Memory 

Introduction 
When a conversation is fluent, the shift from one speaker to 
the next proceeds rapidly, usually with little or no overlap. 
In fact, the silent pauses between speakers (i.e., turn 
transitions) average less than 500ms across cultures, and 
around 200ms for English speakers in two-party 
conversations (e.g. Sacks, Schegloff, & Jefferson, 1974, 
Wilson & Wilson, 2005; Stivers et al, 2009). Levinson and 
Torreira note that it takes about 600ms to name a picture 
using a single word, and 425ms of that time is estimated to 
be necessary for the lexical retrieval and phonological 
encoding processes for a single word (Indefrey & Levelt, 
2004). Thus, it is clear that the signal to begin preparing 
one's response cannot be the end of the current speaker's 
utterance, because turn transition times would be on the 
order of seconds, not milliseconds. 

Current theories of conversation explain short transition 
times by positing multiple processing streams that allow the 
listener to prepare her response while simultaneously 
comprehending the current speaker and anticipating a turn 
transition point (Garrod & Pickering, 2015; Levinson & 
Torreira, 2015). This multi-tasking burden would seem to 
induce a heavy working memory load. 

Many studies have reported a relationship between 
working memory and language processing (e.g., Danenman 
& Carpenter, 1980; DeDe, Caplan, Kemtes, & Waters, 

2004; Lewis, Vasishth, & Van Dyke, 2007; Martin & Slevc, 
2014). For example, Fedorenko, Gibson, and Rohde (2006) 
found that participants had difficulty comprehending 
complex sentences when they had to simultaneously 
remember three words that were semantically related to the 
words in the sentence, presumably because comprehending 
the sentence and remembering the words competed for the 
same working memory resources. In contrast, 
conversational participants manage to simultaneously 
comprehend the current speaker, predict when he will end 
his turn, and plan a response. All three tasks presumably use 
the same language system with no apparent interference and 
surprising efficiency. Thus, conversational fluency presents 
an interesting puzzle in light of established theories for how 
working memory supports language comprehension and 
language production. 

If conversation places high demands on working memory, 
it should be difficult to converse while simultaneously doing 
another task. For example, Load Theory (Lavie, Hirst, de 
Fockert & Viding, 2004) predicts a decrease in processing 
fluency as working memory load is increased. The 
predictions of Load Theory, as applied to conversation, 
were supported by Boiteau, Malone, Peters, and Almor 
(2014), who found that conversation interfered with a 
simultaneous mouse-tracking task. In turn, the mouse-
tracking task modulated speaking rate slightly, but did not 
increase the rate of disfluencies. Boiteau et al. did not 
examine fluency variables, such as turn transition time and 
turn length, nor did they manipulate the difficulty of the 
secondary task. Several other papers examined the 
relationship between language production and a secondary 
task, and also found trade-offs between the language and 
non-language tasks (Becic et al., 2010, Kemper, Herman, & 
Nartowicz, 2005; Sjerps & Meyer, 2015). 

The literature supports the view that conversation carries 
a substantial working memory load, but in practice, people 
often converse while doing something else. In fact, 
Pickering and Garrod's (2004, 2013) Alignment account 
suggested that conversational fluency is attained via many 
automatic mechanisms, at least when interlocutors are well-
aligned (i.e., using the same words, phrases, and structures 
to discuss the same topics). We test three claims from this 
account:  

(i) Well-aligned conversation makes minimal 
demands on central resources  
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(ii) Topic alignment enhances conversational 
fluency 

(iii) Lexical repetition enhances conversational 
fluency 
 

Experiment 1 investigated (i) by manipulating the 
difficulty of a secondary task. Experiment 2 investigated 
claims (ii) and (iii) using a picture-description paradigm. 
The primary focus is on transition time, but speech rate, 
utterance length, turn type, and the occurrence of 
disfluencies were measured and analyzed as well, because 
there may be tradeoffs among these fluency measures. 

Experiment 1 
If the multi-tasking required for fluent conversation strains 
the working memory system, adding a secondary task 
should decrease conversational fluency. To test this, we had 
participants perform a letter version of the n-back task 
(Smith & Jonides, 1997) while carrying on a casual 
conversation with an experimenter. For the n-back task, 
participants saw a sequence of letters on a computer screen. 
Both lower-case and upper-case forms of a letter counted as 
the same letter, to encourage verbal encoding of the stimuli. 
In the 1-back condition, participants pressed a key if the 
current letter matched the previous letter. In the 2-back 
condition, participants pressed a key if the current letter 
matched the one two letters back. The Load Theory predicts 
a greater impact on conversational fluency in the 2-back 
condition, compared with the 1-back condition, and 
compared with conversation alone. 
 
Method 
 
Participants Forty undergraduates (9 male) received course 
credit for participation. All were native English speakers. 
 
Procedure The experiment consisted of five experimental 
blocks: Conversation-Only, 1-back alone, 2-back alone, 
Conversation with 1-back, and Conversation with 2-back. 
Stimuli in the n-back consisted of upper and lower case 
tokens of 8 letters: A, F, J, K, L, O, S, U. The order of the 
blocks was rotated across five groups, so that each block 
occurred equally often in each serial position. 

Participants were greeted by one of four native English 
speakers (two male, two female), who conducted the 
experiment and served as the other interlocutor in 
conversation blocks. Each experimenter ran two participants 
on each of the five block orders. The experimenter and the 
participant were separated by a cubicle barrier for all blocks. 
Before beginning the experiment, participants were first 
trained on the 1-back and 2-back tasks. After training, 
participants completed the experimental blocks. The 
conversation topics were always in the same order, 
regardless of block order: 1. life in a college town, 2. pop 
culture, 3. personal background. Each of the three 

conversation blocks was 8 minutes long. 
The conversation blocks were audio-recorded. The middle 

5 minutes were transcribed, with the onset and offset of each 
turn marked. These transcription records were used to code 
turn type and disfluencies, and to compute turn transition 
time, turn length, and speech rate. Alignment was (very 
roughly) estimated using Latent Semantic Similarity (LSS, 
Landauer and Dumais, 1997, online pairwise comparisons 
tool http://lsa.colorado.edu, settings: document to document, 
general reading up to 1st year college, maximum 
dimensions). 

 
Results 
Small differences in the participants' transition times were 
found as a result of the secondary tasks (see Figure 1). 
Interestingly, the longest transition times were observed for 
the experimenter, who had no secondary task other than to 
keep the conversation going. 

 

 
 

Figure 1: Transition time (in seconds) by task condition, for 
both participant and experimenter. 

 
Table 1 summarizes the results of a linear mixed effects 

model on the participants' turn transition times: 
lmer(trans_time ~ Experimenter + Order + Turntype + 
Block + LSS + (1 + Block |subj)). The four experimenters, 
five block orders, and four most common turn types were 
used as control variables. To save space, only significant 
effects for control variables are included in Table 1.  

 
Table 1. Analysis of Participant's Transition Time  

 
 Estimate t p 

Block C vs C1 .06 1.61 .11 
Block C vs C2 .08 2.14 .04 
Exp1 vs Exp4 -.23 -4.83 .00 
Ord1 vs Ord3 .19 3.49 .00 

Agree vs Answer .23 6.92 .00 
Agree vs Quest .23 4.13 .00 

 
There was no effect of the secondary task on participants' 

speech rate, but the task manipulation did impact both 
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utterance length and the probability of a turn-initial filled 
pause. As predicted by Load Theory, participants took 
longer turns and made fewer turn-initial filled pauses in the 
Conversation-Only block compared with blocks that 
combined conversation with the n-back task.1  

Across all four dependent measures, the strongest 
predictor of the participant's conversational fluency was turn 
type, overshadowing the secondary task manipulation. The 
four most common turn types (agreement, answering a 
question, asking a question, or making a comment) made up 
98% of the participant turns. As shown in Figure 2, type of 
utterance was a strong predictor of both transition time and 
utterance length. 

 

 
 

Figure 2: Participant's transition time (bars) and utterance 
length (line) by turn type.  

 
As predicted by Load Theory, performance on the n-back 

task was worse in the blocks that required simultaneous 
conversation, especially in the 2-back condition (see Table 
2). Participant means were submitted to a 2 (n-back level) 
by 2 (alone or w/conversation) by 5 (order) repeated 
measures ANOVA, with the third factor as a between-
participants variable. Robust effects of n-back level [F(1,35) 
= 139.23, p < .01], conversation [F(1,35) = 280.02, p < .01], 
and their interaction [F(1,35) = 98.54, p < .01] were 
observed. No effect of order or interactions with order 
approached significance [all F's less than 1.9]. 

 
Table 2: Percent Correct (w/standard error) on n-back. 

 
 alone w/conversation 

1-back 99 (.2) 91 (.8) 
2-back 97 (1.5) 79 (1.1) 

 
One-minute clips from the conversations were presented 

to 108 naive listeners, who judged whether the participant 
(always the first speaker in the clip) had been under no load, 
low load, or high load from a secondary task. As shown in 
Table 3 with correct responses highlighted, listeners were 
highly inaccurate. Their bias was to guess "none" or "low." 

                                                           
1 See Appendix for statistical support. 

This suggests that participants in the primary experiment 
were largely successful at maintaining fluency, despite the 
extra load from the secondary task. 

 
Table 3. Percent load judgments by audio clip condition.  
 

 C only C+1-back C+2-back 
None 50 47 41 
Low 40 37 42 
High 10 16 17 

 
Consistent with the Alignment hypothesis, there was 

some evidence that participants were more fluent when the 
alignment between speakers was highest, as illustrated in 
Figure 3: The higher the Latent Semantic Similarity (LSS) 
between speakers, the faster the participant's speech rate. 
The LSS was also a marginal predictor of transition time. To 
be sure, all of the conversations were at the high end of the 
LSS scale, which ranges from -1 to 1. Thus, there may have 
been insufficient variance to find a stronger correlation. 
 

 
Figure 3: The relationship between participant speech rate 

and Latent Semantic Similarity. 
 
Discussion 
Load Theory was supported by the decrease in accuracy on 
the n-back task when it was paired with conversation, and 
by the increase in transition times with n-back load, While 
transition times remained within the normal range of around 
200ms cited by Stivers et al. (2009) and others, participants 
seemed to use compensatory measures, such as shortening 
their turns and beginning their turns with a filled pause, in 
order to maintain short transition times when faced with a 
challenging secondary task.  

While the experiment was not a clear test of Pickering and 
Garrod's (2004, 2013) Alignment account, the apparent 
robustness of conversational fluency to a secondary task 
(albeit with some modulations) is consistent with their 
account. Furthermore, the modest correlation between LSS 
and speech rate is suggestive. Unfortunately, there are no 
established, objective measures of conversational alignment, 
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making it difficult to rigorously test Pickering and Garrod's 
predictions. Nonetheless, the strong effect of turn type (see 
Figure 2) seems problematic for their account. Turn type 
determines how quickly participants can begin planning 
their responses and how much planning is required. The 
robust turn-type effects suggest that the cognitive operations 
supporting utterance planning are less automatic than 
maintained by strong versions of the Alignment account 
(e.g., Pickering & Garrod, 2013). 

Experiment 2 
Because alignment can't be manipulated in spontaneous 
conversation, Experiment 2 used a picture description 
paradigm to test the effects of two aspects of alignment 
(shared topic and shared vocabulary). Topic was 
manipulated within-participants, such that each of the 
participant's picture descriptions was preceded by a pre-
recorded sentence that was either a description of the same 
picture or a description of a different picture. Shared 
vocabulary was measured by counting the number of 
content words from the pre-recorded sentence that were 
repeated in the participant's picture description. 

While it may seem odd to treat pre-recorded stimuli as a 
speaker in a conversation, this approach was successful in a 
recent experiment. Corps, Crossley, Gambi, and Pickering 
(2018) found that participants answered pre-recorded yes/no 
questions faster when the final word was predictable, with 
transition times averaging around 400ms. Participants were 
encouraged to respond quickly, answering "as soon as you 
expect the speaker to finish the question" (p. 83). While 
these transition times are slower than typical transition times 
in dyadic English conversations and the responses were very 
simple, the finding demonstrates that participants were 
actively predicting the content of the pre-recorded stimuli 
and using those predictions to prepare their own response 
during the other speaker's turn, analogous to conversation. 

We encouraged participants to time their utterances to 
coincide with the offset of the pre-recorded stimuli through 
a scaffolded training procedure. However, this study did not 
use question/answer pairs, making the link to conversation 
somewhat more tenuous.   

 
Method 

 
Participants Twenty-nine undergraduates participated for 
course credit and were randomly assigned to one of two 
lists. All were native English speakers 

 
Procedure On each of 36 trials during the experiment, 
participants looked at a line drawing of a complex scene 
while listening to an auditory sentence. Participants were 
instructed to describe the scene as soon as the auditory 
sentence ended. The participant was instructed to refer to 
the entity indicated by the arrow in their description of the 
picture (see Figure 4). In the Match condition, the auditory 

sentence was about the current image; in the Mismatch 
condition, an auditory sentence for a different image was 
substituted. Across the two lists, every picture occurred in 
both the Match and Mismatch conditions, and each 
participant received half of each type. After the participant 
finished their utterance, the next screen presented a printed 
word and participants judged whether it had been in the 
auditory sentence of the current trial (50% had been). This 
recognition probe encouraged attention to the auditory 
sentence. For the image in Figure 4, the matching sentence 
was “William was very pleased with himself for surprising 
his wife with an anniversary gift”, and the probe word was 
"pleased".  

 

 
 

Figure 4: Example line drawing. 
 
Prior to beginning the experiment, participants practiced 

each component of the task: describing the pictures while 
referring to the entity indicated by the arrow, timing their 
response to commence as closely as possible to the end of 
the auditory sentence, and answering yes/no to the 
recognition probe word. 

Both the pre-recorded auditory stimuli and the 
participant’s picture descriptions were audio-recorded and 
transcribed as in Experiment 1, with the participant and the 
pre-recorded stimuli treated as different speakers.  

 
Results 

The participants' utterances were coded for transition 
time, speech rate, utterance length, the presence of 
disfluencies, and the number of content words repeated from 
the pre-recorded stimulus (see Table 4).  

As predicted by the Alignment account, fluency was 
higher in the Match condition. There were shorter transition 
times and more succinct descriptions when the auditory 
stimulus sentence described the same image as the 
participant's sentence. The effect on transition time was 
confirmed in linear mixed effect model, summarized in 
Table 5: lmer(trans_time ~ Condition +RepeatWords.C 
+Accuracy + Utt_words.C + (1 + Condition|subj) + (1 + 
Condition|trial)). Accuracy on the recognition probe and the 
number of words in the participant's utterance were included 
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as control variables2. 
 

Table 4. Means (standard error) for Experiment 2 
 

 Matched Mismatched 
Transition Time 515 ms (22) 575 ms (25) 
No. of Words 10.01 (.17) 9.56 (.16) 
Speech Rate 3.23 w/s (.04) 3.15 w/s (.04) 
Disfluent % 33 (2) 33 (2) 
No. Repeated Words 1.42 (.05) 0.12 (.02) 
Probe Accuracy % 87 (1) 77 (2) 
 

Table 5. Transition Time Analysis for Experiment 2 
 

 Estimate t p 
Intercept .51 7.83 .00 

Condition .08 2.55 .01* 
RepeatWords.C .03 1.25 .21 

Accuracy -.02 -.87 .38 
Utt_words.C .14 4.51 .00* 

 
Participants were more accurate overall on the recognition 

probe in the Match condition than in the Mismatch 
condition [2-tailed paired t-test: t(29) = 4.54, p < .001]. This 
could be because greater alignment eased overall processing 
load. Alternatively, higher accuracy on Match trials could 
reflect participants having produced the probe word 
themselves when describing the picture. This occurred on 
9% of Match trials with a "yes" probe word and less than 
1% of the time on Mismatch trials with a "yes" probe word. 
Not surprisingly, participants never used the probe word 
themselves on "no" trials, in which the probe word was not 
in the pre-recorded sentence. When analyzing only the "no" 
probe trials, the effect of Match remained robust [95% 
Match, 84% Mismatch condition, t(28) = 4.15, p < .001], 
consistent with the hypothesis that greater alignment eased 
overall processing load. 

Contrary to the Alignment prediction, repetition of words 
did not increase fluency. Instead, the numerical trends went 
in the opposite direction (see Figure 5): the more content 
words the participant repeated from the auditory stimulus 
sentence, the longer the transition time and the more wordy 
the image description. This surprising pattern might arise if 
participants used a lot of pronouns in the Match condition, 
rather than repeating referring expressions from the auditory 
stimulus. This pattern was not found. Although, there was a 
slight numerical difference in pronoun usage (.66 pronouns 
per utterance in the Match condition, .60 in the Mismatch 

                                                           
2 To verify that the results remained the same when including 

only trials on which participants attended to the recorded sentence, 
an additional statistical model was run, including only trials on 
which participants responded accurately to the probe word. It was 
identical to the original model, except that accuracy was excluded. 
As expected, the same pattern of effects reported in Table 5 was 
obtained. 

condition), it was not significant in a 2-tailed, paired t-test 
(t(29) = 1.41, p > .10), nor was there an effect of pronouns 
or an interaction between pronouns and Match/Mismatch, 
when pronoun usage was added to the statistical model used 
for Table 5. 

 

 

 
 

Figure 5: Transition times (upper bar graph) and utterance 
length (lower) in the Matched and Mismatched condition, 

when controlling for number of repeated words.  
 
Discussion 
Despite the artificiality of the paradigm, a shared topic 
decreased transition time, as predicted. This effect suggests 
that participants planned their utterance during the auditory 
stimulus, analogous to spontaneous conversation.3 
Furthermore, it provides some direct support for the 
Alignment account. However, the topic alignment 
advantage did not come from the most obvious source-- 
lexical repetition of words in the auditory stimulus. Rather, 
the Match advantage in this paradigm must be due to other 
phenomena, such as more accurate prediction of the end of 
the auditory stimulus and semantic priming. It remains 
possible that lexical repetition plays a more important role 
in natural conversation than it did in this paradigm, but the 

                                                           
3 In an earlier version of the experiment that did not include the 

pre-experiment training, mean transition time was well over a 
second, with no effect of match. Thus, participants may not multi-
task in this paradigm (i.e., plan their utterance during the auditory 
stimulus while predicting its endpoint) unless explicitly 
encouraged to do so. 
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current experiment found no support for the lexical 
repetition prediction, motivated by the Alignment account. 

General Discussion 
Prior research indicated that conversation competes for 
central resources when paired with a secondary task from 
another domain, such mouse-tracking, walking with 
groceries, or driving (Becic et al., 2010; Boiteau et al., 2014,  
Kemper et al., 2005; Sjerps & Meyer, 2015). However, 
except for Boiteau et al., this research did not use natural, 
spontaneous conversation and examined relatively few 
measures of conversational fluency. Experiment 1 used 
spontaneous conversation to extend this finding to a 
secondary task (mixed-case letter n-back) that uses 
resources within the language domain. Consistent with prior 
research and with Load Theory, we found interference 
effects for both conversation fluency and the secondary task. 
We also found that turn type was a strong predictor of 
multiple conversational fluency variables, reflecting the 
differential processing demands of agreeing, questioning, 
answering, and commenting. 

In addition, we explored some predictions of the 
Alignment theory using a picture description paradigm with 
pre-recorded stimuli instead of a live interlocutor. To 
increase the similarity with natural conversation, we trained 
participants to time their utterances to coincide with the 
offset of the auditory stimulus, while obeying other task-
specific constraints. In this paradigm, participants initiated 
their own utterance closer to the offset of the auditory 
stimulus when both utterances shared the same topic (a co-
present image). This finding is consistent with the 
Alignment account. However, the number of content words 
shared between the auditory stimulus and the participant's 
picture description was not related to conversational fluency 
in the direction predicted by the Alignment account. 

In sum, we found considerable support for theories in 
which conversation consumes processing resources, such as 
working memory and attention. At the same time, we were 
surprised that participants were able to maintain typical 
transition times as working memory load increased. Our 
results from the two experiments suggest that this feat was 
possible because of shared topics across adjacent turns and 
due to compensatory mechanisms, such as making turns 
shorter or beginning turns with a filled pause. 
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Appendix 

 
Linear mixed effect analyses for additional dependent 

variables from Experiment 1. The same statistical model 
was used for each: lmer(DV ~ Experimenter + Order + 
Turntype + Block + LSS + (1 + Block |subj)). 

 
Table A1. Utterance length (words per turn) 

 Estimate t p 
Block C vs C1 -6.01 -3.25 .00 
Block C vs C2 -7.70 -4.18 .00 
Ord1 vs Ord3 -8.49 -2.36 .02 

Agree vs Answer 21.37 19.35 .00 
Agree vs Quest 6.80 3.72 .00 
Agree vs Comm 19.09 16.97 .00 

 
Table A2. Speech rate (words per second) 

 Estimate t p 
Block C vs C1 .00 0.02 .98 
Block C vs C2 .09 1.54 .13 
Exp1 vs Exp2 -.28 -2.11 .04 
Exp1 vs Exp 3 -.31 -2.40 .02 
Ord1 vs Ord3 -.47 -3.39 .00 
Ord1 vs Ord5 -.33 -2.41 .02 

Agree vs Answer .36 6.76 .00 
Agree vs Quest .99 11.28 .00 
Agree vs Comm .80 14.87 .00 

LSS .18 2.85 .01 
 

The probability of a sentence-initial filled pause not 
analyzed using the above statistical model due to the large 
number of 0's (no filled pause) across trials. Instead, the 
probability of a sentence initial filled pause for each 
participant, in each condition, was analyzed using 
repeated measures ANOVA. There was a main effect of 
block [F(2, 76) = 6.79, p < .01], with a probability of .09 
in the Conversation-Only condition, .14 in the 
Conversation with 1-back condition, and .15 in the 
Conversation with 2-back condition. 
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Abstract 

Understanding the processes leading to insight has remained 
one of psychology’s greatest challenges. In this study, we 
examined how different lexical properties affect cognitive 
processes involved in a popular class of insight problems: 
Compound Remote Associates (CRAs). These properties were 
familiarity, lexeme meaning dominance, and semantic 
transparency. We found that a higher proportion of problems 
were solved when they were presented beginning with the most 
familiar cues, but not when they began with right-headed 
dominant or the most semantically transparent cues. Further, 
we found that participants focused their efforts 
disproportionately on first and last cues, that subjective ratings 
of insight decreased as trial times elapsed, and that the 
magnitude of reported insight increased with the number of 
cues successfully solved. This suggests that participants can 
monitor their progress in such problems. These results contest 
longstanding assumptions of requisite periods of impasse and 
the absence of incremental progress in insightful problem 
solving. 

Keywords: compound remote associates; insight; language 
and thought; problem solving 

Introduction 

Insight has sparked some of history’s greatest 

accomplishments – from Einstein’s special theory of 

relativity to Newton’s universal law of gravitation. These 

sudden “aha!” moments also permeate our everyday lives – 

from practical household problems to puzzles in video games. 

However, our understanding of the processes underlying 

insight have remained subject to empirical gaps and 

theoretical debate (Batchelder & Alexander, 2012). Indeed, a 
prevailing assumption of the literature has been that insight 

occurs by merit of one solving an “insight problem” 
(Topolinski & Reber, 2010). To make meaningful progress 

toward understanding insight, we must first explore the 

cognitive mechanisms involved in problems in which it is 

reported. 

One such class of problems are Compound Remote 

Associates (CRAs) (Bowden & Jung-Beeman, 2003). The 

CRA task was developed as a modified version of the Remote 

Associates Test (RAT) (Mednick, 1962), which has been 

correlated with performance in insight problems. The 

difference between the original RAT and CRAs is that the 

latter only uses structural associates based on syntax 

(Worthen & Clark, 1971). In CRAs, people are presented 
three cue words and must produce a solution word that is 

common to all three, forming compound words and phrases. 

For example, the solution to the triad “COTTAGE, SWISS, 

CAKE” is CHEESE (forming “COTTAGE CHEESE,” 

“SWISS CHEESE,” and “CHEESECAKE,” respectively). 

The task is designed such that a solver must break free of 

high-frequency associations to access globally satisfactory 

solutions.  

CRAs have many advantages over classic insight 

problems: 1) they have large, normed databases, 2) many can 

be completed in single, short experimental sessions, 3) they 
can be solved with and without insight, 4) people have 

reliably demonstrated that they can make subjective 

judgments of insight regarding them, 5) they can be used in 

neuroimaging studies to identify the neural correlates of 

insight, and 6) they can be supplemented with time-based 

measures of solution latencies. As a result, they have been 

widely used to explore various cognitive domains, such as 

intuition (Topolinski & Strack, 2008), sleep (Cai et al., 2009), 
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and computational/deep learning (Olteteanu, Gautam, & 

Famomir, 2015).  

Much of the past research on the RAT and CRAs has 

defaulted to a correlational account that simply assumes 

insight and ignores the underlying processes that may drive 
it. This problem was highlighted by Topolinski and Reber 

(2010), who pointed out that many researchers neglect to 

explain the phenomenology of insight yet rely on it as a 

sufficient condition.  

Recent studies have attempted to mend this by modelling 

CRA performance. Gupta, Jang, Mednick, and Huber (2013) 

were among the first to provide a formalized account of 

individual differences in CRA search behavior. They 

employed a norm-based model that defined the best guess at 

solutions based on the average of cues in the Word 

Association Space (WAS) (Steyvers, Shiffrin, & Nelson, 

2005). This was contrasted with a frequency-biased model 
that assumes people’s search is biased by word fluency, based 

on Griffiths, Steyvers, and Firl’s (2007) work with PageRank 

and associative frequency. As predicted, they found that the 

probability of a given response is biased toward high-

frequency words. Thus, people perform poorly if they’re 

biased in favor of high-frequency incorrect words, precluding 

access to low-frequency correct responses.  

This work was extended by Olteteanu and Falomir (2015), 

who developed the comRAT-C; a computational model that 

solves compound RAT queries, based on a cognitive 

theoretical framework for creative problem solving 
(CreaCogs) (Olteteanu, 2016). The knowledge base (KB) 

comprising the CRAs themselves used language data (2-

grams pruned for relevance) from the Corpus of 

Contemporary English (COCA). They found that the 

comRAT-C used a convergence process similar to that of 

human solvers, and that the frequency of cues in the KB 

influences responses. The comRAT-C was able to correctly 

solve 64 of the 144 items in Bowden and Jung-Beeman’s 

(2003) list of normed CRAs, in addition to suggesting 

unlisted, yet plausible solutions in more than 20 cases – 

suggesting its own form of creativity. Overall, their study laid 

a solid computational framework for formalizing the 
processes in CRA problem solving.  

A promising experimental approach was taken by Smith, 

Huber, and Vul (2013), who used Latent Semantic Analysis 

(LSA) to evaluate the similarity between people’s guesses, 

word cues, and answers. They accomplished this by having 

participants enter every word considered while searching for 

the answer, regardless of their correctness. By doing this, 

they focused on the search processes used when generating 

candidate answers through a probabilistic sampling 

framework. They found sequential dependencies between 

responses in a problem, with subjects generating semantically 
similar chains of responses. Additionally, people seemed to 

focus primarily on one cue at a time. However, their 

procedure assumes that guesses accurately reflect the implicit 

nature of the search, even though the very act of conscious 

report may alter the search process.  

The main body of work on CRAs has focused on 

associative aspects - not the requisite that responses be 

syntactic compounds (with the notable exception of 

Olteteanu and Falomir (2015)). Indeed, research has largely 

ignored the morphological properties of the compounds 
themselves and how they affect performance and the 

likelihood of reported insight. We have thus failed to 

adequately address a critical aspect of their character. This 

approach has potentially restricted us from discovering how 

people attain insight in these problems. A look at the nature 

of compounds and their lexical elements is necessary to better 

understand the underlying cognitive processes involved in 

these problems. 

Compound Word Research 

Early work on compound words used a lexical decision 

paradigm (Taft & Forster, 1975), which measures peoples’ 
response times (RT) in classifying words and nonwords. One 

such study found that only the lexical status of the first 

constituent word in a compound affects processing, with 

longer RT for word-word and word-nonword pairs (e.g., 

DUSTWORTH, FOOTMILGE) than nonword-word and 

nonword-nonword pairs (e.g., TROWBREAK, 

MOWDFLISK) (Taft & Forster, 1975). Thus, it appears that 

morphological decomposition takes place when processing 

compound words, instead of the words being stored and 

retrieved as a whole.  

There has been considerable work on visual word 

recognition in recent years facilitated by databases containing 
lexical characteristics and behavioral data, such as latencies 

of word naming and lexical decisions for large sets of words 

(e.g., Balota et al., 2007) and investigations of word length 

(New, Ferrand, Pallier, & Brysbaert, 2006). Though initially 

focused on monosyllabic and monomorphemic words, this 

work has been extended to address processing in 

multisyllabic words (Yap & Balota, 2009) and English 

compound words. 

Research suggests that English compounds are processed 

differently from length and frequency-matched 

monomorphemic words. For instance, both semantically-
transparent compounds (e.g., ROSEBUD) and opaque 

compounds (e.g., HOGWASH) are processed more quickly 

than their monomorphemic counterparts (e.g., GIRAFFE) (Ji, 

Gagné, & Spalding, 2011). This sense of morphological 

complexity has ignited debate in the psycholinguistic 

literature, with competing perspectives on compound 

representation and processing (see Fiorentino & Poeppel, 

2007).  

The current study investigates the roles of three lexical 

properties involved in compound processing and, by 

extension, CRAs: word familiarity, semantic transparency, 

and lexeme meaning dominance. Thus, we investigated if and 
how they differentially affected CRA performance and the 

likelihood of insight. To do this, we used Juhasz, Lai, and 

Woodcock’s (2015) database of 629 compound words to 

construct 21 novel CRA problems. This database, which 

adapted items from the English Lexicon Project (ELP: Balota 
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et al., 2007), compiled subjective ratings for six properties 

believed to affect morphological processing. The 

questionnaires used by these authors are available in their 

Supplementary Materials. We will now briefly explore each 

of these selected properties and justify their inclusion in the 
study. 

Familiarity Whole word frequencies may be interpreted as 

analogous to whole word access and have thus been studied 

in compound word recognition (Juhasz, Lai, & Woodcock, 

2015). However, English compound frequencies tend to be 

low relative to other languages, resulting in experimental 

challenges and a consequential gap compared to Dutch 

(Kuperman, Schreuder, Bertram, & Baayen, 2009) and 
Finnish (Kuperman, Bertram, & Baayen, 2008) 

counterparts. Rated familiarity can be regarded as a measure 

of subjective frequency and has been demonstrated to affect 

word recognition in English monomorphemic words. In 

particular, familiarity has been shown to influence eye 

fixation durations, along with word frequency (Juhasz & 

Rayner, 2003). This was further demonstrated in an 

experiment by Juhasz, White, Liversedge, and Rayner 

(2008), which found that familiarity affected gaze duration 

for both long (ten or more letters) and short (seven or fewer 

letters) English compound words.  
We thus contend that ratings of familiarity can be used as 

a subjective proxy for word frequency and have a role in 

affecting morphological processing and CRA performance. 

Semantic Transparency Semantic transparency also plays 

an important role in how compounds are processed and 

represented (Libben, 1998). A fully transparent compound is 

one in which both constituents contribute to the meaning of 

the compound word (e.g., SUNLIGHT), while a fully 
opaque compound is one in which neither constituent 

contributes to its meaning (e.g., FLAPJACK). There are 

also partially-opaque compounds, in which only one 

constituent contributes to the compound’s meaning (e.g., 

JAYWALK, CHEAPSKATE) (Juhasz et al., 2015).  
Libben (1998) proposed a model in which semantic 

transparency is represented in two distinct ways: the semantic 

relationship between the meaning of a constituent morpheme 

within a compound, and the meaning of the morpheme 

independent of it. For example, the opacity of the compound 

SHOEHORN results from HORN not being transparently 
related to the compound as a whole, whereas SHOE is fully 

transparent. Thus, it is classified as a T-O compound 

(wherein T = transparent, O = opaque). Compounds require 

some level of semantic transparency to be tied to semantic 

representations of their lexemes. Using a lexical decision 

task, Libben, Gibson, Yoon, and Sandra (2003) found that 

fully opaque and T-O compounds were responded to more 

slowly than other compound types, though there was a 

significant priming effect on all four compound types relative 

to neutral primes.  

Research has demonstrated that semantically transparent 

compounds are especially susceptible to morphological 
decomposition, and that semantic priming only seems to 

occur when there is at least one transparent lexeme. Using 

Dutch compounds, Sandra (1990) used semantic associates 

of constituents as primes for transparent (e.g., BIRTHDAY 

primed by DEATH), opaque (e.g., SUNDAY primed by 

MOON), and pseudo-compounds (e.g., BOYCOTT primed 
by GIRL). Facilitatory priming effects were only observed 

for constituents in transparent compounds.  

Lexeme Meaning Dominance Compared to other 

languages, English compound words tend to be right-headed 

(i.e., the second constituent word – or lexeme - is the 

semantic head of the compound). This lexemic dominance 

primarily defines the meaning of the compound. In a study 

by Inhoff, Starr, Solomon, and Placke (2008), location and 

word frequencies of lexemes were manipulated in lexical 

decision, naming, and sentence reading tasks. They found an 

effect for larger word frequency for the dominant lexeme in 

each task. Lexeme dominance also affected first fixations on 
compound words. These results suggest the headedness of a 

compound affects how it is recognized and subsequently 

processed. 

Since all the word cues presented in the CRAs in this 

experiment are the second lexemes, their contribution to the 

overall meaning of the compound should affect the speed of 

access when solving each problem.  

The Current Study 

In accordance with the evidence above, we predicted that 

CRA problems beginning with word cues that 1) are the most 
familiar, 2) are the most semantically transparent, and 3) have 

right-headed lexeme dominance would result in the highest 

levels of performance and reporting of insight.  

To test this, we staggered the presentation of word cues on-

screen, with cues either increasing or decreasing in ratings for 

the relevant lexical domain. Thus, we actively constrained 

and manipulated the search processes used by solvers. As 

CRA triads are commonly presented at once, this presents an 

experimental departure that, we hypothesize, differentially 

affects performance and captures some of the latent features 

of this process. To our knowledge, this is one of the first 

studies to actively manipulate cue presentation in CRAs in 
such a way with precise behavioral predictions. 

Another departure is in how problems are scored. CRAs 

are typically scored according to whether a submission 1) 

conforms to all three cue words and 2) conforms to the 

suggested response of the researchers, precluding other 

“incorrect”, yet plausible responses. This does not allow for  

investigation of partially correct problems, in which fewer 

than three cues are satisfied by the solution candidate. We 

address this issue using a lexicon to test whether submitted 

responses form valid compounds against each individual cue 

presented, either as a prefix or suffix. This allows for a more 
comprehensive picture of the processes and strategies 

employed in such problems. 

Together, this study contributes to the CRA literature in 

three major ways: 1) it uses a staggered presentation of word 

cues, facilitating semantic activation and lexical search 
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behavior, 2) it investigates the morphological properties of 

the compounds themselves, and 3) it uses partial scoring for 

each word cue. The goal of the study is to determine how the 

aforementioned lexical properties affect solution retrieval 

and if they influence performance and the probability of 
reported insight.  

Methods 

Participants 

Each experimental condition was composed of two 

counterbalanced groups, comprising six groups total. All 

participants (n = 128) were University of California, Irvine 

undergraduate students, who were awarded course credit 

through the SONA system for their role in the study. The age 

distribution was 18-21 (n = 110), 22-25 (n = 11), 26-30 (n = 

5), and 31-40 (n = 2). Everyone identified as a native English 

speaker, with 53 participants identifying as multilingual 

(though additional languages spoken were not specified).  

In the Familiarity condition, Group 1 consisted of 23 

participants (n = 21 females), and Group 2 consisted of 22 
participants (n = 14 females).  

In the Lexeme Meaning Dominance condition, Group 3 

consisted of 21 participants (n = 14 females), and Group 4 

consisted of 21 participants (n = 19 females).  

Lastly, in the Semantic Transparency condition, Group 5 

consisted of 21 participants (n = 16 females), and Group 6 

consisted of 20 participants (n = 18 females). 

Fourteen participants were excluded from the final 

analysis, as they did not meet the criteria of answering at least 

two of the three practice problems correctly. 

Materials 

We constructed 21 novel CRA problems from compounds 

that had at least three common stems (thus forming three cues 

with a common solution). For example, there are 10 

compound words in Juhasz et al.’s (2015) database with the 

shared prefixed stem FOOT. The mean ratings for whatever 

variable was in question (on a 1-to-7 scale for familiarity and 

transparency and on a 1-to-10 scale for lexeme meaning 

dominance) were then sorted in descending order and the 

words with the highest and lowest values were selected. The 

mean of these two values was then calculated and the 

compound word with that value or its closest approximate 
was selected as the middle term. Using the same example of 

FOOT for the variable of familiarity: FOOTPRINT has the 

highest value at 7, FOOTPATH has the closest approximate 

to the mean with a value of 5.85, and FOOTHILL has the 

lowest value at 4.71. This forms the CRA problem “PRINT, 

PATH, HILL,” with the solution FOOT. All compounds in 

this database begin with a prefixed solution stem. Thus, 

unlike other studies, the solution is always the first lexeme in 

the compound. 

In the event of a tie between two compound word values, 

the compound with the closest letter length to the other two 

words was selected. If the competing compound had the same 
length, the tie was broken by identifying which one more 

closely matched the mean age of acquisition value of the 

other two compounds.  

Due to the limited number of candidate items, some words 

were repeated in both problem and solution terms. For 

example, PORT occurs in the problems “PORT, BASE, 
SICK” and “FOOD, PORT, BOARD.” There was also an 

instance of a having the same phonetic representation 

(WASTE and WAIST). Participants were told that words 

may occur more than once both as cues and as solutions.  

Each condition was counterbalanced so that problems were 

presented in both ascending and descending order across two 

groups. This was done to control for potential order effects. 

Procedure 

Participants were given instructions and a working definition 

of “insight” (Insight occurs when the answer suddenly pops 

into your head, accompanied by a strong burst of positive 

emotion (“aha!”).). They were then given an example CRA 

problem (“CREAM, SKATE, WATER,” solution = ICE) and 
were asked to complete three practice problems with 

feedback. All four of these problems were pulled from the 

Bowden and Jung-Beeman’s (2003) set of CRA norms and 

were the four easiest problems with uniformly prefixed 

solution stems.  

The experiment was conducted using a MATLAB 

interface. Word cues were presented sequentially with 5-

second delays between each cue. The first word cue appeared 

in the left-center of the screen, the second appeared in the 

center, and the third in the right-center. Cues remained on-

screen after their presentation for the remainder of the trial. 

Figure 1 demonstrates the display of a typical problem trial.  
 

 
 

Figure 1: Example of problem trial. 

 

Each trial lasted for one minute. A countdown timer 

appeared on the top right-hand corner of the screen when 50 

seconds remained and turned red when 10 seconds remained. 

Participants typed their responses in a black box below the 

cues. They were encouraged to answer as quickly and as 

accurately as possible. They could submit their response at 

any time following the presentation of the third cue. 
Participants were forced to proceed after the minute had 

expired and whatever was typed into the solution box was 

accepted as the submitted response. 

Following each problem trial, participants were asked to 

report the level of insight they experienced on a scale of 1 

(“no insight”) to 7 (“complete insight”). They were also 
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reminded of its operational definition on the bottom of the 

screen.  

At the end of the experiment, participants were asked to 

provide a brief (150-word max.) description of what 

strategies they used to solve these problems. We also asked 
them to describe the difference they felt between solving 

problems with and without the feeling of insight. This was 

done to determine individual differences in reporting criteria 

and as a check for cross-validity with our definition. This data 

will also be evaluated to inform future, related experiments. 

Participants were scored based on how quickly and 

accurately they responded to each problem. 

Results and Discussion 

First, we tested the hypothesis that presentation order of 

cues according to ratings in each lexical condition would 

affect performance. These results are shown in Figure 2. 
Note: “Direction” denotes whether the cue presentation 

sequentially increased or decreased for the lexical property in 

question (that is, “Down” indicates that the first cue had the 

highest rating for the property, while “Up” started with the 

lowest rating). It appears that the only observed difference 

was in familiarity, with a higher proportion of problems 

successfully solved when they began with the most familiar 

word cue (M = 0.383, SD = 0.126), rather than the least 

familiar cue (M = 0.301, SD = 0.161, t(226) = 4.304, p < .001, 

d = 0.570). The estimated Bayes factor suggested that the data 

were .001:1 in favor of the alternative hypothesis, suggesting 
decisive evidence for a presentation order effect (Jeffreys, 

1961). While this finding was not shared by the other 

properties (lexeme meaning dominance and semantic 

transparency), there are several other important findings – 

some of which challenge widely-accepted assumptions 

regarding the “special process” view (Bowden, Jung-

Beeman, Fleck, & Kounios, 2005) of the insight 

phenomenon. 

 

 
 

Figure 2: Differences in performance for each lexical 

property. 

 

For further analysis, we used English compounds derived 

from the Touchstone Applies Science Associates (TASA) 

corpus and derived a lexicon of over 122,000 words, 
including hyphenated compounds.  We used this lexicon to 

test whether a submitted response forms a valid compound 

against each individual cue presented, either as a prefix or 

suffix. The results of individual cue matches are shown in 

Figure 3, which demonstrates that the proportion correct for 

suffixes is smaller than that of prefixes. Further, submitted 

responses had a smaller likelihood of being valid prefixes for 

middle cues (M = 0.351, SD = 0.162)  than for first cues (M 

= 0.411, SD = 0.182) and last cues (M = 0.402, SD = 0.174, 
F(2,228) = 8.049, p < .001). The estimated Bayes factor 

suggested that the data were .032:1 in favor of the alternative 

hypothesis, or rather, 31.25 times more likely to occur under 

the model including an effect for cue position than the model 

without it, providing strong evidence for its effect. This 

suggests that participants were alternating between cues 

when attempting to generate a solution, rather than using 

parallel processing. One possible explanation is that since cue 

presentation was staggered – and thus their search was guided 

– there may be primacy and recency effects whereby they 

were able to test and generate more candidate solutions 

following the first word cue, then worked backwards once all 
cues were presented using the third cue. 

 

 
Figure 3: Proportion of valid prefixed (left) and suffixed 

(right) responses for each word cue position, according to 

lexicon. 

 

Another interesting finding was that ratings of insight 

decreased as time elapsed throughout trials, as demonstrated 

in Figure 4. This finding holds for both correct and incorrect 

trials. This seemingly challenges the popular assertion that 

there must be a period of impasse, or mental block, preceding 

the experience of insight (Ohlsson, 1992). To the contrary, 

there were higher ratings of insight in the immediate time 
following the presentation of all three cues (i.e., 10-20 

seconds) than in the time before the end of each trial (50-60 

seconds). It is possible that participants simply rated 

solutions that they perceived to be correct as insightful de 

facto (hence, being submitted quickly), and correctly rejected 

the occurrence of insight for incorrect solutions proffered as 

a final guess before trials ended. 
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Figure 4: Insight ratings as a function of solution time (in 
secs.) for correct solutions (left) and incorrect solutions 

(right). 

 

Finally, there is the reporting of insight, itself. As 

demonstrated in Figure 5, fewer cues were likely to be solved 

as more time elapses in trials. The magnitude of reported 

insight also increased along with the number of cues correctly 

solved. Rather than an all-or-none experience – the “sudden, 

certain burst” frequently reported and used as a necessary 

criterion (Chronicle, MacGregor, & Ormerod, 2004) - it 

appears that participants used ratings of insight to indicate 

confidence in their answers. Indeed, these ratings increased 
as a function of the number of cues their proposed solution 

fit. There is not the presence of absolute insight for totally 

correct trials (in which all three cues are satisfied by the 

proposed solution), nor the absence of insight if this is not 

achieved. Rather, it exists on a continuum. This suggests 

more of an analytic approach, in which participants reliably 

monitor their progress in each problem and the likelihood of 

success using insight as a proxy for said progress. This 

contrasts previous research which states that incremental 

feelings of “warmth” do not precede moments of insight and 

are instead relegated to analytic or non-insightful problem 
solving strategies (Metcalfe & Wiebe, 1987). It should be 

noted again that a property of CRAs is that they can be solved 

with or without insight. What we argue here is the usefulness 

of insight ratings in CRAs to indicate perceived progress. 

One limitation to the current work is that it used novel 

CRAs instead of those with established norms for difficulty 

and magnitude/frequency of reported insight (such as 

Bowden & Jung-Beeman, 2003). Applying lexical ratings to 

such a database for the dimensions present in Juhasz, Lai, and 

Woodock (2015) would be informative for future studies. 

Future research could also have subjects generate their own 

list of compounds given a set of word stems. Through doing 
this, researchers could collect latency data for how long 

people take to produce words, indicating their availability in 

memory. Researchers could also use LSA to analyze these 

participant-generated sequences of compounds to describe 

search behavior. These data could be applied across 

participants to establish cross-reliability and a more 

naturalistic set of items with norms.  

 

 
 

Figure 5: Solution time (in secs.) as a function of cues 

solved (left); Insight ratings as a function of cues solved 

(right).   

 

All problems in the current study have suggested solutions 

that are the first lexeme in the compound. Since stem 
placement seems to matter in the processing of compounds 

(Taft & Forster, 1975), it may be beneficial to compile and 

use compounds with common prefixes and suffixes in future 

studies. 

The self-identified magnitude of insight in our study was 

still based on subjective report. While this study focuses on 

the cognitive processes underlying these problems, rather 

than attempting to formalize insight in a significant manner, 

similar studies attempting to so may wish to include neural 

and/or physiological covariates to identify correlates of 

insight (e.g., EEG, fMRI, skin conductance, eye-tracking) 
(see Bowden et al., 2005 for suggested neurocognitive 

approaches). Future studies should also explore participants’ 

differences in reporting thresholds, as one person may be 

more willing to identify the occurrence of insight than 

another. These individual differences could be applied to a 

signal detection theory model. 

This study offers modest progress into understanding the 

linguistic contributors to CRA processing. There are other 

factors that should be investigated, such as if compounds with 

noun-noun links and adjective-noun links differentially affect 

performance. Other variables to investigate are word length 

effect (New et al., 2006), imageability, age of acquisition, 
sensory experience, or a combination of the above. 

There may also be a reading direction effect present, as cue 

presentation always proceeded from left-to-right on the 

screen. To circumvent potential perceptual biases, future 

studies using a similar design may benefit from 

counterbalancing the order of reading direction, as well. 

Lastly, it is important to be remain cognizant that not all 

insight problems are the same, and the phenomenology in 

CRAs may differ from that of other insight problems. It 

would be premature to make any sweeping statements about 

modeling insight from discoveries made in one class of 
problems.  

Conclusion 

If we are to solve the problem of insight, we must better 

understand the cognitive processes underlying the methods 
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we use to study it. Since we’ve largely neglected to explore 

these commonly-used procedures, we’ve defaulted to 

assumptions that they are “insight problems” simply because 

they elicit feelings of insight (based on the many and 

inconsistent criteria of researchers). While there have been 
both promising empirical and theoretical attempts to address 

this problem in recent years, much work remains. Better 

understanding the driving mechanisms, including lexical 

properties, within CRA problem solving will further inform 

us about how creativity is exercised and, perhaps, how insight 

is attained.  
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Abstract

Evidence exists that individuals prefer distinguishable strategies for self-organized task scheduling in multitasking. They
either prefer to work for long sequences on one task before switching to another (i.e., blocking), to switch repeatedly after
short sequences (i.e., switching), or to process the current stimuli of two tasks before responding almost simultaneously
(i.e., response grouping). We tested whether the strategies efficiency differs depending on the resource competition be-
tween tasks in a free concurrent dual-tasking paradigm and whether individuals adapt their strategies accordingly. Our
results show that switcher and response grouper are more efficient than blocker during low than high resource competition
between tasks. Comparably, more switchers shifted to a response grouping strategy than blockers towards a switching
strategy. Overall, especially those individuals benefited from a lower resource competition, who already preferred a more
flexible approach in dealing with the multitasking demand during high resource competition.
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Abstract 
People increasingly turn to online social networks for 
information and debate. This means that the structures and 
properties of these networks, and the information they 
propagate, play crucial roles in the development of social 
beliefs, attitudes, and morals. Recently, research has shown 
that the presence of specific language drives the diffusion of 
moral messages, regardless of the informational quality, in a 
phenomenon dubbed moral contagion (Brady et al., 2017). 
Due to the widespread attention and implications of such 
findings for science and society, we investigate the presence 
of moral contagion across six sets of data that capture the 
communications of naturally-occurring networks on Twitter. 
Across a large corpus of diverse tweets (n = 525,229), we find 
moral contagion to be an inconsistent and often absent 
phenomenon that does not effectively predict message 
diffusion. The implications and reasons for this finding are 
discussed.  

Keywords: moral contagion; social networks; social 
influence; computational social science; Twitter 

Introduction 
The advent of internet-based communications has permitted 
global connections at previously unfathomable speeds and 
volumes. While these connections present immense 
opportunities via global knowledge sharing and peer-to-peer 
collaboration, the magnitude of our interconnectedness also 
presents new liabilities, such as new forms of political 
persuasion.  

The spread of psychological and behavioral phenomena is 
often likened to that of a pathogen moving from node to 
node, individual to individual, as a result of repeated 
exposure. Whereas concepts of “peer effects” and 
interpersonal influence have existed in psychology and 
sociology domains for quite some time (e.g., Allport, 1920; 
Redl, 1949), the formalization of social contagion theory 
has done well to shed light on the impacts that social 
networks have on everyday life. In a series of seminal 
studies, Christakis and Fowler (2007, 2008; Fowler & 
Christakis, 2009, 2010) utilized mass longitudinal datasets 
and network statistics to show that everything from obesity 
and smoking to happiness and cooperative behavior can 
cascade and cluster across social networks. From these 
findings, the development of collective behaviors, norms, 
and ideologies is understood to be a product of not only the 
aggregation of individuals, but also the topology of how 
individuals are arranged. For example, the proximity and 
volume of interpersonal ties of groups in social spaces, be it 

digital or not, increases the probability of both social 
information and behavior being transmitted amongst them. 
Simultaneously, this reinforcement of social homogeneity 
makes it difficult for intergroup connections to be made 
(i.e., echo chambers). As such, social contagion theory 
provides a lens through which the diffusion of information 
and the creation of collective intelligence can be examined. 

Moral Contagion 
In an interesting application of social contagion theory, 
Brady, Wills, Jost, Tucker, and Van Bavel (2017) present 
their conceptualization of moral contagion, which directly 
applies the process of social transmission to information 
diffusion. Extant literature suggests that morality is a 
powerful force in human reasoning and rationalization, with 
studies showing that one’s moral beliefs are the foundation 
for one’s ideology and political views (Graham, Haidt, & 
Nosek, 2009; Haidt, 2001). But how does an issue become 
moralized in the first place? Adopting the social intuitionist 
approach, Brady et al. (2017) explain that moral beliefs are 
less a product of private, individual reasoning and more the 
result of interpersonal processes and cultural norms (Haidt, 
2001). What’s more, they elaborate that the communication 
of moral ideas is tied to the use of emotion in social 
transmission. In other words, emotions, which serve as 
demonstrated contagions in social networks (e.g., Coviello 
et al., 2014; Ferrara & Yang, 2015; Kramer, Guillory, & 
Hancock, 2014), are highly associated with moral 
judgements and may serve as a segue to moralizing debates 
that would be otherwise nonmoral (Brady et al., 2017). In 
their analysis of a large corpus of Twitter communications, 
they find that not only does emotion drive the diffusion of 
moral content through social networks, but that the mere 
presence of moral-emotional words in a tweet increases its 
transmission by approximately 20% (Brady et al., 2017). 
Within the contemporary context of ideological 
polarization, the finding that moral-emotional language 
diffuses at such a high rate is concerning. As people 
increasingly rely on their online networks as news sources, 
blending spaces of socialization with information, the 
tendency of moral-emotional language to diffuse across 
networks means that feelings of outrage or disgust might be 
weaponized as tools of persuasion. Of course, there is a time 
and place for moralization, but the claims of Brady et al. 
(2017) suggest that their emotionally-driven moral 
contagion is highly impactful across domains, going so far 
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as to say that “it seems likely that politicians, community 
leaders, and organizers of social movements express moral 
emotions…in an effort to increase message exposure and to 
influence perceived norms within social networks” (p. 
7316). 

Because of the implications for society’s ability to 
effectively reason and debate with contentious issues, the 
present study seeks to explore the prevalence of moral 
contagion across diverse, naturally-occurring social 
networks. More specifically, we aim to put the conclusions 
drawn by Brady et al. (2017) to the test by recreating their 
methodology and assessing whether moral-emotional 
language does in fact predict the diffusion of moral 
information regardless of quality or “truthiness.”  

Method 
To investigate the presence of moral and emotional 
contagion in online social networks, an adaptation of Brady 
et al.'s (2017) methodology was employed. Specifically, we 
use the R programming language to recreate the main 
analysis strategy from Brady et al. (2017), reproduce their 
findings with their cleaned aggregated data, and then apply 
the analyses to five unique Twitter datasets that capture 
naturally-occurring social networks. Datasets and R scripts 
are made available at https://osf.io/943zm/.  

Datasets 
A total of six datasets were analyzed in this study. Four pre-
existing datasets were obtained via the Open Science 
Framework (OSF) and Google’s dataset search engine, 
which hosts links to a wide range of open data repositories. 
One dataset (#MuellerReport) was self-collected by 
connecting to the Twitter REST API with the rtweet 
package in R. While no specific dataset or topic was initially 
targeted, certain criteria were employed. To be considered 
for this study, datasets had to contain Twitter data (i.e., 
tweet messages and retweet counts), contain a significant 
number of messages written in English, and relate to a 
polarizing or morally-charged real-world issue, event, or 
social movement. Datasets were further narrowed by 
collapsing repeated messages into a single observation (to 
generate a composite diffusion count that combined the raw 
retweet count with the number of times the message 
appeared in the dataset) and removing non-English 
messages. Since the found datasets did not include language 
identifying metadata, the textcat package in R was 
employed to extract English tweets in these instances. 
 
Brady et al. (2017) First and foremost, the present study 
drew directly from the recent study of moral contagion in 
social networks by Brady et al. (2017). Their data, which is 
generously shared on a public OSF project page, was thus 
crucial to the present study for both inspiration and 
corroboration. The data collected by Brady et al. (2017) 
focused on topical political issues in the United States: gun 
control, same-sex marriage, and climate change. Using the  
 

Twitter API and sets of topic-related filter words (e.g., guns,  
gun control, and NRA for the gun control topic), tweets and  
metadata were extracted between 30 October and 15 
December 2015.  

 
#MeToo Tweets A second dataset comprised of Twitter 
messages containing the #metoo hashtag was obtained from 
the data.world repository. The raw dataset (n = 393,135) 
was extracted with the Twitter API between 29 November 
and 25 December 2017, little more than a month after the 
#metoo hashtag first appeared online in coordination with 
the “Me Too movement” (Turner, 2018). The “Me Too 
movement” is a movement against sexual harassment and 
assault. It was ignited by Hollywood sexual abuse 
allegations and has since become an international 
phenomenon garnering widespread media attention, support, 
and critique. 
 
 #WomensMarch Tweets A third dataset with tweets 
containing the #womensmarch hashtag was also obtained 
from the data.world repository. Using the Twitter API, 
15,000 messages were collected that referenced the pro-
women’s rights, and effectively anti-Trump, protest that 
took place in the wake of the presidential inauguration on 21 
January 2017 (Adhokshaja, 2017). The Women’s March has 
since become a worldwide movement with annual marches 
in late January to non-violently protest for women’s 
reproductive rights, LGBTQ rights, immigration and 
healthcare reform, as well as racial, gender, and religious 
equality.   
 
Post-Brexit Tweets A fourth dataset containing unfiltered 
tweets and metadata from the morning that Brexit was 
announced was obtained from the Mendeley Data 
repository. This unfiltered dataset (n = 17,998) was 
collected with NCapture from QSR, and employed a tight 
temporal parameter so as to capture the global public’s 
reaction to the political  event (Parker, 2017). Brexit refers 
to the result of the 2016 EU Referendum in the United 
Kingdom, and this dataset includes Twitter responses from 
across the globe. 
 
Viral 2016 US Election Tweets A fifth dataset (n = 9,001) 
containing viral tweets (those with 1,000+ retweets) from 
the 2016 US Presidential Election was obtained from the 
Zenodo repository. The set of tweets was collected with the 
Twitter API and extracted messages that contained specific 
hashtags (#MyVote2016, #ElectionDay, and #electionnight) 
and/or user handles (@realDonaldTrump and 
@HillaryClinton) (Amador, Oehmichen, & Molina-Solana, 
2017). This dataset was of special interest as it contained 
many “fake news” messages as coded by the curators, which 
one would might expect to use especially morally- and 
emotionally-charged language to garner extra attention. 
 
#MuellerReport Tweets A sixth dataset (n = 229,046) was 
collected by using the #muellerreport hashtag to retrieve 
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tweets from the Twitter API created between 23 and 25 
March 2019 — the weekend during which US Attorney 
General William Barr released his summary of Special 
Counsel Robert Mueller’s investigation into Donald 
Trump’s 2016 presidential campaign. This corpus was of 
special interest because the Mueller Report has been (and at 
the time of writing, still is) a major source of controversy. 
While originally a non-polarized issue, the public opinion 
has divided overtime (Thomson-DeVeaux, 2019), meaning 
that moral-emotion might have played a part in moralizing 
conversations on Twitter. 

Procedure and Analysis 
All datasets were wrangled with R. Tweets were 
preprocessed with the tm and dplyr packages, and then a 
simple dictionary-based approach was employed to quantify 
the use of specific rhetoric in each message. To do so, the 
same three dictionaries used and validated by Brady et al. 
(2017) were used. One dictionary contains distinctly moral 
words and stems (n = 316; e.g., fair, racism, family), one 
contains distinctly emotional words and stems (n = 819; 
e.g., panic, fear, heartwarming), and one contains moral-
emotional words and stems (n = 72; e.g., shame, victimize, 
disgust) that appeared in both of the original moral and 
emotional dictionaries (i.e., a subset of the moral and 
emotional dictionaries that was extracted to form the third 
unique dictionary). Through this categorization, “moral 
emotions” are considered distinct from “nonmoral 
emotions” because they are linked to triggers and functions 
specific to moral contexts, making them especially relevant 
to political debate (Haidt, 2003; Brady et al., 2017). For 
instance, outrage and disgust are often considered 
prototypical moral emotions because their expression can be 
elicited by perceiving a moral transgression, the breaking of 
some social axiom that threatens the collective order (e.g., 
infringement of human rights). In contrast, sadness is a 
nonmoral emotion because it can be triggered by nonmoral 
cues (e.g., the death of a loved one). The presence of these 
categorized words (moral, emotional, and moral-emotional) 
in each tweet was counted, so that each observation was 
coded with a discrete word count for each dictionary.     

To accurately assess the degree to which each tweet in a 
given dataset diffused across the social media platform, the 
present study utilized a collapse-and-count scheme similar 
to that of Brady et al. (2017). Essentially, there are two 
measures of diffusion that can be calculated in an 
observational Twitter dataset: the retweet count displayed in 
collected metadata and the number of times a message 
appears in the dataset itself. Thus, the present study 
quantified diffusion by counting the presence of identical 
messages in each dataset, adding this count to the message’s 
actual retweet count recorded in the metadata, and then 
collapsing repeated messages into a single observation.  

To measure contagion effects, a negative binomial 
regression model was used. This model accounts for the 
overdispersion of data and effectively models count 
variables (i.e., discrete word counts and diffusion counts). In 

an effort to maintain consistency with Brady et al. (2017), 
incidence rate ratios (IRRs) were used as the ultimate 
indicator of the existence and magnitude of contagion 
effects. The MASS and lmtest packages were used for the 
main analysis. 

Results 
For the main analysis, negative binomial regression models 
with maximum likelihood estimation were fit onto each 
dataset to follow in line with the methodology of Brady et 
al. (2017), and to allow for a consistent measurement of 
moral, emotional, and moral-emotional contagion. The 
presence of contagion was determined by exponentiating the 
regression coefficients to generate incidence rate ratios 
(IRR) for each language dictionary, which were then used to 
plot diffusion prediction lines (Figure 1).  

 
Brady et al. (2017) Across the corpus of 313,002 tweets, 
there was an average of 0.23 moral-emotional, 0.36 moral, 
and 0.69 emotional words per tweet. The main analysis 
indicated that moral contagion did indeed exist in the data 
collected by Brady et al. (2017). For distinctly moral 
language, there was a slight main effect (IRR = 1.02, p < 
0.05, 95% CI = 1.01, 1.04), and the same went for distinctly 
emotional language (IRR = 1.03, p < 0.001, 95% CI = 1.01, 
1.04). Crucially, the presence of moral-emotional language 
appeared to have a strong effect on message diffusion (IRR 
= 1.21, p < 0.001, 95% CI = 1.19, 1.24). This result 
corroborates the statistics reported in Brady et al. (2017) to 
show that the use of moral-emotional language in tweets 
increases the likelihood of getting retweeted or otherwise 
shared among individuals in the social network platform by 
up to 21%. We also performed likelihood ratio tests to 
assess the statistical model’s goodness of fit against nested 
univariate models that used only moral, emotional, or 
moral-emotional language as a predictor of diffusion (Table 
1). These tests confirmed that the multivariate negative 
binomial regression model was effective for predicting 
message diffusion in the dataset. 

 
#MeToo Tweets After preprocessing the dataset, 151,572 
unique tweets remained for analysis with an average of 0.21 
moral-emotional, 0.30 moral, and 1.03 emotional words per 
tweet.  The negative binomial regression model displayed a 
small but significant effect of distinctly moral language 
(IRR = 1.05, p < 0.001, 95% CI = 1.02, 1.09), as well as a 
significant effect of emotional contagion (IRR = 1.13, p < 
0.001, 95% CI = 1.11, 1.15) such that emotional language 
increased a message’s diffusion by 13%. Curiously, while 
both moral and emotional language had a significant 
relationship with increased diffusion, moral-emotional 
language was significantly associated with message 
diffusion in a negative direction (IRR = 0.89, p < 0.001, 
95% CI = 0.79, 0.85). Likelihood ratio tests confirmed that 
the multivariate model was the best fit for the dataset (Table 
1). 
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Figure 1: Predicted message diffusion trends as determined by multivariate negative binomial regression models. A = Brady 
et al. (2017) aggregate dataset; B = #MeToo dataset; C = #WomensMarch dataset; D = Post-Brexit dataset; E = Viral 2016 
US election dataset; F = #MuellerReport dataset. 95% CIs are represented with the shaded areas. Note that scales vary widely 
as a result of the range of diffusion counts present in each dataset. 
 

 
Post-Brexit Tweets Of the 7,124 analyzable tweets from 
the morning of the Brexit announcement, there was an 
average of 0.08 moral-emotional, 0.20 moral, and 0.69 
emotional words per tweet. The regression model showed 
that there was no significant effect of moral language (IRR 
= 1.05, n.s., 95% CI = 0.91, 1.22), emotional language IRR 
= 0.95, n.s., 95% CI = 0.88, 0.1.04), or moral-emotional 
language (IRR = 0.86, n.s., 95% CI = 0.71, 1.07) on 
message diffusion. While this goes against the claims of 
Brady et al. (2017), the large confidence intervals and low 
levels of moral, emotional, and moral-emotional language 
present in the dataset make the findings here generally 
inconclusive. In fact, a likelihood ratio test demonstrated 
that the main multivariate model was not suited to this 
corpus of tweets. Univariate models, where an isolated word 
dictionary alone is used to predict diffusion rates instead of 
the combined three, were slightly better at explaining the 
data (Table 1). 
 
#WomensMarch Tweets The 3,783 analyzable tweets, 
messages pertaining to the Women’s March movement had 
an average of 0.17 moral-emotional, 0.31 moral, and 0.86 

emotional words per tweet. Upon fitting the negative 
binomial regression model to the data, it was found that  
there was no effect of distinctly emotional (IRR = 0.98, n.s., 
95% CI = 0.86, 1.13) or moral-emotional language on 
diffusion (IRR = 0.95, n.s., 95% CI = 0.72, 1.28). However, 
there was a significant negative effect of distinctly moral 
language on diffusion (IRR = 0.67, p < 0.001, 95% CI = 
0.55, 0.82). This finding also contradicts that of Brady et al. 
(2017) and suggests that both emotional and moral 
contagion effects are domain specific. Likelihood ratio tests 
also indicated that a univariate model with only moral 
language was a better predictor of diffusion within the 
dataset (Table 1). 
  
Viral 2016 US Election Tweets The 8,243 analyzable viral 
tweets from the 2016 US Presidential Election were found 
to have an average of 0.17 moral-emotional, 0.35 moral, and 
0.98 emotional words per tweet. Analysis showed that there 
was indeed a small effect of emotional contagion (IRR = 
1.05, p < 0.001, 95% CI = 1.03, 1.07), whereas the 
association with distinctly moral language decreased 
message diffusion (IRR = 0.96, p < 0.01, 95% CI = 0.93, 
0.99). These findings set up what would have been an ideal 
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case for emotion to drive the diffusion of moral content, 
however the regression model showed that there was no 
significant relationship between moral-emotional language 
and message diffusion (IRR = 1.02, n.s., 95% CI = 0.98, 
1.06), despite hinting at an association in the expected 
positive direction. Nevertheless, likelihood ratio tests 
indicated that the multivariate model was the most 
appropriate predictor of the dataset, having outperformed 
each of the possible nested univariate models (Table 1).  

 
#MuellerReport Tweets In 41,505 unique analyzable tweets 
from the #MuellerReport corpus, an average of 0.18 moral-
emotional, 0.47 moral, and 1.25 emotional words per 
message was found—the highest level of distinctly moral 
and distinctly emotional language of all datasets. 
Interestingly, a textbook moral contagion effect as per 
Brady et al. (2017) was found here. The negative binomial 
regression model showed that there was a significant effect 
of emotional contagion (IRR = 1.07, p < 0.001, 95% CI = 
1.04, 1.09), and that the association between distinctly 
moral language and message diffusion was not statistically 
significant (IRR = 1.05, n.s., 95% CI = 1.00, 1.11). And 
most importantly, there was a significant relationship 
between moral-emotional language and diffusion (IRR = 
1.33, p < 0.001, 95% CI = 1.23, 1.46). This effect is even 
stronger than that of Brady et al. (2017), suggesting that the 
presence of moral-emotional language can increase a 
message’s diffusion by 33%. Likelihood ratio tests 
supported the main multivariate model as the best 
explanation of the dataset (Table 1).  
 

Aggregated Data Finally, we sought to rule out that the 
observed differences to Brady et al. (2017) were due to non-
content differences in the samples, such as sample size. On 
top of analyzing each individual dataset, an aggregate 
dataset was compiled from the #MeToo, #WomensMarch, 
Post-Brexit, Viral 2016 US Election, and #MuellerReport 
datasets. This was done in an effort to present an analysis of 
a novel corpus that is similar in size to that addressed by 
Brady et al. (2017). However, it should be noted that 
statistics are skewed toward the #MeToo dataset as it is 
significantly larger than the others, comprising 71% of the 
aggregated data. Like the Brady et al. (2017) dataset, which 
captured discourse around multiple topics, this compilation 
of Twitter data also reaches a diverse range of contentious 
topics, as well as, in theory, a diverse range of individual 
Twitter users. This aggregation of five datasets into a single 
corpus (n = 212,227) displayed and average of 0.20 moral-
emotional, 0.33 moral, and 1.05 emotional words per tweet. 
Analysis here showed that neither moral-emotional 
language (IRR = 0.90, p < 0.001, 95% CI = 0.87, 0.94), nor 
moral language (IRR = 1.00, n.s., 95% CI = 0.97, 1.03), nor 
emotional language (IRR = 0.99, n.s., 95% CI = 0.97, 1.00) 
predicted an increase in message diffusion. However, 
moral-emotional language was the only key variable that 
displayed a significant association with diffusion. This 
finding is reiterated by likelihood ratio tests, which showed 
that the multivariate model was slightly outperformed by a 
nested univariate model that used moral-emotional language 
only (Table 1). Further analysis with larger datasets, and 
examinations of specific moral-emotions (e.g., positive vs. 
negative affect; high- versus low-arousal) is planned for 
future studies in order to explore possible explanations.        

Table 3: Likelihood ratio test statistics of deviance for goodness of fit. Significance indicates that the multivariate model 
(composed of moral-emotional language, distinctly moral language, and distinctly emotional language predicting diffusion) 
is the better fit for the dataset than the respective univariate model (composed of moral-emotional language, distinctly moral 
language, or distinctly emotional language predicting diffusion). The “Aggregate” column refers to the combined data from 
the #MeToo, #WomensMarch, Post-Brexit, Viral 2016 US Election, and #MuellerReport datasets. Significance codes:  ‘***’ 
< 0.001  ‘**’ < 0.01 ‘*’ < 0.05. 
 

Univariate 
model 

Dataset 

Brady et al. 
(2017) #MeToo  #Womens 

March 
Post-
Brexit 

Viral US 
2016 

Election 

#Mueller 
Report Aggregate 

Moral-
emotional 

language only 
30.07*** 191.50*** 13.06** 1.50 43.70*** 27.73*** 2.56 

Distinctly 
moral 

language only 
446.74*** 212.59*** 0.20 3.52 38.92*** 86.72*** 30.63*** 

Distinctly 
emotional 

language only 
432.70*** 43.62*** 14.07** 2.12 9.62** 62.47*** 26.85*** 
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Discussion 
Our results suggest that moral contagion driven by moral-
emotional language is not as general a phenomenon as 
Brady et al. (2017) propose. In fact, the statistical models 
displayed no noteworthy effects of moral contagion in four 
of the six observational datasets analyzed. While the 
significant results of the likelihood ratio tests (Table 1) 
effectively link the use of moral, emotional, and moral-
emotional language with information diffusion in most 
cases, the domain specificity of certain contagion effects in 
our results spurs a series of conceptual and methodological 
considerations. 

Invoking morality in reasoning is known to harden 
existing belief structures, delegitimize authority, and, in 
extreme cases, dehumanize opposing perspectives (Ben-Nun 
Bloom & Levitan, 2011; Crockett, 2017). While morality 
can of course be a force for good—providing shared 
identities and guiding ethical behavior—the introduction of 
unnecessary morality and its emotional underpinnings can 
jeopardize rational debate. It is for this reason that moral 
justifications carry weight in some domains but not others. 
For example, loading an argument with moral-emotional 
language might be an effective strategy in discourse 
pertaining to human rights, yet that same strategy is likely to 
be penalized in an argument over mathematics. Sentiments 
about where morality is appropriate may be changing, and 
this may very well be a factor driving ideological 
polarization. But it seems unlikely a priori that moral 
language will be viewed the same in all domains. Our 
results are in keeping with such considerations. 

There are also a number of methodological issues that 
potentially restrict the generality of studies such as this. 
Perhaps most conspicuous is the inability to parse true 
causal contagion from network homophily. The 
observational data used here and in Brady et al. (2017) fails 
to distinguish actual contagion (where exposure to a 
“contagious” condition has a causal effect on an individual’s 
shift from state A to state B) from manifested homogeneity 
(where individuals with similar characteristics act in similar 
ways, irrespective of conditional exposure). It could be 
argued that the act of retweeting or sharing a message is a 
behavioral metric because it requires some motivated action. 
However, Brady et al. (2017) note that where moral 
contagion has been documented, it has been “bounded by 
[ideological] group membership” (Brady et al., 2017, p. 
7313). This makes it important for future research to heed 
the substantial body of literature concerning the homophily-
contagion problem (e.g., Aral, Muchnik, & Sundararajan, 
2009; Shalizi & Thomas, 2011). Plus, Dehghani et al. 
(2016) specifically show that expressions of moral purity 
can predict the distance between users on Twitter, which 
further suggests that moral contagion may simply be an 
inadvertent measure of moral homophily. Along similar 
lines, the measurement of diffusion is also an imperfect 
operationalization of social influence. While collapsing 
repeated messages into a single observation ensures the 

language of a single repeated message does not skew 
analysis, it effectively penalizes unconventional retweeting 
(e.g., paraphrasing a message’s content rather than clicking 
“retweet”), and is prone to overlook retweet chains (e.g., 
retweets of retweets) that might indicate true virality of a 
message (Brady et al., 2017). Crucially though, this 
imperfection applies to every dataset in the present study 
such that it cannot explain the discrepancies between 
datasets.  

Needless to say, the use of social media analytics for 
investigations of the broader human condition has 
limitations with respect to external validity and 
representativeness (Tufekci, 2014). It is entirely possible 
that findings from studies conducted solely in the 
Twitterverse are in fact unique to the Twitterverse. Plus, the 
nature of Twitter metadata and correlational analyses like 
regression modelling mean that network agent variables 
(those pertaining to qualities of individual nodes/people) 
and structural variables like network topology are easily 
conflated. It may still be that human beings are susceptible 
to moral-emotionally-framed messages (Brady et al., 2017), 
but that unseen confounds, especially differences in network 
topology, can undermine contagion effects. Though the 
reverse is also possible, namely that contingent effects of 
topology may masquerade as a preference for moral-
emotional language. Either way, the findings presented here 
demonstrate the need for a close partnership between 
descriptive accounts of “big data” analytics and controlled 
experimentation in order to draw confident conclusions 
about social rationality in the digitalized age.  

Conclusion 
Human reasoning is rarely, if ever, fully autonomous. We 
depend on our social environments for information and 
corroboration, and as these environments undergo 
digitalization, understanding how their evolution translates 
into new modes of influence is imperative for safeguarding 
spaces of rational debate. With high-profile papers (e.g., 
Brady et al., 2017) already pointing out concerning 
dynamics like moral contagion in real-world social 
networks, the present paper adds to this line of inquiry by 
illustrating the inconsistencies of such findings and offering 
theoretical and methodological explanations. Importantly, 
the results here indicate that given the diversity of naturally-
occurring social networks, predicting the diffusion of 
information requires investigations of not only properties of 
the information itself, but also the domain specific topology 
of the networks through which it travels. Despite the 
limitations of current computational social science research, 
it is safe to say that exploring digital discourse can provide 
valuable insight into the state of human reasoning and 
argumentation in a time that has been labelled “post-truth.” 
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Abstract 

The current study seeks to extend research on motivated 
reasoning by examining how prior beliefs influence the 
interpretation of objective graphs displaying quantitative 
information. The day before the 2018 midterm election, 
conservatives and liberals made judgments about four 
economic indicators displaying real-world data of the US 
economy. Half of the participants were placed in an 'alien 
cover story' condition where prior beliefs were reduced under 
the guise of evaluating a fictional society. The other half of 
participants in the 'authentic condition' were aware they were 
being shown real-world data. Despite being shown identical 
data, participants in the Authentic condition differed in their 
judgments of the graphs along party lines. The participants in 
the Alien condition interpreted the data similarly, regardless 
of politics. There was no evidence of a „backfire‟ effect, and 
there was some evidence of belief updating when shown 
objective data. 

Keywords: motivated reasoning; politics; biases; reasoning; 
decision-making 

Introduction 
 

Previous research has shown that individuals often reason 

differently about information depending on whether it is 

congruent with their prior beliefs. Individuals tend to more 

easily accept information that is congruent with prior beliefs 

and desires and discount information that is incongruent 

with prior beliefs and desires. This process is known as 

motivated reasoning. In the current research, we studied the 

influence of political attitudes on how people interpret time 

series graphs of the economy. This research is at the 

intersection of two fields: causal reasoning about time series 

data, and motivated reasoning. 

Motivated Reasoning and Causal Reasoning: 

Similarities and Differences 

The fields of motivated reasoning and causal reasoning have 

long been intimately connected in certain ways, yet also 

distant in other ways. The current research aims to advance 

both of these fields, and to advance research on the 

intersection of the two. 

 In one aspect, these two fields have studied similar 

questions about the role of prior beliefs and desires on the 

acceptance or rejection of new information. On the causal 

reasoning side, there has been considerable research into 

how people incorporate new information with prior causal 

beliefs (e.g., Alloy & Tabachnik, 1984). Furthermore, many 

of the particular topics that have been studied in the field of 

motivated reasoning have had to do with causal or at least 

predictive relations. For example, in a seminal work on 

motivated reasoning, Kunda (1987) found that people tend 

to believe that other people who have attributes similar to 

themselves are less likely to get divorced than people with 

dissimilar attributes. Note how in this study, the attribute is 

as a potential cause or predictor of the effect (divorce). 

Other research on motivated reasoning that is less directly 

related to causation still often studies acceptance of causal-

scientific explanations, for example, about global warming 

(Campbell & Kay, 2014).  

On the other hand, there are also important differences 

between these fields. First, causal learning has traditionally 

been focused on the rational (Bayesian) updating of beliefs 

given new information, whereas motivated reasoning has 

focused on affective reasons for failing to update beliefs.  

A second difference, more relevant to the current research, 

is that most research on causal reasoning has focused on the 

inferential process - how a learner infers a cause-effect 

relationship from a set of data. In contrast, research on 

motivated reasoning does not involve inference. Instead, 

participants are typically presented with a fact or a set of 

facts, and the question is whether participants accept or 

reject the facts (e.g., Ranney & Clark, 2016 ).  

 One recent study on motivated reasoning has investigated 

inference from data, similar to causal reasoning research. 

Kahan, Peters, Dawson, and Slovic (2017) presented 

participants with quantitative information in 2x2 

contingency tables about the number of cities that did or did 

not ban handguns in public and whether there was an 

increase or decrease in crime, and participants were asked to 

infer the relation between gun bans and crime. Despite 

being presented with quantitative data, participants were 

more likely to make correct inferences when the data 

supported their prior attitudes about guns. The current 

research is in a similar vein–it investigates the role of 

political attitudes on inferences about economic trends. 

Motivated Reasoning about Economics 

The political arena is an especially ripe medium for 

motivated reasoning to occur, and has been one of the most 

studied types of motivated reasoning. Politically-relevant 

stimuli also provides a unique opportunity to study the 

intersection of motivated and causal reasoning about 

objective quantitative data that has high ecological validity.  

Politicians often make competing statements about the 

credit or blame for the same economic outcomes. For 

example, in a speech to democratic supporters, former 

President Obama said: "…when you hear how great the 

economy's doing right now, let's just remember when this 

recovery started" (USA Today, 2018). In contrast, Kevin 

Hassett, the Chairman of The White House Council of 
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Economic Advisers, has stated "I can promise you that 

economic historians will 100 percent accept the fact that 

there was an inflection at the election of Donald Trump and 

a whole bunch of data items started heading north" 

(Horsley, 2018). Similarly, citizens also interpret the same 

economic outcomes based on political lenses. For example, 

Republicans interpret the 2017 tax bill as having more 

personal benefit than Democrats (Bump, 2018). 

The current experiment is a controlled study to 

understand how people view the exact same economic data 

in different ways based on political orientation. There is 

little research into the cognitive processes engaged in 

motivated reasoning about objective economic data. In this 

study, we assessed politically-motivated reasoning before 

and after participants viewed economic time-series graphs, 

and after making judgments about the impact of each 

president. 

Backfire Effects 

One concern with the possibility of presenting participants 

with objective data is that it might actually produce a 

“backfire” effect in which the participant doubles-down and 

strengthen their prior belief. For example, Nyhan and 

Reifler (2015) found that participants who had previously 

held high levels of concern about potential side effects of flu 

vaccinations became less likely to get flu vaccinations after 

exposure to corrective information. However, evidence for 

the backfire is mixed. A more thorough investigation by 

Wood and Porter (2018) found no evidence of backfire 

effects. These two studies on backfire effects used text-

based presentation of facts. In the current study we assess 

whether participants exhibit backfire effects when presented 

with economic time series data that require them to make an 

inference. Whether participants exhibit a backfire effect 

could help reveal whether such information might be useful 

for changing voters‟ opinions. 

Current Study 

In the current study, participants were shown time series 

graphs of economic variables, and the graphs denote the 

times when Democratic vs. Republican presidents held 

office. Participants were asked questions about whether 

Democrats or Republicans were better for the economy. 

This study allowed us to ask a number of questions that 

provide insight into motivated causal reasoning. 

First, will people learn from the time series graphs and 

change their beliefs about which party is better, or will they 

exhibit a „backfire‟ effect? This question is especially 

relevant for political campaigns wondering how objective 

economic data changes voters‟ opinions. One reason that a 

backfire effect could happen is because quantitative graphs 

always ignore some contextual information, and people may 

latch onto such factors to reinforce their prior beliefs. For 

example, in the current study, presidents only have limited 

control of the economy and there are other external factors 

(e.g., Congress, the Federal Reserve, international politics). 

Second, to what extent do people engage in motivated 

reasoning even about highly objective, quantitative data? 

Participants were asked questions at multiple levels of 

granularity, from fairly general about Democratic vs. 

Republican presidents in general, to the influence of 

particular presidents, which could potentially show different 

degrees of motivated reasoning. 

Third, the current research also provides a unique 

opportunity for research on causal reasoning. Recently there 

has been more research on causal reasoning about time 

series data (Rottman, 2016; Soo & Rottman, 2018). One of 

the challenges involved in making causal inferences in 

general, and from time series data in particular, is that the 

data are often ambiguous and can be interpreted in multiple 

ways. The current study extends prior research in two ways. 

First, it provides new methods for studying how people 

reason about real-world time-series data (as opposed to 

researcher-generated data). Second, it is the first causal 

reasoning study we know of that explicitly studies the role 

of motivated reasoning in causal attribution. 

Methods 

Participants 

On November 5
th

, the day before the 2018 United States 

midterm election, 403 participants were recruited via 

Amazon's Mechanical Turk. They were paid $4 for 

participating in this study. Mechanical Turk premium 

qualifications were used to sample 200 individuals who had 

previously identified as liberals, and 200 who identified as 

conservatives. Three participants completed the study 

without accepting the HIT, resulting in 403 participants.  

Stimuli and Design 

Participants reasoned about time series graphs of four 

economic variables (Figure 1), within-subjects. Each graph 

depicted the period from 1977 through the most recent 

economic data when the study was conducted. We had to 

choose a year to begin the graphs. We wanted to include 

Reagan because of his important role in current political-

economic debates, but we figured that the current electorate 

would probably have less partisan views about Carter and 

earlier presidents. Carter was included because one of the 

questions about Reagan requires having a trend line before 

Reagan took office. The graphs were accompanied with 

hyperlinks to the data sources to increase transparency. 

Unlike Figure 1, the colors of the two parties were red and 

blue for the Republican and Democratic parties. A brief 

explanation of each economic variable was included.  

We desired to be able to compare participants‟ motivated 

reasoning against a more objective condition in which 

motivated reasoning is eliminated. To do this, half of the 

participants were presented with „authentic‟ graphs like 

those in Figure 1. The other half saw graphs just like Figure 

1, except the origin of the data was disguised; participants 

were told that the data came from a fictional alien society. 

Made-up alien names were used for the political parties and 
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Figure 1: Stimuli for Authentic and Alien conditions 

combined together. The text "White House Projection" on 

Debt to GDP Ratio graph was only present for the Authentic 

condition. Alien graphs had a range of 3061-3621 years. 

 

presidents. The alien graphs did not include the hyperlinks, 

and the colors of the two parties were green and orange (not 

red and blue) to reduce suspicion. 

Procedure 

Figure 2 provides a summary of the procedural flow of the 

 
Figure 2: Study procedure flow. “EI” = economic indicator. 

 

study. First, participants from both the liberal and 

conservative samples were randomized to either 'Authentic' 

or 'Alien cover story' conditions. Participants in the Alien 

condition were told to "Please imagine that in roughly 1,000 

years, there is an alien society on another planet. The 

government of this society has two political parties, 

Zerricks, and Gnups. Your goal for this study is to figure out 

whether the Zerricks or Gnups parties generally do a better 

job of handling the society's economy…" Participants in the 

Authentic condition were not provided with an introduction, 

as we presumed that participants were acquainted with the 

major US political parties. 

 Next, participants in the Authentic condition completed 

an “Overall Party Judgment” ("Which political party do you 

believe is better for the economy overall?": 1 = strongly 

believe Rep., 4 = neutral, no opinion, 7 = strongly believe 

Dem.). Alien condition participants did not make this 

judgment as they had no prior beliefs about the fictional 

aliens.  

 Next, participants completed blocks of judgments about 

each of the four economic indicators in a random order. In 

Step 1, participants in the Authentic but not Alien condition 

made the Economic Indicator Party Judgment ("Which 

political party do you believe is better for [econ. 

indicator]?": 1 = strongly believe Rep., 4 = neutral, no 

opinion, 7 = strongly believe Dem.). Then, in Step 2, 

participants were shown an economic indicator graph like in 

Figure 1. With the graph still visible, they made another 

Economic Indicator Party Judgment.  

 In Step 3 (sub-steps: A-F), with the graph still visible, 

participants made judgments about the influence of each 

president (from Reagan to Trump; Figure 3). This 14-option 

question allowed participants to make precise judgments 

about the nature of the change in the trend line. If 

participants‟ judgments are still influenced by their political 
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Figure 3: Economic Indicator President Judgments. The 

numerical coding scale was hidden during the study. 

 

orientation, it would mean that motivated reasoning has an 

influence on even very low-level causal reasoning. Because 

prior research (Soo & Rottman, 2018) has found that people 

focus on changes in trends more than absolute levels, this 

question asked how trend in the variable changed during the 

president‟s time in office compared to before. To analyze 

these judgments, we turned the 14-option scale into a -5 to 

+5 scale, where +5/-5 means that the president had a very 

good/ bad influence on the trend. The numbers in Figure 3 

display this scale mapping.  

 In Step 4, participants made the Economic Indicator Party 

Judgment one last time with the graph still present. The 

reason for asking this question three times was to see if 

participants‟ judgments become less biased with more 

exposure to the data and thinking about the data. 

 After completing the questions about the four economic 

indicators, participants made a final Overall Party Judgment 

without any graphs presented alongside this question. 

 Participants went on to complete four questions on 

political orientation. We used one of these questions (1 = 

extremely liberal, 4 = moderate/middle of the road, 7 = 

extremely conservative) to ensure that the participants‟ 

current political orientation matched the MTurk 

Qualification. Afterwards, participants rated how much they 

“liked” each of the presidents and completed demographics. 

Results 

Participants 

Participants in the Alien condition were asked about degree 

of suspicion for the cover story after completing the study. 

Fifteen participants were dropped from analyses due to 

selecting that they "strongly suspected that the data reflected 

the United States." The remaining participants were 

included in analysis. Fifty-seven participants selected "I was 

 
Figure 4: Overall party judgments before and after seeing 

time series graphs. Error bars are 95% confidence interval. 

D/R denote Dem./Rep. leaning judgments. 

 

a bit suspicious, but I didn't think much of it." The majority 

(n = 108) selected "No, I did not suspect that the data 

reflected the United States." 

 Another 53 participants were dropped because their 

responses to a question about whether they identified as 

conservative or liberal did not conform to how they 

previously identified according to the qualification. Thus, 

337 participants were included in the analyses. 

 Conservative (M = 43; SD = 12) and liberal (M = 38; SD 

= 11) participants had similar ages. Conservative and liberal 

samples were predominately white (91% & 83%, 

respectively). Liberals were a bit more educated. The 

education breakdown was as follows for conservatives and 

liberals, respectively: high school or lower (19% vs. 9%), 

some college but no degree (23% vs. 27%), associate's or 

bachelor's (47% vs. 54%), and master's or higher (11% vs. 

9%). 

Statistics 

For all the following analyses that used mixed-effect 

models, we used the R packages 'lme4', 'lmerTest' for p-

values, and 'r2glmm' for R
2
NSJ effect sizes (Jaeger, 2017). 

Effects coding was also used for all mixed-effect models. 

Overall Party Judgments 

Figure 4 presents the overall party judgments. The overall 

impressions of the graph are as follows. First, there do not 

appear to be differences in the Alien condition by politics. 

We note that participants‟ ratings in the Alien condition are 

more favorable to Democrats (the means of the Alien 

condition are above the midpoint of the scale).
1
 This 

suggests that we should expect to see more changes in 

beliefs for conservatives rather than liberals. Second, in the 

Authentic condition, there are large differences between 

                                                           
1 The fact that participants in the Alien condition tended to believe 

that the Democrats (disguised as aliens) were better for the 

economy than Republicans (disguised as aliens) is intended merely 

as a summary of the stimuli used in this experiment, not as a 

political statement. There are many other economic indicators 

aside from these four, and there are historical events not depicted 

on the graphs that could affect their interpretation. 
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conservatives and liberals, though the difference appears to 

become somewhat smaller suggesting that participants are 

learning rather than having a backfire effect. Third, even 

after seeing the graphs, there still appear to be large 

differences by political orientation in the Authentic 

condition. We now assess these questions statistically. 

First, overall party judgments between liberal and 

conservative participants were not significantly different 

after seeing the graphs for the Alien condition, t(159.05) = 

1.80, p = .074, d = .28. The remaining analyses focus on the 

Authentic condition. 

Second, we tested whether the judgments changed over 

time by doing a regression with time (before vs. after seeing 

the graphs), political orientation, and the interaction, and a 

by-subject random intercept. There was a main effect of 

politics ( = 3.54, SE = .18, t = 19.71, p < .001, R
2
NSJ = 

.635) implying strong politically-motivated reasoning. 

There was a significant effect of time ( = .40, SE = .10, t = 

4.08, p < .001, R
2

NSJ = .022). Most importantly, there was a 

significant interaction between politics and time ( = -.81, 

SE = .20, t = 4.08, p < .001, R
2

NSJ = .022), implying that the 

two groups moved closer together after seeing the graphs. 

Third, even after seeing the graphs, overall party judgments 

between liberal and conservative participants were still 

significantly different, t(125.66) = 14.33, p < .001, d = 2.13.  

Economic Indicator Party Judgments 

Figure 5 shows graphs of the judgments of which party is 

better at controlling each of the four economic indicators. 

These judgments were made at three timepoints in the 

Authentic condition, and at two timepoints in the Alien 

condition. The overall impressions of the graphs are as 

follows. First, for the most part, the differences in the Alien 

condition by politics are small, if present at all.
2
 Second, 

there appear to be some changes in beliefs after seeing the 

graph (Step 1 to Step 2), but there are few changes after 

making the president judgments (Step 2 to Step 4). For this 

reason, we just focus our analyses below on Steps 1 and 2. 

Third, even after seeing the graphs, there are still substantial 

differences between liberals and conservatives. We now test 

these impressions statistically. 

 First, at Step 2, we tested whether there are any 

differences based on political orientation within the Alien 

condition. We conducted a linear regression with a by-

subject random intercept and a by-economic-indicator 

random intercept. There was no significant effect of politics 

( = .29, SE = .23, t = 1.28, p = .278, R
2

NSJ = .01).  

We then tested for motivated reasoning within the 

Authentic condition in Steps 1 and 2. We tested for the main 

effects and interaction of Time and Politics. We used a 

linear regression with by-subject random intercepts and 

                                                           
2 Three of these economic indicators were more favorable for 

Democrats (the judgments in the Alien condition are higher than 

the midpoint of the scale for all but the Labor Force Participation 

Rate). This means that we would expect more changes in beliefs 

for Republicans than for Democrats in all but the Labor Force 

Participation Rate judgments. 

Figure 5: Mean economic indicator party judgments and 

95% CIs. D/R denote Dem./Rep. leaning judgments.  

 

slopes for time. The model also had by-economic-indicator 

random intercepts with random slopes for time and politics, 

and the interaction. We found significant differences in 

economic indicator party judgments based on participants‟ 

political orientation ( = 2.28, SE = .22, t = 10.23, p < .001, 

R
2
NSJ = .344), implying politically-motivated reasoning. 

There was not an effect of Time from Step 1 to Step 2 ( = 

.54, SE = .32, t = 1.69, p = .188, R
2

NSJ = .028). There was a 

marginal interaction between politics and Time ( = -.80, SE 

= .32, t = 2.48, p = .082, R
2
NSJ = .016). Perhaps there was a 

trend that conservatives and liberals‟ beliefs moved closer 

together after seeing the graphs, though this was only 

evident for some of the economic indicators (Figure 5).  

 Lastly, we tested for differences in economic indicator 

party judgments for the Authentic condition at Step 2 (after 

seeing graphs). This model included a by-subject random 

intercept and a by-economic-indicator random intercept and 

slope for politics. There was still a significant effect of 

politics on economic indicator party judgments ( = 1.88, 

SE = .28, t = 6.71, p = .001, R
2
NSJ = .260). 

 In sum, participants‟ judgments were biased by politics, 

and there was a trend of becoming less biased after seeing 

the graphs. 

Economic Indicator President Judgments 

Participants judged how each president influenced each EI. 

Because these judgments were very specific, they should be 

less open to interpretation than the other judgments. We 

wanted to test whether participants‟ political motivations 

would still affect these judgments. To test this, we reverse 

coded the judgments about Republican presidents. This 

means that judgments that are higher on the -5 to +5 scale 

are more positive towards Democrats, and judgments that 

are lower are more positive towards Republicans.  

 Participants made 24 judgments (6 presidents x 4 EIs). 

There were large differences across these 24 items because 

certain indicators performed very well or very poorly during 
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certain presidencies. We used mixed effects models with by-

item random intercepts and slopes for politics to account for 

the 24 items and by-subject random intercepts. 

 There was a significant effect of political orientation in 

the Authentic condition ( = .97, SE = .17, t = 5.87, p < 

.001, R
2
NSJ = .016). However, there was also a significant 

effect of political orientation in the Alien condition ( = .38, 

SE = .13, t = 2.96, p = .004, R
2
NSJ = .002). It is possible that 

some participants in the Alien condition realized that the 

alien chancellors were actually American presidents but did 

not report being highly suspicious.  

 To test whether there was more political bias in the 

Authentic condition than the Alien condition, we ran a 

model that also included condition and politics and their 

interaction as a by-item random slopes. There was no 

significant effect of condition ( = .17, SE = .11, t = 1.50, p 

= .138, R
2
NSJ = .001). We found a significant effect of 

politics; the judgments in the Liberal sample were a bit 

more favorable to Democrats ( = .68, SE = .12, t = 5.63, p 

< .001, R
2
NSJ = .008). Most importantly, there was a 

significant interaction between condition and politics, ( = 

.59, SE = .19, t = 3.14, p = .002, R
2

NSJ = .001). This suggests 

that economic indicator president judgments of 

conservatives and liberals were farther apart for the 

Authentic condition, and that there still is an effect of 

motivated reasoning even for judgments about specific 

presidents and specific economic indicators. 

Discussion 

Previous research has shown that individuals tend to 

preferentially view evidence congruent with prior beliefs 

and de-emphasize incongruent evidence. Our findings 

support that perceptions of quantitative information are 

influenced by the presence of prior beliefs. When prior 

beliefs were absent in the Alien condition, participants‟ 

judgments were largely in agreement with one another. 

However, when making judgments about US political 

parties, our participants‟ judgments were strongly 

influenced by their political beliefs.  

The Economic Indicator President Judgments may offer 

the most supportive evidence of motivated reasoning as 

participants engaged in belief maintenance even when 

making very specific judgments (e.g., President X “changed 

a neutral trend into a bad trend”), implying that prior beliefs 

can influence even low-level perceptual judgments. 

However, the bias for these very specific judgments were 

not as strong as for the overall party judgments and 

economic indicator party judgments.  

Despite the evidence of motivated reasoning, our 

participants did change their initial beliefs after viewing an 

objective graph, at least for the overall judgments. This 

suggests that presenting people with objective time series 

graphs of the economy might be a useful strategy for 

changing voters‟ minds. Perhaps another more radical 

strategy to change opinions is to show voters time series 

graphs with the political parties disguised, like in the Alien 

condition, to help them make judgments in a bias-free 

context, before revealing the political parties. In future 

research we plan to test whether this strategy is effective.  

It is important to note that even though we have been 

calling the effects in the paper "politically motivated," the 

current results cannot distinguish between rational use of 

prior beliefs versus self-protective motivational forces. One 

view is that the liberal versus conservative participants have 

different prior knowledge (e.g., about other relevant 

economic factors that could have been causes of changes in 

the graphs), and interpret the graphs differently based on 

their different knowledge (Jern, Chang, & Kemp, 2014). 

The other view, which is traditionally called 'motivated 

reasoning' is that they interpreted the graphs differently 

simply to support self-serving desirable outcomes (i.e., 

protecting their political self-identity).  

However, we believe the current results are still useful in 

that they show how disparate of views people can have 

making judgments from quantitative data (as opposed to 

prior research that used text-based stimuli). Another novel 

feature of this study is that it involved making inferences or 

generalizations, whereas prior research has focused simply 

on subjects acceptance of a textual argument.  

More generally, given the current time of heightened 

polarization and misinformation, more research is needed to 

understand biased reasoning and find interventions to reduce 

biased reasoning about quantitative information. 
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Abstract

What happens to the acoustic signal after it enters the mind of a listener during real-time speech processing? Since
processing involves extracting linguistic evidence from multiple, temporally distinct sources of information, successful
communication relies on a listeners ability to combine these potentially disparate signals. Previous work has shown that
listeners are able to maintain, and rationally update, some type of intermediate representations over time. However, exactly
what type of information is being maintainedbe it acoustic-phonetic or rather a probability distribution over phonemeshas
been underspecified. In this paper we present a perception experiment aimed at identifying the internal contents of in-
termediate representations in speech processing. Using an accent-adaptation paradigm, we find that listeners adapt to
modulated acoustic signal when the corresponding orthography is provided before the audio, but not when audio follows
the orthography. This supports the position that intermediate representations are uncertainty-distributions over discrete
units (e.g. phonemes) and that, by default, speech processing involves no maintenance of the acoustic-phonetic signal.
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Abstract

Natural languages exhibit many semantic universals: proper-
ties of meaning shared across all languages. In this paper, we
develop an explanation of one very prominent semantic univer-
sal: that all simple determiners denote monotone quantifiers.
While existing work has shown that monotone quantifiers are
easier to learn, we provide a complete explanation by consid-
ering the emergence of quantifiers from the perspective of cul-
tural evolution. In particular, in an iterated learning paradigm,
with neural networks as agents, monotone quantifiers regularly
evolve.

Keywords: semantic universals; generalized quantifiers;
monotonicity; iterated learning; neural networks

Introduction
While natural languages show great variability, there are fea-
tures that they all appear to share. Linguists call these fea-
tures linguistic universals. Universals have been found at all
levels of linguistic structure: phonological, syntactic, and se-
mantic.1 Some universals might follow from constraints on
what humans are physically capable of doing. For instance,
there is no language whose prosody requires the production
of ultrasounds. The reasons for other universals are harder to
understand, leading to multiple proposed explanations.

One well-supported claim is that at least some universals
are to be explained in terms of learnability.2 More precisely,
it is easier to learn a language that satisfies the universal than
it is to learn a language that does not satisfy the universal,
and this difference in the complexity of acquisition causes
languages that satisfy universals to spread. In the case of
universals of lexical semantics such as the one we focus on
below, the learnability explanation says that lexical entries
whose meaning satisfies the universal are easier to learn, and
therefore more likely to be lexicalized. Complicated mean-
ings can be obtained through complex grammatical construc-
tions and compositional interpretation thereof.

The learnability explanation is an empirical, causal claim
about the origins of linguistic universals. One way to support
the learnability explanation for a specific universal is to pro-
vide a model of learning that is cognitively realistic and on

1For some examples see, respectively, Hyman (2008),
Newmeyer (2008), and Barwise and Cooper (1981).

2See, e.g., Steinert-Threlkeld and Szymanik (in press),
Piantadosi, Tenenbaum, and Goodman (2013), and Peters and West-
erståhl (2006).

which expressions that satisfy the universal are indeed easier
to learn.

Finding an appropriate model of learning can however only
partially explain a linguistic universal. Learnability is a fact
about individual cognition, while a universal is a feature of
a whole language. A second challenge consists in connect-
ing these two levels, showing the effects of learnability on
emerging language structure. This is the so-called problem
of linkage.3

Iterated learning (IL) is a method that addresses the prob-
lem of linkage. In IL, parents teach children their language,
who teach the next generation their language, and so on and
so forth. The crucial insight of IL is that learning is not an
inert process in cultural evolution, since the languages of a
cultural child and its cultural parent are generally slightly dif-
ferent. The changes caused by learning are not random, but
rather tend to be guided by the learner’s cognitive biases. As
a consequence, over time languages adapt better and better to
the agents’ cognitive biases. Learnability can then affect the
frequency of different traits.4

Previous work has addressed the learnability challenge by
showing that quantifiers, responsive predicates, and color
terms that satisfy certain semantic universals are easier to
learn for neural networks.5 In this paper, we address the prob-
lem of linkage by building an iterated learning model of the
evolution of the semantic structure of quantifiers. In partic-
ular, we will use neural networks as our agents and standard
gradient descent as the learning method inside the context of
iterated learning. The next section briefly reviews the the-
ory of generalized quantification and the universal of mono-
tonicity. After that, the following section presents the model
of cognition and the iterated learning model, as well as an
information-theoretic measure of the degree of monotonicity
of a quantifier. Experiments with this model and their results
are presented in the following section. Results are discussed
in the final section, along with possible future directions.

3The problem of linkage was introduced in Kirby (1999).
4See, e.g., Tamariz and Kirby (2016); Culbertson and Kirby

(2016); Kirby, Cornish, and Smith (2008) for discussions of the way
individual cognition is reflected in language structure through IL and
experimental evidence supporting the connection.

5See, respectively, Steinert-Threlkeld and Szymanik (in press);
Steinert-Threlkeld (in press); Steinert-Threlkeld and Szymanik
(2019).
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Quantifiers and monotonicity
Determiners are expressions that take a common noun as an
argument and return a Noun Phrase. Determiners can be
grammatically simple—e.g. some, few, most—or complex—
e.g. fewer than three or at most five.6 Determiners express
generalized quantifiers.7 (Monadic) Generalized quantifiers
are properties of sets of subsets of a domain of discourse. The
generalized quantifiers expressed by natural language deter-
miners are of type 〈1,1〉, i.e. properties of exactly two sets.
Equivalently, a quantifier of type 〈1,1〉 takes (the characteris-
tic function of) a set A and returns a function from (the char-
acteristic function of) a set B to truth values. A is the left
argument and B the right argument of the quantifier. For in-
stance, the sentence “most As are B” is true if and only if the
number of As that are B (cardinality of the intersection of A
and B, i.e., |A∩B|) is greater than the number of As that are
not Bs (i.e., |A−B|), i.e.:

JmostK = {(A,B) : |A∩B|> |A\B|}

Various universals have been proposed about which gener-
alized quantifiers are expressed by simple determiners. In the
following, we focus on the monotonicity universal proposed
by Barwise and Cooper (1981). This says that all simple de-
terminers across all languages express monotone quantifiers.
A quantifier is monotone iff it is upward monotone or down-
ward monotone. A quantifier Q is upward monotone [down-
ward monotone] iff for any three sets A, B and B′, if Q(A)(B)
and B⊆ B′ [B′ ⊆ B] then Q(A)(B′). As an example, consider
the upward monotone quantifier JmostK. Assume that the sen-
tence “Most cats sleep” is true and that everything that sleeps
is alive, i.e. JsleepK ⊆ JaliveK. The monotonicity of JmostK
ensures then that “Most cats are alive” is true.

Monotonicity is an interesting universal because it is easy
to imagine non-monotone quantifiers. Examples of non-
monotone quantifiers abound among the meanings of com-
plex determiners: “an even/odd number of” or “exactly 2”,
etc. The commonness of non-monotonicity among complex
quantifiers makes the lack of simple non-monotone quanti-
fiers especially puzzling and in need of an explanation. Pre-
vious work proposed to explain the universal of monotonicity
in terms of the greater learnability of monotone quantifiers.

Steinert-Threlkeld and Szymanik (in press) propose to use
neural networks in this context. A neural network is a com-
putational device that can learn to approximate functions by
observing tuples of inputs and relevant outputs, and progres-
sively minimizing a suitably defined distance between the
true output and the network’s own prediction. In the case
of a quantifier, the input is a structure where the relevant sets
are specified and the output is 1 iff the structure verifies the

6Exactly how to draw the distinction between simple and com-
plex and whether, for instance, most is simple or complex, do not
matter for present purposes.

7For more information on generalized quantifier theory from lin-
guistic, computational, and cognitive perspectives, see also Peters
and Westerståhl (2006) and Szymanik (2016).

Figure 1: Learning curves on a neural network for the mono-
tone at least 4 (blue) versus at least 6 or at most 2 (red). The
x-axis is number of training steps; the y-axis is accuracy (per-
centage correct) on a test set of examples the network has not
yet seen. This was Figure 4 in Steinert-Threlkeld and Szy-
manik (in press).

quantifier and 0 otherwise. In practice, given a structure the
neural network outputs a probability that can be interpreted
as confidence that the structure verifies the quantifier.

Data about how fast neural networks learn different kinds
of quantifiers was produced with the following algorithms.
First, two quantifiers are picked such that one satisfies the
universal and the other does not. Then, the two quantifiers
are taught to a neural network until it has accurately learned
them. The crucial information is how long on average it takes
neural networks to accurately learn quantifiers that satisfy the
universal compared to ones that do not. Various universals
were tested in this way. In the case of monotonicity, the data
was produced both for a downward monotone and for an up-
ward monotone quantifier. The neural networks were strik-
ingly faster at learning monotone compared to non-monotone
quantifiers. Figure 1 shows an example.

As discussed above, knowing that meanings with certain
features can be learned more easily only goes some of the
way in explaining the features’ universality across various
languages. A full explanation also needs to show that the
structure can and eventually will be reached by processes of
cultural evolution. In the rest of this paper, we develop an it-
erated learning model of the cultural evolution of quantifiers
that embeds the learning model of neural networks, and show
that monotonicity reliably emerges.

Methods
Iterated learning
IL models start with two groups of randomly initialized
agents, the first and second generations. Each agent in the
first generation—the cultural parent—is associated with one
agent in the second generation—the cultural child. A set of
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linguistic production data is generated for each cultural par-
ent and used as input for the cultural child. The cultural child
tries to approximate its cultural parent’s language. In the fol-
lowing step, the process is repeated with agents in the sec-
ond generation as cultural parents and the new agents in a
third generation as cultural children. The cultural transmis-
sion process is iterated for some number of generations. Each
cultural family line is called a chain of IL.

Crucially, the agents do not learn their parent’s language
perfectly. There can be various reasons for this. First, there
can be a bottleneck in learning. This happens when the
learner does not observe everything that is needed to perfectly
reconstruct the language, and therefore has to guess some as-
pects of it. The number of data points given to the learn-
ers is fixed for all generations and agents and is called the
bottleneck size. A second reason is that the agent might not
have perfect memory or perfect reasoning abilities, and might
therefore learn a language that does not perfectly conform to
the given data. In this case, the more rational the agent, the
closer the learned language will be to the teacher’s language.
A third reason is that the cultural parents might produce lan-
guage in a way that is stochastic rather than deterministic.
This can make the language harder to approximate and im-
possible to learn perfectly. For instance, a cultural parent
might pick among the signals compatible with a certain ob-
servation according to a categorical distribution. The cultural
child would need to infer the parameters of the distribution, a
task which cannot in general be accomplished perfectly with
a finite number of observations.

The changes introduced by each learner accumulate over
generations. Since these changes are not completely random,
but rather tend to be consistent across agents, the languages
tend to change in the same way over time in different chains.
In sum, IL is a way to study how the cognitive system of the
learners determine which languages one should expect to see
spoken in a population of such agents. The crucial individual
level components of an IL model are the set of possible lan-
guages, and the way the agents learn them. We now explain
these two components in turn.

Model of models, quantifiers, and language
Since the focus is on the evolution of monotonicity, we sim-
plify the language model by assuming that the quantifiers are
conservative and extensional.8 This amounts to saying that
the truth value of each quantifier only depends on the ele-
ments in A and A∩B, and not on A∪B or B\A. Therefore, the
truth of any quantifier depends only on which of the elements
of A are also elements of B, and which are not. Assuming

8These, next to monotonicity, are two prominent semantic uni-
versals distinguishing natural language quantifiers from all logically
possible quantifiers. Extensionality means that extending or shrink-
ing the universe of discourse has no effect on the truth-value of the
quantifier sentence as long as the left and right arguments are un-
changed. Conservativity means that only the part of B that is com-
mon to A matters for the truth-value of the sentences. In other words,
the elements in B \A can be safely ignored when determining the
truth-value. See Peters and Westerståhl (2006) for definitions.

conservativity and extensionality both reduces the number of
possible quantifiers that agents can speak and simplifies the
model of each quantifier, since only A and A∩B need to be
encoded. Moreover, we assume that the left argument of the
quantifiers is fixed to some set A with cardinality n.

Assuming conservativity/extensionality and a fixed set A,
we can represent the part of the world—called a model—that
is relevant to determining the truth value of a quantifier as
a bit vector of a fixed length n. Each element of the model
represents an object in A. Each element has value 1 iff the
object corresponding to that bit is also an element of B, and
0 otherwise. For instance, the vector [0,1,1 ] would model a
situation where A = {o1,o2,o3} and o2, o3 ∈ B. The set of
models is the set of all binary strings of length n, i.e. the set
of possible relations between a fixed A and any possible B.
We call M′ a submodel of a model M iff M′ is 0 everywhere
where M is 0. For instance, [0,1,1,0,0 ] is a submodel of
[0,1,1,1,1 ]. Note that each model is a submodel of itself.

We represent a quantifier as a function from models to sin-
gle bits. An example of a quantifier is Q(x) = 1 if ∑

n
i=1 xi >

2 otherwise 0, meaning “more than two”. Since for A of size
n there are 2n different models, each quantifier is a 2n-sized
bit vector. Each element of the quantifier vector corresponds
to a model and has value 1 iff the model verifies the quantifier
and 0 otherwise.

To see how this works in practice, consider a set A of size 3.
There are 8 possible ways in which any other set B can over-
lap with A. Each of these is modelled as a bit vector of size
3. For instance, [0,1,1 ] says that the second and third object
of A are also elements of B, but the first is not. The English
expression “all As are B” is modelled by a bit vector of size
8 that has value 1 at the index corresponding to the model
[1,1,1 ] and 0 otherwise. If the models are ordered lexico-
graphically9 and the last model is therefore [1,1,1 ], then the
quantifier corresponds to the vector [0,0,0,0,0,0,0,1 ]. We
call a quantifier degenerate if and only if it corresponds to a
vector of identical elements, 0s or 1s. A degenerate quantifier
corresponds intuitively to a quantifier that is true or false of
every model.

Each agent encodes a single quantifier. Agents do not en-
code the quantifiers directly. Rather, given a model they pro-
duce a truth value by using a neural network. The next two
sections clarify the connection between the neural networks
and the agent’s behaviour.

Neural Networks
Because of the aforementioned learnability results of
Steinert-Threlkeld and Szymanik (in press), the agents that
make up the generations in our iterated learning setup are
neural networks. Each network has n input neurons (one for
each bit of a vector corresponding to a model) and one out-
put neuron (how probable it thinks that the true output is a
1), with two hidden layers of 16 neurons each. We made this

9In that case, lexicographic order is the dictionary order over se-
quences of letters from the alphabet {0,1) with 0 preceding 1 in the
order.
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choice so that the networks had enough expressive power to
represent many quantifiers, including complex ones. Future
work will analyze the effect of architecture choices on the
results presented below. The networks and learning, which
will be described in the next section, were implemented in
PyTorch.10

Such a network learns from input/output pairs using a
fancier version of gradient descent called Adam (Kingma
& Ba, 2015). The network receives a number of true in-
put/output pairs, which it iterates over in small batches. For
each batch, it guesses the correct outputs for the inputs, and
then updates its parameters (weights and biases connecting
the neurons) in such a way that its future outputs are guaran-
teed to be closer to the truth.11 Because this style of learning
is fairly gradual, we introduce one more parameter to our sim-
ulations, namely number of epochs: this is how many times
the network processes its training set in each generation. In
other words, the network sees a portion of its parent’s lan-
guage, as determined by bottleneck size, but gets to learn from
that portion number-of-epochs times.12

Model of the agents
Each agent plays two roles in an IL simulation. The first role
is to learn a language given data from the previous generation.
The second role is to produce data used to teach to the follow-
ing generation. To produce this data, the agent is prompted
with randomly chosen models.

In the learning phase, each agent receives learning data
consisting of a set of tuples 〈model, judgment〉. The judg-
ment is a single bit expressing whether the quantifier used by
the agent is compatible or not with the model. This data is
used to train the agent’s neural network as described in the
previous subsection.

Production works as follows. The agent feeds an observed
model to its neural network. The neural network returns a
number in the [0,1] interval. Then, the agent rounds the num-
ber and returns it. The returned number expresses whether
the agent’s quantifier is compatible or not with the model that
the agent observed. The production behaviour is determin-
istic, since an agent always produces the same bit given the
same model.

Prompted with a string of 1s and 0s, agents produce a 1 or
0. The former models a state of the world, the latter mod-
els the compatibility of the agent’s quantifier with the world
state. However, nothing in the simulation implies that neu-
ral networks are interpreting 1 and 0 as True and False re-
spectively in their input and output. Therefore, the output of
an agent under-determines which quantifier the agent speaks,
even when the output for all models is known. For instance,
an agent that returns 1 for input [0,0,1,1 ] can be interpreted
as accepting the model where B = {o3,o4} (if 1 is interpreted

10http://pytorch.org
11For general introductions, see Nielsen (2015); Goodfellow,

Bengio, and Courville (2016).
12In some experimental literature — for example, Carr, Smith,

Culbertson, and Kirby (2019) — this is also referred to as exposures.

as True in the model and in the quantifier), as rejecting the
model where B = {o3,o4} (if 1 is interpreted as False in the
quantifier and True in the models), as accepting the model
where B = {o1,o2} (if 1 is interpreted as True in the quanti-
fier and False in the models), or as rejecting the model where
B = {o1,o2} (if 1 is interpreted as False in the quantifier and
the models). Crucially, the interpretation of the bits has to be
consistent across the models and across the quantifier judg-
ments. Therefore, each agent can be interpreted as speaking
four quantifiers, depending on whether 1 and 0 are interpreted
as meaning true or false in the models and in the agent’s out-
put. We discuss below how we deal with underdeterminacy
when it might make a difference to the interpretation of the
results.

Measures of monotonicity

Figure 2: Kernel Density Estimation of the distribution of
degrees of monotonicity from a sample of 300 completely
random quantifiers and 300 random neural network agents.
The x-axis is the measure of monotonicity we describe in the
main text.

According to the standard definition, monotonicity is a bi-
nary property. A possible way of analyzing the results would
be to find the proportion of monotone languages in every
generation. However, some quantifiers are intuitively more
monotone than other quantifiers. For instance, consider the
three quantifiers “some”, “between 3 and 5” and “an even
number of”. While “some” is monotone and the other two
quantifiers are not, intuitively “an even number of” is the least
monotone of the three. To track finer changes in monotonicity
level over time, we define a graded measure of monotonicity.

We measure monotonicity in information-theoretic terms
as the proportion of uncertainty in the output of a quantifier
that is removed after knowing that there is a submodel where
the quantifier is true (i.e. a 1). For a perfectly (upward) mono-
tone quantifier Q, if a model M has a submodel to which the
quantifier assigns 1 then Q will assign 1 to M. Therefore, for
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a monotone quantifier all the uncertainty is removed and the
measure has value 1.

More formally, first define the random variables 1Q and 1≺Q
on the space of possible models as follows. 1Q is the value
that Q assigns to the model M. 1≺Q is whether a model has a
submodel that the quantifier considers true (assigns 1 to). The
entropy of 1Q, H(1Q), quantifies the uncertainty about what
truth value Q will assign to a model. The conditional entropy
H(1Q | 1≺Q) quantifies the uncertainty about what Q will as-
sign to a model, given that one knows whether the model has
a submodel that Q considers true (assigns 1 to). H(1Q | 1≺Q)
is minimized (attains value 0) for a perfectly monotone quan-
tifier: if you know that a model has a true submodel, and
the quantifier is upward monotone, you know the truth value
of that model. The difference between the entropy and the
conditional entropy between these variables is known as the
mutual information:

I(1Q;1≺Q) := H(1Q)−H(1Q|1≺Q)

This measures how much information 1≺Q provides about 1Q.
For a perfectly monotone quantifier, H(1Q|1≺Q) = 0, and so
I(1Q;1≺Q) = H(1Q). In other words: for a monotone quanti-
fier, knowing which models have a true sub-model provides
as much information as knowing the entire quantifier.

While this roughly captures what we want from a measure
of monotonicity, it needs to be normalized to form a degree
that applies across quantifiers, since 0≤ I(1Q;1≺Q)≤ H(1Q).
We do this by dividing by H(1Q), moving the upper bound to
1. In total then, we measure monotonicity as

mon(Q) :=
I(1Q;1≺Q)

H(1Q)

=
H(1Q)−H(1Q|1≺Q)

H(1Q)

= 1−
H(1Q | 1≺Q)

H(1Q)

To see how this measure tracks intuitions, consider the pre-
vious mentioned quantifiers “some”, “between 3 and 5” and
“an even number of”. “Some” gets monotonicity 1.0, be-
cause knowing whether a model has a submodel that veri-
fies “some” eliminates all uncertainty about the truth of the
model. Recall that each agent can be interpreted as instanti-
ating any of four quantifiers, which can be monotone to dif-
ferent degrees. This raises the question of which of the four
degrees of monotonicity should be considered in the analysis
of the results. The monotonicity of an agent’s language is the
highest among the degrees of the quantifiers compatible with
the agent’s language. For instance, an agent whose quanti-
fier is “between 3 and 5” has degree 0.7517 and one with “an
even number of” has degree 0.001.

We compare the results of the simulation to the distribution
of the measure in randomly generated quantifiers. There are
two different random distributions of quantifiers. On the one

hand, there are the quantifiers instantiated by randomly ini-
tialized agents. On the other hand, there are the quantifiers
sampled uniformly from the space of possible quantifiers.
These two distributions are depicted in Figure 2. While the
completely random quantifiers have a narrower distribution,
both types of random distribution are very skewed towards
low degree of monotonicity. This makes sense: monotonicity
is a relatively rare property, and so should not be expected to
appear randomly. We now turn to the results, showing that
higher degrees do emerge via iterated learning.

Materials
For our experiments, we used a fixed model size of 10 (which,
recall, is also the size of the input to the agents), with 10
agents in each generation, and varied the bottleneck size (200,
512, 715, 1024) and number of epochs (4 and 8). For each
setting of those two parameters, we ran 20 trials.

The code, data, and instructions for running ex-
periments may be found at https://github.com/
thelogicalgrammar/NeuralNetIteratedQuantifiers.

Results
The first result is that monotone quantifiers evolve consis-
tently and rapidly for some values of the simulation param-
eters. More specifically, the evolution of monotonicity de-
pends on the bottleneck size and the number of epochs, i.e.
how much of the parent’s language is observed by the cul-
tural child. See Figure 3 for the results. If the networks
get too much input, they learn the quantifier accurately and
change is very slow. If the networks get too little input, the
learning has little effect and no pattern emerges. If languages
are somewhat stable across generations, but enough variation
is allowed by not over-training the cultural children, mono-
tonicity evolves.

A second result is that the monotone quantifiers that
emerge are in large part non degenerate. In Bayesian mod-
els that include a prior for simplicity, degenerate languages
become widespread under pure IL (Kirby, Tamariz, Cornish,
& Smith, 2015). Here, however, degenerate quantifiers are a
small minority (about 0.005% of all quantifiers).

The third result is that most non-degenerate monotone
quantifiers fall in one of a few types. About 79% of the per-
fectly monotone quantifiers show the following pattern: there
is some index i such that the quantifier—call it Qi—assigns
1 to a model iff the model is 1 at i (or an equivalent pattern
obtained by switching 0 and 1 uniformly in the models and/or
in the quantifier). Qi is true iff oi, the object represented by
index i, belongs to the set B.13. Therefore Qi(A) functions
like a proper noun for oi. Just like “Anna is human” is true iff
Anna belongs to the set of humans, “Qi(A) is B” is true iff oi
belongs to the set B.

13In set-theoretic terms, Qi is a principal ultrafilter If U is a finite
non-empty set, a set F is a principal ultrafilter on U if there is an
a ∈U such that F = {B ∈ P (U)|a ∈ B}. In the present model, Qi is
(the characteristic function of) a principal ultrafilter on B because it
it contains every subset of B that contains i.
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Figure 3: The simulation was ran 20 times for each combination of bottleneck size and number of epochs in a population of
10 agents and a maximum model size of 10. The plot shows how the average monotonicity level across all languages changes
over 300 generations. Convergence to monotonicity depends on how much the learners’ neural networks are trained, which
itself depends on the number of epochs and the bottleneck size. With small bottleneck and few epochs, monotonicity does not
evolve. With a bigger bottleneck size and more training epochs, monotone languages become widespread. However, increasing
the training data further tends to impede the development of monotone languages.

For other monotone quantifiers Q{ j,k}, there are two indices
j,k (with j 6= k) such that Q{ j,k} assigns 1 to a model iff the
model has value 1 at both j and k (or, again, an equivalent
patterns obtained by switching 0 and 1 in the models and/or
in the quantifier). Q{ j,k} is true iff B contains two specific ele-
ments of A, and false otherwise.14 It can be interpreted as the
conjunction of two proper nouns. Like “Anna and Rob are hu-
man” is true iff Anna is human and Rob is human, “Q{ j,k}(A)
is B” is true iff o j is B and ok is B.

Discussion
The results we presented support the learnability account of
the origins of semantic universals of quantification. While
previous work compared quantifiers satisfying semantic uni-
versals to quantifiers that do not, we have presented a model
where the former are selected out of all of the possible quan-
tifiers by a process of cultural evolution. Moreover, the pref-
erence for monotone quantifiers is not a consequence of an
explicitly coded bias for simplicity, but rather of an inde-
pendently motivated, biologically plausible model of learn-
ing. The results therefore suggest that not only are monotone
quantifiers easier to learn, but they are also widespread in lan-
guage because of their learnability.

This model can be straightforwardly extended in various

14These are called in set-theoretic terms principal filters. They are
not principal ultrafilters because their truth depends on more than
one element.

ways. The agents judged their quantifier compatible with a
given model simply by rounding the output of their neural
network. An alternative to this is for the agents to accept a
model with a probability proportional to the network’s output.
Such so-called sample agents do not straightforwardly instan-
tiate a quantifier, since they can produce inconsistent output
when repeatedly prompted with the same model. However,
preliminary results have shown that neural networks are ca-
pable of doing statistical learning: given enough data, they
approximate not just whether their parents tend to reject or
accept a model, but also the probability of acceptance.

While the quantifiers that emerge from our experiment are
monotone, they are unnatural in certain respects. For in-
stance, the proper-name-like quantifiers that emerge are not
quantitative, i.e. their truth value depends not simply on the
number of 1s and 0s, but on the identity of particular ele-
ments.15

To try and explain the emergence of quantifiers which are
both monotone and quantitative, it might be necessary to
make it more difficult for the networks to rely on the identity
of particular objects by, for instance, shuffling the order of
models in the parent and the teacher’s inputs. Another pres-
sure that might contribute to shape the meaning of quanti-
fiers comes from communication (Kirby et al., 2015). While

15See Steinert-Threlkeld and Szymanik (in press) for the defini-
tion of and motivation for quantity, which generalizes the isomor-
phism/permutation constraint in generalized quantifier theory as dis-
cussed, for instance, in Peters and Westerståhl (2006).
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some semantic universals of quantification might have an ad-
vantage in cultural evolution because they conform well with
learning biases, other universals might evolve because they
lead to more successful communication. Therefore, combin-
ing iterated learning with a pressure for accurate communica-
tion might help more natural quantifiers emerge. We leave all
of these exciting possibilities to future work.
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Abstract

It has long been noted that the best examples, or foci, of
color categories tend to align across diverse languages (Berlin
& Kay, 1969)—but there is limited documentation of such
universal foci in other semantic domains. Here, we explore
whether spatial topological categories, such as “in” and “on”
in English, have focal members comparable to those in color.
We document names and best examples of topological spatial
relations in Dutch, English, French, Japanese, Korean, Man-
darin Chinese, and Spanish, and find substantial consensus,
both within and across languages, on the best examples of such
spatial categories. Our results provide empirical evidence for
focal best examples in the spatial domain and contribute fur-
ther support for a theory of “natural concepts” in this domain.

Keywords: Language and thought; spatial cognition; cate-
gories; semantic universals.

The central role of foci
For decades, discussions of natural language categories such
as “dog” or “blue” have emphasized prototypes, family re-
semblance, and fuzzy sets—all notions specifying relations
between central cases and boundaries, and recognizing gra-
dation in category membership. An especially well-studied
and debated case is that of focal colors, or best examples
of color categories (e.g. Berlin & Kay, 1969; Heider, 1972;
Kay & McDaniel, 1978; Roberson et al., 2000; Regier et
al., 2005; Abbott et al., 2016). Despite the ongoing debate,
there is broad consensus that such best examples of color cat-
egories often (but not always) align across languages, and
that languages sometimes have composite categories appar-
ently organized around multiple foci—for example a com-
posite green-blue or “grue” category.

Despite the attention given to focal colors, studies of cate-
gorization and semantic typology in many other semantic do-
mains have not emphasized category best examples as promi-
nently, but have instead tended to characterize categories as
sets, such that an exemplar may simply be a member of the
category or not. Within the domain of spatial topological re-
lations, previous work has drawn on extensional patterns in
naming as evidence for central exemplars and core meanings
of categories like “in” and “on” (e.g., Levinson et al., 2003;
Johannes, Wang, Papafragou, & Landau, 2015; Johannes,
Wilson, & Landau, 2016; Landau, Johannes, Skordos, & Pa-
pafragou, 2017), but without directly querying speakers about
best examples per se. Here, we employ empirical best ex-
ample data to provide a long-overdue response to a call by

Feist (2000: 236) to determine whether spatial relational cat-
egories, like colors, have focal members.

In what follows, we review key findings on focal colors
and their relationship to color category semantics. We then
describe parallels to color in the domain of spatial topological
relations, and summarize an account (Levinson et al., 2003)
of focal spatial relations that was developed and evaluated
on the basis of spatial naming data, but without grounding
in empirical best examples. We then present our study, which
reexamines the hypotheses of this previous account using em-
pirical best example data from seven languages. We explore
three related questions about focal category members in the
spatial domain:

1. Is there consensus within languages on focal spatial
relations?

2. Is there consensus across languages on focal spatial
relations?

3. Do spatial categories exhibit composite structure, with
more than one focus per category?

To preview our results, we find initial evidence for universal
tendencies in focal spatial relations, both within and across
languages, based on naming and best example data from
seven languages. We also find evidence for at least three com-
posite spatial categories, where a single lexical category in-
cludes multiple foci. We conclude that focal spatial relations
share some of the distinctive features of foci in the color do-
main.

Focal colors
Berlin and Kay (1969) proposed two key features of focal
colors that we consider in the spatial domain: (1) a set of
universal focal colors (red, green, yellow, blue, white, and
black), and (2) an evolutionary sequence of color categories,
by which languages follow a common hierarchy to succes-
sively partition color space, progressively subdividing the fo-
cal colors into categories. Kay and McDaniel (1978) elab-
orated this proposal, specifying multi-foci composite cate-
gories as shown in Figure 1.1 By this model, the initial two-
term category system represented as the first split in the di-
agram will group WHITE, RED, ORANGE, and YELLOW
into a single “warm” category. Kay and McDaniel argued that

1Kay and McDaniel’s (1978) proposal included two closely-
related hierarchies, only one of which is shown here for illustration.
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large categories like this in the early stages of the hierarchy
are composite, and may be focused at any of their constituent
foci. Accordingly, this “warm” category could be focused at
WHITE, YELLOW, or RED but not ORANGE, as it is not
one of the proposed universal color foci. Similarly, “grue”
terms composed of GREEN and BLUE (the latter inclusive
of PURPLE) could be focused at either of the two constituent
foci, GREEN or BLUE.

WHITE	 RED	 GREEN	ORANGE	 YELLOW	 BLUE	 BLACK	PURPLE	

Figure 1: Kay and McDaniel’s (1978) proposed evolutionary
hierarchy of color terms.

Focal spatial relations?
In our analysis of spatial category best examples, we ex-
plore analogs to two distinctive focal color phenomena: cross-
language agreement on specific focal colors, and the com-
posite nature of categories spanning multiple foci. To do so,
we draw on a proposal for spatial topological concepts by
Levinson and colleagues (2003) that parallels much of Kay
and McDaniel’s (1978) characterization of color. Levinson
et al. (2003) proposed an implicational hierarchy of spatial
“natural concepts” (or notional clusters of related meanings)
modeled on Kay and McDaniel’s (1978) color hierarchy and
based on a study of spatial semantics in a set of nine diverse
languages. In their proposal, Levinson et al. suggest that spa-
tial topological categories, as in color, tend to undergo succes-
sive subdivisions in which distinct focal senses of composite
categories “split into primary (single-focus) categories over
time” (Levinson et al., 2003: 512), as shown in Figure 2.2

The present study
To our knowledge, ours is the first study to document empir-
ical best examples in the spatial topological domain. We ask
whether speakers of seven languages (1) agree on best exam-
ples for common spatial terms in their language, (2) agree on

2We interpret Levinson et al.’s (2003) proposal to include two
related hierarchies, one of which is shown here for illustration, and
both of which are specified in Carstensen and Regier (2013).

Figure 2: Levinson et al.’s (2003) proposed evolutionary hier-
archy of topological spatial concepts, specifying a predicted
order in which spatial categories in language will tend to sub-
divide distinct spatial notions as new terms emerge in the lex-
icon.

focal best examples across languages, and (3) demonstrate
composite categories subject to successive differentiation of
focal notions in keeping with Levinson et al.’s hypothesized
spatial category hierarchy. If so, this finding would provide
empirical evidence for focal best examples in the spatial do-
main that share key aspects with color foci, and contribute
further support for Levinson et al.’s suggested “natural con-
cepts.”

Methods
In order to investigate whether spatial relations have fo-
cal members within and across languages, native speakers
of seven languages (a convenience sample: English, Dutch,
Spanish, French, Mandarin Chinese, Japanese, and Korean)
were asked to name the spatial relation depicted in each of a
set of cards, and then asked to select the best example, good
examples, and all possible examples of the spatial terms they
provided.

Participants The study included native speakers of 7 lan-
guages: 24 English, 29 Spanish, 18 French, 19 Japanese,
13 Dutch, 18 Korean, and 18 Mandarin Chinese speakers.
All participants were native speakers of their respective lan-
guage, and tasks were administered in that language by ex-
perimenters who were also native speakers.

Stimuli Stimuli were the 71 spatial scenes of the Topolog-
ical Relations Picture Series (TRPS) by Bowerman and Ped-
erson (1992). Scenes are line drawings showing an orange
figure object located relative to a black ground object (e.g., a
cup on a table; see Figure 2).

Procedure
Instructions and object labels for each of the TRPS scenes
(e.g. cup, table) were translated from English to the study lan-
guage and then backtranslated to ensure accuracy.
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1. Scene naming. Participants were shown each of the spa-
tial scenes in one of two fixed random orders, and asked
to name the spatial relation in each. Each scene was shown
above a fill-in-the-blank in the participant’s native language
with labels specifying the figure and ground objects, and the
participant filled in the blank to complete a normal, every-
day sentence answering the question “Where is the [figure]?”
For example, the participant may see “The cup the ta-
ble,” and respond ”The cup is on the table.”3 The topological
relation markers (prepositions or short phrases) supplied by
each participant were sanitized by the experimenter, collaps-
ing over responses that differed solely in components without
spatial meaning (e.g., variation in verb tense).

2. Category mapping task. After the naming data was san-
itized to produce a list of unique labels given by the partici-
pant, the experimenter provided an array (from Levinson et
al. (2003) Figure 5) with all stimuli organized for contiguity
in the spatial relations depicted. Participants were then asked,
for each unique spatial category they had named, to first iden-
tify the TRPS scene that is the best example (BE) of that cat-
egory by placing a large coin on the scene in the array, then
to identify all good examples (GEs) of that category (with
smaller coins, e.g. nickels), and finally to identify all exem-
plars (AEs) of that category (by placing small coins on each
exemplar in the array to visually ”map” the category).

Naming data. In total, participants used 55 unique spa-
tial labels in English, 146 in Spanish, 22 in French, 29 in
Japanese, 56 in Dutch, 149 in Korean, and 100 in Mandarin.
We selected a subset of these responses for analysis by tak-
ing the label most frequently applied to each of the 71 TRPS
scenes by speakers of each language (with ties broken ran-
domly). This produced a total of 85 modal categories for fur-
ther analysis (11 for English, 9 for Japanese, 9 for French, 9
for Spanish, 8 for Mandarin, 19 for Korean, and 20 for Dutch;
see listing in Appendix, Table 14).

Analysis and results
1) Is there consensus on focal spatial relations?
To determine whether speakers within each language share
foci for common spatial categories in their language, we mea-
sure how well the speakers’ choices of best examples align
with each other. For each of the 85 spatial categories c, we
created a 71-dimensional vector bc representing the TRPS
stimuli in which we tally the number of times speakers of
that language chose each stimulus as a best example for cat-
egory c. To measure how well speakers align with each other
on the best examples for each category c, we use entropy (H),
a measure of the uncertainty of a distribution:

H(bc) =−
n

∑
i=1

p(bc,i) · log2(p(bc,i)) (1)

3Mandarin speakers filled in two separate blanks at the typical
positions for verbs and prepositions, respectively.

4We render Korean in Hangul to avoid ambiguity across differing
romanization schemes.

where p(bc,i) = bc,i/∑ j bc, j, that is, the proportion of a lan-
guage’s speakers that chose stimulus i as the best example
of category c. Entropy is minimal (0) if all speakers choose
the same best example (i.e., a Dirac distribution), and maxi-
mal (log2(n), here log2(71) = 6.15) if the distribution of best
examples is uniform across all stimuli. Thus, entropy is a
measure of how flat or un-peaked a distribution is. The av-
erage entropy of these empirical best example distributions is
Memp = 0.99 (SD = 0.70), much lower than the entropy of a
uniform distribution—but high enough to indicate variation
in best example choices.

To determine if the amount of alignment within each cat-
egory is greater than might be expected by chance, we mod-
eled chance agreement as a scenario in which each participant
randomly chose a best example from the set of scenes they
had selected in the category mapping task as good or best ex-
amples of the category. Following this approach, we would
expect to see peaks in each simulated best example distribu-
tion resulting from coincidences in random selection, but also
as a result of varying categorization across participants: often
one participant’s good examples of “on” represent a subset of
another participant’s good “on” selections, creating peaked
best example distributions in this simulation even when all
members of a category have an equal probability of being se-
lected as the best example. To model chance entropy values
for each category, we used Monte Carlo simulations to create
pseudo-random distributions of best examples for each of the
85 categories, and compared the empirical entropy of each
category’s best examples (BEs) to the entropy values of the
simulated distributions. To create the simulated BE distribu-
tion for each category, we simulated each speaker choosing
at random one of their best or good examples for that cat-
egory. Thus, each simulated best example distribution bc,sim
was comparable to the original in having the same number of
votes as the empirical distribution, but chosen at random from
each speaker’s best and good examples.5 For each of the 85
categories, 2,000 simulated best example distributions were
created, and the entropy of each was calculated. We then mea-
sured where in this distribution of simulated entropies the em-
pirical category’s entropy fell. If speakers of each language
agree substantively with each other (within languages) on the
best examples for each category, then the entropy of the em-
pirical best example distribution should be smaller than the
entropies of more than 95% of the resampled distributions.
Indeed, this was true for 76 of the 85 categories.6

Across all 85 categories, the entropy of the empirical best
examples (Memp = 0.99) is significantly lower than the mean
entropy of 2000 example vectors randomly-sampled from
participants’ naming data for each category (Msim = 1.81;
paired t(83) = 13.78, p < .001). That is, empirical best ex-
amples of each category are significantly more peaked than
they would be if chosen at random from all good and best

5This procedure was also performed using speakers’ naming data
instead, with very similar results.

6The 9 exceptions: SP ‘cuelga,’ FR ‘dessus,’ JP ‘ni,’ KO ‘나,’ and
‘달려,’ NL ‘om,’ ‘hangen aan,’ ‘zitten om,’ and ‘zitten aan.’
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examples selected by speakers as part of that category. Fig-
ure 3 shows the entropy of the empirical best example distri-
bution for each of the 85 modal categories plotted against the
mean of the 2,000 resampled entropies for each. Overall, the
empirical best examples were more aligned than expected by
chance in a majority of the categories, showing that speakers
of a given language largely agree on focal spatial relations.
We now turn to whether this alignment on spatial foci is also
seen cross-linguistically.
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Figure 3: Consistency of best example choices across speak-
ers for each category. Empirical entropy of the best example
distributions of 85 spatial categories in 7 languages vs. the
mean entropies of 2,000 randomly-chosen best example dis-
tributions created from each participant’s chosen good and
best examples of a category. The empirical best example dis-
tributions showed more alignment (lower entropy) than the
resampled distributions for 80 of the 85 categories.

2) Does this consensus on focal spatial relations
extend across languages?
We now investigate if there is consistency in the stimuli that
get selected as best examples by speakers of different lan-
guages. In other words, we ask whether different languages
align their best example choices on the same stimuli. To do
so, we first tallied each language’s best example distribution
for the modal categories over all 71 TRPS stimuli, adding the
bc vectors for each language L into a single summed BE count
vector per language, bL. These summed BE counts, bL, were
then normalized p(bL,i) = bL,i/∑ j bL, j, meaning cell p(bL,i)
is the probability that stimulus i was selected as a best ex-
ample for any of the modal categories of language L. The
language-specific best example distributions p(bL) were then
averaged together (with equal weight to each language) to ob-

tain a cross-language BE distribution.
Figure 4 shows normalized best example distributions per

language, as well as the cross-linguistic average (“all lan-
guages”). To determine how aligned the best examples are
across languages, we compare the entropy of the cross-
language distribution (3.70) to the distribution of entropies
from a Monte Carlo simulation. For each language’s summed
BE distribution p(bL), the probabilities across stimuli were
randomly permuted (swapping cells to preserve the overall
structure of the distribution), and then the resulting normal-
ized cross-language distribution was calculated (as above) on
the permuted summed distributions for each language. The
entropy of this pseudo-random cross-language BE distribu-
tion was found, and this procedure was repeated 10,000 times
to generate a set of permuted entropies. The resulting distribu-
tion is shown in Figure 5. The empirical distribution’s entropy
(3.7, shown in red) was lower than all 10,000 entropies of the
permuted distributions, which had a mean of (M = 3.81).

An additional, possibly more conservative, Monte Carlo
simulation was also carried out. As before, the counts across
stimuli for each language were randomly permuted, but this
time only shuffling between stimuli that were selected by at
least one speaker of the relevant language as a best example.
Only permuting non-zero slots may increase the likelihood
of chance alignment, depending on the number of such slots
and their pre-existing cross-linguistic alignment. However,
the empirical distribution’s entropy was again lower than all
10,000 entropies of the randomly-permuted non-zero distri-
butions, which had a mean of 3.82. These results confirm
quantitatively that speakers of these seven languages share
some consensus on foci for spatial relations, as is suggested
qualitatively by inspection of Figure 4, where we have high-
lighted nine spatial scenes that were selected as best examples
by a large proportion of participants across languages.

3) Do spatial categories exhibit composite structure,
with more than one focus per category?
Finally, we consider three cases of composite spatial cate-
gories, analogous to “grue” in color, in which a single lex-
ical category includes multiple foci. For this, we examine
OVER/ON categories, at the third stage of the hierarchy in
Figure 2. Levinson et al. (2003) propose that categories in-
clusive of OVER and ON senses are composites of four spa-
tial foci: OVER, ON, ON-TOP (“location above eye-level”),
and ATTACHMENT. In keeping with parallel work on color,
Levinson et al. suggest that composite categories may or may
not be focused at all of their constituent foci, so clustering
of best example choices at OVER, ON, ON-TOP, ATTACH-
MENT, or any combination of these senses is consistent with
this view. Alternatively, many classic models of central ten-
dencies (e.g., mean, mode, prototype) would predict a single
central focus. To the extent that the OVER, ON, ON-TOP, and
ATTACHMENT senses are distinct from each other, a single-
focus view suggests that a lexical category would be focused
at only one of these four senses.

We will examine the best example distributions for three
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median + 1.5sd 
15 = fence around house 

30 = arrow through apple


31 = cat under table

38 = boy next to fire 


49 = tree in front of church 

58 = ladder against wall 

64 = boy behind chair 15 31 32 36 38 49 51 54 58 59 64 71 >4langs

med + sd and in all 7langs 
15 = fence around house 


31 = cat under table

32 = fish in bowl


38 = boy next to fire 

49 = tree in front of church 


54 = rabbit in cage

59 = pencil on desk


64 = boy behind chair

71 = dog in kennel

15

Figure 4: Focal spatial relations. Heatmap of the proportion of participants choosing each TRPS stimulus as a best example for
the modal spatial categories in each language. The nine stimuli at the top are those that were selected as best examples in all
seven languages, and selected by a large proportion of participants in all languages (best example frequency was greater than
1SD above the median for best examples in the “all language” average).

Figure 5: The entropy of the empirical cross-linguistic BE
distribution was less than the entropy of all 10,000 randomly-
permuted (by language) BE distributions (p(bL)), whether all
cells of p(bL) are permuted (shown) or only non-zero cells.

composite categories spanning these four predicted foci for
evidence of composite (bi- or multi-modal) foci. To do so,
we compare the best examples of OVER/ON composite cate-
gories in Mandarin, Korean, and Japanese to two smaller cate-
gories that represent the next stage of subdivision in Levinson
et al.’s spatial hierarchy—OVER and ON (the latter inclusive
of ON-TOP and ATTACHMENT)—using the closest corre-
sponding modal categories in English, Spanish, French, and
Dutch. If the composite categories in Mandarin, Korean, and
Japanese have composite foci, we would expect their focus
distributions to resemble combinations of the focus distribu-
tions for ON and OVER in languages that distinguish these
senses (i.e., English, Spanish, French, and Dutch).

In this analysis, we measure the similarity of normalized
BE distributions of individual spatial categories (p(bc)) from
different languages. Following the color literature, the sim-

ilarity of two distributions will be measured using Jensen-
Shannon Divergence (JSD), a finite-valued, symmetric mea-
sure of the difference between two probability distributions.
JSD is minimal, 0, when the two distributions are identical
and has a maximum of 1 in our comparisons.

The three composite categories we consider are Man-
darin “shang4,” Korean “위에,” and Japanese “ue ni.” Shown
in Figure 6, the foci of these three categories closely cor-
respond to each other (M-K JSD=.23; M-J JSD=.30; K-
J JSD=.27). Mandarin’s “shang4” corresponds well to the
combined (averaged) category foci of two categories in the
four other languages: English “above” and “on” (JSD=.35),
Spanish “arriba” and “sobre” (JSD=.21), French “dessus”
and “sur” (JSD=.21), and Dutch “hangen boven” and “op”
(JSD=.46). Like “shang4”, Korean “위에” corresponds sim-
ilarly well to the same combined foci: English “above” and
“on” (JSD=.21), Spanish “arriba” and “sobre” (JSD=.15),
French “dessus” and “sur” (JSD=.11), and Dutch “hangen
boven” and “op” (JSD=.35). Similarly, Japanese “ue ni”
matches the averaged BE distribution of English “above” and
“on” (JSD=.41), Spanish “arriba” and “sobre” (JSD=.32),
French “dessus” and “sur” (JSD=.29), and Dutch “hangen
boven” and “op” (JSD=.44) Importantly, these OVER-ON
category pairs all have foci distributions that are more distant
from each other: above-on JSD=1.0, arriba-sobre JSD=.50,
dessus-sur JSD=.92, hangen boven-op JSD=1.0.7 As shown
in Figure 6, this suggests the existence of composite spatial
categories with multiple distinct foci, analogous to “grue”
cases in the color domain.

7The mean JSD of any category’s foci to the average of any two
other categories’ foci is .91 (median=1), and the mean JSD of any
two single categories’ foci is 0.97 (median=1).
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above: 13, 36 
on: 1, 34, 40, 59 

Figure 6: Cross-linguistic comparison of three expected composite categories: the best examples of Mandarin (MA) “shang4,”
Korean (KO) “위에,” and Japanese (JP) “ue ni” span the best examples of separate OVER and ON categories in other languages
(e.g., English (EN) “above” and “on”). The six scenes depict foci speakers align on, with red lines indicating OVER foci
and blue lines indicating ON-TOP (man on house) and ON foci. Purple heatmap color coding indicates terms with composite
extensions, red indicates OVER terms, and blue indicates ON terms.

Discussion
This study used empirical best example data from seven
languages to explore whether spatial topological categories
have focal members comparable to those in color. We doc-
umented names and best examples of topological spatial re-
lations in Dutch, English, French, Japanese, Korean, Man-
darin Chinese, and Spanish. To our knowledge, this is the first
study to directly acquire and analyze best examples of spatial
relations—although others e.g., Landau, Johannes, Skordos,
and Papafragou (2017) have investigated related notions such
as “core” spatial concepts.

In the first analysis, we considered whether there was con-
sensus within languages on the best examples of spatial re-
lations. Indeed, for the majority of categories speakers were
significantly more aligned in their choice of best example
than would be expected by chance (i.e., if they had drawn best
examples merely from their chosen good or best examples).
This demonstrates that within each of these seven languages,
speakers tend to agree on focal spatial relations.

Our second analysis examined whether this consensus on
focal spatial relations extended across languages. We found
that the empirical cross-language distribution of best exam-
ples was significantly more aligned than would be expected
by chance, confirming that speakers of these languages share
some consensus on foci for spatial relations.

Finally, we investigated whether spatial categories re-
flect composite structure, with focal distributions organized
around multiple distinct senses. For this, we examined the
best examples of Mandarin “shang4,” Korean “위에,” and
Japanese “ue ni,” broad categories that encompass multiple

predicted foci. We found evidence suggesting that these cate-
gories are indeed semantic composites, focused at multiple
senses: the best examples of these large categories resem-
bled combinations of best examples from distinct (and uncor-
related) categories, such as English “above” and “on.” This
finding supports a previous account of spatial topological se-
mantics and may provide evidence for composite categories
in the spatial domain comparable to “grue” in color.

However, there are grounds for caution in the interpreta-
tion of these findings. The classic composite category within
the color domain, “grue,” is evidenced by a focal distribu-
tion with both blue and green best examples, but where in-
termediate colors are not selected as best examples, mak-
ing for two distinct peaks in the focal distribution. While the
“above” and “on” foci selected as best examples of Mandarin
“shang4,” Korean “위에,” and Japanese “ue ni,” correspond
to distinct attractors or “notional clusters” in Levinson et al.’s
(2003) proposal, it is possible that “intermediate” spatial no-
tions would also be selected as focal, making for a single focal
peak that is inclusive of both “above” and “on” senses. Fu-
ture work should examine possible composite categories with
clear intermediate cases between the predicted foci to deter-
mine whether these senses are indeed distinct, exhibiting the
double-peak structure seen in some “grue” cases.

This study offers empirical evidence for universal tenden-
cies in spatial relations based on naming and best example
data. Our findings provide evidence for focal best examples
in the spatial domain and contribute further support for a the-
ory of “natural concepts” in this domain.
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Appendix: Modal categories in spatial naming

Language Most Frequent Spatial Terms (N)
English in (24), on (24), around (23),

behind (23), under (23), next to (19),
inside (18), above (17), through (16),
against (14), in front (14)

Japanese naka ni (19), shita ni (19), ue ni (19),
mawari ni (16), yoko ni (16), ni (13),
ni tsuite (13), mae ni (8), ushiro ni (7)

French au (18), autour (18), cote (18), dans (18),
dessus (18), sur (18), derriere (17),
sous (17), devant (13)

Spanish alrededor (28), adentro (26), sobre (25)
en (24), arriba (22), al lado (21),
debajo (21), detras (14), cuelga (11)

Mandarin shang4 (17), li3 (16), xia4 (15), wai4 (13), gua4
shang4 (13), pang2 (10), hou4 (8), qian2 (4)

Korean 안에 (17),옆에 (16),위에 (16),밑에 (14),
달려 (12),감싸고 (10),묶여 (9),앞에 (9),
뒤에 (8),물려 (8),둘러싸고 (7),
막고 (7),덮고 (6),나 (4),신겨 (4),
기대어 (3),깔려 (1),껴 (1),널려 (1)

Dutch onder (13), op (13), aan (12), in (12),
om (12), door (11), hangen aan (9)
liggen op (9), staan op (9), hangen boven (8),
staan tegen (8), liggen onder (7),
zitten achter (7), zitten in (7),
zitten op (7), staan voor (6), zitten om (6),
zitten onder (6), zitten aan (5), zitten nast (5)

Table 1: The 85 modal spatial categories used in the analy-
sis, organized by language. Numbers indicate how many par-
ticipants produced each category label (e.g., all 24 English
speakers produced “in”).

203



The shape of language experience in two traditional communities
Marisa Casillas

Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands

Abstract

This study sketches the language environments of children ages 0;03;0 growing up in two traditional, indigenous com-
munities: one Tseltal (Mayan) and the other Yl (Papuan). Past ethnographic work has suggested that caregivers’ ideas
about talking to young children differ greatly between these two communities. However, the present daylong recording
analyses suggest that, in fact, children are rarely directly addressed in both places, with no age-related increase and with
most child-directed speech coming from adults. Children’s manual activities also suggest that child-carrying practices
and cultural context moderate the extent to which children might use co-occurrence between held objects and ambient
language to learn words.

204



The Role of Basal Ganglia Reinforcement Learning in Lexical Priming and
Automatic Semantic Ambiguity Resolution

Jose M. Ceballos, Andrea Stocco, Chantel S. Prat
{josemceb, stocco, csprat}@uw.edu

Department of Psychology and
Institute for Learning & Brain Sciences,

University of Washington
119A Guthrie Hall, Seattle, WA 98195 USA

Abstract

The current study aimed to elucidate the contributions of the
subcortical basal ganglia to human language by adopting the
view that these structures engage in a basic neurocomputation
that may account for its involvement across a wide range of lin-
guistic phenomena. Specifically, we tested the hypothesis that
basal ganglia reinforcement learning mechanisms may account
for variability in semantic selection processes necessary for
ambiguity resolution. To test this, we used a biased homograph
lexical ambiguity priming task that allowed us to measure au-
tomatic processes for resolving ambiguity towards high fre-
quency word meanings. Individual differences in task perfor-
mance were then related to indices of basal ganglia function-
ing and reinforcement learning, which were used to group sub-
jects by learning style: primarily from choosing positive feed-
back (Choosers), primarily from avoiding negative feedback
(Avoiders), and balanced participants who learned equally well
from both (Balanced). The pattern of results suggests that bal-
anced individuals, whom learn from both positive and negative
reward equally well, had significantly lower access to the sub-
ordinate homograph word meaning. Choosers and Avoiders,
on the other hand, had higher access to the subordinate word
meaning even after a long delay between prime and target. Ex-
perimental findings were then tested using an ACT-R compu-
tational model of reinforcement learning that learns from both
positive and negative feedback. Results from the computa-
tional model confirm and extend the pattern of behavioral find-
ings, and provide a reinforcement learning account of lexical
priming processes in human linguistic abilities, where a dual-
path reinforcement learning system is necessary for precisely
mapping out word co-occurrence probabilities.
Keywords: language; semantics; lexical selection; ambigu-
ity resolution; priming; reinforcement learning; basal ganglia;
dopamine; cognitive modeling; ACT-R

Introduction
The field of the neurobiology of language has traditionally
focused on the contributions of cortical structures to linguis-
tic processes (Tremblay & Dick, 2016). However, research
from different sub-fields suggests that the subcortical basal
ganglia are an essential part of the neurobiological bases of
human linguistic abilities (Crosson, 1985; Booth, Wood, Lu,
Houk, & Bitan, 2007; Seo, Stocco, & Prat, 2018). To date,
no existing account of the neurobiology of language is able
to systematically explain what the role of these subcortical
structures is across the many levels of linguistic processing.
Thus, in its current stage, the field suffers from a limited un-
derstanding of the neural processes that give rise to language.
A detailed whole-brain understanding of this human ability
is key to inform robust models of language neurobiology and
also to advance our understanding of language disabilities for

translational purposes. In an effort to contribute to a whole-
brain model of language functioning, this work focuses on
understanding the role of the basal ganglia in language.

Given that the basal ganglia are some of the most neurobi-
ologically ancient structures (Lieberman, 2001), it is reason-
able to assume that their role in human linguistic abilities is
analogous to the more general motor or cognitive functions
observed in other species. Indeed, many prominent theories
and models of basal ganglia functioning stem from observa-
tions of motor control (Mink, 1996) and extend these func-
tions to non-motor and abstract cognitive processes spanning
from cognitive control (Graybiel, 1995; Stocco, Lebiere, &
Anderson, 2010) to working memory capacity (Hazy, Frank,
& O’Reilly, 2007). Thus, the current research aims to un-
derstand basal ganglia contributions to language in the con-
text of the already well-understood and well-established the-
ories of selection and reinforcement learning (RL). To test the
hypothesis space of basal ganglia selection processes in lan-
guage, we turned to semantic processing as a model system
for competition between multiple viable alternatives. Specifi-
cally, this work is grounded on models of models of semantic
activation spreading (Collins & Loftus, 1975).

Semantic ambiguity (also referred to as lexical ambigu-
ity) occurs when a word refers to multiple different concepts
(Vitello & Rodd, 2015). For example, the word “hot” can
refer either to temperature or to food spiciness. Cases of se-
mantic ambiguity may arise in conversational settings, and
are also more commonly encountered in written form such
as news headlines, puns, poetry, and novels. The ability to
properly disambiguate an input into the contextually appro-
priate represented meaning is key for listening and reading
comprehension. More importantly, this process provides de-
tails on a fundamental neurocognitive mechanisms, such as
the contextual integration of information, statistical learning,
inhibition, and selection processes used to manage simulta-
neous and competing neural representations that are at odds
with the task goal of accurate transfer of information in com-
municative settings.

Semantic ambiguity can arise in a variety of different ways.
The first class of ambiguity arises from words that have differ-
ent unrelated meanings. For example, “bark” can refer to the
sound a dog makes, or the outermost layer of a tree. In this
case, both meanings of “bark” constitute a true homonym,
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but are also homographs and homophones (same spelling,
and same sound, respectively). Furthermore, words can be
encountered in contexts where only the written form is am-
biguous (e.g., the homographs for “lead”), or only the spo-
ken form is ambiguous (e.g., the homophones for “be/bee” or
“seam/seem”).

The cognitive mechanisms supporting the resolution of se-
mantic ambiguities are best understood by exploring theo-
ries on the dynamics of semantic information and its repre-
sentation. When a listener or reader first encounters a word
with multiple meanings, all meanings are quickly activated
and available in parallel. This refers to the automatic com-
ponent in semantic processing. Furthermore, if encountered
in isolation or in a highly ambiguous context, an ambigu-
ous word will be automatically disambiguated towards the
highest frequency meaning, reflecting another series of au-
tomatic selection processes. However, if an ambiguous word
is encountered following a strong biasing context towards one
specific meaning, only the contextually-relevant word mean-
ing is available. This suggests that when ambiguous words
are encountered, all meanings are initially activated, but this
activation is modulated by multiple factors such as sentence
context and meaning frequency.

While most research focused on understanding the neural
mechanisms supporting lexico-semantic processing and am-
biguity resolution has focused on cortical structures such as
the left inferior frontal gyrus (for a review, see Vitello &
Rodd, 2015), there is evidence suggesting a key involvement
of subcortical structures in this process (e.g., Ketteler, Kas-
trau, Vohn, & Huber, 2008; Mason & Just, 2007). For ex-
ample, a lexical priming investigation found that monolin-
gual individuals experience abnormalities in the neurocogni-
tive dynamics that shape lexical priming (Copland, Chenery,
& Murdoch, 2001). Specifically, healthy participants show no
traces of subordinate word activation following a long delay
between prime and target, and thus reflect automatic seman-
tic ambiguity resolution towards the dominant or highest fre-
quency meaning. Parkinson’s Disease (PD) patients, whom
have decreased dopaminergic functioning resulting in a gen-
eral hyperactivity of the basal ganglia indirect pathway, on
the other hand, exhibit a longer-term activation of the multi-
ple competing representations.

Although findings such as these have been traditionally
framed under a selection and inhibition framework, we ex-
plore the hypothesis that the signature role of basal ganglia
in RL may more accurately explain its role in semantic pro-
cessing. In other words, the basal ganglia may be involved in
statistical learning and predictive processing during language
comprehension. Critical for the current investigation, the ac-
tivity of the basal ganglia is often modeled as reflecting Tem-
poral Difference (TD) learning. As it happens, TD-learning
does not accurately reflect the computations of the basal gan-
glia, which are the result of the opposite contributions of two
conflicting pathways. Their contribution have been modeled
as the sum of competing RL systems (Frank, Seeberger, &

O’reilly, 2004; Stocco, 2018). Individuals vary in the learning
rates of the two pathways as a function of biological parame-
ters (such as density of dopamine receptors: Frank, Moustafa,
Haughey, Curran, & Hutchison, 2007) and external factors
(administration of dopamine: Frank et al., 2004), and indi-
vidual differences in the preponderance of each pathway can
be indirectly measured through the PSS task (Frank et al.,
2004; Stocco et al., 2017). Thus, the current investigation
tests the hypothesis that individual differences in PSS task
behavioral indices of basal ganglia pathways will be related
to performance in a lexical prime style task. Furthermore,
we make the prediction that a balance in functioning across
both pathways is critical for optimal semantic processing and
ambiguity resolution.

Methods
Participants

Informed consent was obtained from participants prior to the
experiment, as outlined by the University of Washington In-
stitutional Review Board. Participants were recruited using
the Psychology Departments Participant Research Pool and
all participants were compensated with course credit for their
participation. Data were collected from 140 healthy monolin-
gual participants (66 females, mean age = 19.4 years). Seven
subjects were excluded from analyses due to low accuracy
(≤0.50) in the primary experimental task, the Word-Pair Task
(WPT).

Tasks

All participants completed the following tasks in four pseudo-
randomized orders to control for possible fatigue effects in-
duced by the WPT and PSS task length.

Word-Pair Task Measures of lexical priming were col-
lected using the WPT. This task was designed to measure
the availability of dominant and subordinate word meanings
following the presentation of primes with multiple meanings.
The primes used shared both phonetic and orthographic forms
across both word meanings, making them true homographs
(e.g., “Bat”). The prime and target words were presented in
the center of the screen, one at a time, separated by an inter-
stimulus interval (ISI) of either 150 ms (short) or 850 ms
(long). Prior to starting the task, participants were asked to
place their right index finger on the “P” key of the keyboard,
and their left index finger on the “Q” key of the keyboard.
Participants were then asked to respond with a button press
if the target word was related or unrelated to the prime. Key
mappings for related and unrelated were counterbalanced.

There were two conditions of interest (1 and 2) and two
control conditions (3 and 4): (1) homograph prime / dom-
inant target, (2) homograph prime / subordinate target, (3)
prime / related target, and (4) prime / unrelated target. These
four conditions will be referred to as dominant, subordinate,
related, and unrelated (respectively) form here on for simplic-
ity purposes. Participants completed 100 total prime-target
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pair trials, where 20 belonged to condition 1, 20 to condi-
tion 2, 30 to condition 3, and 30 to condition 4. Word fre-
quency meanings were obtained from (Twilley, Dixon, Tay-
lor, & Clark, 1994), and subordinate words were defined as
having a relatedness frequency of less than 0.3 in a 0-1 scale,
while dominant words had a relatedness frequency of greater
than 0.7. Since each homograph prime is associated with two
meanings, but each prime was presented once for each par-
ticipant, two WPT versions were created. In one version, the
dominant meaning of a homograph was used (e.g., version A
contained “Bank” / “Money”) while the other version used
the subordinate meaning (e.g., version B contained “Bank” /
“River”). The two lists were counter-balanced for word fre-
quency, word length, and syllable length.
Probabilistic Stimulus Selection Task The PSS task is
an iterative, two-alternative, forced-choice decision-making
paradigm first introduced by Frank et al. (2007). In this task,
participants are repeatedly asked to select one of two stim-
uli presented on the screen. Participants are also told that
some of their choices would result in success, and some of
them would result in failure, depending on which stimulus
they choose. Feedback on the outcome of their decision is
presented immediately after participants select a stimulus.
To encourage participants to avoid explicit strategies (such
as rote memorization of each stimulus history of successes),
stimuli are implemented as complex shapes that are diffi-
cult to verbalize, typically Hiragana characters presented to
non-Japanese speaking participants. Unbeknownst to partic-
ipants, each stimulus has a predefined “success” probability.
Six stimuli in total are used in the experiment, with success
probabilities varying linearly from 80% to 20%. In the first
phase, the stimuli are divided into fixed pairs, with the high-
est probability stimulus always paired with lowest probability
one, then second higher stimulus paired with the second low-
est one, and the third highest probability stimulus paired with
the third lowest one.

Two values are calculated from the test phase of the PSS
task: Choose accuracy, which represents the accuracy in
choosing the most rewarding stimulus over others; and Avoid
accuracy, that is, the proportion of times in which participants
avoid the least rewarding stimulus. If we indicate the six stim-
uli with the letters A,B . . .F , with A being the most reward-
ing stimulus and B the least rewarding one, then Choose and
Avoid accuracies are calculated as the probability of choosing
A when paired against C, D, E, and F , and the probability of
choosing C, D, E, or F when they are paired with B, respec-
tively.

Previous patients and genetic studies have demonstrated a
functional connection between these two measures and the
basal ganglia pathways. For example, Parkinson’s patients,
whose indirect pathway dominates over the direct one due to
a loss of dopaminergic inputs from the substantia nigra pars
compacta (SNc), have higher Avoid accuracy than Choose ac-
curacy. Furthermore, this pattern is reversed when drugs are
administered that overcompensate the direct pathway activ-

ity. Additionally, individuals with genetic alleles that cause a
greater production of dopamine receptors in the direct path-
way tend to be Choosers rather than Avoiders; conversely,
individuals whose alleles cause greater number of dopamine
receptors in the indirect pathway tend to be Avoiders (Frank
et al., 2007; Frank & Hutchison, 2009).

Analyses

Behavioral Data Cleaning Target words in the WPT were
cleaned on a by-participant basis for RT outliers, defined as
trial RTs greater than or lower than three standard deviations
from the mean.

Participant Groups Participant groups were created us-
ing PSS Choose and Avoid scores. Since one of the guid-
ing assumptions of this investigation was that one’s ability to
learn from both positive and negative feedback, groups were
created using a relative score where Avoid was subtracted
from Choose, which resulted in scores between 100 and -100.
Third-group splits were then used to separate individuals into
participant groups. Thus, high values (approximately 33 to
100) reflected participants who learned primarily from posi-
tive feedback (Choosers), low values (approximately -100 to
-33) reflected participants who learned primarily from nega-
tive feedback (Avoiders), and values around zero (-33 to 33)
reflected individuals who learned equally as well from pos-
itive and negative feedback (Balanced). This resulted in 44
Choosers, 38 Avoiders, and 52 Balanced participants.

Analysis with Linear Mixed Effects Models The data
were analyzed using linear mixed effects (LME) models, as
this method has been previously shown to outperform the tra-
ditional procedures such as ANOVA (Kristensen & Hansen,
2004), and can adequately handle imbalances in group sizes.
However, for validation purposes, the same results were re-
produced using ANOVA (although not reported herein). LME
models were specified using the R lme4 package (Bates,
Mächler, Bolker, & Walker, 2015). The model was specified
using the following formula:

Target Accuracy ∼ ISI × Condition × PSS Group
+ (1 + Condition | Participant)

where the dependent variable is Target Word accuracy, the
fixed-effects term is the factors for ISI (short or long)× Con-
dition (dominant or subordinate) × PSS Group (Choosers,
Balanced, or Avoiders), and the random effects term allows
for each participant to have a different slope (or effect) for
Condition, while intercepts and slopes for each participant by
Condition are allowed to be correlated (e.g., higher intercepts
may also have steeper slopes). Finally, a type III ANOVA
with Satterthwaite’s method was used to test for significance
between the factors of interest in the LME model.

Computational Model

A theoretical model was implemented to examine predictions
on the relationship between reward learning and lexical re-
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trieval1. The model was developed in the ACT-R cognitive ar-
chitecture (Anderson, Fincham, Qin, & Stocco, 2008; Ander-
son et al., 2004), a general theory of cognition that enables the
development of complete models capable of end-to-end sim-
ulations of a complete task while maintaining a high degree
of psychological plausibility. The model described herein is
based on a previously published model of the role of the basal
ganglia in the PSS task (Stocco, 2018). According to this
model, the conflict between the two pathways can be simu-
lated in ACT-R as a conflict between the selection of oppo-
site and symmetric productions, that is, state-action pairs that
implement minimal cognitive steps. Productions represent-
ing the direct pathway implements “Go” actions, while those
representing the indirect pathway represent opposite “No Go”
actions. For example, the choice between two options in the
PSS task, A and B, can be represented as the competition be-
tween two alternative pairs of productions, “Choose A” and
“Avoid A” and “Choose B” and “Avoid A”. In ACT-R, the
competition between productions is resolved through a soft-
max algorithm that preferentially selects the actions with the
highest estimated utility, a scalar quantity that depends on the
history of previous successful uses of the production and is
learned through a reinforcement-learning algorithm. Impor-
tantly, Stocco, 2018 noticed that both individual differences
due to differential expressions of dopamine genes (Frank et
al., 2007) and the effects of basal ganglia pathologies (Frank
et al., 2004) can be successfully captured by differentially al-
tering the learning rates of “Choose” and “Avoid” produc-
tions. The different learning rates will be indicated as αC and
αA, respectively.

An ambiguity resolution experiment can also be under-
stood as as a two-alternative forced choice (2AFC) task in the
context of lexical retrieval. In essence, two homographs are
competing for access to semantic retrieval. Consequently, for
each choice, two competing selections are performed. Thus,
if the two homographs are a dominant and a subordinate in-
terpretation of the same written word, each of them will have
two production rules associated with them, “Choose Domi-
nant” and “Avoid Dominant”, and “Choose Subordinate” and
“Avoid Subordinate”.

Contrary to traditional 2AFCs, in lexical access the two
options are not equivalent in terms of response times. Selec-
tion of the dominant meaning is usually associated with much
shorter retrieval times than selection of the non-dominant
meaning. In our model, this was captured by forcing those
production rules that select the subordinate meaning (“Avoid
Dominant” and “Choose Subordinate”) to have a longer ex-
ecution time. As a consequence, under short ISI, the subor-
dinate meaning is never successfully selected. Under longer
ISIs, however, participants do have a chance to select these
meanings, so that the eventual firing of productions that se-
lect the subordinate interpretation could result in the success-
ful retrieval of the least common meaning of the homograph.

1Code for the model is available on our laboratory’s GitHub
repository: htt p : //github.com/UWCCDL/BAGELS ACT R

Finally, to derive predictions from the model, we con-
ducted an extensive set of simulations of the utility values
associated to production rules under different reward condi-
tions, corresponding to different situations in which the se-
lection of the dominant or subordinate meaning are correct.
Specifically, we examined a hypothetical situation in which
the dominant meaning is contextually correct 80% of the time
and the subordinate 20% of the time. To simulate the large
amount of experience with the occurrence statistics of differ-
ent lexical items that is associated with adult native speakers,
the model was let to learn the corresponding utility values
until they reached asymptotic values.

Importantly, these simulations of language experience
were conducted under different learning rate parameters. The
parameter values were chosen to reflect the values that were
found to best capture genetic variance of dopamine receptors
in healthy adults in Stocco (2018). Specifically, we simu-
lated three groups of individuals, exhibiting a preference to
learn from positive feedback (αC = 1.5,αA = 1.0), a prefer-
ence to learn from negative feedback (αC = 1.0,αA = 1.5), or
no preference between the two (αC = 1.5,αA = 1.5). These
parameters are associated with different performance profiles
in the PSS task, corresponding to a preference for “Choose
A”, for “Avoid B”, or for a balance between the two (Stocco,
2018).

Results
General Word-Pair Task Results
Mean accuracy for dominant trials (M = 0.90, SD = 0.14) was
significantly higher than for subordinate trials (M = 0.55, SD
= 0.15, t(138) = 22.17, p < 0.0001). Differences in mean RTs
were also observed, faster for dominant trials (M = 832.04,
SD = 194.71) than subordinate trials (M = 996.25, SD =
238.26, t(138) = -13.77, p < 0.0001).

General Probabilistic Stimulus Selection Task
Results
Subjects performed similarly across Choose (M = 69.78, SD
= 22.24) and Avoid (M = 67.99, SD = 22.22) trials. Further-
more, as in previous studies using the PSS Task (Stocco et al.,
2017; Frank et al., 2007; Frank & Hutchison, 2009), Choose
and Avoid trials were not correlated (r(138) = -0.12, p = 0.14).

Linear Mixed Effects Model Results: Relating WPT
Performance and PSS Groups
The LME model predicting Target accuracy had a total ex-
planatory power (conditional R2) of 90.62%, in which the
fixed effects explained 68.43% of the variance (marginal R2).
The model revealed a significant main effect of Condition
(F(1, 131) = 1096.33, p < 0.0001). A significant two way
interaction between Condition × ISI was also observed (F(1,
262) = 6.47, p = 0.012), alongside a significant three-way in-
teraction between Condition × ISI × PSS Group (F(2, 262)
= 3.86, p = 0.022). Marginal two-way interactions were ob-
served for Condition × PSS Group (F(2, 131) = 2.45, p =
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0.087) and also ISI × PSS Group (F(2, 262) = 3.00, p =
0.051). For details, see Figure 1.

A follow-up analysis using the orthogonal contrasts ex-
tracted from the LME model suggest that the three-way in-
teraction between Condition× ISI× PSS Group is explained
by higher accuracy to Target Words during the Subordinate
condition observed in PSS Choosers (difference = 0.083,
t(166.85) = 2.41, p = 0.028) and Avoiders (difference = 0.086,
t(166.95) = 2.60, p = 0.017), relative to the Balanced group,
during the long ISI.

Figure 1: Top: Accuracy Dominant and Subordinate condi-
tions for the short ISI. Bottom: Accuracy for Dominant and
Subordinate conditions for the long ISI.

PSS Groups & Reading Experience Control
Measure
The Author Recognition Test (Stanovich & West, 1989) score
differences computed in order to ensure that differences in
sensitivity to the subordinate word meaning observed was not
driven by reading experience. There were no differences be-
tween Choosers and Balanced participants (t(94) = -0.44, p =
0.66), nor between Avoiders and Balanced (t(88) = -0.06, p =
0.95) that could account for the effect observed in the LME
model results reported previously.

Computational Model Results
To generate predictions, the model was run for 1,000 times
under the different values of αC and αA associated with

Choosers, Avoiders, or Balanced individuals. The model pre-
dicts that, under short ISI, all three groups should perform
at chance for the subordinate meaning, with no difference in
performance. Under long ISI, however, the model predicts
that Avoiders and Choosers should have greater than chance
performance for the subordinate condition (62% and 63%, re-
spectively), while Balanced individuals should still perform
essentially at chance (55% accuracy). Note that these predic-
tions are parameter-free, and come remarkably close to the
actual results of our experiment. In the model, this asymme-
try in behavior is due to the fact that different initial learning
rates αC and αA result in biased estimates of success when
selecting dominant and subordinate meanings, respectively.
In particular, the model predicts that Choosers would tend
to overestimate the probability of the subordinate meaning,
while Avoiders would tend to underestimate the probability
of the dominant meaning, with both cases resulting in a ten-
dency to favor the selection of the subordinate meaning. Un-
der balanced learning rates, instead, the model correctly esti-
mates the rarity of the subordinate meaning and tends to se-
lect it significantly less often.

Discussion

The current project explored the hypothesis that human lin-
guistic ability, and specifically semantic processing, is depen-
dent on core basal ganglia RL mechanisms. The results pro-
vide evidence for the proposed hypothesis, and more specif-
ically, suggest that individual differences in learning from
positive or negative feedback are predictive of automatic se-
mantic ambiguity resolution in context-free lexical ambiguity
priming paradigm. Specifically, task performance was in line
with behavioral predictions by the computational cognitive
model, which predicted that action-selection in the basal gan-
glia for dominant and subordinate meanings would happen
in line with an individual’s estimate of success for choosing
either meaning. To illustrate this, when a Balanced partic-
ipant reads the word “bank” they co-activate the associated
“money” and “river” meanings. Selection happens in line
with their learned estimate that“river” rarely occurs following
“bank,” and this subordinate meaning is unavailable for the
semantic relatedness judgment, resulting in poor task perfor-
mance (for this condition, only). Thus, the signal generated
by the basal ganglia during semantic selection can be seen as
reflecting an individual’s estimate of that word-meaning co-
occurrence, or in other words, the individual’s representation
of relative frequency of a meaning associated with a lexical
form.

Furthermore, findings from this investigation are compat-
ible with the widely accepted view that prefrontal cortex
(PFC) regions and specifically the left inferior frontal gyrus
(LIFG), are involved in semantic selection processes (Vitello
& Rodd, 2015). While the LIFG may very well be the pri-
mary driver of semantic selection, it is known to make use
of biasing signals to rule out multiple competing represen-
tations (Schnur et al., 2009). This biasing signal is posited
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to stem from the basal ganglia, as research on the functional
and anatomical properties of the PFC-basal ganglia network
has shown that two of the five main cortico-striatal-thalamo-
cortical loops project directly to lateral prefrontal regions,
including dorsolateral PFC and lateral orbitofrontal cortex
(Alexander, Crutcher, & DeLong, 1991). Thus, the basal
ganglia posses the functional, anatomical, and computational
properties necessary to provide biasing signals to LIFG dur-
ing semantic ambiguity resolution.

Interestingly, these results reproduce and extend, by arti-
ficially segmenting a continuum of basal ganglia-mediated
Choose and Avoid learning in a healthy population, find-
ings observed in clinical groups. As mentioned previously
herein, PD patients show abnormal lexical priming effects,
with disrupted automatic semantic ambiguity resolution and
sustained multiple competing representations. Additionally,
literature focusing on the cognitive effects of Huntingtons
Disease (HD) a basal ganglia dysfunction characterized by
hyper-dopaminergic signaling and thus a hyper-active direct
pathway, reveals that HD patients also have an increased sus-
ceptibility to semantic priming (Randolph, 1991). Taken to-
gether, these findings highlight the importance of a competi-
tive dual-path RL system that gives rise to learning from both
positive and negative feedback.

Possible alternative explanations exist for the current set
of experimental results. Many theoretical and computational
models of basal ganglia functioning focus on its role as
“gates” that modulate prefrontal cortex functioning through
selection (or Choose) and inhibition (or Avoid) mechanisms.
Thus, under this framework, we would anticipate to find that
Choosers would manage conflict in multiple competing repre-
sentations by selecting the relevant or dominant word mean-
ing, while Avoiders would inhibit the subordinate meaning.
This is, however, not what is observed in the behavioral re-
sults, where both Choosers and Avoiders show identical per-
formance in the subordinate condition after the long delay.
This pattern of results is most compatible with a RL explana-
tion of statistical learning, where a one-path mechanism (akin
to traditional TD-learning) would over-estimate the utility of
the lower frequency meaning. In other words, it is possible
that Choosers are overly sensitive to low frequency reward
probabilities, while Avoiders are less sensitive to high fre-
quency reward probabilities. This results in a misrepresen-
tation of the relative frequency effect observed between the
dominant and subordinate word meanings.

This proposed role of the basal ganglia in RL through sta-
tistical mapping of the rich and dynamic linguistic environ-
ment, and engaging in live predictive processing may ulti-
mately account for its involvement across multiple language
processing modalities. In fact, a great deal of work exists
that discusses evidence of basal ganglia involvement in lan-
guage through the lens of a pacemaker-like, live, temporal
processing machine that synchronizes internal states with ex-
ternal inputs (Kotz, Schwartze, & Schmidt-Kassow, 2009).
While this research has focused mostly on morphosyntactic

processing, its framework is both compatible with the one
proposed herein and can be extended to multiple processing
domains, including those beyond linguistic processing (e.g.,
non-linguistic cognitive functioning and motor processing).
We consider these exciting areas for future research.
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Abstract 
How infants determine correct word-referent pairings within 
complex environments is not yet fully understood. The 
combination of multiple cues, including gestures, may guide 
learning as part of a communicative exchange between parent 
and child. Gesture use and word learning are interlinked, with 
early child gesture predicting later vocabulary size, and 
parental gesture predicting child gesture. However, the extent 
to which parents alter gesture cues during word learning 
according to referential uncertainty is not known. In this study, 
we manipulated the number of potential referents across 
conditions during a word learning task with 18–24-month-olds, 
and explored how changes in parental gesture use translated 
into infant word learning. We demonstrate that parents alter 
their gesture use according to the presence, but not the degree, 
of referential uncertainty. We further demonstrate that a degree 
of variability in the number of potential referents appears to 
benefit word learning.  

Keywords: word learning; gesture; vocabulary development; 
parent-infant interaction  

Introduction 
Between 18–24 months of age, children’s expressive 
vocabulary rapidly increases from approximately 90 to 320 
words (Fenson et al., 1994). Children learn language in busy 
and variable environments containing multiple possible 
referents, but how they determine what the intended referent 
for a given word is remains under-investigated. Finding the 
correct word-referent pairing is a problem of substantial 
difficulty, as described by the well-known ‘gavagai’ problem 
(Markman, 1989; Quine, 1960), where a second language 
learner cannot know whether an unknown utterance – 
‘gavagai’ – refers to a rabbit present in the scene, the rabbit 
bouncing, the rabbit’s colour, or a range of other potential 
meanings. Infants face the same problem as the second 
language learner, with a further disadvantage – the lack of a 
first language to base their learning upon.  

Recent attention has turned towards examining the 
multiple potential cues present in language learning 
environments that might help children to delineate referents 
of unfamiliar words (Monaghan, 2017). One of the earliest 
sources of information to support word-referent mappings is 
provided before children are able to speak: gestures in parent-
child interactions. Within these interactions, gesture appears 
to be facilitative of word learning. For example, spontaneous 
pointing by the infant during a gaze-following task at 10–11 

months predicted vocabulary growth at 24 months (Brooks & 
Meltzoff, 2008), and Fenson et al. (1994) found an increase 
in infants’ gesture use between 8–16 months correlated with 
word comprehension. Parent and infant gesture use also 
appears to be reciprocal in nature. Rowe, Özçalışkan and 
Goldin-Meadow (2008) observed gesture use in parent-child 
dyads at four-month intervals between the ages of 14–34 
months, then administered a vocabulary test at 42 months. 
They found that child gesture use at 14 months predicted 
vocabulary size at 42 months, and that parent gesture use 
predicted child gesture use at 14 months. Between 22–34 
months, they found that child gesture use (number of gestures 
with or without speech) mirrored parent gesture use. Infant 
gesture therefore appears to predict language development 
and appears to be related to parental gesture use.  

The nature of this relationship seems rooted in the 
informative role of gestures in word learning during active 
communication between parent and child, with gesture 
adding significant value to information exchange.  The use of 
gesture as a response in perspective-taking tasks has 
demonstrated that infants use and adjust their gestures 
according to parent knowledge states. In a similar way to how 
older children (from 3.5-years) adjust their speech responses 
to actively incorporate a communicative partner’s 
perspective (Nadig & Sevidy, 2002; Nilsen & Graham, 
2009), when parents do not have the same information as 
infants, infants are more likely to gesture to support mutual 
understanding (O’Neill, 1996). Gesture thus may play a vital 
role in aiding effective communication when verbal ability is 
still being established. Infant gesture may also serve an 
interrogative function by acting as a signal to gain critical 
information from parents about a specific object (Iverson & 
Goldin-Meadow, 2005; Southgate, van Maanen & Csibra, 
2007). Given that gestures are a vital means through which 
infants interact with and learn about their surrounding 
context, how might this assist children in navigating the 
complex environment surrounding word learning?  

On the other side of this communicative partnership, 
gesture use by caregivers may provide valuable information 
about intended referents during rapid vocabulary 
development. In particular, parental gestures such as pointing 
serve as a useful tool for identifying a referent when learning 
word-referent pairs. Iverson et al. (1999) reported parental 
pointing during 15% of exchanges related to word learning. 
Furthermore, the quality of parental gesture appears to have 
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an effect on word learning. Cartmill et al. (2013) assessed 
parental input quality during parent-child interactions at 14–
18 months by asking adult participants to guess words from 
muted observational videos. This provided a measure of input 
quality by indicating how informative non-verbal and 
gestural communication was in determining word meaning. 
When correlated with child vocabulary at 53 months, children 
whose parents produced higher quality input had higher 
receptive vocabulary. 

Thus, both the frequency and quality of parental gesture are 
related to infant word learning and provide valuable cues that 
enable the child to predict the referents for their growing 
vocabulary. However, it is not yet known how adaptive 
parental gesture is to the information present in the 
environment, or what kind of gestures are most helpful to 
infants under conditions of differing referential uncertainty. 

 In verbal communication, we know that speakers adjust 
their phonology, prosody, word selection, and syntax in 
accordance with the context of communication and the 
listener’s perspective (Bannard, Rosner, & Mathews, 2017; 
Brown-Schmidt & Duff, 2016; Gorman et al., 2013). We also 
know that children can adapt their gesture and speech to 
accommodate the perspective of adults (Bahtiyar & Küntay, 
2009). Parents also adapt their spoken labelling behaviour 
according to infant familiarity with objects (Cleave & Kay-
Raining Bird, 2006; Masur, 1997) and how conventional the 
label is (where conventionality refers to there being a 
culturally agreed referent for a specific word; Luce & 
Callanan, 2010). However, we do not know the extent to 
which parents adjust their gesture use contingently based on 
referential uncertainty during infant word learning.  

In this study, we address this issue, testing whether parents 
would offer a higher number of gestural cues when a target 
item was amongst more, rather than fewer, distractor objects. 
Furthermore, we measured whether the type of gestures that 
occur, and their correspondence with speech, affected 
children’s learning of novel words. Greater referential 
uncertainty, as determined by a higher number of potential 
referents for a novel label, has led to less reliable and slower 
word learning in previous studies (Smith, Smith, & Blythe, 
2011; Trueswell et al., 2013). Consequently, we would 
expect parental gesture to play a stronger role in delineating 
referents when there is a higher degree of referential 
uncertainty. In a word learning task, we manipulated the 
number of potential referents for a novel word between one, 
two, and six referents. We hypothesised that parental gestural 
cues would increase with the frequency of potential referents 
from the one- to the six-referent condition, particularly for 
deictic cues (gestures directing attention to a specific object). 
We predicted the same pattern for the co-occurrence of 
speech with gesture, in particular for speech that used the 
target label. We then examined whether these cues translated 
into infant word learning accuracy by testing infants on their 
knowledge of the novel label. We hypothesised that infants 
of parents who offered more gestural cues would show higher 
word learning accuracy.  

Method 

Participants  
Fifty-three monolingual English infants aged between 18–24 
months-old (M = 20.9 months, SD = 1.7, 25 female) were 
recruited from a database of families who had registered 
interest in study participation at Lancaster University 
Babylab. Infants were from middle-class families 
(determined via parental education level). During training, 
six parent-infant dyads were excluded due to infant fussiness. 
Twenty-seven infants (M = 20.8 months, SD = 1.6, 14 
female) also completed the testing phase, with the remaining 
sample excluded due to infant fussiness (n = 4) or incomplete 
trials (n = 16; less than 5 of 6 test trials). 

Materials 
Nine novel objects were used as referents for the novel words. 
Each novel object was a different colour and shape. Three 
novel words, selected from the NOUN database (Horst & 
Hout, 2016), were used as labels (noop, darg, and terb). 
Three objects were chosen as targets randomly for each 
participant, with all other objects serving as foils, and each 
novel label was randomly paired with each target per 
participant. Stimuli position, target, and condition order 
during training and testing were counterbalanced across 
participants using a Latin square. Parents also completed the 
UK-CDI (Alcock, Meints, & Rowland, 2017), a measure of 
receptive, expressive, and gesture (communicative and 
symbolic) vocabulary. Communicative gestures are 
declarative (deictic and imperative gestures) and symbolic 
gestures form a larger subset of actions with objects, games, 
and pretend play (representative gestures). 

Procedure  
Infants were seated on their parent’s lap and viewed stimuli 
from 70 cm away. Each group of stimuli was presented for 
30 seconds, with a moveable opaque screen shielding objects 
from view in-between trials. Parents were asked to imagine 
they were teaching real words for real objects. Familiarisation 
with the objects took place outside of the experimental room 
with the parent only. The labels and a three-word object 
description were visible to the parent throughout training to 
eliminate the need for parents to remember the novel label 
and paired target. 

Participants began with one warm-up trial, where the 
experimenter placed a ball as a familiar object on a tray and 
instructed the parent to teach the infant the word as if it were 
novel.  The aim was to familiarise parents with the procedure 
without increasing task demands. Parents then proceeded to 
the training phase, where they taught infants novel label-
referent pairs with unfamiliar objects as stimuli. In the one-
referent condition, only the target was presented; in the two-
referent condition, one target and one foil were presented; 
and in the six-referent condition, one target and five foils 
were presented (see Figure 1). Each participant received each 
of the three conditions once.  
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Figure 1: Training trials example. 
 
After completing all three training conditions, participants 

were then administered six testing trials, with each target 
word tested twice (see Figure 2). At the start of each trial, the 
infant was asked by the experimenter “Where is the [target]? 
Can you see the [target]? Point to the [target].” The trial 
ended when the infant made a response or the prompt had 
been repeated twice without a response.  

Coding  
All sessions were video-recorded and then coded for gestures 
and speech with gesture per utterance according to Rowe et 
al.’s (2008) coding scheme. A second coder coded 20% of the 
videos with an overall inter-rater reliability κ = 0.78 for 
gesture (N = 284) and κ = 0.86 for speech with gesture (N = 
160).  

Gesture types were split into three main groups (Rowe et 
al., 2008): representational gestures, indicating properties of 
the target referent such as size, shape, or function; deictic 
gestures, singling out the target referent by pointing with the 
arm and index finger extended or with the arm extended and 
the palm exposed and other gestures, which included all 
gestures not aimed towards the referent (those aimed at foils 
and related to caregiving interactions such as hugging). 

The co-occurrence of speech that indicated properties of 
the target referent (e.g.  size, shape, or function) with gesture 
was coded as supplementary. The co-occurrence of speech 
that singled out the target referent with gesture was coded as 
complementary. The frequency of referent label use was also 
recorded. 

Results 
A series of linear mixed effects models (lmer; lme4 in R, 
v3.4.1, 2017) were used to predict parents’ use of gestures 
during training (gesture subtypes and co-occurring speech 
with gesture subtypes were dependent variables). These 
models were built up progressively with the addition of fixed 
effects of condition and child vocabulary (scores of 
communicative gesture, symbolic gesture and expressive 
subscales of CDI), comparing each model to a null model or 
previous best-fitting model using log-likelihood comparison 
after the addition of each new term (Barr et al., 2013). 
Random effects of subject and infant age were included in 
each analysis.  

 
 

Figure 2: Testing trials example. 
 

Environmental uncertainty effects on parental 
gesture use  
The linear mixed effects models demonstrated a significant 
effect of condition on overall gesture count (χ2(2) = 11.73, p 
= .003). Consistent with our hypothesis, parents gave more 
gestural cues when they were faced with a higher number of 
potential referents (see Figure 3), with a significant difference 
between one- and two-referent conditions (t(94) = 2.12, p = 
.037), and one- and six-referent conditions (t(94)=3.51, p = 
.001), but not two- and six-referent conditions (t(94) = 1.39, 
p = .167). The addition of child vocabulary measures did not  
improve  model  fit (communicative gesture: χ2(1) = 0.38, p 
= .539; symbolic  gesture: χ2(1) = 0.28, p  = .598; expressive: 
χ2(1) = 0.34, p = .560). No significant interactions between 
fixed effects were found.  

The relation between gestural cues and number of referents 
was particularly notable in deictic gestures, in-keeping with 
our hypothesis. There was a significant effect of condition on 
deictic gesture number (χ2(2) = 8.35, p = .015, see Figure 3), 
with significant differences between one- and two-referent 
conditions (t(94) = 2.21, p = .030), and one- and six-referent 
conditions (t(94) = 2.80, p = .006), but not two- to six-
referents (t(94) = 0.60, p = .553). Adding child vocabulary 
did not improve model fit (communicative gesture: χ2(1) = 
0.001, p = .973; symbolic gesture: χ2(1) = 0.05, p = .832; 
expressive: χ2(1) = 0.01, p = .917). No interactions between 
fixed effects were found.  

For representational and other gestures, there were no 
significant effects or interactions.  

 
Figure 3: Mean count and standard error of gesture type 

generated by parents per condition. 
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Environmental uncertainty effects on co-occurring 
parental speech and gesture  
When testing the co-occurrence of complementary speech 
with gesture, linear mixed effects models showed significant 
main effects of condition and child symbolic gesture 
vocabulary (χ2(3) = 8.28, p = .041; see Figure 4). There was 
a significant increase from one to two referents (t(80) = 2.57, 
p = .012), but no significant difference between one and six 
referents (t(80) = 1.68, p = .096) or two and six referents 
(t(80) = -0.89, p = .376). There were no other significant main 
effects of child vocabulary measures and no significant 
interactions between fixed effects.  

When testing the co-occurrence of supplementary speech 
with gesture, we found condition was not significant as a 
main effect alone. There was a significant interaction 
between condition and child expressive vocabulary (χ2(5) = 
17.96, p = .003), which showed that children with larger 
vocabularies were offered more information in the one- and 
two-referent conditions, but less in the six-referent condition, 
than children with smaller vocabularies. There were no other 
significant main effects or interactions between fixed effects.  

 

 
 

Figure 4: Mean count and standard error of types of 
speech with gesture generated by parents per condition. 

 
Effect of parental gesture use on word learning  
A series of binomial general linear mixed effects models 
(glmer; lme4 in R, v3.4.1, 2017) were used to predict 
accuracy. These models were built up progressively with the 
addition of fixed effects of condition and child vocabulary 
(scores of communicative gesture, symbolic gesture and 
expressive subscales of CDI), comparing each model to a null 
model or previous best-fitting model using log-likelihood 
comparison after the addition of each new term (Barr et al., 
2013). Random effects of subject and infant age were 
included in each analysis.  

Analysis using general linear mixed effects models 
revealed the addition of condition improved model fit (χ2(2) 
= 6.08, p = .048; see Figure 5), indicating a significant 
increase of accuracy from one to two referents (b = 0.91, z = 
2.19, p = .028) and from one to six referents (b = 0.86, z = 
2.02, p = .044), but no significant increase in accuracy from 
two to six referents (b = -0.05, z = -0.13, p = .893). However, 

this varied by parent, as the addition of a slope of condition 
per parent as a random effect removed the significant main 
effect of condition (χ2(2) = 1.8, p = .406).  

Given that complementary speech with gesture was highest 
in the two-referent condition during training and accuracy 
was highest in this condition during testing (see Figure 5), we 
postulated that there might be some relationship between the 
two. However, the inclusion of total gestures, gesture 
subtype, and types of co-occurrence of speech with gesture 
did not improve model fit, suggesting there was no significant 
prediction of accuracy when these effects were taken into 
account. This did not support our hypothesis that increased 
parental gesture use during training would predict increased 
accuracy of infant word learning. A separate model 
examining these training response variables without an effect 
of condition did not demonstrate any significant 
improvement of model fit, suggesting any significant 
difference in accuracy was the result of differences in 
condition alone, without any demonstrable effects of training 
response.  

 

    
 
Figure 5: Mean infant word learning accuracy and standard 

error per condition. 
 

Discussion 
By varying referential uncertainty, we explored how parental 
gesture might aid infants in learning correct word-referent 
pairings within complex environments. Our training results 
demonstrated that parent gesture can be manipulated by 
altering the immediate environment around infant word 
learning. This was particularly notable in deictic gesture use. 
The results showed that parents use deictic gestures most in 
the presence of referential uncertainty, as parents gestured 
most in the six- and two-referent conditions compared to the 
one-referent condition. Deictic gestures have previously been 
found to be highly informative when determining word-
referent pairs (Cartmill et al., 2013). Children also have been 
found to follow the direction of deictic gestural cues over 
linguistic cues in referent-selecting tasks (Grassmann & 
Tomasello, 2010). Thus, although it is possible that our 
findings related to deictic gesture use were influenced by 
task-demands (requesting parents to teach specific novel 
words for objects, and objects being out of reach), they are in 
line with other research that points towards the usefulness of 
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deictic gestures when delineating referents in naturalistic and 
laboratory settings.  

The mechanism by which gesture adds information to 
speech may be a reduction of cognitive load for the infant, 
providing a visual component to learning resources alongside 
the verbal component (Goldin-Meadow, 2000; McGregor et 
al., 2009). This has been found particularly useful in 
situations of high task demands (McNeil, Alibali, & Evans, 
2000) – consistent with parents using the most gestures in the 
six-referent condition. However, there was no significant 
difference in gesture use between the two-referent and six-
referent conditions, which did not support our hypothesis that 
the higher the number of potential referents, the higher the 
number of parental gestures to assist the child in coping with 
referential uncertainty. One might also expect a higher 
number of potential referents to confer a higher task-demand, 
and thus perhaps a need for a greater reduction of cognitive 
load due to an increased amount of distracting information. 

This result may demonstrate that the more important factor 
in referent-identification is whether there is referential 
uncertainty or not, rather than the degree of uncertainty. It is 
possible that the additional information conveyed in gesture 
is not as valuable in reducing cognitive load when there is 
more than one choice to be had. This interpretation is 
consistent with children’s actual learning of novel words – 
infants demonstrated the highest accuracy in the two-referent 
condition, and performed marginally worse in the six-referent 
condition which had the highest frequency of parent gestural 
information and referent label use. Infants performed worst 
in the one-referent condition. This might be unexpected given 
the lack of referential uncertainty, although there was also the 
least amount of information available (provided in speech 
and gestural cues). 

These learning results suggest that some referential 
uncertainty might actually be beneficial for learning, and that 
perhaps too much uncertainty begins to remove that benefit. 
In Monaghan’s (2017) computational study of multiple cue 
integration in word learning, the model predicted that a small 
amount of variability in the cues available in the word 
learning environment yielded superior learning in 
comparison to conditions where cues were perfectly reliable 
and invariable. But when this variability became substantial, 
learning of novel words began to decline. In Monaghan et al. 
(2017), this prediction was supported in a study of adults 
learning novel word-referent mappings from multiple cues: 
variability was helpful. However, in these studies, the 
referential uncertainty was kept constant – in all cases, there 
were two possible referents from which to select. In the 
current study, we further show that a small degree of 
variability in referential uncertainty led to the best novel word 
learning.  

The presence of two competing alternatives in the 
environment ties in with studies of children’s application of 
mutual exclusivity (Markman & Wachtel, 1988). In these 
studies, children are shown to actively use a general principle 
of ‘this, not that’ to map unknown words to unknown objects 
in relation to known objects. Although this mechanism works 

primarily by prior knowledge, it is possible that having one 
choice enables some sorting of the available referents that 
makes word learning more efficient.  

However, our results did not show a significant direct 
effect of parents’ behaviour in driving children’s word 
learning performance – the amount of gestural information 
with and without speech during training was not predictive of 
more accurate infant word learning as we had predicted. Any 
effect of condition on accuracy also disappeared with the 
addition of a random slope for condition per parent, 
suggesting that there was a high degree of variability in how 
parents used gestures across the conditions.  

The lack of an effect may be partly due to limitations in our 
sample. All parents were of mid-socioeconomic status (SES), 
recruited from a database of families who had actively signed 
up to take part in child development studies. Families from 
mid to high SES backgrounds are known to use gesture more 
(Rowe & Goldin-Meadow, 2009). Kirk et al. (2013) suggest 
that the added benefit of gesture may be most prevalent in 
cases where there is general diminished parental input, 
providing a compensatory effect, and in mid to high SES 
families, parental input is less likely to be reduced. Gains in 
child vocabulary following training that involved increased 
gesture use have previously been found primarily in low SES 
environments (Hirsh-Pasek et al., 2015). Although parents in 
our study did gesture more with increased referential 
uncertainty, it is possible that any added benefit of gesture in 
this sample reached something of a ceiling effect when it 
came to word learning – infants were already subject to a 
level of parental input that meant gesture did not add to their 
learning.  

Finally, given prior evidence that children’s vocabulary 
and gesture use are positively related, and child gesture is 
linked to parental gesture (Rowe et al., 2008), child gesture 
vocabulary might be expected to have some effect on parental 
gesture use during training. However, this was not the case in 
our study. Our models of gesture alone did not identify an 
effect of child expressive and gesture vocabulary. We did 
find that these effects played a role in the amount of speech 
with gesture. We found that child gesture and expressive 
vocabulary were significant effects when referential 
uncertainty was increased. This may indicate that child 
gesture and expressive vocabulary are related to parental 
gestures co-occurring with speech, instead of parental gesture 
in isolation. This aligns with the idea of gesture playing a 
supplementary role to speech, rather than one supplanting the 
other (O’Neill, 1996; Iverson & Goldin-Meadow, 2005).  

In summary, we found that referential uncertainty affected 
parents’ gestures. Parents were affected by the number of 
potential referents in the environment, and adapted their 
gestures, and co-occurrences of gestures with naming of the 
target object, offering more cues when the child’s 
environment became more complex. However, parental 
gesture use was only affected by whether there was 
referential uncertainty or not, rather than the degree of 
referential uncertainty. In terms of children’s accuracy when 
testing their knowledge of novel labels, referential 
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uncertainty was again found to affect learning, and actually 
promoted it. The results add to a broad picture of 
communicative exchange where interlocutors are sensitive to 
the context and informational requirements of the situation, 
and also to growing evidence that variability, within speech 
and within the environment, is beneficial for learning. 
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Abstract 

The purpose of this study is to explore the role goals play in 
concept acquisition. Goals motivate and shape our 
interactions with items, so it stands to reason that they also 
impact the learning that occurs as a result of those 
interactions. There is abundant evidence that goals orient us 
to particular information about the items we encounter. A 
more speculative claim is that goals play a more integral role 
in the acquired concept in that they also help to structure and 
cohere the acquired conceptual knowledge. Using a novel 
concept learning paradigm, we examined participant 
knowledge of attributes of the items they interacted with in 
an experimental task. We found evidence that the interaction 
of the goal with the learning situation impacted the centrality 
of the attribute information within their conceptual 
knowledge. These results support the idea that conceptual 
knowledge is organized in terms of goals active during 
learning. 

 
Keywords: categories; concepts; goals; conceptual 
acquisition 

 
Conceptual knowledge plays an important role in human 
cognition. Concepts help to shape our perceptions and 
predictions as we move through the world, and they allow 
access to information about entities that are not 
immediately present. All facets of cognitive science (e.g. 
philosophy, psychology, computer science, anthropology) 
have engaged with questions concerning conceptual 
knowledge, but important questions remain. This study 
focuses specifically on the ways that goal-directed 
interactions with instances from a novel category of items 
shape the organization and content of the acquired 
conceptual knowledge. 

Within the psychological research, there has been on-
going study of concept acquisition for over a century. 
Machery (2007) notes that despite significant shifts in the 
theoretical perspectives as to what constitutes conceptual 
knowledge, there has been a noticeable lack of variation in 
how psychologists operationalize the acquisition of a 
concept. Related concerns have been raised about category 
learning research in that the experimental paradigms are 
limited and potentially restrict our understanding of the 
processes involved in concept acquisition and how they 
affect acquired knowledge (Markman & Ross, 2003; Ross, 
Chin-Parker, & Diaz, 2005). There are also questions as to 
how well those experimental paradigms reflect concept 
acquisition as it happens in everyday life (Murphy, 2005). 

In response to these concerns, there have been 
intentional and systematic attempts to broaden the range of 

learning tasks in the study of concept acquisition. The 
rationale is that examining learning that occurs in the 
course of different kinds of interactions provides a richer 
and more applicable sense of what conceptual acquisition 
is really like. Out of this, a line of research has emerged 
that examines how the goal of the learner affects concept 
acquisition. If an individual interacts with a set of items in 
the course of working towards a particular goal, the 
conceptual knowledge acquired from those interactions 
should be tuned such that it supports that goal (Chin-Parker 
& Birdwhistell, 2017; Jee & Wiley, 2007; Love, 2005). 
The idea that goals meaningfully intersect with conceptual 
acquisition has existed in the literature for several decades 
(see Barsalou, 1995), but only relatively recently has it 
been formalized within concept acquisition studies. 

A basic assumption of this approach is that the goal 
points the individual towards features of the items that are 
goal relevant. Jee and Wiley (2007) and Chin-Parker and 
Birdwhistell (2017) have found strong evidence for this 
goal-orientation hypothesis. When participants with 
different goals interact with same set of items, the 
conceptual knowledge acquired privileges access to the 
attributes of the items that were critical to completion of 
the goal. This idea fits well with learning theories that 
incorporate some means for the learner to adapt to the 
differential importance or salience of individual attributes 
(e.g. Kruschke, 2003; Le Pelley, et al., 2016).  

It has been suggested that goals also play a role in the 
representation of conceptual knowledge. Because a 
concept provides information as to why the instances of the 
corresponding category belong together, Jee and Wiley 
(2007) propose that the goal acts as a glue that coheres the 
members of the category. This idea reflects earlier work on 
ad hoc categories (e.g. Barsalou, 1983).  

Chin-Parker and Birdwhistell (2017) provide an account 
that focuses on how a goal plays a role in organizing the 
attribute information represented within the concept. They 
note that in any situation there are many possibilities as to 
how an individual might interact with the entities that 
constitute that context. However, having a specific goal 
means that each possible interaction within that situation 
can be defined in terms of its goal-relevance. An 
interaction that moves the individual closer to, or further 
from, the goal can be considered goal relevant. An 
interaction that does not do so would not be goal relevant. 
If a goal-relevant interaction involves a particular facet of 
the item at hand, that aspect of the item becomes defined 
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in terms of how it relates to the goal – the way in which it 
facilitates (or hinders) movement towards the goal. In this 
view, the attributes themselves become available through 
the interplay between what constitutes the items and the 
goal-directed behaviors. It is important to remember that 
these interactions are situated – what constitutes a goal 
relevant attribute and how that attribute relates to the goal 
may vary across situations. Through the goal-directed 
interactions, a structure emerges that reflects the goal-
relevance of the various components of the situation – 
attributes that are more critical to completing the goal 
become more central within the concept. For instance, if an 
attribute was differentiated in relation to the goal, e.g. it 
offered a goal-relevant decision point, then the information 
about its differentiation with regards to the goal would also 
be captured within the acquired conceptual knowledge. 
The goal-framework hypothesis proposes that the goal is 
more integrated into the conceptual knowledge than is 
implied by the goal-orientation hypothesis. 

The purpose of this study is to assess the goal-framework 
hypothesis. Participants interacted with a set of novel items 
in order to complete a particular task. These items 
represented two different types, although the participants 
were not told this: They were not asked to learn about the 
items or to do any explicit category-based work, only to 
use them to complete the task at hand. In both conditions 
the items had two primary attributes that were goal-
relevant – the participant had to attend to both attributes to 
complete the task. However, we manipulated the task so 
the relationship of one of the attributes to the goal differed 
across conditions. We modified whether the specific shape 
of that attribute was relevant, i.e. that shape required a 
decision to made about how to proceed in the task, or if it 
was irrelevant, the interaction with that attribute occurred 
without any consideration of its specific shape.  

Because the task required the participants to differentiate 
between the two types of items, we expected them to 
naturally recognize the two categories of items. We 
expected all participants should be able to assess class 
membership of the items based on the primary attributes 
and to make judgments based on those categorizations. 
Critically, we expected that our manipulation of the 
relevance of the shape of one of the attributes would affect 
later category-based judgments indicating that it had 
impacted the centrality of that attribute within the 
conceptual knowledge.  

Experiment 
Methods 
Participants and Design Sixty-seven participants were 
randomly assigned to two experimental conditions: 33 
participants were assigned to the interior shape relevant 
condition (ISR condition), and 34 to the interior shape 
irrelevant condition (ISI condition). All participants used 
 

 
Figure 1: Keys used in the initial task. They were identified in 
the classification task as “alpha keys” (top row) and “zeta 
keys” (bottom row). 

 
the same set of items during the initial task and completed 
the same transfer tasks. The presentation order of items 
during the initial and transfer tasks was randomized. 
Materials and Procedure During the initial task of the 
experiment, all participants interacted with the same set of 
eight “keys” (see Figure 1). The keys had two primary 
attributes – the head shape and interior shape. These 
attributes co-varied so that there were two categories, or 
types, of keys defined by a particular combination of head 
and interior shape. The keys were made of ABS plastic and 
were created using a 3D printer. The keys were 
approximately 10 cm by 6 cm by 1 cm in size. 

Participants used the keys to manipulate the task boards 
(see Figure 2). The boards were designed so the keys 
would be used as part of a two-step task. Each board 
featured a metal transport that could slide along the top 
surface of the board. The transport had an acrylic window 
that revealed a button the participant was instructed to 
press in order to complete the task. 

Figure 2: Set up of the initial task from the participant’s 
perspective. The participant set the key onto the appropriate 
task board, slid the transport to reveal a button, then used one 
of the tools provided to press the button. The tools shown here 
were used in the ISR condition. 
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Figure 3: Close up of a “zeta” key placed on a task board. The 
shape of the key head (vertical slots on the top of the key) 
allowed it to fit onto the board (an “alpha” key with horizontal 
slots would not fit on this board). Here, the transport has been 
moved to its target position, so the button is accessible. To 
complete the second part of the task, a tool had to be inserted 
through the interior of the key to press the button. 

 
The key frame on the transport was configured so that 

only one of the head shapes of the keys would fit into the 
frame for each board. Once a key had been properly placed 
into the frame, the transport could be moved to the target 
position (see Figure 3). This constituted the first part of the 
participant’s task. When the transport was moved into the 
target position, the participant had access to the button 
through the interior of the key. The participant was 
instructed to press the button using a tool provided for that 
purpose (see Figure 4). Using one of the tools to press the 
button constituted the second part of the task.  Once the 
participant pressed the button, lights built into the board 
turned on signaling that the task had been successfully 
completed. 

As noted, the first part of the task required the participant 
to attend to and differentiate the head shape of the key 
being used so that the key could be correctly placed onto 
one of the task board transport frames. The second part of 
the task required the participant to attend to the interior 
shape of the key. In the ISI condition, the interior shape of  

 

 

Figure 4: In the ISI condition (tools on left), either tool could 
be used with any key. In the ISR condition (tools on right), the 
tool used depended on the interior shape of the key. 

the key was irrelevant in terms of which tool could be used. 
Participants in that condition could select either of the two 
tools available to press the button. In the ISR condition, the 
tools were designed so that each tool fit with the interior 
shape of one of the types of keys (either the alpha keys or 
zeta keys). Participants in that condition not only had to 
attend to the interior, they had to make a decision about 
which tool to use given the interior shape of the key. 

At the start of the experiment, participants were 
introduced to the keys, task boards, and tools with a set of 
practice materials that allowed them to familiarize 
themselves with the basic aspects of the task (i.e. place a 
key onto the transport of one of the boards, move the 
transport, use a tool to press the button). However, the 
practice keys had different shape attributes and fit onto the 
transports differently (and the transports rotated on the 
surface of the board instead of sliding). Once the 
participant indicated they were comfortable with the basic 
idea of the task, the practice materials were replaced with 
the actual task boards and tools for the study. It is important 
to note that at no time during the initial task trials were the 
participants told that there were different types of keys – 
each trial featured one key and the instructions and 
communication with the participant focused solely on the 
completion of the task. 

At the start of each trial during the initial task, the 
experimenter set a key (determined by a randomized order 
for each participant) on the table between the task boards. 
As described prior, the participant’s task consisted of 
placing the key onto the proper transport, sliding the 
transport to its target condition, and then pressing the 
button using one of the tools. The participant handed the 
key back to the experimenter, the transport on the task 
board was returned to its initial position, and the trial 
ended. The keys were kept out of sight except for when 
they were being used during a trial. The participant 
completed two blocks of eight trials during the initial task. 
Each key was used once within each block. 

After the initial task trials, the participants moved to a 
computer workstation. The computer tasks were designed 
and administered using PsychoPy software (Peirce, 2007). 
The images of the keys used in the computer tasks were 
created using the same computer aided design (CAD) 
software that was used in printing the physical keys. The 
3D images of the keys used during the following tasks were 
identical to the physical keys the participants had used 
during the initial tasks, excepting for the modifications 
noted below. 

The first task the participant completed on the computer 
was a classification task. The purpose of this task was to 
provide the participants with labels for the concepts they 
had acquired during their initial interactions with the keys. 
Chin-Parker and Birdwhistell (2017) showed that 
participants can make category-based judgments, e.g. 
sorting and similarity judgments, following goal-directed 
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tasks even without explicit labels, but as we planned to use 
a category-goodness rating task, the participants needed a 
way to explicitly differentiate the concepts. Because the 
general head and interior shape were perfectly correlated in 
the keys, the participants could use either, or both, of those 
attributes to guide their classification decisions. We 
expected the participants to look to whichever feature they 
already considered to be critical in terms of their 
knowledge of the keys, so the classification task should 
only reinforce the concepts they acquired during the initial 
task.  

The initial screen of the classification task provided 
information about the task, and at this point the participants 
were explicitly told that there were two types of keys, 
identified for the classification task as “alpha keys” and 
“zeta keys”. During each trial of the classification task, the 
image of a key was presented and the participant used the 
mouse to indicate whether they thought it was an alpha or 
zeta key. The participant received feedback on her 
classification, and the correct label for the key was shown 
with the key so that she could study it for two seconds 
before the next trial began. Each participant completed 16 
classification trials comprised of two blocks of the eight 
keys used in the initial task. 

After completing the classification task, the participant 
began the category rating task. Each trial consisted of an 
image of a key presented with a category label (see Figure 
5). The participant was instructed to rate how good a 
member of the indicated category the key was. The 
participant could use the mouse to click on a rating scale 
that went from 0 (labeled with “definitely not this type of 
key”) to 100 (labeled with “perfect example of this type of 
key”). The participant was encouraged to use the entire 
range of the scale in order to most accurately reflect her 
ratings of the keys shown.  

Each participant completed 32 trials in the category 
rating task. There were eight types of items shown during  

 
Figure 5: Screenshot of an Old Mismatch trial of the category 
rating task. 

the task, four instances of each type. They were balanced 
in terms of whether they represented alpha or zeta keys. In 
the old match trials, the key shown was one from the initial 
task and it was displayed with the correct category label. In 
the old mismatch trials, a key from the initial task was 
displayed with the incorrect category label. In the new 
match trials, new versions of keys that matched the keys 
from the initial task (and these keys would have functioned 
the same with the task boards and tools) were displayed 
with the appropriate label. In the head violation trials, the 
image of the key was modified so that it had the same basic 
shape, but it would no longer fit onto either key frame if it 
had been used in the initial task. In the interior violation 
trials, the interior of the key was modified so that it had a 
different shape that would keep any tool (from either the 
ISI or ISR conditions) from being able to reach the button 
in the initial task. The head/interior mismatch trials had 
items where the head from one type of key was matched 
with the interior from the other type of key, and these keys 
were presented with the label that matched the head of the 
key. Finally, there were minor match trials and minor 
mismatch trials where superficial aspects of the keys (e.g. 
whether the edges were rounded or squared off) were 
modified, and the key was presented with either the correct 
or incorrect label. These items were considered filler items. 

After the participant completed the category rating task, 
she was asked to move back to the task table. The task 
boards had been removed, and a pile of 16 “miniature” keys 
were in the center of the table. These keys were printed at 
¼ scale and matched the keys from the initial task in terms 
of their attributes. Eight of these keys were identical to the 
initial task keys. The other eight keys were like the 
head/interior mismatch items from the category rating task 
– the head of one type of key was paired with the interior 
from the other type of key. The experimenter instructed the 
participant to “put these keys into groups that you think 
naturally reflect the types of keys you worked with today.” 
The participant was free to sort the keys into any number 
of groups. Once the participant indicated she had 
completed the sorting task, the experimenter asked her to 
explain the sort.  
 
Results 
Initial Task Participants in the ISR condition (M = 221.03 
secs, SD = 96.46) took longer to complete the first block of 
trials of the initial task than participants in the ISI condition 
(M = 162.24 secs, SD = 43.06), t(65) = 3.24, p = .002, rpb2 

= 0.14. The difference persisted into the second block, but 
was much smaller in magnitude: ISR condition (M = 
118.15 secs, SD = 21.59), ISI condition (M = 106.09 secs, 
SD = 19.82), t(65) = 2.38, p = .02, rpb2 = 0.09. 
Classification Task There were no differences in the 
participants’ ability to complete the classification task. The 
mean accuracy for the ISI condition (M = 0.95, SD = 0.07) 
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was nearly identical to the ISR condition (M = 0.96, SD = 
0.07), t(62) = 0.27, p = .78, rpb2 = 0.001. 

Category Rating Task The initial analysis of the 
category goodness ratings (see Table 1) was an omnibus 
test to determine whether the ISI and ISR conditions 
showed different patterns of ratings across the items. The 
category ratings were analyzed using a 2 (condition) X 8 
(item type) mixed ANOVA. There was no main effect of 
the condition, F(1, 65) = 0.07, p = .80, hp2 = .001, but there 
was a significant main effect of the item type, F(7, 455) = 
78.04, p < .001, hp2 = .55. Critically, there was a significant 
interaction between the condition and item type, F(7, 455) 
= 2.16, p = .04, hp2 = .03. Looking at the overall results, 
participants in both conditions provided similar ratings 
when both the head and interior of the key indicated the 
same category (i.e. the old match, new match, old 
mismatch, minor match, and minor mismatch items). The 
interaction appears to arise from a differential rating across 
items where the head and interior provided different 
information about the category membership.  
 
Table 1: Mean Category Goodness Ratings (and Std. Error) 
Organized by Item and Condition 

 
 Initial Task Condition 

 
Item 

Interior 
Shape 

Irrelevant 
(ISI) 

Interior 
Shape 

Relevant 
(ISR) 

Old Match 85.13 (2.81) 85.52 (2.85) 

New Match 73.10 (3.28) 77.61 (3.33) 

Old Mismatch 10.33 (2.77) 13.77 (2.81) 

Head Violation 40.38 (5.18) 50.27 (5.26) 
Interior Violation 50.80 (5.87) 34.71 (5.96) 

Head/Interior Mismatch 55.16 (6.47) 42.52 (6.57) 

Minor Match 75.25 (3.81) 75.50 (3.86) 

Minor Mismatch 13.57 (3.18) 13.82 (3.23) 
 
As noted, we expected the manipulation of the relevance 

of the interior shape would affect the centrality of that 
attribute within the conceptual knowledge. To test this 
idea, we ran a more focused set of ANOVAs that assessed 
the conditions in terms of their ratings for the old items (as 
a baseline for the category ratings) compared to the items 
where the head and interior attributes provided different 
information about the category membership of the key 
(head violation, interior violation, and head/interior 
mismatch items). Across the analyses, there was a 
consistent effect of the item types (all ps < .001) because 
the old items were reliably rated as better members of the 
target categories compared to the items that contained 
inconsistent attributes. There was also no main effect of the 

condition in any of the analyses (all ps > .10). However, 
the interaction terms differed across the analyses. For the 
head violation items, F(1, 65) = 1.19, p = .28, hp2 = .02,  
and head/interior mismatch items, F(1, 65) = 2.08, p = .15, 
hp2 = .03, there was no interaction between the condition 
and item type. For the interior violation items, there was a 
significant interaction between the condition and item type, 
F(1, 65) = 4.27, p = .04, hp2 = .06. The interaction in the 
primary analysis appears to have occurred because the 
participants in the ISR condition dropped their ratings for 
the interior violation items in comparison to the old items 
more than the participants in the ISI condition did. 
Sorting Task The participants in both groups created a 
variety of sorts for the miniature keys, and these sorts 
varied in terms of whether they reflected attention to a 
single attribute or multiple attributes. The sort by one 
participant in the ISR condition was not based on the 
physical attributes of the keys, so her data were removed 
from these analyses. 

There was no difference in the number of groups created 
by participants in each condition (ISI condition: m = 3.35, 
s = 2.28; ISR condition: m = 3.28, s = 1.99), t(64) = 0.13, 
p = .89, rpb2 = 0.001. The proportion of participants that 
used information about the head of the keys (77% of ISI; 
53% of ISR) differed between the conditions, C2 (1, 64) = 
3.96, p = .04, nc2 = .06. However, the proportion of 
participants that used information about the interior of the 
keys (53% of ISI; 66% of ISR) did not differ between the 
conditions, C2 (1, 64) = 1.10, p = .30, nc2 = .02. 

Forty-two participants (24 in the ISI condition, 18 in the 
ISR condition) sorted the items into only two groups. 
Those sorts provide a direct insight into what aspect of the 
keys was considered critical because the sort was based on 
a single attribute. Of this subset of participants, 66% of the 
participants in the ISI condition sorted the keys based on 
the head of the keys while 66% of the participants in the 
ISR condition sorted based on the interior. The primary 
attribute for the sort differed between the conditions, C2 (1, 

42) = 4.58, p = .03, nc2 = .11. 

Discussion 
The results of this study provide additional evidence for 

the goal-framework hypothesis. The participants in the two 
conditions were given equivalent tasks (and thus 
equivalent goals) to guide their interactions with the keys. 
In both conditions, the goals associated with their tasks 
oriented them to both of the critical attributes of the keys: 
the shape of the head and the shape of the interior. If the 
goal orientation hypothesis were sufficient to account for 
the role of the goal construct in the learning, the two 
conditions should have been largely equivalent in terms of 
how they organized their knowledge of the critical features 
of the keys. In some ways, they did show comparable 
learning. There is a striking similarity in terms of how the 
participants rated many of the items regardless of 
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condition. For instance, the mean ratings for the old match, 
new match, old mismatch, minor match, and minor 
mismatch items are nearly identical across the conditions. 
In all of those items, the head and interior attributes of the 
keys were in agreement with regard to the type of key 
shown. However, when the attribute information 
conflicted, the ratings differed between the conditions. 

The participants in the ISI condition tended to consider 
the head shape as more critical when judging the category 
goodness of the items. Their ratings for the head violation 
items is lower than their ratings for the interior violation 
items. They also had a tendency to use the shape of the head 
of the key more consistently when organizing the keys 
during the final sorting task. The participants in the ISR 
condition tended to consider the interior of the keys as 
more critical to the category goodness, and they used the 
interior shape more consistently when sorting the keys.  

As expected, the participants in the ISI condition 
acquired and used some knowledge of the interior shape in 
the category-based tasks. As noted, having to pay attention 
to the interior shape is sufficient to drive some learning. 
However, we would argue that their knowledge of the 
interior shape was less central to their concept of the key 
compared to the ISR condition, so it did not affect their 
ratings as much. A potentially important contribution of the 
notion of the goal-framework is that it explicitly connects 
the experiences of an individual, their interactions with 
objects in the world, to their conceptual knowledge. 

It is not clear why the ISR participants showed less 
sensitivity to the head shape than the ISI participants. The 
head attribute played a comparable role in the task 
completion for both conditions. It is possible that having 
two goal-relevant attribute distinctions required some 
weighting of those attributes within the concept. This 
would fit with models of conceptual acquisition that have 
such a mechanism in place to account for the differential 
learning of attribute information. As suggested by an astute 
reviewer, it is also possible that the proximity of that part 
of the task to the completion of the goal might have 
privileged the knowledge of the interior shape in the 
concept. However, further study is necessary to determine 
why the ISR participants tended to emphasize the interior 
shape over the head shape. 

The critical difference between the conditions was in the 
role the interior shape played in terms of how the 
participant could reach the goal. Both conditions had the 
same goal, to press the button, but the different tools during 
the second part of the task meant that the interior shape 
played a qualitatively different role in achieving that goal. 
In the ISI condition, the participant had to attend to the 
interior shape of the key in order to navigate the tool and 
press the button, but the shape of the interior of the key did 
not have relevance to the task beyond that. In the ISR 
condition, the shape of the interior was critical to 
differentiating the use of the tools to press the button. In 
this way, the differentiation of the shape of the interior was 
relevant to completing the task. 

Chin-Parker and Birdwhistell (2017) posit that the 
learning process involves the development of the “goal 
framework” and that this framework reflects the structure 
that emerges as an individual interacts within a particular 
situation with a certain goal. In this way, the framework 
organizes the incoming information in terms of its goal-
relevance providing structure to the acquired knowledge. 
They also propose that this framework is involved in 
organizing aspects of the basic perceptual experience of the 
individual when operating in a novel domain because there 
has to be some means to constrain the development of a 
feature language (see Landy & Goldstone, 2005). Although 
the current study was not designed to test these aspects of 
the goal-framework hypothesis, they fit within the 
experiences of the participants. When they had arrived for 
the study, they had no idea what the keys were or how to 
think about them. By the time they had completed the 
sorting task, they had a meaningful sense of what the keys 
were. As we develop this paradigm, we intend to revise the 
tasks so that we have the power to look at subtler indicators 
of the developing conceptual knowledge so we can assess 
these other claims. 

This study examines concept acquisition in an arguably 
more naturalistic manner than most research in this this 
area. Our participants used the keys to complete an 
admittedly simple and arbitrary task, but in doing so, they 
had meaningful interactions with objects in a particular 
context in order to reach a goal. As a result, they developed 
useful ways to organize their knowledge of keys. This kind 
of experience invokes pragmatic constraints that are 
important to conceptual acquisition (Barsalou, 2017). The 
concept acquisition that occurs is not driven solely by the 
physical characteristics of the keys. Similarly, the goal of 
individual, in isolation, is unable to account for the 
conceptual acquisition. Instead, it is the interactions 
between the individual and environment that allow the 
useful structure to emerge. 
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Abstract

Human knowledge accumulates over generations, amplifying
our individual learning abilities. What is the mechanism of
this accumulation? Here, we explore how language allows ac-
curate transmission of conceptual knowledge. We introduce a
novel experimental paradigm that allows direct comparison of
learning from examples and learning from language. In our
experiment, a teacher first learns a Boolean concept from ex-
amples; they then communicate this concept to a student in a
free conversation; finally, we test both teacher and student on
the same transfer items. We find that learning from language
is both sufficient and efficient: Students achieve accuracy very
close to their teachers, while studying for less time. We then
explore the language used by teachers and find heavy reliance
on generics and quantifiers. Taken together, these results sug-
gest that cultural accumulation of conceptual knowledge arises
from the ability of language to directly convey generalizations.
Keywords: concept learning; cultural ratchet; communi-
cation

Introduction
The human species is remarkable: We are able to learn by ob-
serving the world around us, forming new concepts that sup-
port prediction and manipulation (Tenenbaum, Kemp, Grif-
fiths, & Goodman, 2011). Yet human concept learning has
limits: Life is only so long and a person can only be in
one place at a time. Individual learning from observations
is thus unlikely to fully explain the ecological successes of
our species (Henrich, 2015). If we are able to faithfully trans-
mit our knowledge to the next generation, then limited indi-
vidual learning can accumulate over generations to arrive at
powerful systems of knowledge—a process termed the “cul-
tural ratchet” (Tomasello, 1999). How does the ratchet work?
What aspects of cognition support faithful transmission?

Cultural transmission has been often studied through the
lens of imitation. This mechanism is particularly useful for
learning procedural knowledge and rituals (Legare & Nielsen,
2015). Reproducing the behaviors of conspecifics, however,
does not easily address ideas that go beyond the here-and-
now: our generalizable knowledge and intuitive theories.
Language, on the other hand, is a tool by which humans can
convey abstract information. It allows us to transmit knowl-
edge that would be otherwise difficult or unsafe to observe
directly (e.g., which plants are poisonous; Gelman, 2009;
Tessler, Goodman, & Frank, 2017).

Prior experimental work in cultural transmission has sug-
gested that language may be a sufficiently expressive channel

for conveying hard-to-discover knowledge (Beppu & Grif-
fiths, 2009; Morgan et al., 2015). For example, Morgan et
al. (2015) found that knowledge about stone flaking and tool
making were best transmitted via verbal language. This work
did not examine in detail, however, the kinds of natural lan-
guage expressions utilized in the transmission of knowledge,
nor relate it to the concepts being transmitted. In this pa-
per we introduce a novel experimental paradigm that allows
to explore how language can support the “first crank” of the
cultural ratchet: how concepts learned from examples by one
person are faithfully transmitted to a second via language.

Typical concept learning experiments are structured so that
a single subject is presented with examples of objects that be-
long to (and don’t belong to) a new category (Bruner, 1956;
Piantadosi, Tenenbaum, & Goodman, 2016). We extend this
paradigm by asking the initial learner to convey the concept
to a second person. We allow them to do so freely using
language. We then separately test the initial and secondary
learner on the category. This allows us to explore detailed
questions about whether and how language allows faithful
transmission of these concepts: Is language sufficient for con-
veying concepts? How efficient is language compared to di-
rectly studying examples? What aspects of language are used
to convey concepts?

In the remainder of the paper we introduce our experimen-
tal paradigm and then explore the resulting data with a variety
of analyses. We find that language is sufficient and efficient
for concept learning, and that certain linguistic forms seem to
underlie this efficacy.

Methods
Participants
We recruited 224 participants from Amazon’s Mechanical
Turk (MTurk). This number was chosen to yield approx-
imately 10 dyads per concept. Participants were restricted
to those with U.S. IP addresses and at least a 95% work ap-
proval rating; in addition, participants who self-reported a na-
tive language other than English or failed to partake in the ex-
periment (accepted the hit but then discussed matters entirely
unrelated to the experiment) were excluded. In total, 11 pairs
were excluded on this basis. The experiment took on average
15 minutes and participants were compensated $1.25 with an
additional performance bonus (described below).
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Figure 1: During the concept learning phase (A) the teacher (above) clicked through a grid of creatures, revealing the labels for
creatures in the train set, while the student (below) waited. During the concept communicating phase (B), the teacher explained
the concept to the student in a chatroom. During the concept testing phase (C), both participants were shown the same grid of
held-out test creatures. Each selected the creatures (yellow) that they believed belonged to the concept. Finally, the participants
were shown their scores for the round (D).

Concepts and stimuli
Participants learned concepts generated by 5 different rules
(i.e. logical forms): Single Feature, Conjunction, Disjunc-
tion, Conjunctive Disjunction, and Disjunctive Conjunction.
Rules were realized in specific concepts by varying Boolean
properties of programatically generated images of creatures,
from five different kinds: flowers, bugs, birds, fish, and trees
(see Figure 1 for an example). Each kind had 5 to 7 Boolean
features that we used to realize our concepts. Each of the 5
rules was realized twice in each creature kind, yielding a to-
tal of 50 concepts (listed on the axis of Figure 3). For each
concept, we generated 100 specific creatures, split into 50 for
training and 50 for testing. We ensured some positive exam-
ples of the concept even for very restrictive rules by first ran-
domly selecting 6 positive instances of the concept and then
adding 44 items chosen at random from all remaining items
(i.e., according to the true concept base rate).

Procedure
Every pair of participants was placed in a game, where one
was assigned the role of the “teacher” (initial learner) and
the other was assigned the role of the “student” (secondary
learner). Each game consisted of 5 rounds, each with a new
concept from a new rule. Each of a game’s 5 concepts used a
different creature kind, and each concept was presented with
a different nonce word as the species name. The ordering
of concepts was randomized so that there was no standard
ordering of rule types across the games.

On each round, participants went through three phases:
concept learning, concept communicating, and concept test-
ing (Figure 1). During the concept learning phase, the teacher
was presented a grid of training creatures and was instructed
to click on individual creatures to reveal whether or not they

belonged to the species defined by the concept. Once the
teacher clicked on every creature in the grid, they were pre-
sented a message advising them to review the creatures for
as long as they needed. When the teacher ended the concept
learning phase, they proceeded to the concept communicating
phase, where they entered an online chatroom and were were
instructed to teach the concept to the student. Participants
were provided no additional instructions for the chatroom,
and they were allowed to talk freely. In order to prevent a
teacher from rushing through the chatroom without properly
communicating with their student, only the student was given
the ability proceed to the final concept testing phase. In the
final phase both participants were (separately) given the same
grid of test creatures and asked to tag the creatures that they
believed belonged to the species. Neither participant had ac-
cess to their chatroom messages during this phase.

Once both participants completed concept testing for a
concept, they were provided feedback in the form of their
own and their partner’s score, computed as: # of hits −
# of false alarms. We encouraged them to learn concepts
thoroughly and communicate effectively with a monetary
bonus equal to the sum of both players’ scores (in cents).
Participants were made aware of the task structure and bonus
mechanic prior to starting the first round; they had to answer
5 comprehension questions correctly to begin to the game.

Analysis and Results
Our experiment yielded rich data for exploring whether and
how concepts are learned from language, and how learning
from language compares to learning from examples. We first
examine performance during the concept testing phase for
both the student and teacher participants. We then explore
the time spent learning from each type of evidence. Finally,
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we explore the actual language used to teach concepts in the
concept communicating phase.

Concept learning performance
Participants assigned to be the teacher take part in a standard
Boolean concept learning paradigm, and results are in accord
with expectations. The five rule types we used in our ex-
periment cover a range of complexity in terms of description
length (Feldman, 2000), which manifests in variable perfor-
mance in test accuracy across types (Figure 2).

Figure 2: Average accuracy of teachers and students during
the concept communicating phase of the experiment. Error
bars denote bootstrapped 95% confidence intervals.

Students have access to the concept only through the lan-
guage conveyed by their partner. The average student ac-
curacy during the concept testing phase should thus be no
greater than the average teacher accuracy, which appears to
be true for our 5 rule types in Figure 2. To assess the po-
tential accuracy differences between learning from examples
vs. from language, we built a Bayesian mixed-effects model
predicting whether or not a participant responded accurately
during the concept testing phase as a function of the rule, the
participant’s role (teacher vs. student), and their interaction.
We included random intercepts and effect of rule for partic-
ipants and random intercepts and effect of role for each of
the 50 concepts. All regression models were created in Stan
(http://mc-stan.org/) accessed with the brms package (Brkner,
2017). We find a main effect of role such that students were
less accurate than teachers (posterior mean and 95% credible
interval: β = −0.41(−0.69,−0.12)). However, this effect is
very small in absolute terms—the average difference in ac-
curacy for students vs. teachers is just 5.3% (95% credible
interval: 2.7%, 8.2%). Thus language appears to be sufficient
to convey concepts; students are able to learn concepts from
language, yielding performance very close to their teachers,
who had access to the actual training examples.

Performance on individual concepts (rules reified in par-
ticular stimuli) reveal substantial variability in learning. Fig-
ure 3 shows the average performance of teachers and stu-
dents for each of the 50 concepts along with the concept-
specific chance accuracy1. Teachers perform above chance in

1Chance is defined here as the accuracy achieved by guessing at

all concepts, but there is significant variation in performance
for concepts within a given rule. Such variation is expected
given the known importance of feature salience and other
stimulus properties on concept learning (Nosofsky, 1986).
Notably, the gap between teacher and student performance
also varies.2 This variability cannot be attributed to stimulus
features, which are shared between teacher and student, but
rather reflect the language available for conveying different
features. Inspection reveals that concepts with a large gap in
teacher-student performance have a small number of teachers
who used language in idiosyncratic ways. For example, one
teacher described creatures belonging to the concept “bugs:
no wings” as “like a worm ... [with a] straighten[ed] body”.
Another teacher described “flowers: purple petals OR thorns”
as “no color ... a flower with sharp edge branches and some
tails”. In both cases the teacher fails to use a simple word
for the relevant feature (“wings”, “thorns”) unlike most other
participants. These cases may arise from particularly con-
fused teachers, particularly difficult to describe features, or
an interaction. We return to this question below.

Often, how well a person learns depends on the particular
person they learned from. We find a strong linear relation-
ship between average student accuracy and (corresponding)
teacher accuracy across the 50 concepts (r = .88, p < .001;
Figure 4). We further find that this correlation remains strong
at the individual level (r = .60, p < .001; Figure 4).

While this suggests that students make mistakes when their
teacher does, we may further ask whether they make the same
mistakes. Since teachers and students are presented the same
held-out test examples in the same order during the concept
testing phase of the experiment, we can measure the simi-
larity between teacher and student responses at the level of
individual stimuli using Hamming distance (the total number
of times the student and teacher responded differently). The
average distance between teacher and student in our data set
is 11.1 differences (out of 50 possible). To calibrate this num-
ber we computed a baseline by randomly permuting teacher-
student pairings, which yields average distance 19.9 (95%
CI [19.84,19.96]). A second, tighter, baseline considers per-
mutation of student-teacher pairs only within each concept
(matching evidence seen by teachers). This yields average
distance 13.53 (95% CI [13.18,13.91]). Thus we can con-
clude that students’ pattern of responses is more similar to
their own teachers’ responses than to other teachers in the
same concept (and in the whole data set). Language seems
to be sufficient to convey the concept as understood by the
teacher, even when the teacher has learned the wrong thing.

We do not have a direct measure of teacher confidence that

random but with the base rate of positive examples shown for that
concept. This is a stronger comparison than random guessing.

2Generally teachers do better than students. Ten concepts show
the opposite trend, to varying extents. Three of these differences are
driven by a few outliers where the teacher attained low accuracy in
the final phase even though they properly communicated the con-
cept. Seven of these concepts have students that are negligibly more
accurate than teachers, i.e. correctly identify 1-2 more stimuli, of
the 50 presented.
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Figure 3: Accuracy on each concept. Black dots denote the average teacher accuracy on the test set; gray dots denote the
average student accuracy. Gold squares denote chance accuracy.

we could use to explore the impact of confidence on the ef-
ficacy of language for transmission. Instead, we analyze an
indirect measure of teacher confidence: the mean teacher ac-
curacy within a concept. Figure 5 shows the relationship be-
tween teacher accuracy and distance from teacher to student
responses. We find a strong relationship: language seems to
yield stronger alignment between students and teachers when
the teachers are (expected to be) confident in what they have
learned (r =−0.75, p < 001).

Study time for observation vs. language
As we saw above, language appears to be relatively sufficient
for conveying concepts, how efficient is language compared
to directly learning from observed examples? We could con-
sider efficiency in terms of amount of evidence required to
learn or amount of effort required. In our experiment the
amount of evidence was fixed in the concept learning phase,
but the study time was controlled by participants. We thus
consider study time as a proxy for learning effort. Since the
amount of time spent in the concept communicating phase
was similarly controlled by participants, we use time as a
proxy also for effort required to convey a concept with lan-
guage. Using time to measure learning effort makes it possi-
ble to directly compare effort required to learn from observa-
tions and from language.

For each concept, we recorded the amount of the time that
teachers spent in the concept learning phase. During the con-

cept communicating phase we recorded the time that elapsed
between the moment a participant began typing a message
into the chatbox and the moment they sent the message to
their partner. Since some messages may have been unrelated
to learning (e.g. pleasantries or commentary), we coded ev-
ery message in the data set as “Informative”, “Follow-Up”,
“Confirmation”, “Miscellaneous”, or “Social”. Informative
messages were those related to the concept that were sent by
teachers without prompting from the student. Messages in
the ensuing dialog that were relevant to the concept were la-
beled as Follow-Up. Social pleasantries (“hi”, “hello”, etc.)
were labeled as Social, and messages that were unrelated to
the current concept (e.g. commentary about performance on
previous rounds) were labeled as “Miscellaneous”. Overall,
there were 1012 Informative, 1751 Follow-Up, 160 Social,
and 300 Miscellaneous messages in the data set. For our time
analysis, we only considered the concept-related messages:
the Informative and Follow-Up messages that constituted the
majority of participants’ conversations.

To compare the study time of learning from examples vs.
from language (Figure 6), we built a Bayesian mixed-effects
model with fixed effects of rule, participant role, and their in-
teraction; in addition, we included random intercepts and ef-
fects of rule for each participant and random intercepts and
effects of participant role for each concept.3 We observe

3The data was modeled as being generated from a lognormal dis-
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Figure 4: Accuracy of student-teacher pairs in concept testing
phase. Small dots indicate individual teacher-student pairs,
while larger dots indicate mean accuracy of teachers and stu-
dents for a concept. Lines indicate bootstrapped 95% confi-
dence intervals of teacher and student accuracy for a concept.

that the simplest rule (Single Feature) took the teacher sub-
stantially less time to study than average (comparison to the
grand mean: β = −0.25(−0.37,−0.12)) and the most diffi-
cult rule took substantially more time to study than average
(β = 0.20(0.08,0.31)). Crucially, study time was system-
atically shorter when learning from language than from ex-
amples (β =−0.64(−0.82,−0.48)), which translated into an
average 57 seconds (42, 75) less time for learning from lan-
guage. There were no interactions between role and rule that
were plausibly different from 0.

This suggests that learning from language may be more

tribution.

Figure 5: Average accuracy of the teacher versus the aver-
age hamming distance between student and teacher responses
during concept testing phases of all 50 concepts.

Figure 6: Time spent by teachers learning concepts from ob-
servation and time spent by teacher-student pairs communi-
cating about concepts. Circles denote average time for a con-
cept, error bars are bootstrapped 95% confidence intervals.
Lines pair the same concept.

efficient than learning from observing examples. This con-
clusion warrants further study however, as our measures of
study time likely depend on specific paradigm choices. For
instance, teachers were forced to click on all 50 creatures dur-
ing the concept learning phases of the experiment—it may be
that not all of this time was needed for belief updating (as op-
posed to rote clicking of the stimuli).

Language used for knowledge transmission
We have seen that language is a sufficient and (probably) effi-
cient means for transmitting concepts in our experiment. Now
we turn to the question of what specific aspects of language
were used by teachers to convey concepts. We first coded
each of the messages in the game as Informative, Follow-Up,
Social, or Miscellaneous, as described above. A vast major-
ity of the messages (2763 of the 3223) were concept-relevant,
i.e. Informative or Follow-up.

Figure 7: Distribution of concept-relevant messages.

When properties are predicated on categories, the result-
ing linguistic expression is typically a quantified sentence
(e.g.,“All wugs have orange heads”; “Most feps have purple
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Table 1: Utterance Categories & Examples

Category Example(s)
Generics “morseth[s] come in a variety of colors”

“they have saber teeth”
Quantifiers “some will have wings”

“all morseth[s] have long whiskers”
Conditionals “if the left wing is orange click it ”
Exemplars “12 white feathers ... no tail ...”

“12 white feathers ... 5 white tail...”
Imperatives “so click on the teeth!”

“focus on orange fish...”
Adverbials “usually their wing colors match their...”

“stems are usually colored as well”
Numerics “2/3 of them are the ones that qualify”

“75% of what I clicked on was a zorb”
Yes/No “nope”, “k”,

“yes”, “okay”
Other “this sounds difficult”

“okay idk what else to say”

wings”) or a generic sentence which lacks explicit quantifi-
cation (e.g., “Morseths have saber teeth” Carlson & Pelletier,
1995). Rather than talking about categories explicitly, par-
ticipants could convey the actual examples they saw using
numerical language (e.g., “4 of them ...”) or describing in-
dividual exemplars (e.g., “white-tail with feathers, white-tail
with no feathers, ...”).

The first author first identified Generics consistent with
other coding schemes used for generic sentences (Gelman,
Goetz, Sarnecka, & Flukes, 2008), then identified Quanti-
fiers, Numerics, and Exemplars, before grouping the remain-
ing messages by the following linguistic constructs: Condi-
tionals, Imperatives, Adverbials, and Yes/No statements. Re-
maining messages were grouped as “Other”. See Table 1 for
examples of messages across these categories.

Figure 7 shows label counts for concept-relevant messages
in our data set. The majority of these messages use gener-
ics or quantifiers to convey information about the category,
with generics being the most common. Examining this dis-
tribution within rules, we find that this pattern holds for all
except disjunction, where quantifiers are more prevalent than
generics. Additionally, we find that the number of generics
(%G) and quantifiers (%Q) amongst concept-relevant mes-
sages does not vary appreciably across the rules: single fea-
tures: (35%G, 21%Q); conjunction (34%G, 22%Q); disjunc-
tion (21%G, 26%Q), conjunctive disjunction (24%G, 21%Q);
disjunctive conjunction (31%G, 22%Q).

The remainder of the responses are mostly made of other
commentary about the concepts and Yes/No responses. It is
important to note that teachers could have directly instructed
the students what to choose (with Imperatives) or described
their specific experience (e.g. “there were three morseths with
blue wings”); they chose instead to use linguistic constructs

that convey generalizations across categories.

Discussion
In this paper we introduce the first experimental paradigm
that permits apples-to-apples comparison of learning con-
cepts from examples and from language. We found that lan-
guage is sufficient for faithful concept transmission, in the
sense that the student who learns from language is nearly as
accurate as the teacher who learned from examples (and as
inaccurate, making similar mistakes). We have also seen pre-
liminary evidence that language is efficient for concept trans-
mission: that it may take less time to learn a concept from
helpful language than to learn it from observations.

Most work on cultural transmission either investigates
well-controlled experimental paradigms but with heavily
restricted modes of transmission (e.g., sharing direct ob-
servations; Efferson et al., 2007; Kalish, Griffiths, &
Lewandowsky, 2007; Griffiths, Lewandowsky, & Kalish,
2013; Kirby, Cornish, & Smith, 2008; Smith, Kalish, Grif-
fiths, & Lewandowsky, 2008; Martin et al., 2014) or use
open-ended modes of transmission (e.g., creating an instruc-
tional video) but on complex tasks where a ground-truth is
difficult to establish (Muthukrishna, Shulman, Vasilescu, &
Henrich, 2014; Caldwell & Millen, 2008; Morgan et al.,
2015). In this paper, we chart a middle course: investigating
a well-studied phenomenon (Boolean concept learning) with
a relatively open-ended mode of transmission (free language
production).

This allows us to perform parallel analyses of what is be-
ing learned and how that knowledge is conveyed. Recent
advances in natural language processing have demonstrated
potential in training and parameterizing classifiers according
to language (Andreas, Klein, & Levine, 2017; Srivastava,
Labutov, & Mitchell, 2018). Meanwhile, there has been a
growing body of research aimed at understanding effective
teaching and learning within Cognitive Science (Chi, Roy, &
Hausmann, 2008; Chi, Siler, Jeong, Yamauchi, & Hausmann,
2001; Kapur, 2014). We believe that bringing the pedgagog-
ical perspective to machine learning will be instrumental to
improving models that learn from language. Importantly, our
novel experimental method allows for scalable data collection
of language-based instruction and provides a clear classifica-
tion task, i.e. training models to learn from discourse and
demonstrate understanding by predicting student responses.

In our experiment, we found substantial evidence that
quantifiers and, especially, generics are used by teachers to
convey their knowledge about concepts. In one sense this
is unsurprising, as these linguistic constructs are about cat-
egory generalization. Yet our results provide the first di-
rect evidence for the connection between these aspects of
language and cultural transmission of knowledge. This in
turn provides initial support for a strong hypothesis about
the mechanisms of knowledge accumulation: The cultural
ratchet arises specifically out of the ability of language to
convey generalizations through generics and quantifiers.
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Abstract

Cognitive science is an archipelago of concepts and models,
with cross-pollination between topics of interest often prohib-
ited by incompatible approaches. Despite this, behavioral per-
formance universally depends on information transmission be-
tween brain regions and is limited by physical and biological
constraints. These constraints can be formalized as informa-
tion theoretic constraints on transmission, which provide nor-
mative predictions across a surprising range of cognitive do-
mains. To illustrate this, we describe a simple variable-length
rate coding model built with Poisson processes, Bayesian in-
ference, and an entropy-based decision threshold. This model
replicates features of human task performance and provides a
principled connection between a high-level normative frame-
work and neural rate codes. We thereby integrate several dis-
joint ideas in cognitive science by translating plausible con-
straints into information theoretic terms. Such efforts to trans-
late concepts, paradigms and models into common theoreti-
cal languages are essential for synthesizing our rich but frag-
mented understanding of cognitive systems.
Keywords: information theory; bayesian inference; rate cod-
ing; response time; learning

Introduction and Background
Cognitive science is home to almost as many models as phe-
nomena they purport to describe. While this sui generis ap-
proach to each problem allows rich and flexible descriptions,
it stands in sharp contrast to the physical sciences, in which
scientists strive for and expect simple unifying principles, like
Newton’s axiomatic laws, from which individual phenom-
ena arise as particular circumstantial manifestations (Chater
& Brown, 2008). In cognitive science, we would say that
Newton’s laws are normative. But where are our first prin-
ciples, from which we can hope to derive a coherent set of
expectations about how cognition should operate? In this pa-
per, we consider information transmission from the environ-
ment, through the brain, to behavior. By constraining both
the channel code and each transmitted signal to be optimally
inferred under normative assumptions, we can construct a
message-transmission system that replicates the Hick-Hyman
law (Hick, 1952; Hyman, 1953) and the Power Law of Prac-
tice (Newell & Rosenbloom, 1981), illuminates the connec-
tion between transmission rate and energy use, and produces
human-like response time distributions. Our information-
theoretic approach affords a principled way to connect lev-
els of analysis (Marr, 1982) by integrating energetic resource
availability, message encoding and decoding schemes, and
task performance characteristics into a single framework.

Applying information-theoretic concepts to the study of
cognition is not new. The years following Claude Shan-
non’s ‘A Mathematical Theory of Communication’ (1948)
produced a wealth of information-theoretic analyses of cog-
nitive function, perhaps the most famous of which resulted
in the Hick-Hyman law (Hick, 1952; Hyman, 1953). This
mathematical approach merged with optimal control theory
to become Cybernetics (Wiener, 1965), which promised to
understand cognition and behavior as just another system of
information transmission, feedback, and control, and subject
to the same constraints. Despite their successes, enthusiasm
about both information theory and cybernetics has not per-
sisted to the present day, partly because cybernetics was ab-
stracted away from biological and neurological characteriza-
tions, and partly because the cognitive revolution led to a fo-
cus on the nature and calculus of representation.

The development of cognitive architectures has resulted
in highly successful models of a broad array of tasks (Sun,
2008; Anderson et al., 1997; McClelland, 2009). In paral-
lel, architecture-free computational principles like Bayesian
inference, prediction, credit assignment, and generalization
bounds on learning have provided a rich framework for nor-
mative thinking (Shiffrin, 2010; Griffiths et al., 2008). Com-
putational architectures form a possible hybrid (Chater &
Brown, 2008), using normative computational principles to
structure a cognitive architecture. However, these principles
are often expressed in mathematical language disconnected
from cognitive and neural architectures, leading to a perva-
sive difficulty in translating between mathematical formula-
tion and plausible neural implementaiton.

The inability to translate between cognitive models directly
results in a lack of knowledge transfer between domains (cog-
nitive processes, language, tasks, etc) and levels of analysis
(high-level models to low-level mechanistic details). For ex-
ample, consider cognitive control as a case-in-point illustra-
tion. ‘Cognitive control’ refers to the deployment of atten-
tion and memory resources in the service of competing tasks.
Each of these (control, attention, and working memory) are
famously limited in capacity and inextricably intertwined in
their roles in executive function. It is well-known that task
practice lessens the effort required to do tasks, lessens atten-
tional load, reduces response times, and decreases the amount
of cognitive control required (Logan, 1985; Moors, 2016;
Pierce & McDowell, 2017). These effects mirror practice
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effects in perceptuo-motor skill acquisition, suggesting there
should be some common principles, but it is currently difficult
to transfer insights gained in the study of one phenomenon to
the study of others. This lack of transferability means that
cognitive science has developed a series of ‘knowledge is-
lands,’ making it almost impossible to share insights across
boundaries.

Even within a single topic, with the same underlying con-
cepts, there are often many theories that are difficult to re-
late to each other. For example, under the shared working
assumption that mental effort is treated as a cost in a cost-
benefit analysis, there is considerable disagreement about the
nature of the cost. Depending on the theory employed, it
may represent an opportunity cost from foregone tasks, a loss
of the intrinsic reward of cognitive leisure, the tendency of
mental effort to discourage use of limited-capacity resources
like working memory, or simply the effort of cognitive con-
trol as a cost per se. Although Shenhav et al. (2017) show
that these ideas share common computational principles, they
also leave it as an open question how to compare them di-
rectly. The difficulty is that cognitive costs are exogenous to
the computational architecture, which means there are many
non-equivalent ways to import them. Without further norma-
tive constraints, there are many rational ways to import com-
putational modeling ideas (like costs), which means each new
model multiplies the translational difficulties for integrating
and relating existing models, constraints and concepts.

Like Shenhav et al. (2017), we take as foundational that
the brain is an information-processing organ, ultimately
transferring information from the environment via sensation,
through the brain, and back into the environment as behav-
ior. Although high level theories of behavior are most eas-
ily expressed in decision- and control-theoretic terms, re-
expressing these theories in information-theoretic terms af-
fords the incorporation of constraints on information process-
ing, as illustrated by work on bounded rationality (Ortega et
al., 2015). Biological constraints involving energy availabil-
ity and noise, when translated into information theory formal-
ism, become normative bounds on the ability to transfer infor-
mation. Similarly, limitations on information available to the
organism provide bounds on task performance. In essence,
information theory provides a well-known, well-understood
and sophisticated language for translating models and theo-
ries that has largely untapped potential. We illustrate this po-
tential by demonstrating its capacity to use common compu-
tational principles to reveal relationships between the seem-
ingly unrelated phenomena of learning rates, response time
distributions, and energetic resource utilization.

Framework
Whatever the task at hand, neurons performing task-related
computations must infer, in a continuous-time and streaming
manner, which ‘messages’ are being transmitted from other
brain regions (Rieke et al., 1999). This inference process is
noisy, imperfect, and time-dependent. We model this process

by performing continuous-time inference about the configu-
ration of stochastic processes, with a stopping criterion based
on a posterior entropy threshold. This approach produces nor-
mative predictions that match the behavioral characteristics
so commonly observed in experimental paradigms, including
the shape of response-time distributions and the decrease in
response times and mental effort as a function of practice.

Characterizing the relationship between inferential con-
straints and transmission efficiency is the domain of infor-
mation theory (Cover & Thomas, 2012). Information the-
ory has been transformative in its applications to electronic
communications, and has provided useful normative predic-
tions for neural characteristics (Bialek, 2012). In particular,
information theoretic constraints underlie the Efficient Cod-
ing Hypothesis (Barlow et al., 1961; Simoncelli & Olshausen,
2001), which suggests that neural connectivity is structured
in such a way as to encode information from the natural en-
vironment with maximum efficiency. Despite widespread ev-
idence for the general validity of this hypothesis in early sen-
sory systems (e.g. Laughlin (1981); Vinje & Gallant (2000);
Pitkow & Meister (2012)), there is still significant uncertainty
as to whether information theoretic principles are relevant at
the level of cognitive processing. Central to this reservation
is a concern that Shannon’s proofs of the existence of arbi-
trarily efficient binary codes rely on his use of ‘block codes,’
in which several messages are combined into a single string
in a way that increases the likelihood of error-free transmis-
sion (Shannon, 1948; Cover & Thomas, 2012). For example,
Luce (2003) writes “Shannon’s way of defining the concept
[of channel capacity] requires that not individual signals be
transmitted but rather very long strings of them so as to be rid
of redundancies. That is rarely possible within psychological
experiments.” Another recent paper raises similar concerns
that Shannon’s method of encoding “requires complex com-
putation and long delays to encode and decode in ways that
achieve optimality,” and that it only “applies to settings of
perfect signal recovery, which may not be possible or even
desirable in biological settings” (Park & Pillow, 2017).

Concerns about the applicability of Shannon’s proofs to in-
formation transmission in the brain confuse levels of analy-
sis (Marr, 1982). It is true that Shannon’s reliance on block-
coding to achieve efficient information transmission is an
implementation-level detail applicable to discrete-time codes
and not to the communication of information between neu-
rons. However, the core conceptual contribution of informa-
tion theory lies not in coding techniques but in providing a
method for quantifying uncertainty. More broadly, the the-
ory serves to characterize the ways in which noise and re-
dundancy affect the reliability, efficiency, and rate of infer-
ence. From this broader perspective, it is surely applicable
to the study of cognitive function. That an understanding of
these factors can lead to the design of optimal codes is impor-
tant, but the specifics of code design in a discrete-time system
do not invalidate the application of general principles to the
study of cognition.
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Figure 1: A codebook converts symbols A, B, etc. from
a symbol alphabet into configurations of firing rates across
Poisson processes n1,n2, .... In this simple model, the code-
book assigns a signal rate λS to a single Poisson process for
a given symbol. Each Poisson process also emits spikes at
a noise rate λN . As Poisson process rates are additive, this
results in a total emission rate of λN +λS for the ‘activated’
process.

In the remainder of this paper, we show an example of a
continuous-time variable length coding mechanism, built us-
ing entropy and inference, that adheres to the principles of
information theory while providing normative predictions of
signal transmission time and accuracy. We emphasize that the
continuous-time nature of the code means that signals are not
discretized. Because of this, we are able to transmit messages
such that transmission time is linearly related to message sur-
prisal, replicating the Hick-Hyman law. By presenting such
a code, we show that appropriate information-theoretic con-
cepts can be applied to the study of neural information trans-
mission.

Implementation

We model information transmission by having a sender en-
code a message into a configuration of Poisson process fir-
ing rates, and a receiver watch the generated spikes until they
are confident about the configuration of underlying rates, and
thus about the content of the encoded message (see Figure 2
for a schematic of the architecture). In more detail, the trans-
mission mechanism consists of an encoder, a transmitter, a
receiver, and a codebook. The transmitter is an array of Pois-
son processes, each continuously producing points or ‘spikes’
independently at a given noise rate λN . This can be viewed
as a basic model of a neural rate code, as neural spikes trains
are often modeled as Poisson processes (Rieke et al., 1999).
The symbols to be communicated are taken from an alphabet
of discrete symbols A . The codebook describes a mapping
between each symbol and a configuration of Poisson rates,

Figure 2: Messages are selected from a source distribution
P. The codebook translates each message into a higher fir-
ing rate for a single process (a simplifying, but not restrictive,
assumption). Poisson processes stochastically emit spikes,
which are observed by the inference process. Bayesian infer-
ence combines the prior distribution Q with the likelihood of
each message given the accumulated observations to produce
a posterior distribution over possible messages.

and the mapping from a given symbol to rate configuration
is carried out by the encoder. For the sake of expositional
simplicity, we restrict the codebook to increasing the rate for
a single Poisson process from the noise rate λN to a signal
rate λN + λS, as shown in Figure 1. The neural analogue is
that each Poisson process is ‘tuned’ to ‘prefer’ a particular
symbol in a 1-hot manner, resulting in a sparse code.

The receiver observes the sequence of spikes emitting
from each Poisson process and continuously attempts to in-
fer which rate configuration is producing the spikes it ob-
serves, and thereby which symbol is being transmitted. We
assume, again for simplicity and consistent with common
information-theoretic analysis, that the receiver knows the
values of both λN and λS. In standard binary or Gaussian
channels, transmission is a discrete vector of amplitudes that
takes a fixed time to transmit. Because of this, practition-
ers typically speak in terms of transmitting bits-per-signal, or
bits-per-second (which are a constant multiple of each other).
In our case, the receiver accumulates information about each
transmission gradually, over time. In effect, observing for a
longer period of time adds redundancy to the signal.

As observations continue, the receiver calculates and con-
tinuously updates a posterior probability distribution over
possible messages, and stops decoding when the entropy of
the posterior reaches a pre-specified stopping threshold. Let
transmitted symbols be treated as realizations of a random
variable X . The receiver begins each transmission at time
t = 0 with an initial uncertainty HQ(X) regarding the sym-
bol being transmitted, reflecting its prior distribution Q(X)
of the possible codewords. As time passes and observa-
tions Yt = {y1, · · · ,yt} are made, the receiver uses Bayesian
inference to update the prior to obtain a posterior distribu-
tion Qt(X |Yt) over messages according to Bayes rule, which
yields an updated posterior entropy HQt (X |Yt). The posterior
entropy decreases non-linearly with time and reflects the de-
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Figure 3: (A) Spikes are randomly emitted by each Poisson
process as a function of time. The lower-most Poisson pro-
cess is firing at a higher λN + λS rate, while the others are
firing at rate λN . (B) The receiver observes the spikes and
infers which process is firing at rate λN +λS. The initial en-
tropy is 2 bits, indicating a weak belief in equal probabilities
for each of the 4 possible signals. The receiver’s remaining
entropy changes as the processes are observed and the poste-
rior probability of each signal is calculated.

gree of confidence that a message has been correctly received.
Transmission stops when HQt (X |Yt) reaches a threshold. Fig-
ure 3 shows the change in posterior entropy over time for an
example transmission.

Variable length transmissions
In the coding scheme introduced here, messages are variable-
length: transmissions of messages with higher surprisal takes
more time than messages with low surprisal, where surprisal
is calculated using the prior probability distribution Q(X) of
the receiver. Recall that the surprisal h(x) of a message x
drawn from a distribution P(X) is the logarithm of the inverse
probability of the message, h(x) = log2

1
P(X=x) .

In ‘entropy codes,’ codeword length (and thus transmission
time of each codeword) is roughly proportional to the sur-
prisal of the encoded symbol in the absence of noise. When
symbols are independently drawn according to a categorical
probability distribution, this can manifest in two ways. In
the first, increasing the number of possible symbols increases
the surprisal of each individual symbol, and consequently the
length of the code needed to encode its value. In the second,
symbols drawn from a categorical distribution with unequal
probabilities will have different surprisal values: more fre-
quently transmitted messages will have lower surprisal and
shorter codes than less frequent messages. We performed

Figure 4: (A) The expected value of the receiver’s entropy
regarding four possible messages decreases as spikes are ob-
served. Increasing the signal power λS changes the informa-
tion transmission rate. (B) Response time distributions vary
as a function of signal power λS, and in each case are well-fit
by a log-normal distribution.

simulations to explore these scenarios in turn using our trans-
mission model.

First, we varied codebook sizes and recorded transmission
times using a fixed entropy threshold and a uniform source
distribution. The nonzero entropy threshold occasionally re-
sults in transmission errors, as we see in human subjects. In-
formation transmitted is thus less than the surprisal of each
individual message, on average. We computed actual infor-
mation transmitted by calculating the mutual information be-
tween transmitted symbols and received symbols, for each
codebook size. The results are shown in Figure 5 and are a
close qualitative match for the Hick-Hyman observations of
human response times reported by Hick (1952) and Hyman
(1953).

We next transmitted messages drawn from a non-uniform
distribution P(X) and measured transmission time for each
message. For each transmission, we measured the informa-
tion transmitted by comparing the receiver’s prior probabil-
ity distribution Q(X) (which equals the source distribution
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Figure 5: Mean transmission time increases logarithmically
with codebook size and linearly with information transmit-
ted, mirroring the Hick-Hyman law. Points represent mean
transmission times and shaded regions represent the 50% and
90% high-density interval of the transmission time distribu-
tion. In each case, messages were transmitted according to a
discrete uniform distribution P(X) over messages, and the re-
ceiver maintained a uniform prior distribution Q(X) = P(X)
of the same dimensionality. For each transmission, an entropy
threshold of 0.3 bits was used, with λS = 4 and λN = 10.

P(X), an assumption we relax below) with their posterior dis-
tribution Q(X |Y ) at decision time. We measured the differ-
ence in these distributions using the Kullback–Leibler diver-
gence between the two distributions, DKL(Q(X |Y )||Q(X)).
The change between the receiver’s prior and posterior dis-
tributions is equivalent to the decrease in the receiver’s sub-
jective uncertainty about which message is being transmitted.
From the point of view of the receiver, this is equivalent to the
amount of information transmitted, in bits. Figure 6 shows a
linear relationship between message surprisal and transmis-
sion time, again qualitatively matching Hyman’s reported re-
sults from human subjects.

Learning to efficiently transmit

As with source-coding systems, expected message transmis-
sion times are faster when more frequently transmitted mes-
sages are transmitted in less time than less frequently trans-
mitted messages. In the our system, this is implemented
by tailoring the receiver’s prior distribution Q to match, as
closely as possible, the source distribution P. This reveals an
epistemic problem from the perspective of the receiver, which
has no a priori knowledge of the source distribution: the prior
must be learned and updated by observing message transmis-
sions. The work of Hick and Hyman has been legitimately
criticized for omitting this discussion (Laming, 2010).

Suppose we allow a receiver with an incorrect uniform
prior message distribution Qinit to update its distribution to
Qobs in a Bayesian manner each time a message is received,
so that the subsequent message transmission starts with the

Figure 6: Mean transmission time increases linearly with ac-
tual information transmitted, echoing similar findings in hu-
mans by Hyman (1953). The quantity of information trans-
mitted is calculated as the the KL-divergence between the
prior distribution Q(X) and the posterior distribution P(X |Y )
at decision time. Messages were drawn from a non-uniform
source distribution P(X). The receiver is assumed to know
this source distribution and maintains a prior distribution
Q(X) = P(X). For each transmission, an entropy threshold
of 0.3 bits was used, with λS = 4 and λN = 10.

updated prior. As the receiver observes which messages
are transmitted and at what relative frequency, Qobs will
become an ever-closer approximation to P, shrinking both
DKL(P||Qobs) and the expected transmission times. Figure
7 shows message transmission times resulting from a uni-
form (naive) prior, a prior equal to the true source distribu-
tion, and an intermediate distribution, as might be expected
to develop from a moderate level of experience with the task.
In each case, response time is linearly related to message
surprisal as calculated using Q. The slope depends on the
amount of experience with the task: as experience accrues
and Qobs approaches P, response times more closely reflect
the transmission frequencies of each message. The varying
slopes are reminiscent of the subject-specific slope found by
Hyman (1953).

As observations accumulate, the rate at which response
times decrease as Q approaches P mirrors the Power Law of
Learning (Newell & Rosenbloom, 1981). The Power Law
of Learning is a ubiquitous finding that task response times
have a power-law relationship with the number of practice
episodes, when averaged across many subjects. We con-
structed a categorical source distribution P with k = 16 cat-
egories, but with most of the probability mass in two cate-
gories. We initialized Qinit to have a Dirichlet prior with con-
centration parameters 2, representing a weak prior belief that
the source distribution is uniform. We simulated N message
transmissions, for N = 2 to N = 1024, taken evenly in log
space. For each value of N, we averaged the results across
1,000 simulated observers, resulting in an expected posterior
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Figure 7: Mean transmission time is a function of the re-
ceiver’s prior belief Q(X) over messages, rather than the
source distribution P(X). In each case, messages were trans-
mitted from the identical source distribution, where A was
most frequent, followed by B, and so on. Each line connects
response times arising from the same prior distribution. A
uniform Q(X) results in a flat line, while a Q(X) = P(X) re-
sults in the steepest slope. In each case, the relationship be-
tween subjective surprisal and response time is approximately
linear. For each transmission, an entropy threshold of 0.3 bits
was used, with λS = 4 and λN = 10.

distribution Qobs after N observations. For each Qobs we then
simulated more 2,000 message transmissions, with messages
drawn with frequency defined by P, and calculated the trans-
mission time for each. As illustrated in Figure 8, the relation-
ship between observations N and transmission time is linear
in log-log space, matching the Power Law of Learning.

The energy connection
Implicit in the above discussion is the notion that informa-
tion transmission costs energy: transmission is initiated when
an encoder assigns signal power λS to a Poisson process. If
each spike costs energy, this implies a rate of energy expen-
diture. As shown in Figure 4, signal power has a direct ef-
fect on the rate of entropy decrease and the resulting trans-
mission times. The framework introduced here allows us to
explicitly describe the relationship between energy use (in
terms of spikes), task novelty (in the form of naive Q esti-
mates), task practice, and response times. If mental effort is
a phenomenological correlate of signal transmission costs, it
also provides a normative explanation for effort decrease as
a function of practice, and provides weight to the currently
tenuous relationship between mental effort and the utilization
of metabolic resources.

Indeed, neural spikes are not free: an estimated 10% of an
adult body’s energy budget is allocated to neural information

Figure 8: Simulated message transmission time decreases as a
function of observations, as the prior Q approaches the source
distribution P. Signals are transmitted with signal strength
λS = 4, noise power λN = 10, and an entropy threshold of 0.3.
Points represent mean transmission times, and the shaded re-
gion represents the 80% high-density interval of the response
time distributions.

processing (Stone, 2018). In light of this, we might expect
the brain to adopt a strategy of driving energetic efficiency
by tailoring codes (represented by codebooks and Q distri-
butions) to individual tasks. As stimulus distributions P are
not equivalent between tasks, this would necessitate the cre-
ation and maintenance of a bank of task-specific codes, with
a power-law response time trend repeated during the practice
of each separate task (Newell & Rosenbloom, 1981). How-
ever, the power-law describes severely diminishing returns
between task practice and transmission efficiency, and tasks
in the world are not as discrete as in laboratory experiments.
Because of this, in a naturalistic setting we might instead ex-
pect the brain to implement some ‘universal’ code (Cover &
Thomas, 2012) that provides moderately efficient transmis-
sion across range of tasks (Vera et al., 2018). If this is the
case, the brain would sacrifice efficiency to achieve flexibility,
which is, after all, a chief characteristic of human cognition.

Conclusion
We have applied the principles of information theory to a sim-
ple rate-coding model of neural information transmission. We
showed that placing normative bounds on the inference of
both source distributions and the content of individual sig-
nals results in a coding mechanism that predicts the Hick-
Hyman Law and the Power Law of Practice, describes a prin-
cipled connection between information transmission and en-
ergy use, and produces realistic response-time distributions.
By utilizing the information-theoretic principles relevant to a
continuous-time system (in particular entropy and inference),
and avoiding those that are not (block-coding), we have pro-
duced a simple and parsimonious explanation of a wide range
of phenomena.
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Abstract 

A key question in early word learning is how infants learn their 
first object names despite a natural environment thought to 
provide messy data for linking object names to their referents. 
Using head cameras worn by 7 to 11-month-old infants in the 
home, we document the statistics of visual objects, spoken 
object names, and their co-occurrence in everyday meal time 
events. We show that the extremely right skewed frequency 
distribution of visual objects underlies word-referent co-
occurrence statistics that set up a clear signal in the noise upon 
which infants could capitalize to learn their first object names. 

Keywords: word learning; natural statistics; egocentric vision 

Introduction 

Infants begin learning object names before their first 

birthday. We know they can do this because infants look to 

the pictures of an object upon hearing the name (Bergelson & 

Swingley, 2012). By these measures, individual infants do 

not know many object names, and their knowledge is fragile. 

Still, it is clear that the start of learning object names begins 

well before infants produce words. By consensus, these 

novice learners must begin learning object names by linking 

the heard word to visually present objects. The ability to do 

this has been demonstrated in experimental studies (e.g., 

Smith & Yu, 2008). The problem is that the everyday visual 

world is much noisier and cluttered than the learning tasks 

presented in the laboratory (Clerkin, Hart, Rehg, Yu, & 

Smith, 2017). Laboratory studies also show that in the period 

just prior to the first birthday, infants have limited attention 

skills and quite limited memories for the learned object-word 

pairings taught in a single laboratory session (Vlach & 

Johnson, 2013). Accordingly, the field lacks a complete 

understanding of how object name learning gets its early 

start.  

Learning depends on both the internal learning 

mechanisms and the data for learning. There are critical gaps 

in current knowledge about the everyday experiences that 

comprise the data for early object name learning. We know 

that parent-naming events are often ambiguous as the visual 

world is cluttered (Cartmill et al., 2013), parents often do not 

talk to the child in the home during natural activities (Tamis‐
LeMonda, Custode, Kuchirko, Escobar, & Lo, 2018), and 

parents only sometimes name the objects in the child’s view 

during naturalistic play (Yurovsky, Smith, & Yu, 2013). Still, 

we know little about the statistical structure of everyday 

experiences across multiple naming events (but see 

Bergelson & Aslin, 2017 for recent work on this topic). Here 

we provide evidence-based estimates on three key statistical 

properties of the learning environment: the frequency 

distribution of heard object names, of seen visual objects, and 

their co-occurrence.  

Rationale   

The frequency distributions of words in parent talk to 

children are known to be extremely skewed with a small set 

of extremely frequent words and a much larger set of very 

rare words (Montag, Jones, & Smith, 2018). A small set of 

words that are heard pervasively – day in and day out – might 

define a constrained set upon which object name learning 

could get its start. Analyses of one large corpus of child-

directed talk, however, suggests that the frequency 

distribution for object names in parent talk is not as skewed 

as other grammatical classes such that there are less dramatic 

differences between the most and least frequent object names 

(Sandhofer, Smith, & Luo, 2000). However, these analyses 

considered all parent talk – not talk within a particular 

context. Parent talk, and the words infants hear, are context 

bound (Montag et al., 2018). The child should be much more 

likely to hear the words “spoon” and “table” at mealtime than 

to hear the words “bat” or “ball.” Thus, the key question for 

the role of very high frequency objects names at the start of 

object name learning may lie in the pervasiveness of a select 

set of objects names within a context. 

There is very little evidence on the frequency distribution 

of visual objects in the natural environment generally or in 

infant everyday experiences in which these objects that must 

be linked to heard names. The evidence that does exist about 

the natural visual environment – from analyses of large 

corpora of photographs (Salakhutdinov, Torralba, & 

Tenenbaum, 2011) and from one analysis of head camera 

images collected by infants in their home (Clerkin et al., 

2017) – suggests that the frequency distribution of object 

categories will be extremely skewed. The latter evidence 

further suggests that the very high frequency categories will 

correspond to the object names that are learned early by 

infants. Common sense and extant evidence from 

photography corpora (Sadeghi, McClelland, & Hoffman, 

2015) also suggests that visual objects will be context 

dependent, with spoons and tables more likely in the 

immediate visual scene at mealtime than bats and balls.  

For novice learners to learn object names, heard names 

must co-occur with referents in their experience. If a few 

object categories and their names are concurrently pervasive 

in infant everyday experiences, then there is a clear statistical 

solution to how object name learning starts – with the 

learning of the names of those few pervasive objects in infant 

experiences. Here we provide direct evidence on this 

possibility and show that the pervasive objects and pervasive 
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names in infant language learning environments do not 

correspond well, but that the learning environment offers a 

different statistical solution to the start of object name 

learning based on the 1) the skewed distributions of visual 

objects and 2) the quantity and quality of word-referent co-

occurrences.  

Method 

The Corpus  

We chose the mealtime context for three reasons: it is 

frequent, occurring on average 5 times a day for infants in 

this age group, the names for objects likely present at 

mealtimes are among the earliest learned concrete nouns by 

normative age of acquisition, and it is a potentially 

challenging context for learning given the sparsity of parent 

talk (Tamis‐LeMonda et al., 2018) – very unlike contrived 

play contexts in laboratories. These mealtime events were 

selected from head cameras1 embedded in hats worn by 14 

infants aged 7 to 11 months at home as they went about their 

daily activities with no experimenters present (see Clerkin et 

al., 2017; Jayaraman, Fausey, & Smith, 2015 for details). 

Parents were not told specific activities to record and were 

told to record any and all activities during the times their 

infants were awake over a period of several days.  

Figure 1 shows example images extracted from the video. 

Critically, the video collected from the head cameras is from 

the infants’ ego-centric view. Thus, we have captured the 

visual environment directly in front of the infants’ faces and 

the objects in it to which infants could be attending in any 

given moment. This ego-centric perspective is highly 

dependent on the infants’ motor abilities, their interests, and 

their location and posture in any given moment. In sum, not 

only are we studying the natural word learning context at 

scale, but we are doing so with reference to the infants’ own 

point of view. 

Any video that included eating or meal preparation was 

included in the mealtime corpus which totaled 16.99 hours of 

footage and consisted of 344 mealtime events with 24.57 per 

subject on average (SD = 20.02).  

                                                           
1 The Looxcie 2 weighs 22 grams and has a 75 diagonal field of 

view. 

Coding  

Visual Objects Still images were down-sampled from the 

video recordings at a rate of 0.2hz (1 image every 5 seconds). 

The 11,549 down-sampled images were then coded by naïve 

adult coders for the 5 most obvious objects in the scene using 

basic level nouns; (see Clerkin et al., 2017 for more details). 

Each image was coded by 4 coders. These adult judgements 

of objects that are in view do not necessarily align with what 

the target infant’s visual attention in the moment; however, 

we use these adult judgements as a way of describing the 

clutter of the natural environment from which infants are 

presumably visually sampling.  

We chose to keep the coders’ responses as intact as 

possible to avoid biasing the data; however, we did clean the 

data in the following ways. First, extraneous adjectives were 

removed (e.g., “baby spoon” was reduced to “spoon”); 

however, if an adjective-word combination was listed in the 

dictionary (e.g., “high chair”), it remained as a unique object. 

Also, different forms of the same object name were collapsed 

(e.g., “cup” and “cups” were both counted as instances of 

“cup”). Finally, words that were overly general (e.g., “food”) 

or clearly did not refer to a concrete object (e.g., “color”) 

were removed entirely. The frequencies of visual object 

categories are reported as the proportion of frames in which 

the object category occurred.  

Object Names All speech in the target infants’ environment 

was transcribed for each mealtime using Datatyvu (Datavyu 

Team, 2014). The audio data was broken down into 5 second 

intervals for ease of coding and to have an appropriate 

comparison to the visual data coded at 1 image every 5 

seconds. It should be noted that infants this age do not talk, 

and thus none of the transcribed speech is the target infants’ 

own vocalizations. Naming events (defined as any moment 

an object name was said) were extracted from the speech 

stream for object names that referred to objects which were 

reported as occurring at least once in the visual scenes. The 

speech transcripts were cleaned as described above for visual 

objects. The frequencies of object names are reported as the 

number of naming instances for each name across the corpus 

Figure 1. Example (non-consecutive) images from the videos recorded during infant mealtimes. 
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as a proportion of the number of 5 second intervals containing 

any speech. 

Age of Acquisition Categories In order to understand how 

the statistics of the natural learning environment relate to 

learning first words, objects were broken down into two age 

of acquisition (AoA) categories. Objects in the First category 

were those named by nouns on the MacArthur Bates 

Communicative Developmental Inventory – MCDI (Fenson 

et al., 2007) and are present in the receptive vocabulary of 

50% of 18-month-old children in the Wordbank repository of 

thousands of MCDI administrations (Frank, Braginsky, 

Yurovsky, & Marchman, 2016). Later objects were all other 

objects given by the coders. 

Co-Occurrence Co-occurrence was coded by three trained 

raters in the laboratory. Each naming instance was located in 

the video, and if during the 5 second interval surrounding the 

naming instance an object which could be called by that name 

was visually present, then the coder recorded there was a co-

occurrence. Approximately 20% of the naming instances 

were coded by all 3 coders. The final judgment for those 

instances was the response recorded by at least 2 of the 3 

coders. The overall percentage agreement between the coders 

was 76.2%, but there were no naming instances on which at 

least 2 coders did not agree. Co-occurrence is reported as the 

proportion of naming instances during which a corresponding 

object was visually present. 

Results 

Table 1 provides the number of fames coded for visual object 

and the total number of 5 second speech intervals, the number 

containing any speech, and the number containing no speech. 

Table 2 provides the number of unique visual objects and 

unique object names. As is apparent, there are many more 

objects than object names, showing considerable selectivity 

in parent talk relative to the wide variety of objects in view. 

                                                           
2 All analyses follow the same statistics pattern when all 1,095 visual 

objects are analyzed. 
3 The distribution is referred to as right-skewed based on a histogram 

of the frequency distribution in which the placement of the most 

We consider the statistical regularities characterizing the 

visual objects, then the object names, and finally, their co-

occurrence. 

Visual Objects 

The number of objects coded in each scene is an indication 

of the clutter present in the natural visual environment. 

Because 4 coders named a maximum of 5 objects each per 

image, the number of possible objects recorded as visually 

present in a scene ranged from 1 to 20. Figure 2 shows the 

frequency distribution of the number of objects per image. On 

average, images contained 8.63 objects (median = 9), which 

supports the long-held idea that the visual world is cluttered 

and that for most naming events there are multiple possible 

referents that a novice learner could consider.  

In total, coders recorded 1,095 unique objects with a total 

of 97,407 object instances. Only 351 of these visual objects 

also occurred as object names in speech, and the reported 

analyses focus on these 351 objects that occurred in both 

modalities2. There were 72,446 total object instances for this 

smaller set. Figure 3a shows the proportion of images in 

which each object category appeared plotted against its rank 

frequency. As in Clerkin et al. (2017), visual objects occur in 

these natural scenes with a right skewed frequency 

distribution3. A small number of objects were pervasively 

present and a large number of objects occurred rarely with the 

20 most frequent object categories (see table 3) accounting 

for 65.47% of all object tokens and the 37 most frequent 

object categories (that is, 10.5% of the 351 objects) 

accounting for 80.18% of all object tokens (see Figure 4). 

Further, the AoA category of an object name is 

significantly related to the frequency of its corresponding 

visual object in the corpus. 97 of the visual objects reported 

by coders (that also appeared in the speech modality) were 

First objects and 253 were Later objects. Mann-Whitney-

Wilcoxon tests were used to compare the frequencies of 

objects in these categories due to the non-normality of the 

frequent objects is reversed on the x-axis as compared to Figure 3. 

We find the rank order plots better visualizations for our purposes.  

Table 2: Object and object name counts

. 

Num Frames

11549Total

Num Speech Intervals

−With Talk

−Without Talk

12237

6833

5404

Table 1: Summary of data coded. 

Figure 2. The frequency distribution of the 

number of objects per image across the corpus. 
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data. Objects named by words in the First category (mean = 

4.50%; Mdn = 0.55% of images) were significantly more 

frequent than objects named by Later words (mean = 0.75%; 

Mdn = 0.10% of images), U = 17609.5, p < 0.00014. 11 of the 

15 most frequent objects belonged to the First category. In 

sum, infants’ visual experience during mealtime is dominated 

by a small set of objects named by very early learned words. 

These results suggest that day-in and day-out experience with 

these visual objects may be important for learning their 

names. 

Object Names 

Talk overall was extremely sparse in these mealtime scenes. 

Any speech, not just speech including object names, only 

occurred in 55.83% of the total video time (see table 1). 

                                                           
4 All reported p-values have been corrected for multiple 

comparisons using the Holm correction. 

Object names in speech occurred even more rarely; 117 

mealtime events contained some speech but none of the target 

object names. The overall lack of talk and object names 

appears quite ordinary and typical when watching and 

listening to content these natural videos. These infants do not 

yet talk themselves, and the speech stream thus often contains 

terms of endearment and comments directed to the baby, talk 

between adults, and periods of silence as the parents and their 

infants go about their daily lives. 

Nonetheless, 351 unique object names were said during 

mealtime activities across 1,941 naming events. It should be 

noted that only a small number of object names were said – 

about a third of those possible based on the list of visual 

objects. Figure 3b shows the number of naming instances as 

a proportion of the 5 second intervals containing any talk for 

each object name plotted against its rank frequency. Though 

the distribution of object talk is not uniform, it does not 

follow the pattern of extreme skewness as does the objects or 

might be predicted by the statistics of natural language more 

generally. The 40 most frequent object categories accounted 

for only 48.79% of all object name tokens, and the 123 most 

frequent object names (that is, 35.04% of all object names) 

were required to account for 80.06% of all object names 

tokens. Though object names do not appear equally 

frequently, there is not a clear set of object names that 

dominate talk about objects in this natural mealtime context. 

Note in Figure 4 the difference in the shapes of the curves for 

the proportions of unique visual objects and object names that 

account for all tokens. 

A large proportion (97 out of 118) of the First words whose 

visual objects appeared in the images occurred in the auditory 

domain as well. Proportionally fewer of the possible Later 

objects had names that were said during mealtime; only 253 

of the 977 Later object names were spoken in the corpus. As 

with the visual objects, object name frequency is significantly 

related to AoA. Object names from the First category (mean 

 

Figure 3. a) The proportion of images in which each visual object category appeared against its rank. b) 

The number of naming events for each object name as a proportion of the number of 5 second intervals 

containing any speech. Inset is the same information plotted with a smaller y axis. 

a)  b)  

Visual Objects

table

AoA

shirt

chair

window

bowl

cup

bottle

cabinet

door

pants

picture

counter

tray

spoon

toy

First

First

First

First

First

First

First

Later

First

First

Later

Later

Later

First

First

Object Names

egg

AoA

cheese

paper

book

camera

water

juice

milk

paint

spoon

table

dog

page

plate

watch

First

First

First

First

Later

First

First

First

Later

First

First

First

Later

First

First

Table 1: Top visual objects, object names, and their AoAs. 
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= 0.14%; Mdn = 0.07% of speech intervals) were spoken 

more frequently than object names from the Later category 

(mean = 0.06%; Mdn = 0.03% of speech intervals), U = 

16765.5, p < 0.0001. 12 of the 15 most frequent object names 

belonged to the First category. This, unsurprisingly, supports 

the idea that hearing objects names is important for learning 

them.  

Correspondence and Co-occurrence 

If the objects present most frequently in the visual 

environment were those whose corresponding names occur 

frequently in the environment, it would seem that the problem 

of breaking into learning first object names is solved. 

However, while there is a highly significant positive 

relationship between visual frequency and spoken frequency 

for object-name pairs, the relationship is very weak5, τB = 

0.17, p < 0.0001. As a demonstration, the 40 most frequent 

objects and the 40 most frequent object names only have 11 

                                                           
5 Kendall’s rank correlation used instead of Pearson’s product 

moment correlation due to the non-normality of the data. 

items in common, and only 1 object name appears in the top 

10 for frequency in both modalities. In sum, the pervasive 

visual objects are not named by words that are especially 

frequent in this context. 

The number of co-occurrences between objects and their 

names even by our generous measure was very low. 213 of 

the 351 object-name pairs never occurred in the same 5 

second interval. For the 138 that co-occurred at least once, 

the maximum number of co-occurrences was 34 (mean = 

4.43; Mdn = 2). Because raw co-occurrence is so rare and the 

timescales of visual objects and spoken words are so 

different, we turned co-occurrence, reported here as the 

proportion of naming instances in which a corresponding 

object was visually present. 

Figure 5 shows the co-occurrence proportion by rank order 

for the 138 object-name pairs that ever co-occurred. For co-

occurrence, we do not find a right skewed frequency 

distribution but rather one that is bimodal. Further, co-

occurrence proportion shows a statistical relationship with 

AoA that is opposite to those found for visual objects and 

object names individually. The co-occurrence proportion of 

the Later category (mean = 60.55%, Mdn = 62.95%) was 

significantly higher than that of the First category (mean = 

48.83%, Mdn = 50%), U = 1662, p < 0.01. In fact, 26 Later 

objects co-occurred with their corresponding names 100% of 

the time whereas only 6 First objects did so. This result on its 

face seems surprising because there is a strong theoretical and 

empirical basis for the idea that co-occurrence is key to 

learning object-name mappings.  

However, when the frequency of object names in the 

corpus are considered, it becomes clear why co-occurrence 

proportion was related to AoA in this direction. Co-

occurrence proportion is in fact negatively correlated with 

word frequency, τB = -0.41, p < 0.0001. This means that for 

many object names which were said perhaps only once, the 

corresponding visual objects were likely to be present during 

that naming instance. It makes sense that objects that are 

unusual in the context would be more likely to be present in 

the moment when those objects’ names are said. For example, 

“fire extinguisher” (which is logically an unusual item for the 

mealtime context) was named once and the object was 

present, giving it a co-occurrence proportion of 1. This result 

suggests that it is important to consider not only the quantity 

of the co-occurrences (frequency) but also the quality of co-

occurrence between object-names pairs (co-occurrence 

proportion) as it is unclear how much very young infants 

could learn from a single co-occurrence. 

Quantity and Quality: Strength 

To assess the quantity and quality of the co-occurrence of 

object-name pairs, we created a new compound measure of 

co-occurrence strength which was the proportion of naming 

instances during which the visual object was present -  

multiplied by the number of mealtime events in which both 

Figure 4. The proportion of types accounting 

for the proportion of tokens at intervals of 0.1. 

Figure 5. The proportion of naming instances 

in which a corresponding object was visually 

present. Only object-name pairs which ever co-

occurred are shown. 
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the visual object and the object name ever occurred. This 

measure allows us to approximate the potential learnability 

of an object-name pair.  

Figure 6 shows the strength of the object-name pairing 

plotted against rank strength. Here we see again the skewed 

distribution with a small number of object-name pairings 

with relatively high strength values and a large number of 

object-name pairings with low strength values. We also again 

find a significant difference between strength of First object-

name pairs (mean = 1.69, Mdn = 1) and Later object-name 

pairs (mean = 0.51, Mdn = 0.35), U = 3203, p < 0.0001. 13 

of the 15 highest strength values belong to object-naming 

pairing for the First AoA category. This result suggests that 

the quality and quantity of co-occurrences between object-

name pairs may be important for infants breaking into object 

name learning. Critically, the strength of the co-occurrence is 

underlain by the skewed frequency of visual objects.  

Discussion 

The results taken together do not support the hypothesis that 

many may have theorized: object names that occur frequently 

have pervasive referents, and these word-referent pairs occur 

frequently and simultaneously, thus providing a simple 

statistical solution for how infants can learn their first object 

names. Instead, the evidence of the present study suggests a 

different solution underlain by the pervasiveness of a few 

object categories in the visual environment. Object names 

that refer to visually pervasive objects may be said relatively 

rarely, but because the objects are visually pervasive, 

whenever the object name is said, the object is likely in the 

infants’ view. The extremely skewed frequency distribution 

of objects in view in the mealtime context thus makes each 

naming event for those objects count – as demonstrated by 

our measure of co-occurrence strength.  

Studies of the word-learning environment for children have 

typically focused on the frequency and diversity of the words 

(Hart, 1991; Montag et al., 2018). However, investigations of 

the natural environment including the visual domain are 

taking off with the advent of small, wearable cameras. 

Another recent at-home study which also examined the 

frequency of objects and their names in the natural 

environment found that the overall proportion of object-name 

co-presence predicts 6-month-olds’ performance in an in-

laboratory word comprehension task (Bergelson & Aslin, 

2017). This result supports the idea that the statistical 

structure of the learning environment is directly related to 

word learning. Our results further suggest that the visual side 

of the learning problem specifically may be critical to the 

start of object name learning because it sets up the 

opportunities for learning moments. 

The frequency distribution of visual objects during a 

particular context (mealtime in the present case) partitions 

potential referents into two potential classes for young 

learners –those that are typically present in this context and 

those that are not; classes that will be different for each 

context. Those that are persistently present provide a selective 

visual foundation to linking the objects to their referents.  
The foundation for the early learning of object names may 

be contexts – such as mealtime, dressing, getting into the car 

– that occur day-in and day-out and are characterized by the 

same object categories repeatedly and pervasively present. 

These routines may bias the linking of even sparse naming 

events to those visually pervasive objects. Contexts that 

repeat in this way, along with the statistical structure of visual 

objects in those contexts, may be a critical contributing factor 

for early learning. This idea is consistent with the evidence 

on the value of repeatedly reading infants their favorite 

pictures books in supporting word learning (Horst, Parsons, 

& Bryan, 2011). For older children, the diversity of words in 

the learning environment may matter most for vocabulary 

development (Montag et al., 2018), but for the earliest 

learners, consistency of the visual content of repeated 

contexts may be the key.  

In sum, the co-occurrence statistics of object names and 

their referents in the contexts comprising the early natural 

learning environment, as underlain by the extremely right 

skewed frequency distribution of visual objects, set up a clear 

signal in the noise which infants may use to learn their first 

object names.  
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Abstract 

Frequency of reward and average reward value are two types 
of reward information we utilize when making decisions 
between two alternative options. Often, these two pieces of 
information coincide with the highest value option, however, 
when a slightly less valuable option is presented more 
frequently, standard reinforcement learning models such as the 
Delta model can make incorrect predictions. This paper 
explores the discrepancy in these predictions by way of 
simulating relevant behavioral tasks with the Delta model, the 
Decay model, and a novel Bayesian model based on the 
Dirichlet distribution.  We then compare model predictions to 
behavioral data from some of the same tasks that were 
simulated. The Delta model provides a poor fit to the data for 
each of the three presented tasks when compared to the Decay 
model and the two Bayesian learning models, because it 
predicts a bias toward options with higher average reward, 
while the Decay and Bayesian models predict a bias toward 
reward frequency. The Decay and Bayesian models show a 
distinct similarity in prediction and fits to the data for most of 
the tasks.  This is because both models predict a bias toward 
reward frequency rather than average reward magnitude, 
despite different computational formalisms. However, we also 
note some interesting discrepancies between the Decay and 
Bayesian models which will show that in some cases, the 
frequency of reward may be more important than the reward 
value. 

Keywords: Frequency Effect; Reinforcement Learning; 
Bayesian Learning 

Introduction 

A wide variety of decisions we make on a day-to-day basis 

are repetitive in the sense that we may choose one option over 

another fairly consistently. Whether these decisions are about 

choosing name-brand over store-brand items, restaurant A or 

B, or taking the freeway versus the side roads to work, it’s 

possible that all of these decisions are computed by common 

algorithmic mechanisms. These decisions could be based on 

the average outcome of each option, for example, taking the 

freeway to work is nearly always faster than taking the side 

roads. However, supposing that a new bypass opens that is 

predicted to greatly reduce travel time, a person may still be 

inclined to choose the freeway since they have had many 

more experiences with the freeway being adequate enough. 

Learning rules in formal models of cognition allow us to 

make sense of human decision-making processes and get a 

glimpse as to why people make the decisions they do in 

situations such as the examples above. In this paper, we 

compare the choice predictions of four learning models: the 

Delta rule, the Decay rule, and two Dirichlet distribution-

based models, on a set of decision-making tasks.  

The Delta rule, in particular, is a widely used learning rule 

across many domains of cognition. This model predicts that 

people will have a preference for options that have the 

greatest expected value, based on representations of the  

average reward for each option, amongst alternative options 

(e.g. Busemeyer & Stout, 2002; Daw et al., 2006; Gluck & 

Bower, 1988; Jacobs, 1988; Rescorla & Wagner, 1972; 

Rumelhart & McClelland, 1986; Sutton & Barto, 1981; 1998; 

Widrow & Hoff, 1960; Williams, 1992).  

In contrast to the Delta rule’s average value 

representations, the Decay rule learns to represent the 

cumulative value of each option based on the frequency with 

which it has been rewarded.  Psychologically, the Decay 

model assumes that that decision outcomes are stored in 

working memory and decay over time. The Decay model 

utilizes a decay parameter which diminishes the expected 

value of each option at each timepoint. Therefore, the option 

with the greatest expected value in this model would be the 

option which is most frequently rewarded; in most cases 

(Erev & Roth, 1998; Yechiam & Busemeyer, 2005; Yechiam 

& Ert, 2007). 

In a departure from these two standard learning models, 

this paper presents a Bayesian model which simply learns 

how many times each option has a positive outcome rather 

than learning expected values. The Dirichlet Probability 

Distribution (DPD) model holds in memory a representation 

of how many times each option has produced a reward, 

regardless of value. Each of these values are used as the 

concentration parameter values in the distribution which 

allocates more probability mass to the options which have 

been rewarded most frequently. Thus, when attempting to 

choose between options, the option more frequently rewarded 

will have a higher probability of being chosen.  

The sole use of the Dirichlet distribution as the base for this 

model may seem atypical considering it is more often used in 

Bayesian data analysis for determining the clustering, or 

categorization, of data (e.g. Griffiths, Sanborn, Canini, & 

Navarro, 2008), or in Dirichlet Process or Mixture models 

(Navarro, Griffiths, Steyvers & Lee, 2006; Gershman & Blei, 

2012; Sims, Neth, Jacobs, & Gray, 2013), or as the prior for 
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another Bayesian model. However, choice outcomes and 

options map nicely onto the Dirichlet distribution 

concentration parameter and categories respectively. Simply, 

the categories are effectively predetermined by the number of 

choices and the probability mass for each category is 

distributed as a function of the number of rewarding 

observations.  

As an attempt to design a Bayesian analog to the Decay 

model, the DPD model was extended to include a decay 

parameter. The Dirichlet Probability Distribution Decay 

(DPD-Decay) model decays the memory representations of 

the total number of rewarded outcomes at each timepoint. 

Critically, this means that additional uncertainty is introduced 

into the probability distribution. As the memory of rewarded 

outcomes for each option tends towards 0, all options would 

have an equiprobable chance of being selected.  

While Bayesian models have been criticized in prior 

research for being simple vote-counting models (Jones & 

Love, 2011), it’s possible that, if each rewarding event is 

considered a vote, the DPD model will predict similar 

behavior as the Decay model.  This could allow the DPD 

model to predict a bias toward frequency of reward rather 

than average reward magnitude, and recent work suggests 

that reward frequency exerts a larger effect on behavior than 

average reward magnitude (Worthy, Otto, Cornwall, Don & 

Davis, 2018). Thus, DPD models with sparse priors may 

represent a cognitive process of predicting the probability of 

a rewarding event, based solely on reward frequency.  Our 

goal in the present work is to verify these predictions and 

examine the degree to which they are consistent with human 

behavior.  

Difference Between Models 

The key difference between the Delta model and the reward 

frequency models (Decay and Dirichlet) is in how each type 

of model utilizes reward information to make predictions 

about future choices. The Delta model uses average reward 

information whereas the Decay and Dirichlet models utilize 

the frequency of rewards to formulate a cumulative 

representation of reward. This is important as, per Estes 

(1976), probability judgements about the choices are heavily 

influenced by the frequency that each option produces a 

reward, rather than the average reward value. As such, it 

would be expected that the when rewarding options are 

shown in disproportionate frequencies, the predictions of the 

Delta model and the Decay and Dirichlet models will diverge. 

It would be expected that tasks which consist of rewards of 

varying frequency and value would show differences in each 

models’ predictions.  

To ascertain the general predictions of each model, and 

determine the differences therein, three tasks which have 

previously examined the effect of reward frequency and 

value were selected to be simulated using each model.  To 

verify the predictions made by each model and task 

combination, each of the models were fit to human data 

collected from each of the three tasks.   

Experimental Tasks 

Iowa Gambling Task. The Iowa Gambling Task (IGT; 

Bechara, Damasio, Damasio, & Anderson, 1994) allows four 

options to be chosen from, each with their own reward 

schedule over the course of 100 total trials. The reward 

schedule for the IGT can be found in Table 1 below. 

Traditionally, the task consists of two options which result in 

a net loss of points, and two options which results in a net 

gain. Options A and B offer participants larger rewards on 

gain trials, but also larger losses on loss trials resulting in an 

overall net loss for both options. In contrast, Options C and 

D give smaller rewards and losses resulting in an overall net 

gain for these two options. Within each 10-choice block for 

each option, the frequency of gains differs between options. 

Options A and C show infrequent gains relative to Options B 

and D which are more consistent. Strictly looking at the net 

positive options, Options C and D should be the favored 

decks. However, as Bechara et al. observed, there is a 

preference for choosing Options A and B which have a higher 

frequency of larger rewards, but results in a net loss of points.  

  
 A B C D 

Trial IGT SGT IGT SGT IGT SGT IGT SGT 

1 100 200 100 100 50 -200 50 -100 

2 100 200 100 100 50 -200 50 -100 

3 -50 200 100 100 0 -200 50 -100 

4 100 200 100 100 50 -200 50 -100 

5 -200 -1050 100 -650 0 1050 50 650 

6 100 200 100 100 50 -200 50 -100 

7 -100 200 100 100 0 -200 50 -100 

8 100 200 100 100 50 -200 50 -100 

9 -150 200 -1250 100 0 -200 50 -100 

10 -250 -1050 100 -650 0 1050 -250 650 

Net -250 -500 -350 -500 250 500 200 500 

Table 1: Reward schedules for both the IGT and SGT by 

Option Letter. This reward schedule is repeated over the total 

100 trials. 

 

Soochow Gambling Task. The Soochow Gambling Task 

(SGT; Chiu et al., 2008) is a task similar in procedure to the 

IGT aside from a change in the reward schedule of each 

option. The reward schedule for each option in the SGT can 

be found in Table 1 below. Similar to the IGT, over the course 

of 100 trials, participants are able to select one of four 

options. Options C and D are still the options with an overall 

net reward gain, and likewise with Options A and B having a 

net reward loss. Both Options A and B offer participants 

consistent gains of 200 or 100 points, respectively, followed 

by a large loss which results in a net loss for both options. 

Inversely, Options C and D show consistent losses followed 

by a large gain resulting in a net gain. The gains and losses 

shown in Options A and B are exactly opposite in terms of 

sign. Where A and B show consistent rewards followed by a 

large loss. Importantly, the best options according to overall 

gain are also the options with the most consistent losses. 
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Similar to the IGT, there is a large preference for Options A 

and B indicating that frequency of rewards, despite losses, is 

a good predictor of choice preference(Byrne & Worthy, 

2016). 

 

Binary Choice Task. This task, as presented by Worthy et 

al. (2018), assesses the effect of reward frequency in a 

different manner. The task consists of four options, A, B, C, 

and D, where each have a respective probability of giving a 

reward of .65, .35, .75, .25. The possible rewards for this task 

were binary in that the reward totals were either 1 or 0. The 

task pairs Options A and B, and Options C and D, together 

and presents them randomly interspersed during training. 

Importantly, there are 100 AB trials and 50 CD trials which 

creates a situation where frequency of reward and average 

reward are in opposition if it is learned that Option A and C 

are the most rewarding within the respective pairs. The task 

then consists of 25 transfer trials for each of the remaining 

pairs of A, B, C, and D and bars further reward feedback. 

Worthy et al. observed that human participants were more 

likely to prefer Option A over C on AC pairing trials 

indicating that despite having a smaller average reward, 

option A is preferred over option C because of more frequent, 

and therefore higher cumulative reward.  

Method  

Model Formalisms 

The Delta and Decay rule used in this paper are identical to 

those described in Worthy et al. (2018). Reward (r) and the 

expected value (EV) is calculated for each j option on each t 

trial. The Delta rule is described in Equation 1 as: 

𝐸𝑉𝑗,𝑡+1 = 𝐸𝑉𝑗,𝑡 + 𝛼 ∙ (𝑟𝑡 − 𝐸𝑉𝑗,𝑡) ∙ 𝐼𝑗                 (1) 

Where Ij is a variable which indicates option choice via a 

value of 1 if j option is chosen on trial t, and 0 otherwise. This 

formulation ensures that only the expected value for the 

chosen option is updated, and the other options, whether seen 

or not, are not updated. Alpha (𝛼) is denoted as a learning rate 

parameter where 𝛼 ∈ (0,1). For the Delta model in particular, 

𝛼 modifies the (𝑟𝑡 − 𝐸𝑉𝑗,𝑡) prediction error by giving greater 

weight to more recent outcomes with higher 𝛼 values, and 

lower 𝛼 values giving less weight to recent outcomes and 

producing little change in the expected value on each trial. 

Similarly, the Decay model tracks changes in expected 

value, but instead of updating the expected value by way of a 

prediction error the raw reward value is used. However, this 

does not mean that expected value consistently increases for 

each chosen option. On each trial, each j option will be 

modified by a decay parameter (A; A ∈ (0,1)) regardless of 

whether the j option was seen or chosen. Critically, this 

means that the expected value for each option will decay over 

time and only increase when a reward for that option is 

received. Thus, the more frequent the reward, the greater the 

expected value. The formula for computing the change in 

expected is described below in Equation 2: 

𝐸𝑉𝑗,𝑡+1 = 𝐸𝑉𝑗,𝑡 ∙ 𝐴 + 𝑟𝑡 ∙ 𝐼𝑗                       (2) 

As mentioned above, the DPD model focuses solely on the 

number of times each j option is rewarded (r) and uses that 

information to update a Dirichlet probability distribution. 

Simply, a Dirichlet distribution takes k, the total number of j 

options, and their respective number of rewarded trials (𝛾𝑗) 

and produces a probability density (xj) for each j option 

where 𝑥𝑗 ∈ (0,1) 𝑎𝑛𝑑 ∑ 𝑥𝑗 = 1𝑘
𝑗=1 . In other words, the 

updating of the distribution occurs in two steps as described 

in Equations 3 and 4: 

𝛾𝑗,𝑡+1 = 𝛾𝑗,𝑡 + 𝑟𝑡 ∙ 𝐼𝑗                            (3) 

𝑓(𝑥1,𝑡+1. . . 𝑥𝑘,𝑡+1|𝛾1,𝑡+1. . . 𝛾𝑘,𝑡+1) =
1

𝐵(𝛾)
∏ 𝑥𝑗,𝑡

𝛾𝑗,𝑡−1𝑘
𝑗=1    (4) 

where 𝐵(𝛾) =
∏ 𝛤(𝛾𝑗)𝑘

𝑗=1

𝛤(∑ 𝛾𝑗
𝑘
𝑗=1 )

 

On each t trial, the reward value for one option is added to 

the chosen option which will distribute slightly more 

probability density to the chosen option. To determine choice 

with this model, a random sample is taken from the Dirichlet 

distribution which results in a simplex, or a vector of 

probabilities which sum to 1. Critically, this implies that as 

one option is rewarded more frequently, the probability value 

sampled from the distribution will tend to be of greater value, 

and thus the option is more likely to be chosen. Taking a 

single sample, rather than integrating over the posterior, was 

a decision made with the assumption that this would better 

reflect human performance as the beliefs surrounding each 

option is uncertain. As more information is learned about an 

individual option, the belief about the positive outcomes of 

that option will become more certain, and thus the probability 

of choosing that outcome will be more consistent. 

An extension of the DPD model presented above, the DPD-

Decay model includes the decay parameter (A) which decays 

the total number of rewarded trials (𝛾𝑗) for each option on 

each trial similar to how the Decay model functions. By 

decaying the rewarded trial values, the model increases the 

amount of uncertainty and allows a greater range of possible 

values to be randomly sampled. This also implies that the 

more frequently an option is seen the more likely it is to 

overcome the consistent decay, such that it is granted more 

probability density over time. Expressly, the decay parameter 

in this equation will weigh the model for or against more 

recent outcomes. In Equation 5, 𝛾𝑗,𝑡+1 is computed for every 

j option and are subsequently inserted into Equation 4. 

𝛾𝑗,𝑡+1 = 𝛾𝑗,𝑡 ∙ 𝐴 + 𝑟𝑡 ∙ 𝐼𝑗                          (5) 

For the Delta and Decay models, the predicted probability 

that any given option j is chosen C on a particular trial t, 

P(Cj,t), is calculated by way of a Softmax choice function 

shown in Equation 6 below: 

𝑃|𝐶𝑗,𝑡| =
𝑒

𝛽∙𝐸𝑉𝑗,𝑡

∑ 𝑒
𝛽∙𝐸𝑉𝑗,𝑡𝑁(𝑗)

1

                            (6) 

Like the Yechiam & Ert (2007) Softmax application used 

in Worthy et al. (2018), 𝛽 = 3𝑐 − 1; 𝑐 ∈ (0,5),  where c is an 

inverse temperature parameter which dictates how often the 

option with the higher expected value is chosen. When c 

approaches 0, choices are more random. Inversely, choices 

are weighted more heavily towards the options with the 
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highest expected value as c approaches 1. Simply, this choice 

function determines the probability of choice by computing 

the proportion of the scaled chosen option divided by the sum 

of the scaled choice and alternative choices.  

Simulation and Behavioral Methods 

For each task, 10000 simulated participant datasets were 

created with randomized model parameters of 𝛼, A, and c, for 

applicable models, for each participant. Each of these 

parameters were drawn from a uniform distribution: U(0,1) 

for learning and decay rates, and U(0,5) for the inverse 

temperature parameter. These parameters were kept 

consistent across models within each simulation, but each 

model ran independently in regard to the choices made and 

corresponding output. The output for each of these 

simulations was the probability of choosing each outcome, 

the expected value of each option, and the choices made on 

each trial.  

 For each task, human behavioral data was collected from 

an undergraduate population with sample sizes of ~50 for 

each task. Each participant completed the experiment in a 

Psychtoolbox 2.54 environment on a Windows computer 

running Matlab. The general procedures used in the 

simulations were identical to the computerized version of the 

tasks that participants completed, however graphical and 

counterbalancing considerations were needed for real 

participants that are detailed below for each experiment. 

  In both the IGT and SGT, the options were displayed 

onscreen as a deck of cards, each with their own random 

color. The onscreen location of each individual deck was 

displayed from left to right in a random arrangement of 

Options A-D for each participant. Upon selecting a deck, the 

participant would be shown the card being overturned and the 

amount of reward. Additionally, participants were given a set 

amount of points in an onscreen bank that would increase or 

decrease depending on the outcome.  

For the Binary Choice Task, each of the four options were 

randomly assigned a fractal image randomly drawn from a 

pool of 12 images. Like the IGT and SGT, the order of the 4 

selected images were randomly arranged on screen from left 

to right. However, Options AB and CD were always together 

as a pair, but the order of each pair varied for each participant. 

As an example, some potential orderings of the option could 

include: ABCD, CDAB, BACD, etc. Each selection of an 

option showed the option turning over to reveal the outcome 

of that trial. Importantly, and consistent with the simulations, 

reward feedback only occurred during the initial 150-trial 

training phase, but the transfer phase, participants were only 

shown a gray outline around the option they chose instead of 

the point value they would have seen on the training trials.  

Results 

Simulation Output 

For the IGT and SGT, the simulation metric that will be 

reported is the overall performance on the task as computed 

by subtracting the sum of the net loss options from the sum 

of the net gain options: (A+B)-(C+D). For both the IGT and 

SGT, the performance of each model, and the actual 

participant data for comparison, is plotted over all 100 trials 

in Figures 1 and 2. In the IGT the Delta model was more 

likely to choose the net gain options over the more frequently 

rewarding net loss options. The Decay model also showed a 

preference for the net gain options overall. Both the DPD and 

DPD-Decay models showed no preference for either the net 

gain or loss options, but this behavior also seems to be 

reflected, albeit slightly, by the actual participant data which 

rapidly varies in preference for either the net gain or loss 

options over time.  

 
Figure 1: Average performance on the IGT by model and 

actual participant data. 

 

 In the SGT, the Delta model again showed a preference for 

the net gain options, but the Decay model now shows 

behavior that greatly reflects the behavior shown by actual 

participants. Both the human and simulated Decay model 

datasets showed an initial preference for the net loss options, 

but over time began to tend towards the net gain options 

which is consistent with prior research as previously 

discussed. The DPD and DPD-Decay model again showed 

similar results, but in the SGT, they show a large preference 

for the more frequently rewarding net loss options.  

 
Figure 2: Average performance on the SGT by model and 

actual participant data. 

 

For the Binary Choice Task, as shown in Figure 3A-B, each 

model was able to learn that there is a more rewarding option 

in each option pair. However, the rate at which the most 

rewarding, or best, option was identified and overall 
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preference for the best option differed between models. The 

Delta model showed the greatest preference for the best 

options out of the four models, followed by the DPD, Decay, 

and DPD-Decay. When solely learning which option has the 

largest average reward, it is no surprise that the Delta model 

outperforms the other three models. However, when looking 

at the choice predictions for the remaining option pairs, as 

shown in Figure 3C, a difference between the models emerge. 

The Delta model predicts more C choices, whereas the 

Decay, DPD, and DPD-Decay models all predict more A 

choices. The remaining option pairs showed relatively similar 

predictions since there was not as big of a discrepancy 

between an options’ expected value and number of 

observations. The large peaks in the DPD model are 

indicative of the frequency of outcome observations for each 

pair. The more outcomes observed, the more likely the model 

will choose the same option.  

 

 
Figure 3: A and B show the probability of choosing the best 

option, either Option A or C respectively, over the course of 

150 trials. C shows the predicted probability of choosing the 

best options if the simulated participant were to see the 

remaining pairings of options. 

Behavioral Fits and Comparisons 

Participants were independently recruited for one of the three 

tasks from an undergraduate sample. Each participant was 

reimbursed for their time with partial completion of course 

credit. For each task we recruited comparable sample sizes: 

52 participants for the IGT; 58 participants for the SGT; 50 

participants for the Binary Choice Task.  

Each of the models were directly fit to the behavioral data 

by maximizing the likelihood of each model via the ‘optim’ 

function with a ‘L-BFGS-B’ method in R. The decay and 

inverse temperature parameters were included as free 

parameters for the respective models. The Delta and Decay 

models utilized two free parameters while the DPD-Decay 

model used only the decay parameter. No free parameters 

were used in the DPD model for the IGT and SGT. When 

fitting the Binary Choice Task data alone however, the DPD 

and DPD-Decay model included an inverse temperature 

parameter. In this task, for both models, the probability 

simplex was drawn from the Dirichlet distribution, as 

previously discussed, but the values relevant to the two 

observed options were used in the softmax function to 

compute a choice probability for each option which summed 

to 1.  

 A Bayesian Information Criterion (BIC; Schwarz, 1978) 

value was computed for each individual participant within 

each model and used to calculate the average BIC and 

subsequent BIC differences between each model. BIC was 

calculated by calculating the deviance of the model and 

adding additional error based on the number of free 

parameters k and number of trials t: −2𝑙𝑛(𝐿) + (𝑘 ∙ 𝑙𝑛(𝑡)).  
Lower BIC values indicate a better fit to the behavioral data. 

As per Wagenmakers (2007), the BIC difference between the 

models can additionally be used to calculate a Bayes Factor 

which would show evidence for one model over another: 

BF10,Model1=exp((BICmodel2-BICmodel1)/2). 

Table 2 below details the BIC values of each model for 

each task along with the best fitting parameters for each 

model. For the IGT and Binary Choice Task, the Decay 

model shows an advantage over the other models. For the 

IGT, the next best fitting model was the DPD with a BIC of 

268.9 which is shown to be significantly different from the 

Decay model with a Bayes Factor (BF) of 3.33. BFs with 

values greater than 3, or less than 1/3, are believed to have 

adequate evidence to reject the null hypothesis that the 

models are equal. The Decay model in the SGT was the next 

best fitting model behind the DPD-Decay model with BIC 

values of 269.8 and 267.8 respectively. This difference, with 

a BF of 2.7416, shows that both models are similar in their 

fits of the SGT data. In the Binary Choice Task, the Decay 

model BIC (279.7) is closely followed by both the DPD and 

DPD-Decay models; 282.8 and 280.5 respectively. The 

difference between the Decay and DPD model is significant 

with a BF of 5.1984, but there is not enough evidence to say 

that the Decay and DPD-Decay models are different, BF = 

1.5115.  

 Table 2: Average Model Values 

  Best a or A Best c BIC 

IGT Delta .1009 .3756 278.0677 

 Decay .6857 .00538 266.4658 

 DPD N/A N/A 268.8740 

 DPD-D .0218 N/A 273.8372 

SGT Delta .4613 .3564 274.4863 

 Decay .5268 .0019 269.7714 

 DPD N/A N/A 282.9299 

 DPD-D .1454 N/A 267.7543 

Binary Delta 0.3821 1.5120 296.2498 

 Decay 0.1765 0.4978 279.7178 

 DPD N/A 1.3088 282.8315 

 DPD-D 0.8770 1.5673 280.5440 
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It was also of interest to determine the proportion of 

participants whose data were best fit by each model. To do 

this, each non-redundant combination of models for each task 

was examined to figure how many participants’ data were 

best fit by each model. Table 3 presents the proportion value 

for each model combination by task. The first model listed in 

the pair is the reference model. Values shown in bold 

represent that the reference model was the best fitting model 

of the pair.  

As expected from the data in Table 2 for the IGT, the Decay 

and DPD model best fit the largest proportions of 

participants, and the DPD model showed the best fit overall. 

For the SGT, despite showing a large average BIC value, the 

Delta model showed a better fit slightly more participants 

than the Decay model, but not the DPD-Decay model. 

Additionally, the Decay model, rather than the DPD-Decay 

model, was the best fitting model for most participants. In the 

Binary Choice Task, the DPD models better fit more 

participants than the Decay model which showed the better 

fit on average. The DPD model showed the overall highest 

proportion best fit on this task as well.  

 

Table 3: Proportion Best Fit 

By Model IGT SGT Binary 

Delta<Decay .44 .54 .38 

Delta<DPD .06 .54 .30 

Delta<DPD-D .44 .48 .38 

Decay<DPD .33 .66 .40 

Decay<DPD-D .71 .62 .44 

DPD<DPD-D .83 .47 .70 

Overall IGT SGT Binary 

Delta .05 .24 .26 

Decay .24 .34 .16 

DPD .53 .22 .44 

DPD-D .07 .19 .14 

Discussion 

The simulations and experiment presented in this paper 

examined the influence of reward frequency and probability 

on choices made in a decision-making task. Four models 

were compared that made both convergent and divergent 

predictions about which option was more valuable in three 

tasks which examine the effect of reward frequency. As 

similarly described by Worthy et al. (2018), there were 

divergent simulation predictions between the Delta rule and 

the reward frequency models where the Delta rule more often 

chose the options with the higher value rewards, whereas the 

reward frequency models, the Decay, DPD, and DPD-Decay, 

tended to choose the options which resulted in the most 

frequent rewards. The data from the experimental tasks 

showed that human participants more often chose the more 

frequent options in most cases. This behavior is in support of 

the predictions of all three of the reward frequency models. 

This is shown in which models where the best fitting model 

on average. For all three tasks, the best fitting model was a 

model which attended more towards the frequency of reward 

rather than the average value of reward. However, there also 

seems to be some individual differences in people who attend 

more towards average reward value instead of the frequency 

of reward. This can best be seen when looking at the SGT and 

Binary Choice Task. For both of these tasks, there was a 

sizable subset of participants who were best fit by the Delta 

model than the other three models.  

There also exists some important differences in the reward 

frequency models despite their similarities. One of which is 

between the DPD and DPD-Decay models and the Decay 

model. When looking at Figure 1, the performance values for 

the DPD and DPD-Decay model are fairly constant about 0. 

This is most likely due to how the Dirichlet models compute 

reward. These models do not consider reward value, only the 

observation of a reward. Looking back to the reward 

schedules for the IGT, one net gain and one net loss option 

have fairly frequent rewards. With how the performance 

calculation considers the number of choices, and how the 

Dirichlet models determine choice by the number of observed 

rewards, you can begin to see how the number of net gain and 

loss choices would be about equal, and thus result in a 

performance of ~0. This can also be seen in the simulation of 

the SGT as well in Figure 2. The two Dirichlet models show 

an overwhelming preference for the net loss options. Again, 

looking at the reward schedule, the net loss options are the 

only options that have a frequent occurrence of reward as the 

net gain decks only give a reward every 5 successive picks. 

These two Dirichlet models may aid in making sense of the 

“Deck B” phenomenon in the SGT where people tend to 

choose the net loss options since the reward most frequently. 

However, the average fit for the DPD model was quite large. 

Which suggests that pure frequency of reward is not entirely 

predictive of choice on the SGT. With the DPD-Decay model 

showing the best average fit, this suggest that the frequency 

of reward is predictive, but that the overall representation of 

the total number of rewarded outcomes decays over time. 

For the DPD model in particular, another difference be 

seen in Figure3C with the large peaks in the option pair 

predictions relative to the other models. Like detailed for the 

IGT and SGT, these peaks can be explained by looking at the 

rate of reward and frequency of observing the option pair. For 

these option pairs the best option is the one that is either the 

most frequently seen and/or rewarded. Thus, the model 

would be more likely to choose these options. 

However, this also ties in to the major conclusion of this 

paper, that despite not utilizing any reward information, 

these Dirichlet models are able to fit human behavioral data 

on three tasks relatively well solely using a count of 

rewarding outcomes. Generally, choice selection may 

depend on reward value when all other factors are equal, but 

if rate of reward changes or if there is knowledge of number 

of previously rewarding outcomes, frequency of reward may 

take precedence over reward value. Though, like shown by 

the proportion of best fitting models, there may be a subset 

of people who focus on the overall reward value regardless 

of the frequency of the outcomes.  
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Abstract 

One of the central goals of language evolution research is to 
explain how systematic structure emerges. A cultural 
evolutionary approach proposes that the systematic structure of 
language arises from the use and transmission of language. 
Motamedi and colleagues (2016) investigated the influences of 
these forces on the evolution of language by generating an 
artificial sign language in the lab. Over several generations of 
new learners and their interactions, an initially unsystematic set 
of silent gestures developed markers for functional categories 
of person, location, object, and action. Here we describe results 
of two studies that compared the learnability of solo-produced 
pantomimes versus signals that had been transmitted and used 
by interlocutors. In these studies, participants saw an artificial 
sign and judged whether an English translation matched or 
mismatched the meaning of the sign. In an event-related 
potential (ERP) study, we found that mismatches elicited larger 
negativities in the ERP than matches. However, those effects 
were most reminiscent of the classic N400 response in the 
evolved signs. This study provides a clearer view on how the 
mechanisms that drive language evolution change language to 
adapt to a learner’s brain. 
 

Keywords: artificial language learning; gesture 
comprehension; iterated learning 

Introduction 
All languages demonstrate systematic structure. From the 

smallest units of sound, to words and phrases, the elements 
of language are not independent. These elements are part of 
a structured system that allows infinite expressive power 
through the reuse and recombination of those elements. 
Systematicity is a property found across the world’s 
languages, but how does this systematic structure of language 
emerge?  

One answer to this question appeals to the forces of cultural 
evolution. Languages, like species, change over time and are 
subject to similar evolutionary processes found in biological 
evolution, such as variation, selection, and inheritance. In this 

view, language is under selectional pressures from human 
cognitive biases and adapted to suit the human brain 
(Christiansen & Chater, 2008). The nature of linguistic 
structure would then be a product of the learning and 
processing constraints that derive from underlying neural 
mechanisms.  

One avenue for investigating the emergence of linguistic 
structure is to examine natural languages in the early stages 
of linguistic development. Although most communities have 
long-established languages, emerging sign languages such as 
Nicaraguan Sign Language (NSL) provide us with the 
opportunity to observe how linguistic features arise in a new 
human communication system. In the 1970s, the Nicaraguan 
government established a school for deaf children. These 
children, who communicated with their families via 
idiosyncratic systems of home sign, were brought together 
and organically created a novel sign language (Kegl, 1994). 

In the case of NSL, each incoming cohort to the school has 
shaped the language and furthered its development (Goldin-
Meadow et al., 2014). One example of the emergence and 
development of grammatical structure in NSL can be found 
in the use of spatial modulation to mark semantic roles in 
sentences expressing events with both an agent and a patient. 
Senghas (2003) found that signers from the earliest 
generation did not use the direction of spatial modulation in 
their interpretation of such sentences, whereas signers from 
the next generation made systematic use of spatial location to 
determine who the patient of the event was. The properties 
and structure of NSL thus changed as a function of 
transmission to learners of the next generation, as well as its 
use between signers who had already acquired the rules of the 
grammar.  

Recent laboratory studies of artificial languages likewise 
suggest that the cultural evolutionary mechanisms of 
transmission and interaction play pivotal roles in the 
emergence of language and its change over time (Kirby, 
Cornish & Smith, 2008; Kirby, Griffiths, & Smith, 2014; 
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Tamariz, Cornish, Roberts, & Kirby, 2012). Motamedi and 
colleagues (2016) investigate the impact of interaction and 
transmission on the evolution of language by generating an 
artificial sign language in the lab.  

In their study, participants in an initial “seed” generation 
were asked to innovate gestures for concepts that vary across 
six themes and four functional dimensions. These concepts 
were selected to share salient semantic features across a 
thematic category (Figure 1). Signs from the initial seed 
generation demonstrate high iconicity, use a lot of space, 
require a lot effort, are redundant, and use similar salient 
features of the theme (e.g. handshape that represents scissors 
cutting). Moreover, the seed generation signs do not contain 
features to distinguish across functional categories within a 
theme.  

 
Figure 1: Chart of the 24 concepts from Motamedi et al. 

(2016)  
 
In an iterated language learning paradigm, new sets of 

participants came into the lab and were trained on the 
gestures produced by the seed generation, and played a 
communication game using those gestures. The signs 
produced by one of these participants in a dyad was then 
passed on to two new participants as the training set. The 
process was repeated for five generations in a transmission 
chain. This design was intended to create pressure for 
participants to develop a way to communicate the different 
dimensions of category structure. Concepts from within a 
thematic category were similar such that a pantomime of each 
might be difficult to distinguish across the functional 
categories. 

Motamedi and colleagues (2016) show that under the 
pressures of communication and transmission, highly iconic 
and lengthy manual signals signs change to become more 
efficient and less iconic. After several generations of 
interaction, the authors also found the recycling of gestures 
within a theme. Most impressively, Motamedi and colleagues 
(2016) found the emergence and retention of functional 
markers that make it possible to distinguish between concepts 
within a theme. For example, in one dyad, signers pointed at 
themselves to indicate that the subsequent gesture depicted a 
person.  

Despite their iconic origins, many of the functional 
markers are not transparent to new learners, and must be 

learned as arbitrary constructs. In one artificial sign system, 
for example, the marker for action involved the raising of the 
right hand with the palm facing out. The emergence of 
functional markers after several generations of learners in this 
study is used as a proxy of the emergence of systematicity in 
linguistic structure.  

The Present Study 
Here, we examine whether the communicative advantages 

of the final generation signs outweigh the benefit of the 
iconicity in the signs from the seed generation. Accordingly, 
we present videos of gestures from Motamedi et al. (2016) in 
a word learning task in which we compare participants’ 
ability to learn the meanings of the iconic seed generation 
signs versus those of the more language-like final generation 
signs. We are interested in the processing and learning of 
language-like artificial signs, thus we applied methods 
typically used to study processing of natural languages. 

In our study, participants viewed signals from the artificial 
sign language followed by English words that either match or 
mismatch the signal’s meaning. We focus on two different 
ways in which the word presented can mismatch the meaning 
of the sign. A Thematic Mismatch is a violation of the 
thematic category, (e.g. present the sign for hairdresser, then 
display the word “chef” on the screen), whereas a Functional 
Mismatch is a violation of the functional category (e.g. 
present the sign for hairdresser, followed by the word 
“scissors”).  

In manipulating the generation that the sign comes from, 
we are able to see if there are differences between learning 
improvised pantomimes versus the signs evolved in the lab. 
We expect that identifying a mismatch in the thematic 
violation cases would not be difficult for either seed signs and 
evolved signs, as all signs displayed some degree of iconicity, 
and were readily distinguishable between thematic 
categories, (e.g. food versus photography). However, we 
expect that identifying a functional violation would be more 
difficult because signs within a theme share many iconic 
features associated with their thematic category, and may not 
provide features that would allow a learner to distinguish 
between the four potential meanings.  

In Experiment 1, we measured response times and 
accuracies in a behavioural artificial language learning task. 
In Experiment 2, participants complete the same task as in 
Experiment 1, while we measure event-related potentials 
(ERP) time-locked to the onset of the English translation of 
the sign. We are particularly interested in the N400, ERP 
component known to index difficulty associated with 
meaning processing or retrieval from semantic memory, and 
is produced reliably across a range of stimuli (Kutas & 
Federmeier, 2011). Even within 14 hours of instruction, 
second language learners show larger N400 responses to 
pseudowords compared to real words that were semantically 
related or unrelated to primes, indicating that limited 
exposure is sufficient for new language learners to gain 
sensitivity to lexical status and word meaning (Mclaughlin, 
Osterhout, & Kim, 2004). ERP studies allow for real-time 
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indexing of brain activity and provide multidimensional data 
about stages of processing. Thus, the N400 component is an 
appropriate dependent measure to more precisely examine 
the learning of an artificial language, in such a way that is 
comparable to studies investigating the processing of natural 
language. 

Experiment 1 
In Experiment 1, we taught participants signs from the 
Motamedi et al. (2016) in an explicit language learning 
paradigm. We used a within-subjects design in which each 
participant learned 12 signs from the seed generation and 12 
signs from the final generation. In this behavioural 
experiment, we measured accuracy and reaction time in 
making judgements about whether the sign and word 
presented on the screen matched. We predict that accuracy 
will be greater for final generation signs after participants 
have learned the mappings, and reaction times will decrease 
as participants learn the system. We also expect lower 
accuracy rates and slower response times for Functional 
Mismatches. 

Methods 

Participants 
We recruited 38 healthy undergraduates (15 M, 23 F). All 
gave informed consent and received course credit for 
participating. English was the primary language of all 
participants. One participant was excluded for not completing 
the experiment. 

Materials and Procedure 
Each trial began with a fixation cross for 500ms, followed by 
the video that varied from 2 - 7 seconds depending on signal 
length. A word then appeared until a key press was made, 
with feedback displayed on the screen for 500ms until the 
next fixation cross. We used two different stimulus lists 
varied across participants so that each concept was conveyed 
once with a seed gesture, and once with a final gesture. 
Participants watched videos of signs from either the seed 
generation or final generation. After each video was played, 
a word was displayed on the screen. The word either matched 
or did not match the meaning of the previously shown sign. 
When the word was displayed on the screen, participants 
pressed a key to indicate whether or not the word matched the 
sign. Participants received immediate feedback after every 
response they made. Feedback was given by the words 
“correct” or “incorrect” presented on the screen, and an 
accompanying tone. The experiment comprised 4 blocks of 
48 trials each. 

 
 

 
Figure 2: Example of a single trial. 

Results and Discussion 

Accuracy 
A mixed effects logistic regression model was used to 
analyze the accuracy rate data. Models were constructed with 
the lme4 package in R (R Core Team, 2013; Bates et al., 
2015). Analysis involved construction of a generalized linear 
model to predict accuracy with experimental Block (First, 
Second, Third, Fourth), Generation (Seed, Final), and 
Condition (Match, Thematic Mismatch, Functional 
Mismatch) as categorical predictors, and all interactions. 
Models were fit with random intercepts for participants and 
for items (i.e. the videos that were played). Mean accuracy 
rates in each experimental category are shown in Figure 3. 
Model estimates are listed in Table 1. Analysis suggests 
accuracy rates improved as the blocks progressed. 
Experimental condition also impacted performance as 
accuracy rates were highest for Thematic Mismatches, lower 
for Functional Mismatches, with intermediate performance 
on the matches. The interactions between Condition and 
Block result because the learning curve was steeper for the 
more difficult Functional mismatches than the Thematic 
mismatches. 

Participants’ performance show that Functional 
Mismatches are more difficult to judge as being mismatches. 
The signs within a thematic category share many of the same 
features with respect to handshape and movement, such that 
differentiating between signs within a theme is ambiguous. 
Initially, participants perform worse in trials with final 
generation signs, which suggests that the markers contained 
in these signs are not transparent to new learners. There 
appears to be more arbitrariness to the form of a marker, i.e. 
an open hand facing palm forward denoting an action would 
not be considered an obvious association. However, after 
several trials participants quickly learn to map the marker to 
action verbs, as demonstrated by the increase in accuracy by 
the second block. 
 

Table 1: Mixed effects logistic regression for accuracy 
rates. 

 
 Estimates t-value 
Mismatch Type:   

Functional -0.251 -8.94 
Thematic 0.186 6.86 

Generation 0.0134 0.600 
Block 0.0520 9.10 
Functional:Block 0.0554 5.51 
Thematic:Block 0.0456 -4.51 
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Figure 3: Accuracy rates between generation and condition 

across blocks. 

Response Latency 
To predict response latencies, we fit a linear mixed effects 
model in R (R Core Team, 2013) using the lmer() function of 
the lme4 package (Bates et al., 2013). Predictor variables 
again included sign Generation (Seed, Final), Condition 
(Match, Thematic Mismatch, Functional Mismatch), and 
experimental Block (First, Second, Third, Fourth) and all 
interactions. Random intercepts were included for 
participants and item videos. Mean response latencies from 
each experimental category are shown in Figure 4 with model 
estimates listed in Table 2. Analysis revealed an interaction 
between Condition and Block, due to reaction times 
decreasing over the course of experimental blocks. Mismatch 
type also impacted performance as response latencies were 
consistently fastest for Thematic Mismatches, slower for 
Functional Mismatches, with intermediate performance for 
the Matches. Functional Mismatches also displayed the 
slowest average response latency across blocks, especially in 
the case of judging signals from the seed generation.  

The results show that most of the learning of the mappings 
between sign and concept occurs during the first block of the 
experiment, as demonstrated by the slope of the response 
latencies from Block 1 to Block 2. As expected, participants 
respond faster to Thematic Mismatches since mismatches are 
easier to detect when the gestures produced clearly relate to 
different themes. Responding to seed signals is slower 
overall, which suggests that more processing occurs in 
deciding whether the signal matches the word presented. 
Seed signs are characterized as being longer in length, 
repetitive, pantomime-like, and lacking in defining features 
that would differentiate them from similar concepts. Between 
Blocks 3 and 4, there is a decrease in reaction time for 
decisions about final generation signals, suggesting that 
participants have mastered the meaning of the functional 
markers. 

 
Table 2: Linear mixed effects model for response latency. 

 
 Estimates t-value 
Condition -0.573 -7.57 
Generation -0.573 0.726 
Block -0.208 -10.4 
Condition:Block 0.132 4.91 

 
 

 
Figure 4: Mean response latencies between generation 

and mismatch type across experimental blocks. 

Experiment 2 
 
In Experiment 2, we measured neural responses in an 
artificial language learning paradigm. If the participant has 
learned the sign, we would expect mismatches to elicit a 
larger N400 response than matches. If final generation signs 
are indeed more learnable than those from the seed 
generation, we might expect to see larger amplitude N400 
effects on words following the final generation signs than 
those following words from the seed generation.   

Methods 

Participants 
We recruited 34 healthy undergraduates at UCSD (12 M, 22 
F). All gave informed consent and received course credit for 
participating. English was the primary language of all 
participants. Two participants were excluded, one for 
excessive sneezing and sniffling, and one who was unable to 
complete the experiment within the allotted two hours. 
Participants completed surveys on handedness, neurological 
damage, and medication. 

Materials and Procedure 
Materials and procedure were adapted from the behavioural 
study outlined in Experiment 1. 
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EEG Data Collection 
EEG was collected from 29 scalp sites using an ElectroCap 
mounted with electrodes. Scalp electrodes were referenced to 
the left mastoid. Blinks were monitored from an electrode 
below the right eye and referenced to the left mastoid. 
Horizontal eye movements were monitored via two 
electrodes placed beside each eye. Electrical impedance was 
reduced to less than 5 kohms. EEG was recorded and 
amplified using SA instrument bioelectric amplifier. The 
EEG was digitized at a sampling rate of 512 Hz. Recording 
took place in a dimly lit, sound-attenuated, electrically-
shielded chamber. Participants were seated in front of a CRT 
monitor for stimulus presentation. 

Results and Discussion 
ERPs were time locked to the onset of potential meanings 
(viz. English words) presented after each signal. Mean 
amplitude was measured relative to a 100ms pre-stimulus 
baseline in two time windows: 300-500ms post-onset, 
intended to capture the N400 component, and 500-700ms 
post-onset, intended to capture the P600. In each interval, 
analysis involved repeated measures ANOVA with factors 
Condition (Match, Thematic Mismatch, Functional 
Mismatch), Generation (Seed, Final), Block (First, Second, 
Third, and Fourth), and two factors intended to capture the 
location of electrodes across the scalp, Hemisphere (Left, 
Right), and Region (Frontal, Frontocentral, Central, 
Centroparietal, Parietal, Occipital). Where relevant, the 
Greenhouse Geisser correction has been applied to p-values; 
however, for clarity, we report the original degrees of 
freedom.  

Omnibus analyses revealed (among other effects) the 
presence of significant complex interactions with Block in 
both intervals (N400: Condition x Generation x Block x 
Hemisphere F(6, 186) =  3.36, p < 0.05; P600:  Condition x 
Generation x Block F(6, 186) =  2.76, p < 0.05, Condition x 
Generation x Block x Hemisphere F(6, 186) =  2.5, p <0.05), 
motivating separate follow-on analyses within each block. 

 
N400 Analysis of ERPs in the first block revealed a main 
effect of Condition (F(2, 62) = 8.2, p<0.05), but no 
interaction with Generation (F(2,62) = 1.03, n.s.). By 
contrast, analysis of the second block suggested condition 
effects differed for signs from the seed versus the final 
generation (Condition, F(2,62) = 18.4 p<0.001; Generation, 
F(1,31) =  4.2, p<0.01; Condition x Generation, F(2,62) = 
3.26, p<0.05; Condition x Generation x Hemisphere, F(2, 62) 
= 7.8, p<0.01). In the third block, Condition effects were 
present (F(2,62) = 14.3, p<0.001, but were similar for seed 
and final generation signals (Condition x Generation, F(2,62) 
= 1.2, n.s.). In the final block, Condition effects (F(2,62) = 
7.3, p<0.01) displayed a different topographic profile 
following seed versus final generation signs (Condition x 
Generation x Region, F(10,310) = 3.48, p<0.01). 

Figure 5 shows the topography of ERPs in the N400 
interval for each type of mismatch following seed (upper 
panel) and final (lower panel) generation signs. Whereas the 

seed generation mismatches display a right frontal maximum 
reminiscent of ERPs to imageable words (see, e.g., Swaab, 
Baynes, & Knight, 2002), the topography of the final 
generation mismatches resembles the classic N400 that 
results from associative priming (e.g., Steinhauer, et al., 
2017).   

 
Figure 5: Difference in amplitude for latency between 300-

500ms. 
 

P600 Among other effects, follow up analyses revealed the 
presence of complex interactions between Condition, 
Generation, and topographic factors in blocks 1, 2, and 4 
(Block 1: Condition x Generation, F(2 ,62) = 4.55, p<0.01; 
Block 2: Condition x Generation, F(2,62) =  4.27, p<0.05, 
Condition x Generation x Hemisphere, F(2,62) = 7.23, 
p<0.001 ; Block 3: Condition x Generation x Region 
F(10,310) = 1.99, n.s.; Block 4: Condition x Generation x 
Region, F(10,310) = 6.96, p<0.001). Figure 6 shows the 
topography of mismatch effects (match – mismatch) 500-
700ms following seed and final generation gestures. 
 

 
Figure 6: Difference in amplitude for each condition 
compared to the matches in the 500-700ms window 
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Figure 7 shows ERPs recorded at Pz, a parietal site where 

N400 and P600 are typically prominent. In the first half of 
the study, the N400 dominates the ERP response to these 
words, with more clear differentiation between the three 
conditions being evident in the seed generation signs. In the 
latter half of the study, N400 effects are overlapped by late 
positivities related to the task of classifying the word as a 
match or a mismatch. Following both seed and final 
generation signs, matches elicit a positivity that peaks earlier 
than the thematic mismatches (viz., seeing “chef” after the 
sign for hairdresser). For functional mismatches (viz., seeing 
“hair salon” after the sign for hairdresser), however, ERPs in 
the seed generation are more similar to the matches, whereas 
functional mismatches in the final generation are more 
similar to the thematic mismatches.  

General Discussion 
Here, we examined the ways in which a culturally-evolved 

artificial language may be advantageous to learn, in 
comparison to a system of individually iconic 
communication signals that lack internal systematicity. We 
found that signs from the more evolved system included both 
a consistent and concise iconic gesture to indicate thematic 
category, and a gesture that indicates whether the concept is 
a person, place, object, or action. Although the behavioral 
study suggested participants readily learned both the evolved 
final generation signs and the less systematic seed ones, the 
real-time brain response revealed processing differences for 
the two kinds of signs.  

Our ERP study revealed a classic N400 response to signs 
from the final generation, indicative of semantic processing. 
By contrast, the iconic seed generation signs elicited 
concreteness effects that suggested participants exploited a 
learning strategy that involved mental imagery. Moreover, 
the brain response to final generation signs suggested 
participants could distinguish between closely related 
concepts such as hairdresser and scissors, whereas such 
concepts were treated identically in the seed generation.  

Previous studies have also found that when used in a 
referential or communicative game, signs representing 
concepts from a set of shared semantic relations become more 
arbitrary, schematized, and systematized across dimensions 
(Theisen, Oberlander, & Kirby, 2010). We see that the 
introduction of a system of schematized signs influences how 
the meaning signs are retrieved from memory via ERPs to 
violations in signal-meaning pairings. 

 

 
Figure 7: ERP waveforms recorded at electrode site Pz. 

 
A recent study by Nölle and colleagues (2018) 

demonstrated how individuals use context and the 
environment to shape the signals they use together. The 
authors found that interlocutors were more likely to produce 
systematically-related signals rather than signals that refer to 
some idiosyncratic feature of the referent, even when both 
strategies were afforded by the environment. In the present 
study, we found that the brain’s real time response displayed 
a greater sensitivity to subtle distinctions within a thematic 
domain for meanings conveyed by final generation signs that 
contained the functional markers. Systematic signs are easier 
to remember and rely more on abstraction to identify like 
features that can be referred to similarly. 

Our current design adapts videos generated in a previous 
study as stimuli. This choice may introduce confounds 
relating to processing and working memory, as all seed 
generation signs were longer than the final generation signs. 
The seed signs are highly iconic pantomimes of actions 
associated with the theme, thereby resulting in longer signals 
that lack specificity. Consequently, the differences we found 
between learning seed and final signs might reflect 
differences in length of seed versus final generation signs, 
differences in the degree of structure, or some combination. 
Future research should seek to unconfound these factors.  

Results of the present study support that artificial language 
shaped by interaction and transmission is more learnable. As 
such, it is in keeping with research that reports differences in 
the brain response in learners of another culturally-evolved 
artificial language (Verhoef, Walker, Marghetis, & Coulson, 
2018). Signs evolved through interaction and transmission 
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display systematic structure, and this systematic structure 
better suits the learner’s brain.  
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Abstract 
Do people adjust their conversational strategies to the specific 
contextual demands of a given situation? Prior studies have 
yielded conflicting results, making it unclear how strategies 
vary with demands. We combine insights from qualitative and 
quantitative approaches in a within-participant experimental 
design involving two different contexts: spontaneously 
occurring conversations (SOC) and task-oriented conversations 
(TOC). We systematically assess backchanneling, other-
initiated repair and linguistic alignment. We find that SOC 
exhibit a higher number of backchannels, a reduced and more 
generic repair format and higher rates of lexical and syntactic 
alignment. TOC are characterized by a high number of specific 
repairs and a lower rate of lexical and syntactic alignment. 
However, when alignment occurs, more linguistic forms are 
aligned. The findings show that conversational strategies adapt 
to contextual demands. 

Keywords: conversational dynamics; common ground; 
interactive alignment; backchannels; repair 

Introduction 
How do we continuously update mutual knowledge and 
coordinate behaviors in conversations? The issue has been 
defined as grounding: a constant evaluation of whether we 
share mutual beliefs, knowledge, and understanding 
sufficient for the purpose of the situation. (Clark & Brennan, 
1991). A diverse set of disciplines have approached this issue, 
from psycholinguistics to conversation analysis, highlighting 
several conversational strategies for coordinating 
interactions. Interlocutors might ensure common ground by 
subtly confirming their understanding (backchanneling), 
more explicitly signaling misunderstanding and correcting 
each other (conversational other-repair), or by re-using each 
other’s linguistic forms (linguistic alignment). Even if such 

conversational strategies are often viewed as ubiquitous in 
interaction, one might expect them to vary considerably 
across individuals, and more importantly across different 
types of contexts. Conversations involve a plurality of 
linguistic and social games, from exchanging specific 
information to maintaining a social reputation; from 
coordinating decisions to ensuring a comfortable emotional 
environment (Fay et al., 2018; Fusaroli, Rączaszek-Leonardi, 
& Tylén, 2014; Fusaroli & Tylén, 2016). Thus, different 
contexts of conversation might afford different grounding 
strategies. For instance, conversations between pilots and 
airport control towers require a higher need of referential 
precision, and therefore more strict monitoring of the 
common ground (Prinzo & Britton, 1993). On the contrary, 
small talk and dinner conversations are arguably more 
focused on building and maintaining social relations, 
possibly not necessitating the same need for detailed and 
continuously monitored referential precision. Indeed in more 
casual chats people have been observed to not always realize 
that they are talking about different things, or even that they 
shift partners mid-conversation in an instant messaging 
system (Dunbar, Marriott, & Duncan, 1997; Galantucci & 
Roberts, 2014). Thus, different conversational contexts may 
require different dimensions and degrees of coordination.  

Understanding how the joint use of multiple conversational 
strategies adapts to the activity at hand is crucial. Cognitive 
science, management, and other disciplines are increasingly 
focusing on how to promote effective team coordination and 
the conversational patterns underlying it (Fusaroli & Tylén, 
2016; Pentland, 2012; Wiltshire, Butner, & Fiore, 2018). 
Clinical research is investigating how social impairment 
develops and unfolds across a wide spectrum of 
neuropsychiatric conditions, and atypical conversational 
strategies are likely to play a role in impaired social 
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functioning (Bolis, Balsters, Wenderoth, Becchio, & 
Schilbach, 2017; Lavelle, Healey, & McCabe, 2014; McCabe 
& Healey, 2018; Wadge, Brewer, Bird, Toni, & Stolk, 2018). 
Further, effective human-computer and human-robot 
interactions also require a detailed understanding of when 
and how grounding happens (Loth, Jettka, Giuliani, & De 
Ruiter, 2015). However, conversational strategies have 
traditionally been investigated across different disciplines, 
with varied methodological approaches and foci. Only 
recently the field has started combining qualitative insights 
with quantitative methodologies (De Ruiter & Albert, 2017; 
Dingemanse & Enfield, 2015) and systematically assessing 
the role of contexts and activities (Fusaroli et al., 2017; 
Healey, Purver, & Howes, 2014; Reitter & Moore, 2006). In 
the following, we define the relevant conversational 
strategies and how they might be adjusted to different 
contextual demands, and then present a study systematically 
assessing them across two different contexts: Spontaneously 
Occurring (SOC) and Task Oriented Conversations (TOC). 

Conversational strategies and context 
By conversational strategies, we here refer to a heterogeneous 
set of linguistic behaviors often investigated separately under 
the headline of backchannels, repair and alignment. 
Backchannels are defined as head nods or short utterances 
consisting of a word (e.g. ’uh-huh, ‘yes’, ’okay’), or short 
sentences, often repeating the previous turn (e.g. A: ’let’s 
meet Monday at 10’, B: ‘Monday at 10’). They do not take 
the floor in a conversation, but are used to exhibit interest, 
understanding, and perhaps even agreement with the 
speaker's utterance. Thus, backchannels signal a shared 
common ground and that the speaker can continue with their 
speech turn (Bangerter & Clark, 2003; Jurafsky, Shriberg, 
Fox, & Curl, 1998; Schegloff, 1982; Yngve, 1970). 
Therefore, (Hypothesis 1, H1) we would expect that TOC 
involve a higher occurrence of backchannels than SOC. This 
hypothesis is supported by previous observational work 
(Fusaroli et al., 2017). Note that here we focus on vocal 
backchannels only.  

The second strategy that we examine, conversational 
repair, also creates feedback on the level of mutual 
understanding between interlocutors. However, while 
backchannels mainly provide positive feedback, 
conversational repair works by providing negative feedback, 
signaling impending communicative trouble and a need to re-
establish common ground. Repair can take different linguistic 
forms and levels of specificity in the feedback to the 
interlocutor. Here we focus on other-initiated repair, where a 
listener indicates trouble in hearing or understanding. The 
listener can use a repair request to signal that there is a 
problem with understanding, and thereby invite the speaker 
to clarify what was said and “repair” mutual understanding. 
Previous studies have defined three categories of repair 
(Dingemanse et al., 2015; Fusaroli et al., 2017). Open repair 
refers to problems on a general level of understanding, where 
the repair initiation does not specify what or where the 
problem is (e.g., huh?, what?, what did you say?). In contrast, 

restricted repair points to specific parts of the previous 
sentence that need clarification (e.g., ‘who?’ or ‘where?’). 
Restricted suggestions are even more specific, pointing to the 
specific source of uncertainty and offering a suggestion as to 
how to repair it (e.g., ‘did you say Monday?’ or ‘X or what?’). 
A previous study has found that repair is more frequent in 
TOC, due to the higher demand for precision in mutual 
understanding (Colman & Healey, 2011). Therefore, we also 
expect (H2) repair to occur more often in TOC than in SOC. 
Further, we expect (H3) the more specific forms of repair to 
be driven by the need for accuracy: restricted suggestion 
repairs should be higher in TOC, with restricted request and 
open repairs being frequent in SOC. Both hypotheses have 
preliminary support in a previous study (Fusaroli et al., 
2017).  

A third strategy is the reciprocal alignment of linguistic 
forms. As interlocutors hear each other using, for instance, 
specific words, they prime each other to re-use them. 
Linguistic alignment is argued to implicitly increase 
similarity of interlocutors’ mental situation models, and 
thereby catalyze increased rapport and interpersonal 
coordination (Dale, Fusaroli, Duran, & Richardson, 2013; 
Pickering & Garrod, 2004). In particular, here we focus on 
lexical, syntactic and semantic alignment. Lexical alignment 
indicates the tendency to re-use an interlocutor’s lexical 
choices (“do we ignore it?”, “yes, let’s ignore it”). Syntactic 
alignment indicates the tendency to reuse the interlocutor’s 
syntactic constructions beyond lexical choices (“you have 
passed the youth hostel?”, “yes and I have reached the top of 
the map”, where the sequence of subject and verb forms are 
repeated). Semantic alignment indicates the tendency to keep 
talking about the same topics, beyond lexical and syntactic 
alignment. Since linguistic alignment is argued to facilitate 
joint task performance, we expect (H4a) it to be higher in 
TOC than SOC. Two studies support this hypothesis: 
syntactic alignment is observed to be higher in task oriented 
conversational corpora than in more spontaneous 
conversational corpora (Healey et al., 2014; Reitter & Moore, 
2006). However, given that alignment is often associated 
with building and maintaining rapport (Ireland et al., 2011), 
one could also expect (H4b) it to be higher in SOC than TOC. 
Indeed, one previous study supports this second hypothesis 
(Fusaroli et al., 2017).  

In summary, SOC and TOC involve different contextual 
demands and therefore may emphasize different aspects of 
the common ground. SOC have a more marked social 
function in the maintenance of relations, and a lower need for 
detailed and accurate referential understanding than TOC. 
We therefore expect TOC to display more precise building 
and assessment of shared situation models through 
backchannels, repair, and perhaps alignment.  

The current study 
While previous studies support at least some of our 
hypotheses, they mostly investigate one conversational 
strategy at a time, often with widely different methods or 
data. Further, all previous studies rely on cross-sectional 
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conversational corpora, that is, the individuals included do 
not overlap across corpora, making it harder to assess 
whether any observed differences are indeed a function of 
different contexts. Additionally, the corpora were often 
collected in a heterogeneous fashion, with varying numbers 
of interlocutors and different ongoing activities. Here we aim 
to more rigorously investigate the role of conversational 
strategies by controlling these contextual variables. We 
experimentally elicited multiple SOCs and TOCs in a within-
subject design. This allowed us to get a more detailed picture 
of how participants use conversational strategies in different 
interactional settings, assessing both contextual, pair and 
individual variability, as well as their reciprocal relations. 

Besides the hypotheses sketched above, we also explore 
how the three conversational strategies relate to each other, 
and how they are affected by the contrast between conditions. 
It has been argued that social interactions display signatures 
of self-organization dynamics, that is, conversational 
behaviors become interdependent within and between 
interlocutors, so that the increase in one strategy might result 
in decrease in another. For instance, a high rate of lexical 
alignment provides high informational redundancy and might 
make repairs less necessary. Further, these relations are likely 
to be modified by contextual demands, such that different 
types of conversations might result in very different 
interrelations. (Dale et al., 2013; Fusaroli et al., 2014). 

Methods 
We elicited conversations from 39 dyads (78 Danish 
individuals). All participants were native speakers of Danish 
(M age = 23.19, SD = 3.58, males = 33, females = 45). The 
dyads were composed of 15 female dyads, 9 male dyads, and 
15 mixed-gender dyads. The participants in 8 of the 39 dyads 
knew each other prior to the experiment. Each dyad produced 
two SOCs and two TOCs. The members of each dyad were 
first offered a sheet of open-ended conversation prompts (e.g. 
“find two tv-series that your interlocutor would like to 
watch”) and asked to freely chat while the experimenter was 
busy elsewhere (first SOC). Participants were then asked to 
engage in two joint problem-solving tasks: the map task 
(Anderson et al., 1991) and a categorization task (the alien 
game; Tylén, Fusaroli, Smith, & Arnoldi, 2016). Both tasks 
require participants to collaborate to solve the tasks 
effectively (2 TOCs). Finally, the participants were asked to 
freely chat again, or to use the conversation prompts (second 
SOC). Note that SOCs were elicited in an experimental 
context, which limits the degree of spontaneity of the 
conversations. They are nevertheless more spontaneous than 
TOCs. Each conversation lasted approximately 10 minutes, 
for a total of 40 minutes per dyad (2 SOCs and 2 TOCs). In 
the SOC condition, we had a total of 34,544 speech turns and 
an average of 443 speech turns per conversation. In the TOC 
condition, we had a total of 45,607 speech turns, with an 

                                                        
1 We also built a multivariate outcome model including all 

previous models and the correlation between outcomes in the same 
model. However, the model could not be fit due to its complexity. 

average of 585 turns per conversation. All conversations were 
transcribed orthographically using ELAN (Brugman & 
Russel, 2004) and manually coded for backchannels and the 
three different types of repair by independent coders naïve to 
the purpose of the study (intercoder reliability: kappas > 0.6). 
Coding schemes were developed based on prior work 
(Dingemanse, Kendrick, & Enfield, 2016; Yngve, 1970) and 
are available at https://bit.ly/2LtUmax. Alignment was 
calculated as cosine similarity between successive 
conversational turns. Lexical alignment was based on 
lemmatized words, syntactic alignment on 2-grams of part-
of-speech tags, and semantic alignment on FastText 
word2vec representations of Danish (Bojanowski, Grave, 
Joulin, & Mikolov, 2017; Duran, Paxton, & Fusaroli, 
accepted). While 2-grams are only a rough proxy for syntax, 
exploratory analyses of 3- and 4-grams yielded similar 
results. Previous work has also used comparisons to surrogate 
pair baselines, created by artificially interleaving the 
utterances of interlocutors from different pairs (Healey el al.  
2014). Since the current work is focusing on a within pair 
manipulation, we leave such baselines for future work. 

Bayesian multilevel models with weakly informative priors 
were used. Backchannel and repairs were modelled according 
to a Bernoulli likelihood function. Specific types of repairs 
were analyzed within the subset of repair utterances only. 
Alignments were fit to a Zero Inflated Beta likelihood 
function to account for the high amount of turns with no 
alignment (zero-inflation, see distribution plots here: 
https://bit.ly/2LtUmax). Note that we report alignment rate as 
the negative of the inflation term, thus indicating the log odds 
rate of any alignment instead of the rate of no alignment, and 
the alignment level as the log odds of the cosine similarity 
when there are occurrences of alignment.  

All parameters were modelled as correlated and predicted 
by task, including varying effects by interlocutor nested 
within pair. LOOIC-based stacking weights assessed the 
relevance of the predictors (Vehtari, Gelman, & Gabry, 
2017). Evidence ratio (ER) was used to test evidence in favor 
of our hypotheses. While ER is a continuous scale, indicative 
thresholds have been proposed with values of 3 
corresponding to moderate evidence for the hypothesis and 
values of 0.3 to moderate evidence against the hypothesis. 
Full posterior distributions of varying effects were used to 
exploratorily estimate and visualize correlations between 
backchannels, repair and alignment as r Pearson 
coefficients1. Only correlations with an absolute coefficient 
above 0.2 and credibility intervals not overlapping with 0 
were included. Global strength was calculated as the sum of 
the absolute value of all edges in the network. The 
implementation relied on brms, ggplot, igraph, Stan and R 
(Bürkner, 2017; Carpenter et al., 2017; Csardi & Nepusz, 
2006). 
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Results 
Estimates of the occurrence rate of the conversational 
strategies by condition are reported in Figure 1. Detailed 
results of the effects of task are reported in Table 1 and Figure 
1. 
 
Table 1: Conditional effects on conversational strategies. 
Estimates represent the log-odds probability of the behavior 
in question, separately for each condition. Evidence ratio 
(ER) indicates the relative evidence in favor of our 
hypotheses as specified in “The current study” (against the 
alternative hypotheses). “Lex”, “Syn” and “Sem” stand 
respectively for lexical, syntactic and semantic alignment. 
 

Outcome Spontaneous Task-Oriented ER 
Backchannel  -0.69 (-0.8, -0.58) -1.45 (-1.57, -1.33) < 0.001 
Repair  -3.55 (-3.91, -3.17) -2.86 (-3.11, -2.51) > 1000 
- Open  -0.79 (-1.08, -0.48) -2.20 (-2.45, -1.97) > 1000 
- Restricted -1.32 (-1.61 -1.02) -1.80 (-2.05 -1.54) = 132 
- Suggestion 0.01 (-0.25 0.27) 1.02 (0.78 1.26) > 1000 
Lex Rate 0.22 (0.11, 0.33) 0.06 (-0.04, 0.16) = 332.3 
Lex Level -0.79 (-0.83, -0.75) -0-0.68 (-0.72, -0.64) > 1000 
Syn Rate 0.65 (0.52 0.77) 0.50 (0.40 0.59) = = 73.07 
Syn Level -0.78 (-0.83 -0.74) -0.75 (-0.78 -0.73) = = 6.49 
Sem Rate 1.47 (1.13 1.79) 1.61 (1.25 1.96) = = 2.93 
Sem Level 0.36 (0.15 0.54) 0.34 (0.16 0.51) = = 1.3 
 

Conversational strategies vary considerably across 
individuals and pairs. For instance, some pairs consistently 
show use of backchannels above average, while others 
consistently below. Analogously, some individuals 
consistently show higher use of, for instance, backchannels 
than their interlocutor. Further, the use of conversational 
strategies is interrelated, as shown in Figure 2. Alignment 
strategies are strongly and positively related (except for 
levels of lexical alignment), while repair and backchannel 
seem less related. Interestingly, the type of conversation 
seems to affect the relations between strategies, with task-
oriented conversations displaying weaker relations (global 
strength of SOC = 2.91, TOC = 1.67).  

Discussion 
This study aimed to assess the impact of different contextual 
demands (SOC vs. TOC) on three conversational strategies 
and their interrelations. It used a more rigorous within-subject 
design than previous studies. We hypothesized that 
backchannel (H1) and repair (H2) would be used more in 
TOC than SOC, and that the specificity of the repair would 
also be higher in TOC than SOC (H3). We contrasted two 
hypotheses for linguistic alignment (H4a-b), as the previous 
evidence was contradictory, indicating sometimes higher 
alignment in SOC, sometimes in TOC.  

We found high occurrence of backchannels, however, 
contrary to H1 this was higher in SOC (33.4% of utterances) 
than TOC (19%). While backchannels certainly play a role in 
grounding given their high occurrence in TOC, the findings 
suggest that they might be even more important in free 
conversation and thus related to, for instance, the maintaining 

 

Figure 1 - Effects of task on the conversational strategies of 
interest. The column on the left includes posterior estimates 
of the proportional use of the strategies across the two 
conditions, the ridge plots indicate the posterior estimates of 
the differences between conditions. Note that backchannels 
and repairs are calculated on the total number of speech 
turns, while repair types are calculated on repair turns. 

 
of social relations. Indeed, backchannels have been argued to 
strengthen the social relationship by making both 
interlocutors part of the conversation even though one 
speaker holds the floor (Duncan & Fiske, 1977), as well as 
by consistently displaying interest and attention to the 
speaker (Levinson, Brown, & Levinson, 1987). The large 
variation in the use of backchannels is in line with a previous 
study (Heldner, Hjalmarsson, & Edlund, 2013). 

We found that conversational repair is less frequent than 
backchannelling. In line with H2 and H3, we found that repair 
was more frequent in TOC (5.4% of utterances) than in SOC 
(2.8% of utterances), and that the relative frequency of types 
of repair was affected by contextual demands. More specific 
repair was more frequent in TOC than SOC, while less 
specific repair was more common in SOC than TOC. This 
supports our prediction that in SOC, referential precision is 
less important than in TOC, where attention to details and 
accuracy of the information is crucial to solve the collective 
task at hand (Dingemanse et al., 2015; Fusaroli et al., 2017). 
Thus, in TOC interlocutors more carefully monitor potential 
misunderstandings and, given the higher attention to details, 
tend to prefer the strongest (in this case, most specific) repair 
form they are able to use in that situation (Clark & Schaefer, 
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1987). Our findings suggest that interlocutors use repair as an 
adaptive strategy, adjusted to target the optimal way of 
grounding in order to meet specific contextual demands. We 
found partial support for both H4a and H4b. More than 50% 
of utterances displayed some lexical alignment, more than 
60% syntactic alignment, and more than 80% semantic 
alignment. However, pervasive, the rate of lexical and 
syntactic alignment was affected by the type of conversation: 
higher in SOC than TOC (H4b). While the small effect size 
should warrant caution, alignment rate might be more related 
to building and maintaining social relationships. Previous 
studies have indeed argued that high rates of alignment can 
lead to informational redundancy, which might hamper task-
oriented coordination, in situations that afford interlocutors 
to provide complementary information in a more synergistic 
fashion (Fusaroli et al., 2012; Fusaroli et al., 2014; Fusaroli 
& Tylén, 2016). When interlocutors do align, we find that a 
relatively high number of linguistic forms is aligned 
(alignment level): more than 30% of lexical and syntactic 
choices, and more than 50% of semantic variance. However, 
lexical and syntactic alignment levels are higher in TOC than 
in SOC (H4a), indicating that TOC presents fewer instances 
of alignment, but once alignment is there, more forms are 
aligned. This might again be due to the demand for precision 
affording more specific alignment strategies (as in the case of 
repair). Together with the zero-inflated distribution of 
alignment, this seems to suggest that we are confronted by 
two different alignment phenomena that have so far been 
conflated. The lack of clear differences in semantic alignment 
between SOC and TOC also seems to indicate that in both 
types of conversations interlocutors do speak about similar 
topics, although the specific strategies (lexical and syntactic 
choices) differ. Future work will include exploration of the 
effect of 3- and 4-grams on parts-of-speech tags and whether 
stratifying syntactic by lexical alignment preserves the same 
pattern of results. 

The different conversational strategies, backchannels, 
repair and alignment, form a dense network of 
interdependencies (Figure 2). We show that the different 
forms of alignment are strongly related: interlocutors using 
alignment do so consistently for all forms of alignment, with 

the interesting exception of levels of lexical alignment 
(suggesting that verbatim lexical repetitions might play a 
different role; e.g., Fusaroli et al., 2014). However, 
contextual demands affect this network: while backchannels 
and repairs are negatively related to each other and connected 
to the rest of the network in SOC, in TOC they are isolated 
and generally the network displays sparser and weaker 
connections. This was an unexpected result that requires 
follow-up work.  

In this study, we attempt to develop a more theory-driven 
and cumulative approach to the study of conversational 
strategies. Increased control enabled us to more robustly infer 
how contextual demands change the use of conversational 
strategies and affect their relations, with results at least 
partially different from previous less-controlled studies. This 
provides new insights into how we build effective 
coordination in conversations, and may illuminate some of 
the mechanisms underlying social impairment. We are aware 
of the limitations of this initial work. We have contrasted two 
macro-categories of conversation: task-oriented and 
spontaneously occurring. These categories are 
heterogeneous. The two tasks employed in TOC have 
somewhat different contextual demands. The two 
spontaneous conversations in SOC happen at the beginning 
and end of the experimental setup, influencing interlocutors’ 
feeling of familiarity. Pairs display a high variability in joint 
performance in the tasks and rapport. This highlights the 
importance of considering differences across individuals and 
pairs in studies of conversations (which is also receiving 
increased attention in other areas of psycholinguistics; Kidd, 
Donnelly, & Christiansen, 2018). Future work will further 
explore these dimensions: analyzing differences between 
interlocutors who know or do not know each other in 
advance, introducing measures of performance and rapport, 
as well as accounting for progress familiarity and assessing 
how conversational strategies evolve over time as 
interlocutors become familiar with each other and with the 
tasks. A more direct manipulation of contextual demands, for 
instance, more continuously varying the need for accurate 
mutual understanding, is a necessary next step. Future work 

Figure 2 - Exploratory correlation network between individual usage of conversational strategies. Blue lines 
indicate positive correlations, red lines negative ones. Thickness of the line is proportional to the strength of the 
correlation, from 0.2 (backchannel and repair in SOC) to 0.9 (rates of syntactic and lexical alignment in SOC). 
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will also further articulate the interrelations between 
strategies and contextual demands. 

 
Conclusion 

In a controlled within-participant design, we show that 
contextual demands afford diverse uses of conversational 
strategies. Spontaneously occurring conversations display 
higher frequencies of backchannels and a higher rate of 
lexical and syntactic alignment, possibly related to higher 
needs for relation building and maintenance. Task-oriented 
conversations display higher occurrence of repair (in 
particular of specific repairs) and levels of lexical and 
syntactic alignment, possibly related to needs for high 
precision. Our results suggest that backchannels, repair and 
alignment serve complementary functions, and that 
interlocutors flexibly adapt these grounding strategies 
contingent on current contextual demands. By focusing on 
how pairs and individuals adjust their strategies to contextual 
demands, we can better understand the patterns of effective 
communication, and how communication might fail. Future 
work might extend this approach to include measures of 
coordination success as well as investigation of these 
phenomena in contexts of social impairment.  
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Abstract 
In language, speakers are more likely to mention the goals, or 
endpoints, of motion events than they are to mention sources, 
or starting points (e.g. Lakusta & Landau, 2005). This 
phenomenon has been explained in cognitive terms, but may 
also be affected by discourse-communicative factors: For 
participants in prior work, sources can be characterized as 
given, already-known information, while goals are new, 
relevant information to communicate. We investigate to what 
extent the goal bias in language (and memory) is affected when 
the source is or is not in common ground between speaker and 
hearer, and thus whether it is discourse-given or -new. We find 
that the goal bias in language is severely diminished when 
source and goal are discourse-new. We suggest that the goal 
bias in language can be attributed to discourse-communicative 
factors in addition to any cognitive goal bias. Discourse factors 
cannot fully account for the bias in memory. 

Keywords: Source-Goal Asymmetry; Language Production; 
Goal bias; Discourse; Common Ground 

Introduction 
At their core, motion events involve movement of an object 
(i.e. the Figure) from a starting location (i.e. the Source) to an 
endpoint (i.e., the Goal; Talmy, 1983; cf. A butterfly flew 
from a lamppost to a chair). Prior work has shown, though, 
that all these parts may not be “created equal”. When talking 
about motion events, speakers are much more likely to 
mention the goal, or endpoint, of motion than they are to 
mention the source, or starting point (Lakusta & Landau, 
2005, 2012; Papafragou, 2010; Regier & Zheng, 2007). This 
goal bias in language holds across ages (Papafragou, 2010; 
Lakusta & Landau, 2012; Lakusta, Muentener, Petrillo, 
Mullanaphy, & Muniz, 2016); different types of motion 
events (Lakusta & Landau, 2005, 2012); typologically 
different languages (e.g., Regier & Zheng, 2007; Johanson, 
Semilis, & Papafragou, in press); and even among deaf 
homesigners who lack exposure to conventional language 
(Zheng & Goldin-Meadow, 2002).  

A similar goal bias has been shown in non-linguistic 
domains of cognition, such as memory, where goals have 
been shown to be more accurately encoded in memory than 
sources (e.g., Papafragou, 2010; Regier & Zheng, 2007; 
Regier, 1996). As in language, the goal bias in memory has 

been demonstrated across different types of motion events 
(Lakusta & Landau, 2012). And, has also been observed in 
pre-linguistic children (Lakusta, Wagner, O’Hearn, & 
Landau, 2007; Lakusta & Carey, 2015; Lakusta & 
DiFabrizio, 2017), suggesting that goals occupy a privileged, 
more salient status in non-linguistic as well as linguistic event 
representations.  

Thus, in conjunction with a large body of work showing 
that infants attend to the goals or intentions of an event (e.g., 
Meltzoff, 1995; Bekkering, Wohlschläger, & Gattis, 2000), 
the presence of the goal bias in language and memory for 
motion events, also provides some basis to suggest that the 
linguistic bias has cognitive roots (e.g., Regier, 1996, Regier 
& Zheng, 2007; Srinavasan & Barner, 2013). Complicating 
this picture, though, is the fact that the goal bias in memory 
seems noticeably less robust compared to the goal bias in 
language. This is especially true when events no longer depict 
a prototypical animate agent moving from one inanimate 
reference point to another (Lakusta et al., 2007; Lakusta & 
Landau, 2012; Lakusta & Carey, 2015; Lakusta & 
DiFabrizio, 2017). In cases like these, some researchers have 
failed to find evidence of the goal bias in memory – even 
when the same studies have found a clear goal bias in 
language and even when the same materials have been used 
across linguistic and non-linguistic tasks (Lakusta & Landau, 
2012).  

The discrepancy between the strength of the goal bias in 
language and memory has been difficult to reconcile with 
claims that the goal bias is fundamentally rooted in the same 
(cognitive) mechanism in both domains. In particular, if the 
mechanism responsible for the goal bias in language is also 
responsible for the goal bias in memory, why doesn’t the bias 
appear to work in precisely the same way across domains? 

The present work proposes a novel explanation for the 
observation that the strength of the goal bias in linguistic 
production tasks is more robust than in non-linguistic tasks. 
We posit that the comparatively more robust goal bias in 
language may be attributable to an additional 
discourse/communicative asymmetry: When individuals are 
asked to describe video clips of simple motion events, the 
initial state of affairs – including the source (i.e., starting 
point) of the motion – is reasonably assumed to be given. By 
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contrast, the goal of the motion event (i.e., the endpoint) is 
considered ‘the news’ that is relevant to communicate. This 
makes sources less likely to be mentioned (see Lakusta & 
Landau, 2012 for a discussion of this possibility). To preview 
our results, we find evidence in support of this 
discourse/communicative account: Changing the 
discourse/communicative status of the source in motion 
events severely weakens (but does not eliminate) the goal 
bias in language. We conclude that in language, 
discourse/communicative factors operate over and above the 
more general cognitive factors that might drive the goal bias 
observed in memory.  

The Current Study 
Prior work on linguistic aspects of the goal bias has 

typically involved a single participant, who (i) sees a figure 
located at or near the source (i.e. starting point) of the motion 
event, (ii) presses a button to watch the event unfold, and 
then, (iii) describes the event out loud to either no one in 
particular or a physically co-present, but conversationally 
unengaged experimenter. Because motion clips in these 
paradigms typically begin with a scene that sets up the start 
of the event, the source can be considered already known, 
‘discourse-old’, information, while the goal is considered the 
‘discourse-new’, relevant piece of the event.  

Given that speakers have a preference to mention 
discourse-new over discourse-old (i.e. “given”) information 
in their utterances (Arnold, Wasow, Losongco, & Ginstrom, 
2000), a consequence of this single-speaker paradigm may be 
that it inadvertently creates the conditions for a goal bias both 
in speakers’ descriptions and their representations of motion 
events in memory. Specifically, participants who do not have 
to take into account the knowledge state of their interlocutor 
prioritize mentioning only what is new and relevant to 
themselves or a ‘generic’ addressee – in this case, the goal or 
endpoint of the motion event.  

Unlike prior work, the current study asks participants to 
describe motion events to an attentive, engaged confederate 
addressee. The presence of an engaged addressee allows us 
to probe whether the goal bias in language can at least 
partially be attributed to an asymmetry in the 
discourse/communicative status of sources (typically 
presented as known, discourse-given entities) versus goals 
(typically unknown, discourse-new entities) in motion 
events. This is because the introduction of an addressee 
allows speakers to consider not only what is discourse-new 
to themselves, but also what is discourse-new (and 
presumably relevant to communicate) to their interlocutor.  

This discourse/communicative account of the goal bias 
predicts that changes to the discourse status of the source 
should affect the magnitude of the goal bias in language. In 
particular, we expect the goal bias to weaken when sources 
are also made discourse-new. Alternatively, if the goal bias 
in language and memory is purely driven by a more general 
cognitive bias towards goals, then changing the 
communicative setting in which motion events are described 
should not affect the magnitude of the goal bias in language. 

To test the discourse/communicative account, we 
manipulated the context in which participants described 
motion events. Participants in our Common Ground 
condition were asked to describe the motion event to a 
confederate addressee for whom information about the 
starting point of the motion was already known – that is, the 
source constituted discourse-given information. By contrast, 
participants in our No Common Ground condition were asked 
to describe the motion event to a confederate addressee that 
knew nothing about the upcoming motion event – that is, both 
the source and goal constituted discourse-new, relevant 
information to communicate about.  

Following prior work, we investigated the goal bias in 
language by comparing the proportion of source versus goal 
mentions as participants describe motion events. We 
investigated the goal bias in memory using an adaptation of 
the change detection paradigm; we compared how accurately 
speakers remember sources versus goals after describing 
events to an addressee.   

Methods 
Participants Fifty-four native speakers of American English 
(mean age = 20; 28 male, 32 female) participated in the 
experiment for course credit or $10/hour – 27 in the Common 
Ground and 27 in the No Common Ground group. The 
number of participants was determined based on a power 
analysis of previously reported effects in the literature. 
Materials We created 18 test clips, each of which depicted 
an animate entity moving from an inanimate source landmark 
(i.e. the starting point of motion) to an inanimate goal 
landmark (i.e. the end point of motion). (Clipart images were 
used. See Figure 1a for an example of a butterfly moving 
from a lamppost (the source) to a chair (the goal)). Each clip 
was roughly three seconds in length.  

Clips were left-right counterbalanced such that half of our 
clips showed a figure moving from a source on the left to a 
goal on the right and the other half showed a figure moving 
from a source on the right to a goal on the left. Source and 
goal landmarks were also counter-balanced across lists such 
that objects which were the source of motion in one list were 
the goals of motion in another. This was done to ensure that 
our results would not be confounded by the inherent 
perceptual or conceptual salience (and by extension, salience 
in linguistic mentions or memory) of one landmark over the 
other. We also included 18 filler motion events, which did not 
involve motion between a source and a goal. These filler 
items were designed such that participants were not able to 
predict, based on the first frame of the video, whether the clip 
would eventually involve a source-to-goal motion event. 

We probed speakers’ encoding of these events in memory 
using a version of the change detection task used by prior 
work (Regier & Zheng, 2007; Lakusta & Landau, 2012; 
Papafragou, 2010). For this, we constructed a second set of 
videos that involved: (i) Changing the Source (ii) Changing 
the Goal; or (iii) No Changes (i.e., participants saw a video 
identical to the one they had previously described). Source 
and goal changes were always replaced with within-category 
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variants (e.g., the chair was changed to a different example of 
a chair; Figure 1) to control for the semantic distance between 
the original and changed object. 

   
(Figure 1a)                                    (Figure 1b) 

 
Figure 1. (a) Sample first frame of the ‘butterfly flying from 
the lamppost to the chair’ clip. In Common Ground 
conditions, both participant and addressee saw the first frame; 
in No Common Ground conditions, only participants saw 
this. Only participants saw events unfold. (b) Sample goal 
change in the memory task. The original chair was replaced 
with a slightly different chair. 

Procedure Participants were told that they would be 
performing the experiment with a partner (in reality, a 
confederate addressee). Participants were told that they 
would be watching brief video clips and then describing them 
to their partner. Their partner would see a simple question 
about the clip on a separate screen and would answer those 
questions based on the participant’s descriptions.  

To demonstrate that the addressee was engaged in the 
experiment, participant and confederate addressee completed 
a Tower of Hanoi task together. Afterwards, participants 
performed two practice trials before moving on to the main 
experiment. Because prior work has shown that the level of 
engagement of an addressee can affect how much 
information speakers choose to include in their utterances 
(Clark & Wilkes-Gibbs, 1986; Bavelas, Coates, & Johnson, 
2000) and may also affect speakers’ later memory for the 
event (Pasupathi, Stallworth, & Murdoch, 1998), confederate 
addressees maintained eye-contact during event descriptions 
and verbally indicated when they were ready for the next trial 
(i.e., ‘mhmm’, ‘ok’, ‘yup’, ‘I’m ready’). Critically, 
confederates maintained the same level of engagement in all 
conditions and used the same verbal indicators regardless of 
the utterance produced by participants. 

Participants were seated in one of two experimental 
configurations. In the Common Ground condition (Figure 2), 
both speaker and confederate addressee were seated side-by-
side in front of a centrally-located computer screen. Each trial 
began with the first frame of the video clip shown on this 
screen. Thus, both speaker and confederate addressee saw the 
figure's location relative to the source and the goal 
landmarks; more specifically, they saw where the animate 
figure started out in each clip. After briefly inspecting the 
scene, the addressee turned the participants’ screen away so 
that the addressee was not able to watch the clip unfold.  

In the No Common Ground condition (Figure 3), speaker 
and confederate addressee were seated across from each other 
so that neither could see each other's screens. Speakers were 

thus led to believe that addressees in this condition were 
unable to see any part of the video clip.  

 
 

Figure 2. Common Ground configuration. Participants were 
always seated on the left, confederate addressees on the right. 
Confederate addressees were shown the first frame of the clip 
on the participant’s screen before turning the screen away. 

 

 
 

Figure 3. No Common Ground configuration. Participants 
were always seated on the left, confederate addressees on the 
right. In the No Common Ground condition, confederate 
addressees were not permitted to see any part of the 
participant’s computer screen. 

 
In both Common Ground and No Common Ground 

conditions, participants received the same set of video stimuli 
and participants performed the same tasks. They were told in 
all cases that confederate addressees would be answering a 
simple question about each video clip based on the speakers’ 
description of what happened in each clip.  

After finishing the description portion of the experiment, 
participants were separated from the confederate and 
participants were given a surprise memory task. During this 
portion of the experiment, participants were shown the (i) 
Source Change, (ii) Goal Change, or (iii) No Change variants 
of the test videos. This was a within-participant manipulation 
such that six items were randomly assigned the Source 
Change condition, six to the Goal Change, and six the no 
Change. Participants were told to circle 'Yes' on their answer 
sheet if the second video clip was ‘exactly the same’ as the 
clip that they had originally described; they were told to mark 
‘No’ otherwise. Thus, correct responses in the Source and 
Goal Change conditions were always ‘No’ (i.e., they 
correctly rejected), but correct responses in No Change 
condition was always ‘Yes’ (i.e., they correctly failed to 
reject). Participants were only tested for memory of target 
items; clips in the memory portion of the study were 
presented in the same order as in the scene description portion 
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of the study.  

Predictions 
In the Common Ground condition, where the addressee was 
allowed to see the starting point of the motion event, the 
source (as in prior work) was discourse-given. However, in 
the No Common Ground condition, where the addressee was 
not privy to any information about the motion event, both 
source and goal were discourse-new. 

On a purely cognitive account of the goal bias, the 
discourse status of entities in a motion event should not affect 
the frequency of mention of sources and goals. By contrast, 
on a discourse/communicative account of the goal bias, the 
goal bias in language should be severely weaker in the No 
Common Ground condition – where both sources as well as 
goals were discourse-new – than in the Common Ground 
condition – where only the goal was discourse-new.  

A somewhat independent question is how linguistic 
descriptions of motion should affect later memory of that 
motion event. One possibility is that the generation of more 
informative linguistic representations implies the prior 
generation of more informative non-linguistic 
representations. If so, then we expect the patterns in the 
linguistic description portion of our study to largely 
correspond to the patterns that emerge in the memory portion 
of the study. That is, memory for sources should be more 
accurate in the No Common Ground condition than in the 
Common Ground condition, where relevant information was 
not just limited to the goal of motion. It is also possible, 
though, that there may be no direct relationship between what 
is mentioned in the motion event and what is subsequently 
remembered. For instance, even if speakers were more likely 
to talk about sources in the No Common Ground condition, 
memory for sources might nevertheless remain relatively 
impoverished compared to memory for goals.  

Results 
Language Productions We were primarily interested in how 
frequently speakers would mention sources relative to goals 
in their event descriptions. We coded whether each utterance 
included mention of the source and/or goal of the motion 
event. Following prior work (e.g. Lakusta and Landau, 2012; 
Papafragou, 2010), all mentions of sources and goals within 
(i) a prepositional phrase (e.g. ‘from the chair’; ‘off the 
chair’; ‘to the chair’; etc.), (ii) within the verb + NP structure 
(e.g. ‘left the cave’), or (iii) within a verb + particle structure 
(e.g. verb + ‘away from the tree’) were included. 

Statistical analyses of the rate at which sources and goals 
were mentioned were done using a logistic mixed effect 
model. Ground Type (Common Ground vs. No Common 
Ground) and Mention Type (Source vs. Goal) were included 
as fixed effect factors. Mention Type was included as part of 
the by-subject and by-item random effects; Ground Type was 
only included as part of the by-item random effects. We 
simplified the model only if it failed to converge or if random 
effects did not significantly improve model fit. 

As can be seen in Figure 4, in both the Common Ground 

and No Common Ground conditions, we replicated the goal 
bias observed in prior work (Lakusta & Landau, 2005, 2012; 
Papafragou, 2010). In the No Common Ground condition, 
though, the goal bias was severely weakened: The preference 
to mention the goal over the source was greater in the 
Common Ground condition than in the No Common Ground 
condition. Consistent with this, we detected significant main 
effects of Mention Type (ß= 3.26, SE= 0.59, |z| = 5.51, p < 
.01) and Ground Type (ß= 1.58, SE= 0.75, |z| = 2.11, p < .05), 
but these were modulated by a reliable Ground x Mention 
interaction (ß= -3.06, SE= 0.99, |z| = 3.11, p < .01). 

 
 

Figure 4. Proportion of Source (Red) and Goal (Blue) 
mentions in Common Ground and No Common Ground 
conditions. Error bars represent +/- 1 standard error. 

Memory for Sources and Goal Accuracy in the memory 
task was analyzed using logistic mixed effects regressions. 
We included Ground Type and Change Type (Source Change 
or Goal Change) as fixed effects. Random effects were 
structured as before. The No Change condition was omitted 
from this analysis because it served only as an indicator of 
baseline performance and indeed, was similar in both 
Common Ground and No Common Ground Conditions 
(Figure 5; yellow).  

Overall, participants were more accurate in the No 
Common Ground than in the Common Ground conditions, 
resulting in a significant main effect of Ground Type (Figure 
5; ß = 1.07, SE = 0.38, |z| = 2.82, p < 0.01). Participants were 
significantly better at detecting changes to the Goal (Blue) 
than to the Source (Red) in both the Common Ground and No 
Common Ground conditions (ß = 0.90, SE = 0.22, |z| = 4.19, 
p < .001). However, the failure to detect a significant Ground 
x Change interaction (ß = -0.17, SE = 0.42, |z| = 0.39, p = 
0.69) suggests that the strength of the goal bias in the 
Common Ground vs. No Common Ground conditions did not 
differ statistically. In other words, speaking to an addressee 
in the No Common Ground condition only had the effect of 
boosting speakers’ memory for the event more generally. 
Unlike in the description task, it does not appear to weaken 
any goal bias that exists in memory encoding processes. 
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Figure 5. Proportion of Correct Responses in Memory Task. 
Error bars indicate +/- 1 standard error. Dashed horizontal 
line indicates chance performance in each condition. 

The ‘Source Mention Benefit’ We used a logistic mixed 
effect regression to determine whether the rate at which 
speakers mentioned sources in the language task would 
predict how accurately they detected source changes in the 
later memory task. Ground Type and Source Mention (yes, 
no) were included as fixed effects. Source Mention was 
included in both by-subject and by-item random effects; 
Ground Type was only included by-items. Models were 
reduced and selected as before.  

We found that speakers were more likely to accurately 
encode sources in memory if they had previously mentioned 
the source in their descriptions (Figure 6). This was indexed 
by a significant main effect of Source Mention (ß = 1.17, SE 
= 0.43, |z| = 2.73, p < .01). There was a marginally significant 
main effect of Ground Type (ß = 1.08, SE = 0.56, |z| = 1.94, 

p = .053), suggesting that speakers’ memory for sources 
trended towards being more accurate in the No Common 
Ground than in the Common Ground condition. There was no 
significant Ground x Source Mention interaction (ß = 0.16, 
SE = 0.83, |z| = 0.20, p = 0.84). This latter finding suggests 
that mentioning the source provided the same benefit to 
source accuracy in the memory task, regardless of Common 
Ground or No Common Ground condition. 

Recall that in the memory task participants were also better 
at detecting changes to the goal in the No Common Ground 
as compared to the Common Ground Condition (the two blue 
bars in Figure 5). This is surprising given that participants 
mentioned the goal to the same extent in the Common 
Ground and No Common Ground conditions. One possibility 
is that goals were remembered more accurately in the No 
Common Ground condition because mentioning the source 
(which happened more in this condition) helped to create a 
more coherent representation of the event as a whole.  

To investigate this, we analyzed whether the rate of source 
mention would also predict goal accuracy in the memory 
task. We found that participants who mentioned sources more 
frequently also tended to remember goals more accurately 
(Figure 6b; ß = 1.09, SE = 0.35, |z| = 3.10, p < .01). No other 
effects were significant, meaning that the magnitude of the 
source mention benefit on goal memory did not differ across 
Common Ground and No Common Ground conditions. Thus, 
mentioning the source had the secondary benefit of 
reinforcing memory for other aspects of the motion event – 
namely, the goal – as well. 

Discussion 
Prior work has shown a robust goal bias in language: 
Speakers are much more likely to mention the goal (i.e. 
endpoint) of a motion event than they are to mention the 
source (i.e. starting point) of that event. A goal bias has also 

(Figure 6a)           (Figure 6b) 
 

Figure 6. Performance in the description and memory task for each subject in the Common Ground (Blue circles) and No 
Common Ground (Red Triangle) conditions. The x-axis represents proportion of times sources were mentioned during the 
description task. The y-axis of Figures 6a and 6b show the proportion of accurate responses in the Source Change and Goal 
Change conditions, respectively. Shaded areas represent +/- 1 standard error. 
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been observed in non-linguistic cognitive domains, such as 
memory, suggesting that the goal bias may operate across 
domains of cognition. An open question and central challenge 
for such cognitive accounts, though, is how to account for the 
fact that the goal bias is much more robust across contexts in 
language than in memory.  

We suggest that the discourse/communicative context in 
which motion descriptions were elicited in prior work 
exacerbated the goal bias in language: On top of any 
underlying cognitive goal bias, speakers were additionally 
more likely to mention the goal than the source because they 
were describing events in a discourse context that made 
mentioning the source unnecessary. In our Common Ground 
condition, where information about the source was discourse-
given, we replicated the goal bias in prior work. When we 
equalized the discourse/communicative status of sources and 
goals (our No Common Ground condition), this goal bias was 
drastically weakened. These results are expected if the goal 
bias – at least in language – is not a reflection of cognitive 
factors alone.  

It is work noting that other work (e.g., Stevenson, Crawley, 
& Kleinman, 1994) has independently reported a bias for the 
goal in transfer-of-possession events (i.e., Leslie handed a 
book to Ann.). There, work by Rodhe, Kehler, & Elman 
(2006) has similarly argued that discourse factors – like 
different types of coherence relations – can also modulate the 
goal bias in transfer-of-possession events. We do not 
manipulate factors like coherence here, but our results also 
demonstrate the way that discourse factors can interact with 
event representations in language. Further, our work suggests 
that (in addition to coherence relations) the goal bias in those 
cases may also be partially attributed to the givenness of the 
source in transfer-of-possession events. 

Importantly, our results do not rule out the possibility of a 
cognitive bias towards goals/endpoints: Across tasks and 
conditions, we found a residual preference to mention goals 
over sources. Even in the No Common Ground condition, 
speakers were still more likely to mention goals over sources; 
and, though participants performed more accurately on the 
memory task in general, they nevertheless remembered goals 
more accurately than sources.  

By contrast, the discourse status of the source did not 
directly influence the goal bias in memory. However, we did 
find evidence of an indirect ‘source mention benefit’ that 
affected how accurately goals, as well as sources, were 
encoded in memory: Speakers who were more likely to 
mention the source in their event descriptions were more 
accurate in remembering both goals and sources of motion 
events. For these participants, mentioning sources improved 
memory for sources themselves, but also helped to create a 
more accurate representation of the event more generally.  

More broadly, we conclude that discourse/communicative 
factors should be incorporated into theories about the 
relationship between language and event cognition. 
Moreover, our results are consistent with prior work (e.g. 
Clark & Wilkes-Gibbs, 1986) showing that the extent of the 
addressee’s knowledge has a direct effect on what 

information speakers choose to include in their utterance.  
One question raised by our results is whether the 

discourse/communicative status of goals can modulate the 
mention of goal phrases in language. Is it possible, for 
instance, to reverse the goal bias (i.e., produce a source bias) 
strictly by manipulating the givenness vs. newness of goals? 
We are currently exploring this direction in ongoing work.  
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Abstract
During reading, readers intentionally do not fixate a word
when highly confident in its identity. In a rational model of
reading, word skipping decisions should be complex functions
of the particular word, linguistic context, and visual informa-
tion available. In contrast, simple heuristic of reading only
predicts additive effects of word and context features. Here we
test these predictions by implementing a rational model with
Bayesian inference, and predicting human skipping with the
entropy of this model’s posterior distribution. Results showed
a significant effect of the entropy in predicting skipping above
a strong baseline model including word and context features.
This pattern held for entropy measures from rational models
with a frequency prior but not from ones with a 5-gram prior.
These results suggest complex interactions between visual in-
put and linguistic knowledge as predicted by the rational model
of reading, and a dominant role of frequency in making skip-
ping decisions.
Keywords: eye movements; reading; word identification; ra-
tional analysis; skipping

Introduction
To achieve comprehension in reading, readers move their eyes
across the text to obtain the information needed to identify
the words. In the past decades, research on eye movements
in reading has provided ample evidence that word identifi-
cation can be seen as the primary driver of eye movements.
The reasoning behind this conclusion, however, is based on
relatively coarse observations, such as demonstrating that
eye movements are sensitive to aggregate variables that are
important in word identification (e.g., word length and fre-
quency). Although such a coarse linking hypothesis between
word identification and eye movements successfully predicts
several reading behaviors, a model of reading that connects
eye movements to ongoing language processing in a deeper
way could lead to more precise predictions, improved data
analysis, and an overall fuller utilization of the eye movement
record to advance theories of sentence processing.

One promising model of this type comes from a perspective
of rational analysis. The idea is to consider the reading pro-
cess as one that combines information from various sources
to identify words and then makes eye movement decisions to
maximize identification efficiency (Bicknell & Levy, 2010,
2012; Legge, Klitz, & Tjan, 1997; Legge, Hooven, Klitz,
Mansfield, & Tjan, 2002). In previous rational models of
reading, text identification process is modeled using Bayesian
inference that combines two sources of information: (1) prob-
abilistic knowledge of the structure of the language, serving

as the prior, and (2) uncertain visual evidence, serving as the
likelihood. Given a prior and a particular set of visual evi-
dence, probabilistic inference yields a posterior distribution
on the text, which specifies the probability of each possible
identity of the text. The role of eye movements in this analysis
is to obtain particular pieces of visual evidence, and the most
efficient, rational reading behavior will be to use the current
posterior distribution to determine the most useful time and
place to move the eyes next. Therefore, any eye movement
behaviors explained by this model of reading can be seen as
naturally born from one simple origin: the rational gathering
of visual evidence for text identification.

In contrast, the dominant models of eye movement control
in reading tend to use heuristic linking hypothesis between
text identification and eye movements (e.g., E-Z Reader,
Reichle et al., 2009; and SWIFT, Engbert et al., 2005). In
these models, eye movements are driven by a word identifi-
cation process that is represented with discrete states (e.g., not
identified, partially identified that leads to saccade program-
ming, fully identified), the transitions between which depend
on a certain amount of durations computed from a few coarse
visual and linguistic variables of the word. For example, in
E-Z Reader the duration of L1 and L2 depend on a stochas-
tic function of two linguistic variables, the word’s frequency
in the language and its predictability in context, and one vi-
sual variable, the average distance from each of its letters to
the point of fixation. After spending the pre-computed dura-
tion needed to achieve a certain stage of word identification
to begin programming a saccade and then achieve complete
identification of the current word, the model moves eyes to
(roughly) the center of the next word to be identified. The role
of eye movements in this heuristic model is a direct reflec-
tion (with stochastic noise) of cognitive process identifying a
word, the difficulty of which depends on coarse properties of
the word as a whole.

There are situations where word identification can be com-
pleted with more fine-grained knowledge about the particu-
lar word than merely coarse information, and we would like
to make precise predictions about eye movement behaviors
accordingly. Consider situations where visual information
about only the beginning of some words is enough for iden-
tification, e.g., seeing the initial letters ‘xyl’ of the word ‘xy-
lophone’ (Hyönä, Niemi, & Underwood, 1989). Similarly, in
certain linguistic contexts, a reader only needs to see a few of
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the initial letters of a word to be confident in its identification,
such as in ‘The children went outside to pl. . . ’. Do readers in
fact combine more fine-grained information than simply word
frequency and word length in the way as predicted by rational
models of reading?

As illustrated in the preceding examples, an ideal testbed
for these predictions of a rational model is when a word is
identifiable with visual information about only part of the
word. In natural reading, this situation occurs often in the eye
movement behavior of skipping, when a reader move their
eyes past a word without ever having directly fixated it. In-
tentionally skipping a word is generally modeled as a case
in which the reader has identified the word (possibly incor-
rectly) while still looking at a prior word, and thus makes
a saccade that takes the eyes past the word, skipping over
it. Since this (implicit) decision about whether to skip the
word is made when the reader is fixating a prior word, this
is a case when the reader has high quality visual information
about only some of the word’s initial letters but does not yet
have high quality visual information about the whole word.
The amount of visual information the reader has at this time
is a function of the launch site, the distance from the fixation
position to the beginning of the word. In such a situation,
both the rational model and the heuristic model predict that
how likely a reader is to skip a word should be a function
of launch site (amount of visual input), and also of linguis-
tic knowledge (which words are common, and which words
are likely in this position). The rational model alone addi-
tionally predicts that readers’ likelihood of skipping the word
will vary depending on the particular visual information ob-
tained, and whether that information distinguishes it strongly
from its (likely) visual neighbors. Therefore, skipping should
be observed to be a complex function of the launch site, the
particular word, and linguistic knowledge, in contrast to the
heuristic model’s predictions of skipping as well-described
by coarse visual and linguistic information about the whole
word.

Previous empirical research finds that readers’ likelihood
of skipping a word increases with short word length, close
launch sites to the word, high word frequency, and high con-
textual predictability (Rayner, 1998). Regarding how differ-
ent sources of information may interact in skipping, studies of
skipping short words and especially the word the suggest that
visual information and word frequency information trump
information from the sentence context (Angele & Rayner,
2013; Angele, Laishley, Rayner, & Liversedge, 2014). De-
spite these findings, the fine-grained predictions of a ratio-
nal model can be better tested with a set of eye movement
decisions that happen in natural reading and that have wide
variation in visual and linguistic information available to the
reader. The goal of the current paper is to directly test the
fine-grained predictions using word skipping, and to gain in-
sights into the role of different sources of information in mak-
ing skipping decisions.

Related work
Empirical findings about skipping
At the aggregate level, the effects of visual and linguistic vari-
ables on skipping are very robust. Word length is consid-
ered to play a more important role than any other factors,
as found in a meta-analysis showing that word length ex-
plained more variance than word frequency and predictabil-
ity in regression models predicting skipping rate (Brysbaert,
Drieghe, & Vitu, 2005). The effect that close launch sites in-
crease skipping rates is also strong and robust (Brysbaert et
al., 2005). As for linguistic variables, there is abundant ex-
perimental evidence that skipping rate increases as word fre-
quency increases (Rayner, Sereno, & Raney, 1996; Angele
et al., 2014), and that high predictability leads to high skip-
ping rate (Balota, Pollatsek, & Rayner, 1985; Rayner, Slat-
tery, Drieghe, & Liversedge, 2011). Predictability is usually
measured as cloze probability, varying across conditions ei-
ther with different sentential frames or target words (Balota
et al., 1985; Rayner et al., 2011). The effects hold in corpus
analysis as well, as Luke and Christianson (2016) find that
high target predictability lead to more word skipping for both
content and function words. Kliegl, Grabner, Rolfs, and Eng-
bert (2004) also find significant effect of predictability, word
length, and word frequency on skipping rate using regression
analyses on Potsdam Sentence Corpus, though not including
any interactions among these factors.

Several studies have looked into the interactions between
visual and linguistic factors on a coarse level. One approach
is to analyze linguistic effects on data split in launch sites in
post-hoc analysis. For example, Rayner et al. (1996) observe
reliable frequency effect on skipping rate at near launch sites
(> −5) but not at far launch sites, and White, Rayner, and
Liversedge (2005) find significant interaction between pre-
dictability and word length preview overall, which diminish
to non-effect for far launch sites (near launch sites are de-
fined as those ≥ −3, while far launch sites are those ≤ −4).
Another approach to study the interaction of visual and lin-
guistic information is to manipulate parafoveal preview. A
preview of the definite article the increases readers’ skipping
rate, even when syntactic constraints do not allow for articles
to occur in that position (Angele & Rayner, 2013; Angele
et al., 2014). Skipping rates are higher for the preview of a
highly predictable word or its visually similar nonword coun-
terpart than the preview of a low-predictability word (Balota
et al., 1985), and for the preview of a predictable word than
for a visually similar nonword (Drieghe, Rayner, & Pollat-
sek, 2005). Staub and Goddard (2019) observe that frequency
effect on skipping rate is maintained with both valid and
invalid preview, but predictability influences skipping only
with valid preview. Additionally, English readers only ben-
efit from the preview of a semantically similar neighbor in
highly-constraining context but not in moderate-constraining
context (Schotter, Lee, Reiderman, & Rayner, 2015).

In sum, previous research have identified visual and lin-
guistic factors that influence skipping by conducting reading
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experiments and corpus studies. There is also evidence for in-
teractions between visual and linguistic factors, but they are
constrained to a small set of well-controlled language mate-
rials and analyzed on a coarse level. A systematic analysis
with skipping made for a variety of words in a variety of con-
texts with a variety of launch sites would help gain insights
into how visual and linguistic variables interacts to identify a
word before fixating it and skip at a fine-grained level.

Other instances of rational models of reading
Previous instances of the rational models of reading have
provided explanation for several eye movement phenomena.
For example, they explain why the initial fixation tends to
land near word center and is affected by the launch distance
(Legge et al., 2002), why readers often make regressions
to previous words (Bicknell & Levy, 2010), and why high-
frequency and low-surprisal words yield lower reading diffi-
culty than low-frequency and high-surprisal words (Bicknell
& Levy, 2012). In the field of single word identification,
Duan and Bicknell (2017) implement a rational model of re-
fixations, and find that readers rationally make refixations to
seek visual information from parts of the word that the read-
ers are uncertain.

The rational model of skipping presented in this paper has
different focuses than previous models. Instead of setting the
goal to be identifying a whole sentence, the rational model
of skipping focus on identifying a single word before directly
fixating it. Previously, the computational cost is high due to
recomputing posterior beliefs about an entire sentence after
each new piece of visual evidence. The model of skipping is
computationally simple, enabling the incorporation of sophis-
ticated models of language knowledge and visual evidence.

Rational model of skipping
Word identification as Bayesian inference
In our rational model of skipping, word identification uses
Bayesian inference, in which a prior distribution over pos-
sible identities of the word given by the language model is
combined with a likelihood term given by ‘noisy’ visual in-
put conditional on the fixation position to form a posterior
distribution over the identity of the word. Formalized with
Bayes’ theorem,

p(w|I) ∝ p(w)p(I|w) (1)

where the probability of the true identity of the word being w
given uncertain visual input I is calculated by multiplying the
language model prior p(w) with the likelihood p(I|w) of ob-
taining this visual input from word w, and normalizing. Since
the shape of the posterior distribution depends on the prob-
ability of each word relative to probabilities of other words
in the vocabulary, it contains information about how well a
word is distinguished from its neighbors.

In general, the prior p(w) represents reader expectations
for the next word, and for the present paper, we compare two

representations of the prior: a word unigram model (i.e., us-
ing word frequency information), which ignores any context
information, and a 5-gram model, which conditions on the
previous four words of context. The likelihood p(I|w) repre-
sents how likely a piece of visual input is from a word w. For
the present paper, we assume that all visual input is obtained
only from the final fixation position prior to either fixating
the word or skipping it (i.e., the launch site). The visual input
obtained about a word consists of independent visual input
obtained from each letter in it. Each letter is represented as a
one-hot 52-dimensional vector (distinguishing 26 lower- and
upper-case letters), with a single element being 1 and the rest
being 0. Visual input about each letter is accumulated iter-
atively over time by sampling from a multivariate Gaussian
distribution centered on that letter with a diagonal covariance
matrix Σ = λ−1I, where λ is the reader’s visual acuity for that
letter. Visual acuity depends on the location of the letter in
relation to the point of fixation, or eccentricity, which we de-
note ε. Similar to Bicknell and Levy (2010), we assume that
acuity is a symmetric, exponential function of eccentricity:

λ(ε) =
∫

ε+.5

ε−.5

1√
2πσ2

exp(− x2

2σ2 )dx (2)

with σ = 3.075, the average of two σ values for the asymmet-
ric visual acuity function (σL = 2.41 for the left visual field,
σL = 3.74 for the right visual field) used in Bicknell and Levy
(2010). In this paper, we take σ, the effective width of the vi-
sual field, as a free parameter, and experiment with a set of σ

values. In addition, we introduce another free parameter Λ to
scale the overall quality of visual information by multiplying
it with each acuity λ (see the Experiment section below).

Single word belief updating

Given visual information and linguistic expectations, we may
thus compute a posterior distribution over possible identities
of the word. Since visual information arrives over time, this
is a Bayesian belief updating process, where beliefs are up-
dated as each new piece of visual information arrives. In the
single word domain we study here, this Bayesian belief up-
dating process turns out to be relatively computationally sim-
ple, and can be implemented as sampling from a multidimen-
sional Gaussian distribution. Say we have a vocabulary of
size v, where each word has dimensionality d (here d = 52×
number of characters in the word), and we denote y1, y2, ...,
yv as the vector representations of all the words in the vo-
cabulary. We can represent the current posterior over words
at time step t by a (v− 1)-dimensional log-odds vector x(t),
where each element x(t)i represents the log-odds of yi rela-
tive to the final word yv. Working with beliefs in this format
means that Bayesian inference is just additive in log-odds (no
renormalization):
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x(t)i = log
p(wi|I(0,...,t))
p(wv|I(0,...,t))

= log
p(I(t)|wi)p(wi|I(0,...,t−1))

p(I(t)|wv)p(wv|I(0,...,t−1))

= log
p(I(t)|wi)

p(I(t)|wv)
+ log

p(wi|I(0,...,t−1))

p(wv|I(0,...,t−1))

= ∆x(t)i +x(t−1)
i

(3)

That is, the log-odds posterior at time step t equals the
log-odds posterior at time step t − 1 (which serves as the
prior at time step t) plus the log-odds likelihood. Thus, in
an iterative belief-updating context, the log-odds vector be-
gins at a value set by the prior, here the language model,
x(0)i = log p(wi)− log p(wv). Then, as each piece of visual in-
formation I(t) arrives, updating beliefs is as simple as adding
to x(t−1) the likelihood log-odds vector for this new piece of
information ∆x(t), where each element ∆x(t)i gives the likeli-
hood log-odds for that word relative to the final word wv. For
a given true word, vocabulary, and eccentricity, the density
function for the likelihood log-odds vector ∆x(t) is a (v−1)-
dimensional multivariate normal distribution, as each element
∆xi is an affine transformation of I, which is itself a multi-
variate Gaussian.

Experiment
To test whether readers display signatures of optimal integra-
tion across these contexts, we build a computational imple-
mentation of an ideal-integration model predicting identifi-
cation confidence for each skipping decision. We show that
these model predictions explain significant variance in human
skipping rates when added to a strong baseline model.

Baseline model
Data The English part of the Dundee corpus contains eye
movement records from 10 native English-speaking partici-
pants as they read through newspaper editorials (see Kennedy
& Pynte, 2005, for further details.) We included 122,230 ob-
servations from the Dundee corpus if they were: 1) a word
skipped on first pass (coded as a 1) or a word fixated on
first pass (coded as a 0); 2) not adjacent to any blink; and
3) not the first or last fixation on a line. Further, the fix-
ated/skipped word should not 1) contain any non-alphabetical
character or be adjacent to punctuation, or 2) follow a word
that was skipped or refixated. We excluded observations with
far launch sites and long word lengths to ensure enough ob-
servations on every level of variations. In the final data,
launch sites ranged between [-10, -1], with more than 1000
observations from each launch site, and word length ranged
between [1, 8], with the skipping rate being higher than 9%
for each word length. The overall skipping rate was 53.9%,
resulting from the generally high skipping rate of Dundee cor-
pus, which was over 40% (Demberg & Keller, 2008), and our
criterion of requiring the previous word to be fixated, leading
to a skipping rate even higher.

Table 1: Generalized additive mixed-effects regression model
results of baseline model (note that random slopes for these
fixed effects were not included in the model; the model in-
cluded a random intercept over participants). The GAMM
was fitted by REML, and p-values were reported using sum-
mary.gam function in mgcv package (Wood, 2011).

χ2 p-value
word length 6026.25 < 2×10−16∗∗∗

launch site 9123.73 < 2×10−16∗∗∗

frequency 527.94 < 2×10−16∗∗∗

surprisal (5-gram) 38.40 1.01×10−6∗∗∗

context entropy 71.16 8.28×10−11∗∗∗

word length × frequency 89.06 7.73×10−16∗∗∗

launch × frequency 36.09 2.85×10−5∗∗∗

launch × surprisal 29.39 1.13×10−4∗∗∗

launch × entropy 66.82 2.24×10−11∗∗∗

word length (word N-1) 828.66 < 2×10−16∗∗∗

frequency (word N-1) 54.11 1.62×10−9∗∗∗

5-gram (word N-1) 127.22 < 2×10−16∗∗∗

context entropy (word N-1) 31.68 5.05×10−5∗∗∗

word length × frequency
(word N-1) 84.69 1.73×10−14∗∗∗

Model We analyzed first-pass skipping in the Dundee cor-
pus with a generalized additive mixed-effects regression
model (GAMM) predicting skipping from a wide range of
variables previously shown to influence skipping, including
word length, launch site, word frequency, surprisal, and con-
textual constraint. We estimated word frequency (log un-
igram probability) and 5-gram surprisal (log 5-gram prob-
ability) with n-gram models (Goodkind & Bicknell, 2018)
trained on Google One Billion Word Benchmark (Chelba et
al., 2013), and we measured contextual constraint as the en-
tropy of the 5-gram probability distribution of words in a
vocabulary of 20,001 words. We defined the vocabulary to
include all words that were in both the Dundee corpus and
our language modeling corpus, plus words with frequencies
above a cutoff chosen such that the resulting total vocabu-
lary would have about 20,000 words. We also controlled for
the previous word’s properties such as word length and fre-
quency, and included a random intercept over participants.
Crucially, this GAMM allowed for non-linear effects of each
of these variables, providing a strong baseline. Table 1 shows
all the fixed effects in the baseline model.

Rational model
Simulation For each observation in the dataset, we simu-
lated 50 trials using the rational model of skipping for each
parametrization of the model. In each trial, a piece of vi-
sual information from the launch site is sampled and com-
bined with the linguistic information to generate a posterior
distribution of possible identities of the word. As described
above, the visual information in this model has two param-
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Table 2: Significance of averaged entropy of a rational
model’s posterior distribution when added to the baseline
model.

Prior: Frequency Prior: 5-gram
(σ,Λ) z-value p-value z-value p-value
(1,5) -2.99 2.78×10−3∗∗ 1.23 0.22
(1,15) -2.51 0.012∗ 1.43 0.15
(1,30) -2.07 0.039∗ 2.27 0.024∗

(2,5) -4.49 7.26×10−6∗∗∗ 1.15 0.25
(2,15) -4.22 2.4×10−5∗∗∗ 1.67 0.095.

(2,30) -2.75 6.02×10−3∗∗ 1.96 0.05.

(3,5) -5.76 8.32×10−9∗∗∗ 1.23 0.22
(3,15) -4.92 8.75×10−7∗∗∗ 1.56 0.12
(3,30) -3.88 1.03×10−4∗∗∗ 1.04 0.30
(4,5) -5.98 2.27×10−9∗∗∗ 1.16 0.25
(4,15) -4.22 2.50×10−5∗∗∗ 2.15 0.032∗

(4,30) -4.04 5.36×10−5∗∗∗ 1.43 0.15
(5,5) -5.58 2.37×10−8∗∗∗ 1.14 0.26
(5,15) -4.81 1.55×10−6∗∗∗ 1.78 0.076.

(5,30) -3.01 2.65×10−3∗∗ 2.28 0.023∗

eters: overall visual input quality Λ and the width of acu-
ity function σ. We used fifteen sets of parameter pairs for
the models; these parameters were chosen to be values that
spanned a wide part of the parameter space while also re-
specting the trade-off between width of the acuity function
and its overall quality.1 The linguistic information (prior) in
this model is given by either the word frequency (unigram) or
5-gram language models, as used in our baseline model.

Analysis From each trial, we extract the entropy of the pos-
terior distribution (postH) and then calculate the average of
postH from the 50 trials for each observation (for each model
parametrization). For each parametrization, we add this av-
erage postH to our baseline model as a linear predictor. If
human readers extract visual and linguistic information in a
rational manner, we predict postH to show a significant effect
predicting human skipping, even in a strong baseline model,
such that skipping is more likely when the posterior entropy
is low.

Results
Baseline model
GAMM results of the baseline model are summarized in
Table 1. The results confirm previous findings that word
length, launch site, frequency, surprisal, and contextual con-
straint significantly influenced human skipping. Moreover,
this baseline model captures non-linear interactions among
these predictors, indicating that different sources of informa-
tion interactively guide skipping at an aggregated level.

1If the function is very wide and high quality, the model has too
much information about the whole word, whereas if narrow and low
quality, the model has almost no information.
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Figure 1: Partial effect of postH with a frequency prior in
predicting skipping rate.

Rational model
The partial effects of postH computed from the GAMMs are
visualized in Figure 1 (frequency prior) and Figure 2 (5-gram
prior), after controlling for all variables in the baseline model
and additionally a random slope of postH over participants.
The significance of postH when added to the baseline model
is reported in Table 2. For postH from rational models with
a frequency prior, the effects are significant in the predicted
direction: high postH indicates high uncertainty about the
word’s identification and is associated with lower skipping
rates; these effects are robust to parameter choice and are sig-
nificant for all parametrizations tested. For postH from ra-
tional models with a 5-gram prior, the effects are generally
not significant, though they do all trend in the same direction
and show the pattern that skipping rates increase as the un-
certainty over the word’s identity increases, opposite to the
predicted direction.

Discussion
In this paper, we implemented a computational model of skip-
ping that used Bayesian inference to combine visual and lin-
guistic information. We then extracted the entropy of the
posterior distribution as a measure of readers’ confidence
about word identification, and tested whether this measure
improved the predictive power of a strong baseline model in-
corporating aggregate visual and linguistic factors known to
influence skipping. Results showed that this postH measure
had significant additional effect predicting skipping when ex-
tracted from rational models with a frequency prior, but gen-
erally not when extracted from rational models with a 5-gram
prior. The direction of the effect of postH from models with a
frequency prior is consistent with the prediction that low con-
fidence about word identification leads to decreased skipping

279



−1.0

−0.5

0.0

0.5

1.0

−2 −1 0 1 2

−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2 3 4

σ=1

−2 −1 0 1 2 3

−2 0 2 4

−2 0 2 4

σ=2

−2 −1 0 1 2

−2 0 2 4

−2 0 2 4

σ=3

−2 −1 0 1 2

−2 0 2

−2 0 2 4

σ=4

−2 −1 0 1 2

Λ
=

5

−2 −1 0 1 2

Λ
=

15

−2 0 2 4

Λ
=

30

σ=5

Scaled postH

S
ki

pp
in

g 
ra

te
 (

lo
g−

od
ds

)

Figure 2: Partial effect of postH with a 5-gram prior in pre-
dicting skipping rate.

rate, while the trend of the effect of postH from models with
a 5-gram prior is in an opposite direction.

These findings generally provide positive evidence for the
rational model’s prediction that readers’ likelihood of skip-
ping vary depending on the particular visual information ob-
tained, and whether that information distinguishes it strongly
from its (likely) visual neighbors as in linguistic knowledge.
The predictor, postH, is computed from the posterior distribu-
tion of a Bayesian inference model with partial visual infor-
mation about the word, and therefore captures how likely the
word is differentiated from its neighbors in the vocabulary.
If the true word is much more likely than its visually-similar
neighbors, the postH should be low, while if the true word
and its neighbors have similar probabilities, the postH should
be high. Such a measure of reader’s confidence about word
identification is dynamic, innate, and hard to capture in fac-
torial experiments, but can be approached through computa-
tional simulation. Its significant effect is not predicted by the
heuristic model in principle, as postH is assumed to utilize
information about how particular words relate to their neigh-
bors regarding the specific visual information obtained about
parts of the word.

The observation that postH from a frequency prior better
predicts skipping than the 5-gram prior is potentially prob-
lematic for a fully rational model of skipping, though: a
reader that maximize usage of all the information available
should be better predicted by a model with 5-gram prior than
one with frequency prior. Rather, this pattern lines up with
previous findings on the skipping of the, which relies on vi-
sual and frequency information more than structural infor-
mation (Angele et al., 2014). This pattern is also consistent
with the finding that frequency effect but not predictability ef-
fect on skipping survives bad parafoveal visual input, which

may be explained by different time course of frequency and
contextual information in making eye movement decisions
(Staub & Goddard, 2019). A possible reason of our finding
is that skipping decisions may be made without full knowl-
edge of the context, leading to the absence of effect from
our measure (i.e. 5-gram) of contextual information. Specifi-
cally, since saccade programming takes a relatively long time
and identification/processing of the fixated word continues
during this lag, skipping decisions may be made before the
previous word is fully identified and integrated into the con-
text. In spite of this issue to be further examined, we find
that the entropy of a posterior distribution from a frequency
prior improves prediction of skipping with average variables,
suggesting a complex combination of information sources as
predicted by rational models of reading.
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Abstract

Curiosity is considered essential for learning and sustained en-
gagement, yet stimulating curiosity in educational contexts re-
mains a challenge. Can people’s curiosity about a topic be
stimulated by evidence that the topic has potential value? In
two experiments we show that increasing people’s perceptions
about the usefulness of a scientific topic also influences their
curiosity and subsequent information search. Our results also
show that simply presenting interesting facts is not enough to
influence curiosity, and that people are more likely to be curi-
ous about a topic if they perceive it to be directly valuable to
them. Given the link between curiosity and learning, these re-
sults have important implications for science communication
and education more broadly.
Keywords: curiosity; intervention; education

Introduction
“Sometimes these dollars go to projects that have little or
nothing to do with the public good. Things like fruit fly
research. I kid you not.”

– Sarah Palin, former Alaska Governor

In one of her first policy speeches, former Alaska Gov-
ernor and Vice Presidential nominee Sarah Palin made the
above remark to alert people to the alleged misuse of federal
funds. Her comments were met with disappointment and dis-
may within the scientific community, and for good reason –
fruit flies have been an essential part of biological research,
and research on them has shed light on basic aspects of biol-
ogy and prompted medical advance (Siegel, 2009).

Unfortunately, Palin’s attack on fruit flies is not the first
example of a politician deriding specific kinds of research
(Kempner, 2008). While such statements could be motivated
by various political or economic considerations, they also
seem to reflect a lack of curiosity about the scientific topics in
question. This highlights an important aspect of curiosity in
that the same topic can elicit quite different levels of curios-
ity in different people. What accounts for this difference, and
how might greater curiosity be induced?

Psychological accounts of curiosity posit that curiosity
is piqued whenever people observe discrepancies (Berlyne,
1950, 1960), or perceive a “moderate” gap between their ac-
tual and desired knowledge state (Loewenstein, 1994). Based
on these theories, many people’s low curiosity for scientific
topics (such as fruit flies) could be explained by a lack of (per-
ceived) discrepancy and/or by inadequate prior knowledge,
such that the information gap is too large. However, Palin’s

comments suggest an additional possibility: perhaps people
simply fail to see any value in pursuing topics that seem to
lack theoretical or practical implications. Indeed, a recent ac-
count of curiosity suggests that people’s curiosity should be
higher for information if they perceive that information to be
important to them (Dubey & Griffiths, 2017). Furthermore,
various studies from the education literature have shown that
students’ perceived utility value i.e., how valuable they think
a task would be for future goals, correlates with their task
enjoyment and engagement (Eccles & Wigfield, 1995; Hulle-
man et al., 2008). In line with these findings, education re-
searchers have successfully used utility-value interventions
to increase student’s motivation and performance in various
learning settings (Hulleman et al., 2010; Harackiewicz et al.,
2012; Brown et al., 2015). However, this work has not investi-
gated whether utility-value interventions can successfully in-
duce curiosity.

The current work explores a novel way to stimulate curios-
ity – by manipulating the perceived value of a topic. More
specifically, we explore whether changing the perceived value
of a scientific topic can also affect people’s curiosity about
that topic. If such a value manipulation indeed affects curios-
ity, then interventions on value could not only have impor-
tant implications for curiosity researchers, but also for science
communicators and educators of all kinds.

The importance of perceived value
Motivation and value
A classic model of motivation is the expectancy-value the-
ory (Atkinson, 1964; Wigfield & Eccles, 2000), which posits
that motivation in educational contexts is determined by an
individual’s expected success (i.e., belief that one can suc-
ceed at an activity) and subjective task value. Studies based
on this theory have primarily developed interventions that fo-
cus on the ‘expected success’ component – that is, on im-
proving students’ perceived ability to master tasks to improve
their motivation and performance (Eccles & Wigfield, 1995;
Wigfield & Eccles, 1994). More recently, a number of re-
searchers have also developed interventions that focus on the
‘subjective value’ component. These interventions show that
an increase in students’ perception about the usefulness of a
subject leads to enhanced motivation and improved perfor-
mance in various learning settings (Hulleman et al., 2010;
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Harackiewicz et al., 2012, 2014; Brown et al., 2015). Al-
though curiosity is usually considered distinct from motiva-
tion, and possibly involves different computational and neu-
ral mechanisms, these findings provide a useful starting point
for developing interventions on curiosity, and for considering
why perceived value might play a role.

Curiosity and value
Although curiosity has long been recognized as an important
aspect of cognition, there is no single, agreed-upon theory of
curiosity (Kidd & Hayden, 2015). Instead, a number of theo-
ries have been proposed to explain curiosity (Berlyne, 1950,
1960; Schmidhuber, 1991; Loewenstein, 1994; Oudeyer et
al., 2007). These theories link curiosity with various psy-
chological factors, but none of them explicitly consider the
potential role that value can play in influencing curiosity.

Dubey and Griffiths (2017) recently proposed an account
that links curiosity to ‘value of knowledge’, which is a func-
tion of people’s current understanding of a topic and the per-
ceived usefulness of that topic. According to the theory, peo-
ple’s curiosity is evoked whenever they perceive an oppor-
tunity to increase the value of their knowledge (i.e., topics
that either increase understanding or perceived usefulness).
In essence, this model can be interpreted as providing a quan-
titative articulation of the expectancy-value theory. If peo-
ple’s curiosity is indeed driven by the perceived opportunity
to increase the value of their knowledge, then this suggests
that curiosity can be driven towards topics that seem initially
unimportant if people come to perceive them as useful or oth-
erwise valuable.1

Overview of experiments
In the current paper we ask whether manipulating per-
ceived value can influence curiosity. Answering this question
provides an opportunity to empirically evaluate theoretical
claims related to the link between value and curiosity while
also extending the rich literature in educational psychology
on motivation.

To address this question, we report two experiments in
which we present scientific topics to participants and have
them indicate their curiosity about those topics. We then ma-
nipulate the perceived usefulness of those topics and record
participants’ change in curiosity. In Experiment 1, we manip-
ulate how ‘valuable’ it would be for medical research to study
fruit flies and rats, and we measure how participants’ curios-
ity and information search is affected by this manipulation.
In Experiment 2, we go one step further by considering what
kind of value most effectively drives curiosity.

Experiment 1: Does value influence curiosity?
In Experiment 1, we investigated whether people’s curiosity
towards a scientific topic can be influenced by manipulating

1Additionally, we note that although Loewenstein’s theory of cu-
riosity (Loewenstein, 1994) does not explictly consider value in its
formal account, it does hypothesize that people will be more curious
about topics that are important to them.

the perceived value of that topic, and whether this boost in
curiosity affects subsequent information search. Participants
read two short articles about two different scientific topics
(one article for each topic). One of the two articles was ‘high-
value’, and the other was ‘low-value’. Participants’ curiosity
for the two scientific topics was recorded before and after they
read the articles. Subsequently, participants had the choice to
read some facts about the two scientific topics.

The experiment tested the following predictions: (1) Read-
ing a high-value article will increase curiosity, and it will do
so to a greater extent than reading a low-value article, (2)
Participants will be more likely to read facts corresponding
to the topic of the high-value article than those correspond-
ing to the topic of the low-value article, and (3) The effect
of the value manipulation on curiosity will be mediated by
perceived value.

Participants
We recruited 240 participants from Amazon Mechanical
Turk. They earned $1.00 for participating in a study that took
approximately 7-8 minutes to complete.

Note that for both Experiments 1 and 2, sample sizes were
determined prior to data collection; based on pilot data, we
aimed to recruit at least 60 participants per condition (which
required 240 in experiment 1, given two conditions with
counterbalanced order).

Stimuli
The stimuli used in the experiment were two short articles
describing the biology of fruit flies and two short articles de-
scribing the biology of rats. For each of the two topics (i.e.,
fruit fly and rat), one article was a ‘high-value’ article and the
other was a ‘low-value’ article. The high-value article empha-
sized how research about that animal could be highly ben-
eficial to medicine, while the low-value article raised ques-
tions about whether research concerning that animal could
generate any medical benefits for humans. All four articles
were otherwise matched in terms of length and, as much as
possible, for general content and style (stimuli available at -
https://goo.gl/BNpHzU).

Procedure
At the start of the experiment, participants were randomly
assigned to one of two conditions. In condition 1, participants
were assigned to the high-value article for fruit flies and to the
low-value article for rats. In condition 2, participants were
assigned to the low-value article for fruit flies and to the high-
value article for rats.

Phase 1 At the beginning of the first phase, participants
were presented with one of the two scientific topics, either
‘biology of fruit flies’ or ‘biology of rats’ (counter-balanced).
After seeing the topic, participants were asked to respond to
each of the following on a scale from 1-7:

1. Usefulness: “To what extent would knowing about this
phenomenon be useful to you in the future?”
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Figure 1: Design of Experiment 1. The experiment was divided into two phases. In Phase 1, participants were first presented
with one of the two topics from our stimuli and asked to provide ratings for curiosity, understanding, and usefulness. They then
read an article about that topic and once again rated curiosity, understanding, and usefulness. This procedure was then repeated
for the second topic. In Phase 2, participants had the choice to reveal five out of eight facts presented to them (four facts from
each topic). The chosen facts were then presented one by one. Note that instructions were provided before each phase

2. Understanding: “Please rate how well you feel you under-
stand this phenomenon.”

3. Curiosity: “Please rate your curiosity in knowing about
this phenomenon.”

The first question was to ensure that our manipulation of
value was successful, and the second question was to ensure
that the effect of value on curiosity couldn’t be reduced to
understanding. The third question i.e. participants’ rating of
their curiosity was the key variable of interest in Phase 1. Af-
ter providing the ratings, participants were presented with the
assigned article for that topic and they were instructed to read
it as carefully as possible. After they finished reading the ar-
ticle, participants were asked to re-rate their understanding,
perceived usefulness, and curiosity about that topic. Follow-
ing this, the above procedure was repeated for the other topic
(also refer to Figure 1).

Phase 2 In the second phase, participants were instructed
that they would be presented with some facts about the two
topics (four for each topic, eight in total), but that they only
needed to read five of those facts. The eight fact choices were
then presented (e.g., “Rat Fact 3201”), and participants indi-
cated their five choices. The corresponding facts were shown
to participants after they indicated their choices.

Results
For all analyses that follow, we compare participants’ ratings
for the low-value stimuli relative to the high-value stimuli
across the two conditions.

Phase 1 We first investigated the change in participants’
understanding ratings after reading the low- and high- stim-
uli. As shown in Figure 2(a), the mean understanding rat-
ing increased by 0.63 for the low-value stimuli and by 1.16
for the high-value stimuli. A mixed ANOVA revealed a
significant interaction between time (pre and post ratings)
and stimulus (low-value or high-value) on understanding,

F(1,239) = 29.1,MSE = 16.8, p < 0.001. We next con-
firmed that our manipulation of value successfully manip-
ulated perceived usefulness. As shown in Figure 2(b), the
mean rating of value increased by 0.40 for the low-value stim-
uli and by 1.16 for the high-value stimuli. A mixed ANOVA
again revealed a significant interaction between time (pre and
post ratings) and item (low-value or high-value) on perceived
value, F(1,239) = 47.692,MSE = 35.3, p < 0.001, indicat-
ing that our manipulation of value was effective. Finally,
we tested whether our value manipulation influenced partici-
pants’ curiosity. As shown in Figure 3(a), the mean curiosity
rating increased by 0.44 for low-value stimuli and by 1.04
for high-value stimuli i.e. the increase for the high-value
stimuli was 0.60 points higher than the increase for the low-
value stimuli. A mixed ANOVA revealed a significant in-
teraction between time (pre and post ratings) and item (low-
value or high-value) on curiosity ,F(1,239) = 32.69,MSE =
21.6, p < 0.001, indicating that the manipulation of value had
a significant effect on curiosity. A follow-up paired-samples
t-test showed that the increase of curiosity was greater for
the ‘high-value’ stimuli compared to the ‘low-value’ stimuli,
t(478) =−4.71, p < 0.001.

We next considered whether understanding or perceived
value mediated the effect of our value manipulation on cu-
riosity. We first ran a linear regression to predict curios-
ity based on value manipulation (i.e. ‘low-value’ or ‘high-
value’); this yielded a significant and positive coefficient
of 0.60, t = 4.7, p < 0.001,95% CI[0.35,0.85]. We then
considered a regression predicting curiosity based on per-
ceived value; yielding a significant and positive coefficient
of 0.47, t = 12.1, p < 0.001,95% CI[0.39,0.54]. We also
considered a regression predicting curiosity based on un-
derstanding; again yielding a significant and positive coef-
ficient of 0.37, t = 8.7, p < 0.001,95% CI[0.28,0.45]. We
then fit a multiple regression with both value manipula-
tion and perceived value as predictors; this yielded coeffi-
cients of 0.26 and 0.44 respectively (t = 2.21, p < 0.05,95%
CI[0.03,0.49] and t = 11.2, p < 0.001,95% CI[0.37,0.52]),
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Figure 2: Effect of value manipulation on understanding
and perceived value (Experiment 1). (a) Change in under-
standing ratings for participants who received the low-value
and high-value stimuli before and after they read the corre-
sponding articles. (b) Change in value ratings for participants
before and after they read the corresponding articles.

suggesting partial mediation. Finally, we fit a multiple re-
gression with both value manipulation and understanding as
predictors which yielded coefficients of 0.42 and 0.34 re-
spectively (t = 3.46, p < 0.001,95% CI[0.18,0.66] and t =
7.98, p < 0.001,95% CI[0.25,0.42]), again suggesting partial
mediation.

Phase 2 We next investigated whether participants were
more likely to reveal facts about the high-value stimuli com-
pared to the low-value stimuli. As shown in Figure 3(b),
participants indeed revealed more facts about the high-value
stimuli (3 vs. 2). A paired-samples t-test found that this dif-
ference was significant, t(478) =−10.6, p < 0.001.

Discussion
Experiment 1 tested and found support for two of our three
predictions about the effects of value on curiosity. First, re-
sults from phase 1 showed that participants became more cu-
rious about stimuli after reading information that suggested
the topic was of high (vs. low) value. Second, results from
phase 2 demonstrated that participants were more likely to re-
veal additional information about a topic after reading infor-
mation suggesting it was of high value. We also found that
our stimuli successfully manipulated perceived value, and
that perceived value partially mediated the effect of our value
manipulation on curiosity. However, the effect of our value
manipulation on curiosity was also partially mediated by un-
derstanding. This raises the concern that perceived value is
confounded with understanding, and that changes in under-
standing drove the effects of our manipulation on curiosity.
We address this concern in Experiment 2.

Experiment 2: What influences value most?
Experiment 2 had two aims. First, the experiment aimed to
test the influence of perceived value on curiosity while con-
trolling for understanding. Second, the experiment aimed to
investigate the effect of different kinds of information on peo-
ple’s perceived value and subsequently on curiosity. Partici-
pants were randomly assigned to three conditions in which

Figure 3: Value influences curiosity (Experiment 1). (a)
Mean increase in participants’ curiosity about a topic after
reading a ‘low-’ or ‘high-value’ article. (b) Mean facts chosen
after reading a ‘low-’ or ‘high-value’ article about that topic.

they read a short article about the ‘biology of fruit flies’ and
provided ratings before and after they read the article. In con-
dition 1, the article presented interesting facts about fruit fly
reproduction. In condition 2, the article showed how fruit
flies are valuable to the environment. In condition 3, the arti-
cle provided evidence that fruit flies are valuable to medical
research. We hypothesized that participants’ increase in un-
derstanding would be similar across the three conditions, but
that perceived value would not be. Moreover, the contrast be-
tween conditions 2 and 3 allows us to test the hypothesis that
perceived value would be especially sensitive to value with
potential personal relevance.

More specifically, the experiment tested these predictions:
(1) Participants’ curiosity about fruit flies will increase most
strongly in condition 3 (compared to conditions 1 and 2), and
(2) the effect of perceived value on curiosity will not be re-
ducible to other factors, such as understanding or surprise.

Participants
We recruited 203 participants from Amazon Mechanical Turk
(n = 67,72, and 64 for condition 1, 2, and 3 respectively).
They earned $0.35 for participating in a study that took ap-
proximately 2-3 minutes to complete.

Stimuli
The stimuli used in the experiment were three short articles
describing the biology of fruit flies. The three articles var-
ied in terms of their value to humans – the first article sim-
ply presented interesting facts about the reproductive cycle of
fruit flies, the second article had facts about the importance
of fruit flies for the ecosystem, and the third article provided
facts about the importance of fruit flies for medical research.
All three articles were matched for length and as much as
possible for general content and style (stimuli available at -
https://goo.gl/BNpHzU).

Procedure
At the start of the experiment, participants were randomly
assigned to one of the three conditions. The three conditions
followed the same procedure and differed only with respect to
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Figure 4: Effect of value manipulation on understanding,
value, and surprise (Experiment 2). (a) Mean change in
understanding ratings. (b) Mean change in value ratings. (c)
Mean surprise ratings of participants in each condition.

which of the three articles the participants read. Participants
were first presented with the scientific topic, ‘biology of fruit
flies’, and were asked to rate their understanding, perceived
value, and curiosity as in Experiment 1. After providing these
ratings, participants were presented with the assigned article
and they were instructed to read it as carefully as possible.
After they finished reading the article, participants were asked
to re-rate understanding, perceived usefulness, and curiosity
about that topic. In addition to these ratings, after the par-
ticipants read the article, they were also asked to respond to
the following on a scale of 1-7 – “Please rate how surpris-
ing you found the previously shown information on fruit flies
to be.” This question on surprise was added as an additional
control to ensure that any potential increase in curiosity was
not caused simply by surprise.

Results
We first investigated how participants’ understanding
changed after they read the corresponding articles across the
three conditions. As shown in Figure 4(a), participants’ un-
derstanding ratings increased significantly after they read the
article for all three conditions, t(142) = −2.34, p < 0.05
for condition 1, t(126) = −3.57, p < 0.001 for condition
2, and t(132) = −3.88, p < 0.001 for condition 3. More-
over, a one-way ANOVA revealed that these three groups
were not significantly different from each other, F(2,200) =
2.64,MSE = 5.5, p = 0.07, indicating that understanding rat-
ings increased the same across all three conditions. We next
evaluated how participants’ perceived value changed across
the three conditions. Although participants’ value ratings
increased numerically for all three conditions (refer to Fig-
ure 4(b)), this increase was not significant for condition 1,
t(142) = −1.52, p = 0.13. This suggests that simply pre-
senting interesting facts about a topic was not enough to in-
fluence perceived value. Furthermore, a one-way ANOVA
showed that the three groups differed significantly from each
other, F(2,200) = 9.25,MSE = 19.8, p < 0.001, with condi-
tion 3 significantly higher than condition 2, t(129) = 2.1, p <
0.05, and condition 2 significantly higher than condition 1,
t(134) = 2.2, p < 0.05. We next analyzed how much sur-
prise each article evoked (refer to Figure 4(c)) and found
that there was a significant difference for the surprise rat-
ings across the three conditions, F(2,200) = 5.12,MSE =
16.7, p < 0.01. Specifically, condition 3 was significantly

Figure 5: People’s curiosity is highest when they perceive
something to be of direct value to them (Experiment 2).
Mean change in curiosity ratings for the three different condi-
tions. Participants’ curiosity increased the most in condition
3, in which they read an article that provided evidence that
fruit flies are highly beneficial to medicine.

different than condition 2, t(129) = 3.19, p < 0.05, but con-
dition 2 was not significantly different compared to condition
1, t(134) = 0.92, p = 0.36.

We next evaluated the change in participants’ curiosity rat-
ings and found that as per our hypothesis, curiosity ratings
increased the most in condition 3 (by 1.15 points, also re-
fer to Figure 5). Furthermore, similar to perceived value rat-
ings, although participants’ curiosity ratings increased for all
three conditions, that increase was not significant for con-
dition 1, t(142) = 1.45, p = 0.15. We also conducted a
one-way ANOVA analysis and found that the three groups
were significantly different from each other, F(2,200) =
5.14,MSE = 9.1, p < 0.01. Follow-up paired-samples t-tests
showed that condition 3 was significantly different than con-
dition 2 ,t(129) = 2.13, p < 0.05, but condition 2 was not
significantly different compared to condition 1, t(134) =
0.89, p = 0.38. These results suggest that if people perceive
stimuli to be less valuable to them, then they are less likely to
become curious about them.

As in Experiment 1, we tested whether the effect of our
value manipulation on curiosity was mediated by perceived
value. First, a linear regression predicting curiosity from
value manipulation (i.e. condition 1, condition 2, or con-
dition 3) revealed a significant positive coefficient of 0.35,

Source Effect Size t p-value 95% CI

condition 1 −0.30 −1.38 0.17 [−0.73,0.13]
condition 2 −0.22 −1.01 0.31 [−0.65,0.21]
understanding* 0.13 2.12 < 0.05 [0.01,0.25]
value* 0.21 3.35 < 0.001 [0.09,0.34]
surprise* 0.15 3.10 < 0.01 [0.06,0.25]

Table 1: Regression results (Experiment 2). Regression
results of the increase of curiosity ratings with condition 1,
condition 2, understanding ratings increase, value ratings in-
crease, and surprise; significant differences are starred.
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t = 3.1, p < 0.005,95% CI[0.13,0.57]. A similar regression
with perceived value as the predictor produced a coefficient
of 0.33, t = 5.64, p < 0.001,95% CI[0.21,0.45]. Next, a mul-
tiple regression with both value manipulation and perceived
value resulted in a non-significant coefficient of 0.19 for value
manipulation, t = 1.72, p = 0.09,95% CI[−0.03,0.41], while
perceived value remained significant at 0.3, t = 4.91, p <
0.001,95% CI[0.18,0.42]. This suggests that the effect of
value manipulation on curiosity was fully mediated by per-
ceived value. Finally, to confirm that the effect of perceived
value on curiosity is not reducible to condition, understand-
ing, or surprise, we conducted a linear regression to predict
the increase of curiosity ratings with condition 1, condition
2, increase of understanding ratings, increase of value rat-
ings, and surprise. We found a significant regression equa-
tion, F(5,197) = 10.61, p < 0.001, with an R2 of 0.192 and
a significant effect of value on curiosity, greater than any of
the other factors (refer to Table 1).

Discussion
The findings from Experiment 2 support both of our predic-
tions. First, we found that not all kinds of value are equal:
participants were more likely to become curious about a sci-
entific topic if they learned of its direct value to them (condi-
tion 3 vs. 2). Second, we succeeded in identifying an effect
of value that could not be explained by differences in under-
standing or surprise. Our results suggest that simply present-
ing interesting facts that have no direct value is not enough
to induce curiosity (condition 1), even if those facts boost un-
derstanding and induce surprise.

General Discussion
The primary purpose of this research was to test whether cu-
riosity can be influenced by manipulating people’s percep-
tions of value. Across two experiments, we find that ma-
nipulating the perceived value of a topic influenced curiosity
(Experiment 1 and 2), and this also influenced subsequent in-
formation search (Experiment 1). Results from Experiment
2 further demonstrated that the effects of our manipulation
on curiosity were fully mediated by perceived value and can-
not be reduced to understanding or surprise, which are both
known to influence curiosity.

Our results have considerable theoretical implications as
they demonstrate a link between value and curiosity. In doing
so, our findings lend support to Dubey and Griffiths’s (2017)
theory of curiosity. They also challenge previous accounts of
curiosity, such as the incongruity theory (Berlyne, 1960) and
the information-gap theory (Loewenstein, 1994), insofar as
those theories fail to incorporate an explicit role for value.

Despite the promise of our results, the significance of our
study is limited by the nature of our stimuli, task, and our
focus on short-term consequences of value on curiosity. Fur-
thermore, several key theoretical questions about curiosity re-
main. For example, previous studies have shown that people
become curious about completely irrelevant and sometimes

even potentially harmful stimuli (Hsee & Ruan, 2016). Con-
versely, people are sometimes averse to information, even
when that information is potentially useful to them (Sweeny
et al., 2010). Understanding how curiosity interacts with
value in these contexts is an important research question for
future work.

Another limitation of our experimental manipulation is that
the importance of the information is clearly spelled out to the
participants especially in the high-value articles. Therefore,
it is possible that the participants rate that information to be
important even though they may not necessarily believe that
to be the case (perhaps due to a social desirability bias). Fu-
ture work will consist of conducting further experiments to
rule out this possibility.

We also note that some theories stipulate that curiosity is
an intrinsic drive and is not instrumental, thereby making our
results seem counter-intuitive. On the other hand, even if the
experience of curiosity is a drive for knowledge for its own
sake, it is still possible that curiosity can be modulated by
instrumental factors. Prior work has similarly pointed to the
challenge of delineating extrinsic and intrinsic factors in var-
ious cases (Kidd & Hayden, 2015). For instance, what is in-
trinsic for one individual could be extrinsic for another.

Regardless of this debate, our work shows that self-
reported curiosity (and information-seeking behavior) can be
influenced by value and it sheds light on effective strategies
to do so. The results from Experiment 2 suggest that sim-
ply presenting information that seems interesting is not effec-
tive in influencing value or curiosity (condition 1). Instead, a
more effective way to stimulate curiosity is to present infor-
mation in a way that allows people to directly see its value
and relevance (condition 3). Perhaps fruit flies will never be
welcome in our homes, but maybe people will become more
curious about them – and more welcoming of basic research
on them – once they find out how valuable they are to us.
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Abstract

A consistent finding in research on conditional reasoning is
that individuals are more likely to endorse the valid modus po-
nens (MP) inference than the equally valid modus tollens (MT)
inference. This pattern holds for both abstract task and prob-
abilistic task. The existing explanation for this phenomenon
within a Bayesian framework (e.g., Oaksford & Chater, 2008)
accounts for this asymmetry by assuming separate probabil-
ity distributions for both MP and MT. We propose a novel
explanation within a computational-level Bayesian account of
reasoning according to which “argumentation is learning”.
We show that the asymmetry must appear for certain prior
probability distributions, under the assumption that the condi-
tional inference provides the agent with new information that
is integrated into the existing knowledge by minimizing the
Kullback-Leibler divergence between the posterior and prior
probability distribution. We also show under which conditions
we would expect the opposite pattern, an MT-MP asymmetry.
Keywords: conditional reasoning; probabilistic reasoning;
Bayesian model; computational-level account

Introduction
Conditionals of the form ”If A, then C“ – for example, “If
global warming continues, then London will be flooded” –
are ubiquitous in everyday language and scientific discourse.
One research question that has attracted a lot of attention is
how individuals reason with conditionals. Usually four con-
ditional inferences are studied, each consisting of the condi-
tional as the major premise, a categorical minor premise, and
a putative conclusion:

• Modus Ponens (MP): If A then C. A. Therefore, B.

• Affirmation of the Consequent (AC): If A then C. C. There-
fore, A.

• Denial of the Antecedent (DA): If A then C. Not A. There-
fore, not B.

• Modus Tollens (MT): If A then C. Not C. Therefore, not A.

According to classical logic MP and MT are valid (i.e.,
truth preserving) inferences and AC and DA are not valid.
Early research with conditional inferences has emulated the
inference process of classical logic; in the abstract task, in-
ferences are presented with abstract content, participants are
asked to treat the premises as true, and are asked to only ac-
cept necessary conclusions. Results generally showed that
even untrained participants are able to distinguish valid from

invalid inferences (i.e., they accept more valid than invalid
inferences). However, their behavior is clearly not in line
with the norms of classical logic. Whereas participants tend
to unanimously accept the valid MP, the acceptance rates for
the equally valid MT inference scheme is considerably lower.
In a meta-analysis of the abstract task, Schroyens, Schaeken,
and d’Ydewalle (2001) found acceptance rates of .97 for MP
compared to acceptance rates of .74 for MT. This MP-MT
asymmetry will be the main focus of the present manuscript.1

Research in recent years has moved away from the ab-
stract task and its focus on logical validity towards tasks more
akin to real-life reasoning within a probabilistic framework
(Oaksford & Chater, 2007; Over, 2009). In the probabilis-
tic task, inferences employ everyday content for which par-
ticipant posses relevant background knowledge and they are
usually asked for their subjective degree of belief in the pu-
tative conclusions. The degree of belief in the conclusion of
course depends on the actual content (i.e., the probabilistic
relationships among premises and conclusion), but there is
still ample evidence for an MP-MT asymmetry that goes be-
yond what would be expected from existing probabilistic ac-
counts. For example, Oaksford, Chater, and Larkin (2000)
created materials for which their Bayesian model of condi-
tional reasoning predicted participants to posses similar be-
liefs in MP and MT. Their results showed that, whereas this
reduced the asymmetry, there were still differences such that
participants expressed stronger beliefs in MP than MT. Sim-
ilarly, Singmann, Klauer, and Over (2014) asked participants
for their subjective degrees of belief, first in both premises,
and then in the conclusion and showed that those only formed
a coherent probability distribution “above chance” for MP,
but not for MT. Essentially the same results were obtained
by Evans, Thompson, and Over (2015). Together, these find-
ings suggest a clear limit for simple probabilistic accounts of
conditional reasoning.

Existing Accounts
To describe existing accounts and our new explanation, let
us formalize the probabilistic structure of the reasoning prob-
lem. We consider an agent who entertains the propositions
A (the antecedent) and C (the consequent) of a conditional

1Participants also tend to erroneously accept the invalid infer-
ences AC and DA. Schroyens et al. (2001) report acceptance rates of
.64 for AC and .56 for DA.
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A C

Figure 1: The Bayesian Network representation of the rela-
tion between A and C.

”If A, then C“. To proceed, we introduce binary proposi-
tional variables A and C (in italic script) which have the val-
ues A and ¬A, and C and ¬C (in roman script), respectively.
A prior probability distribution P is defined over these vari-
ables. It is represented by the Bayesian Network in Figure
1. For now, the exact parameterization of P is not yet rele-
vant, however there exist several with three free parameters.
In addition, we define the (absolute) endorsement of MP as
E1 := P′(C). Similarly, we define the (absolute) endorsement
of DA as E2 := P′(¬C), the (absolute) endorsement of AC
as E3 := P′(A), and the (absolute) endorsement of MT as
E4 := P′(¬A).

The original Oaksford et al. (2000) model makes two as-
sumptions. First, it assumes that belief in the conclusion
reflects the conditional probability of the conclusion given
the minor premise. For example, E1 = P(C|A) and E4 =
P(¬A|¬C). Second, it assumes that P is fixed throughout
the reasoning process; that is, P is the same for responses to
the four conditional inferences (Oaksford and Chater call this
the ”invariance assumption“). In other words, this model as-
sumes that reasoning amounts to consulting ones fixed proba-
bility distribution and responding in line with it (e.g., by sam-
pling from memory; Costello & Watts, 2014) . As shown by
Oaksford and Chater (2007, ch.5) this model does a good job
in accounting for many of the existing data from the abstract
task, but underestimates the MP-MT asymmetry.

To account for the MP-MT asymmetry, the solution first
proposed in Oaksford and Chater (2007, ch.5) and subse-
quently defended in (Oaksford & Chater, 2008, 2013) is to
give up on the second of their assumptions, that P is fixed for
responses to all four inferences. Specifically, they argue (e.g.,
Oaksford & Chater, 2013) that MP represents a special case
that does not require changing P as it basically reflects the
probabilistic information already present in the conditional
(i.e., P(C|A)). Thus, presenting MP does not allow the agent
to learn new information about P. However, the other three
inferences, MT, AC, and DA, present new information and
thus require an updated probability distribution P′, which in-
dividuals “learn“. Practically, they did not specify many re-
striction of P′, other than that P(C|A)> P′(C|A), which was
primarily motivated by fitting their model to the extant data.
From a statistical point of view, it not too surprising that a
model that then essentially has one free parameter for fitting
E1 and three free parameters for fitting the remaining three
observations (i.e., responses to the other three inferences, E2,
E3, and E4) does a relatively good job in accounting for the
existing data.

Therefore, there are two main theoretical shortcomings in
Oakford and Chater’s approach. First, their revised model

assumes that the endorsement for MP, E1, comes from one
probability distribution, P, whereas the endorsement for the
other inferences, E2 to E4, comes from the updated probabil-
ity distribution P′. This seems somewhat unsatisfactory from
a rational Bayesian perspective and more of an ad-hoc solu-
tion than a principled argument. Second, the actual processes
in which the agent updates P to arrive at P′ are not specified
well enough. What does it entail for the agent to learn the new
information presented in MT? How can we characterize the
cognitive processes involved in making a probabilistic MP or
MT inference?

Our answer to these questions is based on Eva and Hart-
mann’s (2018) recent Bayesian account of reasoning ac-
cording to which “argumentation is learning”. In line with
Oaksford and Chater (2013), learning is specified as updating
an agent’s prior belief state, represented by P, in light of new
information resulting in the posterior belief state P′. Specif-
ically, the premises of an inference will affect specific parts
of P (e.g., for MP, the agent learns the new values of both
P(C|A) and P(A)). The novel assumption is that as a conse-
quence, the agent needs to incorporate this new information
into their existing beliefs which requires her to update poten-
tially all parts of P. According to Eva and Hartmann (2018),
this updating follows a well-defined Bayesian rule which gen-
eralizes conditonalization and Jeffrey conditionalization and
requires that a suitably defined distance (or divergence) be-
tween P′ and P is minimized. Eva and Hartmann (2018) ar-
gue that these divergencies should be members of the fam-
ily of f -divergences. One important member of this family
is the Kullback-Leibler (KL) divergence (Diaconis & Zabell,
1982), which we will use in the remainder. In this way, updat-
ing satisfies the constraints provided by the new information
and is conservative (i.e., the changes are as minimal as pos-
sible). We will show that from this assumption, the typically
found MP-MT asymmetry must appear for certain P. How-
ever, in some situations the opposite pattern (i.e., E4 > E1)
should also be observed.

The Model
Our new explanation for the MP-MT asymmetry is based on
the Bayesian Network in Figure 1 representing the prior prob-
ability distribution P. In addition, we assign

P(A) = a, (1)

for the prior probability of the antecedent and the conditional
probabilities of the consequent C, given the values of its par-
ent:

P(C|A) = p , P(C|¬A) = q (2)

With this, the joint prior probability distribution P over the
variables A and C is given by

P(A,C) = a p , P(A,¬C) = a p

P(¬A,C) = aq , P(¬A,¬C) = aq , (3)
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where we have used the shorthand notation P(A,C) for
P(A∧C) which we will use throughout this paper. We also
use the shorthand x for 1− x and assume that a, p,q ∈ (0,1).

Following the slogan “argumentation is learning”, the
agent then learns the premises of the argument. More specifi-
cally, she learns the major premise “If A, then C” and sets the
new probability of P′(C|A) = p′ = 1 in turn. This is the first
constraint on P′. She also learns a minor premise: A in the
case of MP, and ¬C in the case of MT. For completeness, we
also consider AC and DA. In the case of AC, she addition-
ally learns C, and in the case of DA she additionally learns
¬A. Following Eva and Hartmann (2018), we model this by
assuming that the probability of the minor premise increases.
This is the second constraint on P′. More specifically, we
assume that the agent changes the probabilities of the minor
premise in the following way:

P′MP(A) = λ+λP(A) , P′DA(A) = λP(A) (4)
P′AC(C) = λ+λP(C) , P′MT (C) = λP(C)

Here λ ∈ (0,1] measures to what extent the agent changes
the probability of the minor premise. For λ→ 0, the new
probability of the minor premise does not change at all, and
for λ = 1 it goes to its maximal value, i.e. to 1.

To find the full new probability distribution P′, we then
minimize the KL-divergence between P′ and P. This al-
lows us to compute the new probability of the conclusion
of the corresponding argument. For example, in the case
of MP (A,A→ C, therefore C) the conclusion is C and the
new probability of C, i.e. P′(C) measures to what extent
the agent endorses the corresponding inference pattern. More
specifically, we define the (absolute) endorsement of MP as
E1 := P′(C). As described above, we define the (absolute)
endorsement of DA as E2 := P′(¬C), the (absolute) endorse-
ment of AC as E3 := P′(A), and the (absolute) endorsement
of MT as E4 := P′(¬A). Furthermore, we define the relative
endorsement of inferences i and j as ∆i j := Ei−E j with i < j.
These quantities will be calculated in the next section.

It is worth pausing here to note that these endorsement
quantities should be conceptually distinguished from the cor-
responding acceptance rates discussed in the introduction.
While the former are interpreted as representations of the ex-
tent to which a single idealised Bayesian agent will endorse
an inference in a probabilistic reasoning task, the latter rep-
resent the relative frequency with which those inferences are
accepted at the population level. There is no a-priori reason
to expect a close correspondence between these two differ-
ent quantities. In what follows, we try to explain the MP-MT
asymmetry in terms of individual endorsement rates.

The Results
Our formal results can be summarized in the following two
propositions (all proofs are in the Appendix):

Proposition 1 An agent considers the binary propositional
variables A and C with a probability distribution P de-
fined over them. She then learns (i) the major premise

of an argument and sets P′(C|A) = 1 and (ii) the minor
premise and sets its new probability to a value according
to eqs. (4) with λ ∈ (0,1]. To find the full new prob-
ability distribution P′, we minimize the KL-divergence be-
tween P′ and P. The (absolute) endorsements are then given
by E1 = λ+λP(A∨C), E2 = λP(¬C|¬A)+λP(¬A,¬C),
E3 = λP(A|C)+λP(A,C) and E4 = λ+λP(¬A∨¬C).

Proposition 2 Proposition 1 implies the following state-
ments: (i) MP > AC. (ii) MT > DA. (iii) If P(A) ≥ 1/2,
then MP > DA (iv) If P(A,C)≥ P(¬A,¬C), then MP > MT,
AC > DA and E1 +E2 < E3 +E4. (v) If P(A,C)≤ 1/2, then
MT > AC. (vi) MP > MT iff AC > DA. (vii) If P(A∨C) ≥
1/2, then MP > DA.

Here we have used the notation MP > AC for ∆13 > 0 etc.
Note that the assumptions stated in the various if-sentences in
Proposition 2 are only sufficient conditions. It turns out that
the respective consequents also hold in a large range of other
contexts. These depend, however, on the value of both P and
λ as shown in Figure 2.

The two left panels of Figure 2, panels (a) and (c), show
a situation in which the probability of the antecedent is rela-
tively high (i.e., large a), the conditional expresses a relation-
ship with reasonable confidence (i.e., the conditional proba-
bility of the consequent given the antecedent, p, is at least .5),
and exceptions are somewhat uncommon (i.e., relatively low
conditional probability of the consequent given that the an-
tecedent, q, does not hold). In this situation we see the typical
MP-MT asymmetry pattern (as long as λ < 1), when compar-
ing the blue (MP) and red (MT) line. We also see that the
degree of the MP-MT asymmetry crucially depends on λ and
increases with decreasing λ. Furthermore, the degree of the
MP-MT asymmetry also depends on the specific parameters
of P. If the conditional expresses a more certain relationship,
as in panel (c), the MP-MT asymmetry is larger than if the
relationship expressed by the conditional is more uncertain,
as in panel (a).

An interesting pattern is observed if the prior probability
of the antecedent is low (i.e., a < .5), as shown in panels (b)
and (d). We can see that in this case the sign of the MP-MT
asymmetry flips. Now, we expect stronger endorsement to
MT than to MP. However, as for the case in which the prior
probability of the antecedent is relatively large, we see that
the extent of this reversed asymmetry also depends on λ and
the other parameters of P.

Figure 2 also shows the predicted endorsement for the
other two inferences, AC and DA. Their ordering (i.e.,
whether endorsement is expected to be larger for AC or DA)
follows the same general pattern also observed for MP and
MT. For panels (a) and (c) we expect larger endorsement for
AC and DA (as is commonly observed in the literature). How-
ever, if the prior probability of the antecedent is low, we ex-
pect the same flip; larger endorsement for DA than for AC. In
addition, the figure shows another interesting empirical pre-
diction. For certain values of P, see panel (c), we expect ei-
ther AC > MT or MT > AC, depending on the value of λ
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Figure 2: The absolute endorsements E1 (MP, blue), E2 (DA, orange), E3 (AC, green) and E4 (MT, red) as a function of λ for
different prior probability distributions P.

(the qualitatively similar also holds between MP and DA, see
panel (d)).

Discussion
These results show that the MP-MT asymmetry is predicted
by the behavior of a rational agent who updates her belief af-
ter encountering new information that is part of the premises
of a conditional inference under certain conditions. In con-
trast to previous probabilistic accounts (Oaksford & Chater,
2008, 2013), we do not need to assume two different proba-
bility distributions for MP and the other inferences. Instead,
we describe a rational account of how agents update their be-
liefs in light of new information and use this updated proba-
bility distribution as the basis for her endorsement to the four
conditional inferences. With this model, we can also make
specific predictions when we would expect the opposite pat-
tern, a MT-MP asymmetry.

Disabling Conditions
So far we have assumed that the agent only considers two
propositions, i.e. A and C. In many cases, however, there
are other relevant propositions and learning new informa-
tion might affect them. This might have implications for the
endorsement of the various inference patterns we have dis-
cussed. Consider the following case (Oaksford & Chater,
2008): Let A be the proposition “you turn the key of your

car” and let C be the proposition “the car starts”. You then
learn the premises of a MT inference, i.e. A→ C and ¬C. In
that case it seems reasonable to not infer ¬C, but rather that
the car is broken or, more generally, that a disabler is present
(D). To model this situation, we consider the Bayesian Net-
work in Figure 3 and assume that

P(A) = a , P(D) = d, (5)

where a is large (you will be pretty certain that you turned the
key of your car if you did so) and d is somewhat smaller, but
it seems reasonable to take the possibility that the car might
be broken into account before actually turning the key of the
car.

Furthermore, we have to specify the likelihoods

P(C|A,D) = α , P(C|A,¬D) = β

P(C|¬A,D) = 0 , P(C|¬A,¬D) = 0. (6)

Here we have assumed that the car does not start if the key
is not turned. Note that the context suggests that β > α ≈ 0
although we will not need the left inequality. All we will need
is that α is fairly small.

The agent then learns the conditional A→ C which im-
poses the constraint β′ > β on P′.2 The agent furthermore

2β′ could be 1, but we will see that this does not matter. All we
need is that β,β′ > 0.
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A C D

Figure 3: The Bayesian Network representation of the rela-
tion between A,C and D.

learns that P′(C) = 0. (We set this value to 0 as it will be hard
to doubt that the car did not start if in fact it did not start.) We
then note that

P′(C) = a′ (d′α′+d′β′) = 0, (7)

where we have assumed that P′ can be parameterized analo-
gously to P. Given that β′ > β > 0, eq. (7) has two solutions:
(i) a′ = 0 and (ii) α′ = 0 and d′ = 1. Obviously, solution (i)
corresponds to the proper MT inference. However, this infer-
ence is implausible in the present case. To explore this issue
further, let us consider the KL-divergence between P′ and P:

KL = Φa +Φd +a′ d′Φα +a′ d′Φβ (8)

We have to minimize KL with the constraint (7). Let us
consider solution (i) first. Then KL1 = − loga+Φd . This
expression minimizes for d′ = d and therefore KLmin

1 =
− loga. Next, consider (ii). Here KL2 = Φa − a′ logα−
logd. Minimizing this expression with respect to a′ yields
a′ = aα/(aα+a) and KLmin

2 =− log((aα+a)d). Hence,
KLmin

2 < KLmin
1 iff (aα+a)d > a or aα > ad. This condi-

tion is fulfilled in the present case as α≈ 0 and a≈ 1. (Note
that the value of d does not matter too much here, but it should
not be too low. If it is very low and the inequality is violated,
then the agent should make a MT inference and infer ¬A.)

Conclusions
Our main goal was to provide a novel probabilistic explana-
tion for the MP-MT asymmetry found in both the traditional
abstract task as well as in probabilistic tasks with conditional
inferences. In contrast to previous explanations within a prob-
abilistic framework (Oaksford & Chater, 2007, 2013, 2008),
our explanation is based on a principled approach of how
agents update a probability distribution P in light of new in-
formation provided by the premises of a conditional inference
resulting in a updated probability distribution P′. Following
the idea that “argumentation is learning” (Eva & Hartmann,
2018), we propose that agents update their probability distri-
butions in light of new information by minimizing the KL-
divergence between the posterior and prior probability dis-
tribution. In this conceptualization, reasoning does not only
amount to a read-out from memory, but requires the agent to
actively integrate the new knowledge with the existing one.
The exact cognitive processes how this is achieved (e.g., by
creating new memory traces or overwriting existing ones), is
an open question for future work. Our work provides a full
computational-level account (in the sense of Marr, 1982) of
conditional reasoning.

The theoretical results presented here provide evidence that
the MP-MT asymmetry is a direct consequence from this
Bayesian conceptualization of conditional reasoning. Specifi-
cally, it occurs if the prior probability of the conditional prob-
ability of C given A (i.e., the relationship expressed in the
conditional) and the the prior probability of the antecedent is
at least .5. In the case that these conditions do not hold, we
expect the opposite pattern, an inverted MP-MT asymmetry.

Minimizing the KL-divergence, as proposed here, is one
rational way for an agent to update her prior probability dis-
tribution in light of new information which implies Jeffrey
conditionalization (Diaconis & Zabell, 1982). Importantly,
the results shown here do not only apply to updating via min-
imizing the KL-divergence, but for updating based on min-
imizing the distance between P′ and P for any divergence
measure that is a member of the family of f -divergences. All
these divergence metrics are rational in the same sense and
also predict the MP-MT asymmetry under the same circum-
stances. This is an important aspect of our results in light of
the findings of Singmann, Klauer, and Beller (2016). They
have investigated the empirical adequacy of conditional rea-
soning based on KL-minimization between P′ and P in a two-
step conditional reasoning task – which allowed to obtain
estimates of both P and P′ in an independent manner – and
found that it did not provide a very adequate account. How-
ever, as soon one is willing to give up the assumption that
P′(C|A) = p′ = 1 and assumes that P′(C|A) < 1 (as done in
Singmann et al.’s study), different members of the family of
f -divergences make different predictions. Preliminary work
suggests that a more empirically adequate account of condi-
tional reasoning is provided if we assume reasoners update
their probability distribution by minimizing the inverse-KL
divergence between prior and posterior distribution.

Proof of Proposition 1
We use the parameterization of the prior probability distri-
bution P according to eqs. (1) and (2) and begin with MP
and DA. Here we set the new value of the probability of
the antecedent to a′. Disregarding constant terms, the KL-
divergence is then given by KL = a′Φq with

Φx := x′ log
x′

x
+ x′ log

x′

x
. (9)

Differentiating KL with respect to q′ and setting the result-
ing expression equal to zero yields q′ = q. Hence, P′(C) =
a′+a′ q. We now insert the appropriate values of c′ from eqs.
(4) and use the definition of the respective (absolute) endorse-
ments to obtain

E1 := P′(C)
= λ+λ(a+aq)

= λ+λP(A∨C)
E2 := P′(¬C)

= λq+λaq

= λP(¬C|¬A)+λP(¬A,¬C).
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Let us now consider AC and MT. In this case, learning the
minor premise amounts to the constraint

a′+a′ q′ = c′, (10)

with c′ specified in eqs. (4). We therefore have to minimize
the function

L = Φa +a′ log
1
p
+a′Φq +µ(a′+a′ q′− c′),

with the Lagrange multiplier µ.
Differentiating L with respect to q′ and setting the resulting

expression equal to zero yields

q′ =
1

q+qx
, (11)

with x := exp(λ). Hence,

L = Φa +a′ log
1
p
+a′ log

1
q+qx

+µc′.

Differentiating this expression with respect to a′ and setting
the resulting expression equal to zero yields

a′ =
a p

a p+a(q+qx)
. (12)

From eqs. (10), (11) and (12), we then obtain

a′ =
a pc′

a p+aq
. (13)

We now insert the appropriate values of c′ from eqs. (4) in
eq. (13) and use the definitions of the respective (absolute)
endorsements to obtain

E3 := P′(A)

= λ
a p

a p+aq
+λa p

= λP(A|C)+λP(A,C)
E4 := P′(¬A)

= λ+λ(1−a p)

= λ+λP(¬A∨¬C).

This completes the proof of Proposition 1.

Proof of Proposition 2
We use Proposition 1 to compute the relative endorsements:

∆12 = λq+λ [2(a+aq)−1]

∆13 = λ
aq

a p+aq
+λ(a p+aq)

∆14 = λ(a p−aq)

∆23 = −(a p−aq) ·
[

λ
q

a p+aq
+λ

]
∆24 = −λq−λ(a p+aq)

∆34 = −λ
aq

a p+aq
+λ(2a p−1)

From these results, the statements made in the proposition
follow. For example, the third statement in (iv) follows by
noting that ∆14 +∆23 < 0.
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Abstract

Young children often stretch terms to novel objects when they
lack the proper adult words—a phenomenon known as overex-
tension. Psychologists have proposed that overextension relies
on the formation of a chain complex, such that new objects
may be linked to existing referents of a word based on a diverse
set of relations including taxonomic, analogical, and predicate-
based knowledge. We build on these ideas by proposing a com-
putational framework that creates chain complexes by multi-
modal fusion of resources from linguistics, deep learning net-
works, and psychological experiments. We test our models in
a communicative scenario that simulates linguistic production
and comprehension between a child and a caretaker. Our re-
sults show that the multimodal semantic space accounts for
substantial variation in children’s overextension in the liter-
ature, and our framework predicts overextension strategies.
This work provides a formal approach to characterizing lin-
guistic creativity of word sense extension in early childhood.
Keywords: language acquisition; linguistic creativity; overex-
tension; word sense extension; multimodality; chaining; com-
munication

Young children often stretch terms to describe novel ob-
jects when they lack the proper adult words, a phenomenon
known as overextension (Clark, 1978). Overextension is a
communicative strategy that draws on knowledge of diverse
relations in the world. For instance, a child may use “dog”
to refer to a squirrel, “ball” to refer to a balloon, or “key”
to refer to a door. This creative use of words toward novel
meanings, or word sense extension, is not only attested in
child language acquisition, but it is also reflected in historical
meaning change, e.g., we extended the meaning of “mouse”
from a rodent to a computer device. We explore the origin of
word sense extension by asking how the cognitive capacity of
overextension in childhood can be characterized formally.

Early work by Vygotsky (1962) suggests that overexten-
sion relies on “chain complex”, a critical element of con-
cept formation in childhood. He demonstrated chain com-
plex by a series of overextension cases from a child who ex-
tended the meanings of “quah” to wide-ranging things includ-
ing a duck, water in a pond, liquids in general, an eagle on a
coin, and any coin-like objects. Vygotsky’s account resonates
with work from philosophy and cognitive linguistics that sug-
gest the complex structure of word meanings (e.g. Wittgen-
stein, 1953) is formed possibly due to a process of chaining
(Lakoff, 1987), where one referent is linked to another form-
ing a chain-like structure. More recent work has shown that
chaining predicts word sense extension in the history of En-

"ball"

child caretaker
Figure 1: Overextension in child-caretaker communication.

glish (Ramiro, Srinivasan, Malt, & Xu, 2018) and other lan-
guages (Xu, Regier, & Malt, 2016). However, these works
did not offer a formal account of how one might represent the
rich knowledge in a chain complex.

Empirical work from Rescorla (1980) provided clues to the
knowledge underlying children’s overextension. Specifically,
she identified three main types of relations between core and
overextended meanings of a word, summarized as 1) categor-
ical relation: overextension by linking objects within a tax-
onomy, e.g., “dog”→squirrel, 2) analogy or visual analogy:
overextension by linking objects with shared perceptual prop-
erties, e.g., “ball”→balloon, and 3) predicate-based relation:
overextension by linking objects that co-occur frequently in
the environment, e.g., “key”→door. An open question we ad-
dress in this work is how to combine these types of relations
to predict overextension strategies in early childhood.

We propose a computational framework that considers
overextension as a communicative game between a child and
a caretaker, illustrated in Figure 1. The game involves a child
and a caretaker in a situation where the child needs to re-
fer to an out-of-vocabulary novel object. In this context, the
child faces a production problem, where the goal is to extend
a word from the existing vocabulary (e.g., “ball”) to the novel
object (e.g., a balloon). The caretaker instead faces a com-
prehension problem, where the goal is to guess the intended
referent based on the child’s utterance. Since “ball” does not
typically map to balloons, we wish to reconstruct the cogni-
tive processes that could have given rise to successful com-
munication between the child and the caretaker in common
cases of overextension. As such, our framework should sup-
port both strategic word choices for the child and prediction
of intended referents for the caretaker.
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Our communication-based framework relates to earlier
work in overextension from the developmental literature. For
example, Bloom (1973) argued that overextension is a per-
formance error caused by vocabulary limitations, whereby a
child may consciously use an incorrect word (from the adult
perspective) as a strategy to convey the desired referent mean-
ing. A related hypothesis poses overextension as a retrieval
error (Fremgen & Fay, 1980; Gershkoff-Stowe, 2001; Hut-
tenlocher, 1974; Thomson & Chapman, 1977), suggesting
that children may overextend an earlier acquired word even
if the correct adult word has been partially acquired (e.g., un-
derstood in comprehension), because the latter may be more
difficult to produce. We explore evidence for a retrieval er-
ror hypothesis by evaluating whether children may favour
words with higher usage frequencies in their overextended
word choices. Another extensive line of research suggests
that overextension arises from children’s incomplete concep-
tual knowledge of the semantic features underlying different
categories (Clark, 1973; Kay & Anglin, 1982; Mervis, 1987).
While we do not directly test claims about children’s con-
ceptual space in this work, we show that a combination of
semantic relations helps to explain overextension strategies,
and may play an integral role in characterizing the mecha-
nisms that subserve children’s early word learning.

Our framework also draws on a multimodal space of se-
mantic relations (cf. Rescorla, 1980) that serves as the knowl-
edge engine for creating chain complexes in overextension.
The notion of multimodality is motivated in part by work on
visually-grounded word learning (e.g. Lazaridou, Chrupała,
Fernández, & Baroni, 2016; Roy & Pentland, 2002; Yu,
2005), which shows that perceptual features play an impor-
tant role in children’s acquistion of core (or conventional)
word meanings. Our focus is on investigating how by inte-
grating diverse semantic relations one might account for word
usage beyond the core meanings that children normally ac-
quire. Our work thus differs from the extensive literature on
cross-situational word learning (Fazly, Alishahi, & Steven-
son, 2010; Frank, Goodman, & Tenenbaum, 2009; Kacher-
gis, Yu, & Shiffrin, 2017; Siskind, 1996), where the emphasis
has been typically on modeling children’s behaviour in learn-
ing conventional word meanings, but not on how they ex-
tend existing terms to describe novel objects. Our work also
extends existing computational studies that explore overex-
tension in specific domains such as color terms (Beekhuizen
& Stevenson, 2016) to more general cases of overexten-
sion that involve mappings across domain boundaries, e.g.,
“ball”→balloon.

Computational framework

We present our computational framework for overextension
following two steps: 1) Specification of a probabilistic model
that simulates child’s word choices (production) and care-
taker’s inference of intended referents (comprehension); 2)
Construction of a semantic space that supports multimodal
chaining of word meanings, encapsulated in the same model.

For this work, we focus on overextension of nouns, but
the general framework that we present can be used to explore
other types of overextension (e.g., in verbs and adjectives).

Probabilistic formulation
We formulate overextension as communication between a
child and a caretaker. In particular, the child wishes to re-
fer to a novel object c in an environment E. The child does so
by choosing (and stretching) a word w from her vocabulary
V . We assume that the correct term for the novel object is
not yet acquired by the child, hence c 6= w and c /∈ V . Based
on the child’s utterance w, the caretaker wishes to infer the
referent c among possible referents in E. We then model the
child’s behaviour by a production model and pair it with a
comprehension model for the caretaker’s behaviour.

Production. We cast the production problem as proba-
bilistic inference over existing words in the child’s vocabu-
lary given the probe novel object c, via Bayes’ rule:

pprod(w|c) ∝ pprod(c|w)p(w) (1)

We define the prior p(w) proportional to the logarithmic
usage frequency of a word with add-one smoothing p(w) ∝

log(1+ freq(w)). This formulation is consistent with the fre-
quency effect found in the study of overextension in color
terms (Beekhuizen & Stevenson, 2016). It captures the in-
tuition that all things being equal, the child is more likely to
choose a common word versus a rare word for overextension.
We define the likelihood function pprod(c|w) by a meta sim-
ilarity measure that encapsulates the three types of semantic
relations reported by Rescorla (1980) which the novel refer-
ent c can bear with the existing referent cw of word w:

pprod(c|w) ∝ sim(c,cw) (2)

= exp
(
−

dc(c,cw)+dv(c,cw)+dp(c,cw)

h

)
We take the exponential-decay form from the general-

ized context model (GCM) or exemplar model of categoriza-
tion (Nosofsky, 1986), where the influence of each relational
type is proportional to how similar c and cw are under that
relation. We represent similarity by inverse distance, where
dc, dv, and dp represent distances measured according to cate-
gorical relation, visual analogy, and predicate-based relation,
respectively. We describe the construction of each of these re-
lational features in the next section. To control for model sen-
sitivity to these distance functions, we use a single parameter
h that we estimate empirically from data. The magnitude of
h determines how slowly the meta similarity or the likelihood
function decreases with respect to the distance measured in
the multimodal relations.

Comprehension. We pair the child’s production model
with a comprehension model for the caretaker. Specifically,
the caretaker solves the inverse inference problem as the child
by a probability distribution over the space of intended refer-
ents based on the child’s utterance w:
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Figure 2: Types of semantic relations in multimodal space.

pcomp(c|w) ∝ pcomp(w|c)p(c) (3)

We consider the space of c to be all referents that appear
in the communicative environment E where the child and the
caretaker are situated in. We also assume a uniform prior
p(c) on possible referents in this environment, although it
may be possible to enrich this prior by considering perceptual
salience, eye gaze, pointing, and other pragmatic cues, which
we do not model or have explicit access to in this work.

We define the likelihood function identical to the formula-
tion used in the production model, under the assumption that
both the child and the caretaker have knowledge of the multi-
modal relations:

pcomp(w|c) ∝ sim(cw,c) = sim(c,cw) (4)

Although it is possible to model perspective taking in a
recursive way pcomp(w|c) = pprod(w|c) = pprod(c|w)p(w) un-
der the assumption that the caretaker takes into account the
child’s word choice in guessing the intended referent, e.g.,
similar to the rational speech act model (Goodman & Frank,
2016), we choose to work with the simplest version of this
model that does not make any recursive assumption in the
caretaker. We show in Results that our framework accounts
for data well even without this assumption.

Multimodal semantic space
We define a multimodal semantic space that captures the three
types of relational features in Rescorla (1980): categorical
relation, visual analogy, and predicate-based relation. We
construct these relational features using a fusion of resources
drawn from linguistics, deep learning networks, and psycho-
logical experiments, as illustrated in Figure 2.

Categorical relation. We define categorical relation be-
tween two referents via a standard distance measure dc in nat-
ural language processing by Wu and Palmer (1994), based on
taxonomic similarity. Concretely, for two concepts c1 and c2
under a taxonomy T (i.e., a tree), the distance is:

dc(c1,c2) = 1− 2NLCS

N1 +N2
(5)

NLCS denotes the number of shared parent nodes of the two
concepts in the taxonomy. N1 and N2 denote the depths of
the two concepts in the taxonomy. This distance measure is
effectively the negated taxonomic similarity between c1 and
c2, and is bounded between 0 and 1. Under this measure,
concepts from the same semantic domain (such as dog and
squirrel) should yield a lower distance than those from across
domains (such as ball and balloon). To derive the categorical
features, we took the taxonomy from WordNet (Miller, 1995)
and annotated words by their corresponding synset’s in the
database. We used the NLT K package (Bird & Loper, 2004)
to calculate similarities between referents for this feature.

Visual analogical relation. We define visual analogi-
cal relation by cosine distance between vector representa-
tions of referents in visual embedding space. In particu-
lar, we extracted the visual embeddings from convolutional
neural networks—VGG-19 (Simonyan & Zisserman, 2015),
a state-of-the-art convolutional image classifier pre-trained
on the ImageNet database (Deng et al., 2009)—following
procedures from work on visually-grounded word learning
(Lazaridou et al., 2016). Under this measure, concepts that
share visual features (such as ball and balloon, both of which
are round objects) should yield a relatively low distance even
if they are remotely related in the taxonomy. To obtain a ro-
bust visual representation for each concept c, we sampled a
collection of images I1, . . . , Ik up to a maximum of 512 images
from ImageNet. With each image I j processed by the neural
network, we extracted the corresponding visual feature vector
from the first fully-connected layer after all convolutions: vc

j.
We then averaged the sampled k feature vectors to obtain an
expected vector vc for the visual vector representation of c.

Predicate-based relation. We define predicate-based
relation by leveraging the psychological measure of word
association. We assume that two referents that frequently
co-occur together should also be highly associable, e.g.,
key and door. Specifically, we followed the procedures
in De Deyne, Navarro, Perfors, Brysbaert, and Storms
(2018) and took the “random walk” approach to derive
vector representations of referents in a word association
probability matrix. This procedure generates word vectors
based on the positive pointwise mutual information from
word association probabilities propagated over multiple leaps
in the associative network. As a result, concepts that share
a common neighbourhood of associates are more likely to
end up closer together in the vector space. De Deyne et al.
(2018) showed that this measure yields superior correlations
with human semantic similarity judgements in comparison
to other measures of association. We used word association
data from the English portion of the Small World of Words
project (De Deyne et al., 2018). The data is stored as a matrix
of cue-target association probabilities for a total of 12292 cue
words. We used the implementation provided by the authors
(https://github.com/SimonDeDeyne/SWOWEN-2018)
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to compute vector representations from the association
probability matrix. We used cosine distance to compute
predicate-based distances between pairs of referent vectors.

To ensure that the three types of relational features pro-
vide complementary information, we calculated their inter-
correlations based on 66 concept pairs that we used for our
analyses. Although correlations were significant (p < .001),
all coefficients were low (category & visual: 0.179; category
& predicate: 0.186; visual & predicate: 0.274).

Data
We collected linguistic data from three sources: 1) Metadata
of child overextension from the literature; 2) Vocabulary of
early childhood; 3) Text corpora of child-caretaker speech.

Metadata of child overextension. We performed a meta
survey of 12 representative studies from developmental psy-
chology and collected a total of 86 overextension example
word-referent pairs. Each pair consists of an overextended
word and the novel referent that word has been extended to.
We kept word-referent pairs that overlapped with the avail-
able data from the three features we described, resulting in a
total of 66 word-referent pairs. Table 1 shows examples from
this meta dataset and their sources from the literature.

While the data we used for analysis may not constitute
an unbiased sample of child overextension, two factors help
to alleviate this concern. First, we followed a systematic
approach in data collection by recording every utterance-
referent pair in which both constituents could be denoted by
one noun. Second, the diversity of the sources that we exam-
ined reduces the possibility of biasing our sample from any
individual study.

Table 1: Examples of overextension data.

Uttered word→ Referent Source
“banana”→ moon Behrend, D. A. (1988)
“car” → truck Fremgen, A., & Fay, D. (1980)
“apple” → orange juice Rescorla, L. A. (1981)
“ball” → bead Barrett, M. D. (1978)
“fly” → toad Clark, E. V. (1973)
“cow” → horse Gruendel, J. M. (1977)
“apple” → egg Rescorla, L. A. (1980)

Vocabulary from early childhood. To approximate chil-
dren’s vocabulary in early childhood, we collected nouns re-
ported to be produced by children of up to 30 months of age
from the American English subset of the Wordbank database
(Frank, Braginsky, Yurovsky, & Marchman, 2017). Because
overextension has been typically reported to occur between
1;1 and 2;6 years (Clark, 1973) (that covers the range in
Wordbank), we constructed a vocabulary V using all the
nouns from Wordbank for which we could obtain the required
semantic features. The resulting vocabulary includes 316 out
of the 322 nouns from the database.

Corpora of child-caretaker speech. To evaluate our mod-
els in a realistic communicative context, we collected a large

set of child-caretaker speech transcripts from the CHILDES
database (MacWhinney, 2014), for child Eve (age 1;6 to 2;3)
from the Brown corpus (Brown, 1973), Peter (1;9 to 3;1) from
the Bloom70 corpus (Bloom, Hood, & Lightbown, 1974), and
Nina (1;11 to 3;3) from the Suppes corpus (Suppes, 1974).
We chose these children’s data because their ages closely
match the typical overextension period reported in child de-
velopment. We considered each transcript as forming a com-
municative environment, and from each environment, we col-
lected the set of all nouns uttered by the child and the care-
taker for the analyses detailed in the next section. In total, we
obtained 1586 communicative environments with a median of
139 distinct nouns per context.

Results
We assess our proposed framework in three aspects: 1)
model accuracy in reconstructing child and caretaker strate-
gies in overextension; 2) evidence for multimodal chaining in
overextension; 3) model generation of chain complex.

Model reconstruction of overextension strategies
Production. We evaluated the child production model
against the curated set of overextension word-referent pairs,
O = {(wi,ci)}, with respect to all words in the child vocabu-
lary V . For each pair, the model chooses the target word based
on the given overextended sense ci by assigning a probability
distribution over words w in V . We assessed the model by
finding the maximum a posteriori probability (MAP) of all
the overextension pairs under the single sensitivity parame-
ter h, which we optimized to the MAP objective function via
standard stochastic gradient descent:

max
h

∏
i

pprod(wi|ci;h,V ) = max
h

∏
i

pprod(ci|wi;h)p(wi)

∑w∈V pprod(ci|w;h)p(w)
(6)

To assess the contribution of the three relational features,
we tested this production model under single features and all
possible combinations of features in pairs and triplets. We
also compared these models under the frequency-based prior
versus those under a uniform prior, along with a baseline
model that chooses words only based on the prior distribution.
We evaluated all models under two metrics: the Bayesian in-
formation criterion (BIC), which is a standard measure for
probabilistic models that considers both degree of fit to data
(i.e., likelihood) and model complexity (i.e., number of free
parameters); a performance curve that measures model accu-
racy at different values of k, similar to the standard receiver-
operating curve (ROC), where we assessed the predictive ac-
curacy of each model from its choice of top k words for dif-
ferent levels of k, or the proportion of overextension pairs
(wi,ci) for which the model ranks the correct production wi
among its top k predictions for referent ci.

The left two columns of Table 2 summarize the BIC scores
of the family of production models. We made three obser-
vations. First, models that incorporate features performed
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(b) Comprehension model
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Figure 3: Performance curves for production and comprehension models.

Table 2: Bayesian Information Criterion (BIC) scores for pro-
duction and comprehension (comp.) models.

Model likelihood
Production Comp.

freq. prior unif. prior unif. prior
Baseline 695 760 13268
category (cat.) 502 583 9663
visual (vis.) 496 574 10344
predicate (pred.) 499 582 9890
cat. + vis. 454 537 8949
cat. + pred. 457 544 8885
vis. + pred. 461 546 9261
all features 439 526 8594

better than the baseline (i.e., lower in BIC scores), suggest-
ing that children overextend words by making explicit use
of the semantic relations we considered. Second, models
with the frequency-based prior performed dominantly bet-
ter than those with the uniform prior, suggesting that chil-
dren jointly consider word usage frequency (or effort) and
semantic relations in overextension. Third, models with fea-
tural integration performed better than those with isolated
features (i.e., all features<features pairs<single features in
BIC score), suggesting that children rely on multiple kinds of
semantic relations in overextensional word choices. Figure
3a further confirms these findings in performance curves that
show the average predictive performance under the full range
of k in top k modelled word choices: all features>features
pairs>single features>baseline in the area under curves.
Comprehension. We next assessed the caretaker compre-
hension model by asking whether the model can retreive the
intended referent from an uttered overextended word. Be-
cause we do not have the actual records of caretakers’ infer-
ences, we simulated a dataset for model evaluation by 1) iden-
tifying child-caretaker speech scripts that contain the overex-
tended referents {ci} from our curated data; 2) replacing the
correct word for a referent ci (in the script) with the overex-
tended word wi reported in the literature. We then examined
if the model is able to retrieve the correct referent ci based
on wi among all other competing nouns in the communica-

tive context of a script. As an example, knowing that “ball”
has been reported to be overextended to balloon, we would
identify child speech scripts that contain the word “balloon”
and replace that word with “ball”. We would then run our
comprehension model and check if the top referents recov-
ered by the model contain “balloon” among other nouns that
appeared as context in that given script.

Similar to the case of production, we assessed the model by
maximizing the posterior comprehension probability over all
curated referents based on their appearances in the CHILDES
transcripts. We optimized the MAP objective function under
the sensitivity parameter h using stochastic gradient descent:

max
h

∏
i

pcomp(ci|wi;h,Ei)=max
h

∏
i

pcomp(wi|ci;h)p(ci)

∑c∈Ei pcomp(wi|c;h)p(c)
(7)

We used the same two metrics to evaluate the family of
comprehension models and summarized the BIC-based re-
sults in the third column of Table 2 and ROC-based results
in Figure 3b. We observed that results are qualitatively simi-
lar to those obtained in the production model: the rank order
of performance among baseline model, models with single
features, feature pairs, and all features, remains unchanged.

Evidence for multimodal chaining
To examine directly how the multimodal semantic space we
constructed accounts for variation in the overextension data,
we performed a logistic regression analysis. In particular, we
considered two sets of data: the attested set overextension
word-referent pairs, and a control set that shuffles the word-
referent mappings from the attested set. We then performed
a binary classification task via logistic regression to assess
whether the attested pairs can be detected from the control
pairs, given the same three relational features that we used
for our previous analyses. The logistic model achieved 83%
accuracy, compared to 50% chance. We also trained models
on subsets of the feature space, achieving best feature pair
performance of 82% and best single feature performance of
80%. This suggests that semantic relations provide significant
predictability of concepts that might undergo overextension.
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Figure 4 shows the distribution of dominant features across
the 66 overextension pairs (we labelled each pair according
to the top-scoring feature in the logistic regression model),
along with a few examples that are best explained by each
relational type. We observed that the contributions of these
features are roughly even, providing support for the view that
children rely on a combination of modalities in overextension.

38%
27%

36% Category
Visual
Predicate

“apple”—> orange juice
“key” —> door
“cake” —> candy

“dog” —> squirrel
“bird” —> duck
“truck” —> train

“apple” —> egg
“ball” —> balloon
“plane” —> rocket

Figure 4: Percentage shares and examples explained by the
three types of features from the curated overextension dataset.

Model simulation of chain complex
To illustrate how our model might simulate a chain complex,
we applied an iterative scheme to sample a chain of concepts
from the multimodal semantic space. Specifically, we began
the chaining process with a seed word w0 and initial chain
C0 = {w0}. In the j-th iteration, we sampled word w uni-
formly from C j−1, and word w′ from children’s vocabulary V
according to probability distribution p(w′|w) ∝ sim(cw′ ,cw),
where the similarity function is defined in Equation 2. We
then added w′ to the chain complex by linking it to w, hence
extending the chain to C j = C j−1 ∪{w′}. Figure 5 shows a
chain complex sampled from seed concept “door”. Similar to
Vygotsky’s “quah” example, it features referent-to-referent
extensions that involve different types of relations, illustrat-
ing the thought processes that could have given rise to the
diverse overextension patterns attested in young children.

While exploratory in nature, our simulation demonstrates
the potential of a multimodal approach to capture the for-
mation of chain complexes in child overextension. Future
work should explore this generative aspect of the framework
in more rigorous terms.

Discussion
We have presented a formal framework for characterizing
children’s overextension. We have shown that this framework
yields good accuracies in reconstructing child-caretaker com-
munication based on a relatively large set of overextension
examples we curated from the developmental literature. Our
results indicate that the diverse range of overextension pat-
terns can be explained by our framework that encapsulates a
multimodal representation of semantic relations with categor-
ical, visual, and predicate-based features.

With respect to earlier work from developmental psychol-
ogy, our results support the view that children’s overextended

window

garage

porch

basement

truck

toilet

motorcycle

fire truckdoor

Figure 5: Chain complex sampled from the multimodal se-
mantic space, and contributions of categorical (C), visual (V),
and predicate-based (P) relations to chaining probabilities.

word choices reflect a communicative strategy under a lim-
ited vocabulary. Moreover, we have shown that children tend
to favour high-frequency words in overextension, which pro-
vides evidence for the retrieval-error view of overextension.
Future work should explore whether the current framework
can explain overextension in children’s language comprehen-
sion, as well as account for the later convergence to adult
word usage.

We have shown the initial promise of a multimodal rep-
resentational scheme toward a better characterization of the
generative capacity for word sense extension in early child-
hood. Future work could explore the generality of this frame-
work in accounting for overextension beyond nouns, as well
as historical changes of word meaning.
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Abstract 

Investigating folk conceptions of choice and constraints have 
been problematic given that human actions are rarely 
considered constrained. In this paper, we utilize humanoid 
robots (more clearly influenced by determined programming) 
to empirically test children’s developing concepts of choice 
and action. Using a series of agency attribution and choice 
prediction tasks, we examined whether children differentiate 
free will abilities between robots and humans. Results 
indicated that 5–7-year-old children similarly attributed the 
ability to choose to both a robot and human child. However, 
for moral scenarios, participants considered the robot’s actions 
to be more constrained than the human. These findings 
demonstrate that children appear to hold a nuanced 
understanding of choice across agents and across context.  

Keywords: choice attribution; human–robot interaction; free 
will; cognitive development 

Introduction 
Attributing another entity with the ability to make choices lies 
at the foundation of treating that individual as having moral 
responsibility and as being deserving of rights. As such it is 
critically important to understand when and why people 
attribute choice to others. Because it is difficult to imagine 
typical human actions being constrained or devoid of choice 
(Nichols, 2011), research on free will has been limited by 
participants’ inabilities to conceive of a deterministic world 
(Sommers, 2010). In other words, since it is difficult for us to 
imagine our own actions as being constrained, it is similarly 
challenging to conceive of others’ actions as being 
constrained. Investigating ideas of free will in non-human 
entities, such as robots, shows promise in terms of releasing 
participants from anecdotal notions of choice and constraint.  

Modern technology has resulted in a growing presence of 
interactive robots (e.g., Siri, Alexa, Roombas), particularly in 
the environments of younger generations (Wei et al., 2011). 
Robots present an increasingly important category for which 
to investigate choice attribution, as they are known to be 
largely programmed by their designers. Previous research has 
indicated that adults are ambivalent about robots’ capacities 
to make choices (Weisman, Dweck, & Markman, 2017). 
However, nothing is known about children’s tendencies to 

attribute robots with the freedom to choose, despite children 
now growing up in technologically rich environments.  

From early in life, children understand the possibility of 
completing “alternative” actions, denoting a basic grasp of 
free will.  For example, 10-month-old infants expect human 
agents to use different actions to obtain an object depending 
on whether there are physical constraints present or absent 
(Brandone & Wellman, 2009), and toddlers use this 
understanding to differentially respond to agents who could 
have acted one way, but chose another (Behne et al., 2005; 
Dunfield & Kuhlmeier, 2010; Hamlin, Wynn, & Bloom, 
2008). By the preschool years, children not only anticipate 
and react to alternative actions (e.g., Nichols, 2004), but are 
able to verbally generate alternative options when the main 
goal of an agent is constrained (Sobel, 2004). Thus, early in 
life, children show a relatively sophisticated understanding 
that human agents can choose to act in certain ways, and that 
these actions may be constrained by internal or external 
barriers.  

This ability to entertain alternative actions suggests that 
children understand that agents can “choose to do otherwise”, 
a hallmark for a mature understanding of free will (see 
Kushnir, 2018). However, a reliance on experiments 
involving human agents as targets of judgment means that the 
boundaries of children’s free will ascriptions have not been 
fully charted. Though some work has shown that children 
assign more freedom of choice to human agents than 
inanimate objects (Nichols, 2004), none have explicitly 
examined attribution of free will to humanoid robots.  

As in adults (e.g., Kahn et al., 2012b), research has shown 
that children ascribe a mixture of animate and inanimate 
characteristics to humanoid robots, suggesting an ontological 
category that is functionally separate from either (Kahn et al., 
2012a; Severson & Carlson, 2010). For example, children 
may assume that robots hold a certain level of intelligence 
and some sensory abilities (e.g., can think, can see, can be 
tickled), but not emotions or biological capabilities (e.g., can 
feel happiness, needs sleep, can grow), though these 
ascriptions vary with both participant age and robot type 
(e.g., Bernstein & Crowley, 2008; Jipson & Gelman, 2007; 
Saylor, Somanader, Levin, & Kawamura, 2010). 
Furthermore, children often require prior information or 
experience with robots before they consider them as agentive 

302



beings. For example, 18-month-old infants only follow the 
gaze of a robot they previously saw acting contingently with 
an adult (Meltzoff et al., 2010), 4- to 7-year-old children are 
more likely to assume a robot has intelligence if they have 
more exposure to robots (Bernstein & Crowley, 2008), and 5-
to 7-year-old children are more likely to attribute emotional 
and physical characteristics to a robot that was previously 
framed as autonomous (Chernyak & Gary, 2016). This work 
highlights the ways in which robots straddle the animate and 
inanimate worlds, making them particularly interesting as a 
test case for children’s ascriptions of free will. 

Importantly, it appears that children’s understanding of 
free will, even for human agents, is not monolithic, as 
children seem to struggle with understanding how 
alternatives can be applied in certain circumstances. For 
example, 4- to 5-year-old children seem to believe that it is 
not possible to act against desires even without physical 
constraints (e.g., wanting to eat a tasty cracker but choosing 
not to; Kushnir et al., 2015), and often choose to act in 
accordance with their desires at the expense of reaching a 
salient goal (Yang & Frye, 2018). Relatedly, 3- to 5-year-old 
children are likely to say that a choice is more moral if it is 
consistent with an agent’s desires (e.g., cleaning up toys 
because they wanted to) versus conflicting with an agent’s 
desires (e.g., cleaning up toys even if they wanted to go play 
outside), a pattern that is reversed in older children and adults 
(Starmans & Bloom, 2016). As such, there are certain 
scenarios, particularly those relating to internal desires or 
moral decisions, that appear to muddle children’s 
understanding of free will for human actors. 

In the current study, we asked whether 5- to 7-year-old 
children’s predictions of action and choice varied across 
target agent (human child or robot) and constraint scenario 
(No Constraint, Moral Constraint, Rational Constraint). 
Children in this age range undergo relevant changes in their 
free will beliefs and their perceptions of robots (Bernstein & 
Crowley, 2008; Kushnir et al., 2015). During testing, both the 
human and robot agents were introduced as being similarly 
likely to make a particular choice when no constraints were 
present (i.e., was either ‘programmed to’ or ‘born to” play a 
certain game). Within each scenario, we explored whether 
children predicted that the agent would follow the typical, 
default object choice or would respond to the constraints and 
pick an alternate object. 

Based on previous work exploring children’s trait 
attributions to robots and humans (Chernyak & Gary, 2016; 
Kahn et al., 2012), along with children’s differential reactions 
to context and constraint (Kushnir et al., 2015; Nichols, 
2011), we hypothesized the following: Without constraints, 
participants would predict the default action for both the 
robot and the human agent, and each would be significantly 
above chance in this choice. With rational constraints (the 
default action being impossible to completely fulfill), 
participants would predict the default action significantly 
more for the robot than the human agent. In the robot 
condition, participants would predict the default action above 
or at chance, and in the human condition, participants would 

predict the default action significantly below chance. With 
moral constraints (the default action causing harm), 
participants would predict the default action significantly 
more for the robot than the human agent. In the robot 
condition, participants would predict the default action above 
or at chance, and in the human condition, participants would 
predict the default action significantly below chance. 

Method 

Participants 
The final sample consisted of 32 children, aged 5–7 years old 
(Mage = 5.72, SDage = 0.68, 15 females, 26 White), who were 
recruited from a participant database and tested in a 
laboratory in a small city in the northeastern region of the 
United States. One additional child participated but was 
excluded due to a developmental disability. 

Materials & Procedure  
Participants were randomly assigned to one of two conditions 
(robot or human). In the robot condition, children were asked 
to watch and respond to the actions of a robot figure named 
Robovie. The robot was a black and white humanoid toy, 
approximately 35 cm tall. It was preprogrammed to complete 
a number of actions. In the human condition, participants 
watched and responded to the actions of a human child. The 
actor was a boy approximately the same age as participants, 
named Billy. All stimuli were pre-recorded and presented via 
video on a Dell laptop so that the agent’s actions and 
perceived agency could be matched across conditions. 

Regardless of condition, all participants proceeded through 
the same paradigm to assess their understanding of free will 
across ontological kinds. Children watched the video of either 
the robot or human, during and after which all participants 
were asked to predict the agent’s actions (default or 
alternative object choice) and asked to attribute choice to the 
agent (did they “choose to” do the action or not, adapted from 
Kushnir et al., 2015). Answers to these questions indicated 
whether children believed the agent could act against its 
default choice and respond to constraints in a way that 
indicated free will. 

Video Paradigm  
 
Introduction Phase During the introduction phase of the 
video, participants watched a short clip (60 seconds long) that 
introduced the agent (robot or human) and showed the agent 
performing simple actions. The purpose of this introduction 
was to demonstrate that the agent was autonomous, 
intentional, and had some basic intelligence, as this has been 
found necessary for children to attribute agency (Chernyak & 
Gary, 2016; Meltzoff et al., 2010). The video consisted of a 
narrator first describing the agent (“This is Robovie, Robovie 
is a robot.”/ “This is Billy. Billy is a kid”) paired with a still 
picture of the agent in a children’s room (see Figure 1). Then 
the agent performed two simple actions: dancing and 
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throwing a bucket. The next video clip presented the agent’s 
actions as determined, stating that the agent was either 
programmed (robot condition, “Robovie is programmed to 
know a lot about science and can play science games”) or 
born (human, “Billy’s parents are scientists, so Billy knows a 
lot about science and plays science games”) to play a certain 
type of game (science games). Following this presentation, it 
was reiterated that the agent only plays the science game, 
even if there are other games present. This conveyed to 
participants that the science game, given no other constraints, 
was the default choice for both agents. This also indicated 
that a choice to play an alternative game (e.g. a history game), 
given constraints, would require the agent to “override” their 
entrenched pattern of playing the default games.  

 
Action Prediction After the introduction video, participants 
watched three further video segments that presented each of 
the constraint scenarios (No Constraint, Moral Constraint, 
Rational Constraint). These segments described the objects in 
the room (a science game and a history game), presented the 
relevant constraints on the agent’s ability to play these games, 
and asked the participant to predict which game the agent 
would play within each of these scenarios. As explained in 
the introduction video segment, the science game should be 
the default game if no other constraints are present. The 
history game is the alternative game choice.  
In the first video (No Constraint scenario), participants were 
asked to pick which of two games (default or alternative) the 
agent would play without any limitation. Since participants 
had previously been told that agent only plays the default 
game, we hypothesized that this question would elicit a 
default response without the need for inferring choice or free 
will. The second video (Moral Constraint scenario) was 
identical to the first, but with the limitation that the agent will 
be playing with another person and playing the default game 
would result in hurting that person’s feelings. In this video, it 
would be wrong for the agent to play the default game, thus 
requiring them to play the alternative game if they wanted to 
 

 
 

Figure 1:  Screenshots of video stimuli used in the robot 
condition. Participants watched a short introduction video 

and then proceeded to view three Constraint scenario 
videos. Videos in the human condition were identical, with 

the exception of a child in place of the robot. 

stay within moral bounds. The third video (Rational 
Constraint scenario) asked the child to predict the game the 
agent would play if the default game was broken. In this 
video, it would be irrational to play the broken (unplayable) 
game, requiring them to play the alternative game in order to 
act rationally.  
 
Choice Attribution After each video, the experimenter 
asked two follow-up questions to explore choice attribution, 
adapted from Kushnir et al. (2015). Specifically, participants 
were asked whether the agent “chose to” or “had to” play the 
default/alternative game, along with an open-ended prompt 
asking them why.  

Coding 
Children’s action predictions were coded for each of the 
video constraints. In the No Constraint scenario, picking the 
alternative game (rather than the default game) clearly 
indicated choice, as it went against the default pattern of 
behavior. However, as there was no obvious reason to select 
the alternative game, the alternative game was not expected 
in either the human or the robot condition. In the Moral 
Constraint scenario, picking the alternative game indicated a 
choice that was driven by a consideration of others' feelings, 
whereas picking the default game indicated a disregard for 
others' feelings. Thus, we expected participants would predict 
the agent to play the alternative game in the human condition, 
but not in the robot condition. In the Rational Constraint 
scenario, picking the alternative game indicated a choice that 
was driven by a rational consideration of which game was 
possible to play, whereas picking the alternative game 
indicated a disregard for rational considerations. Therefore, 
in this scenario we expected participants would predict the 
agent to play the alternative game in the human condition, but 
not in the robot condition.  

Children’s responses to the choice question were coded for 
whether or not they responded that they agent “had to” or 
“chose to” play a certain game. The ability to choose was 
indicated by a response that the agent “chose to” play the 
game, regardless of which game the agent chose. 

Results 

Action Prediction Results 
Across all three constraint scenarios, action predictions were 
explored by running an omnibus binomial test to determine 
whether the percentage of game prediction (default and 
alternative) differed from chance (50%). The percentage of 
the default game predicted was marginally lower than chance 
in the human condition (p = .059) and at chance in the robot 
condition (p = .665). A Mann-Whitney test indicated that the 
default game prediction did not differ by agent condition (U 
= 1032, p = .301, r = .182). Within each of the three constraint 
scenarios, action predictions were explored by running 
binomial tests to determine whether the percentage of game 
prediction (default and alternative) differed from chance 
(50%). Further, Mann-Whitney U tests were run to test for 
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differences between agents (human and robot) in the 
predicted percentage of default game prediction in each of the 
constraint scenarios.  Frequencies are presented in Figure 2. 
 
Action Prediction: No Constraint We ran binomial tests on 
participants’ prediction of the game that would be played 
(default or alternative), for both the human and robot agents. 
Participants overwhelmingly tended to predict that both the 
human and the robot would play the default game (ps < .001). 
This demonstrates that participants predicted the agent to act 
in accordance with the ways that it had always acted in the 
past (i.e., playing the default game that it was programmed or 
born to play), indicating that participants understood that 
there was a strong likelihood for both the human and the robot 
to select the default game and confirming that the participants 
understood the introduction video. A Mann-Whitney test 
indicated that the default game prediction did not differ by 
agent condition (U = 120, p = .317, r = .18).  

 
Action Prediction: Moral Constraint A binomial test 
indicated that the percentage of the default game predicted in 
the human condition was significantly lower than chance (p 
< .001). Thus, participants believed the human would go 
against his desires in order to act morally. In contrast, the 
percentage of the default game predicted in the robot 
condition was not significantly different from chance (p = 
.804). This demonstrates that participants were unsure if a 
robot would go against its programming in order to act 
morally. A Mann-Whitney test indicated that the prediction 
of the default game was significantly higher for the robot 
condition than the human condition (U = 80, p < .05, r = .42).  

 
 

 

 
 

Figure 2:  Percentage of the participants’ action prediction 
across conditions for each constraint. Asterisks signify 
predictions that are significantly different than chance. 

Action Prediction: Rational Constraint Binomial tests 
indicated that the percentage of the default game predicted in 
both the human condition and the robot condition was 
significantly lower than chance (ps < .001). This 
demonstrates that participants believed that both agents 
would go against their programming or desires in order to act 
rationally. A Mann-Whitney test indicated that action 
prediction did not differ by condition (U = 120, p = .317, r = 
.18).  

Choice Attribution Results  
In each scenario, participants were asked whether the agent 
“chose to” or “had to” play the predicted game, regardless of 
game type (default or alternative). Across all three constraint 
scenarios, choice attributions were explored by running an 
omnibus binomial test to determine whether the percentage 
of choice attribution (“choose to” and “have to”) differed 
from chance (50%). The percentage of “choose to” responses 
did not differ from chance in either the human condition or 
the robot condition (human: p = .312; robot: p = .193). A 
Mann-Whitney test indicated that the choice attribution did 
not differ by agent condition (U = 1128, p = .836, r = .037). 
Within each of the three constraint scenarios, choice 
attributions were explored by running binomial tests to 
determine whether the percentage of choice attribution 
(“choose to” and “have to”) differed from chance (50%). 
Further, Mann-Whitney U tests were run to test for 
differences between agents (human and robot) in the 
predicted percentage of default game prediction in each of the 
constraint scenarios.  Frequencies are presented in Figure 3. 
 
 

 
 

 
 

Figure 3: Percentage of participants’ attribution of choice 
across conditions for each constraint. Asterisks signify 
attributions that are significantly different than chance. 
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Choice Attribution: No Constraint Binomial tests indicated 
that the percentage of “choose to” responses in both the 
human condition and the robot condition did not differ from 
chance (human: p = .210; robot: p = .454). A Mann-Whitney 
test indicated that choice attribution did not differ by 
condition (U = 120, p = .714, r = .065).  
  
Choice Attribution: Moral Constraint Binomial tests 
indicated that the percentage of “choose to” responses in both 
the human condition and the robot condition did not differ 
from chance (human: p = .804; robot: p = .454). Mann-
Whitney test indicated that choice attribution did not differ 
by condition (U = 120, p = .723, r = .063).  
 
Choice Attribution: Rational Constraint Binomial tests 
indicated that the percentage of “have to” responses in both 
the human condition and the robot condition was 
significantly higher than chance (ps < .05). Mann-Whitney 
test indicated that choice attribution did not differ by 
condition (U = 120, p = .632, r = .111). These findings 
indicate that the participants believed acting in accordance 
with physical limitations was a constraint on choice 
regardless of the agent acting, such that free will was 
significantly limited by this rational constraint. 

Discussion 
This research investigated children’s predictions and choice 
attributions about the actions of a robot or a human child. 
Results indicated that, overall, children tended to judge a 
humanoid robot as having a similar amount of freedom of 
choice as a human child. For example, without any 
constraints, or with a rational constraint (such as the default 
game being broken), participants predicted similar actions for 
both the human and the robot. However, when the robot had 
an opportunity to change its actions in order to avoid making 
another child sad, children judged the robot as less likely to 
act in this way as compared to the human. 

Action Prediction 
In the No Constraint scenario, participants significantly 
predicted the agent to play the default game, in both the 
human and robot condition. This demonstrates that children’s 
basic understanding of the introduction video, where it was 
made clear that the agent only plays the science game. In the 
Rational Constraint scenario, results demonstrated that 
participants believed that both the robot and the human could 
act against its programming in order to act rationally (i.e., to 
play the alternative game). This may be an indication of 
choice attribution, as children believe a robot can be 
responsive to reasons and is not entirely constrained by its 
programming (Fischer, 2006). In the Moral Constraint, 
however, participants believed the human would be 
responsive to reasons and act morally (i.e., play the 
alternative game), but they were at chance in the robot 
condition. This demonstrates that in moral situations, 
children were unsure if the robot could go against its 
programming. This could be explained in a number of ways. 

Children may have thought that the robot did not “care” about 
moral reasons or they may have thought that the robot did not 
have the capacity to recognize moral reasons. The latter 
explanation could be due to the fact that children did not 
interact with the robot in this study, making the robot’s social 
capacities were ambiguous. Future research could include 
various interaction components between the participant and 
the robot, which might unveil the types of social capacities 
that are required for a robot to appear responsive to moral 
reasons. 

Choice Attribution 
Overall, our results indicate that children’s attribution of 
choice is not unitary across situations. Similar to previous 
work (Kushnir et al., 2015), it appears that children are 
sensitive to both the agent type and the context that an agent 
is presented in when attributing free will. Furthermore, these 
results suggest that robot programming is not always a 
constraint on freedom of choice for young children. Most 
importantly, these results demonstrate that children are 
sensitive to constraints, such that some constraints (e.g. 
physical impossibility) are more restrictive to an agent’s 
choice than other constraints (e.g. desires, morals), and 
finding consistent for both the robot and the human agent.  

In the No Constraint scenario, we were surprised to see that 
participants did not attribute choice above chance to the 
human agent. This may have been due to the presentation in 
the introduction video. For example, similar to the robot, we 
presented the human as having an entrenched disposition to 
play the default game. However, unlike the robot, who was 
programmed by scientists to choose this game, the human’s 
“programming” was that his parents were scientists and that 
he played science games every day. Previous research has 
shown that child participants attribute this type of consistent 
(non-random) choice as denoting not just ‘programming’, but 
desires (Kushnir, Xu, & Wellman, 2010). Since participants 
were at chance in attributing choice to the human agent, this 
could mean that children varied in believing whether or not 
having a strong desire is a constraint on actions.   

In contrast to the human condition, we did not anticipate 
that participants would attribute so much choice to the 
humanoid robot in the No Constraint scenario. Here, the 
percentage of children that said the robot “chose to” select the 
default game was not significantly different from chance, 
suggesting that approximately half of our participants gave 
some semblance of free choice to the robot agent. This could 
be due to the varied exposure children have to robots, which 
research has shown is correlated with children’s propensity 
to attribute agency (Bernstein & Crowley, 2008). 
Alternatively, this could also be an indication of children’s 
general understanding of choice under minimal constraints. 
Specifically, children varied in the amount of choice they 
thought an agent had if the agent was constrained to perform 
a certain action based on how the agent was programmed or 
raised. Future research should investigate what underlies this 
individual difference; for example, do children who have 
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more interactions with robots also attribute them more choice 
in unconstrained scenarios?  

In the Moral Constraint scenario, children were at chance 
in attributing choice in both the human condition and robot 
condition. This demonstrates that participants were almost 
equally likely to say that a moral action was a constraint or a 
choice. These results dovetail with previous research that has 
shown that children under 7-years-old are less likely to say 
that people have a choice in moral actions in comparison to 
older children (Chernyak et al., 2013). For the Rational 
Constraint, results also followed previous research, such that 
children assumed the agent “had to” make a certain choice 
when there were physical constraints (Kushnir et al., 2015), 
regardless of agent type. While these results support previous 
work, they also extend previous findings to other agents. 
Since results were similar for the human condition and the 
robot condition, this demonstrates that children extend their 
existing beliefs of choice and constraint to a fundamentally 
different type of agent. Future research should investigate 
other agents, such as plants or animals, to see if choice 
attribution in light of moral and rational constraints is a 
general or agent specific attribution.   

It is important to note that we don’t fully understand the 
way children were interpreting some of our events, 
particularly those relating to programming (“Robovie is 
programmed to know a lot about science”) or genetic 
inheritance (“Billy’s parents are scientists so he knows a lot 
about science”). However, previous research has shown that, 
starting at 5-years-old, children display knowledge of 
biological inheritance (Gimenez & Harris, 2002) and children 
understand a robot is programmed (Bernstein & Crowley, 
2008). Furthermore, all participants were told multiple times 
that the agent (whether robot or human) only played the 
default game. Future research should explicitly measure 
children’s understanding of programming and inheritance in 
relation to their action prediction and choice attribution to an 
agent.  

In sum, this research indicates that children are able to 
attribute choice to actions that are programmed or hard-
wired. This suggests that “compatibilist” theories of free will 
– in which choice can be said to exist even in a fully 
determined universe (e.g., Fischer, 2006) – may be an 
intuitive aspect of folk psychology. This dovetails with 
previous studies that have advanced this claim, but which 
have based their conclusions on adults’ assessments of 
complicated thought experiments (e.g., Nahmias et al., 2005). 
The present research has shown this to be true in children and 
for an everyday case of pre-determinism. New advances in 
technology, which have introduced robots into children’s 
everyday environments, have not only improved quality of 
living but have also allowed for improvements in testing for 
folk attributions of choice to agents that straightforwardly 
exist in a constrained environment.  
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Abstract  

 
Past research has shown that adults can access multiple 

meanings for a word, but little work has examined how 
children process multiple meanings. We tested 48 4- to 7- 
year-old children and 48 adults in a touchscreen picture 
recognition task. Two meanings of the same word were 
displayed on successive trials, which varied according to 
whether the 2 meanings were unrelated (homonyms), related 
(polysemes), or repeated (same-meaning). Adults identified 
the second meaning more quickly than the first in all 
conditions and to the same extent. Children, however, 
identified the second meaning more quickly only on 
polysemy and same-meaning trials. This difference suggests 
that children are less capable of co-activating unrelated 
meanings, which raises the possibility that children must 
learn to do so over development. Despite the ubiquity of 
polysemy in language, our work is the first to show that 
children’s processing of word representations is organized 
by similarity. 
 
Keywords: polysemy, lexical processing, development, 
cognitive development, ambiguity	

Introduction 
Upon hearing a word like bat, which can refer to a 
flying mammal or a wooden stick, adults 
unconsciously activate both meanings, at least for a 
brief period when there is no biasing context and both 
meanings are equally frequent (Brocher, Koenig, 
Mauner, & Foraker, 2017; Onifer & Swinney, 1981; 
Swinney, 1979; Zwitserlood, 1989). This intriguing 
finding was initially used to argue for “exhaustive” 
lexical access during an early modular stage of 
processing (Fodor, 1985; Swinney, Plather, & Love 
2000; but cf. Armstrong & Plaut, 2016). At the same 
time, a large and growing body of evidence indicates 
that people take advantage of communicative contexts 
to predict interpretation from the earliest stages of 
comprehension (Kintsch, 1988; Rubio-Fernandez, 
Mollica & Jara-Ettinger, 2018; Tanenhaus, Spivey-
Knowlton, Eberhard, & Sedivy, 1995; Yip & Zhai, 
2018).  

Due to the tension between evidence for exhaustive 
lexical access, on the one hand, and early contextual 

influences on the other, much work has varied task 
demands, relative frequencies of the two meanings, 
interstimulus intervals and degrees of contextual bias 
in order to predict the conditions under which multiple 
meanings of a word are accessed or recognized. 
Selective, rather than exhaustive, activation has been 
found to occur when the context is strongly biased 
toward a more frequent meaning (Meyer & 
Federmeier 2007; Sereno, Brewer, & O'Donnell 2003; 
Sereno, Pacht, & Rayner 1992; Simpson, 1981; 
Marslen-Wilson & Welsh, 1978). 

Another factor that plays a role in lexical access and 
recognition is the degree of relatedness among a 
word’s meanings. That is, there is a gradient 
distinction between meanings that are homonymous 
or unrelated to one another (e.g., a flying bat vs. 
baseball bat), and polysemous meanings, which are 
semantically related to varying degrees (Tuggy, 1993). 
For instance, the word network can be used to refer to 
a TV channel, a group of colleagues, or a graph (Lau, 
Cook, McCarthy, Gella, & Baldwin, 2014). While 
these meanings are distinct, they are to some extent 
related.   

Relationships among meanings are relevant to the 
so-called “ambiguity advantage”: Adults have been 
found to respond faster in lexical decision tasks to a 
meaning for an ambiguous word compared to a word 
with a single meaning (Jastrzembski, 1981; 
Rubenstein, Garfield, & Millikan, 1970). This effect 
has sometimes been found to be stronger for words 
with multiple related senses (Klepousniotou & Baum, 
2007; Rodd, Gaskell, & Marslen-Wilson, 2002). In 
fact, Armstrong & Plaut (2008) and Rodd, Gaskell & 
Marslen-Wilson (2002) found that homonymous 
senses can slow down lexical access due to 
competition under higher of levels task difficulty (see 
also Brocher et al. 2016). Other evidence that 
ambiguous words compete in a way that polysemous 
meanings may not comes from an ERP study by 
Klepousniotou et al. (2012), who found a greater N400 
was evoked by a less dominant meaning of 
homonymous words in a lexical-decision task, but no 
increase in the N400 for the less dominant meaning of 
polysemous words.  On the other hand, Brocher et al. 
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(2017) found that both homonymous and polysemous 
meanings compete when words were equally biased 
toward both meanings.  Thus, the work on access and 
recognition of ambiguous words has revealed a 
complicated picture, indicating that frequency, degree 
of contextual bias, timing, task demands, and semantic 
relatedness each influence lexical activation (Tabossi 
& Sbisá, 2001). 

 In order to clarify key influences on lexical access, 
the current work compares the behavior of children 
and adults on an identical task. A word repetition 
paradigm is used to detect whether witnessing one 
meaning of a word primes a second meaning of the 
word. Specifically, in a 2-alternative forced-choice 
picture identification task, adults and 4- to 7-year-old 
children were exposed to a word on each trial, and had 
to select which of two images corresponded to that 
word’s meaning. On the immediately following trial, 
the same word was presented again. Across these key 
trials, the degree of relatedness between the first and 
second target meanings of words was systematically 
varied. 

Of interest was whether reaction times decreased 
between the identification of the first and second 
meanings of words.  If we do see priming effects for 
both homonymous and polysemous word meanings, it 
would be evidence that the two meanings are linked as 
is required for exhaustive access. This is expected in 
adults, at least if the time between trials is sufficiently 
brief. At longer inter-stimulus intervals (ISIs), we 
might expect the first meaning to interfere with the 
second meaning, which would predict an increase in 
reaction times to the second meaning.   

If both children and adults display the same increase 
or decrease in reaction time when identifying the 
second meanings of ambiguous words, it would 
suggest that key aspects of lexical access are a 
developmentally stable. We know that children, like 
adults, comprehend language incrementally 
(Swingley, Pinto, and Fernald 1999; Fernald, 
Swingley, & Pinto 2001). Also, children, like adults, 
are subject to priming and plausibility effects when 
they need to disambiguate an intended meaning 
(Rabagliati, Pylkkänen & Marcus 2013). But we don’t 
yet know whether children and adults will behave 
alike or differently under the identical task demands 
that require them to identify two familiar meanings of 
words in succession.  

A significant difference between children and 
adults’ behavior could shed light on the mechanisms 
involved in lexical access or on the way that lexical 
representations develop. If children show stronger 
evidence of exhaustive lexical access for ambiguous 
and polysemous words, it would be consistent with 
proposals that view selective access as requiring 
cognitive control (Balota, Cortese, & Wenke, 2001), 

since children’s cognitive control is less well 
developed than adults (Bunge, et al. 2002). On the 
other hand, if children show weaker evidence of 
accessing multiple familiar meanings of words, it 
would suggest that they represent individual meanings 
more independently than adults do. This would 
suggest that word learning involves both acquisition of 
item-specific knowledge for each meaning and a 
protracted trajectory for linking among each word’s 
meanings. This would indicate that children have to 
learn to co-activate multiple meanings based on 
experience, with potentially different trajectories for 
related versus unrelated meanings.  

Some past work has investigated how children over 
the age of 8 activate the intended meaning of 
homonymous words, by focusing on cases of 
homonymy in which one meaning was dominant over 
others (Marmurek & Rossi, 1993; Simpson & Forster, 
1986; Simpson et al. 1994). This research found 
relatively consistent results: older children are better 
at using contextual cues to activate less frequent 
homonymous meanings than younger children. Booth, 
Harasaki & Burman (2006) extended this work by 
comparing effects of sentence-level primes vs. lexical 
primes and found a more complex picture. Younger 
children or less skilled readers were less likely than 
older children to use a preceding lexeme to facilitate 
activation of a less-frequent homonymous meaning, 
while older children/high skilled readers facilitated 
and inhibited homonymous meanings using sentence-
level information (Booth, Harasaki & Burman 2006).  

The present work uses participants’ reaction times 
to investigate how words with multiple meanings are 
processed in children and adults, when both meanings 
need to be identified in succession.  By comparing 
performance on homonymous and polysemous 
meanings with a baseline condition, we can determine 
whether greater semantic similarity supports the co-
activation of lexical representations. This would be 
evident if participants are faster to recognize the 
second meanings of polysemous words than 
homonymous words. 

In the experiments reported below, we children and 
adults were presented with each of 18 target words 
twice in immediate succession: 6 words were paired 
with 2 unrelated meanings (homonymy condition); 6 
words with 2 related meanings (polysemy condition); 
and 6 words were presented with different images 
which represented the same meaning (same-meaning 
trials). We also included 12 singleton filler trials to 
reduce the extent to which participants could rely on a 
repetition expectation to predict what they might hear 
and see next. For homonymous and polysemous trials, 
each word was presented with one target meaning on 
first exposure and a different target meaning on the 
second  
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Table 1: Items 
 

exposure, with the order of target meanings 
counterbalanced across participants and sides of 
presentation randomized. Repeat same-meaning trials  
served as a window into baseline priming effects. The 
main prediction was that, if children’s word 
representations are organized by similarity, they may 
be able to activate a second, distinct meaning quickly 
in the case of polysemy. In the case of homonymy, 
however, where semantic similarity is not available to 
help co-activate other meanings which share the same 
label, accessing both meanings should be slower. In 
the same paradigm, we also predict that adults should 
be able to activate multiple meanings equally well in 
both polysemy and homonymy, consistent both with 
prior findings and with the idea that we learn to access 
unrelated meanings, at least in certain contexts, 
through experience. Finally, adult participation allows 
us to verify that it is, in fact, possible for our paradigm 
and chosen items to elicit priming of unrelated 
meanings.   
 

Method 
Participants 
48 adult participants [recruited online] and 48 children 
ages 4.5-7 (M=5.89; SD= 0.62). Children were given 
a book of their choosing and a small prize as thank-
you gifts. 
	
Procedure 

 
Two initial training trials provided feedback if 
participants answered incorrectly, or took longer than 
4500ms, ensuring that they understood the goal of the 
task was to answer accurately and quickly (see Figure 
1). Between each trial (including between training 
trials), a pulsing blue dot appeared that participants 
had to press to advance to the next trial. This was to 
ensure that participants’ hand positions were centered. 
Each participant responded to 48 trials including 6 
homonym pairs (12 trials), 6 polysemy pairs (12 
trials), 6 same-sense pairs (12 trials) and 12 singleton 
filler trials. 

The design was 3 (condition) x 2 (1st or 2nd 
encountered meaning), within-subjects. We tested two 
groups (adults and children). Before each trial began, 
participants had to place their pointer finger on a dot 
in the middle of the screen. Overall order of stimuli (or 
stimuli pairs) from each of the four trial types 
(polysemy, homonymy, same-sense pairs, and fillers) 
was randomized across participants. The experiment 
was conducted on an iPad that recordedd participants’ 
accuracy and reaction times to target. The key 
dependent measure was the difference in reaction time 
from the identification of first and second senses of 
words in the three experimental conditions.  
     On each trial, participants heard a word and had to 
choose the target image representing its meaning from 
a distractor image presented on the opposite side of the 
screen (screen side counterbalanced). For 
homonymous, polysemous and same-sense trials, the 
same word was repeated twice in succession with 
images corresponding to a second unrelated, related, 
or same sense, respectively.  
 

The order of presentation within each word’s pair of 
meanings as well as the order of trials in the 
experiment was counterbalanced across participants to 
avoid possible confounds of meaning familiarity or 
distractor salience.  Moreover, since participants 
witnessed both ambiguous and polysemous trials, any 
significant difference in familiarity between the 
ambiguous items and the polysemous items should be  
evident in a comparison of response times to the first 
presentations across these conditions, which we also 
include as part of our analyses. 

 

Trial type Word 
6 same-sense 

repeated 
bowl, treehouse, ring, key, 
lantern, shelf, trunk 
 

6 polysemous 
senses 

cap, buttons, cone, 
glasses, shower, step  
 

6 homonymous 
meanings 

bow, ruler, pitcher, bat,  
calf, nail  
 

12 singletons basket, cake, crayon, 
feather, hood, lemon,  
ivy, log, playground, 
punch, wagon, bark 
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Figure 1: Representation of the experimental stimuli in the homonymy (bat), repeat (bowl) and polysemy (buttons) 

conditions. 
 

Results 
 

The data were log-transformed and analyzed using a 
multilevel linear model with condition (homonymy vs. 
polysemy vs. same meaning) and first vs. second 
meaning of each pair as fixed effects, and maximal 
converging random effect structure: here, random 
intercepts and slopes for subjects, presentation order, 
and items:  Reaction Time ~ FirstOrSecond * 
Condition + (1 + FirstOrSecond | subject) +   
    (1 + Condition | order) + (1 + FirstOrSecond | item). 

Adults recognized the second sense of words more 
quickly after the initial exposure to that word, and 
facilitation was equally strong for unrelated 
(homonymy), related (polysemy), and same senses: 
(main effect of secondary sense response, ß = -
0.15515, p = 0.00129, with no significant interactions 
by condition (Figure 2). 

Children, on the other hand, did not show significant 
facilitation when selecting the second sense of 
homonymous words, but did for polysemous words (ß 
= -0.12798, p = 0.0333) and repeated meanings (ß = -
0.200424, p = 0.0122) (Figure 2). The difference 
between facilitation for polysemous and same-sense 
trials was not significantly different (ß = -0.08638, p = 
0.2189), suggesting that related senses were primed by 
one another to almost the same degree as a second 
instance of the same sense. Unlike results for adults, 
there was not even a numerical decrease in reaction 
time when the second presentation of a word was 
paired with an unrelated (homonymous) sense.	

A concern worth addressing is whether children 
were less familiar with the meanings of the 
homonymous words. Indeed, we cannot expect 
facilitation for a second meaning if only one meaning 
was familiar to children. To ensure this did not account 
for our results, we excluded any trials in which 
children or adults had answered incorrectly on either 
trial for all analyses reported thus far. This issue can 
be further addressed by a comparison of accuracy in 
the polysemy vs. homonymy condition. We found that 
their accuracy was not significantly lower in 
homonymy than polysemy in a linear model with 

maximal converging random slopes and intercepts for 
subject and order (ß -0.03, t= -1.410, p= 0.172), and 
neither were their reaction times slower to the first 
exposure in homonymy as compared to polysemy (ß= 
0.075, t= 0.844, p= 0.405). Since the order of 
presentation of the two meanings was counterbalanced 
across participants for each word, we can conclude 
that children were equally familiar with the senses of 
the homonymous, polysemous, and same-sense 
meanings, as intended.  
	

Limitations 
 
In our task, answers appeared on either side of the 
screen. In order to control for hand/mouse position 
effects, intervals between each trial required 
participants to press a central fixation, and the 
experiment did not advance to the next trial until 
participants did so. Because of this, inter-stimulus 
intervals (ISIs) were not controlled, and instead were 
determined by how long the participant took to press 
the central fixation.  Importantly, prior work has 
shown that second senses of homonymous words 
become suppressed as quickly as a few syllables 
downstream, and early work in semantic priming did 
not reveal effects for priming across more than one 
intervening trial (Joordens & Besner, 1992), 
suggesting that we should not expect to see priming in 
the case of longer inter-stimulus intervals. Therefore, 
the ISIs observed in our experiment warrant further 
investigation. 

To address this concern, we report average ISIs for 
the two groups, as well as a comparison of the two 
(adults: M = 1961ms, SD = 5196ms, children: M = 
1147ms, SD = 701ms). We then entered log- 
transformed ISI lengths into a mixed effect model with 
age group (child vs. adult) as the fixed effect and 
maximal converging random structure including a 
random intercept and slope for subject and intercept 
for trial number (order), revealing no effect of the age 
group (child): ß =-0.09643, p = 0.4). So, while average 
ISIs were longer than those used in traditional priming 
experiments, it is unlikely that the difference between  
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Figure 2: Raw reaction time data (analyses were done on log-transformed data). Error bars represent bootstrapped 
95% confidence intervals. 

 
ISIs is what drove our children to perform differently 
than adults. Past work with children has also used 
longer ISIs with children, such as 1,000ms (Booth, 
Harasaki & Burman, 2006), as compared to ISIs in 
adult lexical decision tasks. 

Consistent with our results, Armstrong & Plaut 
(2016) emphasize that the timing of adult participants’ 
suppression of irrelevant senses varies by task 
difficulty as well as latencies. Later work on semantic 
priming has in fact shown evidence for longer-term 
priming, across as many as 8 intervening items 
(Joordens & Becker, 1997). The implication of this 
work on our predictions instead suggests that 
participants may be expected to benefit from priming 
over longer periods of time.  

 
Discussion and Conclusion 

 
This investigation is the first, to our knowledge, to 
compare children’s and adults’ co-activation of related 

word meanings. Prior work has found that under 
certain conditions, adults access more than one 
meaning of a word, at least for a short period of time, 
unless one meaning is both more frequent and 
anticipated within the context. In the current study, the 
facilitation evident in adults’ response times to second 
meanings demonstrates that, regardless of relatedness, 
adults are capable of accessing two meanings 
simultaneously or are at least able to anticipate a 
second meaning. To emphasize, adults displayed 
faster reaction times to a second meaning even when 
that meaning was entirely unrelated to the first (e.g., 
baseball bat following mammal bat). 

Children, on the other hand, showed facilitation only 
when the second meaning was related or identical to 
the first. They showed no evidence that the recognition 
of one sense of a word facilitated the recognition of an 
unrelated meaning of that word. We addressed the 
possibility that children were less familiar with the 
meanings of the homonyms by observing that their 
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accuracy and response times on the first exposure of 
each word-type were not different. The current 
findings thus indicate that children’s representations 
of a word’s two unrelated meanings may not be linked 
together in the same way that adults’ are. Instead, 
while children showed a facilitation effect in the 
recognition of a second related meaning, unrelated 
meanings were recognized as slowly as completely 
new words.  

Given this, it may be that children must learn to 
activate multiple homonymous meanings across time.  
Intuitively, this makes sense: a spreading of activation 
between the mental representation of “bottle cap” and 
of “pen cap” may be a natural consequence of shared 
or similar features, while the representations of 
“baseball bat” and “flying bat” are likely to overlap 
very little, if at all. Yet again, ultimately speakers do 
eventually learn to access both meanings, at least or a 
brief period under certain task demands, as 
demonstrated by evidence co-activation both in our 
task and in previous work with adults (Brocher, 
Koenig, Mauner, & Foraker, 2017; Onifer & Swinney, 
1981; Swinney, 1979; Zwitserlood, 1989). This raises 
the question as to why and how the ability to access 
unrelated meanings of a word develops.  

Insofar as listeners cannot reliably predict which 
meaning of a word is intended, a degree of flexibility 
is advantageous in language processing to avoid being 
essentially garden-pathed by an unintended meaning. 
Indeed this type of flexibility may be advantageous in 
language learning as well, insofar as a more efficient 
ability to update predictions has been found to 
correlate with larger vocabulary size (Reuter, 
Emberson, Romberg, & Lew-Williams, 2018).  

We can only speculate as to exactly how this 
ability to access secondary unrelated meanings of 
words increases after the age of 7. But presumably 
either links between two distinct representations are 
created or the representations of homonymous 
meanings come to share greater overlap.  Stronger 
links between unrelated senses of homonymous words 
may be formed as a result of repeated 
misinterpretations that require learners to access an 
alternative sense as quickly as possible for the sake of 
comprehension.  Alternatively, it is possible that links 
between meanings of homonymous words are formed 
on the basis of more explicit, metalinguistic 
knowledge. It is possible that co-activation is 
facilitated simply by an awareness that labels can refer 
to multiple meanings. On this interpretation, the 
information that the word bat as two unrelated 
meanings would be similar to learning that the word, 
aunt can be pronounced in two distinct ways. 

A non-mutually exclusive possibility is that co-
activation may be encouraged by learning to read. 
Specifically, a shared written form in combination 

with a shared auditory label can be expected lead to an 
increase in representational overlap between two 
meanings of a homonymous word.  This would 
support the idea that representational overlap is 
required for co-activation.  Future work can test this 
by comparing words that vary in whether they are 
spelled alike  compared to words that are not (bat vs. 
bat; flower vs. flour). If the link between unrelated 
meanings is mediated via a shared visual form, we 
expect facilitation for homonyms that share the same 
spelling but not for homonyms that are spelled 
distinctly.  
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Abstract 
People frequently use metaphors to communicate and reason 
about complex topics. However, many studies of metaphorical 
reasoning exclusively rely on researcher intuitions about 
different metaphors and their associated entailments. Here we 
describe a more principled method for mapping the structure 
of metaphorical lay theories, focusing on metaphors for 
teaching. Across two studies, we identified four common, apt 
metaphors for the teacher-student relationship and used factor 
analysis to explore whether these metaphors reflect 
systematically different intuitions about the qualities of college 
teachers. Our findings demonstrate that (1) people endorse a 
variety of different teaching metaphors, and (2) these 
metaphors bring to mind distinct, coherent clusters of teacher 
attributes. This work demonstrates a novel method for 
systematically mapping the structure of metaphorical lay 
theories and sets the stage for future research on metaphorical 
reasoning as well as innovative educational interventions 
centered on shifting lay theories of teaching. 

Keywords: metaphors, lay theories, concepts, teaching 

Introduction 
According to a popular cognitive science metaphor, people 

are amateur scientists who actively explore the environment 
and develop intuitive theories for how the world works 
(Furnham, 1988; Gopnik, Meltzoff, & Kuhl, 1999). In turn, 
these intuitive, lay theories help people make sense of and 
respond to new experiences, guiding thought and action. For 
example, research over the last two decades suggests that 
students’ lay theories about the malleability of intelligence 
(also known as mindsets) drive educational achievement 
(Yeager & Dweck, 2012). Students who think of intelligence 
as something that can improve through hard work––the 
brain-as-muscle metaphor––react better to performance 
setbacks, resulting in superior long-term learning outcomes 
(but see Sisk et al., 2018). 

As we have just illustrated, one way that intuitive beliefs 
are conveyed is via metaphor. To take another example, when 
we describe a teacher as “molding impressionable students,” 
we imply that the teacher is like a sculptor and students are 
like clay. Metaphors allow people to draw on familiar, 
common knowledge of a basic source domain (building 
muscles; sculpting clay) to communicate about a more 
complex or abstract target domain (how brains learn; 
teaching; Lakoff & Johnson, 1980). A large body of research 
finds that the metaphors people use to talk about complex 

issues both reflect and shape how they think about those 
topics (for review, see Thibodeau, Hendricks, & Boroditsky, 
2017). The teacher-as-sculptor metaphor, for example, may 
reflect the intuitive belief that learning is passive and that the 
teacher (not the student) largely determines the learning 
outcomes.  

How can we best understand the structure of these 
metaphorical lay theories and the extent to which they 
influence thought and action? An important first step is to 
map out the entailments of the metaphors; that is, the 
associated ideas and inferences licensed by the metaphorical 
comparison. For example, one potential entailment of the 
brain-as-muscle metaphor described earlier is that, while 
hard work may increase someone’s intelligence or abilities, 
working too long on any one task may be cognitively 
exhausting (much like continuous physical exertion tires out 
muscles). These sorts of entailments, it is argued, provide 
critical insight into the mental model people use to represent 
the target domain and allow for empirically-informed 
predictions about how metaphors reflect and shape thinking.  

 The most common approach to mapping entailments is to 
examine the figurative language people use in everyday 
speech and apply a commonsense understanding of the 
observed source domains (as we have demonstrated in the 
preceding paragraph). Cognitive linguists have used this 
approach to isolate the structural schemas that underlie many 
fundamental concepts, from emotion to politics to time, 
across a variety of languages and cultures (Kövecses, 2005; 
Lakoff and Johnson, 1980).  

However, there are several theoretical problems with 
relying on intuition and patterns of language alone to make 
inferences about underlying conceptual representations 
(Keysar & Bly, 1995; Casasanto, 2009; Murphy, 1996). For 
example, the meaning of common metaphorical expressions 
might seem obvious and intuitive but could also reflect a 
post-hoc rationalization based on one’s preexisting 
understanding of the expression (Keysar & Bly, 1995). 
Indeed, some (non-linguistic) experiments have shown that 
metaphors in language do not always reflect how people 
mentally represent a given topic (see Casasanto, 2009). How, 
then, can researchers more reliably map the structural 
entailments of metaphorical concepts?  

Another approach is to ask a set of naïve participants to 
freely generate the structural entailments of a source domain 
in order to derive a set of conceptually coherent metaphorical 
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entailments for the target domain. For example, for the 
metaphor “crime is a virus,” participants might be asked how 
they would solve a literal virus problem in their city. The 
responses would then be used to predict which solutions to a 
city’s crime problem would be conceptually congruent with 
the crime-as-virus metaphor (Thibodeau & Boroditsky, 
2011). To validate these experimenter intuitions, another set 
of participants might be asked to match specific solutions to 
a crime problem to specific metaphors (i.e., match a solution 
to a city’s crime problem to either a crime-as-virus or crime-
as-beast metaphor; Thibodeau & Boroditsky, 2013).  

 In this paper, we build on this approach and offer a 
systematic method for mapping the structural entailments of 
a complex metaphor, focusing specifically on metaphors for 
teaching. Our approach was inspired in part by traditional 
psychometric methods that have been used to uncover the 
dimensional structure of personality traits and other 
psychological constructs.  

In Study 1, we first identified six common metaphors for 
the college teacher-student relationship, drawing on the 
literature in teacher education (e.g., Patchen & Crawford, 
2011; Shaw, Berry, & Mahlios, 2008). We assessed the 
relative aptness of these metaphors by asking participants to 
rate their agreement with each metaphor, select the one they 
liked best, and explain their choice. In Study 2, we presented 
a new set of participants with one of the four most popular 
metaphors from Study 1. With this one metaphor in mind, 
participants rated the degree to which a wide range of 
statements describing the attributes of college teachers fit 
with the metaphor (as well as rating each metaphor on a few 
additional features). We used exploratory factor analysis to 
identify a smaller set of latent factors underlying the larger 
collection of teacher attributes. This allowed us to identify a 
distinct, coherent cluster of teacher attributes associated with 
each metaphor, providing a principled way of mapping the 
structure of metaphorical lay theories.   

Study 1 
Methods 
Participants We recruited 119 participants to complete the 
survey through Amazon’s Mechanical Turk. We required that 
participants be a current or former college student living in 
the U.S. or Canada, with an approval rating greater than 95% 
on at least 100 prior Turk tasks. We excluded data from nine 
participants: two that came from duplicate IP addresses, four 
that provided duplicated (i.e., copy and paste) responses to all 
free response items, and two who reported that they had never 
attended college.  

Of the 110 participants included in the final data set, 54% 
were male, 83% identified solely as White, 7% as Black, 2% 
as Asian, 3% as Hispanic/Latino, and the remaining 4% as 
multiracial. About 71% had graduated from college, 15% 
were currently enrolled students, and 15% had attended 
college at one point but were not currently enrolled. About 
43% had attended college less than 4 years ago, and 57% had 
been out of college for more than 4 years. Mean age was 35 
(SD = 11) with a range of 20-74.  

 
Materials & Procedure We designed a survey using 
Qualtrics online survey software in which participants 
considered six possible metaphors for the teacher-student 
relationship (see Table 1). We derived these metaphors based 
on qualitative findings of the metaphors that teachers use to 
describe their roles (e.g., Patchen & Crawford, 2011; Shaw, 
Berry, & Mahlios, 2008). Each metaphor described both the 
teacher and the student and suggested a relationship between 
them (e.g. “A teacher is like a sculptor and students are like 
clay”). 

Participants viewed all six metaphors in a random order 
and each was described as a metaphor for college teaching. 
Participants first rated their agreement with the metaphor on 
a 6-point scale (strongly disagree to strongly agree, with no 
neutral midpoint) and then freely explained their response by 
typing in a text box. After considering all six metaphors, 
participants considered the entire collection of metaphors and 
selected their favorite. They explained why they preferred 
this metaphor and, specifically, how it fit their experiences 
and views of college teaching. Finally, participants answered 
a series of basic demographic questions.  

Results 
What are the most popular metaphors? As shown in Table 1, 
participants leaned toward agreement (M > 3.5) for all the 
metaphors except the app store metaphor, but they agreed the 
most with the gardener metaphor, followed closely by the 
coach, tour guide, and sculptor metaphors. Participants’ 
selection of their preferred metaphors showed a similar 
pattern of popularity. Of the six metaphors, the most popular 
was the gardener metaphor (32.7%), followed by the tour 
guide (19.1%) and coach metaphors (18.2%). The sculptor 
(10.9%), app store (9.1%) and ship captain metaphors (8.2%) 
were less favored.  

An initial examination of participants’ justifications for the 
metaphors shows that they frequently extended the 
metaphors in their free response descriptions. For example, 
the gardener metaphor prompted descriptions of teachers as 
“sowing information,” “planting seeds of knowledge,” and 
“cultivating students.” The coach metaphor elicited 
descriptions of teachers working with students “toward the 
same goal,” helping students “win and succeed,” giving 
students “exercises,” and creating “a plan of attack.” The tour 
guide metaphor led to descriptions of teachers “showing 
students around”, taking them into “the unknown,” “showing 
the way,” helping students “navigate” and taking them along 
“the path of learning.” The sculptor metaphor prompted 
descriptions of teaching as “molding,” “shaping,” and being 
“hands-on,” and described students as “impressionable,” 
“raw material,” and “undefined” but becoming “polished.” 
This suggests that participants were actively using the 
metaphor to reason about the qualities of a teacher associated 
with a given metaphor (Thibodeau, Crow, & Flusberg, 2017).  

Table 1. Rank-ordered ratings of agreement with each of 
the teaching metaphors on a 6-point scale. Higher 
numbers indicate higher levels of agreement.  
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Metaphor M SD 

“A teacher is like a gardener and students are 
like plants” 4.36 1.29 

“A teacher is like a coach and students are like 
athletes” 4.28 1.21 

“A teacher is like a tour guide and students are 
like tourists” 4.19 1.31 

“A teacher is like a sculptor and students are 
like clay” 4.15 1.25 

“A teacher is like the captain of a ship and 
students are like sailors” 3.79 1.40 

“A teacher is like an app store and students are 
like smartphone users” 2.95 1.56 

Discussion 
The findings from this initial study suggest that people with 

college experience endorse a variety of metaphors for the 
teacher-student relationship, but the most apt are the 
gardener, coach, tour guide, and sculptor metaphors. That 
participants spontaneously extended these metaphors in 
articulating their personal preferences provides some 
evidence that they were thinking about the nature of college 
teaching in terms of the metaphorical lay theory.  

The primary goal of Study 2 was to identify and map out 
the conceptual entailments associated with each of the four 
most popular metaphors for the teacher-student relationship; 
that is, the associated beliefs and expectations that logically 
follow from the metaphor. Identifying the entailments of 
various metaphors is critical for making informed predictions 
about how metaphors may shape beliefs, attitudes, and 
behaviors. As a starting point, we examined entailments that 
focused on the characteristics of teachers (as opposed to 
students). Our key question was whether different metaphors 
would be reliably associated with distinct clusters of teacher 
attributes, and whether this can be measured in a systematic, 
principled way. 

Study 2 
Methods 
Participants We recruited 201 participants to complete the 
survey through Amazon’s Mechanical Turk using the same 
exclusion criteria as in Study 1. We excluded data from two 
participants who provided duplicated (i.e., copy and paste) 
responses to all free response items.  

Of the 199 participants included in the final data set, 54% 
were male, 75.6% identified solely as White, 9% as Black, 
.5% as American Indian or Alaskan Native, 5% as Asian, 
2.5% as Hispanic/Latino, and the remaining 7% as 
multiracial. About 70% had graduated from college, 13.4% 
were currently enrolled students, and 17% had attended 
college at one point but were not currently enrolled. Only 
39% were recent college students who had attended college 
less than 4 years ago, and 61% had been out of college for 

more than 4 years. Mean age was 36 (SD = 11.6) with a range 
of 18-76.  

Materials & Procedure Participants were randomly 
assigned to view one of the four most popular metaphors 
from Study 1: the gardener, coach, tour guide, and sculptor 
metaphors. Participants then viewed a list of 43 statements 
describing college teachers (e.g., “Teachers transfer their 
knowledge to students”) and rated how well each item fit the 
metaphor that they were given (see Table 2). The statements 
were generated by consulting measures of teacher behavior 
(e.g., teacher behavior checklist, Keeley, Smith, & Buskist, 
2006), examining free response data from Study 1, and the 
personal experience of the researchers). Participants were 
specifically instructed to rate how well each item agreed with 
the metaphor they received, not whether they personally 
believed each item was true. 

Next, participants viewed all four of the metaphors and 
selected their personal favorite. Finally, participants 
answered four questions aimed whether the metaphors 
captured beliefs about teacher responsibility and power: They 
rated, according to the metaphor, (a) how much responsibility 
college teachers have for students’ learning, (b) how much 
responsibility students have for their own learning in college, 
(c) how much power college teachers have to influence what 
students learn, and (d) how much power college teachers 
have to influence how students to develop as people. Each 
item was rated on a scale of 0 to 100, with 0 meaning “none 
at all” and 100 meaning “a great deal.”  

Results 
Factor structure of teacher characteristic. To begin, we 
performed a principal axes factor analysis on the 43 different 
teacher attributes (oblimin rotation) to identify the latent 
variables underlying the attributes. Based on the eigenvalues, 
as well as the ability to meaningfully interpret the clustered 
attributes, a 7-factor solution provided the best fit for the data. 
The eigenvalues for the first seven factors were: 21.81, 3.02, 
2.59, 1.63, 1.25, 1.00, and .82, with the eighth being .75. The 
rotated pattern matrix is shown in the Appendix. Based on the 
highest-loading items, we interpreted the factors as:  

(1) Community-building (e.g., “Teachers encourage a 
sense of community”)  

(2) Knowledgeable (e.g., “Teachers are knowledgeable 
about their subject matter) 

(3) Authoritative (e.g., “Teachers establish classroom 
rules”) 

(4) Influencing (e.g., “Teachers powerfully influence 
their students”) 

(5) Philosophical (e.g., “Teachers are abstract thinkers” 
and “Teachers provoke debate”) 

(6) Informing (e.g., “Teachers present information”) 
(7) Nurturing (e.g., “Teachers are sensitive to their 

students’ needs”)  
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Figure 1: Mean factor scores for each of the seven factors, 
as a function of the conceptual metaphor that participants 
considered. The factor scores for the authoritative and 
nurturing factors are reversed for ease of interpretation. 

 
Figure 1 shows the pattern of differences across the 

metaphors for each factor. Visual examination of the figure 
shows some striking differences in teacher characteristics 
across metaphors. The gardener metaphor entails that 
teachers are nurturing but low on other characteristics, 
especially authoritative traits. The coach metaphor entails 
that teachers build community, are authoritative, influencing, 
and even philosophical, in the sense of stimulating new 
knowledge and provoking debate. The tour guide metaphor 
entails that teachers are informing, but low on other 
characteristics, especially their ability to influence students. 
The sculptor metaphor entails that teachers are neither 
nurturing nor informing, but are somewhat authoritative, 
influencing, and philosophical.  

How do teacher characteristics vary across metaphors? 
Once a 7-factor solution was applied, we saved the factor 
scores using the regression method. A multivariate ANOVA 
was performed on the seven factor scores with metaphor 
(gardener, coach, tour guide, or sculptor) as a between-
subjects variable. Overall, metaphor condition showed a 
significant effect on the set of factors, F(21, 552) = 6.98, p < 
.001, η² = .21. Univariate analyses of variance revealed a 
significant effect of metaphor on the community-building (F 
(3,188) = 5.01, p < .01) authoritative (F (3,188) = 12.72, p < 
.001), influencing (F (3,188) = 4.02, p < .01), informing (F 
(3,188) = 6.20, p < .001), and nurturing factors (F (3,188) = 
8.23, p < .001). There was only a marginal effect of metaphor 
on the philosophical factor (F (3,188) = 2.43, p = .07) and no 
effect on the knowledgeable factor (F (3,188) < 1).  

Are different metaphors associated with different beliefs 
about responsibility? Metaphor had a small but reliable effect 
on ratings of how much responsibility college teachers had 
for students’ learning, F(3, 197) = 2.93, p < .05, η² = .04. No 
pairwise comparisons across the conditions (using a 
Bonferroni adjustment) were significant. As shown in Figure 
2, the sculptor metaphor promoted the highest rating of 
teacher responsibility, and the coach metaphor the least. 
Metaphor had a more dramatic effect on ratings of how much 

responsibility students had for their own learning, F(3, 197) 
= 11.42, p < .001, η² = .15. Pairwise comparisons indicated 
that the coach metaphor promoted the highest ratings of 
student responsibility, significantly more than the gardener 
or sculptor metaphors. As shown in Figure 2, the sculptor and 
gardener metaphors promoted the lowest ratings, 
significantly lower than the coach and tour guide metaphors, 
but not different from one another.  

 
Figure 2. Effects of metaphor on ratings of how much 
responsibility teachers and students have for learning. 
 

Are different metaphors associated with different beliefs 
about teacher’s power? Metaphor condition had a small but 
reliable effect on ratings of how much power college teachers 
had to influence what students learn, F(3, 197) = 3.02, p < 
.05, η² = .04. No pairwise comparisons across the conditions 
were significant, however (all pairwise comparisons used a 
Bonferroni adjustment). As shown in Figure 3, the sculptor 
metaphor promoted the highest rating of teacher power over 
student learning, and the tour guide the least. Metaphor had a 
more dramatic effect on ratings of how much power college 
teachers had to influence how students develop as people, 
F(3, 197) = 7.44, p < .001, η² = .10. Pairwise comparisons 
indicated that the sculptor metaphor prompted the highest 
ratings of power to influence development, significantly 
more than either the coach or tour guide metaphor. The 
gardener metaphor did not significantly differ from the 
others.  

 
Figure 3. Effects of metaphor on ratings of how much 
power teachers have to influence what students learn and 
how they develop as people. 
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What are the most popular metaphors? Participants most 
preferred metaphors replicated the pattern found in Study 1. 
Of the four metaphors, the most popular was the gardener 
metaphor (26.9%), followed by the coach (25.9%) and tour 
guide metaphors (25.4%). The sculptor metaphor was the 
least favored (20.4%). Participants’ preferred metaphor was 
not influenced by condition. That is, participants did not 
select a favorite metaphor that simply matched what they had 
been presented with in earlier questions. This suggests that 
people have stable preferred metaphors for thinking about the 
teacher-student relationship.  

Discussion 
The findings from this study suggest that different 

metaphors for teaching are associated with distinct 
entailments, specifically with respect to the characteristics of 
teachers. Different metaphors imply that teachers have 
different “profiles” or clusters of characteristics that can 
differ dramatically from one another. Notably, the metaphors 
differ in their implications for students’ responsibility for 
their own learning. The coach and tour guide metaphors hold 
students more responsible for their own learning than do the 
gardener and sculptor metaphors. The metaphors also differ 
in how much power the teacher has to influence a student’s 
general development. The gardener metaphor entails the 
most power to influence students’ development, and the tour 
guide metaphor the least.  

General Discussion 
People use metaphors to express their lay beliefs about 

everything from the nature of intelligence to how the 
economy works. Though it seems quite natural to identify the 
conceptual entailments of such metaphors based on common 
sense knowledge, there are issues with theorizing about the 
structure of people’s metaphorical lay theories based on 
patterns in language alone. In this paper, we aimed to provide 
a more principled method for mapping the structure of 
metaphorical lay theories, using metaphors for teaching as a 
case study. Our approach was inspired in part by 
psychometric methods used to uncover the latent structure of 
other theoretical psychological constructs.  

In our first study, we used participant ratings to identify 
four common, apt metaphors for the college teacher-student 
relationship (gardener, coach, sculptor, and tour guide). In 
Study 2, participants were provided with one of these 
metaphors and rated the extent to which a large set of teacher 
attributes conceptually cohered with the metaphor. We then 
used exploratory factor analysis to uncover a small subset of 
meaningful dimensions underlying the larger set of teacher 
attributes. This revealed that our four teaching metaphors 
reflect systematically different intuitions about the qualities 
of college teachers, which can be captured by distinct, 
coherent clusters of teacher attributes. We contend that this 
method offers a useful, principled way for researchers 
interested in metaphorical reasoning to empirically derive the 
conceptual entailments of different metaphors.  

In ongoing and future work, we are continuing to validate 
this approach by (1) replicating our findings in more 
representative samples of current college students, (2) 
applying the same factor analysis method to ratings of 
student, rather than teacher, attributes and (3) mapping the 
structure of these metaphors in the context of other types of 
teaching settings (e.g., high school or elementary school 
teaching). We also plan to measure the explanatory power of 
lay theories of teaching by examining whether the particular 
metaphor a student holds for the teacher-student relationship 
predicts their own attitudes and behaviors in the classroom. 
Based on the results of Study 2, for example, we would 
hypothesize that students who hold a coach metaphor should 
expect teachers to be more demanding and assertive than 
students who hold a gardener metaphor, and thus may expect 
higher and stricter standards in the classroom. Similarly, 
because the gardener and sculptor metaphors imply less 
responsibility on the part of the student, students who endorse 
these metaphors may hold a more passive view of the 
learning process and be less likely to engage in active-
learning strategies (e.g., self-quizzing) than students who 
endorse the coach and tour guide metaphors.  

Ultimately, this work could lay the foundation for novel 
educational interventions based around metaphor framing. 
Some studies have found that metaphors can shape student 
mindsets (Blackwell et al., 2007) and attitudes (Landau et al., 
2014), but this work has not examined metaphors for teaching 
specifically. In addition, interventions aimed at changing 
intuitive lay theories of intelligence to improve student 
performance have generated inconsistent results (Sisk et al., 
2018). One reason for this inconsistency may be that 
academic performance is shaped by numerous intuitive 
beliefs, not just about intelligence. It is possible that, because 
learning occurs in a social context that includes teachers and 
the broader classroom environment, the intuitive beliefs 
students hold about the nature of teaching will also influence 
academic behaviors and outcomes. As our current work 
offers a principled way to understand the structure of people’s 
intuitive beliefs about teaching, it provides an important first 
step in developing such interventions. 
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Appendix 

Pattern matrix with the loadings of each of the teacher characteristics on the 7 factors. Highest loading items for each factor 
(>.39) are marked in color and bolded.

 
 
Teachers... 

Factor 1 
Community-

Building 
 

50% of 
common 
variance 

Factor 2 
Knowledgeable 

 
6.3% of 
common 
variance 

Factor 3 
Authoritative 

 
5.3% of 
common 
variance 

Factor 4 
Influencing 

 
3.0% of 
common 
variance  

Factor 5 
Philosophical 

 
2.2% of 
common 
variance 

Factor 6 
Informing 

 
1.6% of 
common 
variance  

Factor 7 
Nurturing 

 
1.1% of 
common 
variance 

 
encourage a sense of community .695 .047 -.040 .058 .008 -.050 -.258 
encourage students to get to know 
one another .557 -.085 -.175 .041 .141 .024 -.223 

are personable .554 .127 .023 -.097 .166 .192 -.174 
hold students’ attention .515 .203 -.083 .130 .061 .146 .136 
encourage teamwork .485 -.118 -.261 .136 .102 .088 -.239 
encourage students to support one 
another .484 -.172 -.281 .027 .110 .029 -.354 

encourage students to actively 
participate in class .311 .029 -.207 -.007 .214 .298 -.164 

are knowledgeable about their 
subject matter .014 .668 -.008 .049 .096 .293 .040 

are experts in their field .141 .628 -.035 .228 -.021 .126 .080 
know what they are talking about .210 .626 .022 .083 -.017 .123 -.100 
know in advance what they are 
trying to accomplish -.059 .619 -.217 .149 .003 -.010 -.164 

are intelligent .015 .531 .022 .004 .483 .026 -.106 
work toward a clear goal -.057 .495 -.179 .234 -.007 -.043 -.303 
are prepared for class -.051 .481 -.154 .001 .082 .323 -.205 
are confident .268 .376 -.262 .065 .259 .021 .206 
establish classroom rules .054 -.057 -.648 .049 .180 .218 -.076 
are authority figures .187 .366 -.532 -.041 .063 -.074 .160 
command respect .401 .129 -.489 .054 .134 -.032 .239 
challenge students .024 -.091 -.373 .272 .319 .188 -.092 
powerfully influence their students -.038 .100 -.140 .632 .025 -.120 -.032 
stimulate students’ thinking .110 -.003 .311 .630 .267 .115 -.056 
transfer their knowledge to 
students -.028 .289 .036 .399 -.097 .379 -.008 

motivate students to put effort into 
learning .126 -.064 -.174 .376 .004 .307 -.247 

give helpful feedback .231 -.126 -.185 .307 .137 .280 -.176 
are abstract thinkers .027 .052 -.034 .017 .756 -.082 -.062 
provoke debate .045 -.074 -.018 .080 .704 .236 .011 
question students’ ideas -.018 -.127 -.242 .104 .625 .139 .000 
are creative .168 .279 .013 .178 .447 -.207 -.167 
promote class discussion .297 -.018 .000 .066 .440 .342 -.041 
have clear expectations for 
students .070 .226 -.286 .187 .388 -.063 -.015 

answer students’ questions .103 .106 .001 -.024 .125 .600 -.105 
present information -.082 .296 -.108 .028 .074 .564 -.001 
communicate clearly .268 .074 -.060 .089 .105 .462 -.094 
engage students in conversation .283 -.003 .001 -.012 .357 .393 -.109 
are sensitive to their students' 
needs .039 -.016 .066 -.040 .071 .052 -.806 

adapt their teaching to different 
students’ needs .021 -.016 -.062 .174 .032 .085 -.677 

care about students' well-being .102 .001 .058 .314 -.012 -.099 -.652 
listen to their students .202 .107 .084 -.095 .160 .224 -.544 
are understanding .284 .025 .001 -.068 .285 -.001 -.538 
are available when their students 
need help .186 .214 -.038 .092 -.136 .212 -.504 

put a lot of effort into teaching -.182 .313 -.235 .214 .155 -.055 -.456 
get to know their students .248 .160 .025 .095 .209 -.027 -.411 
create a positive classroom 
environment .230 .254 .038 .089 -.057 .267 -.388 
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Abstract

Word learning relies on the ability to master the sound con-
trasts that are phonemic (i.e., signal meaning difference) in
a given language. Though the timeline of phoneme develop-
ment has been studied extensively over the past few decades,
the mechanism of this development is poorly understood. Pre-
vious work has shown that human learners rely on referential
information to differentiate similar sounds, but largely ignored
the problem of taxonomic ambiguity at the semantic level (two
different objects may be described by one or two words de-
pending on how abstract the meaning intended by the speaker
is). In this study, we varied the taxonomic distance of pairs of
objects and tested how adult learners judged the phonemic sta-
tus of the sound contrast associated with each of these pairs.
We found that judgments were sensitive to gradients in the
taxonomic structure, suggesting that learners use probabilistic
information at the semantic level to optimize the accuracy of
their judgements at the phonological level. The findings pro-
vide evidence for an interaction between phonological learning
and meaning generalization, raising important questions about
how these two important processes of language acquisition are
related.
Keywords: language acquisition; phonological development;
word learning; speech perception.

A crucial part of language acquisition is the mastery of the
sound inventory, i.e., the set of atomic sounds of which words
are made. The sound inventory is language-specific. English
speakers, for instance, have to learn the distinction between
the sounds /l/ and /r/ to differentiate minimal pairs such as
glass and grass. In contrast, Japanese learners need not dif-
ferentiate these sounds, which do not bring about difference
in word meaning in their language. Crucially, even within the
same language, learners have to distinguish the sounds that
contrast word meaning (phonemic contrasts) from the sounds
that do not (non-phonemic contrasts). For example, the as-
pirated and unaspirated versions of /p/ (which occur, respec-
tively, in the first segment of the word pin, and the second seg-
ment of the word spin) belong to the same phonemic category.
Another example, is the cot-caught merger whereby the vow-
els [A]-[O] have come to be treated by some English speak-
ers as non-phonemic variations of the same sounds (Labov,
1991).

How do people learn when a sound contrast is phonemic
and when it is a phonetic variation of the same sound cate-
gory? Children start to show sensitivity to their native sounds
at a very early age (e.g., Werker & Tees, 1984). Through-
out development, they also learn to distinguish the subset of
the native sounds that cue meaning (Dietrich, Swingley, &

Werker, 2007; Seidl, Cristi, Onishi, & Bernard, 2009; Kazan-
ina, Phillips, & Idsardi, 2006). These developmental facts
have been documented in detail over the past few decades,
but the mechanism of this learning is still poorly understood.

Most research has focused on exploring mechanisms
which operate on the speech signal without any referen-
tial input (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006;
Maye, Werker, & Gerken, 2002; Vallabha, McClelland,
Pons, Werker, & Amano, 2007; Swingley, 2009; Martin,
Peperkamp, & Dupoux, 2013; Feldman, Myers, White, Grif-
fiths, & Morgan, 2013; Dillon, Dunbar, & Idsardi, 2013).
These mechanisms have been tested successfully with simpli-
fied input. However, they were not as successful when tested
on more realistic acoustic data which is highly variable and
noisy (e.g., Varadarajan, Khudanpur, & Dupoux, 2008; Four-
tassi, Schatz, Varadarajan, & Dupoux, 2014; Jansen et al.,
2013). Thus, though these mechanisms may play an impor-
tant role, they are unlikely to account for the entire process of
learning and refinement.

Learners are exposed to more than the speech signal.
In particular, they usually have access to multimodal input
which co-occur with speech. For example, the words glass
and grass in English are typically associated with different
visual input. Experimental data has shown that both children
and adults can leverage such semantic/visual information to
discriminate ambiguous sounds (Teinonen, Aslin, Alku, &
Csibra, 2008; Yeung & Werker, 2009; Hayes-Harb, 2007).

Nevertheless, previous research has generally assumed–
whether implicitly or explicitly–that learners have access, not
only to the immediate visual input, but also to the entire
meaning category intended by the speaker, e.g., the mean-
ing of the word ‘cow’ is not limited to one specific cow–it
includes cows of all shapes and colors, and it excludes in-
stances of another category such as deer. Knowing the mean-
ing’s extension and boundary of a given word is crucial to the
task of phoneme learning: If an ambiguous sound contrast is
associated with two different objects (e.g., a cow and a deer),
then in order to decide whether or not this contrast is phone-
mic, the learner has to determine first if the speakers’ target
meanings are two specific categories (cow and deer) or one
broad category (e.g., animal). The contrast is phonemic in
the former case, and non-phonemic in the latter.

Often, however, learners in the early stages of acquiring
their first or second language, do not yet know the full mean-
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ing extensions of the words they hear around them. Work
in the word learning literature suggests that humans sponta-
neously restrict the set of possible extensions to taxonomic
classes (Markman, 1989). For example, upon hearing the
word ‘cow’ with an instance of, say, a brown cow, humans
are unlikely to consider an extension that includes ‘milk’ or
‘brown rice’. Though the taxonomic assumption simplifies
the task, it still leaves a great deal of ambiguity regarding the
level of generalization intended by the speaker. For example,
the word ‘cow’ could have meant more abstract categories
such as “mammal” or “animal”.

The current work aims at studying how learners behave in
a situation where there is uncertainty at both the phonolog-
ical and semantic levels. We associate minimally different
non-sense words (along the ambiguous sound contrast A-O)
with pairs of objects that vary in their taxonomic proxim-
ity (Figure 1). Crucially, mere exposure to instances of the
sound-object pairings is not enough to determine the exact
meaning extension, leaving the participants in a situation of
uncertainty similar to that faced by learners in the early stages
of language acquisition. We are interested in the participants’
subsequent judgment about the phonemic status of the pair of
sounds.

There are several possible scenarios. For instance, par-
ticipants may not be sensitive to the degree of taxonomic
distance, treating all visual differences as equally indicative
of a phonemic status. It is also possible that participants
treat degrees of taxonomic distance in a categorical way, i.e.,
they may treat pairs of objects up to a certain taxonomic
level as equally indicative of non-phonemicity, whereas they
treat pairs of object beyond that level as equally indicative of
phonemicity. Finally, participants may be sensitive to each
gradient of taxonomic distance in their phonemic learning, in
which case their judgements should be graded as well.

In what follows, we test these predictions with adults learn-
ing an alien language. In Experiment 1, we parametrize a
subset of the semantic space, creating an evenly-spaced taxo-
nomic scale, and we use this scale to explore the effect of dif-
ferent gradients of taxonomic distance on the phonemic status
of the A-O contrast. In Experiment 2, we test whether results
of Experiment 1 are due to interference from existing lexical-
ized categories in the first language. Finally, we discuss the
implication of the findings on phoneme learning in the con-
text of early language acquisition.

Experiment 1
The goal of this first experiment is to use a parameterized
subset of the semantic space to test the effect of each gradient
of taxonomic distance on learning the phonemic status of an
ambiguous sound contrast. We use a between-subject design
to avoid carry-over effects in the sound judgements.

Participants
152 Participants in total were recruited online through Ama-
zon Mechanical Turk, restricting the pool to the United States
residents. At the end of the experiment, participants were

Figure 1: Overview of the task.

asked to rate the overall quality of the audio-visual stimuli on
their local software/hardware. We excluded participants who
judged this quality as medium or bad (N=26), keeping only
those who rated the quality as good, that is, those for whom
the experiment functioned correctly. We also excluded par-
ticipants who took the experiment more than once (N=3), and
participants who obtained less than 50% correct answers on
the obvious filler questions (e.g., are the words ”komi” and
”pibu” different?) (N=5). We ended up with a sample size of
115 participants split across 5 groups.

Stimuli

Objects The stimuli consist of a reference object (a cow),
and five other objects which varied in their similarity to this
reference. These objects were, in this order, another cow
(with a different color), a buffalo, a deer, a bird and a car (Fig-
ure 2). To parmaterize the object stimuli in the taxonomic
space, we recruited an additional N=30 participants online
(through Amazon Mechanical Turk), and we asked them to
rate the similarity of a series of pairs of objects in a 9 point-
scale, 1 being “very similar” and 9 being “very different”.
The pairs of objects were formed by the pairwise combina-
tion of all six items described above. The order of trials was
randomized across participants. We computed the average
rating for each pair, which gave us a distance matrix.

Figure 2 (left) shows the taxonomic organization of the
object stimuli, which we obtained via hierarchical cluster-
ing (using average linking) applied to participants’ similarity
data. Height indicates the average similarity within clusters
at each hierarchical/taxonomic level. Figure 2 (right) shows a
different visualization of the same data using bi-dimensional
scaling. Both representations show that the way objects are
organized around the reference (i.e. cow) corresponds to
graded differences in the semantic space, and that these gra-
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Figure 2: The graph on the left shows the taxonomic organization of the object stimuli obtained via hierarchical clustering of
the participants’ similarity ratings. The graph on the right shows another way of visualizing the same data via bi-dimensional
scaling. Both representations show that the object stimuli lead to a graded and evenly-spaced semantic scale.

dients are quite evenly-spaced.

Sounds We followed Feldman et al. (2013) in using min-
imal pairs that vary along the vowel contrast [A]-[O]. This
contrast is neither too acoustically similar, nor too different.
In fact, depending on the dialect, these two vowels can be
treated by English speakers as belonging to one or two cat-
egories (Labov, 1991). We chose such an ambiguous con-
trast in order to put the participants in a rather flexible situa-
tion where they can switch between phonological interpreta-
tions depending on the context. Two minimal pairs were con-
structed by concatenating two context syllables ([gu] and [li])
produced by a female native speaker of American English,
with a target syllable contrast ([tA]-[tO]) produced by the same
speaker. The resulting minimal pairs were [gutA]-[gutO] and
[litA]-[litO]. For ease of presentation, we will refer to these
minimal pairs by gutah/gutaw and litah/litaw. In addition,
we used two artificial filler words [pibu], [komi] which we
obtained by concatenating four vowels produced separately
by the same speaker.1

Procedure
In order to avoid any carry-over effect on sound judgements,
we used a between-subject design, i.e., each group of partici-
pants were exposed to only one degree of taxonomic distance.
The minimal pair was paired with two objects whose similar-
ity varied across five groups of participants (Figure 1). In all
these groups, one member of the minimal pair (e.g., gutah)
was paired with picture of a cow. The second member (i.e.,
gutaw) was paired with a referent whose similarity with the
first referent varied on the five-step taxonomic scale.

The experiment had an exposure and a testing phase. In the
exposure phase, participants heard a novel word in an alien
language and saw the corresponding object simultaneously.

1The audio stimuli were graciously provided by Naomi Feldman.

In this phase subjects did not have to perform any specific
task, but they were encouraged to listen carefully and try to
learn the words. They were exposed to 3 series composed
each of a randomized presentation of 4 word-object pairings:
2 target words (gutah/gutaw) whose referents similarity var-
ied across groups of participants (Figure 2), and 2 filler words
(pibu and komi) mapped invariably to two different objects.
There were 12 trials in total, with each presentation lasting
around 850 ms (i.e., the time it took the bi-syllabic word au-
dio to complete).

In the testing phase, participants heard a series of trials
composed of two word tokens, and were asked to judge if
these tokens corresponded to different words in this artificial
language, or if they represented a mere phonetic variation of
the same word. We used a wording similar to the one used by
Feldman et al. (2013)2. In this testing phase, subjects were
encouraged to follow their intuition and think carefully be-
fore answering.

Half of the testing trials contained identical sounds (‘same
trials’), and the other half contained different sounds (‘diff.
trials’) and were presented in a random order. The diff. trials
were composed of the minimal pair used during the exposure
phase (gutah/gutaw) plus a novel minimal pair containing the
same syllable contrast (litah/litaw), and which we used only
in the testing phase to investigate the ability of participants to
generalize across the lexicon. There were 12 test trials in to-
tal: 4 for for the exposure word (2 same and 2 different), 4 for
the generalization word (idem), and 4 for the fillers komi/pibu
(idem). Participants were tested twice, once before exposure
to referential data and once after the exposure.

2“You will listen to pairs of words from an artificial language.
You should decide if they are same or different. The words can be
different in the language even if they are similar. Conversely, they
can be same even if they are pronounced slightly differently.”
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Results
Figure 3 shows the proportion of times participants judged
the minimal pairs as phonologically different as a function of
group (i.e., taxonomic level), and as a function of the testing
session, i.e., before or after exposure to referential data.3 We
show results for both diff. trials (e.g., “gutah”/“gutaw”) and
same trials (“gutah”/“gutah”).

Note, first, that the proportion of ‘different’ answers for
same trials was close to zero across groups, showing that par-
ticipants were almost perfect in detecting same pairs. How-
ever, the proportion of ‘different’ on the diff. trials varied
across groups, and this proportion was 50% in the ‘before’
session. These initial observations confirm our choice of the
sound contrast, which was supposed to be perceptually dis-
tinguishable, but ambiguous in terms of its phonemic status,
allowing participants to adjust their phonological interpreta-
tion depending on the referential context.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.07 0.41 -2.59 0.01

group 0.32 0.12 2.65 0.01
session -0.86 0.35 -2.46 0.01

trial -3.59 0.19 -18.55 <0.01
group:session 0.28 0.10 2.85 <0.01

Table 1: A mixed-effects logistic regression predicting par-
ticipants’ responses in a same-different task.

After exposure to referential data, we observed a graded
effect of the objects’ taxonomic distance on phonological
judgment: Participants were more likely to judge the phono-
logically ambiguous contrast as different when this contrast
corresponded to higher taxonomic levels (Figure 3). We fit
a mixed-effect logistic regression which predicted the par-
ticipants’ response by the group (i.e., taxonomic distance),
the session (before or after exposure the referential data),
and the trial (same or diff. pairs). The model was speci-
fied as follows: response∼ group * session + trial +
(1|Subj) + (1|item). The estimates are summarized in
Table 1. Confirming our qualitative observations, the model
shows that the type of the trial predicted the participants’ re-
sponses (i.e., answering more ‘same’ on same pairs). Cru-
cially, we also found an interaction between group and ses-
sion, indicating that exposure to referential data influenced
the participants’ responses.

To further examine the influence of exposure on learning
and generalization, we fit two simple mixed-effects logistic
models to the diff. trials after exposure predicting responses
as a function of group. We found an effect of object semantic
distance on phonological judgment in both the exposure word
(β = 4.55, SE = 1.13, p < 0.01) and the generalization item
(β = 2.58, SE = 1.00, p < 0.01).

3Since answers do not vary across groups prior to the expo-
sure phase, in the ‘before’ session we only show the average results
where data were collapsed across groups.

Figure 3: The points are the proportion of times participants
judged the pair of sounds as ‘different’. The triangles repre-
sent the judgments for exactly same pairs (e.g., gutah-gutah).
The circles represent the judgments for different pairs (e.g.,
gutah-gutaw). Data on the left side of the vertical dashed line
show the average responses before exposure to the referential
data. The horizontal dotted line represents chance. Error bars
represent 95% confidence intervals.

Discussion
Experiment 1 tested how gradients in the semantic space in-
fluence judgments about the phonemic status. It is possible,
however, that participants relied, not on the taxonomic dis-
tance in the semantic space, but on available lexicalized con-
cepts in their first language. Indeed, one could imagine that
the more a common label is easily accessible for a pair of ob-
jects, the more participants answer “same” in the phonemic
task. For example, if it is easier to access a common label in
the case of cow and deer (e.g., “mammals”), than it is in the
case of cow and car (e.g., “things”), then this difference may
explain why participants judged the sound contrast more as
phonemic in the latter. In Experiment 2 we explore whether
such an account could explain the findings.

Experiment 2
We asked participants to provide common labels in English
for each of the objects pairs used in Experiment 1, and we
quantified the difficulty they had in generating these labels.
If the phonemic judgements are driven by common labels in
the first language, then the difficulty in accessing these labels
should mimic closely the phonemic judgments (Figure 3).

Participants
40 participants were recruited online through Amazon Me-
chanical Turk, restricting the pool to the United States resi-
dents.

Stimuli
The same object stimuli used in Experiment 1.

Procedure
Participants were presented with pairs of objects, and were
asked to type in, as fast as they could, the most specific la-
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Figure 4: The graph on the left shows the average self-reported difficulty in generating a common English label for pairs of
objects at different taxonomic levels (on a scale from 1 to 9). The graph on the right shows the average time it took participants
to generate these labels.

bel in English that describes both objects (or “none” in the
case they could not find a common label). We obtained both
the labels and the reaction times, i.e., the time it took them
from seeing the object to confirming their answer. Besides,
participants were asked to evaluate the difficulty they had in
generating the label on a scale from 1 to 9. The pairs were
randomized across participants. To avoid carry-over effects,
each participants saw the pairs only once.

Results
Results are shown in Figure 4. Overall, participants were
faster and found it easier to generate a common labels when
both objects were cows (the most frequent response was
‘cow’). They were slower and found it difficult to generate
a common labels when the pair was cow/car (most partici-
pants did not find a common label and typed ‘none’). That
said, they did not show any noticeable difference (neither in
reaction times nor in subjective evaluation) for the intermedi-
ate cases. For all these cases, the most frequent response was
‘animal’. Thus, though common labels in the first language
may explain limit cases, it does not account for the entire pat-
tern of graded responses obtained in Experiment 1.

General discussion
Previous research has suggested that semantic information
can help with phoneme acquisition (Yeung & Werker, 2009;
Hayes-Harb, 2007; Werker & Curtin, 2005). Nevertheless,
learners often have to learn the phonemic status of the sounds
they hear around them before they have determined the exact
extension of the meaning intended by the speaker (e.g., a cow
and a deer can be described by one or two words depending
on the speaker’s target level of taxonomy). The current work
studied how the process of phoneme learning is influenced by
such uncertainty at the semantic level.

More precisely, this study explored the effect of taxonomic
distance on phonemic judgments. We associated minimally
different word-forms with two semantic referents whose tax-
onomic distance varied across groups, and we asked partici-

pants in each group to judge the phonemic status of the cor-
responding sound contrast. We found that increasing the tax-
onomic distance induced graded judgments on the phonemic
status, suggesting that learners are sensitive to the taxonomy
of the referents when acquiring phonemes.

According to work in the word learning literature, humans
have a bias towards extending the meaning of novel words
to objects of similar kinds (Markman, 1989; Xu & Tenen-
baum, 2007). In our case, this bias may have prompted par-
ticipants to treat objects that were taxonomically similar (i.e.,
two cows with different colors, or cow/buffalo) as instances
of the same meaning category, thus judging the sound varia-
tion as non-phonemic. In contrast, they may have treated ob-
jects of different kinds (cow/bird, or cow/car) as instances of
different meaning categories, thus judging the corresponding
sound variation as phonemic. Besides, the fact that partici-
pants provided graded–rather than stepwise–pattern of judg-
ments mirroring the graded taxonomic distance suggests that
they make use of probabilistic information at the semantic
level to optimize the accuracy of their inference at the phono-
logical level (see also Fourtassi & Frank, 2017).

How could the obtained relationship between taxonomic
distance and phonemic judgements inform our understand-
ing of development? First, this relationship may allow learn-
ers to collapse non-phonemic but perceivable sounds into the
same phonemic category. This is crucial since the majority
of sound contrasts in natural input consists of different pro-
nunciations of the same word, rather than words that differ
minimally (see Martin et al., 2013). Instances of the same
words are likely to be associated with similar semantic in-
formation (i.e., at a similar taxonomic level), thus inducing a
non-phonemic judgment for the corresponding contrasts.

As for true phonemic contrasts (e.g., glass vs. grass), sen-
sitivity to the taxonomic structure will favor differentiation to
the extent that minimal pairs have distant taxonomic distance
in natural languages. Some research suggests that words that
are similar phonologically tend to be similar semantically as
well (Dautriche, Mahowald, Gibson, & Piantadosi, 2017).
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However this research measured semantic similarity using a
distributional model which relies on co-occurrence in a large
corpus of text. It is possible that the type of semantic re-
lationship that the model derived was thematic, rather than
taxonomic. In fact, thematically related words can be taxo-
nomically different (e.g., cow and milk). It has been shown
that the nature of the semantic relationship depends on the
model’s parameter setting (Lenci, 2018). Further work on the
semantic organization of minimal pairs is needed to elucidate
this point.

The current study has some limitations. First, we only used
the taxonomy of a subset of the conceptual space. To test the
generality of the findings, future work will use different scales
spanning several conceptual domains. Second, we only used
familiar stimuli (real world objects and a native sound con-
trast). To completely rule out interference from categories
in the native language, future work will seek to replicate the
findings with non-native contrasts and with novel object stim-
uli.

To conclude, the current work showed that different de-
grees of taxonomic distance in the semantic space influence
the acquisition of the phonemic status of sound contrasts. The
findings show that learners make use of probabilistic informa-
tion at the semantic level to optimize the accuracy of their
phonemic judgments. More generally, this work suggests
there to be an interaction between sound learning (phonemic
judgment) and word learning (meaning generalization). Fur-
ther work should aim at characterizing precisely this interac-
tion and exploring its implications for both phonological and
semantic development, two aspects of language development
which have largely been studied separately.

All data and code for these analyses are available at
https://github.com/afourtassi/top-down
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Abstract 

How do you make sense of an unconventional graph? Building 
on research demonstrating that prior knowledge of graphical 
conventions is difficult to overcome, we reconstrue graph 
reading as an insight problem. We hypothesize that imposing a 
mental impasse during a particular type of graph reading task 
will improve comprehension by inducing a sense of 
puzzlement, prompting learners to reconsider their 
interpretation. We find support for this proposal in a between-
subjects experiment in which participants presented with an 
impasse-formulated version of graph reading questions are 
significantly more likely to correctly interpret a graph featuring 
an unconventional coordinate system. We characterize the 
differential patterns of mouse movements for learners between 
conditions and discuss implications for the use of novel 
graphical forms in science communication.   
 
Keywords: graph comprehension; diagrammatic reasoning; 
insight; problem solving; representation; external 
representation; information visualization; mouse tracking 

Introduction 
The adage, “a picture is worth ten thousand words,” surely 
applies to graphs. But what about a graph you don’t know 
how to read? As Larkin and Simon note, “a representation is 
useful only if one has the productions that can use it,”	(1987, 
pg. 71). If we lack the ability to draw inferences from a graph, 
it is rendered useless. How is it then, that we develop such 
productions for new	graphical forms? 

Techniques for supporting graph comprehension have been 
a focus of research in the learning, cognitive and computer 
sciences for the past two decades. The most minimal 
interventions involve “graphical cues”: visual elements that 
guide attention, akin to gesture and pointing. Acartürk (2014) 
investigated the influence of lines, arrows and point markers, 
finding that—used appropriately—such cues can help readers 
interpret the emphasis and temporal scope of a graph in 
alignment with a designer’s intention. Kong and Agrawala 
(2012) surveyed the use of “graphical overlays” finding that 
reference structures (e.g. added gridlines), redundant 
encodings (e.g. data value labels), highlights, summary 

statistics, and annotations, are all commonly used to reduce 
cognitive load for particular graph reading tasks.  Drawing 
inspiration from the literature in reading comprehension, 
Mautone & Mayer (2007) successfully demonstrated that 
animations, diagrams and drawings could help geology 
students connect the features of graphs to their geological 
referents. Each of these techniques serves to reinforce the 
semiotic connection between a graph, the world, and the 
reader’s understanding, or to guide attention to information 
designers wish to emphasize. Importantly however, the 
techniques explored in this literature do not support learners 
in discerning how to read the graphs: the “rules" for their 
representational systems. Rather, it is assumed that the reader 
already has some familiarity with the type of graph being read 
(e.g. scatterplot, line graph, bar chart). In this way, the 
literature fails to differentiate between two types of prior 
knowledge brought to bear on a graph reading problem: 
knowledge of the domain, and knowledge of the graphical 
formalism.  

In recent work (Fox & Hollan, 2018) we have taken up this 
challenge by investigating self-directed comprehension of an 
unconventional graph. In our paradigm, learners answer 
simple graph reading problems about a familiar domain—
events in time—using an obscure graphical formalism. In an 
observational study, we found that readers struggled to make 
sense of the graph, misinterpreting the coordinate system as 
Cartesian. In a subsequent experiment, we evaluated four sets 
of instructional scaffolds aimed at overcoming the Cartesian 
misconception. We found that only an interactive version of 
the graph was effective for most learners. It seems that 
learners’ expectations for the graphical formalism were so 
strong, even explicit text or image instructions failed to alert 
them to erroneous interpretations.  

We argue this can be viewed as a sort of “graphical 
fixedness.” Akin to Duncker’s classic candle problem (1945), 
the learners in our previous studies were fixated on the 
conventional functions of the tools at their disposal: the 
marks on the page, and their assumptions about how axes and 
gridlines are meant to function. In the present work, we 
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reconceptualize our graph reading task as an insight problem. 
We test the hypothesis that intentionally inducing a state of 
puzzlement in learners—posing a mental impasse—will 
improve their ability to extract information from a simple 
unconventional graph.   

Background 

Graph Comprehension 
Process models of graph comprehension describe an 
integration of top-down and bottom-up processing (Shah, 
Freedman, & Vekiri, 2005). Following the information 
processing tradition, these models invoke the concept of a 
schema: a structured representation of knowledge in long 
term memory that guides processing of new information in a 
“top- down” fashion (see Alba & Hasher, 1983; Anderson & 
Pearson, 1984). A number of theories describing graph 
comprehension have posited the existence of a graph schema 
that guides an individual’s interpretation on the basis of their 
prior knowledge of similar external representations 
(Freedman & Shah, 2002; Pinker, 1990; Tabachneck-Schijf, 
Leonardo, & Simon, 1997).  

Unsurprisingly, there is no consensus on the format or 
content of graph schemata. One important question that has 
been addressed is what features of a stimulus trigger 
activation of a particular graph schema. According to the 
“invariant structure view” certain general characteristics are 
shared across a number of graph types that then rely on a 
shared schema (Peebles & Cheng, 2003). Ratwani & Trafton 
(2008) proposed that the structural components of a graph 
that represent basic concepts and operations for extraction—
the graphical framework—may be that invariant structure. In 
a scatterplot, for example, the graphical framework includes 
the x and y axes. From this formulation, one can predict that 
bar, line and scatterplot graphs (all relying on a Cartesian 
coordinate system) might invoke a single graph schema, 
while pie charts (relying on a polar coordinate system) might 
invoke a different schema. It is unclear what (if any) schema 
might be activated in order to comprehend a novel 
representation. Pinker (1990, p. 105) theorizes that upon 
encountering a novel graph, a reader will instantiate a 
“general graph schema”, likely based on a combination of the 
graph’s coordinate system and most predominate graphical 
forms (e.g. points, lines, bars, etc.) The exact mechanism of 
construction for this general schema is unknown, but Pinker 
suggests it may be related to the cognitive processes that 
represent abstract concepts like space and the movement of 
objects within it.  

Prior Knowledge and Graphical Sensemaking  
While the marks on a page invoke our prior knowledge of 
graphical formalisms, the context of the marks activate our 
knowledge of the domain (Shah & Hoeffner, 2002). We argue 
that scarcity of each type of prior knowledge impedes 
comprehension in different ways.  
 

Limited prior knowledge. If presented with an unfamiliar 
graph depicting information in an unfamiliar domain, you 
will be unable to use knowledge of one to bootstrap 
inferences for the other. Imagine you are a novice physics 
student reading a Feynman diagram: without some 
understanding of particle physics, you cannot reverse-
engineer the formalisms of the diagram. Without these 
formalisms, you cannot draw inferences about particle 
physics. 
 
Limited prior domain knowledge. Alternatively, if 
presented with a familiar graph depicting data in an 
unfamiliar domain, you might draw on your knowledge of 
that graph type to learn something new about the content. If 
you know that a straight line represents a linear relationship, 
you can infer this relationship between unfamiliar variables 
connected by a straight line. It is this situation that we aim to 
optimize in STEM education. To this end, Mautone & Mayer 
(2007) demonstrated that animations, arrows, diagrams and 
photographs can all help students connect their prior 
knowledge of graphs to represented variables, improving 
their ability to draw inferences about related scientific 
concepts.  
 
Limited prior graphical knowledge. Here, we are interested 
in the reciprocal case: an unfamiliar representation depicting 
information about a familiar domain; perhaps that strange- 
looking graph you saw in your favorite academic journal. 
Importantly, by “graphical knowledge”, we are not referring 
to knowledge of graphs in general (graphicacy), but rather 
knowledge of the rules governing a particular graphic form. 
Can you figure out how to read the graph, if you know enough 
about the domain? (Test yourself! See Figure 1)  
 
Reverse Engineering Formalisms. If the typical function of 
graphs is to use their formalisms as vehicles to learn 
something about the data (i.e. the domain) they represent, is 
the reverse also true? With sufficient domain knowledge, can 
readers reverse-engineer the formalisms governing a graph?  
Our data suggest this reciprocity of does not exist (Fox & 
Hollan, 2018). Despite extensive domain knowledge and 
personal experience with time, learners failed to correctly 
interpret the formalism of our graph with an unconventional 
coordinate system. Explicit instructions (text and images) 
were ineffective in supporting this reverse engineering, 
suggesting the need for a different scaffolding approach.  

Problem Solving & Insight 
In our earliest observational study with the Triangular Model 
graph (Figure 1), the vast majority of participants made the 
“Cartesian mistake”: misinterpreting the graph as a Cartesian 
scatterplot (Fox & Hollan, 2018). However, for the few 
successful outliers, their production of the correct 
interpretation was accompanied by a protracted struggle, a 
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sudden clap of their hands and ecstatic exclamation, “Oh! 
That’s how it works!” 

What we observed were moments of insight. This insight 
came during the study debrief when we gave the learner 
feedback that their answers were incorrect. In some cases, 
this feedback alone was sufficient to produce a moment of 
insight. According to Ohlsson (1992), insight results when 
one breaks free from an impasse: “a mental state in which 
problem-solving has come to a halt; all possibilities have 
been exhausted and the problem-solver cannot think of any 
way to proceed” (pg. 4). But unlike traditional problems in 
the insight literature, the state of impasse in graph 
comprehension is not readily apparent. We must therefore 
craft the state of impasse to intentionally draw a learner’s 
attention to their own misconception. The function of our 
feedback in the verbal debrief was to alert the learner to the 
fact they had made a mistake. While we cannot provide 
verbal feedback as a passive scaffold, we can indicate to 
learners that they’ve made a mistake by anticipating their 
mistaken response, and designing the graph reading question 
to exploit this error: relying on the convention that a multiple-
choice question should have at least one response.  

An Unconventional Graph: The Triangular 
Model of Interval of Relations  

 

 
This line of research requires a very special stimulus: one that 
represents information about a familiar domain but is 
sufficiently obscure to be unrecognizable by most learners. 
We selected the Triangular Model graph (Figure 1) to depict 
information about schedules of events using a novel 
coordinate system. It has an informationally equivalent 
analogue, the Linear Model which, as the conventional 
external representation for intervals of time, is the basis for 
many scheduling artifacts including Gantt Charts. Both 
models indicate the start and end time, duration, and relations 

between intervals, which we present to participants as “events 
in time.”   

Based on work by Kulpa (2006) extended by (Qiang, 
Delafontaine, Versichele, De Maeyer, & Van de Weghe, 
2012) the Triangular Model (hereafter TM) represents 
intervals as points in 2D metric space (Figure 1). Each point 
represents an interval of time. In the vertical dimension, the 
height of the point indicates its duration. The intersection of 
the point’s triangular projections (using diagonally oriented 
grid lines) onto the x-axis indicate the start (leftmost) and end 
(rightmost) times. In this way, every interval is represented 
as a unique point in the 2D graph space, and each of its 
elementary properties are explicitly encoded by the location 
of the point. Although the graph’s computational efficiency 
is best realized with a large number of data points, and tasks 
that require judgement about the relation between intervals 
(e.g. “starts-with”, or “during” relations), first order readings 
(i.e. reading the start, end or duration) are readily available 
and directly reveal the reader’s interpretation of the 
coordinate system. (See Qiang et. al (2012) for a thorough 
review of the computational efficiency of the Triangular 
Model, and elaboration of use cases for which it is preferable 
to more conventional interval graphics.) 

A brief inspection of the TM by even the most experienced 
graph reader demonstrates its relative obscurity. However, 
while the coordinate system is unconventional, the graph 
depicts information about a domain in which we all share 
substantial prior knowledge: events in time.   

The Present Study 
Results of two prior studies (Fox & Hollan, 2018) give us 
reason to suspect that conventional graph knowledge may 
hinder comprehension of unconventional representations. In 
the case of the TM graph, Cartesian expectations for the 
structure of the coordinate system interfere with our ability to 
follow perceptual cues provided by the graph’s diagonal 
gridlines. In the present study, we test the hypothesis that 
constructing a mental impasse will improve comprehension 
of this unconventional graph.  

Methods 
 
Participants and Design. Sixty (55% female) undergraduate 
STEM majors at a public American University participated 
in exchange for course credit (age: 18 - 33 years). We utilized 
a between-subjects design with two groups and one 
independent variable (scaffold: none [control] vs. impasse). 
Participants were randomly assigned to an experimental 
group, yielding 30 students per condition. Prior to analysis, 
data from six participants were excluded based on their 
failure to correctly answer an attention check question.  

 
Procedure. Participants completed the study in person, 
seated at a desktop computer. After a brief introduction, they 
were randomly assigned to an experimental condition and 
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completed the Graph Reading Task, after which they received 
a short debrief. The session lasted approximately 30 minutes.   
 

 
 

Materials. The Graph Reading Task consisted of a sequence 
of fifteen trials, each featuring a TM graph and multiple-
choice question (Figure 2) about the temporal relationship 
between data points in the graph (i.e. “Which event(s) start at 
11am?  At what time does event B end?) Learners responded 
by clicking a checkbox corresponding to the data point(s) 
they wished to select. Trials were presented one at a time 
without feedback, in the same order for both conditions. 
Learners could not skip ahead nor return to previous 
questions. To assess the stability of student strategies over 
time, the first five trials included the assigned scaffold 
condition (none-control or impasse), while the following ten 
trials were identical (none-control). Questions were identical 
for both experimental conditions; however, the data sets 
rendered in the graph were slightly different for the first five 
trials. This allowed us to construct impasse problems with 
minimal differences between conditions. For each question in 
the non-impasse (control) condition, there was always a data 
point in the position where the participant would search if 
they interpreted the graph as Cartesian (Figure 3—left). 
Alternatively, in the impasse condition, the learner would 
find no data point in the expected position (Figure 3—right). 
For the final ten trials learners saw the same graph and 
questions. See Figure 3 inset for a detailed description of the 
impasse structure.  

Figure 2. Sample stimulus 
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Data and Analysis. For each participant, we calculated a 
cumulative comprehension score [0-15], which served as the 
dependent variable. For further exploration of learner 
strategies, we integrated a JavaScript-based service 
(Mouseflow) to record all mouse-movements made by 
participants during the experiment session. Comprehension 
data were analyzed via inferential statistics, while mouse data 
were subject to exploratory qualitative analysis.  

Results  
 
Performance Accuracy. The mean comprehension score 
across the sample (n = 54) was approximately 6 points with 
a standard deviation of 0.68, and values ranging from 1 to 
15 (max) points. On average, participants in the impasse 
group had higher scores (M = 7.6, SD = 5.2) than those in 
the non-impasse control group (M = 3.9, SD = 4.2), yielding 
a statistically significant difference t(49.7) = -2.8, p = 0.006; 
a moderate-sized effect r = 0.37. 

 
Mouse Tracing Behavior. While raw comprehension scores 
can indicate whether learners correctly interpret the graph, 
they cannot reveal the strategies employed to answer the 
questions. To explore the mechanisms behind our results, we 
captured mouse tracing data. Similar to eye tracking data, 
mouse tracing provides an imperfect proxy for visual 
attention of the learner during the problem-solving session. 
This is a particularly rich source of insight for our graph 
reading problems as learners frequently used the mouse to 
navigate across the graph, the mouse acting like fingers 
tracing down or across gridlines. Of course, not all learners 
utilize the mouse to the same extent, and so we limit the 
present analysis to qualitative observation of gestalt patterns 
of graph traversal.  

Figure 5 contains a set of heatmaps generated from raw 
path and dwell time data depicting the mouse movements of 
all participants on the first question of the Graph Reading 
Task. In the left column, we see data for learners in the 

control condition, and on the right, the impasse condition. 
The top row of heatmaps were generated from only those 
participants who correctly answered the question, while the 
bottom row from participants with a variety of incorrect 
answers. Visual inspection of these heatmaps reveal that 
across both conditions (top row), learners who correctly 
interpreted the coordinate system traversed the graph in a 
similar fashion, with the most prominent patterns following 
the relevant diagonal gridlines. Inspecting those with 
incorrect answers (bottom row), we see dramatically different 
patterns of tracing across conditions. While those in the 
control condition (bottom left) follow the expected Cartesian 
projection, learners in the impasse condition (bottom right) 
exhibit no single discernible pattern. While these learners did 
not arrive at the correct answer, their tracing behavior may be 
an indication of puzzlement.  

Discussion 
The essence of functional fixedness, according to Ohlsson 
(1992), is that the experience of using an object in a particular 
way lowers the probability of finding a solution in which one 
uses the object in a different way. The strength of our 
association of the function to the object sets the strength of 
fixedness. In this light, we can see how substantial experience 
with common graphical forms serve to fix our expectations 
of axes, and coordinate systems in general, toward a 
Cartesian interpretation. The results of this study support our 
hypothesis that constructing a problem to present a learner 
with a mental impasse yields significantly better performance 

Figure 5. Mouse movement as heatmap for all 
participants, question #1 

 

Figure 4. Results for graph reading task, by condition 
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on the unconventional graph reading task. Of course, not all 
graph reading tasks need be construed as insight problems. 
Most often the challenge we face concerns second-order 
readings—the inferences to be drawn from available 
information— and there is a close relationship between the 
nature of a graph-reading task and the suitability of the graph 
design (Shah & Hoeffner, 2002). However, we argue that 
these readings of trends and relationships between data points 
are unlikely to be made if the reader does not understand the 
nature of the graphical formalism itself, and this is where 
insight comes into play.   
   Lockhart, Lamon & Gick (1988) characterize difficulties in 
problem solving as a failure to access available information. 
This certainly seems applicable to the difficulties we observe 
with the Triangular Model graph where the reader need only 
perceive and recognize the importance of the diagonal 
gridlines to extract information from the graph (first-order 
readings). Lockhart et. al. propose that learners must often 
reconceptualize a problem in order to solve it, and simply 
giving students information may not be enough to achieve 
this effect. Presenting information in a form that induces 
puzzlement is significantly more effective in facilitating 
conceptual transfer and subsequent problem solving. We 
argue that the puzzlement induced by finding ‘no available 
answer’ in our impasse condition worked by leaving learners 
with no recourse but to reconsider their strategy (or give up). 
This conclusion is further supported by learners’ failure to 
interpret this graph when provided with explicit information. 
While the text and image scaffolds in (Fox & Hollan, 2018) 
did not improve performance with the TM graph, a simple 
manipulation of the availability of answers to the first 
problems in a scenario for this study did.  

We expect this technique should generalize to other 
representations with unconventional coordinate systems, 
though it is unclear whether the same attention-directing 
mechanisms would be appropriate for forms utilizing 
alternative markings. This is one of several open questions 
we are presently pursing. In ongoing analysis of mouse 
tracing data, we are exploring the strategies employed by 
learners in the impasse state and how they may reflect 
learner’s graphical intuitions. In particular, we’re interested 
in the strategies employed by learners in the impasse 
condition that provide non-Cartesian, but nonetheless 
incorrect responses. How are these learners reasoning about 
the graph elements, and does their behavior remain consistent 
after the scaffold phase (first 5 questions) when the remaining 
10 questions have possible Cartesian answers? Based on 
ongoing analysis of the time course of response accuracy, we 
suspect that for impasse to be effective, the learner must 
confront the impasse in the initial phase of graph 
interpretation—when the graph schema is instantiated. In 
ongoing work, we address this question by varying the timing 
of impasse vs. non-impasse questions with analysis of the 
time course of correct and incorrect responses. We are also 
investigating which components of the design and layout of 

the graph are most influential in triggering a Cartesian 
interpretation, by manipulating the layout and saliency of 
axes, gridlines, and rotation of the figure in graph space.  

While we hope this line of research will shed light on the 
elusive graph schema and how we develop graphical 
knowledge, the most immediate implications of our findings 
address the presentation of graphics in publications like this 
one. As communicators of science, we face an inevitable 
tension between communicating in what we believe to be the 
most revealing or expository fashion, and the way a 
community has come to expect. This makes innovation 
difficult. Nonetheless, the popularity of information 
visualization as a research area means that novel graphical 
forms are ever more present in our discourse. If you choose 
to utilize an unconventional representation in a traditional 
publication format, posing a carefully designed question (in 
perhaps, the figure caption) may aid the motivated reader to 
persevere in correctly reading the new graphic, and 
discovering your insights.  
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Abstract

Recurrent neural network (RNN) models of sentence process-
ing have recently displayed a remarkable ability to learn as-
pects of structure comprehension, as evidenced by their ability
to account for reading times on sentences with local syntac-
tic ambiguities (i.e., garden-path effects). Here, we investi-
gate if these models can also simulate the effect of semantic
appropriateness of the ambiguity’s readings. RNN-based esti-
mates of surprisal of the disambiguating verb of sentences with
an NP/S-coordination ambiguity (as in ‘The wizard guards the
king and the princess protects ...’) show identical patters to hu-
man reading times on the same sentences: Surprisal is higher
on ambiguous structures than on their disambiguated counter-
parts and this effect is weaker, but not absent, in cases of poor
thematic fit between the verb and its potential object (‘The
teacher baked the cake and the baker made ...’). These results
show that an RNN is able to simultaneously learn about struc-
tural and semantic relations between words and suggest that
garden-path phenomena may be more closely related to word
predictability than traditionally assumed.

Keywords: garden-path sentences; self-paced reading; read-
ing time; thematic fit; recurrent neural network; LSTM; sur-
prisal

Introduction
Garden-path phenomena, in which a local structural ambigu-
ity results in comprehension difficulty upon disambiguation,
have been studied extensively in psycholinguistics. Tradi-
tionally, the garden-path effect has been explained in terms
of syntactic structure building: When the ambiguity is en-
countered, the parser chooses the structure that later turns
out to be incorrect, triggering a process of syntactic reanal-
ysis (e.g., Frazier & Rayner, 1982). Nowadays, this pro-
cess is often expressed in probabilistic terms: The syntac-
tic interpretation of the sentence-so-far takes the form of a
probability distribution over (all) possible structures, and pro-
cessing a word comes down to redistributing the probabil-
ity mass in light of the incoming linguistic information. In
case of a garden-path sentence, the incorrect reading of the
ambiguity receives a (much) higher probability than the cor-
rect one, which means that a lot of probability mass needs to
be redistributed upon encountering the disambiguating word
(Brouwer, Fitz, & Hoeks, 2010; Hale, 2001; Levy, 2008).
This corresponds to high cognitive processing load.

In the probabilistic account of sentence processing
sketched above, the amount of update in the probability dis-
tribution due to processing a word can be shown to equal the

word’s surprisal, which has therefore been proposed as rele-
vant measure of cognitive processing difficulty during incre-
mental language comprehension (Hale, 2001; Levy, 2008).
Indeed, word surprisal correlates with word reading time in
general, as long as it is estimated by an accurate-enough
probabilistic language model. The model’s underlying archi-
tecture does not appear to matter much: It can be a prob-
abilistic grammar (Boston, Hale, Patil, Kliegl, & Vasishth,
2008; Demberg & Keller, 2008), a recurrent neural network
(Goodkind & Bicknell, 2018; Monsalve, Frank, & Vigliocco,
2012), or even a simple n-gram model (Frank, 2017; Smith
& Levy, 2013). However, it stands to reason that surprisal
must be estimated by a model that builds syntactic structure
(like a probabilistic grammar does) if it is to account for the
garden-path phenomenon. After all, the garden-path effect is
(allegedly) caused by structural reanalysis. Hence, a model
that does not engage in structure building should not be able
to explain the effect.

Recent results from Long Short-Term Memory models
(LSTM; Hochreiter & Schmidhuber, 1997) cast doubt on this
assumption. An LSTM is a recurrent neural network in which
the flow of activation is controlled by gates with learned
weights, making it better at learning long-distance dependen-
cies than Elman’s (1990) well-known Simple Recurrent Net-
work. LSTMs have shown remarkable capability to deal with
long-term structure (Gulordava, Bojanowski, Grave, Linzen,
& Baroni, 2018), including correct predictions of reading-
time effects in garden-path sentences. Van Schijndel and
Linzen (2018) had an LSTM estimate surprisal on the dis-
ambiguating verb phrase in sentences such as ‘The employee
understood [that] the contract would be ...’ (NP/S ambiguity;
critical word in italics) and ‘Even though the girl phoned[,]
the instructor was ...’ (NP/Z ambiguity). They found higher
surprisal in the locally ambiguous sentences than in their un-
ambiguous counterparts.1 Futrell, Wilcox, Morita, and Levy
(2018) show that an LSTM model can account for the garden-
path effect in sentence pairs such as ‘The witness [that was]
examined by the lawyer’ (RR/MV ambiguity). Moreover, the
model correctly predicts the absence of a garden-path effect
when the subject noun is inanimate, as in ‘The evidence [that

1Futrell et al. (2019), however, report that LSTMs predict a
weaker NP/Z garden-path effect when the ambiguous region is
longer, contrary to what has been observed in human readers (Tabor
& Hutchins, 2004).
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was] examined by the lawyer’. This suggests that the LSTM
learned not only the relative frequencies of the different struc-
tures but also how these frequencies interact with a lexical
semantic property.

The current study goes beyond this work by looking at a
different local structural ambiguity and, more importantly, its
interaction with the thematic fit between an action (i.e., verb)
and its potential patient (i.e., syntactic object). That is, we
investigate the sensitivity of LSTMs to a semantic relation as
opposed to a single word’s semantic property.

Garden paths and thematic fit
Sentence (1a) is structurally ambiguous when the third noun
phrase (‘the princess’) in encountered: It can be understood
as part of the larger NP ‘the king and the princess’ or as
the beginning of a new sentence clause. This is known as
the NP/S-coordination ambiguity. The upcoming verb (‘pro-
tects’) disambiguates towards the S-coordination structure,
which causes comprehension difficulty compared to the un-
ambiguous variant (1b). In other words, (1a) is a garden-path
sentence because readers initially prefer the NP-coordination
reading (Frazier, 1987).

(1a) The wizard guards the king and the princess
protects the prince with her life.

(1b) The wizard guards the king, and the princess
protects the prince with her life.

Sentence pairs (2a) and (2b) are structurally identical to
(1a) and (1b) but differ in an important respect: The NP-
coordination reading, in which the teacher bakes both the
cake and the baker, is semantically anomalous: Bakers are not
usually baked objects. Would such poor thematic fit lead to an
immediate S-coordination interpretation and, consequently,
remove any comprehension difficulty in (2a) compared to
(2b)?

(2a) The teacher baked the cake and the baker
made twelve breads for the coming holidays.

(2b) The teacher baked the cake, and the baker
made twelve breads for the coming holidays.

In an eye-tracking experiment, Hoeks, Hendriks, Vonk,
Brown, and Hagoort (2006) investigated the processing of
sentences with NP/S coordination ambiguities in Dutch,
which is structurally identical to English in this respect. They
found the expected garden-path effect in the Good Fit con-
dition: Reading times were longer on sentences such as (1a)
than on (1b). When thematic fit was poor (sentence pair 2a/b)
the picture was less clear, but the authors concluded that there
is also a garden-path effect in this condition, albeit weaker
than that for the sentences with good thematic fit.

However, the reliability of this result is questionable be-
cause the garden-path effect on Poor Fit sentences never
reached statistical significance on any of the investigated
reading time measures; it was at best marginally significant
for total reading time. Hoeks et al.’s conclusion was based on
the presence of a main effect of Ambiguity (i.e., whether or

not the sentence had a comma) in combination with the ab-
sence of a significant interaction with Thematic Fit. Hence,
the claim that the garden-path effect also occurred in the Poor
Fit sentences is in fact based on accepting the null hypothesis
that there is no interaction.

The current study
We trained LSTM models on Dutch text corpora after which
they estimated surprisal of the critical words in the experi-
mental sentences of the Hoeks et al. (2006) study. In addition,
we analysed unpublished self-paced reading data on these
same sentences. Bayesian mixed-effects regression analyses
revealed similar patterns for the surprisal values and reading
times (RTs): They are larger in the locally ambiguous than
unambiguous sentences and this difference is smaller (but not
zero) in case of poor thematic fit than for sentence with good
thematic fit. These findings demonstrate that poor thematic fit
indeed reduces, but not completely removes, the garden-path
effect caused by the NP/S-coordination ambiguity; and that
these effects can be explained by the statistical word-order
patterns that recurrent neural networks are able to learn from
text corpora.2

Method
Self-paced reading experiment
Stimuli The stimulus set was identical to that of Hoeks et
al. (2006). It consisted of 120 experimental sentences with
a local NP/S coordination ambiguity. In 60 of the 120 sen-
tences, the two nouns of the (potential) NP coordination were
animates, making them semantically plausible objects of the
verb. These were the Good Thematic Fit sentences (Example
1a, translated from Dutch). In the 60 Poor Fit sentences, in
contrast, the verb had a strong selectional preference for an
inanimate object and only the first noun of the potential NP
coordination was inanimate (see 2a). Items were not matched
between the Good Fit and Poor Fit conditions.

The sentence’s critical word was the second verb (italicized
in Examples 1 and 2), which always disambiguated towards
the S-coordination reading. Unambiguous versions of the
sentences were constructed by simply introducing a comma
after the second noun (Examples 1b and 2b).

In addition to the experimental sentences, there were 200
filler sentences, 80 of which had unambiguous conjoined ob-
ject NPs. In half of these fillers sentences, both object nouns
were animate; in the other half the first object noun was inan-
imate and the second one animate, mimicking the order of
inanimate/animate nouns in the Poor Fit condition. The other
120 fillers contained relative clauses.

Forty items were paired with a simple comprehension
question in the form of a statement about the sentence. These
were intended to ensure participants would read for compre-
hension.

2The LSTM models, self-paced reading data, and analysis code
are available from https://osf.io/npzc7.
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Participants One hundred and three native Dutch speaking
undergraduate students from Radboud University participated
in the experiment. The data from seven participants were ex-
cluded from analysis because they answered more than 20%
of the comprehension questions incorrectly.3 This left 96 par-
ticipants with analysed data.

Procedure Each participant read 120 experimental sen-
tences, 30 in each of the 2×2 (Ambiguity × Thematic Fit)
conditions. Stimuli were presented using word-by-word,
non-cumulative, moving window self-paced reading. The
sentence appeared when the participant pressed a button, but
only the first word was visible initially. All other characters
(including the comma but excluding spaces and the end-of-
sentence period) were replaced by hyphens. On each sub-
sequent button press, the next word would be revealed and
the previous word changed back to hyphens. If, after com-
pleting the sentence, a comprehension question appeared, the
participant had to indicate by button press whether or not the
statement was correct.

Neural network models
Training corpus Training sentences were selected from the
NLCOW2014 corpus (Schäfer, 2015) which contains individ-
ual Dutch sentences crawled from the web. It is divided into
seven slices with approximately 37 million sentences each.
NLCOW14 treats punctuation marks as individual tokens,
meaning that they are separated from the preceding and the
following word. Because this is incorrect in case of the apos-
trophe, we preprocessed the corpus, reattaching apostrophes
to the word to which they belong.4

For each slice, we extracted the 20,000 most frequent
words without distinguishing between upper- and lower-case
and ignoring any string containing a non-letter other than
the hyphen or apostrophe. Next, this frequent-word list was
joined with the set of word types in the Hoeks et al. (2006)
stimuli. We then selected only and all corpus sentences that
contain only words from the combined word list.5 These sen-
tences form the training data from that slice. The seven train-
ing sets comprised between 8.57 and 9.00 million sentences
(108 to 115 million tokens) each.

Model architecture We trained one LSTM network on
each of the seven training data sets for two epochs. All net-
works had a 300-dimensional input embedding layer, a 600-
unit recurrent layer, a 300-unit non-recurrent layer between
the recurrent and output layers, and softmax output layer with

3There were in fact two versions of the experiment, which dif-
fered only in whether or not the comprehension questions were pre-
sented. Fifty-five of the the 103 participants took part in the version
that included the questions. The data from the two experiment ver-
sions are combined in our analysis.

4In Dutch orthography, apostrophes can occur in the plural suf-
fix -’s and in unstressed forms of pronouns (e.g., m’n, ‘my’) and
determiners (e.g., ’n, ‘a’).

5Single-word sentences and sentences containing over 50 words
were excluded, as were sentences containing a punctuation token
other than the period, comma, exclamation point, and question mark.

one unit for each word type in the training set. No attempt
was made to optimize this architecture. The seven networks
differed only in their output layer sizes and random initial
connection weights.

After processing the first t − 1 words of a sentence, the
network’s output activation for word unit w is its estimate
of P(wt |w1...t−1): the probability that word w will occur at
position t given the word sequence (sentence context) w1 to
wt−1. The surprisal of the actually occurring next word is de-
fined as the negative logarithm of its occurrence probability:
surprisal(wt) =− logP(wt |w1...t−1).

Test sentences All seven networks estimated surprisal on
all experimental sentences in both the Ambiguous (comma
absent) and Unambiguous (comma present) condition. How-
ever, in spite of the training sentence selection method de-
scribed above, 22 of the 120 experimental stimuli sentences
contained one or more words not present in all seven training
data sets. We replaced these words by semantically congru-
ent words from the same syntactic category that did occur in
all training sets. For example, in De politie traceerde de dief
(‘The police traced the thief’) the verb traceerde was changed
to achtervolgde (‘chased’).

Data analysis
We analysed the effect of Ambiguity on surprisal and RT by
fitting Bayesian mixed-effects regression models using the R
package brms (Bürkner, 2018). A positive regression coeffi-
cient for Ambiguity (i.e., βambiguity > 0) indicates higher sur-
prisal or RT on Ambiguous than Unambiguous sentences, that
is, a (predicted) garden-path effect.

The prior for βambiguity was an improper flat distribution
over the real numbers, as is the default in brms. For the RT
analysis, it would have been justified to have the prior be in-
formed by the Hoeks et al. (2006) results. However, we opted
for a flat prior so that exactly the same analysis could be run
for surprisal as for RT. The dependent variable was normal-
ized so the intercept of the regression line is guaranteed to be
0. Hence, we set the strong prior of N (0,0.1) over the in-
tercept. We chose the Exponentially modified Gaussian fam-
ily because of the positive skew in the dependent variables’
distributions. The regression model included as random ef-
fects by-network and by-item random intercepts and random
slopes of Ambiguity. Random-effect priors were the brms
defaults.

Separate analyses were run for the Good and Poor Fit con-
ditions, in addition to analyses including the factors Ambi-
guity, Fit, and their interaction. Both the Ambiguity and Fit
factors were effect coded (±0.5) with positive values for the
Ambiguous and Good Fit conditions. Priors on the Fit and
interaction coefficients were the default improper flat distri-
bution.

Because self-paced reading often leads to so-called
spillover effects, where comprehension difficulty on a word
results in reading slowdown at a later word, we analysed RT
on both the critical word and the immediately following word.
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For completeness, we did the same for the surprisal analysis
even though there is no reason why surprisal effects would
spill over to the next word.

RTs below 50ms or over 4000ms were considered outliers
and removed from analysis, but there were only four such
data points (three on the critical word, one on the post-critical
word).

Results

Effects of ambiguity and thematic fit

The two upper panels of Figure 1 show the posterior proba-
bility densities for the effect of Ambiguity on RT, in the Good
and Poor Fit conditions. The reading time pattern is consis-
tent with the conclusions Hoeks et al. (2006) draw from eye-
tracking data on the same items: The ambiguity leads to a
garden-path effect that is stronger in the Good than Poor Fit
condition. The latter is apparent from the fact that, in Poor Fit
sentences, the effect of Ambiguity occurs only on the critical
word whereas it spills over to (and is even stronger on) the
following word of Good Fit sentences. Table 1 presents the
probability that there is indeed a garden-path effect in each
of the Thematic Fit conditions, as well as the probability of
an interaction such that the Ambiguity effect is larger in the
Good Fit than Poor Fit condition.

This RT pattern is correctly predicted by the LSTM, as can
be seen in the lower panels of Figure 1 as well as in Table 1.
There is a clear effect of Ambiguity on surprisal in both the
Good and Poor Fit conditions, and the evidence for an inter-
action between Ambiguity and Fit is very strong. Surprisal
effects appear on the critical word rather than the post-critical
word, which supports the claim that the post-critical RT ef-
fects are due to spillover of comprehension difficulty that
arises at the critical word.

Effect of network training

As shown in Figure 2, it takes about 1 to 3 million training
sentences for the garden-path effect and its interaction with
thematic fit to appear. These effects continue to grow in size
with additional training.

Table 1: Posterior probabilities of positive coefficients (i.e.,
P(β > 0)) of Ambiguity and its interaction with Thematic Fit.

Word position
Coefficient Fit Dep. Var. Critical Post-crit.
βambiguity Good RT .98 > .99

surprisal > .99 .18
Poor RT .93 .69

surprisal > .99 .32
βambiguity×fit RT .78 > .99

surprisal > .99 .36

Item-level analysis
To investigate whether LSTM surprisal accounts for garden-
path effects at the item level, surprisal was averaged per
sentence over the seven fully trained networks, and log-
transformed RTs were averaged per sentence over partici-
pants as well as over the critical and post-critical words. Fig-
ure 3 shows a scatter plot of average surprisal against aver-
age log-RT, excluding the 22 sentences that were adapted for
LSTM processing. Clearly, the surprisal estimates are unable
to explain garden-path effects at the level of individual sen-
tences.

Discussion
Surprisal and reading time
Patterns of surprisal on the critical word matched the self-
paced-reading results (as well as Hoeks et al.’s, 2006, eye-
tracking data) albeit not at the individual item level. When
comparing between experimental conditions, surprisal was
higher when the sentence contained a local ambiguity (e.g.,
the LSTMs predict a garden-path effect) and this effect of
Ambiguity was reduced (but not absent) when poor thematic
fit between the verb and a following noun made the correct
S-coordination reading more semantically appropriate before
the disambiguating word. These results again demonstrate
the power of RNNs to learn fairly subtle structural and se-
mantic aspects of language, and thereby account for human
processing behaviour.

The absence of effects on surprisal at the post-critical word
supports the interpretation that the effect on RT here is caused
by spillover from the critical word, as Hoeks et al. (2006) also
conclude on the basis of their eye-tracking data. In that study,
the authors found the garden-path effect to be more short-
lived on Poor compared to Good Thematic Fit sentences. Our
analysis of self-paced RTs shows the same pattern, in that the
effect has disappeared on the post-critical word in the Poor
Fit but not in the Good Fit condition. This suggests there
may be a qualitative difference in the garden-path effects be-
tween the Thematic Fit conditions, that is not captured by the
unidimensional surprisal measure.

Structural processing in RNNs
As explained in the Introduction, garden-path effects have
been explained in terms of syntactic reanalysis, or probabilis-
tically in terms of the redistribution of probability mass over
syntactic structures. However, RNNs do not encode syntac-
tic structure, at least not explicitly, so why did our networks
correctly predict the garden-path effect?

One possibility is that the correspondence between sur-
prisal and reading time is just an artefact of the experimen-
tal items. Possibly, the mere presence of a comma speeds up
reading at the critical word, but less so in the Poor Fit Sen-
tences, without any relation to the garden-path phenomenon.
However, even if this is the case, it leaves unexplained why at
least three other garden-path effects have been explained by
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Figure 1: Posterior probability densities of the Ambiguity coefficient. Top: effect on RT; bottom: effect on word surprisal. Left:
effect at critical word; right: effect at post-critical word.

Figure 2: Estimated coefficient of Ambiguity at the critical
verb in the surprisal analysis, as a function of number of train-
ing sentences and thematic fit. Shaded areas represent 95%
Credible Intervals.

LSTM surprisal (Futrell et al., 2018; Van Schijndel & Linzen,
2018).

Alternatively, garden-path effects could be merely due
to incorrect next-word prediction, as reflected in high sur-
prisal on the disambiguating word. This would imply that
there is no qualitative difference between comprehension dif-
ficulty due to a garden-path and due to an unlikely word
co-occurrence. However, this seems implausible consider-
ing that ERP studies have shown that garden-pathing leads
to a P600 effect (Osterhout & Holcomb, 1992; Osterhout,
Holcomb, & Swinney, 1994) while higher surprisal in non-
garden-path sentences corresponds to a stronger N400 com-

Figure 3: Garden-path effects in surprisal estimates and log-
transformed RT, with regression line per Thematic Fit condi-
tion.

ponent (Delaney-Busch, Morgan, Lau, & Kuperberg, 2019;
Frank, Otten, Galli, & Vigliocco, 2015). Moreover, the ini-
tially preferred, but incorrect, reading of the ambiguity in
a garden-path sentence can ‘linger’ (Christianson, Holling-
worth, Halliwell, & Ferreira, 2001; Patson, Darowski, Moon,
& Ferreira, 2009) which shows that such an interpretation was
indeed entertained.

Possibly, being led up the garden path also results in in-
correct next-word prediction and the reading time effect that
comes with garden pathing actually reflects the resulting sur-
prisal increase rather than the update of a structure or inter-
pretation. However, this is not a particularly satisfying expla-
nation as it would mean that the cognitive work of reanalysis
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is itself not reflected in longer reading time.
Hence, we tentatively conclude that the LSTMs learn rep-

resentations that capture relevant aspects of sentence struc-
tures/interpretations. As words come in, the network per-
forms probabilistic, incremental reinterpretation, and gener-
ates word surprisal values that reflect the amount of represen-
tation update required to incorporate the word into the sen-
tence representation under construction.

Conclusion
Word surprisal values estimated by LSTM models mirrored
human reading times on garden-path sentences, predicting
both the garden-path effect itself and its interaction with the
manipulation of thematic fit between a verb and its potential
object noun. This finding yet again demonstrates LSTMs’
ability to extract structural aspects of language by learning to
do next-word prediction in flat, unannotated text. Investiga-
tions of the neural networks’ internal state are needed to sub-
stantiate this claim. If such an investigation fails to reveal evi-
dence of structure representations in the networks, this would
raise doubt about the necessity for structure building and re-
vision in an explanation of garden-path phenomena.
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Abstract

Adjective ordering preferences (e.g., big brown bag vs. brown
big bag) are robustly attested in English and many unrelated
languages (Dixon, 1982). Scontras, Degen, and Goodman
(2017) showed that adjective subjectivity is a robust predictor
of ordering preferences in English: less subjective adjectives
are preferred closer to the modified noun. In a follow-up to
this empirical finding, Simonič (2018) and Scontras, Degen,
and Goodman (to appear) claim that pressures from success-
ful reference resolution and the hierarchical structure of mod-
ification explain subjectivity-based ordering preferences. We
provide further support for this claim using large-scale sim-
ulations of reference scenarios, together with an empirically-
motivated adjective semantics. In the vast majority of cases,
subjectivity-based adjective orderings yield a higher probabil-
ity of successful reference resolution.

Keywords: adjective ordering, subjectivity, reference resolu-
tion, hierarchical modification

Introduction
When speakers use two or more adjectives to modify a noun,
they exhibit robust preferences in the relative order of the ad-
jectives (e.g., big brown bag vs. brown big bag). Using a
series of behavioral and corpus experiments, Scontras et al.
(2017) demonstrated that adjective order in multi-adjective
strings is reliably predicted by the subjectivity of the adjec-
tives involved: less subjective adjectives are preferred closer
to the modified noun, and the strength of the preference is
modulated by the subjectivity differential between the ad-
jectives. Thus, speakers strongly prefer big brown bag over
brown big bag, as brown is much less subjective than big.

The question that immediately arises is why subjectivity
should play the role it does in adjective ordering preferences.
The current work follows Simonič (2018) and Scontras et al.
(to appear) in advancing the claim that pressures from suc-
cessful reference resolution deliver subjectivity-based order-
ing preferences. In certain cases of restrictive modification
which proceed incrementally based on syntax-driven mean-
ing composition, adjectives that compose with the nominal
later will classify a smaller set of potential referents (e.g., the
set of bags vs. the set of brown boxs). We demonstrate that,
in order to avoid alignment errors where a listener might mis-
characterize the intended referent, it is, when averaging over
many contexts of use, a better strategy to introduce the more
error-prone (i.e., more subjective) adjectives later in the hi-
erarchical meaning composition; the structure linearizes such
that subjectivity decreases the closer you get to the modified

noun. We build on the work that precedes ours by making
minimal assumptions about online processing (cf. Scontras
et al., to appear) and by assuming a more principled im-
plementation of adjective subjectivity within an empirically-
motivated semantics (cf. Simonič, 2018).

The paper is structured as follows. First, we review the
empirical generalization concerning subjectivity-based pref-
erences, together with the proposals offered to account for
this generalization. Then, we consider empirical work on ad-
jective semantics, which serves as inspiration for our own
proposal. We demonstrate, using Monte Carlo simulation,
how a minimal set of independently-motivated assumptions
leads to a ready explanation for subjectivity-based ordering
preferences: ordering adjectives with respect to decreasing
subjectivity has a higher probability of successful reference
resolution, when averaging across many contexts of use.

Background
Given the robustness of adjective ordering preferences within
and across languages, there has been no shortage of propos-
als meant to account for the regularities in adjective order-
ing. Some have offered grammatical proposals that attend
to semantic composition or articulated syntactic hierarchies
(e.g., Cinque, 1994; Scott, 2002; McNally & Boleda, 2004;
Truswell, 2009). Others have advanced more psychological
proposals built around notions like inherentness or accessi-
bility (e.g, Whorf, 1945; Ziff, 1960; Martin, 1969). Recently,
Scontras et al. (2017) synthesized several proposals that pre-
ceded them and advanced the hypothesis that adjective sub-
jectivity predicts ordering preferences (see also Quirk, Green-
baum, Leech, & Svartvik, 1985; Hetzron, 1978; Dixon, 1982;
Tucker, 1998; Hill, 2012).

In order to test the subjectivity hypothesis, Scontras et al.
(2017) first had to determine what the ordering preferences
were. They established a behavioral measure of the prefer-
ences whereby experimental participants indicated the pre-
ferred ordering of multi-adjective strings that differed only
in the relative order of the adjectives involved (e.g., the big
brown bag vs. the brown big bag). Scontras et al. (2017) then
validated their behavioral measure by comparing it with nat-
uralistic productions from corpora. They found a high cor-
relation between the behavioral and corpus measures (r2 =
.83,95% CI [.63, .90]), suggesting that the behavioral mea-
sure was successful in capturing the preferences speakers use
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when forming multi-adjective strings.
Next, Scontras et al. (2017) measured adjective subjectiv-

ity. They started by simply asking participants how “sub-
jective” a given adjective was (e.g., “How subjective is
brown?”). Wary of how naive participants might interpret
the word “subjective,” the authors validated their subjectivity
measure by comparing it with faultless disagreement scores
(Kölbel, 2004; Barker, 2013; Kennedy, 2013; MacFarlane,
2014). In a faultless disagreement task, participants observe
a disagreement between two speakers about whether an ad-
jective applies to some object (e.g., whether or not a table is
brown). The task is to decide whether the two speakers can
both be right while disagreeing, or whether one of them must
be wrong; to the extent that both speakers can be right, the ad-
jective admits that degree of faultless disagreement. Scontras
et al. (2017) found an extremely high correlation between the
raw “subjectivity” scores and the faultless disagreement mea-
sure (r2 = .91,95% CI [.86, .94]), suggesting that they had a
reliable measure of adjective subjectivity.

Comparing the ordering preferences with adjective sub-
jectivity, Scontras et al. (2017) found that subjectivity ac-
counts for 85% of the variance in the ordering preferences
(r2 = .85,95% CI [.75, .90]) for 26 different adjectives from
seven semantic classes. The authors then looked at every
multi-adjective string in the Switchboard corpus of English,
finding that subjectivity accounts for 61% of the variance
in ordering preferences (r2 = .61,95% CI [.47, .71]) for 74
unique adjectives from 13 semantic classes. In other words,
the authors found strong support for their hypothesis that sub-
jectivity predicts adjective ordering preferences. The ques-
tion that immediately presents itself, however, is why sub-
jectivity should matter in adjective ordering. Scontras et al.
(2017) gesture toward an answer to this question—less sub-
jective adjectives are more useful for establishing reference—
but their suggestion is purely speculative.

Using a model of probabilistic utterance choice (e.g., big
brown bag vs. brown big bag), Simonič (2018) systemati-
cally explored the idea that subjectivity-based ordering pref-
erences arise under pressure from successful reference res-
olution. The utterance choice model was formulated within
the Rational Speech Act modeling framework (e.g., Franke &
Jäger, 2016; Goodman & Frank, 2016; Scontras, Tessler, &
Franke, n.d.).1 To model adjective subjectivity, the speaker is
taken to assumes that the listener might have a different lexi-
cal meaning for each adjective. If LS,C

ad j is the speaker’s lexical
entry for adjective ad j in context C, the speaker believes that
the listener has lexical entry LL,C

ad j with probability:

P(LL,C
ad j | L

S,C
ad j) ∝

{
1 i f LS,C

ad j = LL,C
ad j

εad j otherwise
(1)

1See Hahn, Degen, Goodman, Jurafsky, and Futrell (2018) for a
different approach to modeling adjective ordering within the Ratio-
nal Speech Act framework. Their model defines speaker utility not
in terms of referential success, but rather in terms of communicating
subjective opinions about objects.

The more subjective the adjective, the higher the error prob-
ability εad j. With these beliefs about lexical divergence,
Simonič shows that the subjectivity-based ordering big brown
bag is a more rational choice for the speaker than brown big
bag in a wide range of randomly-generated contexts. How-
ever, Simonič did not explicitly quantify the extent to which
one ordering of adjectives is better than another, when aver-
aging over many contexts.

Scontras et al. (to appear) pursue a similar explanation.
They treat adjective subjectivity as potential noise in the se-
mantics of an adjective, similar to Simonič, but they assume
that, based on a ground-truth of objective adjective meaning,
each agent (speaker or hearer) will incorrectly classify each
potential referent in the current context C with an error rate
εad j, which, again, indexes adjective subjectivity:

[[ADJ]]C = λx ∈C. if ADJ(x) then flip(1− εad j), (2)
else flip(εad j)

This move allows Scontras et al. to treat deviations from the
ground truth as gradient: greater deviation is increasingly less
likely. Scontras et al. further assume that each object classi-
fication requires some processing cost. As a result, the error
probability εad j is assumed to increase with the size of con-
text C. Based on these assumptions, Scontras et al. demon-
strate how subjectivity-based ordering preferences can maxi-
mize the probability of correctly classifying the intended ref-
erent. The authors explored 103,740 cases of multi-adjective
modification and found that subjectivity-based ordering be-
haved as expected in 93% of those cases.

In sum, both Simonič (2018) and Scontras et al. (to ap-
pear) demonstrate how subjectivity-based adjective ordering
serves successful referential communication. However, both
accounts involve non-trivial and potentially controversial as-
sumptions. Simonič’s definition in (1) of the speaker’s beliefs
about the listener’s lexicon are not very intuitive: why would
the speaker believe that a small deviation from his own lexi-
con is equally likely as a massive deviation? Scontras et al. (to
appear) likewise merely stipulate that error of classification
εad j in (2) is a function of context size C. It would be much
more desirable to derive divergences between the speaker’s
and listener’s semantic classifications from more fundamen-
tal assumptions, first and foremost by a more explicit view of
what the underlying semantics of adjectives is. Consequently,
our aim here is to build on these previous accounts by show-
ing how subjectivity-based ordering serves successful refer-
ential communication. However, rather than making what are
now rather stipulative assumptions about the misalignment of
semantic representations, we will show how these misalign-
ments can arise from a generally plausible context-dependent
semantics. It is to one such semantics that we turn next.

Semantic assumptions
Schmidt, Goodman, Barner, and Tenenbaum (2009) built
their study of adjective meaning on the observation that grad-
able adjectives mean different things depending on the nouns
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they modify: what counts as big for a mouse diverges drasti-
cally from what counts as big for an elephant. The question is
what serves as the core meaning of a gradable adjective, such
that speakers can determine its contextual extension?

To answer this question, Schmidt et al. collected human
judgments about what counts as “tall” for different sets of
objects. They then compared these judgments with the pre-
dictions from a number of semantic models that use various
strategies to determine tallness in context. The strategies con-
sidered fell into one of two classes. The first class computed
the tallness threshold directly, using various parametric and
non-parametric procedures to compute a height cutoff above
which objects count as tall. The second class inferred the tall-
ness threshold on the basis of category membership, first per-
forming a clustering analysis on the set of objects and then
identifying as tall those objects that belonged to the cluster
with the tallest object.

Two models outperformed the rest. The simplest was a
threshold-computing model that sets the threshold on the ba-
sis of relative height by range: any object that fell within the
top k% of the range of heights in context C counts as tall in
C. Formally, the set [[tall]]C of objects in C that count as tall
in C is (where tall(o) is the tallness of object o, max is the
tallness of the tallest object in C, and min that of the smallest):

[[tall]]C = {o ∈C | tall(o)≥ max−θ · (max−min)} , (3)
where θ = k/100.

So, if the maximum object height is 10 on the relevant scale
and the minimum height is 2, a k of 50% would set the tall-
ness threshold at 6; that is, an object with a height of at least
6 would count as tall in that context. Notably, the more com-
plex clustering model performed no better than this threshold
model when it came to predicting human judgments. We will
therefore use this simple but empirically-motivated threshold
semantics in the reasoning that follows, treating the threshold
θ as a free model variable.

Following Simonič (2018) and Scontras et al. (to appear),
we assume that iterated adjectival modification triggers se-
quentially intersective context updates. Later adjectives (syn-
tactically farther from the modified noun) are interpreted rel-
ative to contexts that are already restricted by previous adjec-
tives. For example, the denotation of the phrase “[adji [adjj
N]]” given a shared context C of potential referents is:

[[[adji [adjj N]]]]C = [[adji]]
[[adj j ]]

C∩[[N]]
(4)

In words, a string like “big brown bag” characterizes the set
of all bags in context C that count as brown (in the set of bags
in C) and that count as big (in the set of bags that count as
brown in the set of bags in C). Each adjective is therefore
interpreted relative to its local context of incremental com-
positional semantic interpretation, so to speak. The effect is
that adjectives closer to the noun will operate over a larger
context (i.e., one that is less restricted); paired with a context-
dependent semantics as in (3), it is conceivable that the order-
ing of adjectives matters for referential success.

2
true context

speaker’s
representation

listener’s
representation

1 3 4

21 3 4

21 3 4

Figure 1: Illustration of subjective agent representations.

Motivating example
For the discussion that follows, we use “brown” and “big” as
mnemonic labels for any two adjectives that are, respectively,
less and more subjective. Our goal is to demonstrate why an
utterance of “big brown X”—that is, a multi-adjective string
ordered with respect to decreasing subjectivity—is commu-
nicatively more efficient on average than an utterance of
“brown big X”—an utterance not ordered with respect to de-
creasing subjectivity. An utterance’s average communicative
success is spelled out here as the expected utility in a situa-
tion where the speaker wants to refer to an object; this value
is specified as the average probability of the listener choosing
the intended referent on the basis of that utterance.

We first need to make some assumptions about the ef-
fects of adjective subjectivity on our mental representations—
representations that will be relevant to referential communi-
cation. Figure 1 gives a concrete example to illustrate the
main idea. Suppose that the speaker and listener share access
to a context of four bags that differ only with respect to color
and size. Depending on their different perceptual angles, dif-
ferent background knowledge, or differences in previous ex-
periences, the speaker and listener might represent the context
differently: their impressions of object size and object color
could deviate from the ground truth.

Here is where subjectivity comes in: we assume that more
subjective properties are more likely to lead to deviation be-
tween the ground truth (i.e., the true context) and an agent’s
representation of the property. Crucially, by deviating from
the ground truth, these more subjective properties are also
more likely to lead to deviations between two agent represen-
tations (e.g., between the speaker’s and listener’s representa-
tions in Figure 1); these deviations and our awareness of their
potential are what lead to perceived subjectivity as measured
by a faultless disagreement task. Language users are aware
that their representations might deviate from each other’s, and
the potential for deviation is different for different properties.
We illustrate this tendency in Figure 1, where the agent rep-
resentations of size deviate more from the ground truth than
their representations of color.

We now ask: if the speaker wants to describe a bag that is
both big and brown according to her subjective representation

346



of the context, would it be better, on average, to describe it as
“big brown bag” or “brown big bag”, if the listener would
interpret either phrase from his own subjective perspective?
Concretely, suppose the speaker wants to refer to bag 4 in Fig-
ure 1, which is both brown and big from her subjective point
of view. If the listener hears “big brown bag”, he tries to find
the speaker-intended referent by incrementally restricting the
set of possible referents according to the interpretation rule
in (4), applying the context-dependent semantics in (3) to his
own subjective representation of the objects in question. For
the example from Figure 1 and assuming that θ = 0.5 in (3),
the phrase “brown bag” would make the listener consider only
bags 2 and 4. Of these, only bag 4 is in the top 50% along
the range of size in this context set. So, the interpretation
of “big brown bag” is successful; the listener recovers the
speaker-intended referent uniquely. In contrast, for the ex-
pression “brown big bag”, the listener first looks at the bags
that count as big, which rules out only bag 2, since it is the
only bag whose size is in the lower 50% of the range of sizes.
Among the remaining bags (1, 3 and 4), bag 3 is clearly not
brown. For the sake of this informal example, assume that
the listener therefore considers both bags 1 and 4 as possible
referents when hearing “brown big bag”. The chance of ref-
erential success (i.e., choosing bag 4)—neglecting salience or
other factors—would be 1/2, which is lower than the certain
communicative success when interpreting “big brown bag”.

Computing average communicative success
We use a Monte Carlo simulation to estimate the difference
in expected referential success between phrases “big brown
bag” and “brown big bag”; we calculate this value by aver-
aging over many different contexts with different numbers of
objects and varying degrees of subjectivity for the properties
involved. In this way, we are not assuming that agents them-
selves necessarily reason actively about the stochastic mis-
alignment of semantic judgements, or that they always choose
expressions that are optimal with respect to these calculations
in each context. (We will come back to this issue in the final
discussion.) We merely compute the average communicative
success of, say, a fictitious community of agents who would
use “big brown bag” (i.e., subjectivity-based ordering) and
compare their average communicative success to that of a dif-
ferent community that uses “brown big bag” instead.

A single run of the Monte Carlo simulation proceeds as
follows:2

1. We first sample a number n of bags in the current context
uniformly at random from 4 to 20.

2. We then sample the degree to which each object is brown
and the degree to which it is big. Samples are independent
draws from a standard normal distribution. This yields a
representation of the actual context C as an n× 2 matrix

2Code to reproduce this simulation can be found at https://
github.com/michael-franke/adjective order.

of feature values for the n objects. The probability of sam-
pling context C for fixed n is

P(C | n) =
n

∏
i=1

2

∏
j=1

N (Ci j | µ = 0,σ = 1) .

3. Agent X’s (speaker’s or listener’s) subjective representa-
tion CX of C is derived from C by assuming normally dis-
tributed noise around the property degrees in C, with a
fixed standard deviation for each adjective. The probability
of obtaining a subjective representation CX from true C is

P(CX |C) =
n

∏
i=1

2

∏
j=1

N (CX
i j | µ =Ci j,σ = σ j) .

The standard deviations σ1,2 are obtained by sampling two
numbers uniformly from the interval [0;0.5] and assigning
the higher number to the more subjective (“tall”) and the
lower to the less subjective adjective (“brown”).

4. A semantic threshold θ is sampled uniformly at random
from the unit interval. We apply the context-dependent
threshold semantics in (3) from Schmidt et al. (2009) with
the incrementally intersective context update in (4), using
each agent’s context representation, to yield each agent’s
subjective interpretation of each referential phrase.

5. We then sample the speaker-intended referent object i∗

randomly from the set [[adj1]]
CS ∩ [[adj2]]

CS
(i.e., an object

that is both brown and big from the point of view of the
speaker). If there is no such object, the run is discarded.

6. If the listener’s interpretation of the phrase “[adji [adjj]]”
from his subjective point of view is I = [[[adji [adjj]]]]C

L
,

the probability of recovering the intended referent is |I|−1

if i∗ ∈ I and 0 otherwise. We record the probability of re-
covery for both adjective orders and evaluate their distribu-
tion over all samples obtained in this way.

Results
Based on 106 Monte Carlo samples from the process outlined
above, we estimate the expected probability of recovering the
speaker’s intended referent with the subjectivity-based order-
ing “big brown bag” as 0.54, compared to 0.49 for the re-
verse ordering “brown big bag”. The obtained samples of
expected utilities for each ordering appear to indeed be dif-
ferent (paired t-test, t ≈ 19.261, p < 10e80). The direction
of this difference lends credence to the general idea that, on
average, ordering adjectives by subjectivity does affect aver-
age referential success, and that using the less subjective ad-
jective early in sequential interpretation is communicatively
beneficial. In other words, ordering adjectives with respect to
decreasing subjectivity increases the probability of commu-
nicative success.

To understand these results better, Figure 2 shows results
from Monte Carlo simulations for a small selection of the pa-
rameter values we investigated. We limit our focus to val-
ues for standard deviations σbrown ∈ {0.1,0.2} and σbig ∈
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Figure 2: Results from Monte Carlo simulation with fixed
values of σbrown, σtall and θ. Above the 0-mark, the vertical
axis shows the mean expected success of “big brown bag”
minus that of “brown big bag”. Below the 0-mark it shows
the percentage of simulation runs where the latter ordering
had a higher (however small) expected success.

{0.25,0.3} for the subjective agent representations; we con-
sider semantic threshold values θ ∈ {0.2,0.4,0.6,0.8}. For
each combination of these values, we ran 10,000 simulations
following the procedure outlined above. The vertical axis in
Figure 2 plots two measures. Upward from the 0-mark is
the difference in mean communicative success between “big
brown bag” and “brown big bag”. We see that all mean val-
ues are positive, which signals that for all parameter con-
stellations picked out here, the phrase “big brown bag” was
indeed estimated to be communicatively more successful in
each case. Below the 0-mark in Figure 2, we see the percent-
age of simulation runs in which the reverse ordering “brown
big bag” had a higher expected utility. This shows that the
communicative advantage of one adjective ordering over an-
other is not absolute: there are exceptions. However, when
averaging over all cases, there is nonetheless a clear commu-
nicative benefit of “big brown bag” over “brown big bag”.

Discussion
The results of our simulation suggest that a simple,
empirically-motivated adjective semantics can lead to in-
creased communicative success when multi-adjective strings
are ordered with respect to decreasing subjectivity. We thus
have an answer for the question of why subjectivity should
matter in adjective ordering: subjectivity matters because or-
dering adjectives by decreasing subjectivity increases com-
municative success. Importantly, we arrive at this conclusion
without the potentially controversial assumptions from pre-
vious work (cf. Simonič, 2018; Scontras et al., to appear).
However, our model is not without its own assumptions. In
what follows, we revisit the critical assumptions that led to
our findings.

From a theoretical standpoint, there are three important as-
sumptions implemented by our model. While each of these
assumptions may be challenged, they serve to deliver an ar-
ticulated hypothesis concerning the interpretation of multi-
adjective strings—a hypothesis that offers a plausible expla-
nation for the role of subjectivity.

First, we here operationalize the subjectivity of property
A as the degree to which, on average, listeners and speak-
ers will have diverging (meaning-relevant) representations of
the same object’s property A. It bears noting that the sub-
jective property representations we assume are not (necessar-
ily) the same as the formal linguist’s notion of degree. For
us, these representations serve as an abstract way of imple-
menting divergences in truth-value assignments. As modeled
here, stochastic misalignments can arise from the particulars
of perception in context, but these misalignments could also
arise from differing general dispositions toward classifying
an object as having the property A when paired with random
other objects.

Second, we assume that adjectival modification is, at least
sometimes (see below), incrementally intersective. More-
over, we assume that meaning composition follows the hier-
archical syntactic structure, rather than the linear order of the
relevant string. We share this assumption with both Simonič
(2018) and Scontras et al. (to appear). This assumption—that
the construction of a multi-adjective nominal proceeds out-
ward from the modified noun—ostensibly stands at odds with
findings concerning the linear uptake of information in adjec-
tival modification (e.g., Eberhard, Spivey-Knowlton, Sedivy,
& Tanenhaus, 1995; Sedivy, Tanenhaus, Chambers, & Carl-
son, 1999). However, this assumption is common to seman-
tic analyses of modification and necessary in many cases of
multi-adjective modification (e.g., “Minnesotan wild rice” or
“angry bad apple”; McNally & Boleda, 2004).

The final critical assumption we make is that adjectives
have, at least sometimes (see below), a meaning that is
determined at least in part by the local context that they
modify. In other words, we assume that it is possible to
interpret the meaning of “big” in the phrase “big brown
bag” as “big for the brown bags”. This assumption is the
primary driver of the increased communicative success for
subjectivity-based orderings: placing more subjective adjec-
tives farther from the modified noun means that they mod-
ify a smaller context, which means that there are fewer op-
portunities for the listener’s subjective representation to de-
viate from the speaker’s. While some adjectives are surely
less likely to have variable meanings of this sort (e.g., “card-
board”, “four-legged”), the presence of any such adjectives in
a multi-adjective string will lead to the pressures summarized
above, which means that they will lead to pressure toward
subjectivity-based orderings.

When we combine these three assumptions, which appear
necessary for the obtained results, we can see more clearly
what the sources of assumed inter-subjectively divergent rep-
resentations of objects might (not) be. For example, it is a nat-
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ural idea to conceive of inter-subjective differences in judge-
ments of whether a given object has property A as the result of
inter-subjectively different beliefs about the comparison class
against which A-hood of the object is evaluated. Concretely,
agents might interpret “big” as “big for boxes from coun-
try X” where X is their, say, home country. Differences in
the statistical distribution of sizes of boxes in different coun-
tries would then lead to inter-subjective disagreement about
whether a given box might be “big” or not (Qing & Franke,
2014; Lassiter & Goodman, 2015). While we do not deny
that this kind of inter-subjective divergences in comparison-
class relative evaluations may exist, they are not, at least not
straightforwardly, the kind of inter-subjective difference that
drives the results of the present simulation study. This is be-
cause, as stressed above in connection with the third and final
assumption, the presented setup requires inter-subjective dif-
ferences that are affected by the current local context. This
is compatible with the idea of differential beliefs about the
comparison class. But if we wanted to say that diverging be-
liefs about the relevant comparison class are the main or sole
factor that explains adjective ordering preferences based on
the mechanism proposed here, we would have to spell out
precisely how local contexts affect truth-value judgements in
interaction with beliefs about the comparison class. — An
interesting challenge for future work.

We conclude by considering the implications of our find-
ings for our understanding of how adjective ordering pref-
erences might develop over time. First, a note on the lim-
itations of our findings. Our simulations, while extensive
and systematic, have looked at a narrow sample of properties
and scale types. We have begun to explore the predictions
for other scale types (i.e., closed scales for adjectives like
“full” or “safe”); however, a systematic investigation awaits
future research. Still, we have demonstrated a clear com-
municative benefit of subjectivity-based orderings. Perhaps
more importantly, we have demonstrated that this benefit does
not apply universally to every possible multi-adjective string.
Some parameter settings lead to exceptions where the reverse
of subjectivity-based ordering yields a higher probability of
communicative success.

The presence of exceptions suggests that speakers’ robust,
subjectivity-based adjective ordering preferences arise not
out of active rational deliberation about the optimal ordering
in context, but rather evolved gradually as speakers increas-
ingly took notice of the communicative successes and failures
associated with their utterances. In this way, the commu-
nicative pressures that favor subjectivity-based orderings in
the majority of cases could have strengthened into the robust
preferences we observe today. This sort of reasoning calls
into question the nature of our knowledge of these prefer-
ences. It seems less likely that speakers represent this knowl-
edge as a subjectivity-based heuristic that gets applied in the
construction of multi-adjective strings, and more likely that
the knowledge is a reflection of the statistical regularities of
our linguistic experience.

Other potential explanations for subjectivity-based order-
ing preferences are conceivable. A prominent example is the
recent explanation put forward by Hahn et al. (2018) who,
unlike here, focus on non-restrictive uses of multi-adjective
strings and communicative benefit related to exchanging sub-
jective opinions about objects, which they show can be re-
lated to surface order and its impact on memory. We believe
that this approach is perfectly compatible with our approach
here. Both factors can play a role in supporting subjectivity-
based adjective orderings. Even more usage-types of adjecti-
val modification can and should be considered. Seen in this
light, the present contribution is but a first step. It highlights
that under one specific kind of use—albeit arguably the most
fundamental information conveying mode of language: refer-
ential communication—a general benefit accrues for ordering
adjectives by subjectivity in the way widely observed in many
of the world’s languages.
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Truswell, R. (2009). Attributive adjectives and nominal tem-
plates. Linguistic Inquiry, 40, 525-533. doi: 10.1162/
ling.2009.40.3.525

Tucker, G. (1998). The lexicogrammar of adjectives: A sys-
temic functional approach to lexis. London: Cassell Aca-
demic.

Whorf, B. L. (1945). Grammatical Categories. Language,

21(1), 1–11. doi: 10.2307/410199
Ziff, P. (1960). Semantic Analysis. Ithaca, NY: Cornell Uni-

versity Press.

350



Simulating Explanatory Coexistence:
Integrated, Synthetic, and Target-Dependent Reasoning

Scott E. Friedman (friedman@sift.net)
SIFT, 319 N 1st Ave.

Minneapolis, MN 55401 USA

Micah B. Goldwater (micah.goldwater@sydney.edu.au)
The University of Sydney, School of Psychology

Brennan MacCallum Building (A18)
NSW 2006 Australia

Abstract

Understanding the cognitive structure of explanations— and
the cognitive processes that assemble them— is a milestone
for understanding how people learn and communicate. Re-
cent research on explanatory coexistence suggests that peo-
ple’s causal beliefs are less globally coherent than previously
thought: people use seemingly-competing supernatural and bi-
ological causes to explain different aspects of the same phe-
nomenon, or they assemble supernatural and biological causes
into single, coherent explanations (Legare & Gelman, 2008;
Legare & Shtulman, 2018; Shtulman & Lombrozo, 2016).
This coexistence— and unexpected coherence— of diverse
causal mechanisms poses interesting questions about the role
of coherence and fragmentation in people’s mental models and
explanations. This paper presents a computational model of
explanatory coherence in the well-characterized domain of dis-
ease transmission, extending a previous cognitive model of
explanation-based conceptual change (Friedman, Forbus, &
Sherin, 2018). Our approach (1) retrieves diverse causal model
fragments based on the phenomenon to explain, (2) assem-
bles coherent causal models using relevance-directed abduc-
tive reasoning, and (3) selects explanatory paths that support
within-explanation and within-scenario coherence. Our model
simulates the three different types of explanatory coexistence
detailed in the literature.

Keywords: cognitive modeling; explanatory coexistence; AI;
abductive reasoning; explanation

Introduction
The cognitive process of explanation has been a central fo-
cus of cognitive science since its inception, and it has broad
implications for communication, instruction, and conceptual
change (Chi, De Leeuw, Chiu, & LaVancher, 1994; Vosni-
adou, 1994; diSessa & Sherin, 1998; Shtulman & Lombrozo,
2016; Friedman et al., 2018). The more recent focus on ex-
planatory coexistence, whereby people utilize diverse— and
seemingly incompatible— causal mechanisms in their expla-
nations (Legare & Shtulman, 2018), poses additional ques-
tions about how people construct and consider explanations,
how explanations are structured, and how explanations co-
here with other beliefs.

This paper presents a computational cognitive model of ex-
planation, building on previous cognitive models of concep-
tual change (Friedman et al., 2018). We apply our cognitive
model to simulate human subjects’ explanatory coexistence
in the domain of disease, as characterized by Legare and Gel-
man (2008) and later by Legare and Shtulman (2018).

Our cognitive model assembles situation-specific causal
models from smaller, generic model fragments (i.e., causal
knowledge units). Given a new situation to explain, the model
explains the situation by:

1. Retrieving causal model fragments based on the situation.
2. Traversing backwards recursively, instantiating model

fragments within the situation in an relevance-directed
beam search, assuming entities and relations as necessary.

3. Identifying the causal path(s) that maximize an objective
coherence function with respect to global assumptions,
coverage over the situation, and presupposition beliefs.

This model assumes that intuitive and culturally-acquired
knowledge coexists, and that the process of assembling ex-
planations is biased principally by coherence. This means
that scientific and supernatural causal mechanisms can coex-
ist in the same explanation, e.g., so that supernatural events
might cause a biological event that leads to a viral infection,
assuming the causal knowledge is primed and applicable.

Our simulation results demonstrate that that our model (1)
simulates the three categories of explanatory coexistence in
the literature and (2) varies its choice of explanation accord-
ing to priming in a manner similar to human subjects.

We continue with an overview of explanatory coexistence
and computational methods used in our cognitive model. We
then describe our approach, present our simulation results,
and conclude with a discussion of our results, key psycholog-
ical assumptions, and directions for future work.

Background
We describe psychology research on explanatory coexistence,
and then we review computational modeling techniques rele-
vant to our simulation.

Explanatory Coexistence
There are scientific and religious or supernatural explanations
for the same natural phenomena (e.g., creation of the uni-
verse, death, disease transmission). It is intuitive that learn-
ing scientific explanations for natural phenomena would re-
place previously learned supernatural explanations; however,
evidence over the past decade suggests the opposite: scien-
tific explanations replacing supernatural explanations is the
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exceptional case. More frequently, people utilize both expla-
nations (Shtulman & Lombrozo, 2016).

Legare and Gelman (2008) examined the specific case of
explaining HIV transmission in South Africa. Before ed-
ucational interventions focusing on the biological transmis-
sion of HIV, AIDS symptoms were explained as the result of
witchcraft. Legare and Gelman (2008) showed that the educa-
tional interventions did not replace the bewitchment explana-
tions; instead, both biological and bewitchment explanations
coexist. For example, a man may have contracted HIV from
sexual intercourse, but was attracted to a woman with HIV
because of witchcraft.

Legare and Shtulman (2018) acknowledge the following
categories of explanatory coexistence, all of which we simu-
late in this work:

1. Integrated reasoning combines seemingly-incompatible
causal mechanisms into a coherent causal structure. For
instance, bewitchment could cause somebody to choose a
sexual partner who has AIDS, and intercourse with that
partner causes disease transmission.

2. Synthetic reasoning invokes multiple causal mechanisms
without articulating hierarchical or temporal precedence to
any, possibly due to competing explanations.

3. Target-dependent reasoning applies different mecha-
nisms to distinct aspects of a situation, in a highly-
contextualized fashion. The various mechanisms do not
participate in the same explanation.

Compositional Modeling
Simulating people’s causal mental models requires expressive
knowledge representation and reasoning (KR&R). An ap-
proach using only atomic logical propositions is not expres-
sive enough to suit the mental model literature (Vosniadou,
1994; Chi et al., 1994; diSessa & Sherin, 1998; Gentner &
Stevens, 1983) or the analogy literature (Friedman, Barbella,
& Forbus, 2012), and an approach using only neural networks
does not support sufficient interpretability.

Previous KR&R research on compositional modeling
(Falkenhainer & Forbus, 1991) provides (1) representations
for modeling the structure and continuous processes of dy-
namic systems, and (2) algorithms for composing these
models on-the-fly for novel situations. Structure-behavior-
function models (Goel, Rugaber, & Vattam, 2009) expand on
this formalism to capture teleology, and have been used to
simulate people’s mental models.

Following recent cognitive modeling work (see the As-
sembled Coherence subsection), we simulate people’s men-
tal models using compositional modeling semantics extended
with more expressive event structure (Pustejovsky, 2013). We
represent each causal mechanism as a generic model fragment
that can compose with others into large situation-specific ex-
planations. Each model fragment describes:

• Categories that it instantiates, from general (e.g., Misfor-
tune) to specific (e.g., Sexual Transmission [of a virus]).

• Participants are the entities or events that interact within
the described mechanism. Each participant has one or
more categories of its own. Model fragments with the same
binding of participants are semantically equivalent.

• Constraints are existence conditions specified over the
participants. If the constraints hold over participants in a
situation, the model fragment may be instantiated.

• Consequences are functional or behavioral representations
specified over the participants. They are asserted into the
situation when the model fragment is instantiated.1

We include diagrams of three of the ten model fragments
used in this simulation domain: Figure 1 shows a simple
fragment describing an Illness state: a subject participant of
type Person; a object participant of type Disease; and super-
categories of Event and Misfortune.

Figure 2 shows the more complex fragment Blood Trans-
mission [of disease], including sub-events of Blood Transfer

1A consequence may have conditions that must hold in the situ-
ation for them to be asserted, but in this paper each conclusion is a
causal relationship without conditions.
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and Illness, as well as a conclusion stating that, if instantiated,
the Blood Transmission is a cause of the Illness. Importantly,
this model fragment constrains its own participants: its sub-
ject (the Person at lower-right) is the subject of the Illness
and the Blood Transfer. These constraints are required for
the fragment— and its causal structure— to be realized.

Finally, Figure 3 illustrates a simple Witchcraft fragment,
with a conclusion stating that an instantiated Witchcraft can
cause a Misfortune of its subject. Per Figures 1 and 2, both Ill-
ness and Blood Transmission are types of Misfortune, so they
can be directly caused by Witchcraft. This allows assembly
of larger causal models, provided the situation (or explicit as-
sumptions) satisfies the fragments’ constraints. We describe
assumptions below, and their affect on explanation quality.

Scalability of compositional modeling is a key consider-
ation as the number of fragments grows, since the deduc-
tive closure of possible models can grow geometrically. We
later describe a relevance-based heuristic in our approach that
jointly (1) reduces the compositional modeling search space
drastically and (2) helps model priming effects.

Abductive Reasoning
Abductive reasoning generates multiple explanations for
observations— potentially generating assumptions along the
way— and then selects the “best” explanation and its con-
stituent assumptions as inferences or rationale for the ob-
servations. Previous computational approaches have mod-
eled explanation quality as numerical cost (Charniak & Shi-
mony, 1994) or as likelihood maximization with Bayesian
approaches (Raghavan & Mooney, 2010). Our approach
uses cost-based abductive reasoning to select explanations
built from model fragments, and could be extended to use
Bayesian approaches if we had estimates of subjects’ be-
liefs of prior probability distributions. To improve scalability
over previous abduction approaches— since the search space
can grow geometrically (Poole, 1993)— our approach uses a
relevance-based heuristic to guide its search for explanations.

Assembled Coherence
This paper extends recent work on the assembled coherence
(AC) theory (Friedman et al., 2018) of mental models and
conceptual change.

AC theory proposes that fragmented knowledge is assem-
bled into larger, coherent mental models through the process
of abductive reasoning (i.e., reasoning to the best explana-
tion). Once assembled, these mental models are evaluated
against a network of presupposition beliefs and then reused
in novel situations by partial reformulation or by analogy
(Friedman et al., 2012). This incorporates ideas from both
the knowledge-in-pieces (diSessa & Sherin, 1998) and frame-
work theory (Vosniadou, 1994) perspectives of mental mod-
els, and postulates that the two perspectives are compatible
and complementary.

AC theory has been implemented in computational cogni-
tive models to simulate explanation-based conceptual change
in the domains of force dynamics (Friedman & Forbus, 2010),

the day-night cycle (Friedman et al., 2012), the human cir-
culatory system (Friedman & Forbus, 2011), and seasonal
change (Friedman et al., 2018).

Approach
Our computational model generates a causal explanation by
(1) retrieving model fragments based on the scenario to ex-
plain, (2) instantiating causal model fragments in an effect-
to-cause beam search prioritized by relevance, (3) scoring co-
herent explanatory paths for coherence, and (4) selecting the
most optimal explanatory path. We describe each of these
processes below.

Retrieving causal knowledge. Given a new situation to ex-
plain, the system retrieves its model fragments (i.e., causal
mechanisms) based on the categorical and relational overlap
of the situation with those of its model fragments.

Specifically, given a situation s and a model fragment m,
we compute relevance Rel(m,s) with respect to the model
fragment’s participant categories Cm and constraint relations
Rm and the situation’s categories Cs and relations Rs. We use
a simple Jaccard distance as a relevance function:

Rel(m,s) =
|Cm∩Cs|+ |Rm∩Rs|
|Cm∪Cs|+ |Rm∪Rs|

(1)

This relevance function is a very coarse estimate of a model
fragment’s applicability to a situation, and we use it for sim-
plicity: a model fragment’s relevance strictly increases with
situation-shared categories (e.g., Person, Blood, SexualInter-
course) and relations (e.g., infectedWith, knows, motherOf ),
and its relevance decreases monotonically relative to its total
number of categories and relations. This approach is similar
to performing spreading activation (Crestani, 1997) from cat-
egories and relations to relevant model fragments but allows
indexing for scalability.

We discuss other plausible retrieval and salience factors in
the conclusion of this paper.

Relevance-directed beam search. Given its relevance over
causal model components, the system performs an incremen-
tal backward search through the space of possible causal
models. This process is given an explanandum (i.e., event
or assertion to explain), such as the illness of an individual,
and then performs the following recursive operations for its
explanation queue.

For each item x in its queue, it finds applicable model frag-
ments that have x’s type as a habitat consequence, e.g., if x is
an Illness, then BloodTransmission (Figure 2) and Witchcraft
(Figure 3) both apply. It selects applicable model fragments
within the top 10% relevance window and attempts to com-
pose the retrieved model fragment(s), constraining them by
binding x as the consequent participant. The composition al-
gorithm may assume any participants necessary to compose
at least one instance, provided it obeys the input binding(s).
The system then adds these new instances (e.g., BloodTrans-
mission or Witchcraft) to the queue and will focus on those
next, repeating.
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Figure 4: Explanations generated and selected for the same prompt of Lerato’s AIDS after a blood transfer: (a) with relevance-
directed causal search; (b) with undirected causal search; and (c) with exhaustive forward-chaining. All approaches utilize the
same causal knowledge and result in the same final explanation, but with orders of magnitude difference in computation.

Explanation structure. Relevance-directed beam search
produces a network of model fragment instances, as illus-
trated in Figure 4(a). In Figure 4(a), we provided the system
the situation plotted in blue: Lerato has HIV and was the re-
cipient of a blood transfer. Lerato and her Illness instance are
outlined in bold for clarity. As with the human subjects of
Legare and Gelman (2008), Lerato’s illness is the explanan-
dum in every simulation in this paper, but we vary the details
of the situation to model priming effects.

The green (e.g., Blood Transmission) and red (e.g., Moral
Punishment) elements in Figure 4(a) are instances of model
fragments that were retrieved and assembled by this algo-
rithm. The difference is that the green instances were chosen
as part of the best explanation (described below), and the red
instances were assembled and considered by the system, but
were not ultimately included in the best explanation.

The yellow elements (e.g., Moral Fault) were assumed dur-
ing the course of instantiation in order to satisfy model frag-
ment participants and constraints.

In summary, Figure 4(a) shows that the system assembled
a Blood Transmission event as a cause of Lerato’s HIV, given
that Lerato was the recipient of a blood transfer that was in-
fected with HIV. It explained the Blood Transmission with a
possible Moral Punishment, and assumed that Lerato com-
mitted some Moral Fault in the course of instantiating the
Moral Punishment. The Moral Punishment (in red) was not

included in the best explanation due to the additional assump-
tion, since this reduces the coherence score (described be-
low). All of our simulation results use this color-coding.

For reference, we contrast the Figure 4(a) explanation
structure resulting from relevance-directed beam search with
two other (less efficient) explanation-assembly algorithms to
characterize the strength of our approach:

• Figure 4(b) illustrates the same situation and explanandum
(i.e., blue nodes) using a backward search without rele-
vance as a heuristic: it regresses from effects to causes, but
tries all causes rather than those primed by the situation.

• Figure 4(c) illustrates the same situation and explanandum
using exhaustive forward search. This instantiates all ap-
plicable events and then repeats.

Neither of these graphs’ structure are legible, but we include
them to visualize the difference in computation across ap-
proaches. Both of these alternative approaches select the ex-
act same final explanation (in green) as the more efficient
relevance-directed beam search in Figure 4(a). This suggests
that relevance from the situation is a useful heuristic for ap-
proximating coherence while assembling explanations in a
large space of possible explanatory paths.

These plots also demonstrate that our qualitative mod-
els are capable of expressing a wide range of explanations,
many of which are incoherent and not employed by people.
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This means we have not trivially ”baked in” the explanation
within the knowledge representation; rather, it is the product
of assembly and assumption (described above) and coherence
assessment, which we describe next.

Scoring explanations for coherence. After assembling ex-
planation structure from model fragments— and potentially
making assumptions in the process— the system traverses the
explanation structure to select a best explanation. This is the
culmination of abductive reasoning (i.e., inference to the best
explanation), which has been formulated as likelihood maxi-
mization (Raghavan & Mooney, 2010), simplicity, and other
measures of explanation quality (Lombrozo, 2007).

Our system scores explanations by (1) identifying con-
nected causal subgraphs of at least one cause (i.e., of Lerato’s
Illness), (2) scoring those subgraphs for coherence, where
larger scores indicate greater coherence, and (3) selecting the
highest-scoring subgraph as the best explanation.

The coherence score is the sum of epistemic features of
a causal graph, where features positively or negatively con-
tribute to coherence. Each feature is scored once for each
causal graph, so many model fragment instances can rely on
one assumption and incur the cost once. We employ a simple
order-of-magnitude scoring technique over these features:

• Model Fragments (-1) penalize for increasing complexity.
• Assumptions (-10) penalize for increasing complexity.
• Situation premises (10) are situation events and entities that

participate in model fragments, increasing explanatory in-
clusion (i.e., coherence) over the stated situation.

• Causal associations (100) are presuppositions that asso-
ciate categories of causes and effects, e.g., witchcraft
causally contributes to illness.

• Causal dissociations (-100) are presuppositions that disso-
ciate categories of causes and effects, e.g., witchcraft does
not cause physical effects.

These features coarsely quantify coherence: within-
explanation coherence, explanation-to-situation coherence,
and explanation-to-presupposition coherence. Following
Vosniadou (1994), we model presuppositions as overarch-
ing belief-level constraints on people’s explanations acquired
culturally or via observation. We do not believe our list of
is complete, since factors like analogical structure, narrative
structure, likelihood, and other factors all contribute to peo-
ple’s explanatory preferences (Lombrozo, 2007).

Simulation
Our simulation setup is a variation of a human experiment by
Legare and Gelman (2008): as exemplified in the previous
section, we prompt the system to explain how Lerato con-
tracted HIV. We use priming conditions from their study—
biological priming, bewitchment priming, neither priming,
and both types of priming— by varying the information we
provide about Lerato. We provide two alternative types of bi-
ological priming: sexual intercourse and blood transfer. We
also provide a ”moral” priming condition, since other results

from Legare and Gelman (2008) suggests that some subjects
believe immoral behavior can cause illness.

Legare and Gelman (2008) report that 60% to 70% of
their subjects exhibited some case of explanatory coexistence,
where both supernatural and biological mechanisms (a) ex-
plained aspects of the scenario (target-dependent); (b) were
juxtaposed (synthetic); or (c) coexisted in a causal chain (in-
tegrated). Subjects were sensitive to priming effects: biolog-
ical and bewitchment priming was associated with more of
those mechanisms appearing in explanations. We next review
our simulation results for seven priming conditions, shown in
the Figure 5 explanation graphs.

Target-dependent reasoning. Graphs (a-e) are all evi-
dence of target-dependent reasoning. Graph (a) is no prim-
ing, where the system assumes immoral behavior as a sim-
ple cause for the disease. Graph (b) is immoral priming,
which removes the need for the assumption of immorality.
Graph (c) is bewitchment priming, mentioning a practitioner
who knows Lerato, which results in assuming an offense, and
also considering Moral Punishment, but ultimately choosing
Witchcraft as an explanation. Graph (d) is biological priming
with mention of receiving infected blood, resulting in a Blood
Transmission explanation. Graph (e) is biological priming
with mention of sexual intercourse with an HIV-infected part-
ner, resulting in a Sexual Transmission explanation, but con-
sidering that the illness or the sexual transmission might have
been caused by immoral behavior.

Synthetic reasoning. Graph (g) demonstrates one possi-
ble example of synthetic reasoning, where a presupposition
causally associates Witchcraft with Illness, and we prime both
biological and witchcraft causes. In this case, the Sexual
Transmission fragment coheres with the situation (i.e., it re-
quires no assumptions), and the Witchcraft fragment coheres
with the presupposition (rendered in black), so the union of
those causes of the illness is higher-scoring than either alone.
Our system has no hard constraint to select single causes at
causal junctions; however, selecting two causes— when ei-
ther alone is sufficient— is counter-intuitive. The ”synthetic
reasoning” category of explanatory coexistence is not as well-
specified as the other two, and could plausibly represent mul-
tiple sub-strategies, e.g., where subjects integrate causes in
parallel, mention multiple salient or competing causes, or are
vaguely verbalizing a more integrated causal chain (as be-
low). This suggests further research with human subjects.

Integrated reasoning. Graphs (f) and (h) are evidence of
integrated reasoning. Graph (f) is priming of both bewitch-
ment and biology, resulting in an integrated explanation:
witchcraft caused the sexual transmission of HIV during the
sexual encounter. Graph (h) is priming of moral and biology,
resulting in another integrated explanation: immoral behav-
ior caused transmission of HIV during a transfer of blood.
Legare and Gelman (2008) did not explicitly attempt the
priming condition in Graph (h), but our model predicts that
an integrated explanation is plausible for these mechanisms.
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Figure 5: Simulation results with identical causal knowledge, by varying priming: (a) no priming; (b) priming immoral behav-
ior; (c) priming with witchcraft practitioner; (d) priming with blood transfer; (e) priming with sexual encounters; (f) priming
with both sexual encounters and witchcraft; (g) same priming but including a presupposition that illness is caused by witchcraft;
and (h) priming with both immorality and blood transfer.

Conclusion
This paper presents a computational cognitive model that
simulates all three categories of explanatory coexistence
(Legare & Shtulman, 2018; Legare & Gelman, 2008), us-
ing the same psychological assumptions as previous mod-
els of conceptual change and self-explanation (Friedman et
al., 2018). Our computational model retrieves diverse causal
model fragments based on relevance to the scenario, and then
assembles and evaluates explanations that may integrate both
biological and supernatural causes.

We simulated different explanatory coexistence outcomes
by varying high-level presuppositions and priming effects; we
did not vary any causal models, likelihood values, or retrieval
parameters across trials. The simulations demonstrate that the
model’s explanation-assembly is sensitive to priming effects,
similar to people (Legare & Gelman, 2008). We showed that
salient high-level beliefs— which have been termed presup-
positions (Vosniadou, 1994)— bias the system to prefer ex-
planations that cohere with their constraints.
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Psychological claims and assumptions. This model and
simulation support the claims that (1) explanatory coexis-
tence may be the rule rather than the exception (Legare &
Shtulman, 2018) and (2) explanatory coherence is a sec-
ondary property of assembling and assessing fragmentary,
reusable causal knowledge (Friedman et al., 2018). These
claims must be framed within the assumptions and limitations
of our computational cognitive model.

Our model does not explicitly represent prior probabilities
or joint probabilities across causal mechanisms. On the one
hand, this allows it to flexibly assemble human-like causal ex-
planations with diverse, seemingly-conflicting mechanisms;
however, it could produce uncharacteristic explanations in
other domains. This is an empirical question we will in-
vestigate in future work, described below. Although we did
not encode likelihoods in this work, our model is compatible
with Bayesian and statistical relational learning: its situation-
specific explanation structure supports statistical inference
(Raghavan & Mooney, 2010), and its coherence score could
inform likelihood judgments in absence of prior probabilities.

Our model simplifies the psychological processes of
knowledge activation and explanation assessment. Some acti-
vation and assessment factors not modeled here include struc-
tural similarity to previous situations, prior likelihood esti-
mates for any given causal mechanism, and probability distri-
butions over causal mechanisms conditionalized on the situa-
tion. Implementing these factors would increase the power of
our model, but at the expense of interpretability: these factors
make additional assumptions about the belief state of each
simulated subject, such as their episodic knowledge and the
likelihood they ascribe to each causal mechanism.

Future work. In addition to the domain of disease, peo-
ple’s explanatory coexistence has been characterized in the
domains of death and human origins (Legare & Shtulman,
2018). Simulating these domains will provide additional em-
pirical evidence of our model’s generality.

In addition to other domains, running this model of expla-
nation on other explanation tasks will help qualify its broader
psychological plausibility. Also, applying this model of ex-
planation within larger models of explanation-based learning
and conceptual change will help us refine the model’s param-
eters knowledge representations.

Finally, this paper’s simulations utilized a purely qualita-
tive comparison between human and machine explanations
as a proof of concept, but we plan to model quantitative prop-
erties, such as subjects’ reaction time, in future work.
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Stereotypes of Transgender Categories: Attributes and Lay Theories
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Abstract

What is the descriptive content and guiding lay theory of transgender stereotypes? The recent rise in public visibility
and the numeric minority of this gender group make this an opportunity to understand not only the content of stereotypes
applied to transgender individuals today, but also the ontology of gender guiding the content of these stereotypes. Using
convergent methods, we measure the descriptive content of transgender stereotypes and assess the role of essentialist
beliefs in guiding that content. We show that transgender categories are perceived less positively than cisgender categories,
and that while perceptions of cisgender men and women differ sharply, those of transgender men and women show striking
similarity. Essentialist beliefs about gender exaggerate these patterns.
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Incorrect Guesses Boost Retention of Novel Words in Adults but not in Children
Chiara Gambi
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Abstract

What is the mechanism by which linguistic knowledge is updated over time? In six experiments, we asked whether error-
driven learning can explain how adults and children add new words to their vocabulary. Participants were exposed to
novel object labels that were more or less unexpected given participants linguistic knowledge. Two-to-four-year-olds were
strongly affected by expectations based on contextual constraint when choosing the referent of a new label. However,
while adults formed stronger memory traces for novel words that violated a stronger prior expectation, childrens memory
was unaffected by the strength of their prior expectations. We conclude that the encoding of new words in memory follows
the principles of error-driven learning in adults, but not in preschoolers.
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Abstract 
How sleep affects memory in older adults is a critical topic, 
since age significantly impacts both sleep and memory. For 
declarative memory, previous research reports contradictory 
results, with some studies showing sleep-dependent memory 
consolidation and some other not. We hypothesize that this 
discrepancy may be due to the use of recall as the memory 
measure, a demanding task for older adults. The present paper 
focuses on the effect of sleep on relearning, a measure that 
proved useful to reveal subtle, implicit memory effects. 
Previous research in young adults showed that sleeping after 
learning was more beneficial to relearning the same Swahili-
French word pairs 12 hours later, compared with the same 
interval spent awake. In particular, those words that could not 
be recalled were relearned faster when participants previously 
slept. The effect of sleep was also beneficial for retention after 
a one-week and a 6-month delay. The present study used the 
same experimental design in older adults aged 71 on average 
but showed no significant effect of sleep on consolidation, on 
relearning, or on long-term retention. Thus, even when using 
relearning speed as the memory measure, the consolidating 
effect of sleep in older adults was not demonstrated, in 
alignment with some previous findings. 

Keywords: sleep-dependent memory consolidation; ageing; 
learning; relearning; repeated practice 

Sleep, Memory, and Age 
The importance of sleep in cognitive functioning is now 

well established. For instance, sleep has been shown to 
benefit the consolidation of declarative memories acquired 
during the day. It is usually observed that sleeping after a 
learning episode improves recall performance during a test 
compared to the same delay without sleep (see Rasch & Born, 
2013, for a comprehensive review). Such memory 
consolidation is thought to originate from two 

complementary processes. First, the reactivation or “replay” 
of recent memory traces during slow-wave sleep (SWS) 
causes declarative memories that are initially hippocampal-
dependent to become increasingly dependent on the 
prefrontal cortex (Takashima et al., 2009). In parallel, a 
downscaling process during sleep leads to the recalibration of 
synaptic connections that were modified during learning 
(Tononi & Cirelli, 2014). The overnight memory 
improvement has been clearly demonstrated in young adults 
but is more controversial in older adults (Harand et al., 2012). 

Sleep undergoes both quantitative and qualitative changes 
over the course of ageing. The most obvious change in sleep 
in healthy older adults is a decrease in total sleep time (TST) 
induced by an increase in the time spent awake both after 
bedtime (i.e., sleep latency) and during the night (Carrier et 
al., 1997). As a result, sleep efficiency (i.e., ratio TST / time 
in bed) declines and reaches 79% or less at age 70 (Bliwise, 
et al., 2005) compared to about 90% in healthy adults. Sleep 
architecture is also modified, with a reduction in SWS 
(Lombardo et al., 1998), whereas time in lighter stages (non-
Rapid Eye Movement nREM1 and nREM2) increases 
(Ohayon et al., 2004). However, the time spent in REM sleep 
remains relatively unchanged. Modifications in sleep 
microstructure are also observed. A reduced spectral EEG 
power is observed, in particular for slow-wave activity 
(SWA) during SWS, especially over the prefrontal cortex 
(Dubé et al., 2015). Spindle density, frequency, and duration 
are also diminished (Crowley et al., 2002; Guazzelli et al., 
1986), as well as the density of phasic REM phases (Darchia, 
Campbell, & Feinberg, 2003). Thus, many sleep components 
underpinning sleep-related memory consolidation in young 
adults, such as SWA and spindle activity, are reduced with 
increasing age (Carrier et al., 2011; Martin et al., 2013).  
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Aging is also associated with declarative memory changes. 
Overall, older adults exhibit poorer memory recall while their 
recognition performance remains relatively spared (e.g. 
Danckert & Craik, 2013; see Grady & Craik, 2000 for 
review). They also exhibit an increasing difficulty to learn 
new material compared to the younger adults, because of 
poor encoding strategies (see Craik & Rose, 2012, for 
review). These effects might be mainly explained by an 
impairment in forming associations (Old & Naveh-Benjamin, 
2008).  

It has been proposed that changes in sleep may contribute 
to age-related memory impairments (Buckley & Schatzberg, 
2005; Hornung, Danker-Hopfe, & Heuser, 2005; Mander et 
al., 2014; see Scullin & Bliwise, 2015). A proposed 
mechanism (Mander et al., 2013) is that reduction of gray 
matter volume associated with aging impedes the generation 
of SWA and spindles during sleep, thereby impairing 
memory consolidation.  

Despite these age-related changes in sleep, some research 
reported the persistence of! sleep-dependent memory 
consolidation in the older adult (Aly & Moscovitch, 2010; 
Sonni & Spencer, 2015; Wilson et al., 2012), whereas others 
failed to demonstrate it or demonstrated a lesser 
consolidation compared to young adults (Baran, Mantua, & 
Spencer, 2016; Cherdieu et al., 2014; Mander et al., 2013, 
2014; Mary, Schreiner, & Peigneux, 2013; Scullin, 2013; 
Scullin et al., 2017). Other research described a more 
complex picture (Jones et al., 2016). 

Most of these studies used free- or cued-recall performance 
as a measure of consolidation. Such measures may be 
suboptimal to reveal consolidation and may thus contribute 
to the contradictory findings, especially since recall is a 
demanding task specifically impaired in the older adult (e.g. 
Troyer, Graves, & Cullum, 1994; Danckert & Craik, 2013). 
In addition, these measures are binary (i.e., correct/incorrect) 
and are poorly informative as to the strength of a memory 
trace. It seems possible to assess memory retention in an 
alternative, more implicit manner by measuring how fast 
participants relearn the information (i.e., savings in 
relearning). In a recent study, Mazza et al. (2016) found that 
young adults significantly benefitted from sleep to improve 
their memory performance in both relearning and retention of 
word pairs. The Sleep group, who slept during the 12-hour 
interval between the learning and the relearning sessions, 
displayed a faster rate of relearning compared to the Wake 
group that did not sleep. This was true even after controlling 
the recall performance just before relearning. In other words, 
those words that could not be recalled before the relearning 
session were relearned faster. The present study consists of a 
close replication of the study by Mazza et al. (see Figure 1) 
with older adults and using the same type of material. We 
tested the hypothesis that sleep does still favor consolidation 
in older adults, as evidenced when relearning speed is 
measured instead of recall.  

Method 

Participants 
Forty French healthy participants completed the study. 

They were aged between 65 and 80 and had normal sleep and 
cognitive abilities. Participants with sleep problems, as 
assessed by a score of 8 or above on the Pittsburgh Sleep 
Quality Index (PSQI; Buysse et al., 1989), or presenting 
altered cognition, as assessed by a score below 27 in the 
Mini-Mental State Examination (MMSE; Folstein, Folstein, 
& McHugh, 1975), were excluded. Health information was 
gathered from all participants during an interview about their 
medical history and medication. Participants with a medical 
history and/or taking medications with known sensory or 
neurological effects were also excluded. All participants in 
the study were native French-speaking and present normal or 
corrected-to-normal vision. The present study was in 
accordance with the ethical standards of the responsible 
committee on human experimentation of the Helsinki 
Declaration of 1975, as! revised in 2000. Informed written 
consent was obtained from each participant. 

Furthermore, all participants underwent a neuro-
psychological and sleep assessment with sleep quality 
(PSQI), circadian topology (the Horne and Ostberg 
morning/evening questionnaire; Horne & Ostberg, 1976), 
level of sleepiness (Epworth Sleepiness Scale; Johns, 1991), 
basic long-term and short-term memory capacity (subtests 
from the Wechsler Adult Intelligence Scale IV, Wechsler, 
2008, and from the Wechsler Memory Scale III; Wechsler, 
1997), global cognitive ability (MMSE), and anxiety and 
depression levels (The Hospital Anxiety and Depression 
Scale; Zigmond & Snaith, 1983).  

The participants were randomly assigned to the Sleep or the 
Wake group. Three participants did not pursue the 
experiment after having spent too much time completing the 
learning session. Eventually, the data from 19 participants in 
the Sleep and 18 in the Wake group were included for 
analysis. Their age ranged from 65 to 80 (mean age 71.6 +/- 
SE) with 20 women in total. The Sleep and Wake groups did 
not significantly differ on any of the following variables: 
gender, age, number of attended school years, sleep quality, 
circadian topology, level of sleepiness, basic long-term and 
short-term memory capacity, global cognitive ability, and 
anxiety and depression levels. An additional 6 participants 
started but did not complete the study for various reasons 
(e.g., not available for the upcoming session). 

Material and Procedure 
During the first session, participants were trained to learn 

the French translation of 12 Swahili words (e.g., nyanya-
tomate), using repeated tests with feedback. The number of 
pairs was decreased from 16 in Mazza et al. (2016) to 12 here 
to adjust to the memory difficulties encountered by the older 
adult. A perfect learning criterion was adopted in which pairs 
were tested until they received a correct answer (Figure 1A). 
Twelve hours later, in the second (relearning) session, they 
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had to relearn the pairs to the criterion of correctly answering 
the 12 items in a row (Figure 1B). This equated the 
participants’ performance at the end of the relearning session. 
Initial performance on the first trial for the 12 items and the 
number of trials necessary to attain the relearning criterion 
were measured. 

The Wake group performed the learning session at 9:00 
a.m. and the relearning session at 9:00 p.m. the same day 
(Figure 2). They did not sleep between the two sessions, as 
was instructed. The Sleep group performed the learning 
session at 9:00 p.m. and the relearning session at 9:00 a.m. 
the following day. They experienced a night of sleep between 
the two sessions, during which actimetry (Actiwatch system, 
CamNtech, Cambridge, UK)"was used to quantify TST. One 
week and six months after the relearning session, the 
retention of the material was further assessed for each group 
using a cued-recall task without feedback. 

 

 
 

Figure 1. Procedure for the Learning (A) and Relearning (B) 
sessions.  

 

 
 

Figure 2.  Temporal description of the experimental design. 
L = Learning session. RL= Relearning session. Nights are 

represented by grey areas. 

Results 
Based on the results obtained in the young adults in Mazza 

et al. (2016), it was expected that the Sleep group would start 
the relearning session with an advantage over the Wake 
group, would relearn faster, and would perform better after 
one week and six months. The overall results are presented in 
Figure 3.  

Along with inferential frequentist statistics (two-tailed 
Student’s t-tests) using a critical p-value of .05 and effect 
sizes reported using Cohen’s d, dependent variables were also 
submitted to two-tailed Bayesian t-tests (Rouder, et al., 2009) 
comparing the Wake and the Sleep groups.  Because we 
observed weak effects, we will present the BF01, that is, the 
odds ratios in favor of the null hypothesis H0 (i.e., no 
difference between the means) against the alternative 
hypothesis (i.e., a difference between the means). They were 
computed using JASP (JASP software, 2016) and will be 
considered according to the following scale: values inferior 
to 3 as anecdotal evidence, values ranging from 3 to 10 as 
substantial evidence, and values above 10 as strong evidence 
in favor of H0, with higher values indicating gradually 
increasing confidence (Jarosz & Wiley, 2014; Jeffreys, 
1961).  

The learning session was performed similarly by the two 
groups with respect to the proportion of correct answers 
provided at the first trial (M = 0.21, SE = 0.04 in both groups). 
The estimated Bayes factor (BF01 = 3.14) suggested that the 
data were 3.14 times more likely in favor of H0 than of the 
alternative hypothesis, i.e., indicative of anecdotal to 
substantial evidence in favor of the absence of a difference. 
The number of trials necessary to achieve the learning 
criterion was not significantly different (Sleep: M = 5.79, SE 
= 0.41; Wake: M = 6.00, SE = 0.45; t(35) = 0.35, p = .73), 
with an anecdotal evidence in favor of H0 (BF01 = 3). 

During the relearning session, the proportion of correct 
answers on the first trial did not differ in the Sleep (M = 0.46, 
SE = 0.04) and in the Wake group (M = 0.40, SE = 0.05; t(35) 
= 0.93, p = .36, Cohen’s d = 0.31, BF01 = 2.23, anecdotal 
evidence in favor of H0). Both groups needed an equivalent 
number of trials to achieve the relearning criterion (Sleep: M 
= 7.63, SE = 0.76; Wake: M = 8.00, SE = 1.16; t(35) = 0.27, 
p = 0.79; d = 0.09; BF01 = 3, anecdotal evidence in favor of 
H0). The relearning speed was computed by dividing the 
number of unrecalled items at the first trial by the number of 

A.#Learning#session B.#Relearning session

A.#Learning#session B.#Relearning session

B.! Learning session 

A.! Relearning session 
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trials necessary to complete the session. This was a way to 
control for the influence of initial performance on relearning 
speed. Indeed, the more the participants initially recalled, the 
fewer items remained to be relearned. The relearning speed 
did not differ between the Sleep (M = 0.96, SE = 0.09) and 
the Wake group (M = 1.06, SE = 0.08, t(35) = 0.78, p = .44; 
d = 0.26; BF01 = 2.5, anecdotal evidence in favor of H0). Thus, 
contrary to our expectation, there was no clear-cut indication 
of a consolidating effect of sleep, since neither the initial 
retrieval performance nor the relearning speed varied 
between the two groups.  

After one week, there was no significant difference between 
the performance in the Sleep (M = .75, SE = .04) and the 
Wake group (M = .64, SE = .06; t(35) = 1.59, p = .12; d = .52; 
BF01 = 1.19, anecdotal evidence in favor of H0). In addition, 
these scores were overall relatively high, indicating that the 
specific relearning method used was quite efficient at 
inducing long-term retention. For the six-month delay, the 
data from 4 participants in the Sleep group and from 2 
participants in the Wake group could not be obtained. There 
was no significant difference between the groups (Sleep: M = 
.42, SE = .08; Wake: M = .30, SE = .06; t(29) = 1.22, p =.23; 
d = .44; BF01 = 2.35, anecdotal evidence in favor of H0). 
 

  
 

Figure 3: Upper part: Mean proportion correct in the first 
trial of the learning and relearning sessions, and in the 7-day 

and 6-month recall sessions. 
Lower part: Number of trials necessary to achieve the 

criterion in the learning and the relearning session. 
The error bars represent standard errors of the mean. 

 
The actimetric data was lost for 4 participants in the Sleep 

group. The Sleep group (N = 15) exhibited a mean TST of 
402 min (6 hours and 42 minutes; 308 - 469 min; SE = 12.1). 
The correlation between TST and initial performance on the 
relearning session was not significant (r = .40; df = 13; p = 
.14). The correlation between TST and the number of trials 
needed at the relearning session was surprisingly positive but 

not significant either (r = .45, p = .09). In addition, the 
correlation between TST and the relearning speed was 
significant and negative (r = -.74, p = .0015), indicating that 
the more the participants slept, the slower they were to 
relearn. Finally, there was no correlation between TST and 
the performance after one week (r = -.03, p = .92). 

Discussion 
The present results display major differences from those of 

the Mazza et al. study that used similar methods and sample 
sizes (n=20 in each group) with younger adults. In the present 
study with older adults, an episode of sleep did not 
significantly boost subsequent recall 12 hours after learning, 
compared to wakefulness, Thus, contrary to our hypotheses, 
even with more fine-grained and implicit measures of 
declarative memory, we did not show significant benefits of 
sleep on relearning in this population. The effect on the long 
term, however, is more ambiguous, with a potential weak 
benefit of interpolated sleep after 7 days and 6 months, which 
is not significant in the present study, most likely due to lack 
of power. In any case, the size of this benefit is far weaker in 
the older than in the younger adults. 

Our hypothesis that the sleep-dependent processes that 
consolidate memories are subtle in the older population and 
therefore require more implicit measures to be shown was not 
validated. These results are however consistent with other 
studies that did not show any sleep-dependent benefit for 
declarative memory in the older adult (see Gui et al., 2017 for 
a review). Contrary to younger adults, recommendations such 
as “you should sleep between learning and relearning” does 
not seem as relevant for the aging population, although it does 
not seem detrimental either (especially for long-term 
retention). 

One surprising finding is the negative correlation between 
TST and the relearning speed, indicating that the more the 
participants slept, the more trials they needed in order to 
reach the relearning criterion. This is in contradiction with 
results from Aly & Moscovitch (2010) but is consistent with 
that of Scullin (2013) and Tsapanou et al. (2017). A 
possibility is that people with poorly efficient sleep with 
respect to consolidation and maybe other functions tend to 
sleep more to compensate. 

How to reconcile these results with those indicating clear 
sleep-dependent consolidating effects of sleep in the older 
adult (e.g., Aly & Moscovitch, 2010; Sonni & Spencer, 2015; 
Wilson et al., 2012)? A first limit might be that the task was 
too difficult and not well calibrated for the participants, 
therefore impeding the emergence of potential effects of 
sleep. However, the relatively high scores observed after one 
week go against this limitation. Another limit could be that 
the criteria of perfect-performance during learning and 
relearning did not leave enough possibility for sleep-
dependent improvement. However, the relatively low 
performance at the beginning of relearning and the fact that 
the paradigm was identical to that in Mazza et al.’s study go 
against this limitation. Finally, the discrepancies could be 
linked to the material used. Our study consisted of learning 
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pseudowords which are verbal representations that do not yet 
exist in the mental lexicon and need to be integrated into it. 
This integration has been shown to require time (e.g., Dumay 
& Gaskell, 2007). Moreover, in the present study, in addition 
to creating such a novel verbal representation, participants 
needed to associate it to a known French word in order to 
succeed at the cued-recall task. Such associative learning is 
impaired in aging (e.g., Service & Craik, 1993). Therefore, it 
would be interesting to examine in future research whether 
the absence of sleep-induced benefits would also be observed 
when older adults learn and relearn word pairs instead of 
pseudoword-word pairs (see Kurdziel, Mantua, & Spencer, 
2017 for an overall review of the effect of sleep on word 
learning in the older adult). 

Quality of sleep and memory performance are critical 
issues in modern societies, especially for older people. Their 
functional relationship needs to be investigated further 
(Scullin & Bliwise, 2015). In particular, an intriguing issue is 
whether improving sleep quality could efficiently improve 
memory functioning. Such possibility could lead to potential 
practical applications for improving the aging population’s 
quality of life. 
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Abstract 

Drift diffusion (or evidence accumulation) models have found 
widespread use in the modelling of simple decision tasks. 
Extensions of these models, in which the model’s 
instantaneous drift rate is not fixed but instead allowed to 
vary over time as a function of a stream of perceptual inputs, 
have allowed these models to account for more complex 
sensorimotor decision tasks. However, many real-world tasks 
seemingly rely on a myriad of even more complex underlying 
processes. One interesting example is the task of deciding 
whether to cross a road with an approaching vehicle. This 
action decision seemingly depends on sensory information 
both about own affordances (whether one can make it across 
before the vehicle) and action intention of others (whether the 
vehicle is yielding to oneself). Here, we compared three 
extensions of a standard drift diffusion model, with regards to 
their ability to capture timing of pedestrian crossing decisions 
in a virtual reality environment. We find that a single 
variable-drift diffusion model (S-VDDM) in which the 
varying drift rate is determined by visual quantities describing 
vehicle approach and deceleration, saturated at an upper and 
lower bound, can explain multimodal distributions of crossing 
times well across a broad range vehicle approach scenarios. 
More complex models, which attempt to partition the final 
crossing decision into constituent perceptual decisions, 
improve the fit to the human data but further work is needed 
before firm conclusions can be drawn from this finding.   

Keywords: complex decision making; road crossing; 
variable-drift diffusion models 

Introduction 

Sensorimotor decision making, how people decide what 

motor actions to take and when, has been a key object of 

research over the past hundred years in the psychological 

sciences. One area of particular progress has been in the 

development of mathematical models which predict action 

choices and reaction times. In particular, drift diffusion 

models (DDMs) and various related models, which describe 

the decision making process as a noisy accumulation of 

sensory information to a bound, have been found to very 

successfully capture behavioral data across a plethora of 

experimental tasks (Bogacz, Brown, Moehlis, Holmes, & 

Cohen, 2006; Ratcliff, Smith, Brown, & McKoon, 2016) 

and have shown success in bridging the gap between 

neurophysiological and behavioral data (Purcell et al., 

2010).  

DDMs and related models have most commonly been 

applied to two alternative force choice (2-AFC) tasks, in 

which people make a decision between two alternative 

choices based on perceptual information. Quintessential 

among these is the kinematogram task in which people 

decide the direction of a random flow of dots (Ratcliff et al., 

2016). DDMs have also been successfully applied to more 

complex sensorimotor tasks, such as determining the action 

intentions of other people (Koul, Soriano, Tversky, Becchio, 

& Cavallo, 2019). However, standard DDMs and related 

models of the evidence accumulation type typically assume 

that the drift rate (i.e., the rate at which evidence 

accumulates to a bound), is set to a fixed value. Yet many 

sensorimotor decisions take place in the context of a 

continuous stream of varying sensory information. Models 

with variable drift rate, which we will refer to here as 

variable-drift diffusion models (VDDMs), have been 

successful in the vehicle driving context, accounting well 

for driver brake responses to the time varying visual 

looming of an approaching vehicle (Xue, Markkula, Yan, & 

Merat, 2018) as well as for steering responses during lane-

keeping (Markkula, Boer, Romano, & Merat, 2018). 

However, further generalization to more complex real 

world decisions brings additional challenges. Firstly, more 
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complex decisions may depend on multiple types of sensory 

cues, raising the question of how different cues should 

contribute to the drift rate. In this paper, we will consider a 

pedestrian’s decision of when to cross at a zebra crossing 

with an approaching vehicle, a decision relying on at least 

two types of cues (Rasouli, Kotseruba, & Tsotsos, 2017): 

(1) Cues regarding own affordances, for example in terms of 

the time to arrival (TTA) of the approaching vehicle, in 

relation to the width of road to be crossed. (2) Cues 

regarding the action intention of the vehicle driver, in the 

form of kinematic cues (e.g., vehicle deceleration) and/or 

communicative cues (e.g., flashing headlights).  

Secondly, when the sensory inputs to the model vary over 

a large magnitude, this may result in undesirable model 

behavior. For example, when a vehicle decelerates to a stop, 

its perceptually estimated TTA will go to infinity. If this is 

used as a model input then the accumulator will be 

guaranteed to reach its threshold (and initiate a crossing) 

immediately when the vehicle stops, when in fact people 

show a probabilistic delay in crossing times. 

Finally, it remains unclear how complex decisions, like 

the zebra crossing decisions, are structured in practice. Is the 

overt behavior the result of only a single action decision (“I 

am crossing now”), or is that action decision underpinned 

by separate, purely perceptual decisions about the 

affordances and action intentions mentioned above (e.g., “I 

can make it across before the car”; “The car is stopping for 

me”)? There are many examples in the broader literature of 

psychological, cognitive, and robotics models where 

multiple parallel units of activation dynamics akin to 

evidence accumulators have been interconnected to produce 

more complex emergent behavior (e.g., Cooper & Shallice, 

2000; Sandamirskaya, Richter, & Schöner, 2011), but DDM 

type decision models have seemingly not been previously 

generalized in this direction. 

In the current study we wished to test three novel 

VDDMs, which aim to address the above three challenges. 

Firstly we wished to test a model recently proposed by 

Markkula, Romano, et al., (2018), which we refer to as the 

connected variable-drift diffusion model (C-VDDM). The 

C-VDDM models action decisions and perceptual decisions 

as separate but interconnected accumulator units as 

discussed above (see Figure 1, top), where the drift rate of 

each perceptual unit is a function of a time varying sensory 

input. In turn, the drift rate of the action unit is a function of 

the current activation levels of each of the two perceptual 

units. The activation of each perceptual unit is bounded to 

±1 which ensures that large perceptual inputs do not 

immediately lead to the action unit reaching threshold. 

Markkula, Romano, et al., (2018) showed that this model 

could qualitatively account for bimodal distributions of 

crossing decision times, as reported for human pedestrians, 

but did not formally test or fit the model with human data. 

We also wished to test a simplification of the C-VDDM 

model, in which a single perceptual unit has a drift rate 

which varies as a function of a linear combination of 

multiple sensory cues (see Figure 1, middle), in turn  

 

 
 

Figure 1: The three variable-drift diffusion models 

(VDDMs). 

 

modulating the activation level of an action unit. We refer to 

this as the dual variable-drift diffusion model (D-VDDM). 

Like the C-VDDM, this model ensures that large sensory 

inputs do not result in the reaction time distribution 

collapsing to a spike. However, unlike the C-VDDM, this 

model does not independently represent different underlying 

decision processes.   

Finally, we also wanted to test a model consisting of a 

single accumulator unit with a drift rate that varies as a 

function of a linear combination of sensory cues (see Figure 

1, bottom). Instead of the D-VDDM’s intermediate 

accumulator unit, to ensure that high input values did not 

result in rapid termination of the accumulation process, we 

limited the drift rate of this model by saturating the 

perceptual input, such that it could not have a magnitude 

greater than a certain value. We refer to this model as the S-

VDDM.  

To compare the three models we collected data on 

pedestrian crossing times, using a virtual reality (VR) 

headset. VR allowed us to carefully control the experimental 

stimulus (i.e., vehicle approach trajectories) and avoid 

confounding variables that may be present when observing 

crossing behavior in the real world (e.g., effects of other 

pedestrians or additional vehicles on crossing behavior). We 

used a large range of vehicle approach trajectories, which 

were specifically chosen with the aim of creating different 

types of situations with respect to pedestrian affordances 

and vehicle action intentions.  
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Virtual Reality Road Crossing Task 

Participants 

Twenty participants (age 24-60, average 27.9 years; 11 

male) took part in the study and were recruited from a 

University participant pool. All participants provided 

informed consent, and the study was approved by the 

University Research Ethics committee. 

Materials and Design 

Participants wore an HTC Vive Virtual Reality headset 

while standing. All stimuli were created in Unity 2018. The 

stimuli consisted of a straight two lane road (width: 5.85 m) 

with a zebra crossing and pavements on either side. The trial 

started with the participant standing at the edge of the zebra 

crossing, looking directly across it. To start the trial the 

participant turned their head to the right, which 

(unbeknownst to the participants) instantiated the 

approaching car at its initial position and speed for the 

scenario in question. For increased experimental control and 

simplicity, the participants did not physically walk across 

the VR pedestrian crossing, but instead pressed a trigger 

button on an HTC Vive controller when they decided it was 

safe to cross, and the participant’s view point in the virtual 

world then translated across the crossing at 1.31 m s−1. 

Once the participant had crossed the road in VR, the trial 

ended. The time at which the participant initiated the 

crossing, measured from the point at which the vehicle 

began moving, was the primary outcome measure.  

Scenarios 

To preserve as much as possible a natural road-crossing 

behavior, the number of trials per participant was limited to 

16. Each of these trials used a different vehicle approach 

scenario, presented in a pseudo-randomized order to the 

participants. The scenarios were defined so as to elicit a 

broad range of different crossing situations, and were of 

three general types, with parameters as listed in Table 1: 

“Constant velocity” (6 scenarios): The vehicle appeared at 

distance 𝐷𝑖𝑛𝑖𝑡  from the pedestrian, and maintained a 

constant velocity 𝑣𝑖𝑛𝑖𝑡 , i.e., it had an initial time to arrival  

𝑇𝑇𝐴𝑖𝑛𝑖𝑡. 

“Decelerate to a stop” (8 scenarios): The vehicle 

appeared at distance 𝐷𝑖𝑛𝑖𝑡 from the pedestrian, with initial 

speed 𝑣𝑖𝑛𝑖𝑡 , and immediately decelerated at a constant rate 

so as to reach zero speed at distance 𝐷𝑠𝑡𝑜𝑝.  

“Decelerate without stopping” (2 scenarios): The vehicle 

appeared at distance 𝐷𝑖𝑛𝑖𝑡 at speed 𝑣𝑖𝑛𝑖𝑡  and immediately 

decelerated at a constant rate until distance 𝐷𝑠𝑡𝑜𝑝, where it 

continued to travel at a final speed of 5 km/h.  
 

Variable-Drift Diffusion Models 

We developed three models to capture the road crossing 

times (𝐶𝑇) of pedestrians in the VR study, as illustrated in 

Figure 1. All models received the same perceptual inputs. 

As in Markkula, Romano et al., (2018) the first input was 

 

Table 1: Scenario parameters 

 

Scenario type 
𝑣𝑖𝑛𝑖𝑡   

(km/h) 

𝐷𝑖𝑛𝑖𝑡  

(m) 

𝑇𝑇𝐴𝑖𝑛𝑖𝑡  

(s) 

𝐷𝑠𝑡𝑜𝑝  

(m) 

Constant 

velocity 

25 15.90 2.29 N/A 

50 31.81 2.29 N/A 

25 31.81 4.58 N/A 

50 63.61 4.58 N/A 

25 47.71 6.87 N/A 

50 95.42 6.87 N/A 

Decelerate  

to a stop 

25 15.90 2.29 4 

50 31.81 2.29 4 

50 31.81 2.29 8 

25 31.81 4.58 4 

50 63.61 4.58 4 

50 63.61 4.58 8 

25 47.71 6.87 4 

50 95.42 6.87 4 

Decelerate w/o 

stopping 

50 27.78 2 8 

50 41.67 3 8 

  

based on the instantaneous apparent time to arrival (TTA) of 

the vehicle, disregarding any deceleration. This apparent 

TTA is visually available, as the relative rate of optical 

expansion 𝜏 (Lee, 1976). The model input was given by 𝜏 −
𝜏𝑝𝑎𝑠𝑠, where 𝜏𝑝𝑎𝑠𝑠 = 2.46 (the time it took to cross the VR 

road). Thus the model input was positive when it was 

possible to make it across the road before the vehicle (based 

on apparent TTA), and negative when it was not. The 

second model input was based on the derivative of the 

vehicle’s apparent TTA, �̇�.  The input was defined as �̇� −
 �̇�𝑝𝑎𝑠𝑠, with �̇�𝑝𝑎𝑠𝑠 =  −0.5, corresponding to the vehicle 

stopping to just exactly touch the participant (Lee, 1976). 

Thus, the input was positive when the vehicle was 

decelerating so as to stop before the participant, and 

negative when not.  

For the C-VDDM model these inputs were fed into two 

separate “perceptual decision” units. For the D-VDDM and 

S-VDDM model these were linearly combined and fed into 

a single accumulator unit. For the S-VDDM this combined 

weighted input was also limited such that it could not 

exceed a certain magnitude. 

Model Specification 

The models were all specified on the same general form, 

following Markkula, Romano et al., (2018), of which a brief 

summary is provided here. At any point in time 𝑡, the 

activation level of each of the model’s accumulator units is 

described by the vector, 𝑨𝑡 = [𝐴1,𝑡 , 𝐴2,𝑡 , … , 𝐴𝑈,𝑡]
𝑇
, where 𝑈 

is the number of accumulator units, and each unit’s 

activation is limited to −1 ≤ 𝐴𝑖,𝑡 ≤ 1, with 1 and −1 

signifying “yes” and “no” decision states, respectively. At 

each simulation time step, the activation levels are updated 

according to, 
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𝑑

𝑑𝑡
𝑨𝑡 = −

1

𝑇
𝑨𝑡 + 𝑓𝑐(𝑾𝐼𝐷(𝑲)𝑰𝑡 , 𝜂) + 𝑾𝑌𝐷(𝒀)𝑓𝑌(𝑨𝑡)

+ 𝑾𝑁𝐷(𝑵)𝑓𝑁(𝑨𝑡) 

𝑨𝑡+𝑑𝑡 ∼ 𝑀𝑢𝑙𝑡𝑖𝑁𝑜𝑟𝑚(𝑨𝑡 + 𝑑𝑨𝑡 , 𝚺√𝑑𝑡), 

where 𝑰𝑡 = [𝜏𝑡 − 𝜏𝑝𝑎𝑠𝑠,  𝜏�̇� − �̇�𝑠𝑡𝑜𝑝]
𝑇
, is a vector of 

perceptual inputs. 𝑲 = [𝑘1, 𝑘2]𝑇 is a vector of relative 

weights for these two perceptual inputs, 𝒀 and 𝑵 are vectors 

of connection weights for the “yes” and “no” accumulator 

output connections respectively and 𝐷(𝒙) is a diagonal 

matrix with diagonal 𝒙. 𝑾𝐼, 𝑾𝑁 and 𝑾𝑌 are design 

matrices which specify accumulator inputs and connections, 

with elements 𝑾[𝑗,𝑘] ∈ {0, 1}. The function 

𝑓𝑐(𝑾𝐼𝐷(𝑲)𝑰𝑡 , 𝜂) limits the perceptual inputs to the 

accumulators between ±𝜂. In the C-VDDM and D-VDDM 

𝜂 was fixed at infinity (and so had no effect), while in the S-

VDDM it was a free parameter. This allowed the S-

VDDM’s activation to gradually rise to 1, even when the 

inputs were at large values. The function 𝑓𝑌(𝑥) limits the 

input between 0 and 1, thus returning 𝑓𝑌(𝐴𝑖,𝑡) = 1 for an 

accumulator activation 𝐴𝑖,𝑡 = 1 (a “yes” state), while 

𝑓𝑁(𝑥) = 𝑓𝑌(−𝑥), such that 𝑓𝑁(𝐴𝑖,𝑡) = 1 for 𝐴𝑖,𝑡 = −1 (a 

“no” state). 𝚺 is a covariance matrix with all off diagonal 

elements set to 0, and all diagonal elements sharing the 

same value, 𝜎2, representing noise in the decision process.   

When the activation of the action decision accumulator 

reaches a value of 1, a decision to cross the road is made, 

and the time at which this occurs is the crossing time, 𝐶𝑇𝑚.  

Model Fitting 

To simplify notation, here we denote all the parameters of a 

given VDDM model as 𝜃. Fitting to the VR dataset is made 

challenging as calculating the likelihood function, 𝑃(𝐶𝑇|𝜃), 

involves computing a high dimension integral.  

Instead we estimated the likelihood function using a large 

number of data simulations, referred to as the pseudo-

likelihood estimation, �̂�(𝐶𝑇|𝜃). For each trial scenario we 

generated 5000 simulated crossing times, 𝐶𝑇𝑚, from the 

model being fitted. We then calculated a numerical 

probability distribution 𝒃 over 80 bins equally spaced 

between 0 and 20 seconds, where 𝒃 is a vector where each 

element, 𝑏𝑖, is the relative frequency of 𝐶𝑇𝑚 falling into the 

𝑖th bin. �̂�(𝐶𝑇|𝜃) was then estimated as the value of 𝒃 for 

the bin corresponding to 𝐶𝑇.  

Due to the finite number of model simulations, with this 

method it is possible that a bin is assigned zero probability 

(no values of 𝐶𝑇𝑚 fell within that bin), despite the model 

having support over this region. If CT falls within such a bin 

then �̂�(𝐶𝑇|𝜃) = 0, which can cause issues for the model 

fitting. To avoid this, we ensured that all bins had a non-

zero probability by adjusting 𝒃 by a constant 𝒛, to 𝒃𝜆 +
𝒛(1 − 𝜆), where 𝜆 = .98. 𝒛 was set as the probability of 

drawing a value from any given bin when sampling from a 

uniform distribution with bounds 0 and 20. In practice this 

had almost no discernible effect on the estimate of  

�̂�(𝐶𝑇|𝜃), but ensured non-zero support over all values of 

CT. Finally we removed the first “decelerate without 

stopping” trial from the analysis. This was because many 

participants began crossing while the vehicle was still in 

front of them, which the models were not designed to 

capture. 

We used PSO (Wahde, 2008) to fit the models using the 

pseudo-likelihood estimation method described above. A 

swarm of 50 particles was used and optimized for 50 

iterations. In all cases the algorithm appeared to converge to 

some local optimum (pseudo log-likelihood estimates 

stopped increasing) before the 50th iteration.  

 Results 

Table 2 shows the pseudo log-likelihood estimate and AIC 

of the VR crossing time data for each of the three models. 

We can see that the D-VDDM captured the data the best 

(highest log likelihood) and had the lowest AIC value. The 

S-VDDM performed slightly worse, while the C-VDDM 

performed poorer than both. The parameters returned by the 

PSO algorithm are shown in Table 3.  

To explore the model fits in more detail we simulated 

5000 crossing times (𝐶𝑇𝑚) for each vehicle approach 

scenario and each fitted models. The left panel of Figure 2 

shows the real 𝐶𝑇 (top panel), and simulated 𝐶𝑇𝑚 (bottom 

panel) for one of the “constant velocity” scenarios. We also 

plot the model activations for the S-VDDM (black traces, 

bottom panel). In this trial the vehicle starts far enough 

away that the participant has time to successfully cross the 

road, if this decision is made relatively quickly. However, 

the vehicle soon comes too close for a successful crossing to 

take place. Some participants crossed early in the vehicle’s 

trajectory, while some waited for the vehicle to pass. All of 

the models were able to capture this trend. However, it 

appears that the S-VDDM (blue line; bottom panel) and 

Table 2: Log likelihood and Akaike information 

criterion (AIC) for each of the models. *indicates the 

model with highest log likelihood estimate 

 

Model 𝑙𝑜𝑔 𝑃(𝐶𝑇|�̂�) N 

param 

AIC 

C-VDDM -953.72 7 1921.4 

D-VDDM* -871.90 6 1755.8 

S-VDDM -882.04 5 1774.0 

 

Table 3: Estimated parameter values for each model. 

Fixed parameters are shown in italics.  

 

Param C-VDDM D-VDDM S-VDDM 

T 0.67 0.26 0.34 

K [4.35, 0.46] [0.66, 0.42] [0.47, 0.19] 

Y [0, 0.44,  1.83] [0, 3.25] N/A 

N [0, 0.76, 0] [0, 10.0] N/A 

𝜎 0.87 1.03 1.05 

𝜂 N/A N/A 2.5 
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especially the C-VDDM (red line; bottom panel)  showed a 

larger peak around the early crossings, while the D-VDDM 

(orange line; bottom panel) showed a larger peak after the 

vehicle had crossed, which better matched the participants’ 

behavior.  

The middle panels of Figure 2 shows the same plots for 

one of the “decelerate to a stop” scenarios. Again, we 

observed a bimodal distribution of crossing times (top 

panel), with some participants crossing early in the vehicle’s 

trajectory, and others waiting until the vehicle had nearly or 

completely stopped. Here both the D-VDDM and S-VDDM 

captured this trend rather well, with a larger mode at the 

early crossing times and a smaller mode after the vehicle 

stopped. However, the C-VDDM was not able to capture the 

later crossing mode.  

The right panels of Figure 2 show the same plots for one 

of the “decelerate without stopping” trials. Here, beyond the 

bimodal pattern already described for the “decelerate to a 

stop” scenario, a small number of participants also waited 

for the vehicle to completely pass before crossing. Thus the 

observed 𝐶𝑇 showed a tri-modal distribution. Both the D-

VDDM and S-VDDM models reproduced these three modes 

well (the third mode is rather flat, but its presence can be 

seen from the black activation traces in bottom panel), while 

again the C-VDDM appeared to place too much weight over 

the initial mode, and predicted close to zero participants 

crossing after the vehicle had passed. Figure 3 shows the 

observed 𝐶𝑇 and model simulations, 𝐶𝑇𝑚, for all scenarios.   

However, we were concerned that the more complex C-

VDDM’s poor performance might be caused by the PSO 

algorithm getting stuck in a local optimum.  Indeed, 

rerunning the fitting of the different VDDMs with new 

initial random seeds, and/or additional constraints on the 

parameter search range, we obtained slightly different 

parameterizations, but for the C-VDDM these never 

performed better than either the D-VDDM or S-VDDM.  

Assuming that the C-VDDM’s poor relative performance 

is not the result of challenges in finding the global optimum, 

we wondered whether one issue might be that the connected 

accumulator models all share a single 𝜎 parameter. Thus we 

refit the C-VDDM model with a separate 𝜎 parameter for 

each accumulator unit. This improved the model fit, 

achieving a log likelihood of -874.17 (AIC 1766.3), a better 

fit than for the S-VDDM and approaching the performance 

of the D-VDDM. For completeness, we also tested a version 

of the D-VDDM with separate 𝜎 parameters for its two 

accumulator units, achieving a log likelihood of -924.66 

(AIC 1863.3), i.e., a worse fit than the single-𝜎 D-VDDM. 

This is clearly a local optimum, since the better-performing 

single-𝜎 D-VDDM is actually present in the parameter 

search space of the dual-𝜎 VDDM (along the line where 

both 𝜎 are equal). 

Discussion 

Here we explored the ability of variable-drift diffusion 

models (VDDMs) to capture complex sensorimotor 

decisions based on a continuous stream of multiple sensory 

cues. Our initial hypothesis was that a complex model 

consisting of several parallel VDDM processes (the C-

VDDM) would be needed to capture the multimodal 

decision time distributions exhibited by humans in the zebra 

crossing situation. Instead, we found that a relatively simple 

model with just a single VDDM unit (the S-VDDM) and 

five free parameters was able to reproduce multimodal 

probability distributions of human crossing times, across 15 

separate scenarios with a diverse range of vehicle approach 

 

Figure 2: Human and model behavior in three example scenarios. Top panels show the observed human crossing times (𝐶𝑇) 

in the virtual reality experiment, and the second and third rows of panels show the sensory input cues to the models. Dark grey 

regions indicate that the vehicle has come to a stop or has passed the participant. Light grey regions indicate that the vehicle is 

passing the participant. The bottom panels show the simulated crossing time (𝐶𝑇𝑚) for the C-VDDM (red lines), D-VDDM 

(orange lines), and S-VDDM (blue lines). The black traces show example activations of the S-VDDM accumulator unit. 

 

370



trajectories. This is arguably the most striking finding from 

this work. 

One important insight here, and seemingly a main reason 

behind the good performance of the S-VDDM, is that the 𝜏 

variable (the apparent time to arrival; TTA), can in itself 

help explain the observed human behavior to a large extent. 

As seen in Figure 2, with more positive 𝜏 − 𝜏𝑝𝑎𝑠𝑠, 

participants became more likely to initiate crossing, and the 

non-trivial variation of 𝜏 over time during each scenario 

seemed to drive the number and location of peaks in the 

crossing time distribution. The VDDM provides a potential 

mechanistic explanation for how the observed crossing time 

distribution arises from this time-varying perceptual input. 

Another critical aspect of the S-VDDM model was that 

while the drift rate was allowed to vary as a function of the 

perceptual inputs, we also limited its magnitude with a 

saturation threshold parameter. This ensured that large 

inputs, arising when the vehicle decelerated to a stop, did 

not result in the drift rate immediately trending to a very 

large value. This enabled the model to capture the 

distribution of crossing times that are observed after a 

vehicle comes to a stop or passes. 

With respect to the more complex model variants, it is 

difficult to draw firm conclusions from the present results. If 

the C-VDDM model had been able to capture qualitative 

aspects of the human data that the S-VDDM was unable to, 

this could have been taken as tentative evidence for the C-

VDDM’s hypothesized partition of the decision process into 

constituent perceptual and action decisions. However, since 

the best version of the C-VDDM, with three separate 𝜎 

parameters, simply improved the goodness of fit without 

changing the qualitative nature of the model behavior, it 

cannot be excluded that the added model complexity simply 

led to overfitting to the present data. To further investigate 

whether there is some merit to the hypotheses behind the C-

VDDM, larger datasets with even more diverse scenarios 

would be useful, and more stringent methods than AIC for 

controlling for overfitting, such as hold-out validation on 

parts of the dataset. 

Exactly the same argument applies to the D-VDDM, 

which was the model for which the overall best fit was 

obtained. The D-VDDM was adopted here as an 

intermediate-complexity model, in practice replacing the 

static input saturation step of the S-VDDM with a time-

dynamic accumulator. Again, for the same reasons as 

mentioned above, further work is needed to shed light on 

whether the improved fits for this model over the S-VDDM 

have some theoretical relevance.  

These difficulties in drawing conclusions from the fits of 

the more complex models are exacerbated by the apparent 

tendency of the PSO algorithm to get stuck in local optima. 

This was evidenced clearly when the PSO found a provably 

suboptimal parameterization for the two-𝜎 D-VDDM, but 

may also be part of the reason for the somewhat surprising 

finding that the relatively complex single-𝜎 C-VDDM 

yielded the poorest goodness of fit across all tested models. 

Existing methods for efficient DDM fitting are based on the 

conventional assumption of constant drift rate (e.g., 

Vandekerckhove, Tuerlinckx, & Lee, 2011); good methods 

for fitting also VDDMs would be a valuable future pursuit. 

In summary, we demonstrate that already simple VDDMs 

are able to capture sensorimotor decision making behavior 

in a task that is more complex, and arguably of higher 

applied relevance, than the laboratory decision-making tasks 

typically modelled with DDMs. We suspect that VDDMs 

could be applied to a wide range of non-trivial real world 

sensorimotor decision making tasks, but methodological 

developments are needed to efficiently and reliably fit these 

models to data. 

 

 
 

Figure 3: Observed crossing times versus predictions by the C-VDDM (red lines), D-VDDM (orange), and S-VDDM (blue) 

for all scenarios. Y-axis scale varies between panels. The text shows density estimate log-likelihoods for the three models.  
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Abstract

One powerful way children can learn word meanings is via
cross-situational learning, the ability to discern consistent
word-referent mappings from a series of ambiguous scenes and
utterances. Various computational accounts of word learning
have been proposed, with mechanisms ranging from storing
and testing a single hypothesized referent for each word, to
tracking multiple graded associations and selectively strength-
ening some of them. Nearly all word learning models as-
sume storage of some feasible word-referent mappings from
each situation, resulting in a degree of learning proportional
to the number of co-occurrences. While these accumulative
models would generally predict that incorrect co-occurrences
would slow learning, recent empirical work suggests these ac-
counts are incomplete: paradoxically, giving learners incorrect
mappings early in training was found to boost performance
(Fitneva & Christiansen, 2015). We test this finding’s general-
ity in a new experiment with more items, consider system- and
item-level explanations, and find that a model with error-driven
learning best accounts for this benefit of initially-inaccurate
pairings.

Keywords: cross-situational word learning; error-driven asso-
ciative learning model; word learning;

Introduction
Among the many challenging aspects of learning a language
is the problem of determining which words pick out which
referents in our environment. When we encounter a new
word, there is rarely an explicit explanation of its meaning,
and the context it appears in may present any number of pos-
sible referents. While any given situation may present a high
degree of ambiguity with many possible referents, if learn-
ers are able to roughly track words and referents that often
co-occur, they may learn word meanings cross-situationally
(Gleitman, 1990). Both infants and adults have been found
capable of cross-situationally learning names for novel ob-
jects in the laboratory (Smith & Yu, 2008; Yu & Smith, 2007;
Kachergis & Yu, 2013), and such learning may be one impor-
tant means of acquiring the meanings of nouns (Smith, 2000).

It is generally assumed that learners accomplish cross-
situational learning by tracking the co-occurrence of each ut-
tered word with a subset of the visible referents in a scene.
A variety of biases have been proposed that could enable the
learner to restrict the number of word-referent mappings they
must attend to and remember. For example, the learners have
been shown to exhibit a mutual exclusivity bias, preferring to
map each word to one referent–and vice-versa (Markman &
Wachtel, 1988; Markman, Wasow, & Hansen, 2003; Ichinco,
Frank, & Saxe, 2009). Despite a variety of proposed biases
and constraints, considerable debate remains about the exact
mechanisms underlying this ability.

Models of Cross-situational Word Learning
A variety of computational models have been proposed, rang-
ing from models that store and test a single hypothesized
referent per word (Trueswell, Medina, Hafri, & Gleitman,
2013), to Bayesian models, (Frank, Goodman, & Tenenbaum,
2009), to associative learning models (Kachergis, 2012; Fa-
zly, Alishahi, & Stevenson, 2010). Typically, most models
can match overall human learning performance in several
experiments, and can be hard to distinguish on the basis of
goodness of fit. However, detailed modeling of human learn-
ing trajectories (Kachergis & Yu, 2017) and performance in
systematically varied conditions (e.g., repetitions and con-
text diversity: (Kachergis, Yu, & Shiffrin, 2016); repetitions
and number of distractors: (Yurovsky & Frank, 2015) have
revealed interacting memory and attentional constraints that
help differentiate models.

In many accounts of cross-situational learning, it is as-
sumed that forming an association (or hypothesis) between
a word and referent makes future exposures more valuable,
as the familiar trace will draw more attention if confirmed.
This advantage for prior knowledge (i.e., “rich-get-richer”)
is present both in hypothesis-testing accounts such as the
propose-but-verify model (Trueswell et al., 2013), as well as
in associative accounts that allocate more attention to pre-
existing associations (Kachergis, 2012).

However, errors also play an important role in a variety of
types of learning. For example, in motor control learning is
thought to be based on a mismatch between predicted sen-
sory outcomes of an action and the actual sensation (Seidler,
Kwak, Fling, & Bernard, 2013). Similarly, models of animal
and human conditioning experiments (Kamin, 1968; Rescorla
& Wagner, 1972; Kruschke, 2011) adjust associations based
on how surprising an outcome is when given particular cues.
A classic example of a prediction error-based learning mech-
anism is the (Rescorla & Wagner, 1972) model in which the
amount of learning on a trial is proportional to the amount of
prediction error (i.e., surprise at an outcome). When there is
a large difference between the actual outcome and predicted
outcome, a large change in the predictive value of a stimu-
lus results. Applied to cross-situational learning, surprise will
be generated by the failure of a word and referent to appear
together when they have been previously associated. This sur-
prise, generated by the difference between the expectation
of the word, given that object, and the actual outcome (fail-
ure of the word to appear), results in a higher learning rate
for a new word to be associated with that object. Despite
the widespread evidence of prediction error-based learning
in the animal kingdom, empirical investigations of its role in
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word learning have been limited (though see Ramscar, Dye,
and McCauley, 2013). Most cross-situational word learning
experiments do not facilitate continuing prediction errors: in
most designs, each time a word is heard its intended referent
is visible, and thus as learning proceeds, the surprise that is
initially generated due to the discrepancy between the words
a learner predicts and what they actually hear will only de-
crease.

Findings from two recent empirical studies investigating
erroneous mappings early in learning suggest that greater pre-
diction error may play an important role in cross-situational
word learning (Fitneva & Christiansen, 2011, 2015). In
Fitneva and Christiansen (2011), eye-tracking during cross-
situational learning was used to investigate the performance
of learners who by chance initially looked longer or shorter
at the correct referent when a word was heard. Participants
were trained on 24 word-referent pairs in four blocks, see-
ing two referents on each trial while hearing two sequential
pseudowords. A post-hoc median split based on location of
longest fixation when a word was first heard was used to
place participants into High and Low Initial Accuracy con-
ditions (HIA and LIA, respectively). Thus, participants in the
HIA condition happened by chance to look at more of the in-
tended referents upon each word’s first occurrence than the
LIA participants, who happened to look more at the incorrect
referents. The accuracy of each trial in the first block (i.e.,
initial accuracy) was determined by the fixation time on each
referent after each pseudoword was displayed. A subset of 12
of the words was used for 2-alternative forced choice (2AFC)
test, in which a participant heard a word and selected the bet-
ter of two referents. Participants in the LIA condition outper-
formed the HIA group at test. Additionally, eye tracking data
provided implicit evidence for increased learning among LIA
participants. In instances where the correct referent was the
first location of fixation, the LIA group took longer to look
away than the HIA group, and when the location of first fixa-
tion was inaccurate the LIA group was quicker to move their
gaze. Proportion of time spent fixated on the accurate referent
increased in LIA participants, past that of HIA participants.

A follow-up study used a “familiarization” phase before a
similar cross situational learning task to induce differences
in initial accuracy, and tested three age groups: 4 year-olds,
10 year-olds, and adults (Fitneva & Christiansen, 2015). In
the familiarization phase, 10 unambiguous word-object pairs
were serially presented to participants. However, four of these
pairs would be switched in the subsequent cross-situational
training for participants randomly assigned to the HIA con-
dition (60% initial accuracy), while six of the 10 pairs would
be switched in the LIA condition (40% initial accuracy). This
exposure was meant to seed more (LIA) or fewer (HIA) inac-
curate hypotheses/associations before the subsequent cross-
situational training, which presented 15 2x2 trials (i.e., two
word-referent pairs per trial). Adult participants in the LIA
condition again showed higher performance than those in the
HIA condition, in line with the prior results. Notably, the ini-

tial accuracy of an item within a given condition seemed to
have no significant effect on performance. (Fitneva & Chris-
tiansen, 2015) interpreted this lack of an item-level effect as
evidence of a ‘system-level’ effect, meaning that “the effect
emerges from the cognitive resources recruited by initially
inaccurate items affecting initially accurate items as well” (p.
5). Interestingly, four year-olds showed an opposite effect of
condition, with HIA participants performing better, and 10
year-olds showed only an effect of item category, performing
better on initially accurate items in both conditions.

Fitneva and Christiansen (2015) suggest that the lack of
item-level effects of initial inaccuracy in adults (and in 4-
year-olds) may be taken as evidence of system-driven learn-
ing: rather than individual initially-inaccurate items garner-
ing extra attention (compared to IA items), more cognitive
effort is expended overall by adults in the Low IA condition,
triggered by the many inaccuracies. The present study again
considers system-level vs. item-level effects of IA in adults
by conducting an experiment with more to-be-learned items
than Fitneva and Christiansen (2015) (18 vs. 10), and with
a more sensitive 19-alternative forced choice (19AFC) test.
A potential concern about finding item-level effects of IA in
Fitneva and Christiansen (2015) is that adults had quite high
performance in the task, which tested half of the 10 studied
words using a 2AFC test. In addition, the difference between
the HIA and LIA conditions was one of only two words (6
out of 10 and 4 out of 10 accurate, respectively).

The superior performance on initially inaccurate items in
both experiments may be accounted for with a prediction er-
ror mechanism. An additional attentional account may be able
to account for the overall difference in performance between
the HIA and LIA conditions. Thus, the present design of-
fers a stronger manipulation, more data per participant, and
a more sensitive test, while addressing the same underlying
issue of the effects of initial accuracy on learning. We then
present modeling in an associative learning framework to de-
termine if learning behavior is better accounted for by an at-
tentional (system-level) mechanism, or by a prediction error-
based (item-level) mechanism.

Experiment
To investigate the robustness of the effect of low initial ac-
curacy observed in Fitneva and Christiansen (2015) in a set-
ting with more to-be-learned items and a consequently longer
training period, we use a similar 2x2 procedure with a “famil-
iarization phase”. However, in our design, we used studied 18
stimulus pairs (vs. 10), and a greater degree of difference be-
tween between high and low initial accuracy (12 vs. 6 of 18
pairs switched instead of 6 vs. 4 of 10 pairs switched). This
presents a stronger manipulation of initial accuracy: 66.6%
vs. 33.3% in the current study, compared to 60% vs. 40% in
Fitneva and Christiansen (2015). In addition, at test we pre-
sented the full array of possible referents for each word (18
studied + 1 unstudied: 19AFC vs. 2AFC), and tested all 18
words (vs. 5 of 10).
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Methods

Participants Participants were 45 people recruited online
who completed the experiment in their web browser through
Amazon Mechanical Turk. All participants completed the en-
tire experiment, and were paid $1.50 for their participation.
Participants were randomly assigned to either the High or
Low Initial Accuracy condition (23 and 22 participants, re-
spectively).
Stimuli Stimuli consisted of images of uncommon real-
world objects and mono- and bisyllabic nonce words. Each
participant was given a random selection of 18 images and 18
nonce words from a collection of 72 images and words.
Procedure The experiment consisted of three phases: fa-
miliarization, study, and test. The familiarization phase was
one block of 18 trials. Participants were told they would be
shown examples of the type of objects and words they would
be learning. Each trial showed one object-pseudoword pair
for 3 s with a 1 s interstimulus interval (ISI), with each of the
18 pairs being shown once, in a randomized order.

For participants in the Low Initial Accuracy (LIA) condi-
tion, 12 of the 18 pairs were switched (inaccurate) in the sub-
sequent study phase, yielding 33.3% initial inaccuracy. In the
High Initial Accuracy (HIA) condition, 6 of the 18 pairs were
switched at study, yielding 66.6% initial accuracy. For each
participant, the total number of objects was constant, such
that when word-object pairs were switched at study, both the
word and object had been seen in the familiarization phase.

On each trial during the study phase, two word-object pairs
were shown simultaneously for 3 s, with a 1 s ISI. Objects
were shown side by side, with words vertically arrayed in the
center, below the object images. The location of objects and
words was randomized to ensure participants could not reli-
ably determine the pairing of stimuli by their location with
respect to one another. Trial order, along with which word-
object pairs were shown on a given trial, was randomized with
the constraint that each word-object pair was presented once
before being shown again. Thus, there were three (contigu-
ous) blocks of 9 trials, for a total of three presentations per
pair.

In the test phase, each trial displayed an array of all 18
studied objects along with one novel object (the same across
all test trials) and a single pseudoword from the study. For
each pseudoword, participants were instructed to click on the
corresponding object. In addition to testing each of the 18
studied pseudowords, a trial with a novel pseudoword was
added, to determine if participants were able to fast-map this
novel word to the novel object in the array. The order of test
trials was randomized for each participant.

A post-test questionnaire asked participants how many
words they thought they mapped correctly (0-19), their rating
of the engagement and difficulty of the task on scales of 1-
7, and whether they used any external memory aids (Yes/No;
indicating that they would still be paid, regardless).

Results
Participant’s item-level accuracy data for each studied item
were subjected to a logistic mixed-effects regression with
condition (High Initial Accuracy (HIA) or Low Initial Ac-
curacy (LIA)) as a between-subjects factor and item cate-
gory (Initially Accurate or Initially Inaccurate) as a within-
subject factor. Mixed-effects regression is more appropri-
ate for forced-choice data than ANOVAs, especially for ex-
periment designs with imbalanced cells such as this one
(Jaeger, 2008). The analysis was conducted using the afex
R package (Singmann, Bolker, Westfall, & Aust, 2018). This
analysis indicated a significant main effect of item category
(F(1,43.7)=42.19, p < .001), and no significant main ef-
fect of condition (F(1,43.7)=0.86, p = .36). Learners had
higher performance for items that were initially accurate
(M=.59, SD=.31) than for items that were initially inaccu-
rate (M=.35, SD=.30). There was a marginal interaction of
condition and item category (F(1,43.7) = 3.50, p = 0.07).
Shown in Figure 1, accuracy on initially inaccurate items
was higher in the LIA condition (M=.42, 95% CI=[.30, .55])
than in the HIA condition (M=.28, CI=[.15, .40]), but lower
than initially accurate items, which were similarly high
in both conditions (IA: LIA M=.60, CI=[.46, .73]; HIA
MHIA=.59, CI=[.47, .72]). Overall, in both conditions par-
ticipants learned on average the same proportion of the 18
items (MHIA=.49; MLIA=.48). Finally, for the novel word
presented at test, 47% of participants chose the unstudied test
object.
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Figure 1: Participants’ mean accuracy at test in each condi-
tion by item category, with dot size denoting the number of
items that could be learned in that category. Black dots show
mean performance per condition. Dotted line shows chance
(1/18). Error bars represent ±1 SE.

Post-test Questionnaire To investigate metacognitive
awareness, individuals’ performance was correlated with
post-test questionnaire results. Participants in both conditions
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were aware of their performance level, with significant
correlations between their actual and estimated number of
learned items they learned (HIA r(20) = 0.67, p < .001)
and LIA (r(18) = 0.60, p < .01)). Rank-order tests were
used to investigate the relationship of engagement and
difficulty ratings with performance at test. Strong negative
relationships between performance at test and difficulty
ratings were found in both HIA (rs = −0.73, p < .001)
and LIA (rs = −0.77, p < .001) conditions. A system-level
account of benefits of initial inaccuracy might predict
that difficulty would be higher in the LIA condition, but
that engagement would be higher. However, there was no
difference in participant’s perceived level of difficulty in the
two conditions (t(42.7) = 0.56, p = .57), and participants in
the HIA condition trended toward being more engaged than
LIA participants (t(38.6) = 1.87, p = .07)–the opposite of
what might be predicted by a system-level account.

Discussion

Our results differ somewhat from those of Fitneva and Chris-
tiansen (2015) in that we do not find an overall advantage
for the Low Initial Accuracy condition. Moreover, we find in
both conditions that initially accurate items are learned more
often than initially inaccurate items, in agreement with con-
ventional assumptions. However, we do find that initially in-
accurate items are learned at a greater rate when they are a
greater proportion of the study items (i.e., in the LIA condi-
tion). Given that this experiment has a stronger manipulation
of initial accuracy (66% vs. 33% instead of 60% vs. 40%),
includes more studied items (18 instead of 10), and tests all
18 of them (instead of half) with a more sensitive test (19AFC
instead of 2AFC), we contend that it makes a stronger case for
the influence of varying initial inaccuracy on cross-situational
learning. In the following, we explore what mechanisms ac-
count for these effects.

Models
To determine whether the effect of initial accuracy implies
novel system-level or item-level learning mechanisms, we
first test whether the biased associative model (Kachergis,
Yu, & Shiffrin, 2012), with competing attentional biases for
existing associations and for attending to stimuli with un-
certain associates, is able to account for the effect of vary-
ing initial accuracy. This model, explained in detail be-
low, has successfully captured human behavior in a variety
of cross-situational learning experiments (Kachergis & Yu,
2017; Kachergis et al., 2016; Kachergis, 2012; Kachergis &
Yu, 2013). We also test two modified versions of this model,
representing the two theories of why forming initial inaccu-
rate associations may improve overall learning. In the system-
level variant, the learning rate on each trial was scaled by
the model’s relative uncertainty about the words for each pre-
sented referent, representing the theory proposed in (Fitneva
& Christiansen, 2015) that learners may be more alert in the
Low Initial Accuracy condition. In the item-level variant, we

add a simple prediction error-based learning mechanism bor-
rowed from Rescorla and Wagner (1972).

Biased Associative Model
The biased associative model (Kachergis et al., 2012) as-
sumes that learners do not attend equally to all possible word-
object pairings. Thus, although all co-occurrences are regis-
tered to some extent in associative memory (a word × object
association matrix), greater attention and storage is directed
to pairings that have previously co-occurred. Moreover, this
bias for familiar pairings competes with a bias to attend to
stimuli that have no strong associates (e.g., novel stimuli). In
addition to familiar associations being reinforced, attention is
also pulled individually to novel stimuli because of the high
uncertainty of their associations (i.e., they have diffuse asso-
ciations with several stimuli). Uncertainty is tracked by the
entropy of a stimulus’ association strengths, and attention is
allocated to a stimulus in proportion to this entropy.

Formally, given n words and n objects to be learned over
a series of trials, let M be an n word × n object association
matrix that is built incrementally during training. Cell Mw,o

will be the strength of association between word w and object
o. Strengths are augmented by viewing the particular stimuli.
Before the first trial, M is empty. On each training trial t, a
subset S of m word-object pairings appears. If there are any
new words and objects are seen, new rows and columns are
first added. The initial values for these new rows and columns
are k, a small constant (here, 0.01).

Association strengths are allowed to decay, and on each
new trial a fixed amount of associative weight, χ, is dis-
tributed among the associations between words and objects,
and added to the strengths. The rule used to distribute χ (i.e.,
attention) balances a preference for attending to unknown
stimuli with a preference for strengthening already-strong as-
sociations. When a word and referent are repeated, extra at-
tention (i.e., χ) is given to this pair—a bias for prior knowl-
edge. Pairs of stimuli with no or weak associates also at-
tract attention, whereas pairings between uncertain objects
and known words, or vice-versa, do not attract much atten-
tion. To capture stimulus uncertainty, strength is allocated us-
ing entropy (H), a measure of uncertainty that is 0 when the
outcome of a variable is certain (e.g., a word appears with
one object, and has never appeared with any other object),
and maximal (log2n) when all of the n possible object (or
word) associations are equally likely (e.g., when a stimulus
has not been observed before, or if a stimulus were to appear
with every other stimulus equally). In the model, on each trial
the entropy of each word (and object) is calculated from the
normalized row (column) vector of associations for that word
(object), p(Mw, ·), as follows:

H(w) = −
n∑
i=1

p(Mw,i) · log(p(Mw,i)) (1)

The update rule for adjusting the association between a
given word w and object o on a given trial is:
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Mw,o = αMw,o +
χ · eλ·(H(w)+H(o)) ·Mw,o∑

w∈W
∑
o∈O e

λ·(H(w)+H(o)) ·Mw,o

(2)
In Equation 2, α is a parameter governing forgetting, χ is

the weight being distributed, and λ is a scaling parameter gov-
erning differential weighting of uncertainty (H(·); roughly
novelty) and prior knowledge (Mw,o; familiarity). As λ in-
creases, the weight of uncertainty (i.e., the exponentiated en-
tropy term, which includes both the word and object’s associ-
ation entropies) increases relative to familiarity. The denom-
inator normalizes the numerator so that exactly χ associative
weight is distributed among the potential associations on the
trial. For stimuli not on a trial, only forgetting operates. As
each word w is tested, learners choose referent o from the m
alternatives in proportion to associative strength Mw,o.

Biased Associative Model with Attention
To capture the theory proposed in (Fitneva & Christiansen,
2015) that learners may be more alert in the Low Initial Ac-
curacy condition, we scale the learning rate used on each trial
by the mean entropy of the objects on a given trial, relative to
the overall entropy of all associations. Thus, trials with more
uncertain items–as in the Low IA condition, and particularly
for initially inaccurate items–will have a higher learning rate.

Predictive Biased Associative Model
This model differs from the original Biased Associative
Model in two ways. First, for the cues (objects) on the trial,
let the prediction of each outcome (word w) be

Vw =
∑
o∈O

Mw,o (3)

Vw was added to the update equation for on-trial word-
object associations as a prediction error term

Mw,o = αMw,o+χ · eλ·(H(w)+H(o)) ·Mw,o · (β−Vw) (4)

where β is the maximum association value (here, 1), and as
before α is a memory fidelity parameter, χ is a learning rate,
and λ is relative novelty/familiarity focus. The second differ-
ence is the removal of the denominator, which makes it possi-
ble for the predictive model to distribute different amounts of
associative weight per trial. Thus, the amount of adjustment
for a particular associationMw,o is scaled not only by the cur-
rent strength of that association and the uncertainty (entropy)
of w and of o, but also proportional to the prediction error of
w from the sum of all associations involving w and objects
on that trial.

Model Fitting
All models were fit hierarchically: first, differential evolution
optimization (Ardia, Mullen, Peterson, & Ulrich, 2015) was
used to find best-fitting parameters for each individual, and

then optimization was run again with a regularization term to
penalize parameter values far from the medians of the group’s
parameter values.1

Model Results
The best-fitting performance achieved by each model, along
with Mean Squared Error (MSE) are shown in Figure 2, as
well as in Table 1. All variants of the Biased Associative
Model (BAM) match performance well in the HIA condi-
tion, for both initially accurate and inaccurate items. How-
ever, in the LIA condition, both the original BAM and BAM
+ Attn underestimate human performance on initially inac-
curate items and overestimate learning of initially accurate
items, while the Predictive BAM fits well.

Condition High IA Low IA

Initially Accurate False True False True MSE r2

Human .28 .59 .42 .60 – –
Biased Assoc. .26 .60 .30 .66 .026 .939
Biased Assoc. + Attn .27 .60 .34 .67 .025 .941
Predictive Biased Assoc. .27 .59 .40 .63 .008 .983

Table 1: Human performance vs. best-fitting models.

Model Discussion
All models match human performance well in the High Initial
Accuracy (HIA) condition, and predict slightly higher than
observed performance for initially accurate items in the Low
IA condition. Both the original Biased Associative Model
(Kachergis et al., 2012) and the variant with a learning rate
scaled to the uncertainty (i.e., entropy) about items on the cur-
rent trial are unable to match human performance for initially
inaccurate items in the Low IA condition. However, the vari-
ant of the Predictive Biased Associative Model does match
human performance, suggesting that learners allocate more
attention to associations involving words from initially inac-
curate items as a result of prediction error.

Discussion
Similar to earlier studies of the effects of initial accuracy
on cross-situational word learning (Fitneva & Christiansen,
2011, 2015), our findings show that experiencing a single
initial inaccurate mapping of more word-object pairs selec-
tively benefits the later learning of those initially mismatched
pairs. However, in contrast to prior research, which found
overall higher learning in the Low Initial Accuracy condition,
we found the benefit was not conferred on initially accurate
items. Rather, performance on initially accurate items in our
experiment was similarly high in both conditions–and higher
than initially inaccurate items in either condition. As men-
tioned earlier, the present experiment presents a stronger test
of the effects of initial accuracy due to the stronger manipu-
lation, the larger number of studied and tested words, and the

1This approximates Gaussian L1-regularization.
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Figure 2: The Biased Associative Model (left) fails to show much benefit for initially inaccurate items in the Low IA condition,
unlike people. This is largely true for the variant of the model that gives greater attention to trials with high-entropy stimuli
(middle), while the associative model with prediction-error based learning (right) fits quite well (MSE=.008).

lower chance rate of the test format. However, we should note
that our stronger manipulation resulted in a slightly higher
proportional imbalance of item types per condition (67% vs.
33%)–although we did have more items of both types per
condition. It’s possible that this greater number of items in-
fluenced participants’ awareness and thus their treatment of
initially inaccurate items. However, we note that difficulty
was similarly rated similarly in both groups, and engagement
trended higher in the HIA group–opposite to what might be
expected if more attention was drawn by the LIA condition.

Our item-level results show that initial accuracy predicts a
greater chance of remembering the pairing of that item, which
is in accordance with conventional assumptions. However,
in the LIA condition initially inaccurate pairs are ultimately
more likely to be learned. One explanation may be that er-
rors draw attention selectively to initially inaccurate items.
Analysis of fixation times in the eye-tracking experiment of
Fitneva and Christiansen (2011) indeed suggests that atten-
tion to targets overall increases with greater error. Addition-
ally, the pattern of our results suggests an attention effect: the
HIA condition may have included too low a proportion of in-
accurate items to draw attention attention away from the ma-
jority accurate items. In the LIA group, if there was an overall
increase in attention, we should expect to see an increase in
performance for initially-accurate (IA) items as well, espe-
cially as there were only six IA items in this condition. Our
modeling results are consistent with this idea, as without a
learning rate proportional to item-level prediction error the fit
is notably poor for initially inaccurate items in the LIA con-
dition.

Together with Fitneva and Christiansen (2011, 2015), our
results suggest that cross-situational word learning is subject
to prediction error-based learning. Our account suggests that
when learners see referents they may predict which words

will be heard. Subsequently, they allocate attention based on
competing biases toward known associations and referents
with uncertain associations (Kachergis et al., 2012), and learn
at a rate proportional to their surprisal at hearing each word
with the given referents. Further research is needed to deter-
mine whether this item-level prediction error-based learning
mechanism accounts for human behavior—both in typical re-
search settings which offer few inaccurate mappings, as well
as in more naturalistic scenarios—to help us further under-
stand the domain-generality of error-based learning.
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Abstract 
Historically, research on preschool-aged children’s 
probabilistic reasoning abilities has yielded mixed results. 
Although some findings have suggested that young children 
can successfully evaluate probabilities, others have suggested 
that they may use strategies that only approximate true 
probabilistic inference and therefore sometimes make errors 
(e.g., Girotto et al., 2016; Piaget & Inhelder, 1975). To explore 
the factors that affect young children’s probabilistic reasoning, 
we developed a battery of problems that contained features that 
affect the ease with which a problem is evaluated, and the types 
of alternative strategies that can be applied to solve them. The 
current experiments (total N = 124) assessed 3- and 4-year-old 
children’s probabilistic reasoning using an experimental 
paradigm tailored to this age group. Results from both 
experiments suggest that young children are able to engage in 
true probabilistic inference, as they performed well-above 
chance on each problem. Nuances in children’s performance 
are discussed, along with possibilities for future research.   

Keywords: probabilistic reasoning; cognitive development; 
decision making 

Introduction 
Our ability to make inferences under uncertainty is critical to 
learning and decision-making, mimicking the contexts in 
which every day reasoning tends to occur. That is, we are 
typically in situations where we only have access to 
probabilistic information. Although sensitivity to base-rates 
is evident very early in development, questions remain 
regarding young children’s strategies for using base-rates in 
their inferences, which can be diagnosed by asking children 
to make more complex proportional comparisons.  

Non-human primates, infants, toddlers, and preschoolers 
correctly infer that an object of the majority type is most 
likely to be randomly sampled from simple probabilistic 
distributions (Denison, Konopczynski, Garcia, & Xu, 2006; 
Denison & Xu, 2010; Denison & Xu, 2014; Eckert, Call, & 
Rakoczy, 2017; Goldberg, 1966; Kushnir, Xu, & Wellman, 
2010; Ma & Xu, 2011; Rakoczy et al., 2014; Téglás, Girotto, 
Gonzalez, & Bonatti, 2007; Téglás et al., 2011; Xu & Garcia, 
2008; Yost, Siegel, & Andrews, 1962). For example, if a 
distribution has more red than white balls (e.g., 80 red and 20 
white), they infer that a small sample taken from that 
distribution should also have more red than white balls. 
Although young children and non-human primates perform 
above chance on many probability problems, poor 
performance has been observed in some experiments, 
particularly in the 3- and 4-year-old age group (Girotto, 
Fontanari, Gonzalez, Vallortigara, & Blaye, 2016; Girotto & 
Gonzalez, 2008; Piaget & Inhelder, 1975). The current 
experiments explore whether some of this variability in 
performance is due to differences in problem difficulty by 
manipulating features of the problem that diagnose strategy 

use. We used a paradigm designed specifically for 3- and 4-
year-olds to ensure that their abilities were not masked by 
difficulties with, or lack of engagement in, the task itself.  

When adapting a task for a particular population, it is 
important to ensure that the paradigm is suitable to their 
abilities and still captures the essential aspects of the skill of 
interest. Issues regarding task-appropriateness have arisen 
throughout the course of research on children’s probabilistic 
reasoning. Though Piaget’s seminal work provides one of the 
first analyses of children’s probabilistic reasoning abilities 
(Piaget & Inhelder, 1975), younger children’s performance 
may have suffered due to the very high verbal demands of the 
task. Participants were asked which color item the 
experimenter was most likely to obtain on a random draw 
(Yost et al., 1962). Children’s responses were then coded as 
correct based on their explicit reference of probabilistic 
concepts. From this work, it was concluded that children 
younger than 12 years of age struggled with probabilistic 
concepts. Conversely, presenting preschoolers with a choice 
paradigm suitable for infants and primates (e.g., Denison & 
Xu, 2014; Rakoczy et al., 2014) also appears to hinder their 
performance. When designing tasks for pre-verbal infants, 
experimenters use prompts that provide general 
encouragement (i.e., infants are told, “You can do it! Get the 
one you like!”). However, this prompt could make the task 
unclear to a preschooler with more advanced cognitive and 
linguistic abilities because these instructions are misleading. 
Children might recognize that when they choose something 
in a probabilistic context, they cannot guarantee that they will 
“get the one they want”, they can only make a best guess. 
When this prompt was used with preschoolers, 3- and 4-year-
olds’ performance suffered (Girotto et al., 2016, Expt. 2). We 
used an age-appropriate method in the current experiments 
by asking children to provide a forced-choice response to a 
direct but simple probability question (see Procedure).  

Moreover, there is considerable variability in the types of 
problems that have been presented to children in this age 
group. Falk, Yudilevich-Assouline, and Elstein (2012) 
outline this important point in their comprehensive 
assessment of school-aged children’s probabilistic reasoning. 
Children were asked to choose between two small 
populations of items, each including a proportion of target 
and non-target items, to sample from in order to maximize 
their chances of obtaining a target item on a blind draw. The 
authors note that much previous research has overlooked the 
importance of manipulating numerical features of the 
presented problems when examining children’s overall 
performance. Without manipulating these features across a 
variety of problems, it is difficult to know whether heuristic 
reasoning or true probabilistic inference led to correct 
responses in previous experiments. To combat this problem, 
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Falk et al. developed a battery of diagnostic problems that 
could not be solved using simple heuristic strategies (see 
Denison & Xu, 2014, for a similar approach with infants). For 
instance, in probability problems, children can use a heuristic 
in which they only compare the number of target items across 
populations, and thus ignore proportions. One can diagnose 
whether children are using this strategy by presenting them 
with problems that contain an equal number of target objects 
across two populations (e.g., 12 targets and 4 non-targets vs. 
12 targets and 48 non-targets), and asking them to choose a 
population to draw from for the best chance of obtaining a 
target. This allows researchers to diagnose use of a strategy 
that solely focuses on choosing the population with more 
target objects, because children would be unable to solve 
such a problem if they tried to apply this strategy. One can 
also include problems in which there are more non-target 
objects in the more probable population to diagnose an 
avoidance strategy. Thus, children cannot succeed by simply 
choosing the population with more target items, or by 
choosing the population with fewer non-targets. 

Notably, Falk et al. (2012) included problems in their 
experiment that assessed use of a good versus bad label 
shortcut. That is, instead of discerning the proportion of 
objects in each population, children could use a simpler 
shortcut that focuses on the majority type of objects in each 
population but does not require comparing proportions 
across populations. Many studies have presented children 
with a choice between, for example, a 75% target population 
and a 25% target population. A child could solve this problem 
by labelling the 75% population as “good”, because the target 
objects are in the majority, and the 25% population as “bad”, 
because the non-target objects are in the majority. This would 
lead them to approach the “good” population without 
carefully discerning and comparing the proportion of objects 
in each population. To assess use of this heuristic, Falk et al. 
included problems that were on the same side of ½. If a child 
who uses the good versus bad label shortcut was presented 
with two populations on the same side of ½, such as 75% and 
95%, they would be unable to solve such a problem because 
both populations would receive the same label.  

We attempted to tease apart preschoolers’ use of true 
proportional reasoning from use of heuristics that 
approximate probabilistic inference. Because we were 
presenting these problems to children younger than those 
tested by Falk et al. (2012), we included problems that 
diagnosed use of simpler heuristics that may be used by 
preschoolers, as well as some of the more advanced ones 
described above. We included problems with more target 
objects in the less probable population and problems with an 
equal number of target objects in both populations. These 
features allowed us to examine if young children solely focus 
on target objects. Additionally, we included problems where 
the more probable population contained more non-target 
objects to examine if children attempted to avoid this option. 
We also included problems on the same side of ½ to gauge 
children’s use of a shortcut that involves focusing on the 
majority of objects in individual populations.  

Finally, closer, rather than more disparate, relative 
likelihoods (sometimes referred to as the “ratio of ratios”) can 
make problems more difficult to evaluate. That is, when the 
likelihoods of each population are closer together, the 
problem can be more difficult to solve than when they are 
further apart because the populations themselves are more 
difficult to visually discriminate. For example, if Problem 1 
contained a comparison between 80% and 75%   targets, and 
Problem 2 contained a comparison between 90% and 60% 
targets, Problem 1 would be more difficult to solve because 
the relative likelihoods are closer and are more difficult to 
discriminate. Previous investigations of preschooler’s 
probabilistic reasoning have not examined the impact of 
relative likelihood on their responses (but see Hoemann & 
Ross, 1971, for a similar manipulation using a spinner task), 
so we include a manipulation of this feature in the current 
experiments.  Thus, for each problem type we included two 
versions, denoted 1 and 2, to mark, respectively, closer and 
further relative likelihoods. 

Experiment 1 
In Experiment 1, we presented 3- and 4-year-old children 
with a battery of probabilistic reasoning problems using a 
two-alternative forced choice procedure in a gumball 
machine paradigm. Children were tasked with selecting the 
population that was more likely to yield a blue object. We 
developed a set of problems to assess use of different 
strategies (see Figure 1). Problems A1 and A2 presented 
children with populations on the same side of ½. These 
problems also included more targets and more overall objects 
in the less probable population, so a child would not succeed 
on these problems if they were drawn to these features. 
Because this problem is challenging, the more probable 
population only contained target items, and thus the outcome 
was deterministic. Problems B1 and B2 were simple 
probabilistic comparisons that could be solved with multiple 
shortcuts. Although these simpler problems do not diagnose 
use of these shortcuts, we included them in our problem set 
to gauge the effectiveness of our paradigm with this age 
group, as 3- and 4-year-old children have solved these very 
simple problems in previous experiments. Problems C1 and 
C2 prevented children from selecting the population with 
more target objects, because the number of target objects was 
the same in both populations. Problem D presented children 
with two uniform populations in which one population only 
contained targets, and the other contained only non-targets to 
assess the effectiveness of the paradigm. This problem was 
always presented second to last, allowing us to gauge whether 
most children were following the task through such a large 
number of problems. Problem E was the inverse of Problem 
A1 and was included to diagnose whether children might use 
an avoidance strategy to solve problems (i.e., choosing a 
population that has fewer non-targets).  
   We included two versions of Problems A, B, and C to 
determine if probabilities that had higher relative likelihoods 
(i.e., problems that were further apart in probability, which 
were labeled with a 2), were easier for children to evaluate.  
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Methods 
Participants Data from 50 3- and 4-year-olds were included 
in analyses (mean age = 4;2 [years;months]; range = 3;3 to 
4;11). The sample size for the experiment was determined 
based on a power analysis for a larger study. An additional 
five children were tested and were excluded from analyses 
due to parental report of atypical development (n = 1), 
parental report of very low English exposure (i.e., hearing 
English less than 50% of the time; n = 2), and not finishing 
the task (n = 2). Participants were recruited from a database 
of families and received a small gift for their time. 
 

 
 

Problem A1  
(100% blue versus 75% blue) 

 
 

Problem A2  
(60% blue versus 100% blue) 

 

 
 

Problem B1  
(25% blue versus 75% blue) 

 
 

Problem B2  
(90% blue versus 10% blue) 

 

 
 

Problem C1  
(75% blue versus 25% blue) 

 
 

Problem C2  
(20% blue versus 80% blue) 

 

 
 

Problem D  
(100% blue versus 0% blue) 

 
 

Problem E  
(0% blue versus 25% blue) 

 

Figure 1: Probability problems presented in Experiment 1. 
 

Materials and Procedure Participants were tested 
individually in a quiet room. The child and experimenter 
were seated together at a table. If the child’s parent was 
present in the room, they were seated across the table from 
the child, unable to see the iPad’s screen, and were asked to 
refrain from commenting or influencing their child’s 
responses during the experiment. After the probability task, 
children completed measures assessing individual 
differences in their cognitive abilities (i.e., executive function 
and receptive vocabulary skills) as part of a larger study. 
Because the probability task was completed first, the 
additional measures had no impact on performance.  

Probability problems were presented on an iPad, using a 
gumball machine paradigm. Prior to the test trials, the 
experimenter explained how gumball machines worked by 
showing participants two machines filled with a mixture of 
gumballs of various colors. To discourage children from 
focusing on the objects that were closer to the opening, the 
gumballs were then mixed and appeared in different positions 

in the machine, illustrating that any gumball in the 
population, regardless of its initial position, could be 
sampled. After mixing three times, each machine yielded one 
gumball. The experimenter told participants they had to 
choose between two machines and reiterated that each 
machine would only yield one gumball. Participants were 
told that they would receive a sticker if they chose a machine 
that yielded a blue gumball. Children then completed eight 
probability trials and were asked to choose the gumball 
machine that gave them the best chance of obtaining a blue 
gumball. On each trial, the machines always produced the 
more probable color gumball.  

In populations that contained both colors, a blue and black 
gumball were positioned near the opening to ensure that 
children did not solely focus on the objects that were situated 
closer to the opening. The side of the correct gumball 
machine and the order each problem was presented were 
counterbalanced. Problems A, B, and C were 
counterbalanced in two blocks, with half of the participants 
completing version 1 in the first block. Problems D and E 
were always presented as problems 7 and 8, respectively. 
Problem D was presented second to last to so that we could 
assess whether children remained motivated throughout the 
task. Problem E was presented last; children were given a 
sticker for either choice, as black was the more likely 
outcome in both populations. Thus, it was presented last to 
ensure children did not expect to receive a sticker for a black 
gumball on subsequent problems. 

Results and Discussion 
Children received a score of 1 on each problem if they chose 
the machine that contained the higher proportion of blue (see 
Table 1 for means, standard deviations, and significance tests 
against chance for all problems).  
 

Table 1: Children’s performance in Experiment 1. 
 

Problem M SD 
A1 .82 .39 
A2 .82 .39 
B1 .90 .30 
B2 .94 .23 
C1 .82 .39 
C2 .76 .43 
D .88 .32 
E .92 .27 

Overall .86 .17 
Note: Individual problems were analyzed using binomial 
probabilities, overall score analyzed using single-sample t-
test. All p values for the above analyses were ≤ .001.  
 

We examined if children found some of the critical problem 
types (A through C) more difficult than others, and if they 
found problems with higher relative likelihoods easier to 
evaluate. To investigate this, we conducted a repeated-
measures ANOVA with the critical problem types (A, B, C) 
and version (1, 2) as a within-subjects factor and child’s age 
(younger half versus older half) as a between-subjects factor. 
There was a main effect of age, F(1, 48) = 7.06, p = .01, h2p 
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= .13,  and problem type, F(2, 96) = 4.15, p = .02, h2p = .08, 
on children’s scores. On average, the older children in the 
sample scored higher than the younger children (older 
children: M = .91, SE = .04; younger children: M = .77, SE = 
.04; MeanDifference = .14, p = .01). Problem type B (M = .92, 
SE = .02) was significantly easier than problem type A (M = 
.82, SE = .04; MeanDifference = .10, p = .04) and problem type 
C (M = .79, SE = .05;  MeanDifference = .13, p = .01). Problem 
version (i.e., relative likelihood) and all interactions were 
non-significant. Because problems D and E did not include 
these critical features and did not have a complement 
problem, we did not include them in these analyses. 
However, both problems were solved well-above chance (see 
Table 1). Performance on Problem D indicates that most 
children could still follow the task after they completed a 
number of more difficult problems. Moreover, the successful 
performance on Problem E suggests that children are not 
simply choosing the population with fewer non-targets.    

To examine whether children’s strong performance on 
probability problems was driven by learning over the course 
of the experiment (as the machines produced the more 
probable color on each problem type), we ran an additional 
repeated measures ANOVA with trial order (problem 
presented in place 1, 2, 3, 4, 5, 6) as a within-subjects factor. 
This analysis indicated that trial order did not significantly 
impact children’s performance, F(5, 240) = 1.22, p = .30. 
Regardless of problem type, children performed well-above 
chance on trial 1 (M = .90, SD = .3, binomial, p < .001), which 
also suggests no effect of learning.  

To summarize, Experiment 1 established that young 
children are able to solve probabilistic reasoning problems at 
rates well-above chance. Although the older children in our 
sample performed significantly better than the younger 
children, both age groups successfully solved the problems. 
Children performed significantly better on problem type B 
than types A and C, which is unsurprising due to the number 
of shortcuts they could have used to solve problems B1 and 
B2. Nevertheless, children still performed well on the more 
difficult problem types, suggesting that they do not solely 
rely on these heuristics.  

Experiment 2 
In Experiment 2, we presented a second group of children 
with more difficult problems to further test their use of 
various strategies. Because the children in Experiment 1 
performed very well on our problems, we wanted to further 
explore their performance with a battery that contained some 
more challenging features (see Figure 2). Problems A1 and 
A2 presented children with two populations on the same side 
of ½, in which there were more targets and more overall 
objects in the less probable population. Problem types B and 
C presented children with two populations that had an equal 
number of target objects and more overall objects in the less 
probable population. Problems D1 and D2 contained more 
target objects and more overall objects in the less probable 
population. In this experiment, Problem E presented children 
with two uniform populations in which one population only 

contained blue gumballs, and the other contained only black 
(see Figure 1, Problem D). Because children in this 
experiment were presented with a more difficult set of 
problems, this problem was included again to gauge 
children’s ability to follow the task. We included two 
versions of Problems A, B, C, and D to determine if 
probabilities that had higher relative likelihoods (i.e., 
problems that were further apart in probability, which were 
labeled with a 2), were easier for children to evaluate.  

Methods 
Participants Data from 74 3- and 4-year-olds were included 
in analyses (mean age = 4;2; range = 3;7 to 4;11). Again, the 
sample size was determined based on a power analysis for the 
larger study. An additional seven children were tested but 
were excluded from analyses due to parental report of 
atypical development (n = 2), parental report of very low 
English exposure (i.e., hearing English less than 50% of the 
time; n = 2), and not finishing the task (n = 3). Participants 
were recruited from a database of families and a daycare in 
the region. Children received a small gift for their time. 

 

 
 

Problem A1  
(75% blue versus 100% blue) 

 

 
 

Problem A2  
(60% blue versus 100% blue) 

 

 
 

Problem B1  
(20% blue versus 60% blue) 

 

 
 

Problem B2  
(75% blue versus 25% blue) 

 

 
 

Problem C1  
(60% blue versus 20% blue 

 
 

Problem C2  
(75% blue versus 25% blue) 

 

 
 

Problem D1  
(40% blue versus 60% blue) 

 
 

Problem D2  
(40% blue versus 75% blue) 

 

Figure 2: Probability problems presented in Experiment 2.  
Note: Problem E (not shown) was identical to Problem D in 
Experiment 1 (see Figure 1)  
 
Materials and Procedure Participants were tested 
individually in a quiet room in the lab or at their daycare. The 
procedure was identical to Experiment 1, with the exception 
of the new battery of problems.  

The probability problems were presented in the same 
manner as in Experiment 1. The side of the correct gumball 
machine and the order that each problem was presented were 
counterbalanced. Problems A, B, C, and D were 
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counterbalanced in two blocks, with half of the participants 
completing version 1 in the first block. To ensure that 
children remained motivated and followed the instructions 
throughout the task, Problem E was always presented last. 

Results and Discussion 
Children received a score of 1 on each problem if they 

chose the machine that contained the higher proportion of 
blue (see Table 2 for means, standard deviations, and 
significance tests against chance for all problems).  

 

Table 2: Children’s performance in Experiment 2. 
 

Problem M SD 
A1 .88 .33 
A2 .88 .33 
B1 .64 .49 
B2 .76 .43 
C1 .74 .44 
C2 .84 .37 
D1 .73 .45 
D2 .78 .41 

E .93 .25 
Overall .80 .17 

Note: Individual problems were analyzed using binomial 
probabilities, overall score analyzed using single-sample t-
test. All p values for the above analyses were ≤ .001, with the 
exception of B1 (p = .03).  
 

Similar to Experiment 1, we explored if children found 
some of the critical problem types (A through D) more 
difficult than others, and if they found problems with higher 
relative likelihoods easier to evaluate. To examine this, we 
conducted a repeated-measures ANOVA with the critical 
problem types (A, B, C, D) and version (1, 2) as a within-
subjects factor and child’s age (younger half versus older 
half) as a between-subjects factor. There was a main effect of 
problem type, F(3, 216) = 5.36, p = .001, h2p = .07, and 
version, F(1, 72) = 4.65, p = .03, h2p = .06, on children’s 
scores. Problem type A (M = .88, SE = .03) was significantly 
easier than problem type B (M = .70, SE = .04; MeanDifference 

= .18, p < .001) and problem type D (M = .76, SE = .04; 
MeanDifference = .12, p = .007). Problem type C (M = .79, SE = 
.03) was marginally more difficult than problem type A 
(MeanDifference = -.09, p = .07) and marginally easier than 
problem type B (MeanDifference = .10, p = .06).    Problems 
labeled with 2 (M = .81, SE = .03), comparisons that were 
further apart in relative likelihood, were significantly easier 
than problems labeled with 1 (M = .75, SE = .03; MeanDifference 

= -.07, p = .03). Children’s age and all interactions were non-
significant. Because Problem E did not include these critical 
features and did not have a complement problem, it was not 
included in this analysis. However, as seen in Table 2, this 
problem was again solved well-above chance, indicating that 
most children still followed the task after they completed a 
number of more difficult problems. 

To examine learning over the course of the experiment, we 
ran an additional repeated measures ANOVA that included 
counterbalanced trial order (problem presented in place 1, 2, 
3, 4, 5, 6, 7, 8) as a within-subjects factor. There was an effect 

of trial order, F(7, 511) = 2.31, p = .03, h2p = .03, on 
children’s scores, with scores improving over the session. 
Though this effect of order suggests that some learning may 
have occurred throughout the experiment, children 
performed well above chance on trial 1 (M = .77, SD = .42, 
binomial p < .001), indicating that learning did not entirely 
account for the strong performance.  

In Experiment 2, we presented children with more 
challenging probabilistic reasoning problems. Although they 
were presented with this more difficult battery, children still 
performed at rates well-above chance across the age group. 
Problem type A was relatively easy for participants to solve, 
possibly because the correct option only contained target 
gumballs. Compared to the other problems, children found 
problem types B and D more difficult. On those problems, 
children were unable to rely on a number of cues, including 
the number of targets and the number of overall objects. We 
also found that children performed better on problems 
labelled with 2, which had relative likelihoods that were 
further apart and thus were easier to visually discriminate. 
Finally, although children performed above chance on the 
first trial, we observed an effect of trial order on performance, 
suggesting that learning may have contributed to 
performance.  

General Discussion 
In two experiments, we established that 3- and 4-year-old 
children are able to reason about probabilities at rates well-
above chance. Though the older children in our sample 
performed significantly better than the younger children in 
Experiment 1, we did not find any age differences in 
performance in Experiment 2. Problems that contained 
multiple shortcuts or a deterministic outcome were easier for 
children to solve, and relative likelihoods impacted 
performance in Experiment 2 with our more difficult set of 
problems. Though children in both experiments performed 
above chance on the first trial, feedback may have affected 
children’s scores over the course of Experiment 2.  

 Differences between our design and those of previous 
experiments may have facilitated performance in our 
paradigm. Children in our experiments were asked an age-
appropriate question about probability. The verbal demands 
of the task affected preschoolers’ performance in the past, as 
their performance suffered in paradigms with very high and 
very low verbal demands. In contrast to using verbal 
explanations as a dependent measure (as in Piaget & Inhelder, 
1975), or using verbal cues that might have been too general 
(as in Girotto et al., 2016), children provided a forced-choice 
response to a simple, explicit question about probability. This 
method appears to have suited their abilities.  

Children may have also found our gumball machine 
paradigm, which was presented on an iPad, engaging, and 
this may have helped maintain their interest over a number of 
trials. This design allowed us to display the contents of the 
gumball machine clearly, and the objects remained in view 
while the child made their choice. In some previous 
experiments, the experimenter sampled a hidden object from 

384



each population and would ask the child to choose between 
the two hidden samples. Displaying the populations during 
the child’s choice may have eliminated a working memory 
demand, because children did not have to maintain a 
representation of the populations during the sampling 
process. To disentangle the influence of these features, future 
work could again present children with two gumball 
machines on an iPad, though the populations would be 
covered while a hidden object is drawn from each machine. 
This would help us determine if clearly displaying the objects 
aids performance, and if hiding the objects during the 
sampling procedure creates a working memory demand. 

We also provided children with feedback for their 
performance on each trial, and they were shown the most 
probable outcome from both populations after they made 
their choice. We used feedback to help sustain motivation 
over the course of the experiment because we were presenting 
very young children with multiple trials. Although we found 
no evidence of learning in Experiment 1, we found an effect 
of trial order on performance in Experiment 2. Nevertheless, 
children in both experiments performed above chance on the 
first trial prior to receiving any feedback. To further 
investigate learning in this context, future work could test the 
effectiveness of feedback at combating the use of overlearned 
strategies that approximate probabilistic inference. In turn, 
this work would shed light on how more sophisticated 
probabilistic reasoning strategies are acquired and fine-tuned 
with practice.  

Moreover, the current experiments explored various 
strategies that children could use to approximate probabilistic 
inference. Though older children are drawn to populations 
with more target objects (i.e., denominator neglect; Falk et 
al., 2012), preschoolers in our experiments performed well on 
problems in which the less probable population contained 
more target objects, and when the number of target objects 
were equated. One notable difference between our problems 
and those that older children struggled with is that older 
children are typically presented with more difficult problems, 
in which the relative likelihoods are more difficult to 
discriminate. In our problems, the relative likelihoods were 
more distinct, making the problems easier overall. 
Surprisingly, preschoolers were drawn to populations with 
more overall objects (that is, target plus non-target). In both 
experiments, children’s performance was slightly worse on 
problems where the less probable population noticeably 
contained more objects. Though older children are not drawn 
to populations with more objects (Falk et al., 2012), the 
current findings suggest that the overall number of objects is 
a salient feature for preschoolers. Because of this somewhat 
surprising finding, we are currently developing a battery of 
problems to further clarify how features of the problem, such 
as overall objects and number of targets, affect young 
children’s probabilistic reasoning performance. Future work 
with a larger age range could also investigate how use of 
different strategies varies over the course of development.  

We presented preschoolers with problems that were on the 
same side of ½ to explore nuances in their ability to compare 

proportions. Children in both experiments were able to make 
these comparisons and considered the proportion of objects 
in each population, even though the less probable population 
contained more target objects. Because we were unsure if 
preschoolers could solve these more difficult problems, the 
more probable population was uniform and only contained 
target objects. Inclusion of the uniform population allowed 
for a straightforward assessment of children’s reasoning 
abilities, serving as a first step in pitting true proportional 
reasoning against a heuristic that focuses on the absolute 
number of target objects. Although this first step established 
that they are able to make these comparisons, future work 
should present preschoolers with two probabilistic 
populations (i.e., both contain target and non-target objects) 
on the same side of ½. This comparison is more difficult, 
because children are comparing two probabilistic populations 
and, by the nature of this design, the relative likelihoods are 
closer together. Though relative likelihood did not influence 
performance on Experiment 1, it impacted preschoolers’ 
responses on the more difficult battery in Experiment 2. Thus, 
future work should continue to test the impact of relative 
likelihood on preschooler’s performance, notably in cases 
where both populations are on the same side of ½.  

Finally, we used two sets of problems to assess 
preschoolers’ probabilistic reasoning in the current 
experiments. Though both batteries indicated that children 
could successfully reason about probability, one may wonder 
which battery would best provide an overall assessment of a 
child’s abilities. For space and intended focus of the current 
paper, we did not report the results of a large set of individual 
difference measures that were collected with the children that 
assessed their executive function and receptive vocabulary 
abilities. These measures tend to correlate well with 
children’s quantitative and general reasoning abilities during 
early childhood. However, the battery used in Experiment 1 
correlated well with these measures, while the battery in 
Experiment 2 did not show as strong of a relationship. 
Therefore, at the present time, the problems in Experiment 1 
might be the best set to use when gauging children’s abilities 
in future work. We are currently working on another battery 
of problems, which include some problems from 
Experiments 1 and 2, and some additional problems of even 
greater difficulty to continue refining the set.  

In sum, preschool children in both experiments solved 
probabilistic reasoning problems at rates above chance. The 
current findings illustrate the importance of using an age-
appropriate paradigm when establishing the abilities of a 
particular population. Though children did not rely solely on 
erroneous strategies, future work is needed to explore how 
features of probabilistic problems impact performance.  
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Looking Patterns during Analogical Reasoning: Generalizable or Task-Specific?  
 
 

Abstract 

Given the importance of developing analogical reasoning to 
bootstrapping children’s understanding of the world, why is 
this ability so challenging for children? Two common 
mechanisms have been implicated: 1) children’s inability to 
prioritize relational information during initial problem solving; 
2) children’s inability to disengage from salient distractors. 
Here, we use eye tracking to examine children and adults’ 
looking patterns when solving scene analogies, allowing for 
differentiation between attention to relations versus to 
featurally salient distractors. In contrast to a recent study with 
propositional analogies, our data suggest prioritization of 
source information does not differ between adults and children, 
nor is it predictive of performance; however, children and 
adults attend differently to distractors, and this attention 
predicts performance. These results suggest that feature-based 
distraction is a key way children and adults differ during 
analogical reasoning, and that the analogy problem format 
should be taken into account when considering children’s 
analogical reasoning. 

Keywords: analogy, attention, eye tracking, reasoning, 
pattern recognition   

Introduction 
Analogical reasoning involves identifying higher order 
similarities in relational structure shared between 
representations. This form of reasoning is used in many 
contexts, and is predictive of academic and professional 
success (Richland & Burchinal, 2013). Yet, analogical 
reasoning proficiency develops over time: young children 
often struggle to notice or extract deep underlying structures 
from comparison opportunities (Gentner & Smith, 2013). 
Given the importance of developing this ability, researchers 
have asked why analogical reasoning problems are 
challenging for children. Two common explanations in the 
literature implicate: 1) children’s inability to prioritize 
attending to relational information during initial problem 
solving, or 2) children’s inability to disengage from featurally 
salient distractors.  
 
Prioritization of Relational Information 
One explanation for children’s difficulty with analogical 
reasoning problems is that they fail to attend to relational 
information that is crucial for correctly solving problems. 
Much of this work has used propositional analogies, in the 
format A:B::C:D. In these analogies, participants select from 
four choices a D item that is relationally similar to the C item 
in the same way that A and B are similar. For example, if A 
and B are both triangles, with B being a stretched version of 
A, and C is a square, the correct choice for D would be a 
stretched square. A featural distractor in the response choices 
might be a diamond of the same color as the square – color 
being a salient perceptual feature that could distract from the 
deeper, structural relation between C and the stretched 
square. 

  From eye tracking work, we know that adults generally 
attend to the A:B pair before fixating on C and the response 
choices, showing that they can maintain the overarching goal 
(i.e. find the picture that goes with C in the same way that A 
goes with B) (Starr, Vendetti, & Bunge, 2018). In contrast, 5- 
and 6-year-old children ignore the A:B items, and focus their 
attention on C and the response choices (Glady, French, & 
Thibaut, 2017; Thibaut & French, 2016). This suggests that 
children do not extract relational information before 
considering response options, instead focusing on the 
immediate task goal (i.e. find the picture that goes with C).  

In support of this idea, using linear discriminant analysis, 
French and Thibaut (2014) found that children’s visual 
attention during the first third of the trial can predict with 
64% accuracy whether or not the problem would be answered 
correctly. This is especially true if attention is focused on the 
A:B pair.  Glady and colleagues (2017) have shown that 
guiding children’s attention to the A:B pair during initial 
problem solving significantly improved children’s 
performance.  
 
Featurally Salient Distractors  
While attention during the task may be important, an 
alternative explanation for children developing proficiency 
on analogy problems emphasizes the effect of featurally 
salient distractors. In many situations that require analogical 
reasoning, the visual scene is complex. Although a higher 
order relational structure is present, children are more likely 
to make judgments based on mere appearance or surface-
level similarities between representations – attending to items 
that are perceptually or semantically related to the item in 
question, rather than structurally related. Young children are 
particularly susceptible to this type of error, tending to shift 
from more object-based similarity matching to more 
relational reasoning over time, defined as the relational shift 
(Gentner, 1988).  Adults also appear to make relational shifts 
when reasoning about information for which they have low 
knowledge, yet children tend to make featural errors even 
when reasoning about relations that are familiar (Richland, 
Morrison & Holyoak, 2006).  This finding has led researchers 
to suggest that the inability to disregard salient featural 
information in favor of relational information may be, at least 
in part, attributed to still developing executive function (EF) 
resources, and that gains in EF allow children to increasingly 
manipulate complex relations in working memory and direct 
attention toward relevant aspects of an analogy (Richland et 
al., 2006; Simms, Frausel & Richland, 2018).  

Behaviorally, this explanation has been supported using a 
variety of analogical reasoning tasks (i.e. scene analogy and 
propositional analogy paradigms). For example, Richland 
and colleagues (2006) asked children to identify relational 
similarities between two scenes (e.g. a source and target 
scene), while ignoring items with featural similarities. In their 
task, the goal was to identify something in a target scene that 
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corresponded relationally to a prompted item in a source 
scene. Importantly, a featural distractor, an item in the target 
scene that was not incorporated in the relation of focus and 
had great surface similarity to the prompted item in a source 
scene, was sometimes present in the target scene (Richland et 
al., 2006). For example, a pair of scenes might depict a 
relation of a dog chasing a cat (source scene) and a man 
chasing a woman (target scene). If the dog was prompted, the 
correct choice would be the man and the incorrect featural 
choice would be a perceptually similar dog in the target 
scene. For children ages 3-4, the perceptually similar match 
was an effective featural distractor, such that accuracy for the 
problems with distractors was 15% less than that for the 
problems without distractors. Individual differences in 
children’s EF (working memory in particular) explained 
these patterns of performance (Simms et al., 2018). Further, 
these behavioral findings have been complemented by 
modeling work: Simulations in the LISA computational 
model of analogy (Hummel & Holyoak, 1997, 2003) suggest 
that changes in inhibition levels, along with relational 
knowledge accretion, account for young children’s difficulty 
when reasoning analogically (Morrison, Doumas, & 
Richland, 2011; see also Doumas, Morrison, & Richland, 
2018). Using the same task, the model replicates the 
experimental findings of Richland and colleagues (2006), 
such that the model was more likely to choose a featurally 
similar distractor object than an analogically correct choice.   

Thibaut and colleagues (2010) demonstrated a similar 
effect of featural distractors using propositional analogies. 
Similar to scene analogy paradigms, correct responses 
require inhibition of salient features and a focus on common 
relational structure. As with scene analogies, children were 
more prone to errors when featural distractors were present. 
Indeed, later work using eye tracking revealed a negative 
association between the amount of time looking to a 
distractor and performance, such that the more time children 
spent looking at the distractor the worse they performed 
(Thibaut & French, 2016). 

  
Distractor versus Prioritization  
Whereas the majority of previous literature has considered 
these two mechanisms separately, Starr and colleagues 
(2018) examined both how looking to featural distractors and 
focusing on source relational information affected children’s 
ability to solve propositional analogies. They argued that 
children’s poor performance was due to an inability to 
prioritize attending to the A:B relation when initially 
processing an analogy, rather than an inability to disengage 
from perceptual lures. What is unknown is whether this 
finding is unique to propositional analogies, or consistent 
across all analogy types. 
 

                                                        
1 Data from 57 children and 60 adults was collected. Although all 

children were included in analyses, a subset of data from particular 
timepoints were excluded from 8 children based on insufficient 
usable eye tracking data. Five adult participants were excluded for 
having lacking sufficient eye tracking data. For adult participants to 

Current Study 
Here, we examined visual attention while children and adults 
solved scene analogy problems similar to those used by 
Richland and colleagues (2006). If the main factor underlying 
children’s poor performance on scene analogy problems is 
their non adult-like looking patterns (characterized in 
propositional analogies as a prioritization of relational 
information – A:B pair – during early problem solving) we 
should find that adults show greater attention to the source 
scene and key relationship than children, especially early in 
problem solving.  We should also find that attending to the 
source relation predicts performance. Indeed, we already 
know that adults initially focus on the relations within a 
source scene – prioritizing the existing structural relation 
before considering the target scene (Gordon & Moser, 2007). 
However, if we do not find this difference in visual attention 
between adults and children, this would suggest that whereas 
adults may have a systematic approach to solving all analogy 
problems, the format of the problem may have a strong 
influence on how children solve these problems. In this case, 
Starr and colleagues’ findings would be specific to 
propositional analogy problems.  

The scene analogy task also allows us to measure looking 
to the featural distractor, determining whether children’s 
looking patterns appear similar to or systematically different 
from adults’.  Thus we will examine both looking to the 
source relation, as well as attention to featural distractors to 
assess which of these attentional mechanisms best explain 
children’s developmental trajectory in solving scene 
analogies.  

Methods 
Participants 
Data from 57 4- and 5-year-old children (29 females, Mage = 
4.88, SDage = 0.47) and 45 adults (37 females, Mage = 19.45, 
SDage = 0.99) were analyzed for the present study1. 
Participants represented a diverse sample from a large 
metropolitan city. Children were recruited from schools and 
participated individually in one experimental session during 
a regular school day. Children were compensated with 
stickers and a certificate noting their participation in a 
research study. Adults were recruited from a participant pool 
at a university and participated individually in a lab setting.  
 
Materials 
Stimuli. Participants were shown scene analogies adapted 
from Richland et al. (2006). Each stimulus included a pair of 
scenes presented simultaneously on a 15-inch Dell laptop. 
Pairs of scenes depicted one of two relation categories (i.e. 
chasing or reading) occurring between items (i.e. animals or 
people) within the scenes. Source scenes contained five 

be included in the sample, they must have > 75% accuracy. This was 
to ensure that we had a measure of successful, mature visual 
attention patterns. Ten adult participants were excluded for having 
< 75% accuracy across trials. 
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items: the two items within the relation that participants were 
to attend to, and three additional items (i.e., neutral inanimate 
objects). Target scenes also contained 5 items: the two items 
within the relation, two additional items, and a featural 
distractor.  

Figure 1a. shows an example of a “chasing”  relation 
depicted in both a source and a target scene. The source scene 
on the left shows a tiger chasing a woman (items within the 
chasing relation), and the corresponding target scene on the 
right side shows a lion chasing a horse (items within the 
chasing relation).  Target scenes also contained a featural 
distractor that was featurally similar to the prompted source-
scene item. In Figure 1a., the tiger in the target scene serves 
as the distractor because the tiger is prompted (i.e. circled) in 
the source scene. To maintain the same number of items 
across scenes, additional items were included. These items 
were neutral, meaning they were not involved in the chasing 
relations and were not the distractor (in Figure 1a, source 
scene: dog house, jeep, and plant, target scene: barn and 
soccer ball). Importantly, the distractor is never involved in 
the relation within the scene. Distractors were centrally 
located, increasing the likelihood that participants would 
notice them.  

Figure 1b. shows an example of a “reading” relation in 
both a  source and a target scene. Items depicting the reading 
relation were oriented towards each other with one character 
reading to the other character. In all source scenes, one of the 
two items within the relation of chasing or reading was 
prompted with a circle. The directionality of relations within 
a pair of scenes was reversed to avoid children making 
choices based on spatial location alone. For example, in 
Figure 1a., if chasing is depicted between characters to the 
left in a source scene, the chasing would then be depicted to 
the right in the target scene.  
 
Eye Tracker.  Eye tracking data were collected via corneal 
reflection using a TobiiPro X3-120 remote eye tracker 
affixed to a 15-inch Dell laptop. Tobii software was used to 
perform a 5-point calibration procedure using standard 
animation blue dots. This step was followed by the collection 
and integration of gaze data with the presented instructional 
videos (described below) using Tobii Studio (Tobii 
Technology, Sweden). All gaze data was extracted from 
Tobii Studio Software for each participant. 

 
Procedure 
For the purpose of the present question, we considered a 
subsection of data from a longer study: eye tracking data 
during which children and adults visually attended to scene 
analogy problems without any training on how to solve them. 
For children, the data came from 12 pretest problems (6 
chasing; 6 reading), after which children received training on 
how to solve scene analogies and completed 12 posttest 
problems. For adults, the data came from 24 problems (12 
chasing; 12 reading). Items included in a child’s pretest and 
posttest were counterbalanced, and all items were shown to 
adults. 

 

 
 

Figure 1. a. Example trial of chasing relation category.  
b. Example trial of reading relation category. 

 
Introduction to Task and Calibration. Participants were 
told they were going to play a picture game and shown one 
example trial, orienting them to the layout of test trials (i.e., 
two pictures with different colored borders), and their task 
(i.e., that for each set of scenes their job was to figure out the 
pattern in the pictures). The experimenter described the 
chasing relation and asked the participant to solve the 
relation. For children, the explanation was repeated until they 
chose the correct item. This introduction ensured that when 
children incorrectly answered a trial, it was not because of a 
misunderstanding about the goal of the task.  

Next, calibration on the eye tracker was completed: 
participants were seated approximately 40 cm in front of the 
laptop, familiarized with the eye tracker, and told it was 
important to remain still throughout the session.  

 
Task. Participants completed a set of scene analogies while 
their visual attention was monitored. Participants were 
instructed to respond verbally to “Which thing in the picture 
with the blue edges is in the same part of the pattern as the 
circled thing in the picture with the green edges?”. The task 
was self-paced, but if no response was given after a few 
seconds, the experimenter re-prompted. Responses were 
recorded for each trial.  
 

Results 
Areas of interest (AOIs) were generated for the items within 
the scene pairs using Tobii Studio (i.e. each trial had 10 AOIs, 
5 in each scene). The remaining spaces outside of these AOIs 
were collapsed into an “Other” AOI. For analyses, we 

a.

b.
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considered visual attention to 1) the source relation 
(comprised of two relational items and analogous to the A:B 
items in propositional analogies) and 2) the distractor 
(analogous to a choice item in propositional analogies). Data 
were extracted and processed so that the AOI a participant 
fixated could be determined at 8 msec intervals across the 
entire length of each problem. Proportion of time spent 
looking to each AOI was calculated using the total gaze 
duration of a given trial (e.g., 1000 msec), and the amount of 
time spent looking at a given AOI during a particular trial. 
All analyses considered visual attention patterns and 
accuracy at the trial level, not aggregated across trials for a 
given participant.  

Because prior work (Starr et al., 2018; French & Thibaut, 
2014) suggests visual attention during initial solving has the 
most predictive power for whether a participant will arrive at 
the correct answer, we consider proportion of looking to these 
AOIs across the entire trial, as well as proportion of looking 
during an initial segment of each problem. In prior work, 
participants had set time limits for solving problems, thus, 
researchers could consider a set amount of time (e.g., the first 
third or fourth of a trial) when examining attention at the 
beginning of problem solving. Here, we used a self-paced 
design, which resulted in variability of trial length both across 
and within participants. Therefore, we considered the first 5 
fixations of each trial as the first interval of problem solving.  

 
Prioritization of Relational Information  
Our primary goal was to establish whether visual attention to 
the source relation during scene analogy problems differed 
between age groups in the same way as for propositional 
analogies. Figure 2 shows the proportion of visual attention 
allocated to AOIs for both children and adults. In contrast to 
previous work using propositional analogies, both children 
and adults attended to the source relation about one-third of 
the time, across the entire solution time (adults: M = 0.34, SD 
= 0.05; children: M = 0.33, SD = 0.66). A generalized linear 
model supported the interpretation that attention to the source 
relation did not differ by age group (β = -0.01, SE = 0.01, t = 
-0.39, p = 0.70). Focusing just on initial solution time 
revealed that a higher proportion of looking to these items 
occurred when participants first viewed these problems than 
across the entire trial: adults spend nearly half of early 
problem-solving time focused on this relation (M = 0.52, SD 
= 0.10), and children allocated just under half of their 
attention to these items (M = 0.44, SD = 0.18). Again, there 
was no significant difference in this looking pattern between 
groups (β = 0.00, SE = 0.01, t = 0.24, p = 0.81). 

 In order to make conclusions about whether looking to the 
source relation supports successful reasoning, we must assess 
the relation between performance and visual attention 
patterns. Unsurprisingly, children performed poorly on scene 
analogies, answering less than one-third of the problems 
correctly (M = 0.30, SD = 0.26), whereas adults were much 
more accurate (M = 0.92, SD = 0.06). Because adults 
performed nearly at ceiling, we only assess whether looking 
patterns predict accuracy for child participants.  

Binomial generalized linear models, with accuracy on each 
problem (0, 1) as the dependent measure, were used to 
determine whether looking to source relation is predictive of 
behavioral performance. In contrast to prior work, we found 
no relation between performance and looking to the source 
relation across the entire trial (β = 0.30, SE = 0.82, t = 0.34, 
p = 0.71), or during initial problem solving (β = 0.05, SE = 
0.33, t = 0.16, p = 0.87) and learning. Overall, these results 
challenge previous work suggesting that children’s lower 
performance on analogy problems can be explained by 
failures to attend adequately to the source relationship.  
 

 
Figure 2. Proportion of time looking to source relations and 
distractors across entire trials and the first interval of trials. 

 
Featurally Salient Distractors 
When children and adults were not looking at the source 
relation, how did they allocate their attention? In line with 
previous work assessing children’s visual attention during 
analogical reasoning, children spent roughly 10% percent 
more of their time looking to featural distractors (M = 0.20, 
SD = 0.10) as compared to adults (M = 0.09, SD = 0.02) 
across the entire problem-solving time. A generalized linear 
model indicated that children spend reliably more time 
looking towards the distractor than did adults (β = 0.09, SE = 
0.01, t = 6.31, p < .001). However, during initial problem 
solving, both children and adults spent less than 10% of their 
time looking to the distractor (adults: M = 0.07, SD = 0.03; 
children: M = 0.09; SD = 0.06). A generalized linear model 
supported a lack of difference between age groups (β = -0.05, 
SE = 0.03, t = -1.75, p = 0.08). This indicates that, at first, 
children and adults explore the distractor equally, but 
children continue assessing the distractor throughout the trial.  
 Finally, we asked whether behavioral accuracy was 
predicted by looking to the distractor. Interestingly, in line 
with previous work, children performed better if they spent 
less time looking to the distractor across the entire problem-
solving time (β = -9.21, SE = 1.29, t = -7.16, p < .001). 
However, when considering initial looking times only, there 
was no relation between looking to the distractor and 
performance (β = 0.88, SE = 0.62, t = 1.41, p = 0.16), 
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suggesting that initial attention to the scenes was not the key 
differentiating period. 
 

Discussion 
While previous work seems to be at a consensus about the 
differences between mature and immature visual attention 
patterns while solving propositional analogies, the current 
study was conducted to see if these patterns hold when 
children and adults solve scene analogies, which are arguably 
more similar to real world analogies. Specifically, previous 
work shows that when solving propositional analogies, 
children look less to the source relation (A:B) than adults, and 
that prioritizing attention to relational information early in 
analogical problem solving is predictive of later accuracy 
(Glady et al., 2017; Starr et al., 2018; Thibaut & French, 
2016). Here, we do not find differences in patterns of 
attention to the source relation when solving scene analogies 
between children and adults, neither in their initial attention 
nor in the full problem-solving period. Furthermore, we do 
not find that children’s attention to relational information is 
predictive of their performance, even though we replicate the 
pattern that children perform significantly worse than adults. 
We do, however, find that attention to the featural distractor 
predicted accuracy in children. Together, these results 
suggest the format of the problem influences attentional 
patterns and that prioritization of relational information is not 
always critical for successful problem solving across all 
analogy paradigms. 

While both propositional and scene analogies require 
processing relational information in order to arrive at a 
correct solution, their structures differ significantly. This 
difference in structure may account for why children 
approach these problems in different ways. In analogies of 
A:B::C:D format, children who are not skilled at analogical 
reasoning seem to overlook the relational information 
contained in the A:B pair, and focus on ‘C’ and the response 
options, because they interpret the task as ‘match ‘C’ to 
something’ and treat A:B as irrelevant. In the example used 
previously from Thibaut & French (2016), children might 
ignore that ‘shape’ is the relational structure, such that B is a 
stretched version of A, and be more likely to pick an option 
that is similar to C on another dimension, such as ‘color’. It 
seems that the salience of the A:B pair is not great enough to 
warrant attention from those children who do not understand 
the task goal. In contrast, in a scene analogy, children’s visual 
attention is still drawn to the source relation initially, perhaps 
due to the circled item. Based on our results, the salience of 
the circled item draws both children and adults’ attention 
equally at first, but unlike adults, children less often utilized 
that information to correctly solve the problem. Furthermore, 
the presence of a distractor lowered children’s performance 
and drew children’s attention. While looking to the source 
relation is obligatory for children and adults because of the 
circled item’s salience, this looking pattern does not 
uniformly result in successful analogical reasoning.   

Previous work has consistently demonstrated that adults 
prioritize relational information during initial problem 

solving, characterized by looking to the source relation 
(Gordon & Moser, 2007) or the A:B pair (Starr et al., 2018; 
Thibaut & French, 2016). Perhaps because adults understand 
that they need to identify the deeper structure in these 
problems, and therefore, are more proficient analogical 
reasoners, they are not restricted by the structure of the 
problem. Adults can organize their visual search in a 
particular way despite analogy format, whereas children’s 
visual search during analogical reasoning is strongly 
influenced by problem structure, and, as will be discussed 
next,  the presence of a featural distractor.  

The secondary goal of this work was to ask if looking 
patterns to featural distractors are comparable between scene 
analogies and propositional analogies (Thibaut et al., 2010; 
Thibaut & French, 2016). Across the entire problem-solving 
episode, children allocated more of their attention to the 
distractor than adults, and this was negatively related to 
behavioral performance. This corroborates previous work 
using propositional analogies (Thibaut & French, 2016). 
However, when we only considered the first interval of 
problem-solving time, children and adults allocated an equal 
amount of time to the distractor, and this was not predictive 
of performance. This differs from previous work that has 
stressed the importance of initial looking patterns for 
predicting accuracy.  

Based on these results, we can suggest that when solving 
scene analogies, adults and children both consider the 
distractor, but children continue their examination of the 
distractor across the entire trial. It is this continued focus on 
the distractor that leads to poor behavioral performance – 
initial consideration may be indicative of children and adults 
processing the items that appear in the source and target 
scenes before working to solve the problem. 

Overall, incorporating our findings about children and 
adult’s visual attention across the problem-solving process 
and during initial solving, and attention towards the source 
relation and distractor, we can conclude that children and 
adults organize their visual search in different ways when 
solving analogical reasoning problems: In processing 
analogies, adults begin by identifying the relational 
information necessary to understand the structure of the 
analogy. In contrast, children have more disorganized 
looking patterns, such that their visual search is dependent 
upon analogy format, rather than the overarching goal to 
identify relational structure. The consistent effect of featural 
distractors on children’s visual attention, across analogy 
formats, lends further support for the conclusion that children 
have inefficient looking patterns. While consistently looking 
to distractors could be considered an ‘organized looking 
pattern’ because they perform this behavior somewhat 
reliably, in this case, it demonstrates children’s difficulty 
attending to underlying relational structure.  This conclusion 
is in line with the work of Glady and colleagues (2010), who 
found a clear difference between adults and children’s visual 
strategies when solving analogy problems, such that adults 
have more organized search patterns (Glady, Thibaut, & 
French, 2010).   
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 Although our work adds an important piece to 
understanding the development of analogical reasoning 
ability, it should be noted that one limitation of this work lies 
in the restricted comparisons that can be made between 
propositional and scene analogies. Specifically, previous 
analogical reasoning research has made strong conclusions 
about the differences between age groups in terms of looking 
to the C item in propositional analogies (A:B::C:D), such that 
children look more to the C item earlier in the problem 
solving process and focus their search around C, whereas 
adults will search in a more organized way by first examining 
the A:B pair and then looking at the C item and the possible 
answers (Starr et al., 2018; Thibaut & French, 2016). 
Unfortunately, there is not a functionally comparable item to 
C in a scene analogy. Items C and D are already in relation 
with one another in a scene analogy, whereas D must be 
chosen from multiple options by the participant in a 
propositional analogy. Therefore, in this study, we cannot 
make conclusions about looking to the C item. This, again, 
speaks to the structural difference between propositional 
analogies and scene analogies. 

Overall, our results suggest that while there are some 
generalizable differences between how adults and children 
process analogies regardless of their format, there are other 
aspects of how attention is allocated that are dependent upon 
analogy type. These results allow us to resolve 
inconsistencies in previous work by identifying exactly how 
children’s visual attention differs across analogy formats. 
Gaining a better understanding about these differences across 
the domain of analogical reasoning will better elucidate the 
attentional mechanisms underlying learning in this domain 
and inform teaching techniques. Determining how children 
view analogy problems will help us understand what 
underlies this behavioral ability in children and adults, and 
could lead to evidence-based practices for teaching 
analogical reasoning through guided looking. This work, and 
future work in this field, can begin to inform practical 
instructional techniques by helping educators design 
instruction that reaches diverse classrooms of learners, as 
they struggle to develop this difficult, yet important ability: 
analogical reasoning.  
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Abstract

How do societies develop categories for continuous sets of novel phenomena, as in the domains of art and technology?
Seminal work in the nativist tradition argues that given the same stimuli, people can independently produce the same
categories as a result of universal cognitive constraints. These constraints are said to account for cross-group coherence,
where distinct communities and cultures have been shown to arrive at highly similar categories. Cross-group coherence is
widely seen as incompatible with functionalism, which holds that categories are defined through communication, leading
to divergent category systems. Here, we use an experiment to demonstrate that communication can generate either the
divergence or convergence of category systems, depending on the size of the social network (2, 6, 8, 24, and 50). We find
that large social networks amplify population biases, where a subset of slightly more frequent words become exponentially
more likely to spread as network size increases.
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Abstract

We consider the problem of predicting how humans learn inter-
actively in an adversarial Multi-Armed Bandit (MAB) setting.
In a cybersecurity scenario, we designed defense algorithms to
assign decoys to lure attackers. Humans play the role of cyber
attackers in an experiment to try to learn the defense strategy
after repeated interactions. Participants played against one of
three defense algorithms: a stationary strategy, a static game-
theoretic solution, and an adaptive MAB strategy. Our results
show that humans have the most difficulty learning against the
adaptive defense. We also evaluated five different models of
attack behavior and compared their predictions against human
data. We show that a modified version of Thompson Sampling
and a cognitive model based on Instance-Based Learning The-
ory are the best at replicating human learning against defense
strategies. We discuss how these models of human attacker can
inform future cyberdefense tools.
Keywords: Cognitive Modeling; Reinforcement Learning; In-
telligent Agents; Decision Making; Cybersecurity

Introduction
With the popularity of autonomous systems, the question of
how humans interact with these systems becomes increas-
ingly important (Gershman, Horvitz, & Tenenbaum, 2015).
Humans are imperfect agents, but they are capable of learn-
ing and in some settings able to adapt to novel situations. Our
ability to anticipate human behavior, to represent human deci-
sion making computationally, and to use these predictions to
improve autonomous agents is critical to making autonomous
systems more capable and secure.

We study an adversarial decision making setting framed in
the context of cybersecurity. Humans attackers try to compro-
mise a network while automated defender algorithms deploy
decoys in the network (i.e., honeypots) to detect and thwart

attackers. Honeypots are designed to waste the attacker’s re-
sources and provide information to the defender (Spitzner,
2003). Attackers try to avoid detection by honeypots. De-
ploying a fixed configuration of honeypots (i.e., a static de-
fense) may capture an attacker in a single interaction. How-
ever, an adaptive attacker may learn the static honeypot de-
fenses and actively avoid them in future interactions. A de-
fender who can predict this attack learning dynamic should
be able to deploy defensive strategies that are harder to learn
and defeat over the long term. Our goal is to determine how
human attackers behave against defense algorithms of vari-
ous complexities, and to test cognitive models of adversarial
behavior against other common behavioral models.

We model a cybersecurity scenario as a repeated Multi-
Armed Bandit task (MAB) where a human attacker plays
against an automated defender. MAB tasks have been use-
ful in the study of human decision making, characterizing the
common exploration-exploitation tradeoff (e.g., (Steyvers,
Lee, & Wagenmakers, 2009)). However, our goal is to de-
termine how a human attacker is able to learn the defender’s
deception strategy and avoid honeypots based on previous ex-
perience.

In a standard MAB, a decision maker select arms on a “slot
machine” in each round and observes the outcome, typically
with the value of each arm in the range [0,1]. The adver-
sarial MAB considers an adversary (i.e., the algorithmic de-
fender) who has control over the rewards of each node. Here,
we consider a variation of the MAB in which each node i
has bounded support interval {−ca

i ,vi − ca
i }. This allows

the MAB agent to make more informed decisions in earlier
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rounds. This maps naturally to an attacker who has probed
the network prior to making an attack, and it relates to recent
approaches to study learning and decision making under con-
textual MAB, where information about rewards is provided.

Learning in Multi-Armed Bandits
In a MAB, individuals learn by repeatedly choosing among
multiple options that have varying probabilities of different
rewards that are observed through immediate feedback af-
ter a choice. In theories of decisions from experience, two-
arm bandit problems are a classical research paradigm used
for modeling human decisions and learning from experience
(e.g., (Gonzalez & Dutt, 2011)).

Experiments of human behavior have demonstrated that
humans are able to learn in MABs by gradually transitioning
from exploration of the available alternatives to exploitation
of the most rewarding options while learning from feedback
and experience (Gonzalez & Dutt, 2016; Mehlhorn et al.,
2015). Sripa et al. notably ran an experiment with 451 human
participants playing the MAB (Sripa et al., 2009), and applied
a Bayesian learning model to explain the human data. Zhang
et al. extended this work by improving the participant behav-
ioral prediction with a Knowledge Gradient model (Zhang &
Angela, 2013). Our current work differs from these works in
that we consider differences in reward distributions. Specif-
ically, the previously mentioned authors address human per-
formance in stochastic settings. In this work, we consider
humans in static, stochastic, and adversarial MABs settings
and analyze the effects of each environment. Furthermore,
we provide context to the human decision makers by adver-
tising the potential gains and losses of each arm of the MAB.

Recent research has shown that humans are able to learn
well in contextual MABs, and various algorithms have been
used to replicate this human behavior, including Thompson
sampling (Agrawal & Goyal, 2012; Speekenbrink & Kon-
stantinidis, 2015). In contrast to these models often used in
MAB tasks, cognitive models of human behavior represent
the cognitive mechanisms (e.g, memory, learning, forgetting)
which are essential elements for human learning (Gonzalez,
Lerch, & Lebiere, 2003). We offer a unique paradigm to test
cognitive models of human learning and decision making and
pair them against other representations of behavior in MAB
tasks, playing against defense algorithms of various complex-
ities.

Honeypot Cybersecurity Game
In the Honeypot Cybersecurity Game (HCG) a defender
places decoys to protect network resources (nodes) and the
attacker aims to capture those resources. A screenshot of the
user interface shows a network with 5 nodes (Figure 1). Each
node in the network has the following values: vi is the value of
node i, ca

i is the cost to attack node i, and cd
i is the cost to de-

fend node i. The reward vi− ca
i for attacking a non-honeypot

appears as a positive number on top of each node. The cost
for attacking a honeypot −ca

i appears as a negative number at
the bottom of the node.

Game 1 / 50

Defender Budget: 40

Time Remaining: 6 seconds

Total Points: 0

PASS

node 1 node 2 node 3 node 4 node 5

+10
-5

+20
-20

+15
-10

+15
-5

+20
-15

Figure 1: User interface for the HCG.

Table 1 shows the specific values used in the HCG for
our experiments. We designed the node values to fit com-
mon risk-reward archetypes (e.g., low-risk/low-reward, high-
risk/high-reward, low-risk/high-reward). The explicit values
shown in each node give an attacker the possibility of making
informed decisions that will be combined with experiential
decisions as in (Lejarraga, Dutt, & Gonzalez, 2012).

pass node 1 node 2 node 3 node 4 node 5
vi 0 15 40 35 20 35
ca

i 0 5 20 10 5 15
cd

i 0 10 20 15 15 20

Table 1: Node parameters for online human experiment.

At the beginning of each round, the defender spends her
budget D to turn some subset of the nodes into honeypots,
such that the total cost is ≤ D. Once the defender deploys
honeypots, the attacker selects a node to attack or passes. If
the attacker’s chosen node i is not a honeypot, the attacker
receives the reward vi− ca

i , and the defender receives a re-
ward of 0. If the attacker’s chosen node i was a honeypot, the
attacker receives the negative reward −ca

i , and the defender
receives the positive reward vi

1. At the end of a round with n
trials, the game resets and a new round begins. The attacker
and defender are only informed of the rewards they receive af-
ter each action, and do not directly observe the other player’s
choices (known as incomplete or semi-bandit feedback).

Defender Algorithms
We consider 3 different defender algorithms to investigate
their impact on human adversarial decision making and learn-
ing. We expect these to create varying levels of difficulty for
the human attackers to learn the defense policy.

The Static Pure Defender algorithm employs a “set and for-
get,” defense that implements an unchanging, greedy strategy
that spends the budget to protect the highest valued nodes.
For the scenario in Figure 1, the defender always sets nodes
2 and 5 as honeypots, leading to nodes 3 and 4 being the op-
timal ones to attack. Against this defender, the attacker can
gain a maximum of 750 total points in this specific scenario
by always attacking node 3 or 4 for all 50 rounds.

1We assume vi ≥ ca
i and ∑i∈N cd

i > D.
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The Static Equilibrium Defender plays according to a fixed
probability distribution over the possible combinations of
nodes to be honeypots. A new combination is selected ran-
domly each round according to the distribution shown in Ta-
ble 2. This is a game-theoretic Mixed Strategy Nash Equilib-
rium that optimizes the defender’s expected utility assuming
a single, non-repeated interaction against a fully rational at-
tacker. The optimal strategy for the attacker against this strat-
egy is to attack node 4, with an expected total value of ≈ 447
points for the attacker.

defended nodes {1,3,4} {2,3} {2,5} {3,5}
probability ≈ 0.303 ≈ 0.095 ≈ 0.557 ≈ 0.0448

Table 2: Static Equilibrium Defender probabilistic strategy.

Algorithm 1 Learning with Linear Rewards (LLR)
If max

a
|Aa| is known, let L = max

a
|Aa|; else, L = N

for t = 1 to N do
Play any action a such that t ∈ Aa
Update

(
θ̂i
)

1×N ,
(
mi
)

1×N accordingly
end for
for t = N +1 to ∞ do

Play an action a which solves the maximization:

a = argmax
a∈F

∑
i∈Aa

ai

(
θ̂i +

√(
L+1

)
lnn

mi

)
, (1)

Update
(
θ̂i
)

1×N ,
(
mi
)

1×N accordingly
end for

The Adaptive Learning with Linear Rewards Defender
(LLR) (Gai, Krishnamachari, & Jain, 2012) plays an adap-
tive, learning defense strategy that tries to maximize reward
by balancing exploration and exploitation using an approach
designed for MAB learning. Aa in LLR is the set of all in-
dividual actions (nodes to defend). In the scenario from Fig-
ure 1, Aa is the set containing all 5 nodes. LLR uses a learning
constant L, which we set to L = 3 since this is the maximum
number of nodes we can play in a defense. LLR has an initial-
ization phase for the first N = 5 rounds where it guarantees
playing each node at least once.

(
θ̂i
)

1×N is that vector con-
taining the mean observed reward θ̂i for all nodes i.

(
mi
)

1×N
is the vector containing mi, or number of times node i has
been played. The vectors are updated after each round.

After the initialization phase, LLR solves the maximization
problem in equation 1 and deterministically selects the subset
of nodes that maximizes the equation each round until the end
of the game. The algorithm tries to balance between nodes
with high observed means (i.e., have captured the attacker
often in the past) and exploring less frequently played nodes
(which the attacker may move to in order to avoid capture).
While LLR has no concept of an opponent, it indirectly adapts
to the attacker based on the observations of previous rewards

that depend on the attacker’s strategy.
In this scenario, it is difficult for the attacker to fully ex-

ploit the strategy of the defender due to incomplete informa-
tion. When facing a static defender in a static environment,
the optimal node(s) will remain the same, but when facing
LLR or another adaptive defender the node(s) providing the
highest expected value may change from round to round.

Experimental Design
We recruited 304 human participants on Amazon’s Mechani-
cal Turk (AMT) where 130 reported female and 172 reported
male with 2 participants reporting as other. All participants
were above the age of 18, and the median age was 32. Partic-
ipants interacted with one of the 3 defense algorithms for 50
rounds. 101 participants played against the Static Pure De-
fender; 100 played against the Static Equilibrium Defender;
and 103 played against the LLR defender. Participants took
roughly 10 minutes from start to finish. They were paid US
$1.00 for completing the experiment and were given a bonus
payment proportional to their performance in the 50 round
game, ranging from US $0 to an extra US $3.25.

This task did not require cybersecurity knowledge and par-
ticipants were given detailed instructions and definitions of
the concepts needed to perform the task (e.g., honeypot). Par-
ticipants were told that the defender has a budget D = 40 that
limits the number of honeypot configurations (i.e., combina-
tions of defended nodes). In each round, the participant at-
tacks a node and receives either a positive reward vi− ca

i or a
negative reward−ca

i depending on the defender’s action. The
setup in Figure 1 was the same for every participant.

We analyzed 4 measures associated with participants’ per-
formance, and we compared predictive algorithms using the
same measures. Switching is a common measure of explo-
ration used in human decision-making and learning studies
(Gonzalez & Dutt, 2016; Todd & Gigerenzer, 2000). High
switching indicates high exploration and low switching indi-
cates exploitation in the case of a static defender and static
environment. Switching with Honeypot is a measure of
switching after attacking a honeypot (i.e., receiving a nega-
tive reward). This corresponds with the “Lose-Shift” aspect
of Win-Stay-Lose-Shift (WSLS) (Robbins, 1985), a common
strategy studied in economics. Switching without Honeypot
measures switching after attacking a real node (i.e., receiving
a positive reward). This opposes the “Win-Stay” aspect of the
WSLS (i.e., “Win-Shift”). Finally, Optimal Play is the frac-
tion of decisions that have the actual highest expected value.

Behavioral Results
The results for the 4 dependent measures are shown in Fig-
ure 2. The rightmost graph in Figure 2 shows the frequency
of optimal decisions over the 50 rounds. We note that par-
ticipants playing against the static pure defender learn very
early to play optimally and significantly improve over time,
while the difference between the static equilibrium defender
and adaptive LLR defenders is not clear early on. A signifi-
cant advantage for LLR only emerges after at least 20 rounds.
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Figure 2: The proportions of participants switching nodes and playing optimally over time. The high switching after triggering
a honeypot seen in round 26 from participants facing the static pure defender is a small portion of the population.

We also observe in the leftmost graph in Figure 2 that the
overall proportion of switching decreases over time, particu-
larly when participants face the static pure defender. When
the participants face the adaptive LLR defender, they seem to
have a high proportion of switching throughout the 50 rounds.

The middle left graph in Figure 2 describes the partici-
pants’ switching behavior after triggering a honeypot. For
the static pure defender, the attackers show noticeable spikes
because only a few participants attacked the 20 point nodes
(triggering the honeypots), upon which the players immedi-
ately switched. There are few differences between switching
behavior when triggering honeypots of the participants who
faced the equilibrium defender and those who faced adap-
tive LLR. We see a downward trend, hinting that the partici-
pants are moving from an early exploratory state to a more
exploitative state. Since adaptive LLR updates it’s beliefs
about a node’s expected payoff after playing it, if it captures
an attacker that node will be more likely to be selected in
the immediate future. Due to this adaptive behavior, switch-
ing when triggering a honeypot against adaptive LLR will be
more beneficial than against the static equilibrium defender.
When facing the static equilibrium defender in this scenario
the attacker should always attack node 4, regardless of trig-
gering a honeypot or not.

The middle right graph in Figure 2 shows distinct differ-
ences when the attackers did not trigger a honeypot (i.e.,
received a positive reward). Concerning the static pure de-
fender and static equilibrium defender, decreases in switch-
ing demonstrate a move towards a more exploitative strat-
egy and understanding of the static defense. Compare this
with participants who faced the adaptive LLR defender where
the switching remains high in comparison to the defenders.
In general, adaptive LLR tries to react to the observed re-
wards and slowly moves from exploration to exploitation over
time. High switching and remaining mobile is a good strategy
against adaptive LLR. However, when we compare the par-
ticipants’ switching behavior with their performance versus
adaptive LLR, it appears the participants were largely unable
to learn the LLR strategy.

Overall, the pure defender predictably performed the worst
(best for the human attackers), yielding an average score of
611.93 points. The equilibrium defender performed signifi-
cantly better, yielding an average of 247.81 points. Finally,
LLR was the most resilient defender against the human at-
tackers with an average of 172.6 points yielded to the partic-
ipants. Table 3 shows the aggregate statistics of the human
attacker performance in terms of end-game attacker points.

average std. dev. median min max
Pure 611.93 168.88 675 -375 750
Equ. 247.81 149.60 290 -185 570
LLR 172.6 123.02 160 -85 640

Table 3: Aggregate data of participants’ end-game attacker
points.

Adversarial Models
We evaluated 4 behavioral models and one cognitive model
(IBL) (Gonzalez et al., 2003) to emulate participants’ perfor-
mance in the experiment. These models can give insights into
the underlying mechanisms that influence decision making
and support the development of better defense algorithms that
hinder human attacker learning in cybersecurity settings. The
models selected below are representatives of behavioral pre-
dictors that have been known to capture human performance
in numerous MAB settings (Sripa et al., 2009; Zhang & An-
gela, 2013; Agrawal & Goyal, 2012).
Win-Stay-Lose-Shift: WSLS plays uniform randomly on the
first round. If WSLS receives a positive reward, it attacks
the same node again in the next round. Otherwise, it attacks
another node uniform randomly. The “pass” action does not
count as a positive reward.
ε-Greedy: This model addresses the exploration-exploitation
dilemma directly with the parameter ε ∈ {0,1}. With proba-
bility ε, ε-Greedy attacks uniform randomly (exploration) and
with probability (1−ε), attacks the node with the highest ob-
served average reward (exploitation).
ε-Greedy Decreasing: ε-Greedy Decreasing dynamically
changes the parameter ε in order to prefer exploitation to-
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LLR Pure Equilibrium
Sw Sw| h Sw|¬h OP Sw Sw| h Sw|¬h OP Sw Sw| h Sw|¬h OP

ε-G 0.2 0.317 0.258 0.353 0.153 0.146 0.325 0.121 0.163 0.189 0.245 0.164 0.138
ε-GD 0.236 0.173 0.309 0.205 0.39 0.259 0.392 0.239 0.211 0.179 0.25 0.159

WSLS 0.221 0.364 0.486 0.190 0.211 0.079 0.191 0.254 0.104 0.434 0.26 0.285
TS 0.091 0.121 0.140 0.137 0.210 0.318 0.21 0.076 0.124 0.156 0.123 0.070

IBL 0.109 0.118 0.139 0.127 0.084 0.347 0.094 0.057 0.136 0.163 0.164 0.152

Table 4: The distances of the predictions of individual predictors or IBL models from human data, calculated using RMSE
metric. The measures we use are switching (Sw), switching after triggering a honeypot (Sw|h), switching after not triggering a
honeypot (Sw|¬h) and optimal play (OP). Bold font indicates the lowest value in each column.

wards the end of the interaction. The predictor starts with
ε = 1 and decreases it linearly towards ε = 0 at the end of the
interaction, given a known finite horizon.
Thompson Sampling (TS): We follow the description of the
TS algorithm as detailed by Agrawal and Goyal for Bernoulli
Bandits (2012). We extend this version of the TS algorithm
for the Bernoulli MAB by incorporating a support function
Wi(θi) instead of selecting the action i with the maximum
sample θi as described by Agrawal and Goyal. For this set-
ting, we use a support function Wi(θi) = vi · θi − ca

i where
θi ∼ Beta(Si + 1,Fi + 1) samples from a Beta distribution,
thus the algorithm favors successes (Si) over failures (Fi).
Instance-Based Learning: An IBL model (Gonzalez &
Dutt, 2011) describes a learning attacker with an ability to
recall and identify similar “instances” of past decisions using
memory. An IBL instance represents a decision made in a
specific situation, and the outcome feedback. The feedback
here is the net payoff calculated as a difference between a
successful and a failed attack, i.e., vi− 2ca

i . The IBL deci-
sion process has three main parameters: (1) decay, d, which
specifies how past experiences are considered in current de-
cisions based on time; (2) noise parameter σ, capturing ran-
dom variability between experiences; and (3) the similarity,
S, capturing the influence of the past on the present based on
the similarity of the situations.

In the HCG game, an attacker can observe two possible
outcomes of an attack on node i: a positive reward (vi− ca

i )
when she attacks a real resource (success si) or a negative re-
ward (−ca

i ) if the target is a honeypot (failure fi). We denote
an instance in memory representing a combination of situa-
tion, decision and outcome that was experienced in the past
as o(t ′) ∈

⋃
i∈N{si, fi}. In round t, an attacker targets a node

i∗t which maximizes a blended value (BV) as follows:

i∗t ← argmax
i∈N

BVt(i) (2)

BVt(i) = (vi− ca
i )

eAt (si)

eAt (si)+ eAt ( fi)
− ca

i
eAt ( fi)

eAt (si)+ eAt (si)
(3)

At(oi) = ln ∑
t ′∈{1,...,t−1}:o(t ′)=oi

(t− t ′)−d−

−S ∑
i′∈N

(sim(i, i′))−σ ln
1− γ

γ
,

(4)

where γ ∈ (0,1] is uniformly randomly sampled and sim is a
similarity function. We used a linear similarity function that

normalizes the net payoff from a decision based on the max-
imal payoff of 20 and is calculated as sim(i, i′) = 1− |(vi−
2ca

i )− (vi′ −2ca
i′)|/20.

We fit a separate IBL attacker model to human data when
playing against each of the algorithmic defenders. We cali-
brated parameters values using exhaustive search over a wide
range of values for each parameter with 350 repetitions for
each combination. We used a multiobjective optimization
minimizing average RMSE (see Equation 5) of all measures.
The resulting three sets of parameters were: (σ = 0.2,d =
0.1,S = 0.6) for the LLR defender, (σ = 0.35,d = 1.2,S =
0.4) for the Pure defender and (σ = 1.4,d = 0.5,S = 0.5) for
the Equilibrium defender.

Simulation Results
To analyze the predictors’ effectiveness in emulating human
behavior we did a simulation with identical settings to the hu-
man experiment. Each predictor played against the 3 defend-
ers in the same scenario 100 times. We consider the same
performance measures as before. How well a predictor ap-
proximates human behavior is determined by a distance of a
prediction {p}T

t=1 from human data {hd}T
t=1, calculated us-

ing the RMSE metric below where where m is a performance
measure and T is a number of rounds.

RMSEm(p,hd) =

√
∑

50
t=1 (m(pt)−m(hdt))

2

T
(5)

In Table 4, IBL accounted for the “most human” behavior
on most of the measures when playing against the Pure and
LLR defenders. In contrast, TS plays most closely to human
performance when playing against the Equilibrium defender.
This may be because the static equilibrium defender most
closely reflects the standard stochastic MAB setting that TS
was designed for. ε-Greedy, ε-Greedy Decreasing and WSLS
perform poorly in general as predictors of human behavior.

However, these observations may only paint part of the pic-
ture. The actual overall point performance of human partici-
pants versus LLR is much lower than the 4 behavioral predic-
tors as shown in Table 5. Nearly all 4 of the behavioral predic-
tors double the median score of the human participants when
facing the LLR defender. In contrast, the IBL model plays
the most closely to human performance versus LLR. The IBL
model comes rather close to the human data in relation to the
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Figure 3: Comparison of the strategy predictions of TS and IBL with human data.

average and median scores. When considering all this infor-
mation, it appears that the adaptive LLR defender exploited
the human participants’ learning mechanisms as well as IBL
predicts. We can also see that humans may adopt different
strategies depending on an opponent’s strategy. Thus, when
choosing a modeling approach there is a need to carefully se-
lect the granularity level at which predictions are needed: ag-
gregate or individualized behavior. The IBL model can pro-
duce predictions at both levels.

µ σ median min max
Human 172.6 123.02 160 -85 640
ε-G 0.2 303.9 140.3559 320 -75 640

ε-GD 265.1 99.55705 275 -115 480
TS 332 109.6275 330 90 585

WSLS 292.4 114.2686 287.5 35 590
IBL 198.9 193.44 220 -335 685

Table 5: Performance of predictors against the LLR defender
in attacker points.

Conclusion
We study how humans learn in a novel version of an adver-
sarial, contextual multi-armed bandit scenario motivated by a

real-world cybersecurity scenario where defenders use decep-
tive decoys and attackers must learn to avoid them. We eval-
uated three different types of defensive strategies and showed
that an adaptive defensive strategy was clearly the strongest
against human players, and the hardest for them to learn. We
also made novel comparisons between predictive models for
emulating how humans learn in this type of adversarial set-
ting, comparing leading models from both the MAB literature
and cognitive science. We find that the best models (Thomp-
son Sampling and IBL) are able to predict human behavior
quite effectively, but that human attackers use different strate-
gies depending on the adversary they are up against, and the
best predictor may depend on this context. There are many
interesting opportunities to improve both types of models es-
pecially in making personalized predictions for individuals
and specialized context. However, the results so far have im-
mediate practical implications for how we can design better
strategies for deploying decoy systems to enhance cybersecu-
rity. In particular, these systems must be adaptive to prevent
attackers from easily learning the defensive strategy. The pre-
dictive models of attacker learning we have developed will
also allow us to develop defenses that actively mitigate the
ability of attackers to learn the defensive strategy.
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Abstract

Intuitively, human readers cope easily with errors in text; ty-
pos, misspelling, word substitutions, etc. do not unduly disrupt
natural reading. Previous work indicates that letter transposi-
tions result in increased reading times, but it is unclear if this
effect generalizes to more natural errors. In this paper, we re-
port an eye-tracking study that compares two error types (let-
ter transpositions and naturally occurring misspelling) and two
error rates (10% or 50% of all words contain errors). We find
that human readers show unimpaired comprehension in spite
of these errors, but error words cause more reading difficulty
than correct words. Also, transpositions are more difficult than
misspellings, and a high error rate increases difficulty for all
words, including correct ones. We then present a computa-
tional model that uses character-based (rather than traditional
word-based) surprisal to account for these results. The model
explains that transpositions are harder than misspellings be-
cause they contain unexpected letter combinations. It also ex-
plains the error rate effect: expectations about upcoming words
are harder to compute when the context is degraded, leading to
increased surprisal.
Keywords: human reading, eye-tracking, errors, computa-
tional modeling, surprisal, neural networks.

Introduction
Human reading is both effortless and fast, with typical studies
reporting reading rates around 250 words per minute (Rayner,
White, Johnson, & Liversedge, 2006). Human reading is also
adaptive: readers vary their strategy depending on the task
they want to achieve, with experiments showing clear dif-
ferences between reading for comprehension, proofreading,
or skimming (Kaakinen & Hyönä, 2010; Schotter, Bicknell,
Howard, Levy, & Rayner, 2014; Hahn & Keller, 2018).

Another remarkable aspect of human reading is its robust-
ness. A lot of the texts we read are carefully edited and con-
tain few errors, e.g., articles in newspapers and magazines,
or books. However, readers also frequently encounter texts
that contain errors, e.g., in hand-written notes, emails, text
messages, and social media posts. Intuitively, such errors are
easy to cope with and impede understanding only in a minor
way. In fact, errors often go unnoticed during normal reading,
which is presumably why proofreading is difficult.

The aim of this paper is to experimentally investigate read-
ing in the face of errors, and to propose a simple model that
can account for our experimental results. Specifically, we fo-
cus on errors that change the form of a word, i.e., that alter a

word’s character sequence. This includes letter transposition
(e.g., innocetn instead of innocent) and misspellings (e.g., in-
ocent). Importantly, we will not consider whole-word sub-
stitutions, nor will we deal with morphological, syntactic, or
semantic errors.

We know from the experimental literature that letter trans-
positions cause difficulty in reading (Rayner et al., 2006;
Johnson, Perea, & Rayner, 2007; White, Johnson, Liv-
ersedge, & Rayner, 2008). However, transpositions are ar-
tificial errors (basically they are an artifact of typing), and
are comparatively rare.1 It is not surprising that such errors
slow down reading. This contrasts with misspellings, i.e., er-
rors that writers make because they are unsure about the or-
thography of a word. These are natural errors that should be
easier to read, because they occur more frequently and are
linguistically similar to real words (inocent conforms to the
phonotactics of English, while innocetn does not). This is our
first prediction, which we will test in an eye-tracking exper-
iment that compares the reading of texts with transpositions
and misspellings.

Readers’ prior exposure to misspellings might explain why
reading is mostly effortless, even in the presence of errors.
The fact remains, however, that all types of errors are rela-
tively rare in everyday texts. All previous research has studied
isolated sentences that contain a single erroneous word. This
is a situation with which the human language processor can
presumably cope easily. However, what happens when hu-
mans read a whole text which contains a large proportion of
errors? It could be that normal reading becomes very difficult
if, say, half of all words are erroneous. In fact, this is what we
would expect in expectation-based theories of language pro-
cessing, such as surprisal (Levy, 2008): the processor con-
stantly uses the current context to compute expectations for
the next word, and difficulty ensues if these expectations turn
out to be incorrect. However, if the context is degraded by a
large number of errors, then it is harder to compute expecta-
tions (and they become less reliable), and reading should slow
down. Crucially, we expect to see this effect on all words, not

1For example, in the error corpus we use (Geertzen, Alex-
opoulou, & Korhonen, 2014) only 11% of the errors are letter swaps
or repetitions, see Table 1.
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just on those words that contain errors. This is the second
prediction that we will test in our eye-tracking experiment by
comparing texts with high and low error rates.

In the second part of this paper, we present a surprisal
model that can account for the patterns of difficulty observed
in our experiment on reading texts with errors. We start by
showing that standard word-based surprisal does not make
the right predictions, as it essentially treats words with errors
as out of vocabulary items. We therefore propose to estimate
surprisal with a character-based language model. We show
that this model successfully predicts human reading times for
texts with errors and accounts for both the effect of error type
and the effect of error rate that we observed in our reading
experiment.

Eye-tracking Experiment
The aim of this experiment was to determine how human
reading is affected by errors in the input. As explained in the
introduction, we expected different error types to affect read-
ing differentially, as error types can differ in familiarity. In
addition, we predicted the overall number of errors in a text
to have an effect on reading behavior, because a high error
rate degrades word context, which is crucial for computing
expectations about upcoming material.

The experiment used a two-by-two factorial design, cross-
ing error type (transpositions vs. misspellings) with error rate
(10% of all words contain errors vs. 50%). Both of these vari-
ables were administered as between-text factors, i.e., we cre-
ated four versions for each text, one with 10% transpositions,
one with 10% misspellings, one with 50% transpositions, and
one with 50% misspellings.

The two experimental factors were administered within
participants, i.e., all participants read all our texts, each of
them presented in one of the four versions. Versions were
distributed across participants using a Latin square design, so
as to ensure that every version was seen by the same number
of participants.

Methods
Participants Sixteen participants took part in the experi-
ment after giving informed consent. They were paid £10 for
their participation, had normal or corrected-to-normal vision,
and were self-reported native speakers of English.

Materials We used the materials of Hahn and Keller
(2018), but introduced errors into the texts. These materi-
als contain twenty newspaper texts from the DeepMind ques-
tion answering corpus (Hermann et al., 2015). Ten texts were
taken from the CNN section of the corpus and the other ten
texts from the Daily Mail section. Texts were comparable in
length (between 149 and 805 words, mean 323) and represent
a balanced selection of topics. Two additional texts were used
as practice items.

Each text comes with a question and a correct answer. The
questions are formulated as sentences with a blank to be com-
pleted with a named entity so that a statement implied by the

phonetics deletion swap/repeat keyboard insertion other

36.2 16.7 11.0 10.5 8.3 17.3

Table 1: Percentages of different types of misspellings in the
natural error condition.

text is obtained. Three incorrect answers (distractors) are in-
cluded for each question; these are also named entities, cho-
sen so that they closely match the correct answer (e.g., if the
correct answer is Minnesota, then the distractors are also US
states).2

We introduced errors into the materials of Hahn and Keller
(2018) following the method suggested by Belinkov and Bisk
(2018). These errors are automatically generated and are ei-
ther transpositions (i.e., two adjacent letters are swapped) or
natural errors that replicate actual misspellings. For the latter,
we used a corpus of human edits (Geertzen et al., 2014), and
introduced errors in our experimental materials by replacing
correct words with known misspellings from our edit corpus.
The percentages of different types of misspellings are listed
in Table 1. By generating texts with errors automatically we
were able to ensure that both error conditions (transpositions
or misspellings) contain the same percentage of erroneous
words for the two error rates (10% or 50% erroneous words).

Procedure Participants received written instructions,
which mentioned that they would be reading texts with
errors. They first went through two practice trials whose data
was discarded. Then, each participant read and responded
to all 20 items (texts with questions and answer choices);
the items were presented in a new random order for each
participant. The order of the answer choices was also
randomized.

In each trial, the text was displayed over one or more pages
(max 5, mean 2.1 pages), where each page contained up to
eleven lines with about 80 characters per line. To get to the
next page, and at the end of the text, participants again had
to press a button. After the last page, the question was dis-
played, together with the four answer choices, on a separate
page. Participants had to press one of four buttons to select
an answer.

Eye-movements were recorded using an Eyelink 2000
tracker (SR Research, Ottawa). The tracker recorded the
dominant eye of the participant (as established by an eye-
dominance test) with a sampling rate of 2000 Hz. Before the
experiment started, the tracker was calibrated using a nine-
point calibration procedure; at the start of each trial, a cen-
tral fixation point was presented. Throughout the experiment,
the experimenter monitored the accuracy of the recording and
carried out additional calibrations as necessary.

2We used the no questions preview condition of Hahn and Keller
(2018), i.e., the questions were shown only after participants had
read the whole text. The original paper also had a question preview
condition, in which participants were shown the questions before
they read the text.
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Hahn & Keller This experiment
No error Error

First fixation 221.3 211.8 225.1
First pass 260.7 242.5 265.2
Total time 338.0 306.9 342.1
Fixation rate 0.50 0.45 0.48

Accuracy 70% 72%

Table 2: Left: per-word reading times, fixation rates, and
question accuracies in the experiment of Hahn and Keller
(2018), right: same measures for our experiments (same texts,
but some of the words contain errors).

Data Analysis For data analysis, each word in the text was
defined as a region of interest. Punctuation was included in
the region of the word it followed or preceded without inter-
vening whitespace. If a word was preceded by a whitespace,
then that space was included in the region for that word. We
report data for the following eye-movement measures in the
critical regions: First fixation duration is the duration of the
first fixation in a region, provided that there was no earlier
fixation on material beyond the region. First pass time (often
called gaze duration for single-word regions) consists of the
sum of fixation durations beginning with this first fixation in
the region until the first saccade out of the region, either to the
left or to the right. Total time consists of the sum of the dura-
tions of all fixation in the region, regardless of when these fix-
ations occur. Fixation rate measures the proportion of trials
in which the region was fixated (rather than skipped) on first-
pass reading. For first fixation duration and first pass time,
no trials in which the region is skipped on first-pass reading
(i.e., when first fixation duration is zero) were included in the
analysis. For total time, only trials with a non-zero total time
were included in the analysis.

Due to space limitations, we will only present analyses of
the first pass time and fixation rate data in the remainder of
this paper.

Results
In Table 2, we present some basic reading measures for our
experiments, and compare these to the reading experiments
of Hahn and Keller (2018), which used the same texts, but
did not include any errors (the data is taken from their no
question preview condition, which corresponds to our exper-
imental setup, see Footnote 2). Even for words with errors,
the reading measures in our experiments are similar to the
ones reported by Hahn and Keller (2018). For words without
errors, we find slightly faster reading times and lower fixa-
tion rates than Hahn and Keller (2018). Also the accuracy
(which can only be measured on the text level, hence we do
not distinguish words with and without errors) is essentially
unchanged. This provides good evidence for the claim that
human readers cope well with errors in text: they take longer
to read words with errors and fixate them more compared to

words without errors, but this this is a comparatively small
effect. Overall, reading times, fixation rates, and question ac-
curacy are very similar to those found in texts without any
errors (such as the ones used by Hahn & Keller, 2018).3

In the following, we analyze two reading measures in more
detail: first pass time and fixation rate. We analyzed per-
word reading measures using mixed-effects models, consid-
ering the following predictors:

1. ERRORTYPE: Does the text contain mispellings (−0.5) or
transpositions (+0.5)?

2. ERRORRATE: Does the text contain 10% (−0.5) or 50%
(+0.5) erroneous words overall?

3. ERROR: Is the word correct (−0.5) or erroneous (+0.5)?

4. WORDLENGTH: Length of the word in characters.

5. LASTFIX: Was the preceding word fixated (+0.5) or not
(−0.5)?

All predictors were centered. Word length was scaled to
unit variance. We selected binary interactions using forward
model selection with a χ2 test, running the R package lme4
(Bates, Mächler, Bolker, & Walker, 2015) with a maximally
convergent random effects structure. We then re-fitted the
best model with a full random effects structure as a Bayesian
generalized multivariate multilevel model using the R pack-
age brms; this method is slower but allows fitting large ran-
dom effects structures even when traditional methods do not
converge. Resulting Bayesian models are shown in Table 3.
We used the brms default priors (Bürkner, 2017), with four
chains with 1000 samples each (and 1000 warmup iterations).
The R̂ values (≤ 1.01) indicated that the models had con-
verged.4

The main effects of WORDLENGTH replicate the well-
known positive correlation between word length and reading
time (see Demberg & Keller, 2008, and many others). We
also find main effects of ERROR, indicating that erroneous
words are read more slowly and are more likely to be fixated.
The main effects of ERRORRATE show that higher text error
rates lead to longer reading times and higher fixation rates
for all words (whether they are correct or erroneous). Addi-
tionally, we find a main effect of ERRTYPE in fixation rate,
showing that transposition errors lead to higher fixation rates.
This is consistent with our hypothesis that misspellings are
easier to process than transpositions, as they are real errors
that participants have been exposed in their reading experi-
ence.

Figure 1 graphs mean first pass times and fixation rates by
error type and error rate. The most important effect is that

3Note that participants are not performing at ceiling in question
answering; our pattern of results therefore cannot be explained by
asserting that the questions were too easy.

4An analogous analysis for log-transformed first-pass times led
to the same pattern of significant effects and their directions.
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First Pass Fixation Rate

(Intercept) 248.41 (6.34) ∗∗∗ −0.16 (0.12)
ERRTYPE 1.41 (1.32) 0.08 (0.02) ∗∗∗

ERRRATE 7.20 (1.60) ∗∗∗ 0.16 (0.02) ∗∗∗

ERROR 23.77 (4.12) ∗∗∗ 0.21 (0.07) ∗∗∗

WLENGTH 22.18 (2.02) ∗∗∗ 0.83 (0.04) ∗∗∗

LASTFIX 3.10 (4.18) 0.22 (0.18)

ERRRATE × LASTFIX 6.71 (2.77) ∗ 0.16 (0.04) ∗∗∗

ERROR × LASTFIX — 0.26 (0.10) ∗∗

WLENGTH × LASTFIX — 0.74 (0.10) ∗∗∗

Pr(β < 0): ∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

Table 3: Bayesian generalized multivariate multilevel models
for reading measures with maximal random-effects structure.
Each cell gives the coefficient, its standard deviation, and the
estimated posterior probability that the coefficient has the op-
posite sign.

error words take longer to read and are fixated more than non-
error words. The effect of error rate is also clearly visible: the
50% error condition causes longer reading times and more
fixations than the 10% one, even for non-error words. We
also observe a small effect of error type.

Turning now to the interactions, we found that ERROR-
RATE and LASTFIX interact in both reading measures, which
indicates that reading times and fixation rates increase in the
high-error condition if the previous word has been fixated.

Only in fixation rate, there was also an interaction of ER-
ROR and LASTFIX, indicating that fixation rate goes up for
error words if the preceding word was fixated, presumably be-
cause of preview of the erroneous words, which is then more
likely to be fixated in order to identify the error.

For fixation rate, WORDLENGTH interacts with LASTFIX:
longer words are more likely to be fixated if the preceding
word was fixated; again, this is likely an effect of preview.
While Figure 1 seems to suggest an interaction of ERROR and
ERROR TYPE, this was not significant in the mixed model.

Discussion
We have found four main results: (1) Erroneous words
show longer reading times and are more likely to be fixated.
(2) Higher error rates lead to increased reading times and
more fixations, even on words that are correct. (3) Trans-
positions lead to an increased fixation rate compared to mis-
spellings. (4) Whether the previous word is fixated or not
modulates the effect of error and error rate.

However, it is conceivable that the effects of error and er-
ror rate are actually artifacts of word length. All else being
equal, longer words take longer to read and are more likely
to be fixated. So if error words and non-error words in our
texts differ in mean length, then that would be an alternative
explanation for the effects that we found.

For transposition errors, error words by definition have the
same length as their non-error versions. For misspellings,
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Figure 1: First pass time (top) and fixation rate (bottom) when
reading texts with transposition errors or misspelling.

a mixed-effects analysis with word forms as random ef-
fects showed no significant difference in the lengths of error
words and their correct versions (mean difference−0.011, SE
0.029, t = −0.393). Comparing the erroneous words of the
two error types, we found that they differ in mean length (mis-
spellings 5.44, transpositions 6.06 characters); however this
difference was not significant in a mixed-effects analysis pre-
dicting word length of erroneous words from error types, with
items as a random effect (mean difference 0.015, SE 0.010,
t = 1.449).

Surprisal Model
Most models of human reading do not explicitly deal with
reading in the face of errors. In fact, reading models that
use a lexicon to look up word forms (e.g., to retrieve word
frequencies) cannot deal with erroneous words without fur-
ther assumptions. We can use the surprisal model of process-
ing difficulty (Levy, 2008) to illustrate this: in its original,
word-based formulation, surprisal is forced to treat all error
words as out of vocabulary items; it therefore cannot distin-
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guish between different types of errors or between different
error rates.

Intuitively, a more fine-grained version of surprisal is re-
quired that computes expectations in terms of characters, not
words. In such a setting, the word inocent would be more sur-
prising than innocent in the same context, but not as surpris-
ing as a completely unfamiliar letter string. In other words,
the surprisal of the same word with and without misspellings
or letter transpositions would be similar but not the same. To
achieve this, we can use character-based language models,
which are standard tools in natural language processing for
dealing with errors in the input (e.g., the work by Belinkov &
Bisk, 2018, on errors in machine translation).

Crucially, once we have a character-based surprisal model,
we can derive predictions regarding how errors should affect
reading. We predict that transpositions should be more sur-
prising than misspellings, as they involve character sequences
that are unfamiliar to the model (e.g., innocetn contains the
rare character sequence tn). Also, we predict that words that
occur in texts with a high error rate are more difficult to read
than words in texts with a low error rate: if the context of a
word contains few errors, then we are able compute expecta-
tions for that word confidently (resulting in low surprisal). If
the context contains lots of errors then expecations are diffi-
cult to compute and they become unreliable (resulting in high
surprisal). We will now test these predictions regarding er-
ror type and error rate using a character-based version of sur-
prisal.

Methods
We trained a character-based neural language model using
LSTM cells (Hochreiter & Schmidhuber, 1997). Such mod-
els can assign probabilities to any sequence of characters, and
thus are capable of computing surprisal even for words never
seen in the training data, such as erroneous words. For train-
ing, we used the Daily Mail portion of the DeepMind corpus.
We used a vocabulary consisting of the 70 most frequent char-
acters, mapping others to an out-of-vocabulary token.

The hyperparameters of the language model were selected
on an English corpus based on Wikipedia text.5 We then used
the resulting model to compute surprisal on the texts used in
the eye-tracking experiment for each experimental condition.

The model estimates, for each element of a character se-
quence, the probability of seeing this character given the pre-
ceding context. We compute the surprisal of a word as the
sum of the surprisals of the individual characters, as pre-
scribed by the product rule of probability. For a word con-
sisting of characters xt . . .xt+T following a context x1...xt−1,
its surprisal is:

− logP(xt . . .xt+T |x1...xt−1) =
t+T

∑
i=t
− logP(xi|x1...xi−1) (1)

51024 units, 3 layers, batch size 128, embedding size 200, learn-
ing rate 3.6 with plain SGD, multiplied by 0.95 at the end of each
epoch; BPTT length 80; DropConnect with rate 0.01 for hidden
units; replacing entire character embeddings by zero with rate 0.001.

In this computation, we take whitespace characters to belong
to the preceding word.

To control for the impact of the random initialization of the
neural network at the beginning of training, we trained seven
models with identical settings but different random initializa-
tions.

The quality of character-based language models is conven-
tionally measured in Bits Per Character (BPC), which is the
average surprisal, to the base 2, of each character. On held-
out data, our model achieves a mean BPC value of 1.28 (SD
0.025), competitive with BPC values achieved by state-of-
the-art systems of similar datasets (e.g., Merity, Keskar, &
Socher, 2018, report a BPC value of 1.23 on Wikipedia text).

In the introduction we predicted that word-based surprisal
is not able to model the reading time pattern we found in
our eye-tracking experiment. In order to test this prediction,
we compare our character-level surprisal model to surprisal
computed using a conventional word-based neural language
model. Word-based models have a fixed vocabulary, consist-
ing of the most common words in the training data; a typical
vocabulary size is 10,000. Words that were not seen in the
training data, and rare words, are represented by a special
out-of-vocabulary (OOV) token. From a cognitive perspec-
tive, this corresponds to assuming that all unknown words
(whether they contain errors or not) are treated in the same
way: they are recognized as unknown, but not processed any
further. We used a vocabulary size of 10,000. The hyperpa-
rameters of the word-based model were selected on the same
English Wikipedia corpus as the character-based model.6

Results and Discussion
In this section, we show that surprisal computed by a
character-level neural language model (CHARSURPRISAL) is
able to account for the effects of errors on reading observed in
our eye-tracking experiments. We compute character-based
surprisal for the texts used in our experiments, and expect to
obtain mean surprisal scores for each experimental condition
that resemble mean reading times. We will also verify our
prediction that word-based surprisal (WORDSURPRISAL) is
not able to account for the effects observed in our experimen-
tal data, due to the way it treats unknown words.

Figure 2 shows the mean surprisal values across the dif-
ferent error conditions. We note that the pattern of reading
time predicted by CHARSURPRISAL (solid lines) matches the
first-pass times observed experimentally very well (see Fig-
ure 1), while WORDSURPRISAL (dotted line) shows a clearly
divergent pattern, with error words showing lower surprisal
than non-error words. This can be explained by the fact that a
word-based model does not process error words beyond rec-
ognizing them as unknown; the presence of an unknown word
itself is not a high-surprisal event (even without errors, 17 %

61024 units, batch size 128, embedding size 200, learning rate
0.2 with plain SGD, multiplied by 0.95 at the end of each epoch;
BPTT length 50; DropConnect with rate 0.2 for hidden units;
Dropout 0.1 for input layer; replacing words by random samples
from the vocabulary with rate 0.01 during training.
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Figure 2: CHARSURPRISAL (full lines) and WORDSUR-
PRISAL (dotted lines) as a function of error type and er-
ror rate, for correct (left) and erroneous (right) words. For
CHARSURPRISAL, we show the means of all seven random
initializations of our neural surprisal model.

of the words in our texts are unknown to the model, given its
10,000-word vocabulary).

To confirm this observation statistically, we fitted linear
mixed-effects models with CHARSURPRISAL and WORD-
SURPRISAL as dependent variables. We enter the seven ran-
dom initializations of each model as a random factor, analo-
gously to the participants in the eye-tracking experiment. We
use the same predictors that we used for the reading measures,
except for LASTFIX. This predictor is not available: suprisal
models compute a difficulty measure for each word (viz., its
surprisal), but they are not able to predict whether a word will
be skipped or not.

The results of the mixed model with CHARSURPRISAL
as the dependent variable (see Table 4) replicated the ef-
fects of ERRORRATE, ERROR, and WORDLENGTH found
in first pass and fixation rate, as well as the effect of ER-
RORTYPE found only in fixation rate (see Table 3). The same
mixed model with WORDSURPRISAL as the dependent vari-
able (see again Table 4), however, does not yield the correct
pattern of results: Crucially, the coefficients of ERROR and
ERRORTYPE have the opposite sign compared to both CHAR-
SURPRISAL and the experimental data (though both effects
are small, see dotted lines in Figure 2).

We have shown that character-based surprisal computed on
the texts used in our experiment is qualitatively similar to the
experimental results. As a next step we will test its quanti-
tative predictions, i.e., we will correlate surprisal scores with
reading times. For this, we performed mixed-effects analy-
ses in which first-pass time and fixation rate are predicted by
WLENGTH, LASTFIX, and character-based surprisal residu-
alized against word length (RESIDCHARSURP).7 Note that

7The correlation between word length and raw surprisal is 0.26.

CHARSURPR WORDSURPR

(Intercept) 10.47 (0.09) ∗∗∗ 5.06 (0.07) ∗∗∗

ERRTYPE 1.27 (0.02) ∗∗∗ −0.40 (0.02) ∗∗∗

ERRRATE 1.57 (0.02) ∗∗∗ 0.01 (0.00) ∗∗∗

ERROR 13.88 (0.03) ∗∗∗ −2.96 (0.02) ∗∗∗

WLENGTH 3.02 (0.05) ∗∗∗ 0.25 0.01 ∗∗∗

Pr(β < 0): ∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

Table 4: Models of character-level and word-level surprisal
with random effects for model runs and items. Each cell gives
the coefficient, its standard deviation and the estimated pos-
terior probability that the coefficient has the opposite sign.

First Pass Fixation Rate

(Intercept) 248.73 (5.55) ∗∗∗ −0.15 (0.09)
WLENGTH 22.22 (0.79) ∗∗∗ 0.75 (0.01) ∗∗∗

LASTFIX 2.65 (1.34) 0.22 (0.02) ∗∗∗

WLENGTH × LASTFIX — 0.60 (0.19) ∗∗∗

RESIDCHARSURP- 9.89 (0.78) ∗∗∗ 0.09 (0.01) ∗∗∗

ORACLE

RESIDCHARSURP 13.82 (0.66) ∗∗∗ 0.14 (0.01) ∗∗∗

∆AIC −273.88 −205.83
∆BIC −273.88 −205.83

Pr(β < 0): ∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

Table 5: Models for reading measures with surprisal predic-
tors. We compare model fit between a model with character-
based surprisal (RESIDCHARSURP) and character-based ora-
cle surprisal (RESIDCHARSURPORACLE), both residualized
against word length.

we did not enter the error factors (ERRORTYPE, ERROR-
RATE, ERROR) into this analysis, as we predict that surprisal
will simulate the effect of errors in reading.

It is known that surprisal predicts reading times in ordinary
text not containing errors (Demberg & Keller, 2008; Frank,
2009); thus, it is important to disentangle the specific contri-
bution of modeling errors correctly from the general contri-
bution of surprisal in our model. We do this by constructing a
baseline version of character-based surprisal that is computed
using an oracle (RESIDCHARSURPORACLE). For this, we
replace erroneous words with their correct counterparts be-
fore computing surprisal, and again residualize against word
length.8 If RESIDCHARSURP correctly accounts for the ef-
fects of errors on reading, then we expect that RESIDCHAR-
SURP – which has access to the erroneous word forms – will
improve the fit with our reading data compared to RESID-
CHARSURPORACLE.

For RESIDCHARSURPORACLE, we use the same seven
models as for RESIDCHARSURP, only exchanging the char-

8The correlation between word length and unresidualized oracle
surprisal is 0.47.
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acter sequences on which surprisal is computed. This ensures
that any difference in model fit between the two predictors
can be attributed entirely to the way RESIDCHARSURP is af-
fected by the presence of errors in the texts.

The resulting models are shown in Table 5. For
WLENGTH and LASTFIX, we see the same pattern of re-
sults as in the experimental data (see Table 3). Further-
more, regular surprisal (RESIDCHARSURP) and oracle sur-
prisal (RESIDCHARSURPORACLE) significantly predict both
first pass time and fixation rate. This is in line with the stan-
dard finding that surprisal predicts reading time (Demberg &
Keller, 2008; Frank, 2009), but has so far not been demon-
strated for texts containing errors. We compare model fit us-
ing AIC and BIC. Both measures indicate that RESIDCHAR-
SURP fits the experimental data better than RESIDCHAR-
SURPORACLE. Thus, character-level surprisal provides an
account of our data going beyond the known contribution
of ordinary surprisal to reading times, and correctly predicts
reading in the presence of errors.

Conclusion
We investigated reading with errors in texts that contain either
letter transpositions or real misspellings. We found that trans-
positions cause more reading difficulty than misspellings and
explained this using a character-based surprisal model, which
assigns higher surprisal to rare letter sequences as they oc-
cur in transpositions. We also found that in texts with a high
error rate, all words are more difficult to read, even the ones
without errors. Again, character-based surprisal explains this:
computing word expectations is harder when the context of a
word is degraded by errors, resulting in increased surprisal.

In future work, we plan to integrate character-based sur-
prisal with existing neural models of human reading (Hahn
& Keller, 2018). Models at the character level are necessary
not only to account for errors, but also to model landing po-
sition effects, parafoveal preview, and word length effects, all
of which word-based models are unable to capture.
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Abstract
Semantic search and retrieval of information plays an im-
portant role in creative idea generation. This study was de-
signed to examine how semantic and temporal clustering varies
when asking participants to generate ideas about uses for ob-
jects compared with generating members of goal-derived cat-
egories. Participants generated uses for three objects: brick,
hammer, picture frame, and also generated members of the
following goal-derived categories: things to take in case of a
fire, things to sell at a garage sale, and ways to spend lottery
winnings. Using response-time analysis and semantic analysis,
results illustrated that all six prompts generally led to exponen-
tial cumulative response-time distributions. However, the pro-
portion of temporally clustered responses, defined using the
slope-difference algorithm, was higher for goal-derived cate-
gory responses compared with object uses. Despite that, over-
all pairwise semantic similarity was higher for object uses than
for goal derived exemplars. The effect of prompt on pairwise
semantic similarity is likely the result of context-dependency
of exemplars from goal-derived categories. However, the cur-
rent analysis contains a potential confound such that special
instructions to give “common and uncommon” responses were
provided only for the object-uses prompts. The confound is
likely minimal, but future work is necessary to verify that these
results would hold when the confound is removed.
Keywords: Creativity; Divergent Thinking; Goal-Derived
Categories; Latent Semantic Analysis; Semantic Memory

Creative cognition researchers often highlight the contribu-
tions of memory structure and process to creative idea genera-
tion. Though theories vary widely in explaining how existing
knowledge is actually used to support the generation of cre-
ative ideas and products, there is sufficient evidence to sug-
gest that in both laypeople (Ward, 2008), and in eminent cre-
ators (Weisberg, 2006) creative thinking operates within the
bounds of an individual’s system of knowledge. This study
was designed to extend recent work (Hass, 2017a) explor-
ing the degree of semantic clustering found among ideas gen-
erated when participants complete divergent thinking tasks.
Divergent thinking tasks are heavily used as a proxy for cre-
ative thinking in a variety of behavioral (Snyder, Hammond,
Grohman, & Katz-Buonincontro, 2019) and neuroscientific
(Dietrich & Kanso, 2010) studies. There is a general con-
sensus that dynamic interplay among executive search and
control processes and semantic memory organization enables
the generation of creative ideas (cf. Abraham & Bubic,
2015; Beaty, Christensen, Benedek, Silvia, & Schacter, 2017;
Chrysikou & Thompson-Schill, 2011).

The central aim of the study was to extend prior results
(e.g., Hass, 2017a; Hass & Beaty, 2018) by comparing se-

mantic processing during object-uses generation to the gen-
eration of exemplars from goal-derived categories (Barsalou,
1985). Generating uses for objects is the core feature of
the Alternative Uses task (Wilson, Guilford, Christensen, &
Lewis, 1954), one of the most popular divergent thinking
tasks, and its validity as a psychometric measure of creative
thinking is enhanced by illuminating the underlying cognitive
processes operating while people perform it. Creative think-
ing has also been described as related to goal-derived knowl-
edge (Chrysikou, 2006), so it is natural to explicitly exam-
ine potential similarities between generating uses for objects
and generating exemplars of goal-derived categories. The pa-
per is structured as follows: first, research on the relation-
ship between semantic memory retrieval and idea generation
will be reviewed, along with a brief discussion of how di-
vergent thinking tasks like object-uses generation relate to
goal-derived category recall or generation tasks. Then, the
analysis is presented in three phases: an analysis of cumula-
tive response-time functions across conditions, an analysis of
temporal clustering of responses, and an analysis of the se-
mantic similarity of pairs of responses across two prompts,
one from each condition.

Knowledge and creative generation
As mentioned, cognitive accounts of creativity tend to differ-
entially emphasize the importance of associative processes of
semantic organization and executive control of thought (cf.
Chrysikou & Thompson-Schill, 2011; Mednick, 1962). In
an early theoretical account, (Mednick, 1962) suggested that
creative idea generation is underpinned by associative net-
works that afford more remote connections among concepts.
Recent studies of creative thinking have shown support for
this view, illustrating that individuals with flexible semantic
networks tend to perform better on creative cognitive tasks
and report a greater number of creative achievements (e.g.
Kenett, Beaty, Silvia, Anaki, & Faust, 2016). Additional
studies have highlighted the influence of executive control on
the remote association process. For example (Beaty, Silvia,
Nusbaum, Jauk, & Benedek, 2014) showed that the fluency
and originality of uses for objects was almost equally well
predicted by measures of remote association and associative
flexibility, the latter thought to be an index of executive con-
trol over lexical association. Similarly, (Hass, 2017b) showed
that the degree to which creative uses for objects were seman-
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tically distant from the core of the prompt object concept was
positively related to fluid intelligence.

Goal-derived Categories A key aspect of this study was
to propose that goal-derived category exemplar generation
can serve as a basis for understanding object-uses generation.
Goal-derived categories constructed during goal-directed ac-
tivities (Barsalou, 1983, 1985), like deciding which chair to
sit on in a cafe or which personal belongings to keep from
a childhood home. These categories can be distinguished
from “natural” or “taxonomic” categories in several ways,
though, we focus on two. First, goal-derived categories are
constructed when performing decision-making tasks; defined
by personal objectives and constrained by the environment or
immediate context. Second, it can be argued that goal-derived
categories such as “things to take with you in case of a fire”
are not as well-established in memory as categories such as
breakfast foods (Barsalou, 1983). Omelets and pancakes are
within the same category (breakfast foods) because they are
edible, made with eggs, served warm, are eaten in the morn-
ing, and relatively straightforward to cook. Attributes like
those, such as times of consumption and ingredients, which
are the basis of category discrimination (Rosch, Mervis, Gray,
Johnson, & Boyes-Braem, 1976), do not co-occur as fre-
quently in goal-derived categories. In addition, goal-derived
categories are not as well used in the literature on seman-
tic search and retrieval, so this analysis provides novel infor-
mation about memory search dynamics when people name
members of goal-derived categories. More importantly for
this analysis, Barsalou (1985) suggested that retrieval of con-
ceptual information for category processing involves gener-
ation of multiple conceptual representations, each held in
working memory, when the category is encountered in nor-
mal life. This reliance on multiple conceptual representa-
tions could account for the effects reviewed above relating
object-uses generation to fluid intelligence. Thus, comparing
goal-derived category search to object uses search serves the
dual purpose of exploring how context-dependent organiza-
tion and executive control might interact during idea genera-
tion.

The current study

The primary focus of the current analysis was on semantic
clustering. Because there are no established category norms
for the prompts used in this study (cf. Troyer, Moscovitch, &
Winocur, 1997), clusters were first identified using the slope-
difference algorithm (Gruenewald & Lockhead, 1980). La-
tent semantic analysis (Landauer & Dumais, 1997) was then
used to quantify the semantic similarity among sequential
pairs of responses. The slope-difference algorithm identifies
potential semantic clusters in terms of the difference between
an actual IRT and the expected IRT given a mathematical rela-
tion between response time and output total. It was expected
that slope-difference clusters would be more prevalent in the
goal-derived response arrays, and that the pairwise seman-
tic similarity of within-cluster responses would be higher in

goal-derived response arrays. The reasons to expect that goal-
derived response arrays would be more clustered than object-
uses arrays are two-fold. First, response totals are usually
quite low when people generate uses for objects, and though
clusters appear, the number of responses per cluster is usu-
ally small. As cluster size decreases, output total should fol-
low (Herrmann & Pearle, 1981), and the lack of success in
finding newly retrieved clusters will ultimately lead to search
termination (Raaijmakers & Shiffrin, 1981). Second, mem-
ory search is often described as a multiply-constrained prob-
lem (e.g., Polyn, Norman, & Kahana, 2009; Smith, Huber,
& Vul, 2013), with multiple sources of information vying for
attention in the process. It is plausible that goal-derived cat-
egory generation is less constrained than object-use genera-
tion, such that a single context-dependent goal (e.g., “items
to sell at a garage sale”) remains in mind. This should en-
able the integration of contextual and semantic information
in more efficient manner than in object-use generation, where
the goal may change from response to response (e.g., “use a
brick as a weight” → “use a brick as a pencil holder”).

As will be described, the prompt used for object-uses in
the current study was to “think of common and uncommon
uses”, designed to provide a more natural comparison to the
generation of category exemplars (i.e., the word “creative”
was not used in the instructions). That is, several studies have
shown that instructing participants to “be creative” decreases
fluency (output total), while increasing the average original-
ity of their responses (Forthmann et al., 2016; Nusbaum, Sil-
via, & Beaty, 2014). Since the primary interest in the current
study was the nature of the category itself (e.g., use of an ob-
ject v. goal-derived category) and not whether participants
were trying to engage in creative thought, we felt the special
instruction was warranted. However, as we discuss, the in-
clusion of this “common and uncommon” instruction was not
used in the goal-derived conditions, which presents a con-
found. The nature of our results do not suggest the confound
is serious, it is important to keep in mind.

Method
Participants
A total of 32 participants were recruited from undergraduate
psychology courses. Participants were offered extra credit or
chocolate in compensation for their time. Participants ranged
in age from 18 to 25 years old, and the demographics were
consistent with a traditional undergraduate university in the
northeastern United States. All recruitment and consent pro-
cedures were approved by the university’s Institutional Re-
view Board.

Materials
Participants completed the tasks using a custom Matlab inter-
face on an Apple iMac. Instructions and prompts appeared
as text on white background above a text-box where partic-
ipants entered responses. Instructions were displayed and
read to participants prior to each of three task blocks, the first
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Figure 1: Mean number of cumulative responses per 10-second blocks for each of the six prompts. Object-uses prompts: brick,
(picture) frame, hammer; Goal-derived prompts: fire = things to take in case of fire, garage = things to sell at a garage sale,
lottery = ways to spend lottery winnings. Note: lines represent loess fits, not the exponential fits used in the next section.

of which was a practice block (naming colors). Instructions
were not visible during response generation, but the prompt
remained displayed for the entire duration of each response-
generation interval. Demographic information was obtained
using a pencil-and-paper survey after the experiment finished.

Procedure
Participants were greeted by the experimenter, and were told
that the experiment was designed to test memory. The ex-
perimenter read general instructions about how the computer
system worked and instructed participants to type responses
on the computer keyboard, and to enter responses by pressing
the return button. Participants then practiced this by naming
colors (at least 3) for 30 seconds. The experimenter then an-
swered any questions before the experiment began. Matlab
recorded the time of the first keypress of each response, the
time between the first key-stroke and the response entry, and
the actual response.

The tasks were presented in two blocks of 3 prompts each,
with a break in between each block. Both the order of the
blocks and the order of presentation of prompts within the
blocks were randomized by Matlab code. All participants re-
sponded to each prompt in each block. Each response inter-
val was three minutes in length to permit valid comparison
among the two prompt conditions (goal-derived categories,
and object-uses prompts). The goal-derived category prompts
began with “name examples of” and ended with one of the
three categories: things to spend lottery winnings on, things
to take from your house if it caught on fire, and things to sell
at a garage sale. The object-use prompts began with “name
common and uncommon uses for a” and ended with one of

the three prompt objects: brick, hammer, and picture frame.
The entire prompt phrase remained on the screen above the

text-entry box for the entire 3 minutes. When 3 minutes ex-
pired, the screen displayed a message indicating that the next
prompt was loading for 5 seconds before the next prompt ap-
peared. After the first and second blocks, instructions for the
next block appeared on the screen, and the participant was
given a 1-2 minute break before beginning the next block. Af-
ter the final block, a thank-you message appeared and the par-
ticipant filled out the demographic questionnaire, and the ex-
perimenter answered any questions the participant may have
had. The entire process lasted between 20 and 25 minutes for
each participant.

Analyses and Results
All analyses were conducted using the R Statistical Program-
ming Language, and all data and algorithms are available for
download (https://osf.io/fvne2/). Response times were de-
fined in terms of the time (since presentation of the prompt)
of the first key-press of each response, to be consistent with
studies using voice-keyed response recording. Prior to analy-
sis, data were examined for repeated responses and malfunc-
tions in Matlab’s execution of the experiment. Three partici-
pants were excluded due to Matlab malfunctions reducing the
final sample size to 29. Repeated responses were those that
were identified as the same response given more than once by
the same individual to a specific prompt. When repeats were
identified, the RTs for those responses were removed from
the data set. Participants gave a total of 1746 responses to the
three goal-derived prompts after the removal of 23 repeated
responses. Finally, participants gave a total of 1012 responses
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Table 1: Average response totals per category and intercorrelations (Spearman’s ρ). Object Uses prompts are in the top half of
the table. All correlations are significant, with p ≤.01, except the correlation between garage sale and hammer totals (p = .06).

ρ
Prompt M SD 1 2 3 4 5
1. Brick 12.76 4.66 -
2. Hammer 11.86 5.09 .64 -
3. Frame 10.28 4.40 .72 .78 -
4. ... sell at garage sale 24.17 7.40 .35 .67 .46 -
5. ... take from fire 17.17 5.33 .67 .52 .48 .53 -
6. ... do with lottery winnings 18.86 6.69 .50 .57 .46 .65 .55

to the object-use prompts after the removal of 11 responses.

Fluency and Cumulative Response Times
The mean number of cumulative responses was computed in
10-second blocks and plotted in Figure 1. Clearly there is
nonlinearity, and not surprisingly, fluency is higher for the
goal-derived prompts compared with the object-use prompts.
The shape of the distributions in these plots is consistent with
those found in normal memory retrieval studies. Table 1 fur-
ther illustrates that response totals are uniformly lower for ob-
jects uses prompts, and that there is a relatively large degree
of correlation among output totals.

Clustering
Clusters were identified using a modification the Slope Dif-
ference Algorithm (Gruenewald & Lockhead, 1980), that
uses an exponential function rather than the hyperbolic func-
tion used by Gruenewald and Lockhead:

R(t) = N(1−e−
t
τ ) (1)

This is the ”two parameter” exponential, with N being the
estimated asymptote, or number of responses generated with
an unlimited amount of time, and τ being the inverse of the
rate parameter λ in an exponential distribution. Thus, τ is
parameterized as the estimated mean response time.

The Slope-Difference algorithm works as follows: given
the estimated N and τ parameters for each participant, calcu-
late the difference between the predicted and observed instan-
taneous rates of change in responding. The predicted rate of
change is just the derivative of Equation 1 calculated with
each participant’s parameters and the cumulative response
times of that participant. The observed instantaneous rate of
change is just the reciprocal of each inter-response time (IRT)
(i.e., for R = cumulative number of responses, ∆R

∆t = 1
IRT ).

Gruenewald and Lockhead (1980) provided support for the
validity of the algorithm, such that large, positive differences
between observed and predicted rates were indications that
responding was faster than predicted, and thus, faster than ex-
pected responses qualify as being within clusters. The thresh-
old for slope-differences being categorized as ”switches” was
.10, which is the same as used by Grunewald and Lockhead.

To obtain slope-difference values, Equation 1 was first fit
to each participant’s cumulative response-time distribution
per prompt, using ordinary nonlinear least-squares estima-
tion. Parameter values along with response times were used
to compute predicted rates of change to be differenced from
the actual rates of change. Clusters were then identified as
any IRT with a slope difference value less than .10, the thresh-
old used by Gruenewald and Lockhead (1980). Exponential
parameter estimates were not optimal for 1-3 participants per
prompt, and data from those participants were excluded for
the cluster analysis of each prompt.

Figure 2 shows that the proportion of responses identified
as within cluster was significantly greater for goal-derived
categories compared with object uses, χ2(1) = 48.27, p <
.001. Of the 998 object-use responses, 18.8% were identi-
fied as within-cluster, while 31.3% of the 1567 goal-derived
responses were identified as within-cluster.
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1500

Object Uses Goal Derived
Prompt Condition

Fr
eq

ue
nc

y Type
cluster
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Figure 2: Number of responses classified as within cluster, or
as a switch between clusters by the slope difference algorithm
for the two types of prompts. See text for proportions.
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Pairwise Semantic Similarity
The validity of the slope difference algorithm rests on fur-
ther semantic analysis of its results. Here, the central ques-
tion was whether responses in clusters corresponding to goal-
derived category were more semantically similar than those
in clusters corresponding with object-use generation. Pairs
of sequential responses were analyzed for semantic similarity
using the tools at the UC Boulder website (lsa.colorado.edu).
The General Reading corpus, with 300 factors, was chosen as
the basis for comparisons, and the term-to-term comparator
was used.

Mixed-effects regression was used to examine the main-
effects of clustering (within cluster v. between cluster re-
sponse) and prompt-type (goal-derived v. object use) on
LSA-derived cosine similarities, and the interaction of the
two fixed effects. A random intercept term was added to
account for participant variation, and another to account for
variations across the 6 prompts. Table 1 contains the results of
the analysis including 95% confidence intervals for the fixed
and random effects terms. Rather surprisingly, on average the
pairwise similarity of responses to the goal-derived prompts
was less than the average pairwise similarity of object-uses
responses. However, the slope difference algorithm seems to
distinguish between semantic clusters such that on average,
within-cluster responses were less similar (in terms of pair-
wise similarity) than between cluster responses. Figure 3 il-
lustrates that there may be a small interaction between prompt
type and clustering, and in Table 2, the estimate is a slightly
smaller difference in similarity of clustered and non-clustered
responses for object uses compared with goal derived cate-
gories, though zero remains a plausible value for the interac-
tion.

A slightly different result is obvious if one plots pairwise
similarity as a function of IRT. Figure 4 shows that, at the
level of individual pairs of responses, the relationship be-
tween IRT and similarity is not linear, and that for a great
many pairs of responses on all six prompts, there is a substan-
tial degree of variability in pairwise similarity for short IRTs.
A closer look at Figure 4 reveals that the garage prompt has
the highest concentration of low-similarity pairs. This an in-
teresting result on its own and is likely the result of context
dependency for that prompt, as will be discussed next.

Discussion
The purpose of this study was to probe the differences be-
tween object-uses generation and goal-derived category ex-
emplar generation in terms of semantic search and retrieval.
Using measures of clustering and similarity, this analysis il-
lustrated that there may be two key differences between re-
sponding to these two types of prompts. First, output to-
tals for goal-derived categories were much higher than object
uses, and also contained a greater proportion of faster than
expected IRTs, identified by the slope difference algorithm.

Though semantic analysis of adjacent pairs of responses
showed that the slope-difference clusters are indeed semantic
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Figure 3: Average pairwise semantic similarity per prompt
and per cluster category (in cluster v. switch). Bars are boot-
strapped 95% confidence limits.

clusters, pairwise similarity among goal-derived exemplars
was surprisingly less than the similarity among adjacent pairs
of object-use responses. One explanation for this result is that
semantic relationships across clusters of goal-derived exem-
plars may be minimal because of the dependence of semantic
similarity on context (e.g., Barsalou, 1982). Of course, that
characterization might also be said of object-uses. More im-
portantly, Hass (2017a) illustrated that LSA-derived cosine
similarities may not accurately represent context-dependent
relationships between object uses. Indeed, the main differ-
ence between the two types of prompts is that goal-derived
prompts identify a context (e.g., a garage sale), which all
items must relate to in some way, while object-uses prompts
identify an exemplar (e.g., a brick) to which responses must
relate. While object-uses responses will likely have context-
dependency, it is also likely that context dependency will be
greater among goal-derived categories such as those in this
study, as the context itself is the main constraint on concep-
tual activation. That is, consider the example discussed in the
introduction: electronics to sell at a garage sale. Say a par-
ticipant activates electronics as a concept and exploits it for
a bit, what is the likelihood that the next conceptual repre-
sentation activated will be highly similar to electronics in a
context-independent fashion? Contrast that with the activa-
tion of the attribute “heavy” in generating uses for a brick.
What is the likelihood that the next conceptual representa-
tion used after “heavy” is going to be semantically similar
to “heavy” in a context-independent sense. It seems plausi-
ble that the semantic similarity among all activated concepts
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Figure 4: Scatterplots of the IRT-similarity relationship across all size prompts. Object uses prompts are in the top row, goal-
derived prompts are in the bottom row

Table 2: Results of the mixed-effects regression with pairwise
similarity as the dependent variable. The baseline prompt-
type condition was object-use, the baseline cluster condition
was Within Cluster.

Confidence Interval
Fixed Effects b t 2.5% 97.5%
Intercept 0.38 14.65 0.33 0.42
Prompt Type -0.12 -3.88 -0.18 -0.06
Cluster -0.04 -2.24 -0.08 -0.005
prompt ×switch -0.03 -1.49 -0.07 0.01
Random Effects σ 2.5% 97.5%
Participant 0.04 0.03 0.06
Prompt 0.03 0.01 0.05
Residual 0.20 0.19 0.20

in the garage context might be lower than the semantic sim-
ilarity among activated concepts in the context of a use for a
brick because of the dependence on the garage context. The
latter conclusion is still highly speculative, but it suggests that
this is a fruitful avenue for future research to follow, as it will
likely illuminate how semantic information is organized and
used in both kinds of tasks.

Limitations and future directions

In this study, participants were explicitly instructed to think of
common and uncommon uses for objects in an effort to obtain
a greater total number of responses generated across the ob-

ject uses prompts (i.e., the word “creativity” was not present
in the instructions). In the recent study by Hass (2017a), par-
ticipants were instructed to think of creative uses for objects,
and indeed, their response totals were, on average, lower than
the current study (about 7 responses). So it is likely that the
instruction to be creative may limit the semantic similarity
of clustered output when generating object uses. Indeed, the
major motivation for the choice to avoid the word creative
was to provide a baseline for future studies that would vary
instructions, including “be-creative” conditions (e.g., Forth-
mann et al., 2016), and strategy inductions (e.g., Unsworth,
Brewer, & Spillers, 2013). However, since participants were
only given the “common and uncommon” instructions in one
condition, the effect of prompt type on semantic similarity is
confounded by the differing instructions. Specifically, our use
of the phrase “common and uncommon” uses in the object
use condition may have confused participants, or led some
participants to approach the task differently from others, with
some potentially assuming that they should be creative, or
only think of uncommon uses. We believe that this can be
remedied in future studies by changing all prompts to be of
the form, “think of things to ...” and then appending the
prompt (e.g., ... to sell at a garage sale; ... to do with a brick).
Participants can then be instructed to perform the two tasks
in the ways just mentioned (e.g., creatively, or using a cer-
tain search strategy), without the confound currently present.
However, the current results are still informative, and it is
likely that the confound presented by the “common or un-
common” phrasing was minimal.
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Abstract
Drawing is a versatile technique for visual communication,
ranging from photorealistic renderings to schematic diagrams
consisting entirely of symbols. How does a medium spanning
such a broad range of appearances reliably convey meaning? A
natural possibility is that drawings derive meaning from both
their visual properties as well as shared knowledge between
people who use them to communicate. Here we evaluate this
possibility in a drawing-based reference game in which two
participants repeatedly communicated about visual objects.
Across a series of controlled experiments, we found that pairs
of participants discover increasingly sparse yet effective ways
of depicting objects. These gains were specific to those
objects that were repeatedly referenced, and went beyond what
could be explained by task practice or the visual properties of
the drawings alone. We employed modern techniques from
computer vision to characterize how the high-level visual fea-
tures of drawings changed, finding that drawings of the same
object became more consistent within a pair of participants and
divergent across participants from different interactions. Taken
together, these findings suggest that visual communication
promotes the emergence of depictions whose meanings are
increasingly determined by shared knowledge rather than their
visual properties alone.
Keywords: alignment; coordination; iconicity; sketch under-
standing; visual communication

Introduction
From ancient etchings on cave walls to modern digital dis-
plays, visual communication lies at the heart of key human
innovations (e.g., cartography, data visualization) and forms a
durable foundation for the cultural transmission of knowledge
and higher-level reasoning. Perhaps the most basic and
versatile technique supporting visual communication is draw-
ing, the earliest examples of which date to at least 40,000-
60,000 years ago (Hoffmann et al., 2018). What began
as simple mark making has since been adapted to a wide
array of applications, ranging from photorealistic rendering
to schematic diagrams consisting entirely of symbols.

Even in the relatively straightforward case of drawing from
life, there are countless ways to depict the same object. How
does a communication medium spanning such a broad range
of appearances reliably convey meaning? On the one hand,
prior work has found that semantic information in a figurative
drawing, i.e., the object it represents, can be derived purely
from its visual properties (Fan, Yamins, & Turk-Browne,
2018). On the other hand, other work has emphasized the
role of socially-mediated information for making appropriate
inferences about what even a figurative drawing represents
(Goodman, 1976).

How can these two perspectives be reconciled? Our
approach is to consider the joint contributions of visual

object repeated communication
1 2 3 4 5 6 7 8

Figure 1: Repeated visual communication depicting the same object.

information and social context in determining how drawings
derive meaning (Abell, 2009), and to propose that a crit-
ical factor affecting the balance between the two may be
the amount of shared knowledge between communicators.
Specifically, we explore the hypothesis that accumulation
of shared knowledge via extended visual communication
may promote the development of increasingly schematic yet
effective ways of depicting an object, even as these ad hoc
graphical conventions may be less readily apprehended by
others who lack this shared knowledge.

To investigate this hypothesis, we used an interactive
drawing-based reference game in which two participants
repeatedly communicated about visual objects. We examined
both how their task performance and the drawings they
produced changed over time (see Fig. 1). Our approach
was inspired by a large literature that has explored how
extended interaction influences communicative behavior in
several modalities, including language (Clark & Wilkes-
Gibbs, 1986; Hawkins, Frank, & Goodman, 2017), gesture
(Goldin-Meadow, McNeill, & Singleton, 1996), and draw-
ings (Garrod, Fay, Lee, Oberlander, & MacLeod, 2007;
Galantucci, 2005). There are three aspects of the current
work that advance our prior understanding: first, we include a
control set of objects that were not repeatedly drawn but only
shown at the beginning and end of the interaction, allowing us
to measure the specific contribution of repeated reference vs.
general practice effects; second, we measure how strongly the
visual properties of drawings drive recognition in the absence
of interaction history for naive viewers, while equating other
task variables; and third, we employ recent advances in
computer vision to quantitatively characterize changes in the
high-level visual properties of drawings across repetitions.
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Part I: How does repeated reference support
successful visual communication?

Our first goal was to understand how people learn to com-
municate about visual objects across repeated visual com-
munication. To accomplish this, we developed a drawing-
based reference game for two participants. On each trial, both
participants shared a communicative context, represented by
an array of four objects. One of these objects was privately
designated the ‘target’ to the sketcher. The sketcher’s goal
was to draw the target so that the viewer could select it
from the array as quickly and accurately as possible. We
hypothesized that learning would be object-specific: that over
repeated visual reference to a particular object, participants
would discover ways of depicting that object more effectively
relative to non-repeated control objects.

Methods: Visual communication experiment
Participants We recruited 138 participants from Amazon
Mechanical Turk, who were grouped into 69 pairs (Hawkins,
2015). Within each experimental session, one participant
was assigned the sketcher role and the other the viewer role,
and these role assignments remained the same throughout
the experiment. Data from two pairs were excluded due to
unusually low performance (i.e., accuracy < 3 s.d. below
the mean). In this and subsequent experiments, participants
provided informed consent in accordance with the Stanford
IRB.

Stimuli In order to make our task sufficiently challenging,
we sought to construct communicative contexts consisting
of objects whose members were both geometrically complex
and visually similar. To accomplish this, we sampled objects
from the ShapeNet (Chang et al., 2015), a database containing
a large number of 3D mesh models of real-world objects.
We restricted our search to 3096 objects belonging to the
chair class, which is among the most diverse and abundant
in ShapeNet. To identify groups of visually similar chairs, we
first extracted high-level visual features from 2D renderings
of each object using a deep convolutional neural network
(DCNN) architecture, VGG-19 (Simonyan & Zisserman,
2014). This network had been previously trained to recognize

objects in photos from the ImageNet database (Deng et al.,
2009), containing 1.2 million natural photographs of 1000
different object classes. Trained DCNN models have been
shown to predict human perceptual similarity judgments
about objects (Kubilius, Bracci, & de Beeck, 2016; Peterson,
Abbott, & Griffiths, 2018), as well as neural population
responses in visual cortex during object recognition (Yamins
et al., 2014; Güçlü & van Gerven, 2015). As such, they
provide a principled choice of encoding model for extract-
ing high-level visual information from images. Following
previous work that has employed DCNN models to evaluate
perceptual similarity (Peterson et al., 2018; Kubilius et al.,
2016), for each image we extract a 4096-dimensional feature
vector reflecting activations in the second fully-connected
layer (i.e., fc6) of VGG-19, a higher layer in the network.
We then applied dimensionality reduction (PCA) and k-
means clustering on these feature vectors, yielding 70 clusters
containing between 2 and 80 objects each. Among clusters
that contained at least eight objects, we manually identified
two visual categories containing eight objects each (Fig. 2A).

Task Procedure On each trial, both participants were
shown the same set of four objects in randomized locations.
One of the four objects was highlighted on the sketcher’s
screen to designate it as the target. Sketchers drew using
their mouse cursor in black ink on a digital canvas embedded
in their web browser (300× 300 pixels; pen width = 5px).
Each stroke was rendered on the viewer’s screen in real
time and sketchers could not delete previous strokes. The
viewer aimed to click one of the four objects as soon as they
were confident of the identity of the target, and participants
received immediate feedback: the sketcher learned when
and which object the viewer had clicked, and the viewer
learned the true identity of the target. Both participants were
incentivized to perform both quickly and accurately. They
both earned an accuracy bonus for each correct response, and
the sketcher was required to complete their drawings in 30
seconds or less. If the viewer responded correctly within this
time limit, participants also received a speed bonus inversely
proportional to the time taken until the response.
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Figure 3: Communication efficiency across repetitions. Efficiency
combines both speed and accuracy, and is plotted relative to the first
repetition. Error ribbons represent 95% CI.

Design For each pair of participants, two sets of four
objects were randomly sampled to serve as communication
contexts: one was designated the repeated set while the other
served as the control set (Fig. 2B).1 The experiment consisted
of three phases (Fig. 2C). During the repeated reference
phase, there were six repetition blocks of four trials, and each
of the four repeated objects appeared as the target once in
each repetition block. In a pretest phase at the beginning
of the experiment and a posttest phase at the end, both
repeated and control objects appeared once as targets (in their
respective contexts) in a randomly interleaved order.

Results
Because objects were randomly assigned to repeated and
control conditions, we expected no differences in task per-
formance in the pretest phase. We found that pairs identified
the target at rates well above chance in this phase (75.7%
repeated, 76.1% control, chance = 25%), suggesting that they
were engaged with the task but not at ceiling performance.
We found no difference in accuracy across conditions (mean
difference: 0.3%, bootstrapped CI: [−7%,7%]).

In order to measure how well pairs learned to communicate
throughout the rest of their interaction, we used a measure
of communicative efficiency (the balanced integration score,
Liesefeld & Janczyk, 2018) that takes both accuracy (i.e.,
proportion of correct viewer responses) and response time
(i.e., latency before viewer response) into account. This
efficiency score is computed by first z-scoring accuracy and
response time across repetitions within an interaction to map
values from different interactions to the same scale, and then
subtracting the standardized response time from standardized
accuracy. It is highest when pairs are both fast and accurate,
and lowest when they make more errors and take longer,
relative to their own performance on other trials.

1In half of the pairs, the four control objects were from the
same stimulus cluster as repeated objects; in the other half, they
were from different clusters. The rationale for this was to support
investigation of between-cluster generalization in future analyses.
In current analyses, we collapse across these groups.

To evaluate changes in communicative efficiency, we fit
a linear mixed-effects model including random intercepts,
slopes, and interactions for each pair of participants. We
found a main effect of increasing communicative efficiency
for all targets between the pre and post phases (b = 1.45, t =
14.3, p< 0.001), reflecting general improvements due to task
practice. Critically, however, this analysis also revealed a
reliable interaction between phase and condition: commu-
nicative efficiency improved to a greater extent for repeated
objects than control objects (b = 0.648, t = 3.09, p = 0.003;
see Fig. 3). Analysis of changes in raw accuracy yielded a
similar result: performance on repeated objects improved by
14.5%, while performance on control objects only improved
by 7.1%. Together, these data show that there are benefits
of repeatedly communicating about an object that accrue
specifically to that object, suggesting the formation of object-
specific graphical conventions.

Part II: What explains gains in efficiency?
Our visual communication experiment established that pairs
of participants coordinate on more efficient and object-
specific ways of depicting targets. This raises the question:
to what extent do these gains in efficiency reflect the accu-
mulation of interaction-specific shared knowledge between a
sketcher and viewer, as opposed to the combination of task
practice and the inherent visual properties of their drawings?

To disentangle the contributions of these different factors,
we conducted two control experiments to estimate the how
recognizable these drawings were to naive viewers outside the
social context in which they were produced. Participants in
one control group were shown a sequence of drawings taken
from a single interaction, closely matching the experience of
viewers in the communication experiment. Participants in
a second control group were instead shown a sequence of
drawings pieced together from many different interactions,
thus disrupting the continuity experienced by viewers paired
with a single sketcher. Insofar as interaction-specific shared
knowledge contributed to the efficiency gains observed pre-
viously, we hypothesized that the second group would not
improve as much over the course of the experimental session
as the first group would.

Methods: Recognition Control Experiments
Participants We recruited 245 participants via Amazon
Mechanical Turk. We excluded data from 22 participants
who did not meet our inclusion criterion for accurate and
consistent response on attention-check trials (see below).

Task, Design, & Procedure On each trial, participants
were presented with a drawing and the same set of four
objects that accompanied that drawing in the original visual
communication experiment. They also received the same
accuracy and speed bonuses as viewers in the communication
experiment. To ensure task engagement, we included five
identical attention-check trials that appeared once every eight
trials. Each attention-check trial presented the same set of
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Figure 4: Comparing drawing recognition performance between
viewers in communication experiment with those of yoked and
shuffled control groups. Error ribbons represent 95% CI.

objects and drawing, which we identified during piloting as
the most consistently and accurately recognized by naive
participants. Only participants who responded correctly on
at least four out of five of these trials were retained in
subsequent analyses.

Each participant was randomly assigned to one of two
conditions: a yoked group and a shuffled group. Each yoked
participant was matched with a single interaction from the
original cohort and viewed 40 drawings in the same sequence
the original viewer had. Those in the shuffled group were
matched with a random sample of 10 distinct interactions
from the original cohort and viewed four drawings from each
in turn, which appeared within the same repetition block as
they had originally. For example, if a drawing was produced
in the fifth repetition block in the original experiment, then it
also appeared in the fifth block for shuffled participants.

At the trial level, groups in both conditions thus received
exactly the same visual information and performed the task
under the same incentives to respond quickly and accurately.
At the repetition level, both groups received exactly the
same amount of practice recognizing drawings. Thus any
differences between these groups are attributable to whether
drawings came from the same communicative interaction,
which would support the accumulation of interaction-specific
experience, or from several different interactions, where such
accumulation would be minimal.

Results
Interaction-specific history enhances recognition by
third-party observers We compared the yoked and shuf-
fled groups by measuring changes in recognition performance
across successive repetitions using the same efficiency metric
we previously used. We estimated the magnitude of these
changes by fitting a linear mixed-effects model that included
group (yoked vs. shuffled), repetition number (i.e., first
through eighth), and their interaction, as well as random
intercepts and slopes for each participant. While we found
a significant increase in recognition performance across both
groups (b = 0.18, t = 12.8, p < 0.001), we also found a

large and reliable interaction: yoked participants improved
to a substantially greater degree than shuffled participants
(b = 0.10, t = 4.9, p < 0.001; Fig. 4). Examining accuracy
alone yielded similar results: the yoked group improved to a
greater degree across the session (yoked: +15.8%, shuffled:
+5.6%). Taken together, these results suggest that third-
party observers in the yoked condition who viewed drawings
from a single interaction were able to take advantage of this
continuity to more accurately identify what successive draw-
ings represented. While observers in the shuffled condition
still improved over time, being deprived of this interaction
continuity made it relatively more difficult to interpret later
drawings.

Viewer feedback also contributes to gains in performance
Unlike viewers in the interactive visual communication ex-
periment, participants in the yoked condition made their
decision based only on the whole drawing and were unable
to interrupt or await additional information if they were still
uncertain. Sketchers could have used this feedback to modify
their drawings on subsequent repetitions. As such, comparing
the yoked and original communication groups provides an es-
timate of the contribution of these viewer feedback channels
to gains in performance (Schober & Clark, 1989). In a mixed-
effects model with random intercepts, slopes, and interactions
for each unique trial sequence, we found a strong main effect
of repetition (b = 0.23, t = 12.8, p < 0.001), as well as a
weaker but reliable interaction with group membership (b =
−0.05, t =−2.2, p = 0.032, Fig. 4), showing that the yoked
group improved at a more modest rate than viewers in the
original communication experiment had.

To better understand this interaction, we further examined
changes in the accuracy and response time components of
the efficiency score. We found that while viewers in the
communication experiment were more accurate than yoked
participants overall (communication: 88%, yoked: 75%),
improvements in accuracy over the course of the experiment
were similar in both groups (communication: +14.5%, yoked:
+15.8%). The interaction instead appeared to be driven
by differential reductions in response time between the first
and final repetitions (communication: 10.9s to 5.84s; yoked:
4.66s to 3.31s). These reductions were smaller in the yoked
group, given that these participants did not need to wait for
each stroke to appear before making a decision, and thus may
have already been closer to floor.

Part III: How do visual features of drawings
change over the course of an interaction?

The results so far show that repeated visual communication
establishes object-specific, interaction-specific ways of effi-
ciently referring to objects. An intriguing implication is that
interacting pairs achieved this by gradually forming ad hoc
graphical conventions about what was relevant and sufficient
to include in a drawing to support rapid identification of the
target object. Here we explore this possibility by examining
how the drawings themselves changed throughout an interac-

418



1st repetition

2nd repetition

0.0

2.0

4.0

6.0

8.0

10.

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8
repetition

co
rre

la
tio

n

0.5

0.6

0.7

0.8

repetition lag

co
rre

la
tio

n

relative to initial

0.5

0.6

0.7

0.8

repetition pair

co
rre

la
tio

n

C D EB

1 2 3 4 5 6 7 1 2 3 4 5 6 7

btw successive reps btw interactionsstroke importanceA motor cost

2

4

6

8

1 2 3 4 5 6 7 8
repetition

nu
m

be
r o

f s
tro

ke
s

Figure 5: (A) Sketchers use fewer strokes over time. (B) Visualizing importance of individual strokes in successive drawings. (C) Drawings
become increasingly dissimilar from initial drawing. (D) Drawings become more consistent from repetition to repetition. (E) The same object
is drawn increasingly dissimilarly by different sketchers. Error ribbons represent 95% CI, dotted lines represent permuted baseline.

tion. Concretely, we investigated four aspects that would re-
flect the increasing contribution of interaction-specific shared
knowledge: first, decreasing number of strokes used (i.e.,
reducing motor cost of each drawing); second, increasing
dissimilarity from the initial drawing produced (i.e., cumula-
tive drift from the starting point); third, increasing similarity
between successive drawings (i.e., convergence on internally
consistent ways of depicting objects within an interaction);
fourth, increasing dissimilarity between drawings of the same
object produced in different interactions (i.e., discovery of
multiple viable solutions to the coordination problem).

Measuring visual similarity between drawings
Measuring visual similarity between drawings depends upon
a principled approach for encoding their high-level visual
properties. Here we capitalize on recent work validating
the use of deep convolutional neural network models to
encode such perceptual content in drawings (Fan et al.,
2018). As when identifying clusters of similar object stimuli,
we again used VGG-19 to extract 4096-dimensional feature
vector representations for drawings of every object, in every
repetition, from every interaction. Using this feature basis,
we compute the similarity between any two drawings as the
Pearson correlation between their feature vectors (i.e., si j =
cov(~ri,~r j)/

√
var(~ri)·var(~r j)).

Results
Fewer strokes across repetitions A straightforward expla-
nation for the gains in communication efficiency observed
in Part I is that sketchers were able to use fewer strokes
per drawing to achieve the same level of viewer recognition
accuracy. Indeed, we found that the number of strokes in
drawings of repeated objects decreased steadily as a function
of repetition in a mixed-effects model (b = −0.216, t =
−6.00; Fig. 5A), suggesting that pairs were increasingly able
to rely upon shared knowledge to communicate efficiently.
This result raises a question about which strokes are preserved
across successive repetitions during the formation of graph-
ical conventions. In ongoing work, we are using a lesion
method to investigate the “importance” of each stroke within

a drawing for explaining similarity to the next repetition’s
drawing of that object. We re-render the drawing without
each stroke and compute the similarity, yielding a heat map
across strokes (see Fig. 5B for an example visualization).
The more dissimilar the lesioned drawing without a particular
stroke is to an intact version of the next repetition’s drawing,
the more “important” we consider that stroke to be.

Increasing dissimilarity from initial drawing Mirroring
the observed reduction in the number of strokes across
repetitions, we hypothesized that there was also cumulative
change in the visual content of drawings across repetitions.
Concretely, we predicted that drawings would become in-
creasingly dissimilar from the initial depiction. We tested
this prediction in a mixed-effects regression model including
linear and quadratic terms for repetition as well as intercepts
for each target and pair. We found a significant decrease in
similarity to the initial round across successive repetitions,
(b =−0.62, t =−5.59; Fig. 5C), suggesting that later draw-
ings had moved to a different region of visual feature space.
However, since the entire distribution of drawings may have
drifted to a different region of the visual feature space for
generic reasons (i.e., because they were sparser overall), we
conducted a stricter permutation test. We scrambled drawings
across pairs but within each repetition and target and re-ran
our mixed-effects model. The observed effect fell outside this
null distribution (CI = [−3.53− 0.88], p < .001), showing
that successive drawings by the same sketcher deviated from
their own initial drawing to a greater degree than would be
expected due to generic differences between drawings made
at different timepoints in an interaction.

Increasing internal consistency within interaction As
sketchers modified their drawings across successive repeti-
tions, we additionally hypothesized that they would converge
on increasingly consistent ways of depicting each object. To
test this prediction, we computed the similarity of successive
drawings of the same object made in the same interaction
(i.e. repetition k to k + 1). A mixed-effects model with
random intercepts for both object and pair showed that sim-
ilarity between successive drawings increased substantially

419



throughout an interaction (b = 0.53, t = 5.03; Fig. 5). Again,
we compared our empirical estimate of the magnitude of this
trend to a null distribution of slope t values generated by
scrambling drawings across pairs. The observed increase
fell outside this null distribution (CI = [−3.21,−0.60], p <
.001), providing evidence that increasingly consistent ways
of drawing each object manifested only for series of drawings
produced within the same interaction.

Increasingly different drawings across interactions Our
recognition control experiments suggested that the graphical
conventions discovered by different pairs were increasingly
opaque to outside observers. This effect could arise if early
drawings were more strongly constrained by the visual prop-
erties of a shared target object, but later drawings diverged as
different pairs discovered different equilibria in the space of
viable graphical conventions. Under this account, drawings
of the same object from different pairs would become increas-
ingly dissimilar from each other across repetitions. We tested
this prediction by computing the mean pairwise similarity
between drawings of the same object within each repetition
index, but produced in different interactions. Specifically,
for each object, we considered all interactions in which that
object was repeatedly drawn. Then, for each repetition index,
we computed the average similarity between drawings of
that object. In a mixed-effects regression model including
linear and quadratic terms, as well as random slopes and
intercepts for object and pair, we found a small but reliable
negative effect of repetition on between-interaction drawing
similarity (b=−1.4, t =−2.5; Fig. 5E). We again conducted
a permutation test to compare this t value with what would
be expected from scrambling sketches across repetitions for
each sketcher and target object. We found that the observed
slope was highly unlikely under this distribution (CI =
[−0.57,0.60], p < 0.001), even if the similarity at each
round was not so unlikely.

Discussion
In this paper, we investigated the joint contributions of visual
information and social context to determining the meaning
of drawings. We observed in an interactive Pictionary-style
communication game that pairs of participants discover in-
creasingly sparse yet effective ways of depicting objects over
repeated reference. Through a series of control experiments,
we demonstrated that these conventionalized representations
were both object-specific and interaction-specific: drawings
were harder for independent viewers to recognize without
sharing the same interaction history. Furthermore, by analyz-
ing the high-level visual features of drawings, we found that
they became increasingly consistent within an interaction, but
that different pairs discover different equilibria in the space
of viable graphical conventions. Taken together, our findings
suggest that repeated visual communication promotes the
emergence of depictions whose meanings are increasingly
determined by interaction history rather than their visual
properties alone.

A key experimental design choice was the use of visual
objects as the targets of reference, by contrast with the
verbal labels or audio clips used in prior work (Galantucci
& Garrod, 2011; Fay, Garrod, Roberts, & Swoboda, 2010).
As such, communication between the sketcher and viewer
was grounded in the same visual information about the
appearance of these objects, encouraging the production of
more ‘iconic’ initial drawings that more strongly resembled
the target object (Verhoef, Kirby, & de Boer, 2016; Perlman,
Dale, & Lupyan, 2015). As their communication became in-
creasingly efficient across repetitions, their drawings became
simpler and apparently more ‘abstract’. An exciting direction
for future work is to develop robust and principled com-
putational measures of the degree of visual correspondence
between any drawing and any target object, thereby shedding
light on the nature of visual abstraction and iconicity.

A second important design choice was the use of a speed
bonus incentivizing participants to complete trials quickly.
What role do such incentives play in the formation of
graphical conventions? Recent computational models of
visual communication have found that both how costly a
drawing is to produce (i.e., time/ink) and how informative
a drawing is in context are critical for explaining the way
people spontaneously adjust the level of detail to include
in their drawings in one-shot visual communication tasks
(Fan, Hawkins, Wu, & Goodman, 2019). The consequences
of this intrinsic preference for less costly drawings may
be compounded across repetitions, as the accumulation of
interaction history allows people to be equally informative
with fewer strokes (Hawkins et al., 2017). The magnitude
of these intrinsic costs may vary across individuals, however,
and the speed bonus made them explicit.

A major open question raised by our work concerns how
people decide what information to preserve or discard across
repetitions. One possibility is that successful viewer com-
prehension is attributed to the most recent strokes produced,
leading these to be more strongly preserved. For example,
if the viewer was able to correctly identify the target only
after the backrest was drawn, the sketcher may continue
to selectively draw this part. Another possibility is that
sketchers preserve what they judge to be the most diagnostic
information about the target, regardless of when the viewer
made their response. For example, sketchers may focus on
drawing the backrest if it strongly distinguishes the target
from distractors in context. Future work should disentangle
these possibilities empirically and via development of com-
putational models of visual communication that can learn
from task-related feedback, as well as judge which strokes
would be most diagnostic.

Visual communication is a powerful vehicle for the cultural
transmission of knowledge. Over time, advancing our knowl-
edge of the cognitive mechanisms underlying the formation
of graphical conventions may lead to a deeper understanding
of the origins of modern symbolic systems for communica-
tion and the design of better visual communication tools.
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Abstract

Ambiguity has often been viewed as a hindrance to communi-
cation. In contrast, Piantadosi et al. (2012) argued that ambi-
guity may be useful in that it allows communication to be ef-
ficient, and they found support for this argument in the spoken
forms of modern English, Dutch, and German. The historical
origins of this phenomenon cannot be probed in the case of spo-
ken language, but they can for written language, as it leaves an
enduring trace. Here, we explore ambiguity and efficiency in
one of the earliest known written forms of language: Sumerian
cuneiform. Sumerian cuneiform exhibits extensive ambiguity,
and for that reason it has been considered to be poorly suited for
communication. We find, however, that ambiguity in Sumerian
cuneiform supports efficient communication, mirroring the ear-
lier findings for spoken English, Dutch, and German. Thus, the
early stages of human writing exhibit evidence suggesting pres-
sure for communicative efficiency.
Keywords: efficient communication; ambiguity; writing sys-
tems; cuneiform; information theory

Introduction
Ambiguity in language is often considered to be communica-
tively disadvantageous, because it can make a speaker’s inten-
tion unclear to a listener. However, it has been argued (Zipf,
1949) that a certain amount of ambiguity in language is in-
evitable given the competing needs of speakers and listeners.
Piantadosi, Tily, and Gibson (2012) pursued this idea further,
and argued that ambiguity may be useful in that it can sup-
port efficient communication. They showed empirically that
patterns of ambiguity in the spoken forms of modern English,
Dutch, and German are consistent with pressure for efficiency
in communication.

Given this finding, it is natural to wonder about the histori-
cal origins of this phenomenon. How quickly do languages
come to exhibit efficient use of ambiguity? Was this phe-
nomenon present near the beginning of language use? Such
questions are unanswerable for the spoken form of language,
which leaves no lasting trace — but they can be addressed with
respect to written language, which does leave such a trace.

Sumerian cuneiform is one of the earliest known writing
systems, and is one of the four ‘pristine’ writing systems of
the world, meaning that its origins are not traceable to bor-
rowing or influence from any previously existing writing sys-
tem (Woods, 2015a). It is also known to be highly ambiguous,
such that a given character often has numerous distinct seman-
tic and/or phonological values (Cooper, 1996). Additionally,
the distribution of meanings across forms in written Sumerian

was not simply a straightforward reflection of spoken Sume-
rian; this means that any finding of efficiency with respect to
the writing system cannot be dismissed as entirely derivative
of the corresponding spoken language. Finally, Sumerian is
unrelated to the languages studied earlier by Piantadosi et al.,
which are closely related to each other. For these reasons,
Sumerian cuneiform suggests itself as a natural case study for
probing the historical origins of the efficient use of ambiguity,
in the accessible case of written language.

In what follows, we first provide a brief introduction to
Sumerian cuneiform, and its relevance to the question of am-
biguity and efficiency. We then restate the argument and re-
sults of Piantadosi et al. on modern spoken languages. Then,
in three studies, we apply the logic and methods of Pianta-
dosi et al. to the problem of assessing efficiency in Sumerian
cuneiform. We find that ambiguity in Sumerian cuneiform
bears the same signatures of efficiency as were found in mod-
ern spoken languages. We conclude that pressure for efficient
communication may have been present near the earliest stages
of human writing, and we discuss the implications of this con-
clusion.

Sumerian cuneiform
Cuneiform writing developed in southern Mesopotamia
throughout the 4th millennium BC; first used for linguistic
writing by the 31st century, the system survived roughly three
thousand years, over which it was adapted into various lan-
guages of the Middle East (Veldhuis, 2012). The first lan-
guage for which cuneiform was used was most likely Sume-
rian (Veldhuis, 2012), an agglutinative language with mild
nominal morphology (case-marking suffixes) and rich verbal
morphology, including a plethora of tense-aspect-mood and
agreement affixes (Michalowski, 2004).

Cuneiform tablets compartmentalized text into columns,
which were further divided into lines/cells, somewhat similar
in layout to a modern-day spreadsheet; smaller items would
only have one column (see Figure 1 for an example). The
amount of information contained within a cell of a text had
some degree of variation, but was at least at the level of a
word and typically at the level of a phrase. Earlier scribal
practice was not always concerned with preserving a consis-
tent linear order of characters within a cell. By c. 2400 BC,
however, scribes adhered to fairly strict and consistent linear-
ity in spellings (Michalowski, 2004).
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Figure 1: A sample text in Sumerian cuneiform. Since the text
is small, it only has one column, which is divided into seven
lines. Image from the Cuneiform Digital Library Initiative
(2016), CDLI #102525. Image reprinted with permission of
Robert K. Englund.

Written Sumerian was primarily logographic: the level
of linguistic representation for a given graphical unit would
usually be the morpheme (or some sub-morphemic, non-
phonemic unit of information), although it also made use
of phonography to some degree, with characters sometimes
mapping more directly to (strings of) sounds, usually at the
level of the syllable (Civil, 1973). A major feature of the sys-
tem was its extensive use of ambiguity: any given character
could have numerous distinct semantic and/or phonological
values (Cooper, 1996). A non-exhaustive list of words con-
taining the character𒉺 can be found in Table 1; this list serves
as an example of how a single character may occur in the
spellings of words which do not all share semantic or phono-
logical information. The table also demonstrates the lack of
strict isomorphism between written form and corresponding
spoken form, either in terms of phonemes, syllables, or mor-
phemes. This point is important for our purposes because it
means that if written Sumerian bears signs of efficiency, that
efficiency cannot have been entirely inherited from spoken
Sumerian.

Two open questions concerning efficiency and ambiguity
emerge from this overview. First, and most centrally: is the
ambiguity of Sumerian cuneiform communicatively harmful,
as might be expected given its extensiveness — or is it in-
stead consistent with pressure for efficiency in communica-
tion? Second: is the shift to greater linearity in writing at-
tributable to pressure for efficiency? We pursue these ques-
tions below.

The argument of Piantadosi et al. (2012)
To address these questions, we draw on the logic and methods
of an earlier study that focused on modern spoken languages.
Piantadosi et al. (2012) argued that “ambiguity is a functional
property of language that allows for greater communicative
efficiency” (p. 280). Their argument coheres naturally with a
classic functionalist view that seeks to explain language struc-
ture and use in terms of efficient communication, and a grow-

Spelling Transliteration Meaning
𒉺𒉘 paN ‘breathe’
𒀉𒉺 asag ‘demon’
𒉺 pa ‘branch’
𒉺 ugula ‘overseer’
𒉺 sag ‘beat’
𒉺𒄸𒁺 rig ‘boil down’
𒉺𒄸𒁺 rig ‘donate’
𒉺𒋼𒋛 ensi ‘governor/ruler’
𒉺𒁽 maškim ‘administrator’
𒉺𒄛 munsub ‘shepherd1’
𒉺𒇻 sipad ‘shepherd2’

Table 1: Non-exhaustive list of words that contain the charac-
ter𒉺 in their spelling.

ing body of recent research that pursues that idea with respect
to various aspects of language (e.g. Aylett & Turk, 2004; Fer-
rer i Cancho & Solé, 2003; Piantadosi, Tily, & Gibson, 2011;
Fedzechkina, Jaeger, & Newport, 2012; Kirby, Tamariz, Cor-
nish, & Smith, 2015; Kemp, Xu, & Regier, 2018).

Piantadosi et al. (2012) pursued this argument as follows.
First, they argued that context has the potential to resolve
ambiguity. The communicative problem posed by ambigu-
ity is that of the listener’s (or reader’s) uncertainty about the
meaning of a given form, and they engaged this problem in
information-theoretic terms, casting uncertainty as entropy.
They noted that if context is informative about meaning, con-
text will necessarily reduce uncertainty (entropy) about mean-
ing. This means that context has the potential to alleviate the
problem posed by ambiguity: a form that may be highly am-
biguous in isolation may be much clearer when considered in
context. A central assumption of their paper is that context is
in fact informative about meaning, and therefore does help to
disambiguate.

Piantadosi et al. then pursued the hypothesis that ambigu-
ity in language is deployed in a manner that increases effi-
ciency. The core idea is that if ambiguity is resolved by con-
text, forms are free to take on multiple meanings — and the
efficient way to do this would be to preferentially re-use forms
that are low-cost, so as to minimize overall cost, or effort (Zipf,
1949). Forms may be low-cost in various ways: they may be
short or otherwise simple; they may be frequent and there-
fore processed more quickly, and so on. Their paper consid-
ered several measures of form cost, and asked to what extent
each predicts ambiguity of form. Specifically, using data on
the spoken forms of German, Dutch, and English, they con-
ducted quasi-Poisson regressions to establish the relationship
between various count measures of form ambiguity and three
properties of form cost: length, frequency (as negative log
probability), and phonotactic surprisal. They found that in
general, greater ambiguity was predicted by lower form cost
(with the possible exception of phonotactic surprisal). Thus,
shorter and more frequent forms were more ambiguous in
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𒉺𒋼𒋛
𒉺 𒋼 𒋛

(ruler, 1) (ruler, 2) (ruler, 3)

Table 2: Example morpheme, meaning ‘ruler’. The top row
shows how this morpheme would be spelled in characters in
the original text. The bottom two rows show the characters
that appear in the spelling of this morpheme, each paired with
the value of that character with respect to this morpheme, as
defined in Equation 1.

German, Dutch, and English — consistent with the expec-
tation that low-cost forms are preferentially re-used, as pre-
dicted by pressure for efficiency.

The present studies
We applied an analogous line of investigation to the question
of ambiguity in Sumerian cuneiform.1 Ambiguity arises when
a form has more than one value, or symbolic function. Thus,
to explore ambiguity in Sumerian cuneiform, we need to spec-
ify the relevant unit of form, and the corresponding values. It
is natural to take the character as the relevant unit of form
in Sumerian cuneiform, as it is characters that are often con-
sidered to be ambiguous. And given that characters are not
defined either purely semantically or purely phonologically,
but are used to specify morphemes, it is natural to define the
values of a character in terms of that character’s role in iden-
tifying morphemes, i.e. the character’s role in spelling mor-
phemes. A morpheme can have more than one spelling, so we
first define the spellings S(m) of a morpheme m to be the set
of character strings that spell out that morpheme in Sumerian
cuneiform. We then define the values V(x) of a character x as:

V (x) = { (m, i) | x is the ith character in s ∈ S(m) } (1)

That is, the values of character x are the set of all (morpheme,
index) pairs (m, i) such that x is the ith character in one of the
spellings s of morpheme m. For example, the values of the
character 𒉺 include the pairs (ruler, 1), (branch, 1), and
(demon, 2), among others. Table 2 illustrates a spelling of a
specific morpheme, and the determination of character values
from that spelling.2

Data
The data we used were from ORACC, the Open Richly Anno-
tated Cuneiform Corpus (Tinney & Robson, 2014), an open-
access corpus of cuneiform texts which is, to the best of our
knowledge, the largest open-access corpus for Sumerian texts

1We believe we are the first to treat Sumerian in this way. How-
ever Civil (1973) informally explored the possibility of examining
Sumerian cuneiform through the lens of information theory.

2We also ran all of the analyses using an alternate definition of a
character’s values: V (x) = { m | x is present in s ∈ S(m) }. By this
definition, a character x’s values are simply the set of morphemes
that contain x anywhere in any of their spellings. The results using
this definition of character values were qualitatively the same as the
results reported here.

that has POS tagging and morphological annotation. Specif-
ically, we used the texts in the Ur III Administrative Docu-
ments corpus within ORACC; this corpus is roughly 5.5 mil-
lion cuneiform characters in length, and it consists of various
administrative and transactional documents from the Ur III
period (c. 2112-2004 BC). This corpus was chosen because it
is the largest single-genre morphologically annotated corpus
of third millennium Sumerian texts.

Substantial parts of the corpus had to be discarded. We
omitted tokens that were damaged or for which the reading
was unknown. In addition, most proper nouns had to be omit-
ted.3 The resulting cleaned data had roughly 3.3 million char-
acter tokens. We refer to this cleaned corpus as the ‘dataset’.

Overview of the present studies
We conducted three studies to test whether ambiguity in
Sumerian cuneiform is consistent with pressure for efficient
communication. Piantadosi et al. (2012) assumed that much
ambiguity could be resolved by context; we wished to test
this question directly, so Study 1 asks to what extent con-
text resolves ambiguity in Sumerian cuneiform. Study 2 asks
whether context disambiguates more effectively in Sumerian
cuneiform than it does in a number of plausible hypothetical
variants of it; in so doing, this study explores whether increas-
ing linearity in Sumerian writing may have resulted from pres-
sure for efficiency. Finally, Study 3 applies the analyses of
Piantadosi et al. (2012) to Sumerian cuneiform, to determine
whether the signatures of efficiency they found in modern spo-
ken languages are also found in cuneiform.

Study 1: Does context disambiguate?
To what extent does context resolve ambiguity in Sumerian
cuneiform? We considered a simple version of this general
question. We first determined the uncertainty concerning
which value a character has when the reader knows only the
current character (unigram condition). We then compared this
to the uncertainty when the reader knows not just the current
character but also the preceding character (bigram condition).

We took uncertainty concerning character values to be the
conditional entropy of values V conditioned on context C:

H(V |C) =− ∑
c∈C

P(c) ∑
v∈V

P(v|c) log2 P(v|c) (2)

Lower conditional entropy denotes greater certainty concern-
ing character value.

We calculated H(V |C) over the entire dataset, once taking
C to be the current character alone (unigram), and once again
taking C to be the current and preceding characters together
(bigram). The results are shown in the top two lines of Ta-
ble 3. Conditional entropy in the bigram condition is much
lower than in the unigram condition. This demonstrates not
only that context disambiguates, but also that just a single

3Proper nouns had no morphological annotation. Among other
problems, this meant that inflectional morphology was not automat-
ically separable from the rest of the word for proper nouns, as it was
for other words in the corpus.
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Table 3: Conditional entropy H(V |C) of character values V
given one character (unigram) vs. two characters (bigram) of
text C, on attested and hypothetical data. Study 1: One added
character of context results in a sharp decrease in uncertainty
in attested data. Study 2: context disambiguates more effec-
tively in attested Sumerian cuneiform than it does in some hy-
pothetical variants of it. Value for WLSS is the average ± 1
SD, over 500 systems.

Study Condition H(V |C)
1 Unigram, attested data 1.5281
1 Bigram, attested data 0.4584
2 Bigram, BWS 0.4719
2 Bigram, WLSS 0.9796 (± 0.0004)

additional preceding character of context suffices to substan-
tially reduce uncertainty. Since much more context than this
would be available to readers, it is reasonable to expect that
a competent reader of Sumerian would be able to infer with
high certainty which value a given character was intended to
have, in context. We conclude from this finding that context
does effectively disambiguate in Sumerian cuneiform.

Study 2: Comparison with hypothetical systems
Given that context disambiguates in Sumerian cuneiform, we
ask the follow-up question of whether plausible hypothetical
variants of the system exhibit better, worse, or comparable re-
sults. Study 2 tested whether the consistency of spellings and
strict linearity of Sumerian cuneiform demonstrate advantages
over hypothetical competitors with regards to certainty of de-
coding character values in context.

We considered two hypothetical variants of Sumerian
cuneiform. The first variant is ‘backwards Sumerian’ (BWS):
this is a hypothetical variant of Sumerian in which the en-
tire corpus is spelled backwards. Effectively this means that
when considering a character in context, we take as context
what would have been the following character in actual Sume-
rian, rather than the preceding character as in Study 1. The
other hypothetical variant is ‘within-line shuffled Sumerian’
(WLSS): this is a system that is derived from our Sumerian
cuneiform dataset by randomly shuffling the order of charac-
ters within a line. In this case, a neighboring character taken
as context could be any other character within the same line
in the original dataset. The latter hypothetical variant is moti-
vated to some extent by actual scribal practices in earlier pe-
riods, in which characters were not always arranged in linear
order. It is known that written Sumerian shifted towards more
consistent linearity over time (Michalowski, 2004), and these
hypothetical variants allow us to test the hypothesis that the
greater linearity that we see in Ur III written Sumerian (the
period of our dataset) may have aided disambiguation.

We first calculated H(V |C) over the BWS datset. We then
generated 500 WLSS datasets by randomly reordering char-
acters and their respective values within each line, and cal-
culated H(V |C) over each resulting WLSS dataset. We con-

sidered only the bigram condition (in which C is the current
character together with an immediately preceding character),
because the unigram condition would yield identical results in
the attested and hypothetical systems.

The results are shown in Table 3. Bigram conditional en-
tropy is very slightly higher for BWS than it is for the attested
system; thus, following context may serve as a marginally
weaker disambiguator than preceding context, but the differ-
ence is small. Bigram conditional entropy is substantially
higher for the WLSS systems than it is for the attested sys-
tem, demonstrating that consistent linearity of spelling does
confer an advantage on an ambiguous, logographic system
such as Ur III written Sumerian, at least with respect to deter-
mining a given character’s value based on immediately neigh-
boring context. These results elaborate those of Study 1, and
show that context disambiguates more effectively in Sumerian
cuneiform than it does in at least some hypothetical variants
of that system.

Study 3: Is ambiguity used efficiently?
We have seen that the ambiguity of written Sumerian is much
reduced by contextual information, and that this is more true
of actual Sumerian than it is of some possible variants of it.
This sets the stage for a question directly parallel to that posed
by Piantadosi et al.: given that context disambiguates, do lan-
guages use ambiguity efficiently, by reusing low-cost (simple,
frequent) forms for a large number of meanings, thereby re-
ducing system-wide cognitive costs?

We addressed this question in a manner that mirrors that
of Piantadosi et al.: by asking whether the number of values
associated with a specific character was predicted by the char-
acter’s frequency of occurrence in the dataset, and by its sim-
plicity.4 Our measure of complexity (the opposite of simplic-
ity) for a cuneiform character was stroke count: the number
of strokes or wedges required to produce the canonical form
of the character. For example, the character 𒉺 has 3 strokes.
Stroke counts were coded manually by the first author based
on forms in the Electronic Pennsylvania Sumerian Dictionary
Project (ePSD; Tinney, 2009), an open-access online dictio-
nary. Following Piantadosi et al., we transformed character
frequency to negative log (unigram) probability, using add-
one smoothing so that no character had frequency zero.

Figure 2 plots the number of values a character has (its char-
acter valence, |V (x)|, which is the size of the set V (x)), as
a function of negative log probability based on unigram fre-
quency, and as a function of stroke count. In both cases it
appears qualitatively that lower-cost (more frequent, simpler)
characters tend to have more values, consistent with pressure
for efficiency.

To probe this pattern quantitatively, we conducted a quasi-
Poisson regression to predict the number of values |V (x)| as-
sociated with each character x, from that character’s negative
log probability and stroke count. We standardized the two pre-

4The third predictor considered by Piantadosi et al., phonotactic
surprisal, is not applicable to Sumerian cuneiform.
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Figure 2: Box plots showing character valence |V (x)| as a function of (left panel) negative log probability based on character
frequency, and (right panel) character stroke count. Boxes extend from lower to upper quartiles; orange lines denote median;
whiskers extend to 1.5 times the interquartile range beyond the lower and upper quartiles; all data points not in this range are
treated as outliers and shown as empty circles. Both panels suggest that low-cost forms are preferentially re-used: more frequent
(lower − log p(x)) characters tend to have more values, and simpler (lower stroke count) characters tend to have more values.

dictor variables: for each variable, we subtracted the mean of
that variable and divided by one standard deviation. This re-
gression revealed significant effects both of negative log prob-
ability and of stroke count. Higher negative log probability
(lower frequency) was negatively associated with number of
values (β = −1.249, t = −19.792, p < 0.001), meaning that
higher frequency characters were associated with more val-
ues. To make this outcome concrete, consider that the most
frequent 180 characters, which make up only 27% of the to-
tal number of character types in the dataset, bear 66% of all
values. Thus, a reader only needs intimate familiarity with
a modest number of characters in order to be fairly literate.
Higher stroke count was also negatively associated with num-
ber of values (β = −0.127, t = −2.072, p < 0.05), meaning
that simpler characters (those with fewer strokes) were asso-
ciated with more values.

Thus, characters with more values tend to be both more fre-
quent and graphically simpler, as predicted by the hypothesis
of efficiency: Sumerian cuneiform exhibits preferential re-use
of low-cost material.

Discussion
The traceable origins and early years of written language of-
fer a unique window into the role that pressure for efficient
communication can play in shaping linguistic systems. For
this reason, the present study has explored efficiency in one
of the earliest known writing systems: Sumerian cuneiform,
the written form of the Sumerian language.

We have seen that written Sumerian bears signs that are
consistent with the hypothesis of pressure for efficient com-
munication. Despite the high degree of ambiguity in written
Sumerian, we have seen that a reader would only need a small
amount of additional context to be able to decode a character’s
value with high certainty (Study 1). We have also seen that
a comparison with hypothetical alternate systems which devi-
ate from canonical linearity suggests that the system may have
gravitated towards a more consistent linearity of spelling in a
way that allowed for increased certainty of decoding (Study
2). Finally, we have seen that since context serves to reliably
disambiguate character values, the system was able to use a

single given form for several different values without sacri-
ficing system informativeness — and that it appears to have
done so in an efficient manner, preferentially re-using low-
cost forms (Study 3). Taken as a whole, this evidence shows
that written Sumerian was not an inefficient system.

Several general implications can be drawn from this obser-
vation. One of these concerns efficiency in writing systems
generally. While factors such as medium (e.g. Woods, 2015b)
and societal pressures (e.g. Veldhuis, 2012) are undoubtedly
relevant to the development of a written language, our results
demonstrate that pressures of communicative efficiency have
acted on written systems since the earlier days of writing it-
self. Despite the relative disconnect between written Sume-
rian and its corresponding spoken language in terms of how
values are distributed across contrastive units, the same sig-
nature of efficiency that Piantadosi et al. (2012) observed in
three spoken languages in is also found in Ur III written Sume-
rian. This suggests that pressure for efficient communication
is not unique to spoken or signed language, but is present in
written language as well — critically, even when the written
language does not closely mirror a corresponding spoken lan-
guage. Thus, communicative efficiency may be viewed as a
general principle of linguistic communication independent of
medium or modality.

Another potential implication concerns the time course of
the presumed cultural evolutionary process that produces ef-
ficiency in linguistic systems. The fact that our results were
obtained in a linguistic system as young as 1000 years old sug-
gests that these pressures may act upon a system from its in-
ception and guide it toward greater efficiency within a com-
paratively short period of time. Since our analyses do not
include actual data from periods earlier than Ur III we can-
not be completely sure that earlier periods would have been
less efficient. However, the fact that our hypothetical shuf-
fled system performed poorly relative to the Ur III corpus is
at least suggestive that earlier texts, which were analogously
less consistent with their linearity, may not have evolved the
specific communicatively useful features we have documented
for Ur III Sumerian. Settling this question more definitively
would require a thorough comparison of efficiency across ear-
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lier time periods, tracking the progression of written Sumerian
toward the system we have investigated.

In addition to a direct comparison of written Sumerian
across earlier timer periods, future work on this topic would
benefit from a more thorough consideration of the psycholin-
guistic evidence regarding recognition, decoding, and storage
of graphical units. While we considered stroke count as a mea-
sure of visual complexity (which can be detrimental towards
character recognition and processing, especially at lower fre-
quencies; see e.g. Tamaoka & Kiyama, 2013), we did not con-
sider other factors such as visual similarity between charac-
ters. Finally, future work could usefully consider the conse-
quences of using the same (or similar) characters for phono-
logically or semantically related morphemes.

Firmer, broader, and more detailed conclusions will have
to await the outcome of such possible future research. For
now, however, we can conclude on the basis of the evidence we
have seen here that one of the earliest known writing systems
exhibits patterns of ambiguity that are consistent with pressure
for efficient communication.
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Abstract 

When do children extend a construction (“rule”) productively? 
A recent Threshold proposal claims that a construction is 
productive if and only if it has been witnessed applying to a 
sufficient proportion of cases and sufficiently few exceptions. 
An alternative proposal, Communicate and Access (C&A), 
argues that children extend a construction productively because 
they wish to express an intended message and are unable to 
access a “better” (appropriate and more conventional) way to 
do so. Accessibility, in turn, is negatively affected by 
interference from competing alternatives. In a preregistered 
experiment,  32  4-6-year-old children were provided with 
exposure to 2 mini-artificial languages for which the two 
proposals make opposite predictions. Results support the C&A 
proposal: children were more productive after witnessing 3 
rule-following cases than after 5, due to differences in 
interference. We conclude that productivity is encouraged by a 
desire to communicate a message and is constrained by 
accessibility and interference. 

 
Keywords: productivity, communication, accessibility, 
Tolerance Principle, Sufficiency Principle  
 

Introduction 
When children learn a new noun, wug, they are quite adept at 
producing its plural, wugs (Berko, 1958). On the other hand, 
the -th nominalizing suffix (warmth, width) is not generally 
added to new cases (?coldth; ?oldth) outside the domain of 
ordinal numbers (gazilionth). A recent Threshold proposal 
has attempted to predict when rules “go” productive and 
when they do not (Yang, 2016). In particular, in order for a 
rule to be productive, a Tolerance Principle offers a ceiling 
on the number of witnessed exceptions and a Sufficiency 
Principle suggests a floor on the number of cases witnessed 
following the rule. The required calculations are based on the 
following 3 numbers: 

1) # of cases which potentially follow a rule: N  
2) # of witnessed exceptions to a rule: 𝑒 
3) # of witnessed rule-following cases: M  

Specifically, the upper bound on exceptions and lower bound 
on rule-following cases have been proposed according to the 
thresholds in (1) and (2) (Yang 2016):  

(1) Tolerance Principle (TP):  𝑒 ⩽	N/lnN  
(2)  Sufficiency Principle (SP): M ≥ N – N/lnN  

For instance, in a domain of size 9, for a rule to be used 
productively, the minimum number of cases that must be 
witnessed following a rule is 5 (Sufficiency Principle) and the 

maximum number of exceptional cases is 4 (Tolerance 
Principle) (Table 1; Yang 2016; Schuler, Yang, & Newport 
2016). 
 

Table 1: The Threshold numbers predicted by Sufficiency 
and Tolerance Principles (Yang, 2016; SYN ’16). 

 
Domain Size 
(N) 

Minimum # of rule-
following cases 
(M): N- N/lnN 

Maximum # of 
exceptions (𝑒): 
N/ln N 

9 5 4 
 

A prior study (Schuler, Yang, & Newport, 2016, hereafter 
SYN '16), aimed to test the predictions in Table 1, but as 
explained below,  the results are open to a different 
interpretation. The alternative proposal, which we refer to as 
Communicate and Access (C&A), takes as its starting point 
the idea that learners aim to convey their messages while 
obeying the conventions of the language as best they can 
(Goldberg, 2019). In order to be able to use a new language 
to express an intended message in an appropriate way, 
children need to be able to access the appropriate form. 
Accessibility is positively affected by the availability of a 
target form (Bybee, 2010) and is negatively affected by 
interference from contextually relevant competitors (Bates & 
MacWhinney 1987; Montag et al. 2017). We report new data 
involving two new experimental conditions that unconfound 
the predictions of the two proposals.  

SYN ’16 aimed to test the predictions in Table 1 by 
exposing 5-8-year-old children to a rule that could potentially 
apply to 9 cases in one of two conditions. In a 5R/1-1-1-1E 
condition, the rule applied to 5 cases and 4 other cases were 
witnessed being exceptional, with each exception being 
exceptional in its own way. In this case, the domain size (N) 
was 9, the number of cases witnessed following the rule (M) 
was 5, and the number of exceptions (e) was 4. Because each 
exceptional case was unique, we represent the 4 exceptions 
here as 1-1-1-1. This 5R/1-1-1-1E condition satisfied both the 
Tolerance and Sufficiency principles and, as predicted by 
SYN ’16, children treated the rule as fully productive. In a 
3R/1-1-1-1-1-1E condition, children saw a rule applied to 3 
cases and 6 other cases were witnessed being exceptional. 
Here the Sufficiency Principle was violated (at least 5 rule-
following cases should be required for productivity), and 
there were more exceptions than allowed by the Tolerance 
Principle. As predicted by SYN ‘16, children did not extend 
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the rule to new cases in this 3R/1-1-1-1-1-1E condition (see 
Figure 1).  

Critically, the pattern of results reported by SYN ’16 is 
equally consistent with the Communicate & Access proposal. 
That is, children extend a construction productively when 
they wish to express an intended message and are unable to 
access a “better” (appropriate and more conventional) way to 
do it. From this perspective, productivity is the effect of 
producing a “good enough” option when no conventional 
form exists, or when none is sufficiently accessible at the 
moment of speaking. Accessibility, in turn, is negatively 
affected by interference from competing alternatives, which 
themselves may be more or less accessible (Harmon & 
Kapatsinski, 2017; Macdonald, 2013; Montag, Matsuki, 
Kim, & Macdonald, 2017). 

If we compare the 5R/1-1-1-1E and 3R/1-1-1-1-1-1E 
“rules” which children were exposed to in SYN ‘16, the C&A 
proposal likewise predicts that the 5R/1-1-1-1E rule should 
be more productive than the 3R/1-1-1-1-1-1E rule, but for 
different reasons than the Threshold proposal suggests.  

Instead of viewing language as requiring abstract rules that 
are subject to numerical thresholds which render the rules 
either categorically productive or unproductive, the C&A 
approach predicts that learners record imperfect (lossy) 
memory traces that relate linguistic words and phrases to their 
meanings in context. Therefore, in what follows we refer to 
emergent generalizations as constructions instead of rules in 
describing the C&A perspective.  Other things being equal, a 
construction is more accessible in memory after being 
witnessed with a greater variety of distinct cases because 
variability increases accessibility within the range of 
witnessed variability, and decreases it outside the range of 
witnessed exemplars (Tenenbaum & Griffiths, 2001; Suttle 
& Goldberg, 2011). This follows from the fact that memory 
is associative and content-addressable. The fact that memory 
is associative entails that new memories are integrated with 

existing memories; the fact that memory is content-
addressable means that existing clusters of memories are 
activated to the extent that they are relevantly similar for the 
purpose of task demands.  

Conversely, accessibility is negatively impacted by 
interference from competing constructions, with interference 
increasing as the accessibility of the competing constructions 
increases: witnessing 6 exceptional alternative cases 
interferes with a construction more than witnessing only 4 
exceptional cases. Since other things were held constant in 
SYN ’16, the availability of the construction was higher, and 
interference was lower in the 5R/1-1-1-1E condition relative 
to the 3R/1-1-1-1-1-1E condition. Therefore, the C&A 
proposal concurs that the 5R/1-1-1-1E condition should be 
more productive.  

To summarize, the results reported by SYN ’16 cannot 
distinguish between the proposal based on thresholds as 
determined by Tolerance and Sufficiency Principles, on the 
one hand, and the Communicate and Access proposal, on the 
other (Table 2). 

 
Table 2: Convergent predictions are made by Threshold and 

C&A proposals for the productivity of an unconditioned 
“rule” with domain size of 9 in conditions tested by SYN 

’16 on 5-8-year-olds. 
M vs. 𝑒,  
 M = #Rule-following cases 
 𝑒 = exceptional cases 

(Shared) 
Predictions 
and  
Results (SYN ’16):  

 
 
3R/  
1-1-1-1-1-1E 
 

Threshold:  
Neither TP nor SP are 
satisfied  

No systematic 
productivity 

C&A:  
Tentative constructional 
generalization competes 
with many alternatives: no 
clear winner emerges 

 
No systematic 
productivity 

 
5R/ 
1-1-1-1E  
 

Threshold:  
TP and SP are satisfied 

Productivity 

C&A:  
Constructional 
generalization is more 
accessible than any 
alternative 

 
Productivity 

 
 In order to compare the two proposals directly, we report 

a new experiment for which they make opposing predictions. 
Specifically, we exposed a group of 4-6-year-old children to 
2 new mini-artificial languages. In a 3R/0E condition, a 
novel “rule” was witnessed applying to 3 out of 9 cases with 
0 exceptions. The Threshold proposal predicts that children 
in this condition will not use the rule productively because an 
insufficient number of rule-following cases are witnessed: 
recall that in a domain of 9, a minimum number of 5 cases is 
required for productivity. The C&A proposal predicts, on the 
other hand, since 0 exceptions were witnessed, there should 
be no competition. Therefore, the C&A proposal predicts that 
as long as children understand the function of the 
construction and are able to access it, a construction that is 

Figure 1: Data reported by SYN (2016): Proportion of 
productive rule-following (blue) and Other (grey) 
responses. Children exposed to a rule with 3 rule-
following and 6 unique exceptions (left) or 5 rule-

following and 4 unique exceptions (right). 
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witnessed applying to 3 cases and 0 exceptions will be used 
productively.  

  In a separate 5R/4E condition, a second novel rule was 
witnessed applying to 5 out of 9 cases, while 4 other cases 
were exceptional. The only difference between this 5R/4E 
condition and the 5R/1-1-1-1E condition in SYN ’16 is that 
here the 4 exceptional cases behaved alike. In both cases, 
there were 5 rule following cases and 4 non-rule following 
cases. Therefore, the Threshold proposal predicts the 5R/4E 
rule should be as categorically productive as the 5R/1-1-1-1E 
rule of SYN ’16 was. The C&A proposal, on the other hand, 
predicts that the “exceptional” construction—which was 
applied to 4 entities—should interfere with learners’ ability 
to access the higher type frequency construction—which was 
applied to 5 entities. Because there is only a 25% difference 
in availability (and interference) between the two patterns, 
and no conditioning factors that could systematically 
distinguish the two, interference should render the (slightly) 
more dominant construction—the one witnessed applying to 
5 entities—less than fully productive. C&A further predicts 
that when the more dominant construction is not used, the 
competing, less dominant construction will be used instead. 

To summarize, the Threshold proposal predicts that when 
exposed to the 3R/0E rule, children should treat it as 
completely unproductive, and when exposed to the 5R/4E 
rule, they should treat it as completely productive. The C&A 
proposal, on the other hand, predicts that the 3R/0E pattern 
should be productive because it has no competition. As long 
as children are able to understand the task, they should use 
the pattern productively.  In the 5R/4E condition, C&A 
predicts that the dominant pattern should be subject to 
interference from the less dominant pattern and should 
therefore be less than fully productive. Again, if children fail 
to use the dominant construction, C&A predicts that they will 
use the competitor, less-dominant construction instead. The 
predictions of the two proposals are represented in Table 3.  
 
Table 3: Predictions of the Threshold and Communicate and 

Access proposals. 
NEW CONDITIONS: 

M vs. e, 
(M= #Rule-following cases 

e = exceptional cases) 

 
 
 
PREDICTIONS: 

 
 
3R/0E 
 

Threshold:  
SP is not satisfied 

Rule3 should not be 
productive 

C&A:  
Tentative constructional 
generalization has no interference 
from alternatives 

Construction(3)  
should be productive 

 
 
5R/4E  
 

Threshold:  
TP and SP are satisfied 

Rule(5) should be 
productive 

C&A: Dominant construction is 
only 25% more accessible than 
interchangeable alternative 
construction  

Construction(5) and 
Construction(4) 

should compete 

 

Experiment 
Preregistration at Open Science Framework (OSF). We 
preregistered a plan to test 16 children without 
counterbalancing the constructions across conditions, and to 
use t-tests against full and 0 productivity (following SYN 
’16). We subsequently preregistered a second design with 
another 16 children in order to counterbalance the 
constructions (plural vs. classifier) and in order to preregister 
a more appropriate mixed model (glmer) analysis. Data was 
collected for each experiment only after it was preregistered. 
Results are combined below, as is appropriate, but both 
groups of participants were also analyzed separately (the first 
group with and without the 5 additional children tested with 
slightly different instructions).  The pattern of results reported 
below remain unchanged in these subgroups.   
 

Methods 
Participants 
32 children between the ages of 4 and 6 (M = 56 months) are 
analyzed below. We changed the instructions after an initial 
5 children were tested and these children are excluded from 
analysis. All but one child provided four critical responses, 
two in each condition. One child opted out after the first 
condition (which happened to be 3R/0E for this child).  All 
children were tested at the Princeton University Baby Lab, 
two were bilingual English speaking and the rest were 
monolingual English speakers. All had normal hearing and 
vision and were born at full term (38+ week gestation). After 
each question, children received a sticker regardless of their 
response, and after the study, each child received a book and 
a prize, and the family received $10.  
 
Procedure 
The design was within-participants. In each of the two 
conditions, children were exposed to a mini-language that 
included 1 or 2 novel words, and 9 familiar English words 
naming each of 9 distinct kinds of animals or crayon colors. 
In the 3R/0E condition, a single novel form (po) was 
witnessed being used with 3 out of 9 items. In the 5R/4E 
condition, one form (dax or fep) was randomly assigned to 5 
of the 9 items, and the other form was assigned to the 
remaining 4 items (see Figure 2).  

The following were counterbalanced (in a nested 
fashion) across participants: 
 
• order: whether children witnessed the 3R/0E or the 

5R/4E condition first 
• function: whether the rule/construction tested had a 

plural function or was used as a classifier  
• item: whether the 9 items (or pairs of items) in the 

domain were crayons or animals  
• dominant form: whether dax or fep was dominant form 

in the 5R/4E condition (po was consistently used in the 
3/0 condition). 
 

In each condition, the choice of which individual items 
(animals or crayons) was witnessed in the target 
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construction was randomly determined for each child, as 
was the order of presentation of items. 
 
Pretest before each condition. Children were asked to 
count the 9 distinct entities in order to ensure that they 
recognized that the relevant domain size was 9. Children 
were then asked to name each distinct animal or crayon color. 
After each response, children received a sticker. All children 
succeeded in both tasks.  
Exposure to a potential rule and exceptions. Children 
were then introduced to a puppet, Mr. Chicken, who, they 
were told, spoke a different language. Each child took part in 
both the 5R/4E and 3R/0E conditions as follows: 
5R/4E condition: each child witnessed the rule applied once 
to each of 5 unique cases.  4 other cases were witnessed that 
were exceptional in that they did not follow the rule.  

• When the novel forms were classifiers, Mr. Chicken 
picked up each of the objects and named the entity in 
“chicken language,” saying the name of the entity 
immediately followed by a novel classifier, 5 of which 
followed the dominant pattern and 4 of which followed the 
exceptional pattern, ordered randomly. (e.g., lion fep, 
monkey dax, zebra fep, giraffe dax…). There were no 
conditioning factors that determined which novel classifier 
was used with each animal. Children were asked to repeat 
every novel form witnessed. 

• When the novel forms were plurals, Mr. Chicken picked 
up one of each type of object, said its name and then picked 
up two of the same type, and used a novel suffix as a plural 
marker (e.g., lion, picking up one lion, lion dax, picking up 
two lions). Children repeated each singular and plural 
form. 5 entities were pluralized with one morpheme (dax 
or fep, counterbalanced) and the other 4 were pluralized 
with the other form. The items assigned to each novel 
plural marker were selected randomly, so there were no 
conditioning factors that determined which novel plural 
was used. Items were selected in random order (e.g.,  lion, 
lion dax; monkey, monkey fep) 

3R/0E condition: each child witnessed the rule applied 
once to each of 3 unique cases.  The other 6 entities were 
not witnessed either following the rule or being exceptional.  

• When the novel form was a classifier, Mr. Chicken picked 
up 3 animals (or crayon colors) and named them with a 
novel classifier, po (e.g., lion po, zebra po…).  Which 
animals were named was random for each child.  Children 
were asked to repeat each label after hearing it.  

• When the novel form was a plural, Mr. Chicken picked up 
and named one animal or crayon (e.g., lion) and then 
picked up two of the same animals or crayons which were 
labeled with the name and the plural morpheme, po (e.g., 
lion po). This was done for 3 types of animals or crayon 
colors, selected randomly. Children were asked to repeat 
each label after hearing it.  

 

 
Production task 
 
After initial exposure, children were asked to label another 
item the way Mr. Chicken would. Then, children were 
exposed again in the same way to the same condition and 
were asked to label a different item.  This provided two 
responses for each condition. In the 5/4 condition, children 
were asked to label two never-before-seen items. In the plural 
condition, children labeled one of the remaining 6 items they 
hadn’t heard labeled. Thus, children provided four critical 
responses, two in each condition.  
 

 
Results 

 

 
Figure 3: Proportion of responses in 3R/0E and 5R/4E 

conditions. Dominant form (“rule,” blue); less dominant 
form (orange; relevant in 5R/4E condition), or other (gray). 
Domain size = 9. Black lines indicate Threshold predictions 

for height of the rule-following cases (in blue). 
 
      The values indicated by blue are the proportion of cases 
in which the rule was used productively. The Threshold 
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proposal’s predictions for the expected proportion of rule-
following cases (in blue) are indicated by the black lines in 
Figure 2; they are predicted to be identical to those in Figure 
1. However, in the 3R/0E condition, the proportion of 
responses in which children used the novel form productively 
was near ceiling (M = .935; Figure 2, left). Specifically, 29 
out of the 32 children consistently used the novel form 
productively, 2 children used it on one out of two trials, and 
only 1 child failed to use it at all.  
      In the 5R/4E condition, 14 out of 31 children consistently 
used the dominant form productively for new novel objects, 
5 children consistently used the slightly less dominant form 
productively, and another 12 children produced both of the 
novel forms (one on each trial) (M = .625; Figure 2, right).  

  We analyzed the data using the glmer package with 
Condition (3R/0E or 5R/4E) as the predictor and by-subject 
random intercepts and slopes, and random intercept for 
Function-Assignment (plural or classifier first): Correct ~ 
Condition + (1 + Condition |Subject) + (1|Function-
Assignment),  family=binomial, data). Recall that other 
random factors were counterbalanced. The Threshold 
proposal predicted that the 3R/0E condition should be 
categorically unproductive and the 5R/4E condition should 
be categorically productive. However, results show a 
significant difference between the two conditions in the 
opposite direction (𝛽 = 8.824, 𝑧 = 	−2.918, 𝑝 = 	0.0035).	 This 
is consistent with the Communicate and Access proposal 
which predicted that children should be productive in the 
3R/0E as long as they understood the task, since there was no 
interference from a competing form; and children should be 
markedly less productive in the 5R/4E condition since the 2 
forms witnessed would compete with one another, as there 
were no conditioning factors available to distinguish them.   

Prior work has found children over-rely on either of two 
options when the difference in type frequency is not 
overwhelming (Hudson Kam & Newport 2005; 2009; 
Schwab, Lew-Williams and Goldberg 2018), and this 
occurred in the 5R/4E condition.  In fact, 19 out of 31 children 
used only one form or the other: 14 children only used the 
more dominant form, and another 5 only used the less-
dominant form. For this reason, it is not particularly 
meaningful to compare children’s performance in the 5R/4E 
condition to chance.  A majority of children chose one of the 
two options and simply repeated that option for all cases.  But 
it also not appropriate to describe children’s behavior as 
treating the more dominant form  as a rule, given that fewer 
than half  of the children consistently used the dominant form 
(14/31). Moreover,  the remaining 12 children used one of 
each form, which is a pattern of behavior regularly seen in 
adults, when two options are witnessed with nearly equal type 
frequency (Hudson Kam & Newport 2005).   In a comparison 
of the age of the 19 children who used a single form and the 
11 children who used both forms, we find on average, that the 
latter group was 4 months older (M = 54 vs. 59 months). 
Using a 1-tailed t-test, this result is marginally significant (t 
= 1.61, p = .059).  

 

Discussion 
Critically, children were more productive in the 3R/0E 
condition than in the 5R/4E condition, directly contradicting 
the Threshold proposal’s predictions, while being consistent 
with the predictions of Communicate & Access. Moreover, 
the Threshold proposal makes clear predictions that were 
disconfirmed in each condition considered separately.  

In the 3R/0E condition, the Threshold proposal predicted 
that children should have been completely unproductive, as 
they witnessed fewer rule-following cases than the number 
demanded by the Sufficiency Principle, given the domain size 
of 9: i.e., they only witnessed 3 cases, when 5 is predicted to 
be the minimum number required. Nevertheless, children 
overwhelmingly used the novel construction productively. 
The Sufficiency Principle has generally been argued to 
require an unrealistically high number of rule-following 
cases be witnessed in order for productivity to be realized 
(Goldberg 2018, 2019), and children’s behavior in the 3R/0E 
condition confirms this. It is highly unlikely that children 
misjudged the size of the domain of the construction, since 
there were exactly nine entities (or pairs of entities) in the 
display (Figure 2) and children accurately counted them at 
the beginning of each condition. In fact, if children had 
assumed that the domain only included the three items that 
had been witnessed in the novel construction, with the other 
cases falling outside of the construction’s domain, then the 
construction should not have been applicable to the other 
cases, and yet children overwhelmingly did extend it to the 
randomly selected new entities at test.    

In the 5R/4E condition, the Threshold proposal predicted 
full productivity of the dominant form (which was witnessed 
with 5 out of 9 cases),  as both the Tolerance and Sufficiency 
principles were satisfied. While 45% did use the dominant 
form productively, another 16% used the “exceptional” form 
productively. The rest, 39% of children, used both forms, one 
with each of the new entities.  Defenders of the Threshold 
proposal might argue that the last group of children 
interpreted the input as evidence for two distinct and 
exceptionless rules, one of which applied to 4 cases and the 
other of which applied to 5 cases.  However, this would 
require distinct domains for the two rules, and yet no 
conditioning factors were provided. Recall that instances that 
appeared with the dominant form and instances that appeared 
with the less dominant form were selected at random and 
differed across children.  And, although the difference in type 
frequency between the dominant and less dominant 
constructions was close (5:4), it falls squarely within the 
thresholds that were proposed for the more dominant 
construction to become productive as children had done in 
the 5R/1-1-1-1 case reported by SYN ’16.   

Is it possible to defend the Threshold proposal on the 
grounds that the children in the current experiment were more 
adult-like? That is, the Threshold proposal is specifically 
aimed at young children’s behavior rather than adults’, since 
adults are recognized to behave somewhat differently than 
children in artificial language paradigms (Boyd & Goldberg 
2012; Hudson Kam & Newport 2005, 2009), perhaps relying 
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on strategies or metalinguistic awareness that is unavailable 
to children as they learn their first language.   Notably, 
however, the children in the current work were almost 3 years 
younger than those tested by SYN ’16 (56 vs. 90 months).   

Results in both conditions are consistent with the 
Communicate and Access proposal.  In the 3R/0E condition, 
only one option was provided and so there was no 
interference from any competitors. C&A predicts that as long 
as children are able to appreciate the convention and access 
the form, they should use the form productively for new 
cases, as they overwhelmingly did. The results of the 5R/4E 
condition are also consistent with the C&A proposal. Since 
there were no conditioning factors to distinguish the two 
constructions, and since the forms were nearly equal in 
dominance (type frequency), C&A predicted that children 
would have no good way to resolve the competition between 
them. In fact, 14 children consistently used the more 
dominant option, while 5 used the less dominant form. This 
over-reliance on a single form recalls prior work that 
investigated children’s productions when faced with 
unconditioned variation (Kam & Newport, 2005; Singleton 
& Newport, 2004), or when faced with variation that is 
conditioned, but by factors that the children fail to recognize 
(Schwab, Lew-Williams, & Goldberg, 2018). In those 
studies, children tended to rely on a single option in 
production tasks,  but recognized both forms as acceptable in 
judgment tasks. The discrepancy between production and 
judgment tasks suggests that the over-reliance on one form 
during production results from the challenge of accessing and 
choosing between multiple forms without any reason to 
prefer one over the other (Harmon & Kapatsinski 2017; 
Schwab, Lew-Williams, and Goldberg, 2018).  

Recall that the Communicate and Access proposal takes 
as its starting point the idea that learners aim to convey their 
messages while obeying the conventions of their language as 
best they can.  While it is simpler to over-rely on one option 
in the face of unconditioned variation, it is more conventional 
to use both options, since both options were witnessed. As 
expected, then adults should be more likely to match the 
relative frequencies in the input even when faced with 
unconditioned variation between two alternatives, because 
they are better able to access both forms and choose between 
them. And in fact adults do tend to be more successful than 
children at matching the input veridically in mini-artificial 
language experiments (Kam & Newport 2005; 2009; SYN 
‘16).  We see evidence that an over-reliance on a single form 
is simplification in the current work, in that 12 out of 31 
children used both novel forms in the 5R/4E condition. 
Moreover, the children who used both forms in their own 
productions were marginally older than those who over-
relied on a single option, by an average of four months. We 
take that as an indication that children attempted to 
successfully produce both options, with older children simply 
being more successful. 

We therefore conclude then that interference—the nature 
of the exceptional cases—played a key role in whether a 
competing form was used productively. That is, the 
difference between the 5R/4E condition here and 5R/1-1-1-1 

condition of SYN ’16 is that the current class of exceptions 
all occurred with the same form, making the “exceptional” 
form itself accessible. And since the exceptional case was just 
as appropriate for expressing the intended message (i.e., there 
were no conditioning factors that made either more 
appropriate), and the “exceptional” cases were nearly as 
accessible as the “rule,” the C&A proposal predicted that the 
exceptions would interfere with the productive use of the 
rule. And this is evident in the current results in that children 
were significantly less productive in the 5/4 condition than in 
the 3/0 condition.   

 
Conclusion 

The present work investigated the factors that underlie 
children’s productive use of a novel rule or construction. We 
compared two proposals that make contrasting predictions. 
The first, a Threshold proposal, argues that rules are used 
productively as long as two thresholds are met: the proportion 
of potential cases that are witnessed obeying a rule must cross 
a threshold in order to satisfy a Sufficiency principle and the 
proportion of potential cases that are witnessed behaving 
exceptionally must remain below a threshold in order to 
satisfy a Tolerance principle (Yang, 2016). A Communicate 
and Access proposal instead appeals to the idea that a 
speaker’s goal is to convey her intended message while 
obeying the conventions of her language as best she can. On 
this view, children extend constructions in new ways when 
they need to express a given message and they are unable to 
access a more conventional or better match. Accessibility of 
a construction increases as the variability of witnessed cases 
increases; and accessibility of the construction decreases as 
the accessibility of a competing construction increases.  
        In the current experiments, 4-6-year-old children were 
exposed to 2 mini-artificial languages. Each language 
provided exposure to a potentially productive rule, which was 
assigned a plural or classifier function.   In one condition, a 
novel construction was witnessed applying to 3 out of 9 cases 
and 0 exceptions. The Threshold proposal predicted that 
children would not use this 3R/0E rule productively, as too 
few instances were witnessed to satisfy the Sufficiency 
principle. The Communicate and Access proposal predicted 
that children would use the construction productively because 
there was no better way to communicate their intended 
message; i.e., there was no interference from any competing 
alternative. As predicted by the C&A proposal, the 
construction was overwhelmingly used productively.  
     The other condition exposed children to 5 out of 9 cases 
following a rule, the 4 other cases being exceptions to that 
rule. The Threshold proposal predicted that in this 5R/4E 
condition, children should be fully productive, since a 
sufficient number of rule-following cases was witnessed, and 
a low enough number of exceptions was witnessed. Unlike in 
previous work (SYN ’16), here the 4 exceptional cases all 
behaved alike. The Communicate and Access proposal 
predicted that there would be competition between the two 
constructions, and that this would interfere with the 
productivity of both. In fact, there was markedly less 
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productivity in the 5R/4E condition than in the 3R/0E 
condition, counter to what the Threshold proposal predicted 
and consistent with the C&A proposal. Children in the 5R/4E 
condition over-relied on the dominant construction (45%),  or 
on the less dominant construction (16%), or they used both 
constructions (39%).   
       To summarize, our preregistered experiment contradicts 
the Threshold proposal while being consistent with 
Communicate and Access. We conclude that productivity is 
encouraged by the desire to communicate a message while 
obeying the conventions of the language. On this perspective, 
we do not extend a construction productively unless we are 
unable to access a “better” (more conventional and 
appropriate) way to express our intended message.  
Productivity of a construction is contrained by the 
accessibility of the construction, and accessibility is affected 
by both the variability of witnessed exemplars and 
interference from a competing construction (Goldberg, 
2019). When there is no better way or when we are unable to 
access a better way at the moment of speaking, we have no 
choice but to extend appropriate constructions that can be 
accessed.  
       The C&A proposal takes a different perspective on prior 
findings that children tend to “regularize” their input, making 
it more systematic and therefore in some sense better.  The 
C&A proposal suggests  that “regularization” arises from a 
failure to successfully access a more conventional and 
appropriate  alternative. C&A takes the position that both 
children and adults aim to conform to the conventions used 
by others who are considered to be knowledgeable. Adults 
are more successful at reflecting the input veridically given 
very limited exposure, but children aim to--and ultimately do-
-learn the conditioning factors of the constructions they are 
exposed to, and to a remarkable extent, successfully conform 
to the speech patterns used in their language communities. In 
fact, we saw adult-like behavior in a subset of (somewhat 
older) children in the current experiment who, in the 5R/4E 
condition, used both options.   
  The Threshold proposal faces other outstanding issues that 
are not addressed here. For example, exceptions are assumed 
to be searched serially and before rule-following cases, 
despite a lack of psycholinguistic evidence for this claim 
(Hernandez, 2019;  Wittenberg & Jackendoff 2018; 
Kapatsinki 2018). The proposal assumes that exceptions are 
listed in order of frequency so that neither exceptions nor 
rule-following cases are allowed to cluster within our 
associative memory as proposed by the C&A and other 
accounts (Ambridge et al. 2018; Bybee 2010; Goldberg 2019; 
Kapatsinki 2018; McClelland& Patterson 2002). Without 
allowing instances to cluster in memory, it is entirely unclear 
how children are able to determine the domain of a rule, let 
alone calculate the size of the domain, as is required for the 
Threshold proposal to make any predictions at all.     
         To summarize, constructions (or “rules”) do not “go 
productive” by crossing predetermined numerical thresholds. 
Rather, people extend constructions for new uses when doing 
so provides an accessible way to best express their intended 
messages.  
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Abstract 
Language and music are structured at multiple temporal scales 
and have been characterized as having meter: a hierarchical and 
periodic alternation of the prominence of syllables/beats. Meter is 
thought to emerge from the entrainment of neural oscillators, 
affording temporal expectations and selective attention. Higher-
levels of a metric hierarchy also tend to track syntactic phrase 
structure, however, it is not clear within the framework of 
temporal attending why this would be advantageous. Neural 
oscillations have recently been shown to also track syntactic 
phrases. We propose that meter aligns to phrase structure so as to 
make syntactic processing more efficient.  In two experiments 
(both visual and auditory language), we show that certain 
alignments of meter to syntax influence sentence comprehension 
and we suggest potential mechanisms for why certain alignments 
tend to be preferred. Our results underline the rhythmicity of not 
only low-level perception but also of higher-level cognitive 
processing of syntactic sequences. 

Keywords: Language, time, oscillations, musical meter, syntax, 
merge 

Introduction 
Music and spoken language present similar challenges to 

a listener in that structure at multiple temporal scales must be 
decoded from a continuous sound signal in real-time. It is, 
therefore, no surprise that there are some parallels in how this 
is achieved and, as such, also parallels in musical and 
linguistic structure that bear the mark of these shared 
processing means. One such parallel is metrical structure. 
Meter generally refers to the perceived hierarchical 
alternation of stress in syllables in speech (Port, 2003), or 
beats in music (for more detail, see: Lerdahl & Jackendoff, 
1983). In this paper, we motivate a view of meter as being 
something emerging from, on the one hand, the 
computational problem of extracting a discrete structured 
representation from a continuous signal, and on the other 
hand, an algorithmic solution that fits within the 
implementational oscillatory-constraints of neuro-
computation (Rimmele et al, 2018a).  

In explaining what meter affords its perceiver, the 
predominant theory has been that it is a system for predicting 
when and that these temporal expectations then in turn afford 
the dynamic allocation of attention to expected points in time 
to optimize processing (Jones, 1976; Pitt & Samuel, 1990). 
These theories of ‘dynamic attending’ have been formalized 

in models using coupled neural oscillators to explain how 
meter is flexibly entrained to a signal and how the dynamics 
of hierarchical perceived stress emerge naturally from this 
mechanism (Large & Jones, 1999; Port, 2003).  

More generally, there is an attractive isomorphism 
between the temporally multi-scaled structure of language 
and music, and the multi-scaled oscillatory paradigm of 
neural processing in the brain. The consensus seems to be that 
the entrainment of one to the other—‘tuning the inside to the 
outside’—is, at least, important if not necessary to both basic 
perception and perhaps even to deeper analysis and 
comprehension. As such, the concepts of oscillation and 
entrainment have become central in recent cognitive and 
neuroscientific theories of language processing (Giraud & 
Poeppel, 2012), and in theories of music processing for both 
rhythm/meter (Large & Kolen, 1994) and tonality (Large et 
al, 2016). 

Specifically for the case of speech, it is proposed that the 
auditory cortex entrains a cascade of oscillatory sampling 
windows to the speech envelope: phonemes sampled with 
gamma oscillations (>30hz), syllables with theta (3-8hz), and 
intonational phrases with delta (<3hz). And while delta-
oscillations are normally observed to follow prosody 
(Bourguignon et al, 2013) they have recently been shown to 
track syntactic phrases, even in the absence of prosodic cues 
(Ding et al, 2016), thus demonstrating top-down linguistic 
knowledge. Meyer and colleagues (2017) additionally 
showed that when prosody and syntax are misaligned, delta 
tracks the syntactic rather than the prosodic phrase. How 
should this all be interpreted? 

One consideration that has been neglected is how meter 
figures into this: perhaps what delta is really tracking here is 
meter. This is especially important as the paradigms used to 
show delta-tracking of syntax employ a frequency-tagging 
approach where the speech must be presented isochronously 
and thus may be particularly likely to induce a subjective 
percept of meter. Indeed, similar paradigms have also been 
used to show oscillatory tracking of meter where delta too 
tracks higher-metric levels not present in the acoustic signal 
(Nozaradan et al, 2011).  

While the precise rhythmicity of naturalistic speech is still 
hotly debated (for example, two contrasting positions: Nolan 
& Jeon, 2014; Brown Pfordresher, Chow, 2017), and thus the 
extent to which strict parallels between speech and musical 
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rhythm/meter are valid, it is certainly clear that there many 
special cases of speech where the parallel with musical meter 
is clear, such as poetry and song (Lerdahl, 2001). And 
perhaps more importantly, it seems that rhythm and meter are 
especially important cues during early language 
development, in line with the framework of prosodic 
bootstrapping where infants rely on prosodic information to 
segment input. In line with this, it has been shown that the 
perception of meter is present in the first year of infancy and 
that meter supports the learnability of other structure in a 
signal such as rhythm and melody (Hannon & Johnson, 
2004). More generally, this idea may explain the clear metric 
structures of nursery rhymes and in children’s literature 
(Breen, 2018; Fitzroy & Breen, 2019).  

In recent years, there has also been growing interest in the 
relationship between musical experience and language 
abilities (for recent meta-analyses see: Gordon et al, 2015a; 
LaCroix et al, 2015), with the underlying rationale of some 
overlap in neural implementation and that music may have 
certain properties that enable to it to preferentially strengthen 
these networks (Patel, 2011). Specifically, it seems that the 
subcomponent of meter is particularly crucial in mediating 
the transfer of musical abilities to the processing of speech 
and syntax in language (Gordon et al, 2015b; Jung et al, 
2015). Relatedly, the syntactic deficits observed in 
Parkinson’s Disease patients may actually be more to do with 
a deficit in the ability to process the meter of language than a 
deficit to syntax directly (Kotz & Schmidt-Kassow, 2008).  

These findings are surprising: why should meter support 
syntax? While it is conceivable that the dynamic allocation of 
attention could support the processing of speech under noisy 
conditions (where signal and noise are time delimited) such 
as in ‘cocktail party’ paradigms where this oscillatory 
entrainment mechanism is implicated (Zion Golumbic et al, 
2013). It is not clear how this mechanism would support 
syntactic processing specifically. Some recent work, 
however, has started to provide clues. Rimmele et al (2018b) 
have shown that delta is involved in chunking auditory short-
term memory. And relatedly, the BUMP model (Hartley et al, 
2016) has provided a mechanism by which entrained 
oscillators support auditory short-term memory for serial 
order, further supported by Gilbert et al (2017) who provided 
empirical support for a shared resource underpinning this 
aspect of short-term memory and temporal precision. In 
summary, metrical structure (especially in the delta-range) 
may support aspects of short-term memory, which would 
then in turn, support syntactic processing. 

 Another not mutually exclusive possibility is suggested 
by Nelson and colleagues (2017). Using intracranial 
electrophysiological recordings, they observed fine-grained 
neural dynamics of syntactic structure building. Specifically, 
they observed a monotonic ramping of activity for each new 
word presented in a sentence until a syntactic constituent 
could be formed, at which time there is a spike of activity 
proportional to the number of words then a sudden decrease 
of activity reflecting the freeing of working-memory 
resources. They interpreted this in terms of a 

Chomskian/Minimalist merge operation (see Friederici et al, 
2017), however, these observations can also be interpreted in 
less theoretically committal ‘chunking’ terms. Regardless, 
this result captures real-time dynamics of processing 
demands that relate to syntactic structure building, and that 
these demands stack-up toward ends of phrases where 
ramping of activity reaches its summit and where there is a 
‘spike’ of activity that merges/chunks the information. And 
importantly, these demands are time localized. Therefore, if 
the ‘strong’ and ‘weak’ of meter relate to oscillatory 
fluctuations in neural excitability then perhaps meter may 
also function to temporally align neural resources with these 
processing demands.  

Some evidence linking delta-oscillations with such an idea 
is suggested by Meyer & Gumbert (2018), who found that the 
phase of delta-oscillations tends to align excitability with 
phrase-endings (however, they interpreted this as aligning 
delta with syntactic informativeness, nonetheless, their data 
are consistent with our idea here). 

In summary, a more general way to make sense of this 
relationship between meter and syntax is in terms of 
prediction and efficiency of processing (Gibson et al, 2019), 
and how this is constrained by the oscillatory nature of the 
brain (Rimmele et al, 2018a). Syntax gives top-down 
prediction of “what next” (Levy, 2008) and meter/neural-
resonance gives bottom-up prediction of “when next” (Large 
& Kolen, 1994). However, together they are more flexibly 
able to entrain to not just low-level acoustics but also higher-
level structures, and thus enable more efficient processing of 
syntactically structured sequences as in language and music.  

We now explore this idea in two experiments that 
manipulate the alignment of meter and syntax and measure 
the effect of this alignment on comprehension.  

Experiment 1 

Method 
Our central hypothesis that is tested in both of the 

following experiments is that comprehension (measured by 
probe accuracy and response-times) is highest when the 
strong-beat of meter aligns most often with phrase-
boundaries (see Figure 1). We also manipulate syntactic 
complexity by using both subject-extracted and object-
extracted relative-clause sentence structures. The difference 
in complexity here is defined in terms dependency locality 
theory (Gibson, 1998), where object-extracted sentences 
require integrating over a greater number of words and thus 
pose a greater strain on resources. We predict an interaction 
between sentence complexity and congruency on the grounds 
that better-aligned resource allocation may be more needed 
in sentences that integrate over more words. Thus, this yields 
a 2 X 2 factorial design, manipulating syntactic complexity 
(subject- vs object-extracted relative-clause) and congruency 
(congruent, incongruent). While we also manipulate which 
clause of the sentence is probe (main or relative), we have no 
theoretical prediction about this other than the main clause 
would have higher accuracy.  
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Figure 1, Top & Middle:  examples of syntactic tree-structure 
for a sentence and possible alignment with meter defining 

congruencies. Bottom: trial presentation schematic 
 

Participants 40 native English speakers (20 female) from 
the Sydney area took part in this study and were naive to its 
purpose.  

Materials The language materials consisted of 48 
sentences composed of largely monosyllabic words, each 12 
words long. Each sentence had subject- or object-extracted 
versions. We used an additional 25 filler-sentences of 
assorted structure and length. Each sentence has an 
accompanying comprehension probe, which was balanced 
within participants  as to probing either the main- or relative-
clause and whether the correct answer was “yes” or “no”. For 
example, if the sentence was “The boy that the girl helped got 
an A on the test”, the probe was either “The boy/girl got an 
A?” or “The boy/girl helped the boy/girl?”. The congruency 
manipulation was achieved by shifting the phase of the 
metrical pattern relative to the language presentation such 
that the strong beats fell on different positions in each phrase, 
e.g. “the BOY” or “THE boy” (see Figure 1). To fit the 
structure of the subject or object extracted forms, these 
sentences appeared in either binary or ternary meters 
respectively. Conditions were randomized over the sentences 
for each participant and presented in a random order. 

The auditory materials were generated using a Python 
script and consisted of a 333Hz pure tone in which a 3Hz beat 
was induced by amplitude-modulating the signal with an 
asymmetric Hanning window with 80% depth and a 19:1 
ratio of rise-to-fall time. Metrical accents were then applied 
by a 50% volume increase every 2 (binary) or 3 (ternary) 
tones. 

Procedure The experiment was self-paced, and after an 
initial practice block, was completed in a single block where 
the participant was encouraged to take short breaks between 
trials. The experiment was run using software written in 
Python, using the PsychoPy library. Each trial begins with 
one full-bar of the meter (three strong beats) while a fixation-
cross is shown center screen, after which the words begin 
appearing in the place of the fixation cross synchronized to 
the auditory tones. At the end of the sentence, the probe 
question appears center screen, and the participant is 
prompted to respond as quickly as possible with either “y” or 
“n” keys on a keyboard. If participants take longer than 5 
seconds to respond, they will be prompted to speed up on the 
next trial. The participant also receives corrective feedback 
after each trial and is encouraged to balance speed with 
accuracy. 

Results 
Comprehension data were analyzed using a mixed-effects 

logistic regression including fixed-effects for congruency 
(congruent, incongruent), syntactic complexity (subject-RC, 
object-RC), probed clause (main-clause, relative-clause), and 
the interaction between congruency and syntactic 
complexity. We also included random intercepts for 
participants and items. Response times (RTs) were analyzed 
using a linear mixed-effects regression with the same 
structure. All analyses were done in R. 

As seen in Figure 2, participants made fewer 
comprehension mistakes in the congruent conditions (χ2 = 
7.99, p = .005), fewer mistakes for the subject-RC sentences 
over the object-RC ones (χ2 = 26.21, p = <.001) and fewer 
mistakes when the main clause is probed rather than the 
relative clause (χ2 = 40.03, p = <.001). There was, however, 
no significant interaction between congruency and syntactic 
complexity (χ2 = 0.43, p = .513). There was also no significant 
effect of congruency on reaction times (χ2 = 1.20, p = 0.273). 
However, there were significant effects of syntactic 
complexity and probed-clause on RTs (χ2 = 16.314, p = 
<.001; χ2 = 35.796, p = <.001). 

   
Figure 2, Experiment 2 results. Left: accuracy results as 

percentage correct. Right: response-time results in seconds. 
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Discussion 
In line with our main prediction, congruency affected 

comprehension accuracy, however, there was no significant 
difference for response times. Against our initial prediction, 
there was also no significant interaction between congruency 
and syntactic complexity. 

One limitation of the design was that the meter was 
induced passively with the auditory stimuli. Thus, we do not 
know to what degree participants actually interpreted the 
stimuli according to this meter. And although there was no 
significant interaction between congruency and syntactic 
complexity, one potential problem of the design was that 
object-RC sentences always had a ternary meter and subject-
RC sentences always had a binary meter. This issue is an 
inevitable consequence of the phrase lengths in these 
respective sentence types, however, it may complicate the 
interpretation of an interaction. Further, reading sentences 
presented in an RSVP format is not a naturalistic way of 
processing language. 

Experiment 2 

Method 
In our second experiment we wanted to build on the results 

of the first, replicate the congruency effect on accuracy, and 
address some of its limitations. Notably, we presented the 
sentence stimuli as auditory speech to make it more 
naturalistic and to check the robustness of the congruency 
effect to stimulus modality. As opposed to Experiment 1, 
where meter was induced passively, in Experiment 2 we 
induced meter actively by asking participants to tap on a 
drum-pad in time with the strong metric-beats while they 
listen to the speech stimuli (see for how tapping/motor 
actions entrain auditory attention: Morillon & Baillet, 2017). 
This also allows us to use tapping consistency as a DV, thus, 
we add the prediction that tapping will be most consistent in 
congruent trials (consistency being defined as the standard 
deviation of their accuracy). Finally, both subject and object 
extracted RC sentences were presented to the same ternary 
meter. This allows us to discount the possible meter by 
syntactic-complexity confound. Although, in order to make 
the subject-RC sentence fit a ternary meter, we had to 
introduce a new potential confound of inserting silences as in 
Figure 3. The main reason why we opted for a ternary meter, 
however, was to enable us to have three levels of the 
congruency condition for each sentence type (congruent, 
incongruent-1, incongruent-2). This came with the additional 
hypothesis that incongruent-1 would be the most incongruent 
metric alignment. That is, according to our delta-oscillation 
hypothesis, while incongruent-1 & 2 are both equidistant 
from the ‘merge’ position of the phrase, for incongruent-2, 
the merge would occur while attentional resources are rising, 
whereas for incongruent-1, the merge would occur while this 
attentional energy is falling (Figure 5). 

 

 

 
 

Figure 3, Congruency examples Experiment 4: syntactic tree 
diagrams for subject and object extracted sentences with 

accompanying alignments to meter defining the congruencies. 
 

Participants (same specification as Experiment 1) 
Materials Extending the 48 sentences and probes from 

Experiment 1, we created a further 24 of the same constraints, 
yielding a total of 72 sentences and probes. Speech stimuli 
were then generated and preprocessed from these sentence 
materials using a custom Python script, using Google’s text-
to-speech API to generate audio-files for each word 
individually. These stimuli were then volume normalized and 
cut and stretched to 2.5Hz (this new presentation-rate was 
based on piloting), then assembled into the sentences. Like 
Experiment 1, each trial starts with one full-bar of the tones 
to set the metric context. In a departure from Experiment 1, 
however, the tones drop-out when the speech stimuli start. 

Procedure To ensure an active percept of the meter in 
Experiment 2, participants were required to tap on a drumpad 
in time with the strong-beats while listening to the speech 
(tapping once every three words). Participants used their right 
index finger to tap on a pressure sensitive MIDI drumpad. 
Before the main section of the experiment, participants 
completed a ‘tapping-only’ trial-block which estimated their 
tapping consistency without any language stimuli. This was 
then followed by practice trials for the language section and 
then the main trial block. Otherwise, the trial design followed 
that of Experiment 1.  
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Results 
Comprehension and response-time data were analyzed 

using logistic and linear mixed-effects models as in 
Experiment 1, with the only difference being three levels of 
the congruency fixed-effect (congruent, incongruent1, 
incongruent2). 

The results replicate the main effect from Experiment 1, 
showing that congruency significantly affected 
comprehension (incongruent1: χ2 = 13.23, p = <.001, 
incongruent2: χ2 = 8.30, p = .004). While the incongruent2 
condition had a smaller cost on comprehension that 
incongruent1 (as predicted), the difference between these 
predictors was not significant (χ2 = 0.533, p = 0.465). As 
before, there was also a significant difference between which 
clause is probed (χ2 = 24.641, p = <.001). Surprisingly, 
however, there was no significant effect of syntactic-
complexity (χ2 = 0.101, p = .750). We believe this is a likely 
consequence of the added rhythmic complexity required to 
make subject-RC sentences fit a ternary meter.  

As with Experiment 1, there was no significant effect of 
congruency on RTs (incongruent-1: χ2 = 1.371, p = 0.242, 
incongruent-2: χ2 = 0.837, p = 0.360) although syntactic-
complexity and clause-probed had strong effects (χ2= 19.900, 
p = <.001; χ2= 49.801, p = <.001).  

 

 

 
Figure 4: Comprehension results from Experiment 2. Left: 

accuracy. Right: response times. Bottom: tapping accuracy 
(standard deviation of asynchrony between tap and target tone) 

 
For the tapping data during sentence processing, we also 

used a linear-mixed effects regression with congruency and 
sentence-extraction, and their interaction, as fixed effects, 
and participants as a random-effect. 

Congruency had a significant effect on tapping precision 
in the incongruent1 conditions (χ2= 10.27, p = .001) and only 
marginally significant for incongruent2 (χ2= 3.25, p = .071). 
There was also a significant interaction between 
incongruent1 and syntactic complexity (χ2= 12.72, p = 
<.001). However, it is problematic to interpret this interaction 
in light of the above-mentioned issues with rhythmic 
complexity, so we do not interpret it further. 

General discussion 
The results of both experiments support our hypothesis 

that sentence comprehension is optimal when metrical 
strong-beats align with phrase boundaries. We interpret this 
as supporting the more geneal idea that meter, and its 
alignment to phrase structure, plays a role in syntactic 
processing. 

Jung and colleagues (2015) showed a similar effect of 
temporal expectancy on syntactic processing by having key 
words arrive early or late compared to an established rhythm. 
Kotz & Schmidt-Kassow (2015) showed that the syntactic 
deficit of Parkinson’s Disease patients was actually due to a 
deficit processing the meter/timing of speech. In our study, 
however, each word was perfectly predictable from a 
rhythmic standpoint, and participants had no generalized 
timing deficit, however, we showed that the hierarchical 
distribution of attention embodied by meter, and its 
alignment with syntactic structure, was sufficient to show 
differences in comprehension. 

We did not, however, find significant differences in 
response times. Although it is worth noting that the direction 
of the RT-effect was consistent with our hypothesis in both 
experiments. One possible explanation for this null-result is 
that top-down endogenous attention tends to affect accuracy, 
while bottom-up exogenous attention affects reaction-times 
(Prinzmetal et al, 2005). While lower levels of meter may be 
driven by bottom-up cues in the signal (Large & Kolen, 
1994), it is likely that higher-levels increasingly rely on top-
down phase-resetting of oscillations in response to syntactic 
structure or other structural cues (Rimmele et al, 2018a). 
Thus, this could explain why congruency had a stronger 
effect on accuracy over RTs. However, it may have also been 
that the effect was too small to detect for our sample size. 

Comparison across the two studies also shows that this 
congruency effect is robust to modality (visual presentation 
in Experiment 1 and auditory presentation in Experiment 2), 
and thus is not specific to speech rhythms. A hypothesis that 
would need further experimentation to explore would be that 
any sequential stimulus that must incrementally form 
hierarchical structures would be influenced by this metric 
congruency effect. If this hypothesis were confirmed, it 
would suggest that meter is part of a more general cognitive 
strategy for the timely allocation of resources to process 
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structural relations, and that music and language are just the 
most prominent domains in which this plays out.  

 

 
Figure 5: hypothetical oscillation of attentional resources. Stars 

represent the position of the phrase-ending word relative to this 
oscillation in each congruency condition.  

Experiment 2 showed suggestive behavioral evidence of 
behavioral oscillations at the delta rate. Specifically, 
incongruent-1 conditions had a larger effect on 
comprehension than incongruent-2, in line with the 
differences in neuronal excitability predicted if the meter did 
phase-align delta to strong-beats (Figure 5). Although it is 
important to stress that this difference was not statistically 
significant, it was however consistent in direction across all 
conditions, including in the tapping data. It is also important 
to acknowledge that preferences for the alignment of meter 
to phrase structure may also be mediated by cultural factors 
relating to differences in language structure and preferences 
for grouping (Iversen et al, 2008). Future research is planned 
to further test these possibilities, including with more 
sensitive electrophysiological paradigms. 

More generally, the idea that the analysis of syntactic 
phrases is somehow constrained by oscillatory processes is in 
line with the average phrase duration of speech at 2-3seconds 
(Vollrath, 1992), fitting within the delta-range. This may also 
be a neuronal constraint that results in Uniform Information 
Density (Levy & Jaeger, 2007), which stipulates that we, as 
rational communicators, attempt to spread information across 
a signal in a uniform way, and in a way that makes the most 
of our capacity (i.e. not undershooting). In other words, part 
of what defines our capacity to process linguistic information 
is these rhythmic processing constraints and the extent to 
which we can optimally entrain our internal rhythms to the 
rhythms of the information in the signal. Thus, delta sampling 
of syntactic phrases may define a crucial biologically 
grounded bottleneck that explains these patterns in human 
communication. 

It is also likely that meter serves a similar function for the 
processing of harmonic syntax in music to the function 
articulated here for linguistic syntax (Patel, 2003). This 
would be consistent with some recent studies showing that 
harmonic structure is a strong cue for metrical strength 
(White, 2017). This would also accord with data showing an 
interaction between the processing of linguistic and musical 
syntax (Fedorenko et al, 2009). 

Conclusion 
We have shown that the alignment of meter to syntactic 

structure influences sentence comprehension. We have also 
discussed possible mechanisms from which this effect arises, 
namely, how delta-oscillations facilitate aspects of short-term 
memory processing that in turn allow for syntactic structure-
building. These results imply that entraining the ‘inside to the 
outside’ may allow for more efficient processing of syntactic 
sequences. Future work will be required to further pick-apart 
the details of these ideas, ground them in neural 
measurement, and to explore their generality cross-
linguistically and to other syntactically structured domains 
such as music and mathematics. In general, this work 
supports a co-dependency of “what” and “when” predictions, 
and grounds this in the biological implementational 
constraints of the rhythmic brain. 
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Abstract

One design feature of human language is its combinatorial
phonology, allowing it to form an unbounded set of mean-
ingful utterances from a finite set of building blocks. Re-
cent experiments suggest how this feature can evolve culturally
when continuous signals are repeatedly transmitted between
generations. Because the building blocks of a combinatorial
system lack independent meaning, combinatorial structure ap-
pears to be in conflict with iconicity, another property salient
in language evolution. To investigate the developmental tra-
jectory of iconicity during the evolution of combinatoriality,
we conducted an iterated learning experiment where partici-
pants learned auditory signals produced using a virtual slide
whistle. We find that iconicity emerges rapidly but is gradu-
ally lost over generations as combinatorial structure continues
to increase. This suggests that iconicity biases, whose pres-
ence was revealed in a signal guessing experiment, manifest in
nuanced ways. We discuss implications of these findings for
different ideas about how biases for iconicity and combinato-
riality interact in language evolution.
Keywords: phonology; language evolution; combinatorial
structure; iterated learning; iconicity

Introduction
Combinatorial phonology is an important design feature of
human language, allowing it to form an unbounded set of
novel, meaning-bearing words from a small set of building
blocks. How did it emerge in language? As part of a larger
research program that attempts to explain linguistic proper-
ties through biases operating during language acquisition and
use (Christiansen & Chater, 2016; Kirby, Cornish, & Smith,
2008), recent laboratory experiments have suggested how
combinatorial structure could have arisen from continuous
signals through a process called iterated learning (Verhoef,
Kirby, & de Boer, 2014; Giudice, 2012). But while combi-
natorial structure might confer a range of advantages to lan-
guage, it appears to be in conflict with another salient feature
of communication systems: iconicity. In order to participate
freely as primitives in larger composite forms that carry arbi-
trary meanings, the building blocks of a combinatorial system
should be meaningless (Dingemanse, Blasi, Lupyan, Chris-
tiansen, & Monaghan, 2015). Iconic signs, on the other hand,
are motivated by properties of the meanings they refer to.

Evidence suggests that iconicity plays an important role in
bootstrapping communication. In a study where subjects had
to develop novel communication systems, Fay, Arbib, and
Garrod (2013), found that gesture was preferentially adopted
over speech, and explained their findings in terms of gesture’s

Figure 1: Depiction of stimuli and virtual slide whistle used
in the iterated learning experiment to investigate the relation
between iconicity and combinatoriality. Visual referent stim-
uli are from Lewis and Frank (2016).

stronger affinity for iconic representation. On the above ac-
count, signals tend to eventually lose these iconic origins as
they develop into combinatorial systems. Goldin-Meadow
and McNeill (1999) have similarly argued that iconicity is
the default strategy and that combinatoriality is not adopted
for the benefits it provides but to compensate when iconic-
ity is not available. Consistent with this account, Verhoef,
Kirby, and de Boer (2016) found that the onset of combinato-
rial structure in an iterated learning experiment was delayed
when signal/referent mappings were scrambled between gen-
erations, making it harder for iconicity to develop, relative to
a condition where mappings were kept intact.

Despite the possible loss of iconicity in the emergence of
combinatorial phonology, many familiar forms of iconicity
such as onomatopoeia or sound symbolism continue to play
an important role in language (Dingemanse et al., 2015). How
do these various forms of iconicity develop as signals undergo
their transition from holistic to combinatorial structure? To
reconcile the existence of iconicity at different stages of lan-
guage evolution, we focus on a more subtle form of iconicity,
recently described by Lewis and Frank (2016), that exists be-
tween word length and conceptual complexity. In their anal-
ysis of monosyllabic words across 80 languages, the authors
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found that longer words are systematically associated with
more complex meanings. Whereas the languages considered
by Lewis and Frank (2016) are already fully combinatorial,
we examine whether this form of iconicity also arises in con-
tinuous signal spaces and use it to address questions about the
relationship between iconicity and combinatoriality. To this
end, we conducted an iterated learning experiment where sub-
jects evolved a set of signals through iterated reproduction.
Participants learned artificial languages consisting of whis-
tled signals that were paired with referents taken from Lewis
and Frank (2016). Both signals and referents varied in com-
plexity (Figure 1) but were paired in such a way that there was
no systematic relationship between simple and complex items
in the beginning. Based on the literature presented above,
we predicted that such a relationship, indicative of iconicity,
would emerge but eventually disappear as the communication
systems become more combinatorial.

Using the languages resulting from the iterated learning
study, we present results from a series of experiments de-
signed to answer the following questions:

1. Did the languages evolve combinatoriality? This was as-
sessed by asking subjects to rate the amount of combinato-
rial structure that existed in the languages.

2. Did the signals evolve iconicity? Iconicity, defined in terms
of congruent complexity associations between signals and
referents, was measured by collecting complexity judg-
ments for the evolved signals.

3. Which underlying cognitive structures support our infer-
ences about iconicity? Previous studies suggest the exis-
tence of strong biases for the development of combinato-
riality and iconicity (Lewis & Frank, 2016; Verhoef et al.,
2016). To better understand the role of iconicity biases and
how they manifest in our experiment, we devised a guess-
ing game where naive listeners were asked to choose the
most likely referent for each signal.

After presenting our results, we close by discussing how our
findings relate to different ideas about the evolution of iconic-
ity and combinatoriality.

Experiments
To investigate how iconicity develops during the emergence
of combinatorial structure, we conducted an iterated learning
experiment. Miniature artificial languages were repeatedly
acquired and subsequently transmitted by one ‘generation’ of
subjects to the next. This took place across several indepen-
dent transmission chains. We adopted the signal space used
in Verhoef et al. (2014), in which subjects produced signals
using a slide whistle instrument. Since we conducted the ex-
periment online, we developed an on-screen, virtual version
of the instrument, depicted in Figure 1. Pitch was controlled
by moving the plunger up and down using the mouse. Sounds
were produced by pressing down the space bar and contin-
ued until the space bar was released. Before the experiments

started, participants were given an opportunity to familiar-
ize themselves with this interface. Using the languages that
evolved during iterated learning, we subsequently conducted
four additional experiments to address the aforementioned
questions about the emergence of combinatorial structure and
iconicity.

Iterated learning experiment

The iterated learning experiment consisted of 15 independent
chains, each consisting of 10 generations. Per chain and gen-
eration, a single subject learned and later reproduced an artifi-
cial language. The first subject in each chain was given a lan-
guage constructed according to principles described below,
while subsequent generations learned the language produced
by the previous generation.
Materials Each language consisted of eight whistled
sounds paired with different referents. Figure 1 shows which
signals were used to initialize each experimental chain. The
signals were obtained from whistles recorded and subse-
quently rated for their complexity in a pilot experiment. The
signals were paired with unfamiliar visual objects selected
from a stimulus set used in Lewis and Frank (2016), which
was normed for complexity. Referents were categorized as ei-
ther simple or complex. For each chain, four simple and four
complex referents were selected at random from the stim-
uli depicted in 1 and assigned to signals with the constraint
of counterbalancing between signal and referent complexity
classes (half of the complex signals were paired with com-
plex referents and while the other half was paired with simple
ones and vice versa). This procedure ensured that the relation
between signal and referent complexity was initially fully un-
systematic.
Procedure Subjects were told that they had to learn an ar-
tificial language produced using a slide whistle with the goal
of teaching the language to a computer program. After fa-
miliarizing themselves with the instrument, subjects engaged
in five learning blocks, where they were shown each of the
eight signal/referent pairs in random order. Each trial first
displayed the visual referent, then the slide whistle playing
back the corresponding signal. The whistle then stayed on
screen and participants were instructed to repeat the signal.
No feedback was given during learning. Subjects were ad-
mitted to the reproduction phase if they reached a learning
criterion to assess how well they learned the language. The
criterion test consisted of eight 2-AFC trials. Each of the
eight signals was played to subjects once and they had chose
the correct referent from a set of two. The distractor item
was sampled from among the remaining three items of the
same complexity class, preventing participants to identify the
correct referent based on referent complexity alone. No feed-
back was given during these trials. To advance to the final
stage of the experiment, participants had to correctly identify
at least six of the eight items. Participants that reached the
learning criterion advanced to the reproduction phase, which
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was framed as a computer teaching paradigm. Subjects were
asked to record each signal for a computer program that will
attempt to learn the language from them. All referent stimuli
were presented simultaneously on screen and subjects could
chose the order in which they recorded signals by clicking on
the corresponding item.

While chosen to prevent subjects from producing the same
signal multiple times, the framing of the task as a teaching
paradigm did not fully prevent a loss of expressivity (see, e.g.,
Kirby et al., 2008). Throughout the experiment, 7% of signals
were identified as duplicates using a dynamic time warping-
based similarity measure, and replaced with signal versions
produced during learning with the constraint of being suffi-
ciently distinct from the remaining test phase signals. This
approach is conservative since signals produced during learn-
ing typically very closely resemble the input the participant
was given and thus limit the amount of change (relative to the
input) experienced by the next participant.

Subjects A total of 382 subjects were recruited on Ama-
zon’s Mechanical Turk. 250 subjects passed a prelimi-
nary headphone check (Woods, Siegel, Traer, & McDermott,
2017), implemented to ensure consistent listening conditions,
and were admitted to the main experiment. Of those, 164
subjects reached the learning criterion. Data from 14 subjects
was due to technical reasons, leaving us with 150 subjects,
one subject per chain and generation.

Quantification of combinatorial structure

To answer whether signals evolved combinatoriality, we con-
ducted a rating experiment. Naive participants were asked
to rate the amount of structure present in the languages from
the iterated learning experiment. Participants saw languages
from either one of two conditions: In the intact condition, lan-
guages were randomly selected from across chains and gen-
erations in the iterated learning experiment. Participants were
blind to which generation or chain a language came from. In
the scrambled condition, participants were shown languages
where signals from the different chains of each generation
were randomly mixed together. Including this baseline condi-
tion allows us to assess to what extent combinatoriality judg-
ment are about properties of the signals in the context of the
language they evolved in, or simply about the structure of sig-
nals irrespective of their relation to the other signals in their
language.

Subjects and Procedure Subjects were told that they had
to rate the amount of structure of different newly discovered
whistle languages. Structure was described as the existence
of building blocks or principles that are shared among the sig-
nals in a language. Signals were presented visually in a pre-
sentation format similar to Figure 3 (but in a single row). This
allowed subjects to make holistic judgments and facilitated
comparisons between items in the language. Subjects were
asked to report how structured a given language was, ranging
from least to most structured, using a continuous slider. A to-

tal of 314 subjects took part in the rating experiment and each
participant rated 24 items.

Quantification of signal complexity and iconicity
To address our second question, it was necessary to quantify
signal complexity in order to assess if signals developed to
match the conceptual complexity of their referents. Two ex-
periments were conducted, one where signals were presented
visually and one where they were presented auditorily.

Visual complexity ranking Similar to the previous exper-
iment, languages were presented in the form of a visual ar-
ray. Subjects were instructed to sort the signals from least to
most complex. Complexity was defined as signals that have
many parts and that are difficult to memorize or reproduce.
374 subjects took part in this part of the experiment and each
subject rated 16 items. After realizing that effect sizes of the
iconicity measure are likely too small and that the noise in-
troduced from using a perceptual modality different from the
original, auditory modality could potentially mask important
differences, we conducted a second rating experiment.

Auditory complexity rating experiment Focusing on just
the first five generations of iterated learning, in the second
complexity rating experiment, signals were presented sim-
ilar to the main experiment, with the slide whistle playing
back the recorded signals. Signals were randomly selected
from across chains and generations, which enabled us to ob-
tain absolute complexity judgments (compared to the rank-
level judgments obtained in the visual experiment). Subjects
judged the complexity of each signal from least to most com-
plex using a slider. 175 subjects took part in the experiment
and each subject rated 16 items.

Evaluation of signal iconicity
Finally, do people exhibit iconicity biases that explain their
productions during iterated learning? To develop further in-
sight into the nature of the biases that support iconicity, we
conducted a guessing game where subjects were presented
all eight signals from a language (in random order) and had to
identify the most likely referent per signal. Subjects were in-
structed that they should always choose the referent that they
thought most likely belonged to the signal, and that the same
referent could be chosen more than once. This allowed us
assess the existence, and to quantify the strength of iconicity
biases that exist in signal interpretation. 218 subjects took
part in the experiment and each subject rated 8 languages.

Results
Emergence of combinatorial structure
The first question we address in our analysis is whether lan-
guages developed combinatorial structure, as described in
prior experiments (e.g., Verhoef et al., 2014; Giudice, 2012).
In summary, we observe that signals in all chains develop
combinatorial structure. Figure 3 depicts a representative ex-
ample language from the final generation of chain 1, giving
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Figure 2: Results from the three experiments that we conducted to assess signal structure and complexity (visual and auditory),
and the derived iconicity measure. Error bars are 95% confidence intervals.

a qualitative impression of the emergence of shared building
blocks. Figure 2A shows the results from our combinatorial-
ity measure. Across both the intact (t(14) = 8.06, p < 0.001)
as well as the scrambled condition (t(14) = 5.59, p < 0.001),
languages are judged to increase in structure over genera-
tions1, but languages in the intact condition are judged to
increase more (t(14) = 2.5, p = 0.02). This difference can
only be explained by assuming that signals in the intact con-
dition are structurally more similar to each other, which re-
sults in higher combinatoriality ratings compared to mixing
languages across chains as in the scrambled condition.
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Figure 3: Set of stimuli from the last generation of chain 1.
The language appears to consists of three building blocks: a
short beep occurring at different pitch values, a long pitch
sweep, and a wiggly segment of alternating pitches.

Development of iconic signal structure
Turning to our second question, Figure 2B depicts the results
of the visual complexity ranking experiment where partici-
pants were asked to order signals from least to most complex
(coded as 0 to 7). The depicted mean complexity rank rep-
resents the average rank of the four signals that were asso-
ciated with complex referents. An at chance association be-
tween signals and referents corresponds to a mean rank of 3.5.
While nearly all chains in the first generation have an average
complexity rank of greater than 3.5, quantitatively this differ-
ence does not reach significance after correcting for multiple

1Analyses compare the regression coefficients fitted to the fifteen
chains to a zero slope.

comparisons (t(14) = 2.60, p = 0.02 before, p = 0.21 after
Holm-Bonferroni correction). Two features of the experimen-
tal measure could potentially mask this effect: the ranking
score only captures ordinal differences and not differences in
magnitude. Secondly, measurements may be noisy because
the experiment was conducted in the visual instead of the
auditory modality. While not posing a problem to the com-
binatoriality measure reported earlier (because of the larger
effect sizes), this might hinder detection of iconicity in the
languages.

To address these points, a second experiment collected
complexity ratings in the auditory domain, restricting our-
selves to the first five generations of iterated learning. Fig-
ure 2C shows the resulting ratings, grouped and averaged by
associated referent complexity. These data were used to de-
rive an iconicity measure, depicted in Figure 2D, by subtract-
ing the average complexity of signals associated with sim-
ple referents from signals associated with complex referents.
Positive values indicate the presence of iconicity in a con-
gruent direction. As suggested earlier, we find that iconic-
ity emerges immediately after initialization in generation one
(t(14) = 3.71, p = 0.002 before, p = 0.01 after correction).
While the return of the iconicity measure to chance is not sig-
nificant within the first five generations of the auditory mea-
sure (t(14) = −1.56, p = 0.14), the visual complexity mea-
sure from 2C strongly suggests that iconicity drops back to
chance in subsequent generations and thus, taken together, li-
censes the inference that iconicity eventually disappears from
the languages.

Relationship between iconicity and structure
The previous analyses have demonstrated that languages de-
velop both combinatoriality and iconicity over the course
of the experiment. To develop insight into state-dependent
trade-offs between iconicity and combinatoriality, we now
look at the development of iconicity as a function of com-
binatorial structure instead of generation. Figure 4A shows
the evolutionary trajectories of all fifteen languages in terms
of their combinatorial structure and their iconicity (based on
Figures 2A and D). The plots suggest that languages, while
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Figure 4: Visual representation of the evolutionary trajectories of all fifteen experimental chains, on the basis of which we con-
structed a vector field representation that shows inter-generational parameter changes for observed and hypothetical languages.

displaying common patterns, can vary substantially in terms
of their developmental time constant. We summarize these
data by constructing a vector field that shows extrapolated av-
erage magnitude and direction of inter-generational changes
on a grid (based on the behavior of nearby languages). The
model is constructed by considering all 75 vectors in Fig-
ure 4A that represent transitions from one generation to the
next. For each grid point, an average magnitude and direc-
tion is estimated by computing the weighted linear combi-
nation of vectors using their distance, obtained with a mul-
tivariate Gaussian kernel centered around the grid point, as
weights. Figure 4B shows the resulting vector space model.
The total sum of Gaussian weights per grid point, superim-
posed in grey, corresponds to the number of vectors nearby
that were used to construct the estimate. The model sum-
marizes in which direction, and how much, hypothetical lan-
guages would change in terms of combinatoriality and iconic-
ity, based on the observed data. Adding to the results reported
above, gains in iconicity or maintenance of already existing
iconicity is only observed when languages are still relatively
unstructured. Languages loose their iconic structure as com-
binatoriality increases further. More sporadically observed
‘extreme’ levels of iconicity and combinatoriality appear to
be unsustainable and eventually revert to lower levels.

Inductive biases for iconicity
Which underlying cognitive structures support our inferences
about iconicity? We asked naive subjects in a guessing game
to pick the most likely referent for each signal. Figure 5
shows the probability of listeners choosing a complex referent
as a function of signal complexity, indicating a strong ten-
dency for choosing referents that match the perceived com-
plexity of the signal. (Note that the ground truth referent
information in Figure 5 is displayed as additional informa-
tion and not part of the reported analysis.) Crucially, this

bias allowed subjects to reliably identify the correct referent
complexity class for signals that exhibited the most iconic-
ity (t(9) = 2.77, p = 0.024). We compared the probability of
choosing the correct referent class with chance performance
for the ten languages that scored highest in iconicity (measure
taken from Figure 2D).
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Figure 5: Results from the guessing game, conducted to quan-
tify the strength of iconicity biases for the evolved signals.

Discussion and Conclusion
We conducted an iterated learning experiment to investigate
how iconicity develops when combinatoriality emerges in ini-
tially unstructured, continuous signals. Signals gradually be-
came more combinatorial over the course of the experiment.
The emergence of iconicity, measured in terms of signals
matching the conceptual complexity of their referents, was
shown to develop immediately, but iconicity eventually dis-
appeared while combinatorial structure continued to increase.
This result is particularly strong because languages were ini-
tialized at a point of complete arbitrariness.
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The largest increases in combinatoriality were seen in gen-
eration one. This is consistent with the idea that signal struc-
ture is a consequence of cognitive biases for combinatorial-
ity. Because of having selected a diverse signal set for initial-
ization, memory demands during learning and reproduction
were arguably the highest in the first generation. Since this
affords the greatest potential for prior biases to manifest, we
would expect the largest increase in structure here.

The loss of iconicity is consistent with the hypothesis that
iconicity is in complementary distribution with combinato-
rial structure (Verhoef et al., 2016; Goldin-Meadow & Mc-
Neill, 1999; Roberts, Lewandowski, & Galantucci, 2015),
since the building blocks of such a system must be stripped
of their iconicity when they participate in larger meaning-
bearing units. It is important to note, however, that it is not
clear why the particular kind of iconicity we investigated here
must be lost in order for combinatorial structure to arise. In
the transition from holistic to combinatorial structure, com-
plexity in the signal domain could be expressed equally well
in terms of number of building blocks (Lewis & Frank, 2016).
The observation that iconicity is nevertheless lost could, how-
ever, provide important insight into the nature of the transition
process. Zuidema and de Boer (2018) recently distinguished
between analytic and synthetic routes to combinatoriality. In
the synthetic route, preexisting signals are combined to form
larger combinatorial signals, while in the analytic route, po-
tentially overlapping parts of preexisting signals are used to
form new signal. The present findings are consistent with
the holistic account, which predicts that productive recom-
bination leads to new signals that are composite, therefore
complex, irrespective of the complexity of their referent but
simply due to the mechanics of recombination.

While our guessing game suggests that people have strong
biases for iconicity, our results indicate that these biases man-
ifest in subtle ways. Smith et al. (2017) presented evidence
that the strength with which cognitive biases manifest in cul-
tural evolution depend on a number of factors. The authors
focused on properties of the transmission paradigm, such as
how many different agents subjects learn from, which shapes
the input to learning. In the present study, we found evidence
that the manifestation of otherwise strong cognitive biases,
such as a bias for iconicity, can also depend on properties of
the input more directly, for instance, on how much structure
signals exhibit. Understanding how properties of the input
can modify the expression of biases more broadly is an av-
enue for future research. In addition, the novel vector field
analysis we present suggests the possibility of testing specific
combinations of iconicity and combinatoriality to develop a
more complete picture of trade-offs in parameter space.

One further aspect that is not addressed in our study is the
role of modality on the form of iconicity studied here. In work
that explored the structure of signals that subjects created
when more or less signal dimensions were available, Little,
Eryılmaz, and de Boer (2017) found strong modality effects
mediating the relationship between iconicity and combinato-

riality. Future work is needed to explore how our findings
generalize to other signal modalities.

Finally, we note that the combinatoriality measure obtained
via subject ratings is only an approximation to signal structure
that emerged in the experiment. To better understand the pat-
terns that exist in the evolved signals and how they are used
productively, it is necessary to develop computational mod-
els. In ongoing work, we are developing statistical models
of signal structure and learners’ underlying inductive biases
that will allow us to test more specific hypotheses about the
evolution of iconicity and combinatoriality in language.
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Abstract

Everyday hearing requires inferring the causal factors that produce a sound, as when we separate the acoustic effects
of the environment (reverberation) from those of sound sources. Here we consider perceptual inferences from impact
sounds, in which the resonance of a struck object provides cues to its material, but via acoustic effects that might be
nontrivial to disentangle from reverberation. We investigated whether and how humans separate the effects of object
resonance and reverberation in a material classification task. For comparison, we implemented a Bayesian observer that
inferred material from a generative model of object sounds without reverberation. Humans were robust to reverberation,
whereas the model was not. However, human robustness was specific to reverberation consistent with the statistics of
natural environments. The results suggest that humans use internal models of room and object acoustics to determine their
respective contributions to sound, providing an example of causal inference in audition.
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Abstract

We report on initial findings from a pupillometry study that
investigated the influence of two extra-linguistic variables,
namely Neuroticism and Disgust Sensitivity, on auditory lan-
guage comprehension in adults. Results suggest that: (1) Lan-
guage comprehension is influenced by extra-linguistic vari-
ables and individual differences; (2) the processing of differ-
ent kinds of linguistic errors, as opposed to clashes with an
individual’s value or belief system, are influenced by differ-
ent extra-linguistic variables; and that (3) Disgust Sensitiv-
ity at least partially predicts pupillary responses to utterances
clashing with an individual’s belief system. Results are dis-
cussed with regards to linguistic anticipation, cognitive effort
and arousal, and resource allocation.
Keywords: psycholinguistics; extra-linguistic information;
individual differences; pupillometry; language comprehen-
sion; personality; Disgust; neuroticism

Introduction
The field of linguistics has not traditionally focused on what
is known as individual differences, or hot cognition - for ex-
ample, emotion or personality. Instead, the focus has been
on “abstracting away” or “averaging over” individual dif-
ferences to be able to make inferences about a population.
However, listeners appear to use the preceding discourse and
their knowledge of the world immediately to interpret lan-
guage (Van Berkum, Brown, Zwitserlood, Kooijman, & Ha-
goort, 2005), and extra-linguistic influences, such as person-
ality, mood, or accent, are not just “noise,” but can help
reveal new information about language comprehension pro-
cesses (Van den Brink et al., 2010). An individual’s per-
sonality has also been found to influence aspects of general
cognition and daily life, such as academic motivation and the
choice of learning style (Busato, Prins, Elshout, & Hamaker,
1998; Jensen, 2015); use of language (Oberlander & Gill,
2004; Pennebaker, Mehl, & Niederhoffer, 2003); response to
written errors (Boland & Queen, 2016); speech production in
both native speakers and second language learners (Dewaele
& Furnham, 2000); and the use of online social media (Park
et al., 2015; Wehrli et al., 2008).

Results from experimental psycho-linguistic studies indi-
cate that utterances such as “the girl comforted the clock” can
be non-anomalous if the context warrants such an interpreta-
tion, from which Nieuwland and Van Berkum (2006) con-
clude that context can overrule grammatical violations. This
is not strictly possible in a purely bottom-up model of lan-
guage comprehension, where integration with the real world

is thought to happen at a later stage. Research instead sug-
gests that the language comprehension process involves at
least some level of top-down processing, with contextual in-
formation rapidly being integrated into language comprehen-
sion (Kamide, Altmann, & Haywood, 2003; Levy, 2008; Se-
divy, Tanenhaus, Chambers, & Carlson, 1999; Tanenhaus,
Spivey-Knowlton, Eberhard, & Sedivy, 1995; Traxler, 2014;
Van Berkum et al., 2005).

Van Berkum, Van den Brink, Tesink, Kos, and Hagoort
(2008) analyzed ERP responses to statements colliding with a
speaker’s perceived identity, such as an adult male announc-
ing that he wished he looked like Britney Spears, and found
that such statements, clashing with Dutch stereotypes based
on age, class, or gender, reliably elicited an N400 component.
This component is generally elicited by all content words, but
is significantly larger in amplitude for items that are difficult
to integrate into the preceding context (Allen, Badecker, &
Osterhout, 2003; Kutas & Federmeier, 2007).

Van Berkum, Holleman, Nieuwland, Otten, and Murre
(2009) found that statements clashing with an individual’s
value system, such as “I think euthanasia is an acceptable...”
when the participant opposed this practice, elicited a distinc-
tive ERP response just 200-250ms after the onset of the crit-
ical word, in addition to an N400 component. These results
suggest that, in addition to inferences about the speaker, the
listener’s values and beliefs also play a role in language com-
prehension.

Van den Brink et al. (2010) found that listeners with high
empathy levels showed a significantly larger N400 compo-
nent in response to socially contradictory information than
those with low empathy scores, reasoning that the ability to
empathize to a higher degree may encourage a more top-down
behaviour, engaging in more prediction based on inferences
about the speaker – and hence experiencing surprisal at an
unexpected item.

Mood, a more transitory state than personality traits, was
also found to affect language comprehension in an implicit
causality experiment (Van Berkum, De Goede, Van Alphen,
Mulder, & Kerstholt, 2013). Implicit causality verbs, such
as “praise” or “apologize,” bias participants as to which of
the noun phrases in the sentence is the likely “cause” of an
event (Pyykkönen & Järvikivi, 2010). A good mood caused
listeners to engage in more prediction as to what the referent
might be. This was reflected in a distinctive ERP component
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in response to a bias-inconsistent continuation; a bad mood,
on the other hand, effectively stifled anticipation. Even a sim-
ulated mood (Havas, Glenberg, & Rinck, 2007) appears to
affect processing speed, such that processing is faster when
an individual’s simulated facial expression matched the va-
lence of the sentence.

Summing up, recent research suggests that individual dif-
ferences such as personality, mood, and world view affect
language processing from a very early stage, and not only at
a later stage, in what used to be considered a secondary step,
referred to as “real-world integration.”

In this paper, we report on initial findings from a pupillom-
etry study that investigated auditory language comprehension
in adults, correlating their pupil sizes in response to sentences
(non-anomalous. vs. those containing errors or clashes) with
measures of Neuroticism and Disgust Sensitivity. Pupil size
is considered a non-invasive measure of autonomous nervous
system activity (Partala & Surakka, 2003) that is especially
responsive to – beyond ambient light levels – cognitive ef-
fort, mental workload, attention, and arousal (Gingras, Marin,
Puig-Waldmüller, & Fitch, 2015; Goldinger & Papesh, 2012;
Just & Carpenter, 1993; Rondeel, Van Steenbergen, Holland,
& van Knippenberg, 2015), and that is largely free of task ef-
fects. In an auditory experiment with linguistic stimuli, pupil
dilation can thus be used as an indicator of the intelligibil-
ity and complexity of an utterance (Ben-Nun, 1986; Lõo, van
Rij, Järvikivi, & Baayen, 2016; Zekveld, Kramer, & Festen,
2010).

Disgust Sensitivity has, to our knowledge, not yet been in-
vestigated with regards to language comprehension. How-
ever, being considered one of the most primitive emotions
that, for example, serves to protect and organism from novel
pathogens, has been found to be strongly linked to feel-
ings of morality, purity, political orientation, and voting be-
haviour (Inbar, Pizarro, Iyer, & Haidt, 2011; Smith, Oxley,
Hibbing, Alford, & Hibbing, 2011). Higher Disgust Sensitiv-
ity is generally linked to a more conservative approach, rely-
ing more on established socio-cultural stereotypes rather than
novel, more liberal ideas.

A proposed tie-in of language processing with cognition
more generally comes from Havas et al. (2007), who relate
their results to theories in which emotions are assumed to
change affordances, the links between perception and action:
In this view, a positive mood prepares the body to approach,
whereas a negative mood prepares the body to avoid. Under
this account, mood and personality could be assumed to in-
fluence how strongly a human engages in “approaching” or
“exploring”, or how much they stay put and rely on bottom-
up information. A related take can be found in the bio-
energetic account, which suggests that emotional states signal
the amount of cognitive resources available for more “costly”
behaviours, such as exploration and anticipation (Zadra &
Clore, 2011; Van Berkum et al., 2013).

We show below that both Disgust Sensitivity and Neuroti-
cism, as two extra-linguistic variables and components of an

individual’s world view that are not typically investigated in
regards to language processing, indeed influence automatic
language comprehension processes even in the absence of a
conscious judgment or task.

Main Experiment
240 sentences were constructed, 32 of which were unrelated
filler sentences. Clashes were distributed among the follow-
ing conditions (examples are given in Table 1):

MO: 56 sentences total; 28 of which violated subject-verb
agreement, resulting in a morpho-syntactic error;

SE: 32 sentences total; 16 of which created a semantic mis-
match between the verb and the object, resulting in a semantic
error;

SC: 120 sentences total; 60 of which clashed with estab-
lished gender stereotypes, and as such the speaker’s perceived
identity; resulting in a socio-cultural clash (Van Berkum et
al., 2008; Van den Brink et al., 2010).

Clash type Example
MO She usually drive her car slowly in the snow.
SE People often read heads for pleasure at night.
S-C ♂I buy my bras at Hudson’s Bay.

Table 1: The template used for item construction, with three
example sentences.

All stimuli followed the same syntactic pattern to ensure
comparability. Frequency of the critical region, i.e. the main
verb plus the direct or oblique object directly following the
verb, was controlled for frequency via the Corpus of Contem-
porary American English (COCA) (Davies, 2008).

Items were then recorded by one male and one female na-
tive speaker of Canadian English and distributed across four
lists of just over 130 items each, counterbalanced for error
condition and speaker gender.

82 participants, recruited from the university’s undergrad-
uate Linguistics pool and from the general population, partic-
ipated in this experiment. Data from six participants (7% of
all participants) was removed as their comprehension ques-
tion accuracy rates were below 80%, and comprehension or
attention to the experiment could hence not be guaranteed;
or as information given on the language background ques-
tionnaire precluded their data from inclusion in the analy-
ses. Data from 728 trials (8.6% of all trials) was removed
due to issues during recording that resulted in more than 33%
of sampling points on a given trial being recorded as NA.
Thus, analyses below are based on the data from 76 partici-
pants (males/females = 18/58; native/non-native speakers of
English = 61/15; age = 1783; mean [SD] = 25 [12.6] years).

Each participant was presented with one list and, accord-
ingly, each item only once, in just one condition and spoken
by one of the speakers. All items were previously rated for
acceptability in a separate experiment, by a separate set of
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participants, with the resulting average per-item ratings being
fed into the statistical models below as a numerical predictor.
The distribution of Big Five trait scores within the partici-
pants (raters) in this separate norming study was found to be
in line with several others reported in the literature, such as
those found in Srivastava, John, Gosling, and Potter (2003)
and Schmitt and Shackelford (2008).

Each trial began with a one-point drift correct, and, imme-
diately after, the display of a fixation cross at the centre of the
screen. The size of the participant’s right pupil was recorded
at 250Hz, using an EyeLink 1000 system on a desktop PC,
from that the start of the fixation cross onwards. 2000ms
later, the audio stimulus began to play, with the latter half
of this interval used to create participant-by-trial baselines.
Pupil size was recorded until 500ms after audio offset. After
a three-second break, in which participants were able to rest
their eyes, the next trial began. Attention and comprehen-
sion were assessed via simple questions after approximately
every fourth trial, and participants were given longer breaks
approximately every thirty-five trials.

Post-Tests
Personality traits were assessed via the Big Five (John, Don-
ahue, & L., 1991) personality inventory. The Big Five Inven-
tory was chosen for its frequent and continued use in psycho-
logical research, and because it assesses various aspects of an
individual’s personality rather than just providing one overall
score. Of special interest for this paper is the Neuroticism
subscale, where high scores are typically associated with a
higher tendency to feel anxious, nervous, or tense, and where
low scores in contrast are associated with a more even tem-
per (John et al., 1991), as these variables have traditionally
been underresearched in regards to language processing.

The participants’ Disgust Sensitivity was assessed via the
Disgust Scale - Revised (DS-R) (Haidt, McCauley & Rozin,
1994, modified by Olatunji et al., 2007), also used in Ahn et
al. (2014). Special interest is given to these two particular
scales as prior research has largely focused on the “lighter,”
more positively loaded aspects of human personality and cog-
nition, such as empathy. Data on the participants’ language
background was collected via a pen-and-paper questionnaire
that included questions on items such as age, gender, and lan-
guages spoken.

Prior research has reported systematically higher Disgust
Sensitivity among women as compared to men (Al-Shawaf,
Lewis, & Buss, 2018; Sparks, Fessler, Chan, Ashokkumar,
& Holbrook, 2018). In this study, only a non-significant
tendency in this same direction was found in a two-
sample t-test (meanmale = 1.78,SDmale = 0.68;mean f emale =
2.06,SD f emale = 0.58; t(28.678) =−1.62, p = 0.12).

Results
The raw pupillometry data was first downsampled to 125
Hz and then preprocessed in R. Blinks and the 20 adja-
cent data points were removed using Jacolien van Rij’s
removeBlinks() function.

Pupil sizes as the response variable were modelled us-
ing generalized additive mixed effects modelling (GAM mod-
elling, or GAMM) with the itsadug (van Rij, Wieling,
Baayen, & van Rijn, 2016) package in R. All models included
random slopes for participant-by-time, and random intercepts
by item, to account for individual differences within the stim-
uli, and for random variance between participants beyond the
factors of interest. This makes the analyses markedly dif-
ferent from e.g. Van den Brink et al. (2010); Van Berkum
et al. (2008), as GAM modelling can capture non-linear in-
teractions between continuous predictors; as it does not as-
sume linear relationships, an assumption that is often unwar-
ranted (Tremblay & Newman, 2015); and as it allows to con-
trol for random participant and item effects. Additionally,
GAMMs can comfortably model continuous measurements
data, such as those obtained in pupillometry studies, without
losing information in time-binning or averaging. GAM mod-
elling has been used successfully in experimental psycholin-
guistics to model the influence of listener experience and the
perception of foreign accents (Porretta, Tucker, & Järvikivi,
2016), and pupillary responses in a naming task (Lõo et al.,
2016).

Data in a time window from 500ms before clash onset to
2000ms after clash onset was analyzed, and models included
variables such as speech rate and the participant’s progress
in the experiment as control variables. Additionally, all nu-
merical predictors were normalized and centered to avoid ef-
fects of differential order-of-magnitude scaling between pre-
dictors.

Morpho-Syntactic & Semantic Errors

While neither Neuroticism or Disgust were found to sig-
nificantly influence the processing of semantic errors, Neu-
roticism was a significant individual difference predictor in
a three-way interaction with time and item rating in the
morpho-syntactic error model (dev. explained = 9.94%; see

Figure 1: Difference in pupil size between the correct and
clashing conditions in response to morpho-syntactic errors.
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Parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -38.8152 21.1778 -1.8328 0.0668

Smooth terms edf Ref.df F-value p-value
Speech rate 2.9885 2.9998 261.8398 < 0.0001
Trial count 2.9952 3.0000 4055.6671 < 0.0001
Item rating 2.9942 2.9999 476.5416 < 0.0001
Neuroticism 1.0000 1.0000 0.0515 0.8205

Time x rating 15.9104 15.9977 255.7946 < 0.0001
Neur. x time 1.0025 1.0030 0.2502 0.6172
Neur. x rating 15.7562 15.9621 108.7371 < 0.0001
Neur. x time x rating 62.3328 63.7663 88.6382 < 0.0001

Random structure
Participant x time 673.7516 682.0000 537.2140 < 0.0001
Item 101.6891 102.0000 279.8801 < 0.0001

Table 2: Model output for morpho-syntactic errors. Note that all numerical predictors, except time, were scaled and centered.

Parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -25.4912 17.3276 -1.4711 0.1413

B. Smooth terms edf Ref.df F-value p-value
Speech rate 2.9859 2.9998 259.0271 < 0.0001
Trial count 2.9981 3.0000 4287.4004 < 0.0001
Item rating 2.9976 2.9999 673.4162 < 0.0001
Disgust 1.0049 1.0049 0.1383 0.7087

Time x rating 15.8359 15.9884 397.1878 < 0.0001
Disgust x time 3.0779 3.1676 1.6172 0.1174
Disgust x rating 15.8861 15.9860 168.5608 < 0.0001
Disgust x time x rating 62.6458 63.7768 94.6083 < 0.0001

Random structure
Participant x time 647.7298 666.0000 662.3551 0.0116
Item 101.7037 102.0000 343.1954 < 0.0001

Table 3: Model output for socio-cultural clashes. Note that all numerical predictors, except time, were scaled and centered.

also Table 2).1

This three-way interaction shows that different Neuroti-
cism scores are correlated with different changes in pupil
sizes, which differ further between correct and anomalous
items. Specifically, our findings indicate that high Neuroti-
cism scores led to a much stronger pupillary response to
morpho-syntactic errors as compared to low scores on this
scale (cf. Fig. 1. Like all surface plots in this paper, this
plot visualizes the difference in pupil size by time since clash
onset (on the x-axis) and Neuroticism scores (on the y-axis)
between the clashing and correct conditions. Pupil size is rep-
resented as colour on the z-axis: A blue/green hue indicates
smaller a smaller difference in pupil sizes, and yellow/orange
indicates larger dilation in the clashing compared to the cor-

1The remaining Big Five traits were tested as well; while elab-
orating on all results goes beyond the scope of this current paper,
Agreeableness was found to be a significant predictor in this same
three-way interaction in a model of equally good fit, with low Agree-
ableness associated with larger differences in pupil sizes.

rect condition).
Further significant main effects in this model include those

of speech rate (faster→ larger dilation), progress made in the
experiment (early trials→ larger dilation), item rating (lower
→ larger dilation), and Neuroticism (higher → larger dila-
tion). It should be noted that the significant three-way inter-
action between Neuroticism, item rating, and time was found
to be significant beyond these main effects, and beyond the
random effects included in the model.

Socio-Cultural Clashes
In the modelling of socio-cultural errors, Disgust Sensitivity
was found to be the single best individual difference predic-
tor tested in an interaction with time and item rating (dev.
explained = 9.65%; see also Table 3):2 High values, indicat-
ing high Disgust Sensitivity, were found to correlate with the

2All Big Five traits were tested here as well; for socio-cultural
clashes, Disgust emerged as the single best extra-linguistic predictor.
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Figure 2: Difference in pupil size between the correct and
clashing conditions in response to socio-cultural clashes.

largest pupil dilations in response to statements clashing with
socio-cultural stereotypes (cf. Fig. ??).

Further significant main effects include those of speech rate
(faster → larger dilation), progress made in the experiment
(early trials → larger dilation), item rating (lower → larger
dilation), and Disgust Sensitivity (higher → larger dilation).
Again, the significant three-way interaction between Disgust
Sensitivity, item rating, and time was found to be significant
beyond the main effects.

Discussion
Our results, specifically the three-way interactions includ-
ing one of the two extra-linguistic variables, suggest that the
processing of morpho-syntactic errors on the one hand, and
stereotype-based clashes on the other, are influenced by indi-
vidual differences and extra-linguistic information. Patterns
of influence are not the same across the board, but instead are
distinct between different types of errors and clashes. As an
example, Neuroticism seemed to only influence the process-
ing of morpho-syntactic errors, whereas Disgust Sensitivity
best predicted pupillary responses to socio-cultural clashes.
Neither of those two negatively loaded variables of individual
differences were found to be significant predictors of pupil
size in response to semantic errors.

These results lend further support to theories of language
comprehension in which extra-linguistic information is con-
sidered early in the comprehension process (Kamide et al.,
2003; Levy, 2008; Sedivy et al., 1999; Tanenhaus et al.,
1995; Traxler, 2014; Van Berkum et al., 2005), and are
not explained well within purely bottom-up theories: Larger
pupil dilations for Disgust-sensitive individuals in response to
socio-cultural clashes suggest that a statement that is at odds
with one’s expectations of purity and morality, and that hence
triggers a visceral reaction, results in higher levels of arousal
and/or requires more cognitive resources to “unpack.” In this
reading, extra-linguistic variables internal to the listener, such
as feelings towards or the desire for purity and morality, af-

fect the comprehension process right from the start, instead
of being integrated with the sentence in a later step.

Considering the effect of Neuroticism on the processing of
simple morpho-syntactic errors, our results add further sup-
port to models that include a top-down component; They also
support the notion that, very generally, one’s personality af-
fects language comprehension, and that language comprehen-
sion does not take place in a vacuum (Van Berkum et al.,
2008, 2009). Specifically, our results suggest that individu-
als that are more prone to feelings of anxiety or nervousness
may experience greater distress when experiencing a simple
grammatical error. Of note is that morpho-syntactic errors
do not clash with experiences or value systems as such, but
only violate intra-linguistic rules; This suggests that the lis-
tener’s personality seems to affect linguistic processing even
when the utterance in question does not directly require value
judgments or beliefs to process.

Building on Ahn et al. (2014); Inbar et al. (2011); Smith
et al. (2011), our results suggest that Disgust Sensitivity at
least partially correlates with sensitivity towards stimuli that,
as per existing cultural stereotypes, may be associated more
with a progressive and liberal view of the world, and that may
trigger stronger reactions in conservative individuals. In addi-
tion to further supporting models of language comprehension
in which context and experience factor significantly early on,
this also meshes with the idea of Disgust serving as a mech-
anism protecting the individual from novel pathogens carried
by members of an out-group: Utterances indicative of out-
group status appear to trigger higher levels of arousal, and/or
demand more cognitive resources to process.

Within the context of affordances and the bio-energetic ac-
count (Havas et al., 2007; Zadra & Clore, 2011; Van Berkum
et al., 2013), our results do not neatly tie in with previ-
ous research: They suggest that higher Disgust Sensitivity
and higher Neuroticism scores may be associated with more
context-based prediction and anticipation, and hence more
surprisal at an unexpected continuation, than lower scores on
these scales. These somewhat counter-intuitive results war-
rant further research, as prior studies have generally found
positive emotions and moods, such as empathy or an elevated
mood, to be associated with more resource availability, pre-
diction, and exploration (Van den Brink et al., 2010).

It should be noted that our results should not necessarily
be interpreted as a causal relationship, in that different values
of Neuroticism or Disgust Sensitivity “trigger” differences in
processing. It is conceivable that a common underlying vari-
able, relating to e.g. resource allocation or to a general pre-
disposition towards other-ness, is causing the effects.

In this fairly new field of research, there is lots of room for
both broader and more targeted investigations; we are cur-
rently investigating the effects of other extra-linguistic vari-
ables, such as the remaining Big Five traits, on language com-
prehension.

More broadly, future research could, for example, as-
sess the effects of extra-linguistic variables using additional
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methodologies, or clashes with different aspects of the lis-
tener’s identity. Research along those lines may be able
to form a more coherent picture, for example in regards to
whether it is anticipation or prediction that is modulated by
a certain variable, or whether there may be an additional un-
derlying variable that influences both a listener’s personality
and Disgust Sensitivity, and their linguistic processing at the
same time.

Summing up, our results add further support to models of
language comprehension that include a top-down component,
and to extra-linguistic information and individual differences
factoring in language comprehension from a very early stage;
and they assessed the influence of Disgust Sensitivity as a
“darker” cognitive force on language comprehension for the
first time.
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Abstract 

How do people use human-made objects (artifacts) to learn 
about the people and actions that created them? We test the 
richness of people’s reasoning in this domain, focusing on the 
task of judging whether social transmission has occurred (i.e. 
whether one person copied another). We develop a formal 
model of this reasoning process as a form of rational inverse 
planning, which predicts that rather than solely focusing on 
artifacts’ similarity to judge whether copying occurred, people 
should also take into account availability constraints (the 
materials available), and functional constraints (which 
materials work). Using an artifact-building task where two 
characters build tools to solve a puzzle box, we find that this 
inverse planning model predicts trial-by-trial judgments, 
whereas simpler models that do not consider availability or 
functional constraints do not.  This suggests people use a 
process like inverse planning to make flexible inferences from 
artifacts’ features about the source of design ideas.  

Keywords: social cognition; Bayesian inference; explanation; 
social transmission; imitation; artifact; design; inverse 
planning 

Introduction 

We live surrounded by human-made objects, or artifacts. 

These artifacts are crucial to our lives not only as tools, but 

also as an omnipresent source of social information. Based 

on the objects a person owns, people make quick and accurate 

judgments about a person’s traits, interests, and social 

affiliations (Gosling, 2008; Richins, 1994). The artifacts a 

person creates - like novel tools, art, music, or text - provide 

particularly rich information about the person and actions that 

created them (Gosling, 2008). 

    How do people reason about other individuals from the 

artifacts they create? Here we explore the nature of this 

reasoning, a form of intuitive archeology. In the same sense 

that archeologists use objects to make inferences about the 

people and cultures that created them, we propose that people 

also infer complex social-causal information from the design 

of artifacts, by integrating their mental theories of the 

physical-mechanical world with their theories of the social 

world (e.g. Battaglia, Hamrick & Tenenbaum, 2013; Gopnik, 

2012; Baker, Saxe & Tenenbaum, 2009) to infer the most 

probable explanation for an objects’ features. 

Intuitive Archeology as Inverse Planning 

Previous work in the domain of action understanding has 

proposed that people make inferences about the goals of 

others’ actions based on a process of ‘inverse planning’ 

(Baker, Saxe, & Tenenbaum, 2009; Liu, Ullman, Tenenbaum 

& Spelke, 2018). The idea of inverse planning is that people 

have knowledge of the generative process behind actions 

from planning their own – and this planning process allows 

them to know what a rational agent would do, given the same 

goals and environmental constraints. Therefore, when 

reasoning about others’ actions, people invert this generative 

process to infer the goals of another agent from its observed 

behaviors. Here we propose that a fundamentally similar 

inverse planning processing explains how we reason about 

the artifacts people create: People use their own generative 

model of how they would construct an artifact under a given 

set of constraints to infer the goals and decisions that led 

another person to create this artifact and its features. Such a 

reasoning process would allow people to flexibly infer a 

variety of social-causal information about others from the 
physical features of artifacts they create.  

    We focus on a foundational inference in this 

domain:  Inferring whether social transmission of ideas has 

occurred (i.e. imitation, copying), or whether a particular 

aspect of a design was generated independently by an 

individual. The interaction of these two basic processes, 

termed imitation and innovation, account for cultural 

evolution of artifacts’ designs over human history (Henrich, 

2015; Tomasello, 1999; Legare & Neilsen, 2015). This 

inference also has real-world applications for understanding 

plagiarism detection – and what can be reasonably expected 

of jurors in plagiarism cases as they consider two designs and 

determine the likelihood that copying has occurred. Lastly, 

this inference is foundational to understanding how people 

infer social-causal information from artifacts, since designs 

that were created independently license different inferences 

than those that were copied. For example, a highly functional, 

complex design that was independently generated may tell 

you about the intelligence or creativity of a designer 

(Gosling, 2008), whereas a design that was copied may 

instead be informative about the designer’s social history and 

cultural group (their source of shared knowledge; e.g. 

Schachner et al., 2018; Soley & Spelke, 2016). Thus, in the 

current work, we model and test how people infer whether or 

not copying (social transmission) occurred in the design of an 

artifact. 

Inverse Planning, Or a Simpler Cognitive Process?  

A natural alternative theory exists to the rich and structured 

explanation-based reasoning process proposed by inverse 

planning models. People may infer that copying occurred 
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using a simple heuristic based on perceptual similarity: If two 

things are more perceptually similar, then copying is more 

likely to have occurred. Notably, past work on detection of 

copying in music has relied on this type of simple similarity 

metric in formal models, to predict jury decisions in music 

plagiarism cases (Savage, Cronin, Müllensiefen, & Atkinson, 

2018). 

     In contrast to these straightforward similarity-based 

models, other work has provided initial evidence that people 

detect copying via a more complex process of inverse 

planning or explanation- based reasoning (Schachner et al., 

2018). In particular, this work found that people expect others 

to have a preference for efficiency, and factor this in when 

making inferences about copying. Thus, when two characters 

create identical train track designs that are also highly 

efficient ways to achieve the intended goal, observers use 

efficiency to ‘explain away’ the similarity – and thus judge 

copying less likely for identical efficient tracks than they 

would otherwise. 

     While this work is suggestive of a system of inverse 

planning, it is possible (and even plausible) that 

understanding of efficiency is unique and privileged in 

people’s reasoning. Reasoning about efficiency, and 

expecting others to act rationally by moving efficiently 

toward their goals, is thought to be foundational to cognition: 

It develops early in infancy (Gergely, Nádasdy, Csibra, & 

Bíró, 1995, Skerry, Carey & Spelke, 2013), is shared with 

other species (Hauser & Wood, 2010), and is a foundation for 

the entire domain of action understanding (Dennett, 1987; 

Baker et al. 2009). Thus, rather than showing a rich and 

flexible process of reasoning that takes into account a wide 

variety of alternative explanations (as proposed by inverse 

planning models), the evidence thus far is consistent with a 

much simpler system, in which similarity metrics are 

selectively overridden by privileged efficiency-based 

explanations. 

The Current Work  

In the current work, we test whether people use a rich and 

flexible process of inverse planning that takes into account 

alternative explanations that go beyond efficiency. In 

particular, we ask whether people rationally consider two 

factors: the range of materials available to build with, which 

we term the availability constraint; and whether each of the 

available materials would function or fail to function to solve 

the problem at hand, which we term the functional constraint. 

Rationally speaking, if a larger set of materials are available 

to choose from, similarity should be seen as stronger 

evidence of copying than if there is a smaller set of materials 

available to choose from (as the probability of selecting the 

same item by chance is lower; similar to the suspicious 

coincidence mechanism sometimes referred to as the ‘size  

principle’; Tenenbaum & Griffiths, 2001). Similarly, if many 

of these materials would solve the problem, similarity is more 

indicative of copying than if only one or a few of the options 

would solve the problem at hand – as clearly non-functional 

materials are unlikely to be used. We first formalize these  

 

    
Figure 1: Left: Tool selection task with example handles 

(which differ in color), and rods (which differ in shape and 

therefore functionality). Right: Example of two identical 

tools people might be shown on a particular trial. 

 

constraints and then experimentally test their usage when 

people make copying inferences.  

An Inverse Planning Model of Copy Detection 

To provide a clear test of the inverse planning account, and 

tease it apart from simpler alternatives, we model and test a 

simple artifact-building task which crucially involved both 

availability and functional constraints. Consider a scenario 

where one is asked to solve a puzzle: A button is out of reach 

in a box, with the front covered by glass, so only the hole in 

the top allows access. You must build a tool to reach the 

button. To do so, you are given two sets of pieces: 10 handles, 

which differ by color; and 10 rods, which differ by shape. 

You can connect one handle to one rod to form a two-part 

tool (see Figure 1). 

     You may be asked to solve one of two puzzle boxes, which 

differ in one respect: How many of the rods would work to 

solve them. In particular, for one box, all of the 10 rods would 

fit through the box’s circular hole and solve the puzzle 

(unconstrained; circle box). In the other case, only 1 of the 

10 rods fits (only the star-shaped rod fits into the star-shaped 

hole), and so only 1 of the 10 rods can be used to solve the 

puzzle (constrained; star box). This box thus introduces a 

functional constraint that applies selectively to rods, and not 

handles (which would all function in both cases). 

     Now, you observe two tools that other people have made: 

for example, two people built the same tool, choosing the 

same star-shaped rod and the same red handle. How likely are 

they to have copied each other? This task provides a simple 

instantiation of relevant issues people confront when making 

complex decisions about copying through inverse planning: 

Reasoning about the range of materials available to the 

builders; which pieces would work; and a multi-part decision 

process (choose a handle, choose a rod). 

     Formally, we can think of this task as having the following 

structure: You see a tool built by person 1, and a second tool 

built by person 2, in order to solve a puzzle box. You wish to 
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infer whether person 2 copied the tool’s design from person 

1, or independently created it. 

     Each tool consists of two pieces linked together – a rod, r, 

and a handle, h – each of which was selected from the set of 

available options. Formally, you are asked to make an 

inference, where if c indicates whether person 2 copied 

person 1, you wish to infer the probability of copying 

 𝑃(𝑐|𝑟1, ℎ1, 𝑟2, ℎ2), given the observed rod and handle of 

person 1’s tool (𝑟1, ℎ1) and the observed rod and handle of 

person 2’s tool (𝑟2, ℎ2). Taking only the case of a rod being 

copied, and assuming copying judgments depend only on the 

rod and handle being identical or different (e.g., a binary 

notion of similarity), the posterior on copying is: 

𝑃(𝑐 ∣ 𝑟1, 𝑟2) =
𝑃(𝑐𝑟) 𝑃(𝑟2 == 𝑟1 ∣ 𝑐)

𝑃(𝑟2 == 𝑟1)
 

    This is the probability that copying has occurred, given 

your prior likelihood on copying and the relative likelihoods 

that such an overlapping design would be generated under 

each of the possible mechanisms (copying, c, vs. independent 

creation, ¬𝑐), where: 
𝑃(𝑟2 == 𝑟1) = 𝑃(𝑐𝑟) 𝑃( 𝑟2 == 𝑟1 ∣∣ 𝑐 )

+ (1 − 𝑃(𝑐𝑟)) ( 𝑟2 == 𝑟1 ∣∣ ¬𝑐 ) 

     In the current task this depends not only on the rod but on 

both the rod and handle, such that, when the rod is identical 

but the handle is not identical, this posterior on copying 

depends on 𝑃(𝑟2 == 𝑟1 ∣ 𝑐, 𝑟1), 𝑃( 𝑟2 == 𝑟1 ∣∣ ¬𝑐 ), 

𝑃( ℎ2 ≠ ℎ1 ∣∣ 𝑐 ), and 𝑃( ℎ2 ≠ ℎ1 ∣∣ ¬𝑐 ). This has the 

structure of a Bayes net, including the key concept of 

explaining away: A given aspect of the design can be 

generated either via copying or independently, and evidence 

for one provides evidence against the other. Thus, if two 

people create identical tool designs, but this design is also 

likely to be created independently (due to either availability 

constraints or functional constraints), this provides weak 

evidence of copying despite the identical tools. 

    To make this model concrete, we need to specify 5 things:  

      (1) 𝑃(𝑐𝑟), 𝑃(𝑐ℎ)  - the a priori estimate of how likely 

person 2 was to have copied either the rod or handle 

(unconditional on the data; i.e. before we see either of the 

built objects). This depends for example on how close or 

distant the two people are from one another (Schachner et al., 

2018). We assume the chance of copying is identical and 

independent for both rods and handles, e.g. 𝑃(𝑐𝑟) == 𝑃(𝑐ℎ), 

and refer to this as 𝑃(𝑐), the prior on copying. 

      (2) 𝑃( 𝑟2 == 𝑟1 ∣∣ 𝑐 ) - the likelihood of the particular rod 

being used by person 2 matching that of person 1, given that 

person 2 was in fact copying from person 1’s object. We 

formalize this as perfect copying plus a small error rate term, 

e, to account for the rate at which an individual might intend 

to copy but ultimately select a different rod:  𝑃(𝑟2 == 𝑟1 ∣
𝑐) = 1 − 𝑒. Therefore 𝑃( 𝑟2≠𝑟1 ∣∣ 𝑐 ) = 𝑒. 

     (3) 𝑃( 𝑟2 == 𝑟1 ∣∣ ¬𝑐 ) - the likelihood of rod 𝑟2 being the 

same as 𝑟1, given that person 2 was NOT copying from 

person 1’s object, and independently generated the object 

with no reliance on 𝑟1. When all pieces would function, this 

is simply 1/R, where R is the total number of rod choices 

available. However, functional constraints also affect this 

factor: When only a subset of pieces will function, this 

effectively reduces the number of reasonable options. 

Accordingly, in the context of a functional constraint, the 

model treats only the functional pieces as options, reducing 

the value of R to the number of functional options (if only 

one rod functions, R=1). 

     4) 𝑃( ℎ2 == ℎ1 ∣∣ 𝑐 ) - the likelihood of the particular 

handle being generated by person 2, given that person 2 was 

in fact copying from person 1’s object, and given ℎ1. This 

again is based on the same error rate e. 

      (5) 𝑃( ℎ2 == ℎ1 ∣∣ ¬𝑐 ) - the likelihood of handle ℎ2 

being the same as ℎ1, given that person 2 was NOT copying 

from person 1’s object, and independently generated the 

object with no reliance on ℎ1. In contrast to the rods above, 

the handles differ only in color rather than shape; thus, all 

handles function equally well in both the unconstrained 

(circle box) condition, and the functionally constrained (star 

box) condition. This is therefore simply 1/H, where H is the 

number of handle options. 

Comparing to Simpler Alternatives  

This model of inference as inverse planning posits that people 

consider both the number of available options and the 

functional constraint of the puzzle box when judging whether 

copying occurred. To test whether each of these components 

are needed to predict participants’ judgments, we compared 

this model to three simpler models. 

     These models followed a 2x2 structure, either taking into 

account or not taking into account the availability constraints 

(+/- availability) or the functional constraints (+/- 

functional).  For example, the model that considers 

availability constraints but ignores functional constraints 

does not take into consideration the functional constraint of 

the star box, e.g., assumes people choose among all rods even 

in the star box condition. The model which ignored 

availability constraints did not take into account the number 

of pieces available in a flexible way. Instead, this model 

posited that people had a fixed a-priori idea of the number of 

pieces available to choose from, and that this number did not 

change based on the situation presented. Thus, rather than 

choose a rod with 1/R, where R is the number of options, a 

parameter N quantified this fixed number of imagined 

choices (e.g., regardless of how many were present). This 

model did take into account the functional constraint of the 

star box (assuming people only choose the star rod in this 

case). A final simplified model ignored both functional and 

availability constraints, and thus effectively instantiated a 

simple perceptual similarity heuristic. This model only took 

into account the extent to which the pieces were similar, 

without taking into consideration either functional constraints 

or availability constraints. 

Testing the Models’ Predictions  

These models make quantitative predictions about the 

likelihood of copying for any given pair of tool designs, in a 

wide range of contexts. We next aimed to test how well the 

various models predict human behavior. The inverse 

459



planning model predicts that for two identical tools, people 

will infer that copying is more likely to have occurred when 

(a) there were more pieces available as options to build with, 

thus creating more of a suspicious coincidence that the same 

piece was chosen twice; (b) there were no functional 

constraints on which pieces would work or not work, thus 

allowing all of the available pieces to serve as equally good 

options. By contrast, the simplest perceptual similarity model 

predicts that any identical objects will lead people to infer 

copying. Thus, we focused our data collection on these and 

other particularly informative trials.  

Method 

Full study design/analysis plan including model code was 

preregistered on the Open Science Framework (OSF), and is 

available at https://osf.io/y8u7t.  

Participants 

Using a pre-registered design, N=108 adults from the U.S. 

(57 male, 50 female, 1 other gender identity; M age=37.9, 

SD=10.9, range=20-72) were recruited through Amazon’s 

Mechanical Turk. Sample size was preregistered and 

determined from power analysis of a pilot dataset with a 

slightly different design (N=20; tested a subset of the current 

test trials; with each subject completing all trials). The R 

“pwr” package was used to conduct a paired t-test power 

calculation on participant-level BICs with the goal of 90% 

power (Champely et al., 2018). Based on pre-registered 

exclusion criteria, additional participants were excluded due 

to: 1. Appearing to be non-native English speakers or a bot 

(n=13; determined by 2 independent coders’ rating of free-

response text answers) 2.  Incorrectly answering any memory 

check question (n=49) 3. Incorrectly answering 50% or more 

of the attention check questions (n=12). The number of 

participants failing the preregistered memory check questions 

was higher than expected, thus we reanalyzed the data with 

these participants included, and found that our model results 

and conclusions remain unchanged in this case (see Results). 

Design 

Participants were shown tools that two target individuals 

designed, and were asked to judge whether or not one of those 

individuals copied the other’s tool. Across trials 

we manipulated (1) the number of rod options available (2 

versus 10); (2) the number of handle options available (2 

versus 10); (3) The presence or absence of a functional 

constraint, i.e. whether they were trying to solve the circle or 

star puzzle box; (4) The extent of similarity of the two tools 

that were built (both rod and handle identical, one part 

identical and one part different, or both rod and handle 

different). As all designers were assumed to have 

successfully solved the puzzle, we did not include trials in the 

star box condition which had different rods, as this would 

involve building a tool that would not function. Thus in total 

there were 24 unique test trials. Because of the possibility of 

demand characteristics if all participants saw the full design, 

each participant completed only a randomly-selected subset 

of 4 trials, resulting in 18 unique participants completing each 

trial.  

Procedure 

Participants first received instructions regarding the puzzle-

box task, and that they would see pairs of tools that people 

had built to reach the button. Instructions described an 

ambiguous situation, where copying may or may not have 

occurred (“While designing the tools the people were in the 

same room, facing away from each other”). They were 

instructed that different pairs of people had different numbers 

of handles and rods to choose from (10 or 2), received either 

the circle box or star box to solve, and that only one of the 

rod pieces could fit into the star-shaped opening.   

     On each trial, participants saw (1) the two tools that the 

two people had built; (2) which puzzle box the people were 

trying to solve; (3) the materials they had available to build 

with. Participants were asked to judge as a 2-alternative 

forced choice: Do you think someone copied, or they made 

them independently?  

     After each trial, an attention check question asked either 

what puzzle box was present, the number of rod options, or 

number of handle options. At the end of the task, memory 

check questions asked participants to select which rods would 

work, and which handles would work, to successfully solve 

each of the two puzzle boxes. Lastly, participants were asked 
to describe what they did in the experiment and guess the 

point of the study in free-response format, and complete 

demographics questions. 

Analysis Plan 

For each model, the best fitting parameters and likelihood of 

our data given those parameters were assessed via maximum 

likelihood estimation (MLE). We decided a priori that the 

prior on copying (range:  0-1) and number of imagined 

choices (for models that do not use the real number that 

participants were presented with; range 0-infinity) should be 

fully free to vary, while the copying error rate e was bounded 

from 0 to a maximum of 0.1. For all models, using this a priori 

specification, the MLE-derived value for the copying error 

rate was at max (0.1). To make sure this boundedness was not 

responsible for our findings, we also reran analyses letting the 

error rate parameter vary (0-1), and found the same results for 

comparative model fits in this case. To compare models, we 

use BIC (Schwarz, 1978), which penalizes models for 

complexity according to their number of parameters. We used 

bootstrapping to calculate standard errors (SEs) for each BIC. 

Results 

We first checked that participants took into account the 

perceptual similarity of designs in their assessments of 

copying, as predicted by all four models. As expected, 

participants inferred copying most often when the two tool 

designs were identical (M=51.4%, SEM=9.8%), and least 

often when the two tools were most different (M=5.6%, 

SEM=2.3%; p<.01).  
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Table 1: Maximum likelihood parameters for each model 

 

Model Copying 

Prior, p(c) 

Error 

Rate 

Imagined 

# Options 

+Availability +Functional 0.09 0.10  

+Availability -Functional 0.06 0.10  

-Availability +Functional 0.09 0.10 5.31 

-Availability -Functional 0.11 0.10 2.76 

 

We next compared the fit of the four alternative models. 

The full model out-performed all competing models, with a 

difference in BIC of 35 (∓ SEM: 11-25) in comparison to the 

next-best-fit model and >400 to the other models (Table 2). 

Approximately the same results held when including 

individuals who failed the memory check: difference in BIC 

of 38 to next-best-fit model and >700 to the other models. In 

addition, the full model provided a good overall fit to 

participants’ responses across trials (R2= 0.75, Fig. 2A). 

   Note that while the model is relatively straightforward to 

specify, the predictions it makes are quite nuanced: because 

the model weighs and combines several factors, it predicts a 

continuous gradient of how likely copying should be, rather 

than simply saying people should never assume copying took 

place if there is any alternative explanation. The model thus 

goes well beyond verbal theories.  

Use of Availability Constraints 

Participants’ judgements showed sensitivity to availability 

constraints (i.e. the number of pieces available to build with), 

and the use of availability constraints as an alternative 

explanation for similarity. For example, on trials where two 

people made identical tools and no functional constraint was 

present, participants judged copying more likely as the 

number of available options increased (circle box condition: 

2 rods; 2 handles: 33% judged copied; 2 rods, 10 handles: 

72%; 10 rods, 2 handles: 72%; 10 rods, 10 handles: 83%). 

Use of Functional Constraints 

Participants also showed sensitivity to functional constraints, 

and used functional constraints as an alternative explanation 

for similarity. In particular, on trials where two people used 

identical rods, participants judged copying less likely on 

trials where they were solving the star box (which added a 

functional constraint; Mean copied=21.5%), vs. when they 

were solving the circle box (Mean copied=52.8%, p=0.02, 2 

tailed t-test). In contrast, on trials where two people used 

identical handles, participants’ judgements did not differ for 

the star vs. circle box (Star box: Mean copied=36.8%, Circle 

Box: Mean copied=37.5%; p=0.97, 2 tailed t-test), as 

predicted since all handle pieces would function equally well 

for both puzzle boxes. Although the model without functional 

constraints did not perform that poorly as measured by BIC, 

it did systematically miss this aspect of the data (see also 

deviations of this model in Figure 2). 

 
Figure 2: Fit of models’ predictions to participants’ ratings 

of whether copying occurred; each point represents one trial. 

The full inverse planning model appears top left; other plots 

show three simpler alternative models that do not consider 

either the availability constraints (-availability) or the 

functional constraints (-functional). 

 

Table 2: Difference in BIC from best fitting model 

(higher BIC indicates worse fit) 

 

Model BIC Δ to 

full model 
∓ SEM 

+Availability -Functional 35 11 - 25 

-Availability +Functional 467 422 - 490 

-Availability -Functional 491 468 - 512 

 

Participants’ judgments deviated slightly from the full 

model’s predictions in one regard: Participants appeared to 

under-weight the similarity of the handles, relative to the 

rods. For instance, the largest deviations between 

participants’ judgements and the full model’s predictions 

came on trials when the tools had different rods, but the same 

handle. To demonstrate this differential weighing of the rod 

vs. handle, consider trials where there are an equal number of 

rod and handle options, no functional constraint, and the built 

tools had only one similar piece. On these trials, people were 

considerably more likely to say the design was copied if the 

rod was similar than if the handle was (2 options: 0% vs.17%; 

10 options: 17% vs. 56%).  Thus, participants seemed to 

overweight evidence from the functionally-relevant 

component of the tool, even when functional constraints were 

not present.  

Overall, however, the good fit of the inverse planning 

model – and the continuous range of predictions it makes – 
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supports the idea that participants use an inverse planning 

strategy in judging copying from artifacts. 

Discussion 

We find strong evidence that when reasoning about artifacts, 

people use a rich, flexible system of explanation-based 

reasoning to infer whether a design idea was copied or 

generated independently. We formalized such reasoning in a 

Bayesian model as a form of inverse planning. We compared 

this model to three simpler alternatives in a task where 

participants had to judge whether a pair of artifacts was 

copied or designed independently, to test whether each 

component of the full model was needed to predict 

judgments. 

     We found that the full inverse planning model best 

predicted participants’ judgments of whether copying had 

occurred. In line with the model, we found that people 

considered two broad classes of alternative explanations for 

artifacts’ similarity: the range of materials available to build 

with (availability constraints), and which of these materials 

would work to solve the problem (functional constraints). 

Both of these constraints ‘explained away’ similarity, making 

similarity weaker evidence of copying. This pattern of 

responses is the signature pattern of a Bayesian reasoner, in 

which a design can have different alternative explanations, 

and evidence for one provides evidence against the other 

(e.g., Gopnik et al. 2004).  

     The success of this model suggests people use a process 

of inverse planning to infer the source of design ideas from 

artifacts’ features. In other words, people consider the 

generative processes involved in building the artifacts, 

including what the goal would be, what constraints they 

would be subject to, and what (as a result) they would be 

likely to build. By inverting this generative process, people 

rationally infer the source of other people’s design ideas, 

taking into account goals and multiple kinds of constraints. 

    These findings show that inferences about the source of 

design ideas do not boil down to various simpler heuristics, 

or more limited systems of reasoning. First, copying 

judgments are not just based on the extent of perceptual 

similarity of the two objects, but take into account rational 

explanations for this similarity. This has implications for 

understanding how laypeople detect plagiarism in court 

cases, which has been previously formalized as a process of 

simple similarity detection (Savage et al., 2018). 

    Second, we show that this system of reasoning goes 

beyond efficiency: People can take into account multiple 

types of constraints as explanations for similarity, and are not 

limited only to reasoning about design efficiency as the only, 

privileged type of alternative explanation. This simpler 

efficiency-only account was consistent with previous 

findings, and plausible given the foundational role of 

efficiency in reasoning about intentional action (Schachner et 

al., 2018). The current data falsify this simpler account, 

showing that people flexibly take into account the materials 

available and the functional constraints of the puzzle boxes, 

which do not map to an efficiency metric (e.g. the length of a 

train track from A to B, used in Schachner et al., 2018).  

     More broadly, we provide evidence for a novel theoretical 

and formal framework for artifact cognition, as a form of 

inverse planning. Previous work has shown that people use 

inverse planning to understand the causal processes 

underlying others’ actions (Baker et al., 2009; Liu et al. 

2018). The current work extends this framework by 

conceptualizing artifacts as the products of intentional action. 

We suggest that people use fundamentally the same inverse 

planning process to understand artifacts as they do to 

understand actions themselves. Specifically, they rationally 

take into account people’s goals and constraints not only 

when observing actions, but also when observing artifacts 

generated by these actions – even when the actions 

themselves are not observed. This work thus links together 

artifact cognition and theories of action understanding in a 

new way, points to a deep connection between reasoning 

about actions and artifacts, and provides a foundation for 

formalizing the processes underlying a domain of ‘intuitive 

archeology’ – social-causal reasoning about artifacts, as 

products of intentional action. 
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Abstract 
The ability to recognize and make inductive inferences based on 
relational similarity is fundamental to much of human higher 
cognition. However, relational similarity is not easily defined or 
measured, which makes it difficult to determine whether 
individual differences in cognitive capacity or semantic 
knowledge impact relational processing. In two experiments, we 
used a multi-arrangement task (previously applied to individual 
words or objects) to efficiently assess similarities between word 
pairs instantiating various abstract relations. Experiment 1 
established that the method identifies word pairs expressing the 
same relation as more similar to each other than to those 
expressing different relations. Experiment 2 extended these 
results by showing that relational similarity measured by the 
multi-arrangement task is sensitive to more subtle distinctions. 
Word pairs instantiating the same specific subrelation were 
judged as more similar to each other than to those instantiating 
different subrelations within the same general relation type. In 
addition, Experiment 2 found that individual differences in both 
fluid intelligence and crystalized verbal intelligence correlated 
with differentiation of relation similarity judgments.  

Keywords: relational reasoning, similarity, semantic cognition, 
fluid intelligence, crystallized intelligence 

Introduction 
A house key and an email password are intuitively similar. 
This similarity is not based on any common attributes or 
constituent properties of individual objects; rather, it seems to 
be based on some common relation that a house key and an 
email password respectively bear to a house and to an email 
account (roughly, providing access). The ability to grasp and 
exploit similarity based on a wide variety of relations is an 
important and distinguishing trait of human intelligence (Penn, 
Holyoak, & Povinelli, 2008). This ability underlies much of 
human thought, including aspects of language (Gentner & 
Namy, 2006), categorization (Gentner & Kurtz, 2005; 
Goldwater & Schalk, 2016), and perhaps most prominently, 
analogical reasoning (Holyoak, 2012). The explicit 
representation of abstract relations is an indispensable 
explanatory construct in major computational accounts of 
human analogical reasoning (Doumas, Hummel, & Sandhofer, 
2008; Falkenhainer, Forbus, & Gentner, 1989; Halford, 
Wilson, & Phillips, 1998; Hummel & Holyoak, 2003; Lu, 
Chen, & Holyoak, 2012; Lu, Wu, & Holyoak, 2019; Petrov, 
2013). Empirical work on relational reasoning has provided 
compelling evidence that humans store representations of 
semantic relations in memory (Estes & Jones, 2006; Popov, 

Hristova, & Anders, 2017; Spellman, Holyoak, & Morrison, 
2001). 
 A number of important research questions depend on 
finding an effective method to assess human judgments of 
relational similarity. A major source of complexity stems from 
evidence that relations are not represented as discrete all-or-
none concepts, but rather exhibit internal variability. Just as 
instances of natural and functional object categories differ in 
typicality (Rosch, 1975), so too people reliably judge word 
pairs to be better or worse instantiations of relations (Jurgens, 
Mohammad, Turney, & Holyoak, 2012). For example, 
fail:succeed is considered to be a better example of the relation 
reverse than is eat:starve. 
 Given such variations in intra-relation “goodness”, it is 
natural to hypothesize that inter-relation similarity will also 
have a graded structure. Indeed, a recent theory of relation 
learning (Bayesian Analogy with Relational Transformations, 
BART) claims that the specific relation between a pair of 
words corresponds to a distributed representation over 
multiple relations, each of which the pair instantiates with 
some probability (Lu et al., 2019). For example, lid:bottle 
seems to instantiate the relations part-whole, on-top-of, and 
closure-of. BART can be used to derive theoretical predictions 
about the degree of similarity between a wide range of word 
pairs that collectively instantiate multiple relations.  
 It would clearly be desirable to obtain reliable human 
judgments of relational similarity, which might then be 
compared to theory-based predictions. Such data could also be 
used to assess potential individual differences in relation 
representations. A great deal of research indicates that 
complex relational reasoning depends on working memory 
capacity and other aspects of fluid intelligence (for a review 
see Holyoak, 2012). In particular, there is evidence that 
performance on analogical reasoning tasks is positively related 
to fluid intelligence as measured by tests such as the Raven’s 
Progressive Matrices (RPM; Gray & Holyoak, 2018). It is 
possible that fluid intelligence plays a role in maintaining and 
comparing relations in working memory in order to 
differentiate among relations that overlap in meaning. 
Similarly, crystalized verbal intelligence seems to play an 
important role in comprehending metaphors (Stamenković, 
Ichien, & Holyoak, 2019), and may be related to the 
differentiation of relational concepts in semantic memory. 
 A reliable measure of human judgments of relation 
similarity would clearly be very useful for testing theories of 
relation representation. However, in practice it is difficult to 
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find an efficient procedure to elicit similarities among large 
sets of items (since the number of pairwise comparisons 
becomes prohibitively large when the number of items is 
substantial). Here we explore the use of a multi-arrangement 
method (adapted from previous work on assessing object 
similarity; Kriegeskorte & Mur, 2012) for obtaining 
judgments that can be used to efficiently generate a map of the 
psychological similarity space for abstract semantic relations.  
 The present paper aims to offer a first step in the exploration 
of relational similarity, assessing the validity and reliability of 
a new method for collecting human judgments of relational 
similarity and conducting preliminary analyses of these 
similarity judgments. Experiment 1 sets the stage by testing 
whether the method can generate sensible patterns of relation 
similarity. Experiment 2 then extends the method to more fine-
grained semantic distinctions among relations to examine 
potential gradations in relational similarity. Further, 
Experiment 2 assesses the potential association between 
judgments of relation similarity and individual differences in 
both fluid and crystalized intelligence. 

Experiment 1 
The major goal of Experiment 1 was to determine whether a 
novel method for eliciting human judgments of relation 
similarity is able to capture broad distinctions among semantic 
relations that have been posited on the basis of previous 
theoretical and empirical investigations.  

Method 
Participants  
20 participants (mean age = 19.05 years; 17 female) were 
recruited from the Psychology Department subject pool at the 
University of California, Los Angeles (UCLA). All 
participants were self-reported fluent English speakers. 
Participants provided verbal consent in accordance with the 
UCLA Institutional Review Board and were compensated 
with course credit. 
 
Stimuli 
All stimuli were word pairs taken from the SemEval-2012 
Task 2 dataset (Jurgens et al., 2012), which is in turn based on 
a taxonomy of abstract semantic relations developed by Bejar, 
Chaffin, and Embretson (1991). Word pairs in this dataset 
express one of 79 specific relations, each falling into one of 10 
general types of relations. Experiment 1 tested examples 
drawn from relations in each of three different general relation 
types (similar, contrast, and cause-purpose). We will refer to 
the examples in Experiment 1 by the names of the specific 
relations: synonymy, contrary, and cause:effect (see Table 1). 
Each relation included 16 word pairs, consisting of one 
paradigm exemplar (a seed used by Jurgens et al. to define the 
relation) and the 15 most prototypical word pairs for that 
relation. Pairs were unique in that they did not include 
inversions of one another. Table 1 provides examples of the 
word pairs used in the experiment.  
 
 

Relation types Word pair examples 
synonymy car:auto 
contrary old:young 

cause:effect joke:laughter 
Table 1. Relations and examples of word pairs used in 
Experiment 1.  
 
Procedure 
We acquired human similarity judgments of semantic relations 
by asking participants to perform a multi-arrangement task, a 
method for efficiently eliciting similarity judgments, 
especially for large sets of items (Kriegeskorte & Mur, 2012). 
The method, which can be viewed as an inverse of standard 
multidimensional scaling (Shepard, 1962), has previously 
been successfully used for judgments of object similarity 
(Kriegeskorte & Mur, 2012; Mur et al., 2013; Jozwik, 
Kriegeskorte, Storrs, & Mur, 2017). Here we extend it to 
judgments of relation similarity. 
 On each trial, participants were presented with a subset of 
the 48 word pairs on a computer screen. They were asked to 
first identify the relation between words in each pair, and then 
use a mouse to arrange word pairs in a two-dimensional 
circular space according to the similarity of their relations (see 
Figure 1). Participants were told, “word pairs that involve 
similar relations should be placed close together,” “word pairs 
that involve very different relations should be placed far 
apart,” and “the distance between two word pairs should 
represent how different their relations are.” Participants were 
also instructed to use the entire space to arrange word pairs on 
each trial.  
 We aimed to obtain similarity judgments from each 
participant relating each of the 48 item pairs to each other (a 
total of 1128 pairwise measurements). Estimates of similarity 
were based on the relative on-screen distances between word 
pairs as arranged by participants on each trial. These estimates 
were calculated by scaling the distances between items 
arranged on a single trial to match a weighted average of these 
distances calculated across trials. This weighted average was 
iteratively recomputed until convergence.  
 On a given trial, participants were presented with a 
maximum of 20 word pairs. The multi-arrangement task 
involves adaptively selecting stimuli to present on each trial. 
On the first trial, participants arranged a random subset of 20 
items from the entire set of 48 items. On subsequent trials, 
participants arranged a subset of 20 or fewer items selected 
based on item pairs with the weakest similarity evidence (see 
Kriegeskorte & Mur, 2012, for an extended discussion).  
 Previous uses of the multi-arrangement task have involved 
1-hour sessions (e.g., Kriegeskorte & Mur, 2012; Mur et al., 
2013; Jozwik et al., 2017), but these studies all asked 
participants to do a relatively easier task of arranging 
individual objects according to their similarity. Due to the 
higher demand on working memory in arranging word pairs 
according to their relational similarity, pilot experiments 
suggested that a 1-hour session length would likely result in 
fatigue and disengagement for naïve participants. 
Accordingly, we limited session length to 30 minutes.  
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Figure 1. Example trial of the multi-arrangement task used to 
generate a semantic space for relations. 
 
Participants were allowed to spend as long as they needed to 
complete each trial. On average, participants completed 28.5 
trials (SD = 11.86, range = 4-44) within the 30-minute 
experimental duration. 

Results 
All but five participants provided a full set of pairwise 
similarity judgments between all combinations of the 48 word 
pairs. Of the five who failed to complete all possible 
comparisons, four provided judgments for 98% of the pairwise 
combinations of word pairs. The fifth participant provided 
judgments for just 57% of the combinations; this individual’s 
data were excluded from analyses.  
 We assessed the inter-subject reliability of our relational 
similarity judgments by calculating the Pearson correlation 
coefficients between individual participants’ distance 
matrices. The mean correlation between any two participants’ 
distance matrices was .50 (range = .11 to .83). 
 We then examined whether the multi-arrangement task 
provided a reliable measure of relation similarity (assuming 
that greater inter-pair distance implies lower similarity). The 
results showed that participants generated smaller distances 
between word pairs within a relation compared to distances 
between word pairs instantiating a different relation. Figure 2 
depicts a mean distance matrix obtained by averaging across 
distance matrices generated by individual participants 
performing the multiple-arrangement task. 

 
Figure 2. Mean distance matrix between the 48 word pairs 
used in Experiment 1. Cold colors represent smaller distances 
(i.e., greater pairwise similarity); hot colors represent greater 
distances (i.e., lesser pairwise similarity). Boxed regions 
represent pairwise distance measures between word pairs 
instantiating the same relation. 

 
Figure 3. Mean within- and cross-relation distance measures 
for pairs instantiating each relation (Experiment 1). Higher 
bars indicate greater distance (i.e., lower similarity). Error bars 
indicate +/- 1 standard error of the mean. 
 
 We compared the mean distances between word pairs 
instantiating different relations (i.e., cross-relation distances) 
to the mean distances between word pairs instantiating the 
same relation (i.e., within-relation distances). To perform this 
analysis, we first calculated within- and cross-relation 
distances for each word pair for each individual participant. 
Next, we found the mean value of both of these distance 
measures averaged across word pairs within each relation. As 
depicted in Figure 3, cross-relation distances were greater than 
within-relation distances for each relation: for synonymy (t(18) 
= 8.66, p < .001, Cohen’s d = 1.99); for contrary (t(18) = 
10.26, p < .001, Cohen’s d = 2.35); for cause:effect (t(18) = 
8.91, p < .001, Cohen’s d = 2.5). These findings thus establish 
that the multi-arrangement task is an effective method to 
obtain human judgments of relation similarity. 

Experiment 2 
Experiment 2 aimed to determine whether human judgments 
of relational similarity are sensitive to more fine-grained 
distinctions among relations than those examined in 
Experiment 1. In addition, we investigated whether relation 
judgments are systematically influenced by individual 
differences in cognitive capacity and/or semantic knowledge. 
To assess fluid intelligence, we administered a short version 
of the RPM (Arthur, Tubre, Paul, & Sanchez-Ku, 1999) 
adapted for computer administration using Matlab software. 
Participants are presented with a 3x3 grid of items with the 
item in the bottom right corner missing. They are asked to use 
the pattern instantiated by the presented items to select the 
most appropriate item to fill that bottom right corner from a 
set of 8 options. Prior research has shown that superior 
performance on this test is correlated with performance on 
tests of analogical reasoning (Vendetti, Wu, & Holyoak, 2014; 
Kubricht, Lu, & Holyoak, 2017). We hypothesized that the 
RPM measure would be associated with the degree to which 
people are able to differentiate word pairs that instantiate 
distinct relations.  
 In addition to fluid intelligence, the ability to differentiate 
among semantic relations may vary with crystalized verbal 
intelligence, particularly knowledge of semantic relations. As 
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a measure of semantic knowledge, we administered the 
Semantic Similarities Test (SST). This test was designed to be 
similar to the Similarities subscale of the Weschler Adult 
Intelligence Scale (WAIS), and is correlated with the 
Vocabulary subtest (Stamenković et al., 2019). Participants 
are presented with 20 pairs of verbal concepts and asked to 
describe how the concepts in each pair are similar. The concept 
pairs span a broad range of similarities: some are fairly 
specific (e.g., bird-airplane, which both fly), some are more 
general (e.g., tavern-church, which are both public buildings), 
and some are more metaphorical (e.g., marriage-alloy, which 
are both bonds between elements). Because the identification 
of more specific and fine-grained relations likely depends on 
greater semantic knowledge, we hypothesized that superior 
performance on the SST would also be correlated with greater 
differentiation of similarities among semantic relations. 

Method 
Participants  
93 new participants (mean age = 20.17 years; 69 female) were 
recruited from the UCLA Psychology Department subject 
pool. All participants had normal or corrected-to-normal 
vision and were self-reported fluent English-speakers. 
Participants provided verbal consent in accordance with the 
UCLA Institutional Review Board and were compensated 
with course credit. 
 
Stimuli 
The multi-arrangement task in Experiment 2 used 27 word 
pairs drawn from the same norms as in Experiment 1 (Jurgens 
et al., 2012). Three word pairs were chosen from each of three 
specific subrelations of three general relation types (see Table 
2). Note that the three relations used in Experiment 1 were 
included as specific subrelations used in Experiment 2. 
Whereas Experiment 1 did not manipulate the level of relation 
abstraction, Experiment 2 did. Specifically, Experiment 2 
examined whether similarity judgments not only reflect broad 
distinctions at a high level of abstraction (i.e., between general 
relation types), but also fine distinctions at a lower level of 
abstraction (i.e., between specific subrelations within general 
relation types). Word pairs drawn from different subrelations 
of the same general type (e.g., car:auto instantiates synonymy 
and rake:fork instantiates attribute similarity, two subrelations 
of the relation type similar) are differentiated on the basis of 
relatively subtle relational differences. Each set of three 
unique word pairs consisted of one paradigm exemplar and the 
third and sixth most prototypical unique word pairs for that 
subrelation in the SemEval-2012 Task 2 norms (Jurgens et al., 
2012). 
 
Procedure 
All participants completed three tasks in the following order: 
the multi-arrangement task, the Raven’s Progressive Matrices 
(RPM) and the Semantic Similarities Test (SST). 
 
 

General 
relation types 

Specific subrelations Word pair 
examples 

similar synonymy car:auto 
attribute similarity rake:fork 
change discount:price 

contrast contrary old:young 
directional east:west 
pseudoantonym right:bad 

cause-purpose cause:effect joke:laughter 
cause: 
compensatory action 

hunger:eat 

action/activity: goal flee:escape 
Table 2. General relation types, three specific subrelations 
chosen to exemplify each, and examples of word pairs used in 
Experiment 2. 

Results 
All 93 participants completed the multi-arrangement task. On 
average participants completed 19.51 trials (SD = 9.70, range 
2-55). All but one participant provided pairwise similarity 
judgments for all 27 word pairs (351 pairwise comparisons). 
That one participant provided judgments for 86% of the 
pairwise combinations. Due to program failures, only 88 
participants completed the SST, and 90 participants completed 
the RPM. 

We again assessed the inter-subject reliability of our 
relational similarity judgments by calculating the Pearson 
correlation coefficients between individual participants’ 
distance matrices. The mean correlation between any two 
participants’ distance matrices was .38 (range = -.09 to .88). 
 Figure 4 depicts the mean distance matrix for all word pairs. 
We compared the mean distances of word pairs drawn from 
different general relation types (i.e., cross-type distances) to 
mean distances of word pairs within the same relation type 
(i.e., within-type distances). As depicted in Figure 5, cross-
type distances were greater than within-type distances for each 
relation type: for similar (t(92) = 10.53, p < .001, Cohen’s d = 
1.09); for contrast (t(92) = 18.32, p < .001, Cohen’s d = 1.90); 
for cause-purpose (t(92) = 17.06, p < .001, Cohen’s d = 1.77).  
 To examine whether participants were sensitive to 
differences between specific subrelations within the same 
relation type, we compared the mean distances of word pairs 
instantiating different subrelations within the same general 
relation type (i.e., cross-subrelation distances) to the mean 
distances of word pairs instantiating the same subrelations 
(within-subrelation distances). For each relation type, mean 
cross-subrelation distances were greater than mean within-
subrelation distances: for similar (t(92) = 13.17, p < .001, 
Cohen’s d = 1.37); for contrast (t(92) = 12.95, p < .001, 
Cohen’s d = 1.34); for cause-purpose (t(92) = 7.35, p < .001, 
Cohen’s d = 0.76). These findings indicate that participants 
were not only able to differentiate between general relation 
types but were also sensitive to much more fine-grained 
distinctions within the same relation type. Further, these 
findings provide evidence of graded similarity structure 
among semantic relations. Specifically, word pairs 
instantiating the same general relation type were judged as  
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Figure 4. Mean distance matrix from Experiment 2. Cold 
colors represent smaller distances (i.e., greater pairwise 
similarity), whereas hot colors represent greater distance (i.e., 
lesser pairwise similarity). Larger boxed regions represent 
pairwise distance judgments between word pairs instantiating 
the same general relation type. Smaller boxed regions 
represent pairwise distance judgments between word pairs 
instantiating the same specific subrelation within a common 
relation type. 
 
more similar to each other than those instantiating different 
general relation types, and word pairs instantiating the same 
subrelation were judged as more similar to each other than 
those instantiating different subrelations within the same 
general relation type. 

Next, we performed analyses to determine whether 
individual differences in cognitive capacity (as assessed by the 
RPM) and semantic knowledge (as assessed by the SST) were 
associated with participants’ sensitivity to differences among 
relations. Two independent raters scored the SST based on the 
criteria summarized by Stamenković et al. (2019). We 
assessed the reliability of these raters’ scores by testing the 
average measure intraclass correlation coefficient across 
scores using a two-way mixed model (ICC = .971, F(19,19) = 
44.72, p < .001, with a 95% confidence interval from .899 to 
.990). Given the reliability of these scores, we used the average 
score across these two raters in the following analyses. 

In order to estimate individual differences in sensitivity to 
broad distinctions relation types, we computed a relation type 
discriminability index for each participant using the following 
steps. First, we found each participant’s cross-type distance by 
calculating the mean distance for pairwise comparisons 
between word pairs instantiating different general relation 
types (e.g., old:young instantiates the relation type contrast, 
while car:auto instantiates the relation type similar). Second, 
we found each participant’s within-type distance by 
calculating the mean distance for pairwise comparisons 
between word pairs instantiating the same general relation 
type (e.g., old:young and east:west both instantiate the relation 
type contrast). Third, we computed each participant’s 
discriminability index by dividing that participant’s cross-type 
distance by their within-type distance (range = 1.01 to 2.60). 
This relation type discriminability index reflects how well a 
participant discriminated between relation types in their 
similarity judgments. An index of 1 indicates complete lack of 
discriminability between word pairs instantiating different 
relation types and those instantiating the same relation type, 

whereas higher indices indicate judgments of greater similarity 
between word pairs instantiating the same relation type than 
between word pairs instantiating different relation types. 

These discriminability indices for relation types were 
significantly correlated with RPM scores (Pearson’s r = .33, p 
= .005, power = .90) and also with SST scores (Pearson’s r = 
.30, p = .014, power = .82). Partial correlations revealed that 
these discriminability indices were significantly correlated 
with RPM scores after residualizing out SST scores (Pearson’s 
r = .236, p = .028, power = .61), and that they were 
significantly correlated with SST scores after residualizing out 
RPM scores (Pearson’s r = .236, p = .028, power = .61). These 
results indicate that there is an association between the 
discrimination of general relation types both with cognitive 
capacity and with semantic knowledge. 

In order to estimate each participant’s sensitivity to more 
fine-grained distinctions between specific subrelations within 
general relation types, we also computed a subrelation 
discriminability index using the following steps. First, we 
found each participant’s cross-subrelation distance by 
calculating the mean distance for pairwise comparisons 
between word pairs instantiating different subrelations within 
the same general relation type (e.g., old:young instantiates the 
subrelation contrary, and east:west instantiates the subrelation 
directional, where both instantiate the relation type contrast). 
Second, we found each participant’s within-subrelation 
distance by calculating the mean distance for pairwise 
comparisons between word pairs instantiating the same 
subrelation (e.g., old:young and black:white both instantiate 
the subrelation contrary). Third, we computed each 
participant’s subrelation discriminability index by dividing 
each participant’s cross-subrelation distance by their within-
subrelation distance (range = .96 to 2.74). This subrelation 
discriminability index reflects how well a participant was able 
to discriminate between specific subrelations within a relation 
type in their similarity judgments. An index of 1 would 
indicate a complete lack of discriminability between word 
pairs instantiating different subrelations and those 
instantiating the same subrelation, whereas higher indices 
indicate judgments of greater similarity between word pairs 
instantiating the same subrelation than between word pairs 
instantiating  different subrelations. 

 
Figure 5. Mean within- and cross-type distances for each 
general relation type in Experiment 2. Error bars indicate +/- 
1 standard error of the mean. 
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Figure 6. Visualization of relation similarities from two 
representative participants. Left: MDS solution for a 
participant with low discriminability indices (relation type 
discriminability index = 1.02; subrelation discriminability 
index = .98). Right: solution for a participant with high 
discriminability indices (2.08 and 2.74, respectively). Each 
marker indicates a single word pair. Marker outline color 
indicates word pair relation type, and marker shading indicates 
subrelation within relation type.  

 
These fine-grained discriminability indices for subrelations 

showed a significant correlation with RPM scores (Pearson’s 
r = .35, p = .003, power = .93), and also with SST scores 
(Pearson’s r = .30, p = .014, power = .82). Partial correlations 
revealed that these discriminability indices were significantly 
correlated with RPM after residualizing out SST scores 
(Pearson’s r = .291, p = .006, power = .79), but that they were 
not correlated with SST scores after residualizing out RPM 
scores (Pearson’s r = .090, p = .408). These results indicate 
that there is a stronger association between the discrimination 
of specific subrelations within relation types with cognitive 
capacity than with semantic knowledge. 

To provide a visualization of the difference between high 
and low discriminability, Figure 6 presents multidimensional 
scaling (MDS) solutions (Shepard, 1962) for the distance 
matrices of a participant with both a low relation type and a 
low subrelation discriminability index (left) and of a 
participant with both a high relation type and a high 
subrelation discriminability index (right). The latter solution 
shows a much greater degree of clustering into distinct relation 
types as well as into subrelations. 

General Discussion 
Across two experiments, we showed that a multi-arrangement 
task can be used to efficiently assess judgments of similarity 
among semantic relations. Human judgments obtained using 
this method have a clear interpretation. Judged similarity 
reflects not only broad distinctions between relation types, but 
also finer distinctions between subrelations within relation 
types. Moreover, the degree to which a participant 
differentiated between pairs from the same versus different 
relation types was positively correlated with measures of both 
fluid and verbal crystallized intelligence. At the more detailed 
level of subrelations, only fluid intelligence was a reliable 

predictor of discriminabilty. Future work should examine 
these associations further and assess directions of causality.  

The present findings add to mounting evidence that 
semantic relations do not have discrete, all-or-none 
representations. Previous work has shown that word pairs 
instantiating a particular relation vary systematically in their 
typicality (Jurgens et al., 2012; Popov et al., 2017), much like 
instances of object categories (Rosch, 1975). Our findings 
reveal that similarities between relation examples (within and 
across subrelations) also vary in a graded fashion. In addition, 
the present study establishes that similarity gradients for 
relations show reliable individual differences across people 
who vary in either cognitive capacity or semantic knowledge 
of relations. 

Note typicality judgments are importantly distinct from 
similarity judgments. Specifically, typicality is a relation 
between entities at different levels of abstraction (i.e., 
exemplar and category), and the typicality of a word pair is 
necessarily defined with respect to a particular relation. For 
example, up:down is typical of the relation opposite. In 
contrast, similarity is generally a relation between entities at 
the same level of abstraction (i.e., exemplar and exemplar), 
and relational similarity of a word pair can be defined with 
respect to another word pair. For example, up:down is similar 
to light:dark., Notably, whereas typicality judgments can be 
used to evaluate relational semantic representations within 
relations, similarity judgments can be used as a more holistic 
evaluation across relations. 

This emerging picture of human relation concepts is 
consistent with models of relation learning and analogical 
reasoning that assume relations are coded by distributed 
representations (e.g., Lu et al., 2019). More generally, 
judgments of relation similarity provide a rich source of 
potential data that can be used to evaluate computational 
models. Specifically, a relation distance matrix generated from 
a theoretical model can be compared to a distance matrix 
obtained from human judgments of relation similarity, as 
described here. To the extent that a model-generated distance 
matrix approximates a human-generated distance matrix, the 
model’s representation of semantic relations is descriptive of 
human semantic cognition. The same logic can be applied to 
test computational models as predictors of relational priming 
(Estes & Jones, 2009; Popov et al., 2017; Spellman et al., 
2001), and of neural responses to relation processing 
(Kriegeskorte, Mur, & Bandettini, 2008). 
 The multi-arrangement method of collecting similarity 
judgments for relations may also prove useful in guiding 
studies of educational interventions (Goldwater & Schalk, 
2016). The type of MDS solution that can be derived from 
similarity judgments can be related to the well-known 
technique of using “concept maps” to teach systematically 
related concepts. The degree of match between the clusters 
identified in an MDS solution obtained for an individual 
learner may provide a useful index of how well that learner’s 
internal representation of a set of concepts maps onto the 
organization the teacher aimed to convey. 

 

Low Discriminability High Discriminability

similar
contrast

cause-purpose

similar
contrast

cause-purpose
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Abstract

In prior research, arguments using both anecdotal and
statistical evidence are more persuasive than arguments using
either alone (Allen, Bruflat, Fucilla, Kramer, McKellips,
Ryan, & Spiegelhoff, 2000; Hornikx, 2005). However, it is
less clear how people integrate information when the statistics
and the anecdotes present conflicting information. In three
preregistered experiments, we tested how people integrate
conflicting information to judge the efficacy of a medicine in
a clinical trial. Participants read either an anecdote from
someone in the trial, summary statistics about the trial, or
both types of information. We found that reading an anecdote
from a member of the trial for whom treatment was
ineffective reduced people’s beliefs in a medical treatment
even when participants received strong evidence that the
treatment was effective. In Experiment 3, we found that
introducing icon arrays increased the perceived efficacy of the
treatment but did not eliminate the effect of the anecdote.
Keywords: anecdotal reasoning; medical decision-making;
open science

Introduction
Making decisions about medical treatments can be a difficult
and stress inducing process. When the decision concerns
those we love, or those who are vulnerable, the stakes can
make even obvious decisions seem paralyzing. People are
inundated with popular press reports about medical research
concerning what’s healthy, get advice from doctors, and hear
personal anecdotes from friends, relatives, and the media.
How can people make appropriate medical decisions under
these conditions? It might seem obvious that people’s beliefs
should reflect the scientific consensus, but when our own and
our families’ health is at stake, a compelling narrative or
personal anecdote can be hard to ignore. For instance,
vaccine hesitancy has been found to be driven by reliance on
anecdotal evidence about the side effects of vaccines spread
throughout online communities even though vaccines are
among the safest medical treatments (Powell, Weisman, &
Markman, 2018). Altogether making a medical decision is
no easy feat, even for the epistemically diligent.

Prior research suggests that although people are capable
of correctly integrating statistical information to make
informed medical decisions (e.g., Allen & Preiss, 1997;
Allen et al., 2000; Hornikx, 2005), they may nonetheless
improperly attend to irrelevant anecdotal information,

particularly when that evidence is salient and relates to
uncertainty and risk (e.g., Allen et al., 2000; Shen, Sheer, &
Li, 2015). Some researchers suggest that narratives are more
engaging and comprehensive (Dahlstrom, 2014), but when
learning about new scientific information, anecdotal
information can distract from making proper scientific
judgments (Rodriguez, Rhodes, Miller, & Shah, 2016).
What remains unclear is how people integrate anecdotes with
statistical information. When people are presented with both
statistical summary information and anecdotes, how do they
reason on the basis of this information? Can positive
anecdotal information aid in the integration of statistical
information when in concert with each other? Some research
suggests that anecdotes do not impact the integration of
statistical evidence about government policy (Hornikx
2018), but there is little research on this question in the
domain of medical decision-making, where the stakes are
high and thus anecdotes might may exhibit stronger effects.

In the present studies, we examined the effect of
anecdotes on medical decision-making. We investigated the
ways in which anecdotal information influences how people
interpret a study describing the efficacy of a novel medical
treatment (Experiments 1 and 2), and what other factors may
weaken the effect of anecdotes on reasoning (Experiment 3).

General Methods

Preregistration We preregistered the data collection plan,
analyses, and predictions for all three experiments.
Experimental scripts, full analytic results, and
supplementary online materials (SOM) are available on the
Open Science Framework at https://osf.io/dkcwv/.

Analytic Approach We performed Bayesian estimation
using the R package brms (Bürkner, 2018). We set
regularizing priors for all population-level effects in our
models, which we detail below. These priors are
recommended because they provide conservative effect size
estimates and reduce the likelihood of overfitting
(McElreath, 2016). Following the recommendations of
Liddell & Kruschke (2018), Likert data were modeled with a
cumulative probability distribution.
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Experiment 1
Experiment 1 examined how anecdotes affect people’s
reasoning about medical information. We sought to avoid
polarizing medical treatments because beliefs about these
topics may be particularly intransigent. Consequently, we
focused on a plausible but relatively unknown medical
treatment that people would not have strong beliefs about.
Specifically, we examined people’s beliefs about B-12
injections as means for treating chronic headaches.
Participants We recruited 497 participants through
Amazon’s Mechanical Turk (47% women, Mage= 38 years
old). Participants were paid $0.50 for participating in a
five-minute study. After excluding participants who missed
questions checking their attention, 431 participants remained
in our sample. Our exclusion criteria were determined a
priori and were in accordance with our study preregistration.
Procedure In Experiment 1, we presented participants
with either statistical evidence, anecdotal evidence, or the
combination of both types of evidence about a medical trial
testing the effectiveness of B-12 injections on chronic
headaches. The study consisted of three parts: a pretest
questionnaire, an intervention, and then a posttest
questionnaire. After completing this portion of the study,
participants completed medical individual differences
measures and demographic questions. We describe each
component below.
Pretest Questionnaire Participants answered a brief
questionnaire examining their familiarity with B-12
injections, whether they are currently receiving or have
received B-12 injections, and whether they are considering
receiving B-12 injections as a medical treatment. After
responding to these questions, participants were then asked
on a five-point Likert scale whether they believe B-12
injections are an effective medical treatment (1 = “Not
effective at all”, 5 = “Extremely effective”).
Conditions After completing the B-12 pretest
questionnaire, participants were randomly assigned to one of
four conditions: the Statistics condition, the Positive
Anecdote condition, the Statistics + Positive Anecdote
condition, or the Statistics + Negative Anecdote condition.

In the Statistics condition, participants were shown a
description with summary statistics about a clinical trial
examining the effects of B-12 injections on patients with
chronic headaches. Namely, participants read that in a
clinical trial with 1,000 subjects, B-12 injections were 87.3%
effective as a medical treatment for chronic headaches.

In the Positive Anecdote condition participants did not
receive the statistical information but were told “Jamie’s [the
protagonist in the anecdote] doctor recommended that she
participate in a new clinical trial that was examining the
effects of B-12 on headaches” and then were told that Jamie
decided to receive B-12 and subsequently experienced a
reduction in her symptoms.

In the Statistics + Positive Anecdote condition, participants

first read the summary statistics demonstrating the efficacy
of B-12 injections (that is, the only material presented in the
Statistics condition). They were then told that they would
read about the experience of one of the subjects in the study,
after which they were presented with the anecdote from the
Positive Anecdote condition.

Participants in the Statistics + Negative Anecdote
condition were given the same materials as participants in
the Statistics + Positive Anecdote condition, but now the
anecdote is from a member of the trial for whom treatment
was ineffective. Participants learned that “Jamie received a
B-12 injection and her headaches, lack of energy, and
inability to focus persisted.” Critically, however, Jamie was
not described as experiencing any side-effects as a
consequence of her treatment.

Two design decisions are important to highlight: First, the
anecdote contains no new information in the conditions that
paired an anecdote with a statistic. This is because summary
statistics already capture the success or failure of B-12
injections in the clinical trial and the anecdote concerns
someone who was in the clinical trial. In other words, the
anecdote contains no additional information over and above
the statistic – the anecdote either describes the treatment as
effective or ineffective and no other relevant information
beyond this.

This point is related to a second design decision: Namely,
in the Negative Anecdote condition, B-12 was described as
failing as a treatment but not introducing any unwanted
side-effects. Together, then, the negative anecdote should not
affect participants’ interpretation of the statistical
information presented to them.

Posttest Questionnaire After completing the intervention
portion of the task, participants completed a posttest
questionnaire in which they were asked whether they
believed B-12 injections were an effective medical
treatment.

As noted, one possibility is that when the stakes are high
for a given medical decision, people may be more
susceptible to anecdotal information leading them to ignore
strong statistical information. To this end, we also included
two additional questions in the posttest questionnaire. First,
participants were asked how likely it was they would try
B-12 injections on a five-point Likert scale. Second, they
were asked how likely they were to give B-12 injections to
their child (if applicable). It’s possible that a negative
anecdote would exhibit a stronger negative effect on people’s
reasoning about their child compared to themselves because
people are more risk averse when it comes to making
decisions that impact their children’s health (e.g., Brody,
Annett, Scherer, Perryman, & Cofrin, 2005; Johnson,
Özdemir, Mansfield, Hass, Siegel, & Sands, 2009).

Predictions
We predicted that participants in the Statistics + Positive
Anecdote condition would be most likely to think that B-12
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injections were effective as a treatment for chronic
headaches—the positive anecdote would make salient the
statistical summary information. This outcome would
suggest that health communication experts could include
similar positive anecdotes to increase people’s uptake of
statistical information (Allen et al., 2000). In contrast, we
were unsure whether the Statistics condition or the Positive
Anecdote condition would differ from each other, though the
Statistics condition objectively contains much stronger
evidence.

Of particular interest was how participants would respond
to the negative anecdote in the Statistics + Negative Anecdote
condition. One possibility is that presenting participants with
a negative anecdote could raise the salience of the inefficacy
of B-12 injections. However, we were unsure to what extent
a single negative anecdote could impact people’s use of the
statistical summary information.

Results
We tested our predictions by fitting a Bayesian multivariate
ordinal regression model regressing B-12 beliefs (i.e.,
efficacy beliefs, willingness to try B-12, and willingness to
give these injections to their children) on Condition
(Reference = Positive Anecdote condition) and pretest
beliefs about the efficacy of B-12. Following the
recommendations of Bürkner and Charpentier (2018), we
modeled pretest as a monotonic effect because the ordinal
nature of this predictor. The model is specified below in
brms syntax:

mvbind(B12,TryB12,ChildB12) ∼ Condition
+ mo(Pretest) + (1|p|Subject)

Bayesian analyses formulate model parameters as
probability distributions wherein the posterior distribution
for a parameter θ is computed via the prior and the
likelihood of θ. To model the joint probability distribution of
participants’ responses, we specified the following
regularizing priors over the possible effects each parameter
could have on the response variable:
Experiment 1 - Priors

βIntercept[1] ∼ N (.5, .5)
βIntercept[2] ∼ N (1.09, .5)
βIntercept[3] ∼ N (2.94, .5)
βIntercept[4] ∼ N (4.59, .5)
βPretest ∼ N (2,4)
All remaining β were distributed as N (0,1)
Ωk ∼ LKJ(1) where Ωk is a correlation matrix of
group-level parameters
Group-level parameters were distributed as
t(3,0,10)

This model revealed that the Positive Anecdote, Statistics,
and Statistics + Positive Anecdote conditions did not
materially differ from each other (see Figure 1). However,
the negative anecdote in the Statistics + Negative Anecdote
condition caused participants to ignore the statistical
information, despite the fact that (1) the statistic already
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Figure 1: B-12 injection beliefs across conditions in
Experiment 1. Higher Likert scale choices indicate more
favorable attitudes towards B12 injections. The figure
indicates that participants in the Statistics + Negative
Anecdote condition had less favorable attitudes towards B12
injections after the intervention relative to participants in the
other three conditions.

summarizes the information contained in the negative
anecdote and (2) the negative anecdote in no way suggests
that the protagonist suffered a side-effect as a result of taking
B-12 injections, bB12 = −1.28, 95% CI [−1.83, −0.73]; bTry =
−0.79, 95% CI [−1.44, −0.15]; bChild = −1.39, 95% CI
[−2.07, −0.72]. A subsequent analysis interacting pretest
beliefs with condition provided no evidence for an
interaction between these predictors.

Altogether, these findings suggest that (negative)
anecdotal information affected participants’ beliefs. A single
positive anecdote carried the same evidential weight as a
study describing a double-blind clinical trial with 1,000
participants, though it appears that it did not affect beliefs
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additively—the Statistics + Positive Anecdote condition did
not differ from the Positive Anecdote condition nor the
Statistics condition. More worrisome was the effect of the
negative anecdote on participants’ reasoning about
compelling statistical evidence. One negative anecdote, in
effect, caused people to dismiss strong statistical evidence,
even though the anecdote implied no negative side effects
and contained no additional information over and above the
information carried by the statistics.

Experiment 2
Experiment 1 suggested that people’s beliefs about the
efficacy of B-12 injections are affected by anecdotal
information. In Experiment 2, we sought to further
understand the impact of anecdotes on medical
decision-making. Given that a single negative anecdote can
undo, as it were, strong statistical evidence, we sought to
determine what would reduce the impact of this negative
anecdote. Consequently, we tested whether presenting
participants with both a positive and negative anecdote
paired with statistical information would lead participants to
primarily attend to the statistical information about the
efficacy of B-12 injections in treating chronic headaches.
Reading contradictory anecdotal information should indicate
to participants that a different evidence source (in this case,
the statistics) is needed to come to an informed belief about
B-12 injections.

Method
Participants
We recruited 492 participants through Amazon’s Mechanical
Turk (50% women, Mage= 36 years old). Participants were
paid $0.50 for participating in the study. After excluding
participants who missed questions checking their attention,
431 participants remained in our sample. Our exclusion
criteria were determined a priori and were in accordance
with our study preregistration.

Procedure
The procedure of Experiment 2 was similar to Experiment 1,
with the exception of the conditions participants were
assigned to. Namely, we replaced the Positive Anecdote
condition with a Statistics + Positive & Negative Anecdotes
condition to determine whether including a positive anecdote
in conjunction with a negative anecdote would lead
participants to focus on summary statistics.

We made two other changes in Experiment 2. First,
participants in the Statistics condition were explicitly told
both the inefficacy and efficacy rates of B-12 injections in
treating chronic headaches. We did this to better equate the
salience of the inefficacy rate in the Statistics condition to
the conditions in which the negative anecdote appeared.
Specifically, participants read that “After a two-year trial
with 1,000 participants, their study revealed that B-12
injections failed to work for 12.7% of participants and

worked for 87.3%.” Second, we changed the Likert scale for
our posttest questions regarding the likelihood of trying B-12
injections and giving B-12 to one’s child. These were
changed to a six-point Likert scale which ranged from 1 =
“Very unlikely” to 6 = “Very likely”.

Predictions
As in Experiment 1, we predicted that participants in the
Statistics + Positive Anecdote condition would tend to have
the most positive beliefs towards B-12 injections. We
predicted that when participants in the Statistics condition
are explicitly presented with the rate of ineffectiveness, this
would raise the salience of the inefficacy of B-12 injections.
In turn, this may reduce overall endorsement of the efficacy
of B-12 injections relative to the Statistics + Positive
Anecdote condition. Finally, we sought to examine whether
inclusion of the positive anecdote with the negative anecdote
in the Statistics + Positive & Negative Anecdotes condition
would cause participants to primarily attend to the statistical
information they received. We suspected that the presence of
the positive anecdote would not entirely undercut the effect
of the negative anecdote on participants’ judgments.

Results
As in Experiment, we fit a multivariate regression model
regressing B12 attitudes on Condition (Reference =
Statistics condition) and Pretest beliefs. We set priors on
intercepts based on posterior estimates from Experiment 1.

Experiment 2 - Priors

βIntercept[1] ∼ N (−1.38, .5)
βIntercept[2] ∼ N (1.09, .5)
βIntercept[3] ∼ N (2.19, .5)
βIntercept[4] ∼ N (4.59, .5)
βPretest ∼ N (2,4)
All remaining β were distributed as N (0,1)
Ωk ∼ LKJ(1)
Group-level parameters were distributed as
t(3,0,10)

These analyses replicated the effects of Experiment 1,
showing that (1) the Statistics and Statistics + Positive
Anecdote conditions did not differ from each other and (2)
that participants in the Statistics + Negative Anecdote
condition were more likely to discount the statistical
evidence from the clinical trial (see Figure 2), bB12 = −1.34,
95% CI [−1.89, −0.80]; bTry = −0.45, 95% CI [−1.22, 0.28];
bChild = −0.94, 95% CI [−1.75, −0.19]. The positive
anecdote in the Statistics + Positive and Negative Anecdotes
condition, however, did not consistently improve
participants’ integration of the statistical information, and in
some cases, did not differ at all from when participants only
received the negative anecdote (see Figure 2), bB12 = −1.40,
95% CI [−1.93, −0.87]; bTry = −0.22, 95% CI [−0.96, 0.52];
bChild = −0.02, 95% CI [−0.74, 0.74]. These effects again
did not interact with people’s pretest attitudes towards B12
vaccines.
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Figure 2: B-12 injection beliefs across conditions in
Experiment 2. Higher Likert scale choices indicate more
favorable attitudes towards B12 injections. The figure
indicates that participants in the Statistics + Negative
Anecdote and Statistics + Both Anecdotes conditions had
less favorable attitudes towards B12 injections after the
intervention relative to participants in the other conditions.

Experiment 3
Experiment 2 revealed that presentation of a negative
anecdote raises the salience of the inefficacy of B-12
injections. This effect was not consistently negated by
positive anecdotal information, raising the question of what
means could undercut negative anecdotal information.

Experiment 3 sought to address two questions. First, we
addressed the possibility that participants did not realize the
anecdote they read was about a person in the study. Our
hope was that by visually showing participants that the
anecdote they read was about a person in the study we could
rule out the possibility that a negative anecdote had its
effects just in virtue of it being new, negatively-valenced

information. Second, inspired by recent work, Experiment 3
tested whether a visual aid would reduce the impact of the
negative anecdote on participants reasoning by making the
strength of the summary statistics more salient. Several
recent studies suggest that icon arrays, for instance, can
improve understanding of scientific consensus
(Lewandowsky, Gignac, & Vaughan, 2013; Nyhan & Reifler,
2018). Thus, Experiment 3 used an icon array to reduce the
effect of the negative anecdote on people’s beliefs.

Participants
We recruited 1,622 participants through Amazon’s
Mechanical Turk (54% women, Mage= 38). Participants
were paid $0.50 for participating in the study. After
excluding participants who missed questions checking their
attention, 1,539 participants remained in our sample. Our
exclusion criteria were determined a priori and were in
accordance with our study preregistration.

Procedure
The procedure of Experiment 3 was similar to that of
Experiments 1 and 2. Participants were randomly assigned
to one of four conditions in a 2 (Icon Array: Present or
Absent) × 2 (Negative Anecdote: Present or Absent)
between-subjects design. All four conditions included the
summary statistical information from the Statistics condition
in Experiment 1, allowing us to internally replicate our
results in a larger sample.

In the Icon Array only condition, participants first read the
statistic about the efficacy of B-12 injections as a medical
treatment. They were then shown an icon array showing the
success rate of B-12 in 100 people. Participants were then
told:

“This image is a depiction of the effectiveness of
B-12 as a medical treatment. Imagine 100 people
received B-12 injections. The blue figures
represent participants that would benefit from the
B-12 injections. The green figures represent
participants who would fail to benefit from the
B-12 injections.”

In the Icon Array + Negative Anecdote condition,
participants received the same information as the Icon Array
only condition but were then told they would read about the
experience of one of the subjects in the study and an icon
array was displayed with one of the participants circled (see
Figure 3), clearly indicating that the anecdote was from
someone who participated in the clinical trial.

Predictions
We predicted that we would replicate the effect of negative
anecdotes on participants’ acceptance of strong statistical
evidence, as we found in Experiments 1 and 2. We also
predicted that in the Icon Array + Negative Anecdote
condition, the presence of the icon array would weaken the
effect of the negative anecdote (indicating an Icon ×
Anecdote interaction).
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Figure 3: The icon array used in the Icon Array + Negative
Anecdote condition in Experiment 3. For the Icon Array
only condition, the same array was presented, but without the
orange circle.

Results
We fit a Bayesian multivariate regression model regressing
B12 attitudes on the interaction between Icon Array
(Reference = No Array) and Anecdote (Reference = No
Anecdote), controlling for pretest beliefs:

mvbind(B12,TryB12,ChildB12) ∼
Anecdote*Array + mo(Pretest) +
(1|p|Subject)

Experiment 3 - Priors
βIntercept[1] ∼ N (−1.38, .5)
βIntercept[2] ∼ N (1.09, .5)
βIntercept[3] ∼ N (2.19, .5)
βIntercept[4] ∼ N (4.59, .5)
βPretest ∼ N (4,2)
All remaining β were distributed as N (0,1)
Ωk ∼ LKJ(1)
Group-level parameters were distributed as
t(3,0,10)

We replicated the effects of Experiments 1 and 2, showing
that a negative anecdote affected participants’ integration of
statistical information, bB12 = −1.49, 95% CI [−1.83, −1.16];
bTry = −1.21, 95% CI [−1.74, −0.70]; bChild = −0.87, 95% CI
[−1.31, −0.45]. Consistent with prior work, we also found
that providing an icon array improved people’s integration of
statistical information (bB12 = 1.02, 95% CI [0.69, 1.35];
bTry = 0.89, 95% CI [0.39, 1.42]; bChild = 0.86, 95% CI
[0.42, 1.30]), but we observed little evidence for an
interaction between these factors, bB12 = 0.00, 95% CI
[−0.46, 0.45]; bTry = −0.10, 95% CI [−0.77, 0.58]; bChild =
−0.33, 95% CI [−0.89, 0.24]. These results suggest that the
negative anecdote nonetheless impacted people’s reasoning
even when an icon array was present and removed all
ambiguity that the anecdote concerned someone who was in
the clinical trial.

Discussion
People have access to more medical information than ever
before. From journal articles to online forums, people must
determine what information is relevant and reliable to make
medical decisions. How do people make these decisions? In
three experiments, we tested how people reason about a
medical treatment when provided with statistical or
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Figure 4: B-12 injection beliefs across conditions in
Experiment 3. Higher Likert scale choices indicate more
favorable attitudes towards B12 injections. The figure
indicates that participants in the Anecdote condition had less
favorable attitudes towards B12 injections than participants in
the other three conditions.

anecdotal information. In Experiment 1, we found that a
negative anecdote caused people to ignore strong statistical
information even though the anecdote involved no negative
side effects—indeed, the information presented in the
anecdote was already captured by the summary statistics
presented to participants. In Experiment 2, we explored
whether providing a positive anecdote in addition to a
negative anecdote would counteract the effect of the negative
anecdote. We found that emphasizing a positive outcome of
a clinical trial did not consistently undo the effect of the
negative anecdote. In Experiment 3, we found that
introducing icon arrays improved integration of statistical
information overall, but even in this case, anecdotal
information negatively impacted people’s beliefs. This
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suggests that a single negative anecdote can carry
substantial, unwarranted weight when making a medical
decision.

It is striking that a negative anecdote led people to
discount strong summary statistics even though the patient
was described as suffering no negative side effects because
of their treatment. Indeed, we were careful to describe B-12
injections as failing to benefit people who participated in the
clinical trial. In reality, many medical treatments involve an
element of risk, and some treatments can even involve severe
side effects. In these situations, anecdotes that contain new
information and highlight side effects would, if anything,
yield a larger negative impact on people’s ability to properly
integrate statistical information. We can see evidence of
these effects today: In 2019, vaccine hesitancy was listed as
one of the top ten threats to global health (World Health
Organization, 2019). In 2018 only 91.1% (compared to the
recommended 95%) of children in the United States who
were eligible for vaccines received the MMR (measles,
mumps, and rubella) vaccine (Centers for Disease Control
and Prevention, 2019). 2018 saw the second-highest number
of measles cases since 2000. In part, vaccine hesitancy is a
consequence of (1) people relying on discredited research
linking vaccines to autism and (2) improper reliance on
anecdotal information spread in forums purporting to
demonstrate the side effects vaccines can wreak on young
children (Powell et al., 2018). Our findings can help us make
sense of this tendency. Anecdotes carry more weight than
they should, as evidenced by the fact that they affected
people’s reasoning even when they were captured by
summary statistics and involved no side effects, highlighting
a serious obstacle to public health and demanding new
interventions to overcome people’s tendency to rely on
anecdotal reasoning more than they should.
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Abstract
We introduce a memory-augmented neural network, called
Differentiable Working Memory (DWM), that captures some
key aspects of attention in working memory. We tested DWM
on a suite of psychology inspired tasks, where the model had to
develop a strategy only by processing sequences of inputs and
desired outputs. Thanks to novel attention control mechanisms
called bookmarks, the model was able to rapidly learn a good
strategy—generalizing to sequence lengths even two orders of
magnitude larger than that used for training—allowing it to re-
tain, ignore or forget information based on its relevance. The
behavior of DWM is interpretable and allowed us to analyze
its performance on different tasks. Surprisingly, as the train-
ing progressed, we observed that in some cases the model was
able to discover more than one successful strategy, possibly
involving sophisticated use of memory and attention.

Introduction
Keeping information in mind after it is no longer present in
the environment is critical for all higher cognitive behaviors.
Working memory (WM) is the term used for this ability, which
is distinct from the storage of vast amount of information in
long-term memory (Baddeley, 2003; Oberauer, 2009). The
two main distinguishing characteristics of WM are the lim-
ited capacity (3-5 items) (Cowan, 2001) and temporary re-
tention (secs-minutes). Hence, WM is not a storage per se,
but a mental workspace utilized during planning, reasoning
and solving problems. Most psychologists differentiate WM
from “short-term” memory because it can involve the ma-
nipulation of information rather than being a passive stor-
age (Cowan, 2017). Along the same lines, Engle, Tuholski,
Laughlin, and Conway (1999) argued that WM is all about
the capacity for controlled, sustained attention in the face of
interference or distraction. Attention-control is a fundamen-
tal component of the WM system and probably the main lim-
iting factor for capacity (Conway & Engle, 1994; Engle &
Kane, 2004). Consequently, the inability to effectively par-
allel process two-attention demanding tasks limits our multi-
tasking performance severely.

Over the past several decades psychologists have devel-
oped tests to measure the individual differences in WM ca-
pacity and better understand the underlying mechanisms.
These tests have been carefully crafted to focus on the spe-
cific aspects of WM such as task-driven attention control,

1jayram@us.ibm.com. Primary contact author.
2tkornut@us.ibm.com
3asozcan@us.ibm.com

interference and capacity limits (Oberauer & Lin, 2017).
The best known and successfully applied class of tasks for
measuring WM capacity is the “complex span” paradigm.
The challenge presented by complex span tasks is recalling
the list of items, despite being distracted by the processing
task. Studies show that individuals with high WM capacity
are less likely to store irrelevant distractors (Vogel, McCol-
lough, & Machizawa, 2005) and they are better at retaining
task-relevant information (Maxcey-Richard & Hollingworth,
2013). Developing task-driven strategies for cognitive control
are essential for the effective use of WM.

In the past there were several attempts to build compu-
tational models that mimic the operation of a human work-
ing memory (Henson, 1998; Farrell & Lewandowsky, 2002;
Oberauer & Lewandowsky, 2011; Lemaire & Portrat, 2018).
For example, Burgess and Hitch (1999, 2005) used a shal-
low neural network and put the emphasis on Hebbian-like
learning rules that enabled the model to achieve similar be-
havior to the one achieved by human subjects. In those works
the experimental paradigm was the serial recall task, which
is limited in testing the complex processing and attention
component of WM. One notable exception was (Oberauer,
Lewandowsky, Farrell, Jarrold, & Greaves, 2012), where the
authors focused on the complex span task.

The power of maintaining information over time has also
been recognized by the AI community. Starting with the
basic recurrent neural network architectures (Elman, 1990;
Hopfield & Tank, 1986) followed by the introduction of gat-
ing mechanisms (Hochreiter & Schmidhuber, 1997), the re-
search has recently moved onto more complex architectures
with memories (Graves, Wayne, & Danihelka, 2014; Joulin
& Mikolov, 2015; Weston, Chopra, & Bordes, 2015; Graves
et al., 2016; Santoro, Bartunov, Botvinick, Wierstra, & Lil-
licrap, 2016; Gulcehre, Chandar, & Bengio, 2017). These
models are typically applied to tasks (e.g. associative recall,
bAbI QA (Weston, Bordes, Chopra, & Mikolov, 2015)) that
require a complex mixture of long-term memory (episodic
and semantic) and working memory. In the human brain,
these kinds of memory systems are distinct: working memory
is instantiated in multiple interconnected areas with the pre-
frontal cortex playing a major role (Constantinidis & Kling-
berg, 2016), whereas for episodic memory the hippocampus
is the critical structure (Fortin, Agster, & Eichenbaum, 2002).
Studying these mechanisms separately is necessary to disen-
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Figure 1: Illustration of the operation of the DWM Model

tangle the contributions of each memory system and develop
a detailed understanding of human intelligence.

In this work, we take inspiration from biological and com-
putational models of working memory to develop an artifi-
cial neural network model augmented with external memory,
called Differentiable Working Memory (DWM). We provide
the DWM model a set of generic mechanisms to encode in-
puts, access the memory, and control its attention over the
memory contents. Key to this design is a new attention con-
trol mechanism in memory, called bookmarks, which helps
in dealing with interference. In contrast to previous works,
we applied our model to a variety of psychometry-inspired
tasks, each requiring the system to control its attention in a
slightly different way. We show that the DWM is capable of
solving these diverse tasks by looking only at input-output
pairs using the provided attention mechanisms. The model
is easy to train and accurately generalizes to sequences two
orders of magnitude longer than the training data. We also
describe the strategies that the DWM develops during train-
ing and demonstrate that the bookmarks can effectively deal
with interference in complex tasks. Finally, we show that the
DWM is also capable of learning multiple strategies during
training and, moreover, develop better strategies in the pres-
ence of memory scarcity.

Differentiable Working Memory (DWM)
The operation of Differentiable Working Memory (DWM)
model is presented in Fig. 1. As a memory-augmented neural
network (MANN), the DWM has three main components: a
controller, an external memory and an interface between the
two (Zaremba, Mikolov, Joulin, & Fergus, 2016). The in-
terface is composed of several attention mechanisms that the
controller learns to use by generating appropriate parameters
for accessing the external memory. The procedure is sketched
in Algorithm 1. We describe the main steps, Lines 4–7, below
in order of significance.

Attention control. The memory consists of N addresses,
each storing a vector of real numbers of length L. Thus the
memory contents are given by an L×N matrix of real num-
bers. The read and write operations share a single attention

Algorithm 1 Operation of Differentiable Working Memory
1: Initialize:

• the hidden state h0 and memory array M0

• the read/write attention vector w0

• bookmarks {Bi
0 : i = 1,2, . . . ,K}

2: for t ∈ {1,2, . . . ,T} do
3: Memory read: rt ←Mt−1wt−1
4: Controller: ht , Pt ← φ(xt ,rt ,ht−1)
5: Memory update: Mt ← update(wt−1,Pt ,Mt−1)
6: Attention control: wt ,{Bi

t}= attn(wt−1,{Bi
t−1},Pt)

mechanism. Further, we use soft addressing: let w denote
a non-negative weight vector of dimension N whose compo-
nents sum up to 1. Each component indicates the relative
strength with which a value (i.e. a vector of dimension L)
will be read/written at the corresponding address.

The behavioral studies indicate that people can access
memories sequentially (Singh, Tiganj, & Howard, 2018). For
that reason we have decided to add a mechanism based on
circular convolution, similar to the one used in Neural Tur-
ing Machine (NTM) (Graves et al., 2014), enabling it to shift
attention over memory:

wt = convolution(wg
t ,st), (1)

where wg
t and wt are the vectors of attention weights over

cells in memory at time t before and after shifting, and st
is a shift vector outputted by the controller. We also apply
a weight sharpening step typically used after the shifting; as
we observed, it seemed to be crucial for models using circular
convolution to converge properly.

The Embedded-Processes Framework (Cowan, 1988) as-
sumed the presence of Focus of Attention (FOA). In this
model the items in the FOA were interpreted as pointers to
the representations stored in the long-term memory rather
then being the actual representations themselves. Inspired
by this concept, we introduced a new attention mechanism
called bookmarks that store the system’s attention at pre-
vious time steps. This is recorded in K bookmark vectors
{Bi

t : i = 1,2, . . . ,K} at time t. The first bookmark B1 := B1
t

has a time-independent fixed attention to a single address so
that the model maintains a reference frame for memory. The
remaining bookmarks are dynamic: at time t, the DWM must
decide whether to remember its previous (read/write) atten-
tion wt−1 by recording it in a bookmark, as:

Bi
t = gi

twt−1 +(1−gi
t)B

i
t−1, i = 2,3, . . .K, (2)

where the gating parameter gi
t is emitted by the controller.

As discussed later, we found in our experiments that even
limiting to only two bookmarks (one fixed and one dynamic),
the model could still solve all tasks.

The DWM must also decide before moving sequentially
whether it wishes to return to a previous bookmark. For this
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purpose we once again use a gating mechanism, this time in
a slightly more sophisticated form:

wg
t = δ

0
t wt−1 +

K

∑
i=1

δ
i
tB

i
t−1, (3)

where δi
t , i = 1,2, . . .K are gating parameters emitted by the

controller. These gating parameters are scalars, normalized
using a softmax function.

The DWM attention control incorporates the presented
mechanisms by applying equations (3), (2), and (1) in order.

Memory read and update. We use the standard formula
for soft attention, e.g., (Weston, Chopra, & Bordes, 2015),
that computes the read vector rt from memory Mt−1:

rt = Mt−1wt−1 (4)

For memory update, we decided to use the simple erase-add
scheme derived from NTM (Graves et al., 2014):

Mt = Mt−1 ◦ (E− et ⊗wt)+at ⊗wt , (5)

where E is a matrix of all ones, et and at are vectors of content
to be erased and added to memory, respectively. The param-
eters et and at are emitted by the controller.

Controller. The controller’s role is to process inputs so as
to produce outputs as well as interface parameters. In DWM
we use a single-layer recurrent neural network controller:

ht = σ(Wh[xt ,ht−1,rt ]), (6)

where xt denotes the current input and ht−1 and rt are the hid-
den state and vector read from memory in the previous time
step, respectively. To prevent the controller from acting as a
separate working memory, the hidden state size is chosen to
be smaller than that of a single input vector (in all of our ex-
periments it was set to 5). The output logits, yt and interface
vector Pt are produced similarly as:

yt =Wy[xt ,ht−1,rt ] (7)

Pt =WP[xt ,ht−1,rt ] (8)

Wh, Wy and WP are the only trainable parameters of our DWM
model. The interface vector Pt contains all of the parameters
that control reading, writing, and the attention mechanisms.
Denoting the unprocessed parameters from the interface with
a hat, the full list of parameters in Pt is as follows:

• The write vector at ∈ RNM

• The erase vector et = σ(êt) ∈ [0,1]NM

• The shift vector st = softmax(softplus(ŝ)) ∈ [0,1]3

• The bookmark update gates gi
t = σ(ĝi

t) ∈ [0,1]K−1

• The attention update gate δi
t = softmax(δ̂i

t) ∈ [0,1]K+1

• The sharpening parameter γ = 1+ softplus(γ̂) ∈ [1,∞]
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Figure 2: Exemplary tasks for testing the performance of hu-
man working memory

Psychometric tasks for working memory
Over last several decades cognitive psychologists have de-
veloped many psychometric tests (Conway et al., 2005) to
measure the performance of human WM (See Fig. 2 for ex-
amples). These tasks are mainly sequential and typically di-
vided into verbal and visuospatial domains. Given that diver-
sity and various categorizations by different researchers, we
built a taxonomy of tasks (Fig. 3) and carefully selected tasks
that seem to be the most representative for a given category.
First order categorization is based on the number and com-
plexity of tasks. For simple tasks, the presence of data ma-
nipulation is the next level sub-category, with Serial Recall
being a prime example of a task without manipulation. The
tasks requiring manipulation we further categorized into spa-
tial and temporal domains. The complex tasks involve mul-
tiple sequential inputs or sub-tasks but not necessarily imply
“multi-tasking”. We follow the framework of Clapp, Rubens,
and Gazzaley (2009) to distinguish the sources of goal inter-
ference, i.e. Distraction (to-be-ignored) and Interruption (i.e.
multi-tasking). For example, in Operation Span (Fig. 2c) the
subjects had to attend and process the summation (Interrup-
tion) even though they did not need to recall the results af-
terwards, whereas in Reading Span (Daneman & Carpenter,
1980) subjects had to read sentences and recall the last word
of each one. In addition to the classical psychometric tasks,
we introduced several tasks testing the effectiveness of atten-
tion control in memory (Ignore, Forget and Scratch Pad). As
a result, a suite of tasks presented in Table 1 emerged.

The input to every task is a sequence of items. As we
wanted to be agnostic to audio/visual preprocessing, we have
implemented those tasks using sequences of randomly gen-
erated binary patterns (vectors of bits) as items (instead of
words/images). At a higher level, we view the input as a con-
catenation of various subsequences that represent different
functional units of processing. For all simple tasks, there is
only one type of subsequence, and the output will be repro-
duced from the memory with or without manipulation. The
complex tasks may involve a secondary set of subsequences,
optionally requiring immediate output as indicated in the For-
get and Operation Span tasks.

Additionally, we use a constant-sized set of special items
(called command markers) to both mark the beginning of a
subsequence as well as indicate its functional type. It is im-
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Simple task
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Temporal Spatial
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Reverse RecallRotate Shape
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Interruption Distraction
Reading Span Operation Span
Ignore Forget

Scratch Pad

Figure 3: Taxonomy of working memory tasks

portant to note that the system does not know a priori what
kind of operation is associated with a given type of marker
and must learn that from data. We ignored markers in Table 1
to keep the description simple. Also, note that such markers
are also commonly employed in the psychometric tests, e.g.,
see McNab and Klingberg (2008).

Experimental results
We evaluated the performance of DWM on the proposed tasks
and compared it to two models: LSTM (Long Short-Term
Memory) (Hochreiter & Schmidhuber, 1997), considered as
a classical baseline for sequential problems, and DNC (Dif-
ferentiable Neural Computer) (Graves et al., 2016) being one
of the state-of-the-art MANN models. In our implementation
we used the MI-Prometheus (Kornuta et al., 2018) framework
built on top of PyTorch (Paszke et al., 2017). During training
we used the Adam (Adaptive Momentum) optimizer (Kingma

Task (I)input/(O)output sequences

Si
m

pl
e

Serial I: x1x2 . . .xn | . . .

Recall O: . . . | x1x2 . . .xn

Scratch I: x1x2 . . .xk |
Pad O: . . . | xk

Reverse I: x1x2 . . .xn | . . .

Recall O: . . . | xnxn−1 . . .x1

Rotate I: x1x2 . . .xn | . . .

Shape O: . . . | x	
1 x	

2 . . .x	
n

C
om

pl
ex

Reading I: x1x2 . . .xk | . . .

Span O: . . . | z1z2 . . .zk

Ignore
I: x1y1 . . .xkyk | . . .

O: . . . | x1 . . .xk

Operation I: x1y1 . . .xkyk | . . .

Span O: y	
1 . . . y	

k | x1 . . .xk

Forget
I: x1y1 . . .xkyk | . . .

O: y1 . . . yk | x1 . . .xk

Table 1: Working Memory Tasks. A bold letter denotes a
subsequence of items. The | sign indicates delay between
input and output of the primary subsequence(s). Above, x	

i
denotes the circular shift of xi by half its bitlength. In the
Reading Span task, zi is the last item of xi.

Task
Validation Accuracy Test Accuracy
Seq. Size 100 [%] Seq. Size 1000 [%]

LSTM DNC DWM LSTM DNC DWM

Serial 53.3* 100 100 50.2* 64.6 100
Scr. Pad 71.3* 100 100 70.0* 75.0 100
Reverse 53.0* 50.6* 100 50.4* 50.2* 99.8
Rot. Shape 52.2* 100 100 50.2* 60.9 100
Read. Span 50.9* 53.4* 100 50.4* 49.0* 91.9
Ignore 56.1* 69.3* 100 50.9* 50.0* 90.0
Op. Span 58.2* 79.2* 99.9 51.3* 53.6* 99.6
Forget 55.9* 69.4* 98.9 50.5* 49.9* 94.1

Table 2: Summary of experimental results. The first column
is the average of validation accuracies achieved by the mod-
els for 10 training runs on each task. The second column is
the average of test accuracies achieved by models that con-
verged during training. For the majority of tasks, the DNC
and LSTM models did not converge. In those cases (indicated
with *) we report scores of the best (even though diverged)
model.

& Ba, 2014) and (average) binary cross-entropy as the loss
function. We apply early stopping based on validation loss
(10−4). Additionally, we terminate training when the num-
ber of training episodes reach 100,000 where a single episode
involves processing a batch of sequences. The size of batch
was a hyper-parameter that was tuned along with training rate
for each model using validation loss as the reference.

As stated in the introduction, the main question we wanted
to answer was whether a model can learn an algorithm to
solve a task. In case of tasks presented in Table 1, this implies
that the model should generalize over the sequence lengths.
For that reason, our methodology assumed that we will use
different lengths of sequences for training (up to 10), valida-
tion (exactly 100) and testing (exactly 1000). Although hu-
man WM does not have the capacity to handle 1000 items,
our goal was to show that the model truly generalizes in that
actually develops an effective memory strategy, i.e., it learns
an algorithm to solve the task.

All models achieved perfect accuracies on training se-
quences. However, as presented in Table 2, LSTM and DNC
struggled with generalization to longer sequences. Besides,
the DWM models converged faster, requiring less than 5000
episodes in most cases (exemplary convergence plot is pre-
sented in Fig. 4). The convergence speed is associated with
number of trainable parameters of those models (the DWM
controller had 1066, the DNC had 4,792, whereas for LSTM
baseline we used stacked LSTM with 3 layers and over 5 mil-
lion trainable weights). Please note that fair comparison sim-
ply made no sense, as the LSTM and DNC models with less
trainable parameters could not even learn to generalize over
short (i.e. training) sequences. Aside of that, we hypothesize
that the DNC had problems with convergence because of the
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complexity of its attention and memory management mecha-
nisms (the Temporal Link Matrix, in particular).

Analysis of strategies for solving tasks

The proposed tasks require the models to develop different
strategies for solving them. For example, ignoring distrac-
tions without encoding them in the memory is arguably the
best strategy to minimize memory consumption. On the other
hand, for a complex task with an interruption (i.e. multi-
tasking), the secondary task cannot be ignored and may re-
quire extensive memory usage. In this case, the best strategy
might be to forget (e.g. erase or overwrite) the secondary in-
formation as soon as possible in order to maintain sufficient
memory capacity for the main task.

During the training and testing of all of the tasks reported
in Table 2 we provided sufficient memory size, so that the
system could store all the encoded input items in the mem-
ory (if it has chosen to). However, limitation of the memory
size can force the system to develop more memory efficient
strategies, thus we decided to investigate that issue further.

Strategies for the Scratch Pad task The goal of the
Scratch Pad task is to recall only the last input subsequence.

0 5000 10000 15000 20000 25000
Iterations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Problem: Distraction Ignore
Training Loss DWM
Training Loss DNC
Training Loss LSTM

)TMWSHIW

Figure 4: Convergence of the best models on Ignore task

x1 x5

x1 x5

-
Time
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Time

-
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Figure 5: Overwrite strategy developed by DWM for Scratch
Pad (episode 969). Memory plot contains a snapshot of the
memory content from the last iteration, whereas the other
ones present concatenation of states from consecutive itera-
tions (evolution in time)

Given the DWM mechanisms, we expect two possible strate-
gies for the model to learn in order to solve this task.

The “Expand” strategy exploits the fact that memory can
be used in a similar way to a circular buffer, storing each con-
secutive subsequences one after the other in the memory. In
this case the model should write each subsequence, then place
the dynamic bookmark at the start of given subsequence, and
then update the bookmark position to the beginning of the
next subsequence. Finally, when the model receives a com-
mand marker indicating it needs to recall, it should recall the
attention associated with that dynamic bookmark and then re-
trieve consecutive items one by one by shifting.

The “Overwrite” strategy for the Scratch Pad relies on the
fact that when a new subsequence appears, the elements from
the previous one can be discarded. The model could exploit
this by learning to recall attention stored in the fixed book-
mark every time it processes a command marker denoting the
next subsequence, which will result in overwriting the pre-
vious subsequences until the system is told to recall. This
strategy may be interpreted as memory saving, as the system
reuses the same addresses and overwrites them repeatedly.

To our (initial) surprise, the model always developed the
Overwrite strategy, irrespective of the memory size (i.e. as
long as the memory size was sufficient to fit all the encoded
items of a single subsequence). An exemplary run of an early
training episode is presented in Fig. 5. Note that memory ad-
dresses 1 and 2 remain unchanged and the model stores con-
secutive items of subsequences x1 to x5 in the same addresses
3-7. After analyzing several runs, we hypothesize that over-
writing was simpler to learn for this task because: a) both for
storing and recalling the command markers, the model had to
learn exactly the same behavior: recalling the attention stored
in the fixed bookmark, b) for every other input item it had to
shift by one address location with the circular convolution.
As a result, it could converge rapidly by disregarding the con-
trol (update, recalling) of the dynamic bookmark (in the later
training episodes the dynamic bookmark was typically “fol-
lowing” the current attention, despite it wasn’t recalled at all).

Strategies for the Ignore task The main goal of the Ignore
task is to test the retention capabilities of the system in the
presence of distractors. For this task the input consists of two
types of subsequences x and y, where the system is supposed
to ignore all yi and at the end recall xi one by one in the
order of their appearance. The task can be solved with two
strategies which we call “Overwrite” and “Skip”.

The “Overwrite” strategy involves overwriting of the dis-
tractors, similarly to the “Overwrite” from Scratch Pad task.
It assumes that model will store the consecutive items in
memory and use the bookmark for moving its attention to
the first address containing y to be overwritten. The differ-
ence is, however, that in here the model must learn to use
the dynamic bookmark for that purpose. Our experiments
with sufficient memory have shown that the system can learn
this strategy. Exemplary plot from one of the final train-
ing episodes (Fig. 6a) shows that the dynamic bookmark re-
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(a) Overwrite strategy
(episode 17000)

y1

y2

y1

y2

(b) Skip strategy
(limited memory, episode 5614)

Figure 6: Strategies developed by DWM for solving the Ig-
nore task (two different training runs)

tains its attention while processing items from y1 and y2. As
soon as the command marker indicating x appears, the model
jumps back its attention to the dynamic bookmark and starts
to overwrite memory content. Finally, when the recall marker
appears, it recalls the attention stored in the fixed bookmark.

The “Skip” strategy involves ignoring elements within the
y subsequences, i.e. skipping writing them to memory. Our
experiments with limited memory have shown that the model
could also learn this strategy. Exemplary plots from the final
episode from one of the training runs are presented in Fig. 6b.
Note that in this case the model has learned to keep its atten-
tion focused on a single address for all items of yi and shift
attention only for items belonging to xi.

That behavior of the model that mastered the “Skip” strat-
egy seems to be more difficult from the operational point of
view. In the “Overwrite” strategy the system develops a re-
active behavior, i.e. it always performs convolutional shift
except for the rare cases when it hits the command marker –
at that point it has to retrieve attention from one or the other
bookmark. In the “Skip” strategy the command markers for
x and y activate one of two distinct operation modes that will
be executed for the whole subsequence until hitting the next
marker, i.e. for x attention is supposed to move to the next
address, whereas for y it is supposed to stay at the same posi-
tion. The only way to perform this is that the controller must
learn how to carry the information about the current oper-
ation mode from one iteration to another in its hidden state,
which is more difficult to learn.

We performed several experiments to support that hypoth-

(a) episode 1757: utilization
of Overwrite strategy

(b) episode 17685: utilization
of Skip strategy

Figure 7: Evolution of the strategy developed by DWM, when
learning the Ignore task (during a single training run, inten-
tionally used the same verification sequence in both cases)

esis. In Fig. 7 we present two episodes from one of the train-
ing runs when the operation of the system seems to be evolv-
ing from one strategy to the other. At the early stages of the
training (Fig. 7a) we can observe that the attention shift with
the circular convolution is active for both types of input sub-
sequences, whereas the dynamic bookmark already learned
how to follow attention for x and freeze for y. As learning
to shift attention is crucial for learning both storing and re-
call, model has to master that first. However, once achieved,
it seems to switch to different operation mode. Obviously,
learning two modes is simpler for dynamic bookmark, as it
possesses simpler gating mechanism and cannot shift its at-
tention. As the training progresses (Fig. 7b) the model fi-
nally learns to freeze its attention when processing y subse-
quences.

Conclusion
We have demonstrated that DWM has the appropriate atten-
tion mechanisms to tackle psychology-inspired tasks. When
compared to existing models such as DNC, LSTM it appeared
to manage generalization to much longer sequences. Be-
sides, after careful step-by-step analysis we discovered that
the model is able to develop more than one strategy to con-
trol attention and use its memory resources for a given task.
While some strategies are harder to learn, DWM can develop
them by first finding any working strategy and then gradually
modifying it towards a different one as learning progresses.
Why the model seems to prefer some strategies is intriguing
and worth further investigation. Another direction is to incor-
porate this mechanism into a larger system in order to solve
tasks that require both working and long-term memory.
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Abstract 

Children are motivated to explore and learn about the world, 
but they vary in their degree of perseverance during 
exploration. A growing body of literature suggests that is 
malleable from an early age. Here, we ask whether 
pedagogical questions empower children to persevere during 
a difficult problem-solving task with a blicket detector 
machine. Previous research has shown that when presented 
with a blicket detector, asking children “pedagogical 
questions” promotes more exploratory behaviors compared to 
direct instruction. A pedagogical question is a question asked 
by a knowledgeable person, whose intention is to teach rather 
than to seek an answer to that question. The current study 
examines whether pedagogical questions influence the 
amount of time children spend problem-solving before 
seeking help, compared to direct instruction, overheard 
pedagogical questions, and overheard questions asked by a 
naive other. We predicted that children who were asked a 
pedagogical question prior to having the opportunity to play 
with a machine would persevere longer in trying to make it 
work, and would be less likely to ask for help. Results suggest 
that pedagogical questioning encourages children to attempt 
more hypothesis-test interventions in an effort to make the 
machine work. Results will be discussed in terms of the role 
of pedagogical questioning in promoting perseverance during 
problem-solving. 

Keywords: pedagogy; pedagogical question; perseverance 

 

 

Introduction 
Young children are curious and creative problem-solvers. 
They are motivated to explore and learn about how things 
work, why they work, and, if necessary, how to fix them. 
However, there is a great deal of variation in children’s 
perseverance during problem solving, and this characteristic 
is malleable. Children’s perseverance during exploration is 
likely influenced by a number of factors, including the 
nature of their interactions with adults. For example, 
children are more likely to persevere during a difficult task 
after watching an adult model persevere (Leonard, Lee, & 
Schulz, 2017).  Here, we investigate the particular qualities 
of adult instruction that may promote children’s 
perseverance during exploration and learning. 
  Previous research suggests that when children are faced 
with a difficult task, they rely on their interactions with and 
observations of adults to guide their exploration and 
problem solving efforts. For example, preschool-aged 

children readily detect and utilize pedagogical cues (e.g., the 
teacher’s knowledgeability; the intentionality of the 
teacher’s demonstration; the social context of the learning 
scenario; etc.) to guide deductive reasoning, exploration, 
and learning about the world (Bonawitz, Shafto et al., 2011; 
Buchsbaum, Gopnik, Griffiths, & Shafto, 2011; Butler & 
Markman, 2014). For example, in Bonawitz, Shafto et al. 
(2011) children were assigned to one of a few conditions 
that differed in the social presentation of information. In the 
Pedagogical condition, a knowledgeable and helpful adult 
demonstrated one function on a complex-looking toy. After 
this, children were presented with the toy and allowed to 
explore. The Pedagogical condition was contrasted with 
several other conditions including an Accidental condition 
in which a naive demonstrator accidentally elicited the 
function, and an Interrupted condition in which the 
demonstrator was interrupted before it was clear they were 
completed. Results showed that children in the Pedagogical 
condition explored less than children in the other conditions, 
consistent with the explanation that the pedagogical 
demonstrations lead to high confidence that there was little 
to be learned beyond the demonstrated function. 
  Thus, children rely on adults’ pedagogical cues to guide 
learning. What are the particular qualities of these cues that 
might be most relevant to perseverance during exploration? 
One pedagogical tool whose efficacy has been of particular 
interest as of late is pedagogical questioning. A pedagogical 
question is a question asked by a knowledgeable person, 
whose intention is to teach rather than to seek an answer to 
that question. Recent research indicates that pedagogical 
questioning yields effective knowledge transmission, while 
also promoting exploration (Yu, Landrum, Bonawitz, & 
Shafto, 2018). This is in contrast to direct instruction, 
another common pedagogical tool. In direct instruction, 
information is communicated directly from a knowledgeable 
teacher to a naïve learner. Past research shows that while 
direct instruction is beneficial for sharing information, this 
can come at the expense of children’s subsequent 
exploratory learning (Bonawitz & Shafto et al., 2011). This 
is likely due to the expectation that is often brought into 
pedagogical learning scenarios that good teachers should 
provide all the necessary evidence for the learner to be able 
to solve the problem (Shafto & Goodman, 2008). However, 
these implications for exploration appear not to be induced 
by pedagogical questioning. For instance, in Yu et al. 
(2018), children were shown a novel toy, which had many 
possible functions, and were told that the experimenter 
knows all about the toy and how it works. In the direct 
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instruction (DI) condition, the experimenter told children to 
push the button on the novel toy; in the pedagogical 
question (PQ) condition, children were asked to think about 
“what does this button do?” While children were equally 
likely to discover the key function (i.e., the button) in both 
conditions, children also spent longer playing with the toy 
and discovered more additional functions in the PQ 
condition (Yu et al., 2018). These results support the claim 
that pedagogical questions empower children to engage in 
exploratory behaviors, while direct instruction may 
constrain exploration. 
  One limitation of this study however, is that children in 
both the PQ and DI conditions were at ceiling in their ability 
to discover the target function of the toy, so it is difficult to 
assess the extent to which pedagogical questions might 
differentially influence the pursuit of learning about queried 
information. In other words, when children are tasked with a 
simple problem, which was readily solvable (the button 
immediately generated the effect), it was not possible to 
explore the potentially different influence of PQs and DI on 
persistence for learning targeted information. Of course, 
once the goal was complete (in this case discovering the 
buttons function), it remained important to ask what next 
steps children would take with the toy. In Yu’s paper, 
children in the PQ condition then went on to discover 
significantly more functions of the toy as compared to the 
DI condition, providing important insights into the power of 
PQs in supporting longer term exploration. Nonetheless, it 
remains unclear if pedagogical questions also empower 
children to persevere and engage in exploratory behaviors in 
service of the queried information. The current study 
addressed this question by presenting children with a more 
challenging problem (i.e., an unsolvable problem). Children 
were tasked with discovering how to make a (deactivated) 
blicket detector machine work, a procedure inspired by past 
literature (Gweon & Schulz, 2011).  
 We hypothesized that that pedagogical questions might 
promote persistence in problem-solving during a difficult 
task for a few reasons. First, pedagogical questions that are 
directed to the child may empower them to feel as though 
the expectation is that they can figure the machine out on 
their own, rather than having to seek help from an adult. 
That is, by asking “what do you think?” a Pedagogical 
Question could imply that the questioner believes the child 
can discover the answer. Second, pedagogical questions 
may encourage children to engage in exploratory behaviors 
during a difficult problem-solving task because questions do 
not limit the number or nature of potential solutions to the 
problem at hand. In contrast, direct instruction may hinder 
children’s creative exploration of potential solutions by 
“over focusing” children in on the directed content. 
  One alternative to the claim that pedagogy is the driving 
factor behind pedagogical questions, is the possibility that 
any kind of question might lead to greater perseverance. In 
order to control for this possibility, we included a condition 
in which children overheard a naive confederate asking a 
question to an experimenter (Overheard Naive Question 

condition; ONQ). In this way, the exact language of the 
question is matched, but the crucial difference is that in the 
ONQ condition, the question-asker was not knowledgeable 
(i.e., was known by the child to have no knowledge of how 
to make the machine work), where as in the PQ condition, 
the question-asker was knowledgeable. A person who does 
not know the answer is not naturally thought of as a having 
the goal of teaching the outcome because they do not know 
the outcome. Thus, in the current study, any potential effects 
could be attributed to the pedagogical nature of the question, 
and not just the question itself. 
  Another alternative to the claim that pedagogy is the 
driving factor behind pedagogical questions, is the idea that 
any pedagogical question, no matter who it is being directed 
to, might promote greater perseverance. In order to control 
for this possibility, we included another condition in which 
children overheard an experimenter asking a pedagogical 
question to a confederate (Overheard Pedagogical Question; 
OPQ). In this way, the exact language of the pedagogical 
question is matched, but  the pedagogical question is not 
child-directed This condition allows us to isolate the 
influence of the child-directed nature of the pedagogical 
question asked in the PQ condition form the mere influence 
of overhearing a pedagogical question as in the OPQ 
condition. . Although pedagogical questions have been 
found to promote exploratory behaviors in children, these 
questions may only influence exploration if they are child-
directed. 
 Thus, we hypothesized that pedagogical questions, 
compared to direct instruction and overheard naive 
questions, would encourage children to persevere and play 
with the machine longer before seeking help than children in 
the DI, OPQ, and ONQ conditions, although we expect no 
condition differences in the amount of time it takes children 
to recognize that there is something wrong with the 
machine. We might expect that pedagogical questions 
promote perseverance in problem-solving during a difficult 
task for a few reasons. First, pedagogical questions may 
empower children to feel as though the expectation is that 
they can figure the machine out on their own, rather than 
having to seek help from an adult (i.e., the experimenter). 
The amount of time the child spends engaging with the 
machine before reaching out for help and the number of 
hypothesis tests the child performs during exploration could 
make this claim evident. Second, pedagogical questions may 
encourage children to engage in meaningful exploratory 
behaviors during a difficult problem-solving task because 
questions do not limit the number or nature of potential 
solutions to the problem at hand. The number of unique 
actions and the variability in the nature of hypothesis tests 
performed on the toy could make this claim evident. In 
contrast, DI may hinder children’s creative exploration of 
potential solutions. We also predicted that children in all 
conditions would be equally quick to notice that something 
was wrong with the machine.  The time to first look could 
make this claim evident. 
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Figure 1. Blicket detector machine used by children in the 
experiment. The switch and dial “sliders” are highlighted. 
Another feature of the machine is the platform on the top of 
the machine. The multicolored block is the accessory that 
appears to activate the machine when placed on the 
platform, even though it’s the remote control transmitter 
that’s actually activating the machine. 
 

Method 

Participants 
Participants were 100 4- to 6-year-old children (Mage = 
57.91 months, SD = 6.62 months; Range = 48.26 - 78.77 
months, 53% female) recruited from preschools and public 
sites located in Essex County, New Jersey, one of the most 
racially and socioeconomically diverse counties in the 
United States. Prior to the study, consent from the sites, 
participating families, and the Rutgers University - Newark 
internal review board were obtained. Based on a power 
analysis, and as preregistered1, we recruited 25 children per 
condition. Children were only included in the final sample if 
they met the following criteria: 1) English was their primary 
language, and 2) there was no outside interference during 
the testing session. Participants were randomly assigned to 
one of four conditions: Pedagogical Question (PQ); 
Overheard Pedagogical Question (OPQ), and Overheard 
Naïve Question (ONQ), and Direct Instruction (DI). Age 
was matched across conditions. 

Materials 
A novel “blicket detector” machine that was approximately 
13.25’’ X 10.5’’ X 5’’ with a switch on one side and a dial 
on the other was created (Figure 1). A wireless doorbell 
receiver hidden inside the machine produced a C major 
arpeggio when the experimenter surreptitiously pressed the 
button on the remote control transmitter which connected to 

                                                             
1 Link to preregistration: https://aspredicted.org/j3ah7.pdf 

the wireless doorbell. The switch and dial “sliders” on either 
side of the machine were inert. There was also a multi-
colored block whose sole purpose was to “activate” the 
machine when placed on a shiny platform on top. 
 
Procedure 
Children were introduced to the machine by the 
experimenter and told that “the way the toys works is, the 
way the toy works is, when the block is on the platform and 
the toy is all set up right, the toy goes”. In all conditions, a 
confederate was seated next to the child during the 
introduction to the machine and the demonstration of its use. 
In the PQ and DI conditions, the experimenter first 
demonstrated directly to the child how the block can 
activate the machine (but did not show whether, and which 
of, the switch and the dial should be positioned for it to 
work.) The experimenter then showed the machine 
separately to the confederate in another location in the 
room, so that the child could not see what was being 
changed on the machine. In the OPQ and ONQ conditions, 
the child also observed the block activating the machine (but 
was not shown the role of the switch or dial like in the PQ 
and DI conditions), however in the OPQ and ONQ 
conditions, the confederate did not observe the role of the 
switch and dial. Specifically, the experimenter walked away 
from the child and confederate to a corner of the room to 
activate the machine while verifying with the confederate 
that they cannot see what the experimenter was doing with 
the machine. Thus, in the OPQ and ONQ conditions, the 
confederate was never shown how the machine worked with 
respect to the switch and dial. In all four conditions, the 
experimenter explained that something about the machine 
had been changed so that now the block would not activate 
the machine.  
  Critically, the prompt given to the child prior to the free 
play period varied by condition. In the PQ condition, the 
experimenter asked the child, “what happens if you change 
these sliders?” while moving the sliders (the switch and 
dial) on either side of the machine. In the DI condition, the 
experimenter instructed the child by telling them to “change 
these sliders to see what happens” while moving the sliders. 
In the OPQ condition, the experimenter asked the 
confederate, “what happens if you change these sliders?” 
while moving the sliders, controlling for the pedagogical 
nature of the question. In the ONQ condition, the 
confederate picked up the machine and asked the 
experimenter, “what happens if you change these sliders?” 
while moving the sliders, controlling for children’s 
awareness of a knowledgeable other by having the 
confederate ignorant to how the machine works. 
Immediately, following these prompts, children engaged in 
a free play period described below. 
 
Free Play 
The child was then given five min to play with the machine 
and was informed that the confederate would be there if 
they needed anything. Specifically, children in all conditions 
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were told, “You can go ahead and play with this. I have to 
go over there to write something down for a couple minutes, 
but [confederate’s name] will be here if you need anything!” 
Then,the experimenter sat behind the child (out of sight) and 
pretended to write, while the confederate sat next to the 
child and pretended to read a book. During this play period, 
the machine would not activate at all, regardless of whether 
the child followed the experimenters’ instructions or 
suggestions. Playtime was ended once one of the following 
occurred: five minutes elapsed, the child verbally requested 
help, the child did not interact with the machine for 15 
consecutive s twice in a row, or the child asked to stop 
playing. All sessions were video-recorded. 

Outcome Measures 
All videos were coded by a trained coder for three outcome 
measures: (1) time to first look, (2) time before help-
seeking, (3) number of unique actions, (4) number of 
hypothesis-test interventions and (5) variability of 
hypothesis-test interventions. 
  
Time to first look  The time to first look was the amount of 
time the child spent attempting to activate the machine 
before looking at the confederate or experimenter for the 
first time. 
  
Time Before Help-seeking  The time to help-seeking was 
the amount of time child spent attempting to activate the toy 
on their own before verbally requesting help from either the 
confederate or the experimenter. 
  
Number of hypothesis tests (Perseverance)  The number 
of hypothesis tests was the number of times a child 
performed any other intervention on the machine that may 
involve the traditional use of the switch or dial “sliders” 
right before attempting activation with the block on the 
machine. An intervention required a manipulation of some 
factor of the toy or block and critically an attempted 
activation that immediately followed whereby the child 
placed the block on the machine. 
 
Number of unique actions  The number of unique actions 
was the number of unique manipulations to the machine that 
did not involve the traditional use of the switch or dial 
“sliders.” 
 
Variability of hypotheses tested The variability of 
hypotheses tested was the number of unique hypothesis-
tests performed on the machine. For example, if the child 
tried adjusting the dial and then placed the block on the 
activator, that would count as a single hypothesis test. 
However, a second manipulation of the same dial with a 
following block test would not count as a unique 
intervention and so would not additionally increase the total 
variability score beyond the initial attempt. 

 

Results 
Time to first look. Our first question concerned whether 
children were equally likely to visually “check-in” with the 
adults during the free play period. The rationale for this 
measure was that we hypothesized children might initially 
look to the confederate or experimenter when it became 
apparent that the machine was no longer activating as 
expected. Indeed, in all four conditions, on average, children 
looked to an adult within the first minute of play (PQ: 25 s; 
DI: 44 s; OPQ: 27 s; ONQ: 26 s), and there were no 
significant differences in the total amount of time before 
this first look, F(3, 96) = 1.12, p = .347, suggesting that 
children were equally capable of detecting the activation 
issue across conditions. 
 
Overall time playing. Our second question pertained to 
whether children would stop playing with the toy earlier in 
the DI, OPQ and ONQ conditions. We hypothesized that 
children in the PQ condition might play with the machine 
longer than children in the DI, OPQ, and ONQ conditions 
based on previous research (Yu et al., 2018), in which 
children explored the novel (functioning) machine longer in 
the Pedagogical Question condition. However, we observed 
no significant differences between conditions in the amount 
of time children spent playing with the machine, F(3, 96) = 
2.53, p = .062, indicating that children in all conditions 
played with the machine for approximately the same amount 
of time (MPQ = 240.72; SDPQ = 95.78; MDI = 188.16; SDDI = 
106.13; MOPQ = 205.56; SDOPQ = 112.03; MONQ = 159.52; 
SDONQ = 112.32). However, the trend here for children to 
play longer in the PQ conditions is suggestive. 
 
Number of hypothesis tests (Perseverance)  Third, we 
asked whether the number of hypothesis-test interventions 
during children’s play differed significantly between 
conditions. Specifically, if Pedagogical Questions both 
empower children to pursue a relevant learning goal (in this 
case to discern why the machine is failing to activate) in the 
face of repeated failure then we would expect children in the  
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Figure 2. Children in the Pedagogical Question condition 
performed significantly more hypothesis tests during the 
play period than children in the Overheard Pedagogical 
Question, the Overheard Naive Question, and the Direct 
Instruction conditions. 
 
PQ condition to perform more interventions on the machine. 
Indeed, the number of hypotheses tested significantly 
differed across conditions, F(3, 96) = 7.03, p < .001. 
Specifically, planned contrasts1 revealed that children in the 
PQ condition conducted significantly more hypothesis tests 
(M = 11.00; SD = 8.00) than children in the DI condition (M 
= 7.12; SD = 7.12), OPQ condition (M = 5.96; SD = 4.36) 
and ONQ condition (M = 3.92; SD = 3.49). There was no 
difference in the number of hypothesis tests between the 
children in the DI condition and children in the OPQ 
condition, p = .417, and there was no difference in the 
number of hypothesis tests between the children in the OPQ 
and ONQ conditions, p = .074. Thus, even though on 
average, children in all conditions were equally quick to 
notice something was wrong with the machine, and played 
with the machine for approximately the same amount of 
time, children in the PQ condition engaged in more 
hypothesis testing during this time, suggesting that PQs 
might both empower children to persevere in their 
exploratory causal testing attempts during play. 
 
Number of unique actions Next, we asked if children were 
more likely to explore more different features of the 
machine overall depending on the type of instruction they 
were given. By virtue of pedagogical questions being 
questions, the variability in children’s exploratory actions is 
not limited, leading us to predict children to show more 
variable exploration in the three question conditions. There 
were significant differences in the number of unique actions 
by condition, F(3, 96) = 3.36, p = .022. Planned contrasts 
revealed that children in the PQ (M = 3.64; SD = 1.85) and 
DI (M = 3.52; SD = 2.37) conditions performed more unique 
actions than children in the OPQ (M = 2.60; SD = 1.44) and 
ONQ (M = 2.32; SD = 1.35) conditions, p = .003. There 
were no significant differences in the number of unique 
actions  between  the  PQ and DI  conditions,  p = .842,  and  

 
 
Figure 3. Children in the Pedagogical Question and Direct 
Instruction conditions performed significantly more unique 
actions during the play period than children in the 
Overheard Pedagogical Question and the Overheard Naive 
Question conditions. 
 
 
there were no significant differences in the number of 
unique actions between the OPQ and ONQ conditions, p = 
.481. Contrary to our hypothesis, this suggests that the 
child-directed nature of pedagogical questions (and direct 
instruction), rather than the inquisitive nature of the input 
appears to promote variability during play. However, given 
that there were relatively few actions that might be 
attempted with the toy (unlike the Yu et al, 2018 novel toy 
study), this result should be interpreted with caution.  
 
 
Variability of hypotheses tested  Finally, we asked 
whether the variability of hypotheses tested specifically 
during children’s play differed significantly between 
conditions. That is, if pedagogical questions both empower 
the pursuit of a relevant learning goal (in this case to discern 
why the machine is failing to activate), then we would 
expect children in the PQ condition to perform more 
different types of interventions on the machine. Overall, the 
number of different hypotheses tested significantly differed 
across conditions, F(3, 96) = 4.08, p = .009. Specifically, 
children in the PQ (M = 2.28; SD = 1.21) and DI (M = 2.08; 
SD = 1.12) conditions performed more variable hypothesis-
tests than children in the OPQ (M = 1.52; SD = .77) and 
ONQ (M = 1.52; SD = .65) conditions, p = .001. There was 
no difference in the variability of hypothesis tests between 
the PQ and DI conditions, p = .546, and there was no 
difference in the variability of hypothesis tests between the 
OPQ and the ONQ conditions, p = .999  Again, child-
directed conditions led to more variable exploration during 
play time. 
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Figure 4. Children in the Pedagogical Question and Direct 
Instruction conditions demonstrated significantly more 
variability in their hypothesis tests during the play period 
than children in the Overheard Pedagogical Question and 
the Overheard Naive Question conditions. 
 

Discussion 
This study examined the effect of Pedagogical Questions on 
young children’s perseverance during a difficult problem-
solving task. First, we found that children in all conditions 
were equally likely to visually check-in with the adults 
during the free play period, thus children are equally quick 
to recognize that the machine was not functioning as 
expected. Second, we found that there were no differences 
in how long children played with the machine before 
reaching out for help. Despite recognizing a problem with 
the machine at equal rates and spending the same amount of 
time playing with the machine, , children in the PQ 
condition performed significantly more hypothesis tests, 
suggesting that prompting children with a Pedagogical 
Question may lead to their independently persevering 
through more failed attempts at problem solving before 
looking to others for help. Our results point to both the 
pedagogical nature of the question (rather than this effect 
being about questioning generally) as children in the ONQ 
condition demonstrated significantly fewer hypothesis tests 
prior to turning for help, and the child-directed nature of the 
question as children in the OPQ condition demonstrated 
significantly fewer hypothesis tests. Additionally, two 
surprising, but interesting findings indicate that when it 
came to promoting more variable exploration, as measured 
by the number of unique actions and the variability in 
hypothesis tests, the child-directed nature of the pedagogical 
input was crucial, as children in the two child-directed 
conditions(PQ and DI) demonstrated more variability during 
play time.s. 
  This study extends our understanding of the role of 
Pedagogical Questions in the preschool years by examining 
how pedagogical questions affect perseverance and 
variability during exploration when children are presented 
with a difficult problem. In the current study, there was a 
more obvious and specific goal for learners  in contrast to 
Yu et al. (2018), which examined what additional, 
unbounded exploration children pursued after the initial goal 

was quickly completed. Classic debates contrast instruction 
with exploration in terms of their ability to foster learning 
(Bruner, Jolly, & Sylva, 1976; Csibra & Gergeley, 2009; 
Piaget, 1929; Singer, Golinkoff, & Hirsh-Pasek, 2008; 
Tomasello & Barton, 1994; Vygotsky, 1978). However, 
learning in the real world depends on myriad factors beyond 
learning content. Often learning comes down to hard work 
and trying many possible solutions. Whereas these previous 
debates centered around the material to be learned, at least 
as important is the effort required. Effective methods of 
promoting learning in the real world will engage both. 
  Pedagogical questions are particularly promising in this 
respect. Bonawitz and colleagues (2011) showed that 
instruction, though powerful for ensuring specific 
information is learned, has negative consequences for future 
learning by reducing exploration. Yu et al. (2018) showed 
that pedagogical questions offer a potentially promising 
solution by achieving the benefits of direct instruction 
without restricting exploration following completion of a 
goal. Here we have shown that pedagogical questions 
additionally foster learning by increasing the children’s 
persistence in pursuit of solutions. 
 Pedagogical questions, questions asked by a knowledgeable 
person for the purpose of teaching, are a surprisingly simple 
approach. Demonstrations are easily converted into such 
questions. Given their simplicity, and the relevance to 
literatures in education and in question asking, it is 
interesting that they do not appear to have been explored 
previously. One possible reason is that these literatures tend 
to focus on behaviors that are easy to see. Pedagogical 
questions by definition depend on inferences about the 
questioner’s knowledge and intent. For this reason, 
comparison with overheard questions is an important 
control and a powerful demonstration of the importance of 
latent social variables in understanding learning.  
  Our work on Pedagogical Questions is part of a broader 
movement beyond simple dichotomies such as direct 
instruction versus exploration. Recent research has proposed 
Guided Learning as a framework for considering learning as 
a dynamic, interactive, social activity (e.g. Hirsh-Pasek et 
al., 2015). Many aspects of this framework remain to be 
formalized; however, we believe Pedagogical Questions 
provide one compelling example of guidance. Pedagogical 
Questions foster learning not by telling the learner the 
answer, but by offering the learner strong guidance toward 
the answer. Many open questions remain regarding when 
Pedagogical Questions are most effective and how they fit 
into the broader Guided Learning framework. We leave 
these to future work. 
 In sum, this study supports the view that pedagogical 
questions promote learning. Children who are asked 
pedagogical questions persevere in service of a specific 
goal. These findings are particularly relevant for educators 
who can use pedagogical questions in their classrooms to 
enhance children’s perseverance during challenging 
problem-solving activities. 
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Abstract 

Many students fail to develop adequate understanding of 
mathematical equivalence in early grades, with detrimental 
consequences for later algebra learning. The change 
resistance account (McNeil, 2014) proposes that students 
struggle with equivalence because traditional arithmetic 
practice overexposes students to mathematical expressions 
where all the operators are on the left of the equal sign. 
Students erroneously believe the equal sign means to “do 
something” or “give the answer” – and fail to see equations as 
relations between two expressions. These operations-based 
misconceptions affect how they perceive, conceptualize, and 
approach math problems and interfere with developing 
correct understandings of equivalence. The current paper 
explores 1) are these misconceptions evident as encoding 
errors in second graders? 2) do item properties make specific 
error types more or less likely? 3) do misconceptions in 
encoding impact solving performance? and 4) can targeted 
training mitigate the effects of prior misconceptions on both 
equation encoding and solving? We identify a category of 
misconception-based encoding errors that negatively impacts 
equation solving and replicate findings that a conceptually 
rich research-based intervention program is maximally 
effective in training students to overcome problematic 
misconceptions. 

 

Keywords: Mathematical representations; relational 
reasoning; mathematics education; randomized control trial 

Introduction 
How do early conceptions about equivalence impact 

children's ability to correctly encode, and later solve, 
arithmetic equations? Research suggests that understanding 
mathematical equivalence is a critical component of 
algebraic reasoning (Carpenter, Franke, & Levi, 2003; 
Charles, 2005; Knuth, Stephens, McNeil, & Alibali, 2006). 
However, the majority of US students fail to reason with 
and apply concepts of equivalence (McNeil & Alibali, 
2005), making encoding errors when reconstructing 
mathematical equations (e.g., McNeil & Alibali, 2004), and 
interpreting the equal sign to mean “calculate the total” 
rather than “two amounts are the same” (e.g., Behr, 
Erlwanger, & Nichols, 1980).  

McNeil and Alibali (2005; McNeil 2014) proposed a 
change-resistance account of children’s difficulty with 
mathematical equivalence. Traditional arithmetic 
instruction, which focuses on procedures (i.e., solving 
problems such as 7 + 2 = _), reinforces a misconception of 

the equal sign as a request for an answer, which, in turn, 
interferes with the development of relational concepts. Most 
arithmetic problems in early elementary math curricula 
show operations (e.g., addition and subtraction) on the left 
of the equal sign and the “answer” on the right (Seo & 
Ginsburg, 2003; McNeil, 2008). Children detect and extract 
patterns from these examples and ultimately construct long-
term memory representations. McNeil and Alibali 
characterize these representations as “operational patterns” 
as they reflect an understanding of arithmetic that focuses 
on the operators (e.g., +, -, ×, ÷) rather than the relational 
nature of mathematical expressions. Although default 
representations typically speed computation in the problem-
solving contexts that children encounter most frequently, 
these representations may lead to difficulties when 
operational patterns are mistakenly transferred to similar, 
but non-applicable, problem types (e.g., Bruner, 1957). 
Alibali and colleagues (Crooks & Alibali, 2013; McNeil & 
Alibali, 2004, 2005) have identified three different sub-
patterns, described below, that reflect a distorted view of 
arithmetic and hinder conceptual understanding of 
equivalence and underlying mathematics. Once entrenched, 
children rely on these potentially misleading patterns when 
encoding, interpreting, and solving novel mathematics 
problems. In the current study, we group these three types of 
errors as “misconception errors” (see Table 2) to 
differentiate them from errors believed to stem from 
working memory constraints or performance demands.  
 
Perceptual pattern errors. Through over-exposure to 
traditional arithmetic problems, children learn to expect 
math problems to have all operations on the left side of 
the equal sign, with the equal sign immediately before the 
answer blank on the right, an “operations = answer” 
problem format (McNeil & Alibali, 2004, Carpenter et al., 
2003). Students who expect all problems to have operations 
on the left fail to correctly encode the problem before them. 
For instance, after briefly viewing the problem “7 + 4 + 5 = 
7 + __” children who rely on their representations of the 
“operations = answer” problem format erroneously 
remember the problem as “7 + 4 + 5 + 7 = __” (McNeil & 
Alibali, 2004).  
 
Conceptual pattern errors. Children learn to interpret the 
equal sign operationally as a symbol to do something 
(Baroody & Ginsburg, 1983; Behr et al., 1980). When asked 
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to define the equal sign—even in the context of a 
mathematical equivalence problem—many children treat it 
like an arithmetic operator (like + or -) that means they 
should calculate the total of everything on the left side of 
the equal sign (McNeil & Alibali, 2005). 
 
Procedural pattern errors. Through early practice with 
traditional problems (e.g., all operations on the left of ‘=’ ), 
children learn to perform all of the listed operations on all 
given numbers in a math problem (e.g., add up all the 
numbers in an addition problem, McNeil & Alibali, 2004, 
2005). This incorrect representation of equations misleads 
students to solve the problem “7 + 4 + 5 = 7 + __” by 
performing all given operations on all given numbers and 
put 23 (instead of 9) in the blank (McNeil, 2007; Rittle-
Johnson, 2006, Falkner et al., 1999).  
 
A history of findings supports the hypothesis that children’s 
difficulties with mathematical equivalence are partially due 
to inappropriate knowledge of the perceptual structure, 
conceptual meaning, and procedural routine associated with 
encoding and solving equations. The change-resistance 
account further suggests that these faulty representations are 
derived from overly narrow experience with traditional 
arithmetic. Recent studies have documented the effects of 
incorrect representations of equivalence in fourth-graders 
(McNeil & Alibali, 2004) and have induced similar error 
patterns in adults (Crooks and Alibali, 2013). We build on 
the work of McNeil, Fyfe, and Dunwiddie (2015), who 
examined the impact of an early intervention on second-
graders multi-faceted understanding of equivalence, 
replicate and extending these findings to more closely 
examine the nature of early equivalence encoding and its 
relationship to equation solving in a large representative 
sample of students. 

In the current study, we sought to more deeply examine 
the nature of second-grade students’ encoding responses, 
looking for evidence of the misconception-based (i.e., 
perceptual, conceptual, and procedural) error patterns that 
have been theorized in past work from McNeil, Alibali, and 
others (McNeil et al., 2019, McNeil & Alibali, 2005), and 
induced in adults by Crooks and Alibali (2013).  

We further explore the relationship between encoding and 
solving of equivalence problems, asking whether the 
specific misconceptions identified through encoding errors 
are predictive of equation solving performance. We then 
examine the impacts of research-based equivalence training 
activities on encoding and solving accuracy. Specifically, 
we randomly assigned classrooms to training using an 
intensive treatment intervention or an active control 
condition consisting solely of non-traditional mathematical 
practice and measured the training impact on students’ 
ability to encode equations and solve equivalence problems 
post-training. We organize our findings to explore four 
related questions:  

 

Do second-grade students make encoding errors 
consistent with overgeneralizing patterns from early 
arithmetic?  
 
Do encoding errors systematically vary across items 
with different structure and length? How does the 
frequency of different types of encoding errors 
change with targeted training? 
 
How do misconception-based errors in students’ 
equation encoding predict equation solving?  

 
Does targeted, conceptually rich equivalence training 
impact encoding and equation solving?  

 
Measuring Equation Encoding and Solving. We 

assessed second-grade students’ ability to correctly encode 
and solve non-traditional equivalence problems before and 
after the intervention training using the same measures of 
equation encoding, equation solving sign used in previous 
work by McNeil and colleagues (Johannes et al., 2017; 
McNeil et al., 2012; McNeil & Alibali, 2005b). 

 
Equation encoding. The equation encoding measure 

consisted of recalling four math expressions (e.g., 2 + 6 =2 
+ _) presented one at a time. Each expression was visible for 
five seconds and students were instructed to remember and 
write down exactly what they saw. Responses were coded as 
correct if the student wrote the equation exactly as shown 
(i.e., the correct numbers and symbols in the correct order). 
We discuss the coding of relevant erroneous response types 
in the results. 

 
Equation solving. The equation solving measure consisted 

of eight equations with operations on both sides of the equal 
sign (e.g., 3 + 5 + 6 = 3 + __). For a response to be coded as 
correct, a student needed to write the value that would make 
the equivalence relation hold.   

 
Our sample of encoding and solving items is listed in 

Table 1. All items included one addend and a blank on the 
right side of the equal sign. The items varied on two 
dimensions: the number of addends (two or three) on the left 
side of the equal sign, and the position of the blank (at the 
end of the equation or directly after the equal sign).  
 
Table 1. Equation encoding and solving items administered 

pre- and post-intervention 
 

Addends Position 
of blank 

Encoding 
items 

Solving  
items 

Two 

End of 
equation 4+5=3+_ 3+7=3+_ 

2+7=6+_ 

After ‘=’ 7+1=_+6 5+3=_+3 
8+2=_+6 

Three 

End of 
equation 2+3+6=2+_ 3+5+6=3+_ 

6+2+8=4+_ 

After ‘=’ 3+5+4=_+4 7+2+4=_+4 
7+4+6=_+3 
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ICUE: Improving Children’s Understanding of 
Equivalence Intervention 

As current math practice seems to promote the 
development of faulty representations, the change resistance 
account of “operational patterns” offers design principles for 
instruction to improve students’ understanding of 
equivalence. Initially, researchers hypothesized that greater 
exposure to “non-traditional arithmetic” problems (e.g., 
presenting operations on the right side of the equation,  
“_ = 2 + 4” and using relational phrases such as “is equal 
to” instead of the equal sign in practice problems) may 
prevent students from developing operational patterns 
(McNeil et al., 2011). Though practice with non-traditional 
arithmetic led to improved outcomes over traditional 
instruction, a number of students failed to reach proficiency 
(McNeil, Fyfe, & Dunwiddle, 2015). 

To further promote mastery of equivalence, McNeil and 
colleagues added additional design features beyond non-
traditional arithmetic practice. The current version of the 
materials, dubbed Improving Children’s Understanding of 
Equivalence (ICUE), consists of second grade student 
activities that reduce reliance on operational patterns and 
promote deep understanding of mathematical equivalence 
through four key components, outlined below, that have 
independently been shown to be effective. Multiple pilot 
studies have since found that the ICUE treatment 
intervention is successful in improving student 
understanding of mathematical equivalence (Byrd et al., 
2015; Johannes et al. 2017). 

  
1. Nontraditional arithmetic practice (McNeil, Fyfe, & 

Dunwiddle, 2015, Chesney et al., 2012), 
2. Lessons that first introduce the equal sign outside of 

arithmetic contexts (e.g., “28 = 28”) before 
introducing arithmetic expressions (e.g., Baroody & 
Ginsburg, 1983). 

3. Concreteness fading exercises in which concrete, 
real-world, relational contexts (e.g., sharing stickers, 
balancing a scale) are gradually faded into the 
corresponding abstract mathematical symbols (e.g., 
Fyfe, McNeil, Son, & Goldstone, 2014), and 

4. Activities that require students to compare and 
explain different problem formats and problem-
solving strategies (e.g., Carpenter, Franke, & Levi, L. 
2003). 

Methods 

Design 
We used a cluster-randomized control trial design to 
examine the impacts of the ICUE intervention training 
relative to an active control program. Teachers were 
randomly assigned to use the either the ICUE Treatment 
intervention or Active Control materials. The Active 
Control consisted of workbook activities to control for time 
on task and contained non-traditional arithmetic practice but 

not the additional components present in the Treatment 
ICUE condition, described above. 
 
Participants. 44 second-grade teachers (24 treatment, 20 
control) used the activities in their classrooms in California. 
Class sizes ranged from 18 to 25, and we analyzed data 
from 482 students who completed the Treatment activities 
and 406 students who completed the Control activities and 
measures.  

Procedure and Materials 
The procedure for ICUE Treatment and Active Control 

conditions were identical, differing only in the content of 
the materials used by teachers and students. Each teacher 
received training on the study purpose, features of the 
activities, and strategies for integrating the activities into 
their typical mathematics curriculum.  

Prior to starting the study, participating teachers 
completed online surveys assessing their mathematics 
teaching experience and classroom structure and dynamics.  

After administering a pre-test, teachers used the study 
materials for approximately 15 minutes twice each week for 
16 weeks. In both conditions, teachers were asked to use the 
study materials to supplement, rather than replace current 
math instruction, and to limit the duration of the activities to 
20 minutes per session.  

After completing the 32 sessions, teachers administered 
the same pre-intervention measure of mathematical 
equivalence understanding, which included the equation 
encoding and solving items reported here, along with an 
item prompting children to name and define the “=” symbol, 
not reported. Teachers administered additional post-
intervention measures of transfer and computation fluency, 
we do not report these here. 

 
Active Control. Teachers in the Active Control condition 
received a set of student workbooks and a teacher guide. 

 
ICUE Treatment. Teachers in the ICUE Treatment 
condition received a set of student workbooks, a teacher 
guide, a set of classroom manipulatives including balance 
scales and flashcards. 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 1. Sample workbook page from the Active Control 
(left) and ICUE Treatment (right) condition materials. 
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Results 

Do second graders make misconception-based 
encoding errors?  

Crooks and Alibali (2013) identified three categories of 
errors in encoding and solving, reviewed above, which stem 
from different types of knowledge and misconceptions. We 
asked whether, after only one year of formal mathematics 
instruction, second graders produced erroneous encoding 
responses that align with these any of these three related 
facets of misunderstanding, grouping them together as 
“misconception errors”. We examined the frequency with 
which theoretically-relevant types of encoding errors, which 
can be induced in adults (Crooks & Alibali, 2013) naturally 
occur in young students. We differentiated these 
misconception-based errors from other types of errors, 
including performance errors, which we hypothesize stem 
from memory-based constraints in this population. 

We assessed students’ accuracy in encoding four different 
equivalence problems (see Table 1 for items) and examined 
the frequency with which they made different types of 
errors. Student in both the Control and Treatment groups 
produced a range of responses for each encoding item and 
made multiple types of errors, including misconception-
based errors, with different frequency. Examples and overall 
frequency of response types are listed in Table 2. 

Students produced the misconception-based errors of 
interest in approximately 20% of their responses overall.  
The majority of misconception-based errors produced in 
both conditions aligned with the perceptual error type 
identified by Crooks and Alibali (2013); conceptual and 
procedural errors types were produced relatively 
infrequently.   
 

Table 2. Response types and examples for encoding item 
2+3+6=2+_, with overall frequency of response pre- and 

post-training. 
 
Response type Examples Control  

Pre/Post 
Treatment  
Pre / Post 

Correct 2+3+6=2+_ 0.25/0.47 0.35/0.56 

Misconception 
errors 

2+3+6+2=_ 
2+3+6=11+2 
2+3+6=2+13 

0.23/0.21 0.24/0.17 

Memory error 2+3+6 0.06 / 0.08 0.06/ 0.15 
Other errors 2+3+7=6 0.39 / 0.21 0.28/ 0.09 
No response no response 0.07 / 0.02 0.05/ 0.03 

How does the equation structure influence 
encoding errors?  

We chose to focus on misconception-based and memory-
based encoding error patterns and explored variation in error 
rates across the four encoding items that varied in A. the 
number of addends, and B. the position of the blank in the 
equation (see Table 1 for items). The larger number of 
addends was predicted to increase the working memory 
demands of the problem.  The position of the blank at the 

end of the equation (e.g., 4+5=3+_) was predicted to 
increase the likelihood of perceptual pattern errors as these 
items are most perceptually similar to traditional arithmetic 
problems (e.g., 4+5+3=__), and may trigger operational, 
instead of relational, interpretations of the equal sign (e.g., 
as a symbol that means give the answer’) that give rise to 
erroneous arithmetic procedures (e.g., add up all numbers 
and write the sum in the blank; see Crooks & Alibali, 2013; 
McNeil et al., 2011).  

Students’ pre-intervention encoding error frequency is 
displayed by item in Figure 2. The frequency of 
misconception- and memory-based errors varied based on 
both the position of blank (at the end of the equation – first 
and third items - or directly after the ‘=’ sign – second and 
fourth items in Table 1) and the number of addends on the 
left side of the equation (two – first two items - or three – 
last two items in Table 1).  

In line with our predictions, regression models confirmed 
that students in both conditions produced a reliably greater 
number of perception-based errors for items with the blank 
at the end of the equation (β=0.852, SE =0.12, p<.01), and 
this interacted with the number addends, such that students 
produced the greatest number of misconception errors for 
the three-addend item with the blank at the end: 
“2+3+6=2+_” (β=0.534, SE =0.09, p<.05).  

Finally, students made a reliable number of memory-
based errors, but only for items with three addends 
(β=0.472, SE =0.11, p<.05). 

 
 

 
 

Figure 2. Pre-intervention patterns of misconception- and 
memory-based error responses for Treatment and Control 

students. Misconception errors were greatest for items with 
a blank space at the end of the equation (first and third 

items); memory errors were greatest for items with three 
addends (second and fourth items). 
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How does conceptually rich equivalence training 
change students’ encoding responses? 

We next examined the impact of the ICUE Treatment and 
Active Control training on misconception- and memory-
based encoding errors. We asked whether exposure to non-
traditional arithmetic, through the Active Control condition, 
was sufficient to maximally reduce these encoding errors, or 
whether more conceptually rich training, found in the ICUE 
Treatment intervention, would lead to greater error 
reduction. The change in students’ encoding errors from 
pre- to post-intervention is displayed in Figure 3. Students 
in the Treatment condition showed a greater reduction, post-
intervention, in misconception-based errors compared to 
students in the Control condition (β=0.921, SE =0.10, 
p<.01), and this reduction was greatest for items with a 
blank space at the end of the expression (β=0.633, SE 
=0.09, p<.05). Thus, for encoding, we find that conceptually 
rich training leads to greater reduction misconception-based 
errors. Training type did not significantly impact the 
frequency of memory errors for three-addend encoding 
items.  
 

 
 

Figure 3. Pre- to post-intervention changes in error 
responses for Treatment and Control students. Students in 

the Treatment condition showed a greater reduction in 
misconception-based errors (solid red bars), which was 
greatest for items with a blank space at the end of the 

equation. 
 
How do misconception-based errors in students’ 
equation encoding impact equation solving?  

Turning to equation solving, we tested whether 
perceptual errors in equation encoding reliably predicted 
students’ equation solving performance before students had 
received any training through the Treatment or Control 
interventions. For each item type, students completed one 
encoding item and two solving items (see Table 1). Thus, 
for each type of item, a student could solve both solving 
items correct, one correct, or zero correct. We used ordinal 
regression models to capture this ordering and tested 
encoding performance (i.e., whether a student encoded that 
type of item correctly), error types (misconception- and 
memory-based), and item properties (number of addends 
and location of blank space) as predictors. 

Pre-intervention solving performance was predicted by 
multiple aspects of encoding responses: students were more 
likely to solve an equivalence problem correctly if they had 
accurately encoded the same type of item correctly 
(β=0.778, SE=0.121, p<.05), and students were less likely 
to solve a problem correctly if they had produced a 
misconception-based error for that type of item on the 
encoding measure (β= -0.420, SE =0.097, p<.01).   

Performance was also predicted by properties of the 
items: items with two addends were more likely to be solved 
correctly than those with three addends (β=0.360, SE 
=0.079, p<.01) and items with a blank space directly after 
“=” were more likely to be solved correctly than those with 
a blank at the end of the equation (β=0.226, SE =0.079, 
p<.05). However, pre-intervention solving performance was 
not reliably predicted by memory-based errors, or assigned 
condition (β=-0.061, SE =0.078, ns).  

How does equivalence training impact equation 
solving? 

We used a similar ordinal regression model to test the 
effect of training condition on students’ post-intervention 
solving performance. Performance was best predicted by a 
combination of intervention condition and encoding 
responses; item properties (position of blank, number of 
addends) were not reliable predictors in the best-fitting 
model of solving performance.  The strongest single 
predictor of post-intervention solving performance was 
training condition: students in the Treatment condition were 
more likely to correctly solve items post-intervention, 
compared to students in the Active Control condition 
(Figure 4; (β= 1.267, SE =0.074, p<.01)). As in the case of 
encoding, we found that conceptually richer training led to 
more accurate solving performance. 

Students were also more likely to solve one or both 
equation solving problem correctly on the post-intervention 
measure if they had solved one correctly on the pre-
intervention measure (β=0.636, SE =0.12, p<.01) and were 
increasingly likely to solve both items correctly if they had 
solved both items correctly pre-intervention (β=1.053, SE 
=0.15, p<.01).  

Finally, as in the pre-intervention model, post-
intervention solving performance was predicted by encoding 
responses: students were more likely to solve an 
equivalence problem correctly post-intervention if they had 
accurately encoded the same type of item correctly post-
intervention (β=1.493, SE =0.08, p<.01), and students were 
less likely to solve a problem correctly if they had produced 
a misconception-based error for that type of item on the 
encoding measure (β= -0.749, SE =0.06, p<.05).  
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Figure 4. Treatment and Control students’ post-intervention 
solving performance broken down by frequency of correct 

and misconception-based encoding responses. Conceptually 
rich training in the Treatment condition led to the greatest 
improvement in solving performance; students from both 
conditions were more likely to solve an item correctly if 

they had encoded the same type of item correctly, and less 
likely if they had made a misconception-based error in 

encoding.  
 

Considering both our encoding and solving results, we 
found that, while manipulated item properties impacted 
students’ ability to correctly encode and solve non-
traditional equations pre-intervention, the magnitude of this 
impact was reduced, for encoding, and eliminated, for 
solving, by targeted conceptually rich training in 
mathematical equivalence. Specifically, students in the 
Treatment condition showed a greater reduction, post-
intervention in misconception-based encoding errors 
compared to Control students, and this reduction was 
greatest for items with a blank space at the end of the 
equation (i.e., items that are perceptually most similar to 
traditional arithmetic problems). Treatment students were 
also more accurate on a post-intervention equation solving 
task (with no reliable condition differences pre-intervention) 
and, while encoding responses were predictive of solving 
performance, manipulated item properties (number of 
addends and position of blank space) were not.  

Conclusions   
Understanding equivalence is key for later mathematical 

understandings. The change-resistance account suggests that 
students fail to develop appropriate representations of 
equations and equivalence because instruction with 
traditional arithmetic problems encourages students to 
develop ineffective representations of problems.  

In the current study, we explored the relationship between 
problematic representations and students’ ability to 
accurately encode and later solve non-traditional 
equivalence problems. We examined encoding and solving 
abilities in second-grade students and found that a single 
year of formal instruction (i.e., first grade) with traditional 
arithmetic practice was sufficient to reliably lead to 

misconception-based errors at encoding, which 
predominantly consisted of perceptual pattern errors, in the 
framework of Crooks and Alibali (2013). Baseline 
performance on both tasks worsened when target problems 
perceptually resembled traditional arithmetic problems (i.e., 
when a blank was at the end of an equation), and when 
working memory load (number of addends) was increased.  
Misconception errors at encoding were predictive of solving 
performance, both at baseline (pre-intervention) and at post-
intervention, suggesting that students who make these 
misconception-based errors at encoding may be activating 
similar faulty representations during the solving task. 
Finally, training improved both encoding and solving 
performance, demonstrating that erroneous response 
patterns can be overcome with intervention. However, 
students in the Treatment condition showed greatest 
improvements on both tasks, suggesting that deeper 
conceptual learning is required to resolve what, at first 
glance, might be thought of as a perceptual bias towards 
traditional arithmetic problem structure.  

Interestingly, while manipulated properties of the 
encoding and solving items (see Table 1) predicted students’ 
errors in the encoding task, these properties were only 
predictive of pre-intervention solving performance. 
Students’ post-intervention solving performance was 
predicted by their post-intervention encoding responses, but 
not directly predicted by item properties, suggesting that any 
relationship between these manipulated item properties, 
such as the number of addends and position of blank space, 
and solving performance is potentially mediated by 
encoding. This is consistent with a mediation analysis 
performed by Crooks and Alibali (2013), in which the 
authors demonstrated that the impact of priming incorrect 
representations on adults’ equation solving performance was 
mediated by problem reconstruction (or encoding). Future 
work will explore this relationship in more depth by using a 
greater number of items and possible combination of 
manipulated item properties. 

Even after training, students in both conditions did not 
reach ceiling performance in either encoding or solving non-
traditional equations. On the one hand, the equation 
encoding and solving assessment items were chosen to leave 
room for improvement and to avoid ceiling effects. 
However, in future work, we plan to explore how individual 
students resolve or persist in error patterns with training. We 
further plan to test whether different encoding errors give 
rise to specific solving responses, or whether any error 
simply creates noise in students’ equation solving processes. 
Our preliminary findings suggest that misconception-based 
errors in encoding lead to greater error rates in solving, but a 
larger sample of items and responses may be required to 
support fine-grained conclusions about the nature of this 
relationship and, specifically, how perceptual, conceptual, 
and procedural misconceptions individually and 
collaboratively impact equation encoding and solving.  
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Abstract 

Do we praise altruistic acts because they produce social 
benefits or because they require a personal sacrifice? On 
the one hand, utilitarianism demands that we maximize the 
social benefit of our actions, which could motivate 
altruistic acts. On the other hand, altruistic acts signal 
reputation precisely because personal sacrifice is a strong, 
costly signal. Consistent with the reputational account, 
these studies find that in the absence of reputational cues, 
people mainly rely on personal cost rather than social 
benefit when evaluating prosocial actors (Study 1). 
However, when reputation is known, personal cost acts as a 
much weaker signal and play a smaller role in moral 
evaluations (Study 2). We argue that these results have far-
reaching implications for the psychology and philosophy of 
altruism, as well as practical import for charitable giving, 
particularly the effective altruism movement. 

Keywords: Moral psychology; reputation; decision-
making; prosocial behavior; altruism 

Introduction 
Moral philosophers, as well as our inner ethicists, often 
recommend altruism as an essential component of moral 
behavior. Altruistic acts have a dual character—an 
altruistic act requires a personal cost and produces a 
social benefit. The most plausible arguments for the 
morality of altruism seem to place the emphasis on the 
social benefit. Consequentialism tells us that we should 
act to produce the greatest good for the greatest number 
(e.g., Bentham, 1907/1789; Mill, 1998/1861), which often 
entails altruistic acts. For example, if you live in a rich 
country, you probably gain far less from $20 than would a 
family in a poor country, suggesting that the moral act is 
to donate the $20 (Singer, 2015). 

Because human survival depends on coordinated social 
activity, we have moral intuitions which sometimes 
appear to track the conclusions of moral and legal 
philosophy (e.g., Mikhail, 2007); moreover, people 
sometimes behave like intuitive consequentialists, 
particularly when they have time to reflect (Greene, 
Morelli, Lowenberg, Nystrom, & Cohen, 2008). So 
perhaps our intuitive praise for altruistic agents stems 
from the same underlying consequentialist psychology 
that animates moral philosophers. 

But do we really value altruistic acts in proportion to 
the social benefit they produce? Or do we rely primarily 
on the personal cost entailed? In many situations this a 
moot question, since personal sacrifice and social good 
are often highly correlated. This is true in both our 
ancestral environment, where presumably our moral 
intuitions evolved, and our modern environments where 

our moral intuitions guide behavior. If you spend two 
hours gathering berries, you gather more than if you 
spend one hour; if you give $100 rather than $50 to 
Oxfam, the charity can accomplish double. But these 
dimensions are not always so tightly correlated. The 
effective altruism movement focuses on maximizing the 
social good accomplished per dollar donated, since 
effectiveness varies hugely across different causes 
(MacAskill, 2015; Singer, 2015). For example, one can 
prevent blindness in dozens of children in the developing 
world for the cost of training one service dog in the 
developed world. To effective altruists, a donation’s 
quality is at least as important as its quantity.  

Do ordinary people, like effective altruists, prioritize 
social good over personal sacrifice in evaluating prosocial 
acts? We propose that, conversely, personal sacrifice 
usually looms larger. Many argue that our intuitive 
morality evolved to induce cooperative behavior 
(Goodwin, Piazza, & Rozin, 2014; Haidt, 2007; Nowak & 
Sigmund, 2005; Sperber & Baumard, 2012; Uhlmann, 
Pizarro, & Diermeier, 2015). Praise by one’s social group 
rewards prosocial behaviors while blame penalizes anti-
social behaviors, and these judgments reflect changes in 
moral reputation. For example, people blame others for 
harmless actions accompanied by “wicked desires” 
(Inbar, Pizarro, & Cushman, 2012) because such desires 
can signal poor moral character. Character judgments 
depend mainly on intentions, not outcome (Cushman, 
2008), serving to track reliable individual differences in 
social behavior. Beliefs about moral reputation even have 
an identifiable neural basis (Delgado, Frank, & Phelps, 
2005), speaking to their psychological fundamentality. 

On this view, praise judgments flow from evidence of 
good moral character. Personal sacrifice is a stronger 
signal of character than social good for two reasons. First, 
personal sacrifice is under an actor’s direct control, 
whereas social good depends partly on uncontrollable 
factors. One can write a check to Oxfam for any amount, 
but what the charity accomplishes depends on their 
decisions and on luck. Inferences based on personal 
sacrifice avoid such sources of noise. Second, personal 
sacrifice is directly observable, whereas social good is 
often unobservable. We see the number on the Oxfam 
check, but usually not how many people were helped. 

Given that our interest here is in people’s moral 
evaluations of prosocial behaviors, the most directly 
relevant literature would seem to be moral judgment. 
However, this research has focused primarily on factors 
influencing blame for negative acts rather than praise for 
positive acts (e.g., Cushman, 2008; Inbar et al., 2012; 
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Mikhail, 2007). Research on charitable giving does 
provide some hints, however. People view prosocial acts 
unfavorably when those acts also benefit the actor 
(Ariely, Bracha, & Meier, 2009; Barasch, Levine, 
Berman, & Small, 2014; Newman & Cain, 2014), and 
these perceptions have negative downstream 
consequences for actual prosocial behavior (Ariely, 
Bracha, & Meier, 2009). This suggests that personal 
sacrifice is a necessary condition for positive evaluations 
of prosocial behavior. However, presumably sacrifice 
alone is not sufficient—it seems doubtful that purely self-
sacrificial acts would be seen as praiseworthy in the 
absence of some broader social benefit. The film The 
Seventh Continent depicts a middle-class family in 
modern Europe that destroys itself for no apparent reason, 
flushing their money down the toilet and committing 
suicide. To this audience these acts are puzzling and 
horrifying, not praiseworthy. Thus, the prior literature 
together with common intuition suggests that some degree 
of personal cost and some degree of social benefit are 
required for a prosocial act to be praised; indeed, this may 
be part of the very concept of altruism. 

Both cost and benefit appear to track judgments of 
praise when we are comparing some versus none. But 
would they track praise when comparing a larger amount 
to a smaller amount? In prior work, highly prosocial acts 
are not seen as more praiseworthy than slightly prosocial 
acts, although, interestingly, people were sensitive to the 
degree of harm in assigning blame (Klein & Epley, 2014). 
However, the effects of prosocial benefits versus costs 
have not been teased apart in observer’s moral 
evaluations—people may well be insensitive to the degree 
of cost as well as the degree of benefit in evaluating 
prosocial acts. On the actor side, people are more moved 
to donate by the plight of one than of many (Small, 
Loewenstein, & Slovic, 2007) and are largely indifferent 
to the number of individuals helped (Kahneman & 
Knetsch, 1992). Conversely, people are likelier to donate 
money when paired with a painful sacrifice (explaining, 
arguably, the prevalence of charity runs; Olivola & Shafir, 
2013). These results again are suggestive of possible 
insensitivity to the degree of benefit, but do little to 
clarify how prosocial actors respond to the degree of cost. 
Moreover, it is unclear whether these results would 
generalize to moral evaluations rather than prosocial 
behaviors themselves or when cost versus benefit are 
pitted against one another directly. 

Overall, prior work does not tell us whether moral 
judgments of altruist acts track personal sacrifice or social 
benefit. We know that some amount of personal sacrifice 
and social benefit are necessary conditions, but not 
whether one of these factors has an outsized influence 
compared to the other, when pitted against one another 
directly. This issue is critical to understanding the 
psychological basis of moral praise (utilitarian admiration 
vs. character signaling) and likely has implications for the 
design of charitable appeals. 

Thus, the current studies investigate this issue by 
testing judgments of praise in response to charitable 
donations. The studies orthogonally manipulate the 
amount of personal sacrifice (size of donation) and social 
good (number of individuals helped), measuring 
judgments of praise and character. In Study 2, 
independent reputational cues are available, whereas in 
Study 1 they are not. When strong reputational cues attest 
to a donor’s robust character, personal sacrifice is 
uninformative about moral character and therefore should 
not influence praise; however, sacrifice should have a 
large effect when other reputational cues are absent. 

Study 1 
Study 1 tested whether, absent further information about a 
person, judgments of prosocial behavior depend mainly 
on the degree of personal sacrifice, but not social good. 

Method 
A total of 598 American participants (56% female, Mage = 
37.4) were recruited for Studies 1A and 1B through 
Mechanical Turk. Participants were excluded if they 
failed an attention check (see below; N = 65).  

Participants read about a charitable donation benefiting 
people in a developing country. The charities focused on 
blindness, hunger, education, or disaster relief. The 
donations involved a low, moderate, or high monetary 
contribution (to manipulate personal sacrifice), and were 
low or high in effectiveness (to manipulate social good), 
with both manipulations between-subjects. These 
conditions always differed from one another by one order 
of magnitude (a factor of 10). For two of the vignettes, the 
beneficiary was an individual in the low-effectiveness 
condition and a small group in the high-effectiveness 
condition. For example: 
 

Julia decided to make a donation to charity. She donated 
[$20/$200/$2000] to a charity focused on international 
health. Her donation was used to cure [a child’s/10 
children's] blindness in Ethiopia. 

 

For the other two vignettes, the beneficiary was a small 
group in the low-effectiveness condition and a large group 
in the high-effectiveness condition. For example: 

 

Rob decided to make a donation to charity. He donated 
[$12.50/$125/$1250] to a charity focused on disaster relief. 
His donation was used to provide basic shelter to [10/100] 
people for one month after a hurricane in Guatemala. 

 

On the same screen, participants rated the 
praiseworthiness of the action (“Please rate the moral 
praiseworthiness of Julia’s action”) on a scale from 0 
(“Not very praiseworthy”) to 10 (“Extremely 
praiseworthy”), and the actor’s character (“Please rate 
Julia’s moral character”) on a scale from 0 (“Ordinary 
moral character”) to 10 (“Saint-like moral character”). 

After the main task, participants checked whether each 
of the four donation targets was mentioned in the study; 
participants making any incorrect answers were excluded. 
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Studies 1A and 1B were identical, except Study 1A 
included the low- and medium-contribution conditions, 
while Study 1B included the medium- and high-
contribution conditions. Thus, both studies used 2 
(personal sacrifice) x 2 (social good) designs. Given that 
the designs differed only in contribution levels, we 
combine them for analysis, to maximize statistical power 
and facilitate comparisons across studies. 

Results 
Overall, participants used the degree of personal sacrifice, 
but not of social good, to inform judgments of moral 
praise and character. The means are plotted in Figure 1. 

Since contribution condition is equal-interval in log 
scale, it was coded as a continuous variable, (–1 = low, 0 
= medium, 1 = high); effectiveness condition was 
contrast-coded (–1 = low, 1 = high). A linear regression 
was conducted, predicting moral judgments from 
contribution, effectiveness, and their interaction. There 
was a significant main effect of contribution, b = 0.40, SE 
= 0.11, 95% CI[0.18,0.61], p < .001, indicating that 
greater degrees of sacrifice were viewed as more morally 
praiseworthy. However, there was no effect of 
effectiveness, b = 0.08, SE = 0.07, 95% CI[–0.06,0.22], p 
= .26, nor a significant interaction, b = –0.16, SE = 0.11, 
95% CI[–0.37,0.06], p = .15. Thus, people did not take 
account of social benefit in evaluating the moral 
praiseworthiness of the donations. Moreover, this effect 
did not depend on whether the less-effective donations 
benefited an individual or a small group: Adding this 
variable and its interactions to the regression model did 
not improve fit, F(529,4) = 1.40, p = .23. (Adding a factor 
for vignette also did not improve fit, indicating that there 
are no reliable differences in the effects across vignettes.) 

The results were similar for character judgments. A 
regression analysis parallel to the above revealed a 
significant effect of contribution, b = 0.45, SE = 0.12, 

95% CI[0.21,0.69], p < .001, but not of effectiveness, b = 
0.02, SE = 0.08, 95% CI[–0.14,0.18], p = .82, or the 
interaction between these variables, b = –0.02, SE = 0.12, 
95% CI[–0.27,0.22], p = .84. Once again, adding the 
individual vs. small-group dummy-code and its 
interactions to the model did not improve fit, F(4,529) = 
0.62, p = .65, indicating that the effect does not depend on 
whether the less-effective donation benefitted an 
individual or small group. 

Discussion 
Praise judgments track the amount of money sacrificed by 
donors, but not the social good produced by those 
donations. This is consistent with a signaling theory of 
moral praise, which assumes (i) that moral praise derives 
from evidence of character and (ii) that personal sacrifice 
is a stronger (costly, controllable, and observable) signal 
of character. 

This mechanism will be tested more directly in Study 2. 
Before doing so, however, let us consider a possible 
boundary condition: Whether the individuals helped are 
closer or farther within one’s moral circle (Singer, 1981). 
People are parochial about their charitable giving (Baron 
& Szymanska, 2011; see also Nagel & Waldmann, 2013), 
favoring causes that benefit their in-group. Perhaps 
altruistic acts done to benefit others in distant countries  
are viewed as altruistic mainly due to the signaling value 
(i.e., their cost), but those done to benefit one’s own 
society are seen in a more utilitarian way. It is plausible 
that one would praise an altruistic act to the extent that it 
helped one personally, so if one identifies with one’s in-
group, the effectiveness of in-group help may impact 
praise judgments. 

To test this, a replication of Study 1 was conducted 
(Johnson, 2018), identical except for replacing the 
beneficiaries living in the developed world with 
beneficiaries living in America (e.g., a hurricane in South 
Carolina rather than Guatemala). This study found a very 
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Figure 1: Results of Study 1 (character information absent). 
Bars represent 1 SE. 

Figure 2: Results of Study 2 (character information present). 
Bars represent 1 SE. 
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similar pattern of results to Study 1: Contribution was a 
large and robust predictor of praise, b = 0.39, p < .001, 
while effectiveness had a small and marginal effect, b = 
0.11, p = .09. Combining the data from this follow-up 
with the Study 1 data, there was no significant interaction 
between beneficiary (in-group vs. out-group) and either 
contribution or effectiveness on praise. This both 
replicates the results of Study 1 and suggests that 
parochialism is not a boundary condition on the findings. 

Study 2 
Personal sacrifice is typically under the actor’s personal 
control and is typically visible; therefore it can be an 
informative, costly signal of moral reputation. In contrast, 
social good is less controllable and less visible. If this 
drives attention to costs rather than benefits, then 
independent evidence of an actor’s pristine moral 
character should decrease the relevance of individual 
prosocial acts for evaluating character and attenuate the 
effect of personal sacrifice. 

Method 
A total of 600 American participants (57% female, Mage = 
36.6) were recruited for Study 2. Participants were 
excluded if they failed the same attention check used in 
Study 1 (N = 91).  

Studies 2A and 2B were identical to Studies 1A and 1B, 
respectively, except that the vignettes were altered to 
include information establishing the actor’s altruistic 
moral character. For example:  

 

Rob works as a receptionist, earning about $31,000 per 
year. He donates about 30% of his salary each year to a 
variety of charitable causes. 
 

One of the donations Rob decided to make this year was 
[$12.50/$125/$1250] to a charity focused on disaster relief. 
His donation was used to provide basic shelter to [10/100] 
people for one month after a hurricane in Guatemala. 

 

The moral judgment question was rephrased so it was 
clear that it referred to this specific donation, rather than 
the pattern of charitable donations (e.g., “Please rate the 
moral praiseworthiness of Rob’s [$12.50/$125/$1250] 
donation”). Rephrasing this question to emphasize the 
contribution’s magnitude should, if anything, increase the 
salience of this factor, working against the hypothesis. 

Results 
The effects of sacrifice on perceptions of moral judgment 
and character were less pronounced in Study 2, when the 
donor’s strong moral character was established, compared 
to Study 1, where it was not. Figure 2 plots the means. 

 
Effects of contribution and effectiveness. Conditions 

were coded following the same procedure as Study 1. A 
linear regression was used to predict moral judgments 
from contribution, effectiveness, and their interaction. 

For character judgments, there were no significant 

effects for any of the variables—neither contribution, b = 
0.07, SE = 0.10, 95% CI[–0.12,0.26], p = .48, nor 
effectiveness, b = 0.10, SE = 0.07, 95% CI[–0.03,0.23], p 
= .13, nor their interaction, b = –0.10, SE = 0.10, 95% 
CI[–0.29,0.09], p = .32 reached significance. This is 
essentially a manipulation check, demonstrating that the 
manipulation successfully eliminated the diagnosticity of 
the specific donation for character. 

For praise judgments, there was a significant effect of 
contribution, b = 0.25, SE = 0.10, 95% CI[0.06,0.44], p = 
.009, albeit weaker than in Study 1 (see moderated 
mediation analysis below). Thus, moral judgments were 
more positive for actors making larger contributions, but 
this effect was less pronounced in Study 2, where moral 
character was established through independent evidence, 
compared to Study 1. 

Interestingly, there was also a modest effect of 
effectiveness on moral judgments, b = 0.14, SE = 0.07, 
95% CI[0.01,0.27], p = .039, driven particularly by 
differences between effectiveness conditions when 
sacrifice was low. (This interaction, however, did not 
reach significance, b = –0.16, SE = 0.10, 95% CI[–
0.35,0.03], p = .10.) This was not predicted a priori and 
should be taken with caution. One possibility is that if one 
is known to have a strong reputation, it may require 
considerable evidence to revise this default belief. When a 
donation is low in both magnitude and effectiveness, the 
combination of these two cues may provoke a negative 
revision to beliefs about that actor’s character. A second 
possibility is that personal sacrifice “crowds out” social 
benefit when reputation is unknown, but that there is 
room for social benefit to play a role when there is no 
need to establish reputation. However, these speculations 
are not tested directly, and these small, unpredicted 
effects should be interpreted cautiously until replicated. 

 
Moderated mediation. To test whether differences in 

character inferences accounted for the difference across 
Studies 1 and 2, a moderated mediation analysis 
(PROCESS Model 7; Hayes, 2013) was conducted on the 
combined dataset (N = 1042). 

As shown in Figure 3, character (the mediator) was 
predicted by contribution, b = 0.26, SE = 0.08, p = .001, 
95% CI[0.11,0.41] and by character information (–1 = 
Study 1, 1 = Study 2), b = 0.29, SE = 0.05, p < .001, 95% 
CI[0.19,0.39]. Importantly, the interaction was 
significant, b = –0.19, SE = 0.08, p = .015, 95% CI[–
0.34,–0.04], as contribution was a stronger predictor when 
character information was absent. Bootstrapping revealed 
that there was an indirect effect of contribution on praise 
judgments via character judgments for Study 1, b = 0.23, 
SE = 0.07, 95% CI[0.10,0.36], but not Study 2, b = 0.03, 
SE = 0.04, 95% CI[–0.05,0.12]. This led to a significant 
index of moderated mediation, b = –0.20, SE = 0.08, 95% 
CI[–0.35,–0.05]. Thus, character judgments mediate the 
effect of contribution magnitude on praise judgments only 
when the actor’s moral reputation is unknown.  
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Discussion 
Together, Studies 1 and 2 tell a clear story about moral 
evaluations of prosocial acts. Without evidence of 
reputation, prosocial behaviors are evaluated mainly by 
considering their personal sacrifice, rather than the social 
benefit. This occurs because personal sacrifice is a 
controllable and visible signal of cooperativeness and thus 
a useful input to reputational judgments. Thus, when 
reputation is available, personal sacrifice is less relevant 
to moral evaluations 

One possible concern about the character information 
manipulation differentiating Studies 1 and 2 is that this 
manipulation also introduced a reference point (the 
donor’s salary in dollars) in addition to establishing the 
donor’s generosity. However, since the key finding of 
Study 2 is that people rely less on personal sacrifice (in 
terms of dollars), it seems unlikely that this result would 
be explained by introducing a reference point. If anything, 
a reference point should make contribution amounts more 
salient and more readily comparable to the reference 
point, leading people to rely on contribution more rather 
than less. Nonetheless, future work might further rule out 
this concern by manipulating character in other ways 
(e.g., mentioning that the donor also volunteers her time 
or has dedicated her career to prosocial causes). 

General Discussion 
Do we admire altruists because they make personal 
sacrifices or because they help others? The present studies 
found that, for altruistic donations of money, moral praise 
is driven almost entirely by sacrifice (Study 1). This 
occurs because personal sacrifice, but not social good, is 
taken as a signal of moral character (Study 2). 

These results have implications for the psychology, 
philosophy, and practice of altruism. The findings are 
consistent with evolutionary accounts of moral 
psychology, according to which our moral faculties 
evolved to facilitate cooperation by tracking others’ 
reputations and creating social rewards for those willing 
to act for the group’s benefit (Nowak & Sigmund, 2005; 
Sperber & Baumard, 2012). If this is true, then our 
evaluations (e.g., praise and blame) of prosocial behaviors 
would track changes to the moral reputation or character 

of the actor. Since personal cost, but not social good, is 
usually under the actor’s direct personal control, the 
former is a more reliable signal of cooperativeness. 

How far would we expect these effects to generalize 
beyond this task? As discussed in conjunction with Study 
1, the results do not seem to depend on the fact that the 
beneficiaries live in distant countries, as similar results 
are observed when the beneficiaries are Americans 
(Johnson, 2018). Other boundary conditions, however, 
may be plausible. 

For example, the donors in the current studies may be 
seen as “outsourcing” the effectiveness of their charity to 
experts, and would thus not be seen as responsible for the 
outcome (e.g., Erat, 2013). This may be plausible, given 
previous work finding that people sometimes attribute 
more responsibility to individuals later in a causal chain 
(e.g., Brickman, Ryan, & Wortman, 1975; Spellman, 
1997) as well as research documenting intransitivity 
beliefs about causal judgments (i.e., X causes Y and Y 
causes Z, but X does not cause Z; Johnson & Ahn, 2015). 
In that case, people may value effectiveness more when a 
prosocial agent contributes directly rather than indirectly. 
A more specific version of this possibility is that people 
think differently about the effectiveness of time- versus 
money-donations. Previous work has indeed documented 
differences in how people think about donations of money 
versus time (Johnson & Park, 2019; Liu & Aaker, 2008; 
Reed, Aquino, & Levy, 2007). Would effectiveness also 
loom larger for time-donations?  

To test this, a replication of Study 1 was conducted, 
replacing the money-donations with time-donations 
(Johnson, 2018). The effects found in Study 1 were 
indeed reversed: Effectiveness but not sacrifice drove 
praise judgments. That is, unlike Study 1, contribution 
magnitude did not predict praise judgments, b = 0.09, p = 
.32, whereas effectiveness did, b = 0.17, p = .007. Thus, 
donation type (time vs. money) appears to be a boundary 
condition, such that effectiveness matters for time- but not 
for money-donations. 

This is broadly consistent with the causal responsibility 
account, according to which effectiveness is only deemed 
irrelevant when it is outsourced to others. Indeed, low 
effectiveness in time-donations may signal incompetence 
as much as prosociality. This account alone does not 

Figure 3: Moderated mediation model for Studies 1 and 2.  
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easily explain why personal sacrifice was not also used 
when evaluating time-donations. One possibility is that 
people place a greater psychological value on money than 
on other resources (Johnson, Zhang, & Keil, 2018), so 
that the sacrifice only looms large for money- but not 
time-donations. Future work might directly test these 
proposed mechanisms—the competence-signaling value 
of time effectiveness and the valuation difference between 
time and money sacrifices—in prosocial contexts. 

These results are mainly bad news for effective 
altruism, whose raison d’être is improving the quality of 
prosocial acts, not merely their quantity. Effective 
altruists may receive no more social praise than ineffective 
altruists who make comparably large donations, even if 
the former do far more good for the world. This 
compounds a related problem, that people often view the 
importance of various causes as subjective, rather than 
objectively measurable (Berman et al., 2018). However, 
people may well be able to account for effectiveness in 
their moral evaluations when this factor is more salient 
and the causes are easily comparable. Websites like 
givewell.com, which directly compare charities in terms 
of metrics such as dollars per life saved, may be an 
important front on the battle for effective giving. More 
broadly, interventions that make both the quantity and 
quality of donations publicly observable may help to 
incentivize effective prosocial behavior. 
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Abstract 

People assess others’ moral characters to predict what they 
will do. Here, we study the computational mechanisms 
used to predict behavior from uncertain evidence about 
character. Whereas previous work has found that people 
often ignore hypotheses with low probabilities, we find that 
people often account for the possibility of poor moral 
character even when that possibility is relatively unlikely. 
There was no evidence that comparable inferences from 
uncertain non-moralized traits integrate across multiple 
possibilities. These results contribute to our understanding 
of moral judgment, probability reasoning, and theory of 
mind. 

Keywords: Moral psychology; theory of mind; prediction; 
causal reasoning; categorization  

Introduction 
People intensely scrutinize others’ moral characters. Is 
Hillary Clinton a bastion of moral sanity or a devious 
opportunist? Is Donald Trump a man of the people or a 
corrupt plutocrat? Is your neighbor Todd a good person 
because he donates 20% of his income to charity, or a bad 
person because he received a citation for reckless driving? 

This obsession with moral character makes good 
evolutionary sense: People track reputation to assess who 
will cooperate (Sperber & Baumard, 2012). For this 
reason, some have argued that our moral judgments about 
individual acts are primarily determined by what those 
acts reveal about the actors’ character, rather than the 
intrinsic properties of those acts (Goodwin et al., 2014; 
Uhlmann et al., 2015). This explains our interest in 
intentions when judging an act’s wrongness (Cushman, 
2008). More broadly, knowing another’s character allows 
us to predict what he or she will do, just as knowing a 
thing’s category tells you about its properties. A bird is 
likely to fly; a snake is likely to be venomous. A good 
person may lend a helping hand; a bad person may stab 
you in the back. 

But often we do not know someone’s moral character 
with any certainty. Todd gives money to charity, but 
might the charity be a money-laundering operation? He 
was driving at a reckless speed, but what if he may have 
been doing so because he needed to perform an 
emergency surgery? How do we predict Todd’s actions 
when we cannot be sure of his intentions? 

In this paper, we ask what computational principles 
govern our predictions of others’ actions from uncertain 
beliefs about moral character. This work falls in a 
research tradition studying predictions from uncertain 

categories and uncertain beliefs about causation. For 
example, if you have uncertain evidence leading you to 
identify a bird as a heron with 65% probability and a 
crane with 35% probability, then when you predict the 
bird’s behavior, you may assume it is definitely a heron, 
without hedging for the possibility it is a crane (Malt et 
al., 1995; Murphy & Ross, 1994). If you think there’s a 
75% chance that the Fed chair’s statement implies a 
tightening of the money supply but a 25% chance it does 
not, you will act as though the Fed is certainly tightening 
the money supply when you are predicting the stock 
market (Johnson & Hill, 2017; Johnson et al., 2018). 
People often ignore uncertainty because it is 
computationally difficult to consider two possibilities 
simultaneously, considering the implications of each and 
integrating across those two possible worlds. 

But perhaps people would integrate across possibilities 
when reasoning about moral character. First, we may have 
encapsulated, module-like mechanisms for aspects of 
mental-state understanding (Leslie, 1995) and moral 
judgment (Mikhail, 2007). Perhaps such domain-specific 
mechanisms perform more efficiently than domain-
general mechanisms (Cosmides, 1989). Second, people do 
seem to integrate across possibilities for categories when 
one of the categories is dangerous (a shark) rather than 
neutral (a school of fish) (Zhu & Murphy, 2013). 

By analogy, if you think an act is probably caused by a 
morally neutral motive, and then encounter evidence that 
the motive may actually have been immoral, you might 
take account of that motive when making further 
predictions about the person’s future behavior. But if you 
instead encounter evidence that the motive may have been 
some other morally neutral motive, you may very well 
ignore that possibility when predicting behavior. 

The Current Studies 
Participants read scenarios about various actions taken by 
characters. For example, in one item, a driver struck a 
bicyclist while heading the wrong way on a one-way 
street. For each action, there were three possible 
explanations. One explanation was neutral (e.g., the driver 
did not know that the street was one-way; hypothesis 
HNeut), one implied poor moral character (e.g., the driver 
hit the bicyclist deliberately to teach him a lesson; 
hypothesis HImm), and one implied that the person had 
some other, non-moralized trait, such as forgetfulness, 
risk-aversion, or poor eyesight (e.g., the driver had 
forgotten to turn her headlights on; hypothesis HOther). 

We developed a set of actions predicted by HImm or 
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HOther. If HImm were true (the driver hit the bicyclist on 
purpose), then her immoral character would suggest other 
immoral actions (driving with expired registration; 
prediction ZImm). If HOther were true (she forgot to turn her 
lights on), then her trait (forgetfulness) would suggest 
other related actions (leaving her windows open before a 
rainstorm; prediction ZOther). In Pretest B, we obtained 
judgments of how likely each prediction was given each 
hypothesis. For example, we measured P(ZImm|HImm), the 
probability the driver would drive with an expired 
registration given that she had hit the bicyclist on purpose. 
We also measured P(ZImm|HNeut), P(ZImm|HOther), 
P(ZOther|HNeut), P(ZOther|HImm), and P(ZOther|HOther). 

For the Main Study, we were interested in predictions 
about these actions (ZImm and ZOther) when participants had 
evidence rendering her motives (HNeut, HImm, HOther) 
uncertain, and how these predictions from uncertain 
motives would compare to the predictions from certain 
motives from Pretest B. We constructed two versions of 
each scenario. In one version (uncertain evidence UImm), 
the neutral explanation HNeut was presented as most likely, 
but the immoral explanation HImm was also introduced as 
possible.1 For example, the driver probably didn’t know 
the street was one-way, but possibly hit the bicyclist on 
purpose. In Pretest A, we ensured that participants viewed 
the neutral intention (HNeut) as likelier than the immoral 
intention (HImm) given the uncertain evidence—that she 
really was likelier to have forgotten about the one-way 
street—but also that HImm was still reasonably likely. 

In the other-trait version (uncertain evidence UOther), 
HNeut was presented as most likely, but the other-trait 
explanation HOther was also introduced as possible. For 
example, the driver probably didn’t know the street was 
one-way, but possibly forgot to turn on her lights. Pretest 
A ensured that people viewed the neutral explanation as 
likelier than the other-trait explanation. Thus, Pretest A 
overall elicited judgments of P(HImm|UImm), P(HNeut|UImm), 
P(HOther|UOther), and P(HNeut|UOther). 

Our Main Study then tested whether people account for 
uncertainty about the actor’s character given uncertain 
evidence (UImm and UOther) when they are making 
predictions, measuring P(ZImm|UImm) and P(ZOther|UImm). 
Would participants think the driver is likelier to perform 
an immoral act like driving with an expired registration 
(ZImm) when she possibly hit the bicyclist on purpose 
(UImm) than when she definitely did not (HNeut)? If people 
focus on the most likely hypothesis (i.e., ignore 
uncertainty about character), then they should view these 
immoral acts as equally likely regardless of whether there 
is a chance the driver behaved immorally. Moreover, they 
should view ZImm as much less likely if it is merely 
possible that the driver has poor moral character (UImm) 

                                                
1 That is, UX refers to a case in which the neutral 
explanation of the person’s behavior is offered as likely, 
but X is mentioned as a less likely explanation. HX refers 
to cases in which only explanation X is offered. 

compared to knowing this for sure (HImm). That is: 
 

P(ZImm|HNeut) = P(ZImm|UImm) < P(ZImm|HImm) 
 

Likewise, if people ignore uncertainty about non-
moralized traits, the driver should be seen as equally 
likely to do other forgetful things regardless of whether it 
is possible that she forgot to turn on her lights:  

 

P(ZOther|HNeut) = P(ZOther|UOther) < P(ZOther|HOther) 
 

But as mentioned earlier, people might attend to the 
lower-probability trait when it is moralized, but not when 
it is non-moralized. If so, people would think the driver 
likelier to commit other immoral acts even if it is merely 
possible that she hit the bicyclist on purpose. But people 
would not consider the driver likelier to commit other 
forgetful acts if it is merely possible that she forgot to turn 
on her lights:  
 

P(ZImm|HNeut) < P(ZImm|UImm) < P(ZImm|HImm) 
P(ZOther|HNeut) = P(ZOther|UOther) < P(ZOther|HOther) 

 

To test these hypotheses, Pretest A normed judgments 
of P(Hi|Uk)—inferences of character from uncertain 
evidence of intentions—and Pretest B normed judgments 
of P(Zi|Hj)—predictions of future actions from certain 
knowledge of character. In the Main Study, we tested 
judgments of P(Zi|Uk)—predictions of future actions from 
uncertain evidence of intentions, using the pretest norms 
to generate normative predictions for comparison. 

Pretest A: 
Intentions from Uncertain Evidence 

We first sought to norm the values of P(HNeut) and 
P(HImm) given evidence UImm and the values of P(HNeut) 
and P(HOther) given evidence UOther. That is, we evaluated 
the scenarios we constructed to be sure that readers 
interpreted them as intended. This serves two purposes. 
First, for an item to be included, we need the neutral 
explanation to be deemed likelier than the moral or non-
moral trait explanations—that is, P(HNeut|UImm) > 
P(HImm|UImm) and P(HNeut|UOther) > P(HOther|UOther). 
Second, these estimates are needed to compute normative 
responses in the Main Study. 

Method 
We recruited 100 participants from Amazon Mechanical 
Turk (50% female, Mage = 36.9). Participants were 
excluded if they incorrectly answered more than 30% of a 
set of 10 check questions (N = 9). 

Each participant read eight items, with each item in one 
of two versions. In one version (UImm), the evidence 
suggested two possible explanations, HNeut and HImm, with 
HNeut designed to be more plausible. For example: 

 

Navigation through Tabbsboro is complicated by a set of one-
way streets, which were put into place because the streets 
are too narrow to allow parking and traffic in both 
directions. The police recently reported on an accident that 
happened in one of them. One late afternoon, Cindy Harlan 
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struck a bicyclist who was riding towards her car. The 
bicyclist was in her way and injured his hip in the accident. 
He was taken away in an ambulance. 

[HNeut] The police questioned Cindy, and she denied knowing 
that it was a one-way street. This was the first time she had 
driven on this road. There was no sign near the driveway, 
and she had not noticed that it was one-way when she 
arrived there. 

[HImm] The reporting officer noted that the bicyclist, who was 
a teenager, had seen Cindy earlier that day, and that she 
seemed irritated when he and his friends didn’t get out of the 
street fast enough when Cindy was driving to her 
acquaintance’s home. The officer asked if Cindy went the 
wrong way down the road because she saw the bicyclist 
playing in the street again and wanted to teach him a lesson. 
Cindy denied this and said that she simply didn’t know it 
was one-way. 

 

Participants then estimated the probabilities of HNeut 
(“Cindy hit the bicyclist because she didn’t know she was 
driving the wrong way down a one-way street”) and HImm 
(“Cindy hit the bicyclist because she was trying to teach 
the teenager a lesson”).  These judgments were entered in 
separate text boxes on scales from 0 to 100. Since the 
hypotheses were not strictly exhaustive, the judgments did 
not have to sum to 100 (though most did). 

In the other-trait version of each item (UOther), the 
evidence suggested two possibilities, HNeut and HOther, 
with HNeut again more plausible. For the item above, the 
last paragraph of the UImm version was replaced with: 

 

[HOther] The reporting officer noted that Cindy’s lights were 
not on. He asked if she might not have seen the bicyclist 
because she had forgotten to turn her lights on. Cindy 
pointed out that the accident had happened almost an hour 
ago, when it was light out. 

 

Participants then judged HNeut and HOther (“Cindy hit the 
bicyclist because she didn’t have her lights on”). 

Participants saw one version of each item, with half of 
the items in version UImm and half in version UOther, 
counterbalanced across participants. The order of the 
probability judgments was randomized for each item. 

Results 
All eight items met our desired conditions (see 

Appendix). Mean judgments of P(HNeut|UImm) and 
P(HNeut|UOther) ranged from 65% to 82% across items (Ms 
= 75.1% and 74.3%, respectively), and judgments of 
P(HImm|UImm) and P(HOther|UOther) ranged from 17% to 
32% (Ms = 24.2% and 25.3%, respectively). 

Pretest B: 
Predictions from Certain Intentions 

Next, we normed the values of the predictions, P(ZImm) 
and P(ZOther), given certain intentions HNeut, HImm, and 
HOther. Once again this has two purposes. First, an 
inclusion criterion: We want the immoral prediction ZImm 
to be more plausible given the immoral than the neutral 
intention—that is,  P(ZImm|HImm) > P(ZImm|HNeut)—and 

likewise for the prediction ZOther to be more  plausible 
given the other-trait than the neutral intention—that is, 
P(ZOther|HOther) > P(ZOther|HNeut). For example, since the 
immoral prediction ZImm in our example was driving with 
an expired registration, we needed to ensure that people 
agree that someone who hits a bicyclist on purpose (HImm) 
is more likely to drive with an expired registration (ZImm) 
than someone who hit the bicyclist accidentally (HNeut). 
Second, these values—predictions given certain 
intentions—are needed for comparison with the Main 
Study, which measured predictions given uncertain 
intentions. 

Method 
We recruited 149 participants from Mechanical Turk 
(29% female, Mage = 33.9). Participants were excluded 
using the same criterion as Pretest A (N = 25). 

Each participant read eight items, with each item in one 
of three versions. In one version, HNeut was true. For the 
Tabbsboro example, the first paragraph was the same as 
in Pretest A, and the remainder of the item read: 

 

Cindy didn’t realize that it was a one-way road. This was the 
first time she had driven on this road. There was no sign near 
the driveway, and she had not noticed that it was one-way 
when she arrived there. 
 

In a second version, HImm was true: 
 

Cindy had pulled out of an acquaintance's driveway and 
turned left, even though that was the wrong way for this one-
way street. She went the wrong way because she saw several 
kids who had irritated her earlier in the day for not getting out 
of the street fast enough, so when she saw them again, she 
wanted to drive close to them to teach them a lesson. 

 

Finally, in a third version, HOther was true: 
 

Cindy had pulled out of an acquaintance’s driveway and 
turned left, but she didn’t see the bicyclist because she had 
forgotten to turn her lights on. 

 

Participants then estimated five probabilities for each 
item. We included two versions each of ZImm (“What is 
the probability that Cindy would drive her car with an 
expired vehicle registration?”) and ZOther (“What is the 
probability that Cindy would forget to shut her window 
the night before a thunderstorm?”). For the Main Study, 
we chose the best version for each item to maximize the 
chance we could use a given item. We also included a 
filler item (“What is the probability that the city will 
install a clearer sign in the next week?”) which would not 
necessarily vary based on Cindy’s intention. These 
judgments were made using the same procedure as Pretest 
A. 

Participants saw one version of each item, with the 
eight items distributed about evenly across the three 
versions, counterbalanced across participants. The order 
of the probability judgments was randomized for each 
item. 
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Results 
The probability of ZImm was consistently judged higher 
given HImm than given HNeut; that is, P(ZImm|HImm) > 
P(ZImm|HNeut) for all items (Ms = 65.6% and 26.4%, 
respectively), with the difference between these 
conditional probabilities ranging from 26.7% to 53.4% 
across items (see Appendix). P(ZOther|HOther) was higher 
than P(ZOther|HNeut) for all items but one (Ms = 60.7% and 
49.8%, respectively), with the difference between these 
probabilities varying from –1.5% to 23.2% across items. 

Since all items satisfied the desired conditions for ZImm, 
we did not exclude any items for the Main Study. 
However, these results suggest two caveats. First, it is 
difficult to compare participants’ inferences about moral 
versus other kinds of traits, since the morally laden 
predictions (ZImm) were much more responsive to 
knowledge of intentions compared to the non-morally 
laden predictions (ZOther—see later discussion). Given this 
limitation, any conclusions about moralized versus non-
moralized character traits must be provisional. Second, 
because some of these items were not very robust for the 
non-morally laden predictions, we repeat key analyses on 
individual items. 

Main Study: 
Predictions from Uncertain Evidence 

The Main Study tested inferences about people’s future 
actions based on uncertain knowledge of their intentions.  
Participants saw the evidence normed in Pretest A, 
making predictions about the actions normed in Pretest B. 

Method 
We recruited 99 participants from Mechanical Turk (54% 
female, Mage = 37.5). Participants were excluded using the 
same criterion as in the pretests (N = 1). 

Participants read the eight vignettes used in Pretest A, 
each in one of the two versions (either UImm or UOther). For 
each item, participants were asked questions across two 
pages (with the vignette text displayed on the screen for 
both). On the first page, participants made predictions of 
ZImm and ZOther, using the phrasing normed in Pretest B. 
On the second page, participants indicated which 
intention they thought was likelier. For the UImm version 
of the item, participants chose between HNeut (“Cindy hit 
the bicyclist because she didn’t know she was driving the 
wrong way down a one-way street”) and HImm (“Cindy hit 
the bicyclist because she was trying to teach the teenager 
a lesson”); for the UOther version, participants chose 
between HNeut and HOther (“Cindy hit the bicyclist because 
she didn’t have her lights on”). 

Results 
Overall, participants tended to place positive weight on 
the immoral explanation HImm when making predictions, 
even when they acknowledged that the neutral 
explanation HNeut was likelier. This is a departure from 

most previous studies of predictions from uncertain 
beliefs. On the other hand, there was little evidence that 
participants placed any weight on the other-trait 
explanation HOther when making predictions, which raises 
the possibility that people might attend selectively to 
evidence of immoral intentions. Finally, there was modest 
evidence that people underweighted HImm relative to 
normative standards, and considerable evidence for 
underweighting HOther. 

We tested reliance on HImm in two ways. First, we 
conducted an item-level analysis, averaging probability 
judgments across all participants (see Appendix). 
Unsurprisingly, mean judgments of P(ZImm|UImm) (31.9%) 
were lower than P(ZImm|HImm) in Pretest B (65.6%), t(7) = 
8.80, p < .001, d = 3.11, reflecting the fact that HImm had a 
low prior probability given evidence UImm. More 
interestingly, mean judgments of P(ZImm|UImm) (31.9%) in 
this study were higher than P(ZImm|HNeut) in Pretest B 
(26.4%), t(7) = 3.37, p = .012, d = 1.19. That is, when the 
evidence is uncertain between HNeut and HImm, predictions 
of ZImm fall between predictions made when either HNeut 
or HImm is certain. This shows that people take both HImm 
and HNeut into account when predicting ZImm. (In English: 
When there are two possibilities, the induction will take 
both into account and therefore lie in between the 
predictions given either possibility alone.) 

We can also use the data from Pretests A and B to 
calculate normative values of P(ZImm|UImm): 

 

P(ZImm|HNeut)P(HNeut|UImm) + P(ZImm|HImm)P(HImm|UImm) 
 

These normative responses are given in the Appendix for 
each item (M = 35.7%). Participants’ actual judgments (M 
= 31.9%) were marginally more conservative, t(7) = 1.99, 
p = .087, d = 0.82, compared to the normative responses, 
suggesting that participants underweighted HImm. 
Although statistically not very robust, this would be 
consistent with previous studies, finding that people 
underweight unlikely hypotheses, even when they do not 
ignore them entirely (Johnson, Merchant, & Keil, 2018). 

This item analysis, however, can be criticized because it 
lumps together participants who agreed that HNeut was 
likelier than HImm (which should be the dominant belief, 
based on Pretest A), with those who believed the 
converse. In fact, about 19% of responses disagreed with 
our assumption that HNeut was likelier. Thus, the analysis 
above could be lumping together two populations: Those 
who believed HNeut was likelier and assigned no weight to 
HImm, and those who believed HImm was likelier and 
assigned no weight to HNeut. The item means would look 
like both hypotheses are being considered, but this is an 
illusion due to mixing two populations (Malt et al., 1995). 

Thus, our second approach analyzed the data at the 
level of individual participants, including only 
participants for each item who agreed that HNeut was the 
likelier than HImm. Using this approach, participants rated 
P(ZImm|UImm) numerically higher than the average pretest 
ratings of P(ZImm|HNeut) for 6 of the 8 items, significantly 
so for three of the items (items 2, 5, and 6; ps < .02); one 
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item was significant in the opposite direction (item 7; p = 
.026). Overall, this evidence is moderately consistent with 
the idea that people often place weight on HImm even 
when they view HNeut as likelier. 

We also used this approach to test whether people 
would underweight HImm even when they assigned 
positive weight to it. For this analysis, we included all 
participants (even those indicating that HImm was likelier 
than HNeut) because the estimates from Pretest A, used to 
calculate normative values, average across both kinds of 
participants. Participants rated P(ZImm|UImm) numerically 
lower than its normative value for 5 of the 8 items, but 
significantly for only one item (item 7); no items were 
significant in the opposite direction. 

The above analyses focused on the UImm condition. 
What about the UOther condition? The item analysis found 
that judgments of P(ZOther|UOther) (M = 45.2%) were lower 
than P(ZOther|HOther) from Pretest B (M = 60.7%), t(7) = 
2.85, p = .025, d = 1.01. But unlike the UImm condition, 
there was no evidence that people took account of HOther, 
since P(ZOther|UOther) judgments (45.2%) did not differ 
from P(ZOther|HNeut) judgments from Pretest B (49.8%), 
and indeed were in the wrong direction on average, t(7) = 
–0.86, p = .42, d = –0.31. That said, these judgments also 
did not differ significantly from their normative values 
(52.6%), t(7) = 1.47, p = .18, d = 0.50 (although the 
normative values themselves did differ significantly from 
P(ZOther|HNeut); p = .023). These inconclusive results are 
probably due to the poor diagnosticity of intentions for 
predicting ZOther, shown in Pretest B. 

Since the diagnosticity differed across items, it is useful 
to conduct subject-level analyses for each item, as we did 
for the UImm condition. Looking at just those who agreed 
that HNeut was likelier than HOther, ratings of P(ZOther|UOther) 
were higher than the average pretest ratings of 
P(ZOther|HNeut) for only 3 out of the 8 items, with only one 
item reaching significance (item 1; p = .037), and three 
items reaching significance in the opposite direction 
(items 6, 7, and 8; ps < .001). Conversely, looking at all 
participants, ratings of P(ZOther|UOther) were lower than the 
normative scores for 5 out of the 8 items, with 4 items 
reaching significance (items 2, 6, 7, and 8; ps < .02). 
These results cast doubt on the idea that people place 
positive weight on the other-trait hypotheses when 
making predictions, suggesting that people underweight 
such hypotheses. However, this conclusion must be 
provisional given the poor diagnosticity of some of the 
non-moralized traits. 

Discussion 
Judgments of moral character are central to social life. 
They guide our decisions about who we interact with, 
inform our beliefs about what others are thinking, and 
help us to predict what others are going to do. But moral 
character is often ambiguous, since we often cannot know 
others’ intentions with certainty. How do we predict 
others’ behavior when their character is uncertain? 

First, in contrast to other studies of predictions from 
uncertain beliefs (Johnson et al., 2018; Malt et al., 1995), 
we find that people have at least some ability to account 
for the possibility of immoral character, even when it is 
relatively unlikely. In vignettes where characters were 
assigned a 25% probability of a nefarious motive, people 
took this motive into account when predicting other 
immoral behaviors. Although this result was not 
consistent across all of our items, it was statistically 
robust for some of them and was significant overall. 

Second, it is possible that this ability to account for 
uncertain traits is specific to moral traits. There was little 
evidence that participants weighted uncertain non-moral 
traits (e.g., poor eyesight) in predictions. This result is 
limited by the relatively poorer quality of our non-moral 
than of our moral items, suggesting the need for future 
research with more directly comparable items. 

This problem, however, may reflect a real issue in 
making predictions about human behavior. When 
someone makes a mistake of some kind (as all these 
examples are), there are many factors that could be 
involved, and it may be hard to rule any out. If someone 
makes a wrong turn while driving, the person could well 
have not been paying attention, the sign might not have 
been very clear, the traffic might have been distracting, 
and so on. The presence of one of these explanations does 
not greatly reduce the possibility that one of the others 
also applied. Thus, such explanations based on non-moral 
character traits may not be very diagnostic about future 
actions. Morality, in contrast, may be of special interest to 
people precisely because it is thought to be diagnostic. 

Third, we compared judgments to normative 
benchmarks. There was a trend toward underweighting 
the less-likely hypothesis. For the moral traits, this trend 
reached only marginal significance overall because 
participants’ judgments were actually quite close to the 
normative benchmarks; only one individual item revealed 
significant evidence of underweighting. For the non-
moralized traits, there was less room for reliable 
differences to emerge between actual and normative 
judgments overall, given the poor quality of some of the 
non-moral items. But there was considerable evidence for 
underweighting for half of the individual items. Thus, 
there seems to be more robust underweighting of unlikely 
non-moral traits than of unlikely moral defects. 

These results contribute to several conversations in 
cognitive and social psychology. First, they add to our 
understanding of when people account (or fail to account) 
for uncertainty in probabilistic reasoning (e.g., Johnson et 
al., 2018; Zhu & Murphy, 2013). Second, they help to 
elucidate the mechanisms by which we compute others’ 
mental states (Jara-Ettinger et al., 2016; Leslie, 1995). 
Finally, they sharpen our understanding of the interplay 
between domain-specific and domain-general 
computational principles in moral judgment (Cosmides, 
1989; Mikhail, 2007). Moral reasoning may be more than 
just a special case of general-purpose thought. 
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Appendix 
  Pretest A 

  P(HNeut|UImm) P(HImm|UImm) P(HNeut|UOther) P(HOther|UOther) 

Item 1 Hitting bicyclist 65.4 31.5 73.4 29.4 

Item 2 Taking someone’s umbrella 78.7 21.4 72.5 23.6 

Item 3 Assigning jobs 75.7 24.8 67.5 32.1 

Item 4 Staring at student 69.4 29.8 73.1 26.2 

Item 5 Writing essay 81.0 17.9 74.2 25.4 

Item 6 Hitting sports opponent 81.4 18.2 75.1 25.0 

Item 7 Child’s eye injury 73.3 25.8 82.0 16.9 

Item 8 Medical recommendation 76.0 24.3 76.8 23.5 

Mean  75.1 24.2 74.3 25.3 

  Pretest B 

  P(ZImm|HImm) P(ZImm|HNeut) P(ZOther|HOther) P(ZOther|HNeut) 

Item 1 Hitting bicyclist 55.3 28.6 45.9 23.3 

Item 2 Taking someone’s umbrella 71.4 35.2 66.5 43.3 

Item 3 Assigning jobs 84.3 31.0 56.2 54.4 

Item 4 Staring at student 72.1 36.6 67.2 64.8 

Item 5 Writing essay 60.2 9.0 72.9 57.8 

Item 6 Hitting sports opponent 63.1 18.2 35.9 14.9 

Item 7 Child’s eye injury 72.0 33.3 71.1 67.9 

Item 8 Medical recommendation 46.3 19.5 70.3 71.8 

Mean  65.6 26.4 60.7 49.8 

  Main Study 

  Actual Normative 

  P(ZImm|UImm) P(ZOther|UOther) P(ZImm|UImm) P(ZOther|UOther) 

Item 1 Hitting bicyclist 37.6 35.1 37.3 29.7 

Item 2 Taking someone’s umbrella 43.0 39.5 42.9 49.0 

Item 3 Assigning jobs 37.3 61.6 44.1 55.0 

Item 4 Staring at student 41.7 62.7 47.3 65.4 

Item 5 Writing essay 16.2 27.2 18.2 61.6 

Item 6 Hitting sports opponent 27.1 25.7 26.4 20.2 

Item 7 Child’s eye injury 28.1 55.6 43.4 68.4 

Item 8 Medical recommendation 24.2 54.7 26.0 71.4 

Mean  31.9 45.2 35.7 52.6 
 

Note. Entries are the mean probability judgments for each item (expressed as percentages), averaged across participants. 
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Abstract 
Since we rarely view our own body movements in our daily 
lives, understanding the recognition of self-body movement 
can shed light on the core of self-awareness and on the 
representation of actions. We first recorded nine simple and 
nine complex actions performed by individual participants, 
who also subsequently observed nine videos displayed on the 
screen and imitated these actions. After a delay period of 35-
40 days, participants were asked to identify their self- body 
movements presented as point-light displays amongst three 
other actors who performed the same actions. Participants were 
able to recognize themselves solely based on kinematics in 
point-light displays. However, self-recognition accuracy 
varied according to the complexity of performed actions, with 
more accurate self-recognition for complex than simple 
actions. The ability of self-recognition with simple actions 
showed a significant relation with autistic traits (negative 
relation: poorer self-recognition accuracy with more autistic 
traits), schizophrenic traits (quadratic non-linear relation, 
participants with the median degree of schizophrenia traits 
performed better than participants at the extremes), and with 
imitation actions and motor imagery traits (linear relation: 
increased self-recognition accuracy with greater motor 
imagery).  We also found that participants did not recognize 
actions that only required visual experience but could identify 
their self-generated actions that required motor experience, 
underscoring the importance of motor experience to the 
representation of self-body movements.  

Keywords: self-recognition, body movement, action, 
individual differences 

Introduction 
Of the fundamental prerequisites of human existence, the 
recognition of the “self” is a crucial pre-reflective, automatic 
process, underlying human perception and cognition. The 
ability to self-recognize is fundamental to the construction of 
an identity, agency, self-awareness, and self-consciousness 
(Gallup, 1970), and impairments in self-recognition ability 
can impact the quality of social interaction and 
communication (Ornitz & Ritvo, 1968)  

Constructing the “self” is complex, accounted for by 
various disciplines all attempting to instantiate a definition. 
For example, examining a singular construct such as self-
consciousness, has been extensively studied in humans, other 
primates, dolphins, and even extended to non-human agents, 
such as robots.  Importantly, most of these accounts of self-
processing are rooted in recognition-based self-face 
processing (e.g., Uddin, Iacoboni, Lange, and Keenan, 2007), 
famously standardized by Gallup (1970) in his prototypical 

mirror mark test. However, only relying on self-face 
recognition as an index for identifying the self is limited to 
serve as a general account for the integrated self-processing 
based holistically on face, body, voice and even body 
movements.  

Given the dynamism of our everyday environment and lack 
of privileged access to viewing our bodies in motion, 
movements of our own body may serve as a good measure 
without relying on rich visual experiences of the self. In this 
vein, several studies extended self-recognition from static 
faces to whole-body movements, with visual input reduced to 
dynamic dot movements, as in point-light displays. After 
participants’ body movements were recorded with a motion 
capture system, participants were still able to recognize their 
own action, even with scant visual information (Cutting & 
Kowlowski, 1977). Such above-chance performance for self-
recognition extracted from predominantly from body 
kinematics was found for many different actions that varied 
in complexity (Loula et al., 2005; Burling, Kadambi, Safari, 
& Lu, 2018). 

The impact of intrinsic traits to self-recognition ability, on 
the other hand, is less studied in the literature. There are a 
number of reasons as to why it is important to measure 
individual difference traits in self-body recognition. First, the 
unique contribution of various individual difference 
measures can uncover critical information that could 
potentially be lost through group-level averaging (Peterzell, 
2016). Additionally, self-recognition is a complex process, 
with its investigation particularly hampered by its own 
operationalization and resulting lack of objectivity 
(consisting of no clear-cut computational investigation).  

What individual differences might impact self-recognition 
from body movements? The joint contribution of both action 
perception and understanding likely recruits a distinct neural 
system, with the most prominent account surrounding the 
mirror neuron system. The mirror neuron account of action 
understanding suggests that perception and action are tightly 
linked through a “mirroring”, simulation-based mechanism 
that allows humans to understand the kinematic goals of 
actions (Rizzolatti & Craighero, 2004). Impairments in this 
mirroring mechanism may underlie social perception 
disorders such as Autism and Schizophrenia. Consistent with 
this view, previous behavioral research in biological motion 
perception has shown that individuals with Autism (Blake et 
al., 2003, Moore et al., 1997) and individuals with 
Schizophrenia demonstrate impairments in biological motion 
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perception, such as in discriminating communitive actions 
from non-communicative actions presented in point-light 
displays (Okruszek et al., 2015).  

The ability to interpret social actions not only shows 
impairment in individuals clinically diagnosed with Autism 
Spectrum Disorder and Schizophrenia, but also individual 
differences amongst typical populations in those with varied 
degrees of autistic traits (Miller & Saygin, 2013; Ahmed & 
Vander Wyk, 2013; van Boxtel, et. al., 2017), as well as 
schizophrenic traits, which impacts self-face processing 
(Platek & Gallup, 2002). Given the individual differences in 
biological motion perception in the general population, it is 
possible that people may show differing ability in self-
recognition of own body movements. To date, only one other 
study (Burling et al., 2018) has compared self-recognition 
performance of body movements between people with high 
degree of autistic traits and people with low autistic traits. 
This study found a significant difference at the performance 
level between the two groups of participants. However, no 
study has systematically mapped out any other individual 
difference measures and run a large sample of participants to 
examine the individual differences in self-recognition from 
body movements.   

In the present study, we included three different individual 
difference measures: autistic traits, schizophrenic traits, and 
motor imagery traits, all of which are linked to both social 
perception and likely functions of the mirror neuron system. 
Three main research questions were addressed. First, how 
well can people identify themselves from only the kinematics 
of body movements, and does the performance of self-
recognition depend on the complexity of performed actions? 
Second, to what extent does the interplay between motor 
(more mirror-based) and visual experience (more perception-
based) determine the performance of self-recognition from 
actions? Finally, how do individual differences in the ability 
to recognize own-actions displayed in point-light stimuli 
relate to motor imagery ability and distinct socio-cognitive 
traits (autistic and schizophrenic)? 

 
Experiment 

Method 
Participants 71 undergraduate students (Mage = 20.98) were 
recruited through the Subject Pool at the University of 
California, Los Angeles. The study was approved by the 
UCLA Institutional Review board. All participants were 
provided course credit for their participation, and were naïve 
to the purpose of the study. Participants had normal or 
corrected-to-normal vision and no physical disabilities. 
Procedure The experiment was split into two sessions: 
motion recording and action recognition. The first phase 
consisted of a motion recording session, where participants 
performed various actions and were recorded with a motion 
capture system. The second phase, consisted of two action 
recognition components. The first component, the self-
recognition session, occurred after a delay period of 30 – 45 
days. The stimuli were first generated in the action recording 
session and subsequently tested in the self-recognition task. 

Immediately, following the self-recognition task, participants 
completed the final action recognition task, consisting of a 
visual recognition” task.  
 
Materials 
Apparatus Participants’ body movements were recorded 
using the Microsoft Kinect V2.0 and Kinect SDK in a quiet 
testing room. Here, participants were instructed to perform 
the actions in a rectangular 2.5 x 5 ft space, in order to provide 
flexibility to perform the action, while remaining within 
recording distance. The Kinect was placed 5 ft above the floor 
and 8.5 ft away from the participant. The three-dimensional 
(X-Y-Z) coordinates of the key joints were extracted at a rate 
of approximately 33 frames per second and later used to 
generate point-light displays of actions (see Figure 1). 
Customized software developed in our lab was utilized to 
enhance movement signals, and to carry out additional 
processing and trimming for actions presented later in the 
testing phase (van Boxtel & Lu, 2013).  
Stimuli Generation For each participant, 27 point-light 
displays performing different actions were captured based on 
their body movement recordings. The first nine actions were 
simple actions which included grab, jump, wave, lift, kick, 
hammer, push, point, punch. The next nine actions were 
complex actions, which included: argue, macarena, wash 
windows, play baseball, get attention, hurry up, fight, stretch, 
and play guitar. These actions were selected in part based on 
a previous self-recognition study (Burling et al., 2018), but 
four actions (macarena, wash windows, play baseball, play 
guitar) were modified to be more constrained from their 
original actions (dance, clean, play sport, play instrument) in 
order to reduce the impact of memory cues. The actions 
varied in complexity in order to characterize a broad range of 
common movements in daily life. During action selection, 
simple and complex actions were determined by whether the 
action was a simple goal (e.g., wave) or a complex goal (e.g., 
argue), and all actions were selected to be commonly 
encountered actions.  

The final nine actions were labeled imitation actions, 
which included jumping jacks, basketball, bend, direct traffic 
1, direct traffic 2, conversation, laugh, digging a hole, and 
chopping wood. The nine imitation actions were selected 
from the Carnegie Mellon Graphics Lab Motion Capture 
Database available online (http://mocap.cs.cmu.edu) and also 
captured a broad range of variability and goal-directed 
actions. Some imitation videos were easily recognizable to 
subject (e.g., basketball), while others were unclear in what 
they conveyed (e.g., directing traffic). Each video displayed 
a stick figure performing one of the imitation actions and was 
presented in three different angles to the subject, either to the 
right or left (+/- 45°) or facing forward (0°) by rotating the 
horizontal axis. The varying viewpoints were included in 
order to assess the inherent viewpoint dependence in self-
recognition. Each imitation action was recorded twice: once 
after viewing the three different angles, and once more after 
viewing only the forward-facing angle. In the self-
recognition phase, the first imitation recording served as 
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practice, and only the second imitation recording was 
utilized. 

Following action recording and prior to the self-
recognition session, we filtered noise from the movements by 
applying a double exponential adaptive smoothing filter 
(LaViola, 2003), in order to remove recording errors from the 
Kinect system (e.g., missing a joint due to occlusion or small 
jitter for some joints). Additionally, the stimuli were trimmed 
in order to display the point light-displays (van Boxtel & Lu, 
2015) with their segmented action recording, which would be 
reiteratively looped in the self-recognition session. 
Procedure 
Motion Recording Session 
For the 18 simple and complex actions in the first recording 
session, participants were provided verbal instruction and 
instructed to perform the actions as naturally as possible. As 
a result, the action was open to interpretation, in order to 
emphasize the lack of a systematic way to perform the action. 
For the remaining nine imitation actions, all the participants 
were naïve to the name of the action. Instead, participants 
were visually instructed to imitate the actions (however they 
chose to imitate), in order to emphasize their naturalistic 
response to “imitation.” After completing the action 
recording, participants completed two questionnaires: 
Schizotypal Personality Questionnaire (SPQ) and the revised 
Vividness of Motor Imagery Questionnaire (VMIQ-2). The 
SPQ was administered to assess degrees of schizotypal traits 
among individuals in the typical population. The VMIQ-2 
was included to assess motor imagery differences as a 
potential source of variability in biological motion 
perception. Since perception and motor imagery 
representations presumably share common resources, we 
hypothesized that there may be correlations between the two 
abilities (Miller & Saygin, 2013; Iacoboni & Dapretto, 2006).  
Recognition Session: Self-Recognition Task 
In the subsequent self-recognition task, participants returned 
after a delay period of 30-45 days later in order to minimize 
the effect of memory on performance. Participants were 
seated 2.5 feet in front of a monitor in a dimly lit room and 
were asked to select their own action amongst three other 
distractor actions spread out horizontally along the center of 
the screen, as shown in Figure 1.  

 
Figure 1. Illustration of a sample trial showing wave action 
(wave). One point-light display is the participant’s action, 
while the other three point-lights are distractor actions 
normalized for gender, width, and height.  
 

Each action was presented with 17 point-lights located at 
key joints, in three different orientations (rotated around the 
vertical axis 0°, (facing front), 45° (facing right), 225° (facing 

left), for a total of 81 trials. However, all of the actions within 
a trial displayed the same orientation. The actions were 
looped until the participant selected one of the four boxes, or 
until a time period of 30 seconds. Participants were not 
provided any feedback. Participants were instructed to select 
their own point-light action amongst four displays. The four 
animations included their own action and the corresponding 
actions performed by three other distractor actions that were 
normalized for height and gender. 

 
Recognition Session: Visual Recognition Task  

44 of the participants also participated in an additional 
visual recognition task consisting of nine trials displaying 
only the forward-facing imitation actions. The order of 
presentation of the visual recognition task was 
counterbalanced to either follow or precede the self-
recognition task. Since imitation is a unique behavior that 
consists of both action observation and action performance, 
this additional task was included to assess whether 
performance would differ from the self-recognition task, and 
to understand the contribution of motor experience to self-
recognition accuracy. Including this task could potentially 
allow us to contrast action observation in conjunction with 
execution (self-recognition task) with solely action 
observation (visual recognition task). Participants were 
instructed to identify the actor previously shown during the 
imitation recording amongst three other actors who 
performed the same action. Importantly, while the visual 
layout of the task was identical to the self-recognition 
session, the participants’ own action was replaced by the 
original imitation actor from the Carnegie Mellon Database. 
As a result, participants’ own point-light display was never 
amongst the four actions displayed on the screen. The 
remaining three distractor actions were maintained from the 
self-recognition session.  

Following testing in the self-recognition and visual 
recognition task, participants were asked to complete an 
Autistic Quotient (AQ) questionnaire to assess the degree of 
Autistic traits (Baron, Cohen et al., 2001).  
Individual Difference Measures 
Autistic Quotient The Autism-Spectrum Quotient (AQ) 
questionnaire consists of 50 questions and is the most 
commonly used method to measure self-reported autistic 
traits (Baron-Cohen et al., 2001). Recent evidence has 
identified an overlapping genetic and biological etiology 
underlying ASD and autistic traits (Bralten et al., 2017) in 
addition to behavioral overlap (Baron-Cohen et al., 2001). 
Several studies of biological motion perception have reported 
an association between AQ scores and performance on 
various tasks (Miller & Saygin, 2013; Ahmed & Vander 
Wyk, 2013; van Boxtel et al., 2017). The AQ measures five 
different subtypes (social skill, attention switching, attention 
to detail, communication, and imagination). 
Schizotypal Personality Questionnaire The Schizotypal 
Personality Questionnaire (SPQ) is a 74-question survey, 
designed to screen for schizotypal personality disorder in the 
general population. The SPQ is administered to assess 
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degrees of schizotypal traits among individuals in the typical 
population. It measures three constructs of schizotypy: 
cognitive, perceptual dimension (positive schizotypy), 
interpersonal dimension (negative schizotypy), and 
disorganized feature dimension (odd behavior, speech) based 
on DSM-IV criteria (Raine, 1991). The SPQ consists of nine 
different subtypes (ideas of reference, social anxiety, odd 
beliefs, unusual perceptual experiences, eccentric behavior 
and appearance, no close friends, odd speech, constricted 
affect, and suspiciousness/paranoid ideation).   
Vividness of Motor Imagery Questionnaire  The VMIQ-2 
(Roberts, 2008) is designed to measure vividness of imagery 
in kinesthetic (movement simulation), internal (first person 
simulation), and external (third person simulation) visual 
imagery of 12 different actions in a series of three separate 
sections. Vividness of motor imagery is rated on a five-point 
Likert scale for each of the 12 actions in each of the three sub-
areas (lower scores indicate more vivid images). According 
to simulation theory, perception and motor imagery 
representations share common resources (Miller & Saygin, 
2013; Iacoboni & Dapretto, 2006). Therefore, the VMIQ-2 
was included to assess motor imagery differences as a 
potential source of variability in biological motion 
perception.  

Results 
Self-recognition from body movements 
Average self-recognition accuracy was .46 (SD = .12), 
significantly above chance level of .25 (p < .001), indicating 
that participants were able to self- recognize primarily on the 
kinematics of their body movements. As shown in Figure 2,  
participants were able to recognize all actions significantly 
above chance performance: for simple actions with verbal 
instruction (M = .40, SD = .15), for complex actions with 
verbal instruction (M = .56, SD = .16), and for imitated 
actions with visual display (M = .41, SD = .16). One-way 
ANOVA results revealed a significant main effect of action 
type (simple, complex, and imitation) on self-recognition 
performance, F(2, 140) = 44.66, p < .001, ηp2 = 0.389. 
Specifically, self-recognition was more accurate for complex 
than simple actions (t(70) = 9.026, p < .001) and imitation 
actions (t(70) = 7.749, p < .001).  
 

 
Figure 2. Self-recognition accuracy by the type of Action. 
Dashed line indicates chance performance (0.25). The error 
bars indicate standard error of means. 
 

To examine whether the visual representation of own-body 
movements was viewpoint- invariant or viewpoint-specific, 
we conducted a one-way ANOVA consisting of orientation 
(facing left: 225°, front: 0°, right: 45°) on self-recognition 
performance F(2, 140) =.335, p = .716. We found that people 
recognized their own actions equally well from different 
viewpoints, suggesting a viewpoint-invariant representation 
of self-generated actions. A previous study similarly found 
that recognition of walking patterns from self-generated 
point-light displays was independent of the viewing angle. 
This is likely due to simulating the motor action through 
referring to three-dimensionally stored motor representations 
(Jokisch, Daum, & Troje, 2004).  

We compared recognition of imitation actions from motor 
experience (as in the self-recognition task), and recognition 
of imitation actions from the visual experience task (where 
subjects had to identify the imitation action they observed but 
was not their own). We found people recognized actions less 
accurately from visual experience (M = .239) than from self-
generated (M = .404) actions (t(43) = 4.987, p < .001). Due 
to around-chance performance for identical actions with only 
visual experience, prior visual experience does not appear to 
be sufficient for self- recognition. This suggests that motor 
experience may constrain visual experience and is critical to 
the recognition of one’s own action. Importantly, every  
individual has experience with their own motor actions. 
Identifying oneself may require the ability to simulate the 
action onto one’s own motor system, with self-recognition in 
turn dependent on a matching process- matching simulated 
action to performed action. 

 
Figure 3. Self-recognition accuracy by experience type 
(visual vs motor). Significantly worse performance for 
imitation actions from visual experience than for self-
recognition from performed actions. Dashed line indicates 
chance performance (0.25). Error bars indicate standard error 
of means. 
 
Relations between self-recognition and individual 
difference measures 
We did not find any significant correlations between self-
recognition performance for complex actions and the 
individual difference measures. However, we found 
significant relations between self-recognition performance 
for simple actions with various individual difference 
measures. As shown in the top panel of Figure 3, a significant 
relationship was revealed between overall motor imagery 

* * 

* 
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ability and self-recognition performance for imitation actions 
(spearman ρ = -.241, p = .043). For simple actions, a 
significant negative relationship emerged (Figure 3, middle) 
between the degree of autistic traits (AQ score) and self-
recognition performance (spearman ρ = -.244, p = .040), 
revealing that people with more autistic traits performed less 
accurately in self-recognition with simple actions. To further 
probe the impact of autistic traits on self-recognition 
performance, we examined specific subtypes of the Autistic 
Quotient. We found a significant correlation between simple 
actions and the communication AQ subscale scores 
(spearman ρ = -.316, p = .007), but not with other subscale 
scores. For individual differences in schizophrenia traits, as 
shown in Figure 3 bottom plot, the trend analysis revealed a 
significant quadratic relationship between schizophrenia 
traits (SPQ score) and self- recognition performance, 
(F(2,68) = 4.166, p = .020) , with participants scoring near 
the median of SPQ scale performing better than participants 
at the extremes in self-recognition. More discussion about the 
non-linear relation is included in the discussion section.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Relations between self-recognition performance 
and individual difference measures. Top: Positive 
relationship between motor imagery simulation and self-
recognition for imitation actions. Middle: Negative 

relationship between autistic traits and self-recognition for 
simple actions. Bottom: Quadratic relationship between 
schizophrenic traits and self-recognition for simple actions 
(worse self-recognition at the extreme scores) 

 
Discussion 

The ability to self-recognize is integral to the construction of 
oneself as a unique entity, separate from the external world. 
Utilizing dynamic actions construed through self-generated 
point-light displays is a significant improvement over 
prototypical indices of self-recognition. Therefore, in the 
present study, we adopted the motion capture paradigm to 
examine how well people can identify themselves from only 
the kinematics of body movements from a range of 
commonly encountered actions. We found that participants 
were able to reliably self-recognize solely based on 
kinematics in point-light displays, in line with previous 
findings (Burling et al., 2018; Loula et al., 2005; Cutting & 
Kowlowski, 1977). Self-recognition accuracy also varied 
according to the complexity of performed actions, with more 
accurate self-recognition for complex than for simple actions, 
also corroborating a recent study (Burling et al., 2018). Since 
the complex and simple actions differed based on their 
variability, greater self-recognition for complex actions may 
be driven by the unique movement signatures available from 
these actions and increased motor planning (lack of 
automaticity) while performing complex actions. 
Importantly, the biometric identity cues in simple actions 
(e.g. walking) may not be readily apparent to the human 
visual system to recognize and differentiate these actions 
involving little variability (Dittrich, 1993; Loula et al., 2005). 
Therefore, participants exhibited greater self-recognition 
performance for the rich visual input conveyed by complex 
action sequences.  

To assess the mechanisms underlying self-action 
recognition, we examined the contribution of visual and 
motor experience. Previous literature has indicated that 
people rely on motor experience when recognizing their own-
body actions, as evidenced by greater recognition 
performance for self-generated point-light displays (reliant 
on motor experience) over close friends (reliant on visual 
experience) and strangers, presumably due to an internal 
simulation of the action (Loula et al., 2005). Conceptually, 
this is straightforward, as humans generally do not have 
privileged access to observe own locomotion movements 
from a third-person perspective, and consequently, 
experience little visual feedback (Jokisch, Daum, & Troje, 
2004).  

Therefore, to systematically contrast the relative 
importance of visual versus motor experience, we included 
an additional visual recognition task, wherein participants 
were asked to identify the imitation action they observed in 
the action recording session. We found that participants did 
not recognize actions that only required visual experience 
(actions they previously imitated, but that were not their 
own). Instead, participants were only able to identify their 
self-generated actions that required motor experience, 
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underscoring the importance of motor experience to the 
representation of self-body movements. 

Finally, we measured individual differences in self-
recognition performance. We looked at three correlates of 
variability in the general population: motor imagery (as 
measured by the VMIQ-2) and two social perception traits 
(autistic and schizophrenic traits). Both Autism and 
Schizophrenia are linked to dysfunctions of the mirror neuron 
system and impairments in social perception. Because action 
perception is presumed to involve an internal simulation on 
one’s own motor repertoire, we hypothesized reduced 
simulation ability in individuals high on the Autistic Quotient 
and Schizophrenic Quotient.  

Success in self-recognition with simple actions showed a 
significant relation with autistic traits (negative relation: 
poorer self-recognition accuracy with more autistic traits), 
schizophrenic traits (quadratic non-linear relation: 
participants with the median degree of schizophrenia traits 
performed better than participants at the extremes), and motor 
imagery traits (linear relation: increased self-recognition 
accuracy for imitation action with greater motor imagery).  

We found that self-recognition performance for simple 
actions was affected by the participant’s degree of autistic 
traits, in line with results from a recent study by Burling and 
colleagues (2018). One possible explanation could be due to 
a general processing style in autism, as decreased attention 
directed toward social stimuli in high-AQ individuals (see 
Chevellier et al., 2012) or weakened top-down influence (Lu, 
Tjan, Liu, 2006) and adaptability to social environment in 
autism (Thurman, et. al., 2016, van Boxtel, et. al., 2013). 
Although typical human adults are sensitive to social 
information in actions (Thurman & Lu, 2014; Su, van Boxtel 
& Lu, 2016), such ability is impaired in autism which could 
result in the worse performance in self-action recognition for 
people with high degree of autistic traits. Another explanation 
may pertain to a specific and mechanistic account, an 
underlying dysfunction in the mirror neuron system, with an 
impairment in self to other matching. A useful indicator 
related to the simulation-component of the mirror neuron 
system, is motor imagery, presumably reliant on an internal 
simulation of one’s own motor system of the activated action 
(Jeannerod, 2001; Miller & Saygin, 2013). Specifically, the 
relationship between poorer self-recognition performance for 
simple actions and individuals with high autistic traits may 
be linked to worse motor imagery ability, as we found greater 
self-recognition accuracy with increased motor imagery 
ability. Additionally, in the clinical population, a previous 
study (Conson et al., 2013) found that subjects with Autism 
Spectrum Disorder exhibited alterations in mental hand 
rotation, specifically linked to impairments in motor action 
simulation. Further characterizing the link between motor 
imagery deficits and autistic traits in the general population 
may shed light on the underlying mechanisms of motor 
imagery and mirror neuron impairments in Autism. 

We conjecture that worse performance for individuals with 
high schizophrenic traits may be due to over-simulation and 
motor imagery deficits (Sack et al., 2005), leading to 

delusions and hallucinations- a mark of positive schizotypy. 
For worse performance on simple actions with a low degree 
of schizophrenic traits, we hypothesize a lack of motor 
imagery ability as vividness of motor imagery is theorized to 
be an independent trait marker of Schizophrenia and simple 
actions may require a greater degree of simulation to 
dissociate between distractors (Sack et al., 2005).  

Our study did not reveal any significant correlations 
between complex actions and the individual difference 
measures. Since complex actions may rely more on 
distinctive movement cues customized for different 
individuals, or long-term memory (specifically memory of 
how one would perform the action), it is likely that 
participants need not rely on motor simulation. 

Collectively, the present results demonstrate that motor 
experience is an important component to understanding the 
core of self-body processing. Importantly, the perceptual 
representation of self-generated actions is affected by the 
degree of three key individual difference measures linked to 
the action understanding account of the mirror neuron 
system: autistic traits, schizophrenic traits, and motor 
imagery traits.  
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Abstract

Learning new words does not only require infants to find words in continuous speech, but also be remember recently
segmented words and link them to meaning. Prior research has shown that statistical learning supports word learning.
However, as infant statistical learning was typically tested immediately after familiarization with a speech stream, we
know very little about whether infants experience with statistical regularities supports long-term memory and future word
learning. The current study was designed to shed light on the relationship between statistical learning, word learning, and
memory. We found that while both co-occurrence statistics and syllable frequency information support word learning in
the moment, co-occurrence information alone supports long-term memory for recently segmented candidate object labels.
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Abstract 

Infants are powerful learners. A large corpus of experimental 
paradigms demonstrate that infants readily learn distributional 
cues of name-object co-occurrences. But infants’ natural 
learning environment is cluttered: every heard word has 
multiple competing referents in view. Here we ask how infants 
start learning name-object co-occurrences in naturalistic 
learning environments that are cluttered and where there is 
much visual ambiguity. The framework presented in this paper 
integrates a naturalistic behavioral study and an application of 
a machine learning model. Our behavioral findings suggest 
that in order to start learning object names, infants and their 
parents consistently select a set of a few objects to play with 
during a set amount of time. What emerges is a frequency 
distribution of a few toys that approximates a Zipfian 
frequency distribution of objects for learning. We find that a 
machine learning model trained with a Zipf-like distribution of 
these object images outperformed the model trained with a 
uniform distribution. Overall, these findings suggest that to 
overcome referential ambiguity in clutter, infants may be 
selecting just a few toys allowing them to learn many 
distributional cues about a few name-object pairs. 

Keywords: infancy; early word learning; machine learning; 
Zipfian distribution. 

Introduction 

The natural environment is visually cluttered with multiple 

namable objects in view (Clerkin, 2017). To learn their first 

object names, infants must link a heard object name to the 

referent object (Bloom, 2000). But for any heard object name, 

from the infant’s perspective, there are multiple potential 

referents in view. This referential ambiguity has defined a 

major theoretical problem to be solved in early word learning 

(Quine, 1960). Despite a sea of clutter, infants already know 

the names of many objects by the time of their first birthday. 
We know this because they look to the named objects in 

laboratory tests (Bergelson, 2012; Swingley & Aslin, 2000) 

and because they begin to say object names in the contexts of 

those objects (Fenson et al, 1994). How does this work? The 

current paper integrates behavioral and modeling frameworks 

to explore how infants learn object names despite the 

referential ambiguity in their natural learning environments.  

One explanation for solving referential ambiguity is the 

distributional cues in the language and visual input (Aslin, 

2017). According to this explanation, infants track the 

frequencies of word-object co-occurrences to aggregate the 

most likely referent (Smith, Smith, & Blythe, 2011; 
Kachergis, Yu, & Shiffrin, 2017). A large collection of 

laboratory paradigms has demonstrated that infants can 

rapidly learn from distributional cues of visual and auditory 

input (e.g., Cartwright & Brent, 1997; Mintz, 2003; Mintz, 

Newport, & Bever, 2002; Reeder, Newport, & Aslin, 2013). 

However, it is still unclear how learning from distributional 

cues of words and objects in laboratory settings transfers to 

the distributional cues in the natural environment. Laboratory 

paradigms are typically highly controlled, presenting uniform 

word-object frequencies (Aslin, Saffran, & Newport, 1998; 

Kurumada et al., 2013). In contrast, for natural languages, 

word frequencies are known to follow a Zipfian distribution, 

in which a small number of words occur very frequently (e.g. 

boy, car), while many words occur rarely (Zipf, 1965). These 

so-called Zipfian distributions, are universal across human 

languages (Zipf, 1949; Piantadosi, 2014), including nouns 

and all words in infant-directed speech (Hendrickson & 

Perfors, 2018). Furthermore, recent studies show that even 

the distribution of objects in infants’ natural visual 

environments follow a Zipfian distribution, where a few 

objects appear highly frequently and most objects are rare 

(Clerkin et al., 2017). 

Nevertheless, the sensitivity of infants and adults to 

distributional cues highlights an intriguing, but as of yet 

untested, benefit for learning from Zipfian distributions. 

Theoretically, learning from a Zipfian distribution should be 

more difficult than a uniform distribution, as there is not 

enough information in a Zipfian distribution to link the 

referents for words that occur rarely (Blythe et al., 2010; 

Vogt, 2012; Reisenauer et al., 2013; Blythe et al., 2016). 

However, a recent adult study demonstrated that adults learn 

word-object links more easily from Zipfian distributions than 

from uniform distributions of word-object occurrences 

(Hendrickson & Perfors, 2018). Those results suggest that 

Zipfian distributions improve adults’ learning by providing 

more statistical cues for the highly-frequent words, which in 

turn reduces the referential uncertainty associated with the 

unknown rare words. Yet, how infants learn from Zipfian 

distributions is still unknown.  

The approach in this paper is that the natural training data 

for learning new object names are generated by the behaviors 

of the learner from the mature social partner who provides the 
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name. Here we demonstrate that during infant-parent 

interactions, objects being handled and named by the parent 

create Zipfian frequency distributions, in which very few 

events occur very frequently, forming a very small set for 

learning.  

Recent studies of infant naturalistic environments suggest 

that Zipfian distributions provide a balance between 

consistency of a few high-frequent events with diversity of 

rare events (Clerkin et al., 2017; Smith & Slone, 2018; 

Montag, Jones, & Smith, 2017). Here we hypothesized that 

the parent and infant consistently select to play with a few 

objects, generating a training data set balanced with rare 

exploration of diverse objects. In other words, parents’ and 

infants’ selective and exploratory behaviors naturally 

generate name-object experiences that form Zipfian 

distributions, which is hypothesized to reduce ambiguity and 

optimize learning.  

In this study we demonstrate infant naturalistic learning, 

while infants and parents were engaging with objects in a 

cluttered and an unstructured environment. The play sessions 

were recorded from the infant’s egocentric perspective. From 

these visual experiences we report the frequency distributions 

of the objects with which infants and parents engaged during 

toy play. We subsequently applied a machine learning model 

to evaluate the structure of the visual “training data” 

produced from these play experiences. The model was tested 

for detecting the play objects with a training dataset of 

uniform distributions compared to Zipf-like distributions of 

infants’ egocentric object views.  

Behavioral Methods 

To evaluate how infants learn early object names in a 

naturalistic environment, we conducted a toyplay experiment 

allowing infant-parent dyads to freely engage with object 

toys.   

Participants 

The final sample included 16 infant-parent dyads with 12 

month-old infants (8 female) ranging from 12.2 to 12.5 

months (M=12.3, SD=1.12) were included in the final 

sample.  

Stimuli and Experimental Setup 

Parents and their infants were invited to play in a naturalistic 

setting for a duration of approximately 10 minutes.  Parents 

and infants both sat on a carpeted floor in a playroom 

environment. To create an unstructured environment, a 

random assortment of 33 toys were randomly distributed on 

the floor (see Figure 1). The toy objects’ themes were not 

related in any particular way; thus, any selection and 

exploration of objects emerged naturally from infant and 

parent behaviors. The same toys were used in each session. 

The instructions were to play freely as they normally would 

at home.  

 

 
 

Figure 1: (A) Stimuli set. (B) Experimental setup (left to 

right) infant wearing a Looxcie camera, infant ego-centric 

views from camera during toyplay. 

Egocentric View 

To collect infant egocentric view, we used a commercially 

available, lightweight (22 g) wearable camera (Looxcie). The 

camera was secured to a hat that was custom fit to the infant 

so that when the hat was securely placed on the infant’s head, 

the lens was centered above the nose and did not move (see 

Figure 1). 

The head camera captured the scene in front of the viewer 

but did not provide direct gaze information, which in 

principle could be outside of the head camera image (Smith 

et al., 2015). However, head mounted eye-tracking studies 

have demonstrated that under active viewing conditions, 

human observers, including infants, typically turn both heads 

and eyes in the same direction and align heads and eyes 

within 500 ms of a directional shift to maintain head and eye 

alignment when sustaining attention (Yoshida & Smith, 

2008; Smith, Yu, & Pereira, 2011). Therefore, it can be 

expected that a high proportion of gaze during active viewing 

is highly concentrated in the center of the head camera image 

(Yoshida & Smith, 2008). 

Data Processing 

The raw videos were coded using Datavyu by sampling 

frames at 0.2Hz (1 frame every 5 sec; 2,008 frames total). To 

describe the dyadic behaviors of engagement with objects, 

the corpus of frames was coded for (1) objects in view,  (2) 

objects handled by the infant or parent and (3) objects named 

by the parent. The objects in view were defined as the number 

of objects in the field of view from the infant’s perspective. 

The objects handled  were coded for both the parents and 

infant and defined as any hand contact with objects.  Finally, 

parents’ speech was manually transcribed and then annotated 

for objects naming when objects were named explicitly 

(N=580). 

We measured the statistics for objects in parents’ and 

infants’ hands and parent naming events over the entire 10-

minute period. Since there were individual differences 

among the infants in terms of the objects they played with, 

we constructed rank-ordered frequency histograms (see  
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Figure 2). The rank-ordered frequency was measured 

independently for each infant and then combined since the 

most frequent object in view, handled or named differed for 

different infants. The objects are annotated by their rank-

ordered frequency ranging from the 1st most frequent to least 

33rd frequent object. 

Behavioral Results 

The experimental setup of dyadic play was visually cluttered 

as there were on average 13 objects in view every frame 

(Min=1, Max=30, M=13.18, SD=6.16). Figure 2 shows 

ranked order histograms of infant and parent object handling 

proportions, as well as parent naming proportions. The 

histograms display a Zipf-like pattern which is indicative of 

behavioral selectivity of objects in the scene. Specifically, 

these zipf-like distributions follow an approximate power-

law, in which a small set of objects are handled and named 

very frequently and most objects are rare. Six objects (Min=9, 

Max=19, M=13.70, SD=3.13) account for  over 80% of the 

total proportion of infant’s object handling events. Six 

objects (Min=9, Max=24, M=15.5, SD=3.8) account for over 

80% of the total proportion of parents’ object handling 

events. Eight objects (Min=10, Max=48, M=24.20, 

SD=10.23) account for over 80% of the total proportion of 

parents’ object naming events. These Zipf-like distributions 

likely reflect a balance between the parents’ and infants’ 
stability and exploration of objects, which may benefit object 

learning. 

Modeling Methods 
A machine learning model was used to test whether the 

distributional properties of infants’ visual object experience 

impacted learning. In particular we wanted to understand the 

learning mechanism by which infants learn new object names 

in clutter environments.  

The data 

The collected corpus of 2,008 infants’ egocentric views were 

used to construct two different toy object training sets, as 

detailed in Table 1.  Six of the objects were selected for our 

machine learning study: baby doll, ball, chair, bucket, boat, 

and duck (see Figure 1). One of the two training datasets had 

a uniform frequency distribution of object images, and the 

other was with a Zipf-like frequency distribution. There were 

a few reasons for only using six specific objects for the 

modeling framework. First, from the raw corpus of images, 

only 1,200 images included at least 1 of the 6 objects for 

detection in the scene. Second, Bounding boxes indicating 

the objects’ location and label were annotated for the set of 6 

objects intended for detection. Note that some images were 

removed from the corpus due to low image quality such as 

high blur. The corpus was augmented by 180-degree rotation 

and horizontally flipped, yielding a final corpus of about 

3,000 images: 2400 split into training and validation and 600 

for testing.  

 

 

Figure 2: Ranked order histograms of the objects infant and parent handled and named (objects’ ranks across these 

histograms are not necessarily the same). (A) histogram of infant object handling, showing the proportion of 

instances infants handled each object. (B) histogram of parent object handling, showing the proportion of instances 

parents handled each object. (C) histogram of parent object naming, showing the proportion of instances parents 

named each object. Error bars indicate 95% confidence intervals. 

A B C 

Figure 3: Example of cluttered training images, 

including multiple objects for detection, labeled and 

annotated with a bounding box. 
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Each training dataset (the uniform and Zipf-like) was formed 

by a subset of the 2400 images for training. Due to the nature 

of the cluttered scenes, many images included more than 1 

detectable object as seen in Figure 3. These images that 

included multiple objects for detection were counted toward 

the frequencies of more than one object when forming the 

datasets of uniform and Zipf-like frequency distributions (see 

Table 1). The final training data sets included 2,154 images 

each. In the uniform dataset, each object was present in 400 

images. The Zipfian dataset included high frequency and low 

frequency images of objects. In the Zipfian dataset the baby 

doll had the highest frequency (1000 images), and the duck 

was the rarest (100 images).  

 

Table 1: Distribution of object images among the uniform 

and right-skewed datasets for training 

  

Images Per Object Uniform  Zipf-like 

Baby Doll 400 1000 

Ball 400 600 

Chair 400 320 

Bucket 400 240 

Boat 400 140 

Duck 400 100 

Total 2,154 2,154 

  

Model Parameters  

The applied machine learning model was the Faster R-CNN, 

Region-based Convolutional Neural Network (Ren, Girshick 

& Sun, 2015), a well-known, state-of-the-art machine 

learning model for object detection. The model is essentially 

a network composed of three main components: a feature 

extractor, a region proposal network (RPN), and a classifier. 

First, for the feature extraction part, we adapted a pretrained 

CNN VGG16 on the ImageNet data set which includes 

approximately 1.2 million images (Russakovsky et al., 2015). 

The model has 16 layers and classifies images into 1000 

object categories (e.g. keyboard, mouse, coffee mug, 

pencil). The input images (size 224X224) are inputted into 

the VGG16 network. The network evaluates the distinctive 

visual features for the whole image, which allows us to detect 

multiple objects in each image. Second, after feature 

extraction the regions are proposed, therefore only running 

one CNN over the entire image instead of multiple CNN’s for 

each proposed region. Finally, a single softmax layer, outputs 

the class probabilities directly for each region. The last fully 

connected layer and classification layer were adjusted for the 

number of classes in the data set applied in this framework 

(N classes= 7, including ‘background’). 

Training 

The Fast-RCNNs were trained with two different datasets 

that varied in the frequency distributions of object images: 

the Zipf-like and uniform distributions. The network was 

trained for 1000 epochs (iterations).  

Modeling Results 

To determine whether infants’ selective behavior benefits 

learning, we applied a machine learning model trained with  

Infants’ egocentric views. We compared the model’s 

performance of object recognition when trained with a Zipf-

like vs. a uniform distribution of  infants’ egocentric views as 

seen in Table 2. Overall, the model trained with the Zipf-like 

dataset had a significantly higher (t=-3.35, p<0.05) mean 

average precision (mAP=40%) compared to the model 

trained with the uniform  dataset (mAP=23%).  This pattern 

of results suggests that a Zipf-like distribution of data yields 

higher accuracy and benefits learning. 

 

To further evaluate whether the Zipf-like distribution of 

objects in infants’ egocentric views reduce ambiguity we 

evaluated the average precision of each object (see Table 2). 

For the baby doll and the ball there were more images in the 

Zipf-like dataset relative to the uniform distribution and there 

was accordingly a higher average precision for these objects 

in the Zipf-like trained model (AP=56%  and 48%, 

respectively). The chair had a similar number of images in 

both datasets and had a similar average precision in the Zipf-

like (AP=23%) and uniform datasets (AP=21%). For the rest 

of the objects (the bucket, boat and the duck), there were less 

images in the Zipf-like dataset, yet a higher average precision 

in the Zipf-like trained model (AP= 29% and 38% and 43%, 

respectively) compared with the model trained on the 

uniform distribution. These patterns of results, where there is 

higher precision despite less training images suggests that 

information has been shared among objects reducing likely 

competing objects and reducing ambiguity.  

Discussion 

In the real world, the sea of visual clutter provides multiple 

competing referents for every heard object name. This paper 

explored how infants solve this referent ambiguity in a 

cluttered environment to learn first object names. Here we  

presented a behavioral study of infants and their parents 

playing freely with objects and applied a learning model to 

explore the ‘behind the scene’ learning machinery. 

To observe how infants learn object names in a cluttered 

environment, we recorded the play from infants’ egocentric 

view. In order to describe experiences relevant for object 

name learning, we reported the frequency distributions of the 

Table 2: Model test results: average precision per object for the uniform and Zipf-like datasets  

 

 

Object AP Baby Doll Ball Chair Bucket Boat Duck mAP 

Uniform  0.25 0.23 0.21 0.19 0.28 0.24 0.23 

Zipf-Like 0.56 0.48 0.25 0.29 0.38 0.43 0.40 
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objects infants and parents handled, as well as the objects 

parents named. We found that the frequency distributions of 

objects handled and named approximated a right-skewed 

Zipf-like distribution with few highly frequent objects along 

with many low frequency objects. This finding suggests that 

in a cluttered environment, infants and parents consistently 

select a set of a few objects for learning and rarely explored 

the other objects. The consistent object handling and naming 

behaviors during  early word learning offers repetition, a key 

component for learning (Hintzman & Block, 1971, Vlach, 

2014).  

The infant-parent dyads consistently created datasets that 

were highly selective and focused on just a few objects. These 

dynamic patterns of selection may be due to the influence of 

other systems such as human memory or attention which 

decays in a power-law pattern (e.g., Wixted & Ebbesen, 

1991; Wixted, 2004; Baronchelli, Ferrer-i-Cancho, Pastor-

Satorras, Chater, & Christiansen, 2013 ). These non-uniform 

distributions have been shown as optimal conditions for 

adults and may help solve learning problems across many 

domains (Schuler, Reeder, Newport & Aslin, 2017; 

Hendrickson & Perfors, 2018; Caron & Vincent, 2002; 

Salakhutdinov, Torralba, & Tenenbaum, 2011).  

 

As we could not directly observe infants’ learning 

machinery, we applied a machine learning model to explore 

how infants may be learning from a Zipfian distribution. The 

application of the model was weaved with the behavioral 

study by using infants’ egocentric  object views from the 

behavioral study of play as the training images for the 

learning model. The learning machinery from Zipfian 

distributions was evaluated by comparing a training 

apparatus of a Zipf-like and a uniform frequency distribution 

of object images. The testing demonstrated that the training 

using a Zipf-like distribution yielded higher accuracy than a 

uniform distribution. Interestingly, the testing also 

demonstrated that low frequency objects were learned at 

higher rates when trained in the Zipf-like distribution.  

The Zipf-like model’s patterns of results were consistent 

with machine learning and adult studies of Zipfian learning 

(Schuler, Reeder, Newport & Aslin, 2017; Hendrickson & 

Perfors, 2018; Caron & Vincent, 2002; Salakhutdinov, 

Torralba, & Tenenbaum, 2011). These studies suggested that 

the learned features of highly frequent items are shared with 

the low frequency items to reduce referent ambiguity. For 

example, when learning to recognize a rare vehicle such as 

‘bus’, the exemplar  shares features of wheels and window 

shields from an already learned ‘car’, a highly frequent 

vehicle. It has also been suggested that low frequency items  

such as ‘napkin’ may benefit from co-occurrences with high 

frequency objects such as ‘bowl’. These model’s results 

coincide with infants laboratory studies demonstrating that 

infant early word learning is tuned to statistical cues of word-

object co-occurrences. These findings also suggest that 

infants may be able to learn object names not only from 

uniform distributions of word-object occurrences but also 

from a Zipfian distributions.  

Beyond previous early word learning studies, the findings 

in this paper suggest that infants solve referential ambiguity 

in a sea of clutter by consistently selecting a few objects and 

rarely exploring a large subset of objects. This behavior may 

benefit learning and reduce ambiguity in clutter by allowing 

to learn a lot of statistical cues about a few objects. Finally, 

this paper offers a methodological framework of 

incorporating behavioral paradigms with computational 

modeling to stretch our understanding of cognition. 
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Abstract 

Spoken language often includes ambiguity in meaning. 
Compounds such as “green teacup” can be interpreted with two 
different meanings: “green colored teacup” and “cup for green 
tea.” We can assume there are two different underlying 
syntactic structures. Phonetic aspects have been studied in the 
disambiguation process of such ambiguous phrases, but the 
roles of nonlinguistic information such as gestures have not 
been explored yet. We investigated whether people use 
gestures differently when they were asked to describe the 
meanings of Japanese compounds that can be interpreted as 
two different meanings. We found that the	timing of gestures 
in relation to the target words of accompanying speech was 
different between right branching compounds and left 
branching compounds. Gestures seem to be used to suggest 
upcoming two words (adjective and noun) as a unit in 
branching. Gestures can be a useful means to disambiguate the 
meanings of compounds. 

Keywords: Gestures; Disambiguation; Branching; 
Compounds 

Introduction 
A phrase consists of concatenation of words that are produced 
sequentially. It is known that compounds can be interpreted 
to have multiple meanings. For example, “green teacup” can 
be interpreted either as a green-colored teacup or as a cup of 
green tea. A phrase structure with the meaning “teacup for 
green tea” can be classified as left branching (LB); that is, 
“green” and “tea” are first grouped to “green tea” and then 
together play an adjective role in “cup.” The phrase structure 
with the meaning of “green-colored teacup” can be classified 
as right branching (RB); that is, “tea” and “cup” are first 
grouped together, and the word “green” plays an adjective 
role in “teacup” (Figure 1). Because speech is produced 
sequentially, the surface structure does not have enough 
information to show the underlying syntactic structure. 
Therefore, phrases inevitably have ambiguity in meaning. 
Nevertheless, people usually seem to have little difficulty in 
discerning the meanings of such phrases. Humans may use 
some disambiguation cues to resolve ambiguities in such 
ambiguous structures.  

Previous studies have focused on prosodic cues as a means 
of disambiguation (Ito, Arai, & Hirose, 2015; Hirose & 
Mazuka, 2015; Venditti, 1994). Native Japanese speakers 
prefer LB interpretation over RB interpretation for slightly 
simpler Japanese compound constructions and to make RB 

interpretation more accessible. A clear prosodic demarcation 
that raises the pitch range of the second word has been found 
effective (Ito, et al, 2015; Hirose & Mazuka, 2015; Venditti, 
1994). However, the exact disambiguation cues are still 
unknown. In the present study, we focused on nonverbal cues, 
in particular, gestures that have not been examined yet in the 
disambiguation mechanism of syntactic structures.  

 

 
 

Figure 1: Two different syntactic structures, left 
branching (left) and right branching (right), in the 

compound “green teacup” 
 
Gestures play an important role in communication. 

Humans simultaneously use gestures and language to convey 
information to others. Gestures are usually produced slightly 
earlier than associated speech, and this can make the hearer 
anticipate the information in the upcoming speech (MacNeill, 
1987). Iconic gestures (e.g., depicting objects by movement 
trajectories) and pointing gestures can reflect aspects of the 
speaker’s nonlinguistic spatial representations (Majit, 
Bowerman, Kita, Haun & Levinson, 2004). Gestures can 
spontaneously accompany speech and make communication 
smooth (Kita & Saito, 2002). Representational gestures (i.e., 
iconic and deictic gestures) can express spatial contents or 
metaphorically express temporal concepts (Kita, 2009). 
Additionally, gestures express information even when it is 
difficult to express in language (Alibali, Evans, Hostetter, 
Ryan & Mainela-Arnold, 2009). Various functions are 
known about gestures, but the topic of whether gestures can 
contribute disambiguation mechanisms of syntactic 
structures has been largely unexplored.  

Previous studies on interpretation of compounds of 
possibly different branching structures have showed that 
people prefer a certain branching over other branching when 
two (or more than two) different branchings are possible (e.g., 
Ito et al., 2015). In our study (accepted) on Japanese 
participants’ interpretation of Adjective1 + Noun1 + 
Adjective2 + Noun2 compounds, we found that some 
adjectives are interpreted more dominantly than other 
adjectives for certain nouns. For example, “long” can be a 
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typical adjective for “tail,” but an atypical one for “cat.” It is 
possible that “long cat” may mean that the cat’s body is long, 
but this sounds somewhat strange. The typicality of the 
adjective + noun combination may affect the predominant 
interpretation. 

The present study investigated whether gestures are used 
as a clue to resolve ambiguities in branching structures of 
Japanese compounds. We examined whether the productions 
of participants’ gestures differ in the case of compounds of 
either LB or RB. Our prediction was that participants might 
make gestures with different timings when verbally 
producing the compounds of LB or RB. 

We also examined whether people may exaggerate their 
gestures by taking more time for relevant gestures when they 
are aware that more than one interpretation is possible for 
ambiguous compounds. To examine this exaggeration aspect, 
we compared a one-picture condition (Alone condition) that 
denoted either LB or RB meaning and a two-picture condition 
(side-by-side condition) that denoted both LB and RB 
meanings side by side so that people could more easily notice 
the different interpretations. 

Further, we also examined another source for possible 
exaggeration, the combination of nouns and adjectives. We 
decided to compare the two adjectives “big” and “long.” The 
adjective “big” can be typically applied to “cat” (big cat) or 
“tail” (big tail), whereas the adjective “long” can be typically 
applied to only “tail” (long tail) and not “cat” (??long cat). 
We expected the participants to feel less ambiguity when they 
interpreted phrases with “long” rather than phrases with “big,” 
so the participants would take less time for “long” condition 
and the timing of the gestures may also be different between 
the “big” and “long” conditions.  

Method 

Participants 
Sixteen Japanese monolingual students who spoke Japanese 
as a first language participated (M age = 21.6, SD = 1.32; 1 
female). This study was approved by the ethics committee of 
the participants’ university.  

Stimuli 
A total of 32 slides were prepared using Adobe Illustrator. 
Sixteen slides were prepared for the side-by-side picture 
condition, and another 16 slides were prepared for the alone 
picture condition. In the side-by-side condition, two 
comparable objects were drawn side by side in each slide 
(Figure 2). One was the object (animal) according to LB 
interpretation, and the other was the object (animal) 
according to RB interpretation. The slide in the side-by-side 
condition consisted of one target phrase on the top, two 

illustrations (i.e., LB and RB interpretations) in the middle, 
and explanatory notes for each illustration on the bottom 
(Figure 3). A compound had two possible interpretations: an 
LB interpretation and RB interpretation. For example, 
[Kuroi] [Sippono] [Ookina] [Neko] in Japanese (i.e., [Black] 
[Tailed] [Big] [Cat]) can be interpreted either as “a big cat 
with black tail” (LB) or as “a black cat with a big tail” (RB)1. 
The difference of meaning can be explained as follows: in the 
case of LB, the “tailed” branch connects to “black” branch. 
In the case of RB, the “tailed” branch connects to the “big cat” 
branch (Figure 4). The position of the LB object and RB 
object in each slide was counterbalanced. In the alone 
condition, there was only one object of either LB 
interpretation or RB interpretation on each slide. There were 
eight side-by-side slides and eight alone slides. The slide in 
the alone condition consisted of one target phrase on the top, 
one illustration in the middle, and an explanatory note for the 
illustration on the bottom.  
In the stimulus compounds, 16 slides included the adjective 
“big,” and another 16 slides included the adjective “long.” 

 

 
 

Figure 2: An example of object sets 
 

 
Figure 3: An example of side-by-side slide 

 

1 
Japanese       |kuroi         |shippo |no              |ookina        |neko  
Word class   |[adjective] |[noun] |[particle]   |[adjective]  |[noun]  
English       |black          |tail       | big       |cat     
 

528



 

Procedure 
The participants were divided into two experimental groups: 
alone slide group and side-by-side slide group. Each group 
looked at eight slides on a computer monitor.  
 After filling in the consent form, the participants were seated 
in front of a monitor (Figure 5).  

The participants took part in one practice trial to be 
familiarized with the task, and then the experiment was 
started. On each trial, a fixation cross appeared in the center 
of the monitor. After the cross was fixated for one second, a 
slide appeared for 10 seconds. Then, only the top phrase was 
displayed. At that moment, participants were asked to make 
gestures to describe the presented picture while verbally 
producing the phrase (Figure 6).  

Participants’ gestures and utterances participants were 
recorded by a video recorder (Microsoft LifeCam). In the 
side-by-side slides, one of the two objects was presented with 
a surrounding red frame, and the participants were asked to 
describe the indicated object. 
 

 
 

Figure 5: Experimental layout 
 

 
 

 
 

Figure 6: Flowchart of slides 
 

Coding  
We annotated utterances and gestures using ELAN 2017 
(Version 5.1). The timing and duration of each gestures were 
recorded (Figure 7). We used the coding scheme modified 
version of Kita, Gijn, and Hulst’s (2014) gesture coding. In 
this scheme, a gesture consists of a preparatory movement, 
followed by a stroke, and then finally, a finishing movement. 
We recorded the time of onset and end of each gesture stroke 
to determine the timing and duration of each gesture. The 
third word was the critical adjective “big” or “long” that was 
grouped with either the second word (e.g., “tail”) or the final 
word (e.g., “cat”). 

Figure 4: Branching structure. (a): LB interpretation; (b): RB interpretation 

Figure 7: An example of the annotation using ELAN 
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Results 

Timing of the first gesture 
To find out whether the onset of gestures differed between 

LB and RB, between the alone slide and side-by-side slide, 
and between the adjectives “big” and “long,” the difference 
in time (seconds) between the onset of the critical word 
“shippo (tail)” on the branching point and the onset of the 
first gesture in each slide in the participant’s performance was 
measured and taken as a dependent measure. A 2 (Slide: 
Alone, Side-by-side) × 2 (Adjective: Big, Long) × 2 
(Branching: LB, RB) three-way ANOVA was performed on 
the measure. Slide (Alone, Side-by-side) was the between-
participants variable. Adjective (Big, Long) and branching 
(LB, RB) were the within-participants variables.  

There was a marginally significant effect of branching 
(F(1,14) = 3.6925, p = .075, η2 = 0.0956). This meant that the 
onset of the first gesture was earlier in RB (M= -0.55) than in 
LB (M= -0.07). Furthermore, there was a significant Slide × 
Adjective × Branching interaction (F(1,14) = 6.3258, p < .05). 
To explore the significant Slide × Adjective × Branching 
interaction, the simple interaction effects of Slide, Adjective, 
and Branching within each condition were calculated (Figure 
8). 

The simple main effect of branching in the “long” condition 
was marginally significant (F(1,14) = 3.1574, p = .097, η2 = 
0.0842). This meant that when the third word was “long,” the 
onset of the first gesture tended to be earlier in RB (M= -0.49) 
than in LB (M= -0.08). 

There was a simple Slide × Branching interaction in the 
“long condition” (F(1,14) = 4.9359, p < .01). Simple-simple 
main effects of Slide and Branching within the “long” 
condition were calculated. There were simple-simple main 
effects of branching (F(1,7) = 7.0215, p < .05) and slide 
(F(1,14) = 4.4872, p = .052, η2 = 0.2427). The simple-simple 
main effect of slide was marginally significant. It meant that 
when the third word was “long” and the slide was “alone,” 
the onset of the first gesture was earlier in RB (M= -0.88) 
than in LB (M= 0.04). When the third word was “long” and 
branching was RB, the onset of the first gesture was more 
behind when slide was side by side (M= -0.11) than when 
slide was alone (M= -0.88). 

Total duration of the gestures 
Using the video recordings, we calculated the total 

duration of gestures (seconds) produced in each slide. We 
predicted that the duration of gestures was different between 
LB and RB. 

A 2 (Slide: Alone, Side-by-side) × 2 (Adjective: Big, 
Long) × 2(Branching: LB, RB) three-way ANOVA was 
performed on the total duration of gestures.  

 
 
 
 
 

There was a marginally significant effect of slide (F(1,14) = 
3.935, p = .067, η2 = 0.0512). The total duration time of 
gestures was longer when the slide was alone (M=2.16) than 
when the slide was side by side (M=1.82). There was also a 
significant Slide ×Adjective × Branching interaction (F(1,14) 
= 15.9588, p < .01). To explore the significant Slide × 
Adjective × Branching interaction, simple interaction effects 
of slide, adjective, and branching within each condition were 
calculated.  

There was a simple main effect of Slide in the “big” 
condition (F(1,14) = 5.6515, p < .05) and adjective in the 
alone condition (F(1,7) = 4.8931, p = .062, η2 = 0.0171). The 
simple main effect of the adjective in the alone condition was 
marginally significant. When the third word was “big,” the 
total duration time of gestures was longer when the slide was 
alone (M= 2.27) than when the slide was side-by-side (M= 
1.70). When the slide was alone, the total duration time of 
gestures was longer when the third word was “big” (M=2.27) 
than when the third word was “long” (M=2.06).  

There were simple Adjective × Branching interactions in 
the alone condition (F(1,7) = 6.9771, p < .05, η2 = 0.0368) 
and in the side-by-side condition (F(1,7) = 9.1492, p < .05, η2 
= 0.1196). The simple-simple main effects of adjective and 
branching within the alone condition and side-by-side 
condition were calculated. There were simple-simple main 
effects of the branching in the alone condition (F(1,7) = 
33.2153, p < .001, η2 = 0.1386) and in the side-by-side 
condition (F(1,7) = 7.6180, p < .05, η2 = 0.2495). When the 
slide was alone and branching was LB, the total duration time 
of gestures was longer when the third word was “big” (M= 
2.39) than when the third word was “long” (M= 1.89). When 
the slide was side by side and the third word was “long,” the 
total duration time of the gestures was longer in LB (M= 
2.32) than in RB (M= 1.55). 

There was a simple Slide × Branching interaction in the 
“long” condition (F(1,14) = 5.0550, p < .05). The simple-
simple main effect of slide and branching within the “long” 
condition was calculated. There was a simple-simple main 
effect of branching that was marginally significant (F(1,14) 
= 4.0335, p < .05). When the third word was “long,” and 
branching was RB, the total duration time of the gestures was 
longer when the slide was alone (M= 2.23) than when the 
slide was side by side (M= 1.55).  

There was a simple Slide × Adjective interaction in the LB 
condition (F(1,14) = 7.8598, p < .05). The simple-simple 
main effect of slide and adjective within the LB condition 
was calculated. There was a simple-simple main effect of 
slide (F(1,14) = 5.9902, p < .05). When branching was LB 
and the third word was “big,” the total duration time of the 
gestures was longer when the slide was alone (M= 2.39) than 
when the slide was side by side (M = 1.60).  
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Figure 8: The start time point, the end time point, and the 
duration of the gestures in each condition. Zero denotes the 
starting time point of the target word “shippo (tail)” in 
accompanying speech. The thin error bars denote standard 
errors in the onset of gesture. The thick error bars denote 
standard errors in the duration of gesture. 

 

Discussion 
The most important finding was that the onset of the first 
gesture in relation to the critical word (the second word 
“tail”) was earlier in the RB condition than in the alone slide. 
This means that the participants started a gesture earlier when 
they wanted to mean “a black cat with a big tail” (RB) than 
they wanted to mean “a big cat with a black tail” (LB). We 
interpreted this result as follows: in RB, the meaning “the tail 
is big” is important to convey, so participants started the 
gesture earlier to easily bring “tail” and “big” together as 
words that belonged to the same branch. Usually, the 
participants’ gesture in this RB slide involved extending and 
moving their arm horizontally to describe a long big tail. Thus, 
the participants seemed to emphasize “big tail” by this 
gesture. In contrast, the gesture used in LB slide involved 
moving both hands widely up and down to describe the shape 
of the big cat. Thus, the participants seemed to emphasize 
“big cat.” The point is that the critical adjective “big” must 
be grouped with either “tail” (RB) or “cat” (LB). As for the 
duration data, we found that the duration of the gestures was 
shorter in the side-by-side slides than in the alone slides. The 
participants might have thought that certain gestures would 
be enough for disambiguation when an alternative picture 
was explicitly presented. In the side-by-side/long/RB 
condition, participants might not have thought that 
disambiguation was necessary because “long cat” (LB 
interpretation) sounded too atypical compared with “long tail” 
(RB interpretation).  

In conclusion, using Japanese compounds, we found that 
the timing and duration of gestures in relation to the target 
words in accompanying speech were different between RB 
compounds and LB compounds. Gestures seemed to be used 
to suggest two upcoming words in speech (adjective and 
noun) as a unit in branching. Gestures can be a useful means 
to disambiguate the meaning of compounds. 

References  
Alibali, M., Evans, J., Hostetter, A., Ryan, K. & Mainela-

Arnold, E. (2009). Gesture – speech integration in 
narrative: Are children less redundant than adults? Gesture 
9 (3), 290 – 311. doi: 10.1075/gest.9.3.02ali 

Hirose, Y. & Mazuka, R. (2015). Predictive processing of 
novel compounds: Evidence from Japanese. Cognition, 
136, 350–358. doi: 10.1016/j.cognition.2014.11.033 

Ito, K., Arai, M., & Hirose, Y. (2015). The interpretation of 
phrase-medial prosodic prominence in Japanese: Is it 
sensitive to visual and discourse context? Language, 
Cognition and Neuroscience , 30, 167-196.                                  
doi: 10.1080/01690965.2013.864778 

Kita, S. (2002). Jesuchaa: Kangaeru karada [Gesture: The 
body that thinks]. Tokyo: Kaneko Shobo.  

Kita, S. (2009). Cross-cultural variation of speech 
accompanying gesture: A review. Language and Cognitive 
Processes, 24 (2), 145167.        
doi: 10.1080/01690960802586188 

Kita, S., & Sito H. (2002). Jesuchaa・Koui・Imi [Gesture, 
Action, and Meaning]. Tokyo: Kyoritu Shuppan. 

Kita, S., Gijn, I., & van der Hulst, H. (2014). The non-
linguistic status of the symmetry condition in signed 
languages: Evidence from a comparison of signs and 
speech-accompanying representational gestures. Sign 
Language & Linguistics, 17, 209-232.                                     
doi: 10.1075/sll.17.2.04kit 

MacNeill, D. (1987). Psycholinguistics: A New Approach. 
Inc. New York, New York, U.S.A: Harper & Row. 

Majid, A., Bowerman, M., Kita, S., Haun, D. B. M. & 
Levinson, S. C. L. (2004). Can language restructure 
cognition? The case of space. Trends in Cognitive Sciences, 
8, 108-114. doi: 10.1016/j.tics.2004.01.003 

Venditti, J. J. (1994). The influence of syntax on prosodic 
structure in Japanese. In J. J. Venditti (Ed.), Papers from 
the Linguistics laboratory, Ohio State working papers in 
Linguistics, 44 (pp. 191–223). Ohio State University, 
Department of Linguistics, Columbus OH. 

 

Acknowledgments 
We would like to thank all our participants. We would like 
to thank Professor Sotaro Kita of the University of Warwick 
for his invaluable suggestions. We would also like to thank 
Editage (www.editage.jp ) for English language editing. 
This study was supported by JSPS/MEXT KAKEN 
JP17H06382 (H.K.) and JP16K04318 (H.K.)  
 

531



The Decision Science of Voting: Behavioral Evidence of Factors in Candidate 

Valuation 

Janne Kauttonen (janne.kauttonen@haaga-helia.fi) 
Haaga-Helia University of Applied Sciences, FI-00520 Helsinki, Finland  

NeuroLab, Laurea University of Applied Sciences, Vanha maantie 9, 02650 Espoo, Finland 

 

 Jyrki Suomala (jyrki.suomala@laurea.fi) 
NeuroLab, Laurea University of Applied Sciences, Vanha maantie 9, 02650 Espoo, Finland 

 

 

 

 

 

 

Abstract 

Despite decision science have increased our understanding of 

human decision-making in different contexts, voters’ decision has 

been studied less from this point of view. Therefore, we 

investigated, how electorate- and candidate-related factors affect 

electorate’s (N=1334) valuation to the Prime Minister candidates 

(N=11) on the multiparty democracy. Electorates valuated 

candidates individually and through pairwise candidate comparison. 

We collected the data by using anonymous questionnaire and sent it 

via mass emailing and social media. We applied linear mixed-effects 

and Bayesian network models to analyze the data. Electorate-related 

variable Valence and candidate-related variables Trustworthiness 

and Righteousness was found as the strongest main effects. The 

pairwise analysis comparison highlighted voters’ personal 

characteristic. In particular, the interactions associated to valence, 

arousal and gender had high effect only in pairwise comparisons. 

Our results suggest that the pairwise comparisons - which is typical 

for elections, e.g., in USA - highlights the importance of emotional 

and gender-related factors. 

Keywords: decision making; politics: valuation; voting; linear 

mixed-effects model; Bayesian networks  

Introduction 

Mainstream scholarly research assumes that voting decision 

is driven by rational preferences over policy proposals 

offered by political parties (Bischoff, Neuhaus, Trautner, & 

Weber, 2013; Hibbing, Smith, & Alford, 2014; Knutson, 

Wood, Spampinato, & Grafman, 2006). However, recent 

decision science studies have suggested that decision 

involves, besides explicit processes, psychological, social 

and cultural processes (Blouw, Solodkin, Thagard, & 

Eliasmith, 2016; Tymula & Glimcher, 2016). Whereas these 

studies have increased our understanding about human 

decisions in the marketing-, social- and risks contexts 

(Tymula & Glimcher, 2016), voters’ decision have been less 

studied from decision science point of view. In addition, the 

multiparty democracies have been less studied compared to 

two-party democracies, especially USA (Walther, 2015). 

Therefore, we investigated, how electorate-related and Prime 

Minister candidate-related factors affect electorate’s 

valuation. We chose eleven Prime Minister candidates (three 

females) on the multiparty democracy which were valuated 

using judgements of each candidates’ directly and in pairwise 

comparison between candidates. We used linear mixed-effect 

models (Gelman & Hill, 2007) and Bayesian networks 

(Borgelt, Steinbrecher, & Kruse, 2009) to test statistical 

dependencies between candidate valuation and battery of 

ratings for features of both candidates and the rater 

himself/herself. Below we describe these dimensions more 

specifically. 

Electorate-related Factors and Voting Decision 

Political orientation has been studied with The Big-Five 

framework (Gosling, Rentfrow, & Swann, 2003; Hibbing, 

Smith, & Alford, 2014). Current study (Sibley, Osborne, & 

Duckitt, 2012) found, that political conservatism had 

negative correlation to Openness to Experience and positive 

correlation of Conscientiousness variables. In the same vein, 

Carney et al. (2008) showed that both low Openness to 

Experience and high Conscientiousness were associated with 

participants’ self-reported conservatism. Thus, conservatives 

are more orderly, conventional, and better organized, 

whereas liberals are more open-minded, creative, curious, 

and novelty seeking (Carney, Jost, Gosling & Potter, 2008).  

People with different political orientations have been found 

to resolve risk-decisions different ways (Hibbing, Smith, & 

Alford, 2014). Relative to liberals, politically conservative 

individuals are remembered which stimuli have bad value 

and pursued a more risk-avoidant strategy to the game. On 

the contrary, Liberals have greater tendency to explore, take 

more risk by choosing more unknown possibilities than 

Conservatives have (Shook & Fazio, 2009).These studies 

indicate that Conservatives show greater sensitivity to 

threatening stimuli in the environment than Liberals and have 

to tendencies to behave without risk-taking. 
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Prime Minister Candidate-related Factors and 

Voting Decision 

In most of democracies the party leaders are also prime 

minister candidates and influential electoral force in election 

campaigns (Bean & Mughan, 1989). This candidate-centered 

politics (Garzia, 2011; Wattenberg, 1991) is accompanied by 

a great importance of leaders’ personal characteristics in the 

eyes of voters. Thus, this study concentrates electorate’s 

opinions about politicians’ leadership skills and their 

opinions about the suitability of these candidates to the prime 

minister in the multi-party democracy country.  

Previous studies have found that trustworthiness is one of 

the most important attribute for a political leader (Barisione, 

2009; McAllister, 2000; Rule et al., 2010) as well as 

communication and collaboration skills (Barisione, 2009). In 

addition, voters want that political leader is one of them and 

works for their benefits (Garzia, 2011). Moreover, the voters 

give values for the fair leaders as well as “traditional” hard 

leadership skills like the capacity to make decisions (Bean & 

Mughan, 1989; Rule et al., 2010). 

Second important dimension is electorate’s emotional 

reactions to politicians’ faces. Valence and arousal are two 

independent dimensions of emotion. When subjects 

anticipate pleasurable events, positive arousal increases, and 

when they anticipate unpleasant event, negative arousal 

increases. Studies have found that positive arousal has 

important effect on people’s behavior towards the issues, 

which trigger these positive arousal (Knutson & Greer, 

2008). Thus, we measured participants’ valence and arousal 

as they imagined each candidate as a prime minister. We used 

above described individual and Prime Minister candidate–

related factors as the framework for questionnaire. The faces 

of politicians have many learned symbolic and cultural 

meanings (Knutson et al., 2006). Therefore, we used 

politicians’ faces as basic stimuli in order to clarify how 

much each politician’s face can produce emotional reactions. 
Judgements of each candidates’ direct valuation and pairwise 

candidate comparison were used as dependent variables. 

Methods 

Participants 

Participants were recruited via mass emailing and social 

media to participate in the research. Total 1653 full responses 

were received over 4 months from which we removed 50 

responses with missing/corrupted data, 9 duplicates (same 

subject), 176 responses with unrealistically fast response 

times (median time <7s per page) and 84 responses with zero 

of very low response variance. This resulted in 1334 

responses (503 males) in final analysis. Filling the full 

questionnaire allowed participants to join lottery of 20 gift 

cards (each worth 25 euros). 

Questionnaire Procedure 

In the questionnaire, electorate-related variables included 

gender, age-group (between 18 and 60+) and eight self-

spaced personal qualities. Variables dependable/self-

disciplined and disorganized/careless measure characteristic 

conscientiousness, whereas variables open to new 

experiences and conventional/uncreative measure 

characteristic openness to experiences from Big Five 

personality scale. In addition, participants’ opinions about 

his/her level of conservatism and level of liberalism were 

measured separately. Finally, participants’ risk-sensitivity 

was measured by using social and investment risk variables 

from Weber et al. (2002) risk-attitude scale. 

 Prime Minister candidate-related variables included 

candidate’s gender, candidate’s familiarity and candidate’s 

leadership skills. Leadership skills included variables 

trustworthiness, communication skills, fairness, tendency to 

work for nation, and decision skills. All candidates were 

established figures for their parties, i.e., the name and face 

were familiar to majority of people on national level. In 

addition, the emotional components valence and arousal were 

measured by showing candidates face with his name and 

party. Below of the face was two statements “She/He has just 

been elected Prime Minister of Nation X. What is the emotion 

(valence) of the choice in you? How intensive this emotion is 

(arousal)?” 

In summary, the questionnaire contained four mandatory 

sections with following questions (variable labels in 

parenthesis): 

1. Responder’s background (𝑥1−10
𝑏 ): Gender [binary], age 

[Likert scale; 1-7] and 8 personal qualities [1-7]. 

2. Individual candidate valuation (𝑥1−8
𝑟 ): candidate gender 

[binary], 5 ratings, familiarity and suitability scores [1-

7]. 

3. Emotion (𝑥1,2
𝑒 ): Valence and arousal assuming the 

candidate was chosen as a Prime minister [1-7]. 

4. Pairwise candidate valuation (𝑥𝑐 ): Preference between 

two randomly chosen candidates [-4-4]. 

Suitability score (𝑥8
𝑟) and pairwise comparison score (𝑥𝑐 ) 

were considered as the responses (valuations). Variables 

𝑥1−7
𝑟  encoded the feature vector of a candidate (1334 vectors 

in total, one from each subject). Candidate’s order was 

randomized in all parts of the survey. In part 4, out of the pool 

of 55 possible candidate pairs, we presented randomly chosen 

20 (randomized for each subject). In the analysis, genders 

(responders and candidates) were one-hot encoded using 

“female” label as the (arbitrary) reference level. 

Data Analysis 

Linear Mixed-effect Models First we fitted linear mixed-

effects models (Gelman & Hill, 2007; Wu, 2009) to the data 

using Matlab (R2018a). Subject id and response date (month) 

were set as random effects of no interest. We fitted total of 4 

models; two for the direct valuation and two for the pairwise 

valuation. Two of these models contained all variables (full 

models) and the remaining two (reduced models) did not 

include valence (𝑥1
𝑒). Valence was highly correlated with 

valuations, hence it was deemed useful to repeat fitting 

without it. As there was no variation in background variables 
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(𝑥𝑖
𝑏) within a subject, those were entered into models through 

interactions.  

For the individual valuation, using Wilkinson’s notation 

(Wilkinson & Rogers, 1973), the formula of the full model 

was: 

𝑥8
𝑟 ~ 1 + (𝑥1

𝑟 + ⋯ + 𝑥7
𝑟 + 𝑥1

𝑒 + 𝑥2
𝑒): (1 + 𝑥1

𝑏 + ⋯ + 𝑥10
𝑏 )

+ (1|𝑖𝑑 + 𝑚𝑜𝑛𝑡ℎ), 
where the total number of non-constant fixed terms (aka 

predictors) was 99 with 1338 random-effects intercepts. We 

used maximum likelihood criterion to fit parameters (Wu, 

2009). The equation for the reduced model was similar, but 

without the valence term (88 fixed-effects terms). 

For the pairwise valuations, the formulas were identical, 

but as the valuation was indirect, the features were 

transformed into differences, i.e., 𝑥𝑖
𝑟 ≔ 𝑥𝑖,𝐴

𝑟 − 𝑥𝑖,𝐵
𝑟  ∀ 𝑖 =

1, … ,7 (same for 𝑥1,2
𝑒  and 𝑥𝑐 ), where A and B correspond to 

two candidates in comparison. In this case the random-effects 

term 𝑖𝑑 also covers the randomness related sampling of 

candidate pairs. Note that a linear model is invariant for the 

order of candidates in the differencing, i.e., flipping the order 

also flips the predictors and response. As a result, 

interpretation of the coefficients remains similar to direct 

valuation. 

Statistical significance of linear models and their predictors 

were estimated using permutation testing scheme where 

responses were randomly shuffled while preserving subject-

level grouping hierarchy. Original, un-shuffled t-values of 

each predictor were compared against distributions of 10.000 

t-values obtained via permutation. False Discovery Rate 

(FDR; Benjamini & Hochberg, 1995) was applied to adjust 

for multiple comparisons over fixed-effects predictors. 

Overall model performance was measured with Mean 

Squared Error (MSE) compared against constant-only null 

models (with MSEnull) and those obtained via permutations. 

Bayesian Network Models Next we dropped the 

assumption of the linearity and fitted Bayesian network 

probabilistic graphical model to the data (Borgelt, 

Steinbrecher, & Kruse, 2009; Nagarajan, Scutari, & Lèbre, 

2013). For this, we used bnlearn1 toolbox. Bayesian network 

models allow estimation of a full probability distribution via 

Directed Acyclic Graph (DAG) structure that represents 

relationships between data variables (nodes in the graph). 

Here we were mainly interested in the structure of DAGs and 

causal relationships between variables. 

We adopted the approach of Scutari et. al (2017) with 

network bootstrapping and cross-validation to estimate 

DAGs and the quality of models. The aim was to find 

networks that fit the data best. We used Tabu and Hill-

Climbing (HC) structure search algorithms with Akaike and 

Bayesian Information Criteria (AIC and BIC) scoring, which 

allow both fast computations and are robust in modeling real 

data (Beretta, Castelli, Gonçalves, Henriques, & Ramazzotti, 

2018; Olmedilla, Rubio, Fuster-Parra, Pujals, & García-Mas, 

2018). By varying scores and search methods, we build 1200 

                                                           
1 http://www.bnlearn.com for R (ver. 3.4). 

candidate networks using bootstrapped dataset by keeping 

80% of all samples in each iteration. We restricted the size of 

network search space by blacklisting total 137 causally 

unfeasible directed edges. Variables related to subject’s 

background were allowed to be parents for the candidate-

related choices. All variables related to age and gender were 

only allowed to serve as parents. After model bootstrapping, 

we varied the edge frequency threshold and estimated the 

classification accuracy of the resulting DAG for the 

responses (individual or pairwise) using 10-fold cross 

validation.2  For the model inference, we used maximum 

likelihood criterion and in validation we used posterior 

classification error loss (Nagarajan, Scutari, & Lèbre, 2013). 

Above steps were repeated separately for individual and 

pairwise response data. All variables, including valence, were 

kept in the data in this analysis. 

Results 

The relative valuation scores of candidates’ for individual 

and pairwise valuation methods and pooled over all subjects 

are depicted in Fig. 1. Individual scores were computed by 

averaging over all ratings (𝑥8
𝑟) for each candidate. Pairwise 

scores were computed by averaging over rows of an anti-

symmetric pairwise rating matrix where each element was the 

sum of pairwise ratings (𝑥𝑐 ) for all 55 combinations of 

candidates. As the scale of the scores was arbitrary, score 

distributions were standardized before plotting. Distributions 

were highly similar (Pearson correlation 0.958), thus 

confirming that both methods resulted in similar relative 

valuation of candidates.  

From now on, as we report the modeling results, all 

variables (predictors) are referred with their alphabetic 

abbreviations. Variables 𝑥𝑟  and 𝑥𝑒 , which we consider as 

main-effects, are capitalized. The alphabetic abbreviations for 

the responses were SUITABILITY for 𝑥8
𝑟 and SELECTION 

for 𝑥𝑐 . 

 

 

 
Figure 1: Mean valuation scores of all 11 candidates 

measured by individual (direct) and pairwise (indirect) 

method 

 

 

2 Note that until this point all nodes were equal and no 

“response” nodes were specified during bootstrapping 
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Linear Mixed-effect Models Results for the full and reduced 

linear models for the individual and pairwise responses are 

listed in Table 1. Positive t-values indicate increase of 

valuation (and vice versa). Total 6+7 individual and 24+26 

pairwise fixed-effects terms surpassed p<0.05 (FDR adjusted 

over 99 and 88 terms) for full and reduced models. All 

predictors that were significant for at least one of the four 

models are shown in table (total 44 terms). Total 14 

predictors were significant for at least two of the four models. 

Three of these were the main effects including variables 

TRUSTWORTHINESS, VALENCE and 

RIGHTEOUSNESS. Models reached MSE/MSEnul ratios 

0.292-0.405 (smaller better) in 10-fold cross-validation. All 

models were also significant at p<0.0001 against 

permutations. Raw Pearson correlation between valence and 

responses were 0.802 (𝑥8
𝑟) and 0.813 (𝑥𝑐 ), which accounted 

lots of the variation in the full models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: T-values of the linear mixed-effects model using 

individual (Ind.) and pairwise (Pair.) valuation for full and 

reduced models. The main effects are capitalized and 

interactions (if any) marked with “:”. Here * and ** indicate 

p<0.05 and p<0.01 (both FDR adjusted). 

 
 

 

Bayesian network models In the Bayesian network analysis 

we found no major differences between search methods (HC 

or Tabu). AIC scoring, which tends to add more edges, 

resulted in generally smaller classification losses (i.e., better 

models). In general, higher edge density (bootstrapping 

frequencies <50%) resulted in higher classification 

accuracies. Here we present results obtained with Tabu and 

AIC. Results of bootstrapping are depicted in Fig. 2. Fig. 2a 

show all (undirected) edges with at least 5% frequency (i.e., 

0.05) where upper triangular part is for individual and lower 

triangular for pairwise valuation. Weight 1.00 indicates very 

strong causal connection. The difference of the two triangular 

matrices is depicted in Fig. 2b (no thresholding), where all 

positive values correspond to higher frequency obtained for 

the pairwise valuation. The results indicate that most direct 

connections were within main effects (20 and 28) and 

subject-dependent characteristics (38 and 41), than between 

the two (only 6 and 14). While the individual valuation 

resulted in more subject-to-candidate edges (14 vs. 6), the 
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edges were generally weaker (<0.5) than those for the 

pairwise valuation (three edges with weight 1.0). 

Finally, an example DAG for the SELECTION response is 

depicted in Fig. 3 with edge weight threshold 0.5 (with AIC 

and Tabu). The edge line weight corresponds to frequencies 

between 0.5 and 1.0 (thicker line = higher value). Node size 

indicates total number of incoming and outgoing edges (here 

between 2 and 9). The classification accuracy loss for this 

network was 0.581, while the (adjusted) baseline accuracy 

loss was 0.828. The Markov blanket for SELECTION 

included eight variables: gender, age, conservativeness, 

GENDER, VALENCE, TRUSTWORTHINESS, CO-

OPERATION and RIGHTEOUSNESS. In other words, the 

SELECTION had direct causal connection with three 

background variables. 

 

 
 

 

Figure 2: Bayesian network bootstrapping results for 

individual and pairwise valuation. (a): Occurrence rate of 

edges for individual (upper triangular) and pairwise valuation 

(lower triangular), only edges with at least 0.05 frequency are 

shown. (b): Difference of the two matrices (both 

unthresholded). 

 

 
Figure 3: An example of a directed acyclic graph with 50 ed

ges (at density >0.50) estimated using pairwise valuations of 

candidates. Line widths correspond to bootstrapping strength 

and node size to total number of connections. 

 

Discussion 

We collected behavioral questionnaire data on how voters 

valuate and judge politicians and their presumed suitability to 

serve as Prime Ministers. Aim was to pinpoint candidate and 

subject dependent factors that influence the valuation. We 

used linear mixed-effects models and Bayesian networks to 

analyze the data. We build two flavors of models; one for 

direct candidate valuation and the other for indirect valuation 

based candidate pairwise comparison. Although the average 

valuation scores of candidates were similar between direct 

and indirect approaches (Fig. 1), the models revealed 

differences in how the subjects arrived in their valuations. 

In linear models, the pairwise valuation emphasized 

between individual- and candidate -related interactions with 

higher t-values magnitudes (Table 1). While the results for 

the main effects were similar (both highlighted 

trustworthiness, righteousness and valence), pairwise 

analysis resulted in more interaction terms surpassing 

significance (by the factor 3). While this can partly result 

from differences in number of samples (20 pairwise vs. 11 

individuals per subject), it also reflects the difference in 

valuation processing when forced to choose between two 

choices. In particular, the interactions associated to emotion 

(valence and arousal) and gender (both candidate and subject) 

(a) 

(b) 
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had high impact in pairwise comparisons. Male responders 

favored male candidates and national value score of the 

candidate. 

In order to complement our linear models, we also applied 

Bayesian network analysis. This framework allowed building 

full (nonlinear) probabilistic models for the data; however, 

here, we mainly used it as an exploratory tool to pinpoint 

causal connections between variables. The analysis also 

resulted in notable differences between individual and 

pairwise valuation (Fig. 2). In comparison to linear models, 

the candidate-related variable valence had direct causal effect 

only with electorate-related gender, but only for pairwise 

valuation. For individual valuation, causal connection 

between candidate valuation and electorate-related variables 

were more numerous (14 vs. 6), but were generally weaker. 

The strongest causal connection with the valuation score 

were found with conservativeness, age and gender of the 

electorate. These three had direct connections also with 

various other candidate-related properties, e.g., 

trustworthiness and familiarity. 

In conclusion, we found that the background factors with 

strongest effect on the valuation of candidates were 

conservativeness, gender, age, ordinality and activity in 

social media of the voter. Emotion, especially valence, was 

strongly associated with valuation both directly and via 

interactions with voters' conservativeness, gender and 

ordinality. For males, higher arousal and valence strongly 

reduced the valuation. Emotion was found generally more 

important in pairwise candidate valuation. 

Our results highlight the importance of how one measures 

the valuation of candidates (individual vs. pairwise) and how 

one analyzes such data (linear vs. nonlinear). Multiple views 

related to the data and methods are needed in pinpointing the 

most relevant effects. Previous studies have shown, that 

stimuli which trigger positive arousal increases the 

probability that people will behave according to the stimuli’s 

suggestions in the future. Our results suggest that pairwise 

comparison – which is typical in USA elections – could 

enhance emotional and gender-related valuation of 

candidates. 
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Abstract
Seasonal patterns vary dramatically around the world, and
we explore the extent to which systems of season categories
support efficient communication about the local environment.
Our analyses build on a domain-general information-theoretic
model of categorization across languages, and we identify sev-
eral qualitative predictions that emerge when this model is ap-
plied to season naming, including the prediction that systems
with even numbers of categories should be more common than
systems with odd sizes. We test the model quantitatively using
a collection of season systems drawn from the linguistic and
anthropological literature and data specifying temperature and
precipitation in locations associated with these systems. Our
results support the predicted even-odd asymmetry, and we also
find that the model makes a number of successful predictions
about the locations of boundaries between seasons.
Keywords: categorization; efficient communication; informa-
tion theory

Imagine an alien geographer who has detailed knowledge
about the natural environment in one part of our planet. The
geographer knows how temperature, rainfall, humidity, wind
speed, and wind direction vary over the course of the year.
The geographer knows about clouds, fog, dew, storms, and
lightning, and about the water levels in local streams, rivers
and lakes. The geographer is intimately familiar with the
flowering patterns of local plants and the breeding and mi-
gration patterns of local animals. In all of these cases the ge-
ographer knows about long-run averages as well as the vari-
ability that can be expected year to year. Before meeting any
of the local people, what predictions could the geographer
make about the categories named in their language? We fo-
cus on a special case of this question, and consider the extent
to which named seasons reflect properties of the local envi-
ronment. For example, we ask whether the geographer could
predict how many seasons the local people might recognize,
and where the boundaries between these seasons might lie.

Our approach builds on a growing body of work that ex-
plores ways in which languages support efficient communi-
cation (Rosch, 1978; Corter & Gluck, 1992; Gibson et al.,
2019). Particularly relevant to our approach are information-
theoretic accounts of variation in named categories across
languages (Baddeley & Attewell, 2009; Kemp, Xu, & Regier,
2018). Regier, Kemp and colleagues have developed an
information-theoretic formulation of the idea that named cat-
egories achieve a near-optimal tradeoff between complexity

and communicative cost, and have applied it to domains in-
cluding color (Zaslavsky, Kemp, Regier, & Tishby, 2018) and
kinship (Kemp & Regier, 2012). Here we use the same for-
mal framework to study season naming across languages.

Our work addresses an important question that is largely
absent from previous formal treatments of categorization and
efficient communication. The information theoretic frame-
work that we adopt allows for different languages to reflect
different communicative priorities. For example, the frame-
work allows that systems of color categories may vary in
part because speakers of different languages are embedded
in environments (e.g. desert vs rainforest) with very different
colour distributions, which may produce different local com-
municative needs. Previous authors acknowledge this point
but typically implement models that assume that speakers
all around the world encounter the same distributions over
colors (Zaslavsky et al., 2018), kin types (Kemp & Regier,
2012), and other elements of their environments.

A notable exception is a project that explored words for
ice and snow, and found that languages with a term that
covers both of these concepts tend to be found in warm re-
gions (Regier, Carstensen, & Kemp, 2016). That work fo-
cused specifically on environmental variation, but the nam-
ing behavior considered is extremely simple (one term versus
two for frozen precipitation). Here we focus on environmen-
tal variation in a domain that offers the potential to make de-
tailed predictions about not just the number of categories, but
the locations of the boundaries between these categories.

Season naming has previously been studied by researchers
from disciplines including linguistics, anthropology and ge-
ography. In a pioneering project Orlove (2003) compiled
systems of season terms from twenty eight languages, and
used them to document general tendencies in season naming.
For example, Orlove suggests that seasons are usually char-
acterized in terms of atmospheric phenomena such as rainfall,
wind, and temperature. In some cases, however, seasons are
based on changes related to plants (e.g. the flowering of a
certain species), animals (e.g. the first appearance of a given
species), or water levels in local rivers and lakes. Our ap-
proach builds on the work of Orlove and others by using com-
putational methods to probe the relationship between season
naming and the local environment.
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A small amount of previous work has taken a computa-
tional approach to season naming. Hatfield-Dodds (2016)
gives a detailed description of Yolngu seasons from the north
east Arnhem land in Australia, and describes a computational
model that uses climate data to detect when the seasons start
and begin. Our work provides much less detail about any
single language, but complements the approach of Hatfield-
Dodds by using computational methods to explore season
naming across a relatively large set of languages.

Previous authors have also discussed the notion of an op-
timal set of seasons for a given area. Entwisle, for example,
proposes a set of five seasons for southeastern Australia that
fits the local climate better than the four traditional European
seasons (Entwisle, 2014). Proposals like these are often based
in part on climate data, but are not typically derived from
computational models. Our work builds on these approaches
by connecting season naming with a domain-general account
of categorization across languages.

Theoretical framework
This section introduces an information-theoretic approach
that measures the extent to which a system of season terms
supports informative communication about the environment.
Consider a speaker who is talking about an event that falls
within a standard year of 365 days. Let d indicate the day of
the event. The prior distribution p(d) captures the probability
that the speaker will talk about an event that occurs on day d.
For simplicity we assume that p(d) is uniform.

Each day is associated with a distribution p(~s|d) over
a vector of season variables. We will consider three—
precipitation (sp), temperature (st ), and temporal location
within the year (sy)—so that ~s = [sp,st ,sy]. Many other fac-
tors are relevant to season naming, and in principle we would
like to include additional variables that capture information
about the local climate, food sources, and bodies of water. In
future it may be possible to include some of these variables,
but for now we work with two climate variables (precipita-
tion and temperature) that are readily available for locations
all around the world.

Each day is also associated with a distribution p(w|d) over
words for seasons. The speaker labels day d by sampling
from the distribution p(w|d). After hearing the label the lis-
tener uses Bayesian inference to compute a distribution over
the season variables:

p(~s|w) = ∑
d

p(~s|d)p(d|w) ∝ ∑
d

p(~s|d)p(w|d)p(d).

We assume that communication succeeds to the extent that
the speaker distribution s = p(~s|d) resembles the listener
distribution l = p(~s|w), and formalize this idea using the
same information-theoretic measure of communication cost
used by previous work on domains including color and kin-
ship (Kemp & Regier, 2012; Zaslavsky et al., 2018). Com-
munication cost is defined as the Kullback-Leibler divergence
KL[s||l] from the speaker distribution s to the listener distri-
bution l, and is low when the distributions are similar to each

other. This cost measure can be used to assess the overall
communication cost associated with an entire system of sea-
son terms. This overall cost is defined as the expected cost
when the speaker communicates about an event:

system cost = ∑
d

P(d)KL[s||l] = ∑
d

P(d)KL[p(~s|d)||p(~s|w)].

There is a tradeoff between the communication cost of a
system of categories and its complexity. Complexity can
be formalized in different ways (Kemp & Regier, 2012; Za-
slavsky et al., 2018) and here we define the complexity of a
system as the number of terms that it contains. A system with
many terms (high complexity) can allow the listener to recon-
struct the speaker distribution very precisely (low communi-
cation cost), but a system with few terms (low complexity)
means that the listener is typically able to approximate the
speaker distribution only roughly.

Previous work suggests that systems of kinship
terms (Kemp & Regier, 2012) and color terms (Zaslavsky
et al., 2018) are efficient in the sense that they achieve
near-optimal tradeoffs between communicative cost and
complexity. An optimal tradeoff is achieved if the com-
municative cost of a system cannot be reduced without
increasing the system’s complexity, and vice versa. We will
explore the extent to which attested season systems support
efficient communication by comparing them to hypothetical
systems of equal complexity.

Synthetic climate data
To illustrate some qualitative predictions of the model we first
apply it to a simple synthetic data set that specifies how a sin-
gle climate variable sc varies over a hypothetical 48 day year.
Fig 1a shows a climate variable sc that rises smoothly then
falls over the course of the year, as temperature does in many
parts of the world. We combined this climate variable with a
temporal variable sy so that ~s = [sc,sy]. Fig 1a includes sea-
son systems that minimize communication cost for different
levels of complexity. For example, when n = 2 the optimal
categories divide the year into days when sc < 0.5 and days
when sc > 0.5

Although the model allows categories to be disconnected
the categories in these optimal systems are always connected
regions of the year. This result emerges because connected
categories ensure that category members have similar values
of the two season variables sc and sy.

A second qualitative result is that the turning points of the
climate variable (i.e. the peak and trough) always lie within
a category rather than at a category boundary. Because the
days on either side of a turning point have similar values of sc

and sy, assigning them to the same category minimizes com-
munication cost. A related but more subtle result is that for a
fixed value of the system size n, categories containing turning
points are longer than categories without turning points. For
example, when n = 4 the categories that contain the peak and
trough have 13 days each, and the remaining categories have
11 days each. In general, combining two intervals of length k
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Figure 1: Analyses of synthetic climate data over a 48 day
year. (a) Optimal systems of different sizes given a climate
variable that varies smoothly. (b) Communication costs rel-
ative to the climate and temporal variables for the optimal
systems in a. Labels indicate the sizes n of the 5 systems. (c),
(d) Analogous results when the climate variable has a discon-
tinuity at the end of the year.

that lie on either side of a turning point produces a category
of size 2k that has the same coherence (in sc) as a category of
size k in a region without a turning point.

A final qualitative result is that even systems (i.e. systems
with even numbers of categories) are more effective than odd
systems at capturing information about the climate variable.
The n = 2 system in Fig 1a distinguishes naturally between
low and high values of sc, but distinguishing between low,
medium and high values turns out to be less straightforward.
If only three categories are used, then the medium category
must have two disconnected components (not shown in the
figure). If all categories are connected regions of the year than
four categories (as for the n = 4 system in Fig 1a) are actually
needed to distinguish between low, medium and high values
of sc. More generally, if categories are connected then at least
2k−2 categories are needed to distinguish k levels of sc. As a
result, distinguishing between levels of sc in a parsimonious
way naturally leads to an even system.

Fig 1b compares the even and odd systems in Fig 1a by
plotting communication cost with respect to variables sc (cli-
mate cost) and sy (temporal cost). Although communication
cost was defined earlier with respect to the entire set of season

variables~s, here we use the same approach to define commu-
nication cost with respect to one variable at a time. Fig 1b
shows that moving from 2 to 3 categories produces a rela-
tively small improvement in climate cost, but moving from 3
to 4 categories produces a relatively large improvement. A
similar but less pronounced kink in the curve is visible when
moving from 4 to 5 to 6 categories. Moving from 2 to 3 cate-
gories does allow a speaker to convey additional information
about sy, but Fig 1b shows that this increase in complexity
provides little additional information about sc.

Most of the qualitative results just discussed depend crit-
ically on the assumption that sc varies smoothly over time.
Figs 1c and 1d show analogous results if sc increases
smoothly over the year then drops very sharply to its origi-
nal value before the year starts again. In this case optimal
categories are still connected regions, but the turning point
always lies at a category boundary, the categories within each
system have equal sizes, and there is no even-odd asymmetry.

The simulated environment in Fig 1a is simple and highly
stylized, and it is not clear whether qualitative results like the
even-odd asymmetry still apply if the climate variable rises
and falls at different speeds, or if additional climate variables
are added. Even so, we propose that seasonal variation in
real-world climates is more like Fig 1a than Fig 1c. Our anal-
yses therefore identify several characteristics of real-world
systems that might be expected purely on the basis that these
systems support communication about periodic variables that
vary smoothly through time.

Season naming data
We next evaluated the model using real-world naming and en-
vironmental data. Orlove’s (2003) ethnoclimatology database
was not available and we therefore consulted the primary lit-
erature to assemble our own data set.

The data set includes 53 languages in total. For 25 of these
languages the set of season terms was described in enough
detail to be roughly positioned relative to the Western cal-
endar year, and the data set includes season boundaries for
each season in each of these systems. Four examples of sys-
tems with boundaries are shown in Fig 2. For the remain-
ing 28 languages the data set specifies only the number of
season terms in each language. Our data have a strong Aus-
tralian focus because our two biggest sources are collections
of indigenous Australian seasonal calendars compiled by the
Commonwealth Bureau of Meteorology and the CSIRO.1

The data set inevitably reflects a number of decisions that
are somewhat arbitrary. There is no universally accepted def-
inition of a season, and it is likely that our sources adopted
slightly different notions of what qualifies as a season. Some
of the systems are hierarchies with two levels: they include a
number of major seasons which are in turn divided into minor

1Unless specified otherwise, all season systems discussed in this
paper (including three of the four in Fig 2) are drawn from one
of these resources (http://www.bom.gov.au/iwk/index.shtml
and https://www.csiro.au/en/Research/Environment/Land
-management/Indigenous/Indigenous-calendars).
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Figure 2: Climate data, seasons and optimal systems for four languages. Precipitation and temperature are shown using pink
and cyan respectively. A cube-root transform has been applied to precipitation, and both variables are normalized to have zero
mean and unit variance across the entire data set. Empirical season boundaries are shown using vertical lines. The colored bars
across the top show optimal systems according to the model with sizes matched to the linguistic systems. Two systems are
shown for Nuer for comparison to the two major seasons and the four minor seasons recognized in this language.

seasons. Judgments about subjective seasons are likely to be
especially subjective. For example, the Tiwi system includes
three major seasons and thirteen minor overlapping seasons,
including Kurukurari (“season of the mangrove worm”, when
these worms are easy to find) and Tawutawungari (“season of
the clap sticks,” when special yam ceremonies are held). It
seems likely that some of the languages in our data set have
minor seasons that are not documented in our sources.

Although 25 of the languages in the data set include sea-
son boundaries, our sources repeatedly stress that mappings
of indigenous seasons onto the calendar year are approximate
only. Seasons are often fuzzy categories with no sharp bound-
aries, and the boundaries between seasons often shift from
year to year as a result of variability in the local climate and
other factors.

Some of our sources describe overlapping seasons, and this
overlap is preserved in our data set. When seasons overlapped
the distribution P(w|d) over season terms for a given day was
taken to be uniform over all seasons including that day. None
of our sources describes gaps (i.e. unnamed periods) between
seasons, and as a result each system in our data assigns each
day to at least one season.

Among our systems with season boundaries, seasons al-
ways correspond to connected regions of the year, but excep-
tions are known outside our data set. For example, Rukiga has
two words for seasons, orugazi (rainy season) and ekyanda
(dry season), but these seasons may alternate over the course
of a calendar year so that there are two rainy seasons and two
dry seasons (Orlove, 2003). For languages included in our
data set, season terms may pick out disconnected regions of
the year when actually applied by native speakers. For ex-
ample, if an unusually cold spell occurred during the sum-
mer months, a Yolngu speaker might say that one season had
“interrupted” another (Hatfield-Dodds, 2016). These inter-
ruptions mean that seasons can occur in different orders dur-
ing the year, and that a particular season could occur multi-
ple times. For all of these reasons the representations in our
data set are best viewed as crude approximations of bodies of
knowledge that are both rich and subtle.

Season variables
The precipitation (sp) and temperature (st ) variables are based
on global gridded data available from the Climate Prediction
Center (CPC) in the USA.2 Our analyses used daily precip-
itation and daily temperature averaged over the period from
1979 to 2005 and excluding leap years. Following a common
practice in climate modeling we applied a cube-root trans-
form to the precipitation data. We then normalized both vari-
ables to have zero mean and unit variance; normalized vari-
ables for four locations are shown in Fig 2.

We assigned Glottocodes manually to each language in the
data set then retrieved the position (i.e. latitude and longi-
tude) associated with each language in the Glottolog data
base (Hammarström, Forkel, & Haspelmath, 2018). We then
used these positions to extract precipitation and temperature
data for each language from the CPC data.

The distribution p(~s|d) for a given day and location was
defined as a multivariate Gaussian distribution over a three-
dimensional space. Two of the dimensions were the nor-
malized precipitation and temperature dimensions already de-
scribed, and the temporal dimension ran from 1 to 365 days
and wrapped around so that day 366 was identical to day 1.
The covariance was an axis-aligned distribution with standard
deviation of 0.1 along the precipitation and temperature di-
mensions and standard deviation of 40 along the temporal
dimension. The relative magnitudes of these standard de-
viations capture assumptions about the extent to which sea-
son categories should be informative about the three dimen-
sions. For example, increasing the standard deviation along
the temporal dimension would mean that there is less pressure
for season categories to convey precise information about the
location of an event within a year. As a result the tempo-
ral dimension would become less important and precipitation
and temperature would effectively become more important.
The numerical parameters used in our analyses (i.e. 0.1 and
40) were intended to give precipitation and temperature equal

2CPC data provided by the NOAA/OAR/ESRL PSD, Boulder,
Colorado, USA, from their Web site at https://www.esrl.noaa
.gov/psd/
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weight, and to capture the idea that season categories locate
events within the calendar year only roughly.

Because climate data are noisy we smoothed the distribu-
tions p(~s|d) using a linear kernel with a width of 9 days. This
smoothing process meant that the distribution p(~s|d) for a
given day (e.g. Jan 15) was defined as a weighted average
of distributions for Jan 11 through 19. As a final step we dis-
cretized these distributions over a regular grid for use in our
information-theoretic analyses.

Analysis of system sizes
Fig 3a shows the distribution of system sizes across our data
set. For languages with hierarchical systems, the system size
is defined as the number of seasons at the finest level of reso-
lution. The system of size zero corresponds to the Grand Val-
ley Dani, who constitute “a significant exception to [the gen-
eral statement] that all cultures recognize seasons” (Heider, p
212). The two systems of size 13 represent Tiwi (described
earlier) and Ngan’gi, and both feature ecological seasons de-
fined with respect to the local plants and animals. Other lan-
guages in the data set almost certainly have ecological sea-
sons that were not documented in our sources, and our Fig 3
therefore likely exaggerates the difference between Tiwi and
Ngan’gi and the other languages in our data set.

As suggested earlier the model predicts a preference for
systems with even sizes, and Fig 3a reveals that 2, 4 and
6 are the most common sizes. Leaving aside the three sys-
tems with sizes of zero or 13, 38 out of 50 systems or 76%
have even sizes. We evaluated the significance of this re-
sult using a Bayesian mixed effects binomial model based
on the rstanarm package and its default priors (Goodrich,
Gabry, Ali, & Brilleman, 2018). The binary outcome vari-
able indicated the parity (even or odd) of a system, and we
included both a fixed intercept and a random intercept for
language family to acknowledge genetic relatedness between
languages.3 The median of the fixed intercept indicates a
probability of 0.77 that a random system would have an even
size, and the 95% posterior credible interval ([0.59,0.94]) ex-
cludes the probability (0.5) that makes even and odd systems
are equally likely. Our data therefore support the conclusion
that even systems are more common than odd systems.

Orlove (2003) previously noted that systems with odd sizes
are rare, and in his data 23 out of 28 systems, or 82% have an
even size. He did not offer an explanation for this asymmetry,
but we have argued that it emerges from a pressure for season

3The model call was stan glmer(parity ∼ 1 +
(1|language family), family=’binomial’). Language
families (e.g. Pama-Nyungan) were extracted from Glottolog.
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systems to support informative communication about factors
that vary smoothly over time.

Analysis of season boundaries
Our remaining analyses focus on the 25 languages for which
we have season boundaries. Four of these languages are
shown in Fig 2 along with optimal systems according to our
model.

Kaytetye has two seasons — Watangka (hot season) and
Yurluurp (dry season) — and the boundaries between these
categories roughly match the model predictions. Maung
has three seasons: Walmatpamalat (heavy rain), Wumulukuk
(cold weather) and Kinyjapurr (hot and humid). The model
predicts three categories of roughly the right duration—in
particular, the category that includes the steep increase in pre-
cipitation is shorter than the other two. The predicted season
boundaries, however, are all shifted later in the year relative to
the Maung system. Fig 2 also suggests that two of the Maung
season boundaries lie close to simultaneous turning points in
both temperature and rainfall. The Maung system therefore
challenges the qualitative prediction that turning points in the
climate data should lie within categories rather than at cate-
gory boundaries.

Nuer has two major seasons: tot (mid-March to mid-
September) and mei (mid-September to mid-March), each
of which is divided into two minor seasons. The Nuer sys-
tem provides additional evidence that season boundaries can
be aligned with turning points in the climate data. Evans-
Pritchard (1939, p 191) notes that “the mei season com-
mences at the decline of the rains—not at their cessation.” At
the beginning of mei the Nuer start to anticipate the life they
will lead when the dry weather arrives, and Evans-Pritchard
(p 191) writes that their classification of seasons “aptly sum-
marizes their way of looking at the movement of time, direc-
tion of attention in marginal months being as significant as
actual climatic conditions.”

Kunwinjku has six terms: Kudjewk (monsoon season),
Bangkerreng (knock’em down storms), Yekke (start of dry
time), Wurrkeng (cool weather time), Kurrung (hot, dry
time), and Kunumuleng (humidity builds). The boundaries
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Figure 5: Attested systems (black dots) compared to rotations (grey dots) and size-matched optimal systems (black lines).

in the model system roughly match the linguistic data, and
the model correctly predicts that there should be two short
adjacent seasons during the part of the year when rainfall is
declining sharply. Much more could be said about Kunwinjku
and about each specific language in Fig 2, but we now turn to
analyses that range more broadly across the entire data set.

A first general question is how closely season categories
are aligned with variation in the two environmental variables
(temperature and precipitation) included in our model. If a
given system is closely aligned with the environmental vari-
ables, then rotating the system through the calendar year (i.e.
incrementing all season boundaries by a constant while al-
lowing for wrap around) should disrupt this alignment. Fig 4a
plots communication cost against rotation size, and suggests
that attested systems (i.e. systems rotated by zero days) tend
to achieve lower communication cost than rotations of these
systems. As shown in Fig 4, 0 day rotations score better than
99% of the 365 possible rotations. Fig 4b shows separate ro-
tation curves for systems of size 2, 3, 4 and 6. The 2 term
systems make an especially large contribution to the average
result in Fig 4a, but a clear trough at zero days is visible also
for the systems of size 6.

Fig 5 summarizes rotation results for individual languages.
The three languages with hierarchies are included twice in
the plot, once for each level of the hierarchy. Some systems
(black dots) score better than most of their rotations (gray
bar), including Kaytetye and Kunwinjku from Fig 2), but oth-
ers (in particular Narrinyeri) do not. On average, each system
scores better than 64% of its rotations.

Fig 5 also compares each system to the optimal system ac-
cording to our model. Again, the pattern of results is mixed.
Some systems (including Kaytetye and Kunwinjku) achieve
scores close to the optimum, but others (including Laragia) do

not. A likely explanation is that our model was given only two
environmental variables even though language groups around
the world use many markers of seasonal transitions other than
changes in precipitation and temperature. For example, Nar-
rinyeri seasons are distinguished by factors including “the
growth of particular plants” and the “appearance of various
creatures” (Berndt et al, 1993, p 76), and the lack of these
factors in our analyses may explain why Narrinyeri achieves
a sub-optimal score in Fig 5.

Conclusion
We developed a computational model that assumes that sys-
tems of season terms are near-optimal at conveying informa-
tion about the local environment. The model helps to explain
why systems with odd numbers of terms are relatively rare,
and makes a number of successful predictions about the loca-
tions of season boundaries.

Our results do not provide strong support for claims about
optimality but nevertheless demonstrate the value of the
efficient-communication approach to naming and categoriza-
tion. Most interesting to us are the qualitative issues exposed
by the model. We have touched on some of them already,
including the even-odd asymmetry, and the relationship be-
tween season boundaries and turning points in environmen-
tal variables. Many others arise: for example, our approach
could be used to test the hypothesis that systems with large
numbers of terms are especially likely to be found in regions
with variable climates, and the hypothesis that boundaries
are more likely to be aligned with sharp transitions (e.g. the
first major rainfall of the year) than gradual changes in vari-
ables such as temperature. Although our current model is
extremely simple, we have found it to be a useful conceptual
tool for thinking about season naming across languages.
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Abstract

A substantial body of research has demonstrated that children
and adults (both native and non-native speakers) are sensitive
to the statistics of multiword sequences (MWS) and rely on
knowledge of such statistics to facilitate their language pro-
cessing and boost their acquisition. However, this research
was primarily aimed at determining whether and to what ex-
tent speakers can develop sensitivity to MWS statistics of a
single type of linguistic input: that of spoken language. Re-
cently, there has been a growing awareness of the key role of
written input in the development of linguistic knowledge, as it
provides a source of substantial change in the statistics of an
individual’s language experience. The present study reports on
a series of experiments designed to determine whether second
language learners of English are able to develop sensitivity to
distributional statistics of MWS inherent in different (register-
specific) input types.
Keywords: life-long learning; multiword sequences; second
language processing; statistical learning

Recent theoretical approaches have highlighted the key im-
portance of linguistic experience to the acquisition and pro-
cessing of language. This broad class of approaches, com-
monly referred to as ‘emergentist’ approaches,1 put the em-
phasis on usage and/or experience with language and assume
a direct and immediate relationship between processing and
learning, conceiving of them as inseparable rather than gov-
erned by different mechanisms (‘two sides of the same coin’).
Language acquisition is viewed as learning how to process
linguistic input efficiently (e.g., Chang, Dell & Bock, 2006;
Chater & Christiansen, 2018). In the emergentist perspective,
language learning does not result in the establishment of a
static knowledge system. Rather, as long as there is exposure
to linguistic input, an individual’s knowledge of a language is
subject to constant change. Learning about the statistical reg-
ularities and distributional patterns inherent in linguistic input
is viewed as a continuous process that does not end at some
discrete point in time in ontogenetic development but instead

1Following the literature (see, e.g., Kidd et al. 2018), we use
the term ‘emergentist’ to refer to a broad class of approaches -
usage-based (a.k.a. experience-based) models, complex dynamic
systems theory, constraint-based approaches, exemplar-based mod-
els and connectionist models - that share a number of key tenets, for
more details (see, e.g., Beckner et al. 2009; Daelemans & van den
Bosch, 2005; McClelland et al. 2010)

takes place across the lifespan (e.g., Armstrong et al., 2017;
Saffran & Kirkham, 2018; Seidenberg & MacDonald, 2018).
This lifelong process brings about changes in language rep-
resentations in response to the statistics in linguistic input.
These experientially-driven adaptive processes are shown to
occur across multiple linguistic levels and apply to the acqui-
sition of new structures, the modification and/or adjustment
of already learned representations or changes in accessibility
of learned representations.

Moving away from the traditional ‘words-and-rules’ ap-
proach (e.g., Pinker, 1999), emergentist accounts have devel-
oped an increasing interest in the role of multiword sequences
(MWS), often defined as variably-sized continuous or discon-
tinuous recurring strings of words. This interest stems from
an extensive body of evidence demonstrating that children
and adults (both native and non-native speakers) are sensitive
to the statistics of MWS and rely on knowledge of such statis-
tics to facilitate their language processing and boost their ac-
quisition (e.g. Shaoul & Westbury, 2011; N. Ellis, 2011; see
Arnon & Christiansen, 2017, for a recent review). Sensitiv-
ity to the statistics of MWS facilitates chunking - required to
integrate the greatest possible amount of available informa-
tion as fast as possible so at to overcome the fleeting nature
of linguistic input and the limited nature of our memory for
sequences of linguistic input (Now-or-Never bottleneck, see
Christiansen & Chater, 2016). Processing a MWS as a chunk
will minimize memory load and speed up integration of the
MWS with prior context (see, e.g., a chunk-based compu-
tational model of early language acquisition presented in a
recent study by McCauley & Christiansen, 2019).

Frequency estimates obtained from corpora of actual lan-
guage use have been shown to be robust predictors of lan-
guage behavior across different types of experimental de-
signs, as evidenced by higher accuracy rates, faster reaction
times, and fewer and faster fixations. These effects have
been shown in both child and adult populations as well as
second-language learner populations. While earlier studies
on the processing of MWS have used a threshold-approach to
test whether MWS are stored and processed as holistic units
(Biber & Conrad, 1999), more recent studies have incorpo-
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rated further methodological improvement by testing these
effects across the frequency continuum after controlling for
substring frequency (for studies in child language acquisi-
tion, see, Bannard and Matthews, 2008; Matthews and Ban-
nard, 2010; for studies on adult – both first and second lan-
guage – processing see, Arnon, McCauley & Christiansen,
2017; Arnon and Snider, 2010; Hernandez et al., 2016, Kerz
& Wiechmann, 2017, Yi et al. 2017).

This line of research has also shown that while being the
most robust statistic, frequency is not the only kind of dis-
tributional information to which language users are sensi-
tive. For example, in a study of MWS repetition in children,
Matthews and Bannard (2010) showed that MWS with a high
slot entropy value have increased uncertainty for what word
occur in that slot and that such sequences were easier to gen-
eralize and hence easier to process for children than MWS
with lower slot entropy.

The prior studies reviewed here have made important
theoretical and methodological contributions to research on
MWS. However, they have primarily focused on examining
sensitivity to the frequencies derived from corpora represent-
ing spoken language (i.e., spontaneous conversations). In
contrast to early child language acquisition (prior to literacy),
where children are mainly exposed to the statistics of the spo-
ken linguistic input (i.e., to child-directed speech), the role
of written language becomes increasingly more important in
later stages of learning which also sees increased demands on
literacy. Indirect support for this assumption comes from a
growing number of studies indicating that written language
constitutes a key input type in the development of linguistic
knowledge, as it provides a source of substantial change in the
statistics of an individual’s language experience (e.g., Montag
& MacDonald, 2015; Seidenberg & MacDonald, 2018). Lan-
guage users are thus faced with the challenge of keeping track
of the ever-changing statistics of these two main types of lan-
guage input. This challenge is exacerbated by considerable
variability in the distributional properties of linguistic pat-
terns at multiple levels of linguistic structure within these two
input types (Roland, Dick & Elman, 2007; see also work on
register/genre2 variation by Biber and colleagues, e.g. Biber
et al. 1999, Biber & Conrad, 2009).

In light of the lifelong nature of language learning high-
lighted in emergentist accounts, there is an apparent need
not only to characterize the statistical learning processes in
early stages of child language development, but also to under-
stand how language users develop sensitivity in later stages
of learning to the multiple kinds of statistics found in written
language. This issue is of particular importance for second
language (L2) learners, who are likely to get a lot of their
language from written sources. Using a within-subject de-
sign, the present study sets out to investigate whether and to
what extent language users can develop sensitivity towards

2In the present paper, the terms ’registers’ and ‘genres’ are
used interchangeably in Biber’s sense (2006:11) as referring to
“situationally-defined varieties described for their characteristic dis-
tributions of linguistic structures and patterns.”

the multiple statistics of MWS. We perform analyses of large
samples of corpus data representing four registers and use the
results from these analyses to make predictions about lan-
guage users’ performance in a MWS decision task. We pre-
dict faster response latencies for more frequent MWS (after
controlling for all part frequencies) across the registers/genres
investigated here. In addition to determining the effects of
frequency (’more simple’ distributional statistics), the study
also investigated whether and to what extent language users
are sensitive to ’more complex’ distributional statistics (en-
tropy) that captures the variability of MWS. The effects of
frequency and entropy were investigated in a L2 learner pop-
ulation by conducting four reaction time experiments where
processing latencies of MWS are compared for pairs of MWS
that differ in sequence-frequency and entropy of their final
slot.

Methods
Participants
Sixty advanced learners of English participated as a part of a
larger project (34 female and 26 male, M = 23.56 years, SD
= 4.52). All participants were college students recruited from
the RWTH Aachen University studying either towards an BA
or an MA at the time of testing. Participants were asked to fill
out the Language Experience and Proficiency Questionnaire
(LEAP-Q, see, Lemhofer & Broersma, 2012), a questionnaire
used to obtain general demographic information and more
specific information on self-rated proficiency for three lan-
guage areas (reading, understanding and speaking) and self-
rated current knowledge of L2 English and exposure to the
L2. The data gathered from the LEAP-Q instrument are re-
ported in Table 1, showing means, standard deviations and
ranges of our L2 group.

Materials
The current study follows the general methodological ap-
proach described in the previous studies reviewed above that
used carefully chosen stimuli, controlled for substring fre-
quency. Following these studies, we chose pairs of four-word
sequences as stimuli that differed only in the final word and in
overall MWS frequency (high vs. low) but were matched for
substring frequency (e.g. to justify the cost vs. to justify the
effort from the newspaper register; e.g., is beyond the scope
vs. is beyond the boundaries from the academic register).
We constructed a total of 240 experimental items, 60 for each
of four registers. The items were constructed using the Cor-
pus Contemporary American English (COCA; Davies, 2008),
a 560 million words corpus with approximately equal-sized
subcomponents representing the statistics of MWS from the
four target registers: (1) spoken (118 million words), (2) fic-
tion: (113 million words), (3) newspaper (114 million words
and (4) academic journals (112 million words). In a first step,
all COCA text files were preprocessed using the sentence
splitting (ssplit) and tokenization (PTNTokenizer) compo-
nents from the Stanford CoreNLP toolkit V.3.2.9 (Manning et
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Table 1: Self-report information on English acquisition, ex-
posure, and proficiency

mean sd obs. range

English acquisition (years)
Age start acquisition 8.46 2.23 6–22
Age became fluent 14.63 3.9 8–23
Current exposure to English
Friends (0-10) 4.63 3.1 0–10
Family (0-10) 1.36 2.6 0–10
Reading (0-10) 7.64 2.25 1–10
Class instruction (0-10) 5.48 3.43 0–10
Self instruction (0-10) 4.86 2.81 0–10
Watch (0-10) 7.64 2.72 0–10
Listening music (0-10) 7.39 2.84 0–10
Social Media (0-10) 7.39 2.68 0–10
Immersion (month)
English speak. country 2.96 3.46 0–11
Self-rated proficiency
Speaking (0-10) 7.25 1.69 1–10
Listening (0-10) 8.49 1.38 5–10
Reading (0-10) 7.86 1.58 1–10

al., 2014). In a second step, we extracted frequencies for all n-
grams of orders 1 to 4 using Java scripts. N-grams with a fre-
quency of one (so-called ‘hapax legomena’) were discarded.
These two steps were performed on the RWTH Aachen Uni-
versity high-performance computing cluster. In a third step,
four-grams that had a function word as their last word were
filtered out to ensure that the position at which entropy was
measured was filled by a lexical word.3. For all remaining
four-grams the Shannon entropy H was computed for their
final word slot, which is given in (1), where X is the final
slot of the MWS, each x is a word that appears in that slot,
and p(x) is the probability of seeing each x in that position.
All conditional word probabilities needed to compute entropy
scores were estimated using second-order Markov models (cf.
Willems, Frank, Nijhof, Hagoort, and van den Bosch, 2015).

H(X) =−∑
x

p(x) log p(x) (1)

We next identified all sequences of four words that began
with the same first three words (i.e. shared the same pat-
tern). Within each set of these sequences, a frequency dif-
ference score (FDS) was computed for a given sequence in
relation to the most frequent sequence in that set.4 We then
ordered the sequences according to their FDS and explored
how FDS scores related to entropy using a moving window
approach/technique. A window with a size that corresponded

3The stop-list for function words was derived from the ‘Essen-
tial Word List’ https://www.edu.uwo.ca/faculty-profiles/
docs/other/webb/essential-word-list.pdf

4FDS were expressed in terms of as the absolute of the log10
of the normalized frequency of a four-gram minus the log10 of the
normalized frequency of the most frequent four-gram sharing the
first trigram.

to a predefined FDS was moved over the entire candidate-
item pool to bin all four-gram into groups with similar FDS
(see Figure 2 for a visualization). Inspection of these data in-
dicated that four-grams with small differences in FDS tended
to exhibit low entropy scores. Based on these observations,
we restricted our candidate pool to four-grams that had en-
tropy scores between 0 and 3 and a difference in log nor-
malized frequency between 6.5 and 30. From this candidate
pool, we randomly sampled, from each register, a total of 60
experimental item pairs: 20 pairs from each of three entropy
ranges (‘low’: H(X) between 0 and 1, ‘mid’: H(X) between 1
and 2, ‘high’: H(X) between 1 and 2). Applying these filters
meant that the log frequencies of our items ranged between
0.69 and 6.85 (spoken 0.69−6.07, fiction: 0.69−6.85; news
0.69−5.97, academic 0.69−5.87).

Figure 1: Distribution of entropy scores across the ’frequency
difference score’ (FDS) range for the academic subcompo-
nent of COCA. The shaded area represents the range from
which experimental items were sampled.

Procedure
Four separate MWS experiments, one for each register, were
conducted as part of a larger project at two different days
with two registers tested per day (day 1: academic and fic-
tion; day 2: news and spoken). Each experiment was divided
into two blocks of about 7 minutes each, which were sep-
arated by intervening tasks assessing individual differences
in L2 experience and another task assessing a cognitive indi-
vidual differences variable (not investigated here). The 120
MWS from a given register were distributed across two lists
that each contained one of the two variants of a given pair, so
that in a given experimental run participants would never see
both variants of a pair. In addition to the experimental items,
the lists also contained 60 ungrammatical items, which were
incorrect due to scrambled word order. The order of presenta-
tion of the blocks was counterbalanced between participants.
Participants were asked to judge if a four-word sequence that
appeared on the screen was a possible sequence in English or
not. They were given no information about the fact that MWS
were extracted from different registers. Each trial began with
the presentation of a fixation point for 500 ms. Phrases ap-
peared at once in the middle of the screen and participants
were instructed to respond as quickly and accurately as pos-
sible using the keyboard. The MWS was then presented and
stayed visible on the screen until participants responded or
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until 3000 ms had passed. The task was run using PsychoPy
v3.0 (Peirce, 2007).

Results
Responses under 200 ms and over two standard deviations
from the mean were excluded. This resulted in loss of small
percentage of data for each register (< 9%). Accuracy for
target items was near ceiling (> 92% correct) for all regis-
ters. On average, participants were faster in responding to
MWS from the spoken and fiction registers (mean response
latencies spoken and fiction = 1.44 seconds, SD = 0.5) than
in responding to MWS from the academic and news reg-
isters (mean response latencies: academic = 1.55 seconds,
SD = 0.51; news = 1.57 seconds, SD = 0.5). The results
were analyzed using mixed-effect linear regression models.
To determine to what extent L2 learners can develop sensi-
tivity to the two distributional statistics of MWS (log MWS
frequency, slot entropy) inherent in the four registers inves-
tigated in the study, separate models were fitted to the data
from each of the four experiments.5 All analyses were carried
out using the lme4 package (v 1.1-17, Bates et al., 2015) in R
(version 3.5.0; R Core Team, 2017). Log response times were
used as the predicted variable to reduce the skewness in the
distribution of response times. In a first step, we fitted mod-
els containing all control variables, i.e. LENGTH (in number
of characters), two substring frequency measures (LOG FRE-
QUENCY OF THE FINAL UNIGRAM and LOG FREQUENCY
OF THE FINAL BIGRAM)6, BLOCK ORDER (first vs. second),
and PAIR VARIANT (high-low frequency variant of a pair).
All continuous predictors were mean centered prior to anal-
ysis. We then added our key predictors, LOG PHRASE FRE-
QUENCY and SLOT ENTROPY (high, mid, low), to examine
their predictive value over and above our controls, using like-
lihood ratio tests to compare nested models. In all models,
we used the maximal random effect structure justified by the
data, which included random intercepts for participants and
items and by-subject random slopes for log MWS frequency
and entropy. To compare the effects of (log) MWS frequency
on (log) reaction times across the four registers, standardized
coefficients as well as marginal and conditional pseudo-R2
were computed (cf. Nakagawa and Schielzeth, 2013).7

5Two anonymous reviewers recommended to pool the data from
the four experiments and report on the interaction effects between
our key predictors (log MWS frequency, slot entropy) and a ‘reg-
ister’ variable. We have computed such a ‘global’ using orthogonal
contrasts for the ‘register’ variable. This model revealed a significant
effect of log MWS frequency (=−0.026, SE = 0.006, t =−4.169)
but no significant interactions between log MWS frequency and reg-
ister. Since we aimed to test whether our participants can detect and
adapt to the changing statistics of multiple input types, we decided
to report on four separate models in the study.

6To avoid overfitting resulting from multiple substring frequency
control variables, we followed the procedure used in Arnon & Snider
(2010) and first ran a model with all substring frequency controls and
then removed the variables whose standard error was greater than the
value of their coefficient in the model. All reported models had low
collinearity (all V IFs < 1.8).

7Standardized beta coefficients indicate how many standard de-
viations a dependent variable will change, per standard deviation

In a next step, we tested for a potential interaction between
our two key predictors. To this end, we conducted model
comparisons between a model containing only the main ef-
fects and a corresponding model that also included the two-
way interaction between MWS frequency and slot-entropy
using Akaike’s Information Criterion (AIC). The results of
the final best-fitting model for each register are presented
in Table 2 below. Likelihood ratio tests comparing mod-
els including LOG MWS FREQUENCY with a model that in-
cluded only the control variables revealed that – after sta-
tistically controlling for the effects of length and frequency-
related control variables – MWS frequency exerted a signif-
icant effect on (log) reaction times for all registers except
fiction (spoken: χ(1) = 18.53, p < .0001; fiction: χ(1) =
2.28, p = 0.51; academic: χ(1) = 13.31, p = 0.004; news:
χ(1) = 59.46, p < .0001). The frequency effect was found to
be strongest in the spoken and news registers (both standard-
ized β = −0.13), followed by academic language (standard-
ized β = −0.11). A significant main effect of slot entropy
was observed for the spoken and academic register (spoken:
χ(1) = 40.03, p < 0.001; fiction: χ(1) = 5.77 , p = 0.58;
academic: χ(1) = 14.23, p = 0.047; news: χ(1) = 12.42,
p = 0.061), such that that mean response times were signif-
icantly faster for MWS with higher slot entropy. There was
also a significant interaction effect between MWS frequency
and entropy in the spoken register (β =−0.046, SE = 0.016,
t =−2.79), indicating that the frequency effect was more pro-
nounced in high-entropy MWS (see Figure 2). The effects
of the length and frequency related control variables were in
the predicted directions - with longer MWS being read more
slowly on average and more frequent final words leading to
faster response times - but these effects were significant in
only some of the registers. Significant effects of block order
were observed for two of the four registers (see Table 3 for
details).

Discussion and Conclusions
In this paper we reported a series of experiments with English
L2 learners designed to determine to what extent the multiple
distributional statistics of MWS inherent in register/genre-
specific linguistic input (as estimated using a large corpus of
actual language use) would affect the processing latencies of
the MWS. We found the MWS frequency effect in three out of
four registers investigated (all with the exception of fiction),
i.e. our participants responded faster to higher frequency
MWS, even after controlling for the effects of substring fre-
quency. The finding that our participants showed MWS fre-
quency effects in the spoken register is in line with the results
of previous studies on adult native speakers and non-native
speakers (e.g., Arnon & Snider, 2010; Tremblay et al., 2012;
Hernandez et al. 2016). Importantly, our findings extend this

increase in the predictor variable. Pseudo-R2 for generalized mixed-
effect models (GLMM) can be categorized into two types: Marginal
R2 represents the variance explained by fixed factors. Conditional
R2 is interpreted as variance explained by both fixed and random
factors (i.e. the entire model).
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Table 2: Results from the mixed effects regression models fitted to the data from the four experiments.

Register comparison

Log. Reaction Time
Spoken Fiction Academic News

Constant 0.286∗∗ 0.752∗∗∗ 0.447∗∗∗ 0.532∗∗∗

(0.069, 0.503) (0.469, 1.036) (0.302, 0.592) (0.300, 0.763)
log MWS frequency B =−0.037∗∗ B =−0.013 B =−0.025∗∗ B =−0.035∗∗

(−0.061, −0.013) (−0.039, 0.013) (−0.042, −0.008) (−0.060, −0.009)
β =−0.13 β =−0.06 β =−0.11 β =−0.13

slot entropy (low to mid) B = 0.009 B = 0.019 B =−0.046∗∗ B = 0.037
(−0.066, 0.085) (−0.039, 0.078) (−0.078, −0.014) (−0.012, 0.086)

β = 0.01 β = 0.03 β =−0.08 β = 0.11
slot entropy (low to high) B = 0.069 B =−0.010 B = 0.006 B =−0.0003

(−0.013, 0.152) (−0.067, 0.046) (−0.029, 0.041) (−0.050, 0.049)
β = 0.1 β = 0.02 β =−0.02 β = 0.04

log MWS freq.:entropy (mid) B =−0.013
(−0.044, 0.017)

log MWS freq.:entropy (high) B =−0.041∗

(−0.081, −0.001)

log final bigram B = 0.002 B = 0.005 B = 0.004 B =−0.003
(−0.007, 0.011) (−0.006, 0.016) (−0.003, 0.011) (−0.012, 0.005)

log final word B = 0.011 B =−0.031∗∗ B =−0.020∗∗∗ B =−0.010
(−0.002, 0.024) (−0.050, −0.011) (−0.031, −0.009) (−0.027, 0.007)

length (char) B = 0.003 B = 0.002 B = 0.008∗∗∗ B = 0.008∗∗∗

(−0.004, 0.010) (−0.005, 0.009) (0.005, 0.012) (0.003, 0.013)
pair variant (low to high) B =−0.065∗ B = 0.008 B =−0.028 B =−0.036

(−0.118, −0.012) (−0.055, 0.071) (−0.070, 0.014) (−0.093, 0.022)
block order B =−0.025 B =−0.097∗∗∗ B = 0.010 B =−0.062∗∗∗

(−0.060, 0.009) (−0.140, −0.054) (−0.016, 0.035) (−0.097, −0.028)
Conditional R2 0.41 0.39 0.30 0.40
Marginal R2 0.02 0.03 0.03 0.05

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Numbers in parentheses indicate 95% confidence intervals.

B indicate unstandardized beta coefficients
β indicate standardized beta coefficients

prior research by demonstrating that language users’ ability
to track the statistics in the input is not limited to the spo-
ken conversational language but it can be observed in written
registers/genres. In addition to the MWS frequency effects,
the significant main effect of entropy found in the register
of academic writing indicated that our participants were able
to develop sensitivity to more complex distributional statis-
tics, i.e. they showed faster response latencies with higher
slot entropy. The direction of the entropy effect is consis-
tent with the finding of Matthews & Bannard’s (2010) study
demonstrating that 2-3 years old children were more accurate
in repeating MWS with higher slot entropy. Additional sup-
port for the facilitatory effect of more complex distributional
statistics on the processing of MWS comes from the signif-
icant interaction between frequency and entropy indicating

that the effect of MWS frequency increased with increasing
degrees of MWS entropy.

To our knowledge, this is the first study to show that
language users (whether native or non-native speakers) are
able to tune to the multiple distributional statistics inher-
ent in register-specific input types within a single language.
The findings from this study provide a key contribution to
a growing body of research that explore statistical learning
through the lens of multilingual acquisition. This research
has explored the consequences of accruing statistics in multi-
language input and has typically been conducted using artifi-
cial stimulus-sequences (cf., Bulgarelli, Lebkuecher & Weiss,
2018, for a recent overview). Our study has demonstrated
how the acquisition of multiple statistics can be investigated
on the basis of stimuli constructed from large corpora of au-
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Figure 2: Effects of log MWS frequency by entropy level
(high, mid, low) across registers.

thentic language data.
Some of the questions left open by the current study may

provide interesting avenues for future work. First, we inves-
tigated sensitivity to the register-specific multiple statistics in
adult second language learners. The question arises whether
similar results could be obtained for adult native speakers.
Second, in the light of the lifelong nature of language learn-
ing, it is of special importance important to track the devel-
opmental progression in response to the changes in the dis-
tributional properties of the linguistic input across the lifes-
pan. This involves understanding not only the developmen-
tal progression during early stages of child language acqui-
sition (prior to literacy) but also understanding the nature
of such progression during later stages of language devel-
opment, which is strongly driven by the distributional statis-
tics of written input (Seidenberg & MacDonald, 2018). And,
third, it would be important to determine whether the ability
to tune to multiple statistics is subject to individual variabil-
ity, and if so, to what extent this variability is linked to other
cognitive, affective and environmental factors.
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Abstract
Methodological advances have made it possible to generate
fMRI predictions for cognitive architectures, such as ACT-
R, thus expanding the range of model predictions and mak-
ing it possible to distinguish between alternative models that
produce otherwise identical behavioral patterns. However, for
tasks associated with relatively brief response times, fMRI pre-
dictions are often not sufficient to compare alternative models.
In this paper, we outline a method based on effective connec-
tivity, which significantly augments the amount of information
that can be extracted from fMRI data to distinguish between
models. We show the application of this method in the case
of two competing ACT-R models of the Stroop task. Although
the models make, predictably, identical behavioral and BOLD
time-course predictions, patterns of functional connectivity fa-
vor one model over the other. Finally, we show that the same
data suggests directions in which both models should be re-
vised.
Keywords: ACT-R, Dynamic Causal Modeling, Cognitive
Science

Introduction
One of the traditional problems in the field of cognitive mod-
eling is deciding which of two alternative models provides
best explains a phenomenon. Traditionally, the most common
approach has been to compare models using null-hypothesis
testing procedures. In essence, conditions are identified in
which the two models make qualitatively different predic-
tions, and the hypothesized pattern is tested using classical
statistical testing techniques. While more sophisticated ap-
proaches have been proposed (Pitt, Kim, Navarro, & Myung,
2006), this approach remains the de facto standard of the
field.

The search for conditions in which two models differ is
sometimes strenuous, as the same external behavior can oc-
casionally be obtained through different possible internal pro-
cesses and model parameters. By shedding light on more di-
rect correlates of cognitive processes, neuroimaging data pro-
vides a potential way to distinguish between otherwise behav-
iorally identical results (Sohn et al., 2004). For this reason,
procedures have been devised to derive neuroimaging pre-
dictions from computational models, most commonly in the
domain of fMRI (Anderson, Fincham, Qin, & Stocco, 2008;
Borst, Nijboer, Taatgen, van Rijn, & Anderson, 2015).

While the use of fMRI has greatly expanded upon the pos-
sible predictions that can distinguish between the two models,
a number of limitations still exist. A main limitation arises
from poor temporal resolution of fMRI. The BOLD signal
that is recorded in MRI scanners is extremely sluggish, and
peaks approximately five seconds after an event. This poses a
problem for resolving cognitive processes that occur quickly
in time.

Other neuroimaging methods, such as EEG and MEG, of-
fer much greater temporal resolution, but they trade off this
advantage with much lower spatial resolution. Furthermore,
the oscillatory nature of EEG and MEG signals further com-
plicates the process of deriving predictions from models, as
changes in raw signals can occur at different frequency bands
(van Vugt, 2014).

Even if these technical issues could be solved, a deeper
problem is that the most common methods devised to com-
pare models against neuroimaging data focus on accounting
for the common time course of brain activity and model com-
putations. But models, by their very nature, usually make
richer predictions about the internal dynamics that lead to
either brain activity or behavioral responses. For example,
models often make specific assumptions about the direction-
ality of an effect, or about how different model components
interact with each other. These predictions cannot be tested
by simply correlating neuroimaging time series with the order
of computations.

In this paper, we describe and demonstrate an alternative
and novel method to test models using neuroimaging data.
This method is based on patterns of effective connectivity be-
tween brain regions. “Effective connectivity” is an umbrella
term to characterize the functional exchange of information
between two brain regions, based on the analysis of their re-
spective time series. Because effective connectivity provides
measures of directional communication between two regions,
it can be used to examine the internal dynamics of a compu-
tational model. Furthermore, because effective connectivity
can be estimated from either fMRI or EEG data, it expands
the dimensions across which models can be compared with-
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out requiring collecting additional data.
In the remainder of this paper, we will outline our method

and apply it to a specific, and exquisitely cognitive case,
namely, determining which of two prominent computational
explanations for the Stroop interference best explains the
data.

ACT-R
Although our method could be applied to any computa-
tional model, for convenience, it will be demonstrated with
two models developed in the Adaptive Control of Thought–
Rational (ACT-R) cognitive architecture (Anderson et al.,
2004). This choice was made for three reasons. First, ACT-R
is the most successful and widespread architecture, having
been used in hundreds of publications since its inception, and
by far the most popular in the field of cognitive research
(Kotseruba & Tsotsos, 2018); Thus, it provides an excel-
lent domain in which to demonstrate the procedure. Sec-
ond, ACT-R already provides well-tested mappings between
architectural components and brain regions with established
procedures to predict fMRI activity from model simulations.
Therefore, these assumptions can be adopted without the need
to provide additional justifications. Finally, the assumptions
of ACT-R provide a reasonable mechanism to translate model
activity into effective connectivity. As it will be shown, this is
based on the functional requirements of the procedural mod-
ule, which have been examined and discussed in the past.

ACT-R represents knowledge in two formats, declarative
and procedural. Declarative knowledge is made of record-
like structures, called chunks, which capture semantic mem-
ories, perceptual inputs, and motor commands. Procedural
knowledge consists of production rules (or simply “produc-
tions”), state-action pairs that encode the specific policy to
perform a task. In summary, chunks represent information,
and productions act upon them.

Chunks are processed by functionally specialized modules.
For instance, perceptual modules create new chunks to repre-
sent the contents of the outside world, and a memory module
maintains chunks in long-term memory. Each module con-
tains one or more buffers, limited-capacity stores that contain
at most one chunk. Buffers are the only mechanisms through
which chunks and productions interact: Chunks can be in-
spected, copied, and modified by productions when exposed
into buffers.

As noted above, much work has been dedicated to map
ACT-R modules to corresponding neural circuits. This work
has yielded a number of reliable functional mappings, includ-
ing the association between anterior cingulate cortex and the
goal buffer in the goal module, between the lateral prefrontal
cortex and the retrieval buffer of the long-term memory mod-
ule, between posterior parietal cortex and the imaginal buffer
of working memory, between the fusiform gyrus and the vi-
sual buffer in the visual module, and between the primary
motor cortex and the manual buffer in the motor module
(Fincham & Anderson, 2006; Sohn, Albert, Jung, Carter, &
Anderson, 2007; Danker, Gunn, & Anderson, 2008; Ander-

son et al., 2004, 2008). These five modules will be the focus
of this paper.

Dynamic Causal Modeling
To estimate effective connectivity, we adopted a framework
known as Dynamic Causal Modeling (DCM) (Friston, Harri-
son, & Penny, 2003). In essence, DCM is procedure to model
the time-course of in brain activity in a set of brain regions
through a dynamical system of other brain regions and event
vectors. Specifically, the time course of activity of a region i
is expressed as a bilinear state equation:

ẏyy = AAAyyy+∑
i

xiBBB(i)yyy+CCCxxx (1)

where yyy are the time series of neuronal activities and xxx
are the time series of the events. AAA defines intrinsic con-
nectivity between different regions (fixed connectivity), CCC de-
fines effects by task inputs, and BBB defines the modular effects
that task conditions have on the connectivity between regions
(modulation of connectivity).

ACT-R Predictions for Effective Connectivity
Because effective connectivity can be interpreted as direc-
tional effects between cortical regions, a direct link can be
made between this measure and the nature of ACT-R compu-
tations. As discussed above, ACT-R works by firing one pro-
duction at a time during its cognitive cycle; this production,
in turn, changes the state of the system by modifying or copy-
ing information from one buffer to the other. For example, in
what is perhaps the most common operation in ACT-R mod-
els, a production rule extracts values from the slots of chunks
placed in either the imaginal or the visual buffer (to extract
contextual task information) and places them in the retrieval
buffer, so that they function as cues for retrieving relevant in-
formation from long-term memory. In fact, production rules
are the only way information is exchanged between modules.

Given their role in coordinating module-to-module com-
munication, we made the assumption that patterns of effec-
tive connectivity can be derived by the analysis of informa-
tion transferred carried by out in the sequence of production
rules firing.

On the surface, this idea runs against the established identi-
fication between production rules (and their associated proce-
dural module) and the activity of the basal ganglia (Anderson
et al., 2004; Anderson, 2007). The two interpretations, how-
ever, are not incompatible with each other. Anderson et
al. (2008) had previously suggested that common functional
connectivity patterns in the brain reflect the ubiquity of com-
mon operations that exchange information between different
buffers; the example production given above is one of those
put forward by the authors. It has also been noted before that
the function of the basal ganglia is to direct inputs to corti-
cal regions, a role that is both compatible with the procedural
module and with the proposed interpretation of effective con-
nectivity (Stocco, Lebiere, & Anderson, 2010). Finally, a re-
cent study that combined ACT-R modeling and Transcranial
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Magnetic Stimulation (Rice & Stocco, 2019) has provided
evidence that production rules do not only reflect the activ-
ity of the basal ganglia but also, more generally, the direct
exchange of information between cortical regions. Thus, we
believe that the hypothesis that production rules could be used
to estimate effective connective is a plausible one.

In this study, the relationship between production rules and
effective connectivity was operationalized in the following,
simple algorithm. First, an N×N squared matrix EEE, with N
being the number of buffers examined, is generated and ini-
tialized to zeros. Then, the target model is run and its trace
is segmented into epochs of interest (e.g., all the trials of the
same conditions). The structure of each production rule fir-
ing within that epoch is then examined. For each variable in
the production rule, the source buffer S at which the variable
is introduced (or, technically, bound to a value) in the left-
hand side and the target buffer T in which the bound value is
placed are recorded. The value of the matrix cell EEES,T is then
incremented by one. If a variable appears in multiple source
buffers S1,S2 . . .SN or target buffers T1,T2 . . .TN , then all the
cells EEE i∈N, j∈N are updated. When all the productions have
been examined, EEE is taken to represent the predicted effective
connectivity for that particular condition.

An Application of the Method:
ACT-R Models of the Stroop Task

This method was demonstrated using two competing models
of the Stroop task. In the Stroop task, participants are shown
a colored character string and asked to report the color of the
character string. The character string can either be congruent
with the color (”RED” printed in red), incongruent (”BLUE”
printed in green), or neutral (”CHAIR” printed in blue). The
typical finding is that reaction times in each condition are
significantly different from one another, with congruent tri-
als being the fastest, incongruent trials being the slowest, and
neutral trials in between (Bugg, McDaniel, Scullin, & Braver,
2011). This difference in reaction times between trial types is
referred to as Stroop interference.

The two models were adapted versions of two previously
proposed models of the Stroop task, authored by Lovett
(2005) and by Altmann and Davidson (2001), respectively.
Since both models were published before ACT-R was mod-
ified to account for neuroimaging data, they had to be re-
implemented in the most recent version of ACT-R (version
7.6). This processes also ensured that the two models in-
teracted with the task using the same sensorimotor mecha-
nisms, i.e. visual objects and responses were given in the
same way. From now on, we will refer to these two models
as the Altmann-like model and the Lovett-like model.

The re-implemented models maintained the underlying as-
sumptions of their original versions. Specifically, the two
models provide different explanations about the nature of
Stroop interference. In the Altmann model (Figure 1A),
Stroop interference is driven by interference at the lemma
layer. When a word is processed, it has direct access to its’

lemma, or conceptual representation. Access to the lemma
of a color is indirect, requiring an extra retrieval not seen
with words. The model assumes that the word dimension of
the Stroop stimulus is automatically processed first, therefore
activating the lemma attached to the word dimension of the
stimulus. As it tries to process the color dimension of the
stimulus, the word-lemma is active and can either facilitate
or inhibit retrieval of the correct color-lemma. In cases of
facilitation, activation from the word-lemma spreads to the
coinciding color-lemma, increasing the likelihood of correct
retrieval on congruent trials. Oppositely, on incongruent tri-
als, this activation spreads to the incorrect color-lemma, cre-
ating increased competition between color-lemmas and intro-
ducing ambiguity. For neutral trials, the word-lemma has no
corresponding color-lemma, resulting in neither facilitation
nor inhibition. The color-lemma is compared to visual cues
and re-selected if inconsistent or otherwise used in further
processing. A manual response is then retrieved using the
color-lemma, and used to press a key on the keyboard.
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Figure 1: Flow-chart representation of the strategies used by
the Altmann model (“A”, left) and the Lovett model (“B”,
right) when processing Stroop trials.

In the Lovett model (Figure 1B), Stroop interference
is driven by the competition between alternative word-
association chunks, linking a word to its’ conceptual repre-
sentation, and color-association chunks, linking a color to its’
conceptual representation. The idea is similar to lemmas from
the Altmann model, but in this case both types of dimension-
associated chunks need to be retrieved. The Lovett model ac-
counts for individual differences by supporting various strate-
gies to complete the task. In contrast to the Altmann model,
this model allows for processing of either stimulus dimension
first, but is highly biased towards the word dimension. From
either path, chunks associated with the processed dimension
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are retrieved. Processing can maintain with the retrieval of an
answer directly, or the task is checked. Answering directly
allows for incorrect answers on incongruent trials and fast re-
sponses on congruent trials. When the task is checked, the
model compares the dimension of the processed chunk to the
goal, which for our purpose is to always respond according
to the color of the stimulus. If there is a mismatch, process-
ing continues with the alternative stimulus dimension. Now
when retrieving the alternative dimension-associated chunk,
the previously retrieved chunk has the same effect as in the
Altmann model, facilitating retrieval on congruent trials, hav-
ing no effect on neutral trials, and inhibiting retrieval on in-
congruent trials. Notably, this does not necessarily happen on
every trial, as there are alternate pathways and strategies, and
the model will not retrieve the wrong answer at this point.
The base-level activations are set in such a way that incon-
gruent chunks slow retrieval of the correct chunk, and con-
gruent chunks facilitate retrieval of the correct chunk. Once
the correct dimension-associated chunk is retrieved, a man-
ual answer is retrieved using the matching chunk, and used to
press a key on the keyboard.

The two models offer an ideal comparison for several rea-
sons. First, they deal with an experimental paradigm that is
representative of research in cognitive neuroscience. Second,
although they embody different and opposing views about the
nature of Stroop interference, they are equally successful at
predicting the canonical response time effects in the Stroop
task (Lovett, 2005; Altmann & Davidson, 2001). Most im-
portantly, these two models exemplify the limits of model
identification using behavioral and fMRI data. The two mod-
els make use of the same five buffers (visual, motor, goal,
imaginal, retrieval). When considering the time needed for
perceptual and visual processes (identical in the two mod-
els), the difference between the two models is concentrated
in a 300 ms window in which different interactions between
imaginal, goal, and retrieval buffers are posited. Because the
BOLD responses recorded in fMRI are much more sluggish
and extend for multiple seconds after a point event, it is rea-
sonable to assume that the two models would make almost
identical neuroimaging predictions.

To confirm this suspicion, ACT-R’s canonical BOLD-
response prediction tools were used to simulate the neu-
roimaging responses for the the various experimental con-
ditions in the two models. Fig 2 illustrate the case for in-
congruent trials. For the sake of illustration, the amplitudes
of the BOLD curves were fit so that they would have the
same height1. It is immediately apparent that the different
inter-module dynamics of the two models are lost in the neu-
roimaging data; all the BOLD curves for all modules are
largely overlapping within and between models.

Crucially, although these different interactions produce in-
distinguishable BOLD traces, they do produce different ef-

1The amplitude of the BOLD response is a free parameter that
can be separately fit for every module; thus, our procedure does not
lose generality

Figure 2: Normalized BOLD-response predictions for incon-
gruent Stroop trials across five different modules in the Lovett
(top) and Altmann (bottom) models (See Fig. 1)

fective connectivity matrices. And, as the next sections will
show, these matrices do provide evidence in favor of one
model over the other.

Materials and Methods
Experimental Dataset
In this analysis, we used fMRI data publicly available from an
open repository2. The original data was collected at Carnegie
Mellon University and published by Verstynen (2014).

Participants
The dataset contained data from N = 30 participants (10 fe-
male), aged 21–45 (mean 31). The recruitment procedures
can be found in the original publication (Verstynen, 2014).

Experimental Task
Participants performed a manual-response version of the
Stroop task (Stroop, 1935), during which the subjects were
asked to indicate the color of a written word presented in
the center of the screen. Stimuli could be congruent (“RED”
printed in red), incongruent (“RED” printed in green), or neu-
tral (“CHAIR” printed in red). Participants responded by in-
dicating the colors red, green, and blue using the right index,
middle, and ring fingers, respectively. Each session consisted

2The data is available on OpenNeuro at the following URL:
https://openneuro.org/datasets/ds000164/versions/00001
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of 120 trials (42 congruent, 42 neutral, 36 incongruent) in
randomized order.

Image Acquisition and Preprocessing
As described in Verstynen (2014), the original raw data was
acquired using a Siemens Verio 3T system in the Scientific
Imaging and Brain Research (SIBR) Center at Carnegie Mel-
lon University with a 32-channel head coil. Functional im-
ages were collected using gradient echoplanar pulse sequence
with TR = 1,500 ms, TE = 20 ms, and a 90 flip angle. Each
volume acquisition consisted of 30 axial slices, each of which
was 4 mm thick with 0-mm gap and an in-plane resolution
of 3.2 × 3.2 mm. A T1-weighted structural image was also
acquired for each participant in the same space as the func-
tional images, but consisting of 176 1-mm slice with with an
in-plane resolution of 1 × 1 mm.

For the purpose of our analysis, the original raw data was
processed in SPM12 (Wellcome Department of Imaging Neu-
roscience, www.fil.ion.ucl.ac.uk/spm) following the ex-
actly same preprocessing pipeline as the one indicated in the
original publication. Images were corrected for differences in
slice acquisition time, spatially realigned to the first image in
the series, normalized to the Montreal Neurological Institute
(MNI) ICBM 152 template, resampled to 2× 2× 2 mm vox-
els, and finally smoothed with a 8 × 8 × 8-mm full-width-at-
half-maximum Gaussian kernel to decrease spatial noise and
to accommodate individual differences in anatomy.

Regions of Interest
DCM analysis is performed on fMRI time-series extracted
from specific ROIs. In our case, the ROIs correspond to the
specific brain regions that have been previously identified as
corresponding to ACT-R buffers. The Talairach coordinates
used for each module in the brain followed the convention
used by Anderson et al. (2008). The algorithms described in
Lacadie, Fulbright, Rajeevan, Constable, and Papademetris
(2008) were used to convert Talairach coordinates to Mon-
treal Neurological Imaging Institute (MNI) coordinates. The
ROI mask files were created through FSL (Woolrich et al.,
2009) of size 16 mm (125 voxels in total) then used to ex-
tract fMRI time series from each voxel in each ROI. Prin-
cipal Component Analysis was then applied on all the ex-
tracted time series to identify the time series that best charac-
terized each ROI. The largest principle component was used
to project the original data to the new space with more than
75% of the variance explained in each module.

Dynamic Causal Modeling Analysis
Because DCM is a model-based technique, estimates of con-
nectivity can only derived from parameters corresponding to
the specified connectivity between ROIs. To gather complete
estimates of connectivity, an unconstrained, fully connected
model was generated, in which any ROI was bidirectionally
connected to all the others. Furthermore, to identify different
patterns of connectivity between conditions, both matrices B
and C were used. Specifically, matrix C was used to specify

the onset and offset of stimuli, and drive the activity of the
“visual” ROI, thus initiating trial-specific activity in the net-
work. In addition, we used the modulatory matrix B to spec-
ify modulatory effects of condition-specific trials (congruent,
neutral, and incongruent) and the ROI connectivity parame-
ters AAA. Thus, the effective connectivity matrix Ek specific to
task condition k can be expressed as the element-wise product
of AAA and the modulatory effects of condition k BBBk, namely:

EEEk = AAA+AAA�BBBk (2)

As it is common in DCM, all the parameters were identified
using an Expectation-Maximization procedure.

Results
Figure 3 illustrates the results of the effective connectivity
analysis of the fMRI data and the corresponding model pre-
dictions. In the figure, columns correspond to the three ex-
perimental conditions of the Stroop task (congruent, incon-
gruent, and neutral trials), while the rows correspond to ei-
ther the predictions of the models (Lovett model, top row;
Altmann model, middle row) or the empirical data (bottom
row). The reported values of effective connectivity were gen-
erated by performing a Bayesian parameter averaging proce-
dure (Kasess et al., 2010) over the individual connectivity ma-
trices generated for each individual participant. Because, in
DCM, self-connectivity values need to be set to negative val-
ues to ensure the stability of the dynamic state equation (1),
the corresponding values were ignored in the analysis and set
to zero in Figure 3. Note that the reason we chose Frobenius
norm instead of correlation as the metric is that we are inter-
ested in the absolute measurement of the effective connectiv-
ity, not the relative scale between modules. For example, two
connectivity vectors of [1,1,1,2,1] and [−2,−2,−2,−1,−2]
would have perfect correlation (r = 1), yet they represent op-
posite connectivity effects (excitatory vs. inhibitory) in all
modules. The scale of the values between real fMRI data and
ACT-R models may be different, but since all ACT-R mod-
els are on the same scale, the differences are still comparable
across models.

In general, the connectivity patterns predicted by the two
models are much less rich and interconnected than what was
measured in the data (Figure 3). This is not unexpected,
given the high level of neural abstraction that characterizes
ACT-R models (Figure 1). Critically, and as expected, the
two models do make different predictions in terms of effec-
tive connectivity. To compare the degree of similarity be-
tween each model’s predictions and the data, we calculated
the Frobenius distance of the difference between the predicted
(PPP) and the empirical data matrix (DDD) for each condition k, i.e.
||PPPk−DDDk||F . This measure can be interpreted as a dissimilar-
ity metric; the smaller the difference between two matrices,
the smaller the norm. The results of these comparisons are
shown in Figure 4. As shown, the Lovett model yields con-
sistently smaller norm values, and is therefore more similar
to the data, across all three conditions.
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Figure 3: Effective connectivity analysis of the fMRI data and corresponding model predictions (rows), divided by experimental
condition (columns).

Discussion
This paper has provided a proof of concept of how analysis of
effective connectivity can be used to supplement traditional,
GLM-based analysis of neuroimaging data in distinguish-
ing between alternative models. While effective connectiv-
ity analysis has been used in cognitive neuroscience for more
than a decade, this is the first time, to the best of our knowl-
edge, that this method is used in conjunction with a cogni-
tive modeling approach, and with cognitive architectures in
particular. In outlining our method, we choose ACT-R as a
modeling paradigm and DCM as a technique to estimate ef-
fective connectivity. Neither of these choices, however, are
absolute requirements. Connectivity estimates can be gath-
ered from many types of models; the procedure described in
this paper certainly applies to other production system-based
architecture, like Soar and EPIC, as well. Similarly, although
connectivity was estimated with DCM, other methods could
be possibly used. For example, Granger Causality. Thus, al-
though we made specific implementation choices, our meth-

ods could be instatiated in multiple ways.
Despite encouraging results, a number of limitations need

to be acknowledged. First, our method for deriving effective
connectivity predictions from ACT-R models is still prelim-
inary. While we believe that it is reasonable, other proce-
dures could be envisioned. For example, operations such as
buffer status checks and buffer harvesting could be included
in generating our matrices. It is plausible that richer predic-
tion schemes could lead to more realistic connectivity matri-
ces that the ones in Figure 3. It is also plausible that better
similarity metrics than Frobenius distance could be used to
compare predictions.

These limitations notwithstanding, we see our method as
having potential for future modeling research. In particular,
we believe that the connectivity matrices obtained from the
data can be used to inform model development as well as for
model comparison. It is apparent that neither the Lovett nor
the Altmann model provide good fits to the data. Because the
differences correspond to variables in production rules, the
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Figure 4: Similarity (Frobenius distance) bewteen predicted
and empirical effective connectivity for the Altmann and the
Lovett models.

comparison suggests which other production rules or variable
bindings could be taking place in the model. In theory, and
provided reasonable task constraints, an analysis of the ef-
fective connectivity matrices might be used to automatically
generate production rules that would match the data. We see
this an exciting opportunity for future research.
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Abstract

What mechanisms underlie people’s ability to use cross-
situational statistics to learn the meanings of words? Here we
present a large-scale evaluation of two major models of cross-
situational learning: associative (Kachergis, Yu, & Shiffrin,
2012a) and hypothesis testing (Trueswell, Medina, Hafri, &
Gleitman, 2013). We fit each model individually to over 1500
participants across seven experiments with a wide range of
conditions. We find that the associative model better captures
the full range of individual differences and conditions when
learning is cross-situational, although the hypothesis testing
approach outperforms it when there is no referential ambiguity
during training.
Keywords: Cross-situational word learning; language acqui-
sition; Zipfian distributions

Introduction
The ability to acquire language is not only a fundamental part
of what makes us human, but a mystery: how do we accom-
plish it given the complexity of the learning task? Even in an
apparently simple task like word learning, many real-world
contexts involve multiple possible referents for any one label
(Pinker, 1984). How can a learner figure out which referent
corresponds to which label? One suggestion is that people
can leverage the statistics that come from observing multiple
ambiguous presentations of words and objects. This sort of
cross-situational word learning has been demonstrated in both
children and adults (Yu & Smith, 2007; L. Smith & Yu, 2008).
However, there is still considerable debate about what mech-
anisms underlie cross-situational word learning and what rep-
resentations are learned (Kachergis & Yu, 2018).

One major theory of cross-situational learning, known as
the associative framework, proposes that people track de-
tailed word-object co-occurrence statistics across many pre-
sentations (Vouloumanos, 2008; Yu & Smith, 2007). By con-
trast, the hypothesis testing framework suggests that people
track at most one word-object pair theory for each word (or
object) and update these hypotheses during learning (Medina,
Snedeker, Trueswell, & Gleitman, 2011). A number of com-
putational models have been developed based on both frame-
works but no consensus has emerged about which account
better describes people’s learning. We argue that this has oc-
curred, at least in part, because of a focus on modeling ag-
gregate rather than individual data, and because existing ex-

periments have not varied the range and variety of learning
conditions sufficiently to differentiate the models.

Here we present and analyze data from seven different ex-
periments with over 1500 participants that vary on a num-
ber of factors including vocabulary size, level of ambiguity,
length of training, distributional structure, and task. We fit
each person’s data to both the associative and hypothesis test-
ing models described in the following sections. Our results
suggest that associative accounts provide the best fit in al-
most all cases, unless there is no ambiguity during learning
and the learning is thus no longer strictly cross-situational.

Associative framework
Associative models propose that people learn word meanings
by tracking the frequency with which words and objects co-
occur across multiple ambiguous presentations. The repre-
sentation is a large word-object matrix in which each cell
contains the associative strength between one word and one
object (Vouloumanos, 2008; Yu & Smith, 2007). This basic
framework has been applied widely, and the model we im-
plement here is one of the most widely used (Kachergis et
al., 2012a). It provides a compelling account of human be-
havior across studies that vary the number of late repetitions
(Kachergis et al., 2012a) and if learning is passive or active
(Kachergis, Yu, & Shiffrin, 2012b; Kachergis & Yu, 2018).

Formally, the goal of the model is to update the association
strength between a word (w) and object (o) within an associ-
ation matrix (Mw,o). It incorporates several psychologically-
motivated parameters that specify the total amount of updat-
ing on each trial (χ), memory fidelity (α), and the bias to-
wards updating the association strength of uncertain versus
already familiar words and objects (λ) with uncertainly of an
item quantified as the entropy across all association strengths
for that item.

Hypothesis testing framework
As an alternative to the memory-intensive associative frame-
work, Medina et al. (2011) outlined a more minimalistic ap-
proach based on storing only a single hypothesis for each
word. The hypothesis represents a guess about the referent of
the word, and is replaced if it is inconsistent with new training
trials or fails to be recalled when the word is present.
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Vocabulary Ambiguity Guessing Presentations Distribution Length Relationship N Source
12 3 Yes 108 Uniform Only one syllable 48 H&P (2018) Exp 1
12 3 Yes 108 Zipfian Only one syllable 72 H&P (2018) Exp 1
32 4 Yes 244 Uniform Uniform 79 H&P (2018) Exp 2
32 4 Yes 244 Zipfian Correlated 81 H&P (2018) Exp 2
32 4 Yes 244 Zipfian Random 80 H&P (2018) Exp 2
32 1 NA 244 Uniform Uniform 74 H&P (2018) Exp 3
32 1 NA 244 Zipfian Correlated 77 H&P (2018) Exp 3
32 1 NA 244 Zipfian Random 86 H&P (2018) Exp 3
28 4 Yes 240 Uniform Uniform 171 Exp 1
28 4 Yes 240 Zipfian Random 166 Exp 1
40 4 Yes 240 Uniform Uniform 71 Exp 2
40 4 Yes 240 Zipfian Random 90 Exp 2
28 4 No 240 Uniform Uniform 82 Exp 3
28 4 No 240 Zipfian Correlated 84 Exp 3
28 1 NA 240 Uniform Uniform 159 Exp 4
28 1 NA 240 Zipfian Correlated 151 Exp 4

Table 1: Overview of experimental structure. This table describes all of the experiments whose data we fit. Vocabulary indicates the
number of unique word-object pairs to be learned (which also corresponds to the number of objects present during the test phase). Ambiguity
indicates the number of objects present on each training screen. Guessing indicates whether learning was passive (just watching) or active
(if participants were required to submit a guess after each word during training). Presentations indicates the total number of training trials.
Distribution indicates the frequency distribution of the words and objects across the experiment. Length Relationship indicates the relationship
between the length of words and their frequency during training, with more frequent words being shorter in the Correlated condition. N
indicates number of complete participants. Source indicates the source of the data set: H&P (2018) denotes Hendrickson and Perfors (2018).

We evaluate the Propose-but-Verify hypothesis testing
model (Trueswell et al., 2013), a popular extension of the
original Medina et al. (2011) formulation, which captures
children’s word learning behavior well (Woodard, Gleitman,
& Trueswell, 2016; Aravind et al., 2018). The model involves
a two-stage process. Upon initially being exposed to a word,
the model chooses an object from the as-yet-unmapped ob-
jects in that trial and maps it to that word to form a word-
object hypothesis. The initial probability of later recalling
that mapping is denoted by a free parameter αinitial . On each
subsequent exposure to the word, if the model recalls the hy-
pothesis and the corresponding object is present, the proba-
bility is updated to a different memory strength indicated by
another free parameter, αcon f irmed . If the hypothesis fails to
be recalled or the corresponding object is not present, a new
hypothesis is established with an unmapped object.

Model comparisons

Many previous papers have compared these two modeling ap-
proaches in terms of how well they fit experimental data (e.g.,
K. Smith, Smith, & Blythe, 2009; Kachergis et al., 2012b;
Rasilo & Räsänen, 2015; Kachergis & Yu, 2018; Aussems
& Vogt, 2018; Stevens, Gleitman, Trueswell, & Yang, 2017).
Despite this effort, no consensus has emerged. One reason
may be the focus on modeling aggregate performance using
one optimal set of parameter values per model for all learn-
ers, which ignores individual differences. This approach may
favor highly stochastic models that can fit different people’s
responses with a single parameter, rather than models that can
fit the behavior of more people using individual parameter
values. Moreover, comparison studies commonly fit these

models to experiments that involve relatively few learners,
and have a small number of conditions which do not cap-
ture the variation across conditions in the literature. Finally,
such studies tend to use uniform word frequencies that do not
reflect the highly-skewed distribution of words in natural lan-
guage, which limits the generalizability to real-world word
learning (Hendrickson & Perfors, 2018).

In this paper we address these issues by evaluating a hy-
pothesis testing model and an associative learning model
against experimental data involving over 1500 participants
and spanning the broad range of conditions shown in Table 1.
We varied the distribution of the words and objects, the size of
the vocabulary to be learned, whether the task was passive or
active, the number of presentations during training, the level
of ambiguity during learning, and the relationship between
the length of the word and word frequency. We fit parame-
ter values for each learner by optimizing the log-likelihood of
model response probability for each of the word-object test
trials. When comparing models, we penalize for additional
parameters by converting the log likelihood to AIC values
(Akaike, 1974).

Experiments

The empirical data that we use for model evaluation includes
data from the eight conditions from Hendrickson and Perfors
(2018) in addition to eight additional new conditions. We
describe each in turn.
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Hendrickson and Perfors (2018)

The goal of the work in Hendrickson and Perfors (2018) was
to explore cross-situational learning when the words followed
either a ZIPFIAN or a UNIFORM distribution. The first exper-
iment involved presenting participants with a small vocabu-
lary of words in one of the two distributions. The second
increased the vocabulary and ambiguity level, while adding a
condition in which the length of the word was negatively cor-
related with word frequency (shorter words were more fre-
quent). The third evaluated the effect of removing ambiguity
during training.

Procedure. Each experiment consisted of a training phase
and a test phase, though Experiment 1 repeated these phases
multiple times. During training, participants viewed either
3, 4, or 1 objects on the screen at once while they heard the
words for each object presented one at a time in random order.
In experiments with ambiguity during training, participants
were asked to guess which object each word matched. At
test, people were shown all of the items at once and asked
to select the matching object for each word. They were not
given feedback during training or test.

Conditions. In the UNIFORM conditions the words and ob-
jects all occurred with the same frequency, while in the ZIP-
FIAN conditions a few words and objects occurred very fre-
quently and many words occurred very infrequently or only
once across training. The pairing of words and objects and
trial order was randomized across participants.

Materials. Words varied in length from one to three sylla-
bles and were designed to sound English-like as well as be
maximally distinct from each other. They were generated
by the AT&T Natural Voices Text-to-Speech tool (Crystal
voice). The objects were selected from the NOUNS image
corpus (Horst & Hout, 2015) and each image was 150x150
pixels displayed against a white background. Hendrickson
and Perfors (2018) contains the full set of stimuli.

Participants. Their 597 participants were recruited from
Amazon Mechanical Turk (AMT). Our four additional exper-
iments (with 974 participants) were also run on AMT, paying
US$3.25 for the ∼20 minute task.

Experiment 1

Experiment 1 provides a near replication of Experiment 2
of Hendrickson and Perfors (2018), a design aimed to ap-
proximate learning conditions when the meaning of words
is ambiguous. There were two minor differences. First, their
experiment included four single-presentation items in order
to check for participant cheating; we omitted those in order
to ensure that the UNIFORM distribution contained no low-
frequency items. As a result, we had 240 rather than 244
total presentations and 28 rather than 32 test items. Second,
we did not include their second ZIPFIAN condition, in which
the length of the word and word frequency was correlated.
337 individuals provided complete data, half in the UNIFORM

condition and half in the ZIPFIAN condition.

Experiment 2
A number of simulation studies have suggested that increas-
ing the number of items to be learned should be particularly
challenging for learners in Zipfian environments (Vogt, 2012;
Reisenauer, Smith, & Blythe, 2013). In Experiment 2 we
therefore replicated the design of Experiment 1 but with 40
unique word-object pairs instead of 28. We presented each
word slightly less frequently in order to match the total num-
ber of word-object presentations in Experiment 1. In the test
phase 40 rather than 28 objects were displayed, resulting in
a more difficult test. Complete data was collected from 161
individuals, with roughly half assigned randomly to the UNI-
FORM and ZIPFIAN conditions.

Experiment 3
In all of the experiments so far, participants have been re-
quired to respond by selecting a best-guess object after each
word was presented during training. However, recent work
has suggested that forcing people to guess may influence the
representation that they learn (Aussems & Vogt, 2018). We
address this possibility in Experiment 3, which is identical
to Experiment 1 but removes the obligation to guess during
training. Instead of waiting for a guess after each word, the
next word is played automatically after 2000 ms.

The other difference from Experiment 1 is that the length of
each word was correlated with its frequency in the ZIPFIAN
condition, as is found in natural language and Hendrickson
and Perfors (2018). Complete data was collected from 166
individuals, with roughly half assigned randomly to the UNI-
FORM and ZIPFIAN conditions.

Experiment 4
Experiment 4 provides a near replication of Experiment 3 of
Hendrickson and Perfors (2018), whose goal was to approx-
imate learning when the meaning of words was unambigu-
ous. The only differences, as in Experiment 1, were that we
removed the four “cheating check” items and thus had 240
presentations and 28 test items, and we had only one ZIP-
FIAN condition in which word length was correlated with fre-
quency. Additionally, since there was no ambiguity during
training, participants were not required to guess. Instead, the
timing of item presentation matched Experiment 3. Complete
data was collected from 310 individuals, with roughly half as-
signed to the UNIFORM and ZIPFIAN conditions.

Model Fitting
Both models were fit to the individual data of each person in-
dependently by minimizing the negative log likelihood across
all responses in the test phase. Every person participated
in exactly one condition and thus parameters were not con-
strained across conditions in any way. For the associative
model, the likelihood of a correct answer was determined for
each word by dividing the associative mass on the correct
object by the total associative mass across all objects. For
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Figure 1: Distribution of log-likelihood vs. median log-
likelihood values for the hypothesis testing model. The density
plot shows the different distributions of 10,000 simulations produced
by the hypothesis testing model for one individual participant with a
constant set of parameters when using either a single log-likelihood
value or the median of 10 such values. Using the median of 10 val-
ues results in a substantial increase in stability.

the hypothesis testing model, the likelihood was given by the
stored probability value for a correct pairing, smoothing zero
probability values to 0.0001.

Interestingly, the models differed widely from each other in
the variability of the responses probabilities predicted at test.
Given a fixed training trial order and a single set of parameter
values, the associative model has no stochastic aspect to how
the representation is formed. Therefore, the likelihood of a set
of responses given a set of parameters is stable and parameter
estimation was straightforward.1

In contrast, the hypothesis testing model is decidedly ran-
dom about which words are paired with objects when form-
ing hypotheses. This results in the production of markedly
different representations and thus likelihoods from one sim-
ulation to the next, even when the training trials and param-
eter values are constant across runs. In order to address this
issue, we performed ten simulations for each set of param-
eters during the optimization process and used the median
log likelihood across the simulations. This required the use
of a particle swarm optimization algorithm to determine the
optimal parameters, which is more robust to less smooth op-
timization problems.2 It was notable that across the range of
10 likelihood values for a set of parameters, the best value
was markedly better than the median likelihood value, sug-
gesting that optimization routines that rely on the best likeli-
hood given a set of parameters can overestimate the expected
fit to data of a set of parameters, especially for the hypoth-
esis testing model. In addition, the median likelihood from
10 simulations of the hypothesis testing model produces con-
siderably more stable estimates relative to a single simulation
(Figure 1).

The number of parameters differ between the two models,
with the associative model containing three (α,χ and λ) and
the hypothesis testing model containing only two (αinitial and
αcon f irmed). We therefore penalized for model complexity by
converting the log likelihood scores to AIC values; lower AIC
scores indicate a better fit to the data after taking the number
of free parameters into account.

1The optimal parameter values were derived using the default
settings for the optimize function in the SciPy package in Python 3.

2Fitting was done using the PSO package in Python 3 using a
swarm size of 1,000 and a maximum of 50 iterations.
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Figure 2: Overall model performance. The histogram shows the
difference between the AIC score for the hypothesis testing model
and the AIC score for the associative model for each person across
all datasets. Positive scores (which made up 74% of the data) in-
dicate that the associative model had a lower AIC score than the
hypothesis testing model and thus accounted for the data better.

Results

Figure 2 shows the overall performance of the two models
across all individuals. The AIC scores of the associative
model are lower than the hypothesis testing model for 74%
of participants. Since a lower AIC indicates better fit, this
suggests that for most people the associative model provides
a better account of their performance. Next, we turn to ex-
ploring exactly when and where each model does best.

Ambiguity. As the top row of Figure 3 illustrates, the per-
formance of the two models strongly depends on the degree
of ambiguity during training. In conditions with any degree of
ambiguity during training (by presenting three or four items
on each training screen, rather than individually), the asso-
ciative model is a better fit in virtually all cases (97% of par-
ticipants). However, the opposite is true when there is no
ambiguity: when only one item was shown at a time, the hy-
pothesis testing model was favored for 68% of participants.

Word frequency. The near unanimous advantage for the
associative model in ambiguous learning conditions suggests
that the only differences in model performance due to word
frequency might occur in the conditions without ambiguity.
In the conditions with only one item per screen (top left
panel of Figure 3), the hypothesis testing model (red points)
is highly preferred (96% of the time) when the distribution
is UNIFORM. When the word frequency distribution is ZIP-
FIAN (blue points), the two models are roughly even (52% of
participants are better fit by the associative model).

Vocabulary size. The impact of vocabulary size on model
performance differs based on the ambiguity of word mean-
ing during training (bottom row, left and center panels in Fig-
ure 3). When word meaning is ambiguous during training, the
hypothesis testing model does particularly poorly as the vo-
cabulary size increases. (Note that we do not show the 3-item
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Figure 3: Model comparisons for different effects. All panels
show the AIC scores for the hypothesis testing model (y axis) plot-
ted against the AIC scores of the associative model (x axis). Values
above the identity line indicate that the AIC score of the associative
model is better (lower). Top: A comparison of the effects of ambi-
guity and word frequency. Each red dot shows a participant in the
UNIFORM condition; blue dots represent people from the ZIPFIAN
condition. Each panel shows a different level of ambiguity during
training (1, 3, or 4 items on screen at once). The associative model
does much better whenever there is ambiguity (and regardless of
distribution), while the hypothesis testing model does slightly bet-
ter when there is only one item on screen during learning. Bottom
left and center: Evaluation of the effects of vocabulary size, broken
down by degree of ambiguity. When training is unambiguous, there
is no consistent effect of vocabulary size on performance; when it is
ambiguous, the hypothesis training model appears to perform espe-
cially poorly when there are more words to be learned. Bottom right:
Regardless of whether participants were passive or active learners,
the AIC favored the associative model.

ambiguous case because vocabulary size in those conditions
was constant at 12 items). Within the unambiguous training
conditions there does not appear to be any consistent effect of
vocabulary size on model performance.

Guessing. In order to evaluate the prediction that forcing
participants to guess during training can bias participants to
adopt hypothesis testing representations (Aussems & Vogt,
2018), the bottom right panel of Figure 3 shows the perfor-
mance of both models as a function of whether participants
had to guess or not. Here we include only data from Ex-
periments 1 and 3, similar experiments that differ in whether
guessing occurs. Both have a vocabulary size of 28 and
ambiguous training (although the relationship between word
length and word frequency differs between the two ZIPFIAN
conditions). Across all conditions the associative model con-
sistently outperforms the hypothesis testing model.

Fitted Parameters
In addition to being useful for model comparison, the best-
fitting parameters across all participants (shown in Figure 4)
provide us with several deeper insights. First, the distribution
of parameter values can tell us something about the distribu-
tion of individual differences across the population. For ex-

Figure 4: Distribution of best fitting parameters across all par-
ticipants. Top row: Hypothesis testing model parameters αinitial
(initial probability of recalling a mapping) and αcon f irmed (later
probability of recalling a mapping). Bottom row: Associative model
parameters α (memory decay rate), χ (amount of updating for each
trial), and λ (bias towards updating uncertain words and objects).

ample, the distributions of α and χ for the associative model
are highly skewed and show ceiling and floor effects, which
suggest these parameters might not capture meaningful vari-
ation across individuals. By contrast, the distributions of the
memory strength parameters for the hypothesis testing model
both display a unimodal peak around relatively high values
with a long tail of low values for some participants. This
suggests a high level of population variance or reflects the
inherent stochasticity of the hypothesis testing model.

It is also useful to compare our best-fit parameters to the
reported values from other studies, which generally fit aggre-
gate data or use other fitting metrics. The distribution of our
fitted values for the two hypothesis testing model parameters
are generally higher than those reported by Trueswell et al.
(2013) in their two experiments: αinitial values of 0.26 and
0.60, and αcon f irmed values of 0.71 and 0.81. On average, our
best-fit parameter values were higher and show less differ-
ence between the initial and confirmed memory strength. It
remains an open question if this difference is due to model-
ing individual and aggregate performance or a shift in strategy
due to experimental conditions.

In contrast to the hypothesis testing model, the values re-
ported for the associative model by Kachergis et al. (2012b)
are largely consistent with our results. Their optimized val-
ues, fit to aggregate data, are α = 0.97, χ = 0.05, and λ = 1.74;
values quite similar to the peaks of our distributions.

Finally, some model parameters strongly depend on the ex-
perimental condition. For example, the multimodal distribu-
tion of λ values (bottom right panel of Figure 4) suggests a
mixture of different strategies across participants. We inves-
tigate this in Figure 5, which separates the best-fit λ values
according to the ambiguity during training. It is evident that
as learning conditions are more ambiguous, the λ value de-
creases. Since λ affects the weight assigned to novel words
relative to familiar words, one interpretation of this is that the
level of ambiguity during training has a strong impact on the
extent to which novel items are emphasized during learning.
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Figure 5: Distribution of λ by ambiguity. The best-fit λ values for
the associative model (x axis) are plotted as a function of the level
of ambiguity during training. The distribution of λ when there is no
ambiguity (blue) has higher average values. As ambiguity increases
(red, then green) the estimated λ values get smaller.

Discussion
In this work we investigated which of two computational
models of cross-situational word learning offers a better ac-
count of word learning by individual participants across a
wide range of conditions. For most people, the associative
model (Kachergis et al., 2012a) outperforms the hypothesis
testing model (Trueswell et al., 2013).

The advantage for the associative model is most pro-
nounced in conditions in which the meaning of words is am-
biguous during training, where it provides a better account
for nearly all people. However, in conditions without ambi-
guity of word meaning, the hypothesis testing model outper-
formed the associative model for over 60% of participants.
This advantage for the hypothesis testing model in unam-
biguous training conditions occurred for nearly every partic-
ipant who experienced a uniform frequency distribution of
words, but for participants in conditions with a Zipfian word
frequency distribution the associative and hypothesis testing
models provide the best account equally often.

The impact of other aspects of the learning environment
on the relative performance of the two models was less strik-
ing. The total number of unique words present did not seem
to influence which model was preferred, though there was
some suggestion that the participants whose AIC was worst
for the hypothesis testing model were in the conditions with
the largest vocabulary size. Finally, manipulating if partici-
pants were required to guess during training had no effect on
model preference as all relevant conditions were ambiguous
during training and thus nearly all participants were best fit
by the associative model.

Why the hypothesis testing model, despite multiple stud-
ies showing support for the model, performed consistently
worse in the ambiguous learning contexts that require cross-
situational learning is perhaps the biggest open question
raised by these results. One possibility is that the hypothe-
sis testing model, though designed to account for individual
learning behavior, is not sufficiently flexible to account for the
variation across participants. Restricting the memory strength
to two possible values might provide a good account of aggre-
gate data but be too rigid for matching individual behavior.

Another possible explanation for the worse performance
of the hypothesis testing model is that even if people do form

hypotheses about word-object pairs, they are also incorpo-
rating some co-occurrence information to shape their repre-
sentations. This class of hybrid learning mechanisms, which
incorporate both hypothesis testing and associative learning
mechanisms (Yurovsky & Frank, 2015), provide a sugges-
tion of additional types of models that might better capture
the range of learning behavior in the ambiguous conditions.
Similarly, Pursuit (Stevens et al., 2017), a recent variant of the
Propose-but-Verify model that retains disconfirmed meanings
and counts of referential success, might also improve on the
performance of the earlier hypothesis testing model by find-
ing a balance between testing hypotheses and gathering some
co-occurrence information.

A final explanation of this effect may be due to specific as-
pects of the model fitting in this study. These choices include
how the hypothesis testing model was extended to produce
probability distributions across responses, the 10-fold simu-
lation of parameter values to compute the median log like-
lihood, or the choice of AIC for model comparison instead
of measures that have higher penalties for model complexity
(e.g. BIC) or flexibility (Navarro, Pitt, & Myung, 2004).

Despite the clear advantage across many conditions for one
model in this comparison, further work is clearly needed to
fully understand the learning mechanisms and representations
that underlie word learning. These include evaluating alter-
native models (e.g. Yu & Smith, 2012; Yurovsky & Frank,
2015; Stevens et al., 2017), expanding the range of evalua-
tion techniques, and constraining models with additional data
(e.g. Kachergis & Yu, 2018) or conditions (e.g. Hendrickson
& Perfors, 2018).

References
Akaike, H. (1974). A new look at the statistical model identi-

fication. Automatic Control, IEEE Transactions on, 19(6),
716–723.

Aravind, A., de Villiers, J., Pace, A., Valentine, H., Golinkoff,
R., Hirsch-Pasek, K., . . . Wilson, M. S. (2018). Fast map-
ping word meanings across trials: Young children forget all
but their first guess. Cognition, 177, 177–188.

Aussems, S., & Vogt, P. (2018). Adults use distributional
statistics for word learning in a conservative way. IEEE
Transactions on Cognitive and Developmental Systems.

Hendrickson, A., & Perfors, A. (2018, Nov). Cross-
situational learning in a zipfian environment. PsyArXiv.
Retrieved from psyarxiv.com/6jumv

Horst, J., & Hout, M. (2015). The novel object and unusual
name (NOUN) database: A collection of novel images for
use in experimental research. Behavior Research Methods,
48(4), 1393-1409.

Kachergis, G., & Yu, C. (2018). Observing and model-
ing developing knowledge and uncertainty during cross-
situational word learning. IEEE Transactions on Cognitive
and Developmental Systems, 10(2), 227–236.

Kachergis, G., Yu, C., & Shiffrin, R. M. (2012a). An as-
sociative model of adaptive inference for learning word–

565



referent mappings. Psychonomic Bulletin & Review, 19(2),
317–324.

Kachergis, G., Yu, C., & Shiffrin, R. M. (2012b). Cross-
situational word learning is better modeled by associations
than hypotheses. IEEE Conference on Development and
Learning, 1–6.

Medina, T. N., Snedeker, J., Trueswell, J. C., & Gleitman, L.
(2011). How words can and cannot be learned by observa-
tion. PNAS, 108, 9014–9019.

Navarro, D. J., Pitt, M. A., & Myung, I. J. (2004). Assessing
the distinguishability of models and the informativeness of
data. Cognitive Psych., 49(1), 47–84.

Pinker, S. (1984). Language learnability and language de-
velopment. Cambridge, MA: Harvard University Press.

Rasilo, H., & Räsänen, O. J. (2015). Computational evidence
for effects of memory decay, familiarity preference and
mutual exclusivity in cross-situational learning. In CogSci.

Reisenauer, R., Smith, K., & Blythe, R. (2013). Stochastic
dynamics of lexicon learning in an uncertain and nonuni-
form world. Physics Review Letters, 110(258701).

Smith, K., Smith, A. D., & Blythe, R. A. (2009). Reconsider-
ing human cross-situational learning capacities: A revision
to yu & smiths (2007) experimental paradigm. In CogSci.

Smith, L., & Yu, C. (2008). Infants rapidly learn
word/referent mappings via cross-situational statistics.
Cognition, 106, 1558–1568.

Stevens, J. S., Gleitman, L. R., Trueswell, J. C., & Yang, C.
(2017). The pursuit of word meanings. Cognitive Science,
41, 638–676.

Trueswell, J. C., Medina, T. N., Hafri, A., & Gleitman, L.
(2013). Propose but verify: Fast mapping meets cross-
situational learning. Cognitive Psych., 66, 126–156.

Vogt, P. (2012). Exploring the robustness of cross-situational
learning under Zipfian distributions. Cognitive Science, 36,
726–739.

Vouloumanos, A. (2008). Fine-grained sensitivity to statis-
tical information in adult word learning. Cognition, 107,
729–742.

Woodard, K., Gleitman, L. R., & Trueswell, J. C. (2016).
Two-and three-year-olds track a single meaning during
word learning: Evidence for propose-but-verify. Language
Learning and Development, 12(3), 252–261.

Yu, C., & Smith, L. (2007). Rapid word learning under un-
certainty via cross-situational statistics. Psych. Science, 18,
414–420.

Yu, C., & Smith, L. (2012). Modeling cross-situational word-
referent learning: Prior questions. Psych. Review, 119(1),
21–39.

Yurovsky, D., & Frank, M. C. (2015). An integrative account
of constraints on cross-situational learning. Cognition, 145,
53–62.

566



A Unified Model of Fatigue in a Cognitive Architecture: 
Time-of-Day and Time-on-Task Effects on Task Performance 

Ehsan B. Khosroshahia (ehsanebk@drexel.edu) 
Dario D. Salvuccia (salvucci@drexel.edu) 

Glenn Gunzelmannb (glenn.gunzelmann@us.af.mil) 
Bella Z. Vekslerc (bellav717@gmail.com) 

 
a Department of Computer Science, Drexel University, 3675 Market St. 

Philadelphia, PA 19104, United States 
 

b Warfighter Readiness Research Division, Air Force Research Laboratory, 2620 Q St. 
Wright Patterson Air Force Base, OH 45433, United States 

 
c Tier1 Performance Solutions, 100 E. Rivercenter Blvd., Suite 100 

Covington, KY 41011, United States 
  

Abstract 

Capturing the effects of fatigue and, more generally, the effects 
of physical and mental states on human performance has been 
a topic of research for many years. Recent models, especially 
those developed in a cognitive architecture, have shown great 
promise in capturing these effects by providing insight into the 
specific cognitive and other components involved in task 
performance (like perception and motor movement). In 
particular, separate models have been developed to account for 
both time-of-day and time-on-task effects related to fatigue. In 
this paper, we present a novel unified model, developed in the 
ACT-R cognitive architecture, that captures both time-of-day 
and time-on-task effects with a single set of mechanisms and 
parameters. We demonstrate how this unified model accounts 
for quantitative and qualitative aspects of fatigued performance 
from two experiments, one focused on time-on-task effects 
under conditions of moderate fatigue, the other focusing on 
time-of-day effects under conditions of severe fatigue in a 
study of long-term (88-hour) sleep deprivation. 

Keywords: Fatigue; sleep deprivation; cognitive architectures 

Introduction 
One of the most significant physiological states that affects 
human cognition is fatigue. Decades of research have 
investigated the effects of fatigue, sleep deprivation, and 
time-on-task in a number of important areas, including 
industrial disasters (e.g. Mitler et al.,1988), transportation 
accidents (e.g. Lauber & Kayten, 1988; Dinges, 1995), and 
motor vehicle crashes (e.g. Horne & Reyner, 1999; Pack et 
al., 1995). These studies have explored in depth the question 
of how fatigue modulates cognition and performance, and 
how we might quantify the effects of fatigue using 
mathematical or computational models and formalisms. 

Of the many aspects of cognitive fatigue, there are two 
main factors that affect sustained attention and task 
performance: (1) sleep-related factors which are a function of 

sleep history and the time of the day when the task is being 
performed (circadian rhythm); and (2) task-related factors 
which are a function of the type of the task and how long the 
person has been doing the task, or time-on-task (Figure 1). 
Fatigue can also vary widely in its level of intensity: mild to 
moderate time-of-day or time-on-task effects may affect 
performance significantly (e.g., Pattyn et al, 2008; Bakan, 
1955; Mackworth, 1948; Parasuraman, 1979), but severe 
fatigue that occur with long-term sleep deprivation can have 
even more drastic impacts on performance (e.g., Doran, Van 
Dongen, Dinges, 2001; Dorrian, Rogers, & Dinges, 2005). 

 

 
Figure 1: Main factors contributing to fatigue 

in sustained-attention tasks. 
 

Mathematical models of fatigue come in various forms, 
and can provide very good insight into the fluctuations in 
overall performance, accounting for moderate time-of-day 
and time-on-task effects (e.g. Fisk & Schneider, 1981; 
Giambra & Quilter, 1987; Mackworth, 1964) as well as 
effects of long-term sleep deprivation (e.g., Achermann, 
2004; Borb & Achermann, 1999; Hursh et al., 2004; Jewett 
& Kronauer, 1999; McCauley et al., 2013). Such 
mathematical models aim to model the overall level of fatigue 
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at different points in time, but do not provide a detailed 
account of cognitive (and other) processes involved. Building 
on this work, recent models have focused on modeling 
fatigue within a computational cognitive architecture (e.g. 
French & Morris, 2003; Jones, Laird, & Neville, 1998; 
Gunzelmann, Gross, Gluck, & Dinges, 2009; Gunzelmann, 
Moore, Salvucci, & Gluck, 2011; Walsh, Gunzelmann, & 
Van Dongen, 2017; Veksler & Gunzelmann, 2018) to offer 
deeper insight into relationship between fatigue and the basic 
information processing mechanisms inherent to a task. 

In this paper, we present a new unified model of fatigue 
that accounts for both sleep-related and task-related factors, 
and accounts for performance under both moderate and 
severe fatigue. In particular, we extend the work of Veksler 
and Gunzelmann (2018) and Walsh et al. (2017) by first 
examining the underlying theoretical foundations of both 
types of fatigue based on recent empirical work. We then 
utilize these ideas to propose an updated formulation of 
fatigue within the ACT-R cognitive architecture, testing its 
predictions against two data sets that demonstrate the benefits 
of a unified model. 

Theoretical Foundations 
The central idea of our modeling work is the concept of 
microlapses, introduced by Gunzelmann et al. (2009) to 
account for changes in behavioral performance related to 
fatigue. Microlapses can be viewed as an implementation of 
the “state instability” hypothesis (Doran et al., 2001): that a 
person's fatigue may be characterized as the switching 
between sleep and awake states, which may fluctuate second 
by second and can eventually progress to a physiological 
sleep state. Microlapses, however, incorporate the idea that 
switches between sleep and awake states may be more rapid 
(i.e., tens of ms), with transitions into, and remaining within, 
a “sleep” state becoming more likely as fatigue increases. 

The concept of microlapses relies on the computational 
mechanisms of a procedural system in a cognitive 
architecture. A procedural system implemented as a 
production system is the central core of most well-established 
cognitive architectures like ACT-R (Anderson, 2007). ACT-
R’s production system implements a serial bottleneck in 
cognitive processing, representing cognition as a sequence of 
recognize-decide-act cycles that require about 50 ms each to 
execute. Under fatigue, microlapses cause the execution 
phase of the cycle to fail, leading to delays in completing, or 
even failure to complete, a task. As we will see, this 
theoretical foundation allows for an elegant model of fatigue 
that can account for both sleep- and task-related factors, and 
for performance across a range of degrees of fatigue. 

Modeling Time-of-Day Effects 
The first building block for our unified model is the model of 
sleep-related fatigue described in Walsh et al. (2017). Their 
model relied on ACT-R’s concept of utility, namely that each 
                                                             
1 The names of some variables and constants have been changed 
from the original formulation for increased clarity. 

production rule (effectively a 50-ms unit of action) has an 
associated utility that determines its usefulness in being 
activated, and this utility can be compared to those of other 
rules to determine the next action. By manipulating the utility 
of the productions and the utility threshold, the system is able 
to produce microlapses: if the utility 𝑈" of the selected 
production is less than a set utility threshold 𝑈𝑇, a microlapse 
occurs. Because 𝑈" values are noisy, changes in 𝑈" and 𝑈𝑇 
thus influence the probability of microlapses occurring. 

To account for sleep-related factors, Walsh et al. (2017) 
used a biomathematical model to quantify the overall impact 
of time awake and circadian rhythms. First, let us assume that 
we have a biomathematical model value 𝐵%(𝑡) that, given a 
sleep schedule 𝑆 (i.e., the prior hours for which the person 
was asleep and awake), provides the level of fatigue at a 
given time of day 𝑡. As mentioned earlier, several such 
models have been developed in the past; Gunzelmann et al. 
use the formulation provided by McCauley et al. (2013), 
which we include here as well. Using this value, we can 
specify a fatigue scale factor 𝐹+", 𝑡  that will scale a 
production’s overall utility proportionally based on the 
biomathematical model’s predictions:1 

𝐹+", 𝑡 = 1 − 𝑐+", ∗ 𝐵%(𝑡)	

We also include a fatigue constant 𝑐+", to scale the 
biomathematical value, and we will consider this constant as 
one parameter to estimate in our model fitting later. 

The next component of the model represents the 
accumulated effect of microlapses, and incorporates the fact 
that when a microlapse occurs, another microlapse is more 
likely to occur immediately after. This component is 
formulated as follows: 

𝐹345 𝑛 = 𝑐345 7	

Here, 𝑛 is the number of consecutive microlapses that have 
occurred—thus, 𝑛 = 0 after a normal production has fired, 
but would increase by 1 for each consecutive microlapse 
thereafter until another normal production firing. 𝑐345 is 
assumed to be a constant between 0 and 1, and thus the value 
𝐹345(𝑛) is also a value between 0 and 1 that decreases with 
larger values of 𝑛. As described by Walsh et al. (2017), 
𝐹345(𝑛) can quickly decay to the point that will be too low to 
fire any production; however, there is a counterbalancing 
effect that resets 𝐹345(𝑛) by setting 𝑛 = 0 (akin to awakening 
the model) when a stimulus is presented. 

Integrating these factors together, following Gunzelmann 
et al. (2009), Walsh et al. (2017) defined a fatigued utility 
𝐹𝑈"(𝑡, 𝑛) as a modified value of production 𝑖’s base utility 
𝑈"(𝑡) scaled by both 𝐹+",(𝑡) and 𝐹345(𝑛): 

𝐹𝑈" 𝑡, 𝑛 = 𝐹+", 𝑡 ∗ 𝐹345 𝑛 ∗ 𝑈" 𝑡 + 𝜖	

The final term ϵ adds noise to the final fatigued utility, where 
the noise is sampled from a logistic distribution. This 
component is carried over from the standard utility function 

568



 

in ACT-R, which includes this parameter to generate 
stochasticity in model behavior. Once this fatigued utility is 
computed, its value is compared to a utility threshold 𝑈𝑇 𝑡 , 
computed using the biomathematical model and a specified 
initial utility threshold 𝑈𝑇>: 

𝑈𝑇+", 𝑡 = 1 − 𝑑+", ∗ 𝐵%(𝑡)	

𝑈𝑇 𝑡 = 𝑈𝑇+", 𝑡 ∗ 𝑈𝑇>	

These equations introduce another constant, d+",, that scales 
the biomathematical model value. 

Modeling Time-on-Task Effects 
As an extension to the above model of time-of-day effects, 
Veksler and Gunzelmann (2018) developed a model to 
capture the effects of time-on-task. Using the same core 
mechanisms as Walsh et al. (2017) described earlier, they 
replaced the biomathematical factor 𝐹+", 𝑡  with a time-on-
task factor 𝐹ABA 𝑇  defined as follows: 

𝐹C,C 𝑇 = (1 + 𝑇)5DED	

𝐹𝑈" 𝑡, 𝑇, 𝑛 = 𝐹C,C 𝑇 ∗ 𝐹345 𝑛 ∗ 𝑈" 𝑡 + 𝜖	

Here, 𝑇 represents the total time-on-task, or time spent 
performing the same task. Veksler et al. used a similar 
formulation to revise the computation of the utility threshold: 

𝑈𝑇C,C 𝑇 = (1 + 𝑇)3DED	

𝑈𝑇 𝑇 = 𝑈𝑇C,C 𝑇 ∗ 𝑈𝑇>	

The constants 𝑐C,C and 𝑑C,C are assumed to be between –1 and 
0, and thus their respective functions decrease as the time-on-
task 𝑇 increases. 

A Unified Model of Fatigue 
The foundational components above provide the basis for our 
own unified model, and at first glance, one might expect that 
we could simply combine the equations and have a unified 
account directly. Unfortunately, a simple combination does 
not work well either theoretically or experimentally. We thus 
explore how we might combine these accounts and then 
proceed with a specification of the final unified model. 

Developing a Unified Model 
Examining the formulations for the time-of-day and time-on-
task models above, the most straightforward approach to a 
unified model would be to simply multiple the respective 
factors together—that is, computing fatigued utility as:	

𝐹𝑈" 𝑡, 𝑇, 𝑛 = 𝐹+", 𝑡 ∗ 𝐹C,C(𝑇) ∗ 𝐹345 𝑛 ∗ 𝑈" 𝑡 + 𝜖	

This approach multiples the biomathematical component 
𝐹+", 𝑡  with the time-on-task component 𝐹C,C 𝑇  to derive 
the total fatigued utility. In fact, this formulation has been 
tried with limited success in earlier work: Khosroshahi et al. 
(2016) used it to account for time-of-day effects on 
performance in psychomotor vigilance and driving. 

Unfortunately, however, we have attempted to use this 
formulation to account for a broader set of time-of-day and 
time-on-task effects (discussed more later), and found this 
approach lacking for several reasons. Using this formulation, 
it was impossible to find a set of parameter values that 
produces acceptable results simultaneously for both time-on-
task and time-of-day effects—especially when the latter is 
drawn out to long periods of sleep deprivation. For example, 
consider how the model might account for lapses in the 
psychomotor vigilance task (PVT), where participants simply 
see a visual stimulus and press a button in response, and 
where a lapse is defined as a response time greater than 
500 ms. Using the formulation above, the model can nicely 
fit the number of lapses in the early stages of fatigue, namely 
during the first day or two without sleep; however, this 
produces a model that rarely suffers the sleep attacks 
(response times greater than 30 s) suffered by humans after 
48-88 hours of sleep deprivation. On the flip side, if the 
model parameters were fitted to produce a human-like 
frequency of sleep attacks, the lapses under moderate fatigue 
would be much too large. 

In summary, this was not an issue of parameter fitting—the 
model formulation itself was fundamentally flawed. Closer 
analysis of the model revealed its theoretical flaw: increasing 
values of the biomathematical model 𝐵% 𝑡  over time would 
actually scale down the time-on-task effect—effectively 
making the time-on-task effects smaller as the model became 
more fatigued. This effect is counterintuitive, and indeed, we 
did not find any evidence to support it in our available data 
or in the literature. In addition, in their study of time-on-task 
effects, Veksler et al. (2018) found no correlation between 
either prior night’s sleep or wake-up time and the difference 
in response times between the first and last blocks of a 35-
minute task—indicating an additive, not multiplicative, 
relationship between time-of-day and time-on-task (see 
Kribbs & Dinges, 1994; Gunzelmann et al., 2010). 

Yet another observation about the naïve combined model, 
and about the earlier time-on-task model, relates to the 
model’s 𝐹345 𝑛  equation. Recall that this factor incorporates 
the idea of cascading microsleeps, such that when a 
microsleep occurs, another is more likely to happen in the 
subsequent cycle. In the original formulation, because 
𝐹345 𝑛 = 𝑐345 7 and 0 < 𝑐345 < 1, there is a rapid initial 
drop for small 𝑛 followed by a leveling off to an asymptote 
near zero. Instead, based on our observations of sleep attacks, 
a better formulation would allow for only a slight drop for 
small 𝑛, but as 𝑛 gets larger, the microsleeps would rapidly 
deteriorate into a sleep attack. 

The Unified Model 
Given the reasoning above, we created our unified model 
based on the earlier models of time-of-day and time-on-task 
while reflecting the evidence above. In particular, we 
modified the formulations of several equations as follows. 
First, we changed the decrement factor to a negated 
exponential function to introduce a steep drop in fatigue as 
microsleeps accumulate: 
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𝐹345 𝑡, 𝑛 = − 𝑒 5HIJ∗7 + 2	

Next, we modified the biomathematical factor to eliminate 
the initial 1 in a way that forces it to reduce the overall utility: 

𝐹+", 𝑡 = −𝑐+", ∗ 𝐵%(𝑡)	

We then introduced the additive effect between time-of-day 
and time-on-task into the computation of fatigued utility: 

𝐹C,C 𝑇 = (1 + 𝑇)5DED	

𝐹𝑈" 𝑡, 𝑇, 𝑛 = 𝐹345 𝑡, 𝑛 ∗ 𝐹+", 𝑡 + 𝐹C,C 𝑇 + 𝑈" 𝑡 + 𝜖 	

Analogous changes were applied to the utility threshold: 

𝑈𝑇+", 𝑡 = −𝑑+", ∗ 𝐵%(𝑡)	

𝑈𝑇C,C 𝑇 = (1 + 𝑇)3DED	

𝑈𝑇 𝑡, 𝑇 = 𝑈𝑇+", 𝑡 + 𝑈𝑇C,C 𝑇 + 𝑈𝑇>	

These changes all together represent our unified model that 
accounts for both time-of-day and time-on-task effects. The 
next section aims to validate this model across two 
experimental data sets. 

Model Evaluation 
To validate our model, we rely on two studies that employ 
arguably the most common task in fatigue-related studies, 
namely the psychomotor vigilance task (PVT: Dinges and 

Powell, 1985). As mentioned, the PVT involves an extremely 
simple stimulus-response. PVT has been used extensively in 
sleep-related studies because of its sensitivity to sleep and 
circadian-based fatigue and its procedural simplicity and the 
consistency of individual performance (e.g., Gunzelmann, 
Moore, Gluck, Van Dongen, Dinges, 2008; Dorrian et al., 
2005). PVT is thus a highly sensitive sustained attention task 
which can be an independent measure of fatigue (Van 
Dongen et al., 2011). 

A typical PVT trial lasts 10 minutes and requires a button 
response every 2-10 seconds. The visual stimulus is a 
millisecond counter displayed on the screen, which starts at 0 
at stimulus onset and counts forward as time passes; when the 
person presses the response key, the counter stops, thus 
providing feedback for performance. The main dependent 
measure in the PVT is the number of lapses, where a lapse is 
defined as a reaction time of more than 500 ms. Researchers 
have also measured the median response time (RT) of alert 
responses (reaction times between 150 and 500 ms), false 
starts (incorrect keypresses or reaction times less than 
150 ms), and sleep attacks where the participant does not 
respond for 30 seconds or more. 

It is worth noting that we used a single set of parameter 
values for the models in both studies. Our unified model 
contains 7 free parameters in total (see Table 1). Another 
parameter that was treated as a free parameter in previous 
models is cycle time, which controls the amount of time to 
evaluate and select a production during each cognitive cycle. 

 

 
Figure 2: Human and model results for the PVT across 88 hours of sleep deprivation (Study 1). 
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We used the default value of 50 ms (Anderson, 2007) to keep 
the consistency with ACT-R theory. To reduce the chance of  
overfitting, we searched the parameter values to first fit 
parameters related to the time-on-task effect and then used 
the same values to fit parameters related to the time-of-day 
effect. Table 1 shows the list of free parameters and our best 
estimates for each parameter.  
 
Table 1: ACT-R unified fatigue model free parameters and 

their estimations. 

 

PVT Model 
Because the fatigue mechanisms described here are general 
to any production system or task, we require a model 
specifically of the PVT to test the fatigue mechanisms. For 
this purpose, we developed an ACT-R model that performs 
the PVT in as straightforward a manner as possible, with 
three main production rules, following the original model by 
Walsh et al. (2017):  

1. Attend: shift visual attention to the stimulus 
2. Encode-and-Respond: completes the visual encoding of 

the stimulus and initiates the response keypress 
3. Wait: wait for the next stimulus 

To capture the false starts in the PVT model, Walsh et al. 
(2017) used procedural partial matching: when enabled, 
productions whose conditions do not perfectly match the 
current state get a chance to be selected with a similarity 
difference (a negative value) added to their utility: 

𝑈"L = 𝑈" + 𝑆𝐷" + 𝜖	

𝑆𝐷" is the similarity difference which is added to the utility 
value when the conditions for the production are not met. At 
each cycle, the production with the greatest value 𝑈" is 
selected when its utility exceeds the utility threshold. By 
enabling the procedural partial matching, Walsh et al. (2017) 

                                                             
2 Base utility is defined as the standard utility value for all 
productions. 

eliminated the need of a separate production (false-response); 
encode-and-respond can be selected at any time and when it 
is selected before the stimulus appears, false starts occur 
(which happens rarely because of the similarity difference 
added to it). 
 In the design of PVT in Walsh et al. (2017), UOL was treated 
as a single free parameter meaning that one value was 
estimated and used for all the productions. The ACT-R's 
procedural learning (Anderson, 2007) was also disabled due 
to the nature of PVT and similar sustained attention tasks 
(Van Dongen et al., 2003) and the similarity difference was 
set to negative value of the production utility to simplify 
matters. Here we follow a similar design to stay consistent 
with earlier studies. 

Study 1: Time-of-Day Experiment and Results 
The first study for our model evaluation is a study of long-
term sleep deprivation conducted by Doran et al. (2001). The 
study included 13 healthy participants who experienced 88 
hours of total sleep deprivation. During periods of 
wakefulness for the duration of the study, participants 

Parameter Definition Estimates 

𝑐345 Utility decrement factor . 006 

𝑐+", Utility biomathematical 
factor 

. 028 

𝑐C,C Time-on-task 
decrement factor 

. 12 

𝑈" Base utility2 1.56 

𝑑+", Threshold 
biomathematical factor 

. 01 

𝑑C,C Threshold time-on-task 
decrement factor 

. 04 

𝑈𝑇> The initial threshold 1.15 

  
Figure 3: Human and model PVT results across the 
5-min blocks of the 35-min experiment (Study 2). 
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completed a battery of performance evaluation tasks every 2 
hours, including a 10-minute PVT. Although Gunzelmann et 
al. (2009) modeled the same experiment, our effort here is 
different in two ways: (1) the older model used different 
parameter values for each day, whereas we are constraining 
our model to a single set of parameters; and (2) the older 
model did not include the time-on-task factor; although time-
on-task was not a focus of the study, it is important for us to 
know that the model can produce a good fit while 
incorporating this factor (see also Gunzelmann et al. 2011). 

To model this study, we ran iterations of the PVT model 
for 10-minute periods and matched the sleep schedule of the 
model to the 88-hour sleep deprivation experimental 
protocol. Parameters were estimated to produce the best fit 
across the four PVT measures; a single set of parameter 
values was used across the entire experiment. Figure 2 shows 
the human data and model’s performance for all four 
measures: lapses (𝑅V = 0.68, 𝑅𝑀𝑆𝐸 = 7.92), median 
reaction times (𝑅V = 0.55, 𝑅𝑀𝑆𝐸 = 34.41), false starts 
(𝑅V = 0.56, 𝑅𝑀𝑆𝐸 = 3.42), and sleep attacks (𝑅V = 0.77, 
𝑅𝑀𝑆𝐸 = 0.64). Overall, the model accounted for all the 
major aspects of the data; it slightly underpredicted lapses in 
days 1-2, and slightly overpredicted RT in days 4-5, but in 
general, the model captured most of the fluctuations in 
performance across all four measures. 

Study 2: Time-on-Task Experiment and Results 
The second study for our model evaluation is a study 
examining time-on-task effects conducted by Veksler and 
Gunzelmann (2018). In the study, 20 participants performed 
a 35-minute PVT instead of the usual 10 minutes; by 
extending the typical PVT duration, they were able to draw 
out how the effects of time-on-task on PVT are similar to 
those of sleep loss. As mentioned earlier, Veksler and 
Gunzelmann modeled the time-on-task effects in this 
experiment, but at the time did not incorporate the 
biomathematical model, and used a different set of 
parameters than earlier models. To include biomathematical 
modeling in our simulations, we assumed 8 hours the night 
before the experiment, waking at 7:30am and performing the 
experiment at 10:00am. 

The results of the model compared to the human data are 
shown in Figure 3. For this evaluation, we compared the 
performance of the model with the experimental results 
across seven 5-minute blocks of PVT. The model was able to 
capture the changes across the blocks for median reaction 
times (𝑅V = 0.85, 𝑅𝑀𝑆𝐸 = 9.67), lapses (𝑅V = 0.53, 
𝑅𝑀𝑆𝐸 = 1.27), and false starts (𝑅V = 0.55, 𝑅𝑀𝑆𝐸 = 0.69). 
The model shows a slight overprediction of lapses in the 
middle blocks, but in general, the model performs well for 
these three measures, especially considering that this is the 
same model with the same parameters as the previous study. 

General Discussion 
In this paper, we introduce a unified computational model 

that accounts for two of the most important aspect of fatigue, 

namely time-of-day and time-on-task effects on behavior and 
performance. Our result once again accounts for the 
microlapse hypothesis (Gunzelmann et al. 2009) and the fact 
that microlapses could account for both sleep loss and time-
on-task effects in sustained attention (following Veksler et 
al., 2018). We were also able to capture both the time-of-day 
and time-on-task effects with the same parameters; going 
forward, we are interested in understanding how these 
parameters might generalize to other tasks, and how they 
might vary across individuals. It is also notable that the 
mechanisms here are complex, with a number of free 
parameters that are sensitive to changes in setting. 
Nevertheless, we believe that as we continue to fit additional 
experiments with this unified model, we can reduce the space 
of free parameters and can find parameter values that cut 
across a variety of task domains, providing an even more 
general model with easier estimation of parameters.  

In conclusion, by validating that the unified model can 
account for the negative consequences in behavioral 
performance of both time-of-day and time-on-task effects, we 
have demonstrated that both phenomena have similar natures 
and as a result could be modeled with a single set of 
mechanisms. Although PVT as a testbed for our modeling 
seems to be a simple task, this research will give us a strong 
foundation to expand the model to more complex domains. 
We are also interested in extending this model beyond the 
sleep-loss and time-on-task to moderate levels of fatigue 
(e.g., sequential sleep limitation), which would further 
bolster the model’s generalizability to complex real-world 
task domains. 
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Abstract

Locke argued that persons born blind do not possess true knowledge about color. While prior studies find some knowledge
of color among blind individuals, questions remain about the depth of this knowledge. Do blind individuals merely learn
inferentially shallow verbal associations (e.g., bananayellow)? We hypothesized instead that blind individuals are more
likely to acquire causally-relevant color information. Blind (n=20) and sighted adults (n=20) reported colors of natural
kinds (e.g. banana) and artifacts (e.g. car) and judged the likelihood that two instances of a type have the same color.
Relative to the sighted, blind participants were less likely to know specific object colors (e.g. banana-yellow), but made
identical inferences about color consistency (more consistent colors for natural kinds). Inferences were similar across
groups even for novel objects. Further, blind individuals gave detailed and coherent causal explanations of color origins.
Inferentially rich knowledge of sensory categories can develop without first-person experience.
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Abstract 

When several causes contributed to an outcome, we often 
single out one causal factor as being “more of a cause” than 
others. What explains this selection? Existing research 
suggests that people’s judgements of actual causation can be 
influenced by the degree to which they regard certain events as 
norm-deviant, or “abnormal” (Hart & Honoré, 1963; 
Kahneman & Miller, 1986; Hitchcock & Knobe, 2009; Halpern 
& Hitchcock 2015). In this paper, we argue that statistical 
abnormality influences causal judgements about human agents 
by changing the agents’ epistemic states (Epistemic 
Hypothesis). In Experiment 1, we replicate previous findings 
that people assign more causal strength to a statistically 
abnormally acting agent, but show that they also assign them 
more knowledge about the behaviour of their peers. In 
Experiment 2, we show that in case of equal epistemic 
uncertainty, people do not differentiate between statistically 
abnormal and normal causal agents. In Experiment 3, we 
explore the difference between type and token abnormality, 
and find that a token abnormal, but type normal behaviour still 
influences causal judgments, with people’s epistemic 
judgments mirroring these causal judgments. We discuss the 
implications of this research for current norm-frameworks in 
causal cognition.    

Keywords: statistical norms, normality, causal judgment, 
counterfactual reasoning, epistemic states 

 

  Our ability to form causal judgements plays a fundamental 

role in human cognition. In everyday life, we encounter 

situations that demand an explanation of why something 

happened, how it happened, or how it could have been 

prevented. Fortunately, our environment is rich in statistical 

information. Statistical patterns have been shown to be a 

reliable cue in guiding people’s causal inferences and 

judgements (Cheng, 1997). The co-variation of cue and 

outcome, their proximity in space and time or the temporal 

order in which events occur have been shown to inform 

assumptions about causal structure, i.e. the existence of a 

causal relation between cue and outcome, as well as causal 

strength, i.e. the degree of a causal relation between cue and 

outcome (Lagnado, Waldmann, Hagmayer & Sloman, 2007).  

Recent research suggests that the influence of statistical 

information on causal cognition goes even further. The 

statistical normality of a causal factor, i.e. how likely, typical 

or frequent it is perceived, can make a difference to people’s 

causal judgement about this factor over and beyond its actual 

causal contribution (Cheng & Novick, 1991; Hitchcock & 

Knobe, 2009; Samland & Waldman, 2016; Kominsky, 

Phillips, Gerstenberg, Lagnado & Knobe, 2015; Icard, 

Kominsky, Knobe, 2017). In a range of empirical studies, 

people have been shown to differentiate between causal 

factors according to their statistical features, even when both 

factors are necessary for the outcome to occur (Hitchcock & 

Knobe, 2009; Icard et al., 2017; Gerstenberg & Icard, n.d.).  

Most prominently, this research suggests that deviations 

from statistical normality increases the causal strength 

assigned to a cause. Specifically, people are more inclined to 

judge that C causes E when C is perceived to be statistically 

“abnormal”, i.e. unlikely, infrequent or atypical manner, 

rather than when C is perceived to be statistically normal. 

This holds even when in both cases, C is known to have the 

same actual causal contribution to the effect. These findings 

raise the question of why people take statistical features into 

account even when these features do not function as 

supplementary cues to causal structure or strength. What 

makes people prefer abnormal causal candidates? 

Normality matters – but why? 

A prominent line of research argues that norms or 

normality influence causal judgments by changing the 

relevance or propensity to consider counterfactual 

possibilities (Kahneman & Miller, 1986; Hitchcock & 

Knobe, 2009, Icard et al., 2017). A statistical norm violation 

increases the likelihood of thinking about an alternative 

scenario in which the norm-violation is replaced by norm-

conforming behaviour. A typical test case in this research is 

causation in a conjunctive causal structure, where two causes 

are each necessary to produce an outcome. When both Cnormal 

and Cabnormal together bring about outcome E, people will be 

more likely to envisage a counterfactual scenario in which 

Cabnormal is absent, rather than a counterfactual in which 

Cnormal is absent. According to the counterfactual account, 

imagining a counterfactual alternative in which normality, or 

norm-conformity, is restored highlights the causal role of the 

abnormal causal factor for the outcome, compared to that of 

the normal causal factor (Kahneman & Miller, 1986; 

Hitchcock & Knobe, 2009, Icard et al., 2017).  

Counterfactual accounts of norm effects in causal 

cognition have gained increasing popularity. On the one 

hand, they have integrated norms into formal causal 

frameworks that can explain a variety of norm effects on 

causal judgments, such as “causal superseding” (Kominsky 
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et al., 2017) or “abnormal deflation” (Icard et al., 2017; 

2018). On the other hand, they not only predict the influence 

of statistical norms on people’s causal judgements, but also 

the impact of other kind of norms, such as prescriptive norms 

(Hitchock & Knobe, 2008) or norms of proper functioning 

(Phillips & Kominsky, 2018). Recently, it has been suggested 

that the influence of both prescriptive and statistical norms on 

causal judgements can be explained by a single normality 

concept (Bear & Knobe, 2017).  

Knowing me, knowing you 

The majority of studies supporting the counterfactual 

account has been conducted using vignette stories in which 

participants rate the causal impact of human agents who 

differ in certain aspects of normality. This has led some to 

argue that the influence of moral abnormality on causal 

judgements in the context of human agents reveals something 

about people’s blame responses, rather than a difference in 

counterfactual and causal reasoning (Samland & Waldman, 

2016, Alicke, Rose & Bloom, 2012). However, most research 

argues that statistical norms influence the underlying process 

of causal judgement. When it comes to statistical norms, it is 

the abnormality itself that leads people to judge a causal 

difference between an abnormally and a normally acting 

causal agent. 

In this paper, we propose an alternative hypothesis. While 

we agree that statistical likelihoods can have an impact on 

people’s causal judgements about events or objects, we think 

that in the context of human agents, there is another important 

factor to consider. Epistemic states, i.e. the knowledge an 

agent has about their environment, have been shown to 

influence how we evaluate the causality of their actions 

(Lagnado & Channon, 2008). Whether an agent engages in a 

frequent of typical action, or an infrequent or atypical action, 

will likely change their epistemic states about the 

consequences of this action. In particular, in the case of 

conjunctive causal structures, an abnormally acting agent 

seems to have an epistemic advantage over the normally 

acting agent in knowing or expecting the outcome to happen. 

We believe it is the epistemic advantage that arises from a 

statistically abnormal action, rather than the abnormality per 

se, that drives the main difference in people’s judgements 

about causal agents. We call this the Epistemic Hypothesis 

(EP). We conducted three experiments to investigate this 

hypothesis. In Experiment 1, we replicate previous literature 

by showing that people assign more causal strength to a 

statistically abnormally acting agent. In Experiment 2, we 

show that in case of equal epistemic uncertainty, people do 

not make a causal difference between abnormal and normal 

causal agents. In Experiment 3, we find that a token 

abnormal, but type normal behaviour still influences causal 

judgments, with people’s epistemic judgments mirroring 

these causal judgments. We discuss the implications of this 

research for current norm-frameworks in causal cognition. 

                                                           
1 The material and data for all experiments are available under: 

https://osf.io/zhvsb/ 

Experiment 1 

The term “statistical abnormality” has been used broadly in 

the causal cognition literature, referring to actions or events 

that are unlikely, rare or atypical. In our experiments we have 

concentrated on statistical normality in the sense of the 

frequency of an action. We follow the current paradigm of 

assessing causal ratings of two causal agents in a conjunctive 

causal structure, while varying the statistical normality of 

their actions. In order to focus our investigation, we deviate 

from the current experimental paradigms in two aspects. 

Instead of descriptive vignettes (“Agent X frequently does 

action Y”), we use sequential animated video scenes in order 

to represent action frequencies more naturalistically. 

Furthermore, previous literature has suggested that the co-

variation between cause and effect influences causal 

considerations (Harinen, 2017, Cheng 1997, Kirfel & 

Lagnado, 2018). Current experimental studies are ambiguous 

about the statistical normality of the effect, which is why we 

decided to employ a causal structure which allows us to 

control the frequency of the outcome. 

Participants1 

176 participants were recruited for this online study via 

Amazon Mechanical Turk. 10 participants were excluded for 

answering more than one check question wrong, leaving a 

final sample of 166 (Mage = 37.19, SDage=11.24, age range= 

[20-77]; 101 male, 64 female, 1 N.A.) They were paid £0.70 

upon completion of the study (Ø 8.06min).  

Design 

We manipulated two factors in a two-agent-scenario: the 

statistical normality of an action (frequent vs. infrequent 

action) and the type of scenario (microwave vs. coffee 

machine). Statistical normality, i.e. frequency of actions was 

manipulated for one agent (Agent 2: varied agent) while 

holding the frequency of actions fixed on the second agent 

(Agent 1: fixed agent). The scenario type was manipulated 

between-participant, while the statistical normality was 

manipulated within-participant. Participant saw two video 

clips (“frequent”, “infrequent”) from one of the two scenario 

types, presented in randomized order. Names of the agents 

were varied across all conditions. 

Material  

The frame story consists of two co-workers in a shared office. 

Depending on the scenario type, the office has either two 

coffee machines or two microwaves that the employees can 

use. For energy saving purposes, the company introduces the 

“Green Friday” on which the building is switched into a 

power-saving mode. As a result, the use of more than one 

coffee machine (microwave) on Fridays will lead to a power 

failure in the building. All workers are aware of the Green 

Friday. 

576



 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 1.  Scenario “Coffee Machine” with Fixed Agent (“Henry”) and 

varied Agent (“James”). 

 

Response Measures 

Causal Rating.  After each video clip participants were 

asked to express their agreement with statements about the 

causal contribution of each agent to the outcome [“Agent 1 

(2) has caused the power failure.”] on a 7-point Likert scale 

[1 – ‘Strongly disagree’ to 7 – ‘strongly agree’]. Questions 

were presented in randomized order. 

 

Manipulation Checks.   In two subsequent manipulation 

check questions, participants were asked about their 

understanding of the action frequency in the scenario [”Who 

used a coffee machine frequently (rather than infrequently) 

this week?” – ‘Agent 1’, ‘Agent 2’; multiple answers 

possible] and the causal structure [“The use of how many 

coffee machines does it take to produce a power failure on 

Friday? – ‘One coffee machine’, ‘Two coffee machines’]. At 

the end of the survey, i.e. after watching both videos and 

answering the causal rating questions, participants were 

asked to express their opinion about the epistemic states of 

the agents in both videos [“Agent 1 (2) knew that Agent 2 (1) 

would use a microwave on Friday.”] on a 7-point Likert scale 

[1 – ‘strongly disagree’ to 7 – ‘strongly agree’]. By this, we 

wanted to check for people’s assumptions of the agent’s 

epistemic states. 

Results 

A Mixed ANOVA for participant’s agreement ratings about 

the causal statements revealed a significant interaction for 

Frequency × Agent, F(1,164) = 29.05, p < .001, ηp
2 = .15. While 

people judge no difference between the causal contribution 

of the agents when both of them have frequently performed 

the action, an agent whose action is rare is seen as more 

causal (M = 5.52, SD = 1.63, 95% CI [5.27, 5.78]) then  

a frequently acting agent (M = 4.54, SD = 1.97, 95% CI [4.24, 

4.84]).  

  There was no effect for scenario type (p = .653). A Mixed 

ANOVA for agreement ratings about the agent’s epistemic 

states revealed a significant interaction for Frequency × 

Agent F(1,164) = 291.60, p < .001, ηp
2 = .64. When the two 

agents differ in the frequency of their actions, people express 

more agreement with the proposition that the agent acting for 

the first time on Friday knows that their (frequently acting) 

coworker would act (M = 5.83, SD = 1.74, 95% CI [5.54, 

6.07]), than vice versa (M = 2.37, SD = 1.54, 95% CI [2.11, 

2.64]). 

 
Figure 2. Mean agreement ratings (scale 1-7) for causal statement. Error bars 
represent ±1 SE mean, black points represent the median. 

Discussion 

   In this experiment we found that when a frequently and 

infrequently acting agent together cause an outcome, people 

judge the agent who has acted infrequently to be of greater 

causal strength than the frequently acting agent. Our findings 

are in line with the literature in causal cognition showing that 

people tend to assign more causal strength to abnormal causes 

(Hitchcock & Knobe, 2009, Icard et al., 2017). In our study, 

we manipulated the statistical normality among agents’ 

actions. However, in a two-agent conjunctive structure, 

acting abnormally gives the agent a better chance of 

foreseeing the consequences of their action. This is because 

the infrequent worker has witnessed the frequent worker 

acting on multiple occasions, whereas the frequent worker 

has never seen the infrequent worker act.  In accordance with 

this prediction, we found that people assigned more 

knowledge about the co-worker’s behaviour to the 

abnormally acting agent. This leaves open the question 

whether it was the epistemic advantage of the abnormally 

acting agent, or the abnormality of their action, that led 

people to make a causal difference. For our second 

experiment, we therefore examined whether abnormality still 

influences causal judgements when there is no such epistemic 

advantage. 

Experiment 2 

In the second experiment, we aimed to investigate the effect 

of statistical normality on causal judgments when neither 

agent knows about the frequency of the other’s actions. 

Participants 

171 participants were recruited for this online study via 

MTurk; 19 were excluded for answering more than one check 

question wrong (N=152, Mage = 38.22, SDage =11.25, age 
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range= [19-71]; 81 male, 79 female,). They were paid £0.70 

upon completion of the study (Ø 8.61min).  

Design & Material  

The experiment was designed as Experiment 1, with the 

difference that the two agents are shown as working in 

separate offices on different floors. The agents are introduced 

as co-workers who “[despite] working for the same company, 

do not know each other and have never met or seen each 

other.” (https://youtu.be/dYaXueuGOoA). 

Response Measures 

We used the same Causal Rating Measures and Manipulation 

Checks as in in Experiment 1.  

Figure 3.  Scenario “Coffee Machine” with fixed Agent 1 (“Henry”) and 

varied Agent 2 (“James”). 

Results 

A Mixed ANOVA for participant’s agreement ratings about 

the causal statements revealed a main effect for Frequency 

F(1,150) = 9.96, p =.002, ηp
2 = .06. Higher causal ratings are 

given when both agents act frequently (M = 5.07, SD = 1.87, 

95% CI [4.87, 5.28]), compared to the case in which only one 

has acted frequently (M = 4.72, SD = 2.06, 95% CI [4.60, 

4.93]).  

 

Figure 4.  Mean agreement ratings (scale 1-7) for causal statement. Error 
bars represent ±1 SE mean, black points represent the median. 

There was no interaction effect of Frequency × Agent (p = 

.118), and no effect of scenario type (p =.441). 

   A Mixed ANOVA for agreement ratings about the agent’s 

epistemic states revealed a significant interaction for 

Frequency × Agent F(1,150) = 4.83, p = .029, ηp
2 = .03.  

Discussion 

In our second experiment, we investigated whether statistical 

normality influences causal judgments when neither agent 

knows about the other’s behaviour. We found that people do 

not differentiate between a frequently and rarely agent when 

neither agent knows or observes the other’s behaviour. When 

both agents operate out of sight from each other, people do 

not judge the abnormally acting agent as contributing more 

to the joint outcome of their actions. However, the epistemic 

manipulation check questions revealed that our manipulation 

of epistemic uncertainty was only partly successful. Although 

both agents were introduced as working from different 

offices and not knowing each other, participants still assumed 

a very small epistemic difference when they differ in their 

action frequency. Compared to Experiment 1, however, the 

epistemic difference is negligible (MDEXP1= 3.36, MDEXP2 = 

0.16) and rated at the bottom of the 7 point Likert scale [1 – 

‘strongly disagree’ to 7 – ‘strongly agree’] (Frequent Agent: 

M = 1.24, infrequent Agent M = 1.40).  

   As a result, people overall disagreed with the statement that 

the agents had knowledge of each other. Our experiment 

shows that the general reduction in the agents’ knowledge 

about each other led to an absence of influence of statistical 

normality. If an agent has not secured knowledge about the 

behaviour of their peers, people do not take into account the 

statistical normality of the agent’s behaviour when making 

causal judgements. Our second experiment therefore shows 

that in case of epistemic uncertainty, i.e. when acting 

abnormally does not generate an epistemic advantage, 

statistical normality does not affect causal judgement.  

Type and Token Normality 

Our two experiments so far confirm the hypothesis that 

statistical normality influences causal judgments by giving an 

epistemic advantage. However, there is another interesting 

case to consider. Statistical abnormality does not necessarily 

need to lead to an epistemic advantage when agents, despite 

differing in their action frequency, can still predict the 

general outcome-causing behaviour. This case might be hard 

to experience naturally, because it is exactly the 

unpredictability of abnormal behaviour that makes it difficult 

for other agents to foresee it, leading to an epistemic 

asymmetry. However, when the agent acts for the first time, 

but their specific action has been performed frequently before 

by someone else, the agent’s behaviour is still abnormal, but 

others might have been able to foresee the occurrence of this 

type of action. Strictly speaking, in such a case the 

abnormality of the behaviour is abnormal only in a limited 

sense. The agent is abnormal on an “agent-token” level, i.e. 

this particular agent performing action φ, but normal on an 

“agent-type” level, i.e. an agent performing action φ. In their 
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paper “Two types of typicality”, Sytsma, Livengood and 

Rose (2015) reassess the role of statistical normality by 

distinguishing between agent-level and population-level 

statistical norms. They find that agent-level statistical 

normality has an influence on causal attributions, while 

deviating from a populational-level norm does not affect 

people’s causal judgements. 

For our third experiment, we adopted a similar paradigm as 

used by Sytsma et al. (2015). We introduced a third 

‘auxiliary’ agent who uses one of the outcome triggering 

devices regularly during the week before the abnormally 

acting agent uses it on Friday. By this, we were interested 

whether an action that is token abnormal, but type normal, 

still influences causal judgment. Crucially, we assumed that 

introducing type normality might also make a difference to 

the agents’ epistemic states. That is, in contrast to Experiment 

1, here we would expect the token normally acting agent to 

have certain foreseeability that someone performs the 

causally relevant action on Friday (even though on that day, 

this happens to be a different agent than expected). The 

manipulation of epistemic states in Experiment 3 however is 

much noisy and occurs indirectly through the manipulation 

of type normality. In line with EP, we predict that if people 

continue to judge the token abnormal agent to be more causal 

for the outcome, this would again be tracked by a perceived 

epistemic asymmetry between these agents. 

Experiment 3 

In the third experiment, we aimed to investigate the effect of 

statistical normality on causal judgments when an agent acts 

statistically abnormal, but their action has been performed 

before by others. 

Participants 

180 participants were recruited for this online study via 

Amazon Mechanical Turk; 26 were excluded for answering 

more than manipulation wrong (N=154, Mage = 38.47, SDage 

=12.16, age range = [19-72]; 90 male, 62 female, 1 2.A). 

They were paid £0.70 upon completion of the study (Ø 

8.64min).  

Design & Material  

We used the same scenarios as in Experiment 1, but added a 

third causally irrelevant agent, Agent 3. The statistical 

normality of the agents who are causing the final outcome 

was manipulated as before, i.e. varied for one agent and held 

fixed for the other (Agent 1: fixed agent; Agent 2: varied 

agent). In the condition in which both Agent 1 and Agent 2 

behave statistically normal, both of them use a coffee 

machine (microwave) from Monday to Friday, with Agent 3 

simply being present and not acting 

(https://youtu.be/Tsxt1peUA74). In the condition in which 

Agent 2 acts abnormally, Agent 2 uses the coffee machine 

(microwave) on Friday, but Agent 3 uses that exact same 

coffee machine (microwave) the days before, i.e. from 

Monday to Thursday (https://youtu.be/k2wE52iZPKY). 

Response Measures 

We used the same Causal Rating Measures as in Experiment 

1, but for the sake of completeness, added a Causal Rating  

for Agent 3 which we did not include in our analysis. We 

added a Manipulation Check Question to test whether people 

correctly perceived who had acted on the final day of the 

outcome [“Who used a microwave on Friday?” ‘Agent 1’, 

‘Agent 2’, ‘Agent 3’, multiple answers possible]. We 

changed our Epistemic Question into a question about i) the 

type of behaviour “Agent 1 (2) knew that the other coffee 

machine (microwave) would be used by someone on Friday”, 

and ii) the behaviour of the specific agent “Agent 1 (2) knew 

that Agent 2 (1) would use the other coffee machine 

(microwave) on Friday” [1 – ‘strongly disagree’ to 7 – 

‘strongly agree’]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Scenario “Coffee Machine” with fixed Agent 1 (“Dan”), varied 

Agent 2 (“Eddie”) and ‘auxiliary’ Agent 3 (“Sam”). 

Results  

A Mixed ANOVA for participant’s agreement ratings about 

the causal statements about Agent 1 (fixed) and Agent 2 

(varied)  revealed an interaction effect for Frequency × Agent 

F(1,152) = 9.89, p =.002, ηp
2 = .06. 

  When Agent 1 and 2 differ in the frequency of the actions 

that they perform on Friday, people agree more with the 

statement that the infrequently acting Agent 2 caused the 

outcome (M = 5.05, SD = 1.99, 95% CI [4.73, 5.36]), than 

that the frequently acting Agent 1 (M = 4.48, SD = 2.11, 95% 

CI [4.15, 4.82]). 

A Mixed ANOVA for agreement ratings about agent’s 

epistemic states for the type of behaviour revealed a 

significant interaction for Frequency × Agent F(1,152) = 10.82, 

p = .001, ηp
2 = .07. The infrequently acting agent is judged to 

have more certainty that someone would use the other device 

on Friday (M = 4.73, SD = 2.01, 95% CI [4.41, 5.05]), than 

the frequently acting agent (M = 4.23, SD = 2.12, 95% CI 

[3.89, 4.56]). A Mixed ANOVA for ratings on the agent’s 

assumptions about the specific agent using the other device 

also revealed a significant interaction for Frequency × Agent 

F(1,152) = 110.01, p <.001, ηp
2 = .42. Participants agreed 

substantially more with the statement that the infrequently 

acting agent knows that the frequently acting agent would be 
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using the other relevant device on Friday (M = 4.61, SD = 

2.01, 95% CI [4.29, 4.93]), than vice versa (M = 2.53, SD = 

1.83, 95% CI [2.24, 2.82]). 

 

Figure 4.  Mean agreement ratings (scale 1-7) for causal statements. Error 

bars represent ±1 SE mean, black points represent the median. 
 

Subgroup Analysis. We conducted an additional analysis for 

the causal agreement ratings of the subgroup of people who 

rated the type behaviour expectations of normal and 

abnormal agent as equal (n=98). Here, we found no 

significant interaction for Frequency × Agent (F(1,96) = 1.6, p 

= .147) (MDAbnormal-Normal=0.29, SDMD=2.0). 

 

  
 

Figure 5.  Mean agreement ratings (scale 1-7) for causal statements. Error 

bars represent ±1 SE mean, black points represent the median. 

Discussion 

In our third experiment, we found that an action that is token 

abnormal, but type normal, still influences causal judgments,. 

However, the judged difference between token normal and 

abnormal agent  is significantly smaller than in Experiment 

1. In addition, we found that people thought that the normally 

acting is less certain that the abnormally acting agent would 

act, but also less certain that someone else would act. This 

result comes as a surprise, given that both focal agents should 

have been able to expect an agent to act in the final scenario. 

While we assessed the focal agents’ expectations towards the 

general type and each other’s token behaviour, we did not 

assess their predictions about the behaviour of the third  

‘auxiliary’ agent.  It is therefore likely that some people might 

have assumed Agent 1 (and/or Agent 2) to have expected 

Agent’s 3 omission. In consequence, it might be that the 

difference in action type expectations comes about as a 

difference in expectations about who in fact acted on Friday. 

This, again, leaves the normal agent with an epistemic 

disadvantage. However, a subgroup analysis showed that 

participants who assumed that both agents had equal 

behaviour type knowledge, i.e. that both agents were equally 

expecting that someone would act on Friday, did not judge a 

significant causal difference between abnormal and normal 

agent.  

General Discussion 

In three experiments, we investigated what we call the 

Epistemic Hypothesis (EP), the hypothesis that statistical 

abnormality will influence causal judgments via generating 

an epistemic asymmetry. In our first experiment, we showed 

that an abnormally acting agent is seen as more causally 

effective for an outcome, but also as more knowing about the 

behaviour of their normal counterpart. In accordance with 

EP, we found that in the case of mutual ignorance about each 

other, statistical abnormality does not influence causal 

judgements. Finally, we found that token abnormal, but type 

normal behaviour still influences causal judgments. At the 

same time, people’s epistemic judgments about type and 

token behaviour mirror these causal judgments. 

   What role do epistemic states play in the influence of 

normality on causal judgements? Samland and Waldmann 

(2016) have shown that the mental states of agents can affect 

whether people’s judgements about their causal contribution 

are influenced by prescriptive abnormality. They found that 

people do not take prescriptive norms into account for their 

causal judgments when the norm-violating agent is unaware 

of their norm transgression. Counterfactual accounts leave 

open under which circumstances people start to perceive a 

behaviour as “abnormal” (Phillips & Kominsky, 2018). 

Therefore, an agent’s lack of knowledge or awareness of 

existing norms might determine whether the behaviour is  

perceived as norm-violating or abnormal in the first place. 

However, we think that in case of statistical normality, an 

agent can assess the normality status of their behaviour 

relative to their own action history, their agent-level 

normality. In consequence, the assessment of statistical 

normality is not necessarily conditional on the knowledge 

about external factors, such as rules or laws, or the behaviour 

of other people. In this paper, we aim to make different claim. 

We argue that it is the epistemic state that occurs qua the 

normality or abnormality of an action that drives the 

difference in people’s causal judgements (Kirfel & Lagnado, 

2017; Kirfel & Lagnado, 2018). Our experiments support this 

hypothesis. Hence, we argue that current norm incorporating 

causal frameworks are in need of a firm theory of epistemic 

states in order to explain their influence on norm-based causal 

cognition. 
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Abstract

We show that computational reinforcement learning can model
human decision making in the Iowa Gambling Task (IGT). The
IGT is a card game, which tests decision making under uncer-
tainty. In our experiments, we found that modulating learning
rate decay in Q-learning, enables the approximation of both the
behaviour of normal subjects and those who are emotionally
impaired by ventromedial prefrontal lesions. Outcomes ob-
served in impaired subjects are modeled by high learning rate
decay, while low learning rate decay replicates healthy sub-
jects under otherwise identical conditions. The ventromedial
prefrontal cortex has been associated with emotion based re-
ward valuation, and, the value function in reinforcement learn-
ing provides an analogous assessment mechanism. Thus rein-
forcement learning can provide a good model for the role of
emotional reward as a modulator of the learning rate.
Keywords: reinforcement learning; Q-learning; learning rate
decay; Iowa Gambling Task; ventromedial prefrontal impair-
ment

Introduction
According to psycho-evolutionary theorists, emotions assist
the organism in maintaining homeostasis relative to its be-
havioural and survival goals (Plutchik, 2003). The emotion
feedback mechanism solves problems without the need for
higher cognitive analysis (Damasio, 2006).1 Rolls (2013, Ch.
4) proposes that emotions regulate instrumental learning and
influence contingent outcome-action selection.

The pre-frontal cortex and its regions play a key role
in goal directed learning and behaviour (Miller & Cohen,
2001). Ventromedial prefrontal cortex (VMF) lesions pro-
duce a characteristic learning deficit, where the subject, while
retaining good intellectual function and understanding, is no
longer able to learn from real life mistakes. Wallis (2007) has
argued that the VMF provides emotion valuation input critical
for good decision making.

The Iowa Gambling Task (IGT) was the first clinical test,
which identified VMF impairment in human trials (Bechara,
Damasio, Damasio, & Anderson, 1994). In the IGT, subjects
need to choose a card from one of four decks. There are two
‘good,’ and two ‘bad’ decks, but the ‘bad’ decks start with
positive rewards. Once penalties set in on the bad decks, sub-
jects should adjust the choice of decks accordingly. Fellows

1First published in 1994 by G.P. Putnam’s Sons, New York,
USA.
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Figure 1: The ε-Greedy agent applied to the original IGT data
with different learning rate decay values. A low decay rate
yields normal behaviour, whereas a high decay rate repro-
duces VMF impairment. *See text and Table 4 for details.

and Farah (2005, 2004) present a re-shuffled variation of the
original IGT, where penalties start earlier in the bad decks.
While VMF impaired subjects fail the original IGT, they pass
the re-shuffled variant. On the basis of these differing test re-
sults, Fellows and Farah (2005, 2004) link VMF impairment
to reversal learning deficit.

Computational reinforcement learning methods approxi-
mate an optimal decision policy by iteratively aggregating
time-contingent reward values (Sutton & Barto, 2018). For
example, reinforcement learning techniques may be used to
calculate a suitable path for escaping a maze (Osmankovic &
Konjicija, 2011).

Watkins (1989) developed, the Q-learning framework, a
reinforcement learning model, which, in addition to the dis-
count rate, uses a single novel parameter denoted by α, known
as the learning rate. The learning rate determines the relative
contribution of current yield to accumulated value. We add to
the Q-learning model a decay factor parameter λ, which pro-
duces exponential decay of the learning rate (Powell, 2011,
pp. 427). We show that Q-learning, with the addition of learn-
ing rate decay, reproduces the clinical results of the original
and re-shuffled IGT variants.
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Figure 1 presents our key result for the original IGT vari-
ant. For low learning rate decay, the ε-Greedy agent performs
in the range of normal human subjects. As learning rate decay
increases, agent performance reduces to the range of VMF
impaired subjects. The dark and light gray zones mark the
mean fraction of cards chosen from the good decks, reported
in the literature for normal and VMF impaired subjects re-
spectively.

In the remainder of this paper, we first review related liter-
ature. Then we discuss the IGT in detail, develop the com-
putational treatment, and summarize the experimental design
and the results. These are followed by the discussion and
conclusion.

Literature Review
According to Dalgleish (2004), the prefrontal cortex consti-
tutes a primary anatomical locus for animal and human be-
haviour attributed to emotion. Dalgleish’s prefrontal cortex
includes the areas (Krawczyk, 2002, pp. 633-635) others
have called the VMF (Bechara, 2004) or OFC (Rolls, 2000;
Wallis, 2007). This paper uses the term VMF to refer to the
area of the prefrontal cortex involved in valuation by emotion.
However, some studies prefer the term orbitofrontal cortex, or
OFC. This section retains the respective authors’ original use
of the terms OFC or VMF.

VMF impaired patients, can recognise poor decisions and
describe good decision making strategies, but exhibit a dis-
tinctive inability to learn from their mistakes (Bechara et
al., 1994). In IGT studies, this inability applies to negative
(Bechara et al., 1994) and positive rewards (Bechara, Tranel,
& Damasio, 2000).

To explain VMF impaired deficits, Damasio (1998) pro-
poses the Somatic Marker Hypothesis: an involuntary feed-
back mechanism where a physical or virtual body sensation
is associated with a particular emotion. VMF impairment
disrupts somatic marker pathways, and the affected individ-
ual remains in a slow, logic based decision making paradigm
(Bechara, 2004; Damasio, 1998, 2006). Others have instead
advanced the view that VMF impairment leads to loss of re-
versal learning ability (Dunn, Dalgleish, & Lawrence, 2006;
Maia & McClelland, 2005; Fellows & Farah, 2003, 2005,
2004). Reversal learning ability is the facility to unlearn
a stimulus-response-association, which had previously pro-
duced favourable emotion-valued outcomes.

The VMF is also associated with emotion (Krawczyk,
2002; Hornak et al., 2003; Rolls, 2000). Modelling emotion
in learning and decision making has been challenging (Volz
& Hertwig, 2016). Without using emotion, the Rescorla-
Wagner classical conditioning model presents a learning rule
for assessing the pre and post trial associative strength of a
new stimulus (Rescorla & Wagner, 1972). TD(λ) reinforce-
ment learning methods extend the Rescorla-Wagner model
and enable intra-trial assessment of an associative stimulus
(Sutton & Barto, 2018, pp. 350-357). Contingent stimulus-
response animal studies also inspired Q-learning. However,

unlike Rescorla-Wagner, Q-learning does not explain the con-
ditioning mechanism, but instead develops a decision the-
oretic learning framework (Watkins, 1989). Q-learning re-
mains one of the most successful machine learning algo-
rithms, especially as the feedback stage for deep neural net-
works (Mnih et al., 2015).

Puviani and Rama (2016) propose a complex, neurolog-
ically motivated emotion learning framework, which mod-
els both the OFC and the Amygdala. However, typically
computational emotion synthesis employs more abstract, be-
haviourally driven approaches based on varied psychological
views. Recently, reinforcement learning approaches incorpo-
rating emotion have been receiving increased attention. Rein-
forcement learning can produce lightweight models, has close
ties to optimal control, and provides an intuitive approach for
aggregating contingent values (Powell, 2011; Sutton & Barto,
2018).

Moerland, Broekens, and Jonker (2018; 2017) identify and
survey 52 papers published from 1998 to 2016 relating to
emotion and reinforcement learning. They report four com-
mon methods for eliciting emotion: homeostatic targets, in-
trospective appraisal, value function or reward modulation,
and, sensor or sense driven. Emotions influence rewards,
contingencies, modulate the exploitation versus exploration
trade-off, and sometimes directly act on action selection.
Typically, the value function itself aggregates emotion mod-
ulated inputs into an action selection mapping. We believe
that emotion modulated reinforcement learning thus aims to
encapsulate the functionality of the VMF.

While developing our model, the Moerland et al. (2018;
2017) survey had not yet come out. However, we had con-
sidered Broekens, Jacobs, and Jonker (2015), where joy, dis-
tress, hope, and fear act as value inputs into TD(0) computa-
tional reinforcement learning. In contrast to Moerland et al.
(2018; 2017) and Broekens et al. (2015), our model does not
need an emotion generation layer. In the context of the dis-
cussed models, our model re-interprets the Q-value function
as a single aggregated emotion signal. While our learning
rate is modulated by another hyper-parameter, the decay fac-
tor, we do not synthesize emotions to modulate these hyper-
parameters. Instead, we use an external search grid to assess
the end-effect of learning rate changes, which we hypothesize
might result from VMF impairment.

Our learning rate decay law does not satisfy the well-
known statistical convergence requirement that the sum of the
learning weights must be infinite (Robbins & Monro, 1951;
Spall, 2003). In practice, fully proving theoretical statisti-
cal convergence is difficult (Spall, 2003, p. 122), and proof
of theoretical convergence does not automatically ascertain
good model performance (Powell, 2011, p. 450). Moreover,
an individual organism and its decision making mechanisms
possess a finite lifespan. Therefore we think it is valid to
investigate finite term, periodic decisions with tools where
statistical convergence is not theoretically guaranteed. We
propose that our method of simulating human behaviour with
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learning rate decay could form a useful baseline for gener-
alised reinforcement learning solutions. We focus here on the
empirical effect of learning rate decay on decision quality and
learning.

The Iowa Gambling Task
The original (Bechara et al., 1994) and re-shuffled (Fellows
& Farah, 2005, 2004) Iowa Gambling Task (IGT) variants
form the basis of this paper and we explain them here in more
detail.

Description
The IGT is a card game where the participant receives a loan,
and should maximize profit including repayment of any loans.
The card game consists of four decks: A, B, C, and D. The
participants are told that “some decks are worse than others.”
(Bechara et al., 2000, p. 2192) In each turn, the participant
draws one card from any deck. For each draw, the participant
then receives a fixed reward, and occasionally has to pay a
fine. Decks C and D, known as the ‘good’ decks, give low
fixed rewards, low fines, and, on average, yield net gains. The
remaining two ‘bad’ decks, A and B, produce high rewards,
but even higher losses, and, on average, produce a net loss.

The game stops after 100 turns, when the dealer announces
the end. However, the participant does not know when the
game will end. If the participant runs out of money, additional
loans are available. The hypothesis is that the participants
discover the ‘good,’ low risk decks and choose accordingly.
A score of more than 50 draws from the good decks is defined
as a normative pass by Fellows and Farah (2005, 2004).

While the original IGT lasts 100 turns, Bechara et al.
(1994) only predefine a 40-draw sequence for each deck.
They do not discuss whether any participants drew more than
40 cards from the same deck, and in the provided example
draws, human participants do not draw more than 40 cards
from the same deck. In our implementation, we use the pub-
lished 40-draw predefined sequences. However, to ensure that
a software agent could potentially draw more than 40 consec-
utive cards from the same deck, we loop at the end of each
deck to the beginning of the deck.

Original and Re-shuffled Card Deck Differences
In the original IGT, the ‘bad’ decks, A and B, each start with
an eight card long ‘special’ sequence, where the player re-
ceives positive net gains. Consequently, at the beginning of
the task, the ‘bad’ decks appear ‘good.’ However, in each bad
deck, the ‘special sequence’ is immediately followed by one
or more high fines, causing the player, on subsequent selec-
tions, to lose all gains and move into debt.

In the re-shuffled variant, Fellows and Farah (2005, 2004)
move the first 8 cards in each original deck to the end. This
removes the initial confounding conditioning sequence, and
players experience, across all decks, fines relatively quickly.

The full details of the original and re-shuffled decks can be
found in Bechara et al. (1994, p. 9) and Fellows and Farah
(2005, 2004, p. 59) respectively.

ε-Greedy Q-Learning with Learning Rate
Decay

This section motivates and develops our Q-learning model
with learning rate decay.

Computational Background
The IGT constitutes a version of the n-armed bandit prob-
lem (Ross, 1983, pp. 131-151): there are four processes, of
which only one can be operated at any one time. The soft-
ware agent devises a policy for gaining information (explor-
ing), for assessing (scoring), and then choosing the most ad-
vantageous process (exploiting). Kuleshov and Precup (2000)
present various classic computational techniques for scoring,
and for balancing exploration versus exploitation. We employ
Q-learning because it is simple and permits investigation of
learning rates which vary from 1=n and its derivatives.

Single State Q-learning
We model the IGT as a single state environment with four
card decks and four actions. We do not fully implement Q-
learning as proposed by Watkins (1989) where the current
contribution to the Q-factors uses off-policy updating. In-
stead, we apply on-policy value function updates as suggested
by Sutton and Barto (2018, p. 32).

Given an action a, let Q(a) be an unknown value function,
and let Qn(a) denote the nth iterative approximation. Then
we write the computational estimation problem as:

Qn(a) = αnra
n +(1−αn)γQn−1(a) (1)

where ra
n = rewarda

n − f inea
n is the net reward for action a at

iteration n , γ is the discount rate, and αn is the learning rate
at iteration n. The discount rate γ, when set to less than 1, is
used to devalue future yields ra

n. We assume that the length
of the card game, although unknown, is not long enough to
create a preference for present rewards. Consequently, we set
γ = 1.

Learning Rate Decay
A rapidly decaying learning rate sequence, {αn}, can get
close to 0 prior to some final period T and effectively cur-
tail learning. We consider a geometric-decay learning rate
sequence of the form (Powell, 2011, pp. 427):

αn = Λαn−1 (2a)

Λ = 2−λ=ln2 (2b)

where λ ∈
[
0;∞

)
is the decay factor, and ln2 is a normalizing

constant used to rescale to natural logarithms in the computa-
tions.

Given equation (2b), {α}n only satisfies the theoretical sta-
tistical convergence requirement ∑n αn = ∞ (Powell, 2011,
pp. 274-285), when λ = 0.

However, equations (2a) and (2b) always guarantee, in a
finite number of iterations, computational convergence in the
sense of |Qn−Qn−1|< ε for some n� ∞ and ε > 0. In prac-
tice, our approach produces good approximations to normal
as well as VMF impaired behaviour.
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Table 1: Methodology, Simulation Parameter Summary

Trials, N 2000
Initial Learning Rate, α1 0.05 to 1 by 0.05 steps
*Decay Factor, λ λi = λmax2−ir=ln2

ε-Greediness, ε 0.00 to 0.50 by 0.10 steps
*With λmax = 3:3765, r = 0:012, i = 0;1;2; :::

Table 2: Original IGT Test, Pixel Match Computed Means
± SE for Fraction of Cards Chosen from the Good Decks
reported in the IGT Literature

Subjects Study N
Mean fraction
of good decks

Controls

Bechara et al. (1994) 44 0.69 ± 0.015
Bechara et al. (1998) 21 0.62 ± 0.032
Bechara et al. (2000)* 20 0.59 ± 0.019
Farah et al. (2004) 14 0.63 ± 0.023

VMF
Impaired

Bechara et al. (1994) 6 0.37 ± 0.055
Bechara et al. (1998) 9 0.40 ± 0.035
Bechara et al. (2000)* 10 0.45 ± 0.028
Farah et al. (2004) 9 0.50 ± 0.020

*Results reported in 20 draw blocks. Calculation of 100
draw values assume no inter-block covariance.

The ε-Greedy Agent
For most of the time, the ε-Greedy agent exhibits uncon-
strained maximizing behaviour, and at any iteration n, picks
the deck with the highest attributed value:

Q∗n = max
a

Qn(a); a ∈ {A;B;C;D} (3)

To ensure exploration, occasionally the ε-Greedy agent
chooses an action randomly. Consequently, the agent’s de-
cision making rule is:

Q∗n;ε =

{
Q∗n; with probability 1− ε;

choose a randomly with probability ε
(4)

where ε ∈ [0;1] indicates the probability of exploration.

Experimental Design and Results
Simulations consist of multiple trials of 100 draws. All cross-
section comparisons are conducted at the 100th draw, which
corresponds to the duration of the clinical tasks. Table 1 sum-
marizes the parameter values used in this paper. We assess
the parameter space with brute-force, grid-based searches.

As the original test data (Bechara et al., 1994, 2000; Fel-
lows & Farah, 2005, 2004; Bechara, Damasio, Tranel, & An-
derson, 1998) was not available, we converted the graphi-
cal presentations into numerical format using pixel matching.
For each study, Tables 2 and 3 summarize, for normal and
VMF impaired subjects, the pixel match calculated original

Table 3: Re-shuffled IGT Test, Pixel Match Computed Means
± SE for Fraction of Cards Chosen from the Good Decks
reported in the IGT Literature

Subjects Study N
Mean fraction
of good decks

Controls Farah et al. (2004) 17 0.72 ± 0.038
VMF
Impaired Farah et al. (2004) 9 0.67 ± 0.078

Table 4: Original and Re-shuffled IGT Mean Fraction Good
Deck Ranges Used for Comparing ε-Greedy Agent and Lit-
erature Results

IGT Variant Original Re-shuffled
Pixel matched studies 4 1
Comparison Rule Table 2 Minimum

and Maximum
Table 3
± 2 SEs

Normal Match
Range

0.59 to 0.69 0.64 to 0.80

VMF Impaired
Match Range

0.37 to 0.50 0.51 to 0.83

and re-shuffled IGT test results respectively, reported in terms
of the fraction of cards chosen from the good decks.

Table 4 shows the pixel matched ranges of fraction of good
decks we derived from IGT literature results and use to com-
pare to the ε-Greedy agent results.

Results
We found that, given appropriate standard values for initial
learning rate and exploration, learning rate decay λ proves to
be the key variable, which determines the ε-Greedy agent’s
degree of success. We first present the results obtained from
learning rate decay and exploration variations, and then dis-
cuss the effects of the initial learning rate.

The Effects of Learning Rate Decay and Exploration
Fig. 2 shows, given exploration, the strong effect of learning
rate decay on mean fraction of good decks. For the original
IGT, as the decay factor increases, the mean fraction good
decks achieved by the agent decreases; and, eventually ap-
proaches a value close to or below 0.5, the IGT fail criterion.
But for the re-shuffled IGT, as the decay factor increases,
mean fraction of good decks scores remain above 0.5.

Figure 2 also shows that for the original and re-shuffled
decks, at ε = 0:40, the ε-Greedy agent matches actual IGT
test subject behaviours: control subject behaviour is matched
at a learning rate decay factor of λ = 0:16 (15% per period
learning rate decay), and VMF impaired subject behaviour is
matched at λ = 0:56 (43% decay).

ε = 0:40 constitutes the first exploration value at which
we obtain a match for healthy and VMF impaired human
performance zones. Further match candidates exist for ε =
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(15%) (43%)Figure 2: Learning rate decay and ε-Greedy agent IGT perfor-
mance. Dark lines approximate human IGT behaviour. With
high exploration, for the Original IGT, at the lower decay fac-
tor, the agent matches control subject performance; and, at the
higher decay factor, the agent matches VMF impaired sub-
ject results. With high exploration, for the re-shuffled IGT, at
the lower and higher decay factors, the agent matches human
subject performance.

0:40−0:50, where the values of the agent’s mean fraction of
good decks are inside the match ranges for the corresponding
values reported in the literature for human subjects.

At ε = 0:50, the agent explores 50% of the time. 50% ex-
ploration seems high. However, it constitutes a targeted strat-
egy, for example, compared to always choosing lottery num-
bers randomly. We can also see that agents, which do not
explore at all (ε = 0:0), or explore just a little (ε = 0:10), sub-
stantially exceed human performance. We discuss this result
later.

Table 3 shows that the re-shuffled deck VMF impaired
match range is derived from a single study with 9 participants.
In Fellows and Farah (2005, 2004, p. 60, Figure 4), VMF im-
paired subject performance includes a high performace clus-
ter of 3 subjects with a pixel matched cluster mean of 0.95.
These 3 VMF impaired subjects achieve a re-shuffled deck
test result approximated by the performance of our ε=0.10
agent, which achieves across all decay factors a mean frac-
tion of good decks score of 0.92.

Having only a single re-shuffled deck study makes inter-

preting the statistical context of this high performance clus-
ter difficult. Therefore in Table 4, we construct re-shuffled
deck VMF performance match ranges using ±2 standard er-
rors, which produces approximately a 92% confidence inter-
val (two-sided p-value: 0.080516). Our match range can be
interpreted as the smallest match range based on the availabil-
ity of a single study.

With re-shuffled decks, the decay factor λ influences the
mean fraction of good decks by very little. This result ap-
pears to be driven by card sequencing. To test the effect of
card sequencing, we created a new deck environment, where
cards are drawn randomly, without replacement, from the
original IGT decks. This new random draw card environ-
ment produces plots, which display a pattern similar to that
of the original decks in Figure 2, except that as the decay
factor increases, mean fraction of good decks decreases to-
wards but remains above 0.5. Therefore relative to randomly
ordered decks, both the original and re-shuffled decks cre-
ate sequencing biases, which put different demands on learn-
ing: the original decks tax re-learning, while the re-shuffled
decks teach via ‘early punishment.’ It would be interesting
to test whether both normal and VMF impaired subjects pass
the random draw version of the IGT as predicted by our sim-
ulation.

Finally, increasing exploration leads to a steady downward
shift of the mean fraction of good decks plots with little effect
on contour shaping. In contrast, learning rate decay λ appears
key for determining agent behaviour; and increasing learning
rate decay approximates the behaviour of normal and VMF
impaired IGT participants.

The Effects of the Initial Learning Rate Unlike learning
rate decay, the initial learning rate α1, like exploration, only
has a mild effect on the mean fraction of good decks.

Figure 3 shows the effect of the initial learning rate α1 on
mean fraction good decks at the 100th draw for the ε-Greedy
agent with ε = 0:40. For the the original and re-shuffled
decks, mean fraction of good decks scores vary little along
the initial learning rate axis. In contrast, increasing learning
rate decay leads to normative IGT fail (i.e., mean fraction of
good decks ≤ 0.50) for the original decks; but not for the
re-shuffled decks, thereby inducing agent behaviour to match
human trial performance.

Discussion
In our Q-learning IGT simulations, learning rate decay λ con-
stitutes a critical parameter. Increasing learning rate decay
generates the observed behaviour of human IGT participants.
For low learning decay factors, the ε-Greedy agent passes
both the original and re-shuffled IGT. As we increase the
learning decay factor, the agent fails the original test, while
continuing to pass the re-shuffled variant. Therefore, increas-
ing the decay factor leads to the learning behaviour of VMF
impaired IGT participants.

In reinforcement learning, the software agent’s internal val-
uation produces action selection. Rolls and others have ar-
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Figure 3: ε-Greedy agent with ε = 0:40: fraction of good
decks by initial learning rate α1, and decay factor λ. Initial
learning rate α1 variations exert a mild influence, while learn-
ing rate decay λ variations exert a strong influence on mean
fraction of good decks. Normal and VMF impaired match
values are marked accordingly for ε = 0:40.

gued that emotions result from reward assessment in the VMF
(Krawczyk, 2002; Hornak et al., 2003; Rolls, 2000, 2013).
We draw parallels between VMF provided reward values and
the reinforcement learning process. The Q-value function en-
capsulates reward information. Learning rate decay λ can
elicit progressive decay in current reward contribution. If
learning rate decay is very high, then current reward value
contribution decreases rapidly, and this leads to quick compu-
tational convergence. This effect produces two impediments,
which may mimic VMF impairment: the value function not
only ‘finalises’ too quickly, but also is itself dominated dis-
proportionately by initial experiences.

Consequently with high learning rate decay, early and high
‘bad’ deck payoffs in the original IGT produce an incorrectly
learned policy response: the ‘bad’ decks appear to be good.
The ε-Greedy agent’s beliefs, once established, even when
presented with current information to the contrary, can no
longer be modified. If emotion impairment due to VMF le-
sions removes the ability to unlearn previously learned re-
sponses, then in reinforcement learning, this behavioural ef-
fect can be achieved via high learning rate decay.

Conclusion
Bechara et al. (1994, in title) state that VMF impaired pa-
tients suffer from an “insensitivity to future consequences.”
Our simulated VMF impaired original IGT results suggest
that this insensitivity comes from remaining mired in the past,
and appears consistent with loss of the ability to reverse learn-
ing.

Interestingly, at lower exploration values, the ε-Greedy
agent achieves mean fractions of good decks that are better

than those achieved by human subjects. To match actual test
subject behaviours, exploration has to be set at a high level.

It is not clear why agent behaviour, while qualitatively mir-
roring human behaviour, achieves better than human results.
A number of possibilities could explain this finding. A refor-
mulated model with decaying ε-Greediness may provide ad-
ditional insight into the exploration versus exploitation trade-
off. Human behaviour may initially have higher exploration,
which then progressively decreases with learning. In this pa-
per, to keep the parameter count low, to avoid over-fitting,
and to focus on the decay factor λ, we have not added any
additional parameters for modelling variable exploration.

Alternatively, given the lack of full-knowledge, human be-
haviour may be more cautious. Human level learning has
evolved for a wide variety of tasks, and therefore may per-
form optimally at other tasks for which Q-learning is less well
suited. In contrast, grid search allows the searcher to become
all-knowing with respect to the parameter space. For humans
with incomplete information, keeping exploration high may
make sense, just in case a deck would produce some unex-
pected yields later in the task.

Finally, it is also possible that the calculations performed
by reinforcement learning agents are too hard for mental
arithmetic and that the lack of precise calculations leads to
sub-optimal decisions.

In a psycho-evolutionary context, emotions provide a flex-
ible mechanism for establishing homoeostatis under environ-
mental uncertainty (Plutchik, 2003; Rolls, 2013). If this en-
vironmental uncertainty fulfils certain regularity conditions,
such as distributional full, or bounded, time-invariance, exis-
tence of the mean, or high-yield state correlation, then there
could be high survival value to speculative learning; that is,
deriving a working decision policy from just a few samples.
From short learning bursts, the organism, or agent, could con-
verge, to a long-term optimal decision rule. Emotions (via
learning rate decay) could be responsible for opening and
closing a short learning window. It is possible that the VMF
driven emotion mechanism has evolved to produce the ability
for organisms to learn efficiently from just a few samples.

Humans have evolved as generalised decision learners. In
many machine learning tasks, only a narrow range of hyper-
parameter values produce a coherent result. Therefore the ad-
dition of a learning decay factor, which mimics human learn-
ing could provide an ideal starting point over a number of
tasks for computational learning. Overall, our results indi-
cate that computational reinforcement learning may be used
as the basis for modelling emotion based learning. The results
are encouraging for further investigation into more complex
forms of learning and emotions.
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Abstract

The adoption of conversational agents is growing at a rapid
pace. Agents however, are not optimised to simulate key so-
cial aspects of situated human conversational environments.
Humans are intellectually biased towards social activity when
facing more anthropomorphic agents or when presented with
subtle social cues. In this work, we explore the effects of simu-
lating anthropomorphism and social eye-gaze in three conver-
sational agents. We tested whether subjects’ visual attention
would be similar to agents in different forms of embodiment
and social eye-gaze. In a within-subject situated interaction
study (N=30), we asked subjects to engage in task-oriented
dialogue with a smart speaker and two variations of a social
robot. We observed shifting of interactive behaviour by hu-
man users, as shown in differences in behavioural and objec-
tive measures. With a trade-off in task performance, social
facilitation is higher with more anthropomorphic social agents
when performing the same task.

Keywords: human-computer interaction, social agents, con-
versational artificial intelligence, smart speakers, social robots

Introduction
With conversational AI and domestic technology on the rise,
several questions remain open on how humans engage with
interactive agents when in different forms of embodiment
and social behaviour. A wide range of interaction modalities
has been researched for agents, that come in various forms
such as smart speakers (Alam, Reaz, & Ali, 2012), and social
robots (Breazeal, Dautenhahn, & Kanda, 2016). However, by
design, social robots provide additional modes of pragmatic
communication. Social robots can express their internal state
using not only speech but also non-verbal behaviour. By gen-
erating multimodal communicative behaviours (Breazeal &
Fitzpatrick, 2000; Mizoguchi, Sato, Takagi, Nakao, & Hata-
mura, 1997), social robots enable different manifestations of
interaction similar to how humans interact with each other
(Shibata, Tashima, & Tanie, 1999).

In the fields of human-computer interaction and human-
robot interaction, anthropomorphism is often leveraged as a
way to make machines more comfortable to use. The addi-
tional comfort comes from ascribing human features to ma-
chines with the aim to simplify the complexity of technology
(Marakas, Johnson, & Palmer, 2000; Moon & Nass, 1996).
While interactions between humans include many subtle so-
cial cues that we take for granted, ’face-to-face’ interactions
are still considered to be the gold standard of communication
when interacting with either humans or conversational agents
(Adalgeirsson & Breazeal, 2010). Therefore, agents need to
employ anthropomorphic designs and a rich set of social be-
haviours to be considered as socially intelligent partners in
interactions.

Figure 1: Situated interaction with a human-like social robot.

Many social robots do employ these elements, especially
the ones with a human-like design, and provide the possi-
bility of generating non-verbal social behaviours in their in-
teractions with humans (Fong, Nourbakhsh, & Dautenhahn,
2003). Many of these behavioural elements are subtle so-
cial cues (e.g. gaze shifts and facial expressions), that are
highly important for situated human conversational environ-
ments. One reason why face-to-face interaction is preferred is
that a lot of familiar information is encoded in the non-verbal
cues that are being exchanged. However, generating and in-
terpreting these cues, induces higher levels of cognitive load
(Torta, Oberzaucher, Werner, Cuijpers, & Juola, 2013) and
may therefore increase interaction time. This suggests that
human-like conversational agents that can express patterned
non-verbal behaviours can cause social facilitation in users,
but may be less efficient in task performance.

In this paper we contribute to this emerging field with a
two-fold empirical evaluation of the elements of: 1) anthro-
pomorphic design and 2) non-verbal social behaviour in con-
versational agents. We study whether a human-like face (i.e.
a social robot), capable of displaying non-verbal cues, shifts
interactive behaviour in comparison to a voice-only conversa-
tional agent (i.e. a smart speaker), that does not employ these
multimodal features. Our contribution consists of a user study
that was conducted with participants interacting with a smart
speaker and a social robot collaborating in dialogue. To com-
prehend the effects of the comparison further, we test whether
it is the anthropomorphic face or the social eye-gaze features
that contribute to the perceived differences and remove the
non-verbal behaviour of the social robot in a third condition.
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The aim of the study was therefore to investigate the fol-
lowing research question:

� What are the effects in human behaviour when simulating
anthropomorphism and social eye-gaze in conversational
agents?

Related work
Conversational agents have become ubiquitous, and they are
embedded in various forms and embodiments, from smart
phones to voice-based smart speakers such as Amazon Echo
and Google Home. There seems to be an interest in literature
on how different representations of physical embodiment and
anthropomorphic features affect the perception of social pres-
ence and facilitation in agents. Studies have compared agents
in digital screens to social robots (Torta et al., 2013; Kidd &
Breazeal, 2008) and have shown that anthropomorphic agents
that are physically co-located are generally preferred and per-
ceived to be more socially present than their virtually embod-
ied versions (Kennedy, Baxter, & Belpaeme, 2015; Lee, Jung,
Kim, & Kim, 2006; Kidd & Breazeal, 2004; Bainbridge,
Hart, Kim, & Scassellati, 2008; Koda & Ishioh, 2018; Jung
& Lee, 2004; Thellman, Silvervarg, Gulz, & Ziemke, 2016),
or remote video representations of the same agents (Powers,
Kiesler, Fussell, Fussell, & Torrey, 2007; Wainer, Feil-Seifer,
Shell, & Mataric, 2006). Other studies have shown that social
robots’ perceived situation awareness is higher (Luria, Hoff-
man, & Zuckerman, 2017), and by adding non-verbal cues,
the same agent is perceived more socially present (Pereira,
Prada, & Paiva, 2014; Goble & Edwards, 2018).

Anthropomorphic agents take advantage of design ele-
ments afforded in their shape and movements (Gomez, Sza-
piro, Galindo, & Nakamura, 2018). Social robots in particu-
lar, raise expectations on how sophisticated they are in their
actions and how socially intelligent they are perceived. A
very human-like agent will make humans expect a higher de-
gree of interaction and social facilitation, which is essential
when designing the physical appearance of a social agent.
However, it is not just the physical embodiment of the robot
that has implications on its perceived social presence, but the
behaviour and actions of the robot as well (Straub, 2016).

Socially interactive agents that make use of social be-
haviour features promise an opportunity to bring social val-
ues into computing and help coordination between humans
and machines by taking advantage of their social cues and
intentions (Dourish, 2004). While conversational interfaces
manifest intent recognition using language and dialogue, so-
cial robots as embodied interfaces, communicate intentions
with the use of multimodal cues, and additionally encourage
users to anticipate joint actions and shared intent in the same
physical space (Luria et al., 2017).

Non-verbal behaviour is used for communication and so-
cial coordination. The more human-like the agents’ re-
sponses, the more they are attributed as social actors (Nass
& Steuer, 1993). Social eye-gaze in particular, refers to the
communicative cues of eye contact between humans and is

(a) Smart Speaker (b) Social Robot

Figure 2: The conversational agents used in the study.

classified to 4 main archetypes (Admoni & Scassellati, 2017):
1) Mutual gaze where interlocutors attention is directed at
each other, 2) Joint attention where interlocutor’s focus their
attention on the same object, 3) Referential gaze which is di-
rected to an object and often comes with referring language,
and 4) Gaze aversions that typically avert from the main di-
rection of gaze -i.e. the interlocutors face.

The current work differs and in part extends the discussed
studies. First, we simulate both anthropomorphism and non-
verbal behaviour in the same study, and second we apply
the comparison in only physically present voice-based agents,
where we discuss the implications of social eye-gaze against
task performance. Is a human-like face sufficient to cause so-
cial facilitation or is non-verbal social behaviour also needed
when interacting with conversational agents?

Method
In order to investigate the impact of anthropomorphism and
social eye-gaze in this study, we chose three conversational
agents and a human trial. All agents engaged in human-agent
interaction using the same dialogue policy and simulated sit-
uation awareness of human actions (Figure 1).

Experimental conditions
1. The Human Agent (H). In order to avoid any misunder-
standings on the task and the subjects’ role, we began the
interactions with a control trial with a human instructor. That
way, subjects got familiar with the task and we were able to
reduce the learning curve.

2. The Smart Speaker (SS) is an embodied conversational
agent (Figure 2a) that can only interact with speech. We
used a first generation Amazon Echo smart speaker, which
was connected via Bluetooth and a Text-to-speech (TTS) ser-
vice similar to the default Echo TTS was selected to send
pre-scripted voice commands.

3. The AnthropoMorphic Robot (AMR) is an embodied
conversational agent (Figure 2b) in the form of a robotic head
with a human-like face, that as the SS uses only speech to
interact and no other modalities. We used a back-projected
human-like robotic head with three degrees of freedom called
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Furhat. The robot was stationary and did not use any head
movements, but statically looked at the subject. The robot
had a TTS of equivalent quality to Echo, speaking the same
pre-scripted utterances. The reason for choosing a robotic
head instead of a full-body embodied robot is that it limits
the modalities of communication, making it easier to control
for comparison to a smart speaker.

4. The AnthropoMorphic Social Robot (AMSR) is the same
robotic head as AMR that also uses voice for interaction and
additionally generates a set of social eye-gaze behaviours us-
ing head movement. These included task-based functional
behaviours such as gazing to the ingredient during a referring
expression and a turn-taking gaze mechanism.

Hypotheses
Towards answering the research question defined above, we
posed the following hypotheses:

� H1. We expected that a robot with non-verbal social
behaviour will be perceived to be more socially present
(Pereira et al., 2014). The AMSR will cause more social
facilitation with human users than the SS and the AMR.

� H2. While non-vebal behaviour should cause more social
facilitation, a human-like design without non-verbal cues
should not induce the same differences. Differences in so-
cial facilitation will not apply between the SS and AMR.

� H3. There will not be any difference in task performance
across the agents.

� H4. As a conversational partner, the AMSR will generally
be preferred for the task.

Experimental design
A within-subject design was used in a study (Kontogiorgos,
Pereira, Andersson, et al., 2019) where participants interacted
with all four agents. To test our hypotheses, we manipu-
lated two independent variables [embodiment and social eye-
gaze], in three conditions [Smart Speaker (SS), AntropoMor-
phic Robot (AMR), AntropoMorphic Social Robot (AMSR)],
presented in different orders to participants using a Latin
Square, and a human trial that was always first.

Task
We asked subjects to cook 4 variations of fresh spring rolls
without providing the recipes; they had to find out the recipes
while interacting with the agents. Different varieties of ingre-
dients and amounts were used. The setup also included ingre-
dients not used in any of the recipes, encouraging participants
to interact with the agents to find out the correct ingredients
for each recipe. The task was the same in each condition, but
different recipes were used (varied across conditions).

To ensure participants would engage with the agents more,
they were told that if they followed the recipe with the correct
ingredients and amounts, they would take the food with them
at the end of the experiment. Counting the time participants

took to cook the recipe served as a measure of the time they
spent engaging with each agent. We had a total of 20 ingredi-
ents and a recipe typically included 7 ingredients to prepare.

All agents used a combination of nouns, adjectives and spa-
tial indexicals as linguistic indicators to identify ingredients
on the table, ”The cucumber is the green thing on the right”.
AMSR however, also gazed at the referent ingredients (typi-
cally 0.5s prior to the reference). The agent’s role in the task
was therefore to instruct and the subject’s role was to assem-
ble the ingredients together.

Dialogue policy
All agents followed the same dialogue policy and interac-
tion protocol, which was defined upon a set of dialogue
acts within the action space of the interaction (Kontogiorgos,
Pereira, & Gustafson, 2019). Given a human action or utter-
ance, an appropriate response was selected from the dialogue
policy. Driven by the possible set of actions, agent utterances
are aggregated to higher level dialogue acts that describe the
current state of the conversation. The dialogue acts model
user actions, user utterances and any changes in the environ-
ment. An example dialogue:

USER : [FINISHED ACTION] What’s next?
AGENT : [INSTRUCTION] Next, take three pieces of let-

tuce and put it in the spring roll.
USER : [CLARIFICATION-Q] Where is the lettuce?
AGENT : [CLARIFICATION-A] The lettuce is the green

thing in the middle.
USER : [STARTED ACTION] Uh, yes!

To dismiss potential problems in speech recognition and
language understanding, we used a human wizard (WoZ) to
control the behaviours of the agents in timings and decision
making. The social behaviours were designed to maintain a
socially contingent interaction with the subjects, and in order
to keep the dialogues between the subjects and the agents con-
sistent for comparison across conditions. The human wizard
had to select the appropriate agent response, triggered only
by the state of the environment and user actions. The wiz-
ard application and dialogue acts were the same across all
conditions. For every dialogue act, a set of predefined utter-
ances was available, that the system would choose at random
to generate, given the current dialogue act. The wizard there-
fore indicated only the current dialogue act in conversation.

Gaze for facilitating turn-taking
Gaze has been shown to be important for regulating conver-
sational turn-taking, as people look towards the listener at the
end of their utterances to indicate they have finished their turn
(Kendon, 1967). Employing such a behaviour in agents, leads
to human-like conversational turn-taking where each partici-
pant waits for the speaker’s utterance before taking an action
(Skantze, Hjalmarsson, & Oertel, 2014). In order to facilitate
natural turn-taking mechanisms from the agent, we defined
a heuristic gaze model on timings for turn-taking gaze and
referential gaze to objects.
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Figure 3: Gaze proportion to the agent during an agent instruction. Each phase of the instruction is normalised in time: Before
the utterance - During the Utterance and before the reference - During the utterance and after the reference - After the utterance.
The x axis shows the relative time of the instruction and the y axis the eye-gaze proportion across all participants per condition.

The AMSR agent engaged in mutual gaze and joint atten-
tion with the subjects during the interactions. Before an ut-
terance, the agent made a gaze shift to the subject to establish
attention, followed by deictic gaze to a referent object indi-
cating it is keeping the floor, and at the end of the utterance a
gaze shift back at the subject to establish the end of the turn
and pass the floor to the subject. The agent gazed at referent
objects right before they were mentioned (500ms before).

Experimental procedure
Participation in the study was individual and the experiment
was divided in 3 phases. First, participants filled a demo-
graphics questionnaire and then cooked the first recipe with a
human instructor. In the second phase, they cooked a recipe
with the help of an agent. They repeated that phase 3 times
with a new agent every time (counter-balanced). In the third
phase, participants filled an exit questionnaire. During the
agent trials, participants were alone in the room, and a human
wizard was monitoring their actions using a ceiling camera
with a live feed of the room (Figure 1). Participants were not
told that the agents were controlled by a human wizard.

The human instructor throughout the trial was kept the
same for all subjects, and followed the same behaviour and
dialogue policy as the agents. The subjects stood in front of a
table, with a cutting board and ingredients prepared and laid
out in front of them. The agents were situated on the sides of
the table, with only the agent relevant to the task visible.

Participants
Participants were compensated with a cinema ticket and the
food they cooked during the study. We recruited 30 partici-
pants (18 female and 12 male) with ages in range 19-42 and
mean 24.2 (stdev=5). The experiment was in English, and all
participants were fluent (mean 5.8, stdev=0.7). 17 had inter-
acted with a robot before and 20 had interacted with smart
speaker. 13 had interacted with both a smart speaker and a
robot before, while 6 with none of the two. Overall, their ex-
perience with digital technology was 4.8 (stdev=1.6) and their

cooking skills were 5.0 (stdev=1.2). 24 had never cooked
spring rolls recipes before. All scales above are 1-7.

Results
We present the main findings along two main themes: a) vi-
sual attention, and b) interaction time. Repeated measures
analyses of variance (ANOVA) and post-hoc tests with Bon-
ferroni corrections were carried out to test statistical differ-
ences across conditions. We report the behavioural and objec-
tive measures on visual attention during the agent utterances,
interaction times (Table 2), and finally, notable insights from
qualitative data.

Visual attention
Using motion capture, we detected subjects’ head pose over
time and measuring their visual angle (Kontogiorgos et al.,
2018), we extracted proportional eye-gaze to the agent and
the task table during different phases of the robot’s utterances:
a) before the robot speaks an utterance, b) during the utter-
ance right before a reference to an object is uttered, c) during
an utterance right after the reference has occured, and d) after
the utterance. The four phases of proportional eye-gaze to the
agent are presented in figure 3. Before and after the utterance
phases are in 2 second intervals.

Each phase is first normalised per subject to reduce sub-
ject variability and then, each phase interval mean is used for
comparison (Table 1). It is important to note that while agent
conditions were counter-balanced in order, the human trial
was always first to get familiar with the task.

Eye-gaze to the agent before the utterance. A repeated
measures ANOVA to test the effect of gaze before the robot
instruction showed a significant main effect, Wilks’ Lambda
= .674, F(3,27) = 4.35, p = .013). Post-hoc tests with a Bon-
ferroni correction, and p value adjusted for multiple compar-
isons, revealed that gaze towards AMSR is statistically dif-
ferent than gaze to the AMR condition (p=.022) and to the
Human trial (p=.029). No other statistical differences were
found in pairwise comparisons.
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Human Trial SS AMR AMSR
Mean SD Mean SD Mean SD Mean SD

Before Utterance .4008 .1822 .4740 .2083 .4476 .2083 .5472 .2028
During Utterance
(Before Reference) .5402 .2131 .3609 .2321 .4659 .2057 .6239 .2114

During Utterance
(After Reference) .2119 .1749 .1836 .1605 .2006 .1320 .4514 .1851

After Utterance .2273 .1570 .2524 .1372 .2072 .1301 .2599 .1633

Table 1: Mean eye-gaze to agent in different phases of the
agent utterances. Each phase is normalised per subject and
each phase interval mean is used for comparison.

SS AMR AMSR
Task time (sec) 212.6±7.93 217.2±7.75 232.9±8.52

Table 2: Interaction time in seconds: Each cell shows mean
and standard error of the mean.

Eye-gaze to the agent during utterance (before the ref-
erence). A repeated measures ANOVA on the gaze before the
reference showed a significant main effect, Wilks’ Lambda =
.483, F(3,27) = 9.65, p < .001). Post-hoc tests with a Bon-
ferroni correction and p value adjusted for multiple compar-
isons revealed that gaze towards AMSR is statistically differ-
ent than gaze to SS (p<.001) and AMR (p=.001). SS was also
different than the Human trial (p=.022). No other statistical
differences were found in pairwise comparisons between the
rest of the conditions.

Eye-gaze to the agent during utterance (after the ref-
erence). A repeated measures ANOVA on the gaze after the
reference revealed a significant main effect, Wilks’ Lambda
= .316, F(3,27) = 19.49, p < .001). Post-hoc tests with a
Bonferroni correction and p value adjusted for multiple com-
parisons showed that gaze towards AMSR is statistically dif-
ferent than gaze to all other conditions (p<.001) and to the
Human trial (p<.001). Here as well, no other statistical dif-
ferences were found in pairwise comparisons between the rest
of the conditions.

Eye-gaze to the agent after the utterance. A repeated
measures ANOVA on the gaze after the robot instruction
showed no statistically significant difference across condi-
tions, Wilks’ Lambda = .859, F(3,27) = 1.47, p = .244).

Interaction time
As indicators to task performance we measured task time
(time from first to last agent action). We tested for com-
parison in time within the sequence of the conditions, and
no statistical difference was found, meaning the condition se-
quence did not affect task performance (subjects were not sig-
nificantly faster in the last trial). When compared across con-
ditions however, a repeated measures ANOVA revealed a sig-
nificant main effect, Wilks’ Lambda = .739, F(2,28) = 4.94,
p = .014). Post-hoc tests with a Bonferroni correction and p
value adjusted for multiple comparisons showed a significant
effect between AMSR to SS (p=.041) and AMR (p=.023) but
there was no evidence of a difference between SS and AMR
(Table 2).

Figure 4: Mean interaction time per condition. Error bars
indicate standard error of the mean (n = 30).

Qualitative data
The post-experimental questionnaire included asking partic-
ipants to choose their preferred agent for the task and ques-
tions to elaborate on the preference. Participants were also
asked to identify the differences of the three agents to under-
stand if they are aware of what is tested in the experiment.

Perceived differences between agents. Out of the 30
participants, 18 replied this question. While the differences
in the agent embodiment were obvious between [SS] and
[AMR/AMSR], 66% of the participants did not notice a dif-
ference between [AMR] and [AMSR]. Asking participants
further, we found they identified that there was head move-
ment from the social robots, but were not aware that only one
of them [AMSR] employed that behaviour.

Preferred agent. 69% of the participants preferred
AMSR, while 24% preferred AMR and 7% preferred SS (χ2

= 17.862, p < .001). Looking further at the participants who
did not notice a difference between AMR and AMSR, 2/3
chose AMSR as the preferred robot for the task. However,
from 1/3 of the participants who identified the difference in
gaze, therefore less sensitive to our manipulation, all pre-
ferred AMSR.

Discussion
In an experiment with human subjects, we found a lack of
positive effects in task performance on interactions with an-
thropomorphic social agents. Nonetheless, our findings show
a higher degree of social facilitation in conversation with
AMSR, as determined by subjects’ visual attention and agent
preference. Our strongest finding therefore is a trade-off be-
tween interaction time and social facilitation.

Anthropomorphism
The agents we compared represent different levels of embod-
iment in conversational agents. The most preferred agent for

593



the task had an anthropomorphic embodiment and a set of so-
cial eye-gaze behaviours. While AMSR was preferred, task
time was increased by 10% with this agent in comparison
to the less anthropomorphic in physical embodiment SS. We
saw that participants looked at AMSR longer after the refer-
ent word was uttered and started following up on the agent’s
instruction close to the end of its turn. Intuitively, a turn-
taking gaze mechanism invokes subjects a greater feeling of
social facilitation, assuming they attribute that agent the role
of a more socially present partner in conversation.

Non-verbal social behaviour
AMSR has joint attention afforded as an embodied phe-
nomenon in its actions. Eye-gaze here is attributed as a social
function where it regulates turn-taking, closer to how humans
do when they interact with each other. AMSR therefore gave
the impression that it is aware of the situatedness of the task.

In cases, it is possible the user may be distracted from the
task through agent social behaviour because more attention
is required to the agent’s behaviour. While face-to-face col-
laboration is favourable due to its natural mediated channels
of communication, interpreting social cues and maintaining
attention is a timely and cognitively demanding process.

Social behaviour and task performance
Social behaviour is timely and counter-intuitive to task per-
formance with more attentive agents. Nevertheless, task per-
formance is certainly dependent on the nature of the task;
in more task-oriented domains, such as emergency manage-
ment, interactions may be more efficiency-prone. A human
user may want to get the task done as quickly as possible, and
get frustrated when having to interact longer than necessary.
However, other tasks such as in the home-care domain are
very dependent on social cues and interaction value.

As mentioned, referring expressions to objects did not con-
tain any ambiguities in language (i.e. ”this one here”). There-
fore gaze from AMSR did not add value to task success but
was attributed to a social function, as humans typically gaze
at objects before mentioning them in language. Our purpose
in the gaze condition (AMSR) was therefore not to increase
task performance but to observe the social functions of gaze
behaviour across agents.

We were able to verify hypothesis [H1], that AMSR will
cause social facilitation, as shown in the visual attention and
preference dimensions, however with the cost of task perfor-
mance. We did verify [H2] in the assumption that SS and
AMR will not be different in social facilitation. In fact, a
human-like design is not enough to establish rapport with hu-
man users; human-like behaviour may be expected too, when
more anthropomorphic designs are manifested. The results
also suggest that smart speakers, while embodied, do not fa-
cilitate the same turn-taking mechanisms as social robots do,
likely due to the lack of non-verbal behaviours.

The results support [H4] reflecting that AMSR would be
preferred for the task. We saw a wide difference between
AMSR and SS, however AMR was also rated higher than SS,

which may align with the fact that there is a relation to an-
thropomorphic agents with human-like designs, in terms of
natural means of communication.

Most participants were more familiar with smart speakers
than with social robots, which may indicate a novelty effect
in the agent preference. Social robots are at time of writing
emerging platforms and not as common and commercially
available as smart speakers. However, we found that 2/3 of
the participants were not able to identify the difference be-
tween AMR and AMSR, while they still preferred AMSR for
the task. This indicates that the non-verbal behaviours used
were subtle and asserted familiarity with the device.

Finally, we reject hypothesis [H3] reflecting that no differ-
ences would be found in task performance. Our assumption
is that anthropomorphic facial features, without non-verbal
behaviours is not enough to create more socially contingent
interactions than SS: it is a combination of the two features
that creates social facilitation to users.

Conclusion
In this paper, we presented a trade-off between task perfor-
mance and social behaviour with conversational agents. Our
contribution lies on an empirical evaluation of the anthropo-
morphic and non-verbal behaviour parameters of agents in
task-oriented dialogues. This is particularly important to ap-
plications in which agents engage in a variety of tasks, and
depending on the nature of the task, may need more or less
social facilitation versus the value of task performance.

Not every agent needs to be anthropomorphised or to com-
municate with nonverbal behaviour; teasing out these vari-
ables and how they affect interaction time and social be-
haviour is the focus of this paper. To fully address the aspect
of a potential novelty effect, longitudinal studies need to be
designed where users’ experiences are tested in long-term in-
teractions with social robots and smart speakers. Potentially,
increased familiarity with AMSR could decrease gaze time
to levels similar to a more familiar social agent (i.e. another
human).

To understand which of the independent variables con-
tributed to the general preference of the robot, we concluded
that while an anthropomorphic physical embodiment affects
social behaviour, a set of non-verbal behaviours also increase
the interaction time with the agent. Further research should
be conducted in a variety of HRI scenarios, to investigate vari-
ability in the nature of the task and its relation to social facil-
itation between human users and agents. In sum, despite the
task performance shortcomings of social and situation aware
robots, they do hold a good interaction paradigm for enabling
social facilitation with users.
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Abstract 
The Rubber Hand Illusion (RHI) is an illusion of body ownership. 
This study investigates the RHI in furries: people who manifest 
interest in anthropomorphic animals through various combinations 
of costuming, roleplay, identification with a fursona, and unusual 
bodily experiences. Furry culture suggests two ways furries could 
differ from non-furries in their RHI experience: (1) furries’ 
malleable perception of bodily self and identity may result in 
stronger feelings of illusory experience; alternatively, (2) furries’ 
identification with non-human animals may result in weaker 
feelings of self-ownership for a human prosthetic. Results support 
the latter hypothesis; furries felt less subjective embodiment 
compared to non-furries.  Moreover, proprioceptive drift was 
predicted by the extent individual furries valued humanity and their 
human bodies.  The less esteem furries had for humanity and their 
human form, the less drift toward the human rubber hand was 
observed. These findings suggest how embodiment is related to 
subjectivity, identity, and practice. 

Keywords: Rubber Hand Illusion; Embodiment; Body 
Perception; Culture; Identity 

Introduction 
Embodiment has been defined as the subjective awareness of, 
and self-coincidence with, one’s own body (Longo et al., 
2008). Research suggests that this pre-reflexive, bodily self-

consciousness is constituted and undergirded by complex 
processes of bottom-up and top-down modulation of 
multisensory integration (Tsakiris, 2010). Previous studies 
have investigated the influences of these processes by using 
the Rubber Hand Illusion (RHI), a bodily illusion in which 
participants experience a sense of ownership for a prosthetic 
human hand (Botvinick & Cohen, 1998). To perform the 
RHI, a prosthetic hand is placed inside the participant’s 
peripersonal space in a position congruent with their real 
hand. Participants are then instructed to look at the rubber 
hand while it and the real hand are stroked synchronously 
with a paintbrush. When these incongruous visual and tactile 
stimuli are integrated, participants report experiencing the 
rubber hand as their own. Additionally, when the illusion of 
ownership of the rubber hand is successfully induced, 
participants exhibit proprioceptive drift, a tendency to 
perceive the location of their real hand as closer to the rubber 
hand than it actually is. Longo et al.’s (2008) principal 
component analysis of RHI questionnaire data found 
evidence for three dissociable subcomponents influencing the 
experience of embodiment of the rubber hand: “ownership”; 
“location”; and “agency”. The two subcomponents of 
“ownership” and “location” were significantly correlated 
with increased levels of proprioceptive drift in the RHI, 
suggesting that both top-down “body-representation” and 
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bottom-up “body schema” influences converged to structure 
the experience of embodiment of the rubber hand. 
 Further experimental research on the RHI has supported 
the dissociation of these influences by either highlighting 
significant group differences in experience of the RHI or 
manipulating the RHI procedure itself. Findings supporting 
the influence of “body-representation” on RHI experience 
have found that incongruent positioning, shape, texture 
(Haans et. al, 2008; Tsakiris & Haggard, 2005) and skin color 
(Lira et al., 2017) of the rubber hand attenuate RHI 
experience. Findings supporting the influence of “body 
schema” on RHI experience have found that asynchronous 
stimulation of the rubber hand attenuates the strength of the 
illusion significantly more than incongruence with body-
representation (Armel & Ramachandran, 2003) and that 
populations with increased body-schema plasticity or 
flexibility such as individuals who are diagnosed with 
anorexia nervosa (Keizer et al., 2014), susceptible to out-of-
body experiences (Braithewaite et al., 2017), hemiparetic 
(Llorens et al., 2017), psychosis-prone (Germine et al., 2012), 
or under the influence of dexamphetamine (Albrecht et al., 
2011) demonstrate higher susceptibility to the RHI.  
 If previous research suggests (1) decreased illusory 
effects when individuals identify less with the form of the 
rubber hand and (2) increased illusory effects for individuals 
with greater body-schema flexibility, could the RHI be used 
to test hypotheses that interrogate the nature of body 
perception and experience in a unique population? Furries 
are self-identified fans of media featuring non-human animal 
characters who have been imbued with human-like traits 
(e.g., speech and bipedal walking; Gerbasi et al., 2008). As is 
typical with other media-based fandoms (e.g., science fiction; 
Jenkins, 1992), furries are both avid consumers and creators 
of fan-made artwork, animation, and writing (Plante, 
Roberts, Reysen, & Gerbasi, 2016a). They often share this 
interest with other fans, congregating primarily online, but 
also in-person at local meet-ups and at large-scale fan 
conventions (Mock, Plante, Reysen & Gerbasi, 2013). 
Illustrating the scope of these meetups, conventions such as 
Anthrocon, one of the world’s largest furry conventions, 
regularly attract more than 5,000 furries. 
 A subset of the furry fandom (approximately 20%) also 
expresses their interest through fursuiting, the wearing of 
elaborate, mascot-style foam-and-fabric costumes of furry-
themed characters (Plante, et al., 2016b). Fursuiting is 
somewhat analogous to the practice of cosplaying among 
anime fans, who invest considerable time and effort into 
dressing up and interacting with other fans as their favorite 
character from a show (Reysen, et al., 2018). Unlike cosplay, 
however, fursuiting tends to involve characters of furries’ 
own creation. 
 One of the most universal activities in the furry fandom 
is the creation of a fursona – a non-human animal avatar 
imbued with human traits. Fursonas are used by furries as a 
representation of themselves within fandom spaces. Virtually 
all furries have a fursona, usually consisting of one or more 
non-human species, a name, and physical and personality 

traits (Plante et al., 2016b). Furries spend a great deal of time 
creating, thinking about, and interacting with others in the 
fandom through their fursonas, with which they strongly 
identify (Plante et al., 2016b). This suggests the possibility 
that many furries may have a relatively malleable perception 
of self and body. For example, a furry may spend an hour or 
two per day interacting with other furries as their fursona, 
whose species differs from their own (i.e., not human), whose 
personality may differ from their own (e.g., more gregarious), 
and whose appearance, gender, and age may differ from their 
own. Given that prior research has shown that furries have 
fairly active imaginations and spend a great deal of time 
engaging in fantasy-themed activities (e.g., role-playing 
games and online roleplaying; Plante et al., 2016b), furries’ 
perception of bodily self and identity may be influenced by 
spending time engaged in furry-themed activities.  
 Speaking to this possibility, research suggests that some 
furries are likely to think of themselves as less than fully 
human and identify, at least in part, with non-human animals 
(Roberts et al., 2015). Furry conventions are also often 
attended by therians and Otherkin, those who have human 
bodies but experience themselves as something other than 
human (Gerbasi, Fein, Reysen, Plante, & Roberts, 2017). In 
contrast to non-therian furries, who may identify with a non-
human species but usually understand themselves to be 
fundamentally human, therians identify as a non-human 
animal that exists or has existed on earth, such as a bear or a 
mammoth, while Otherkin identify as a creature usually 
considered to be mythological or fantasy-based, such as a 
fairy or unicorn. (Note: Although there are many therians and 
Otherkin who do not identify as furries, all therians and 
Otherkin in the current study also identified as furries.) 
Therians and Otherkin often report experiencing unusual 
bodily experiences, such as feeling phantom limbs belonging 
to the creature they identify as (such as claws, tails, or wings), 
and/or “shifts” into a mental state that they associate with 
their identified species. Many therians and Otherkin report 
experiences of deep discomfort with their human bodies 
and/or a desire to be in the body of the species with which 
they identify (Grivell, Clegg, & Roxburgh, 2014).
 Presently, the RHI allows for testing between two 
competing hypotheses. If furries identify less with the human 
form of the rubber hand as compared to a control population 
then they should exhibit decreased RHI experience as a 
group.  However, if furries have relatively greater body-
schema flexibility, they should exhibit increased RHI 
experience.  Results can inform our general understanding for 
how embodiment relates to identity, subjectivity, and 
practice. 
 

Methods 
Participants 
All participants were recruited and tested at Anthrocon 2018 
in a quiet, private room. Of the 57 participants tested, two 
early participants’ data were not analyzed because they were 
recorded as having worn a ring or band-aid during the 
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procedure; one participant dropped out before completion; 
four other participants did not self-identify as furries in the 
subsequent survey. This left 50 furries for analyses 
(Mage=26.77; 11 female/36 male/3 NA; Meducation years=15.55). 
For a comparison group of non-furries, we used raw data 
from 131 participants previously published in Longo et al. 
(2008). 
 
Procedure 
Rubber Hand Illusion We used the procedure described in 
Longo et al. (2008) as a model to carry out the RHI in the 
current study but using only a right rubber hand (there was 
no effect of handedness in the original study) and an occluder 
box described by the JoVE Science Education Database 
(2019). (In this version, the participant can view the 
experimenter.) Participants sat across from the experimenter 
with their hand hidden inside the occluder and the rubber 
hand placed congruently in view. There were two blocks. At 

the beginning of each block, participants estimated the 
location of the tip of their occluded right index finger by 
reporting the corresponding number on a ruler with a variable 
random offset (to prevent participants from using a 
remembered numeric label rather than a perceived location 
on subsequent trials). Following the pre-test location 
judgment, a 60s induction phase consisted of the visible 
rubber hand and occluded real hand being stroked with 2 
identical paint brushes. In the synchronous block, individual 
fingers on each hand were brushed simultaneously; in the 
asynchronous block they were brushed 180° out of phase. 
(The asynchronous condition is frequently conceptualized as 
a kind of control or placebo, although subjective deafference 
scores have been observed to be higher in this condition.) 
Block order was randomized. After the induction phase in 
each block, participants were again asked to estimate the 
location of their index finger. Upon completion of the post-
induction location judgement, participants filled out a

 
Figure 1. RHI embodiment survey items and response means. 7-point agreement scale; -3=strongly disagree; 0=neither agree or disagree;  
3=strongly agree. (From Longo et al., 2008) 
 
questionnaire assessing their subjective experience of the 
illusion (see Figure 1). This questionnaire, developed by 
Longo et al. (2008), measures 5 principal components 
(embodiment of rubber hand, loss of own hand, movement, 
affect and deafference) and three subcomponents of 
embodiment (ownership, location, and agency). 
 
Experiential Survey After completion of both Rubber Hand 
Illusion blocks, participants filled out a survey with items 
designed to measure a number of variables related to their 

identity, experience, and attitudes, including questions about 
sexual identity, time since identifying as a furry and/or 
therian, and beliefs about being other than 100% human. The 
survey also asked systematic questions about the Duration 
(“How long ago did you start …”), Frequency (“How often 
do you have…”), and Intensity (“How intense are…”) of 
relevant experiences and practices including: Fursuiting, 
Role-Playing, and Online Interaction with other furries. Two 
attitude scales were included as well (below). 
 

-3 -2 -1 0 1 2 3

...I was looking directly at my own hand, rather than at a rubber hand. (1)
...the rubber hand began to resemble my real hand. (2)

...the rubber hand belonged to me. (3)
...the rubber hand was my hand. (4)

...the rubber hand was part of my body. (5)
...my hand was in the location where the rubber hand was. (6)
...the rubber hand was in the location where my hand was. (7)

...the touch I felt was caused by the paintbrush touching the rubber hand. (8)
...I could have moved the rubber hand if I had wanted. (9)

...I was in control of the rubber hand. (10)
...my own hand became rubbery. (11)
...I was unable to move my hand. (12)

...I could have moved my hand if I had wanted. (13)
...I couldn’t really tell where my hand was. (14)

...my hand had disappeared. (15)
...my hand was out of my control. (16)

...my hand was moving towards the rubber hand. (17)

...the rubber hand was moving towards my hand. (18)
...I had three hands. (19)

...I was looking directly at my own hand, rather than at a rubber hand. (20)
I found that experience interesting. (21)

The touch of the paintbrush on my finger was pleasant. (22)
I had the sensation of pins and needles in my hand. (23)

I had the sensation that my hand was numb. (24)
...the experience of my hand was less vivid than normal. (25)

I found myself liking the rubber hand. (26)
...I was feeling the touch of the paintbrush in the location where I saw the rubber hand touched. (27)

furry non-furry (Longo et al., 2008)
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Humanity-esteem version of the Rosenberg Self-Esteem 
Scale (Luke & Maio, 2009). This scale measures the extent 
to which participants think humanity is bad or good (“Human 
Value”). Example questions include, “I feel that the human 
species is very valuable, at least on an equal plane with other 
species in the universe;” “I feel that human beings have a 
number of very good qualities;” “All in all, I am inclined to 
regard the human species as a failure.” 
 
Identity version of the Transgender Congruence Scale. 
We modified a previously validated gender congruence scale 
(Kozee, Tylka, & Bauerband, 2012) to measure the extent to 
which furry participants feel comfortable with the match 
between their identity and human body (“Human Body 
Image”). Example questions include, “My outward 
appearance represents my identity;” “I experience a sense of 
unity between my identity and my body;” “My physical 
appearance adequately expresses my identity.” 
 

Results 
Subjective Results Between Groups (Figure 2A.) 
Compared to the non-furry population reported in Longo et 
al. (2008), furries appear to experience several critical 
principal components of the RHI to a lesser extent when 
asked identical questions [MANOVA: F(5, 175) = 9.72, p < 
.0005; Wilk's Λ = 0.783].  
 

 

 
Figure 2. (A) Mean scores for Rubber Hand Survey principal 
components and (B) Mean scores for Embodiment item 
subcomponents. (*) Indicates significant differences between furry 
and non-furry groups. All survey scores shown were recorded after 
synchronous condition except deafference scores which indicate 
responses recorded after asynchronous condition. 

Post-test ANOVAs indicate that furries reported significantly 
weaker experiences associated with the principal components 
of embodiment [F(1, 179) = 11.22, p < .001] and loss [F(1, 
179) = 16.94, p < .0005], (during synchronous condition) and 
deafference [F(1, 179) = 24.16, p < .0005] (during 
asynchronous condition; See Longo et al., 2008 for more 
detailed explanation). Furries exhibited higher scores for 
affect [F(1, 179) = 7.69, p < .01] (regardless of condition; i.e., 
in synchronous and asynchronous blocks) suggesting furry 
participants enjoyed the experience of being brushed 
irrespective of any illusory effects. There was no significant 
difference for movement (as non-furries also reported 
negative scores). (Figure 2B.) Furries indicated weaker 
subjective feelings for the critical embodiment 
subcomponents [F(3, 177) = 6.45, p < .0005; Wilk's Λ = 
0.901.] of ownership [F(1, 179) = 7.71, p < .0005] and 
location [F(1, 179) = 13.38, p < .01], but no difference for 
agency. 
 
Proprioceptive Results Between Groups Proprioceptive 
drift is the tendency for participants to perceive the location 
of their real hand as closer to the rubber hand than it actually 
is. It is calculated by subtracting post-induction index finger 
location judgments from pre-induction location judgments in 
the synchronous block. Despite numerically smaller 
numerical averages for furries vs. non-furries, proprioceptive 
drift did not differ significantly for either condition. 
 
Table 1. Proprioceptive Drift (cm) Between Groups and Conditions 
 

Condition  Synchronous Asynchronous 
 N M SD M SD 
Furry 50 0.76 3.73 0.05 3.57 
Non-furry 120 1.34 3.22 0.30 2.69 

 
 
Between Group Results Summary Negative average values 
on relevant components, significantly lower than a large 
control sample, indicated lower subjective embodiment, loss, 
and deafference scores for furries. This suggests that 
identifying or role-playing as somewhat less, or other than 
human may be mitigating the strength of the RHI. That is, 
furries may experience the illusion to a lesser extent because 
they identify less with the human rubber hand. 
 These results simultaneously appear to argue against the 
alternative hypothesis; that furry participants who actively 
move between human and non-human roles in terms of 
distinct individual identities and practices, might have a more 
plastic body schema as compared to non-furries. This 
hypothesis predicts larger RHI effects in furries when 
compared to a typical population. This was not the result. 
  Analyses focused on variability within the furry sample 
could sharpen our explanation. If furries are experiencing the 
illusion to a lesser extent because they identify less with the 
human rubber hand, then we should expect that the strength 
of the illusion for furries could be predicted by the extent to 
which individual participants value humanity and feel 
comfort in their human bodies

-3 -2 -1 0 1 2 3

EMBODIMENT* (Qs 1-10)

LOSS* (Qs 12-16)

MOVEMENT (Qs 17-19)

AFFECT* (Qs 20-22)

DEAFFERENCE* (Qs 23-25)

A

furry non-furry (Longo et al., 2008)

ownership* (Qs 1-5)

location* (Qs 6-8)

agency (Qs 9-10)

B 
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Prop 
Drift 

Human 
Value 

Body 
Image 

Furry 
Time 

Human 
% 

Wear 
Freq 

Wear 
Intens 

Wear 
Time 

Role 
Freq 

Role 
Intens 

Role 
Time 

Online 
Freq 

Online 
Intens 

Online 
Time 

Prop Drift R 
 

.315* .434** -0.092 0.192 -0.047 -0.087 -0.13 -.389* -.441* -0.267 -0.009 -0.002 -0.068  
p  0.026 0.002 0.529 0.201 0.781 0.614 0.366 0.028 0.011 0.084 0.957 0.992 0.65  
N   50 49 49 46 37 36 50 32 32 43 43 43 47 

Human Value R 
  

.649** 0.188 0.157 -0.228 0.086 -0.003 -0.099 -0.236 -0.124 0.159 -0.078 -0.057  
p 

 
  <0.001 0.195 0.297 0.175 0.616 0.986 0.591 0.193 0.429 0.308 0.621 0.703  

N 
  

49 49 46 37 36 50 32 32 43 43 43 47 
Body Image R 

   
-0.038 0.28 -0.319 0.09 -0.008 -0.116 -.364* -0.187 0.005 -0.075 -0.259  

p 
  

  0.8 0.062 0.058 0.6 0.956 0.528 0.041 0.229 0.975 0.636 0.082  
N 

   
48 45 36 36 49 32 32 43 42 42 46 

 
Table 2. Correlations (R) 2-tailed significance values (p) and sample sizes (N) for relations between Proprioceptive Effects (Prop Drift), 
Human Value and Body Image Questionnaires, and Furry Experience Data. Furry Experience Data includes (1) Frequency in terms of 
hours per day (Freq) (2) Intensity of Experience (Intens) and (3) Time in Months since beginning a particular kind of practice, including (A) 
Fursuiting (Wear), (B) Role-Playing (Role) and (C) Online Interaction with other furries (Online). Also shown are correlations for time in 
months since first identifying as a furry (Furry Time) and the relative extent in percentage terms that participants identify as Human/Non-
human (Human %). * Indicates correlation is significant at the 0.05 level; ** correlation is significant at the 0.01 level. 
 
 
Proprioceptive Results Within Group In furry participants, 
the extent of drift toward the rubber hand was positively 
correlated with individual scores on the Humanity-esteem 
version of the Rosenberg Self-Esteem scale (“Human   
Value”) and the Identity version of the Transgender 
Congruence Scale (“Body Image”), which were highly 
correlated with each other. This suggests that among furries, 
lower esteem for humanity and feelings of incongruence 
between one’s identity and human body is predictive of less 
proprioceptive drift towards the rubber hand (see Table 2 and 
Figure 3). 
 
 

 

 
 
Figure 3. Correlations between individual proprioceptive drift 
scores (cm) and Human Value (7pt. scale, top) and Human Body 
Image (5pt. scale, bottom) scores. See Table 2. 
 

 

 
 
Figure 4. Correlations between individual proprioceptive drift 
scores (cm) and Role-Playing Intensity (10pt. scale, top) and 
Frequency (5pt. scale, bottom). See Table 2. 
 
 
There were significant negative correlations between 
individual proprioceptive drift scores and Role-Playing 
Intensity and Frequency Scores from the Experiential 
Survey.  This suggests that among furries, more frequent and 
intense role-playing in a fursona is predictive of less 
proprioceptive drift towards the rubber hand (see Table 2 and 
Figure 4). 
 
Therian or Otherkin vs. Non-Therian Furries (Table 3.) 
There were significant differences (MANOVA and post-test 
ANOVAs) between non-therian and therian/Otherkin 
participants and survey scores (Human Value and Body 
Image) predictive of Proprioceptive drift (which showed a 
marginal difference between these groups). Therians had 
lower Human Value and Body Image scores and predictably 
self-identified as less human than non-therian furries. 
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Table 3. Non-Therian Furries vs. Therian Furries. 
 

  
Human 
%** 

Prop 
Drift 

Human 
Value* 

Body 
Image* 

Non-therian (N=38) 98.19  1.32 4.71 3.43 

Therian (N=12) 61.50 -1.00 3.83 2.64 

p <.0001 =.06 <.01 <.05 
 
General Results Summary The overall pattern of results 
supports the hypothesis that furries are experiencing a 
mitigated RHI because they identify less with the human 
rubber hand. (1) Compared to a control sample, furries 
exhibit lower average and subjectively negative scores for 
relevant principal components of a validated RHI survey. (2) 
The extent of proprioceptive drift, which can be regarded as 
a more objective illusion index, is predicted by Human Value, 
Body Image, and Role-Playing scores in furries. (3) Therians 
and Otherkin, i.e., furries who identify as non-human, exhibit 
lower survey scores associated with human esteem and 
marginally lower scores for proprioceptive drift as compared 
to non-therian furries. 
 

Discussion & Conclusion 

The present study suggests ways that illusions of body 
ownership can be used to test distinct hypotheses - that make 
opposite predictions - within unique populations. Lira et al. 
(2017) found that individual differences in implicit racial bias 
modulated proprioceptive drift (and other measures of RHI 
magnitude). That is, higher racial bias in white participants 
mitigated drift toward a black rubber hand, suggesting that 
within-subject attitudinal differences can reduce 
proprioceptive effects. Elsewhere it has been suggested 
(Dempsey-Jones & Kirikos, 2014) that proprioceptive effects 
are relatively impervious to top-down modulation, 
suggesting that neurocognitive group differences in body-
perception may be driving results in other groups (e.g., in 
autism) that show reduced RHI effects. While the results of 
this study suggest that furries are less likely to identify with 
a human hand, they cannot determine if, broadly speaking, 
top-down or bottom up processes better describe why this is 
the case. 
 Despite these limitations (based principally on using a 
comparison data set from a previous study and correlational 
methods) the present study seeks to broaden the range of 
salient identity categories to studies of cognitive difference, 
joining the growing body of literature that explores the 
implications of variability in particular populations. We 
investigated a subculture whose membership is defined 
through a powerful and often embodied experience of affinity 
with a particular symbolic form – in this case, 
anthropomorphic animals. Our findings suggest that the kind 
of cultural differences that may not be visible to the eye or 
reportable on a typical demographic questionnaire, but 
manifest instead in self-identification with a particular 
community, subjective experience of difference, and ongoing 
participation in patterned cultural practices (Roepstorff, 

Niewöner, & Beck, 2010), may be profoundly related to body 
perception. These findings argue for a broader 
conceptualization of cultural and identity difference than is 
often found in cross-cultural cognitive research – one deeply 
grounded in both subjectivity and practice. 
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Implicit Evaluations Reflect Causal Information
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Abstract

Evaluations along a positivenegative dimension can be measured either explicitly (via self-report) or implicitly (via re-
sponse interference tasks). Whether implicit evaluations encode relational information (e.g., A causes B) or only co-
occurrence information (AB) has been debated extensively. 1,082 participants observed a machine being activated by
causally responsible stimuli and dispensing rewards in the presence of merely associated, but not causal, stimuli. Eval-
uations of causally responsible vs. associated stimuli were measured implicitly and explicitly. Explicit and implicit
evaluations of causally responsible stimuli were more positive than those of associated stimuli, both in the presence (Study
1) and absence (Study 2) of verbal instructions about the operation of the machine. Study 3 eliminated temporal primacy
and overshadowing as explanations of the effect. Supporting propositional theories, these findings suggest that implicit
evaluations are sensitive not only to co-occurrence but also to relational information, whether conveyed verbally or learned
solely from experience.
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Abstract

We report two artificial-language-learning experiments
investigating if the acquisition of sociolinguistic associations is
facilitated by two kinds of expectation violation: encountering
a variant (a) for the first time or (b) in an ungrammatical
context. Participants learned an artificial language with two
dialects, each spoken by one of two alien species: Gulus
and Norls. The two dialects differed with regard to a plural
suffix: Gulus mostly used -dup, and Norls mostly used -nup.
In the first learning phase, participants learned the language
without aliens; in the second learning phase, they were
exposed to it with alien interlocutors. In Experiment 1 we
manipulated whether -nup occurred in the first learning phase;
in Experiment 2 we manipulated linguistic constraints on its
occurrence. The acquisition of sociolinguistic association was
evaluated by asking participants to select suffixes given aliens
and vice versa. We found that sociolinguistic acquisition
was facilitated in Experiment 1, but not Experiment 2. In
Experiment 2, however, a post hoc analysis revealed that
participants who had learned the grammatical context of the
linguistic conditioning did experience facilitation, while those
who had not did not. Our results provide laboratory evidence
that unexpectedness facilitates the learning of sociolinguistic
variation.
Keywords: artificial-language learning; social meaning;
sociolinguistics; salience; surprisal

Introduction
The role of salience in the acquisition and propagation
of linguistic variants has long been documented in classic
sociolinguistic research (Labov, 1972). Variants with
higher salience are encoded with more attention and higher
meta-linguistic awareness, leading them to be more easily
recognized and retained than other variants with equal
frequency, resulting in an acquisition bias that cannot
be explained by frequency of exposure alone (Jaeger &
Weatherholtz, 2016).

In this study we investigated the role of salience in
facilitating the learning of sociolinguistic meaning (i.e., the
association of particular linguistic variants with particular
social groups). We focused in particular on the effect of
previous experience on salience. Previous work has paid
much attention to the role of certain kinds of non-linguistic
experience such as social and developmental experience
(Foulkes & Docherty, 2006) or social stereotypes (Levy,
2008), but linguistic experience is relatively understudied.

In particular, there is very little work on how the perceived
salience of a sociolinguistic variant is affected by prior
experience of that variant in other contexts. Jaeger and
Weatherholtz (2016, p. 1) proposed that salience related
to language experience can be understood in terms of
expectation violation, analogous to the well-attested novelty
bias effect: Novel items and events that we do not expect
tend to stand out. Jaeger and Weatherholtz (2016) argued
that this might occur for linguistic variants that a listener
has not encountered before and might thus lead to surprisal.
The salience generated by surprisal may facilitate learning the
variant and its socioindexical meaning.

Although Jaeger and Weatherholtz’s (2016) approach
to experience-based salience seems appealing for its
operationalization of expectation-related salience in an
information-theoretic framework (Shannon, 1948; Hale,
2001; Levy, 2008), it is not yet supported by linguistic data.
Several experimental studies on language processing show
that less expected words and structures take longer to process
and at greater cost (McRae, Spivey-Knowlton, & Tanenhaus,
1998; McDonald & Shillcock, 2003), with similar effects
observed in comprehension tasks (Kaschak & Glenberg,
2004; Squires, 2014; Fraundorf & Jaeger, 2016). However,
additional processing for novel variants in comprehension
does not necessarily result in better performance in noticing
or memorizing these variants or in associating them with the
right social group.

The present study
The present study investigates the hypothesis that
experience-dependent salience can arise from expectation
violation, and cause a sociolinguistic variant to be more
learnable. We used an “alien language” learning paradigm
in which participants first learned a miniature artificial
language and were then exposed to it in a simple social
context with “alien interlocutors”. We investigated two kinds
of expectation violation, hypothesizing that participants
would be more likely to learn a sociolinguistic association
if (Experiment 1) they had not encountered it before and
(Experiment 2) they had encountered it before, but subject to
grammatical constraints that now appear to be violated.
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As an example of the first kind of violation, one might
imagine an American English speaker visiting Liverpool and
hearing, for the first time, book pronounced with a final velar
fricative [x] (as in German Buch) instead of the expected velar
stop [k]. As an example of the second kind of violation,
consider a speaker who has heard -th pronounced as [f], but
only at the end of syllables (as in [boUf] for both or ["EfnIk]
for ethnic). For a speaker who had acquired syllable-finality
as a constraint on this variant, hearing [fInk] for think would
likely be relatively salient.

In both our experiments a certain variant of the
alien language was associated predominately (but not
necessarily exclusively) with a particular species of
alien. We evaluated whether participants had learned this
sociolinguistic association pattern by asking them at the end
of the experiment to (a) select the variant that a given alien
would most likely produce, and (b) select the alien most
likely to produce a given variant. We predicted that increased
salience, via expectation violation, would lead participants to
do better at both tasks (though, because we did not make the
sociolinguistic relationship categorical, we did not expect that
the response to the two tasks would be identical).

Finally, we predicted that listeners who learned a
sociolinguistic association in the experiment could generalize
that relationship to new words.

Experiment 1: First encounter
Experiment Overview
In Experiment 1, we investigated whether encountering a
linguistic variant for the first time in a social context would
facilitate the sociolinguistic learning of that variant (we will
term this hypothesized effect “first-encounter facilitation”).
Participants were trained on an alien language with two
dialects, each used by a different alien species, the Gulus or
the Norls (Fig. 1). The dialects differed with regard to a plural
suffix: Gulus used -dup as the only form of the plural suffix
whereas Norls sometimes used -dup but mostly used -nup.

The experimental procedure consisted of three phases:
Participants were first trained on the language without seeing
any aliens, which was intended to establish prior experience
with the language; then (having been introduced to the two
alien species) they were exposed further to the language with
alien interlocutors, which allowed them to learn associations
between plural suffixes and alien species. In the third
and final phase, acquisition of sociolinguistic variants was
evaluated on the basis of whether participants could infer
which alien might have used a given suffix and, conversely,
which suffix a given alien might have used.

Crucially, we manipulated participants’ prior experience
with the variant -nup such that half the participants would
never be exposed to it in the first phase, encountering only
-dup (NoExposure condition), whereas the other half would
see both suffixes in every phase (Exposure condition). We
predicted that participants with no experience of -nup in the
first learning phase would find it more salient in the second

phase and better learn to associate it with Norls.

Method
Participants 100 participants completed Experiment 1
online within the specified amount of time (1.5 hours). After
excluding participants whose duration was below the 2.5%
quantile or above the 97.5% quantile of all participants, we
used the data of the remaining 93 participants. There were 51
female and 43 male participants, aged 17–73 (mean: 28.9)
years. 30 of them were recruited from the University of
Pennsylvania subject pool (in return for course credit) and 64
were recruited through the Prolific Academic website (and
were paid $5 each). 49 participants were in the Exposure
condition and 45 in the NoExposure condition.

Alien language The artificial language was composed of
14 word stems, as shown in Table 1, and a plural suffix with
two variants, -dup, -nup.

Table 1: 14 Stem Words in the Alien Language

nesel, laniz, firot, hiwen, maqub, jemulok, gequzis
tugan, nuwik, falon, wumos, wukin, sehilod, takoles

The 14 stem words were randomly generated by combining
one or two CV syllables with a word-final CVC syllable from
a segment pool of five vowels /a e i o u/ and 12 consonants /k
g q h m n t s z j l w/.

Aliens The language was used by two alien species: Gulus
and Norls. The stem forms were the same across dialects,
but the suffix variants had different distributions: Gulus
attached -dup to all 14 words to signal plurality, whereas
Norls attached -dup to only four of the words (hiwen, wukin,
jemulok and wumos) and -nup to the remaining eight words.
Put differently, Gulus used the -dup variant 100% of the
time as their plural suffix whereas Norls used -dup and -nup
at a ratio of 71% to 29%. Within each alien species, six
idiosyncratic aliens were designed in order to ensure that the
linguistic variation on the group level wouldn’t be mistaken
for variation on the individual level (See Fig. 1 for examples).

Figure 1: Alien Species: Gulus (left) and Norls (right)

Procedure The experimental task was composed of two
learning phases, in which participants were trained on the
alien words through passive exposure to word-object1 pairs
and multiple-choice exercises with feedback, and a test

1We thank Professor Janet Pierrehumbert for making images
of the objects available for use. The artworks are copyrighted to
Northwestern University and used with permission.
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(a) (b)

Figure 2: Example trials in learning phase 1: (a) a passive
exposure trial; (b) a forced-choice trial

phase that evaluated how well participants had learned the
association between plural variants and alien species.

First learning phase: Learning without aliens. The
experiment started with a learning phase that exposed
participants to the words of the language without any aliens.
This was designed to give participants exposure to the
language before introducing it in a social context. It consisted
of a series of trials, with two kinds of trial, as shown in
Fig. 2. In passive exposure trials ( Fig. 2a) a word was paired
with an image of the object(s) it referred to. Participants
were instructed to memorize the word and its meaning before
proceeding to the next trial. In forced-choice trials (Fig. 2b)
participants had to choose the correct word to go with an
image; there were always two options to choose from, one
correct and one a foil generated by changing one or two
segments in the stem of the correct form. Participants
received one point for each correct response and no point
for an incorrect one (maximum: 168 points). Feedback on
the correct form and the point received for each question was
provided immediately afterwards.

Participants were trained on 28 alien words (14 singular,
14 plural), which were divided into seven sets of four words
each, with the constraint that each set contained two singular
words and two plural words that all had different stems. For
each set, a participant would see a passive exposure trial
for each word in turn; then they would see a forced-choice
trial for each of the same four words. Then they would
proceed to the next set. The order of the seven word sets
was randomized, as was the order of the four trials within
each passive exposure section and within each forced-choice
section. The whole process was repeated once participants
had completed training on all seven word sets. In total,
participants were exposed to 14 words × 2 forms (singular
and plural) × 2 trial types (exposure, forced choice) × 2
repetitions = 112 trials.

Alien introduction. After the first learning phase, the
aliens were introduced. Participants were first presented with
images of Gulus and Norls, each labeled with the species
name; then the labels were removed and participants were
instructed to drag and drop each alien into one of the the two
boxes labeled Gulu and Norl. Feedback was provided after

(a) (b)

Figure 3: Example trials in learning phase 2: (a) a passive
exposure trial; (b) a forced-choice trial

the drag-and-drop.
Second learning phase: Learning with aliens. After the

aliens had been introduced, the second learning phase started.
This phase resembled the first phase in its structure, except
that each trial (whether passive-exposure or forced-choice
trial) included a picture of an alien interlocutor, as shown
in Fig. 3. Participants saw both the Gulu and the Norl
form of every word, so the second learning phase was twice
as long as the first learning phase (with each set of trials
containing eight words rather than four). In total each
participant was exposed to 14 words × 2 forms (singular,
plural) × 2 species (Gulu, Norl) × 2 trial types (exposure,
forced choice) × 2 repetitions = 224 trials.

Test phase: Measuring acquisition. After the second
learning phase, the test phase began, which evaluated the
extent to which participants had established associations
between alien groups and plural suffixes. The test phase
contained two tasks: a suffix-identification task in which
participants had to choose which form might be used based
on the presented alien interlocutor, and an alien-identification
task in which participants had to choose which alien was
most likely to have said a prompt word. Trials in these tasks
contained both old word stimuli from the learning phase and
new word stimuli that participants had never seen, in order to
evaluate the generalization of sociolinguistic associations to
novel items. Trial order was randomized for each participant,
and the order of the two options within each trial was
counterbalanced. No feedback was provided.

In suffix identification, trials on old words worked like
forced-choice trials in the second learning phase (Fig. 3b),
except that the optional answers had identical stems and
different suffixes (i.e., the reverse of the situation in the
learning phases). Participants were instructed to choose the
form the pictured alien would likely use. Trials on new
words were different: Participants were presented with a
singular word, an image of the object it referred to, and an
alien interlocutor; they were required to choose between a
dup-ending word and a nup-ending word as the plural form
(Fig. 4).

In all, the task included 56 trials on old words (14
words × 2 species × 2 repetitions = 56 trials), 24 trials on
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Figure 4: Example suffix-identification trial with a new word

Figure 5: Example alien-identification trial

new words (6 new words × 2 species × 2 repetitions = 24
trials), and 34 filler trials, which tested participants on either
singular words or plural words with incorrect stems.

In alien identification (Fig. 5) participants were given a
plural word and had to choose between a Gulu and a Norl as
the likely speaker of the word. The idiosyncratic aliens were
kept consistent throughout the whole task, but whether they
appeared on the left or the right was counterbalanced across
questions. The stimulus words were generated by affixing
the 14 old words and the six new words once each with -dup
and once each with -nup, so that there were 40 trials (14 old
words × 2 suffixes + 6 new words × 2 suffixes) in total.

Experimental conditions. Participants were randomly
assigned to two experimental conditions: the NoExposure
condition and the Exposure condition. Fig. 6 shows the
distribution of variants in the two learning phases in different
experimental conditions.

29% dup

71% nupNoExposure 

Exposure 

71% dup

29% nup

Second learning phaseFirst learning phase

71% 
dup

29% nup

100% 
dup

Figure 6: Variant distribution in the learning phases of
Experiment 1

The two conditions differed with respect to the presence
or absence of the variant -nup in the first learning phase:
For participants in the NoExposure condition, plural words
in this phase would always be affixed with -dup, whereas
participants in the Exposure condition would see ten instances
of plurals with -dup (71%) and four with -nup (29%). The two
conditions were identical in the second learning phase: Gulus
exclusively used -dup while Norls used -nup 71% of the time
and -dup 29% of the time.

Results
Analyses were conducted using the R Statistical environment
(R Core Team, 2014); linear models were run using the lme4
library (Bates, Mächler, Bolker, & Walker, 2015), and plots
were created using ggplot (Wickham, 2016).

On average, it took participants (outliers excluded) 52
minutes (sd = 14) to complete the whole experiment. Out of
a maximum of 168 points, participants achieved an average
score of 153 (sd = 13).

Fig. 7 shows the aggregate results for suffix identification
(left) and alien identification (right). The left panel shows
how often participants selected the -nup suffix for a given
alien the suffix-identification task. Consistent with our
predictions, participants in the NoExposure group were more
inclined to choose a -nup word for a Norl than those in
the Exposure condition. Notably, the -nup response ratios
given a Norl were relatively low in both conditions, nowhere
matching the 71% in the input. The right panel shows what
proportion of the time participants selected a Norl for a given
suffix in the alien-identification task. Again, consistent with
the hypothesis, participants in the NoExposure condition were
more inclined to choose a Norl given a -nup word and to
choose a Gulu given a -dup word, compared with those in the
Exposure condition, who chose Norl interlocutors for both
-dup and -nup at chance level.
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Figure 7: Proportion of -nup responses in suffix identification
and Norl responses in alien identification (including 95%
confidence interval). Dotted line indicates chance level.

Mixed-effects logistic regression models were fit on
the two tasks, with Response as the dependent variable,
Condition (Exposure as the intercept), Stimulus (Norl as
the intercept in suffix identification; -dup as the intercept
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in alien identification) and their interactions as independent
variables, and Participant and Word as random factors. Both
models revealed a significant Condition effect (β = 0.57, p =
0.001 in suffix identification; β = −0.54, p < 0.001 in alien
identification) and its Interaction with Stimulus (β = −0.48
in suffix identification, β = 1.00 in alien identification, p <
0.001 in both cases). A stimulus effect was found only
in suffix identification (β = 0.62, p < 0.001), not in alien
identification (β = 0.14,n.s.).

Novel Stimuli We hypothesized that participants would
apply the sociolinguistic association they had learned in
the second training phase to novel words they had never
seen before. The results show that identification with
old and new words strongly mirrored each other in both
conditions and both tasks. A mixed-effects model was fit
on each of the two tasks, with Response (Suffix or Alien)
as the dependent variable, Participant and Word as random
factors, and Condition, Stimuli (either Alien or Suffix) and
Novelty as fixed effects. The results showed no significant
Novelty effect in suffix identification (β = 0.23,n.s.) and
alien identification (β= 0.10,n.s.). These results indicate that
the acquired sociolinguistic association could be generalized
to new lexical items, and that first-encounter facilitation
applies to both familiar and unfamiliar words.

Summary Our prediction concerning first-encounter
facilitation was supported. That is, participants in the
NoExposure condition were more likely to acquire the
association between -nup and the Norl species than
participants in the Exposure conditions, suggesting that the
first encounter with a novel variant facilitated the acquisition
of sociolinguistic variants of that variant. We also found that
this effect extended to previously unseen words.

Experiment 2: Constraint violation
Experiment 2 used a similar paradigm to Experiment 1,
but we modified the suffixation patterns to investigate a
different source of surprisal. Instead of surprisal caused
by encountering a variant for the first time, Experiment
2 investigated whether surprisal caused by encountering a
linguistic variant in an apparently ungrammatical context
(i.e., where it violated a grammatical constraint) would also
facilitate the acquisition of sociolinguistic associations. We
will term this constraint-violation facilitation.

Method
Participants 103 participants completed Experiment 2
online within 1.5 hours. After excluding participants whose
duration was below the 2.5% quantile or above the 97.5%
quantile of all participants, there were 97 participants left
whose data were used for the final analysis. They were 69
females and 28 males, aged 17–78 (mean: 29.3) years. 28
of them were recruited from the University of Pennsylvania
subject pool (and rewarded with course credit), and the
remaining 69 were recruited through the Prolific Academic
website (and paid $5 each). There were 48 participants

in the Conditioned condition and 49 in the Unconditioned
condition.

Materials and Procedure The same words and aliens were
used in Experiment 2 as in Experiment 1. The procedure was
also the same, consisting of two learning phases and a test
phase with two tasks.

Experimental Conditions and Predictions There were
two between-subjects conditions based on the linguistic
environment for the suffix -nup, which is shown in Fig. 8.

29% dup

71% nup

71% dup

29% nup

Conditioned

-nup after /n/,
-dup elsewhere

Unconditioned

free variation

71% dup

29% nup

Second learning phaseFirst learning phase

71% dup

29% nup free variationsame as phase 1

Figure 8: Variant distribution in the learning phases of
Experiment 2

In the Conditioned condition participants in the first
learning phase only ever saw -nup attached to the four
nasal-ending stems (i.e., falon, hiwen, tugan and wukin),
while -dup was attached to the 10 stems that did not end
in a nasal. This implied a grammatical constraint on the
distribution of -nup (i.e., that it only occurs after nasals).
By contrast, participants in the Unconditioned condition were
exposed to the two suffix variants in free variation (i.e., both
-nup and -dup occurred with both nasal and non-nasal stems),
though the variants still occurred at a ratio of ten (-dup) to
four (-nup) – or 71% to 29% – just as in the Conditioned
condition. In the second learning phase, Gulus exhibited
precisely the suffixation pattern of the first phase, whereas
Norls used the two suffixes freely across contexts at a ratio of
four (-dup) to ten (-nup).

Similar to Experiment 1, we predicted that participants in
the Conditioned condition would experience greater surprisal
when they saw Norls using the two variants, especially -nup,
in an ungrammatical way, and would be facilitated by this
surprisal in learning the association between -nup and the
Norl species, compared with those in the Unconditioned
condition.

Results
On average, participants took 51 minutes (sd = 12) to
complete the experiment and achieved a mean score of 152
(sd = 13).

Fig. 9 shows the aggregate results for suffix identification
(left) and alien identification (right). The results do not appear
to exhibit the predicted between-group difference in learning.
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Figure 9: Proportion of -nup responses in suffix identification
and Norl responses in alien identification (including 95%
confidence interval). Dotted line indicates chance level.

A mixed-effects logistic model with Participant and Word as
random factors, and Condition, Alien and their Interaction
as independent variables revealed a significant Alien effect
(Norl as the default, β = −2.08, p < 0.001) and a significant
interaction (β = 0.28, p = 0.012), but no effect of Condition
(β = 0.28,n.s.). In alien identification, a mixed-effects
logistic model showed a significant effect of Suffix (-nup as
the default, β = 1.96, p < 0.001), but no effect of Condition
(β = 0.06,n.s.) and the Interaction (β =−0.18,n.s.).
Learning Proficiency It is possible that the absence of
facilitation in Experiment 2 was due to variation in learning
performance. The predicted facilitation depends on surprisal
due to the apparent violation of a grammatical constraint. It
therefore seems a priori clear that our predicted effect should
occur only if participants learned the grammatical constraint.
If they did not, violation of the constraint should not generate
surprisal. To evaluate this possibility, we conducted a post
hoc analysis in which we took participants’ scores in the
learning phase as a proxy for their learning performance.
In particular, we divided participants into good learners and
poor learners within each condition, according to whether
their score was above or below the group mean. We then
investigated whether constrain-violation facilitation could be
found among good learners but not poor learners.

Fig. 10 shows the results for the 47 good and 50 poor
learners. First, good learners showed a higher -nup rate for
Norls and a lower -nup rate for Gulus in suffix identification,
as well as a higher Norl rate for -nup and a lower one
for -dup, compared with poor learners, indicating a better
alignment between their responses and the pattern in the
input, compared with poor learners. Second, the predicted
learning facilitation is exhibited in the results of good
learners, in that participants in the Conditioned condition
exhibited a lower -nup rate for Gulus in suffix identification,
and exhibited a higher Norl identification rate for -nup words
and a lower Norl rate for -dup words in alien identification,
compared with those in the Unconditioned condition.

We fit a mixed-effects logistic regression respectively on
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Figure 10: Proportion of -nup responses in suffix
identification (top) and Norl responses in alien identification
(bottom) by good and poor learners (including 95%
confidence interval) Dotted line indicates chance level.

the data of good learners and poor learners. For good learners,
the results showed significant effects of Alien (β = 4.5, p <
0.001), Condition (β = 1.9, p < 0.001) and their interaction
(β = −1.99, p < 0.001) in suffix identification, as well as
significant effects of Suffix (β = 5.28, p < 0.001), Condition
(β = 1.16, p < 0.001) and Interaction (β = −2.27, p <
0.001) in alien identification. For poor learners, however, the
results of suffix identification showed a main effect of Alien
(β = −0.93, p < 0.001) and significant interaction between
Alien and Condition (β = −0.38, p = 0.008), but no main
effect of Condition (β = 0.42, n.s.). In alien identification,
both factors of Suffix (β = 0.33, p = 0.012) and Condition
(β =−0.34, p = 0.007) are significant, as is their interaction
(β = 0.62, p < 0.001). Interestingly, however, the learning
difference associated with the Suffix factor is the opposite of
what was predicted: Learners in the Unconditioned condition
did a better job in associating Norls to -nup than those in the
Conditioned condition.

Novel Stimuli In evaluating whether acquisition effects
were generalized to new words, we examined good and
poor learners separately given their different patterns in
acquisition. The results showed that although learners with
different performance showed distinct patterns from each
other, the behaviors with seen and unseen stimuli were highly
consistent within each of the two learner groups. Good
learners showed the correct alien-language association as
well as additional facilitation from rule violation with both
old and new words. Poor learners also showed consistent
behaviors across old and new words, although behavior was
mostly near chance level. Two mixed-effects models, one
fit on each task, with Response as the dependent variable,
Participant and Word as random factors, and Condition,
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Stimuli, Novelty and their interactions as mixed effects,
showed no significant Novelty effect or Novelty-relevant
interactions.

Summary There was no evidence for constraint-violation
facilitation in the aggregate results. However, post hoc
analysis revealed that there was such an effect among “good
learners”, participants who performed above the mean in
training. This is consistent with the hypothesis, as constraint
violation should facilitate learning only among individuals
who have learned the constraint. Finally, the results of
Experiment 2 replicate those of Experiment 1 in showing an
ability to generalize acquired patterns, whether accurate or
inaccurate, to new words.

General Discussion
We hypothesized that violation of expectation would cause
a linguistic variant to be more salient and, as a result of this,
that an association between this variant and a particular social
group would be easier to learn. We tested this hypothesis
in two experiments, each investigating a different kind of
expectation violation.

The first experiment investigated exposure to a previously
unencountered variant while the second investigated exposure
to a variant that had previously occurred within a narrower
grammatical context. In the first experiment the expectation
violation had the predicted effect: Participants were more
likely to associate the new suffix with the correct alien species
(and the correct alien species with the new suffix) when the
suffix had not been encountered in the initial learning phase.
We also found that this effect extended to previously unseen
words.

In the second experiment, we found the predicted effect,
but only for good learners. While the division of Experiment
2 participants into good and poor learners was not planned
and should therefore be taken with caution, the distinction
has a clear precedent in earlier work (Rácz, Hay, &
Pierrehumbert, 2017) and makes good theoretical sense. We
should not expect violation of a grammatical rule to be salient
to participants who have not learned that rule. Indeed, it
would have been inconsistent with our hypothesis if we had
found such an effect for participants who had not learned the
rule.

Taken together, our results suggest that unexpectedness
increases the salience of variants and makes their social
distribution easier to learn, deepening our understanding of
the role of individual language experience in the acquisition
of sociolinguistic meaning.

References
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Abstract

People learn in fast and flexible ways that have not been emu-
lated by machines. Once a person learns a new verb “dax,” he
or she can effortlessly understand how to “dax twice,” “walk
and dax,” or “dax vigorously.” There have been striking recent
improvements in machine learning for natural language pro-
cessing, yet the best algorithms require vast amounts of experi-
ence and struggle to generalize new concepts in compositional
ways. To better understand these distinctively human abilities,
we study the compositional skills of people through language-
like instruction learning tasks. Our results show that people
can learn and use novel functional concepts from very few
examples (few-shot learning), successfully applying familiar
functions to novel inputs. People can also compose concepts
in complex ways that go beyond the provided demonstrations.
Two additional experiments examined the assumptions and in-
ductive biases that people make when solving these tasks, re-
vealing three biases: mutual exclusivity, one-to-one mappings,
and iconic concatenation. We discuss the implications for cog-
nitive modeling and the potential for building machines with
more human-like language learning capabilities.
Keywords: concept learning; compositionality; word learn-
ing; neural networks

People use their compositional skills to make critical gen-
eralizations in language, thought, and action. Once a per-
son learns a new concept “photobombing”, she or he imme-
diately understands how to “photobomb twice”, “jump and
photobomb”, or “photobomb vigorously.” This example il-
lustrates systematic compositionality, the algebraic capacity
to understand and produce an infinite number of utterances
from known components (Chomsky, 1957; Montague, 1970;
Fodor, 1975). This ability is central to how people can learn
from limited amounts of experience (Lake, Ullman, Tenen-
baum, & Gershman, 2017), and uncovering its computational
basis is an important open challenge.

There have been dramatic advances in machine language
capabilities, yet the best algorithms require tremendous
amounts of training data and struggle with generalization.
These advances have been largely driven by neural networks,
a class of models that has been long criticized for lacking
systematic compositionality (Fodor & Pylyshyn, 1988; Mar-
cus, 1998; Fodor & Lepore, 2002; Marcus, 2003; Calvo &
Symons, 2014). Neural networks have developed substan-
tially since these classic critiques, yet recent work evaluated
contemporary neural networks and found they still fail tests
of compositionality (Lake & Baroni, 2018; Bastings, Baroni,
Weston, Cho, & Kiela, 2018; Loula, Baroni, & Lake, 2018).
To evaluate compositional learning, Lake and Baroni (2018)
introduced the SCAN dataset for learning instructions such as
“walk twice and jump around right,” which were built com-
positionally from a set of primitive instructions (e.g., “run”
and “walk”), modifiers (“twice” or “around right”), and con-
junctions (“and” or “after”). The authors found that modern
recurrent neural networks can learn how to “run” and to “run

twice” when both of these instructions occur in the training
phase, yet fail to generalize to the meaning of “jump twice”
when “jump” but not “jump twice” is included in the training
data.

Classic arguments about the human ability to generalize
have mostly rested on thought experiments. The latter, how-
ever, might underestimate facilitating factors, such as our
knowledge of English, on which we are undoubtedly relying
when interpreting “photobombing twice”. In this paper, we
study the scope and nature of people’s compositional learn-
ing abilities through artificial instruction learning tasks that
minimize reliance on knowledge of a specific language. The
tasks require mapping instructions to responses, where an in-
struction is a sequence of pseudowords and a response is a
sequence of colored circles. These tasks follow the popu-
lar sequence-to-sequence (seq2seq) framework and studied in
Lake and Baroni (2018) and used to great effect in recent ma-
chine learning (e.g., machine translation; Sutskever, Vinyals,
& Le, 2014). Seq2seq tasks require a learner to first read
a sequence of input symbols, and then produce a sequence
of output symbols (Fig. 1), whereby the input and output
sequences can have different lengths. This framework al-
lows us to directly compare humans and recent recurrent neu-
ral network architectures, while providing enough flexibility
and richness to study key aspects of compositional learning.
Moreover, the seq2seq problems investigated here present a
novel challenge for both human and machine learners: unlike
standard seq2seq benchmarks, which provide the learner with
thousands of paired input and output examples, our “few-shot
learning” paradigm provides the learner with only a handful
of training examples.

Our tasks differ from the artificial grammar learning
(Reber, 1967; Fitch & Friederici, 2012), rule learning
(Marcus, Vijayan, Bandi Rao, & Vishton, 1999), and pro-
gram learning (Stuhlmuller, Tenenbaum, & Goodman, 2010)
paradigms in that we do not ask participants to implicitly or
explicitly determine if items are grammatical. Instead, we
ask them to process input sequences in a pseudo-language
in order to generate output sequences (“meanings”). Ask-
ing participants to associate new words or sentences with
visual referents is a standard practice in psycholinguistics
(e.g., Bloom, 2000; Wonnacott, Boyd, Thomson, & Gold-
berg, 2012, and references there). Some of this work is partic-
ularly close to ours in that it studies the biases underlying lin-
guistic generalization (e.g., Hudson Kam & Newport, 2009;
Fedzechkina, Newport, & Jaeger, 2016). However, we are not
aware of other studies that adopted the sequence-to-sequence
language-to-meaning paradigm we are proposing here. More-
over, the biases studied in the earlier miniature language liter-
ature are more specific to grammatical phenomena attested in
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lug blicket wif <EOS> <SOS>

<EOS>

Figure 1: A sequence-to-sequence (seq2seq) recurrent neural net-
work applied to few-shot instruction learning. Instructions are pro-
vided in a novel language of pseudowords and processed with an
encoder network (in this case, the instruction is “lug blicket wif”),
in order to generate an output sequence using a decoder network
(“BLUE GREEN BLUE”). The symbols <EOS> and <SOS> de-
note end-of-sentence and start-of-sentence, respectively. The en-
coder (left) ends with the first <EOS> symbol, and the decoder
(right) begins with <SOS>.

language (e.g., pertaining to linguistic syntax and morphol-
ogy) than the basic generalization preferences we are explor-
ing here.

Experiment 1: Few-shot instruction learning

Participants were asked to learn novel instructions from lim-
ited demonstrations. The task was inspired by the SCAN
dataset for evaluating compositional learning in machines
(Lake & Baroni, 2018), adapted to be novel and tractable for
human learners in the lab. Instead of following instructions in
English, participants learned to interpret and execute instruc-
tions in a novel language of pseudowords (e.g., “zup blicket
lug”) by producing a sequence of abstract outputs (a sequence
of colored circles; Fig. 2). Some pseudowords were primitive
instructions that correspond to a single output symbol, while
other pseudowords are interpreted as functions that need to
be applied to arguments to construct the output. As in SCAN,
one primitive (“zup”) is only presented in isolation during
study but is evaluated compositionally during test, appearing
in each test instruction. To perform well, participants must
learn the meaning of each function from just a small number
of demonstrations, and then generalize to new primitives and
more complex compositions than previously observed.

Stimuli. The instructions consisted of seven possible pseu-
dowords and the output sequences consisted of four possible
response symbols (Fig. 2). Four primitive pseudowords are
direct mappings from one input word to one output symbol
(e.g., “dax” is “RED” and “wif” is “GREEN”), and the other
pseudowords are functional terms that take arguments. To
discourage a strategy based on word-to-word translation into
English, the functional terms could not be easily expressed by
single-word modifiers in English; they also formed phrases
whose order would be unnatural in English.

The meanings of the functions were as follows. Function 1
(“fep” in Fig. 2) takes the preceding primitive as an argument
and repeats its output three times (“dax fep” is “RED RED
RED”). Function 2 (“blicket”) takes both the preceding prim-
itive and following primitive as arguments, producing their
outputs in a specific alternating sequence (“wif blicket dax”
is “GREEN RED GREEN”). Last, Function 3 (“kiki”) takes

both the preceding and following strings as input, processes
them, and concatenates their outputs in reverse order (“dax
kiki lug” is “BLUE RED”). We also tested Function 3 in cases
where its arguments were generated by the other functions,
exploring function composition (“wif blicket dax kiki lug”
is “BLUE GREEN RED GREEN”). During the study phase
(see Methods below), participants saw examples that disam-
biguated the order of function application for the tested com-
positions (Function 3 takes scope over the other functions).
Methods. Thirty participants in the United States were re-
cruited using Amazon Mechanical Turk and the psiTurk plat-
form (Gureckis et al., 2015). Participants were informed that
the study investigated how people learn input-output associa-
tions, and that they would be asked to learn a set of commands
and their corresponding outputs. Learning proceeded in a
curriculum with four stages, with each stage featuring both
a study phase and a test phase. In the first three stages, dur-
ing the study phase participants learned individual functions
from just two demonstrations each (Functions 1 through 3;
Fig. 2). In the final stage, participants learned to interpret
complex instructions by combining these functions (Function
compositions; Fig. 2).

Each study phase presented participants with a set of ex-
ample input-output mappings. For the first three stages, the
study instructions always included the four primitives and
two examples of the relevant function, presented together
on the screen. For the last stage, the entire set of study in-
structions was provided together in order to probe composi-
tion. During the study phases, the output sequence for one
of the study items was covered and participants were asked
to reproduce it, given their memory and the other items on
the screen. Corrective feedback was provided, and partici-
pants cycled through all non-primitive study items until all
were produced correctly or three cycles were completed. The
test phase asked participants to produce the outputs for novel
instructions, with no feedback provided. The study items
remained on the screen for reference, so that performance
would reflect generalization in the absence of memory lim-
itations. The study and test items always differed from one
another by more than one primitive substitution (except in the
Function 1 stage, where a single primitive was presented as
novel argument to Function 1). Some test items also required
reasoning beyond substituting variables, and in particular un-
derstanding longer compositions of functions than were seen
in the study phase.

The response interface had a pool of possible output sym-
bols which could be clicked or dragged to the response array.
The circles could be rearranged within the array or cleared
with a reset button. The study and test set only used four
output symbols, but the pool provided six possibilities (that
is, there were two extra colors that were not associated to
pseudowords), to discourage reasoning by exclusion. The as-
signment of nonsense words to colors and functions was ran-
domized for each participant (drawn from nine possible non-
sense words and six colors), and the first three stages were
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Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.
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symbol corresponds to exactly one output symbol, and that
inputs can be translated one-by-one to outputs without apply-
ing complex functional transformations. This characterized
24.4% of all errors.2 Other errors involved misapplication
of Function 3, which required concatenating its arguments in
reverse order. When participants made an error, they often
concatenated but did not reverse the argument (23.3% of er-
rors for instructions using Function 3), a bias we term “iconic
concatenation,” referring to a preference for maintaining the
order of the input symbols in the order of the output symbols.
Forms of iconic concatenation are widely attested in natural
language, and constitute important biases in language learn-
ing (Haiman, 1980; Goldin-Meadow, So, Özyürek, & Mylan-
der, 2008; de Ruiter, Theakston, Brandt, & Lieven, 2018).

In sum, people learn in several ways that go beyond pow-
erful seq2seq neural networks. People can learn novel func-
tions from as few as two examples and generalize in system-
atic ways, appropriately applying the functions to previously
unused input variables. People can also compose these novel
functions together in ways not observed during training. Fi-
nally, people appear to bring strong inductive biases to this
learning challenge, which may contribute to both their learn-
ing successes and failures.

Experiment 2: Inductive biases in instruction
learning
This experiment investigated the inductive biases that ap-
peared to influence the previous task. We devised a new
set of seq2seq problems that were intentionally ambiguous
and compatible with a number of possible generalizations,
related to the “poverty of the stimulus” paradigm in experi-
mental linguistics (Wilson, 2006; McCoy, Frank, & Linzen,
2018). These problems provide a more direct window into
people’s inductive biases because the information provided is
insufficient for deducing the correct answer. The design also
parametrically varied the context under which the biases were
evaluated to better understand their structure and scope.

This experiment studies the one-to-one and iconic concate-
nation biases identified above, as well as the mutual exclu-
sivity (ME) bias that has been studied extensively in the de-
velopmental literature. Classic studies of ME present chil-
dren with a familiar and an unfamiliar object (e.g., a ball
and a spatula; Markman & Wachtel, 1988), or two unfamil-
iar objects in which one is familiarized during the experiment
(Diesendruck & Markson, 2001). When given the instruction
“show me the zup,” children typically understand “zup” to
refer to the novel object rather than acting as a second name
for the familiar object. In our instruction learning paradigm,
ME is operationalized as the inference that if “dax” means
“RED”, then “zup” is likely another response besides “RED.”
Although Exp. 1 did not naturally lend itself to probing the
effect of the ME bias, we conjecture that it is because of the

2These errors are defined as responses such that the input and
output sequence have the same length, and each input primitive is
replaced with its provided output symbol. Function words are re-
placed with an arbitrary output symbol.

latter that participants rapidly eliminated many degenerate so-
lutions (such as all strings referring to the same output item)
in virtually any word learning experiment. We thus want to
study the impact of ME more explicitly.

Methods. Twenty-eight participants in the United States
were recruited using Mechanical Turk and psiTurk. The in-
structions were as similar as possible to the previous exper-
iment. In contrast, the curriculum of related stages in the
previous experiment was replaced by 14 independent trials
that evaluated biases under different circumstances. Each trial
provided a set of study instructions (input-output mappings)
and asked participants to make a judgment about a single new
test instruction. To highlight the independence between trials,
the pseudoword and colors were re-randomized for each trial
from a larger set of 20 possible pseudowords and 8 colors. To
emphasize the inductive nature of the task, participants were
told that there were multiple reasonable answers for a given
trial and were instructed to provide a reasonable guess.

The trials were structured as follows. Six trials pertain
to ME and whether participants are sensitive to counter-
evidence and the number of options in the response pool
(e.g., Fig 3A left and middle columns). Three trials per-
tain to iconic concatenation and how participants concatenate
instructions together in the absence of demonstrations (e.g.,
Fig 3A right column). Three additional trials pertain to how
people weigh ME versus one-to-one in judgments that neces-
sarily violate one of these biases (not shown in figure). Fi-
nally, two catch trials queried a test instruction that was iden-
tical to a study instruction. The design minimized the risk that
the biases could be learned from the stimuli themselves. None
of the study instructions demonstrated how to concatenate, fa-
cilitating a pure evaluation of concatenation preferences. In
the novel test trials, 6 instructions supported ME and 6 vio-
lated it, although both catch trials also supported ME. We did
not explicitly control for the one-to-one bias. Missing a catch
trial was the only criterion for exclusion (n = 6). There was
no memory quiz for the study items since each contained just
a few instructions.

Results. There was strong evidence for each of the three
inductive biases. The classic mutual exclusivity (ME) ef-
fect was replicated within our seq2seq learning paradigm. If
“dax” means “RED”, what is a “zup”? As shown in the top-
left cell of Fig 3A, most participants (18 of 22; 81.8%) chose
a single “BLUE” symbol as their response if the pool pro-
vided only “RED” and “BLUE” as options, and a larger frac-
tion (20 of 22; 90.9%) followed ME by choosing a (possibly
multi-element) meaning different from “RED.”

While the ME effect was robust, it was sensitive to con-
text and was not rigidly applied. The other ME trials ex-
amined the influence of two additional factors (Fig 3A left
and middle columns): the number of contradictory examples
provided (0–2; Fig 3A rows) and the number of output sym-
bols available in the response pool (2 vs. 6; Fig 3A columns).
With these two variables as fixed effects, we fit a logistic
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(pool size 2)
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Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep             

fep fep             

zup fep             

fep wif             

fep dax fep             

kiki dax fep             

fep dax kiki             

Participant 1
iconic concatenation;

gazzer             

wif gazzer             

gazzer lug             

gazzer gazzer             

gazzer zup dax             

gazzer zup gazzer             

dax zup gazzer             

Participant 2

wif             

blicket wif             

wif wif             

wif kiki             

wif zup dax             

wif zup wif             

dax zup wif             

Participant 3

kiki             

dax kiki             

kiki kiki             

kiki wif             

kiki lug fep             

fep lug kiki             

kiki lug kiki             

Participant 4
one-to-one; iconic concatenation; mutual exclusivity

zup             

dax zup             

zup zup             

zup tufa             

zup kiki wif             

wif kiki zup             

zup kiki zup             

Participant 5
one-to-one; iconic concatenation; mutual exclusivity

zup             

zup blicket             

kiki zup             

zup zup             

zup tufa lug             

zup tufa zup             

lug tufa zup             

Participant 6
one-to-one; iconic concatenation; mutual exclusivity

dax             

tufa dax             

dax dax             

dax fep             

dax lug wif             

dax lug dax             

wif lug dax             

Participant 7

tufa             

wif tufa             

tufa tufa             

tufa lug             

kiki gazzer tufa             

tufa gazzer kiki             

tufa gazzer tufa             

Participant 8
one-to-one; iconic concatenation; mutual exclusivity

blicket             

gazzer blicket             

blicket blicket             

blicket zup             

blicket tufa blicket             

wif tufa blicket             

blicket tufa wif             

Participant 9
one-to-one; iconic concatenation; mutual exclusivity

blicket             

blicket blicket             

blicket zup             

gazzer blicket             

blicket wif blicket             

fep wif blicket             

blicket wif fep             

Participant 10
one-to-one; iconic concatenation; mutual exclusivity

lug             

gazzer lug             

lug tufa             

lug lug             

lug wif lug             

blicket wif lug             

lug wif blicket             

Participant 11
iconic concatenation; mutual exclusivity

blicket             

fep blicket             

blicket wif             

blicket blicket             

blicket gazzer zup             

zup gazzer blicket             

blicket gazzer blicket             

Participant 12
one-to-one; iconic concatenation; mutual exclusivity

wif             

wif blicket             

wif wif             

kiki wif             

wif gazzer wif             

wif gazzer dax             

dax gazzer wif             

Participant 13
one-to-one; iconic concatenation; mutual exclusivity

zup             

lug zup             

zup zup             
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Example responses
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Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep             

fep fep             

zup fep             

fep wif             

fep dax fep             

kiki dax fep             

fep dax kiki             

Participant 1
iconic concatenation;

gazzer             

wif gazzer             

gazzer lug             

gazzer gazzer             

gazzer zup dax             

gazzer zup gazzer             

dax zup gazzer             

Participant 2

wif             

blicket wif             

wif wif             

wif kiki             

wif zup dax             

wif zup wif             

dax zup wif             

Participant 3

kiki             

dax kiki             

kiki kiki             

kiki wif             

kiki lug fep             

fep lug kiki             

kiki lug kiki             

Participant 4
one-to-one; iconic concatenation; mutual exclusivity

zup             

dax zup             

zup zup             

zup tufa             

zup kiki wif             

wif kiki zup             

zup kiki zup             

Participant 5
one-to-one; iconic concatenation; mutual exclusivity

zup             

zup blicket             

kiki zup             

zup zup             

zup tufa lug             

zup tufa zup             

lug tufa zup             

Participant 6
one-to-one; iconic concatenation; mutual exclusivity

dax             

tufa dax             

dax dax             

dax fep             

dax lug wif             

dax lug dax             

wif lug dax             

Participant 7

tufa             

wif tufa             

tufa tufa             

tufa lug             

kiki gazzer tufa             

tufa gazzer kiki             

tufa gazzer tufa             

Participant 8
one-to-one; iconic concatenation; mutual exclusivity

blicket             

gazzer blicket             

blicket blicket             

blicket zup             

blicket tufa blicket             

wif tufa blicket             

blicket tufa wif             

Participant 9
one-to-one; iconic concatenation; mutual exclusivity

blicket             

blicket blicket             

blicket zup             

gazzer blicket             

blicket wif blicket             

fep wif blicket             

blicket wif fep             

Participant 10
one-to-one; iconic concatenation; mutual exclusivity

lug             

gazzer lug             

lug tufa             

lug lug             

lug wif lug             

blicket wif lug             

lug wif blicket             

Participant 11
iconic concatenation; mutual exclusivity

blicket             

fep blicket             

blicket wif             

blicket blicket             

blicket gazzer zup             

zup gazzer blicket             

blicket gazzer blicket             

Participant 12
one-to-one; iconic concatenation; mutual exclusivity

wif             

wif blicket             

wif wif             

kiki wif             

wif gazzer wif             

wif gazzer dax             

dax gazzer wif             

Participant 13
one-to-one; iconic concatenation; mutual exclusivity

zup             

lug zup             

zup zup             

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-biases-v2/analysis_biases_v2.html

1 of 3 12/18/18, 6:00 PM

Example responses

Figure 3: Inductive biases in seq2seq word learning from Exp. 2 and 3. A: In Exp. 2, Participants were asked to respond to the Test instruction
given the Study instructions, using only the symbols in the Pool. Shown are four examples trials (left and middle columns) examining mutual
exclusivity with varying counter-evidence (varied across rows) and pool sizes (varied across columns), and two example trials (right column)
examining iconic concatenation. All unique participant responses are shown with their frequency in parentheses. A canonical assignment of
pseudowords and colors was used to aggregate the data, but it was randomized in the experiment. B: Responses from two participants in the
Exp. 3 free-form task. The top participant was consistent with ME, one-to-one, and iconic concatenation, while the bottom participant was
missing the one-to-one bias. For part B the words and colors are as-seen in the experiment.

mixed model predicting whether or not a response was con-
sistent with ME. Both the number of contradictory examples
(β = 1.76, SE = 0.483, Z = 3.64, p < 0.001) and pool size
(β = 2.05, SE = 0.698, Z = 2.93, p < 0.01) were significant
predictors, indicating that people were willing to override or
weaken ME when faced with more ME counter-evidence (or
equivalently in our case, positive evidence that “RED” is the
right answer), or when more output symbols were available
in the pool (Fig. 4). The second effect is intriguing. Although
we leave a detailed analysis to future work, we conjecture
that it stems from pragmatic reasoning on behalf of the par-
ticipants: When five yet-to-be-named objects are in the pool,
ME is such a weak heuristic that participants might conclude
that the experiment is not asking them to rely on it.

There was strong confirmatory evidence for iconic con-
catenation. Across three trials that examined this bias in var-
ious forms, we found that 93.9% (n = 22) of responses were
consistent with iconic concatenation, even though no exam-
ples of concatenation were provided during this experiment
(Fig. 3A right column). In three trials where all of the output
symbols in the pool were already assigned to unique pseu-
dowords, participants had to choose between violating ME
by reassigning an output symbol, or violating one-to-one by
choosing a more complex functional or multi-element mean-
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Figure 4: The proportion of responses consistent with mutual exclu-
sivity (y-axis) declines with the number of contradictory examples
and the number of output symbols available in the response pool.

ing. Interestingly, the responses were evenly split (50.0%)
between following one principle versus the other.

Taken together, there was substantial support for three in-
ductive biases in how people approach compositional learn-
ing in sequence-to-sequence mapping problem, confirming
our hypotheses from Exp. 1. A drawback of this experiment’s
within-subjects design was the risk of judgments interfering
with one another. The experiment used heavy randomization
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and mitigated the risk that the biases could be learned from
the aggregate statistics of the stimuli, but these controls were
not perfect. The next experiment addresses these concerns.

Experiment 3: Inductive biases in free-form
response
In this experiment, participants responded to novel instruc-
tions without receiving any demonstrations, e.g., making
plausible guesses for the outputs of instructions “fep”, “fep
fep,” and “fep wif” and how they relate to one another. This
design offers the purest examination of people’s assumptions
since they have no relevant evidence about how to respond.

Methods. Thirty participants in the United States were re-
cruited using Mechanical Turk and psiTurk. The instructions
were similar as possible to the previous experiments, using
Exp. 2’s wording emphasizing there are multiple reasonable
answers and to provide a reasonable guess. Participants pro-
duced the output for seven novel instructions utilizing five
possible pseudowords (Fig. 3B). Responses were entered on a
single page, allowing participants to edit and maintain consis-
tency. Participants also approved a summary view of their re-
sponses before submitting. There were six pool options, and
the assignment of pseudowords and item order were random.
One participant was excluded because she or he reported us-
ing an external aid in a post-test survey.

Results. The results provide strong confirmatory evidence
for the three key inductive biases: ME, iconic concatena-
tion, and one-to-one. Although the task was highly under-
determined, there was a substantial structure in the responses,
unlike an untrained seq2seq recurrent neural network which
would respond arbitrarily. The majority of participants (17
of 29; 58.6%) responded in an analogous way to the par-
ticipant shown at the top of Fig. 3B. This set of responses
is perfectly consistent with all three inductive biases, as-
signing a unique output symbol to each input symbol and
concatenating to preserve the input ordering. Other partic-
ipants produced alternative hypotheses that followed some
but not all the inductive biases. Overall, 23 of 29 partici-
pants (79.3%) followed iconic concatenation, assigning con-
sistent (but possibly multi-element) output sequences to indi-
vidual input words (e.g., Fig. 3B bottom). In all but one of
these cases, each input word was assigned a unique output
sequence, abiding by mutual exclusivity (22 of 23; 95.7%).

Discussion and Conclusions
People learn in fast and flexible ways not captured by today’s
algorithms. After learning how to “dax”, people can immedi-
ately understand how to “dax slowly” or “dax like you mean
it.” These types of inferences are critical to language learn-
ing and understanding, yet modern recurrent neural networks
struggle to generalize in similarly systematic ways (Lake &
Baroni, 2018; Loula et al., 2018). To study these distinctively
human abilities, we examined people’s compositional skills
in novel language-like instruction learning problems. The
tasks followed the popular sequence-to-sequence (seq2seq)

framework from machine learning, allowing humans and ma-
chines to be compared side-by-side. Experiment 1 examined
how people learn novel instructions from examples, asking
participants to interpret sequences of pseudowords by pro-
ducing sequences of abstract output symbols. People could
learn new functions from just two examples and successfully
applied them to new inputs, while standard seq2seq recurrent
neural networks (RNNs) failed to generalize. People could
also handle longer sequences that require more compositions
than previously observed, again surpassing the skills of pow-
erful neural networks. Inspired by the errors participants
made, Experiments 2 and 3 investigated inductive biases that
constrain human learning, revealing that human learners draw
upon mutual exclusivity (ME), iconic concatenation, and one-
to-one in seq2seq word learning tasks.

More than a source of error, these biases provide important
inductive constraints. If people interpreted the instruction as
unanalyzable wholes, they would have no basis for general-
ization. Instead, people facilitate generalization by favoring
hypotheses that assign unique and consistent meanings to in-
dividual words and follow certain input/output ordering con-
straints. As the final experiment shows, participants assume
these characteristics before observing any data. The assump-
tions turn out to be powerful, characterizing most of the word
meanings in Exp. 1 and the related SCAN benchmark, even
though neither was designed with these biases in mind. No-
tably, the biases can mislead when learning function words;
this was the case in many of the errors made in Exp. 1.

Future work should investigate the origin and scope of
these biases through other compositional learning tasks. To
the extent that our tasks evoke language learning, they could
recruit biases known in the developmental literature such as
mutual exclusivity (Markman & Wachtel, 1988). If the out-
puts are viewed as objects, one-to-one is related to the whole
object assumption in word learning (Macnamara, 1982). Al-
ternatively, if the outputs are viewed as events or actions,
iconic concatenation could be justified by aligning a descrip-
tion with its content in time (de Ruiter et al., 2018). Another
important line of future work should be providing a more ex-
plicit account of how the biases, which we observed emerg-
ing in participants’ errors, are also aiding faster learning of
the correct generalizations.

These insights from human learning could be fruitfully in-
corporated into machine learning. These biases could facili-
tate learning of seq2seq problems such as machine translation
and semantic parsing, or related image2seq problems such as
caption generation. Powerful seq2seq models do not have
these inductive biases, suggesting a path to building more
powerful and human-like learning architectures by incorpo-
rating them.
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Abstract
Subject of this article is the question whether the potential for
automatic defect analysis for symbolic timed ACT-R models as
demonstrated in earlier work can be developed into a scalable and
comprehensible technique. We present a formal, operational model
of an ACT-R architecture and a translation scheme of ACT-R
models into timed automata. We have applied this translation
to ACT-R models and report on scalability experiments with
automatic defect analysis.
Keywords: ACT-R; Cognitive Architecture; Formal Methods;
Timed Automata; Modelling

Introduction
ACT-R (Anderson, 1983, 2009) is a cognitive architecture (an
implementation of a unified theory of cognition) that is widely
used in cognitive modelling to validate psychological theories. A
psychological theory is a hypothesis on how a given task is solved
by humans. Psychological theories can be validated by construct-
ing an ACT-R model that implements the psychological theory
and comparing the model’s predictions to experimental data.

The work (Langenfeld, Westphal, Albrecht, & Podelski, 2018)
points out that it is critical for this approach that an ACT-R
model correctly implements the psychological theory because
an incorrect ACT-R model (wrt. the psychological theory) may
lead to a false rejection or false acceptance of an invalid theory
as follows. An incorrect ACT-R model may give predictions that
do not match experimental data although the theory’s predictions
would (thus false rejection), or the model may give predictions
that do match the experimental data although the theory’s
predictions would not (thus false acceptance).

(Langenfeld et al., 2018) introduce the notion of model defect
in general, i.e., any kind of programming error in production rules
like simple typing errors, forgotten conditions or requests, etc.
They formally study the following three model properties that can
indicate the presence of errors. The first considered model prop-
erty is called deadlock, a situation where model execution cannot
continue although the model is not in a final state. The second
property is correctness of the mental model, that is, the questions
whether it is possible to observe expected chunks (as defined by
the psychological theory) during model executions and whether it
is impossible to observe unexpected chunks. The third property is
timing feasibility, that is, whether an ACT-R model is principally
able to reproduce timing aspects that are observed in experimental
data (e.g. given a model, is it possible to complete the necessary
computation steps of the ACT-R model within the time frame ob-
served with human participants). Using an abstract, formal seman-

tics of ACT-R (Albrecht & Westphal, 2014b), it is principally pos-
sible, effective, and useful from a modeller’s point of view to auto-
matically and exhaustively analyse ACT-R models for the absence
of defects (Langenfeld et al., 2018). Spotting such errors by simu-
lation alone is, in contrast, tedious and time consuming in general.

Subject of this article is the question whether the potential for
automatic defect analysis for symbolic timed ACT-R models
as mentioned above can be developed into a scalable and
comprehensible technique. To this end, we present a formal,
operational model of an ACT-R architecture and a translation
scheme of ACT-R models into the same formalism of timed
automata (Alur & Dill, 1994), that allows us to easily model the
discrete, timing, and concurrency aspects of ACT-R and that is
well supported by existing analysis tools (Behrmann, David, &
Larsen, 2004). We have applied this translation to artificial ACT-R
models as well as an ACT-R model from the research literature
and we have found the analysis of the resulting network of timed
automata (using existing tools) to scale well, both in number of
chunks and number of production rules. By using the formalism
of timed automata, we obtain a comprehensible model including
all architecture aspects, hence the potential to analyse theories
regarding architectures in addition to psychological theories.

Related Work. Formalisations of the ACT-R semantics appear
in (Albrecht & Westphal, 2014b) and later in (Gall & Frühwirth,
2014; Gall & Frühwirth, 2018), and are used towards comparing
cognitive architectures (Ragni et al., 2018).

Preliminary results on the formal analysis of ACT-R models
for defects have been presented in (Albrecht & Westphal, 2014a)
and elaborated in (Langenfeld et al., 2018). The feasibility of
such analyses is investigated by encoding simplified fragments
of ACT-R architecture and model aspects and selected rules into
logical formulae that can effectively be analysed for satisfiability.
This work, in contrast, supports a wider range of analysis goals
and aims at a comprehensible model of an architecture and a
complete ACT-R model.

An analysis procedure for confluence of ACT-R models can
be obtained by encoding an ACT-R architecture and models in
constraint handling rules and solving the confluence problems
in this domain (Gall & Frühwirth, 2017).

Preliminaries
F-ACT-R. The formal description of ACT-R (Albrecht, 2013;
Albrecht & Westphal, 2014a) differentiates between a syntactical

618



description of the ACT-R model and description of the semantics
assigned to the constructs of the model by a cognitive architecture.

The abstract syntax of ACT-R defines a model over a set of
module signatures. A module signature consists of a finite set
of buffers B, a finite set of module queries Q, and a finite set of
action symbols A. A production rule r is a pair of a precondition
and an action. A precondition is a proposition over buffer slots
and module queries. An action is a set of similar propositions
together with a buffer and an action symbol. An ACT-R model
is a finite set of production rules R= {r1,...rn} and a finite set
of chunks {c0,...,cn}.

An ACT-R architecture consists of a interpretation function
for the action symbols of modules and a production rule selection
mechanism. A cognitive state is a function γ from buffers to pairs
(c,d) where c is a chunk and d is a time delay. A pair in γ thus
describes buffer contents (if d = 0) and buffer assignments in
the future (if d > 0). The ACT-R architecture works in cycles
of production rule selection and execution. Cognitive states γ,γ′

are in a successor relation (γ
(r,t)−−→γ′), if the selection mechanism

chooses production rule r (consuming time t) whose precondition
is fulfilled by the current cognitive state γ and γ′ is the result of
applying the interpretation of every action symbol of r to γ.
Running Example. The addition model from the ACT-R
tutorial (Bothell, 2017b), Unit 1.7.1, models the addition of two
numbers by counting up from the first number in as many steps as
given by the second number. To implement counting, the model
uses rules whose preconditions match the current number and
retrieve the corresponding count fact, i.e. a pair of a number and
its direct successor, from declarative memory. In our examples
we use the production rule initialize-addition, which is only
applicable at the beginning of the computation. Its precondition
requires an empty goal buffer slot sum. To start the addition, its
action assigns the first number of the addition to goal buffer slot
sum, and 0 to the count slot that tracks counting of the second
number. Then a retrieval for the successor of sum is started.
Timed Automata. Timed automata (Alur & Dill, 1994) are
a formal, operational model of real-time systems, i.e., systems
that have to compute outputs within certain time intervals. In the
simplest case, a timed automaton A is a tuple (L,B,X,I,E,`ini)
comprising a finite set of locations L (including the initial
location `ini), a set of channels B, and a set of clocks X. Function
I labels each location with a clock constraint (called location
invariant), and E is a finite set of edges. An edge (`,α,ϕ,ρ,`′)
comprises source and destination location ` and `′, action α

(which can be the internal action τ, or an output b! or input b?
on a channel b∈B), clock constraint ϕ as guard, and the update
ρ⊆X that denotes the set of clocks to be reset.

The operational semantics of a network of timed automata
N =A1‖···‖An (‘‖’ denoting parallel composition) is a labelled
transition system over configurations 〈~̀ , ν〉 where ~̀ i is the
current location of automaton Ai and ν :X→R+

0 is a valuation
of the clocks. Two configurations are in transition relation
〈~̀ ,ν〉 λ−→〈~̀ ′,ν′〉 if and only if λ∈R+

0 ,~̀=~̀ ′, and ν′=ν+λ satisfies
the invariants of all locations in~̀ (delay transition), or there is

an edge (`,τ,ϕ,ρ,`′)∈Ei such that~̀ i = `,~̀ ′i = `′, ϕ is satisfied
in ν, and ν′ is obtained from ν by resetting the clocks in ρ to
zero (internal transition), or there are two edges enabled in two
different automata in N with complementary input and output
actions (rendezvous transition). A computation path of a network
of timed automata is a sequence of configurations starting with
〈~̀ 0,ν0〉 where~̀ 0 comprises the initial locations, and ν0 assigns
value 0 to all clocks (and satisfies all location invariants), and
subsequent configurations are in transition relation.

The modelling, simulation, and model-checking tool Up-
paal (Behrmann et al., 2004) extends the simple case by features
such as data variables, broadcast channels, and committed
locations where no delay is possible. In the remaining article,
we use a graphical representation of timed automata (see, e.g.,
Figure 1) where the double outline location is initial, locations
marked by a ‘C’ are committed locations, and invariants (if any)
are shown in purple. Edges are annotated with action (in cyan),
guard (in green), and updates (in blue).

TA-ACT-R
In this section, we describe how we represent ACT-R models
by networks of timed automata that can then be analysed for
ACT-R model defects. Recall that an ACT-R model R is a finite
set {r1,...,rn} of production rules that has computations on an
architecture A.

Given an ACT-R model R and an architecture A, we construct
networks N R and N A of timed automata such that we can
conclude from analysis results of the network N R‖N A to the
presence or absence of model defects in the ACT-R model on
architecture A. Constructing the network N A can be considered
a one-time effort: In the case described below, we consider timed
automata that follow the production rule selection mechanism
and the behaviour of models in the ACT-R tool. Network N A

can be composed with any N R, i.e., with any network of a
specific ACT-R model, as long as model R is compatible with
the modules offered by A.

In the following paragraphs, we first describe the construction
of the timed automata in N A that model module behaviour, here
on the example of the declarative module. Then we describe the
construction of production rule automata to obtain N R, and con-
clude with the production rule selection mechanism in N A. Fig-
ure 5 visualises the overall structure and potential communication
between the timed automata in N R‖N A over shared channels.

Chunks and the Declarative Module. The declarative module
is responsible for memory management, i.e. to maintain and recall
chunks of previously learned information. Actions of production
rules can initiate a recall of information, e.g., the successor of a
number in the addition model, and the declarative module delivers
one (of possibly many) matching chunks or none at all. Recalling
information takes time: In ACT-R, the declarative module takes
a certain amount of time to recall information (retrieval delay)
or considers a recall failed after a time limit (retrieval threshold).

Our TA-ACT-R model of the declarative module is a set of
timed automata that realise the behaviour described above. It com-
prises one timed automaton AD, and one timed automaton Ach
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Figure 1: TA-ACT-R chunk automaton Ach.

for each chunk in memory. The idea of this structure is that, for
each recall action, AD stimulates all chunk automata at once, and
each chunk automaton with a chunk matching the current recall
action offers its chunk to AD. Selection between matching chunks
is non-deterministic (and exhaustively considered in analysis).

Figure 1 shows the TA-ACT-R chunk automaton Ach. From the
initial location idle there are two possible ways of handling a re-
call action: Either the chunk managed by Ach matches the request
(continue to the right) or not (continue to the left). The distinction
between the two cases is made by function check retr cond(),
which hides the details of comparing the request (as specified
by shared variables). Both edges (to the right and to the left of
idle) reset clock t to 0. By the invariants of the bottom right (or
left) locations (shown in purple), either an amount of time units
corresponding to retrieval delay or retrieval threshold pass. In case
of a match (bottom right location), automaton Ach can send or
receive on the broadcast channel retrieved chunk. If multiple
chunks match, exactly one chunk automaton non-deterministically
acts as sender and all others receive simultaneously. In any case
(including no matching chunk), the synchronisation moves the au-
tomaton back to location idle and the recall action is completed
from the perspective of the chunk automaton. Only the chunk au-
tomaton acting as sender writes its chunk into the shared variable
retrieval buffer that models the retrieval buffer of the declar-
ative module and sets the buffer flag bst to indicate that there is
a chunk in the retrieval buffer. This update corresponds to placing
the retrieved chunk in the declarative module’s retrieval buffer.

That is, the timing behaviour of the declarative module is
modelled in the chunk automata. Note that our model can support
any number of chunks in memory, yet an upper bound on the
number of Ach automata needs to be fixed before analysing the
model. This constraint corresponds to the observation that the ma-
jority of ACT-R models considers cognitive tasks that are solved
in bounded time, and there is the assumption that only finitely
many chunks can be used in bounded time. Yet an analysis of a
TA-ACT-R model can detect if a given upper bound is sufficient
to support a given ACT-R cognitive model. If not, the upper
bound on the number of chunks can be increased and the analysis
restarted, which in particular allows us to analyse the maximum
number of chunks actually considered in a given ACT-R model.
Note, that the specified number of chunks only restricts memory
size but not memory content. Chunk content may be set in
advance modelling pre-existing declarative knowledge (as in the
addition model) and content may be acquired by chunk automata

Figure 2: TA-ACT-R automaton AD (declarative).

during run time (modelling learning of declarative knowledge).
Checking for matching chunks, retrieving one matching chunk

(if any), and reporting the result of the recall action is organised
by the timed automaton AD shown in Figure 2.

In the TA-ACT-R model, the recall action is started by a
synchronisation on channel start retrieval with a rule
automaton (see below) and taking the edge from location idle
downwards. Without intermediate delay, the module flags are
updated to indicate that the declarative module is busy and
then the chunk automata are triggered by sending on channel
ch start retrieval (cf. Figures 2 and 1) and changing to
location wait. From location wait, there are two cases: either
at least one chunk matched or none. The first case is handled by
the sequence of edges to the right of wait (by synchronising
with the chunk automata as explained above) and updating some
more shared variables of the network, so that other automata in
the complete network can access the recalled chunk. The second
case (no chunk matched) is handled by the mostly symmetric
sequence of edges to the left of wait, which sets the module’s
flags accordingly. In both cases, before returning to location
idle and being ready for the next recall action, the procedural
automaton is notified of completion by synchronisation on
channel set buffer chunk.

Note that Figure 1 shows a simplified chunk automaton for
brevity of this presentation. In general, the declarative module
is able to learn new chunks. Further note that TA-ACT-R models
the purely symbolic variant of ACT-R declarative memory,
that is, fulfilling a request is a sufficient condition for a chunk
being retrieved from memory. In general, retrieval through the
declarative module is affected by an activation value that models
the effect of frequent usage of a chunk and prevents chunks with
an activation value below a given threshold from being retrieved
from memory. The analysis of the TA-ACT-R model presented
here hence detects model errors like deadlock or (in)correctness
of the mental model under the assumption of perfect memory.
These errors do not disappear when considering activation hence
such errors should be removed before considering more expensive
analysis with activation (which is future work).

Production Rules. Given an ACT-R model R consisting of the
rules r1,...,rn, the network N R is the parallel composition of n
rule automata, i.e. N R=Ar1‖···‖Arn .

Figure 3 shows a concrete rule automaton to illustrate the prin-
cipal construction of rule automata. Each rule automaton has two

620



Figure 3: TA-ACT-A automaton Ar of the production rule
initialize-addition of the addition model.

cycles (or phases) starting in the initial location idle. To the left
is a single edge that synchronises with the procedural module au-
tomaton (see below) to determine the currently enabled production
rules. The principle is similar to the selection of a matching chunk
from the chunk automata by the declarative module automaton AD

in that it uses a broadcast channel (here conflict resolution).
If the procedural module automaton sends on con-

flict resolution, all rule automata simultaneously take
the left edge from idle to idle if the guard is satisfied.
Automaton Ar writing a value 1 into their position of the shared
array variable enabled indicates that it is possible to fire rule
r under the current module configuration.

If rule r is selected by the procedural module, the latter sends
on the rendezvous channel production fired[r]such that
the rule automaton takes the sequence of edges to the right of
idle (cf. Figure 3). The first edge in the sequence has updates
according to the actions of the rule, followed by a sequence of
edges that trigger activities of modules (in this example, of the
declarative module discussed above).

Figure 3 actually shows the rule automaton of the production
rule initialize-addition (cf. Preliminaries). The precondition of this
rule, ria for short, is satisfied if the goal buffer does not yet hold an
intermediate or final result. This precondition has a direct transla-
tion to the guard (shown in green) of the left edge in Figure 3. The
action of ria updates the goal buffer and prepares the buffer of the
declarative module for a chunk retrieval. This action directly trans-
lates to the update (shown in blue) of the right edge in Figure 3.

The general translation of a rule from an ACT-R model uses
the structure shown in Figure 3. A translation of the rule’s
precondition becomes the guard of the left edge and a translation
of the rule’s action becomes the update of the right edge, followed
by a sequence of synchronisations to initiate behaviour of the
modules referred to in the rule.

Procedural Module. Figure 4 shows the automaton that
realises the behaviour of the procedural module which selects
enabled rules for execution. As explained with the rule
automaton above, there are two phases. A rule execution
cycle starts in location wait delay by sending on channel
conflict resolution on the downward edge. Rules whose
preconditions are fulfilled receive, and update the shared
array enabled accordingly. If at least one rule is enabled,
the lower location is exited to the right. One enabled rule is

Figure 4: TA-ACT-R automaton AP (procedural).

selected non-deterministically and sending on the corresponding
production fired channel triggers the execution of the action
of the selected rule. The shared array enabled is also reset on
the right edge back to wait delay. In location wait delay,
the invariant and the guard of the outgoing edge ensure that the
next rule is executed at least FIRING DELAY time units later. In
case that no rule is enabled, the procedural module automaton
waits for any module to change state, since only a change in the
cognitive state makes it necessary to check again for an enabled
rule (Anderson, 2009; Bothell, 2017a). The self loop on the
location wait delay ensures that the firing delay is observed if
the cognitive state changes during the procedural module waiting
for the next rule execution cycle to start.

The Rule Execution Cycle. Figure 5 shows everything put
together. The network N A modelling the (ACT-R model
independent) architecture is the parallel composition AP‖AD‖···
of all module automata (as discussed above). The network N R

representing the behaviour of the considered ACT-R model R=
{r1,...,rn} is the parallel composition Ar1‖···‖Arn‖Ach

1 ‖···‖Ach
m

of the rule automata for R with m chunk automata (memory size).
The cognitive architecture of ACT-R interprets ACT-R models

by repetitive application of the following, 3-step rule execution
cycle: 1.) wait a fixed time, 2.) check rules’ preconditions on the
current cognitive state to determine the set of enabled rules, and
3.) executing the action of an enabled rule (if any; otherwise wait
for a change of the cognitive state). Modules may work during
the waiting time in Step 1. The same execution cycle is directly
visible in our TA-ACT-R model where Steps 1 to 3 are driven by
automaton AP and the steps are conducted in cooperation with
the rule automata. The basic rule execution cycle is controlled by
AP (acting as sender on different channels), yet during its waiting
time module automata may work concurrently.

Execution of the TA-ACT-R addition model would start by
AP waiting for the fixed time in location wait delay (Step 1;
cf. Figure 4) and then triggering each rule automaton to update
their enabled flag (Step 2; cf. Figure 4 and 3). In our TA-ACT-R
addition model, the shared variables are initialised such that the
initialisation production rule (as shown in Fig. 3) is enabled.
Hence AP would then trigger this rule automaton (Step 3; cf.
Figure 4 and 3). The rule automaton executes the actions of
its rule (possibly in cooperation with module automata) while
AP is already back in location wait delay, that models Step 1.
The retrieval action started by the rule automaton is processed
(including the retrieval delay) by the declarative module and
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Procedural Module

AP (Procedural)

Ar0 (rule 0) Arn (rule n)... ...

conflict resolution

production fired[0] ... [n]

Declarative Module

AD (Declarative)

Ach0 (chunk 0) Achn (chunk n)... ...

ch start retrieval

retrieved chunk

Imaginal Module

AI (Imaginal)

Visual Module Motor Module

Environment

AE (Environment)

set buffer chunk

imaginal new/modify

start retrieval

Figure 5: Structure of TA-ACT-R. Each white rectangle
represents one timed automaton in the TA-ACT-R model. Arrows
show potential synchronisation and are directed from senders to
receivers and labelled with the channel name. The grey boxes
group together those timed automata that together model an
architecture module. Note that the environment does not directly
interact with the imaginal module in ACT-R, but through, e.g., the
visual module. For our experiments, we have abstracted from this
indirection, a timed automaton model of, e.g., the visual module
would be placed in the structure as shown by the dashed boxes.

chunk automata (cf. Figure 2 and 1). After completion of this
retrieval, AP is notified about the changed cognitive state and
commences the next rule execution cycle (Step 1).

Formally, we observe sequences of timed automata configu-
rations that are related by delay or synchronisation transitions.
In these transition sequences of the TA-ACT-R network, we can
clearly identify those configurations that correspond to situations
right before starting a new rule execution cycle. In the more
abstract F-ACT-R semantics, a rule execution cycle basically cor-
responds to one transition between two cognitive states, namely

γ0
(r1,50)−−−−→γ1 where γ0={goal 7→(c0,0),retrieval 7→(⊥,0)} is the

initial cognitive state and γ1={goal 7→(c0,0),retrieval 7→(c2,50)}
is the cognitive state at the end of the rule execution cycle yet
waiting for the retrieval action to complete.

The abstract, F-ACT-R computation paths of a given ACT-R
model are hence refined by TA-ACT-R computation paths (one
transition in the F-ACT-R model is related to a sequence of
transitions in the TA-ACT-R model), which in turn is refined by
computations of the ACT-R tool. In all three cases, we can clearly
pinpoint the configuration right before the next rule execution and
thus conclude from, e.g., an analysis of a TA-ACT-R model to

the reachable cognitive states in the more abstract F-ACT-R view.

Discussion. Figures 1 to 4 show an abstract, comprehensible,
readable and simulatable model of an ACT-R architecture. Using
this architecture model, it becomes remarkably easy to evaluate
ACT-R models under different architecture assumptions of a much
wider range than the parameters of the ACT-R simulator allow.
For example, other retrieval delays are obtained by redefining
constants in AD (cf. Fig.2); counting presentations (to support
activation values) can be realised by increasing a counter in the
successful case of a chunk automaton; unsuccessful retrieval
of chunks in memory (sporadic forgetting) can be realised by
removing the left edge from idle in the chunk automaton; etc.

By using a formal modelling language like timed automata,
we obtain a precisely defined semantics. In contrast to a
textual description of ACT-R’s behaviour, it is unambiguously
determined which delays or edges are possible in each model
configuration. The Uppaal tool uses this fact to offer a convenient
simulation environment that shows, in each configuration, the
enabled edges and allows a user to choose the next one. If a
model analysis finds a defect, the simulator can be used to inspect
one computation path that exhibits the defect.

From these two aspects, we also envision a use of our
TA-ACT-R models in teaching ACT-R: We see our model to fill
a gap between a slide presentation of the concepts and principles
of ACT-R and the ACT-R tool. Instructors could use the timed
automata simulator in order to present the dynamic behaviour
of the ACT-R architecture from rule selection to module activities
before referring students to the ACT-R tool.

Evaluation

A highly relevant question on model analysis techniques and
tools is about scalability. To be practically useful, a tool needs
to be able to analyse ACT-R models that are used in cognitive
science research.

Our investigation of the scalability of our TA-ACT-R-based
approach to model analysis considers the following three research
questions: (1) How does the number of chunks in the declarative
memory affect the consumption of computational resources? (2)
How does the length of the cognitive computation path affect
the consumption of computational resources? (3) How does the
number of rules in the ACT-R model affect the consumption of
computational resources?

Addition Model. We have investigated the scalability of our
approach using a parameterised ACT-R model of the addition
task. Table 1a reports measurements of the classical addition
model with four rules that we apply to a given number of count
order chunks in declarative memory. The goal, that is, the number
of count steps necessary to complete the addition, is fixed and
thereby we isolate the effect on computational resource consump-
tion to the number of chunks. The analysis checks that for each
TA-ACT-R computation path, we finally observe the correct result
in the goal buffer. Table 1a shows that the analysis of this param-
eterised addition model easily scales to 1,000 chunks considered
for retrieval, while the length of the TA-ACT-R model compu-
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Decl. Time States Memory
25 0.09 s 165 8.1 MiB
50 0.17 s 165 8.9 MiB

100 0.29 s 165 10.7 MiB
500 1.20 s 165 24.5 MiB

1,000 2.70 s 165 40.8 MiB

(a) Computational resources used with
increasing number of chunks in the declarative
memory (Decl.) for fixed addend 9.

Decl. Time States Memory
25 0.1 s 681 8.4 MiB
50 0.7 s 1,431 10.6 MiB

100 2.5 s 2,931 17.8 MiB
500 65.2 s 14,931 177.6 MiB

1,000 254.8 s 29,931 653.9 MiB

(b) Resource consumption with increasing
number of chunks (Decl.), with highest
possible addend (chunk number minus 1).

Proc. Time States Memory

100 0.8 s 11,806 9.0 MiB

1,000 11.9 s 17,230 58.1 MiB

(c) Resource consumption with increasing
number of production rules (Proc.), with
highest possible addend.

Table 1: Evaluation results for time and memory consumption of an exhaustive analysis of addition models with verifyta
4.1.19 (Behrmann et al., 2004). Column ‘States’ gives the number of reachable configurations of the network of timed automata (cf.
Preliminaries). The figures given above are averaged over ten runs (i7-6500/2.5 GHz, 8 GiB, Windows 10/64bit laptop).

tation path remains constant as expected from the fixed goal.
Time consumption increases about linearly because each step of
the analysis algorithm needs to check each chunk automaton for
whether it offers a matching chunk; the reason for increased mem-
ory consumption is that the number of automata in the network
uniformly increases the size of each TA-ACT-R configuration.

Table 1b reports measurements from the same model discussed
above but with increasing addition goal. The model is supposed
to apply the highest number of count steps possible with the
given chunks, i.e. the instance with 1,000 chunks is supposed
to conduct 999 count steps. The time needed for the analysis
in the table scales roughly linearly in both, number of chunks
and length of computation; the numbers of reachable TA-ACT-R
configurations in the table grow linearly in the length of the
computation. Table 1b shows that an exhaustive analysis of the
model with a few hundred chunks takes not much more than a
minute. With an analysis time in this low order of magnitude,
we anticipate that our TA-ACT-R analysis can be effectively
used during the process of cognitive modelling, that is, to analyse
an ACT-R model for common errors, and, in case errors are
found, to fix these errors and re-run the analysis. For large chunk
numbers and computation lengths, the time needed to complete
the analysis becomes more noticeable. We suggest to value the
computation time wrt. the obtained outcome: After (in case of
the addition model) about 4 minutes, all possible computations
of the cognitive model have been considered.

Table 1c reports measurements from a different addition
model where each count fact is modelled as its own production
rule. That is, in order to, e.g., do 100 count steps, there are
100 different rules. Table 1c shows that the analysis of this
parameterised addition model easily scales to 1,000 rules.

Preferred Mental Model Theory. To evaluate the perfor-
mance of our TA-ACT-R-based approach on a cognitive model
from the research literature, we have considered the PMMT1

model that has been used in (Langenfeld et al., 2018) to illustrate
the usefulness of checking models for the absence of deadlocks

1The preferred mental model theory (PMMT; Ragni, Knauff, &
Nebel, 2005; Ragni & Knauff, 2013) is the most recent refinement of
the established mental model theory (MMT; Johnson-Laird, 1980), that
aims to explain human spatial reasoning.

(a deadlock is a cognitive state where no production rule is able
to fire while the end of the modelled behaviour has not been
reached).

The considered ACT-R model of the PMMT is technically
non-trivial as it makes use of multiple modules (often in the same
rule) and depends on complex preconditions including buffer
requests and module queries. From its design parameters (about
40 production rules, less than 10 learned chunks), we would have
expected an exhaustive analysis of the computational space of
the TA-ACT-R model to take at most one second considering
the figures in Table 1. In fact, the analysis was much faster:
The analysis tool verifyta (Behrmann et al., 2004) reported
the absence of deadlocks for every possible combination of two
premises and a conclusion within 146ms (storing 701 TA-ACT-R
states in 8.7 MiB of memory). Thus there are complex ACT-R
research models that can be very efficiently analysed for the
absence of model defects (Langenfeld et al., 2018).

Conclusion and Future Work

As future work we will automate the translation of the production
rules of an ACT-R model to the according automata to enable
the analysis of models without manual translation. We will also
extend TA-ACT-R by hybrid processes like chunk activation
and retrieval delays. We will also integrate hybrid processes
(e.g. calculation of chunk activation and retrieval delays) into
TA-ACT-R to replace the non-deterministic sub symbolic layer
for more precise analysis of ACT-R models.

In this article we investigated the potential for automatic defect
analysis of ACT-R models. We developed a formal but easy to
comprehend model of the ACT-R architecture and a translation
scheme for ACT-R models. Benchmark results show, that the
analysis of useful properties scales well for high numbers of
chunks and production rules so that it can be applied during
model development.
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Abstract 
In this study we investigated the role of conceptually rich 
explanations and anomalous evidence in children’s scientific 
belief revision. We also explored whether the order in which 
children experience these two learning opportunities 
influences their belief revision ability. Five-year-old children 
were assigned to one of two conditions, where they either first 
received conceptual explanations about buoyancy and then 
observed anomalous data in a guided activity (Explanation-
First), or the reverse (Anomalies-First). Results showed that 
(1) conceptually rich explanations lead to more accurate 
predictions about which objects sink and which float than 
anomalous data presentation, and (2) when explanations and 
anomalous data were combined, children’s correct predictions 
increased significantly from pre-test to post-test when they 
received the conceptual information before the anomalous 
evidence (Explanation-First), but not in the opposite order 
condition (Anomalies-First). These results suggest that 
children are more likely to maintain their misconceptions 
when exposed to anomalies without prior instruction 
involving conceptually rich explanations.  

Keywords: cognitive development; belief revision; scientific 
reasoning 

 

Supporting Scientific Belief Revision 
Scientific beliefs have their foundations in early 
development. Much of children’s early science learning is 
informal, and the intuitive theories they build through daily 
observation and cultural learning are frequently at odds with 
accurate scientific theories (Kuhn, 1989; Vosniadou & 
Brewer, 1992). Children’s naïve misconceptions are often 
resistant to change (Vosniadou, 2002) and some persist into 
adulthood (Coley & Tanner, 2012; Pine, Messer, & St. John, 
2001; Shtulman & Valcarcel, 2012). Conceptual change is 
the process of restructuring naive theories to include  
counter-intuitive concepts, which for some scientific 
domains can be a lengthy and arduous process (Vosniadou, 
2013).   

The process of early scientific reasoning has been 
compared to formal scientific theory change, in which 
children get to formulate, test, and revise hypotheses based 
on evidence and observations (Gopnik, 2012; Gopnik & 
Wellman, 2012). As part of this process, experiencing 
anomalous evidence that contradicts existing naïve theories 
is an important driver of belief revision. For example, some 
existing research suggests that, depending on which type of 

anomalous data they observe, preschool children either 
explain away or change their naïve theories about how 
objects balance (Bonawitz, Van Schijndel, Friel, & Schulz, 
2012). 

However, anomalous data may not always be sufficient 
for facilitating belief revision. Research about causal 
systems has indicated that when children are shown novel 
causal systems, they can theorize about the causal relation in 
these systems, and are subsequently resistant to changing 
these theories, even when immediately presented with new 
anomalous data (Schauble, 1990; Schulz, Goodman, 
Tenenbaum, & Jenkins, 2008). This is compounded by the 
fact that although providing children with anomalous data 
presents an opportunity for belief revision, children often 
make errors during the observation, interpretation, 
generalization, or retention stages of science activities when 
they encounter anomalous evidence (Chinn & Malhotra, 
2002).  

In the case of existing misconceptions, children’s 
tendency to hold onto naïve theories may be even more 
pronounced as these theories are more entrenched. 
Children’s difficulty in making inferences from evidence 
that is in conflict with their naïve theories may result from 
the absence of a viable  alternative theory (Chinn & Brewer, 
1993). If children are provided with alternative 
explanations, they may be better equipped to interpret the 
anomalous data they encounter and as a result be more 
likely to engage in belief revision. Thus, combining 
anomalous evidence with correct conceptual explanations 
may be particularly effective for belief revision and science 
learning more generally (Koslowski, 1996).   

Current Study 
The goal of the current study was twofold. First, we 
examined the role of conceptually rich explanations and 
anomalous evidence in children’s ability to revise an 
existing naïve scientific belief. Second, we explored 
whether the order in which children experience these two 
learning opportunities influences their belief revision ability.  
Five-year-old children were provided with conceptually rich 
information about buoyancy (during a brief picture book 
reading session) either before or after they had the 
opportunity to observe anomalous examples (i.e., heavy 
objects floating) in a guided play activity. We selected to 
deliver the conceptually rich explanations in a picture book 
format not only because picture-book reading is an 
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enjoyable activity for many young children, but also 
because research has shown that young children can learn 
scientific information from picture books, even in cases 
where they hold misconceptions (Kelemen, Emmons, 
Seston Schillaci, & Ganea, 2014; Venkadasalam & Ganea, 
2018). We presented anomalous evidence through a guided 
activity, which allowed for active engagement with real, 
physical objects (Nayfeld, Brenneman, & Gelman, 2011; 
Peterson & French, 2008). Here, we were interested in how 
children interpret and generalize from real-life anomalous 
evidence. In guided activities, adults plan an activity with a 
learning goal, and scaffold this learning, which allows 
children to maintain an active role in the process (Weisberg, 
Hirsh-Pasek, & Golinkoff, 2013). Thus, guided activities 
provided children with hands on opportunities to interact 
with anomalous evidence in an engaging way, but also 
ensured that they were able to produce such evidence with 
guidance.   

We examined belief revision in children’s acquisition of a 
physical science concept (buoyancy), a concept with 
common misconceptions. Buoyancy is the upward force on 
objects in a liquid. An object floats if the buoyant force is 
equal to the force of gravity, and an object sinks when the 
gravitational force is stronger. Sinking and floating are 
concepts taught throughout science education (Kallery, 
2015; Selley, 1993) and ones for which children often hold 
misconceptions (Hardy, Jonen, Möller, & Stern, 2006; Yue, 
Tomita, & Shavelson, 2008). One difficulty young children 
have is that they often conflate density with weight 
(Wilkening & Cacchione, 2011), which is problematic when 
children have to compare the relative densities of the objects 
and water, often leaving them with the misconception that 
heavy objects sink and light objects float (Lehrer, Schauble, 
Strom, & Pligge, 2011; Smith, Carey, & Wiser, 1985). 
When 5-year-old children notice anomalies to their intuitive 
theories (“heavy objects sink and light objects float”) they 
sometimes hypothesize about the material of the objects 
(e.g., wooden objects float). A focus on material is a 
promising step in children’s ability to think about density 
because some materials are less dense than others and 
therefore sink at different rates. However, to fully 
understand what makes objects sink or float, children also 
have to consider how the mass is distributed and therefore 
take into account the shape of the object as well. Here we 
explore the effect of pairing anomalies with conceptually 
rich explanations to promote children’s ability to dissociate 
the objects’ behavior in water from their weight and 
recognize the role of air-filled cavities and surface tension in 
explaining why objects sink or float.   

The study was designed using a pre-, mid-, and post-test 
to measure children’s belief revision. In each test phase, we 
examined differences in children’s predictions of whether 
objects would sink or float as a function of the order of 
instructional methods used (conceptual information or 
anomalous data). Children’s predictions were chosen as an 
implicit measure of learning. The pre-test allowed us to 
control for children’s previous knowledge. The mid-test 

allowed us to determine the role of each learning 
opportunity (explanations or anomalous evidence) on 
children’s belief revision in isolation. Finally, the post-test 
was used to determine whether the order in which children 
received the two learning opportunities mattered when they 
were combined.  

We expected that, when compared to pre-test scores, 
children’s predictions at mid-test about which objects float 
or sink would be significantly higher in the Explanation-
First condition but not the Anomalies-First condition. There 
is previous research showing that children are able to learn 
scientific information from conceptually rich explanations 
(Kelemen et al., 2014; Venkadasalam & Ganea, 2018) and 
we expected to find the same type of evidence here. 
However,  given the existing research with adults on the use 
of anomalous evidence indicating that individuals often 
make errors in the interpretation and generalization of this 
evidence (Chinn & Malhotra, 2002), we expected that the 
exposure to anomalies alone will not lead to a change in 
children’s misconceptions.  

With respect to the order in which children receive the 
conceptually rich information and the anomalous evidence, 
we considered the possibility that children who received the 
anomalous data first may make comparable gains at post-
test after receiving the conceptual information. However, 
although possible this is not very likely, because without an 
alternative theory to explain the anomalies, children could 
appeal to extraneous variables to fit the anomalous evidence 
into their naïve theory, therefore strengthening it. As a 
result, the hypothesized difference at mid-test would remain 
significant at post-test, even after exposure to an alternative 
theory. The alternative order of presentation (explanations 
followed by anomalies) might be more effective, because 
children could rely on the conceptual information provided 
to interpret the anomalous evidence. 

Methods 

Participants 
Ninety-six 5-year-old children (M = 5.49; range: 5.03- 5.99, 
48 males) participated in this study. Equal numbers of 
children were randomly assigned to one of two conditions: 
Explanation-First (n = 48, Mage = 5.50, 24 males, 24 
females), and Anomalies-First (n = 48, Mage = 5.49, 24 
males, 24 females). Within these conditions, children were 
read one book and completed one activity. We developed 
two books and two guided activities to teach children about 
buoyancy. This was done to ensure that differences in 
learning did not arise from the type of book the child read or 
the activity the child completed. All 16 combinations of the 
books and activities were included and were 
counterbalanced, such that 6 children received each possible 
combination. No differences between the two types of books 
and activities were expected. 
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Procedure 
There were five phases in this study: a pre-test, a learning 
phase 1 (depending on the condition, Explanation-First or 
Anomalies-First), mid-test phase, learning phase 2 
(Explanation/Anomalies, depending on the condition), and 
the post-test. The session was video-recorded and lasted 40 
minutes to 1 hour.  
 
Test Phase. To measure children’s belief revision a pre-, 
mid- and post-test were administered. The procedure for the 
pre-, mid-, and post-test was identical. The materials 
for each of the 3 test phases included 4 pairs of objects, for a 
total of 12 objects pairs. Within each set of 4 pairs, two 
pairs of objects were the same weight, and two were 
different weights. Two of the pairs of objects were made of 
the same material and two were made of different materials. 
Materials included: metal, plastic, rubber, and glass. For 
each test phase, children received a different object set, but 
the order in which children received these sets was 
counterbalanced across the pre-, mid- and post-tests. 

Children were given objects in pairs to inspect. The 
experimenter told children what each object was made of so 
there was no ambiguity. Children were then provided with a 
scale and prompted to weigh the object pairs so they could 
definitively identify which object was heavier and which 
was lighter. To avoid differences in response patterns within 
the sample, within each object set the pairs of objects were 
presented in the same order to each participant: different 
weight/different material, same weight/same material, same 
weight/different material, and different weight/same 
material. 

After children were given time to inspect and feel the 
objects, weigh them, and were told what they were made of, 
children were asked the test question: “If I took these two 
objects and put them into the water, which one would float 
on the top and which one would sink to the bottom?”. Their 
predictions were recorded. Children received neutral 
feedback (“Thank you”) after answering each question. 

 
Learning Phase.  In this phase, we used picture books to 
deliver the conceptually rich explanations and guided 
activities to present children with the anomalous evidence. 
We developed two books and two guided activities to ensure 
that differences in learning did not arise from the type of 
book or activity used. For the picture books, we created an 
informational, non-fiction book, and a narrative, fiction 
book which contained the same conceptual information 
about buoyancy. Given previous work reporting no 
differences in children’s learning based on book genre, we 
did not expect to find differences between these two book 
types (Venkadasalam & Ganea, 2018). 

In the first guided activity, Activity One, children made 
predictions about whether 12 different objects would sink or 
float. The objects in this activity varied in weight and 
material. Children then tested these objects in water to see 
if their predictions were correct. The second activity, 
Activity Two, involved children manipulating a piece of 

clay into shapes that either floated or sank. Children then 
tested these shapes in water, demonstrating that an object 
with a constant weight can both sink and float. No 
differences were expected between activities as children 
were guided through each activity to ensure the production 
and observation of anomalous evidence and both activities 
were designed to demonstrate the same type of anomalies.  

Children in the Explanation-First condition were read the 
book prior to the activity, whereas children in the 
Anomalies-First condition were read the book following the 
activity. During the book reading, the experimenter read 
either the non-fiction or the fiction book to each child aloud. 
In the activity, the experimenter guided children through 
different instances where they could compare objects 
sinking and floating, either with the 12 objects in Activity 
One, or the pieces of clay in Activity Two. The books and 
activities were structured to be analogous in terms of their 
content. The goal of both learning phases was explicitly 
identified as teaching children about why objects sink or 
float. However, no mention of the book was made during 
the activity, and likewise no mention of the activity was 
made during the book.  

Coding 
Children’s predictions for which object would sink and 

which one would float in each pair were scored. Children 
who correctly identified which object in the pair would sink 
and which would float received a score of 1. A score of 0 
was assigned if children incorrectly identified the sinker and 
the floater in the object pair or if they said both objects 
would sink or both objects would float. Two research 
assistants coded 100% of the children’s responses from the 
video recordings. The coders were blind to the hypotheses 
of the study, the condition and test phase. There was high 
interrater reliability determined by Cohen’s κ = .91, p < 
.001, a 95.66% agreement rate. The coders resolved 
disagreements through discussion. 

Results 
In preliminary analyses, we ensured there were no 

differences between the scores at mid- and post-test as a 
result of the two types of books and activities used.  A 
Mann Whitney U-test found that scores for mid- and post-
test were similar for both books (ps > .84), and both 
activities (ps > .12). As there were no significant differences 
between the type of books and activities used in the 
intervention, these factors were collapsed in the following 
main analyses. We also examined differences between 
children’s knowledge across the two conditions at pre-test. 
A Mann Whitney U-test found that the pre-test scores were 
similar across conditions at baseline, U = 1017, z = -1.02, p 
= .31 with a mean rank pre-test score of 45.69 for the 
Explanation-First condition and 51.31 for the Anomalies-
First condition. Additionally, Wilcoxon Signed-ranks tests 
revealed that the pre-test scores were significantly lower 
than chance responding, indicating that children held 
misconceptions at pre-test (Explanation-First: Z = -3.35, p = 
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.001; Anomalies-First: Z = -2.32, p = .021). Table 1 displays 
the proportion of correct responses across the three test 
phases for both conditions. 

A generalized estimating equation (GEE) analysis with 
multinomial distributions and cumulative logit link 
functions was conducted to investigate whether children 
correctly predicted which object would sink and which 
would float. This type of analysis was selected to 
accommodate the ordinal dependent variable and the 
presence of a within-subject factor (pre-, mid- and post-test 
scores) in the data.  
 

Table 1: Percent Correct Responses Across Test Phases 
by Condition.  

Notes. Anom-First stands for the Anomalies-First condition. 
Expl-First stands for the Explanation-First condition. The 
percentages are calculated out of 48 total responses for each 
condition per test phase. 

 

There was no effect of condition, (p = .31), nor a difference 
between pre- and mid-test (p = .80), nor pre- and post-test (p 
= .10). However, there was a significant interaction between 
condition and test phase. From pre- to mid-test children in 
the Explanation-First condition were more likely to answer 
more test questions correctly, Wald χ2(1) = 19.87, p < .001, 
b = 1.51, SE = .34, compared to the Anomalies-First 
condition. Children in the Explanation-First condition 
(Exp(B) = 4.51, 95% CI = [2.33, 8.75]) were approximately 
four and a half times more likely to answer the test 
questions correctly at mid-test in comparison to the 
Anomalies-First condition.  

Additionally, from pre- to post-test children in the 
Explanation-First condition were more likely to answer 
more test questions correctly, Wald χ2(1) = 14.66, p < .001, 
b = 1.53, SE = .40, compared to the Anomalies-First 
condition. Children in the Explanation-First condition 
(Exp(B) = 4.62, 95% CI = [2.11, 10.09]) were 
approximately four and a half times more likely to answer 
the test questions correctly at post-test in comparison to the 
Anomalies-First condition. 

Post-hoc Wilcoxon Signed Rank Tests were conducted 
using a Bonferroni correction to account for multiple 
comparison (alpha = .008). There was a significant increase 
in children’s score in the Explanation-First condition 
between pre- and mid-test (z = 4.45, p < .001) and pre- and 
post-test (z = 4.86, p < .001), but not between mid- and post-
test (z = 1.63, p = .10). In the Anomalies-First condition 
there was no significant increase in scores for any of the test 
phases (ps > .13); see Figure 1. 

 

 
Figure 1: Mean Predictions Correct across Test-Phase by Condition 
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Discussion 
This study investigated the role of conceptually rich 
explanations and anomalous evidence in children’s revision 
of physical science misconceptions. We first found that 
children can revise their belief about what makes objects 
float or sink when provided only with a conceptual 
explanation but not when only witnessing anomalies.  
Compared to pre-test scores, children in the Explanation-
First condition made significantly better predictions at mid-
test after they received the conceptual information only. 
However, the children in the Anomalies-First condition did 
not make significantly better predictions after observing 
anomalies. This indicates that children maintain their 
misconceptions when they have exposure to anomalies.   

We also found that the order of instructional methods 
affects children’s belief revision in the context of a physical 
science concept. Children performed better at post-test when 
presented with rich conceptual explanations prior to 
observing anomalous evidence. The Explanation-First 
condition facilitated greater revision of beliefs than the 
Anomalies-First condition. Of note, even in the 
Explanation-First condition, when children observed 
anomalous evidence after they received the explanations, 
the anomalies did not lead to any significant changes. In 
contrast, results from the Anomalies-First condition showed 
that observing the anomalies first subsequently interfered 
with children’s ability to incorporate and apply the 
conceptual information they received from the picture book.  

Together these findings provide evidence that using 
anomalous data to promote belief revision can be 
challenging, as children are biased to rely on their own 
theories, and resistant to setting aside this prior knowledge 
when confronted with counter-evidence (Chinn & Brewer, 
1993; Kuhn et al., 1988). Despite observing 
counterexamples, children may ignore them, or even find a 
way to fit the anomalies within their existing theoretical 
framework, thereby strengthening their naïve 
misconceptions.  However, when children have access to a 
viable, alternative explanatory framework, they can then 
activate this alternative theory to interpret the anomalous 
evidence. Thus, the present findings indicate that 
supplementing prior beliefs with an alternative conceptual 
explanation before anomalous evidence is observed may be 
particularly effective for promoting knowledge revision.  

Further work is needed to determine if the addition of 
anomalous evidence affects retention after a delay. That is, 
while we found no positive effects of the anomalous 
evidence above and beyond what the explanations provided, 
observing anomalous evidence after receiving the correct 
explanation, may lead to greater retention of the new theory 
than receiving only the explanation alone.  

Another consideration for future work is that explicit 
connections were not made between the book and the 
activity. While these learning phases were built to be highly 
analogous, and the same content goal was verbally specified 
for both, no explicit connection was made between them. It 
is possible that with an explicit connection between the two,  

children may achieve higher performance across conditions.  
Additionally, in the current study the explanations were 

presented through a picture book. It is an open question 
whether results would be similar if both the explanations 
and anomalies are presented in a similar manner. Currently, 
we are exploring whether pairing live anomalous evidence 
with verbal explanations will have positive effects on 
learning. Further work should also explore the applicability 
of these findings to different scientific concepts. Sinking 
and floating are complex physical concepts, particularly for 
young children to grasp. It is possible that presenting 
children with anomalies only or first may be equally 
effective for belief revision for simpler concepts.  

The current results can inform our theories about the 
process of conceptual change and optimal science 
instruction. This study demonstrates the importance of 
critically examining not just what we teach children, but 
how we teach them, and in particular the order in which 
instruction is delivered. Presenting children with content 
information before they observe anomalous data prevents 
children from fitting anomalies into their naïve schema, 
giving them an alternative viewpoint from which to interpret 
this evidence. Therefore, this order of presentation better 
facilitates the revision of children’s misconceptions. 
Providing children with comprehensive explanations of 
phenomena they observe is a promising educational 
technique to improve their scientific reasoning and literacy.  
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Abstract 

During their first year, infants learn to name objects. To do so, 
they need to segment speech, extract the label and map it to the 
correct referent. While children successfully do so in the wild, 
previous results suggest they struggle to simultaneously learn 
segmentation and object-label pairings in the lab. Here, we ask 
if some of children’s difficulty is related to the uniform 
distribution they were exposed to, since it differs from that of 
natural language, and has high entropy (making it less 
predictable). Will a low entropy distribution facilitate 
children’s performance in these two tasks? We looked at 
children’s (mean age=10;4 years) simultaneous segmentation 
and object-label mapping of words in an artificial language 
task. Low entropy (created by making one word more frequent) 
facilitated children's performance in both tasks. We discuss the 
importance of using more ecologic stimuli in the lab, 
specifically- distributions with lower entropy. 

Keywords: Statistical learning; Multi-modal cues; Word 
segmentation; Word learning; Entropy; Children. 

Introduction 

During the first year of life, infants make their initial steps in 

learning language. One ability they acquire is naming objects. 

To do so, infants need to extract the segmented labels and 

map them onto the correct object. While infants learn some 

object-label mappings early on (Bergelson & Swingley, 

2012), even older children seem to struggle with 

simultaneously learning segmentation and object-label 

pairings in the lab. Previous work examined children’s ability 

to perform both tasks at the same time in a statistical learning 

paradigm (Lavi-Rotbain & Arnon, 2017). Children were 

exposed to an unsegmented speech stream where transitional 

probabilities served as a cue for word boundary (as in Saffran, 

Aslin, & Newport, 1996). The language had an additional 

visual cue to segmentation: each word was matched to an 

image of an object that appeared for the duration of the word 

(e.g., 'dukame'  blue star). The prediction was that the 

visual cue will assist segmentation and allow children to learn 

the object-label pairings, illustrating their ability to integrate 

multimodal cues. As predicted, the results showed that after 

a short exposure (under two minutes) 10;6-year-olds 

managed to learn both aspects (segmentation and object-label 

mapping). However, while children showed some learning of 

the object-label pairing (they were above chance, M=34.4%, 

chance=25%), their learning was relatively poor. Younger 

children (mean age: 7;8 years) did not learn the pairings at all 

(M=25.96%%, chance=25%), even though they are clearly 

capable of relating labels to objects in natural language. Why 

then do children struggle with this task in the lab? And what 

can we learn from their difficulty about the factors that 

impact children’s language learning?  Here, we ask how the 

distributional properties of the language may have impeded 

learning. In particular, we focus on the use of a uniform 

distribution – where all items are equally frequent. This was 

the distribution used in the previous study, and one that is 

used in most statistical learning studies.  

A uniform distribution of stimuli, where every element 

(e.g. word) is presented the same number of times, differs 

from what is found in natural language. Words in natural 

language have a Zipfian distribution (Zipf, 1936) with few 

very frequent words, and most words having low frequency. 

The Zipfian distribution is a highly skewed distribution, with 

a narrowed peak for the small number of very frequent words, 

and a long tail for the rest of the words. Words show a Zipfian 

distribution across many languages, in both adult-to-adult 

speech (Zipf, 1936; Piantadosi, 2014) and child directed 

speech (Hendrickson & Perfors, 2019; Lavi-Rotbain & 

Arnon, submitted). Other aspects of language, like 

grammatical categories, also show a Zipfian distribution 

(Piantadosi, 2014; Lavi-Rotbain & Arnon, submitted). 

Interestingly, the objects that infants see also show a Zipfian 

distribution (Clerkin, Hart, Rehg, Yu, & Smith, 2017). That 

is, using a uniform distribution does not accurately reflect the 

distribution of words (or objects) that children are exposed 

to.  

Moreover, uniform distributions are also less predictable 

than non-uniform distributions. One way to quantify the 

difference between them is to use Shannon's Entropy 

(Shannon, 1948). Entropy quantifies how unpredictable a 

distribution is as a whole, with higher entropy assigned to less 

predictable distributions. The uniform distribution is the least 

predictable - it is hard to guess which word will appear next 

when they all have equal probabilities - and consequently has 

high entropy. Non-uniform distributions, such as Zipfian 

distributions, are more predictable, and have lower entropies: 

it is easier to guess the next word when only a few are highly 

probable.  

Here, we ask if children’s simultaneous learning of 

segmentation and object-label pairings will be facilitated 

when using a distribution with low unigram entropy. Such a 

finding would have several important implications. First, it 

would indicate that children are sensitive to entropy, thereby 

expanding our understanding of the distributional properties 
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that impact learning. Second, it would highlight the 

importance of using stimuli that are more ecologically valid 

in their distributional properties: If children show better 

learning from a low entropy distribution, then previous 

conclusions about their ability to use multimodal cues may 

not be accurate. Under more natural conditions, children may 

show learning that was not previously detected. To give an 

example from another domain, children’s knowledge of 

irregular plurals is much better when they are produced in 

familiar frames, as they are often produced in natural 

language (e.g. children produce "teeth" more accurately after 

"brush your---” compared to on its own, Arnon & Clark, 

2011).  Assessing children’s morphological knowledge using 

single word elicitation under-estimated their true abilities, 

and could lead to inaccurate conclusions (e.g., that they have 

not learned the correct irregular form yet). Similarly, 

performance in artificial language learning studies improves 

when there are multiple cues to segmentation, as is found in 

natural language. Visual cues for word boundaries improve 

segmentation in adults (Cunillera, Camara, Laine, & 

Rodriguez-Fornells, 2010), as does the use of one-to-one 

mappings between words and objects (children: Lavi-Rotbain 

& Arnon, 2017; adults: Thiessen, 2010). Under these 

conditions, children and adults show better learning. 

Will a reduction in entropy have a similar facilitative effect 

on learning? Looking at another domain, adults' cross-

situational learning of novel object-label mappings was 

facilitated after exposure to a Zipfian distribution (with low 

entropy) compared to a uniform distribution (with high 

entropy) (Hendrickson & Perfors, 2019, Experiment 2). This 

facilitative effect was not found when words and labels were 

presented one at a time: the authors propose that Zipfian 

distributions are beneficial only when learners are faced with 

ambiguity. In such cases, the very frequent word can be 

learned early on and used to disambiguate later trials.  

Another reinforcement to the potential advantage of low 

entropy distributions comes from word segmentation studies: 

children's and adults' segmentation is facilitated when the 

input had low entropy (entropy was reduced by making one 

word more frequent than the other, Lavi-Rotbain & Arnon, 

2018, 2019), and when it has a Zipfian distribution 

(Kurumada, Meylan, & Frank, 2013). 

 Here, we expand on these findings to look at the effect of 

reduced entropy on word learning in children: will lower 

entropy facilitate learning in a task that involves both 

segmentation and object-label mapping? The segmentation 

task is inherently ambiguous: since learners are exposed to an 

unsegmented stream, successfully segmenting one word can 

help in segmenting the rest. An additional facilitative effect 

can come from the overall greater predictability of the input: 

non-uniform distributions are more predictable and have 

lower entropy. If learners are sensitive to such measures of 

the environment, then learning may be facilitated even in 

non-ambiguous situations. Since both factors are relevant for 

the segmentation task, we hypothesized that segmentation 

will be better under low entropy. The predictions are less 

clear about learning the object-label mappings. On the one 

hand, this task does not involve ambiguity: the same object is 

always presented with the same label. At the same time, the 

overall predictability of the mappings is greater in the non-

uniform distribution. If there is an effect of reduced entropy 

regardless of ambiguity, we should see a facilitative effect 

here as well. We hypothesized that learning the object-label 

mappings will also be facilitated under low entropy.  

The current study 

In the current study, we use the same artificial language 

learning paradigm used previously to examine children’s 

learning of multimodal information (Lavi-Rotbain & Arnon, 

2017). Children are exposed to an unsegmented speech 

stream containing four novel words, with consistent word-

object pairings (each word is paired with an object: e.g., 

'dukame' with a blue star). We ask if children will show better 

learning of both segmentation and object-label pairings when 

exposed to low entropy input compared to high entropy input. 

We focus our inquiry on words that have lower frequency. 

Frequency is known to affect word learning during infancy 

with more frequent words learned earlier (Goodman, Dale, & 

Li, 2008). Frequency, however, does not account for all the 

variance in a words’ age-of-acquisition. It is easy to find 

examples of low frequency words among the early acquired 

ones: for example, the word ' cheek' is learned at 22 months 

(Frank, Braginsky, Yurovsky, & Marchman, 2017), but 

appears only 18 per million. Could the low entropy found for 

words in natural language help children learn low frequency 

words? Finding such a pattern in our experimental 

manipulation would open up new avenues for understanding 

how low frequency words are acquired.  

We manipulate entropy by making one word much more 

frequent: in the high entropy condition, all words appeared an 

equal number of times (each word appeared 32 times). In the 

low entropy condition, one word was much more frequent 

(appearing 214 times), while the other three appeared 19 

times (half of the frequency of the words in the high entropy 

condition). We compare segmentation and word-object 

pairings for the low frequency words from the low entropy 

condition (which appeared 19 times) with the words from the 

high entropy condition (which appeared 32 times). If children 

are mostly sensitive to frequency, then learning should be 

better in the high entropy condition. However, if children are 

sensitive to more than mere frequency, in particular to the 

entropy of the distribution, than learning of the low frequency 

words should be better in the low entropy condition. If this 

happens regardless of ambiguity, then we should see better 

performance due to entropy reduction for both segmentation 

and learning the correct object-label pairings. 

Method 

Participants 

61 children took part in this Experiment (age range: from 9;0 

to 12;0 years, mean age: 10;4 years; 27 boys, 34 girls). We 

chose this age range since it matches the one used in the older 
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group of Lavi-Rotbain & Arnon (2017), where children 

showed poor learning of the object-label pairings. 

Participants were visitors at the Bloomfield Science Museum 

in Jerusalem and were recruited for this study as part of their 

visit to the Living Lab. Parental consent was obtained for all 

participants. None of the children had known language or 

learning difficulties and all were native Hebrew speakers. 

Each child received a small prize for their participation.  

Materials  

Auditory stimuli 

All participants were exposed to a familiarization stream 

corresponding to the condition they were assigned to. All 

streams were composed of the same four unique tri-syllabic 

synthesized words: "dukame", "nalubi", "kibeto", and 

"genodi". We used only four words to make the task learnable 

for children. As the results show, even this number proved 

challenging for children. The twelve different syllables 

making up the words were taken from Glicksohn & Cohen 

(2013). The syllables were created using the PRAAT 

synthesizer (Boersma & van Heuven, 2001) and were 

matched on pitch (~76 Hz), volume (~60 dB), and duration 

(250–350 ms). The four words were created by concatenating 

the syllables using MATLAB to ensure that there were no co-

articulation cues to word boundary. The words were matched 

for length (average word length- 860ms, range=845-888ms). 

The words were then concatenated together using MATLAB 

in a semi-randomized order to create the auditory 

familiarization streams. Importantly, there were no breaks 

between words and no prosodic or co-articulation cues in the 

stream to indicate word boundaries. The only cue for word 

boundaries was transitional probabilities (TP's): TP's 

between words were lower compared to TP's within words. 

   

Experimental conditions 

We created two auditory sequences, corresponding to two 

levels of entropy: high and low. In the high entropy level, 

words followed a uniform distribution with each word 

appearing 32 times in a semi-randomized order (no word 

appeared twice in a row). The sequence had 128 tokens and 

lasted 1:50 minutes. TP's within a word were 1, and TPs 

between words were 0.333. In the low entropy level, words 

appeared with a skewed distribution: one word appeared 80% 

of the time (214 appearances) while each of the other three 

words appeared only 7% of the time (19 appearances for each 

word). The sequence had 271 tokens and lasted 3:50 minutes. 

The identity of the frequent word was counterbalanced across 

subjects in the low entropy condition to prevent item-specific 

effects. TP's within a word were 1, but the TP's between 

words varied depending on the next word (since the frequent 

word in this condition was more likely to occur). See Table 1 

for full details of the experimental conditions. 

Visual stimuli  

While listening to the audio stream, participants saw shapes 

on the screen whose appearance was synchronized with word  

 

boundaries. Shapes appeared at word onset and remained 

onscreen for the duration of the word. Each word appeared 

always with the same shape and vice versa ("dukame": blue 

star, "nalubi": green hexagon, "kibeto": purple heart, and 

"genodi": orange diamond). In the low entropy condition, 

when the same word appeared twice in a row, the shape 

disappeared briefly (for 200 ms) at the end of the first 

occurrence and reappeared with the second occurrence onset. 

The visual stimuli is modelled on the regular condition from 

Thiessen (2010) and Lavi-Rotbain & Arnon (2017), which 

was shown to facilitate segmentation in both adults and 

children. See Fig. 1 for an illustration. 

Segmentation test 

This test asked how well children segmented the continuous 

stream into words using 16 two alternative forced-choice 

trials. The visual stimuli did not appear on screen during test. 

Participants heard two words and were asked to decide which 

belonged to the language they heard. We used non-words as 

foils ("dunobi", "nabedi", "kilume", and "gekato", average 

length: 860ms; range 854-868ms), created by taking three 

syllables from three different words, while keeping their 

original position. We used non-words (instead of part-words) 

as foils since these are easier to distinguish from ‘real’ words. 

Since children struggle with this task, we chose to focus only 

on the “easier” non-word vs. word distinction. Each of the 

four words appeared once with each of the four foils to create 

16 trials (in a random order, with the constraint that the same 

word/foil did not appear in two consecutive trials). The order 

of words and foils was counter-balanced so that in half the 

trials, the real word appeared first and in the other half, the 

foil appeared first. 

 

 

 

Fig. 1: Audio-video illustration  

Table 1:  Different experimental conditions 

 High entropy 

(Uniform) 

Low entropy  

Exposure length 

[minutes] 
1:50 3:50 

Number of 

tokens 
128 271 

Tokens per 

word 
32 

Frequent: 214 

Infrequent: 19 

Unigram 

entropy [bits] 
2 1.1 

TP's between 

words 
0.33 

For the frequent 

word: 0.75 

For infrequent 

words: 0.08 
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Word–shape correspondence test 

This test asked how well children learned the correspondence 

between the words and the shapes. In each trial, children saw 

the four shapes on the screen and heard one of the four words. 

Then, they had to choose the shape corresponding to the 

word. Each word was repeated four times on non-consecutive 

trials, to create 16 trials that appeared in a random order 

between subjects.  

Procedure  

After receiving parental consent, children were seated in front 

of a computer station with a noise-blocking headset next to 

an experimenter. The children were told they are about to 

hear an alien language, and that they need to pay attention to 

what they will see and hear and try to learn it as best as they 

can. Each child was randomly assigned to one of the two 

experimental conditions. After the exposure phase, children 

completed a segmentation test and a word-shape 

correspondence test. The instructions were identical in all 

conditions. 

Results 

Children were divided as follows between the two conditions: 

high entropy, N=28; low entropy, N=33. Age did not differ 

across entropy conditions (F(1)=0.195, p=0.66). In the low 

entropy condition, the frequent word was counterbalanced 

across subjects. A one way ANOVA revealed that 

performance was not impacted by which word was the 

frequent one in the segmentation test (F(3)=2.326, p=0.1), or 

in the recognition test (F(3)=0.52, p=0.67). Consequently, in 

all subsequent analyses we collapsed the data across the 

different frequent words. 

Segmentation analysis 

Children showed learning (were above chance) in both 

conditions (low entropy condition: M=73.9%, t(32)=7.69, 

p<0.001; high entropy condition: M=65.2%, t(27)=4.83, 

p<0.001). However, this success rate includes both the 

frequent and the infrequent word for the low entropy 

condition. Since the frequent word had much higher 

frequency (214 appearances) than the other words (19 

appearances) in the low entropy condition, it does not make 

sense to include the frequent word in our analysis. In order to 

examine the effect of entropy on low frequency words alone, 

we looked only at trials where  the correct answer was  a low 

 

Fig. 2:  Mean segmentation score of low frequency words 

by entropy condition with 95% confidence intervals 

frequency word (appearing 19 times during exposure). This 

left 12 trials per participant. In this subset of the segmentation 

test, children showed learning above chance of the infrequent 

words (low entropy condition: M=73.0%, t(32)=7.0, 

p<0.001) (see Fig. 2). We will now compare this mean to the 

one from the high entropy condition (73.0% versus 65.2% 

respectively). 

We used mixed-effect linear regression model to examine 

the effect of entropy level on segmentation of infrequent 

words. Following Barr et al. 2013, the models had the 

maximal random effect structure justified by the data that 

would converge. Our dependent binominal variable was 

success on a single trial of the segmentation test. We had 

entropy condition (high entropy condition as baseline) as a 

fixed effect, as well as: age-in months (centered); gender; 

trial number (centered); and order of appearance in the test 

(word-first trials vs. foil-first trials). The model had random 

intercepts for participants and for item (Table 2). To examine 

the overall effect of entropy, we used model comparisons.  

As predicted, entropy level impacted segmentation of low 

frequency words (chi(1)=3.2, p=0.07). Participants showed 

better segmentation of low frequency words in the low 

entropy condition compared to the high entropy condition, 

despite appearing half the times (β=0.42, SE=0.23, p=0.07). 

Order of appearance in the test significantly affected 

segmentation, with better accuracy on trials where the word 

appeared before the foil (β=0.39, SE=0.16, p<0.05), as has 

been found in previous studies (Lavi-Rotbain & Arnon, 2017; 

Raviv & Arnon, 2018). Since the order of presentation of 

 Table 2: Mixed-effect regression model for segmentation of infrequent words. Variables in bold were 

significant. Significance obtained using the lmerTest function in R. 

 

  Estimate Std. Error z value p-value  

 (Intercept) 0.69584     0.21439 3.246 <.01 **  

 Age (centered) 0.23516     0.14220    1.654   =0.098 .  

 Low entropy condition 0.42079     0.23321    1.804   =0.07 .  

 Gender (male) -0.03948     0.11747   -0.336   >.1  

 Trial number (centered) -0.02390     0.01705   -1.401   >.1  

 Order of appearance (word) 0.19385     0.07844    2.471   <.05 *  
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words and foils was counter-balanced this could not reflect a 

preference for pressing 1 or 2, and is in line with the "interval 

bias" which is often found in 2AFC tests (Yeshurun, 

Carrasco, & Maloney, 2008). Age almost reached 

significance: older children were slightly better than younger 

ones (β=0.24, SE=0.14, p=0.098). Trial number and gender 

did not affect segmentation (trial number: β= -0.02, SE=0.02, 

p>0.1; gender: β= -0.08, SE=0.23, p>0.1).  

The beneficial effect of low entropy on segmenting low 

frequency words cannot be attributed to learning only the 

frequent word, and ruling out foils due to syllables they share 

with the frequent word. To see if there is a difference between 

trials in the low entropy condition where the foil shared one 

syllable with the frequent word (M=72.7%) and trials where 

it didn’t (M=77.3%) we used a linear regression model with 

success on a single trial as the dependent binominal variable, 

and "is foil frequent" (assigned '1' for trials in which the foil 

shared any of its three syllables with the frequent word and 

‘0’ when it didn’t) as a fixed effect, as well as log frequency 

(centered), gender, trial number (centered); and order of 

appearance in the test. The model had random intercepts for 

subjects and for items. "Is foil frequent" was not a significant 

predictor of accuracy (β= -0.27, SE=0.25, p>0.1), neither all 

the other fixed effects. That is, children in the low entropy 

condition indeed learned the low frequency words better. 

Recognition analysis 

Children showed learning of object-label pairings (were 

above chance) in the low entropy condition (M=49.3%, 

chance=25%, t(32)=5.16, p<0.001). In contrast, they were 

not above chance in the high entropy condition (M=32.7%, 

chance=25%, t(27)=1.66, p=0.11). The accuracy in the high 

entropy condition is similar to that from Lavi-Rotbain & 

Arnon (2017), using the same task and uniform distribution 

(M=34.4%). While children did show learning in the previous 

study (just above chance), their performance was still poor, 

indicating difficulty in learning the mappings from a uniform 

distribution. How well did children learn the infrequent 

words in the low entropy condition? As in the segmentation 

test, the mean accuracy in the low entropy includes also 

recognition of the frequent word. In order to look at 

recognition of low frequency words, we looked only at trials 

where the correct word was a low frequency word (12 trials 

per child). Since children learned the frequent word quite 

well (M=64.6%), we assume that chance level on each trial is 

not 25% but 33% (since they could rule out the shape 

corresponding to the frequent word). Note however that this 

is a quite rigid assumption: children did not show complete 

learning of the frequent word (they were incorrect 35% of the 

time), and there was very large variance in accuracy 

(SD=37.9%), meaning that for some trials they were picking 

between four options. Nevertheless, we put our prediction to 

a stringent test and assume that chance is 33% for the low 

frequency words. As predicted, children learned the 

infrequent words above chance in the low entropy condition 

(M=44.0%, chance=33%, t(32)=2.14, p<0.05) (see Fig. 3). 

This means that while in the uniform condition children did  

 

Fig. 3:  Mean recognition score of low frequency words 

by entropy condition with 95% confidence intervals 

not show learning of the object-label pairings (were not above 

chance), children in the low entropy condition did show 

learning even of the infrequent words, despite appearing half 

the number of times and despite the rigid chance level. 

Is there a correlation between segmentation and 

recognition scores? Previous results showed positive 

correlation in adults' performance between these two tasks, 

indicating that better segmentation went along with better 

word learning (Lavi-Rotbain & Arnon, 2017; Thiessen, 

2010). However, such a correlation was absent in children's 

performance (Lavi-Rotbain & Arnon, 2017). Here, we found 

a positive correlation only in the low entropy condition: 

children who performed well in the segmentation test, were 

also good at mapping labels to objects (R2=0.4, t(31)=2.42, 

p<0.05), highlighting the connection between segmentation 

and word learning found in natural language. Such a 

correlation was not found in the high entropy condition 

(R2=0.21, t(26)=1.12, p>0.1).  

Discussion 

We set to ask whether children’s ability to segment and learn 

object pairings for low frequency words will be better when 

learning from low entropy input compared to high entropy 

input. To do so, we examined children's performance in an 

artificial language across two levels of entropy (high and 

low), in two tasks: segmentation and object-label pairing. 

Entropy was reduced by making one word more frequent than 

the rest, so that it appeared 80% of the time. We focused on 

children’s performance on low frequency words (that 

appeared only 19 times in the low entropy condition, versus 

32 in the high entropy condition). Our results show that 

entropy reduction is beneficial for children's segmentation, 

(see also Lavi-Rotbain & Arnon, 2018, 2019), as well as for 

their learning of object-label mapping. In addition, we found 

a positive correlation between segmentation and mapping 

only under the low entropy condition. Based only on findings 

from the uniform conditions from this study and from Lavi-

Rotbain & Arnon (2017), one could conclude that children 

are not able to simultaneously learn segmentation and object-
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label mapping (at least in lab conditions). However, the low 

entropy condition offers an alternative explanation: when 

exposed to more predictable and ecological input, children 

show evidence of learning both tasks at the same time. 

Importantly, children’s object-label accuracy was still not 

good, raising the need to find ways to make the task easier: 

we predict that the effect of reduced entropy will be stronger 

once that is done. We are currently running a similar study 

with the younger age group (that showed no learning of the 

object-label mappings in the previous study), to see if entropy 

reduction will have a similar facilitative effect on this age 

group and will enable them to learn both the segmentation 

and object-label pairing. 

Why did the low entropy condition facilitate learning? 

Several inherent properties of low entropy distributions may 

be facilitative for learning. First, creating a low entropy in the 

way we did drastically increases the frequency of one or more 

of the words. These highly frequent words can be learned 

relatively early on and later serve as an anchor for learning 

other words, similar to presenting words in isolation prior to 

presenting the unsegmented stream (Cunillera, Càmara, 

Laine, & Rodríguez-Fornells, 2010). In addition, TP's 

between the frequent and infrequent words can be lower and 

hence be more salient for learning. However, we suggest that 

there is more to the low entropy condition that facilitates 

learning than anchoring and lower TP's. Language learners 

may be sensitive to the overall predictability of the input, and 

learn better from input with lower entropy. Such an account 

predicts that entropy reduction will also facilitate learning 

when there is less ambiguity. Our results provide some 

support for this, by showing that learning was improved also 

for the non-ambiguous object-label pairings (contra the 

prediction made in Hendrickson & Perfors, 2019). This 

prediction is also supported by findings showing that adults’ 

word segmentation is facilitated in a low entropy condition 

compared to a medium entropy one, despite both having 

similar anchoring and TP cues (Lavi-Rotbain & Arnon, 

2019). Further work is needed to understand what exactly 

about low entropy is facilitative and how that relates to the 

input that children are actually exposed to. 

From a methodological perspective, our results highlight 

the importance of creating experimental stimuli that better 

reflect the input children hear. In particular, most SL studies 

use a uniform distribution during exposure, although the 

distribution itself is not relevant for their research question. 

However, by doing so, we may be introducing unnecessary 

difficulties for our participants that may interfere with our 

assessment of their abilities. For children, who find artificial 

language learning experiments harder to begin with, such 

factors may impact performance more, and more easily. 

Theoretically, the findings point to the importance of 

studying the impact of entropy on language learning. Entropy 

has been studied across many domains of language, including 

language processing, use and structure (e.g., Cohen Priva, 

2017; Linzen & Jaeger, n.d.; Piantadosi, Tily, & Gibson, 

2011). For example, there is evidence that the entropy of 

single words is restricted to a small range of values across 

many languages, suggesting that speakers have similar 

preferences for how predictable their languages are (Bentz, 

Alikaniotis, Cysouw, & Ferrer-i-Cancho, 2017). In addition, 

there is a trade-off between unigram and trigram entropy over 

time across many languages, indicating that speakers 

maintain a relatively constant information rate (Cohen Priva 

& Gleason, 2016). Children also show sensitivity to such 

measures: two-year-olds show better repetition of unfamiliar 

four-words sequences when the final word "slot" has higher 

entropy (Matthews & Bannard, 2010). These studies show 

that language users are sensitive to entropy and other 

information-related measures, and suggest that languages are 

shaped by constrains arising from these measures. However, 

the role of entropy on language learning is understudied. Our 

results show that entropy effects are found in children and 

impact learning of both segmentation and word labels.  

Our results may offer a possible explanation for how 

children acquire low frequency words at a relatively early 

age. Words in natural language show a Zipfian distribution, 

in which most of the words have low frequencies. Under a 

low entropy distribution, such as the Zipfian distribution, the 

disadvantage of low frequency can turn into an advantage: 

the few frequent words can serve as an anchor for learning 

the low frequency ones. We are currently conducting a series 

of studies to examine the role of entropy in natural language 

learning, and in predicting variance in age-of-acquisition. 
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Abstract

The number-line task is a widely used task in diverse fields of study. In the task, a given number that varies every trial is
estimated on a continuum flanked with 0 and an upper-bound number. An upper-bound of a number-line is often arbitrarily
selected by researchers, although this design variable has been shown to affect the non-linearity in estimates. Examining
estimates of varying given numbers (design variable 1) with varying upper-bound numbers (design variable 2) can be costly
because adding a new design dimension into a number-line task could drastically increase the number of trials required
for examining the underlying representation of number. The present study aims to conduct a number-line task with the
given number and the upper-bound being the design variables. A design optimization algorithm, Gaussian Process Active
Learning (GPAL), made this new paradigm feasible without increasing the number of trials, by presenting only the most
informative combinations of the design variables every trial. Our experimental data showed that the non-linearity of the
number-line estimates increases with the upper-bound of the number line. The degree of non-linearity could predict a math
skill (i.e., addition proficiency), but only when the upper-bound was relatively large. The observed range-dependency of the
number-line estimates would not be fully explored without systematically manipulating the upper-bound as an additional
design variable. As in the present number-line task, GPAL would be a useful tool for the research problems that require
multidimensional design experiments to be solved.
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Abstract

The ability to reason about our own and others’ competence
informs our everyday decisions. However, competence is an
abstract concept which manifests in the objective properties of
the task completed by an agent (i.e., task-based features, such
as quality of outcome or task difficulty) as well as the sub-
jective properties of the agent (i.e., agent-based features, such
as dexterity, speed, focus). Thus, acquiring an integrated no-
tion of competence may be a nontrivial challenge for young
children. Prior work on children’s understanding of compe-
tence has often used explicit verbal cues to describe the rele-
vant features, or experimental tasks that confounded these fea-
tures. Here we examine how preschool-aged children evalu-
ate the relative competence of two agents by systematically
manipulating task-based and agent-based features without ex-
plicit linguistic or gestural support. We find that 4- and 5-
year-olds readily use perceptual cues to task-based (i.e., task
difficulty) and agent-based (i.e., agent speed) features to in-
fer competence (Exp.1-3) but not when when these perceptual
cues are closely matched (Exp.4). These results suggest that
a basic understanding of relative competence emerges earlier
than previously believed, but an abstract, adult-like concept of
competence may continue to develop throughout childhood.

Keywords: Social Cognition, Competence, Ability

Introduction
Beliefs about our own and others’ competence are deeply in-
grained in our everyday lives; we think about it, talk about it,
and use it to guide our daily decisions. Even young children
prefer agents who are perceived as more competent (Jara-
Ettinger, Tenenbaum, & Schulz, 2015), and consider their
own and others’ competence to decide how to allocate tasks
that vary in difficulty (Magid, DePascale, & Schulz, 2018).
More generally, the way we perceive our own competence
influences our motivation to learn and to choose challeng-
ing goals (Dweck & Leggett, 1988; Nicholls, 1984; Stipek
& Iver, 1989; Wentzel & Wigfield, 1998).

However, it is often difficult to generate a clear definition of
what it means to be good (competent) at something, or what
makes some people better (more competent) than others. In
fact, the meaning of competence seems to change depending
on the task domain or the nature of the activity. When we
say “Sally is good at math” or “Sally is a good pianist”, we
are referring to different dimensions on which we evaluate
other people - her intellectual abilities in one, and her finesse
in playing an instrument in the other. Even within the realm
of sports, saying “Sally is good at gymnastics” or “Sally is
a good swimmer” refers to physical abilities that vary along
several dimensions, such as strength, agility, or speed. Thus,
acquiring an integrated concept of competence that incorpo-

rates a coherent relationship between these dimensions may
be a formidable challenge for young children.

There are broadly two ways in which one’s competence
can manifest. First, a competent agent might be capable of
achieving goals or outcomes that are costlier, or more effort-
ful, than what others can achieve (i.e., more difficult, more
complex, or more elaborate). In this case, competence is
marked by an objective property of the task or the quality
of outcome achieved by the said agent (henceforth task-based
features). Second, a competent agent might achieve the same
outcome on the same task as others but more efficiently (i.e.,
spending less time, less physical effort, or less mental ef-
fort such as care or attention). In this scenario, competence
manifests as a property of the agent who completes the task
(henceforth agent-based features). Although there are cases
in which we can expect someone to be competent even before
observing anything he or she does (e.g., if someone went to
Julliard, they presumably can play an instrument quite well),
when we are trying to learn about an agent’s competence
based solely on their actions or outcomes, we usually attend
to these task-based and agent-based features.

Prior work suggests that young children readily use ex-
plicit task-based features (e.g., clearly good or poor perfor-
mance; frequency of successes and failures) to infer agents’
competence. For instance, 3-year-olds judge that an agent
who made a “tastier” cake is better at baking than an agent
who made a “yucky” cake (Yang & Frye, 2016). However, a
coherent, theory-like understanding of competence that inte-
grates task-based and agent-based features seems to emerge
relatively late in childhood. Given a video of two children,
one of whom worked diligently on a math problem and the
other who “goofed off” and worked only intermittently, chil-
dren under age 7 say that the one who worked harder is more
competent even if they both got the same score (matched out-
come, different efficiency; Nicholls, 1978). Strikingly, it was
not until age 12 that children showed an adult-like under-
standing that one’s competence is inversely related to the total
amount of effort invested when outcome is matched.

One way to interpret these results is that young children
consider competence as a globally positive construct, and
do not yet understand the specific relationship between task-
based and agent-based features in reasoning about an agent’s
competence. Instead, young children might resort to explicit
verbal or perceptual cues, and associate anything positive
(e.g., better outcome, higher effort, being more diligent) with
higher competence. Consistent with this idea, some studies

639



suggest that focusing on task-based features such as qual-
ity of outcome can lead children astray. Heyman, Gee, &
Giles (2003) found that after being told stories about charac-
ters that varied in how much they tried and how well they did
on schoolwork, children were more likely to remember situ-
ations where high effort led to a positive academic outcome
than a poor academic outcome. Similarly, 3-4-year-olds only
attended to positive task outcome (e.g., who won the race),
and not process (e.g., the faster agent tripped on an obstacle),
to infer future competence (Yang & Frye, 2016).

However, another possibility is that young children do
possess a coherent yet preliminary understanding of compe-
tence that manifests only with additional contextual support.
For instance, one study used a paradigm similar to Nicholls
(1978) but with explicit labeling (e.g. this person is “lazy”,
this person paints “very well”) and found that even 4-year-
olds have a mature understanding of the causal relationship
between ability, effort, and outcome: They understand that an
agent with high ability and a poor outcome probably didn’t try
hard, whereas an agent with low ability and a good outcome
probably did try hard (Wimmer, Wachter, & Perner, 1982). In
a similar paradigm, Heyman & Compton (2006) found that
5-year-olds correctly inferred that a faster agent was smarter,
but only when primed to focus on difficulty (whether actors
thought the test was hard or easy), and not effort (whether the
actors tried hard or not).

These two possibilities have been challenging to tease apart
particularly because prior work has used different ways of
presenting information about competence, making it difficult
to compare results across studies. Many studies used narra-
tives that are rather high in verbal or working memory de-
mands, or required extensive domain knowledge about what
constitutes better quality or outcome. Thus, studies that are
high in verbal or memory demands might have underesti-
mated children’s abilities. On the other hand, there are rea-
sons to believe that some of the tasks used in prior work pro-
vided ample (and rather generous) behavioral and linguistic
cues that are superficially associated with competence. For
instance, some prior studies simply required mapping va-
lenced cues of quality (e.g., success vs. failure; good vs. bad
outcome) to agents’ competence on a similarly valenced scale
(e.g., who is smarter?).

However, the quality of outcomes in many real-world ac-
tivities are usually not clearly marked nor necessarily positive
or negative. Therefore, a test of a genuine understanding of
competence must ask whether children can integrate infor-
mation about the expected time or effort required to complete
a given task (i.e., difficulty) and the actual time or effort an
agent needed to complete the task. For instance, if two people
took the same amount of time to build two block towers, one
of which clearly looks harder to build than the other (e.g., a
tall vs. short tower), a child might simply associate the agent
who built the taller tower with higher competence. If, how-
ever, the towers are the same height and shape but nonethe-
less vary in the actual effort required for building (e.g., one is

made of many more smaller blocks than the other), judging
the competence of agents requires an abstract understanding
of competence that goes beyond the use of perceptual cues.
Whether children have such an abstract notion of competence
remains an open question.

Here, we ask whether 4- and 5-year-olds use task-based
features (i.e., difficulty of the completed goal) and agent-
based features (i.e., speed) to infer an agent’s underlying
competence. While competence can be assessed in a vari-
ety of domains, our experiments focus on children’s infer-
ences about agent competence in building block structures.
We choose this domain because 1) previous work has shown
that even 4-year-olds can accurately judge the relative diffi-
culty of building different block structures (Gweon, Asaba,
& Bennett-Pierre, 2017) and 2) unlike more abstract forms of
competence (e.g., mental ability, intelligence), agents’ com-
petence on physical tasks often manifests in ways that are
more concrete and visually accessible. Thus, we can use sim-
ple perceptual features to manipulate task-based and agent-
based indicators of competence without relying on explicit
verbal cues. Across four experiments, we systematically vary
a task-based feature (task difficulty, marked by perceptual
properties of the block structures) and an agent-based fea-
ture (building speed, marked by duration of total build time)
to see if 4- and 5-year-olds can use these features to infer oth-
ers’ relative competence.

Experiment 1
Methods
Participants & Materials We recruited 30 4- to 5-year-old
children at a local children’s museum (mean: 59.70 months
(range: 48 - 70), 47% girls). One additional child was ex-
cluded from analyses due to failing the practice question (n =
1, see Procedure). Participants viewed laminated pictures and
watched videos on a laptop.

Procedure Children were tested individually in a private
testing room. To make sure that children understood the word
“better”, the experimenter first asked children “Who is better
at writing letters - you or your parents?” and then “Who is
better at playing on the playground – you or your parents?”. If
children answered incorrectly (i.e., choosing themselves for
writing, their parents for playing), they were corrected. Next,
children were given a detailed explanation with visual aids of
what would happen in the following videos.

Children first watched a practice video where two agents
drew shapes (a star and a flower) and finished at differ-
ent times (counter-balanced for side; agents throughout were
matched on ethnicity and physical build). While the agents
were drawing, a screen was lowered to block visual access
to their progress. One of the agents indicated she was done
drawing (saying “all done” with her hands raised above the
screen and then moving to the side of the screen to read a
book). A few seconds later, the other agent indicated she was
done in the same manner. Then the screen lifted to reveal
what they made. Children were asked to indicate which agent

640



Experiment 1

Experiment 2

Experiment 3 Experiment 4

Figure 1: Still images from video stimuli for Experiments 1 through 4. In the first frame of each experiment, agents take turns
pointing to the picture below them and saying “I’m going to make this”. In the next frame, visual access to their building
progress is blocked by an occluder. In Experiments 1 and 2, the agents finish at different times (marked by reaching up their
hands, saying “all done”, and moving to the side to read a book). In Experiments 3 and 4 agents finish building at the same
time. Finally in the last frame, the occluder is lifted to reveal what each agent made.

finished first. If they answered this question incorrectly, they
were excluded from analyses.

In the test video, children watched two agents build block
structures. Below each agent was a picture of a 10-block ver-
tical tower (see Figure 1, Experiment 1). The agents first
indicated that they wanted to build the tower in the picture:
One agent first said, pointing to the picture below her, “I’m
going to make this”, then the other agent repeated the same
action. Next, the agents said “Ready? Go!” and began to
build at the same time. As in the practice video, a screen
was lowered to block the child’s visual access to the agents’
building actions. One agent finished building the tower in 10
seconds, indicating she was done in the same way as in the
practice video (raising hands, saying “all done”, and moving
to the side of the screen to read); 5 seconds later, the other
agent indicated she was done in the same manner (building
time 15 seconds; side counter balanced). Critically, there
were no verbal cues to indicate that one agent was “faster”,
or “found building easier” - children had to infer the agents’
relative competence solely from the perceptual information
in the video. The screen then lifted up to reveal what each
agent made. At the end children were asked the critical test
question, “Who is better at building blocks?”

Results & Discussion
Children’s performance on the test question was significantly
above chance (binomial test against chance (50%): 86.7%
correct, CI = [76.7%, 100%]1, p< .001). Thus, children were
able to understand that if two agents build the same structure,
the agent that completes it earlier is more competent than the

1All reported CIs are 95% confidence regions estimated through
a basic non-parametric bootstrap of the data using 500,000 samples.

one who finishes later. This suggests that, when outcomes
were matched (i.e., task-based feature kept constant), chil-
dren can use differences in building time (an indicator of an
agent’s speed, an agent-based feature) to infer relative com-
petence. However, another possibility is that children simply
associated being faster with being better, without considering
outcomes. In Experiment 2, we sought to rule out this alterna-
tive. If the agent who finishes first actually does not complete
her goal, a simple association would still favor this agent as
more competent. However, if children consider speed as an
indicator of competence only when the agents have achieved
the same goals, they should favor the agent who completed
her goal even though she finished later.

Experiment 2
Methods
Participants Using data from Experiment 1, we ran a sim-
ulated power analysis using 10,000 binomial tests (boot-
strapped samples with replacement) and set the sample size
at n = 20 for a simulated power of .96.2. We recruited 4-
and 5-year-olds at a children’s museum (mean: 59.90 months
(range: 48 - 71), 50% girls); 5 additional children were ex-
cluded from analyses due to failing the practice question (n =
2) or the inclusion criteria question (n = 3, see Procedure).

Procedure The procedure was similar to Experiment 1, ex-
cept for the final outcome revealed at the end of the test video.
While both agents indicated that they’d build a 10-block ver-
tical tower, the agent who finished first (in 10 seconds) actu-
ally only built a 3-block tower whereas the agent who finished

2Experiments 2 and 3 were pre-registered on Open Science
Framework (OSF): https://osf.io/pc945/registrations.
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second (in 15 seconds) completed her goal (10-block tower).
The test question was the same. To ensure children remem-
bered the key event in the video, we asked: “Which agent
didn’t finish making her tower?” Children who gave incorrect
answers were excluded from analyses.

Results & Discussion
Children’s performance on the test question was significantly
above chance (binomial test against chance = 50%; 90% cor-
rect, CI = [80%, 100%], p < .001). These results suggest
that children do not indiscriminately use speed or time-to-
completion as a cue to competence; when one person did
not complete her goal, children resisted saying she was more
competent even though the agent claimed to be done before
the other agent. This complements our finding from Experi-
ment 1, providing evidence that children’s successful use of
time-to-completion is not based on a simple heuristic “faster
= better”.

In Experiment 3, we now ask whether children can use a
task-based feature (task difficulty) to infer relative compe-
tence when an agent-based feature (time to completion) is
held constant. Critically, going beyond prior work that pro-
vided children explicit verbal cues to the task difficulty or
outcome, we had children simply observe two agents build-
ing two different structures–10 blocks stacked vertically vs.
lined up horizontally–and use the inferred difficulty of the
two tasks to reason about competence. We chose these struc-
tures based on findings from (Gweon et al., 2017) showing
that 4-year-olds readily judge the 10-block vertical structure
as harder to build than the 10-block horizontal structure based
on static pictures of the initial states (i.e., scattered blocks)
and final states (finished towers), without seeing the build-
ing process. Given these results, we predicted that 4- and
5-year-olds would be able to use their understanding of task
difficulty to infer the relative competence of two agents, even
when total building time is matched.

Experiment 3
Methods
Participants We preregistered this experiment using the
same power analysis as in Experiment 2 (see Footnote 2). We
recruited 30 4- and 5-year-old children at a local children’s
museum (mean: 62.25, months (range: 49 - 71) 50% girls);
10 additional children were tested but excluded due to fail-
ing the practice question (n = 3, see Procedure) and inclusion
criteria question (n = 7, see Procedure).

Procedure The procedure was similar to Experiment 1 with
a few changes. To help children understand that the two
agents might complete different goals, they were asked to in-
dicate if the agents drew the same or different pictures after
watching the practice videos. For the test video, agents had
pictures of different block structures below them; one agent
had a picture of a 10-block vertical tower and the other had
the picture of a 10-block horizontal tower. As in Experiment
1, the agents pointed to the picture and said “I’m going to

build this”; however, it was clear that agents were simply
pointing to the structure that was depicted below them rather
than making an active choice about which one to build. Fur-
thermore, they never explicitly mentioned the physical prop-
erties of the structures nor their expected difficulty. Critically,
the agents finished building their structures at the same time.
Children were asked: “Who is better at building blocks?”
followed by the inclusion question “Which tower is better?”
Those who answered the inclusion question inaccurately3

were excluded from analyses.

Results & Discussion
Children’s performance on the test question was significantly
above chance (95%, CI = [90%, 100%], p < .001). This re-
sult held even after including the 7 children who failed to
answer the inclusion question accurately (74%, CI = [60%,
93%], p = .02). Thus, children were able to tell that when
two agents take the same amount of time to build block struc-
tures, the agent that built the more difficult structure is more
skilled. Critically, children were able to do so from their own
assessment of the tasks, in the absence of any explicit infor-
mation about the task difficulty.

While task difficulty was never mentioned explicitly, one
might wonder if children still picked up on the fact that the
10-block vertical tower is taller than the 10-block horizon-
tal structure, and simply associated building a“taller” tower
with being “better” at building. Prior work provides some ev-
idence against this possibility, showing that simple heuristics
such as height or size do not fully explain children’s infer-
ences about task difficulty on a range of structures that vary
along different dimensions. (Gweon et al., 2017).

However, whether children can infer the relative compe-
tence of two agents in the absence of any physical cues for
agent-based (Experiment 1) or task-based features (Experi-
ment 3) remains an open question. Experiment 4 provides
a test of this ability, by asking children to judge the relative
competence of two agents who take equal amounts of time to
make towers that look identical in overall shape and height;
critically, despite their near identical appearances, the towers
differ in their building difficulty because one is made of 10
cubes and the other is made of 2 long blocks (and thus takes
fewer steps, and is easier to build; see Figure 1). We chose
these structures because Gweon et al. (2017) have shown that
4- and 5-year-olds can reliably identify the 10-block vertical
structure as harder to build than the two-block structure given
static pictures of the initial and final states, even without see-
ing the intermediate building process.

Unlike Experiments 1 - 3 where we hypothesized success-
ful performance given explicit perceptual cues, one might en-
tertain different predictions for Experiment 4. To succeed in
this task, children must first infer that one tower is harder than
the other, and spontaneously use this understanding to reason

3While the correct answer was the vertical 10-block tower, the
wording of this question was confusing and potentially problematic;
we thus also present results that include these children. In Experi-
ment 4, we used a different question.
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about the agents’ competence; both of these inferences must
be made based on the initial and the final states of the tow-
ers, without direct visual access to the actual building pro-
cess. Thus, on the one hand, 4- and 5-year-olds may struggle
with this task; prior work suggests that an abstract, coherent
understanding of competence does not emerge until later in
childhood, and our stimuli provide no superficial perceptual
cues that children could use to judge relative competence. On
the other hand, given that our task involves minimal verbal
and memory demands, children might show an earlier suc-
cess than previously believed. Thus, we did not preregister
this experiment, allowing ourselves to explore a broader age
range.
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Figure 2: Results from Experiments 1 - 4: The percentage
of children who correctly chose the more competent agent
Error bars represent bootstrapped 95% confidence intervals.
Dashed line indicates chance performance.

Experiment 4
Methods
Participants We used the same sample size as Experiments
2 and 3 (n=20). However, given the more difficult nature of
this task, we extended our age range to include 6-year-olds
(mean: 62.25 months (range: 48 - 83) 30% girls). Seven ad-
ditional children were excluded due to failing inclusion cri-
teria question (see Procedure). We also tested 25 adults on
Amazon Mechanical Turk.

Procedure The procedure was similar to Experiment 3,
with a few changes to minimize task demands. First, we re-
moved the practice trial (more than 93% of children passed
in Experiments 1 - 3) because this might bias children to fo-
cus on completion time. Additionally, to ensure that children
paid attention to the fact that the two agents used different
blocks to make similar-looking final structures, children were
presented with physical examples of the 10 cubes and 2 long
blocks, which were placed next to the side of the screen that

matched the tower on the screen. In the test video, one agent
had 10 cubes in front of her and pointed to the vertical tower
below to indicate that she wants to build that tower; the other
agent had 2 long blocks and also pointed to the tower below
her (as in other experiments, the pointing was casual and did
not indicate any active choice to construct a particular tower).
Critically, the agents finished building their structures at the
same time. Again, children were asked, “Who is better at
building blocks?” followed by a inclusion question, “Which
tower is harder to make?” Children were excluded if they
incorrectly said that the 2-block tower was harder than the
10-block vertical tower.

Results & Discussion
We first verified that adults can infer relative competence ac-
curately from these videos: 100% of the adults said the agent
who built the 10-block tower was more competent than the
agent who built the 2-block tower. However, children’s per-
formance was not significantly different than chance (55%
correct, CI = [35%, 75%], p = .82), suggesting that when
perceptual markers of difficulty and completion time are
matched, children do not distinguish the agent who built
the 10-block tower from the agent who built the 2-block
tower. However, there was some evidence for a develop-
mental change: Proportionally more 6-year-olds (6/7) than 5-
year-olds (3/8) and 4-year-olds (2/5) answered the test ques-
tion correctly. A logistic regression found a trend for an effect
of age in years on children’s success on this task (B = 1.08,
p = .1).

General Discussion
Here we asked whether preschool-aged children can use a
task-based feature (i.e., difficulty of the task) and an agent-
based feature (i.e., agent speed) to infer the relative compe-
tence of agents. Critically, these cues were never verbally
communicated by the experimenter or the agents in the video.
As is the case in many real world situations, children had to
spontaneously pick up on these cues and use them to infer
relative competence. The difficulty of the tasks had to be in-
ferred from the visual properties of the block structures (such
as size or height), and the agents’ speed or efficiency had to be
inferred from their completion time on a given task. Our re-
sults suggest that children not only detect the perceptual cues
that signal both types of features, but also readily use them
to draw accurate judgments about the relative competence of
two agents.

We found near-ceiling performance in 4- and 5-year-old
children when one feature was matched and the other clearly
varied across agents, marked by explicit perceptual cues. If
two agents made the same block tower, the agent who com-
pleted her tower first was judged as more competent (Ex-
periment 1), but not when this agent did not complete her
goal (Experiment 2). If both agents completed their tow-
ers at the same time, the agent who built the more difficult
tower was judged as the more competent agent (Experiment
3). However, in a more conservative test where the two agents
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spent the same amount of time building towers that varied in
difficulty but were matched in their final shape and height,
children’s accuracy dropped to chance-level (Experiment 4).
While there is suggestive evidence that 6-year-olds are able to
respond accurately in this scenario, overall children struggled
without clear perceptual cues.

What explains children’s difficulty with Experiment 4,
given their robust success in Experiments 1-3? It is unlikely
that children’s failure is due to their inability to infer task
difficulty; the structures used in the stimuli here have been
verified to elicit accurate judgments of difficulty among 4-
year-olds in prior work (Gweon et al., 2017). Furthermore,
we only included children who were accurately able to tell
which tower was “harder”. One possibility is that children’s
success in Exp.1 - 3 simply reflects their use of superficial
cues associated with “being better”, such as one person fin-
ishing the task earlier than the other (Experiment 1) or one
tower being larger than the other (Experiment 3). By con-
trast, Experiment 4 required integrating time and task diffi-
culty in the absence of these cues. Some anecdotal support
comes from pilot data for Experiment 4 where children were
asked both (1) which tower was “harder” and (2) which tower
was “better”. While 4- and 5-year-olds correctly judged the
10-block tower as “harder” than the 2-block tower, they did
not judge this tower as “better”. By contrast, most children in
Experiment 3 picked the vertical 10-block tower as “better”
than the horizontal 10-block tower, suggesting that children
relied primarily on perceptual cues such as relative time or
size/height to judge who (or what) is “better”.

One way to interpret these results is that children’s concept
of competence is quite different from that of adults, and that
it continues to develop beyond age 5. This interpretation is
largely consistent with what previous studies have proposed
(Heyman et al., 2003; Nicholls, 1978; Yang & Frye, 2016).
However, another possibility is that children’s failure on Ex-
periment 4 reflects the developmental change in the semantics
of “better”, rather than a genuine conceptual change in their
understanding of competence. If children strongly associate
the word “better” with positive perceptual features of objects
or agents, this might bias children’s judgments of “who’s bet-
ter at bulding” to whoever finishes first, or whoever builds
something larger. When these explicit cues don’t differ be-
tween the two agents, as in Experiment 4, children are thus at
chance.

The current study cannot tease apart these possibilities,
as the critical test question involves verbally asking children
“who is better”. Thus, it still leaves open the possibility that
children do have an abstract understanding of competence as
a subjective quality that is determined by both task-based and
agent-based features. One promising future direction is to try
eliciting competence judgments without using the word “bet-
ter”. In addition to non-verbal measures, future work might
capitalize on a previous finding that toddlers’ friend choice
reflects representations of agents’ competence (Jara-Ettinger
et al., 2015).

Despite the limitation of using a verbal prompt in our out-
come measure, our stimuli had lower verbal demands rela-
tive to earlier work that involved heavy-handed manipula-
tions of competence with explicit verbal information. The
words used in these tasks often implied evaluative judgments
(e.g., “lazy”, “smart”, see Heyman et al., 2003; Heyman &
Compton, 2006; Nicholls, 1978), raising the possibility that
children in these studies succeeded by matching the valence
of these words with “being better”, instead of engaging in
genuine inference based on the features of the event. On the
other hand, while verbal cues may help make these features
easier to detect, verbally presented scenarios can also hinder
performance by increasing processing demands, taxing verbal
knowledge and working memory. This may have led to either
underestimation or overestimation of children’s understand-
ing of competence depending on the paradigm (Nicholls,
1984; Heyman et al., 2003; Yang & Frye, 2016), produc-
ing discrepant findings across studies and age ranges. The
fact that children in Experiments 1-3 successfully used task-
based and agent-based features suggests that young children
are adept at picking up on non-verbal cues embedded in ob-
served events to infer relative competence, in addition to us-
ing verbal cues (Wimmer et al., 1982; Heyman & Compton,
2006).

While not quite at the level of adults (note that adults are
near-ceiling on Experiment 4), children’s robust performance
on most of these experiments suggests that some basic notion
of competence based on quality and efficiency may emerge
early in life. Indeed, infants have a sophisticated understand-
ing of physical events (Stahl & Feigenson, 2015) as well
as agent’s actions and outcomes (Liu, Ullman, Tenenbaum,
& Spelke, 2017). Furthermore, infants can use information
about other’s effortful actions to inform their own (Leonard,
Lee, & Schulz, 2017). In order to employ this sort of social
learning about effort, children presumably need some basic
understanding of how effort relates to outcomes, scales with
difficulty, and is constrained by competence. The ability to
go beyond superficial cues to infer who is more competent
than others can be especially beneficial for early learning, as
the learner can make better decisions about who to learn from
or ask for help. Future work could further explore when chil-
dren begin to use task-based and agent-based features using
similar stimuli as the current study with nonverbal dependent
measures in a younger age range.

An open question is whether young children’s inferences
about competence generalize to domains outside of physical
ability. One possibility is that children develop a stronger
sense of physical competence before mental competence, due
to its overt perceptual cues and children’s more salient experi-
ence in this domain early in life. Furthermore, the paradigms
tested here only looked at how task-based and agent-based
features relate to inferences about competence, yet many
other features are surely involved in this calculation. For ex-
ample, if someone was unmotivated to play basketball and
failed to shoot a 3-pointer, we wouldn’t necessarily conclude
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that they were unskilled. In other words, we also consider
how much people want to achieve their goals when inferring
their competence. Future work should probe the range of ad-
ditional features that affect competence judgments broadly.

While we show that preschoolers are fairly accurate at rea-
soning about other’s competence (at least with adequate per-
ceptual cues), a great deal of work has shown that young
children are out of touch, and in fact overly optimistic, about
their own competence. However, most of these studies looked
at how children predict how they would do in the future
given their past performance, which might have led to wishful
thinking (Schneider, 1998; Parsons & Ruble, 1977; Harter,
2012). Just as children were able to use observed evidence
to infer others’ competence, they may similarly evaluate their
own competence based on observed outcomes. In fact, recent
work suggests that children are even sensitive to the discrep-
ancy between their own belief about their actual competence
(i.e., the child successfully activates a toy after a few failures)
vs. others’ beliefs (i.e., an adult only observed the child’s
failures) and demonstrate their success to others to change
these beliefs (Asaba & Gweon, 2018). Collectively these re-
sults are consistent with the recent proposal that children’s
understanding of competence is not “irrationally” optimistic
(Cimpian, 2017), and calls for better tasks that tap into their
underlying cognitive processes.

More generally, this work highlights the importance of re-
examining old topics in a new light. The current work con-
ceptually replicates prior results (including some from the
70’s) while also raising new questions about what these re-
sults mean. Children’s perception of competence in the early
years is crucial as it likely informs their achievement beliefs
and mindsets, which in turn impacts their academic outcomes
(e.g. Dweck, 2006). Thus, understanding the ways in which
children conceptualize competence early in life allows us to
potentially help set children on the path towards a learning-
focused mindset even before they enter formal schooling. We
hope a new wave of interest from the broader community will
shed more light on this important topic.
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Abstract 

Observers rapidly extract summary statistics from sets of 
visually presented items, like the mean size of a set of circles, 
or the mean expression of a set of faces. Their excellent 
ability to report summary statistics stands in contrast to near-
chance representation of any of the individuals. Here we 
asked to what extent this ‘ensemble perception’ signature 
extends to a more abstract property: relations among 
elements. Participants watched ten unique animations of 
visually patterned objects (hereafter, ‘shapes’) colliding with 
each other and producing a new shape. Collisions conformed 
to ABA patterns, such that the result shape always matched 
one of the collider shapes. Recognition tests showed that 
participants accurately recalled the collisions they saw, but 
also falsely accepted foils which conformed to the ABA 
pattern but which were not in fact specifically seen (were 
rearrangements of the original shapes across collisions). On 
the other hand, they were much less likely to accept foils 
which did not conform to the pattern, but were equally 
distinct rearrangements (e.g., AAB). This suggests that 
participants represented the overall, common pattern better 
than the specifics of what they saw; the superior encoding of 
the summary relative to the individuals thus applies to 
summaries of relations. However, in contrast to prior findings 
with visual features, we did not find that recall of individual 
patterns was entirely at chance. Our paradigm offers a way to 
pursue future questions such as the pressures and motivations 
which might govern the trade-off between summarizing 
evidence vs. retaining individual experiences.  

Keywords: ensemble perception; artificial grammar learning; 
pattern recognition; episodic memory; semantic memory 

Introduction 
Rather than encoding experiences in perfect detail, the mind 
naturally uses regularities and summary statistics to 
compress them. We can keep more items in working 
memory if items are predictive of each other (Brady, 
Konkle, & Alvarez, 2009); it becomes faster to find images 
in search display if they appear in predictable spatial 
configurations (Chun & Jiang, 1998); and we spontaneously 
and obligatorily register the mean orientation of sets of 
gabor patches (Parkes, Lund, Angelucci, Solomon, & 
Morgan, 2001). Although contingencies and averages are 
distinct statistics, all of these cases demonstrate that we 

spontaneously compress experiences, by encoding a 
summary of what is common across them.  

In principle, representational systems can differ in the 
extent to which they compute summaries and discard 
individual observations (Dennett, 1991). Curiously, human 
participants sometimes represent summaries better than the 
observations composing them. When we see sets—like a 
series of differently-sized circles—we recall their mean 
(here, size) substantially better than we can recall any 
particular individual (Ariely, 2001; Chong & Treisman, 
2003; Haberman & Whitney, 2009). This is true even when 
the number of items is relatively small (4) and when the 
items are presented sequentially. This suggests that we 
compute summaries and update them rapidly, discarding the 
items that went into this computation along the way. This 
‘ensemble perception’ signature is true for visual properties 
like size, orientation, or facial expression (see Alvarez, 2011 
and Whitney & Yamanashi Leib, 2018 for reviews). Here 
we asked whether this signature also applies to a property 
which is not a visual feature, but rather an abstract rule.   

Algebraic rules (Marcus, 2001) are patterns based on 
relations among elements, such as same and different. For 
example, triplets of syllables can be readily seen as 
belonging to patterns like ABA— “ga di ga”, “ku la ku”, or  
“do re do”—vs AAB—“ga ga di”. Learners (adults or 
infants) can recognize such patterns even with entirely 
distinct syllable sets and in both auditory and visual 
modalities (Ferguson, Franconeri, & Waxman, 2018; 
Marcus, Vijayan, Rao, & Vishton, 1999; Saffran, Pollak, 
Seibel, & Shkolnik, 2007).  Algebraic rules are hallmarks of 
relational thinking, requiring relatively advanced 
computational architecture (Marcus, 2001; Overlan, Jacobs, 
& Piantadosi, 2017). They are also excellent compressions: 
recognizing that the last element always matches the first 
reduces the number of bits needed to represent the triplet by 
1/3. Thus, despite the possible computational cost, encoding 
relations among stimuli is adaptive for circumventing 
limited memory capacity. 

Here we asked how a representation of a shared algebraic 
pattern relates to the representation of the diverse 
individuals exhibiting the pattern. Specifically, we asked 
whether we would see the signature of ensemble perception. 
If so, participants should not only recognize that the set of 
items tends to follow an ABA pattern, but they should find 
it easier to recall that abstract pattern than the particular 

646



items they specifically saw (for instance, “ga di ga”, but not 
“ga ku ga”). Alternatively, due to the computational  

Figure 1. Top: Example of a collision between an A and B 
shapes and an A shape result. Bottom: Foil types for this 

collision, represented schematically. C shapes were taken 
from other collisions presented during the demonstration. 
 

demands of inferring algebraic patterns, participants may 
be less reliable at recognizing the common ABA pattern 
across items, failing to summarize the data, and may be 
better at discerning which individual items they specifically 
saw.  

We used a novel paradigm in which participants watched 
pairs of novel shapes collide with each other and ‘produce’ 
a third shape (Figure 1). Participants’ task was to watch the 
collisions and see how many they could remember. As there 
was no instruction to look for patterns, the choice to 
summarize or not had to be intrinsically motivated.  

Each collision was in fact governed by an ABA pattern: 
two distinct shapes, A and B, collided, producing another A. 
(We use ABA to denote the abstract elements, and 
lowercase aba to denote specific shapes). After watching 10 
unique ABA collisions once each, participants performed a 
recognition test where each test item was either a collision 
they had seen, or one of three kinds of foils (unseen 
collisions). ACA foils swapped shapes between collisions: if 
specific collisions aba and dcd were shown, foils were aca 
and dbd. AAB foils were rearrangements of the same shapes 
in seen collisions, so that two A’s collided to produce a B.  
We reasoned that if participants recalled the common 
pattern better than the individual items, they should accept 
ACA foils at a higher rate than AAB foils. This is because 
ACA is pattern-consistent while AAB is not, though in 
terms of individual shapes composing the collisions, ACA is 
in fact more different from the original. ABD foils were also 
used as these were equal in the number of element-wise 
changes from ABA as ACA, but were also pattern-
inconsistent. 
    We were also able to ask whether participants recalled 
only the summary pattern, and lost all item representations, 
by seeing whether they accept ACA foils at the same rate as 
ABA correct items. In ensemble perception, tests of 
individual recognition are often at chance (Ariely, 2001; 
Haberman & Whitney, 2009). Finally, a forced-choice test 
with new items directly tested whether learners represented 
the pattern in generalizable form. 

Methods 

Participants 
30 participants were recruited and tested via Amazon 
Mechanical Turk. Participants provided electronic consent 
and procedures were approved by the Institutional Review 
Board of the University of Pennsylvania. Compensation was 
$2. Three participants were excluded for failing an attention 
measure, and one for missing data. The included sample had 
15 females and 15 males, with age M = 37, range 21 – 64). 
The task took an average of 15.62 minutes. 

Stimuli 
Stimuli were animated shape collisions (Figure 1). In each 
animation, two shapes approached each other from the left 
and right sides of the screen, met in the middle, and a third 
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‘result’ shape appeared between them as they moved away. 
Individual frames were created in Adobe Illustrator and 
concatenated into GIFs. Each GIF was composed of 23 
frames shown at a 180 ms framerate and 4.14 s duration. 
GIFs were interspersed with 660 ms of blank screen for a 
4.8 s total ISI. The majority of shapes used in the displays is 
shown in the Appendix. 

Procedure 
The task was presented to participants using a custom 
JavaScript webpage. It began with a demonstration phase. 
Participants were shown the following instructions: “You 
will play a game where you will see pairs of shapes collide 
with each other and see how many you can remember.”  
They then watched 10 unique demonstration collisions in 
randomized order (lasting ~ 1 minute). Each of these 
collisions followed an ABA pattern: the two collider shapes, 
A and B, were distinct, and the result shape was a duplicate 
of A. A total of 20 different shapes were used, so that no 
shapes were repeated across collisions.  

They then saw the specific recognition test. On each trial, 
a collision was shown, and participants had to decide 
whether or not they had seen it in the demonstration phase, 
by clicking ‘yes’ or ‘no’ after it ended. They were allowed 
to replay the collision. Apart from all 10 demonstration 
collisions, test items also showed three types of foils, 
created by rearranging the shapes across or within the 
demonstration collisions. ACA foils swapped the ‘B’ shapes 
between two different collisions, so that if specific shapes 
aba and dcd had been shown, foils were aca and dbd. AAB 
foils rearranged the shapes within an original collision, so 
that now two A’s collided to produce B. ABD foils 
produced a result shape taken from another collision. The 
swaps were selected by pairing the 10 collisions into 5 foil-
pairs. One of each of the three foil types was shown for each 
of the 10 original collisions; thus, there were 10 data points 
for each participant for each test item type.  

We also added three attention check items, which showed 
previously unseen shapes in which two of the same shape 
collided, producing another duplicate (i.e., an AAA pattern). 
Participants had to respond ‘no’ to all three attention items 
to be included in the further analyses. Overall, there were 43 
specific recognition test trials, shown in randomized order. 
There was no trial-level feedback, but an overall score was 
shown at the end of the test.  

 
Participants were then given the generalization test. The 

instructions read, “The collisions you first watched followed 
certain patterns or rules. Now you will see new collisions 
and be asked to decide which ones follow similar patterns or 
rules.” A two-alternative forced-choice test asked them to 
choose between pairs of collisions, shown one at a time, 
side by side. We used previously unseen shapes to create 
two new sets of ABA, AAB, and ABD items. Critical 
questions asked participants to choose between a pattern-
consistent collision (ABA) and one of the two foils (AAB or 
ABD). Filler items showed the two foils, in order to balance 
the number of times each collision was shown overall. Each 

question type was shown once for each novel shape set, 
creating a total of 8 trials.  

Finally, we asked participants whether or not they took 
any notes during the task. No participant reported taking 
notes.   

Results 

Specific Recognition Test 
We computed the percent acceptance rate (‘yes’ response) 

for each type of test item; results are shown in Figure 2. The 
correct test item (ABA) was identical to the collision 
previously shown; this was (correctly) accepted at a high 
rate (M = 85%, SE = 0.05%). The ACA foil item maintained 
the pattern but its middle shape was swapped across 
previously seen collisions; this was (falsely) accepted at a 
high rate (M = 73%, SD = 0.05%). The AAB foil item was 
accepted at a low rate (M = 15%, SE = 0.06%) as was the 
ABD foil item (M = 13%, SE = 0.04%).  

A 4- way ANOVA indicated a significant effect of item 
type, F(75,3) = 59.43, p < .001. Planned t-tests were used to 
probe these differences pairwise. We found that ACA foils 
were accepted at a higher rate than AAB foils, t(25) = 6.77, 
p < .001, CI [40 75] and ABD foils, t(25) = 6.16, p < .001, 
CI [42 86], indicating that participants indeed represented 
the pattern better than the specifics. Nonetheless, we also 
found higher acceptance rates for the correct (ABA) items 
than the ACA foils, t(25) = 3.30, p = .002, CI [4 19], 
indicating that item information was not completely lost.  

 

 
Figure 2. Rate of acceptance on the specific recognition test 
for each type of test item, and accuracy on the 
generalization test. Statistical comparisons are shown with * 
indicating p < .01 and ** indicating p < .001. 
 

One potential account of these effects is that individual 
item representations decayed more rapidly or were more 
susceptible to interference from the question presentations. 
It should be noted that the majority of test items are also 
pattern-inconsistent, and so the amount of interference 
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should be equal for both specific and pattern recall; 
however, it could still be that the item representations are 
more susceptible. We thus looked at responses from the first 
10 test items only (thus, a random subsample from each 
participant). The critical effect of greater ACA than AAB 
acceptance was still significant, t(25) = 7.10, p < .001, CI 
[45 82], and the difference between ABA and ACA was 
marginal, t(25) = 1.89, p = .07, CI [-1 28].  
 

Generalization Test  
Participants were reliably above chance on choosing the 
pattern-consistent, entirely novel ABA collision relative to 
both foils; AAB: M = 89%, SE  = 0.05%; t(25) = 7.63,  CI 
[78 99], p < .001; ABD: M = 90%, SE = 0.05%; t(25) = 
8.38,  CI [81 100], p < .001 (Figure 2). They were thus 
highly reliable in learning a generalizable representation of 
the algebraic rule. As there was no difference between the 
two foil types (t < 1), accuracies for both were collapsed 
into a composite generalization score (M = 89%). We found 
that this composite accuracy was not significantly different 
from the rate at which participants accepted the correct 
ABA items on the specific recognition test (t < 1), 
indicating that the representation of the abstract pattern was 
no worse than specific recall. We also found that accuracy 
on the generalization test was substantially higher than 
participants’ ability to accurately reject the ACA foils (i.e., 
inverse of their acceptance rate; t(25) = 7.45, CI [47 82], p < 
.001. This is in line with the findings from the specific 
recognition test that the representation of the abstract pattern 
was superior to specific recall.  

Discussion 
We investigated the relationship between the ability to recall 
specific items (unique collisions of three shapes) and to 
identify and recall the common pattern governing them 
(here, an ABA algebraic rule). We found that analogously to 
signatures in ensemble perception, participants recalled the 
common pattern substantially better than the specifics of the 
individual items. Nonetheless, some memory of the 
individuals persisted, in contrast to certain findings with 
visual feature ensembles.  

Our results indicate that the core signature seen in 
ensemble perception—superior fidelity of summary 
statistics over individual items—generalizes beyond visual 
features like size, facial expression, or line orientation 
(Whitney & Yamanashi Leib, 2018) and similarly applies to 
relational properties over visual events, like algebraic rules. 
This substantially extends the repertoire where such 
ensemble signatures might be found.  

Our findings also speak to the question of how much a 
pattern-based summary relies on the representation of the 
individuals being summarized. Individual items must of 
course be processed at some level, but showing that their 
details can be quickly forgotten in spite of near-ceiling 
summary representations suggests that this level is relatively 
minimal. Because items were shown sequentially, and were 
short-lived, learners had to encode the pattern and update 
the summary with each subsequent representation—

otherwise, it would be too late. It could therefore be the case 
that the item representation is discarded almost immediately 
after it is perceived.  

The literature on episodic memory has similarly 
investigated whether summary recall is dependent on item 
recall, and has separated out these representations using 
delay paradigms and studies of amnesia. With multi-day 
delays, animals’ reliance on the locations of specifically 
experienced platforms in a water maze declines, and is 
replaced by a representation of their mean location 
(Richards et al., 2014). Patients with amnesia (impairment 
to episodic memory) are as able as controls to extract 
patterns in artificial grammar learning studies, but unlike 
them, fail on recognition tasks of individual items from 
which they learned that grammar (Knowlton, Ramus, & 
Squire, 1992). Here we offer an elegant way to show this 
dissociation in healthy participants within a few minutes of 
testing, and to directly quantify the amount of information 
preserved about the individual items and the overall 
patterns. This opens an avenue of research investigating the 
circumstances and pressures that may motivate our 
cognitive system to rely on one or the other.  

What might such pressures be? If learning is an attempt to 
infer the underlying model that generates observations, 
specific experiences serve as evidence towards hypotheses 
about that model—for example, a mean value or an 
underlying structure (Tenenbaum, Kemp, Griffiths, & 
Goodman, 2011). Once their beliefs over relevant models 
are updated, data points could be discarded (Nagy, Török, & 
Orbán, 2018). In this light, it has been argued that the choice 
to update a model vs. keep the data may be informed by 
factors such as the number of relevant models or how likely 
the relevant model to update might eventually change (Nagy 
et al., 2018; Richards & Frankland, 2017). Here, the right 
model was the ABA pattern, which explained all 
observations reliably. We might predict that if the pattern 
sometimes changed, recalling the specifics of all collisions 
might be enhanced, as this suggests to the learner that the 
model may not tell the full story or might change. We plan 
to test this in future work.   

Another factor may be the computational cost of that 
update. Representing items in terms of their relations may 
be inferentially complex (Frank & Tenenbaum, 2011; 
Kuehne, Gentner, & Forbus, 2000; Overlan et al., 2017) and 
appears optional: one could perceive and remember a 
specific collision without ever representing the relations 
among its elements. If hypotheses about relations are 
computationally costly to update, the compression benefit of 
computing a relation may not outweigh the costs. The 
qualitative divergence we saw between algebraic patterns 
here vs. visual features in the past is consistent with this 
possibility: in the case of algebraic patterns, representations 
of individuals were not entirely lost, while for visual feature 
summaries, they often are (Ariely, 2001; Haberman & 
Whitney, 2009). If visual features require fewer inferential 
steps to encode than relational patterns, this could be 
consistent with that idea. Our paradigm offers a way to test 
some of these questions directly in future work.  
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Abstract

Young children learn language at an incredible rate. While
children come prepared with powerful statistical learning
mechanisms, the statistics they encounter are also prepared for
them: Children learn from caregivers motivated to communi-
cate with them. Do caregivers modify their speech in order
to support children’s comprehension? We asked children and
their parents to play a simple reference game in which the par-
ent’s goal was to guide their child to select a target animal from
a set of three. We show that parents calibrate their referring
expressions to their children’s language knowledge, produc-
ing more informative references for animals that they thought
their children did not know. Further, parents learn about their
children’s knowledge over the course of the game, and cali-
brate their referring expressions accordingly. These results un-
derscore the importance of understanding the communicative
context in which language learning happens.
Keywords: parent-child interaction; language development;
communication

Introduction
Children learn language at astonishing rates, acquiring thou-
sands of words by the time they are toddlers. How do children
learn so many words before they know how to dress them-
selves? One account for children’s rapid language acquisi-
tion is statistical learning. Young children can attend to the
distributional structure of language, learning to discriminate
words and identify word order from speech streams (Saffran,
2003; Saffran, Aslin, & Newport, 1996). Statistical learn-
ing can be a powerful tool for early language learning, and
showcases the ability that children have to harvest informa-
tion from their surroundings. However, the particular struc-
ture of children’s language environments may also play a role
in supporting language development.

The way we speak to children often differs from the way
we speak to adults. Child-directed speech (CDS) exists across
cultures, and is characterized by higher pitches and more
exaggerated enunciations when compared to adult-directed
speech (ADS) (Cooper & Aslin, 1990; Grieser & Kuhl,
1988). Not only do children prefer CDS over ADS, CDS
is also a better predictor for language learning than over-
heard ADS (Shneidman, Arroyo, Levine, & Goldin-Meadow,
2013). CDS does not only differ from ADS in prosodic
features- the structural qualities of CDS make speech seg-
mentation and word learning easier (Thiessen, Hill, & Saf-
fran, 2005; Yurovsky, Yu, & Smith, 2012). While children
live in the same physical environments as adults, their lan-

guage environments contain specific types of input that facil-
itate early language learning.

Children’s language environments are not only suited for
their abilities; they also change across development. Parents
play a role in changing their children’s language environment,
and there is evidence suggesting that these changes aid lan-
guage development. Parents use simpler, more redundant lan-
guage when talking to toddlers, and more complex syntactic
structures when speaking with school-aged children (Snow,
1972). Importantly, sensitive modification of parent response
shapes language learning in children (Hoff-Ginsberg & Shatz,
1982; Tamis-LeMonda, Kuchirko, & Song, 2014).

Why do parents modify the way they speak according to
their children? One possible explanation is that parents are
actively teaching their children. Indeed, some have posited
that CDS is an ostensive cue for social learning, and that
infants are born prepared to attend to these cues (Csibra &
Gergely, 2009). While it may be true that parents hope to
impart knowledge to their children, we argue that effective
communication is the proximal goal. The field of linguistics
has long established that adults communicate in ways that are
efficient. Grice’s (1975) maxim of quantity states that speech
should be as informative as necessary, and no more. Adults
are able to adhere to these maxims, adapting speech accord-
ing to conversational partners’ knowledge as needed for suc-
cessful communication (Clark & Wilkes-Gibbs, 1986). We
argue that the parent’s goal to communicate with their child
drives the change in language use. Specifically, parents adapt
their speech according to their children’s language abilities.

Parents modify their language as a means to achieve suc-
cessful communication. Research show that parents use sim-
pler language and are more linguistically aligned with their
younger children, and these patterns of speech change as
their children develop (Snow, 1972; Yurovsky, Doyle, &
Frank, 2016). Parents are also sensitive to children’s vocab-
ulary knowledge, and the way they refer to objects change
markedly depending on whether they are novel, compre-
hended, or familiar to their children (Masur, 1997). These
changes in parent speech may indicate adaptations that are
aimed at fulfilling the goal of effective communication, and
that the language necessary to fulfill that goal changes as chil-
dren develop.

Based on work by Masur (1997), we developed a study
to investigate how parents adapt their speech according to
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their children’s vocabulary knowledge. Masur’s study in-
volved parents and children engaging in unstructured free
play, and parents reported their children’s vocabulary knowl-
edge after the session. Our study uses a structured interac-
tive game that allows us to control for the amount and type
of stimuli presented to the parent-child dyads, and parent-
reported vocabulary measures are collected before the study.
Our paradigm also introduces a communicative goal within
a structured game, which also allows parent utterances to be
more comparable across dyads.

We designed an interactive iPad game in which parents ver-
bally guide their children to select animals on an iPad. Each
animal in the game appeared as a target twice. We predicted
that parents would modify their speech based on their beliefs
about their children’s vocabulary knowledge. Specifically,
we predicted: (1) Parents should use shorter referring expres-
sions when describing animals that they believe their children
know, and (2) Upon the second appearance of an animal, par-
ents would adapt the length of their referring expression ac-
cording to whether the child responded accurately on the first
appearance of the animal.

Method

Participants

Toddlers (aged 2.0 to 2.5 years) and their parents were re-
cruited from a database of families in the local community or
approached on the floor of a local science museum in order
to achieve a planned sample of 40 parent-child dyads. A to-
tal of 46 parent-child pairs were recruited, but data from six
pairs were dropped from analysis due to experimental error or
failure to complete the study. The final sample consisted of
40 children aged 2.02 to 2.48 years (M = 2.17), 20 of whom
were girls.

Stimuli

Eighteen animal images were selected from the Rossion &
Pourtois (2004) image set, which is a colored version of
the Snodgrass & Vanderwart (1980) object set. Animals
were selected based on age of acquisition (AoA), using data
from WordBank (Frank, Braginsky, Yurovsky, & Marchman,
2017). The AoA of the selected animals ranged from 12 to 31
months. Half of the animals had lower AoA (12-20 months),
and the other half had higher AoA (25-31 months). Each trial
featured three animals, all from either the low AoA or high
AoA category.

A modified version of the MacArthur-Bates Communica-
tive Development Inventory (CDI; Fenson et al., 2007), a
parent-reported measure of children’s vocabulary, was admin-
istered before the testing session via an online survey. The
selected animal words were embedded among the 85 words
in the survey. Two of the animal words–one in the early AOA
and one in the late AOA category–were accidentally omitted,
so trials for those words were not included in analysis.

Figure 1: Example iPad screens for the child (top) and parent
(bottom) during the experiment.

Design and Procedure
Each parent-child pair played an interactive game using two
iPads. Children were given two warm-up trials to get used
to the iPads. The practice and experimental trials began af-
ter the warm-up. On each trial, three images of animals were
displayed side by side on the child’s screen, and a single word
appeared on the parent’s screen (Figure 1). Parents were in-
structed to communicate as they normally would with their
child, and encourage them to choose the object correspond-
ing to the word on their screen. The child was instructed to
listen to their parent for cues. Once an animal was tapped,
the trial ended, and a new trial began. There was a total of 36
experimental trials, such that each animal appeared as the tar-
get twice. Trials were randomized for each participant, with
the constraint that the same animal could not be the target
twice in a row. Practice trials followed the same format as
experimental trials, with the exception that images of fruit
and vegetables were shown. All sessions were videotaped for
transcription and coding.

Results
The data of interest in this study were parent utterances used
during the interactive game and parents’ responses on the
adapted CDI. Transcripts of the videos were analyzed for
length of referring expressions. We measured the length of
parents’ referring utterances as a proxy for amount of infor-
mation given in each utterance. Parent utterances irrelevant to
the iPad game (e.g. asking the child to sit down) were not an-
alyzed. Children’s utterances were coded when audible, but
were not analyzed.

Word difficulty. We first confirm that the animals predicted
be later learned were less likely to be marked known by the
parents of children in our studies. As predicted, animals in the
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Figure 2: Proportion of parents who reported that their child
understood the word for each of our target animals. Error
bars indicate 95% confidence intervals computed by non-
parametric bootstrap.

early AoA category were judged to be understood by 93%
of parents, and items in the late AoA category were judged
understood by 35%.

The difference between these groups was confirmed statis-
tically with a logistic mixed effects regression with a fixed
effect of AoA type and random effects of participants. The
late AoA items were judged known by a significantly smaller
proportion of parents (β = -5.49, t = -11.22, p < .001). Par-
ents’ judgments for each target word are shown in Figure 2.

Length of referring expressions. If parents calibrate their
referential expressions to their children’s linguistic knowl-
edge, they should provide more information to children for
whom a simple bare noun (e.g. “leopard”) would be insuf-
ficient to identify the target. Parents did this in a number of
ways: With one or more adjectives (e.g., “the spotted, yellow
leopard”), with similes (e.g., “the one that’s like a cat”), and
with allusions to familiar animal exemplars of the category. In
all of these cases, parents would be required to produce more
words. Thus, we analyzed the length of parents’ referential
expressions as a theory-agnostic proxy for informativeness.

We predicted that parents should produce more
informative–and thus longer–referring expressions to
refer to animals that they thought their children did not know.
We divided every trial of the game into phases: The time
before a child selected an animal, and the time following
selection until the start of the next trial. Figure 3 shows the
number of words that parents produced to refer to animals
that they believe their children know versus those they
believe their children do not know–both before their children
selected an animal and after. In line with our prediction,
parents produced significantly longer referring expressions
when talking about animals that they believe their children do
not know. However, once the child had selected an animal,
the expressions that followed did not differ between known
and unknown animals.

We confirmed this result statistically, predicting number of
words from a mixed effects model with fixed effects of phase
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Figure 3: Length of parents’ references before and after their
child selected a target animal. Points indicate means, er-
ror bars indicate 95% confidence intervals computed by non-
parametric bootstrapping.

and animal knowledge and their interaction, and random ef-
fects of participant and item. In this and all future models, we
analyzed the number of words on a log scale as that improved
model fit, but results are qualitatively similar when raw num-
ber of words was the dependent variable. Phase and the in-
teraction of phase and knowledge were significant: Parents
produced fewer words after selection (β = -0.51, t = -13.16,
p < .001), and when the animal was known, (β = -0.21, t =
-6, p = < .001), but the change was smaller for known ani-
mals (β = 0.08, t = 1.61, p = .107). In the remainder of our
analyses, we focus on utterances in the pre-selection phase of
each trial as the post selection phase did not vary across trial
targets.

Although each parent only gave a single bit of information
about each animal–whether they thought their child knew it
or not–we pooled these judgments across parents to estimate
a continuous measure of difficulty (Figure 2). If parents’ re-
ferring utterances reflect a sensitivity to this continuous dif-
ficulty, the length of their referring expressions should vary
smoothly with the difficulty of words. Figure 4 shows this
relationship, which was confirmed by a mixed effects model
predicting length from fixed effects of difficulty and animal
knowledge, and random effects of subject and trial target.
Referring expressions were reliably longer for more difficult
animals (β = 0.2, t = 2.63, p = .012), over and above the
increase for unknown animals (β = 0.14, t = 3.05, p = .002)

We then tested our second hypothesis: Parents should mod-
ify their productions over the course of the experiment as they
obtain evidence about their children’s knowledge. Because
each animal was the target twice, parents could use their chil-
dren’s selection on the first appearance of the animal to in-
form their referential expressions on the second appearance.
Figure 5 shows the length of parents’ referring expressions as
a function of their prior belief about their children’s knowl-
edge and their children’s selection on the first appearance of
the target animal. As predicted, parents who thought their
children knew an animal, but who observed evidence that
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Figure 4: Number of words in parents’ referential expressions as a function of the proportion of children reported to know
the word for target animal. Points show group averaged proportions, error bars show 95% confidence intervals computed by
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Figure 5: Length of parents’ referring expressions on the sec-
ond appearance of each animal. Points show group averaged
proportions; error bars show 95% confidence intervals com-
puted by non-parametric bootstrap.

they didn’t (i.e. their children selected the wrong animal),
lengthened their referring expressions on its second appear-
ance. Parents who thought their children did not know an
animal before the start of the game did not shorten their refer-
ring expressions if their children were correct the first time.
We cannot say definitively why their referring expressions do
not change in length, but one likely explanation is that the ref-
erences that lead to success the first time were heavily scaf-
folded and may not even have contained the animal’s canon-
ical label (e.g. “the one that looks like a cat” for leopard).
We confirmed these results with a mixed effects model pre-
dicting length of expressions from parents’ prior beliefs, their
children’s selection on the first trial, and their interaction. We
found only the interaction to be significant: References were
not reliably longer when parents thought their children did
not know the animal (β = 0.28, t = 4.14, p = < .001), nor
when the children were incorrect on the previous trial (β =
0.27, t = 3.82, p = < .001, but only when the parent thought

term estimate t-value p-value
intercept 3.10 4.29 < .001
length (log) -1.34 -2.53 .011
unknown -3.06 -3.07 .002
second appearance -0.18 -1.06 .288
trial number 0.01 1.00 .317
length * unknown 1.39 1.88 .061

Table 1: Coefficient estimates for a mixed-effects lo-
gistic regression predicting children’s success in se-
lecting the target animal. The model was specified
as correct ∼ log(length) * unknown + appearance
+ trial + (1|subj) + (1|animal).

their children did not know the animal and their children were
incorrect on the previous trial (β = -0.44, t = -4.29, p = <
.001).

Children’s selections. Overall, children performed signifi-
cantly above chance for both low AoA and high AoA trials.
In our previous analyses, we showed that parents calibrated
the length of their referring expressions to their beliefs about
their children’s knowledge. They did this both in response to
their prior beliefs (Figure 3), and their in-game observations
of their children’s knowledge (Figure 5). In our final analy-
ses, we asked whether this mattered for children’s selections.
Are children more likely to succeed in the task when parents
provide well calibrated utterances? We asked this question by
predicting children’s selection trial by trial from a mixed ef-
fects logistic regression with fixed effects of parents’ prior be-
liefs about children’s knowledge of the target animal, whether
the trial was the first or second appearance of the the target
animal, the length of parents’ referring expressions, and the
interaction of parents’ prior beliefs and the length of their ex-

654



0.5

0.6

0.7

0.8

Child knows Child doesn't know

Parents' belief about animal

S
el

ec
tio

n 
ac

cu
ra

cy

Figure 6: Children’s accuracy at selecting both known and
unknown animals. Points indicate means, error bars indicate
95% confidence intervals computed by non-parametric boot-
strapping.

pressions, as well as random effects of subject and trial target.
Children were more likely to be correct when their parents
produced longer references, but only for animals that their
parents believed that they did not know. Thus, parents’ infor-
mative references to unknown animals did appear to be sup-
porting successful communication of the target animal. Table
1 shows coefficient estimates for all parameters.

Discussion
Parents have a wealth of knowledge about their kids, includ-
ing their linguistic development (Fenson et al., 2007). Do
they draw on this knowledge when they want to communi-
cate? In a referential communication task, we showed that
parents speak differently depending on their beliefs about
their children’s vocabulary knowledge. Specifically, they pro-
duce shorter, less informative expressions to refer to animals
that they believe their children know relative to animals that
they think their children do not know. Further, parents update
their beliefs during the course of the task, producing more
informative expressions on the second appearance of an an-
imal they previously thought their children knew if they ob-
served evidence to the contrary (i.e. when children selected
the wrong animal). We further found that more informa-
tive referring expressions were associated with increased like-
lihood of successful communication: Children were more
likely to correctly select animals whose names they did not
know if their parents produced longer utterances to refer to
them. We leveraged length as a proxy for informativeness
in parents’ expressions in the service of quantitative, theory-
agnostic predictions. In ongoing work, we are analyzing how
parents succeed on these trials, and investigating whether dif-
ferent strategies lead to different levels of success.

In general, communicative success was high. Children se-
lected the correct animal at above chance levels, even for tar-
gets whose names their parents thought they did not know.
Because easy and hard animals appeared on separate trials,
children’s high accuracy in selecting unfamiliar animals is

unlikely to be due to the use of strategies like mutual exclu-
sivity (Markman & Wachtel, 1988). Instead, parents must
have produced sufficient information for their children to find
the correct target. Taken together with our finding that par-
ents used longer sentences for words they think their children
do not know, our results suggest that parents modified their
speech as a means to communicate.

Our proposed explanation for these results is that they are
produced by a pressure for effective communication: Parents
need to produce sufficient information for their children to
understand their intended meaning. That is, parents design
their utterances for their children’s benefit (speaker-design,
Jaeger, 2013). It could be instead that these utterances reflect
pressure from speaking itself. For example, length of parents’
utterances may reflect their difficulty in retrieving certain an-
imal words (MacDonald, 2013). We find this explanation un-
likely given that parents were given the target words in written
form on their iPad, essentially eliminating retrieval problems
(Wingfield, 1968). The fact that parents are using long and
short referring expressions depending on their beliefs about
children’s vocabulary knowledge suggests that they are cali-
brating to their children.

It is important to note that our current results do not rule
out the possibility that parents are engaging in pedagogy. Par-
ents may be using longer referring expressions because they
wish to teach their children certain words, and this could po-
tentially explain why parents use longer references for words
they believe their children do not know. To understand the
motivations behind long and short utterances, we are cur-
rently analyzing the content of parents’ speech. Preliminary
qualitative analysis shows that parents use more adjectives
on trials where they believe their children do not know the
target word (e.g. “Pick the red lobster” instead of “Pick the
lobster”). The use of adjectives on these trials may reflect
an intention to teach children about a certain animal, but it
could also indicate a pressure to communicate effectively. In
the lobster example, the color “red” is likely a helpful cue
for children, and parents may be using adjectives as a way to
help children select the correct target quickly. While our cur-
rent findings do not allow us to distinguish between the peda-
gogical and communicative hypotheses, we hope that further
analysis of parents’ speech will help us differentiate the two
accounts.

Our work contributes to the current literature on parent-
child interaction, and forms the basis for further experimental
work examining the influences that parent speech has on chil-
dren’s language development. In line with Masur (1997), our
findings provide evidence that parents calibrate speech sensi-
tively to their children’s vocabulary knowledge. These results
are important in light of previous work suggesting that par-
ent responsiveness and sensitivity shape the way young chil-
dren learn language (Hoff-Ginsberg & Shatz, 1982; Tamis-
LeMonda et al., 2014). Furthermore, we propose that par-
ents are modifying their speech as a means to communicate,
and that communicative intent shapes the language environ-
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ments children experience. Further qualitative analysis of our
dataset will shed light onto the characteristics of parent-child
communication that are helpful for language acquisition.

Finally, this study highlights the importance of studying
the parent-child pair as a unit, rather than viewing children
as isolated learners: both parents and children contribute to
the process of language development (Brown, 1977; Hoff-
Ginsberg & Shatz, 1982). Focusing on the interactive and
communicative nature of language captures a more realistic
picture of children’s language environments: The input that
children receive is not random – it is sensitive to their devel-
opmental level.

All code for these analyses are available at
https://github.com/ashleychuikay/

animalgame
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Abstract

The development of self-adaptive systems has attracted lots of
attention as they can adapt themselves autonomously to en-
vironmental dynamics and maintain user satisfaction. How-
ever, there are still tremendous challenges remained. One ma-
jor challenge is to guarantee the reusability of the system and
extend the adaptability with the changing deployment environ-
ments. Another challenge is to ensure the adaptability coping
with the open and complex environments with the existence of
unknown. To solve these problems, we introduce a concep-
tual self-adaptive model, decoupling the environment with the
system. This model is a two-layer structure, based on internal
causes and external causes from attribution theory. The first
layer, determining how the internal causes affect the adapta-
tion behaviors, is independently designed and reusable; while
the second layer, mapping the relationship between external
causes with internal causes, is replaceable and dynamically
bound to different deployment environments.
Keywords: Self-Adaptation; Attribution Theory; Reusability

Introduction

Current society extensively relies on software systems to
achieve specific goals. However, achieving those required
goals is a tremendous challenge (Cheng, de Lemos, & et al.,
2009) since there are lots of uncertainties that developers have
not considered or cannot fully understand during design time,
and the changing environment leads to costly reconfiguration
and time-consuming maintenance tasks (de Lemos, Giese, &
et al., 2010). Therefore, there is a high demand for manag-
ing complexity reduction and achieving desired goals within
a reasonable cost and timely manner. Self-adaptation is gen-
erally considered as one of the most promising approaches to
manage the uncertainties of modern software systems since it
enables a system to adapt itself autonomously to user require-
ments or environmental dynamics to continuously achieve
system goals including performance, security, fault manage-
ment, etc (Sawyer, Bencomo, & et al., 2010).

In the existing literatures, most of the adaptation behav-
iors are triggered by events in the environment (Salehie &
Tahvildari, 2009; Shevtsov, Berekmeri, & et al., 2018; Fil-
ieri, D’Ippolito, & et al., 2017; Modoni, Trombetta, Veniero,
Sacco, & Mourtzis, 2019). That is to say, the main adaptabil-
ity of a self-adaptive software system is the internal response

to the changes in the external environmental factors. Accord-
ingly, the whole lifecycle of the adaptive system, including
design time and run-time, is always associated with the envi-
ronment where the system is deployed. In the design phase,
system environment, as well as the mechanisms of perceiv-
ing and effecting environment are modeled and implemented.
And the set of adaptation policies, tightly binding to this spe-
cific environment, are defined and customized. Then at run-
time, adaptation behaviors could be achieved by implement-
ing the activities of a well recognized feedback control loop
called MAPE-K (Monitoring, Analysis, Planning, and Exe-
cution with Knowledge).

One of the disadvantages of current method is that these
adaptation policies bound tightly to a specific environment
will inevitably limit the adaptivity of the system to various de-
ployment environments. Take a robot system as the example.
In a wood floor environment, there could be policies describ-
ing how fast the robot should move forward to reach its desti-
nation as soon and as safe as possible; or how many angles it
shall turn when encountering obstacles. However, the value
of speed and angles will be very different in a more slippery
tile floor or on a rough cement road. Therefore, for an adap-
tive system, in addition to being able to adapt in the specific
deployment environment, it should have a wide range of ap-
plications (i.e., being deployed in a variety of environments).
The other disadvantage is that current adaptive systems can-
not cope with the increasing complexity and openness of the
environment. It is basically impossible to pre customize a
complete environment model since the developer cannot fully
understand or have considered at design time. Inevitably, new
environmental factors might exist and appear at run-time and
the system is not reliable to recognize or predict those un-
foreseen. For example, when designing the adaptive strate-
gies for a robot avoiding obstacles, it is necessary to know in
advance what kind of obstacles it might encounter, and then
to specify how to deal with obstacle A, obstacle B, etc. Ob-
viously, obstacles in the environment could be infinite. New
and unexpected obstacles will emerge constantly in the prac-
tical environment, which leads to the inadequate capacity of
the existing system.
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The fundamental reason for these disadvantages lies in the
tight bound between the specific environment and the system.
To deal with current challenges, this paper comes up with a
novel approach based on attribution theory. Philosophically,
the internal causes are the fundamental reasons for the change
or the development of things while the external causes are
merely the conditions and become operative through internal
causes. In other words, it is when the external causes lead to
the changes of internal causes that the adaptation behaviors
could be triggered. Therefore, the basic idea behind our ap-
proach is to decouple the environment with the system both
at two stages: independent design and run-time binding. In
the design stage, how the adaptation behaviors of the system
are determined by the internal causes is focused and empha-
sized, which makes the design and development of software
are independent of the practical environment. In the run-time
stage, the relationships between environmental factors (i.e.,
environmental events as external causes) and state of the sys-
tem (i.e., internal causes) are dynamically established, thus
binding the system to the specific application (i.e., deploy-
ment) and realizing the environmental-related adaptability.

The main contributions of our research is summarized as
follows:

• We propose a new conceptual model of designing adaptive
systems based on the attribution theory;

• We describe a two-layer structure in accordance with the
conceptual model. The first layer is the independent design
with decisive adaptation policies pertaining the relation be-
tween internal causes to adaptation behaviors; while the
second layer is the dynamic bound with influential adap-
tation policies connecting the external causes to internal
causes.

Approach Overview

So fundamental is the process of asking and answering “why”
questions – trying to figure out what caused something else
– that it has been characterized as a basic human activ-
ity, and a family of theories has been developed to illumine
how and why things happen as they do. This set of theo-
ries, collectively called Attribution Theory initiated by Fritz
Heider(Heider, 1958) and further advanced by Harold Kelley
and Bernard Weiner(Kelley, 1967), attempts to describe and
explain the processes involved in everyday explanations, most
typical explanations of individual behaviors and events. An
interesting example that someone is angry could be attached
to the causes of bad-tempered characteristics or something
bad happened.

There are a number of definitions for attributions, but a
common way to define attributions is as the internal and ex-
ternal process of interpreting and understanding what is be-
hind individual behaviors. External attribution, also called
situational attribution, refers to interpreting the causes of be-
haviors to the situational or environment features outside a

person’s control. Internal attribution is the process of assign-
ing the causes to some personality traits, rather than to outside
forces.

Data State

Preference

Goal

Internal Causes

Action

External Causes

Influential 
adaptation policies

Function

Decisive 
adaptation policies

First Layer
(Independent Design)

Second Layer
(Dynamic Binding)

Self-Adaptive System

Environmental 
Factors Environment

User 
Factors

Resource 
Factors

Figure 1: Conceptual Model of Attribution-Based
Self-Adaptive System.

Similarly, adaptive behaviors of self-adaptive systems are
the reactions to the external causes, i.e., changes. It is im-
portant to identify the reason for an adaptation: why do we

have to adapt?. This is the central question influencing the
reaction. In general, the reasons for an adaptation could be
i)a change in the technical resources, e.g., the availability of
an alternative network connection; ii)a change in the envi-
ronmental variable, e.g., the workload for a website changed;
and iii)a change regarding the user, e.g., a change in the user
goal or the user preferences(Krupitzer, Roth, & et al., 2015).
Users and operative technical resources could be regarded as
a part of the environment and together with the environmental
factors form the periphery of adaptive systems (Jiao & Sun,
2016). They are the external conditions of the existences and
referred to as external causes.

Factors or events in the environment are not the necessary
conditions that systems could execute reactive behaviors. For
example, when the number of active users increases, some
of the websites may saturate while others may not. In fact,
whether an application deployed in the cloud is saturated and
then allocated with more resources depends on whether the
response latency (the time elapsed from sending the first byte
of the request to receiving the last byte of the response) is
long, and one will not do so if the latency is within a satis-
factory range even if this application is with a huge number
of users. In other words, the change of the user number does
not determine the adaptive behaviors on an allocation of the
resource; instead, the influence could take effect only when
the change affects system internal states, which further im-
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pair system goals. On the contrary, internal changes on the
states of the system itself are the intrinsic reasons for adap-
tive behaviors.

Figure 1 provides a birds-eye view of our conceptual model
of self-adaptive systems. An adaptive system can be divided
into two layers, each corresponding to the internal and ex-
ternal attribution process. The first layer is composed of in-
ternal causes (including data state, function, preference, and
goal) and adaptation behaviors (i.e., actions). Decisive adap-
tation policies, how to cope with changes in internal causes,
determine the relations between internal causes and actions.
This layer is independently designed and fixed even with the
changing deployment or the extended environment. Note
that the changing deployment is the change from one spe-
cific environment to another; the extended environment is the
open environment with environmental factors from unknown
to known. In the second layer, the relationship between ex-
ternal causes and internal causes is denoted in the influential
adaptation policies. The second layer is a replaceable com-
ponent and dynamical bound when the running environment
is determined.

VictimUAV

Rescue 
Center

Figure 2: Running Example

Running Example. As a motivating example showcasing
our approach, consider a disaster relief mission in adaptive
system domains (Li, Jiao, & et al., 2018). In such a scenario,
communication infrastructure is disabled in a city due to dis-
asters; parts of the city may be unsafe. Figure 2 visualizes a
possible configuration of a part of the city (i.e., a district). The
rescue center is the safe zone in charge of the district’s safety.
The district then is divided into several blocks. The victims
are spread in different blocks and have no idea of where the
rescue center is. The unmanned aerial vehicle(abbr. as UAV)
will be arranged to search and guide victims to the rescue
center. In the process of searching for the victims, the UAV
should not only guarantee the search and rescue task quick
and thorough (search and rescue all victims in an acceptable
time), but also ensure its own safety (no crash) and energy
storage (avoid battery depletion). Furthermore, we expect
that this UAV system can participate in missions in various
disaster environments, such as fire, floods, earthquakes etc.

Formal Definition of the Conceptual Model

Inspired by the attribution theory, external causes take effects
on the system through the internal causes, instead of directly
affecting or determining the behaviors of the system. To this
end, the conceptual model (M) of a self-adaptive system is
defined as a tuple M= (IC, DAP, IAP), where:

• IC are the internal causes (i.e., intrinsic reasons for adap-
tation behaviors) which can be further specified as a tuple
IC= (Data State, Goal, Preference, Function);

• DAP are the decisive adaptation policies, which define how
the internal causes of the system determine the adaptation
behaviors and are generally expressed as rules of “internal
causes – actions”;

• IAP are influential adaptation policies, denoting how
events in the environment affect the changes of internal
causes with the form of “external causes – internal causes”.

Internal Causes and System State

Data State The remembered information of the sys-
tem determined by a set of attribute values. Let
(Attr = a1, ...,an) be the attribute set of the system,
and (Dom = dom(a1), ...,dom(an)) be the set of domains
of these attributes. Then the data state of the system is the
mapping of these attributes to their values. In the motivation
example, UAV system needs to maintain certain data, such
as current location, residual power, flight height, searched
blocks, unsearched blocks, hazard blocks, status(i.e., cruise
or guidance). The data state of UAV is defined by the value
of these kinds of information.

Goal the data state that the system expects to achieve or
maintain. Generally, goals can be classified into three cate-
gories (Filieri et al., 2017). One type of goal is a reference
value, called setpoint, to track. In this case, the objective is
to keep a measurable quantity as close as possible to the set-
point. The second category of the goals is the variation of the
classic setpoint-based goal where the goal resides in a spe-
cific range of interest with confidence intervals. The third
category of goals concerns the minimization (or maximiza-
tion) of a measurable quantity of the system. In substance,
these goals can be regarded as functions of data states:

Goal= { g | g 2 2Data ^ eval(g) = 1}. (1)

In general, the system is considered completely achieving
a goal if it enters the target data state; however, in some
cases, the system can only (infinitely) get close to the target
but not reach. For example, it is impossible to require the
UAV’s flighting speed “to maintain exactly at 2 meters per
second”, then the system is said to be achieving the goal to
some extent. Therefore, a goal is usually associated with
an evaluation function which determines whether the goal
has been achieved or how far it has been achieved. For
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instance, in this mission scenario, should all the blocks
had been searched and rescued, the evaluation result of
this goal is one. If it is not, the evaluation function is
eval(g) = num(searched blocks)÷num(total blocks),
and pertains that goal satisfaction is directly proportional to
the number of blocks cruised.

Preference The data state that the system is more interested
in. Contrary to the goals that the system must be achieved
or maintained, the preferences are not necessary must-to-do,
but the performance of the system would be better if they are
met. For example, the UAV is not only expected to com-
plete the search and rescue goal but also with economical
(less electricity consumption) and fast preference (all the vic-
tims should be searched as soon as possible). Similar to the
goal, the preferences are associated with the utility functions
that measure the satisfaction of preferences. For example,
a utility function is present: u= residual power ÷ total
energy storage, illustrating the tendencies of less energy
consuming.

Preference= { p | p 2 2Data ^ util(p) 2 [0,1]}. (2)

Function The means or methods of achieving the goals.
The functions are essentially changing or maintaining system
status through manipulating controllable variables. For ex-
ample, the UAV has the functions of take-off, flying, landing,
direction change, etc.

Function= {f | f : Data! Data}. (3)

System State The state of the system is determined by the
internal factors. In other words, data state, the available func-
tions, and the satisfaction of goals and preferences together
define the system state. Note that a function is not always
valid (sometimes not working); the valid data of the sys-
tem is the combination of attribute values and functions(i.e.,
Data= {s|s 2 (Attr⇥Dom)[2Function})

Adaptation Policies

In the complex and uncertain environment, many kinds of
environmental factors (discovered and to be discovered) ex-
ist, thus resulting in complicated influences on the internal
causes. It is not necessarily true that all the changes of envi-
ronmental factors will affect the system thereupon triggering
adaptation behaviors. Only those leading to the changes of
internal causes have an impact on the self-adaptive system.

Influential Adaptation Policies The IAP describe how the
external causes especially environmental factors affect the in-
ternal causes of the system. These external causes directly in-
fluence the data state, which will further affect the functions,
preferences and goals. In a fire scenario, the environmental
factors for the motivation example could be the magnitude

of the fire, which inevitably results in different data states
for the UAV system. For example, the detection of a seri-
ous situation (i.e., high magnitude) for a block would render
the UAV marking it as hazard and UAV will try to avoid this
block cruise in a certain amount of time for its own safety.
However, if in an earthquake scenario, the obstacles from the
ground would probably not affect the mark of the block which
is stored as an internal data since it is not a threat to high alti-
tude flying UAV.

IAP= {pi | pi : ExtFactors! Data State⇥
Function ⇥ Preference⇥Goal}.

(4)

Decisive Adaptation Policies The DAP characterize how
the internal causes determine the self-adaptive actions
of the system. An action is the operation of a function,
which means that taking an action is to perform a function.
Action= {a|f 2 Function, a = Do(f) }. The factors that
determine the adaptive actions may involve system states,
functions that the system possesses, preferences and goals.
For the current location of UAV as shown in Figure 2, without
detected victims to be guided to the rescue center, actions
of four direction changes (North, South, East, West) are
available if all corresponding blocks have not been cruised
before and no hazard mark for the time-being.

DAP= {pd | pd : Data State⇥Function ⇥
Preference⇥Goal! Action}.

(5)

Through this conceptual model with a tuple structure,
adaptation behaviors are achieved by explicitly defining in-
ternal causes and reasoning about the influences of external
events on internal causes via IAP, upon which reactive actions
are acquired by DAP. Concretely, for the motivation example,
the UAV can infer the influences of environmental factors on
its internal causes; and then the UAV can reason about its
DAP to decide its adaptation behaviors. With the two layer
structure, this conceptual model is supposed to be character-
istic with applicability and reusability. Applicability entails
the appropriateness of our attribution theory based concep-
tual model to design the self-adaptive systems and to cap-
ture dynamics of the environment, triggering IAP and DAP
while maintaining satisfaction on system goals. Reusabil-
ity describes usability of the DAP without modification, es-
pecially coordinating with various alterable dynamic binding
IAP to different deployment environments and extended en-
vironments allowing continuously gaining knowledge.

Implementation Model

This section provides an implementation model of our attribu-
tion based approach. Adaptation builds on adaptation policies
characterizing casual relationships between external and in-
ternal causes of a system, and between internal causes and ac-
tions in the knowledge. Adaptation behaviors are achieved by
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implementing the activities of the MAPE (Monitoring, Anal-
ysis, Planning, Execution) loop (Kephart & Chess, 2003).
Analysis and Planning are responsible for identifying pos-
sible requirements violations and generating an adaptation
strategy, respectively, while Monitoring and Execution are re-
sponsible for enacting it at runtime.

Knowledge

To achieve self-adaptation, the system needs to be tailored,
mainly regarding to the adaptation policies in the knowledge.
This component Knowledge (K) is shared by all MAPE com-
ponents. Ideally, all of the knowledge should be reusable
across the same class of systems, i.e., these systems can adapt
to all kinds of deployments and achieve user goals. However,
the generality of this component comes at a cost:

• A significant amount of system-specific knowledge needs
to be specified and maintained to apply the system to dif-
ferent deployment environments.

• Should the need for changing the K arises with the gain of
information from the environment, the whole component
shall be revised separately and deployed to aid (correctly)
user expectation.

To support the extendability of new information and
reusability of adaptation policies across different sys-
tems, we separate system-specific knowledge from the
environment-specific part, echoing the two-layer structure in
the conceptual model. System-specific knowledge, denoted
as the DAP and instructing the behaviors to certain states of
the system, is fixed and reusable between systems in similar
functions. Meanwhile, environment-specific knowledge
for defining how events in the deployment environment
( external causes) affect system state in the form of IAP,
is alterable as the deployment changes or discovery of
additional environmental factors impacting system state.
This is faithful to the principle of separation of concerns –
the principle for separating a design into distinct sections,
such that each section addresses a separate concern (Dijkstra
& W, 1982).

MAPE Loop

For a specific deployment environment, adaptation behaviors
are achieved by following the widely adopted mechanism of
MAPE loop, which is shown in the implementation model in
Figure 3.

Monitor Events generated in the environment indicating
the execution of system actions or natural changes in the ex-
ternal factors are received. Component Monitor (M) gath-
ers or synthesizes particular data through probes (or sensors)
from the environment, and saves data in the knowledge in the
form of external causes. For our example, events can indicate
a serious fire detected by the cruising UAV.

Self-Adaptive System

Monitor Executor

Various Environments

...Env1 EnvNEnv2

Analyzer Planner

AdaSWDWLRQ�3ROLFLHV

Internal Causes ActionExternal Causes

Decisive Adaptation PoliciesInfluential Adaptation Policies

Second Layer — Alterable First Layer — Fixed

Knowledge

External |- Internal

External |- Internal

External |- Internal

Internal |- Action

Internal |- Action

Internal |- Action

Figure 3: Implementation Model of Attribution-Based
Self-Adaptive System.

Analyzer During speculative analysis, conditions of the en-
vironment representing violations of goals or better satisfac-
tion of goals which can arise when active entities perform
actions are identified. The component Analyzer (A), with the
input of external causes from the Monitor, performs analy-
sis by starting adaptation policies engine and reasoning about
IAP to acquire the data state of the system. On this basis,
analyzer further checks whether the goal is fulfilled; prefer-
ence is satisfied; an adaptation is required. A typical example
could be a new mark of hazard blocks resulted from the fire
situation which might endanger its own safety.

Planner Component Planner (P) composes a workflow of
adaptation actions aiming to counteract violations of system
goals or better achieving goals. It consists of one or a set
of actions to be enacted inferring from DAP in the adaptation
policies engine receiving internal causes as input. For each
situation, it identifies a policy if one exists, or prompts for a
change in the design of the system if the violation cannot be
handled and the system goal cannot be satisfied. Direction
changing or safe landing could be feasible actions for UAV
facing with a dangerous situation.

Executor During execution, the action from the DAP is en-
acted on the system by the component executor (E) through
effectors (or actuators). This activity receives as input the cur-
rent conditions of the environment from the monitoring activ-
ity, and identifies if a specific state in the adaptation policy is
reached. If that is the case, it enacts specific action indicated
in the adaptation strategy.
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Discussion

Self-adaptation has been growing increasingly important.
Though numerous excellent research efforts have been put
into this area, self-adaptation as a field is still in its in-
fancy, and existing knowledge and approaches are not ad-
equate enough to address today’s ever-expanding and ever-
changing various environments. In this paper, we mainly fo-
cus on a novel conceptual model to design self-adaptive sys-
tems for various and open environments based on attribution
theory, offering reusability engineering by decoupling the en-
vironment with the system. Accordingly, the related work
will be classified into two categories. First, we look into the
mechanisms of reusability in adaptive systems, positioning
our work. Then, we discuss cross approaches among differ-
ent disciplines that play an important role in the construction
of self-adaptive systems.

Reusability has always been a concern in adaptive systems
field. Generally, research has focused on providing frame-
works for adaptation, such as rainbow (Garlan, Cheng, & et
al., 2004) monitoring the executing system in the system-
layer through an abstract model in the architecture layer
which interacts with system layer through a translation layer,
and Hogna, a platform for deploying self-managing web ap-
plications on cloud (Barna, Ghanbari, & et al., 2015), al-
lowing developers to customize each phase of the feedback
loop without having to implement the entire layer themselves.
Autonomic Software Product Lines (ASPL) is a strategy for
developing self-adaptive software systems with systematic
reuse by integrating a domain-independent managing sys-
tem into a domain-specific software product line (Abbas &
Nadeem, 2018). Besides, different patterns that can be reused
have been proposed facilitating the development of dynamic
adaptive systems (Ramirez & Cheng, 2010); other techniques
such as bidirectional transformations, a mechanism of syn-
chronization, have been applied to ensure the correctness of
reusability in adaptive systems (Colson, Dupuis, & et al.,
2016). Though our approach divides the system framework
into two levels like most of the reusable approaches, the ba-
sis for this division is the attribution to either environment
or system itself facilitating the reusability in various deploy-
ment environments, not the structure to be reused in different
systems with similar functions.

Adaptive system is an interdisciplinary research field. The
concept of self-adaptation, derived from biology, is the char-
acteristics of a creature changing its habits to adapt to a new
environment (Longman, 1994). Biological approaches in
computer science have emerged with the study of collective
behavior in natural multi-agent systems by Parunak (Parunak,
1997). Other mechanisms in biology, such as flocking, nest
building, molding (Mamei, Menezes, & et al., 2006) and hu-
man immune system (Hart, McEwan, & et al., 2011) has been
adopted in self-organizing systems and can be transferred to
self-adaptive systems. Besides that, it is important to learn
and borrow from other fields of knowledge that are working
or have been working in the development and study of similar

systems, or have already contributed solutions that fit for the
purpose of self-adaptive systems. Researches from chemical
have been gradually applied. Viroli et al. propose a coordina-
tion model for self-organizing systems based on biochemical
tuple spaces and chemical reactions (Viroli, Mirko, & et al.,
2009). In the physical field, Weyns et al. employ field-based
mechanisms for adaptive task assignment in multi-agent sys-
tems. Social area concentrates on market and auction mecha-
nisms and as an example, coordination in multi-agent systems
is based on social conventions (Salazar, Rodrı́guez-Aguilar,
& et al., 2010). To the end, our approach is inspired by the
research findings from psychology, emphasizing that the in-
fluence on adaptation behaviors comes from two aspects, the
external environment and the internal system. It decouples
the system with a specific environment and brings a new per-
spective in the construction of self-adaptive systems.

In our future research, we plan to further elaborate on the
work presented in this paper by applying the method to prac-
tical scenarios to strengthen the applicability. In addition,
the mapping relations between external factors and internal
causes are complicated and changeable due to open and vari-
ous environments. More efforts would be put into investigat-
ing the automatic acquisition of influential adaptation poli-
cies, such as machine learning in response to uncertain envi-
ronmental changes and reinforcement learning method con-
stantly adjusting to new environments.
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Abstract 
Explanations not only increase understanding; they are often 
deeply satisfying. In the present research, we explore how this 
phenomenological sense of “explanatory satisfaction” relates 
to the functional role of explanation within the process of 
inquiry. In two studies, we address the following questions: 1) 
Does explanatory satisfaction track the epistemic, learning-
directed features of explanation? and 2) How does 
explanatory satisfaction relate to both antecedent and 
subsequent curiosity? In answering these questions, we 
uncover novel determinants of explanatory satisfaction and 
contribute to the broader literature on explanation and inquiry. 

Keywords: explanation; curiosity; theories; inquiry; learning 
 
Humans have an insatiable drive to explain the world 
around them, and this drive plays an important role in 
supporting our amazing capacity to learn (Lombrozo, 2012, 
2016). In fact, some have suggested that explanation is to 
theory-building as orgasm is to reproduction (Gopnik, 
2000): the phenomenological sense of satisfaction that 
accompanies an explanation motivates theory-building, just 
as orgasm motivates reproduction. In the present research, 
we investigate this hallmark phenomenological component 
of explanation (“explanatory satisfaction”). What makes an 
explanation satisfying, and how does this phenomenological 
sense function to support learning and theory-formation? 

Following Gopnik (2000), we assume explanations are 
comprised of two elements: an epistemic element and a 
phenomenological element. The epistemic element of an 
explanation is straightforwardly related to the process of 
theory-formation and inquiry: broadly, an explanation 
includes theory-relevant information, which enables 
learning and facilitates future prediction and intervention. 
The phenomenological element, on the other hand, is best 
characterized as an affective response (Gopnik, 2000), and 
its role in the process of theory-formation and inquiry is less 
clear. In the present research, we address two questions that 
situate explanatory satisfaction within this broader process. 

First, how does the phenomenological component of 
explanation relate to the epistemic component of 
explanation? If explanatory satisfaction plays a functional 
role in the process of theory-building and inquiry, we might 
expect explanations to be found more satisfying when they 
possess features that suggest the epistemic function of 
explanation has been achieved. We refer to such features as 
“learning-directed,” as they relate to the epistemic role 
explanation plays in learning. For instance, we might expect 
explanations to be deemed more satisfying when they 
identify novel, useful, and generalizable patterns in the 

environment, or when they possess explanatory virtues 
(such as simplicity and breadth) that support 
correspondingly simple and broad theories. Our first 
research question is whether explanatory satisfaction is 
indeed influenced by these learning-directed features. 

Second, how does explanatory satisfaction relate to 
curiosity, another affective state that often drives 
explanation-seeking and exploration? Does curiosity about 
the answer to a given question increase the explanatory 
satisfaction experienced upon receiving the answer? Do 
satisfying explanations terminate inquiry by satisfying 
curiosity, or do they stimulate further inquiry by prompting 
curiosity about related matters? 

In addressing these questions, our studies are among the 
first to consider explanatory satisfaction within a broader 
process of inquiry and theory-building, tying the 
phenomenological component of explanation to its 
epistemic role (“learning-directed” considerations), and 
linking it to other affective states that influence learning 
(namely curiosity). We briefly review prior work on 
explanatory satisfaction and curiosity before presenting two 
novel studies. 
 

Prior Work on Explanatory Satisfaction 
Research on explanatory preferences and judgments of 

explanation quality has shown that people prefer 
explanations that are simple in the sense that they appeal to 
few unexplained causes (Bonawitz & Lombrozo, 2012; 
Lombrozo, 2007; Pacer & Lombrozo, 2017; see also 
Thagard, 1989), and broad in two senses: in that they 
explain all the relevant features of what’s currently being 
explained (Johnson, Johnston, Toig, & Keil, 2014; 
Pennington & Hastie, 1992; Thagard, 1989), and in that they 
explain additional phenomena as well (Preston & Epley, 
2005). Other research has found that people prefer 
explanations with reductive mechanism information 
(Hopkins, Weisberg, & Taylor, 2016), that appeal to the 
function of the thing being explained (Kelemen & Rosset, 
2009), that have a narrow “latent scope” (Khemlani, 
Sussman, & Oppenheimer, 2011), and that cite information 
“inherent” to what is being explained (Cimpian & Salomon, 
2014). 

There is also evidence that explanations are favored when 
they are believed to be generalizable and well-suited to 
future goals. For example, people find functional 
explanations more acceptable when they appeal to a 
generalizable causal process (Lombrozo & Carey, 2006). 
They also judge such explanations better (relative to 
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category-based or mechanistic explanations) when they 
anticipate making future inferences on the basis of 
information about an entity’s function as opposed to 
information about its category membership or the 
mechanism by which it operates (Vasilyeva, Wilkenfeld, & 
Lombrozo, 2017). Additionally, it has been proposed that 
the “explanatory virtues” that have been tied to explanatory 
satisfaction—simplicity and breadth—are important exactly 
because they point to the value of an explanation in guiding 
future inference and action (Lombrozo, 2016; Pacer & 
Lombrozo, 2017; see also Vasilyeva, Blanchard, & 
Lombrozo, 2018). Consistent with this idea, research finds 
that prompts to explain make children and adults more 
likely to discover simple and broad patterns, improving 
learning under some conditions (for a review, see 
Lombrozo, 2016). 

Taken together, this work suggests that explanatory 
satisfaction may be driven in part by features of 
explanations relevant to learning and theory-formation. 
Very little work, however, has investigated the relationship 
between judgments of explanatory satisfaction and learning-
directed considerations more directly. In one study, Zemla, 
Sloman, Bechlivanidis, and Lagnado (2017) presented 
participants with explanations drawn from an on-line forum, 
and had them rate the explanations on several dimensions, 
including what they called novelty (“I learned something 
new from this explanation”), generality (“This explanation 
appeals to a general principle [that is, a general rule that 
applies to many things]”), perceived expertise (“This 
explanation was written by an expert in this topic”), and 
quality (“This is a good explanation”). Novelty and 
generality were moderately correlated with quality, though 
these correlations were not significant after correcting for 
multiple comparisons. There was also evidence of a 
preference for complexity over simplicity: participants 
favored explanations involving multiple causal mechanisms. 
These findings hint at possible relationships between 
learning-directed considerations and judgments of 
explanation quality, but many questions remain open. In 
particular, which learning-directed features might predict 
explanatory satisfaction, and when and why is simplicity 
versus complexity favored? In Studies 1-2, we consider how 
judgments of learning, utility, simplicity, complexity, 
expertise, and breadth relate to explanatory satisfaction.  

 
Prior Work on Curiosity and Epistemic Emotions 
Recent work on explanation-seeking curiosity has 

investigated what triggers curiosity about why something is 
the case, motivating a learner to seek an explanation (Liquin 
& Lombrozo, 2018). In this work, participants received 
explanation-seeking questions posed in an on-line forum, 
and rated the questions along a variety of dimensions, 
including curiosity (“How curious are you about the answer 
to this question?”). Anticipated learning, generality, and 
future utility were among the strongest predictors of 
curiosity. Complexity and expertise were also found to be 
positive predictors of curiosity. However, it is not known 

whether curiosity about an explanation affects the perceived 
quality of or rated satisfaction with that explanation once 
obtained. In Studies 1-2, we consider whether antecedent 
curiosity predicts explanatory satisfaction. In Study 2, we 
additionally consider how explanatory satisfaction affects 
curiosity for further inquiry. 

One reason it is valuable to relate explanation to curiosity 
is because doing so helps bridge the epistemic role of 
explanation with the affective and motivational factors that 
guide (epistemic) behavior. Curiosity is often characterized 
as an epistemic feeling or emotion (alternatively referred to 
as a noetic feeling; Arango-Muñoz, 2014; de Sousa, 2009; 
Dokic, 2012; Morton, 2010): one of a class of evaluative 
appraisals of one’s own knowledge, which have a 
distinctive phenomenology and guide epistemic action (de 
Sousa, 2009). While a full treatment of epistemic emotions 
is beyond the scope of this paper, linking explanatory 
satisfaction to curiosity and learning is a step towards a 
more complete account of how the phenomenological and 
epistemic roles of explanation function together to support 
effective learning. 

Study 1 
In Study 1, we present participants with why-questions and 
their corresponding answers. In addition to having them 
indicate the extent to which they find each answer satisfying 
(“explanatory satisfaction”), we have them rate each answer 
along a variety of epistemically-relevant dimensions. We 
also have them rate their curiosity about the answer to each 
question prior to receiving it. This design allows us to 
address two related questions.  
 First, we ask about the role of learning and theory-
building considerations in determining explanatory 
satisfaction. To do so, we have participants indicate the 
extent to which each explanation teaches them something 
new, and whether the information it offers is useful and 
generalizable. We also ask them to evaluate the extent to 
which each explanation is simple, broad (in the sense of 
applying beyond what is being explained), and required 
expertise to produce. We can then evaluate whether and 
how strongly these factors predict explanatory satisfaction.  
 Second, we ask how curiosity about an explanation 
affects explanatory satisfaction. Specifically, are the 
explanations offered in response to questions that elicit high 
levels of curiosity judged more satisfying than those offered 
in response to questions that elicit lower levels of curiosity? 

By answering these questions, we shed light on how 
explanatory satisfaction relates to the epistemic features of 
explanations and to curiosity, another epistemic emotion 
that drives inquiry.  
 
Method 
Participants Participants in Study 1 were 159 adults (77 
male, 78 female, 2 other, and 1 prefer not to specify, ages 
19-68) recruited from Amazon Mechanical Turk. 
Participation was restricted to MTurk workers in the United 
States, who had completed at least 1000 prior tasks with a  
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minimum approval rating of 99%. Forty additional 
participants completed the study but were not included in 
analyses because they did not pass two attention checks. 

 
Materials Fifty-six questions and answers were selected 
from the book 1000 Questions & Answers Factfile (Kerrod, 
Madgwick, Reed, Collins, & Brooks, 2006). For example, 
the question “Why do some stars explode?” was answered 
with the following explanation: “Massive stars explode 
when they come to the end of their lives. They swell up into 
huge supergiants. Supergiants are unstable, so they collapse 
and blast into pieces in an explosion called a supernova. 
Supernovae are the most intense explosions in the universe, 
as bright as billions of suns put together.” 

 
Procedure Each participant saw four questions randomly 
selected from the 56 questions described above. Participants 
first rated their curiosity about each question (“Consider the 
following: [question premise]. How curious are you about 
why this is the case?”). Participants also rated seven items 
that are not relevant to the present research and are not 
reported here. Next, participants completed seven arithmetic 
problems; those who did not correctly respond to at least 
five items were excluded.1 After this task, participants read 
the answer to each of the four questions, and rated each 
answer on explanatory satisfaction and several learning-
directed features (see Table 1). Finally, participants 
completed a memory check, which required selecting four 
of the questions presented during the rating tasks from a list 
with four distractor questions. Participants were given one 
point for each correct response (hit or correct rejection), and 
those who scored fewer than six points were excluded. 
 
Results  
Due to the nested structure of the data, all analyses used a 

                                                        
1 This attention check may assess numeracy, which could lead to 

unnecessary exclusions that are irrelevant to successful completion 
of our task. However, when the participants who failed this task 
are included in all analyses (for Studies 1 and 2), all results remain 
unchanged. 

mixed-models approach, with random intercepts for 
participant and item in all models. Standardized regression 
coefficients are reported; all reported coefficients reached 
significance at the p < .05 level using likelihood ratio tests. 
In addition to the results reported here, all regression 
analyses were repeated controlling for the length of the 
explanation in number of words, as prior work has shown 
that longer explanations tend to be more satisfying 
(Weisberg, Taylor, & Hopkins, 2015). Controlling for 
explanation length had no effect on our results. 
 
Learning-Directed Features First, we tested the role of 
learning-directed considerations in predicting explanatory 
satisfaction. To do so we fit a regression model predicting 
satisfaction with all learning-directed considerations entered 
simultaneously as fixed effects. Only actual learning, β = 
0.26, 95% CI [0.17, 0.34], learning potential, β = 0.18, 95% 
CI [0.10, 0.26], and future utility, β = 0.12, 95% CI [0.04, 
0.21], explained unique variance in satisfaction holding all 
other measures fixed (see Figure 1). However, as many of 
the measures were modestly correlated with each other (see 
Figure 2), potentially affecting the robustness of the 
coefficient estimates reported above, we also fit a separate 
regression model for each measure. Actual learning, β = 
0.39, 95% CI [0.32, 0.47], learning potential, β = 0.39, 95% 
CI [0.31, 0.46], expertise, β = 0.31, 95% CI [0.24, 0.39], 
simplicity, β = -0.23, 95% CI [-0.30, -0.15], breadth, β = 
0.13, 95% CI [0.05, 0.20], future utility, β = 0.25, 95% CI 
[0.17, 0.33], and regularity, β = 0.17, 95% CI [0.10, 0.25], 
were all significant predictors of explanatory satisfaction 
(see Figure 1).  
 
Antecedent Curiosity Next, we tested whether curiosity 
about the anticipated answer to a question predicted 
explanatory satisfaction. We found that curiosity was a 
significant (though modest) predictor, β = 0.19, 95% CI 
[0.11, 0.26], and that the model including curiosity as a 
fixed effect was a significant improvement upon the null 
model, 𝜒2(1) = 23.12, p < .001.	

Table 1: Items (each rated on a seven-point scale) for explanatory satisfaction and learning-directed features in Studies 1-2.  
  
Dimension Full text of item 
Satisfaction How satisfying do you find the answer to this question? 
Actual 
Learning To what extent has the answer to this question taught you something new? 

Learning 
Potential 

Do you think there is something to be learned from the answer to this question (even if you yourself 
already knew the answer)? 

Expertise Do you think that answering this question required special expertise in some domain? 
Simplicity Do you think the answer to this question is simple or complex? 

Breadth Do you think the answer to this question is narrow (only applies to what is being explained) or broad (also 
applies to other similar cases)? 

Future Utility To what extent will the answer to this question be useful to you in the future? 
Regularity Do you think the answer to this question helps reveal a genuine pattern, structure, or regularity? 
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Figure 1: Study 1 and Study 2 standardized regression coefficients for each measure predicting explanatory satisfaction, in a 
simultaneous regression model (left panel) and in individual regression models (right panel). Study 2 regression coefficients 

control for interest and knowledge. Error bars = 95% CI.

Discussion 
The findings from Study 1 are largely consistent with 

previous research on the role of breadth (Johnson et al., 
2014; Preston & Epley, 2005), future utility (Vasilyeva et 
al., 2017), and generalizability (Lombrozo & Carey, 2006) 
in driving explanatory satisfaction. However, one important 
qualification is that complexity, rather than simplicity, led to 
higher ratings of explanatory satisfaction. This is surprising 
in light of prior work documenting a preference for simpler 
explanations when using well-controlled stimuli (where, for 
example, probability is matched; Lombrozo, 2007, Pacer & 
Lombrozo, 2017), but is consistent with prior work using 
more naturalistic stimuli, such as those employed here (e.g., 
Zemla et al., 2017).  

Our findings go beyond prior work in identifying an 
important role for our new learning-directed measures of 
actual learning, learning potential, and expertise. In fact, 
these were among the strongest predictors of explanatory 
satisfaction. We also found a modest role for antecedent 
curiosity, in that greater curiosity about the answer to a 
question predicted greater satisfaction with the answer. 
While this has not (to our knowledge) been tested in prior 
research, there is evidence that the gap between curiosity 
about the answer to a trivia question and the satisfaction 
upon receiving the answer predicts later memory for the 
answer (Marvin & Shohamy, 2016). This suggests that how 
much is learned from an explanation could be a function of 
both antecedent curiosity and the explanatory satisfaction 
experienced from the explanation itself.  

These findings highlight the value of approaching the 
study of explanatory satisfaction through the lens of theory-
formation and inquiry. In particular, if achieving 
explanatory satisfaction effectively motivates learning and 
theory-formation, then we should expect a close 
correspondence between explanatory phenomenology and 
the epistemic functions of explanation. Our findings provide 
initial support for this correspondence. 

Study 2 
In Study 2, we replicate the key findings from Study 1, 

while controlling for two potentially relevant factors: 
participants’ a priori interest in and knowledge about the 
topics the explanations address. We also investigate how 
explanatory satisfaction relates to the ongoing process of 
inquiry (for a discussion, see Danovitch & Mills, 2018) by 
considering how explanatory satisfaction affects subsequent 
curiosity. We propose two competing hypotheses: First, it is 
possible that the receipt of a satisfying explanation will halt 
further inquiry. Supporting this hypothesis, Frazier, 
Wellman, and Gelman (2009) found that preschoolers in 
both naturalistic and experimental settings were less likely 
to re-ask a question following an explanation (vs. a non-
explanation) from an adult, suggesting that the receipt of an 
explanation stopped further inquiry, at least concerning the 
topic in question. Relatedly, Mills, Sands, Rowles, and 
Campbell (2019) found that children were more likely to 
request additional information in response to explanations 
that they rated as less-complete answers to the relevant 
question, relative to more-complete explanations.  

However, it is also possible that receiving a satisfying 
explanation could promote further inquiry. Even a satisfying 
explanation will often highlight new things the learner does 
not yet know, promoting further exploration and 
information search. For example, Liquin and Lombrozo 
(2017) found that generating explanations during learning 
increased information search in the face of surprising 
evidence (see also Legare, 2012). Moreover, some theories 
of curiosity posit that curiosity peaks when there is a modest 
“gap” between a learner’s current and desired knowledge 
state, resulting in an inverted-U-shaped relationship 
between prior knowledge and curiosity (Loewenstein, 
1994). For learners on the ascending side of the “U,” a 
satisfying explanation could result in greater curiosity.  

To distinguish between these hypotheses, we ask 
participants to rate their curiosity about several follow-up 
questions in response to an explanation, after completing the 

Simultaneous Regression Individual Regression
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same ratings as in Study 1. If explanatory satisfaction halts 
inquiry, we would expect greater satisfaction to predict 
lower curiosity about follow-up questions. By contrast, if 
explanatory satisfaction promotes inquiry, we would expect 
greater satisfaction to predict greater curiosity about follow-
up questions.  

Figure 2: Matrix of pairwise correlation magnitudes for all 
measures of interest (collapsed across Study 1 and Study 2 

data). 
 

Method 
Participants One hundred seventy-one adults (96 male and 
75 female, ages 21-69) from Amazon Mechanical Turk 
participated in Study 2. Participation was restricted to 
MTurk workers in the United States who had completed at 
least 1000 HITs with a minimum approval rating of 99%. 
Twenty-nine additional participants completed the study but 
were excluded from analysis because they did not pass the 
same attention checks used in Study 1. 

 
Materials Of the 56 questions and answers used in Study 1, 
twenty were randomly selected for use in this study. An 
initial sample of 48 MTurk participants read random 
samples of five question-answer pairs and wrote between 3 
and 10 follow-up questions in response to each answer. 
From this set of follow-up questions, we randomly selected 
10 for each question-answer pair. Thus, the materials used 
in this study were 20 question-answer pairs from 1000 
Questions & Answers Factfile (Kerrod et al., 2006), with 10 
follow-up questions in response to each. Additionally, each 
question was classified into a “topic area,” based loosely on 
the chapter and page topics in the 1000 Questions & 
Answers Factfile book. The 20 questions fell into 14 distinct 
topic areas (e.g., “dinosaurs,” “stars,” “Ancient Egypt”).  
 
Procedure First, each participant rated their interest in and 
knowledge about each of the 14 topic areas described above. 
Then, each participant saw four questions randomly selected 

from the 20 questions. For each question, they completed 
the initial curiosity rating, followed by the arithmetic 
distractor/attention task, as in Study 1. Then, two tasks were 
presented in a randomized order: the answer ratings, as 
described in Study 1, and the follow-up question task. For 
the latter task, participants saw a random sample of five of 
the ten follow-up questions for each of the four questions 
(presented with answers) that they had seen previously. For 
each follow-up question, participants rated how curious they 
were about the answer to that question on a seven-point 
scale. These five ratings were averaged within each of the 
four questions, creating a “follow-up curiosity” scale for 
each question rated by each participant (Cronbach’s α = 
0.85). 
 
Results  
Results were analyzed as in Study 1, using a mixed-models 
approach. Again, all results remained unchanged when 
controlling for explanation length. 
 
Replications of Study 1 First, we repeated all analyses 
from the previous study, but controlling for interest in and 
knowledge of the topics corresponding to the question-
answer pairs. In a simultaneous regression model, actual 
learning, β = 0.14, 95% CI [0.07, 0.22], learning potential, β 
= 0.30, 95% CI [0.22, 0.38], future utility, β = 0.12, 95% CI 
[0.04, 0.20], and regularity, β = 0.18, 95% CI [0.10, 0.25], 
explained unique variance in satisfaction holding all other 
measures fixed (see Figure 1). In separate regression 
models, actual learning, β = 0.40, 95% CI [0.33, 0.47], 
learning potential, β = 0.50, 95% CI [0.43, 0.56], expertise, 
β = 0.34, 95% CI [0.27, 0.41], simplicity, β = -0.28, 95% CI 
[-0.35, -0.21], breadth, β = 0.20, 95% CI [0.13, 0.27], future 
utility, β = 0.35, 95% CI [0.27, 0.43], and regularity, β = 
0.37, 95% CI [0.30, 0.44], were all significant predictors of 
explanatory satisfaction (see Figure 1). Curiosity was also a 
significant predictor of explanatory satisfaction, controlling 
for interest and knowledge, β = 0.19, 95% CI [0.11, 0.26].  
 
Satisfaction and Inquiry Next, we tested the relationship 
between explanatory satisfaction and subsequent curiosity. 
To do so, we compared a model predicting average follow-
up curiosity with satisfaction as a fixed effect to a null 
model with no fixed effects. Satisfaction was a significant 
predictor of follow-up curiosity, 𝜒2(1) = 45.20, p < .001. 
Critically, the relationship between satisfaction and follow-
up curiosity was positive, β = 0.22, 95% CI [0.16, 0.29], 
indicating that explanatory satisfaction, at least in this 
context, encourages rather than halts ongoing inquiry.  
 Finally, we repeated this analysis, but controlling for 
interest in and knowledge of the topics corresponding to the 
question-answer pairs. Satisfaction remained a significant 
predictor of follow-up curiosity, β = 0.21, 95% CI [0.14, 
0.27], 𝜒2(1) = 40.45, p < .001. 
 

Discussion 
In Study 2, we replicated the results of Study 1 while 
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controlling for topic knowledge and interest, again 
demonstrating that learning-directed features predict 
explanatory satisfaction, and that curiosity about an 
explanation-seeking question predicts satisfaction with the 
answer. 
 Study 2 also investigated how explanatory satisfaction 
relates to subsequent curiosity. We found support for the 
hypothesis that explanatory satisfaction encourages rather 
than halts inquiry—that is, the more satisfied a participant 
was with a given explanation, the more curious they were 
about several follow-up questions. This is in contrast to past 
work demonstrating a negative relationship between 
explanation completeness and subsequent information 
search (Frazier et al., 2009; Mills et al., 2019). This could 
reflect methodological differences in what was evaluated 
(explanatory completeness versus satisfaction), or in the 
opportunities for further inquiry that were offered. For 
instance, we might expect inquiry concerning the original 
explanandum to cease after obtaining a satisfying 
explanation, but for inquiry concerning related matters to be 
piqued. These questions merit further research. 

General Discussion 
Explanations play an important role in the process of 

inquiry: they contribute to learning and theory-building, 
which in turn support predictions, interventions, and 
understanding. Explanations also have a unique 
phenomenology that may motivate this theory-building 
behavior. However, most research on explanation has not 
directly addressed how this phenomenology relates to the 
functional role of explanation within the process of theory-
formation and inquiry. In the present research, we addressed 
two questions: 1) To what extent is explanatory satisfaction 
driven by features of an explanation that support learning 
and theory-formation? and 2) How does explanatory 
satisfaction relate to curiosity, another epistemic emotion 
that motivates inquiry?  

In response to the first question, we find that several 
learning-directed features (such as actual learning, learning 
potential, future utility, and regularity) are related to 
explanatory satisfaction, even when controlling for interest 
in and knowledge of the topics addressed by the 
explanation. Answering the second question, we find that 
antecedent curiosity predicts satisfaction with a subsequent 
explanation to a modest degree, and that explanatory 
satisfaction in turn predicts curiosity about follow-up 
questions in response to an explanation, thus encouraging 
further inquiry.  

These studies build upon previous research on 
explanatory satisfaction and explanation-seeking behavior. 
In particular, we replicate previous research on the role of 
breadth, generalizability, and future utility in explanatory 
satisfaction, and we find several additional predictors of 
explanatory satisfaction that have not previously been 
explored—or for the case of learning, that have not 
previously found strong support (Zemla et al., 2017). 
Additionally, we add to recent research on curiosity (Liquin 

& Lombrozo, 2018; Marvin & Shohamy, 2016), 
demonstrating a systematic relationship to explanatory 
satisfaction throughout the process of inquiry. 

Several limitations of these studies must be noted. First, 
future work should explore a broader range of materials, 
including “everyday” questions and explanations from more 
ecologically-valid settings. Second, the findings we report 
are all correlational, so it remains to be seen whether (for 
example) curiosity about an explanation causes satisfaction 
with the later-received explanation. More critically, these 
studies do not cleanly disentangle the phenomenological 
component of explanation from the epistemic component. 
That is, participants’ ratings of explanatory satisfaction 
likely reflected affective responses (perhaps in contrast to 
ratings of goodness, quality, or completeness, which have 
often been used in past research; e.g., Mills et al., 2019; 
Vasilyeva et al., 2018; Zemla et al., 2017), but also 
evaluation of (epistemic) quality, which may not have been 
accompanied by any particular phenomenology. For our 
purposes, the key question is whether and how explanatory 
satisfaction motivates inquiry, so it is notable that in Study 
2, there was a positive relationship between explanatory 
satisfaction and ongoing curiosity. Future work should 
explore the relationship between explanatory satisfaction 
and subsequent epistemic behaviors, such as information 
search, as well as epistemic consequences, such as learning.  

Another possible limitation of this work is that 
participants only read a single explanation in response to 
each question, while previous work on explanatory 
preferences (e.g., Lombrozo, 2007; Pacer & Lombrozo, 
2017) has typically used comparative judgments of 
explanation quality between two competing explanations. 
As a result, satisfaction judgments in the present research 
may reflect satisfaction that an explanation exists, rather 
than satisfaction that this explanation fulfills certain 
explanatory desiderata relative to other possible 
explanations. Future work should explore whether different 
criteria are used to evaluate explanations presented 
simultaneously versus in isolation.  

Despite these limitations, these studies are among the first 
to approach explanatory satisfaction in terms of its 
functional role within a broader process of inquiry, 
providing new insights into the determinants of explanatory 
satisfaction and the importance of this phenomenology in 
driving ongoing inquiry and theory-building. 
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Abstract

When predicting or explaining another person’s actions, we
often appeal to the physical effort they require; a person who
works hard for something, for instance, must really like it (Liu,
Ullman, Tenenbaum, & Spelke, 2017). But people are not
only motivated to avoid physical effort; they also seek to avoid
mental effort (Shenhav et al., 2017; Kool & Botvinick, 2018).
Here, we ask whether mental effort enters into preschoolers’
understanding of other people’s actions. Across 4 experiments
(N=112), we presented 4- and 5-year-old children with an
agent (naive in Exp 1, 2 and 4, and knowledgeable in Exp 3)
who can either move through a simple or complex maze envi-
ronment with a specific goal (in Exp 1-3, to reach a play struc-
ture beyond the mazes, and in Exp 4, to practice solving the
mazes). We found that children were sensitive to the physical
and mental effort associated with more complex mazes, and to
the trade-offs between effort and gain in skill. The intuition
that choices impose costs on our bodies and minds appears to
guide children’s understanding of other people.
Keywords: intuitive psychology; cognitive development;
decision-making

Introduction
Observing other people try hard tells us something about their
desires, beliefs, competence, and what is worth trying for our-
selves. All of these abilities rely on the the basic intuition that
actions carry cost in the first place. This intuition is an early-
emerging component of our human social intelligence: In-
fants, children, and adults consider the physical effort behind
other people’s actions as one variable in their plans to max-
imize utility (Jara-Ettinger, Gweon, Schulz, & Tenenbaum,
2016; Gergely & Csibra, 2003; Baker, Saxe, & Tenenbaum,
2009), and use how hard people try to infer their goals, be-
liefs, competence, and the value of effort in general (Jara-
Ettinger, Tenenbaum, & Schulz, 2015; Baker, Jara-Ettinger,
Saxe, & Tenenbaum, 2017; Leonard, Lee, & Schulz, 2017;
Liu et al., 2017).

Is our understanding of action cost restricted to the physi-
cal exertions of body, or does it also encompass the costs of
mental exertion? Everyday activities like thinking, writing,
and learning are not physically costly (in fact, our bodies are
usually still when engaging in them), but they incur a similar
subjective disutility–in other words, a sense of exhaustion.
More specifically, cognitive operations like loading informa-
tion into working memory, transforming and maintaining it
over long delays, and task switching–in other words, all the
elements of rational planning–carry an intrinsic cost (Kool &
Botvinick, 2018; Shenhav et al., 2017; Westbrook & Braver,

2015). Because of this cost, we do not always engage in ra-
tional planning; sometimes we use computationally cheaper
heuristics, such as selecting actions proportional to their his-
torical rewards. Experiments show that while people often
often avoid costly rational planning, they become more likely
to bear this cost when it is associated with a sufficiently large
prospect of reward (Kool, Gershman, & Cushman, 2017).

What is the role of mental effort in our analysis of other
people’s actions? Do we assume that mental effort is costly?
Do we assume that others would seek to avoid mental effort,
all else being equal? Some recent research offers circum-
stantial evidence in adults (Gershman, Gerstenberg, Baker, &
Cushman, 2016): When participants are asked what someone
with a strong habit (e.g., to take a certain route to work, or
turn a doorknob clockwise) will do in a new situation, they
respond that the person is likely to rely on habit, especially
under time pressure. This is consistent with the possibility
that adults associate cognitive effort with model-based con-
trol, and use this association to predict and explain other peo-
ple’s actions.

There is, however, strong reason to believe that the ability
to represent and reason about mental effort develops slowly
over childhood. Although preschool-aged children under-
stand that other people have emotional states, perceptions,
beliefs, and knowledge (Wellman, 2002), they do not reliably
know when people are thinking, struggle to make reasonable
inferences about what they might be thinking about, and do
not reliably report the content of their own thoughts (Flavell,
Green, & Flavell, 1995). Furthermore, children are relatively
poor at monitoring their own comprehension, memory, and
learning, at least in ways that can be measured through ex-
plicit questioning (Flavell, Friedrichs, & Hoyt, 1970). If the
ability to monitor one’s own cognition develops slowly, then
children may come to reason about the role of mental effort
in others’ plans at a later age than they reason about physical
effort in these plans.

This paper presents a case study of the developmental ori-
gins of reasoning about mental effort. Specifically, we ask
whether children understand that making choices can lead to
both physically and mentally costly outcomes, and whether
they understand the trade-offs people make between effort
and reward in the context of learning.
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Figure 1: All mazes shown to participants on test trials in (A) Experiments 1 and 4, and (B) Experiments 2 and 3, as well as
examples of individual trials from (C) Experiment 1, where a naive agent had the goal of getting to a specific location (D),
Experiment 3, where a knowledgeable agent had the goal of getting to a specific location, and (E) Experiment 4, where a naive
agent had the goal of getting better at solving mazes.

Experiment 1
In Experiment 1, we investigated whether young children
whose attention is drawn to the difficulty of various mazes
will choose easier rather than harder mazes for another agent
to navigate.

Methods

Participants N=32 children (20 girls, Mean age = 58.94
months, range = 49.63-70.67 months) were included in our
final sample of participants. All were recruited through a
database of participants in the Boston area, participated at
the Harvard Lab for Developmental Studies with the written
consent of their parents, and received a small gift and travel
compensation for their participation. One participant was ex-
cluded and replaced in our sample due to experimenter error.
All data collection methods and procedures were approved
by the Committee on the Use of Human Subjects at Harvard
University. We chose our sample size based on a power anal-
ysis from a pilot study. For a pre-registration of the methods
and analysis for this experiment, see https://osf.io/fx8yt/.

Materials and Procedure We built our maze stimuli using
an online maze generator (http://www.mazegenerator.net/),
using a width and height of 5 (4 mazes from test trials) or
6 (1 maze from introduction), an inner width and height of 0,
an E-value of 50 (parameter that controls length of solution,

relative to size of maze), and an R-value of 50 (parameter
that controls length of dead ends subpaths). For the test trials,
we selected 4 mazes that had at least 1 wrong turn, with 1
and only 1 solution, hereafter the harder’ or more complex’
mazes. To generate the simpler versions of these mazes, we
added walls blocking all wrong turns, leaving only one avail-
able path through the maze. Throughout the experiment, each
complex maze was always presented with the simpler version
of itself flipped across the vertical axis. See Figure 1A. We
presented all experimental materials using Keynote.

During the introduction to the experiment, children saw
an animated agent, Bob, travel through an easier and harder
maze. The agent’s actions were realistic: he traveled through
the easier maze without pause, but reached 2 dead ends in
the harder maze before finding the solution. Children were
asked Which maze took longer to go through?” and Which
maze was harder to go through?” with feedback to check and
reinforce their understanding of these scenes (e.g., ”Yup, that
one is harder!” or ”Actually, this one is harder because it has
more paths and ways to get lost”).

In Experiment 1, children were told the following cover
story: Bob is at a playground and needs to go through mazes
to get to things he wants to play with. He wants to play
with as many things as possible before having to go home.
He needs your help because he doesn’t know anything about
these mazes.

672



On each test trial, Bob faced a choice between an easier
and harder maze that lead to a piece of playground equip-
ment (swings, monkey bars, slide, and a seesaw). Children
were first asked to identify the easier (2 trials) or harder (2
trials) maze with feedback. Then, children were asked to help
the agent choose which way to go. After participants chose
a maze, they were asked to provide explanations for their re-
sponse. Children viewed a bouncing animation of the agent
next to his goal after every test trial, regardless of how they
answered, and did not receive feedback for their choice.

We counterbalanced the order of the 4 maze pairs and the
left-right position of the easier/harder maze, resulting in 8
different conditions of the procedure. The experiment lasted
about 5 minutes.

Data and analysis All comprehension checks and test trials
were coded on-line, and then checked offline from videos of
the testing session.

We used the lme4 package (Bates, Mächler, Bolker, &
Walker, 2015) in R (Team, 2015) to implement all general-
ized linear mixed effects models (GLMMs). All models with
repeated measures included a random intercept for partici-
pant identity and maze identity. We used the ggplot2 package
(Wickham, 2009) to produce Figure 2. The results sections of
this paper were written in R Markdown (Allaire et al., 2014)
to enhance reproducibility.

Results
In the introductory phase, prior to any feedback, children cor-
rectly identified the more difficult maze at a rate of 0.688, and
the maze that would take longer to travel through at a rate of
0.969. During the test phase, which included feedback, chil-
dren correctly identified the more difficult room at a rate of
0.586.

Our main question was whether children would pref-
erentially choose the easier maze for the agent to travel
through. We found that during test trials, children were more
likely to select the easier maze than the hard maze, 95%
confidence interval (CI) [2.262,10.05], B(SE)=4.932(2.526),
z=1.952, p=0.026, one-tailed, OR=138.64, model syntax:
response ∼ 1 + (1|subj) + (1|maze). Removal of in-
fluential cases yielded similar results. See Figure 2.

Discussion
Building on previous findings that infants and children ex-
pect agents to minimize the physical effort of their actions
(Gergely & Csibra, 2003; Liu et al., 2017), the results of Ex-
periment 1 suggest that children choose lower-effort tasks for
others. Nevertheless, the question remains whether children
were responding to the physical or the mental effort demands
of the complex mazes. The more complex mazes presented
a greater planning challenge for the mind, but were also as-
sociated with greater travel time and distance (variables that
determine physical effort). We conducted Experiment 2 to
ask whether children understand that actions can impose cog-
nitive effort in the absence of differences in physical effort.

Figure 2: Proportion of choices for the easier maze or room
during test trials (4 trials per participant; N=447 responses)
across Experiments 1-4. Error bars indicate within-subjects
95% confidence intervals.

Furthermore, Experiment 1 asked children to choose a
maze for an agent who was unaware of the effort involved in
each choice, but did not ask children to predict which maze a
knowledgeable agent would choose for themselves. We con-
ducted Experiment 3 to ask whether children predict the ac-
tions of knowledgeable agents the same way they choose to
help naive agents.

Lastly, Experiment 1 leaves open the question of whether
children always regard mental and physical effort as negative,
or whether they understand that harder actions can sometimes
generate positive value. Thus, we conducted Experiment 4
to ask whether children appreciate the value of effort in the
context of learning.

Experiment 2

In Experiment 2, we asked whether children appreciate that
making a decision carries a unique cost, even when equat-
ing for physical effort across decision contexts. For a pre-
registration of the methods and analysis of this experiment,
see https://osf.io/9dr7m/.

Methods

Participants N=24 children (14 girls, Mean age = 61.09
months, range = 48.5-71.43 months) were included in our fi-
nal sample of participants. This sample size was chosen based
on a power analysis from Experiment 1. One participant was
excluded and replaced in the final sample due to parental in-
terference.
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Materials, Procedure, and Analysis Experiment 2 dif-
fered from Experiment 1 in three ways. First, the mazes
from Experiment 1 were replaced with rooms (see Figure
1B). Pairs of rooms differed in the number of choices avail-
able: The more complex room featured multiple hallways for
the agent to choose from, and the simpler room consisted of
only one path. To equate for the dead ends, we designed these
rooms so that all hallways were direct exits; regardless of
whether the agent chose the easier or harder room, the agent
would exit the first hallway she chose, reaching her goal. To
prevent children from reasoning about the agent’s line of sight
through the rooms, we covered each outlet with a door, which
opens only when the agent approaches it. Like in Experiment
1, children were told that the agent was naive about the con-
tents of the rooms, and had the goal of reaching something
beyond them. Second, during the introduction of the exper-
iment, the agent moved through the easier and harder room
in exactly the same way. This differed from Experiment 1,
where the agent took several wrong turns in the harder maze.
Third, before each test trial, children were asked to point at
the room the agent thinks is harder or easier (2 questions of
each kind), and which room the agent thinks has more or less
choices (2 questions of each kind) with feedback.

Results
During the introduction to the experiment, prior to any feed-
back, children correctly identified the more difficult room
at a rate of 0.667, and correctly identified the room with
more choices at a rate of 0.917. During the test phase,
which included feedback, children correctly identified the
harder/easier room at a rate of 0.896, and the room with
more/less choices at a rate of 0.667.

As in Experiment 1, children were more likely to se-
lect the easier room for the agent to travel through, 95%
CI [2.278,13.514], B(SE)=7.432(2.871), z=2.588, p=0.005,
one-tailed, OR=1689.0471. Removal of influential cases
yielded similar results. Children’s responses did not differ be-
tween Experiments 1 and 2, 95% CI [-3.057,2.364], B(SE)=-
0.35(1.249), z=-0.28, p=0.779, two-tailed, OR=0.7052. See
Figure 2.

Discussion
In Experiment 2 we asked whether children appreciated
differences in decision complexity between two situations
matched for physical path features like travel length and dead
ends. As in Experiment 1, children discriminated between
these decision structures and chose the simpler option for the
naive agent. Together, Experiments 1-2 show that children
appreciate the cognitive cost that enters decision-making.
Nevertheless, it is less clear whether children expect other
agents to willfully minimize their own mental effort, when
asked to make a prediction about what a knowledgeable agent
would do. Experiment 3 addresses this question.

1model syntax: response ∼ 1 + (1|subj) + (1|maze)
2model syntax: response ∼ experiment + (1|subj) +

(1|maze)

Experiment 3
In Experiment 3, children predicted the choice of a knowl-
edgeable agent in the same physical situations as in Experi-
ment 2. For a pre-registration of the methods and analysis of
this experiment, see https://osf.io/jyag8/.

Methods
Participants N=24 children (9 girls, Mean age = 60.27
months, range = 48.83-70.7 months) were included in our fi-
nal sample of participants. This sample size was chosen based
on a power analysis from Experiment 2. One participant was
excluded due to experimenter error.

Materials, Procedure, and Analysis Experiment 3 was
identical to Experiment 2 except that instead of helping the
agent, children were asked to predict which room the agent
will pick to go through in order to reach the goal, given that
he knows everything about both of the rooms. To convey that
the agent was knowledgeable, the agent on each test trial al-
ways had a map of the two rooms, and children were told
explicitly that he knows everything about these rooms”. See
Figure 1D.

Results
In the introduction to the experiment, prior to any feed-
back, children correctly identified the more difficult room at
a rate of 0.3753, and the room with more choices at a rate
of 0.792. During the test phase, which included feedback
(”Yup that’s right!” or ”Actually, this room is easier/harder
because he doesn’t have to think about where to go”) chil-
dren correctly identified the more difficult room at a rate of
0.781 and the room with more/less choices at a rate of 0.698.
As in Experiments 1 and 2, children were more likely to se-
lect the easier room for the agent to travel through, 95% CI
[-0.296,2.642], B(SE)=1.026(0.598), z=1.716, p=0.043, one-
tailed, OR=2.7894. Removal of influential cases yielded the
same results. However, this effect was significantly weaker
than the responses of children from Experiment 2, 95% CI
[-4.7,-0.833], B(SE)=-2.397(0.914), z=-2.623, p=0.009, two-
tailed, OR=0.0915. See Figure 2.

Discussion
In Experiment 3, we asked whether children expect knowl-
edgeable agents to choose to minimize the mental effort of
their actions. While we found a positive result, this effect was
weaker than when children were asked to help a naive agent
in identical environments. There are several possible inter-
pretations of this finding. First, the agent’s knowledge about
the environments in Exp 3 could have affected children’s re-
sponses: If a rational agent faces a false choice and knows
it, and has a map of the rooms and has already analyzed the

3We too are puzzling over why this rate was lower than .5, and
lower than in the other experiments.

4model syntax: response ∼ 1 + (1|subj) + (1|maze)
5model syntax: response ∼ experiment + (1|subj) +

(1|maze)
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choice structure of the two rooms, she may choose randomly.
It is also possible that children’s expectations about how oth-
ers spend their mental effort is truly noisier than their intu-
itions about what is optimal. Regardless of these open ques-
tions, Experiments 2-3 provide evidence that children expect
other agents to minimize the mental effort of their actions,
both when predicting their actions, and when recruited to help
them choose an action.

Experiment 4
In Experiment 4, we ask whether children appreciate the
tradeoffs between mental effort and information gain. In
other words, do children understand that sometimes, it
is worthwhile to think and work hard? For a pre-
registration of the methods and analysis of this experiment,
see https://osf.io/w3kh9/.

Methods
Participants N=32 children (17 girls, Mean age = 61.72
months, range = 50.0-71.0 months) were included in our final
sample of participants. This sample size was chosen based on
a power analysis from Experiment 1. Two participants were
excluded and replaced in the final sample, 1 for not respond-
ing to any test trial questions, and 1 for experimenter error.

Materials, Procedure, and Analysis Experiment 4 was
identical to Experiment 1, except that children were told a
different cover story: Bob wants to learn as much as he can
about mazes. Which maze should he go through if he wants
to practice solving mazes? Children were asked what they
thought the word practice’ meant (19/32 produced passable
definitions, like learning something you don’t know how to
do” and doing something until you know it so much”), and
all children were told that to practice meant to try and try
again so that you can get better at something”. All goals were
removed from test trials, and on each trial, and as in Exp 1-2,
children were asked which way Bob should go.

Results
During the introduction to the experiment, prior to any feed-
back, children correctly identified the more difficult maze at
a rate of 0.969, and correctly identified the maze that took
a longer time to navigate at a rate of 0.875. During the
test phase, which included feedback (e.g., ”Yup, that one is
harder!” or ”Actually, this one is harder because it has more
paths and ways to get lost”), children correctly identified the
harder/easier room at a rate of 0.7086.

In contrast to Experiment 1, children in Experiment 4 did
not preferentially choose the harder or easier room for the
agent, 95% CI [-0.627,0.999], B(SE)=0.15(0.354), z=0.424,
p=0.672, two-tailed, OR=1.1626. Removal of influential
cases yielded similar results. As predicted under the hy-
pothesis that children understand that effort trades off against
increases in skill, their tendency to choose the easier maze
in Experiment 4 was substantially lower than in Experiment

6model syntax: response ∼ 1 + (1|subj) + (1|maze)

1, 95% CI [-4.368,-1.503], B(SE)=-2.936(0.731), z=-4.016,
p<.001, one-tailed, OR=0.0537. See Figure 2.

Results, Experiments 1-4
Effects of experimental manipulations First, we asked
which manipulations affected children’s responses across all
experiments. We found that children chose the easier vs
harder action at comparable rates when shown the mazes
from Experiments 1 and 4, and the rooms from Experi-
ments, 2 and 3, 95% CI [-0.57,0.87], B(SE)=0.15(0.367),
z=0.409, p=0.682, two-tailed, OR=1.162, that children were
more likely to choose harder environments for a naive (Exp
3) than a knowledgeable agent (Exp 1, 2, 4), 95% CI [-1.566,-
0.117], B(SE)=-0.842(0.369), z=-2.278, p=0.023, two-tailed,
OR=0.431. Finally, we found that children were more likely
to choose the harder environment when the agent had a learn-
ing goal (Exp 4) than an efficiency goal (Exp 1-3), 95% CI
[0.793,2.122], B(SE)=1.457(0.339), z=4.298, p<.001, two-
tailed, OR=4.2938.

Role of feedback To address a concern that children’s re-
sponse to the test questions were influenced by the feed-
back they received during comprehension checks, we asked
whether children’s comprehension in Experiments 1-4 was
different before they received any feedback (during the intro-
duction) and after they began receiving feedback (during test
trials 1-4). We found that children responded similarly prior
to and after feedback (and if anything, performed less well
with feedback), 95% CI [0.845,2.26], B(SE)=-0.243(0.186),
z=-1.306, p=0.192, two-tailed, OR=0.7859.

We also asked whether children’s response to the main test
question changed across the 4 trials of the experiment. If their
responses were influenced by reinforcement during the com-
prehension checks, these responses should shift towards the
direction of the hypothesis over the 4 trials. We tested this by
fitting a model using Helmert contrasts, comparing children’s
responses on each test question (Which way should / will
Bob go?”) with their average responses on all preceding trials.
Relative to all preceding trials, children did not clearly shift
their response on trials two 95% CI [-0.669,0.036], B(SE)=-
0.316(0.18), z=-1.76, p=0.078, two-tailed, OR=0.729,
three 95% CI [-0.145,0.263], B(SE)=0.059(0.104), z=0.567,
p=0.57, two-tailed, OR=1.061, or four 95% CI [-
0.061,0.235], B(SE)=0.087(0.076), z=1.149, p=0.251, two-
tailed, OR=1.09110. See Figure 1.

Discussion
Across Experiments 1 and 4, we found that children were
more likely to choose a costly action in a context where the

7model syntax: response ∼ experiment + (1|subj) +
(1|maze)

8model syntax: response ∼ maze.or.room + knowledge +
goal + (1|subj) + (1|maze) + (1|experiment)

9model syntax: response ∼ phase + (1|experiment)+
(1|subj)

10model syntax: response ∼ trial + (1|subj) +
(1|experiment)
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actor’s goal was to improve their planning abilities, versus
when their plans were means to an end. Our findings show
that children appreciate the trade-off between effort and in-
formation gain that working and thinking hard can generate.

General Discussion
Across four experiments, we asked whether children are sen-
sitive to the mental and physical consequences of action se-
lection in the context of mazes and rooms. Building on previ-
ous evidence that young children expect other people to min-
imize the physical cost of their actions (Gergely & Csibra,
2003; Liu & Spelke, 2017), we found that children assume
complex maze environments are costly (relative to simpler
ones), and that having to make choices is costly (relative mak-
ing no choices). We also found that children do not expect
agents to minimize effort in all situations, but instead appear
to understand that trying hard is more likely to generate in-
creases in knowledge and skill.

Within the limits of our experimental context, these results
begin to reveal how young children reason about other’s sub-
jective mental effort costs. Specifically, in these experiments,
children appear to place a cost on the process of action selec-
tion. This comports with a large literature showing that action
selection by planning is, indeed, experienced by most peo-
ple as costly (Kool & Botvinick, 2018; Westbrook & Braver,
2015; Shenhav et al., 2017). Nevertheless, the mechanisms
by which children read out judgments of difficulty and use
them to make predictions are not explored in this paper. In
the domain of physical effort, past work suggests that even
young infants represent action cost as force applied over a
path, rather than as any single perceptual feature that corre-
lates with more or less effortful actions (Liu et al., 2017).
What information supports similar judgments in the domain
of mental effort? Furthermore, it is unclear how much or
how little children rely on processes of simulation to solve
the tasks in our experiment. Most of the preschoolers in our
sample probably came into the lab with prior experience solv-
ing mazes, and many of them traced paths through the mazes
as part of their explanations for why they answered the way
they did. Thus, one important remaining question is what
role our experiences of choosing, thinking, and learning play
in the development of our understanding of mental effort.

Of course, action selection is not the only costly step of
rational planning, or the only difference between habits and
plans. Our results thus suggest important new directions for
future research. For instance, do children understand that the
closer 2 options are in utility, the harder it is to choose be-
tween them, or that habits are lower in cost than plans? Our
findings also opens the door to studies of children’s intuitive
theories of other people’s and their own knowledge and learn-
ing. For instance, do children understand that learners have
an optimal zone of task difficulty in which to gain knowl-
edge? Future work in this area can address the many open
questions regarding how we conceptualize the mental lives of
other people, and its development.
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Abstract

Our everyday decisions are driven by costs, risk, and reward.
How do people take these factors into account when they pre-
dict and explain the decisions of others? In a two-part exper-
iment, we assessed people’s perceptions of other people’s risk
preferences, relative to their own. In Part 1, participants re-
ported their relative preference between a guaranteed payout
and lotteries with various probabilities and payouts, and made
predictions about other people’s preferences. In Part 2, partic-
ipants estimated the lottery payout that generated a given rela-
tive preference between a guaranteed payout and a lottery, both
for themselves and others. We found considerable individual
variability in how people perceive the risk preferences of oth-
ers relative to their own, and consistency in people’s percep-
tions across our two measures. Future directions include for-
mal computational models and developmental studies of how
we think about our own and each other’s decision-making.
Keywords: intuitive psychology; decision making; risk

Introduction
Humans are social beings, who spend much of their time
attempting to predict what decisions others will make, and
explain why others chose as they did. Adults, and even in-
fants, make predictions about what another person will do
based on their beliefs about the person’s mental state, and also
make inferences about someone’s mental state after observing
their behavior (Epley, 2015; Kushnir, Xu, & Wellman, 2010;
Repacholi & Gopnik, 1997).

Recent computational accounts of such abilities see peo-
ple as performing Bayesian inference using a model of oth-
ers as rational planners or intuitive utility maximizers who
take actions to maximize their expected reward relative to
their incurred cost (Baker, Saxe, & Tenenbaum, 2009; Lu-
cas et al., 2014; Jara-Ettinger, Gweon, Schulz, & Tenenbaum,
2016; Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017).
Previous work has shown that such rewards and costs are
early-emerging, separate targets of inference (Jara-Ettinger,
Gweon, Tenenbaum, & Schulz, 2015; Liu, Ullman, Tenen-
baum, & Spelke, 2017). Here, we study a related variable at
the heart of other people’s expected utility: the probability
of the outcome. Specifically, we study how people perceive
and reason about other people’s risk preferences, especially
compared to their own.

The central role of risk in decision making has been long
appreciated (Bernoulli, 1738). For example, many people
prefer a 50/50 chance of losing $200 to losing $100 for
sure, and prefer gaining $100 for sure over a 50/50 chance

of gaining $200, even though the expected value of the op-
tions are equal in each case. Under expected utility theory,
decision makers weight probabilities linearly, and risk aver-
sion is measured and explained by the curvature of the util-
ity function (Pratt, 1964; Arrow, 1965). Rabin’s Calibration
Theorem illustrates the difficulties with this approach (Rabin,
2000). A large body of work by psychologists and behav-
ioral economists has shown that decision making under risk
involves non-linear weighting of probabilities (Kahneman &
Tversky, 1979; Tversky & Kahneman, 1992; Wakker, 2010;
Dhami, 2016).

Research has also examined how people perceive the risk
sensitivity of others. Some previous work finds that people
perceive others as more risk-seeking than themselves (Hsee
& Weber, 1997), while a different set of studies finds that, on
average, people assume others are more risk-averse (Eckel &
Grossman, 2008), although the focus of this study and oth-
ers (Siegrist, Cvetkovich, & Gutscher, 2002) was the role of
gender stereotypes in risk perception. Differences in cross-
national risk perceptions have also been explored (Hsee &
Weber, 1999). This paper differs from previous work in a
number of ways. First, the previous literature used group-
based analyses that collapsed across people and a small num-
ber of gambles, and so could not determine whether the av-
erage results reflected homogeneous perceptions across in-
dividuals, whereas we additionally consider individual level
perceptions. Second, participants in past studies made predic-
tions about binary choices between lotteries, whereas in our
study participants give more fine-grained predictions about
their degree of relative preferences for a lottery over a sure
thing. Third, participants previously only made predictions
about the decisions of others, whereas we additionally have
participants estimate the monetary value of gambles that
would cause a particular preference in other people.

We use a two-part experiment to study how people per-
ceive the risk preferences of others. In Part 1, we present
participants with choices between $100 for sure and a lottery,
with eight levels of payout and five levels of probability. For
each choice, participants reported their own preferences and
predicted the preferences of others, using a five point Likert
scale. In Part 2, we ask the same participants to estimate the
(unseen) payout that led others to report a specific preference,
and that would lead themselves to report the same preference.
We then relate the judgments of participants across the two
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parts of the experiment.
We had two main research questions. First, we were inter-

ested in the distribution of people’s perception of their own
risk preferences relative to others. Second, we investigated
the consistency of people’s perceptions about their own and
others’ risk preferences across two tasks, one that asked peo-
ple to make predictions about preferences, and the other that
asked people to make inferences about lottery payouts given
preferences.

Experiment
Participants
We recruited 205 participants on Amazon Mechanical Turk,
restricted to the United States. Of these, we excluded 33 par-
ticipants for (1) failing to pass an attention check, or (2) pro-
viding the same answer for all questions in Parts 1 or 2, or (3)
taking less than 5 minutes to complete the experiment, or (4)
giving payout judgments larger than $2000 in Part 2. These
criteria were specified ahead of data analysis but not ahead
of data collection. After exclusion our sample consisted of
172 participants (median age=34 years, median annual in-
come=$47,000, 75 female, 96 male, 1 other). All participants
gave informed consent prior to participating. All recruitment
and study procedures were approved by the MIT Committee
on the Use of Humans as Experimental Subjects.

Methods
Participants were presented with a series of hypothetical
choices between lotteries and $100 for sure. Each lottery con-
sisted of a random draw from a box of 10 balls. If a player
were to enter the lottery, a ball would be drawn at random
from the box, and the player would win the amount of money
on the ball. For example, a lottery where a player has a 50-50
chance to win $500 would contain 5 balls worth $0 each, and
5 balls worth $500 each.

In Part 1, participants saw 40 trials, each involving a choice
between $100 for sure, or a [.1, .3, .5, .7, or .9] chance of win-
ning [$100, $150, $200, $300, $400, $600, $800, or $1000].
For each decision, participants gave their own preference, and
predicted the preference of an average other player, on a 5-
point Likert scale (1=$100 is a lot better, 2=$100 is some-
what better, 3=$100 and lottery are equally good, 4=lottery is
somewhat better, and 5=lottery is a lot better). We note that
these Likert ratings do not express participants’ valuation of
the lottery itself, but rather differences between the utility of
the lottery and the utility of the sure reward. See Figure 1.

In Part 2, participants saw 5 trials, each involving a choice
between $100 for sure, or a 50-50 lottery to win some other
amount of money, this time unknown to the participant (Fig-
ure 1, bottom). On each trial, participants were informed
that, on average, other players rated the lottery one of the five
possible levels of the Likert scale (i.e., on the first trial par-
ticipants were told that other players on average strongly pre-
ferred the $100, on the second trial that other players slightly
preferred the $100, etc.). Participants were asked to estimate

Figure 1: Example trials from the experiment. In Part 1, par-
ticipants rated their own preferences between $100 for sure
and a lottery, and predicted the preference of others. In Part
2, participants were told the preference of another person
and both estimated the payout of the lottery, and judged how
much money would have to be at stake for them to feel the
same way.

how much money was at stake in the lottery given this pref-
erence, and gave their response using a freeform text field.
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Figure 2: Participant Likert ratings indicating preference for lottery or guaranteed $100, and their predictions for the average
other player, across all probabilities and payouts. Opaque points indicate mean Likert ratings with bootstrapped 95% confidence
intervals. Translucent points indicate raw data plotted with vertical jitter.

Participants then estimated how much money would have to
be at stake in the lottery for they themselves to give the same
rating. See Figure 1.

In Parts 1 and 2, trials were presented in a random order,
and the left-right orientation of the lottery vs $100 and the an-
chors for the Likert scale were consistent within participants,
but randomized across participants.

Results

The data were analyzed using mixed effects linear models
(Bates, Mächler, Bolker, & Walker, 2015; Team, 2015), un-
less noted otherwise. All models included random intercepts
for participant identity (i.e. responses are nested within par-
ticipants), and for trial number (i.e. responses are nested
within linear trial order). We report coefficients from mod-
eling the Likert rating as continuous for ease of interpreta-
tion, but fitting a Cumulative Link Model yields similar re-
sults. Bracketed values indicate 95% confidence intervals of
unstandardized coefficients (e.g. the effect of increasing the
stake of the lottery by $1 on preferences for the lottery in Lik-
ert ratings), and p-values are all two-tailed. Participant gender
and annual household income are included as regressors.

Part 1: Preferences between a lottery and sure thing
People’s own risk preferences. Before turning to our first
question concerning how people perceive the risk sensitiv-
ity of others compared to their own risk sensitivity, we con-

ducted a basic analysis of the data to confirm that 1) peo-
ple more strongly preferred the lottery as its probability and
payout increased, and 2) whether people, on average, were
risk averse. As expected, across all 40 trials, participants’
preference for the lottery increased as the payout increased
([1.2e-3,1.4e-3], p<.001), and as the probability of winning
increased ([3.456,3.637], p<.001), see Figure 2.1. To mea-
sure participants’ level of risk aversion, we examined the two
trials that included lotteries equal in expected value to re-
ceiving a guaranteed $100 (i.e. the 50-50 lottery with $200
payout, and the 10-90 lottery with $1000 payout). In both of
these trials, people preferred the guaranteed $100 over the lot-
tery (Likert mean=2.56, median=2 for 50-50 lottery, p<.001;
mean rating=1.67, median=1 for 10-90 lottery, p<.001, one-
sample t-test against µ=3).

Perceptions of risk preferences of others. We repeated
the same basic analyses as reported above, this time on peo-
ple’s judgments of others. Across all 40 trials, participants’
estimates of others’ Likert ratings increased as the payout in-
creased ([1.3e-3,1.5e-3], p<.001), and as the probability of
winning increased ([3.171, 3.353], p<.001). We again ana-
lyzed the two trials that included lotteries with an expected
value of $100. In the trial with the 50-50 lottery, partici-
pants predicted that others would be indifferent between the

1Model formula: response ∼ payout + probability +
gender + log(income) + (1|participant) + (1|trial)
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Figure 3: Differences in people’s own preference for the lottery and their prediction of the preference of others, shown for each
participant and averaged across trials. Each point indicates the mean difference between a single participant’s Likert ratings for
themselves and predicted ratings for others (40 pairs per participant), estimated by a paired-samples t test. Error bars indicate
95% confidence intervals around the mean. Participants without confidence intervals gave the same rating for themselves and
others on every trial (but different ratings across trials). Of 172 participants, 81 (47%, blue) judged that others were significantly
more risk-seeking than themselves, 24 (14%, red) judged that others were significantly more risk-averse than themselves, and
67 (39%, gray) gave similar ratings for themselves and others as discussed in the text.

50-50 lottery and the guaranteed $100 (mean rating=2.96,
median=3, p=.602, one-sample t-test against µ=3). In the
trial with the 10-90 lottery, participants predicted that others
would slightly prefer the $100 (mean rating=2.05, median=2,
p<0.001, one-sample t-test against µ=3).

Comparing risk preferences for self and other. Our first
main question is how people perceive the risk preferences of
other people, relative to their own. A group level analysis
indicated that participants predicted other people to be more
risk-seeking than themselves. That is, they expected others to
prefer the lottery (rather than the guaranteed $100) more than
themselves, across payout amounts and lottery probabilities
([0.086,0.123], p<.001)2. See Figure 2.

A group level analysis, however, can obscure important in-
dividual heterogeneity. Figure 3 shows, for each participant,
the average difference between the participant’s prediction of
how much other people prefer the lottery and how much they

2Model formula: response ∼ probability + payout
+ agent + gender + log(income) + (1|participant) +
(1|trial)

themselves prefer the lottery. While these differences clearly
fall on a continuum, we were interested in what proportion
of participants judged that others were more risk averse or
risk seeking, relative to themselves. By this measure, 47% of
participants believed that others were more risk-seeking than
themselves (by a paired sample t-test on each participant, the
estimated average difference for these participants had con-
fidence intervals strictly above 0), 14% believed others were
less risk-seeking (confidence intervals strictly below 0), and
39% did not show a significant difference between their pref-
erences and those they predicted for others (confidence in-
tervals crossed 0). These results are consistent with a paired
sample sign test on each participant, which identifies 43%
of participants who believe that others are more risk-seeking,
9% who believe that others are more risk-averse, and 48%
who do not show a significant difference between the ratings
of themselves and others (all at the p<.001 level).

Part 2: Estimating the payout of lotteries given a prefer-
ence
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As a reminder, in Part 2 we asked participants what payout
of a 50-50 lottery would cause themselves and others to have
a given preference for the lottery (from much preferring the
guaranteed $100, to much preferring the lottery).

Estimates of lottery payouts for self. As in our analysis of
the data from Part 1, we first conducted a basic analysis to
examine people’s inferences about the lottery conditional on
choices for themselves. Across all trials, participants reason-
ably believed that a greater preference for the lottery meant
that the payout of the lottery was higher ([112.65,131.60],
p<.001)3. When the Likert rating was 3 (indifferent between
the lottery and guaranteed $100), participants judged that the
50-50 lottery payout must exceed $200 for them to have given
this rating (mean=$267, median=$200, p<.001, one-sample
t-test against µ=$200), indicating risk aversion.

Estimates of lottery payouts for others. We repeated the
same analyses as reported above, this time on people’s judg-
ments of others. Across all five trials, participants judged
that other people having a greater preference for the lot-
tery was caused by a higher lottery payout ([110.15,127.90],
p<.001). When the average Likert rating reported by oth-
ers was 3 (indifferent between the lottery and guaranteed
$100), participants estimated that the 50-50 lottery payout for
other people was no different than the risk-neutral value of
$200 (mean=$210, median=$200, p=.384, one-sample t-test
against µ=$200).

Comparing payout estimates for self and other. Our first
main research question concerns differences in participant’s
estimates for the lottery payment for themselves and others.
Across all participants and trials, for a given Likert rating par-
ticipants judged that the estimated lottery payout was lower
for other people than for themselves (agent coefficient was
significantly negative, [-24.983,-6.939], p=0.001)4.

Since there are only five trials per participant in Part 2 (5
paired estimates for self and other), to assess individual level
differences, we computed for each participant the mean dif-
ference between the payout that they believed would be re-
quired to make the lottery equally attractive to themselves and
other people: 51% of participants gave higher estimates, on
average, for themselves than others (i.e. believed that others
were more risk-seeking), 29% gave lower estimates, on aver-
age, for themselves compared to others (i.e. believed that oth-
ers were more risk-averse), and 20% gave, on average, equal
estimates for themselves and others (i.e. believed that they
and others had the same risk preference).

Predictions of preferences and estimates of lottery pay-
outs given a preference Our second main research ques-
tion was whether people’s judgments were consistent across
our two tasks. We found that participants’ average difference
in Part 1 between their own preferences and their ratings of

3Model formula: response ∼ likert + gender +
log(income) + (1|participant) + (1|trial)

4Model formula: response ∼ probability + payout
+ agent + gender + log(income) + (1|participant) +
(1|trial)

Figure 4: Relating individual differences in relative risk pref-
erence as measured in Part 1 and Part 2 of the experiment.
Each point indicates one person’s mean difference in prefer-
ences for 40 lotteries for themselves vs others (x-axis), and
the mean difference in their estimated payout for themselves
vs. others over 5 preferences for a 50-50 lottery vs a guar-
anteed $100 (y-axis). Solid line indicates regression between
these values with 95% confidence interval. Colors of points
indicate classification of participants based on Part 1, as in
Figure 3 and the main text.

the preferences of others corresponded to the average differ-
ence between their payout estimates for themselves and oth-
ers in Part 2 ([46.2, 102.1], p<.001).5. That is, the more a
participant judged that others would prefer the lottery more
than themselves in Part 1, the more lottery payout that partic-
ipant needed to give the same rating as others in Part 2.6. See
Figure 4.

Discussion
Risk matters, both for our own decisions, and in our reason-
ing about the decisions of others. We presented participants
with choices between lotteries and guaranteed payouts, and
used prediction and estimation measures to explore individ-
ual variability in people’s beliefs about the risk preferences of
others. Across both measures, we found two large subsets of
participants: participants who believed that others were more
risk seeking than themselves, and participants who believed
that other people exhibited roughly the same degree of risk
sensitivity as themselves. People’s beliefs about how their

5Model formula: diffpart2 ∼ diffpart1 + gender +
log(income)

6Performing the same comparison using Spearman’s rank corre-
lation yielded similar results, ρ=0.472, p<.001
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own risk sensitivity compared to other people were fairly sta-
ble across the two parts of the experiment.

Our findings are consistent with, but also complicate, the
framework of Bayesian Theory of Mind. This framework
models people’s reasoning about others by assuming that oth-
ers are carrying out a rational planning procedure to achieve
goals given constraints (Baker et al., 2009, 2017; Jara-
Ettinger et al., 2016). While most previous work in this lit-
erature assumed, for simplicity, that people reason about oth-
ers as maximizing expected value, behavioral economics has
long highlighted how people deviate from simple expected
value (for example, by being risk-averse) (Dhami, 2016). Re-
cent work has investigated deviations from optimal rational
planning and the use of bounded agents in Bayesian The-
ory of Mind and Inverse Reinforcement Learning, for exam-
ple by replacing the ideal rational planner with an agent that
has false beliefs and exhibited temporal inconsistency (Evans,
Stuhlmüller, & Goodman, 2016). Along the same lines, one
could replace the rational planner with an agent that displayed
either risk-seeking or risk-averse behavior, for example either
by manipulating the agent’s utility function or its probability
weighting function. We are currently pursuing this direction
so as to explore the cognitive processes underlying the results
presented in this paper.

Another future direction suggested by the results in this pa-
per are the downstream consequences of differences in peo-
ple’s own risk sensitivity and their perception of the risk sen-
sitivity of others. For example, do people use their own or
their perception of others’ risk preference when making de-
cisions on behalf of others? What do people expect others
to do, when others are assigned to make decisions on their
behalf?

Our experiment focused on risk of a specific kind, but risk
may not be a unified concept (Loewenstein, Weber, Hsee, &
Welch, 2001; Wallach & Wing, 1968). Moreover, most situa-
tions are ambiguous rather than simply risky - people are not
confronted with explicit, known probabilities, but must in-
stead act in the face of uncertainty given their beliefs. Similar
experiments could examine how people perceive the degree
to which other people exhibit ambiguity aversion, relative to
their own ambiguity preferences.

While all our participants were adults, it is interesting to
consider perceptions of other’s risk sensitivity through the
lens of development. Infants and children are sensitive to
other people’s preferences (Woodward, 1998; Jara-Ettinger
et al., 2015), and the probabilities of events (Téglás et al.,
2011; Xu & Garcia, 2008, 2008). Recent studies suggest that
children use probability (Denison & Xu, 2010, 2014) and re-
ward (Feigenson, Carey, & Hauser, 2002) to make decisions
and analyze the decisions of others (Wellman, Kushnir, Xu, &
Brink, 2016; Lucas et al., 2014). But these experiments leave
open when children become sensitive to risk in their own de-
cisions, and when they understand others as risk-sensitive.

In this paper, we examined risk in the context of a series of
simple lotteries. This is a common laboratory paradigm, but

is less common in real life. Outside the lab, risk is a major
force in consequential decisions, from starting wars, to de-
veloping new technologies, to making medical decisions for
ourselves and our loved ones. Such decisions are not made
in isolation, but in consultation, collaboration, and competi-
tion with other people. Thus, studies of risk—a fundamental
component of our decisions and social lives—bear on all of
these situations, by revealing the nature of how we represent
other people’s decisions, and our own.
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Abstract 

    The unacceptability of wh-extraction (e.g., question 
formation) out of certain syntactic structures, known as 
‘island’ effects, has been a central topic in theoretical syntax 
for many years (Ross, 1967; Chomsky, 1973). A prominent 
example of islands is that extraction out of a sentential 
complement introduced by factive and manner-of-speaking 

verbs (‘What did John know/whisper that Mary bought?’) is 

less acceptable than extraction from a clause introduced by 
“bridge” verbs (‘What did John say that Mary bought?’). We 
aimed to replicate Ambridge and Goldberg (2008) who 

argued that extraction from a sentential complement is 
unacceptable in proportion to its discourse salience. We failed 
to replicate their results and found that there is no true island 
effect for such structures: instead there are separate, additive 
penalties based on two factors: (a) verb-frame frequency (cf. 
Dabrowska, 2008), and (b) the presence of extraction. These 
penalties give rise to apparent island effects as a result of the 
nonlinear relationship between true acceptability and 

acceptability ratings as measured in Likert scales and forced-
choice tasks.  

Keywords: Sentence Processing; Frequency Effect; 
Acceptability of Sentences; Long-distance Dependencies   

Introduction 

An important feature of human languages is that they 

contain constructions that license long-distance 
dependencies--so-called “filler-gap” constructions, such as 

wh-questions, relative clauses, clefts and topicalization, 

among others. For example, the declarative form of a simple 

clause is provided in (1a), along with a wh-question version 

of this information in (1b), where the patient (object) is 

extracted. A corresponding relative clause is provided in 

(1c) and a cleft is in (1d)1:  

 

(1) a. Mary bought some apples. 

b. wh-question: Whati did Mary buy __i ? 

c. relative clause: The apple thati Mary bought __i  
d. cleft: It was the apple thati Mary bought __i 

                                                        
1  Following standard notation in the linguistics literature, we 

will notate the position in the declarative that is associated with 
fronted element with an empty element “__”. We provide a 
subscript such as “i” to the fronted element (the “filler”) and the 
empty position. 

 

Some long-distance extractions are allowed (1), but others 

are not (2)&(3) (Ross, 1967): 

(2) a. * Whati did [S you hear [NP the statement that Jeff 

baked __i]] ? 
b. * Whoi do [S you think [NP the gift from __i] prompted 

the rumor] ? 

 

(3) (relative clause versions of 2 ): 

a. * The bread thati [S you heard [NP the statement that Jeff 

baked __i]] 

b. * The politician whoi [S you think [NP the gift from __i] 

prompted the rumor]. 

 

The unacceptable versions in (2) and (3) have been called 

‘islands’ to extraction: unacceptable long-distance filler-gap 
constructions. The major theoretical interest in island 

phenomena began with Chomsky (1973), where he argued 

for a pure structural account, Subjacency: noun phrase (NP) 

and sentence (S) syntactic nodes are bounding nodes for 

extraction. Extraction across two bounding nodes was 

proposed to be ungrammatical. Consequently, extractions 

across the NP and S nodes in (2ab) and (3ab) result in an 

unacceptable form. Furthermore, Chomsky argued that these 

constraints must be innate and unlearnable, because (a) the 

unacceptable extractions occur independent of the meaning 

of the constructions involved; and (b) a child would not be 

exposed to the right input across all the different 
constructions in which they hold (see Schütze et al., 2015, 

for a summary).  

In this paper we focus on extractions out of sentence-

complements (S-complements) of factive and manner-of-

speaking verbs, as in (4). Researchers have long noted that 

extraction out of sentence-complements taken by factive 

verbs – such as “know” (4b), “regret”, and “notice”, whose 

S-complements are presupposed (Kiparsky and Kiparsky, 

1971) – and manner-of-speaking verbs – such as “whisper” 

(4c) “mutter”, and “mumble”, which describe physical 

characteristics of the speech act (Zwicky, 1971) – are less 
acceptable than extraction out of “bridge” S-complement 

taking verbs (4a) (e.g., Erteschik-Shir. 1973; Snyder, 1992; 

Ambridge & Goldberg, 2008).  Note that the definition of a 

“bridge” verb is not independently defined. A bridge verb is 

simply one for which extraction from its S-complement is 
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possible – such as “say” or “think”, which makes the ‘bridge’ 

baseline of the previous accounts unclear.  That is, the 

notion of ‘bridge’ is not defined in terms of the meaning of 

the verb, and thus immediately calls into question a 

potential meaning basis for an observed difference. 
(4) a. Bridge verb 

What did John say that Mary bought?  

b. Factive verb  

??What did John know that Mary bought?  

c. Manner-of-speaking verb 

??What did John whisper that Mary bought?  

Previous and Current Theories: 

Syntactic Accounts: In order to explain the difference 

between extraction across bridge verbs (4a) on the one hand 

and extraction across factive and manner verbs (4b/c) on the 

other, a syntactic account requires different syntactic 
structures for bridge verbs compared to the other two kinds 

of verbs. For instance, it has been claimed that bridge verbs 

take embedded clauses as arguments, while embedded 

clauses of manner-of-speaking verbs and factive verbs 

contain extra covert structures at an abstract level (‘deep 

structure’ of the Chomskyan framework), such as an 

invisible complex NP (Kiparsky & Kiparsky, 1971; Snyder, 

1992; Stowell, 1981; Stoica, 2016). In this way, the 

unacceptability of extraction across factive and manner-of-

speaking verbs could be captured by syntactic constraints of 

extraction such as Subjacency. However, there are no 

independent reasons to propose these covert complex 
structures. 

 

Discourse Accounts: The fundamental idea of discourse 

accounts is that grammatical constructions specify certain 

parts of a sentence as ‘foreground’ or ‘background’, and the 

gap in a filler-gap construction can’t fall within a 

backgrounded domain. In this spirit, Ambridge & Goldberg 

(2008) (henceforth A&G) proposed an account they call 

Backgrounded Constituents are Islands (BCI), arguing that 

extraction from an S-complement is unacceptable in 

proportion to its ‘backgroundedness’. The more 
backgrounded the embedded clauses, the less acceptable the 

extraction. 

 

Frequency Accounts: Frequency accounts link extraction 

difficulties to low exposure: less frequent or unpredictable 

extractions are more difficult to process (cf. Hale, 2001; 

Levy, 2008). Dabrowska (2008) proposed that speakers 

store prototypical templates corresponding to frequent 

combinations they have encountered in their experience 

such as ‘Wh-word do you think/say S-complement?’. Filler-

gap constructions that are more similar to the prototypical 

constructions are more acceptable.  
We will propose a different generalization of 

Dabrowska’s account, following the results of Exp 1 

(presented below): 
 

The verb-frame frequency hypothesis: The acceptability of 

an utterance is best captured by 2 independent, separate 

effects: (i) the frequency or the type of the construction (e.g., 

wh-questions vs. declaratives) and (ii) the frequency of the 

verb head-structure. 
 

Extractions are rated less acceptable than declaratives, 

because extractions are less common compared to 

declaratives in communication, or they require more 

cognitive resources. As for acceptability variance within 

declaratives or extractions out of S-complements, the major 

determining factor is the frequency of the matrix verbs 

taking S-complements (P (matrix verb, S-complement)). 

This account does not predict an interaction (‘island’) effect 

between the acceptability of declaratives and extractions. 

(The interaction obtained in previous works may be a result 

of applying linear models to non-linear acceptability.) 
Following this new verb-frame frequency hypothesis, 

manner-of-speaking wh-questions such as (4c) are less 

natural, because the manner verbs rarely take S-

complements. Factive verbs that take S-complements with a 

similar frequency to bridge verbs should form equally good 

wh-questions. A major outlier to our account, the verb 

‘know’, may be explained by pragmatic factors.  

Predictions of The Three Theories on Factive and 

Manner-of-speaking Islands:  

Prediction of the Syntactic Accounts: All factive and 

manner-of-speaking wh-questions should be less acceptable 

than all the bridge ones due to categorically distinct covert 

structures (e.g., Kiparsky & Kiparsky, 1971; Snyder, 1992), 

as in Fig.1a.  
 

Prediction of the BCI Account (A&G 2008): There should 

be a correlation between the acceptability of wh-questions 

and the backgroundedness of the S-complements taken by 

the verbs, as shown in Fig.1b. Factive verbs take 

presuppositions, the most backgrounded constituents, and 
therefore should form the most unnatural wh-questions. 

Manner-of-speaking verbs should form less strong islands, 

while bridge verbs form fully acceptable wh-questions. 

 

Prediction of Verb-frame Frequency Hypothesis: The 

acceptability of extraction out of SC verbs should depend 

primarily on the frequency of those verbs taking S-

complements, and the effect of frequency should be similar 

on both wh-questions and declaratives (no ‘island’ effect), 

as plotted in Fig.1c.  
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Figure 1a: The prediction of the syntactic accounts 

 

 
Figure 1b: The prediction of the BCI account. 

 

 
Figure 1c. The prediction of our frequency account. 

Experiment 1: Replication of Ambridge and  

Goldberg (2008) 

Experiment 1 is an attempted replication and extension of 

A&G (2008) using an expanded set of 24 verbs in the 3 

categories (A&G tested 12 verbs). There were 2 sub-

experiments. Experiment 1a: acceptability judgements of 

wh-questions formed by the 3 groups of verbs and their 

corresponding declarative controls. Experiment 1b: negation 

test to measure the backgroundedness of S-complements of 

those verbs where extraction appeared. The BCI account 

predicts a negative correlation between the 

backgroundedness of the extraction domain and the 
acceptability of the wh-questions (A&G, 2008).  

This experiment also tests the syntactic theories via 

collecting acceptability ratings of wh-questions formed by 

the 3 groups of verbs.  

Methods  

Participants: 180 subjects participated in this experiment 

via Amazon Mechanical Turk in exchange for $2 each: 120 

participants answered acceptability questions for wh-

questions and declarative clauses. Another 60 subjects 

completed the negation task.  

In all the experiments reported here, data from participants 

who did not self-report themselves as native speakers of 

American English or didn’t answer all the comprehension 
questions with at least 85% accuracy were excluded. 

Responses from 116 participants in the acceptability task 

and 49 participants in the negation task were analyzed. 

 

Design and Materials: The acceptability and negation tasks 

were constructed for 24 sentence complement (SC) verbs of 

the 3 categories, as listed in (6)2.  

 

(6) a. Bridge verbs: say, decide, think, believe, feel, hope, 

claim, report, declare 

b. Factive verbs: know, realize, remember, notice, 

discover, forget 

c. Manner-of-speaking verbs: whisper, stammer, 

mumble, mutter, shout, yell, scream, murmur, whine 

 

In the acceptability task, wh-questions and their 

corresponding declarative sentences were designed as (7a) 

and (7b) respectively. 96 pairs of wh-questions and 

declaratives were constructed, and each of the 24 tested 

verbs in (6) formed 4 pairs. In each pair of wh-question and 

declarative control, NP1 and NP2 are common names, V1 

comes from (6), and V2 is the past tense form of one of the 
frequently used 25 verbs (like, eat, buy, build, cook, destroy, 

dislike, drink, draw, fix, find, know, learn, lose, make, 

mention, need, see, sell, steal, take, teach, throw, want, 

write). To reduce the possibility of semantic plausibility 

confounds, we used ‘something’ instead of a specific NP as 

the embedded object.    

 

(7) a. What did [NP1] [V1] [[that] [NP2] [V2]]? 

e.g., What did Susan know that Anthony liked? 

b. [NP1] [V1] [that] [[NP2] [V2+something]] 

e.g., Susan knew that Anthony liked something 

 
The 96 pairs were split across 2 lists: each list contained 2 

declaratives and 2 different wh-questions per verb. Each 

participant saw 96 sentences (from 1 list) in a random order. 

They were asked to rate how natural each sentence was with 

a rating scale from 1 (extremely unnatural) to 5 (extremely 

natural). Each sentence was followed by a comprehension 

question about the content of the preceding sentence to 

check if participants were paying attention to the task.  

In the negation-test task (from A&G, 2008), each trial 

included a negated complex sentence (8a) and a negated 

                                                        
2 Verbs in bold are those tested in A&G (2008). The labeling of 

a verb as ‘bridge’ was obtained from previous literature, such as 
Erteschik-Shir (1973), Snyder (1992), A&G (2008). 
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simple sentence (8b) which is the negated version of the S-

complement in (8a).  

 

(8) a. [NP1] didn’t [V1] [that] [NP2] [V2+Appropriate NP]  

e.g., Susan didn’t know that Anthony liked the cake. 
b. [NP2] didn’t [V2+Appropriate NP] 

e.g., Anthony didn’t like the cake. 

 

Participants were asked to rate how true they thought the 

second sentence was, given the first sentence, with a scale 

from 1 (false) to 5 (true). A&G proposed that these negation 

scores reflect how “backgrounded” the information in the S-

complement is.  

Results and Discussion: 

A&G (2008) calculated the difference scores between the 

ratings of wh-questions and declarative clauses as the 
measurement for acceptability of those wh-questions, and 

they found a strong correlation between these difference 

scores and negation scores (r=-0.83, p<0.001; see Fig.2a). 

We applied the same analysis to our data. The obtained 

correlation in our data was in the same direction as in A&G 

(2008) but the effect was smaller both in the 12 verbs they 

tested (r=-0.39, p=0.2) and in the full set of 24 verbs (r=-

0.31, p=0.13; see Fig.2b). Further, we found overlap 

between acceptabilities for factive and bridge verbs, 

contradicting the syntactic accounts, which predict non-

overlapping acceptability between factive and bridge wh-

questions given their distinct covert deep structures.  
 

 
Figure 2a: A&G (2008) - correlation between mean 

difference scores and mean negation test scores by verb (12 

verbs)  

 
Figure 2b: Our study - correlation between mean difference 

scores and mean negation test scores by verb (24 verbs). 

 

In a post-hoc analysis, we collected the frequency of the 

24 verbs followed by the complementizer ‘that’ from the 

Google books corpus as a proxy for relative verb frame 

frequency. Acceptability ratings for wh-question forms were 

significantly correlated with verb frame frequency 

(rho=0.72, p<0.001), as plotted in Fig.3, as were the 

corresponding declaratives (rho=0.76, p<0.001).  
Furthermore, 74.6% of ratings were between 4/5 and 5/5 for 

both the wh-questions and declaratives of verbs, suggesting 

that participants were not using the full range of the scale. 

Thus, we propose the verb-frame frequency hypothesis: 

the acceptability of an utterance is best captured by 2 

independent, separate effects: (i) the frequency of the type 

of construction (e.g., wh-questions vs. declaratives) and (ii) 

the frequency of the verb head-structure- the frequency of 

the matrix verbs taking S-complements P(matrix verb, S-

complement). This hypothesis suggests the impact of verb 

frame frequency on filler-gap constructions should be 

similar to that on declaratives.  
An outlier to this account is the verb ‘know’. We 

hypothesize that the idiosyncratic behavior of ‘know’ was 

due to pragmatic factors in the wh-question: a question is a 

request for knowledge but a question with ‘know’ implies 

that the speaker already has the knowledge. We hypothesize 

that ‘know’ might not be an outlier in other extraction 

constructions whose meaning does include implicit 

knowledge of the interlocutor, such as clefts, which is tested 

in Exp3.  

 

 
Figure 3: Correlation between mean ratings of wh-questions 
and log-transformed frequencies by verb (rho=0.72, 

p<0.001). 
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Experiment 2: Wh-questions with 48 Verbs 

The goal of this experiment was to test the frequency 

account with more matrix verbs beyond the 3 categories 

(bridge, factive, manner-of-speaking). The verb-frame 

frequency hypothesis predicts that the verbs that frequently 

take S-complements would be more acceptable as wh-
questions and declaratives, regardless of the verb category. 

The syntactic accounts make no predictions for verbs 

outside the 3 categories. 

 Given that the 5-point scale does not seem to be 

appropriate for measuring the acceptability of these 

sentences, we performed a forced-choice binary 

acceptability judgment task in this experiment and applied 

mixed-effects logistic regression to the data. 

Methods: 

Participants:120 people participated via MTurk, and each 

was paid $2. Responses from 110 participants were included 
in the analysis. 

 

Design and Materials: The design was similar to 

Experiment 1a, with 48 verbs. The verbs included 8 for each 

of the 3 categories and another 24 outside the 3 categories, 

as listed in (9). The 24 ‘other’ type verbs were not clearly 

categorized in the previous literature. 

 

(9) Matrix verbs: 

Bridge (8): feel, say, believe, hope, think, report, 

declare, claim,  

Factive (8): know, remember, realize, notice, discover, 
forget, learn, hate 

Manner (8): whisper, mumble, murmur, mutter, whine, 

shout, yell, scream 

Other (24): hear, recall, blab, conjecture, conceal, 

proclaim, hint, remark, infer, confirm, deny, guess, confide, 

maintain, testify, reveal, suspect, verify, prove, insist, 

guarantee, presume, hypothesize, complain 

 

Wh-questions and declaratives were constructed for the 

48 matrix verbs with 6 items for each verb (288 items in 

total). The design of the items is the same as Experiment 1a.   
As in Expt 1, participants were assigned to 1 of 2 lists 

made up of 3 declaratives and 3 wh-questions for each of 

the 48 verbs. Each participant saw 288 sentences in a 

random order. Participants were asked to rate each sentence 

using a binary scale (acceptable vs. unacceptable) based on 

how natural they thought the sentence was. Each sentence 

was also followed by a comprehension question. 

Results and Discussion: 

Acceptability judgments were analyzed with a mixed-effects 

logistic regression using the lme4 package in R. Sentence 

type (declarative vs. wh-question), log-transformed 
frequency of the verb frame and their interaction were 

entered as predictors. The model was fit with the maximum 

random effect structure which contained random by-subject 

and by-verb intercepts as well as slopes for sentence 

type*frequency by-subjects and slopes for sentence type by-

verb.  

The results were in line with the verb-frame frequency 

hypothesis. Wh-questions and declaratives formed by verbs 
that frequently take S-complements were significantly more 

acceptable (β=0.58, z=3.98, p<0.001). There was also a 

significant main effect of sentence type: declaratives were 

rated more acceptable than wh-questions (β=-3.27, z=-2.924, 

p<0.004). No interaction was found (p>0.4), suggesting no 

island effect was present. The log-odds of an ‘acceptable’ 

response for a given verb frame frequency are plotted in 

Fig.4a. Note that an island theory would predict the effect of 

frequency would have a steeper slope for wh-questions than 

declaratives, but Fig.4a shows the opposite (non-

significantly). A pattern resembling a spurious interaction 

(‘island’ effect) shows up when log-odds are converted into 
probabilities of acceptance, as shown in Fig.4b.  

 

 
Figure 4a: Log-odds of ‘acceptable’ response for wh-

questions and declarative clauses against log-transformed 

frequencies by verb (48 verbs). 
 

 
Figure 4b: Probability of ‘acceptable’ response for wh-

questions and declaratives against log-transformed 

frequencies by verb (48 verbs)  

Experiment 3: Cleft Structure 

Experiment 3 aims to further test the verb-frame frequency 

hypothesis and check if ‘know’ is always idiosyncratic in 

filler-gap constructions with respect to the frequency 

account. The syntax-based theories claimed that extractions 

obey the same set of constraints regardless of construction, 

which indicates extraction difficulties across different verbs 

should be the same across constructions (e.g., in wh-
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questions and cleft structures). However, an alternative is 

that the unusual behavior of ‘know’ in Experiment 1 might 

be related to the ‘information-obtaining’ function of wh-

questions.  If so, then ‘know’ should not be an outlier in 

cleft structures, because cleft structures are modifications of 
an NP and not associated with ‘knowing’. We thus propose 

that, beyond verb frame frequency, extraction difficulties 

may differ depending on the meaning and function of the 

specific construction (Abeillé et al., 2018). 

Methods: 

Participants: Data from 120 participants were collected via 

MTurk, and each was paid $2. Responses from 104 

participants were analyzed. 

 

Design and Materials: Cleft structures and their 

corresponding declarative sentences were designed as in 
(10a) and (10b) respectively. 96 pairs of clefts and 

declaratives were constructed, and each of the 24 tested 

verbs in (6) formed 4 pairs as in Exp 1a. Participants were 

asked to rate each sentence with a binary rating scale. Each 

sentence was followed by a comprehension question. 

 

(10) a. It was the pie that Angela mumbled that Kevin liked 

    b. Angela mumbled that Kevin liked the pie.  

Results and Discussion: 

Acceptability responses were analyzed in the same way as 

in Exp 2. Sentences with higher frequency verb frames were 
significantly more acceptable (β=1.2, z=2.7, p<0.01) and 

cleft structures were less likely to be acceptable (β=-14.6, 

z= 2.5, p<0.011). The interaction of sentence type and 

frequency was not significant (β=-0.87, z=-0.9, p=0.34), 

thus providing no evidence of an island effect (Fig. 5). 

These data are best explained by positing that verb frame 

frequency and extraction have independent, additive effects 

in log-odds space, as predicted by the verb-frame frequency 

hypothesis.  

 

 
Figure 5: Log-odds of ‘acceptable’ response for clefts and 

declaratives against log-transformed frequencies (24 verbs) 

 

As predicted by the meaning-based approach to long-

distance dependency acceptability, ‘know’ is not an outlier 

for the frequency account in the cleft structure. The 

idiosyncratic behavior of ‘know’ seems to have been due to 

pragmatic factors in the wh-question: a question is a request 

for knowledge but a question with ‘know’ implies that the 

speaker already has the knowledge. If the long-distance 

dependency structure does not involve the meaning of 
‘know’ (as in clefts), then extraction out of S-complements 

of ‘know’ is acceptable. Such distinct behaviors of ‘know’ 

in wh-questions and cleft structures suggest extractions vary 

across constructions, due to their meaning differences.  

General Discussion  

The results of all three experiments show that the amount of 

exposure is a key determining factor for the acceptability of 

filler-gap constructions formed by various SC verbs, 

including factive and manner-of-speaking verbs. The 
apparent interaction (‘island’ effect) may be a false positive 

caused by the use of linear models with ordinal acceptability 

ratings.  

Interestingly, we also found that island constraints are not 

the same across constructions. Though different extractions 

may share similar cognitive processes, variation across 

constructions does exist and can be attributed to different 

meanings or functions associated with those different types 

of extractions. Though we didn’t find strong evidence for 

the discourse-based accounts in the phenomena investigated 

here, frequency and discourse accounts are not necessarily 
mutually exclusive in capturing filler-gap constructions (and 

other phenomena) in general (Abeillé et al., 2018). 

Our results suggest that (un)acceptable filler-gap 

constructions could potentially be learnable via exposure. 

Although direct negative evidence is missing especially for 

such complex structures, it is likely that children could use 

indirect negative evidence to acquire long-distance 

dependencies. Children may draw statistical inference from 

the input and regard the absence of a type of extraction in 

the input as evidence of its unacceptability or 

ungrammaticality.  
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Abstract

According to theories of anticipatory behavior control, action
planning and control is realized by activating desired goal
states. From an event-predictive perspective, this activation
should focus sensorimotor processing on expected, upcoming
event boundaries. Previous studies have shown that periper-
sonal hand space (PPHS) is remapped to the future hand lo-
cation in a grasping task before the movement commences.
Here, we investigated if the current hand posture interferes
with the anticipatory remapping of PPHS. Participants had to
grasp virtual bottles from two differently oriented starting pos-
tures. During the prehension, they received a vibrotactile stim-
ulus on their right index finger or on their thumb, while a vi-
sual stimulus appeared at the bottle, either matching the future
finger position, or not. Participants had to name the stimu-
lated finger. While the hand posture affected verbal response
times, the anticipatory remapping remained unchanged. Ap-
parently, the predictive processes that realize the anticipatory
remapping, generalize over initial hand postures.
Keywords: Event Predictive Cognition; Anticipatory Behav-
ioral Control; Peripersonal Space; Virtual Reality

Introduction
According to theories of anticipatory behavior control, the
initiation of goal-directed actions requires the activation of
event-predictive structures or schemata (EPSs; e.g. Butz,
2016; Butz & Kutter, 2017; Hommel, Müsseler, Ascher-
sleben, & Prinz, 2001; Hoffmann, 2003; Zacks, Speer, Swal-
low, Braver, & Reynolds, 2007; Richmond & Zacks, 2017).
These EPSs are considered to encode the final outcome of an
action, but also the sensorimotor changes that usually unfold
during an action, as well as the situational pre-conditions of
successful action execution. In relation to free-energy based
theories of cognition (Friston, 2009), EPSs are assumed to
be involved in the more general active inference process that
realizes action planning, decision making, and control (Butz,
2016). This perspective is closely related to the ideomotor
principle (Greenwald, 1970) from cognitive psychology and
essentially states that anticipated final outcomes and sensori-
motor dynamics are activated before actual goal-directed mo-
tion takes place.

Empirical evidence for the assumed active inference pro-
cess comes from eye-tracking studies, showing that the fix-
ation pattern on a grasping target depends on the interaction
goal (Belardinelli, Stepper, & Butz, 2016). Apparently, vi-
sual processing was tuned to those spatial locations which
were critical for a successful object interaction. Considering
the multisensory information, which is expected to be repre-

sented in EPSs, predictive processing should not be limited to
eye-movements, but should also involve other action relevant
representations. One example fur such representations are
spatial body representations, like the peripersonal hand space
(PPHS). PPHS seems crucial for successful object interac-
tions and tool-use (Graziano & Cooke, 2006) . PPHS has also
been found to be highly flexible in adapting to interaction pos-
sibilities (Holmes, 2012). Furthermore, PPHS enforces mul-
tisensory processing (Holmes & Spence, 2004; Bernasconi et
al., 2018). According to the outlined theory, one would ex-
pect that PPHS is involved in predictive processing and might
be remapped towards the grasping target during action plan-
ning. If this is the case, typical PPHS-related effects should
be observed at the grasping target before the actual hand ar-
rives. One typical indicator of PPHS is the selective inter-
action between vision and touch, which can be assessed by
means of the crossmodal congruency paradigm (Spence, Pa-
vani, Maravita, & Holmes, 2004).

In crossmodal congruency tasks, participants have to in-
dicate the position of a tactile stimulation. Task-irrelevant
visual stimuli occurring close to the stimulated body part can
interfere with tactile perception. For instance, participants are
slower to identify whether thumb or index finger received a
tactile stimulation, if a LED is flashed at the non-stimulated
finger (incongruent), whereas a flash at the location of the
stimulated finger prompts a faster response (congruent). Pre-
vious studies indeed showed that interference between vision
and touch can occur in object interaction tasks at the target
object location even before movement initiation (Brozzoli,
Pavani, Urquizar, Cardinali, & Farnè, 2009; Brozzoli, Car-
dinali, Pavani, & Farnè, 2010). This implies an anticipatory
crossmodal congruency effect (aCCE), which can be used to
investigate the anticipatory remapping of PPHS. In more re-
cent studies (Belardinelli, Lohmann, Farnè, & Butz, 2018;
Lohmann, Belardinelli, & Butz, 2019; Patané et al., 2018),
it was shown that the aCCE can be observed on a trialwise
basis without explicit instruction of a certain grasping type.
These results imply that the aCCE indeed reflects an adap-
tive remapping due to action planning instead of a general
shift in spatial attention. Apparently, PPHS is involved in the
guidance of goal-directed actions, by providing a mapping
between the space that can be interacted with and the accord-
ing actions (Bufacchi & Iannetti, 2018).

While these results imply that PPHS is engaged in predic-
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tive processing, some aspects of this mechanism remain illu-
sive. For instance in the studies of Belardinelli et al. (2018)
and Lohmann et al. (2019), the orientation of the final grasp
modulated the strength of the aCCE. In case of underhand
grasps, the aCCE was smaller compared to overhand grasps.
This might be due to the fact that underhand grasps are less
frequent in object interactions, rendering the planning more
difficult. However, since the initial hand posture in these ex-
periments was closer to the overhand grasp, this effect could
also imply that the assumed prediction process does not com-
pletely generalize over the initial hand posture. This would
dovetail with previous results from research on motor im-
agery, especially on mental rotation, which showed a strong
interaction between ongoing motor planning and the actual
posture (Parsons, 1987; Qu, Wang, Zhong, & Ye, 2018).
Hence, our main aim in the present study was to investigate
whether the aCCE depends on a postural match between ini-
tial and future hand position. If the aCCE would be affected
by variations in the initial posture, this would imply that the
sensorimotor changes assumed to be encoded in EPSs are less
general than expected. If not, this would corroborate further
evidence for the assumption that the aCCE is indeed an indi-
cator for a general movement planning mechanism.

We conducted a behavioral study to discern these alterna-
tives. Participants performed a grasp-and-carry task in VR,
interacting with a virtual bottle. At different times before and
during the interaction, participants received a tactile stimu-
lation at the thumb or index finger. Concurrently, a visual
stimulus appeared at the left or right side of the bottle, either
matching the future location of the stimulated finger, or not.
Participants had to respond as fast as possible, by verbally
naming the finger that was stimulated. A typical aCCE would
be reflected by faster responses if the visual stimulus matched
the future finger position. The starting position of the hand
varied from trial to trial, participants had either to start from
a more clockwise, or more counterclockwise rotated starting
posture. The main question was whether aCCEs would be
modulated by this trialwise variation of the hand orientation.

Method
Participants
Twenty-four students from the University of Tübingen par-
ticipated in the experiment (ten females). Their age ranged
from 19 to 26 years (M = 21.2, SD = 1.9). All but one par-
ticipant were right-handed and all participants had normal or
corrected-to-normal vision. Participants provided informed
consent and received either course credit or a monetary com-
pensation for their participation. Two participants had diffi-
culties with the virtual grasping procedure and could not com-
plete the experiment. The respective data were not considered
in the analysis.

Apparatus
Participants were equipped with an Oculus Rift c© DK2
stereoscopic head-mounted display (Oculus VR LLC, Menlo

Park, California). Motion tracking of hand movements was
realized with a Leap Motion c© near-infrared sensor (Leap
Motion Inc, San Francisco, California, SDK version 3.2.1).
The Leap Motion c© sensor provides positional information
regarding the palm, wrist, and phalanges. This data can be
used to render a hand model in VR. Participants responded
verbally to the tactile stimulation. In order to so, participants
were equipped with a headset. Speech recognition was im-
plemented by means of the Microsoft Speech API 5.4. The
whole experiment was implemented with the Unity R© engine
2017.4.5f1 using the C# interface provided by the API. Dur-
ing the experiment, the scene was rendered in parallel on
the Oculus Rift and a computer screen, such that the experi-
menter could observe and assist the participants.

Tactile stimulation was realized by means of two small (10
mm × 3.4 mm) shaftless vibration motors attached to the tip
of the thumb and the index finger of the participants. The
motors were controlled via an Arduino Uno microcontroller
(Arduino S.R.L., Scarmagno, Italy) running custom C soft-
ware. The microcontroller was connected to the computer via
an USB port, which could be accessed by the Unity R© pro-
gram. The wiring diagram as well as additional information
regarding the components can be found at the first author’s
webpage. 1

Figure 1: The VR scene with the clockwise oriented (left
panel) and the counterclockwise oriented (right panel) start-
ing postures. Participants had to grasp a bottle which ap-
peared on the central pedestal and place it upright onto the
right pedestal. The bottle could be either upright, or rotated.

Virtual Reality Setup
The VR setup put participants in an office-like room. Cen-
tered about 50 cm in front of them, a pedestal was placed,
where, during the trials, the target object appeared. The tar-
get was always a 3D model of a plastic bottle either oriented
upright or upside down. The bottle was 15 cm in height, sub-

1https://uni-tuebingen.de/de/26084
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tending a visual angle of 17.1◦ at the initial location. A sec-
ond pedestal, 15 cm to the right of the first one, served as
the target location (see Fig. 1). The positions of the pedestals
were marked with actual cardboard boxes providing haptic
feedback regarding the bounds of the task space (participants
were seated in a way that they had to stretch their arm to reach
the pedestals). Instructions and feedback were presented in
different text-fields, aligned at eye-height. At the beginning
of a trial, a fixation cross appeared at the initial location of
the target bottle (see Fig. 1). The fixation cross was 10 cm
wide and 10 cm high, subtending a visual angle of 11.4◦. The
visual distractor was realized by means of a red, spherical
flash with a diameter of 8 cm (equal to a visual angle of 8◦)
appearing at the left or right side of the bottle.

Procedure
At the beginning of the experiment, participants received a
verbal instruction regarding the VR equipment. Then they
were equipped with vibration motors and familiarized with
the tactile stimulation. Participants were then seated comfort-
ably on an arm chair and put on the HMD. Before the actual
experiment, participants performed a grasping training and
trained the verbal response until they felt comfortable with
both tasks. In the grasp training, participants performed the
grasp-and-carry task without receiving a tactile stimulation.
Furthermore, participants could familiarize themselves with
the two different starting positions. In the verbal response
training, participants did not perform a grasping movement,
but remained with their hand in the starting position.

The actual experiment combined both tasks in a dual-task
paradigm. At the beginning of each trial, participants had
to move their right hand into a designated starting position,
consisting of red, transparent spheres indicating the required
positions of the fingers and the palm. There were two possi-
ble variations of the starting position. One was tilted by 15◦

clockwise in the frontal plane, and one was tilted by 15◦ coun-
terclockwise in the frontal plane. Accordingly, this required
participants’ to rotate their hands either clockwise or counter-
clockwise. The spheres turned green when the respective fin-
gers were in position (see Fig. 1). Furthermore, participants
had to maintain a stable looking direction on a fixation cross.
Once both requirements were met for 1000 ms, the fixation
cross as well as the visible markers of the initial position dis-
appeared and a bottle appeared on the central pedestal. The
bottle was either oriented upright, or upside down. Partici-
pants were instructed to grasp the bottle with a power grasp,
and put it in an upright orientation within the target location.
We did not explicitly instruct a underhand grasp in case of
upside down bottles, however, all participants performed this
kind of grasp. The initial hand postures were close to the re-
spective grasping hand posture for the upright oriented bottle
(clockwise hand posture), or the upside down bottle (counter-
clockwise hand posture).

Besides the grasp-and-carry task, participants had to dis-
criminate which finger received a vibrotactile stimulation and
to report the stimulated finger as fast as possible (by saying

“index or “thumb, i.e., in German “Zeigefinger or “Daumen)
upon vibration detection. The onset of the tactile stimulation
varied from trial to trial. A visual distractor appeared at the
same time at either the right or the left side of the bottle. De-
pending on the bottle orientation, this was expected to yield
different congruent and incongruent conditions with respect
to the aCCE (see Fig. 2).

The experiment consisted of 480 trials, presented in a sin-
gle block. The experiment was self-paced and participants
could pause between trials. The whole procedure took be-
tween 90 and 120 minutes, including preparation and train-
ing.

Figure 2: The different congruency conditions with respect to
the future hand position (transparent green hand), depending
on bottle orientation. The stimulated finger is indicated by a
red flash, this was done for the sake of visibility, the partici-
pants received no visual cue regarding the tactile stimulation.
Red frames indicate incongruent conditions, congruent con-
ditions are marked with a green frame. Please note that the
initial hand posture was different from the one shown in this
image (cf. Fig 1), the flat hand posture here was used for the
sake of visibility.

Factors, Measures, Data Treatment
We varied five factors across trials. First, the target bottle
could be oriented upright or upside down (orientation). Sec-
ond, the visual distractor could appear either on the left or the
right side of the bottle (distractor). Third, the tactile stim-
ulation could be applied either to the thumb or to the index
finger (stimulation). Fourth, we varied the initial hand pos-
ture - clockwise or counterclockwise - which participants had
to maintain to start the trial (posture). Fifth, we varied the on-
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set of the tactile stimulation and the visual distractor (SOA):
250 ms after presentation of the bottle (SOA1), at movement
onset (SOA2), or after the hand traveled half-way to the bot-
tle (SOA3). We repeated the 2 (distractor) × 2 (stimulation)
× 2 (orientation) × 2 (posture) × 3 (SOA) factor combina-
tions ten times, yielding 480 trials. The primary dependent
measure were the verbal response times for naming the stim-
ulated finger. Data from error trials (wrong or no verbal re-
sponse, 1.8% of the trials) were excluded from the response
time analyses. Furthermore, we analyzed the error data using
a mixed effects logistic regression.

Congruency
For our hypothesis, possible aCCE’s were most relevant.
aCCE’s are reflected by three-way interactions between the
factors orientation, distractor, and stimulation (cf. Fig. 2) .
For instance, in the case of an upright bottle a tactile stimu-
lation of the index finger along with a visual distractor on the
right side of the bottle is congruent. To focus the analysis, we
recoded the data accordingly and obtained a congruency fac-
tor, combining the visual distractor and tactile stimulus factor.
For the response times, we report an analysis of the respec-
tive differences (incongruent - congruent) with a 2 (orienta-
tion) × 2 (posture) × 3 (SOA) ANOVA. In this analysis a sig-
nificant, positive intercept would indicate a significant aCCE
(faster responses in congruent as opposed to incongruent con-
ditions).

Results
Verbal response times from the 22 considered participants
were analyzed with a 2 (congruency) × 2 (orientation) ×
2 (posture) × 3 (SOA) repeated measures ANOVA. Verbal
response times differences between incongruent and congru-
ent conditions were further analyzed with a 2 (orientation)
× 2 (posture) × 3 (SOA) repeated measures ANOVA. Only
correct trials were included in the RT analysis. All reported
post-hoc comparisons were submitted to a Holm-Bonferroni
correction. The analyses were carried out with R (R Core
Team, 2016) and the ez package (Lawrence, 2015). In case
of violations of the assumption of sphericity, p-values were
submitted to a Greenhouse-Geisser adjustment. Error rates
were analyzed with mixed effects logistic regression, using
the lme4 package (Bates, Mächler, Bolker, & Walker, 2015).

Verbal Response Times
The 2 (congruency) × 2 (orientation) × 2 (posture) × 3
(SOA) repeated measures ANOVA yielded significant main
effects for orientation (F(1,21) = 7.63, p = .012, η2

p = .27),
congruency (F(1,21) = 32.57, p < .001, η2

p = .61), and SOA
(F(1,21) = 28.04, p < .001, η2

p = .57), as well as significant
interactions between orientation and SOA (F(2,42) = 8.74, p
= .001, η2

p = .29), orientation and posture (F(1,21) = 5.54,
p = .028, η2

p = .21), orientation and congruency (F(1,21) =
9.55, p = .006, η2

p = .31), SOA and congruency (F(2,42) =
10.39, p = .001, η2

p = .33), as well as a three-way interaction

for orientation, congruency, and SOA (F(2,42) = 7.32, p =
.002, η2

p = .26; all remaining p’s ≥.168).
Participants responded faster to upright bottles (Mupright =

700 ms vs. Mrotated = 713 ms), and in case of congruent stim-
ulation (Mcongruent = 691 ms vs. Mincongruent = 722 ms). Ver-
bal RTs decreased with SOA (MSOA1 = 742 ms, MSOA2 = 710
ms, MSOA3 = 669 ms; all respective p’s <.001). Regarding
the interaction between orientation and SOA, participants re-
sponded faster to bottles oriented upright at SOA1 (t(21) =
3.21, p= .016) and SOA2 (t(21) = 4.02, p= .004), for SOA3,
this difference was no longer significant (t(21) = -0.54, p =
.595). Post-hoc analyses of the orientation × posture interac-
tion showed that participants responded faster to upright than
to upside down bottles when starting in a clockwise posture
(t(21) = 3.59, p = .010). The respective difference was not
significant for the counterclockwise posture. Furthermore, re-
sponse times in case of upright bottles and a clockwise pos-
ture were significantly faster than response times in the other
three conditions (all respective p’s <.04).

To further analyze the interactions involving the congru-
ency factor, we analyzed the RT differences between incon-
gruent and congruent conditions with a 2 (orientation) × 2
(posture) × 3 (SOA) ANOVA. The analysis yielded a signif-
icant intercept (F(1,21) = 47.00, p < .001, η2

p = .69), signif-
icant main effects of SOA (F(2,42) = 20.43, p < .001, η2

p =
.49) and orientation (F(1,21) = 16.43, p = .001, η2

p = .44), as
well as a significant interaction between orientation and SOA
(F(2,42) = 9.20, p = .002, η2

p = .30). No further main effects
or interactions reached significance (remaining p’s ≥ .230).

The congruency effect was significantly larger at SOA3
compared to SOA1 and SOA2 (∆MSOA1 = 17 ms, ∆MSOA2
= 20 ms, ∆MSOA3 = 60 ms; all respective p’s <.001). For bot-
tles presented upright, the congruency effect was larger than
for upside down bottles (∆Mupright = 54 ms vs. ∆Mrotated =
11 ms). Regarding the interaction between orientation and
SOA, after adjusting for multiple comparisons, the only sig-
nificant difference between upright and upside down bottles
was found at SOA3 (∆Mupright = 98 ms vs. ∆Mrotated = 23
ms; t(21) = 4.60, p < .001).

To further probe the significance of the aCCE, all of the 2
(orientation) ×2 (posture) × 3 (SOA) mean differences were
tested against a true mean of 0. The results are shown in
Fig. 3.

Error Rates

Both error and correct trials of all participants, except the tri-
als without response (65 out of 10560 trials) were coded as
0 (error) or 1 (correct) and entered into a mixed effects lo-
gistic regression analysis with a binomial distribution. We
compared models of increasing complexity with likelihood
ratio tests to determine whether the factors orientation, pos-
ture, congruency, and SOA were required to account for the
error pattern. We kept the error structure simple, applying
only a random intercept per participant. After the identifi-
cation of the null model, we added fixed effects for the ex-
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Figure 3: The aCCE – measured as the response time difference between congruent and incongruent trials – including its
temporal dynamics and dependency on bottle orientation and initial hand posture. Significant differences from 0 are indicated
with an asterisk. Asterisks in brackets indicate comparisons which failed significance after adjusting for multiple comparisons.
Error bars indicate the standard error of the mean.

perimental factors to the model as long as the likelihood ratio
test between the simpler and the more complex model yielded
significant results (with α = .05). We only compared nested
models differing with respect to one factor. Models with a
single fixed effect were compared with the null model, mod-
els with two fixed effects were compared with models with
one fixed effect and so on. The best fitting model involved
fixed effects for the factors SOA, orientation and congruency,
as well as the interaction between congruency and orienta-
tion (see Tab. 1, only significant effects are included)2. The
error risk is increased by a factor of 3.4 in case of later SOAs
compared to earlier ones. The error risk decreases by a factor
of 0.28 in case of rotated compared to upright bottles. This
pattern is further modified by the interaction between con-
gruency and orientation. For upright bottles, the error risk in-
creases in case of incongruent stimulation by a factor of 8.5,
for upside down bottles, there is no difference in the error risk
for congruent and incongruent stimulation.

Discussion
We aimed at investigating the mechanism of anticipatory
remapping of PPHS in advance of a prehension movement. In
order to do so, we investigated anticipatory cross-modal con-
gruency effects (aCCEs) during virtual grasping movements.
Participants had to grasp virtual bottles with their right hand,
while receiving a tactile stimulation on thumb or index finger
of that hand along with a visual stimulation close to one of

2Please note that the model assuming the three-way interaction
between all factors provided a slightly better fit, however, the re-
spective BIC was much larger than the one of the selected model.

Table 1: Effect estimates for the best fitting binomial mixed
effects logistic regression model regarding the error rates
(df= 7, logLik=−803.3,BIC= 1671.4). The logit estimates
have been transformed to odds, only significant effects (α =
.05) are shown. Z statistics for the Wald test and according
p-values are presented in the last two columns.

fixed effect odds 95% CI Z p

intercept 0.005 [ 0.002 , 0.009] -15.91 < .001
SOA3 3.364 [ 2.295, 4.930] 6.22 < .001
orientation 0.288 [ 0.155, 0.534] -3.95 < .001
orientation ×
congruency

8.540 [ 4.150, 17.574] 5.83 < .001

the future finger positions. The visual distractor could either
match the future finger location or not. In line with earlier
findings (Belardinelli et al., 2018; Brozzoli et al., 2009, 2010;
Lohmann et al., 2019; Patané et al., 2018), we observed dy-
namic aCCEs, which were more pronounced at later SOAs.
To probe whether the strength of the aCCE depends on the
match between current and future hand posture, we varied
the starting posture of the participants’ hands from trial to
trial. Participants started either with a clockwise (matching
the grasp for an upright bottle), or counterclockwise (match-
ing the grasp for a upside down bottle) posture. While we
observed response time differences for the clockwise posture
(faster responses for upright bottles, delayed responses for
upside down bottles), the congruency effect itself remained
unaffected by the initial hand posture. Also with respect to the
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error rates, the initial hand posture yielded no significant in-
fluence. A closer inspection of the response time differences
for incongruent compared to congruent stimulation implied a
small increase in the congruency effect for upside down bot-
tles in case of the counterclockwise posture, while at the same
time slightly decreasing the congruency effect for upright bot-
tles. However, these effects seem too small to become signif-
icant with the applied sample size. In general, congruency ef-
fects were more pronounced for upright compared to upside
down bottles (with respect to both RTs and errors). Since this
was still the case for the counterclockwise posture, this dif-
ference seems not to be due to an initial mismatch between
current and future hand position. It rather implies a planning
advantage for canonical object orientations.

While the observed interaction between bottle orientation
and hand posture dovetails with findings that the current
body posture can indeed interfere with mental imagery pro-
cesses (Parsons, 1987; Qu et al., 2018) and has a signifi-
cant weighted impact on the actual chose hand grasp posture
(Herbort & Butz, 2012), this modulation did not apply to the
congruency effect itself. Apparently, the anticipatory control
process that gives rise to the aCCE generalizes over the actual
hand posture, remapping PPHS towards the future goal, irre-
spective of the current hand posture. In general, the reported
results on the aCCE provide support for theories of proba-
bilistic, event-oriented, active inference (Butz, 2016; Butz &
Kutter, 2017): the results confirm that PPHS is adaptively
remapped onto future event boundaries during the prepara-
tion and for the control of goal-directed behavior.

However, the understanding of the remapping mechanism
requires further investigation. In our data, as well as in the
results reported by Belardinelli et al. (2018), and Lohmann
et al. (2019), the aCCE was much more pronounced for bot-
tles presented upright. It seems that the remapping works
more efficient in case of canonical object orientations. As it
was pointed out by Bufacchi and Iannetti (2018), measures
of PPHS like the aCCE are not only modulated by prox-
imity, but by many other factors like learning, stimulus va-
lence, and environmental characteristics. Hence, a modula-
tion of the aCCE by familiarity seems plausible, but a system-
atic comparison between bottles and objects with a less pro-
nounced canonical orientation is pending. Moreover, there
is still much further light to be shed on the dynamics of this
process and its dependency on event-predictive precision es-
timates. From the event-predictive, anticipatory behavioral
control perspective, it can be expected that the future horizon
will reach the deeper into the future, the more precise the pre-
dictive model estimates are expected to be. That is, the higher
our confidence about the upcoming environmental events and
sequences thereof, the more we will look ahead and act in a
more versatile and flexible goal-directed manner.
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Abstract

How do children’s visual concepts change across childhood,
and how might these changes be reflected in their drawings?
Here we investigate developmental changes in children’s abil-
ity to emphasize the relevant visual distinctions between object
categories in their drawings. We collected over 13K drawings
from children aged 2-10 years via a free-standing drawing sta-
tion in a children’s museum. We hypothesized that older chil-
dren would produce more recognizable drawings, and that this
gain in recognizability would not be entirely explained by con-
current development in visuomotor control. To measure recog-
nizability, we applied a pretrained deep convolutional neural
network model to extract a high-level feature representation of
all drawings, and then trained a multi-way linear classifier on
these features. To measure visuomotor control, we developed
an automated procedure to measure their ability to accurately
trace complex shapes. We found consistent gains in the recog-
nizability of drawings across ages that were not fully explained
by children’s ability to accurately trace complex shapes. Fur-
thermore, these gains were accompanied by an increase in how
distinct different object categories were in feature space. Over-
all, these results demonstrate that children’s drawings include
more distinctive visual features as they grow older.
Keywords: object representations; child development; visual
production; deep neural networks

Introduction
Children draw prolifically, providing a rich source of poten-
tial insight into their emerging understanding of the world
(Kellogg, 1969). Accordingly, drawings have been used to
probe developmental change in a wide variety of domains
(Fury, Carlson, & Sroufe, 1997; Karmiloff-Smith, 1990; e.g.,
Piaget, 1929). In particular, drawings have long provided in-
spiration for scientists investigating how children represent
visual concepts (Minsky & Papert, 1972). For example, even
when drawing from observation, children tend to include fea-
tures that are not visible from their vantage point, yet are di-
agnostic of category membership (e.g., a handle on a mug)
(Barrett & Light, 1976; Bremner & Moore, 1984).

As children learn the diagnostic properties of objects and
how to recognize them, they may express this knowledge
in their drawings of these categories. Indeed, children’s
visual recognition abilities have a protracted developmen-
tal trajectory: configural visual processing—the ability to
process relationships between object parts (Juttner, Muller,
& Rentschler, 2006; Juttner, Wakui, Petters, & Davidoff,
2016)—may mature slowly throughout childhood, as does the
ability to recognize objects under unusual poses or lighting
(Bova et al., 2007).

Inspired by this prior work, our goal is to understand the
relationship between developmental changes in how children
draw visual concepts and their representations of these visual
concepts. In particular, we hypothesize that children’s draw-
ings become more recognizable in part because children learn
the distinctive features of categories that set them apart from
other similar categories (Figure 1). If so, we would expect an
increase in the distinctiveness of children’s drawings across
childhood that is not explained by improvements in children’s
visuomotor ability. However, this goal poses several method-
ological challenges to overcome.

First, it requires a principled and generalizable approach
to encoding the high-level visual properties of drawings that
expose the extent to which they contain category-diagnostic
information (Fan, Yamins, & Turk-Browne, 2018). This ap-
proach stands in contrast to previous approaches, which have
relied upon provisional criteria specific to each study (e.g.,
handles for mugs) (e.g., Barrett & Light, 1976; Goodenough,
1963), which limited their ability to make detailed predictions
on new tasks or datasets. Recently, deep convolutional neural
network (DCNN) models that have been trained on challeng-
ing object recognition tasks have been shown to extract high-
level visual information from images (Yamins et al., 2014).
As these models have been directly optimized to recognize
objects in photographs, features in higher layers of these net-
works represent high-level visual information that is impor-
tant for distinguishing between object categories. We thus
meet this challenge by capitalizing on prior work validating
the use of these higher-layer features to analyze the high-level
visual information in drawings (Fan et al., 2018; Long, Fan,
& Frank, 2018). In particular, we investigate the extent to
which children include distinctive features in their drawings
by assessing how well these visual features can be used to
identify the category (e.g., dog, bird) that children were in-
tending to draw.

Second, it requires a large sample of drawings collected
under consistent conditions from a wide range of participants
to identify robust developmental patterns (e.g., M. Frank et
al., 2017). This is in contrast to the relatively small samples
that have characterized classic studies in this domain (Brem-
ner & Moore, 1984; Karmiloff-Smith, 1990). To meet this
challenge, we installed a free-standing drawing station in a
local science museum, allowing us to collect a large sample
of drawings (N = 13205 drawings) of 23 object categories
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Figure 1: Examples of drawings that have increasingly more distinctive visual features of their categories, making them more
easily recognizable. These examples are generated from the results of the classification process outlined below.

over a wide developmental age range (i.e., 2-10 years) under
consistent task conditions.

Third, it requires simultaneous and detailed measurement
of developmental changes in other cognitive and motor abil-
ities that may influence children’s ability to include rele-
vant information in their drawing (Freeman, 1987; Rehrig
& Stromswold, 2018). For example, children’s developing
visuomotor abilities may limit their ability to include the di-
agnostic visual features in their drawings. In this paper, we
focus on visuomotor control, operationalized as performance
on shape tracing tasks, because they share many of the same
demands on controlled, visually-guided movement with our
primary object drawing task. Critically, because we col-
lected both tracings and drawings from every participant in
our dataset, we are able to model the contribution of both in-
dividual and age-related variation in tracing task performance
for explaining how well children produce recognizable draw-
ings.

In sum, our paper provides an advance over our prior
work investigating developmental change in drawing behav-
ior (Long et al., 2018) in three ways: first, we build a free-
standing drawing station to continually crowdsource chil-
dren’s drawings under consistent conditions, enabling the col-
lection of a substantially larger dataset; second, we exploit
this larger dataset to characterize the category-level distinc-
tiveness inherent to children’s drawings across a wide range
of ages; and third, we develop an automated procedure for
analyzing concurrent changes in visuomotor control using a
tracing task.

Methods
Dataset
Drawing Station We installed a drawing station that fea-
tured a tablet-based drawing game in a local science museum.
Each participant sat in front of a table-mounted touchscreen
tablet and drew by moving the tip of their finger across the

display. Participants gave consent and indicated their age (in
years 2-10 or adult) via checkboxes and no other identifying
information was collected; our assumption was that parents
would navigate this initial screen for children. To measure
fine visuomotor control, each session began with two trac-
ing trials, followed by a copying trial. On each tracing trial,
participants were presented with a shape in the center of the
display. The first shape was a simple square, and the sec-
ond was a more complex star-like shape (Figure 2). On the
subsequent copying trial, participants were presented with a
simple shape (square or circle) in the center of the display for
2s, which then disappeared. They then were asked to copy
the shape in the same location it had initially appeared. Next,
participants completed up to eight object drawing trials. On
each of these trials, participants were verbally cued to draw a
particular object category by a video recording of an experi-
menter (e.g., “What about a dog? Can you draw a dog?”). On
all trials, participants had up to 30 seconds to complete their
tracing, copy, or drawing. There are 23 common object cate-
gories represented in our dataset, which were collected across
three bouts of data collection focused on 8 of these objects at
a time. These categories were chosen to be familiar to chil-
dren, to cover a wide range of superordinate categories (e.g.,
animals, vehicles, manipulable objects), and to vary in the
degree to which they are commonly drawn by young children
(e.g., trees vs. keys).

Dataset Filtering & Descriptives Given that we could not
easily monitor all environmental variables at the drawing sta-
tion that could impact task engagement (e.g., ambient noise,
distraction from other museum visitors), we anticipated the
need to develop robust and consistent procedures for data
quality assurance. We thus adopted strict screening proce-
dures to ensure that any age-related trends we observed were
not due to differences in task compliance across age. Early
on, we noticed an unusual degree of sophistication in 2-year-
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old participants’ drawings and suspected that adult caregivers
accompanying these children may not have complied with
task instructions to let children draw on their own. Thus, in
later versions of the drawing game, we surveyed participants
to find out whether another child or an adult had also drawn
during the session; all drawings where interference was re-
ported were excluded from analyses. Out of these 2685 par-
ticipants, 700 filled out the survey, and 156 reported interfer-
ence from another child or adult (5.81%). Raw drawing data
(N = 15594 drawings) were then screened for task compliance
using a combination of manual and automated procedures
(i.e., excluding blank drawings, pure scribbles, and drawings
containing words), resulting in the exclusion of 15.3% of all
drawings (N = 13205 drawings after exclusions). After fil-
tering, we analyzed data from 2443 children who were on
average 5.28 years of age (range 2-10 years).

Measuring Tracing Accuracy

Figure 2: Measurement of tracing task performance reflects
both spatial and shape error components. Left: The grey
shape is the target; the black shape is the raw tracing. Af-
ter applying affine image registration, the spatial error reflects
the extent of translation, rotation, and scaling transformation
required to minimize shape error. Right: Shape error reflects
how closely the contour of the transformed tracing aligns with
the target.

We developed an automated procedure for evaluating how
accurately participants performed the tracing task, validated
against empirical judgments of tracing quality. We decom-
pose tracing accuracy into two components: a shape error
component and a spatial error component. Shape error re-
flects how closely the participant’s tracing matched the con-
tours of the target shape; the spatial error reflects how closely
the location, size, and orientation of the participant’s tracing
matched the target shape (Figure 2).

To compute these error components, we applied an image
registration algorithm, AirLab (Sandkhler, Jud, Andermatt, &
Cattin, 2018), to align each tracing to the target shape, yield-

ing an affine transformation matrix that minimized the pixel-
wise correlation distance between the aligned tracing, T , and
the target shape, S: LossNCC =−∑S·T−∑E(S)E(T )

N ∑Var(S)Var(T ) , where N is
the number of pixels in both images.

The shape error was defined by the final correlation dis-
tance between the aligned tracing and the target shape. The
spatial error was defined by the magnitude of three distinct er-
ror terms: location, orientation, and size error, derived by de-
composing the affine transformation matrix above into trans-
lation, rotation, and scaling components, respectively. In
sum, this procedure yielded four error values for each trac-
ing: one value representing the shape error (i.e., the pixel-
wise correlation distance) and three values representing the
spatial error (i.e., magnitude of translation, rotation, scaling
components).

Although we assumed that both shape and spatial error
terms should contribute to our measure of tracing task per-
formance, we did not know how much weight to assign to
each component to best predict empirical judgments of trac-
ing quality. In order to estimate these weights, we collected
quality ratings from adult observers (N=70) for 1325 tracings
(i.e., 50-80 tracings per shape per age), each of which was
rated 1-5 times. Raters were instructed to evaluate “how well
the tracing matches the target shape and is aligned to the po-
sition of the target shape” on a 5-point scale.

We fit an ordinal regression mixed-effects model to pre-
dict these 5-point ratings, which contained correlation dis-
tance, translation, rotation, scaling, and shape identity (square
vs. star) as predictors, with random intercepts for rater. This
model yielded parameter estimates that could then be used to
score each tracing in the remainder of the dataset (N=3242
tracings from 1886 children). We averaged scores within ses-
sion to yield a single tracing score for each participant (2245
children completed at least one tracing trial).

Measuring Object Drawing Recognizability

We also developed an automated procedure for evaluating
how well participants included category-diagnostic informa-
tion in their drawings by examining classification perfor-
mance on the features extracted by a deep convolutional neu-
ral network model.

Visual Encoder To encode the high-level visual features of
each sketch, we used the VGG-19 architecture (Simonyan &
Zisserman, 2014), a deep convolutional neural network pre-
trained on Imagenet classification. We used model activa-
tions in the second-to-last layer of this network, which con-
tain more explicit representations of object identity than ear-
lier layers (Fan et al., 2018; Long et al., 2018; Yamins et al.,
2014). Raw feature representations in this layer consist of flat
4096-dimensional vectors, to which we applied channel-wise
normalization.

Logistic Regression Classifier Next, we used these fea-
tures to train an object category decoder. To avoid any bias
due to imbalance in the distribution of drawings over cate-
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Figure 3: (A) Leave-one-out classification accuracy (grey dotted line indicates chance) (B) the amount of time spent drawing in
seconds, (C) the amount of ink used (i.e., mean intensity of the drawings), (D) the number of strokes used, and (E) the average
estimated tracing scores are plotted as a function of childrens age.

gories (since groups of categories ran at the station for differ-
ent times), we sampled such that there were an equal num-
ber of drawings of each of the 23 categories (N=8694 draw-
ings total). We then trained a 23-way logistic classifier with
L2 regularization under leave-one-out cross-validation to es-
timate the recognizability of every drawing in our dataset.

Predicting Object Drawing Recognizability If children’s
drawings contain more features that are diagnostic of the
drawn categories, then these visual features (estimated via
VGG-19) should lead to greater classification accuracy. How-
ever, we anticipated that classification accuracy may also vary
with children’s tracing abilities as well how much time and ef-
fort children invested in their drawings; we thus recorded how
much time was taken to produce each drawing, how many
strokes were drawn, and the proportion of the drawing canvas
that was filled. Our main statistical model was then a gener-
alized linear mixed-effects model predicting classification ac-
curacy from the category decoder, with scaled age (in years),
tracing score (averaged over both trials), and effort cost vari-
ables (i.e., time, strokes, ink) modeled as fixed effects, and
with random intercepts for each child and object category.

Measuring Category Distinctiveness To investigate
changes in the underlying feature representation of children’s
drawings that may help explain variation in classification
accuracy, we computed a measure of pairwise category
distinctiveness Di j for each pair of categories i, j within each
age. This metric is a higher-dimensional analog of d-prime
that incorporates both the distance between each pair of
categories as well as the dispersion within each category. We
first computed the category centers as the mean feature vector
for each category,~ri and~r j. The distance between each pair
of categories i, j was then taken as the Euclidean distance
between their category centers, ‖~ri −~r j‖2. The dispersion
for each category was computed as the root-mean-squared
Euclidean distance of each individual drawing vector from
the category center vector~r and is expressed as s. By direct
analogy with d-prime, we compute the distinctiveness Di j of
each pair of categories i, j by dividing the Euclidean distance

between category centers by the quadratic mean of the two
category dispersions, Di j =

‖~ri−~r j‖2√
1
2 (s

2
i +s2

j )
.

Results
Overall, drawing classification accuracy increased with age
(Figure 3A), validating our basic expectation that older chil-
dren’s drawings would be more recognizable. Our mixed-
effects model on drawing classification revealed that this age-
related gain held when accounting for task covariates—the
amount of time spent drawing, the number of strokes, and to-
tal ink used (Figure 3B,C,D)—and for variation across object
categories and individual children. All model coefficients can
be found in Table 1.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.714 0.274 -2.606 0.009

Tracing 0.311 0.034 9.141 0.000
Age 0.282 0.033 8.499 0.000

Draw Duration 0.136 0.034 3.976 0.000
Avg Intensity -0.064 0.033 -1.910 0.056
Num. Strokes -0.034 0.034 -1.009 0.313
Tracing*Age 0.011 0.029 0.357 0.721

Table 1: Model coefficients of a GLMM predicting the
recognziability of each drawing

We next examined the relationship between children’s abil-
ity to trace complex shapes and the subsequent recognizabil-
ity of their drawings. Tracing abilities increased with age
(Figure 3E) and individual’s tracing abilities were good pre-
dictors of the recognizability of the drawings they produced.
This main effect of tracing ability also held when accounting
for effort covariates (number of strokes, time spent drawing,
ink used). However, children’s tracing abilities did not inter-
act with the age-related gains in classification we observed
(Figure 4) and we observed age-related classification gains at
each level of tracing ability.

To examine the contributions of age and tracing ability to
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recognizability, we also fit reduced versions of the full model
and examined the marginal R2 (Nakagawa & Schielzeth,
2013). The fixed effects in a null model without tracing or
age (which mainly captures drawing effort) accounted for
very little variance (marginal R2 = 0.004). Adding only chil-
dren’s age to the model increased R2 (marginal R2 = 0.037)
as did only adding tracing (marginal R2 = 0.039). Adding
both factors without their interaction (marginal R2 = 0.05)
had a similar effect to adding both factors and their interac-
tion (marginal R2 = 0.05). Attesting to the immense vari-
ability between individuals and categories, adding random
effects (and many more parameters) accounted for a much
larger amount of variance (conditional R2 for full model =
0.403). Finally, as we had many more younger participants in
our dataset, we also repeated these analyses with a subset of
the dataset that was balanced across both children’s age and
category (N=2691 drawings), and found the same pattern of
results.

These age-related changes in classification accuracy show
that the underlying feature representations of older children’s
drawings were more linearly discriminable. This finding led
us to investigate a potential source of this enhanced discrim-
inability: that drawings from different categories were spread
further apart in feature space, while drawings within a cat-
egory were clustered closer together. To evaluate this pos-
sibility, we used a measure of pairwise category distinctive-
ness Di j that accounts for both the distance between each pair
of categories, as well as the dispersion within each category.
We found that category distinctiveness increased consistently
with age (Figure 5).

Taken together, these results reveal developmental changes
in how well children are able to emphasize the relevant dis-
tinctions between object categories in their drawings that
thereby support recognition. Moreover, they show that these
age-related gains in classification are not entirely explained
by concurrent development in visuomotor control.

General Discussion
How do children represent different object categories
throughout childhood? Drawings are a rich potential source
of information about how visual representations change over
development. One possibility is that older children’s draw-
ings are more recognizable because children are better able
to include the diagnostic features of particular categories that
distinguish them from other similar objects. Supporting this
hypothesis, the high-level visual features present in children’s
drawings could be used to estimate the category children were
intending to draw, and these classifications became more ac-
curate as children became older. These age-related gains in
classification were not entirely explainable by either low-
level effort covariates (e.g., amount of time spent drawing,
average intensity, or number of strokes) or children’s trac-
ing abilities. In addition, these gains in classification were
paralleled by an increase in the distinctiveness between the
categories that children drew (Figure 5).

Taken together, these results suggest that children’s draw-
ings contain more distinctive features as they grow older, per-
haps reflecting a change in their internal representations of
these categories. While children could simply be learning
routines to draw certain categories—perhaps from direct in-
struction or observation, our results held even when restricted
to a subset of very rarely drawn categories (e.g., couch, scis-
sors, key) arguing against a simple version of this idea.

Nonetheless, there are limitations on the generalizability
of these findings due to the nature of our dataset. First, while
this dataset is large and samples a heterogenous population,
all drawings were collected at a single geographical location,
limiting the generalizability of these results to children from
other diverse cultural or socioeconomic backgrounds. Sec-
ond, while we imposed strong filtering requirements on the
dataset, we were not present while the children were drawing
and thus cannot be sure that we’ve eliminated all sources of
noise or interference. At the same time, additional interfer-
ence would only generate extra noise in our data rather than
the observed age-related trends. In any case, these correla-
tional results call for validation in more carefully controlled
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Figure 5: Pairwise category distinctiveness for drawings made by 3-, 5-, 7-,and 9-year-olds; darker (vs. lighter) values represent
pairs of categories that have more overlapping (vs. distinctive) representations.

contexts and across more diverse populations.
Furthermore, they open the door for future empirical work

to establish causal links between children’s drawing behavior
and their changing internal representation of visual concepts.
For example, it would be valuable to explore the extent to
which a child’s ability to include the most distinctive visual
features in their drawings of object categories predicts their
ability to perceptually discriminate those object categories.
Another promising direction would be to investigate the re-
lationship between children’s general ability to retrieve rele-
vant information from semantic memory (e.g., that a rabbit
has long ears and whiskers), and their ability to produce rec-
ognizable drawings of those categories. Insofar as such re-
trieval mechanisms are engaged during drawing production,
developmental changes in semantic memory systems may
also explain an important portion of the age-related variation
in drawing behavior.

Overall, we suggest that children’s drawings change sys-
tematically across development, and that they contain rich in-
formation about children’s underlying representations of the
categories in the world around them. A full understanding
of how children’s drawings reflect their emerging perceptual
and conceptual knowledge will allow a unique and novel per-
spective on the both the development and the nature of visual
concepts—the representations that allow us to easily derive
meaning from what we see.
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Abstract

How do humans compute approximate number? According to one influential theory, approximate number representations
arise in the intraparietal sulcus and are amodal (independent of any sensory modality). Alternatively, approximate number
may be computed initially within sensory systems. We tested for approximate number representations in the visual system
using steady state visual evoked potentials (SSVEPs). We recorded EEG from human subjects while they viewed dotclouds
presented at 30 Hz. Alternating the dotcloud numerosity at 15 Hz evoked a 15 Hz SSVEP detectable over the occipital lobe
(Oz). The SSVEP amplitude increased as the numerical difference between dotclouds increased, indicating that subjects
visual systems were differentiating dotclouds on the basis of their numerical ratios. Critically, subjects were unable to
consciously discriminate dotcloud numerosity, indicating the rapid presentation disrupted reentrant feedback to visual
cortex. Approximate number appears to be computed within the visual system, independently of higher-order areas such
as the intraparietal sulcus.
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Abstract

In this paper, we describe three experiments involving simple
physical judgments and predictions, and argue their results are
generally inconsistent with three core commitments of proba-
bilistic mental simulation theory (PMST). The first experiment
shows that people routinely fail to track the spatio-temporal
identity of objects. The second experiment shows that people
often incorrectly reverse the order of consequential physical
events when making physical predictions. Finally, we demon-
strate a physical version of the conjunction fallacy where par-
ticipants rate the probability of two joint events as more likely
to occur than a constituent event of that set. These results high-
light the limitations or boundary conditions of simulation the-
ory.
Keywords: intuitive physics; mental simulation; inference;
conjunction fallacy

Introduction
Successful interaction with our environment often requires

reasoning about the physical world (e.g., predicting if a stack
of books on a desk is unstable), but the mental processes that
support this ability remain poorly understood. Simulation is
a technique used for physical reasoning in many applications
ranging from modeling molecular interactions to designing
realistic video game physics engines. In a simulation, a pro-
gram starts with an initial state, and then applies the relevant
dynamic laws of physics to compute what will happen over
a series of (typically short) time steps; in effect, computing a
“movie” of how the scenario progresses.

Some researchers have recently argued that humans use
cognitive strategies analogous to computer simulation when
intuitively reasoning and making predictions about the phys-
ical world (Battaglia, Hamrick, & Tenenbaum, 2013; Ham-
rick, Battaglia, Griffiths, & Tenenbaum, 2016; Hamrick,
Smith, Griffiths, & Vul, 2015; Smith, Dechter, Tenenbaum,
& Vul, 2013; Smith & Vul, 2017; Ullman, Spelke, Battaglia,
& Tenenbaum, 2017). In order to account for the more im-
precise and qualitative nature of human physical reasoning,
they propose that multiple simulations are run from a range
of different initial configurations. For instance, consider a
person asked to predict whether a tower of wooden blocks
will fall over. A probabilistic mental simulation begins by as-
suming that each observer has an imperfect perception of the
positions of the blocks (i.e., their precise locations in physical
space) owing to perceptual limitations and occlusion. Based
on this uncertain percept, the simulator samples a number of
slightly different towers, each altered according to random
(perceptual) noise. According to the theory, a reasoner might
start with, for instance, ten initial towers and run a (possi-
bly noisy) physics simulation forward until some termination

point with the resulting outcomes driving their stability judg-
ment. For example, if 8 of the 10 simulated towers fall over
then a reasoner might estimate a 0.8 probability that the struc-
ture is unstable (Battaglia et al., 2013). We refer to this ap-
proach as “probabilistic mental simulation theory” (PMST).

PMST has been found to approximate human judgments
in a diverse set of tasks, including judging how a 3-D tower
of blocks will collapse (Battaglia et al., 2013), predicting the
destination of a virtual ball on a 2-D bumper table (Smith et
al., 2013), and predicting the proportion of a poured liquid
that will end up on either side of a divider (Bates, Yildirim,
Tenenbaum, & Battaglia, 2015), among others. However, this
theory has been contested (cf., Davis & Marcus, 2015, 2016).
Criticisms of this theory include the incompatibility of an ac-
curate physical simulation engine with decades of psycho-
logical work documenting human errors in simplified phys-
ical reasoning tasks (Hegarty, 2004; Kubricht, Holyoak, &
Lu, 2017; McCloskey, Caramazza, & Green, 1980; Proffitt,
Kaiser, & Whelan, 1990; Siegler, 1976). In addition, in many
situations, simulation would be computationally inefficient or
impossible. For instance, if a closed can half full of sand is
shaken, simulation would require calculating all the collisions
of all the grains of sand (e.g., Kubricht et al., 2016) but if the
goal is just to predict whether the sand remains in the can, that
can be done through the application of a simple rule (Smith
et al., 2013)

The goal of the present paper is to provide a strong empiri-
cal test of PMST. We begin by describing three core tenets of
PMST that transcend specific applications of the theory and
make important testable claims about human physical rea-
soning. We then describe three novel experiments that test
these principles by setting up pre-registered (here) edge-cases
where we might expect the predictions made by PMST to fail.

Three key principles of probabilistic mental
simulation theory (PMST)

An agent using a probabilistic simulation of the physical
world to solve physical reasoning problems should adhere to
the following three principles. While we accept that PMST
may include limitations and shortcuts (Ullman et al., 2017),
the principles outlined here are necessary for simulation to be
a viable strategy.
Object Persistence A reasoner using PMST is required to
maintain interacting objects within all simulations/samples.
Objects occupy particular locations within space and time and
a mental simulation must encode these relative spatiotem-
poral positions and update them according to the rules of
physics. This is a core aspect of the theory, because drop-
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Figure 1: (a) A “Minus One” block tower question, as it appeared to participants. The answer in the upper left is correct; the other three
answers are each missing one block. (b ) A “marble run”-type temporal consistency question. (c) An example probabilistic coherence scene.
Dotted arrows indicate approximate motion over the 2/3 second clip.

ping an object from a simulation or deleting it (as is possible
in a video game engine) would radically alter possible out-
comes and subsequent predictions. For example, imagine a
person thinking about a table. If their mental simulation acci-
dentally deleted its representation one of the table legs (even
temporarily), the result would be a major disruption to the
simulation; e.g., the otherwise static table might begin to fall.
Keeping track of the location of objects in space and time and
accounting properly for their movements is fundamental to
what it means to “simulate” a physical scene. Any plausible
physics engine must keep track of all the interacting objects
involved in order to maintain coherent predictions about the
future. Physics engines do make mistakes and approxima-
tions, but deleting or radically altering objects is not the kind
of mistake they make.

There are, of course, some cases where objects may be ig-
nored. In video game physics engines, for example, objects at
rest are often put to “sleep” to save on computation, and it has
been suggested that mental simulation might make use of this
trick as well (Ullman et al., 2017). When a physics engine
puts an object to sleep, however, this simply means that the
engine assumes that the object is stationary, and it does not
mean that the physics engine forgets that the object exists.

This leads to the key prediction tested in our first exper-
iment: in interacting multi-object scenes, every object from
the initial percept will be represented in each simulation’s fi-
nal state, because every object is necessarily represented and
tracked throughout each simulation.
Temporal Consistency Building upon the first principle, an
iterative simulation must advance all interacting objects si-
multaneously. This step-by-step, synchronous nature of the
simulation ensures that the order of events is preserved. Pre-

serving the order of events is important for generating accu-
rate simulations and using them to make decisions. When two
processes might interact, it is necessary for their simulations
to be properly synchronized in order to predict whether and
how they interact. Consider a case where a bottle is rolling
towards the front door of a house, which is slowly closing.
To predict if the bottle ends up inside or outside the house,
the simulator has to represent whether the door will swing
shut before the bottle gets there. Time cannot for instance run
faster for the bottle than for the door if reasoning is to be co-
herent. A synchronous approach does this, and ensures that
there is no way for one event to get ahead of, or fall behind
another, because they share a common timeline.

We refer to this property of mental simulation as temporal
consistency. A person using PMST to reason about a physical
scene should preserve the temporal order of events.
Probabilistic Coherence According to PMST, after running
multiple (noisy) simulations, the final scene configurations
from each simulation are used to make predictions and infer-
ences about the physical world. A variety of ways of aggre-
gating across these simulations have been proposed. For ex-
ample, in Battaglia et al. (2013), the output of the model was
the average proportion of towers that fell across the set of the
simulations. In this example, PMST uses the Monte Carlo
principle to estimate probabilities. An event that is almost
certain to occur will occur in all the simulations while a more
uncertain event (or one more sensitive to perceptual noise)
will occur less frequently. Although approximate, comput-
ing probabilities from samples or simulations still conforms
to the axioms of probability theory. Indeed, this is a key
virtue of the approach, and helps to relate the theory to ex-
isting Bayesian theories of human inference.
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One classic signature of coherent probabilistic reasoning is
that the probability of a conjunction of multiple events must
always be less than the probability of any component (i.e.,
P(A∧B) ≤ P(A)). However, people in many cases will esti-
mate conjunctions to be more likely than one of their compo-
nents (known as the “conjunction fallacy”, Tversky & Kah-
neman, 1983). While they have been found in a number of
domains including social reasoning, conjunction fallacy er-
rors have not (to our knowledge) been observed in reasoning
about physical outcomes, and all of the methods PMST pro-
poses for estimating probability from the results of simulation
predict that conjunction fallacies should not regularly occur.
If likelihood is calculated by tallying the relative outcomes of
different random simulations, the conjunction rule will not be
systematically violated, because it is impossible for a sample
to have more outcomes that include a conjunction than out-
comes that include one of the constituent elements.

Study 1: Object Persistence
The first experiment tested the principle of Object Persis-

tence. In particular, we tested if people are able to keep track
of the number, size, and color/identity of a relatively small
number of objects when predicting the future state of a sim-
ple scene. If people fail consistently at this task, it calls into
question a key assumption of PMST; that simulations pre-
serve objects over time. The assumption that we make in de-
signing this test is that if an object is represented and tracked
in each simulation, then it should be available for other judge-
ments such as being identified/recognized. If people are lim-
ited in this regard, it calls into question if people use PMST
or, alternatively, refines this theory by pointing out the cog-
nitive inaccessibility of object-level details from the mental
representation of the scene.

The experiment builds upon the block tower designs first
used by Battaglia et al. (2013). Rather than asking partic-
ipants to make predictions about the collapse of a standing
tower, we showed participants one standing tower (the tar-
get) and then a set of four collapsed towers and asked them
to judge which collapsed option was the result of the target
tower falling according to gravity (with one of the four op-
tions being the ground truth of running the standard tower
through a physics engine). Given the target tower, a simula-
tion based reasoner could simply simulate the standing tower
forward to generate one or a set of collapsed tower states.
The actual result of the tower collapsing should be similar to
several results generated by the simulation.

Method
Participants We ran groups of 9 at a time until the num-
ber of participants who meet the criteria reached or exceeded
the planned number of participants, which was 1001. We re-

1In an earlier preregistration (here), we allowed for a small num-
ber of exclusions. However, when we began collecting data for this
study we realized that the exclusion rate was much higher than ex-
pected. As a result, we stopped data collection and developed a
new protocol with a fixed n per experiment after exclusions. See
Kennedy, Clifford, Burleigh, Waggoner, and Jewell (2018) for dis-

cruited 201 participants (71 female, mean age = 33.9, SD =
9.8) on Amazon Mechanical Turk (AMT). Participants could
earn a bonus of $3 depending on the accuracy of their predic-
tions. Of these, 101 participants were eligible for our analy-
sis. We analyzed the first 100 (39 female, mean age = 34.0,
SD = 10.0). This collection plan and all criteria were outlined
in our preregistration (here).
Stimuli The stimuli were still images of standing but unsta-
ble block towers (targets). Each target tower consisted of 10
blocks, similar to what has been used in previous research
(e.g. Battaglia et al., 2013; Hamrick et al., 2016). The blocks
came in three colors (red, blue, and green) and in three di-
mensions (the “cube” in 1x1x1, the “brick” in 1x1x2, and the
“plank” in 1x0.5x2; units are relative).

For each target tower, there were four still images of possi-
ble resting states, i.e., what the tower might look like once it
had collapsed under gravity. One of the resting states was
always the real result of the target tower collapsing in the
physics engine we used to create the stimuli.2 The other three
were incorrect and impossible in one of the following ways.
In “Change Type” questions, one of the blocks was replaced
with a block of different dimensions. In “Change Color”
questions, one block was switched to a different color. In
“Swap Color” questions, two-color towers swapped the col-
ors of all blocks; e.g. all red blocks would become blue and
all blue would become red. In “Plus One” questions, an ad-
ditional block was included. In “Minus One” questions, one
block was missing (e.g. Figure 1a). In “Minus Two” ques-
tions, two blocks were missing. In “Minus Three” questions,
three blocks were missing.

The impossible endstates were created by changing the
original tower (e.g. deleting, adding, or changing the
properites of one or more blocks), adding some noise (so that
all the incorrect answers were not identical), and then allow-
ing the simulation to run to rest. Materials were created until
there were three impossible endings that had no blocks that
fell outside the viewing area nor were entirely obscured by
other blocks.
Procedure Participants read a detailed description of the
task. This included several example videos generated from
the PhysX materials, and example images like those that ap-
peared in the main body of the task. Participants were asked
to watch each video a few times so that they would know how
the blocks act when they fall.

The main body of the study consisted of 14 4AFC trials
randomly intermixed with 10 easy trials. The easy trials were
designed so that the correct answer would be obvious to a
participant who was paying attention. Trial order was ran-
domized. When choosing between the four fallen towers the
original tower of blocks was still visible on the screen (see

cussion of why the exclusion rate may have been unusually high
during the summer of 2018, when the majority of these data were
collected. In addition, due to space limitations we can report only
the key planned analyses in this conference paper.

2The PhysX physics engine, through the Unity interface (Unity,
n.d.).
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Figure 1a).

Results
In accordance with our preregistered analysis plan, we

pooled the number of correct answers participants gave on
the 14 critical items, and used both a two-tailed one-sample
t-test and the one-sample “Bayesian Estimation Supersedes
the t-Test” or BEST (Kruschke, 2013) to estimate credible
intervals for overall performance. The average number of
correct answers was 6.33 (SD = 2.37). We calculated a 99%
confidence interval of [5.75, 7.00], and the one-sample BEST
gave a 99% credible interval of [5.72, 6.98]. Performance at
this simple physical reasoning task is thus exceedingly poor;
this contrasts sharply with the high performance at predicting
whether towers are unstable found by Battaglia et al. (2013)

These errors varied by trial type. The mean number correct
(out of 2) were 0.38 for Change Type items, 0.79 for Change
Color items, 0.59 for Swap Color items, 0.65 for Plus One
items, 1.18 for Minus One items, 1.36 for Minus Two items,
and 1.38 for Minus Three items. We calculated confidence
intervals corrected for multiple comparisons (Bonferroni with
.05/7 = 0.00714) for all items. Intervals for Swap Color and
for Plus One were consistent with a null of 0.50. For these
item types, participants perform as poorly as if they were
given no information at all. The 99.29% interval for the items
with the highest accuracy, Minus Three, was [1.19, 1.59], the
upper limit being just less than 80% accuracy. Notably, 39
of the 100 participants gave the correct answer to fewer than
half of the items. Only 3 participants made no errors at all.

We included a free-response question after all trials, ask-
ing participants: “Roughly speaking, how did you try to solve
the problems? Please tell us a little about your approach be-
low.” Three coders who had not been involved in the design
of the study or the collection of data coded the free responses
into the following categories: 0) No response, Nonsensical
response, or “Other” strategy, 1) Simulation, Visualization,
or Imagination, 2) Heuristics or Rules, 3) Both Simulation &
Heuristics. To conduct subgroup analyses, we used a best 2
out of 3 approach to resolve disagreements among the coders,
and had the three coders manually resolve disagreement for
the small number of self-reports where all three coders coded
the response differently. The ratings had a Cronbach’s alpha
of 0.85, indicating acceptable agreement (Kline, 2013).

When participants were asked to describe the way they
completed the relevant tasks, 19 gave answers that suggested
a simulation or visualization approach, 50 said they used spe-
cific rules or heuristics, 20 said that they used both simulation
and heuristics, and the remaining 11 gave an uninterpretable
answer. Results did not differ between participants who re-
ported using different strategies.

Discussion
Reasoning about sets of 10 simple objects should be well

within the abilities of a person using PMST (Battaglia et al.,
2013; Hamrick et al., 2016). Despite this, performance was
remarkably poor.

This behavioral result seems very unlikely if participants

were tracking every block, which in causally-bound systems
is a requirement of PMST. While it is possible that simula-
tors might not always keep track of things like color, tracking
shape is necessary to predict object interactions, and track-
ing every object is fundamentally necessary for the task. Be-
cause of this requirement, every object will end up in the end
states of every simulation. It would seem trivial then to de-
tect a mismatch between the end state of a mental simulation
and a provided image of such a final scene. Alternatively, if
one retained the spirit of the PMST approach, this result sig-
nificantly constrains the availability of particular information
within a mental simulation. Introducing this new constraint
seems hard to reconcile with the ability of people to judge
if the tower will fall via simulation because it would imply
someone could answer the falling question (“will this block
tower fall over?”) but not a question about an individual block
within a tower (e.g., “will the long red block remain standing
when the tower falls over?”).

Study 2: Temporal Consistency
PMST conducts simulations in an iterative fashion. At ev-

ery time-step, the system applies elementary physical rules to
each object in the simulation. This is done recursively; once
every object has been updated at time t, the system moves on
to time t+1, updates all objects again, and so on (Battaglia et
al., 2013). This ensures that events will generally occur in the
correct order, as long as the approximate trajectory is clear. In
this study, we assessed if people have difficulty predicting the
order in which events occur, for physical events with reliable
trajectories.

The materials for this study consisted of video clips of
events in a simple 3-D world. Participants viewed the first
two seconds of several short clips of physical scenes in which
two independent physical processes unfolded. For example,
the physical processes might be two balls, each rolling down
its own series of ramps (see Figure 1b), or they might be two
lines of dominoes falling over. Each physical process fol-
lowed a predictable trajectory, and we informed participants
of this fact.

In each scene we identified one object in each process (usu-
ally “the red ball” and “the blue ball”), and participants were
asked to predict which of the two objects would hit the ground
first. Participants did not see the outcomes of the video clips,
so they had to engage in prospective reasoning in order to
make this judgment. The key dependent variable was the pro-
portion of scenes for which participants thought the wrong
event would occur first.

Method
Participants As above, our stopping rule was designed to
collect a fixed number of participants after exclusions. We
collected 78 participants (29 female, mean age = 35.1, SD =
9.8) in groups of 9 at a time on Amazon Mechanical Turk.
Participants could earn a bonus of $3 depending on the ac-
curacy of their predictions. Of these participants, 63 met our
exclusion criteria, and we analyzed only the first 60 partici-
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pants (22 female, mean age = 36.4, SD = 10.2), as stated in
our preregistration.
Stimuli The main stimuli were video clips (example clip)
showing the first two seconds of a scene (full version of same
scene). Each scene included two key objects, one red and
one blue, each involved in its own causal chain, which would
eventually lead to each object colliding with the ground.

Each scene was designed to make the outcome that would
occur second seem, at the end of the 2-second clip, more
likely to occur first. The object that would actually strike
the ground second was moving faster, had gone further, had
fewer “obstacles” in its way, etc., or some combination of
these factors. We iterated the design of the scenes based on
these heuristics until we believed that pausing at the two-
second mark would lead to incorrect judgment of the con-
clusion. PMST predicts that no such items should exist, as
long as the trajectories are clear.

In the full scenes, the first object always struck the ground
at least 2/3 of a second before the second one did, sometimes
much earlier. The full scenes took about 10s to complete.
Procedure Participants read a detailed description of the task
which included several example videos of the physics engine
we used, and example clips similar to those that appeared in
the main body of the survey. Participants were assured that
the simulations were designed to be as much like real physics
as was possible, that both critical objects would always even-
tually reach the ground, that there were no hidden objects or
forces that would interfere, and that everything relevant to the
scene was readily visible in the video clips.

In the main body of the study, participants viewed several
video clips of the first two seconds of a physical scene where
two independent chains of events unfold. In each case there
were two items of interest, one red and the other blue, and
participants judged which of the two would reach the ground
(indicated by a grass texture) first.

The study presented four questions each of three types
(“Marble Run”, “Parthenon”, and “Domino”), for a total of
twelve critical questions. There were also four filler scenes,
which were designed to be trivially easy.

Results
We used both a two-tailed one-sample t-test and one-

sample BEST to determine if, on average, accuracy was dif-
ferent from chance. Participants answered a mean of 4.77
questions correctly (SD = 2.55), which was less than chance
(6), according to both a t-test, t(59) = -3.75, p < .001, 95%
confidence interval [4.11, 5.42] and a one-sample BEST, 95%
Credible Interval: [4.11, 5.45].

In answering the 12 critical questions, 56.7% of the partici-
pants gave the incorrect answer to more than half of the ques-
tions. Every participant made at least two errors. The highest
level of performance was ten of twelve correct, achieved by
only two participants. Further, 3.3% of the participants gave
the wrong answer on all twelve trials.

The same three coders coded free response reports of strat-
egy according to the system described above. The ratings had

a Cronbach’s alpha of 0.74, indicating acceptable agreement
(Kline, 2013). When participants were asked to describe the
way they completed the relevant tasks, 8 gave answers that
suggested a simulation or visualization approach, 35 said they
used specific rules or heuristics, 8 said that they used both
simulation and heuristics, and the remaining 9 gave no answer
or an uninterpretable answer. Results did not differ between
participants who reported using different strategies.

Discussion
In this study, participants saw two processes with pre-

dictable trajectories, and were asked to estimate which pro-
cess would complete first. Overall, participants reversed the
order of the events in their predictions, predicting that the
event that truly occurred second would occur first, and did
so more often than chance. Admittedly, the scenarios used
in this study were deliberately designed to be adversarial. If
we were to imagine the (hypothetical) space of all possible
scenes, it is likely that few cases would prompt the reversals
in judgment we observed. However, PMST suggests that no
items showing such reversals should exist, barring major un-
certainties in trajectory, etc. That there exist any items where
this kind of reversal is consistently found is evidence that
PMST is not the approach being used to make these judg-
ments.

Study 3: Probabilistic Coherence
When making predictions about a physical scene, a key

claim of PMST is that judgments reflect probabilistic infer-
ence, estimated via repeated stochastic runs of the simulation
(Battaglia et al., 2013). As such, people’s physical judgments
should approximately obey the laws of probability theory.

Conjunction fallacy errors are cases where people rate a
joint probability (A & B both occur) as more likely than the
marginal probability of one component (e.g. A occurring at
all). This is logically contradictory because there is no way
for the joint probability to be larger than either of its compo-
nents. At most, it will be equal to the smaller component.

In the cognitive domain, this is often known as the “Linda
Problem”, because of a well-known example in which partic-
ipants judged a hypothetical individual named Linda as more
likely to be both a bank teller and a feminist than to be a bank
teller in general (Tversky & Kahneman, 1983). To test this
commitment of PMST, in this study we assessed if people fall
prey to conjunction fallacy-style judgment errors for physical
reasoning problems.

Methods
Participants We collected data from 90 participants (28 fe-
male, mean age = 33.6, SD = 9.8) on Amazon Mechanical
Turk (AMT). Following the criteria outlined in our preregis-
tration, we analyzed only the first 60 participants (18 female,
mean age = 34.2, SD = 9.7) of 62 eligible.
Stimuli The main stimuli were video clips, 2/3 of a second
long, in which two round objects (a pink “sphere” and a gray
“cannonball”) interacted in a 2-dimensional world (example
video here). This world included gravity and some stationary
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objects. There was always “ground” on the bottom edge of
the scene, with a green section representing grass on top, and
usually one or more boxes resting on the grass. There was
always a hole in the ground, wide enough for either object to
potentially fall into.

Over the course of each clip, the gray cannonball would
travel in a parabola across the screen, while the pink sphere
would fall under the influence of gravity (see Figure 1c). The
cannonball always traveled toward the sphere, in a way that
suggested that the two might collide. Each video ended af-
ter approximately 700 ms, well before the cannonball could
intersect the pink sphere’s path, leaving ambiguity about the
outcome of the scene.
Procedure Participants read a detailed description of the
task. This included several example simulation videos from
the physics engine we used (PhysX) and example clips like
those that appeared in the main body of the task. The exam-
ple videos included many forms of inter-object interactions,
including collisions, and participants were allowed to watch
these videos as many times as they wanted.

In the main body of the study, participants saw several sim-
ple physical scenes. For each scene, participants estimated
the likelihood of a particular prompted outcome (e.g., “How
likely is it that the pink sphere will end up on the grass?”), as
a percentage ranging from 0% to 100% in 1% increments.

Eight of the scenes were considered “critical”, and the an-
swers to these provided our primary dependent measure. Un-
known to participants, each critical scene appeared twice, for
a total of 16 critical trials.

For each scene that appeared twice, in one appearance par-
ticipants were asked the question, “How likely is it that the
pink sphere will end up on the grass?” and in the other, “How
likely is it that the cannonball will hit the pink sphere, and
then the pink ball will end up on the grass?” Scenes did not
repeat until after several filler scenes were presented.

Results
We averaged the difference scores (conjunction probability

- sole probability) for each participant for each of the eight
critical scenes. Positive values on these difference scores in-
dicate that participants rated a conjunction as more likely than
the constituent sole probability, which is a form of the con-
junction fallacy. The average rating difference score was 7.29
(SD = 13.07), which was reliably greater than zero, according
to both a t-test, t(59) = 4.32, p < .001, 95% confidence inter-
val [3.92, 10.67], and a one-sample BEST (Kruschke, 2013),
95% Credible Interval: [4.06, 10.79]. This suggests that, on
average, participants were inclined to commit the conjunction
fallacy in a physics domain.

In rating conjunction and sole probabilities on critical tri-
als, 72% percent of the participants show a bias toward the
conjunction event. In addition, 62% percent of subjects com-
mitted the conjunction fallacy for more than half of the pairs.

The same three coders coded free response reports of strat-
egy according to the system described above. The ratings had
a Cronbach’s alpha of 0.75, indicating acceptable agreement

(Kline, 2013). When participants were asked to describe the
way they completed the relevant tasks, 23 gave answers that
suggested a simulation or visualization approach, 17 said they
used specific rules or heuristics, 12 said that they used both
simulation and heuristics, and the remaining 8 gave no an-
swer or an uninterpretable answer. Somewhat surprisingly,
we found that participants actually made more extreme con-
junction fallacy errors when they reported using a simulation
approach, F(3, 56) = 3.90, p = 0.013.

Discussion
Participants making judgments about outcomes in physi-

cal processes routinely predicted that conjunctions were more
likely than one of their constituent events. PMST states that
judgments about the outcomes of physical processes are made
by aggregating over the result of multiple noisy runs of a sim-
ulation, and so conjunction fallacy errors contradicts this as-
pect of the theory.

General Discussion
Simulation has been argued to be an important and effec-

tive way in which people reason about the physical world. In
this paper we ask about the limits on the use of simulation as
a strategy. Across three studies, we found empirical contra-
dictions to the natural predictions made by PMST.

First, when trying to identify the resting state for an un-
stable tower of 10 blocks, participants have great difficulty
distinguishing between the true set of blocks and sets that
differ because of changes of color, changes of dimensions,
additions, or deletions. PMST suggests that this should not
happen without significant additional assumptions about the
content and accessibility of particular features of simulated
representations.

Second, when judging the order of events in a scene with
highly predictable trajectories, participants consistently make
incorrect predictions about the order of events. Although the
examples were designed to be adversarial, PMST does not
admit the existence of such examples because judgments are
made using an iterative simulation where every object is ad-
vanced synchronously in each unit of time.

Third, participants consistently commit the conjunction
fallacy (Tversky & Kahneman, 1983) when reasoning about
simple physical scenes, a result that contradicts the claims of
PMST about how estimated judgments of physical scenes are
made by aggregating across probabilistic samples.

The design of our experiments tried to mimic many of the
empirical studies which have supported PMST in complexity
and content. Thus we believe they represent an interesting
test bed for the generalization of the theory.

As the field tries to grapple with these complex questions,
we argue that any complete account of human physical rea-
soning must contend with both the cases where people appear
to do well and the situations where they apparently are lim-
ited or deceived. As a result, experiments exposing the limits
of simulation can be as informative as those that show the
successes.
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Abstract 

This study examined age effects on real-life language use and 
within-person variations in language use across social contexts. 
We used the Electronically Activated Recorder (i.e., a portable 
audio recorder that periodically records sound snippets) to 
collect over 31,300 snippets (30 seconds long) from 61 young 
and 48 healthy older adults in Switzerland across four days. We 
examined vocabulary richness and grammatical complexity 
across the social contexts of (a) activities (i.e., socializing, 
working); and (b) conversation types (i.e., small talk, 
substantive conversation). Multilevel models showed that 
vocabulary richness and grammatical complexity increased 
during socializing and substantive conversations, but decreased 
in small talk. Moreover, young adults produced shorter clauses 
at work than not at work. Furthermore, compared with young 
adults, older adults used richer vocabulary and more complex 
grammatical structures at work; and used richer vocabulary in 
small talk. In contrast, young adults used richer vocabulary 
than older adults during non-socializing and non-working 
occasions, such as watching TV and exercising. Results are 
discussed in the context of cognitive aging research with a 
novel emphasis on context. 

Keywords: vocabulary richness; grammatical complexity; 
social context; cognitive behavior; electronically activated 
recorder (EAR); naturalistic observation method  

Introduction 

Real-life language use is mostly embedded in social 

interactions and conversations (e.g., Clark, 1996). While 

effects of social context on language use have been widely 

acknowledged in sociolinguistics, linguistic ethnography, 

and social psychology (e.g., Finkbeiner, Meibauer, & 

Schumacher, 2012), they have been underrepresented in 

cognitive aging research (e.g., Horton, Spieler, & Shriberg, 

2010). Rooted in laboratory experiments, cognitive aging 

research assumed that cognitive change with aging was the 

primary determinant of variations in language use (Burke & 

Shafto, 2008). However, unlike in the laboratory, where the 

upper limits of one’s abilities are tested (Baltes, Dittmann-

Kohli, & Dixon, 1984), in real life, contexts should also play 

a role in influencing behaviors (Lewin, 1951). Although 

some cognitive aging studies have controlled for the effects 

of social context in their examination of age and real-life 

language use, they have not treated social context as an 

essential determinant in their theoretical frameworks 

(Meylan & Gahl, 2014; Moscoso del Prado Martín, 2016). 

Furthermore, past studies, focusing on comparisons of 

different speakers in different contexts (i.e., between-person 

differences), were limited in inferring how the same 

individuals varied their language across contexts (i.e., within-

person variations; Hamaker, 2012). Moreover, many real-life 

speech samples in the literature have been collected via 

telephone conversations between strangers, which may not be 

representative of naturally occurring language use. In sum, 

only one recent study has combined cognitive aging effects 

with within-person variations across social contexts in the 

investigation of language use in real life (Luo, Robbins, 

Martin, & Demiray, under review). 

The current study used a naturalistic observation method 

to collect speech samples in real life and examined age effects 

in language use across different social contexts. Using the 

Electronically Activated Recorder (EAR; Mehl, Pennebaker, 

Crow, Dabbs, & Price, 2001), a digital recorder which 

periodically and unobtrusively captures ambient sounds in 

natural environments, we assessed language use and social 

contexts by examining speakers’ moment-to-moment 

conversations. Vocabulary richness and grammatical 

complexity are related to cognitive changes with age (e.g., 

Horton, et al., 2010). We examined vocabulary richness and 

grammatical complexity across two types of social contexts 

that have been shown relevant to language use: (a) activities 

(i.e., socializing, working); and (b) conversation types (i.e., 

small talk, substantive conversations; Levinson, 1992). Our 

goals were to examine (1) whether individuals changed their 

language across real-life social contexts; and (2) whether age 

effects on language use differed across social contexts. Thus, 

this study is the first to examine cognitive aging effects on 

real-life language use in relation to within-person variations 

across different activities and conversation types.  

Cognitive Aging Effects in Language Use 

The differences in language use between young and older 

adults have been associated with cognitive changes with age. 

For example, the observations of older adults using richer 
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vocabulary than young adults have been explained as due to 

lifelong vocabulary accumulation in old age (e.g., Horton, et 

al., 2010). Moreover, the findings of older adults producing 

simpler grammatical structures than young adults have been 

interpreted as due to decreasing working memory in old age 

(e.g., Cheung & Kemper, 1992). Majority of these findings 

came from laboratory tasks, which asked participants to 

describe a novel picture, an important person, or a historical 

event (e.g., Cheung & Kemper, 1992). These studies assumes 

that cognition was the primary determinant of vocabulary 

richness and grammatical complexity and that participants’ 

speech reflected their cognitive abilities in a controlled and 

consistent environment.   

In theory, behavior is conceptualized as the interactions 

between personal characteristics and different supporting or 

impeding contexts (e.g., WHO, 2015; Verhaeghen, Martin, & 

Sędek, 2012). That is, in real life, where the environment is 

more diverse than in the laboratory, contextual effects should 

be taken into account. In order to improve the generalizability 

of their findings, some researchers examined speech outside 

of the laboratory, such as in telephone conversations (e.g., 

Horton, et al., 2010). These studies examined age effects on 

language use and controlled for contextual factors (e.g., 

talking with different conversional partners; Meylan & Gahl, 

2014; Moscoso del Prado Martín, 2016). However, these 

studies examined between-person differences, instead of 

within-person variations across contexts (Hamaker, 2012). 

Additionally, the telephone conversations between strangers 

may not represent naturally occurring conversations.  

In sum, some studies have identified effects of social 

context on language use, but they have not considered social 

context as an essential determinant of language use in their 

theoretical frameworks. Additionally, past studies have not 

examined contextual effects on vocabulary richness and 

grammatical complexity in naturally occurring language use 

with a within-person research design. Amid the growing 

interest in examining age effects on language use in real life, 

it is necessary to understand contextual effects on language 

use with data that properly capture within-person variations 

in language use in naturally occurring conversations.  

Contextual Effects in Language Use 

Social context is an important construct in the theoretical 

frameworks of language use in social psychology, 

sociolinguistics and linguistic ethnography (e.g., Clark, 1996; 

Finkbeiner, et al., 2012). There are substantial variations in 

language use across different social contexts, such as types of 

activities (i.e., socializing, working; Levinson, 1992). For 

example, speakers use more swearing words in leisure 

activities than at work (Cameron, 1969). Speakers refer to 

themselves more often in socializing and entertaining 

activities than while working (Mehl & Pennebaker, 2003). 

Furthermore, types of conversations (e.g., small talk, 

substantive conversation) also have effects on language use. 

Conversation topics and discourse markers (e.g., “anyway” 

and “you know”) are different in small talk versus formal 

conversations, and the differences influence the degree of 

trust among speakers (Bickmore & Cassell, 2001). In 

addition, how speakers engage in small talk and substantive 

conversations is associated with their well-being (Mehl, 

Vazire, Holleran, & Clark, 2010).  

Past studies have shown that the contexts of activity types 

and conversation types have effects on language use. 

However, majority of these studies have explained effects of 

social context from the perspective of social role and social 

identity and have not linked their findings to cognitive effects 

(e.g., Mehl & Pennebaker, 2003). In fact, cognitive-

biological and socio-cultural determinants of language use 

are intertwined and inseparable (e.g., Gerstenberg, & Voeste, 

2015). Furthermore, variations in language use across social 

contexts are likely to differ between young and older adults 

(e.g., Adams, Smith, Pasupathi, & Vitolo, 2002).  

In sum, research that identifies effects of contexts on 

language use has highlighted the importance of 

understanding variations in language use across contexts. 

Thus, it is important to consider cognitive and contextual 

effects in the examination of real-life language use.  

The Current Study 

This study used the EAR to periodically and unobtrusively 

capture ambient sounds and speech in real life. The intensive 

and repeated sampling approach of the EAR captures 

multiple observations from each participant and, thus, allows 

us to analyze within-person variations in language use across 

social contexts. We treated social contexts and age as two 

important concepts in our theoretical model and inspected 

their joint effects on real-life language use.  

The first goal of our study was to examine contextual 

effects on real-life language use. We focused on vocabulary 

richness and grammatical complexity that are associated with 

cognitive aging. We examined the contexts that have been 

found to have effects on language use: (a) activities (i.e., 

socializing, working); and (b) conversation types (i.e., small 

talk, substantive conversation). If activities and conversation 

types had effects on language use, we considered it in line 

with our assertion that contextual factors should be examined 

in the understanding of real-life language use. However, as 

there was a lack of evidence on how these social contexts 

would influence vocabulary richness and grammatical 

complexity, we refrained from forming hypotheses about the 

directionality of contextual effects. The second goal of our 

study was to explore whether age effects on real-life language 

use varied across different social contexts.  If age effects on 

language use differed across different contexts, we 

considered it offered support for our anticipation that age 

effects on language use would be influenced by contexts.  

Method 

Participants 

Our sample included over 31,300 sound files collected from 

48 healthy older adults (62-83 years, M = 70.5, SD = 4.7; 22 

men, 26 women) and 61 young adults (19-31 years, M = 23.0, 

SD = 3.10; 24 men, 37 women). Participants were recruited 
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via the participant pool of our department, via flyers in 

university buildings and advertisements in a local newspaper, 

and through snowball sampling used by a research assistant. 

All participants were local residents and spoke Swiss German.  

Older participants were healthy with no record of 

neurological or psychiatric illness and lived independently. 

Their years of education ranged from seven to 25 (M = 10.55, 

SD = 3.02). Five of them were working part-time or full-time. 

They were compensated with 50 Swiss Francs. Young 

participants were mostly university students, whose years of 

education ranged between three and 17 years (M = 12.35, SD 

= 2.41). Eight of them had a part-time or full-time job. They 

could choose between 50 Swiss Francs and research credits 

for compensation.  

Procedure 

The study included an introduction session, a four-day EAR 

observation period, and a feedback session. In the 

introduction session, participants were given instructions on 

the study. They were asked to sign an informed consent form 

and to complete questionnaires including demographic and 

psychological measures. Next, participants received an 

iPhone with the EAR application installed. Participants were 

informed that the EAR would randomly record 30 seconds of 

ambient sounds. They were told that they would not notice 

when the EAR was recording, so that they could continue 

their normal lives. They were informed that they would have 

the opportunity to review and delete any sound files at the 

end of the study, before anyone listened to them.  

After the introduction session, participants carried the EAR 

with them for four consecutive days. Additionally, they kept 

a diary every evening about their hour-by-hour activities of 

that day. Finally, participants met with the researchers again 

for a feedback session, in which they returned the phone and 

completed further questionnaires. They evaluated their 

experience with carrying the phone. They were given a 

password-protected CD containing all of their sound files to 

review. All procedures were approved by the local ethics 

committee. 

 

EAR We provided each participant with an iPhone 4S, where 

the EAR application was installed (version 2.3.0). We 

programmed the EAR to record 30-second sound files at 

random times throughout the day. It was set to record 72 

sound files per day (a total of 288 sound files per participant). 

We set a blackout period between midnight and 6 AM, when 

the EAR was inactive. We turned on the “Airplane mode” of 

the iPhone and locked it with a screen-lock password. Thus, 

participants could not access the EAR settings or use the 

phone for other purposes. We set a reminder in the phone 

calendar to automatically beep every evening at 9 PM to 

remind the participants to charge the iPhone overnight. 

Linguistic Measures 

All utterances of the participants captured by the EAR were 

transcribed. A research assistant created the transcripts, 

which were then checked and corrected by a second research 

assistant. Swiss-German dialect was translated word-by-

word into standard written German and then transcribed. The 

utterances of interlocutors or bystanders were not transcribed 

due to ethical reasons.  

We used the the TreeTagger (Schmid, 1999) via the R 

package of “koRpus” version 0.10-2 (Michalke, 2018) to 

process the transcripts. First, we identified each word 

according to its grammatical class (e.g., a noun, a verb), a 

process called part-of-speech tagging. We also turned each 

word to its lemma form, a process called lemmatization. For 

example, we turned isst (“eats”), aß (“ate”), and gegessen 

(“eaten”) to the lemma form of essen (“eat”). Subsequently, 

we calculated the following two linguistic measures.  

 

Vocabulary Richness: Entropy. Vocabulary richness was 

calculated with Shannon entropy measure, representing the 

diversity of words (e.g., Moscoso del Prado Martín, 2016). 

We calculated the frequency of occurrence of each word 

based on its lemma form and part-of-speech tag. Afterwards, 

we calculated the Shannon entropy of each sound file using 

the frequency. We used the R package of “entropy” (version 

1.2.1; Hausser & Strimmer, 2018) to calculate Shannon 

entropy and corrected the results with Chao-Shen estimator, 

according to Moscoso del Prado Martín (2016). Higher scores 

of entropy indicate higher usage of unique words. 

 

Grammatical Complexity: Clause Length. Clause length is 

the word count in a clause, representing the complexity of 

grammatical structures (e.g., Horton, et al., 2010). We used 

the German Pro3Gres parser (Sennrich, Schneider, Volk, 

Warin, 2009) to identify the following patterns as clauses: (a) 

a root element, i.e. the top element of a sentence, typically the 

inflected verb; (b) a relative clause (which is attached with 

the label rel to the NP it modifies); (c) a subordinated adjunct 

clause (label neb); (d) a subordinated complement clause 

(label objc or subjc); and (e) coordination at clause level 

(kon); (f) a fragmented or complete sentence (label s; Foth, 

2005).  Finally, we calculated word count per clause in each 

sound file.  

EAR Coding 

Every sound file has been manually coded for the 

participant’s momentary (a) activity (i.e., socializing, 

working); and (2) conversation types (i.e., small talk, 

substantive conversations). More specifically, socializing 

refers to when the participant is doing something to socialize 

or entertain with others.  Working refers to doing paid work. 

Small talk refers to any conversation that is completely non-

instrumental, with no (or very trivial) information being 

exchanged. Finally, substantive conversation is any 

conversation that serves the purpose of exchanging 

information and ideas about a topic, e.g., news, politics. 

    All coding categories were dichotomous, indicating the 

presence (1) or absence (0) of the targeted item within a 

sound file. Trained coders coded these categories by listening 

to the pitch of the participants’ voice, ambient sounds, and 

conversation topics in each sound file, and by referring to the 
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adjacent sound files. The coders also verified their coding 

with the participants’ diaries. Note that the coders were not 

aware that vocabulary richness and grammatical complexity 

would be analyzed. Thus, the coders coded for activity and 

conversation types without referring to these linguistic 

measures. Social contexts were coded by only one research 

assistant, because the reliability of the coding of these 

contextual variables is found to be high in past EAR studies 

(e.g., Mehl, & Pennebaker, 2003; Mehl, et al., 2001).  

Results  

Preliminary Analyses  

We collected over 31,300 sound files. For privacy reasons, 

15 participants deleted 133 sound files, ranging from 1 to 40 

sound files per person. From the remaining sound files, 6,542 

included participant speech, ranging from 2 to 158 per 

participant (M = 60.02, SD = 32.09). That is, participants 

were talking, on average, in 21% of the sound files.  

Young and older participants reported that the EAR did not 

affect their daily activities or way of speaking, in line with 

past EAR studies (e.g., Mehl, et al., 2001). Additionally, the 

proportion of the sound files in which the participants 

mentioned the EAR was low (only 0.8% of all sound files that 

included speech).  

Out of the 6,542 sound files, 778 were deleted, as the 

participants’ speech was unclear or included another 

language than German. This resulted in a final sample of 

5,764 sound files. There were over 140,000 spoken words. 

The average score of entropy was 5.36 (SD = 1.9, Range: 

0.00-10.24), and the average length of clauses was 3.09 

words (SD = 1.39, Range: 1-17). The word count in sound 

files ranged from 1 to 123 words (M = 24.34, SD = 21.36). 

Figure 1 shows the histograms of entropy and clause length. 

 

Figure 1. Histograms of Linguistic Measures.  

 
 

Averaging across participants, in young adults, 7% of 

sound files (SD = 6%, Range: 0-23%) have been coded as 

including socializing, 2% (SD = 5%, Range: 0-19%) included 

working, 1% (SD = 1%, Range: 0-5%) included small talk, 

and 12% (SD = 7%, Range: 0-33%) included substantive 

conversation. In older adults, 6% of sound files (SD = 6%, 

Range: 0-18%) included socializing, 1% (SD = 4%, Range: 

0-27%) included working, 2% (SD = 1%, Range: 0-7%) 

included small talk, and 12% (SD = 9%, Range: 0-38%) 

included substantive conversation. 

Analytical Approach  

The sound files (level 1) are nested within individuals (level 

2). We analyzed these hierarchical data with multilevel 

models, which simultaneously examine between-persons and 

within-person variances (Bolger & Laurenceau, 2013). We 

estimated separate models for the two linguistic measures and 

for the different social contexts. In each model, we first 

estimated effects of age group and social context, and then 

added Age Group  Social Context interactions. More 

specifically, the full model is specified as follows:   

Level 1: Languageti = 0i + 1i(Contextti - Contexti) + eti 

Level 2: 0i = 00 + 01(AgeGroupi) + U0i 

1i = 10 + 11(AgeGroupi) + U1i 

where i indexes individuals and t indexes sound files. At level 

1, Languageti represents the linguistic variable. 0i is the 

random intercept, and 1i represents within-person effects of 

contexts. The contextual variables were coded such that a 

non-event served as the reference group (i.e., socializing 

versus non-socializing, working versus non-working, small 

talk versus non-small talk, substantive conversation versus 

non-substantive conversation). This contrast scheme was 

used in line with the dichotomous nature of the contextual 

variables (coded as 0 vs. 1). eti represents the unexplained 

within-person context-to-context differences in language use. 

At level 2, 0i represents the intercept of each age group and 

is modelled in detail through the level-1 model. 1i is the slope 

of each age group. 00 represents the grand mean of outcomes 

over all of the participants. 10 represents the grand mean of 

slopes over all of the participants. 01 and 11 represented 

effects of age group, where young adults were the reference 

group. U0i represents the random intercepts of individuals. U1i 

represents the random slopes of individuals.  

We decomposed each dummy-coded contextual variable 

into between-persons variance and within-person variance 

(Bolger & Laurenceau, 2013). More specifically, we firstly 

calculated the average score of context of each participant 

(Contexti). Afterwards, we deducted the score of context in 

each sound file from the mean score of context of each 

participant (Contextti - Contexti; i.e., within-person 

contextual effect). The within-person contextual variables 

were our contextual predictors. Finally, we controlled for sex 

and education in each model.  

We used the R package “lme4” (version 1.1-17) in R 

(version 3.5.2) to estimate the models and the 95% 

confidence intervals (CI). We estimated the models with full 

information maximum likelihood estimation method, which 

treated incomplete data as missing at random and adjusted for 

unbalanced data (Singer & Willett, 2003). We additionally 

calculated p-values with R package “lmerTest” (version 3.0-

1) and considered p < .05 as significant. 
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Major Analyses 

Our first research goal was to examine contextual effects on 

language use. Thus, we estimated models with effects of age 

group and social context. We, then, added Age Group  

Social Context interaction to the model for the second 

research goal: exploring whether age effects on language use 

were influenced by different social contexts. Due to their 

non-significant effects, we dropped sex and education from 

our final models. Additionally, we dropped the random slope 

effects from the models of socialization, working, and small 

talk in vocabulary richness, because the random intercept and 

slope models did not fit better than the random intercept 

models. 

 

Vocabulary Richness: Entropy In the model of 

socialization, as shown in Figure 2 (a), participants used 

richer vocabulary while socializing than non-socializing (M 

= 0.32, p = <.001, 95% CI [0.20, 0.44]).1 As shown in Figure 

3 (a), young adults used richer vocabulary than older adults 

during non-socializing (M = -0.23, p =.014, 95% CI [-0.41, -

0.05]). However, there was no age group difference during 

socializing (M = 0.17, p = .155, 95% CI [-0.07, 0.41]). 

 

Figure 2. Entropy by Contexts  

 
 

In the model of working, as displayed in Figure 2 (b), there 

was no significant difference in vocabulary richness between 

working and non-working occasions (M = 0.17, p = .291, 95% 

CI [-0.14, 0.47]). As presented in Figure 3 (b), young adults 

used richer vocabulary than older adults in non-working 

occasions (M = -0.21, p = .026, 95% CI [-0.38, -0.03]). In 

contrast, older adults used richer vocabulary than young 

adults at work (M = 0.96, p = .030, 95% CI [0.09, 1.82]).  

Figure 2 (c) shows that participants used richer vocabulary 

in non-small talk than in small talk (M = -1.31, p < .001, 95% 

CI [-1.51, -1.11]). Figure 3 (c) shows that there was no 

significant age group difference in non-small talk (M = -0.18, 

p = .050, 95% CI [-0.36, 0.00]). However, in small talk, older 

adults used richer vocabulary than young adults (M = 0.42, p 

= .041, 95% CI [0.02, 0.82]). 

Figure 2 (d) shows that participants used richer vocabulary 

in substantive conversations than in non-substantive 

conversations (M = 1.57, p < .001, 95% CI [1.47, 1.67]). 

                                                           
1 While our analyses focused on within-person variations in each 

participant, for simplicity, the figures show within-person variations 

across all participants. 

There was no significant age group difference in non-

substantive conversations (M = -0.14, p = .376, 95% CI [-

0.44, 0.17]) or in substantive conversations (M = 0.15, p 

= .348, 95% CI [-0.17, 0.47]).  

 

Figure 3. Entropy Across Age Groups and Contexts 

(significant effects) 

 
 

Grammatical Complexity: Clause Length In the model of 

socializing (Figure 4 [a]), participants uttered longer clauses 

while socializing than non-socializing (M = 0.18, p = <.001, 

95% CI [0.09, 0.27]). There was no age group difference in 

non-socializing (M = -0.13, p = .086, 95% CI [-0.27, 0.02]) 

or socializing occasions (M = 0.11, p = .234, 95% CI [-0.07, 

0.28]). 

In the model of working (Figure 4 [b]), there was no 

significant difference in grammatical complexity between 

working and non-working occasions when examining both 

older and young adults (M = -0.18, p = .112, 95% CI [-0.41, 

0.04]). However, young adults produced shorter clauses at 

work than not at work (M = -0.31, p = .013, 95% CI [-0.55, -

0.07]). As shown in Figure 5, age group difference was non-

significant in non-working occasions (M = -0.12, p = .101, 

95% CI [-0.27, 0.02]), but was significant at work (M = 0.86, 

p = .008, 95% CI [0.23, 1.49]). That is, older adults used 

longer clauses than young adults at work.  

Figure 4 (c) shows that participants produced shorter 

clauses during small talk than in non-small talk (M = -0.60, p 

< .001, 95% CI [-0.74, -0.45]). There was no age group 

difference in non-small talk (M = -0.10, p = .170, 95% CI [-

0.24, 0.04]) or in small talk (M = 0.01, p = .954, 95% CI [-

0.47, 0.50]).  

As depicted in Figure 4 (d), participants produced longer 

clauses than in non-substantive conversations (M = 0.77, p 

< .001, 95% CI [0.70, 0.85]). There was no age group 

difference in non-substantive conversations (M = -0.05, p 
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= .607, 95% CI [-0.24, 0.14]) or in substantive 

conversations (M = 0.00, p = .966, 95% CI [-0.21, 0.20]). 

 

Figure 4. Clause Length by Contexts 

 
 

Figure 5. Clause Length Across Age Groups at Work 

(significant effects) 

 

 

Discussion  

Using a naturalistic observation method, we examined age 

group differences in language use across social contexts in 

real life. We found that for both young and older adults, 

vocabulary richness and grammatical complexity increased 

while socializing and during substantive conversations. 

These findings indicate that participants activated richer 

vocabulary and produced more complex grammar to 

communicate information in these social contexts. Moreover, 

for both young and older adults, vocabulary richness and 

grammatical complexity decreased during small talk. These 

findings suggest that small talk includes routine and probably 

repetitive information. Furthermore, young adults produced 

shorter clauses at work than not at work. Young adults may 

have been inexperienced at the workplace and thus 

grammatical complexity differed at work versus not.  

Additionally, older adults used richer vocabulary and more 

complex grammatical structures than young adults at work; 

they also uttered richer vocabulary in small talk. Older adults 

may be more inclined to use formal language than young 

adults in professional settings or in small talks, e.g., greeting 

the others. In contrast, we found that young adults used richer 

vocabulary than older adults during non-socializing and non-

working occasions, such as doing housework, watching TV, 

exercising, or commuting in a bus.  

Although vocabulary richness and grammatical 

complexity have been shown to be associated with cognitive 

abilities in past cognitive aging studies (e.g., Cheung & 

Kemper, 1992), our findings indicate that age effects can vary 

depending on the contexts in real life. In other words, unlike 

in laboratory studies that are designed to test the upper limits 

of cognitive abilities (Baltes, et al., 1984), in real life, 

variations in language use are likely to be associated with not 

only age, but also social contexts.  

In cognitive aging and gerontology research, behavior is 

conceptualized as determined by the interactions between 

personal characteristics and contexts (e.g., WHO, 2015; 

Verhaeghen, et al., 2012). Our findings offer evidence for the 

effects of context on vocabulary richness and grammatical 

complexity, in addition to age. This perspective is 

particularly useful when there is a growing interest in 

collecting “big data” and understanding cognitive behaviors 

in real life (e.g., Demiray, Mischler, & Martin, 2017; 

Demiray, Mehl & Martin, 2018; Luo, et al. under review). 

Limitations and Future Work  

Despite the novel approach that we contributed to the 

literature, this study has limitations. First, the small number 

of observations for working and small talk could have 

influenced statistical estimations. Although multilevel 

models adjusted for unbalanced data, it is still worthy to 

prolong the data collection period in future research to obtain 

more observations. Second, even though the models’ fit 

seemed passable (i.e., the residuals of the models’ estimation 

looked normal), the distributions of the linguistic measures 

were not bell-shape normal. Limited by the capacity of the 

lme4 package, we treated these variables as normal 

distributions. Future studies could use other estimation 

approaches, e.g., Bayesian method to estimate the linguistic 

measures. Third, we observed that language use varied across 

different social contexts and offered speculative explanation 

for different contextual effects. Future studies should try to 

incorporate momentary self-reports from participants to 

understand the subjective perceptions of participants during 

language use across different contexts. Fourth, this study 

included only young and old age groups. Future studies 

should include middle-aged adults to understand language 

use across the whole adult lifespan.  

Conclusion  

We contributed to the literature by using a novel approach to 

unobtrusively collect thousands of sound files in natural 

environments and by examining age effects on language use 

with a focus on context. We found that (1) social contexts had 

effects on language use; and (2) age effects on language use 

varied across social contexts. Our findings showed that both 

personal (i.e., age) and contextual factors (i.e., social contexts) 

are important determinants in the understanding of real-life 

language use. We offer a new perspective for understanding 

age effects on real-life language use, or more generally real-

life behavior, in the context of cognitive changes with age. 
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Abstract 

Extensive research on probability learning has reported on the 
ubiquity of the probability matching strategy—choosing 
options in proportion to their probability of being correct. The 
current paper explores why the optimal strategy in this task 
(always choosing the higher probability option) is not 
intuitive for participants, by examining their decisions in 
relation to their working memory capacities. We hypothesize 
that probability matching is a by-product of an automatic 
recency-based strategy produced by limits in working 
memory storage and that deliberate strategizing mediated by 
working memory processing can override recency in favor of 
optimal responding. A variant of the Expectancy-Valence 
Learning Model is fit to participant data from a two-choice 
probability learning task using hierarchical Bayesian 
modelling. Point estimates of the best-fitting parameter values 
are then correlated with working memory measures. Results 
indicate close relations between them, providing support for 
our hypothesis. 

Keywords: working memory; probability learning; recency 

Introduction 
Decisions in life often condense into simple binary 
choices—to react or not to react, to speak or not to speak, to 
do or not to do. An important factor influencing such 
decision making is the outcomes of previous similar 
decisions. However, our abilities to integrate the histories of 
outcomes is strongly constrained by the attentional and 
processing limits of our working memory (WM), thus 
compromising the quality of our decision making. Indeed, 
several researchers have focused on differences in decision 
making between situations when information is gathered 
over sequential experience (where the narrow window of 
WM is likely to have an impact) and when it is obtained 
from simultaneous description (which is relatively 
uninfluenced by WM capacity; Hertwig, Barron, Weber, & 
Erev, 2004). The former is more typical of real-life, 
emphasizing the importance of examining the role of WM 
limits. In the current paper, we investigate how limits in 
storage and processing mechanisms of WM influence 
behavior on binary choices through the probability learning 
task. 

Probability Learning Task 
The probability learning task is a simple experimental 
paradigm involving multiple trials of choosing between two 
mutually exclusive and exhaustive outcomes (Vulkan, 
2000). For instance, in each trial, participants may be asked 
to predict which of two presented light bulbs will turn on 
(Humphreys, 1939). Typically, the two options have pre-
determined and unequal probabilities of occurring—e.g., 

Bulb A will turn on with 0.7 probability, and Bulb B with 
0.3 probability. Each trial is independent; hence the optimal 
strategy is to choose the higher probability side (once it has 
been identified) 100% of the time. This is known as 
probability maximizing—in our example such a strategy 
would lead to 70% accuracy. 

However, participants rarely perform this relatively 
simple strategy of exploring for the high payoff option and 
then exploiting via probability maximizing. Rather, a 
typically observed behavior is probability matching—
choosing options in proportion to their probability of 
occurrence. Participants therefore tend to choose Bulb A 
70% of the time and Bulb B 30%, leading to a lower 
accuracy level of 58% (.7×.7 + .3×.3). This behavior 
typically persists even after enough samples have been 
drawn to identify the higher probability option with at least 
some level of certainty (Arrow, 1958).  Probability 
matching has been given wide attention as a supposed lapse 
of judgement for which several explanations have been 
proposed, without much consensus regarding the underlying 
mechanism (Feher da Silva, Victorino, Caticha, & Baldo, 
2017). 

Working Memory and Probability Matching 
One of the primary explanations of probability matching is 
the recency effect. Human short-term retention abilities are 
limited, creating a narrow window of recent experience 
which makes information highly susceptible to time-based 
decay (Kareev, 1995). In the current task, this constraint 
encourages decisions to be based on smaller samples of 
information (most likely the very recent samples), which, 
given the law of large numbers, is likely to produce 
probability matching behavior (Plonsky, Teodorescu, & 
Erev, 2015; Rakow & Newell, 2010). For example, if 
participants retain only one previous trial in their short-term 
window and make utility calculations and decisions based 
on this previous trial, they would exhibit perfect matching. 
Several studies have fit such one-outcome-based win-stay-
lose-shift strategies to decision making with surprising 
success despite their relative simplicity (Nowak & Sigmund, 
1993). More sophisticated reinforcement learning models 
(such as the EVL and PVL models; Busemeyer & Stout, 
2002; Erev & Roth, 1998) also incorporate a recency 
weighting which discounts the influence of older outcomes. 
Such findings suggest that probability matching behavior 
could be a result of overweighting recent outcomes, 
produced by their higher activation in the attentional 
window. 

It must be noted that most studies find that probability 
matching does not persist—when enough trials are 
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presented, participants are often able to switch to the 
optimal strategy of maximizing. For instance, Restle (1961) 
found that probability matching disappeared after 1000 
trials. Other studies have emphasized that switching to the 
optimal strategy is more likely if participants are provided 
with higher monetary payoffs, regular feedback, and more 
intense practice (Shanks, Tunney, & Mccarthy, 2002). An 
interpretation of this is that probability matching (produced 
e.g. by short-term recency) is a default response, which can 
be overridden in favor of maximizing through conscious 
deliberation. This dual process hypothesis is supported by 
correlations between SAT scores and maximizing on a 
descriptive version of this task (West & Stanovich, 2003). 

These features of probability learning behavior—recency-
based responding and deliberate strategy shift to 
maximizing—are likely to be mediated by WM capacity. 
Several models of WM consist of two core functions, 
storage and processing (frequently known as the span and 
control of attention respectively; Cowan, 2008). Here, we 
refer to storage as the ability to temporarily hold 
information in an active attentional state, protected from 
time-based decay and other interference. Decay in storage 
capacity is likely to produce recency-based performance in 
the probability learning task, as it constrains the number of 
previously observed outcomes that are in a readily 
accessible state when making a new decision (Ricker, 
Vergauwe, & Cowan, 2016). The processing component of 
WM directs attentional use, focusing it on goal-relevant 
information. An important function of WM processing is the 
inhibition of automatic but incorrect responding, as 
suggested by correlations with performance on the 
antisaccade and Stroop tasks (Kane & Engle, 2003; 
Unsworth, Schrock, & Engle, 2004). In our task, this 
component is perhaps responsible for resisting convenient 
recency-based responding and deducing the optimal strategy 
by steering and focusing attention toward task-relevant 
information (which could include independence of trials and 
the existence of a higher probability option).  

Based on this previous research, in our study, we 
hypothesize the following to be correlated: (1) recency-
based responding and WM storage capacity, and (2) strategy 
shift to maximizing and WM processing abilities. 

Previous Studies and the Current Experiment  
Several experiments have previously linked WM with 
performance on probability learning or other similar tasks 
(Gaissmaier, Schooler, & Rieskamp, 2006; Kareev, 1995; 
Rakow & Newell, 2010). These studies have reported mixed 
results—some have found positive correlations between 
WM capacity and maximizing, while others have reported 
the opposite. Through this paper, we attempt to resolve this 
debate. Further, unlike previous studies, our primary 
motivation is to model the interaction of the two WM 
components in producing recency-based responding and 
suppressing it in favor of the optimal strategy. 

For our task, we used the light bulb setting described 
earlier. Participants chose between two bulbs and received 

feedback (i.e., which bulb lit up) after each trial. To model 
probability learning behavior, we used the Strategy-Shift 
Expectancy-Valence Learning (SS-EVL) model–a variant of 
the original EVL model (Busemeyer & Stout, 2002). 
Recency and strategy shift parameters extracted from this 
model were correlated with WM scores. Since such 
statistical analysis is likely to be noisy, our study has a 
larger sample size than that of previous experiments. 

Methods 
Participants 
One hundred and thirty-one undergraduate students of 
Indiana University served as participants and were 
compensated with course credit. Of these, data of eight 
participants was excluded due to failure to perform at least 
one of the tasks. 

Tasks and Procedure 
The experiment consisted of five computer-based tasks (four 
WM and one probability learning). Each session lasted 
around 60 minutes and began with administration of the 
WM tasks.  

Memory tasks. Participants performed four WM tasks in 
the following order: symmetry span, digit span, visual array, 
and operation span.  

WM storage was measured with the digit span and visual 
array tasks. The digit span is a simple number recall task 
classically used as a measure of short-term memory (method 
similar to Quinn, Tuci, Harvey, Di Paolo, & Wood, 2005). 
The visual array task requires detecting rapid color changes 
in an array of 4, 6, 8, or 10 colored squares (method similar 
to Cowan, Fristoe, Elliott, Brunner, & Saults, 2006). Here, 
task performance depends on temporary storage of colors, 
and has been frequently used as a measure of storage 
(Cowan et al., 2006; Shipstead, Redick, Hicks, & Engle, 
2012). 

The symmetry span and operation span tasks require 
simultaneous usage of memory and processing and were 
used as measures of WM processing (methods similar to 
Oswald, Mcabee, Redick, & Hambrick, 2014). The memory 
component of these tasks involves the retention of presented 
items (spatial positions of colored squares for symmetry 
span and letters for operation span). Memory items are 
interpolated with processing components (symmetry or 
arithmetic accuracy judgements respectively) that interfere 
with rehearsal of memory items. 

These specific working-memory tasks were selected 
because they not only represent the functional components 
of working memory (i.e., storage and processing), but also 
use different content modalities—symmetry span and visual 
array are visuo-spatial tasks, while digit span and operation 
span are verbal-numeric tasks. 

Probability learning task. Participants performed three 
probability learning games, each involving 100 trials. 
During each game, participants were presented with an 
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image of a ‘bulb-box’, a device containing two lightbulbs 
(Bulb A and Bulb B). Participants were informed that on 
each trial one of the two bulbs would turn on and it was 
their task to guess the correct bulb. For every correct guess, 
participants gained one point and for every incorrect guess, 
they lost one point. Number of points won by participants 
was revealed at the end of each game. To motivate 
participants to aim for higher points and achieve optimal 
decisions, participants were rewarded with between 0 to 3 
nutrition bars based on performance. The probability with 
which the two bulbs lit up remained constant within each 
game but varied from game to game. Three probability 
contingencies were used—0.60, 0.70, and 0.80—the order 
of which was determined randomly. Bulb A or Bulb B was 
set as the more frequent bulb in each game with equal 
probability. Participants were informed that each ‘bulb-box’ 
game had a different underlying ‘program’ controlling it to 
minimize tendencies of using previous games as priors for 
future ones. To further combat this, the color of the 
lightbulbs was changed from game to game. 

Results 
Probability matching (selecting the bulbs in proportion to 
how often they light up) was observed in the aggregated 
data of participants, decreasing with successive games 
(Figure 1). 

 
Figure 1: Proportion of maximizing choices averaged across 

trials (data for all game and probability contingencies) 

Further, we found that participants were more likely to 
choose the maximizing option as the number of trials played 
increased within each game (Figure 2). 

 
Figure 2: Averaged proportion of maximizing responses 

across trials 
 

We then calculated correlations between WM scores and 
frequency of maximizing responding. Maximizing 
responding was calculated as the proportion of times the 
maximizing option was selected in a game. Significant 
correlations were obtained for scores on visual array (r(123) 
= 0.2, p=.03) and spatial span tasks (r(123) = 0.19, p=.04), 
while correlations with digit span (r(123) = 0.09, p=.36) and 
operation span (r(123) = 0.19, p=.07) were weaker. Stronger 
correlation with the visuo-spatial WM tasks (as opposed to 
the verbal ones) could arise if participants were retaining 
previous outcomes as visuo-spatial information (e.g. left 
bulb, right bulb, right bulb…).  

These positive correlations between WM and optimal 
responding are in line with our hypotheses. They are 
consistent with results from some previous studies on WM 
and probability learning (Rakow & Newell, 2010; West & 
Stanovich, 2003); but contradict others which have found 
negative correlations (Gaissmaier et al., 2006; Kareev, 
1995). 

Modelling 
Correlation measures provide us a small peak into the 
relationship between WM capacity and probability 
matching. However, they do not reveal the relation between 
WM capacity and the use of recency or strategy shift to 
maximizing. We therefore modelled the data using a 
modified EVL model and correlated parameters with WM 
scores. We also employed a Baseline Bernoulli model for 
comparison.  

Model Descriptions 
Strategy-Shift Expected-Valence Learning Model (SS-
EVL). Variants of the EVL model have been previously 
used to model probability learning (Feher da Silva et al., 
2017; Schulze, van Ravenzwaaij, & Newell, 2015) and other 
reinforcement learning tasks (such as the Iowa and Soochow 
Gambling Tasks; Ahn, Busemeyer, Wagenmakers, & Stout, 
2008). Its parameters typically include consistency 𝑐𝑐 and 
recency A. In our version of the model, we accommodate a 
strategy shift toward maximizing through a third 
parameter—timepoint of shift T. 

The model assumes that on every trial, participants assign 
a utility value to the two lightbulbs—1 if it is correct on that 
trial, and 0 otherwise. Therefore, in a trial, utility u(t) gained 
from bulb j based on outcome x is defined by:  

𝑢𝑢𝑗𝑗  (𝑡𝑡) =  �1  𝑖𝑖𝑖𝑖 𝑥𝑥(𝑡𝑡) = 𝑗𝑗,
0  𝑖𝑖𝑖𝑖 𝑥𝑥(𝑡𝑡) ≠ 𝑗𝑗  

This utility is then incorporated into the running expected 
utility Ej of the two options using a weighted utility 
updating rule (Rescorla & Wagner, 1972) which discounts 
older outcomes with a recency parameter A. Larger the 
value of A, greater is the influence of older outcomes: 

𝐸𝐸𝑗𝑗(𝑡𝑡) =  𝐴𝐴 ∙  𝐸𝐸𝑗𝑗(𝑡𝑡 − 1)  + (1 − 𝐴𝐴)  ∙  𝑢𝑢(𝑡𝑡) 
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Figure 3: Structure and priors of the hierarchical Bayesian model 

 
Figure 4: Model fitting of individual participants 

 

The expected utility calculations are then used to make a 
choice decision D based on Luce’s choice rule (Luce, 1959) 
incorporating exploration 𝜃𝜃: 

Pr [𝐷𝐷(𝑡𝑡 + 1) = 𝑗𝑗] = 𝑒𝑒𝜃𝜃(𝑡𝑡) .∙ 𝐸𝐸𝑗𝑗(𝑡𝑡)

� 𝑒𝑒𝜃𝜃(𝑡𝑡) ∙  𝐸𝐸𝑘𝑘𝑡𝑡)
2

𝑘𝑘=1

  ;    𝜃𝜃(𝑡𝑡) = ( 𝑡𝑡
10

) 𝑐𝑐 

𝜃𝜃(𝑡𝑡) represents the extent to which participants make 
choice decisions based on calculated utilities. If 𝜃𝜃(𝑡𝑡) = 0, 
decisions are random and as 𝜃𝜃(𝑡𝑡) increases, decisions are 
highly sensitive to utilities. The value of 𝜃𝜃 is dependent on 
the free consistency parameter c, which is constrained 
between 0 and 1. Though we do not use this parameter for 
future WM analysis, it is essential to incorporate it in the 
model—it provides for a cleaner estimate of recency by 
accounting for the influence of exploration in participant 
data. 

Finally, we assume that at some trial T, participants 
identify and shift to the maximizing strategy. Therefore, 
from this trial onward, the expected utilities of the 
maximizing and non-maximizing options are set to 1 and 0 
respectively. Hence, the running utility Ej is revised such 
that: 

𝒇𝒇𝒇𝒇𝒇𝒇 𝒕𝒕 > 𝑻𝑻 ∶        𝐸𝐸𝑗𝑗(𝑡𝑡) =  �  1   𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑚𝑚,
0 𝑖𝑖𝑖𝑖 𝑗𝑗 ≠ 𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑚𝑚  

Baseline Model. A simple Bernoulli baseline model was 
also fit to data. The Baseline model has only one 
parameter—probability that participants choose the 
maximizing option, 𝑜𝑜(𝑗𝑗 = 1). Therefore, the model predicts 
unequal probabilities of choosing between the two bulbs, 
which are independent of outcomes observed by participants 
and constant across trials.  

In our task, participants could be using varied strategies 
(e.g., looking for patterns in outcomes or random guessing). 
This model serves to filter out such participants who are 
better modelled by a random Bernoulli process than by a 
recency model which assumes positive dependency on 
observed outcomes. Thus, this model is not intended to be a 
process model of the underlying mechanism, but rather a 
useful cache for unaccounted strategies. If a larger number 
of participants are better fit by this model than the SS-EVL, 

it suggests that our proposed mechanism of probability 
matching is not dominant in the population. 

Model Fitting 
We used Bayesian hierarchical modelling for parameter 
fitting and model comparison (see Figure 3 for details about 
prior and multilevel structure). We combined the two 
models into a single hyper-model and employed a 
categorical distribution to determine the strategy used by 
each participant— on each MCMC timestep, for each trial, 
it sampled from one or the other model based on its 
probability of being the true process underlying that 
participant’s data. In a similar way, we also estimated the 
population level posterior probability for each model. The 
analysis was implemented on JAGS via R. We drew 
200,000 samples via three MCMC chains. Inspection of 
diagnostic plots indicated convergence for most parameters. 

Here we only fit data from the first probability learning 
game of each participant because of considerable order and 
practice effects in future games. 
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Model Comparisons 
Overall, the SS-EVL model outperformed the Baseline, 

with a posterior probability P(model=SS-EVL|D) of 0.71. 
Further, 85 out of 123 participants were categorized as 
employing an SS-EVL strategy (for examples of individual 
fit, see Figure 4). SS-EVL also better captured the 
participants’ average pattern of performance across trials 
(Figure 5).  

 
Figure 5: Average participant data and model predictions 

across trials 

Correlations with WM scores 
To test our hypothesis that WM components correlated with 
strategy use, we analyzed those participants who were better 
fit by the SS-EVL model. Point estimates (modes) of two 
SS-EVL parameters were correlated with WM scores—
recency A and timepoint of strategy shift T (Table 1). As in 
the behavioral correlations reported above, visual array and 
symmetry span were more strongly correlated than other 
measures. Of the two measures of WM storage, only visual 
array showed indication of correlation with recency, 

providing partial support for hypothesis 1 that 
overweighting of recent outcomes is a by-product of WM 
storage limits. As predicted in hypothesis 2, measures of 
WM processing shared a significant negative correlation 
with timepoint shift—participants with higher WM 
processing abilities were likely to shift toward the 
maximizing strategies within fewer trials.  

Discussion 
Our study demonstrates the process by which WM 
components work together to produce typical probability 
learning behaviour. The picture that emerges suggests that 
the limits of the WM store intensify weighting of recent 
events, producing default responses that require greater WM 
processing to inhibit them in favor of the optimal strategy. 
In the real world, such a tendency toward recency makes 
sense as it allows us to adapt to our dynamic and temporally 
autocorrelated environment, where making decisions based 
on older information is often unsuccessful and recent events 
are a good indicator of the current state of the world 
(Plonsky et al., 2015). It appears that the two components of 
WM thus work together to produce appropriate everyday 
behavior—limits in the WM store allow for quick recency-
based responses to environmental stimuli while WM 
processing acts as a correctional mechanism, stepping in to 
replace the recency-based strategy if an optimal strategy is 
found. 

It would therefore be hasty to call probability matching a 
lapse in judgement (Vulkan, 2000)—participants do not fail 
to arrive at successful decisions in the probability learning 
task because of some cognitive failure. Rather, they do not 
always use the optimal strategy because the task itself is not 
representative of natural environments: unlike typical real-
world situations, here the event probabilities are stationary 
across trials, and the trials are independent of one another. 
Participants therefore must deploy deliberate processing to 
resist responding automatically based on assumed 
environmental structures where recency would be best. 
While binary decisions may be common to our everyday 
life, the probability structure underlying this task is not, 
making the optimal strategy unintuitive. Future work can 
examine participant performance using real-world 
probability structures—for instance having the probabilities 
of the bulbs shift or be autocorrelated across trials 
(Gaissmaier & Schooler, 2008). 

As mentioned earlier, previous studies have found mixed 

Table 1: Correlations between WM obtained parameter values 

 WM storage measures WM processing measures 

 Visual Array Digit Span Symmetry Span Operation Span 

Recency (A) 0.19+ 0.08 0.18+ 0.11 
Timepoint of shift (T) −0.16 −0.11 −0.24* −0.20+ 

+p<.1.   *p<.05.   **p<.01.   ***p<.001    N=85 
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results when relating WM to performance in similar tasks—
some have obtained positive correlations, providing support 
to our results (e.g., Rakow & Newell, 2010; West & 
Stanovich, 2003), while others have obtained the opposite 
(e.g., Gaissmaier et al., 2006; Kareev, 1995). While, the 
differing results could be due to difference in task 
structure—the studies reporting negative correlations use a 
correlation-detection task, which involves estimating two 
probabilities and not just one (for details of the task, refer to 
Kareev, 1995)—this is an unlikely explanation since our 
model would still predict positive correlations for such a 
task structure. Therefore, a more likely possibility is that 
participants employ different strategies (such as pattern 
matching, random responding etc.), producing different 
results. In the current paper, we only focused on recency-
based responding—the SS-EVL model fit participants for 
this specific strategy and our results suggested that it was 
the dominant strategy in our sample when compared to a 
Bernoulli baseline. We then correlated the obtained 
parameter estimates for participants best fit by this model 
with WM scores, therefore excluding any effect of other 
strategies. However, future work must model other possible 
strategies, determine their frequency in the sample and their 
relation to WM capacity.  

Further work must also be done to narrow in on the 
mechanisms underlying these decisions. While our model 
estimates the timepoint at which the strategy-shift toward 
maximizing occurs, it does not uncover the mechanism that 
produces this shift. Our correlational evidence argues that 
this mechanism is associated with the processing component 
of WM, but we do not know what operation within this 
component leads to optimal strategizing and why it reaches 
a threshold at a particular timepoint. Identifying the likely 
mechanisms at work in making decisions based on recent 
and older information will help us understand the role of 
limited WM storage and processing in these common choice 
settings. 
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Abstract 
Sensorimotor information plays a fundamental role in 
cognition. However, datasets of ratings of sensorimotor 
experience have generally been restricted to several hundred 
words, leading to limited linguistic coverage and reduced 
statistical power for more complex analyses. Here, we present 
modality-specific and effector-specific norms for 39,954 
concepts across six sensory modalities (touch, hearing, smell, 
taste, vision, and interoception) and five action effectors 
(mouth/throat, hand/arm, foot/leg, head excluding mouth, and 
torso), which were gathered from 4,557 participants who 
completed a total of 32,456 surveys using Amazon's 
Mechanical Turk platform. The dataset therefore represents 
one of the largest set of semantic norms currently available. 
We describe the data collection procedures, provide summary 
descriptives of the data set, demonstrate the utility of the 
norms in predicting lexical decision times and accuracy, as 
well as offering new insights and outlining avenues for future 
research. Our findings will be of interest to researchers in 
embodied cognition, cognitive semantics, sensorimotor 
processing, and the psychology of language generally. The 
scale of this dataset will also facilitate computational 
modelling and big data approaches to the analysis of language 
and conceptual representations.  

Keywords: embodied cognition; semantics; norms 

Background 
Sensorimotor information is central to how we experience 
and navigate the world. We acquire information through our 
senses, while our bodies provide feedback, as we physically 
interact with objects, people, and the wider environment. 
Many theoretical views of cognition describe a fundamental 
role for such sensorimotor knowledge (e.g., Barsalou, 1999; 
Connell & Lynott, 2014; Smith & Gasser, 2005), with 
numerous empirical demonstrations supporting such claims 
(e.g., Connell, Lynott & Dreyer, 2012; Kaschak et al., 2006; 
Matlock, 2004; Zwaan & Taylor, 2006).  

In order to test such embodied (or grounded) theories of 
cognition, researchers need appropriate stimuli for empirical 
tests and for developing mathematical or computational 
models. Lynott and Connell (2009, 2013) developed a set of 
modality-specific sensory norms for concepts where each 
sensory modality (e.g., auditory, gustatory, haptic, olfactory, 
visual) maps onto distinct cortical regions (e.g., gustatory 

cortex, auditory cortex etc.). By having individuals provide 
ratings for each modality separately, the norms capture the 
extent to which something is experienced across different 
sensory modalities, without risk of ignoring or distorting the 
role of particular modalities (Connell & Lynott, 2016). 
Subsequent empirical studies have found that such 
modality-specific measures are good predictors of people's 
performance across a range of cognitive tasks (e.g., lexical 
decision, word-naming) and often out-performed long-
established measures such as concreteness and imageability 
(e.g., Connell & Lynott, 2012; 2014). For example, in 
examining performance on lexical decision and word 
naming (reading aloud) tasks, Connell and Lynott (2012) 
found that modality-specific experience (and specifically the 
highest level of perceptual experience on any modality for a 
given concept, or “max strength”) was a more reliable 
predictor of performance than either concreteness and 
imageability.  

An added advantage of using measures of sensory 
experience for specific modalities is that it allows 
researchers to tap into effects that relate to particular 
modalities and not others. Connell & Lynott (2010) showed 
how a processing disadvantage for tactile stimuli observed 
during perceptual processing (Spence, Nichols & Driver, 
2001) was also observed when processing modality-specific 
words.  Connell and Lynott (2014) derived contrasting 
modality-specific predictions relating to lexical decision and 
reading aloud for individual words. Thus, for lexical 
decisions, a visually-focussed task, strength of perceptual 
experience in the visual modality (but not the auditory 
modality) was a reliable predictor of performance. By 
contrast, reading aloud, requires additional attention on the 
auditory modality (as participants must monitor their speech 
output to ensure correctly articulated responses). Consistent 
with this idea, both strength of auditory experience and 
strength of visual experience were reliable predictors for 
performance for the reading aloud task. Other semantic 
measures (such as concreteness or imageability) could not 
have been used as they do not offer sufficient granularity in 
terms of sensory experience. Thus, modality-specific 
measures of sensory experience provide the capacity to 
generate and test novel predictions related to modality-
specific processing and representations.  
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More recently, Connell, Lynott and Banks (2018) showed 
that interoception (i.e., sensations inside the body) also 
plays an important role in semantic representations, and 
could be a primary grounding mechanism for abstract 
concepts. It was found that strength of interoceptive 
experience was higher for abstract concepts, such as hungry 
and serenity, compared to more concrete concepts like 
capacity or rainy. What's more, interoceptive experience 
was found to be most important for emotion concepts, 
especially for negative emotions such as fear and sadness, 
with interoceptive experience found to be just as important 
as other sensory modalities in capturing semantic 
knowledge.  

Finally, speaking to the utility of sensory norms and 
broader interest in this area, several research groups have 
extended this earlier work, either by developing modality-
specific norms in other languages, including Russian, 
Serbian, Dutch and Mandarin (Miklashevsky, 2018; 
Đurđević et al., 2016; Speed & Majid, 2017; Chen et al., 
2017), or by applying these norms in novel ways. For 
example, the original modality-specific norms have been 
used to examine stylistic differences of authors (Kernot, 
Bossomaier & Bradley, 2019), test models of lexical 
representations (Johns & Jones, 2012), and evaluate the 
iconicity of words (Winter et al., 2017).  

Nonetheless, a notable gap in the work discussed above is 
that it focuses solely on sensory experience, and has not 
included parallel measures of action or effector-specific 
experience. However, there is good evidence for the 
relevance of action experience to people's semantic 
representations of concepts (e.g., Glenberg & Gallese, 2012; 
Hauk, Johnsrude & Pulvermuller, 2004).  For instance, 
manual action verbs like throw activate some of the same 
motor circuits as moving the hand (Hauk et al., 2004), and 
their processing is selectively impaired in patients with 
Parkinson’s disease, which entails neurodegeneration of the 
motor system (Boulenger et al., 2008; Fernandino et al., 
2013). Critically, the motor basis to semantic knowledge is 
specific to the bodily effector used to carry out a particular 
action. Applying transcranial magnetic stimulation (TMS) 
to hand and leg areas of the motor cortex differentially 
influences processing of hand- and leg-action words: hand 
area TMS facilitates lexical decision of hand-action words 
like pick compared to leg-action words like kick, whereas 
this effect is reversed with leg-area TMS (Pulvermueller, 
Hauk, Nikulin & Ilmoniemi, 2005). Such double 
dissociations in motor-language facilitation underscore the 
importance of individually examining separate action 
effectors when norming the motor basis of words and 
concepts. 

Some existing measures have attempted to capture action 
knowledge, but have alternatively used feature production 
methods as opposed to rating dimensions of action (e.g., 
where people verbally list features associated with concepts: 
McRae et al., 2005; Vinson & Vigliocco, 2008), focused on 
generalised action (e.g., body-object interaction: Tillotson, 
Siakaluk, & Pexman, 2008; relative embodiment: Sidhu, 
Kwan, Pexman, & Siakaluk, 2014; see Connell & Lynott, 
2015, for review), or on a restricted subset of action types 
(e.g., graspability: Amsel, Urbach, & Kutas, 2012: actions 

associated with lower limb, upper limb, or head: Binder et 
al., 2016) that omits other parts of the body involved in 
action.  For example, the action of pushing can also involve 
the torso (Moody & Gennari, 2010), and mouth actions are 
cortically distinct from other actions of the face (Meier, 
Aflalo, Kastner, & Graziano, 2008).  To our knowledge, 
therefore, there is no large-scale set of norms that taps into a 
comprehensive range of effector-specific action experience. 
In the present work, we address this gap by collecting 
effector-specific action strength norms for a large number of 
concepts.  

Here, we present sensorimotor norms collected across 11 
dimensions for approximately 40,000 concepts, comprising 
6 modality-specific dimensions of perceptual strength 
(auditory, gustatory, haptic, olfactory, visual, interoceptive) 
and 5 effector-specific dimensions of action strength (head, 
arm/hand, mouth/throat, leg/foot, torso).  

Study 1: Sensorimotor Norms 

Method 
Participants A total of 4,557 unique participants completed 
32,456 surveys via Amazon’s Mechanical Turk platform (M 
= 7.12 samples per participant). Data for perceptual strength 
ratings and action strength ratings were gathered separately. 
Participants were self-selecting and had English as their first 
language. We recruited only experienced MTurk users who 
had already completed over 100 HITS, and high-quality 
participants who had >97% HIT approval. Participants were 
remunerated at a rate above minimum wage in the US. 

Materials Perceptual and action ratings were collected for a 
total of 39,954 words. These words were taken from 
Brysbaert, Warriner, & Kuperman's (2014) work on 
concreteness ratings, which included 37,058 English 
lemmas and 2,896 two-word expressions. These words were 
split into 832 lists of 48 items, along with 5 calibrator words 
and 5 control words occurring in each. Responses to 
controls and calibrators (selected for being highly familiar, 
and low in variance based on previous norms) were used for 
quality checks, which we describe below in the subsection 
on Data Quality and Exclusions. Lists were populated to 
provide words that varied in terms of familiarity 
(“percentage known” in Brysbaert et al's study) and 
concreteness.  

Procedure Using Qualtrics survey software, a template 
survey was created that followed procedures developed in 
Lynott & Connell (2009, 2013). At the start of the survey 
participants read an information sheet, and indicated their 
informed consent to continue with the study. Specifically, 
each concept in a 58-word sample was presented 
individually on a screen (order randomised by participant) 
followed by question text. For perceptual strength ratings, 
the text was “To what extent do you experience WORD,” 
where WORD was replaced with the concept in question. 
Underneath were six rating scales, one for each of the 
perceptual modalities under investigation, labelled “By 
feeling through touch”, “By hearing”, “By sensations inside 
your body”, “By smelling” and “By tasting,”. The order of 
the ratings scales was randomised by sample.  
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For the action strength ratings, the text read “To what 
extent do you experience WORD by performing an action 
with,” followed by choices of “Foot / leg”, “Hand / arm”, 
“Head excluding mouth”, “Mouth / throat”, “Torso”. For 
these ratings, each scale also contained an image of a body 
avatar that highlighted the body part relevant to each 
intended effector. Participants were asked to rate the extent 
to which they experience each concept through each of the 
named senses or effectors; both the sensory and motor 
components had 6-point scales ranging from 0 (not at all) to 
5 (greatly).  

There was no default value selected on the scale and 
participants clicked on a button under the relevant value to 
select or change their response. Participants were explicitly 
told there were no right or wrong answers and they should 
use their own judgment; they were also instructed to select 
the “I don’t know the meaning of this word” option if the 
word was unfamiliar to them. Progress to the next item 
could only occur if values were selected for all perceptual 
senses or action effectors or the “I don’t know the meaning 
of this word” option was checked. The study was self-paced 
and timed to last 18-20 minutes.  

Data quality and exclusions In order to ensure the data 
collected is of sufficiently high quality, we instituted a 
number of checks, in terms of individual performance, item 
performance, and agreement for each list of words. Overall, 
only 0.8% of all responses were removed following data 
checks. Participants whose scores exhibited a Pearson’s r < 
0.2 with the controls or who responded ‘don’t know the 
meaning of this word’ for more than five control and 
calibrator words, were dropped from the sample. 
Additionally, there were a small number of participants who 
completed the same sample of words more than once, when 
this happened only the earliest submitted responses were 
retained. Cronbach’s alphas (Cronbach, 1951) were 
calculated for each modality for all other participants; 
results were only retained when the mean alpha for all 
samples was >= 0.8.  

Norms Data The final set of norms, results, analyses, and 
scripts are available on the project’s Open Science 
Framework page: https://osf.io/7emr6/   

Results 
Summary statistics were calculated for all valid samples, 
with 39,707 words included in the overall norms, following 
exclusion criteria. Each word in a sample is represented by a 
row that contains ratings for each of the 11 dimensions. 
Each dimension has separate values for mean score, 
standard deviation, median score, trimmed mean, trimmed 
standard deviation by modality/effector, and the percentage 
of participants who knew the word. Inter-rater reliability by 
modality/effector was high for both perceptual and action 
ratings: mean Cronbach’s alphas for perceptual modalities 
were: auditory 0.93, gustatory 0.96, haptic 0.92, 
interoceptive 0.92, olfactory 0.94 and visual 0.90; for action 
effectors mean alphas were: foot 0.93, hand 0.91, head 0.85, 
mouth 0.92 and torso 0.89.  

Following Lynott and Connell (2009; 2013), additional 
variables of interest were calculated for each of the words in 

the sensorimotor norms. This included: Exclusivity scores 
(i.e., a measure of the extent to which a particular concept is 
experienced through a single dimension, calculated per 
word as the rating range divided by the sum of the ratings, 
and extending from 0%, for completely multidimensional, 
to 100%, for completely unidimensional); separate 
exclusivity scores were calculated for the perceptual (6 
modalities) and action components (5 effectors), in addition 
to scores calculated across all 11 dimensions. Similarly, 
each concept was assigned a dominant dimension (i.e., the 
dimension that had the highest mean rating), for the 
perceptual, action and the full sensorimotor norms. When 
the highest mean rating was found in more than 1 dimension 
(Perceptual: N = 593; Action: N = 706; Sensorimotor: N = 
478), a random dimension was assigned.  

 
Figure 1 Correlation matrix plot between 11 dimensions for 
mean ratings of the sensorimotor strength norms (N = 
39,707). Larger circles indicate stronger correlations, with 
red shades being positive, and blue shades being negative.  
 

The norms confirm previous reports that we 
predominantly experience the world perceptually through 
our visual modality (Lynott & Connell, 2009; 2013; Winter, 
Perlman & Majid, 2018 – See Table 1), with the head 
emerging as the primary action effector. The least prominent 
dimensions were gustation and olfaction, highlighting the 
fact that only a small subset of the conceptual system is 
experienced strongly through these modalities. For the 
action norms, the head was observed to be the dominant 
effector and the torso had the least dominance.  

Bayesian correlation analysis (Figure 1) between the 
dimensions showed that almost all the dimensions were 
significantly correlated with one another, with the exception 
of gustation~torso, as well as head~vision, with correlations 
approaching zero. It should be noted however, that a large 
number of the correlations were very weak, which is to be 
expected as each dimension is tapping into different aspects 
of sensorimotor experience. In some cases of course, certain 
dimensions often co-occur in our sensorimotor experience, 
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with notable relationships found between 
gustation~olfaction (r = .70), foot/leg~torso (r = 0.67) and 
hand/arm~haptic (r = 0.62).  

 
 M SD 
Perceptual Modality   

Auditory 1.514 0.991 
Gustatory 0.324 0.697 
Haptic 1.074 0.934 
Interoceptive 1.032 0.880 
Olfactory 0.390 0.619 
Visual 2.897 0.902 

Action Effector   
Foot/leg 0.807 0.750 
Hand/arm 1.447 0.907 
Head 2.276 0.719 
Mouth/throat 1.257 0.903 
Torso 0.816 0.670 

Table 1 Mean Strength Ratings (0–5) and Standard 
deviations (SD) per Sensorimotor Dimension 

Study 2: Modelling Lexical Decision 
In Study 2, we address three issues. First, we determine 

what is the best composite variable (i.e., single value) for 
representing a concept's sensorimotor profile. Second, we 
wish to replicate the utility of perceptual strength ratings in 
modelling people's performance in cognitive tasks (e.g., 
Connell & Lynott, 2012), and establish the independent 
utility of action strength as a performance predictor. Third, 
we will check the generalisability of the findings, by 
examining performance across two different data sets (i.e., 
English Lexicon Project, British Lexicon Project).  

While an 11-dimension sensorimotor profile is a rich 
source of semantic information about a particular concept, it 
can nonetheless be somewhat unwieldy for some uses. It is 
often useful to aggregate multiple dimensions into a single 
composite variable, such as for use as a predictor in 
regression analyses without unnecessarily inflating the 
number of parameters. A single variable would also 
facilitate comparisons with other single-variable measures 
of people's experience (e.g., concreteness, valence etc.) 
There are many different methods of creating a composite 
variable. Previous work on perceptual strength has used 
strength of the dominant modality (i.e., maximum 
perceptual strength rating across all modalities) as the 
preferred composite variable (e.g., Connell & Lynott, 2016; 
Connell, Lynott, & Banks, 2018), finding it offered a better 
fit than alternatives to visual word recognition performance 
(Connell & Lynott, 2012). However, work in Serbian 
(Đurđević, Stijačić & Karapandžić, 2016) found the best fit 
emerged from summed perceptual strength (i.e., sum of 
perceptual strength ratings across all modalities) or vector 
length (i.e., Euclidean distance of the multidimensional 
vector of perceptual strength ratings from the origin). It is 
difficult to be certain whether this variability is due to 
language differences (i.e., English vs Serbian) or sampling 
differences (i.e., hundreds of words with limited overlap). 

We therefore sought to empirically determine the best 
single composite variable for the 11-dimension 

sensorimotor profile using a much larger and more 
representative sample of concepts in English. As with 
previous studies (e.g., Connell & Lynott, 2012), we judge 
the “best” variable to be the one that offers the best fit to 
lexical decision latency, a task where semantic facilitation 
emerges from automatic and implicit access to the 
sensorimotor basis of the concept. 

Method 

Materials A total of 22,297 words were collated, 
representing the intersection of data available between the 
sensorimotor strength norms and lexical decision data from 
the English Lexicon Project (Balota, et al., 2007). A 
separate set of 11,768 words was also collated from the 
British Lexicon Project (Keuleers, Lacey, Rastle & 
Brysbaert, 2012).  

Candidate Composite Variables Composite variables 
were calculated separately for sensorimotor (all 11 
dimensions), perception (6 dimensions) and action (5 
dimensions) dimensions. Most of the candidate variables we 
tested are distance metrics in vector space of a particular 
concept (i.e., an 11-dimension vector) from the origin. 
Minkowski distance (with exponent parameter m) is a 
generalisation of these distance metrics: roughly speaking, 
the highest-value dimension always contributes to the 
calculated distance, and m determines the extent to which 
the other dimensions contribute according to how close their 
values are to the highest-value dimension. That is, low-
value m means that all dimensions make noticeable 
contributions to the calculated distance, whereas high-value 
m means only the highest-value dimension(s) make 
noticeable contributions to the calculated distance.  

For example, for Minkowski 10 distance (Minkowski 
distance at m = 10 of the vector from the origin), 
theoretically, it represents sensorimotor strength of the 
dominant dimension plus an attenuated influence of any 
other dimensions that are nearly as strong as the dominant 
dimension. By contrast Minkowski 3 distance represents 
sensorimotor strength in all dimensions but the influence of 
weaker dimensions is attenuated.  

Our set of candidate variables comprises: maximum 
strength, Minkowski 3, Minkowski 10, Euclidean vector 
length, Summed strength, and single PCA component.  
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Design and Analysis We performed Bayesian linear 
regressions predicting the dependent variable of zRT (i.e., 
standardised Lexical Decision RT per participant) and 
accuracy from 2 datasets: Elexicon (ELP) and the British 
Lexicon Project (BLP). First, for each dependent variable 
we built a null model of lexical predictors (log SUBTLEX 
word frequency, number of letters, number of syllables, 
orthographic Levenstein Distance), all of which are known 
to reliably predict lexical decision performance. In 
subsequent models, we then added one of the candidate 
composite variables to the model and use Bayes Factors to 
quantify the evidence in favour of each. In Table 2, we 
report R-squared change for each model comparison, to 
allow comparisons with other megastudies in the literature 
(e.g., Pexman, Muraki, Sidhu, Siakuluk & Yap, 2019).  

Results 
Overall, we found that the sensorimotor norms reliably 

predicted lexical decision performance for both response 
times and accuracy, and in both the English Lexicon and 
British Lexicon datasets. Each of the six composite 
measures accounted for a significant amount of additional 
variance, over and above the basic model of lexical 
variables (see Table 2). Log Bayes Factors for each variable 
(ranging from 50 to 228 for zRT, and from 29 to 138 for 
accuracy) revealed very strong support for their inclusion in 
the models. Minkowski 3 was the best performing measure 
in both the ELP and BLP datasets, while PCA, although still 
considerably improving model fit over the basic model, was 
the weakest performing composite measure. 

Subsequently, using Minkowski 3 as the best predictor, 
we also found that the inclusion of action effector ratings 
improved model fit over and above perceptual ratings alone 
(see Table 3). Furthermore, adding action effector ratings 
provided better model fit for both ELP and BLP datasets, 
across both reaction time and accuracy measures.  

In summary, these findings replicate the finding that 
perceptual information is a good predictor of people's 
performance in lexical decision tasks, provides new support 
for the utility of action effector experience in modelling 
cognitive performance, and shows that the findings 
generalise over more than one largescale data set.  

General Discussion 
We present a set of almost 40,000 words, normed for 

perceptual and action strength across 11 dimensions. The 
first study shows that these sensorimotor norms provide a 
rich dataset, with the data revealing complex patterns 
between various dimensions. The second study provides 
support for the utility of modality-specific and effector-
specific sensorimotor information in modelling human 
performance in classic psycholinguistic tasks.  

While these norms extend earlier modality-specific 
norms, they also quantify important new relations, such as 
between specific effectors and particular perceptual 
modalities, as well as including often ignored perceptual 
dimensions, such as interoception Connell, Lynott & Banks, 
2018). What's more, we show that effector-specific 
information is also predictive of data from lexical decision 
tasks, over and above using perceptual-specific information 

alone. These findings provide evidence for a broad role for 
perceptual and action information in terms of their possible 
involvement in conceptual representations and their 
recruitment during cognitive processes. 

A notable difference in the new set of norms is the 
identification of a different single composite variable that 
could be used in place of the full multi-dimensional vector. 
In the previous sets of norms (Connell & Lynott, 2012), 
Maximum Perceptual Strength (i.e., the highest value of any 
single dimension) was identified as the best single value 
predicting lexical decision data. In the current analyses, 
although max strength continued to perform very well, it 
was outperformed by the Minkowski 3 measure. This is an 
interesting pattern to emerge, as Minkowski 3 has 
previously been identified as an optimal parameter when 
modelling the integration of multiple perceptual cues (To, 
Baddeley, Troscianko, & Tolhurst, 2011), suggesting 
greater weighting to higher value dimensions. To and 
colleagues provided evidence that Minkowski values around 
3 actually represent a general principle for perceptual 
integration, and may reflect the summation of neural 
responses to perceptual stimuli.  

The current norms provide a rich source of information, 
and provide lexical coverage that reflects a grown adult's 
conceptual system. As such, we hope that they will provide 
many avenues for further research. There is much scope for 
combining the current norms with other data sets to provide 
even broader coverage of the human conceptual system. 
These and other data could then be useful for predicting 
human performance in a diverse array of cognitive tasks. 
With the increased size of the norms, they may be amenable 
to some machine learning techniques, for example to 
acquire semantic representations that could be used in 
robotics, or perhaps as diagnostic tools (as has been used by 
Kernot, Bossomaier & Bradley, 2019). Those interested in 
linguistics, could further investigate the role of grammatical 
differences in people's sensorimotor experience, and there 
are also opportunities to extend these norms to other 
languages and populations, which will enable researchers to 
consider cross-cultural similarities and individual 
differences. 
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Table 2 Bayesian linear regression results for Elexicon and British Lexicon Projects lexical decision data (Study 2). Lexical 
predictors were added to a null model at Stage 0 (LogSUBTLEX-US word frequency, orthographic length, number of 
syllables and orthographic Levenshtein distance)  
 

 
Table 3 Bayesian linear regression results for Elexicon and British Lexicon Projects lexical decision data. As above, Lexical 
predictors were added to a null model at Stage 0.  
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Abstract 

Pervasive behavioral and neural evidence for predictive 
processing has led to claims that language processing depends 
upon predictive coding. In some cases, this may reflect a 
conflation of terms, but predictive coding formally is a 
computational mechanism where only deviations from top-
down expectations are passed between levels of representation. 
We evaluate three models’ ability to simulate predictive 
processing and ask whether they exhibit the putative hallmark 
of formal predictive coding (reduced signal when input 
matches expectations). Of crucial interest, TRACE, an 
interactive activation model that does not explicitly implement 
prediction, exhibits both predictive processing and model-
internal signal reduction. This may indicate that interactive 
activation is functionally equivalent or approximant to 
predictive coding, or that caution is warranted in interpreting 
neural signal reduction as diagnostic of predictive coding. 

Keywords: prediction; predictive coding; language; 
computational modeling; neural networks 

Prediction in spoken language processing 
Listeners often predict upcoming information in spoken 
language. They anticipate upcoming phonemes based on 
lexical expectations (Grosjean, 1980; Allopenna, Magnuson, 
& Tanenhaus, 1998), and upcoming words based on lexical, 
syntactic, and/or discourse expectations (Altmann & Kamide, 
2007; Magnuson et al., 2008; Strand et al., 2018). There is 
also neural evidence consistent with prediction. Indeed, many 
ERP studies test the magnitude and timing of responses to 
expectation violations, including responses that precede 
complete bottom-up specification. Despite difficulties 
replicating one classic example (Delong, Urbach, & Kutas, 
2005 vs. Nieuewland et al., 2018), a large number of studies 
support varying degrees of prediction (for reviews, see 
Kuperberg & Jaeger, 2015; Hickock, 2012). 

Evidence for predictive processing (PP) is often considered 
evidence for predictive coding (PC), and there may be 
instances where these terms are conflated and treated 
synonymously. PC, however, is a computational formalism 
enaling efficient coding by comparing bottom-up inputs to 
predictions from a top-down model and passing forward (and 
backward) only deviance from prediction (Rao & Ballard, 
1999). This deviance is the novel information; sending 
bottom-up details would be redundant when predicted by 

higher-level expectations. Thus, formal PC predicts reduced 
feedforward and feedback signal when inputs conform to top-
down expectations. In light of several reports of neural signal 
reduction when word-level expectations are met (e.g., Blank 
& Davis, 2016; Gagnepain, Henson, & Davis, 2012), we next 
consider what evidence for PP and PC implies for models of 
spoken word recognition (SWR). 

Implications for models of spoken word recognition 
First, even without considering sentence-level contexts 
(beyond the scope of current models), models of SWR must 
be able to simulate attested word level PP. Intuitively, some 
models might do this readily (e.g., a simple recurrent network 
[SRN; Elman, 1990] trained to predict the next phoneme 
given the current phoneme), while others may not. For 
example, Gagnepain et al. (2012) suggest that the interactive 
activation model, TRACE (McClelland & Elman, 1986), may 
be inconsistent with PC because they describe its primary 
mode as competitive rather than predictive.  

Second, given growing neural evidence consistent with 
formal PC (reduced neural signal when expectations are 
confirmed vs. violated; e.g., Sohoglu & Davis, 2016) we can 
also ask whether a model of SWR exhibits this hallmark of 
PC: internal signal reduction when expectations are 
confirmed. This leads us to two questions for models of 
SWR. (1) Do models with explicit prediction (e.g., SRNs) 
and without explicit prediction (e.g., TRACE) simulate PP? 
(2) If so, do they show hallmarks of formal PC (model-
internal signal reduction when expectations are confirmed)? 
To address these questions, we will compare three models. 

Model comparisons 
Our simulations are based on human experiments by 
Gagenpain et al. (2012). In those experiments, there were 
three critical stimulus types: an Original word (e.g., 
formula), a Trained nonword (e.g., formubo), and an 
Untrained nonword (e.g., formuty). In the examples, we have 
underlined letters corresponding to the critical phonemes. 
Prior to training, both Trained and Untrained nonwords differ 
from expectations at 1-3 phonemes from offset; this position 
follows the deviation point. The critical question is how the 
system responds at the phoneme(s) following the deviation 
point before a training phase and after. In the training, 
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participants get extensive exposure to the trained nonwords. 
Prior to training, Gagnepain et al. (2012) found reduced 
neural activity in left superior temporal gyrus following the 
deviation point for Original items vs. both types of nonwords. 
Following training (and sleep), Trained items showed the 
same reduction relative to Untrained items as real (Original) 
words. In the following sections, we examine whether each 
of 3 models is able to simulate PP (sensitivity to expectations 
at the deviation point) in simulations of this paradigm, and 
whether they exhibit the hallmark of PC: signal reduction 
when top-down lexical expectations are met. 

Model 1: Predictive Cohort 
Gagnepain et al. (2012) used a simple mathematical model to 
generate predictions for their experiment. We call their model 
“predictive cohort” because it simply looks up the set (cohort) 
of words that remain consistent with the phoneme-by-
phoneme input for each item. For example, given formula, at 
position 1, all /f/-initial words are possible and the prediction 
for position 2 is the frequency-weighted probability 
distribution of each phoneme following /f/. As input 
progresses, probability distributions narrow. For formula 
(/formjul^/), by /u/ at position 6, very few possibilities remain 
(formula, formulaic, formulation) and all predict /l/. 
Gagnepain et al. (2012) derived positional prediction error for 
the three item types. Given a prediction of 1.0 for /l/ at 
position 7, formula would garner zero prediction error, while 
prediction error would be high for formubo and formuty.  

The logic is that a formal PC implementation would pass 
back a prediction of /l/ at position 7 given the input for 
positions 1-6, and therefore pass forward a very weak signal 
given formula, where the prediction error is low, compared 
to the nonword cases. Note that prediction error is not an 
internal signal in this model; it is a derived term meant to 
stand in for computations that would occur in formal PC. 

Methods 
Materials We implemented predictive cohort as described by 
Gagnepain et al. We selected 37.6k words ≤ 12 phonemes 
long from the English Lexicon Project (ELP; Balota et al., 
2007). Critical items were 54 Original-Trained-Untrained 
triples from Gagnepain et al. (mean length: 6.3 phonemes). 
Deviation points were 1-3 positions before offset. 

Procedure We conducted two suites of simulations with all 
54 x 3 = 162 items. In pretraining, the lexicon was restricted 
to 37.6k real words; thus, the Original items were words, and 
the Trained and Untrained items were nonwords. Post-
training, Trained items were simply added to the lexicon, 
changing the positional probability distributions embedded in 
the lexicon (as done by Gagnepain et al.). For each 
simulation, we computed predicted probability distributions 
at each position, and calculated implied prediction error.  

Results are presented in Fig. 1. Consistent with PP, the 
probability for Original items continues to increase beyond 
the deviation point at Pretraining, and probabilities also 
increase for Trained items Post-training. Because error is 
summed over all phonemes, the maximum is 2.0 (e.g., if 
predicted values for /l/ and /b/ were 0.8 and 0.0, but the input 
were 0.0 for /l/ and 1.0 for /b/, summed error would be 1.8). 
Error plots do not reflect model-internal information. Rather, 
error is meant to approximate what the forward signal would 
be if a formal PC model were implemented. Thus, while the 
predictive cohort model is able to exhibit PP, it does not 
inherently exhibit PC. Of course, a fully-implemented PC 
model would show such signal reduction. 

Model 2: Simple Recurrent Network  
The second model we tested was a Simple Recurrent Network 
(SRN; Elman, 1990). An SRN would seem likely to naturally 
produce PP, given that an SRN is typically trained to predict 

 
Figure 1: Predicted phoneme-by-phoneme probabilities (top) and derived errors (bottom), pre- (left) and post- (right) 

training for the Predictive Cohort model. The X-axis is position relative to the deviation point (allowing us to align results for 
all items). The dashed lines between positions 0 and 1 indicate the deviation point. 
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the next item in a series. We created an SRN with localist 
phonemic inputs (41 nodes, one for each phoneme) with 
forward connections to 200 hidden units with forward 
connections to 41 localist phonemic output nodes. The 
hidden nodes feed an exact copy of their states with a 1-cycle 
time delay to context nodes, which feedback to hidden nodes 
(providing a memory sensitive to multi-step contingencies).  

Methods 
Materials We used the same materials as for Model 1. 

Procedure The model was presented with a continuous series 
of phonemes constructed by randomizing the order of the 
37.6k words and presenting each phoneme-by-phoneme, 
without any break or indication of a word boundary. The 
network was trained using backpropagation of error to predict 
the next phoneme. At each time step, output activations were 
compared to the desired output pattern (1.0 for the following 
phoneme, 0.0 for all others). Backpropagation allows 
“blame” to be assigned to all connections in the network (i.e., 
to calculate how small changes to all weights could alter the 
network such that if the same input sequence were applied 
again, the network would come closer to the target pattern).  

After approximately 2000 epochs (each epoch is 1 pass 
through all 37.6k words in random order), error plateaued 
(aggregated over small batches of words). This does not mean 
error rate was uniform. Rather, output activations come to 
resemble the probability distributions calculated by the 
predictive cohort model (Model 1). Thus, error is relatively 
high near word onset and diminishes as the input progresses.  

For the pretraining test of the model, only the 37.6k words 
selected from the ELP for Model 1 were included. Because 
the SRN is a learning model, we were able to actually train 
the model on Trained items. The 54 Trained items were 
presented in novel random orders for 50 epochs. This number 
of instances was sufficient for the model to achieve Original-
level accuracy with Trained items without impairing the 
model’s ability to process items already in its lexicon. 

Results are in Fig. 2, and are similar to those from Model 1, 
but with output activations for relevant phonemes. Error 
indicates the summed error over all 41 output phoneme units. 
Like Model 1, the SRN exhibits PP pre- and post-training in 
that phonemes from trained items become more probable 
after training. Also like Model 1, though, note that error is not 
a model-internal value; it is calculated externally. Model-
internal signals (here, activations) do not exhibit the reduced-
signal hallmark of PC. Instead, activations are higher when 
expectations are met (when the input sequence corresponds 
to a word in the lexicon). Thus, even the most intuitively 
predictive model of SWR one might propose (short of a 
formal PC model) – an SRN – does not inherently exhibit PC.  

Some might disagree with this analysis, since SRNs are 
trained using backpropagation of error, and these error terms 
could be considered to be passed back through the model, 
even if error is typically not passed during tests and is not 
necessary for a trained SRN to function. We might counter 
that backpropogation is model-external (the procedure is not 
part of the network dynamics of an SRN; adjustments to 
weights are imposed on the network, rather than an emergent 
property. One might contrast this with Hebbian learning, 
where weight changes occur through biologically-inspired 
interactions among nodes. On the other hand, while 
backpropogation may not have a direct analog in biology, 
functionally-equivalent, neurally-plausible mechanisms are 
not far-fetched (Lillicrap & Santoro, 2019). It may be 
sensible, then, to consider the error signal in an SRN as a 
feedback signal, in which case SRNs show the PC hallmark 
of relative signal reduction when inputs match expectations. 

Model 3: TRACE 
TRACE (McClelland & Elman, 1986) is an interactive 
activation model: a neurally-inspired, parallel-distributed 
processing model with feedforward connections from inferior 
to superior levels (featuresàphonemesàwords) and lateral 
inhibition within levels. It also has feedback from words to 
constituent phonemes. As mentioned earlier, TRACE may 

 
Figure 2: Phoneme-by-phoneme SRN output activations indicating how strongly the model predicted each upcoming phoneme (top) and those 

activations converted to error scores over time (bottom). 
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not seem to be a predictive model (e.g., Gagnepain et al. 
[2012] describe TRACE as having a primarily competitive 
mode of processing, dominated by lateral inhibition). 
However, wordàphoneme feedback in TRACE provides a 
generative model (McClelland, 2013; Magnuson et al., 
2018): as features and phonemes consistent with a specific 
word are presented, the lexical node for that word form sends 
increasingly strong feedback to all its constituent phonemes, 
including those that have not yet occurred. This allows 
graded pre-activation of phonemes (as a function of how 
strongly expected they are due to feedback from one or more 
words). But is there any possibility that TRACE exhibits the 
hallmark of PC – reduced signal when expectations are 
confirmed vs. violated?  

Methods 
Materials We used the original 212-word TRACE lexicon, 
wherein we identified 15 six-phoneme words on which to 
base item sets. From each set, we created 2 nonwords by 
changing the final two phonemes. For example, from the 
Original /art^st/ (artist) we created /art^da/ and /art^pi/.  

Procedure Simulations were conducted with all 15 (set) x 3 
(item type) items. We tracked activations of phonemes and 
words over time as well as the total amount of activation (and 
inhibition) flow between and within levels during each 
simulation. For pre-training, the lexicon consisted only of the 
TRACE lexicon, including the 15 Original items. For post-
training, the 15 Trained items were added to the lexicon.  

Results We begin by comparing lexical activations for each 
item type (Original, Trained, Untrained) pre- and post-
training (Fig. 3). Pre-training, we see significantly weaker 
Original activation when input ends with final phonemes of 
Trained or Untrained items. Post-training, we see a decrease 
in Original activation given Untrained input, and a massive 
decrease given Trained input. This is because Trained items 
are now words in the lexicon; with clear input, Trained items 
strongly activate and inhibit their Original counterparts. The 
post-training panel in Fig. 3 includes a red line marked with 
an open red square; this indicates activation of Trained items 
given corresponding input. This line is directly on top of the 
Original line; since both items are words in the lexicon, clear 
corresponding input drives both similarly. 

Next, consider the phoneme level (Fig. 4). Activations of 

phonemes one position beyond the deviation point are plotted 
for the Original word, as well as replaced phonemes in the 
case of the Trained and Untrained nonwords. In Fig. 4, we 
can see differences in the lines with open symbols that 
achieve high activation. These correspond to activations of 
replaced phonemes (/d/ in /art^da/ or the /p/ in /art^pi/). Pre-
training, the highest activation is achieved for the phoneme 
in penultimate position in the Original word, thanks to 
support from both bottom-up input and top-down lexical 
feedback. There is only a slight disadvantage for the replaced 
phonemes; given clear bottom-up input, phonemes will be 
strongly activated, even in the absence of lexical support. 
Post-training, with Trained items added to the lexicon, the 
‘replaced’ phoneme in a Trained item achieves nearly 
identical activation as a phoneme in an Original item, since 
both receive lexical support. 

To address PP, Fig. 5 zooms in on the regions delineated 
with dashed squares in Fig. 4. Pre-training, the activation of 
the Original phoneme is higher than that for replaced 
phonemes beginning ~12 cycles prior to the deviation point. 
Phoneme activations from cycles ~18 to ~33 (just past the 
deviation point, indicated by the dashed vertical line) are 
driven nearly exclusively by top-down feedback. Bottom-up 
input begins to override feedback just after the deviation 
point. At this point, when the input has a replaced phoneme 
(one of the nonworeds), the activation of the Original 
phoneme drops, while activation of the replaced phonemes 
when they are actually the input (dashed lines, open symbols) 
jumps dramatically. Post-training, we see a lexical advantage 
for phonemes after the deviation point for both Original and 
Trained items (for Trained items, activations after the 
deviation point is slightly less due to a small trend for those 
items to have lower transitional probability in the lexicon, 
even when they have been added to the lexicon). In summary, 
training elicits clear PP: increased activation of critical 
phonemes prior to the deviation point. 

Next, let's consider PC, which could manifest as reduced 
feedforward or feedback signal when expectations are 
confirmed; to be fully consistent with PC, both the 
feedforward and feedback signal would have to be reduced 
when expectations are met. However, the standard in many 
cognitive neuroscience studies is that any evidence of signal 
reduction is taken as evidence for PC. We therefore tracked 
the total amount of activation flowing between levels 

 
Figure 3: Lexical activations in TRACE before and after ‘training’. Note that ‘Trained | Trained’ is only valid post-training. 
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(forward and backward) and within levels (lateral inhibition), 
looking for any signal reduction.  

Two activation indices were reduced when expectations 
were met: wordàphoneme feedback (Fig. 6) and lateral 
inhibition (absolute value). The latter shows virtually the 
same pattern as Fig. 6, but we omit it due to length constraints 
and challenges in interpreting a reduction in a signal with 
negative valence. In Fig. 6, total lexical feedback is lowest 
when expectations are met (for Original words pre- or post-
training, as well as for Trained items post-training). This is 
because when an unexpected phoneme occurs, Original items 
already have strong support and continue to send substantial 
feedback. Additional feedback comes from words partially 
activated by replaced phonemes (any word unit containing 
the unexpected phoneme aligned with the unexpected 
phoneme[s] would get activated; e.g., a word unit for piano 
aligned at position 5 overlaps with the /pi/ of /art^pi/]). This 

follows from the total amount of feedback actually being less 
when one word can strongly dominate and inhibit other 
words; there can actually be more total feedback when many 
words are weakly activated.  Thus, only TRACE, the model 
one might have predicted to be least likely to exhibit PC, 
shows a model-internal signal reduction often considered 
diagnostic of PC in cognitive neuroscience. 

Discussion 
All three models tested – predictive cohort, an SRN, and 
TRACE – exhibit PP. The first two showed model-internal 
signal increases when expectations were met. While these 
increases can be converted to predicted error, this takes place 
outside the current instantiation of these models (though see 
our earlier discussion of backpropagated error in SRNs). 
TRACE shows model-internal signal reduction when 
expectations are confirmed, in the form of lesser top-down 

 
Figure 4: Activations of critical phoneme (following deviation point) in TRACE. 

 
Figure 5: Zoomed view of critical time period from Figure 4.  

 
Figure 6: Total lexical feedback over time in TRACE, showing robust signal reduction when expectations are met.  
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lexicalàphoneme feedback. 
This raises the possibility that interactive activation (as 

implemented in TRACE) may provide a generative model 
that is functionally equivalent (or functionally approximant) 
to a Bayesian generative model (McClelland, 2013) or even 
PC. Addressing this question will require the development of 
explicit, formal PC models of SWR based on formalisms like 
those introduced by Rao and Ballard (1999). This is a tall 
order; such a model must work on over-time inputs (if not 
real speech), must be validated with a moderately large 
lexicon (at least hundreds of words), and must be 
comprehensively compared to other models, such as TRACE.  

There are promising starts in this direction. For example, 
Yildiz et al. (2013) have reported a PC model of SWR that 
operates on real speech. However, this model was limited to 
a 10-word vocabulary (names for the digits 0 to 9). Another 
promising example comes from Blank and Davis (2016), who 
implemented simple network models of SWR with 
lexicalàphoneme feedback that was either multiplicative (as 
in TRACE) or subtractive (one possible interpretation of PC). 
Both models correctly simulated one experiment, but their 
subtractive feedback model correctly predicted neural signal 
reduction in a second experiment where the multiplicative 
model predicted signal increase (but with radical parameter 
changes required to fit the two experiments; in one, they ran 
models for more than 300 cycles, while for the second, they 
ran models for only 1 cycle). This sort of work, along with 
comprehensive tests of models on at least moderately large 
vocabularies (to verify that the models are consistent with 
known facts about SWR), are needed to advance 
understanding of the potential role for PC in SWR. 

In the absence formal PC models, we must exercise caution 
when interpreting neural signal reduction. Though our results 
indicate that TRACE exhibits model-internal signal 
reduction, it remains an open question whether interactive 
activation is indeed functionally equivalent or approximant 
to PC. Similarly, it may be premature to consider evidence of 
a reduction in neural signal when expectations are met as 
diagnostic of PC. 
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Individual differences in reading experiences: The roles of mental imagery and
fantasy
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Abstract

It is well established that readers form mental images when reading a narrative. The influence of mental imagery on the
way people experience stories is however still unclear. In two experiments reported here, participants received instructions
aimed at encouraging or discouraging mental imagery before reading literary short stories. After reading, participants
answered questions about their reading experiences. The results from the first experiment suggested an important role
of mental imagery in determining reading experiences. However, the results from the second experiment showed that
individual trait differences in how imaginative participants are predicted reading experiences much better than guided
mental imagery. Moreover, the role of mental imagery did not extend to aspects of the reading experience other than
mental imagery. The implications of these results for the relationship between mental imagery and reading experiences
are discussed.
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Abstract 

Embodied cognition theories predict that changing motor 
control would change cognitive control, as cognition is 

considered to emerge from action in this theoretical approach. 
We tested this prediction, by examining the attention and 
cognitive control capabilities of a group of school students 

(12-13-year-olds) trained to write using both hands 
(experimental group, N=28), compared to a group of age-
matched children (control group, N=33) who did not receive 

such training. The key tasks used were the attentional network 
test (ANT) task and the hearts and flowers (HF) task. Results 
from the ANT task showed that there was no significant 

difference in the three attentional networks between the 
groups. However, results from the HF task showed that the 
experimental group had better inhibitory control. This second 

result provides support to the embodied cognition prediction 
that cognitive control and motor control are related, and the 
former can be changed to some extent by changing the latter.  

Keywords: Embodied Cognition; Handedness; Executive 
Functions; Motor Control. 

Introduction 

Embodied theories of cognition argue that cognitive 

processes are shaped by the way the body interacts with the 

environment (Glenberg et al., 2013). This is because the 

brain evolved to control coordinated actions in multicellular 

creatures, and cognitive and affective processes evolved 

later, to guide action. This evolutionary view is partly based 

on the work of Rudolfo Llinas (2001), who argues that “A 

nervous system is only necessary for multicellular creatures 

(not cell colonies) that can orchestrate and express active 

movement -- a biological property known as “motricity””. 

The embodied cognition position would thus predict that 

changes in motor control would lead to changes in cognition 

and affect, as the latter are derivative systems. Supporting 

this view, a series of studies have linked the manipulation of 

motor system with changes in executive functions  of 

children as young as 5-year-olds (Stein et al., 2017; Rueda 

et al., 2012). Motor functions have also been shown to 

influence inhibition and cognitive flexibility (Livesey et al., 

2006). Further, executive functions have been shown to be 

related to physical activity (Campbell et al., 2002; Becker et 

al., 2014), and motor functions (Livesey et al., 2006; Davis 

et al., 2011) in both kindergartners and older children (Stein 

et al., 2017). These effects of motor functions on cognitive 

functions are supported by the fact that the biological 

development of both motor and cognitive functions are 

closely related (e.g., Sibley and Etnier, 2003), and cognitive 

functions are stimulated and required when learning and 

executing new motor skills  (Best, 2010; Diamond, 2000). 

A related empirical thread has examined the role of 

handedness, and lack of consistent handedness, on cognitive 

and affective abilities (Casasanto, 2009; Coren, 1992). It has 

been shown that handedness (ranging from strongly right-

handed to strongly left-handed) predicts whether electrical 

excitation via transcranial direct current stimulation causes 

an increase or decrease in the experience of approach-

related emotions. (Brookshire and Casasanto, 2012). In such 

studies, handedness is typically considered a marker of 

motor training, and thus not explored further. The 

development of handedness and its results, particularly how 

training to use both hands at a young age affects cognitive 

abilities such as attention and executive functions , has not 

been much explored.  

To understand the relation between handedness 

development and cognitive abilities , we conducted a study 

based on the Attentional Network Test (ANT) Task and 

Hearts and Flowers Task (HF). Both ANT and HF tasks   are 

standard psychological tasks that reliably provide 

independent measures for different attentional networks (i.e. 

alerting, orienting, and executive control; Fan et al., 2002; 

Rueda et al., 2004) and executive function components (i.e. 

working memory, inhibition, and flexibility; Davidson et al., 

2006). These tasks were selected as they tap into different 

types of inhibitory control. The ANT task involves 

resolving conflict of the stimulus-stimulus type (e.g. both 

the target and the distractors are visual stimuli in a flanker 

task). The HF task involves resolving conflict of the 

stimulus-response type (e.g. overcome the default 

propensity to make a response matching the stimulus 

location). These tasks were administered to two student 

groups (experimental, control) from two schools. The 

experimental group students studied in a school that 

provided a school-wide basic training to write using both 

hands. The control group studied in a school that had no 

such training. 

Methods 
 

Demographics  Owing to the uniqueness (only 2 

identified schools in India) of the experimental group 
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school
1
 in imparting training to write with both hands, this 

school was assigned to the experimental group by default. 

Another school which was similar in all other aspects (other 

than the training) was assigned as the control group school. 

The criteria for selecting a relevant and comparable control 

group were multifold: similar parents’ profession and annual 

incomes (migrant laborers), similar school infrastructure 

(both low-income private schools), similar curricular and 

extracurricular aspects (including training on physical 

activities), same age groups (12-13-year-olds), and an 

equivalent number of languages exposed to the students 

(each group was familiar with at least three different 

languages). Apart from the training to write with both 

hands, the other major difference between the groups was 

the location: the experimental group school was a village 

school while the control school was in a slum in the heart of 

a metropolitan city. The experimental group students were 

familiar with Kannada, English, and Hindi while the control 

group students had familiarity with Hindi, English, and 

Marathi.  

 

Training Process An ethnographic study of the 

experimental group school showed that students start their 

training by using their dominant hand to write during the 

first six months after being admitted into the school. Thus, 

students may start the training as early as 3 years  

(kindergarten) or as late as 12 years (7
th

 grade) depending 

on when they join the school. They are then instructed to 

use the non-dominant hand for the next six months. The 

training starts with making lines and curves, then progresses 

to writing alphabets and numbers, and concludes with words 

and sentences. Instruction is given in small, often mixed-age 

groups (4-5 students per group). A teacher first 

demonstrates the techniques by writing on a blackboard. She 

then allows students to practice on the board and on their 

notebooks. After 3rd grade, however, these practice sessions 

are considered an extracurricular activity (optional) that 

students are free to pursue before/after school hours. 

Students who participated in our experiment had an average 

of 2.1 years (S.D. = 0.69 years) experience writing with 

both hands. 

Attention Network Task (Child Version) 
 
Participants 27 students (Mean age = 12.5 years, S.D. = 

0.57, 12 male, 15 female) from the experimental group and 

32 students (Mean age = 12.8 years, S.D. = 0.80, 19 male, 

13 female) from the control group participated in the 

experiment. The school principal and teachers were 

communicated in advance about the purpose and nature of 

the study. Participants were explained in detail about the 

consent process (including the option to discontinue 

whenever they wanted) and the tasks, following which 

signed consent was obtained from each participant and 

school principal prior to the study. All communication 

between participants and experimenters was in the language 

                                                                 
1https://www.youtube.com/watch?v=PDVDw60sG5c 

that participants understood most clearly (Kannada for the 

experimental group and Hindi for the control group). 

 

Stimuli and apparatus The stimuli were presented using 

Inquisit 5’s ANT (Child version), a commercial application 

by Millisecond
2
, run on laptops (all 15.6-inch screens: 34.54 

cm x 19.41 cm) with Windows 10 OS. Participants viewed 

the screen from a distance of 53 cm (approx.), and 

responded to the stimuli by pressing two keys on the laptop 

keypad. 

The stimuli consisted of a central fixation (+ sign) that 

appeared at the beginning of each trial, presented against a 

constant blue-green (0, 255, 255) screen background. This 

was followed by one of four warning cue conditions: no-

cue, center-cue, double-cue, or spatial-cue. A black dot 

(cue) appeared in the center instead of the + sign for the 

center-cue condition. The double-cue condition involved the 

cue being presented on target locations both above and 

below the + sign. In the spatial-cue condition, the cue 

appeared either above or below the + sign. The no-cue 

condition did not provide any warning about the 

forthcoming stimulus, while the center-cue and double-cue 

conditions warned the participants when the target will 

appear. The spatial-cue condition alerted as well as 

indicated the locations of the target stimulus (see Fan et al., 

2002; Rueda et al., 2004 for more details). (See link for a 

schematic diagram) 

The target stimuli were a yellow color-filled line drawing 

of either a single fish or an array of five fish that appeared 

above or below the central fixation. Each fish projected a 

visual angle of 1.6° and the contours of adjacent fish were at 

a distance of 0.06° from each other. The total visual angle 

projected by the array of 5 fish was 8.4°. The target s timuli 

were presented at 1.08° above or below the central fixation. 

 

Procedure Participants were instructed to focus on the 

hungry central fish and feed them by pressing the “E” (when 

the fish facing left) or “I” (when the fish facing right) key. 

While receiving the instructions, participants were asked 

clarifying questions to ensure that they understood the 

context and task requirements. 

Each session lasted ~30 minutes and consisted of one 

practice block (24 trials) and three experimental blocks (48 

trials). The trials in the experimental blocks had one of the 

following combinations: 4 cue conditions (no-cue, center-

cue, double-cue, spatial-cue) x 3 flanker conditions 

(congruent, incongruent, neutral) x 2 target stimuli positions 

(up, down) x 2 target stimuli directions (left, right). (See 

link for a schematic diagram). The order of the trials was 

random. 

Each trial sequence had the following trial structure: 

fixation period with randomly chosen presentation time 

(between 400-1600 ms), followed by a warning cue for 100 

ms, followed by a fixation period of 400 ms after the 

disappearance of the cue, and concluding with the 

appearance of the target stimulus, either alone or along with 

                                                                 
2https://www.millisecond.com/ 
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flankers for 1700 ms. Participants had to respond within this 

1700 ms duration, after which the stimulus disappeared. The 

inter-trial interval was set at 1000 ms. Participants received 

audio-visual feedback for both correct and incorrect 

responses during the practice block. The experimental 

blocks did not have any feedback. 

Hearts and Flowers Task 
 
Participants The participants for this experiment were the 

same as those in the ANT experiment. 

 

Stimuli and apparatus The stimuli were presented through 

Inquisit 5’s Hearts and Flowers Task (Child-friendly 

version). Other apparatus remained the same as the previous 

task. 

The stimuli consisted of a central fixation (+ sign) 

followed by a heart or a flower (target stimuli) that appeared 

on the left or the right of the fixation cross. The fixation sign 

was constantly present on the white background screen 

while the stimuli appeared in red. The hearts/flowers 

appeared at a visual angle of 5.6° to the left or right of the 

central fixation. A heart subtended a visual angle of 2.04° 

whereas a flower subtended a visual angle of 2.16° 

(Davidson et al., 2006). (See link for a schematic diagram) 

 

Procedure Each session lasted for ~20 minutes and 

consisted of three sequential blocks: Congruent-only block 

(Hearts as stimulus) followed by Incongruent-only (Flowers 

as stimulus) followed by Mixed (both Hearts and Flowers as 

stimulus). Each block had 8 practice trials and 20 

experimental trials. The experimental trials were initiated 

only if participants reached an accuracy of minimum 75% in 

the practice trials . Participants received audio-visual 

feedback during the practice trials  for both correct and 

incorrect responses. The experimental trials  did not have 

any audio-visual feedback. 

Each trial sequence in the experiment block started with 

the presentation of the target stimulus. The maximum 

response time was 5000 ms (for congruent-only and 

incongruent-only) and 6000 ms (for mixed block). The 

inter-trial interval was set at 1000 ms. Participants were 

required to press “A” for a heart appearing on the left of the 

+ sign and “L” for a heart appearing to the right of the + 

sign (congruent trials). For the flower stimulus, participants 

had to press the “A” key for a flower appearing on the right 

of the + sign and “L” for the flower appearing to the left of 

the + sign (incongruent trials). Both congruent-only and 

incongruent-only blocks had the stimulus on the left of + 

sign for ten trials and on the right for the remaining ten, 

appearing in random order. In the mixed block, there were 

10 hearts (5 right, 5 left) and 10 flowers (5 right, 5 left) that 

appeared in a random order, with the following constraint: a 

maximum of 3 trials of the same type (congruent or 

incongruent) could be run consecutively, and the number of 

switch trials (i.e. from congruent to incongruent and vice-

versa) would vary from trial to trial (with a minimum of 6 

per trial).  

Edinburgh Handedness Inventory (EHI) 
 
26 participants (Mean age = 12.5 years, S.D. = 0.58, 11 

male, 15 female) from the experimental group and 28 (Mean 

age = 12.9, S.D. = 0.85, 18 male, 10 female) from the 

control group were provided with the EHI questionnaire 

(Oldfield, 1971). Participants were asked to respond orally 

to a 12-item questionnaire, using one of five responses: 

always right, usually right, both equally, usually left, always 

left. Since the participants were not familiar with surveys, 

concrete everyday examples were provided for clarification 

of each questionnaire item, along with the response 

categories. Participants were asked to act out how they 

would perform each of the items in the questionnaire while 

reporting their response. The Laterality Quotient (LQ) score 

for each participant was calculated as below: 

 

      
                                             

                                            
 

 

Where “always right” was assigned ++ (2 positives), 

“usually right” was + (1 positive), “both equally” was +- 

(one positive, one negative), “usually left” was - (1 

negative), and “always left” was -- (2 negatives). An LQ 

score closer to +100 denoted strongly right-handed, -100 

denoted strongly left-handed, and a 0 represented an equal 

preference for both hands in the tasks. Scores other than the 

above represent the use of both hands but not in an equal 

measure. 

Results 

One-way ANCOVA using group (experimental, control) as 

the fixed factor and age and gender as covariates on LQ 

scores showed a significant main effect of group [F(1,50) = 

6.481, p = 0.014,   
  = 0.115]. Results revealed that the 

experimental group (M = 65.62, S.D. = 23.63) had 

significantly lower LQ score compared to control group (M 

= 83.14, S.D. = 13.75) (see Fig 1a). This suggests that 

training to use both hands might have influenced the 

participants to use both their hands for motor activities other 

than writing, as the LQ score in EHI is calculated by taking 

into consideration the handedness preference in various 

everyday general motor activities . 

Attention Network Task 

Overall Accuracy Analysis  An 80% overall accuracy 

criterion led to the elimination of five participants (1 in 

experimental and 4 in the control group), giving 54 

participants’ data for further analysis. JASP software was 

used to perform statistical analysis. One-way ANCOVA 

using group (experimental, control) as the fixed factor and 

age and gender as the covariate on accuracy showed a main 

effect of group [F(1,50) = 6.52, p = 0.014,   
  = 0.115] 

while the effect of gender and age were not significant, 

suggesting that the experimental group (M = 95.78, S.D. = 

2.90) had significantly higher overall accuracy in the ANT 

task, compared to control group (M = 92.71, S.D. = 5.44) 
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(see Fig. 1b). However, when participants’ LQ score was 

used as a covariate, it could explain the difference in overall 

accuracy between the two groups [F(1,51) = 4.446, p = 

0.04,   
  = 0.08]. To further understand the relationship 

between LQ scores and overall accuracy scores, Pearson’s 

correlation analysis was performed. Results indicated a 

significant negative association between LQ score and 

overall accuracy (r(52) = -0.383, p = 0.004), suggesting that 

participants with low LQ scores performed better compared 

to those with high  LQ scores. Low LQ scores indicate more 

usage of both hands for everyday motor activities, whereas 

high LQ scores indicate more usage of a single or dominant 

hand. 

 

Flanker type x Cue type x Group Analysis  We performed 

3 (Flanker type: congruent, incongruent, neutral) x 4 (Cue 

type: no-cue, center-cue, double-cue, spatial-cue) x 2 

(Group: experimental, control) mixed ANOVA with flanker 

type and cue type as within subject factors and group as 

between subject factor on the median RTs. The main effect 

of flanker type [F(1.46, 76.27) = 77.67, p < .001,   
  = 

0.599] and cue type [F(2.56, 133.55) = 66.30, p < .001,   
  = 

0.56] were found to be significant. However, the main effect 

of group was not significant [F(1, 52) = 0.701, p = 0.406,   
  

= 0.013]. Planned comparisons showed that participants 

were significantly faster [t(53) = 3.52, p < 0.001] in the 

congruent flanker condition (M = 625.33 ms, S.E. = 15.23) 

compared to the incongruent one (M = 697.46 ms, S.E. = 

16.71), showing  the standard flanker effect (Ericksen & 

Ericksen, 1974). 

Planned comparisons for different cue conditions showed 

that participants were significantly [t(53) = 4.026, p < 

0.001] faster in the double-cue condition (M = 633.08 ms, 

S.E. = 15.39) compared to the no-cue condition (M = 675.97 

ms, S.E. = 15.08) demonstrating the typical alerting effect of 

the cue on RT. Also, the difference between center-cue (M = 

645 ms, S.E. = 14.38) and spatial-cue (M = 596.63 ms, S.E. 

= 13.86) was significant [t(53) = 4.541, p < 0.001], 

demonstrating the orienting effect of the spatial-cue. The 

difference between center-cue and no-cue was also 

significant [t(53) = 2.907, p < 0.05] suggesting that even the 

single cue had an alerting effect, though the magnitude was 

less compared to the double cue. There was a significant 

interaction between cue type and group [F(2.56, 133.55) = 

3.04, p = 0.031,   
  = 0.055]. Post-hoc analyses showed no 

significant difference between experimental and control 

group for each cue type. 

 

Alerting, Orienting, and Conflict Analysis The measures 

of effects for the three networks were calculated by 

subtracting different cue type and flanker type conditions. 

The altering effect was calculated by subtracting the double-

cue condition RT from the no-cue condition RTs. The 

orienting effect was calculated by subtracting the spatial-cue 

condition RT from center-cue condition RTs. The conflict or 

executive function effect was  calculated by subtracting 

congruent flanker condition RT from incongruent flanker 

condition RT (Rueda et al., 2004). 

Pearson’s correlation analysis revealed that there was no 

significant correlation between any of these three networks 

[alerting and orienting, r(52) = 0.081, p = .562; alerting and 

conflict, r(52) = 0.173, p = .211; orienting and conflict, 

r(52) = 0.212, p = .124], thus supporting the finding in 

previous studies that the three networks are independent. 

A series of one-way ANOVA were performed to examine 

the effect of group, age, and gender on the mean of median 

RTs and errors for the alerting, orienting and conflict 

quotients. None of the comparisons reached significance, 

except for a group difference in percentage error for alerting 

quotients [F(1,49) = 4.891, p = 0.032,   
  = 0.091]. 

 

 
 

Figure 1. The top panel shows the bar plot for  

(a) overall accuracy in the ANT task, and (b) LQ score for 

both groups. The bottom panel shows the corresponding 

violin plot. Error bar represents S.E. of mean. * indicates 

<0.05 

Hearts and Flowers Task 

Overall Accuracy and Reaction Time An 80% overall 

accuracy criterion led to the elimination of five participants 

(3 in experimental, 2 in control). Additionally, two 

participants from the control group didn’t complete the task. 

This resulted in a total of 52 participants’ data for further 

analysis. One-way ANCOVA using group (experimental, 

control) as the fixed factor and age, gender, and LQ score as 

covariates showed no significant difference in overall 

accuracy between the two groups [experimental group 92%, 

control group 91.4%; F(1, 48) = 0.225, p = 0.637,   
  = 

0.005]. Similarly, there was no significant difference in 

overall mean RT as a function of group [F(1, 48) = 0.388, p 

= 0.536,   
  = 0.008; experimental group, M = 636.3 ms, 

S.E. = 28.11; control group, M = 660.9 ms, S.E. = 26.48]. 
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Block x Group Analysis  Two-way 3 (block type: 

congruent, incongruent, mixed) x 2 (group: experimental, 

control) mixed ANOVA with block type as within subject 

factor and group as between subject factor on the mean RTs 

showed a significant main effect of block type [F(1.64, 

83.83) = 164.33, p < .001,   
  = 0.763]. However, the main 

effect of group and interactions were not significant. 

Planned comparisons showed the expected significant 

differences between congruent, incongruent and mixed 

block types. That is, participants were significantly faster in 

the congruent block (M = 497.1 ms, S.E. = 18.20) compared 

to both incongruent block [M = 590.22 ms, S.E. = 20.26; 

t(52) = 3.642, p < .001] and mixed blocks [M = 899.194 ms, 

S.E. = 31.51; t(52) = 15.72, p < .001]. Also, the difference 

between incongruent block and mixed block was significant 

[t(52) = 12.08, p < .001]. 

 

 
 

Figure 2. The correlation matrix between overall 

accuracy in ANT and LQ score. 

 

Another similar 3 (block) x 2 (group) mixed ANOVA on 

the mean accuracy revealed a significant main effect of 

block type [F(1.41, 71.99) = 54.02, p < .001,   
  = 0.514]. 

However, the main effect of group [F(1, 51) = 0.119,  p = 

0.731,   
  = 0.002] and interaction [F(1.41, 71.99) = 2.704,  

p = 0.091,   
  = 0.05] were not significant. Planned 

comparisons for the different block types revealed 

significant differences between all the groups [congruent vs. 

incongruent, t(52) = 2.933, p < 0.05; congruent vs. mixed, 

t(52) = 8.624, p < 0.01; incongruent vs. mixed, t(52) = 5.69, 

p < 0.01]. Results replicated the expected effects of block 

type on reaction time and accuracy, wherein participants 

became slower and less accurate as the task demand 

increased from congruent to incongruent to mixed block. 

 

Inhibitory Control and Cognitive Flexibility To measure 

inhibitory control, the congruent block RTs (working 

memory) were subtracted from the incongruent block 

(working memory + inhibition control), and to measure 

cognitive flexibility the incongruent block RTs were 

subtracted from the mixed block (working memory + 

inhibition + cognitive flexibility). The switching score was 

obtained by subtracting the non-switch trials from the 

switch trials in the mixed block. 

Pearson’s correlation analysis was used to evaluate the 

association between inhibitory control, cognitive flexibility, 

and switching scores. Results showed a negative association 

(r(52) = -0.464, p < .001) between inhibitory control and 

cognitive flexibility, whereas other correlations were not 

significant [inhibitory control and switching, r(52) = 0.162, 

p = 0.247; cognitive flexibility and switching, r(52) =           

-0.138, p = 0.325]. Further analysis is needed to understand 

this relationship. (See link for correlation matrix) 

We performed a series of one-way ANCOVAs for all the 

three subtraction scores, with group as the between subject 

variable and laterality as covariate. The only significant 

main effect of group was in the inhibition control for both 

reaction time [F(1, 51) = 8.749,  p = 0.005,   
  = 0.146] and 

accuracy [F(1, 51) = 6.431,  p = 0.014,   
  = 0.112]. These 

results suggest that participants with training to write with 

both hands were better in inhibitory control, compared to 

participants in the control group (see figure 3). (See 

http://handedness.surge.sh/ for more tables, figures, and a 

detailed analysis) 

 

 
 

Figure 3. The bar plot displaying the difference in RT 

between incongruent and congruent block (left), and 

difference in accuracy between incongruent and 

congruent block (right). 

Discussion 

In both ANT and HF tasks, standard effects were observed, 

suggesting that the tasks were executed successfully. The 

central result was the significant group difference observed 

in inhibitory control, as measured by the HF task.  The ANT 

results revealed that training to write with both hands 

improved overall accuracy, without significantly hampering 

response time. However, participants from the experimental 

group were slower in response (though not significantly) 

compared to the control group, suggesting a kind of speed-

accuracy trade-off. This group difference in accuracy 

covaried with the differences in the LQ score. Laterality and 

overall accuracy were negatively correlated, suggesting that 

participants with low LQ scores had higher accuracy, while 

participants with high LQ scores had lower accuracy. 
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Overall, the writing training did not significantly improve 

performance in any of the attentional networks. Similar 

results were obtained by Rueda et al., (2012), where 

computer-based attentional training provided to school 

children did not significantly improve the alerting and 

orienting networks. However, there was an enhancement in 

the executive network, which overlapped with the domain of 

training provided to participants. Similarly, even though we 

did not find any significant group difference for alerting, 

orienting and conflict networks in ANT, we observed a 

significant group difference in inhibitory control as 

measured by the HF task.  

The Hearts and Flowers task can be viewed as a child 

version of the Simon task, which tracks a standard tendency 

to inhibit the prepotent impulse when the stimulus location 

overlaps with the response side. People with better 

inhibitory control would be able to resolve this conflict 

faster, and would thus be less prone to the Simon effect. It 

has been shown that playing video games, but not visual 

training, improves inhibitory control, and reduces the cost of 

Simon effect (Hutchinson, Barrett, Nitka, &Raynes, 2016).  

These results suggest that learning to write with both 

hands could be understood as leading to the improvement of 

inhibitory control. However, it is not clear how this 

improvement in inhibitory control is related to writing with 

both hands. One possibility is a heightened activation 

model, where writing with both hands leads to both hands 

getting activated by motor plans for writing, and active 

inhibition of one is required to write with the other. This  

process requires, and improves  inhibitory control.  

This model fits well with our ethnographic data, which 

showed that when students were asked to write a novel 

paragraph using both their hands, they did so with only with 

one hand at a time i.e., they did not write simultaneously 

with both hands. Some students wrote one character with 

one hand and the next with the other. Others wrote a word 

or multiple characters of a word with one hand before 

moving to write the next word or the remaining characters 

with the other hand. Based on this data and the heightened 

activation model, learning to write with both hands could be 

understood as having effects similar to learning to speak in 

more than one language, where all the known languages get 

activated when planning to speak. The speaker thus needs to 

inhibit the other activated languages when choosing to 

speak in one, and also when trying to understand speech, as 

many candidate words will be activated. This choosing 

process requires, and supports, heightened inhibitory 

control, whose effects would be seen in other control 

situations. Supporting this model, bilingualism studies show 

that executive function improves through learning more than 

one language (see Bialystok, 2001, 2011). Although these 

studies show that bilingualism improves cognitive control 

(the “bilingual advantage”), there exists a debate regarding 

the main effect (Anton et al., 2014). Some studies show that 

bilingual training only provides a domain-specific 

advantage (i.e. improves inhibition and control of perceptual 

or stimulus-stimulus type representations), and no drastic 

improvement in inhibition and control of motor or habitual 

or stimulus-response type representations (Blumenfeld & 

Marian, 2014; Martin-Rhee & Bialystock, 2008; Poarch, 

2018). This fits well with our findings , as which show 

benefits of motor training on inhibitory control in the HF 

task but not in the ANT task. The growing literature on the 

cognitive control effects of changes in motor control (Stein 

et al., 2017; Stuhr et al., 2018; for a review see Diamond & 

Ling, 2016) -- to which our study contributes -- shows that 

training  motor control abilities might have global effects, 

which are reflected in tasks wider than the immediate 

context of training. Apart from our results on inhibitory 

control, our Edinburgh Handedness Inventory  (to determine 

handedness or the level of hand preferences for various 

everyday motor tasks) also found that participants who had 

received training to write with both hands used both hands 

for other everyday motor tasks, suggesting that hand 

preferences change in a global fashion with such training. 

These, and related results showing the role of action in 

language and imagination (Pulvermuller, 2001; Glenberg, 

1997), open up the possibility of using the motor system as 

an intervention channel, particularly to change higher-order 

cognitive and affective systems. 

 However, this intervention possibility needs to be 

approached with caution, as the relationship between 

higher-order systems (such as imagination and language) 

and motor control is not straightforward, as higher-order 

systems typically draw on, and recombine, many networks, 

including from frontal regions of the brain. Further, tasks in 

higher-order cognition, such as physics problem-solving, 

requires bringing together many cognitive components, such 

as reading, imagining, calculating, reasoning, etc. Whether 

these processes and their integration, are improved by motor 

control is currently unclear.  

Thus, even though schools that train students to write with 

both hands do so with possible educational effects in mind, 

the results related to wider control capabilities we report 

here cannot be taken as an indication of training to write 

with both hands improving problem-solving abilities. 

Further studies need to be done to investigate whether such 

improvements could follow from motor training. While this 

study leveraged the opportunity provided by a particular 

school that trains students to write with both hands , future 

studies would benefit if the above experiments are 

conducted as part of a controlled intervention study. This 

study provides a good starting point in demonstrating the 

effect of bimanual writing on cognitive flexibility. However, 

a more extensive and controlled study is required to 

replicate as well as extend the results. 
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Abstract

Languages partition semantic space into linguistic cate-
gories in systematic ways. In this study, we investigate
a semantic space which has received sustained attention
in theoretical linguistics: person. Person systems con-
vey the roles entities play in the conversational context
(i.e., speaker(s), addressee(s), other(s)). Like other lin-
guistic category systems (e.g. color and kinship terms),
not all ways of partitioning the person space are equally
likely. We use an artificial language learning paradigm to
test whether typological frequency correlates with learn-
ability of person paradigms. We focus on first person
systems (e.g., ‘I’ and ‘we’ in English), and test the predic-
tions of a set of theories which posit a universal set of fea-
tures (±exclusive, and ±minimal) to capture this space.
Our results provide the first experimental evidence for
feature-based theories of person systems.

Keywords: artificial language learning; categorization;
person systems; extrapolation; typology; linguistic uni-
versals

Introduction
One of the fundamental goals of cognitive science is to
understand how human languages carve up semantic
space into linguistic categories. Research on the typol-
ogy of categorization systems, from colour names, to
noun classification and kinship terms suggests that not
all systems are equally likely.

For example, despite some cross-linguistic variation,
certain ways of carving up the continuous color space
into linguistic categories are much more common than
others. This has been argued to provide evidence for a
universal basis for color categorization, reflecting prop-
erties of the human perceptual system (Kay & Regier,
2007; Zaslavsky, Kemp, Tishby, & Regier, 2018; Gib-
son et al., 2017). Similar arguments have been made to
explain the distribution of kinship systems across lan-
guages (Kemp & Regier, 2012; Kemp, Xu, & Regier,
2018).

Here, we focus on a semantic space which has gar-
nered substantial attention in theoretical linguistics:
person systems (e.g., Zwicky, 1977; Harley & Ritter,
2002; Harbour, 2016; Ackema & Neeleman, 2018). Such
systems–exemplified in pronoun paradigms (e.g. ‘me’,
‘you’, ’her’)–describe how languages categorize entities
as a function of their role in the context of a speech event

(i.e., speaker(s), addressee(s), other(s)). Like color and
kinship systems, person systems have long been ob-
served to exhibit constrained variation.

The person space
Research on the typological distribution of person sys-
tems has hypothesized an inventory of four discrete
categories: first exclusive (speaker only), first inclusive
(speaker and addressee), second (addressee) and third
(other) (Harley & Ritter, 2002; Cysouw, 2003; Bobaljik,
2008). The interaction with number multiplies the pos-
sible distinctions.

Here, we focus specifically on first person systems, as
they allow us to investigate a contrast that is not instan-
tiated by English (1st inclusive vs. 1st exclusive). The-
ories of first person systems have posited two binary
features, one for person (±addressee) and one for num-
ber (±minimal) (Bobaljik, 2008; Cysouw, 2011; Harley
& Ritter, 2002).1 This two-feature system is designed
to instantiate all first person categories, as illustrated in
Figure 1.2

A language which takes advantage of the maximal
4-way contrast will have a person paradigm with 4 dis-
tinct forms (e.g., Ilocano pronouns). Alternatively, the
contrast between some cells can be neutralized within
a paradigm, in which case different cells will use the
same form. Such paradigms exhibit homophony.

Homophony which neutralizes one of the two hy-
pothesized features–person or number–has been called
systematic homophony (Harbour, 2008; Baerman, Brown,
Corbett, et al., 2005). For example, a paradigm that neu-
tralizes only the person contrast (keeping the number
one) would have just two pronominal forms, one for
both minimal inclusive and exclusive, and another for

1The ±minimal feature encodes an asymmetry in status
between the minimal group consisting of the speaker and ad-
dressee, and a larger group including others. This is used
rather than the more intuitive singular/plural contrast to dis-
tinguish between the two inclusive categories.

2The two-feature system in Figure 1 is a simplification of
current proposals for the complete person space (i.e. includ-
ing 2nd and 3rd persons). Most approaches rely on the exis-
tence of at least two different person features and three num-
ber features (Bobaljik, 2008; Harbour, 2016; Bobaljik & Sauer-
land, 2018).
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Figure 1: First person system (top) and four possible
paradigms obtained by homophony (bottom, a-d) along
with typological counts (Cysouw, 2003).

the two non-minimal (plural) categories (‘Person ho-
mophony’, Figure 1b). A paradigm that neutralizes
only number (keeping the person contrast) would have
one inclusive and one exclusive form (‘Number ho-
mophony’, Figure 1c). Homophony of both features is
also possible, as in English (‘we’ for inclusive and exclu-
sive plural, and minimal inclusive). Finally, a paradigm
can partially neutralize one feature, for example, num-
ber homophony in the inclusive, but two distinct exclu-
sive forms.

Random homophony patterns, not based on feature
neutralization, are in principle also possible. For exam-
ple, minimal exclusive and plural inclusive could share
the same form, minimal inclusive and plural exclusive
another (‘Random homophony’, Figure 1d).

Feature-based theories of person systems (cf. Fig-
ure 1) predict that systematic homophony is a nat-
ural consequence of feature-neutralization (or loss),
and should arise regularly and be (easily) learnable.
By contrast, they argue that there is no linguistic
basis for random homophony, which is expected to
arise only by historical accident, and be less readily
learnable. Intuitively, there is nothing which ties to-
gether homophonous cells in a random homophony
paradigm, therefore they should be less natural for
learners. Notably, these theories are formulated on
the basis of typological samples of person paradigms
(the largest of which include <300 languages). Inter-
estingly, while their predictions hold when considering
complete paradigms, it is less clear for first person sys-
tems. According to Cysouw (2003), most of the possi-
ble paradigms for the 4-cell 1st person space have not
been documented. Among those that are attested, the
skew is zipfian: the English-like pattern (Figure 1a) is by
far the most frequent, the next most common systems
have partial or complete number homophony (e.g., Fig-

ure 1c). Unexpectedly, both random and person (only)
homophony appear to be very rare (see also Sauerland
& Bobaljik, 2013; Baerman et al., 2005).

Experimental goals and predictions

The principal goal of this paper is to set out a method
for investigating person systems experimentally. The
first step we take here is to test whether some first per-
son paradigms are more natural than others. Our mea-
sure of naturalness will be learners’ likelihood of infer-
ring the relevant paradigm. We will test three main hy-
potheses: the first is a sanity-check, and the second two
are derived from the theories outlined above in combi-
nation with the typology.

The first hypothesis is that, all things equal, learn-
ers generally assume a new language to have the same
structure as their own. Learners in our experiment are
native English speakers, therefore this predicts that they
will be most likely to infer a first person paradigm that
is English-like in its homophony pattern. The second
hypothesis is that typologically frequency is correlated
with learnability (Culbertson, 2018). This predicts that
learners will be more likely to infer a paradigm char-
acterized by number homophony than person or ran-
dom homophony.3 The third hypothesis is that there
is a universal set of person/number features, as in (3),
which learners are sensitive to regardless of their na-
tive language. This predicts that natural homophony
patterns–which neutralize one specific feature–should
be more likely to be inferred by learners than random
homophony.

To test these predicted patterns of inference, we use
an artificial learning paradigm in which learners are
required to generalize (or extrapolate) from ambigu-
ous evidence (a.k.a ‘Poverty-of-the-Stimulus design,
Wilson, 2006; Culbertson & Adger, 2014). Participants
are trained on two cells of a first person paradigm, and
must then use the forms they have learned to express
all the cells in the paradigm. In other words, they must
extrapolate the forms they have learned to the remain-
ing two categories. For example, if a learner is trained
on two distinct forms for exclusive minimal (speaker
only) and exclusive plural (speaker plus others), they
will be tested on the two remaining categories that in-
clude the addressee. If they use the plural form for both
new categories, then they have inferred an English-like
paradigm. Different patterns of extrapolation would in-
dicate person or random homophony (as described in
detail in Table 1).

3In principle this also predicts that learners should be most
likely to infer an English-like paradigm, since this pattern of
person and partial-number homophony is much more com-
mon. However, we cannot test this prediction with English-
speaking learners.
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Table 1: Summary of conditions.

Condition
Critical
training

set

Critical
held-out

set

Compatible
paradigms

(1) excl.min,
excl.++

incl.min,
incl.++

English-like,
Person Hom.,

Random Hom.

(2) excl.min,
incl.min

excl.++,
incl.++

English-like,
Number Hom.,
Random Hom.

(3) incl.min,
incl.++

excl.min,
excl.++

Person Hom.,
Random Hom.

(4) excl.++,
incl.++

excl.min,
excl.min

Number Hom.,
Random Hom.

Methods
This experiment, including all hypotheses, predictions,
and analyses, was preregistered.4

Participants
A total of 332 English-speaking adults were recruited
via Amazon Mechanical Turk (female = 152). Partic-
ipants were paid 2 USD for their participation which
lasted approximately 15 mins. Per our pre-registered
plan, participants were excluded if (a) their accuracy
rates during exposure training were below 80%, or (b)
their accuracy rates for trained cells during the test
phase were below 66%. This resulted in analysis of 181
participants (Conditions 1: 46; Condition 2: 50; Condi-
tion 3: 49; Condition 4: 36).5

Design
Participants were randomly assigned to one of four pos-
sible conditions, summarized in Table 1. Conditions dif-
fered in which subset of two first person categories was
trained (critical training set) and held-out (critical held-out
set). This determines which alternative full paradigms
are consistent with the two categories participants have
learned. Conditions 1 and 2 are consistent with an
English-like pattern (or systematic homophony). Con-
ditions 3 and 4 are each consistent with one type of sys-
tematic homophony, and random homophony.

All participants were additionally exposed to another
four pronominal forms which mapped into the second

4Maldonado, M., & Culbertson, J. (2019, January 29). Ex-
trapolation to bipartitions. https://doi.org/10.17605/OSF
.IO/J2RCN.

5High accuracy rates on trained critical items were re-
quired because extrapolation of these forms is not inter-
pretable if participants have not learned them.

Table 2: Highlighted family members for each category.
Category Highlighted set

1st excl.min speaker
1st incl.min speaker, addressee
1st excl.pl speaker, other(s)
1st incl.pl speaker, addressee, other(s)
2nd sg. addressee
2nd pl. addressee, other(s)
3rd sg. one other
3rd sg. multiple others

and third person singular and plural categories. These
forms were used as controls.

Materials
The language consisted of 6 different pronoun forms,
used for the control categories (2nd sg/pl, 3rd sg/pl),
plus the critical first person forms. For each participant,
these 6 lexical items were randomly drawn from a list of
8 CVC non-words created following English phonotac-
tics: ‘kip’, ‘dool’, ‘heg’, ‘rib’, ‘bub’, ‘veek’, ‘tosh’, ‘lom’.
Items were presented orthographically.

To express the pronoun meanings, we commissioned
a cartoonist to draw scenarios involving a family of
three sisters and their parents. Each family member has
a clearly-defined role in the conversational context. The
two older sisters are speech act participants (in all sce-
narios they are either speaker or addressee). The third
(little) sister was spatially close, but never a speech act
participant. The parents were seated in the background
(serving as additional others).

Pronouns were used as one-word answers to ques-
tions like ‘Who will be rich?’. Meanings were expressed
by highlighting subsets of family-members, as in Table
2.6 An example illustrating 1st incl.min is provided in
Figure 2. All questions were English interrogative sen-
tences of the form ‘Who will...?’, which were randomly
drawn from a list of 60 different tokens.

Procedure
Participants were first introduced to the family, includ-
ing the names of the sisters, and were told they were
going to see the sisters playing with a hat that had two
magical properties: whoever wore it could see the fu-
ture but would also talk in a mysterious ancestral lan-
guage. Participants were instructed to figure out the
meanings of words in this new language. They were
given a hint that the words were not names, and an ex-
ample trial with an English pronoun (’her’).7

6To ensure that forms were not associated with specific
quantities, in all non-minimal categories, pronouns randomly
referred to two or three individuals. Third person singular
meanings were always expressed with a female other.

7In addition, the speaker and addressee roles switched
during the experiment to highlight that the words were de-
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Figure 2: Trial example in the test phase for the inclusive minimal category.

The experiment had two phases. In the training
phase, participants were taught the pronouns in the
control and training sets (6 person categories). Each
training trial had two parts: a scene where a question is
asked, and a scene where the question is answered with
a pronoun form in the language (cf. Figure 2). There
were 12 training trials (2 repetitions per form). Partici-
pants were given feedback on their answers.

After this initial training phase, participants were
given an initial test of the trained forms. Each trial con-
sisted of a question and answer scene, as in training,
followed by a ‘what if?’ scene in which a new set of
individuals was highlighted. They were asked to pick
the correct word for that meaning among two options.
There were 16 such trials (2 repetitions per control form,
4 per critical training form). Participants were given
feedback on their answers. The test phase involved
a similar procedure but included trials for the two re-
maining critical categories, i.e. the held-out set. This
phase consisted of 48 trials (6 repetitions per form). Par-
ticipants received no feedback during this phase.

The experimental session lasted approximately 15
minutes. The order of presentation of meanings was
fully randomized within training and test phases for
each participant.

Results
Recall that participants were taught two pronominal
forms (coded as forms 1 and 0), which they had to use to
describe both a critical trained set of first person mean-
ings, and a held-out set. Figure 3 shows the propor-
tion of trials on which participants chose the ‘form 1’
(pronoun) for each first person category during the test
phase. Choice of the same form across categories indi-
cates homophony. A visual inspection of Figure 3 sug-

pendent on contextually-determined speech-act roles.

gests that participants in Conditions 1 and 2 are consis-
tently using one form for 1st excl.min., and the other for
the remaining three categories: this indicates inference
of an English-like paradigm. Participants in Conditions
3 and 4 appear somewhat noisier in their responses,
however, distinct patterns are evident. In Condition 3,
one form is used for the two minimal categories, and
the other for the plurals (consistent with person ho-
mophony). In Condition 4, one form is used for the two
exclusive categories, and, at least for some participants,
the other form is used for the two inclusive categories
(consistent with number homophony).

Following our pre-registered plan, we conducted
three analyses to evaluate these patterns statistically8:

Prediction 1: Preference for L1 pattern Figure 3 sug-
gests that participants in Conditions 1 and 2 are more
likely to infer a stable pattern, as predicted if an L1-
like pattern is easier to learn. To test this, we used
joint entropy of the two held-out categories to measure
how variable participants’ are in their mapping of the
taught forms for the two held-out categories. The en-
tropy value for a given category indicates the degree of
uncertainty or variability in the responses. The joint en-
tropy will therefore reveal the level of variability or un-
certainty for each of the two held-out categories, with
higher joint entropy values for participants who are less
consistent in their answers. We fit a simple linear re-
gression model predicting joint entropy by Condition
(4 levels, treatment coded, Condition 1 as baseline). No
random effects were included in the model, as each par-
ticipant had a single joint entropy value associated. As
predicted, joint entropy rates were significantly higher
for Conditions 3 and 4 (intercept= .28; vs. 3: β = .639

8All analyses used the lme4 package in R (Bates, 2010). The
data and analyses script can be found here.
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Figure 3: Proportion of ‘form 1’ choices for each first person category during the test phase. The held-out set for
each condition is highlighted in bold-face. Choice of the same form (1 or 0) across categories indicates homophony.
Dots are means of individual participants. Boxplots show by-participant means, quartiles, and range.

±.12, p < .001; vs. 4: β = .447 ±.13, p < .001). Joint en-
tropy rates for Condition 2 were marginally higher than
Condition 1 (β = .232± .12 , p = .055).

Prediction 2. Preference for number over person ho-
mophony Figure 3 provides some evidence that par-
ticipants in Conditions 3 and 4 are inferring paradigms
with person and number homophony. Based on ty-
pological frequency, we predicted that number ho-
mophony should be more readily inferred than person
homophony. If this is the case, then we should see a
higher overlap in forms that share number in Condition
3 (columns in table 1) than forms that share clusivity
in Condition 4 (rows). We measured this degree of ho-
mophony using the joint entropy between the relevant
cells. For person homophony, we merged cells within a
column and calculated joint column entropy. For num-
ber homophony, we merged cells within a row and cal-
culated joint row entropy. The lower the joint entropy
levels for a given homophony type, the more likely
it is that participants are inferring a paradigm which
neutralized that distinction. A simple linear regression
model predicting joint entropy by Condition (2 levels,
treatment coding, Condition 3 as baseline) revealed a
marginally significant difference ( β = .207 ± .11, p =
.068), with higher rates of person homophony (Condi-
tion 3) than number homophony (Condition 4). This
fails to confirm our prediction.

Prediction 3. Preference for systematic over random
homophony Finally, are participants in Conditions 3
and 4 in fact more likely to infer systematic rather than
random homophony (as suggested by Figure 3)? To test
this, the joint column/row entropy scores for system-

atic homophony computed above were compared to a
random homophony score: the joint entropy of all al-
ternative two-category combinations.9 We ran separate
mixed-effects models for Conditions 3 and 4, predicting
entropy by homophony type (systematic vs. random)
and including random intercepts per subject. We used
likelihood ratio tests to compare these models to mod-
els with no fixed-effects. In both cases, entropy score
for the systematic homophony pattern was significantly
different from the random homophony score (person
vs. random in Condition 3: χ2 = 171.6, p < .001; num-
ber vs. random in Condition 4: χ2 = 84.4, p < .001).
This confirms that participants are more likely to use
forms in a way that is consistent with systematic, not
random homophony.

Discussion
In this experiment, we exposed English-speaking learn-
ers to sub-paradigms expressing person categories in
a new language. We focused on first-person systems,
which have been argued to have a universal basis in two
features, encoding person and number. Participants
were taught labels for two first person meanings, and
asked to extrapolate to the two remaining meanings.
We tested three hypotheses, designed to evaluate (1)
whether learners were most likely to infer an English-
like paradigm; (2) whether number homophony was
more likely than person homophony (expected based
on typological frequency); and (3) whether systematic
homophony was more likely than random homophony

9For example, the joint column entropy in Condition 3 was
compared to the joint entropy of each pair of diagonal and
horizontal cells.
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(predicted by feature-based theories).
Our results confirm that learners’ are indeed highly

likely to infer an English-like pattern when their train-
ing is consistent with this, producing systematic pat-
terns of extrapolation from trained forms to new mean-
ings. This result functions as a sanity check: it shows
that participants are indeed understanding the stimuli
in terms of a pronominal system.10

Our results also indicate that systematic
homophony–which neutralizes either the number
or person feature–is more natural than random ho-
mophony. This supports the claim that learners
perceive the first person space as based on these two
distinct features. Importantly, this finding cannot be
accounted for solely based on experience with English.
Inferring a person homophony pattern requires making
a productive use of the ±minimal distinction. This
is not the same number contrast made in English
pronouns, which distinguish atomic (speaker only)
and non-atomic entities (i.e., the more familiar singu-
lar/plural distinction). Similarly, inferring a number
homophony pattern requires participants to learn and
generalize the±exclusive contrast, which is completely
absent in English.

As for the typological difference between number
(more common) and person (very rare) homophony,
this does not appear to correlate with a learning differ-
ence in our task. Learners were, if anything, marginally
more likely to infer paradigms characterized by person
(Condition 3) rather than number homophony (Con-
dition 4). One possibility is that, unlike random ho-
mophony, the rarity of person homophony in first per-
son systems cross-linguistically is purely accidental, or
reflects low sampling numbers. Indeed, person ho-
mophony is found for other parts of the person space
(e.g., homophony of 1st and 2nd person in some lan-
guages). However, it may also reflect participants’ ex-
perience of person homophony in English. Assum-
ing that English encodes an atomic/non-atomic num-
ber distinction, it is possible to characterize English as a
case of (only) person homophony (Harbour, 2016). In
other words, English speakers have more experience
with distinctions in number than in clusivisty. Indeed,
a posthoc analysis shows that accuracy rates on trained
categories (before exclusion) are higher in Condition 3
than 4 (p < .001), suggesting that the person distinction
was harder to learn than the ±minimal distinction.

Finally, it is worth noting that differential sensitivity
to person and number may also explain the marginal
difference between Conditions 1 and 2. Both of these
conditions allowed participants to generalize to an

10This is further confirmed by a debrief questionnaire, in
which most participants reported having understood the new
words as pronouns. For example, participants in Condition 4
have described the meaning of form 1 as ’Me or us not includ-
ing you’ and the meaning of form 0 as ’Us including you’.

English-like paradigm, but they differed in whether a
person or a number contrast was learned during the
training phase (cf. Table 1). It could be that learning
a new or unexpected distinction–between inclusive and
exclusive minimal forms–led learners to be less likely to
neutralize this feature in the plural.

Conclusion

In this study, we present the first experimental evi-
dence for differences in learnability between alternative
person paradigms. This was prompted by recent re-
search in cognitive science on semantic spaces, and a
lively literature in theoretical linguistics on the univer-
sal basis of person systems. We find, perhaps unsur-
prisingly, that English learners have a strong bias for
first person paradigms that resemble their native lan-
guage. They are more likely to infer paradigms analo-
gous to English, and show a greater tendency to neu-
tralize features that English also neutralizes (i.e. per-
son). However, we also find that participants are sen-
sitive to contrasts not found in their native language.
Learners make productive use of both the ±minimal
and ±exclusive distinctions, neither of which is present
in English. Importantly, as predicted by feature-based
theories of first person systems, learners were more
likely to infer patterns which neutralized these features
as compared to patterns in which featurally-unrelated
cells were randomly homophonous. These initial re-
sults suggest that the paradigm we have developed can
answer theoretically-motivated about how languages
carve up the person space. Future work will target the
full person paradigm, and incorporate recent insights
about the potential role generally cognitive biases, such
as simplicity, and communicative pressures like need
probability (Kay & Regier, 2007; Kemp & Regier, 2012).
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Abstract 
How does cross-linguistic variation in grammatical structure 
affect children’s acquisition of number words? In this study, 
we addressed this question by investigating the case study of 
young speakers of French, a language in which the number one 
and the indefinite article a are phonologically the same (i.e., 
un). We tested how French-speaking children interpret un, and 
whether it more closely resembles the English word a or one. 
We found that French-speaking children almost always 
accepted sets of 1 for un, but that their responses for sets of 2 
were more equivocal, with many children saying “Oui” (Yes) 
when asked whether there was un. Overall, French children’s 
interpretation of un differed from how English-speaking 
interpret both a and one. This suggests that French-speaking 
children’s interpretation of un reflects the ambiguity of the 
input that they are exposed to. We conclude that French 
morphological structure may pose a challenge to French-
speaking children in acquiring an exact numerical meaning for 
the word un, potentially causing a delay in number word 
learning.  

Keywords: Number; language; cognitive development 

Introduction 
How does the grammatical structure of a language affect 
children’s acquisition of number words? By some accounts, 
morphology plays a central role in the acquisition of number 
words as it provides a conceptual framework for 
understanding small number words prior to conceptualizing 
them in terms of positive integers (Carey, 2004; Sarnecka, 
Kamenskaya, Yamana, Ogura, & Yudovina, 2007). The 
acquisition of these number words is progressive and follows 
a specific order (Le Corre & Carey, 2007; Sarnecka & Carey, 
2008; Wynn, 1990). First, children learn the meaning of one, 
such that when they are asked to provide one object, they are 
able to correctly give one object and avoid giving one for 
other number requests. At this stage, these children are called 
“one-knowers”. Then, children learn an exact meaning for 
two, and can give one or two when asked for one and two 
objects, but provide an incorrect response for other numbers. 
At this stage, children are called “two-knowers”. Following 
the same pattern, children become “three-knowers” and 
sometimes “four-knowers”. Finally, sometime after learning 
these number words, children seem to realize that they can 
use the count list to generate and give sets of any cardinality 
and for this reason, they are referred to as “Cardinal-
Principle-knowers” (CP-knowers). 	

According to Carey (2009) and Sarnecka et al. (2007), 
morphology occupies a central role in the numerical 

acquisition process as children initially interpret one, two and 
three as markers of grammatical number categories. On this 
hypothesis, when children hear the word one in their input, it 
frequently occurs with singular agreement (e.g., one cat), 
whereas larger number words typically occur with plural 
nouns (e.g., two cats). Such cues might speed learning, 
allowing children to “bootstrap” number word meanings 
from grammatical morphology, such that, initially “one” is 
assigned a meaning similar to “a”, and “two” is interpreted 
like a plural (Barner & Bachrach, 2010; Bloom & Wynn, 
1997; Clark & Nikitina, 2009). Compatible with this, 
children learning languages like English, which has a 
grammatical singular/plural distinction, learn the meaning of 
one earlier than children exposed to languages that lack 
obligatory singular/plural marking, such as Japanese and 
Mandarin (Barner, Libenson, Cheung, & Takasaki, 2009; Le 
Corre, Li, Huang, Jia, & Carey, 2016; Sarnecka et al., 2007). 
Additionally, 2- to 4-year-old children learning Slovenian 
and Saudi Arabic, languages that have singular/dual/plural 
systems, acquire the meanings of one and two earlier than 
children exposed to any other previously tested language, 
despite being less familiar with counting overall 
(Almoammer et al., 2013; Marusic et al., 2016).  

While previous tests of the relation between morphology 
and number word learning have focused mainly on how 
differences in grammatical morphology across languages 
might impact number words, few studies have asked whether 
the grammatical form of the numbers themselves might 
impact learning. Although children might initially interpret 
“a” and “one” similarly in English to learn a preliminary 
meaning of “one”, they differentiate these words by at least 2 
years of age: when children are shown a plate with two 
strawberries and are asked, “Is there a strawberry on the 
plate?” and, “Is there one strawberry on the plate?”, 2-year-
olds answer “Yes” for a strawberry but “No” for one 
strawberry, and do so as soon as they become one-knowers 
(Barner, Chow, & Yang, 2009). This suggests that a receives 
a purely existential interpretation (compatible with sets of 2 
objects), while one receives an exact interpretation 
(compatible with sets of only 1 object). This suggests that, to 
acquire an exact meaning of “one”, English children’s input 
for “a” and “one” must differ.  

Interestingly, however, other languages, like French and 
German feature the same phonological representation for 
both “a” and “one”, a fact which might make it more difficult 
for them to determine whether to assign an existential or 
exact meaning to any particular instance of the word. For 
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example, in French, the word un is used both as an indefinite 
article and as a numeral. Consequently, French learners are 
presented with a potentially difficult learning problem, since 
the same phonological form is associated with both exact and 
non-exact meanings in their input.  

Here, we investigated how French-speaking children 
interpret un – whether it resembles more closely the English 
a or one – and whether their interpretation of un differs based 
on the context of the task and whether surrounding test items 
are numerals or are restricted to non-exact quantifiers like “
some” and “all”. To further understand the impact of the 
ambiguity of the French morphological structure on children
’s interpretation of un, we compared the French-speaking 
children’s interpretation of un to those of English-speaking 
children for a and one (obtained from Barner, Chow, & Yang, 
2009). 

Method 

Participants 
In total, 63 French monolingual children, aged 2;4 to 4;5-
year-old were included in the study (M = 42.6 months). An 
additional 13 were excluded from analysis because of failure 
to complete all 3 tasks (n=2), bilingual status (n=7) or 
because they were not yet one-knowers or greater (non-
knower; n=4). Participants were recruited from preschools in 
Québec (Canada). Informed consent was obtained from the 
parents. The study received approval by the ethics committee 
of UCSD.  

Materials and procedure 
Participants were tested at their preschool in a quiet corner of 
their classroom. Each session lasted approximately 15 min 
and included (1) a Truth-Value Judgement task, (2) the Give-
a-Number task and (3) the Highest Count task. All 
participants were administered the tasks in this order. 
Children received a small prize for their participation at the 
end of the session.  
 
Truth-Value Judgement Task (TVJ). This task was 
adapted from Barner, Chow, and Yang (2009) and its goal 
was to measure children’s comprehension of the quantity 
terms: un, des, deux, tous (i.e., one/a, some, two, all) by 
asking them questions like, “Est-ce qu’il y a un canard dans 
la maison?” (Is there a/one duck in the house). Stimuli 
consisted of a drawing of a farmhouse and a forest, as well as 
three sets of small plastic animals (i.e., cats, pigs, and ducks). 
These animals were chosen as they are denoted by masculine 
nouns in French and therefore accompanied by the masculine 
form of the quantifier un (in contrast to the feminine une), 
which is the same form that typically corresponds to the 
number one (un). Animals were presented in separate piles 
organized by kind (Figure 1). Children were presented with 
the following instructions: “Ça c’est la maison des animaux 
et ça, c’est la forêt. Moi je vais mettre des animaux dans la 
maison puis je vais te poser des questions. Toi, tu dois me 

répondre par oui ou non, ok?” (i.e., “This is the animals’ 
house and this is the forest. I will put animals in the house 
and ask you some questions. You need to answer by yes or 
no, ok?”). For each trial, the experimenter moved a certain 
number of animals into the farmhouse and asked the child a 
yes/no question. The animals were returned to their original 
piles after each trial. Children were randomly assigned to one 
of two conditions that differed with respect to the filler items 
that they included: (1) the Number condition, (2) the 
Quantifier condition. Children in the Number condition were 
presented with un and, as filler items, the number word deux 
(two), as well as the quantifier tous (all). Children in the 
Quantifier condition were also presented with un, in addition 
to the quantifiers des (some) and tous (all). Each item was 
presented with two different sets of animals. In both 
conditions, un was presented with sets of 1 and 2 objects. 
Children in the Number condition were asked questions with 
deux in the presence of 2 and 3 objects, to check whether they 
would interpret the number as exactly two and not compatible 
with larger sets (even by one object). Children in the 
Quantifier condition were questioned about des with sets of 
1 and 2 objects, to check whether they would have a plural 
interpretation of des. In both conditions, tous was presented 
with sets of 3 and all 4 objects, to ensure that children had an 
interpretation of tous that was compatible with only all 
objects being present. Each combination of item and set was 
presented three times, for a total of 18 critical trials. The order 
of critical trials was counterbalanced across subjects.  

 

 
 

Figure 1: Material used in the TVJ task.  
 
Give-a-Number Task (Give-N). This task was adapted from 
Wynn (1990) and its goal was to evaluate children’s 
understanding of number words. Stimuli consisted of a 
puppet, a red plastic plate, and 10 foam paper cookies. 
Children were asked to put a certain number of cookies into 
the plate (e.g., “Peux-tu mettre trois biscuits dans l’assiette?” 
i.e., “Could you put three cookies into the plate?”). After this 
first prompt, children were asked to count to verify that they 
had provided N, and if they had chosen to fix their answers, 
only their final responses were recorded. Each child was 
given 15 trials: three trials for each of the numbers 1, 2, 3, 4, 
6. Order of trials was counterbalanced across children. 
Children were credited as N-knowers (e.g., two-knowers) if 
they correctly gave N cookies two out of three times when 
asked for N, and failed to give the correct N two out of three 
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times for N+1. In addition, to be classified as an N-knower, 
children could not use N more than 50% of the time for 
requests other than N. Finally, children were credited as CP 
knowers if they could correctly give six, two out of three 
times.  
 
Highest Count Task (HC). Participants were asked to count 
as high as they could. The last number reached before making 
an error was taken as the highest count.  

Results 
Our primary question of interest was how French-speaking 
children interpret un and whether their interpretation differs 
according to the presence of other exact expressions in the 
context. In our first set of analyses, we tested whether 
performance in both conditions (Number and Quantifier) 
differed in terms of knower-levels (Give-N), Age, and 
Highest Count. Then, we conducted a series of analyses on 
tous, des, and deux to ensure that children either performed 
similarly across conditions (i.e., tous) or as expected given 
their respective conditions (i.e., des/deux). In our third set of 
analyses, we addressed our principal question of interest: 
Whether acceptance of sets of 1 or 2 objects for un differed 
across conditions. Finally, in a fourth set of analyses, we 
assessed how the acceptance rates for un compare to those for 
a/one in English by statistically comparing previously 
published data from English-speaking children (obtained 
from Barner, Chow, & Yang, 2009).  

Preliminary Analyses 
Knower-Levels. Table 1 shows the distribution of knower-
levels across Conditions (Number vs Quantifier). Aside from 
a slightly greater number of one-knowers in the Quantifier 
condition, the conditions were similar in terms of their 
representation of each knower-level. Knower-level was not 
included as a factor in subsequent analyses comparing 
conditions both because our hypothesis is neutral to 
differences in knower level, and because such analyses 
require very substantial sample sizes to obtain adequate 
power. 
 

Table 1: Distribution of Knower-Levels in the Number 
and Quantifier condition 

 
 

Table 1: Here, 1K refers to one-knower, 2K to two-knower, 
3K to three-knower, 4K to four-knower and CP to cardinal-
principle-knower.  

 
                                                        
1 For tous, the first model specification was: Acceptance ~ HC + 

Age + (1|subject). The second was: Acceptance ~ HC + Age + Set 
Size * Conditions + (1|subject). For des and deux, the first model 

Highest Count. On average, children had difficulty counting 
to “dix/ten” (M = 6.30; SD = 4.80). The average Highest 
Count did not differ between the Number condition (M = 
6.50; SD = 4.39) and the Quantifier condition (M = 6.14; SD 
= 5.18; p = 0.77). 

 
Age. There was no difference in age between children in the 
Number condition (M = 42.71 months; SD = 6.86) and the 
Quantifier condition (M = 42.43; SD = 6.84; p = 0.87). 

Truth-Value Judgment Task 
Preliminary analysis of Tous, Des, Deux. In total, there 
were 35 children in the Quantifier condition and 28 in the 
Number condition. Figures 2 and 3 show the percentage of 
‘‘oui/yes” responses for each quantity term in each condition. 
As a first control check, we considered whether conditions 
differed in their acceptance of tous when controlling for Age 
and Highest Count. To do this, we performed a logistic 
mixed-effects model comparison,1 using lme4 and car 
packages in R (Bates, Maechler, Bolker, & Walker, 2015; 
Fox & Weisberg, 2011).  

In our first model, we predicted acceptance (coded as yes 
or no) from Age and Highest Count (HC), with participant as 
a random factor. In our second model, we added the main 
effects and interaction of Condition (Number vs. Quantifier) 
and Set Size (3 or all 4 objects) to the first model. In this 
model, we expected only a main effect of Set size and no 
difference between Conditions or interaction between 
Conditions and Set Size. The models were significantly 
different (c2(3) = 315.33, p = <.0001). As expected, in our 
second model, the only significant predictor was Set Size 
(c2(1) = 30.75, p = <.0001). This suggests that, in both 
conditions (Number and Quantifier), children were more 
likely to accept sets containing all 4 objects (Number: M = 
0.99, SD = 0.11; Quantifier: M = 1.00, SD =0.00) compared 
to sets of 3 objects (Number: M = 0.25, SD = 0.44; Quantifier: 
M = 0.18, SD = 0.39).  

As our second control check, we asked whether children in 
the Number condition accepted sets of 2 more often than sets 
of 3 objects when presented with deux (two), controlling for 
Age and Highest Count. In a model predicting acceptance 
from Age, Highest Count, and Set Size (with participant as a 
random factor), only Set Size was a significant predictor 
(c2(1) = 21.26, p = <.0001). As expected, children accepted 
sets of 2 (M = 0.92, SD = 0.28) more often than sets of 3 (M 
= 0.28, SD = 0.45). Finally, as our last control check, we 
asked whether children in the Quantifier condition accepted 
sets of 2 more often than sets of 1 object when presented with 
des, after controlling for Age and Highest Count. Similar to 
the analysis with deux, in a model predicting acceptance from 
Age, Highest Count and Set Size (with participant as a 
random factor), only Set Size was a significant predictor 
(c2(1) = 15.89, p = <.0001). In this context, children answered 

specification was: Acceptance ~ HC + Age + (1|subject). The second 
model was: Acceptance ~ HC + Age + Set Size + (1|subject).  

 1K 2K 3K 4K CP 
Number 8 6 6 3 5 
Quantifier 13 6 8 4 4 
Total 21 12 13 7 9 
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“yes” more often when presented with sets of 2 (M = 0.93, 
SD = 0.26) compared to sets of 1 object (M = 0.69, SD = 
0.47), though acceptance was high overall across these cases 
(compatible with past findings in English; Barner et al., 2009, 
and formal semantic analyses of the plural; see Bale, Gagnon, 
& Khanjian, 2011; Krifka, 1989; Sauerland, Anderssen, & 
Yatsushiro, 2005; Spector, 2007). Overall, the preliminary 
analyses combined confirmed that both conditions 1) did not 
differ in terms of Age and HC, 2) elicited interpretations of 
tous, des (Quantifier) and deux (Number) that the task was 
designed to induce. 

 
 

 
 

Figure 2: Children’s percent saying “Oui/Yes” responses for 
each quantity term in the Quantifier condition in the Truth-
Value Judgment Task. For the quantifier des, the largest 
quantity that was presented is 3 objects while the smallest is 
2 objects. For un, the largest quantity that was presented is 2 
objects while the smallest is 1 object. For tous, the largest 
quantity corresponds to all 4 objects while the smallest 
quantity consists of 3 objects. Error bars indicate standard 
error of the mean.  
 

 
 

Figure 3: Children’s percent saying “Oui/Yes” responses for 
each quantity term in the Number condition in the Truth-
Value Judgment Task. For the numeral deux, the largest 
quantity that was presented was 3 objects while the smallest 
was 2 objects. For un, the largest quantity presented was 2 
objects and the smallest 1. For tous, the largest quantity 

                                                        
2 The first model specification was: Acceptance ~ HC + Age + 

(1|subject). The second was: Acceptance ~ HC + Age + Set Size * 
Conditions + (1|subject).  

corresponded to all 4 objects while the smallest quantity was 
3 objects. Error bars indicate standard error of the mean. 
 

Children’s interpretation of Un. In our main set of 
analyses, we addressed the question of how French-speaking 
children interpret un and whether their interpretation was 
exact (compatible with only sets of 1 object), inexact 
(compatible with sets of both 1 and 2 objects) or ambiguous. 
To do this, similar to the preliminary analysis, we performed 
a logistic mixed-effects model comparison.2 In Model 1, we 
predicted acceptance from Age and Highest Count, with 
participant as a random factor, and in Model 2, we added the 
main effects and interaction of Set Size (1 or 2 objects) and 
Condition (Number vs. Quantifier) to Model 1. The presence 
of a main effect of Set Size would indicate of an interpretation 
of un that is either exact or ambiguous. Furthermore, adding 
Condition to our second model allowed us to test the question 
of whether acceptance rates differed based on the context of 
the game. If children have access to two different meanings 
for un that can be triggered by the pragmatic context of the 
game, then we should expect a significant interaction 
between Condition and Set Size, and specifically, that the 
acceptance rate for 2 objects should be higher in the 
Quantifier condition compared to the Number condition. 
Models 1 and 2 were significantly different (c2(3) = 164.79, 
p = <.0001). However, in Model 2, the only significant 
predictor was Set Size (c2(1) = 50.24, p = <.0001). As can be 
seen in Figures 2 & 3, children in both conditions accepted 
sets of 1 object (Number: M = 0.96, SD = 0.19; Quantifier: M 
= 0.99, SD = 0.10) more often than sets of 2 (Number: M = 
0.38, SD = 0.49; Quantifier: M = 0.49, SD = 0.50). These 
results suggest that French-speaking children almost always 
accept sets of 1 for un, but when presented with sets of 2 
objects, their interpretation of un is uncertain, hovering 
around 50% chance of saying “Oui/Yes”, regardless of the 
context in which un is embedded.  

Thus far, our data are more compatible with the third 
alternative presented: that French-speaking children have an 
ambiguous interpretation of un that is compatible with sets of 
2 objects. In addition, despite the lack of significant 
difference between conditions, the question of whether 
French-speaking children have access to one or two meanings 
for un remains open. Indeed, our data are compatible with 
different interpretations: first, it is possible that French-
speaking children only have access to a fuzzy representation 
of un - i.e., one that is neither exact like the English one, but 
not fully inexact like a. Second, it is possible that French-
speaking children have access to two meanings for un but that 
the context of the task couldn’t trigger the different 
interpretations. In order to further shed light on these 
possibilities, we compare these French-speaking children’s 
acceptance rates to those of an English-speakers sample. 
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Comparison with English data 
To assess how these results compare to English, we obtained 
previously published data from English-speaking children’s 
performance on the same task (from Barner, Chow, & Yang, 
2009) and compared them to our sample of French-speaking 
children. The English sample included 31 participants of the 
same age (M = 45.3 months) as the French-speaking children 
in our study. The original task in Barner et al. (2009) included 
trials with a, some, most, all, none, one, two, with different 
options of set sizes, but only trials that tested a (sets of 1 and 
2), some (sets of 1 and 2), two (sets of 2 and 3), one (sets of 
1 and 2) and all (sets of 3 and all 8 objects) were selected for 
the current analyses. 

First, we compared the acceptance rates for some/des, 
two/deux, and all/tous across French and English using 
mixed-effects model comparisons.3 This was used as a 
control check to ensure that the linguistic groups didn’t differ 
in the way that they understood and responded to the task. In 
all model comparisons, we first predicted acceptance from 
Set Size (with participant as a random factor) and then, added 
Language (English vs French) and the interaction between 
the two terms in the second model. There was no difference 
across languages for some/des and two/deux (both ps > 0.01). 
There was, however, a significant difference across 
languages and Set Size for all/tous (c2(1) = 7.13, p = <.001) 
revealing that French children were more likely to accept sets 
containing all objects (M = 0.99; SD = 0.07) when asked 
about all objects compared to English speakers (M = 0.91; SD 
= 0.30)4. 

Our primary question of interest was whether French- and 
English-speaking children differed in their acceptance rate of 
a, one, and un. This question is also closely related to the 
question of whether French-speaking children have one or 
two meanings for un. Our prediction was that if French-
speaking children had access to two interpretations for un, the 
context could be manipulated to favor one interpretation over 
the other, and we expected specifically that children in the 
Number condition would be more likely to have an 
interpretation of un close to one but not a, while children in 
the Quantifier condition would have an interpretation of un 
close to a but not one. To foreshadow, we found that children 
in the Number condition had an interpretation of un that was 
similar to one but not a and that children in the Quantifier 
condition interpreted un somewhat closer to one but 
differently than a. We obtained these results by performing 4 
model comparisons contrasting the acceptance rate of: (1) the 
Number condition’s interpretation of un to English speakers’ 
interpretation of one, (2) the Number condition’s 
interpretation of un to English speakers’ interpretation of a, 

                                                        
3 In all model comparisons, the first model specification was: 

Acceptance ~ Set Size + (1|subject). The second was: Acceptance ~ 
Set Size * Language + (1|subject).  

4 The difference between French- and English-speaking children 
could be explained by the fact that the English speakers, unlike the 
French speakers, when asked for tous, were presented with sets of 
no object at all in addition to the sets of 3 and all objects. English 
speakers could have accepted the sets of 3 objects more often simply 

(3) the Quantifier condition’s interpretation of un to English 
speakers’ interpretation of one, (4) the Quantifier condition’s 
interpretation of un to English speakers’ interpretation of a. 
In all our first models, we predicted acceptance from Set Size 
(with participant as a random factor) and then, added 
Language (English vs French) and the interaction between 
the two terms in the second model.5 When comparing (1) the 
Number condition’s interpretation of un to English speakers’ 
interpretation of one, we found only a main effect of Set Size 
(c2(1) = 2.15, p = <.001) suggesting that all children were 
more likely to say “Yes” when presented with sets of 1 object 
(M = 0.96; SD = 0.19) compared to sets of 2 objects (M = 
0.31; SD = 0.47), regardless of their linguistic group. Next, 
we looked at whether (2) children in the Number condition 
interpreted un differently than English speakers’ 
interpretation of a. Here, our analysis revealed a main effect 
of Set Size (c2(1) = 20.95, p = <.001) and an interaction 
between Set Size and Language (c2(1) = 7.42, p = <.01) 
suggesting that English speakers where more likely to accept 
sets of 2 when asked for a (M = 0.78; SD = 0.42) compared 
to French speakers asked for un (M = 0.38; SD = 0.49). We 
then turned to children in the Quantifier condition and looked 
at how their interpretation of un compared to English. We 
first checked whether (1) the Quantifier condition’s 
interpretation of un differed from English one. Here, we 
found a main effect of Language (c2(1) = 8.01, p = <.01) and 
of Set Size (c2(1) = 30.22, p = <.001), but the interaction 
between the two terms was not significant. This suggests that 
all children were more likely to accept sets of 1 object (M = 
0.98; SD = 0.12) compared to sets of 2 objects (M = 0.39; SD 
= 0.49) and that French-speaking children (M = 0.77; SD = 
0.42), on average, were more likely to say “Yes” compared 
to English-speaking children (M = 0.51; SD = 0.50). Finally, 
we looked at (4) how interpretation of un in the Quantifier 
condition compared to English speakers’ interpretation of a. 
Here, we found a significant effect of Set Size (c2(1) = 17.47, 
p = <.001), but most importantly a significant interaction 
between Set Size and Language (c2(1) = 6.77, p = <.01), 
driven by the fact that French-speaking children were less 
likely to accept sets of 2 objects for un (M = 0.49; SD = 0.50) 
compared to English-speaking children for a (M = 0.78; SD 
= 0.42). Overall, these results suggest that children in the 
Quantifier condition interpreted un differently from English-
speaking children’s a and that children in the Number 
condition had an interpretation of un that was similar to one 
but not a.  

 

due to the fact that it was already closer to “all objects” compared to 
the sets with no object at all. Regardless, the acceptance for sets of 
3 in was still lower than 50% and for this reason, was not considered 
in our next analyses.  

5 In all model comparisons, the first model specification was: 
Acceptance ~ Set Size + (1|subject). The second was: Acceptance ~ 
SetSize * Language + (1|subject).  
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Figure 4: Comparison of English- and French-speaking 
children’s acceptance rates for a, one, un in the Truth-Value 
Judgment Task (data from Barner, Chow, & Yang, 2009). 
“Un/Quantifier” represent the performances of children in the 
Quantifier condition while Un/Number represent the 
performances of children in the Number condition. Each term 
was presented with sets of one and two objects. Error bars 
indicate standard error of the mean.  

Discussion 
The goal of this study was to investigate the role of the 
morphological structure on children’s acquisition of number 
words, via the case study of French-speaking children. 
Specifically, we investigated (1) how French-speaking 
children interpret un, and whether it is interpreted exactly, 
non-exactly or ambiguously, and (2) whether they have 
access to different meanings for un that can be triggered by 
the context of a task: an exact meaning that closely resembles 
English one and an inexact meaning similar to English a. 
When comparing acceptance rates across conditions, we 
found that children almost always accepted sets of 1 for un, 
but that their responses for sets of 2 were more varied, with 
many children saying “Oui/yes” when asked whether there 
was un, regardless of whether they were in the Number or 
Quantifier condition. However, an interesting mixed pattern 
emerged when comparing these acceptance rates to those of 
English-speaking children of the same age: children in the 
Number condition interpreted un as English-speaking 
children interpreted one (i.e., an exact interpretation 
compatible with only sets of 1 object), but children in the 
Quantifier condition interpreted un in a way that was not 
close to English-speaking children’s a.  

Overall, our results suggest that the morphological 
structure of French has an impact on children’s learning. 
Specifically, our findings support the view that the 
homophony of un, compatible with both an exact and inexact 
interpretation, matters for the acquisition of the number word 
one as it creates a communicative problem. This homophony 
of un may provide more variable input to French-speaking 
children, leading to an ambiguous interpretation of the word. 
The contrast between English- and French-speaking 
children’s interpretations of un vs one/a also suggests that 
French-speaking children not only need to learn that un can 

bear different meanings (exact and inexact) but also that 
meanings are affected by the context.  

It has to be noted that the homophony of un is not the only 
aspect of French’s morphology that could have an impact on 
children’s acquisition of un as a numeral. Indeed, French’s 
plural morphology is less salient in verbal communication 
compared to other languages like English. For example, in 
spoken French, very few nouns and verbs mark the 
singular/plural distinction, with the result that most nouns 
lack an audible word-final s to mark the plural like in English. 
This lack of salient plural agreement might exacerbate the 
challenge faced by French-speaking children to acquire an 
exact interpretation for un, but also other number words. 
Indeed, in English, children could in theory quickly start to 
notice a distinction between one and two as one always 
receives the singular agreement while two receives the plural. 
However, in French that distinction is unavailable for 
children (e.g., chat – i.,e., cat – is pronounced the same way 
regardless of whether it is presented with un or deux). As a 
consequence, French-speaking children might need to rely on 
more complex syntactic structures to pick up the distinction 
between un and deux (e.g., un chat dort/sleeps vs deux chats 
dorment/sleep) and may need a significantly larger amount of 
input compared to English speakers – as not all verbs change 
phonetic forms based on plural agreement.  

Another interesting aspect of these results is the apparent 
discrepancy between French children’s performance for un in 
the Give-N task and the TVJ task. As a reminder, we 
excluded children who were not at least classified as One-
knower at the Give-N task. This implies that when asked to 
provide un biscuit (i.e., one cookie), all children were able to 
provide exactly 1 object at least 2 out of 3 times. However, 
from the TVJ task, we can see that these same children still 
accepted sets of 2 objects as compatible with un around 50% 
of the time. Nonetheless, these results are not necessarily in 
contradiction. Indeed, these results are compatible with 
previous accounts which posit that though words like a and 
one may be associated with cardinal values of 1, they may not 
be pragmatically “strengthened” to exclude larger sets, 
especially in young children (Barner & Bachrach, 2010; 
Sauerland et al., 2005; Spector, 2007). According to these 
theories, if a child knows the meaning for one and knows that 
other numerals don’t refer to set of 1 object, it would be 
infelicitous to provide more than 1 object when asked for one. 
For example, if a person asks to provide a fork, it would be 
pragmatically odd to give 2 or 3 forks. However, it would be 
more natural to have an existential interpretation of one/a in 
the context of a question – e.g., it seems less odd to say “yes, 
there is a fork in the bag” when asked whether there is a/one 
fork in bag and there is in fact 2 forks.  

Taken together, our results raise the possibility that the 
ambiguity of French morphological structure poses a 
challenge to French-speaking children in acquiring an exact 
numerical meaning for the word un, potentially causing a 
delay in number word learning. Studies are currently in 
progress to test the possibility of a delay in the acquisition of 
early number words in French-speaking children. 
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Abstract 

One of the pinnacles of human cognition is the creative insight 
of expert mathematics. While its concepts are abstract, the 
actual practice of mathematics is undeniably material and 
embodied. Mathematicians draw, sketch, write; having created 
these inscriptions, they interact with them. This iterated process 
of inscription is the engine of mathematical discovery. But how 
does this engine work? Here, using a new video corpus of 
mathematical experts working on proofs, and deploying tools 
from network and complexity science, we characterize the 
structure and temporal dynamics of how mathematical experts 
create and interact with blackboard inscriptions. We find 
regularities in the structure of this activity (e.g., emergent 
‘communities’ of inscriptions) and its temporal dynamics (e.g., 
‘bursty’ shifts in attention). By characterizing this activity, we 
gain a better understanding of the distributed ecosystem in 
which mathematical creativity occurs — including the ways that 
mathematicians actively construct their own notational niches.  

Keywords: mathematical cognition; networks; complex 
systems; inscription; distributed cognition; embodiment 

Introduction 
One of the pinnacles of human cognition is the creative 

insight of expert mathematics. Often working alone, 
sometimes for years, mathematicians generate new 
knowledge about completely abstract objects, from infinite 
sets to imaginary numbers. The actual practice of 
mathematics, on the other hand, is undeniably concrete, 
material, and embodied. Mathematicians draw. They sketch. 
They write out derivations, erase them, start again. Having 
created these inscriptions, mathematicians interact with 
them: shifting their attention, talking about and gesturing at 
them, elaborating them further. This iterated process of 
inscription is the engine of mathematical discovery.  

But how does this engine work? While philosophers, 
historians, and sociologists have argued that notations, 
diagrams, and the process of inscription are central to 
mathematical practice (Barany & MacKenzie, 2014; Mialet, 
2012; Muntersbjorn, 2003), we know surprisingly little 
about the details of this process. Here, we use tools from 
network and complexity science to characterize the structure 
and temporal dynamics of expert mathematical activity—in 
particular, the process by which experts create and interact 
with inscriptions while working on mathematical proofs.  

Notations in mathematical cognition 
Past work in a range of disciplines has explored the role of 
notations and inscription in mathematical reasoning. Within 
mathematics education, for instance, it has long been 
recognized that choosing the right notation is often half the 
battle (Polya, 2004). This is true among experts just as much 
as it is true for schoolchildren (Muntersbjorn, 2003). Indeed, 
there is now a growing body of qualitative and theoretical 
research on the centrality of inscription in mathematical 
reasoning (Barany & MacKenzie, 2014; Greiffenhagen, 
2014; Muntersbjorn, 2003; Roth & McGinn, 1998).  

More controlled, quantitative studies have established 
that notations are a critical part of the distributed system of 
mathematical reasoning. In particular, there are bidirectional 
influences between, on the one hand, the specific notations 
used to solve mathematics problems, and, on the other, the 
psychological processes used to solve problems (Goldstone, 
Marghetis, Weitnauer, Ottmar, & Landy, 2017). Both 
undergraduate students and more expert reasoners, for 
instance, rely on the correspondence between spatial 
proximity and algebraic precedence in standard algebraic 
notation; algebraic performance is improved when this 
correspondence is maintained, harmed when it is violated 
(Landy & Goldstone, 2007). Conversely, experience with 
mathematical notations can reshape the psychological 
processes used to interact with them. Marghetis and 
colleagues (2016) found that, among adults who had 
mastered the syntax of algebra, the visual system had 
learned to perceive syntactically-related elements as unified 
visual objects. How we think about a mathematical domain 
shapes how we interact with inscriptions, and interacting 
with those inscriptions shapes how we see the problem.  

Most of this past work, however, has focused on 
contexts where the notations are supplied rather than created 
by the participant. In real-world mathematical activity, by 
contrast, the reasoner must often explore multiple 
approaches to representing a problem—sketching out 
specific examples, pursuing different algebraic derivations, 
drawing a variety of different graphs—before settling on the 
final approach. Focusing only on the end product of this 
practice hides the dynamic messiness of mathematical 
reasoning. As mathematician Reuben Hersh put it, this 
confuses the clear, organized, pristine ‘front stage’ of 
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published or textbook mathematics for the messy, dynamic 
‘backstage’ of real mathematical practice (Hersh, 1991).  

Describing expert inscription activity 
In this paper, we zoom in on this messy ‘backstage’ of 

mathematical reasoning, to try to characterize the dynamic 
contexts of mathematical creativity. To do so, we draw on 
tools from network science and complex systems. We 
describe a video corpus of mathematical experts working on 
non-trivial mathematical proofs. While this corpus offers 
endless possibilities for qualitative analysis, here we adopt a 
quantitative approach that allows us to measure how experts 
create and interact with mathematical inscriptions by 
identifying the ‘inscription objects’ that each expert created 
(e.g., equations, graphs, etc.) and then creating a timeseries 
of when, exactly, the expert attended to these objects, from 
their first creation to their final glance. We use this dense 
timeseries to describe the structure and dynamics of 
inscription.  

To do so, we adapt tools from network science to offer a 
new methodology for studying situated cognitive activity: 
representing each expert’s activity as a directed network, in 
which individual inscription objects are represented as 
nodes, and transitions between objects (e.g., shifting 
attention from one graph to another) are represented as 
directed edges (see Methods and Figure 1). This approach is 
a way to ‘coarse-grain’ the messy, chalk-covered reality of 
expert inscription, to better reveal the deeper regularities 
that characterize expert notational practices.  

Methods 

Corpus 
We created a video corpus of experts solving non-trivial 
mathematics problems in a naturalistic setting (total corpus 
length: 4 hours and 40 minutes). Doctoral students in 
mathematics  (N = 7, 4 men and 3 women) were recruited 
through the website of the mathematics department at a 
major research university and compensated $10/hour.    

These experts solved up to three non-trivial problems in 
a natural setting: either their own office or a nearby seminar 
room within the mathematics department. They were 
encouraged to talk out loud as they solved the problems. All 
participants made ample use of the blackboard.  

Videos were recorded with a Sony HDR-CX405 high-
definition digital. The camera was positioned such that the 
board and the participant were visible.  

Mathematics problems 
Problems were drawn from the William Lowell Putnam 

Mathematics competition, an annual mathematics 

competition for undergraduate students. These problems are 
typically too difficult for even advanced undergraduate 
students, but tractable for mathematics experts at the 
doctoral level or above. Problems were selected to include a 
range of content areas (i.e., set theory, geometry, analysis): 
(1) Find an uncountable subset, S, of the power set of a 

countable set, such that the intersection of each pair of 
elements in S is finite.  

(2) Let f : R2→R be a function such that f(x, y) + f(y, z) + 
f(z, x) = 0 for all real numbers x, y, and z. Prove that 
there exists a function g: R→R such that f(x, y) = g(x) 
- g(y) for all real numbers x and y. 

(3) Let d1, d2, … d12 be real numbers in the interval (1, 
12). Show that there exist distinct indices i, j, k such 
that di,dj, dk are the side lengths of an acute triangle. 

Each participant worked for approximately an hour on the 
problems, depending on their availability. Most participants 
were only able to complete two of the problems in that time.  

Video Coding  
Each participant created dozens of inscriptions on the 

blackboard and then interacted with those inscriptions—by 
talking about them, gesturing towards them, or elaborating 
them with further inscriptions. We conducted a fine grained 
coding of the video corpus, at a nearly frame-by-frame 
resolution, to track the creation of and interaction with 
‘inscription objects’ on the blackboard.  

Blackboard inscriptions naturally clustered together into 
objects. For instance, a graph of a function might consist of 
two axes, labels for those axes (‘x,’ ‘y’), and then a line 
representing the function. Each of those components, 
however, naturally cluster together in both meaning (they 
are all part of the same graph) and in spatial location (they 
are all located close together, with only minimal blank space 
in between). We used these two criteria—semantic 
relatedness and spatial proximity—to identify cohesive 
‘inscription objects’ on the blackboard. 

A coder viewed each video and annotated the onset and 
offset of inscription events: either the creation of a new 
inscription object, or subsequent interactions with that 
object (via talk, gaze, gesture, further elaboration, or 
erasing). This generated a timeseries of events for each 
inscription object, from its initial creation to the final time 
that the expert attended to it. For instance, if an expert 
created a graph at the very start of a session, the timeseries 
would include the onset and offset times for that process of 
initially drawing the graph; if the expert later looked at the 
graph, the timeseries also included that event. All coding 
was conducted in ELAN, software designed for annotating 
audio and video (Lausberg & Sloetjes, 2009). 
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Network representation of inscription activity  
To characterize the structure and temporal dynamics of 

experts’ inscription activity, we used tools from network 
science. For each attempt to solve a problem, we used the 
timeseries of inscription events to generate a directed 
network, in which nodes represent inscription objects and 
directed edges represent transitions between objects.  

As a simplified illustration, consider a scenario where an 
expert begins to solve a problem by creating and interacting 
with four inscription objects: three number-lines and one 
triangle (Fig. 1). The final network representation of this 
inscription activity would consist of four nodes, one for 
each inscription object, with a directed edge between two 
nodes whenever the expert attended first to one object and 
then to the other. For instance, if the expert started by 
creating a number-line (Fig. 1A), before abandoning that 
number-line to draw a triangle (Fig. 1B), the network 
representation of their activity up to that point would consist 
of two nodes — one for each inscription object — and a 
single directed edge from the first object to the second. As 
the expert creates new objects on the blackboard, the 
network grows (Fig. 1C, D), with their shifts in attention 
represented by directed edges between nodes 1 and 2, then 
from 2 to 3, then from 3 to 4, and then back to 2 again as 
they return their attention to an earlier inscription. This 
abstract graphical representation thus captures how the 
expert created and shifted their attention between inscription 
objects over the course of solving the problem.  

Results 
We first describe the network structure that emerged from 
the experts’ inscription activity, then the temporal dynamics 
of their inscription activity, and finally the relations between 
the structure and dynamics of their notational activity.  

Network structure of inscription activity 
Experts created 360 distinct inscription objects, which they 
interacted with 4718 times. On average, solving an 
individual problem involved creating 24 inscription objects 
(SD = 16) and interacting with them 315 times (SD = 191). 

Despite working on the same set of problems, experts in 
the corpus exhibited considerable variability in how they 
created and then shifted their attention among inscription 
objects. Figure 2, for instance, illustrates two different 
approaches to solving the same problem (problem #3, 
quoted above). For one individual (left), edges between 
nodes are distributed more or less randomly; nodes do not 
group together into interconnected clusters. By contrast 
(right), another individual interacted with inscriptions in 
interconnected clusters, and were much more likely to 
transition from one object to another within these clusters. 
This reflects a strategy where attention is likely to move to 
another inscription within the same cluster, creating pockets 
of activity wherein attention jumps between the same subset 
of inscriptions.  

To identify these “communities” of inscriptions, we used 
the Girvan–Newman algorithm for community detection 
(Girvan & Newman, 2002), which identifies highly 
interconnected clusters of nodes using “edge betweenness” 
— the number of shortest paths between pairs of nodes that 
go through the edge — to identify highly central edges. In 
Figure 2, a node’s community is identified by its color.  

One way of describing the structure of inscription 
activity, therefore, is by how strongly shifts of attention 
defined communities of highly interconnected nodes — that 
is, the modularity of the network of inscription activity 
(Clauset, Newman, & Moore, 2004). Overall, inscription 
activity was significantly modular (M = 0.18, t14 = 4.1, p = 
.001; positive values indicate modularity, while 0 indicates 

Figure 1. Illustration of a network representation of inscription activity. Blackboard images (top row) 
capture four consecutive stages in the process of developing a mathematical proof. The network 
representation of this process (bottom row) includes a node for each inscription object and an edge for 
transitions in attention from one object to another. We have added colored dots to the blackboard to indicate 
the location of each inscription object.  (Node locations do not correspond to the objects’ spatial locations.) 

1
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no modularity). Modularity exhibited both diversity and 
regularity. The participant illustrated on the left in Figure 2, 
for instance, generated a network with below average 
modularity compared to other experts who solved the same 
problem (modularity =  0.14), while the participant 
illustrated on the right had the second highest (modularity = 
.47). The modularity of individuals’ activity varied 
considerably between problems (correlation in modularity 
between problems: r = 0.31); the individual who had the 
most modular activity on one problem, for instance, had the 
second-lowest modularity on another. By contrast, the two 
problems completed by most of the experts elicited reliably 
different modularity in inscription activity (Mtriangle = 0.26 
vs. Mfunction = 0.08, t13 = 2.4, p = .03). While modular 
clustering of inscriptions seems to be a recurring pattern in 
inscription activity, therefore, the precise amount of 
modularity likely reflects both the demands of the particular 
problem and stochastic, situated decisions. 

In addition to the reliably modular structure of 
inscription activity overall, we also found finer grained 
regularities in the structure of communities themselves. 
Among communities, we observed two recurring ‘motifs’ or 
subgraph structures. One such motif was the ‘cluster’ motif, 
in which most nodes within a community were connected to 
each other (Fig. 3, right). These ‘clusters’ captured cases 
where a subset of inscription objects were all ‘in 
conversation’ with each other, with the expert shifting their 
attention among all inscriptions within that community. In 
contrast to these clusters, other ‘loop’ communities 
consisted entirely of a single, recurring route from one node, 
to another, to another, etc. in a straight, non-branching path 
(Fig. 3, left). These loops reflect inscriptions with a 
canonical pathway of attention—such as an algebraic 
derivation, where the experts attention would typically flow 
from the first expression to the last, in a set order.  

 
Figure 2. Different approaches to solving the same 
problem. Two different experts (left and right) solved the 
same problem, using approximately the same number of 
inscription objects (nodes). However, they interacted with 
those inscriptions in different ways, producing networks 
with different topological properties (see text). (Edge 
thickness indicates transition probabilities. Node color 
indicates community membership, as detected using the 
Girvan–Newman algorithm.)  

 

 
Figure 3. Recurring motifs in network communities. 
(left) Multiple communities involved only a single, 
recurring route from one node, to another, to another, etc. 
in a straight, non-branching path. (right) Other 
communities were highly interconnected, with most nodes 
connected to most other nodes.  

Temporal dynamics of shifts in attention 
We next characterized the temporal dynamics of 

inscription activity. To do so, we focused on the sequence of 
inter-event intervals — that is, the amount of time between 
the onset of attention towards one inscription object and the 
onset of attention towards the next object. A similar 
approach has been used to study the temporal dynamics of 
other human and human-technical systems (Barabasi, 2005; 
Goh & Barabási, 2008), such as email wait-times and 
dynamics of phone calls.  

Here, we use a measure that have been used previously 
to characterize complex systems of social and cognitive 
activity, and to distinguish those systems from natural (e.g., 
earthquakes) and autonomous physiological activity (e.g., 
heartbeats): the ‘burstiness’ of the activity (Goh & Barabási, 
2008). Past work has established that human activity 
systems often exhibit heavy-tailed dynamics — for instance, 
bursts of high activity followed by long periods of 
inactivity, with longer periods of inactivity than expected 
(e.g., assuming a Poisson or Gaussian distribution). This 
‘burstiness’ may reflect interaction-dominant dynamics, 
with multiple processes combining in non-additive ways, or 
by an underlying process that involves priority queuing 
(Barabasi, 2005). The burstiness of a distribution of inter-
event intervals {t} is typically measured by:  

𝐵 =  
𝜎 −𝑀!

𝜎 +𝑀!
 

where 𝜎 is the standard deviation and Mt is the mean inter-
event interval. More recently, this measure has been found 
to be sensitive to the size of finite samples, and the 
following elaboration has been adopted:  
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𝐵 =  
𝑛 + 1𝑟 − 𝑛 − 1

( 𝑛 + 1 − 2)𝑟 − 𝑛 − 1
 

where r is the coefficient of variation, 𝜎/ Mt, and n is the 
sample size. Both these measures are designed to equal 0 for 
random, Poisson distributions; -1 for regular, periodic 
distributions; and +1 for bursty distributions. Past work has 
found that human activity systems typically exhibit 
significant burstiness (Goh & Barabási, 2008). 

Overall, inscription activity was significantly bursty (B = 
0.17, p < .0001, bootstrapped with n = 1000 samples). The 
burstiness was even more pronounced when we considered 
the distribution of times spent within a community of 
inscriptions — that is, the time between attending to one 
inscription object that belonged to a new community, and 
attending to a new object that belongs to a new community. 
This timeseries of inter-community dynamics was extremely 
bursty (B = .47, p < .0001, bootstrapped with n = 1000 
samples), comparable to the most bursty human systems 
(Goh & Barabási, 2008). Inscription activity, therefore, was 
marked by with long periods of time spent within a 
community of inscriptions, followed by ‘bursty’ periods 
with rapid transitions between communities.   

Relationship between structure and dynamics 
Finally, we sought to characterize the relationship 

between the topological structure of experts’ inscription 
activity (e.g., community structure and modularity) and the 
temporal dynamics of that activity.   

First, we examined when, exactly, experts transitioned 
from one community of inscriptions to another. To do so, 
we took our timeseries of inscription object attention and 
determined whether the new object of attention belonged to 
the same or a different community— that is, a community 
transition. We then tried to predict the transition to a new 
community, using a generalized linear mixed-effects model 
of whether the new object belonged to a different 
community. We included as fixed effects the cumulative 
time spent on the problem; the amount of time spent 
attending to the current object; and, critically, the amount of 
time spent in the current community since most recently 
beginning to attend to that community (‘sticking time’). We 
included random intercepts and slopes by participants, and 
random intercepts by problem.  

There was no reliable relationship between the 
cumulative amount of time spent on the problem and the 
probability of transitioning to a new community of 
inscriptions (b = 0.22 ± 0.30 SEM, p = .46). By far the 
strongest predictor, however, was the amount of time spent 
within the current community, which had a large and 
negative relationship to the probability of transitioning to a 
new community (b = -2.29 ± 0.40 SEM, p < .0001). In other 
words, communities of inscriptions were themselves 
‘sticky,’ so that the longer an expert spent within a 
community of inscriptions, the more likely they were to stay 
there going forward. This thus helps explain the highly 

bursty dynamics of transitions between communities, 
reported above: experts become fascinated with a particular 
cluster of inscriptions and spend considerable time, before 
suddenly transitioning to different inscription, and perhaps 
then undergoing a ‘bursty’ period of rapid transition 
between communities.  

Finally, we looked at the relationship modular structure 
and between bursty dynamics. We used a linear mixed-
effects model of the burstiness of the inscription activity 
used to solve each problem, and included predictors for the 
problem, the total number of events, the total number of 
inscription objects, the mean duration of an inscription 
event, a measure of the ‘memory’ of the activity dynamics 
(Goh & Barabási, 2008), and, crucially, our measure of 
modularity. The predictor with the largest relationship to 
burstiness, and the only one that was statistically significant 
was modularity (b = 1.29 ± 0.52 SEM, p < .04). More 
modular inscription activity—with communities of densely 
interconnected inscriptions—was associated with more 
bursty temporal dynamics (Fig. 4).  

Discussion 
Drawing on a corpus of mathematical experts working on 
non-trivial problems, and deploying tools from network and 
complexity science, we set out to characterize the ‘manual 
labor’ of mathematics (Marghetis, Edwards, & Núñez, 
2014). We found that expert mathematical practice involved 
actively creating dozens of inscriptions and navigating 
between them, shifting attention from one to another. These 
shifts in attention were not random, however, but exhibited 
systematic modularity; inscriptions clustered together into 
‘communities,’ subgroups of inscriptions that were likely to 
follow each other in a cascade of attention. This structure of 
inscription activity was related to the temporal dynamics of 
inscription, with a systematic relationship between 
inscription modularity and temporal burstiness (a hallmark 
of complex human activity). Overall, our network analysis 
of mathematical activity revealed both diversity and 
regularity in the inscription activity of experts.  

The complex ‘ecosystem’ of cognition 
By transforming raw video of situated problem solving 

into a directed network of inscription activity, we created a 
tractable representation of an otherwise prohibitively 
nuanced practice. This allowed us to adopt a quantitative 
approach without sacrificing a systems-level analysis. This 
approach shifts the focus away from individuals and skull-
confined brain, and toward the ecosystem of mathematical 
practice, spanning brains, bodies, and blackboards.  

From this perspective, the engine of mathematics is not 
the mathematicians’ brain, locked away inside their skull. 
The brain is undeniably part of that engine. But equally 
important is the system of notations to which the 
mathematician has recourse, the particular inscriptions she 
creates in the moment, and the way her body allows her to 
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bring all those parts into coordination—by looking, 
pointing, sketching. The mathematician’s creative insights 
are the product, not of solitary brains, but of a socially and 
materially distributed cognitive system (Hutchins, 1995). 
Indeed, this was true even of the physicist Stephen 
Hawking, who was famously confined to a wheelchair; 
instead of creating his own inscriptions, he worked closely 
with his able-bodied students, who created inscriptions on 
his behalf (Mialet, 2012). 

This shift away from traditional intracranial processes to 
the larger complex system involved in creative mathematics 
puts a new emphasis on the material context of 
mathematical discovery. How should we characterize the 
endless inscriptions that mathematicians produce daily? 
How do those inscriptions change over the course of their 
mathematical training? How important are the inscriptions 
that a mathematician produces for herself, compared to 
those produced by her colleagues?  

These questions suggest an analogy with another context 
of insight and learning: The early development of infants’ 
visual and linguistic systems. Recent work has begun to 
characterize the rich visual and linguistic input that is 
received by the developing child—including how the child 
actively shapes that input to facilitate learning (e.g., Smith, 
Jayaraman, Clerkin, & Yu, 2018). Understanding the larger 
ecosystem in which learning occurs—whether by a pre-
verbal child or a highly trained mathematician—will be 
critical to understanding how, exactly, that learning occurs.  

Indeed, this analogy with early child learning highlights 
another critical component of situated mathematical 
practice: Mathematicians do not receive carefully formed 
representations of their problems. They must figure out how 
to represent their ideas. In this way, the mathematician is 
like the child who actively shapes their visual input. 
Children shape their visual context to facilitate learning. 
Mathematicians transform their material context to facilitate 
creative insight. By sketching, drawing, graphing, and 
writing various algebraic expressions, they engage in a form 
of niche construction: ‘notational niche construction.’  

Limitations 
Our analysis has a number of limitations.  

For one, naturally occurring inscriptions need not 
necessarily cluster into objects defined by semantic 
relatedness and spatial proximity. In our corpus, however, 
the inscriptions did typically fall into unambiguous clusters, 
and the few unclear cases were resolved through discussion 
among the authors (e.g., deciding whether a vertical stack of 
equations should count as one object or multiple, distinct 
objects). Second, one modality by which experts could 
engage with an object was through gaze; however, since our 
data consisted only of a single camera, it was not always 
possible to determine where a participant was looking. Gaze 
toward an object was only coded when there was 
unambiguous evidence that the participant had shifted their 
gaze toward an object, such as when they turned their entire 

head to look at an inscription that was relatively isolated on 
the blackboard. As a result of this conservative approach, 
we may have underestimated the number of transitions 
between objects. To address both these issues, future work 
will need to establish the reliability of the coding scheme by 
using multiple coders and calculating inter-coder reliability.  

Third, the methodology introduced here is very time-
consuming, both when initially collecting the data (which 
requires recruiting highly trained experts) but especially 
when coding the video data afterwards. As a result, the 
current corpus consists of hundreds of inscriptions and 
thousands of interactions, but these were drawn from the 
activity of only seven experts. Were are currently working 
to expand our corpus in order to investigate the generality of 
the current findings.  

Future Directions and Conclusions  
We have not even begun to look at how the structure and 

dynamics of inscription might change over the course of a 
problem solving episode. For instance, are there distinct 
phases of activity—perhaps early exploration of different 
inscriptions, followed by later exploitation of successful 
ones?  

Relatedly, we have yet to investigate the association 
between the structure and dynamics of inscription and 
various other outcome measures. For instance, does the 
network structure of inscription activity predict the 
creativity or completeness of the final proof? On a more 
granular level, what happens immediately before the expert 
has a sudden insight—can we predict the onset of a critical 
transition in understanding (e.g., Setzler, Marghetis, & Kim, 
2018; Stephen, Boncoddo, Magnuson, & Dixon, 2009)?  

Third, future analyses will look in more detail at the kinds 
of inscriptions that experts are creating. Does inscription 
activity differ between, say, algebraic equations  versus 
Cartesian plots? Might the structure and dynamics of 
inscription offer insights into how individuals tend to use 
different kinds of inscriptions—or perhaps reveal that 
superficially dissimilar inscriptions are actually treated 
similarly by experts?  

Finally, we are curious about which aspects of inscription 
activity are specific to highly-trained mathematical experts, 
and which might also occur among novices. Work on other 
complex systems has found that the temporal dynamics of a 
complex system can predict the system’s health or resilience 
(Kleiger, Miller, Bigger Jr, & Moss, 1987). One possibility, 
for instance, is that bursty dynamics during inscription is 
diagnostic of mathematical expertise. 

Answering these questions will bring us closer to 
understanding how one of the most abstract forms of human 
understanding is so undeniably concrete: Covered in chalk, 
gesturing emphatically at the blackboard, the thinking 
mathematician is engaged in manual labor — and then, 
suddenly, she understands infinity.  
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Abstract

A growing body of research indicates that “active learning” im-
proves episodic memory for material experienced during study.
It is less clear how active learning impacts the integration of
those experiences into flexible, generalizable knowledge. This
study used a novel active transitive inference task to investi-
gate how people learn a relational hierarchy through active
selection of premise pairs. Active control improved memory
for studied premises as well as transitive inferences involv-
ing items that were never experienced together during study.
Active learners also exhibited a systematic search preference,
generating sequences of overlapping premises that may fa-
cilitate relational integration. Critically, however, advantages
from active control were not universal: Only participants with
higher working memory capacity benefited from the opportu-
nity to select premise pairs during learning. These findings
suggest that active control enhances integrative encoding of
studied material, but only among individuals with sufficient
cognitive resources.
Keywords: active learning; transitive inference; information
search; integrative encoding

Introduction
How does the opportunity to control a learning experience al-
ter subsequent memory of it? Recent research has shown that
active control over learning enhances episodic memory for
experienced material compared to passive observation of the
same information (Markant, DuBrow, Davachi, & Gureckis,
2014; Voss, Gonsalves, Federmeier, Tranel, & Cohen, 2011).
This enhancement can arise from a number of mechanisms,
including improved attentional coordination, metacognitive
monitoring, or enriched encoding associated with volitional
control (Markant, Ruggeri, Gureckis, & Xu, 2016).

Less is known about how active control affects the inte-
gration of studied material into flexible, generalizable knowl-
edge. Other work has revealed benefits from active infor-
mation selection when learning categorical rules (Markant &
Gureckis, 2014) or causal structures (Steyvers, Tenenbaum,
Wagenmakers, & Blum, 2003). However, these studies have
not examined a crucial question about improvements in gen-
eralization following active control of study: Do they reflect
better memory for experienced information itself (which then
supports generalization later on) or the formation of relational
knowledge during encoding that abstracts away from that ex-
perience? Following Zeithamova, Schlichting, and Preston
(2012), these alternatives can be mapped onto two types of
memory formation: elemental encoding of stimuli or asso-
ciations that are directly experienced during study, and inte-

grative encoding through which disparate study episodes are
bound together into a unified representation. Whereas exist-
ing research has established that active control enhances el-
emental encoding in a variety of contexts, its relationship to
integrative encoding remains unclear.

The present study examined the effects of active control in
a well-known example of relational generalization: transitive
inference (TI). In TI people learn about an ordered hierarchy
(e.g., A < B < C) by studying premises comprised of adja-
cent items (e.g., A < B, B < C). They are then tested on their
memory for studied pairs (recall trials; e.g., A ? B) and their
ability to infer relationships between items that were never
experienced together (inference trials; e.g., A ? C).

Transitive inference is a fundamental form of reasoning
and has been the subject of a wealth of past research, but has
always been studied under passive conditions in which con-
trol over the study experience is absent. This study introduces
a novel active transitive inference task in which participants
choose which premises to study during learning. Based on
prior evidence that active selection improves episodic mem-
ory, active selection was expected to improve recall of stud-
ied premises relative to passive study. Active control was also
predicted to improve transitive inference, but this advantage
might arise from two distinct mechanisms. Enhanced elemen-
tal encoding of premises should bolster retrieval at the time
of test, allowing participants to make transitive inferences
by reasoning across overlapping pairs. Alternatively, active
control may enhance integrative encoding during study, aid-
ing the formation of a unified representation of the hierarchy.
Importantly, these processes predict distinct relationships be-
tween performance and the distance between test items (see
below), making TI well-suited to examine how learner con-
trol changes the representation of studied material.

Elemental vs. integrative encoding in transitive
inference
Transitive inference involves comparing items that have never
been experienced together but are linked by one or more stud-
ied pairs. TI may be supported by a number of alternative pro-
cesses which can be distinguished by their dependence on ele-
mental or integrative encoding. Elemental encoding-based in-
ference occurs by reactivating studied premises at the time of
test and reasoning across overlapping relations (Kumaran &
McClelland, 2012). In this case, successful inference hinges
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Select one person to learn who is their 
direct supervisor:

Figure 1: Depiction of the transitive inference task.

on robust encoding of studied pairs to ensure later retrieval.
This process implies that large distances between test items
(e.g., A ? E) will be associated with lower accuracy since
there are more opportunities for retrieval errors along the way.

In contrast, integrative encoding-based accounts of TI pos-
tulate the formation of a unified, ordinal representation dur-
ing study (De Soto, London, & Handel, 1965; Hummel &
Holyoak, 2001; Shohamy & Wagner, 2008; Trabasso, Riley,
& Wilson, 1975). Inference then entails comparing the posi-
tions of any two items along that dimension. Importantly, this
process implies accuracy should increase with inferential dis-
tance, as items that are further apart on that latent dimension
are easier to distinguish. Such symbolic distance effects are a
hallmark of integrative encoding (Moyer & Landauer, 1967).

Although alternative forms of associative or reinforce-
ment learning may also support TI (Frank, Rudy, Levy, &
O’Reilly, 2005), the construction of an integrated representa-
tion during encoding is especially likely when participants are
aware there is an underlying hierarchy to be learned (Greene,
Spellman, Levy, Dusek, & Eichenbaum, 2001; Lazareva
& Wasserman, 2010). Accuracy is higher among partici-
pants who report post-task awareness of the hierarchy (Martin
& Alsop, 2004), who are informed about it prior to train-
ing (Greene et al., 2001; Smith & Squire, 2005), or when
stimuli evoke hierarchical schemas (Kumaran, 2013). Re-
liance on integrated representations also appears to depend
on working memory capacity (WMC) (Titone, Ditman, Holz-
man, Eichenbaum, & Levy, 2004; Fales et al., 2003). Thus,
while constructing an integrated representation is typically
associated with superior generalization, it may also depend
on explicit awareness of the hierarchical organization of items
and incur greater cognitive costs.

Learner control and integrative encoding
Since elemental and integrative encoding predict distinct re-
lationships between inferential distance and performance, TI

can be used to examine whether active control has broader
benefits for memory formation beyond improved episodic
memory for studied pairs. One reason to expect enhanced
integrative encoding is that the opportunity to select premises
may encourage learners to construct an integrated represen-
tation as they learn, which can then guide selection decisions
(e.g., allocating study to items from less familiar portions of
the hierarchy). At the same time, this process might involve
additional demands on aspects of executive functioning such
as working memory. To evaluate this possibility an assess-
ment of WMC (operation span) was included in addition to
the TI task in the experiment below.

In addition to the main goal of identifying any effect of
active control on integrative encoding, the TI task was de-
signed to explore information search during active study. Pas-
sive training in TI is often scaffolded such that overlapping
pairs are experienced in direct succession (e.g., A < B, B
< C, ...), which leads to faster learning than random se-
quences (Halford, 1984). If studying overlapping premises
aids relational integration, active learners may prefer to se-
lect such options when possible. Each selection therefore in-
volved a choice between a near and far option which differed
in their distance from the pair studied on the previous trial.
This made it possible to identify any search preference dur-
ing active study and its relationship to inferential accuracy.

Experiment
Participants and Materials
N = 100 participants (60 women; age: M = 21.94 years, SD
= 5.60) were recruited from the student population at UNC
Charlotte. Participants received either course credit or $8 ($4
per session), as well as a $0–$5 incentive based on their per-
formance in the first test session. N = 62 participants returned
for the second session.

Face stimuli for the TI task were obtained from the 10k US
Adult Faces Database (Bainbridge, Isola, & Oliva, 2013). For
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Table 1: Estimated fixed effects from mixed effects logistic regression model of test accuracy.

Predictor OR 95% CI-lower 95% CI-upper Wald z p

(Intercept) 4.07 3.30 5.07 12.36 0.00
Condition [passive] 0.76 0.67 0.85 -5.19 0.00
Session [retest] 0.85 0.76 0.98 -2.67 0.01
Distance 1.10 1.02 1.16 3.00 0.00
Operation span 2.06 1.67 2.58 6.47 0.00
Condition [passive] x Session [retest] 0.80 0.68 0.94 -2.68 0.01
Condition [passive] x Distance 0.94 0.87 1.02 -1.33 0.18
Condition [passive] x Operation span 0.55 0.49 0.60 -12.49 0.00

each sex, the stimulus set was filtered to include only faces
that were non-famous and which had mean ratings within a 1-
point interval centered on the midpoint of the rating scale for
perceived age, emotional affect, and memorability. Thirty-six
images (18 male, 18 female) were manually chosen from the
filtered set to ensure high image quality and the absence of
other distinctive features (e.g., jewelry, background objects).

Procedure
There were two sessions. The first session included the TI
task followed by the operation span assessment. The second
session occurred 6-8 days later and included a second run of
the test phases from the TI task.

The TI task (Figure 1) used a within-subjects design with
two rounds. Participants were tasked with learning the “chain
of command” at two companies. Each participant learned
about one 9-item hierarchy in the active condition and a sec-
ond 9-item hierarchy in the passive condition. Each hierarchy
was composed of all female faces or all male faces in order to
reduce interference between conditions. The order of condi-
tions and mapping of stimulus set to condition were counter-
balanced across participants. Each round was comprised of a
learning phase (56 trials) followed by a test phase (72 trials).

The instructions included an example of a 3-item hierarchy
in which participants learned about two premise pairs (person
A < person B, person B < person C) and were asked to infer
the transitive relation (person A < person C). All participants
were therefore aware of the hierarchical nature of the stimuli
and were explicitly instructed to learn to judge the relative
rank of any two individuals in a given company.

Learning phase. The learning phase involved a series of
choices between two non-adjacent items in the present hier-
archy (excluding the highest-ranking item which was never
presented as a choice option). The options on the first learn-
ing trial were two non-adjacent items sampled at random. On
all subsequent trials, options differed in their distance from
the item selected on the previous trial: Each option set in-
cluded a near option that was 1–2 positions away from the
item selected on the previous trial, and a far option that was
3 or more positions away from the item selected on the previ-
ous trial. This manipulation of option distance was designed

to test whether participants in the active condition preferred to
select items based on their distance. In the passive condition
selections were evenly divided between near and far options.

Active study condition. Each trial began with the presen-
tation of the two options in a vertical array in random order
(Figure 1, middle). Participants were instructed to select an
option at their own pace in order to learn that person’s di-
rect supervisor. Following their choice the unselected option
disappeared and the premise pair (selected item and superor-
dinate feedback item) was displayed for 2 s.

Passive study condition. In the passive condition partici-
pants did not decide which option to select. As in the active
condition, the trial began with the presentation of two options,
one of which was already highlighted with a red border. Par-
ticipants were instructed to select the highlighted option at
their own pace, at which point the trial proceeded in the same
manner as in the active condition.

Test phase. In each test trial, two items were presented
side-by-side and the participant clicked on the person they
judged to be ranked higher in the hierarchy. The test phase
was comprised of three trial types (Figure 1, right): recall
trials involving a choice between studied premise pairs (e.g.,
A ? B), near inference trials involving items that were 2–3
positions apart (e.g., A ? C), and far inference trials involv-
ing items that were 4 or more positions apart (e.g., A ? E).
In the second session, participants completed a second run of
the same test phases experienced during the first session, with
test pairs presented in a new random order.

Operation span. In the operation span task, participants at-
tempt to hold a sequence of items in memory while judging
the validity of interleaved math operations (Unsworth, Heitz,
Schrock, & Engle, 2005). At the end of a trial involving mul-
tiple such steps, participants recall the sequence of digits in
the same order as they appeared. The set size (number of op-
erations/digits) ranged from 2–7, presented in increasing or-
der, with three trials completed for each set size. Participants
were highly accurate at evaluating the validity of the math
operations (judgment accuracy M = 0.92, SD = 0.06). Op-
eration span was scored according to the summed number of
digits recalled in the correct order for those trials in which no
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Figure 2: A: Test accuracy after median split on operation span, for both the immediate test and delayed retest. Performance
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trial. All error bars indicate within-subjects 95% confidence intervals.

errors were made (M = 14.86, SD = 11.29, median = 12.50).

Results
Test accuracy. Test responses were scored according to
whether participants correctly identified the superordinate
item in each test pair (0 = incorrect, 1 = correct). Test tri-
als involving either endpoint of the hierarchy were excluded
from analysis since participants could rely on non-transitive
strategies to respond. Accuracy was modeled using mixed ef-
fects logistic regression (Table 1). The model included fixed
effects for condition (active/passive), session (test/retest), dis-
tance (recall/near inference/far inference), and operation span
(continuous), as well as pairwise interactions between condi-
tion and the other predictors. Random intercepts were in-
cluded for participants and stimuli in each test pair.

Active performance was higher than passive performance
in both the immediate test (active: M = 0.74, SD = 0.21; pas-
sive: M = 0.71, SD = 0.21; OR = 1.32, CI = [1.13, 1.54], z =
5.19, p < .001) and in the retest (active: M = 0.73, SD = 0.21;
passive: M = 0.65, SD = 0.21; OR = 1.64, CI = [1.37, 1.98],
z = 7.64, p < .001). Accuracy declined from the immediate
test to the retest in both the active condition (OR = 0.85, CI =
[0.71, 1.01], z = -2.67, p = 0.007) and the passive condition
(OR = 0.68, CI = [0.57, 0.81], z = -6.48, p < .001).

There was a symbolic distance effect, such that accuracy
increased with inferential distance, in the active condition
(OR = 1.10, CI = [1.00, 1.20], z = 3.00, p = 0.003) but not
the passive condition (OR = 1.04, CI = [0.95, 1.13], z = 1.22,
p = 0.22). In addition, operation span was positively related
to accuracy in the active condition (OR = 2.06, CI = [1.50,
2.84], z = 6.47, p < .001) but not the passive condition (OR =
1.13, CI = [0.82, 1.54], z = 1.09, p = 0.28). Figure 2A shows

test accuracy in each condition following a median split on
operation span. Active control of study had markedly differ-
ent consequences depending on participants’ operation span,
with active control leading to a large, persistent advantage
over passive study only among higher WMC participants.

Selections during learning. The next analysis examined
participants’ selections during learning and whether they
could account for differences in test performance described
above. Study condition was not related to item selection fre-
quency (multinomial logistic regression, likelihood ratio test:
χ2
(1,7) = 7.20, p = 0.41), indicating that the aggregate distri-

bution of experienced premise pairs was comparable across
active and passive study.

Each learning trial involved a choice between a near option
(1–2 positions away from the option selected on the previous
trial) and a far option (3+ positions away). By design, near
and far options were chosen with equal frequency during pas-
sive study. In the active condition participants had a small but
significant preference for selecting the near option (M = 0.56,
SD = 0.07; OR = 1.30, CI = [1.21, 1.40], z = 6.86, p < .001).

Near selections may be especially useful if they cause over-
lapping premise pairs to be experienced in successive tri-
als, which could facilitate integrative encoding when repre-
sentations of overlapping premise pairs are simultaneously
active. I next examined whether the preference to select
near items depended on the distance between the near op-
tion and the item selected on the previous trial (distnear ∈
{−2,−1,+1,+2}). When distnear =+1, the near option was
immediately superordinate to the previously selected item;
that is, the near option had appeared as the feedback in the
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previous trial.
Figure 2B shows the proportion of near selections as a

function of near option distance. In the active condition, the
proportion of near selections did not differ from the passive
condition when distnear = −2 (OR = 1.05, CI = [0.86, 1.29],
z = 0.63, p = 0.53) or distnear = +2 (OR = 1.15, CI = [0.94,
1.41], z = 1.73, p = 0.08). However, there was a higher pro-
portion of near selections when distnear =−1 (OR = 1.29, CI
= [1.07, 1.56], z = 3.48, p < .001) or distnear =+1 (OR = 1.75,
CI = [1.45, 2.11], z = 7.52, p < .001). Within the active con-
dition, the proportion of near selections was markedly higher
for distnear =+1 than distnear =−1 options (OR = 1.45, CI =
[1.20, 1.75], z = 4.95, p < .001). In the active condition par-
ticipants therefore preferred the near option when it was adja-
cent to the item selected on the previous trial, and this prefer-
ence was strongest when the option had appeared as feedback
in that trial. Although the aggregate frequency of item selec-
tion was similar across conditions, this result suggests that
active participants generated study sequences in which over-
lapping premise pairs were more likely to be experienced in
successive trials.

Can this tendency to select overlapping items account for
the performance benefit in the active condition? A new model
of test accuracy was fit for the active condition which in-
cluded predictors for the proportion of near selections at each
level of distnear. There were no significant relationships be-
tween accuracy and the proportion of near selections at any
distance (distnear = −2: OR = 1.01, CI = [0.70, 1.44], z =
0.06, p = 0.95; distnear = −1: OR = 1.30, CI = [0.92, 1.85],
z = 1.87, p = 0.06); distnear = +1: OR = 0.96, CI = [0.67,
1.38], z = -0.27, p = 0.79; distnear = +2: OR = 1.30, CI =
[0.90, 1.89], z = 1.75, p = 0.08). The proportion of near se-
lections at any distance was also unrelated to operation span
(distnear = −2: OR = 0.93, CI = [0.80, 1.07], z = -1.34, p =
0.18; distnear = −1: OR = 0.98, CI = [0.85, 1.12], z = -0.38,
p = 0.70; distnear = +1: OR = 1.07, CI = [0.93, 1.22], z =
1.19, p = 0.23; distnear =+2: OR = 0.98, CI = [0.85, 1.14], z
= -0.30, p = 0.77). Thus, the preference to select overlapping
options was a general one and could not on its own account
for the gap between active and passive performance.

Discussion
This study used a novel TI task to examine whether active
control aids the integration of relational knowledge during
study. Control over the selection of premise pairs improved
performance relative to passive study in both an immedi-
ate test and a retest one week later. Symbolic distance ef-
fects observed in the active condition strongly imply that this
benefit resulted from enhanced integrative encoding, such
that active learners relied on an integrated representation of
the hierarchy rather than sequential reactivation of premise
pairs at test (Acuna, Sanes, & Donoghue, 2002; Zeithamova,
Schlichting, & Preston, 2012). The absence of such effects
following passive study suggests that integrative encoding
was less prevalent when the same participants lacked the op-

portunity to select premises for themselves.

Active control did not benefit all learners, however, as
working memory capacity strongly predicted accuracy in the
active condition. Among higher WMC participants, active
control produced a∼10% initial advantage over passive study
(increasing to∼20% in the retest) and sustained performance
across sessions. WMC was unrelated to accuracy in the
passive condition, a finding that conflicts with reports that
WMC moderates TI under experimenter-controlled condi-
tions (Fales et al., 2003; Libben & Titone, 2008; Titone et al.,
2004). This discrepancy may be due to the relative difficulty
of passive study in the present task. Previous studies have
typically involved smaller hierarchies and scaffolded train-
ing sequences in which participants are likely to experience
overlapping premises (e.g., Libben & Titone, 2008). With
larger hierarchies and greater distances between successive
premises, the passive condition used here may have been es-
pecially difficult even for participants with higher WMC. An
important next step is to evaluate whether the large disadvan-
tage from passive study among higher WMC persists when
observing more useful sequences of premises (e.g., when
yoked to participants’ selections in the active condition).

This study provides the first evidence of systematic search
in active TI: Participants strongly preferred to select options
that appeared as feedback on the previous trial (distnear =
+1). They thereby naturally generated “chained” sequences
of overlapping pairs which tend to improve performance in
passive conditions relative to random presentation (Halford,
1984). This preference was widespread: 73 of 100 partic-
ipants chose the distnear = +1 option in more than half of
trials in which one appeared, and the proportion of near se-
lections was unrelated to WMC. Although selection of over-
lapping pairs should facilitate integrative encoding, not ev-
eryone benefited from it. One possibility is that only higher
WMC individuals capitalize on chained sequences because
they maintain representations of premises from trial to trial.
Alternatively, higher WMC individuals may be more likely
to use an integrated representation of the hierarchy to decide
which option to study next (e.g., choosing to learn about the
option whose rank is more uncertain). Further work is nec-
essary to determine whether this goal-directed evaluation of
options’ usefulness during selection contributes to the active
advantage among higher WMC individuals.

Finally, it is important to note that participants in this study
were aware that there was an underlying hierarchy to be
learned. Awareness influences strategy use in TI (Smith &
Squire, 2005) and it is unknown how active control might
affect performance in its absence. It is likely that active
control would enhance elemental encoding in such condi-
tions, perhaps due to the mere opportunity for volitional
control (Murty, DuBrow, & Davachi, 2015) or additional
metacognitive processing (Kornell, Klein, & Rawson, 2015).
An intriguing further possibility is that active control in-
creases the likelihood of becoming aware of an underlying hi-
erarchy by focusing attention on abstract relationships across
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study episodes (Henriksson & Enkvist, 2016). This would
lend support to the broader notion that active learning not
only enriches memory for experienced materials, but also fos-
ters self-directed discovery of abstract, relational knowledge.
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Abstract 
Users sometimes face anomalous behaviors of systems, such as 
machine failures and autonomous agents. Predicting such 
behaviors of systems is difficult. We investigate the benefits of 
the memory-based strategy, which focuses on memorization of 
instances to predict anomalous and regular behaviors of the 
system, with ACT-R simulations with a cognitive model. In 
this study, we presumed the parameters defining the encoding 
processes on anomalous instances and regular instances in the 
model of the memory-based strategy and performed 
simulations to verify how these two parameters influence 
prediction performance. The results of simulations showed that 
(1) regular instances are not encoded as default values in the 
memory-based strategy and that (2) such inactivity on regular 
instances suppresses commission errors of regular instances 
and does not suppress commission errors of anomalous 
instances nor omission errors. 

Keywords: memory-based strategy; prediction; anomalous 
behavior; regular behavior; ACT-R 

Introduction 
There are many various systems around us, and users often 
predict their behaviors. It is relatively easy for users to predict 
systems’ stationary behaviors by applying schemas 
(henceforth referred to as “regular behaviors”). However, 
users sometimes observe that systems’ behaviors deviate 
from regular behaviors (henceforth referred to as “anomalous 
behaviors”). Predicting anomalous behaviors is effortful (e.g., 
Besnard & Bastien-Toniazo, 1999; Casner, Geven, & 
Williams, 2013) and requires users to execute much cognitive 
processing such as reallocation of cognitive resources (Meyer, 
Reisenzein, & Schützwohl, 1997). Therefore, it is necessary 
to process anomalous behaviors and regular behavior 
differently in order to predict systems’ behaviors precisely. 

One of the strategies to predict systems’ behaviors is the 
“inference-based strategy,” which focuses on inferences and 
understandings regarding the causal structure from systems’ 
behaviors. The literature from various areas of research show 
that users apply the inference-based strategy spontaneously 
when encountering anomalous instances (e.g., Baker et al., 
2009; Clary & Tesser, 1983; Howard & Holcombe, 2010; 
Tremoulet & Feldman, 2000, 2006). Inferences contribute to 
users’ understanding of systems, but these inferences include 
advanced integration processes of the knowledge and the 

environment (Darabi, Nelson, & Palanki, 2007); therefore, 
the inference-based strategy is not always effective for highly 
complex systems. 

We define the “memory-based strategy,” which focuses on 
memorization of instances to predict systems’ behaviors 
without understandings regarding causal structure. A 
knowledge base, such as a database of prior failure instances, 
is an example of the memory-based strategy. Experimental 
studies have demonstrated that the benefits of the memory-
based strategy appear in the test situations, which is the same 
as the learning situations (e.g., Lane, Mathews, Sallas, 
Prattini, & Sun, 2008). 

Our previous study reveals that the memory-based strategy 
is effective in a high-complexity task and the inference-based 
strategy is effective in a low-complexity task (Matsubayashi, 
Miwa, & Terai, in press). This study indicates that the 
benefits of the memory-based strategy are likely to be 
provided by the activity in which the instances representing 
the regular behaviors (henceforth referred to as “regular 
instances”) are not encoded as default values, whereas the 
instances representing the anomalous behaviors (henceforth 
referred to as “anomalous instances”) are intentionally 
encoded. In this study, we investigate these features of the 
memory-based strategy in detail, with a cognitive model. 

First, we review our argument that regular instances are not 
encoded in the memory-based strategy by reproducing the 
human data in the psychological experiment. We presume the 
two parameters defining the encoding processes on 
anomalous instances and regular instances, and then examine 
whether the simulated data with inactivity of encoding 
regular instances provide a good fit to the human data. 
Second, we reveal why the benefits of the inactivity of 
encoding regular instances appear by confirming the 
performance with settings of two encoding parameters. 
Specifically, when the parameters are set for encoding not 
only anomalous instances but also regular instances, what 
happens to the simulated performance data? 

Experimental Task 

Stimulus 
The experimental task required participants to predict the 
final position of the ball based on its observed movement. 
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The screen used in this task comprises a visible region and an 
invisible region (see Figure 1). A hidden object is placed in 
the invisible region. If the ball makes contact with the object, 
it changes its direction, whose trajectory is defined as an 
anomalous instance. Conversely, a regular instance is 
generated when the ball goes straight without direction 
changes. The ball is ejected from a certain initial position in 
the outer frame and at a certain angle. The ball is temporarily 
invisible while it passes through the invisible region. The ball 
becomes visible again when it enters the visible region. The 
ball’s movement finally stops at the outer frame. Hereafter, 
an initial position and an initial angle of the trajectory are 
defined as “input,” and a final position and a final angle are 
defined as “output.” 

 

Figure 1: Overview of the task. (a) In the observation 
phase, the movement of the ball is presented and then the 

confirmation screen is displayed. (b) In the test phase, 
participants can move the paddle. 

 

Figure 2: Difficulty settings of the task. Shapes of hidden 
objects and examples of trajectories in a low-complexity 

task (left) and in a high-complexity task (right). 
 

Table 1: Composition of the trials in blocks 2−5. 
 

Phase Instance Experience 
Observation Anomalous (3)  
 Regular (9)  
Test Anomalous (6) Novel (3) 
  Experienced (3) 
 Regular (6) Novel (3) 
  Experienced (3) 

The observation phase and the test phase are alternated 
repeatedly in this task. In the observation phase, participants 
observe the movement of the ball from its ejection (i.e., input) 
until its stoppage in the outer frame (i.e., output). Participants 
are also shown the confirmation screen with two arrows 
representing the input and the output (see Figure 1a). 

In the subsequent test phase, the ball stops as soon as it 
enters the invisible region, and a paddle is also displayed (see 
Figure 1b). To predict the final position of the ball and catch 
it with the paddle, participants are required to move the 
paddle with a left click button and determine its position with 
a right click button. The paddle is displayed at the same 
location in which the ball would arrive if it went straight 
without direction changes. In other words, it is not necessary 
to move the paddle in regular instances but is necessary to 
move the paddle in anomalous instances to catch the ball. The 
number of correct trials in which the range of the paddle 
includes the genuine final position of the ball is regarded as 
the prediction performance. No feedback on the predictions 
is provided to participants. 

The shapes of the hidden objects in the invisible region 
determine the complexity of the tasks (see Figure 2). 
Anomalous instances follow a simple trajectory in a low-
complexity task with a square-shaped object and a complex 
trajectory in a high-complexity task with a circular object. 

Procedure 
Prior to the observation phase, participants were informed 
that they were required to predict, as precisely as possible, the 
final position of the ball in the test phase. Participants were 
instructed to focus on and memorize the two arrows 
representing the input and the output in the confirmation 
screen in the observation phase. Participants are expected to 
use the memory-based strategy and encode the combination 
composed of an initial position, an initial angle, and a final 
position as an instance comprised of the input and the output. 

The movement of the ball constituted one sequence, and 
each sequence constitutes one trial. A block comprised 12 
trials in the observation phase and 12 trials in the test phase. 
All trials in block 1 corresponded to regular instances in the 
observation phase and in the test phase. Trials comprised 
three anomalous instances and nine regular instances in the 
observation phase in blocks 2−5. In the test phase, trials 
comprised six anomalous instances and six regular instances. 
In addition, each trial in the test phase comprised three novel 
instances, which were shown only at this time, and three 
experienced instances, which had been shown in the previous 
observation phase (see Table 1). 

Participants implemented a 5-block low-complexity task 
and a 5-block high-complexity task. The positions and the 
shapes of hidden objects are consistent throughout all the 
trials in each task. 

Summary of Psychological Experiment Results 
Overall, the data of 24 participants were analyzed. A 
summary of the results is described here, and the details are 
mentioned with the simulation results (see Figure 3). 

(b) 

(a) 
Output Input 
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Figure 3: Prediction performance in block 5. Error bars 
represent standard errors. 

 

Figure 4: Correlation coefficients on prediction 
performance in block 5 between the simulated data and 
human data. Ra represents the rehearsal probability of 
anomalous instances and Rr represents the rehearsal 

probability of regular instances. 
 
Statistical results show that the interaction of the instance 

factor (anomalous/regular) and the experience factor 
(novel/experienced) was significant for the prediction 
performance in each task in block 5 (low-complexity: F(1, 
23) = 13.8, p < .005, η2 = .60; high-complexity: F(1, 23) = 
10.7, p < .005, η2 = .47). Specifically, the performances for 
anomalous-experienced instances are higher than those for 
anomalous-novel instances  (low-complexity: F(1, 46) = 27.6, 
p < .001; high-complexity: F(1, 46) = 41.6, p < .001). This 
result indicates that anomalous instances were encoded in the 
observation phase. Additionally, no differences are observed 
in the performance for regular-novel instances and for 
regular-experienced instances (low-complexity: F(1, 46) = 
0.0, p = 1.0, r = .00; high-complexity: F(1, 46) = 2.2, p = .13, 
r = .32). This result indicates that regular instances were not 
encoded in the observation phase; therefore, they were not 

retrieved even for regular-experienced instances in the test 
phase. 

Simulations with Cognitive Model 
This study adopts ACT-R simulations (Anderson, 2007) with 
a cognitive model to investigate the details of processing. 
Two retrieval errors critical to the memory-based strategy are 
available in ACT-R, that is, commission errors representing 
that wrong instances are retrieved and omission errors 
representing that encoded instances are not retrieved. 

In this study, we examine the following two points with 
simulations. First, we reveal the features of the memory-
based strategy by performing simulations with two 
parameters defining the encoding processes of anomalous 
instances and regular instances. If the simulated data with the 
parameters meaning inactivity of encoding regular instances 
provide a good fit to the human data, our argument regarding 
such an inactivity is supported. Second, we reveal the reason 
why the benefits of inactivity of encoding regular instances 
appear in the memory-based strategy. Two research questions 
are drawn: How does the parameter on encoding regular 
instances decrease the prediction performance? What type of 
retrieval error is the cause of such decline in performance? 

Simulation Settings 
The following is the outline of the memory-based strategy 
model. In the observation phase, the model detects an input 
arrow and an output arrow, reads the position and the angle 
of each arrow, and then encodes them as a chunk in the 
declarative memory. This chunk comprises three slots―the 
initial position, the initial angle, and the final position. Next, 
the model runs rehearsals by repeating retrievals of the chunk. 
The rehearsal probability parameters determine whether the 
model continues to run a rehearsal on every rehearsal. There 
are two types of rehearsal probability parameters. If an input 
angle is different from an output angle, the model regards this 
trial as “an anomalous instance” and runs rehearsals on the 
basis of the rehearsal probability of anomalous instances 
(henceforth referred to as “Ra”). Additionally, if an input 
angle is the same as an output angle, the model regards this 
trial as “a regular instance” and runs rehearsals on the basis 
of the rehearsal probability of regular instances (henceforth 
referred to as “Rr”). 

In the subsequent test phase, the model reads the position 
and the angle of an input arrow and makes a retrieval request 
to declarative memory with them as a clue. If the model fails 
to retrieve an instance or the retrieved final position is 
included in the range of the paddle, the model does not move 
the paddle. Otherwise, the model moves it to the retrieved 
final position with left click button. After that, the model 
confirms the position of the paddle with a right click button.  

Making retrieval errors on two adjacent initial positions is 
likely because these two positions are highly similar and 
difficult to distinguish from each other. Therefore, the 
similarity parameters between two adjacent initial positions 
are set to −0.5. Other similarity parameters are set to −1.0 as 
default. 
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Figure 5: Variations of prediction performance on a 
function of the rehearsal probability of regular instances 
(Rr). ANO, REG, NOV, and EXP represent anomalous, 

regular, novel, and experienced respectively. 

Figure 6: Variations of retrieval errors on anomalous-
experienced instances on a function of the rehearsal 

probability of regular instances (Rr). 
 
Each Ra and Rr has five levels; therefore, 25 parameter 

combinations are simulated. The five levels of rehearsal 
probability correspond to 0%, 20%, 40%, 60%, and 80%, that 
is, the expected values of the number of rehearsals are 0.00, 
0.25, 0.67, 1.50, and 4.00 respectively. 

Results of Simulations 
Best Parameters First, in order to investigate the features of 
the memory-based strategy, we calculate correlation 
coefficients between the simulated data and the human data 

on prediction performance in block 5. Figure 4 shows that the 
simulated data in which anomalous instances are encoded 
sufficiently and regular instances are not encoded provide a 
best fit to the human data. Prediction performance at Ra 80% 
and Rr 0% is reproduced well. Specifically, there is no 
difference in the performance for regular-experienced 
instances and for regular-novel instances, and the 
performance for anomalous-experienced instances is higher 
than that for anomalous-novel instances (see Figure 3). These 
results support our argument that regular instances are not 
encoded and anomalous instances are encoded. Notably, the 
simulated data are wholly lower than the human data. We will 
discuss this topic in Discussion and Conclusion. 
Effects of Encoding Regular Instances Second, we 
investigate the reason why the benefits of the inactivity of 
encoding regular instances appear in the memory-based 
strategy. What happens to the prediction performance when 
the Rr parameter is set to 20% or higher?	

Figure 5 represents the variations of the prediction 
performance based on a function of Rr. The results show that 
the performances for anomalous-experienced instances 
decrease gradually as Rr increases and that the performances 
for regular instances decrease rapidly when Rr increases to 
80%. 

We verify what retrieval error is the cause of decline in 
performance. There are three types of errors on anomalous 
instances―commission errors in which regular instances are 
retrieved incorrectly, commission errors in which another 
anomalous instances are retrieved, and omission errors, in 
which no instance is retrieved. On the other hand, there are 
three types errors on regular instances―commission errors in 
which another regular instances are retrieved, commission 
errors in which anomalous instances are retrieved incorrectly, 
and omission errors. However, the omission errors on regular 
instances do not correspond to retrieval errors because 
participants can catch the ball even if they do not move the 
paddle and such trials are regarded as successful prediction. 
Therefore, we verify the only two commission errors on 
regular instances as possible causes of decline in performance 
for regular instances. 

Figure 6 represents the variations of retrieval errors on 
anomalous-experienced instances. The results show that 
commission errors of regular instances increase as Rr 
increases to 80%. Additionally, there is no change on 
commission errors of anomalous instances and on omission 
errors from Rr 0% to 60%, but rapid drops appear in these 
errors at Rr 80% in each task. We found that the cause of 
declines in performance for anomalous-experienced 
instances is the commission errors in which regular instances 
are retrieved inappropriately. 

Subsequently, Figure 7 represents the transitions of 
retrieval errors on regular instances. The results show that 
commission errors of regular instances increase as Rr 
increases to 80% and that commission errors of anomalous 
instances decrease at 80%. As a result, the cause of declines 
in performance for regular instances is the commission errors 
in which another regular instance is retrieved. 
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Figure 7: Variations of retrieval errors on regular 
instances on a function of the rehearsal probability of 

regular instances (Rr). 
 
In summary, we found that the commission errors of 

regular instances contribute to the declines in performances 
on anomalous-experienced instances and on regular instances. 
That is, encoding regular instances in the memory-based 
strategy leads to increases in retrieval of inappropriate regular 
instances. In other words, participants using the memory-
based strategy are likely to inhibit the commission errors of 
regular instances by not encoding regular instances. 
Additionally, and notably, commission errors of anomalous 
instances and omission errors do not increase according to Rr 
and decrease at Rr 80%. We will discuss this topic in 
Discussion and Conclusion. 

Discussion and Conclusion 
In this study, we performed the simulations of the processing 
of the memory-based strategy with a cognitive model and 
revealed the following two points in the context of the 
prediction on anomalous behaviors. First, by reproducing the 
human data, we found that the results support our argument 
that regular instances are not encoded as default value, and 
anomalous instances are encoded in the memory-based 
strategy. Second, the simulations in prediction performance 
with settings of encoding parameters show that the benefits 
of the memory-based strategy appear when such inactivity on 
regular instances inhibits commission errors of inappropriate 
regular instances and does not inhibit commission errors of 
anomalous instances nor omission errors. 

Processes of Memory-based Strategy 
We found that the simulated data in which regular instances 
are not encoded provide a best fit to the human data. This 
result confirms our argument that regular instances are not 
encoded in the memory-based strategy. Additionally, this 
result corresponds to the results in our previous experiment 
about participants’ subjective evaluations toward anomalous 
instances and regular instances (Matsubayashi et al., in press). 

Although the tendencies on prediction performance in 
simulations are reproduced well, the simulated data are 
wholly lower than the human data. This result indicates that 
participants in the memory-based strategy could perform 
other additional processing than the encoding processing that 
we presumed in the current model when they observed 
various instances. For example, participants might integrate 
some similar instances into one chunk, make an inference 
regarding the causal structure through the anomalous 
trajectories, or revise relevant schema (Meyer et al., 1997). 

The studies on category learning have presumed the 
models that implement multiple processing when observing 
an instance (Nosofsky, Palmeri, & McKinley, 1994). 
Furthermore, our previous study indicates that participants 
adopt the inference-based strategy and the memory-based 
strategy when not provided explicit instructions about 
strategies (Matsubayashi et al., in press). The human data 
cited in this article correspond to the data when participants 
were urged to use the memory-based strategy, but we cannot 
dismiss the possibility that the participants use the inference-
based strategy alongside. However, the inference-based 
strategy is possible to consume much cognitive resources 
(Darabi et al., 2007); therefore, using both strategies could 
reduce prediction performance. Notably, the trade-off 
between the costs and the benefits on two strategies must be 
verified for future work. 

Benefits of Memory-based Strategy 
The benefits of the memory-based strategy appear because of 
the inhibition of retrieval errors of inappropriate regular 
instances. The inactivity on regular instances inhibits 
commission errors in which regular instances are retrieved 
incorrectly on anomalous instances and commission errors in 
which another inappropriate regular instances are retrieved 
on in-situ regular instances. In summary, such inactivity of 
the memory-based strategy has a critical role in preventing 
confusion in encoded instances when they are retrieved and 
in saving cognitive resources to encode instances. The results 
of the simulations show that when regulars are encoded as 
frequently as anomalous instances are, more commission 
errors of regular instances occur, which indicates that it is 
critical not to encode regular instances in the memory-based 
strategy. 

On the other hand, the commission errors of anomalous 
instances or the omission errors do not increase even if 
regular instances are encoded. Furthermore, we found that 
these two errors decrease only if regular instances are 
encoded as frequently as anomalous instances are. These 
decreases seem to occur, confounded with the effect of the 
increase in the commission errors of regular instances. If 
regular instances are encoded as frequently as anomalous 
instances are, the current model stores three anomalous 
instances and nine regular instances in the declarative 
memory in each block, with similar activation levels. 
Consequently, regular instances are more likely to be 
retrieved than anomalous instances, which results in a relative 
decrease in the commission errors of anomalous instances 
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and omission errors. However, the benefits of encoding 
regular instances do not appear because the whole prediction 
performance decreases even if these two errors decrease. 

The features of cognitive processing on anomalous 
instances have been verified with visual search tasks. Studies 
have revealed that the objects incongruent with the schema of 
the scene are difficult to identify (Mudrik, Deouell, & Lamy, 
2011) and these objects are represented internally prior to the 
objects congruent with the schema (Hollingworth & 
Henderson, 2000). Our findings that there are no benefits of 
encoding regular instances are not contradictory to such 
studies. Furthermore, our study reveals the cognitive 
processing on regular instances, which are congruent with the 
schema, while other studies have referred to that on 
anomalous instances, which are incongruent with the schema. 
Model-based approaches can clarify the internal cognitive 
processes that are difficult to observe and have been used in 
various areas, such as category learning (Erickson & 
Kruschke, 1998). Particularly, studies on the cognitive model 
about instance-based learning have revealed decision making 
processes from experience (Gonzalez & Dutt, 2011; Paik & 
Pirolli, 2013). Our findings regarding regular instances could 
not have been obtained without the simulations with a 
cognitive model. 

In this study, we performed simulations of the processing 
of the memory-based strategy with a cognitive model from a 
perspective of predicting anomalous behaviors. First, by 
reproducing the human data, we found the results that support 
our argument that regular instances are not encoded as default 
values and anomalous instances are encoded in the memory-
based strategy. Second, simulations in performance with 
encoding parameters clarified that the benefits of the 
memory-based strategy appear when such inactivity on 
regular instances inhibits the commission errors of 
inappropriate regular instances and does not inhibit the 
commission errors of anomalous instances nor the omission 
errors. 
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Abstract 

A central question for cognitive science is whether children’s 
linguistic productivity can be captured by item-based 
learning, or whether the learner must be guided by abstract, 
system-wide principles governed by innate constraints. Here, 
we present a computational model of early language 
acquisition which learns to discover and use lexically-based 
frames in a fully incremental, on-line fashion. The model is 
rooted in simple prediction- and recognition-based processes, 
subject to the same memory limitations as language learners. 
When exposed to English corpora of child-directed speech, 
the model is able learn developmentally plausible frames and 
use them to capture over 70% of the utterances produced by 
target children aged 2 to 5. Across a typologically diverse 
range of 29 languages, the model is able to capture over 68% 
of child utterances. Together, these findings suggest that 
much of children’s early linguistic productivity can be 
captured by item-based learning through computationally 
simple mechanisms. 

Keywords: language learning; language acquisition; usage-
based approaches; computational modeling; chunking 

Introduction 

By four years of age, most children have mastered the basic 

grammatical structures of their native language, an 

achievement marking the transition to a seemingly 

unbounded capacity for communicating novel information. 

But how is such open-endedness possible, given the finite, 

noisy nature of the input? This is among the foundational 

questions of cognitive science. For over half a century, 

researchers have argued that children’s learning is guided by 

system-wide, abstract principles and constrained by innate 

biases (e.g., Chomsky, 1965). In recent decades, an 

alternative perspective has emerged in the form of usage-

based approaches, which hold that children’s linguistic 

productivity emerges gradually as a process of storing and 

abstracting over the input (e.g., Tomasello, 2003). In this 

framework, children’s earliest steps towards unbounded 

productivity come in the form of lexically-based frames: 

through knowledge of partially overlapping sequences, 

children form schemas with slots that are filled according to 

semantic, pragmatic, or phonological constraints (e.g., 

Braine, 1963). 

Among the earliest quantitative studies offering evidence 

for lexical frames was that of Lieven, Behrens, Speares, and 

Tomasello (2003), who used a technique known as the 

“traceback method” to analyze the speech of a single child 

during its second year. Lieven et al. found that a high 

proportion of the child’s linguistic productivity—utterances 

which went beyond frozen or recycled sequences to feature 

novel word combinations—could be explained in terms of 

lexically-specific frames, such as “there’s the __ .” 

Subsequent work improved on the original traceback 

method and yielded similar findings (e.g., Lieven, Salomo, 

& Tomasello, 2003).  

As highlighted by other researchers (e.g., Kol, Nir, & 

Wintner, 2014) the traceback method is not automated and 

is therefore severely limited in terms of the range of corpora 

and languages to which it can be applied. Moreover, the 

lack of a computationally explicit formulation means that 

the general approach does not make specific commitments 

to the types of learning mechanisms or representations that 

allow productivity to emerge from lexically-based 

representations. 

 This problem highlights a general lack of computational 

work examining item-based learning as a starting point for 

linguistic abstraction, which is reflected in the imprecise 

language with which usage-based theory is often discussed. 

For instance, researchers have appealed to complex 

psychological constructs such as analogical reasoning to 

explain lexically-based frames (e.g., Gentner & Namy, 

2006; Tomasello, 2003). Even computational studies 

examining the transition from item-based learning to 

abstraction have appealed to analogy while remaining 

agnostic as to the lower-level mechanisms supporting it 

(e.g., Bod, 2009). 

 By contrast, we aim to provide an account of early 

abstraction which is rooted in basic processes of prediction 

and recognition. Moreover, we wish to capture such 

learning in a way that is consistent with the myriad sensory 

and memory limitations imposed on the learner (as 

discussed in Christiansen & Chater, 2016). This requires a 

fully incremental and on-line learning model, in line with 

memory constraints that force reliance on local rather than 

global syntactic information. It also means capturing 

learning in a way that is fully usage-based in the sense that 

all learning takes place in the context of specific processing 

events. 

782



Modeling Children’s Discovery and Use of 

Lexically-based Frames 

Here, we seek to model children’s discovery and use of 

lexical frames by modifying an existing usage-based 

computational framework, known as the Chunk-Based 

Learner (CBL; McCauley & Christiansen, 2014, 2019). 

Inspired by the aforementioned memory constraints, the 

CBL model aims to recreate individual children’s utterances 

by learning from the linguistic input to which they have 

been exposed. The model offers strong performance across a 

typologically diverse range of languages (McCauley & 

Christiansen, 2019) while capturing psycholinguistic data 

from both children (McCauley & Christiansen, 2014) and 

adults (Grimm, Cassani, Gillis, & Daelemans, 2017). 

Importantly, previous research has only used CBL to model 

the discovery and use of concrete multiword units. In the 

present study, we implement this pre-existing model and 

modify it to support the incremental, on-line discovery and 

use of lexically-based frames. 

In what follows, we describe the basic workings of the 

CBL model as well as the modifications we applied to 

enable the learning of lexical frames. Next, we examine 

qualitative and quantitative properties of the frames 

discovered by the model when exposed to corpora of 

English child-directed speech. We also evaluate the model’s 

ability to use these frames in a sentence production task, 

exploring the extent to which they can support early 

linguistic productivity. Finally, we look at the model’s 

ability to use frames in this sentence production task across 

a typologically diverse array of 29 different languages. 

Experiment 1: Modeling the Development of 

Lexically-based Frames in English 

The CBL Model 

The model has been described in detail in previous work 

(e.g., McCauley & Christiansen, 2019). We therefore briefly 

provide sufficient information to implement the model. The 

model processes the input corpus on a word-by-word basis, 

tracking low-level frequency information for words and 

word pairs (bigrams). This information is used on-line to 

calculate the backward transition probability (BTP) between 

words. By maintaining a running average of BTP over 

previously seen word pairs and using it as a threshold, the 

model classifies BTPs linking words as either high or low. 

High BTPs are used to group words together to form part of 

a chunk, while low probabilities are used to define chunk 

boundaries. When a boundary is placed, the preceding 

word(s)—there is no a priori limit on the size of a chunk—

are placed as a unit in the model’s chunk inventory. When 

the model encounters a previously-discovered chunk in the 

input, its frequency count is incremented by 1. The resulting 

chunk inventory thus contains a mix of single-word and 

multiword units. The model maintains frequency counts for 

pairs of chunks occurring together, which supports the 

incremental construction of utterances during production.  

The model also uses its chunk inventory on-line while 

processing the input. Through a combination of prediction- 

and recognition-based processing, knowledge of previously 

discovered chunks can assist in further discovery: when a 

word-pair is encountered, if it has occurred at least twice as 

part of an existing chunk, it is automatically grouped 

together (regardless of BTP). Otherwise, the BTP is 

evaluated against the running average threshold as described 

above. 

A record of the model’s on-line chunking of utterances is 

maintained for later evaluation against the output of a 

parser. CBL’s ability to approximate the output of shallow 

parsers cross-linguistically has been suggested to capture 

key aspects of comprehension (cf. McCauley & 

Christiansen, 2019). The model also aims to capture key 

aspects of production: as the model makes its way through a 

corpus of child-directed speech, it encounters utterances 

produced by the target child of the corpus, at which point 

the production side of the model comes into play. The 

model must produce its own utterance by generalizing from 

the chunks and statistics it has learned up to that point in the 

simulation. This task is used to evaluate our version of the 

model and is described below in the subsection entitled 

Sentence Production Task. 

Modifications to the CBL Model 

To enable the on-line discovery and use of lexical frames, 

we made some slight changes to the original CBL 

implementation. When the model has discovered 5 or more 

multiword chunks which overlap in all but one position, it 

creates a lexical frame—a chunk with an empty slot—and 

stores it in the chunk inventory. When chunks matching this 

frame are encountered, the frame’s frequency count is 

incremented, as are the counts of matching chunks. The 5+ 

criterion was selected in light of previous corpus studies of 

evidence for lexical frames in child-directed speech (e.g., 

Cameron-Faulkner, Lieven, & Tomasello, 2003, who used a 

criterion of 4+ in their analyses). As the original version of 

CBL already uses its chunk inventory during on-line 

processing, we felt this change was in keeping with the 

model’s intended psychological features. 

As an example of frame creation, consider an instance in 

which the model has already discovered and used the 

chunks in the box, in the tub, in the bag, and in the chair. 

When the model discovers the chunk in the cup, it also 

discovers the frame in the __ as an automatic generalization 

over the previous multiword chunks. Both in the cup and in 

the __ are initialized in the chunk inventory with counts of 

1, the starting frequency value for newly-discovered chunks. 

The frame’s count is then incremented by 1 when the model 

later encounters in the box, a previously discovered chunk, 

as is the count for that chunk. The frame’s count is also 

incremented by 1 again when the model discovers a new 

chunk, in the sink, and so forth. 

As described in the below section entitled Sentence 

Production Task, the model can rely on its knowledge of 

lexical frames during production. 
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Input Corpora 

Rather than aggregate across multiple corpora, each of our 

simulations involved exposing the model to a single corpus 

of child-directed speech. We selected, from the English 

language portion of the CHILDES database (MacWhinney, 

2000) all corpora meeting the following three criteria: i) 

contained at least 50,000 words; ii) featured a multiword 

child-to-adult utterance ratio of at least 1:10; and iii) 

spanned at least a 6-month period in terms of the target 

child’s age across the corpus. These criteria were met by 

individual corpora for 43 English-learning children (US: 25; 

UK: 18). Tags and punctuation were removed from the 

corpora, leaving, for each utterance, only speaker identifiers 

and the original sequence of words. 

Learning Lexical Frames in English 

Across the entire set of 43 simulations, the model 

discovered a mean of 14 lexical frames per 10,000 words of 

input. Rather than leading to a combinatorial explosion of 

units—as might suggest psychological implausibility, or 

coverage due to trivial factors in subsequent evaluation 

tasks--frames made up just 5% of the total chunk inventory 

for the simulation involving the largest corpus (Thomas; 

Maslen, Theakston, Lieven, & Tomasello, 2004), with 

smaller percentages for smaller corpora (3% on average).  

To offer a sense of the qualitative nature of the model’s 

lexical frames, we show, for the largest corpus (Thomas), a 

range of frequent frames as well as less-frequent but 

developmentally interesting frames. 

 

Table 1: Frequent and Developmentally Interesting 

Frames Learned from the Thomas (Dense) Corpus and 

Corresponding Counts in the Chunk Inventory 

 

Frequent 

Frames 

 Developmentally 

Interesting Frames 

 

the __  56117 a little __ 2131 

a __  42937 what’s __ 2122 

your __ 8366 a big __ 1401 

in the __ 7718 are you going to __ 1196 

on the __ 6950 what do you __ 945 

this __ 6742 more __  837 

that __ 6343 I want to __ 427 

very __ 4911 on __ own 228 

I don’t __ 3386 the red __ 120 

going to __ 3348 more __ 103 

 

As can be seen in Table 1, even though slots are allowed 

anywhere in a chunk, the vast majority of lexical frames 

featured a slot in the final position. Across all the English 

corpora, slot-final frames accounted for a large percentage 

of overall frames utilized, ranging from 85% to 98%. 

There is good overlap between the frames appearing in 

Table 1 and frames postulated by other researchers on the 

basis of corpus analyses, including some of the earliest to 

advance the notion of lexical frames: for instance, more __ 

is one of the first frames identified in Braine (1963).  

Next, we turn to the question of whether the lexical 

frames discovered by the model can offer insights into the 

nature children’s early productivity. To this end, we 

evaluate the model according to its ability to capture 

children’s actual utterances in these corpora, and measure 

the extent to which the model’s lexical frames can support 

production above and beyond concrete multiword chunks.   

Sentence Production Task 

The sentence production task was based on the bag-of-

words incremental generation task first described by Chang, 

Lieven, and Tomasello (2008). The task rests on the 

simplifying assumption that the overall message the child 

wishes to convey can be—very roughly—approximated by 

treating the utterance as an unordered bag-of-words. When 

the model encounters a multiword utterance produced by the 

target child of a corpus, its task is to sequence the items in 

the bag to produce its own utterance, using only the words 

and statistics it has discovered prior to that point. 

We used a nearly identical version of the task to that 

described by McCauley and Christiansen (2019): following 

psycholinguistic evidence for children’s use of multiword 

units (see above), the model was allowed to draw upon 

previously discovered chunks to populate the bag-of-words. 

To produce an utterance, the model begins by selecting from 

the bag the word or chunk with the highest transition 

probability given the start-of-utterance marker (a marker 

preceding every line in the corpus). At each subsequent time 

step the model removes and produces the word or chunk 

with the highest probability given the most recently placed 

chunk. This process continues until the bag is empty. 

Thus, production is implemented as fully incremental, 

chunk-to-chunk process, relying entirely on local 

information. In other words, there is no global whole-

sentence optimization. In this sense, the model captures the 

sorts of memory limitations described in the introduction. 

Where our version of the task differed from that described 

by McCauley and Christiansen (2019) was in the additional 

use of lexical frames: if the model lacked experience of a 

given sequence in the child’s utterance, but had learned a 

lexical frame capable of fitting that sequence, it was allowed 

to utilize the frame in the bag-of-words task. Consider the 

model’s attempt to produce the child utterance: “red one 

stuck in the jam.” In a case in which the model has 

discovered the lexical frame in the __ but has never 

encountered the sequence in the jam in the input, the model 

is allowed to use the lexical frame to complete this pattern. 

Statistics are then calculated over the frame itself, as if it 

were a fully concrete chunk.   

Gold Standard for Sentence Production Task 

Following each production attempt, the model’s utterance is 

scored against the child’s original utterance according to an 

all-or-nothing scoring metric: if the two utterances do not 

match completely, a score of 0 is assigned. Otherwise, a 

score of 1 is given. Thus, the overall accuracy of the model 
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across a corpus can be calculated as a percentage of 

correctly produced multiword utterances (single-word 

utterances are excluded to avoid inflating performance). We 

call this the Sentence Production Accuracy (SPA) score. 

Alternate Distributional Models We evaluate the model 

against two baseline models: the first is the basic version of 

CBL used as a starting point for the present study (described 

above; cf. McCauley & Christiansen, 2019). The second is a 

standard trigram model; this approach was selected as a 

baseline due to its widespread use and generally robust 

performance as a probabilistic language model across a 

range of genres (Manning & Schütze, 1999). 

Results and Discussion Across all 43 English 

simulations, the lexical frames version of the CBL model 

(CBL+LF) achieved a median Sentence Production 

Accuracy of 71.3% (mean: 69.5%). This is compared to a 

median score of 58.5% (mean: 57.8%) for the original CBL 

model and a median score of just 45.7% (mean: 45.1%) for 

the trigram (3G) baseline. The distribution of scores for 

each model are shown in Figure 1.  

A linear mixed-effects model fit using logit-transformed 

SPA scores, with child as a random factor, confirmed that 

both the CBL+LF model (β=0.53, t=22.8, p < 0.001) and the 

3G model (β=-0.53, t=-22.6, p < 0.001) differed 

significantly from the original CBL model, in opposite 

directions.1 

 

 
 

Fig. 1: Box and whisker plots depicting English Sentence 

Production Accuracy (%) for the model and its baselines. 

 

Thus, in addition to discovering developmentally and 

psychologically plausible lexical frames, the CBL+LF 

model was able to use these units to improve upon the CBL 

model’s production performance by nearly 12 percentage-

points, surpassing the performance of a standard trigram 

model by nearly 25 percentage-points.  

                                                           
1All p-values computed via Satterthwaite approximation. 

Experiment 2: Modeling the Development of 

Lexically-based Frames Across Typologically 

Diverse Languages 

The vast majority of computational modeling work in the 

study of language acquisition has focused on English. It is 

crucial, however, to determine whether the types of 

linguistic representations and learning mechanisms we 

ascribe to children can plausibly accommodate languages 

with typological features that differ greatly from those of 

English. In the case of the present model, which uses 

multiword units as much of the basis for learning and 

processing, morphological features are of particular interest.  

A previous study using the CBL model has demonstrated 

that multiword units do indeed facilitate production for 

typologically diverse languages, including morphologically 

rich languages (McCauley & Christiansen, 2019). Here, we 

ask the question of to what extent limited productivity based 

on lexical frames can improve the ability of CBL to capture 

the utterances of children learning a typologically diverse 

set of languages, above and beyond what can be captured 

through learning tied to concrete chunks. 

Corpora 

We selected from the CHILDES database (MacWhinney, 

2000) corpora involving single target children, rather than 

aggregating data across multiple corpora. Due to limitations 

on the number of corpora for several of the languages in 

CHILDES, these were selected according to slightly relaxed 

criteria: each corpus contained at least 10,000 words, at least 

1,000 multiword child utterances, and a child-to-adult 

utterance ratio of no less than 1:20. 

These criteria were met by corpora for 160 additional 

target children from 28 different languages (Afrikaans: 2, 

Cantonese: 8, Catalan: 4, Croatian: 3, Danish: 2, Dutch: 12, 

Estonian: 3, Farsi: 2, French: 15, German: 22, Greek: 1, 

Hebrew: 6, Hungarian: 4, Indonesian: 8, Irish: 1, Italian: 8, 

Japanese: 10, Korean: 1, Mandarin: 7, Polish: 11, 

Portuguese: 2, Romanian: 1, Russian: 2, Sesotho: 3, 

Spanish: 11, Swedish: 5, Tamil: 1, Welsh: 6). Table 2 lists 

some basic typological properties of these languages. 

To get a rough quantitative measure of morphological 

complexity for child-directed speech in each language, we 

calculated word type/token ratios (following the reasoning 

and methods of Chang et al., 2008). We refer to this as the 

Morphological Complexity Score. 

Sentence Production Task 

We used the same sentence production task as in Exp. 1. 

Results and Discussion 

Across all 29 languages and 200+ corpora, the lexical 

frames version of CBL achieved a mean SPA score of 

68.4%, compared to 55.3% for the original CBL model and 

just 45.9% for the trigram model. Means for each language 

are shown in Figure 2. By discovering and utilizing lexical 

frames, the model was able to reproduce the majority of the 
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child utterances in every language, with mean scores 

ranging from 55% (Swedish) to 81% (Romanian). 

A linear mixed-effects model was fit to logit-transformed 

SPA scores with language and child as random effects, and 

a by-language random slope of model. This confirmed that 

the CBL+LF model (β=0.58, t=26.8, p < 0.001) and the 

trigram model (β=-0.32, t=-8.6, p < 0.001) differed 

significantly from the original CBL, in opposite directions.  

Because previous work with the original version of CBL 

demonstrated that the model’s performance decreased as a 

function of morphological richness (McCauley & 

Christiansen, 2019), we compared CBL performance to 

CBL+LF in order to determine whether this effect was 

reduced by the use of lexical frames. Figure 3 depicts the 

relationship between the CBL+LF model and 

Morphological Complexity Score.   

 

Table 2: Typological Properties of the 29 Languages 

Language Family Genus 
Word 
Order 

# 
Cases 

Irish Indo-European Celtic VSO 2 

Welsh Indo-European Celtic VSO 0 

English Indo-European Germanic SVO 2 

German Indo-European Germanic N.D. 4 

Afrikaans Indo-European Germanic N.D. 0 

Dutch Indo-European Germanic N.D. 0 

Danish Indo-European Germanic SVO 2 

Swedish Indo-European Germanic SVO 2 

Greek Indo-European Greek N.D. 3 

Farsi Indo-European Iranian SOV 2 

Romanian Indo-European Romance SVO 2 

Portuguese Indo-European Romance SVO 0 

Catalan Indo-European Romance SVO 0 

French Indo-European Romance SVO 0 

Spanish Indo-European Romance SVO 0 

Italian Indo-European Romance SVO 0 

Croatian Indo-European Slavic SVO 5 

Russian Indo-European Slavic SVO 7 

Polish Indo-European Slavic SVO 7 

Estonian Uralic Finnic SVO 10+ 

Hungarian Uralic Ugric N.D. 10+ 

Sesotho Niger-Congo Bantoid SVO 0 

Hebrew Afro-Asiatic Semitic SVO 0 

Tamil Dravidian S. Dravidian SOV 7 or 8 

Indonesian Austronesian Malayic SVO 0 

Cantonese Sino-Tibetan Chinese SVO 0 

Mandarin Sino-Tibetan Chinese SVO 0 

Korean Korean Korean SOV 7 

 Japanese  Japanese  Japanese  SOV  9 

Note: Information from Haspelmath et al. (2005) 

Though Morphological Complexity Score was indeed a 

predictor of CBL+LF performance (β=-2.01, t=-3.5, p < 

0.001, r=0.23), we found that the presence of lexical frames 

reduced this effect in comparison to that observed for the 

original CBL model (β=-2.4, t=-4.1, p < 0.001, r=0.27), as 

confirmed by a significant interaction between model and 

Morphological Complexity Score (β=0.15, t=3.03, p < 0.01) 

in a linear mixed model which included model as a 

categorical factor. 

A close inspection of the lexical frames discovered by the 

model when exposed to English revealed that they were 

both psychologically and developmentally plausible, but we 

currently lack the cross-linguistic expertise to offer a 

detailed analysis of lexical frames for the 28 additional 

languages. Nevertheless, these simulations offer clear 

evidence that, in principle, the same types of representations 

and mechanisms can support the discovery of lexical frames 

across a typologically diverse range of languages. Indeed, 

for all the 29 languages, lexical frames capture early 

linguistic productivity above and beyond what can be 

achieved through concrete words and chunks:  CBL+LF 

lead to a 13 percentage-point improvement over mean CBL 

performance and a 23 percentage-point improvement over 

trigram models. 

 

 
Fig. 2: Sentence Production Accuracy (%) for the model and its 

baselines across 29 languages. Bars are overlapping. 
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Fig. 3: CBL+LF SPA scores across all children and languages 

plotted against Morphological Complexity Score. Different colors 

denote distinct languages. Trendline from simple linear regression. 

General Discussion 

In this paper, we have demonstrated that a simple, 

developmentally-motivated model rooted in concrete 

prediction- and recognition-based processes can discover 

lexically-based frames that are not only psychologically 

plausible but also can capture a significant amount of 

children’s early linguistic productivity. In 200+ simulations 

of individual children across a typologically diverse array of 

languages, the CBL+LF model was able to capture a 

significantly higher proportion of child utterances than a 

version of the model relying solely on concrete words and 

chunks, offering an even larger improvement over trigram 

models. Moreover, this was achieved while accommodating 

the sorts of memory limitations that drive children (and 

adults) to rely on local information during comprehension 

and production (e.g., Christiansen & Chater, 2016). 

In contrast to previous quantitative studies examining 

evidence for lexical frames in child speech (e.g., those using 

the traceback method of Lieven et al., 2003), we 1) capture 

the actual learning of frames during comprehension, as well 

as their use in production, and 2) do this for children beyond 

their second year, with corpora covering child productions 

during the third and fourth year. 

Nonetheless, the CBL+LF approach is not without 

limitations. Firstly, frames operate on the level of words 

appearing within chunks; chunks themselves are not yet able 

to appear in slots. By overcoming this limitation in a 

principled way, a wider variety of linguistic phenomena 

could be captured. For instance, non-adjacent dependencies 

can be learned in the current version of the model: frames 

like this __ one and those __ ones capture a number 

dependency. Extending the model to allow entire chunks in 

slots will be a necessary subsequent step towards capturing 

more abstract processing of long-distance dependencies. 

A more serious limitation of the present work is that it 

does not incorporate the learning or use of semantic 

information. The semantic properties of words and frames 

are needed to provide constraints on which items that can 

appear in lexical frames. The learning of such information is 

crucial for moving towards a framework capable of 

producing utterances based on meaning representations (and 

forming meaning representations during comprehension). 

To this end, ongoing work aims to simulate the learning of 

lexical semantics, semantic roles, and argument structures 

through the use of automatically generated, idealized “visual 

scenes” which are paired with utterances in corpora. 

More generally, the promise of item-based computational 

approaches for tracing a path to more sophisticated forms of 

linguistic abstraction is great: previous work has shown that 

the systematic use of pseudographs to align and compare the 

sentences in a text can give rise to complex context-free 

grammars (Solan, Horn, Ruppin, & Edelman, 2005). 

Bayesian induction of item-based grammars from the speech 

of single target children has also yielded good coverage of 

those children’s increasing productivity (in a manner akin to 

the traceback method; Bannard, Lieven, & Tomasello, 

2009). However, these models are not subject to memory 

limitations, and involve computations beyond what children 

are capable of. A motivation for the current approach, 

therefore, was to take initial steps towards modeling 

increasingly productive linguistic representations in a way 

that is psychologically motivated, incremental, and on-line. 

Acknowledgments 

Thanks to Erin Isbilen for helpful comments and feedback. 

Thanks to Nick Chater, Padraic Monaghan, Colin Bannard, 

and Ben Ambridge for helpful discussion. 

References  

Bannard, C., Lieven, E., & Tomasello, M. (2009). Modeling 

children’s early grammatical knowledge. Proceedings of 

the National Academy of Sciences, 106, 17284–17289. 

Bod, R. (2009). From exemplar to grammar: A probabilistic 

analogy‐based model of language learning. Cognitive 

Science, 33, 752-793. 

Braine, M. D. S. (1963). The ontogeny of English phrase 

structure: The first phrase. Language, 39, 1-13. 

Cameron‐Faulkner, T., Lieven, E., & Tomasello, M. (2003). 

A construction-based analysis of child directed speech. 

Cognitive Science, 27, 843-873. 

Chang, F., Lieven, E., & Tomasello, M. (2008). Automatic 

evaluation of syntactic learners in typologically-different 

languages. Cognitive Systems Research, 9, 198-213. 

Chomsky, N. (1965). Aspects of a theory of syntax. 

Cambridge: MIT Press. 

Christiansen, M. H., & Chater, N. (2016). The Now-or-

Never bottleneck: A fundamental constraint on language. 

Behavioral and Brain Sciences, 39, e62. 

Gentner, D., & Namy, L. L. (2006). Analogical processes in 

language learning. Current Directions in Psychological 

Science, 15, 297-301. 

Grimm, R., Cassani, G., Gillis, S., & Daelemans, W. (2017). 

Facilitatory effects of multi-word units in lexical 

787



processing and word learning: A computational 

investigation. Frontiers in Psychology, 8:555. 

Haspelmath, M., Dryer, M. S., Gil, D., & Comrie, B. 

(2005). The world atlas of linguistic structures. Oxford, 

UK: Oxford University Press. 

Kol, S., Nir, B., & Wintner, S. (2014). Computational 

evaluation of the Traceback Method. Journal of Child 

Language, 41, 176-199. 

Lieven, E., Salomo, D., & Tomasello, M. (2009). Two-year-

old children's production of multiword utterances: A 

usage-based analysis. Cognitive Linguistics, 20, 481-507. 

Lieven, E., Behrens, H., Speares, J., & Tomasello, M. 

(2003). Early syntactic creativity: A usage-based 

approach. Journal of Child Language, 30, 333–370. 

Manning, C. D., & Schütze, H. (1999). Foundations of 

statistical natural language processing. Cambridge: MIT. 

MacWhinney, B. (2000). The CHILDES Project: Tools for 

Analyzing Talk, Volume II: The Database. Mahwah, NJ: 

Lawrence Erlbaum Associates. 

Maslen, Theakston, Lieven, & Tomasello (2004). A dense 

corpus study of past tense and plural overregularization in 

English. Journal of Speech, Language, and Hearing 

Research, 47, 1319-1333. 

McCauley, S.M. & Christiansen, M.H. (2014). Acquiring 

formulaic language: A computational model. Mental 

Lexicon, 9, 419-436. 

McCauley, S.M. & Christiansen, M.H. (2019). Language 

learning as language use: A cross-linguistic model of 

language development. Psychological Review, 126, 1-51. 

Solan, Z., Horn, D., Ruppin, E., & Edelman, S. (2005). 

Unsupervised learning of natural languages. Proceedings 

of the National Academy of Sciences, 102, 11629-11634. 

Tomasello, M. (2003). Constructing a language. 

Cambridge: Harvard University Press. 

788



Multiword Units Predict Non-inversion Errors in Children’s Wh-questions: “What 

Corpus Data Can Tell Us?” 

Stewart M. McCauley (stewart-mccauley@uiowa.edu) 
Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242 

 

Colin Bannard (Colin.Bannard@liverpool.ac.uk) 

Department of Psychological Sciences, University of Liverpool, Liverpool, UK, L3 5TR 
 

Anna Theakston (anna.theakston@manchester.ac.uk) 

Michelle Davis (michelle.davis@manchester.ac.uk) 

Division of Human Communication, Development & Hearing, University of Manchester, Manchester, UK, M13 9PL 
 

Thea Cameron-Faulkner (T.Cameron@manchester.ac.uk) 

Department of Linguistics and English Language, University of Manchester, Manchester, UK, M13 9PL 
 

Ben Ambridge (Ben.Ambridge@liverpool.ac.uk) 

Department of Psychological Sciences, University of Liverpool, Liverpool, UK, L3 5TR 

 

Abstract 

Subject-auxiliary inversion in interrogatives has been a topic 
of great interest in language acquisition research, and has 
often been held up as evidence for the structure-dependence 
of grammar. Usage-based and nativist approaches posit 
different representations and processes underlying children’s 
question formation and therefore predict different causes for 
these errors. Here, we explore the question of whether input 
statistics predict children’s spontaneous non-inversion errors 
with wh- questions. In contrast to previous studies, we look at 
properties of the non-inverted, errorful forms of questions. 
Through a series of corpus analyses, we show that the 
frequency of uninverted subsequences (e.g., “she is going” in 
“what she is going to do?*”) is a good predictor of children’s 
errors, consistent with recent evidence for multiword units in 
children’s comprehension and production. This finding has 
implications for the types of mental representations and 
cognitive processes researchers ascribe to children acquiring a 
first language. 

Keywords: language acquisition; interrogatives; corpora; 
corpus analyses; usage-based approach; chunking 

Introduction 

Whether the input available to children is sufficient to 

explain their emerging language abilities is a fundamental 

question in cognitive science (Chomsky, 1957; Skinner, 

1957). Central to the ongoing discussion are tensions 

between the view of grammar as the result of gradual 

abstraction over the input (e.g., Lieven, Salomo & 

Tomasello, 2009; Tomasello, 2003), and approaches in 

which the acquisition process is guided by innate, language-

specific biases (e.g., Pinker, 1999; Fisher, 2002). 

In the realm of theoretical linguistics, work in support of 

the latter approach has focused on specific linguistic 

phenomena, such as interrogatives. A topic of particular 

interest is that of subject-auxiliary inversion, which has been 

held up as evidence for the structure-dependence of 

grammar (e.g., Crain, 1991; Berwick, Pietroski, Yankama, 

& Chomsky, 2011), and is often still discussed in the same 

terms as it was half a century ago (Chomsky, 1968). 

In developmental psycholinguistics, a great deal of work 

has also focused on interrogatives, in part because they 

represent some of the few sentence types for which English-

speaking children reliably make errors involving word order 

(e.g., Klima & Bellugi, 1966; Stromswold, 1990). 

Moreover, these sentence types provide a means to evaluate 

subject-auxiliary inversion as evidence for structure-

dependence within a developmental framework. This 

applies to wh-questions especially: as both the wh-word and 

the auxiliary are fronted, it has been argued that they are 

structurally more complex than yes/no questions (e.g., 

Pozzan & Valian, 2017; Jakubowicz, 2011); and unlike 

yes/no questions, children rarely encounter wh-questions in 

uninverted form as part of the input, yet still make errors of 

uninversion as in (1). 

 

(1) What they are doing over there ? * 

Thus, wh- questions represent an ideal case for mediating 

between nativist and constructionist approaches, as each 

posit different representations and processes underlying 

children’s errors and therefore predict different error 

properties. While the former emphasizes abstract structural 

considerations, the latter perspective stresses the importance 

of input frequency in supporting lexically-specific 

representations. 

In line with structure-dependence accounts, a number of 

researchers have argued for earlier acquisition of argument 

wh-questions than adjunct wh-questions, based on their 

structural properties (e.g., Stromswold 1990, de Villiers 

1991). Consistent with this, Pozzan and Valian (2017) 

report higher non-inversion rates for adjunct than for 

argument wh- questions, a finding they argue to be 

independent of input frequencies (as might be predicted 

under usage-based approaches). However, frequency is not 

rigorously controlled for in the design of the stimulus items 

themselves, nor is the frequency of substrings beyond the 
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wh-word/auxiliary combination considered (in the following 

subsection, we discuss why this may be of importance). 

Initial support for usage-based approaches to subject-

auxiliary inversion came from a corpus analysis of one 

child’s early wh- questions (Rowland & Pine, 2000). The 

authors found that the frequency of specific wh-word + 

auxiliary combinations reliably predicted non-inversion 

rates. Ambridge, Rowland, Theakston, and Tomasello 

(2006) extended this finding with an elicited production 

study in which wh-word + auxiliary combinations predicted 

non-inversion rates in children aged 3;6 to 4;6. Moreover, 

wh-word alone was not found to predict errors, in contrast to 

structure-dependence accounts (e.g., Pozzan & Valian, 

2017).  Rather, the pattern of results was consistent with the 

notion of lexically-specific representations driving 

performance with particular question types. 

In a further elicitation study, Ambridge and Rowland 

(2009) investigated a wider range of question types, 

including negative polarity questions, replicating the finding 

that wh-word + auxiliary frames predicted error rates. 

Though the relevant frequency dimensions were not 

controlled for in a rigorous way, Ambridge and Rowland 

also found initial support for the notion that patterns learned 

from declarative utterances may also shape errors. It is to 

this possibility that we turn in the present study.  

 

A Role for Multiword Units in Predicting Non-

inversion Errors 

A serious limitation of previous work on subject-auxiliary 

inversion is that only the distributional properties of correct 

forms have been taken into account. This partly stems from 

the lingering influence of theoretical frameworks in which 

individual words are viewed as the fundamental units over 

which language processing take place (e.g., Pinker, 1999). 

After all, the correctly inverted and errorful, non-inverted 

forms of a question contain the same set of words; only the 

word order differs. Thus, if words are the fundamental units 

of language, we would not expect the distributional 

properties of an errorful form to play a role in question 

formation. 

Recent years, however, have seen an explosion of 

psycholinguistic data suggesting that language users are not 

only sensitive to the properties of compositional multiword 

sequences, but—in some sense—store and actively utilize 

such sequences in comprehension and production, as 

linguistic units in their own right. The frequency of such 

multiword units—or “chunks”—has been shown to facilitate 

processing in adult comprehension (e.g., Arnon & Snider, 

2010; Bannard, 2006; Reali & Christiansen, 2007) as well 

as production (e.g., Janssen & Barber, 2012). These findings 

have received further support from event-related brain 

potentials (Tremblay & Baayen, 2010) and eye-tracking 

data (Siyanova-Chanturia, Conklin, & van Hueven, 2011). 

Importantly, these findings are mirrored in 

psycholinguistic work with children (see Theakston & 

Lieven, 2017 for an overview). Bannard and Matthews 

(2008) found that, when controlling for substring frequency, 

overall sequence frequency predicted the speed and 

accuracy with which 2- and 3-year-olds produced 

compositional phrases. Arnon and Clark (2011) report 

evidence that multiword chunk frequency intersects with 

morphological development: errors of noun plural 

overregularization were significantly reduced when irregular 

plurals were produced in the context of more frequent 

sequences. Moreover, multiword units exhibit the same type 

of age-of-acquisition (AoA) effects as do individual words, 

when AoA is determined by either subjective ratings or by 

corpus-based metrics (Arnon, McCauley, & Christiansen, 

2017). Taken together, these findings underscore the 

possibility that multiword chunks serve as building blocks 

for language learning. 

The importance of these findings to more general 

theoretical debates is further highlighted by computational 

modeling work which has shown that abstraction over 

stored sequences can lead to a considerable amount of 

linguistic productivity (e.g., Solan, Horn, Ruppin, & 

Edelman, 2005). Even models lacking abstraction have 

served to demonstrate that associative learning of chunks 

from naturalistic input can account for a substantial portion 

of children’s language production (McCauley & 

Christiansen, 2019). 

Therefore, if children are sensitive to the properties of 

multiword sequences, we might expect such information to 

play a role in wh-question formation. Take, for instance, the 

following correctly inverted and non-inverted (errorful) 

forms (2-3): 

 

(2) What is she going to do ? 

 

(3) What she is going to do ? * 

 

If the uninverted strings “she is going” or “is going” are 

highly frequent in the child’s input, we might expect—given 

evidence that multiword chunks play a role in learning and 

processing—that the child is more likely to produce the 

errorful form. By the same token, we might expect the 

frequency of “is she going” or “she going” to alter this 

likelihood in the opposite direction. From this perspective, 

chunks from both the correctly inverted and non-inverted 

forms might be seen as competing. In other words, 

multiword sequence frequencies from the correctly inverted 

and non-inverted forms are both important, insofar as they 

relate to one another. 

The Present Study 

If such a relationship exists at all, it is likely to be a complex 

one, mediated by a host of distributional, pragmatic, and 

semantic factors. In the present study, we take an initial step 

towards disentangling these factors by considering, 

simultaneously, the many distributional factors at play. Not 

only have the frequencies of individual wh-words and 

auxiliaries been argued to shape errors, but also the 

frequencies of distinct wh-word/auxiliary combinations 
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themselves (e.g., Rowland & Pine, 2000). Given the 

perspective we have put forth regarding a role for multiword 

sequences stretching beyond the wh-word and auxiliary, it is 

necessary to consider the distributional properties of 

individual words and higher-order n-grams for both the 

correctly inverted and uninverted forms of questions, 

simultaneously. 

In the present study, we evaluate the role of multiword 

units in early wh-question production by using distributional 

statistics from child-directed speech to predict children’s 

spontaneous uninversion errors. Using the entire English 

portion of the CHILDES database (MacWhinney, 2000), we 

collect distributional statistics for words and higher-order n-

grams, which are then used to construct a logistic regression 

model of children’s correctly inverted and errorful 

(uninverted) questions across the 12 most question-rich 

corpora. Thus, we are able to test whether, and to what 

extent, frequencies for individual words and multiword 

combinations predict spontaneous error rates. Moreover, 

this allows us to evaluate the role played by multiword 

sequences from the uninverted forms of questions while 

controlling for the statistics of the correctly inverted forms, 

and vice-versa. 

In this context, usage-based approaches make predictions 

that are separable and distinct from those made by theories 

emphasizing abstract, system-wide principles: if children are 

forming questions based on structural properties, we would 

not expect to see a role for uninverted n-gram statistics in 

predicting uninversion errors. Moreover, we would expect 

structural differences in question type (e.g., argument 

questions vs. adjunct questions) to be better predictors of 

correct inversion than frequency (e.g., Pozzan & Valian, 

2017). By contrast, usage-based approaches would predict 

experience with particular wh-words, auxiliaries, and even 

specific subjects/verbs to be robust predictors of error rates, 

and would quite naturally accommodate findings that n-

gram sequences from the uninverted forms predict error 

rates. Under such a view, abstract grammatical constructions 

tied to questions would emerge gradually as a process of 

abstracting over stored sequences, and this would be 

reflected in the probabilities with which children fail to 

correctly invert certain sentences. 

Methods 

The corpus analysis consisted of three general phases: 

extraction of all child-produced wh- questions from a set of 

target corpora, followed by semi-automated identification of 

uninversion errors; collection of n-gram statistics for child-

directed speech in English; and mixed-effects logistic 

regression modeling to determine which n-gram statistics 

predicted uninversion errors in the extracted questions. 

Corpus Selection and Preparation 

We began by extracting the 12 corpora with the highest 

number of wh- questions from the English language portion 

of the CHILDES database (MacWhinney, 2000). Each 

corpus followed a single target child and spanned at least 

one year of development; the age range and nationality for 

each target child is shown in Table 1 alongside citation 

information. 

 

Table 1: Details of CHILDES Corpora Used in Analysis 

of Uninversion Errors 

 

Target 

Child 

Corpus Age 

Range 

Abe Kuczaj, 1977 2;04-5;00 

Adam Brown, 1973 2;03-5;02 

Eleanor Lieven et al., 2009 2;00-3;00 

Ethan Demuth & McCullough, 2009 0;11-2;11 

Fraser Lieven et al., 2009 2;00-3;01 

Laura Braunwald, 1976 1;05-7;00 

Lara Rowland & Fletcher, 2006 1;09-3;03 

Lily Demuth & McCullough, 2009 1;01-4;00 

Naima Demuth & McCullough, 2009 0;11-3;10 

Ross MacWhinney, 1991 1;04-7;08 

Sarah Brown, 1973 2;03-5;01 

Thomas Maslen et al., 2004 2;00-4;11 
 

Each corpus was then prepared for analysis using an 

automated procedure which removed codes, tags, and 

punctuation, leaving only speaker identifiers and the 

original sequence of words. Lines consisting solely of 

morphological tags (included as standard in CHILDES 

corpora) were unaffected by this procedure and were 

retained for later use in extracting uninversion errors.  

As part of this procedure, contractions were split into their 

component words: e.g., “what’s he doing” was re-coded as 

“what is he doing.” As corpus annotation differs in terms of 

how contractions are transcribed (leading to arbitrary noise), 

this step ensured that modeling work reflected accurate n-

gram frequencies for wh- words and auxiliaries across all 

questions. As a further step we collapsed the pronouns “she” 

and “he” into a single form to control for individual 

differences across children’s exposure to gender pronouns. 

Wh- Question and Uninversion Error Candidate 

Extraction and Coding 

Child-produced wh- questions were automatically extracted 

from the target corpora by utilizing the standard default 

morphological tagging included in CHILDES. All extracted 

questions featured a wh- word in the first position, followed 

immediately by an auxiliary. This yielded approximately 

13,000 child-produced wh- questions across the 12 corpora. 

For the purpose of automatically identifying possible 

uninversion errors, we extracted, from the full corpora, all 

child questions which featured a wh- word in the initial 

position which was not immediately followed by an 

auxiliary. These candidate items were then manually coded 

for error type by the first author, yielding a total of 300 

identified uninversion errors produced across the target 

children. wh- questions featuring an error type other than 
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uninversion (such as doubling or omission errors) were 

excluded from our dataset. Importantly, our analyses were 

restricted to questions produced before the age of five years. 

N-gram Data Collection 

In order to capture n-gram statistics which accurately 

reflected the nature of child-directed speech in the English 

language, we gathered n-gram frequencies for the entire 

English (UK and US) portion of the CHILDES database. 

This allowed us to overcome issues of data sparseness 

arising from corpus size (Manning & Schütze, 1999). 

The aggregated corpus was prepared for data collection 

following the same procedure described in the above 

subsection. Frequencies were then collected for unigrams 

(single words), bigrams (word pairs), and trigrams (word 

triplets), which were then applied to each of the wh- 

questions extracted for the 12 target child corpora. To this 

end, n-gram statistics were calculated for each question 

(separate unigram counts for each word, separate bigram 

counts for each word pair, and so forth). Thus, for the 

question “what is that,” three unigram counts (one for each 

of three word positions), two bigram counts (one for each of 

two word pair positions), and one trigram count (for the 

single word triplet position) were available. 

Because our statistical analyses aimed to explore the role 

of multiword chunk frequency in shaping children’s 

uninversion errors, we sought to directly compare the 

correctly inverted “target question” for children’s 

uninversion errors to the correctly inverted questions which 

made up the rest of the dataset. To achieve this, we 

calculated n-gram frequencies for the correctly inverted 

forms of the uninverted questions identified by the earlier 

procedure. Uninversion errors were “corrected” by hand in 

order to achieve this.  

By the same token, we also sought to explore the role of 

multiword sequence frequencies for the relevant uninverted 

question forms in determining error rates. For this, we 

retained the original child uninversion errors and employed 

an automated procedure to produce the errorful, uninverted 

form corresponding to each correctly inverted question in 

the corpus. The second and third words could not simply be 

swapped because a large number of questions featured 

multiword subject noun phrases, such as “where is my red 

ball?” Thus, to automatically achieve a realistic uninverted 

form across such a large number of questions, we first 

chunked utterances using a shallow parser (Punyakanok & 

Roth, 2001). Shallow parsers are widely used tools in the 

field of natural language processing which segment out the 

non-overlapping, non-embedded phrases in a text. For 

instance, the shallow parser output for the previous example 

would be: “[where] [is] [my red ball].” After submitting all 

correctly inverted questions to the shallow parser, we 

merely switched the second and third chunks, yielding the 

relevant, uninverted errorful forms, such as “where my red 

ball is?”  

Thus, we collected unigram, bigram, and trigram statistics 

for each position across all correctly inverted questions 

(and, in the case of uninversion errors, the correctly inverted 

target questions), alongside a separate set of n-gram 

statistics for the uninversion errors (and, in the case of 

correctly inverted questions, the relevant errorful form). 

Analysis 

In order to evaluate the predictive relationship between 

multiword chunk frequency and uninversion errors, we used 

mixed-effects logistic regression modeling (cf. Agresti, 

2002). We carried out a set of model comparisons to 

determine which n-gram frequencies were uniquely 

predictive of the relationship. This involved selecting 

predictors at each n-gram level separately, starting at the 

unigram level before moving to the bigram level, followed 

by the trigram level. 

Questions originally produced by the target children in 

their correctly inverted form were coded as 0, while 

questions produced in an errorful, uninverted form were 

coded as 1. N-gram frequencies were then used as predictors 

for this binary variable. All models included a random 

intercept for child, to reflect the fact that the 12 target 

children may differ in the extent to which their errors could 

be predicted by n-gram frequencies. By-child random slopes 

were also included where they improved fit. 

Our model comparisons sought to evaluate n-gram 

frequencies of both the correctly inverted question and their 

corresponding uninverted (errorful) forms as predictors of 

child uninversion error. The model comparison procedure 

was designed such that the risk of false positives for higher-

order n-grams was insignificant, as we conservatively 

prioritized lower-order n-grams in the selection process. 

Importantly, all predictors were log-transformed and scaled. 

All model comparisons were carried out using log-

likelihood ratio tests.  

Starting at the unigram level, we used a leave-one-out 

procedure to determine which predictors explained variance 

over and above that explained by any other variable. The 

full baseline model at this level included random effects of 

the first 5 unigrams (by child) as well as fixed effects for 

these 5 unigrams. This was then compared to five 

subsequent models, each leaving out the fixed effect term 

for a different unigram (random effects by child were 

included for every unigram in each model). Removal of 

only the first two unigrams harmed model fit to a significant 

extent, according to log-likelihood tests. Thus, these two 

unigrams were held over for the next level of model 

comparisons. 

The same procedure described for unigrams was then 

carried out for the first four bigrams, but with random (by 

child) and fixed effects for the first two unigrams also 

included in each model (as unigrams are identical across the 

inverted and uninverted forms, only one set was included in 

the previous step). Importantly, bigrams from both the 

correctly inverted and the corresponding errorful forms were 

included at this second step. 

For correctly inverted question forms, removal of the 

third and fourth bigrams harmed model fit to a statistically 
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significant extent, according to the log-likelihood tests, 

while for the uninverted forms, removal of the second, third, 

and fourth bigrams harmed model fit. Thus, in addition to 

the first two unigrams from the previous step, the third and 

fourth bigrams from the correctly-inverted question forms 

and the second, third, and fourth bigrams from the errorful 

(uninverted) forms were held over for the final set of model 

comparisons. 

For the first three trigrams, the same procedure was 

followed once more (with random and fixed effects for the 

first two unigrams and first two bigrams). Only removal of 

the second and third trigrams from the uninverted/errorful 

question forms harmed model fit to a significant extent.  

Thus, the final set of predictors included the first two 

unigrams, the third and fourth bigrams from the correctly 

inverted forms, the second, third, and fourth bigrams from 

the uninverted forms, and the second and third trigrams 

from the uninverted forms. 

Results 

Our model comparison procedure (as described above) 

yielded a model with 9 n-gram predictors: the first two 

unigrams, third and fourth bigrams from the correctly 

inverted question forms; and the second, third, and fourth 

bigrams as well as the second and third trigrams for the 

errorful (uninverted) question forms. The log-likelihood, 

chi-squared value, and p-value for each model comparison 

is shown in Table 2. 

 

Table 2: Results of Model Comparisons 

 

Left-out Predictor Log-

likelihood 

χ2 p-value 

Unigram (full/baseline) -702.13 - - 

Unigram 1 -705.6 6.95 0.00 ** 

Unigram 2 -707.16 10.07 0.00 ** 

Unigram 3 -702.27 0.29 0.59 

Unigram 4 -702.13 0.00 0.97 

Unigram 5 -702.20 0.14 0.71 

Bigram  

(full/baseline) 

-626.40 - - 

Bigram 1 -627.28 1.76 0.19  

Bigram 2 -627.20 1.59 0.21 

Bigram 3 -631.41 10.01 0.00 ** 

Bigram 4 -632.68 12.55 0.00 *** 

Trigram (full/baseline) -614.62 - - 

Trigram 1 -615.44 1.641 0.2002 

Trigram 2 -615.69 2.141 0.1434 

Trigram 3 -614.67 0.103 0.748 

Uninverted Bigram 

(full/baseline) 

-626.40 - - 

Uninverted Bigram 1 -626.42 0.02 0.88 

Uninverted Bigram 2 -634.79 16.77 0.00 *** 

Uninverted Bigram 3 -634.87 16.94 0.00 *** 

Uninverted Bigram 4 -632.5 12.19 0.00 *** 

Uninverted Trigram 

(full/baseline) 

-614.62 - - 

Uninverted Trigram 1 -614.87 0.505 0.4772 

Uninverted Trigram 2 -617.55 5.874 0.02 * 

Uninverted Trigram 3 -618.41 7.582 0.01 ** 

 

To help understand the relationship of these n-gram 

frequencies with child uninversion errors, we constructed 

non-partial (single-predictor) models for each of the final 

variables, as reported in Table 3. Each model included a 

random intercept for target child and a random effect (by 

child) for the relevant predictor as well as the fixed effect. 

This procedure was preferred as, in a multi-predictor model, 

estimates may change sign based on the relative strength of 

predictor correlations with the dependent variable (cf. 

Wurm & Fisicaro, 2014). 

The first and second unigram frequencies (corresponding 

to the wh- word and auxiliary) were significant predictors 

with negative estimates, indicating lower likelihood of an 

uninversion error with more frequent items. Importantly, for 

higher-order n-gram predictors drawn from the errorful, 

uninverted question forms, the estimate was positive. This 

means that the higher the n-gram frequency was for the 

uninverted form of a question, the more likely it was for that 

question to have been produced in its uninverted form. 

 

Table 3: Results of Non-partial Models 

N-gram β Std. 

Error 

Z  p-value 

Uni 1 -0.792 0.27 -2.91 0.004 ** 

Uni 2 -0.634 0.11 -5.34 0.000 *** 

Bi 3 0.031 0.11 0.25 0.795 

Bi 4 0.239 0.14 1.64 0.100 

Bi 2 

(uninv.) 

0.328 0.11 2.89 

0.004 

Bi 3 

(uninv.) 

0.563 0.13 4.24 

0.000 *** 

Bi 4 

(uninv.) 

0.207 0.16 1.26 

0.207 

Tri 2 

(uninv.) 

0.462 0.10 4.44 

0.000 *** 

Tri 3 

(uninv.) 

0.454 0.11 4.03 

0.000 *** 

 

General Discussion 

The corpus analyses presented here represent, to our 

knowledge, the most rigorous attempt to control for input 

frequency in analyzing non-inversion errors to date. We find 

that, when n-gram frequencies from both the correctly-

inverted, “target” form of a question, and the non-inverted, 

“errorful” form of a question are considered in parallel, 

frequency is a robust predictor of when non-inversion errors 

will occur. Moreover, the frequencies of higher-order n-
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grams from the non-inverted form are shown to be more 

robust predictors than frequencies from the correctly 

inverted form. 

This finding appears to stem from children’s use of 

multiword units in production (e.g., Bannard & Matthews, 

2008). Consider the effect of the (non-inverted) second 

trigram in the context of the following non-inversion error: 

“where we can go today?*” The more heavily we can go 

holds together as a unit in the child’s language experience, 

the less likely the child will be to break up the sequence by 

fronting the auxiliary can (e.g., by relying on a lexical frame 

for what can). Similar reasoning can be applied to the effect 

of the non-inverted third bigram (can go, in this example). 

Errors caused by the intrusion of overlearned sequences 

occur in all kinds of human action (Bannard et al., in press). 

Thus, our findings weigh in favor of previous proposals 

that children rely on lexically-based representations in 

question formation (e.g., Rowland & Pine, 2000) and 

support the proposal that material learned from declarative 

utterances can drive systematic errors (Ambridge & 

Rowland, 2009). Our findings are inconsistent, however, 

with structure-dependent accounts of children’s wh-

questions (e.g., de Villiers, 1991).  

The present study, therefore, offers an interesting 

additional line of evidence supporting usage-based 

approaches, especially accounts of language development 

which stress the importance of multiword units (e.g., 

Theakston & Lieven, 2017; McCauley & Christiansen, 

2019) including exemplar-based approaches (Ambridge, 

2018).  
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Abstract 

Human-level natural language understanding (NLU) of open 
text is far beyond the current state of the art. In practice, if 
deep NLU is attempted at all, it is within narrow domains. We 
report a program of R&D on cognitively modeled NLU that 
works toward depth and breadth of processing simultaneous-
ly. The current contribution describes lessons learned – scien-
tifically and methodologically – from an exercise in applying 
deep NLU to open-domain texts. An overarching lesson was 
that although learning to compute sentence-level semantics 
seems like a natural step toward computing full, context-
sensitive, semantic and pragmatic meaning, corpus evidence 
underscores just how infrequently semantics can be cleanly 
separated from pragmatics. We conclude that a more compre-
hensive methodology for automatic example selection and re-
sult validation is needed as prerequisite for success in devel-
oping NLU applications operating on open text.  

Keywords: natural language understanding; cognitive model-
ing; language-endowed intelligent agents 

Introduction 
Operationalizing human-level natural language understand-
ing (NLU) in computer systems has been a goal of AI since 
its inception. People want intelligent agents to understand 
not only what they say but what they mean, taking into ac-
count the linguistic and real-world context, shared back-
ground knowledge, the interlocutors’ mutually understood 
plans and goals, and even their mental, physical, and emo-
tional states. All of these considerations explain why hu-
man-level NLU is an AI-complete problem. 
 It is difficult to carve out a program of R&D for AI-
complete problems. With respect to natural language, the 
field has responded in five broadly-defined ways.1 (1) Avoid 
meaning. For the past 25 years, mainstream NLP has chosen 
to pursue so-called knowledge-lean methods, i.e., the statis-
tical processing of big data with little to no computation of 
meaning. This has proven useful for certain applications but 
is not moving toward explainable, human-level NLU in ser-
vice of intelligent agents. (2) Address select aspects of 
meaning. Computing individual aspects of meaning has im-

                                                             
1 This is a thumbnail sketch of a long history and extensive liter-

ature. See Nirenburg and McShane (2016) for a more in-depth 
treatment. 

proved the quality of some primarily knowledge-lean sys-
tems. Topics addressed include, e.g., case-role identifica-
tion, speech act detection, textual coreference resolution, 
and the semantic clustering of word strings using distribu-
tional semantics (Jurafsky and Martin, 2009). (3) Pursue 
deep NLU in a (very) narrow domain. This provides sys-
tems with the kinds of knowledge and reasoning capabilities 
that people leverage when interpreting language (e.g., Allen 
et al. 2007; Lindes and Laird, 2016). (4) Build theories 
without systems. Such work anticipates that prerequisites – 
such as NLU – will be eventually be fulfilled externally, and 
is typical in the fields like computational formal semantics 
and machine reasoning. (5)  Build extensive theories but 
implement and evaluate just a subset. This appears to be the 
choice of the dialog specialist David Traum (compare 
Traum 1994 for scientific work with Nouri et al. 2011 for 
application-oriented work).  

The program of R&D described here – developing Lan-
guage-Endowed Intelligent Agents (LEIAs) within the On-
toAgent cognitive architecture – offers a sixth approach to 
attacking the AI-complete problem of human-level NLU 
(McShane, Nirenburg and English, 2018). It pursues depth 
of analysis and breadth of coverage concurrently, but 
with appropriately flexible expectations about the coverage, 
quality, and confidence of analyses depending on the corre-
lation of text inputs with knowledge bases. It focuses on the 
actionability of language interpretations, as judged by the 
agent systems that use them. 

 Of the many theoretical and methodological issues at the 
core of this program of work (McShane, Nirenburg and 
Beale, 2016), the following are particularly relevant for this 
discussion. 

 
1.  LEIAs are modeled after humans. Like humans, they do 

not need to understand everything their interlocutors 
say and mean; instead, they need to achieve actionable 
interpretations, defined as interpretations that are suffi-
cient to support reasoning about action. 

2.  The same knowledge that allows LEIAs to function 
intelligently in their domain of expertise supports lan-
guage-oriented reasoning in that domain. Full NLU is 
not possible without such knowledge. 
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3.  For both theoretical and methodological reasons, NLU 
is best implemented as a series of layers of ever-deeper 
analysis, resulting in ontologically-grounded text mean-
ing representations (TMRs) that are well-suited to agent 
reasoning. 

4.  Most narrow-domain approaches seek to avoid disam-
biguation, one of the hardest problems of NLU; howev-
er, such approaches will not attain a human level of un-
derstanding until this problem is solved and agents 
function with a realistic-sized lexicon. 

5.  A very large number of linguistic phenomena (to name 
just a few: nominal compounding; all aspects of refer-
ence resolution, including fragments and ellipsis; non-
literal language; indirect modification; indirect speech 
acts; implicatures) must be handled by LEIAs no matter 
their domain of specialization (McShane and Niren-
burg, forthcoming). The computational microtheories 
accounting for these phenomena are best investigated 
using open text. 

 
The original hypothesis underlying the work described here 
was that we could quickly validate many of the implemented 
microtheories of NLU for LEIAs using an open corpus. 
Why an open corpus? As discussed in more detail later, this 
method a) provides useful fodder for improving microtheo-
ries, b) makes the work “real” in the eyes of the mainstream 
NLP community, and c) shows how the analysis capabilities 
can be usefully applied to open texts.      

In formulating the reported exercise, we assumed that a 
corpus would contain a sufficient number of sentences that 
could be automatically interpreted using general linguistic 
and world knowledge, without the need for the finer-grain 
knowledge resources supporting agent-reasoning capabili-
ties that are available only in narrower domains. Such sen-
tences would be similar in nature, but methodologically 
preferable, to the invented examples we use to test out indi-
vidual microtheories.  

We further assumed that a simple, automatic method of 
extracting examples would serve the purpose. However, this 
experience has shown that, in order to sufficiently evaluate 
all of the microtheories contributing to the system, we need 
a more sophisticated example extraction methodology oper-
ating over a larger corpus, as well as more human effort 
devoted to reviewing results. However, rather than change 
the original hypothesis by allocating more time and effort to 
data collection, we heeded the lessons learned from the Re-
producibility Project (Open Science Collaboration, 2015) 
and its analytical wake: It is not appropriate to tweak hy-
potheses or results until they achieve the envisioned thresh-
old. Research habitually involves things not going to plan, 
and the associated lessons learned are central to progress in 
the field. This paper focuses on lessons learned. But we 
must begin with the briefest introduction to the NLU envi-
ronment at hand.  

The OntoAgent Cognitive Architecture 
The OntoAgent cognitive architecture underlying LEIAs 
includes the modules of perception, reasoning and action. 
Language is one of the perception modes of a LEIA. Lan-
guage inputs are analyzed into disambiguated, ontological-
ly-grounded meaning representations. For example, the 
bare-bones basic TMR for I knocked on the door (stripped 
of metadata and calls to the procedural semantic routines for 
coreference resolution) is as follows:  
 
(HIT-1  (AGENT   HUMAN-1) 
  (THEME   DOOR-1) 
  (INSTRUMENT   HAND (OPENNESS 0))  

  (TIME   < find-anchor-time)) ; indicates past tense 
 

The fact that the instrument is a closed hand is provided by 
the lexical description of the selected sense of knock in the 
system’s lexicon, which also expects the object of the prep-
osition to refer to, among other possibilities, a door.  

Although we cannot adequately familiarize readers with 
the theory of Ontological Semantics, the agent applications 
that this approach to NLU has supported, the knowledge 
bases employed, or how the analysis process works (see, 
e.g., Nirenburg and Raskin, 2004; McShane, Nirenburg, and 
English, 2018; Nirenburg, McShane and Beale, 2008), the 
following facts will serve as orientation. The lexicon con-
tains ~30,000 word senses, which are comprised of linked 
syntactic and semantic representations and, whenever neces-
sary, calls to procedural semantic routines (for example, to 
resolve coreferences). Argument-taking words, multiword 
expressions, and polysemy are richly represented. The se-
mantic descriptions are written in an unambiguous ontologi-
cal metalanguage. The ontology contains ~9,000 concepts 
(~145,000 RDF triples), mostly from the general domain. 
Concepts are described using attributes and relations. 
Scripts detailing complex events are available in select do-
mains.  

The lexicon and ontology were mostly compiled through 
a modest, short-term effort around 25 years ago in service of 
interligua-based machine translation and have been only 
minimally modified since. They were not modified at all for 
the reported exercise. The key benefit of our lexicon is that 
it is far from toy and, therefore, allows us to develop and 
test the essential capability of lexical disambiguation. All 
parts of speech include polysemous entries, and light verbs 
such as have, make, and do have dozens of senses, many of 
which involve multi-word expressions or constructions. The 
ontology, for its part, provides selectional constraints on 
case-roles that support disambiguation, as well as a sub-
strate for various types of language-oriented reasoning, such 
as topic/domain detection based on ontological distance.  

Although these resources have served our research goals 
quite well, their insufficiencies are relevant to the current 
report. We estimate that the lexicon would need to be 
around ten times larger to provide baseline coverage of  
open text, with the necessary acquisition including a large 
percentage of multi-word expressions and constructions. An 
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acquisition effort of this size is, we estimate, no more labor-
intensive than some of the well-known corpus annotation 
efforts in service of supervised machine learning.   
 NLU by LEIAs is reasoning-intensive. The overall pro-
cess is modeled as two types of incrementality: horizontal 
incrementality involves analyzing elements of input as they 
become available to the agent (essentially, word by word); 
vertical incrementality involves applying, on an as-needed 
basis, increasingly sophisticated methods of analysis to the 
given state of input, be it a fragment, a complete utterance, 
or a multi-sentence text. Agents dynamically decide how 
deeply to process chunks of input as they are perceived.  
 There are six stages of vertical incrementality, described 
in greater detail in (McShane and Nirenburg, forthcoming): 
1. Preprocessing and syntactic parsing, for which we use the 
CoreNLP toolset (Manning et al. 2014). 2. Integrating these 
results into our environment, which includes recovering 
from unexpected syntax as well as the initial stage of learn-
ing new words. 3. Basic semantic analysis, which uses lexi-
cal and ontological knowledge for disambiguation and se-
mantic dependency analysis. This includes such advanced 
capabilities as the detection and resolution of many types of 
ellipsis and learning the semantics of unknown words.  4. 
Aspects of reference resolution that do not require full con-
textual grounding. These include resolving textual corefer-
ence, identifying which referring expressions do not require 
a coreferent and why, establishing reference relations that 
are not coreference (e.g., bridging constructions), and recon-
sidering upstream lexical disambiguation decisions based on 
coreference relations. 5. Extended semantic analysis, which 
treats select instances of residual ambiguities and incongrui-
ties using additional general-purpose rule sets. These in-
clude, e.g., ontological patterns for interpreting nominal 
compounds, rules for interpreting metonymies, and dialog-
analysis strategies for integrating the meaning of fragmen-
tary utterances into the discourse. 6. Situated NLU, which 
applies all of an agent’s domain-specific and situational 
knowledge and reasoning to resolve residual ambiguities 
and incongruities, and anchors newly learned knowledge to 
agent memory.  
 If it sounds like this system is claiming to do everything, 
that is, in a certain sense, correct. The overall challenges of 
NLU must be addressed in an integrated system, within an 
architecture and theory that reserves a place for each com-
ponent microtheory. The microtheories must be crafted as 
components of such an overall analysis system. This ap-
proach avoids the two most serious problems of strictly 
modular or limited-scope research: the assumption that pre-
requisites for one’s own work will be provided externally; 
and the avoidance of all cross-modular phenomena.     
 Stages 1-5 involve what some call semantic meaning, as 
contrasted with pragmatic (discourse, situational) meaning. 
This level of meaning should be understandable at the sen-
tence level, outside of context – even if some expressions 
(e.g., pronouns) remain underspecified. Following this ex-
pectation, individual sentences outside of their context were 
the focus of the reported exercise. Given that the ~30,000-

sense lexicon contains over 1,600 verb senses, and that the 
system can process proper nouns аnd learn new words, we 
projected that there would be plenty of appropriate sentenc-
es to seed our exercise. As concerns Stage 6 of processing, it 
cannot be validated using individual sentences outside con-
text; we are working on that separately, within a robotic 
application (Nirenburg et al., 2018).     

Methodology 
Our initial goal was to focus on validating our system rather 
than formally evaluating it in the way that has become 
standard in the field of natural language processing (NLP). 
That methodology is of no use for systems that seek human-
level understanding of language. It is not, therefore, surpris-
ing that mainstream NLP has all but officially placed our 
area of R&D beyond the boundaries of the discipline. For 
example, in their chapter on “Evaluation of NLP Systems” 
in The Handbook of Computational Linguistics and Natural 
Language Processing (Clark, Fox and Lappin, 2010), Res-
nik and Lin do not even address the evaluation of cognitive-
ly-oriented systems that integrate scientific and technologi-
cal goals. They write: “such scientific criteria [involving, 
e.g., the cognitive modeling of human language processing] 
have fallen out of mainstream computational linguistics 
almost entirely in recent years in favor of a focus on practi-
cal applications, and we will not consider them further 
here.” (p. 271) So, we need an alternative valida-
tion/evaluation methodology. 
 There is no truly fast, easy, and complete way to validate 
(no less evaluate) a large and complex knowledge-based 
system, nor can the full set of options be fleshed out in this 
short space. As a starting point, consider just a few of the 
options. (1)  Invent test inputs guided by the knowledge ba-
ses and system capabilities. This gives credit for what does 
work but rarely uncovers unexpected phenomena and is 
viewed skeptically by the field at large. (2) Use inputs lim-
ited to a narrowly-defined domain. This, too, usually in-
volves manual example creation since ‘narrowly-defined’ 
must be enforced; moreover, it fails to give the system or 
component microtheories credit for their applicability across 
domains. (3) Use randomly selected inputs from the open 
domain. Although this is a cornerstone of statistical NLP, it 
is inapplicable to deep NLU given that the environment is 
known to have limited lexical coverage. (4) Focus on full 
sentences from open text that the system analyzes perfectly. 
This approach tasks the system with extracting from open 
text, and processing, only those sentences it hypothesizes it 
can analyze correctly. During validation, people inspect 
only the highest-quality results – i.e., those for which exact-
ly one TMR achieves the highest score, and that score re-
flects high confidence. This is the approach we used for the 
current exercise. Its insufficiencies underlie many of the 
lessons learned from this exercise, as discussed in the next 
section. (5) Focus on subsentential chunks of text from the 
open domain that the system analyzes perfectly. Such 
chunks can represent propositions, individual phenomena 
(e.g., nominal compounds, instances of verb phrase ellipsis), 
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or sentences for which all aspects but one – e.g., an un-
known adverb – are correctly understood. We have used this 
method in past formal evaluations (Nirenburg et al., 2018) 
and have found it useful for vetting individual microtheo-
ries. The problem is that it is time-consuming to formulate a 
vetting regimen for even a single microtheory, let alone the 
dozens that the system currently comprises, or the interac-
tions among them. Additionally, any of the above methods 
can also involve inspecting outputs that are partially correct, 
residually ambiguous, etc.  

Results  
As should be clear by now, this vetting exercise was primar-
ily intended to guide our continued R&D effort. It did – but 
more through lessons learned than from compiling examples 
that work. That being said, we do want to present some ex-
amples to show that our NLU system can, in fact, work on 
open text.   

To further specify the set-up: The system extracted exam-
ples from two randomly selected excerpts of the COCA 
corpus (Davies 2008), one literary and the other journalistic. 
It extracted sentences that included a maximum of one un-
known word, with “known” implying that the lexicon con-
tained an entry with the necessary part of speech. No other 
extraction filters were applied. The system processed the 
sentences into TMRs using Stages 1-5 of our NLU system. 
We manually reviewed only those results that seemed prom-
ising. For example, we did not inspect the TMRs for sen-
tences that were incomprehensible outside of context, or 
that required knowledge or reasoning beyond that available 
in Stages 1-5 of NLU.  

 We spent just a few person-weeks on the exercise, much 
of which involved code debugging (after all, the exercise 
was primarily in service of R&D). However, the examples 
we cite as “correct” were correct before any system modifi-
cations. No amendments to the knowledge bases were made. 
It did not take long to determine that we had learned what 
we could from this exercise, and we, therefore, did not pro-
long it to collect more working examples.  

Unless otherwise noted, all examples presented in this 
section were analyzed perfectly. Any incorrect portions are 
indicated by strikethroughs or explanatory text. Every input 
required disambiguation decisions, in some cases, from a 
large choice space: e.g., He looked for the creek disambigu-
ates between 16 senses of look, and I went into the bath-
room disambiguates between 54 senses of go. The examples 
below are grouped by the specific phenomena they illus-
trate. 
 Complex semantic descriptions. For example, the TMR 
for I knocked on the door includes a hand as the instrument, 
and the TMR for I pointed at the blood includes a finger as 
the instrument.  
 Disambiguation of highly polysemous particles and 
prepositions: She rebelled against him; He stared at the 
ceiling; She jokes with him; She switched on the light; He 
passed through the entrance; I called for a blanket; I 
thought about Amalia; He talked about Leona.  

 Modification and sets: An old white couple lived in a 
trailer.  
 Multiword expressions: He took me by surprise,  
 Verbal disambiguation using a specificity preference. 
For example, in I do not know Dave, three senses of know 
(glossed as be acquainted with, be aware of, and be able to 
identify) formally match the case-role constraints. The sense 
be acquainted with fulfills the tightest case-role constraints, 
so it wins. This example also shows the correct processing 
of the modality indicated by negation. 
 Dynamic sense bunching. This allows the system to un-
derspecify an interpretation rather than end up with compet-
ing analyses. E.g., No, and I didn’t ask him does not permit 
disambiguation between three senses of ask – those encoded 
using the ontological concepts REQUEST-INFO, REQUEST-
ACTION and PROPOSE – so the system bunches these into 
their closest common ontological ancestor, ROGATIVE-ACT, 
whose case-roles are correctly understood as AGENT and 
THEME.  
 Lateral selectional constraints for disambiguation. E.g., 
in I heard the hands on the clock move, clock was correctly 
used to disambiguate hands (but since the CoreNLP misi-
dentified “clock move” as a nominal compound, that aspect 
of the analysis was wrong). Similarly, in The arm jerked, 
eyelids rose, the meaning of eyelids was correctly used to 
disambiguate arm between body part and furniture part (but 
rise as applied to eyelids was misanalyzed).  
 New word learning. An example of new noun learning is 
‘uncle’ in The uncle said something to him, which is under-
stood as referring to a HUMAN since the AGENT slot of AS-
SERTIVE-ACT must be filled by a HUMAN. The results of 
learning are understood as provisional, and values of proper-
ties of the newly learned concept are expected to be added 
opportunistically as a side effect of continued processing of 
input – or, alternatively, by a knowledge acquirer. An ex-
ample of new property learning is inconsiderate in Burying 
Leora in Pittsburgh is inconsiderate. The system represents 
the meaning as a generic PROPERTY whose DOMAIN is filled 
by the event BURY (from burying). In Pittsburgh was cor-
rectly analyzed but incorrectly attached to Leora rather than 
burying, following a parsing error by CoreNLP. (Reambig-
uating PP attachments from the CoreNLP parse, so that se-
mantics can weigh in, is on agenda.)  
 The above presents just a small sampling of linguistic 
phenomena that the system covers, along with examples of 
successful analyses. It shows that vision behind the current 
exercise was not ultimately ill-conceived, and illustrates that 
the corpus was, in fact, open-domain. But, as we said earli-
er, we keep this aspect of the report brief in order to focus 
on the main point: lessons learned.  

Lessons Learned  
Most of the types of outcomes of this exercise were predica-
ble beforehand, but in some cases their frequency was rather 
surprising, thus representing a lesson learned. 

1. It is not possible to automatically detect that a needed 
multiword expression (idiom, construction, etc.) is missing 
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in the lexicon. Multiword expressions are central to a hu-
man’s knowledge of language and, accordingly, to modeling 
NLU for LEIAs. When a multiword expression is missing 
from the lexicon, the system analyzes the components com-
positionally, which necessarily results in an error. All of the 
following examples were misanalysed because interpreting 
the meaning of the underlined portion required a multiword 
lexical sense that had not yet been acquired. She is long 
gone from the club. I got a good look at that shot; The 
Knicks can live with that. But once Miller gets on a roll, he 
can make shots from almost 30 feet. I can't say enough 
about him. This better be good. You miss the point. I should 
have known better. The lesson learned involves the frequen-
cy with which the system will be overly confident in its 
analysis, not having recognized that an input component is 
not semantically compositional.  

2. The methodology of focusing on completely correct 
TMRs was suboptimal. Often, the meaning representation   
of a portion of the input nicely demonstrates a particular 
functionality, even though some aspect of the overall sen-
tence interpretation is incorrect. Many such mistakes reflect 
the use of microtheories that are currently underdeveloped, 
such as those for relative temporal and spatial relations (in 
recent weeks, 25 feet right of the hole, and for the second 
time this year). When, midstream, we decided to revisit par-
tially correct TMRs, we found many interesting correct 
subanalyses, suggesting that vetting Method #5 described 
above might be superior to the method we used. 

3. The methodology of focusing exclusively on sentences 
that resulted in a single TMR was suboptimal. Outside of 
context, residual ambiguity is quite common. When we de-
cided to revisit analyses that resulted in two output TMRs – 
because the analyzer did not have a reason to prefer one 
over the other – we found examples in which this outcome 
was actually the correct one. For example, the system cor-
rectly detected the ambiguity, and generated multiple cor-
rect candidates, for He stared at the fish, which could refer 
to a live fish (FISH) or its meat (FISH-MEAT); and He glanced 
at the walls could refer to parts of a room (WALL) or parts of 
a person undergoing surgery (WALL-OF-ORGAN).  

4. It can be difficult, even for humans, to describe many 
intended meanings. Consider the following sentences: And 
he came back from the dead. Training was a way of killing 
myself without dying. The supporting actor has become the 
leading man. This is about substance. The roots that are set 
here grow deep. Such examples allow for multiple interpre-
tations, at many levels of vagueness and specificity, depend-
ing on the specific speech situation. The existence of utter-
ances of this type are among the reasons we believe that,  in 
building agent-oriented NLU capabilities, actionability – not 
exhaustive understanding – is key. But for this exercise, 
decision-making about actionability was outside of purview.   

5. The intended meaning can rely more centrally on dis-
course/pragmatic interpretation than semantic analysis. In 
some cases, e.g., for personal pronouns, there is a clear pro-
gression from semantic to pragmatic meaning. However, in 
other cases, semantic meaning is either vague, not directly 

connected with pragmatic meaning, or even relatively un-
important. Space is too short to flesh out these complex 
eventualities, but consider the example It takes two to tango, 
which occurred in our corpus. If we were to write a lexical 
sense for this phrase, how would we describe its meaning? 
Its propositional meaning – something like “a communica-
tion cannot exist without multiple people being agentive” –  
is much less important than its discourse function. That is, 
the speaker is saying that the given situation is an example 
of a generalization about human relations, but the context-
specific pragmatic nuances can range from being a barb 
during a spat (It’s your fault, too, that we’re arguing!) to 
being advice to a friend (If you back off, maybe the other 
person will too). It seems incorrect to lexically record, and 
then give a system credit for computing, semantic meanings 
when it is the pragmatic force that is predictably more im-
portant.  

6. Non-literal language is even more prevalent than we 
had expected – and we had expected a lot. In fact, we have 
methods for detecting and recovering from some types of 
non-literal language, but not the onslaught we encountered 
in this exercise. For example, Everyone was saying we won 
ugly last week and He not only hit the ball, he hammered 
were imperfectly analyzed because the non-literal meanings 
were not correctly recovered. 

7. We need to operationalize reasoning about language 
via affordances. Just as human vision is well-understood to 
be largely driven by expectations, so, too, is language un-
derstanding. Affordances – i.e., the knowledge of what ob-
jects can do and how they can be used – can support reason-
ing about language inputs, particularly if they involve diffi-
cult phenomena, such as non-literal language, unknown 
words, and indirect modifications. For example, we previ-
ously noted that eyelids rose resulted in a misinterpretation 
of ‘rise’. It is unlikely that people encode a word sense of 
‘rise’ that covers eyelids; however, we know that eyelids are 
capable of precious few actions. So a fuzzy matching be-
tween words and concepts for moving up and down is suffi-
cient for a person to understand this. A microtheory of ap-
plying affordances to reasoning about NLU is on our team’s 
agenda. 

8. It is unclear what credit to give semantics without im-
plicatures. On the one hand, semantic analysis is hard 
enough without requiring that NLU systems account for all 
a speaker’s implicatures before claiming any success. On 
the other hand, in some cases semantics and implicatures  
cannot be neatly separated. Consider the example, She's also 
a woman. Reading this in isolation, we understand that the 
context must have been about her in some other social role – 
as a mother, a co-worker, etc. – and that this utterance fo-
cuses attention on her female/sexual side. It is similarly un-
clear what, if anything, would count as a sufficient semantic 
(pre-implicature) analysis of the following: How quickly the 
city claimed the young. They sat by bloodline. I think he is 
coming into good years. Fathers were for that.  
 9. Not invoking domain-oriented expectations is more 
limiting that we had anticipated.  For example, unless you 

800



realize you are in a sports context – and know sports-related 
lexical and ontological knowledge – the following are not 
fully interpretable: The Rangers and the Athletics have yet 
to make it. He hit his shot to four feet at the 16th. We stole 
this one.  I wanted the shot. 
 10. Although our system is knowledge-based and all 
processing apart from what is contributed by CoreNLP is 
fully inspectable, the computational complexity of deep NLU 
can make it difficult to fully predict, explain, and trouble-
shoot results. Consider the simple example I almost never 
talk about it, whose words have, respectively, 3/5/2/2/2/1 
senses. The number of candidate TMRs generated is 50, 
with their final scores ranging from -22 to 22.9. There was 
only 1 highest-scoring TMR and it was correct. The 
CoreNLP parse happened to be correct, but since this is not 
always the case, our analyzer compensates by considering 
other syntactic analysis possibilities as well. As a result, the 
process of mapping syntactic dependencies in inputs to the 
variables in the syntactic descriptions in lexicon entries can 
lead to multiple sets of variable assignments for each avail-
able sense. At the semantic level, the system needs to select 
the best sense and set of variable assignments for each word 
by examining the interactions between the semantic con-
straints among all the words that interact with it. In the 
worst case, that can become a computational clique, which 
has exponential time requirements (we employ various 
techniques for reducing or sometimes eliminating this com-
putational drain). Scoring functions are also complex – their 
composition is a research issue in itself. In short, even 
though we can configure a glassbox evaluation, the analysis 
process can, in certain cases, still defy complete explana-
tion.   

Conclusions 
We believe that our original goal – to vet our system’s do-
main-independent microtheories using open text – is achiev-
able. The reason why the focus of this exercise shifted from 
“vetting” to “investigating lessons learned” is because the 
methodology for extracting examples and automatically 
evaluating the quality of output TMRs turned out to be in-
sufficiently developed. The lessons learned will inform the 
creation of a more sophisticated methodology for future 
experiments. To give just a few examples of planned en-
hancements: (a) Including the preceding context for each 
extracted example to allow for coreference and lateral-
constraint heuristics to be leveraged; (b) Automatically ex-
cluding excessively short inputs, direct speech, texts from 
jargon-intensive domains like sports, and inputs containing 
pronouns whose resolution strongly affects disambiguation 
decisions (e.g., it, that and they are more problematic than 
he or she); (c) Using an example-extraction methodology 
that identifies the highest-confidence examples of  each 
word sense, microtheory, etc., from a much larger corpus 
than was used for this exercise; and (d) Including within 
purview high-confidence subsentential results. 
 Apart from lessons learned, this experiment has resulted 
in promising outcomes. The fact that the system correctly 

analyzed some inputs from the open domain – even given 
the shortcomings of the reported methodology and all of the 
challenges natural language predictably presents – suggests  
that deep NLU can have near- and mid-term utility, given an 
appropriate task formulation and improved methods of au-
tomatically judging the system’s confidence in its analyses. 
 Lifelong learning has long been understood as a neces-
sary foundation of AI. Even the current capabilities of the 
reported NLU system can support the learning of lexical 
units and ontological concepts, with the coverage expected 
to rise dramatically even with relatively (by industry stand-
ards) modest knowledge acquisition efforts.  

Our system addresses the open-world problem directly 
and takes responsibility for all upstream processing errors 
(currently, from CoreNLP). In some cases, it can successful-
ly learn new meanings and recover from upstream errors, 
whereas in others it cannot. However, we believe that fail-
ures under real-world circumstances are far preferable to the 
non-real-world experimental set-ups favored by the well-
known task-oriented competitions of statistical NLP.  

Although the reported exercise focused on stages of NLU 
that can be, to some degree, computed outside of context, 
the overall program of work moves toward explainable AI 
covering integrated agent functionalities.  
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Abstract
A wealth of developmental evidence suggests that children es-
sentialise natural kind but not artifact categories, and that both
adults and children use generic language less with artifacts as
well (Gelman, 2003). Here we further explore the latter result
using a novel model for generic identification. We apply our
model to a much larger dataset than before, consisting of 26
CHILDES corpora of naturalistic speech involving children at
a variety of ages and in a variety of contexts. We found no
consistent preference for generic usage in animates over arti-
facts. Follow-up analyses indicate that this result was probably
driven by our inclusion of a wider variety of nouns into our
dataset than previous work.
Keywords: essentialism; generics; development; language

Introduction
Psychological essentialism refers to the intuitive belief that
many categories have a hidden essence which gives the ob-
jects in those categories their identity. Essentialised cate-
gories have sharp boundaries, are discovered rather than in-
vented, and have properties that are inherent in some way
(e.g., Gelman, 2003). From an early age children behave in
ways that are consistent with having essentialist beliefs. This
is evident in how they use category information to support
induction (Gelman & Markman, 1986) and make predictions
about innate potential (Gelman & Wellman, 1991) and iden-
tity in the face of transformation (Keil, 1989), among others.

Although there is robust evidence that people essentialise
natural kinds, we do not appear to essentialise artifact cate-
gories (e.g., Sloman & Malt, 2003). Artifacts do not retain
their identity even when transformed (Keil, 1989), often have
fuzzy category boundaries (Estes, 2003), and have different
insides than animals do (Simons & Keil, 1995).

To what extent is this difference between artifact and nat-
ural kinds learned from or supported by environmental dif-
ferences? One way to answer this question is by investigat-
ing one possible source of environmental influence: the use
of generic noun phrases (e.g., Owls sleep during the day or
Books are heavy). Generics communicate properties about
categories as a whole rather than individuals, and both adults
and children appear to make more essentialised inferences
when generics are used (Rhodes, Leslie, & Tworek, 2012).
Moreover, in a variety of experimental contexts, both chil-
dren and adults produce generics more often for animals than
for artifacts (Gelman & Tardif, 1998; Gelman, Coley, Rosen-
gren, Hartman, & Pappas, 1998; Goldin-Meadow, Gelman, &
Mylander, 2005; Brandone & Gelman, 2013). This is highly
suggestive that environmental input in the form of generic

language usage may play a role in children’s early acquisi-
tion of essentialised beliefs.

However, the generality of these studies are limited some-
what because they all involved highly structured tasks, of-
ten with stimuli specifically created for the experiment. To
our knowledge only one study has explored truly naturalistic
generic language use. Gelman, Sarnecka, and Flukes (2008)
hand-coded six corpora for generic language use and found
the same bias toward generics in animates over artifacts.

Our work here builds on and extends this research by pre-
senting an automatic model of generic identification. After
validating its performance against several external metrics,
we apply it to 26 different CHILDES corpora (including the
six original ones). Our goal with this larger dataset was to
learn more about the range of variation in generic usage in
natural speech with children. Are generics used less with ar-
tifacts for all corpora, at all ages, and for all speakers? Do
the patterns in generic usage support the possibility that psy-
chological essentialism may reflect (or lead to) the statistics
of generic speech in the linguistic environment?

Method
The first contribution of our work is the creation of a novel
model that can automatically identify generic noun phrases
based only on syntactic information. We describe it here.

Model
Although several models for the automatic identification of
generic noun phrases exist, they are not ideal for our pur-
poses. For instance, Reiter and Frank (2010) use a Bayesian
Network model that relies on a feature set consisting of a large
range of both the syntactic and semantic features of the noun
itself as well as the clause it is contained in. Example syntac-
tic features include COUNTABILITY, NUMBER, and PART OF
SPEECH, while semantic features include SENSE and GRAN-
ULARITY. Friedrich and Pinkal (2015) use a conditional ran-
dom field to label sequences but rely on a similar range of
features, both syntactic and semantic.

The reliance on semantic as well as syntactic features is not
a problem in general, but does pose an issue for us since our
central questions focus on the semantic properties of generic
nouns. Do they tend to be animates, artefacts, or something
else? We cannot answer this question with a model that iden-
tifies generics using semantic features, since any results might
emerge due to biases in how the model uses that semantic in-
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Word Part of speech Dependency label
Elephants noun nsubj
do verb aux
not adv neg
eat verb ROOT
birds noun dobj
. punct punct

Table 1: Example sentence along with the two features used by our
model: part of speech and dependency label, which indicates the
role each word plays in the syntactic structure.

formation rather than actual distributional properties of the
language. We therefore developed a new model of our own
which relies only on syntactic features.

Structure Our model is a deep neural network classifier
which makes decisions about noun phrases based on their
syntactic properties as well as the syntactic properties of other
words in the same clause. It therefore incorporates a notion of
(local) context: an important consideration when identifying
generics because the same word may or may not be a generic
depending on how it is used. For instance, the word “dogs” in
the sentence Dogs like to bark is generic, but the same word
in the sentence Dogs at Pat’s house like to bark is not.

Our classifier was constructed by stacking two different
kinds of neural network units together. The first, Long Short-
Term Memory (LSTM) units, are especially appropriate to
classifying sequence-based data such as words in a sentence,
and are widely used in many natural language applications
(Hochreiter & Schmidhuber, 1997). We also used Gated Re-
current Units (GRUs) which are similar to LSTMs but often
achieve higher performance on smaller datasets like ours. Our
model consisted of seven different independently-trained ar-
chitectures which varied from each other in the dimensional-
ity of the units as well as in how they were stacked.1

All of the architectures had a final, fully-connected layer
with a softmax activation function which performed the clas-
sification task. Each architecture yielded one decision for
each noun (generic vs not-generic) and model decisions were
made by taking the majority vote among the seven.

Input Our model required two kinds of syntactic informa-
tion for each of the words in our corpora: the part of speech
as well as the dependency label it was associated with in the
dependency parse tree. Table 1 illustrates these features for
an example sentence. In order to extract this information,
we used a number of standard state-of-the art natural lan-
guage processing tools. We first segmented each of the nouns
and their corresponding clauses out of each sentence using
the discourse parser SPADE (Soricut & Marcu, 2003). Each
word was then assigned a dependency label using the Stan-
ford Dependency Parser (Chen & Manning, 2014) and then
tagged with the appropriate part of speech (Toutanova, Klein,
Manning, & Singer, 2003).

1Our anonymised supplementary materials describe the structure
of the architectures: https://tinyurl.com/ybwg88h5 .

Model Accuracy F-score
Reiter and Frank (2010) 71.7 72.3
Friedrich and Pinkal (2015) 79.1 78.8
Our model 76.4 79.3

Table 2: Cross-validation performance on the WikiGenerics
dataset. Our model achieves similar performance to the state-of-
the-art. Accuracy reflects the total percentage of correct predictions
(generics classified as generics, and non-generics as non-generics)
while F-score is the harmonic mean of precision and recall, as cal-
culated in Friedrich and Pinkal (2015).

Pronouns posed an interesting dilemma, because they
make up a reasonable proportion of all nouns yet cannot be
accurately classified for their genericity without determining
their referent. For instance, the word “they” in the sentence
Watch out for the piranhas in that fish tank; they bite is not
generic, whereas the word “they” in I hate mosquitoes; they
bite is generic. We addressed this issue by resolving the coref-
erence of each pronoun using a standard coreference resolu-
tion system (Clark & Manning, 2016), and then assigning the
genericity of the pronoun to be the same as its referent.

Using these part of speech and dependency features, we
created input vectors for our model that corresponded to each
noun along with the sequence of words in the clause. This
means that for each noun, the model was given not just the
noun but also all of the words in the NP it was part of and all
of the words in the clause that contained that NP. Each input
vector was a concatenation of two vectors consisting of the
part-of-speech tag and the dependency label. The model thus
used all of the words in the sequence to make a decision about
each noun, not just the words that came before it.

Training and validation Each of our seven architectures
was trained independently using a weighted categorical cross
entropy loss function, which we optimised using the Adam
optimiser (Kingma & Ba, 2014). Our loss function weighted
the error associated with classifying a non-generic statement
as generic (false positive) 1.5 times more than the error as-
sociated with classifying a generic statement as non-generic
(false negative). By using such a weighted error function, we
ensured that the classifier was conservative in its classifica-
tion of generics, marking a noun as a generic only when it
was very confident. This helped to ensure that our model was
not overestimating the proportion of generic words.

Before applying our model to CHILDES corpora, we val-
idated its performance in two ways. First we calculated its
accuracy and F-score on the WikiGenerics dataset created by
Friedrich and Pinkal (2015). This dataset consists of exam-
ples from 102 documents from Wikipedia covering a wide
variety of topics including animals, games, medicine, music,
politics, science, and people, among others. The texts were
hand-annotated for genericity by three computational lin-
guists, with contested annotations decided by majority vote.
We tested our model using as leave-one-out cross validation
strategy. In each cross validation step, examples from 101 of
the 102 texts were used for training and the model was tested
on the remaining one. The results, shown in Table 2, show
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that despite relying on a much smaller range of features our
model performed as well as the two best-performing models
of generic identification.2

Although this level of performance is reassuring, it is not
necessarily the case that high performance on a dataset con-
sisting of Wikipedia articles means that the model can accu-
rately identify generics in corpora of child with children. As
a second validation of model performance, we thus tested its
accuracy against the genericity judgments reported in Gelman
et al. (2008).3 The data we had access to consisted of all of the
nouns (in the child speech only) in their six corpora that they
coded as generic. Our model had a 88% true positive rate on
this data: 88% of the items that they coded as generic were
coded as generic by our model. We do not have the list of
nouns that they coded as non-generic, but on the assumption
that any nouns not coded as generic would have been coded
as non-generic, this gives our model an accuracy of 96.8 and
an F-score of 81.2 against their gold standard.

CHILDES Datasets We applied our model to 26 different
corpora from the CHILDES database (MacWhinney, 2000).
The corpora, which are listed in full in the supplemental ma-
terials, include the six corpora from Gelman et al. (2008) as
well as twenty additional corpora made up of natural conver-
sations between children and adults in English (American or
UK). All corpora include both adult and child speech except
one (Sawyer) which contained only child speech. Because
we were interested in the statistics of language in naturalistic
situations, we excluded studies in which children were given
a structured task or played with a restricted set of toys.

The supplemental materials list all corpora in detail, but in
general, the children ranged in age from less than one year
to over five years of age. Given the difficulty in identify-
ing generic usage when grammatical abilities are limited, we
excluded all child speech from children less than two years
old. However, we do include adult speech to these children
because one of our goals with this work is to better under-
stand the distributional properties of the linguistic input they
receive at all ages. Our full corpus of child speech contained
1,057,807 utterances total and the corpus of adult speech con-
tained 1,595,305 utterances.

Results
Our first question is about the prevalence of generic speech
as a function of age. For the child corpora, we can ask when
children begin producing generics. For the adult corpora, we
can ask whether adult speech is rich in generics from an early
age, and whether there are developmental trends in generic
usage. We thus calculated the proportion of generic utter-
ances at different age ranges, coding an utterance as generic if
any noun in it was classified as generic. Our results are shown
in Figure 1, plotted alongside similar data from Gelman et al.

2These numbers are as reported in Friedrich and Pinkal (2015).
We did not re-implement their models.

3We would like to thank Susan Gelman, who graciously provided
this data upon request.

Figure 1: Proportion of generic speech by age. The overall per-
centage of all utterances coded as generic in our corpora (solid line),
broken down by child and adult speech (purple and blue, respec-
tively). For comparison, we plot analogous results from Gelman
et al. (2008) with the dotted line. Although we estimated more total
generics than they did, the qualitative patterns over development and
between child and adult speech are extremely similar.

(2008). Although we show more generic usage overall than
did Gelman et al. (2008), the patterns are remarkably sim-
ilar. Children’s production increases rapidly over the early
years of development, with them producing generics as soon
as they have the grammatical capacity. In the early years,
adult production is consistently higher than children’s, but it
then levels off at later ages until they converge. We consider
reasons that we estimate more generics in the Discussion.

The primary question motivating this work was how
generic usage differs between different kinds of nouns. Do
animates, which both children and adults essentialise more,
occur more often in generic speech than artefacts, which are
essentialised less? In order to investigate this question we had
to assign each of the nouns in our corpus to the appropriate
category. We accomplished this based on the categories in
WordNet, a widely-used lexical database for English. Word-
Net contains 22 different noun categories, including animals,
artifacts, and people as well as feelings, communications,
plants, motives, substances, time, and more.

We classified all of our nouns into the four categories used
by Gelman et al. (2008): animates, artifacts, food, and other.
The artifact and food categories correspond straightforwardly
to equivalent categories in WordNet. We constructed our an-
imates category by combining the WordNet animal and per-
son categories, and classified everything else as other. If a
word was associated with multiple WordNet categories, we
used the Lesk Algorithm to determine which one to assign
it to. This algorithm uses the words in the surrounding con-
text to determine the appropriate classification. For instance,
the word fish would be classified as an animal if it was sur-
rounded by words like swim or water and as a food if it was
surrounded by words like eat or cook.

What kinds of noun categories do people talk about more,
and does this distribution vary between adults and children
or by whether generics or non-generics are involved? To an-
swer this question, Figure 2 plots the percentage of each of
the four noun categories within generics and non-generics, re-
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Figure 2: Proportion of generic and non-generic speech across cat-
egories. This figure shows the distribution of speech across the four
noun categories, for both children (purple) and adults (blue). Lines
show the mean when averaged by corpus; error bars indicate stan-
dard error. The numbers correspond to the relevant measure for each
of the 26 corpora. The corpora from Gelman et al. (2008) are slightly
larger and correspond to numbers 2, 4, 13, 15, 19, and 21. It is evi-
dent that there is high variability between corpora, but for the most
part both children and adults speak about artifacts more often and
that there is little difference between generics and non-generics in
how they are distributed amongst the four noun categories.

spectively. The left panel thus shows the percentage of all of
the generic nouns that are animates, artifacts, foods, or other;
the right panel shows the same breakdown out of all of the
non-generic nouns. We illustrate the variability in this distri-
bution by plotting the results for each of the corpora individ-
ually. It is evident that there is substantial variability overall,
and that at least some of that variability is corpus-specific:
the correlation between adult and child speech by corpus is
r = 0.95. This probably largely reflects the fact that children
and adults co-create one another’s linguistic environment.

This analysis also demonstrates that in general both chil-
dren and adults talk about artifacts slightly more often than
animates.4 There is also no difference in the distribution of

4Bayesian t-test comparing artifact to animate percentage: For
child generics, BF10 = 2.4 weakly in favour of a model that in-
cludes noun type; for child non-generics, BF10 = 7.7 moderately
in favour. For adult generics, BF10 > 106 in favour of a model that
includes nountype; for adult non-generics, BF10 = 111 in favour.
All Bayesian analyses used the BayesFactor package in R (version
3.4.4) and compared the model of interest to an intercept-only null

Figure 3: Proportion of generic speech within each noun category.
For each of the four categories, this figure shows how often nouns in
that category were generic. The large transparent bars indicate the
aggregate proportion over all corpora, while the small boxes with
error bars show the mean when averaged by corpus. The numbers
correspond to the relevant measure for each of the 26 corpora. The
corpora from Gelman et al. (2008) are slightly larger and correspond
to numbers 2, 4, 13, 15, 19, and 21. There is high variability between
corpora (especially for children). However, there is little difference
in the pattern of generic usage across noun categories.

speech across noun categories as a function of genericity or
speaker.5 Generics and non-generics have similar distribu-
tions across different kinds of nouns, and this holds regardless
of whether the speakers are adults or children.

Another way to explore the issue of whether children or
adults use generics differently for different categories is to
condition on category rather than on genericity. Figure 3 thus
shows, for each of the four noun categories, what proportion
of time it occurs as a generic in both child and adult speech.
Although children are much more variable, we still see little
difference in generic usage between noun categories. How-
ever, adults were more likely to use generics for artifacts than
animates, as well as more overall.6

These results are rather surprising, since previous work has
suggested that generics tend to be used more often with ani-
mate categories. What is going on?

One possibility might be that the six corpora used by
Gelman et al. (2008) were outliers in some way relative to
our larger set of 26. In order to investigate this possibility,
we calculate how many corpora used a higher percentage of
animate nouns than artifact nouns as generics. On this mea-
sure, the corpora from Gelman et al. (2008) appear to be slight
outliers relative to the others. Of the 25 corpora with adult
speech, only six used generics more with animates and three
of those six were theirs: Bloom (2), Brown (4), and Kuczaj
(13). Of the 26 with child speech, six used generics more
with animates and four were theirs: 2, 4, 13, and Sachs (19).

model. In also cases we also ran analogous frequentist tests, which
always returned qualitatively similar results.

5Bayesian ANOVA: BF01 = 10 for the null model over a model
including genericity and BF01 = 10 for the null over a model includ-
ing speaker. This indicates strong support for the null model.

6Bayesian ANOVA: BF01 = 14.3 favouring the null model over
a model including noun category; BF10 > 106 favoring a model
including speaker. Bayesian t-test comparing artifact to animate
generic percentage: for child speech, BF01 = 1.9 favouring the null
model; for adult, BF10 = 6.9 favouring a model including nountype.
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Figure 4: Proportion of generic speech within each noun category
using the genericity identifications from Gelman et al. (2008). For
each of the four categories, this figure shows how often nouns in that
category were generic, using the six corpora and their classifications
rather than the classifications from our model. Despite using their
classifications, we replicate our previous result, suggesting that the
difference between our findings and theirs did not arise due to poor
classification performance by our model.

These considerations suggest that at least part of the reason
our results diverge so markedly from Gelman et al. (2008) is
that their corpora were different. However, this cannot be
the entire story: the magnitudes of the differences they found
are much larger than the magnitudes we found on the same
corpora in very similar analyses.

An obvious possibility is that our model is simply classi-
fying many items very differently than they did. Our high
accuracy and F-score against their coding scheme suggests
that this is not the case, but we were able to test this hypothe-
sis in a much more stringent way as well. For the six corpora
in Gelman et al. (2008) that we have their classifications for
(child speech only), we took the set of nouns that they iden-
tified as generic, assumed that they coded all of the others as
non-generic, and applied the same analysis as in Figure 3 to
that data. If the difference between our work is because our
classifier is coding or identifying items differently than they
did, we should find that using their classifications on their
corpora replicates their results. However, Figure 4 reveals
that we instead replicate our result: there is no difference in
generic usage across the four noun categories.7

This outcome suggests that the point of divergence be-
tween our work and Gelman et al. (2008) must be less due to
different decisions about what to code as generic, and more
due to different decisions about what nouns to include in the
first place. Our analysis included all nouns of any kind, which
was straightforward to do since the model could identify them
automatically. However, lacking this technology, Gelman et
al. (2008) had to process the corpora by hand. They ac-
complished this by manually identifying potential generics by
searching for any bare plurals, plural pronouns, mass nouns,
and indefinite singular nouns and then hand-coding that set of
nouns as generic (or not). This was justified on the grounds
that the vast majority of generics fall into these categories,
which is sensible if the goal is to understand the distribution
of generics alone. However, if the goal is also to compare to

7Bayesian ANOVA: BF01 = 2.6 for the null over a model includ-
ing noun category. Bayesian t-test comparing animates to artifacts:
BF01 = 2.1 for the null over a model including noun category.

Figure 5: Proportion of generic speech across and within noun cat-
egories, on corpora without any singular pronouns. Since Gelman
et al. (2008) excluded singular pronouns, we reran our analyses (us-
ing our classifications) on our corpora after excluding all singular
pronouns. Results are now much more similar to their findings than
ours. Generics but not non-generics are used more for animate than
artifact categories (top); and for both adults and children, the propor-
tion of generic utterances in animates is higher than in artifacts. This
suggests that their exclusion of singular pronouns from the dataset
may have driven their results.

non-generics, it is important to include even those nouns that
tend to be non-generic. Their dataset excluded singular pro-
nouns like he, she, you, I, and it. If singular pronouns tend to
“cluster” (for instance, are more likely to be animate and non-
generic) then excluding them might result in a mis-estimation
of the overall distribution of generics relative to non-generics
in different ways for different noun categories.

To test whether the inclusion or exclusion of singular pro-
nouns drove the difference between our results and those of
Gelman et al. (2008), we re-ran our original analyses after ex-
cluding all singular pronouns from our dataset. As shown in
Figure 5, the results now replicate their findings rather than
ours. The top panel shows that generics but not non-generics
are used more for animate than artifact categories,8 and the
bottom panel shows that for both adults and children, the pro-
portion of generic utterances is higher within animate cate-
gories than artifacts.9 This suggests that Gelman et al. (2008)
may have found that animate categories had more generics
because they did not count a large number of non-generic an-
imates like he, she, you, and I. Our other analysis show that
once all nouns are included, the proportion of generics across
noun categories evens up and if anything favours artifacts.

8Bayesian t-test comparing artifact to animate percentage: For
child generics, BF10 = 91 in favour of a model that includes noun-
type; for child non-generics, BF01 = 2.9 for the null model. For adult
generics, BF10 = 206 in favour of a model that includes nountype;
for adult non-generics, BF01 = 3.5 for the null model.

9Bayesian ANOVA: BF10 > 106 favouring a model including
noun category; BF10 = 522888 favoring a model including speaker.
Bayesian t-test comparing artifact to animate generic percentage: for
child speech, BF10 = 2529 favouring a model including nountype;
for adult, BF10 = 35 favouring a model including nountype.
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Discussion
This work makes several contributions. First, we present the
first fully automatic model for generic identification which
uses only synactic features, and demonstrate that it performs
well relative to both the state-of-the-art and manual classi-
fications from Gelman et al. (2008). Second, we apply this
model to a much larger dataset of child speech than had
previously been possible to analyse. Although we replicate
the previously-observed developmental trend in generic us-
age, we find that neither adults nor children use generics
more in categories that tend to be essentialised (like ani-
mates). Follow-up analyses suggest that our results differ
from Gelman et al. (2008) not because of poor classification
performance by our model, but primarily because we did not
exclude singular pronouns from our dataset (as they did).

A natural question at this point is whether it is better to
include singular pronouns or not. Any answer must be con-
ditioned on considerations of what is realistically possible.
Given the extreme amount of labour involved in hand-coding
corpora, one can reasonably argue that the process for iden-
tifying nouns used by Gelman et al. (2008) was a necessary
simplification. Other analyses excluded pronouns for other
good reasons. For instance, Gelman and Tardif (1998) and
Goldin-Meadow et al. (2005) excluded pronouns because of
the need to compare English with Mandarin, a pro-drop lan-
guage. Given these considerations, this too seems reasonable.
However, it is possible that this decision is why they as well
found a higher proportion of generics for animates.

Overall, we suggest that if the goal is to understand the
distribution of generics relative to non-generics in the nouns
children hear, it is important to include all of the nouns that
children hear. Singular pronouns are very common and al-
most always non-generic; as such, an accurate comparison of
generics to non-generics cannot exclude them.

One might also ask why our model identified a larger pro-
portion of generics than previous work did (Figure 1). Part of
the reason is probably that a manual identification of generics,
as Gelman et al. (2008) had to do, would probably have erred
on the side of under-counting them. Another part is that our
model appeared to make less conservative choices in some
cases. For instance, our model identified many generics that
were preceded by the word the, as in sentences like What do
bears in the forest do in the day?. Since our observed devel-
opmental trends are very similar and all of our other results
hold even when we use the classifications from Gelman et al.
(2008), we doubt that our overall higher rate poses a problem.

A final question is what our results mean for our initial
question: to what extent does the linguistic environment sup-
port the difference in essentialisation of artifact vs animate
categories? Our results suggest that this difference is not re-
flected in differences in generic usage, and thus lends less cre-
dence to the possibility that these domin differences in essen-
tialism result from linguistic input. Although this finding is
surprising given previous work, one nice aspect of it is that it
removes the chicken-and-egg question that otherwise arises:

why does the linguistic environment have this distribution in
the first place? Much remains to be done, but we hope that our
model and results offer a useful tool for better understanding
how our early biases are shaped by the environment.
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Abstract 

High-Variability Phonetic Training (HVPT) has been shown to 
be effective in improving the perception of even the hardest 
second-language (L2) contrasts. However, little is known as to 
whether such training can improve phonological processing at 
the lexical level. The present study tested whether this type of 
training also improves word recognition. Adult proficient 
French late learners of English completed eight online sessions 
of HVPT on the perception of English word-initial /h/. This 
sound does not exist in French and has been shown to be 
difficult to process by French listeners both on the prelexical 
(Mah, Goad & Steinhauer, 2016) and the lexical level (Melnik 
& Peperkamp, 2019). In pretest and posttest participants 
completed an identification task as well as a lexical decision 
task. The results demonstrated that after training the learners’ 
accuracy had improved in both tasks. The theoretical and 
applied implications are discussed.  

Keywords: second language acquisition; lexical processing; 
word recognition; speech perception; phonetic training 

Introduction 
It is well known that producing and perceiving non-native 

speech sounds can be very challenging (for reviews, see 
Piske, MacKay & Flege, 2001; Sebastián-Gallés, 2005). In 
the realm of perception, much research has shown that with 
auditory training, the difficulty of perceiving even the hardest 
non-native sounds can be reduced. The most common 
training paradigm used to improve second language (L2) 
perception is High-Variability Phonetic Training (HVPT). 
HVPT uses multiple natural exemplars of the target sounds 
in a variety of phonetic environments. This variability 
enhances the process of building novel phonological 
categories. Importantly, perceptual training involves 
immediate corrective feedback that provides information to 
participants about their performance and promotes rapid 
learning by driving the learner’s attention to the relevant 
phonetic cues of the sounds to be learned (Homa & Cultice, 
1984; Logan, Lively & Pisoni, 1991). The effectiveness of 
this technique has been shown in many studies in a variety of 
languages, using several target contrasts and structures, 
including vowels (Carlet & Cebrian, 2014; Lee & Lyster, 
2016), consonants (Kim & Hazan, 2010; Shinohara & 
Iverson, 2018), tones (Wang et al. 1999; Wang, Jongman, & 
Sereno, 2003), and syllable structure (Huensch & Tremblay, 

2015). Moreover, both high- and low-proficiency speakers 
benefit from HVPT (Iverson, Pinet & Evans, 2012), and 
HVPT generalizes to new tokens and new speakers (Lively et 
al., 1994; Okuno & Hardison, 2016). Finally, it gives rise to 
long-term retention of the new categories (Lively et al., 
1994), and it helps to improve L2 production (for a review, 
see Sakai & Moorman, 2018). 

Although the effectiveness of HVPT is well studied, most 
previous work focused exclusively on prelexical perception, 
using identification or discrimination tasks. The difficulty 
with the perception of L2 sounds, though, is paralleled by less 
efficient lexical processing (e.g., Pallier, Colomé & 
Sebastián-Gallés, 2001; Weber & Cutler, 2004). Thus, truly 
successful training should also enhance performance at the 
lexical level. While prelexical processing only involves a 
phonetic analysis, lexical processing is more complex as it 
additionally requires mapping the incoming speech signal 
onto phonological representations stored in memory, and the 
performance gap between native and non-native listeners in 
L2 speech perception increases as the tasks have greater 
lexical involvement (Díaz et al., 2012).  

So far, the only studies on the effect of prelexical auditory 
training on lexical processing focused on naïve listeners’ 
ability to learn words in a tonal language (Cooper & Wang, 
2011; Ingvalson, Barr & Wong, 2013). Both studies found 
that naïve English listeners’ ability to learn words involving 
difficult tone contrasts improved after auditory training. To 
our knowledge, no studies have directly assessed the effect of 
auditory training on enhancing word recognition in L2 
learners. 

We focused on the perception of the English sound /h/ by 
intermediate French learners of English. As /h/ does not exist 
in French, French listeners – even those who are fluent in 
English – have difficulty perceiving the contrast between the 
presence vs. absence of /h/ in English stimuli (Mah et al., 
2016). At the lexical level, proficient French learners of 
English tend to accept nonwords such as usband (cf. 
husband) and, to a lesser extent, hofficer (cf. officer), as real 
words (Melnik & Peperkamp, 2019). Thus, they have 
difficulty not only in perceiving the contrast between /h/ and 
silence, but also in distinguishing between words and 
nonwords that differ only in the presence vs. absence of /h/.  
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Importantly, there is an almost perfect one-to-one mapping 
in English of the grapheme <h> onto the phoneme /h/. Most 
French L2 speakers know how to correctly write /h/-initial 
words. They are also instructed that <h> is rarely silent in 
English and that it is pronounced as /h/. If after training 
learners start better perceiving /h/, they might thus be able to 
also improve their recognition of /h/-initial English words 
even if they have imprecise phonological representations of 
such words, since they can rely on the orthography. 

In the current study we trained French learners on the 
perception of English /h/ in a pretest–training–posttest 
design. In pretest and posttest, participants performed an 
identification task aimed at testing their phonetic perception 
of /h/, and a lexical decision task aimed at testing their 
processing of /h/ at the lexical level. In the posttest, the 
identification task also tested for generalization to novel 
items. In the identification task we used /h/- and vowel-initial 
nonwords as stimuli. In the lexical decision task we used 
words and nonwords, where the test nonwords were created 
from /h/-initial and vowel-initial words by removing or 
adding /h/, respectively.  

Training was administered on-line, and consisted of eight 
sessions of an identification task using minimal pairs of real 
words (such as air-hair), with corrective feedback.1 We 
expected the training to enhance performance in the 
identification task at posttest, thus replicating the findings of 
previous studies on the effectiveness of HVPT in improving 
phonetic perception of L2 sounds. Moreover, if the effect of 
training extends to lexical processing, performance in lexical 
decision should likewise improve with training.  

Method 

Pretest-Posttest-Generalization: Identification 
 
Stimuli 
For the pre- and posttest we selected 100 pairs of nonwords. 
The members of each pair differed in the presence or absence 
of an initial /h/ (e.g. /hasp/ – /asp/). Forty pairs were 
monosyllabic, 40 dissyllabic and 20 trisyllabic. Ten English 
vowels (ʌ, ɒ, a, ɪ, ɛ, iː, ʌɪ, əʊ, eɪ, aʊ) were used in the first (or 
only) syllable, thus creating a large amount of variability in 
phonetic context.  

An additional 30 pairs of nonwords (10 monosyllabic, 10 
disyllabic and 10 trisyllabic, containing the 10 vowels 
mentioned above) were selected to test for generalization at 
the end of the posttest.  Half of the pairs were recorded by a 
male, and the other half by a female native of American 
English. 
 
Procedure 

                                                           
1 Training can be done either with nonwords (e.g., Yamada, 1991) 

or with real words (e.g., Logan et al., 1991). Here, we chose to use 
real words because repeated exposure to a large number of 
nonwords during training might have induced a bias to excessively 
accepting nonwords in the lexical decision task in pre-  and posttest. 

Participants were tested individually in a soundproof booth. 
In each trial they were presented auditorily with a stimulus; 
their task was to press as quickly as possible the key labelled 
“h” with their dominant hand if they thought the nonword 
started with the sound /h/, and to press the key labelled “no 
h” with their non-dominant hand if they thought it did not 
start with /h/. There were 194 trials divided over two blocks. 
Trials were presented in a semi-random order such that no 
more than four trials of the same type (vowel-initial or /h/-
initial) and no more than three trials recorded by the same 
speaker appeared in a row. 

The first block started with a practice phase of six trials, 
during which participants received feedback. In the case of 
an incorrect response or no response within 2500 ms, the trial 
was repeated until the correct response was given. During the 
test phase, participants received no feedback and if they did 
not give a response within 2500 ms the next trial was 
presented. An interval of 1000 ms elapsed between the 
participant’s response or the time-out - whichever came first 
- and the presentation of the next trial. 

At the end of the posttest only, 60 trials with the 30 
additional nonword pairs were used to test for generalization. 

Pretest-Posttest: Lexical decision  
 

Stimuli 
The stimuli were the same as in Melnik & Peperkamp (2019). 
They consisted of 80 English test words, 40 starting with /h/ 
(e.g., husband) and 40 with a vowel (e.g. officer), recorded 
by the same male American English speaker who recorded 
stimuli for the identification task. They consisted of nouns, 
verbs and adjectives, and contained between two and four 
syllables. The /h/-initial and the vowel-initial words did not 
differ in mean frequency in the Subtlex database (Brysbaert 
& New, 2009) or in mean number of syllables (both t < 1).2 

Each word  was paired with a nonword, created by deleting 
or adding /h/ at the beginning (e.g. husband  usband, 
officer  hofficer). In addition, there were 240 English 
control words (nouns, verbs and adjectives), none of which 
starting with /h/. They were matched for mean frequency and 
mean number of syllables with the test words. Each control 
word was paired with a nonword created by replacing, 
deleting or inserting one phoneme other than /h/. 

The test and control minimal pairs were divided into two 
equal groups, one for pretest and one for posttest, respecting 
the matching in terms of frequency and number of syllables. 
The pretest stimuli were further divided into two 
counterbalancing lists: list A and list B. Each of them 
contained only one member of each pretest minimal pair. For 
instance, if the word husband was in list A, its nonword 
counterpart usband was in list B. The posttest stimuli were 
divided into lists C and D following the same principle. Thus, 

2 The familiarity of these words was evaluated by a separate group 
of 45 adult French learners of English in an online rating 
questionnaire. The /h/- and vowel-initial words that were chosen for 
the experiment did not differ in mean familiarity (t = 1.0, p > 0.1). 
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no list contained both members of a given word–nonword 
pair. Each of the four lists contained 10 /h/-initial and 10 
vowel-initial words, 10 /h/-initial and 10 vowel-initial 
nonwords, as well as 60 control words and 60 control 
nonwords. Finally, for a practice phase there were two 
additional words and two additional nonwords, none 
involving /h/. 
 
Procedure 
In pretest half of the participants were randomly assigned to 
one of the two pretest lists (list A or list B). In posttest, 
participants who previously heard the list A were given the 
list C, while participants who previously heard the list B, 
were now given the list D. Hence, participants heard only one 
of the members of each word-nonword pair throughout the 
whole experiment.  

The procedure was identical to that in Melnik & 
Peperkamp (2019): Participants performed a speeded 
auditory lexical decision task. In each trial they heard a word 
or a nonword and had to answer if the item was an English 
word. They were instructed to use their dominant hand for 
“yes”- and their non-dominant hand for “no”-responses on a 
button box. There were 160 trials divided over two blocks, 
each containing the same number of test and control stimuli. 
Trials were presented in a semi-random order such that 
between one to three control trials appeared between two 
experimental ones, and that no more than four trials of the 
same type (word or nonword) appeared in a row. 

The first block started with a practice phase of four trials 
with control items, during which participants received 
feedback (‘correct’ or ‘wrong’ written on the screen). In the 
case of an incorrect response or no response within 2500 ms, 
the trial was repeated until the correct response was given. 
During the test phase, participants received no feedback and 
if they did not give a response within 2500 ms the next trial 
was presented. An interval of 1000 ms elapsed between the 
participant’s response or the time-out and the presentation of 
the next trial. 

Training: Identification 
 

Stimuli 
We selected 59 minimal pairs of real words differing in the 
presence or absence of an initial /h/. Given the limited 
number of such minimal pairs, we used both frequent words 
(e.g. hair-air) and infrequent ones (e.g. hosier-osier) words. 
However, word frequency was not considered to have an 
impact, as the task used in training was prelexical.  

Four different speakers, two men and two women, 
recorded the items. One of the male speakers and one of the 
female speakers were those who recorded the stimuli for the 
nonword identification task used in pretest and posttest, with 
the male speaker having also recorded the stimuli for the 
lexical decision task. 
 
Procedure 

The training consisted of eight high-variability phonetic 
training sessions. In the first four sessions participants heard 
one speaker per session. In the following four sessions they 
heard a pair of speakers in each session, such that all four 
male-female combinations were used.  

All training sessions were run at the participants’ homes 
through internet. The online training sessions were designed 
using the JsPsych library (de Leeuw, 2015) in JavaScript. 
Before each training session participants received by email a 
link to the corresponding training session webpage. Stimuli 
were presented at a comfortable listening level, set 
individually. The details of each training session (e.g., 
participant details, day and time of completion, RTs and 
responses) were automatically sent to the MySql database 
after the completion of each session. Participants could only 
do one session per day and there could be no more than one 
day in between two sessions. Thus, the whole course of 
training was completed in eight to fifteen days.  

In each trial participants first saw the two response 
alternatives written on the screen (e.g. “hair – air”).  The word 
starting with /h/ was always displayed on the left, and the 
word without /h/ always on the right. The auditory stimulus 
was played 800 ms later. The task was to press as quickly as 
possible the left arrow key if the word started with /h/ and the 
right arrow key otherwise. When the participant pressed the 
key, the corresponding word was highlighted in bold. If the 
response was correct, the word “Correct” written in green 
appeared in the middle of the screen, in between the two 
alternatives. If it was incorrect, the word “Wrong” written in 
red appeared on the screen, followed after 1000 ms by 
auditory feedback of the form: “The word was not: XXX. It 
was: YYY”, spoken by the same speaker as the stimulus itself. 
For instance, if the stimulus played was the word “hair” but 
the participant chose instead the word “air”, the word 
“Wrong” was displayed on the screen and the phrase “The 
word was not: air. It was: hair” was played. 

If no response was given within 2500 ms, the words “Too 
slow” appeared on the screen. An interval of 1000 ms elapsed 
between the participant’s response or the time-out - 
whichever came first - and the presentation of the next trial. 
There were 118 trials in each session, and trials were 
presented in a random order. Each session lasted from 15 to 
20 min, depending on the accuracy of the participant. 

Participants 

Participants were French intermediate learners of English, 
recruited from among university students (about half of 
which in an English department). In order to avoid ceiling 
performance or insufficient knowledge of English 
vocabulary, only participants whose accuracy in pretest was 
below 80% in the identification task and above 70% on 
control items in the lexical decision task went through the 
training and posttest. Of the 51 participants who did the 
pretest, 25 satisfied these criteria, out of whom a total of 24 
completed the study and were included in the data analysis. 
Among these participants, there were 12 women and 12 men, 
aged between 19 and 32 (mean: 22.3), who had started 
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learning English at school. They filled in a questionnaire to 
self-evaluate their speaking, listening, reading, vocabulary 
and grammar skills in English and French, on a scale from 1 
to 10. The overall mean score was 6.4 (SD = 1.6) for English 
and 9.4 (SD = 0.9) for French.  
None of the participants reported a history of speech or 
language problems. They received a small payment after the 
pretest, and those who underwent training received a second, 
larger, payment when they came back to the laboratory for 
the posttest. 
 

Results 
 

Pretest-Posttest-Generalization: Identification  

Prior to analysis, we discarded responses with a reaction time 
of 0 ms. Figure 1 displays the identification accuracy of 
participants in pretest, posttest and generalization. As the 
identification task is a signal detection task, we used the A' 
statistic, which provides a non-parametric, unbiased, index of 
sensitivity (here: to the difference between words and 
nonwords), with 0.5 indicating chance performance and 1.0 
perfect performance. A repeated measures ANOVA by 
participant with the factor Session (Pretest vs. Posttest vs. 
Generalization), revealed a main effect of Session (F(2,46) = 
26.75, p < .001), with the accuracy improving from an 
average A score of 0.74 in pretest to 0.86 in posttest and 0.86 
in generalization. Bonferroni-adjusted pairwise t-tests 
revealed that there was a significant difference between 
pretest and posttest (p < .01), as well as between pretest and 
generalization (p < .01). There was no difference between the 
performance in the posttest and in the generalization (p = 
.82).   
 

 
Figure 1. Boxplots of A scores in the identification task in 
pretest, posttest, and generalization. The red dots represent 

individual participants; the lines link each participant’s 
performance in the three sessions. The black cross marks 

indicate mean A scores in each session.  
 

Pretest-Posttest: Lexical Decision  

Prior to analysis, we discarded responses with 0 ms reaction 
time. Figure 2 displays the accuracy of participants on the test 

items in pretest and posttest. As the participants had a strong 
bias for ‘yes’-responses (shown by their low accuracy scores 
on test nonwords), we used the A' statistic as in the analysis 
of performance in the identification task.  

We carried out a repeated measures ANOVA by 
participant with the factors Session (pretest vs. posttest), 
Condition (test vs. control) and Lists (AC vs. BD), as well as 
an interaction between Session and Condition. We found 
main effects of Session (F(1, 23) = 39.36, p < .001) and 
Condition (F(1, 23) = 73.93, p < .001), and a Session X 
Condition interaction (F(1, 23) = 30.87, p < .001). Pairwise t-
tests revealed that the interaction was due to the fact that in 
control items, the effect of Session was not significant, while 
in test items, there was a significant difference between 
pretest and posttest (p < .001), with the accuracy improving 
from an average A score of 0.62 in pretest to 0.82 in posttest. 
There was no effect of the counterbalancing factor Lists. 

 

 
 

Figure 2. Boxplots of A scores in the lexical decision task 
in pretest and posttest. The red dots represent individual 

participants; the lines link each participant’s performance in 
both sessions. The black cross marks indicate mean A 

scores in each session. 
 

Discussion 
The present study examined if phonetic training can enhance 
the recognition of words that contain a difficult non-native 
sound. We tested French learners with intermediate 
proficiency in English on both their prelexical perception and 
their lexical processing of stimuli containing /h/. This sound 
does not exist in French, and French listeners tend to confuse 
it with silence (Mah et al., 2016). The participants underwent 
eight sessions of High-Variability Phonetic training, and 
were tested in pretest and posttest by means of an 
identification and a lexical decision task.  

We found that participants improved in both tasks in 
posttest compared to pretest. For the identification task, we 
also observed generalization to new items. The results for this 
task are in accordance with results from previous studies that 
used HVPT. Concerning the lexical decision task, this is the 
first piece of evidence that HVPT can improve not only 
prelexical but also lexical processing. As mentioned in the 
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introduction, successful word recognition depends on the 
correct decoding of the speech signal and the matching of this 
percept to the phonological representation stored in long-
term memory (Pisoni & Luce, 1987). If listeners have 
difficulty with at least one of those aspects, then word 
recognition might be less effective. Evidence that this is the 
case is shown by the fact that in the lexical decision task 
during pretest, the test items involving the difficult sound /h/ 
yielded higher error rates than the control items. Note that 
performance on control items was very good in both pre- and 
posttest (mean A score 0.94). As the test and control items 
were matched in frequency, this indicates that the difficulty 
participants encountered with the test items was caused by 
the presence of /h/ and not by a lack of English vocabulary. 
Importantly, this difficulty was clearly reduced after training, 
as in posttest participants made less errors on the test items 
with /h/ than in pretest, while their performance did not 
change on control items.  

Our findings have both theoretical and practical 
implications. From a theoretical point of view, they shed light 
on the relationship between prelexical and lexical processing 
in L2 learning. It is generally agreed upon that speech 
processing involves several stages, ranging from auditory 
processing, phonetic and phonological analysis, to word 
recognition and lexical access (Pisoni & Luce, 1987). In a 
study on Dutch L2 learners’ processing of the English /æ/-/ε/ 
contrast, Díaz et al. (2012), found that the performance gap 
between native and non-native listeners increases as the tasks 
have greater lexical involvement. This is likely due to the fact 
that different perceptual tasks tap into different processing 
levels, thus requiring different skills and involving different 
amounts of cognitive load. Our finding that improvement in 
prelexical perception is paralleled by an improvement in 
lexical processing suggests a bottom-up sequential order in 
learning. Although at a specific time point in learning the 
proficiency in prelexical perception might be ahead of that in 
lexical processing, a rapid improvement in the former might 
give rise to change in the latter. This is in accordance with the 
Automatic Selective Perception model (Strange, 2011), 
which proposes that L2 phonological processing is less 
automatic and therefore requires more attentional resources 
than phonological processing in L1. Consequently, while the 
performance of learners might be good on relatively simple 
prelexical tasks, where they can exclusively focus their 
attention on crucial phonetic cues, the same performance 
level might not be obtained in tasks requiring the processing 
of more complex stimuli and attention to other information, 
such as word meaning. According to this model, the 
processing of simple tasks becomes more automatic and 
nativelike as proficiency grows. Thus, in our study, training 
possibly rendered the prelexical processing more efficient, 
thus allowing participants to allocate more cognitive 
resources to the lexical level of processing. 

A similar finding on the benefit of phonetic training for 
higher processing levels was reported in a study on the 
perception of L2 speech in noise (Lengeris & Hazan, 2010). 
Adverse listening conditions such as a high signal-to-noise 

ratios (SNRs) have been shown to involve increased 
cognitive load and to have greater negative effects for speech 
perception in non-native than in native listeners (for a review, 
see Lecumberri et al., 2010). In this study, it was shown that 
HVPT in quiet improves the perception of a difficult L2 
sound in noise.  

On the practical side, the current findings could have 
implications for language teaching. The above-mentioned 
aspects of speech processing – lexical perception and 
perception of speech in noise – are inherent elements of “real 
life” language processing. The fact that they can be improved 
by relatively short HVPT is encouraging. Moreover, our 
training was administered online and not in a well-controlled 
laboratory setting; it can thus easily complement traditional 
language teaching methodologies. Finally, we note that 
participants of our study reported that being trained on real 
words was very motivating, as they had the occasion not only 
to enhance their perception but to learn new words as well. 

To conclude, we showed that even short online HVPT can 
improve both prelexical and lexical processing of a difficult 
L2 sound. Future research should test if these improvements 
are retained in the long term. Furthermore, although we 
observed significant improvements, only some participants 
were at ceiling in posttest. Thus, further studies should look 
at the effect of training length on learning outcomes. This 
would help us understand if there is an upper limit of 
improvement in lexical processing that training can induce. 
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Abstract

Evidence is typically consistent with more than one hypothesis.
How do we decide which hypothesis to pursue (e.g., to subject
to further consideration and testing)? Research has shown that
explanatory considerations play an important role in learning
and inference: we tend to seek and favor hypotheses that
offer good explanations for the evidence we invoke them to
explain. Here we report three studies testing the proposal that
explanatory considerations similarly inform decisions concern-
ing pursuit. We find that ratings of explanatory goodness predict
pursuit (though to a lesser extent than they predict belief), and
that these effects hold after adjusting for subjective probability.
These findings contribute to a growing body of work suggesting
an important role for explanatory considerations in shaping
inquiry.
Keywords: explanation; pursuit; abduction; active learning

From belief to pursuit
“Faced with tracks in the snow of a certain peculiar shape,”
writes (Lipton, 2003), “I infer that a person on snowshoes has
recently passed this way.” This form of inference, familiar
from both science and everyday life, is known as inference
to the best explanation (IBE). Harman (1965) explains that
in drawing this inference to an explanatory hypothesis, one
infers, from the premise that a given hypothesis would provide
a better explanation for the evidence than would any other
hypothesis, to the conclusion that the given hypothesis is true
(Harman, 1965).

Recent work in the cognitive science of explanation has
confirmed and helped characterize the role of IBE in human
cognition: both children and adults tend to prefer some
explanations over others, and these preferences affect which
hypotheses they favor (Lombrozo, 2016; for factors that
might affect these preferences, see Colombo, Bucher, &
Sprenger, 2017). For example, in Douven and Mirabile
(2018), participants read about two possible explanations
for six realistic events: a target “best” explanation (that
had on average received higher quality ratings in a previous
experiment) and an alternative explanation (that had received
lower ratings). One group of participants was asked to rate
the explanatory quality of both explanations (how well each
explained the event) and a second group of participants rated
the probability of each explanation, additionally indicating
whether they accepted the target explanation as the true one.
They found that the mean goodness ratings of the first group
were better predictors of the acceptance rate of the target

explanation by the second group than the probability ratings
of that same group.

Findings like these suggest that explanatory considerations
play an important role in guiding belief – indeed, in some
cases a stronger role than that played by probability (see also
Douven & Schupbach, 2015). But they also raise an important
puzzle that has been a perennial challenge for advocates of
IBE: why treat explanatory considerations as a good guide to
what is true? After all, the world may not be simple, elegant,
or otherwise conform to a good explanation. This challenge
is especially acute when explanatory considerations diverge
from probabilistic considerations (see van Fraassen, 1989).

One possibility is that the practice of favoring hypotheses
that offer better explanations is a good epistemic policy in the
sense that it has positive epistemic consequences, even if it
doesnt directly result in an inference to a hypothesis that is
more likely to be true. Along these lines, Wilkenfeld and Lom-
brozo (2015) introduce the idea of “Explaining for the Best
Inference,” whereby the practice of explaining (and of seeking
good explanations) might improve our epistemic standing
through a suite of downstream cognitive effects. Indeed,
seeking and evaluating explanations facilitates the discovery
of subtle patterns (e.g., Williams & Lombrozo, 2010; Walker
& Lombrozo, 2017), even when the generated explanations
are inaccurate (Walker, Lombrozo, Legare, & Gopnik, 2014).
Explaining also encourages processes such as comparison
(Edwards, Williams, Gentner, & Lombrozo, 2019), abstraction
(Walker & Lombrozo, 2017), and metacognitive calibration
(Rozenblit & Keil, 2002), which can be beneficial even if the
agent fails to make an inference to a true explanation.

In the current paper, we turn our attention to the idea of
IBE as an effective epistemic policy that could guide learners
over time. Rather than focusing exclusively on the role of
explanatory considerations in making an inference to (or
evaluating the probability of) a given hypothesis at a given
time, we consider whether and how explanatory considerations
affect the decision to pursue one hypothesis over another – that
is, to subject a hypothesis to further consideration or testing.

Pursuing explanations
Pursuing hypotheses is an important part of any search for
explanations: doctors order medical tests before establishing a
diagnosis, detectives interrogate suspects and verify alibis, and
scientists collect evidence to assess their theories. Decisions
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about pursuit are especially critical in science: not only must
we justify to academic peers, funding agencies, and sometimes
the general public why a given hypothesis is worthy of pursuit,
but this very investigation can also serve as a “criterion of
demarcation” between scientific and non-scientific endeavors.
According to Popper (2005), a hallmark of science is the
generation of theories that can be submitted to a method of
critical testing: scientific theories should make predictions that
can be falsified by empirical evidence.

However, both in principle and due to time and resource
limitations, we are unable to investigate all hypotheses, even
all good hypotheses: we must instead decide which hypotheses
are worth pursuing, and which hypotheses are worth pursuing
first. Nyrup (2015) argues that the justification of pursuit is
the most legitimate use of IBE – more legitimate even that
the justification of belief. His core idea is that a hypothesis
that offers a good explanation has higher “epistemic value” if
true than its salient competitors, and that this justifies giving it
priority when deciding which hypotheses to pursue first.

Formal analyses additionally support the idea that a policy
of favoring better explanations could pay off downstream,
even if it does not lead to an accurate inference right away.
Specifically, Kelly (2007) introduces a formal notion of
simplicity, and contends that simple hypotheses should be
preferred because adopting simple rather than more complex
hypotheses will reduce to a minimum the number of necessary
reversals of opinion before arriving at the true hypothesis,
and therefore allow us to converge to the truth more quickly.
Douven (2016) shows that under certain conditions, artificial
agents using update rules that favor better explanations
(defined according to a particular measure of “explanatory
power”) converge faster on the truth than artificial agents with
probabilistic (Bayesian) update rules. Evaluating the goodness
of an explanation might therefore be a key consideration when
deciding whether to pursue it.

In the present research, we report three studies designed to
address the following four questions. First (Q1), are people
more likely to pursue one hypothesis over another to the extent
it offers a good explanation for the data? Second (Q2), is this
evaluation partially comparative, such that the explanatory
goodness of alternatives will also matter, with a given hypothe-
sis more likely to be pursued to the extent its alternative offers
a poor explanation? Third (Q3), does explanatory goodness
have an effect on pursuit that is not reducible to the effects of
subjective probability on pursuit? Based on the findings from
Douven and Mirabile (2018) concerning belief, we expect
positive answers to these questions. However, we also expect
pursuit and belief to diverge, given their differential costs
(in terms of both requisite resources, and the consequences
of getting things right vs. wrong). This prompts our final
question (Q4): Does explanatory goodness differentially affect
pursuit versus belief?

Study 1
In Study 1, we address Q1 - Q4 using materials adapted from
Douven and Mirabile (2018). In a within-subjects design,
participants were shown six vignettes that each described
a disruptive event. They were presented with two possible
hypotheses that might explain the event, and asked to rate
the goodness and probability of each hypothesis. They
also indicated which hypothesis they would recommend
investigating first (“pursuit”), and which hypothesis they were
more inclined to believe (“belief”). This allowed us to examine
the link between perceived explanatory goodness and pursuit,
as well as its relationship to probability and belief.

Method
Participants Participants were 72 adults recruited from
Amazon Mechanical Turk (33 female, 39 male, ages 20-69,
M = 35). Participation was restricted to MTurk workers with
unique IP addresses in the United States who had completed
at least 1000 HITs with a minimum approval of 99%. An
additional 35 participants completed the study, but were
excluded from analyses for failing one or more attention
checks (described below).

Materials Six vignettes were lightly adapted from the
stimuli used by Douven and Mirabile (2018). In these vi-
gnettes, experts (scientists, detectives, doctors) are attempting
to explain a disruptive event (e.g., the flooding of a village,
a murder, or a patient’s symptoms), and they have generated
two possible explanatory hypotheses, where these hypotheses
are independent and are not jointly exhaustive. For instance,
in one vignette, participants read about a womans murder,
where one hypothesis is that the murder was committed by
her jealous husband, and another hypothesis is that the murder
was committed by a coworker trying to prevent her from
sharing incriminating evidence. Based on the ratings of
explanatory goodness provided by participants in Experiment
1 of Douven and Mirabile (2018), one of the hypotheses was
classified as offering what we expected to be perceived as the
best explanation, and the other as offering the second best
explanation. These designations were used in analyses, but
were not presented to participants.

Procedure Each participant received all six vignettes, with
the order of the two hypotheses in each vignette randomized
across participants. The study consisted of three phases:
goodness and probability ratings, belief and pursuit decisions,
and distraction questions, which doubled as attention checks.
The distraction questions always appeared between the other
two phases, which appeared first or last (randomized across
participants).

In the goodness and probability ratings phase, participants
received all six vignettes, and for each rated the two corre-
sponding hypotheses on explanatory goodness and probability,
with order randomized across participants. For explanatory
goodness, participants were asked: “How good do you think
each of these hypotheses is as an explanation for why [the
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event occurred]?”, with the corresponding event specified in
the stimuli participants saw. Responses were collected on
a continuous scale from 0 to 100, where 0 meant that an
explanation was very bad, 50 meant that an explanation was
neither good nor bad, and 100 meant that an explanation was
very good. For probability, participants were asked: “How
likely do you think each of these hypotheses is?” Responses
were collected on a continuous scale from 0 to 100, where 0
meant that the hypothesis had 0% probability of being true,
50 meant that the hypothesis was equally likely to be true
or not true, and 100 meant that the hypothesis had 100%
probability of being true. We also included an attention check
in which participants were instructed to select zero on the two
continuous scales.

In the pursuit and belief decisions phase, participants
received all six vignettes, and for each rated the two cor-
responding hypotheses for pursuit and belief, with order
randomized across participants. For the pursuit decisions,
participants were told: “The [experts] only have enough
resources to investigate and test one of the two hypotheses
before deciding on an explanation. They could also decide
to save their resources and not investigate or test either of
the two hypotheses. What do you think they should do?”
Participants could select either hypothesis or indicate that they
didn’t think either of the hypotheses should be investigated.
For the belief judgment, participants were asked: “Which of
the two hypotheses are you more inclined to believe is the
true explanation of why [the event occurred]?”, (again, the
corresponding event was specified in the stimuli participants
saw). Participants could select either hypothesis or indicate
that they were not inclined to believe either of the hypotheses.

The distraction phase consisted of two questions that
doubled as attention checks. Participants read a list of words
and, depending on a randomly assigned condition, copied into
a text box the first word from that list that referred to an animal,
a fruit, or a season. Participants also counted the number of
animals in a picture.

After completing these three phases of the study, partici-
pants provided demographic information.

Results & Discussion
To examine whether and how explanatory considerations affect
pursuit (Q1 and Q2), we fit a logistic binomial mixed-effects
model (Q1/Q2 model) predicting participants probability of
deciding to pursue the (antecedently defined) best explana-
tion, as opposed to the second best explanation or neither
explanation. Our choice of model and dependent variable
allowed us to parallel the analyses in Douven and Mirabile
(2018), where acceptance of the target “best” explanation
was used as a dichotomous dependent variable. Explanatory
goodness ratings for the best explanation and for the second
best explanation were both centered on 50 and included as
fixed effects. Vignette was included as a group-level random
effect.

This model found a positive coefficient for the goodness of
the best explanation (p < .001), with a 5.2% increase in the

Goodness Probability

30 40 50 60 70 80 30 40 50 60 70 80

S3: latent
scope

S3: inherence

S3: actual
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S3: simplicity

S2: complex/
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S2: simple/
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Mean ratings

Hypothesis: Best Second Best

Figure 1: Mean ratings of goodness and of subjective prob-
ability for the two hypotheses for Study 1, Study 2 (Sim-
ple/Probable and Complex/Probable conditions) and Study
3 (Simplicity, Actual Scope, Latent Scope and Inherence
conditions). Error bars represent 95% CI.

odds of choosing to pursue an explanation for each one-point
increase in goodness. It also found a negative coefficient for
the goodness of the second best explanation (p < .001), with
a 5.2% decrease in the odds of choosing to pursue the best
explanation for each one-point increase in the goodness of
the second best explanation. These results provide a positive
answer to Q1: explanatory considerations did predict pursuit.
They also provide an answer to Q2: while the goodness of
the better hypothesis mattered, the goodness of the alternative
mattered as well.

We next considered whether there were effects of explana-
tory considerations on pursuit that were not reducible to the
effects of subjective probability on pursuit (Q3). To this end,
we fit a logistic binomial mixed-effects model (Q3 model)
predicting participants probability of deciding to pursue the
best explanation, but in addition to the predictors included
above, we also included a fixed effect for the probability
assigned to the best explanation, and a fixed effect for the
probability assigned to the second best explanation. Vignette
was also included as a group-level random effect. There
was a positive coefficient for the best explanation (p < .001),
with a 4.8% increase in the odds of choosing to pursue the
best explanation for each one-point increase in probability.
There was also a negative coefficient for the second best
explanation (p < .001), with a 4.9% decrease in the odds
of choosing to pursue the best explanation for each one-point
increase in the probability of its alternative. However, in this
model, goodness ratings were not significant predictors. This
suggests a negative answer to Q3: there was not evidence
of effects of explanatory goodness on pursuit that were not
reducible to the effects of subjective probability on pursuit.
This result is potentially surprising in light of the findings from
Douven and Mirabile (2018), which used essentially the same
materials, but could be because goodness and probability were
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collected within-subjects and highly correlated: 0.73 for the
best explanation, and 0.78 for the second best explanation.
One aim of Study 2 is to more successfully tease apart
goodness and probability ratings.

Finally, we evaluated whether explanatory goodness differ-
entially predicted pursuit vs. belief (Q4). We fit a logistic
regression mixed-effects model (Q4 model) predicting the
probability of selecting the best explanation, with goodness
rating for the best explanation, goodness rating for the second
best explanation, and judgement type (belief vs. pursuit) as
fixed effects, as well as interactions between judgement type
and each goodness rating. We also included vignette as a
group-level random effect. This model found that goodness
ratings had a significant effect when predicting pursuit, and
that this effect was significantly larger when predicting belief.
A one-point increase in the goodness of the best explanation
increased the odds of deciding to pursue by 5.1% (p < .001),
and of deciding to believe by 11.5% (p = 0.005). On the other
hand, a one-point increase in the goodness of the competing
explanation decreased the odds of deciding to pursue by 5.0%
(p < .001), and of deciding to believe by 7.3% (p < .01).
Explanatory goodness thus had significant and differential
effects on pursuit vs. belief, with the impact on belief larger
than that on pursuit.

Study 2
Study 2 had two primary aims. First, we sought to revisit Q1-
Q4 with materials that induced a weaker correlation between
goodness and probability. Second, we sought to vary explana-
tory quality along a recognizable and objective dimension
for which people’s explanatory preferences have already been
experimentally established: simplicity, defined as the number
of unexplained causes invoked in an explanation (Pacer &
Lombrozo, 2017). As in Study 1, participants were shown
a vignette describing an unusual event with two possible
explanatory hypotheses. Each hypothesis was either simple
or complex, and described as either probable or improbable.
By introducing simple/improbable and complex/probable
hypotheses, we hoped to drive apart ratings of goodness and
probability.

Method
Participants Participants in Study 2 were 135 adults re-
cruited through Amazon Mechanical Turk as in Study 1 (56
female, 79 male, ages 19-72, M = 37). An additional 25
participants completed the study but were excluded from
analyses for failing one or more attention checks.

Materials Two vignettes were created following the same
structure as the stimuli used in Study 1. In these vignettes,
scientists seek to explain an unusual event (either a change
in the reproductive pattern of squirrels, or low crop yields
in a given county), and they have generated two possibles
hypotheses. One of these hypotheses was simple in the sense
that it appealed to a single cause (exposure to one toxin,
contamination by one pest), and the other was more complex

in that it required the conjunction of two independent causes
(two toxins, two pests). In addition, one of the hypotheses was
described as being “quite probable” based on the data available
to the scientists, and the other hypothesis was described as
being “quite improbable.”

Procedure The study had a between-subject design (2
vignettes x 2 probability conditions). Each participant received
one vignette, with the order of the two presented hypotheses
randomized across participants. Participants were randomly
assigned to one of two probability conditions. In the sim-
ple/probable condition, the simple hypothesis was described
as probable and the complex hypothesis as improbable. In
the complex/probable condition, this pairing was reversed. In
the main part of the study, participants responded to the same
questions as in Study 1. They also responded to an attention
check and completed one of the distraction tasks from Study 1
midway through the study.

Results & Discussion
First, we verified that Study 2 successfully reduced the
high correlations between perceived goodness and probability
observed in Study 1. We found correlations of 0.60 and 0.65
between goodness and probability in the simple/probable con-
dition for the simple and complex explanations, respectively,
and correlations of 0.58 and 0.76 in the complex/probable con-
dition for the simple and complex explanations respectively.
While these correlations remained strong, they were more
modest than those in Study 1.

We next conducted the same analyses as those described in
Study 1. To examine how explanatory considerations affect
pursuit, we fit the Q1/Q2 model, but did not include vignette
as a group-level random effect1. This model found a positive
coefficient for the goodness of the simple explanation (p <
.001), with a 9.8% increase in the odds of choosing to pursue
an explanation for each one-point increase in goodness. It also
found a negative coefficient for the goodness of the complex
explanation (p < .001), with a 8.1% decrease in the odds of
choosing to pursue the simple explanation for each one-point
increase in the goodness of the complex explanation. These
results again provide a positive answer to Q1: explanatory
considerations did predict pursuit. They also provide an
answer to Q2: while the goodness of the better hypothesis
mattered, the goodness of the alternative mattered as well.

We next analyzed whether there were effects of explanatory
considerations on pursuit that were not reducible to the effects
of subjective probability on pursuit (Q3). There was a positive
coefficient for the goodness of the simple explanation (p <
.001), with a 7.9% increase in the odds of choosing to pursue
the simple explanation for each one-point increase in goodness.
There was also a negative coefficient for the goodness of the

1All analyses in Study 2 were first fit using mixed-effects models,
with vignette as a group-level random effect. However, the regression
analyses indicated a singular fit, so we fit the models again excluding
the group-level random effect to ensure that the estimates were stable.
Estimated coefficients in the fixed-effects and mixed-effects models
were identical.
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complex explanation (p < .035), with a 5.0% decrease in
the odds of choosing to pursue the simple explanation for
each one-point increase in the goodness of its alternative.
However, in this model, subjective probability ratings were not
significant predictors. This points to a positive answer to Q3:
we found effects of explanatory goodness on pursuit that were
not reducible to the effects of subjective probability. These
findings could differ from those of Study 1 because goodness
and probability were not as highly correlated as in Study 1, or
because explanatory goodness was manipulated in the form of
simplicity.

Finally, we evaluated whether explanatory goodness differ-
entially predicted pursuit vs. belief by fitting the Q4 model.
This model found that goodness ratings had a significant effect
when predicting pursuit judgements, and that this effect was
not significantly different when predicting belief. A one-point
increase in the goodness of the simple explanation increased
the odds of a participant deciding to pursue by 9.8% (p < .001),
and a one-point increase in the goodness of the competing
explanation decreased the odds of deciding to pursue by 8.1%
(p < .001). Unlike Study 1, this suggests a negative answer to
Q4.

Study 3
Studies 1-2 provided consistent answers to Q1 and Q2:
participants were more likely to pursue one hypothesis over
another to the extent they judged that hypothesis a good
explanation, and its alternative a poor explanation. However,
the answers to Q3 and Q4 were more variable across studies.
In Study 3, we sought to revisit Q1-Q4 using a larger sample
and more varied experimental materials.

Specifically, we varied explanatory quality along four di-
mensions suggested by prior research to elicit reliable patterns
of preferences in people’s judgements. The first dimension
was simplicity, defined in terms of the number of unexplained
causes invoked in each explanation (e.g, explaining an illness
with one toxin or the conjunction of two toxins). The second
dimension was actual scope, defined as the number of observed
effects explained (e.g., explaining all aspects of how a space
shuttle had deviated from its trajectory or only some of them).
The third dimension was latent scope, defined as the number
of unverified effects predicted (e.g., one hypothesis predicts
that prior to the volcano’s irruption, the magma should have
been relatively cool and the second predicts that a wider
ranger of magma temperatures was possible–however, data
on magma temperature prior to the irruption is not available).
The fourth dimension was inherence, defined as an appeal
to inherent/internal features versus extrinsic features (e.g.,
a flower’s ability to wick off water is explained either by
properties of its petals or by properties of the soil where
it grows). Prior work has shown that with materials like
those used here, people favor explanations that are simpler
(Pacer & Lombrozo, 2017), broad in actual scope (Williams
& Lombrozo, 2010), narrow in latent scope (Khemlani,
Sussman, & Oppenheimer, 2010), and inherent (Cimpian &

Salomon, 2014). While simplicity and actual scope are often
defended as explanatory virtues, latent scope and inherence
are typically assumed to reflect unwarranted biases. The
procedure, materials, data collection plan, main predictions,
and analyses for Study 3 were preregistered on the Open
Science Framework platform prior to data collection and are
available at https://osf.io/6b58k/.

Method
Participants Participants in Study 3 were 875 adults re-
cruited from Amazon Mechanical Turk as in Studies 1-
2 (446 female, 424 male, 2 non-binary/other and 2 who
preferred not to respond, ages 18-87, M = 40). Following
our preregistration, 1000 participants completed the study,
with exclusions (N=125) based on failure to pass one or more
attention check(s).

Materials Twelve vignettes were created following the same
structure as the stimuli in Studies 1-2. In these vignettes,
scientists generate two possible hypotheses to explain an
unusual event. The two hypotheses in each vignette differed
along a single dimension (simplicity, actual scope, latent scope,
or inherence), with three vignettes targeting each dimension.
The simplicity vignettes were similar to those in Study 2. In
the actual scope vignettes, the best hypothesis explained all
aspects of the explanandum, and the second best hypothesis
explained only a subset. In the latent scope vignettes, the best
hypothesis accounted for the explanandum without making
unverified predictions, while the second best generated a
prediction that it was not possible to verify. In the inherence
vignettes, modified from Horne and Khemlani (2018), the best
hypothesis invoked an inherent feature of the explanandum,
and the second best invoked an extrinsic feature.

Procedure Each participant received one vignette, with the
order of the two hypotheses randomized across participants.
Aside from the fact that this study had a between-subjects
design (4 dimensions of explanatory quality x 3 vignettes), the
procedure was identical to that of Study 1.

Results & Discussion
To address Q1-Q4, we followed the analyses described in
Studies 1-22. We first fit the Q1/Q2 model. This model found
a positive coefficient for the goodness of the best explanation
(p < .001), with a 5.6% increase in the odds of choosing to
pursue an explanation for each one-point increase in goodness.

2In our preregistered analyses, we planned to fit logistic binomial
mixed-effects models that included as predictors the goodness
and probability ratings of the best explanation and differences in
goodness/probability ratings between the best and the second best
explanation. However, upon analyzing the data, we found a high
(>0.89) correlation between differences in goodness ratings and
differences in probability ratings. Because high correlations between
predictors in linear regressions can make the estimated coefficients
unreliable, we replaced the difference predictors by the goodness and
probability ratings of the second best explanation. The correlation
between goodness and probability ratings ranged from >0.8 for the
actual and latent scope virtues, to >0.82 for simplicity and >0.94 for
inherence.
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It also found a negative coefficient for the goodness of the
second best explanation (p < .001), with a 4.1% decrease
in the odds of choosing to pursue the best explanation for
each one-point increase in the goodness of the second best
explanation. These results again provide a positive answer
to Q1: explanatory considerations did predict pursuit. They
also provide an answer to Q2: while the goodness of the better
hypothesis mattered, the goodness of alternatives mattered as
well.

We next analyzed whether there were effects of explanatory
considerations on pursuit that were not reducible to the effects
of subjective probability by fitting the Q3 model. There was a
positive coefficient for the goodness of the best explanation (p
< .001), with a 2.7% increase in the odds of choosing to pursue
the best explanation for each one-point increase in goodness,
and a positive coefficient for the subjective probability of the
best explanation (p < .001), with a 3.4% increase in the odds
of choosing to pursue the best explanation for each one-point
increase in probability. There was also a negative coefficient
for the goodness of the second best explanation (p =.0026),
with a 1.8% decrease in the odds of choosing to pursue the
best explanation for each one-point increase in the goodness
of its alternative, and a negative coefficient for the subjective
probability of the second best explanation (p < .001), with
a 2.9% decrease in the odds of choosing to pursue the best
explanation for each one-point increase in the goodness of its
alternative. Like study 2, this provided a positive answer to Q3:
the effect of explanatory considerations held even when the
effect of probability judgements was also taken into account.

Next, we evaluated whether explanatory goodness differen-
tially predicted pursuit vs. belief by fitting the Q4 model.
This model found that goodness ratings had a significant
effect when predicting pursuit judgements, and that this effect
was significantly larger when predicting belief: a one-point
increase in the goodness of the best explanation increased the
odds of a participant deciding to pursue by 5.6% (p < .001)
and of deciding to believe by 13.6% (p < .001). On the other
hand, a one-point increase in the goodness of the competing
explanation decreased the odds of deciding to pursue by 4.1%
(p < .001), and of deciding to believe by 10.4% (p < .01).
As in Study 1, explanatory goodness thus had significant and
differential effects on pursuit vs. belief, with a larger impact
on belief.

Finally, we repeated the three analyses just described for
each of the four sets of vignettes corresponding to each virtue.
These analyses revealed the same patterns of answers to Q1-
Q2 as in the full data set, but some departures for Q3 and Q4.
Specifically, we found a negative answer to Q3 for simplicity
and actual scope, and a negative answer to Q4 for latent scope.

General Discussion
Across three studies, we find evidence that explanatory con-
siderations affect pursuit: participants were more disposed to
pursue a hypothesis to the extent it offered a good explanation,
and to the extent its competitor offered a poor explanation.

In Studies 2-3, we also found that the effect of explanatory
considerations on pursuit were not reducible to the effects of
subjective probability on pursuit. Finally, in Studies 1 and 3,
we found that explanatory goodness had a larger impact on
belief than on pursuit. Discrepancies across the three studies
could have resulted from the high correlations between ratings
of goodness and of subjective probability, but it is notable
that Study 3–which had the largest sample–found positive
answers to all four of our guiding questions. However, it
is important to note that these results raise open questions
about the direction of a potential causal relationship between
explanatory considerations and pursuit, and indeed they do not
rule out the possibility that pursuit decisions might be causing
judgements of explanatory goodness, rather than the reverse.

Why might explanatory considerations affect pursuit? As
suggested in the introduction, pursuing good explanations
could facilitate learning (Lombrozo, 2016), have higher
expected epistemic value (Nyrup, 2015), or provide a more
efficient route to the truth (Kelly, 2007; Douven & Schupbach,
2015). The pursuit of good explanations might therefore im-
prove our overall epistemic standing (Wilkenfeld & Lombrozo,
2015), even if the true hypothesis is not the most explanatory.
If these ideas are correct, they provide a justification for IBE
that side-steps many of the traditional worries concerning its
application to belief.

Interestingly, however, the impact of explanatory goodness
on pursuit was smaller than that on belief. In a context where
unjustified pursuit is more costly (given limited resources)
than erroneous belief, participants might be more reluctant to
recommend pursuit on the basis of explanatory considerations
alone. Moreover, decisions to pursue might be more sensitive
to pragmatic considerations that compete with explanatory
goodness, or to the goal of reducing uncertainty by maximiz-
ing expected information gain.

Several limitations are worth noting. First, participants
reasoned about relatively abstract and unfamiliar material.
Second, participants did not pursue explanations themselves
(e.g., through further consideration or evidence gathering).
Future work could investigate decisions to pursue (vs. believe)
with more realistic materials, and testing a richer set of pursuit-
relevant behaviors. It would also be fruitful to investigate
whether the role of explanatory considerations changes as a
function of the relevant consideration (as we began to explore
in Study 3), in different environments (e.g., with different cost
structures), and as a function of the learners goals (e.g., to
achieve truth vs. avoid error).

More ambitiously, future research should investigate how
pursuit and belief are integrated into a broader model of truth-
seeking behavior that involves explanation generation, pursuit,
the collection of evidence, hypothesis revision, and ultimately
belief. Our findings suggest that explanatory considerations
affect this process at two important stages, belief and pursuit,
but leave open how they shape everyday and scientific inquiry
more broadly.
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Abstract

Although most Americans support capital punishment, many
people have misconceptions about its efficacy and
administration (e.g., that capital punishment deters crime). Can
correcting people’s inaccurate attitudes change their support for
the death penalty? If not, are there other strategies that might
shift people’s attitudes about the death penalty? Some research
suggests that statistical information can correct misconceptions
about polarizing topics. Still, statistics might be irrelevant for
some people because they may support capital punishment for
purely retributive reasons, suggesting other argumentative
strategies may be more effective. In Studies 1 and 2, we
examined what attitudes shape endorsement of capital
punishment and compared how two different interventions
shifted these attitudes. Altogether, our findings suggest that
attitudes about capital punishment are based on more than just
retributive motives, and that correcting misconceptions related
to its administration reduces support for capital punishment.
Keywords: capital punishment; coherence; open science

Introduction
In October 2018, Washington state became the 20th state to
overturn capital punishment on the grounds that it is
unconstitutional, stating that death sentences have been
“imposed in an arbitrary and racially biased manner” (Johnson,
2018). Although capital punishment has come under scrutiny
at the state-level, a recent poll indicated that 55% of adults in
the United States still favor the death penalty for a person
convicted of murder (Jones, 2017). However, many people
who support the use of capital punishment have
misconceptions about its efficacy and administration. For
instance, many people believe that capital punishment is an
effective deterrent against violent crime, that innocent people
are not sentenced with the death penalty, and that it is
administered in a fair and unbiased manner (see Manski &
Pepper, 2013; DPIC, 2018; Baldus, Woodworth, Zuckerman,
& Weiner, 1998). The Death Penalty Information Center
(DPIC) and the Innocence Project have publicly impugned
these assumptions to better educate the public by releasing
informational brochures and short educational videos. Given
that people have misinformed attitudes about issues integral
to the administration and efficacy of capital punishment, can
correcting their misconceptions shift their support for the
death penalty, and if not, are there other argumentative tactics

that could be used to shift people’s attitudes about the death
penalty?

Ideally, we could affect attitude change by simply
providing people with accurate statistical information—on the
basis of this information, people may still support the death
penalty, but it would not be based on misconceptions about its
efficacy and administration. On the other hand, there is some
reason to think that statistics-interventions like these may not
be effective at changing people’s moral attitudes. In a now
classic study, Lord, Ross, and Lepper (1979) found that when
people were presented with statistical evidence about capital
punishment—especially when that evidence was “mixed”
(providing some evidence consistent with and inconsistent
with the death penalty)—this led to belief polarization.
People who were strongly opposed to or strongly in favor of
the death penalty attended to the information that confirmed
their position and ignored the information that was
inconsistent with their position. These results have led many
researchers to conclude that providing statistical information
is not an effective tactic for correcting people’s
misconceptions (e.g., Thaler & Sunstein, 2008; Janis & King,
1954; Gawronski & Bodenhausen, 2006).

More recently, however, some research suggests that
statistical information, especially when carefully presented
(e.g., using visual aids) can correct misconceptions about
polarizing topics like climate change and anti-vaccine
attitudes (see Lewandowsky, Ecker, Seifert, Schwarz, & Cook,
2012; Horne, Powell, Hummel, & Holyoak, 2015). These
results are some cause for optimism, but they do not establish
exactly what interventions are most effective at changing
people’s attitudes about the death penalty. For example,
statistics might be irrelevant to some people’s support of
capital punishment. For moral reasons alone, people may
support the use of capital punishment, not because they
believe it deters crime or is more cost effective, but because
they think criminals should get what they deserve and that it
is the morally right thing to do. Consequently, providing
statistics about deterrence, cost, wrongful convictions, and
other relevant issues may do little to alter these attitudes about
the death penalty.

Current research suggests that even if attitudes about the
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death penalty are driven entirely by the desire for retribution,
or because it is perceived as the right thing to do, it may still
be possible to shift their moral attitudes. A recent line of work
has examined how moral attitudes change when related
attitudes are manipulated (e.g., Horne, Powell, & Hummel,
2015; Holyoak & Powell, 2016). In the law, coherence is an
important theoretical virtue (e.g., Dancy, 1984). Moral
theories that are incoherent are generally considered
“nonstarters” and inconsistencies in influential moral theories
are often the topics of entire books (e.g., Lyons, 1965;
Gewirth, 1978; Rawls, 1980; Sen & Williams, 1982;
MacIntyre, 2007). These considerations do not appear to only
be the concern of academics. For example, Horne and
colleagues (2015) found that when people are presented with
a situation (e.g., a moral dilemma) that elicits a judgment
inconsistent with a general moral principle (e.g.,
utilitarianism), tension arises due to an internal conflict
among participants’ attitudes about the dilemma and the
general moral principle. This tension induces belief revision
because people desire to restore coherence in their network of
attitudes (e.g., Festinger, 1962; Holyoak & Powell, 2016). We
call this a coherence-based intervention.

Altogether, people may support the use of capital
punishment for reasons like deterrence and the cost of
execution, which may suggest that presenting accurate
statistical information could change people’s minds (e.g.,
Cochran & Chamlin, 2005). On the other hand, the death
penalty is a moral issue importantly linked to attitudes about
just desserts—this may suggest that coherence-based
interventions would be more persuasive than raw statistical
information.

In the present studies, we sought to answer two questions:
First, what kinds of interventions—statistics or coherence-
based—will shift people’s support for capital punishment?
Second, what might this tell us about what attitudes are most
malleable and most central to people’s endorsement of the
death penalty? In Study 1, we compared the efficacy of two
interventions by investigating how statistics versus coherence-
based interventions changed people’s attitudes about capital
punishment. However, because we have reason to think that
the effectiveness of these distinct arguments likely depends
on the reasons people have for supporting capital punishment,
and because of our results in Study 1, we sought to investigate
what other related attitudes might be predictive of support for
the death penalty in Study 2.

Study 1
Method
Preregistration The data collection plan, predictions, and
analysis scripts for our study were preregistered through the
Open Science Framework. Data, analyses, and supplemental
materials are available at https://osf.io/ek4fh/.

Participants We recruited 504 participants through
Amazon Mechanical Turk. Our sample size was determined
by conducting a power analysis to detect a Cohen’s d of .25

with 80% power. We used an optional stopping procedure by
computing a Bayes Factor on the parameter estimating the
effect of condition (that is, the parameter of interest).
Specifically, we determined that we would continue data
collection until the Bayes Factor (BF10) was greater than 100
or less than .01, at which point we would stop data collection
(Rouder, 2014). After excluding participants who failed
attention checks, 405 participants remained for our final
sample (46% female, Mage = 36 years old). Each participant
was compensated $0.70 for completing the study.

Procedure We developed statistics and coherence-based
interventions aimed at countering three common attitudes
people have for supporting the death penalty. These attitudes
were: (1) People who commit serious crimes, such as murder,
deserve to be put to death (retribution), (2) The death penalty
discourages people from committing crime (deterrence), and
(3) The death penalty is cheaper than life-imprisonment (cost).
Participants were randomly assigned to either the statistics or
coherence-based intervention, in which they saw either three
statistical arguments or three coherence-based arguments in a
between-subjects design.

The study proceeded as follows: Participants first were
asked to rate how much they agree with three pretest
statements (one statement for each commonly-held belief
about capital punishment). Then participants received either
the statistics or coherence-based intervention, which consisted
of statistical or coherence-based arguments designed to
counter attitudes about deterrence, cost, and retribution as
motivations for supporting the death penalty. After reading
these arguments, participants completed the post-intervention
measure which captured participants’ attitudes about
retribution, deterrence, and cost, and their overall attitudes
towards capital punishment. Participants then were asked to
provide general demographic information. These measures
and interventions are described in more detail below.
Complete materials for this study can be found in the
Supplementary Online Materials (SOM).

Pretest Measure Participants were asked to rate their
agreement with three pretest statements about the death
penalty. Each of these statements measured three common
motivations for supporting the death penalty on a 7-point
Likert scale (1 = Strongly disagree, 7 = Strongly agree). For
example, the item that measured attitudes about deterrence
was, “The death penalty makes criminals think twice before
committing murder.” These statements were developed based
on our post-intervention capital punishment measure.

Interventions As noted, participants were randomly
assigned to either the statistics or coherence-based
intervention, in which they read three statistical arguments or
three coherence-based arguments against each belief for
supporting the death penalty.

The statistics intervention was composed of brief
summaries of empirical research taken from the Death
Penalty Information Center (DPIC). This research contradicts
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common misconceptions about capital punishment. For
instance, the statistical argument for deterrence summarized
information about criminology experts’ and researchers’
conclusions regarding the efficacy of capital punishment as a
deterrent. Excerpts from this argument stated that “88% of
these experts rejected the notion that the death penalty acts as
a deterrent to murder”, and that “studies claiming that the
death penalty has a deterrent effect on murder rates are
fundamentally flawed.”

The coherence-based intervention consisted of brief
persuasive arguments adapted from widely-cited law papers.
In these papers, authors attempt to persuade readers through
coherence-based arguments why the typical reasons taken to
support the death penalty are inconsistent with other attitudes
they otherwise strongly hold. Therefore, these arguments did
not provide information about a belief being objectively false,
but rather demonstrated ways in which the reason underlying
a belief was incoherent with their other attitudes. For
example, the coherence-based argument for cost demonstrated
that determining whether someone should live or die based off
of financial considerations is not a practice people generally
condone and thus, it should not be considered a good reason
in the case of capital punishment either. For complete
intervention materials, see Table S2 and S3 in the SOM.

Posttest Measure The posttest items measured participants’
attitudes about retribution, deterrence, and cost, along with
their attitudes towards the death penalty in general.
Participants were asked how much they agreed with 13
statements, adapted from the Death Penalty Attitudes
Questionnaire (O’Neil, Patry, & Penrod, 2004). An example
of a general death penalty item (general items labeled G1 -
G4 in Figure 2) was, “I think the death penalty is necessary.”
Other items concerned attitudes about retribution (labeled R1 -
R4 in Figure 2), deterrence (labeled D1 - D3), and the cost of
the death penalty (labeled C1 - C2). For example, one item
was “Society has a right to get revenge when murder has been
committed.”

Results
We tested whether statistical or coherence-based arguments
would be more effective at changing people’s attitudes
towards capital punishment. Further, we aimed to understand
how the effectiveness of each intervention varied as a function
of the specific attitudes, or reasons people have for supporting
capital punishment. In order to test this, we performed
Bayesian ordinal mixed-effects modeling, predicting
post-intervention attitudes towards the death penalty on the
basis of condition (1 = statistics, 0 = coherence-based), and
participants’ pretest attitudes, which we modeled as a
monotonic effect. This model treated both participants and
scale items as group-level effects, allowing for heterogeneity
in the intercept for each participant and question. The model
is specified in the syntax of brms (Bürkner, 2018):

Model 1 <- Response ∼ Condition +
mo(PreRetribution) + mo(PreDeterrence) +
mo(PreCost) + (1|Question) + (1|Subject)

Bayesian analyses formulate model parameters as probability
distributions wherein the posterior distribution for a parameter
θ is computed via the prior and the likelihood of θ. To model
the joint probability distribution of responses, we specify
regularizing priors over the possible effects each parameter
could have on the response variable. Model 1 priors are
shown below:

βIntercept[1] ∼ N (2.19,1)
βIntercept[2] ∼ N (2.94,1)
βIntercept[3] ∼ N (3.17,1)
βIntercept[4] ∼ N (3.47,1)
βIntercept[5] ∼ N (3.89,1)
βIntercept[6] ∼ N (4.59,1)
β∀Pretest Belie f s ∼ N (6,1)
βCondition ∼ N (0,1)
Group-level effects ∼ t(3,0,10)

Coherence Statistics
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Figure 1: A histogram of the proportion of responses at a
given Likert scale point (1 = Strongly disagree, 7 = Strongly
agree) in the Coherence and Statistics conditions in Study 1.
The figure indicates that participants were less likely to agree
with pro-death penalty statements in the Statistics condition
than the Coherence condition.

This analysis revealed that the statistics intervention reduced
overall support for the death penalty relative to the
coherence-based intervention, b = −0.58, 95% CI [−0.80,
−0.35], BF10 > 100 (see Figure 1). Models interacting pretest
beliefs with condition did not account for additional variance.
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Figure 2: Death penalty attitudes for each scale item in
the Coherence and Statistics conditions. Both conditions
presented arguments against pro-death penalty beliefs. Error
bars represent 95% Credible Intervals. Participants in the
Statistical condition were less likely to endorse the death
penalty than participants in the Coherence condition, but this
effect varied as function of the question under consideration.

Next we investigated how condition interacted with the
question to examine whether the statistics intervention
affected some reasons for supporting the death penalty more
than others. This model is specified below:

Model 2 <- Response ∼ Condition*Question
+ mo(Deterrence) + mo(Cost) +
mo(Retribution) + (1|Subject)

Model 2 Priors:
βIntercept[1] ∼ N (2.19,1)
βIntercept[2] ∼ N (2.94,1)
βIntercept[3] ∼ N (3.17,1)
βIntercept[4] ∼ N (3.47,1)
βIntercept[5] ∼ N (3.89,1)
βIntercept[6] ∼ N (4.59,1)
β∀Pretest Belie f s ∼ N (6,1)
βCondition ∼ N (0,1)
β∀Questions ∼ N (0,3)
β∀Condition × Question Interactions ∼ N (0,1)
Group-level effects ∼ t(3,0,10)

The analysis interacting question with condition indicated that
the statistics intervention was more effective at changing
people’s general death penalty attitudes (i.e., G1 – G4),
people’s attitudes about the efficacy of capital punishment at
deterring crime (D1 – D3), and the cost of capital punishment
(C1 – C2) compared to retributive attitudes (R1 – R4), BF10 >
100, (see Figure 2). This result is consistent with the intuition
that for some attitudes, perhaps those that are particularly
moral in nature, statistical information is irrelevant. When
predicting only general attitudes towards the death penalty on
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Figure 3: Spaghetti plot of post-test death penalty attitudes
predicted by pre-test deterrence (top), cost (middle), and
retribution (bottom) attitudes, which were treated as
monotonic effects. Each regression line represents a draw
from the posterior distribution.
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the basis of condition, statistics were still more effective than
coherence-based interventions, b = −0.49, 95% CI [−0.88,
−0.08].

The nature of our design prohibited us from testing how
effective each intervention was at changing every posttest
death penalty attitudes because we could not compute a
difference score for every item. However, three items were
repeated across pretest and posttest. Therefore, we examined
whether the coherence-based condition affected these items
and how these change scores compared to the statistics
condition. This analysis revealed that the statistics and the
coherence conditions both decreased posttest endorsement for
the three pro-death penalty beliefs, M = −0.68, 95% CI
[−0.78, −0.57] and M = 0.25, 95% CI [−0.35, −0.16],
respectively. However, for these items alone the statistics
intervention was still more effective than the coherence-based
intervention.

We followed up on these analyses by conducting a series of
exploratory analyses examining how deterrence, cost, and
retribution attitudes predicted overall posttest death penalty
attitudes. This model regressed posttest death penalty
attitudes on each pretest question, allowing us to measure the
unique relationship each attitude accounts for in predicting
posttest attitudes. Because of the ordinal nature of our
predictors, we again treated each as a monotonic effect. These
analyses indicated—to our surprise—that attitudes about the
cost of the death penalty (b = 3.65, 95% CI [3.11, 4.18]) was
more strongly related to people’s death penalty attitudes than
were beliefs about deterrence (b = 2.52, 95% CI [2.01, 3.03])
and the desire for retribution, b = 2.16, 95% CI [1.60, 2.73]
(see Figure 3). Given that cost attitudes are most easily
targeted by statistics interventions, and that these
interventions proved more effective than a coherence-based
intervention, this is further evidence that policy makers
interested in shifting attitudes towards the death penalty might
focus on the relevant statistics rather than moral imperatives.

Still, the results of Study 1 raised questions about what
attitudes, beyond those that have been previously assumed to
be relevant, are most strongly related to overall death penalty
attitudes. Previous research assessing people’s views about
the death penalty have predominantly focused on people’s
retributive and utilitarian motives (i.e., people’s desire for
retribution and belief in the deterrent effect of capital
punishment). Furthermore, some studies have used only a few
items or a single dichotomous item to measure death penalty
attitudes, even though public opinion polls and other research
have shown that people’s attitudes about this issue are
complex and often dependent on the circumstances of the
situation (e.g., Murray, 2003; Roberts & Stalans, 1997).
Consequently, relatively simple measures such as these are
unlikely to provide substantial insight into why people
endorse the death penalty, and what beliefs and motivations
underlie their attitudes. This is not to deny that attitudes about
retribution and deterrence are central in shaping their attitudes
about capital punishment. Rather, in Study 2, we aimed to

understand what other understudied factors might also play a
significant role in shaping people’s attitudes towards capital
punishment. For instance, people may not be familiar with the
rate at which innocent people are sentenced to death, or they
might not know that most other industrialized countries have
abolished the death penalty. If these beliefs are related to
support for capital punishment, and could also be changed
more easily than beliefs about retribution, then researchers
could develop more effective interventions using this
information (Powell, Weismann, & Markman, 2018).

Study 2
In Study 2, we tested what attitudes are most strongly related
to people’s general support of the death penalty–what are the
most relevant reasons people support capital punishment? We
conducted an exploratory correlational study examining the
relationship between previously-theorized attitudes (e.g.,
retribution and deterrence, Finckenauer, 1988; Carlsmith,
Darley, & Robinson, 2002) and other understudied attitudes
(e.g., the importance of wrongful convictions and perceptions
of execution methods) that we hypothesized may be most
strongly related to people’s general death penalty attitudes.

Method
Preregistration Our sample size and study materials were
preregistered through the Open Science Framework at
https://osf.io/ek4fh/.

Participants We recruited 249 participants through
Amazon Mechanical Turk. After excluding participants who
failed attention checks, 184 participants remained for our final
sample (45% female, Mage = 37 years old). Participants were
paid $0.70 for participating in the study.

Procedure Participants were asked to rate how much they
agreed with statements which composed 12 scales about
capital punishment, the criminal justice system, and other
related topics. These attitudes are described in more detail
below. After answering these questions, participants provided
demographic information.

Death Penalty Attitudes Measure We measured 11
attitudes (54 items total) that we hypothesized would be
relevant to people’s death penalty attitudes, many of which
were suggested by previous studies but not included in most
death penalty measures. We again measured attitudes about
retribution, deterrence, and cost. The other attitudes we
included were: (1) Providing rehabilitation programs for
offenders is a good idea (Rehabilitation), (2) Innocent people
are sometimes sentenced to death and this is a major concern
with using the death penalty (Innocence), (3) People who are
wrongfully convicted of serious crimes must have done
something wrong to be in that situation (Victim Blame), (4)
The death penalty is barbaric (Barbarity), (5) The United
States has a great deal of crime (Crime), (6) America’s
execution methods are humane (Humane), (7) Other countries
similar to America have the death penalty (Common), and (8)
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Torture is acceptable in some cases (Torture). Our scales and
items were adapted from the Death Penalty Attitudes
Questionnaire (O’Neil et al., 2004), the Violence-Related
Attitudes and Beliefs Scale (Brand & Anastasio, 2006), and a
study by Jiang and colleagues (Jiang, Lambert, Wang, Saito,
& Pilot, 2010). Participants rated how much they agreed with
each statement on a 7-point Likert scale (1 = Strongly
disagree, 7 = Strongly agree; Cronbach’s α for all scales were
> .70). For the complete list of materials and scales, see the
SOM.
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Figure 4: Kendall’s tau correlation coefficients of death penalty
attitudes in Study 2. Shades of blue indicate a positive
correlation and shades of red indicate a negative correlation
between two attitudes.

Results
We predicted that each of the 11 attitudes measured would be
related to people’s overall support for capital punishment, and
as expected, all attitudes were correlated with participants’
overall death penalty attitudes (see Figure 4). Deterrence,
retribution, and the importance of innocence were among the
most highly correlated attitudes with general endorsement of
the death penalty. However, other attitudes exhibited
surprisingly strong relationships with general support of the
death penalty as well. For example, participants who
endorsed the death penalty were also more likely to think that
exonerated people were still nonetheless guilty or partially
responsible for them being wrongfully convicted (Victim
Blame; τb = .42). Strikingly, 28% of participants agreed, at
least somewhat, with the idea that wrongfully convicted
people on death row were responsible for their conviction (> 4
= Somewhat agree). Taken together, these results suggest that
support for capital punishment may be more
multidimensional than initially thought and provide further
guidance for the development of interventions for correcting

misconceptions about the administration of capital
punishment.

General Discussion
Over half of the United States supports the use of the death
penalty today yet are unaware of the statistics surrounding the
deterrent effects and cost of the death penalty. Furthermore,
there have been few systematic investigations of the attitudes,
both proximal and remote, that may shape people’s support
for the death penalty. In Study 1, we examined how different
types of interventions shift people’s attitudes about the death
penalty. We found that statistics interventions reduced support
for the death penalty, and that these effects were largest for
general death penalty attitudes, and attitudes about cost and
deterrence. Furthermore, we found that statistics interventions
were ineffective at changing attitudes motivated by retribution.
Because retribution falls unambiguously within in the moral
domain, people likely think statistics are irrelevant to the
questions of whether criminals should get what they deserve.
Study 1 also revealed that retribution is not the only relevant
factor driving people’s death penalty attitudes—beliefs about
deterrence and cost were also strong predictors of overall
endorsement of the death penalty. The results of Study 1 led
us to examine what other attitudes, which have perhaps gone
unexplored, may shape attitudes towards the death penalty
(Powell et al., 2018). Study 2 revealed that many relatively
“remote” attitudes were strongly correlated with endorsement
of the death penalty. Of note, we observed a relationship
between general death penalty attitudes and the belief that
people wrongfully sentenced are to some degree responsible
for their wrongful imprisonment. From an interventionist
perspective, Study 2 also uncovered that many of the attitudes
associated with support for the death penalty—for instance,
beliefs about innocence and commonality—can be directly
addressed by citing statistics. No moral imperative is required.
Altogether, these findings highlight new avenues by which
researchers can correct and shift people’s attitudes about the
death penalty.

References
Baldus, D., Woodworth, G., Zuckerman, D., & Weiner, N.

(1998). Racial discrimination and the death penalty in the
post-Furman era: An empirical and legal overview with
recent findings from Philadelphia. Cornell L. Rev., 83, 1638.

Brand, P. A., & Anastasio, P. A. (2006). Violence-related
attitudes and beliefs: Scale construction and psychometrics.
Journal of Interpersonal Violence, 21(7), 856–868.

Bürkner, P. (2018). Advanced Bayesian multilevel modeling
with the R package brms. The R Journal, 10(1), 395–411.

Carlsmith, K., Darley, J., & Robinson, P. (2002). Why do
we punish? Deterrence and just deserts as motives for
punishment. Journal of Personality and Social Psychology,
83(2), 284–299.

Cochran, J., & Chamlin, M. (2005). Can information change
public opinion? Another test of the Marshall hypotheses.
Journal of Criminal Justice, 33(6), 573–584.

827



Dancy, J. (1984). On coherence theories of justification: Can
an Empiricist be a Coherentist? American Philosophical
Quarterly, 21(4), 359–365.

Death Penalty Information Center. (2018, February 23).
Facts about the death penalty [PDF file]. Retrieved from
https://deathpenaltyinfo.org/

Festinger, L. (1962). A theory of cognitive dissonance. (Vol. 2).
Stanford, CA: Stanford University Press.

Finckenauer, J. (1988). Public support for the death penalty:
Retribution as just deserts or retribution as revenge? Justice
Quarterly, 5(1), 81–100.

Gawronski, B., & Bodenhausen, G. V. (2006). Associative and
propositional processes in evaluation: An integrative review
of implicit and explicit attitude change. Psychological
Bulletin, 132(5), 692–731.

Gewirth, A. (1978). Reason and morality. Chicago, IL:
University of Chicago Press.

Holyoak, K., & Powell, D. (2016). Deontological
coherence: A framework for commonsense moral reasoning.
Psychological Bulletin, 142(11), 1179–1203.

Horne, Z., Powell, D., & Hummel, J. (2015). A single
counterexample leads to moral belief revision. Cognitive
Science, 39(8), 1950–1964.

Horne, Z., Powell, D., Hummel, J., & Holyoak, K. (2015).
Countering antivaccination attitudes. Proceedings of the
National Academy of Sciences, 112(33), 10321–10324.

Janis, I., & King, B. (1954). The influence of role playing
on opinion change. The Journal of Abnormal and Social
Psychology, 49(2), 211–218.

Jiang, S., Lambert, E. G., Wang, J., Saito, T., & Pilot, R.
(2010). Death penalty views in China, Japan and the U.S.:
An empirical comparison. Journal of Criminal Justice,
38(5), 862–869.

Johnson, K. (2018, October 11). Washington state supreme
court deems death penalty unconstitutional. The New York
Times. Retrieved from https://www.nytimes.com/

Jones, J. M. (2017, October 26). U.S. death penalty support
lowest since 1972. Gallup Poll. Retrieved from https://
www.gallup.com/home.aspx

Lewandowsky, S., Ecker, U., Seifert, C., Schwarz, N., & Cook,
J. (2012). Misinformation and its correction: Continued
influence and successful debiasing. Psychological Science
in the Public Interest, 13(3), 106–131.

Lord, C., Ross, L., & Lepper, M. (1979). Biased assimilation
and attitude polarization: The effects of prior theories on
subsequently considered evidence. Journal of Personality
and Social Psychology, 37(11), 2098–2109.

Lyons, D. (1965). Forms and limits of Utilitarianism. Oxford,
England: Clarendon Press.

MacIntyre, A. (2007). After virtue: A study in moral theory.
(3rd ed.). Notre Dame, IN: University of Notre Dame Press.

Manski, C., & Pepper, J. (2013). Deterrence and the death
penalty: Partial identification analysis using repeated cross
sections. Journal of Quantitative Criminology, 29(1), 123–
141.

O’Neil, K., Patry, M., & Penrod, S. (2004). Exploring
the effects of attitudes toward the death penalty on capital
sentencing verdicts. Psychology, Public Policy, and Law,
10(4), 443–470.

Powell, D., Weisman, K., & Markman, E. M. (2018).
Articulating lay theories through graphical models: A study
of attitudes surrounding vaccination decisions. Proceedings
of the 40th Annual Conference of the Cognitive Science
Society, 906–911.

Rawls, J. (1980). Kantian Constructivism in moral theory.
The Journal of Philosophy, 77(9), 515–572.

Roberts, J., & Stalans, L. (1997). Public opinion, crime, and
criminal justice. Boulder, CO: Westview Press.

Rouder, J. (2014). Optional stopping: No problem for
Bayesians. Psychonomic Bulletin & Review, 21(2), 301–
308.

Sen, A., & Williams, B. (1982). Utilitarianism and beyond.
Cambridge, England: Cambridge University Press.

Thaler, R., & Sunstein, C. (2008). Nudge: Improving decisions
about health, wealth, and happiness. New Haven, CT: Yale
University Press.

828

https://deathpenaltyinfo.org/
https://www.nytimes.com/
https://www.gallup.com/home.aspx
https://www.gallup.com/home.aspx


How much to purchase? - A cognitive adaptive decision making account
Percy K. Mistry (pkmistry@uci.edu)

Department of Cognitive Sciences, University of California Irvine

Abstract

Repeated purchase decisions often violate assumptions of stan-
dard economic or rational choice models, such as demonstrat-
ing asymmetric or unstable responses to changes in underlying
policy, price, or tax variables. I propose a novel framework
for how such decisions can be interpreted through the lens of a
cognitive process model. This provides psychologically inter-
pretable characterizations of individuals or population groups.
It incorporates mental accounting, hedonic adaptation, confir-
mation bias, and the influence of perceived trust and fairness.
It shows how sequential experiences and contextual aspects
such as political affiliation, are mediated by this cognitive pro-
cess to produce evolving consumption patterns. This novel ap-
proach can account for empirically observed violations of con-
ventional choice models. The model is quantitatively fit to ex-
perimental data for individual purchase decisions and demon-
strates improved descriptive, predictive, and inference capabil-
ities. A proof-of-concept analysis using this model to account
for real world consumption trends is also demonstrated.

Introduction
Decisions on what quantity (Q) of a particular item to

purchase over time depend on individual preferences, ex-

pected benefits from purchasing the item, and associated costs

(prices, taxes, etc.). Elasticity (ε) is a canonical economic

concept that defines the influence of a unit change of an un-

derlying independent variable (e.g. prices or taxes) on the

purchase quantity. Typical choice models assume that elastic-

ities are stable at a population level over relatively long peri-

ods of time (controlling for income effects, i.e. the influence

of higher levels of income on purchasing power), and that

elasticities are symmetric (i.e. respond equally to increases

versus decreases). They thus assume that observed changes

in purchase quantities (∂Q) in response to changes in under-

lying variables such as prices and taxes (∂p) can be used to

estimate empirical elasticities which in turn can be used to

accurately forecast future changes.

Standard choice model: Standard economic models of

choice assume that decision makers select the optimal quan-

tity (Q) to purchase by maximizing the net benefit stemming

from the utility (UQ) of owning Q units of an item, less the

costs of purchase (pQ), where p is the unit price (equation 1).

Q = arg maxx {Ux − px} (1)

Without loss of generalizability, the utility function in equa-

tion 2 is assumed for the rest of the paper. This is one of a

standard set of utility functions used in behavioral and econo-

metric literature (e.g. Chetty, Looney, and Kroft (2009)).

Solving for Q using equations 1 and 2, then taking logs, defin-

ing εp = 1/b, (εp > 0) and A =−εp log(a), we obtain equa-

tion 3. This is in the form of a log-linear model with a corre-

sponding difference equation 4, with log price elasticity εp (a

standard economic representation). As per this model log(Q)
decreases at a rate of εp as log(p) increases and vice versa.

Once εp is empirically estimated, equation 4 can be used to

make forecasts.

Ux =

(
ax1−b

1−b

)
(2)

log(Q) = A− εp log(p) (3)

∂ log(Q) =− εp ∂ log(p) (4)

Evidence against conventional assumptions: There is

strong evidence however that elasticities (including, but not

limited to, price elasticities such as εp described above)

may not be stable even in the short run (Hughes, Knittel,

& Sperling, 2006; Goodwin, 1992), may not be symmetric

(Villas-Boas, Berck, Stevens, & Moe-Lange, 2016; Gately,

1992), may show significant heterogeneity, even direction-

ally, (Chetty, Friedman, Olsen, & Pistaferri, 2009; Ayyagari,

Deb, Fletcher, Gallo, & Sindelar, 2009; Fletcher, Frisvold, &

Tefft, 2015), and may be easily manipulated by extraneous

factors. Whilst these violations are acknowledged, no theory

provides a robust and quantitative account of how elasticities

evolve over time.

Psychological characterization of dynamic elasticities:
In this paper I propose that dynamic characteristics of elas-

ticities can be explained by examining purchase decisions

through the lens of a sequential cognitive process. Let p̄ de-

fine a sequential history of the underlying variable such as

prices or taxes, Ψ represent stable cognitive characteristics of

an individual or a population (these are elaborated on in sub-

sequent sections), and Δ represent contextual factors (e.g. the

measure of political climate or affiliations). Then equation

4 can be replaced with equation 5. Here, p̄ and Δ are ob-

servable, and cognitive characterization Ψ can be empirically

estimated (similar to ε).

∂ log(Q) = f (Ψ, p̄,Δ,∂ log(p)) (5)
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Cognitive framework
In this section, I develop a novel cognitive process model to

structurally define f () in equation 5, for a sequence of repeat

purchase decisions over time. This model is parameterized by

psychologically interpretable characteristics Ψ, which inter-

act with sequential history p̄ and environmental context Δ to

shape continuously evolving patterns of purchases and elas-

ticities. This model is based on bringing together and quanti-

tatively specifying some novel and some previously explored

psychological conceptualizations, as elaborated below:

Mental Accounting: Transaction Utility
Thaler (1999, 2008) proposed that consumption quantity (Q)

choices were driven by a process of mental accounting that

considered a combination of acquisition utility (similar to

that defined in equation 2) and transaction utility. Transac-

tion utility reflects the “value” of the deal, typically evaluated

against some expectation or reference point, and adds or de-

tracts from the acquisition utility. For this paper, transaction

utility is defined by equation 61, reflecting the difference be-

tween the price p and the expectation or reference price θ.

T (Q, p,θ) = (θ− p)Q (6)

The transaction utility can be positive or negative depending

on whether expectations were exceeded. Thus the optimal

purchase quantity can now be given by equation 7. This re-

places equation 1 of the standard model. The mental account-

ing theory proposes that the acquisition and transaction util-

ities are separately evaluated, and may be accorded different

weights. Here, δ is a salience weight that emphasizes or re-

duces the effect of the transaction utility component.

Q = arg maxx {[Ux − px]+δ [T (x, p,θ)]} (7)

Salience Weight: Rational, Hedonic, or Altruistic?
The salience weight δ characterizes the nature of decision

making. A rational choice would imply δ = 0, since the

transaction utility is driven purely by whether or not inter-

nal expectations are exceeded, and should not play any role

in objective decision making. Applications of the mental ac-

counting framework typically assume δ > 0. This implies

that individuals act hedonically in self-interest to maximize

the utility they derive from exceeding their internal expecta-

tions. In that sense, δ > 0 implies a reference-point that re-

flects ‘the maximum they should be charging me’. Any price

lower than this is treated as a positive utility and vice versa.

However, some consumption decisions may involve conflict-

ing considerations, such as those of fairness (Xia & Monroe,

2010). For instance, the decision to purchase goods that dam-

age the environment, the decision to evade taxes, or the de-

cision to purchase mandatory health insurance, may result in

1Note that this assumes a comparison of expectation and real-
ization of the price, however a transaction utility can similarly be
expressed based on expectations versus realization for the utility Ux.
The framework and model in this paper can be applied without any
loss of generalizability to such utility based reference points as well.

a conflict between hedonic utility on one hand, and a moral

obligation on the other. Such moral obligations can give rise

to utilitarian or altruistic concerns (Greene, 2007, 2009) that

are concerned with the fairness of policies and redistribution

goals. An altruistic reference point may thus reflect ‘the bare

minimum I should be paying’. For choices involving such

moral obligations, if people do indeed demonstrate altruistic

concerns, the salience weight may be δ < 0, for at least a non-

trivial subset of the population. A price lower than the refer-

ence point would reduce transaction utility and vice versa.

While this may seem counterintuitive, an example that makes

this comprehensible is the case of purchasing goods that are

not environmentally friendly. Paying a price higher than the

expected reference point may act as a moral justification, and

in fact increase the transaction utility and resulting demand

by reducing the associated guilt.

Hedonic reference point adaptation
Transaction utilities may be evaluated positive or negatively

against a reference point. However this reference point is not

typically constant. I propose that the reference point evolves

over time (n), motivated by principles of hedonic adaptation

(Frederick & Loewenstein, 1999). At time point n the ref-

erence point (θn) moves closer to the recently experienced

values under consideration (e.g. price pn−1), modulated by a

hedonic adaptation rate Lh, as shown in equation 8.

θn = θn−1 +Lh(pn−1 −θn−1) (8)

Hedonic adaptation implies that this mechanism serves to

increase satisfaction and reduce dissonance created by any

large difference between actual prices and expected reference

points. This serves to condition people towards recent levels

of p. The hedonic adaptation rate Lh may vary by individual

or population - higher values of Lh close to 1 imply smaller

transaction utility and rational consumption behavior.

Confirmation Bias: Asymmetric adaptation
Confirmation bias, where people place asymmetrical weights

on information that confirm rather than contradict their be-

liefs and actions has been shown to be pervasive over many

cognitive processes (Nickerson, 1998; Jones & Sugden, 2001;

Palminteri, Lefebvre, Kilford, & Blakemore, 2016). The rate

of hedonic adaptation Lh is proposed to be asymmetric, and

depends on whether the prospective movement of the refer-

ence point supports or inhibits current behavior. Let m reflect

a bias that reduces the rate of adaptation (0 ≤ m ≤ 1) when

adaptation would serve to inhibit current behavior. This bias

is introduced in equation 9. Here, I is an indicator function,

with I = 1 if (p < θ under hedonic salience weight δ > 0),

or if (p > θ under altruistic salience weight δ < 0), and 0

otherwise. These situations reflect a inhibition of current be-

havior based on prospective adaptation, and hence manifest

as a lower adaptation rate mLh. Confirmation bias will thus

manifest as a consumption bias, slowing down adaptation that

inhibits consumption.

θn = θn−1 +Lh(pn−1 −θn−1) (mI +(1− I)) (9)
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Trust based adaptation
Additionally, the reference points are proposed to increase

when there is a perception of fairness or trust in the counter-

party, and drop otherwise. For example, when considering

tax changes and related reference points for tax rates, the gov-

ernment is the counter-party. A reference point for taxes may

increase when the government is trusted (e.g. its wealth redis-

tribution goals are considered fair, when political affiliations

are in power, and hence higher taxes are more acceptable)

than when it is not. Similar considerations may be at work

when it comes to prices for goods, and whether people trust a

certain brand, or when a brand signals quality, etc. This per-

ception of trust is coded as π = 1 (trust), π = −1 (distrust).,

or π = 0 (agnostic). Rate of adaptation in response to these

perceptions is governed by Lπ, and captured in equation 10.

Updating is assumed to occur at every time point n when there

is a consumption decision or a change in underlying policy.

θn = θn−1 (1+πnLπ)+Lh(pn−1 −θn−1) (mI+(1−I)) (10)

Combined Cognitive-Econometric Model
Here, we replace the standard model in equation 3 by using

equations 6, 7, and 10.

Case 1: Purchases Quantity and Price Changes
Equation 7 can now be re-written under the cognitive frame-

work as equation 11, and solved. The log linear demand

equation 3 then changes to equation 12. Note that these equa-

tions contain the term θn given by equation 102. The fully

expanded version of equation 12 would thus include the pa-

rameters π, Lπ, Lh, and m.

Qn = arg maxx

{
ax1−b

1−b
− pnx+δ(θn − pn)x

}
(11)

log(Qn) = A− εp log(pn −δ(θn − pn)) (12)

Case 2: Purchase Quantity and Tax Changes Next, con-

sider the case where the key variable of interest is how pur-

chase demand may change in response to changes in tax rates

t, with the reference point θ being a reference point for what

is considered a fair tax rate. There is a lot of evidence to show

that there are considerable differences between price and tax

elasticity, even when they would have objectively identical

impact on consumers (Chetty, Looney, & Kroft, 2009; Chetty,

2015). Following the logic in the previous section, but adding

terms for an excise tax rate t that is applied as a percentage

on the cost price, so that effective cost would be increased by

a value pxt, we obtain equation 13. This considers a situation

with constant price p and only changes in the tax rate t and

hence a reference point for tax rates only.

log(Qn) = A− εp log(p)− εp log
(
1−δ(θn − tn)

)
(13)

2Mathematicaly, extremely high values of the reference point
would result in infinite utility, inducing people to spend all resources
and maximize the units of consumption. Such reference levels are
however psychologically implausible, and a mathematical bound for
psychological plausibility of θ can be derived in terms of p and δ,
such that the log() term in equation 12 never turns negative, imply-
ing utility never increases to ∞.

Model Simulation Results
Figure 1 illustrates how different assumptions about the con-

firmation bias (low or high, governed by m) and mode of

processing (hedonic versus altruistic, governed by δ) give

rise to systematic deviations from the standard choice model,

under different price trend situations (see figure caption for

more details). When the predictions from the cognitive model

shown in figure 1 are used to infer back what the inter-

pretation of such data would have been under the standard

choice model, the resulting inferences reflect highly unstable

and variable shifts in conventionally measured elasticity from

sub-period to sub-period, as well as asymmetry between elas-

ticity during increasing and decreasing price trends, just as

has been reported in literature discussed in the introduction.

Such apparent instability and asymmetry is readily explained

and generated by stable cognitive characteristics.

Application to Experimental Data (price)
Data: I consider a published experimental dataset from the

work reported in Sitzia and Zizzo (2012, 2015). 384 partici-

pants made a series of 20 sequential decisions on how many

units of a particular lottery to buy. Participants were provided

experimental units of currency, and could spend as much of

it as they wanted on the lotteries. At the end, the unspent

currency, as well as any winnings based on the lotteries were

added and converted to real monetary payouts. The lottery

remained fixed across all trials, but the purchase price per lot-

tery was varied sequentially. Participants were split into 5

conditions as shown in the left panel in figure 2, where the

stimulus (price) patterns for the 5 conditions are represented

in different colors. Participants in each of the 5 conditions

start with either extremely high (EH), high (H), moderate

(M), low (L), or extremely low (EL) levels of prices for the

first 10 trials which constitute the “shape” block. All the par-

ticipants observe the same moderate price levels in the last 10

trials, the “compare” block. The right panel in figure 2 shows

the average response (average units bought) for each condi-

tion. Key observations made by Sitzia and Zizzo (2012) were

that participants with higher initial price purchase more units

in the “compare” block than those that have observed a lower

initial price. This, as well as the dynamics of many individual

patterns of how participants switch purchasing behavior over

trials represents a challenge for the standard economic model.

Modeling Results: A standard choice model, as described

in the introduction, as well as the cognitive model based on

hedonic and asymmetric adaptation (equations 9 and 12) is

quantitatively fit to this data, using a Bayesian MCMC frame-

work (JAGS, Plummer et al. (2003)). Since this is an ex-

perimental setup, the concept of trust based adaptation is not

included in the model. A measure of descriptive fit is evalu-

ated. Additionally, the models are separately tested by pro-

viding the first 15 trials for each individual to the models,

and obtaining predictions for the last 5 trials. Model compar-

ison using deviance information criteria (DIC, a combined

measure of model fit and complexity) was significantly better
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Figure 1: Model Simulation: Columns 1 and 2 show price trends that are first increasing and then decreasing. Columns 3 and

4 show price trends that are first decreasing and then increasing. Four parameter combinations reflecting Hedonic (δ > 0) versus

Altruistic (δ < 0), and low confirmation bias (high values of m) versus low confirmation bias (high values of m) are compared

under each scenario. The blue lines reflect the price changes. The x-axis reflects time, a hypothetical weekly data spread over

a 10 year period. The red line gives the purchase quantity based on the standard choice model and typical assumptions about

elasticity. The green line reflects the reference point based on the cognitive model assumptions. The pink line reflects the

purchase quantity based on the cognitive model that assumes the same base elasticity as the standard model. The gray bars

reflect differences between the cognitive model and the standard model quantities predicted. Price and reference points should

be read of the left (LHS) axis and quantities off the right (RHS) axis. High bias parameterizations generally produce higher

purchase quantity as expected. More interesting is the asymmetry produced by the cognitive model, which is typically seen in

real world scenarios, which can be seen in the relative asymmetry between the gray bars in the first and second half of each

simulation - reflecting asymmetries involved in responses to increasing versus decreasing prices.

(lower DIC is better) for the cognitive model (DIC = 21,276)

compared to the standard model (DIC = 23,871). Figure 3

compares both the fit and prediction errors (RMSE) between

the standard and cognitive models. It shows that for a huge

majority of individuals, the cognitive model produces better

descriptive fits (better for 86%) and better predictions on un-

seen data (better for 80%).
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Figure 2: Stimulus and Responses: Experimental data from

Sitzia and Zizzo (2015)

Illustration of how the model works: Figure 4 shows

the latent model inferences about how the reference point

evolves, and its relation to consumption patterns for 2 of the

participants in the experimental tasks, to illustrate how the

model is accounting for behavior. The figure shows the trial

by trial stimulus price (red line), the response purchase quan-

tity (black bars) and the latent reference point inferred by the

model (green line). For the subject in the left panel, the prices

are initially high and then fall. In the second half of the exper-

iment, even though the price stays in the same range, the con-

sumption levels falls as the difference between the latent ref-

erence point and the price narrows over time. For the subject

in the right panel, the consumption remains almost constant

from trials 6-17 even though the price increases after trial 10.

This stability when the price is changing significantly is on

account of the almost constant difference between the price

and the evolving reference point. The standard model finds it

difficult to explain these kind of behavioral patterns.

Inferences from the model parameters: Table 1 summa-

rizes the parameter inferences for the cognitive model show-

ing the mean, standard deviation, and the correlation be-

tween the parameters and purchase quantities in the “com-

pare” block (trials 11 to 20, where the prices were identi-

cal for all 5 conditions). All participants demonstrated con-
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Figure 3: Comparison of model fit errors: Significantly bet-

ter fit (upper panel) and predictions (lower panel) by the cog-

nitive model. Each bar in the figure represents an individual,

with the gray line showing the error from the standard model

(participants sorted in order of reducing error based on the

standard model). The green bars show an improvement (bar

going downwards) on account of the cognitive model and red

bars show deterioration (bars going upwards).
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Figure 4: Illustration of model mechanics: Examples of the

latent model inferences about the reference point trajectory

for 2 participants. These behavioral patterns cannot be easily

explained by the standard model.

sumption bias (m < 1, lower values of m indicate higher

consumption bias). The mean value of m of 0.43 indicates

that on average, people shifted their reference points twice

as much when the price was higher than expectations, than

when it was lower than expectations. As intuitively expected,

m (lower values = higher consumption bias) is strongly cor-

related with consumption in the second half of the experi-

ment (r =−0.75, p < 0.00001). Most participants show high

salience weights δ on the transaction utility, but also individ-

ual differences, and higher salience weights are strongly cor-

related to higher consumption (r = 0.68, p < 0.00001). The

rate of hedonic adaptation (Lh) did not show strong individ-

ual differences, but was consistently less than 1, indicating

that adaptation was slower than rationally expected, leading

to consistent deviations from the standard model.

Table 1: Key cognitive parameters (Ψ) capturing individual

differences in the experimental task.

Characteristics Mean std corr with Qcompare
m 0.43 0.15 -0.75

δ 1.59 0.71 0.68

Lh 0.48 0.10 0.27

Application to real world data (taxes)
Data: This section provides a brief proof-of-concept for ap-

plying this cognitive model to real world population level

consumption behavior. Panel data from Chetty, Looney, and

Kroft (2009) is used, that includes per capita consumption of

beer by state in the US for a period of 34 years, along with the

corresponding price and tax changes. As a proof of concept

illustration, analysis for 3 states is provided below.

Modeling: A basic standard model3, and the cognitive

model based on equations 10 and 13, that is, including the

trust based adaptation, are implemented within a Bayesian

inferential framework. The models are fit by providing them

with data about consumption changes for 20 years, and then

checking model predictions (based on 1000 generated sam-

ples for each state for each year) about consumption changes

for the last 13 years. The top panels of figure 5 show the

changes in tax rates for 3 states over the 34 year period (note

the different tax change profiles for the 3 states). The bottom

panels show the distribution of prediction errors. The cogni-

tive model produces significantly lower errors (p < 0.05 for

comparison of error distributions for all 3 states).

Figure 6 shows the influence of the trust based adaptation on

reference points (and hence eventually on consumption). The

dotted lines show political party regime changes. The three

states seem to show graded political affiliations, with the in-

fluence of trust switching between high and low (note how

the green and blue lines cross over at each regime shift). This

is in fact, an inference about the between state differences

in trust in existing political regimes, and thus an indicator of

state level political affiliation, that was inferred purely from

tax rate and beer consumption data. This is an example of the

Δ variable suggested in equation 5.

Conclusions
Repeat purchase and consumption decisions are reliant on

multiple cognitive processes, and how people respond to

3It should be noted that there exist other, more sophisticated and
customized econometric models for describing this data. The stan-
dard model is used as a baseline comparison to compare the gener-
alizability of standard choice versus cognitive based models.
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Changes in tax rate; Bottom Panel - Prediction error about
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changes in prices, taxes, and other policies may deviate sig-

nificantly from rational models of choice. This paper high-

lights the importance of a structural model that captures how

people’s internal expectations may evolve over time, and how

capturing this cognitive characterization can help the descrip-

tive and predictive quality of psychological and economet-

ric models. Future work will apply the models to a wider

range of experimental and real world data, including identi-

fying heterogeneous sub-population clusters within a larger

population (Bell & Lattin, 2000). It will explore the implica-

tions for economic predictions, policy implications, and our

basic understanding of how adaptive human behavior evolves

over time.
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Abstract 

Developmental theory considers action prediction as one of 
several processes involved in determining how infants come 
to perceive and understand social events (Gredebäck & 
Daum, 2015). Action prediction is observed from early in life 
and is considered an important social-cognitive skill. 
However, knowledge about infant action prediction is limited 
to evidence from screen-based eye-tracking tasks. Little is 
known about action prediction in real-life action contexts. Our 
aim in the current study was to provide new evidence on 
whether and how infants anticipate actions in free-flowing 
parent-child interaction. Using dual head-mounted eye-
tracking, we analyzed infants’ visual anticipations of their 
parents’ reaching actions while they played with objects 
together. Findings reveal that infants anticipate their parents’ 
actions at a rate higher than would be expected by chance. 

Keywords: dual head-mounted eye-tracking; action 
prediction; parent-child interaction; social-cognitive 
development 

Introduction 
Action prediction refers to the ability to anticipate the 

outcome or endpoint of another person’s goal-directed 
action (Flanagan & Johansson, 2003). This ability serves 
several important perceptual and cognitive functions: in a 
noisy and dynamic environment, anticipation allows the 
observer to direct visual attention to where important events 
will occur next (Gredebäck, Johnson, & von Hofsten, 2010). 
Action prediction also facilitates smooth, coordinated 
interactions. For instance, a simple interaction such as 
passing an object to another person requires planning a 
motor response at a precise moment in time and space to 
grasp the object successfully. Anticipating the other 
person’s action and gazing to the location their hand will go 
next allows this kind of joint coordination to take place 
(Knoblich & Sebanz, 2012). For infants, whose developing 
system is solving the challenge of integrating their motor 
and visual systems, action prediction is an emerging skill 
(Falck-Ytter, Gredebäck, & von Hofsten, 2006; Kanakogi & 
Itakura, 2011; Monroy, Gerson, & Hunnius, 2017). In the 
current study, we investigated action prediction in 9-month-
old infants, who are at the cusp of acquiring new fine motor 
skills and demonstrating rapid growth in their social-
cognitive skills. 

Prior research has demonstrated that infants exploit 
multiple cues to anticipate observed actions. For instance, 
infants can use kinematic cues from movement trajectories 
(Rosander & von Hofsten, 2011; Stapel, Hunnius, & 
Bekkering, 2012), the statistical regularities in familiar 
action sequences (Monroy, Gerson, & Hunnius, 2017), and 
knowledge about an actor’s goal (Woodward, 1998). This 
ability develops within the first year of life: at 12 months, 
but not at 6 months, infants can anticipate unambiguous 
reaching actions (Falck-Ytter et al., 2006). By 9 months of 
age, infants can predict the endpoints of simple reaching 
actions based on motor cues from pincer and palmar grasps 
(Monroy et al., 2017; Senna et al., 2016). 

The research described above is exclusively based on 
evidence from tightly controlled, yet artificial reaching 
paradigms. These paradigms have been useful in refining 
current theories about infants’ action perception (Gredebäck 
& Daum, 2015). However, little is currently known about 
action prediction abilities ‘in the wild’, as infants interact 
with others while freely moving about in the environment. It 
is unknown whether infants’ anticipatory behavior in 
laboratory contexts would generalize to the messier, more 
complex action contexts of real life. Here, we aimed to 
provide new evidence for whether and how frequently 
infants predict their parents’ actions during free-flowing 
parent-child play.  

In real-life contexts such as toy play, infants spend a 
great deal of time engaged with objects (e.g., almost 90% of 
the time; Yuan, Xu, Yu, & Smith, 2019) and their visual 
attention is characterized by long fixations to objects they 
are holding themselves (Yu & Smith, 2013). Based on these 
findings from recent head-mounted eye-tracking studies, our 
first question was whether infants do anticipate others’ 
actions in real life, as they do in controlled laboratory 
contexts. If so, our second aim was to identify the frequency 
with which they do so and whether this frequency occurs at 
a rate higher than would be expected by chance. In the 
current study, we quantified the proportion of anticipated 
reaching actions during parent-child play and compared 
these to chance proportions. 

To examine further the contexts in which action 
prediction can occur during parent-child play, we also 
analyzed infants’ visual attention and manual activity during 
parents’ reaching actions. For instance, to make a successful 
anticipation, do infants need to be disengaged from other 
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non-target objects? Do they exploit ostensive cues by 
attending to their parent’s face (Senju & Csibra, 2008)? 
Given the limitations of infants’ visual attention and their 
tendency to focus on their own manual actions at this age 
(Yu & Smith, 2017), one possibility is that infants 
demonstrate anticipations when they are less active 
themselves (i.e., better opportunity to anticipate) or when 
they are more socially engaged with their parent (e.g., more 
face looking). 

Method 
Participants 
The sample consisted of 32 parent-infant dyads (mean age = 
9.3 months, range = 9-9.7; 18 females). All children were 
born full-term and had no developmental diagnoses. 

 
Procedure 
Infants and parents were seated at a child-sized table across 
from one another. Both dyad members were fitted with 
head-mounted eye-trackers from Positive Science, LLC 
(Figure 1). Each eye-tracker has an infrared camera that 
records the right eye and a head camera that records the 
field of view. Two additional cameras recorded a third-
person view of each dyad member. All six cameras recorded 
at 30Hz and were synchronized offline using custom-written 
Python scripts.    

 
Figure 1: Experimental setup. A parent and her infant are 

seated across from one another playing with familiar 
objects. The crosshair indicates the estimated gaze direction. 
 

To calibrate the eye-trackers, an engaging toy was 
placed in 15 unique locations on the tabletop to capture the 
infant’s attention. Parents were instructed to attend as well. 
This phase was use for offline calibration using Yarbus 
software by marking the locations on the corresponding 
video frames when the eye was directed at the target. 

Following calibration, participants were presented with 
six familiar, engaging toys (a car, cup, a train, a duck, a 
plane, and a boat). Toys were grouped into two sets of three, 
with each set containing one red, one green and one blue 
toy. Parents were instructed to play with their infants “as 
they normally would at home”. Dyads played with each toy 
set twice for 90 seconds, yielding six possible minutes of 
interaction. The order of toy sets was counterbalanced 
across dyads. 

 
Data processing 

After offline calibration, gaze direction was 
superimposed onto the head camera recording with a 

crosshair, yielding an additional recording of the calibrated 
gaze. All camera recordings were then exported into a series 
of single frames. Each camera contributed a maximum of 
10,800 frames per dyad (six minutes of recording at 30 
frames per second). 

Infants’ gaze direction and parents’ reaching actions 
were then manually coded frame-by-frame. For gaze, two 
independent coders used frames from the calibrated 
recording to determine whether the crosshair fell within one 
of four regions of interest (ROIs): the three novel objects 
and the parent’s face. Frames were excluded whenever the 
eye-tracker failed to capture the eye (e.g., the child knocked 
the camera out of place), in between trials, or whenever the 
child was off-task. The second coder annotated a random 
10% of the frames. Reliability ranged from 82-95% 
(Cohen’s kappa = .81). 

Additional coders annotated parent reaching actions: 
for each frame, the coder determined whether the parent was 
reaching for an object and, if so, which one. Reaching was 
defined as any movement towards an object that ended 
when contact was made. Right and left hands were coded 
separately and then merged to yield one data stream. 

To identify infants’ action prediction—anticipatory 
looks to the targets of their parents’ reaching actions—the 
two data streams from the infant gaze and the parent 
reaching were aligned. Action prediction was defined as a 
gaze to an object that occurred after the onset of a parent 
reach to that same target, but before the reach was 
completed (Figure 2). This represents the time window in 
which the infant had enough information to predict the 
observed action, but before the hand reached the target. The 
number of anticipations per interaction was then summed 
and divided by the total number of valid parent actions to 
yield the proportion of anticipated actions.  

Figure 2: A sample of the aligned gaze and reaching data 
streams from a representative dyad. The yellow box 

highlights an example of an anticipation: the infant looks to 
the green object after the reach onset and prior to the end of 
the reach. Parent holding is included here for visualization 

purposes. 
 
Not all parent reaches represented fair opportunities 

for anticipation. To estimate rates of anticipation out of the 
child’s actual opportunities to anticipate—rather than total 
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number of reaches—we categorized all parent reaching 
actions as valid or invalid opportunities (Table 1).  

 
Table 1: Criteria for categorizing parent reaches as invalid 

opportunities to anticipate. 
 Criterion 
1. <200ms (to account for the time needed to 

program an eye movement) 
2. Subsequent contacts in cases of multiple object 

contacts (e.g., tapping or switching object from 
one hand to another) 

3. Infant reaching for the object at the same time 
4. Experimenter was reaching for or touching the 

object at the same time 
5. Both parent and object were entirely out of the 

child’s view for the entire duration of the reach 
(e.g., child’s eyes were closed, or object was 
underneath the table) 

6. Child threw or rolled the object to the parent 
and the parent simply received it1 

Results 
Action prediction 

As a group, infants made 78 total anticipations out of 
3640 gaze fixations. Per infant, they made an average of 
2.44 anticipations throughout the interaction (range = 0-7, 
SD = 1.97). Parents made 1176 total reaching events, an 
average of 36.75 reaches per parent (range = 17-67, SD = 
12.14). Of these, 563 represented valid opportunities to 
anticipate (average = 17.59 per parent, range = 7-33, SD = 
5.08). The 78 total infant anticipations corresponded to valid 
reaches; there were no anticipations that corresponded to an 
invalid reach. Therefore, the mean proportion of anticipated 
reaches out of all valid reaches across infants was .13 (SD = 
.11).  

These results indicate that infants do demonstrate action 
prediction at 9 months of age during free-flowing 
interaction, though infrequently (Figure 3). There was a 
substantial amount of variability among infants: while some 
infants never anticipated (n = 8, or 25% of the sample), 
others anticipated more than 40% of their parents’ actions. 
After excluding infants who never anticipated, the mean 
proportion of anticipated reaches was .18 (SD = .09), which 
is consistent with the findings reported above from all 
infants.  

Out of 563 total reaching events across all parents, in 94 
of these events the infant was already looking to the target 
object when the parent initiated their reach. In these cases, 
the parent was most likely responding to the child’s visual 
attention by reaching for what the infant is looking at. When 
these reaching events are removed from the total count—
they can also be considered invalid opportunities to 
anticipate, since the child cannot anticipate a target they are 

                                                           
1Here, the child may be anticipating the causal outcome of their 

own action or the movement trajectory of the ball rather than their 
parents’ action goal. 

already looking at—the average proportion of anticipated 
reaches increases to 0.16 (SD = 0.13).  

Given the low frequency of this behavior, we tested 
whether infants’ anticipations could have been due to 
chance overlaps between infant gaze and parent reaching 
behavior. For each infant, we created 1000 randomized 
time-series by shuffling the sequence of gaze fixations while 
preserving their overall duration. We then aligned each 
randomized gaze sequence with the sequence of parents’ 
reaching actions, calculated the number of anticipations that 
could occur by chance, and averaged over these 1000 values 
to yield a baseline anticipation rate for each infant. This 
resulted in a mean of 1.31 baseline anticipations across 
infants (range = 0.31-3.33, SD = 0.65). A paired-samples t-
test revealed that the average number of anticipations was 
significantly higher than baseline (mean difference = 1.13, 
t(31) = 3.84, p = .001). This result was the same when 
comparing the proportion of anticipated reaches with the 
chance proportion of .07, (mean difference = .09, t(31) = 
4.34, p < .001). This finding reveals that infants’ action 
prediction did not simply occur from chance overlaps 
between looking and parent reaching to the same object. 

 
Figure 3: The proportions of reaching actions that were 

anticipated vs. unanticipated, with the dotted line 
representing chance. Error bars represent the s.e.m. 

 
Infant visual attention and manual activity during 
parent reaching 

To explore the characteristics of the parent-child 
interaction during reaching events, we examined the infant 
and parent behaviors that were occurring during each 
reaching event. Figure 4 illustrates the proportion of all 
valid parent reaches in which the infant was attending to or 
manipulating a different object from the target of the reach. 
Parents were also holding another object in their other hand 
during 37.5% of their reaches. In fact, there was not one 
single reaching event across all dyads with no concurrent 
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visual and/or manual activity to a non-target object from 
either the child or the parent. 

Given this finding, we conducted an additional analysis 
on the rate of anticipation with the aim of only considering 
opportunities that did not overlap with infants’ own actions. 
We therefore excluded reaches during which the infant was 
holding or reaching for a non-target object. In these 
instances, infants were occupied with planning their own 
manual actions, which requires vision. After excluding 
infants’ manual activity, this resulted in 251 valid reaches 
actions across parents (mean = 7.84 per parent, SD = 3.62). 
The mean proportion of anticipated actions was 0.36 (SD = 
.31), which remained significantly higher than the chance 
level of 0.20 (SD = .12), t(31) = 3.61, p = .001. In other 
words, in a less demanding observation context (i.e., 
without competing goals from their own manual actions) 
infants will anticipate close to 40% of their parents’ actions. 

 
 

Figure 4: The proportion of reaching events in which infants 
or parents were concurrently attending to or manipulating a 
non-target object. From left to right, reaches during which 

1) infants were looking at non-target object; 2) infants were 
holding a non-target object; 3) infants were reaching for a 

non-target object; 4), parents were holding a non-target 
object in their other hand, and 5) at least one of the above 
was occurring. (Note:1-4 are not mutually exclusive and 

therefore add up to more than 1.) 
 
Anticipation latency 

The mean duration of parents’ anticipated reaches were 
611.46ms (SD = 314.90, range = 200-1770). Figure 5 
displays a bar chart of the time-course of infants’ 
anticipations: the latencies between the onset of the reaching 
actions, infants’ looks to the target object, and the contact 
with the goal (i.e., the end of the reach). The mean latency 
from the start of the reach to the moment the child looked to 
the target was 328.88ms (SD = 234.67). The mean latency 

from the gaze onset to the moment the hand reached the 
target was 282.58ms (SD = 282.31). In other words, on 
average infants required just over 300ms to detect and 
process their parents’ movements and then anticipate. This 
includes the time required for infants to program an eye 
movement in response to a visual stimulus (Gredebäck et 
al., 2010). This finding suggests that movement cues were a 
strong cue for anticipation. 

 
Figure 5: A histogram of the time course of infants’ 

anticipations: blue bars indicate the latency between the 
start of the reach and the moment the child looked to the 

target; yellow bars indicate the latency between the child’s 
look and the moment the parent’s hand reached the target. 

 
Looks to Parent Faces 

If an infant is looking at their parent’s face, they could 
be more likely to perceive the onset of their parent’s reach 
and its trajectory. To determine whether attending to their 
parents facilitated anticipations, we calculated the 
proportion of anticipations that were immediately preceded 
by a fixation to the parent’s face. Out of the 78 anticipations 
performed across all subjects, 18 were immediately 
preceded by a face look. For the remaining 60 anticipations, 
42 of them did not have a face look within a 3-second 
window before or after the anticipation. This finding 
suggests that looking to parents’ faces was not a strong cue 
for anticipation.  

Discussion 
The world of the developing infant is dynamic and 
constantly changing in both time and space. In the first year 
of life, infants become increasingly proficient actors and 
make rapid gains in their abilities to perceive and 
understand social events. Action prediction reflects an 
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important part of this social-cognitive process (Gredebäck & 
Daum, 2015; Hunnius & Bekkering, 2014) and has been 
widely studied using screen-based eye-tracking methods 
(Robson & Kuhlmeier, 2016). In the current study, we used 
dual head-mounted eye-tracking to investigate whether 
infants’ predict their parents’ object-directed reaching 
actions during free-flowing parent-child interaction.  

Our primary finding is that, as a group, infants do 
anticipate their parents’ actions at a rate that was 
significantly higher than what would be expected by chance. 
This finding demonstrates that infants’ action prediction 
skills are not limited to the unambiguous, controlled action 
contexts that are typical in laboratory paradigms—they also 
demonstrate this ability during free-flowing parent-child 
play while they are also acting themselves.  

On the other hand, the low rate of anticipation is also 
consistent with recent work investigating the real-time 
dynamics of parent-child interactions. New evidence from 
head-mounted eye-tracking studies have revealed, for 
instance, that infants actually rarely look to their parents’ 
faces (Franchak, Kretch, Soska, & Adolph, 2010) and 
achieve joint attention through their own manual actions 
rather than through gaze following (Yu & Smith, 2016). The 
current study adds to this growing literature by revealing 
that infants also attend less to the goals of their parent’s 
reaching actions. However, it is difficult to evaluate whether 
proportions of .13-.16 should actually be considered low, as 
there is no existing data to compare to these values. Future 
work could, for instance, quantify the rate of parents’ 
anticipations of their infants’ actions to provide a reference 
point.  

A second finding was that infants anticipated their 
parents’ actions on a rapid timescale—the mean latency 
after the reach onset was 328ms. In one recent study that 
also reported the “disengagement time”—i.e., the reachonset - 
gazeonset latency—on average infants required 344ms (SD = 
209ms) to look to the target (Rosander & von Hofsten, 
2011). These authors interpreted this finding as evidence 
that infants were able to use movement trajectories on a 
rapid timescale to accurately predict their parents’ targets. In 
that study, infants were seated in a high chair and observed 
an experimenter move a small ball into a cylinder. 
Interestingly, infants demonstrated a similar timescale 
despite the increase in complexity of the toy play context.   

A third finding that emerged is that there was not one 
single object-directed reaching action, in the entire sample, 
in which infants or parents were not simultaneously looking 
at or holding a different object than the target of the reach. 
Nevertheless, infants were still able to generate successful 
anticipations. One recent study may shed some insight into 
this finding. De Barbaro et al., (2016) investigated the 
qualitative shift from infant-guided object play to the triadic 
joint object play that emerges around 9-12 months of age. 
Their research highlights a “decoupling” between infant 
gaze and manual activity: in their studies, infants frequently 
directed their visual and sensorimotor attention to different 
objects (i.e., they do not look at what they are holding). 

Likewise, they frequently shifted their gaze from the objects 
in their own hands and those in their parents’ hands. These 
authors propose that this “sensorimotor decoupling” in 
hand-eye coordination contributes to the emergence of 
triadic interactions, by enabling infants to manipulate 
objects while still attending to the objects in their parents’ 
hands. 

This finding also highlights the dissociation between 
screen-based action contexts and real life: infants rarely 
experience isolated, unambiguous moments without 
competing cues or distractors, unlike discrete trials in 
experimental studies. Although examining what infants can 
or cannot do in a controlled laboratory setup is an effective 
approach to understanding infant cognition, it is also critical 
to examine how behaviors emerge from complex contexts 
with competing goals. For example, in the toy play context 
examined here, infants need to efficiently control their 
visual attention on a rapid timescale to serve multiple 
tasks—guiding their own manual actions, predicting their 
partner’s actions, and sometimes using gaze to send social 
signals to their partner. In such real-life contexts, the key 
question is how the infant cognitive system operates with 
multiple ongoing tasks and how they distribute cognitive 
resources (e.g., attention and memory) to coordinate and 
manage these tasks.  

What are the functional consequences of action 
prediction? Anticipating the actions of their social partners 
may help infants form associations between other peoples’ 
actions and their goals or intentions. This pathway has been 
proposed to provide a potential explanation for how infants 
transition from forming associations between the behaviors 
they observe and more complex social understanding skills 
within the first years of life (Hunnius & Bekkering, 2014; 
Ruffman, Taumoepeau, & Perkins, 2012). In fact, a related 
study in our lab found correlations between the frequency of 
infants’ action prediction and their vocabulary size, both at 
the same age and up to 6 months later (Monroy et al., under 
review). This finding provides preliminary evidence that 
action prediction may not only reflect infants’ current social 
information-processing skills (Gredebäck & Daum, 2015) 
but also provide learning opportunities that  support their 
developing social-cognitive system.   

Our study represents a first attempt to investigate 
action prediction in naturalistic parent-child play. In our 
experimental set-up, parents and infants engaged in 
unstructured object play limited to three objects. However, 
this paradigm is also limited in the kinds of information 
available to infants. For instance, parents’ actions did not 
lead to any meaningful action goal, as our everyday actions 
do (e.g., making a sandwich or building a Lego tower). In 
addition, there were no regularities in parents’ reaching 
actions that they could use to anticipate their next target, 
which is one cue that infants use to generate predictions 
(Monroy et al., 2017). In future work, we plan to investigate 
action prediction in a broader range of action contexts—for 
instance, when infants and parents are engaged in joint 
activities that feature structure and shared goals.  
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Abstract 

This study investigated how beat gesture and contrastive pitch 
accenting affect online contrastive reference resolution during 
spoken discourse comprehension. Evidence from gaze 
fixations indicated that beat gesture encouraged fixations to 
target referents of contrastive referring expressions and that 
contrastive accenting encouraged fixations to competitor 
referents of non-contrastive referring expressions. Notably, 
beat gesture and contrastive accenting acted independently, 
indicating that their effects are additive rather than interactive. 
Moreover, neither beat gesture nor contrastive accenting 
affected an observed tendency to anticipate contrastive 
referring expressions. Together, these results provide the first 
evidence that beat gesture, like contrastive accenting, is 
interpreted as a cue to contrast during online reference 
resolution in spoken discourse comprehension. 
Keywords: beat gesture; pitch accent; reference resolution; 
discourse processing; visual world; eye tracking 

Introduction 
Successful discourse comprehension entails establishing 
relations between entities. One such relation is contrast, 
which refers to a contradiction between two themes (Myhill 
& Xing, 1996). An example can be seen in the distinction 
between referents in the following discourse: The report isn’t 
due on Tuesday; it’s due on Thursday. Although contrast can 
be discerned semantically, cues conveying prominence can 
be used to highlight it, strengthening the propositional 
representations of both the speaker and the listener. Two such 
cues are pitch accent—alterations in in speech fundamental 
frequency (f0), duration, and intensity (Ladd, 1996)—and 
beat gesture—simple rhythmic gesture (McNeill, 1992; 
2005). Although processing of these cues has been studied in 
offline discourse comprehension (Kushch & Prieto, 2016; 
Llanes-Coromina et al., 2018), it is currently unclear how it 
affects online discourse comprehension. The current study 
uses eyetracking to examine how independently 
manipulating pitch accent and beat gesture affects online 
contrast interpretation in spoken discourse. In doing so, it 
provides insight into the individual and combined 
contributions of these cues to prediction and resolution of 
contrast in particular, as well as representation and processing 
of inter-entity relations more generally, in spoken discourse.  

Cues to contrast 
Two of the most prominent types of pitch accenting in 
English discourse are presentational pitch accenting (PPA), 
which is used to convey new, non-contrastive information, 
and contrastive pitch accenting (CPA), which is used to 
convey information contrasting with other mentioned 
information. These two pitch accents differ acoustically; PPA 

(H* in the ToBI framework) consists of a high pitch target 
and f0 high in the talker’s range, whereas CPA (L+H* in the 
ToBI framework) consists of an initial low pitch followed by 
a sharp rise to a high target on the accented syllable 
(Beckman & Elam, 1997; K. Silverman et al., 1992). 
Previous work demonstrates that listeners are sensitive to the 
distinction between PPA and CPA, and this is reflected in 
both memory for discourse and real-time discourse 
comprehension. Referents with CPA are remembered better 
than referents with PPA, particularly when a salient 
contrasting item must be rejected (e.g., remembering Scottish 
rather than British; Fraundorf et al., 2010; 2012; Lee & 
Fraundorf, 2016; Lee & Snedeker, 2016; Sanford, Sanford, 
Molle, & Emmott, 2006). Moreover, CPA facilitates 
rejection of items contrasting with contrastively-accented 
referents (e.g., dish given antenna), but not objects with non-
contrastive relations to those referents (e.g., television given 
antenna; Braun & Tagliapietra, 2010). Lastly, in eyetracking 
studies, CPA encourages anticipatory looks to objects 
contrasting with previously-mentioned referents (e.g., after 
hearing “red scissors,” to purple scissors upon hearing  
“PURPLE”), even when the referent is subsequently revealed 
to be non-contrastive (e.g., book; Ito, Jincho, Minai, Yamane, 
& Mazuka, 2012; Ito & Speer, 2008; Kurumada, Brown, 
Bibyk, Pontillo, & Tanenhaus, 2014; Watson, Tanenhaus, & 
Gunlogson, 2008; Weber, Braun, & Crocker, 2006). 

Like pitch accenting, beat gesture is used to emphasize 
important information in spoken discourse, such that it serves 
as a “yellow gestural highlighter” (McNeill, 2006). Indeed, 
both alone and in combination with pitch accenting, beat 
gesture enhances memory for information conveyed via 
discourse (Austin & Sweller, 2014; Igualada, Esteve-Gilbert, 
& Prieto, 2017; Morett, 2014; Vilà-Giménez, Igualada, & 
Prieto, in press). Moreover, some work indicates that beat 
gesture enhances memory for contrastive information in 
particular, especially when it occurs in conjunction with CPA 
(Kushch & Prieto, 2016; Llanes-Coromina et al., 2018). 
These findings suggest that beat gesture strengthens memory 
traces for information in spoken discourse by increasing its 
salience visually. In addition to their similarity in function, 
beat gesture and pitch accenting are closely related in timing. 
Indeed, beat gesture and pitch accenting are temporally 
aligned on both the sentential and syllabic levels (Esteve-
Gilbert & Prieto, 2013; Leonard & Cummins, 2011), 
suggesting that the temporal relationship between these two 
cues to prominence is based on prosody. 

Considered as a whole, these findings demonstrate that 
beat gesture and pitch accenting are closely related in timing 
and meaning. This suggests that beat gesture—as another cue 
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to prominence—might facilitate online processing of contrast 
in spoken discourse, as CPA does, Further, the functional 
similarity of beat gesture and CPA highlights the need to 
investigate their effects on online contrast processing not 
only independently but also conjointly. 

Cue integration 
Despite the similar function and close relationship of pitch 

accenting and beat gesture, relatively little research has 
examined how the presence—and absence—of these cues in 
relation to one another affects interpretation of contrast in 
spoken discourse. In a focus production task in which 
participants produced beat gesture and/or pitch accenting on 
one or both referents of a sentence (Amanda goes to Malta), 
referents produced with beat gesture alone had higher vowel 
formants and were more likely to be perceived as pitch 
accented than referents unaccompanied by beat gesture 
(Krahmer & Swerts, 2007). However, in a similar task that 
involved producing beat gesture in conjunction with 
contrastive corrections after hearing sentences (Baba holds 
the baby? → Mumu holds the baby), beat gesture production 
did not affect the articulatory or acoustic correlates of CPA 
(Roustan & Dohen, 2010). Moreover, in a focus 
comprehension task in which pitch accenting and beat gesture 
were independently manipulated in conjunction with the 
patients of transitive sentences (e.g., Yesterday, Anna 
brought fresh lilies to the room), pitch accenting elicited a 
larger N400 response when beat gesture was absent than 
when beat gesture was present, indicating greater 
inconsistency with predictions or difficulty of semantic 
integration in the former case (Wang & Chu, 2013). Taken 
together, these findings indicate that the co-occurrence 
patterns of pitch accenting and beat gesture affect their 
interpretation as cues to contrast in spoken discourse. 

The influence of beat gesture on interpretation of pitch 
accenting is also evident in work indicating that information 
conveyed via spoken discourse accompanied by both beat 
gesture and pitch accenting is remembered better than the 
same information accompanied by pitch accenting alone. 
This result has been observed for memory of focal, non-
contrastive information (Igualada, Esteve-Gibert, & Prieto, 
2017; Kushch, Igualada, & Prieto, 2018; Morett, 2014; Vilà-
Giménez, Igualada, & Prieto, in press) as well as contrastive 
information (Kushch & Prieto, 2016; Llanes-Coromina et al., 
2018; Morett & Fraundorf, under review). With respect to 
memory for contrastive information, the authors’ previous 
work indicates that, when both cues are manipulated 
independently in a within-subjects design, contrastive 
information with CPA is remembered better than contrastive 
information with PPA when beat gesture is present, but not 
when beat gesture is absent. When beat gesture is never 
present, however, contrastive information with CPA is 
remembered better than contrastive information with PPA, 
consistent with the findings of previous work demonstrating 
the same effect using similar paradigms presented only in the 
auditory modality (Fraundorf et al., 2010; 2012; Lee & 
Fraundorf, 2016; Lee & Snedeker, 2016; Sanford, Sanford, 
Molle, & Emmott, 2006). Considered as a whole, these 
findings suggest that beat gesture and CPA influence one 

another in offline discourse comprehension and memory.  
However, it is less clear whether and how these cues interact 
in online discourse processing. 

To elucidate how beat gesture and CPA affect contrastive 
reference resolution in online spoken discourse, we examined 
differences in fixations to referents accompanied by beat 
gesture and/or CPA. To do so, we used a modified version of 
the visual world paradigm that included video. The visual 
world paradigm has been used successfully to examine how 
CPA affects online reference resolution (Ito & Speer, 2008; 
Kurumada et al., 2014; Watson, Tanenhaus, & Gunlogson, 
2008), as well as how representational gesture is integrated 
with speech online (L. B. Silverman, Bennetto, Campana, & 
Tanenhaus, 2010). Based on these studies and the related 
work discussed above, we predicted that beat gesture and 
CPA would affect online reference resolution. Specifically, 
we predicted that, when referents contrasted only in color 
(e.g., blue triangle and red triangle), the presence of beat 
gesture alongside the color word would facilitate reference 
resolution, particularly in conjunction with CPA. By 
comparison, we predicted that when referents differed in both 
color and shape (e.g., blue square and red triangle), the 
presence of beat gesture alongside the color word would 
misleadingly suggest a color contrast and hinder reference 
resolution, particularly in conjunction with CPA. 

Methods 

Participants 
Forty adult native English speakers (age range: 18-35 years; 
29 females, 11 males) were recruited to participate in this 
study on a paid basis. All participants had normal hearing and 
normal or corrected-to-normal vision and were not 
colorblind. Additionally, participants were screened for 
factors affecting eye movements (e.g., psychiatric and 
neurological disorders, recreational drug use). 

Materials 
A total of 672 referring expressions conveying simple 
instructions were audio recorded (see 1a-2b for examples; 32 
practice, 640 experimental). In both practice and 
experimental trials, half of referring expressions provided 
context, with standard PPA on both color and shape words. 
The other half of referring expressions provided continuation, 
consisting of half critical and half filler trials. In critical trials, 
the color word always differed from that of the preceding 
context referring expression, and the shape word was either 
the same (color-contrast; 1a) or different (both-contrast; 1b). 
In both types of critical trials, pitch accenting was 
manipulated by splicing color words with CPA or PPA into 
identical carrier sentences (in which original color and shape 
words had PPA) to control acoustic realization of the rest of 
the referring expression. Filler trials were created to represent 
the other possibilities, in which the color word was the same 
as that of the preceding context referring expression and the 
shape word either differed (shape-contrast; 2c) or was the 
same (no-contrast; 2d). In these trials, pitch accent was 
always felicitous, such that shape words in shape-contrast 
referring expressions always had CPA and shape words in no-
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contrast referring expressions always had PPA. Sentences in 
filler trials were recorded wholesale and were not spliced. 

 
1a. Color-contrast: Click on the blue triangle → red triangle. 
1b. Both-contrast: Click on the blue square → red triangle. 
2a. Shape-contrast: Click on the red square → red triangle. 
2b. No-contrast: Click on the red triangle → red triangle. 

 
840 videos of a talker producing the sentences described 

above were recorded to accompany audio recordings. 40 of  
these videos were used for practice trials, and 800 were used 
for experimental trials. 336 of these videos, which 
accompanied context sentences, did not contain beat 
gestures. In the other 504 videos, which accompanied 
continuation referring expressions, beat gesture was either 
present or absent alongside the color word (for critical trials) 
or shape word (for filler trials). Two videos were recorded to 
accompany each critical referring expression. In one of these 
videos, beat gesture was present alongside color words; in the 
other, beat gesture was absent. Videos recorded to 
accompany filler trials maintained the association between 
beat gesture and CPA present in natural speech; in videos 
accompanying shape-contrast referring expressions), beat 
gesture occurred alongside CPA-accented shape words, 
whereas beat gesture was absent from videos accompanying 
PPA-accented no-contrast referring expressions. A within-
participants design was used such that each participant 
received all combinations of contrast type, beat gesture, and 
pitch accenting; however, combinations for individual trials 
were counterbalanced across participants (see Table 1 for 
experimental design summary). All videos were recorded 
separately from audio and were aligned temporally with it in 
post-production. Because beat gestures were produced with 
one hand, consisting of a single downward stroke with the 
palm oriented upward, horizontally-flipped duplicates were 
created for all videos in post-production.  

A total of 64 objects (8 colors x 8 shapes) were created for 
inclusion in arrays accompanying audio and video stimuli. 
Videos were presented centrally with a circular mask, with 
objects positioned equidistantly (see Fig. 1). Locations in 
which objects appeared were counterbalanced to control for 
contingencies between them and beat gesture orientation. 
 

Table 1: Experimental design (excluding practice trials). 

Type Contrast Accent Gesture Trials 
Critical Color CPA Beat 20 
Critical Color No CPA Beat 20 
Critical 
Critical 
Critical 
Critical 
Critical 
Critical 
Filler 
Filler 

Color 
Color 
Both 
Both 
Both 
Both 
Shape 
None 

CPA 
No CPA  
CPA 
No CPA 
CPA 
No CPA 
CPA 
No CPA 

None 
None 
Beat 
Beat 
No Beat 
No Beat 
Beat 
None 

20 
20 
20 
20 
20 
20 
40 
40 

 
 

Figure 1: Schematic of screen configuration. 

Procedure 
Fixation data was collected remotely from the right eye at 

a 500 Hz sampling rate using an EyeLink 1000 eyetracker.  
Before beginning the experimental task, participants were 
seated 55-56 cm from the screen (35° 55’ 0.32” visual  
angle). Gaze was calibrated to within 0.5° of visual angle 
using 13 points of reference. Drift checks and recalibrations 
were performed between experimental trial blocks. 

At the beginning of the experimental task, participants 
were told that its objective was to test their ability to follow 
instructions. Participants were told to respond to all 
instructions issued in the paradigm by clicking on the 
appropriate object. The experiment was programmed such 
that participants who clicked on the wrong object were 
instructed to click on the correct object to proceed. However, 
all responses to critical referring expressions were correct. 
This was not surprising given that the task was simple and 
straightforward, as is characteristic of visual world tasks 
(Huettig, Rommers, & Meyer, 2011; Salverda, Brown, & 
Tanenhaus, 2011), and our intent was to assess the online 
processing of correctly-understood referring expressions. 

To become familiar with the experimental task, 
participants first completed a practice phase consisting of 8 
trials. Participants then proceeded to the experimental phase, 
which consisted of four blocks of 40 trials each. In both 
phases, critical and filler trials were randomly interleaved. In 
each trial, an array of objects appeared and a video began 
playing, and the context referring expression was presented 
aurally after a 200 ms delay. This configuration ensured that 
the apex of the beat gesture occurred 200 ms prior to the onset 
of the corresponding word, which is consistent with the 
timing of gesture production relative to speech in natural 
discourse (Morrel-Samuels & Krauss, 1992) as well as 
perceptual biases for the timing of beat gesture relative to 
speech (Leonard & Cummins, 2011). Following a correct 
response, the video disappeared and was replaced by a gray 
circular placeholder for 1000 ms while the object array 
remained on screen. Subsequently, the sequence repeated 
with the continuation referring expression and corresponding 
video. Following a correct response, the trial ended and, after 
a blank screen was displayed for 1000 ms, a new trial began. 

Results 
We examined fixations during two periods of the critical 

referring expression: color word (color word onset to shape 
word onset) and shape word (shape word onset to response 
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onset). To account for saccade planning, each period was 
shifted ahead by 200 ms. Two interest areas relevant to the 
main research question were defined: the target object 
referred to by the critical referring expression, and the 
competitor object that is temporarily consistent with the 
unfolding linguistic input. In color-contrast trials, in which 
the target object contrasted with the referent of the context 
referring expression only in color, the competitor object 
differed in both color and shape; in both-contrast trials, in 
which the target object differed from the referent of the 
context referring expression in both color and shape, the 
competitor object contrasted only in color. In addition, the 
video interest area was defined to confirm that participants 
were watching the video. Participants fixated the video more 
than target and competitor objects combined during both the 
color word (77.65% of fixations) and shape word (52.19% of 
fixations) interest periods. 

 To account for non-independence of samples, we summed 
fixations within each interest period in each trial and took the 
empirical logit (Barr, 2008). Because we were interested in 
how beat gesture and CPA facilitated and hindered reference 
resolution, empirical logit values were computed for fixations 
to target and competitor objects separately. These values 
were then entered into linear mixed effects models, which 
were fit using the lme4 R package (Bates, Mächler, Bolker, 
& Walker, 2015) and evaluated via null hypothesis statistical 
testing using the lmerTest R package (Kuznetsova, 
Brockhoff, & Christensen, 2017). Each model implemented 
the maximal random effect structure permitting convergence, 
with beat gesture, CPA, contrast, and their interactions as 
fixed effects and participant and trial as random effects. To 
account for any effects of spatial orientation of the gesture, 
we also included gesture orientation and target object side as 
control variables. 

Color Word Interest Period 
For target fixations, we observed a main effect of contrast, 
indicating a higher likelihood of fixating target objects during 
color-contrast (M = -0.11, SD = 0.55) than both-difference 
critical referring expressions (M = -0.17, SD = 0.55; t = -3.57, 
p < .001); however, no interactions between contrast and 
either accent or gesture were observed. For competitor 
fixations, no main effect of contrast was observed (color: M 
= -0.16, SD = 0.54; both: M = -0.09, SD = 0.57; t = 1.62, p = 
.11). Moreover, there were no main effects or interactions of 
gesture orientation and target side for target or competitor 
fixations. Thus, although these results suggest a baseline bias 
towards contrastive interpretation of critical referring 
expressions, neither beat gesture nor CPA enhanced 
resolution of these expressions prior to disambiguation. 

Shape Word Interest Period 
We observed significant two-way interactions between 
orientation and target side for both target and competitor 
fixations (target: B = 0.48, SE = 0.08, t = 6.32, p < .001; 
competitor: B = -0.10, SE = 0.04, t = -2.58, p = .01), 
indicating a baseline tendency to fixate target objects and not 
to fixate competitor objects appearing on the side of the array 
congruent with the orientation of accompanying beat gesture.  

 
 

Figure 2: Fixations on (a) target and (b) competitor objects 
during the shape word period for color-contrast (filled) and 
both-difference (outlined) critical referring expressions by 

prominence cue (CPA, Beat, Both, Neither). 
 
We also observed a continuation of the baseline color-
contrast preference: There was a higher likelihood of fixating 
target objects and a lower likelihood of fixating competitor 
objects during color-contrast than both-difference critical 
referring expressions. Critically, this preference was 
qualified by interactions with beat gesture for target fixations 
(B = 0.13, SE = 0.06, t = 2.18, p = .03) and CPA for 
competitor fixations (B = 0.26, SE = 0.10, t = 2.51, p = .02; 
see Fig. 2). A simple-effect analysis revealed a greater 
likelihood of fixating target objects during color-contrast 
than during both-difference critical referring expressions 
when beat gesture was present (color: M = 0.84, SD = 0.80; 
both: M = 0.54, SD = 0.87; t = -2.01, p = .001) than when it 
was absent (color: M = 0.83, SD = 0.75; both: M = 0.48, SD 
= 0.86; t = -3.55, p = .047), indicating that beat gesture 
facilitated online resolution of contrastive critical referring 
expressions. Another simple-effect analysis revealed a 
greater likelihood of fixating competitor objects during both-
difference than color-contrast critical referring expressions 
when CPA was present (both: M = -0.59, SD = 0.76; color: 
M = -0.95, SD = 0.76; t = 4.49, p < .001) than when it was 
absent (both: M = -0.75, SD = 0.84; color: M = -0.89, SD = 
0.69; t < 1), indicating that CPA contributed to incorrect 
contrastive interpretation of non-contrastive critical referring 
expressions. Together, these results indicate that beat gesture 
and CPA serve as cues to contrast during online reference 
resolution in spoken discourse. Further, the absence of any 
significant Gesture x Accent interactions indicates that the 
effects of these cues are additive rather than interactive. 

Discussion 
Consistent with our predictions, the results indicate that the 
effects of beat gesture and CPA vary by contrast type during 
online reference resolution in spoken discourse. Specifically, 
beat gesture encouraged fixations on target objects during 
resolution of color-contrast critical referring expressions, 
confirming that beat gesture can convey contrast effectively. 
Moreover, CPA encouraged fixations on competitor objects 
during resolution of both-contrast critical referring 
expressions, indicating that it acted as a “garden path” 
resulting in an incorrect contrastive interpretation. Together, 
these results indicate that beat gesture and CPA each 
encourage contrastive resolution of referring expressions 
during online spoken discourse processing. By providing the 

846



 

 

first evidence that beat gesture facilitates online resolution of 
contrastive referring expressions, the results of the current 
study build upon previous findings that beat gesture (Kushch 
& Prieto, 2016; Llanes-Coromina et al., 2018; Morett & 
Fraundorf, under review; Morett, Roche, Fraundorf, & 
McPartland, 2018) and CPA (Fraundorf et al., 2010; 2012; 
Lee & Fraundorf, 2016; Lee & Snedeker, 2016; Sanford, 
Sanford, Molle, & Emmott, 2006) enhance processing and 
memory of contrastive information in spoken discourse.  

Considered in conjunction with the separate interactions 
with contrast discussed above, the lack of significant 
interactions between beat gesture and CPA indicates that 
these cues exert independent, additive effects on online 
contrastive reference resolution. This finding differs from 
work on discourse memory, which has shown interactive 
effects of beat gesture and CPA (Kushch & Prieto, 2016; 
Llanes-Coromina et al., 2018; Morett & Fraundorf, under 
review). Although the reasons for this difference are not 
entirely clear, one possibility is that separate effects of these 
cues on contrastive information processing in spoken 
discourse interact during storage or retrieval, leading to the 
interactive effects observed in studies of offline processing. 
Another possibility is that effects of these cues that appear 
separate in the short-term become interactive in the long-
term. Future research should distinguish between these 
possibilities by introducing a delay during which recollection 
either is or is not required for discourses containing 
contrastive information in which these cues are varied. 

It is worth noting that beat gesture and CPA affected target 
and competitor object fixations during the shape word but not 
the color word period, indicating that these cues affect 
resolution—but not anticipation—of referents. The timing of 
the effects of these cues is consistent with some previous 
work examining the effect of CPA on reference resolution 
(Ito & Speer, 2008), but is inconsistent with other work 
examining this same phenomenon (Kurumada et al., 2014; 
Watson, Tanenhaus, & Gunlogson, 2008) as well as work 
examining the effect of representational gesture on reference 
resolution (L. B. Silverman et al., 2010). While the reasons 
for the absence of effects of beat gesture and CPA on 
reference anticipation in the current study are not entirely 
clear, one possibility is that these cues may have elicited a 
processing cost, increasing reference resolution latency. This 
possibility is consistent with pupillometry data from the 
current study (Morett, Roche, Fraundorf, & McPartland, 
2018), which indicates that the combination of beat gesture 
and CPA increases cognitive load during reference 
resolution. Alternatively, fixations to the video may have 
persisted during color word processing, reducing fixations to 
target and competitor objects. This possibility is consistent 
with the results of an analysis of target fixations during the 
color word period in which the video was included as an 
interest area, in which the significant main effect of contrast 
observed during this interest period in the model excluding 
the video interest area was absent. Thus, both cognitive load 
and persistence of fixations on the video may have 
contributed to the timing of the effects of beat gesture and 
CPA on online reference resolution in the current study.  

In conclusion, the results of the current study indicate that 
beat gesture and CPA exert independent, additive effects that 

facilitate online contrastive reference resolution during 
spoken discourse processing. As such, they provide the first 
evidence that beat gesture is interpreted as a cue to contrast 
during online spoken discourse comprehension. 
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Abstract

One of the most fundamental and striking limitations of hu-
man cognitive function is the constraint on the number of
control-dependent processes that can be executed simultane-
ously. However, the sources of this capacity constraint re-
main largely unexplored. Previous work has attributed the con-
straints on control-dependent processing to the sharing of rep-
resentations between tasks in neural systems. Here, we exam-
ine how shared representations interact with two other factors
in producing constraints on control-dependent processing. We
first demonstrate that the detrimental effects of shared repre-
sentations on multitasking performance are contingent on the
amount of conflict that is induced by the tasks that share rep-
resentations. We then examine how the persistence of shared
representations between tasks affects processing interference
during serial task execution. Finally, we discuss how this set of
mechanisms can account for various phenomena in neural ar-
chitectures, including the psychological refractory period, task
switch costs, as well as constraints on cognitive control.

Keywords: cognitive control; capacity constraint; dual-
tasking; psychological refractory period; neural networks

Introduction
Despite the powerful abilities that cognitive control affords,
and its ubiquitous engagement in daily life (e.g., mentally
planning a grocery list, or navigating a new route to work),
the capacity for controlled processing appears to be strikingly
limited (e.g., the inability to plan and navigate at once). This
limitation has been literally paradigmatic in defining cogni-
tive control: it has been used to distinguish it from automatic
processing (Posner & Snyder, 1975; Shiffrin & Schneider,
1977), and is used universally to operationalize it in the lab-
oratory (i.e., diagnose it experimentally) in the form of dual
task interference (Meyer & Kieras, 1997a; Welford, 1952).

A widely accepted view is that constraints in the capacity
for control-dependent processing arise from structural limita-
tions inherent to the control system itself. One of the earliest,
and still most influential views, is that cognitive control relies
on a centralized, limited capacity mechanism that imposes
a seriality constraint on processing (Posner & Snyder, 1975;
Shiffrin & Schneider, 1977). However, alternative (“multiple-
resource”) accounts (Allport, 1980; Meyer & Kieras, 1997a;
Navon & Gopher, 1979; Salvucci & Taatgen, 2008) have
suggested that the capacity constraints reflect properties of
the processes that are being controlled. This proposes that
control-demanding tasks, like any others, rely on a constel-
lation of “local” resources; that is, task-specific representa-

tions, and that the inability to perform more than one task
at a time may reflect the conflict that arises when the tasks
involved demand that the same set of representations be used
for different purposes, rather than reliance on a single central-
ized control mechanism. From this perspective, the very pur-
pose of cognitive control is to prevent interference by limiting
the number of task processes that make use of shared repre-
sentations (Cohen, Dunbar, & McClelland, 1990; Botvinick,
Braver, Barch, Carter, & Cohen, 2001).

One may argue that the constraints that shared represen-
tations between tasks impose on multitasking are negligibly
small in a processing system as large as the human brain.
However, simulation studies (Feng, Schwemmer, Gershman,
& Cohen, 2014), followed by analytic work (Musslick et al.,
2016) have studied the multitasking capability of two-layer
neural networks as a function of the sharing of representa-
tions among tasks and found that the multitasking capability
of a network drops precipitously with an increase in shared
representations, and is virtually invariant to network size.
Moreover, neural architectures appear subject to a tradeoff
between learning efficiency and generalization that is pro-
moted through the use of shared task representations, on the
one hand, and processing efficiency and multitasking capa-
bility that is achieved through the separation of task represen-
tations, on the other hand (Musslick et al., 2017). This sug-
gests that limitations in multitasking may reflect a preference
of the neural system to learn tasks more quickly (Musslick et
al., 2017; Sagiv, Musslick, Niv, & Cohen, 2018).

The studies above were based on the assumption that
shared representations between tasks always cause interfer-
ence. However, the amount of processing interference re-
ceived by a single task has been shown to depend on the pro-
cessing strength (automaticity) of the interfering task (Cohen
et al., 1990; MacLeod & Dunbar, 1988). Another assumption
made by these neural network studies is that multitasking can
only be achieved by processing tasks concurrently. However,
this assumption does not capture processing interference ob-
served in the sequential execution of multiple tasks (Pashler,
1984; Welford, 1952), task switching effects (Alport, Styles,
& Hsieh, 1994), nor multitasking behavior along a continuum
from pure parallelism, through rapid task switching, to pure
sequential processing (Salvucci, Taatgen, & Borst, 2009) .

In this work, we examine the interactive effect of (a) shared
representations between tasks, (b) the conflict induced by
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shared representations and (c) the persistence of representa-
tions on the constraints on control-dependent processing in
two-layered, feed-forward, non-linear networks. Our findings
suggest that the detrimental effect of shared representations
on multitasking interference is only present if the tasks that
share representations induce a sufficient amount of conflict
between each other, and that persistence of those representa-
tions can lead to delays in the serial execution of two tasks.
Finally, we discuss how this set of mechanisms may provide
a unifying account of various cognitive phenomena in neural
architectures, including the psychological refractory period,
task switch costs, as well as constraints on cognitive control.

Neural Network Model
For the simulations described in the paper we focus on a net-
work architecture that has been used to simulate a wide array
of empirical findings concerning human performance (e.g.
Cohen et al., 1990; Gilbert & Shallice, 2002), including limi-
tations in multitasking (Musslick et al., 2016). In this section
we lay out the architecture of this network, its processing, as
well as the task environments used to train it.

Network Architecture and Processing
The network consisted of the following layers (Figure 1): an
input layer with two partitions, one of which represented the
current stimulus (nine units) and projected to an associative
layer, and another that encoded the current task (five units)
and projected to both the associative and output layers; an as-
sociative layer (100 units) that projected to the output layer;
and an output layer (nine units) that represented the network’s
response. Input units were grouped by the stimulus dimen-
sions relevant to performing each task (three units per dimen-
sion), and used a one-hot encoding (i.e., a single unit in a
stimulus dimension was used to represent the current stim-
ulus feature; the current stimulus feature was clamped to 1
and all others were clamped to 0). The task input units used
a similar one-hot encoding, with one unit used to represent
each task. Output units were grouped by response dimen-
sions, and trained (see below) using a one-hot encoding for
each response within a dimension. Each response dimension
of the output layer projected to a leaky competitive accumu-
lator (LCA, Usher & McClelland, 2001) layer (described be-
low), which determined the response for that dimension.

The network was instructed to perform a given task by
specifying the current stimulus and task to be performed in
the input layer. These stimulus and task input values were
multiplied by a matrix of connection weights from each par-
tition of the input layer to a shared associative layer, and then
passed through a logistic function to determine the pattern
of activity over the units in the associative layer. This pat-
tern was then used (together with the set of direct projections
from the task layer) to determine the pattern of activity over
the output layer.

The final response within a given response dimension of
the network was determined by an LCA (Usher & McClel-
land, 2001) layer, implementing the assumption that the net-
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Figure 1: Feedforward neural network used in simulations.
The input layer is composed of stimulus vector −→xi and task
vector −→xt . The activity of each element in the associative
layer yh ∈−→yh is determined by all elements xi and xt , and their
respective weights whi and wht to yh. Similarly, the activity of
each output unit yo ∈ −→yo is determined by all elements yh and
xt , and their respective weights woh and wot to yo. A bias of
θ = −2 is added to the net input of all units yh and yo. Blue
shades in the input and output units (circles) correspond to
unit values of 1 and illustrate an example input pattern with
its respective output pattern: The second task requires the net-
work to map the vector of values in the first three feature units
to one out of three output units (white shade).

work could only provide one response per dimension (e.g.
the network cannot say RED and GREEN at the same time).
One LCA layer was assigned to each response dimension k,
which was comprised of a set of units ri that received as their
input the activity of corresponding units in that response di-
mension. The winning response was determined by the accu-
mulation of activity by each LCA unit, and the competition
among them, the dynamics of which were given by

dri = [yo−λri +α f (ri)−β ∑
j 6=i

f (r j)]
dt
τ
+ξi

√
dt
τ

(1)

where yo is the activity of the corresponding response unit
in response dimension k, λ is the decay rate of ri, α is the
recurrent excitation weight of ri, β is the inhibition weight
between LCA units, τ is the rate constant, and ξ is noise
sampled from a Gaussian distribution with zero mean and
standard deviation σ. The activity of each LCA response
unit was lower bounded by zero via a threshold such that
f (ri) = ri for ri ≥ 0 and f (ri) = 0 for r < 0. The response
for response dimension k was determined by the unit within
the corresponding LCA layer, the activity f (ri) of which first
reached threshold z. The accuracy for each response dimen-
sion k corresponded to the probability of generating the cor-
rect response for that dimension P(correct)k across 100 sim-
ulations of the LCA, and the reaction time (RT) for that di-
mension was the average number of time steps required for
the response to reach threshold, scaled by a factor of 0.1. The
following parameter values were used for all reported simula-
tions: λ = 0.4, α = 0.2, β = 0.2, σ = 0.1, and z for each LCA
layer was chosen as the threshold that maximizes reward rate
(P(correct)k/(ITI+RTk)) for that dimension, where ITI cor-
responds to an inter-trial interval of 1s.
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Task Environment
Stimulus input units are structured according to stimulus di-
mensions (subvectors of the stimulus pattern), each of which
was comprised of three feature units with only one feature
unit activated per dimension. A task was defined as a map-
ping from the three stimulus features of a task-relevant stimu-
lus dimension to three output units of a task-specific response
dimension, so that only one of the three relevant output units
was permitted to be active (see Fig. 1). For each simulation
we considered the tasks A-E shown in Figure 2. Tasks A, B
and C each map a different stimulus dimension to a differ-
ent response dimension. Task D shares a stimulus dimension
with Task A and shares a response dimension with Task B.
Conversely, Task E shares a stimulus dimension with Task B
and shares a response dimension with Task A.

Networks were initialized with a set of small random
weights and then trained using the backpropagation algo-
rithm (Rumelhart, Hinton, & Williams, 1986) to produce the
task-specified response for each stimulus in each task, while
suppressing all other responses (both within the task-relevant
output dimension, and all task-irrelevant output dimensions).
The network was trained in epochs, with each epoch contain-
ing all training patterns in random order. The error term used
for training was the mean squared error (MSE) of the pat-
tern of activities in the output layer with respect to the correct
(task-determined) output pattern. The weights of the network
were adjusted with a learning rate of 0.3 after presenting each
training pattern within an epoch (online training) until the net-
work reached an MSE of 0.001.

Shared Representation and Conflict
Multitasking limitations have been attributed to shared repre-
sentations between tasks as they engender interference. How-
ever, the amount of interference introduced by shared rep-
resentation is known to depend on how much conflict they
transmit (Cohen et al., 1990; MacLeod & Dunbar, 1988). To
illustrate this, consider the simultaneous execution of Tasks
A and B depicted in Figure 2. The network can execute a
task by limiting processing to the representations involved
for that task. For instance, the network can execute Task A
by allocating control to the representation that encodes the
task-relevant stimulus features for Task A in the associative
layer and to the task-relevant response units for Task A in the
output layer. Executing Tasks A & B simultaneously would
require allocating control to the representations for both tasks
in both layers. However, allocating control to Task A would
engage Task D if the two tasks share a representation at the
associative layer. Once Task D is engaged, it interferes with
Task B at the output layer. Similarly, allocating control to
a shared associative representation between Tasks B and E
would introduce interference with Task A. Shared represen-
tations between Tasks A and D, as well as between Tasks B
and E therefore introduce a functional dependence between
Tasks A and B (Figure 2; Musslick et al., 2016). In contrast,
no such interference is expected when the network performs

Tasks A & C at the same time.

2Functional Dependence Independence1

…

A B

…

A CD E D E BC
Associative 

Layer

Output 
Layer

Input Layer

Figure 2: Illustration of dependencies between tasks. (1)
Tasks A & B are considered functionally dependent due to
shared representations with Tasks D and E, whereas (2) Tasks
A & C are considered independent (see text).

In the example above, the amount of conflict introduced
by Tasks D and E should decrease if the processing strength
of both tasks is weak compared to the processing strength
of Tasks A and B. Previous studies have demonstrated that
extensive training on a task increases its processing strength
which can induce greater conflict with other tasks (Cohen
et al., 1990; MacLeod & Dunbar, 1988). This suggests a
dilemma: While training on Tasks D and E should improve
performance for each individual task, it should also lead to
greater interference when dual-tasking seemingly unrelated
Tasks A & B. However, dual-tasking performance for the two
independent Tasks A & C should be unaffected. Here, we in-
vestigated the tradeoff between improvements in single task
performance for Tasks D and E, on the one hand, and im-
pairments in dual-task performance for Tasks A & B, as well
as Tasks A & C, on the other hand, by varying the amount
of training that a network receives for Tasks D and E. We
were particularly interested in the amount of training that is
required to cause impairments in dual-tasking performance.

We started by initializing 20 networks per training condi-
tion. In each condition, we sampled 100 patterns for each of
the three Tasks A, B and C per training epoch. However, we
varied the number of sampled training patterns for Tasks D
and E from 0 (0% task strength) to 150 (150% task strength)
across conditions. We then trained every network until it
reached performance criterion for Tasks A, B and C. After
training, we evaluated whether the network learned shared
representations between Tasks A and D, and Tasks B and E
in the associative layer of the network. In order to assess the
similarity of learned task representations we focus our analy-
sis on the weights from the task units to the associative layer,
insofar as these reflect the computations carried out by the
network required to perform each task. For a given pair of
tasks we compute the learned representational similarity be-
tween them as the Pearson correlation of their weight vectors
to the associative layer. Finally, we assessed the multitasking
accuracy for performing Tasks A & B and the multitasking
accuracy for performing Tasks A & C, as well as the single
task accuracies of Task D and Task E.

Figure 3.1 shows the correlation between learned task rep-
resentations in the associative layer of the network, averaged
across all networks. As expected, Task A developed a shared
representation with Task D in the associative layer since both
tasks rely on the same set of stimulus features, as is the case
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Figure 3: Effects of shared representation and conflict. (1)
Average correlations between learned task representations in
the associative layer. (2) Multitasking performance for Tasks
A & B and Tasks A & C as a function of training on Tasks D
and E. Error bars show the standard error of the mean across
20 simulated networks.

for Tasks B and E. Critically, dual-tasking performance for
Tasks A & B decreased with the amount of training on Task
D and Task E while dual-tasking performance for Tasks A &
C was virtually unaffected by the training condition. Even
small amounts of training on Tasks D & E (30%) improve
performance on these tasks at the expense of impaired multi-
tasking performance of Tasks A & B. Altogether, these results
suggest that shared representations alone do not impose con-
straints on control-dependent processing, but they do so in
combination with conflict.

Shared Representation and Persistence
In the network model described above, limitations in multi-
tasking can be circumvented by executing the individual tasks
in series. However, a large body of evidence suggests that
humans are subject to dual-task interference, even if they ex-
ecute two tasks one after another (Welford, 1952). To illus-
trate this, consider the serial execution of two tasks in the
psychological response period (PRP) paradigm (Figure 4). A
trial in this paradigm begins with the presentation of a stim-
ulus relevant to the first task, followed by a stimulus for the
second task. The time between the onset of the first and sec-
ond stimuli is referred to as stimulus onset asynchrony (SOA)
and serves as an independent variable. Participants tend to re-
spond slower to the second stimulus when the SOA is reduced
(Welford, 1952). The additional amount of time that it takes
to respond to the second task in the presence of a short SOA
is referred to as the PRP and serves as the dependent variable.

Symbolic architectures explain the PRP effect in terms of
processing bottlenecks that delay execution of the second task
while the first task is still being executed (Meyer & Kieras,
1997a; Navon & Gopher, 1979; Salvucci & Taatgen, 2008;
Pashler, 1994). While some accounts, such as the EPIC
model (Meyer & Kieras, 1997a, 1997b) or the ACT-R/PM
model (Byrne & Anderson, 2001) attribute the PRP partly to
structural limitations in perceptual processing or motor exe-
cution, other accounts claim that the bottleneck is located at
a “central” processing stage for response selection (Pashler,
1994) that is preceded by sensory processes and followed by
processes for motor execution. However, to date, there is no
account of this effect in neural network architectures. For in-
stance, in the feed-forward model considered above, tasks can
either be executed concurrently, with the risk of multitasking

interference, or in serial, without any risk of interference.

Task 1 Stimulus
1

Response
1Processing Task 1

Reaction Time
for Task 1

Stimulus
2

Response
2Processing Task 2PRP

Reaction Time
for Task 2

Task 2 SOA

Figure 4: Psychological refractory period paradigm.
A crucial computational feature of neural systems is the in-

tegration of information over time, through persisting patterns
of activity. Persistence characteristics can account for se-
quential processing of stimuli (Elman, 1990), working mem-
ory (Miyake & Shah, 1999), reconfiguration costs associated
with switching tasks (Gilbert & Shallice, 2002) and many
other cognitive phenomena. Persistence may also provide a
mechanism for how the detrimental effects of shared repre-
sentation on dual-task interference extend to the sequential
execution of two tasks: the more a shared representation of
a previously executed task persists in time, the more it may
interfere with a subsequent task.

Here, we examine how shared representations interact with
the persistence of activity in producing the PRP effect. To ex-
amine the PRP effect as a function of both, we first trained 10
networks on Tasks A-E until each network reached the perfor-
mance criterion across all tasks. After training, we introduced
persistence1 in the computation of the net input of a unit i in
the associative and output layers,

netT
i = (1− p) ·netT

i + p ·neti
T−1, (2)

where neti
T−1 corresponds to the time averaged net input

from the previous time step, netT
i corresponds to the instan-

taneous net input and p determines how much the time av-
eraged net input of the current time step netT

i depends on the
time averaged net input from the previous time step. Thus, the
higher p, the longer activity persists over time. For each net-
work, we considered different values for p∈{0,0.5,0.8,0.9}.

We then simulated the PRP paradigm for two pairs of tasks,
A & B, as well as A & C. As demonstrated in the previous
section, Tasks A & B are functionally dependent and inter-
fere with each other when executed simultaneously whereas
Tasks A & C are independent and interfere less. In both cases,
the network was instructed to perform Task A second. Thus,
we first presented the network with a feature from the stim-
ulus dimension relevant to Task B or Task C, by activating
the corresponding unit in the input layer and by keeping all
other input units inactivated. After a number of time steps
(determined by the SOA), we presented the network with a
feature from the stimulus dimension relevant to the second
task (Task A), by activating a unit in the input dimension rel-
evant to that task while the stimulus feature for the first task

1Note that persistence in neural networks is typically imple-
mented in the form of recurrent connections between the processing
units. Here, we chose, for simplicity, to implement persistence by
explicitly integrating processed information over time.
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(Task B or Task C) was still present. PRP studies commonly
instruct participants to give priority to the first task (Koch,
Poljac, Müller, & Kiesel, 2018). We therefore activated the
task layer unit for the first task at the beginning of each trial2

and then determined the optimal onset of the task layer unit
for the second task such that the joint reward rate for both
tasks is maximized,

Reward Rate =
P(correct)first taskP(correct)second task

(ITI+RTtotal)
(3)

where P(correct)first task,P(correct)second task correspond to
the accuracies of the first and the second task, respectively,
ITI corresponds to an inter-trial interval of 1s , and RTtotal is
the reaction time of the last executed task, measured from the
onset of the trial. We then assessed RTs for the first (Task B
or Task C) and the second task (Task A) as a function of SOA,
by varying the SOA from 1s to 8s in steps of 1s. Finally, we
repeated the same analysis for 10 networks that were trained,
within each epoch, on 100 patterns of dual-tasking Tasks A
& B, as well as 100 patterns for dual-tasking Tasks A & C,
in addition to being trained to perform all single tasks as de-
scribed above. As in the previous section, we also assessed
learned representational similarity between tasks as the Pear-
son correlation of their weight vectors to the associative layer.

Task 1

0 2 4 6
SOA (s)

0

0.1

0.2

0.3

0.4

Re
ac

tio
n 

Ti
m

e
of

 S
ec

on
d 

Ta
sk

 (s
)

Task B, p = 0.9
Task B, p = 0.8
Task B, p = 0.5
Task B, p = 0
Task C, p = 0.9
Task C, p = 0.8
Task C, p = 0.5
Task C, p = 0

Task 2

0 2 4 6 8
SOA (s)

0

0.2

0.4

0.6

Re
ac

tio
n 

Ti
m

e
of

 T
as

k 
A 

(s
)

Task B First, p = 0.9
Task B First, p = 0.8
Task B First, p = 0.5
Task B First, p = 0
Task C First, p = 0.9
Task C First, p = 0.8
Task C First, p = 0.5
Task C First, p = 0

0 2 4 6 8
SOA (s)

0

0.2

0.4

0.6

Re
ac

tio
n 

Ti
m

e
of

 T
as

k 
B 

/ T
as

k 
C 

(s
)

Task B First, p = 0.9
Task B First, p = 0.8
Task B First, p = 0.5
Task B First, p = 0
Task C First, p = 0.9
Task C First, p = 0.8
Task C First, p = 0.5
Task C First, p = 01 2

Figure 5: RTs of (1) the first and (2) the second task in the
PRP paradigm as a function of persistence p and task. Error
bars show the standard error of the mean across 10 simulated
networks trained only on single tasks.

Simulation results indicate that higher persistence prolongs
the reaction time for both the first and the second task (Figure
5). Moreover, the model replicates the PRP effect, showing
a delay of the second task as a function of SOA (Figure 5.2).
The delay in RT is overall higher after executing Task B com-
pared to Task C, indicating that Task B interferes more with
the subsequently executed Task A. This observation matches
simulation results from the previous section, indicating that
shared representations between Tasks A & D, as well as Tasks
B & E lead to processing interference. However, shorter
SOAs still affected RTs for Task A after executing Task C, in-
dicating that there is processing interference between Tasks A
& C that is not captured by shared representations in the asso-
ciative layer alone. Interestingly, higher persistence amplifies
the RT difference between Task A followed by a functionally
dependent task and Task A followed by an independent task.
In line with prior observations (Marill, 1957; Pashler, 1994),

2We assumed that the task layer unit for the first task becomes
deactivated as soon as the model responded to the first stimulus.

the RT of the first task remained unaffected by the SOA, irre-
spective of whether the first task was functionally dependent
or independent of the second task. This observation reflects
the embedded strategy of the model to first execute the task
associated with the first stimulus. Finally, we observed that
dual-task training reduces the amount of shared representa-
tion between tasks that rely on a common stimulus dimension
(Tasks A and D, as well as Tasks B and E; see Figure 6.1),
compared to training the network on single tasks only (cf.
Figure 3.1). In addition, training on both dual-task conditions
yielded significant reductions in the PRP effect despite high
levels of persistence (Figure 6.2). For intermediate levels of
persistence (p ≤ 0.5), dual-task training eliminated the PRP
entirely. Such “virtually perfect time sharing” has been ob-
served by Schumacher et al. (2001) after training participants
extensively on dual-tasking.
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Figure 6: Effects of dual-task training. (1) Average correla-
tions between learned task representations in the associative
layer. (2) RT of the second task in the PRP paradigm as a
function of persistence p and task. Error bars show the stan-
dard error of the mean across 10 simulated networks.

General Discussion and Conclusion
One of the most fundamental limitations of human cognitive
behavior is the constraint on the number of control-dependent
processes that can be executed simultaneously (Posner &
Snyder, 1975; Shiffrin & Schneider, 1977). The multiple-
resource hypothesis explains such limitations in terms of
shared representations that prevent the interference-free ex-
ecution of multiple control-demanding tasks (Allport, 1980;
Navon & Gopher, 1979). While recent neural network studies
provided computational and analytic arguments for the detri-
mental effects of shared representations on the capacity for
control-dependent processing, they were either based on the
assumption that shared representations always induce conflict
or that tasks can only be executed concurrently (Alon et al.,
2017; Feng et al., 2014; Musslick et al., 2016).

In this work, we examined the interactive effect of shared
representations and two other factors on limitations associ-
ated with control-dependent processing. We first demon-
strated that the detrimental effect of shared representations
on multitasking interference is present only if the tasks that
share representations induce a sufficient amount of conflict.
This observation extends previous work, showing that perfor-
mance of single tasks decreases with the amount of conflict
induced by a competing task (Cohen et al., 1990; MacLeod
& Dunbar, 1988). In both cases, the conflict induced by the
competing task scales with the amount of training on that
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task. This suggests that training on a task can improve its
performance but may come at the cost of inducing interfer-
ence with another task that shares a representation.

We also demonstrated that the limitations induced by
shared representations can extend to situations in which tasks
are executed sequentially. The detrimental effect of shared
representation scales with the amount of persistence in the
network: the more the representation of a task persists in
time, the longer it interferes with other tasks. These obser-
vations provide a mechanistic interpretation of the psycho-
logical refractory period in neural systems. Symbolic archi-
tectures explain this effect in terms of a shared resource that
can only be accessed by one task at a time (Anderson, 2013;
Navon & Gopher, 1979; Meyer & Kieras, 1997a; Salvucci &
Taatgen, 2008). In contrast, the neural network model sug-
gests that tasks may always be processed in parallel but that
the outcome of a task process may be strategically delayed to
prevent interference from persisting representations of previ-
ously executed tasks, yielding a PRP.

The neural network model may also have virtue in explain-
ing findings that central processing bottleneck models strug-
gled to explain. For instance, the second task in the PRP
paradigm can be prolonged (relative to single task execution)
even if the stimulus for the second task was presented after
the participant already responded to the first task (Welford,
1952; Marill, 1957). A central processing bottleneck alone
cannot account for a delayed execution of the second task
in this situation because a bottleneck should no longer be
occupied after executing the first task (Pashler, 1994). The
neural network model, however, shows that processing in-
terference induced by shared representation with a previ-
ously executed task can persist, irrespective of whether a re-
sponse for that task has already been generated. Furthermore,
modality-specific PRP effects have challenged the notion of a
domain-general (amodal) central processing bottleneck: Pairs
of tasks with compatible stimulus-response mappings (e.g. a
visual-manual task paired with an auditory-vocal task) show
greater dual-task interference than two tasks with incompat-
ible stimulus-response mappings (a visual-vocal task paired
with an auditory-manual task), lending support to cross-talk
models that explain dual-task interference in terms of repre-
sentational overlap between tasks (Liepelt, Fischer, Frensch,
& Schubert, 2011; Hazeltine, Ruthruff, & Remington, 2006).
Similarly, our simulation results suggest that functional de-
pendence between tasks induced by representational overlap
can lead to higher dual-task interference. Finally, empirical
work demonstrated that the PRP can be eliminated with dual-
tasking practice, suggesting absence of a central processing
bottleneck. (Schumacher et al., 2001). The simulation results
presented here suggest that dual-task training may promote
the learning of separated, task-dedicated representations that
promote interference-free processing.

One of the most robust findings in the cognitive literature
is the performance cost associated with the sequential execu-
tion of different tasks (Alport et al., 1994). One prominent

account of such switch costs is task-set inertia, according to
which the task-set of the previously executed task carries over
to the next (Alport et al., 1994). Similarly, the findings de-
scribed here suggest that persistence of task representations
lead to a carry over of task interference. The successful se-
quential execution of two dependent tasks would then afford a
temporal switch cost in order to minimize interference-based
costs in dual-tasking accuracy. From this perspective, the de-
pendence between tasks induced by shared representation, the
amount of conflict, as well as persistence of task representa-
tions may all contribute to the performance costs associated
with task switches. This suggests that the PRP effect and the
costs associated with task switching may originate from the
same set of mechanisms in neural systems.

While shared representations may account for limitations
in the number of control-demanding tasks that can be exe-
cuted at a time, they do not directly explain limitations in
the amount of control that can be allocated to a single task
(Shenhav et al., 2017). That is, once a commitment has
been made to perform a given task (i.e., allocate cognitive
control to it), and that precludes the performance of others,
then the opportunity cost has already been paid, so why not
allocate control maximally to the selected task? Musslick,
Jang Jun, Shvartsman, Shenhav, and Cohen (2018) explored
the hypothesis that constraints on control intensity (i.e., en-
coded as cost) reflect, at least in part, an optimal solution to
the stability-flexibility dilemma: Allocating more control to
a task results in greater activation of its neural representation
but also in greater persistence of this activity upon switching
to a new task, yielding switch costs. By considering the prob-
lem in terms of the parameterization of a nonlinear dynamical
system, in which control signals are represented as attractors,
Musslick et al. (2018) showed that constraints on the amount
of cognitive control allocated to a task can promote cogni-
tive flexibility at the expense of cognitive stability. While this
dilemma provides a rationale for why humans should limit
the amount of control allocated to a single task it is based
on the implicit assumptions that tasks cannot be executed in
parallel due to constraints in multitasking capacity and that
task representations persist in time. This suggests that both
the number of control-demanding tasks that can be executed
simultaneously, and the amount of control that can be allo-
cated to a single task may be subject to constraints that arise
from (a) the shared use of representation between tasks, (b)
the conflict induced by shared representations and (c) persis-
tence of task representations in time.
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Abstract

There are two main types of bias in simple decision tasks,
response bias and stimulus bias. Response bias is a starting
level of evidence in favor of a biased response, whereas stim-
ulus bias is the evaluation of stimuli in favor of a biased re-
sponse. Previous research typically dissociates between these
two types of bias. Some studies suggest that it can be diffi-
cult to induce response bias without stimulus bias (Ratcliff &
McKoon, 2008; van Ravenzwaaij, Mulder, Tuerlinckx, & Wa-
genmakers, 2012). We used a two-alternative forced-choice
brightness discrimination task in which we manipulated the
presentation length of the stimuli. We analyzed the data with
a hierarchical diffusion model. The results show an overall re-
sponse bias, as well as stimulus bias that increases as stimulus
presentation time decreases. We argue that the results suggest
a need to revise how stimulus bias is conceptualized through
the drift rate parameter of the diffusion model.

Keywords: diffusion model; response bias; stimulus bias;
prior bias; dynamic bias; drift criterion

Introduction
Decision bias is an important area of research because it re-
veals information about the underlying processes that drive
decision making, highlighting how different contexts and
goals can influence decision-making behaviour in different
ways (White & Poldrack, 2014). Simple decision tasks,
where individuals are asked multiple choice questions with
only two possible responses, are fairly common in the field of
decision making. Research has suggested that there are two
distinct types of bias in simple decision tasks: response bias
and stimulus bias, also known as prior and dynamic bias, re-
spectively (van Ravenzwaaij et al., 2012; White & Poldrack,
2014). Response bias is a preparedness to make a certain re-
sponse, whereas stimulus bias is an asymmetry in how two
stimuli of equal value/magnitude but opposing valences are
processed as evidence for their respective responses.

Decision making can be thought of as sampling informa-
tion from your environment to build support for a response
over time. There have been a number of response time mod-
els that have been proposed to formalize this concept. One
popular model is the diffusion model (Ratcliff, 1978; Ratcliff
& Rouder, 1998; Ratcliff, 2002). To exemplify this model,
suppose an observer is tasked with categorizing the stimu-
lus presented in Figure 1a as dark or bright, depending on
whether it contains more black or white circles. The dif-
fusion model keeps track of a single quantity of evidence,
which reflects the relative amount of accumulated evidence
for one choice over the other. This means that in this exam-
ple, evidence for a ‘dark’ response counts as evidence against
a ‘bright’ response, illustrated in Figure 1b. Once evidence
for one response reaches a boundary, a decision is made.

The basic diffusion model is defined by 4 main parame-
ters that are attributed to different cognitive components that
make up the speed and accuracy involved in decision making.
These parameters consist of the drift rate, starting point of ev-
idence accumulation, response boundaries, and non-decision
time parameters. The non-decision time represents the time
taken to perform the processes not directly associated with the
evidence accumulation process e.g. motor response to press a
button associated with a response. The boundary refers to the
amount of evidence required to make a response, and is often
characterized as the level of caution the observer has chosen.
The starting point of evidence accumulation and drift rate
are the two parameters associated with response and stimu-
lus bias respectively.

The starting point parameter is used to represent a baseline
level of evidence towards a specific response before stimulus
information is accumulated as evidence. Response bias is es-
sentially a shift in the start point parameter, meaning less ev-
idence is required to reach one response boundary compared
to the other, as illustrated in Figure 1c. A start point halfway
between the two response boundaries indicates no response
bias. The drift rate describes the average rate at which evi-
dence is accumulated in favour of one response over the other.
Stimulus bias is when one type of stimulus elicits a stronger
or weaker drift rate compared to the other type of stimulus.
Stimulus bias is illustrated in Figure 1d.

Response bias and stimulus bias both play a large role in
decision making, however they are typically presented as in-
dependent of each other and dissociable i.e., the preparedness
to make a response does not affect the evidence accumulation
process. The characterization of these processes as indepen-
dent confers two main advantages. Firstly, it makes the model
more parsimonious. Secondly, it gives a way to account for
the different effects that different manipulations have on re-
sponse times and accuracies.

A number of studies have contributed to this dissociation
of response bias and stimulus bias and their associated pa-
rameters. The start point can be influenced by the relative fre-
quencies of the presented stimuli and the relative reward rates
associated with the stimuli, with limited effects on other pa-
rameters (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;
Diederich & Busemeyer, 2006; Ratcliff & McKoon, 2008;
White & Poldrack, 2014).

On the other hand, studies have illustrated that the drift rate
is influenced by the quality and discriminability of informa-
tion presented during a trial (Palmer, Huk, & Shadlen, 2005;
Ratcliff & McKoon, 2008; Voss, Rothermund, & Voss, 2004).
The standard interpretation for a bias in the drift rate parame-
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Figure 1: (a) Example of a stimulus where the participant had to decide the stimulus was dark or bright based on the proportions
of black and white circles. (b) Diagram of the basic diffusion process. For this example, the top boundary represents the
threshold for a ‘dark’ response, and the bottom boundary is the threshold for a ‘bright’ response. (c) Effect of a start point
bias towards ‘dark’ responses. There is a shift in the starting point of evidence accumulation such that, given the same course
of evidence accumulation observed in Figure 1b, the dark threshold is reached earlier. The dotted line represents the further
evidence accumulation if the threshold was not reached. (d) Example of stimulus bias, with Vd and Vb representing drift rates
for ‘dark’ and ‘bright’ stimuli respectively. Evidence is collected more quickly for the ‘dark’ response than it is for the ‘bright’
response. The grey arrows represent drift rates where there is no stimulus bias.

ter is one of criterion setting (Mulder, Wagenmakers, Ratcliff,
Boekel, & Forstmann, 2012; Ratcliff, 1985; van Ravenzwaaij
et al., 2012). The information observed from a stimulus is
compared to a criterion, and the difference between the stim-
ulus information and the criterion yields the evidence value
that is to be accumulated in the model. Changing the criterion
to permit more evidence for a particular response produces a
bias. White, Mumford and Poldrack (2012) demonstrates this
in a size discrimination task by showing participants a stan-
dard against which upcoming lines should be compared in or-
der to determine what constitutes a ‘long’ or ‘short’ response.
Their manipulation of this standard selectively influenced a
drift criterion parameter in a diffusion model.

There have been studies that used the diffusion model to
focus on specifically dissociating these two types of bias.

Leite and Ratcliff (2011) examined the effects of stimulus fre-
quency, response payoff, and decision criterion manipulations
on start points and drift criterion parameters through a nu-
merosity discrimination task where participants had to decide
whether volume of asterisks contained within a 10 by 10 grid
could be categorised as a ‘low’ amount or a ‘high’ amount,
based on some given criteria. They found that changes in the
start point parameter alone were able to account for changes
in the RT and accuracy data when they manipulated stimu-
lus frequency and payoff. When they manipulated the deci-
sion criterion for what was considered ‘low’ and ‘high’, they
found the data was best fit by shifts in the drift criterion pa-
rameter. Similarly, White and Poldrack (2014) used a per-
ceptual discrimination task and a recognition memory task
and found that response bias and stimulus bias can be inde-
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pendently induced in the diffusion model through the use of
stimulus frequency and decision criterion manipulations re-
spectively.

Other research in this field however, has proposed that
these biases and the underlying parameters may not be nec-
essarily be independently manipulated. Ratcliff and McKoon
(2008) examined the effect of relative frequency and stimu-
lus difficulty manipulations on model parameters using a mo-
tion discrimination paradigm. When stimulus difficulty was
manipulated, they found that only drift rate varied, however
when relative frequency of the stimuli varied, they found a
bias in the start point as well as a modest effect on the drift
criterion.

Additionally, van Ravenzwaaij et al. (2012) proposed that,
theoretically, response bias is sufficient to account for optimal
performance in a variable or fixed difficulty task when relative
frequency of stimuli is manipulated, but only under certain
conditions (cf. Moran, 2015). However, they found that the
model fits of empirical data from individuals performing a
motion discrimination task show that the relative frequency
manipulations had effects on start points and drift criterion in
both fixed and variable difficulty tasks.

Rather than being independent of each other, it is possible
that base rate information plays a role in moderating how in-
dividuals evaluate information under certain circumstances.
This provides a potential explanation for why both response
bias and stimulus bias were found in studies which manipu-
lated relative frequencies of stimuli. The current experiment
aimed to test how response bias and stimulus bias may be ex-
pressed under conditions of limited information and differing
stimulus frequencies. In doing so, we wanted to observe if
this dissociation of these biases and their related parameters
holds true. Our experiment empirically evaluated the effect of
the relative frequency of stimuli and the duration of stimulus
presentation on the parameters of the diffusion model through
the use of a hierarchical Bayesian version of the simple diffu-
sion model.

Method
Design
The stimuli used were various combinations of 64 black and
white circles in a 8 by 8 grid. In each stimulus, there were
35 circles of one color, and 29 of the other. Participants
were instructed to make ‘black’ or ‘white’ responses for each
stimulus they were presented, indicating which color circle of
which there were more. For clarity, stimuli with more black
circles will be referred to as ‘dark’ stimuli and the associ-
ated response will be ‘dark’ responses. Similarly, stimuli with
more white circles will be referred to as ‘bright’ stimuli and
the associated response will be ‘bright’. An example of a dark
stimulus is shown in Figure 1a.

The independent variables manipulated were relative fre-
quencies of stimuli and the presentation length of the stim-
uli. Relative frequencies of stimuli were manipulated across
blocks. This manipulation had three levels, dark biased (two

thirds of block were dark stimuli), bright biased (two thirds of
block were bright stimuli), and unbiased (even proportions of
dark and bright stimuli). There were 13 presentation lengths
of stimuli, ranging from 0ms (where no stimulus is shown)
to 200ms in 16.7ms (1 frame on a 60 Hz monitor) intervals.
The presentation length varied from trial to trial within each
block. The experiment consisted of 9 blocks of 80 trials each.

Procedure
At the start of the experiment, participants received instruc-
tions on the aim of the task and what they should expect to see
on each trial. It was stated that the presentation time of the
stimuli will vary within each block. Participants were also
told the relative frequencies of each type of stimulus (dark
and bright) will differ across blocks and received information
about the proportions of dark and bright stimuli at the start of
each block. At the end of each block, participants are given
an opportunity to take a self-paced break before continuing
onto the next block.

At the start of each trial, participants were required to press
and hold the spacebar with the index finger of their dominant
hand. Once spacebar was held, a fixation cross was presented
for 500ms, followed by a mask presented for 100ms, followed
by the stimulus. The stimulus is presented for a random dura-
tion from 0-200ms, followed by a backward mask of 100ms.
There was 16.7ms before the disappearance of the mask and
the appearance of the stimulus. Once they were prompted
for a response, they had to release the spacebar and indicate
a response using the ‘F’ or ‘J’ key to indicate whether they
thought stimulus was ‘dark’ or ‘bright’ using the same fin-
ger the held down spacebar with. If they released their finger
too early, they received a warning and the experiment would
progress to the next trial. These instructions were given to
discourage preemptive responses.

After each trial, participants received feedback on screen
based on the accuracy of their response. For the 0ms trials
where there is no ‘correct’ response, the feedback for their
response was probabilistically determined based on the bias
condition for the current block. ‘CORRECT’ was presented
in green if their response was accurate and ‘INCORRECT’
was presented in red if their response was inaccurate. This
feedback was on screen for 750ms before they were allowed
to continue to the next trial.

Before the task began, participants were given 12 practice
trials consisting of equal numbers of dark and bright stimuli.
Each of the presentation lengths, excluding the 0ms presenta-
tion length, were used for one of the practice trials.

Model specification
Data were fit using a hierarchical Bayesian version of the
simple diffusion model (for more information on hierarchi-
cal diffusion models see Vandekerckhove, Tuerlinckx, & Lee,
2011). MCMC estimation was performed through the JAGS
Wiener module (Wabersich & Vandekerckhove, 2014) to esti-
mate the parameters by running 3 chains with 5000 iterations
each.
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Individual-participant level parameters of the diffusion
model were assumed to come from Gaussian distributions at
the population level. For example, a drift rate for participant
i in condition j was modelled as vi j ∼ N(µv j ,λ j), where µv j is
the population-level mean drift rate parameter for condition
j, and λ j is the precision of the population-level drift rate pa-
rameter for condition j. The priors for the population-level
mean parameters were set to be vague and relatively uninfor-
mative. For non-decision time, we used a normal distribution
of mean 0 and a precision of 100, truncated to be above zero.
For the boundary parameter, we used a normal distribution
with mean of 3 and a precision of 2, truncated to be above
zero. For start-point parameters, we used a uniform distribu-
tion from 0 to 1. For drift rate, we used a normal distribution
with mean 0 and precision of 1. For the population-level pre-
cision parameters, λ, we used gamma distributions with shape
and rate parameters of 0.001.

The distance between the boundaries (a), the mean dis-
tance of the starting point (z), the average rate of evidence
accumulation (v), and the non-decision time parameter (T)
were estimated for each individual while also estimated on
a population level. The results discussed are the population
level parameters estimated by the model. For the purpose
of model fitting, dark responses were made when evidence
passed the boundary at a and bright responses were made
when evidence passed the boundary at 0. This means that
higher start points and positive drift rates represent more start-
ing evidence and evidence accumulation for dark responses
and lower start points and negative drift rates represent more
starting evidence and evidence accumulation for bright re-
sponses.

We allowed start points and drift rates to vary freely across
all conditions in the experiment, but constrained boundaries
and non-decision times to be equal across the three levels of
relative frequencies of stimuli conditions. This results in the
estimation of 13 boundary parameters and 13 non-decision
time parameters (for the each of the trial types), 39 start point
parameters (for each trial type across the 3 levels of relative
frequencies of stimuli) and 78 drift rate parameters (same as
the start point parameters, but estimated separately for the
dark stimuli and the bright stimuli). This results in a total
of 143 population level parameters. In the following section,
we discuss the posterior distributions of the population-level
mean parameters.

Results
Figure 2 illustrates posterior distributions of population level
start point parameters for each presentation time. A start point
closer to 1 and 0 indicates higher starting evidence for dark
and bright responses, respectively. When no bias is expected
in the start points, a start point of 0.5 is expected. This is what
we observed for the unbiased blocks - start points for the un-
biased stimulus frequency blocks are distributed around 0.5
across all presentation time conditions, as shown in the green
violin plots in Figure 2. From the results of previous exper-

iments that manipulated relative frequencies of stimuli, we
expect a bias in the start point in both the dark and bright
biased conditions (Leite & Ratcliff, 2011; Ratcliff & McK-
oon, 2008; van Ravenzwaaij et al., 2012; White & Poldrack,
2014). In the dark biased conditions, we expect start points
to be above 0.5 and in bright biased conditions, start points
are expected to be below 0.5. Our results are in line with
this expectation and are fairly consistent across the different
presentation times.

Figure 2: Violin plots of posterior distributions of population
level start point parameters for each presentation time.

Regarding the estimates of the drift rate parameters, Since
bright and dark stimuli carry the same amount of information
(i.e. same proportion of dominant-color circles) we expect
the drift rates to have the same magnitude, but in opposite
directions. Stimulus bias is calculated as the average drift
rate across dark and bright stimuli for a presentation time in a
type of block. Since the drift rates for dark and bright stimuli
should be equal but with opposite valences, if there is no bias,
we expect the average drift rate to be 0.

For the unbiased blocks, the longer a stimulus was pre-
sented, the higher the drift rate in the direction of the response
associated with that stimulus, with drift rates for short presen-
tation times being distributed around 0, as shown in Figure
3a. This matches our expectations of a higher drift rate when
more information (longer presentation time of stimuli) is pre-
sented, resulting in limited observed stimulus bias (as shown
in the green plots in Figure 3d). For the biased blocks, we
observe an overall shift in the drift rates for both bright and
dark stimuli, away from 0 and towards the response for the
biased stimuli. This is particularly prevalent for the shorter
presentation time conditions i.e., for the bright biased blocks,
drift rates are in the direction of a bright response when the
stimulus is presented for a limited amount of time (0-67ms),
regardless of what stimulus was presented (illustrated in Fig-
ure 3b). A similar effect is present for the dark biased blocks,
illustrated in Figure 3c. Consequently, we found that the stim-
ulus bias observed in the shorter presentation time conditions
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Figure 3: Violin plots of posterior distributions of drift rates for dark and bright stimuli across presentation times for the
(a) unbiased, (b) dark biased and (c) bright biased blocks. (d) Average of the dark and bright stimulus drift rates for each
presentation time for each block bias type.

was in favor of the biased stimuli for the biased blocks. This
also changed as a function of presentation time; we observed
a clear trend of stimulus bias decreasing as presentation time
increased, summarized in Figure 3d.

Discussion
There are two main findings to take away from the experi-
ment. Firstly, it replicated the response bias effect produced
by relative frequencies of stimuli manipulations demonstrated
in previous research (Bogacz et al., 2006; van Ravenzwaaij et
al., 2012; White & Poldrack, 2014). Secondly, the results
from the experiment suggest that stimulus bias has an inverse
relationship with presentation time in relative stimulus fre-
quency manipulations. The second finding is particularly in-
teresting because does not coincide with typical interpreta-
tions of drift rate and drift rate bias in the diffusion model. If
the drift rate reflects the accumulation of information, as stim-
ulus information approaches 0, so too should the drift rate.
The results of our current experiment contradict this, contin-
uing to show modest drift rates towards the biased response
when there is limited stimulus information.

One possible deviation from this perspective that could ex-
plain these results is a model which allows the drift rate to
vary across the length of a trial. Its possible that initially,

drift rate is driven by biases or sequential effects but is up-
dated as the information from a presented stimulus becomes
apparent. Diederich and Busemeyer (2006) discuss a simi-
lar concept of a two stage processing model for data from a
perceptual discrimination task in which payoffs and deadlines
were manipulated. They proposed a model that suggests there
are two stages within a trial in which different aspects of the
task inform the drift rate. This model suggests that during the
first stage, payoff information determined the drift rate but
after some period of time, stimulus information takes over.
They found that this model was best able to account for the
data when compared to two other models, one that allowed
boundaries to vary over time, and another that allowed drift
rates to vary across time.

On the other hand, a study by Ratcliff and Rouder (2000)
manipulated stimulus presentation time in order to examine
the concept of non-stationary drift rate in a two choice iden-
tification task. They found that a model with a non-stationary
drift rate, where the drift rate rose during the onset of a stim-
ulus and then fell to 0 once it was masked, was unable to
satisfactorily explain the data. However, a model that used a
constant drift rate over time fit the data well, suggesting that
there is a constant accumulation of evidence over time even
when the stimuli are shown then masked during a trial. In
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light of their findings, Ratcliff and Rouder clarify that these
findings may not necessarily extend to other domains such as
perceptual stimuli (such as the one used in the current experi-
ment) because a cognitive representation may not necessarily
be the output of perceptual processing as it is in a letter iden-
tification task. Where previous studies focused on purely the
onset of a stimulus, none have addressed how response bias
may interact with stimulus onset asynchrony.

Another possible explanation is that expectancies or sub-
jective values of responses, more typically reflected in the
start point parameter, may moderate how the drift rate is set.
The distinction between stimulus and response biases in the
diffusion model is analogous to the Bayesian distinction be-
tween prior and likelihood. Bogacz, Brown, Moehlis, Holmes
and Cohen (2006) argued that the diffusion model is a special
case of Wald’s (1945) sequential probability ratio test, which
is an optimal procedure for deciding between two hypothe-
ses (Wald & Wolfowitz, 1948). Under this equivalence, the
start point of evidence accumulation corresponds to the prior
probability of the two competing hypotheses (responses). The
transformation of information into evidence is carried out by
a likelihood function. The posterior probability of the hy-
potheses are then used as prior probabilities as the next piece
of information is to be evaluated. Once the posterior proba-
bility of any one hypothesis is large enough, then a response
is triggered.

Under the Bayesian framework, a drift rate bias is an adap-
tation of the likelihood function that is used to transform in-
formation from the stimulus into the evidence for competing
responses. Our results suggest that the typical interpretation
of drift rate bias, the concept of a drift criterion, may not be
the whole story. Rather, it seems that the drift rate bias may be
also based on what the participant knows about the environ-
ment. Usually, such environmental information is assumed to
either adjust the prior probability of the different responses,
or modify the lens through which stimuli are evaluated. Our
data suggest that environmental information may also be ac-
cumulated as evidence, at least when the stimulus information
is lacking.

Furthermore, some studies have examined how informa-
tion can be weighted differently in their integration in their re-
sponse based on their reliability. There has been previous re-
search which show that individuals are able to integrate infor-
mation from multiple sources, weighing them based on their
reliability. (Ernst & Banks, 2002; Fetsch, Pouget, DeAngelis,
& Angelaki, 2012; Ohshiro, Angelaki, & DeAngelis, 2011).
This has been supported using a modified version of the dif-
fusion model in order to account for the time course of the
process (Turner, Gao, Koenig, Palfy, & McClelland, 2017).
This further supports the possibility that individuals may be
integrating both stimulus information and environmental in-
formation when accumulating evidence. When the stimulus is
uninformative, individuals may give greater weight to the en-
vironmental information which results in the diffusion model
showing stimulus bias in the parameter estimates.

When discussing these findings in the context of a diffu-
sion model, it is important to keep in mind that the current
set of analyses is a redescription of the observed data through
the diffusion model and may not represent the ‘true’ underly-
ing model. Some alternative models that may be able to ac-
count for the results of the current experiment are the leaky,
competing accumulator (LCA) model proposed by Usher and
McClelland (2001), and Kvam’s (2019) theory of bias based
on split attention and racing diffusion processes. Usher and
McClelland’s (2001) LCA model suggests that the observed
stimulus bias may be caused by a lateral inhibition between
accumulators for the two alternative choices. On the other
hand, Kvam (2019) puts forward a model based on a con-
tinuous orientation judgement paradigm which suggests that
stimulus information and predecision information (such as
base rates) compete with each other as separate accumula-
tors and cues can also moderate attention given to a stimulus.
Although these models are outside of the scope of this paper,
further research in this area should consider these models.

The results of the current experiment highlight that lim-
ited information can induce stimulus bias in blocks with un-
even stimulus frequencies. Potential avenues for future re-
search include investigating whether this stimulus bias can
be induced by other manipulations such as stimulus difficulty
or stimulus ambiguity, as well as using other modelling ap-
proaches, which may provide alternative explanations for the
observed stimulus bias effects. This may help to shed light
on the underlying mechanism through which information is
processed and how it can result in stimulus bias. Investigat-
ing the source of these effects have important implications for
understanding how individuals make decisions with different
levels of information and may give some deeper insight into
the roles of different types of information in decision making.
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Abstract

The concept of Nash equilibrium has played a profound role
in economics, and is widely accepted as a normative stance for
how people should choose their strategies in competitive envi-
ronments. However, extensive empirical evidence shows that
people often systematically deviate from Nash equilibrium. In
this work, we present the first resource-rational mechanistic
approach to one-shot, non-cooperative games (ONG), show-
ing that a variant of normative expected-utility maximization
acknowledging cognitive limitations can account for impor-
tant deviations from the prescriptions of Nash equilibrium in
ONGs. Concretely, we show that Nobandegani et al.’s (2018)
metacognitively-rational model, sample-based expected util-
ity, can account for purportedly irrational cooperation rates ob-
served in one-shot, non-cooperative Prisoner’s Dilemma, and
can accurately explain how cooperation rate varies depending
on the parameterization of the game. Additionally, our work
provides a resource-rational explanation of why people with
higher general intelligence tend to cooperate less in OPDs, and
serves as the first (Bayesian) rational, process-level explana-
tion of a well-known violation of the law of total probability in
OPDs, documented by Shafir and Tversky (1992), which has
resisted explanation by a model governed by classical proba-
bility theory for nearly three decades. Surprisingly, our work
demonstrates that cooperation can arise from purely selfish,
expected-utility maximization subject to cognitive limitations.

Keywords: One-shot non-cooperative games; Nash equilib-
rium; resource-rational process models; expected utility the-
ory; behavioral game theory; Prisoner’s Dilemma; cooperation

1 Introduction
In his seminal work, Nash (1950) introduced a foundational
concept of equilibrium, now called “Nash equilibrium,” and
mathematically proved that any one-shot, non-cooperative, n-
player game enjoys (at least) one such equilibrium. In simple
terms, Nash equilibrium (NE) is a set of strategies, one for
each of the n players of the game, which has the desirable
property that each player’s strategy is her best response to the
strategies adopted by the n−1 other players.

Importantly, NE satisfies a number of notable conditions
which make it appealing from a normative standpoint. For ex-
ample, NE passes the key announcement test (Holt & Roth,
2004): If all players publicly announce their strategies, no
player would want to reconsider. Furthermore, when the goal
is to advise players of a game about which strategies to fol-
low, NE stands out as a rational choice: Any advice that is not
an NE would have the unsettling property that there would al-
ways be some player(s) who would be better off by deviating
from what they are advised (Holt & Roth, 2004). Finally, NE
is a self-reinforcing agreement (Holt & Roth, 2004): Once

reached by the players, NE does not need any external means
of enforcement to endure.

Despite its firm rational grounds, NE has repeatedly failed
to provide a descriptively adequate account of human behav-
ior in a variety of important game-theoretic settings (e.g.,
Mailath, 1998; Goeree & Holt, 2001). By now, exten-
sive empirical evidence shows that people often systemati-
cally deviate from Nash equilibrium, thus calling for alter-
native accounts (e.g., Fehr & Gächter, 2000; Keser & van
Winden, 2000; Brandts & Schram, 2001). A prominent ex-
ample of such violations of NE is the robust empirical find-
ing that people typically cooperate in 2-player, one-shot, non-
cooperative, Prisoner’s Dilemma (2ONPD) games. Not only
does NE prescribe against cooperation in 2ONPD (more pre-
cisely, every 2ONPD has only a single NE, and that is for
both players to defect), but, more importantly, cooperation is
not even rationalizable in 2ONPD (Bernheim, 1984; Pearce,
1984) because cooperation is not a best response to any strat-
egy adopted by the other player.

From a purely computational perspective, people’s appar-
ent failure to follow the prescriptions of NE is not surpris-
ing: Recent theoretical work in computational complexity
formally showed that evaluating NE is computationally in-
tractable in general (Daskalakis et al., 2009), and, hence, is
generally beyond the capacity of a cognitive system with lim-
ited computational power and resources (Simon, 1957).

In this work, we present the first resource-rational mecha-
nistic approach to one-shot, non-cooperative games (ONGs),
investigating the extent to which violations of NE could be
seen as an optimal response subject to computational and
cognitive limitations (Griffiths, Lieder, & Goodman, 2015;
Nobandegani, 2017). Concretely, we ask whether these vio-
lations can be seen as an optimal behavior with the mind act-
ing as a cognitive miser. To do this, we begin by presenting a
general framework allowing us to conceptualize any ONG as
a set of risky gambles, thereby reducing the problem of strat-
egy selection in ONGs to a problem of choosing between a
set of risky gambles.

To show the efficacy of our framework, we investigate
the robust, yet puzzling, experimental finding that people
typically cooperate in 2ONPD (e.g., Fehr & Gächter, 2000;
Keser & van Winden, 2000; Brandts & Schram, 2001).
As we demonstrate, Nobandegani, da Silva Castanheira,
Otto, and Shultz’s (2018) metacognitively-rational model,
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sample-based expected utility (SbEU), not only can provide a
resource-rational mechanistic explanation of cooperation be-
havior in 2ONPD, but also can provide a remarkably accurate
quantitative account of how cooperation rate varies depend-
ing on the parameterization of 2ONPD (i.e., specific payoffs
of the game).

Our paper is organized as follows. After providing a brief
overview of SbEU, we present a general framework permit-
ting us to reduce the problem of strategy selection in ONGs
to the problem of decision-making under risk. We then turn
to modeling cooperation in 2ONPD. Finally, we conclude by
discussing the implications of our work for the debate on hu-
man rationality.

2 Sample-based Expected Utility Model
Extending the decision-making model of Lieder, Griffiths,
and Hsu (2018) to the realm of metacognition, SbEU is
a metacognitively-rational process model of risky choice,
positing that an agent rationally adapts their strategies de-
pending on the amount of time available for decision-making
(Nobandegani et al., 2018). Concretely, SbEU assumes that
an agent estimates expected utility

E[u(o)] =
∫

p(o)u(o)do, (1)

using self-normalized importance sampling (Hammersley &
Handscomb, 1964; Geweke, 1989), with its importance distri-
bution q∗ aiming to optimally minimize mean-squared error
(MSE):

Ê =
1

∑
s
j=1 w j

s

∑
i=1

wiu(oi), ∀i : oi ∼ q∗, wi =
p(oi)

q∗(oi)
, (2)

q∗(o) ∝ p(o)|u(o)|

√
1+ |u(o)|

√
s

|u(o)|
√

s
. (3)

MSE is a standard normative measure of the quality of an
estimator, and is widely adopted in machine learning and
mathematical statistics (Poor, 2013). In Eqs. (1-3), o denotes
an outcome of a risky gamble, p(o) the objective probabil-
ity of outcome o, u(o) the subjective utility of outcome o, Ê
the importance-sampling estimate of expected utility given in
Eq. (1), q∗ the importance-sampling distribution, oi an out-
come randomly sampled from q∗, and s the number of sam-
ples drawn from q∗.

SbEU posits that, when choosing between a pair of risky
gambles A,B, people make their choice depending on whether
the expected value of the utility difference ∆u(o) is negative
or positive (w.p. stands for “with probability”):

A =

{
oA w.p. PA
0 w.p. 1−PA

(4)

B =

{
oB w.p. PB
0 w.p. 1−PB

(5)

∆u(o) =


u(oA)−u(oB) w.p. PAPB
u(oA)−u(0) w.p. PA(1−PB)
u(0)−u(oB) w.p. (1−PA)PB
0 w.p. (1−PA)(1−PB)

(6)

In Eq. (6), u(·) denotes the subjective utility function of a
decision-maker. Following Nobandegani et al. (2018), and
consistent with prospect theory (Kahneman & Tversky, 1979;
Tversky & Kahneman, 1992), in this paper we assume a stan-
dard S-shaped utility function u(x) given by:

u(x) =
{

x0.85 if x≥ 0,
−|x|0.95 if x < 0.

(7)

Nobandegani et al. (2018) recently revealed that SbEU pro-
vides an account of the availability bias, the tendency to over-
estimate the probability of events that easily come to mind
(Tversky & Kahneman, 1973), and can accurately simulate
the well-known fourfold pattern of risk preferences in out-
come probability (Tversky & Kahneman, 1992) and in out-
come magnitude (Markovitz, 1952; Scholten & Read, 2014).
Notably, SbEU is the first rational process model to score
near-perfectly in optimality, economical use of limited cog-
nitive resources, and robustness, all at the same time (see
Nobandegani et al., 2018; Nobandegani et al., 2019a).

3 From One-shot, Non-cooperative Games to
Multi-alternative Risky Choice

In this section, we present a general framework allowing us
to conceptualize any ONG as a set of risky gambles S . Im-
portantly, this framework permits us to reduce the problem of
strategy selection in ONGs to the problem of risky decision-
making. By re-framing the problem this way, the strategy se-
lected by an agent in an ONG corresponds to the risky gamble
that the agent would choose among the set of available gam-
bles S .1

Without loss of generality, and for ease of exposition, we
consider the case of a 2-player, one-shot, non-cooperative
game (2ONG) here. Extending the results to the general case
of an n-player, one-shot, non-cooperative game is straightfor-
ward.

Consider a generic 2ONG whose payoff matrix is given in
Fig. 1. The game has two players: Player 1 (Row Player)
and Player 2 (Column Player). Player 1 has two pure strate-
gies to choose between: the strategy corresponding to choos-
ing the top row (Top Strategy) and the strategy correspond-
ing to choosing the bottom row (Bottom Strategy). Similarly,
Player 2 has two pure strategies to choose from: the strat-
egy corresponding to choosing the left column (Left Strat-
egy) and the strategy corresponding to choosing the right
column (Right Strategy). From the perspective of Player 1,
Player 2 selects the Left Strategy with probability Pl , and the

1We should note that our framework naturally handles “mixed
strategies” wherein the agent probabilistically chooses among the set
of possible “pure strategies.” The validity of this claim follows from
the key understanding that the choice between the set of available
gambles S would be also made probabilistically.
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Figure 1: Payoff matrix for a generic 2-player, one-shot, non-
cooperative game (2ONG). For example, if Player 1 (Row
Player) selects the Top Strategy and Player 2 (Column Player)
selects the Left Strategy, Player 1 and Player 2 receive payoffs
a and x, respectively.

Right Strategy with probability Pr = 1−Pl . Likewise, from
the perspective of Player 2, Player 1 selects the Top Strategy
with probability Pt , and the Bottom Strategy with probability
Pb = 1−Pt . As such, Player 1 is essentially choosing between
the two gambles T and B:

T =

{
a w.p. Pl
b w.p. 1−Pl

(8)

B =

{
c w.p. Pl
d w.p. 1−Pl

(9)

with gambles T,B corresponding to choosing the Top Strat-
egy and the Bottom Strategy, respectively, and Player 2 is
essentially choosing between the two gambles L and R:

L =

{
x w.p. Pt
y w.p. 1−Pt

(10)

R =

{
v w.p. Pt
w w.p. 1−Pt

(11)

with gambles L,R corresponding to choosing the Left Strat-
egy and the Right Strategy, respectively.

The line of reasoning presented above shows that the prob-
lem of strategy selection for a player in 2ONGs can be for-
mally reduced to the problem of deciding between two risky
gambles (T,B for Row Player and L,R for Column Player).
By the same logic, more generally, the problem of strategy
selection for a player in an n-player ONG (with each player
having n pure strategies to choose from) can be formally re-
duced the problem of deciding between n risky gambles.

As evidenced by Eqs. (8-9) depending on the parameter
Pl , Player 1’s choice between T and B explicitly depends on
Player 1’s conception of the probability with which Player 2
would select the Left Strategy (i.e., Pl). Likewise, as evi-
denced by Eqs. (10-11), Player 2’s choice between L and R
explicitly depends on Player 2’s conception of the probability
with which Player 1 would select the Top Strategy (i.e., Pt ).

As a case-study, in the next section we turn our attention
to Prisoner’s Dilemma, and we show that, together with the

general way of reducing ONGs to risky decision-making dis-
cussed above, SbEU can accurately explain cooperation in
2ONPDs, thereby providing a process-level, rational basis for
cooperation in 2ONPDs.

4 Cooperation in One-shot, Non-cooperative
Prisoner’s Dilemma

A wealth of real-life scenarios are modeled as an instance
of Prisoner’s Dilemma, e.g., conflict of two prisoners inde-
pendently questioned by the police (Kaminski, 2003), cartel
problems (Osborne, 1976), the conflict of two superpowers
who engage in a nuclear arms race (Wiesner & York, 1964),
doping in sports (Savulescu, Foddy, & Clayton, 2004; Hau-
gen, 2004), and global warming (Milinski et al., 2008).

Although, normatively, one should never cooperate in one-
shot, non-cooperative Prisoner’s Dilemma games, substantial
experimental evidence shows that people typically cooperate
in 2ONPDs (e.g., Dawes & Thaler, 1988; Fehr & Gächter,
2000; Keser & van Winden, 2000; Brandts & Schram, 2001).

In a 2ONPD, each player has two strategies to choose
from: either to cooperate or to defect. The payoff matrix of a
generic 2ONPD is shown in Fig. 2.
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Figure 2: Payoff matrix of a generic 2-player, one-shot, non-
cooperative Prisoner’s Dilemma (2ONPD), where t > r > p>
v. For 2ONPDs, the constraint r > p ensures that mutual
cooperation is superior to mutual defection, while the con-
straints t > r and p > v grant that defection is the dominant
strategy for both players. Players can either cooperate or de-
fect.

According to the general framework presented in the previ-
ous section, assuming that (from the perspective of a player)
the other player would cooperate with probability Pc, a player
is essentially choosing from the following two risky choices:

Cooperate =
{

r w.p. Pc
v w.p. 1−Pc

Defect =
{

t w.p. Pc
p w.p. 1−Pc

According to the normative principle of least-informative
priors (i.e., those prior distributions attaining highest en-
tropy), having no priori knowledge of, or any opportunity to
learn through interactions about, her opponent—due to the
one-shot, non-cooperative nature of the game—it is rationally
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justified for a player to assume that Pc = 0.5. Accordingly,
throughout this paper we make the assumption that Pc = 0.5.

Recent work has provided mounting evidence suggesting
that people often use very few samples in probabilistic judg-
ments and reasoning (e.g., Vul et al., 2014; Battaglia et al.
2013; Lake et al., 2017; Gershman, Horvitz, & Tenenbaum,
2015; Hertwig & Pleskac, 2010; Griffiths et al., 2012; Ger-
shman, Vul, & Tenenbaum, 2012; Bonawitz et al., 2014;
Nobandegani et al., 2018; Lieder, Griffiths, Huys, & Good-
man, 2018). Consistent with this finding, throughout this pa-
per we assume that a player draws very few samples (s = 1;
see Eqs. (2-3)) when deciding between cooperation and de-
fection in 2ONPDs—except for Sec. 4.3 in which we directly
investigate the effect of number of samples s on cooperation.

Under these justified assumptions (i.e, s = 1 and Pc = 0.5),
in the following two subsections we show that Nobandegani
et al.’s (2018) metacognitively-rational model, SbEU, accu-
rately explains how cooperation rate varies depending on the
parameterization of a 2ONPD.

4.1 Manipulation of Cooperation Index
Introduced by Rapoport and Chammah (1965), cooperation
index (CI) is a concrete measure of cooperativeness in 2ON-
PDs; CI is a property of the experimental task. For a 2ONPD
with a generic payoff matrix shown in Fig. 2, CI is given by
(Rapoport & Chammah, 1965):

CI =
r− p
t− v

. (12)

As for any 2ONPD holds t > r > p > v (see Fig. 2), it follows
that 0 < CI < 1. (The latter result follows from having t−v >
r− p > 0.)

Rapoport and Chammah (1965) experimentally demon-
strated a linear relationship between CI and cooperation
rate, with people tending to cooperate more as CI increases.
Several studies have replicated this finding (e.g., Steele &
Tedeschi, 1967; Vlaev & Chater, 2006).

Next, we show that SbEU can remarkably accurately ac-
count for this finding. To test how the cooperation rate pre-
dicted by SbEU changes as CI increases, we use nine repre-
sentative 2ONPD games from Vlaev and Chater (2006, Ta-
ble 1) which allow us to systematically vary CI equidistantly
between 0.1 and 0.9. Recall that 0 < CI < 1. We simulate
N = 100,000 participants, with s = 1 and Pc = 0.5.

As Fig. 3 demonstrates, there is a significant positive, linear
relationship between CI and the cooperation rate predicted
by SbEU (Pearson’s r = .9998, Kendall’s τ = 1, Spearman’s
ρ = 1, Ps < 10−5).

In the next subsection, we directly compare the cooperation
rate predicted by SbEU and human data.

4.2 Manipulation of Defection Payoff p
In a recent experiment investigating the effect of manipula-
tion of defection payoff (i.e., parameter p; see Fig. 2) on co-
operation, Engel and Zhurakhovska (2016) presented partic-
ipants with eleven 2ONPDs; across these stimuli, they sys-
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Figure 3: SbEU (Nobandegani et al., 2018) can accurately
simulate the linear relationship between CI and cooper-
ation rate, experimentally demonstrated by Rapoport and
Chammah (1965).

tematically varied parameter p while keeping the other pa-
rameters fixed (for experimental stimuli see Engel and Zhu-
rakhovska, 2016, Sec. 3).

Fig. 4 shows that SbEU can remarkably accurately account
for Engel and Zhurakhovska’s (2016) observed cooperation
rates, explaining 98% of the variance in the experimental
data (Pearson’s r = .9906, Kendall’s τ = .9909, Spearman’s
ρ = .9977, Ps < .001). In Fig. 4, we simulate N = 100,000
participants, with s = 1 and Pc = 0.5.
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Figure 4: SbEU (Nobandegani et al., 2018) simulates Engel
and Zhurakhovska’s (2016) experimental data on the effect of
manipulation of defection payoff (i.e., parameter p) on coop-
eration in 2ONPDs.
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4.3 The Predictive Relationship between Number
of Samples s and Cooperation

In a recent study, Kanazawa and Fontaine (2013) experimen-
tally investigated the effect of general intelligence (measured
by a Raven’s-type nonverbal test of general intelligence) on
cooperation in 2ONPDs, showing that individuals with higher
general intelligence are less likely to cooperate.

In this section we investigate the predictive relationship be-
tween the number of samples s and cooperation rate in 2ON-
PDs. In the context of SbEU, we operationalize the well-
supported assumption that people with higher general intelli-
gence typically enjoy more cognitive resources, e.g. working
memory (e.g., Colom, Jung, & Haier, 2007; Colom et al.,
2008, Burgess, Gray, Conway, & Braver, 2011) by positing
that these individuals tend to draw more samples.

Consistent with Kanazawa and Fontaine’s (2013) finding,
SbEU predicts that cooperation rate should decrease as the
number of samples s increases; see Fig. 5. In Fig. 5, we adopt
the Kanazawa and Fontaine’s (2013) specific PD problem
given to the subjects (a 2ONPD with r = 3,v = 0, t = 5, p =
1), and simulate N = 100,000 participants with Pc = 0.5.
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Figure 5: SbEU (Nobandegani et al., 2018) predicts that
cooperation rate should decrease as the number of sam-
ples s increases, consistent with the experimental findings of
Kanazawa and Fontaine (2013).

Importantly, SbEU’s prediction depicted in Fig. 5 is sup-
ported by substantial evidence revealing that, in the context
of 2ONPDs, deliberation (which can be readily operational-
ized in terms of drawing more samples) leads to increased
defection rate, thus bringing behavior closer to the prescrip-
tions of the normative standards of game theory (e.g., Rand,
2016).

4.4 Manipulation of Pc

Shafir and Tversky (1992) examined cooperation rates in a
well-known variant of 2ONPD: In some trials, participants
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Figure 6: SbEU (Nobandegani et al., 2018) provides a
resource-rational, process-level explanation of the puzzling
finding of Shafir and Tversky (1992). This finding thus far
has defied any (Bayesian) rational explanation. We simulate
N = 100,000 participants, with s = 1. We use a representa-
tive 2ONPD game from Shafir and Tversky (1992, Fig. 28.2)
with the following parameters: r = 75,v = 25, t = 85, p = 30.

were told what the other player was doing. Unsurprisingly,
when participants were told that the other person decided to
defect, then their probability to cooperate was 0.03; and when
they were told that the other person decided to cooperate, then
their probability to cooperate was 0.16. However, in trials
(within participants design) when participants were not told
what the other person did, the probability to cooperate raised
to 0.37. This pattern of responding has been independently
replicated several times (e.g., Busemeyer, Matthew, & Wang,
2006; Croson, 1999; Li & Taplin, 2002), and has thus far
remained a puzzle for optimal decision theorists to explain.

The present study offers one, and thus far the only,
(Bayesian) rational process-level explanation of this puzzle.
As Fig. 6 shows, SbEU predicts that a participant should have
only a minuscule tendency to cooperate when the other player
is known to either fully cooperate or defect. However, consis-
tent with Shafir and Tversky’s (1992) finding, SbEU predicts
that participants should have a substantially greater tendency
to cooperate when they are maximally uncertain about what
the other player would do. As such, SbEU provides a ratio-
nal explanation of a clear violation of the law of total prob-
ability in 2ONPDs, as demonstrated by Shafir and Tversky
(1992). According to the law of total probability (Durrett,
2010), the cooperation rate under the condition that the oppo-
nent’s choice is unknown must fall between the cooperation
rates observed under the two extreme conditions: full coop-
eration and full defection.

5 General Discussion
Despite its solid normative ground, NE has failed to provide
a satisfying descriptive account of human behavior in many
game-theoretic settings. In this work, we focus on a well-
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documented, yet puzzling, deviation from NE: cooperation
in 2-player, one-shot, non-cooperative, Prisoner’s Dilemma
games (2ONPDs). By way of introducing a general frame-
work allowing us to conceptualize strategy selection in one-
shot, non-cooperative games (ONGs) as the classical problem
of decision-making under risk, we investigate whether (seem-
ingly irrational) cooperation in 2ONPDs could be understood
as an optimal behavior with the mind acting as a miser.

To our knowledge, our work provides the first (but, ad-
mittedly, preliminary) demonstration of how cooperation can
arise from purely selfish, expected-utility maximization under
cognitive limitations. Our findings challenge the widespread
view that observed cooperation in 2ONPD games is primar-
ily due to “cooperation bias” in humans, and are supported by
recent experimental findings revealing little evidence for such
cooperation bias (Pothos et al., 2011). As such, our work re-
futes the (very intuitive) widely-accepted conclusion that “If
players are egoists, cooperation will not be observed in one-
shot PD games” (Cooper et al., 1996).

Concretely, in this work we show that the Nobandegani et
al.’s (2018) metacognitively-rational process model, SbEU,
provides a resource-rational mechanistic explanation of co-
operation in 2ONPDs, and offers an accurate quantitative ac-
count of how cooperation rate varies depending on the pa-
rameterization of a 2ONPD. Furthermore, by operationaliz-
ing higher intelligence in terms of drawing a larger num-
ber of samples in the available time, our work predicts that
more intelligent individuals should tend to cooperate less,
fully consistent with recent experimental findings (Kanazawa
& Fontaine, 2013).

Shafir and Tversky’s (1992) paradoxical finding on the vi-
olation of the law of total probability in 2ONPDs has resisted
explanation by a model governed by classical probability the-
ory (CPT) for nearly three decades. Interestingly, this para-
doxical finding has been recently taken as strong evidence
for quantum-probability models of cognition (e.g., Pothos &
Busemeyer, 2009; Pothos & Busemeyer, 2013). Our work
offers the first, and thus far the only, CPT-based explanation
of Shafir and Tversky’s (1992) paradoxical finding. As such,
our work corroborates the view that decision-making behav-
iors that appear to be inconsistent with CPT, might after all
be reconcilable with CPT when analyzed from an algorith-
mic perspective acknowledging cognitive limitations.

Being primarily inspired by the experimental finding that
deliberation leads to a marked increase in defection rate in
2ONPDs (e.g., Rand, 2016), and applying a dual-process lens
to cooperation in 2ONPDs, some researchers have recently
argued that intuition favors cooperation while deliberation
promotes selfishness (e.g., Rand, Greene, & Nowak, 2012;
Rubinstein, 2007; Rand, 2016). Our work offers a completely
new way of understanding this experimental finding—both
qualitatively and quantitatively.

On the quantitative front, in sharp contrast to a dual-
process perspective, our work presents the first, and thus far
the only, single-process model of cooperation in 2ONPDs,

providing a resource-rational mechanistic explanation of why
deliberation leads to increased defection. According to our
work, it is the optimal use of limited cognitive resources that
underlies deliberation promoting selfishness in 2ONPDs. Re-
latedly, our recent work on modeling fairness in the Ulti-
matum Game (UG) also supports this view (Nobandegani,
Destais, & Shultz, in prep).

On the qualitative side, our work offers a radically different
interpretation of cooperation in 2ONPDs than the one pro-
vided by the classical dual-process account. From a dual-
process perspective, intuition (moderated by System 1) is
good and cooperative while deliberation (moderated by Sys-
tem 2) is evil and uncooperative. However, according to
our singe-process model (SbEU; Nobandegani et al., 2018),
a boundedly-rational agent that selfishly maximizes its ex-
pected utility while optimally using its limited cognitive re-
sources should show the highest cooperation rate as an intu-
itive response, with cooperation rate declining with delibera-
tion. As such, according to our work, humans’ intuitive re-
sponse being to cooperate in 2ONPDs, is still, quite counter-
intuitively, the effect of selfishly maximizing expected utility
while optimally using limited cognitive resources.

Our work contributes to an emerging line of work attempt-
ing to explain human cognition as an optimal use of limited
cognitive resources (rational minimalist program, Nobande-
gani, 2017; Griffiths, Lieder, & Goodman, 2015), thereby
demonstrating that a wide range of human behaviors are ratio-
nal, provided that the computational and cognitive limitations
of the mind are taken into consideration (Simon, 1957).

By demonstrating that SbEU, a recently proposed
metacognitively-rational process model of risky choice
(Nobandegani et al., 2018), can quantitatively account for os-
tensibly irrational cooperation rates in 2ONPDs, our work
bridges between two related, but distinct, areas of research:
game-theoretic decision-making and risky decision-making.
As such, the work presented here brings us a step closer to
developing a unified, mechanistic account of human decision-
making.

Recent work has shown that SbEU can account for the
St. Petersburg paradox, a centuries-old paradox in human
decision-making (Nobandegani, da Silva Castanheira, Shultz,
& Otto, 2019b), and has experimentally confirmed a coun-
terintuitive prediction of SbEU: Deliberation leads people to
move from one well-known bias, framing effect, to another
well-known bias, the fourfold pattern of risk preferences (da
Silva Castanheira; Nobandegani, & Otto, 2019). An impor-
tant line of future work would be to investigate whether SbEU
could also serve as a resource-rational process-level account
of contextual effects in multi-attribute decision-making (e.g.,
the attraction, similarity, and compromise effects), thus bring-
ing us another step closer to developing this unified account
of decision-making.
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Abstract

The St. Petersburg paradox is a centuries-old philosophical
puzzle concerning a lottery with infinite expected payoff,
on which people are, nevertheless, willing to place only a
small bid. Despite many attempts and several proposals, no
generally-accepted resolution is yet at hand. In this work, we
present the first resource-rational process-level explanation of
this paradox, demonstrating that it can be accounted for by a
variant of normative expected-utility-maximization which ac-
knowledges cognitive limitations. Specifically, we show that
Nobandegani et al.’s (2018) metacognitively-rational model,
sample-based expected utility (SbEU), can account for major
experimental findings on this paradox. Crucially, our resolu-
tion is consistent with two empirically well-supported assump-
tions: (1) people use only a few samples in probabilistic judg-
ments and decision-making, and (2) people tend to overesti-
mate the probability of extreme events in their judgment.
Keywords: St. Petersburg Paradox; bounded rationality;
resource-rational process models; expected utility theory; in-
ference by sampling

1 Introduction
Originally proposed in 1738 by Daniel Bernoulli, the St. Pe-
tersburg paradox is a famous economic and philosophical
puzzle concerning a risky gamble on which people are asked
to place a bid. The gamble goes as follows: The house of-
fers to flip a coin until it comes up heads; the house pays $1 if
heads appears on the first trial (aka initial seed); otherwise the
payoff doubles each time tails appears, with this compound-
ing stopping and payment being given at the first heads. The
St. Petersburg gamble is outlined in Table 1.

Event

Payoff

H

$1

TH TTH

$2 $4

Trial 1 2 3 n

TT...TH
(n − 1) tails

$2(n−1)

Table 1: The St. Petersburg gamble. A fair coin is flipped
until the first heads appears. On the nth trial of the gamble,
corresponding to the event of having the first heads appear
on the nth coin flip, the house pays $2(n−1) to the bidder and
the game ends. The expected value (EV) of this gamble is
infinite: EV = $1× ( 1

2 )+ $2× ( 1
4 )+ $4× ( 1

8 )+ $8× ( 1
16 )+

$16× ( 1
32 )+ . . .= $ 1

2 +$ 1
2 +$ 1

2 +$ 1
2 +$ 1

2 + . . .=+∞.

Despite the expected value (EV) of the St. Petersburg gam-
ble being infinite (see Table 1), people are typically willing

to place only small bids on this gamble (e.g., Bottom, Bon-
tempo, & Holtgrave, 1989; Rivero, Holtgrave, Bontempo, &
Bottom, 1990; Kroll & Vogt, 2009; Cox, Sadiraj, & Vogt,
2009; Hayden & Platt, 2009). Under the normative stance
that people should prefer gambles with higher EVs, this para-
dox calls into question human rationality: The EV of the gam-
ble being infinite, people, therefore, should be willing to place
arbitrarily large bids on this gamble, but this is far from what
experimental evidence suggests.

In spite of its innocent appearance, the St. Petersburg para-
dox occupied the minds of many over the past two centuries,
eliciting a variety of reflections and explanations from sev-
eral notable thinkers, including Daniel and Niklaus Bernoulli,
Cramer, de Morgan, Condorcet, Euler, Poisson, and Gib-
bon, Marschack, Cournot, Arrow, Keynes, Stigler, Samuel-
son, von Mises, Ramsey and Aumann (see Arrow, 1951; Au-
mann, 1977; Dutka, 1988; Keynes, 1921; Samuelson, 1960).
Nonetheless, no widely accepted explanation of this paradox
exists to date.

In this work, we ask whether people’s bids on the St. Pe-
tersburg paradox could be understood as an optimal behav-
ior with the mind acting as a cognitive miser. Answering
this question in the affirmative, we show that the St. Pe-
tersburg paradox can be accounted for by a variant of nor-
mative expected-utility-maximization which acknowledges
computational and cognitive limitations. Specifically, we
demonstrate that Nobandegani, da Silva Castanheira, Otto,
and Shultz’s (2018) metacognitively-rational model, sample-
based expected utility (SbEU), can account for major experi-
mental findings on the St. Petersburg paradox.

In the present study, our efforts are simultaneously guided
by two well-supported observations about human judgment
and decision-making under risk: (1) mounting evidence sug-
gests that people often use very few samples in probabilistic
judgments and reasoning (e.g., Vul et al., 2014; Battaglia et
al. 2013; Lake et al., 2017; Gershman, Horvitz, & Tenen-
baum, 2015; Hertwig & Pleskac, 2010; Griffiths et al., 2012;
Gershman, Vul, & Tenenbaum, 2012; Bonawitz et al., 2014;
Nobandegani et al., 2018; Lieder, Griffiths, Huys, & Good-
man, 2018), and (2) people overestimate the probability of ex-
treme events in their judgments (e.g., Tversky & Kahneman,
1972; Ungemach, Chater, & Stewart, 2009; Burns, Chiu, &
Wu, 2010; Barberis, 2013; Lieder et al., 2018). As we discuss
in the next section, previous explanations of the St. Petersburg
paradox fail to respect at least one of these observations.

Our paper is organized as follows. We begin by present-
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ing a brief historical overview of major explanations of the
St. Petersburg paradox. After providing a brief overview of
SbEU, we turn to modeling four major experimental findings
on the St. Petersburg paradox. We conclude by discussing the
implications of our work for the debate on human rationality.

2 A Brief Historical Overview of the Paradox
In this section, we present a brief overview of major resolu-
tions of the St. Petersburg paradox, followed by notable cri-
tiques of them.

It is worth noting that most of the work on the St. Peters-
burg paradox thus far has been theoretical or philosophical.
Comparatively little effort has been directed at providing em-
pirical data on the bids people would be willing to place on
the gamble and/or how people’s bids would be affected by
changing focal characteristics of the gamble, e.g. by vary-
ing the initial seed or limiting the number of coin flips in
the gamble (e.g., Bottom, Bontempo, and Holtgrave, 1989;
Rivero, Holtgrave, Bontempo, and Bottom, 1990; Kroll and
Vogt, 2009; Cox, Sadiraj, and Vogt, 2011; Hayden & Platt,
2009; Neugebauer, 2010).
Diminishing marginal utility. Initially presented by Daniel
Bernoulli (1738), the diminishing marginal utility explana-
tion of the St. Petersburg paradox argues that, instead of eval-
uating the expected value (EV) of the gamble (which is infi-
nite, see Table 1), people evaluate the expected utility of the
gamble, with the utility function having a concave form (aka
diminishing marginal utility).

As this explanation fails to account for super-St. Peters-
burg paradoxes in which the gamble’s payoff increases super-
exponentially with every coin flip, recent discussions of this
explanation have to make the further assumption that the util-
ity function is bounded from above (e.g., Aumann, 1977;
Martin, 2008; Menger, 1934; Samuelson, 1977; Vickrey,
1960).

The diminishing marginal utility explanation has been dis-
credited several times, mainly because it over-predicts bids
(Lopes, 1981; Martin, 2008; Menger, 1934; Moritz, 1923;
Samuelson, 1960, 1977). (This is not to say that marginal
utility does not diminish, just that this factor is insufficient to
explain the paradox.) Also, the diminishing marginal util-
ity explanation completely neglects the well-supported ob-
servation that people overestimate the probability of extreme
events in their judgment (e.g., Tversky & Kahneman, 1972;
Ungemach, Chater, & Stewart, 2009; Burns, Chiu, & Wu,
2010; Barberis, 2013; Lieder et al., 2018), mistakenly as-
suming that the subjective probability of a low-probability
extreme event in the St. Petersburg gamble (e.g., to win $2100

with probability 1
2101 ) is equal to its objective probability (e.g.,

1
2101 ). Replacing expected utility with more modern variants
which respect the latter observation, e.g. cumulative prospect
theory (CPT), does not help either, as empirically fit val-
ues strongly over-predict bids in the St. Petersburg paradox
(Blavatskyy, 2005; Rieger & Wang, 2006; Camerer, 2005).

Finitude of resources. Another classic explanation is that

since the amount of money in the world is finite, the gambler
must be skeptical about the ability of the house to pay the
large outcomes of the gamble. Relatedly, it has been argued
that time is finite, and the gambler, knowing he or she cannot
continue playing the game forever, bids less than the expected
value of the gamble. This argument has been expressed, in
various forms, by several scholars (see Savage, 1954; Tversky
& Bar-Hillel, 1983; Vickrey, 1960; Dutka, 1988).

Weaknesses of these arguments have been explicated by
several critics. Bertrand argues that, even if the house cannot
afford to pay the money, unites of currency can be reason-
ably replaced by more plentiful stuff, such as grains of sand,
inches, or molecules of hydrogen, and the risk aversion still
remains (Dutka, 1988). By the same logic, the payment may
even be hypothetical or psychological (Martin, 2008; Au-
mann, 1977).

Ignoring low probabilities. This explanation argues that
people consider events whose probability falls below some
threshold to be impossible, i.e. they never happen. For exam-
ple, D’Alembert posited a 1/10,000 threshold, while Niklaus
Bernoulli set the cutoff at a more conservative 1/100,000
(Dutka, 1988).

However, there is a serious flaw with this argument: Ac-
cording to the well-known availability bias (Tversky & Kah-
neman, 1972), people over-represent extreme events, i.e.,
events whose utility is large (Lieder et al., 2018; Nobande-
gani et al., 2018). As low-probability events have (expo-
nentially) larger payoffs in the St. Petersburg gamble, peo-
ple should overestimate those low-probability events, putting
more weights on those low-probability events in their valua-
tion of the gamble.

A key contribution of our work is to provide a resource-
rational process-level explanation of why people are will-
ing to place only a small bid on the gamble despite over-
representing extreme events in their judgment and decision-
making (see Sec. 3). Particularly, past work has shown that
SbEU can account for availability bias (Nobandegani et al.,
2018).

Computing the median instead of the mean. Recently,
Hayde and Platt (2009) proposed that people report the me-
dian (and not the mean) of the distribution associated with the
St. Petersburg gamble as their bid. The median of the distribu-
tion associated with the St. Petersburg gamble is between $1
and $2, and is set by convention at $1.50 (Weissstein, 2008).

The median explanation of Hayde and Platt (2009) is cur-
rently the only model which can simultaneously account for
all the major experimental findings on the St. Petersburg gam-
ble. We investigate all these major experimental findings in
the present study in Sec. 4.

Nevertheless, despite its quantitative coverage, the median
explanation remains too limited to explain the St. Petersburg
paradox, markedly detached from the extensive literature on
human judgment and decision-making. Similar to the dimin-
ishing marginal utility explanation, the median explanation
completely neglects the well-supported observation that peo-
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ple overestimate the probability of extreme events in their
judgment (e.g., Tversky & Kahneman, 1972; Lieder et al.,
2018), mistakenly assuming that the subjective probability of
a low-probability extreme event in the St. Petersburg gamble
is equal to its objective probability.

In this work, we seek to provide a resource-rational process
model of the St. Petersburg paradox that can additionally ac-
count for several well-known effects in decision-making un-
der risk; SbEU meets this criterion (see Sec. 3). As such,
we seek to understand the St. Petersburg gamble as a par-
ticular risky gamble whose process-level explanation should
be consistent with a broader process-level model of decision-
making under risk.

3 Sample-based Expected Utility Model
Extending the cognitively-rational decision-making model of
Lieder, Griffiths, and Hsu (2018) to the realm of metacog-
nition (Cary & Reder, 2002), SbEU is a metacognitively-
rational process model of risky choice that posits that agents
rationally adapt their strategies depending on the amount
of time available for decision-making (Nobandegani et al.,
2018). Concretely, SbEU assumes that an agent estimates ex-
pected utility

E[u(o)] =
∫

p(o)u(o)do, (1)

using self-normalized importance sampling (Hammersley &
Handscomb, 1964; Geweke, 1989), with its importance distri-
bution q∗ aiming to optimally minimize mean-squared error
(MSE):

Ê =
1

∑
s
j=1 w j

s

∑
i=1

wiu(oi), ∀i : oi ∼ q∗, wi =
p(oi)

q∗(oi)
, (2)

q∗(o) ∝ p(o)|u(o)|

√
1+ |u(o)|

√
s

|u(o)|
√

s
. (3)

MSE is a standard normative measure of the quality of an
estimator, and is widely adopted in machine learning and
mathematical statistics (Poor, 2013). In Eqs. (1-3), o denotes
an outcome of a risky gamble, p(o) the objective probabil-
ity of outcome o, u(o) the subjective utility of outcome o, Ê
the importance-sampling estimate of expected utility given in
Eq. (1), q∗ the importance-sampling distribution, oi an out-
come randomly sampled from q∗, and s the number of sam-
ples drawn from q∗.

Recently, Nobandegani et al. (2018) showed that SbEU
can account for availability bias, the tendency to overesti-
mate the probability of events that easily come to mind (Tver-
sky & Kahneman, 1972), and can accurately simulate the
well-known fourfold pattern of risk preferences in outcome
probability (Tversky & Kahneman, 1992) and in outcome
magnitude (Markovitz, 1952; Scholten & Read, 2014). No-
tably, SbEU is the first rational process model to score near-
perfectly in optimality, economical use of limited cognitive
resources, and robustness, all at the same time (Nobandegani
et al., 2018; Nobandegani et al., 2019a).

4 Simulation Results
In this section, we show that SbEU can quantitatively account
for four major experimental findings on the St. Petersburg
paradox: (1) Bids are only weakly affected by truncating the
game (e.g., Cox et al. 2007; Neugebauer, 2010; Hayden &
Platt, 2009), (2) Bids are strongly increased by repeating the
game (Neugebauer, 2010; Hayden & Platt, 2009), (3) Bids
are typically lower than twice the smallest payoff (Hayden &
Platt, 2009), and (4) Bids depend linearly on the initial seed
of the game (Hayden & Platt, 2009).

Recent work has provided mounting evidence suggesting
that people often use very few samples in probabilistic judg-
ments and reasoning (e.g., Vul et al., 2014; Battaglia et al.
2013; Lake et al., 2017; Gershman, Horvitz, & Tenenbaum,
2015; Hertwig & Pleskac, 2010; Griffiths et al., 2012; Ger-
shman, Vul, & Tenenbaum, 2012; Bonawitz et al., 2014;
Nobandegani et al., 2018; Lieder, Griffiths, Huys, & Good-
man, 2018). Consistent with this finding, in the present study
we assume that bidders draw only one sample (s = 1; see
Eqs. 2-3) when evaluating their (subject) expected utility of
the St. Petersburg gamble.

Concretely, we use the Metropolis–Hastings Markov chain
Monte Carlo (MCMC) method—a well-known rational pro-
cess model for sampling from a probability distribution of
interest—to generate a single sample (s = 1) from the impor-
tance distribution q∗ given in Eq. 3. MCMC methods have
been successful in simulating important aspects of a wide
range of cognitive phenomena, e.g., temporal dynamics of
multistable perception (Gershman et al., 2012; Moreno-Bote
et al., 2011), developmental changes in cognition (Bonawitz,
Denison, Griffths, & Gopnik, 2014), category learning (San-
born et al., 2010), and accounting for many cognitive biases
(Nobandegani et al., 2018; Dasgupta et al., 2016).

Also, consistent with prospect theory (Kahneman & Tver-
sky, 1979) and cumulative prospect theory (Kahneman &
Tversky, 1992), in this paper we assume a standard S-shaped
utility function u(x) given by:

u(x) =
{

x0.35 if x≥ 0,
−|x|0.45 if x < 0.

(4)

4.1 Bids are weakly affected by truncating the
game

In the original St. Petersburg gamble, there is no a priori
upper-bound on number of coin flips; theoretically it can con-
tinue indefinitely. In a truncated variant of the St. Petersburg
gamble, some a priori upper-bound is placed on the number
of coin flips. Several experimental studies have shown that
bids that people are willing to offer to play the St. Petersburg
gamble are only weakly affected by truncating the game (Cox
et eal., 2007; Cox et al., 2008, 2009; Hayden & Platt, 2009).
This finding is generally taken as evidence for people ignor-
ing small-probability events in the game (Neugebauer, 2010).

Recently, Hayden and Platt (2009) investigated bids for the
St. Petersburg gamble truncated at 3 flips (maximum payoff:
$8, EV: $2.50), 5 flips (maximum payoff: $32, EV: $3.50),
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Figure 1: Hayden and Platt’s (2009) experimental data on
the effect of truncation on bids for the St. Petersburg gamble.
Adapted from Hayden and Platt (2009).
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Figure 2: SbEU (Nobandegani et al., 2018) can accurately
simulate the experimental data of Hayden and Platt (2009) on
the effect of truncation on bids for the St. Petersburg gamble.
Error bars indicate ± 1 SEM.

8 flips (maximum payoff: $256, EV: $5), 10 flips (maxi-
mum payoff: $1024, EV: $6) and 15 flips (maximum payoff:
$32,768, EV: $8.50); their experimental data are shown in
Fig. 1.

Fig. 2 shows that SbEU can account for the experimental
data of Hayden and Platt (2009). In Fig. 2, we simulate N =
1000 participants, with s = 1.

4.2 Bids rise with repetitions of the game
Recently, Hayden and Platt (2009) experimentally showed
that bids to play the (un-truncated) St. Petersburg gamble are
strongly affected by repeating the game, with people willing

to place higher bids with a larger number of game repetitions.
Fig. 3 shows that SbEU can qualitatively simulate people’s

tendency to place higher bids for a larger number of game
repetitions, as experimentally shown by Hayden and Platt
(2009). In Fig. 3, we simulate N = 1000 participants, with
s = 1.

1 2 3 4 5 6 7 8 9 10

Number of Game Repetitions

0

2

4

6

8

10

12

14

16

18

M
od

el
 M

ea
n 

B
id

 P
re

di
ct

io
n 

($
)

Figure 3: SbEU (Nobandegani et al., 2018) can account for
the experimental finding of Hayden and Platt (2009) showing
that people willing to place higher bids for a larger number
of game repetitions (Pearson’s r = .9998, Kendall’s τ = 1,
Spearman’s ρ = 1, Ps < .001).

4.3 Bids are typically lower than twice the smallest
payoff

In their recent work, Hayden and Platt (2009) showed that
bids to play the (un-truncated) St. Petersburg gamble are typ-
ically lower than twice the smallest payoff of the game.

Fig. 4 shows that SbEU can account for this experimental
finding of Hayden and Platt (2009). In Fig. 4, we simulate
N = 1000 participants, with s = 1.

4.4 Bids depend linearly on the initial seed
Interestingly, Hayden and Platt (2009) showed that bids to
play the (un-truncated) St. Petersburg gamble depend linearly
on the initial seed of the game, thus providing a quantita-
tively well-characterized criterion for evaluating a computa-
tional account.

Fig. 5 shows that SbEU can accurately account for this
experimental finding of Hayden and Platt (2009) (Pearson’s
r = .9758, Kendall’s τ = 0.9556, Spearman’s ρ = .9879,
Ps < .001). In Fig. 5, we simulate N = 1000 participants,
with s = 1.

5 General Discussion
The St. Petersburg paradox (Bernoulli, 1738) stands among
the oldest philosophical puzzles of human decision-making,
and has played a pivotal role in the emergence of the concept
of the subjective utility curve, a central concept in economics
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Figure 4: Boxplots of the model’s bids. SbEU can ac-
count for the experimental finding of Hayden and Platt (2009)
showing that people’s bids are typically lower than twice the
smallest payoff (i.e. initial seed) in the St. Petersburg gam-
ble. On each box, the central red mark indicates the me-
dian, and the bottom and top edges of the box indicate the
25th (denoted by q1) and 75th (denoted by q3) percentiles
of the data, respectively. On each box, the whisker ex-
tends to the most extreme data points not considered out-
liers. Outliers are data points that lie outside the interval
[q1−1.5×(q3−q1),q3+1.5×(q3−q1)]), and are not shown
in this plot. The boldfaced black solid line depicts y = 2x.
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Figure 5: SbEU (Nobandegani et al., 2018) can account for
the experimental finding of Hayden and Platt (2009) show-
ing that bids depend linearly on the initial seed of the St. Pe-
tersburg gamble (Pearson’s r = .9758, Kendall’s τ = 0.9556,
Spearman’s ρ = .9879, Ps < .001).

(Dutka, 1988). Despite occupying the minds of many impor-
tant thinkers, eliciting many attempts and several proposals,
no generally-accepted resolution is yet at hand.

In this work, we provide an algorithmic-level account
of major experimental findings on the St. Petersburg para-

dox. Specifically, we show that a single parameterization of
Nobandegani et al.’s (2018) metacognitively-rational model,
SbEU, provides a unified, resource-rational, process-level ex-
planation of (1) why bids are only weakly affected by truncat-
ing the game, (2) why people are willing to place higher bids
for a larger number of game repetitions, (3) why bids are typ-
ically lower that twice the smallest payoff of the game (aka
initial seed), and (4) why bids depend linearly on the initial
seed of the game. As such, Items (1-4) can be understood as
optimal behavior subject to cognitive limitations.

As opposed to the competing median explanation of Hay-
den and Platt (2009) that is too specific to the St. Petersburg
paradox, our work provides a resource-rational process model
of the St. Petersburg paradox that can additionally account
for several well-known effects in decision-making under risk
(Nobandegani et al., 2018), and is fully in line with the much
broader process-level understanding of human probabilistic
judgment and reasoning based on sampling (e.g., Stewart,
Chater, & Brown, 2006; Sanborn & Chater, 2016).

Recent work has shown that SbEU provides a resource-
rational mechanistic account of (ostensibly irrational) coop-
eration in one-shot Prisoner’s Dilemma games, thus success-
fully bridging between game-theoretic decision-making and
risky decision-making (Nobandegani, da Silva Castanheira,
Shultz, & Otto, 2019b). There is also experimental confir-
mation of a counterintuitive prediction of SbEU: Delibera-
tion leads people to move from one well-known bias, fram-
ing effect, to another well-known bias, the fourfold pattern of
risk preferences (da Silva Castanheira; Nobandegani, & Otto,
2019).

Crucially, our explanation retains the well-supported as-
sumption that people overestimate the probability of extreme
events in their judgment and decision-making (Tversky &
Kahneman, 1972; Lieder et al., 2018; Nobandegani et al.,
2018), and is fully in line with mounting evidence suggesting
that people use only a few samples in probabilistic judgments
and reasoning (e.g., Vul et al., 2014; Battaglia et al. 2013;
Lake et al., 2017; Gershman, Horvitz, & Tenenbaum, 2015;
Hertwig & Pleskac, 2010; Griffiths et al., 2012; Gershman,
Vul, & Tenenbaum, 2012; Bonawitz et al., 2014; Nobande-
gani et al., 2018; Lieder, Griffiths, Huys, & Goodman, 2018).

Recently, Blavatskyy (2005) showed that conventional pa-
rameterizations of cumulative prospect theory (CPT; Kahne-
man & Tversky, 1992) do not explain the St. Petersburg para-
dox. As we demonstrate in this work, assuming a standard
S-shaped utility function, as advocated by CPT, suffices for
explaining the St. Petersburg paradox with SbEU (see Eq. 4).

There have been several recent studies (see Lieder & Grif-
fiths, 2018, for a review) attempting to show that many well-
known (purportedly irrational) behavioral effects and cogni-
tive biases can be understood as optimal behavior subject to
computational and cognitive limitations (rational minimalist
program, Nobandegani, 2017; Griffiths, Lieder, & Goodman,
2015). The present study contributes to this line of work
by providing a resource-rational process-level account of a
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centuries-old puzzle concerning human decision-making.
Future work should investigate whether other long-

standing paradoxes of human judgment and decision-making,
e.g., the Ellsburg paradox (Ellsberg, 1961), could be also un-
derstood as optimal behavior subject to cognitive limitations.
We see our work as a step in this direction.
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Abstract

Heuristics are simple, effective cognitive processes that de-
liberately ignore parts of information relevant to decision-
making. Ecological rationality, as an essential part of the
Adaptive Toolbox research program on heuristics, investi-
gates the environmental conditions under which simple heuris-
tics would outperform complex models of decision-making,
thereby providing support for the surprising less-is-more ef-
fect. In this work, we present a new research program, dubbed
formal science of heuristics (FSH), that nicely complements
the ecological rationality research, developing it into a much
richer research program. Concretely, FSH sets to (i) mathe-
matically delineate the broadest class of environmental condi-
tions under which a heuristic is fully optimal, and (ii) formally
investigate how deviations from those conditions would lead
to degradation of performance, thereby allowing for a mathe-
matically rigorous characterization of their robustness. As an
instantiation of the FSH research program, we present several
analytical results aiming to delineate the mildest conditions
granting the optimality of a well-known heuristic: Take The
Best. We conclude by discussing the implications that pursuit
of FSH could have on the science of heuristics.

Keywords: Ecological rationality; one-reason heuristics; for-
mal science of heuristics; Take The Best heuristic

1 Introduction
Heuristics—simple, effective cognitive processes that de-
liberately ignore parts of information relevant to decision-
making—are assumed to underpin much of human judg-
ment and decision-making (e.g., Gigerenzer & Selten, 2001;
Mousavi, Gigerenzer, & Kheirandish, 2016), and are widely
considered to be sub-optimal, attaining higher speed at the
expense of lower accuracy (e.g., Payne et al., 1993; Shah &
Oppenheimer, 2008; Evans and Over, 2010).

Challenging the latter mindset, the influential ecological
rationality research program (as part of the Adaptive Tool-
box theory) maintains that heuristic are well-matched to the
environment they are adopted in (Todd & Gigerenzer, 2007),
and seeks to investigates the environmental conditions un-
der which heuristics would outperform complex models of
decision-making, giving rise to the surprising less-is-more
effect: when less information or computation leads to more
accurate judgments than more information or computation
(Gigerenzer & Gaissmaier, 2011).

Despite great successes, ecological rationality work has
predominantly focused on simulation-based demonstrations
of simple heuristics outperforming complex strategies (e.g.,
Gigerenzer et al., 2008, Gigerenzer & Todd, 1999, Todd &
Gigerenzer, 2000, Hoffrage & Reimer, 2004; Gigerenzer &
Goldstein, 1996), directing comparatively little effort (but

see, e.g., Martignon & Hoffrage, 2002, Hogarth & Karelaia,
2006) toward establishing a mathematically-rigorous charac-
terization of the environmental conditions underpinning the
less-is-more effect — Todd and Gigerenzer (2007) explicitly
call for developing such deep theoretical accounts.

In this work, we present a new research program, dubbed
formal science of heuristics (FSH), that nicely complements
the ecological rationality research, developing it into a richer
research program, and, additionally, permitting mathemati-
cians and computer scientists to make important contributions
to the science of heuristics.

Concretely, FSH pursues the following two objectives. (1)
FSH seeks to mathematically delineate the broadest class of
environmental conditions under which a heuristic is fully op-
timal (i.e., using the standard terminology of computer sci-
ence, the environmental conditions under which a heuristic
serves as a correct algorithm w.r.t. the objective of interest, or,
equivalently, an approximation algorithm with an approxima-
tion ratio of one). (2) FSH aims to formally investigate how
deviations from optimality conditions would lead to degrada-
tion of performance, thereby allowing for a mathematically
rigorous characterization of a heuristic’s robustness. As such,
to provide strongest theoretical support for the robustness of a
heuristic, FSH aims to analytically provide the mildest techni-
cal conditions granting the optimality of a heuristic. Accord-
ing to the Adaptive Toolbox theory, robustness is predomi-
nantly responsible for the less-is-more effect, and plays a cen-
tral role in the success of fast-and-frugal heuristics in every-
day life decisions (e.g., Gigerenzer & Todd, 1999; Gigerenzer
& Gaissmaier, 2011).

With regard to objective (2) mentioned above, one
of the mildest technical conditions worth considering is
distribution-free performance guarantees, widely studied in
statistical learning theory and machine learning (e.g., Valiant,
1984; Kearns, Vazirani, & Vazirani, 1994). As is often the
case, a decision-maker lacks (at least partially) the knowledge
of the regularities of their environment, and, therefore, is not
fully informed as to how information relevant to a decision-
making task of interest is distributed. Distribution-free re-
sults, as the term suggests, establish performance guarantees
that hold true regardless of the probability distribution gov-
erning a decision-making task (e.g., the distribution of at-
tributes in a multi-alternative decision-making task). As such,
distribution-free results provide strong robustness guarantees
while demanding minimal environmental knowledge on the
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part of the decision-maker, thus playing an integral role in the
FSH research program.

We should note that establishing distribution-free perfor-
mance guarantees for a heuristic does not imply that: (1)
the decision-maker is inattentive to their environment, nor
that (2) the decision-maker is not trying to select a heuris-
tic well-matched to the environment — experimental evi-
dence clearly suggests otherwise (e.g., Rieskamp & Otto,
2006; Hoffart, Rieskamp, & Dutilh, 2018; Payne, Bettman,
& Johnson, 1988; Bröder, 2003; Pachur, Todd, Gigerenzer,
Schooler, & Goldstein, 2011). On the contrary, establishing
distribution-free performance guarantees on a heuristic en-
sures that that heuristic is well-matched to the environment,
even when the decision-maker’s knowledge of the environ-
ment is imperfect—a psychologically plausible assumption.

This work is organized as follows. We begin by presenting
an overview of a well-known heuristic: Take The Best (TTB).
As an instantiation of FSH, we then establish several ana-
lytical results, including strong distribution-free performance
guarantees, for TTB. Finally, we conclude by discussing the
implications that pursuit of FSH could have on the science of
heuristics.

2 Take The Best: An Overview
Take The Best (TTB; Tversky, 1969, Gigerenzer, Hoffrage,
& Kleinbölting, 1991) belongs to the class of one-reason
decision-making heuristics which base decisions on only one
attribute value. In its classic form, TTB is concerned with
the task of predicting which of two objects, each possessing
several binary-valued attributes, has a higher value on a given
criterion, e.g., which of two cities has a higher population, or,
which of two cookies would be more delicious.

The machinery of TTB is quite simple: Starting with
the attribute having the highest validity, make pairwise-
comparisons between the attribute values of the two objects;
as soon as the first discriminating attribute is encountered
(i.e., the attribute on which the two objects differ), announce
the object attaining the highest attribute value on the discrimi-
nating attribute to be the winning object. TTB visits attributes
in a descending order of their validities. If no discriminating
attribute is ever encountered, TTB selects the winning object
uniformly at random.1 In TTB, the validity vi of the ith at-
tribute is given by (Gigerenzer et al., 2008):

vi :,
Ri

Ri +Wi
,

where Ri,Wi are the number of correct and incorrect infer-
ences based on the ith attribute alone, respectively.

The efficacy of TTB receives strong empirical support from
a wide range of economic, demographic, environmental, and
other prediction tasks (e.g., Gigerenzer et al., 2008; Czer-
linski, Gigerenzer, & Goldstein, 1999; Chater, Oaksford,

1Without loss of generality, we assume that the decision-maker
initially recognizes all the objects which s/he has to choose from.
Accordingly, the use of recognition heuristic (Gigerenzer et al.,
2008), as the first step of TTB, is implicitly considered in our work.

Nakisa, & Redington, 2003). For example, on the task of
predicting which of two cities has a higher homeless rate,
TTB achieves better prediction accuracy than several com-
petitors, including multiple regression model (Gigerenzer et
al., 2008). More strikingly, Czerlinski, Gigerenzer, and Gold-
stein (1999) empirically showed that, across 20 real-world
prediction problems, on average TTB obtains the best pre-
diction accuracy when competing with several prominent al-
ternatives, including multiple regression and tallying heuris-
tic. Relatedly, on the same 20 real-world prediction problems,
Gigerenzer et al. (2008) empirically show that the predictive
accuracy of TTB came, on average, within three percentage
points of a complex Bayesian network model. More broadly,
when environments are moderately unpredictable and learn-
ing samples are small, as with many social and economic sit-
uations, TTB tends to make inferences as accurately as or
better than multiple regression and neural networks (Chater,
Oaksford, Nakisa, & Redington, 2003).

To provide direct experimental evidence for TTB as a psy-
chological model, Bröder and his colleagues (Bröder 2000;
Bröder and Schiffer 2003) conducted 20 studies, conclud-
ing that TTB is used under a number of conditions such as
when information is costly and the variability of the validity
of the attributes is high. Furthermore, Bröder and Gaissmaier
(2007) and Nosofsky and Bergert (2007) showed that TTB
predicts response times better than weighted additive and ex-
emplar models.

Previous work assessing the prediction accuracy of TTB
has mainly focused on computer simulations, with some work
establishing analytical results formally supporting the effi-
cacy of TTB (e.g., Martignon & Hoffrage, 2002; Hogarth &
Karelaia, 2005, 2006; Baucells, Carrasco, & Hogarth, 2008).

Pursuing the research program proposed by FSH, and con-
trary to past analytical work, in this work we consider a
much broader class of problems involving nonlinear objec-
tive functions (Definitions 1-4) with interactions between at-
tributes being also accounted for (Definition 2). For the
broad class of problems discussed above, we formally estab-
lish conditions granting the optimality of TTB when dealing
with both non-binary, discrete attribute values (Propositions
3, 5, and 6) and continuous attribute values (Proposition 4).
We also analytically investigate a broad class of prediction
problems—involving both structured (Definition 3) and un-
structured noise (Definition 4)—for which only probabilistic
guarantees can be provided. Additionally, and in sharp con-
trast to past analytical work, we provide strong distribution-
free guarantees on TTB for several classes of prediction prob-
lems (Propositions 5, 6, and 8).

3 Instantiating FSH: The Case of TTB
As an instantiation of FSH, in this section we establish sev-
eral analytical results, including strong distribution-free per-
formance guarantees, for TTB.

Before we proceed further, let us formally delineate an ob-
jective function which characterizes a broad class of decision-
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making problems.
Definition 1. (Objective function) Let O1,O2, . . . ,ON de-

note the set of N objects a decision-maker should choose
from. Let also Oi j ∈ {0,1} denote the value of the jth at-
tribute of object Oi where 1 ≤ j ≤ M, and wk denote the
weight corresponding to the kth attribute, Ak. Finally, let
ψ(·) be an arbitrary monotonically-increasing function (i.e.,
∀x : d

dx ψ(x) > 0). Then, the winning object Oi? is the one
whose index i? satisfies the following objective function:

i? :, argmax
i

ψ(
M

∑
j=1

w jOi j). (1)

Therefore, in the case of having only two objects O1,O2 to
choose from, the optimal decision rule is given by:

ψ(
M

∑
j=1

w jO1 j)
O2

Q
O1

ψ(
M

∑
j=1

w jO2 j), (2)

where A
O2

Q
O1

B denotes the following: choose O1 if A > B;

choose O2 if A<B; and choose uniformly at random between
O1,O2 if A = B. �

It is worth noting that in Eqs. (1-2), ψ can be any
monotonically-increasing function, e.g., ψ(x) = ex,ψ(x) =
2x + log(x).

Proposition 1. (Sufficient condition for optimality) If
there exists a k ∈N such that ∀p < k, ∀i, j ∈ {1, . . . ,N}Oip =
O jp and wk > ∑i>k wi, then the following holds true:

∃ j ∈ {1, . . . ,N} ∀i 6= j O jk > Oik⇒ Oi? := O j. (3)

Importantly, Proposition 1 establishes a condition granting
basing decision on only one attribute while preserving opti-
mality with respect to the objective given in (1). As such,
Proposition 1 provides a firm rational basis for the possi-
bility of one-reason decision-making for the broad class of
decision-making problems characterized in Definition 1.

Next, Proposition 2 establishes a condition granting the op-
timality of TTB (when choosing between an arbitrary num-
ber of objects) with respect to the objective given in (1).

Proposition 2. (Generalizing TTB to N-object predic-
tion tasks) Let O1,O2, . . . ,ON denote the set of N objects
a decision-maker is to choose from. Let also wk denote the
weight corresponding to the kth attribute (see Definition 1),
and vk denote the validity of the kth attribute. If ∀k wk = vk

and ∃r ∈ R>2 s.t. ∀k vk ≤ (
1
r
)vk−1, then TTB is an optimal

strategy for the class of decision-making problems character-
ized in Definition 1. �

In the N-object setting (as in Proposition 2), TTB works
as follows: Starting with the attribute having the highest va-
lidity, compare attribute values across the N objects; as soon
as the first discriminating attribute is encountered (i.e., the
attribute on which at least two objects differ), exclude from
consideration those objects faring worse on the discriminat-
ing attribute; announce the object surviving this elimination

process to be the winning object. TTB visits attributes in a
descending order of their validities. If no discriminating at-
tribute is ever encountered, TTB selects the winning object
uniformly at random.

Proposition 3. (Multi-level attribute values) Let
O1,O2, . . . ,ON denote the set of N objects a decision-maker
is to choose from, with each object having M attributes. Let
also Oi j ∈ {0,1, · · · ,θ} denote the value of the jth attribute of
object Oi where 1≤ j ≤M. Finally, let wk denote the weight
corresponding to the kth attribute (see Definition 1), and vk
denote the validity of the kth attribute. If ∀k wk = vk, and

∃r > 1+θ s.t. ∀k vk ≤ (
1
r
)vk−1, then TTB is an optimal strat-

egy for the class of decision-making problems characterized
in Definition 1. �

In simple terms, Proposition 3 analytically establishes a
conditions granting the optimality of TTB (when generalized
to the setting of N objects, each with discrete, multi-level at-
tribute values) with respect to the objective given in (1).

Proposition 4. (Continuous attribute values) Let ∀i ∈
{0,1}, Oi denote the two objects a decision-maker should
choose from, with each object having M attributes. Let also
Oi j ∈ R denote the value of the jth attribute of object Oi. Fi-
nally, let wk denote the weight corresponding to the kth at-
tribute (see Definition 1), and vk denote the validity of the kth

attribute. Assuming that k∗ denotes the index of the discrim-
inating attribute on which TTB halts, and |O1k∗ −O2k∗ | ≤ δ,
the following statement holds true: If ∀k wk = vk, and ∀i, j ∈
{1, . . . ,M} Oi j ≤ U, and ∃r > 1+

U
δ

s.t. ∀k vk ≤ (
1
r
)vk−1,

then TTB is an optimal strategy for the class of decision-
making problems characterized in Definition 1.

Proposition 4 analytically establishes a conditions granting
the optimality of TTB (when choosing between two objects,
each with continuous attribute values) with respect to the ob-
jective given in (1).

Following the line of research proposed by FSH, next we
present our first distribution-free guarantee for TTB.

Proposition 5. (Distribution-free guarantee) Let
O1,O2, . . . ,ON denote the set of N objects a decision-maker
is to choose from, with each object having M attributes. Let
also Oi j ∈ {0,1, · · · ,θ} denote the value of the jth attribute

of object Oi, where {Oi j}i, j
d
v P with P denoting a joint

probability distributions over the set of all attribute values
{Oi j}i, j. Finally, let wk denote the weight corresponding to
the kth attribute (see Definition 1), and vk denote the validity
of the kth attribute. Then, for any joint probability distribu-
tion P the following statement holds true: If ∀k wk = vk, and

∃r > 1+θ s.t. ∀k vk ≤ (
1
r
)vk−1, then TTB is an optimal strat-

egy for the class of decision-making problems characterized
in Definition 1. �

Proposition 5 analytically establishes a condition ensuring
the optimality of TTB (when generalized to the setting of N
objects, each with discrete, multi-level attribute values) with
respect to the objective given in (1), in a strong distribution-
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free manner. It is crucial to note that the optimality guarantee
given in Proposition 5 holds true for any joint distribution P
on the set of all attribute values.

Next, in Definition 2, we formally characterize a broad
class of prediction problems wherein interactions between at-
tribute values are also accounted for.

Definition 2. (Objective function) Let O1,O2, . . . ,ON de-
note the set of N objects a decision-maker should choose
from, and Oi j ∈ {0,1, · · · ,θ} denote the value of the jth at-
tribute of object Oi where 1 ≤ j ≤ M. Additionally, let wk
denote the weight corresponding to the kth attribute, and rpq
denote the weight quantifying the amount of interaction be-
tween the pth and the qth attributes. Finally, let χ(·) be an ar-
bitrary monotonically-increasing function (i.e., ∀x : d

dx χ(x)>
0). Then, the winning object Oi? is the one whose index i?

satisfies the following objective function:

i? :, argmax
i

χ(
M

∑
j=1

w jOi j +∑
p,q
p 6=q

rpqOipOiq). (4)

Proposition 6. (Distribution-free guarantee) Consider
the class of prediction problems formally characterized in
Definition 2. Let also P denote a joint probability dis-
tributions over the set of all attribute values {Oi j}i, j, i.e.,

{Oi j}i, j
d
v P. Then, for any joint probability distribu-

tion P the following statement holds true: If ∀k wk = vk,
and ∃R ∈ R s.t. ∀p,q ∈ {1, · · · ,M} rpq < R, and ∃r > 1+

θ s.t. ∀k r−1
r− (θ+1)

(M
2

)
θ2R ≤ vk ≤ (

1
r
)vk−1, then TTB is an

optimal strategy for the class of decision-making problems
characterized in Definition 2. �

In simple terms, Proposition 6 formally establishes a
distribution-free result granting the optimality of TTB (when
generalized to the N-object setting, each with discrete, multi-
level attribute values) with respect to the broad class of pre-
diction problems characterized in Definition 2 (with interac-
tions between attributes also accounted for).

Next, Definition 3 formally characterizes a broad class of
predictions problems under the noisy-world setting wherein
the noise component contaminating the prediction problem
has a particular structured form: Gaussian distribution.

Definition 3. (Objective function) Let ∀i ∈ {0,1}, Oi de-
note the two objects a decision-maker should choose from,
and Oi j ∈ {0,1} denote the value of the jth attribute of object
Oi where 1 ≤ j ≤M. Additionally, let wk denote the weight
corresponding to the kth attribute, and Ci denote the score the
object Oi attains on the criterion of interest to the prediction
task (e.g., the population of a city, if the prediction task is
to predict which of two cities has a higher population). Fi-
nally, let χ(·) be an arbitrary monotonically-increasing func-
tion (i.e., ∀x : d

dx χ(x)> 0). Then, consider the class of predic-
tion problems satisfying the following:

Ci :, χ(
M

∑
j=1

w jOi j)+ ε, ε
d∼N (0,σ2). (5)

Proposition 7. (Noise-level-independent probabilistic
guarantee) Consider the class of prediction problems for-
mally characterized in Definition 3. Then, for any noise vari-
ance σ2 > 0, the following statement holds true: If ∀k wk = vk,

and ∃r ∈ R>2 s.t. ∀k vk ≤ (
1
r
)vk−1, then the probability with

which TTB correctly selects the superior object is ≥ 0.5.
Proposition 7 formally establishes the following important

result for the inherently-noisy world characterized in Defini-
tion 4: For any noise level σ2, TTB dominates the selection-
purely-by-chance strategy which select the winning object
uniformly at random. This result importantly demonstrates
that, independent of noise level σ2, the adoption of TTB (in-
stead of the selection-purely-by-chance strategy) is rationally
justified for the inherently-noisy, class of prediction problems
formally characterized in Definition 3.

Definition 4 below formally characterizes a broad class of
predictions problems, once again, under the noisy-world set-
ting; this time, however, the noise component contaminating
the prediction problem has an unstructured form.

Definition 4. (Probabilistic guarantee) Let ∀i ∈ {0,1},
Oi denote the two objects a decision-maker should choose
from. Let also Oi j ∈{0,1} denote the value of the jth attribute
of object Oi, wk denote the weight corresponding to the kth

attribute, and Ci denote the score the object Oi attains on the
criterion of interest to the prediction task (e.g., the population
of a city, if the prediction task is to predict which of two cities
has a higher population). Finally, let φ(·) be a monotonically-
increasing function (i.e., ∀x : d

dx φ(x)> 0). Then, consider the
class of prediction problems satisfying the following:

P(C1 >C2|φ(
M

∑
j=1

w jO1 j)> φ(
M

∑
j=1

w jO2 j)≥ 1−η, 0 < η� 1.

Proposition 8. (Distribution-free guarantee) Consider
the class of prediction problems formally characterized in
Definition 4. Let also P denote a joint probability dis-
tributions over the set of all attribute values {Oi j}i, j, i.e.,

{Oi j}i, j
d
v P. Then, for any joint probability distribution

P the following statement holds true: If ∀k wk = vk, and

∃r ∈R>2 s.t. ∀k vk ≤ (
1
r
)vk−1, then the probability with which

TTB mistakenly selects the inferior object is less than η,
where 0 < η� 1. �

Proposition 8 establishes a distribution-free condition suf-
ficient to grant that the probability of TTB erring in a predic-
tion task belonging to the class of problems characterized in
Definition 4 is minuscule.

4 General Discussion
In this work, we presented a research program, dubbed for-
mal science of heuristics (FSH), that nicely complements the
influential ecological rationality research program (Todd &
Gigerenzer, 2007), developing it into a much analytically-
richer scientific endeavor. By pursuing its two stated goals
(see Introduction section), FSH seeks to (i) mathematically
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delineate the key premise ecological rationality rests on—that
heuristics are well-matched to the environments in which they
are adopted (Todd & Gigerenzer, 2007)—and (ii) establish
the strongest analytical results supporting this premise. After
all, to rigorously and thoroughly answer whether a heuristic
is well-matched to its environment, we need to formally char-
acterize the broadest class of environments for which that
heuristic performs (near) optimally, and experimentally in-
vestigate how often people use that heuristic in such environ-
ments.

Instantiating FSH with the well-known Take The Best
(TTB) heuristic, and contrary to past analytical work, in
this work we considered a much broader class of predic-
tion problems involving nonlinear objective functions (Def-
initions 1-4) with interactions between attributes also being
accounted for (Definition 2). For the classes discussed above,
we formally established conditions granting the optimality of
TTB when dealing with both non-binary, discrete attribute
values (Propositions 3, 5, and 6) and continuous attribute
values (Proposition 4). We also analytically investigated a
broad class of prediction problems—involving both struc-
tured (Definition 3) and unstructured noise (Definition 4)—
for which only probabilistic guarantees can be provided. Ad-
ditionally, and in sharp contrast to past analytical work, we
also provided distribution-free guarantees on TTB for several
classes of prediction problems (Propositions 5–6, and 8).

Our work also serves as a potential template for how FSH
could be pursued: For a given heuristic, formally characterize
the class of decision-making problems with respect to which
the performance of the heuristic is to be analytically inves-
tigated, followed by analytical results rigorously delineating
the extent to which that heuristic is performing (near) opti-
mally for that class. A generic approach would be to start
with a narrow class (containing a set of restricted problems)
for which a heuristic is performing (near) optimally; and then
gradually expand that class into a larger one and see if previ-
ously established performance guarantees still hold (or to es-
tablish new performance guarantees, in case they fail to hold).
A similar approach has been widely and productively used in
theoretical computer science and computational complexity
theory, e.g., through formally introducing many complexity
classes, with one class serving as a relaxation of another.

Our particular focus on TTB in this work was only meant to
showcase how the mindset advocated by FSH could be pur-
sued in the case of a given heuristic—in our case, the Take
The Best (TTB) heuristic. Ultimately, a serious investiga-
tion of FSH should lead to having mathematically rigorous
answers to the two stated goals of FSH for every experimen-
tally well-documented heuristic that people use, e.g., the Tal-
lying heuristic (Gigerenzer & Gaissmaier, 2011), the Priority
heuristic (Katsikopoulos & Gigerenzer, 2008), the Recogni-
tion heuristic (Gigerenzer & Gaissmaier, 2011), and the Min-
imalist heuristic (Gigerenzer et al., 2008). By now, a large
number of heuristics are documented in the literature, many
of which still lack an adequate characterization of the en-

vironmental conditions under which they are (near) optimal
and/or how deviations from those conditions would lead to
performance degradation. Thus, future work following FSH
should address this analytical shortcoming.

Rieskamp and Otto (2006) show that people are sensitive
to the distribution of cues in an environment, appropriately
applying either TTB or a weighted additive mechanism, de-
pending on which will be more accurate. However, how peo-
ple are able to determine which type of environment they
are in has largely remained an open question. Establishing
distribution-free guarantees, as advocated by FSH, sheds new
light on this open question, by formally demonstrating that
a heuristic may well yield adequate performance despite the
decision-maker’s possibly incomplete (or, in the worst case,
erroneous) assumptions about her environmental conditions,
thereby liberating her from having a thorough understand-
ing of her environment—a more psychologically plausible
assumption. For example, Proposition 5 establishes a condi-
tion granting the optimality of TTB (with respect to the class
of problems characterized in Definition 1) that holds true for
any joint probability distribution P on the set of attribute val-
ues. This result has an important implication: Even if the
decision-maker makes wrong assumptions about the true un-
derlying distribution P governing the set of attribute values,
adopting TTB still remains to be the optimal strategy (for the
class of problems characterized in Definition 1). Crucially,
the latter statement remains valid regardless of how wrong
the decision-maker’s assumptions about P are.

We must note, however, that the present work (and pur-
suit of FSH, in general) does not address the recent conun-
drum raised by Otworowska et al. (2018) regarding the com-
putational intractability of the Adaptive Toolbox theory. As
Otworowska et al. (2018) analytically demonstrate, there ex-
ists no efficient (i.e., polynomial-time) process that can adapt
toolboxes to be ecologically rational for all possible environ-
ments. A resolution of this complexity-theoretic conundrum
might be attained by restricting the class of environments un-
der consideration, based on the psychologically plausible as-
sumption that the range of environments humans have to deal
with is undoubtedly vast, but not arbitrary.

Pursuit of FSH would have important implications for ex-
perimental wok on heuristics: Every analytical result (how-
ever general it may be) is established under a particular set
of assumptions the validity of which needs to be experimen-
tally confirmed. Experimental work should therefore inves-
tigate the empirical validity of such assumptions. Likewise,
an empirical disconfirmation of an assumption on which an
analytical result rests should call for the development of new
empirically-grounded formal results. Accordingly, pursuit of
FSH yields new experimental work, and, conversely, those
experimental findings guide the development of new analyti-
cal results—a synergetic scientific endeavor.

Finally, pursuit of FSH allows mathematicians and theo-
retical computer scientists to make important contributions
to the science of heuristics by developing a mathematically-
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rigorous foundation for the effectiveness of heuristics in ev-
eryday life decisions. As such, we hope that FSH paves the
way for having a highly interdisciplinary research program on
heuristics wherein analytical and experimental studies, hand
in hand, deepen our understanding of the effectiveness of the
heuristics we live by. We see our work as a step toward that.

Investigations into human judgment and decision-making
have led to the discovery of a multitude of cognitive biases
and fallacies, with new ones continually emerging, leading to
a state of affairs which can be characterized as the cognitive
fallacy zoo! Recently, we have formally presented a princi-
pled way to bring order to this zoo (Nobandegani, Campoli, &
Shultz, 2019). The work presented here, together with recent
formal advances on bringing systematic order to the cognitive
fallacy zoo (Nobandegani, Campoli, & Shultz, 2019), suggest
a fresh formal approach to pursuing the heuristics-and-biases
research program: an approach which aims to lay the formal
foundations of the “unreasonable” effectiveness of the heuris-
tics we live by, and to bring mathematically-rigorous system-
atic order to the cognitive biases ensued by those heuristics.
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Bröder, A. (2000). Assessing the empirical validity of the” take-the-
best” heuristic as a model of human probabilistic inference. Jour-
nal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 26(5), 1332.
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Abstract

How does cooperation arise in an evolutionary context? We ap-
proach this problem using a collective search paradigm where
interactions are dynamic and there is competition for rewards.
Using evolutionary simulations, we find that the unconditional
sharing of information can be an evolutionary advantageous
strategy without the need for conditional strategies or explicit
reciprocation. Shared information acts as a recruitment sig-
nal and facilitates the formation of a self-organized group.
Thus, the improved search efficiency of the collective bestows
byproduct benefits onto the original sharer. A key mecha-
nism is a visibility radius, where individuals have uncondi-
tional access to information about neighbors within a lim-
ited distance. Our results show that for a variety of initial
conditions—including populations initially devoid of prosocial
individuals—and across both static and dynamic fitness land-
scapes, we find strong selection pressure to evolve uncondi-
tional sharing.

Keywords: Collective search; cooperation; evolutionary sim-
ulations; pseudo-reciprocity; prosociality; swarm intelligence

Introduction
Social behavior is structured by the dynamics of the environ-
ment and how we interact with one another. Strategies that
thrive in one context may be poorly suited to others. How do
social behaviors arise in an evolutionary context? And can
the dynamics of social interactions support the emergence of
cooperation without appealing to conditional strategies?

Evolution is often summarized as “survival of the fittest”,
evoking a notion of fierce competition between individuals.
Where is there room for prosociality and cooperation in the
midst of evolutionary competition? One of the early chal-
lenges for Darwin’s theory of evolution (1859) was to explain
the origin of prosocial adaptations that improve the welfare
of others or one’s group as a whole, but at a potential cost to
the individual. Darwin’s explanation appealed to the notion
of group selection, where the costs of altruism are ultimately
justified by increased fitness for the group (Darwin, 1871).
Thus, groups with more prosocial members may outcompete
rival groups. Although group selection offers a potential path-
way for the emergence of cooperation, it often requires strong
assumptions, such as stable group structures and strong com-
petition between groups (Janssen & Goldstone, 2006). With-
out these assumptions, selection at the individual level can
undermine group selection. Thus, a comprehensive under-
standing of prosociality requires a theory of individual selec-
tion (Wilson & Wilson, 2007).

Theories of Cooperation
One traditional explanation for individual selection of proso-
ciality is through the mechanism of kin selection (also known
as inclusive fitness), where recipients of altruistic acts tend to
be genetically related to the donor (Nowak, 2006). Hamil-
ton’s law (1964) states that the costs of prosociality C must
be justified relative to the benefits of the recipient B by ac-
counting for the relatedness of individuals r such that C

B < r.
While kin selection explains prosociality between genetically
similar individuals, Hamilton’s law alone fails to account for
all the social behaviors we see in human society (Rand &
Nowak, 2013; Fehr & Fischbacher, 2003) and in animals
(e.g., Spottiswoode, Begg, & Begg, 2016; Brown, Brown,
& Shaffer, 1991). Many mechanisms have been proposed
in order to justify the evolution of cooperation towards non-
relatives, typically requiring an initial investment of a donor
towards a non-related individual with expectations of reci-
procity or benefits.

Conditional Cooperation. Theories of conditional coop-
eration operate on expectations of future reciprocity, where
seemingly prosocial behavior is ultimately grounded in self-
interest. Often described as impure altruism (Andreoni,
1989), both direct and indirect reciprocity appeal to condi-
tional strategies (e.g., tit for tat; Nowak & Sigmund, 1992),
where individuals conditionally cooperate with each other, so
long as future reciprocation is expected. Direct reciprocity
depends on multiple interactions with the same individual,
while indirect reciprocity typically relies on reputation sys-
tems, where cooperative behavior is used as a social signal
to third-parties (Nowak & Roch, 2007). Conditional cooper-
ation has been widely studied in the context of game theory,
yet simple mechanisms of social or spatial dynamics can also
explain the origins of cooperation (Nowak & May, 1992).

Unconditional Cooperation. Theories of unconditional
cooperation explain the origin of prosocial behavior through
changes in the interaction structure for the donor (Perc,
Gómez-Gardeñes, Szolnoki, Florı́a, & Moreno, 2013). Thus,
behaving prosocially can make it more likely to interact with
other prosocial individuals. Network reciprocity operates on
similar principles as kin selection, but where the cost-benefit
ratio is defined relative to interaction partners (Nowak, 2006).
This approach has shown that by situating agents on a net-
work (Ohtsuki, Hauert, Lieberman, & Nowak, 2006) or in a
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spatial landscape (Nowak & May, 1992), prosocial individu-
als tend to interact more with similar partners, thus creating
self-organized regions where prosociality proliferates (Perc
et al., 2013). It is also possible to replace spatial similar-
ity or network connectivity with some arbitrary feature or tag
(Riolo, Cohen, & Axelrod, 2001), such that individuals with
similar features are more likely to interact with one another.
This provides a useful bridge between individual and group
level mechanisms, because it describes how groups can form
based on spatial, network, or feature similarity.

Two key assumption are made by these theories. The first is
that the initial population already includes multiple prosocial
individuals (Nowak & May, 1992; Ohtsuki et al., 2006). Yet
this doesn’t answer the crucial question of how cooperation
emerges ex nihilo. Secondly, the interaction structures are
more or less static: agents are either embedded in some spa-
tial location (Nowak & May, 1992), as a fixed node in a net-
work (Ohtsuki et al., 2006; Barkoczi, Analytis, & Wu, 2016),
or given a fixed feature tag (Riolo et al., 2001). While groups
can still emerge through the dynamics of evolution, interac-
tion partners remain relatively stationary (but see Janssen &
Goldstone, 2006) and individual dynamics (e.g., search be-
havior) are largely unaccounted for.

Pseudo-reciprocity is a related theory of unconditional co-
operation, where the key difference from network reciprocity
is that the fitness of the donor does not depend on the pheno-
type of the recipient. Thus, prosocial behavior can be ben-
eficial without depending on the presence of other proso-
cial individuals in a group. Prosociality can alter the so-
cial environment for the donor (e.g., by sharing information
about resources), such that the donor gains byproduct bene-
fits through self-interested behavior of the recipients (Connor,
1986; Brown et al., 1991). For example, Cliff Swallows
(Hirundo pyrrhonota) share information about the location of
insect swarms through a unique vocal signal (i.e., a food call),
which attracts other peers. While it is difficult to track the in-
sect swarms individually, the collective recruited by the infor-
mation sharer tracks the swarm more efficiently. Hence, even
without expectations of reciprocity (i.e., future vocal signals
from peers), each individual benefits by behaving prosocially
and sharing information (Brown et al., 1991). Thus, pseudo-
reciprocity offers a mechanism where individuals can be un-
conditionally prosocial towards all the members of the group,
rather than towards a restricted set of cooperative partners.

Goals and Scope
Here, we analyze the emergence of cooperation through shar-
ing information. We use evolutionary simulations to study
how individual selection pressure can give rise to sharing,
even from initial populations void of prosocial individuals.
We simulate agents searching for rewards on a high dimen-
sional fitness landscape, where the flow of information is dy-
namically and spatially defined. Agents have a binary phe-
notype that defines whether or not they share information
unconditionally to the rest of the population. We show that
this global sharing signal acts as a recruitment mechanism
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Figure 1: Evolutionary Simulations. a) We vary three main environ-
mental parameters: group size, the visibility radius, and competition
level. Group size k specifies the number of agents interacting to-
gether. Visibility radius r defines the maximum Chebyshev distance
between two agents where information can be passively observed.
Competition level c defines the decay rate of an exponential com-
petition function that determines how agents split rewards (higher
values of c result in splitting over larger distances. b) Each agent is
defined by a sharing policy (either sharer or non-sharer) and an in-
novation rate (between 0 and 1). c) We use evolutionary simulations
over 200 generations to see which individual genes emerge through
selection pressure and mutation.

that facilitates the self-organization of dynamic groups. Be-
cause groups are more effective at finding rewards than lone
individuals, we find that sharing emerges and dominates our
evolved populations across a large range of initial conditions
and in both static and dynamic fitness landscapes.

Collective Search Simulations
We use a multi-agent framework based on Bouhlel, Wu,
Hanaki, and Goldstone (2018), who found that sharing in-
formation can be beneficial to the donor, even in competitive
contexts and without expectations of reciprocity. The costs
of sharing information (through resources lost to competi-
tion) can be outweighed by the byproduct benefits of coop-
eration. A simple coordination mechanism of a local visi-
bility radius (i.e., nearby agents have access to each others’
rewards) facilitates the formation of a self-organized collec-
tive. Thus, sharing information acts as a recruitment sig-
nal, attracting others to the donor, and increasing the likeli-
hood of future social interactions (via the visibility radius).
These future interactions are the source of byproducts ben-
efits for the sharer. Here, we use evolutionary simulations
and more extreme levels of competition (compared to Bouh-
lel et al., 2018) in order to study how sharing interacts with
innovation, and under which initial conditions there exists in-
dividual selection pressure for unconditional sharing, lead-
ing to group-level cooperation (Goldstone & Janssen, 2005).
Code for reproducing these results is publicly available at
https://github.com/alantump/adaptiveSharingEvolution.
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Methods
Adopted from Bouhlel et al. (2018), we simulate groups of
k agents searching for rewards on a 10-dimensional1 fitness
landscape over T = 50 trials. On each trial t, agents can use
either individual or social information (see below) to search
for rewards on the fitness landscape. Payoffs are proportional
to the inverse Manhattan distance of agent i from a global
optimum Ω:

f (xti) =
1

1+‖xti−Ω‖1
(1)

where xti contains the coordinates for each dimension m =
1, ...,10 of the current location of agent i at trial t. The coor-
dinates of the global optimum Ω are sampled from a uniform
distribution U(1,10) for each dimension.

Competition. The payoffs f (xti) are subject to competi-
tion, which we implement by having agents split rewards
when occupying nearby spaces in the environment. Specif-
ically, we use a competition parameter c that defines an ex-
ponentially decaying competition metric C(xti,xt j) between
each pair of agents i and j:

C(xti,xt j) = exp(−
∥∥xti−xt j

∥∥
1

c
); (2)

Larger values of c induce higher competition over larger dis-
tances (see Fig. 1a), while in the limit of c→ 0, competition
only occurs when agents occupy the exact same solution (as
in Bouhlel et al., 2018). Splitting of rewards is proportional
to the sum of competition values for all other agents. Hence,
for location xti, the acquired reward is:

R(xti) =
f (xti)

1+∑ j 6=i C(xti,xt j)
(3)

Individual search. Each agent begins at a random starting
location, where each dimension is sampled from a uniform
distribution U(1,10). On every trial, each agent i stores the
location xt j and reward value R(xti) of both individually and
socially acquired information (see information sharing and
visibility radius). We use a local search strategy, where the
agent selects the location with the largest observed reward
value x∗ti up until time t, and then has an opportunity to inno-
vate on it by modifying each value in x∗ti by a discrete value
in {−1,0,1}.

We define the Innovation rate as the probability that an
agent innovates, where otherwise x∗ti is copied verbatim. If the
agent innovates, we modify each dimension of x∗ti by drawing
from a Binomial distribution centered on zero∼ B

(
2, 1

2

)
−1.

Intuitively, half of the time there is no change along that di-
mension, while changes of both −1 or +1 are equally likely,
each with a probability of 25%.

1 Bouhlel et al. (2018) studied environments of different dimen-
sionality, while here we use 10-dimensional environments as a pro-
totypical example.

Social information. Depending on their sharing policy,
agents are deterministically either sharers or non-sharers.
Sharers will unconditionally share information about both re-
ward location xti and value R(xti) to all other agents, while
non-sharers will withhold it. Sharing information is associ-
ated with an increased cost due to splitting rewards with imi-
tators, but can also confer byproduct benefits by broadcasting
high quality solutions, which are subsequently modified by
group members and improved upon, before being transmitted
back via the visibility radius or by other sharers.

In addition to the global sharing signal, we use a visibil-
ity radius as a feature of the environment. At each trial t,
agents passively provide information about reward locations
and magnitudes to other agents that are within visibility ra-
dius r. For any two agents i 6= j, agent j is visible to agent
i if the maximal distance between the two agents on any di-
mension (i.e., the Chebyshev distance) is not greater than the
visibility radius r:

DChebyshev(xti,xt j) = max
m
|dt

mi−dt
mi| ≤ r (4)

The visibility radius is a coordination mechanism that allows
for localized transmission of information. Whereas the shar-
ing signal is a global mechanism operating at all distances, the
local visibility radius allows for dynamic interaction struc-
tures to emerge and facilitates the spontaneous formation of
spatially coherent groups. Crucially, given the high dimen-
sionality and size of the search space, it is unlikely for any
two agents to fall within the same visibility radius without ex-
plicit information sharing. For example, there is 0.1% proba-
bility of two agent being visible to one another at initialization
for a radius of 2.

Evolutionary Simulations
Inspired by biological evolution, we embed the simulation
framework in an evolutionary algorithm, which uses selection
pressure and mutations over multiple generations to discover
which sets of behavioral parameters evolve. The evolution-
ary algorithm is well suited for our research question because
fitness-maximizing behavior (e.g., willingness to share infor-
mation) depends on the behavior of others in a game theoret-
ical context.

Initial conditions. Beginning with a population of 300
agents, each agent carries genes determining innovation rate
and sharing policy (i.e., sharer or non-sharer). We start with
an initial population consisting of only non-sharers to address
the question of how cooperative behavior can emerge ex ni-
hilo through individual selection. We vary the initial mean
innovation rate in the populations to ensure that the results
of the evolutionary algorithm are not dependent on the start-
ing conditions. The initial values for innovation rate were
sampled from a Beta distribution, with the mean of the distri-
bution sampled from a uniform distribution U(0,1).

For each generation, we repeatedly sample k agents from
the whole population. We simulate these agents performing
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Figure 2: Evolution of sharing and innovation over 200 generations.
a-b) An example where populations evolve high sharing and innova-
tion rates, with group size k = 6, visibility radius r = 4 and compe-
tition level c = 1/128. c-d) An example where individuals adopted
high innovation rates but did not evolve sharing, based on group size
k = 6, visibility radius r = 0 and competition level c = 2. Each col-
ored line represents the average parameter value within a population,
while the black line indicates the average across populations.

collective search, where behavior is determined by their ge-
netic makeup (innovation rate and sharing policy). We repeat
the simulation procedure over 300

k ×5 repetitions, resulting in
approximately 5 simulations per agent in each generation.

Selection and mutation. We select the agents with the
highest fitness to produce genetically similar offspring via
tournament selection. In this selection procedure, we re-
peatedly sample 7 random individuals from the population,
whereby the individual with the highest relative performance
passes its genes onto the next generation. This selection pro-
cess is repeated 300 times in order to produce a new gen-
eration of 300 agents. The genes of the new generation are
exposed to weak mutation to consistently ensure gene vari-
ation, where each gene has a probability of mutation. The
sharing gene mutates with p = .002, whereby a new sharing
policy is drawn from a binomial distribution ∼ B

(
1, 1

2

)
, with

the new policy equally likely to be sharer or non-sharer. The
innovation gene mutates with p = .02, whereby the previous
innovation is modified by adding Gaussian noise∼N(0,0.2).
The innovation rate was truncated between [0,1]. Note that
we chose the mutation probabilities and strengths to be high
enough to ensured constant variation in the gen pool.

The genetic algorithm repeats the process of fitness evalu-
ation, selection, and then reproduction with mutation for 200
generations to ensure the population converges to a stable
outcome. We ran 10 replications of this procedure and re-
port the average evolved parameters of the last 10 generations
(i.e., generations 190 to 200) over each of the 10 replications.
We systematically varied group size (k ∈ [2, ...14]), visibil-
ity radius (r ∈ [0,1,2,3,4]), and competition level (low = 1

128 ;
medium = 1; high = 2) to investigate how the structure of the
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Figure 3: Equilibrium results for different combinations of environ-
mental parameters. a) Agents evolved high sharing rates in low and
medium competitive environments, although sharing was found in
more restricted contexts under high competition (requiring smaller
groups and larger visibility radius values). b) Overall, we find high
levels of innovation, although we also see the trend that larger groups
evolve slightly lower innovation rates.

environment influences the selection of individual character-
istics (sharing and innovation).

Results
When exposed to selection pressure via the evolutionary al-
gorithm, the populations evolved different sharing and inno-
vation rates depending on the environmental parameters (see
Fig. 2 for examples). Figure 3 shows the proportion of sharers
and the innovation rate at equilibrium for different parameter
combinations, where yellow tiles indicate high levels of either
sharing or innovation.

Sharing evolves ex nihilo. Starting from initial conditions
of no sharers in the population, we find that sharing emerges
in the overwhelming majority of our simulation parameters,
and that sharing often dominates the population at close to
ceiling levels (Fig. 3a). However, we also discover the limits
of sharing as an adaptive strategy as we increase the level of
competition for rewards. Under high levels of competition,
only smaller groups with larger visibility radius are able to
support sharing.

Sharing and innovation co-evolve. We find that over the
entire parameter space, all populations evolved high innova-
tion rates (Fig. 3b), although not at ceiling level (i.e., yellow
tiles) compared to sharing behavior. Looking more closely,
we find relatively higher innovation rates in small groups
compared to large groups, with this effect most pronounced
under low or medium levels of competition. Yet, how are
sharing and innovation behaviors related to each other?

To further understand the interaction between strategies,
we ran additional simulations with innovation rate fixed at
low (25%), medium (50%) or high (100%) values. The re-
sults are shown in Figure 4, where we replicate the main find-
ings of the previous simulation for high innovation rate (top
row). However, we find that sharing becomes substantially
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Figure 4: Equilibrium results of sharing for fixed innovation rates
(rows) at various parameter combinations. When the innovation rate
is fixed at 100%, we largely replicate the results in Figure 3. How-
ever, when innovation is fixed at 50%, we find that sharing evolves
in a more restricted set of parameters and exclusively with a visibil-
ity radius of 1 or larger. When there is an innovation rate of 25%,
we find virtually no emergence of sharing.

less adaptive for populations with innovation fixed at low or
medium levels. Thus, innovation is an essential ingredient
for prosocial traits to develop, as has been shown in previ-
ous work on cultural transmission through iterative cycles of
imitation and innovation (Ehn & Laland, 2012; Wisdom &
Goldstone, 2011; Derex, Feron, Godelle, & Raymond, 2015).

Interim conclusion
We show that sharing can evolve across a variety of different
environments and in mixed groups with different proportions
of sharers and non-sharers. The selection pressure for shar-
ing can lead to it becoming a dominant trait prevalent in the
vast majority of the population. The spatial dynamics of this
simulation framework facilitated by a visibility radius lead
to a setting where selection pressure does not prioritize free-
riding and the group does not succumb to a tragedy of the
commons.

Dynamic Simulations
We now extend the framework to account for a changing en-
vironment, implemented by a wandering global optima. We
define the global optima Ωt and modify it on each time t
with a probability determined by the environmental change
rate pe. With probability pe, the environment’s global optima
changes, otherwise it stays the same (Ωt+1 = Ωt ). When the
environment changes, each coordinate of the global optima
dt

m ∈ Ωt has a 50% probability of being modified by +1 or
-1, and a 50% probability of remaining the same. This is the
same as the local search rule used by individual agents.

In order to account for the decreasing validity of past obser-
vations in a changing environment, we introduce a temporal
discount rate γ. Thus, the history of past observations main-
tained by each agent decays as a function of the elapsed time:

R̂(xti) = γ
τR(xti) (5)
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Figure 5: Equilibrium results in a dynamic environment. a) Again
we find high sharing rates in low and medium competitive environ-
ments, but now higher rates of environmental change reduced the
levels of sharing in the population. We also see stronger indications
of an interaction between group size and visibility radius, where a
larger visibility radius is required to coordinate larger groups and
support a larger sharing population. b) Across all parameters, we
find high levels of innovation emerge, although lower competition
and larger groups reduces the extent of innovation.

where R̂(xti) is the discounted reward and τ is the elapsed time
between the observation and the current time. Thus, agents
locally search around the reward location that has the largest
discounted reward R̂(xti). Both individually and socially ac-
quired information follow the same decay rate. In our simula-
tions we fixed the Discount rate γ= .99, which approximately
corresponds to a 10% discount after 10 trials.

Dynamic Results

Figure 5 shows the equilibrium results of our dynamic simu-
lations. Again, we find that sharing is a beneficial strategy un-
der many environmental conditions (Fig. 5a). Similar to the
static case, there are limits to the conditions under which shar-
ing emerges, particularly in highly competitive environments.
The relationship between the visibility radius and group size
becomes increasingly important, where a larger radius allows
sharing to emerge in larger groups. We also observe that the
evolved proportion of sharers decreases in more volatile en-
vironments (higher change rates) and in larger groups. This
interaction is not observed in the static environment, but may
be partially due to the increased difficulty of coordination and
because out-of-date information can harm instead of help oth-
ers (Boyd & Richerson, 1988; Henrich & Boyd, 1998). Ad-
ditionally, we find that environmental change increases the
evolved innovation rates (Fig. 5b). The intermediate levels
of innovation found in the static simulations are eclipsed by
even higher rates under environmental change.
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Figure 6: Regression results. The estimated effect sizes of environ-
mental parameters on innovation rate (green) and sharing (purple).
Error bars show 95% CI.

General Discussion
We use evolutionary simulations to show that for a variety
of initial conditions and across both static and dynamic fit-
ness landscapes, there exists individual selection pressure for
the unconditional sharing of information. To summarize the
effects of each environmental parameter on the equilibrium
characteristics of innovation and sharing, we fit a linear model
on the dynamic simulation results (Fig. 6). The size of the vis-
ibility radius contributes positively to the rate of sharers in the
evolved population, while group size, environmental change,
and competition all reduce the rate of sharers. Thus, the evo-
lution of cooperation in the absence of reciprocity operates at
a fine balance between coordination (via the visibility radius)
and discord (through competition and the communication of
out-of-date information).

In comparison, the environmental effects on innovation are
relatively small. We find relatively high levels of innovation
in all simulations. Environmental change had the strongest
influence on innovation, while higher competition also in-
creased innovation. Rather, the more interesting result of our
simulations involves the interaction between innovation and
sharing, which co-evolve and are dependent on one another
for producing the emergent behavior of collective search.

How do the dynamics of cooperation work? To get a
deeper understanding of how sharing improves the welfare
of the donor, we present a vignette of an agent who is ei-
ther a sharer or a non-sharer in a population of non-sharers
(Fig. 7). The sharer transmits a global signal that recruits
peers and gathers them within visible range (Fig. 7a, orange
line). This means that a sharer will have access to more social
information compared to a non-sharer by being closer to oth-
ers (Fig. 7a, blue line). Since we find high rates of innovation
in all simulations, any imitated information is also tweaked
and modified. Some of these modifications will improve upon
the originally copied solution. This creates a feedback cycle
of solutions that are consistently improved over time, which
can benefit the original sharer through local transmissions
within the visibility radius (Fig. 7b). Compared to a group
of non-sharers (blue line), the sharer is able to explore the re-
ward landscape better and achieve higher rewards despite the
stronger local competition (Fig. 7c, orange line).

In summary, as is the case with the Cliff Swallows (Brown
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Figure 7: How sharing leads to cooperation. These results are the
mean performance over 10,000 replications with a group size of
k = 6, a visibility radius of r = 2, a innovation rate of 1 and a compe-
tition level c = 1. a) The sharer (orange line) attracts other individu-
als within their visibility radius through the sharing signal, leading to
richer informational exchanges than compared to a non-sharer (blue
line). b) Individuals who imitate the shared information also inno-
vate, and thus passively provide improved information to the sharer
through the visibility radius. c) As a result, the sharer benefits from
passively gained information and acquires an overall higher pay-off
compared to individuals in a non-sharing group.

et al., 1991), sharers recruit peers within their visibility radius
and reap the byproduct benefits of passively acquired modi-
fications to the original solution. Intuitively, larger visibility
increases the ability of a group to stay connected with one
another. However, the global sharing signal is an essential
recruitment device that facilitates the formation of a group
in the first place. Group coherency facilitated by the visibil-
ity radius provides byproduct benefits to the originator of the
sharing signal, creating a feedback loop of imitation with in-
novation.

Conclusion

Through the lens of evolution, we show how individual se-
lection pressure can give rise to the unconditional sharing of
information. The sharing signal does not require expectations
of reciprocity in order to be beneficial, but rather directly ben-
efits the sharer through the byproducts of cooperation. Shared
information about a high reward acts as a recruitment signal,
which leads to the emergence of a self-organized collective
centered on the original donor. A key ingredient is a visibil-
ity radius, which allows individuals to observe the rewards of
neighbors within a fixed spatial distance. This visibility ra-
dius provides a simple yet effective coordination mechanism
that is grounded in simple spatial and social dynamics, creat-
ing complex patterns of emergent behavior.

More broadly, our results indicate that prosocial behaviour
can evolve from initial conditions devoid of other prosocial
individuals. While theories explaining the evolution of condi-
tional reciprocity have been very influential (Nowak & May,
1992; Ohtsuki et al., 2006), our results provide an explana-
tion for the initial emergence of prosocial individuals, which
is an essential requirement for both conditional cooperation
and group selection. Future implementation of conditional
strategies in our framework could provide further insight into
how various strategies co-evolve.
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Abstract 

We experimentally investigate, by means of a novel gesture-
elicitation paradigm, the spontaneous spatial frames of 
reference (FoRs) used by bilingual individuals who speak 
Japanese (which has been labeled as a “relative” language) 
and one of the endangered Ryukyuan languages (Miyako or 
Shiraho) whose speakers have been reported to routinely use 
absolute FoRs. How would these last elderly bilingual 
speakers spontaneously resolve the clashing FoRs the two 
languages they speak bring forth? We find that despite the 
fact that Japanese and these Ryukyuan languages have full 
corresponding grammatical and lexical resources for 
expressing both, relative and absolute FoR, Ryukyuan 
speakers tend to markedly prefer the latter gesturally. 
Methodologically, the results, which are consistent with data 
obtained with standard FoRs methods, corroborate the 
reliability of the novel gesture elicitation task, which adds to 
the battery of techniques for studying FoRs a method that 
assesses effortless spontaneous real-time cognition with high 
ecologically validity. 
 

Keywords: spatial construals; gesture; absolute frames of 
reference; linguistic relativity hypothesis, bilingual; 
endangered languages; Miyako, Shiraho, Japanese, Japonic 
languages; Ryukyu islands; elderly participants 

Introduction 
The study of spatial frames of reference (FoRs) (Levinson, 
2003) has received significant attention in the last 20 years. 
While speakers of some languages have been found to 
prefer relative FoRs (i.e., egocentric; e.g. ‘left’ and ‘right’) 
to describe or reason about spatial relations among tabletop 
objects, speakers of others prefer absolute FoRs (i.e., 
allocentric; e.g. ‘north’, ‘south’) (Gumperz & Levinson, 
1996; Levinson and Wilkins, 2006). A common 
interpretation of these results has been that it is language 
that plays a significant role in structuring the cognition of 
fundamental domains like space (Majid, Bowerman, Kita, 
Haun, and Levinson, 2004) —the core of the linguistic 
relativity hypothesis (Gumperz and Levinson, 1991; Lucy, 
1992). This proposal, however, is largely based on the 
implicit assumption that the human mind is fundamentally 

monolingual, an assumption that doesn’t seem to hold as bi- 
and multi-linguism have been ubiquitous throughout the 
history of humanity (Evans, 2011; Pavlenko, 2014). In fact, 
scholars investigating the linguistic relativity hypothesis 
have explicitly asked themselves “What are the cognitive 
consequences of being a bilingual in languages that rely on 
different frames of reference?” (Majid et al., 2004, p. 113), 
but no clear answer has been proposed so far, and no 
significant efforts seem to have been spent in order to 
address the question properly. Indeed, following the 
linguistic relativity hypothesis, bilingual individuals who 
fluently speak languages from the same linguistic family, 
and which are equipped with exactly the same relevant 
linguistic resources should not exhibit any marked 
preference in using relative or absolute FoRs. Here we ask, 
do fully bilingual individuals who speak such languages 
spontaneously exhibit any preferences when the linguistic 
practices of these languages elicit clashing absolute-relative 
frames of reference? 

The last bilingual speakers of endangered languages 
spoken in the Ryukyus (the chain of islands stretching 
between Taiwan to Kyushu, Japan) provide a particularly 
interesting population for addressing this question. The 
Ryukyuan languages Miyako and Shiraho, are, for instance 
structurally equivalent to Japanese with respect to lexical 
spatial encodings. The three languages —all members of the 
Japonic family— have precise words for left and right, front 
and back, north and south, etc. (see Table 1), often even 
sharing cognate words (i.e., sharing the same original root, 
like “left” and “right” from proto-Japonic *pidari and 
*migiri, respectively). However, while speakers of Japanese 
have been reported to clearly prefer relative FoRs 
(Pederson, Danziger, Wilkins, Levinson, Kita, and Senft, 
1998), ethnographic descriptions (Suzuki, 1978) as well as 
empirical psycho-linguistic studies (Celik, Takubo, and 
Núñez, 2019) have reported that speakers of Ryukyuan 
languages commonly rely on absolute FoRs. Interestingly, 
the preference of absolute FoRs of these individuals takes 
place despite being themselves fluent Japanese-bilinguals, 
and having been schooled and enculturated into the 
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mainland Japanese culture for most, if not all of their long 
lives (Japanese elementary school has been implemented in 
the Ryukyu islands since the end of 19th century, and there 
has been an overwhelming presence of mainland Japanese 
culture in TV and radio for decades). 

 
Table 1: Spatial terms in Japanese, Miyako, and Shiraho 

 
FoR Translation Japanese Miyako Shiraho 

east higashi agaɿ anta 
west nishi iɿ inta 
south minami pai penta 

Absolute 

north kita nisɿ niʃanta 
right migi ngɿ neeri Relative 
left hidari pɿdaɿ pitare 
side yoko juku jagata/aza 
front mae mavkjaa menta 

behind/back ushiro tɕibi, 
kusɿ 

ʃinta 

Intrinsic/ 
Relative 

straight massugu massɿgu meŋga 
Intrinsic be aligned narab- narab- narab- 
 

In this study, we experimentally investigate the spatial 
FoRs used spontaneously by bilingual Ryukyuan speakers 
(Miyako-Japanese or Shiraho-Japanese) and by monolingual 
speakers of standard Japanese from Tokyo. Endangered 
languages such as the Ryukyuan languages, however, are 
primarily spoken by elderly people, who are often 
challenged by problem-solving, reasoning, and memory 
tasks (Brinley, Jovick, and McLaughlin, 1974) such as the 
ones used in standard FoRs studies (e.g., “Animals-in-a-
row” task (Pederson et al., 1998) or complex arrays of toys 
(Haun, Rapold, Janzen, and Levinson, 2011)). For this 
reason, we focus here on spontaneous cognition by means of 
a novel gesture elicitation paradigm that, while being 
ecologically valid, adequately assesses effortless 
spontaneous cognition (McNeill, 1992; Bates and Dick, 
2002; Kendon, 2004; Goldin-Meadow, 2005) and can 
readily be implemented in cross-cultural field studies 
(Núñez and Sweetser, 2006; Le Guen, 2011; Núñez and 
Cornejo, 2012; Núñez, Cooperrider, Doan, and Wassmann, 
2012; Cooperrider, Slotta, and Núñez, 2018). 

Method 

Fieldwork locations 
The fieldwork took place in the southern part of the Ryukyu 
islands, where the languages we investigate in this study 
(Miyako and Shiraho) are spoken. The southern Ryukyus 
are approximately 1,900 kms southwest from Tokyo, 
located on the western end of nowadays Okinawa 
prefecture, Japan. Two sites were involved. The Miyako site 
was primarily situated in the main island of the Miyako 
archipelago (total population 54,863 in 2005, Miyakojima 
shishi hensan iinkai, 2012), which are composed of 7 
inhabited islands: Ikema, Irabu, Miyako, Ogami, Kurima, 

grouped into the city of Miyako, and Tarama, Minna, 
grouped into the village of Tarama. The Shiraho site was 
located in the village of Shiraho (population 1,602 in 2010, 
Ishigakishi kikaku-bu kikaku seisaku-ka, 2013), along the 
southwestern shores of the Ishigaki island, one of the many 
islands belonging to the Yaeyama archipelago. This village 
is the only place where the Shiraho language is spoken. 
Both Miyako and Yaeyama islands got integrated into the 
Ryukyu kingdom at the beginning of the 16th century and 
were ruled and administered by the Ryukyu Kingdom until 
the Meiji era (1868-1912), before becoming part of 
Okinawa prefecture (Miyagi, 1968). Both fieldwork sites are 
located in rural areas that have agriculture (e.g. sugar cane), 
and, more recently, tourism as main economic activities. 

Languages 
Ryukyuan languages are traditionally spoken in the 
Ryukyuan islands and stand in sister relationship with 
Japanese, with which they form the Japonic family. They all 
share a common ancestor —proto-Japonic— thought to 
have been spoken before the 7th century (Pellard, 2015). 
They are divided into two branches, Northern Ryukyuan 
spoken in Amami and Okinawa islands, and Southern 
Ryukyuan, spoken in Miyako and Yaeyama islands. While 
not mutually intelligible as a consequence of the 
independent development of each language, both Miyako 
and Shiraho belong to the Southern Ryukyuan branch. The 
Ryukyuan languages are virtually entirely unintelligible to 
speakers of standard Japanese from the mainland, a fact that 
has been attested empirically (Yamada et al., in press). 
Ryukyuan speakers, on the other hand, are completely fluent 
in Japanese due to the fact their entire scholastic, 
administrative and civic lives are conducted in Japanese. As 
in the rest of the Ryukyus, there is an on-going language 
shift to Japanese, resulting in the elderly generations being 
bilingual in the traditional language and Japanese, and the 
younger generations monolingual in Japanese, with almost 
no knowledge of the local language. Miyako and Shiraho 
are thus reported to be definitely, and severely endangered, 
respectively (Moseley, 2010). The exact number of fluent 
speakers is difficult to assess due to the complex 
sociolinguistic situation induced by the language shift, but 
coarse estimates have given the figure of 12,000 to 22,000 
speakers for Miyako (Jarosz 2015), and only 147 for 
Shiraho (Nakagawa, Lau, and Takubo, 2016). Miyako, 
Shiraho and modern Standard Japanese share many broad 
morpho-syntactic features. Among others, they are 
characterized by an agglutinative morphology, a SOV word 
order, the use of postpositions and suffixes, and a 
nominative/accusative case system. 

Participants 
Thirty-eight individuals participated in the study, 15 Miyako 
inhabitants-speakers (5 men, 10 women) tested in the 
Miyako islands, 8 Shiraho inhabitants-speakers (3 men, 5 
women) tested in Shiraho, Ishigaki island, and 15 
monolingual speakers of Standard Japanese (8 men, 7 
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women) all born and raised in Tokyo as the control group, 
tested in Tokyo. Given that Miyako and Shiraho are 
endangered languages (like all other Ryukyuan languages), 
the population of speakers is essentially constituted by 
senior citizens. As a result, the Ryukyuan samples in this 
study, as well as the matching control group, were formed 
by elderly men and women (mean age of the Miyako group 
was 83.2 and SD 8.13; for Shiraho was 83.63 years and SD 
2.62; for the Japanese group was 73.47 years, SD 4.49). 
Miyako and Tokyo participants were recruited through 
elderly and rehabilitation centers. Shiraho speakers, being 
considerably less in number and living in a relatively small 
village, were recruited through the network of one of the 
authors (NN). As compensation Ryukyu participants 
received a small gift, and Tokyo controls a small amount of 
money. Three Miyako speakers and four Japanese speakers 
were excluded from the analysis because they failed to 
produce directional gestures with a clear trajectory in two or 
more of the four trials. One female Miyako participant was 
excluded because during the experiment she spoke in 
Japanese (not in Miyako, as instructed). In total, the data 
from 30 participants (11, 8, and 11, from the Miyako, 
Shiraho, and Japanese groups, respectively) were included 
in the analysis. 

Materials 
The set of stimuli consisted of eight simple live dynamic 
events made up of a combination of tabletop objects. These 
objects were: two ping-pong balls (one white, one black), 
two book-size boards (one white, one black), and one 
transparent small box used as a support for reclining the 
boards. In four of the eight events the experimenter releases 
a black/white ball to roll down a contrasting reclined 
white/black board and on the other four events s/he releases 
the ball (with corresponding color schemes) to bounce down 
the reclined board (see Figure 1). 

 

 
 

Figure 1: Gesture elicitation stimuli. 
 

From these, four events had the action unfolding towards 
the left of the participant and four towards the right of 
him/her. Figure 1 shows four of the eight stimuli (the other 
four stimuli correspond to the ones shown but with 
alternated black/white colors of the ball/board). 

Procedure 
The experimental procedure consisted of four trials, in 
which participants were tested individually. In each trial the 
participant was placed in front of a table facing either north 
or south (the direction was selected randomly). 

 

 
 

Figure 2: Schema of the gesture elicitation procedure. 
 

Across the table there was an experimenter, who enacted 
for the participant one of the eight dynamic stimuli (events) 
described in the “Materials” section. The mode of 
movement (rolling/bouncing ball) and direction of the 
movement (eastward/westward) implemented in each of the 
four trials were selected randomly so that each participant 
experienced in the 4 trials all possible combinations of mode 
and direction of movement, namely ball rolling east, ball 
rolling west, ball bouncing east and ball bouncing west (the 
color scheme for each trial in the sequence was fixed, 
alternating the black ball over the white board with the 
white ball over the black board, beginning with the former 
configuration1). When the brief presentation of the event 
ended (with the experimenter catching the ball), the 
participant was invited to go to a section of the room located 
a few meters away on the other side of a screen that blocked 
the view of the table where the stimulus had been shown 
(see Figure 2), and was instructed to sit on an armrest-less 
chair that placed him/her with a 180° rotation with respect 
to his/her original orientation (i.e., if s/he observed the 
dynamic stimulus facing north, s/he was then sat facing 
south). At this point, sitting in front of the participant there 

                                                             
1 Since the Ryukyuan languages are endangered, the number of 

(elderly) speakers available is reduced (especially in Shiraho). This 
made a full counterbalanced design (manner of movement, 
direction of movement, and color scheme) not viable. 
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was a confederate fluent in the participant’s language2 and 
who, being on this side of the screen, had not observed the 
dynamic stimulus. The participant was then invited to 
describe (in the relevant language: Miyako, Shiraho, or 
Standard Japanese) to the confederate sitting in front of 
him/her the scene that had been shown to him/her on the 
table on the other side of the screen. The presence of the 
confederate was meant to ensure that the participant would 
have a genuine real-world interlocutor who de facto had not 
observed the stimulus. The confederate’s participation was 
primarily limited to listening to the descriptions given by 
the participant (and, occasionally, to nodding to signal 
comprehension of the participant utterances). Once the 
description was completed, the participant was invited to go 
back to the original table on the other side of the screen in 
order to begin the next trial. There was no mention of the 
possibility or necessity of gesturing during the instructions. 
All participants’ descriptions were video-recorded. 

Results 
The directionality of the gestures was easily assessed as they 
primarily exhibited transversal hand (and sometimes head) 
movements indexing ball trajectories (often co-produced 
with utterances that referred to the motion of the ball itself: 
e.g. “it rolled away”, or with vocalizations that characterized 
the manner of the ball’s motion: e.g., “bom, bom, bom” for 
the bouncing ball). Only gestures that unambiguously 
unfolded either to the left or to the right of the participant 
while describing the trajectory of the ball were considered 
for analysis3. 

 

 
 

Figure 3: Example of a gesture produced by a Miyako 
speaker exhibiting an absolute frame of reference 

 
Figure 3 shows an example of a Miyako participant 
describing the trajectory of a westward bouncing ball, which 
she had observed facing south on the other side of the white 
screen (i.e., as the ball moved to her right). Her description, 
as she now faces north, involves a right-handed swiping 
gesture towards her left (i.e., westwards) reflecting an 
absolute FoR. 

                                                             
2 A native speaker for the cases of Miyako and the Standard 

Japanese controls. For Shiraho, the confederate was the third 
author (NN), who has done extensive fieldwork on the language. 

3  In this report we ignore gestures co-produced with non-
targeted descriptions such as the size of the table or the texture of 
its surface. 

Based on these gestural properties, the gestures depicting 
the trajectory of the dynamic stimuli of each of the four 
trials was classified as either “relative” or “absolute”, 
depending on whether it followed an egocentric or an 
allocentric pattern, respectively4. The classification yielded 
a mean percentage of absolute gestures per participant. 

In average both Ryukyuan groups produced a much 
higher percentage of absolute gestures (Miyako mean = 
71.09%, SD = 23.7%; Shiraho mean 81.25%, SD = 34.72%) 
than the Japanese-only group (Mean = 40.9%, SD = 
30.15%). Individual data show that only 1 of the 11 Miyako 
participants (9.1%), and 1 of the 8 Shiraho participants 
(12.5%) manifested absolute FoRs in less than 50% of the 
trials. In contrast, nearly half of the Japanese-only speakers 
did so (5 of the 11 participants; 45.5%). Besides, more than 
half of the Miyako participants (6 out of 11; 54.5%), and 
almost all Shiraho participants (7 out of 8; 87.5%) exhibited 
absolute FoRs at least in 75% of the trials. In contrast, only 
2 of the 11 Japanese speakers (18.2%) did so. A One-Way 
ANOVA reveals that the difference between the three 
groups is statistically significant (F(2,27) = 5.10, p = 0.013), 
exhibiting a large effect size (η2 = 0.27) (see Figure 4). 
Post-hoc Bonferroni and Holm simultaneous comparisons of 
the Ryukyu groups versus the Japanese controls yield 
statistically significant differences for both, Miyako 
(Bonferroni and Holm T-statistic = 2.42; Bonferroni p-value 
= 0.045; Holms p-value = 0.023) and Shiraho (Bonferroni 
and Holm T-statistic = 2.97; Bonferroni p-value = 0.013; 
Holms p-value = 0.013). 

 

 
 

Figure 4: Mean percentage of absolute gestures (black) 
per participant. 

 

Discussion 
The study of FoRs has been an important area for the 
investigation of the linguistic relativity hypothesis 
(Gumperz & Levinson, 1996; Li & Gleitman, 2002; Majid 
et al., 2004; Haun et al. 2011). However, with rare 

                                                             
4 For the analysis presented here we do not analyze the details 

and extension of participants’ verbal production. 

893



exceptions (e.g., Marghetis, McComsey, and Cooperrider, 
2014; Meakins, Jones, and Algy, 2016), many of these 
studies have focused on monolingual populations. When 
bilinguism has been present, which is the case of many 
colonized regions around the world where individuals speak 
the indigenous language as well as that of the colonizer, 
more often than not the emphasis has been put only on one 
of the languages spoken (usually the indigenous one). This 
situation has left open questions involving the status of the 
linguistic relativity hypothesis when bilingual (or 
multilingual) cognition is concerned— an underestimated 
but ubiquitous condition in human history (Evans, 2011; 
Pavlenko, 2014). The linguistic relativity hypothesis makes 
clear predictions of FoRs preferences when the languages 
under investigation are not structurally equivalent, like 
when comparing those that do not have terms for “left” and 
“right” with languages that do, such as Mesoamerican 
Tzletal and Dutch, respectively (e.g., Brown and Levinson, 
1993; Levinson, 2003; Majid et al., 2004). Usually these 
predictions are about comparisons of speakers of languages 
that, differing substantially in the deployment of relative vs. 
absolute FoRs, belong to completely unrelated and radically 
different linguistic families, such as the one just mentioned 
(Tzeltal belongs to the Mayan family and Dutch to the Indo-
European family) or ≠Akhoe Hai||om form the savannah of 
Northern Namibia (Central Khoisan language family) and 
Dutch (Indo-European family) (Haun et al, 2011). 

Some studies with bilingual speakers of indigenous/Indo-
European languages that exhibit clashing absolute-relative 
encoding have investigated extra-linguistic factors that 
appear to delimit the role of language in shaping thought 
(e.g., Spanish (Indo-European)-Juchitán Zapotec 
(Otomanguean family) from Oaxaca, Mexico (Marghetis, 
McComsey, and Cooperrider, 2014); English (Indo-
European)-Gurindji (Pama-Nyungan family) from Northern 
Australia (Meakins, Jones, and Algy, 2016). These studies 
suggest that environmental and sociocultural factors such as 
schooling and writing practices affect the choice of FoRs in 
fundamental ways that are not strictly speaking linguistic. 

To help evaluating the precise role that language might 
play in shaping thought —the essence of the linguistic 
relativity hypothesis— and further delineate the contribution 
of extra-linguistic factors, an important step is to investigate 
cases of bilingual populations of people that speak 
languages that: (1) in practice tend to elicit clashing FoRs 
(e.g., absolute vs. relative), (2) that belong to the same 
linguistic family (hopefully sharing cognate words), and, 
importantly, (3) that are structurally equivalent with respect 
to the relevant lexicon and grammatical resources. In this 
study we have done so by investigating the preference of 
FoRs of Japanese-bilingual speakers of two endangered 
Ryukyuan languages that belong to the same Japonic 
linguistic family as Japanese, and that, while being mutually 
unintelligible, share an important number of grammatical 
features and cognate words (e.g. Hattori (1959) reports 59% 
of shared cognates for Miyako and Tokyo Japanese). 
Importantly, while Japanese has been reported to 

preferentially elicit the use of relative FoRs for 
characterizing small-scale spatial relations (Pederson et al., 
1998; Kita, 2006) the Ryukyuan languages have been 
reported to do so primarily via absolute FoRs (Suzuki, 1978; 
Celik, Takubo, and Núñez, 2019). 

The use of FoRs by (elderly) Miyako speakers had been 
previously studied experimentally via a referential 
communication task (Celik, Takubo, and Núñez, 2019) 
adapted from the standard “Man-and-tree” task (Pederson et 
al. 1998). In this task —of a director-matcher type (e.g., Le 
Guen, 2011)— speakers are asked to describe to a partner 
sitting on the other side of a screen simple scenes containing 
two toy animals that the latter could not see (Cooperrider, 
Slotta, and Núñez, 2017). The study on Miyako confirmed, 
as predicted, that (elderly) monolingual Japanese-speaker 
controls almost exclusively relied on relative terms to 
describe the stimuli to their partners. In stark contrast, 
Miyako speakers, when speaking in Miyako, exhibited a 
marked tendency to describe the spatial configurations of 
the figurines using absolute terms, such as ‘west’ and ‘east’, 
and this despite being fully bilingual in Japanese and having 
been massively exposed to mainland Japanese culture for 
decades. Surprisingly, in addition, speakers from the same 
Miyako bilingual population when doing the same task in 
Japanese relied extensively on relative terms, showing no 
significant difference from Standard Japanese speakers. 
These results suggest that, beyond the grammatical and 
lexical resources of languages, the referential 
communicative practices and conventions brought forth 
when a speaker is immersed in speaking a particular 
language may be an important factor influencing thought 
(and spatial construals, in this case). In order to test whether 
these results were triggered by the goal-oriented, 
performance-driven, explicit cooperation dimension that is 
demanded in this communicative task, in this study we 
investigated the spatial construals that would be 
spontaneously enacted gesturally in real-time without the 
demands of goal-oriented cooperation and performance that 
are present in the referential communication director-
matcher task. Moreover, to gain a richer insight into the 
Ryukyuan mind, we extended this approach to investigate 
another Ryukyuan language— Shiraho, from the Ishikagi 
island. 

This study shows that the investigation of spatial 
construals and FoRs preference can be enriched with the 
addition of observations of speech-gesture co-production. 
Spontaneous gesture production is largely effortless, which 
is an important factor when evaluating elderly speakers, and 
it is universal, so it is expected to be observed in all human 
groups (McNeill, 1992). Since, in general, spontaneous 
gesture production is less monitored than speech, it largely 
unfolds below the level of awareness, and therefore provides 
a remarkable backdoor to real-time cognition (McNeill, 
1992). And being effortless and largely unconscious, 
gesture production does not provide the intimidating effect 
that challenging reasoning and memory tasks might bring 
for some individuals. This is especially relevant when 
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studying elderly speakers of endangered languages who 
often are unschooled (or poorly schooled) and are less 
exposed to testing and scholastic practices. Importantly, 
gesture production often provides content that is not 
observable through speech alone (Kendon, 2004) allowing 
for the observation of construals that are not accessible via 
purely linguistic means (Le Guen, 2011; Núñez et al., 2012). 
Finally, gestures are often co-produced with abstract 
analogical and metaphorical thinking that reveal important 
features of the underlying conceptual mappings and 
inferential affordances (McNeill, 1992), which often rely on 
spatial construals (e.g., see Núñez and Sweetser (2006) for 
spatial construals of time). 

The novel gesture elicitation paradigm used in this study 
builds on these important properties of gesture-speech co-
production. The results confirm, via a different, but 
complementary approach into cognition, the preference of 
absolute FoRs observed in Miyako speakers with a more 
traditional method such as that of referential communication 
director-matcher tasks (Celik, Takubo, and Núñez, 2019). 
These results help establish the reliability of this novel 
gesture elicitation method for investigating tabletop spatial 
construals. Morever, the results of this study extend the 
findings to speakers of another Ryukyuan language —
Shiraho— which being consistent with those obtained with 
Miyako speakers, confirm some of the socio-geographic 
observations (Suzuki, 1978) that Ryukyuan people exhibit a 
marked tendency to use absolute FoRs. 

The fact that the elderly Ryukyuan individuals exhibit 
preference for absolute FoRs despite being fluent Japanese-
bilinguals and being fully immersed in mainland Japanese 
culture for most of their extended lives is quite remarkable. 
In fact, other groups, such as the Gurindji people of 
Northern Australia who traditionally relied on absolute 
FoRs, have been shown to have shifted to relative patterns 
due to exposure to English and the associated cultural and 
literary practices that go with it (Meakins, Jones, and Algy, 
2016). Similary. regarding spatial construals of time, 
Mandarin-English bilinguals have been reported to exhibit 
chronic inter-language influences on patterns in thought, 
and this already by the time they are young adults (Lai and 
Boroditsky, 2013). But in stark contrast to these cases, the 
last speakers of the Ryukyuan languages we have studied, 
despite a life-long immersion in the dominant Japanese 
culture and language, manifest a preference for an absolute 
FoR that appears to be robust and long-lasting. How 
pervasive is this pattern among speakers of other languages 
of the Ryukyu islands? Why is it so resilient? We don’t 
know. More research is needed for answering this and many 
other open questions. We are, however, running out of time, 
as the last speakers of these endangered languages may 
leave us taking with them their rich cultural heritage along 
with the precious answers. 
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Abstract

The human ability to deceive others and detect deception has
long been tied to theory of mind. We make a stronger argu-
ment: in order to be adept liars – to balance gain (i.e. maxi-
mizing their own reward) and plausibility (i.e. maintaining a
realistic lie) – humans calibrate their lies under the assumption
that their partner is a rational, utility-maximizing agent. We
develop an adversarial recursive Bayesian model that aims to
formalize the behaviors of liars and lie detectors. We compare
this model to (1) a model that does not perform theory of mind
computations and (2) a model that has perfect knowledge of
the opponent’s behavior. To test these models, we introduce a
novel dyadic, stochastic game, allowing for quantitative mea-
sures of lies and lie detection. In a second experiment, we vary
the ground truth probability. We find that our rational models
qualitatively predict human lying and lie detecting behavior
better than the non-rational model. Our findings suggest that
humans control for the extremeness of their lies in a manner
reflective of rational social inference. These findings provide a
new paradigm and formal framework for nuanced quantitative
analysis of the role of rationality and theory of mind in lying
and lie detecting behavior.
Keywords: deception; Theory of Mind; Bayesian reasoning;
non-cooperative games; computational modeling

Introduction

The frank truth is that humans lie frequently, and the abilities
to lie and detect lies are practical, but cognitively demand-
ing, tools we develop over time (Vrij, Fisher, Mann, & Leal,
2006). Although much of the research on lying focuses on
physical cues that give away lying (like facial expressions),
both liars and lie detectors must consider not only the exe-
cution of lies (e.g. Vrij, Granhag, & Porter, 2010; Ekman,
Friesen, & O’Sullivan, 1988) but also the informational con-
tent of lies. In our current era of endemic fake news (Allcot
& Gentzkow, 2017), it is ever more critical that we develop
an understanding of what cognitive processes contribute to
deception and its detection.

Lying at all requires believing that the recipient could have
a belief different from your own, and thus lying has long been
tied to theory of mind (ToM), or the understanding of oth-
ers’ mental states, such as beliefs. Children struggle with the
ability to represent false beliefs and second-order beliefs con-
ditioned on false beliefs (Wimmer & Perner, 1983; Talwar,
Gordon, & Lee, 2007). This poor ToM in children should
also make them terrible liars. Indeed, improvement in chil-
dren’s detection and production of lies appears to be directly
related to the development of their ability to use ToM (Ding,

Wellman, Wang, Fu, & Lee, 2015). To lie at all, we need to
be able to entertain the possibility of a false belief in our in-
terlocutor, however, successful deception requires a far more
nuanced process of decision-making interacting with ToM in-
ference.

We usually lie to benefit ourselves. For example, a male
date-seeker may want to optimize his chances of attracting
potential romantic interests by inflating his height on his on-
line dating profile (Toma, Hancock, & Ellison, 2008). What
height should he make up and report to accomplish this goal?
A taller height might be more attractive in the eye of potential
dates; so perhaps, he could choose the height of his favorite
professional basketball player. However, being caught in a lie
tends to be costly: he may jeopardize his trustworthiness. An
overly tall height is likely to make his date more suspicious,
so to decrease the chance of getting caught in a lie, he should
not make the height too suspicious. How should he balance
these competing pressures on his lie?

On the receiving end of a lie, it is advantageous for hu-
mans to be attuned to the detection of lies. Potential dates
should want to detect the date-seeker’s lie in order to discern
whether he is a trustworthy human. But dates cannot hap-
hazardly accuse others of lying, as a false accusation can also
result in tarnishing the accuser’s reputation. Both liars and lie
detectors not only must navigate the constraints placed upon
themselves, but they should also consider the other agent’s
perspective.

In the current study, we argue that good deception not only
requires the use of ToM, but we make a stronger claim that
good lie detectors evaluate, and good liars conjure, their lies
under the assumption that their partner is a rational utility-
maximizing agent. We formalize the role of rational and re-
cursive social inference in the production and detection of
deception. We argue that it is not only the ability to repre-
sent partners’ false beliefs that distinguishes good liars from
bad liars; rather, good liars balance maximizing reward with
maintaining plausibility in their lies, such that liars can avoid
having their lies detected by another agent. In order to maxi-
mize achievement of these goals, liars consider their partner’s
prior expectations, the likelihood of observations, and how
these expectations shift in response to considering the other
agent.

Traditionally psychological studies examining the role of
ToM in deception are one-shot experiments. Examples of
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Figure 1: Lying game. In both the marble-sampler and re-
sponder roles, participants see the distribution of marbles.
(Left) Marble-samplers sample 10 marbles, then either lie
or tell the truth about the number of red marbles sampled.
(Right) Responders accept or call BS.

such studies are those in which children are instructed to
not peek at a toy while the experimenter temporarily leaves
the room, and children choose to either lie or tell the truth
about peeking (Lewis, Stanger, & Sullivan, 1989; Talwar &
Lee, 2002). Alternatively studies of dishonesty in the be-
havioral economics literature use quantitative measures but
emphasize the tendency of people to cheat at an individual
level, independent of how other agents affect their deception
(e.g. Mazar, Amir, & Ariely, 2008). Taking inspiration from
both designs, we developed a novel repeated dyadic stochas-
tic game allowing us to focus on the quantitative, socially-
motivated production and evaluation of lies.

Using Bayesian game-theoretic computational modeling
and experimental methods, we argue that a well-calibrated,
Bayesian ToM supports the production of believable lies and
the detection of poorly-formed lies, and introduce a novel
ideal observer model of deception.

Lying Game

To study how humans actually behave in lying situations, we
developed a novel lying game that rewarded participants for
strategic detection and production of lies (Figure 1).

In each round of the game, both players are presented with
a box containing red and blue marbles, with some proportion
p of red marbles. Players alternate between playing as the
marble-sampler or the responder. The marble-sampler ran-
domly samples 10 marbles from the box, of which k are red.
However, the sampled marbles are occluded from the respon-
der, so the responder cannot see the true distribution of sam-
pled marbles. The marble-sampler chooses a number k⇤ to
report as the number of red marbles they want their opponent
to think they sampled. The marble-sampler could choose to
(a) tell the truth and report the true number of red marbles
sampled, or (b) lie and report a false number of red marbles
sampled. The responder then has the opportunity to either (A)
accept the reported value or (B) reject it as a lie (i.e. call BS).

Both the marble-sampler’s decision to (a) tell the truth or
(b) lie about the number of red marbles sampled, and the re-
sponder’s decision to (A) accept or (B) reject the reported
value impact each player’s payoff (Table 1). If the reported
number of red marbles sampled k⇤ is accepted, the marble-

Marble-Sampler
k = k⇤ k 6= k⇤

Responder BS = 0
PPPPPPPP10�2k⇤

2k⇤ �10 PPPPPPPP10�2k⇤
2k⇤ �10

BS = 1
PPPPPPPP�2k⇤

2k⇤ PPPPPPPP2k⇤
�2k⇤

Table 1: Players’ payoff differential (player - opponent
points). Utility is determined by reported k⇤ and whether BS
was called. Values to the right of the diagonal in cells indicate
points awarded to the marble-sampler, while values to the left
are awarded to the responder.

sampler receives k⇤ points and the responder received 10�k⇤
points. If the responder rejects the reported number then the
payoffs depend on whether or not it was a lie: if the reported
number is the truth (k = k⇤), the marble-sampler gets the k⇤
points, and the responder pays a penalty of �k⇤; if the re-
ported number is a lie (k 6= k⇤) then the responder gains k⇤
points, while the marble-sampler pays a penalty of �k⇤. Al-
together, this game sets up a reward function that motivates
marble-samplers to lie, but not be caught, and motivates the
responder to call out egregious lies, but avoid false accusa-
tions.1

Models

No-Theory-of-Mind Model

As a baseline, let’s consider a model that has no model of the
opponent, or believes that the opponent is effectively random.
In deciding upon what number to report (k⇤), such a model
does not consider the behavior of the opponent, and would
simply lie with probability 1� p. Moreover, when it lies it
would either sample uniformly from values larger than the
truth (k), or it would simply pick the largest value (10 – as this
is expected-value maximizing response under the assumption
that the opponent calls BS at random). This is the best that an
agent that has no model of their opponent could do. This no-
theory-of-mind model makes a qualitative prediction about
lying behavior, such that the expected value of k⇤ increases
linearly as a function of k.

Likewise, a lie-detector that has no model of their oppo-
nent, and thus believes them to be random, would only con-
sider the probability of k⇤ under the true world distribution
of P(k). Since this model does not consider the motives and
payoffs for their opponent, it would amount to playing the
game without knowing the opponent’s payoff structure, e.g.
whether they would receive points for red or blue marbles.
If the marble-sampler were to say that they sampled one red
marble when p = 0.5, the responder may call BS, simply be-
cause such a value is unlikely to occur by chance. This lie
detector amounts to conducting a two-tailed hypothesis test.
It computes what is statistically significant under a binomial
test and calls BS on all k⇤ that have a p-value < a. Regardless

1Code available at github.com/la-oey/Bullshitter
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of a, this lie-detector would call BS on all reports of unlikely
k⇤, and would thus have a U-shaped lie-detection profile.

Oracle Model

Alternatively, suppose we have a theory-of-mind model that
has a perfect model of its opponent (i.e. it has an oracle-like
omniscience over its opponent’s probability to lie and detect
lies). This model does not require recursive social inference
as a simple first-order inference will suffice, given that they
have already perfectly adapted their model of the opponent.
It is critical to understand how such a model would behave,
as this exemplifies an ideal agent.

To accomplish this, we developed an inferential model of
deception, which we term the oracle model, whose opposing
agent lies and detects lies using the algorithms from the AI
that participants competed against in our lying game in both
experiments.

When detecting lies, the AI computes PD(BS | k⇤) us-
ing the cumulative binomial probability of k⇤, P(X  k⇤) =
Âk⇤

x=0 Binomial(x | p,10) centered at 0.5 when k⇤ = 5. To
compute PL(k⇤ | k), the AI randomly samples a potential k⇤,
k̂⇤, from a binomial distribution. If k̂⇤ is greater than the true
k, it lies and uses k̂⇤ as its reported k⇤. Otherwise, it tells the
truth by using the true k as its reported k⇤.

As participants in our behavioral experiment iteratively
competed against this very same non-inferential algorithm
over several trials, it seems viable that participants may be-
come perfectly calibrated to the algorithm that their opponent
operated upon. In that case, human behavior would rationally
match the predictions of the oracle model performing infer-
ence over the AI.

Recursive Theory-of-Mind Model

Finally, we consider a model of an ideal observer who does
not know a priori the behavior of their opponent, but can es-
timate it from first principles, on the assumption that their op-
ponent is as rational as they are, and is also trying to anticipate
their opponent’s behavior. This amounts to paired, adversar-
ial ideal observers in which liars L and lie detectors D act
as competing rational utility-maximizers. Our model builds
on previous Bayesian frameworks of social cognition and
communication (Baker, Saxe, & Tenenbaum, 2009; Frank &
Goodman, 2012). Both agents perform inference over one
another, i.e. L determines what number to report based on his
prediction of D’s tendency to call BS for different reported
numbers, and vice versa. Both agents assume the other agent
is acting rationally, namely the other agent is performing op-
timally given their goal to maximize their own utility. Fur-
thermore, this process of performing inference over the other
agent’s actions is recursive. In other words, L decides upon
his action based on what he believes D will do in light of what
she believes L will do, etc. As infinite recursion is memory
delimited, our model implements a decay function that breaks
the chain of recursion with some degree of probability and
implements a base case.

L is constrained by two competing goals: (1) gain (i.e. the
agent wants to gain the highest reward possible given that
they successfully deceive their partner), and (2) believabil-
ity (i.e. the probability of having a lie go undetected, which
is constrained by the extremeness of their lie). Meanwhile,
the competing goals of D include to (1) successfully detect
lies, while (2) avoiding falsely accusing their partner of lying
when they are in fact telling the truth. The adversarial nature
of the agents’ goals is captured in the inverse relationship of
the utility values for both L and D in our lying game.

Given some true state of the world k, L asserts to D that the
state of the world is k⇤. If k⇤ is not equal to k, L is telling a lie,
otherwise L is telling the truth. D then sees the reported k⇤,
and responds by choosing whether to challenge the veracity
of k⇤ by calling BS = 1, or accepting k⇤ as stated (BS = 0).

Our formalization of deception is represented as a zero-
sum game. We assume that the probability of an action fol-
lows a Luce choice rule based on the expected utility of the
action relative to alternative actions, with softmax parameter
a (Luce, 1959):

P(A) = so f tmax
A

(EV[A]) =
exp(aEV[A])

ÂA0 exp(aEV[A0])
(1)

D chooses to call BS following a Luce choice rule weight-
ing of the expected value of the two options: calling BS, or
accepting k⇤:

PD(BS | k⇤) = so f tmax
BS

(EVD[BS | k⇤]) (2)

The expected value of calling BS is obtained by marginalizing
over the possibilities that k⇤ = k (here abbreviated as T = 1),
and k⇤ 6= k (T = 0):

EVD[BS | k⇤] = Â
T

uD(BS;k⇤,T )P(T | k⇤) (3)

where uD(BS;k⇤,T ) is the payoff for D associated with a par-
ticular BS response, given k⇤ and whether or not it corre-
sponds to the true k (T ).

The probability of a given k⇤ being true is given by

P(T | k⇤)=P(k⇤= k | k⇤)= Âk P(k)PL(k⇤ | k)P(k = k⇤ | k,k⇤)
Âk P(k)PL(k⇤ | k)

(4)
relying on the prior probability of k (here: P(k) =
Binomial(k | p,10)), and the probability that L would pro-
duce a given k⇤ in response to seeing a particular k, PL(k⇤ |
k). Thus, calculating the expected value of calling BS, and
choosing whether or not to call the lie requires an estimate of
how L is likely to behave.

L, in turn chooses k⇤ based on a softmax weighting of the
expected value of different responses,

PL(k⇤ | k) = so f tmax
k⇤

(EVL[k⇤ | k]) (5)

with the expected values given by:

EVL[k⇤ | k] = Â
BS

uL(k⇤ | BS,k⇤ = k)PD(BS | k⇤) (6)
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Figure 2: Computed predictions across all models (no-theory-
of-mind, oracle, and recursive inference) when p = 0.5. Top
row displays the liar’s predicted performance: reported value
as a function of the true value. The red dashed line indicates
reported values that would be true. Bottom row displays the
lie detector’s predicted performance: conditional probability
of calling BS by the reported value k⇤.

where uL(k⇤ | BS,k⇤ = k) is the payoff for the L when report-
ing k⇤ given that BS was called, and whether that k⇤ was a
lie. Calculating these expected values requires that L con-
sider PD(BS | k⇤) – the probability that D would call BS for a
particular reported k⇤.

Thus the expected values of various choices for L depends
on his beliefs about D, and the expected values of calling
BS for D, depends on her beliefs about L. This would yield
infinite recursion, so in practice we assume that L’s model
of D has some probability l of simply returning a constant
PD(BS | k⇤) = c.

Model Predictions

In Figure 2, we computed predictions from each of the three
models about the performance of liars’ reported k⇤ given true
k and lie detectors’ P(BS | k⇤) given the reported k⇤.

The oracle and recursive inference models make qualita-
tively similar predictions. For lying, above a certain k, re-
ported values tend to fall on the identity line, indicating that
beyond that value, lying is imprudent. For values of k be-
low the average, it is better to lie with a false report of an
average outcome (here, E[k⇤] = 5 for small values of k). This
threshold value in the oracle model is lower than the one in
the recursive inference model. This pattern of lying seems to
reflect the liar’s attempt to balance the gain of lies and the risk
of detection from reporting improbable values. For lie detect-
ing, both models predict a sigmoidal pattern, calling BS more
often as k⇤ increases. The fact that both the oracle and recur-
sive inference models appear similar along both the liar and
lie detector behaviors indicates that the recursive inference
model can emulate the same behavior as the oracle model,
despite having no information about the specific behavioral
policies of the opposing agent.

In contrast to the theory-of-mind (oracle and recursive in-
ference) models, the no-theory-of-mind model only reduces

lying on account of a ceiling effect; thus making k⇤ a linear
function of k. As a lie detector, the no-theory-of-mind model
does not consider the reward function of the liar, and thus
predicts that both extremely high and extremely low reported
values would be called out as lies.

We qualitatively tested these predictions from the theory-
of-mind and non-theory-of-mind models in experiment 1. In
experiment 2, we tested how manipulating the prior probabil-
ity of sampling k by varying p would influence human lying
and lie detecting behavior. Under the assumption that liars
and lie detectors behave rationally, we would expect to see
that their behavior would be robust to changes in the proba-
bility of the world.

Experiment 1

Participants

We recruited 193 UC San Diego undergraduate students to
participate in an online study for course credit.

Procedure

There were a total of 40 trials, with the player acting as the
marble-sampler in the initial trial, and then switching roles
between each trial, resulting in 20 trials as the marble-sampler
and 20 trials as the responder. Participants were instructed
to “beat [their] opponent into the ground by winning by the
highest point differential possible,” in order to motivate par-
ticipants to successfully lie and detect lies throughout the
task. The distribution of marbles was uniform, such that there
were 50% red and 50% blue marbles (p = 0.5)

Results

When in the marble sampler role, participants showed a non-
linear pattern of drift from the truth with lower k values, as
shown in the top of Figure 3. We find that this pattern of
lying in a positive utility direction for the liar, i.e. above the
red line, occurs at lower numbers up until the actual marbles
sampled is equal to 5 (i.e. the expected mean).

When in the role of responder, participants’ results showed
a sigmoidal trend, as shown in the bottom of Figure 3. Both
the liar and lie detector pattern of results provide evidence
against the no-theory-of-mind model and instead support the
oracle and recursive inference models.

It should be noted that due to the nature of binomial dis-
tributions, sampling a low number (or high number) of red
marbles is rare. As the AI was set up in such a way that the
computer tends to lie toward the mean value when the sam-
pled number of marbles is low, this produced a low proba-
bility of the computer reporting a low number of red marbles
sampled. As a result, there were only a small number of data
points available to determine how people detect lies under
those conditions. To help offset the wide variance resulting
from low counts across k⇤, we converted counts to proportion
using (nBS=1 + 1)/(n + 2) and for all figures, we included
points in which there were greater than three observations for
a given value along the x-axis.

900



Figure 3: Results from experiment 1: (Top) Marble-sampler’s
reported number versus actual red marbles sampled. (Bot-
tom) Responder’s proportion of calling BS by the reported
number of red marbles sampled.

Experiment 2

We predicted that if people were making flexible, rational in-
ferences, they would be able to flexibly take into account the
distribution of marbles in the population, both in the lies they
generated and in their detection of others’ lies. In lying, we
expect a shift in the point on k at which reported values drift
from the truth. Similarly, in lie detecting, we expect a change
in the tolerance for different k⇤ values, resulting in a horizon-
tal shift of the BS calling function.

Experiment 2 used a similar design to experiment 1, except
that crucially we manipulated the prior probability of k and
removed feedback about the other agent’s actions. By elim-
inating feedback, we hoped to distinguish between whether
participants are simply adapting to the strategy of the other
agent from this feedback, or if participants are performing in-
ference on the other agent’s decision process.

Participants

We recruited 86 UCSD undergraduates. Fifteen participants
failed to meet the attention check criteria, which entailed ac-
curately answering greater than 75% of the 12 comprehension
questions disbursed throughout the experiment. This left 71
participants in our final pool.

Procedure

The procedure for experiment 2 was similar to experiment 1,
except we varied between-subject the probability distribution
from which the marbles were sampled. There were three con-
ditions: the (red-to-blue) distribution of marbles was either
50-50 (n = 20), 20-80 (n = 32), or 80-20 (n = 19). Partic-

Figure 4: Results from experiment 2: (Top) Marble-sampler’s
reported versus actual number of red marbles sampled, by
changes in the distribution of red-to-blue marbles (indicated
by color). (Bottom) Responder’s proportion of calling BS by
the reported number of marbles sampled.

ipants were not explicitly told about the distribution of mar-
bles; rather they gathered the value of P(k) via visual observa-
tion (i.e. the distribution of marbles in the box). In addition,
the number of trials increased to 80 trials.

Participants also received no feedback about player deci-
sions between each trial. Thus, the marble-sampler no longer
received feedback about whether the responder called BS, and
the responder no longer received about whether the marble-
sampler lied or not. To ensure that participants understood the
payoff structure, participants completed four pre-task practice
trials with feedback, i.e. players’ decisions, points earned a
given trial, and cumulative score, after each trial. These prac-
tice trials were included to demonstrate to the participants that
the other agent was generating lies or evaluating the partici-
pants’ lies, and to establish the game’s payoff matrix. After
the practice trials, participants were told they would no longer
receive feedback after each trial, instead only seeing the cu-
mulative score every fifth trial.

Lastly, we used a new payoff structure, in order to contend
with a puzzling characteristic of the payoff structure used in
experiment 1. In particular in experiment 1, when k⇤  2,
the responder received a lower relative payoff for successfully
calling BS on a k⇤ lie than accepting k⇤. Therefore, it would
be in the responder’s best interest to accept k⇤ even if they
were to believe the marble-sampler was lying. In the p = 0.2
condition, the expected value of k⇤ = 2, suggesting that this
condition may be affected by the unusual payoff at lower k⇤
values. To contend with this issue, experiment 2’s new payoff
structure resulted in a relative gain of 10 for the responder
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(and a relative loss of 10 for the marble-sampler) whenever
the responder successfully called BS on a lie. Meanwhile,
falsely accusing the marble-sampler of lying resulted in a -5
penalty (deducted from the points they would have received
had they accepted) for the responder.

Results

Overall we found that participants calibrate their lies, as well
as their lie detection, based on the probability structure of the
world. Firstly, when examining the lies given by the marble-
sampler, we can see a drift in the reported k⇤ across all con-
ditions, following the pattern of response seen in experiment
1. This point of drift shifts in accordance with the condition,
such that the shift in condition p = 0.2,0.5,0.8 occurs around
k = 3,5,7, respectively.

Secondly, in examining lie detecting behavior, we found
that participants shift their judgments of which k⇤ values they
called out as a lie, based on the probability distribution of
marbles in the population. We used a mixed-effects logistic
regression model to describe the probability that BS is called
as a function of the reported number of red marbles sampled
k⇤ and the marble distribution p dummy coded with p = 0.5
as the reference group. We found a significant main effect
of both reported number of red marbles sampled (b̂ = 0.723,
z = 9.032, p < 0.0001) and marble distribution in the p = 0.2
condition (b̂ = 2.069, z = 3.081, p = 0.002) and in the p =
0.8 condition (b̂ =�5.823, z =�4,714, p < 0.0001). These
results not only suggest that people’s detection of lies varies
as a function of the reported value, but people also calibrate
their BS calling depending on the probability of the world.

Using the estimated b values, we computed the number of
marbles k⇤ at which lie detectors would call BS 50% of the
time (PD(BS | k⇤) = 0.5). These thresholds varied systemati-
cally across the different marble distributions (p= 0.2: 5.236;
p= 0.5: 7.327; p= 0.8: 8.762). The decision boundary shifts
to higher k⇤ values as p increases. This result suggests that
lie detectors change their BS calling behavior as a function of
their prior expectations about the distribution of the world.

Discussion

In this paper, we report evidence that people lie, and detect
lies, in ways that are well-captured by an adversarial recur-
sive Bayesian model. We argue that good liars not only re-
quire an ability to represent the idea that others might have
mental states different from their own, but they make infer-
ences about the beliefs and actions of their interlocutor to
successfully evade detection. In determining what utterances
to call out as lies, good lie detectors must rationally consider
the goals and utilities of their interlocutor and statistical in-
formation about the probability structure of the world.

We introduced the oracle model, in which the model has
perfect information about how its opponent behaves. We
compared the oracle model to an ideal observer model that
does not know the opponent’s exact behavioral policies – as
is the case in real-world lying – but must instead deduce the
opponent’s behavior from first principles. This ideal observer

assumes that the opponent is rational, and thus, estimates the
opponent’s behavioral policies by performing recursive social
inference. We found that both the oracle and recursive in-
ferential models make qualitatively similar predictions about
both lying (i.e. non-linear lies as a function of the true value)
and lie detecting (i.e. logistic pattern of calling BS as a func-
tion of the lie). This lack of distinguishing predictions across
these two models suggests that even though the recursive in-
ferential model lacks the omniscience of the oracle model,
it can reproduce qualitatively the same behavior with a far
sparser explicit representation of the other agent.

The oracle and recursive theory of mind models are con-
trasted with an agent that has no model of the opposing
agent. This agent lies by only considering rewards (and not
the opponents’ reaction), and detect lies by only consider-
ing what is improbable (and not what lies would favor the
opponent). This agent makes qualitatively different predic-
tions about both lying and lie detecting behavior. We then
tested these model predictions by examining human behavior
in a novel lying game. The empirical results suggest that the
recursive inferential model of deception capture how human
liars choose which lie to tell: they tend to choose lies that are
not too implausible. Likewise, we find that lie detecting be-
havior is consistent with recursive ToM and is calibrated to
the probability of the sample under the prior distribution of
the world.

To better determine how recursion in these rational mod-
els maps onto human behavior, one natural future direction
would be to have participants compete against each other in
this game. Is it truly the case that liars assume lie detectors
are reasoning rationally about the liar, and lie detectors as-
sume liars are reasoning rationally about the lie detector?

In the current experiments, people played against a com-
puter opponent with fixed, non-adaptive behavior. Perhaps
over the iterative trials, participants perfectly adapted their
model of the other agent, such that they knew how it would
behave as a liar and lie detector–essentially acting like the or-
acle model, with no need for any more than first-order ToM,
or ToM over an agent who does not assume rationality about
the other agent. Do participants typically perform recursion,
or do people only perform first-order ToM? Our first pass
at providing evidence against this alternative hypothesis is
shown in our second experiment in which the lack of feed-
back about the opponent’s behavior requires players to gen-
erate a model of the agent without actual knowledge about
the agent’s behaviors. Given this lack of feedback, it would
be far more difficult to develop an accurate non-inferential
generative model of the other agent.

In summary, in the study we present here, we propose and
contribute empirical evidence that liars and lie detectors act
as rational utility-maximizing agents. Liars and lie detectors
choose how to lie and when to call out lies under the assump-
tion that the other agent is also behaving rationally. These
findings provide a stepping stone for novel quantitative ap-
proaches to studying deception.
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Abstract

Even when we are not faced with any decision, we sometimes
engage in offline cognition where we simulate various possi-
ble actions we can take. In these instances, which options do
we tend to simulate? Computational models have suggested
that it is better to focus our limited cognitive resources to-
wards simulating and refining our representations of options
that appear, at first blush, to have higher values. Two exper-
imental studies explore whether we use this strategy. Partic-
ipants went through an ‘offline’ thinking phase, and an ‘on-
line’ decision-making phase. Participants first freely viewed
various options, which they had to simulate to determine their
actual values. They were later asked to decide between good
or bad options. Offline simulation produced faster online re-
sponse times for the options that appeared to have higher
values, indicating a pre-computation benefit for these items.
These results suggest that people focus their offline cognition
on the apparently good.

Keywords: Sampling; simulation; decision-making; mental
rotation

Introduction
When people are trying to make decisions, they sometimes
proceed by simulating possible options and asking what the
outcome would be for each. Existing research has explored
the various ways people use such simulations not just in mak-
ing inferences about the world in general (e.g. Battaglia,
Hamrick, & Tenenbaum, 2013; Callaway, Hamrick, & Grif-
fiths, 2017; Gerstenberg, Goodman, Lagnado, & Tenen-
baum, 2014), but also in the specific context of decision-
making (e.g. Barron, Dolan, & Behrens, 2013; Hamrick,
Smith, Griffiths, & Vul, 2015; Hamrick et al., 2016; Lieder,
Griffiths, & Hsu, 2018; Wimmer & Shohamy, 2012). Be-
cause of the limited time and capacity during online process-
ing, a central question is how to efficiently allocate compu-
tational resources. Previous work has investigated how peo-
ple determine which simulations and how many to run at the
moment when they have to make a decision (e.g. Callaway,
Gul, Krueger, Griffiths, & Lieder, 2018; Hamrick & Grif-
fiths, 2014; Srivastava, Mller-Trede, Schrater, & Vul, 2016;
Vul, Goodman, Griffiths, & Tenenbaum, 2014).

Importantly, however, people are also capable of simulat-
ing different possible options offline, i.e., considering pos-
sible options when they are not faced with any immediate
decision (see, e.g. Gershman, Markman, & Otto, 2014). For
example, even when you are not out with someone on a din-
ner date, you may find yourself simulating various possible
ways you might introduce yourself to a (perhaps hypotheti-
cal) person. This offline simulation may then prove helpful

when you later face an actual online decision-making prob-
lem.

Though our capacity for running simulations offline is not
quite as limited as our capacity for running simulations on-
line, we still cannot simulate all possible options. Thus, if
you are thinking offline about how to introduce yourself on a
date, you would inevitably simulate some options (e.g., talk-
ing about your background and interests) but not others (e.g.,
talking in detail about how loudly you snore). This raises the
question—which options do people tend to simulate when
thinking offline?

What should we think about offline?
One way in to this problem is to begin by asking which op-
tions it would actually be rational to simulate. Suppose our
aim is to select the best action during a subsequent episode
of online decision-making. Given this aim, which options
would it be best to simulate offline?

Of course, one possible answer would be that it does not
matter which specific options we end up simulating. Sim-
ulating different possible options for hypothetical situations
might simply be helpful in a broad way, for learning the gen-
eral features of good versus bad options, without having to
specifically compute which option is better than another. In
other words, running simulations may be a good way of dis-
covering various heuristics about different options that we
can then use later, during online decision-making.

An alternative possibility, however, is that simulating of-
fline is not just good for learning various decision-making
heuristics, but can also help us get better value estimates for
specific options. When we simulate an option, we can im-
prove our representation of the value of that option. This
‘pre-computed’ value can come in handy when we have to
make decisions in the pressure of the moment, when we do
not have much time to think.

The problem can then be formulated as follows. At any
given point, we have a representation of the value of each
option. Some options are represented with high values (i.e.
as good options), others with low values (i.e. as bad options),
and others as having an intermediate level of value. At first
blush, all of these representations will be at least somewhat
inaccurate. We may have a sense of what is good or bad, but
generally need to think more about which of these is actually
the best or the worst. In simulating a specific option, we
can then improve our representation of its value. However,
we cannot run simulations for all options. Thus, we have to
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Figure 1: (a) A sample puzzle of the sort used in the experiments. The yellow blocks constitute the puzzle, the blue blocks
constitute the pieces. While looking at the puzzle, readers may simulate which pieces would fit or not fit. (b) A caricatured
depiction of a sample experimental procedure without the instructions. Participants first go through a series of practice trials,
are given a unique puzzle, and are then asked to decide between two options.

decide which of our representations we want to have a more
accurate value estimate of, while allowing others to remain
inaccurate.

One intriguing finding from existing research is that, other
things being equal, it is generally a good idea to run offline
simulations of options that we initially think have high val-
ues (e.g. Gelly & Silver, 2011; Icard, Cushman, & Knobe,
2018). In other words, if we can only improve our repre-
sentation of some options, it is better to improve our value
estimates of the options we initially represent to have high
value than to improve our value estimates of the options we
now represent to have low value.

Existing computational work has explored this point
within the framework of reinforcement learning (e.g. Icard
et al., 2018), but the core intuition is easy to grasp even inde-
pendently of any formal framework. Suppose that there are
now two different inaccuracies in your representations: (a)
the option that you mistakenly represent as second-best is
actually the best, and (b) the option that you mistakenly rep-
resent as second-worst is actually the worst. Now suppose
that you are only able to correct one of these inaccuracies,
which would you focus on?

The key point is that when you later use these representa-
tions in online decision-making, you would ideally want to
choose the best option. Thus, it is important to be highly ac-
curate about which of the good options truly is the best, but
it is not nearly as important to be accurate about which of the

bad options truly is the worst. You should therefore devote
your limited offline cognition to the options that you initially
think to have high value, and then improve your representa-
tions from there.

A question now arises as to whether human cognition ac-
tually works in this way. When people only have a limited
amount of time to devote to offline cognition, do they tend
to run simulations of the options they regard as having high
value, even when they do not have to (as there are infinite
possibilities one can simulate offline, and there is no imme-
diate specific decision that has to be made)?

The present studies

To address these questions, we conducted two studies in
which participants had an opportunity to go through an ‘of-
fline’ thinking phase before a subsequent ‘online’ decision-
making phase. In the offline phase, participants were given
an array of options to freely think about. Crucially, they had
to simulate these different options to determine their actual
values. In the online phase, participants were asked to decide
between two options. The key question was which options
would participants think about during the offline phase, when
they were not told what decisions they eventually would
have to make. To tap into participants’ tendencies during
offline simulation, we used their response times during the
online decision-making phase. We reasoned that if partic-
ipants were refining their values about specific options and
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computing which ones were better than others during the of-
fline phase, then they should respond faster when choosing
between those same options during the online phase.

In a novel paradigm, we used incomplete block-puzzles
(that look like Tetris) with arrays of different puzzle pieces
that would either fit the puzzle or not. In this design, de-
termining whether the puzzle pieces fit would require par-
ticipants to manipulate these pieces in their minds, akin to
classic mental simulation and rotation studies (e.g. Cooper,
1975; Shepard & Metzler, 1971). Moreover, this block-
puzzle design allowed us to also specify a ‘surface’ or ap-
parent value (what people initially think the value of a piece
to be) and an actual value (the value of the piece after be-
ing simulated) for each puzzle piece, where value could be
defined by both the number of blocks the piece had, and
whether the piece would actually fit the puzzle.

The idea behind this particular design was that, at first
glance, one should be able to immediately ‘see’ the surface
values of the different puzzle pieces, such that some pieces
would clearly have higher values (as indicated by the brute
number of blocks) than others. From this surface value, one
can either simulate the apparently good or the apparently
bad. Crucially, it is only by mentally rotating and simulat-
ing how these pieces would fit the incomplete block-puzzle
that one can get a better sense of the actual values of these
pieces. However, one cannot simulate all pieces during the
limited window of the offline phase. This time limit allowed
us to check which pieces people would simulate over others.

In Experiment 1, we looked at whether people system-
atically responded faster during online decision-making to
some options over others as a function of offline simulation.
In Experiment 2, we investigated the mechanism by which
offline simulation may lead to benefits in online decision-
making, as a function of developing broad heuristics about
what options are good and bad in general versus actually pre-
computing and refining the value of specific options. These
experiments altogether explore the principles governing on-
line and offline thinking, and suggest that these may in fact
be more closely related than we previously thought: people
systematically and actively imagine the good not only when
there is an immediate judgement or decision to be made, but
also offline, even when they do not have to.

Experiment 1
Participants were given an array of six rotated puzzle pieces
per incomplete puzzle during the offline phase. Each piece
had a specific value, defined by how many blocks would end
up above the puzzle, once the piece fit. In general, the more
blocks a piece had, the better. However, to determine the pre-
cise value of the piece, participants had to simulate the dif-
ferent pieces. In Figure 1a, the upper leftmost piece would fit
the puzzle when rotated counter-clockwise, and would have
7 blocks above the completed puzzle. If participants selected
this piece, they would get 7 points. In contrast, the lower
middle piece has the same number of blocks, but would not

fit the puzzle. If participants chose this piece, they would
get 0 points. Thus, we wanted to see whether people would
consider the pieces that have a high surface value (like 7) dur-
ing the offline thinking phase. If participants consider some
pieces more than others, they might respond faster when they
have to decide between these specific pieces.

Method

All methods and analyses were pre-registered
(http://aspredicted.org/blind.php?x=rd2bd2).
Data and code for all experiments reported here are
available on https://osf.io/npwdq/?view only=
a808e1dd2d594b7992892bfa32fb7e8c.
Participants. Sixty subjects from the Yale University Li-
brary participated (with candy as compensation). The sam-
ple size was determined before data collection began.
Apparatus. Stimuli were presented using custom software
written in Python with the PsychoPy libraries (Peirce, 2007)
and were displayed on a monitor with a 60Hz refresh rate.
Participants completed the study on a 13-inch MacBook Air
with a 1440 x 900 resolution.
Stimuli. Puzzles were generated randomly through Psy-
choPy. Puzzles were made of 20 yellow blocks (0.5◦ black
border) stacked in 4 rows of 5 blocks each. Each block was
2◦ in size. In each puzzle, a number—three or four—of the
blocks in the top two rows would be missing. This created
an incomplete section at the top of the puzzle.

The puzzle pieces were also generated randomly. Pieces
comprised of the specific arrangement of blocks that were
determined to be missing, along with additional blocks that
made up the value the piece was assigned (e.g. a value of
7 meant that there were 7 blocks on top of the piece). Ad-
ditional blocks were stacked on top of the piece randomly,
for as long as they were always connected to a block in the
piece. When the blocks were stacked, the piece was checked
on all sides to make sure that only one side would fit in the
puzzle. If the piece was not supposed to fit (i.e. have a value
of 0), the bottom-most part of the piece was shifted to the left
or to the right, in order to ensure that the piece would not fit
the puzzle. Puzzle pieces were made out of 2◦ grey blocks
(0.5◦ black border).
Procedure and design. Throughout the experiment, on the
top-left of the screen, there was ‘Total Points:’ counter. All
the text in this experiment was drawn in black Monaco font
(0.6◦ in height). In a single-trial experiment, participants
first went through the instructions for the task. They were
told that their goal was to earn as many points as they could.
They were given sample incomplete block-puzzles and ar-
rays of possible options. They were told that they would be
asked questions about these different options afterwards, and
would get a number of points corresponding to the particu-
lar option they would be asked about. They were told that
the value of each piece was defined by the number of blocks
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that would end up above the completed puzzle once the piece
fit, and that pieces would also be rotated but never flipped.
They were also told that speed in responding will be impor-
tant so the participants would go through a practice section
first before the actual trial. After these instructions, partici-
pants would then be shown the puzzle, which subtended from
1◦ above to -3◦ below the center.

In the offline phase, participants were told that six pieces
would now appear above the puzzle, in two rows of 3 pieces
each. Participants were told that they did not have to do any-
thing but just look and study the pieces. The six pieces com-
prised of three pairs with surface values of 3, 5, and 7. In
each pair, each piece would have a different actual value:
one would fit, and the other was made to not fit the puzzle.
During this time, a countdown timer (6◦ below the center)
would start from 5 and decrease per each passing second.

After the offline phase, the online decision-making phase
began, where participants now had to decide which of two
pieces was the better piece. The blocks of two of the pieces
would turn from grey to green to indicate which pieces the
participants would have to choose from, and each of these
pieces was assigned either a letter j or k. Participants were
simply asked, “Which piece is better?”, and indicated which
piece they preferred by keying in the letter of the piece. In
the practice section, participants responded to a total of six
practice trials. Throughout the practice trials, if participants
responded correctly, the total points counter would increase
by the value of the piece they chose (if the piece fit, then
this value was determined by the number of blocks above
the completed puzzle; if the piece did not fit, the participants
would automatically get 0 points).

After participants completed the practice section, they
were told that they would be shown a different puzzle and
a new set of pieces. Participants were again told that they
could be asked about any of these pieces afterwards. To fa-
cilitate the pressure of having to decide in the moment, par-
ticipants were now encouraged to respond as fast as possi-
ble, and were told that they would get bonus points for re-
sponding quickly. Participants first went through the offline
phase, where they were again presented a new puzzle with
six puzzle pieces. The countdown timer appeared again.
After five seconds, participants began the online decision-
making phase, responded to two pieces from the array of six
options. In the Good Options condition, participants decided
between the two pieces with a value of 7. In the Bad Options
condition, participants decided between the two pieces with
a value of 3. Participants were randomly assigned to decide
either between the good options or the bad options.

Results and discussion

Three participants were excluded because their mean per-
formance in the practice section was 2 standard deviations
below the grand population mean (M=29.08 out of 34 to-
tal points that could be earned in the practice section; the
cut-off was at 18.63). These subjects were replaced, until a
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Figure 2: Results from Experiments 1 and 2. The left bar
graph presents the mean response times per decision type in
Experiment 1, while the right bar graph presents the mean
response times per decision type in Experiment 2. The ver-
tical axis represents the mean response time in seconds. The
horizontal axis represents the key comparisons in both ex-
periments. The error bars reflect 95% confidence intervals
within experiments.

total of 60 participants was reached (30 decided between the
good options, and 30 decided between the bad options). Re-
sponse accuracy and response times for the single trial were
recorded for each observer. Only response times where par-
ticipants responded correctly were included in the analysis.

Initial inspection of the left bar graph in Figure 2 shows a
lower mean response time for good options than for the bad
options. This initial impression was confirmed with statis-
tical tests. Mean reaction time for good options (M=2.56s,
MSD=1.77s) was significantly faster than for bad options
(M=5.20s, SD=3.82s), t(25.31)=2.87, p=.008, d=0.93. Be-
cause the response time distributions violated the normal-
ity assumption, we conducted a t-test on the log transfor-
mations of the distributions (which now meet the normality
assumption), t(43.37)=3.65, p<.001, d=1.06. (We also note
that including the incorrect answers did not yield any differ-
ent results, t(55.41)=3.51, p<.001, d=0.91). There was no
significant difference between the percentage of people who
responded accurately when choosing between good options
(86.67%) vs. bad options (66.67%) (Fisher’s exact, p=.125).

These results suggest a pre-computation ‘imagination’
benefit for the good options. In other words, it appears that
when given the opportunity to freely think about an array of
various options offline, people tend to simulate the options
they initially think have a higher value rather than those they
initially think to have lower values, even when they do not
know what specific decisions they will have to make later
on. In simulating the good options, people can determine of-
fline what the actual values of these good options are, such
that when it comes to having to make a decision, they re-
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spond faster to the good options they had already simulated,
computed, and compared beforehand.

Experiment 2
The results from the initial experiment were promising be-
cause they suggested that when given an opportunity to
think, participants think about and simulate the good options
more than the bad options, resulting in a response time ben-
efit at the time of decision-making. But is this a benefit from
simulating specific options and refining our representations
of their values, and not just from being exposed to and learn-
ing what the good or bad options are (for instance, partici-
pants could simply have been learning throughout the prac-
tice section that the bigger pieces, regardless of their specific
configurations, have higher values)? To explore the mech-
anism underlying the response time benefit observed in Ex-
periment 1, we used the same block-puzzle design. We asked
participants to again look at a puzzle and an array of six op-
tions. This time, during decision-making, unbeknownst to
the participants, instead of presenting them with pieces that
were originally in the array of six options, we presented them
with a novel pair of good or bad options. Thus, none of their
offline thinking strategies should have changed, since they
were not told that they would be shown novel pieces. If of-
fline simulation were simply a way of discovering heuris-
tics about which options are good or bad, then participants
should still respond faster to the good options than the bad
options. However, if offline simulation involves the pre-
computation of the values of specific pieces, then the pre-
computation benefit observed in Experiment 1 should disap-
pear when participants are presented with a novel pair.

Method
This experiment was identical to Experiment 1, except as
noted. Sixty new participants participated, with this sample
size chosen to match Experiment 1. During the decision-
making phase, a new pair of pieces with the value of ei-
ther 7 (i.e. Novel Good Options condition) or 3 (i.e. Novel
Bad Options condition) were generated and presented to the
participants. All methods and analyses were pre-registered
((http://aspredicted.org/blind.php?x=bw5n59).

Results and discussion
One participant was excluded because their mean perfor-
mance in the practice section was 2 standard deviations be-
low the grand population mean (M=29.08 out of 34 total
points that could be earned in the practice section; the cut-
off was at 20.65). This subject was replaced, until a to-
tal of 60 participants was reached (30 decided between the
good options, and 30 decided between the bad options). Re-
sponse accuracy and response times for the single trial were
recorded for each observer. Only response times where par-
ticipants responded correctly were included in the analysis.

Initial inspection of the right bar graph in Figure 2 shows
a lower mean response time for bad options than for the good
options. Mean reaction time for good options (M=4.54s,

SD=2.51s) was significantly slower than for the bad op-
tions (M=2.52s, SD=1.12s), t(30.52)=3.53, p=.001, d=1.04.
Again, because the response time distributions violated the
normality assumption, we conducted a t-test on the log
transformations of the distributions, t(44.51)=3.45, p=.001,
d=0.99. (We also note that including the incorrect an-
swers again did not yield any different results, t(58.22)=2.36,
p=.021, d=0.60). There was no significant difference be-
tween the percentage of people who responded accurately
when choosing between good options (76.67%) vs. bad op-
tions (76.67%) (Fisher’s exact, p=1).

To compare these results with those of Experiment 1, we
ran a 2 (offline vs. no offline phase) x 2 (good options vs. bad
options) ANOVA. There was no main effect of offline think-
ing, F(1, 88)=0.12, p=.728, η2=.002, or of decision type,
F(1, 88)=0.33, p=.570, η2=.004. Crucially, there was a sig-
nificant interaction, F(1, 88)=20.99, p<.001, η2=.193.

In short, these results show a reversal of the pattern ob-
served in Experiment 1. Since the task is constructed in such
a way that the higher value pieces contain more blocks, one
might expect at baseline that participants would show longer
reaction times for the higher value pieces. In Experiment
1, where participants had an opportunity to engage in of-
fline simulation, we instead found shorter reaction times for
the higher value pieces. By contrast, in the present study,
we find the expected baseline result: when participants do
not have an opportunity to engage in offline simulation, they
show longer reaction times for the higher value pieces (per-
haps because they had more blocks in general).

General Discussion
There are many instances when we imagine different options
without having to immediately make a decision, as when we
daydream about which restaurant to go to for dinner or what
to say when we are on a date or in an important meeting.
In these instances of offline simulation, what do we tend to
think about, and why? The present experiments explored this
question in terms of the mental simulation of visual stimuli,
and asked whether people tend to simulate the apparently
good options over the apparently bad options.

The key takeaway from these experiments is simple to
summarize: people choosing between two good options re-
sponded faster at the point of decision-making than people
choosing between two bad options, suggesting that people
were thinking more about the good options during the offline
thinking phase, when they did not actually have to (and we
note, interestingly, even when the good options were more
difficult to think about and took longer to process at base-
line). Moreover, this does not seem to be just a matter of
general practice and exposure to deciding between good ver-
sus bad options. When presented a novel pair of good or bad
options, participants no longer show this pre-computation
benefit, and in fact, perform in the opposite way (responding
slower to good options than the bad options). This suggests
that thinking in the general does not suffice to produce the
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benefit at decision-making. Rather it is thinking and men-
tally simulating specific possible options offline that proves
particularly adaptive when eventually having to choose be-
tween these same options.

This result adds to the existing body of work that has ex-
plored what people should think about given limited compu-
tational resources (e.g. Callaway et al., 2018; Srivastava et
al., 2016; Vul et al., 2014). In online decision-making, it gen-
erally makes sense to be actively sampling the options with
the highest values in order to make the best decision. Our
results demonstrate that simulating the best possible options
also occurs in offline cognition, when people are allowed to
freely think about any option, and do not have to make any
decision at all. The tendency to imagine the good options
may reflect a more general principle of cognition that is at
play while running both online and offline simulations.

This tendency might be interestingly related to recent
work on mind-wandering and on memory replay. Research
on mind-wandering finds that people tend to spend a good
amount of their waking hours just thinking offline (e.g. Ma-
son et al., 2007). Such research indicates that peoples minds
are in general more likely to wander to pleasant topics than
unpleasant topics (e.g. Killingsworth & Gilbert, 2010). A
separate strand of literature, mostly focused on nonhuman
animals, has explored the ‘replay’ of memories. Intriguingly,
this literature indicates a similar tendency: animals tend to
replay particular memories in proportion to potential gain,
and that this process may support future decision-making
(see Mattar & Daw, 2018). Future work should explore the
potential connection between these two strands of research
and the patterns of offline simulation observed here.

These results are also relevant to previous work on peo-
ple’s judgements in moral situations. Existing research sug-
gests that moral judgments can impact people’s intuitions
about causation, intentional action, and a variety of other
apparently non-moral issues (Knobe, 2010). One hypothe-
sis about these effects is that they are explained by a ten-
dency to simulate counterfactuals in which agents perform
actions that are morally good, and not to simulate counter-
factuals in which agents perform actions that are morally bad
(e.g. Icard, Kominsky, & Knobe, 2017; Phillips, Luguri, &
Knobe, 2015). Future research could ask whether this ten-
dency is best understood as just another manifestation of the
same basic pattern observed in the present studies.

The principal contribution of the present studies is its sug-
gestion that our cognition is particularly attuned to the best
possible options, regardless of whether there is an immedi-
ate decision that has to be made. One possibility is that our
minds are simply wired to default to simulating the good pos-
sibilities during offline cognition and that people will there-
fore show this tendency even when they do not want to be
thinking of the good (as when they do not want to get their
hopes up), or even when it may not even be beneficial to
the task to be thinking of the good (as when they need to be
looking out for potential worst-case scenarios).

But another possibility is that our offline tendencies are
more flexible depending on the context. Here we explored
cases where people can choose which option they want, mak-
ing it rational to identify the best possible ones. Yet, critical
life events are often out of our control, and we can do nothing
but prepare for what may come. In cases like these, we may
hope for the best and prepare for the worst, making it rational
to switch our offline tendencies to focus on bad outcomes to
decide what to do in response. We are curious about whether
people will show this same tendency when they have less
control over which options they end up with, or when there
is greater uncertainty about the bad outcomes. Future work
can explore the boundaries of this offline tendency to imag-
ine the good.
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Risk is Preferred at Lower Causal Depth
Jeffrey Parker

University of Illinois at Chicago, Chicago, Illinois, United States

Abstract

Risk and uncertainty are inherent in life, and how people perceive, respond to, and manage both are topics of great aca-
demic interest. One critical insight is that people distinguish between types of uncertainty (see, e.g., Fox & lkmen, 2011)
and, consequently, may respond to objectively equally probabilistic events differently (e.g., with more polarized predic-
tions of those events outcomes). The current work identifies another way in which risk (a specific form of uncertainty)
is differentiated: on the basis of causal depth (Sloman, Love, & Ahn, 1998). Specifically, in contexts where an uncertain
outcome (e.g., win/lose) is determined by a causal chain, people tend to prefer for the uncertainty to arise at lower causal
depth within the chain (i.e., at later causal stages). This occurs even though the causal depth at which the uncertainty arises
makes no difference in the overall probability that the causal chain will generate one outcome or another.
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Abstract

Despite their diversity, languages around the world share a
consistent set of properties and distributional regularities. For
example, the distribution of word frequencies, the distribution
of syntactic dependency lengths, and the presence of ambigu-
ity are all remarkably consistent across languages. We dis-
cuss a framework for studying how these system-level proper-
ties emerge from local, in-the-moment interactions of rational,
pragmatic speakers and listeners. To do so, we derive a novel
objective function for measuring the communicative efficiency
of linguistic systems in terms of the interactions of speakers
and listeners. We examine the behavior of this objective in
a series of simulations focusing on the communicative func-
tion of ambiguity in language. These simulations suggest that
rational pragmatic agents will produce communicatively effi-
cient systems and that interactions between such agents pro-
vide a framework for examining efficient properties of lan-
guage structure and use more broadly.
Keywords: Communicative efficiency, Rational Speech Act
theory, computational modeling, information theory, agent-
based simulation

Introduction
Why do languages look the way they do? Zipf (1949) pro-
posed that distributional properties found in natural language
were evidence of speaker-listener effort minimization. In his
own words, “we are arguing that people do in fact act with
a maximum economy of effort, and that therefore in the pro-
cess of speaking-listening they will automatically minimize
the expenditure of effort.” Evidence for this claim has been
largely derived at the level of the lexicon. Zipf argued that
the particular relationship between a word’s frequency and
its rank, length, and denotation size could be explained as an
emergent property of speaker-listener effort minimization.

Zipf articulated what is now considered a functionalist ap-
proach to language science – analyzing language structure
and use in terms of efficiency. Such an approach might re-
frame our opening question as follows: how does having
property x make using language ` more or less useful for com-
munication? This efficiency-based framing has produced a
rich set of theoretical and empirical targets exploring seman-
tic typology (Regier, Kemp, & Kay, 2015), properties such
as ambiguity (Piantadosi, Tily, & Gibson, 2011) and com-
positionality (Kirby, Griffiths, & Smith, 2014), and the effi-
cient use of reduction and redundancy in production (Genzel
& Charniak, 2002; Levy & Jaeger, 2007).

The approaches above typically posit efficiency measures
that are motivated by information-theoretic principles, but

they typically do not ground out in language use by interact-
ing agents. In this work, we derive a novel objective function
from first principles of rational language use and show how
optimizing this objective can lead to communicatively effi-
cient systems. We also demonstrate that assumptions about
interlocutors impact whether language properties are used ef-
ficiently. In this way, we integrate questions of language de-
sign and language use in a single framework.

Functionalist theories commonly frame language effi-
ciency in terms of a fundamental effort-asymmetry underly-
ing everyday communication: what is “hard” for a speaker
is likely different than what is “hard” for a listener. Zipf de-
scribed this as follows: purely from the standpoint of speaker
effort, an optimal language `∗speaker would tend toward a vo-
cabulary of a single, low-cost word. Given such a language,
the full set of potential meanings would be conveyed using
only that word, i.e. `∗speaker would be fully ambiguous and
all possible meanings would need to be disambiguated by a
listener. From the standpoint of listener effort, an optimal
language `∗listener would map all possible meanings to distinct
words, removing a listener’s need to disambiguate. In this
example, speaker effort is related to production cost and lis-
tener effort to understanding or disambiguation cost. Clearly,
natural languages fall between the two extremes of `∗speaker
and `∗listener. Zipf proposed that the particular lexicon-level
properties he observed were a result of optimization based
on these competing forces – the pressure to jointly minimize
speaker and listener effort.

But how does this optimization take place? The example
given by Zipf (1949) describes local, communicative interac-
tions in terms of a reference game. Speakers intend to refer
to some object in the world m. They choose some utterance
u to transmit this intended meaning, u→ m. The listener at-
tempts to reconstruct this intended meaning given the trans-
mitted utterance, m→ u. Other projects have assumed this
basic reference game setting (Piantadosi et al., 2011; Regier
et al., 2015) and this simplification of the communicative act
has proven productive in theoretical (Ferrer-i-Cancho, 2018),
simulation-based (Kirby et al., 2014) and empirical explo-
rations (Hawkins, Franke, Smith, & Goodman, 2018) of effi-
cient language structure and use.

Adopting reference games as a basic unit of analysis sug-
gests that optimization may take place at the level of conver-
sation. Importantly, Zipf’s conception of speaker and listener
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effort should be connected to how language is used; in par-
ticular, whether interlocutors engage in pragmatic reasoning
during conversation. Under a Gricean treatment of pragmat-
ics, speakers and listeners follow a set of conversational max-
ims in which they cooperate to transfer information (Grice,
1975). These maxims appear to emerge from efficiency con-
cerns, however (Horn, 1984). We formalize this connection –
showing how system-level efficiencies can emerge from local
interaction behavior of pragmatic agents. Our claim is that to
understand an “efficient” property of a system it is essential
that we consider how that property is used efficiently.

We provide a case study for this approach, in which func-
tionalist regularities emerge from the dynamics of pragmatic
communication. We choose a property of languages that
could, in principle, vary freely, but shows strong regulari-
ties across languages. The explanandum is why this regular-
ity holds. We examine ambiguity as our property, extending
ideas by Piantadosi et al. (2011). We define a novel mea-
sure of efficiency that depends on the interactional behavior
of speaker and listener agents. We adopt the reference game
as our primary unit of interaction and model language users
with the Rational Speech Act (RSA) framework – a computa-
tional model of language use, which is supported by experi-
mental data on interaction. Using these ingredients, we show
that the property of interest (ambiguity) is prevalent in lan-
guages that optimize our measure of efficiency (Simulation
1). Further, we show how ambiguity is used efficiently during
local, in-the-moment interactions (Simulation 2). Put differ-
ently, these simulations examine efficiency from two angles –
in the first we vary languages, fixing agents, and search for ef-
ficient language designs. In the second we vary agents, fixing
language, and examine efficient use.

The contributions of this work are twofold – we derive a
novel measure of linguistic efficiency and also show how the
reference game framework, in combination with formal mod-
els of communication, can be used to connect ideas about
system-level efficiencies to in-the-moment language use.

Exploring efficient language design and use in
rational pragmatic agents

Figure 1: An example reference game with associated literal
semantics (in our terminology a “language”).

Reference games Zipf’s example of optimal speaker- and
listener-languages took the form of a reference game. We

adopt that formulation here, assuming these communication
games as our basic unit of analysis. In this framework, speak-
ers and listeners are aware of a set of objects M (meanings)
and are knowledgeable about the set of possible signals U
(utterances) that can be used to refer to a given meaning (see
Figure 1). Utterances may have different relative costs, op-
erationalized via a prior over utterances P(U). Similarly,
meanings differ in the relative degree to which they need
to be talked about, operationalized as a prior over meanings
P(M)1. We consider a set of contexts C with an associated
prior P(C). Each context c ∈ C describes a different distri-
bution over meanings e.g. p(M|C = ci) 6= p(M|C = c j). Fi-
nally, we consider a set of communicative events e∈ E where
< u,m,c >= e is an utterance-meaning-context triple.

Languages A language ` defines the set of se-
mantic mappings between utterances and meanings.
For example, Figure 1 contains four utterances U =
{”blue”,”green”,”square”,”circle”} and three meanings M =
{green-square,blue-square,green-circle}. The boolean ma-
trix describes the literal semantics of the language. We define
a language as “ambiguous” if there is some utterance u ∈U
which can apply to multiple meanings (i.e. |[[ui]]| > 1)2. In
Figure 1 both the words “square” and “green” are ambiguous
so we would say that ` contains ambiguity.

Speakers and listeners The Rational Speech Act frame-
work (RSA) is a computational-level theory of pragmatic lan-
guage use, which has produced good fit to human communi-
cation behavior across a range of language phenomena (Frank
& Goodman, 2012; Goodman & Frank, 2016). RSA is a for-
malization of essential Gricean pragmatic principles – agents
reason about one another and their shared context (Grice,
1975). We adopt RSA as our representational framework to
model Gricean (rational and pragmatic) speakers and listen-
ers in the reference game setting (see SI).

An RSA speaker agent defines a conditional distribution
over utterances, mapping from intended meanings M to utter-
ances U using ` in a given context c. That is, a speaker de-
fines Pspeaker(u|m,c;`). We will use S(u|m,c;`) as short-hand
throughout. A listener agent defines a conditional distribu-
tion over meanings, mapping from utterances U to meanings
M using ` in a given context c (i.e. L(m|u,c;`)). Speakers
and listeners can induce joint distributions over utterance-
meaning pairs, although, these distributions may differ:

Pspeaker(u,m|c;`) = S(u|m,c;`)p(m|c)

Plistener(u,m|c;`) = L(m|u,c;`)p(u|c)

Zipfian objective for linguistic system efficiency
Zipf (1949) proposed that the particular distributional prop-
erties found in natural language emerge from competing

1The prior over meanings is equivalent to the need probabilities
assumed in previous work (Regier, Kemp & Kay (2015)).

2We use double brackets [[. . . ]] to represent denotation.
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speaker and listener pressures. We operationalize this objec-
tive in equation (1) – the efficiency of a linguistic system `
being used by speaker and listener agents S and L is the sum
of the expected speaker and listener effort to communicate
over all possible communicative events e ∈ E.

Efficiency(S,L, `) = Ee∼P(E)[speaker effort]

+Ee∼P(E)[listener effort]
(1)

We assume that speaker effort is related to the surprisal of
an utterance in a particular context3 – intuitively, the number
of bits needed to encode the utterance u. This particular for-
malization of speaker-cost is general enough to accommodate
a range of cost instantiations, such as production difficulty via
articulation effort, cognitive effort related to lexical access, or
others (Bennett & Goodman, 2018).

speaker effort =−log2(p(u|c))

We assume listener effort is the semantic surprisal of a
meaning given an utterance. This operationalization of lis-
tener effort is intuitively related to existing work in sentence
processing in which word comprehension difficulty is propor-
tional to surprisal (Hale, 2001; Levy, 2008).

listener effort =−log2(L(m|u,c;`))

Importantly, we assume that events e=< u,m,c> are sam-
pled according to the following generative model – some
context occurs in the world with probability P(C = c).
Within this context, an object m occurs with probability
p(m|c). The speaker attempts to refer to that object by
sampling from her conditional distribution S(u|m,c;`) (i.e.
e∼ p(c)p(m|c)S(u|m,c;`)). From these ingredients it is pos-
sible to derive the following objective between the speaker
and listener distributions (see SI 2.1 for complete derivation).

= Ec∼P(C)[Hcross(Pspeaker,Plistener|c;`)] (2)

From an information-theoretic perspective this objective is
intuitive: Hcross denotes the Cross-Entropy (CE), a measure
of dissimilarity between two distributions – the average num-
ber of bits required to communicate under one distribution,
given that the “true” distribution differs. In our case, we have
an expectation over this term – the expected difference be-
tween the distributions assumed by the speaker Pspeaker and
listener Plistener given a set of contexts C4. In other words, an
“efficient” language ` minimizes the distance between what
speakers and listeners think.

3In the current set of simulations we consider utterance costs as
independent from context (i.e.. p(u|c)p(c) = p(u)p(c)).

4Note that in the single context case |C| = 1 this objective is
simply the speaker-listener Cross-Entropy.

Simulating the communicative function of
ambiguity

The task of understanding language is marked by a frequent
need to handle various forms of ambiguity: lexical, syntactic,
among others (Wasow, Perfors, & Beaver, 2005). The ubiq-
uity of this property, however, has been argued to provide
evidence that languages have not been optimized for commu-
nication (Chomsky, 2002).

Piantadosi et al. (2011) argue just the opposite, claiming
that ambiguity is an efficient property of any communication
system in which communication is contextualized. Simply
put, it is useful to have a language that re-uses low-cost mate-
rial (has ambiguity) so long as the cost of disambiguating the
material is low. In particular, context (or common ground)
can provide useful information for disambiguation.

As an example, say we have two objects (m1 and m2), two
utterances (u1 and u2), differing in cost, and two languages
(`1 and `2), describing different utterance-meaning mappings.
In language `1, the low-cost u1 can be used to refer to both m1
and m2 ([[u1]]`1 = {m1,m2}), but the high-cost u2 cannot be
used at all ([[u2]]`1 = /0). By contrast, in language `2, u1 can
only refer to m1 and u2 can only refer to m2 ([[u1]]`2 = {m1}
and [[u2]]`2 = {m2}). While it is cheaper for a speaker to
use `1 (because speaking it is always lower cost), it is more
difficult for a listener (because u1 is ambiguous). Crucially, if
context is disambiguating then the speaker can use u1 to refer
to either m1 or m2 and `1 should be preferred to `2.

In the following simulations we explore two aspects of Pi-
antadosi’s et al.’s claim. In Simulation 1, we examine the effi-
cient language structure aspect of their claim, exploring when
the optimal linguistic system `∗ is most likely to contain am-
biguous expressions. In Simulation 2, we explore an efficient
language use aspect of the claim – under what assumptions
will agents use ambiguity efficiently in a conversation?

Simulation 1: Optimal languages contain
ambiguity when context is informative

We show that ambiguity is an efficient property under our CE
objective in the reference game setting. We proceed by gener-
ating languages with different amounts of contextual support
(varying the size of |C|). We search the space of languages,
examining whether ones which minimize our objective con-
tain ambiguity. If context leads to more efficient communi-
cation, then optimal languages should be more likely to be
ambiguous as the amount of context increases.

Simulation set-up
We conduct N = 2000 simulations. For each simulation we
enumerate the set of valid languages in which |U | = |M| =
4 (U is our set of utterances and M our set of meanings).
Recall that languages are boolean matrices and a language
` ∈ L is “valid” so long as each possible meaning m ∈M can
be referred to by at least one form u ∈ U (every column of
` has some non-zero assignment) and each form maps to at
least one meaning (every row has some non-zero assignment).
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Figure 2: Panel (A) Vertical axis shows the proportion of optimal languages containing ambiguity. Horizontal axis shows the
context-size (1-4) in each condition. Optimal language under CE objective (red). Speaker-optimal (blue). Listener-optimal
(green). Error bars represent 95 percent confidence intervals. Panel (B), example CE-optimal language (ambiguous) from a
four-context simulation. Panel (C), example CE-optimal language (unambiguous) from a single-context simulation.

For a given simulation, the goal is to find the language `∗

which minimizes our objective and then check to see if that
language contains ambiguity.

We define language efficiency as a function of the particu-
lar semantic mappings induced by that language, the speaker
and listener agents (S and L), as well as the utterance (P(U)),
meaning (P(M)), and context priors (P(C)). Rather than as-
sume particular structure, for each simulation we generate
P(U) ∼ Dir(1, |U |), P(M|C = c) ∼ Dir(1, |M|) (a separate
conditional distribution over meanings for each context c),
and P(C)∼ Dir(1, |C|), where Dir(1,k) specifies the uniform
Dirichlet distribution over a k-dimensional probability vector.

Context We want to assess the impact of context on the
presence of ambiguity in optimal languages. To do so we
consider four conditions with n = 500 simulations each (that
is, 500 unique sets of {P(U),P(M|C),P(C)}. Our first is a
one-context condition (|C| = 1) – only a single distribution
over meanings P(M). In our two-context condition (|C|= 2),
we consider efficiency under both P(M|C = c1) as well as
P(M|C = c2). Three- and four-context conditions correspond-
ing accordingly.

Baselines For comparison, we examine properties of opti-
mal languages under two additional objectives. Zipf (1949)
proposed that the speaker-optimal language `∗speaker would
minimize speaker effort and the listener-optimal language
`∗listener would minimize listener effort. We define these ob-
jectives using the first and second half of equation 1 (see SI
2.2.).

Results and Discussion

In Simulation 1 we explored the degree to which ambiguity
is an efficient property of languages when communication is

contextualized. Figure 2, panel (A) plots the proportion of op-
timal languages under each objective as a function of number
of contexts. The red line shows that as the number of contexts
increases, so does the probability that an optimal language
`∗cross contains ambiguity (at least one utterance maps to two
meanings) under our CE objective. For comparison we also
plot the proportion of speaker-optimal `∗speaker (blue line) and
listener-optimal `∗listener (green line) languages that contain
ambiguity. In line with Zipf’s predictions, if languages are
designed only to minimize speaker effort then optimal lan-
guages always contain ambiguity. If languages are designed
to minimize listener effort then ambiguity is always avoided.

While our results indicate that ambiguity is an efficient
property of contextualized language use, these simulations
assumed that agents had perfect knowledge of the relevant
conditional distributions (P(M|C)). This assumption may be
too strong for describing much of day-to-day communication
– we seldom interact with others with perfect knowledge of
the current context (or topic) at the start of a conversation. To
explore how ambiguity may be used efficiently in our frame-
work, we next examine a case in which the listener has im-
perfect knowledge of context at the start of the conversation,
but may infer it from the discourse history.

Simulation 2: Rational, pragmatic speakers use
ambiguity efficiently

In Simulation 1 we showed that efficiency defined in terms
of pragmatic agents leads to a preference for languages that
contain ambiguity. In Simulation 2 we assume a single fixed
language `, which contains ambiguity, and instead vary the
types of agents using `. We will show that efficient use of
ambiguity depends on an agent’s ability to use context for
disambiguation. More generally, Simulation 2 is intended to
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Figure 3: (A) shows the empirical probability that our speaker used an ambiguous utterance as a function of discourse position.
(B) shows speaker effort across the three models. (C) shows the Cross-Entropy objective under our three speaker models. Error
bars represent 95 percent confidence intervals.

demonstrate how we can assess both questions of efficient use
(current simulation) as well as design (previous simulation) in
the same framework.

Imagine a scenario in which a reader is beginning a news
article. While they may have some knowledge about the
article’s topic (perhaps from the title), they may not have
complete knowledge of its contents, including the persons or
events involved. In this setting, using a low-cost, but ambigu-
ous referring expression (say a pronoun like “he”) early may
lead to misunderstanding if context is not informative. But, if
by a later position enough contextual information has accu-
mulated, it may be efficient to use the ambiguous expression.
We pursue this general framework in Simulation 2 – examin-
ing when in a discourse using ambiguity is efficient. We will
consider “context” as analogous to a “topic” of conversation.

Simulation set-up
We consider a single language `, which contains both am-
biguous and unambiguous utterances. We assume ambiguous
utterances are lower cost. Crucially, we do not assume that
the listener knows the particular topic (ccurrent ) of the con-
versation a priori. Rather, that the listener has knowledge of
the set of possible topics C = {c1, . . . ,ck}, but does not know
which one is currently being used by the speaker. Formally,
this means the listener does not have access to the correct
conditional distribution over meanings P(M|C = ccurrent) at
the start of the discourse.

Over the course of a discourse D, the listener tries to infer
both the current topic, ccurrent , as well as the particular mean-
ing m of a given utterance u. That is, we consider agents who
can track the history of previous utterances D. Importantly,
an agent can attempt to infer the current topic of conversation
ccurrent using the discourse history D.

We conduct N = 600 simulations, generating discourses of
length |D| = 30 utterances, comparing three speaker models

(n= 200 each). We consider a single language `5 with |U |= 6
and |M| = 4 in which two of the utterances are ambiguous
and lower cost than the unambiguous utterances. (Note that
use of this particular language is not essential – the results
are broadly generalizable to languages that contain ambigu-
ity, but exploring this space is computationally expensive.)

Speaker agents
We vary the degree to which agents can use context for dis-
ambiguation. We consider three types of speaker models. Our
Full pragmatics agent, models a speaker who reasons about
her listener and also has complete recall of the set of utter-
ances in the discourse D. This speaker believes that the lis-
tener may not know the current topic ccurrent at the start of the
discourse, but can infer it over the discourse. We compare
two baseline models. The first, a Partial pragmatics baseline
describes a speaker who reasons about a listener, but assumes
they have no access to the discourse history. The second, a No
pragmatics baseline speaker does not consider a listener at all,
but produces utterances according to the underlying language
semantics (`) and topic probabilities (p(M|C = ccurrent ) (see
SI 3).

Hypotheses
We are interested in how each speaker-model uses ambiguity
over the discourse. A speaker strategy that is mutually effi-
cient for both agents should avoid ambiguity until sufficient
contextual information has accumulated. We should expect
this to be reflected in our Full pragmatics model who rea-
sons about the listener and discourse history. By contrast,
a speaker-optimal model who does not consider the listener
should greedily use ambiguous utterances (No pragmatics
model), while a listener-optimal model should avoid ambi-
guity entirely (Partial pragmatics model).

5See SI for the matrix notation of this language.
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Results and Discussion
Figure 3, panel (A) shows the empirical probability a speaker
uses an ambiguous utterance as a function of discourse po-
sition. The No pragmatics baseline uses ambiguous utter-
ances frequently and at a constant rate over the discourse.
The Partial pragmatics baseline avoids ambiguous utterances
entirely. But, the Full pragmatics model avoids ambiguous
material only at the start of the discourse, employing it in-
creasingly as the discourse proceeds. Panel (C) tracks our
CE objective for each model over the discourse. Note that
the objective decreases for all three models, primarily driven
by the listeners updating their beliefs about the actual topic
(P(C = ccurrent |D)). However, the objective declines more
quickly under the Full and Partial pragmatics speakers as lis-
tener agents are better able to infer the correct context. Ad-
ditionally, the difference in CE between the Full- and Partial
pragmatics models at the end of the discourse is driven by the
reduction in speaker costs. Panel (B) tracks speaker effort,
which remains constant in both No pragmatics and Partial
pragmatics baselines. But, effort declines in the Full prag-
matics model as speakers increasingly rely on ambiguous ma-
terial later in the discourse.

General Discussion
How do the competing pressures imposed by speakers and
listeners give rise to the distributional regularities found in
natural language? Zipf (1949) proposed that the asymmetry
between speaker and listener costs gives rise to a range of
properties at the level of the lexicon. We explored the inter-
actions of rational pragmatic agents as a framework for un-
derstanding efficient language structure and use. We focused
on an argument on the communicative function of ambigu-
ity (Piantadosi et al., 2011), deriving a novel speaker-listener
Cross-Entropy objective for measuring the efficiency of lin-
guistic systems from first principles of efficient language use.
In Simulation 1 we showed that optimal languages are more
likely to contain ambiguous material when context is infor-
mative. In Simulation 2 we showed how rational pragmatic
agents use ambiguous material efficiently in conversation.

A limitation of the current work is an analysis of exactly
how the CE objective compares to existing measures. For
example, previous work has described competing speaker-
listener pressures in terms of a trade-off of simplicity and
informativeness (Kemp & Regier, 2012) or expressivity and
compressibility (Smith, Tamariz, & Kirby, 2013) to explain
linguistic regularities. Future work should assess the degree
to which we can derive the same properties as previous stud-
ies using our current framework. More generally, we hope
that this framework can serve as a domain general tool to
assess the range of functionalist theories examining efficient
language-structure and use.

SI and simulations: https://bit.ly/2RBSGcU,
https://github.com/benpeloquin7/

zipf principles
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Abstract

Many real-world situations involve learning entirely or mostly
based on the information provided by other people, which cre-
ates a thorny epistemological problem: how does one deter-
mine which of those people to trust? Previous work has shown
that even populations of rational Bayesian agents, faced with
this problem, polarise into “echo chambers” characterised by
different beliefs and low levels of between-group trust. In this
study we show that this general result holds even when the
reasoners have a more complex meaning space and can com-
municate about their beliefs in a more nuanced way. However,
even a tiny amount of exposure to a mutually trusted “ground
truth” is sufficient to eliminate polarisation. Societal and psy-
chological implications are discussed.

Keywords: Bayesian reasoning; echo chambers; polarisation;
social inference; trust; epistemology

Introduction
The real world is full of situations where the vast majority
of what we learn comes from other people. In some, like
language learning, the “ground truth” of the matter simply is
whatever people agree that it is. However, many other situ-
ations pose a much more challenging epistemological prob-
lem: the ground truth is (at least mostly) inaccessible, and
the only way to learn about it is to rely on other people. Re-
gardless of why the truth is often inaccessible – due to spatial
or temporal distance, or difficulties in interpreting ambiguous
data – people are often faced with questions of this character.
Did humans evolve or were we created by a superior being?
Did Trump assist the Russians to influence the US 2016 elec-
tions? Did Bob have an affair with Mindy? In all of these
cases, there is a truth of the matter, but it is not a truth that is
directly accessible to most people. All of the data is mediated
through other agents – scientists studying evolution, politi-
cians receiving confidential documents, journalists deciding
what to report on, Bob and Mindy – and few have the access
or training necessary to make sense of the data on their own.

What is a rational learner to do in this difficult epistemo-
logical situation? One option would be to simply try to com-
municate fully with everybody and update one’s beliefs ac-
cordingly. When this happens, groups of Bayesian learners
will converge to a shared belief system equivalent to the pop-
ulation prior, at least when organised as chains (Griffiths &
Kalish, 2007) or fully interconnected (Whalen & Griffiths,
2017). When data are additionally generated from an exter-
nal ground truth, the convergent distribution is also shaped
by that world (Perfors & Navarro, 2014). However, these re-
sults only hold when agents cannot select who to talk to and

when all share the same prior. When people have heteroge-
neous priors, the beliefs of the population are systematically
distorted towards the beliefs of the most extreme individuals
(Navarro, Perfors, Kary, Brown, & Donkin, 2018).

This amplification of extreme priors is concerning because
it suggests that the process of information transmission itself
can distort belief – and that this occurs even if all agents are
fully rational and can share information fully. But our situa-
tion in real world is even more difficult. Limited by temporal
and cognitive constraints, people cannot exchange informa-
tion with everyone else. Moreover, the real world includes
people who you might not want to learn from – not just be-
cause they have different or more extreme priors, but because
they might be completely wrong or actively deceptive.

Intuitively, one solution to this dilemma would be for
agents to learn who not to trust: to lower the weight given
to the data from people who are inaccurate or miscalibrated.
This is an appealing idea, but raises an important question:
in the absence of any direct access to the ground truth, how
should a rational learner determine who is to be trusted?
One possibility is that agents might favour those who seem
to make sense: those who make claims that are consistent
with one’s own beliefs. Indeed, there is evidence that people
do adopt this strategy (Collins, Hahn, & von Gerber, 2018).
Unfortunately, trusting people with similar beliefs more of-
ten leads to polarisation (e.g., Axelrod, 1997; Hegselmann &
Krause, 2002; Olsson, 2013; Ngampruetikorn & Stephens,
2016; O’Connor & Weatherall, 2018; Madsen, Bailey, &
Pilditch, 2018). Instead of converging on a shared set of be-
liefs, populations split into echo chambers: sub-groups char-
acterised by high trust and shared beliefs within groups, but
low trust and shared beliefs between groups.

Although this general result is robust and has been shown
in a variety of modelling paradigms, in many cases the
reasoners in such paradigms are not meant to be optimal
(e.g., Axelrod, 1997; Hegselmann & Krause, 2002; Ngam-
pruetikorn & Stephens, 2016). Some studies that do use
Bayesian agents have established that polarisation arises even
when all of the agents reason rationally (Olsson, 2013;
O’Connor & Weatherall, 2018; Madsen et al., 2018); how-
ever, these studies generally involve fairly impoverished one-
dimensional meaning spaces and agents who can only com-
municate about those spaces in a limited way. For instance,
the agents in Olsson (2013) may believe in a proposition to
only some degree (e.g., 70%) but are only capable of commu-
nicating binary (“yes” or “no”) beliefs about the proposition.
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The agents in Madsen et al. (2018) are permitted more nu-
ance, being able to communicate their beliefs about the mean
of a one-dimensional Gaussian, but have no way to commu-
nicate their level of certainty. Would polarisation still arise in
groups of Bayesian agents with a richer space belief and the
ability to communicate those beliefs in a more nuanced way?
We explore this question here.

In Study 1 we present a new modelling paradigm in which
agents must learn and communicate about a two-dimensional
meaning space by sampling items from their current beliefs,
while simultaneously making inferences about which of the
other agents are trustworthy. We show that, as long as the dis-
tribution of prior beliefs in the population is sufficiently het-
erogeneous, echo chambers form even in this circumstance.
Study 2 investigates whether polarisation can be eliminated
and trust built by selectively communicating about only some
topics (dimensions). We find that this is not a solution: do-
ing so does build trust but at the cost of never coming into
agreement. In Study 3 we explore another potential solution:
access to a mutually trusted ground truth. Reassuringly, when
agents have access to such a truth – even if it makes up only
a tiny fraction of all of the data – polarisation is eliminated.

Study 1: Baseline
Method
Our simulations involve populations of n optimal Bayesian
agents who each learn a hypothesis by receiving data from
other agents (we vary n = 6 or n = 18). Agents perform in-
ference over which other agents are trustworthy t at the same
time as inferring which hypothesis h best describes the data
x seen so far by calculating the joint posterior P(t,h|x). Per-
forming joint inference over trust and beliefs is somewhat dif-
ferent from the typical approach, in which agents directly pre-
fer others who have similar beliefs (Olsson, 2013; Madsen et
al., 2018; O’Connor & Weatherall, 2018). We opted for this
approach for two reasons. First, people appear to make infer-
ences about trust at the same time that they evaluate beliefs,
and use their perceptions of trust to decide whose data to rely
on (Petty & Briñol, 2008; Shafto, Eaves, Navarro, & Perfors,
2012; Perfors, Navarro, & Shafto, 2018). More importantly
for our purposes, explicitly differentiating inferences about
trust from beliefs allows us to explore what happens if agents
can change their communication style (but not their beliefs)
in order to build trust, as in Study 2.

Trust is a real value between 0.0 (no trust) to 1.0 (perfect
trust) while beliefs consist of 2D Gaussians parameterised by
an unknown mean µ and a known symmetric covariance Σ0,
as described in more detail below.

Initialisation. Each agent a is initialised with a different
prior belief about the mean µa ∼N(0,Σ), where Σ = 0.5I. All
agents share the same prior about the covariance Σ0. We ma-
nipulate population heterogeneity by changing the size of the
prior covariance Σ0 relative to the initial generating covari-
ance Σ. Populations with high heterogeneity are initialised
with means that are more “distant” in belief space relative

to their beliefs about how wide the category is. There are
three conditions, each defined by their covariance matrix Σ0:
HOMOGENEOUS (Σ0 = 0.25I), NEUTRAL (Σ0 = 0.15I), and
HETEROGENEOUS Σ0 = 0.05I).

It would have been mathematically equivalent to manipu-
late heterogeneity by keeping the agents’ covariance priors
Σ0 constant and varying the covariance of the generating dis-
tribution Σ; the important thing is the ratio of the two. (We
chose to do it this way because one of our dependent vari-
ables is the average distance between agents in belief space,
and this permits all conditions to be initialised with a similar
average distance.) Smaller initial covariance matrices imply
more heterogeneity because heterogeneous populations con-
tain more individuals who are more likely to initially disagree
(by inferring that the data provided by the other was unlikely).
The same intuition is captured in other paradigms via the ten-
dency to seek out those who are distant in belief space; agents
with less of this tendency are more likely to polarise (Olsson,
2013; O’Connor & Weatherall, 2018; Madsen et al., 2018).

Agents are also initialised with trust vectors t with one
cell for each other agent in the population, such that t ∼
Beta(1,1). This prior means that each agent may initially
trust any other to any degree. Because the prior is weak, it is
easily changed in response to data.

Iterations. During each iteration we loop through our pop-
ulation of n agents. At each iteration, agent i selects another
agent j to learn from, proportional to the relative degree of
trust i has in j. Upon being selected, agent j samples a sin-
gle data point x at random from their hypothesis such that
x ∼ N(µ j,Σ0). Agent i then then updates their beliefs about
µi in the direction of x.1 Thus, each iteration involves agents
learning from others, in all cases revising their beliefs in the
direction of the data provided, but weighting the data that was
provided by trusted agents more.

At each iteration each agent i also updates their trust in
all other agents j, based on the data Xj provided by each.
The intuition is that agents will infer trustworthiness based
on the extent that the other says sensible things: in this con-
text, that means that agent j will be trusted proportional to
the degree to which the data they provide to i is consistent
with i’s own beliefs. Agent i accomplishes this by comput-
ing the probability that they themselves would have generated
that data P(X j|N(µi,Σ0)) and comparing it to the probability
that it was generated by an uninformative and unhelpful other
P(X j|N(0,Σu)).2 Agents are thus more likely to trust those
who provide data that is consistent with their own beliefs.

1Technically, agent i performs n− 1 Metropolis-Hastings steps,
one for each of the other agents j, in which the likelihood is calcu-
lated for all of the data points X j shared by j, including the new data
point x. Likelihood is weighted by trust in that agent, so that agents
who are more trusted have more of an affect on belief revision.

2The reason for comparing against a baseline is that the raw prob-
ability of an agent providing any set of datapoints is low in absolute
terms, and without the comparison all simulations tend for all agents
to trust nobody. Results are qualitatively similar for a wide range of
choices for the covariance of the uninformative baseline, as long as
it is larger than Σ0. All simulations here set Σu = I.
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Our approach is most similar to that of Madsen et al.
(2018), but there are a few key differences in addition to those
already discussed. First, their agents make inferences about
both mean and variance, and communicate by providing the
mean directly rather than sampling from their posterior. Po-
larisation occurs in their simulations at least in part because
the learned variances approach size zero. This was proba-
bly facilitated by the fact that agents could not sample from
their distributions when providing data and thus could only
give point estimates, leading to a severe underestimation of
the variance. Here we test whether polarisation still emerges
even with agents with constant variance who can also provide
more information about the extent of their distribution.

A second difference is that their agents can revise their be-
liefs away from the data they receive, whereas ours cannot.
This sort of belief revision is not necessarily irrational (Jern,
Chang, & Kemp, 2014), but it is difficult to determine to what
extent it drives polarisation in Madsen et al. (2018). In order
to explore whether polarisation arises even when the condi-
tions for it are as unfavourable as possible, our agents disre-
gard data they do not trust rather than move away from it.

Results

For each condition and population size, we ran 50 runs (dif-
fering only in the initial random distribution of agents in be-
lief space) for 500 iterations each. All of our simulations were
characterised by changes in the beliefs of the agents as well
as their mutual trust. We consider each in turn.

Trust. We can visualise the distribution of trust across the
population using pairwise mutual trust matrices T in which
Ti j denotes the trust that agent i has toward j. We are specif-
ically interested in the distribution of trust within the popula-
tion: does it tend to be uniform, or are there clusters of agents
who highly trust in each other but distrust anyone else? As the
top right panel of Figure 1 shows, this clustering can be quan-
tified using Gini mean difference (GiniMD): the mean absolute
difference between all distinct elements in the pairwise trust
matrices. A lower GiniMD indicates a higher shared trust, and
GiniMD values over 0.3 correspond to highly polarised pop-
ulations: the pairwise trust matrices show a “block” struc-
ture in which agents are in subgroups characterised by high
within-group trust and low between-group trust.

As the top of Figure 1 shows, regardless of the population
size, populations with HETEROGENEOUS agents were highly
likely to become polarised. An ANOVA found a signifi-
cant effect of condition on GiniMD (F(2,296) = 29.34, p <
0.0001) but not number of agents (F(1,296) = 0.81, p =
0.369). Initial random differences in beliefs between agents
were exacerbated as they grew to trust those with similar be-
liefs and minimised data from those with dissimilar beliefs.
Heterogeneity was the determining factor because it affected
how much weight agent i put on data from j. In heteroge-
neous populations, more agents had initial beliefs that were
far from the covariance of other agents; they were thus more
apt to be distrusted. Once distrusted, they could not recover.

Figure 1: Study 1: Emergence of polarisation. Top: Polarisa-
tion is evident in the pairwise mutual trust matrices between
agents, and quantified using GiniMD (right). Values above 0.3
indicate that agents have formed subgroups characterised by
high within-group trust and low between-group trust. Popu-
lations of all size become polarised when they are HETERO-
GENEOUS (left), despite the fact that all agents are optimal
Bayesian reasoners. Bottom: More HETEROGENEOUS agents
also show a greater divergence in beliefs (left). Sample runs
(right) showing the average pairwise Euclidean distance be-
tween agents in belief space (grey dots plot the locations of
agents’ initial hypotheses (µ) and dark blue dots plot the fi-
nal ones) reveal that larger differences tend to correspond to
more than one cluster in belief space.

The bottom of Figure 1 illustrates that these trust-based
echo chambers correspond to greater average distance from
each other in belief space; agents do not converge on a shared
belief. As before, this effect was driven by population het-
erogeneity (F(2,296)= 22.11, p< 0.0001), although popula-
tion size was also significant (F(1,296) = 11.24, p = 0.001).
Even though agents in all conditions began the simulations
at similar distances in belief space from each other, the HET-
EROGENEOUS agents tended to form widely-separated clus-
ters while more HOMOGENEOUS agents were more likely to
converge on the same belief. Distance in belief space and
trust clustering thus both tell the same story: in sufficiently
heterogeneous populations, polarisation is highly likely, even
when all of the agents involved are optimal Bayesian reason-
ers. Consistent with this, there is a strong correlation between
GiniMD and distance (r = 0.81, t(298) = 23.7, p < 0.0001).

How might we disrupt this tendency toward polarisation?
Study 2 explores one idea: building trust by communicating
tactically. Our agents are always constrained to be honest, but
here we make it possible for them to refrain from communi-
cating about topics on which disagreement is likely.
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Figure 2: Emergence of trust when agents can avoid con-
tested subjects. Average GiniMD as a function of the propor-
tion of time agents included information about the contested
dimension. As the dimension is included less, the agents
show ever-higher levels of mutual trust. Trust is consistently
unpolarised by the time the contested dimension is included
25% of the time, even in the HETEROGENEOUS condition.

Study 2: Tactical topic selection
Method
One of the simplifications we made in Study 1 was to as-
sume that agents were required to communicate fully as well
as honestly. In real life, however, people have discretion in
what they choose to talk about. If you are visiting an uncle
with whom you disagree politically, you might spend the ma-
jority of your time talking about something that you agree on,
like football. This enables you to grow trust in each other and
might give you the space to occasionally talk about politics.

Does adopting this strategy decrease the emergence of po-
larisation? Key to answering this question is realising that it
is important to talk about contested issues at least some of
the time: otherwise, you might trust each other, but still have
irreconcileable beliefs about the facts of the matter. In these
simulations we test whether there are any “sweet spots” in
which agents can talk about contested beliefs just enough to
come to agreement and maintain trust.

We tested this by initialising the agents differently. Where
before the initial means for agents µa were generated by
sampling from a Gaussian with symmetric covariance matrix
0.5I, in Study 2 we sampled them from an asymmetric matrix
with the same covariance as before along one dimension but
four times tighter along the other. This meant that agents a
priori only disagreed on one dimension, rather than two.

We then systematically varied the proportion of time that
agents chose to include the contested dimension that they
were more likely to disagree on. If an agent received a data
point that did not include that dimension, they “filled it in”
themselves by sampling it from their own prior. This was
done in order to maximise the probability of eliminating po-
larisation; if it cannot be avoided even when agents are mak-
ing the most charitable assumptions about what is going un-
stated, then it would be even harder to avoid if agents are
making less charitable assumptions.

Figure 3: Evolution of belief when agents can avoid contested
subjects. Average pairwise distance in belief space as a func-
tion of the proportion of time agents included information
about the contested dimension. As the dimension is included
less, the agents show more divergence in beliefs; as trust in-
creases, the divergence in beliefs increases more. Thus, lower
polarisation does not reflect more agreement.

Results
The results suggest that enabling agents to only discuss one
dimension and avoid contested dimensions does increase mu-
tual trust, but the price of this is that agents no longer form
a shared set of beliefs. As Figure 2 shows, communicating
less about the contested dimension systematically increases
trust (F(4,1495) = 117.5, p < 0.0001). If the contested di-
mension is included only half of the time, GiniMD values are
consistently below 0.4, and if it is included 25% of the time
or less the level of polarisation is nearly nonexistent.3

However, as Figure 3 reveals, that lack of polarisation cor-
responds to situations where the average distance between
beliefs has increased substantially (F(4,1495) = 137.7, p <
0.0001). When the contested dimension is included half of
the time, the average distance between beliefs is even higher
than in the baseline HETEROGENEOUS case, even though the
trust levels are still low. By the time polarisation has been
eliminated in the trust matrices (when talking about the con-
tested dimension 25% of the time or less), agents radically
differ in their beliefs. What appears to be happening is that,
unaffected by external data, evolution along that dimension
proceeds in a random walk. Thus, although agents agree with
each other on the non-contested dimension, they diverge ever
more strongly on the contested one.

Thus, the higher levels of trust have not bought more agree-
ment: they just reflect the fact that some topics are not dis-
cussed. Most importantly, we could find no “sweet spots”
in our simulations where strategically communicating about
contested beliefs only part of the time could allow trust to be
maintained and beliefs to converge. This finding should be
interpreted with caution because it depends to some extent on
choices we made about values of Σ0, Σu, and Σ. However, it
is not reassuring that the divergence in belief occurs before

3For ease of presentation, we collapse across population size in
the figures and analyses but the qualitative effect is identical whether
there are 6 or 18 agents in the population.
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Figure 4: Evolution of trust when agents have access to the
ground truth. It only takes a little bit of access to a ground
truth source that everyone agrees is trustworthy to disrupt
the formation of echo chambers, even in a HETEROGENEOUS
population. Even 2% of all data points make a big difference,
and by 4% or so everyone trusts everyone else.

the emergence of mutual trust, suggesting that even if such
a sweet spot exists, it is tiny and highly dependent on a very
specific set of parameter choices.

So far we have found that echo chambers persistently form
in populations of rational agents, despite making as many
charitable assumptions as possible: our agents do not revise
beliefs away from those they disagree with and communicate
about a rich meaning space in a way that includes their confi-
dence (variance) about the mean rather than the mean alone.
Even with these assumptions, as long as the initial beliefs
are heterogeneous enough, agents cluster into echo chambers.
Allowing them to build trust by communicating more often on
less contentious topics does not solve this problem; commu-
nicating rarely enough to build trust means not communicat-
ing often enough to converge on a set of shared beliefs. Taken
together, this appears to support the intuition we began with:
this is a very difficult epistemological problem. How can one
sensibly learn from others when you have no way to evaluate
who to trust aside from the data they provide, and no way to
evaluate that data against the state of the world?

These considerations suggest that echo chamber formation
might be eliminated by simply giving agents access to some
mutually-agreed upon ground truth of the matter. This might
be data supplied by the external world directly or information
provided by an objective observer; all that is necessary is that
everyone has access to it and everyone trusts it. Does access
to the ground truth disrupt the formation of echo chambers?
If so, how little is required?

Earlier work has investigated these questions and found
that access to the ground truth is not sufficient to disrupt echo
chamber formation (O’Connor & Weatherall, 2018; Madsen
et al., 2018). However, in O’Connor and Weatherall (2018)
the agents sought out such evidence in a confirmatory way,
testing their current hypothesis only. It is possible that re-
ceiving data relevant to all hypotheses might have led to a
different result. Furthermore, agents in Madsen et al. (2018)

Figure 5: Evolution of belief when agents have access to the
ground truth. It only takes a little bit of access to a ground
truth source that everyone agrees is trustworthy to disrupt
the formation of echo chambers, even in a HETEROGENEOUS
population. Even 2% of all data points make a big difference,
and by 4% or so there are no differences in beliefs.

often ended up ignoring the ground truth because it was out-
side of their inferred variance, which had shrunk to zero. In
that sense it was not actually a “ground truth”, because al-
though it was available to all, very few people trusted it. In
Study 3 we therefore provide a ground truth that all agents
have access to and all trust equally.

Study 3: Ground truth
Method
Our method was exactly the same as in Study 1, except that
sometimes the agents received a data point xg sampled from
the “ground truth” of the world, xg ∼ N(0,Σ). Agents revised
their belief based on this data exactly as they did on any other
data; the only difference is that they did not perform infer-
ence over trust, instead assuming perfect trust in the source.
We systematically vary how often agents have access to the
ground truth. Because echo chambers only emerged in the
HETEROGENEOUS condition in Study 1, we consider only
that condition here. As in Study 2, for ease of presentation
we combine the runs with 6 and 18 agents.

Results
As Figures 4 and 5 show, even a very small amount of access
to ground truth data is sufficient to disrupt the formation of
echo chambers. When only 2% of the data comes from the
ground truth, a substantial proportion of runs result in high
levels of mutual trust and shared beliefs. When 4% of the data
is ground truth, polarisation is consistently eliminated: even
initially HETEROGENEOUS agents converge on the same set
of shared beliefs and trust everybody in the population.

Discussion
This paper is part of a growing literature investigating what
happens to populations of rational agents when faced with
a difficult epistemological puzzle: how to learn a set of be-
liefs from other people, without having access to external ev-
idence about those beliefs or knowing a priori who to trust.
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Consistent with that literature, we find that echo chambers
consistently emerge, despite making every effort we could
to eliminate them. Even though we provided agents with a
richer meaning space and more nuanced communication abil-
ities than other studies, polarisation was still highly likely as
long as the population was sufficiently heterogeneous in their
initial beliefs. One contribution of our work, therefore, is to
further underline the robustness of this effect.

We make several larger contributions as well. First, we
show that enabling agents to strategically talk less about top-
ics that they disagree on did not solve the problem. Avoiding
those topics did lead to improve trust, but at the expense of
increasing the distance between beliefs; we found no “sweet
spot” where both mutual trust and shared belief were possi-
ble. To our knowledge this is the first attempt to simulate the
population-level effects that results from agents adopting dif-
ferent communicative tactics. Our framework is rich enough
to investigate many other such tactics. What happens if peo-
ple sample based not just on their own beliefs, but also on
their inferences about the beliefs of others? What if people
deliberately select more or less extreme beliefs, in an effort to
shift the Overton window of acceptable discourse? How vul-
nerable are these strategies to deceptive or malicious agents?

Our work is also the first, to our knowledge, to show that
having access to a trusted “ground truth” is an extremely pow-
erful way to break the echo chamber effect. Previous work
found that ground truth did not help that much (Madsen et al.,
2018; O’Connor & Weatherall, 2018), but as discussed be-
fore, this was probably because of specific modelling choices
that resulted in their “ground truth” being neither fully shared
nor fully trusted. When it is shared and trusted, only a
small proportion of data is necessary for even initially het-
erogeneous populations to develop high trust and converge
on shared beliefs. The reason for this is that this common
ground breaks the vicious cycle and creates a virtuous one:
agents make inferences about their beliefs based in part on
the ground truth data, thus trusting agents more who agree
with it, and so forth. Our framework is flexible enough to en-
able further exploration of the robustness of this effect. How
important is it that everyone have access to it? What if the
ground truth is more accessible or less ambiguous to some?
Is there any way for agents to identify those people that can-
not be “gamed” by malicious agents seeking to mislead?

Our finding about the necessity of the ground truth may
have important implications in light of the “post-truth” era
that many believe we are now in (Lewandowsky, Ecker, &
Cook, 2017). This era is characterised not only by attempts to
delegitimise previously trusted sources but, more profoundly,
a pervasive denial that a truth exists at all and a persistent
belief that no sources are to be trusted (McCright & Dunlap,
2017). Indeed, one of the characteristics of fascism was a de-
nial of the utility of external evidence (Varshizky, 2012), and
conspiracy theories are associated with lower levels of trust
in external sources (Einstein & Glick, 2015). Our simula-
tions suggest why: shared access to the truth is one of the few

things that might rescue agents from an otherwise inescapable
epistemic trap. Agents who do not have access or belief in
this truth are far easier to confuse, polarise, and manipulate.

Although our work further demonstrates that echo cham-
ber formation is a robust and consistent effect even in popu-
lations of perfectly rational learners, it does suggest a key to
disrupting them. Perhaps polarisation can be minimised and
trust increased not by throwing more evidence toward mis-
taken beliefs, but by working to persuade people instead that
objective truth exists and shoring up their (perceived) capac-
ity to access and evaluate it.
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Abstract 
             

Previous research with typically developing (TD) children       
and adults show an advantage of active control for episodic          
memory as compared to conditions lacking this control. The         
present study attempts to replicate this effect in autistic         
children. Six- to 12-year-old autistic children (n = 30) were          
instructed to remember as many of 64 presented objects as          
possible. For half of the materials presented, participants        
could decide the order and pacing of study (Active condition).          
For the other half, they passively observed the study decisions          
of a previous participant (Yoked condition). We found that         
recognition memory was more accurate for objects studied in         
the active as compared to the yoked condition, even after a           
week-long delay. The magnitude of the effect was comparable         
to that obtained in previous studies with TD children and          
adults, suggesting a strong robustness for the benefits of         
active learning. We discuss how pedagogical approaches may        
be encouraged to utilize self-directed learning strategies to        
promote inclusive learning.  
 
Keywords: active learning; Autism Spectrum Disorder;      
Enactment Effect; recognition memory; pedagogy 
 

Introduction 

The opportunity to exert active control over the learning         
experience, often referred to as active, or self-directed        
learning, has been shown to lead to improved outcomes as          
compared to more passive forms of instruction (see Bruner,         
Jolly, & Sylva, 1976; Gureckis & Markant, 2012;        
Montessori, 1912; Piaget, 1930). In particular, studies with        
adults show an advantage of active control for episodic         

memory of objects (Voss, Galvan & Gonsalves, 2011), faces         
(Liu, Ward, & Markall, 2007), and in spatial learning tasks          
(Plancher, Barra, Orriols, & Piolino, 2013; for a review see          
Markant, Ruggeri, Gureckis, & Xu, 2016), as compared to         
conditions lacking this control. A more recent study        
suggests that the benefits of active learning for episodic         
memory of objects might already emerge during early        
childhood, and become comparable to adults’ by age 8         
(Ruggeri, Markant, Gureckis, Bretzke, & Xu, 2019).       
Difficulties in active selection (and thus control) of the         
contents of learning may emerge in situations where        
exploratory behaviours are limited. In this paper we explore         
the effects of active control of learning on episodic memory          
in autistic children. The examination of atypically       
developing children might help to further understand the full         
spectrum of development (Graham & Madigan, 2016) and        
support the development of novel pedagogical approaches to        
promote inclusive learning. 

Benefits of active control of study and enactment effect.         
To investigate the effects of active control for episodic         
memory, studies have typically employed yoked designs,       
which implicate a pair of learners: An active participant who          
controls the flow of information during learning (e.g.,        
selecting what to study and for how long), and a yoked           
participant, who observes the experience generated by the        
active participant (Markant et al., 2016). By matching the         
content experienced during study across conditions, yoked       
designs isolate the effects of active decision making on         
learning and memory. For example, Ruggeri and colleagues        
(2019) presented 5- to 11-year-old children with a simple         

924



memory game in which they were tasked to remember and          
later recognize a set of 64 objects. For half of the materials            
presented, participants could decide the order and pacing of         
study (Active condition). For the other half, they passively         
observed the study decisions of a previous participant        
(Yoked condition). The authors showed that recognition       
memory was more accurate for objects studied in the active          
as compared to the yoked condition, and that this memory          
advantage persists over a week-long delay. This advantage        
of active learning has been shown to be fairly robust across           
different types of tasks, developmental stages, and even        
populations of learners of different nationalities (Brandstatt       
& Voss, 2014; Ruggeri et al., 2019).  

Self-performed tasks (SPT) (Cohen, 1981) present a       
similar design: Participants are presented with action       
phrases (for example, “Clap your hands”) that they either         
have to read/perform (Active condition) or that are        
read/performed by somebody else (Verbal     
task/Experimenter performed task; Engelkamp & Zimmer,      
1989). Participants are then usually tested through a recall         
or recognition memory task for the action phrases presented.         
Results from studies using the SPT have convergently        
indicated advantages for learning associated with the active        
condition (Engelkamp, 1998). For example, Baker-Ward      
and Colleagues (1990) found that children as young as six          
years old exhibited better recall for actions they performed         
compared to the observed actions of someone else. This         
effect, referred to as the enactment effect, is extremely         
robust and is thought to improve memory mainly through         
motor actions (Engelkamp & Zimmer, 1998). Along these        
lines, Engelkamp and Zimmer (1994) found that       
participants, when they physically performed an action,       
remembered it better than when they just read a distractor          
phrase similar to the target action.  

The ecological validity of self-performed tasks might be        
limited though, for instance, as SPTs use stimuli exclusively         
associated with specific actions. Yet, learning processes,       
particularly those based on recognition memory, involve       
interactions of different abilities, functions, semiotics, and       
experiences with a variety of stimuli. Furthermore, SPT        
paradigms make it difficult to isolate the sources of         
enactment effects as the content of the tasks differ across          
verbal, or experimenter performed conditions. As a       
participant remembers an action they performed more       
accurately it becomes challenging to separate motor       
involvement from other kinds of self-representation, for       
example. Aside from motor actions, there may be different         
factors influencing enactment effects like metacognition,      
attention, motivation, or agency. Further work incorporating       
different stimuli and target behaviors aimed at isolating        
motor involvement is needed to expand our knowledge on         
the function and implications of enactment effects in        
developmental and learning processes.  

Learning strategies in autistic individuals. Autism      
Spectrum Disorder (ASD) is a neurodevelopmental disorder       
characterized by persistent social communication difficulties      
as well as restricted interests, repetitive activities and        

sensory abnormalities (American Psychiatric Association,     
2013). Autistic children seem to explore both space and         
objects less than others. In autistic children, restricted        
interaction with objects, or an insistence on exploring only a          
few features of an object may limit the possibilities for          
learning (Bjorne, 2007). As a consequence, autistic children        
might be at risk of missing important opportunities for         
learning, except for those things that lie within their         
interests, and this might have important consequences for        
their development (Pierce & Courchesne, 2001). Bondy and        
Frost (1994) indicate that 80% of autistic children, aged 5          
years and younger, who enter special education are        
non-verbal, and 30% are minimally verbal at 9 years old          
(see also Anderson et al., 2007). Verbal tasks may thus not           
be the most methodologically appropriate to assess active        
learning in autistic children, considering their well-known       
communication and other general learning difficulties.  

As memory enhancements from active learning paradigms       
seem to be extremely robust in typically developing        
individuals, research evidence suggests that the enactment       
effect may also be intact in autistic individuals (see;         
Grainger, Williams, & Lind, 2014a; Grainger, Williams, &        
Lind, 2017; Lind & Bowler, 2009; Summers & Craik, 1994;          
Williams & Happé, 2009). Summers and Craik (1994)        
found no significant differences in recognition memory for        
action-phrases between autistic and typically developing      
(TD) children from an SPT design. These results were         
confirmed in a study by Yamamoto and Masumoto (2018),         
who examined the enactment effect for recall and        
recognition memory in autistic adults and a TD comparison         
group through an SPT. They found that although overall         
recall performance was lower for autistic individuals than        
for the TD group, there were no differences in the enactment           
effect between groups. Overall, there seem to be no         
significant differences in the magnitudes of enactment       
effects for memory tests in autistic children compared to TD          
children (see Grainger et al., 2014a for a review), measured          
through research paradigms adopting self performed tasks.  

The present study. The present study aimed to explore         
the benefits of active learning on episodic memory in         
autistic children by examining their recognition memory for        
objects studied in an active compared to a yoked learning          
condition. The design we have adopted is one step beyond          
the SPT paradigm used by previous studies to elicit the          
enactment effect, presenting several advantages: First, we       
used images of objects that are not explicitly associated with          
performing an intended action. Second, due to its yoked         
design, the content experienced during study was carefully        
matched across conditions, so that we could isolate the         
effects of active control of study on learning and memory.          
Third, participants were instructed to perform the same        
motor actions in both active and yoked conditions. In this          
way, we could also disentangle the effects of active control          
from the effects that, in SPTs, have often been attributed to           
motor engagement. Along these lines, a study by Williams         
and Happé (2009) designed a task in which autistic children          
were asked to self-perform an action and to perform the          925



same action on behalf of a doll that represented a separate           
agent. The authors found that memory was better for the          
actions that had been self-performed, suggesting that even        
the enactment effect cannot be exclusively attributed to        
motor engagement.  

Finally, a number of studies have revealed diminished        
recall but intact recognition memory in autistic individuals        
(see Boucher, Mayes, & Bigham, 2012 for a review). For          
this reason, we thought testing recognition memory would        
be a sufficient task to isolate the effects of active control.           
Moreover, evidence has suggested that adopting interactive       
teaching strategies (i.e. visual-interactive materials paired      
with music) enhances active engagement and learning of        
autistic students (Carnahan, Musti-Rao & Bailey, 2009). In        
this sense, the use of a tablet device, with an interactive           
interface, to assess autistic children who might have        
communication impairments might be particularly suitable      
to deliver the paradigm. Past research has also shown that          
autistic children seem to be more attentive, and motivated         
resulting in better performance and enjoyment of       
intervention sessions implemented through tasks involving      
technological tools (Moore, & Calvert, 2000). This task can         
reveal the non-verbal learning strategies adopted by autistic        
children. Our results will add further information on visual         
object exploration strategies, and contribute to a broader        
picture of active learning. Based on the literature reviewed         
above, we expected that autistic children would show active         
learning benefits to memory similar to that found in TD          
children of the same age (Ruggeri et al., 2019). In particular,           
with this design we can explore whether and how the effects           
of active control of study depend on how participants         
explore the objects. These insights would bear relevant        
implications for future research directions and clinical       
practice. 

 
Method 

Participants 
We recruited 30 6- to 12-year-old autistic children (4         
female, Mage = 113.17 months; SD = 19.89 months) from          
the Neuropsychiatry and Neuroscience Unit, I.R.C.C.S.      
Bambino Gesù Pediatric Hospital (OPBG), Rome, Italy.       
Participants had been previously screened for a formal        
diagnosis of ASD using the Autism Diagnostic Observation        
Schedule (ADOS; Lord et al., 2000). To minimize        
differences between participants, we recruited individuals      
who had scored between 5 to 8 out of 10 on the ADOS (M =               
6.13; SD = 1.04). Once we re-ran the ADOS test with the            
subjects recruited, we excluded one participant who scored        
below 5. Participants were also previously screened for IQ         
(M = 109.20; SD = 13.43) using the Raven’s Coloured          
Progressive Matrices (Raven, Court, & Raven, 1990). The        
data from 5 additional autistic children were excluded for         
reasons due to behavioral issues, symptom severity, and        
technical difficulties.  
 

Materials 
As in Ruggeri and colleagues (2019), the stimuli set         
consisted of 200 line drawings of the most frequent objects          
mentioned by 2- to 5-year-old children in their everyday         
conversations with adults, as recorded by the CHILDES        
corpus (Child Language Data Exchange System;      
MacWhinney & Snow, 1985). Eight of the 200 drawings         
were used as training stimuli for the familiarization trials         
and 192 drawings were used as stimuli during the first and           
second experimental sessions. The experimental materials      
were presented on an Android touchscreen tablet using        
custom software. 
 
Design and Procedure  

The experimental procedure was identical to that       
implemented by Ruggeri and colleagues (2019). The stimuli        
were presented as a simple memory game whereby children         
were tasked with remembering as many of the presented         
objects as possible.  
 
Familiarization phase. Participants were first presented      
with two familiarization trials aimed at introducing the goal         
of the game, the study procedures, and making children         
comfortable using the touchscreen. During each      
familiarization trial, children were presented with four       
objects arranged in a 2x2 grid. The objects were shown on           
the screen for two seconds before disappearing under        
occluders (same as for the main experimental session, see         
Figure 1, top). Participants were instructed that the goal of          
the game was to remember all the objects presented on the           
screen. The first familiarization trial introduced the study        
procedure of the active blocks. Participants were told that in          
some rounds they could decide which occluder button to         
touch in order to view the object hidden beneath. After a           
touch, a red frame appeared for 500 ms, followed by the           
removal of the occluder that would reveal the hidden object.          
Children were instructed that, before studying another       
object, they had to touch the object currently displayed once          
more to make it disappear behind the occluder. The         
experimenter modeled the touching actions while explaining       
the procedure. Children then had the opportunity to practice         
the active study procedure. If necessary, the experimenter        
provided feedback and repeated the instructions. Once       
children were familiar with the active study procedure, they         
moved on to the second familiarization trial, which        
introduced children to the study procedure of the yoked         
blocks. They were told that in other rounds the game would           
decide what objects they would see and for how long.          
Children were then presented with a randomly generated        
study sequence. As in the active blocks, a red frame          
preceded each object for 500 ms so that children had time to            
allocate their attention to the new study location before the          
object appeared. To keep engagement and attention level        
comparable to the active blocks, during yoked blocks        
children were asked to touch the objects as soon as they           
appeared, although this touch had no effect on the display.          926



There were no time constraints for the familiarization trials. 
 
Study phase. The main experimental session consisted of        
two active and two yoked study blocks (four blocks total),          
presented in alternating order (i.e., active, yoked, active,        
yoked). The active block was always presented first, so that          
children’s initial active study pattern would not be        
influenced by the study pattern observed in the yoked         
blocks. Each study block presented children with 16 objects         
arranged in a 4x4 grid. All 16 objects were visible on the            
screen for 2 seconds at the beginning of each study block,           
before disappearing under occluders (see Figure 1, top).        
Across the four blocks, children were asked to memorize 64          
objects. In the active blocks, children had 90 seconds to          
select and study the objects in order to memorize them. In           
the yoked blocks, children were presented with the        
90-second study sequence (i.e., same objects and pacing) of         
one of the previous participant’s active learning blocks. In         
between blocks, there was a 20-second break in which         
children were briefly reminded of the study procedure for         
the next block. 
 
Test phase. The study phase was immediately followed by         
a test phase consisting of 8 blocks. In each test block, 16            
objects were again presented in a 4x4 grid (see see Figure 1,            
bottom). Across the 8 test blocks, 64 of the objects had           
appeared during the study phase (old objects) and 64 were          
objects that were not presented during study (new objects).         
The number of old objects in each block was randomly          
varied between 1 and 15. The number of old objects from           
active and yoked blocks randomly varied across test blocks         
(active: M = 4:23, SD = 2:16; yoked: M = 4:3, SD = 2:25).  

 

 
 
Figure 1. Top: Each study round began with all objects          
displayed for two seconds. After the objects disappeared,        
participants either selected a location to study (Active        
condition), causing a red frame to appear, followed by the          
object, or touched the location where the object appeared         

(Yoked condition), preceded by a red frame. Bottom:        
During each test block, participants selected the objects that         
they recognized from the study phase.  
 

All objects were arranged in random locations on the grid.          
For each block, children were asked to indicate the objects          
they had studied earlier by touching them on the screen.          
Selected objects were framed in red to help participants         
keep track of the objects selected as recognized. Children         
could deselect any of the previously selected objects by         
touching them again on the screen and making the red frame           
disappear. After selecting all the objects they recognized        
from the study phase, children were prompted to touch a          
button to proceed to the next test block. Children were not           
given any feedback about their performance during or after         
the test phase.  

About one week later (range 5 to 8 days; M = 7.04 days;             
SD = 0.58 days), children revisited the Hospital for a second           
session in which they were asked to complete 8 new test           
blocks. The 64 objects studied in the first session were          
randomly mixed with 64 new objects (i.e., objects that were          
not used during the first experimental session, neither as         
study nor as test objects).  
 

Results 
We analyzed (1) recognition accuracy (i.e., the number of         

objects recognized among the ones studied); (2) the        
correlations between study experience and performance, to       
test whether certain participants’ exploration strategies and       
patterns lead to better recognition accuracy. In particular,        
we examined the correlation between the recognition       
accuracy for a certain object and the time spent studying it,           
as well as the number of times it had been visited during            
study. We also examined the correlation between       
participants’ average recognition accuracy and the distance       
between subsequent study locations (that is, the average        
distance on the grid between the object currently visible and          
the one selected next), a basic measure of how         
systematically a child explored the grid. 
 
Recognition accuracy. We examined recognition accuracy      
using an ANOVA with study condition (2 levels: active         
versus yoked) and session (2 levels: test versus        
one-week-later retest) as within-subject variables. We found       
a significant main effect of study condition, F(1, 81) =          
16.44, p = < .001. Children recognized more objects studied          
in the active learning condition (Mactive = 19.02; SD = 6.70)           
as compared to the objects studied in the yoked condition          
(Myoked = 16.26; SD = 6.52), a 9% difference (see Figure 2).            
We also found a significant effect of session F(1, 82) =           
19.09, p = < .001. Children recognized more objects studied          
in the first test session (Mtest = 18.92; SD = 6.72) compared            
to approximately one week later in the retest session (Mretest          
= 16.22; SD = 6.51). There was no reliable interaction          
effect between study condition and session (p  = .559). 
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Figure 2: Number of objects correctly recognized in the test           
trials, displayed by study procedure (active vs. yoked) and         
session (test vs. retest). Error bars indicate 1 SEM. 
 
Correlations between study experience and     
performance. Surprisingly, we found that object      
recognition accuracy was not correlated with the time spent         
studying an object, nor with the number of times the object           
had been visited in the active study condition, for both test           
and retest (see Table 1). However, we found a correlation          
between recognition memory for objects studied in the        
active blocks and the distance between the location in which          
the objects were presented on the study grid and their          
location on the test grid, r = .577, p = < .01.  
 
Table 1: Correlations between study measures. 

 
* Correlation is significant at the 0.05 level (2-tailed). 
** Correlation is significant at the 0.01 level (2-tailed).  
*** Correlation is significant at the 0.001 level (2-tailed). 
 

Discussion 
The present study investigated whether active control over        

a learning experience leads to benefits in episodic memory         
for 6- to 12-year old autistic children. As hypothesized, and          

similar to previous studies with TD adults and same-aged         
children, we found that participants’ memory was more        
accurate for objects studied in the active learning compared         
to the yoked condition. Moreover, the strength of active         
control for memory encoding is strikingly comparable to the         
effect found with TD children from an identical recognition         
task (9% increase over the yoked condition; Ruggeri et al.,          
2019), and similar to that found in other studies examining          
the enactment effect in autistic individuals (see Grainger et         
al., 2014a for a summary). Thus, our results add to the           
universal robustness of active learning effects.      
Concurrently, this study complements and adds to the        
presence of the enactment effect in autistic individuals by         
employing an alternative paradigm to the commonly used        
SPTs. Considering our findings with respect to long-term        
memory, we found that memory improvement for objects        
studied by active control lasted for at least one week after           
testing. These findings lend support to established evidence        
suggesting improved long-term retention as a result of        
active control of learning (Ruggeri et al., 2019; Yamamoto,         
& Masumoto, 2018).  
As mentioned in the introduction, bearing in mind possible          

mechanisms responsible for the active learning advantage,       
motor involvement has often been suggested to play an         
important role (Engelkamp, 1998; Markant et al., 2016). In         
experiments that implement SPTs, the participant enacts an        
action phrase like ‘Wave Goodbye’ in the active condition,         
and observes the experimenter performing a different action        
phrase in the passive condition. This idea (Engelkamp &         
Zimmer, 1989) supposes that performing an action involves        
motor components, which add rich contextual properties       
that help the encoding process of SPTs (Engelkamp, 1998).         
However, in our study participants are engaged in        
approximately the same motor actions in both active and         
yoked conditions. This result suggests that the process of         
physically performing an action is not necessary to scaffold         
memory performance.  

Rather unexpectedly our results also seem to suggest, that         
episodic memory is not influenced by autistic children’s        
study patterns, in both conditions. Objects studied for a         
longer time or visited more often were not recognized more          
accurately. This differs from all previous adults and children         
active learning studies that have used this paradigm (see         
Gureckis & Markant, 2012; Markant et al., 2014; Markant et          
al., 2016; Ruggeri et al., 2019). This might be related to the            
deficit in metamemory and metacognition demonstrated in       
autistic individuals (Grainger, Williams, & Lind, 2014b).       
That is, due to such deficits, autistic children may not have           
been strategically devoted to their study effort, allocating        
the same amount of time and visits to all object images.           
Therefore, we did not have enough variability to capture a          
correlational effect. It is extremely interesting to notice that         
the advantage of active learning for memory encoding does         
not seem to depend on the efficiency of children’s study          
strategies and metacognitive decision making, and that it        
persists when such processes do not play a prominent role.          
Future studies should investigate more thoroughly the role        928



of metacognition and metamemory, as well as attention and         
motivation on the active learning benefit for memory        
encoding. 

Again in contrast with results from prior research, we         
found that recognition accuracy for object studied in the         
active condition is correlated with the distance between the         
location in which the object was presented on the study grid           
and its location on the test grid. Having the objects          
presented in the same location on the grid across the study           
and test blocks did help children recognize them more         
accurately, but only in the active condition. These results         
might speak, though indirectly, in favor of an active learning          
advantage for spatial recall in autistic children. However,        
only a direct test of spatial memory would allow         
confirmation of this hypothesis.  

The natural next step would be to extend this paradigm to           
include more real-world stimuli and tasks targeted to autistic         
children as well as other developmental disorders. For        
example, Ruggeri and colleagues (2019) designed a task to         
model real learning situations children encounter in school.        
Using a similar paradigm to our study, children were tasked          
to learn the French words for images of objects presented in           
a study space. The experimenters found that French words         
were remembered more accurately studied in an active as         
compared to a yoked condition. Based on this research,         
future studies might explore the role of active learning in          
learning new actions, words or behaviors. We are currently         
in the process of collecting a much larger sample, across          
different age groups and encompassing a wider range of         
symptom severity and cognitive maturity. On one hand, this         
would allow us to trace the emergence of the active learning           
advantage and compare the developmental trajectories of       
this effect in autistic and TD children. On the other hand, we            
are keen to explore whether and how general cognitive         
performance and symptom severity might impact the       
advantage of active learning and children’s active study        
strategies, although previous research suggests that ASD       
traits do not impact memory for self-representations       
(Williams, Nicholson, & Grainger, 2018).  

In conclusion, because autistic students often have       
difficulties participating in classroom activities (Sparapani,      
Morgan, Reinhardt, Schatschneider, & Wetherby, 2016), it       
is important to better understand how these children learn to          
improve and develop current and novel teaching methods. If         
active control over the learning experience can enhance        
episodic memory in ASD, then teachers and educators might         
think of supporting active learning approaches in       
pedagogical applications. Offering children with     
developmental disorders opportunities for concrete     
self-generated, active learning experiences could help      
promote greater learning outcomes (Haslam, Wagner,      
Wegener, & Malouf, 2017). Involving the student in their         
own learning can also be beneficial for reducing        
problematic behaviors, while at the same time improving        
skill acquisition (Toussaint, Kodak, & Vladescu, 2016).       
Alternative modes of teaching based on the use of images          
and pictures, rather than written words, are encouraging new         

therapeutic and instructional strategies for autistic children.       
Consequently, language and communication development     
devices (e.g. the Picture Exchange Communication System,       
PECS; Bondy & Frost, 1994) might aim to utilize active          
learning benefits to ameliorate memory.  

Finally, this study tries to bridge atypical, developmental        
and cognitive research without relying on clinical variations        
to determine major differences between comparative groups.       
Rather, our results highlight that autistic individuals share        
the same memory advantage from active control of learning         
as TD individuals. This dimensional approach allows for        
researching similarities between typical and atypical groups,       
and while being as informative as revealing differences        
(Graham & Madigan, 2016), can support inclusive       
classrooms. Considering that active learning effects on       
memory are present in TD as well as autistic children,          
classrooms could adopt self-directed, active learning      
methods that would not only benefit both typical and         
atypical children, but also children who fall somewhere in         
between these categories. 
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Abstract 

How does one deal with the possibility of deception? Extant 
literature has mostly focused on identifying deception via cue 
detection. However, how we reason about the possibility of 
deception remains under-explored. We use a novel formalism 
to expose the complexity of this reasoning problem (e.g. 
separating the uncertainty of an honest mistake, from willful 
deception), in the process highlighting several reasoning 
errors regarding deception. Notably, we show reasoners to 
make substantial errors when reasoning about a (possibly) 
deceptive source in isolation (including base rate neglect 
errors), but find that reasoning improves when further 
(independently sourced) corroborative or contradicting reports 
are introduced. 

Keywords: deception; evidential reasoning; probabilistic 
reasoning; Bayesian Networks; belief updating 

Introduction 

The question of how to deal with the possibility of 

deception has long been of interest to police, military and 

intelligence investigation, among other domains. A 

potentially deceptive source, more so than a generally 

unreliable (e.g. incompetent) source, can be particularly 

deleterious to an investigation, via the wilful sowing of 

misinformation. Critically, however, investigators seldom 

have definitive proof of deception, and are therefore placed 

into the realm of reasoning under uncertainty. In the present 

paper, we demonstrate a novel Bayesian formalism for 

capturing the complex uncertainties surrounding 

(potentially) deceptive sources, such that optimal inferences 

regarding the likelihood of deception, as well as the 

hypothesis being informed upon, may be updated with 

minimised inaccuracy (Pettigrew, 2016). Moreover, we 

demonstrate that lay reasoners wildly diverge against such a 

normative expectation. 

Deception in Psychology 

    Deception has typically been researched in terms of lie 

detection (see Vrij, 2008). Crucially, previous research has 

noted that individuals struggle with the uncertainties 

surrounding the possibility of deception (e.g. chance error 

vs deception) when explaining errors (Schul, Mayo, 

Burnstein, & Yahalom, 2007). 

Research on perceived trustworthiness has shown that it 

influences attitudes (Cuddy, Glick, & Beninger, 2011; 

Fiske, Cuddy, & Glick, 2007), persuasive efficacy (Briñol & 

Petty, 2009), risk perception (Siegrist, Cvetkovich, & Roth, 

2000; Earle, Siegrist, & Gutscher, 2010), and advice uptake 

(Schul & Peri, 2015). But relatively little research has been 

conducted in regards to not only how people do reason 

about the possibility of deception, but also how they should. 

Within evidential reasoning, one can consider deception to 

be a special case of (dis)trustworthiness. Dual process 

models in argumentation, like the Heuristic Systematic 

Model (HSM; Chaiken & Maheswaran, 1994) and 

Elaboration Likelihood Model (ELM; Petty & Cacioppo, 

1984) have argued that cues to the trustworthiness of a 

source are only attended to in the absence of effortful 

engagement with the arguments made by that source.  

More recently, coherence-based models, such as the 

Bayesian source credibility model (Hahn, Harris, & Corner, 

2009; Harris, Hahn, Madsen, & Hsu, 2015) have provided a 

framework that moves beyond the directional predictions of 

earlier models. This has allowed for the integration of a 

source’s trustworthiness (the willingness to impart accurate 

information) and orthogonally, expertise (the capacity to 

impart accurate information) into the support provided by a 

report from a source. Using these models as a normative 

backdrop, lay reasoners have been shown to take into 

account the impact of credibility on argument strength 

(Hahn et al, 2009), and even follow appropriate adjustments 

in estimations of argument strength and source reliability in 

light of (shared) compromising reliability information 

(Madsen, Hahn, & Pilditch, 2018). 

Formalising Deception 

Taking forward the notion of deception as a special form of 

(un)reliability, work using Bayesian networks 

representations to model legal cases has used an idiomatic 

approach for witness testimony (Fenton, Neil, & Lagnado, 

2013). More precisely, when modelling the strength of a 

witness’s testimony, one may consider two possible (non-

exclusive) causes of it – the hypothesis being reported on 

(e.g. guilt of suspect), and the reliability of the witness. 

In the same manner, we may model the representation of 

deception as a possible cause, along with the hypothesis 

being reported upon (Lagnado, Fenton & Neil, 2013). Fig. 1 

below uses an example case of a target hypothesis – “Is the 

suspect under questioning in fact the mob’s hitman?”, and a 

number of informing sources in a police investigation. Two 

of these, a forensic scientist and an eyewitness (each 

retaining their own respective reliabilities), and two 

Inspectors, McGarret and Graham, who are typically 

accurate in their investigative reports. Critically, each source 

reports independently of the other, but there is reason to 

believe McGarret and Graham may in fact be in league with 

the mob, and thus the possibility of deception is introduced 

(left-most node in Fig. 1). 
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Figure 1. Graphical representation of deception scenario. 

 

To tease apart the levels of uncertainty introduced by the 

possible deception cause, it is necessary to look at an 

example conditional probability table (CPT) that represents 

a (possibly) deceptive agent: 

 
Table 1. Conditional probability table (CPT) representation of a 

potentially deceptive source, reporting on a hypothesis (Hyp) as 

either true (T) or false (F). 

 
Deception = False Deception = True 

Hyp = F Hyp = T Hyp = F Hyp = T 

Rep = Yes α β γ δ 

Rep = No (1 -α) (1 - β) (1 - γ) (1 - δ) 

 

In Table 1, α is the probability that the source reports that 

the suspect is a mob hitman (Rep = Yes) given that he is 

honest (Deception = false) and the suspect is not a mob 

hitman (Hyp = false). β is the probability that the source 

reports that the suspect is a mob hitman (Rep = Yes) given 

that he is honest (Deception = false) and the suspect is a 

mob hitman (Hyp = True). γ is the probability that the 

source reports that the suspect is a mob hitman (Rep = Yes) 

given that he is dishonest (Deception = true) and the suspect 

is not a mob hitman (Hyp = false). Finally, δ is the 

probability that the source reports that the suspect is a mob 

hitman (Rep = Yes) given that he is dishonest (Deception = 

true) and the suspect is a mob hitman (Hyp=true). δ and (1 - 

γ) may be due to an imperfect deception, or due to long-run 

motivations to keep the deception in place. For this initial 

proof of principle, we simplify the notion of deception by 

removing this possibility (δ = 0; γ = 1). Put another way, in 

the scenario we model (and present to participants), 

deceivers will a) have insider knowledge (i.e. know the true 

state of “Hyp”), and b) always lie. 

    Placing Table 1 within the context of the model (and 

scenario) outlined in Fig. 1, there are a number of important 

inferences of which to take note. 

    Firstly, the difference between the probability of a report 

due to honest error and due to wilful deception (α versus γ), 

plays a pivotal role in the potential diagnosticity of the 

report for both P(Deception) and P(Hyp), such that as γ – α 

increases, the report becomes more diagnostic of deception.  

    This in turn has a multiplicative effect when considering 

the second elements: the prior probability of deception 

(P(Deception)) and – critically – the prior probability of 

hypothesis being true (P(Hyp)). More precisely, if a report 

confirms a hypothesis that is likely (e.g. P(Hyp) > .5), then 

P(Deception) should decrease, whilst if the report confirms 

an unlikely hypothesis (e.g. P(Hyp) < .5), then P(Deception) 

should increase. These inferences can best be explained with 

consideration of how surprising a report would be from an 

honest agent. If unsurprising (e.g. they are saying something 

expected), then an alternative explanation of the report (e.g. 

deception) is less warranted, and vice versa. 

   Thirdly, subsequent testimony from independent 

witnesses will lead to intercausal inferences of 

P(Deception). For instance, if potentially deceptive agents 

have their reports corroborated by independent testimony, 

then the increasing probability of P(Hyp) explains away the 

possible deception explanation, lowering P(Deception). 

Conversely, if independent testimony contradicts the reports 

of the potentially deceptive sources, then P(Hyp) becomes a 

less likely explanation of their reports, and again via 

explaining away, P(Deception) becomes a more likely 

explanation. 

   Finally, we seek to provide reasoners with one further clue 

to deception inferences. The common-cause structure of the 

deception explanation (left-most node of Fig. 1) – where if 

deception is true, it explains both Inspector Graham and 

Inspector McGarret’s reports, in conjunction with “always 

liars” (δ = 0; γ = 1) element of their CPTs, allows for an 

observation-based way of dismissing the possibility of 

deception. More precisely, given the above, it is not possible 

for P(Deception) to be true if the two Inspectors contradict 

each other. 

    In sum, we use the above formalism to test lay reasoners 

on 3 different elements of the uncertainty surrounding 

deception: the prior probabilities of deception (and reported 

hypothesis) as explanations, the conditional probabilities, 

and observation-based inference. 

 

The Experiment We present lay reasoners with the above 

scenario of a police investigation looking into whether a 

suspect in custody is a mob hitman. The key element to this 

scenario is to assess how well lay reasoners can integrate the 

influence of the possibility of deception when integrating 

testimony from what may otherwise be considered reliable 

sources.  

Of interest is whether reasoners are able to make the 

following key inferences as more evidence comes in from 

the available sources: 

1. Will reasoners sufficiently account for the 

likelihood of an honest report when estimating the 

probability of deception? I.e. If the source is 

reporting the (a priori) more likely state of the 

world, then P(Deception) should in fact decrease? 

2. Will reasoners sufficiently account for the 

common-cause element of this form of deception? 

Namely that if the two potentially deceptive 

sources contradict one another, then they cannot 

(both) be (all-knowing, perfect liar) deceivers. 

3. Will reasoners sufficiently account for the impact 

of independent sources, when their reports either a) 

corroborate the deceptive agents (and thus 

P(Deception) should decrease) or b) contradict the 
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deceptive agents (and thus P(Deception) should 

increase)? However, reasoners are likely to get the 

qualitative direction of these latter inferences. 

Method 

Participants 180 UK participants were recruited and 

participated online through the Prolific Academic platform. 

Participants were native English speakers, with a median 

age of 28.5 (SD = 11.3), and 113 participants identified as 

female. All participants gave informed consent, and were 

paid 1.30GBP for their time (Median = 8.69 minutes, SD = 

4.38). 

Procedure & Design Participants are provided with a brief 

background to the scenario, in which they are investigating 

whether a suspect is in fact a hitman hired by the local mob. 

They are instructed that they have a number of sources to 

inform their investigation: two highly reliable inspectors, 

Graham and McGarret, a Forensic Expert, and an 

eyewitness – all of whom provide assessments 

independently of one another. Critically, along with being 

provided with a prior probability of the suspect being the 

hitman (P(Hitman) = .1), participants are told there are some 

logs that suggest the two investigators may be in league 

with the mob. It is explained to participants that although 

this is unlikely (P(Deception = .1), if true, the two 

inspectors will both know the truth (they know the identity 

of the hitman) and will be motivated to always lie (make 

sure the innocent suspect takes the fall, or prevent the guilty 

suspect from going to jail). All the necessary probabilities to 

populate the underlying model (e.g. error rates of each 

source) and structures (e.g. common-cause structure of 

P(Deception)) were provided to participants.
1
 

Having had the background explained to them, 

participants then repeated back the prior probabilities for 

P(Hitman) and P(Deception): 

P(Hitman): “Until you receive the assessments of other 

professionals investigating whether the suspect is in fact the 

hitman, you can safely assume a fairly low (10%) chance of 

the suspect being the hitman. Please indicate you 

understood the initial (baseline) probability of the suspect 

being the hitman:” 

P(Deception): “… there is only a 10% probability that the 

two criminal investigators are in fact compromised …      

Please indicate you understood the initial (baseline) 

probability of the two criminal investigators being in league 

with the mob boss:” 

Using the gRain package in R (Højsgaard, 2012), these 

elicited prior probabilities were used to outfit a Bayesian 

Network (BN) model (Fig. 1) for each participant, creating 

individually fitted BNs (hereafter termed Behaviorally 

Informed Bayesian Networks; BIBNs). The remaining 

structure and parameters were taken from the background 

                                                           
1 Using the notation of Table 1, participants were given values α 

= .05 (honest false positive); β = .95 (honest true positive); and γ = 

1, δ = 0 (deception = always lie) for deceptive agents. For full 

details of the materials used, as well as the collected data, please 

see https://osf.io/4hvu6/. 

information presented to all participants. Thus, a fitted 

normative comparison could be made for inferences on the 

participant level. 

Following the elicitation of priors, participants then saw 

three stages of observations, with questions asked at each 

stage. 

(T1) Firstly, participants heard from both the potentially 

deceptive agents (“DecAgents”). This was manipulated 

between-subjects, as: Both Report Hitman=True, Both 

Report Hitman=False, One Contradicts the other. 

(T2) Participants then heard from the Forensic Expert, 

followed by the eyewitness (T3), in separate elicitation 

stages. These (“OtherAgent”) reports were also manipulated 

between-subjects, as: Both Report Hitman=True, Both 

Report Hitman=False. 

Across these 3 stages, participants were asked two sets of 

questions: 

Probability Estimates (sliders from 0-100%, no default):     

 Hitman Hypothesis: “Based on the evidence so far, 

what do you believe is the current probability of the 

suspect being the hitman?” 

 Deception Hypothesis: “Based on the evidence so far, 

what do you believe the current probability is that the 

criminal investigators are in league with the mob 

boss?” 

Qualitative Judgments (forced choice; response options: 

“Increased” / “Decreased” / “Same”; randomized 

presentation order.):  

 Hitman Hypothesis: “Based on the evidence so far, do 

you believe the probability of the suspect being the 

hitman has increased, decreased, or remained the 

same?” 

 Deception Hypothesis: “Based on the evidence so far, 

do you believe the probability that the criminal 

investigators are in league with the mob boss has 

increased, decreased, or remained the same?” 

Thus, this 3 (DecAgents reports) x 2 (OtherAgents 

reports) x 3 (Elicitation stage) x 2 (Hypothesis) design 

allows for the testing of the influence of explanation priors, 

internal (within DecAgents) contradiction, and independent 

corroboration/contradiction, on estimates (both quantitative 

and qualitative) of the probability of the hypothesis, and the 

probability of deception. 

Results 

Bayesian statistics were employed throughout
2
 using the 

JASP statistical software (JASP Team, 2018). For the sake 

of brevity, analyses are not reported exhaustively here.  

 

                                                           
2Bayes Factors (BF10: likelihood ratio of data given hypothesis, 

over data given null), may be interpreted as: 1 – 3 = anecdotal 

support; 3-10 = substantial; 10-30 = strong; 30-100 = very strong; 

>100 = decisive (Jeffreys, 1961). Conversely, Bayes Factors < .33 

can be considered substantial support for the null (Dienes, 2014). 

All analyses used an objective (uninformed) prior. Sample sizes for 

a given analysis (N), and Bayesian Credibility Intervals (95% CI) 

are indicated wherever appropriate. 
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Hypothesis 1: Priors and Deception (Base rate neglect) 

To understand the impact of priors, we look at estimates and 

judgments relating to the introduction of the potentially 

deceptive agents reports (i.e. Baseline to T1), on both 

P(Hitman) and P(Deception) estimates and judgments, with 

greater errors predicted for the latter. 

 

P(Hitman) estimates (black lines, Fig. 2). A repeated 

measures ANOVA was run using elicitation stage (Baseline, 

T1) and Observed vs Predicted (Data vs BIBN Model) as 

within-subject factors, and DecAgents condition (restricted 

to Hitman=True vs Hitman=False reports) as a between-

subject factor. This found main effects of elicitation stage 

(positive trend), BFInclusion > 10000, Observed vs Predicted 

(data > model), BFInclusion = 4.905, DecAgents condition 

(Hitman=True > Hitman=False), BFInclusion > 10000, 

decisive deviations from expectation over time, BFInclusion = 

5.334, and opposing trends based on DecAgents condition 

(increases with Hitman=True, decreases with 

Hitman=False), BFInclusion > 10000. Crucially, there was no 

evidence for an interaction of Observed vs Predicted with 

DecAgents condition, BFInclusion = 1.112, or in conjunction 

with elicitation stage, BFInclusion = 2.178, indicating no 

influence of reported base rates on the correctness of 

P(Hitman) estimates.
3
 

P(Deception) estimates (grey lines, Fig. 2). Not only are 

the same background terms all decisive (BFInclusion’s all > 

10000), but there are decisive interactions of Observed vs 

Predicted and DecAgents condition, BFInclusion > 10000, and 

the three-way including elicitation stage, BFInclusion > 10000. 

As can be seen in Fig. 2 by looking at grey solid 

(participant) vs grey dashed (BIBN model) lines in the 

middle row (DecAgents reports Hitman=False) vs bottom 

row (DecAgents reports Hitman=True), estimates increase 

when they should decrease in the former, and insufficiently 

increase in the latter.
4
 

Qualitative judgments. Correct responding proportion for 

the change in P(Hitman) to P(Hitman|DecAgents) did not 

differ between the DecAgents reports Hitman=True (.39) 

and DecAgents reports Hitman=False (.25) conditions (N = 

121), BF10 = 0.852. However, in line with probability 

estimate data, there was substantial evidence for correct 

responding proportions for the change in P(Deception) to 

P(Deception|DecAgents) being worse in the DecAgents 

reports Hitman=False (.1) than DecAgents reports 

Hitman=True (.28) conditions (N = 121), BF10 = 3.99.  

This latter effect, in conjunction with the P(Deception) 

estimates, confirms the neglect of the report base rates when 

considering the possibility of deception, leading to 

substantial overestimation. 

 

 

                                                           
3 The model with only the above significant terms yielded the 

best fit, BFM = 14.099, and was significant overall, BF10 = 1.160 * 

1019. 
4 The model with all terms included yielded the best fit, BFM = 

1.929 * 109, and was significant overall, BF10 = 3.098 * 1027.  

 
Figure 2. P(Deception) estimates (solid grey lines) and 

P(Hitman) estimates (solid black lines) across elicitation 

stages, split by condition. BIBN model predictions are also 

shown (dashed lines). Error bars reflect standard error. 

 

Hypothesis 2: Common-cause, logic and Deception 

To address hypothesis 2, we turn to the DecAgents disagree 

condition (top row, Fig. 2). Here we focus again on the 

change in P(Deception) estimates from baseline to T1, as 

well as the correctness of qualitative judgments. The logic 

of the structure and conditional probabilities dictate that 

disagreement between deceptive sources disproves 

deception. However, the repeated measures ANOVA found 

a decisive deviation from expectation in P(Deception) 

estimates when moving from baseline to T1, BFInclusion > 

10000
5
 – an effect corroborated by a t-test showing 

participants P(Deception) estimates at T1 to be decisively 

above 0 (N = 59, M = 24.61, SD = 25.44), BF10 > 10000, δ = 

0.937 (95% CI: [0.657, 1.240]). 

    This error was further confirmed qualitatively, with 

correct responses (i.e. “Probability decreases”) no different 

from chance level (0.33) responding (N = 59), BF10 = 0.162, 

δ = 0.309 (95% CI: [0.203, 0.432]) in a binomial test, 

                                                           
5 The model including this interaction term yielded the most 

significant fit, BFM = 733042.66, and was significant overall, BF10 

= 3.958 * 1015. 
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further confirming an ignorance of the structure and logic 

based capacity to refute the possibility of deception. 

Taken together, these results show that when reasoning 

about deception, inferences based on structural relations 

(and logic) alone are highly error prone, once more leading 

to substantial deception overestimation. 

 

Hypothesis 3: Corroboration, contradiction, and 

Deception (Explaining Away) 

To step through participant estimations of the impact of 

corroboration / contradiction of possibly deceptive agents, 

we look first at quantitative estimates (P(Hitman) and 

P(Deception)) across elicitation stages 1 to 3 – assessing 

deviation from normative expectation. Second, the 

correctness of qualitative judgments are assessed over these 

same stages. This is split by each 2x2 cell (Corroborating 

Hitman=True, corroborating Hitman=False, contradicting 

Hitman=True, contradicting Hitman=False). 

Corroborating Hitman=True (bottom-right facet, Fig. 

2). Repeated measures ANOVAs (elicitation stages T1-T3, 

and Observed vs Expected) reveal participants do not differ 

from normative expectation for P(Hitman) estimates, 

BFInclusion = 1.777, and track this expectation across 

elicitation stages, BFInclusion = 1.436. However, P(Deception) 

estimates are shown to decisively differ from normative 

expectation (underestimation), BFInclusion > 10000, but this 

deviation decreases across stages, BFInclusion > 10000. 

Table 2 below reveals that whilst qualitative judgments at 

T1 (when only DecAgents have reported) are correct no 

better than chance, correct responding at T2 and T3 are 

greater than chance. 

 
Table 2. Proportion of correct responding in corroborating 

Hitman=True group. N = 30. 

Stage Hypothesis Proportion ≠.33 (BF10) 

T1 Hitman 0.433 0.443 

 Deception 0.300 0.218 

T2 Hitman 0.900 > 10000 

 Deception 0.600 21.16 

T3 Hitman 0.733 5313.25 

 Deception 0.567 7.527 

 

Corroborating Hitman=False (middle-left facet, Fig. 2). 
Repeated measures ANOVAs reveal participants decisively 

differ from normative expectation for P(Hitman) estimates 

(overestimation), BFInclusion > 10000, but this deviation does 

not change across elicitation stages, BFInclusion = 0.390. 

Similarly, P(Deception) estimates are shown to decisively 

differ from normative expectation (overestimation), 

BFInclusion > 10000, and this does not change across stages, 

BFInclusion = 0.45. 

Table 3 below reveals that once again whilst qualitative 

judgments at T1 (when only DecAgents have reported) are 

correct no better than chance, correct responding at T2 and 

T3 are again greater than chance. 

 

Table 3. Proportion of correct responding in corroborating 

Hitman=False group. N = 32. 

Stage Hypothesis Proportion ≠.33 (BF10) 

T1 Hitman 0.25 0.306 

 Deception 0.031 707.137
†
 

T2 Hitman 0.781 > 10000 

 Deception 0.563 8.124 

T3 Hitman 0.656 248.427 

 Deception 0.594 22.385 

† = Decisively worse than chance level. 

 

Contradicting Hitman=True (bottom-left facet, Fig. 2). 
Repeated measures ANOVAs reveal participants decisively 

overestimate P(Hitman), BFInclusion > 10000, and there is 

strong evidence that this overestimation increases across 

elicitation stages, BFInclusion = 17.66. However, participants 

decisively underestimate P(Deception), BFInclusion > 10000, a 

trend that does not change across elicitation changes, 

BFInclusion = 0.656. Table 4 below reveals that qualitative 

judgments at T1 (when only DecAgents have reported) are 

again correct no better than chance, whilst correct 

responding at T2 and T3 are decisively greater than chance. 

 
Table 4. Proportion of correct responding in contradicting 

Hitman=True group. N = 31. 

Stage Hypothesis Proportion ≠.33 (BF10) 

T1 Hitman 0.355 0.220 

 Deception 0.258 0.282 

T2 Hitman 0.677 499.34 

 Deception 0.774 > 10000 

T3 Hitman 0.774 > 10000 

 Deception 0.677 499.34 

 

Contradicting Hitman=False (bottom-left facet, Fig. 2). 
The final repeated measures ANOVAs reveal participants 

again decisively overestimate P(Hitman), BFInclusion > 10000, 

and that this overestimation increases across elicitation 

stages, BFInclusion = 334.9. Similarly, participants decisively 

overestimate P(Deception), BFInclusion > 10000, but this does 

not change across elicitation changes, BFInclusion = 1.965. 

Finally, Table 5 below reveals that qualitative judgments 

at T1 (when only DecAgents have reported) are once again 

correct no better than chance, whilst correct responding at 

T2 and T3 are substantially greater than chance. 

 
Table 5. Proportion of correct responding in contradicting 

Hitman=False group. N = 31. 

Stage Hypothesis Proportion ≠.33 (BF10) 

T1 Hitman 0.25 0.307 

 Deception 0.179 0.897 

T2 Hitman 0.857 > 10000 

 Deception 0.714 1164.74 

T3 Hitman 0.821 > 10000 

 Deception 0.607 20.143 

935



Hypothesis 3 Summary. Taking these 4 sets of analyses 

together, it is clear that participants can qualitatively 

appreciate the influence of both corroboration and 

contradiction from independent sources on potentially 

deceptive sources, for both P(Hitman), via diagnostic 

inference, and P(Deception), via an explaining away 

inference. This is in stark comparison to the substantial 

qualitative error rates at T1, when only potentially deceptive 

agents have been observed (see Hypothesis 1). However, 

estimation data reveals participants consistently 

overestimate P(Hitman), irrespective of condition (with the 

exception of corroborating hitman=True). In line with 

Hypothesis 1, P(Deception) is overestimated when the 

potentially deceptive agents are reporting the a priori more 

likely hypothesis (Hitman=False), and underestimated when 

reporting the less likely hypothesis (Hitman=True). This 

again suggests a base rate neglect component to assessments 

of deception. 

Conclusions 

The issue of how to deal with the possibility of deception 

when reasoning under uncertainty is as complex as it is 

potentially deleterious. We present novel findings that lay 

reasoners are prone to several systematic errors when 

integrating the possibility of deception, often leading to 

substantial overestimation.  

Using a Bayesian Network formalism, we disentangle the 

underlying components of deception, including the base 

rates of deception and the hypothesis the (potentially 

deceptive) source is reporting on (here, P(Hitman)), 

structural and logical components, as well as internal 

(potentially deceptive source reports) and external 

(corroborative / contradicting reports) observation.  

Crucially, we show lay reasoners to be ignorant of the 

influence of base rates (leading to overestimation of 

deception, both qualitatively and quantitatively), and 

structural relations / logic-based negations (again, resulting 

in deception overestimation). Lay intuitions regarding the 

impact of corroborative / contradicting testimony on 

P(Deception) – via explaining away - are (although 

conservative) shown to qualitatively correspond to 

normative expectations. 

Taken together, this shows erroneous inferences are 

highest when dealing with potentially deceptive reports 

alone (where base rates, conditional probabilities, and 

logical structure are the only active elements to integrate), 

but accuracy improves when a reference point (other reports 

/ observations) comes into play. This suggests a note of 

caution for investigative domains in which deception is a 

possibility (e.g. intelligence analysis), where estimation 

errors are likely to be substantial until independent evidence 

(e.g. corroborating testimony) is gathered. 

Further work is proposed to incorporate inaccurate / long-

run deception motives (i.e. δ), something that we argue may 

be captured in the present formalism.  

Open Practices 

All data and materials have been made publicly available 

via the Open Science Framework at https://osf.io/4hvu6/.  
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Abstract 

Recent research (Pilditch, Fenton, & Lagnado, 2019) shows 
that people are susceptible to zero-sum thinking in evidence 
evaluation, where they dismiss or underweight the probative 
value of evidence that is equally predicted by multiple 
independent hypotheses. But such an assumption is only valid 
when explanations are mutually exclusive and exhaustive. 
The present work extends these findings by looking at the 
context of information selection, and the decisional 
consequences of the zero-sum fallacy. It uses an information 
metric to quantify the cost of the error in terms of overlooked 
information. 

Keywords: zero-sum; evidential reasoning; probabilistic 
reasoning; Bayesian Networks; belief updating 

Introduction 

When reasoning under uncertainty, the search and 

selection of evidence is fundamental to accurate and 

efficient prediction and diagnosis. Whether in formal 

investigative domains such as medical diagnosis, forensics, 

or intelligence gathering, or in everyday reasoning, we often 

have to search out information to make inferences about a 

target hypothesis (e.g. which test to conduct? Which source 

to query? Etc.). To address these questions, reasoners must 

consider the prospective “value” or information provided by 

new evidence. These estimates are often fraught with biases 

and errors (e.g. Jones & Sugden, 2001; Nelson, McKenzie, 

Cottrell & Sejnowski, 2010; Slowiaczek, Klayman, 

Sherman & Skov, 1992) making accurate choice of what 

evidence to gather a non-trivial task for lay reasoners. 

In the present work, we explore the question of evidence 

selection in the context of a novel evidential reasoning 

fallacy, the zero-sum error (Pilditch, Fenton, & Lagnado, 

2019), where reasoners assume that evidence which is 

equally predicted by multiple alternative hypotheses is non-

probative.  We explore whether this error also drives similar 

errors in information choice, in particular whether it leads to 

people overlooking the most useful evidential tests. We 

explore the mechanisms that might underpin this reasoning 

fallacy. Furthermore, we highlight the methodological and 

theoretical value of incorporating information measures into 

our understanding of how reasoners navigate more complex 

reasoning structures. 

The Zero-sum fallacy 

When reasoning about evidence that is equally predicted 

by two independent explanations, lay reasoners tend to 

assume that this evidence offers no support to either 

hypothesis, because it does not discriminate between them 

(Pilditch, Fenton, & Lagnado, 2019). However, this 

assumption is only applicable when the explanations are 

both mutually exclusive and exhaustive (i.e. exactly one of 

the explanations is true). In fact, given positive evidence, 

both explanations become more probable. Across a number 

of experiments, reasoners judged such evidence irrelevant to 

a target hypothesis, even when the inappropriateness of 

applying the assumptions of exclusivity and exhaustiveness 

was highlighted. 

The posited mechanism behind this error was a fallacy of 

considering evidential support between hypotheses to be a 

“zero-sum” situation: one hypothesis may only gain support 

(i.e. become more probable) at the detriment of another. To 

elucidate, reasoners were inclined to dismiss a medical test 

that could not distinguish between 2 diseases – failing to 

consider that the positive test result could in fact make the 

patient having both diseases more probable. 

Work on the zero-sum fallacy has so far looked at 

qualitative judgments of support. In building on this work, 

via the incorporation of alternative evidence options and a 

measure of the amount of overlooked information given a 

preference, we seek to quantify the cost of this error, and 

further uncover the mechanism underpinning it. 

 

A Bayesian Framework 

To further elucidate the nature of the zero-sum fallacy, 

and outline the foundational formalism upon which 

information in the context of reasoning under uncertainty 

may be built, we briefly highlight the role of Bayesian 

Networks (BNs; Pearl, 1988; 2009) in evidential reasoning. 

BNs are directed acyclic graphs (DAGs) that provide a 

computational framework for modelling the strength of 

inferential relationships when reasoning under uncertainty. 

A BN is made up of nodes that represent the variables of 

interest, and directed arrows capturing probabilistic 

dependency relations between variables, quantified by 

conditional probability tables. The probabilities of the 

unknown nodes are normatively updated given new 

evidence using Bayes rule (Pearl, 1988). Consequently, BNs 

are used as a normative comparison against which human 

reasoning can be compared (e.g. Pilditch, Fenton, & 

Lagnado, 2019). 

To explain in the zero-sum case, two possible hypotheses, 

each with their own prior probabilities are represented by 

separate, independent nodes (see H1 and H2 in Fig. 1). This 

reflects the acknowledged assumptions that the two 

hypotheses are neither mutually exclusive (i.e. both could be 

true) nor exhaustive (i.e. both could be false), and there are 

no direct causal links between them. Critical to the fallacy, 
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however, is the conditional probability table (CPT) of the 

evidence that depends on both hypotheses (E1 in Fig. 1). 

Table 1 below provides an example of how likely the 

evidence is to be observed, given the possible states of the 

two hypotheses. 

 

Table 1: Example conditional probability table for “common 

effect” evidence, given two possible causes, H1 and H2. 

E ¬H1, ¬H2 H1, ¬H2 ¬H1, H2 H1, H2 

E = T 0.01 0.9 0.9 0.99 

E = F 0.99 0.1 0.1 0.01 

 

The two central columns of Table 1 represent the 

possibilities that participants making the zero-sum fallacy 

arguably focus on. More precisely, if one (falsely) assumes 

that only one of the two hypotheses is true (i.e. they are 

exclusive and exhaustive), then one is only considering two 

possibilities: the probability of E given H1 being true 

(P(E|H1,¬H2); center-left column) or given H2 being true 

(P(E|¬H1,H2); center-right column). Consequently, by 

adopting this narrow focus, the evidence appears to be 

equally predicted by each possibility (P(E|H1,¬H2) = 

P(E|¬H1,H2) = 0.9) suggests the evidence is non-probative. 

Critically, this reasoning neglects two important 

possibilities: first, the fact that evidence could still occur 

when neither hypothesis is true (P(E|¬H1,¬H2) > 0) – i.e. 

the hypotheses are not exhaustive explanations of the 

evidence. Second, that not only is there the possibility that 

both hypotheses are true i.e. the hypotheses are not 

exclusive, but that when both are in fact true, this results in 

an even greater probability of observing the evidence (i.e. 

P(E|H1,H2) > (P(E|H1,¬H2) | P(E|¬H1,H2))). Thus, when 

making the diagnostic inference from observed evidence to 

probable hypotheses, both H1 and H2 become more 

probable, given E. 

Information Search 

In the real world people are habitually required to actively 

seek and acquire information in order to make a decision, 

causal inference or judgement, and do not merely act as 

passive observers of their surroundings. Within the 

psychological literature, measures have been proposed to 

quantify the informative value of a piece of evidence and 

the exploration of people’s information search behaviour in 

a variety of contexts (for an overview, see Nelson, 2008). 

Here we adopt the Kullback-Liebler Divergence (KL-D; 

Kullback & Liebler, 1951) as a quantitative measure of the 

expected informative value of different pieces of evidence 

given a defined probabilistic environment. KL-D is a form 

of relative entropy and assigns high informative value to 

evidence that reduces uncertainty the most, entailing the 

largest divergence between prior and posterior probability 

distributions (Nelson, 2008).  Formally, it quantifies the 

subjective expected usefulness of evidence before the state 

of the evidence is known as: 

 

 
 

Where Ei is an item of evidence within a set {E1, E2…Ei}, 

H is a set of hypotheses, {H1, H2…Hj} and ai is a set of 

possible states of the evidence, {a1, a2, ai}. This 

quantification enables not only the evaluation of whether 

people have a preference for evidence with the highest 

information value, but also allows for a quantitative measure 

of the amount of overlooked information (as a consequence 

of sub-optimal search behaviour). This approach directly 

addresses how violations of normative measures of the 

value of information relate to known violations of normative 

models of evidence evaluation such as the zero-sum fallacy. 

Or more informally, puts an explicit value on the cost of the 

error. 

Present Work 

As mentioned above, the goal of the present work is to 

investigate the zero-sum fallacy further, via the inclusion of 

information search. To do this we expand the previous zero-

sum fallacy model (two hypotheses, H1 and H2, with a 

single, shared piece of evidence, E1) to include an 

alternative evidence option (E2) – only explainable by the 

target hypothesis. 

In this way, the reasoning probe shifts from an explicit 

evaluation of whether E1 provides any support for H1, to a 

decision-making preference between two evidence items: 

E1, which has an alternative explanation H2 (and thus 

invites the zero-sum error), and E2, with no alternative 

cause represented in the model. To explore the possible 

influence of zero-sum thinking, and to quantify overlooked 

information costs, the general structure illustrated in Fig. 1 

required populating with several different sets of 

parameters. 

 

 
Figure 1. Graphical representation of BN Model.  

 

Four sets of parameters were created (shown in Table 2), 

each incrementally differing from another, so as to 

determine the influence of various reasoning components. 

The prior probabilities of each hypothesis were manipulated 

as either both rare (P(H1) = P(H2) = .1), both common 

(P(H1) = P(H2) = .5), or unequal (P(H1) = .5, P(H2) = .1). 

In this way, the degree to which H2 is providing a “false 

positive” for E1 (i.e. another explanation for a positive, that 

is not the hypothesis of interest, H1) is manipulated. This is 
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of interest to determine whether the zero-sum fallacy is 

based on the integration of this “false positive” probability 

(i.e. when H2 is more probable, the zero-sum fallacy is more 

prevalent), or solely on the presence of a possible 

alternative explanation. Further, the manipulation of 50/50 

(or “common”) priors can be used to assess whether 

participants will be more inclined to apply the false 

assumptions of mutual exclusivity and exhaustiveness that 

underpin the zero-sum fallacy. Lastly, if the manipulation of 

unequal priors (P(H1) = .5, P(H2) = .1) resulted in a 

reduction of zero-sum fallacy errors, it would be suggestive 

of participants using the relative rarity of H2 to discount it 

as an explanation of E1. 

In addition, across these three sets, the likelihoods of E1 

and E2 were held as unequal, in that E1 was more 

diagnostic of H1 than E2 (P(E1|H1,¬H2) = .9, vs P(E2|H1) 

= .6). However, one final parameter set was added in which 

(along with rare priors) these values were equal across E1 

and E2 (P(E1|H1,¬H2) =  P(E2|H1) = .8). It should be noted 

that in all these parameter sets, this results in E1 being the 

more informative evidence for determining H1, and thus 

selecting E2 comes at a cost of overlooked information. 

However, by manipulating the false positive rate of E2 as 

either high (P(E2|¬H1) = .2/.4), or low (P(E2|¬H1) = .01), 

we can manipulate between subjects a condition in which 

E1 is superior (the former), or inferior (the latter), to further 

determine sensitivity to the parameters underlying the 

fallacy. 

This leads to several predictions: Firstly, there will be a 

general aversion to selecting E1 (i.e. the decision analogue 

of a zero-sum fallacy). Secondly, participants will be 

sensitive to parameter manipulations, such that when E2 is 

manipulated as more diagnostic (e.g. P(E2|¬H1) = .01 

condition), aversion to E1 / preference for E2 will (correctly 

in this instance) increase. Conversely, when parameter 

manipulations in fact favour E1 (e.g. equal likelihoods 

parameter set) participants will (falsely) remain aversive to 

it. 

Method 

Participants 180 US participants were recruited and 

participated online through the Amazon Mechanical Turk 

platform. Participants were native English speakers (leading 

to 2 exclusions), with a mean age of 35.88 (SD = 10.5), and 

90 participants identified as female. All participants gave 

informed consent, and were paid $1.20 for their time 

(Median = 12.75 minutes, SD = 9.62). 

 

Procedure & Design Participants were shown 4 scenarios 

in a randomized order. These scenarios all originated from 

the model structure of Fig. 1, to include a target hypothesis 

(H1), evidence that may inform on the hypothesis (E1), but 

may also be explainable by an alternative hypothesis (H2), 

and finally an alternative evidence item only dependent on 

H1, and not H2 (E2). The scenario contexts were an arson 

case (identifying an accelerant), a conservation case 

(tracking a target species), a medical diagnosis case 

(confirming a brain tumor), and a digital forensics case 

(identifying a cyberattack culprit). 

Crucially, along with the structure of Fig. 1, contexts were 

also furnished within the text with sufficient parameter 

details to fully populate a Bayesian Network model of the 

scenario. These included the priors for each hypothesis 

(P(H1) and P(H2), the likelihoods for each evidence-

hypothesis relationship (P(E1|H1,¬H2), P(E1|¬H1,H2), and 

P(E2|H1)), and false positives - P(E1|¬H1,¬H2) and 

P(E2|¬H1). The latter of these parameters (E2 false positive) 

was manipulated between subjects, as a method of shifting 

the balance of expected information between E1 and E2. 

The remaining parameters were deployed as 4 “sets” (see 

Table 1 below), each designed to test particular parameters 

trade-offs, and randomly allocated to scenario contexts.
1
  

 
Table 2. Parameter sets, allocated across scenario contexts. 

 Parameter Sets 

RareP. 

EqL 

RareP. 

UneqL 

UneqP. 

UneqL 

ComP. 

UneqL 

P(H1) .1 .1 .5 .5 

P(H2) .1 .1 .1 .5 

P(E1|H1,¬H2) .8 .9 .9 .9 

P(E1|¬H1,H2) .8 .9 .9 .9 

P(E1|¬H1,¬H2) .01 .01 .01 .01 

P(E2|H1) .8 .6 .6 .6 

P(E2|¬H1) .01 / .2 .01 / .4 .01 / .4 .01 / .4 

Information     

KL(E1)* 0.12 0.135 0.27 0.06 

KL(E2) 0.22/0.06 0.16/0.005 0.268/0.01 0.268/0.01 

KL(E1 – E2) -0.1/0.06 -0.026/0.13 0.002/0.25 -0.205/0.05 
*Only takes into account H1 

 

For each scenario, participants answered the following 

questions: 

 

Priors: Participants were asked to provide the prior 

probabilities of H1 and H2 (i.e. before observing any 

evidence). Although participants had already been provided 

with prior probabilities for H1 and H2, by also eliciting 

these prior probabilities any participant-based assumptions 

could be incorporated into the models used for normative 

comparisons. More precisely, for each participant, elicited 

priors were used to outfit a Bayesian Network fitting the 

structure of Fig. 1 (and the remaining parameters drawn 

from the parameter set being tested), using the gRain 

package in R (Højsgaard, 2012). These individually fitted 

BNs (hereafter termed Behaviorally Informed Bayesian 

Networks; BIBNs) thus provided a fitted normative 

comparison for participant inferences on the participant by 

parameter set level. BIBNs were not only then used to 

generate predicted responses, but also to calculate the 

informative value (KL-D) of each item of evidence, given 

                                                           
1 P(E|H1, H2), though not provided explicitly to participants, is 

based on an assumption of a noisyOR function (see Pearl, 1988), 

which is based on the reasonable assumption that causes H1 and 

H2 are independent. 
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that model – essential for calculating any forgone 

information. 

 

Preference: Participants were then asked “Which test 

(evidence item) would you prefer, so as to best determine 

[H1]?” This qualitative judgment was forced choice [E1 / 

E2 / “They are the same.”] 

 

Confidence in preference: Following the qualitative 

evidence preference, participants were asked to provide a 

confidence in that preference (“How confident are you that 

your response is correct?” 0-100%). 

 

Other DVs: Although posterior probability estimates for 

each evidence item (“Probability of [H1] only given a 

positive [E1]” 0 - 100%; “Probability of [H1] only given a 

positive [E2]” 0 - 100%), and open text reasoning responses 

were collected, for the sake of brevity, these results are not 

reported here. 

Results 

Using the JASP statistical software (JASP Team, 2018), 

Bayesian statistics were employed throughout
2
. 

 

Evidence Preferences 

Overall, binomial tests comparing evidence preferences to 

chance (.33) found the evidence with a single possible cause 

(E2) to be preferred at a rate decisively greater than chance 

(.54, N = 712), BF10 = 3.06 * 10
26

, whilst preferences for the 

evidence with two potential cause (E1) were no different 

than chance, (.35, N = 712), BF10 = 0.083, and preferences 

for “They are the same.” occurred decisively less often than 

expected by chance (.11, N = 712), BF10 = 4.59 * 10
37

. 

Further, a contingency table comparing observed to 

predicted preferences found decisive evidence for these 

preferences deviating from normative expectation (N = 

1424), BF10 = 1.196 * 10
25

. Importantly, there was a null 

influence of the potential confounds of scenario order (N = 

712), BF10 = 0.109 , or scenario context (N = 712), BF10 = 

5.087 * 10
-5

. 

In line with expectations, when the false positive rate of 

E2 was low (.01), and thus sensitivity was higher, then E2 

was preferred substantially more often (and E1 less often) 

than when the false positive of E2 was high (N = 712), BF10 

= 4.068. 

Turning next to parameter sets (rows of Fig. 2), we break 

down the analysis for each set to determine a) the dominant 

participant preference, and b) whether this deviates from the 

normative predictions for that set. This split by parameter 

set is motivated by the potential sensitivity of participants to 

particular combinations of parameters (e.g. equal 

likelihoods, or unequal priors). 

                                                           
2All analyses assumed an uninformed prior. Bayes Factors 

(BFs), are interpreted as: 1 – 3 = anecdotal support; 3-10 = 

substantial; 10-30 = strong; 30-100 = very strong; >100 = decisive 

(Jeffreys, 1961). Conversely, Bayes Factors < .33 are considered 

substantial support for the null (Dienes, 2014).  

 

Rare Priors, Equal Likelihoods. When both H1 and H2 

priors were rare, and evidence likelihoods were equal, 

participants chose E2 at levels decisively above chance 

(.612, N = 178), BF10 = 6.729 * 10
11

, and E1 significantly 

less than chance (.23, N = 178), BF10 = 5.565. This runs 

contrary to model predictions, where E1 is preferred 

decisively above chance level (.674, N = 178), BF10 = 1.035 

* 10
18

, and E2 at no different than chance (.326, N = 178), 

BF10 = 0.088. This is further corroborated by a contingency 

table analysis which finds decisive evidence for a deviation 

of participant choices from normative expectation (N = 

356), BF10 = 6.729 * 10
11

. 

 

 
Figure 2. Evidence choice frequencies across parameter sets 

(rows) and condition (columns). 

 

Rare Priors, Unequal Likelihoods. When priors are rare, 

and evidence likelihoods are unequal (E2 at .6, and E1 at 

.9), we again find the same pattern. Participants choose E2 

at above chance levels (.466, N = 178), BF10 = 111.88, and 

E1 no different than chance (.41, N = 178), BF10 = 1.115. 

Once again, however, model predictions show the opposite 

pattern, with E1 choices above chance level (.663, N = 178), 

BF10 = 6.223 * 10
16

, and E2 choices no different than 

chance, (.337, N = 178), BF10 = 0.09. This is again 
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corroborated by the decisive deviation between participants 

and their model predictions found by contingency table 

analysis (N = 356), BF10 = 1.473 * 10
7
.  

  

Unequal Priors, Unequal Likelihoods. When both priors 

(P(H1) = .5; P(H2) = .1) and likelihoods are unequal, we 

find the same general trend, albeit to a lesser degree. More 

precisely, although participant choices for E2 are again 

greater than chance (.478, N = 178), BF10 = 368.73, choices 

for E1 are also just above chance level (.427, N = 178), BF10 

= 3.499. However, model predictions again show a decisive 

preference for E1 (.612, N = 178), BF10 = 6.729 * 10
11

, 

whilst E2 should be preferred no more often than chance 

(.388, N = 178), BF10 = 0.335. This insufficiency of E1 

choices is again captured by the decisive difference in 

judgment proportions when comparing participants and 

model predictions in a contingency table (N = 356), BF10 = 

15735.87. 

 

Common Priors, Unequal Likelihoods. Turning finally to 

when priors are both common (.5) and likelihoods are 

unequal, we see the same behavioral pattern of a preference 

for E2 above chance level (.59, N = 178), BF10 = 7.748 * 

10
9
, and E1 no different than chance (.331, N = 178), BF10 = 

0.088. However, unlike the preceding parameter sets, E2 is 

also chosen above chance level by model predictions (.961, 

N = 178), BF10 = 1.996 * 10
69

, whilst E1 is in fact chosen 

decisively less than chance (.039, N = 178), BF10 = 7.246 * 

10
18

. Further, participant choices for E2 are shown to be 

insufficient compared to model predictions (N = 356), BF10 

= 9.44 * 10
14

. This is likely due to the high E1 “false 

positive” due to marginalization over high H2 probability, 

making E1 comparatively less diagnostic of H1. 

 

Confidence in evidence preferences. Confidence was 

generally high across all preferences (M = 66.00, SD = 

23.96). Although a Bayesian repeated measures ANOVA 

revealed confidence to be unaffected by preference, 

BFInclusion = 0.781, or parameters, BFInclusion = 1.064, but 

there was strong evidence for confidence being higher in the 

E2 false positive rate = low condition (M = 68.98, SD = 

23.39), rather than high (M = 62.95, SD = 24.18), BFInclusion 

= 11.377. This finding fits with an easier E2 preference 

when it is a more sensitive test. 

 

Overlooked information 

To elucidate the information cost of the above deviations 

from normative expectation, for each BIBN model (i.e. each 

participant-fitted model) the expected informative value (in 

KL-D) was calculated for E1 and E2. In this way, if a 

participant selected the evidence with the highest KL-D as 

predicted by their model, they had not overlooked any 

information, and thus scored 0. However, if participants 

selected the less informative evidence, then the overlooked 

information was the difference (in KL-D) between the 

optimal (i.e. most informative) evidence and their selected 

option.
3
 

As Table 3 indicates, across all break-downs of evidence 

choices (overall, by condition, and by parameter set), there 

was a decisive amount of information overlooked – 

calculated via Bayesian one sample t-tests (test value = 0). 

This significant amount of overlooked information can be 

attributed to the sub-optimal undervaluing of E1 (i.e. the 

zero-sum fallacy) in all cases barring common priors, 

unequal likelihoods (bottom row, Table 3). In this latter 

parameter set, E2 in fact yielded the most information, but 

was not chosen sufficiently often across participants.  

 

Table 3. Overlooked information; overall, split by condition, 

and split by parameter sets. 

 M SD N >0 (BF10) δ δ 95% CI 

Overall .045 .048 712 5.79*10
95

 0.934 .847, 1.021 

P(E2|¬H1) = L .042 .047 360 1.23*10
44

 0.886 .766, 0.999 

P(E2|¬H1) = H .048 .049 352 2.33*10
50

 0.980 .849, 1.113 

       

RareP.EqL .052 .045 178 3.12*10
31

 1.153 .956, 1.348 

RareP.UneqL .047 .042 178 2.543*10
30

 1.121 .938, 1.318 

UneqP.UneqL .046 .057 178 6.600*10
17

 0.795 .623, 0.958 

ComP.UneqL .034 .045 178 2.569*10
16

 0.753 .59, 0.925 

Conclusions 

Previous work has shown that evidence equally predicted 

by multiple explanations is often erroneously dismissed due 

to the misplaced assumption that support for one hypothesis 

(of interest) must come at the detriment of another (the zero-

sum fallacy; Pilditch, Fenton, & Lagnado, 2019). In the 

present work, we show that this fallacy results in poor 

decisions regarding evidence selection, and that such 

selections come at a quantified cost of overlooked 

information. Crucially, we also show that participants are 

sensitive to priors and likelihoods parameters, with different 

evidence preference patterns as a consequence. However, 

the general pattern of overlooked information holds despite 

this sensitivity. 

Foremost, the present work confirms the presence of zero-

sum reasoning, showing that it is active in people’s choice 

of which evidence to examine. It also highlights the 

potential costs of the fallacy, via the quantification of 

(costly) overlooked information. In this way, we argue for 

the inclusion of different question methods and information 

measures when investigating reasoning errors – whether 

across simple or complex structures. This would not only 

contribute to understanding how violations of normative 

frameworks of human information acquisition relate to 

known violations of information evaluation, such as the 

                                                           
3 If evidence items were equally informative, then participants 

were pragmatically correct, in terms of information, with any 

preference (including “They are the same”), and thus scored 0. 

However, if participants erroneously judged the evidence items the 

same, the amount of overlooked information was taken from the 

KL-D of the most informative option. 
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zero-sum fallacy, but it would allow for the exploration of 

how consequential sub-optimal evidence selection choices 

are, in laboratory as well as real-world settings.  

Given that information-seeking is a critical aspect of so 

many areas of decision making – including intelligence 

analysis, legal reasoning, and medical diagnosis – the use of 

zero-sum reasoning is a strong concern. Future work will 

seek ways to alleviate this bias, and shift people towards 

more normative information gathering. 
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Abstract

We provide new evidence concerning two views of episodic associations: The independent associations hypothesis (IAH)
posits that associations are unidirectional and separately modifiable links (AB; AB); the associative symmetry hypothesis
(ASH) considers the association to be a holistic conjunction of A and B representations. While existing literature focuses
on tests that compare the correlation of forward and backward associations and favors ASH over IAH, we provide the
first direct evidence of IAH by showing that forward and backward associations are separately modifiable for semanti-
cally related pairs. In two experiments, participants studied 30 semantically unrelated and 30 semantically related pairs
intermixed in a single list, and then performed a series of up to eight cued-recall test cycles. All pairs were tested in each
cycle, and the testing direction (A-? or B-?) alternated between cycles. Consistent with prior research, unrelated pairs
exhibited associative symmetry accuracy and response times improved gradually on each test, suggesting that testing in
both directions strengthened the same association. In contrast, semantically related pairs exhibited a stair-like pattern,
where performance did not change from odd to even tests when the test direction changed; it only improved between tests
of the same direction. We conclude that episodic associations can have either a holistic representation (ASH) or separate
directional representations (IAH), depending on the semantic relatedness of their constituent items.
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Abstract

Normative word frequency has played a key role in the study of human memory, but there is little agreement as to the
mechanism responsible for its effects. To determine whether word frequency affects binding probability or memory
precision, we examined working memory for spatial positions of words. Each of three experiments included 300 trials
in which five words were presented sequentially around an invisible circle followed by one of those words shown in the
middle of the circle as a probe to test its location. Participants had to click on the associated location and the degree of
error around the circle was the dependent measure. Across experiments we varied word frequency, presentation rate and
the proportion of low frequency words on each trial. A mixture model dissociated memory precision, binding failure and
guessing rates from the continuous distribution of errors. On trials that contained only low- or high-frequency words,
low-frequency words lead to a greater degree of error in recalling the associated location. This was due to a higher word-
location binding failure and not due to differences in memory precision or guessing rates. Slowing down the presentation
rate eliminated the word frequency effect by reducing binding failures for low-frequency words. Mixing frequencies in a
single trial hurt high-frequency and helped low-frequency words, but frequency composition and presentation rate did not
interact. These findings support the idea that low-frequency words require more resources for binding and that the binding
fails when these resources are insufficient.
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Abstract

A growing body of literature suggests that making different
sampling assumptions about how data are generated can lead
to qualitatively different patterns of inference based on that
data. However, relatively little is known about how sampling
assumptions are represented or when they are incorporated.
We report the results of a single category generalisation exper-
iment aimed at exploring these issues. By systematically vary-
ing both the sampling cover story and whether it is given before
or after the training stimuli we are able to determine whether
encoding or retrieval issues drive the impact of sampling as-
sumptions. We find that the sampling cover story affects gen-
eralisation when it is presented before the training stimuli, but
not after, which we interpret in favour of an encoding account.
Keywords: categorisation; generalisation; memory; sampling
assumptions;

Introduction
For most of the reasoning tasks with which we are routinely
faced, it is impossible to draw conclusions that are logically
entailed by what we know already. Instead, we must by ne-
cessity make inductive generalisations on the basis of the lim-
ited data we have. In order to make the most of that data, it
is important to accurately assess its evidentiary weight – to
recognise precisely what kind of generalisations it supports.
Doing this assessment accurately depends on understanding
the context in which it was observed.

To illustrate why, imagine that you need to buy a present
for a colleague as a part of your workplace Secret Santa. You
don’t know this colleague that well, but while helping them
move offices you see a box containing the CDs that they lis-
ten to while at work. Sensing an opportunity to re-gift an
unwanted copy of Taylor Swift, you take a closer look. Upon
realising that almost all of their collection consists of 80s Bill-
board Hits, you conclude that their musical taste is dated1 and
reluctantly decide that Taylor Swift is not for them.

Suppose, instead, that you had seen the exact same data
(a box of CDs) but in the context of helping your colleague
move their entire music collection – many dozens of boxes
worth – and that box just happened to be the only open one.
Now the same data is no longer quite so representative: in-
stead of being a carefully culled and chosen set of favourites,
it is one of many. Thus, it tells you much less about whether
your colleague would like Taylor Swift.

As this example illustrates, knowing something about why
one saw the data that one did (and not some other data) en-
ables people to make more valid inferences. Put another
way, being able to reason about the generative process be-
hind a set of observations tells people about the weight of

1The fact that your colleague still uses CDs may have told you
this already.

evidence that those observations supply. These assumptions
about the generative process are often referred to as the sam-
pling assumptions that people bring to inference problems.
Different sampling assumptions appear to drive qualitatively
distinct patterns of generalisation (e.g. Hendrickson, Per-
fors, Navarro, & Ransom, 2019; Hayes, Navarro, Stephens,
Ransom, & Dilevski, 2019), support epistemic trust (Shafto,
Eaves, Navarro, & Perfors, 2012) and epistemic vigilance
(Landrum, Eaves, & Shafto, 2015; Ransom, Voorspoels, Per-
fors, & Navarro, 2017), fuel pragmatic implicature (Goodman
& Frank, 2016), and promote accelerated learning (Shafto,
Goodman, & Griffiths, 2014).

Despite this wealth of empirical support for the utility and
importance of sampling assumptions in generalisation, little
is known about either how they affect the encoding and re-
trieval of the data, or how they affect people’s mental repre-
sentations. Is the evidentiary weight of data under a given
sampling assumption computed only at the point at which the
data is later retrieved? Or is it encoded at the time of learn-
ing, thus shaping the underlying representation from the be-
ginning? And how is inference affected as people’s memories
of the data begin to fade?

Using a single-category learning task, we explore these
questions here for the first time. We manipulate both the
sampling assumptions people make about the training data
(via cover story) as well whether that cover story is available
before or after learning. As we explain in the next section,
if sampling assumptions affect generalisation at retrieval, we
expect no difference in performance regardless of when the
cover story was revealed. Conversely, if they affect how the
data are encoded, we expect different patterns of generalisa-
tion depending on when the cover story was available.

Sampling assumptions and inductive generalisation
The Bayesian generalisation approach of Tenenbaum and
Griffiths (2001) provides a useful framework for our research
question. In the context of our single category generalisa-
tion experiment, we are interested in how the learner decides
whether or not to extend the target category c to a novel item
y on the basis of previously observed examples x. Within the
framework, this decision is assumed to be probabilistic, based
on the available evidence. That is:

P(y ∈ c|x,s) = ∑
h∈Hc:y∈h

P(h |x,s) (1)

where s represents the learner’s assumption about the process
generating the data x, and Hc represents the set of alternative
hypotheses the learner considers concerning the true extent
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of the category c.2 In other words, the evidence in favour of
category membership is effectively combined across all hy-
pothetical versions of the category containing the novel item.
Using a straightforward application of Bayes’ rule the term
P(h |x,s) may be expressed as:

P(h |x,s) ∝ P(x |h,s)P(h). (2)

This formulation assumes, for simplicity, that the learner en-
tertains a single sampling assumption (i.e. P(s) = 1), which
we presume was given to them by a cover story describing the
generative process.

It is the likelihood function P(x |h,s) that is critical for
our current purposes. Substituting different likelihood func-
tions into this system of equations yields different predictions
about the way that people generalise from given data. For in-
stance, strong sampling implies a likelihood that embodies
the size principle, such that each subsequent datapoint serves
as evidence to further tighten one’s generalisations around the
data; weak sampling uses a different likelihood which implies
no such tightening (Tenenbaum & Griffiths, 2001). Thus, the
likelihood may be thought of as representing different ways
of calculating the weight of evidence that the data provides
for the hypothesis under a given sampling assumption.

Our first question here is when the likelihood is calculated:
when the data is first encoded, or when it is retrieved? If
learners do not need to rely on their memories and the sam-
pling cover story is available from the beginning, it is impos-
sible to disentangle these two possibilities. However, if we
manipulate when participants are aware of how the data were
sampled (i.e., before or after learning), then different possibil-
ities yield different predictions. We consider two main possi-
bilities in detail.

Retrieval. If the likelihood is calculated upon retrieval,
then encoding need only involve storing the raw data x in
some form. The likelihood calculation would be shaped
by whatever sampling assumption was in play during re-
trieval, regardless of what was assumed during learning. In
this sense, the calculation would resemble the conventional
or “idealised” interpretation of the Bayesian generalisation
model. However, while the conventional interpretation as-
sumes perfect recall of exemplars, a failure to retrieve some
data would imply that the likelihood calculation was effec-
tively over a reduced dataset (i.e., smaller sample size). The
precise effect that this has will depend on the sampling as-
sumption and on the particular items forgotten. For exam-
ple, if the diversity of the dataset is largely unaffected by the
failure to retrieve certain items, then generalisation under a
strong sampling assumption should be wider in this case than
under perfect recall. Under weak sampling, in contrast, it is
the diversity of the sample and not its size that has an effect
on generalisation; thus, a reduction in sample size without a

2In the case that the data x varies over a continuous dimension
Hc will represent a continuum of hypotheses and the sum is replaced
with an integral.

Figure 1: Example stimuli. Items varied only in the position of the
short black vertical line along the bottom edge of the rectangle.

change in diversity would mean that generalisation was un-
affected. More generally, as the level of retrieval failure in-
creases, the Bayesian model predicts generalisation increas-
ingly in line with the prior distribution.

Encoding. If the likelihood is calculated upon encoding,
then the strength of evidence that it represents would have to
be stored in some way. In this case, the precise effect of later
retrieval failure might vary depending on how evidence is en-
coded. For example, if evidence is stored and retrieved with
each exemplar individually then failure to retrieve a given ex-
emplar would mean that subsequent generalisation operates
over a smaller dataset, as in the retrieval account (although,
unlike the retrieval account, using the sampling assumption
that was in play at the time of encoding). If instead, evi-
dence were stored and retrieved in aggregate form (via the
hypotheses, for example) then failure to recall any particu-
lar exemplar need not imply that the associated evidence was
lost. In this way, generalisation might still proceed with all
the available evidence (presuming the same hypotheses were
accessed). The details of representation notwithstanding, if
the likelihood is calculated and stored during encoding, and
not at retrieval, then generalisation would be shaped by the
sampling assumptions available during learning, even if those
assumptions are changed at retrieval.

Method
Our experiment involved a single-category generalisation
task modelled on previous work demonstrating that sample
size and sampling cover story affect people’s willingness to
extend category membership to novel examples (Hendrickson
et al., 2019; Ransom, Hendrickson, Perfors, & Navarro,
2018). Although we employed stimuli identical to those used
in that experiment, we modified the method of presentation
so that each stimulus was removed from screen after a (typ-
ically brief) period of self-paced study. Using a consistent
experimental framework allows us to directly compare our
results with the previous findings, and thus to determine if
the effect of sampling assumptions on generalisation changes
as the memory of training examples decays.

One of our manipulations involved the nature of the cover
story people received. Either they were told that the data
was given by a HELPFUL teacher (which corresponds to a
strong sampling assumption and implies that generalisations
should be tighter) or they were given a cover story imply-
ing that it was chosen at RANDOM (which corresponds to a
weak sampling assumption and implies that generalisations
should be looser). Critically, we manipulated whether peo-
ple were given the sampling story BEFORE or AFTER they
saw the training stimuli. If sampling assumptions affect how
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Figure 2: Experiment design. Our 2x2x2 design varied Sample Size within-subject and Sampling Explanation and Presentation Sequence
between-subjects. All participants began by seeing four individually-presented exemplars followed by a generalisation task to novel stimuli.
Those in the RANDOM condition were then given a cover story in which the subsequent eight items were chosen at random from boxes that
they themselves had previously selected. Those in the HELPFUL condition were told that the items were selected by a helpful teacher. In the
BEFORE condition, the cover story was given before seeing the eight new items; in the AFTER, it came after. In all conditions the experiment
ended with a repeat of the generalisation test.

the data are encoded then people should generalise differently
depending on when they received the story.

Participants
We recruited 999 people via Amazon Mechanical Turk who
were each paid $1.70USD for 5-10 minutes participation.
56% were female, with age varying between 18 and 75 (me-
dian: 37 years), drawn predominately from the U.S. popula-
tion (99%). All participants passed a screening for English
language competency prior to participation.

Stimuli
Stimuli were black rectangles containing a vertical black line
inside, attached to the bottom edge (see Figure 1). They
varied along a single dimension (the stimulus value): the
horizontal position of the line within the rectangle. Par-
ticipants were told that this was the way in which stimuli
varied. Evenly spaced light grey “guide lines” were drawn
within each rectangle in order to improve discriminability.
There were 12 training stimuli in total, whose stimulus values
ranged from 21% to 43% in increments of 2%. They were di-
vided into two sets corresponding to the two training phases,
as described below.

Design and procedure
As shown in Figure 2, our experiment employed a 2× 2× 2
mixed factorial design. Two factors (Sampling Explana-
tion and Presentation Sequence) were manipulated between-
subjects while another (Sample Size) varied within-subject.
People were thus allocated at random to one of four experi-
mental groups.

Across all groups, the experiment involved presenting peo-
ple with a number of examples of a novel 1D category and
then observing whether they generalised category member-
ship to new items based on the examples they had been shown
and what they had been told about those examples.

Sample Size To facilitate a baseline against which the ef-
fect of additional exemplars could be compared, the exper-
iment involved two rounds of testing. The first (Size 4) oc-

curred after a training phase involving four training examples,
and the second (Size 12) after seeing eight more.

Stimuli for the first training phase consisted of the two ex-
treme examples (with values of 21% and 43%) and two oth-
ers selected at random from the ten whose values lay between
the extremes. The eight remaining stimuli formed the second
training set and were presented in random order.

Presentation Sequence This between-subjects manipula-
tion varied when the sampling cover story was presented in
relation to the second training set. People in the BEFORE
condition were told the cover story (RANDOM or HELPFUL,
described below) before viewing the second set of training
items, while people in the AFTER condition were offered the
explanation only after all training items had been presented.

Sampling Explanation The other between-subjects manip-
ulation varied the details of the cover story explaining how the
data in the second training phase were generated. The initial
training phase, however, was identical for all participants. No
explanation was given for how the exemplars were chosen.
People were told only that the purpose of the experiment was
to see how people judged whether or not unfamiliar objects
were in the same category as known examples. In the second
training phase people were given one of two different cover
stories explaining how the items were selected.

Helpful. People in the HELPFUL condition were told:

We have a bunch of boxes containing examples of the full vari-
ety of «Wuggams». We have chosen 8 of these boxes especially
to help you learn the «Wuggam» category, bearing in mind the
four training examples we showed you originally.

at which point an array of eight icons resembling open pack-
ing boxes were displayed in an adjacent panel. Participants in
the BEFORE condition then viewed the eight stimuli one by
one. Those in the AFTER condition saw the identical expla-
nation (with verb tenses adjusted) only after all eight stimuli
in the second training phase had been shown.

Random. The RANDOM condition was designed to en-
courage people to believe that each training item was selected
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(a) BEFORE. (b) AFTER. (c) Ransom et al. (2018).

Figure 3: Performance on a one category generalisation task as a function of presentation sequence, sampling procedure (manipulated
between-subjects) and sample size (manipulated within-subject). The graphs show the proportion of positive responses to the question: “Do
you think this object is in the «Wuggam» category?” for each of the test stimuli. People’s performance after seeing four examples of the target
category with no sampling explanation given (grey line) is contrasted with their performance after seeing all 12 examples and being given an
explanation of how the additional examples were selected (black lines). (a) When the sampling explanation was given prior to the presentation
of the final 8 examples (BEFORE condition), people tightened their generalisations as more data was observed, but the extent of tightening
was affected by the sampling manipulation; those people who actively sampled the additional examples at random (red squares) tightened
their generalisation less than those that were told that the items had been selected by a helpful teacher (blue diamonds). (b) In contrast,
when the sampling explanation was given only after all training stimuli were presented (AFTER condition), the sampling manipulation had no
effect, with people tightening their generalisation equally in both cases. (c) Using the same experimental framework and stimuli, but keeping
the training stimuli on-screen during the testing phase, Ransom et al. (2018) demonstrated the effect of sampling manipulation seen only in
the BEFORE condition. But when people must rely on their memory of observed examples, their generalisation is wider overall.

at random and that it was at least theoretically possible to see
examples not in the target category. To achieve this, peo-
ple in the RANDOM condition were presented with an addi-
tional phase preliminary to the first training round. In this
phase, a 6× 5 arrangement of packing boxes was displayed
on screen, and people were asked to select boxes in any or-
der (but not told why this was necessary). After selecting 11
boxes, people were told that the contents would be revealed
later in the experiment. Following this, the first training phase
commenced, which was identical for all participants.

During the second training phase, participants in the AF-
TER condition were immediately shown the eight remaining
training items without explanation. Those in the BEFORE
condition were told that we had many boxes containing exam-
ples from our catalogue, and that these examples included but
were not limited to Wuggams. After this, the original array
of (closed) boxes was displayed, indicating the ones that the
participant had previously selected. People were then told:

At the start of the experiment we asked you to choose some of
these boxes at random. These are the boxes that you selected.
We’re going to open them now and show you whatever kind of
item we find inside.

In order to reinforce the notion that it might have been possi-
ble to see items from categories other than Wuggams, the dis-
play was updated at this point to reveal eight open boxes and
three closed ones. People were told that some of the boxes
they had chosen were stuck but that we would show them the
contents of the boxes that did open. Participants in the AFTER
condition received exactly this cover story (with verb tenses
adjusted) only after seeing all eight training examples.

Generalisation test
Immediately after both the first and second training phase,
participants in all conditions performed the same generalisa-

tion test. In it, they were shown 19 stimuli one at a time in
random order; this sequence was repeated four times. The
stimuli consisted of 19 items with stimulus values ranging
from 5% to 95% in increments of 5%. The test query was
a yes or no question: “Do you think this object is in the
«Wuggam» category?” Neither training stimuli nor the sam-
pling explanation remained on-screen during testing, requir-
ing people to rely on their memory when making judgements.

Results
Our work is focused on understanding how memory and sam-
pling assumptions interact to affect generalisation. Do we
replicate previous findings showing that differences in sam-
pling assumptions lead to differences in generalisation? Does
this difference in people’s patterns of generalisation change
if the sampling manipulation occurs before or after stimulus
encoding? We address each question in turn below.

First: do we replicate previous results? Our RANDOM BE-
FORE and HELPFUL BEFORE conditions are very similar to
that of a previous study (Ransom et al., 2018), but are differ-
ent in one key way. In our version, the training stimuli were
removed from the screen after initial presentation; in Ransom
et al. (2018) and much of this literature the training stimuli
stay visible for the entire experiment. We therefore investi-
gate whether these previously observed effects of sampling
manipulation are replicated even when people must rely on
their memory of the training stimuli.

To investigate this we first analysed the responses of all
participants having seen only the first four exemplars, for
which no sampling explanation was given. Against this base-
line we separately compared the responses of people in the
RANDOM BEFORE and HELPFUL BEFORE conditions. The
resulting generalisation curves shown in Figure 3(a) reveal
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Figure 4: The mean effect of additional exemplars on the marginal
probability of generalising the learned category to novel stimuli, as
a function of sampling assumption and the presence of a memory
aid. When training exemplars remained on-screen throughout the
testing phase participants were less willing overall to generalise the
target category to novel items than when no memory aid was present.
In magnitude, the effect of the memory aid on generalisation was
comparable to the effect of observing the eight additional exemplars.

that the HELPFUL sampling manipulation led to tighter gen-
eralisation than the RANDOM manipulation. This replicates
a key finding of Ransom et al. (2018), shown in Figure 3(c).
To examine the strength of evidence for this finding we anal-
ysed generalisation curves for the second test phase (Size
12), calculating the generalisation probability for each person
and stimulus separately. A Bayesian ANOVA revealed that a
model of generalisation probability including stimulus value
and sampling manipulation as predictors is strongly preferred
to a model containing stimulus value only (BF10 > 106).

Although we replicated the qualitative difference between
sampling conditions, it is evident on visual comparison of
Figure 3(a) and (c) that people appeared to generalise further
when they had to rely on their memory of the training stimuli.
To determine the overall effect that this had on generalisation
we calculated the marginal probability of extending category
membership to novel items as a function of test phase (4 or 12
items) and sampling manipulation (RANDOM or HELPFUL).
We then compared this probability between our experiment
(the BEFORE conditions) and Ransom et al. (2018).

The results, shown in Figure 4, demonstrate that the ab-
sence of a memory aid had a uniform but significant effect on
generalisation overall (BF10 > 10100).3 After seeing 12 ex-
emplars, participants in our study (who had no memory aid)
showed a willingness to generalise to novel items compara-
ble to participants in Ransom et al. (2018) after seeing only
four items that remained on screen throughout. Thus, overall,
we find that the difference in generalisation according to sam-
pling assumption did replicate, but generalisation was consis-
tently higher when people had to rely on their memory more.

Our second question was whether the effect of sampling
manipulation changes when the sampling cover story is given
after the training stimuli rather than before. We therefore re-
peated our analysis for people in the RANDOM AFTER and
HELPFUL AFTER conditions, and found that it does: there is
no longer a difference in generalisation based on sampling as-

3Based on a Bayesian logistic regression comparing a model of
yes/no responses that included stimulus value, sampling manipula-
tion and memory aid as predictors to one without memory aid.

Tightened Widened No change

50%

RANDOM HELPFUL RANDOM HELPFUL

(a) BEFORE (b) AFTER

Figure 5: The proportion of people who either tightened (∆p < 0),
widened (∆p > 0) or showed no change (∆p = 0) in their region of
generalisation, after seeing additional examples (where ∆p reflects
an individual’s change in rates of responding in favour of the learned
category). People are grouped according to the explanation they re-
ceived about the sampling of extra items, and whether it was given
before or after the examples themselves. Error bars show standard
error of proportion. (a) In the BEFORE condition, where the sam-
pling explanation was given prior to the presentation of the addi-
tional examples, the sampling manipulation had an effect. The ma-
jority of people who were told that the items had been selected by
a helpful teacher tightened their region of generalisation, while the
(slight) majority of people in the RANDOM condition, who actively
sampled their own additional examples, widened their region of gen-
eralisation or showed no change. (b) In contrast, when the sampling
explanation was provided after the additional stimuli had been pre-
sented (as in the AFTER condition), the majority of people tightened
their generalisations regardless of the explanation given.

sumption. As Figure 3(b) shows, people tighten their general-
isations to a remarkably similar degree across the two condi-
tions, despite the fact that they had opposing sampling cover
stories (Bayesian ANOVA now favours the model with stim-
ulus value as the only predictor: BF01 = 42).

To further assess the effect of our sampling manipulation
on the qualitative patterns of responding, we compared each
individual’s responses between the two test phases, after see-
ing 4 and 12 exemplars. Figure 5 shows the proportion of peo-
ple who either tightened, widened or showed no net change in
their generalisation (marginalised across test items). Consis-
tent with the patterns at the aggregate level, it is evident that
the explanation given to participants regarding the source of
the additional exemplars does affect the trajectory of general-
isation as more examples are observed. But this explanation
only has an effect if it is given before the exemplars are ob-
served (BF10 = 300) and not after (BF01 = 2.8).4

Discussion
To our knowledge, our work here is the first to explore when
sampling assumptions affect generalisation, and by extension
when the likelihood is calculated. Our results demonstrate
that the sampling cover story only had an effect when it was
made explicit prior to the presentation of the data. When
it was presented at retrieval, then whatever likelihood was
the default at the time of encoding (which, in this case, ap-

4Bayes’ factors are based on a multinomial logistic regression
comparing a model of qualitative effect (tighten, widen, no net
change) with sampling manipulation as a predictor against an in-
tercept only model.
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Figure 6: Simulated performance on a one category generalisation task as a function of exemplar recall, sampling assumption and sample
size. The graphs plot the probability of generalising the learned category as a function of stimulus value. Solid lines represent generalisation
performance on the assumption that all exemplars are perfectly recalled at decision time – the default assumption of the Bayesian general-
isation model. Dashed lines represent generalisation performance on the basis of imperfect recall. For illustration purposes, the simulation
uses an independent probability of recall for each exemplar (p = 0.5). Failing to recall exemplars leads to wider generalisation overall. (a)
Simulated performance in the BASELINE condition (4 exemplars), assuming the default (strong) sampling. When the sample size is small, the
effect of forgetting on generalisation reflects a balance of two forces: the reduction in diversity may reduce generalisation within the range
spanned by the exemplars, while the reduced sample size leads to wider generalisation outside the range. (b) Simulated performance in the
RANDOM condition (12 exemplars), assuming the BASELINE performance as a prior and that the 8 additional exemplars are weakly sampled.
In the case of imperfect recall, the simulation predicts that the 8 additional items, although imperfectly recalled, lead to wider generalisation as
a result of increased diversity. (c) Simulated performance in the HELPFUL condition (12 exemplars), assuming the BASELINE performance as
a prior and that the 8 additional exemplars are strongly sampled. Under strong sampling, generalisation tightens quickly around the sampled
range with each extra exemplar, thus the predicted effect of forgetting is less in this scenario.

peared to have been strong sampling) was the likelihood that
shaped generalisation – even though the cover story at re-
trieval should have contradicted it. While we cannot alto-
gether rule out the influence of sampling assumptions at the
point of retrieval, our experiment provides evidence in favour
of an encoding account. Under this account, the evidence for
different hypotheses is assessed according to the sampling as-
sumption that prevailed at the time that the data were origi-
nally presented.

This finding has a variety of interesting implications. First,
it suggests that there is no such thing as a “theoryless” learner:
at no point do people simply encode the raw data in a veridical
fashion. Rather, from the start they are actively engaged in
making sense of it for future generalisation even though there
is no current need to generalise. The question remains as to
how automatic this is: would people be able to inhibit the
likelihood calculation if requested to remember each specific
data point as precisely as possible, or if they didn’t think that
a generalisation task would be forthcoming?

This has implications for effective pedagogy as well. It is
known that learners benefit from assuming that their teacher
is selecting the most informative examples possible given the
learner’s current beliefs. Such reciprocal assumptions can
lead to a highly leveraged form of generalisation in which
concepts can quickly be acquired from minimal input (Shafto
et al., 2014). Under the idealised account of pedagogical
learning, people’s inferences should not depend on when the
sampling process becomes apparent. However, our results
suggest that it is important for the teacher to make the sam-
pling process clear as early as possible.

In a similar way our finding has implications for how peo-
ple process misinformation and corrections to misinforma-
tion. Ransom et al. (2017) found, for example, that people
can use truthful but limited data in their efforts to mislead oth-

ers by attempting to manipulate their counterpart’s sampling
assumption. Our work suggests that subsequently learning
that an information source was biased may not be sufficient to
correct the bias. It therefore offers another explanation for the
well-established finding that retracting misinformation does
not eliminate its influence (Johnson & Seifert, 1994; Ecker,
Lewandowsky, Swire, & Chang, 2011). If people are encod-
ing data in such a way that it cannot be disentangled from
their theory at the time, interpreting that data under a new
theory may be extremely difficult.

Another interesting aspect of this work regards the role of
memory. By adopting the experimental procedure of Ransom
et al. (2018) but requiring participants to view the simuli one-
by-one, we were able to assess how memory decay would
interact with sampling assumptions in shaping generalisa-
tion. We found that people tightened their generalisations less
when they had to rely on their memory more. A simulation of
the generalisation task used in our experiment verified our in-
tuition that this should be the case (see Figure 6). Our finding
is consistent with previous work using complex linguistic and
non-linguistic data rather than a simple one-dimensional cat-
egory (Perfors, Ransom, & Navarro, 2014), which suggests
that the result is reasonably robust.

Our memory manipulation (albeit across two experiments)
also provides some basis to distinguish between two possible
encoding accounts. One possibility is that evidence is stored
and retrieved with each exemplar individually and any failure
to retrieve an exemplar would mean that computation occurs
over a smaller dataset. A second possibility is that evidence
is stored in aggregate (across all data points) and retrieved via
the hypotheses. In this case, the contribution of each exem-
plar would be accounted for at the point of encoding, and so
the computation should proceed as if the full dataset were re-
trieved. The two possibilities suggest contrasting predictions.
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In the first case, we would expect generalisation in the present
experiment to be wider than in the previous (Ransom et al.,
2018, where perfect recall was supported). In the latter case,
we should expect the results of the two experiments to be
broadly in line with each other. As already noted, we found
that manipulating how easy it was to remember exemplars did
affect generalisation in a manner consistent with some degree
of recall failure. We interpret this as weak evidence favouring
the “exemplar encoding” account over the “hypothesis encod-
ing” account: the data is stored in such a way that the strength
of evidence is in some way integral to the encoding of the ex-
emplar, at least to the extent that failure to later retrieve the
exemplar equates to a failure to incorporate the associated ev-
idence. Our evidence is only weak, however, because it is not
entirely clear what “forgetting” in the context of the hypoth-
esis encoding account would amount to. Fleshing out these
distinctions more and testing them more systematically is a
goal for future work.

While the present experiment should be taken in the spirit
of a “proof of concept”, our research nonetheless suggests
that memory, sampling, and generalisation are intertwined
in ways that are still not fully understood. By manipulating
when different information is available as well as the cogni-
tive load during learning, it is possible to further illuminate
this complex relationship.
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Abstract

“No Valid Conclusion” (NVC) is one of the most frequently se-
lected responses in syllogistic reasoning experiments and cor-
responds to the logically correct conclusion for 58% of the
syllogistic problem domain. Still, NVC is often neglected in
computational models or just treated as a byproduct of the
underlying inferential mechanisms such as a last resort when
the search for alternatives is exhausted. We illustrate that
NVC represents a major shortcoming of current models for hu-
man syllogistic reasoning. By introducing heuristic rules, we
demonstrate that slight extensions of the existing models result
in substantial improvements of their predictive performances.
Our results illustrate the need for better NVC handling in cog-
nitive modeling and provide directions for modelers on how to
integrate it into their approaches.
Keywords: cognitive modeling; heuristics; syllogistic reason-
ing; no valid conclusion

Introduction
Syllogistic reasoning is one of the core domains in human
reasoning research (for a review see Khemlani & Johnson-
Laird, 2012). It is concerned with gaining insight into the
cognitive processes driving the inference mechanisms for
categorical assertions featuring quantifiers (“All”, “Some”,
“Some ... not”, and “No”) and terms which are inter-related
by two premises. The traditional experimental paradigm
presents participants with problems of the form “All A are B;
All B are C” (substituting A, B, and C with common groups
such as gardeners, musicians, etc.) and usually asks “What
follows?”, i.e., which conclusion can be inferred logically
from the premises (generation task; Morley, Evans, & Han-
dley, 2004). Depending on the arrangement of terms, the syl-
logism is categorized into one of four figures, a property that
was found to have a substantial influence on human infer-
ences (Johnson-Laird & Bara, 1984):

Figure 1 Figure 2 Figure 3 Figure 4

Premise 1 A-B B-A A-B B-A
Premise 2 B-C C-B C-B B-C

For reasons of clarity, syllogistic problems are usually
referred to by abbreviating quantifiers with single upper-
case letters and the figure number: “All” (A), “Some” (I),

*Both authors contributed equally to this manuscript.

“No” (E), “Some . . . not” (O). The syllogism “All informa-
tive things are useful; Some websites are not informative
things” is therefore referred to as AO2. Possible conclusions
for syllogistic problems combine the end terms A and C via
one of the four quantifiers. Additionally, it is possible to re-
spond with “No Valid Conclusion” (NVC) indicating that the
premises have no valid conclusion in accordance to first-order
logic. Out of the 64 distinct syllogistic problems, 37 are in-
valid (58%), i.e., only NVC can be derived.

Experimental investigations have shown that NVC rep-
resents one of the most frequently selected conclusions
(Khemlani & Johnson-Laird, 2012). Because of this, the
role of NVC in syllogistic reasoning is important. However,
current models of syllogistic reasoning rarely make explicit
statements about NVC. On the extreme, there are heuristic
models which do not possess the capability of generating
NVC at all. On the other hand, models that do integrate NVC
as a conclusion candidate often treat it as a termination cri-
terion when searches for alternatives fail. Currently, there
are no strategies to directly infer NVC responses. Addition-
ally, even when going beyond the level of predictions, mod-
els are unable to account for statistical phenomena related to
NVC responses, such as variations in reaction times (Ragni,
Dames, Brand, & Riesterer, 2019).

In this article, we tackle this problem by proposing a set of
heuristic rules for generating NVC conclusions based on find-
ings from the syllogistic literature. By attaching these rules
to existing models, we show that inadequate NVC handling is
indeed one of the core problems of the current state of the art.
The following text is split into five sections. After introduc-
ing the syllogistic domain of reasoning as well as the current
state of the art in modeling (Section 2), we will analyze con-
temporary models in terms of their capabilities in predicting
a human NVC response (Section 3). Section 4 then takes up
those results and presents alternative strategies for predict-
ing NVC responses. In Section 5 we evaluate the syllogistic
models augmented with the identified strategies for NVC and
finally, in Section 6, discuss our results, illustrate the poten-
tial with respect to improving models, and give directions for
future work in the field of cognitive modeling of human rea-
soning.
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Table 1: Models and their NVC prediction proportions for
valid and invalid syllogisms. For models with multiple pre-
diction candidates for a single syllogism, the ratio of NVC
is used. Model predictions are taken from Khemlani and
Johnson-Laird (2012).

Model Valid Invalid

Conversion 44% 86%
Mental Models Theory (MMT) 14% 30%
PSYCOP 0% 100%
Verbal Models 32% 51%
Atmosphere 0% 0%
Matching 0% 0%
Probability Heuristics Model (PHM) 0% 0%

Related Work
Computational modeling is a central part of today’s research
of human syllogistic reasoning. As of today, at least twelve
theories about syllogistic inferences exist. In a meta-analysis,
Khemlani and Johnson-Laird (2012) found that the theories
have distinct advantages and drawbacks when predicting ex-
perimental data obtained by aggregating individual partici-
pants’ responses. The following paragraphs briefly introduce
the different approaches for which the authors were able to
provide predictions for the 64 syllogisms. They will be used
throughout the following analyses.

The Conversion Hypothesis is an attempt at explain-
ing erroneous conclusions resulting from human reasoning
processes originally introduced by Chapman and Chapman
(1959) and later formalized as a testable model by Revlis
(1975). The hypothesis states that while encoding a syllo-
gistic premise, a conversion operation is applied which swaps
the direction of the categorical expression (e.g., “All A are B”
is interpreted as “All B are A”). As a result, a new syllogism is
produced with conclusions that might be inappropriate for the
original problem (e.g., Revlin, Leirer, Yopp, & Yopp, 1980).
NVC is predicted if the new problem is logically invalid.

The Mental Model Theory (MMT; Johnson-Laird, 1975)
is a cognitive theory which has successfully been applied to
various domains of reasoning (Johnson-Laird & Byrne, 2002;
Khemlani & Johnson-Laird, 2012; Ragni & Knauff, 2013).
It is based on the assumption that inferential mechanisms
operate on mental representations constructed for the given
premises. MMT’s inference process is composed of a series
of phases: model construction, conclusion generation, and the
search for counterexamples. First, an initial mental model is
constructed integrating the information of the premises, i.e.,
the relation between the terms of the premises. Second, a can-
didate conclusion is formulated in accordance to the initial
model. Finally, alternative models consistent to the premises
are constructed in search of a situation in which the conclu-
sion is false (Ragni, Khemlani, & Johnson-Laird, 2014). If
the initial model construction fails, or counterexamples can
be found for all models, NVC is returned.

The Psychology of Proof model (PSYCOP; Rips, 1994) is
a cognitive model of human syllogistic reasoning that claims
deduction as a fundamentally human capability (Khemlani
& Johnson-Laird, 2012). PSYCOP defines a set of psycho-
logically plausible inference rules approximating the human
inferential mechanisms. By applying rules in a deductive
forward-inference fashion as well as an inductive backwards-
inference fashion, a path between premise information and
conclusion is constructed. PSYCOP does not have a guar-
anteed way to conclude NVC. While it supports exhaustive
searches for conclusions and the generation of NVC as fall-
back option, this behavior is not enforced in its original for-
mulation (Khemlani & Johnson-Laird, 2012).

Verbal Reasoner (Polk & Newell, 1995) is an approach
to modeling syllogistic reasoning that assumes that human
inferences are fundamentally verbal. It encodes the premise
information into a mental model that differentiates between
more accessible information (the subject of the premise) and
less accessible information (the object of the premise). By
defining procedures to extract different degrees of interme-
diate implicit knowledge about the reasoning problem, the
model is able to generate conclusions following more or less
complex inferences. The verbal model theory treats NVC as
a last-resort option. If no conclusion can be derived from the
mental model, the verbal reasoner enters a reencoding loop in
search for a solution. NVC is produced when it gives up.

The Atmosphere Hypothesis (Woodworth & Sells, 1935)
is able to account for a portion of errors in human syllogistic
reasoning when compared with formal logics (Revlis, 1975).
It is based on a feature extraction step that identifies whether
the given premise information is positive/negative (“All”,
“Some” vs. “Some not”, “No”) and universal/particular
(“All”, “No” vs. “Some”, “Some not”). By following a com-
bination procedure, the quantifier of the conclusion is deter-
mined. Because it only extracts and combines features based
on quantifiers, the atmosphere hypothesis is not able to pro-
vide information about the direction, i.e., the order of terms
in the syllogistic conclusion, and is not able to generate NVC.

The Matching Hypothesis (Wetherick & Gilhooly, 1995)
reflects a different approach for accounting for errors made in
human syllogistic reasoning. It employs a matching strategy
which states that the conclusion quantifier is equal to the most
conservative quantifier in the premises. Conservativeness in
this sense is defined as a preference order of E > O = I� A
following the estimated number of individuals a quantifier
makes a statement about. Similar to Atmosphere, Matching
is unable to predict NVC, because it always picks a quantifier
from the given premises.

The Probability Heuristics Model (PHM; Chater & Oaks-
ford, 1999) is an approach to modeling reasoning that is
based on the fundamental idea that reasoning relies on heuris-
tics. PHM defines the inferential process via two phases.
First, a conclusion is generated by applying the min-heuristic
selecting the least informative quantifier from the premises
(A > I > E � O). Second, probabilistic entailments can be
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applied generating alternative conclusions based on the min-
heuristic’s result that could probably be true. Next, a third
heuristic, attachment, is applied to determine the order of
terms in the conclusion. Finally, the max-heuristic is applied
to assess the confidence of the conclusion based on the infor-
mativeness of the premises. If confidence is low, the probabil-
ity of returning NVC instead of the solution candidate rises.
Additionally, the o-heuristic is applied which states that O-
responses should be avoided in favor of NVC.

In Khemlani and Johnson-Laird (2012)’s prediction table,
which we use as the source for the models’ predictions, PHM
is reported without an inclusion of the max- and o-heuristic
(Baratgin et al., 2015). While potentially distorting for model
comparisons, this does not affect our evaluation of NVC. The
max- and o-heuristics are attached to PHM’s inference mech-
anisms (min-heuristic, attachment, and probabilistic entail-
ment) in similar spirit to what we propose as general exten-
sions of cognitive models further below.

The present article investigates the theories based on their
NVC prediction capabilities. Table 1 summarizes the mod-
els’ NVC response proportions in accordance to the predic-
tion data reported by Khemlani and Johnson-Laird (2012) for
valid and invalid syllogisms. The table highlights the differ-
ence between the cognitive models. While some models are
unable to predict NVC at all, the other approaches have a
stronger tendency toward responding with NVC for invalid
syllogisms. This behavior is expected due to NVC being the
logically valid response for invalid syllogisms. PSYCOP re-
flects formal first order logic in its NVC response behavior.
Because all valid and no invalid syllogisms have categorical
conclusions, it predicts 0% and 100% NVC, respectively. In
the following analyses, we evaluate the models based on their
ability to predict the most frequently selected responses.

Analysis State of the Art
Modeling Task
In this article, we aim at uncovering the latent potential of
the current state of the art by investigating their prediction
capabilities with a special focus on NVC. Hence, we adopt a
predictive scenario as the core evaluation setting of the fol-
lowing analyses: Given a dataset of reasoning data, we first
compute the most frequent answer (MFA) and assess each
model’s performance by comparing its predictions with the
aggregated response given by the participants.

The dataset used for this article was recorded as an Ama-
zon Mechanical Turk web experiment in 2016 and consists
of N = 139 participants providing conclusions to all 64 syl-
logistic problems, each. Participants were asked to select one
of the nine syllogistic response candidates following from the
premises. After a training phase consisting of four easy syl-
logisms, the remaining task sequence and order of response
options was fully randomized.

The predictions for the model candidates were taken from
Khemlani and Johnson-Laird (2012). This prediction data
does not feature single explicit conclusions for each model
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Figure 1: Proportion of model prediction errors (grey) for
the 64 syllogisms. False alarms (dark blue), i.e., incorrect,
and missed NVC predictions (light blue) are represented as
proportions of the prediction error.

and task. Instead, only sets of possible conclusions can be
provided for each model and syllogism. To account for this
in our prediction setting, weighted scores were computed for
the following analyses via S(P,T ) = |P∩T |/|P|, where P and
T denote the sets for predicted and true responses, respec-
tively (e.g., Copeland, 2006).

All materials used for the following analyses are openly
available via Github1.

State of the Art
Figure 1 illustrates the predictive capabilities of the mod-
els in accordance to the prediction table of Khemlani and
Johnson-Laird (2012). The grey bars reflect the proportion of
incorrect predictions on the 64 syllogisms’ MFA responses.
Dark blue and light blue bars denote the parts of incorrect
responses which can be attributed to unwanted and missed
NVC responses, respectively. As an illustrating example,
PSYCOP incorrectly predicts 51% of the syllogisms. About
6% of those errors can be attributed to missed NVC responses
whereas 19% of the errors were due to false alarms.

The plot highlights the difference between the models in
today’s state of the art. As expected, the models which are
unable to predict NVC responses (Matching, PHM, Atmo-
sphere), perform worst. For the remaining models, the gen-
eral performance is better. However, NVC-based errors still
account for the large parts of the incorrect predictions. As a
particularly striking example, more than half of Conversion’s
errors are due to incorrect NVC predictions.

The depicted results highlight the need for a better under-
standing of NVC. In the following, we propose strategies for
predicting NVC based on results from the literature on hu-
man syllogistic reasoning. Since embedding these strategies

1https://github.com/nriesterer/syllogistic-nvc
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Table 2: Change in predictive accuracy (black, first value), misses (lightblue, middle value), and false alarms (darkblue, right
value) of the models’ NVC predictions.

Models PartNeg EmptyStart FiguralRule NegativityRule ParticularityRule

Atmosphere 37.5% -28 8 7.8% -6 2 14.8% -17 15 25.0% -16 0 15.6% -12 4
Conversion 1.6% -2 2 0.8% -1 1 -3.1% -2 8 0.0% 0 0 0.0% 0 0
MMT 28.3% -20.1 6 6.2% -4.4 1.6 11.3% -12.3 12.2 17.5% -11.2 0 11.3% -8.4 2.8
Matching 42.2% -28 8 7.8% -6 2 19.5% -17 15 25.0% -16 0 17.2% -12 4
PHM 39.8% -28 8 7.8% -6 2 17.6% -17 15 25.0% -16 0 16.4% -12 4
PSYCOP 4.2% -4 4 3.1% -2 2 -3.0% -2 13 0.0% 0 0 0.0% 0 0
VerbalModels 11.6% -11.7 5.2 4.2% -3.2 1 3.3% -6.7 8.4 9.1% -5.8 0 4.9% -4.7 2

into the assumptions stemming from the high-level theoret-
ical ideas of the models exceeds the scope of this article,
we focus on formulating the NVC strategies as rules which
can be attached to arbitrary models. If a rule does not pre-
dict NVC, the underlying model is queried. This allows us
to examine the benefits and assess potential shortcomings of
an improved NVC handling in modeling human syllogistic
reasoning. Because our rules are purely additive, we expect
models with high numbers of NVC misses to benefit most
from the proposed strategies. The challenge lies in minimiz-
ing the inevitable increase in false alarms.

Towards a Model of NVC
To tackle the problem of missed NVC responses, we intro-
duce a set of heuristic rules detecting NVC which are based
on different observations.

The first heuristic, the Figural Rule is based on the figural
effect, a core result of syllogistic reasoning research. Early
studies found that the figure of premises induces a reliable
bias on participants’ responses: Figure 1 encourages A-C re-
sponses while Figure 2 leads to higher proportions of C-A re-
sponses (Johnson-Laird, 1975). In a later study it was found
that the syllogistic figure also has an effect on the proportion
of NVC responses (Johnson-Laird & Bara, 1984): NVC is
preferred for syllogisms of Figure 3 and 4. This finding is
transformed into a rule generating the NVC response when-
ever a syllogism of Figure 3 and 4 is encountered. For the
remaining figures, the attached model is queried.

The next set of rules draws from the notion of informa-
tiveness of quantifiers as a criterion for determining NVC.
Informativeness is a driving factor for two models in the cur-
rent state of the art of syllogistic reasoning. The probabil-
ity heuristics model (Chater & Oaksford, 1999) assumes an
informativeness ordering of A > I > E � O based on how
unexpected truth about a statement is conceived by humans.
Matching, on the other hand, introduces the notion of con-
servativeness based on the number of individuals a premise
makes an assertion about: E > O = I � A (Wetherick &
Gilhooly, 1995). Both orders assign the least amount of in-
formation to the negative quantifiers “Some ... not” (O), and
“No” (E). The negativity rule integrates both orders by be-
ing defined on the assumption that the amount of informa-

tion encoded by two negative premises does not suffice to
license a valid conclusion. This rule relates to PHM’s max-
heuristic in the sense that it assumes a threshold for insecurity
with a generated conclusion candidate that is exceeded for E
and O quantifiers. In doing so, it also subsumes PHM’s o-
heuristic. In analogy to negativity, the particularity rule is
defined based on the limited information encoded in the par-
ticular quantifiers “Some” (I) and “Some ... not” (O). They
make assumptions about limited and unspecified sets which
might cause the reasoning process to fail. Finally, we de-
fine a third rule, PartNeg by combining both particularity and
negativity: If the syllogism only consists of quantifiers with
limited information, i.e., does not contain “All”, NVC is pre-
dicted.

The last rule, EmptyStart, focuses on the syllogisms
where information can be propagated transitively through the
premises. This is possible for figure 1, i.e., “A-B, B-C”, or
figure 2, i.e., “B-A, C-B”, which can be converted into figure
1 by swapping the premises and substituting C with A and A
with C. The heuristic assumes that an information propaga-
tion is constructed (A-B-C for figure 1, C-B-A for figure 2).
Inferences can only be drawn if the quantifier relating the two
terms in the beginning of the chain makes an assertion about
a non-empty set of individuals. If this premise features “No”,
i.e., the most conservative premise (Wetherick & Gilhooly,
1995), no information can be propagated through the chain
and NVC is inferred. If we consider syllogism IE1, the chain
A-B-C can be extracted starting with quantifier “Some”. The
reasoner is able to identify a selection of elements from A
which can be annotated as B. The information from the sec-
ond premise can now be integrated easily into the elements
from A. If we consider EI1 on the other hand, the reasoner
is unable to identify an initial set of elements from A. There-
fore, premise 2 cannot be related to elements from A. As a
result, there is a higher chance to respond with NVC.

Analysis

Figure 2 depicts the syllogisms for which the introduced
heuristics predict NVC along with the syllogisms for which
NVC is the most frequent answer (MFA). Comparing the
strategies our results show that different parts of the space
of syllogisms are covered by different rules. For instance,
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Figure 2: NVC Predictions of the individual rules on valid
(left) and invalid syllogisms (right). Syllogisms are abbrevi-
ated with the encoded quantifiers of both premises “All” (A),
“Some” (I), “No” (E), and “Some ... not” (O), and the figure.

negativity and particularity do not predict NVC for valid syl-
logisms, because there only exist invalid syllogisms charac-
terized by being fully negative or particular. Figural on the
other hand generates NVC for large parts of the syllogistic
domain regardless of the validity of the underlying problem.
When compared with MFA, the rules vary in predictive per-
formance. PartNeg is capable of covering large parts of the
invalid syllogisms correctly and only makes few errors for

the valid cases. In contrast, figural’s predictions show a more
substantial difference in performance between valid and in-
valid syllogisms.

More generally, the plot also illustrates that most responses
were not given by following standard logics. This is espe-
cially apparent in the case of the 37 invalid syllogisms where
only 25 (68%) of the MFA responses correspond to NVC.

Integrating NVC into Models
To determine the effectiveness of our NVC rules, we at-
tach them to the original state-of-the-art models and evalu-
ate their change in performance. This is depicted in Table 2.
It presents the raw improvement of the syllogistic models
achieved by attaching the respective NVC rule. Additionally,
the decrease in misses (light blue) and increase in false alarms
(dark blue) are illustrated. In general, larger improvements
(percentages), fewer misses, and fewer false alarms indicate
better performance.

Table 2 draws a convincing picture about the qualities of
the NVC rules. With the exception of the figural rule, all
strategies result in substantial improvements over the stan-
dard models. PartNeg achieves the overall peak performance
improving up to 42.2% when compared to the base model.
EmptyStart has the overall lowest changes in performance
but introduces only few additional errors. As expected, mod-
els which do not generate NVC at all benefit most from the
capability of responding with NVC achieving an improve-
ment of 21.3%, 20.3%, and 20.1% on average across all NVC
rules, respectively. PSYCOP (0.9% on average) and Conver-
sion (-1.4% on average) do not benefit from the additional
NVC rules with Conversion’s performance even decreasing
slightly. Surprisingly though, MMT is improved substantially
by the additional NVC rules (14.9% on average) even though
it already has the capability of generating NVC.

To gain additional insight into the performance of the mod-
els, Figure 3 replicates the introductory plot from Figure 1. It
depicts the errors in the predictions of the models extended
with PartNeg, the overall best NVC rule. Again, the plot de-
picts the proportion of incorrect predictions (grey) as well as
the fractions corresponding to false alarms (dark blue) and
misses (light blue).

The figure illustrates that the attached rule, PartNeg, man-
ages to effectively remove NVC misses from the models’ pre-
dictions. Simultaneously, it achieves this without introducing
substantial amounts of false alarms. Consequently, in combi-
nation with PartNeg, a heuristic rule was found that is able to
nuancedly relate human reasoner’s tendencies towards con-
cluding NVC to the syllogistic quantifiers. The fact that the
improvement in handling NVC caused a substantial increase
in performance for most of the models further strengthens the
claim that NVC is one of the core weaknesses of the current
state of the art in modeling human syllogistic reasoning.

Figure 4 illuminates the qualities of NVC rules on an in-
dividual level. For each model, the values refer to the num-
ber of participants for which a certain rule achieves highest
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Figure 3: Proportion of the prediction errors (grey) achieved
by the models extended with PartNeg, the overall best NVC
heuristic, on the 64 syllogisms. False alarms (dark blue), i.e.,
incorrect, and missed NVC predictions (light blue) are repre-
sented as proportions of the prediction error.

performance. The figure illustrates that while PartNeg is the
overall best rule, there is quite a substantial number of partic-
ipants which can be accounted for better by other rules. This
suggests that NVC response behavior is dependent on inter-
individual differences of reasoning processes.

General Discussion
As the correct response for 58% of syllogisms as well as one
of the most frequently given responses by human reasoners
(Khemlani & Johnson-Laird, 2012), “No Valid Conclusion”
(NVC) is an important response for computational models to
capture.

Our results demonstrate that the current state of the art in
modeling human syllogistic reasoning is lacking the capa-
bilities for handling NVC correctly. While some other ap-
proaches do not feature the ability of producing NVC at all,
even the more complex approaches yield false alarm rates
of up to 25% (Conversion) and misses of up to 30%. The
high miss rates highlight a lack of precision in identifying the
problems where NVC responses are adequate.

We combat these shortcomings by introducing five heuris-
tic rules for predicting NVC based on prominent phenom-
ena and properties of syllogistic reasoning (e.g., figural ef-
fect; Johnson-Laird, 1975; Johnson-Laird & Bara, 1984,
or informativeness of premises; Chater & Oaksford, 1999).
By attaching these rules to the cognitive models taken from
Khemlani and Johnson-Laird (2012), a substantial improve-
ment can be observed for the majority of models. Models
without the capability of predicting NVC could achieve an
increase in performance of up to 20% on average across all
rules. Combined with PartNeg, the overall best NVC rule,
we were able to demonstrate a substantial decrease of misses
across the board. Even though these rules introduce low num-
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Figure 4: For each model, the values denote the number of
participants for which the corresponding NVC rules performs
best. In case of ties, the subject is counted for both rules.

bers of additional false alarms, this effect is negligible when
compared to the substantial reduction of misses.

In conclusion, our work contributes to research in the do-
main of syllogistic reasoning both on a theoretical and prac-
tical level. We isolate NVC as one of the core flaws of the
current state of the art in modeling syllogistic reasoning. By
demonstrating substantial improvement when attaching NVC
predictors, we highlight the remaining potential for modelers
to tap into. The next step for cognitive modelers is to inte-
grate these findings into future iterations of their models and
derive additional rules from cognitive theories. With PartNeg,
we provide a first rule which represents a valuable heuristic
candidate for explaining NVC response behavior.

Furthermore, our results show the potential that lies in iso-
lating and improving parts of the problem domain. By high-
lighting their shortcomings, modelers are given the chance to
iteratively improve on their computational models and under-
lying theories. Apart from NVC, another candidate for im-
provement is the conclusion direction. Currently, there exist
models which completely ignore direction as a predictive fac-
tor (e.g., Atmosphere) and others which actively integrate it
into their underlying formalisms (e.g., Conversion).

Still, even though PartNeg captures the majority of MFA
responses, it is not the optimal choice for each individual.
There still is potential left for making better predictions if
the relation between individual reasoners’ characteristics and
their response behavior can be understood. Our results sug-
gest that there is no single rule capable of accounting for all
individuals. Therefore, one goal of future models is to deter-
mine and use discriminative features enabling the detection
of the reasoning strategy most fitting to a specific reasoner.
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Abstract 
Verbs are widely analyzed as functions taking a discrete 
number of arguments (e.g., drink has two arguments but give 
has three). Recent studies, however, suggest that English verbs 
encode Instruments as more or less salient (e.g., the Instrument 
is more salient for slice, less salient for eat).  We conducted a 
judgment task with adult speakers of Spanish and Mandarin 
and found that verbs in these languages also encode 
Instruments as having a relative degree of salience, inconsistent 
with the discrete model of participant encoding. 

Keywords: verbal semantics; argument structure; 
experimental semantics; thematic roles; event representation 

Introduction 
A fundamental debate in cognitive science concerns whether 
mental representations have discrete vs. non-discrete 
structure (Aarts, 2007; Bod, Hay & Jannedy, 2003; Rosch, 
1975; Smolensky & Legendre, 2006). This debate arises for 
theories of verbal semantics. Verbs convey relationships 
between event participants: eat, for example, involves 
someone who eats and a substance that is eaten. Such 
relationships have commonly been modeled in logical terms: 
that a verb is a function taking a discrete number of 
arguments: die has one, eat has two, and lend has three 
(Dummett, 1981; Jackendoff, 1972). Theorists have long 
noted, however, the limits of this logical analogy (Carlson & 
Tanenhaus, 1989; Parsons, 1990; Williams, 2015). Eating, 
for example, seems to require that the eater have a mouth – is 
the mouth then one of the arguments of the function eat? 
Although there is broad consensus that verbs encode relations 
between participants, how precisely these relations are 
represented is unresolved. 

A second unresolved question is whether participant 
relations are the same for semantically similar verbs across 
languages. As described by Bowerman and Brown (2008: 
10), there is a widespread assumption that "languages will 
agree on the number of semantic participants there are in 
events of various types (e.g., one for 'laughing', two for 
'pushing', three for 'giving')".  There is reason to question this 
assumption: Wilkins (2008) argues that whereas the English 
verb see has two arguments, in the aboriginal language 
Arrernte, the translationally equivalent verb are- has three: 
the person who sees, the thing that is seen, and the place 
where the thing that is seen is located.   While differences in 

argument realization are well-documented across languages 
(Levin & Rappaport-Hovav, 2005), variability such as 
described by Wilkins (2008) has received little attention. If 
variability in how verbs encode participants is widespread, 
then the mapping from conceptual to linguistic structure is 
less constrained than previously thought, posing an additional 
learning challenge to children. 

In this study, we address whether discrete argument 
structures are good models for how verbs encode event 
participants, as well as whether verbal participant relations 
are variable across languages. We report the results of a 
judgment experiment with speakers of Spanish and Mandarin 
and compare these results with English data previously 
reported by Rissman, Rawlins and Landau (2015). 

Previous Evidence for Semantic Gradience 
One of the benefits of the discrete model of verbal participant 
encoding is that it fits well with syntactic theories of how 
event participants are overtly expressed: isomorphic 
mappings can be drawn between a verb's arguments and the 
surface constituents in a clause. For example, in Jodi lent a 
book to her sister, the arguments <Source, Theme, 
Recipient> map to the phrases <DP, DP, PP>. The distinction 
between a verb’s arguments and its non-arguments (or 
"modifiers") is not dichotomous, however (Croft, 2001; 
Dowty, 2003; Vater, 1978), one reason being that verbal 
semantics and syntax are sometimes not isomorphic 
(Haspelmath, 2014; Koenig, Mauner & Bienvenue, 2003). 
Consider, for example, instrumental participants, as in Jodi 
sliced the broccoli with a knife. Verbs such as slice and chop 
activate an Instrument concept during sentence 
comprehension (Andreu, Sanz-Torrent & Rodríguez-
Ferreiro, 2016; Koenig et al., 2003). Nonetheless, 
instrumental with-phrases pattern like modifiers (i.e., not like 
arguments) given syntactic argument diagnostics (Rissman et 
al., 2015; Schutze, 1995). For example, what Jodi did with 
the knife was slice the broccoli is acceptable but not *what 
Jodi did to her sister was lend a book. 

As a result of this mismatch between semantic and 
syntactic argument diagnostics, researchers cannot rely on 
syntactic diagnostics to understand how verbs semantically 
encode event participants. Alternate methods for probing 
verbal semantics include studies of sentence processing, 
sentence completion and semantic judgments (Barbu & 
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Toivonen, 2016; Boland, 2005; Koenig et al., 2003; Rissman 
et al., 2015; Wittenberg & Snedeker, 2014). In the judgment 
task in Rissman et al. (2015), English speakers read a 
paragraph stating that verbs have "arguments," defined as 
something "essential to the meaning of a verb but not part of 
the verb itself." This category was elaborated through 
positive examples, e.g. that want has two "arguments" 
because wanting involves someone who wants and 
something that is wanted. We distinguish the experimental 
category "argument" from the theoretical notion of argument. 

Following this instruction, subjects judged which of the 
words in a sentence constituted the "argument" of the verb, 
for untrained verbs and participant types. Subjects read 
sentences such as in (1) and had to choose whether either the 
first or second bracketed phrase was an "argument" of the 
verb, or whether neither phrase was an "argument":  

(1) a.   [Last Tuesday] Martha SLICED something [with a 
steak knife].   
b. Tania TAUGHT something [to the students] [in the 
classroom]. 

Rissman et al. (2015) hypothesized that if verbs like slice and 
chop discretely encode three arguments, an Agent, Patient 
and Instrument, then they are in an equivalence class with 
dative verbs such as teach and lend, which encode a Source, 
a Theme and a Recipient (Larson, 1988). By prediction, 
subjects would therefore be equally as likely to choose "with 
a steak knife" in (1a) as to choose "to the students" in (1b). 

Instead, subjects selected Instruments less often than 
Recipients. In addition, there were differences across the 
instrumental verbs: an Instrument was selected more often for 
slice and chop than for eat and break, for example. Thus slice 
patterned like neither a 2-argument verb nor a 3-argument 
verb.  Rather, Instruments appeared to have a moderate 
degree of salience: more salient than a time or a location, but 
less salient than a Recipient, inconsistent with the discrete 
model of participant encoding.  

A variety of evidence indicates that this judgment task 
reflects abstract knowledge of verbal meaning. First, on 
control trials with prototypical arguments and modifiers, 
subjects almost always chose the Theme in sentences such as 
"John CARRIED [the books] [in a tote bag]" and almost 
never chose one of the modifiers in sentences such as "Martha 
CHOPPED something [on Monday] [in the forest]. 
Subsequent experiments showed: 1) that the difference 
between the Recipient and Instrument judgments was likely 
not driven by the difference in animacy (Recipients were 
animate whereas Instruments were inanimate), 2) that the 
Instrument judgments were not correlated with estimates of 
how often people use tools for these events, and 3) Instrument 
and Recipient judgments for each verb did correlate with how 
often people produce Instruments and Recipients in a corpus. 
Finally, Rissman (2018) found strong positive correlations 
between Instrument and Recipient judgments for each verb 
and rates of producing Instrument/Recipient completions for 
sentence fragments such as Martha sliced the bread ______ 
and Tania taught the material____. 

Current study 
We ask whether Spanish and Mandarin speakers also judge 
Instruments as having a moderate degree of salience. Such a 
finding would provide additional evidence against the 
discrete model of participant encoding. Investigating verbal 
semantics across multiple languages helps ensure that 
theoretical developments are not based on English alone.  

We also ask whether non-discrete encoding of participants 
is itself cross-linguistically variable. Although slice patterns 
neither as a 2-argument nor a 3-argument verb, this does not 
preclude semantically similar verbs in other languages (e.g., 
Spanish cortar) from discretely encoding the Instrument. 
Languages differ widely as to which semantic role properties 
are relevant to syntactic argument realization (Bornkessel, 
Schlesewsky, Comrie & Friederici, 2006; Croft, 2001; Levin 
& Rappaport-Hovav, 2005). Verbal semantics is also highly 
variable across languages, with verbs in the same semantic 
space bundling semantic features in different ways (see 
Majid, Boster & Bowerman, 2008 for cutting and breaking 
events and Talmy, 1985 for motion events). In Mandarin, for 
example, the verb jie4 encompasses both English borrow and 
lend. In the current study, we ask whether instrumental verbs 
in Spanish and Mandarin encode the Instrument in a discrete 
way, unlike in English.   

For each of the verbs studied by Rissman et al. (2015), we 
selected semantically similar verbs in Spanish and Mandarin. 
For these similar verbs, we asked three questions: 

1) Do judgments of Instrument salience parallel judgments 
of Recipient salience, unlike in English? 

2) Do some verbs highlight an Instrument more strongly 
than other verbs, as is true for English?   

3) Do verbs with similar meanings across languages give 
rise to similar judgments of Instrument salience? 

 
In choosing Spanish and Mandarin, we compared one 
language that is genetically related to English (Spanish) and 
one language that is genetically distant (Mandarin).  These 
languages both differ from English with respect to argument  
production: Spanish is a pro-drop language, allowing subject 
omission, while Mandarin allows both subject and object 
omission.  We can thus test whether in languages that allow 
pervasive argument omission, subjects are less likely overall 
to judge that a particular phrase is an "argument."   

Experiment 1 

Participants 
35 native Spanish-speaking adults (F = 22) and 32 native 
Mandarin-speaking adults (F = 23) participated. Spanish 
speakers were tested in Chicago and in Baltimore; all 
Mandarin speakers were tested in Baltimore. All participants 
reported having some knowledge of English. The Spanish 
speakers originated from throughout the Spanish-speaking 
world; Mandarin speakers originated from throughout China 
and Taiwan. All participants had attended or were currently 
attending college. Participants received $12 or course credit. 
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Design and Materials  
Native speaker consultants translated the Rissman et al. 
(2015) materials into Spanish and Mandarin. The prior study 
tested two types of verbs: 1) verbs compatible with an 
Instrument ("Instrument verbs"), ranging from strongly to 
weakly instrumental (e.g., slice, chop vs. eat, drink), and 2) 
verbs compatible with a Recipient ("Recipient verbs"), 
ranging from strongly to weakly Recipient-encoding (e.g., 
lend, teach vs. bounce, kick). We selected Spanish and 
Mandarin verbs by describing to the consultants a set of 
events that exemplified core uses of each English verb (e.g., 
chop ~ chopping an onion, chopping wood).  The consultants 
then provided the dominant verb in Spanish and Mandarin 
that would be used to describe these events. If no verb could 
be found that closely matched the meaning of the English 
verb and was compatible with the syntactic frames in (2-5), 
then no verb was tested. Tables 1-2 show the Spanish and 
Mandarin verbs that were tested, including omissions ("---").1 

Each sentence in the experiment featured a single verb and 
two bracketed phrases: participants' task was to choose one 
of the bracketed phrases as an "argument" of the verb, or to 
choose that neither phrase was an "argument."  Example 
Instrument and Recipient sentences are shown in (2-3) and 
(4-5) with English glosses and translations. 
 
(2) Rachel REBANÓ algo         [con una hoja de afeitar] 

[en el puerto]. 
 Rachel   slice-3PST something  with   a   razor blade     
in the port 

"Rachel sliced something with a razor blade in the port." 
 
(3) 【在去年復活節那天】小琴 用【一把短柄小斧】  

⁞砍了⁞一些東西。 
 in  last Easter Sunday  Xiaoqin use  one  hatchet
      chop-PFV  something 

"Last Easter Sunday, Xiaoqin used a hatchet to chop 
something." 
 
(4) [A las 6 am] Ruby le   PRESTÓ   algo         [al nadador]. 

At    6 AM     Ruby 3SG lend-3PST something to the 
swimmer.   

"At 6 AM, Ruby lent something to the swimmer." 
 
(5) 克洛伊【在街上】⁞賣了⁞一樣東西【給演員】。 

       Chloe         in street   send-PFV  something to actors 
"In the street, Chloe sent something to the actors." 
The two bracketed phrases constituted several contrasts 
between two possible participant types.  In the main trials of 
interest, Instruments and Recipients were pitted against 
prototypical modifiers (location, time and manner phrases).  
If Instruments and Recipients are arguments, these should be 
chosen significantly more often than modifiers. 

                                                           
1  In Mandarin, serial verb constructions are common and 

productive (Li 1990).  In Table 1, the verbs da3po4 ('break'), 
da3kai1 ('open'), yi2dong4 ('move') and ju2qi3 ('lift') are compound 
constructions rather than non-compound multi-character verbs.  

There were two types of control trials. In the first, Themes 
were pitted against various phrase types including participant 
locations (e.g. Layla LLEVÓ [los comestibles] [en una cesta]; 
"Layla CARRIED [the groceries] [in a basket]") and 
beneficiaries (e.g. Jen LEYÓ [el mensaje] [para el detective]; 
"Jen READ [the message] [for the detective]"). We predicted 
that subjects would choose the Theme as an "argument."  In 
the second type of control trial, prototypical modifiers were 
pitted against each other, as in Rachel REBANÓ algo 
[tristemente] [en el puerto] ("Rachel SLICED something 
[sadly] [in the port]").  We predicted that in modifier vs. 
modifier trials, participants would judge that neither phrase 
was an "argument" of the verb. These control trials assess 

 
Table 1: Instrument verbs  

  
Eng Span Mand Eng Span Mand 

beat golpear qiao1da
3 

eat comer chi1 

hit pegar da3 drink beber he1 
touch tocar peng4 break quebrar da3po4 
poke --- chuo1 open abrir da3kai1 
stab apuñalar ci4 kill matar sha1 
cut cortar qie1 attack atacar gong1ji2 

chop picar kan3 paint pintar --- 
slice rebanar --- grow --- zhong4 
write escribir xie3 move mover yi2dong4 
draw dibujar hua4 lift levantar ju2qi3 
dig --- wa1 clean limpiar qing1li3 
stir revolver jiao3 wash lavar xi3 

 
Table 2: Recipient verbs 

 
Eng Span Mand Eng Span Mand 

serve servir duan1 kick patear ti1 

teach enseñar jiao1 throw tirar ren1 

send enviar ji4 toss --- tou2 

tell decir --- roll --- gun3 

sell vender mai4 push empujar tui1 

lend prestar chu1zu1 slide --- --- 

pay pagar fu4 take llevar na2 

offer ofrecer ti2gong4 bounce --- --- 

  

These verbs were included to maintain a close equivalence between 
the numbers of verbs and the semantic space of the verbs tested in 
English and Mandarin. 
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whether subjects distinguish prototypical arguments from 
prototypical modifiers.  

The order of the bracketed phrases was counterbalanced 
such that some participants saw a trial such as in (2), whereas 
others saw a structure with a sentence-initial modifier such as 
[En el puerto] Rachel REBANÓ algo [con una hoja de afeitar] 
("[In the port] Rachel SLICED something [with a razor 
blade]").  Each Instrument and Recipient verb appeared six 
times.  In addition, each verb was paired with six unique 
Instrument/Recipient tokens (e.g., con una hoja de afeitar 
("with a razor blade"), con tijeras ("with scissors")). There 
were both typical and atypical tokens for each verb. Summing 
across the experiment, Spanish/Mandarin participants saw a 
total of 312/318 trials. 

Procedure 
Participants received a Spanish/Mandarin version of the 
"argument" instructions from Rissman et al. (2015); the 
category labels argumento and lun4yuan2 were used in 
Spanish and Mandarin, respectively. The instruction 
consisted of two phases: in the first, participants read a prose 
description about "arguments." Participants were told, for 
example, that "arguments" are essential to the meaning of a 
verb but are not part of the verb. Participants were given 
primarily positive examples, e.g. that querer/yao4 ('want') 
has two "arguments," someone who wants and something that 
is wanted. Participants were also told that "arguments" are 
not necessarily syntactically required in a sentence. 
Participants read two negative examples, e.g. in John ran 
until he was sick, the phrase until he was sick is not an 
"argument". In the second phase of the instruction, 
participants completed practice trials where they read a verb 
and were asked to indicate the "arguments" of the verb.  For 
example, Spanish participants read the sentence Jim estaba 
cocinando ("Jim was cooking"), were told that cocinar has 
two "arguments," and had to indicate which "argument" of 
cocinar was present and which was absent in the sentence.  In 
another type of practice trial, Mandarin participants were 
asked to list the "arguments" of "看" ('look'); where the 
correct answer is two "arguments," someone who looks and 
something that is looked at.  Feedback was given on all 
practice trials in the second phase of training. Across the 
entire instruction, explicit information was not given about 
the verbs or participant types that participants would be tested 
on.  The instructions/practice trials were administered by 
native or near-native speakers of Spanish/Mandarin.   

Results and Discussion 
Spanish and Mandarin speakers performed as expected on the 
two types of control trials. For Theme trials (e.g., English ~ 
John CARRIED [the books] [in a canvas bag]), Spanish 
speakers chose the Theme as an "argument" on 93% of trials 

                                                           
2  In pilot studies, some Spanish-speakers reported that a 

Recipient phrase was incompatible with some Recipient verbs.  
Given this intuition, Spanish participants completed an acceptability 
questionnaire after the judgment task.  If an individual participant 

(CI95 = 1%), and Mandarin speakers chose the Theme on 95% 
of trials (CI95 = 1%). For modifier vs. modifier trials (e.g., 
English ~ John CUT something [carefully] [last night]), 
Spanish speakers chose the "neither" option on 89% of trials 
(CI95 = 1%) and Mandarin speakers chose "neither" on 96% 
of trials (CI95 = 1%). Thus speakers of Spanish and Mandarin, 
like the English speakers tested in Rissman et al. (2015), 
sharply distinguish prototypical arguments from prototypical 
modifiers in their judgments. 

Figure 1 shows the main results, how often Spanish and 
Mandarin speakers judged Recipients and Instruments to be 
"arguments" for each verb. 2  The English-with data were 
previously reported in Rissman et al. (2015). These data 
suggest that Recipients are better examples of "arguments" 
than Instruments. To test whether Spanish and Mandarin 
speakers judged Instruments as having the same level of 
salience as Recipients, and whether these judgments varied 
across English, Spanish and Mandarin, we modeled the 
probability of choosing the Instrument or the Recipient (i.e., 
the Target) as an "argument" using mixed-effects logistic 
regression.  Participants almost never selected one of the 
modifiers as an "argument;" we therefore collapsed the 
modifier and "neither" responses and modeled these data as a 
binary choice: whether or not participants chose the Target as 
an "argument."  We fit regression models in R using the glmer 
function in the lme4 package (Bates & Maechler, 2009); 
models were evaluated through nested model comparison. 
Possible fixed effects in the model were Language (English 
vs. Spanish vs. Mandarin), Target type (Instrument vs. 
Recipient) and Competitor Type (location vs. time vs. 
manner); Subject was a possible random effect.  

The best-fitting model of the data in Figure 1 contained the 
Subject random effect and the Target fixed effect: 
participants selected Recipients more often than Instruments 
(β = 2.53, SE = .05, p < .001). None of the following 
contributed significantly to the model fit: Language, 
Competitor Type, interaction between Language and Target 
Type and interaction between Target Type and Competitor 
Type (p-values for χ2 tests all > .1). This analysis shows that 
in both Spanish and Mandarin, Recipients are more 
prominent for Recipient verbs than Instruments are for 
Instrument verbs, as in English. 

We also observed variation across the individual 
Instrument verbs, in both Spanish and Mandarin. In Spanish, 
the rates of selecting the Instrument ranged from 11% 
(comer, 'eat'; CI95 = 7%) to 38% (picar 'chop'; CI95 = 9%). The 
95% confidence intervals for these verbs do not overlap, 
indicating significant variation across verbs. Similarly, for 
Mandarin, Instrument judgments ranged from 19% (chi1, 
'eat'; CI95 = 9%) to 41% (ci4, 'stab'; CI95 = 10%). The 95% 
confidence intervals for these verbs do not overlap.  

Finally, we tested the relationship between individual verb 

judged a verb to be "unnatural" in the Recipient frame, this 
participant's data for this verb were excluded from analysis.  The 
following percentages of trials were excluded for each verb: patear 
(‘kick’): 49%; empujar (‘push’): 74%; llevar (‘take’): 11%; tirar 
(‘throw’): 14%. 
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meanings and "argument" judgments across languages, using 
the verb pairings shown in Tables 1-2. Judgments for 
individual verbs correlated significantly with each other for 
each verb category (Spanish-English Instrument verbs: r(19) 
= .80, p < .001; Mandarin-English Instrument verbs: r(22) = 
.59, p < .01; Spanish-English Recipient verbs: r(11) = .79, p 
< .01; Mandarin-English Recipient verbs: r(11) = .72, p < 
.01). These correlations show common trends in how verbal 
semantic features influenced the judgments in each language. 

These results provide answers to the three questions raised 
above: in Spanish and Mandarin, judgments of Instrument 
salience do not parallel judgments of Recipient salience; 
some verbs highlight an Instrument more strongly than 
others; and verbs with similar meanings across languages 
give rise to similar judgments of Instrument salience. These 
findings support a gradient theory in which participants can 
have moderate degrees of salience, and suggest that verbs 
encode participants in similar ways across languages.  

All participants had some knowledge of English. To assess 
whether English familiarity influenced the judgments, we 
calculated for each participant the correlation between that 
participant’s judgments for each verb and the mean for the 
corresponding English verbs, combining Instrument and 
Recipient verbs. We then calculated correlations between the 
age at which a participant started learning English and the 
strength of their correlation with the English data. The 
correlation with age was non-significant for both Spanish 
(r(33) = -.02, p > .1) and Mandarin (r(30) = -.08, p > .1). 

Experiment 2 
In the English study, Instruments were introduced by the 
preposition with, whereas Mandarin Instruments were 
introduced by the verb yong4, 'use'. Thus in the English 
sentences, the Instrument was in the same clause as the main 
verb, while in the Mandarin sentences, the Instrument was in 
a separate clause. To assess a possible effect of these different 
syntactic structures, we collected judgments from English 
speakers who encountered Instruments in a use-frame.  
 
Participants, Design, Materials and Procedure 
Twenty English-speaking adults from Baltimore participated 
(F = 14).  All subjects reported being native speakers of 
English.  Subjects received $12 or course credit.  

Each of the with-sentences from Rissman et al. (2015) was 
converted to a use-sentence.  As in Experiment 1, the verb 
use was not included in the Instrument bracket.  We used two 
different word orders for each Instrument vs. modifier 
contrast, e.g., Jordan used [a shotgun] [in the driveway] to 
ATTACK someone and [In the driveway] Jordan used [a 
shotgun] to ATTACK someone. All other trials were the same 
as in Rissman et al. (2015), as was the instruction.   

 
Results and Discussion 
Figure 1 shows the rates of choosing the 
Instrument/Recipient as an "argument" for Experiment 2. In 
a mixed-effects logistic regression model of the with data 
from Rissman et al. (2015) and the use data from Experiment 

 
 
 

Figure 1. Rates of choosing the Instrument or the Recipient as an "argument" in each experiment.  Box plots 
show median and second and third quartiles; diamonds show the mean; dots represent single verbs 
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2, frame type (use vs. with) did not significantly affect the 
likelihood selecting the Instrument (χ2(1) = .04, p > .1). In 
addition, there was a significant positive correlation between 
the individual verb means for the English use data and the 
Mandarin data: r(22) = .76, p < .001. These results show that 
viewing the Instrument in a use frame did not decrease 
English speakers' likelihood of selecting the Instrument, 
mitigating the concern that the Mandarin stimuli from 
Experiment 1 underestimate the extent to which Mandarin 
verbs highlight Instruments.  
 

General Discussion 
Our results suggest that in Spanish and Mandarin, a discrete 
model of verbal participant encoding does not adequately 
capture how verbs encode the presence of an Instrument. 
Some theorists distinguish syntactic arguments from 
semantic arguments (Jackendoff, 2002). Such a distinction 
does not help explain our results, however, as both types of 
argument structures are assumed to be discrete. 

It is possible that the gradient judgments we observe reflect 
probabilistic retrieval of discrete semantic structures (see 
Hale, 2001; Levy, 2008; among others). This approach, 
however, does not make an explicit connection between the 
semantics of a verb and the degree to which an Instrument is 
salient. Verbal semantics appears to matter: picar, 'chop' but 
not comer, 'eat' specifies that the Instrument has a particular 
physical form (a bladed/pointed shape). If comer and picar 
are both associated with 2 and 3-place frames, it is unclear 
how the semantic difference between the verbs accounts for 
the different rates of frame retrieval. 

An alternate possibility is that the representation wherein 
verbs encode participant relations is itself gradient. This 
possibility has been characterized in multiple ways. 
Langacker (1987) proposes that verbs are conceptually 
dependent, and dependence is a gradient notion. For example, 
in Jim sliced the bread with a knife, the verb slice is 
dependent on the instrumental phrase with a knife because the 
instrument elaborates a salient substructure within the 
meaning of slice, the bladed-object feature. This salient 
substructure is not as salient, however, as the substructure 
indicating the entity that gets sliced, leading to gradient 
patterns of intuitions. 

Similarly, Williams (2015) proposes that the "participant 
roles" of a verb are given by the "sketch" associated with that 
verb, a "psychological perspective…engaged by default" 
(85). Participant roles are entailed, explicit constituents 
within the sketch. Although Williams does not explicitly 
describe the sketch as non-discrete, he characterizes the 
elements of the sketch as psychologically "prominent." The 
results of Experiments 1-2 could be explained within this 
framework if: 1) an Instrument is a participant role for verbs 
such as picar, 'chop' and ci4, 'stab', and 2) the Instrument is 
less prominent in the sketch for these verbs than the Recipient 
is prominent in the sketch of dative verbs. 

Rissman et al. (2015) propose a distinction between 
"primary" and "secondary" participants in event 
representation: the former are contributed by a discrete 

argument structure, whereas the latter are generated by the 
root semantics of the verb. Slicing events, for example, have 
two primary participants: the agentive causal force and the 
patient that becomes sliced. Through its root meaning, slice 
encodes that a bladed object comes into contact with the 
patient, and this bladed object is therefore a secondary 
participant within the event structure required by the verb.  
See Rissman and Rawlins (2017) for a proposal for how the 
instrument-phrase meaning interacts with this event 
structure. 

More recently, Kim et al. (2019a,b) propose that the 
argument/adjunct distinction is gradient based on an idea 
from Dowty: certain phrases describing event participants 
can be gradient argument/adjunct blends in the framework of 
Smolensky et al (2014), i.e. they can be both arguments (to 
some degree) and adjuncts (to some degree). Kim et al. 
establish empirically that many prepositional phrases 
illustrate gradience in terms of whether native speakers 
categorize them as arguments or adjuncts. Their main aim is 
to explain variation and gradience in judgments about 
specific linguistic diagnostics that are supposed to provide 
evidence for the argument/adjunct distinction, e.g. that 
adjuncts allow pseudoclefts and that adjuncts are always 
omissible. Across all of the types of PPs they look at, lexical 
effects coming from particular verbs are a major factor in 
determining this gradience, and in particular, verbs vary in 
the degree to which they prefer for some potential event 
participant role to be filled; different syntactic frames vary in 
how much they prefer adjunct phrases. While this proposal 
makes no specific claims about instrument marking, it does 
generally predict that verbs will have gradient representations 
in terms of how they license event participants, something 
consistent with our results. An open question is whether the 
very general kinds of verb preferences that Kim et al. show 
across many PP types can explain the role-specific 
preferences demonstrated here and in Rissman et al. (2015). 

Argument omission is more widespread in Spanish and 
Mandarin than in English. We did not, however, find a main 
effect of Language on the judgments. In addition, English 
speakers' judgments were largely unchanged when they 
encountered Instruments in a use-frame rather than a with-
frame. These results suggest that the judgments reflect verbal 
meaning rather than syntactic prominence per se. Given this 
hypothesized dissociation between syntactic and semantic 
prominence in this task, we predict that if participants judged 
whether the key is an "argument" in [The key] OPENED the 
door, they would be unlikely to do so. 

Across Spanish, Mandarin and English, we observe 
similarity rather than variability: there are verbs in all three 
languages where the Instrument has an intermediate level of 
salience (e.g., picar, 'chop,' and ci4, 'stab').  We leave future 
research to explore the interaction of discrete and non-
discrete structures that give rise to these gradient judgments. 

 
 
 
 

965



Acknowledgments 
This research was supported by NSF IGERT grant #9972807, 
NIH RO1 DC000491 and a Radboud Excellence Initiative 
fellowship awarded to Lilia Rissman. Thank you to Paul 
Smolensky, Akira Omaki, Colin Wilson, Jenny Culbertson.  
Thank you also to research assistants Aurora Martinez del 
Rio, Danny Salevitz, Yijia Hu, Michelle Chu, Lina Montoya, 
Allison Bellows and Christine Cheseborough. 
 

References 
Aarts, B. (2007). Syntactic gradience: The nature of 

grammatical indeterminacy. Oxford: OUP. 
 Andreu, L., Sanz-Torrent, M., & Rodríguez-Ferreiro, J. 

(2016). Do Children with SLI Use Verbs to Predict 
Arguments and Adjuncts: Evidence from Eye Movements 
During Listening. Frontiers in Psychology, 6(1917). 

Barbu, R.-M., & Toivonen, I. (2016). Event participants and 
linguistic arguments. In Proceedings of the 38th Annual 
Meeting of the Cognitive Science Society (pp. 1961-1966). 

Bates, D., & Maechler, M. (2009). lme4: linear mixed effects 
models using S4 classes. 

Bod, R., Hay, J., & Jannedy, S. (Eds.). (2003). Probabilistic 
linguistics. Cambridge, MA.: MIT Press. 

Boland, J. E. (2005). Visual arguments. Cognition, 95(3), 
237-274. 

Bornkessel, I., Schlesewsky, M., Comrie, B., & Friederici, A. 
(Eds.). (2006). Semantic role universals and argument 
linking: theoretical, typological and psycholinguistic 
perspectives. Berlin: Mouton de Gruyter. 

Bowerman, M., & Brown, P. (2008). Introduction. In M. 
Bowerman & P. Brown (Eds.), Crosslinguistic 
perspectives on argument structure: Implications for 
learnability. New York: Lawrence Erlbaum. 

Carlson, G., & Tanenhaus, M. (1989). Thematic roles and 
language comprehension. In G. Carlson & M. Tanenhaus 
(Eds.), Linguistic structure in language processing: (pp. 
413). Dordrecht: Kluwer Academic Publishers. 

Croft, W. (2001). Radical construction grammar: syntactic 
theory in typological perspective. Oxford: OUP. 

Dowty, D. (2003). The dual analysis of 
adjuncts/complements in Categorial Grammar. In E. Lang, 
C. Maienborn, & C. Fabricius-Hansen (Eds.), Modifying 
adjuncts (pp. 33-66). Berlin: Mouton de Gruyter. 

Dummett, M. A. (1981). Frege: Philosophy of language 
(Vol. 2): Cambridge University Press. 

Haspelmath, M. (2014). Arguments and adjuncts as 
language-particular syntactic categories and as 
comparative concepts. Linguistic Discovery, 12(2), 3-11.  

Jackendoff, R. (1972). Semantic interpretation in generative 
grammar. Cambridge, MA.: MIT Press. 

Jackendoff, R. (2002). Foundations of language: brain, 
meaning, grammar, evolution. Oxford: OUP. 

Kim, N., Rawlins, K., Van Durme, B., & Smolensky, P. (to 
appear). Predicting Argumenthood of English Preposition 
Phrases. AAAI 2019 Proceedings. 

Kim, N., Rawlins, K., Van Durme, B., & Smolensky, P. 

(2019). The Complement-Adjunct distinction as Gradient 
Blends. Manuscript, JHU. 

Koenig, J.-P., Mauner, G., & Bienvenue, B. (2003). 
Arguments for Adjuncts. Cognition, 89(2), 67-103.  

Langacker, R. W. (1987). Foundations of cognitive grammar. 
Stanford, CA.: Stanford University Press. 

Larson, R. K. (1988). On the double object construction. 
Linguistic Inquiry, 19(3), 335-391.  

Levin, B., & Rappaport-Hovav, M. (2005). Argument 
realization. Cambridge: Cambridge University Press. 

Levy, R. (2008). Expectation-based syntactic 
comprehension. Cognition, 106(3), 1126-1177.  

Li, Y. (1990). On VV compounds in Chinese. Natural 
Language & Linguistic Theory, 8(2), 177-207.  

Majid, A., Boster, J. S., & Bowerman, M. (2008). The cross-
linguistic categorization of everyday events: A study of 
cutting and breaking. Cognition, 109(2), 235-250. 

Parsons, T. (1990). Events in the semantics of English: a 
study in subatomic semantics. Cambridge, MA: MIT Press. 

Rissman, L. (2018). "Tools for understanding verb meaning: 
explicit judgments vs. implicit behavior." Paper 
presentation at the Linguistic Society of America meeting. 

Rissman, L., & Rawlins, K. (2017). Ingredients of 
Instrumental Meaning. Journal of Semantics, 34:3,507-537. 

Rissman, L., Rawlins, K., & Landau, B. (2015). Using 
instruments to understand argument structure: Evidence for 
gradient representation. Cognition, 142(0), 266-290. 

Rosch, E. (1975). Cognitive representations of semantic 
categories. Journal of Experimental Psychology: General, 
104(3), 192.  

Schutze, C. T. (1995). PP Attachment and Argumenthood. 
MIT Working Papers in Linguistics, 26(Sept), 95-151.  

Smolensky, P., & Legendre, G. (2006). The harmonic mind: 
From neural computation to optimality-theoretic 
grammar. Cambridge, MA: MIT Press. 

Smolensky, P., Goldrick, M. and Mathis, D. (2014). 
Optimization and quantization in gradient symbol systems: 
a framework for integrating the continuous and the discrete 
in cognition. Cognitive Science, 38, 1102-1138. 

Talmy, L. (1985). Lexicalization patterns: Semantic structure 
in lexical forms. Language typology and syntactic 
description, 3, 57-149.  

Vater, H. (1978). On the possibility of distinguishing 
between complements and adjuncts. In Valence, semantic 
case, and grammatical relations. Amsterdam: John 
Benjamins. 

Wilkins, D. (2008). Same argument structure, Different 
Meanings: Learning 'Put' and 'Look' in Arrernte. In M. 
Bowerman & P. Brown (Eds.), Crosslinguistic 
perspectives on argument structure: Implications for 
learnability. New York: Lawrence Erlbaum. 

Williams, A. (2015). Arguments in syntax and semantics. 
Cambridge: Cambridge University Press. 

Wittenberg, E., & Snedeker, J. (2014). It takes two to kiss, 
but does it take three to give a kiss? Categorization based 
on thematic roles. Language and Cognitive Processes, 
29(5), 635-641. 

966



Parametric control of distractor-oriented attention
Harrison Ritz & Amitai Shenhav

Cognitive, Linguistic & Psychological Sciences;
Carney Institute for Brain Science;

Brown University, Providence, RI, 02912

Corresponding Author: hritz@brown.edu

Abstract

Traditional models of cognitive control account for a host of
classic findings, but these classic tasks have limited our abil-
ity to test a broader range of model predictions. In particu-
lar, such models predict that control should vary parametrically
in response to cognitive demands and that control adjustments
should be targeted towards task-relevant stimulus features. We
developed a task to probe these predictions across two exper-
iments. Participants responded to one dimension of a stim-
ulus while ignoring the other, and we parametrically varied
the conflict between those dimensions and the predictability of
this conflict across trials. We found that control adjustments
(1) varied parametrically in response to cognitive demands,
(2) were sensitive to the predictability of those demands, and
(3) were primarily targeted towards task-irrelevant dimensions.
These results raise interesting questions about the structure of
cognitive control and demonstrate the utility of rich tasks for
constraining model predictions.
Keywords: cognitive control; attention; conflict adaptation

Introduction
Cognitive control is vital for adaptive behavior, allowing the
brain to balance the consistency of automatic behavior against
the flexibility to rapidly perform arbitrary tasks (Miller &
Cohen, 2001). Influential models of cognitive control have
proposed supervisory processes that parametrically adjust the
strength of task-relevant information based on conflict or
(dis)utility (Botvinick, Braver, Barch, Carter, & Cohen, 2001;
Shenhav, Botvinick, & Cohen, 2013). While these models
have successfully explained a host of classic findings in exec-
utive control, the evidence from these classic tasks is limited
in its ability to constrain models of control. In this experi-
ment, we sought to test several key assumptions of cognitive
control using enriched tasks that can better discriminate be-
tween different model architectures.

The first feature of control models that has been virtually
untested is the parametric nature of adjustments to control.
Control adjustments are often examined in reaction to re-
sponse conflict, but existing paradigms typically vary such
conflict in an all-or-none fashion (i.e., stimulus dimensions
activate only one response or they activate responses that are
fully congruent or fully incongruent). Researchers have stud-
ied more granular control adjustments over longer timescales,
for instance by varying the overall proportion of incongru-
ent trials at the list level (Logan & Zbrodoff, 1979; Bugg,
Jacoby, & Toth, 2008), however parametric manipulations at
the single-trial level remain largely unexplored. As a result of

this methodological gap in the literature, little is known about
how the intensity of control changes when response congru-
ence varies parametrically. A secondary benefit to parametric
congruence is that it allows participants to more accurately
track changes in congruence over trials, providing clearer ev-
idence for learning-based adjustments (Jiang, Beck, Heller, &
Egner, 2015).

The second feature of control models that we sought to test
was the assumption that control primarily acts to enhance at-
tention towards targets (‘target-oriented’ control; Botvinick
et al., 2001; Egner, 2007). This assumption is poorly con-
strained by most studies of response conflict, as they typically
only vary the strength of the distractor dimension, and not the
target dimension. As a result, existing data cannot distinguish
between conflict-related control adjustments that are primar-
ily oriented toward targets, distractors, or both.

To address these gaps in the literature, we developed a
novel cognitive control task that varies the strength in the
target and/or distractor dimensions of a stimulus, resulting
in fine-grained variation in response congruence. We also
varied the predictability of this congruence, in order to mea-
sure how participants learn to control attention. We found
that participant’s performance depended on both parametric
task demands and parametric control adjustments. In periods
when distractor congruence was highly predictable, partici-
pants became more sensitive to distractor information. Fi-
nally, we found that participants primarily controlled their
attention towards distractor dimensions, counter to the pre-
dictions of prominent cognitive control models. These exper-
iment demonstrate the need for richer cognitive control tasks
that can better distinguish between models of executive func-
tioning.

Experiment 1
Experiment 1 sought to test (1) whether there is a paramet-
ric relationship between performance and response congru-
ence; (2) whether participants parametrically adjust control
based on recent task demands; and (3) how these control ad-
justments depend on the learned task demands over longer
timescales.

Method
Participants Fifty-eight individuals participated in Experi-
ment 1 for course credit or pay (Mean(SD) age = 20.9(2.6);
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Figure 1: Top Left: In Experiment 1, participants responded
to the color and ignored the motion of an array of pseudo-
randomly moving dots. Motion coherence induced variable
levels of congruence across dimensions. Top Right: Partic-
ipants performed blocks in which the congruence changed
randomly (red) or predictably (blue). Bottom Left: In Exper-
iment 2, both the color and motion dimensions had variable
coherence. Bottom Right: These color and motion dimen-
sions were orthogonal

41 females). All participants across all experiments provided
informed consent in compliance with our University’s Insti-
tutional Review Board.
Parametric Conflict Task We developed a parametric ver-
sion of a previous Simon-like conflict task (Danielmeier,
Eichele, Forstmann, Tittgemeyer, & Ullsperger, 2011). On
each trial, participants viewed an array of moving dots, pre-
sented in one of four colors (see Figure 1). Participants were
instructed to press either the left or right key associated with
the color of the dots. Each keys was mapped to two possible
colors. The direction of the dot motion (leftward or right-
ward) was task-irrelevant and could be consistent with the re-
sponse hand for the correct color response (congruent trials)
or it could be inconsistent with this response hand (incongru-
ent trials). To avoid feature priming (Hommel, Proctor, & Vu,
2004), colors did not repeat on adjacent trials.

Uniquely in this experiment, we parametrically varied the
degree of response congruence on a given trial by varying the
coherence of the dot motion (the % of dots moving in a given
direction). Congruence was evenly sampled between 100%

coherent congruence and 100% coherent incongruence, and
was treated as a continuous variable in statistical analyses.

To maintain the salience of the motion dimension through-
out the session, participants alternated between blocks of the
task above (color-response trials) and blocks where partici-
pants were instructed to instead indicate the direction of mo-
tion (motion-response trials; cf. Schneider & Shiffrin, 1977).
Mirroring color-response trials, motion coherence was held
constant (maximal) during motion-response blocks, while
color coherence (the proportion of one color vs. another) was
varied across trials.

Procedure Participants first performed 100 motion-only
training trials (0% coherent color) and 100 color-only train-
ing trials (0% coherent motion) to learn the stimulus-response
mappings. During the main experiment, participants per-
formed two types of trial blocks. During Random blocks,
the distractor congruence varied randomly from trial-to-trial.
During Ordered blocks, congruence linearly increased and
decreased in a predictable manner (see Figure 1).

Variants Data for Experiment 1 incorporate several simi-
lar versions of this task. The main differences across ver-
sions was the number of congruence levels (mean(range)
= 13.5(11-15) levels for Random blocks, mean(range) =
15.4(11-25) levels for Ordered blocks), as well as the num-
ber of trials in each block type (mean(range) = 469(300-700)
for Random blocks, mean(range) = 643(300-800) for Ordered
blocks). We did not find significant differences in perfor-
mance across versions, nor interactions between task version
and our effects of interest, and so our analyses collapse across
these versions. Importantly, versions only differed in ways
that should produce random rather than systematic error, po-
tentially making our positive findings more conservative.

Results

All analyses were performed using linear mixed effects mod-
elling in MATLAB (lmefit and glmefit). The dependent
variables across analyses were log-transformed reaction time
(RT) and accuracy. All models included a ‘maximal’ random
effects structure at the participant level and intercept terms
(not reported). All analyses excluded trials with RTs faster
than 200ms, RT analyses excluded incorrect trials, and adap-
tion analyses required the previous trial to also be accurate
and have an RT longer than 200ms. We estimated the effec-
tive degrees of freedom with the Satterthwaite approximation
for RT models, and used (nParticipants− nPredictors) for accu-
racy models. Models were compared on the basis of Akaike
Information Criterion (AIC), a goodness-of-fit metric that pe-
nalizes model complexity.

Parametric Within-trial Interference Effects Within
Random blocks, we found that RT and accuracy varied lin-
early with our parametric manipulation of congruency (see
Figure 2; Table 1). As confirmation that performance var-
ied parametrically across congruence levels, we found that a
model that treated congruence as a single continuous variable
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Figure 2: Left: RT (top) and accuracy (bottom) linearly de-
pended on the degree of distractor congruency, moreso in Or-
dered blocks (blue) than Random blocks (red). Right: The
influence of congruence on RT (top) and accuracy (bottom)
linearly depended on the previous level of congruence. In all
graphs, error bares indicate within-participant SEM.

fit better than a model that treated congruence as a binary
variable (congruent vs. incongruent) and a model with sep-
arate congruence slopes for trials with target-compatible vs.
target-incompatible coherence levels (i.e., levels of congru-
ency vs. levels of incongruency).

Table 1: Parametric Congruence (Exp 1)
performance ∼ congruence

DV IV β t(df) p
logRT cong -0.030 -8.0(60) 4.5e-11

accuracy cong 0.74 9.6(57) 8.2e-14

Parametric Between-trial Adaptation Effects These ini-
tial analyses suggest that we were successful in parametri-
cally varying cognitive demands across trials. To test whether
this manipulation in turn led to parametric variations in the
strength of control allocated to the task, we tested how partic-
ipants’ performance changed after a trial that was more or less
demanding (i.e., the ‘Gratton’ or conflict adaptation effect;
Gratton, Coles, & Donchin, 1992). Consistent with previous
findings of such adaptation effects, we found that RT and ac-
curacy on the current trial was predicted by the interaction be-
tween the congruence of the current and previous trials, with
stronger congruence on one trial predicting stronger distrac-
tor sensitivity on the next trial. Importantly, these adaptation
effects were present over and above the effect of current-trial
congruency and – like those within-trial effects – also varied
parametrically (see Figure 2; Table 2).

Interestingly, we found that the previous trial’s congru-
ence alone had little influence on current-trial performance,

instead modulating the degree to which performance was fa-
cilitated by or interfered with by the distractor’s current con-
gruence. When the distractor was previously more congruent
(i.e., more associated with a correct response), participants
incorporated more distractor information into their response;
when the previous distractor was more incongruent, partici-
pants’ performance was virtually independent of the current
degree of congruence.

Table 2: Conflict Adaptation (Exp 1)
per f ormancet ∼ congruencet ∗ congruencet−1

DV IV β t(df) p
logRT congt -0.030 -8.1(59) 4.2e-11

congt−1 9.1e-4 0.33(58) .75
congt :congt−1 -0.028 -6.2(56) 7.5e-08

accuracy congt 0.69 9.3(57) 5.0e-13
congt−1 -.099 -1.9(57) .06

congt :congt−1 0.47 6.3(56) 4.9e-8

Influence of Demand Predictability on Control Allocation
To determine how control adjustments changed when task
difficulty was highly predictable, we compared congruence
effects across Random and Ordered blocks (see Figure 2; Ta-
ble 3). We predicted that participants would match their con-
trol allocation to local demands, resulting in weaker congru-
ence effects during Ordered blocks, and better overall perfor-
mance. While we found that participants were overall faster
in Ordered block, they were less accurate, and we found that
RTs were in fact more influenced by congruence during Or-
dered relative to Random blocks.

Table 3: Block Effects (Exp 1)
performance ∼ block*(congruence + coherence)

DV IV β t(df) p
logRT block -0.033 -4.0(57) 2.2e-4

cong -0.030 -8.0(59) 5.7e-11
coh 6.1e-4 -0.14(53) 0.89

block:cong -0.023 -4.6(59) 2.3e-5
block:coh -0.035 -4.7(55) 1.9e-5

accuracy block -0.37 -3.9(57) 2.9e-4
cong 0.69 9.5(57) 2.8e-13
coh -0.22 -2.2(57) .031

block:cong -0.016 -0.18(56) .86
block:coh 0.91 6.4(56) 3.9e-8

In addition to the block difference in congruence, we found
that participant’s performance was enhanced when there was
greater distractor coherence in Ordered blocks, regardless of
whether the distractor was congruent or incongruent with the
target. This is consistent with participants learning to use dis-
tractor information, i.e., responding in the same or opposite
direction of the distractor. In sum, the influence of distractors
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on choice was enhanced when the they could be used to make
accurate responses, with a stronger bias towards distractor-
congruent trials. Interestingly, these effects were present in
spite of most participants reporting that they had not noticed
the predictability manipulation.

Relative Automaticity of Motion vs. Color Processing
We designed our task under the assumption that the response
compatibility of the motion dimension would make respond-
ing to it more automatic than responding to the color dimen-
sion. To validate this assumption, we tested whether these
dimensions would interfere with one another asymmetrically
(Schneider Shiffrin, 1977). Consistent with this prediction,
we found that when participants were instructed to respond
based on the motion dimension (rather than color), we did
not observe any interference effects associated with the con-
gruency of the color dimension (logRT: b = 5.9e-4, p = .33;
accuracy: b = 0.031 p = .088; compare to Table 1), in stark
contrast with the results reported above for color-response tri-
als.

Discussion

Experiment 1 sheds new light on how attention is parametri-
cally controlled based on local and long-term task demands.
First, we observed that performance depends on the contin-
uous degree of interference, supporting participants’ ability
to track parametric task demands and control their attention
accordingly.

The second major observation from this experiment was
that participants parametrically adjust their sensitivity to dis-
tracting information based on the degree of interference they
previously experienced. Interestingly, we found that partici-
pants’ performance was not strongly modulated by previous
congruence per se, but that the previous congruence influ-
enced distractor sensitivity. This is largely consistent with
traditional conflict adaptation effects, which are commonly
attributed to a controlled increase in attention towards targets
following incongruent trials, which reduce the influence of
distractors as a secondary effect (Botvinick et al., 2001; Eg-
ner, 2007). In contrast to these models’ predictions, the effect
of previous congruence was evaluated when the current con-
gruence was neutral (0% coherence), the situation where tar-
get enhancement should should be most obvious. Our results
are more consistent with changes in distractor processing than
target processing.

Finally, we found that under conditions of high predictabil-
ity, participants increased their attention towards distractors
when they were informative (i.e., provided coherent evidence
for or against a response), but with a strong bias towards dis-
tractors that provided target-congruent evidence. This obser-
vation is consistent with the literature on the proportion con-
gruency effect (i.e., weaker congruency effects in blocks of
majority-incongruent trials; Logan & Zbrodoff, 1979), orig-
inally attributed to participants’ learning the predictive value
of different stimulus dimensions. This strict learning account
does not predict a bias towards distractor-congruent informa-

tion, making our results more compatible with models that
combine learning to weight different cues with adjustments
based on the recent history of conflict (Jones, Cho, Nystrom,
Cohen, & Braver, 2002).

In sum, these results suggest that participants controlled
their attention towards the distracting dimension based on
both the learned value of this cue and a bias towards con-
gruent distractors. However, this preliminary evidence for
distractor-oriented control is limited by the standard conven-
tion of only manipulating distractor congruence. To better
isolate control adjustments towards targets and distractors, in
Experiment 2 we manipulated the coherence of each dimen-
sion to better measure where participants controlled their at-
tention.

Experiment 2
Experiment 2 sought to further characterize the targets of con-
trol adjustment in this task. In particular, we examined the
degree to which participants adjust their attention towards
targets and distractors in response to the demands associ-
ated with each dimension. We measured this by indepen-
dently manipulating the coherence of both the target and dis-
tractor dimensions. By ‘tagging’ these different stimulus di-
mensions, we sought to determine where participants adjust
attention. The traditional target-oriented attention account
makes two key predictions: first, if distractor sensitivity is
a byproduct of control towards targets (e.g., due to lateral in-
hibition; Botvinick et al., 2001), then the influence of target
and distractor information should strongly interact within a
trial. Secondly, we should find that trial-to-trial adjustments
to control should primarily influence the sensitivity to the tar-
get dimension.

Method

Participants Thirty-three individuals participated in Ex-
periment 2 for course credit or pay (Mean(SD) age =
18.9(0.45); 24 females).

Task & Procedure This task was similar to Experiment
1, except that we varied the coherence of both the distrac-
tor (motion) and target (color) dimensions. As in Exper-
iments 1, motion coherence varied from 100% leftward to
100% rightward (11 levels of congruence). Target coherence
(i.e., the proportion of dots whose color indicates a leftward
or rightward response) varied from 65% to 95% (11 levels
of coherence). Participants only performed Random blocks
(1200 color-response trials with interleaved motion-response
blocks, as in Experiment 1), with the target coherence and
distractor congruence independently sampled on every trial.

Results

We used the same linear mixed effects regression approach
here as we did in Experiment 1. Target coherence was
mean-centered within participants to aid in interpretability.
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Figure 3: Left: RT (black) and accuracy (green) linearly de-
pended on both distractor congruence (top) and target coher-
ence (bottom). Right: Conflict adaptation was stronger and
more consistent for the distractor dimensions. Asterisks indi-
cate significant interactions.

Within-trial Effects of Target and Distractor Information
As predicted, we found that performance improved with both
greater target coherence and greater distractor congruence
within each trial (see Figure 3; Table 4). Interestingly, these
dimensions influenced performance largely independently of
one another. The interaction between target and distractor in-
formation had a significant effect on accuracy (p<0.01) but
not RT (p=0.79), However, relative to models with only main
effects, models that included these interaction terms did not
improve overall model fit for either RT (∆ AIC = 14) or accu-
racy (∆ AIC = 0.80).

Table 4: Target & Distractor Within-Trial (Exp 2)
performance ∼ (distractor * target)

DV IV β t(df) p
logRT dist 0.031 -7.1(32) 4.6e-8

targ -0.20 -12(32) 1.2e-13
dist:targ -0.0038 -0.26(53) .79

accuracy dist -0.46 -8.6(32) 8.2e-10
targ 2.3 11(32) 6.1e-12

dist:targ -0.44 -2.8(31) .0094

Target- vs. Distractor-Dependent Adaptation While
both target coherence and distractor congruence influenced
participants’ performance within a given trial, our primary in-
terest was how participants adjust attention from trial to trial.
To investigate this, we measured how participants’ sensitiv-
ity to target and distractor information changed as a function
of the previous trial difficulty. The prediction of traditional
target-oriented accounts is that previous task demands will
most strongly change sensitivity to the target dimension.

We found that the previous distractor congruence strongly
influenced participants’ sensitivity to the current distractor
congruence, replicating our parametric conflict adaption re-
sults from Experiment 1 (see Figure 3; Table 5). In contrast
to traditional models, we found that the previous distractor
had an inconsistent influence over participants’ sensitivity to
the current target coherence, appearing in the domain of RT
but not accuracy. Interestingly, the previous trial’s congru-
ence had opposing effects on targets and distractors: more
incongruent trials were followed by weaker sensitivity to dis-
tractors and stronger sensitivity to targets, albeit with substan-
tively weaker adjustments to target sensitivity.

Table 5: Distractor-Dependent Adaptation (Exp 2)
per f ormancet ∼ distractort−1 ∗ (distractort + targett)

DV IV β t(df) p
logRT distt−1 -8.9e-5 -0.03(94) .97

distt -0.031 -7.2(33) 4.6e-8
targt -0.20 -12(32) 3.4e-13

distt−1:distt -0.028 -6.5(191) 7.3e-10
distt−1:targt -0.012 -0.26(406) .39

accuracy distt−1 -0.07 -2.1(32) .047
distt 0.41 8.1(32) 3.4e-9
targt 2.3 11(32) 3.2e-12

distt−1:distt 0.46 7.6(31) 1.5e-8
distt−1:targt -0.39 -2.1(31) .043

We also tested a model where the previous target coher-
ence could influence sensitivity towards the current target and
distractor (see Figure 3; Table 6). We found, again, no evi-
dence in reaction time that previous target coherence influ-
enced the current target or distractor sensitivity. However, in
accuracy we found that weaker previous trial target coherence
predicted a stronger reliance on distractor information on the
next trial, with no change to the reliance on target informa-
tion.

Table 6: Target-Dependent Adaptation (Exp 2)
per f ormancet ∼ targett−1 ∗ (distractort + targett)

DV IV β t(df) p
logRT distt -0.031 -7.2(32) 3.0e-8

targt -0.20 -12(32) 3.7e-13
targt−1 -0.011 -0.98(32) .34

targt−1:distt -0.0028 -0.18(37) .86
targt−1:targt 0.038 0.73(43) .47

accuracy distt 0.42 8.5(32) 1.2e-9
targt 2.3 11(32) 2.9e-12

targt−1 0.12 1.1(32) .28
targt−1:distt -0.41 -2.5(31) .012
targt−1:targt -0.12 -0.22(31) .83
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Overall, target- and distractor-dependent adaptation seem
to support a similar mechanism, in which the response-
relevance of a dimension modifies the extent to which it is
subsequent used for choice, with a strong bias towards modi-
fying the distractor dimension. When the target dimension is
incongruent with the response, participants are subsequently
more influenced by target and less influenced by distractors.
When the target provided weak evidence for the response,
participants were subsequently more sensitive to distractors.

Discussion
Experiment 2 replicated the within- and between-trial con-
gruence effects observed in Experiment 1. Critically, Exper-
iment 2 also provided unique evidence in favor of distractor-
oriented attentional control in this task.

Within trials, we found that both target and distractor infor-
mation influenced task performance, there were only weak in-
teractions across dimensions. This runs counter to the predic-
tions from models that posit competitive interactions between
the processing of targets and distractors, in which distractor
sensitivity changes as a byproduct of target-oriented control
(Botvinick et al., 2001; Egner, 2007).

Across trials, we found that adjustments to control primar-
ily acted on distractors, in contrast with traditional models
of conflict adaptation. When the previous trial was difficult,
participants suppressed distractors if the difficulty was due to
incongruent distractors, and enhanced distractors if the dif-
ficulty was due to low-coherence targets. It is notable that
the latter effect of distractor enhancement appeared to be spe-
cific to accuracy, whereas the suppression effect was observed
in both speed and accuracy. Whether these reflects different
forms of control adjustment (e.g., related to evidence accu-
mulation versus response threshold) demands further investi-
gation with models that can distinguish these processes (e.g.,
the drift diffusion model).

In addition to these distractor adjustments, we also ob-
served adjustments to target sensitivity in one condition
(distractor-dependent adaptation effects in accuracy). How-
ever these adjustments to target processing were very sub-
tle, compared to the strong and reliable adaptation effects ob-
served for the distractor dimension, and could plausibly rep-
resent a byproduct of these dominant adjustments to distrac-
tor processing.

General Discussion
We developed a novel task aimed at examining parametric ad-
justments of control towards targets and distractors. Across
our two experiments, we found consistent evidence that par-
ticipants parametrically controlled their attention towards dis-
tractors based on the recent history of task demands. In Ex-
periment 1, we found that participants adjusted their sensitiv-
ity to distractor congruence based on both whether distrac-
tors could predict the accurate response, alongside the bias
towards congruency predicted by conflict monitoring. In Ex-
periment 2, we narrowed down the sources and targets of this

process of control adaptation. We found that participants ad-
justed attention towards distractors much more than they did
towards targets. Together, these results provide strong con-
firmation for many aspects of existing models of cognitive
control, while challenging models that propose unbiased or
target-oriented attentional control.

Our experiments leave open the question of why par-
ticipants would be biased towards distractor-oriented atten-
tion. One reason for this asymmetry may due to a pri-
macy for inhibition in cognitive control, exemplified by the
well-characterized ‘hyperdirect’ control of striatal decision-
making (Wiecki & Frank, 2013) and the common inhibition
factor found across several executive control tasks (Friedman
& Miyake, 2017). This may describe why it is easier to
(dis)inhibit attention towards distractors, rather than enhance
attention to targets, but offers little explanation for why there
is this preference for inhibition. Another reason for our asym-
metry may be that our distracting motion dimension, like
many distractors, is easier to control because of its salience.
Insofar as attention control requires some form of feature se-
lection, it may be easier to select a distractor’s stimulus fea-
tures to act upon. Finally, this experiment cannot rule out that
there is something about motion per se that makes it easier to
control. Future experiment should test the robustness of these
results across multiple stimulus domains and forms of con-
gruence before making more provocative conclusions about
the nature of cognitive control.
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Abstract 

We provide a definition of ‘memory’ that is broad enough to 

apply to both natural and artificial systems. Inspired by 

computation and information theory, we define memory as a 

process that preserves information through time while 

maintaining its usefulness as an object to be computed. We 

defend the extensiveness of our definition by explaining how it 

applies to both brains and modern computers. We then consider 

potential objections to our definition. Our primary goal is to 

provide a definition of ‘memory’ that is broadly applicable 

across various cognitive sciences subfields. 

 

Keywords: memory; computation; representation; information 

Introduction 

Memory is a central topic within the cognitive sciences and 

its various contributing disciplines, such as computer science, 

neuroscience, and psychology. One likely reason for this is 

its centrality to various conceptions of cognition. Be it brains 

or modern computers, memory typically plays a central role. 

However, it is often unclear if ‘memory’ is used the same 

across contexts. What is apparent, however, is the efficacy of 

computational theory in the cognitive sciences. Given the 

successes computational theory has provided the study of 

cognition, and given that memory is central to computation, 

it follows that a computationally-inspired approach to 

memory can provide useful insights into the general nature of 

memory. As such, it is necessary for us to explicate the 

relevant features of information and computation before 

discussing our definition of memory. 

We begin with Piccinini and Scarantino’s (2011) definition 

of ‘computation’ as the processing of objects according to 

rules. Next, we connect that definition to Gallistel and King’s 

(2010) interpretation of Shannon’s classic information 

theory—that is, the reduction in uncertainty regarding the 

properties of an object—in order to show how computation 

allows for useful decisions about the world to be made. We 

then discuss some of the properties necessary for effective 

information processing and generic computation that 

describe modern computers, which may also be usefully 

applied to descriptions of brains as well. We pay special 

attention to the topic of representation. The ability of the 

definition to allow for determination of the boundaries of a 

computational system’s memory are examined. Finally, we 

present and respond to some potential critiques of the 

definition. 

The definition these claims and terms are applied to is as 

follows: Memory is a process that carries information 

forward in time, preserved in a fashion that maintains its 

usefulness as an object to be computed for the system to 

which the memory is said to belong. 

Defining Computation and Information 

Before presenting our definition of ‘memory,’ we must first 

establish definitions for ‘information’ and ‘computation.’ We 

begin with information because, as will be discussed below, 

computation does not necessarily need to involve 

information—though it can be more useful when it does. 

Gallistel and King relate Shannon’s definition of 

‘information’ as originating from a source, undergoing a 

process that ‘encodes’ the information into a ‘signal,’ and 

traveling to a receiver that ‘decodes’ the signal to derive a 

‘message’ from it (2010, p. 2). The amount of information 

contained by the signal is determined not only by the signal, 

but by the receiver as well. The following example will make 

these points more evident. 

Suppose an unseen coin is flipped and you are told, as a 

hint, that it might be heads or tails. You most likely already 

knew that and are wondering if this is really a hint at all. This 

highlights two important criteria for evaluating a signal’s 

informational content: First, a signal must be selected from a 

possible set of signals. How much information has been 

transmitted regarding an object depends on how the range of 

possible object states has been affected. The hint you 

received does not affect the range of possible outcomes from 

the coin flip, and thus holds no information. Second, the 

relative probability of the possible states under consideration 

plays an important role in evaluating the quantity of 

information transmitted. A coin is not a truly two-

974



dimensional object. There is a small possibility that it has 

landed on its side. The hint you received actually has some 

informational content, it is just small because the eliminated 

state is unlikely. Note that Shannon’s definition of 

information does not restrict the types of objects and states 

that it describes. It may be something as quantitative as 

numerical data. Likewise, it may be something difficult to 

quantify numerically, such as the emotions of another. The 

key point is that there is a spectrum of possible properties and 

that the signal reduces their domain. 

Computation invokes many concepts similar to 

information. In fact, as Piccinini and Scarantino point out, 

computation and information processing are often mistakenly 

held to be synonyms (2011, p. 3). We utilize Piccinini and 

Scarantino’s definition of computation in general: “We use 

‘generic computation’ to designate the processing of vehicles 

according to rules that are sensitive to certain vehicle 

properties and, specifically, to differences between different 

portions of the vehicles” (2011, p. 10; italics added). In the 

case that these vehicles are signals containing information, 

information processing is a form of computation as just 

defined. However, not all computation involves the 

processing of information. Informational content is not an 

intrinsic property of an object. It is relative to an observer and 

depends on how much the message reduces the observer’s 

uncertainty (Gallistel & King, 2010, p. 7). Consider a 

computation that outputs ‘cuidado’ if the input is ‘el horno 

esta encendido’ and provides no output if the input is ‘el 

horno esta apagado.’ To an English-only-speaking observer, 

this computation does not process information—the objects 

have no meaning. But to a Spanish-speaker, this cautions 

them that the oven has been switched on. The computation 

performed is the same, regardless of the observer. Even if 

Spanish is forgotten, and the computation’s objects cease to 

be meaningful to anyone, it is still the same computation. 

Thus, computation does not necessarily process information. 

This definition of computation is clearly quite broad. It is 

so broad, in fact, that some philosophers believe that such an 

understanding of computation implies that everything 

performs computation, that is, ‘pancomputationalism’ 

(Piccinini & Scarantino, 2011, p. 5; cf. Chalmers, 2011; 

Copeland, 1996). It may be true that one could pick just about 

any physical phenomenon and find an arbitrary function that 

it computes (e.g., a rock; Chalmers, 1996). For 

“computation” to be a useful concept regarding research on 

cognition—such as memory—in the cognitive sciences, its 

scope must be appropriately pared down. 

Recall that, based on the above definition, a computation is 

only sensitive to certain properties of objects, not necessarily 

all of them. A function that determines whether or not a 

neuron fires may only be sensitive to the firing/pre-firing 

properties of other neurons. Any additional physical variables 

are irrelevant to the purposes of the computation at hand, 

namely, modeling the dynamics of single-neuron activity. 

Pancomputationalism draws attention to the worry that 

“computation” may be a meaningless concept in research if it 

does not refer to some finite range of properties (or messages) 

that determine the results of the computations carried out by 

some system. In other words, its properties must have 

informational content that are relevant to the system. 

With these conceptions of information and computation at 

hand, we can present a way to understand how they are 

present in the brain. Various brain processes can be usefully 

understood as computational, for example, the brain’s ability 

to draw conclusions (Gallistel & King, 2010, p. 59). Consider 

the recognition of an image containing text (Figure 1). The 

optic nerve transmits visual stimuli to the brain, but it does 

not interpret the text’s meaning. This is the role of a different 

portion of the brain. In this process there are signals (i.e., 

visual stimuli) that come from a set of possible messages (i.e., 

one image is distinguishable from another), which can be 

understood as processed in accordance to a set of rules that 

are sensitive to the signal’s properties (i.e., the shape of the 

image is that of a word, and the word has meaning 

independent from the image). Here we have all the 

characteristics of computation being used to process 

information. 

An important point to address is that of representation. In 

our discussion of information, we spoke of it as being 

encoded. In other words, it is represented within a certain 

syntactic structure. This encoding is what allows for reliable 

interpretation of the signal’s contents. Modern computers 

contain a type of software called a “driver.” Each driver 

instructs the computer how to interface with a certain type of 

peripheral device, such as a mouse or external hard drive. 

Despite the fact that both of these devices can communicate 

via a universal serial bus (USB) connection, the computer 

must use a very different set of rules when interfacing with a 

mouse than with a hard drive. Similarly, a computational 

description of the brain must refer to some syntactic structure   

when describing how the brain processes its signals. 

However, not any syntax will suffice. Both brains and 

computers are faced with a tremendous variety of possible 

objects to represent. A much simpler device than the brain is 

the TI-84 calculator. The largest number it can represent is 

approximately 10100. If it was forced to have a unique 

character for each value, the number of  unique characters 

would exceed the number of atoms in the known universe. 

The calculator avoids this conundrum by constructing its 

representations from a small number of symbols (i.e., 0/1 for 

binary, 0-9 for its decimal display) in a way that is sensitive 

to their relative positions. Similarly, the English language is 

represented through the use of twenty-six visual symbols 

(i.e., the alphabet) and forty-four audible symbols (i.e., 

phonemes) in a syntax that is sensitive to their relative 

positions in space and time respectively. All of these methods 

of representation are “compact,” that is, the resources 

required to construct a representation grow logarithmically as 

the range of possible messages increases (Gallistel & King, 

2010, p. 76). If even the humble TI-84 requires a robust 

syntax capable of compact representation, it follows that any 
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syntax that the brain may possess must also be capable of 

compactly representing the tremendous variety of messages 

it encounters (Gallistel & King, 2010, p. 82). 

Like binary or decimal, the brain’s syntax must be capable 

of constructing representations from a fairly small selection 

of basic elements. Otherwise, the incredible variety of 

sensory stimuli and the brain’s practically unlimited creative 

capacity cannot feasibly be represented. These basic elements 

need not be numerical, and they need not be universal 

throughout the brain. Different portions of the brain perform 

different functions, and different syntaxes may be used. 

There will need to be commonalities between regions that 

facilitate their interaction, but there may be specialized 

computations (e.g., facial recognition, speech 

comprehension, etc.) that take place within regions. These 

computations might use a specialized syntax internally but 

use a shared syntax for computations that interact with other 

portions. 

Having discussed computation, information, and 

representation, as well as what they mean in both the contexts 

of modern computers and the brain, we now move on to 

address how these ideas relate to memory and the role 

memory plays in the aforementioned contexts. 

Memory in Computers and Brains 

The property that distinguishes memory from other 

information-carrying signals in a brain or computer is its 

persistence through time. A fundamental requirement for a 

signal to be informative is that it is selected from a set of 

possible messages. There must be some way for this domain 

of possible messages to be established. When the layman 

enters an airliner cockpit, the array of dials and knobs are 

quite mysterious. To a trained pilot, each item denotes a 

meaningful piece of information. They know if an 

instrument’s reading is alarming or typical. They know this 

because of their prior experience—information which was 

presented to them in the past and has persisted. In other 

words, their memory. Memory is the process that establishes 

the informational content of new signals.  

Memory plays the same role in a modern computer. 

Without memory, a computer’s only information regarding 

its past is that which is implicitly contained within its current 

state. As a result, whatever computation it performs must 

capture every relevant aspect of the computer’s current state 

in order to determine the next state. Computers are often 

called upon to perform complex tasks that are combinations 

of a few basic functions (Gallistel & King, 2010, p. 109). 

Without a compact method for storing and preserving the 

results of past steps, any practical computation requires an 

absurdly large number of bits to define its state. Each 

instruction in a computer’s program would have to shepherd 

hordes of bits. Suppose an instruction were as simple as 

providing a 1 (ON) or 0 (OFF) for each pixel in a display. To 

control every pixel of a typical 1080p resolution display, such 

an instruction would require two million bits. For 

comparison, modern central processing units (CPUs) 

typically use a humble sixty-four bits for their instructions. 

For a computational system to deal with these sorts of 

situations, a system is needed that has accessibility to the 

information contained in previous states as well as current—

memory is needed (Gallistel & King, 2010, p. 131). 

How does our definition of memory tackle this issue? In a 

modern computer, a CPU is the device that actually carries 

out most of the computations. In order to be able to perform 

computations quickly, it does not capture all of the 

information that it needs to perform all of its functionality 

within itself. If a CPU modifies an image, one cannot look at 

the CPU a few seconds later and determine how or what 

modification it performed. Instead, the CPU stores the image 

in a memory device to be retrieved later as needed. Later, 

when it needs to use the image in a computation, it calls upon 

the memory, which loads the image into the CPU. This 

transfer of bits constitutes a message to the CPU that informs 

it of the image’s contents. The key point is that this is done 

without repeating the initial computation that resulted in the 

memory’s message. Without the ability to call upon this 

persistent information, a modern computer would be as 

 

Figure 1: Reading text as the computational processing of information. 
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cumbersome as a pilot that has to be retrained for dial-reading 

every time. 

Despite the similarity in the role of memory in brains and 

modern computers, there is a much greater degree of 

plasticity in the execution of the brain’s memory processes. 

In certain environments, the way the brain remembers events 

can be highly vulnerable to suggestion (Loftus & Palmer, 

1974, p. 588). This supports the idea that memory plays a role 

in establishing the informational content of new signals and 

highlights the dynamic nature of the brain’s syntax. In Loftus 

and Palmer’s experiment, use of the verb ‘hit’ versus ‘smash’ 

served to alter the subjects’ syntax by priming them to think 

in certain terms. This in turn changed the message they 

obtained when they referenced their memory regarding the 

presence of broken glass at the scene of an accident. In this 

way, our definition addresses the inconsistency of the brain’s 

memory—the syntax being used to interpret the stored 

information is constantly changing. These changes need not 

result in an insensible message. Rather, they result in a new 

interpretation. This differs from modern computers, where 

even slight changes in syntax can cause total malfunctions. 

Explicating the neurobiological processes underlying 

memory in brains is not necessary for our project. The scope 

of our definition is readily understood in terms of Marr’s 

three levels of description of information-processing systems 

(Marr, 1982/2010, p. 24). The first and most abstract level is 

the computational theory, which establishes the general 

feature of the system being investigated, such as vision, 

language, or memory. Next, is the representation and 

algorithm level, which describes the procedures for achieving 

said system feature. The final level is hardware 

implementation, which is concerned with the physical 

substrate forming the representations and carrying out the 

algorithms. In terms of explanatory strategies, these levels 

can be investigated individually. From this perspective, our 

definition is appropriately understood as working in the first 

two levels. Although we aim for our definition to be 

applicable to real systems, we leave work of explicating its 

physical implementation to others. 

For our purposes, we merely note that if our definition of 

memory is appropriate for the cognitive sciences, then it can 

guide research that successfully identifies brain regions and 

processes that facilitate the kind of persistent information 

seen in modern computers as sketched above (cf. Srimal & 

Curtis, 2008). If our definition is incorrect, then there will be 

no empirical evidence of such persistent information. This 

follows from one consequence of our definition, namely, that 

in both the brain and in modern computers, memory serves 

the role of preserving information and establishing the 

possible set of messages from which new signals arise. In the 

next section, we explain how our definition of memory 

provides a way to delineate boundaries around the system in 

which memory occurs. 

 

The Boundaries of Memory 

For a memory to be computationally useful in the system it 

belongs to, a consistent syntax must be utilized during the 

encoding process—that is, preservation and representation—

of signals. For example, the alphanumeric symbol ‘6’ must 

always denote the quantity six, and not three or four. This 

stipulation helps establish who or what a certain memory 

belongs to. The boundaries of the physical system that 

consistently realizes a computational system’s syntax then 

defines the boundaries of its memory. 

As discussed earlier, a computation is sensitive to some 

properties of an object but not necessarily all. Specifically, it 

is reactive to particular forms of content, that is, information. 

When this computation handles information, the rules of its 

sensitivity must match up to the syntax in which the 

information is represented. This feature allows one to 

determine what contributes to a computational system’s 

memory or not. In order to be memory, a process must not 

only carry some physical state forward in time, but the state 

it preserves must be preserved in accordance with the 

syntactic structure of that to which the memory is said to 

belong.  

 Modern computers possess a set of memory addresses, 

much like a set of street addresses in a neighborhood, that 

they have access to. Proper usage of these addresses is part of 

the syntactic structure of the memory process. Searching for 

an address outside of this range causes the memory process 

to malfunction. The signal the computer finds with such an 

address might be encoded using a different syntax, or there 

might not even be a physical signal present. Either way, if the 

sought signal is not represented in accordance with the syntax 

of the memory it is trying to find, it is not a part of the 

computer’s memory. The signals found may inform the 

computer, but the information will not be accurate. 

In many natural and artificial systems, it seems obvious 

where to draw the boundaries of—at least some of—their 

memory systems, for example, a human’s hippocampus and 

a laptop’s hard drive. In such cases, the syntax used by the 

computations are consistently applied only within the 

physical brain and hard drive. Accordingly, such memories 

are realized within an individual body or casing. With that 

said, our definition of memory is not a priori confined to 

brains and hard drives. As long as such features as 

information preservation and consistent syntax are 

maintained, the boundaries of memory systems are 

potentially quite broad. Though we aim here to apply our 

definition of memory to more traditional work in the 

cognitive sciences, we leave open the possibility of applying 

it to cases such as distributed cognition (e.g., shared 

remembering by couples; Harris et al., 2014) and cultural 

transmission (e.g., Rowlands, 1993). 

The possibility of distributed or extended memory systems 

should not be controversial. A removable USB storage stick 

is external memory for any modern computer with a USB 

port and appropriate software. The memory is only available 
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when the stick is plugged in, but a large number of different 

computational systems can all potentially access it. A written 

grocery list is external memory available to anyone who finds 

the list and can read the language it is written in (cf. Wagman 

& Chemero, 2014). The exact message the list presents will 

vary based on the individual’s own internal memory—recall 

that the informational content of a signal is determined by the 

observer. Nevertheless, it is information carried forward in 

time. As long as the list’s characters and words represent the 

intended message in a manner consistent with the reader’s 

understanding of the language, the list can function as 

contributing to an external memory system. 

We have attempted to show that our definition of memory 

is applicable to both narrow conceptions of cognition (e.g., 

isolated in brains), as well as more widespread notions (e.g., 

distributed cognition). Given that we discuss memory in 

terms of information processing, it is likely that the type of 

proponent of narrow conceptions who would readily accept 

our definition are those who think embodied, extended, and 

distributed cognition are still computational and 

representational in nature even if cognition is not isolated in 

brains (e.g., Barsalou, 2008; Hutchins, 1995; Wilson, 1994). 

On the other hand, it seems far less likely that anti-

computational and anti-representationalists regarding 

cognition would accept our definition. We provide reasons 

why proponents of more “radical” conceptions of cognition 

could accept our definition by presenting experimental work 

involving affordances and memory. 

Affordances are opportunities for behavior, and are based 

on the properties of the organism and environment (Gibson, 

1979/1986). A doorway, for example, affords passing 

through for a human with narrow enough shoulders. 

Experimental work involving affordances stem from 

Gibson’s ecological psychology (1979/1986). Contrary to 

representational approaches to perception, Gibson and his 

proponents argue that perception-action is not properly 

understood as centering on indirect representations. Visual 

perception, for example, is not a matter of an organism 

generating a mental image of the world, but instead is about 

an organism directly perceiving opportunities the world 

affords it. 

Experimental work on affordances and memory have 

motivated conceptions of memory that do not appeal to 

computations or representations of the kind ecological 

psychologists and their proponents have resisted (e.g., 
Thomas & Riley, 2014; Vicente & Wang, 1998). Boschker, 

Bakker, and Michaels (2002), for example, conducted a set 

of experiments on the visual perception of climbing walls by 

experts and novices. When asked to recall information 

concerning the locations and orientations of holds on 

climbing walls, results suggested that experts can recall more 

information, clusters of information, and focus on functional 

aspects of walls (i.e., affordances); whereas novices did not 

recall clusters and focused on the structure of walls and not 

their functionals aspects. Boschker et al. argue that their 

findings show that differences in skill level correspond to 

differences in visual perception and memory. A central 

finding is that experts have memory that is better and of a 

more functional nature because they have more experience of 

perceived action possibilities than novices. In other words, 

their increased recall is tied to their increased perception of 

affordances. Note that this work does not appeal to 

computations or representations. Yet, our definition still 

applies: Experts have better task memory because the 

“information” relevant to action capabilities carries forward 

in time over the course of experience, and it does so in a 

manner that maintains its usefulness (i.e., affordance) to be 

“computed” (i.e., used) by the system (i.e., climber) for which 

the information belongs. The relationship between our 

definition and non-computational and anti-representational 

conceptions of cognition requires further fleshing out. 

However, we have attempted to demonstrate that the areas are 

not necessarily mutually exclusive. Having presented our 

definition of memory and discussed related issues, we now 

respond to several critiques. 

Criticisms of a Computation-Based Definition 

The appropriateness of utilizing our definition of memory in 

the cognitive sciences is contingent on the notion that it is 

explanatorily fruitful to describe the brain as performing 

computations. Computational approaches in the cognitive 

sciences are not without challenge. One source of opposition 

stems from forceful arguments claiming that phenomena 

investigated in the cognitive sciences are in no substantial 

way “computational,” that is, “rule-governed manipulations 

of internal representations” (van Gelder, 1995). Therefore, 

our understanding of brains and cognition are set back by 

assuming they are like computers (Barrett, 2012). Another 

challenge centers on the claim that the prevalence of 

computationalism results from the prominent role of 

computers in modern society. Like other metaphors that were 

popular during their time, so too will the mind-as-computer 

metaphor pass (e.g., hydraulic pump, steam engine, etc.; 

Marshall, 1977). A third challenge is that many concepts 

underlying computational approaches have long and storied 

histories of imprecision. For example, many definitions of 

‘memory’ now seem outdated in light of further technological 

advancement (Roediger, 1980). Addressing those challenges 

is far beyond the scope of the current work. Here, we respond 

to these criticisms in order to motivate the claim that 

complete rejection of a “computational” approach in the 

cognitive sciences is ultimately unwarranted. 

First, unlike artifacts such as clay tablets or conveyor belts, 

computational theory is a set of formalized principles that are 

independent of any particular physical realization (Gallistel 

& King, 2010, p. 105). Computational theory becoming 

obsolete would be more akin to the obsolescence of calculus 

than that of the cellular phone. Computation is a field of 

mathematics, not a transient technology. While it is possible 

that computationally-based theories could be supplanted by 
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non-computational ones (e.g., Chemero, 2011; Edelman, 

1993; Kelso, 2009; van Gelder, 1995) for explaining all forms 

of cognition, such a shift would likely occur due to 

conceptual, methodological, and theoretical advances in the 

cognitive sciences, and not due to a technology’s life-cycle.  

Second, appealing to computational theory to investigate 

memory in both brains and computers does not necessitate 

that both compute digitally or numerically, or that their 

objects are both numeric or symbolic. Computational theory, 

in the form we appeal to, is consistent with identifying both 

modern computers and brains as “computational,” even if the 

objects being computed differ. This is because what matters 

more than the realizers of particular processes is the syntax. 

Because modern computers manipulate digital objects (i.e., 

binary ‘1s’ and ‘0s’), they are readily able to handle syntax 

involving computations of large digits, such as multiplication 

and division. Human brains, on the other hand, may not 

explicitly manipulate digital objects, which could account for 

the difference in speed of calculation. Specifically, brains 

may manipulate analog objects, which may not be as fast at 

processing syntax involving calculations of discrete 

numerical values. This would serve to explain why brains and 

modern computers have a different set of strengths and 

weaknesses and are better suited for performing different 

kinds of computation that are computations nonetheless. 

A third reason to consider computation in some form is to 

appeal to the primary motivation for the cognitive revolution, 

namely, the need to posit “internal” states to more fully 

account for some kinds of cognition, action, and perception 

(Gardner, 1985). To be more precise, those cognitive 

capacities that occur without externally observable processes, 

for example, predicting and learning. Cognitive systems can 

make accurate predictions following very complex causal 

chains. An electrical engineer can look at a wiring diagram 

and tell what will open a certain contact without interacting 

with the real circuit. A complete explanation of this capability 

implies some internal process for simulating events and 

evaluating them according to a syntax. Cognitive systems can 

learn to perform behaviors without actually doing them. If a 

hobbyist reads an article on how to solder a wire before 

attempting for first time, they will certainly do better than if 

they had tried with no prior study. From these examples we 

do not further claim that cognitive systems are not embodied, 

that learning via action is likely necessary during 

developmental stages, or that physical practice improves 

abilities. Yet, such examples motivate the need to appeal to 

internal processes to fully explain some cognitive 

phenomena. In some cases, the most parsimonious 

explanation for these capabilities is the presence of internal 

representations and rules for consistent execution. All of this 

suggests that appealing to some form of computation to 

explain certain cognitive phenomena is well-motivated. 

If we are correct that at least some cognitive capabilities 

(e.g., memory) are appropriately explained via internal 

processes of some sort, then the nature of how those 

processes represent must be accounted for as well. Although 

a tremendous deal of research and effort has gone into 

mapping and studying brain activity, there is yet to be 

evidence of a discernible syntax. This could be seen as 

evidence against computation in the brain. However, this may 

be a case of a lack of evidence not being evidence of absence. 

Gallistel and King explain that the more efficient and robust 

an encoding scheme is (i.e., representation), the less it 

resembles its message (2010, p. 4). The sheer variety of 

stimuli the brain is presented with suggests that its syntax 

would be extraordinarily complex, far more so than binary 

(e.g., neurons as on-off switches). Additionally, recall that it 

is not necessary for these representations to be discrete or 

numerical in nature. They might not even be expressible in 

terms of language. The brain has been produced by natural 

selection, not a highly-organized team of computer scientists. 

As such, there is no reason to believe that any criteria other 

than effectiveness for survival and reproduction has played a 

role in its development. There has been no force in natural 

selection pushing the brain’s representations to be legible to 

outside observers. With all this in mind, it is no surprise that 

the brain’s syntax remains a mystery. 

The definition of memory posited in this paper proposes a 

broader definition of computation and representation than are 

typically applied to the brain. It also does not propose 

computation as an explanation of brain structure and 

function. Rather, it appeals to computation to describe 

memory processes. The aim of this is to enable a discussion 

that escapes some of the limitations traditionally associated 

with computationalism. This paves the way for the utilization 

of computation as a descriptive tool without rejecting other 

accounts of cognition (e.g., dynamical). While some systems 

are better explained by either computational or dynamical 

models (van Gelder, 1995), others benefit from the use of 

multiple explanatory strategies (Favela & Chemero, 2019). 

Depending on the goals at hand, one model may be preferable 

to another, and it is possible that neither can give an all-

encompassing account of the system. Here, we are chiefly 

concerned with defining what memory is, and not the 

computations or dynamics that explain how it is realized in 

systems. 

Conclusion 

We have presented and defended a definition of memory. We 

began with Gallistel and King’s (2010) formulation of 

Shannon information and highlighted the feature of observer 

dependence. We then presented Piccinini and Scarantino’s 

(2011) broad conception of computation as the processing of 

objects according to rules sensitive to certain properties of 

those objects. Computational systems are distinguished from 

one another based on what properties they’re sensitive to. If 

the objects being processed are signals with informational 

content, then the computational system processes 

information. Both the brain and modern computers can be 

described as such systems. Casting memory in terms of 
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computation and information effectively describes memory 

as playing a role in establishing the meaning of new signals, 

that is, determining their informational content. The rules 

according to which these messages are interpreted are their 

syntax. In order to accommodate the wide variety of 

messages they represent, both the syntaxes used by brains and 

computers should be compact, that is, the resources required 

for representation should grow only with the logarithm of the 

number of possible signals. Having specific syntax for the 

purpose of carrying information forward in time allows for 

delineating boundaries around memory systems. We referred 

to ecological psychology’s concept of affordances in order to 

illustrate that our definition is not necessarily incompatible 

with non-computational and anti-representational 

conceptions of cognition. We defended our use of 

computation as a tool for describing brain processes. Despite 

its challenges, computation’s status as a set of formalized 

principles, as well as the ability of representations to serve as 

a succinct explanation of certain cognitive phenomena, make 

it well-suited for use as a descriptive tool. By limiting our use 

of computation to the description of memory, we remain 

nonpartisan as to the methods suitable for explaining its 

realization. As such, the following definition of memory is 

broadly applicable across the cognitive sciences: Memory is 

a process that carries information forward in time, preserved 

in a fashion that maintains its usefulness as an object to be 

computed for the system to which the memory is said to 

belong. 
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Abstract

The study of question asking in humans and machines has
gained attention in recent years. A key aspect of question ask-
ing is the ability to select good (informative) questions from
a provided set. Machines—in particular neural networks—
generally struggle with two important aspects of question ask-
ing, namely to learn from the answer to their selected ques-
tion and to flexibly adjust their questioning to new goals. In
the present paper, we show that people are sensitive to both of
these aspects and describe a unified Bayesian account of ques-
tion asking that is capable of similar ingenuity. In the first ex-
periment, we predict people’s judgments when adjusting their
question-asking towards a particular goal. In the second ex-
periment, we predict people’s judgments when deciding what
follow-up question to ask. An alternative model based on su-
perficial features, such as the existence of certain key words
in the questions, was not able to capture these judgments to a
reasonable degree.

Keywords: Bayesian modeling; active learning; information
search; question asking

Introduction

The ability to ask questions is a core quality of human cog-

nition. By asking questions, we can actively seek out infor-

mation that helps us learn about the world and achieve our

goals. Skilled question asking involves the ability to adjust

questions towards a particular goal as well as a sensitivity to

the context, including what was previously asked.

In contrast, machines have difficulty capturing these as-

pects of human inquiry. Recent work with neural net-

works has made progress on generating sensible questions

about images, such as “What caused this accident?” for

an image displaying a crashed motorbike lying on the street

(Mostafazadeh et al., 2016; Jain & Schwing, 2017), or about

passages of text (Du, Shao, & Cardie, 2017). Such ques-

tions can initiate a conversation between human and com-

puter, however these networks are not able to make sense of

any answer they might get to their question. As an intermedi-

ate solution, neural networks have been trained to predict the

answer to their own questions (Johnson et al., 2017). Another

ambitious approach has been to train neural networks end-to-

end on entire sequences of questions and answers (Lee, Heo,

& Zhang, 2018; Strub et al., 2017). However, the networks

still learn a fixed question asking strategy and cannot adapt to

new goals that were not included in the training regime.

Unlike neural network approaches, people can flexibly

adapt their questions based on their goals and the answers

they have received. Previous work has looked at how peo-

ple ask questions based on specific goals (e.g., Graesser,

Langston, & Bagget, 1993), or ask follow-up questions (e.g.,

Nelson, Divjak, Gudmundsdottir, Martignon, & Meder, 2014;

Ruggeri, Lombrozo, Griffiths, & Xu, 2016), but little model-

ing work has been done to test these aspects directly in nat-

uralistic tasks. Here, we study an intuitive question asking

task amenable to formal modeling. By systematically manip-

ulating core components of question asking such as goals and

previously asked questions, we can compare people’s behav-

ior to an ideal observer in a more naturalistic question asking

environment. For this purpose, we extend the computational

framework by Rothe, Lake, and Gureckis (2018) to handle

these facets of flexible question asking.

In the next section, we will introduce the question asking

environment, followed by the computational framework and

its extensions. We then report two experiments, in which we

test people’s ability to identify question quality under chang-

ing goals (Experiment 1) and after being provided with an-

swers to previous questions (Experiment 2). Finally, alterna-

tive models are discussed.

Battleship game environment

We adopt the Battleship task used by Rothe et al. because it

enables intuitive question asking for people while still being

amenable to formal modeling. In the Battleship task, partic-

ipants try to discover geometric shapes (i.e., battleships) on

a grid (i.e., game board). These ships have varying shapes,

colors, and locations (Figure 1). In our setting, there were

always exactly three ships on a 6x6 board and each ship got

a unique color from the set {blue, red, purple}. Each ship

is a rectangle with a width of 1 and a length sampled from

the set {2, 3, 4} and its orientation is sampled from the set

{horizontal, vertical}. Each ship is randomly placed on the

grid, ensuring they do not overlap.

In our experiments, participants face a partly revealed

game board, together with a set of natural-language questions

that could reveal more information about the board. Partici-

pants rank order these questions by quality taking either a

particular goal or an already-answered question into account

(Figure 2).

Modeling

We develop a Bayesian ideal-observer model of the task, as

used in prior work, and discuss extensions to handle goals and

previously answered questions.

Bayesian-ideal observer model

What does the hidden game board look like? The player be-

gins with maximal uncertainty about the game board, mod-

eled as a uniform prior belief distribution p(h) over all pos-

sible game boards. Then, the player updates this prior via

Bayes rule based on the information d presented by the partly

revealed game board,

p(h|d) =
p(d|h)p(h)

∑h′∈H p(d|h′)p(h′)
, (1)
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FOLLOW-UP 

QUESTIONS

Your goal: Find 

out which ships 
are touching the 

left border

Adjusting to a new goal

What is the 

color at 2A?

Deciding what to ask next

Is the purple 

ship horizontal?

First question: 
How many tiles is 

the purple ship?  

Answer: 3

GOAL FLEXIBILITY

A B C D E F

1
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5

6

Hidden gameboardPossible ships

random

samples

A B C D E F

1
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4

5

6

Revealed gameboard

G

1x

1x

1x

Figure 1: In the Battleship task, three ships are randomly positioned on a game board. The color at each location indicates a

ship (blue, red, or purple) or water (dark gray). Participants view a game board that only shows some tiles revealed and many

tiles yet unknown (light gray). They can then ask questions to obtain more information. Can people adjust their questions

towards specific goals (Experiment 1)? For example for the game board shown above, when the goal is to find out which ships

are touching the left border, a question targeting the color of tile 2A would be more useful than the question whether the red

ship is horizontal. Do people adjust their questions based on already-answered questions (Experiment 2)? For example, after

learning that the red ship is three tiles long, participants might be inclined to keep asking questions about the red ship before

addressing the other ships.

where H is the hypothesis space of 1.6 million game boards

and p(d|h) the likelihood function, which is 1 if d is consis-

tent with board h, and otherwise 0. The player can now ask

a question x to learn more. The answer to the question is as-

sumed to come from an oracle that knows the hidden game

board and answers truthfully. We use d again as the label

for the answer since it plays the same role as the partly re-

vealed game board before. The likelihood function is again 0

if answer d is inconsistent with board h. Otherwise it is 1
n
, to

account for cases where there is more than one valid answer,

from which the oracle then chooses uniformly. For instance,

for the question “What is the location of one purple tile?” the

oracle would indicate the location of one of the n purple tiles

on the true game board. Usually though, in our setting there

is only one valid answer, n = 1 (e.g., yes or no). We now

generalize to include the history of previous questions X and

their answers D, resulting in

p(h|d,D;x,X) =
p(d|h;x)p(h|D;X)

∑h′∈H p(d|h′;x)p(h′|D;X)
, (2)

where the semi-colon notation indicates that x and X are pa-

rameters rather than random variables (for the first question,

X and D are empty).

In preparation for the next section, we can compute the

posterior predictive probability that d will be the answer to

question x via

p(d|D;x,X) = ∑
h∈H

p(d|h;x)p(h|D;X). (3)

Expected Information Gain (EIG)

The player’s uncertainty about the hidden game board is

measured by the Shannon entropy of the belief distribution

(Shannon, 1948; see Crupi, Nelson, Meder, Cevolani, & Ten-

tori, 2018, for a discussion of alternative measures). The In-

formation Gain (IG) of a question x is then defined as the

amount by which this uncertainty is reduced when receiving

answer d. Since the player does not know the answer at the

time of asking, we compute an expected value:

EIG(x) = ∑
d∈Ax

p(d|D;x,X)
[

I[p(h|D;X)]− I[p(h|d,D;x,X)]
]

= Ed∈Ax

[

I[p(h|D;X)]− I[p(h|d,D;x,X)]
]

,

where I[·] is the Shannon entropy, and Ax are the possible an-

swers to question x. EIG has been used to describe a range

of information sampling behavior (see Coenen, Nelson, &

Gureckis, 2018, for an overview).

EIG for goal-directed questions. So far, EIG aims to re-

duce all uncertainty in p(h). In order to only reduce the un-

certainty that is relevant for a particular goal, we introduce

the goal state space g. To illustrate with an example in the

Battleship task, the goal “Find out which ships are touching”

has as goal states g the various possibilities of ships that could

be touching (i.e., none, blue|red, blue|purple, etc). Further-

more, g is defined as a projection of the hypothesis space h.

Table 1 provides a minimal example of such goal projection.

We can now measure the quality of a question x with respect

to goal g via

EIGgoal(x,g) = Ed∈Ax

[

I[p(g|D;X)]− I[p(g|d,D;x,X)]
]

.

(4)

In detail, we compute the belief distribution over the goal

states by marginalizing over h (here shown for the posterior,

the equivalent is to be done for the prior)

p(g|d,D;x,X) = ∑
h

p(g|h)p(h|d,D;x,X),

where p(g|h) is 1 if h is goal-projected onto g, and 0 other-

wise. More simply stated, for each goal state, we sum the

belief values from the hypotheses that are projected onto the

goal state. The EIG with respect to this goal is then the ex-

pected uncertainty reduction in the belief distribution over

982



Table 1: Simple example of a goal projection. Four hypothe-

ses in h are projected onto two goal states in g. The projection

results in a prior belief p(g) of 0.2 for goal state 1, and 0.8

for goal state 2.

p(h) h g

0 1 1

0.2 2 1

0.4 3 2

0.4 4 2

these states. For convenience, we will subsume EIGgoal under

the label EIG outside of this section.

EIG for follow-up questions. With the setup explained so

far, the ability to take an already answered question into ac-

count comes out-of-the-box for the EIG model. Observed

data D can be the visual information provided by the partly

revealed board, as well as the verbal information from the

answers to previous questions. The resulting knowledge is

encoded in the posterior belief distribution, p(h|d,D;x,X).

Experiment 1 – Asking goal-directed questions

In general, people ask different questions when they have dif-

ferent goals. When their goal changes, people should be able

to flexibly adapt the questions they want to ask. In this experi-

ment, we investigate whether people’s evaluations of question

usefulness are sensitive to specific goals.

Participants

Forty participants recruited on Amazon Mechanical Turk,

with restriction to the United States pool, were paid a base

of $2 with a performance based bonus of up to $4.86.

Method

In order to lead participants into a situation in which they

wanted to ask a question, we took a number of steps to make

them familiar with the Battleship task. First, participants

went through a tutorial that presented the game board and the

possible colors, sizes, orientations, and positions of the ships.

This key information was shown on the side over the whole

experiment and additionally checked in a comprehension quiz

after the tutorial. Next, participants went through a warm-up

phase, in which they began with a completely unidentified

game board and clicked on the grid tiles to turn over their

color, revealing more of the game board step by step.

Then, participants started the main phase, which consisted

of 18 randomized trials. The schema of a trial is shown in Fig-

ure 2. Participants first viewed a partly-revealed game board

and received a goal. They then ranked six natural-language

questions “such that good questions are at the top and not so

good questions are at the bottom” by dragging and dropping

each question into a sortable list. To make sure that people

paid attention to the questions, we displayed them one by one

in a random order and people had to press the correct button

How many tiles is the red ship?

Is there a red tile at 2C?

Is the red ship horizontal?

Are all ships vertical?

How many tiles in column B are occupied by ships?

How many tiles are occupied by ships?

A B C D E F

1

2

3

4

5

6

t part of thea)

A B C D E F

A

B

C

Goal A Goal B

Find out which tiles 

the red ship 

occupies.

Find out the size of 

each ship.

Figure 2: Experimental design of Experiment 1. In a given

trial, (A) participants view a partly revealed game board.

(B) Participants then receive one of two goals, randomly as-

signed. (C) Participants rank six questions by quality with

respect to the goal. In Experiment 2, Goal A and Goal B are

each replaced with an already-answered question.

that described the answer type of the question (either a color,

a coordinate on the grid, a number, or yes/no). For each cor-

rect response, a bonus of $0.045 was awarded. Allocating

bonuses in this way, rather than basing it on their ranking of

questions, discouraged participants from attempting to infer

a researcher-preferred ranking of questions.

All participants viewed the same 18 partly-revealed game

boards and corresponding question sets. But, as Figure 2 il-

lustrates, the goal they received was randomly chosen from

a predefined set of two goals for each context. The 18 game

boards and the corresponding questions were the same as in

Rothe et al., to ensure maximal comparability across studies

(see Rothe et al., 2018, for details on the design of the boards

and question sets).

The goals were designed as follows. We created a list of

goals that seemed interesting but intuitive, such as “Find out

which ships are touching the top border”, “Find out which

tiles the red ship occupies” which would allow people to ig-

nore the blue and purple ship, or “Find out the size of each

ship” which would allow them to ignore the orientation and

location of the ships.

For each context, we determined via computer simulation

a pair of opposing goals, such that the resulting EIG model

scores of the questions were maximally different when eval-

uated against each goal (as measured by correlation). Exam-

ples of these opposing goals are shown as titles of the panels

in Figure 3C. The average correlation between model scores

within the goal pairs was r =−0.28.
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Figure 3: Contexts and questions together with human rankings and model predictions. Three selected trials exemplifying

(A) the partly revealed game board, (B) the sets of six questions that were ranked by participants, (C) correlations of human

rankings (y-axis; higher is better) and model scores (x-axis) for these questions in Experiment 1, and (D) Experiment 2. The

letters a-f in the scatterplots correspond to letters marking the questions to the left. Error bars for ±1SE are not plotted as they

are only as large as the letters. Model scores are normalized to a maximum of 1.

Results

People’s preference for questions were highly sensitive to the

specific goals they had. Figure 3C shows how people’s rank-

ings of the same questions varied widely depending on the

different goals. For example, in the first row in Figure 3, the

question “Is the purple ship horizontal?” (marked with the

letter a) was ranked best for the goal “Find out the orientation

of each ship” but very low for the goal “Find out the size of

each ship.” The different rankings of this and other questions

were well captured by the EIG model, which took the respec-

tive goal that participants had into account. Figure 3C shows

several examples with strong correlations between EIG and

human rank scores. Across all contexts, the average Pearson

correlation between model scores and human rankings was

r = .84. In contrast, when we let the EIG model hypotheti-

cally take the respective opposite goal into account, correla-

tions dropped to an average r =−.16.

We also computed an “ignorant” model that ignored the

specific goal and instead tried to obtain as much information

as possible for the complete game board. A participant whose

ratings are well captured by this model is probably ignor-

ing the specific goal and instead plays the original Battleship

game. The average correlation for this model was r = .42.

Instead of comparing correlation coefficients, we con-

ducted a more sensitive model comparison that takes guess-

ing behavior into account. Model scores were transformed

into choice probabilities via the softmax function

p(x) =
e−βM(x)

∑x e−βM(x)
,

where M(x) is the model score (e.g., EIG(x)) and β is the

free temperature parameter, capturing more guessing behav-

ior as β → 0. For each model, β was fit per participant to the

rankings, and the resulting log-likelihood of the top ranked

question computed.

In direct comparison, EIG had higher log-likelihood than

EIGopposite, which took the opposite goal into account, for

38 out of 40 participants (95%). EIG also had a higher log-

likelihood than EIGignore, which ignored the goal, for 35 out

of 40 participants (88%).

We can conclude from this that people are very sensitive

towards the specific goals when making question evaluations

in our task, and that their evaluations are well predicted by our

goal-oriented Bayesian ideal-observer EIG model with zero

free parameters.

Experiment 2 – Asking follow-up questions

We test the EIG model further with the very natural task of

deciding what to ask next, after a question was already an-

swered.
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Participants

A separate set of forty participants recruited on Amazon Me-

chanical Turk, with restriction to the United States pool, were

paid a base of $2 with a performance based bonus of up to

$4.86.

Method

The materials and procedure were identical to Experiment 1,

except that instead of a goal, a question and its answer were

displayed. That is, for each context, there was a predefined

set of two already-answered questions from which one was

randomly chosen for each participant (cf. Figure 2).

As for the pairs of goals in Experiment 1, we identified via

computer simulation pairs of already-answered questions that

were as anti-correlated as possible. The following procedure

was repeated for each game board context. From a list of 136

unique questions we simulated all possible answers to each

question. For example, the question “How many tiles in row

6 are occupied by ships?” (Figure 3D, first panel) has the

possible answers {0, 1, ..., 6}. Then, for each question-and-

answer combination, we computed what the resulting EIG

scores would be for the six questions (Figure 3B) that now

served as follow-up question candidates. As before, we cre-

ated pairs of already-answered questions that had the most

different model scores for the follow-up question candidates,

as measured by the lowest correlation. The average correla-

tion between model scores within the pairs was r = 0.02.

Results

People’s rankings of the follow-up questions are generally

sensitive to the information provided by the already-answered

question. Figure 3D shows the correlations between the EIG

model and human rankings. Overall, the average Pearson cor-

relation was r = 0.71. When computing EIG by hypotheti-

cally taking the opposed already-answered question into ac-

count, the average correlation dropped to r = 0.29. When

computing EIG that ignores the information from the an-

swered question, the average correlation was r = 0.60. This

suggests that people evaluated the usefulness of the follow-

up questions by integrating the verbal information provided

by the first question and its answer.

Again, instead of comparing correlation coefficients, we

modeled people individually via a softmax function. EIG had

a higher log-likelihood than EIGopposite for 28 out of 40 par-

ticipants (70%). Using a softmax function again and model-

ing people individually, EIG had a higher log-likelihood than

EIGopposite for 28 out of 40 participants (70%). Surpris-

ingly, EIG had a higher log-likelihood than EIGignore for

only 21 out of 40 participants (52%). The latter comparison

suggests that a fair number of participants were not sensitive

to the information from the answered question.

To inspect this result more carefully, we set up a hybrid

model that balanced between EIG and EIGignore with a free

parameter, θEIG(x)+(1−θ)EIGignore. The balancing param-

eter θ was fit simultaneously with the softmax guessing pa-

rameter β for each person. The resulting distribution suggests
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Figure 4: The θ values among participants. A participant’s θ
could be taken as an indicator for how much she considered

the information from the answered question in Experiment 2.

The binwidth is .05.

that nine participants (23%) took the information that the an-

swered question provided accurately into account (θ > .95),

seven (18%) completely ignored the information (θ < .05),

and 24 (60%) exhibited a mixed strategy (Figure 4). Under

this analysis it is still possible that the in-between participants

used a different strategy, neither captured by EIG nor EIGig-

nore. Yet, the log-likelihoods for these participants were as

good as for the others suggesting that they did indeed use a

mix of EIG and EIGignore. Thus, a participant’s θ could be

interpreted as the amount to which she considered the verbal

information from the answered question.

Word-based model. We further considered an alternative

model that takes a word-based approach. One strategy peo-

ple might exhibit is to keep focusing on getting information

about the ship they already have some details on. For in-

stance, if the answered question provides information that the

red ship is horizontal, they might prefer to learn about the

size of the red ship before moving on to the next ship. Thus

the word-based model looks for signal words that match the

already-answered question and the follow-up question. For-

mally, the Color feature compares the color words {blue, red,

purple, water} in the answered question with those in the

follow-up question candidates. If there exist color words in

both questions and they are the same, then the Color feature

assigns a 1 to the follow-up question, else a 0. To illustrate,

consider the right panel in the third row in Figure 3D. The

already-answered question “Is the red ship 3 or more tiles

long?” mentions the red ship. Therefore, the model would

prefer the follow-up questions c and e because they also men-

tion the red ship. Indeed, c and e were both ranked somewhat

higher than predicted by the EIG model. Overall, questions

that were ranked as best by people had more often matching

color words (23%) with the already-answered question than

the lower ranked questions (12-21%).

Another strategy that people might employ is to prefer a

question of the same type as of the one that was already an-

swered. The Type feature categorizes questions into mutually

exclusive groups of ship orientation, ship size, adjacency, re-

gion, location, and demonstration questions. This classifica-
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tion follows the one described in Rothe et al. (2018). The

Type feature simply assigns a 1 if both questions are classi-

fied into the same type, else 0. Illustrating for the same case

as above, the feature classifies the answered-question into the

ship size type, to which also follow-up questions a, d, and

e belong, which therefore get a higher score. Overall, ques-

tions that people ranked worst were more often of the same

question type as the already-answered question (30%) than

the higher ranked questions (21-23%).

The word-based model combines both features in a linear

combination. We fitted a linear regression using both features

as predictors and participants’ average rank scores as crite-

rion. However, only little variance in people’s rankings could

be explained this way, R2 = 0.05.

Discussion

We tested people’s preference for questions in two crucial

situations: when asking goal-directed questions and when

asking follow-up questions. In Experiment 1, we manip-

ulated the goal that people had, while keeping everything

else constant. People’s rankings of question quality dramat-

ically shifted based on the goal they were assigned. The

rankings were well predicted by our Bayesian ideal-observer

model of Expected Information Gain (EIG) with zero free pa-

rameters. In Experiment 2, we manipulated what already-

answered question people received, while keeping everything

else constant. Again, people’s rankings shifted strongly based

on the answered question. However, the picture was less clear

than in the first experiment. While generally people’s rank-

ings were well predicted by the EIG model, detailed analy-

sis suggested that people varied in the amount to which they

integrated the information provided by the already-answered

question. An alternative model that approximated question

usefulness based on superficial features could not explain hu-

man rankings.

So far, neural network approaches to question asking gen-

erally struggle with the flexibility that is necessary to take

previous answers and goals into account. To reach competi-

tive performance in simple tasks they already need training on

large data sets with tens of thousands of questions. In order to

add sensitivity towards specific answers and goals would re-

quire additional training likely in orders of magnitude more.

One of the strengths of the Bayesian approach is the seam-

less integration of visual and verbal information. The visual

information from the partly revealed game board and the ver-

bal information from the answered question were both inte-

grated into a unified posterior. In our current analysis we only

considered varying degrees to which people considered the

verbal info from the answered question. It is also possible

that people did not perfectly take the visual information from

the partly revealed board into account. In future work, we will

further explore people’s integration of high-level information.

We extended the computational framework to two aspects

of question asking—more needs to be done. In our setting, we

assumed a reliable, all-knowing oracle that is providing the

answers. However, the relationship between question, ground

truth, and generated answer is not as deterministic in many

real-world settings. For example, in social settings, peo-

ple need to take into account the knowledge state and goals

of their communication partner. This aspect has been ele-

gantly modeled in the Rational Speech Act framework, where

a questioner has an internal model of the answered that she

simulates recursively before deciding what to ask (Hawkins

& Goodman, 2017). We see our approach as complementary

to this RSA model. Future work should aim to integrate both.
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Abstract 

Music training is commonly thought to have a positive impact 
on children’s cognitive skills and academic achievement. This 
belief relies on the idea that engaging in an intellectually 
demanding activity helps to foster overall cognitive function. 
We here present a meta-analysis of music-intervention studies 
in children (N = 3,780, k = 204, m = 43). Consistent with the 
substantial findings in the field of cognitive training, the overall 
effect size was small (�̅� = 0.117, p < .001). Moreover, when 
active controls were implemented, the effect was practically 
null (�̅� = 0.032, p = .477) and highly homogeneous (ω2 = 0.000 
and τ2 = 0.000). Finally, we observe that several independent 
research groups have concluded, via different methodologies, 
that music skills acquired by training do not generalize to non-
music skills. Thorndike and Woodworth’s (1901) common 
elements theory finds thus further support. 

Keywords: music; cognitive training; meta-analysis; transfer 
of skills. 

Introduction 
Many parents encourage their children to play a musical 
instrument. Their hopes sometimes go beyond proficiency in 
playing music: they enroll their children in violin or piano 
lessons not only to nurture their musical talent but also 
because they assume that music training will help their 
children to get better at school or even become more 
intelligent. 

The idea that learning how to play an instrument improves 
one’s cognitive abilities and academic achievement is 
popular. Music ability is often associated with talent and 
superior cognitive skills. Blogs and newspapers often report 
enthusiastically on the benefits of music for the intellect (e.g., 
Jaušovec & Pahor, 2017). Even the popular TV series The 
Simpsons has echoed this common belief by defining musical 
instruments as “the way to encourage a gifted child.” 

The conviction that music training enhances cognitive 
ability and academic achievement relies on the assumption 
that music skills acquired by training can generalize to non-
music domains. However, what does the scientific research 
in the field tell us about music training? Is this assumption 
correct? 

Why Should Music Training Enhance Cognition? 
As just mentioned, music training has been claimed to 
improve a broad range of cognitive and academic skills. 
However, how is music training supposed to provide such 
diverse benefits? The standard hypothesis relies on the idea 
that it is possible to train domain-general cognitive abilities 
by engaging in intellectually demanding activities. Learning 
how to play a musical instrument engages executive 
functions such as cognitive control and working memory 
(Bialystok & Depape, 2009). In addition, music training 
requires focused attention and learning complex visual 
patterns. Schellenberg (2006) has thus proposed that the most 
likely explanation for the presumed broad set of benefits 
provided by music training is that it enhances individuals’ 
overall cognitive function and general intelligence. These 
cognitive skills are major predictors of academic 
achievement (e.g., Deary et al., 2007), and it might be the 
case that some domain-specific abilities acquired by music 
training generalize to other non-music skills. 

One further theoretical foundation for the hypothesis 
according to which music training exerts a positive influence 
on overall cognitive ability is neural plasticity. Neural 
plasticity is the ability of the neural system to modify and 
adapt under the pressure of the environment (Strobach & 
Karbach, 2016). In turn, the changes in the neural system are 
supposed to account for improvements in cognitive tests. In 
fact, musicians do exhibit specific anatomical and functional 
neural patterns. An increased density of gray matter in 
musicians has been observed in areas involved in cognitive 
skills such as auditory localization (right Heschl’s gyrus; 
Bermudez et al., 2009) and language production (Broca’s 
area; Sluming et al., 2002). 

With regard to functional differences, expert musicians 
seem to show, for example, enhanced bilateral activation of 
the Rolandic operculum (for a review, see Neumann, Lotze, 
& Eickhoff, 2016). This activation probably reflects superior 
ability in the processing of auditory information (Koelsch et 
al., 2006). While there is empirical support for the hypothesis 
that music training induces significant anatomical and 
functional changes in the brain, which sometimes lead to 
unexpected behavioral skill differences (e.g., superior 
memory for randomized music-related material; Sala & 
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Gobet, 2017a), the evidence that these neural changes lead to 
increased cognitive function is much weaker, as discussed in 
the following sections. 

Correlational Evidence 
There is strong empirical evidence for a link between superior 
cognitive ability and musical skill. In a study by Ruthsatz et 
al. (2008), a group of professional musicians outperformed a 
group of novices in a standardized measure of fluid 
intelligence (Raven’s Progressive Matrices). Lee, Lu, and Ko 
(2007) found a correlation between music skill and working 
memory. In the same vein, Saarikivi et al. (2016) found that 
neural sound discrimination predicted performance on an 
inhibition task and a set-shifting task in a sample of children 
and young adolescents. Finally, Schellenberg (2006) reported 
positive, yet moderate, correlations between engagement in 
musical activities and IQ in a group of children and 
undergraduates. Critically, this positive relationship 
remained even after controlling for parental income and 
education. 

Music ability correlates with academic skills as well. 
Anvari et al. (2002) found that music perception skills 
correlated with reading abilities in preschool children. 
Similarly, Forgeard et al. (2008) reported that music 
discrimination skill correlated with phonological processing 
ability in a group of dyslexic and typically-developing 
children. In line with these studies, Wetter, Koerner, and 
Schwaninger (2009) reported a positive relationship between 
engagement in musical activities and overall academic 
attainment. 

Experimental Evidence and Present Study 
As just seen, music skill is positively associated with 
measures of fluid intelligence, memory, and academic 
achievement. However, while music skill and cognitive 
ability are correlated, to date there is no clear evidence of a 
causal relationship from engagement in music training to 
superior cognitive function. 

A meta-analysis of all the available studies (Sala & Gobet, 
2017b) has expressed pessimism about the actual possibility 
of music-training interventions to enhance children’s 
cognitive and academic skills. All the studies included in this 
meta-analysis are true experiments: individuals with no (or 
negligible) music experience are allocated to a music-training 
group and one or more control groups. This meta-analytic 
review has found modest or null effects of music training on 
cognitive abilities such as intelligence, memory, spatial 
ability, and phonological processing (see also Gordon, Fehd, 
& McCandliss, 2015). Similar modest or null effects have 
been found with academic skills such as mathematics and 
literacy. Furthermore, meta-regression analysis has 
highlighted that the between-study variability is moderated 
by the type of control group (active or passive) and the type 

                                                           
1 The Kodály method is a well-known educational protocol that 

focuses on singing, ear training, and the creative skills of 
musicianship. For more details, see http://kodaly.org.uk/. 

of allocation to the groups (randomized or nonrandomized). 
While the studies with no random allocation and passive 
control groups show some positive effects, when the music-
trained groups are randomly allocated and compared to an 
active control group, the effects are null. 

Although Sala and Gobet’s (2017b) meta-analytic review 
suggests pessimism, numerous new experimental studies 
have been carried out in the last three years. Some of these 
studies have reaffirmed the idea that music training has a 
positive influence on children’s cognitive and academic 
skills. However, the impact of these new studies on the 
overall evaluation of the field of music training has not been 
assessed yet. 

The present study intends to update Sala and Gobet’s 
(2017b) meta-analysis and test the recent claims about the 
presumed cognitive and academic benefits of music training 
(e.g., Habibi et al., 2018). To achieve this goal, we (a) extend 
the literature research to the last three years (from January the 
1st 2016 to December the 31st 2018), (b) apply a more 
advanced modeling approach, and (c) provide stricter 
inclusion criteria to improve, compared to Sala and Gobet 
(2017b), the average quality of the studies included in the 
meta-analytic review.  

Method 

Literature Search 
A systematic search strategy was implemented (Moher et al., 
2009). Using the following Boolean string search (“music” 
OR “musical”) AND (“training” OR “instruction” OR 
“education” OR “intervention”), ERIC, Psyc-Info, and 
ProQuest Dissertation & Theses databases were searched to 
identify all the potentially relevant studies. In addition, all the 
studies included in Sala and Gobet (2017b) were reevaluated 
for inclusion. Also, we e-mailed researchers in the field (n = 
8) asking for unpublished studies, clarifications about the 
study design, and inaccessible data. 

Inclusion Criteria 
We kept the same inclusion criteria as Sala and Gobet 
(2017b). The study had to include (a) a cognitively-
demanding music-training program (e.g., learning to play 
instruments, Kodály method,1 etc.; no correlational studies 
were included), (b) at least one control group, (c) non-music-
related cognitive or academic outcomes,2 and (d) participants 
aged between 3 and 16 with no diagnosed clinical condition 
or previous formal music experience. 

In order to improve the overall quality of the reviewed 
empirical evidence, the present meta-analysis added three 
more criteria: (e) the article had to report (or the author had 
to provide) the means and standard deviations in order to 
calculate the effect size and sampling error variance; (f) the 
participants had to be allocated by the experimenter to a 

2 For a discussion about the potential benefits of music instruction 
on non-cognitive/academic skills, see Aleman et al. (2017). 
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group (randomly or nonrandomly); that is, they were not 
allowed to decide to which group (experimental or control) 
they would be allocated; and (g) the experimental group and 
the control group had to include comparable populations 
(e.g., same grade, comparable baseline IQ, etc.). These 
additional criteria led to the exclusion of eight studies 
previously included in Sala and Gobet (2017b). 

Moderators 
We chose (a priori) five potential moderators that were 
included in the meta-regression analysis: 
1. Allocation (dichotomous variable): Whether the children 

were randomly allocated to the groups; 
2. Type of control group (active or passive; dichotomous 

variable): Whether the WM training-treated group was 
compared to an alternative activity (e.g., visual arts) or a 
do-nothing (passive) control group. This moderator was 
necessary to check for placebo effects; 

3. Baseline difference (continuous variable): The 
standardized mean difference (Hedges’s g) between the 
experimental and control groups at baseline.3 A negative 
regression coefficient would suggest the presence of 
some true heterogeneity due to regression to the mean; 

4. Age (continuous variable): The age of the participants in 
years; 

5. Outcome Measure (categorical variable): The effect 
sizes were clustered into four broad categories: non-
verbal ability (e.g., reasoning, mathematical, and spatial 
skills); verbal ability (e.g., vocabulary and reading 
skills); memory (e.g., digit-span and working-memory 
tasks); and speed (e.g., processing speed and inhibition 
tasks).4 The interrater agreement was perfect (κ = 1). 

Modeling Approach 
We extracted the effect sizes for each relevant dependent 
variable reported in the studies using the formulas provided 
by Schmidt and Hunter (2015). Several studies presented 
multiple-group comparisons – for example, between one 
experimental group and two control groups (one active and 
one passive), or between two experimental groups and one 
control group. In these cases, we calculated as many effect 
sizes as the number of comparisons. 

We grouped all the effect sizes from the same study into 
the same cluster. Then, we employed robust variance 
estimation (RVE; Hedges, Tipton, & Johnson, 2010) to 
model statistically dependent effect sizes and calculates 
adjusted (i.e., increased) overall standard errors. Also, RVE 
provides estimates of within-cluster true (i.e., not due to 
random error) heterogeneity and between-cluster true 
heterogeneity (ω2 and τ2, respectively). We ran (a) intercept 
models to calculate overall effect sizes and (b) meta-
regression models to assess the amount of true heterogeneity 
explained by the moderators. 

                                                           
3 Five studies implemented an only-post-test design. In those 

cases, baseline differences were assumed to be null to keep these 
studies in the moderator analysis. 

Publication Bias 
To control for publication bias, we first merged the effects 
from the same study with the method designed by Cheung 
and Chan (2014; individual-samplewise procedure). The 
method averages the effect sizes from the same cluster (in this 
case, the study) and calculates a corrected sampling error 
variance in order not to miscalculate standard errors and true 
heterogeneity. Then, we ran a random-effect model with the 
merged effect sizes and applied the trim-and-fill publication-
bias detection method (Duval & Tweedie, 2000; estimators 
L0, R0, and Q0). 

Results 
The search yielded 2,462 records, of which 72 studies were 
thoroughly evaluated for inclusion. Forty-three studies, 13 of 
which not included in Sala and Gobet (2017b), met the 
inclusion criteria with a total of 204 effect sizes (Sala & 
Gobet, 2017b, included 118 effect sizes). The total number of 
participants was 3,780. Three researchers replied to our 
emails. The supplemental materials including details about 
the studies, techniques employed, additional analyses, data, 
and R codes, can be found at this link: https://osf.io/2gce3/. 

Main Model 
The intercept model did not include any covariate (i.e., 
moderator). The overall effect size of the RVE intercept 
model was �̅� = 0.117, 95% CI [0.063; 0.170], m = 43, k = 
204, df = 17.25, p < .001, ω2 = 0.010, τ2 = 0.005. The overall 
impact of music-training interventions was thus small (�̅� = 
0.117, 95% CI [0.063; 0.170]), albeit statistically significant 
(p < .001). 

After merging the effects from the same cluster (i.e., the 
study), the results of the random-effect model were very 
similar: �̅� = 0.140, 95% CI [0.064; 0.217], p < .001, k = 43, 
τ2 = 0.018. The trim-and-fill analysis indicated some 
publication bias (estimates ranging between 0.046 and 
0.122). 

Meta-Regression Analysis 
The meta-regression model included the five moderators 
described in the Method section. Baseline and Type of 
control group were the only two significant moderators (p = 
.019 and p = .003, respectively). These two moderators 
explained almost all the observed true heterogeneity (ω2 = 
0.000 and τ2 = 0.005). We also checked all the pairwise 
comparisons for the outcome measures with the Holm’s 
method (for details, see the supplemental materials). None of 
the comparisons yielded significant differences (all ps ≥ 
.610). 

Finally, we sorted the effect sizes by the moderator Type 
of control group. The overall effect size of the RVE model 
including only passive-control comparisons was �̅� = 0.173, 

4 A more fine-grained categorization was also analyzed (for 
details, see supplemental materials).  
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95% CI [0.094; 0.253], m = 33, k = 112, df = 19.02, p < .001, 
ω2 = 0.008, τ2 = 0.019. The overall effect size of the RVE 
model including only active-control comparisons was �̅� = 
0.032, 95% CI [-0.068; 0.132], m = 19, k = 92, df = 7.09, p = 
.477, ω2 = 0.000, τ2 = 0.000. Thus, while a small positive and 
significant effect was observed when passive controls were 
implemented, no substantial effect occurred when music-
treated subjects were compared to controls involved in other 
activities (Table 1). 

 
Table 1: Summary of the results. 

 
Sample �̅� [95% CI] p-value 
All 0.117 [ 0.063; 0.170] .000 
Exp. vs passive 0.173 [ 0.094; 0.253] .000 
Exp. vs active 0.032 [-0.068; 0.132] .477 

Discussion 
The present meta-analysis has aimed to update and check the 
findings of the most recent and comprehensive meta-analysis 
about the impact of music instruction on children’s non-
music-related cognitive and academic skills. It has included 
new studies and nearly doubled the number of effect sizes 
compared to Sala and Gobet (2017b). Nonetheless, the results 
of this meta-analysis confirm most of the findings reported in 
Sala and Gobet (2017b). Most importantly, when only those 
designs implementing an active control group are considered, 
the effect of music training is practically null (�̅� = 0.032, p = 
.477) and highly consistent (ω2 = 0.000, τ2 = 0.000). On the 
other hand, the comparison between music-trained groups 
and passive controls yields a minimal overall effect (�̅� = 
0.173, p < .001) that is easily accounted for by placebo 
effects. Therefore, the effects of music training on children’s 
cognitive skills and academic achievement are unspecific. 
Consistent with this explanation, there were no differences 
between outcome measures, which suggests that the effects 
of music training (when any) are unspecific.  

Finally, beyond supporting Sala and Gobet’s (2017b) 
findings, this meta-analysis highlights new aspects. First, the 
lack of randomization does not seem to affect the outcomes. 
On the other hand, compared to Sala and Gobet (2017b) using 
more rigorous inclusion criteria (e.g., no studies with self-
selected participants) lowers the overall effect size (from 
0.173 to 0.117) and, most notably, the amount of true 
heterogeneity (from ω2 = 0.088 to ω2 = 0.010, and from τ2 = 
0.023 to τ2 = 0.005).5 Second, regression to the mean appears 
to explain a significant amount of true heterogeneity. This 
finding does not imply that baseline differences have affected 
the overall effects. Rather, it means that some of the observed 
true heterogeneity is spurious (i.e., due to a statistical 
artifact). 

                                                           
5 These statistics were obtained by reanalysing Sala and Gobet’s 

(2017b) original dataset with the same multilevel approach used in 
the current meta-analysis (i.e., RVE).    

Triangulation 
Beyond meta-analytic evidence, our findings are supported 
by substantial research into the field of music cognition using 
different methodologies. Mosing et al. (2016) have shown 
that music-trained twins do not have a higher IQ than the 
relative non-music-trained co-twins. The study thus suggests 
that the level of IQ is determined, to a significant extent, 
genetically and that engaging in music has no effect on it. 
Also, Swaminathan, Schellenberg, and Khalil (2017) have 
recently shown that music aptitude, but not the amount of 
music training, predicts intelligence in a sample of adults. 
The association between intelligence (Raven’s progressive 
matrices) and music training is evident until music aptitude 
is taken into account and added to the regression model. 

Strong support for our conclusions is also provided by the 
fact that the same pattern of results has been found in other 
domains, including chess training, working-memory training, 
and brain training. Expertise in chess has been found to 
correlate with a broad range of cognitive skills such as fluid 
intelligence, processing speed, short-term memory, and 
spatial ability (e.g., Burgoyne et al., 2016). Moreover, expert 
chess players differ from novices and non-players in terms of 
neural anatomical and functional patterns (e.g., Bilalić et al., 
2010; Hänggi et al., 2014). However, chess training does not 
seem to trigger any genuine improvement in overall cognitive 
ability or academic achievement (Sala & Gobet, 2016). 
Analogously, fluid intelligence and working memory 
capacity are strongly correlated, yet working memory 
training exerts no effect on fluid intelligence (e.g., Melby-
Lervåg et al., 2016). The absence of far-transfer effects is 
observed even in the presence of functional neural changes 
(Clark, Lawlor-Savage, & Goghari, 2017). A similar pattern 
of results has been reported in brain training as well (for a 
review, see Simons et al., 2016). This outcome upholds the 
idea that such neural patterns underlie domain-specific skills 
(e.g., performance in working-memory tasks) rather than 
overall cognitive function. 

These similarities between the results obtained with 
training studies in different domains induce further 
pessimism about the concrete possibility of enhancing 
domain-general cognitive skills through the engagement in 
intellectually demanding activities. In brief, the idea of 
enhancing overall cognitive ability through training appears, 
to date, scientifically implausible (Sala & Gobet, 2019). 

Concerning the observed neural patterns in musicians, 
understanding their actual significance is essential. It is 
doubtful that functional changes occurring after a music-
training intervention represent domain-general 
improvements in cognitive function. Instead, it is probable 
that such neural patterns underlie the enhancement of music-
related skills such as pitch discrimination (e.g., Nan et al., 
2018). It is thus imperative not to erroneously interpret – as 
sometimes happens (e.g., Habibi et al., 2016) – that 
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functional neural changes in brain areas involved in domain-
general cognitive abilities are evidence of cognitive 
enhancement. The same applies to anatomical neural changes 
(e.g., increased density of gray matter). Such patterns 
frequently observed in professional musicians are most likely 
neural correlates of their domain-specific expertise rather 
than superior overall cognitive ability. 

Theoretical and Practical Implications 
Taken together, the findings of the research into music 
expertise and music training depict a consistent picture: while 
a positive relationship between music skill and cognitive 
ability does exist, the benefits of music training do not go 
beyond the acquisition of music-related skills. In other words, 
engaging in music does not make people smarter. Instead, as 
suggested by the research of Mosing et al. (2016) and 
Swaminathan et al. (2017), smarter people seem to be more 
likely to engage and succeed in music. 

Two major theoretical implications stem from the above 
results. First, the lack of generalization of music skills 
acquired by training provides further corroboration for 
Thorndike and Woodworth’s (1901) common elements 
theory and theories based on the mechanism of chunking. 
According to Thorndike and Woodworth’s theory, transfer of 
skills is a function of the extent to which two (or more) 
domains overlap. Thus, transfer of skill between two (or 
more) domains only loosely related to each other (i.e., far 
transfer) hardly occurs. Similarly, chunking and template 
theories (Chase & Simon, 1973; Gobet & Simon, 1996) 
predict modest or no transfer across different domains or even 
subdomains of expertise (for a review, see Gobet, 2016). This 
is because these theories uphold the idea that skill acquisition 
is based, to a large extent, on perceptual information (i.e., 
perceptual chunks and templates), which is hardly 
transferable across different domains given its highly 
domain-specific nature. Conversely, theories predicting the 
generalization of trained skills across different domains (e.g., 
Strobach & Karbach, 2016) are not supported by these 
outcomes.  

Second, the observed correlation between music skill and 
cognitive ability, together with the lack of broad cognitive 
effects following music training, suggests that talent is an 
essential requisite for achieving expertise in music 
(Schellenberg, 2015). In line with the conclusions of 
Macnamara, Hambrick, and Oswald (2014), substantial 
research into music confirms that the amount of deliberate 
practice alone cannot account for the individual differences 
in music expertise. 

Beyond theoretical aspects, the obvious practical 
implication is that music training should not be used as a tool 
for cognitive enhancement. In fact, music training has failed 
to offer any specific advantage in terms of both cognitive 
enhancement and academic achievement. These conclusions 
are made even stronger if we take into consideration that 
music training has been found substantially ineffective even 
at enhancing those skills traditionally believed to be tightly 

close to music skill, such as phonological processing and 
literacy (e.g., Kempert et al., 2016).  

Recommendations for Future Research and 
Conclusions  
As seen, music training does not affect any non-musical 
cognitive or academic skills. Importantly, the lack of 
generalization of music skills acquired by training has been 
established by different research teams using diverse research 
methodologies (twin studies, hierarchical multiple 
regression, and meta-analysis of treatment studies). 

We briefly discuss some possible avenues of research. As 
noted above, the quality of experimental designs is inversely 
related to the size of the effects of music-training 
interventions and cognitive-training interventions in general 
(Moreau, Kirk, & Waldie, 2016). Therefore, future studies 
should strive for high-quality experimental designs 
regardless of the particular outcome variables and population 
under investigation. We thus recommend including both 
active and passive control groups, random allocation of the 
participants, pre-, post-, and follow-up assessment, multiple 
measures of the same constructs, and large samples. 

It is worth emphasizing that the findings reported here 
about the null effects of music training do not imply that 
music is a worthless activity. Rather, the purpose of this 
article has been to clarify what are the real effects of music 
training in order to allow people to make informed decisions. 
Educators and policymakers should be aware that music 
training provides no benefits on non-music-related cognitive 
or academic skills (e.g., Nan et al., 2018). As far as we are 
concerned, even in the absence of other cognitive or 
academic benefits, it is worthwhile learning an art present in 
nearly all the cultures in human history. 
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Abstract

A foundational goal of linguistics is to investigate whether
shared features of the human cognitive system can explain
how linguistic patterns are distributed across languages. In
this study we report a series of artificial language learning ex-
periments to test a hypothesised link between cognition and a
persistent regularity of morpheme order: number morphemes
(e.g., plural markers) tend to be ordered closer to noun stems
than case morphemes (e.g., accusative markers) (Greenberg,
1963). We argue that this typological tendency may be driven
by a bias favouring orders that reflect scopal relationships in
morphosyntactic composition (Bybee, 1985; Rice, 2000; Cul-
bertson & Adger, 2014). We taught participants an artificial
language with noun stems, and case and number morphemes.
Crucially, the input language indicated only that each mor-
pheme preceded or followed the noun stem. Examples in
which two (overt) morphemes co-occurred were held out—i.e.,
no instances of plural accusatives. At test, participants were
asked to produce utterances, including the held-out examples.
As predicted, learners consistently produced number closer to
the noun stem than case. We replicate this effect with free
and bound morphemes, pre- or post-nominal placement, and
with English and Japanese speakers. However, we also find
that this tendency can be reversed when the form of the case
marker is conditioned on the noun, suggesting an influence of
dependency length. Our results provide evidence that univer-
sal features of cognition may play a causal role in shaping the
relative order of morphemes.
Keywords: linguistic universals; artificial language learning;
morpheme order; case; number

Introduction

Human languages are incredibly diverse in the way they com-
bine meaningful units, i.e., morphemes; nevertheless, certain
regularities are apparent. For example, some patterns of mor-
pheme order occur more frequently across the languages of
the world, while others are rare or even unattested. The ty-
pological regularity in morpheme order we target here con-
cerns number and case morphology, specifically, languages
in which there is a boundary between these morphemes. For
example, in agglutinating languages such as Hungarian or
Turkish, there is distinct set of number morphemes (mark-
ing plurality) and case morphemes (marking grammatical
roles). In such languages, when overt morphemes of both
number and case are present on a stem, and both follow or
both precede the noun stem, the expression of number is al-
most always realised closer to the noun stem than the ex-
pression of case (Universal 39; Greenberg, 1963). There

are a number of candidate explanations for this phenomenon,
which intersect with high-level hypotheses about how mor-
pheme (and word) order is determined in language more gen-
erally. For example, it has been proposed that semantic or
compositional relationships among morphemes, sometimes
called scope, determine linear order (Bybee, 1985; Wunder-
lich, 1993; Rice, 2000; Culbertson & Adger, 2014).1 On
one formulation, morphemes which more directly affect or
modify the semantic content of the stem have narrower scope
(Bybee, 1985; Rice, 2000). Wider-scope morphemes mod-
ify the larger semantic constituent which includes any lower
scoping morphemes. Perhaps the best-known example of this
is the order of derivational and inflectional morphemes (e.g.,
‘neighbor-hood-s’). On this account, derivational morphemes
are ordered closer to the stem because they change its lexical
meaning. Inflectional morphemes scope higher, modifying
grammatical properties of the stem plus any derivational mor-
phemes. Similarly, it has been claimed that the linear order
of nominal modifiers (e.g., adjectives, numerals, demonstra-
tives) reflects semantic scope relations (Culbertson & Adger,
2014; Bouchard, 2002). In the case of Universal 39, the idea
would be that case scopes higher than number because num-
ber directly modifies the entity referred to by the noun, while
the case morpheme signals an external relationship between
the entity and some event. Following Culbertson and Adger
(2014), we call orders which reflect scope relations scope-

isomorphic.
A second possible explanation appeals to frequency and

its effects on processing. For example, Ryan (2010) shows
that in some cases morpheme order reflects the frequency
of stem+morpheme bigrams (see also Baayen, 1993; Rice,
2011). Along similar lines, Hay (2001) argues that when a
stem is more frequent alone than with a particular affix, then
that affix is easier to parse (decompose) from the stem. This
in turn determines linear order: more parsable affixes appear
farther from the stem than less parsable ones (see also Hay
& Plag, 2004; Plag & Baayen, 2009; Manova & Aronoff,
2010). How might this explain Universal 39? It could be that

1Related theories argue that universal morphosyntactic hier-
archies, potentially reflecting semantics, determine order (Baker,
1985; Grimshaw, 1986; Cinque, 2005).
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number tends to be expressed more often than case, or that
case morphemes tend to be more parsable than number mor-
phemes. On this account, there is nothing about the seman-
tics of these morphemes that determines their relative order.
Indeed, a third possibility is that their relative order reflects
patterns of diachronic change: it could be that languages tend
to grammaticalise number before case (Givón, 1979).

To date, there is no direct behavioral evidence adjudicat-
ing among these potential explanations for Universal 39. In
fact, there is no independent evidence beyond the typology to
show that placing number closer to the noun stem than case
is in fact preferred over the reverse. In a series of three ar-
tificial language learning experiments, we test the link be-
tween this typological generalisation and a bias towards lin-
ear orders that mirror scopal relationships (henceforth scope-
isomorphic orders). To summarise, we find support for this
hypothesis across two language populations (English, and
Japanese) independent of morpheme position (before or after
the noun stem), degree of boundedness, and frequency. All
things equal, learners therefore prefer scope-isomorphic or-
ders. However, we also find that conditional allomorphy be-
tween the stem and the case marker can reverse participants’
preferences. We interpret this as a competing bias for local
dependencies. This result adds to the growing body of work
using these experimental methods to investigate how learning
and use shape morphology and word order (Hupp, Sloutsky,
& Culicover, 2009; Fedzechkina, Jaeger, & Newport, 2012;
Culbertson & Adger, 2014; Culbertson, Smolensky, & Leg-
endre, 2012; Tabullo et al., 2012; Futrell, Mahowald, & Gib-
son, 2015; Fedzechkina, Chu, & Jaeger, 2018).

Experiment 1

Methods

The artificial language learning experiments described here
use an extrapolation paradigm (called ‘Poverty-of-the-
stimulus’ paradigm elsewhere, Wilson, 2003; Culbertson &
Adger, 2014). This means learners are trained on input that is
designed to be ambiguous between (at least) two patterns of
interest: here, two potential ways of ordering case and num-
ber morphemes. Learners are exposed to a miniature artifi-
cial language with nouns, and case (accusative) and number
(plural) morphemes. Crucially, their input indicates whether
these morphemes generally precede or follow the noun, but
does not include any examples in which the two morphemes
co-occur within the same noun phrase. At test, they are asked
to produce utterances, including these held out examples. The
order they infer will indicate whether they have a preference
for placing number closest to the noun (e.g., Noun-Number-
Case rather than Noun-Case-Number). All experiment ma-
terials and data discussed here are available at osf.io/9fa3v/,
and the preregistered design and analysis plan for Experiment
1 is accessible at osf.io/8xuc9.

Participants Forty-one native English speakers were re-
cruited from the University of Edinburgh’s Careers Services
database. Participants were paid £6 for a 35-min-long exper-

imental session. Participants (N=1) whose vocabulary accu-
racy was lower than 60% were excluded; testing trials with
incomplete sentences were also excluded.

[N1+ number] verb + [N1_agent] + [N2_patient + case] verb + [N1_agent + number] + [N2_patient + case]

N1 

verb + [N1_agent]+ [N2_patient + number + case]

N2 N3 N4 
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m
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Number Only Case Only Number & Case

Figure 1: Example visual stimuli and corresponding descrip-
tions. Top to bottom: the four characters in the miniature
language in isolation; example events with one marker (ei-
ther number or case); example event requiring two markers
(number and case, testing only).

Input language The lexicon includes three semi-nonce
verbs, four nonce nouns, and two nonce markers (one
number marker indicating plural; one case marker indi-
cating accusative). All words have initial stress. The
three semi-nonce verbs are taken from the English-based
creole Tok Pisin: ‘kikim’(["kh

IkIm]), ‘poinim’(["ph
OInIm])

and ’straikim’(["straIkIm]), which refer to ‘kicking’, ‘point-
ing’ and ‘punching’ respectively. The (disyllabic) nouns
are ‘negid’([neZId ]), ‘nork’(["nOrk]), ‘tumbat’ (["th2mb@t]) ,
‘vaem’ (["væm]) (based on Fedzechkina et al., 2012), nam-
ing four characters: a burglar, a chef, a cowboy, and a wait-
ress. The noun-character mappings are random for each par-
ticipant. The two markers were randomly mapped to num-
ber and case from the set: ‘gu’ (["gÚ:]), ‘sa’(["sA:]), and
‘ti’(["thi:]). Word order in sentences was Verb-Agent-Patient.
Half of participants were trained on a language with post-
nominal morphemes (case and number morphemes appeared
after the noun stem), half with pre-nominal morphemes (case
and number morphemes appeared before the noun stem). 2

Participants are trained on three different NP types: a bare
noun, a noun with overt number morphology, and a noun with

2We use the terms pre- and post-nominal instead of prefixal and
suffixal morphology to account for both bound and unbound ortho-
graphic representations of case and number morphology.
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overt case morphology. Note that singular, and agent case
(nominative) are unmarked. During training, participants get
descriptions of characters in isolation (singular or plural), or
events with a singular patient; plural patients (requiring both
number and case morphology) are held-out until testing. See
Figure 1 for examples. Crucially, number and case mark-
ers appear with the exact same frequency (i.e., absolute, and
relative to each given noun) both during training and testing
phases, controlling for any potential frequency effects.

The input language is presented both orthographically and
auditorily during training. Auditory stimuli were recorded in
a sound-attenuated room by a 26yo male speaker of Amer-
ican English. Noun phrases were recorded without a pause
between nouns and markers but each marker is orthographi-
cally presented surrounded by spaces and thus not bound to
the noun.

Experimental procedure The experiment was conducted
in a quiet room, with all instructions provided in English, and
an English-speaking experimenter. Participants were told that
they would be learning part of a foreign language. The ses-
sion proceeded as follows.

Phase 1, noun training and testing. Participants are first
trained on the four nouns in isolation (Figure 1, top row) dur-
ing a block of 24 trials (6 per noun). In each trial, a single
character appears, and its description (a bare noun) is dis-
played (orthographically and auditorily). Participants are in-
structed to repeat each description aloud. Participants are
then tested on the noun vocabulary using a noun-selection
task and an oral production task (12 trial per block, 3 per
noun). In noun-selection trials, a character appears, and par-
ticipants must select the correct noun from 2 choices. The
foil noun is randomly selected at each trial. Feedback is pro-
vided (an (in)correct-answer sound effect along with the im-
age and correct noun; if incorrect, the audio of the noun is also
played). In oral production trials, a character appears, and
participants must say the corresponding noun aloud. Feed-
back is provided (the correct noun is displayed visually and
auditorily after participants submit their answer).

Phase 2, one-marker NP training. Participants are next
trained on noun phrases with a single marker, either number
or case. There are three trial types (Figure 1, middle row):
(1) a group of the same characters (2, 3, or 4) in isolation
(Number only), (2) an event with (different) singular agent
and patient (Case only), or (3) an event with a plural agent,
and a singular patient (Number & Case, where crucially each
marker belongs to a different noun phrase). On each train-
ing trial, participants see an image, and its description is pre-
sented (orthographically and auditorily). There are 62 trials
total (randomised): 8 bare noun, 18 Number Only (six per
character), 18 Case Only (randomly chosen from the 36 pos-
sible), and 18 Number & Case images (again randomly cho-
sen).

Phase 3, one-marker NP comprehension test. Participants
are then tested on their comprehension of one-marker NPs in
a image-selection task. On each trial, they get a description

and must select the corresponding image out of an array of
two. Feedback is provided (an (in)correct-answer sound ef-
fect along with the image and correct orthographic descrip-
tion; if incorrect, the audio description is also played). The
foil image is selected according to the trial type. For bare
noun and Number Only trials, the foil image is the same char-
acter with wrong numerosity (e.g., singular instead of plural).
For Case Only and Number & Case trials, the foil is the same
event type with agent and patient reversed. There are 34 trials
total (randomised): 4 bare noun, 10 each of the three one-
marker NP trial types.

Phase 4, one-marker NP written production test. Partici-
pants are then tested on their ability to produce one-marker
NP descriptions. On each trial, participants see a image
and are required to type in the corresponding NP(s). Verb
forms are provided for Case Only and Number & Case trials.
Feedback is provided (an (in)correct-answer sound is played,
along with the image and correct description). There are 16
trials total (randomised): 4 trials for each of the types they
have been trained on so far.

Phase 5, two-marker NP production tests. In the two criti-
cal testing blocks, participants must provide first written, then
oral descriptions which include the held-out phrase type: two
marker NPs, with plural patients (Figure 1, bottom row). The
written production task is identical to Phase 4, except it only
includes the held-out trial types (12 trials, 3⇥4 events ran-
domly chosen) and no feedback is given. This written task is
added with the purpose of familiarising participants with the
held-out trial types prior to the final oral production test phase
and will not be included in our analyses.

Finally, participants are asked to produce oral descriptions
for all trial types in the language. On each trial, participants
see a image and are asked to provide a description aloud.
As in the previous written production trials, participants are
provided with the corresponding verb form when necessary.
Feedback is provided (as described above) only when the tar-
get description does not contain a two-marker NP. There are
58 trials total (randomised): 36 two-marker NP trials, 6 trials
of each of the three one-marker NP trial types, and four bare
noun trials.

Results

Recall that, based on Universal 39 (Greenberg, 1963), par-
ticipants are predicted to produce number markers closer to
the noun stem than case markers. This should hold for both
the pre- and post-nominal conditions. Our working hypothe-
sis is that these orders are preferred because they reflect the
scopal relations among morphemes. Figure 2 is a stacked
histogram, showing the percentage of participants whose oral
productions follow scope in 0-100% of trials across both con-
ditions. Experiment 1 results (with English speakers) are
on the left-hand side. For critical trials, 95% of partici-
pants are (almost) perfectly consistent, producing two-marker
NPs in the predicted order 95-100% of the time. We ran
a logistic mixed-effects regression model predicting use of
scope-isomorphic morpheme orders on two-marker NPs dur-
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Figure 2: Percentage of participants in Experiments 1 (En-
glish) and 2 (Japanese) who produced scope-isomorphic re-
sponses a given proportion of the time (rounded to one dec-
imal), ranging from 0% of the time (yellow) to 100% of the
time (dark red). Results are split by Marker Position (pre- vs.
post-nominal).

Table 1: Model output for Experiment 1.
b SE z Pr(> |z|)

(Intercept) 13.398 3.213 4.169 < 0.001
Marker Position �0.219 2.428 �0.090 0.928

ing oral production by Marker Position (pre-nominal vs. post-
nominal).3 As shown in Table 1, the intercept (grand mean
of scope-isomorphic productions across participants in both
conditions) is positive and significant, confirming that the av-
erage proportion of scope-isomorphic productions (P ⇡ 1) is
above chance. The effect of Marker Position is not signifi-
cant, confirming that this preference holds regardless of the
pre- or post-nominal positioning of the markers.

Experiment 2

The results of Experiment 1 are consistent with the hypoth-
esis that scope relations—here between number and case
morphemes—determine proximity to the noun stem. Impor-
tantly, we can rule out the effect of raw or bigram frequency
in driving our results, since these were held constant in our
stimuli. However, an alternative explanation is that our re-
sult reflects the fact that English overtly marks (plural) num-
ber but it does not have morphological case marking (aside
from perhaps the genitive). Exactly how this would lead to a
preference for placing number closer than case is not totally
clear. Perhaps familiarity with, or accessibility of the num-
ber marker leads English speakers to place it closer to the

3In all models, fixed effects were sum coded unless stated other-
wise, and random intercepts for both items (noun) and participants
were included. The DV consists of a binary variable marking the
presence and absence of scope-isomorphism in each oral production
trial (1 for a scope-isomorphic pattern, 0 for an anti-scopal pattern).

noun. To rule this out, we replicated Experiment 1 with na-
tive speakers of Japanese. In contrast to English, Japanese
overtly marks cases (including accusative) via suffixation;
however, the marking of plurality is exceptional (Nakanishi
& Tomioka, 2004). The closest thing to number marking on

nouns are the associative plural classifiers or collectivising
suffixes (-kata, -tachi, -ra, -domo). Number is typically ex-
pressed instead via plural words (which appear after the case
inflected noun), reduplication or numeral words (which pre-
cede the noun). Japanese speakers should therefore have no
trouble acquiring a novel accusative case marker, and if any-
thing should find the case marker more familiar/accessible
than the number marker.

Methods

Experiment 2 is identical to Experiment 1, with one dif-
ference: the input lexicon. Rather than using a language
with English-like phonotactics, the lexicon for Experiment 2
matched Japanese phonotactics. The preregistered design and
analysis plan for Experiment 2 is accessible at osf.io/akcyp.

Participants Forty native Japanese speakers were recruited
from Waseda University’s student database. Participants were
paid U1000 for a 35-min-long experimental session. Note
that all participants spoke English as an L2.

Input language Lexical items in the language were dis-
played in Katakana (instead of Latin) script. The three semi-
nonce verbs (which contain the stem of the existing verbs in
Japanese) are: ⌘KI ([keîrura]), *⇣I ([naîgura]) and
�⇡I ([saîsura]), which refer to ‘kicking’, ‘punching’ and
‘pointing’ respectively. The (trisyllabic) nonce nouns are: �
�* ([sogiîna]),  ✏A ([dakuîme]), -!3 ([neîtCibi]),
and ��, ([tasoînu]), naming four characters (a burglar,
a chef, a cowboy, and a waitress). The two nonce markers
(one for number, one for case) are randomly chosen from the
following set: �2 ([seîhi]),�( ([giîto]),H� ([yoîza]).
Word order in sentences was Verb-Agent-Patient. Half of the
participants were assigned to each of two conditions as per
Experiment 1 (i.e, pre-nominal or post-nominal morphology).
Auditory stimuli were recorded in a sound-attenuated room
by a 28yo female speaker of Japanese.

Procedure The experiment was conducted in a quiet room,
with all instructions provided in Japanese, and a Japanese-
speaking experimenter. Participants were told that they would
be learning part of a foreign language. The session proceeded
exactly as outlined for Experiment 1.

Results

The proportion of participants whose oral productions follow
scope in 0-100% of trials are shown in Figure 2. The results
from Experiment 2 are on the right-hand side. All partici-
pants produced number consistently (95-100%) closer to the
noun than case. This was true in both the pre-nominal or post-
nominal marker conditions. We ran a logistic mixed-effects
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Table 2: Model output comparing Experiment 1 and 2.
b SE z Pr(> |z|)

(Intercept) 12.112 1.966 6.160 < 0.001
Marker Position �0.0295 1.302 �0.227 0.821
Experiment �0.012 1.303 �0.009 0.993
Marker Position ⇥ Experiment 0.05 1.302 0.038 0.970

model predicting scope-isomorphic productions by Marker
Position (pre- vs. post-) and Experiment (Japanese vs. En-
glish). As shown in Table 2, the intercept is positive and sig-
nificant, confirming that the proportion of scope-isomorphic
productions is above chance. The non-significant effects of
Marker Position and Experiment confirm that this preference
holds regardless of pre- or post-nominal positioning of the
markers, and regardless of the native language of participants.

Experiment 3

Experiments 1 and 2 demonstrate that learners have a natural
preference to produce number morphology closer to the noun
stem than case. These results hold for pre- and post-nominal
orders, suggesting that the preference is not driven by linear
order: number appears before case in post-nominal orders,
but after case in pre-nominal orders. Our results hold for
speakers of both English and Japanese, suggesting that they
are not driven by L1 knowledge: familiarity with a particu-
lar morpheme (number or case respectively) does not mean
it is placed closer to the stem. Frequency cannot explain the
preference either: markers for case and number occur with
equal frequency, as does each stem+morpheme bigram. The
parsability of the morphemes is also the same, since frequen-
cies of stem+morpheme forms relative to stems alone is the
same for each. We thus conclude that the results obtained so
far are consistent with a bias towards scope-isomorphism.

While our results suggest the bias is very strong (almost all
participants uniformly preferred scope-isomorphic orders), in
natural language, competing pressures may be present. One
such pressure, prominent in models of morphological learn-
ing comes from the notion of locality. Dependencies be-
tween morphemes (e.g., between an allomorph and the stem
that triggers it) tend to be local, or adjacent (Embick, 2010;
Moskal, 2015; Bobaljik, 2012). In Experiment 3, we test the
strength of the scope-isomorphic bias in the face of a compet-
ing locality bias. To do this, we use contextual allomorphy:
the form of the case marker is dependent on the lexical and
phonological identity of the noun. Because this creates a de-
pendency between the noun stem and the case marker, a local-
ity bias would predict that these two elements should be ad-
jacent. The effect of the scope-isomorphism bias uncovered
in Experiments 1 and 2 may override the effect of a locality
bias. Alternatively, the locality bias may interfere with the
placement of number in closer proximity to the noun stem,
leading to a higher proportion of anti-scopal order produc-
tions (typologically rare) in the presence of stem-dependent
case allomorphy.

Methods

Participants Forty-four English speakers were recruited
and compensated as for Experiment 1. They were evenly di-
vided between four conditions, as described below. Follow-
ing our exclusion criteria, the data of four participants were
excluded from analysis.

Input languages

This was a 2x2 design, with Marker position (pre- and post-)
and Allomorphy (no allomorphy vs. case allomorphy) vary-
ing between-subjects. The input language in no allomorphy
conditions was as in Experiment 1, except that case and num-
ber markers appeared as bound morphemes (i.e., affixes) on
the noun when presented in text form (no spaces). The input
language in the case allomorphy conditions differed addition-
ally in having two accusative case markers, which alternated
based on the length of the noun: one marker appeared with
bisyllabic nouns (‘negid’, ‘tumbat’), the other with monosyl-
labic nouns (‘vaem’, ‘nork’).

Procedure The procedure was identical to Experiment 1,
except that in two-marker written trials, participants could not
advance to the next trial until they typed the correct number
of characters. This encouraged participants to produce both
two markers together.
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Figure 3: Percentage of participants in Experiment 3 who
produced scope-isomorphic responses a given proportion of
the time, ranging from 0% of the time (yellow) to 100% of
the time (dark red). Results are split by Marker Position (pre-
vs. post-nominal) and Allomorphy (no allomorphy vs. case
allomorphy).

Results

Figure 3 shows the percentage of participants whose oral
productions follow scope in 0-100% of trials across all four
conditions. For the no allomorphy conditions, we replicate
our previous findings: participants strongly prefer the scope-
isomorphic order, with the number marker closer to the noun
than case. By contrast, in the case allomorphy conditions,
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Table 3: Model output for Experiment 3
b SE z Pr(> |z|)

(Intercept) 15.148 4.557 3.324 < 0.001
Marker Position 0.381 4.355 0.087 0.930
Allomorphy �27.506 5.386 �5.107 < 0.001
Marker Position ⇥ Allomorphy �0.529 4.691 �0.113 0.910

this pattern is reversed, with most participants producing
case closer to the noun. This was confirmed by a logis-
tic mixed-effects regression model predicting use of scope-
isomorphic order by Marker Position, and Allomorphy4. As
shown in Table 3, there is a significant drop in the use of
scope-isomorphic orders in the case allomorphy condition.

Discussion

In the experiments reported here, speakers are trained on a
language with distinct number and case morphemes, but the
relative order of those morphemes is held out. When required
to produce both morphemes together during testing, we found
that participants’ default inference is to place number closer
to the noun stem than case (regardless of whether the mark-
ers were pre- or post-nominal). This bias provides a poten-
tial causal link between human cognition, and a typological
generalisation known as Universal 39 (Greenberg, 1963). Im-
portantly, we found strong evidence for this bias across two
populations which differ in terms of their prior experience
with case and number markers; English marks number but
not case, while Japanese marks case but not number. This
suggests our results cannot be explained by relative famil-
iarity with these markers. Furthermore, the observed pref-
erence is not dependent on distributional information in the
input: case and number markers never appear together, and
have the same frequency during training. We have suggested
that this bias is driven by scope relations among the mark-
ers. In particular, case (which marks the grammatical role
of the noun in the event) scopes higher than number (which
modifies the set properties of the entity), and linear proxim-
ity should reflect scope (Bybee, 1985; Rice, 2000; Culbert-
son & Adger, 2014). While this order is inferred by default,
results from Experiment 3 revealed that the presence of stem-
dependent contextual allomorphy for case led many partici-
pants to place the case morpheme closer to the conditioning
noun. This suggests that the default preference may interact
with other constraints—i.e., imposed by morphophonologi-
cal rather than semantic dependency relationships—as pre-
dicted by theories of locality (e.g., White et al., 2018; Em-
bick, 2010). Whether such allomorphy patterns are sensitive
to locality in natural language points to the need for additional
typological research (although see Moskal, 2015).

4The fixed effect of Allomorphy was treatment coded (instead of
sum coded) so we could directly compare case allomorphy to the
baseline no allomorphy.

Conclusion

Our results show that in the absence of explicit evidence, lan-
guage learners default to a typologically common order of
morphemes: with number more proximal to the noun stem
than case. This supports a hypothesised link between human
cognition and Greenberg’s Universal 39. However, this ob-
served bias in principle interacts with constraints on locality
driven by morphophonological dependencies.
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Abstract

The unique cumulative nature of human culture has often been
explained by high-fidelity copying mechanisms found only in
human social learning. However, transmission chain exper-
iments in human and non-human primates suggest that cu-
mulative cultural evolution (CCE) might not be dependent on
high-fidelity copying after all. In this study we test whether
CCE is possible even with a non-copying task. We performed
transmission chain experiments in Guinea baboons and chil-
dren where individuals observed and reproduced visual pat-
terns on touch screen devices. In order to be rewarded, par-
ticipants had to avoid touching squares that were touched by
a previous participant. In other words, they were regarded
for innovation rather than copying. Results nevertheless ex-
hibited two fundamental properties of CCE: an increase over
generations in task performance and the emergence of sys-
tematic structure. However, CCE arose from different mecha-
nisms across species: children, unlike baboons, converged in
behaviour over generations by copying specific patterns in a
different location, thus introducing alternative copying mech-
anisms into the non-copying task. We conclude that CCE can
result from non-copying tasks and that there is a broad spec-
trum of possible mechanisms that will lead to CCE aside from
high-fidelity transmission.
Keywords: social learning; transmission chain; copying; cu-
mulative cultural evolution; Guinea baboons; children;

Introduction
Human culture evolves over time with the gradual accumu-
lation of modifications, from social norms (Nichols, 2002),
to art (Morin, 2013), to language (Keller, 2005). In con-
trast, evidence for cumulative culture has been extremely dif-
ficult to find in other animal species (but see, e.g., Grant &
Grant, 2010; Garland et al., 2011), and even difficult to induce
through experimental manipulations (but see, e.g., Sasaki &
Biro, 2017; Fehér, Wang, Saar, Mitra, & Tchernichovski,
2009). It has been proposed that this sharp contrast between

human and non-human animal cultures can be explained by
the lack of copying fidelity in the social learning of non-
human animals (Tomasello, Kruger, & Ratner, 1993; Kempe,
Lycett, & Mesoudi, 2014; Lewis & Laland, 2012). Faith-
ful transmission can prevent the loss of cultural modifications
and consequently result in cultural accumulation (Tomasello
et al., 1993); therefore, the ability to faithfully transmit infor-
mation through high-fidelity social learning has been taken
as a requirement for cumulative culture. However, it is un-
clear whether there is a critical level of fidelity required to ob-
serve cumulative cultural evolution (CCE) and whether that
required level of fidelity can ever actually be achieved by so-
cial learning mechanisms (Claidière & Sperber, 2009).

Transmission chain experiments have further shown that
CCE can occur with learning mechanisms that exist in non-
human animals, suggesting that cumulative culture is not af-
ter all dependent on special cognitive capacities found only in
humans (Caldwell & Millen, 2008; Claidière, Smith, Kirby,
& Fagot, 2014; Zwirner & Thornton, 2015). Claidière et al.
(2014) for instance, performed a transmission chain study in
which baboons observed and reproduced visual patterns on
touch screen computers. Transmission led to the emergence
of cumulative culture, as indicated by fundamental aspects of
human cultural evolution such as (i) a progressive increase in
performance and (ii) the emergence of systematic structure.
Surprisingly, these results were achieved with an extremely
low fidelity of pattern reproduction during the first genera-
tions of transmission, suggesting that high-fidelity copying
may not always be the cause of cumulative culture and may
in fact itself be a product of CCE. Individuals may transform
input variants in accordance to their prior biases, and if those
biases are shared at the population level, we expect transfor-
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mations in the same direction to accumulate at each trans-
mission step. Claidière et al. (2014)’s study therefore shows
that cultural transmission may give a misleading impression
of high-fidelity transmission when in fact cultural evolution
tends to produce variants that become more faithfully trans-
mitted. Similar results have been found in transmission ex-
periments with human participants, for example where the
transmission of miniature languages results in the emergence
of languages which can be easily learned, even if the initial
languages in each chain of transmission are transmitted only
with very low fidelity (e.g. Beckner, Pierrehumbert, & Hay,
2017; Kirby, Cornish, & Smith, 2008).

Can we observe CCE in a non-copying task?
Most experiments on social learning and cultural transmis-
sion focus on copying tasks in which the individuals goal
is to reproduce the input behaviour (for a thorough review,
see Mesoudi & Whiten, 2008). However, other mechanisms
through which humans and other animals learn, use and trans-
mit information remain under-explored. Encouraged by the
results of Claidière et al. (2014) showing that CCE can also
result from initially low transmission fidelity, we decided to
test whether CCE could occur in a transmission task that did
not require direct copying. If high-fidelity copying is essen-
tial to CCE, we might not observe it in a task that does not
involve copying.

To test this hypothesis, we performed an experiment with
baboons and human children using the same protocol as in
Claidière et al. (2014) but with a “non-copying” task in which
the individuals were trained to avoid directly reproducing the
patterns touched by a previous individual. In Claidière et
al. (2014)’s original task participants were presented with a
grid of 16 squares, four of which were briefly highlighted,
and the task was to touch the squares that had been high-
lighted. The squares touched by one individual then became
the highlighted squares for the next individual in the chain of
transmission. In our new version of the task, the highlighted
squares were instead to be avoided; the squares that one in-
dividual touched were the ones the next individual needed to
avoid in order to be rewarded.

There are grounds for expecting this change in the pay-off
structure of the task would prevent CCE from happening. In
every trial, 495 different possible responses lead to a reward
(a 27% likelihood of being correct by chance), creating a vast
space of “correct” responses in every generation that are all
different from the previous individual’s response but which
all will be rewarded. As well as directly penalising copying
behaviour, the fact that the space of possible correct responses
is so large and rather unconstrained by the input pattern sug-
gests that any early accumulation of modifications (e.g., in-
cipient structure in the system of patterns produced) could
easily be wiped out by any individual in a chain of trans-
mission, preventing cultural accumulation. However, partici-
pants could use non-copying alternative strategies that would
result in convergent behaviour over generations. For instance,
if participants try to minimise the effort of retaining and/or

producing non-overlapping patterns, this might progressively
cluster the responses on patterns of four connected squares
(i.e., tetrominoes, which are easier to retain in memory and
produce). This in turn might lead to increased performance
over generations because such structured input patterns will
be easier to avoid. Thus, if the search in the large evolution-
ary space is biased and there are alternative strategies which
will lead to convergent behavioural output over generations,
it might be possible to observe cumulative effects in transmis-
sion chains with a non-copying task.

Methods
Guinea baboons
Participants and testing facility Twelve Guinea baboons
(Papio papio) belonging to a large social group of 25 from
the CNRS Primate Center in Rousset-sur-Arc (France) par-
ticipated in this study. They were 6 males (median age 8
years, min = 5, max = 11) and 6 females (median age 8 years,
min = 5, max = 12).

The study was conducted in a facility developed by J.F. (for
further information, see Fagot, Gullstrand, Kemp, Defilles, &
Mekaouche, 2014).The baboons live in an outdoor enclosure
(700m2) connected to an indoor area which provides shelter
when necessary. The outside enclosure is connected to 10
testing booths each equipped with a touchscreen. The key
feature of this facility is that baboons have free access to com-
puterised testing booths that are installed in trailers next to
their enclosure. Identification of the subjects within each test
booth is made possible thanks to two biocompatible 1.2 by
0.2 cm RFID microchips injected into each baboon’s forearm.
The baboon can thus participate in an experiment whenever
they choose, and do not need to be captured to participate.
The test program allows an independent test regime for each
baboon, irrespective of the test booth it is using. Grains of
dry wheat are used as reward. Baboons were neither water-
nor food-deprived during the research. Water was provided
ad libitum within the enclosure. Baboons received their nor-
mal ratio of food (fruits, vegetables and monkey chow) every
day in the afternoon. The baboons were all born within the
primate centre.

This research was carried out in accordance with French
and EU standards and received approval from the French
Ministère de l’Education Nationale et de la Recherche (ap-
proval # APAFIS-2717-2015111708173794-V3). Procedures
were also consistent with the guidelines of the Association
for the Study of Animal Behaviour.

Computer-based task Each trial began with the display of
a grid made of 16 squares, 12 white and four green. Touch-
ing this stimulus triggered the immediate abortion of the trial
and the display of a green screen for 3 s (time-out). After
400 ms all the green squares became white and, in order to
obtain a food reward, the baboon had to select and touch four
squares in this matrix which were not previously shown in
green colour. Touching these four square could be done in
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any order. Squares became black when touched to avoid be-
ing touched again and did not respond to subsequent touches.
A trial was completed when four different squares had been
touched with less than 5 s between touches. If four correct
squares were touched, then the trial was considered a success
and the computer triggered the delivery of 3-4 wheat grains.
If less than four correct squares were touched (i.e. at least one
previously green square was touched), then the trial was con-
sidered a failure and a green time out screen appeared for 3 s.
The stimuli consisted of 80x80 pixel squares (white or green)
equally spaced on a 600×600 pixel grid and were displayed
on a black background on a 1024×768 pixels screen. The
inter-trial interval was at least 3 s, but could be much longer
since baboons chose when to initiate a trial.

Training to criterion Twenty-five members of the colony
underwent a training procedure to enable them to participate
in the transmission chain experiment: only those animals who
reached our final criterion (N=12) were admitted to the trans-
mission chain study described below. Training followed a
progressive increase in the complexity of the task, starting
with one white square and one green square, followed by a
stage with an increasing number of white squares (up to six,
one green and 2-5 white), then by a progressively increas-
ing number of white and green squares up to 12. Training
blocks consisted of 50 non-aborted trials (aborted trials were
immediately re-presented, and the abortion rate was very low:
mean = 2.2%, min = 0.23% and max = 4.6% for the 25 ba-
boons included in the training). Progress through training was
conditioned on performing above a criterion of 80% success
on a block of 50 random trials (excluding aborted trials).

Transmission procedure We followed the transmission
procedure described in (Claidière et al., 2014) and therefore
only report the main elements here. Testing began when
all 12 baboons reached the learning criterion with four tar-
gets (green squares) and 12 distractors (white squares) ran-
domly placed on the grid. For each transmission chain, a first
baboon was randomly selected, and this subject received a
first block of 50 transmission trials consisting of randomly-
generated patterns. Once the first subject had been tested,
its behavioural output (the actual pattern of squares touched)
on these 50 transmission trials became the set of target pat-
terns (randomly reordered) shown to the next individual in
that chain.

When the individuals were not involved in the transmission
chain, they could perform random trials that were generated
automatically by the computer and were not part of the trans-
mission process. We ran nine such chains each with 10 gener-
ations (i.e., 10 individuals in each chain), each initialised with
a different set of randomly-generated trials. We also made
sure that each baboon did not appear more than once in each
chain and performed at least 500 random trials between sets
of transmission trials to avoid interference between chains.

Children
The experimental procedure for children was as similar as
possible to the experimental procedure for baboons; in this
section we detail the differences.

Participants and materials Participants were 90 English
speaking children between the ages of 5 and 7 years old (42
female, mean age = 6 yo), recruited at the Edinburgh Zoo’s
Budongo Trail. Four further participants were excluded from
the study because they failed the pre-established criterion to
achieve at least 2/3 successful trials during training. The
experiment was carried out in accordance with the research
ethics procedures of the Edinburgh Zoo’s Bundongo Trail and
of the department of Linguistics and English Language at The
University of Edinburgh (Ref # 325-1718).

The experiment was conducted on iPads using the iOS ap-
plication Pythonista 3, in a single session of approximately
three minutes. The experiment took place in the hall of the
the Edinburgh Zoo’s Budongo Trail, with the child seated on
a chair and the experimenter beside them throughout, provid-
ing all instructions verbally. The experimenter also provided
encouragement to the child but no informative feedback dur-
ing critical trials. All participants were rewarded with stickers
at the end of the experiment.

iPad-based task The experiment was divided into two
phases, a training phase and a testing phase. The training
phase followed a progressive increase in the complexity of
the task over three blocks, starting with a grid of two squares
(one white, one red)1, then a grid of four (two red, two white)
followed by the final grid of 16 (four red, 12 white). Train-
ing blocks consisted of three trials each. We excluded par-
ticipants who failed to produce a minimum of two successful
trials during the last two training blocks (grids of four and
16). During testing, each trial (20 total) began with the dis-
play of a grid made of 16 squares as in the baboons’ version,
12 white and four red. If four correct squares (any four of
those which were not displayed in red) were touched the trial
was considered a success and the smiley face of a monkey
emoji was displayed along with a reward sound effect. Other-
wise, the face of the monkey emoji was displayed with both
hands covering the mouth along with a child-friendly incor-
rect answer sound effect. After the monkey emoji faded away,
the screen remained black for 1 s before the next trial began.
At the end of the experiment, irrespective of the participants
performance, the display filled with animated stars while a
reward melody was played.

Transmission procedure
The transmission procedure was exactly as described for the
baboons’ version, with the only difference being the size of
the testing/transmission set, which was 20 trials in the child
version instead of 50. We ran nine transmission chains with

1We decided to change the colour of the squares in the input
patterns to follow the western colour conventions in which red is
associated with prohibition.
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c)

b)

d)

Figure 1: Blue squares and green circles illustrate the results for baboons and children respectively. (a) Average score, defined
by the proportion of successful trials. (b) Average Shannon’s diversity index within the set of responses. (c) Average proportion
of tetrominoes produced. (d) Average proportion of observed tetrominoes which are copied.

a total of 10 generations (i.e., 10 children); each chain was
initialised with a different set of randomly-generated trials.

Statistical analyses
The aim of our analyses is to evaluate the strength of the ev-
idence for cumulative culture in baboons and children con-
sidering the two criteria highlighted in the introduction, that
is, to test (i) a progressive increase in task performance over
generations, and (ii) the emergence of systematic structure.

To analyse the results we used mixed-effects Growth Curve
Analysis (GCA); the type of model, logistic or linear, will
vary according to the dependent variable. All models con-
tain three fixed effects: Generation, a quadratic polynomial
for Generation (Generation2), and Experiment (baboons as
the baseline, and children). They also contain two inter-
action terms, between Generation and Experiment, and be-
tween Generation2 and Experiment. To control for the non-
independence within a given transmission chain, all models
also contain random intercepts for Chain as well as by-Chain
random slopes for the effects of Generation and Generation2.

Results
Increase in task performance The average score was high
across children and baboons, and we found a progressive
increase in performance over generations of transmission
across children and baboons (see Figure 1a). Using a de-
pendent binary variable (success or failure for each trial) to
analyse the evolution of success over generations, the results
of the logistic GCA model show a significant effect of Gen-

eration (β = 0.307,SE = 0.054,z = 5.700, p < 0.001) and
no significant interaction with Experiment (z = 0.006, p =
0.995), suggesting that task performance increases over gen-
erations of participants across children and baboons. We also
found a significant effect of Generation2 (β = −0.027,SE =
0.005,z = −4.911, p < 0.001) and no significant interaction
with Experiment (z = 0.351, p = 0.726), suggesting that the
increase in performance abates as we move along generations
of participants. There was a further significant effect of Ex-
periment (β = 1.043,SE = 0.257,z = 4.062, p < 0.001), sug-
gesting that children generally scored higher in the task than
baboons.

Emergence of systematic structure One indicator of the
emergence of structure is a progressive decrease in response
diversity due to a focus on a subset of responses (Kirby et
al., 2008). We observed a reduction of diversity among sets
of grids during transmission (see Figure 1b). Using the same
model structure as previously specified, and the Shannon’s di-
versity index of the systems of responses (equal to Shannon
entropy: Shannon, 1948) as the dependent variable, a linear
GCA model reveals a significant effect of Generation (β =
−0.237,SE = 0.069, t = −3.535, p < 0.001) and no signifi-
cant interaction with Experiment (t = 1.467, p = 0.144), sug-
gesting that the diversity of the systems decreased over gen-
erations of participants across children and baboons. We also
found a significant effect of Generation2 (β = 0.022,SE =
0.007, t = 2.982, p = 0.003) and no significant interaction
with Experiment (t =−1.597, p = 0.112), suggesting that the
decrease in diversity deflates as we move along generations of

1004



participants (across species). Moreover, the marginal effect of
Experiment (β =−0.356,SE = 0.19, t =−1.853, p = 0.068)
does not provide strong evidence to suggest a difference be-
tween children and baboons.

To explore the type of structures that emerged during trans-
mission which might guide the observed decrease in diver-
sity, we looked at the main structures found in Claidière et
al. (2014), that is, tetrominoes (grids where all four squares
are connected—lines, squares, L-shapes, T-shapes, S-shapes;
tetrominoes will be familiar to anyone who has played Tetris).
Figure 1c shows the proportion of tetrominoes produced over
generations. The results from a logistic GCA model with a bi-
nary dependent variable representing the presence or absence
of a tetromino suggest that children and baboons have a sig-
nificant tendency to produce tetrominoes (β = 0.688,SE =
0.225,z = 3.058, p = 0.002) and that children produced them
significantly more than baboons (β = 1.046,SE = 0.353,z =
2.961, p = 0.003). We also found a weak effect of Gener-
ation (β = 0.252,SE = 0.112,z = 2.263, p = 0.024) and no
effect of its interaction with Experiment (β = −0.214,SE =
0.177,z =−1.206, p = 0.228), suggesting that the proportion
of tetrominoes produced slightly increase with generation in
baboons as well as in children. However, the significant effect
of Generation2 (β = −0.026,SE = 0.012,z = −2.080, p =
0.038) and the non-significance of its interaction with Exper-
iment (β = 0.030,SE = 0.020,z = 1.517, p = 0.129) suggest
that such increase in the production of tetrominoes reduces
with generation.

Figure 2: Baboons’ and children’s example responses, rows
correspond to 10 example grids in generations 8-10 of a given
chain (from top to bottom). Colouring of each grid reflects
the tetromino class each pattern belongs to (green for squares,
blue for L-shapes, brown for T-shapes, yellow for S-shapes,
and black for non-tetrominoes).

Copying in a non-copying task So far, the general ten-
dencies in the results found in children are very similar to
those found in baboons—the only difference so far is that
children score higher and produce more tetrominoes than ba-
boons on average. However, an inspection of patterns pro-
duced (see e.g. Figure 2) suggested that children tended to
copy the overall shape of the response of the previous in-

Baboons Children

Figure 3: Top row: Average number of tetromino shapes pro-
duced by baboons (left) and children (right) for each of the
five tetromino classes (over 20 and 50 trials respectively).
Bottom row: Average proportion of tetrominoes that are
copied from one generation to the next for baboons (left) and
children (right).

dividual (but shifted its position to avoid direct copying of
the observed pattern). Figure 1d indicates that while ba-
boons tend not to copy the overall shape of input tetro-
minoes in their responses, children seem to do so increas-
ingly over generations. A logistic GCA model confirms
that while baboons copy input tetrominoes significantly be-
low chance (β =−1.27,SE = 0.174,z =−7.336, p < 0.001)
constantly across generations (Generation, z = −1.416, p =
0.157; Generation2, z = 0.012, p = 0.100) , children in-
creasingly copy input tetrominoes over generations (β =
0.559,SE = 0.121,z = 4.602, p < 0.001) and more so ini-
tially than later on, where the increase abates (as indicated
by the interaction between Generation2 and Experiment, β =
−0.048,SE = 0.012,z =−4.620, p < 0.001).

We further explored the difference in copying in children
and baboons by examining specific tetromino shapes because
the inspection of the patterns produced (Figure 2) also sug-
gested that children tended to produce many lines and that
they copied them more so than any other pattern. Figure 3
shows the average number of tetrominoes produced as well
as the proportion of tetromino copying subset by each of the
five possible tetromino shapes. A visual inspection of Figure
3 reveals a clear preference for lines over other tetrominoes in
children. Moreover, lines are the only pattern that shows an
increase in production over time in children. We thus ran a lo-
gistic mixed-effects regression model (without the quadratic
term, and with an added fixed effect for Tetromino Type with
an interaction term) to test whether this observed increase in
the production of lines over generations in children could be
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accompanied by an increase in tetromino copying specific to
lines. Results suggest that children copy lines significantly
more than baboons (β = 5.055,SE = 2.075,z = 2.436, p =
0.015), who in contrast produce lines below chance (β =
−4.24,SE = 2.065,z = −2.052, p = 0.040) equally across
generations (β = 0.001,SE = 0.356,z = 0.004, p = 0.997).
Results further suggest that lines are the most copied tetromi-
noes in children (β = −0.048,SE = 0.012,z = −4.620, p <
0.001; the smallest difference is shown with square tetromi-
noes: β = −4.105,SE = 2.096,z = −1.958, p = 0.05) but
that this tendency to copy lines does not change over time
(β = −0.017,SE = 0.358,z = −0.047, p = 0.962). We did
not find a single significant interaction of Generation in the
model (biggest effect: z = 0.343, p = 0.732). Altogether,
these results suggest that children have a constant tendency
to copy lines (above other tetrominoes), and once lines are
introduced in the system, they are maintained. This in turn re-
sults in their accumulation and increase in number over time
as new lines are introduced.

Discussion
The idea that faithful copying is essential to CCE is both in-
tuitive and appealing: if socially-learned behaviours are not
faithfully transmitted, modifications to what is being trans-
mitted will not be passed on to other generations of indi-
viduals and will therefore be lost (Tomasello et al., 1993).
In a process closely similar to biological replication, faith-
ful copying could guarantee the transmission of modifications
and therefore naturally lead to CCE. However, cultural evolu-
tion is much broader than biological evolution because it does
not fundamentally derive from a process akin to replication
and is therefore not constrained to certain modes of transmis-
sion (Claidière & André, 2012): several studies illustrate the
fact that transmission can be of low fidelity and still lead to
CCE (Caldwell & Millen, 2008; Claidière et al., 2014; Kirby
et al., 2008; Claidière & Sperber, 2009).

The purpose of this study was to add to this research by
examining the possibility of finding CCE with a non-copying
task across human and non-human primate species. Results
from children and baboons exhibited the two properties of
CCE examined: (i) an increase in task performance linked to
(ii) the emergence of some type of systematic structure. De-
spite the presence of a large evolutionary space (1820 pos-
sible responses for any single grid) and a very lenient re-
ward function (27% chance of being correct by chance on
any trial), we found the emergence of structure. This pattern
probably emerged because the participants tended to cluster
their responses in tetrominoes.

Although results from children and baboons were strik-
ingly similar we found that, unlike the baboons, children
introduced alternative copying mechanisms into the non-
copying task by copying the shape of the input pattern in a
different location, which was not prevented in the task (the
non-copying task only forbid them from copying the exact
grid pattern in the input, which included both the shape and

location of the stimulus). This strategy adopted by chil-
dren might in turn potentially explain (at least partially) their
higher scores and tetromino production in comparison to ba-
boons.

This observed copying strategy could be in line with chil-
dren’s tendency to high-fidelity copy even when not required
in the task (Lyons, Young, & Keil, 2007; Whiten, McGuigan,
Marshall-Pescini, & Hopper, 2009). Complementarily, it
could also be partly explained by the fact that children, un-
like baboons, only saw grids of two and four squares during
training before the target grid of 16, and in these grids, the
rewarded output is necessarily the mirror image of the input.
However, we only observe high-fidelity copying of specific
shapes (i.e., tetrominoes), which are potentially already pre-
ferred by children. Once these preferred shapes are in the
system, they are maintained. Results thus suggest that the ob-
served bias is not a copying bias (at least uniquely), but a bias
towards tetromino shapes (stronger than in baboons; on av-
erage, almost 80% of responses are tetrominoes in childrens
first generations), which results in high-fidelity copying once
these patterns are introduced. Further inspection of the re-
sults showed that children tended to produce many line tetro-
minoes as well as to copy them from the input (more so than
any other pattern), altogether suggesting that the bias towards
tetromino shapes could be particularly strong for line tetro-
minoes. This bias towards copying and producing lines could
be cognitive or task-specific (i.e., lines could potentially be
easier and faster to produce altogether or in the context of an
iPad game where one finger instead of two is mostly used),
or it could simply reflect that lines are particularly salient to
children (e.g., because of drawing or colouring).

Conclusion

Our study demonstrates that CCE can be observed in a non-
copying task in baboons and children. Results across species
exhibited two crucial properties of CCE: (i) an increase in
task performance over generations and (ii) the emergence
of systematic structure. However, these seemingly similar
properties of CCE across species arose from different mech-
anisms: children, unlike baboons, converged in behaviour
across generations by copying specific patterns (i.e., tetromi-
noes, and in particular lines) in a different location thus intro-
ducing biased copying into what was set up as a non-copying
task. Together, our results suggest that CCE does not neces-
sarily depend on (at least unbiased) high-fidelity copying and
that there is a broad spectrum of possible transmission mech-
anisms that will lead to CCE; these mechanisms that are not
based solely, or even mainly, on high-fidelity copying remain
to be further explored.

Data accessibility
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Abstract
Dotov, Nie and Chemero (2010) conducted a set of exper-
iments to demonstrate how phenomenology, particularly the
work of Martin Heidegger, interfaces with experimental re-
search in embodied cognitive science. Specifically, they drew a
parallel between Heidegger’s notion of readiness-to-hand and
the concept of an extended cognitive system (Clark 2008) by
looking for the presence or absence of interaction-dominant
dynamics (Holden, van Orden, and Turvey 2009; Ihlen and
Vereijken 2010) in a hand/mouse system. We share Dotov,
Nie and Chemero’s optimism about the potential for cross-
pollination between phenomenology and cognitive science, but
we think that it can be better advanced through a shift in fo-
cus. First, we argue in favor of using Maurice Merleau-Ponty’s
phenomenological theory as the philosophical foundation for
experimental research in embodied cognitive science. Sec-
ond, we describe an audio-visual tracking task in virtual reality
that we designed and used to empirically investigate human-
environment coupling and interactivity. In addition to provid-
ing further support for phenomenologically-inspired empirical
cognitive science, our research also offers a more generaliz-
able scientific treatment of the interaction between humans and
their environments.
Keywords: phenomenology; embodiment; interactivity;
agent-environment systems

Introduction
Dotov, Nie and Chemero (2010) illustrated how insights from
the philosophical tradition of phenomenology can contribute
to experimental research in embodied cognitive science. In
a set of experiments, they had participants play a computer
game using the mouse cursor to herd a moving target to a
designated area of the screen. In the middle of the experi-
ment, the connection between cursor and mouse was briefly
“broken,” making the cursor move randomly on screen, in-
dependently of mouse movements of the participant, until,
after a short period of time, normal operation was resumed.
The authors recorded time series data of the mouse/hand po-
sition and subsequently submitted it to a detrended fluctua-
tion analysis (Kantelhardt et al., 2001), which estimates a
measure of temporal correlation within a time domain sig-
nal. They found that when the mouse malfunctioned, there
was a shift in the fractal scaling of the mouse/hand move-
ments which they took to correspond to the degeneration

of interaction-dominant dynamics into component-dominant
dynamics (Holden, van Orden, and Turvey 2009). Following
Heideggerian phenomenology, they framed this as a transition
from the mouse being ready-to-hand to being present-at-hand
for the participant.

For Heidegger (1927), we perceive objects and tools prag-
matically as “something in-order-to”: for example, you expe-
rience the sheet of paper on your desk as something to write
on and the pen as something to write with. In typical circum-
stances, these objects are “ready-to-hand” in that, while us-
ing them, you can focus on the end goal (writing a letter, say)
without having to explicitly attend to the tools themselves.
But if something goes wrong and the pen runs out of ink, for
example, then the pen becomes “present-at-hand”: i.e., it sud-
denly comes to the forefront of your attention, as something
that needs to be confronted explicitly and directly before you
can resume your work. It is in this sense that Dotov, Nie and
Chemero characterize the mouse in their experiment as shift-
ing from being “ready-to-hand” to “present-at-hand” when it
becomes unresponsive.

We agree with Dotov, Nie and Chemero about the potential
for cross-pollination between phenomenology and cognitive
science. In this paper we explore how this interdisciplinary
collaboration can be further promoted through a shift in fo-
cus. The object of our investigation is perception-action cou-
pling and interactivity in agent-environment systems: as we
propose, understanding how agents engage with features of
their environment encompasses a broader range of cognitive
phenomena that includes, but is not limited to, tool use. In
what follows, we first present Maurice Merleau-Ponty’s phe-
nomenological theory as providing the philosophical founda-
tion for this shift. Next, to illustrate what this shift looks
like experimentally, we describe findings from a novel audio-
visual tracking task in virtual reality that we created. We con-
clude by discussing how this approach offers a more widely-
applicable perspective for phenomenologically-inspired em-
pirical research in embodied cognitive science.
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Merleau-Ponty, Embodiment and Interactivity
Maurice Merleau-Ponty (1945) introduces the term “bodily
schema” to describe the “sensori-motor unity of the body” (p.
114). This unity entails, at once, the integration of each of our
senses with one another and the integration of perception with
action. Seeing and hearing are “pregnant with one another”
and they work together as much as our two eyes complement
one another. At the same time, seeing and hearing operate in
conjunction with our legs and arms to produce walking and
grasping: “my body is, not a collection of adjacent organs, but
a synergic system, all the functions of which are exercised and
linked together in the general action of being in the world” (p.
272).

Merleau-Ponty’s famous example of the blind person nav-
igating the environment with a cane or stick shows how this
integrated bodily schema is fluid and can change over time. If
you are adept at getting around using a stick, that is because
you no longer perceive the stick itself but you perceive the
world “at the end of the stick,” which involves an expansion
of your integrated sensorimotor bodily schema:

“To get used to a hat, a car or a stick is to be transplanted
into them, or conversely, to incorporate them into the
bulk of our own body. Habit expresses our power of di-
lating our being-in-the-world, or changing our existence
by appropriating fresh instruments” (1945, p. 166).

Considered by itself, Merleau-Ponty’s example of the blind
person’s cane is compatible with Heidegger’s ideas reviewed
above: after all, the cane could be said to be ready-to-hand
to the expert user in normal circumstances whereas it would
become present-at-hand if it suddenly broke in half, just as it
would also be initially present-at-hand to a sighted adult who
was trying out the cane for the first time while blindfolded.
Yet, Merleau-Ponty’s understanding of the bodily schema is
much broader than the blind man’s cane example suggests
and, for this reason, it is also better suited for informing em-
pirical research in embodied cognitive science.

First, although the Heideggerian notions of readiness-to-
hand and presence-at-hand help make sense of how we use
tools (as in the case studied by Dotov, Nie and Chemero),
it is not at all clear how this understanding generalizes to a
broader range of cognitive phenomena, such as ordinary in-
stances of perception and action that do not involve tool use.
In contrast, Merleau-Ponty’s richer notion of bodily schema
is more versatile, applying to embodied experience no matter
the degree of “dilation” and regardless of whether it involves
the incorporation of tools. In a telling passage, Merleau-
Ponty claims:

“In the gaze we have at our disposal a natural instru-
ment analogous to the blind man’s stick. The gaze gets
more or less from things according to the way in which it
questions them, ranges over or dwells on them.” (1945,
p. 177).

As this quote suggests, Merleau-Ponty sees our body and our
senses as being tool-like in their instrumental or functional

character; yet the bodily schema explicitly applies primarily
to our basic embodied activity and only secondarily to literal
tool use (such as using a hammer or a mouse) as a particular
type of bodily activity.

Second, besides applying to a broader range of cognitive
phenomena, Merleau-Ponty’s notion of bodily schema is also
more theoretically attractive because of how it relates to dif-
ferent views in ongoing debates in cognitive science. Dotov,
Nie and Chemero interpreted the ready-to-hand mouse as
forming, with the body, an extended cognitive system. With
this, they explicitly tied their account to the hypothesis that
cognition may sometimes “leak out” of an individual and into
parts of the world that the individual is interacting with (Clark
2008). The extended cognition hypothesis is contentious, to
say the least: for many cognitive scientists, cognition just
is the name of the processing that goes on within the indi-
vidual’s mind/brain; and for advocates of radical embodied
cognitive science (e.g., Chemero 2009), the proper object of
study just is the animal-environment system as a whole (Gib-
son 1979).

Merleau-Ponty’s notion of bodily schema does not entail a
commitment to the contentious hypothesis of extended cogni-
tion, and it thereby circumvents the controversy. In a key pas-
sage, Merleau-Ponty explains: “With the notion of the bodily
schema we find that not only is the unity of the body described
in a new way, but also, through this, the unity of the senses
and of the object” (1945, p. 273). Above we saw that the
bodily schema entails the sensorimotor unity of the body, that
is, the integration of the senses and between perception and
action. This quote adds, further, that the bodily schema en-
tails also an integration between subject and the objects of
experience. This captures an essential feature of the radi-
cal embodied and Gibsonian approaches to studying agent-
environment systems, namely the focus on the complex inter-
activity between agent and environment: in this view, “pat-
terns of an organism’s behavior are best understood as the
emergent property of the interactions of the organism with
its environment” (Kelty-Stephen, Palatinus, Saltzman, and
Dixon 2013, p. 2) and “perception and action are best un-
derstood in the broader context of the task and environment
within which coordination of those biological nuts and bolts
takes place” (p. 3). As such, we suggest, embodied agency
or “being in the world” is always characterized by an inte-
gration of agent and environment through interaction. Inter-
activity may change qualitatively with changes in task and in
the availability of task-relevant information, but it is always
present: an agent’s perception-action never becomes fully de-
tached from her environment, and understanding this relation
is independent of whether some internal feature of the agent
“leaks out” into the world or not.

As an illustration of interactivity, imagine an ordinary sit-
uation such as trying to track a bumble bee so as to avoid
being stung. Although you may initially catch sight of the
bee and follow it with your gaze, the bee’s erratic movement
might cause it to disappear against a cluttered background.
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Your desire to avoid being stung persists and you maintain
an awareness of the bee’s position by listening, trying to re-
gain sight of it. You swivel your head, accommodating for the
subtle shifts in interaural sound intensity, allowing your ears
to guide your continued search for the bee. Furthermore, the
bee may fly along your sagittal plane, momentarily escaping
your efforts to track it by sound until, finally, you are able to
regain auditory or visual tracking. This dance, between you
and the bee, may persist until the bee exits your immediate
surroundings. Although it may be true that, at times, the dif-
ferences in mode and strength of your sensory coupling to
the bee change, nothing is ever “broken.” There may be dif-
ferences in how your head or eyes move relative to the bee,
but no aspect of this system can be said to transition from
readiness-to-hand to presentness-at-hand. Furthermore, the
system maintains interactivity throughout. Even though the
specific dynamics of a particular aspect of the system may
change, the system continues to be unified through the on-
going pursuit of the goals that are implicit to the task (e.g.
avoiding a sting). The experiment described below was de-
signed to capture this point.

Method

Undergraduate students (N = 10) at the University of Cincin-
nati participated in a virtual audio-visual tracking task for
class credit. At the start of the experiment, each participant
put on an Acer mixed reality headset and a pair of in-ear mon-
itors (IEMs). The virtual scene that they were presented with
(depicted in Figure 1) consisted of a white room and a semi-
circular line spanning 180 degrees of the participant’s visual
field on which a black and yellow sphere (henceforth, “the
bee”) would travel over time, moving in a roughly brown-
ian fashion similar to the moving target from Dotov, Nie and
Chemero (2010).

Participants were instructed to track the bee throughout the
task by continuously pointing their center of vision, indicated
by a small sphere, to its location. They were told that the
source would begin emitting a buzzing sound when the exper-
iment started and that it would be necessary to use this sound
to continue tracking the bee because the bee would shortly be-
come invisible. The spatial information present in the sound
of the bee was imparted by a set of generalized head-related
transfer functions (Zhong and Xie 2014). Unbeknownst to the
participants, after the bee had been invisible for 12 seconds,
the sound spatialization would be removed, making it impos-
sible for the participant to effectively track the bee. After a
period of time, the sound spatialization would be added back
and then, finally, the bee would reappear. In total, the task
consisted of two 12 second periods of audio-visual tracking
(at the beginning and at the end), two 12 second periods of
audio-only tracking, and one 12 second period of tracking
with no spatial information (in the middle). The order of this
sequence is illustrated in Figure 2. During the entire experi-
ment, the angular difference between the participant’s center
of vision and the position of the bee was recorded at 100 hz.

Figure 1: An image of what a participant would see upon
starting the experiment, including the bee, the instructions for
starting a trial and the line upon which the bee moved.

Fractal Analysis

We submitted the time series data from each trial and con-
dition (Audio-Visual Information (AV), Audio Information
Only (AO), and No Spatial Information (NI)) to a detrended
fluctuation analysis (DFA) which allows for temporal corre-
lations within a signal, at different scales, to be captured by a
single value. Detrended Fluctuation Analysis (DFA) is a form
of fractal analysis, which describes a power-law that captures
the relationship between the size and occurrence rate of fluc-
tuations for a given time series (Ihlen 2012). Fractal analyses
have previously been used to illuminate the nature of embod-
ied cognitive activity by examining continuous measures of
agents embedded in environments (Kello, Beltz, Holden &
Van Orden 2007).

The DFA measurement of the time series of angular error
between gaze and target for each information condition (AV,
AO and NI) yields a Hurst exponent and a closely related Al-
pha value, both of which describe the power-law relationship
within the time series. In Dotov, Nie and Chemero (2010),
Alpha values were calculated at repeated intervals to identify
changes in tool-use behavior that were caused by the pertur-
bation of mouse function. Here, we calculated Hurst expo-
nents for each condition in order to index how gaze activity
changes across the information conditions in the bee tracking
task, as is visually exemplified in the time series data shown
in Figure 2. Our DFA used a minimum window size of 2
samples and a maximum window size of roughly one third of
each condition time series, which were each 1200 samples in
length.
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Figure 2: The timeseries above shows the first 36 seconds (x-
axis) for the error angle (y-axis) between a participant’s cen-
ter of vision and the bee during the tracking task. The differ-
ent information conditions are indicated by the lines, Audio
and Visual information (AV), Audio information only (AO)
and No spatial information (NI). In this particular case, the
size and frequency of error clearly changes between the in-
formation conditions: error is minimized in the audio-visual
condition (AV), increases in the auditory only condition (AO),
and displays large, shifting values in the no spatial condition
(NI) when the bee target auditory signal switches from stereo
to mono.

Results
The Hurst exponents, calculated for each information condi-
tion and trial (AV, AO and NI) were submitted as dependent
variables to a repeated measures analysis of variance to exam-
ine changes across trials as well as conditional differences.

Neither the within subject main effect of Trial, F(4,180)
= 0.125, p = 0.97, or Trial by Condition interaction effect,
F(16,180), p = 0.1 were significant. The effect of Condition
was significant, F(4,45) = 86.38, p <.001, n2 = 0.88. It is
worth noting that Tukey post-hoc analysis revealed significant
differences between the condition types, but not their separate
time occurrences: both AV conditions are not significantly
different from one another, and both AO conditions are not
significantly different from one another. Further details are
provided in Table 1 and in Figure 3.

Table 1: Descriptive Statistics
Mean Hurst Exponents by Condition

1. A-V 2. A-O 3. N-I 4. A-O 5. A-V
Mean 0.3290 0.5194 0.6800 0.5326 0.3212
Std. Dev. 0.0641 0.0406 0.0327 0.0459 0.0664

Figure 3: The x-axis indicates the changing conditions be-
tween audio-visual information (AV), auditory information
only (AO), and no spatial information (NI). The y-axis in-
dicates the value of the mean Hurst exponents and standard
error bars for each condition.

Discussion
Our experimental results reveal differences in the fractal scal-
ing of movement across shifting task conditions. In this way,
our results were similar to what was found by Dotov, Nie and
Chemero (2010). The key difference between the two ex-
periments lies in our focus. Their investigation is centered
on the agent; ours follows radical embodied cognitive sci-
ence (Chemero 2009) by being primarily concerned with the
agent-environment system as a whole. This difference in fo-
cus informed both our choice of dependent measure and our
interpretation of interactivity.

Because they were trying to find support for the extended
cognition hypothesis, Dotov, Nie and Chemero (2010) mea-
sured raw hand movement at the tool/hand interface. This
meshes well with their goal of demonstrating a shift, from
the agent’s perspective, between a tool being ready-to-hand to
becoming present-at-hand—but this approach misses out on
capturing the rest of the agent-environment system. In con-
trast, we adopted a collective measure at the task performance
level. By measuring the error angle between the gaze and the
bee’s position, we were able to detect shifts in the overall
agent-environment dynamics. In this context, specific Hurst
exponent values are useful and explicate the nature of the sys-
tem. For example, in the Audio-Visual Information condi-
tion, the low Hurst value indicates that the system corrects
for increases in error similarly across timescales, exhibiting
anti-persistent dynamics (Riley et al 2012). This makes sense
because participants are likely very good at visually orient-
ing to the position of objects. The higher Hurst values from
the Auditory Only and No Information conditions show that
there is a shift in how error is accommodated for at differ-
ent scales. In the Auditory Only condition, for example, the

1011



participant may be able only to accommodate for movements
of the bee very slowly, but is ineffective at tracking its faster
movements. This shift can be characterized as a shift towards
persistent system dynamics (Riley et al 2012), which contin-
ues in the same direction as information is reduced further in
the No Information condition.

A similar interpretation could have been applied to the
herding task of Dotov, Nie and Chemero (2010) if the de-
pendent measure had reflected the collective dynamics of the
agent-environment system. In their case, it’s not that when
the tool breaks it is noticed as a tool, external to the sys-
tem. Rather, the tool appears broken within the context of
a task and is used as such. Movements exhibited by partic-
ipants experiencing a broken mouse are sensible as move-
ments meant to fix or disambiguate the nature of the broken-
ness of the mouse. Similarly, the movements of our partic-
ipants who had no information about the bee’s position are
sensible as exploratory procedures (Riley et al 2002), i.e.,
movements meant to pick up information. These movements
do not reflect a degeneration of interaction, but only a shift
in the nature of the ongoing interaction between agent and
environment. A participant in either task is never truly de-
coupled from the specific environment implied by the overar-
ching task.

Dotov, Nie and Chemero characterize the distinction
between interaction-dominant dynamics and component-
dominant dynamics as follows: “In component-dominant dy-
namics, behavior is the product of a rigidly delineated archi-
tecture of modules, each with predetermined functions; in
interaction-dominant dynamics, on the other hand, coordi-
nated processes alter one another’s dynamics, with complex
interactions extending to the body’s periphery and, some-
times, beyond” (2010, p. 3). This characterization works well
with their agent-centered approach and their focus on cogni-
tion as an internal feature of the agent that can potentially ex-
tend out into the world. But when the object of study becomes
the agent-environment system, as proposed in radical embod-
ied cognitive science (Chemero 2009), this characterization
fails. The dynamic variation in a proper collective measure
of a complex agent-environment system will always be gov-
erned by the interaction between agent and environment. The
system may be redefined across tasks, but can never become
broken in the way that Dotov, Nie and Chemero would re-
quire. Because interactivity is a universal feature of agent-
environment systems, rather than looking for signs of a shift
from interaction-dominance to component-dominance, it is
more appropriate to inquire into the specific nature of the in-
teractivity. This means focusing on task specific coordination
(Turvey, Saltzman and Schmidt 1991), rather than the dynam-
ics that play out at the interface between human and tool.

As seen above, the choice of focus of investiga-
tion—whether centered on the agent or on the agent-
environment system as a whole—is directly linked to the
choice of dependent measure and to the interpretation of in-
teractivity. The focus of investigation is also intimately asso-

ciated to the phenomenological theory adopted in each case.
Heidegger’s theory is agent-centric and lends itself to appli-
cation for investigating the dynamics of tool use and cogni-
tive extension. Merleau-Ponty’s theory, on the other hand,
motivates thinking in terms of an integration between sub-
ject and object, or between agent and environment. This
makes it more apt for making sense of a broader range of
cognitive phenomena, beyond tool use, where interaction
may occur. Merleau-Ponty’s approach is thus better suited
for conceptually framing research into perceptually driven
human-environment interactivity in the ecological and em-
bodied cognitive sciences.
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Abstract

The successor function a recursive function S which states that for every natural number n, S(n) = n+1 underlies our
understanding of the natural numbers as an infinite class. Recent work has found that acquisition of this logical property
is surprisingly protracted, completed several years after children master the counting procedure. While such work links
successor knowledge with counting mastery, the exact processes underlying this developmental transition remain unclear.
Here, we examined two possible mechanisms: (1) recursive counting knowledge, and (2) formal training with the +1 rule
in arithmetic. We find that while both recursive counting and arithmetic mastery predict successor knowledge, arithmetic
performance is significantly lower than measures of recursive counting for all children. This dissociation suggests children
do not generalize the successor function from trained mathematics; rather, we find evidence consistent with the hypothesis
that successor knowledge is supported by the extraction of recursive counting rules.
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Abstract 

Parental input in the form of visual joint attention is 
hypothesized to serve a critical role in the development of 
infant attention, acting as a training ground by scaffolding an 
infant’s ability to sustain visual attention in real-time. We 
extended this hypothesis by studying the effects of parent 
speech on infant visual and manual attention. Thirty-four 
toddlers and their parents participated in a free-play study 
while wearing head-mounted eye trackers. Infant multimodal 
behaviors were measured in four ways: visual attention, 
manual action, hand-eye coordination, and joint visual 
attention with their parent. Overall, we found that longer 
durations of attention were accompanied by parent speech. 
Moreover, sustained attention, defined as behaviors lasting 3s 
or more, almost always occurred with parent speech. Individual 
differences in parent-infant coordination were also explored. 
These results suggest that parent-infant interactions create 
multimodal opportunities for infants to practice sustaining 
attention. 

Keywords: attention, children, cognitive development, eye-
tracking, interactive behavior 

Introduction 

Infants are active learners – they seem to be self-motivated to 

explore and make predictions about their world. Early 

development is not solely an individual process, however – it 

is also embedded in a highly social context as young infants 

are taught and supported by caregivers. Parents provide 

scaffolding to their infants in many different ways and in 

many different contexts, such as recruiting the child’s 

attention, reducing degrees of freedom, and providing 

demonstrations (Wood, Bruner, & Ross, 1976). Parent 

scaffolding has been shown to support the development of 

executive functioning (Bibok, Carpendale, & Müller, 2009) 

and verbal skills (Smith, Lamdry, & Swank, 2000). In early 

language learning, parents use infant-directed speech 

(Thiessen, Hill, & Saffran, 2005), intersensory redundancy 

(Gogate & Bahrick, 1998), and selective labeling of objects 

based on infant behaviors (Pereira, Smith, & Yu, 2014) to 

support word learning. The idea of parental scaffolding has 

even been adapted by robotics and AI researchers to build a 

robotic arm that can learn grasp affordances (Ugur, Nagai, 

Celikkanat, & Oztop, 2015). Understanding how the mature 

partner influences the sensorimotor experiences and actions 

of the young infant to support early development and learning 

is a key question in cognitive development. 

Recent work by Yu & Smith (2016) revealed significant 

effects of parent behaviors on an infant's capacity for 

sustained attention. In the study, infants and their parents sat 

at a table while playing with a set of novel toys. Using head-

mounted eye tracking, the authors identified moments when 

parents and infants jointly attended to (or shared attention to) 

an object and when infants sustained attention on the same 

object for at least 3s. When the dyad engaged in joint 

attention, the duration of the infant’s sustained attention bout 

significantly increased, suggesting that 12-month-old infants’ 

ability to sustain attention is scaffolded by parent attention.  

Built upon this finding, a recent study (Suarez-Rivera, 

Smith, & Yu, in press) provided evidence that the social 

scaffolding effects from parents are not only limited to parent 

looking behavior. When parent visual attention was 

accompanied by other types of parent actions – such as 

talking and manual actions on objects – infants’ sustained 

attention was further improved. Similarly, this redundancy of 

parent behaviors has been shown to promote joint attention 

with younger infants (3-to-11-months-old; Deák, Krasno, 

Jasso, & Triesch, 2018). In parent-infant interactions, both 

social partners generate various actions moment-by-moment 

to create multimodal dependencies of looking, talking, and 

touching, both within the infant’s own system and between 

the two partners. If multimodal behaviors from parents have 

effects on infants’ visual attention, then parent behaviors may 

also have effects on other, multimodal infant behaviors. The 

overarching hypothesis in the present study is that parent 

speech has cascading effects on not only infant visual 

attention but a suite of multimodal behaviors in parent-infant 

interactions.  

We chose parent speech to study parent scaffolding 

because it plays a critical role in early communication and 

early language development.  Hart & Risley (1995) famously 

demonstrated that the amount parents talk to infants is 

predictive of the varying language abilities of 3-years-olds in 

different socioeconomic strata. Subsequent studies show both 

quality and quantity of parent speech is predictive of later 

language outcomes (Tamis-LeMonda, Bornstein, & 

Baumwell, 2001; Hirsh-Pasek et al., 2015). While past 

research has focused on how parent speech and its linguistic 

properties, such as infant-directed speech and wh-questions 

1015



in speech, predict later child vocabulary size (e.g., Rowe, 

2012; Weisleder & Fernald, 2013), the present study will 

examine the non-linguistic effects of parent speech. 

Studying the role of parent speech in the micro-level 

dynamics of parent-infant interactions is a crucial next step 

in the field. Although joint visual attention facilitates infant 

sustained attention (Yu & Smith, 2016), we know that joint 

attention during toy play does not result from infants 

following the gaze of their caregivers and does not require 

any overt bid for the partner’s attention (Yu & Smith, 2017a; 

Deák et al., 2018). During play, adult object manipulations 

(often coupled with other behaviors, such as speech), are the 

most promotive of joint attention (Deák et al., 2018). 

However, maternal speech is tightly linked to object 

manipulation and occurs frequently in an interaction as a 

response to infants’ visual attention to objects, handling of 

multiple objects, and vocalizations (Chang, de Barbaro, & 

Deák, 2017). Parents verbally respond to a suite of 

multimodal infant behaviors, potentially serving as 

scaffolding for not only joint attention but also other forms of 

sustained attention. 

To test the multimodal effects of parent speech, we chose 

four infant behaviors from parent-infant interactions that 

have been shown to be important in early development: 1) 

visual attention; 2) manual action; 3) hand-eye coordination; 

and 4) joint attention. Visual attention was chosen because 

infant sustained visual attention predicts later language 

learning and cognitive development (Kannass & Oakes, 

2008; Lawson & Ruff, 2004; Yu, Suanda, and Smith, 2018). 

Manual action was chosen because motor skills, including 

object exploration, are known to play a major role in early 

language development (Iverson, 2010). Hand-eye 

coordination was chosen because both infants and parents 

attend to their own actions and their partner's object 

manipulations in free play (Yu & Smith, 2017b). Lastly, joint 

attention between infant and parent was chosen because 

dyadic differences in the frequency with which parents and 

children engage in episodes of joint attention predict 

individual differences in child vocabulary size (Tomasello & 

Todd, 1983). For all of these behaviors, we will be looking at 

sustained attention, defined as when infants attend to an 

object for a long duration (e.g., greater than 3 seconds). While 

sustained visual attention is known to predict later outcomes 

(Kannass & Oakes, 2008; Lawson & Ruff, 2004, Yu, Suanda, 

and Smith, 2018), the ability to sustain attention in other 

modalities has not been explicitly studied. 

The present study had two goals. In Study 1, we examined 

the multimodal effects of parent speech by measuring the 

durations of the four types of multimodal behaviors when 

they were accompanied by parent speech and comparing with 

when they were not. We hypothesized that parent talk 

increases infants’ ability to sustain their multimodal 

behaviors.  In Study 2, we focused on individual differences 

in parent speech, given that some parents generated more 

speech than others did in free play. We examined whether 

varying amounts of parent speech create different effects on 

infants’ multimodal behaviors.  

Methods 

Thirty-four toddlers (mean age = 18.67mos [range: 12.3-

24.3]; female = 16) and their parents participated in a study 

on naturalistic parent-infant interactions during free play. An 

additional 5 dyads were included in the experimental data set 

but were excluded from the current analyses due to missing 

parent eye-tracking (n = 2) and non-transcribable speech (n = 

3).  

Data Collection 

Parents and infants played with 24 toys on a carpeted floor in 

a playroom for an average of 7.15 minutes (range 3.93-

11.64). At the beginning of the play session, the toys were 

randomly spread out across the floor. Parents were instructed 

to play as they would at home and that they could sit in any 

orientation (behind, next to, in front of their infant), but were 

asked to keep their infant sitting on the floor due to the eye 

tacker’s cable. 

During the play session, both parent and infant wore a 

head-mounted eye tracker (Positive Science LLC). The eye 

tracker system used a scene camera on the participant’s 

forehead to record images from the wearer’s perspective with 

a visual field of 108°. A second, infrared camera pointed to 

the participant’s right eye to record saccades and fixations. 

Both cameras sampled at a rate of 30Hz. The infant’s eye 

tracker was affixed to a hat and the parent wore their eye 

tracker like a pair of glasses. Additional cameras were placed 

in the room to capture traditional third-person views of the 

dyad (Figure 1). 

The experiment was run by two researchers. The session 

began by one researcher placing the eye tracker on the parent 

and adjusting the scene and eye cameras, while the other 

researcher engaged with the infant. Afterwards, both 

researchers worked together to place the eye tracker on the 

infant. One researcher, and the parent, continued to distract 

the infant with exciting toys (e.g. a pop-up toy that played 

music) as the other researcher set up the eye tracker on the 

infant. After both members of the dyad were wearing their 

eye trackers, the researchers ran a brief calibration procedure. 

A large board that had lights and produced sounds was placed 

in front of the infant (approximately 30 cm away). One of the 

researchers controlled the board and lit up one of the lights 

Figure 1: Experimental set-up (left) and the infant’s first-

person view, the cross-hair indicates infant gaze (right). 
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until both the parent and infant shifted their gaze to that 

location. This procedure was repeated for 15 light locations. 

The researchers monitored the experiment from an 

adjoining room. If the infant’s eye camera was bumped or  

moved during play, the researchers reentered, adjusted the 

camera, and completed an abridged calibration procedure. 

Coding and Analyses  

Following the experiment, the eye tracking videos from the 

scene and eye cameras were synchronized and calibrated with 

a software program to generate a cross-hair that indicated 

where the participant was looking during each frame of the 

video (Figure 1). Parent and infant visual gaze were then 

coded manually using the first-person view (from the scene 

camera) with the cross-hair overlaid. Using an in-house 

program, the coder annotated which region of interest (ROI) 

the cross-hair overlapped with during a fixation. There were 

25 ROIs – one for each toy and the social partner’s face. 

The scene cameras and third-person views were then used 

to annotate the objects being handled by a participant, frame-

by-frame, in an in-house program. If a hand was touching an 

object, the object was considered “in hand”. Participants’ left 

and right hands were coded separately.  

Parent speech was transcribed using Audacity at the 

utterance level. There was no minimum length for an 

utterance, but separate utterances had to be 400ms or more 

apart (otherwise they were collapsed together). All parent talk 

and vocal play (like saying “vroom-vroom” or making a 

crashing sound) were considered speech. Due to the 400ms 

criteria, chunks of speech that would be considered sentences 

could be split apart and separate sentences could be counted 

as one utterance.  

In the current studies, we were interested in five behaviors: 

infant visual attention, manual action, hand-eye coordination, 

dyadic joint attention, and parent speech (Figure 2). Visual 

attention was defined as all infant fixations to the 25 ROIs. 

Manual action was similarly defined as all instances of the 

infant touching an object with either or both hands. Hand-

eye coordination was defined as moments when the infant 

looked at and handled the same object, for any duration of 

time. Joint attention between the parent and infant was 

defined as any moment when the parent’s and infant’s visual 

attention fell on the same ROI. All parent utterances were 

counted as speech. 

For all four multimodal behaviors (visual attention, manual 

action, hand-eye coordination, and joint attention) sustained 

attention was defined as a behavior lasting 3 seconds or 

longer (to match the previously used definition in Yu & 

Smith, 2016).  

To test the effects of parent speech, we categorized each 

attention bout as “with speech”, if the onset of a parent 

utterance began after the onset of the attention bout and 

before the offset of the bout. Other attention bouts, without 

any overlap with a parent utterance, were categorized as 

“without speech”. With this definition, we can measure the 

effects of parent speech by comparing attention bouts in the 

two categories.  

Study 1: Multimodal Effects of Parent Support 

In Study 1, we tested the relationship between parent speech 

and the four multimodal measures of infant behavior. Corpus-

level analyses were used to compare the durations of all 

multimodal attentional bouts with and without speech.  

Each modality was analyzed separately using mixed effects 

models to predict the duration of a bout by whether it was 

accompanied by speech, with subject and attended object as 

random effects. Each full model was then compared to a null 

model, with intercept and random effect of object only, using 

Chi-Square difference tests. All four multimodal behaviors 

were found to last longer when co-occurring with speech 

(Figure 3, Table 1).  

To specifically test whether parent speech co-occurs with 

sustained attention, an infant behavior known to predict later 

outcomes (Yu et al., 2018), similar models were used to 

analyze the subset of sustained attention bouts lasting 3s or 

more. Bouts of sustained attention of each multimodal 

Figure 2: Data streams of infant visual attention, manual action, hand-eye coordination, joint attention, and parent 

speech over 70s of an interaction. Each block represents a behavioral event and each color represents a different object. 

The color of parent speech represents the object being named, dark red indicates no naming in that utterance. 
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behavior were also longer, and more likely to occur, with 

speech (Table 1). 

The mean duration of visual attention bouts with speech 

was more than 3 times longer than the mean duration of bouts 

without speech (Mwith-speech=3.769s, Mw/o-speech=1.000s). 

When we examined the subset of sustained attention bouts 

that were longer than 3s, sustained attention bouts increased 

in duration by 50% when accompanied by parent speech 

(Mwith-speech=7.196s, Mw/o-speech=4.842s). 

The mean duration of manual action bouts with speech 

was nearly 8 times longer than the mean duration of bouts 

without speech (Mwith-speech=11.187s, Mw/o-speech=2.471s). 

Sustained manual action bouts that co-occurred with parent 

speech were close to double the duration of bouts without 

parent speech (Mwith-speech=13.840s, Mw/o-speech=8.629s). 

The mean duration of hand-eye coordination bouts with 

speech was nearly 4 times longer than bouts without speech 

(Mwith-speech=4.004s, Mw/o-speech=1.084s). Sustained hand-eye 

coordination bouts increased in duration by 50% when 

accompanied by parent speech (Mwith-speech=6.961s, Mw/o-

speech=4.587s).  

Lastly, the mean duration of parent-infant joint attention 

with parent speech was more than 2 times longer than joint 

attention without speech (Mwith-speech=4.284s, Mw/o-

speech=1.476s). As with the other behaviors, the duration of 

sustained attention events with parent speech was longer than 

sustained attention events without parent speech (Mwith-

speech=6.967s, Mw/o-speech=4.071s). 

Across all four multimodal behaviors, the duration of 

infant attention is extended when the bout is accompanied by 

parent speech. Moreover, when we specifically examined 

sustained attention bouts, we saw that not only is sustained 

attention substantially more likely to occur with parent 

speech, but that bouts of sustained attention with parent 

speech are significantly longer.  

Study 2: Individual Differences 

If we view the parent as a coach, training their infant to 

engage in sustained attention (Yu & Smith, 2016), then we 

should see differences in how the dyads practice, since 

different coaches may have different coaching styles. Parents 

may vary in the “drills”, or amount of speech, they use in 

practice. If so, infants may react differently to parent’s 

coaching which will influence how much they “score” in 

sustained attention. To understand the individual differences 

in the coordination of parent speech and infant attention, we 

examined whether more or less parent talk has different 

effects on the infant’s ability to sustain attention.  

Parents varied in how much they spoke to their infants. The 

average parent produced 16.819 utterances/minute (SD 

=3.844), though the quietest parent only spoke 9.597 

times/minute and the most “talkative” parent generated 

25.144 spoken utterances per minute. To test the relationship 

between parent speech and infant sustained attention, we 

divided the subjects into two groups based on a median split 

(median = 16.814 utterances/min). Parents in the high 

frequency speech group produced 19.905 utterances per 

minute while parents in the low frequency speech group 

produced on average 13.734 utterances per minute. The low 

frequency and high frequency groups did not differ in the 

mean duration of parent utterances (Mlow=1.309s, 

Mhigh=1.330s, p = 0.871), suggesting low frequency parents 

Figure 3: Durations of behaviors without speech (left 

column) and with speech (right column). Red line indicates 

the 3-second threshold for sustained attention. 
 

Table 1: Duration of multimodal behaviors with and without speech 
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were truly producing less speech, not just fewer, longer 

utterances. Therefore, the durations of spoken utterances in 

the two groups would not be a factor to influence infant’s 

attention.  

We then compared the durations of sustained attention 

bouts produced by infants in the low frequency and high 

frequency groups. To directly measure the effects of parent 

speech, we only analyzed sustained attention bouts that were 

accompanied by parent speech. As in Study 1, each type of 

multimodal behavior was analyzed separately using mixed 

effects models, with object attended to as a random effect, 

and then compared to a null model with intercept and random 

effect of object only. 

For manual actions and joint attention, we found that the 

duration of attentional bouts was longer for infants in the low 

frequency group (Table 2). The mean duration of sustained 

manual action bouts was 2 seconds longer in the low 

frequency group (Mlow=14.946s, Mhigh=12.950s). The mean 

duration of sustained joint attention bouts was more than a 

second longer in the low frequency group (Mlow =7.865s, 

Mhigh =6.389s). There were no differences between the low 

frequency and high frequency groups in the durations of 

sustained visual attention or hand-eye coordination. 

We present evidence of two groups of dyads, classified by 

how much speech parents produced in an interaction. These 

two groups coordinate their attention in different ways – in 

the low frequency group, there are less occurrences of 

speech-attention overlap in all four types of behavior. But, 

when parent speech co-occurs with manual action or joint 

attention, infants in the low frequency group had significantly 

longer durations of sustained attention than infants in the high 

frequency group. This finding suggests two possible 

phenomena: 1) parents who talked less may be more selective 

in when they choose to talk; or 2) infants whose parents 

talked less are more responsive when their parent does talk.  

Discussion 

With the current studies, we examined the dynamics of 

parent-infant interactions, specifically the role of parent 

behaviors in influencing infant attention. We demonstrated 

that the duration of infants’ visual attention is longer when 

accompanied by parent speech, extending prior work that 

focused primarily on parent’s visual attention (Yu & Smith, 

2016). Furthermore, we measured the relationship between 

parent speech and multiple infant sensory-motor behaviors 

beyond visual attention – manual action, hand-eye 

coordination, and joint attention – and found a similar 

coordination between parent speech and infant sustained 

attention. Sustained attention of each of these multimodal 

behaviors is more likely to occur, and lasts longer, when 

accompanied by parent speech.  

There were, however, individual differences in the 

observed parent-infant coordination. Parents that spoke less 

during the interaction had infants with longer durations of 

sustained manual attention and dyadic joint attention, relative 

to their talkative peers. This relationship could have two 

(non-mutually exclusive) causes. One possible explanation is 

that infants with less talkative parents are more responsive to 

their parent’s speech. Using the coaching analogy, those 

infants may not get coaching signals very often and therefore 

they respond to the signals better when they receive them. 

Another possible explanation is that parents that talk less are 

more selective in when they choose to talk. Rather than 

“coach” all the time, irrespective of their infant’s attentional 

state, these parents may find optimal moments to support 

their infants. Regardless, it suggests that dyads with less 

talkative parents are still having high-quality practices. 

Parents that talk more can scaffold their infant’s ability to 

sustain attention more frequently, creating more 

opportunities for the infant to score. Dyads with less talkative 

parents, however, appear to employ more effective drills 

during their practices – even though these infants “score” 

less, the durations of their sustained manual action and joint 

attention bouts are longer. Thus, there are two different 

pathways through which parents can support their infants. 

Future research needs to examine potential qualitative and 

quantitative differences between the two pathways used by 

more and less talkative parents, and how different dyads 

adjust and adapt to different interaction patterns based on the 

history of their experiences.  

Our results present evidence of a multimodal sustained 

attention training ground. The coupling of parent speech and 

infant attention suggests that the more infants sustain their 

attention, the more parents respond to it, giving the infant 

even more time to practice. Coaching improves an infant’s 

ability to sustain attention, increasing the time an infant can 

learn about the object’s properties (Ruff, 1986) and creating 

more opportunities for the parent to talk about and label 

objects (Yu & Smith 2012; Pereira et al., 2014), fostering a 

developmental cascade yielding higher language outcomes 

(Yu et al., 2018). We are also among the first to study 

sustained attention beyond the visual modality. How 

Table 2: Sustained attention in dyads with low frequency and high frequency parent speech 
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sustained manual attention, hand-eye coordination, and joint 

attention relate to later outcomes is still an open question to 

be investigated further, especially given the individual 

differences seen in manual attention and joint attention. 

To better understand the parental scaffolding of sustained 

attention, we need to study the infant behaviors that elicit 

parent responses. It is unlikely that parents are randomly 

speaking during an interaction. Rather, they are responding 

contingently to certain infant behaviors and following non-

linguistic cues like gaze, object manipulation, gesturing, 

smiling, and more. To create successful object labeling 

moments, a parent and infant need to couple their behavior so 

that they are attending to and naming the same object. Infants 

need to sustain their attention to the object long enough for 

the parent to provide a label, which requires the infant 

exhibiting behaviors indicating a readiness to learn (e.g. 

object-directed vocalizations; Goldstein, Schwade, Briesch, 

& Syal, 2010) and parents being able to follow these 

behaviors. One way to address this question is to analyze the 

temporal dynamics of parent-infant interactions. Measuring 

parent and infant behaviors seconds before a parent utterance 

and the subsequent behavioral changes after the utterance 

will provide further insight into how dyads coordinate their 

behaviors and influence one another. One possibility is that 

there are “signatures” that reliably predict whether a parent 

utterance leads to sustained attention and successful object-

label mappings. Studying the temporal dynamics of infant 

looking and object handling before and after a naming 

moment revealed developmental changes from 4 to 9 months 

(Chang et al., 2017), positioning this form of analysis as a 

pertinent future direction. 

Conclusion 

Previous work has shown that joint visual attention supports 

an infant’s ability to sustain attention. We extended these 

findings by measuring the multimodal effect of parent speech 

on infant visual attention, manual action, hand-eye 

coordination, and joint attention. When multimodal attention 

is accompanied by parent speech, the infant sustains their 

attention for longer periods of time, creating a rich training 

ground for early development.  
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Abstract

Memorizing and retrieving information about the spatial layout
of one’s surrounding is of crucial importance for humans. We
propose a new theory of spatial memory of immediate envi-
ronments and develop a corresponding computational realiza-
tion. We detail how the theory explains key findings on human
spatial memory (use) and show that the computational real-
ization accounts well for human behavior from three pertinent
experiments. One implication of the theory’s success is that
enduring spatial memory representations may best be concep-
tualized as flexible combinations of representation structures
and reference frames.
Keywords: spatial memory; spatial reference frames; interfer-
ence; perspective taking; computational modeling

Introduction
Knowledge about the location of and relation between ob-
jects in the immediate environment is crucial for everyday
life. Such spatial knowledge can be obtained by perception,
but many everyday activities crucially rely on memory repre-
sentations of spatial information. For example, spatial mem-
ory enables avoiding collisions with objects currently outside
the perceptual field (e.g., a chair slightly behind oneself when
moving around the table), anticipating and planning move-
ments from positions one has not yet reached (e.g., planning
the movement to place a plate once one is next to the ap-
propriate spot on the table), and navigating towards objects
which are not directly perceivable (e.g., approaching the ap-
propriate cupboard to retrieve the plates contained in it).

In line with its importance, spatial memory of immediate
environments has received considerable attention by research
in the cognitive sciences and a substantial number of theories
of spatial memory has been proposed (Avraamides & Kelly,
2008; Byrne, Becker, & Burgess, 2007; Mou, McNamara,
Valiquette, & Rump, 2004; Sholl, 2001; Wang, 2017). A
prominent approach to investigating spatial memory of imme-
diate environments have been perspective taking (PT) studies,
in which people have to judge spatial relations of a previously
learned object layout from imaginal perspectives. From these
studies a number of main findings have emerged (May, 2007),
which can be assumed to characterize key aspects of the struc-
tures and processes involved in spatial memory.

We propose a new theory of spatial memory that offers
explanations for all main findings. We first describe the PT
paradigm and the main findings arising from it. Subsequently,
we expound our theory, how it explains the findings, and a

computational realization of the theory. After briefly con-
sidering related theories, we close with a discussion of the
implications of our work.

Main Findings
In typical PT studies on spatial memory of immediate envi-
ronments people are first asked to memorize the location of
objects in their surrounding. After learning the object layout,
people are deprived of perceptual access to their surround-
ing (e.g., by blindfolding) and tested for their knowledge of
the spatial relations between objects. Two common forms of
testing spatial relations are judgment of relative direction and
egocentric pointing. In a judgment of relative direction task,
people are asked to point to ob j1 as if they were standing at
ob j2 facing ob j3 (where ob ji are three objects of the previ-
ously learned object layout). In an egocentric pointing task,
people are asked to point to ob j1 as if they were standing at
or facing ob j2. The object to point to is called the target ob-
ject. In particular, the to-be-imagined perspective (e.g., facing
ob j2) is usually different from the actual bodily perspective
of the participants. The imaginal perspective can differ from
the bodily perspective by rotation (i.e., the locations of bod-
ily and imaginal perspective coincide, but orientations of the
perspectives differ), translation (i.e., the orientations of the
perspectives coincide, but locations differ), or both (often the
case in judgment of relative direction tasks).

By using such a PT approach, existing studies have uncov-
ered many intriguing phenomena of spatial memory organi-
zation and access. In the following, we will focus on a set
of phenomena, which can be considered the main findings of
existing research (May, 2007):

• Taking an imaginal perspective different from the bodily
perspective is hard. Indicating the direction to the target
object from the imaginal perspective takes more time and
is more error prone than from the bodily perspective.

• Imaginal perspectives involving rotations are harder
(slower, more error prone) than imaginal perspectives in-
volving only translations.

• The difficulty of pointing to the target object increases with
increasing angular disparity between the pointing direction
from the imaginal perspective and the pointing direction
from the bodily perspective.
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• The difficulty of responding from the imaginal perspective
can be reduced, if observers are ignorant of the actual spa-
tial relation of their body to the object layout (e.g., when
being disoriented).

• Differences between the orientation of the imaginal per-
spective and salient orientations in the environment (e.g.,
orientation of axes of symmetry or orientation of learning
perspective) may lead to extra processing costs.

• If people are allowed to move their body such that the
bodily perspective coincides with the tested perspective,
the above mentioned difficulties are reduced notably and
sometimes even eliminated.

A further finding that we will consider is the influence of
perspective preparation on PT performance. If people are
given information about the tested perspective before they are
informed about the target object, they may be able to pre-
pare the to-be-taken perspective such that they can respond
with less difficulty once the target object is presented. Sev-
eral studies have investigated the influence of preparation, be-
cause preparation effects can help reveal how access to spa-
tial memory is organized. Although preparation has been
found to generally reduce processing times associated with
PT (Brockmole & Wang, 2003; May, 2004), it seems hard
to prepare for certain difficulties (e.g., increase of processing
costs with increasing disparity May, 2004; Wang, 2005).

A Theory of Spatial Memory
As virtually all previous theories of spatial memory
(Avraamides & Kelly, 2008; Byrne et al., 2007; Mou et al.,
2004; Sholl, 2001; Wang, 2017), our theory assumes that one
component of spatial memory is what we will call the senso-
rimotor representation. It represents self-to-object relations
for (certain) objects in the immediate environment. If any
movement of one’s body is perceived (through vision, propri-
oception, etc.) these relations are updated accordingly. In this
sense the sensorimotor representation is dynamic and tran-
sient. Access to this representation is quick and automatic
and it serves as the default basis for motor actions.

In addition, our theory assumes a more enduring represen-
tation of the environment as a second component. We will
call this component the LTM representation. It represents
object-to-object relations between the objects in the imme-
diate environment. One’s own body can be one of the ob-
jects in the LTM representation. The LTM representation is
orientation-free and not inextricably linked to some spatial
reference frame (RF). However, the representation may be
associated with a RF in the same sense as items in long-term
memory are usually assumed to be associated with each other.

Because the LTM representation is orientation-free, it will
be of limited use without further additions. Consider the two
object layouts in Fig. 1. Both layouts yield identical repre-
sentations in an orientation-free representation, but for acting
on or within the layout (e.g., approaching object A) it makes
a difference which situation is represented. To create the nec-

A

B C

(a) (b)

A B

C

Figure 1: Two spatial layouts (a) and (b) that yield identical
orientation-free object-to-object representations.

essary correspondence between the LTM representation and
the real world, that is, to anchor the representation in the real
world, it has to be oriented. We argue that this is achieved
by imposing a spatial RF onto the LTM representation and
our theory assumes that any access to the LTM representation
involves such an imposition of a RF. A common RF that peo-
ple will likely employ to access the LTM representation is the
bodily RF arising from the sensorimotor representation (i.e.,
a RF that is oriented as the actual body). Other RFs may be
RFs associated with the LTM representation (e.g., RFs salient
during encoding of the spatial layout) or an imaginal RF that
allows assessing the spatial layout from a vantage point dif-
fering from the current bodily vantage point (e.g., when try-
ing to identify the seats with the best view on the stage in a
theater without first walking through the whole theater).

Notably, differing RFs may concurrently be available for
accessing the LTM representation. Accordingly, we propose
that accessing the LTM representation requires RF selection
and depending on which frames are available this selection
may be competitive and effortful. Specifically, our theory as-
sumes that selection probability and effort depend on the con-
flict between the available frames, where conflict is a function
of the salience and the (mis)alignment of the available frames
(see further detail below).

According to our theory, taking an imaginal perspective in-
volves the following steps (see also Fig. 2): First, a RF has
to be selected and imposed onto the LTM representation. To
perform the PT task successfully, the selected RF needs to be
the one corresponding to the to-be-taken perspective or a dif-
ferent but aligned RF. Second, once the RF has been imposed,
the LTM representation can be accessed to determine the di-
rection towards the target object. Third, the determined target
direction is used to activate a pointing movement towards the
target. If the imaginal and bodily perspective differ from each
other, the determined pointing direction is in conflict with the
pointing direction to the target given by the sensorimotor rep-
resentation. Because access to the sensorimotor representa-
tion is automatic, the disagreeing movement directions give
rise to motor interference. The strength of this interference
is assumed to depend on the dissimilarity of the two move-
ments: The more the two movements’ differ in direction, the
stronger the interference. Note that in this process, activa-
tion of the motor response can only start after LTM access is
completed. On the other hand, nothing precludes RF selec-
tion and LTM access to happen before the target direction is
known. Accordingly, we propose that LTM access may start
before the target object is known.
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Figure 2: Processing steps in imaginal perspective taking.

Explanation of Main Findings
Our theory explains the main findings mentioned above as
follows:

• Imaginal PT is difficult, because it requires RF selection
to access the LTM representation. Selecting a frame when
(at least) the bodily frame and the imaginal frame are in
conflict takes more time than when the frames are aligned.
Furthermore, an incorrect frame (e.g., the bodily frame)
may be selected, which will result in an erroneous pointing
response. Additional difficulty arises from motor interfer-
ence such that interference leads to slower and more error
prone response execution.

• Perspectives involving rotations create a misalignment be-
tween the orientation of the bodily and imaginal RF. Per-
spectives involving only translations do not lead to such a
misalignment. Consequently, accessing the LTM represen-
tation is harder for rotations than for translations

• With increasing disparity, the difference between move-
ment direction to the target from the bodily and the imag-
inal perspective increase. This leads to increased motor
interference, which results in slower and more error prone
responding.

• Lacking a sensorimotor representation has two effects:
First, the sensorimotor representation does not give rise
to a RF, which may otherwise have lead to conflict dur-
ing LTM access. Second, motor interference is reduced
or even eliminated. Accordingly, taking an imaginal per-
spective different from the bodily perspective can be easier
without a sensorimotor representation.

• If a RF is associated with the LTM representation, it may
be co-activated with the LTM representation. If this asso-
ciated RF differs from the imaginal RF, it creates conflict
during accessing the LTM representation. As a result, a
disagreement between imaginal perspective and, for exam-
ple, the learning perspective renders PT more difficult.

• Bodily movements towards the to-be-imagined perspective
will lead to an accordingly updated sensorimotor represen-
tation. This means that the bodily and the imaginal RFs
will be aligned and there will be little or no motor interfer-
ence. Consequently, PT difficulty will be greatly reduced.

• Access to the LTM representation may proceed during
preparation and thus reduce the overall processing time.
However, motor interference arises only after the target ob-
ject has been determined and, consequently, cannot be re-
duced by preparation. This explains why parts but not all of
the processing costs of PT can be reduced by preparation.

Formalization
Our theory’s ability to provide explanations for the main ef-
fects lends support for its assumptions. To allow compar-
ing the behavior predicted by the theory to human behavior
in more detail we formalized the theory as a computational
model and applied the model to two pertinent PT studies. As
a first step, we decided to use a formalization that captures the
main assumptions of the theory while remaining as simple as
possible. This has the advantage that any successes or failures
of the model can be more directly attributed to the theory and
its assumptions instead of being a result of implementation-
specific detail (see, e.g., Cooper & Guest, 2014). An im-
plementation of the theory that provides more detail on the
possible mechanisms is discussed below.

Because establishing a RF and motor interference are the
main factors in driving PT difficulty, the model focuses on
these two aspects.

RF Selection. Establishing a RF is formalized as follows:
Each of the available reference frames RFi is assumed to have
a salience sali such that the salience of all available reference
frames sums to one. Following Botvinick, Braver, Barch,
Carter, and Cohen (2001), we define the strength of conflict
(cV ) of RFi with RFj as

cV (i, j) = δ∗ sali ∗ sal j ∗ (1− jCon f ),

where jCon f is the conflict of RFj to all other RF (i.e.,
RFk,k 6= i) and

δ =

{
−1, for RFiand RFjaligned,
1, for RFiand RFjmisaligned.

The overall conflict of RFi is given as the sum over all pair-
wise conflict values across all other RF:

cVi = ∑
j, j 6=i

cV (i, j).

The salience and the conflict of each frame are combined to
yield an impact score impi. Specifically, the frame’s salience
is scaled based on its conflict value such that higher conflict
leads to a lower impact score and impi ∈ [0.5∗sali,1.5∗sali].
Probability of a frame being selected spi and the speed with
which it can be selected sti are proportional to impi:

spi =
impi

∑ j imp j
,

sti = A∗ (impMax− impi),

where impMax is the maximum possible impact score and A
serves to scale the response time to the order of magnitude of
the human data.
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Motor Interference. Processing time arising from motor
interference is assumed to be directly proportional to the
disparity disp between the directions of the two interfering
movements: B∗disp, where B is a scaling factor analogous to
A above. Error is determined distinguishing two cases: First,
if the imaginal RF (or a frame aligned with it) is used to ac-
cess the LTM representation, error is also assumed to be pro-
portional to disparity: C ∗ disp. If a frame misaligned with
the imaginal frame is selected, the error will amount to the
angular difference of the selected frame’s and the imaginal
frame’s orientation.

Example. To illustrate the workings of the model, we will
consider a situation, in which a person is located in the mid-
dle of a previously learned configuration of objects and asked
to point to one of the objects as if facing one of the others.
Let us assume that the imagined facing direction differs from
the actual bodily facing direction and that the learning view
coincides with the actual bodily orientation.

In such a situation, the model computes response time and
error for each frame individually. The overall response time
and error is given as a weighted average of all individual
terms: each individual frame’s time and error are weighed
by the probability of selecting the frame and the resulting
values are summed. To obtain the individual frame’s values,
the model computes the impact score of all three involved
frames. Based on the impact scores, the selection probability
and selection time of each frame is computed. Given any
individual frame RFi, the model computes the time from
motor interference as a linear scaling of the disparity between
pointing from the actual bodily perspective and the imaginal
perspective given RFi. If the selected frame is the imaginal
frame, error is computed as a linear scaling analogously
to the scaling of time. If any of the other two frames is
selected, the error equals the orientation difference between
the imaginal frame and the bodily/environmental frame. The
ultimate output of the model are its prediction of response
time and error in the given situation.

Given that humans are generally well able to perform PT
tasks, we assumed that the imaginal frame has the strongest
salience and set this salience to 0.6. The remaining salience
amount of 1− 0.6 = 0.4 (saliences of all RF sum to 1) was
distributed uniformly across all other RF. This left the scaling
factors A,B,C as the only free parameters of the model.

Simulations
The first simulation addressed Experiments 2 and 3 of May
(2004). These experiments provide a rich dataset of re-
sponse times and pointing errors across 24 experimental con-
ditions and also exhibit several of the main findings men-
tioned above.

Experiments 2 & 3 of May (2004). Participants had to per-
form an egocentric pointing task with to-be-imagined per-
spectives being either rotations or translations. Across dif-
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Figure 3: Human (solid lines) and model (dashed lines) re-
sponse times for Experiment 2 of May (2004). Shown are
translation and rotation times for two preparation durations
(1s and 5s) each. H = Human; M = Model; T = Translation; R =
Rotation; 1 and 5 indicate the duration of the preparation interval.

ferent blocks, participants either had 1s, 3s, or 5s to prepare
their perspective before the target object was presented. Fur-
thermore, the disparity between the target direction from the
bodily perspective and the target direction from the imaginal
perspective was systematically varied to yield levels of in-
creasing disparity: 22.5◦, 67.5◦, 112.5◦, 157.5◦. Both exper-
iments revealed that (a) rotations were slower and more error
prone than translations, (b) response time and error increased
with increasing disparity, and (c) that overall processing time
but not the disparity effect decreased with increasing prepa-
ration time.

For simulating these experiments, we assumed that the sen-
sorimotor representation, the bodily RF, and the imaginal RF
are always present. Given the realization of the learning phase
and the spatial layout of the experimental environment (see
Fig. 1 in May, 2004), we also assumed the existence of
an associated RF, which was—with equal probability—either
aligned with the bodily RF or 45◦ misaligned with the bodily
frame. We estimated the 3 free parameters of the model using
the Metropolis algorithm (Madras, 2002) by fitting the model
to response times and errors of both experiments across all
conditions. Since the purpose of the simulation was to in-
vestigate the model’s ability to account for key effects in the
observed behavior, the objective of estimation was to maxi-
mize correlations between model and human behavior for re-
sponse time and error for each of the two experiments (i.e., 4
correlations).

Model response times and errors correlated strongly with
human times and errors for both experiments: ρ = 0.91,ρ =
0.95,ρ = 0.94,ρ = 0.86 for times and errors of Experiments
2 and 3, respectively. Model behavior is shown alongside hu-
man behavior for Experiment 21 in Figs. 3 and 4. As can

1The fit to Experiment 3 was very similar. For the sake of clarity
the data from Experiment 3 are not included in the plot.
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Figure 4: Human (colored lines) and model (black lines)
pointing errors for Experiment 2 of May (2004). Shown are
human errors for translation and rotation for two preparation
durations (1s and 5s) each. Because model errors do not dif-
fer across different preparation durations, only rotations and
translations are distinguished for model errors. H = Human;
M = Model; T = Translation; R = Rotation; 1 and 5 indicate the
duration of the preparation interval.

be seen from the plot, the model mirrors the main effects in
the data well: (i) rotations are slower and more error prone
than translations; (ii) response times and errors increase with
disparity for both rotations and translations; (iii) preparation
decreases the overall processing time, but does not substan-
tially impact the disparity effect. Three further aspects of the
simulation results seem noteworthy. First, humans show a
stronger disparity effect for rotations than predicted by the
model. Why humans should exhibit a stronger disparity ef-
fect for rotations than translations is currently unclear. Sec-
ond, the model also captures that translations with short (1s)
preparation are slower than rotations with long (5s) prepara-
tion. Third, the model correctly predicts that preparation time
has no impact on error magnitude.

In sum, this first simulation lends further support to the
assumptions of our theory in showing that a model based on
the theory is able to closely mirror human behavior across a
wide range of experimental conditions.

The second simulation will address a potential objection
to our theory. Note that the theory makes no reference to
mental transformations such as mental rotation or translation
(e.g., Sholl, 2001). As a result the theory may seem to be at
odds with findings indicating that PT time and error increases
with the distance between the bodily and the imaginal per-
spective in translations (Easton & Sholl, 1995). Because no
assumptions of our theory formulate an explicit relation be-
tween translation distance and PT performance, it seems an
interesting question to what extent our theory can account for
such a relationship. To address this question our second sim-
ulation models Experiment 1 of Easton and Sholl (1995).
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Figure 5: Model response times (solid line) and pointing er-
rors (dashed line) when simulating Experiment 1 of Easton
and Sholl (1995)

Experiment 1 of Easton and Sholl (1995). In this experi-
ment, participants first memorized an object layout, in which
8 objects were placed with varying distance (2 – 9ft) from
the location of the observer (see Fig. 1B in Easton & Sholl,
1995). After learning the layout, participants were provided
with a target object and then a to-be-taken perspective. They
were asked to point to the target object as quickly as possible.
The main finding was that for translations pointing time and
error increased significantly with increasing distance.

We assumed the same RFs (bodily, imaginal, associated)
as for the first simulation. Because the bodily orientation was
identical for learning and testing, we assumed that all three
RFs were aligned for translations. For each object that indi-
cated the position of a translated perspective, we estimated
the pointing disparity when pointing to each of the other ob-
jects from Fig. 1B of Easton and Sholl (1995). Response
times and errors for one translation perspective were com-
puted as the average times / errors across pointing to all other
objects from this perspective. Because the purpose of this
simulation was to assess the theory’s general ability to ac-
count for increasing times and errors with increasing distance,
we did not fit the model to the human data, but reused the pa-
rameters estimated in the first simulation.

As can be seen from Fig. 5, the model nicely accounts
for the effects observed by Easton and Sholl (1995): Both
times and errors increase with increasing translation distance.
Given that our theory makes no reference to mental transfor-
mations or distances, it may not be immediately clear why
the theory correctly predicts the observed human behavior. It
turns out, however, that—at least in Experiment 1 of Easton
and Sholl (1995)—the average pointing disparity systemati-
cally increases with increasing translation distance. Since our
theory assumes increased PT effort with increasing disparity,
it predicts the increased effort for increased distance observed
in this experiment.
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The Algorithmic Level
The model described above was designed to capture the gist
of the theory with as little implementational overhead as pos-
sible. Consequently, the model remains somewhat abstract
and does not provide much detail on the mechanisms and
representations underlying the observed behavior. In this sec-
tion, we propose a more mechanistic realization of our theory.

The object-to-object representation may be realized by
the type of representation structure proposed by Schultheis,
Bertel, and Barkowsky (2014). This circular representation
structure preserves the neighborhood relations between direc-
tions, but requires a direction root (i.e., a RF) to ground it in
the real world. We further suggest that RF selection may pro-
ceed as a leaky, competitive, accumulative process as in RF
selection for spatial term use (Schultheis & Carlson, 2017).
Finally, we think that activation of a pointing response and
interference from the bodily pointing response can appropri-
ately be captured by dynamic field theory (Schöner, Spencer,
& DFT Research Group, 2015, with different pointing direc-
tions activating different parts of the dynamic field) .

Such a realization has the twofold advantage of promising
to capture the main assumptions of the theory while, at the
same time, constituting a computational instantiation that is
more solidly grounded in previous cognitive theorizing than
the above-described model. To what extent such a realization
is able to mirror pertinent human behavior will be subject of
our future research.

Related Theories
Several theories of spatial memory have previously been pro-
posed and all of them have highlighted important properties
of how humans represent and recall spatial information of
immediate environments (e.g., Avraamides & Kelly, 2008;
Byrne et al., 2007; Mou et al., 2004; Sholl, 2001; Waller &
Hodgson, 2006; Wang, 2017). However, none of the existing
theories provides an explanation of all of the main findings
highlighted above. For some findings the theories do not of-
fer any explanation and for others, the theories’ assumptions
seem to be in contradiction with the findings. Because space
restrictions do not permit a detailed critical appraisal of all
theories, we restrict ourselves to a brief exemplary discussion
of two of the theories.

Sholl (2001) assumes an orientation-free object-to-object
representation that is subject to access by two egocentric RFs:
a motor and a cognitive RF. The two frames usually coincide
but can be separated. In imaginal PT the cognitive frame is
assumed to be mentally rotated / translated to an appropriate
place in the object-to-object representation. PT effort is as-
sumed to be driven by the effort to separate the two frames
and to mentally transform the cognitive frame. This theory
has difficulties, for example, explaining why translation ef-
fort increases with pointing disparity and why rotations are
generally more effortful than translations.

Mou et al. (2004) also assume an object-to-object repre-
sentation. In contrast to Sholl (2001) and our theory, how-

ever, this representation is assumed to be oriented (i.e., tightly
coupled to a RF). If the imaginal frame is aligned with the
representation’s frame, information can be directly retrieved
from memory. If the frames are misaligned, the relation has
to be inferred. The mechanisms underlying this inference are
sometimes declared outside the scope of the theory (Rump
& McNamara, 2013) and sometimes characterized as being
some form of mental transformation (Mou et al., 2004, p.
156). In either case, the theory does not offer a satisfactory
explanation of some of the key findings.

Conclusion
Our theory constitutes a promising account of spatial memory
of immediate environments. As we have shown, the theory
provides explanations for a wide range of key findings and a
computational realization of the theory accounts well for hu-
man behavior in pertinent empirical studies. Moreover, the
theory’s view on spatial memory of immediate environments
also fits well into frameworks of how larger-scale space repre-
sentations are assembled as networks of more local represen-
tations of immediate environments (e.g., Chrastil & Warren,
2014; Meilinger, 2008).

Our theory suggests that enduring spatial memory repre-
sentations may best be viewed as consisting of two main
parts: a representation structure (e.g., the circular structure
described above) and a RF. In particular, structure and RF
may be flexibly combined such that the same structure / RF
can yield different representations when combined with dif-
ferent RFs / structures. Such a view promises a more par-
simonious account of spatial representations, because a com-
paratively small set of structures and frames may be sufficient
to explain a wide range of spatial abilities. It also highlights
an interesting possible connection between spatial language
use and spatial reasoning through sharing RF selection mech-
anisms.

Future work will focus on refining the computational real-
ization of the theory (see above) and on extending simulations
to include further experiments.
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Abstract
Memory researchers have studied learning behavior and
extracted regularities describing learning and forgetting over
time. Early work revealed forgetting curves and the benefits
of temporal spacing and testing for learning. Computational
models formally implemented these regularities to capture
relevant trends over time. As these models improved, they
were applied to adaptive learning contexts, where learning
profiles could be identified from responses to past learning
events to predict and improve future performance. Often times,
past performance is expressed as accuracy alone. Here we
explore whether a model’s predictions can be improved if
past performance is expressed by an integrated measure that
combines accuracy and response times (RT). We present a
simple, data-driven method to combine accuracy and RT on a
trial-by-trial basis. This research demonstrates that predictions
made using the Predictive Performance Equation improve
when past performance is expressed as an integrated measure
rather than accuracy alone.
Keywords: Learning; forgetting; cognitive model; accuracy;
response time; integrated measure

Introduction
What data from fact learning trials are needed to predict
whether a student will know the correct answer some time
in the future? Does it help to know how often (and when) the
student has previously answered correctly? Or how long it
took them to provide the answer?

These questions are at the heart of models that describe
learning and forgetting over time. Computational models
are often fit to historical data to demonstrate that they
can capture relevant behavioral effects exhibited by human
learners (e.g. Pavlik & Anderson, 2008; Walsh, Gluck,
Gunzelmann, Jastrzembski, Base, et al., 2018). Yet, the
strongest test of a model is accurately predicting future
performance—especially if predictions are made for each
item studied by each student. The Second Language
Acquisition Modeling (SLAM) challenge recently posed
by Duolingo required such predictions (Settles, Brust,
Gustafson, Hagiwara, & Madnani, 2018). Data from a
subset of Duolingo users were made available and users
submitted model performance predictions as part of a
modeling competition..

As in these challenges, adaptive fact-learning systems
must decide which features of the available data are taken
into account to detect differences in item difficulty and
participants’ abilities to make accurate predictions. An
obvious candidate is accuracy, since it indicates whether the
student knew an answer previously. Forgetting then reduces
the probability that responses are correct over time. Systems
such as Duolingo (Settles & Meeder, 2016) strive to ensure
that study repetitions occur before knowledge is forgotten.

Yet, if most responses are correct, there is very little
information in the responses if only accuracy is considered,
making it difficult to optimally adapt to learning and item
difficulty. Response times (RT) can provide an additional
source of information to differentiate between otherwise
identical responses. The basic assumption is that observed
RTs correlate with the difficulty of memory retrieval (e.g.,
Pavlik & Anderson, 2008; Pyc & Rawson, 2009). Indeed,
analyses of the models submitted to the SLAM challenge
support the view that RTs provide valuable information for
predicting later performance (see Table 4 in Settles et al.,
2018).

As accuracy and RT are often correlated (e.g.,
speed-accuracy trade-offs), methods have been proposed to
combine them into a single performance metric. A recent
suite of simulation studies discusses the merits of seven such
integrated performance measures (Vandierendonck, 2017).
All these measures, however, are aggregate measures: For
example, the mean RT is combined with the average accuracy
to express performance per participant, per condition. As
this discards all information pertaining to when responses
are given, these measures are less suited for parametrizing
adaptive learning systems.

To our knowledge, there are at least two adaptive
fact-learning systems that use both accuracy and RTs
on a trial-by-trial level. Adaptive Response-Time-based
Sequencing (ARTS; Mettler & Kellman, 2014; Mettler,
Massey, & Kellman, 2016) schedules repetitions adaptively
by continuously computing priority scores and presenting
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the item with the highest priority. If the previous response
was incorrect, that item’s priority is increased drastically
to ensure timely repetition. If the previous response
was correct, however, the priority score is a function of
the (log-transformed and scaled) RT associated with that
response.

The second system is an extension of ACT-R’s declarative
memory module and uses the associated equations to
approximate an item’s memory strength (or “activation”)
through observed RTs (Pavlik & Anderson, 2008). Instead
of using priority scores, items are repeated based on their
estimated activation, a value that decreases over time (van
Rijn, van Maanen, & van Woudenberg, 2009). Note that
the observed RT of incorrect responses is replaced by a
fixed, long RT, reflecting that it took “too long” for the
correct response to be retrieved. These two examples
demonstrate that combining information from accuracy and
RTs is feasible in practice. Neither system really uses an
integrated performance measure, however—they both use a
transformation of RT that is conditional on accuracy.

Here, we will present an approach to computing an
integrated, trial-level performance measure that combines
accuracy and RT. Ideally, such a measure is purely
data-driven, easy to interpret, computationally simple, and
applicable to existing datasets. We are most interested in
situations in which item-level data of the learning history are
available and the goal is to validly predict future performance.

In the following, we will outline two datasets that we
use as a test bed. Both datasets concern learning of paired
associates, which provides a context in which the RT reflects
relevant memory processes. We will demonstrate how our
trial-level integrated performance measure can be computed
for such data. Lastly, we describe how these integrated
“Readiness” scores can be used as input to a computational
model (the Predictive Performance Equation, Walsh, Gluck,
Gunzelmann, Jastrzembski, Base, et al., 2018) to generate
predictions based on past performance.

The central focus of this research seeks to explore whether
use of this “Readiness score improves model predictions
compared to scores that do not integrate accuracy and latency.

Methods
Datasets
We leverage two existing datasets, labelled WSU and TopiCS,
to explore the idea of an integrated, trial-level performance
measure. Each dataset consists of a study and a test phase.
Trial-level information for response accuracy and RT is
available for both datasets but they vary drastically in the
structuring of the study phase and in the time between study
and test. Importantly, accuracy during study is very high in
both datasets (85.9% in WSU and 89.8% in TopiCS).

Washington State University (WSU) data WSU data is
part of an (as of yet) unpublished multi-day fatigue study.
Participants spent four days in a sleep lab and completed a
battery of tests throughout that period. Here, we will focus

on the paired-associates learning data of 36 participants who
were not withheld any sleep (the control group). Fifty-one
nonsensical line drawings—e.g., —were used as cues and
participants learned two-digit numbers—e.g., “79”—as a
response. Each paired associated was repeated 20 times
according to different presentation schedules.

Table 1: Number of repetitions of an item at each test moment
depending on the schedule in the WSU data. RI = retention
interval between the last encounter of an item and the test.

Study phase Test phase
Schedule 9am 1pm 3pm 7pm 9pm 9am
Spaced 4 4 4 4 4 2 (36h RI)
Massed early 20 · · · · 2 (48h RI)
Massed late · · · · 20 2 (36h RI)

We will focus on three schedules that distributed the 20
repetitions across a single day. Table 1 shows that the spaced
schedule distributed the 20 repetitions equally among five
study periods throughout the day (four repetitions each),
while the massed schedules presented each item 20 times
either early or late in the day. The test phase featured two
repetitions for each paired associate, and the retention interval
(RI; i.e., the temporal space between the last encounter of
an item and the test) depended on which study schedule the
paired associate was assigned to. Each participant studied
with all schedules and encountered three unique paired
associate per schedule, resulting in 6,156 observations from
the study phase that were used to make predictions for the
648 observations from the test phase.

The recorded RT corresponds to the first key press. If
participants did not respond within 6 seconds, the trial was
recorded as incorrect (with RT set to 6 sec, hence the spike in
the lower right panel of Figure 1A).

TopiCS data The TopiCS data were taken from Sense,
Behrens, Meijer, and van Rijn (2016), published in Topics
in Cognitive Science. Participants completed three sessions
of two blocks each (six total). In each block, material was
studied for 20 minutes using an adaptive fact-learning system
(van Rijn et al., 2009), followed by a five-minute distractor
task (Tetris), followed by a test of the studied material. Here,
we will only use the first block of each session. In each
of these three blocks, participants studied Swahili-English
vocabulary word pairs. Each Swahili block featured 25
unique paired associates.

A total of 50,665 responses are available from 67
participants. Since the introduction and repetition schedules
of items during study were governed by an adaptive model,
these data do not have the controlled temporal structure of the
WSU data: The number of repetitions as well as their timing
varied between items and participants. The test was the same
for everyone, however. After a five-minute delay, participants
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were tested on all 25 potential Swahili cues at the end of each
block and accuracy was recorded (4,965 observations).

The study phase was entirely self-paced and RTs
correspond to the first key press recorded after a Swahili word
appeared on screen. The RT distributions, split by accuracy,
are shown in Figure 1A.

Computing integrated “Readiness” scores
The goal is to derive a trial-level, quasi-continuous
performance metric from accuracy and RT data. This
“Readiness” value can take any value between 0 and 1. Values
closer to 1 correspond to a correct, fast response. There are
two versions of the metric: For R0, all incorrect responses
are treated equally and set to 0. For Rc, incorrect responses
are transformed such that faster incorrect responses are more
severely penalized (i.e., closer to 0) than slow incorrect
responses (cf. Klinkenberg, Straatemeier, & Van der Maas,
2011). The term “Readiness” is used because values close to
the 1 indicate that a response was readily available, resulting
in a fast RT. Overall, the higher the “Readiness” value, the
better the performance. In the following, we will detail how
R0 and Rc are computed from behavioral data.

Figure 1A depicts the distribution of RTs for correct (top
panels) and incorrect (bottom panels) responses from the two
datasets. For a more precise depiction of the data, the axes
across the panels vary and only RTs faster than 15s are shown
for the TopiCS data (99% of all observations). Since the vast
majority of responses were correct, there are fewer RTs for
the incorrect responses in the bottom panels.

Figure 1B makes the mapping from observed RTs to the
probability of a correct response explicit: In both datasets,
the log-transformed RTs (in ms) are strong predictors of
accuracy, such that slower RTs reduce the probability of
a correct response. The exact mapping differs in the two
datasets: Responses are generally faster in the WSU data and
time out after 6 seconds. The mapping is expressed as the two
coefficients estimated by a simple logistic regression, which
is β0 +β1 · log(RT). For the WSU data, β0 is 24.26 and β1 is
-3.09. For the TopiCS data, β0 is 12.99 and β1 is -1.39. All
four coefficients differ significantly from 0 with p < 0.001.

The relationship shown in Figure 1B provides the
quantitative basis for the “Readiness” metrics. The mapping
provided by the logistic regression allows an unbound
performance metric (RT) to be transformed to a continuous
metric with range [0, 1].

For the first metric, R0, all correct responses are
transformed using the mapping provided by the logistic
regression coefficients. Incorrect responses are treated as
performance of 0 (as with accuracy; hence the subscript
0). Using this approach, a correct response given quickly
is considered “more correct” than a correct response given
after longer deliberation, which is in line with behavioral
data and theoretical assumptions (Pavlik & Anderson,
2008). Numerically, R0 is computed by taking the inverse
logit (L−1) of the regression formula shown above, using
log-transformed RTs (in ms) when accuracy (A) is 1:

R0 =

{
A = 0 : 0
A = 1 : L−1(β0 +β1 · log(RT))

}
(1)

The second “Readiness” metric, Rc, assumes that latencies
for incorrect responses are informative too. Specifically, the
assumption is that a fast incorrect response is worse than an
incorrect response given after longer deliberation, a notion
also present in other learning systems (e.g., Math Garden—an
adaptive, online arithmetic-learning environment used by
many schools in the Netherlands—formalized the same idea
in the ”high speed, high stakes” scoring rule; Klinkenberg
et al., 2011, see section 2.3.3. and Fig. 2 specifically).
Numerically, this is formalized by using the same approach
as for correct responses but then subtracting 1 and taking the
absolute value1:

Rc =

{
A = 0 : |L−1(β0 +β1 · log(RT))−1|
A = 1 : L−1(β0 +β1 · log(RT))

}
(2)

For example, a correct response with an RT of 1,834ms
would result in the same R0 and Rc scores but they would
depend on the dataset the response was observed in. In
the WSU data, the “Readiness” score would be 0.739
(L−1(24.26− 3.09 · log(1,834)) but in the TopiCS data it
would be higher (L−1(12.99 − 1.39 · log(1,834) = 0.927)
because RTs are generally longer, which results in a different
mapping (cf. Figure 1A and B). If the RT is the same but
associated with an incorrect response, the R0 score is simply
0 (see Eq. 1). The Rc score, on the other hand, would be 0.261
(i.e., |0.739− 1|) in the WSU and 0.073 (i.e., |0.927− 1|) in
the TopiCS data (see Eq. 2).

Figure 1C gives an overview of the Rc values computed
in the two datasets, split again by accuracy and dataset.
Note that the y-axes differ due to the unequal number of
observations. For both datasets, the correct responses (top
panels) mostly have values between 0.75 and 1. The incorrect
responses (bottom panels) are more spread across the range
for the Rc metric2. For the TopiCS data, most incorrect
responses have Rc values between 0 and 0.5 but mostly
values are <0.25. In the WSU data, the values are spread
more widely. The distributions of correct and incorrect
responses barely overlap within a dataset, though (note the
small numbers on the y-axis for incorrect reponses from the
WSU data). For the R0 metric, all values corresponding to
incorrect responses are simply 0 (cf. Eq. 1).

Taken together, the approach outlined here has multiple
advantages. A binary and an unbound performance metric
(accuracy and RT) are combined into an integrated, trial-level
measure that is continuous and bound between 0 and
1. Importantly, a trial-level performance metric preserves

1This could be thought of as flipping the mapping in Figure 1B
along the horizontal axis at 0.5.

2For the WSU data, timed-out observations with RTs of 6s (N =
35) were transformed to the fastest observed RT (391ms) to make
them “very wrong”. If these observations are simply dropped, none
of the reported results change qualitatively.
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Figure 1: A: The observed RT in seconds split by accuracy and dataset; B: Logistic regression lines showing the mapping from
observed RTs in seconds to the probability of a correct response; C: The continuous “Readiness” (Rc) values computed using
the mapping in B, split by accuracy and dataset. In all plots, color indicates the dataset. See text for additional details.

information about the timing of individual encounters that
would be lost if one simply computed, for example, the mean
accuracy during study. The approach is also computationally
extremely simple and makes minimal theoretical assumptions
that are easily checked: Are longer RTs associated with a
lower probability of giving an accurate answer? If the logistic
regression’s slope coefficient (β1) does not differ significantly
from 0, computing “Readiness” values is probably not
sensible. Visual checks akin to Figure 1B and C also
provide easy sensibility checks. Finally, the interpretation of
“Readiness” values is straightforward: Higher values indicate
better performance and values at the boundaries indicate
faster responses.

Predictive Performance Equation (PPE)

To explore whether the “Readiness” scores are useful, we will
explore their utility as input to the Predictive Performance
Equation (PPE), a computational model developed to capture
individual differences in learning and forgetting (for an
extended description of the model see Walsh, Gluck,
Gunzelmann, Jastrzembski, Base, et al., 2018). If the scores
expressed meaningful individual differences, a computational
model should more closely mimic a participant’s learning
and forgetting process than when other scores are used. The
end result would be more accurate predictions of future
performance based on past performance.

In two recent studies, PPE was compared to other models
to test “the theoretical adequacy and applied potential
of computational models” more generally (Walsh, Gluck,
Gunzelmann, Jastrzembski, & Krusmark, 2018) and to
shed light on “the mechanisms underlying the spacing
effect in learning” specifically (Walsh, Gluck, Gunzelmann,
Jastrzembski, Base, et al., 2018). Due to space constraints, we
will keep the current description of the model mechanics brief
and refer the interested reader to those papers for a detailed
overview.

The PPE component we are ultimately interested in is the

predicted performance, P, which is a logistic function of
activation (M) that has two free parameters, τ and s:

P =
1

1 + exp( τ − M
s )

(3)

The activation M is the product of learning and forgetting,
expressed as N0.1 · T−d . The learning term increases
exponentially as a function of the number of repetitions (N)
and the forgetting term decreases exponentially. The latter
has two components: The elapsed time (T ) is the weighted
sum of the time since each previous repetition (see Eq. 3 and
4 in Walsh, Gluck, Gunzelmann, Jastrzembski, & Krusmark,
2018) and the decay rate (d), which has free intercept (b) and
slope (m) parameters and is a function of the lag between
consecutive repetitions:

d = b + m ·

(
1

n − 1
·

n−1

∑
j=1

1
ln(lag + e)

)
(4)

Model fitting In the form outlined above, PPE has four
free parameters (b, m, τ, and s) and requires two pieces of
information to be fit: The time point of each repetition (to
compute T and d) and the observed performance at each
time point. The model is agnostic with regards to what the
performance metric represents and only requires it to fall in
the range of [0, 1], as the ”Readiness” measure provides.
The best-fitting parameters are found by minimizing the error
between the supplied performance metric and the predicted
performance P (see Eq. 3) produced by a given combination
of the free parameters. The error is defined as the
summed squared error between the performance metric and
P across the data available for each unique participant-item
combination.

Here, we only vary the performance metric that is used
during model fitting, using either accuracy, R0, and Rc. All
other factors—free parameters, allowed parameter ranges3,

3The ranges for the free parameters are b = [0, 0.5], m = [0, 0.5],
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and timing-related information—are held constant.

Results
For both datasets, we determined the best-fitting PPE
parameters for each participant-item combination, and then
computed item-level predicted performance, P, on the test.
The model fit will be evaluated for the predictions—i.e.,
comparing predicted P with recorded accuracy—rather than
fit to the study data because we consider the ability to predict
future performance given historical data most relevant.

For each dataset, PPE was fit three times, using the three
performance metrics outlined above: Accuracy, which is
binary; R0, which is continuous for correct responses but
all incorrect responses are 0 (see Eq. 1); and Rc, which
is continuous for both correct and incorrect responses (see
Eq. 2 and Figure 1C). The main results of the comparison are
presented in Table 2, which lists two model fit statistics for
each performance metric. Also included is a baseline, which
simply predicts that all responses during the test are correct.

In both datasets, performance on the test is expressed as
accuracy. PPE, on the other hand, predicts the probability of
a correct response. To evaluate the model predictions, we use
fit statistics commonly used when evaluating performance in
binary classification problems. The fit statistics are: (1) The
area under the receiver operating characteristic curve (AUC),
which can be interpreted as the probability of a randomly
drawn correct response outranking (i.e., having a higher
P value) a randomly drawn incorrect response. Note that
the baseline condition, in which all responses are predicted
to be correct, would result in an AUC of 50%. (2) Log
loss, expressing the accuracy of a classifier by penalizing
inaccurate classifications. The AUC measure can range from
.5 to 1, higher values are better. Log loss is unbound and
lower values are better. In Table 2, the best-performing metric
is highlighted in bold for each fit statistic.

Table 2: Fit statistics for predictions made in the two datasets.
The baseline predicts that all responses on the test are correct.

Dataset Statistic Baseline Accuracy R0 Rc

WSU AUC 0.500 0.687 0.768 0.769
Log loss 19.635 6.170 1.900 1.141

TopiCS AUC 0.500 0.679 0.712 0.755
Log loss 1.298 3.110 1.701 0.638

Table 2 shows the fit statistics for the 648 predictions
made in the WSU data. All three measures outperform the
baseline. Of these, using accuracy as performance measure
scores lowest, and there is no clear difference between the
two “Readiness” scores. This impression is confirmed by
statistical comparison of the AUC values, which tests the null
hypothesis that the difference between two AUCs is 0 against

τ = [0, 1], and s = [0, 0.1].

the alternative hypothesis that it is not (DeLong, DeLong, &
Clarke-Pearson, 1988). The tests yield significant differences
between the accuracy- and R0-based AUCs (z = -4.449; p <
0.001) and accuracy- and Rc-based AUCs (z = -3.850; p <
0.001) but not between R0- and Rc-based AUCs (z = -0.063;
p = 0.950). The log loss is very high for the baseline because
the actual accuracy on the test was only 45.5%, resulting in a
high penalty.

In the TopiCS data, on the other hand, the observed
accuracy on the test was extremely high: 96.4% of the 4,965
responses were correct. Thus, the all-correct baseline gets
less than 4% of the predictions wrong, resulting in a relatively
low log loss value. Only the Rc score yields predictions
that result in a lower log loss value than the baseline.
Regarding the AUC values, all predictions derived from the
computational model outperform the baseline. The statistical
test for the comparison of the accuracy- and R0-based AUC
is inconclusive (z = -1.451; p = 0.147), while the Rc-based
predictions are significantly better than both the accuracy- (z
= -2.809; p = 0.005) and R0-based predictions (z = -2.148;
p = 0.032).

Discussion
Here, we explored the predictive power of an integrated
performance measure that combines accuracy and
RT information. Unlike aggregate measures (see
Vandierendonck, 2017, for an overview), the “Readiness”
scores presented here are computed for each observation
individually. Using two datasets, we demonstrated how
“Readiness” scores are computed. The practical utility of the
resulting integrated performance measures was demonstrated
by fitting a computational model to past performance in
order to predict future performance. Statistical analyses
reveal evidence that predictions are more accurate when past
performance was expressed as a “Readiness” score rather
than accuracy.

We present two variations of the “Readiness” score that
differ in how they treat incorrect responses. The R0 score
regards all incorrect responses equally, setting them to 0
(analogously to accuracy). The continuous score, Rc, scales
both correct and incorrect responses (see Figure 1C) such
that fast incorrect responses are considered worse than slow
incorrect responses. Both versions express performance
as scores between 0 and 1, with higher values indicating
better performance. For Rc, scores closer to either boundary
correspond to responses that were given quickly.

Whether R0 or Rc should be preferred—or whether either
should be used—depends on the context and the assumptions
the researcher can make, especially regarding incorrect
responses. Since the “Readiness” scores are based on
empirical data, the data can provide an immediate check. If
the slope of the logistic regression model that provides the
mapping (cf. Figure 1B) does not significantly differ from
0, the crucial assumption that observed RTs and accuracy are
associated is violated and “Readiness” scores are probably
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not meaningful. As discussed in the Methods section,
visualizations such as those in Figure 1B and C can also
inform the researcher’s choice. In a very large dataset,
for example, the logistic regression model might have a
significant but very small slope coefficient, resulting in a
mapping (cf. Figure 1B) for which even very slow RTs result
in near-ceiling performance, which would in turn yield Rc
values that are quasi-equivalent to accuracy.

Exploring to which extent “Readiness” scores could be a
useful expression of past performance in different contexts
would be a logical extension of the current work, which
presents an initial exploration of the idea in two relatively
small datasets. This first exploration is promising, however,
given that even though both datasets differed in a number
of important aspects, the “Readiness” measure outperformed
accuracy in both. Most importantly, the retention intervals
differed dramatically (five minutes in the TopiCS data and
36–48 hours in the WSU data), which meant that test
performance was near-perfect in the TopiCS data and lower
than 50% in the WSU data. Another possible extension
of the current work would be to investigate the utility of
“Readiness” scores in computational models other than PPE.

In conclusion, we present a simple, data-driven way
to combine accuracy and response time information into
an integrated, trial-level performance measure that we call
“Readiness.” This approach makes minimal assumptions that
are easy to check and resulting performance scores are
easy to interpret. This research demonstrates that a single
computational model can capture the general learning and
forgetting patterns observed across two very diverse sets of
paired associate learning data, and that the model’s predictive
validity is enhanced when past performance is expressed in
terms of an integrated “Readiness measure, rather than use of
simple accuracy alone.
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Abstract

In Joint Action (JA) tasks, individuals must coordinate their
actions so as to achieve some desirable outcome at the group-
level. Group function is an emergent outcome of ongoing,
mutually constraining interactions between agents. Here we
investigate JA in dyads of improvising jazz pianists. Partic-
ipants’ musical output is recorded in one of two conditions:
a real condition, in which two pianists improvise together as
they typically would, and a virtual condition, in which a single
pianist improvises along with a “ghost partner” – a recording
of another pianist taken from a previous real trial. The con-
ditions are identical except for that in real trials subjects are
mutually coupled to one another, whereas there is only unidi-
rectional influence in virtual trials (i.e. recording to musician).
We quantify ways in which the rhythmic structures sponta-
neously produced in these improvisations is shaped by mutual
coupling of co-performers. Musical signatures of underlying
coordination patterns are also shown to parallel the subjective
experience of improvisers, who preferred playing in trials with
bidirectional influence despite not explicitly knowing which
condition they had played in. These results illuminate how
mutual coupling shapes emergent, group-level structure in the
creative, open-ended and fundamentally collaborative domain
of expert musical improvisation.
Keywords: Joint Action; Music; Improvisation; Complex Dy-
namical Systems; Situated Cognition

Introduction
Joint action (JA) is a fundamental facet of human life. From
the earliest infant-caregiver interactions to the subtle give and
take of salsa dancers, we very often coordinate our actions
with others (Sebanz, Bekkering, & Knoblich, 2006). In such
endeavors, group success has less to do with individual ef-
forts considered in isolation, and more to do with the abil-
ity of individuals to successfully coordinate with one another.
Understanding behavior in these settings requires shifting the
unit of analysis up from the individual to the group level, as
collective behavior emerges out of the ongoing interactions
among individual agents (Goldstone & Gureckis, 2009).

The past decade has seen a proliferation of research in-
vestigating JA in collaborative music performance (Palmer &
Zamm, 2017). Music has long been recognized as a rich and
meaningful domain for cognitive science. It is a central facet
of all human cultures, and music performance demands the si-
multaneous engagement of a variety of cognitive, emotional
and perceptual-motor processes (Pearce & Rohrmeier, 2012).
The richness and complexity of music increases still further
when we consider collaborative musical performance, where
all of these intra-individual processes must be aligned and

coordinated amongst an ensemble of interacting musicians in
service of a joint musical expression.

JA research has begun to elucidate how musicians meet
these collaborative performance demands by examining the
role of anticipatory auditory imagery in enabling perform-
ers to integrate their actions with one another, and how mu-
tual coupling and leader-follower structures within ensem-
bles facilitate musicians’ ability to synchronize and fluidly
change tempos (Chang, Livingstone, Bosnyak, & Trainor,
2017; Goebl & Palmer, 2009; Keller & Appel, 2010).

Joint Action in Improvised Music
Most of the work on music JA has taken place in the context
of composed music, whereas very little has been done to ex-
amine JA in improvised music. JA in improvised music is a
relatively neglected topic, and constitutes a uniquely rich and
promising domain for examining joint action and complexity
which is especially relevant to cognitive science.

When improvising musicians perform together they collec-
tively generate abstract musical structures – rhythm, melody,
harmony and sometimes even long-term song structures. In
composed music, musicians must coordinate in terms of ex-
pressive parameters (like volume, tempo and articulation) but
the abstract structure of the music is given a priori by the
composer. The domain of interpersonal coordination in im-
provised music extends beyond these expressive parameters
and into the formal architecture of the music. Abstract mu-
sical structures emerge out of ongoing interactions among
improvisers. These interactions are nonlinear, mutually con-
straining and have the potential to evolve over time.

In many ways JA in improvised music is more closely
aligned with other everyday JA situations than is performance
of scored music. Improvisation is the norm in our daily life
– group problem solving, scientific collaboration, and most
of our conversations are improvised. It is actually quite rare
that we perform scripted activities with others (composed mu-
sic, religious ceremonies and theater performances are excep-
tional in this regard). Given the ubiquity of improvisation in
everyday life, we might well expect some aspects of collabo-
rative improvised music to generalize to other areas of cogni-
tion.

Despite the paucity of research in this area, some efforts to
understand JA in improvised music have begun. In a notable
example, coordination in jazz piano duos was analyzed as a
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function of musical context (Walton et al., 2018). In the ex-
periment, dyads of jazz pianists were studied improvising to-
gether over a swing backing track and a drone (sustained tone
with no rhythmic structure). The authors performed Cross
Recurrence Quantification Analysis on recordings of musi-
cians’ body movements as well as recordings of their musical
output. CRQA revealed that pianists spontaneously engaged
in different patterns of interpersonal coordination depending
on which musical setting they were performing in.

In the current study we directly examine the effects of
mutual coupling in improvised music by experimentally ma-
nipulating interaction in dyads of professional jazz pianists.
Specifically, we recorded pianists improvising in one of two
conditions: a real condition, in which two pianists improvised
together as they typically would, and a virtual condition, in
which one pianist improvised along with a “ghost partner”
– a recording of another pianist taken from a previous real
trial. In the real condition pianists are mutually coupled in
the sense that they have the ability to respond to one another
in ongoing feedback loops. Such mutual coupling is absent in
the virtual condition – live pianists have the ability to respond
to the recording, but the recording will never respond to the
live musician. This feature also makes virtual recordings a
nice ground-truth for assessing leader-follower roles. Sub-
jects were blind to which condition they played in, and their
musical output was recorded in the form of isolated MIDI
tracks1.

How does the presence of mutual coupling influence the
music jointly produced by an ensemble of improvising mu-
sicians? This question is addressed by quantitatively com-
paring rhythmic structures spontaneously generated in real
performances against virtual performances. Notably, these
performances were obtained from elite professional pianists
from the New York City jazz scene. These are individuals
who have dedicated their lives to mastering their instruments
and the ability to fluidly interact with others in improvised
performance. Our subjects improvised freely, without any
specific instructions or musical constraints (other than the im-
plicit constraints imposed by manipulating interaction). The
current study thus represents an ecologically valid and scien-
tifically grounded approach to studying JA and mutual cou-
pling in the creative, open-ended and fundamentally collabo-
rative domain of expert musical improvisation.

Methods
Participants
16 professional jazz pianists from the New York City mu-
sic scene participated in this study. Participant age ranged
from 23-35. On average participants had 22 years experi-
ence playing piano (sd=4) and 17 years experience improvis-
ing (sd=5). All participants received formal training in piano
performance and jazz studies at elite conservatories. None

1MIDI is a format for representing music on a computer. It sym-
bolically records the pitch, volume and timing (onset and offset) of
every note played

of our subjects had prior experience performing with one an-
other.

Apparatus

Two MIDI-enabled keyboards were used: a Roland Juno-Di
and Nord Electro 2, both of which had 61 semi-weighted
keys. Both keyboards were used on every trial (i.e. virtual tri-
als were arranged such that the live pianist played whatever
keyboard their ghost partner did not play). Ableton Live 9
Lite (running on a MacBook Air) was used to collect isolated
MIDI recordings for each musician. Ableton was also used
to synthesize the audio participants heard, which allowed us
to ensure time alignment of MIDI recordings, and that partic-
ipants heard the same exact timbre for themselves and their
partner, irrespective of condition. Participants were recorded
at a music rehearsal studio in Brooklyn, NY. The studio was
divided by a curtain such that participants could not see one
another. Participants listened to themselves and their partners
through Sony CH700N Noise Cancelling headphones. Thus,
from the participants’ perspective there was no visual or au-
dible indication of their condition on a given trial.

Procedure

This study employed a within-subjects design, in which each
musician played at least 3 trials2 in both real and virtual con-
ditions (Figure 1). Participants played with the same ’live’
partner for each of their real trials and the same ’ghost’ part-
ner for each of their virtual trials. Altogether, 32 (128 min-
utes, 105,766 notes) trials were collected from 9 real pairs
and 27 trials (108 minutes, 84,439 notes) were collected from
16 virtual pairs. To control for order effects, conditions were
interleaved throughout the course of a session, and sessions
were counterbalanced such that the order reversed every other
session.

Participants were brought into the studio in pairs, and in-
structed to improvise a series of short (4-7 minute) duos.
These improvisations were ’free’, with no accompanying
stimuli and no a priori musical template or constraints. Other
than the suggested timeframe, the only instruction musicians
were given was to do their best to improvise a compelling
piece of music, as they would in a typical performance set-
ting.

Subjects were told they would be improvising in one of the
two conditions (real or virtual), but on any given trial they
were not told their condition. At the start of each trial each
participant was privately instructed to Play or Don’t Play.
At the conclusion of each trial (when the musicians had fin-
ished improvising) each player was asked to fill out a short
questionnaire that had them rate the previous performance in
terms of: (1) how easy it was to coordinate with their part-
ner (2) how well coordinated they were with their partner (3)
quality of the improvised piece and (4) to what degree they
played a supporter or a leader role.

2Subjects played more trials if time permitted.
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Figure 1: Sequencing of real and virtual trials. Each subject
played multiple trials in each condition (repetition of trials
not shown in abbreviated figure). Subjects were paired with
same partner in all real trials, and a separate ghost partner for
all virtual trials. Ghost recordings were taken from real trials
of previous sessions, ensuring that the live musician had never
heard them before.

Results and Discussion
MIDI data was collected for 32 real trials and 27 virtual tri-
als. Each trial consists of two MIDI recordings, one for each
individual (the same MIDI recordings in real trials were used
as ghosts in virtual trials). 105,766 improvised note onsets
were collected in real trials and 84,439 improvised note on-
sets were collected in virtual trials. Over 11 hours of music
was collected in total. We also collected subjective ratings of
participants after every trial they performed.

Figure 2 shows participants’ responses to the questionnaire
they were given at the conclusion of each trial. Despite the
fact that participants were blind to which condition they were
in in a given trial, their ratings differed systematically as a
function of condition. Overall, subjects rated real trials to be
of higher quality than virtual trials (paired T(df)=15, p<.01).
Real trials were also generally rated as being characterized by
better inter-musician coordination (paired T(df)=15, p<.01)
and ease of collaboration (paired T(df)=15, p<.01).

Subjects were also asked to rate the degree to which they
felt they played a leader or supporter role, which also revealed
a main effect of condition (paired T(df)=15, p<.05). As ex-
pected, participants felt they mostly played a supporter role in
virtual trials (in which they were playing with an unrespon-
sive recording), whereas participants neither identified with
leader or follower roles in real trials. This last result could
indicate multiple things. One possibility is that musicians felt
they played an equally leading and supporting role through-
out the course of the performance. Alternatively, it could be
that leadership roles shifted throughout the course of impro-
vised performances. More data would be needed to differ-
entiate between these possibilities, but in informal conversa-

tion with subjects they often alluded to the latter. At the very
least, time-evolving leadership dynamics were achievable in
real trials characterized by mutual coupling, but not in virtual
trials characterized by unidirectional influence.

Figure 2: Subjective ratings by condition. Despite being blind
to condition, participants generally rated real trials to be of
higher quality (top right) and characterized by better inter-
musician coordination (bottom right) and ease of collabora-
tion (top left) as opposed to virtual trials. Participants felt
they played more of a supporter role in virtual trials, and gen-
erally did not identify with either a leader or supporter role
on real trials (bottom left).

Onset Analysis
MIDI recordings contain a wealth of musical information:
rhythmic structure (timing of note onsets and offsets), vol-
ume, and tonal structure (sequential pitch information). In ex-
pert improvisation, interpersonal coordination occurs in each
of these musical dimensions. However, we initially analyzed
one clear and unambiguous aspect of the data – timing of note
onsets. Timing of note onsets is a good starting point for in-
vestigating inter-musician coordination because it is simple
to analyze but encapsulates an essential musical component –
rhythmic structure.

Synchronization A central challenge in collaborative mu-
sic making is synchronization. Musicians playing together
often need to align their note onsets to occur simultaneously.
Previous work has demonstrated that in composed musical
settings, piano dyads’ synchronize more effectively when
they are mutually coupled to another another than in exper-
imental manipulations in which auditory feedback was re-
moved (Demos, Carter, Wanderley, & Palmer, 2017; Goebl
& Palmer, 2009). It has also been demonstrated that musical
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leaders play onsets of nominally simultaneous notes (notes
occurring at the same metrical positions in a written score)
slightly before followers (Goebl & Palmer, 2009).

To what degree does mutual coupling facilitate synchro-
nization in improvised music? Without a written score
it is difficult to assess this question, because there is no
‘ground truth’ for when and whether improvisers are try-
ing to synchronize. Nonetheless, we approached the ques-
tion by identifying near-simultaneous onsets, those occurring
within 100ms of one another, played by co-performers. De-
gree of synchrony can be assessed by looking at the mag-
nitude of asynchronies (henceforth ‘asyncs’) by which near-
simultaneous onsets were displaced from one another. While
we cannot be certain whether improvisers were explicitly
trying to synchronize, this metric gives us insight into how
precisely synchronization occurred spontaneously, as a joint
outcome of our subjects’ sensibilities and the affordances of
inter-musician coupling.

Figure 3 displays the magnitude of onset asyncs colored
by experimental condition. Asyncs are more peaked around
0 for real trials compared to virtual trials – indicating that
when co-performers did synchronize, they did so more pre-
cisely in real conditions compared to virtual conditions. A
Kolmogorov-Smirnov test confirmed a significant difference
between async distributions in each condition (p<.01). This
reproduces the result of past work showing that mutual cou-
pling promotes greater synchronization in piano dyads in an
improvised context (Demos et al., 2017; Goebl & Palmer,
2009).

Figure 3: Mutual coupling promotes better synchronization.
Density plot of asynchronies between co-performers’ near-
simultaneous (occurring within 100 ms of one another) note
onsets. Asyncs are more tightly clustered around 0 seconds
in real trials, in which mutual coupling is present.

Async frequency is symmetric around 0 for real trials be-
cause the same async was computed once for each partner
(and thus represented twice with opposite signs). To as-
sess asymmetries in virtual trials, asyncs were only computed
by subtracting onset timestamps of ghost partners from the
timestamps of live musicians. Thus positive asyncs indicate
that the ghost led the live musician and negative asyncs indi-
cate the reverse. Given past work which demonstrated mu-
sical leaders in composed settings play onsets slightly before
other ensemble members, we were interested to see if ghost
recordings (de facto leaders in virtual conditions) would lead
the live players (Goebl & Palmer, 2009). However, the mean
async across all virtual trials was less than 1 millisecond, in-
dicating a symmetry between how often and how much live
players led ghosts and vice versa.

Onset Density Given the lack of musical constraints, the
improvised performances in our dataset exhibited high vari-
ability in rhythmic structure. Such variability could be found
not just between subjects and trials, but even within partic-
ular performances. Tempos sped up and slowed down, and
dyads moved in and out of “time” – sometimes playing ru-
bato sections that lacked any steady pulse. Even within a
given tempo, improvisers had the freedom to play more or
fewer notes. To index all of this rhythmic variety, we com-
pute onset density for each performer as the number of note
onsets occuring within a given time window. Onset density
was computed for each trial using a sliding window of 2 sec-
onds and step size of 0.2 seconds, resulting in one onset den-
sity time series per subject-trial (Figure 4A).

How is inter-musician rhythmic coordination influenced
by the presence or lack of mutual coupling? This question
was approached by looking at cross-correlations between co-
performers’ onset density throughout the course of each trial.
Cross-correlation was computed across a range of lags (+/- 5
seconds) to test for longer-term system memory and direc-
tional influence from one musician to another (Figure 4).
Overall there was significantly greater cross-correlation in
onset density in real trials as opposed to virtual (Figure 4B).
This was confirmed with a Mann-Whitney test performed
on the distributions collapsing over all time lags for all real
trials (mean=.535, sd=.237) and virtual trials (mean=.356,
sd=.287); p < .01.

Figure 4C displays how cross-correlation varies across
lags as a function of condition. At each lag, the mean cross-
correlation was obtained for all trials in each condition. In
virtual trials we see greater cross-correlation at positive time
lags, indicating that onset density of live musicians was more
correlated with onset density of ghosts in previous time steps,
as opposed to the other way around. This reflects the uni-
directional influence inherent in virtual trials, whereby live
musicians were influenced by their ghost partners but not
the other way around. Onset density is symmetric around
0 for real trials, because data from each co-performer in a
given trial was included. But it is interesting to note the dip
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Figure 4: Mutual coupling promotes tighter coordination in onset density. (A) Time series of onset density (lower plot) are
obtained by tallying the number of note onsets that occur within a 2 second sliding window of the MIDI recording (upper plot).
(B) Cross-correlation in co-performer onset density, collapsing over a range of lags (+/- 5 sec). Overall there is greater cross-
correlation in real trials. (C) Cross-correlation in co-performer onset density by lag, averaged across all trials in each condition.
Greater cross-correlation in positive lags for virtual conditions reflects ground truth asymmetry inherent in this condition (i.e.
live musician can respond to the recording, but not vice versa).

in cross-correlation around lag 0, surrounded by increased
cross-correlation around lags +/- 2 sec. In real performances,
co-performers’ onset density is less correlated right at simul-
taneous time points, and more correlated at small lags of
around 2 seconds. More analysis would be needed to eluci-
date this pattern, but it could be a result of “call and response”
interplay between improvisers, whereby they exchange musi-
cal gestures in an interleaved manner.

General Discussion
In this work we have quantitatively demonstrated ways in
which inter-musician mutual coupling in improvising jazz
ensembles influences the music they spontaneously produce.
Specifically, we showed that mutual coupling facilitates more
effective coordination in jointly producing rhythmic struc-
ture. Musicians synchronized more precisely in performances
where they were mutually coupled, and exhibited tighter cou-
pling (greater cross-correlation) in onset density – a met-
ric that captures tempo change and overall rhythmic activity.

Subjects were coupled the most not at simultaneous times,
but at small lags of about 2 seconds, suggesting a natural
timescale of interaction. We also observed a quantitative arti-
fact of musical leadership, as the onset density of improvisers
in virtual trials was more correlated more with onset density
of ghost partners at previous time points (again at about a 2
second lag). These objective results parallel the subjective in-
tuitions of our performers, who rated trials with mutual cou-
pling to be of higher quality and characterized by better coor-
dination which was easier to achieve than in conditions with
unidirectional influence.

When one listens to a great jazz combo, they are not merely
listening to the sounds produced, but also to the complex
underlying patterns of interaction which give rise to those
sounds. This work provides the first controlled investiga-
tion of quantitatively measured coordination patterns demon-
strated by freely interacting jazz musicians. It builds on
prior research that studied the affordances of mutual coupling
amongst co-performers by experimentally manipulating in-
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teraction to reduce coupling in control conditions (Goebl &
Palmer, 2009; Demos et al., 2017). But whereas past work
focused on fine-temporal structure and movement dynamics
exhibited by pianists, studying improvisers provided the op-
portunity to examine how mutual coupling influences larger
scale musical structures (such as onset density) that are spon-
taneously generated in joint performance.

In the future we plan to delve deeper into the dynamics of
how musicians pick up on and respond to the melodic and
rhythmic offerings of their partner. One of the mesmeriz-
ing capabilities of expert jazz musicians, such as the pianists
recorded in the current work, is their ability to improvise mu-
sic with coherent and compelling tonal structure (melody and
harmony). In ensemble performance, this melodic and har-
monic structure emerges out of the ongoing interactions and
musical negotiations taking place between ensemble mem-
bers. In the future we plan to use this same (and expanding)
dataset to delve deeper into how mutual coupling affords the
emergence of stable tonal structure. Information theory offers
a promising framework for inferring synergy and causality in
multivariate time series of discretized, non-ordinal data, such
as the musical pitches used in our data (Williams & Beer,
2010; Runge, 2018).

We also plan to extend our analyses to investigate the dy-
namical structure of our performances. Improvised music is
essentially dynamic: the ensemble-generated musical struc-
tures evolve over time, as do the patterns of interaction be-
tween ensemble members. This is immediately evident ob-
serving the exemplar MIDI recording in Figure 4A, which
appears to transition between regimes of sparse, sustained
tones, and pointilistic sections characterized by short punc-
tuated notes. Indeed, such dynamical structure is a central
component of what makes improvised music so compelling.

To take another example, it could be the case that
cross-correlation in onset density changes throughout per-
formances. Imagine a performance in which there is ini-
tially negative cross-correlation between co-performers’ on-
set density. This may transition to a period of positive cross-
correlation, which could then be followed by yet another seg-
ment exhibiting no cross-correlation, in which performers go
off on independent trails of rhythmic exploration. Such time-
evolving interpersonal coordination would be lost on our cur-
rent analysis (in fact it would obscure our results), but could
be identified by computing cross-correlation over a sliding-
window and analyzing how it varies over the course of a per-
formance.

It is also likely the case that leadership roles shift through-
out improvised performances. Without a well-established so-
cial structure (as exists in many forms of composed music),
the distribution of leadership in ensembles is free to evolve in
a self-organized fashion. Given our finding that musical lead-
ership is associated with increased lagged cross-correlation
of onset density (where followers are more influenced by the
prior rhythmic activity of leaders), a sliding window analysis
of onset density cross-correlation may also provide insight

into the dynamical patterns governing time-evolving social
structures. These kinds of higher-order analysis are a promis-
ing avenue towards contributing to the joint (mutually cou-
pled!) efforts of empirical joint action studies and modeling
of complex dynamical systems (Richardson, Dale, & Marsh,
2014).
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Abstract 
This study develops a cognitive model to explain the process 
of artistic creation in a dance domain. Many researchers in the 
field of psychology and cognitive science have investigated 
the process of creativity and developed various theories that 
explain this process. Their efforts have mostly focused on 
higher cognitive functions of artists and scientists. However, 
in recent years, several studies that have highlighted the 
importance of the interaction between idea generation and 
idea externalization processes suggest that people can find 
and develop new aspects of images and ideas by perceiving 
and reflecting on the images and ideas they externalize. This 
study develops a cognitive model that explains this interaction 
process in dance creation by referring to a famous theory of 
motor learning, the closed-loop model. We also investigate 
dance creation of an expert breakdancer and check the 
validity of our proposed model. 

Keywords: creativity, artistic creation, externalization of 
ideas, closed-loop model, performing arts, breakdance 

Introduction 
How do professional artists generate their original and 
fascinating expressions? In the psychology and cognitive 
science field, many researchers have investigated the 
process of creativity (e.g., Dunbar, 1993; Okada & Ishibashi, 
2017; Wallas, 1926).  For example, Finke, Ward, and Smith 
(1992) proposed the Geneplore model, which explains the 
process of idea generation, focusing on various cognitive 
functions. The Geneplore model suggests that people 
generate and explore their ideas under several task 
constraints by using cognitive functions such as long-term 
memory, mental rotation, and concept combination. 
Additionally, Wallas (1926) proposed the four-stage model 
based on anecdotal records of several artists. This model 
explains the creative process in four phases: preparation, 
incubation, illumination, and verification. 

These traditional theories have focused mainly on the 
cognitive process of the creators. However, in artistic 
creation, the process of externalizing the creators’ images 
and ideas is also important. Artists externalize their images 
and ideas in the end or middle of almost all their creations 

(Glăveanu, 2013). For example, in a dance creation, dancers 
externalize their images as physical movements, and in 
paintings, artists externalize their images to the outside as 
traces, using brushes, paints, and canvases. We propose that 
this externalization process and the perception or reflection 
of those externalized images and ideas facilitate the 
development of the images and ideas. However, previous 
studies of creation have regarded this externalization 
process as an implementation phase, and have thus paid it 
little attention (e.g., Zeng, Proctor, & Salvendy, 2011). In 
recent years, however, some researchers came to focus on 
this process of idea-externalization (Glăveanu, 2013). Based 
on these discussions, we highlight the importance of the 
interaction between the idea-generation process and the 
idea-externalization process in artistic creation, and we 
develop a model that explains the influence of this 
interaction. 

Although these studies have highlighted the importance 
of the idea-externalization process and its interaction with 
the idea-generation process, they have not proposed a 
mechanism as to how this interaction facilitates the creation. 
Regarding this mechanism, Goldschmidt (1991, 1994) and 
Kirsh (2009, 2010) offered useful suggestions. Goldschmidt 
(1991, 1994) investigated the role of sketch in design and 
claimed that people cannot focus on all features of their 
images or ideas of expression while they are generating 
them. For example, when people consider several 
components that must be included in a design, they cannot 
focus on the relationships or blank spaces between these 
components. However, people can find and focus on these 
features of their images and ideas if they first externalize 
them as sketches. Furthermore, by focusing on these hidden 
features, they can develop their images and ideas from 
different aspects and generate original and fascinating ideas 
(see Fig. 1). Based on this discussion, Goldschmidt (1991, 
1994) emphasized the importance of sketches in design 
(externalization of images and ideas) and perceiving or 
reflecting on them. She referred to this perception and/or 
reflection of sketches and the subsequent development of 
images and ideas as interactive imagery. Also, Kirsh (2009,  
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2010) suggested that the idea-externalization process plays 
various roles in people’s cognition. The process of 
externalization does not only save the internal memory but 
also facilitate the re-representation of images and the 
construction of the complex structure of images. He 
proposed that these processes facilitate the creation of artists. 

Based on this discussion, this study explains how the 
interaction between the idea-generation process and the 
idea-externalization process facilitates artistic creation. To 
do so, we develop a cognitive model that explains the 
process of artistic creation in a dance domain. We also 
conduct a case study to investigate the creation process of 
an expert breakdancer and check the validity of our model.  

Model development 
This study develops a model to explain the influence of that 
interaction on creation. In particular, this study focuses on 
dance creation (the creation of breakdance) that existing 
studies have investigated over the past 10 years. The 
creation of breakdance is a suitable subject for this study 
because some fieldwork studies suggested the importance of 
externalizing images and ideas and perceiving or reflecting 
on them in breakdance (e.g., Shimizu & Okada, 2013).  

To develop our model, we examined models of creation, 
such as the Geneplore model, reviewed discussions by 
Goldschmidt (1991, 1994), and referred to a famous theory 
of motor learning, the closed-loop model, which has been 
prominent in cognitive science and biomechanics. We 
consider that this theory provides a clear explanation about 
the influence of externalization of images and ideas, and the 
effect of perception and reflection on dance creation.  

The closed-loop model emphasizes the importance of a 
movement-implementation process, especially the feedback 
error, which refers to a gap between somatosensory 
feedback derived from the movement and the prediction of 
that feedback, called efference copy, in the motor-learning 
process (Schmidt & Lee, 2011). This model explains the 
mechanism of motor learning (see dotted lines in Fig. 2), 
which we describe as follows: First, people perceive and 
identify a stimulus from their surroundings and select their 
reaction of movements in the cerebellum and primary motor 
area (movement selection). Then, to implement those  

movements, they send signals to the peripheral nerves in 
their muscles (movement programming) and conduct those 
movements (muscles, movement). Simultaneously, they 
send a copy of this motor program, called the efference copy, 
and generate a prediction of the somatosensory feedback 
derived from those movements (reference). People receive 
the gap between the somatosensory feedback and the 
prediction of that feedback, known as the feedback error, 
and in the next trial of movements, they refer to this error 
and correct their motor plan to get their movements as close 
to their goal (model) movements as possible (movement 
programming). The closed-loop model explains a 
mechanism as to how people improve and learn movements 
by these repetitive processes. 

The above-mentioned process explains the mechanism 
of motor learning and refinement when people have a clear 
model of movement (i.e., a clear goal). But, how is the 
mechanism of motor creation achieved when people have no 
clear goal? In this process, people should first generate their 
model of movement (i.e., a goal) through cognitive 
functions proposed by traditional creative theory (such as 
the Geneplore model), and they should implement this 
movement plan as a movement. The roles of the feedback 
error in motor creation also differ from those in motor 
learning. In motor learning, the feedback error provides 
information that helps people to approximate their 
movements to those of the model. However, in motor 
creation, the feedback error provides information to find and 
focus on the hidden features (e.g., the relationships between 
components) of their proposed movement ideas 
(Goldschmidt, 1991, 1994). As a result, people should 
develop their images and ideas from various aspects and 
generate their original movements. In this manner, 
externalizing images and ideas and perceiving and/or  

Fig. 1. Interaction between idea-generation process and 
idea-externalization process 
 

Fig. 2. Motor learning process of closed-loop model and 
motor creation process of our model. Dotted lines 
indicate the process of motor learning and solid lines 
indicate the process of motor creation. 
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reflecting on them will facilitate the creation of dance 
movements. 

Based on these discussions, we developed a model of 
dance creation (solid lines in Fig. 2). This model explains 
the process of motor creation in dance as follows: First, 
people generate their ideas of movements through cognitive 
functions such as mental rotation and concept combination 
(movement idea creation). They generate these ideas by 
focusing on specific aspects of movements, and they send 
signals to implement these movements (movement 
programming) and conduct the movements (muscles, 
movement). After that, people receive the somatosensory 
feedback of the movements, compare those with their 
predictions of them (reference), and calculate the feedback 
error. Then, they develop and reconstruct their ideas of 
movements based on this feedback error and by shifting the 
aspects where they focus. This model thus explains the 
mechanism of how the interaction between the idea-
generation process and the idea-externalization process 
facilitates dance creation. In particular, the model highlights 
the importance of the feedback error derived from the idea-
externalization process. Notably, previous studies claimed 
that the feedback error plays an important role in various 
phenomena such as tickling (Blackmore et al., 1999) and 
phantom pain (Ramachandran & Ramachandran, 1996), not 
only in motor learning. We suppose that the feedback error 
has various functions in human movements. 

Case study 
Next, we check the validity of our proposed model by 
conducting a case study of an expert breakdancer’s creation, 
and we verify whether the interaction between the idea-
generation process and idea-externalization process 
facilitated the dance creation. We set two conditions. In the 
first condition, the dancer generated an original movement 
in an interactive condition (with the above-mentioned 
interaction), and in the second condition, the dancer 

generated an original movement in a non-interactive 
condition (without the interaction). We compare these two 
conditions and investigate the differences in the creation 
process. We also investigate how this interaction facilitates 
the dance creation by checking the creation process of the 
first condition in detail. With reference to these two results, 
we discuss the validity of our model. 

Participant 
An award-winning Japanese expert breakdancer with nine 
years’ experience in breakdancing participated in our case 
study. He generated original dance movements over seven 
days in the two conditions.  

Condition 
The expert dancer developed original dance movements in 
the two conditions (interactive and non-interactive 
conditions). In the interactive condition, he developed his 
movements by repeating tasks to generate an idea (idea-
generation process) and to externalize his idea as movement 
(idea-externalization process). In the non-interactive 
condition, he developed his movements by repeating tasks 
to generate an idea (idea-generation process) and to simulate 
his idea in his mind, without externalizing it as movement 
(idea-simulation process).  
  In breakdancing, dancers generate original movements by 
focusing on and developing specific movements in the 
domain (Shimizu & Okada, 2013, 2018). Therefore, in our 
case study, we asked the dancer to generate an original 
movement by developing a specific domain movement. We 
used different domain movements in each condition1. 

Procedure 
In each condition, the dancer generated original movements 
through 100 trials over seven days. Fig. 3 shows the 
procedures. The dancer followed the same procedures in 
both conditions, except for task C on days 2–6 
(externalization/simulation of the idea). 

On days 1 and 7, we tested the domain movement (10 
trials each day) using the video camera and motion capture 
system described in the next section. We also conducted 
interviews about the domain movement. We conducted 
further tests (3 trials) and interviews of the dancer’s original 
movements on day 7. 

On days 2–6, the dancer generated original dance 
movements through 20 trials per day. In each trial, he 
conducted five tasks. First, he generated the idea of 
movement, and reported its content (task A). Second, he 
evaluated the novelty of the idea on a one hundred-point 
scale using a Visual Analog Scale (VAS) (task B). Third, 
the dancer externalized his idea as a movement in the  

                                                        
1  We used different domain movements in each condition to 

exclude the strong influence of the first-time creation on the 
second-time creation. However, we needed to be careful when 
interpreting the results of this study because of the different 
features of the domain movements in each condition. 

Fig. 3. Procedures of case study 
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interactive condition and simulated his idea in the non-
interactive condition (task C). In the interactive condition, 
we recorded the movement using a video camera and 
motion capture system. Fourth, the dancer evaluated the 
smoothness of the movement using VAS (task D). Fifth, he 
reported his discovery brought by the idea-externalization 
and simulation tasks and evaluated the degree of that 
discovery using VAS (task E). The dancer repeated these 
five tasks a hundred times to generate his original 
movement. We set these tasks based on the creation process 
of expert dancers observed in the fieldwork study (Shimizu 
& Okada, 2018). We focused on tasks A (verbal report of 
the idea), C (externalization/simulation of the idea), and E 
(verbal report of the discovery) in this study because these 
data include the important information on the idea-
generation and idea-externalization processes. 

Apparatus 
In this study, we used a motion capture system (OQUS 300, 
Optical motion capture system, QUALISYS co.) to measure 
the features of the movements in the creation process in the 
interactive condition. The dancer wore a suit for the system, 
attached fourteen markers to his body, and worked on the 
creation. We did not measure the movements in the non-
interactive condition because the dancer did not conduct any 
movements during the creation process; however, for 
consistency, the dancer wore the suit and attached markers 
in the non-interactive condition. 

Results and Discussion 
 
Outline of the Original Movements First, we explain the 
outline of the movement that the dancer generated in each 
condition. In the interactive condition, the dancer generated 
the movement shown on the right side of Fig. 4 (we also 
show the domain movement in the left). In this original 

movement, the dancer stops the rotation of the domain 
movement by landing on his right leg, and he uses the 
momentum of rotation for the inverse rotation. He described 
this action as canceling the rotation, and he generated this 
original movement by developing this concept. He and 
another expert dancer confirmed that this was an original 
movement that they had never seen in the breakdance 
domain. 

In the non-interactive condition, the dancer generated an 
original movement based on the domain movement called 
Drill. In this domain movement, the dancer lands on the 
ground with his head and rotates his whole body (we 
abbreviate the figure because of space limitations). In the 
original movement, the dancer lands on the ground on his 
back after the rotation, and then jumps up and rotates in the 
different direction (this rotation is similar to another domain 
movement called Trax). Although mixing the two domain 
movements seemed interesting, he was not convinced of its 
originality.	
 
Verbal Report of the Idea In the following sections, we 
compare the creation process in each condition. First, we 
investigate the verbal report of the idea that the dancer 
mentioned in each trial. In the analysis, we checked and 
counted the frequencies of the following three aspects 
because the dancer mentioned them many times in his 
reports: (1) specific body parts (e.g., head, right arm, left 
arm, right leg); (2) abstract concepts of the domain 
movement (words such as “direction,” “speed,” and “axis” 
of the rotation); and (3) other movements in the breakdance 
domain (e.g., Trax, Baby Windmill, and Ninety). We 
summed the total frequency of each aspect in each day, 
divided them by the total frequency of all three aspects, and 
calculated the relative frequencies of these aspects for each 
day. These frequencies indicated which aspects the dancer 
focused on each day. 

Fig. 4. Domain movement and dancer’s original movement in the interactive condition. After the action of picture 14, the 
dancer goes into the action of picture 7 again, and repeats the rotation in domain movement (left side). In original 
movement, he goes into the action of picture 7 again after the action of picture 21, and repeats the rotation (right side). 
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 We show these frequencies as sizes of circles in Fig. 5. 
This figure shows that, in the interactive condition, the 
dancer changed the aspects of his movement actively 
between days 2 and 4. Then, on days 5 and 6, he focused on 
specific aspects such as the right leg when attempting to 
generate the original movement (the right leg has an 
important role in his original movement: to stop the rotation 
of the domain movement). On the other hand, in the non-
interactive condition, the dancer did not actively change the 
aspects of his movement during his creation. 
 
Features of the Movement (Externalized Idea) Next, we 
investigate the features of the movement (externalized 
ideas) generated in the interactive condition. We calculated 
the kinematics data (joint angles and joint angular velocities 
in each segment) from the time-series position data of 14 
markers using the inverse kinematics technique (Hirashima 
et al., 2008). Then, we conducted principal component 
analysis and extracted two components that had high 
contributions (proportions of variance) for explaining these 
movements (see Kadone & Nakamura, 2007), which we 
called PC 1 and PC 2. PC 1 and PC 2 are reduced 
dimensions that explain important features of the movement. 

Fig. 6 shows that the scores of PC 1 and PC 2 had 
various values (PC 1: -7.06~3.84, PC 2: -7.10~1.34) on days 
2–4. However, on days 5–6, these scores, especially scores 
of PC 2 converged at specific values (PC 1: -4.30~5.64, PC 
2: -0.61~2.13). These results suggest that, in the interactive  

 condition, the dancer generated various kinds of 
movements that had various features in the first half of the 
creation. The dancer also focused on a particular movement 
that had a specific feature (the movement which involved 
stopping the rotation with his right leg) in the second half of 
the creation. 
 
Verbal Report of the Discovery We investigated the 
discovery that the dancer mentioned when he externalized 
and simulated his idea. We examined the verbal report of 
the discovery and conducted the same analysis of the verbal 
report of the idea. 
     Fig. 7 shows that on days 2–4, the dancer actively 
reported his discovery in various aspects in the interactive 
condition. On days 5–6, however, he focused on specific 
aspects such as the right leg and the abstract concept, and he 
frequently reported his discovery of these aspects. By 
contrast, in the non-interactive condition, the dancer did not 
focus on various aspects from days 2–4. He focused on 
similar aspects to those on days 2–4, and he came to focus 
on various aspects in his discovery report on day 5. 

These results of three analyses indicate that in the 
interactive condition, the dancer actively changed the 
aspects on which he focused in the early part of the creation, 
and in the late part, he focused on the specific aspects and 
on refining his idea. A retrospective interview conducted on 
day 7 supports this claim. The dancer mentioned that he 
found the idea of the original movement around trial 50, and 
subsequently focused on refining that movement. By 
externalizing his idea as movement and reconstructing his 
idea using the feedback error derived from that 
externalization, he was able to find and focus on the various 
and hidden aspects of his idea and generate an original 
movement. 
 
Overall Picture of the Creation in Interactive Condition 
Finally, we provide an overall picture of the dancer’s 
creation in the interactive condition. Before finding the idea 
for an original movement (stopping the rotation of the 
domain movement with his right leg) at around trial 50, the  

Fig. 5. Results of verbal reports of the idea. Two circles 
drawn to the right side indicates the frequencies of 
second aspect (abstract concepts of the domain 
movement, upper side) and third aspect (other 
movements in breakdance domain, lower side). 

Fig. 7. Results of verbal reports of the discovery. Two 
circles drawn to the right side indicates the same aspects 
as those of Fig. 5. 

Fig. 6. Scores of PC 1 and PC 2 of the movement 
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 dancer explored various ideas. Fig. 5 shows that he focused 
on each body part on day 2, and he said that he found an 
important aspect of the domain movement (rotation) on day 
3, which he then focused on (Fig. 7 also supports this claim).  
The dancer found this aspect by externalizing his idea as 
movement and perceiving or reflecting on the feedback 
error derived from that externalization. In the dancer’s 
verbal reports of the discovery on day 3 (in trials 32 and 34), 
he mentioned that he was surprised at the gap between the 
somatosensory feedback derived from the movement and 
his prediction of that, and became interested in the hidden 
aspect of his idea: the rotation (see Table 1). After this 
finding, the dancer focused on this aspect, the rotation, and 
attempted to generate an original movement by making 
various changes to it. Finally, the breakdancer developed his 
idea for an original movement, which involved stopping the 
rotation with his right leg, at around trial 50. The interaction 
between the idea-generation process and idea-
externalization process led to the findings of the hidden 
aspect of his idea and facilitated the generation of his 
original dance movement. These results suggest that the 
process explained by our model occurred in the expert 
breakdancer’s dance creation.  

General discussion 
This study developed a model to explain the process of 
artistic creation in the dance domain. We also conducted a 
case study that investigated the creation process of an expert 
breakdancer and verified the validity of our proposed model. 
Fig. 2 shows that the model developed herein proposes the 
importance of interactions between the idea-generation 
process and the idea-externalization process in dance 
creation based on the closed-loop model (Shmidt & Lee, 
2011), the Geneplore model (Finke et al., 1992), and 
discussions by Goldschmidt (1991, 1994) and Kirsh (2009, 
2010). The closed-loop model shows the importance of 
somatosensory feedback and its error derived from the 
movement in motor learning. We extended the roles of the 
feedback error and applied them to the creation of a novel 
dance movement. By externalizing their idea as a movement 
and focusing on the feedback error derived from that 
movement, dancers can find new and hidden aspects of the 
movement and develop their idea actively. Traditional 

theories of creation in psychology and cognitive science 
paid little attention to the importance of interaction between 
the idea-generation process and the idea-externalization 
process because the creation of a novel image or idea was 
considered to be achieved in people’s cognitive processes. 
On the other hand, this study highlights the importance of 
the interaction between idea-generation and externalization 
and identified the mechanism of that interaction. We 
suggest that the processes of idea generation and idea 
externalization are highly connected, and this connection 
has a strong influence on creation.  

However, we need to consider the generalizability of the 
influence of this interaction with caution. Based on the 
hands-on nature of an artistic creation, interactions between 
the idea-generation process and the idea-externalization 
process are important in almost all artistic domains. 
Goldschmidt (1991, 1994) and Glăveanu (2013) proposed 
the importance of interactions between imagination and 
externalization in artistic creation. However, there are 
critical differences between dance creation and other kinds 
of artistic creation. In particular, media that artists use for 
externalizing their images and ideas and the feedback they 
receive from this externalization process are different. In 
dance creation, dancers externalize their images and ideas as 
movements through their bodies, and they mainly receive 
somatosensory feedback from their movements. In paintings, 
however, artists externalize their images and ideas as traces 
by using various tools such as brushes, paints, and canvases 
in addition to their bodies, and they mainly receive visual 
feedback from their paintings. We thus need to consider 
these similarities and differences among various artistic 
domains when discussing the generalizability of our model. 

Our model has other limitations. As this study verified 
the validity of the model by investigating the creation 
process of only one expert dancer, we should collect data 
from more expert dancers. Additionally, we should set 
various domain movements as the base movements and take 
a counterbalance of those movements between the two 
conditions. However, to investigate the creation process of 
experts takes considerable time and effort. We therefore 
need to develop a method to investigate the creation process 
of many experts efficiently in more natural field situations. 
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Abstract

Humans demonstrate remarkable abilities to perceive physi-
cal and social events based on very limited information (e.g.,
movements of a few simple geometric shapes). However, the
computational mechanisms underlying intuitive physics and
social perception remain unclear. In an effort to identify the
key computational components, we propose a unified psycho-
logical space that reveals the partition between the perception
of physical events involving inanimate objects and the percep-
tion of social events involving human interactions with other
agents. This unified space consists of two prominent dimen-
sions: an intuitive sense of whether physical laws are obeyed
or violated; and an impression of whether an agent possesses
intentions, as inferred from movements. We adopt a physics
engine and a deep reinforcement learning model to synthe-
size a rich set of motion patterns. In two experiments, human
judgments were used to demonstrate that the constructed psy-
chological space successfully partitions human perception of
physical versus social events.
Keywords: social perception; intuitive physics; intention;
deep reinforcement learning, Heider-Simmel animations

Introduction
Imagine you are playing a multi-player video game with open
or free-roaming worlds. You will encounter many physical
events, such as blocks collapsing onto the ground, as well
as social events, such as avatars constructing buildings or
fighting each other. All these physical and social events are
depicted by movements of simple geometric shapes, which
suffice to generate a vivid perception of rich behavioral, in-
cluding interactions between physical entities, interpersonal
activities between avatars engaged in social interactions, or
actions involving both humans and objects.

This type of rich perception elicited by movements within
simple visual displays has been extensively studied in psy-
chology. Prior work showed that humans possess a remark-
able ability to perceive physical events and to infer phys-
ical properties (e.g., masses of objects) (Proffitt & Gilden,
1989), as well as to make causal judgment (Michotte, 1963),
based on observations of the movements of two objects. Fur-
thermore, Heider & Simmel (1944) demonstrated that hu-
mans also excel in spontaneously reconstructing social events
from movements of simple geometric shapes, and describe
their observations in terms of agency, goals, and social rela-
tions. These classic studies, along with a great deal of sub-
sequent psychological research (e.g., Kassin 1981; Scholl &
Tremoulet 2000; Gao et al. 2009, 2010), provide convinc-
ing evidence that human inferences about physical and social
events are efficient and robust, even given very limited visual
inputs.

Although many studies of both intuitive physics and social
perception examined dynamic stimuli consisting of moving

shapes, these research areas have largely been isolated from
one another, with different theoretical approaches and experi-
mental paradigms. In the case of physical events, research has
been focused on the perception and interpretation of physical
objects and their dynamics, aiming to determine whether hu-
mans use heuristics or mental simulation to reason about in-
tuitive physics (see a recent review by Kubricht et al. (2017)).
For social perception, some research has aimed to identify
critical cues based on motion trajectories that determine the
perception of animacy and social interactions (Dittrich & Lea,
1994; Scholl & Tremoulet, 2000; Gao et al., 2009; Shu et al.,
2018). Other work focused on inferences about agents’ in-
tentions (Baker et al., 2009; Ullman et al., 2010; Pantelis et
al., 2014). In contrast to the clear separation between the two
research topics, human perception integrates the perception
of physical and social events. Hence, it is important to de-
velop a common computational framework applicable to both
intuitive physics and social perception to advance our under-
standings on how humans perceive and reason about physical
and social events.

In the present paper, we propose a unified framework to
account for the perception of both physical events and of so-
cial events based on movements of simple shapes. We aim
to construct a unified psychological space that may reveal the
partition between the perception of physical events involv-
ing inanimate objects and the perception of social events in-
volving human interactions with other agents. Specifically,
we hypothesize that this unified space includes two promi-
nent dimensions: an intuitive sense regarding whether physi-
cal laws are obeyed or violated; and an impression of whether
an agent possesses intentions in the display. Note that the in-
tuitive sense of physical violation may result from observable
physical forces that can not be explained by perceived entity
properties (such as motion, size, etc.) in a scene. The devel-
opment of this unified space may shed light on many funda-
mental problems in both intuitive physics and social percep-
tion.

To construct such space, we project a video as a whole onto
the space. Hence, a large range of videos can provide a dis-
tribution of observed events. We can also project individual
entities in one physical or social event onto the same space,
and then examine pairwise relations between the projected lo-
cations of entities in the space, which could serve as an infor-
mative cue for judging social/physical roles of entities (e.g,
as an human agent or an inanimate object).

To test the hypothesized psychological space, we report
experiments involving many Heider-Simmel animations in
which simple moving shapes vary in degrees of physical vi-
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(b) Synthesizing Agent Entity

Figure 1: Overview of our joint physical-social simulation
engine. For a dot instantiating a physical object, we randomly
assign its initial position and velocity and then use physics
engine to simulate its movements. For a dot instantiating a
human agent, we use policies learned by deep reinforcement
learning to guide the forces provided to the physics engine.

olation and the involvement of intention. Prior work usually
created Heider-Simmel-type stimuli using manually designed
interactions (Gao et al., 2009, 2010; Isik et al., 2017), rule-
based behavior simulation (Kerr & Cohen, 2010; Pantelis et
al., 2014), and trajectories extracted from human activities in
aerial videos (Shu et al., 2018). It is challenging to manually
create many motion trajectories, and to generate situations
that violate physical constraints. Accordingly, we develop a
joint physical-social simulation-based approach built upon a
2D physics engine (Figure 1). A similar idea has been pre-
viously instantiated in a 1D environment, Lineland (Ullman,
2015). By generating Heider-Simmel-type animations in a
2D environment with the help of deep reinforcement learn-
ing, our simulation approach is able to depict a richer set of
motion patterns in animations.

This advanced simulation provides well-controlled Heider-
Simmel stimuli enabling the measurement of human percep-
tion of physical and social events for hundreds of different
motion patterns. We also develop general metrics to measure
how well the motion patterns in an animation satisfy physics,
and the likelihood that dots are agents showing intentions.
These two indices were computed for each stimulus shown to
human observers, allowing us to map all videos into a unified
space as the two measures providing primary coordinates. In
two experiments, we combined model simulations with hu-
man responses to validate the proposed psychological space.

Stimulus Synthesis
Overview
Figure 1 gives an overview of our joint physical-social simu-
lation engine. Each video included two dots (red and green)
and a box with a small gap indicating a room with a door. The
movements of the two dots were rendered by a 2D physics en-
gine (pybox2d1). If a dot represents an object, we randomly
assigned the initial position and velocity, and then used the

1https://github.com/pybox2d/pybox2d

Setting Example (Trajectories)Interaction

Spring

Rod

Soft rope

Object-Object
(OO)

Collision

Human-Human
(HH)

Agent
(Goal: Blocking)

Agent
(Goal: Leaving 

the room)

Agent
(Goal: Blocking)

Object

Human-Object
(HO)

Figure 2: An illustration of three types of synthesized inter-
actions for physical and social events. A few examples are
included by showing trajectories of the two entities. The dot
intensities change from low to high to denote elapsed time.
Note that the connections in OO stimuli (i.e., rod, spring, and
soft rope) are drawn only for illustration purpose. Such con-
nections were invisible in the stimuli. Examples of stimuli are
available at: https://tshu.io/HeiderSimmel/CogSci19.

physics engine to synthesize its motion. Note that our simu-
lation incorporated the environmental constraints (e.g., a dot
can bounce off the wall, the edge of the box), but did not in-
clude friction. If a dot represents an agent, it was assigned
with a clearly-defined goal (e.g., leaving room) and pursued
its goal by exerting self-propelled forces (e.g., pushing itself
towards the door). The self-propelled forces were sampled
from agent policy learned by deep reinforcement learning
(see more details in a later subsection). Specifically, at each
step (every 50 ms), the agent observed the current state ren-
dered by the physics engine, and its policy determined the
best force to advance the agent’s pursuit of its goal. We then
programmed the physics engine to apply this force to the dot,
and rendered its motion for another step. This process was
repeated until the entire video was generated.

Interaction Types
As summarized in Figure 2, we consider three types of inter-
actions, including human-human (HH), human-object (HO)
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Figure 3: The deep RL network architecture for learning pol-
icy for goal-directed movements of an agent. For each goal,
we train a separate network with the same architecture.

and object-object (OO) interactions, all of which are gener-
ated by the approach depicted in Figure 1. Note that in this
paper we treat the terms “human” and “agent” interchange-
ably. When synthesizing the agents’ motion, we set two types
of goals for the agents, i.e., ”leave the room” (g1) and ”block
the other entity” (g2). Specially, in HH stimuli, one agent
has a goal of leaving the room (g1), and the other agent aims
to block it (g2); in HO stimuli, an agent always attempts to
keep a moving object within the room (g2) and the object has
an initial velocity towards the door. By randomly assigning
initial position and velocity to an agent, we can simulate rich
behaviors that can give the impression such as blocking, chas-
ing, attacking, pushing, etc.

In addition to the three general types of interactions, we
have also created sub-categories of interactions to capture a
variety of physical and social events. For OO animations,
we included four events, as collision, connections with rod,
spring and soft rope. Since these connections were invisi-
ble in the displays, the hidden physical relations may result
in a subjective impression of animacy or social interactions
between the entities. In addition, the invisible connections
between objects (rod, spring, and soft rope) introduce dif-
ferent degrees of violation of physics in the motion of the
corresponding entities if assuming the two entities are inde-
pendent. For HH animations, we varied the “animacy degree”
(AD) of the agents by controlling how often they exerted self-
propelled forces in the animation. In general, a higher degree
of animacy associates with more frequent observations about
violation of physics, thus revealing self-controlled behaviors
guided by the intention of an agent. The animacy manipula-
tion introduced five sub-categories of HH stimuli with five de-
grees of animacy – 7%, 10%, 20%, 50%, and 100%, respec-
tively corresponding to applying force once for every 750,
500, 250, 100, and 50 ms. In an HH animation, we assigned
the same level of animacy degree to both dots.

Training Policies
As shown in Figure 1, in order to generate social events,
we need sensible policies to infer the self-propelled forces
for pursuing goals. However, searching for such policies in
a physics engine is extremely difficult. In this study, we
use deep reinforcement learning (RL) to acquire such poli-
cies, which has been shown to be a powerful tool for learn-
ing complex policies in recent studies (Silver et al., 2017).

FC
128x2FC

28x128
LSTM

128

Feature
28

FC
128x2

v̂t
1

v̂t
2

�(st)

Figure 4: Network for the physical motion prediction model
to emulate intuitive physics. Blue circles indicate the corners
of the room used for deriving the input features.

Formally, an agent’s behavior is defined by an Markov de-
cision process (MDP), 〈S ,A ,T ,R,G ,γ〉, where S and A de-
note the state space (raw pixels as in Figure 3) and action
space, T : S ×A 7→ S are the transition probabilities of the
environment (in our case, deterministic transitions defined
by physics), R is the reward function associated with the in-
tended goals g ∈ G , and 0 < γ ≤ 1 is a discount factor. To
match to the experimental setup, we define two reward func-
tions for the two goals: i) for “leaving of the room”, the
agent receives a reward, rt = R(st ,g1) = 1(out of the room),
at step t; ii) for “blocking”, the reward at step t is rt =
R(st ,g2) =±1(opponent is out of the room). To simplify the
policy learning, we define a discrete action space, which cor-
responds to applying forces with the same magnitude in one
of the eight directions and “stop” (the agent’s speed decreases
to zero after applying necessary force).

The objective of the deep RL model is to train the pol-
icy network shown in Figure3 to maximize the expected re-
turn E[∑∞

t=0 γtrt ] for each agent. The optimization was im-
plemented using advantage actor critic (A2C) (Mnih et al.,
2016) to jointly learn a policy (actor) π : S ×G 7→ A which
maps an agent’s state and goal to its action, and a value func-
tion (critic) V : S 7→ R. The two functions were trained as
follows (assuming that entity i is an agent):

∇θπ
J(θπ) = ∇θπ

logπ(at
i|st

i,gi;θπ)A(st
i,gi), (1)

∇θV J(θV ) = ∇θV

1
2

(
∞

∑
τ=0

γ
τrt+τ

i ±V (st
i,gi;θV )

)2

, (2)

where A(st
i,gi) = ∑

∞
τ=0 γτrt+τ

i ±V (st
i,gi) is an estimate of the

advantage of current policy over the baseline V (st
i,gi). We

set γ = 0.95 and limit the maximum number of steps in an
episode to be 30 (i.e., 1.5 s). Note that we train a network for
each goal with the same architecture. In HH animations, an
agent’s policy depends on its opponent’s policy. To achieve
a joint policy optimization for both agents, we adopt an al-
ternating training procedure: at each iteration, we train the
policy of one of the agents by fixing its opponent’s policy. In
practice, we trained the polices by 3 iterations.

Inference of Physical and Social Events
Physics Inference
The first type of inference assesses the degree of violation
of physics for each entity. To capture this measure, we used
physical events to train a deep recurrent neural network (see
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Figure 5: Human response proportions of interaction categories (a) and of the sub-categories (b,c) in Experiment 1. Error bars
indicate the standard deviations across stimuli.

Figure 4) as an approximation to emulate intuitive physics.
The network can predict the velocities of the two objects v̂t

i ,
i = 1,2, given their past trajectories Γt

i = {sτ
i }t

τ=1. At each
step, we feed a 28-dim feature vector to the network by con-
catenating the two dots’ positions in the room, their relative
positions to each other and to the five corners highlighted by
the blue circles in Figure 4. We generated 2000 collision
OO videos and trained the network on these videos with a
4-fold cross-validation. Using the trained network, we then
conducted a step-by-step prediction of an entity’s movements
assuming it is an object. By comparing with the ground truth
vt

i , we can evaluate to what degree an entity’s motion is in-
consistent with physics predictions:

Di =
1
T

T

∑
t=1
||vt

i± v̂t
i||22, ∀i = 1,2. (3)

Intention Inference
To evaluate the impression of whether a dot possesses inten-
tions in the Heider-Simmel display, we estimate a value index
(i.e., accumulated reward) from an entity’s trajectory w.r.t.
each possible goal. We first define a reward function:

R(st ,g) =
(xt

g±xt)>vt

||xt
g±xt ||2|| ·vt ||2

, (4)

where xt and vt are the position and velocity of an entity ex-
tracted from its state st , and xt

g is the position of the goal.
For “leaving the room”, xt

g is the door’s position, whereas xt
g

denotes the position of the other entity for “blocking”. In-
tuitively, this reward function evaluates whether the entity is
moving towards certain goal locations. Consequently, we can
compute the overall value by selecting the most likely goal:

Vi =

[
max
g∈G

1
T

T

∑
t=1

R(st
i,g)

]
+

, ∀i = 1,2, (5)

where [x]+ = max(x,0). Note that Vi defined here is different
from the one in Eq. 2. Ranging from 0 to 1, a higher value of
Vi indicates that the entity i shows a clearer intention and is
more likely to be an agent. We remove the moments when the
denominator in Eq. (4) is too small for the robustness of the
value estimate. Considering the complexity of optimal plan-
ning in the continuous physical environment, the proposed
value index offers a simplified measure of goal inference by
inverse planning (Baker et al., 2009; Ullman et al., 2010).

Experiment 1
Participants
30 participants (mean age = 20.9; 19 female) were recruited
from UCLA Psychology Department Subject Pool. All par-
ticipants had normal or corrected-to-normal vision. Partici-
pants provided written consent via a preliminary online sur-
vey in accordance with the UCLA Institutional Review Board
and were compensated with course credit.

Stimuli and Procedure
850 videos of Heider-Simmel animations were generated
from our synthesis algorithm described above, with 500 HH
videos (100 videos for each AD level), 150 HO videos, and
200 OO videos (50 videos for each sub-category). Videos
lasted from 1 s to 1.5 s with a frame rate of 20 fps. By setting
appropriate initial velocities, the average speeds of dots in OO
videos were controlled to be the same as the average speeds
of dots in HH with 100% ADs (44 pixel/s). The dataset was
split into two equal sets; each contained 250 HH, 75 HO, and
100 OO videos. 15 participants were presented with set 1 and
the other 15 participants were presented with set 2.

Stimuli were presented on a 1024×768 monitor with a 60
Hz refresh rate. Participants were given the following instruc-
tions: “In the current experiment, imagine that you are work-
ing for a security company. Videos were recorded by bird’s-
eye view surveillance cameras. In each video, you will see
two dots moving around, one in red and one in green. Your
task is to ‘identify’ these two dots based on their movement.
There are three possible scenarios: human-human, human-
object, or object-object.” Videos were presented in random
orders. After the display of each video, participants were
asked to classify the video into one of the three categories.

Results
Human response proportions are summarized in Figure 5. Re-
sponse proportion of human-human interaction swas ignifi-
cantly greater than the chance level 0.33 (t(499) = 25.713,
p < .001). For HO animations, response proportion of
human-object interaction was significantly greater than the
other two responses (p < .001). Similarly, response propor-
tion of object-object was greater than the other two responses
(p < .001) for OO animations. These results reveal that hu-
man participants identified the main characteristics of differ-
ent interaction types based on dot movements.
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Figure 6: Constructed psychological space including HH ani-
mations with 100% animacy degree, HO animations, and OO
animations. In this figure, a stimulus is depicted by a data
point with coordinates derived by the model, and the colors of
data points indicate the average human responses of this stim-
ulus. The two coordinates of the space are the averaged mea-
sures between the two entities, as the measure of the degree
of violation of physical laws (horizontal) and the measure of
values indicating the presence of intention. The mark shapes
of data points correspond to the interaction types used in the
simulation for generating the corresponding stimuli (circle:
HH, triangle: HO, square: OO).

Next, we examined human responses to the sub-categories
within the HH and OO animations. We first used the animacy
degree as a continuous variable and tested its effect on human
responses in the HH animations. With increases in degree
of animacy in HH, the response proportion of human-human
interaction increased significantly as revealed by a positive
correlation (r = .42, p < .001). This finding suggests that
humans are sensitive to the animacy manipulation in terms
of the frequency with which self-propelled forces occurred in
the stimuli. For the OO animations, the response proportion
for object-object interaction among the four sub-categories
yielded significant differences (F(3,196) = 34.42, p < .001
by an ANOVA), with the most object-object responses in the
collision condition, and the least in the rod condition. Pair-
wise comparisons among the four-categories show significant
difference between collision and everything else (p < .001),
between soft rope and rope (p < .001), and also between soft
rope and string (p = .018); there is a marginally significant
difference between rod and string (p = .079).

We then combined human responses and the model-derived
measures for each animation stimulus to depict the unified
psychology space for the perception of physical and social
events. Figure 6 presents the distributions of 100 HH videos
with 100% animacy degree, 150 HO videos, and 200 OO
videos, all in this unified space. In this figure, an animation
video is indicated by a data point with coordinates derived
by the model, and the colors of data points indicate the aver-
age human responses of this stimulus. Specifically, the values
of its RGB channels are determined by the average human-
human responses in red, human-object responses in green,
and object-object responses in blue. The mark shapes of data
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Figure 7: Centers of all types of stimuli.

points correspond to the interaction type used in the simula-
tion for generating the synthesized animations. The coordi-
nates of each data point were calculated as the model-derived
measures averaged across the two entities in an animation.
The resulting space showed clear separations between the
animations that were judged as three different types of in-
teractions. Animations with more human-human interaction
responses (red marks) clustered at the top-right corner, cor-
responding to great values of intention and strong evidence
signaling the violation of physics. Animations with high re-
sponses for object-object interactions (blue marks), located
at the bottom left of the space, show low values of inten-
tion index and little evidence of violation of physics. An-
imations with high responses for human-object interactions
(green marks) fell in the middle of the space.

To quantitatively evaluate how well the model-derived
space accounts for human judgments, we trained a classi-
fier using the coordinates derived in the space shown in Fig-
ure 6 as input features (D and V for the indices of physical
violation and intention respectively). For each ground-truth
type of interactions k ∈ {HH,HO,OO}, we fit a 2D Gaus-
sian distribution pk(D,V ), using half of the stimuli as train-
ing data. Then for a given animation with the coordinates of
(D,V ), the classifier predicts p(k|D,V ) = pk(D,V )

∑k pk(D,V ) for ani-
mations in the remaining half of the stimuli. The correlation
between the model predictions and average human responses
was 0.748 (p < .001) based on 2-fold cross-validation. Us-
ing a split-half reliability method, human participants showed
an inter-subject correlation of 0.728 (p < .001). Hence,
the response correlation between model and humans closely
matched inter-subject correlations, suggesting a good fit of
the unified space as a generic account of human perception
of physical and social events based on movements of simple
shapes.

We examined the impact of different degrees of animacy
on the perception of social events, and how different subcat-
egories of physical events affect human judgments on inter-
action types. The unified space provides a platform to com-
pare these fine-grained judgments. Figure 7 shows the centers
of the coordinates and the average responses for each of the
sub-categories. We first found that, with a decreased degree
of animacy, the intention index in HH animations was gradu-
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ally reduced towards the level of HO animations. Meanwhile,
human judgments of these stimuli varying from low to high
degree of animacy transited gradually from human-object re-
sponses to human-human responses, consistent with the trend
that the data points moved along the physics axis. Among
all physical events, the rod and spring conditions showed the
highest intention index and the strongest physical violation,
respectively, resulting in a greater portion of human-human
interaction responses than the other categories.

Experiment 2
In Experiment 1, human participants were asked to classify
the three interaction types. But for human-object responses,
the assignment of the roles to individual entities was not mea-
sured. In Experiment 2, we focused on stimuli that elicited
the classification of human-object responses, and asked par-
ticipants to report which dot was a human agent, and which
dot was an inanimate object. Specifically, the role assign-
ment in the human-object responses helps us identify some
key characteristics in the psychological space that signal a
human-object interaction.

Methods
25 participants (mean age = 21.3; 19 female) were recruited
from the UCLA Psychology Department Subject Pool. 216
videos were selected from Experiment 1 based on the crite-
rion that more than 40% of subjects judged the HH videos or
OO videos as human-object interaction. 201 videos were HH
videos and the other 15 were OO videos.

The procedure was the same as Experiment 1 except that
on each trial, subjects were asked to complete two tasks: first
to judge the interaction type; then if the judgment was human-
object, they were further asked to report which dot repre-
sented a human agent and which dot represented an object.

Results
We projected all entities onto the psychological space based
on the model-derived measures for each individual entity, and
connected a pair of the two entities that appeared in the same
video. We visualized 10 animations that yielded high human-
object response proportions and the most consistent role judg-
ment among participants as shown in Figure 8a, where cir-
cles represent the dots that were frequently identified as hu-
mans, and squares represent the dots identified as objects.
The resulting segments showed a common feature in that the
connection of the two entities in the space depicted a near-
vertical orientation, primarily due to high intention value for
the human dot, and low intention value for the object dot. To
further examine the orientations in the space for the human-
object responses, we calculated the histogram of the orien-
tations for animations judged as human-object interactions,
which shows a high concentration around 90 degrees (see Fig-
ure 8b). This finding suggests that the two dots in the Heider-
Simmel animations elicited similar degrees of physical viola-
tion, but one of them showed a much clearer intention. Note
that this analysis excluded 38 stimuli in which participants
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Figure 8: Human and model-simulation results in Experi-
ment 2. (a) Representative cases of animations that elicited
the human-object responses, located in the space with model-
derived coordinates. The colors reflects average human re-
sponses of assigning a dot to the human role (red) and to the
object role (blue). (b) Orientation histogram of the segments
connected by the concurrent pairs of entities in an animation.

did not show consistency in the role judgment (each entity
was judged as a human or an object by exactly half of the
participants).

Conclusion
In this study, we propose a unified psychological space to
account for human perception of physical and social events
from movements of simple shapes in Heider-Simmel anima-
tions. The space consists of two primary dimensions: the
intuitive sense of violation of physics, and the impression
of intentions. We tested the space by measuring human re-
sponses when viewing a range of synthesized stimuli depict-
ing human-human, human-object, and object-object interac-
tions in the style of Heider-Simmel animations. We found
that the constructed physics-intention space revealed clear
separations between social and physical events as judged
by humans. Furthermore, we trained a classification model
based on the coordinates of each stimulus in this space. The
resulting model was able to predict human classification re-
sponses at the same level as human inter-subject reliability.

The present paper provides a proof of concept that the per-
ception of physical events and social events can be integrated
within a unified space. Such common representation enables
the development of a comprehensive computational model of
how humans perceive and reason about physical and social
scenes. Perhaps the most surprising finding in our work is
that the classification result based on just the two measures
reflecting the violation of physical laws and the estimate of
intention can predict human judgment very well, reaching the
same level as inter-subject correlation. The good fit to human
responses across a range of Heider-Simmel stimuli demon-
strates the great potential of using a unified space to study the
transition from intuitive physics to social perception.

The main benefit of constructing this psychological space
is to provide an intuitive assessment for general impressions
of physical and social events. To build up such representation,
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humans or a computation model may use various cues to de-
tect intentions and/or physical violations; such cue-based de-
tection is usually subjected to personal preferences. Instead
of discovering a list of cues for distinguishing between phys-
ical events and social events, the proposed space offers an ab-
stract framework for gauging how humans’ intuitive senses of
physics and intentions interplay in their perception of physi-
cal and social events.

This work provides a first step toward developing a uni-
fied computational theory to connect human perception and
reasoning for both physical and social environments. How-
ever, the model has limitations. For example, the simulations
are limited by a small set of goals, and the model requires
predefined goals and good knowledge about the constrained
physical environment. Future work should aim to extend the
analysis to a variety of goals in social events (Thurman & Lu,
2014), to develop better goal inference, and to support causal
perception in human actions (Peng et al., 2017). A more com-
plete model would possess the ability to learn about physical
environments based on partial knowledge, and to emulate a
theory of mind in order to cope with hierarchical structures
in the goal space. In addition, we have only examined hu-
man perception of physical and social events on short stimuli
with only two entities. Generating longer stimuli with more
entities and analyzing human perception on them will further
help reveal the mechanisms underlying humans’ physical and
social perception.
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Seeing the big picture: Do some cultures think more abstractly than others?
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Abstract

Do some cultures think more abstractly than others? According to tests of formal logic and rule-based reasoning, Western-
ers tend to think more abstractly than East Asians. Yet, rule-based reasoning is only one type of abstract thinking. More
generally, thinking abstractly involves discerning relationships and seeing the big picture. Here we argue that previous tests
of attention, perception, and memory can be interpreted as showing that East Asians tend to think more abstractly than
Westerners. To test this hypothesis directly we gave a validated measure of abstract thinking (Vallacher & Wegner, 1989)
to Chinese and US individuals. Participants chose either abstract or concrete definitions of events. Across six indepen-
dent national samples (total N=1,798), Chinese participants tended to construe events more abstractly, and US participants
more concretely. Within China, more independent (Western-like) groups chose more concrete definitions. Together, these
results challenge the generalization that Westerners have a greater propensity for abstract thought.
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Abstract 
Whereas first language (L1) research has demonstrated that 
perceptions of creative ability are influenced by the complexity 
and diversity of language used to answer verbal tests of 
creativity, relatively little is known about the linguistic 
components of bilingual creative task performance. In this 
study, we analyze written transcripts of speech produced by 
466 Japanese learners of English produced during a creative 
narrative task for features related to linguistic and cognitive 
dimensions of creativity. Then, we extract various linguistic 
features and test whether these features can predict human 
perceptions of creativity for the transcripts. Unlike L1 data, 
results suggest text length and L2 proficiency comprise the 
most parsimonious explanation of creativity scores in this L2 
data. At the same time, linguistic features related to positive 
sentiment explained a significant yet small amount of 
additional variance in perceptions of creativity, suggesting 
texts with more positive language were perceived to be more 
creative. 

Keywords: creativity, NLP, language proficiency, 
bilingualism 

Introduction 
The relationship between bilingualism and creativity can be 
approached from a number of perspectives. One is to 
investigate how learning a second language (L2) impacts 
creativity. Here, research has shown benefits of language 
learning, with high-proficiency bilinguals outperforming 
their monolingual and lower L2 proficiency peers on tests of 
creative ability (Kharkhurin, 2009; Leikin, 2013; 
Ricciardelli, 1992). Reasons for this difference have been 
attributed to the growth of language knowledge that naturally 
comes with mastering additional languages, suggesting that a 
specific cognitive ability (i.e., creativity) may be directly 
associated with language knowledge. Another approach to is 
to investigate the role of creativity in second language 

acquisition (SLA). For instance, researchers SLA have 
highlighted the facilitative role that creativity, play, and 
humor in an L2 can have on language learning (Cook, 2000; 
Pomerantz & Bell, 2007). 

Yet another approach involves investigating links among 
creative ability, language use, and language knowledge in 
order to shed light on how language and cognition 
(specifically, creative ability) influence one another. One 
method for doing so, and the one that we adopt in the present 
work, is by determining whether linguistic features pattern 
with creativity. 

The overarching objective of this study is to better 
understand how L2 proficiency and linguistic features relate 
to perceptions of creativity. To do so, this study examines 
linguistic features in 466 transcribed speech samples 
produced during an English L2 oral proficiency exam. The 
speech samples were part of the oral proficiency interviews 
found in the NICT Japanese Leaners of English (JLE) corpus 
(Izumi, Uchimoto, & Isahara, 2004; Tono et al., 2001). We 
trained raters to make creativity judgements for each of the 
samples. The linguistic features of the samples were then 
analyzed using automatic text analysis tools and associations 
between these features and the human judgments of creativity 
were assessed. This approach allowed us to examine the 
strength of the relations among L2 language proficiency, 
linguistic features of L2 speech, and expert raters’ 
perceptions of creativity. 

Creativity 
Psychologists have defined creativity as a cognitive construct 
that represents the ability to develop novel and effective 
solutions to a problem (Kaufman, Plucker, & Baer, 2008; 
Runco & Jaeger, 2012). One common method for assessing 
creativity is through the use of divergent thinking tests, where 
a participant or group of participants generates as many 
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solutions to a problem that they can in a set amount of time 
(Runco, 2013). These tests are then most commonly scored 
for four measures: fluency (total number of ideas), flexibility 
(range of idea types), elaboration (ability to expand on ideas), 
and originality (uniqueness of ideas when compared to other 
participants’ answers). In general, participants who score 
higher on these four features are thought to be more creative 
than those who score lower. Due to the frequent use of 
divergent thinking tests in creativity research, these four 
components have gained widespread acceptance as valid 
measures of creativity (Kaufman et al., 2008). 

Bilingualism and Creativity  
One specific application of divergent thinking tests has been 
to investigate whether bilinguals are more or less creative 
than monolinguals (Kharkhurin, 2009). A consistent finding 
from these studies is that the degree of bilingualism or 
relative proficiency in bilinguals’ L2s is strongly related to 
creative performance (Kharkhurin, 2008). Specifically, 
language users with more balanced bilingualism (i.e., 
relatively similar proficiency between a user’s two 
languages) significantly outperform those who report lower 
L2 proficiency compared to their L1 (Kharkhurin, 2011; Lee 
& Kim, 2011). These results have been replicated among 
different language users, including German-English and 
Dutch-English bilinguals (Hommel, Colzato, Fischer, & 
Christoffels, 2011) as well as among Hebrew-Russian 
bilingual children (Leikin, 2013). 

Bilingual creative performance has also been identified as 
an important component of L2 learning. Specifically, 
language learners who experiment with the sounds, 
meanings, and forms of a language are a) better equipped to 
deduce the rules of a language, b) gain more agency over the 
language they are learning, c) construct more engaging 
learning environments, and d) enhance interaction with other 
learners (Bell, 2005; Cook, 2000). Although relatively high 
L2 proficiency is required to take part in complex forms of 
language play such as interpersonal humor (Bell, 2005), even 
lower proficiency L2 learners have demonstrated usage of 
less complex forms of play (Bell, Skalicky, & Salsbury, 
2014).  

Linguistic Features, Bilingualism, and Creativity 
Learning a second language naturally involves increased 
knowledge of lexical items and word associations in that 
language. In English, lexical features such as polysemous 
word senses, hypernymic categories, and psycholinguistic 
measures of lexical sophistication have all been shown to 
change over time as learners increase their L2 English 
proficiency. Specifically, as L2 English learners become 
more proficient, they develop more polysemous and less 
frequent senses for English words (Crossley, Salsbury, & 
McNamara, 2010), more diverse hypernymic relations 
among word categories in English (Crossley, Salsbury, & 
McNamara, 2009), and demonstrate higher levels of lexical 
sophistication in English (e.g., more abstract lexical items 

that are less rooted in the immediate context; Salsbury et al., 
2011).  

Several of these same linguistic features have been 
associated with higher performance on tests of creativity in 
English as an L1. For example, words generated by 
individuals rated higher for creativity have more remote 
associations among concepts as measured through 
computationally-derived association strengths such as Latent 
Semantic Analysis (Acar & Runco, 2014; Beketayev & 
Runco, 2016; Dumas & Dunbar, 2014). Higher creativity 
scores are also associated with higher levels of lexical 
sophistication (i.e., more infrequent, varied, and complex 
language) and semantic cohesion (Skalicky, Crossley, 
McNamara, & Muldner, 2017). 

Current Study 
The current study has two goals. The first is to examine the 
extent to which L2 English proficiency is associated with 
perceptions of creativity during an oral picture description 
task among Japanese-L1 English-L2 bilinguals of eight 
different L2 proficiency levels. The second is to investigate 
whether linguistic features of the language produced during 
the task are predictive of perceptions of creativity. Because 
SLA research has demonstrated that various aspects of 
language such as lexical sophistication change over time as 
one gains proficiency in English as an L2, we examine the 
extent that differences in creative output based on L2 
proficiency are associated with quantifiable features of 
language. By identifying language features associated with 
perceptions of creativity, we aim to further define linguistic 
aspects of L2 creativity, identify associations between 
creativity and proficiency in a second language, and provide 
additional explanations for differences in creative 
performance among bilinguals of differing proficiency 
levels. The following research questions guide our study:  

1. What role does L2 English language proficiency have 
for human perceptions of creativity during an English L2 oral 
proficiency exam? 

2. Do linguistic features explain differences in creativity 
scores when controlling for L2 English proficiency? 

Method 

Corpus 
We used a subset of the NICT Japanese Learner English 
Corpus to collect creativity ratings for L2 speakers of English 
(Izumi et al., 2004). The JLE comprises over 1200 recorded 
speech samples of Japanese learners of English who 
completed an interview activity designed to assess their oral 
English proficiency. The JLE data also includes the oral 
proficiency scores for each interviewee assigned by the 
interviewer at the time of the interview. The scores were 
derived using the Standard Speaking Test scoring method 
(Tono et al., 2001), where 2-3 raters used a holistic rubric 
based on the American Council on the Teaching of Foreign 
Languages (ACTFL) proficiency guidelines to place 
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interviewees into one of nine different levels based on their 
oral proficiency (1 being the lowest and 9 being the highest).  

Each interview was conducted between a test taker and a 
test administrator. The interviews lasted approximately 10-15 
minutes and included three interview tasks. In this study, we 
focus on the final interview task, which was a picture 
description task where the interviewee was asked to construct 
a story based on information depicted in a picture or a set of 
pictures. We focused on this task because it provided the 
strongest potential for the test takers to produce creative ideas 
in that they were given the freedom to embellish and 
elaborate on events in the story as they constructed it. The 
interviewer provided minimal feedback beyond confirmation 
checks and backchanneling, ensuring that all the ideas 
produced during this task belonged to the interviewee. Within 
the picture sequence description task, there were ten possible 
picture sets that depicted scenes such as camping, visiting a 
zoo, eating at a restaurant, and shopping in a grocery store. 

We constructed a subset of the JLE corpus by randomly 
selecting 250 texts from male and female speakers 
respectively (N = 500) while also sampling equally from each 
proficiency level (levels 2-9 with the exception of 1, which 
was rare). For each file we manually removed all text not 
associated with the picture sequence description task and all 
speech produced by the interviewer, leaving just the text that 
was on topic and delivered by the test taker. In order to ensure 
enough coverage for our linguistic measurements, we further 
removed any text containing less than 50 words (34 texts), 
resulting in a final JLE subset of 466 texts (237 female, 229 
male). The average number of words per text in this final 
subset was 140.700 (SD = 62.551). The resulting distribution 
of proficiency levels approximated a normal distribution (M 
= 5.361, SD = 1.744). 

Human Ratings 
We developed an analytic rubric to obtain creativity ratings 
for each text in our dataset. The rubric contained seven 
different subscales with a range of 1 (does not meet the 
criterion in any way) to 6 (meets the criterion in every way). 
The subscales were divided into two larger categories: IDEAS 
and STYLE. The IDEAS category contained four subscales 
related to cognitive definitions of creativity: ideation (the 
speaker produced a large number of different ideas), 
originality (the speaker’s ideas were original when compared 
to other speakers completing the same task), elaboration (the 
speaker included additional information elaborating on their 
ideas) and appropriateness (the speaker’s ideas created an 
effective narrative). The STYLE category contained three 
subscales related to linguistic creativity: humor (the speaker 
produced at least one idea intending to provoke humor or 
amusement), metaphor and simile (the speaker produced 
ideas which made conceptual comparisons), and word play 
(the speaker played with the sounds or meanings of words). 

Two native English-speaking research assistants were 
trained on the creativity rubric using a separate subset of 65 
JLE texts. Raters were informed that the distance between 
each number on the rating scale was equal. After calibrating 

on the initial 65 texts, the raters then independently scored 
the remaining 466 texts for creativity. The raters were not 
aware that the samples were from English L2 learners. After 
scoring, raters were able to adjudicate disagreements greater 
than two for any of the subscales. Raters reported almost no 
instances of humor, metaphor and simile, or wordplay in the 
corpus, and thus these subscales were removed from the 
study. Table 1 displays the final, adjudicated kappa scores 
and correlations between the two raters for each of the 
remaining five subscales. After adjudication, the raters’ 
scores were averaged for each subscale and text. 

 
Table 1: Rater agreement 

 
Subscale r Kappa 
Ideational Fluency 0.830 0.830 
Originality 0.825 0.822 
Elaboration 0.739 0.738 
Appropriateness 0.785 0.781 

Linguistic Feature Selection 
Based on prior work reporting associations between lexical 
sophistication, cohesion, and creativity in L1 English 
research (Acar & Runco, 2014; Beketayev & Runco, 2016; 
Dumas & Dunbar, 2014; Skalicky et al., 2017), we hand-
selected a range of lexical indices representative of these 
constructs. We also included features related to sentiment in 
order to explore whether these measures might explain 
further explain variance in creativity scores. We obtained our 
measures of lexical sophistication, sentiment, and cohesion 
using three freely-available automatic text analysis tools, 
TAALES v2.2, SEANCE, and TAACO, respectively (see 
Crossley, Kyle, & McNamara, 2016a, 2016b; Kyle, Crossley, 
& Berger, 2017). 

For lexical sophistication, we included linguistic indices of 
word frequency, word concreteness (i.e., how abstract a 
word’s meaning is), contextual diversity and distinctiveness 
(i.e., the range of different contexts a word occurs in), word 
meaningfulness (i.e., number of associations with other 
words), word polysemy (i.e., the number of different senses 
a word form has), and word recognition and naming norms 
(i.e., average time to recognize and name English words). For 
cohesion, we included features measuring the type-token 
ratio (i.e., lexical diversity) and number of repeated content 
words in each text. Finally, for sentiment, we used features 
measuring the overall valence of a text (i.e., use of positive 
or negative vocabulary). We used measures calculated for 
content words (e.g., nouns, verbs, adjectives) only. 

Statistical Analysis 
We first conducted a principal component analysis using the 
raters’ scores for the four subscales in the IDEAS category 
from the creativity rubric to develop a single, weighted 
creativity score to be used as the dependent variable. We then 
conducted correlations between the creativity score and the 
oral proficiency scores provided with the JLE corpus, as well 
as between the creativity score and text length (i.e., number 
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of content word types in each text). We included text length 
as a variable because longer texts would include more ideas 
and thus be biased to higher ideation scores (and therefore 
higher creativity scores). Then, we controlled the linguistic 
features based on correlations with the dependent variable 
and also controlled for multicollinearity using correlations 
and variance inflation factors.   

Next, in order to test whether L2 proficiency and the 
linguistic features related to lexical sophistication, sentiment, 
and cohesion were predictive of the creativity scores, we 
performed comparisons between linear regression models in 
order to obtain the most parsimonious model (i.e., the model 
that explained the largest amount of variance with the fewest 
number of predictor variables). 

Results 

Principal Component Analysis 
A principal component analysis (PCA) was conducted on the 
averaged ratings of ideation, originality, elaboration, and 
appropriateness from the analytic rubric for the 466 texts in 
our subset of the JLE corpus. A Bartlett’s test of sphericity 
was statistically significant (χ² = 717.179, df = 6, p < .001), 
and the Kaiser-Meyer-Olkin measure of sampling adequacy 
reported .672, representing acceptable ability for the PCA to 
yield distinct, reliable factors (Field, 2013). A single 
component containing all four variables accounted for 
59.463% of cumulative variance with an eigenvalue of 2.378. 
The individual subscale loadings were: ideation = .913, 
elaboration = .892, appropriateness = .782, originality = .369. 
In order to calculate a single score reflective of the different 
strengths of these loadings we multiplied each human score 
for each subscale for each text by its respective loading and 
summed these values per text, obtaining a weighted sum 
component score for each text (DiStefano, Zhu, & Mîndril, 
2009), which we refer to as the creativity score (Min = 8.238, 
Max = 14.780, M = 12.526, SD = 1.545). 

Linguistic Feature Reduction 
Using the output from the automatic text analysis programs, 
we first reduced the number of variables by only including 
variables of interest that had a significant and meaningful 
linear relation (i.e., absolute r > .1) with the dependent 
variable (i.e., the creativity score). We then controlled for 
multicollinearity using variance inflation factors (VIF), 
removing any variable with a VIF greater than 2. The end 
result was a selection of seven linguistic indices that 
demonstrated no strong multicollinearity and possessed a 
significant linear relation with the dependent variable. 

These features were: average Age of Acquisition, which is 
based on averaged self-reported ratings of the age English 
users first understood 30,000 different English words 
collected from over 800,000 English speakers in the United 
States (Kuperman, Stadthagen-Gonzalez, & Brysbaert, 
2012), average Spoken Word Frequency calculated from the 
Corpus of Contemporary American English, The University 
of South Florida Free Association Norms (i.e., the average 

number of words a subject voices when presented with a 
particular word; Nelson, McEvoy, & Schreiber, 1998), LSA 
Average Top Three Cosine (average LSA cosine values for 
the top three related words in each text), Vader Positive 
Sentiment (compound score measuring the overall positive 
sentiment in a text; Hutto & Gilbert, 2014), Number of 
Content Word Types (our measure of text length), and 
Number of Repeated Content Word Lemmas (divided by 
total text length). Table 2 displays these variables and their 
correlations with the creativity score, along with the 
correlation between L2 proficiency level and creativity. 

Regression Models 
Based on the correlations among creativity, L2 proficiency 
level, and text length and initial model exploration, the results 
suggested a large amount of the variance in raters’ creativity 
scores could be captured in a linear regression model fit with 
L2 proficiency, text length, and an interaction between text 
length and L2 proficiency. This model explained 
approximately 48% of the variance in raters’ creativity scores 
(R2 = .475, F[3, 462] = 141.100). The significant interaction 
between text length (i.e., number of content word types) and 
L2 proficiency indicated that differences in text length at 
higher L2 proficiency levels had significantly less effect on 
raters’ perceptions of creativity when compared to lower 
levels of L2 proficiency. Specifically, at lower levels of L2 
proficiency, texts with a higher number of content word types 
were rated significantly higher for creativity, and this effect 
attenuated significantly at higher levels of L2 proficiency. 
This interaction is visually plotted in Figure 1, and Table 3 
displays the standardized beta coefficients and 95% 
confidence intervals for the terms in the model. 

We then tested whether the separate inclusion of each of 
the remaining six predictor variables would significantly 
improve the baseline model based on changes in adjusted R2 
by comparing different linear regression models using the 

Figure 1: Interaction between English proficiency and text 
length (number of content word types). Upper and lower 
bounds represent the minimum and maximum values for 

number of content word types. 
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anova() command in R. Table 4 summarizes the results of 
these comparisons. As can be seen, only the Vader Positive 
Sentiment index significantly increased the adjusted R2 of the 
baseline model, with an increase of .07% variance explained. 
The remaining linguistic features did not explain any 
significant amount of additional variance, further suggesting 
that perceptions of creativity were strongly associated with 
L2 proficiency level and the amount of text produced by each 
participant. 

 
Table 2. Correlations between predictor variables and the 

creativity score. 
 

Index r 
Number of Content Word Types 0.643 
L2 English Proficiency Level 0.449 
Average Age of Acquisition 0.288 
LSA (mean top three cosine) -0.281 
Free Association Norms (USF) -0.240 
Vader Positive Sentiment 0.158 
Repeated Content Lemmas 0.134 
Spoken Word Frequency (COCA) 0.118 

Discussion 

Creativity and L2 English Proficiency 
Our first research question asked whether L2 English 
proficiency influenced raters’ perceptions of creativity 

among our speech samples. The moderate correlation 
between the creativity score and L2 proficiency in Table 2 
suggests a positive association between these features. This 
is further supported by the baseline regression model (Table 
3), which included a significant positive effect for L2 
proficiency (moderated by text length, see below). Together, 
these results provide an additional piece of evidence 
suggesting that a higher L2 proficiency level is associated 
with greater perceptions of creativity among the creativity 
raters. This finding aligns well with prior research into 
bilingual creative performance, which also reported greater 
creativity levels among bilinguals with higher L2 proficiency 
(Hommel et al., 2011; Kharkhurin, 2011; Lee & Kim, 2011; 
Leikin, 2013).  

Our findings also suggest that this effect was moderated by 
text length, in that the overall length of the participants’ 
picture description narratives (i.e., number of content word 
types) was more strongly associated with raters’ perceptions 
of creativity at lower compared to higher levels of L2 
proficiency. Thus, the manifestation of L2 proficiency as the 
ability to produce more language may be the driving 
determinant between higher creativity scores and L2 
proficiency, as the ability to produce more language allowed 
for the opportunity to produce more ideas, and therefore 
receive higher ideation ratings and thus higher creativity 
scores. 

 
Table 3: Baseline model explaining variance in raters’ perceptions of creativity. 

 
Model Term  Estimate SE t p 5% CI 95% CI 
(Intercept) 11.977 0.196 61.140 < .001 11.654 12.300 
L2 English Proficiency Level 0.132 0.035 3.804 < .001 0.075 0.189 
Text Length 1.900 0.176 10.788 < .001 1.609 2.190 
L2 English Proficiency Level * Text Length -0.178 0.028 -6.255 < .001 -0.225 -0.131 
Adjusted R2 = .475, F(3, 462) = 141.100. Estimate represents standardized beta coefficient as all predictor variables were 
z- scored before being entered into the model. 

 
Table 4: Comparisons between baseline model and models with different linguistic features. 

 
Model Term R2 Adjusted R2 F p R2 Difference (Adjusted) 
Baseline Model 0.478 0.475 141.099 NA NA 
Vader Positive Sentiment 0.487 0.482 109.275 0.006 0.007 
Spoken Word Frequency (COCA) 0.478 0.474 105.597 0.962 0.001 
Free Association Norms (USF) 0.480 0.476 106.513 0.167 0.001 
LSA (mean top three cosine) 0.478 0.474 105.657 0.721 0.001 
Age of Acquisition 0.478 0.474 105.677 0.680 0.001 
Repeated Content Lemmas 0.478 0.474 105.684 0.667 0.001 
Note: DF for all comparison models = (4, 461). Baseline model R syntax = creativity ~ L2 English Proficiency Level + 
Text Length + L2 English Proficiency Level:Text Length. F and p values correspond to change in R2 from baseline model. 

 

Linguistic Features and English Proficiency 
Our second research question asked whether linguistic 
features explained differences in creativity scores while 

taking L2 English proficiency into account. Early model 
exploration as well as a series of hierarchical linear regression 
comparisons suggested that almost all of the linguistic 
features selected for this study failed to predict any 
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meaningful amount of variance beyond the effect of L2 
proficiency and text length, which combined to explain 
nearly 50% (Adjusted R2 = .475) of the variance in the raters’ 
perceptions of creativity, suggesting a relatively strong 
effect; see Table 4. The interaction between L2 proficiency 
and text length demonstrates that while text length was a 
strong, significant predictor of creativity scores, this effect 
was significantly stronger at lower L2 proficiency levels. 
Specifically, while texts with a greater number of content 
word types predicted increased creativity scores for 
participants across all eight proficiency levels, this effect was 
much stronger for participants who received lower L2 
proficiency scores by the interviewer.  

When comparing the difference in creativity scores 
between the upper bound and the lower bound of text length 
in Figure 1 (i.e., the minimum and maximum values for 
number of content word types), this difference attenuates for 
participants with higher L2 proficiency scores. This suggests 
that while differences in creativity scores at lower L2 
proficiency levels are strongly predicted by the ability to 
produce more words (and therefore more ideas), this was not 
the case at the higher L2 proficiency levels. At higher L2 
proficiency levels, variation in creativity scores based on total 
number of content word types was relatively low, suggesting 
that other features of the texts may have influenced the raters’ 
creativity scores at higher L2 proficiency levels. However, 
these additional features, if any, were not captured in any of 
the linguistic features provided by our automatic text analysis 
tools. Therefore, unlike results reported in the L1 data, it is 
difficult at this time to draw concrete connections between 
specific linguistic features and bilingual performance on tests 
of creativity. It may be the case that additional linguistic 
features not included in the current study can explain variance 
in creativity at higher levels of L2 proficiency, providing 
ample opportunity for future research. 

Aside from text length, one index, Vader Positive 
Sentiment, did result in a significantly better regression 
model fit, but only by approximately .07% of variance 
explained, suggesting that this index had a relatively weak 
effect. Nonetheless, it is still worth considering why this 
index may have provided a significant amount of additional 
variance explained. The Vader Positive Sentiment index is a 
component score derived from formulas specifically 
designed to measure sentiment in shorter texts, especially 
those used in social media (Hutto & Gilbert, 2014). The 
coefficient for the Vader Index was .148 (intercept = 11.881), 
suggesting a positive relation between positive sentiment and 
perceptions of creativity. Thus, narratives with more positive 
vocabulary may have appeared more creative to the raters in 
this study. Perhaps narratives with more positive language 
reflects a greater intent by the speakers in the corpus to create 
a unique story, as compared to narratives that were more 
factual descriptions of events.  It would thus be worthwhile 
to further consider the role of sentiment in linguistic 
investigations of creative performance, as this would help 
identify links between specific types of linguistic knowledge 
and the cognitive construct of creativity. 

Conclusion and Limitations 
Previous investigations of bilingual creativity have reported 
a tendency for bilinguals with greater L2 proficiency to 
outperform those with lower L2 proficiency on standardized 
tests of creativity. The results from the current study support 
these claims while raising further questions. Specifically, we 
observed that increased levels of L2 proficiency were 
associated with higher perceptions of creativity, but this 
effect was moderated by the length of the speech samples. 
Moreover, while our results identified Vader Positive 
Sentiment as a significant linguistic predictor of creativity, 
this (and our other linguistic features) was overshadowed by 
the strong effect of text length. As a whole, these results 
suggest that there may be an L2 proficiency threshold for 
bilingual creativity, in that raters attended to additional 
linguistic features beyond text length only for speakers with 
relatively higher levels of L2 proficiency. In the future, it may 
be helpful to incorporate diversity-based linguistic 
information based on the prompts in order to control for 
potential vocabulary differences among the different 
prompts, which may influence the raters’ perception of 
creativity (Chiru & Rebedea, 2017). 

One final consideration is that the L2 English proficiency 
measure used in the current study was based solely on oral 
L2 proficiency at the time of the picture description task. 
Previous research in bilingual creativity has relied on 
proficiency assessments based on vocabulary knowledge 
tests as well as participant self-ratings of L2 proficiency and 
levels of bilingualism, which captures receptive vocabulary 
knowledge (i.e., reading and listening ability). The JLE L2 
proficiency scores, on the other hand, are a measure of 
productive vocabulary knowledge (i.e., speaking and writing 
skill), and productive vocabulary size is typically smaller 
than receptive size (Schmitt, 2008). However, receptive and 
productive vocabulary knowledge are inextricably linked, 
suggesting that the JLE oral proficiency score is also a 
correlate of receptive L2 vocabulary knowledge (Webb, 
2008). In all, these findings further highlight the association 
between bilingualism and the cognitive ability of creativity 
while providing avenues for future research. 
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Abstract

Interruptions are an inevitable part of every day life. Previous
research suggests that interruptions can decrease performance
and increase errors and response time. Additionally, there is
evidence that providing a lag time prior to an interruption can
mitigate some of the interruption costs. The goal of this pa-
per is to investigate the effects of interruptions and interrup-
tion lags and explore possible strategies to attenuate interrup-
tion costs. A novel sequential decision-making paradigm was
used, where the difficulty of the task and type of interruption
were the two experimental manipulations. The results indicate
that there is a potential benefit to including a lag time when
presented with interruptions.

Keywords: interruption; interruption lag; decision making

Introduction
Interruptions are a common occurrence in daily life. From
a telephone ringing in the middle of a conversation with a
friend, to a nurse handing an X-ray to a surgeon in the midst
of a procedure, interruptions can happen at any moment and
in any situation. The interruption literature dates back to the
early 1900’s when Zeigarnik (1938) surprisingly found that
interrupted tasks were better recalled compared to tasks that
were uninterrupted. This is often referred to as the “Zeigar-
nik effect”. However, research within other fields, such as
aviation, suggests interruptions can have negative impacts on
behavior. For example, Fitts and Jones (1947) explain, “for-
getting may occur when something unusual happens to inter-
rupt or momentarily distract the pilot from his normal rou-
tine.” Although there has been conflicting results when trying
to replicate the Zeigarnik effect and countless of studies on
interruptions since the 1920s, Gillie and Broadbent (1989)
argue it is even more important to research how easily can
people resume a task after being interrupted and what makes
interruptions disruptive?

To answer these questions, Gillie and Broadbent (1989)
had participants complete a complex computer-based adven-
ture game and manipulated the types and duration of inter-
ruptions within the task. They found that similarity to the
primary task and the complexity of the task lead to disrup-
tive interruptions, but not the length of an interruption or
when it occurred (Gillie & Broadbent, 1989). However, it
is worth noting that there were only 10 participants in the
experiment and this study was completed 30 years ago. In
a more recent review of interruptions, Borst, Taatgen, and

van Rijn (2015) conclude that there are three main disrup-
tive factors: duration of the interruption, complexity of the
interruption, and the moment of the interruption. Research
on the effects of interruptions has dramatically increased in
recent years, especially in fields where interruptions can lead
to serious and sometimes even fatal consequences, such as
in medicine (Westbrook, Raban, Walter, & Douglas, 2018;
Walter, Li, Dunsmuir, & Westbrook, 2014; Westbrook et al.,
2010), aviation (Gontar, Schneider, Schmidt-Moll, Bollin,
& Bengler, 2017), and driving (Klauer et al., 2014; Young,
Salmon, & Cornelissen, 2013) just to name a few.

Here, we will define interruptions as a break from one
task in order to complete another task, and in our experi-
ment, resuming the primary task can only occur once the sec-
ondary task is completed. Within the literature of interruption
lags, studies have often used paradigms that are inherently
complex and only include one interruption (Gillie & Broad-
bent, 1989; Trafton, Altmann, Brock, & Mintz, 2003; Cane,
Cauchard, & Weger, 2012). Therefore, the main aim of the
current experiment is to explore strategies to minimize inter-
ruption costs in a decision-making task with varying levels
of difficulty so that we can easily manipulate the frequency,
type, and location of interruptions. This is a novel sequential
decision-making task that will be referred to as “The Mazing
Race”, which will be explained in greater depth later.

Theoretical Framework
Theories for understanding human cognition have been
around for decades. Adaptive Control of Thought-Rational
(ACT-R) is one cognitive architecture to model human mem-
ory that has been gradually developing for years (J. Anderson,
Lebiere, Lovett, & Reder, 1998). Derived from ACT-R, the
Altmann and Trafton’s Goal Activation Model (GAM) theo-
rizes whichever goal is most active will govern behavior. This
contrasts to the basic “last-in, first-out” structure to model
goal behavior, which assumes the newest goal directs behav-
ior. Although this specific model will not be implemented in
this study, the model is important to understand as it moti-
vates the research question and design.

GAM predicts that people can take time to prepare before
goals are suspended or interrupted. Therefore, the model sug-
gests it may be important to give a cue before an interruption.
Specifically, the GAM “predicts that interruption lag is crit-
ical to the ability to resume an interrupted goal” (Altmann
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Figure 1: Image modified from Trafton et al. (2003) for a
visual representation of the model including interruption and
resumption lags.

& Trafton, 2002). Figure 1 illustrates a model to visualize
what is happening during an interruption as a function of
time. The overall idea of this model is that a person in the
middle of completing a primary task is suddenly interrupted
with another task, and ultimately has to resume the primary
task. Often times there may be an alert, or cue, before the
interruption occurs. The interruption lag is the time between
the alert and the onset of the interruption. Depending on the
context, the duration of the interruption lag may be able to be
manipulated. Finally, the resumption lag is the time it takes to
resume the primary task once the interruption has ended. This
is often the dependent variable in experimental studies inves-
tigating interruption lags. One prediction from this model is
that the interruption lag gives one time to prepare to resume
the primary task after being interrupted.

To further understand this model, we will elaborate on a
real-world example alluded to in the introduction. Imagine
two people are in the midst of a conversation and suddenly
the phone rings. Before the individual goes to answer it, she
has the option to quickly end the current conversation, ignore
the incoming call, or temporarily pause the conversation. In
this scenario, the phone ringing is the alert and choosing to
answer the phone would be the interruption to the primary
task of the current conversation. If she chooses to pause the
conversation, it would be advantageous to take a couple of
seconds to remember exactly where the conversation has left
off in order to successfully resume the conversation after the
call. This is the idea of the interruption lag.

Interruption Lags
Over the past couple of decades, there have been several stud-
ies focusing on the effects of interruption lags. However,
there are conflicting results with regards to the benefits of
interruption lags. On one hand, problem solving tasks (e.g.
Tower of London) showed interruption lags lead to faster re-
sumption times compared to no lags (Morgan, Patrick, & Ti-
ley, 2013; Hodgetts & Jones, 2006b, 2006a; Trafton et al.,
2003). In fact, Hodgetts and Jones (2006a) found that even
a two-second interruption lag can aid resumption on the pri-
mary task. Although most research on interruption lags has
focused on static contexts, Labonté and colleagues show that

a pre-interruption warning can be beneficial in dynamic en-
vironments, as well (Labonté, Tremblay, & Vachon, 2019,
2016). On the other hand, there were no benefits to includ-
ing interruption lags within a reading task (Cane et al., 2012).
The authors suggest that the lack of an effect is possibly be-
cause interruption lag effects may be dependent on the spe-
cific task (e.g. reading task vs. problem solving task).

It is also important to note the complexity of these tasks.
For instance, Trafton et al. (2003)’s primary task was a com-
puter game where participants had to keep track of a number
of different resources including munitions, fuel, fuel tanks,
vehicles, and more. Even the interruption was an involved
tactical assessment task lasting 30 seconds. Similarly, the in-
terruption in the reading task was a full minute long. The
studies mentioned here investigated the effects of interrup-
tion lags in complex primary and secondary tasks. This cur-
rent study looks to extend the literature by asking what effect,
if any, will interruption lags have on a “simpler” task? The
“simpler” task will be a novel sequential decision-making
task. It is simpler in the sense that participants had to make
very quick decisions and the interruptions were relatively
short, as well. This paradigm is also novel because the num-
ber of interruptions was manipulated, rather than just having
one interruption throughout the entire duration of the task.
This is arguably a better model of the real world as interrup-
tions are often frequent, unavoidable, and unpredictable.

Method
Participants
A total of 64 undergraduate students from the University of
New South Wales were recruited to complete the experiment
for course credit. Five participants’ data were removed from
analysis because the programmed crashed, so they were un-
able to complete the study, leaving 59 participants left for
analysis.

Design
This study was a 3 (difficulty: easy, medium, hard) x 3 (type
of interruption: no interruption, interruption, and interruption
+ lag) fully within-subject design. Participants completed ev-
ery combination of the conditions once for a total of nine
blocks. The Mazing Race was the primary task and the inter-
rupting task was a short-term recognition memory task. The
number of interruptions depended on the difficulty level of
the block. We were concerned about the difficulty of the task,
and so we ensured participants completed the blocks in order
of difficulty, from easiest to hardest. Within a set of prob-
lems with the same difficulty level, the type of interruption
was randomized.

Primary Task: The Mazing Race In The Mazing Race
participants had to make a series of decisions to go either
“left” or “right” to work their way through a maze to open
up doors. Figure 2 shows a visual representation of the un-
derlying structure of the maze. These images were the stim-
uli used in the experiment and examples of what participants
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(a) Easy condition

(b) Medium condition

Figure 2: The underlying structure of The Mazing Race for
the (a) easy condition and (b) medium condition. The design
required participants to open doors in the given order.

saw before each block. This figure illustrates a maze in the
easy condition (a) with a total of four doors and a maze in the
medium condition (b) with a total of eight doors. Although
it is not displayed, the hard condition was of a similar struc-
ture, but had one additional decision-making level, resulting
in a total of 16 doors. We named it The Mazing Race as it
is a race to get to the bottom of every unique path in order to
open all of the doors in as few attempts as possible. Once a
door was opened, it stayed opened for the remainder of the
block. Thus, the main dependent variables were the number
of doors successfully opened and the number of trials needed
to complete each block. Response times were recorded for
further analysis, specifically looking at the response time of
every decision (i.e. from when a stimulus is presented until
the participant makes a keyboard response).

After participants studied the underlying structure of the
maze, they pressed the space bar to start the block. Then, as
shown in Figure 3a, two arrows appeared on the screen: one
pointing left (L) and one pointing right (R) and participants
simply had to choose to go L or R with the respective arrow
keys. After every decision, animated footprints appeared for
a total of 200ms symbolizing the participant walking down
to the next level of the maze, where they made their next de-
cision to go L or R. In the easy condition, for example, af-
ter two sequential decisions they reached the bottom of the
maze. Every difficulty level had a maximum number of at-
tempts to open all of the doors. In the easy condition it was

(a) Trial outcomes

(b) Interruption types

Figure 3: Schematic representation of the experimental de-
sign in the easy condition, depicting the (a) three possible
trial outcomes and the (b) interruption types.

8 attempts, medium had 16, and hard had 32. These maxi-
mum numbers were included to try to minimize participants’
frustration while completing the task.

Participants were required to open the doors in a spe-
cific order as shown in Figure 2. The order was always the
same: starting by opening the left-most door and systemati-
cally working their way to the right-most door. Therefore, on
any given attempt to open a door, there was always only one
correct response. Feedback was provided every time the par-
ticipant reached a door (see Figure 3a). If they reached the
correct door they received positive feedback saying, “Good
job! You have opened the correct door!” If they reached a
door that had not already been opened, but was the incorrect
door, they received negative feedback saying, “Sorry! This is
not the correct door!” Finally, if they opened a door that was
already opened, they also received negative feedback saying,
“Sorry! You have already opened this door!” To successfully
complete an easy block, for example, participants needed to
go down the following four paths in this sequence: LL, LR,
RL, RR. The block ended when the participant either success-
fully opened all of the doors or exceeded the maximum num-
ber of attempts. The experiment ended when all nine blocks
were completed.
Interrupting Task: Recognition Memory Test Past re-
search has shown that similarity and complexity between the
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primary and interrupting task are factors that determine if the
interruption is disruptive (Borst et al., 2015; Gillie & Broad-
bent, 1989). Because the main interest was the potential ben-
efits of interruption lags, it was necessary that the interrup-
tions were disruptive. Therefore, a recognition memory task
was chosen because we assumed that both the primary and
secondary tasks relied on a similar subset of memory-related
cognitive processes. Figure 3b illustrates the three types of
interruptions: no interruption, interruption, and interruption
+ lag. Participants were explicitly told what type of interrup-
tion to expect before the start of each block.

In our memory task there was a study and a test phase.
The stimuli included randomly selected words from a list of
1535 words, where all the words were between three and six
letters and one-syllable. This is the same word pool as used
in Donkin and Nosofsky (2012). Anticipating that some par-
ticipants may strategically try to keep count of the number
of doors they have opened, numbers (randomly generated be-
tween 0-999) were also included in the memory test as a way
to interfere with any possible counting. In the test phase, par-
ticipants were presented with one “old” (i.e. previously stud-
ied) item and one “new” (i.e. previously unstudied) item and
they were instructed to select the word that they believed to
be the old item. During every interruption, there was a total
of 10 study items and 10 test pairs. Each study item was ran-
domly selected to be either a word or a number and test pairs
could be two words, two numbers, or one of each.

The memory test was programmed to occur once in each
set of four trials, where a trial is an attempt of opening a door,
in The Mazing Race with a set number of interruptions in
each condition. There was only one interruption in the easy
condition, up to four in the medium condition, and up to eight
in the hard condition. The interruptions were purposefully
random and spread out to make it harder for the participant to
anticipate when they would be interrupted. Before the mem-
ory task began, participants completing an interruption block
saw a screen that said: “Start memory test NOW” (the task
began automatically after 400ms) and in the interruption +
lag block they saw a screen that said: “Think about where
you are in the Maze. Press the space bar to start the mem-
ory test”. The interruption lag was self-paced, meaning par-
ticipants decided when to start the memory task. As soon
the memory task was completed, participants immediately re-
sumed The Mazing Race at the exact point where they left off
and were given no environmental cues about where they were
in the maze, which they were told from the start.

Furthermore, after every block, participants were given
feedback on their performance for both tasks. For The Maz-
ing Race, they were shown the number of doors they suc-
cessfully opened and, if there were interruptions, they were
shown the percentage of correct answers on the memory test.
Lastly, participants were instructed that performance on The
Mazing Race and the memory test were equally as important.

Results
We predicted that performance would be best in the no inter-
ruption condition and worst in the interruption condition. We
expected the interruption + lag condition to fall somewhere
between the others, as the lag would provide time to prepare
to switch tasks and resume The Mazing Race. As this is a
novel paradigm, several different analyses were carried out to
try to fully understand the results. We will report the results of
both frequentist and Bayesian repeated-measures ANOVAs.
The Bayesian anaylses were performed using JASP (JASP
Team, 2018), with priors set to their default values within the
program. We report Bayes Factors (BF), which express the
probability of the data given the alternative hypothesis (H1)
relative to the null hypothesis (H0). A BF = 1-3 indicates
weak evidence for the alternative hypothesis and a BF > 30
indicates strong evidence for the alternative hypothesis. Also
note that for the purposes of this proceedings paper, due to
the large number of comparisons, and exploratory nature of
this investigation, we will only present the result of omnibus
F-tests as a rough indicator of whether there were differences
among conditions as a result of the introduction of interrup-
tions. As such, we will focus on describing the qualitative
pattern of the means and attempt to provide a more holistic
interpretation of the overall pattern of results.

Before looking at specific dependent variables, Table 1 il-
lustrates results from the interruption task. Participants per-
formed equally well in both the interruption and interruption
+ lag conditions. Although performance decreased slightly as
the primary task got harder, performance was still well above
chance in all of the conditions. This suggests that participants
were engaged in the secondary task and not using all of their
cognitive resources on The Mazing Race.

To measure performance on the task, we first observed the
average number of doors participants opened (Figure 4). The
dotted lines represent the maximum number of doors in each
level of difficulty: four doors in easy, eight doors in medium,
and 16 doors in hard. Perfect performance would be to open
all the doors in four, eight, and 16 trials, respectively. Look-
ing at the Figure, it doesn’t appear that the type of interruption
affected the number of doors opened in the easy (BF10 = .68;
F(2,116) = 2.85, p = 0.06) or hard (BF10 = .12; F(2,116) =
0.87, p = 0.42) conditions. There may have been an effect
of interruptions in the medium condition, but the evidence is

Table 1: Summary Statistics of Interruption Task

Easy Medium Hard

Interruption 0.82 (0.12) 0.79 (0.12) 0.77 (0.13)

Interruption + lag 0.82 (0.14) 0.80 (0.11) 0.77 (0.11)

Average probability of correct responses on the interruption
task (memory test) across the different levels of difficulties.
Standard deviations are provided in parentheses.
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Figure 4: Average number of doors opened (top) and average
number of trials needed to successfully complete the maze
(bottom) in each condition as a function of interruption type.
Dotted lines represent the maximum number of doors. Error
bars indicate standard error in this and the subsequent figure.

inconclusive (BF10 = 1.427; F(2,116) = 3.78, p = 0.03). How-
ever, it is likely that there were ceiling effects, especially in
the easy condition, such that participants were opening all, or
close to all, of the doors.

Even if participants successfully opened all of the doors,
it is possible that they made more mistakes and needed more
trials to open all doors when interrupted. Therefore, we next
looked at the average number of trials needed to complete the
block (Figure 4). The type of interruption did effect the num-
ber of trials in the easy condition (BF10 = 38.22; F(2,116) =
7.79, p < 0.001), medium condition (BF10 = 5.93; F(2,116) =
5.47, p = 0.01), though the statistical evidence was less clear
for the hard condition (BF10 = 1.82; F(2,116) = 4.10, p =
0.019). Focusing on the mean scores in all difficulty condi-
tions, we see that performance tends to decrease across in-
terruption type with best performance in no interruption, fol-
lowed by interruption + lag, with poorest performance in the
interruption condition without lag.

Our next analyses examined the probability of successfully
opening a door and the average median RT on trials immedi-
ately following an interruption (Figure 5). In order to have
a baseline condition, we created a no interruption (“no int”)
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Figure 5: Probability of successfully opening the correct door
(top) and median reaction times on trials immediately follow-
ing interruptions. The “no interruption” condition is a lighter
shade to show that it represents a baseline group for compari-
son even though there was no interruption in these conditions.

condition for these two figures. As a reminder, there was one
interruption in the easy condition, two in the medium, and
four in the hard. That gives one, two, and four data points per
participant in the respective conditions. Therefore, for the no
interruption condition, we sampled one, two, and four data
points for each respective condition from every participant to
represent where an interruption may have occurred. It was
predicted that the no interruption condition would have the
highest probability of success and the fastest RT, the inter-
ruption condition would have the lowest and the slowest, and
the interruption and lag would fall somewhere in the middle.

Turning first to the probability of success of opening a door
immediately after an interruption, there was an effect of in-
terruption type in all of the conditions: easy (BF10 = 12.60;
F(2,116) = 5.81, p < 0.01), medium (BF10 = 24.91; F(2,116)
= 7.13, p = 0.001), and hard (BF10 = 15.11; F(2,116) = 6.57,
p < 0.01). Looking at the means, we can see there was the
biggest difference between “no interruption” and interruption
+ lag, such that the introduction of the interruption had a rela-
tively large effect on the next trial. In all conditions, however,
we do still see a benefit of the lag, with worse performance in
the interruption without a lag condition.
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Next, we looked at median RTs following interruptions as a
way to measure resumption lag. The ANOVA analyses reveal
very large effects for easy (BF10 > 100; F(2,116) = 22.50,
p < 0.001), medium (BF10 > 100; F(2, 116) = 34.8, p <
0.001), and hard (BF10 > 100; F(2,116) = 28.59, p < 0.001)
conditions. Again, we saw a similar pattern when looking at
the mean scores. The “no interruption” had the shortest RTs
and then a big jump up to interruption + lag, and the inter-
ruption conditions had the longest RTs. We will turn to the
discussion for further possible interpretations of these results.

Discussion
The aim of this study was to analyze the effects of interrup-
tions and explore the possible benefits of interruption lags in
a novel sequential decision making task. While performance
was, by no surprise, the best in blocks without interruptions,
we did find benefits to having lag time when there was an
interruption.

Using the number of doors opened as a dependent variable
did not show any large effects of interruption type. Addition-
ally, we did not see the quantitative pattern of data like we
saw in the other analyses. However, 49 participants success-
fully opened every door in all three easy blocks, suggesting
performance was at ceiling. This has real world implications,
such that if one gets interrupted in the middle of an effortless
task, the interruption may not disrupt the primary task at all.
Performance, however, did begin to decline when the primary
task got harder. In the medium and hard conditions, 39 par-
ticipants successfully opened all of the doors, with a handful
of participants opening less than 50% of the doors.

When looking at the maximum number of trials needed to
open all the doors, we did begin to see effects of interruption
type. This was the first analysis where a consistent pattern of
data emerged. Participants were able to complete the task in
the lowest number of trials when there were no interruptions.
Performance appeared to decrease in the interruption + lag
condition and even more so in the interruption condition. This
makes sense as participants were explicitly told to use the
interruption time to try to remember their place in the maze.

When interrupted, it often takes time to pick up where you
left off. For this reason, we were interested in observing
the trials that occurred immediately following interruptions,
specifically looking at the probability of success and response
time when making the subsequent decision. The probability
of success was highest and the average RT was the shortest
when examining data from the no interruption condition be-
cause participants had nothing from which to be distracted.
Additionally, we see a similar trend in the data as previously
mentioned, where the interruption lag appears to be improv-
ing performance (compared to the interruption condition) in
both of these analyses.

Limitations
Observing the effects of interruptions is difficult because it
is unreasonable and unrealistic to interrupt participants on

every single trial. For that reason, we decided to only in-
clude interruptions on 1

4 of the trials. Therefore, we were
left with limited data points for each participant. One so-
lution would be to increase the number of interruptions, but
that may be too cumbersome and frustrating for participants.
Another solution would be to increase either the number of
participants or number of trials per participant. Additionally,
participants were required to open the doors in the same or-
der (i.e. left to right) in all the blocks and always completed
the blocks in order of difficulty (i.e. easy to hard). There-
fore, although the overall RTs are longest in the easy condi-
tion and shortest in the hard conditions, this is likely due to
practice effects. By the time participants get to the more dif-
ficult conditions, they can begin to anticipate their next move
resulting in quicker decisions. However, models of volitional
action control (Heise, Gerjets, & Westermann, 1997) predict
that difficult tasks will protect against distractions. For ex-
ample, Scheiter, Gerjets, and Heise (2014) and Wirzberger,
Bijarsari, and Rey (2017) found that irrelevant interruptions
only impaired performance in the easy, and not difficult, con-
ditions of their respective experiments. The competing theo-
ries of whether practice effects or volitional control are driv-
ing the RT effects can be tested in follow up studies by ran-
domizing the difficulty order of the blocks.

Future Directions
Possible avenues for future research would be to make The
Mazing Race more challenging, for example, by randomiz-
ing the order of doors to open. Another interesting question
is would we see the same pattern of results if the interruption
task was different? For example, on one hand, the interrup-
tion could be as simple as pushing the space bar every time
a cue appears. On the other hand, it is possible that a spatial
recognition memory task may be even more disruptive. It is
necessary to implement different types of interruptions to see
if these results generalize. The relative simplicity and flexi-
bility of The Mazing Race makes it possible to address these
questions in follow up studies.

Conclusions
Taken together these findings illustrate the potential benefit
to including a lag time when presented with an interruption.
Performance increased from interruption < interruption + lag
< no interruption across levels of difficulty and across multi-
ple analyses, suggesting there is evidence from this study that
interruption lags can reduce some interruption costs. Fur-
thermore, this complements previous research on interrup-
tion lags in problem solving tasks (Hodgetts & Jones, 2006a;
Trafton et al., 2003). Follow up studies should aim to include
more interruptions (if possible) to provide more data points.
Additionally, modeling these results could prove invaluable
in trying to understand and predict participants’ performance
and the types of mistakes they make. Interruptions will al-
ways be part of our daily lives, so it is not only important to
study the effects and costs of interruptions, but also to study
possible strategies to minimize those costs.
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Abstract

Several studies reported that it is harder to switch from a dif-
ficult task to an easy task than vice versa. Previous studies
explain this paradoxical effect in terms of differences in task
strength, by letting participants switch between different types
of tasks. However, these studies failed to isolate the effects of
task strength from task identity. Here, we present a series of
experiments in which we systematically varied the strength of
two tasks independent of their identity. We adapted a computa-
tional model of task switching by Yeung and Monsell (2003) to
derive predictions about the magnitude of asymmetric switch
costs (ASC) as a function of task strength, and compared pre-
dictions from the model to behavioral data. Our results re-
veal that ASC depend on the overall and relative task strength
across the two tasks. ASC can therefore flip directions if the
strength of two tasks is reversed, irrespective of their identities.

Keywords: task switching; paradoxical switch cost; task-set
inertia

Introduction
Humans are remarkably flexible in their ability to switch be-
tween different tasks. However, a paradoxical finding in task
switching experiments is that participants require more time
and exhibit more errors when they switch from a harder task
to an easier task than vice versa (Monsell, Yeung, & Azuma,
2000; Yeung & Monsell, 2003). For instance, bilinguials take
more time to switch from their first language to their second
language compared to switching from their second language
to their first language (Meuter & Allport, 1999).

Alport, Styles, and Hsieh (1994) explained such asymmet-
ric switch costs (ASC) in terms of the task-set inertia hypoth-
esis. This postulates that the processes needed to execute a
task (the task-set) persist in time, causing interference with
the next task, and that switch costs reflect the time needed to
resolve this interference. Executing a weak1 task is assumed
to require inhibition of automatic processes from a compet-
ing dominant task that would otherwise interfere (e.g. speak-
ing a second language would require inhibition of the first
language). According to the task-set inertia hypothesis, this
inhibition persists when switching back to a dominant task,
yielding high switch costs (Allport & Wylie, 2000). In con-
trast, switching to a weaker task should result in lower switch

1Here, we refer to a task as weak if it requires higher amounts of
cognitive control in order to overcome processing interference from
more automatic (dominant) tasks.

costs since the weak task would not require to be inhibited
when performing the dominant task.

Building on the task-set inertia hypothesis, Yeung and
Monsell (2003) devised a formal model that explains ASC
as an interaction between task priming and top-down control.
In their model, task priming corresponds to a carry over of
the previous task-set, resulting in a facilitation of task repeti-
tions (positive priming) but a delay for task switches (negative
priming). Top-down control is assumed to vary as a function
of task strength, with the weaker task requiring and receiving
more control than the more dominant task. Without top-down
control, both tasks would be subject to the same switch cost
as they would be governed by the same amount of negative
task priming. However, higher amounts of top-down control
for the weaker task can compensate the effects of negative
task priming, yielding lower switch costs for the weaker task
relative to the more dominant task.

These and other accounts identify differences in task
strength as a necessary condition for ASC (Alport et al., 1994;
Allport & Wylie, 2000; Yeung & Monsell, 2003; Gilbert &
Shallice, 2002). These accounts predict that the asymmetry
in switch costs between two tasks should reverse if their task
strengths reverse. In the example above, switching from a
second language to a first language should be easier if the
task strength of the first language was decreased relative to
the second language. However, to date, there is no empiri-
cal support for this prediction as previous studies confounded
task strength with task identity (e.g. the first language is al-
ways easier than the second language, at least for the duration
of the experiment). The inability to manipulate task strength
independent of task identity has also prevented researchers
from testing the precise constellations of task strength under
which ASC arise. One may ask if ASC would arise as soon as
two tasks differ significantly in task strength, even if both are
considered weak, or dominant? Finally, several studies have
failed to observe ASC in error rates (ERs) (Meuter & Allport,
1999; Costa & Santesteban, 2004), or reported effects for re-
action times (RTs) only (Mayr & Keele, 2000; Philipp, Gade,
& Koch, 2007), failing to address whether participants traded
off speed against accuracy.

So far, it is unclear (a) whether an asymmetry in switch
costs between two tasks reverses if the task strength of the
two tasks is reversed, and (b) whether the magnitude of ASC
depends on the strength of the dominant task, in addition to
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the difference in strength between the dominant and the weak
task. Here, we examine these questions across five experi-
ments in which we manipulate the strength of two tasks in-
dependent of their identity. To account for tradeoffs in speed
versus accuracy, we fit a hierarchical drift diffusion model
(DDM, Ratcliff, 1978; Wiecki, Sofer, & Frank, 2013) to RTs
and error rates. Finally, we compare experiment results to
predictions derived from the task switching model by Yeung
and Monsell (2003)

Experiments
We examined ASC across five experiments in which partic-
ipants switched between categorizing the motion and cat-
egorizing the color of random-dot kinematograms (RDKs)
(Kayser, Erickson, Buchsbaum, & D’Esposito, 2010). We
manipulated the strength of each task across experiments by
varying the signal to noise ratio of the task-relevant stimu-
lus dimension. For each experiment, we then determined the
strength of each task, as well as ASC in the drift rate of the
fitted DDM.

Participants
All participants were students from Princeton University and
received one hour of course credit. The study was approved
by the Institutional Review Board of Princeton University.
Participants signed a consent form prior to participation and
were debriefed about the purpose of the study at the end of
testing. We excluded participants whose performance was
below 60% accuracy. Table 1 lists participant information for
each experiment.

Table 1: Participants across all experiments.
Exp. Participants Age Excluded
1 76 (37 female) M = 19.5, SD = 0.56 6
2 25 (13 female) M = 20.5, SD = 0.96 4
3 76 (42 female) M = 20.4, SD = 0.54 6
4 33 (18 female) M = 19.8, SD = 0.71 3
5 33 (17 female) M = 20.1, SD = 0.63 4

Method
Each stimulus was an RDK that consisted of blue and red
moving dots. Some of the dots consistently moved in either
an upward or downward direction (independent of their color)
while the remaining dots moved in a random direction. Par-
ticipants switched between a color task, in which they had
to indicate the color of the majority of the dots (red or blue),
using the response buttons ’K’ and ’L’ respectively, and a mo-
tion task in which they had to indicate the direction of coher-
ent motion (up or down), also using the response buttons ’K’
and ’L’, respectively. Participants performed each task over a
mini-block of four to six trials.

Only the first trial of a mini-block was of interest to our
analysis. Thus, in each sequence, we counterbalanced seven
factors with respect to the first trial of each mini-block: task
(color or motion task), task transition (task switch or task rep-
etition), dot motion (upward or downward), dot color (mostly

blue or red) and correct response (’K’ or ’L’ key). Participants
were exposed to a total of 256 mini-blocks, divided into four
larger experiment blocks.

Each mini-block was preceded by a task cue that instructed
participants which task to perform. In some mini-blocks, par-
ticipants had to repeat the task that they performed in the
previous mini-block (task repetition), whereas in other mini-
blocks they had to switch to the other task (task switch). The
cue was displayed for 700ms before it disappeared for an-
other 500ms. On each trial of a mini-block, the RDK stimulus
was shown for 2000ms, followed by an inter-trial interval of
700ms. Participants were asked to respond while the stimulus
was on the screen.

Critically, we varied the difficulty for both tasks across ex-
periments, by changing the signal to noise ratio (coherence)
for each task (see Tables 2 & 3). Note that variations in the
signal to noise ratio of task-relevant stimulus dimensions can
mimic the effect of traditional notions of task strength, such
as stimulus-response associations in models of cognitive con-
trol (Cohen, Dunbar, & McClelland, 1990; Botvinick, Braver,
Barch, Carter, & Cohen, 2001) and task switching (Gilbert &
Shallice, 2002; Yeung, Nystrom, Aronson, & Cohen, 2006).
Thus, differences in the signal to noise ratio between tasks
resemble differences in task strength. We defined the color
coherence as the percentage of dots that were displayed in
the dominant color. For instance, a color coherence of 60%
indicated that 60% percent of the dots were colored in blue
while the rest of the dots were colored in red. Similarly,
we defined motion coherence as the percentage of dots that
moved consistently in one direction as opposed to moving in
a random direction. In both tasks, coherence was used as a
proxy for task difficulty: the higher the coherence, the easier
it was to perform the task (Kayser, Buchsbaum, Erickson, &
D’Esposito, 2009). It is important to note that equal values
for color coherence and motion coherence do not necessarily
yield the same level of performance for both tasks.

We adjusted the coherences of both tasks based on results
from prior experiments (Tables 2 & 3). The coherence setting
for Experiment 1 was determined based on prior pilot stud-
ies, with the intention to make the motion task easier than the
color task. As expected, we observed that it was easier for
participants to perform the motion task relative to the color
task in Experiment 1. To test whether this relationship can
be inverted, we lowered the coherence of the motion task and
increased the coherence of the color task in Experiment 2. In
Experiment 3, we tested whether we can invert the relation-
ship observed in Experiment 1 by just lowering the coherence
of the motion task while keeping the coherence of the color
task the same as in Experiment 1. This manipulation did not
yield ASC in terms of RTs, possibly due to a small difference
in task strength. We therefore conducted a fourth Experiment
in which we decreased the coherence of the motion task even
further (relative to Experiment 3) while keeping the coher-
ence of the color task the same as in Experiment 1. Despite
significant differences in task strength in terms of both RTs
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and error rates, we still failed to observe ASC in Experiment
4, suggesting that ASC may also depend on the strength of
the dominant task (in this case, the color task). We therefore
decided to increase the coherence of the color task in Exper-
iment 5 while setting the coherence of the motion task to the
same value as in Experiment 1.

Data Analysis
We were specifically interested in the performance costs asso-
ciated with task switches and therefore focused our analyses
on the RTs and error rates associated with the first trial of a
miniblock (Rogers & Monsell, 1995). We assessed the effects
of task (indexing relative task strength), as well as the interac-
tive effect of task and task transition (indexing ASC) on RTs
and error rates using a linear mixed model and logistic mixed
model, respectively. We then fit a DDM to RTs and error
rates, using the HDDM package (Wiecki et al., 2013). The
DDM simulates performance on a task as an accumulation
process that integrates information about the stimulus until
one of two response thresholds is reached. The rate of evi-
dence accumulation, henceforth referred to as drift rate, can
be taken as a proxy for task strength, whereas the threshold
indicates the degree to which speed is traded against accuracy
(Ratcliff, 1978; Bogacz, Brown, Moehlis, Holmes, & Cohen,
2006; Simen et al., 2009).

Fitting performance with the DDM serves two purposes.
First, we quantify behavioral differences in task strength, as
well as the asymmetry in switch costs in terms of drift rate,
thereby isolating tradeoffs in speed versus accuracy. Second,
we can compare performance of human participants to perfor-
mance of the model. In the behavioral experiment, we manip-
ulated the strength of each task in terms of the signal to noise
ratio of the stimulus whereas in the computational model de-
scribed below, we manipulate the strength of a task in terms
of how much a corresponding task processing unit is driven
by the stimulus. The DDM parameters collapse across RTs
and error rates. Thus, quantifying task performance in terms
of drift rate allows us to compare the strength of two tasks in
comparable terms, and ASC in terms of the interactive effect
between task and task transition on drift.

Dri f t ∼ TaskTransition∗Task+(1|Sub ji). (1)

We fit the DDM using a Monte Carlo Markov Chain of 1000
samples of which the first 300 samples were not considered
(burned). Other parameters of the DDM (response threshold,
starting point, non-decision time and noise) were fit indepen-
dent of condition.

Results
Table 2 and Table 3 show effects for RTs and error rates,
respectively. In Experiment 1, participants were faster and
made fewer errors during the motion task. The interaction be-
tween task and task transition was significant, with the domi-
nant motion task yielding higher switch costs in RTs and error
rates. The results from Experiment 1 were reversed in Experi-
ment 2, with the motion task exhibiting higher RTs and higher

error rates, and a significant interaction between task and task
transition for error rates, but not RTs. In Experiment 3, partic-
ipants responded slower to the motion task, but there was no
significant difference in error rates between tasks. Moreover,
the interaction between task and task transition was only sig-
nificant for RTs, but not error rates. RTs and error rates were
higher in the motion task in Experiment 4, however, we did
not observe a significant interaction between task and task
transition for RTs and error rates. Finally, in Experiment 5,
we observed a speed accuracy tradeoff for the main effect of
task, with the motion task showing higher RTs but lower error
rates. A significant interaction between task and trask transi-
tion suggests that participants exhibited higher switch costs in
terms of both RTs and error rates for the motion task relative
to the color task.

Table 2: RT results for main effects of task and ASC.
Exp. Color Motion Fixed β SD p

Coh. Coh. Effects
1 65% 60% task*** -51ms 4ms <0.001
2 80% 30% task*** 132ms 7ms <0.001
3 65% 30% task*** 37ms 5ms <0.001
4 65% 24% task*** 57ms 9ms <0.001
5 80% 60% task* 16ms 7ms 0.0321

1 65% 60% ASC*** 42ms 9ms <0.001
2 80% 30% ASC 21ms 14ms 0.12
3 65% 30% ASC*** 35ms 10ms <0.001
4 65% 24% ASC 32ms 18ms 0.0758
5 80% 60% ASC*** 48ms 15ms 0.001

Table 3: Error rate results for main effects of task and ASC.
Exp. Color Motion Fixed β SD p

Coh. Coh. Effects
1 65% 60% task*** -0.37 0.06 <0.001
2 80% 30% task*** 0.41 0.10 <0.001
3 65% 30% task 0.02 0.05 0.704
4 65% 24% task*** 0.34 0.09 <0.001
5 80% 60% task*** -0.36 0.11 <0.001

1 65% 60% ASC*** 0.41 0.12 <0.001
2 80% 30% ASC* -0.39 0.19 0.045
3 65% 30% ASC -0.082 0.11 0.473
4 65% 24% ASC 0.10 0.19 0.591
5 80% 60% ASC* 0.52 0.22 0.018

In addition to the RT and error rate analysis, we fitted the
data with a hierarchical drift diffusion model (HDDM), to in-
vestigate the effects of task strength and ASC in terms of drift
rate. In Experiment 1, the drift rate fitted to the motion task
was significantly larger than the drift rate for the color task,
(M = 0.34, 95% CI = [0.30, 0.40]), suggesting that the mo-
tion task was easier than the color task. Furthermore, the drift
rate cost of switching to the easier motion task was higher
than the drift rate cost of switching to the color task (M =
-0.33, 95% CI = [-0.42, -0.24]). We examined the hypothe-
sis that ASC reverse with the relative strength of two tasks,
by comparing ASC of Experiment 1 against ASC in Experi-
ment 2 (with lower coherence of the motion task and higher
coherence of the color task). Results indicate that the task ef-
fect on drift rate reversed in Experiment 2 (M = -0.53, 95%
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Figure 1: Main effects of task and ASC in terms of drift rate.
(A) The main effect of task on drift rate is plotted for each
experiment. Positive values indicate that participants accu-
mulated evidence at a higher rate for the motion task relative
to the color task (i.e. the strength of the motion task was
higher). (B) The ASC effect in terms of drift rates is plotted
for each experiment. Positive ASC drift rates indicate that
switch costs for the color task were lower than the motion
task. Vertical bars indicate 95% confidence intervals.
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Figure 2: ASC as a function of task effect in drift rate simu-
lated by the model.

CI = [-0.60, -0.46]), suggesting that the color task was eas-
ier than the motion task. Moreover, the cost of switching to
the motion task was now lower than the cost of switching to
the color task, as indicated by a positive interactive effect of
task and task transition on drift rate (M = 0.20, 95% CI =
[0.10, 0.36]). We also compared ASC across Experiments 3-
5 to examine whether the magnitude of this effect depends on
the task strength of the dominant task. In Experiment 3, we
observed no effect of ASC in terms of drift rate (M = -0.02,
95% CI = [-0.11, 0.10]), despite significant differences in the
task strength of each task (M = -0.08, 95% CI = [-0.13, -
0.13]). Similarly, in Experiment 4, we observed no drift rate
effect of ASC (M = -0.041, 95% CI = [-0.05, 0.13]), despite
high differences in drift rate between tasks (M = -0.25, 95%
CI = [-0.30, -0.20]). However, in Experiment 5 where the co-
herence of both tasks was high, we observed observed ASC
(M = -0.25, 95% CI = [-0.42, -0.05]) while the difference in
drift rate between tasks was relatively small (M = 0.06, 95%
CI = [0.01, 0.14]).

One concern is that observed differences in drift rates be-
tween experiments may arise due to differences in sample
size. We therefore performed the same analysis for each ex-
periment on a random sample of 25 participants. Results of
this analysis yield the same qualitative effects in drift rates.

Task Switching Model
To test whether our experimental results would be predicted
by the model of Yeung and Monsell (2003), we simulated
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Figure 3: ASC as a function of task drift in the simulated
model (left) and 5 behavioral experiments (right). Each col-
ored dot represents a behavioral experiment (left) or a simu-
lation (right) with a different configuration of input strength.
Here, we quantified the strength of a task in terms of the drift
rate fitted to RTs and error rates for that task. Positive ASC
values (red) indicate that switch costs were higher for task 1
relative to task 2, whereas negative values (blue) indicate the
opposite. The red line indicates equal strength for both tasks.

ASC as a function of task strength. The model explains the
costs of switching between two tasks as a function of their ac-
tivation. The activation of a task is determined by its strength,
the amount of control allocated to a task, as well as task prim-
ing. RTs and error rates are generated by two separate equa-
tions for response generation and response resolution.

Model Mechanisms
Here, we outline the mechanisms of the model using the no-
tation of Yeung and Monsell (2003). On each trial, the net
input for a given task i is determined by a linear combination
of four sources of input

inputi = strengthi + primingi + controli +noise (2)

Where strengthi corresponds to the strength of the task2,
primingi corresponds to inertia from the previously executed
task and is set to a constant, controli is the amount of cogni-
tive control allocated to the task, and noise is sampled from a
Gaussian distribution with zero mean. The activation of each
task is a negatively accelerated function of its net input

activationi = 1− e(−c∗input[i]) (3)

where c is a scalar that regulates the strength of the net input.
Response generation time is computed by first normalizing
activation of the two tasks

generationratei = activationi/∑activation (4)

and then dividing a threshold by the normalized activation

generationtimei = T HRESHOLD/generationratei (5)

where THRESHOLD is set to 100 in the model. The differ-
ence between the generation times for each task determine

2Here, the strength of a task is equivalent to the strength of pro-
cessing weight in a neural network model multiplied by the input
signal provided by the stimulus (Cohen et al., 1990; Gilbert & Shal-
lice, 2002)
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the time it takes to resolve which task to perform (resolution
time). The resolution time depends on the relative time at
which response codes for competing tasks are generated, and
was computed as follows:

resolutiontime = r+ f [r−generationtime j−generationtimei] (6)

where r corresponds to a sample from an ex-Gaussian dis-
tribution. Finally, the RT for each task is computed as the
sum of generation time, resolution time, and the two con-
stants P and R representing the time taken for perceptual and
response-production processes, respectively.

ReactionTimei = P+generationtimei + resolutiontimei +R (7)

Here, we counted a response as correct if the RT for the cur-
rently relevant task was lower than the RT for the currently
irrelevant task, and incorrect otherwise 3.

Parameterization
The model parameters were adjusted to yield RT an error rate
distributions that matched the behavioral data. The priming
factor was set to 0.2 for the current task and set to 0 for the
irrelevant task. Noise for the net input was sampled from a
Gaussian distribution (µ=0, σ= 0.1) and r was sampled from
an ex-Gaussian distribution (µ=200, σ = 240, λ = 150). We
fixed c to 0.5 and set perceptual and response-production pa-
rameters, P and R, both to 200. In this study, we analyzed
switch costs irrespective of stimulus congruency and there-
fore set f to 0. The priming factor and c were adjusted to
receive best ASC fits to the data.

Control for both tasks was first initialized to 0.15, and then
adjusted using the stair-casing procedure for each task de-
scribed by Yeung and Monsell (2003). Each time the model
made a correct response the control parameter was decre-
mented by 0.01, and each time the model made an error, the
control parameter was incremented by 0.1. The task strength
parameter was varied across simulations (see below).

Task Environment
We assessed performance while the model was switching be-
tween 64 mini-blocks of two tasks. Each mini-block con-
sisted of four to six trials of the same task. Trial sequences
were generated akin to the sequences of the behavioral exper-
iment. We generated the sequence of mini-blocks by counter-
balancing which of the two tasks the model is asked to per-
form, as well as the task transition with respect to the previous
mini-block (repetition or switch). Following the analysis pro-
cedure of the behavioral experiment, we focused our analyses
on RTs and error rates of the first trial of a mini-block (Rogers
& Monsell, 1995).

Simulation Procedure
We used the model to generate predictions about ASC as
a function of task strength. To do this, we varied the task
strength parameters strengthi for both tasks from 0.2 to 0.7 in

3Note, that Yeung and Monsell only analyzed RTs.

0.2 steps across simulations, resulting in 36 parameter con-
figurations. For each parameter configuration, we simulated
behavior of the model across 30 task switching sequences.
In each trial of a sequence, we set controli of the relevant
task i to the value determined by the adaptation procedure
described above while control j of the irrelevant task j 6= i
was set to 0, and fixed all other parameters to their default
values. We recorded RTs and error rates for the first trial of
each mini-block. We then fitted the drift rate parameter of
the DDM separately for each task, as well as for the interac-
tion between task and task transition using the same fitting
procedure as described in the Experiment section.

Results
Our simulation results indicate that ASC increase with the
magnitude of the difference between the strengths of tasks
(Fig. 2, 3 & 4). Interestingly, the ASC effect was independent
of the absolute magnitude of the task strengths, i.e. the mag-
nitude of the ASC effect remained the same with extremely
high or low task strength values measured in terms of main
effects on drift rates. However, the range of task drift rates
produced by the model did not cover the drift rates obtained
from Experiments 1, 3 and 4, preventing a direct comparison.
We could only obtain lower task drift rates if the model com-
mitted a high amount of errors that did not match human be-
havior. However, our simulation results suggest that, at least
for the range of simulated task strengths, ASC are predicted
to depend only on the relative but not the absolute strengths
of the two tasks.

Simulated Error Rate Effects
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Figure 4: Simulated ASC in RTs and error rates as a function
of the input strength for both tasks.

General Discussion and Conclusion
The seemingly paradoxical finding that switching to an eas-
ier task is more difficult has been under investigation for the
last two decades. Here, we conducted five task switching ex-
periments to systematically investigate ASC as a function of
task strength. We manipulated the strength of two tasks, by
varying the signal to noise ratio of the corresponding stimulus
dimension, and fitted the behavior of human participants with
a DDM to quantify (a) the strength of each task and (b) the
ASC in terms of changes in the rate of evidence accumulation
(drift rate). Our behavioral results indicate that the asymme-
try in switch costs between two tasks can indeed reverse if
the more dominant task is weakened and the weaker task is
strengthened (Experiment 1 and 2). While previous studies
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have shown ASC for different tasks, they have typically con-
founded the difficulty of a task with its identity (Alport et
al., 1994; Costa & Santesteban, 2004; Mayr & Keele, 2000;
Philipp et al., 2007). Here, we provide empirical support for
the hypothesis that ASC can flip if the relative strengths of the
two tasks are reversed, even if their identies stay the same.
However, our behavioral results suggest that a difference in
task strength is not sufficient to yield ASC (Experiment 3-5).
That is, we only observed ASC if (a) tasks differed in terms of
their strength and (b) the dominant task was relatively easy.

We contrasted human behavior against predictions of a task
switching model by Yeung and Monsell (2003) which pro-
vides a mechanistic account of this effect in terms of the dy-
namics of task set priming and top-down control. As in the
behavioral experiments, we quantified the strength of each
task, as well as the signed magnitude of ASC in terms of drift
rate, by fitting the DDM to simulated performance. Our sim-
ulation results match the observation that the asymmetry in
switch costs should reverse if the strength of two tasks in-
verses. However, in contrast to participants, the model does
not seem to be sensitive to the overall strength of both tasks.

An exaustive analysis of ASC as a function of task strength
can help to inform future models of task switching. While
most task switching models do not address ASC (Meiran,
1996; Logan & Bundesen, 2003; Brown, Reynolds, & Braver,
2007; Altmann & Gray, 2008), the connectionist model by
Gilbert and Shallice (2002) explains ASC, similar to Yeung
and Monsell (2003), in terms of differences in top-down in-
put for both tasks: The easier task yields higher switch costs
because a stronger top-down input needed to perform a diffi-
cult task persists when switching to the easier task. It is worth
noting that both models provide a different explanation than
Alport et al. (1994). Allport and colleagues suggest that the
easier task is associated with higher switch costs because it
needed to be suppressed in order to perform the difficult task.
In any case, the dependence of ASC on the absolute strength
for both tasks presents an interesting challenge for existing
and future models of task switching.

Our study provides an important step towards understand-
ing ASC in that it highlights the importance of absolute task
strength. However, it does not explain ASC in terms of the
factors that contribute to the strength of a task. Here, we op-
erationalized task strength in terms of drift rate that we fitted
from RTs and error rates for each task. While this metric al-
lowed us to compare predictions of the model (with respect to
task strength) with behavioral performance, it confounds the
effects of task automaticity and top-down control on perfor-
mance. That is, the measured strength of a task may be high,
either because it has a high automaticity or because the task
receives a high amount of cognitive control. Recent theories
of control allocation suggest that the latter can be manipu-
lated by incentivizing accuracy on task (Shenhav, Botvinick,
& Cohen, 2013; Musslick, Shenhav, Botvinick, & Cohen,
2015; Botvinick & Braver, 2015). For instance, Umemoto
and Holroyd (2015) associated one of two tasks with a higher

reward, and observed that participants exhibited lower switch
costs when switching to the more rewarded task. Prior mod-
eling work suggests that such incentive-driven differences in
switch costs can be attributed differences in allocation of top-
down control as opposed to differences in task automaticity
(Musslick et al., 2015). Future empirical studies may be able
to disentangle the contribution of controlled and automatic
processing to ASC, e.g. by manipulating the amount of re-
ward participants receive for a given task.

While task strength appears to play an important role in
the explanation of ASC, there are other factors to consider.
Yeung and Monsell (2003) found that a delayed onset of
the task-irrelevant stimulus (high stimulus onset asynchrony,
SOA) could either reduce or reverse the effect of ASC. More-
over, the authors observed no ASC if participants responded
with different key presses to each task. These findings iden-
tify interference between tasks as a necessary condition for
ASC. The results presented here indicate that such interfer-
ence may not occur when both of the tasks are difficult to
perform, even if one of the tasks is much easier than the other.
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Abstract

Backup plans represent a safety net that can help ensure goal attainment. However, managing backup plans during goal
pursuit can also deflect attention away from the initial plan. We examined how individuals sense of power, which is said
to facilitate goal pursuit, affects the extent to which one gets distracted by backup plans. Results from four studies showed
that when a backup plan was activated, greater sense of power was associated with lower self-reported distraction and better
performance. Studies 2 and 3 further revealed mediating effects of distraction between sense of power and performance.
Greater sense of power was associated with less distraction, which in turn was related to better performance. Our findings
suggest that when pursuing goals, individuals experiencing high power may be better at allocating their limited cognitive
resources to the initial plan.
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Abstract 

The current study explored the impact that “academic” shame had 
on learning of the human circulatory system. Participants were 
randomly assigned to one of two conditions: a shame induction 
condition or a control condition (no shame induction). Results 
revealed that the shame induction manipulation was related to 
higher levels of state shame. Additionally, it was discovered that 
by and large “in the moment” shame and having a proneness to 
experiencing shame dampened down any subsequent learning. 
Implications to education and future research are discussed.  

Keywords: shame; cognition; learning; STEM; emotions 

Theoretical Framework 

 

Although there are many ways to define shame, for 

the purposes of this study, shame is an acutely painful 

affective state that is brought on by a failure to meet 

internally set rules, ideals, goals, or standards (Turner, 
Husman, & Schallert, 2002). A gap currently exists in the 

literature regarding a quantitative exploration of shame. Of 

the research that has been conducted, much has been 

qualitative in nature and not focused on “academic” shame 

(i.e., shame affiliated with learning and education). One 

possible reason for the underdeveloped exploration of this 

construct is due to the difficulty in studying it. More 

specifically, research has shown that individuals may deny 

their feelings of shame, they tend to self-isolate when they 

feel shame, and they may be unwilling or unable to express 

themselves when they feel shame. In fact, one’s difficulty in 
communicating a shameful experience may be a distinctive 

characteristic of shame (Turner, 2014; Babcock & Sabini, 

1990, Lunde, 1958).  

Although research has suggested the difficulties in 
studying shame, the difficulty does not detract from the 

importance of studying shame. Tangney and Dearing (2002) 

suggested that, “Guilt, and especially shame ... are powerful, 

ubiquitous emotions that come into play across most 

important areas of life.” (p. 8). Contemporary research has 

shown that experiences of shame can have a “negative 

impact on interpersonal behavior and functioning” (Tangney 

& Dearing, 2002, p. 5). Within the context of education, a 

number of educational psychologists have asserted that 

feeling shame can interfere with motivation, and negatively 

impact students’ academic goals and achievement (Pekrun, 
Frenzel, Goetz, & Perry, 2007; Weiner, 1986). Indeed, once 

students experience shame, their ability to become 

cognitively engaged may be hindered, they may lose 

motivation for studying, and, they may feel reluctant to 

attend class (Turner, Husman, & Schallert, 2002). 

Given the importance of gaining a better 

understanding of this self-conscious emotion, the current 

study explored the impact that “academic” shame had on 
learning of the human circulatory system with the hope that 

we can better understand students’ experiences of this 

emotion. 

Current Study 

Materials 

 

Test of self-conscious affect The TOSCA-3 (Tangney & 

Dearing, 2002) was developed as a tool to measure guilt-
proneness, shame-proneness, proneness to externalization, 

and proneness to unconcern. The TOSCA-3 consists of 15 

scenario-based situations that test takers may encounter in 

their day to day lives. Following each scenario, test takers 

are asked to rate the likelihood of reacting to each of the 

options on a five-point scale. 

 

Pretest/posttest To assess deep conceptual understanding 

of the functioning of the human circulatory system, three 

separate tests were developed in the authors’ research 

laboratory. One test consisted of ten multiple choice 
questions that were related to the human circulatory system. 

For example, “the process of circulation includes which of 

the following: a) the intake of metabolic materials b) the 

convergence of metabolic materials throughout the 

organism c) the return of harmful by products to the 

environment d) all of the above”. A second test consisted of 

20 matching questions in which the participants had to 

correctly identify the different components of the human 

heart. A third and final test consisted of 13 matching 

questions where the participants had to correctly label the 

proper functioning of the different parts of the human 

circulatory system. For example, “which part of the human 
circulatory system carries blood away from the heart?” 

(answer: arteries). 

 

Self-regulated learning-self report survey (SRL-SRS) 

The SRL-SRS is intended to measure self-regulation as a 

relatively stable attribute in multiple learning domains and 

is based on Zimmerman's self-regulated learning theory. It 

is comprised of six subscales: planning, self-monitoring, 

evaluation, reflection, effort, and self-efficacy (Toering, 

Elferink-Gemser, Jonker, van Heuvelen, & Visscher, 2012). 

 

Casual dimension scale-II The CDS-II consists of 12 

closed ended 9-point Likert scale items designed to assess 

causal attributions related to achievement outcomes. The 

CDS-II measures attribution across the following four areas: 

locus of causality (e.g., the cause of your performance 

reflects an aspect of yourself), external control (e.g., the 
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cause of your performance is under the power of other 

people), stability (e.g., the cause of your performance is 

permanent), and personal control (e.g., the cause of your 

performance is something you can regulate) (McAuley, 

Duncan, & Russell, 1992). 
 

Experiential shame scale According to Turner (2014), the 

Experiential Shame Scale (ESS) is “an opaque measure of 

physical, emotional, and social markers of shame 

experiences...developed to address the difficulties of 

assessing state shame.” The ESS consists of eleven 

questions in which the test taker indicates the number that 

best describes how they feel right now when comparing two 

opposite word states. For example, “Physically, I feel [Very 

Warm 1--2--3--4--5--6--7 Very Cool]”. 

 

Participants 

 

Participants consisted of 40 students from a private 

liberal arts university located in the southern United States. 

Volunteers fulfilled a course requirement in their general 

psychology class for their participation. 

 
Procedure 

 
Before entering the lab, participants were randomly 

assigned to either the experimental (i.e., shame induction) 

group or the control group.  After completing the informed 

consent, participants were given as much time as needed to 

complete the TOSCA-3. They then completed the three 

circulatory system tests. Following completion of the 

pretests, participants then were asked to fill out the SRL-
SRS.  

Before beginning the ACT practice problems, 

participants were read the following instructions: “During 

this portion of the study you will be asked to complete a 

series of problems. These are problems that, as a college 

student, should not be extremely challenging for you. In 

order to recreate a scenario that would match an actual 

testing environment, you will have 30 minutes to complete 

the test. After you submit the test, instructions will appear 

on the screen that will let you know the next steps that you 

will need to take in this study. Please let the experimenter 
know if you have any questions at this time. Thank you 

again for your participation!” The bolded portion in the 

instructions is the only difference between what is read to 

participants in the control group and experimental group 

(i.e., experimental group receives the bolded statement). For 

the experimental (i.e., shame induction) group, after 

finishing the ACT, a text box appeared that stated “Your 

combined score on the test was: 40%. The average (school 

name; removed for blind reviews) student scored 90%. 

Please let the experimenter know your score so that it can be 

catalogued.” The control group received the following 

feedback once they had completed the ACT practice 
problems: “You have now completed this portion of the 

study.  Please let the experimenter know you are ready to 

proceed.” 

Immediately following the completion of the ACT 

practice problems, participants were asked to complete the 

Experiential Shame Scale in order to measure state shame 
(i.e., “in the moment shame”). Participants then filled out 

the Causal Dimension Scale-II and began interacting with a 

hypermedia encyclopedia (this served as our instructional 

delivery to assess the impact of shame on learning). Before 

interacting with the encyclopedia, they were read a set of 

instructions by the experimenter which told the learner that 

their job was to spend 30 minutes learning all they could 

about the human circulatory system. Participants were 

required to use the full 30 minutes before moving on from 

this part of the study. Following completion of the 

encyclopedia, participants were given the circulatory system 

posttests, were debriefed, and were then allowed to leave. 

Results 

 

Participants in the shame induction condition (M = 

4.5) scored significantly higher on the ESS than participants 

in the control condition (M = 3.6), t (38) = 2.876, p = .007, d 

= .91. See Figure 1. 

 

 
Figure 1: Average shame score as a function of condition. 
 

Initial results revealed that participants in the 

control condition (M = 1.5) learned significantly more from 

pretest to posttest compared to participants in the shame 

induction condition (M = .50), F (1, 38) = 3.188, p = .04 

(one-tailed) on the multiple-choice dependent measure. See 

Figure 2. 
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Figure 2: Average learning gain as a function of 

condition. 

 

A significant main effect was found between the 

variables “shame proneness” with change scores as the 
dependent measures. More specifically, change scores on 

the matching test revealed that participants with a low 

proneness to shame (M = 5.4) learned significantly more 

than participants with a high proneness to shame (M = 2.1), 

p = .000. Additionally, when looking at all tests combined, 

participant with a low proneness to shame (M = 12.94) 

learned significantly more than participants with a high 

proneness to shame (M = 7.34), p =.002. See Figure 3. 
 

 
Figure 3: Average learning gain as a function of shame 

proneness. 

 

Significant interactions were discovered between 

condition and shame proneness. Participants in the shame 

induction condition with a high proneness to shame (M = 
2.18) learned significantly less than participants in the 

shame induction condition with a low proneness to shame 

(M = 6.5), p = .001 (Matching Test).  

 

 
Figure 4: Average matching test learning gain for shame 

induction condition as a function of proneness. 

 

Similarly, participants in the shame induction 

condition with a high proneness to shame (M = 3.82) 

learned significantly less than participants in the control 

condition with a low proneness to shame (M = 7.8), p = .05 

(Labeling Test).  

 

 

 
Figure 5: Average labeling test learning gain for shame 

induction condition as a function of proneness. 

 

Additionally, participants in the control condition 

with a low proneness to shame (M = 4.3) learned 

significantly more than participants in the control condition 
with a high proneness to shame (M = 2.0), p = .036 

(Matching Test Only).  
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Figure 6: Average matching test learning gain for control 

condition as a function of proneness. 

 

When looking at the change scores of all tests 

combined, participants in the shame induction condition 

with a high proneness to shame (M = 8.2) learned 

significantly less than participants in the shame induction 

with a low proneness to shame (M = 10.9), p = .002.  

 

 
Figure 7: Average learning gains across all tests for 

control condition as a function of proneness. 

Discussion 

The results from the current study demonstrated 

that it is possible to have a systematic quantitative 

exploration of the self-conscious emotion shame. More 
specifically, those participants randomly assigned to the 

shame induction condition had higher instances of “in the 

moment” shame (as measured by the ESS) compared to 

those in the control condition. The methodology and 

findings are consistent with previous research that has found 

that feelings of shame are significantly positively correlated 

with feelings of shock (Turner, Husman, & Schallert, 2002).  

Furthermore, as can be seen from these preliminary 

results, by and large, “in the moment” shame and shame 

proneness appear to be detrimental to the learning of 

complex science topics (i.e., human circulatory system). 

Participants randomly assigned to the shame induction 

condition learned significantly less about the circulatory 

system compared to participants in the control condition. 

Furthermore, a main effect was found showing that those 
with a high proneness to shame learned significantly less 

about the circulatory system compared to participants with a 

low proneness to shame. Finally, several significant 

interactions were discovered that revealed the detrimental 

impact of shame on learning. As mentioned earlier, this 

finding is in line with previous findings that have shown 

that feeling shame can interfere with motivation, and 

negatively impact students’ academic goals and 

achievement (Pekrun, Frenzel, Goetz, & Perry, 2007; 

Weiner, 1986). Furthermore, once students experience 

shame, their ability to become cognitively engaged may be 
hindered, they may lose motivation for studying, and, they 

may feel reluctant to attend class (Turner, Husman, & 

Schallert, 2002). 

 

What if a teacher was able to figure out which 

subset of students were actually experiencing shame and 

were able to be proactive to the potential negative 

consequences? Mitigating shame-consequences by 

understanding the who- and when-indicators of shame 

experiences, could facilitate teachers’ ability to provide 

motivational interventions. A better understanding of the 

when and how of shame may be especially important given 
that individuals may deny their feelings, and may be 

unwilling or unable to express themselves, particularly if 

they self-isolate. In other words, as of now, we have no 

reliable way (other than perhaps self-report measures) to 

determine who is experiencing shame. Thus, intervention is 

near impossible without perceiving reliable indicators. 
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Abstract 

 
Notably, while English tends to prefer shorter before longer 
complements (explained to us a very clear effect), Japanese 
displays the opposite tendency. Far less cross-linguistic work 
has investigated possible differences in the ordering of nouns 
within conjunctions (“binomials’), although a corpus study 
suggests that the same factors predict binomial ordering in 
Japanese and English. To investigate the issue experimentally, 
we report Japanese and English speakers’ productions of names 
of the members of couples that they knew personally. Results 
confirm that conceptual accessibility is the most important 
factor in the ordering of familiar name binomials in both 
languages. That is, both groups tended to name the member 
they felt closer to first. Length (syllables/mora) was not a 
significant predictor in either language. Differences in the 
preferred order of verbs’ complements are then attributable to 
other factors, possibly a very general preference to minimize 
the average distance between semantically related elements.  

 
Keywords: accessibility; binomials; Japanese; English; word 
order  

 
Introduction 

 
Accessibility refers to the speed and accuracy with which 

concepts are activated in memory. When English speakers 
produce utterances, more accessible and shorter grammatical 
phrases tend to be produced before less accessible, longer 
phrases (Bock 1982, 1987; Levelt 1989; Bock & Levelt 1994; 
McDonald, Bock & Kelly 1993; Bock & Warren 1985; 
Carroll 1958; Tomlin 1995; Downing & Noonan 1995). This 
has been argued to allow for more efficient processing insofar 
as it reduces the need to hold accessible phrases in working 
memory while less accessible phrases are retrieved and 
produced first (Ferreira and Dell 2000; Branigan and Feleki 
1999; Prat-Sala and Branigan 2000; Ferreira & Yoshita 2003; 
Kempen & Harbusch 2004).  

 The factors that have been evoked in discussions of 
accessibility are quite diverse. They include animacy 
(McDonald, Bock, & Kelly 1993; Ferreira 1994; Prat-Sala & 
Branigan 2000; Christianson & Ferreira 2005); givenness in 
discourse Ferreira & Yoshita 2003; Prat-Sala and Branigan 
2000); prototypicality (Onishi, Murphy, and Bock 2008); and 
basic level status (Lohmann & Takada 2014).  

Several of these factors can be quite difficult to tease apart. 
For example, animacy and discourse-givenness tend to be 

correlated because people--or agentive entities more 
generally--are the most common topics of conversation. 
Moreover, discourse-givenness correlates strongly with 
length, since previously introduced entities are commonly 
referred to using pronouns, which are short, and in many 
languages, discourse-given arguments need not be expressed 
at all (Ariel 1988; Byrne & Davidson, 1985; McDonald et al., 
1993; Narasimhan & Dimroth, 2008).  

Yet there is good reason to try to distinguish or control for 
animacy and discourse-givenness in investigations of length 
and conceptual accessibility. Importantly, certain factors that 
result in a shorter-earlier tendency in English (Arnold, 
Wasow, Losongco, & Grinstrom, 2000; Arnold, 2003; Gries, 
1999; Stallings, MacDonald, & O'Seaghdha, 1998; Stallings 
& MacDonald, 2011; Wasow, 2002) produce the opposite 
order in Japanese (Chang, 2009; Hakuta, 1981; Yamashita & 
Chang, 2001). For instance, in English, particle placement, 
the dative-alternation and “heavy NP shift” all prefer 
particularly long complements to be uttered later in the string, 
while in Japanese especially long complements tend to be 
produced earlier (Dryer 2000; Hawkins 1994, 2004; Gibson 
1998; Yamashita and Chang, 2001).  

The first study to experimentally demonstrate a preference 
for longer-earlier in Japanese was Yamashita and Chang 
(2001). They interpreted this finding in a way that attempted 
to preserve the idea that all speakers prefer to express more 
accessible entities first, by invoking a distinction between 
formal complexity and cognitive accessibility. They 
suggested that longer phrases should be considered more 
semantically or conceptually accessible, even though they are 
more complex. This raised the following possibility, as 
described by Jaeger and Norcliffe (2009:876): "Japanese 
speakers [may be] more sensitive to conveying meaning 
(putting enriched material earlier), while English speakers 
prefer to sequence forms (putting easier to produce, e.g., 
shorter, words earlier, (Yamashita and Chang 2001, 2006).”  

The current study tests the possible distinction between 
conceptual accessibility and length—here, the number of 
syllables or mora—on how English and Japanese speakers 
produce the names of familiar couples. If Japanese speakers 
are influenced more by conceptual accessibility and less 
affected by length when compared to English speakers, it 
would provide evidence that a distinction between conceptual 
accessibility and length underlies the difference between 
English and Japanese’ word order preferences. We refer to 
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this hypothesis in what follows as the Conceptual 
Accessibility vs. Formal Accessibility hypothesis (CA v. 
FA).  

Hawkins (1994, 2004) suggested an alternative explanation 
for the shorter-earlier preference Japanese and the longer-
earlier preference in English. He argued that both Japanese 
and English display a preference to minimize the average 
distance between a verb and its non-subject complements. 
His “minimal distance” proposal is satisfied in Japanese and 
other verb final languages by positioning longer 
complements before shorter complements (<longer> <short 
>V). English and other VO languages obey the same 
preference by expressing short complements before longer 
complements (V<short> <longer>). But if Hawkins’ 
proposal accounts for the shorter-earlier preference in VO 
and the longer-earlier preference in OV, it raises the question 
as to whether there also exists an accessible-early preference 
in Japanese, English and other languages.  

We address these important issues by considering the 
preferred word order in both Japanese and English, given a 
case that clearly involves conceptual accessibility. This 
allows us to determine whether speakers of both languages 
prefer to order more conceptually accessible terms earlier (or 
both prefer to order them later). The idea that the difference 
between shorter-earlier English and longer-earlier Japanese 
is due to a Japanese preference for conceptually-accessible-
earlier and an English preference for formally-accessible-
earlier would predict that Japanese speakers should weigh 
conceptual accessibility more strongly than length, while 
English be more strongly affected by length than conceptual 
accessibility.  

We report experimental results which compared the 
ordering of “binomial” conjunctions (<noun> and <noun>) 
by speakers of English and speakers of Japanese. 
Specifically, we investigate the ordering of the names of 
couples that are personally known to participants (e.g., Jessie 
and Gary). We hypothesized that the person the speaker feels 
a closer connection to will be named before the other member 
of the couple in both languages. We recognize that feelings 
of emotional closeness are hard to decompose, but at the same 
time, we take it as self-evident that if semantic accessibility 
is to be a meaningful construct at all, our mental 
representation of an individual whom we feel closer to 
should, ceteris paribus, be more semantically accessible than 
our mental representation of someone we feel comparatively 
less close to. We recognize that if one member of the couple 
is already under discussion, then all things are not equal. 
Therefore discourse-givenness is controlled for in the current 
experiment: participants simply generate the names of 
couples that they know with no additional context provided.  
Thus, if, in both Japanese and in English, the name mentioned 
first tends to be the name of the member of the couple whom 
the participant feels a greater personal attachment to, it will 
be evidence that both languages prefer to order more 
cognitively accessible words first.  

There already exists a good deal of work on how English 
speakers order binomial phrases, but with rare exceptions 

described below, comparative work on the construction is 
exceedingly rare. Moreover, studies of English binomials 
have offered a wide range of often quite specific predictors 
of ordering but have only rarely invoked accessibility 
explicitly. For instance, Cooper and Ross (1975) suggested 
19 factors which included the first element of a binomial 
being more “Here, Now, Adult, Male, Positive, singular, 
Living, Friendly, Solid, Agentive, Powerful, at Home, and 
Patriotic” (pg. 67).  

This classic study led to a number of refinements. For 
example, Benor and Levy (2006) quantified a model that 
included 20 constraints related to aspects of lexical 
semantics, phonetics, and frequency. Morgan and Levy 
(2016) reduced this list to the following seven factors (in 
order of effect size): iconic sequencing (e.g., early before 
later), perceptual markedness (which encompassed the 
majority of factors proposed by Cooper & Ross), formal 
markedness, power, final stress, length, and frequency. These 
weighted constraints produced a model that predicted the 
preferred order in a large corpus of natural speech with 77% 
accuracy. Notably absent from these discussions was mention 
of a possible role for accessibility. Onishi et al. (2008), a rare 
study that did explicitly evoke accessibility as a key factor in 
English binomial order, introduced yet another predictor: 
more prototypical members of categories tended to be 
produced before less-prototypical members.  

Importantly, Morgan & Levy (2016) also demonstrated 
that experience with specific binomial expressions influences 
the way familiar binomials are expressed. Specifically, they 
found that the frequency of familiar binomials correlated with 
reading time when binomials were ordered in the familiar 
way, and frequency correlated negatively when the two nouns 
were read in reverse order. Morgan & Levy proposed that the 
generative factors they proposed influenced the ordering of 
novel combinations of words. While a large number of 
binomial expressions are familiar, it is equally important to 
ask how conventional binomials (“freezes”) come to be 
ordered in the particular ways they are (Mollin, 2014). To this 
end, an early cross-linguistic study of English, Russian and 
German by Fenk-Oczlon (1989) found that the relative 
frequency of words determined the ordering of 400 frozen 
binomial expressions with 84% accuracy; however, 
Lohmann & Takada (2014) found frequency to be much less 
influential.  

Lohmann & Takada (2014) provides an important 
precedent for the current work, as they compare results from 
corpus analyses of binomial expressions in Japanese and 
English texts. This study included a number of potential 
predictors including power (including male and 
“importance”), iconicity (early before later), frequency, 
discourse-givenness, length (in syllables or mora), and 
conceptual accessibility. Conceptual accessibility, in this 
study, was treated as an umbrella category that included 
animacy, concreteness, prototypicality, basic level, proximal 
and self before other. In this work, which likely included a 
number of “frozen” binomials since it was based on corpus 
data, significant effects were found for length, power, 
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iconicity, discourse-givenness and accessibility but not 
frequency in both languages. The Lohmann & Takada work 
explicitly omitted conjoined proper names from their 
analyses. But by considering personal names that are known 
to the participants, the current work is able to index cognitive 
accessibility with a single factor, closeness. In addition, the 
ordering of names of familiar couples in our experimental 
context avoids potential confounds of animacy and 
givenness, as well as avoiding freezes that are influenced by 
the language at large. Possibly relevant factors of length and 
gender are included in the preregistered analyses.  

There are two other key precedents for the current study. 
Like the current study, Wright et al. (2005) also considered 
the ordering of “Name and Name” phrases. Critically, 
however, that study differed from the current one in that the 
experimenters provided names without referents. Therefore, 
participants had no opportunity to rely on personal 
experience with the people involved. The study found a bias 
to order male before female names and shorter before longer 
names, two factors that have been proposed for English 
binomials generally, but which are not necessarily related to 
cognitive accessibility, the key factor of interest in the current 
work.  

A precedent for considering “psychological closeness” to 
be relevant to binomial order comes from Iliev & Smirnova 
(2014). This work hypothesized that “psychological 
closeness of the speaker to one of the poles in the word pair" 
should predict order with the closer entity positioned earlier 
(pg. 210). Unlike the current study, all proper names were 
excluded from analysis. Instead, in one study, websites about 
cars, politics, religion were analyzed. Results demonstrated 
that sites sponsored by Honda, for example, were more likely 
to mention Honda before its competitors; liberal leaning 
websites were more likely to mention liberal before 
conservative, and to a lesser extent, websites about Islam 
showed a tendency to mention Muslim before Christian. A 
second study focused on gender and results were more 
equivocal. The authors hypothesized that male authors should 
be more likely to order male terms before female, while 
female authors might show the reverse tendency. Notably, 
however, male terms were ordered before female terms 93% 
of the time by male authors and 90% of the time by female 
authors. The strong skewing toward male-first, also found in 
previous work, may partially be due to the fact that many 
relevant phrases are conventionally frozen in English (e.g., 
men and women; husband and wife). A final study was 
experimental rather than based on corpus data; it elicited 
various binomials from participants by asking for the top two 
colleges in Chicago, the two main political parties in the US, 
the traditional two genders and so on. Participants showed a 
tendency to name their university first (Northwestern, 67%), 
and liberal students were more likely to name Democrat 
before Republican than were conservative students. Echoing 
theirs and others’ corpus work, an overwhelming majority of 
respondents produced male before female (91%), although of 
the participants who produced female first, 80% were 
women.  

An analysis of how participants order the names of familiar 
couples satisfies several desiderata. It allows us to avoid 
expressions that are conventional in the language at large, 
which are recognized to be subject to many general 
influences as documented in other work. Names are 
particularly well-suited as an index of cognitive accessibility 
because a name selects an individual rather than a category: 
We might know several people named Gary, but when we 
talk about Gary and Jessie we have particular individuals in 
mind, and our representation of Gary, Jessie and their names 
are dependent our own particular experiences. The 
experimental context enables us to control for animacy and 
discourse-givenness, while keeping the generation of names 
similar to that of natural production. Finally, by comparing 
Japanese and English, we can determine whether either or 
both languages tend to order more conceptual accessible 
names earlier.  
 

Method 
Participants 
60 native speakers of English living in the US and 60 native 
speakers of Japanese living in Japan were recruited on 
Amazon Mechanical Turk as participants and moderately 
compensated for their time.  
 
Procedure 
Participants first answered questions about their gender and 
native language. They were then asked to name 3 sets of 
important couples in their life. They entered the name of each 
member of the couple in blank boxes. For the Japanese 
survey, participants were also asked to provide the phonetic 
spelling for each name. The rest of the survey asked whether 
or not participants were related to either or both of members 
of each couple, who they felt they were closer to, and the 
gender of each member of the couple. For these questions, the 
order of names that had been given were randomized for each 
participant.  
 
Response coding & model development 
To analyze the data, we followed the model of ordering 
preference for binomial expression introduced in previous 
work by Levy and colleagues (Benor & Levy 2006; Morgan 
& Levy 2016). The model predicts the likelihood that the 
ordering preference for a given pair is consistent with various 
planned fixed effects. First, each pair was coded in an 
essentially arbitrary way, specifically whether or not the 
names were ordered alphabetically. This was used as the 
outcome variable. Next, for each response, each fixed effect 
was assigned 1 if the factor predicted the alphabetical order 
and 0 if it predicted a non-alphabetical order. For example, if 
the participant indicated that they were closer to Gary than 
Jessie, closeness would receive a 1 because both alphabetical 
order and closeness predicted the same order, Gary and 
Jessie. If they had indicated that they were closer to Jessie 
than Gary, then closeness would receive a 0 because the 
alphabetical order (Gary and Jessie) does not match the 
closeness preference (Jessie and Gary). Note that we are not 
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testing whether or not there is a preference for alphabetical 
order. Rather, we use alphabetical order as a basis to get a 
binary code to compare with the order the participant 
provided. 

To see if the length of names affected their ordering, we 
counted the number of syllables in each name for English and 
for Japanese, the number of morae, a more appropriate 
measure of length in that language (Otake, Hatano, & Mehler, 
1993). We then calculated the difference in number of 
syllables/morae between each pair of names. We assigned 
this number a positive score if alphabetical order and ordering 
based on longer-before-short matched (the longer name was 
earlier in the alphabet) and a negative score when they did 
not.  
 

Results 
 
Before presenting the results of the model, we present the raw 
percentages of responses in the pooled data for each coded 
factor in Table 1. The person whom the participant reported 
feeling closer to was named first 65% of the time in Japanese 
and 77% of the time in English.  
 

Cognitive 
accessibility 
(closeness) (%) 

  
 
Gender (%) 

  
 
Length (%) 

 
JAPANESE 
1st 
  

65 M-F 56 Long-
Short 

31 

2nd 
  

35 F-M 30 Short-
Long 

21 

  Same 14 Same 48 

 
ENGLISH 
1st 
  

77 M-F 54 Long-
Short 

33 

2nd 
  

23 F-M 43 Short-
Long 

40 

  Same 3 Same 27 

 
 
 
 

We first created models for each language independently. 
For this we used a multilevel model with closeness, gender, 
and length as fixed effects, random intercepts for subject, and 
alphabetical order as the outcome (Barr, Levy, Scheepers, & 
Tily 2013), using the lmerTest library (R Development Core 
Team 2008).  

For the English data, the model revealed a significant effect 
of closeness (β = -0.52, t = -7.31, p < 0.0001); the tendency 
to order males first was not significant, (β = -0.32, t = -1.45, 
p = 0.15) and neither was a tendency to order shorter before 
longer names (β = -0.002, t = 0.10, p = 0.9).  

The model for the Japanese data also revealed a significant 
effect of closeness (β = -0.29, t = -4.19, p < 0.0001) and no 
effect of length (β = 0.04, t = 0.90, p = 0.37). Unlike the 
English data, a marginal effect of gender was found with male 
names being more likely to appear before female names (β = 
-0.23, t = 1.98, p = 0.05).  

In order to better quantify the importance of each of these 
effects, we used a leave-one-out method in which we 
compared a model without each effect to the full model. For 
both English and Japanese, conceptual accessibility (as 
operationalized as closeness) significantly improved the 
model (English, 𝜒 2 = 46.02, p < 0.0001; Japanese, 𝜒 2 = 16.79, 
p < 0.0001). Length did not improve either model (English, 
𝜒 2 = 0.01, p = 0.92; Japanese, 𝜒 2 = 0.69, p = 0.41). Gender 
significantly improved the model only for Japanese (𝜒2 = 
13.30, p = 0.001), and not for English (𝜒 2 = 3.72, p = 0.16). 
While there seems to be a difference in importance of gender 
in Japanese and English (or rather Japan and US), all analyses 
indicate that conceptual accessibility is the most important 
predictor of binomial expression of proper names.  

In order to compare the effect size of conceptual 
accessibility (closeness) in the two languages, we looked at 
the interaction of closeness and language using the combined 
data. For this we used a multilevel model with gender and 
length as independent fixed effects, closeness and language 
as interacting fixed effects, random intercepts for subject, and 
alphabetical order as the outcome. The model found a 
significant effect of closeness (β = -0.53, t = 7.05, p < 
0.0001), and a significant interaction of closeness and 
language (β = 0.25, t = 2.53, p = 0.01), suggesting that 
closeness is a larger effect for English than Japanese.  

 
Discussion 

 
The ordering of the names of familiar couples was found to 
be strongly predicted by which member of the couple the 
speaker felt closer to. Taking personal closeness as an index 
of cognitive accessibility, we find that cognitive accessibility 
was the strongest predictor of name ordering in both English 
and Japanese, operating in the same direction in both 
languages: more cognitive accessible names tended to be 
produced first. This effect was stronger in English than in 
Japanese, although it is possible that the difference in effect 
size was due to the fact that a gender effect (male-before-
female) was only evident in Japanese. That is, given that 
gender accounted for some of the variance, it is not surprising 
that the only other significant effect (cognitive accessibility) 
accounted for somewhat less in Japanese.  

The lack of male-before-female bias in the current English 
data is intriguing, given that a male-before-female bias has 
been consistently found in prior corpus work (Cooper & Ross 
1975; Lohmann & Takada 2014), and notably, on work 
involving on non-referential proper names (Wright, Hay, & 
Bent 2005). The reason a male-first bias exists at all deserves 
more discussion than we can offer here. Insofar as it is rooted 
in cultural sexism, it may be relevant that personal contact is 
recognized to reduce this and other forms of prejudice 

Table 1. % of responses for each fixed effect for 
Japanese (top) and English (bottom). Percentages 
rounded to the closest integer.  
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(Pettigrew & Tropp, 2006). Japanese society obeys more 
stereotypical gender norms than the US (Bresnahan, Inoue & 
Kagawa, 2006; Saito, 2007), which might lead to a weak 
effect of male-before-female bias in Japanese.  

Length was not a significant factor in English or Japanese, 
nor was there an interaction.  And this lack of significance 
was apparent regardless of whether we treated length as a 
continuous or binary value. We note that it is possible that the 
lack of an interaction was due to a lack of power, since the 
names of each couple were commonly equal in length. That 
is, 27% of the couple names in English were of equal number 
of syllables and 48% the two names had the same number of 
morae in Japanese. Intriguingly, if we consider only the 
combinations of names that did differ in length, the trends in 
Japanese and English numerically pattern in opposite 
directions. Specifically, the ratio of shorter-first in English 
was roughly 4:3, while in Japanese, the ratio of Longer-First 
was roughly 3:2. Iliev & Smirnova (2014) had found 
evidence of shorter-first in binomals in both languages, but 
they had found the effect to be 3x as large in English as 
Japanese. Thus it is possible that a shorter-first bias only 
exists in English binomials. Future work with a larger sample 
may be necessary to confirm this trend.  

Let us return to the striking difference in preferred order of 
especially long complements in English and Japanese. 
Previous work had appealed to a distinction between 
conceptual accessibility and lexical accessibility, suggesting 
that longer phrases are “semantically richer” and that “This 
semantic richness increases the overall accessibility of the 
phrase in the conceptual arena” (Chang & Yamashita 
2001:B53). Shorter phrases were recognized to be more 
accessible in the formal (lexical) domain. The difference 
between Japanese and English then, was that “In English, 
weight-based shifts [word order variation] seem to be less 
sensitive to conceptual factors.” However, in the current 
work, we have seen that if anything, English shows a stronger 
conceptually-accessible-early bias than Japanese does.  

The current work allows that cognitive and formal/lexical 
accessibility need not be mutually dissociable.  Clearly, 
certain episodic memories, smells, or images may be more or 
less cognitively accessible, depending on context and 
encoding. So clearly conceptual accessibility cannot be 
reduced to formal or lexical accessibility. But it is reasonable 
to assume that lexical (or formal) accessibility is simply a 
type of cognitive accessibility.   

Our results are consistent with Hawkin’s (1994; 2004) 
proposal that languages prefer to minimize the distance 
between the verb and its (non-subject) complements. This 

                                                
1 Hawkins had argued for a more specific proposal, namely that the 
heads of dependents should be as close as possible to their external 
head. This proposal motivates the idea that verb final languages 
tend to have postpositions, while verb-medial languages tend to 
have prepositions. However, Faghiri & Samvelian (2014) find that 
Farsi speakers prefer longer-early, parallel to Japanese. But while 
Farsi is an SOV language like Japanese, it has prepositions rather 
than postpositions. Therefore as Farghiri & Samvelian (2014) 
observe, the longer-early preference in Farsi cannot be explained in 

ordering is beneficial to listeners since the interpretation of a 
verb often critically depends on its co-occurring 
complements. This is clear in English, for instance, in the 
contrasts between, e.g., hitting on an idea; hitting on 
someone; hitting someone up for something; hitting a place 
vs. a person vs. a goal. See also Chang (2009) for interesting 
discussion how the minimal distance idea may emerge over 
the course of learning. In fact, the minimal-distance 
preference has been generalized to other kinds of semantic 
dependency relations and validated across a number of 
languages (Choi, 2007 for Korean; Faghiri & Samvelian 
2014 for Farsi1; Gildea & Temperley 2010 for English and 
German; Liu, 2008 for 15 languages; and Futrell et al., 2015 
for 20 languages).  

The present work finds that both English and Japanese 
show a preference to produce more conceptually accessible 
terms first. Prior work has established that languages also 
generally appear to prefer to minimize the distance between 
a verb and its arguments. While these types of processing 
biases may differ in their strength across languages, the 
present work supports the idea that language processing 
systems emerge in much the same way in speakers of 
different languages. This is perhaps to be expected insofar as 
language processing is shaped by constraints on memory, 
learning and interpretability.     

 
Conclusion 

 
To conclude, results in both English and Japanese confirmed 
that the order of names of couples, personally familiar to a 
participant, were most strongly predicted by which member 
of the couple the participant felt a closer personal attachment 
to. By investigating the ordering of the names of familiar 
couples, animacy and discourse-givenness were controlled 
for. Investigating the names of couples known to participants 
was also advantageous because the ordering is not expected 
to be affected by language-wide conventions. Results did not 
reveal length to be a significant factor, and gender only 
played a (relatively small) role in the Japanese data. 
Therefore, we submit that feelings of personal closeness 
serve as a useful and relatively direct index of cognitive 
accessibility.  

Thus, the present work provides evidence that cognitive 
accessibility plays a similar strong role in word order in both 
Japanese and English. This undermines the possibility that 
the reverse ordering preferences in Japanese and English 
clauses is a result of cognitive accessibility influencing the 
two languages in different ways. Instead, the Japanese 

terms of a preference to minimize the distance between a verb and 
the head of its complement, since when a PP is is long, the long-
early preference actually lengthens the distance between the V and 
P: <[P long>IO <short>DO V. Nonetheless, Farsi is consistent with 
the idea that languages and speakers prefer to reduce the average 
distance between semantically related units (Gildea & Temperley, 
2010). 
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ordering preference for grammatical phrases (longer-early) 
must be due to some other factor, quite possibly a preference 
to indicate a verb’s arguments as close to the verb as possible 
(Hawkins 1994, 2004). The current study demonstrates that, 
ceteris paribus, speakers of both Japanese and English prefer 
to produce more cognitively accessible words early (Arnold 
et al. 2000; Ferreira & Dell 2000).  
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Abstract

How may intentionality, the capacity of mental states to be
about the world, emerge from neural processes? We propose
a set of theoretical concepts that enable a simulated agent to
have intentional states as it perceives, acts, memorizes, plans,
and builds beliefs about a simulated environment. The con-
cepts are framed within Dynamic Field Theory (Schöner et al.,
2015), a mathematical language for neural processes models
at the level of networks of neural populations. Inspired by
Searle’s analysis of the two directions of fit of intentional states
(Searle, 1980), we recognize that process models of intentional
states must detect the match of the world to the mind (for “ac-
tion” intentions) or the match of the mind to the world (for
“perceptual” intentions). Neural representations of Searle’s
condition of satisfaction implement these detection decisions
through dynamic instabilities that are instrumental in enabling
autonomous switches among intentional states.

Keywords: Dynamical systems modeling; Mathematical
modeling; Neural networks; Intelligent agents; Cognitive Ar-
chitectures

Introduction
How are neural processes organized to create coherent, com-
plex cognitive function? For instance, how are sequences of
actions and processes of active perception generated to orient
actions at objects to achieve a desired outcome? How may
the nervous system switch between actions and mental states
that are driven by current sensory information and actions or
mental states that are driven by memory and knowledge?

Philosophers of mind have framed related questions in
terms of the notion of intentionality: How may an organ-
ism with its nervous system generate intentional states that
are about objects in the world? How may an organism act
to change the world according to its intentional states? The
logical structure of this problem has been analyzed in depth
by John Searle (Searle, 1980). He postulates that intentional
states come in two directions of fit (DoF), the world-to-mind
direction of fit, in which an intentional state’s content repre-
sents a desired state of the world, capturing the intuitive “ac-
tion” flavor of intention. The mind-to-world DoF comprises
states in which the state’s content matches circumstances in
the world, a “perceptual” flavor of intention. Each intentional
state can be described through its condition of satisfaction
(CoS), which determines whether the fit between mind and
world is achieved. Searle has conjugated these two forms of
intentionality through three layers of psychological modes:
intention-in-action (IiA) and perception are intentional states

directly linked to the motor or sensory systems. Prior inten-
tion and memory are intentional states with a more indirect
form of linkages, in which additional steps are needed to act
out or bring about the intentional state. Beliefs and desires are
more abstract forms of intentionality, typically thought to take
propositional forms, with an inherent generalization beyond
the immediately accessible perceptual or motor experience.

We come to these questions from the theoretical frame-
work of Dynamic Field Theory (DFT) (Schöner et al., 2015),
a mathematical language for neural processes models at the
level of networks of neural populations. Here, we take inspi-
ration from Searle’s concepts to address the neural processes
required to autonomously switch between intentional states
in these six psychological modes. A key idea has been that
there must be neural processes that explicitly represent a CoS
and whose activation controls the transitions from one in-
tentional state to another (Sandamirskaya & Schöner, 2010).
Specifically, for world-to-mind intentional states, activation
of the neural representation of the CoS signals the success-
ful achievement of an intentional state that leads to its deac-
tivation and opens the system to switch to a subsequent in-
tentional state. In mind-to-world intentional states, it is the
representation of the content of the intention itself that forms
the CoS, which is activated when a detection decision is made
and remains activated as long as the intentional state persists.

In this paper we develop this idea into a systematic account
of how intentional states can be organized to autonomously
generate goal- and object-oriented behavior. We simulate a
rudimentary toy scenario, in which an agent explores its sim-
ple environment containing colored objects and buckets of
paint. The agent may move towards objects and direct an ef-
fector to them, either taking up paint (for a bucket) or painting
the object (for the colored objects). The agent detects ob-
jects, may attentionally select objects, may build scene mem-
ories, generate sequences of actions to paint particular objects
with a particular paint, and learn and exploit beliefs about
which paint applied to which surface generates which out-
come. Simple desires (to seek particular outcomes of paint-
ing acts) drive the agents goal-oriented and exploratory be-
haviors. The scenario is chosen such that the amount of time
each action or mental operation takes varies, and that during
that time the agent is exposed to other perceptions or sen-
sory states that could distract from its current intention. The
inherent stability of its intentional states and the capacity to
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release these states from stability under the right conditions
is thus probed in this scenario.

Dynamic Field Theory
Dynamic Field Theory (DFT) (Schöner et al., 2015) is a the-
oretical framework for understanding perception, motor be-
havior, and cognition based on neural principles.The activity
in neural populations is modeled by activation fields, u(x, t),
spanned across the metric dimensions, x, to which the popu-
lation is tuned. The neural dynamics of the activation fields,

τu̇(x, t) =−u(x, t)+h+ s(x, t)+
∫

ω(x− x′)σ(u(x′, t))dx

describes the time-continuous evolution of neural activation
on the time scale τ. Activation u(x) below the sigmoidal
threshold σ relaxes to the stable solution h+ s(x), defined by
the field’s resting level h and its localized inputs s(x). Field
sites, where activation strength surpasses the threshold level,
will engage in lateral interaction defined by the field’s ker-
nel ω(x− x′), which is locally excitatory and inhibitory over
longer distances x− x′. This leads to the formation of self-
stabilized peaks of supra-threshold activation, which are the
unit of representation in DFT (see figure 1).
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Figure 1: A dynamic neural field spanned across the metric-
dimension x representing value x0 through a supra-threshold
activation peak.

Depending on the individual strength of excitatory and in-
hibitory interaction, fields may allow the formation of mul-
tiple peaks (self-stabilized), single peaks (selective) or they
may sustain peaks once localized input is removed (self-
sustained). Multi-dimensional fields may represent conjunc-
tions of feature dimensions, for example, the conjunction of
color and space. Zero-dimensional fields are dynamic neural
nodes that represent categorical states.

Two fields usrc and utar may be coupled by adding a field’s
output σ(usrc) to the other field’s rate of change u̇tar, weighted
with a homogeneous connection kernel ωsrc,tar. Such pro-
jections may preserve the dimensionality of the fields, or
may expand or contract the field dimensionality (Zibner &
Faubel, 2015). Dimensionality expansions may take the form
of ridges (or tubes, or slices), in which input along one or
several of the receiving field’s dimension is constant. Di-
mensionality contractions typically entail integrating along
the contracted dimension. Dynamic neural nodes that project
homogeneously onto a field by expansion are called boost
nodes. They may alter the dynamic regime in the target field

and induce the formation or vanishing of peaks. Within field
architectures such boost nodes may effectively modulate the
flow of activation by enabling or disabling particular branches
of an architecture to create units of representation. Concept
nodes project a specific pattern on a higher dimensional field
to elicit a peak representing the concept, e.g. a blue-concept
node activates neurons tuned to blue hue in a field spanned
across the color dimension.

The transition from a stable sub-threshold solution to a
new supra-threshold activation pattern marks a discrete event
in the presence of time-continuous input variations and is
labelled detection instability. In the context of intentional
states the detection instability is utilized to determine a state’s
condition of satisfaction, the discrete point in time where a
successful match between world and mind representations is
achieved.

In the world-to-mind DoF a matching field (CoS field) re-
ceives sub-threshold input from an intention-field represent-
ing the desired world-state and sub-threshold input from a
perception-field representing the current world-state. Due to
the resting level h in relation to the strengths of both field in-
puts, a supra-threshold peak will only form in the matching-
field, if both input patterns overlap sufficiently, thus signaling
the states CoS through a detection instability. Representation
of a world-to-mind CoS is thus independent from the planned
timing of the underlying action and signals its termination
on a perceptual basis. The formation of a CoS may thus
be used to terminate the action and activate the next action
in a planned sequence (Richter, Sandamirskaya, & Schöner,
2012).

In the mind-to-world DoF the CoS is determined through
the formation of a peak in a field that is connected to sen-
sor or memory substrates. The detection instability may be
the result of salient input alone or of the combination of sen-
sor/memory input and top-down attention input from within
the neural architecture. Representations of a mind-to-world
CoS are made available to the rest of the architecture and
may be used in further cognitive processing, e.g. determin-
ing a world-to-mind CoS.

Transforming Searles logical analysis of intentional states
into a process account has led us to a number of new insights.
One is a difference in the time structure of world-to-mind vs.
mind-to-world intentional states. World-to-mind intentional
states are active before the corresponding state of the world
has been achieved and are deactivated once the CoS detects a
match between the expected and the sensed state of the world.
Mind-to-world intentional states, in contrast, often persist be-
yond the detection of a match, which is an essential charac-
teristic of memories and beliefs. But what if memories or
beliefs (and even percepts) are false? Then they must be de-
activated. This is controlled by a condition of dissatisfaction
(CoD), which detects a mismatch between current sensory or
internal information and an intentional state. Upon activation,
a CoD inhibits that intentional state. The CoD responds to ev-
idence against the intentional state, not to the mere absence
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of evidence supporting the intentional state.

Model/Scenario
We illustrate how intentional states can be organized to gen-
erate autonomous goal- and object-oriented behavior in a
minimal scenario requiring Searle’s six major psychological
modes. The scenario contains a simulated agent engaged in
an artificial painting task controlled by a dynamic field ar-
chitecture connected to the robots sensorimotor surface (see
figure 2 for a sketch).

Mind-to-World States

Intentional states of the mind-to-world DoF are the prerequi-
site to engage in meaningful actions in a given environment
as any action at least aims to achieve a perceivable outcome.

Perception The virtual environment contains cuboids of
different height and color, which are arranged in an array
along a single dimension facing the robotic agent. The agent’s
visual perception fields are therefore spanned across horizon-
tal retinal space and the two feature dimensions height and
color. A selective spatial attention mechanism causes peaks
to form in the same spatial location in the space/color and

space/height perception fields, representing a perception of
the particular height and color features at that particular loca-
tion (see Grieben et al. (2018) for details on the attentional se-
lection). To detect successful interaction with the world, the
agent perceives changes in the environment through a two-
layer transient detector that forms peaks in response to sudden
changes in visual input (see Berger et al. (2012) for details).

To monitor its own actions the agent requires self-
perception of the task-dependent “body parts”, which in-
cludes an estimate of the agent’s position in the world. A
simulated sensor provides input to a one-dimensional current
position field, as the agent’s movement is restricted to driving
in parallel to the cuboid array. Arm movement is restricted
to two Cartesian dimensions, lateral and forward translation,
which leads to a two-dimensional representation of the cur-
rent end effector position in the proprioception field. The
painting device is located at the robot’s end effector and can
either be filled with color or not. This categorical perceptual
state is represented through a neural node that is activated if
the device is filled.

Attention directed towards particular self-perceptions is
modeled through a homogeneous resting level boost, which
causes the sub-threshold sensor information to form a peak
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Figure 2: Schematic overview of the dynamic fields and nodes representing the agent’s intentional states grouped according to
their psychological modes. For clarity’s sake only the most relevant connections are shown and parts of the architecture relevant
to autonomous learning and exploration are hidden. Prior intentions are depicted as precondition nodes with labels describing
the inhibiting CoS followed by the inhibited IiA.
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in the respective perception field. Neural interaction in per-
ception fields is strong enough to prevent the destabilization
of perceptions through noise, but retains its input coupling
such that a continuous change in input induces a drift in peak
position.

Memory To allow the agent to engage in more sophisti-
cated actions that are not purely based on current perceptions,
the agent stores past perceptions of cuboids in memory. Each
visual perception of the agent leaves a slowly decaying two-
dimensional memory-trace spanned across world-space and
feature, modeling a memory process that is subject to inter-
ference (Erlhagen & Schöner, 2002). The trace is forwarded
as sub-threshold activation to a space/feature memory field
analog to the visual perception fields. Memory states rep-
resented as peaks in the memory field may emerge through
either spatial or feature cues overlapping with the memory
trace substrate.

Self-sustained fields retaining task-relevant information,
such as the recently collected color, represent working mem-
ory, which is functionally closer to the mode of perception
than memory, as self-sustained peaks resemble lasting per-
ception representations and do not need an additional detec-
tion mechanism to form.

Belief Meaningful interaction with the world also relies on
general knowledge or beliefs about the world represented in
propositional form. In the toy scenario, beliefs are about rela-
tions between the three color concepts: the color of a canvas,
the color of the paint, and the color that results from coating
the canvas with the paint. Each painting action contributes
to the formation of a belief about that relation. The relation
is represented through a neural node with reciprocal connec-
tions to three color concept nodes, each linked to a differ-
ent color role field. An activated belief state is represented
through a supra-threshold belief node that leads to the forma-
tion of three peaks, each in one self-sustaining color role field,
which provide working memory representations to guide the
painting process. The color concept nodes ensure a degree
of generalization, as different shades of hue activate the same
concept node, while the activation of the concept node acti-
vates the mean hue value of the particular color.

A belief is activated when color nodes in either of the three
roles become active, to which the belief has learned synaptic
connections. For instance, a belief linking the red point on a
blue canvas to a yellow result may become activated, if the re-
sult color node yellow is activated by a corresponding desire.
Inhibitory coupling among belief nodes ensures that only a
single belief may be activated at any time. The belief with
most matching color role input will typically win the compe-
tition and can then be used to guide action. If an active color
role does not match the learned projections of any belief, no
belief is activated.

The learning of new beliefs is organized by a neural dy-
namic architecture inspired by Adaptive Resonance Theory
(Carpenter & Grossberg, 2016) illustrated in Figure 3. It as-
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Figure 3: Detailed sketch of the belief learning architecture
shown in Figure 2.

sociates color concepts in the three roles coating, canvas and
result color with a single belief node. Such learning steps oc-
cur whenever the transient detector registers a change of color
during a painting action. This happens under two possible
conditions. In one case, a belief has previously been activated
that predicts the expected color change. If that prediction is
confirmed, a Hebbian learning mechanism consolidates the
connectivity. If that prediction is not confirmed, the CoD is
activated, and the belief is inhibited. This leaves the system
without any activated belief. That second case, no activated
belief, may also arise because there was no matching belief to
begin with. In this case, a belief note is recruited for learning
the new association between coating, canvas, and resulting
color. This happens through a homogeneous boost of all be-
lief nodes. Only a previously uncommitted belief node has a
chance to become activated, because each belief node is in-
hibited by a dedicated “commit node” that represents that this
belief node is committed to a particular belief it has learned.

The actual learning processes is modulated by a transient
reward signal, r(t), that is generated in the presence of an ac-
tive belief node and a detected color change in the scene. The
reward modulated Hebbian learning rule adapts the connec-
tions, lrole

i,k , between belief nodes, bi, and color-role concept
nodes, urole

k (where k is color and role ∈ {coat, canvas, re-
sult}):

l̇role
i,k = η r(t) σ(bi)σ(urole

k ).
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The learning rate, η, is chosen such that a new belief is
learned within a single transient epoch of reward in a form
of one-shot learning. For a more detailed analysis of the
mechanisms of autonomous learning see (Tekülve & Schöner,
2019).

World-to-Mind States

Intentional states of the world-to-mind DoF are instrumental
in bringing about a desired state of affairs in the world, which
includes the agent’s own body. All world-to-mind states share
the representation through the pair of intention and CoS (or
match) field. Outgoing connections from the intention field
specify the actions driven by a supra-threshold activation
peak, while the outgoing inhibitory connection from the CoS
field terminates the action once the desired state is detected.

Intention in Action The painting scenario provides several
elementary actions that may take a variable amount of time
and thus require a representation of a CoS to verify their suc-
cessful execution. Reaching to a particular location in the vi-
sual array is realized through a neural field architecture for
generating arm movements (see Zibner et al. (2015)). Its
duration depends on the relative distance between the agent
and the target location. The target location is defined through
spatial input from the visual perception fields, which classify
reaching as an object oriented action.

Moving to a particular position in the world is motivated
through memory instead of perception. The drive IiA field
thus receives its spatial input from peaks formed in the
space/feature memory fields. In absence of a particular tar-
get location the agent may also move to either direction until
a previously unattended cuboid is perceived. The explore IiA
realizes this behavior and its CoS is represented through a bi-
nary neural node receiving excitatory input from the visual
transient detector. The actions explore, pick up and dispense
represent a family of IiAs, where the desired world state is
categorical and represented through the activation of a neural
node.

Another family of IiAs is represented by the actions visual
search, recall and activate belief, which treat the current state
of the neural system as part of the world and try to induce par-
ticular states of the mind-to-world DoF. Visual search guides
the attentional system to achieve a perceptual state matching
an intended feature cue, while recall tries to achieve a mem-
ory state matching an intended feature cue and activate belief
intends to activate a belief node that matches certain color-
roles.

Prior Intention Most goal directed actions comprise a se-
quence of actions such as the painting task in this scenario
which requires: Searching for a “color bucket” (high cuboid),
collecting color from it, searching for a “canvas” (small
cuboid) and applying the collected color on it. Those actions
themselves may be described as sequences of more elemen-
tary actions, e.g. searching comprises the sequence of recall-
ing a cuboid’s position, driving to the position and visually

searching for the cuboid, while collecting and applying com-
prise reaching followed by picking up or dispensing color.

Such a sequence of actions (or composite IiA) is realized
through an intention-field that simultaneously activates all
IiAs involved in the sequence and an inhibiting precondition
node for each IiA. The combination of activating and speci-
fying the input of an IiA, while simultaneously inhibiting it,
represents a prior intention. The prior intention turns into an
IiA once the precondition node is destabilized by the CoS of
a preceding IiA which releases the IiA-field from inhibition
(Richter et al. (2012)). These CoS fields may sustain activa-
tion in a working memory representation of the current stage
within a sequence.

The CoS of a composite IiA is activated through a subset
of CoS representations of comprising IiAs determining the
successful completion of the composite IiA’s goal. This will
inhibit the composites IiAs intention field and subsequently
destabilize all working memory representations of the com-
prising IiAs, thus allowing the same sequence of actions to be
activated again, which is required in the scenario as searching
for a cuboid is part of both collecting and applying color.

Prior intentions may also represent alternative action plans
that may occur when a precondition node is destabilized by a
CoD, for example, due to failing to recall a specific cuboid.

Desire The agent’s desire to observe the change of a cube’s
color into a desired color is the drive for all actions it ex-
ecutes. The desire specifies the agent’s prior intentions of
collecting and applying color through the activation of a be-
lief that matches the desired result color. The desire CoS is
activated through a match between a changing color detected
by the visual transient detector and the desired color, which
leads to a subsequent inhibition of the desire returning the
field architecture to its initial state.

Results
Figure 4 shows activation snapshots of selected fields display-
ing the formation of CoS peaks during a successful painting
sequence. In snapshot t1 the desire to paint a cube yellow
feeds into the result-role field (left column), which triggers a
detection instability in belief node B4 leading to a complete
belief representation through the emergence of peaks in the
canvas and coat role fields (right column). The coat color
leads to an activation of the collect IiA to retrieve blue color
and a prior intention to apply the color to a purple canvas,
which is represented through a sub-threshold peak in the ap-
ply IiA field.

At t2 the IiA collect activates the “bucket” concept, a high
cuboid, which is forwarded as a recall cue to the space/color
and space/height memory fields respectively. The collect
color also forms the prior-intention to visually search for blue
color (left column). The color/height cue leads to the emer-
gence of a single memory peak at the location of the blue/high
cuboid, which is read out across space and leads to the forma-
tion of a peak in the IiA drive (right column).

The left column of snapshot t3 shows the IiA drive-field
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-
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ory). The agent follows these plans by driving towards ob-
jects and interacting with them (intention-in-action), if they
visually match specified feature combinations (perception).
Beliefs about the three different color roles are learned au-
tonomously during each painting sequence.

Similar goals are pursued by Schrodt and colleagues
(Schrodt & Butz, 2016; Schrodt et al., 2017), who learn
production rules within a cognitive architecture. That work
is framed within a probabilistic approach, which is par-
tially embedded in neural networks. Our methods to achieve
autonomous sequencing overlap with techniques developed
in (Kazerounian & Grossberg, 2014). Globally speaking,
we pursue similar aims as the research program of cogni-
tive architectures (Anderson, 1996). Our emphasis is to
be pervasively consistent with neural principles, generating
the sequence of processing steps autonomously from neural
dynamics alone. Although the functions fulfilled by por-
tions of the neural dynamics can be described using con-
cepts of information processing, the system is simply a set
of integro-differential equations that generate time courses
of activation. These integro-differential equations capture
the time-continuous evolution of activation in populations of
cortical and subcortical neurons (Erlhagen, Bastian, Jancke,
Riehle, & Schöner, 1999). It remains a challenge to pro-
vide direct neural support for a complex model like ours (see
(Wijeakumar, Ambrose, Spencer, & Curtu, 2017) for an out-
line of how that may happen). Empirical support for a model
like ours may also be sought in the form of behavioral signa-
tures of the neural dynamics, an approach that has been suc-
cessful for past DFT models. The highly integrative nature of
the model makes this difficult, but perhaps not impossible.

Future modeling tasks include scaling the demonstrated
principles to more complex task-environments, elaborating
the simplistic account for desires, and addressing how be-
lieved propositions may be both true and false.

In conclusion, we have explored the requirements on neu-
ral processes that arise when embodied cognitive systems are
endowed with intentional states of the two directions of fit
and the six psychological modes that provide a foundation
for intentionality.
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Linköping, Sweden

Tom Ziemke (tom.ziemke@liu.se)
Department of Computer & Information Science, Linköping University
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Abstract

It is well known that people tend to anthropomorphize in inter-
pretations and explanations of the behavior of robots and other
interactive artifacts. Scientific discussions of this phenomenon
tend to confuse the overlapping notions of folk psychology,
theory of mind, and the intentional stance. We provide a clarifi-
cation of the terminology, outline different research questions,
and propose a methodology for making progress in studying
the intentional stance toward robots empirically.
Keywords: human-robot interaction; social cognition; inten-
tional stance; theory of mind; folk psychology; false-belief
task

Introduction
The use of folk psychology in interpersonal interactions has
been described as “practically indispensable” (Dennett, 1989,
p. 342), and its predictive power has been proclaimed to be
“beyond rational dispute” (Fodor, 1987, p. 6). The emergence
of interactive technologies, such as computers and robots,
has sparked interest in the role of folk psychology in hu-
man interactions with these systems. For example, John Mc-
Carthy stated: “It is perhaps never logically required even for
humans, but expressing reasonably briefly what is actually
known about the state of a machine in a particular situation
may require ascribing mental qualities or qualities isomor-
phic to them” (McCarthy, 1979, p. 2). The usefulness of
folk psychology however does not extend to interaction with
all artifacts, and it does not necessarily extend to all kinds
of interactions with robots. Although the prevalence of folk-
psychological interpretation of robot behavior might be con-
sidered as being beyond dispute, its predictive power – i.e.,
the usefulness of taking the intentional stance toward robots
– remains largely unassessed.

Researchers from diverse fields have explored people’s
folk-psychological theories about emerging robotic technolo-
gies, such as humanoid robots and autonomous vehicles. For
example, Krach et al. (2008) and Chaminade et al. (2012)
explored the neural activity of persons engaged in interactive
games with robots. Waytz et al. (2014) showed that peo-
ple’s ascriptions of mental states to an autonomous vehicle
affected their willingness to trust it. Thellman et al. (2017),
Petrovych et al. (2018), and de Graaf and Malle (2018, 2019)
investigated whether people judge distinctively human behav-
iors as intentional when exhibited by robots. Terada et al.
(2007) asked people directly about whether they adopted the

intentional stance toward a robot. Marchesi et al. (2018)
developed a questionnaire-based method specifically for as-
sessing whether people adopt the intentional stance toward
robots. These studies all provide insight into people’s folk-
psychological theories about robots. However, none of them
assessed how such theories affect people’s predictions of be-
havior to shed light on the usefulness of taking the intentional
stance in interactions with robots.

Moreover, research that has so far explicitly addressed the
intentional stance toward robots in many cases conflated the
intentional stance with overlapping but different notions, such
as folk psychology and theory of mind. In particular, the
question whether it is useful for people to predict robot behav-
ior by attributing it to mental states (what we in the present
paper will call “the intentional stance question”) tends to
be confounded with whether robots have minds (“the real-
ity question”), whether people think that robots have minds
(“the belief question”), and what kinds of mental states peo-
ple ascribe to robots (“the attribution question”). For ex-
ample, Chaminade et al. (2012, p. 8) claimed that partici-
pants in their experiments did not adopt the intentional stance
when interacting with a robot as opposed to a person based
on having “[manipulated] participants’ belief about the in-
tentional nature of their opponent” (thereby confounding the
attribution question with the belief question). Wykowska et
al. (2015, p. 768) stated that “it seems indeed very impor-
tant to know whether the observed entity is an agent with a
mind, and thus, whether the entity’s behavior provides some
social meaningful content” (confounding the attribution ques-
tion with the reality question). Wiese et al. (2012, p. 2) stated
that “adopting the intentional stance is based on a decision as
to whether or not an observed agent is capable of having in-
tentions” (confounding the intentional stance question with
the belief question).

In view of these confusions, we aim to provide a clarifica-
tion of the terminology and different research questions re-
lated to the folk psychology about robots in general and the
intentional stance toward robots in particular. We also dis-
cuss in more detail how (not) to approach research questions
specifically targeted at the intentional stance toward robots.

Basic Terminology
We here review Griffin and Baron-Cohen’s (2002) distinction
between folk psychology, theory of mind, and the intentional
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stance and relate these overlapping but different notions to
the literature surrounding the role of folk psychology in in-
teractions with robots.

Folk psychology about robots
The notion of folk psychology (also known as belief-desire
psychology, naı̈ve or intuitive psychology, or commonsense
psychology) broadly encompasses all mind-related theories
that people have about themselves and others (Griffin &
Baron-Cohen, 2002). This includes views about intentional,
content-bearing, representational states (beliefs, desires, in-
tentions, hunches, etc.) as well as phenomenal states (e.g.,
undirected anxieties, feelings and pain), traits, dispositions,
and empirical generalizations such as that people who are
tired are generally irritable, or – as in the context of folk
psychology about robots – the cultural platitude that robots
do not have minds (Fiala et al., 2014).

Research on people’s folk-psychological theories about
robots in general (as opposed to specific robots) has been pur-
sued in part because of the societal (e.g., political, legal, or
ethical) consequences that such theories might have. For ex-
ample, European citizens’ views on and acceptance of emerg-
ing robotic technologies, and their use in different areas of so-
ciety, have been monitored in extensive surveys by the Euro-
pean Commission (2012, 2015). Ethically motivated research
has targeted robot abuse, killer robots, robots in elderly care,
child-robot interaction, and sex robots (for an overview, see
Lin et al., 2014).

Theory of (robot) mind
Theory of mind refers more narrowly to the ability to attribute
the behavior of specific others or oneself to underlying men-
tal states, in particular intentional states, such as beliefs and
desires, that are perceived to have a causal role in behavior
(Griffin & Baron-Cohen, 2002).

People’s views about the mental attributes of specific
robots are frequently probed for the purpose of evaluating
human-robot interactions. Examples of such measures are the
Godspeed Questionnaire Series (Bartneck et al., 2009) and
the Robotic Social Attributes scale (Carpinella et al., 2017).
To the best of our knowledge, these measures have so far not
been used in conjunction with measures of people’s ability
to predict the behavior of specific robots in the context of
human-robot interaction research.

The intentional stance toward robots
The intentional stance refers to the use of intentional con-
structs (the beliefs, desires, intentions, etc., that are part
of people’s folk-psychological theories) as an interpretative
strategy or framework to predict the behavior of specific oth-
ers (Griffin & Baron-Cohen, 2002)1. The intentional stance

1As noted by Griffin and Baron-Cohen (2002), the intentional
stance theory (also known as intentional systems theory; Dennett,
2009) is both Dennett’s take on the role of folk psychology in so-
cial interactions and on what intentional states really are. These
two components can be considered separately (as in this paper); for

is sometimes mistakenly equated with folk psychology. Den-
nett (1991) describes the intentional stance as “the craft” of
folk psychology and distinguishes it from “the theory” itself.
The intentional stance concerns what people do with folk psy-
chology (i.e., predict and explain behavior using intentional
constructs); folk psychology, in Dennett’s view, refers to how
we talk about what we do.

Although there seems to be a general consensus in the liter-
ature concerning the meaning of “intentionality” as denoting
the distinguishing characteristic of certain mental phenom-
ena of being “about” or “directed at” something as an object
(Brentano, 1874/2012), some authors have treated it as a bi-
ological property (e.g., Searle, 1980; Varela, 1997; Ziemke,
2016) whereas others have refrained from doing so (e.g., Den-
nett, 1989; McCarthy, 1979). It is also important to recognize
that intentionality is a separate notion from having certain in-
tentions. Intentionality is a property of a specific set of mental
states, namely intentional mental states. This set includes in-
tentions, but also beliefs, desires, hopes, fears, hunches, and
so on. Searle (2008, pp. 85–86) noted that the English trans-
lation of the German words for intentionality and intention,
“Intentionalität” and “Absicht”, are confusingly similar, stat-
ing that “we have to keep in mind that in English intending is
just one form of intentionality among many”.

In some cases, adopting the intentional stance toward an
object is a useful strategy for predicting its behavior; in other
cases, it is not. Dennett introduced the notion of an inten-
tional system to denote objects that are “usefully and volu-
minously predictable from the intentional stance” (Dennett,
2009, p. 339). Humans are the most obvious example of in-
tentional systems because human behavior is generally suc-
cessfully predicted from the intentional stance but not from
other modes of interpretation. The label “intentional system”
is not restricted to humans, but it also does not extend to all
non-human objects. Although a person might predict that a
thermostat will raise the room temperature in the morning be-
cause it wants to keep it at 73 degrees and knows that it has
fallen during the night, the use of such folk-psychological
interpretations does not add predictive value above and be-
yond the corresponding non-psychological interpretation. In
the words of John McCarthy (1979, p. 11), “ascribing be-
liefs to simple thermostats is unnecessary for the study of
thermostats, because their operation can be well understood
without it”. In contrast, the moves of a chess-playing com-
puter are, according to Dennett (1971), practically inaccessi-
ble to prediction from any other interpretative mode than the
intentional stance.

It is reasonable to conjecture, given the complex behav-
ior and social situatedness (Lindblom & Ziemke, 2003) of
emerging robotic technologies, that taking the intentional
stance might turn out to be crucial in many cases of human-
robot interaction (Hellström & Bensch, 2018; Schellen &
Wykowska, 2019; Thill & Ziemke, 2017; Vernon et al.,

example, one might agree with Dennett’s claims about the role of
the intentional stance in social interaction without subscribing to his
views about the reality of ascribed mental states.

1098



2016). However, although there is a growing body of ev-
idence that people take the intentional stance toward robots,
the usefulness of doing so remains largely unassessed. Hence,
the central question in the context of the intentional stance
toward robots is the extent to which the behavior of robots is
usefully predicted from the intentional stance. The usefulness
of the intentional stance toward robots presumably depends
on a number of unknown factors, possibly related to the per-
son interacting with the robot, the interaction context, and the
robot in question. Answers to the intentional stance question
might thus range from “the intentional stance is a practically
dispensable mode of interpretation for predicting robot be-
havior” (cf. thermostat) to “the intentional stance is practi-
cally indispensable for predicting robot behavior” (cf. chess-
playing computer), depending on these factors. Research into
the usefulness of taking the intentional stance toward robots
may also reveal unique social cognitive challenges associated
with taking the intentional stance specifically toward robots
(e.g., compare inferring what a robot vs. a person can per-
ceive in a given situation in order to predict it’s behavior),
some of which may be universally present in human-robot
interactions.

Four Distinct Research Questions
We have attempted to clarify some of the basic terminology
surrounding the intentional stance toward robots. We also
identified the central question about the intentional stance to-
ward robots as concerning its usefulness for predicting robot
behavior. We now move on to distinguish this question from
three overlapping but separate research questions that appear
frequently in the literature surrounding the intentional stance
toward robots.

The reality question: Do robots have minds?
Questions such as “Do robots have minds?” and “Can ma-
chines think?” concern the nature or reality of the mental
states of robots and other machines. We here collectively re-
fer to such questions as different formulations of the reality
question. The reality question is clearly independent from
people’s beliefs about it, and presumably also from people’s
disposition to predict and explain robot behavior based on
mental state ascriptions (and the potential usefulness of do-
ing so). While it seems plausible that ontological “discover-
ies” about the minds of robots may have a significant impact
on how people relate to and interact with robots, there is no
apparent reason to believe that they would affect people’s pre-
dictions of robot behavior in interactions. What matters for
the purpose of predicting behavior, it seems, is how people
conceptualize behavior, and not the correspondence of those
conceptualizations to reality. For example, Heider (1958, p.
5) noted: “If a person believes that the lines in his palm fore-
tell his future, this belief must be taken into account in ex-
plaining certain of his actions”. Hence, the reality question is
conceptually distinct from questions regarding people’s attri-
butions and beliefs about the mental states of robots.

The belief question: Do people think that robots
have minds?
People’s views on the reality of the mental states of robots
are part of folk psychology. As stated in the previous sec-
tion, it is difficult to foresee how (if at all) such consider-
ations affect people’s predictions of robot behavior, regard-
less if they spring from collective scientific discovery or per-
sonal belief. Clearly, a person might attribute the behavior
of a robot to mental states without necessarily committing
to any ontological position about the reality of those men-
tal states. Indeed, people commonly ascribe mental states to
cartoon characters and animated geometric figures (Heider &
Simmel, 1944). When, for example, we see Donald Duck
angrily chasing chipmunks Chip and Dale because they are
stealing his popcorn, we know that Donald, Chip, and Dale do
not really have mental states, but we attribute their behavior
to mental states nevertheless (Ziemke et al., 2015). As stated
by Airenti (2018, p. 10), “anthropomorphism is independent
of the beliefs that people may have about the nature and fea-
tures of the entities that are anthropomorphized”. There is
to our knowledge no evidence that people’s beliefs about the
reality of the mental states of robots – or of cartoon charac-
ters, thermostats, or fellow humans – affect their disposition
or ability to predict behavior. It does not seem to matter, for
the purpose of predicting the behavior of an agent, whether
the person interpreting the behavior of the agent in question
believes that the agent really has mental states. The belief
question, therefore, must be treated as distinct from questions
concerning people’s ascriptions of mental states to robots as
well as the reality question.

The attribution question: What kinds of mental
states do people ascribe to robots?
There is now an abundance of evidence that people com-
monly predict and explain the behavior of robots based on
attributing it to underlying intentional states. The assumption
that they do is arguably even built into many of the meth-
ods that are used to evaluate social human-robot interactions,
whereby researchers explicitly ask people to evaluate mental
properties of robots. The if-question in “Do people take the
intentional stance toward robots?” has thus already been an-
swered in the affirmative. Considerably less is known about
what we for the present purposes call the attribution question,
namely what kinds of mental states people ascribe to robots.
The lack of knowledge about the attribution question does not
stem from a lack of research effort but, at least in part, from
issues in the methodology adopted to tackle the attribution
question.

There is so far little agreement about what kinds of men-
tal states people ascribe to robots. Gray, Gray and Wegner
(2007) found that people tend to attribute the behavior of
robots to mental states related to agency (e.g., memory, plan-
ning, and thought) but not subjective experience (e.g., fear,
pain, and pleasure). Sytsma and Machery (2010) found, in
contrast, that people refrain from attributing subjective states

1099



that have hedonic value for the subject, that is, valenced states
(e.g., feeling pain and anger) as opposed to unvalenced states
(e.g., smelling a banana or seeing red). Buckwalter and Phe-
lan (2013) further showed that people’s tendency to attribute
(or not) experiential or valenced states depends on the de-
scribed function of the robot. Fiala et al. (2014) found that re-
spondents in their experiments – when allowed to choose be-
tween different ways of describing the capabilities of a robot
(e.g., the robot “identified the location of the box” vs. “knew
the location of the box”) – preferred not to attribute mental
states at all. The authors noted that responses to questions
about the mental states of robots are influenced by a wide va-
riety of factors, including the apparent function of the robot,
the way in which the question is asked, and cultural platitudes
about robots.

In sum, it seems problematic to identify what kinds of men-
tal states people ascribe to robots by asking them directly.
Part of the problem, we believe, is that such questions are
ambiguously open to interpretation as regarding the reality
of the mental states of robots. As pointed out previously,
people tend to predict and explain robot behavior with refer-
ence to mental states without reflecting on the reality of those
states. Thus, when asked directly, a person might deny that
a robot has a mind, despite having previously attributed mind
to it upon being asked to describe its behavior (Fussell et al.,
2008).

The intentional stance question: Is it useful for
people to predict robot behavior by attributing it to
mental states?
The usefulness of predicting robot behavior by attributing it to
mental states is not a pre-given. The intentional stance ques-
tion is therefore distinct from the attribution question. The
ability to predict behavior based on the intentional stance is
also, as evidenced by studies on mental state attribution from
Heider and Simmel (1944) and onwards, independent from
the reality of the attributed mental states and from people’s
beliefs about them.

Although the prevalence of people taking the intentional
stance toward robots might be considered as beyond dispute,
its predictive power – that is, the usefulness of doing so –
remains largely unassessed. Hence, the central question in
the context of the intentional stance toward robots is to what
extent the behavior of robots is usefully predicted from the
intentional stance. Other questions of potential interest con-
cern causes of predictive (mis)judgment from the intentional
stance toward robots, how misjudgment can be reduced, and
potential effects of taking the intentional stance toward robots
on human cognition (e.g., cognitive load).

Measures of the Intentional Stance
If one wants to investigate whether the intentional stance is
useful as an interpretative framework for predicting robot
behavior, then one must, at the very least, measure peo-
ple’s predictions of behavior and ensure that those predic-
tions stem from specific attributed mental states. Very few

previous studies concerned with the intentional stance toward
robots employed such measures (one exception is Sciutti et
al., 2013). In this section, we review established experimental
paradigms in interpersonal psychology that accomplish mea-
suring effects of mental state attribution on behavior predic-
tion, namely explicit and implicit false-belief tasks and antic-
ipatory gaze tasks.

Explicit measures
The standard false-belief task (sometimes referred to as the
“Sally–Anne test” or the location-change false-belief test)
was outlined by Dennett (1978) in a commentary to Premack
and Woodruff’s seminal paper “Does the chimpanzee have a
theory of mind?”. This was later turned into an experimental
paradigm in which a human study participant must attribute a
false belief to an agent in order to predict its behavior (Wim-
mer & Perner, 1983). In the experiment, the participant is
made aware that an agent observes a certain state-of-affairs
x. Then, in the absence of the agent the participant witnesses
an unexpected change in the state-of-affairs from x to y. The
participant now knows that y is the case and also knows that
the agent still (falsely) believes that x is the case. After this,
the participant is asked to predict how the agent will behave
in some circumstance, given its false belief about the state-of-
affairs. If the participant fails to predict the behavior of the
agent, this can be directly attributed to a failure of the par-
ticipant to ascribe a false belief to the agent. Frith and Frith
(1999, p. 1692) commented on the strength of the false-belief
task: “To predict what a person will do on the basis of a true
belief is not a sufficiently stringent test [of the ability to take
the intentional stance], since here the belief coincides with
reality, and it’s hard to tell whether the action is governed by
physical reality or mental state. In everyday life, beliefs rather
than reality determine what people do, and false beliefs play
an important role”.

False-belief tasks have primarily been used to test for the
possession of a theory of mind (e.g., Baron-Cohen, Leslie &
Frith, 1985). However, they can also be used to explore the
relative difficulty of reasoning about others’ beliefs (Bloom &
German, 2000). We argue that the false-belief task is a suit-
able paradigm for assessing the usefulness of the intentional
stance toward robots because it enables measuring the extent
to which a person’s mental state ascriptions to a specific robot
are conducive to predicting its behavior. Hence, false-belief
tasks would be used in the context of human-robot interaction
studies not to test for a person’s possession of a theory of a
specific robot’s mind but for the successful or unsuccessful
use of such theories in interactions with robots.

Concerns have been raised previously in the theory of mind
literature about whether the explicit formulation of false-
belief questions might impute folk-psychological theory to
the task participant or affect his or her disposition to ascribe
mental states. In some false-belief experiments, participants
were asked questions, such as “Where does the agent be-
lieve/think that the object is now?”, which explicitly suggest
that the agent possesses beliefs or thoughts. Other experi-
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ments used questions such as “Where will the agent look for
the object?” which implicitly suggest the possession of be-
liefs or thoughts. However, an extensive meta-study of the-
ory of mind research on children showed that the type of
question (e.g., explicit vs. implicit statements of belief) pro-
vided to participants did not significantly affect participants’
success in the false-belief task (Wellman, Cross & Watson,
2001). This finding can be taken as supporting the view ex-
pressed by Dennett that “whether one calls what one ascribes
to the computer beliefs or belief-analogues or information
complexes or Intentional whatnots makes no difference to the
nature of the calculation one makes on the basis of the as-
cription” (Dennett, 1971, p. 91). Regardless of this meta-
analytic finding, researchers concerned with the risk of im-
puting folk-psychological theories about robots to study par-
ticipants, in the context of false-belief tasks, can employ im-
plicit intentional stance measures. In the following section
we review two such measures: implicit false-belief tasks and
goal-directed anticipatory gaze tasks.

Implicit measures
Implicit false-belief tasks employ non-verbal measures to
assess people’s behavior predictions (for an overview, see
Schneider & Slaughter, 2015). Using implicit measures, the
intentional stance can be investigated by recording anticipa-
tory gaze behavior (Clements & Perner, 1994) or reaction
times (Kovács, Téglás & Endress, 2010), even without in-
structions to predict behavior or providing questions about
the mental states of agents (Kovács, Téglás & Endress, 2010;
Schneider et al., 2012). Implicit measures also provide an op-
portunity to investigate the potential effort involved in track-
ing the beliefs of robots whose sensory perspectives signifi-
cantly differ from the human case.

Goal-directed anticipatory gaze tasks represent another
way to measure the intentional stance toward robots. Using
an anticipatory gaze paradigm, Sciutti et al. (2013) showed
that people shift their gaze toward perceived “goals states”
of robot actions prior to the execution of the actions them-
selves. One limitation of this paradigm is that it is not always
possible to infer which gaze behaviors are anticipatory gazes
(and therefore reflect goal ascriptions) and which are not. As
such, goal-directed anticipatory gaze measures might not be
as strong a measure of the intentional stance as false-belief
tasks. Nevertheless, studying goal ascription through antici-
patory gaze measures might be suitable as a complement to
studying belief ascription using false-belief tasks.

Conclusion
We have attempted to clarify the difference between three
overlapping concepts that are used (in many cases confus-
edly) in the literature surrounding the intentional stance to-
ward robots: folk psychology, theory of mind, and the in-
tentional stance. The central question in research on the in-
tentional stance toward robots was identified as the extent to
which the intentional stance is a useful (and potentially even

indispensable) interpretative strategy or framework for pre-
dicting behavior in interactions with robots. We argued that
this question is distinct from questions regarding the reality of
the mental states of robots, people’s beliefs about the mental
states of robots, and what kinds of mental states people as-
cribe to robots. We also established a “methodological crite-
rion” for investigating the usefulness of the intentional stance
toward robots: the measurement of people’s predictions of
robot behavior and reliable inference that those predictions
stem from specific attributed mental states. Last, but not least,
we identified explicit and implicit false-belief tasks and antic-
ipatory gaze tasks as fulfilling these criteria, thereby consti-
tuting a promising experimental paradigm for future empiri-
cal investigations of the intentional stance toward robots.

The ability to infer the intentional states (beliefs, desires,
etc.) of robots is presumably in many cases crucial to the
successful prediction of robot behavior and, consequently, to
well-functioning and socially acceptable human-robot inter-
action (Hellström & Bensch, 2018; Schellen & Wykowska,
2019; Thill & Ziemke, 2017; Vernon et al., 2016). How-
ever, continuously tracking changes in the intentional states
of robots as interactions unfold represents a potentially dif-
ficult and demanding challenge to humans: robots have dif-
ferent “perspectives” on or sensorimotor couplings with the
world than humans. Consider the task of simultaneously nav-
igating interactions with three different types of robots in
a crowded environment (e.g., a busy street): the first robot
can detect objects behind humanly opaque structures such
as walls, vehicles, or humans; the second robot cannot see
through glass; and the third robot is sensory-equivalent to
most humans. How do humans fare in an interaction sce-
nario like this? We propose that taking the intentional stance
toward robots must in some cases be more difficult (in terms
of predictive accuracy) and demanding (e.g., in terms of cog-
nitive load; Sweller, 1988) than taking the intentional stance
toward humans, and view this as a hypothesis worthwhile ex-
ploring in the context of human-robot interaction research.
In particular, we speculate that people employ a reasoning
heuristic which can be described as “anthropocentric anchor-
ing and adjustment”, consistent with the accounts in Epley et
al. (2004) and Nickerson (1999) but where people adopt the
perspective of specific robots by serially adjusting from their
own (human) perspective.

Another question relevant to the intentional stance toward
robots is the extent to which its usefulness or predictive power
can be improved by providing information about the capa-
bilities and limitations of robots prior to interactions. Peo-
ple base their estimations of the knowledge of robots partly
on their assumptions about people (Kiesler, 2005). People’s
knowledge estimations of robots have been shown to be af-
fected by the physical attributes of robots (Powers & Kiesler,
2006) and information about the robot given beforehand, such
as robot gender (Powers et al., 2005) or country of origin (Lee
et al., 2005). However, it has to our knowledge not yet been
investigated whether providing information or manipulating
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social cues can improve the accuracy with which people pre-
dict the behavior of a robot. Would prior knowledge about the
sensory capabilities of the three types of robots in the example
above help people interact with them? This is another ques-
tion worthwhile exploring in studying the intentional stance
toward robots.

We believe that cognitive science has important contribu-
tions to make in the continued exploration of the role of folk
psychology in human interaction with robots, especially in
the development of appropriate methodological approaches
to investigating the intentional stance toward robots. As sug-
gested in this paper and elsewhere, the intentional stance can
be a confusing concept (Griffin & Baron-Cohen, 2002) and
a difficult phenomenon to measure, perhaps especially in the
context of interactions with robots (Schellen & Wykowska,
2019). In the folk psychology about robots, robots might not
have real minds but have attributed minds nevertheless, and
as for the science of mind, the jury is still out regarding the ex-
tent to which mind possession and mind attribution go hand-
in-hand in the case of robots (cf. Dennett, 1989; Fodor, 1987;
Searle, 1980). We therefore hope that the conceptual clar-
ifications and methodological proposals presented here will
pave the way for fruitful research on the intentional stance
toward robots.
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Kovács, Á. M., Téglás, E., & Endress, A. D. (2010). The so-
cial sense: Susceptibility to others’ beliefs in human infants
and adults. Science, 330(6012), 1830–1834.

Krach, S., Hegel, F., Wrede, B., Sagerer, G., Binkofski, F., &
Kircher, T. (2008). Can machines think? Interaction and
perspective taking with robots investigated via fMRI. PloS
one, 3(7), e2597.

Lee, S.-l., Lau, I. Y.-m., Kiesler, S., & Chiu, C.-Y. (2005).
Human mental models of humanoid robots. In Proc. 2005
IEEE Int. Conf. Robot. Autom. (pp. 2767–2772).

Lin, P., Abney, K., & Bekey, G. A. (2014). Robot ethics: the
ethical and social implications of robotics. The MIT Press.

Lindblom, J., & Ziemke, T. (2003). Social situatedness of
natural and artificial intelligence: Vygotsky and beyond.
Adaptive Behavior, 11(2), 79–96.

Marchesi, S., Ghiglino, D., Ciardo, F., Perez-Osorio, J.,
Baykara, E., & Wykowska, A. (2019). Do we adopt the
intentional stance toward humanoid robots? Frontiers in
Psychology, 10.

McCarthy, J. (1979). Ascribing mental qualities to machines.
In M. Ringle (Ed.), Philosophical perspectives in artificial
intelligence. Humanities Press.

Nickerson, R. S. (1999). How we know – and sometimes mis-
judge – what others know: Imputing one’s own knowledge
to others. Psychol. Bull., 125(6), 737–759.

Petrovych, V., Thellman, S., & Ziemke, T. (2018). Human
interpretation of goal-directed autonomous car behavior. In
Proc. 40th Annual Cognitive Science Society Meeting (pp.
2235–2240). Madison, WI.

Powers, A., & Kiesler, S. (2006). The advisor robot: Tracing
people’s mental model from a robot’s physical attributes.
In Proc. 1st ACM SIGCHI/SIGART Conf. on Human-Robot
Interaction (pp. 218–225).

Powers, A., Kramer, A. D., Lim, S., Kuo, J., Lee, S.-l., &
Kiesler, S. (2005). Eliciting information from people with
a gendered humanoid robot. In 2005 IEEE Int. Workshop
on Robot and Human Interactive Communication (pp. 158–
163).

Premack, D., & Woodruff, G. (1978). Does the chimpanzee
have a theory of mind? Behavioral and Brain Sciences,
1(4), 515–526.

Schellen, E., & Wykowska, A. (2019). Intentional mindset
toward robots – open questions and methodological chal-
lenges. Frontiers in Robotics and AI, 5, 139.

Schneider, D., Bayliss, A. P., Becker, S. I., & Dux, P. E.
(2012). Eye movements reveal sustained implicit process-
ing of others’ mental states. J. Exp. Psychol. Gen., 141(3),
433.

Schneider, D., Slaughter, V. P., & Dux, P. E. (2015). What
do we know about implicit false-belief tracking? Psycho-
nomic Bulletin & Review, 22(1), 1–12.

Sciutti, A., Bisio, A., Nori, F., Metta, G., Fadiga, L., & San-
dini, G. (2013). Robots can be perceived as goal-oriented

agents. Interaction Studies, 14(3), 329–350.
Searle, J. R. (1980). Minds, brains, and programs. Behavioral

and Brain Sciences, 3(3), 417–424.
Searle, J. R. (2008). Mind, language and society: Philosophy

in the real world. Basic books.
Sweller, J. (1988). Cognitive load during problem solving:

Effects on learning. Cognitive Science, 12(2), 257–285.
Sytsma, J., & Machery, E. (2010). Two conceptions of sub-

jective experience. Philos. Stud., 151(2), 299–327.
Terada, K., Shamoto, T., Mei, H., & Ito, A. (2007). Re-

active movements of non-humanoid robots cause intention
attribution in humans. In 2007 IEEE/RSJ Int. Conf. on In-
telligent Robots and Systems (pp. 3715–3720).

Thellman, S., Silvervarg, A., & Ziemke, T. (2017). Folk-
psychological interpretation of human vs. humanoid robot
behavior: Exploring the intentional stance toward robots.
Frontiers in Psychology, 8, 1962.

Thill, S., & Ziemke, T. (2017). The role of intentions in
human-robot interaction. In Proc. 2017 ACM/IEEE Int.
Conf. on Human-Robot Interaction (pp. 427–428).

Varela, F. J. (1997). Patterns of life: Intertwining identity and
cognition. Brain and cognition, 34(1), 72–87.

Vernon, D., Thill, S., & Ziemke, T. (2016). The role of in-
tention in cognitive robotics. In A. Esposito & L. C. Jain
(Eds.), Toward Robotic Socially Believable Behaving Sys-
tems – Volume I (pp. 15–27). Springer.

Waytz, A., Heafner, J., & Epley, N. (2014). The mind in
the machine: Anthropomorphism increases trust in an au-
tonomous vehicle. J. Exp. Soc. Psychol., 52, 113–117.

Wellman, H. M., Cross, D., & Watson, J. (2001). Meta-
analysis of theory-of-mind development: The truth about
false belief. Child Development, 72(3), 655–684.

Wiese, E., Wykowska, A., Zwickel, J., & Müller, H. J. (2012).
I see what you mean: How attentional selection is shaped
by ascribing intentions to others. PloS one, 7(9), e45391.

Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Rep-
resentation and constraining function of wrong beliefs in
young children’s understanding of deception. Cognition,
13(1), 103–128.

Wykowska, A., Kajopoulos, J., Obando-Leitón, M., Chauhan,
S. S., Cabibihan, J.-J., & Cheng, G. (2015). Humans are
well tuned to detecting agents among non-agents: examin-
ing the sensitivity of human perception to behavioral char-
acteristics of intentional systems. Int. J. Soc. Robot., 7(5),
767–781.

Ziemke, T. (2016). The body of knowledge: on the role of the
living body in grounding embodied cognition. Biosystems,
148, 4–11.

Ziemke, T., Thill, S., & Vernon, D. (2015). Embodiment
is a double-edged sword in human-robot interaction: As-
cribed vs. intrinsic intentionality. In Proc. 10th ACM/IEEE
Human Robot Interaction Conference (pp. 1–2).

1103



Articulatory features of phonemes pattern to iconic meanings: evidence from
cross-linguistic ideophones

Arthur Lewis Thompson1 (arthurlewisthompson@gmail.com)
Nicolas Collignon2 (n.collignon@ed.ac.uk) Youngah Do1 (youngah@hku.hk)

1Department of Linguistics, the University of Hong Kong, Pokfulam Road, Hong Kong
2 School of Informatics, University of Edinburgh, 10 Crichton St, Edinburgh

Abstract

Iconic words are known to exhibit an imitative relationship
between a word and its referent. Many studies have worked
to pinpoint sound-to-meaning correspondences for ideophones
from different languages. The correspondence patterns show
similarities across languages, but what makes such language-
specific correspondences universal, as iconicity claims to be,
remains unclear. This could be due to a lack of consensus on
how to describe and test the perceptuo-motor affordances that
make an iconic word feel imitative to speakers. We created and
analyzed a database of 1,888 ideophones across 13 languages,
and found that 5 articulatory properties, physiologically acces-
sible to all spoken language users, pattern according to seman-
tic features of ideophones. Our findings pave the way for future
research to utilize articulatory properties as a means to test and
explain how iconicity is encoded in spoken language.
Keywords: iconicity; ideophones; systematicity; sound sym-
bolism; phonology; semantics

Introduction
Iconicity in spoken language can be summed up as the rela-
tion of a linguistic form (or sound) to its meaning (Hinton,
Nichols, & Ohala, 1994). One fundamental example is ono-
matopoeia, as in the English woof woof for the sound of a dog
bark or vroom vroom for the reving a car engine. Sound map-
ping to meaning in an imitative way is also called sound sym-
bolism. An implicit assumption underlying the term sound
symbolism is that phonemes, or clusters of phonemes, map
onto meaning below word or morpheme level thus acting as
affordances which together allow the sound symbolic word
to take on meaning. For example, the /N/ in English /diN.doN/
seems to be characteristic of the reverberating echo of a bell
tolling, while the alternating /i/ and /o/ seems characteristic
of movement or a fluctuation in pitch as the bell tolls. While
various studies have worked to elicit sub-phonemic sound-to-
meaning correspondences (Aryani, 2018; Blasi, Wichmann,
Hammarström, Stadler, & Christiansen, 2016; De Carolis,
Marsico, & Coupé, 2017; Kawahara, Noto, & Kumagai,
2018; Shih, Ackerman, Hermalin, Inkelas, & Kavitskaya,
2018; Kwon & Round, 2015; Ofori, 2009; Hamano, 1998;
Maduka, 1988; Oswalt, 1994; Akita, Imai, Saji, Kantartzis, &
Kita, 2013; Ayalew, 2013; McCune, 1985; Assaneo, Nichols,
& Trevisan, 2011; Strickland, J, Schlenker, & Geraci, 2017),
the underlying mechanisms of such correspondences are un-
clear. To begin rectifying the issue of what exactly makes
a sound symbolic word iconic, and so the field of iconic-
ity can move toward a unified understanding of what affor-
dances in the spoken modality should be classified as iconic,
this paper attempts to reveal the gestural affordances under-
pinning imitative words, i.e., ideophones. Ideophones are

marked words which depict sensory meaning and belong to
an open lexical class (Dingemanse, 2012, in press). Recent
studies have likened ideophones to oral gestures consider-
ing that they co-occur with other visual forms of commu-
nication so frequently in spontaneous speech (Dingemanse,
2015; Hatton, 2016; Mihas, 2013; Dingemanse, 2013; Nuck-
olls et al., 2000). This speaks to the importance of ana-
lyzing (articulatory) movement in order to understand how
ideophones mean what they mean. Ideophones have been
shown to be easily learnable by speakers from different lan-
guage backgrounds, which may also speak to their imita-
tive, gestural nature encoded despite language-specific differ-
ences such as phonotactics, phonological inventory, or lexi-
cal associations (Lockwood, Hagoort, & Dingemanse, 2016;
Dingemanse, Schuerman, Reinisch, Tufvesson, & Mitterer,
2016; Iwasaki, Vinson, & Vigliocco, 2007a, 2007b). Thus,
ideophones are an ideal testing ground for how articulatory
properties pattern to meaning. Vocal imitations and ono-
matopoeia created spontaneously by participants in experi-
mental settings have been shown to exhibit sound-meaning
correspondences which can be attributed to patterns of oral
articulation (Assaneo et al., 2011; Taitz et al., 2018). This
leads us to our investigative focus on the articulatory ges-
tures of consonants in imitative words. In a methodolog-
ical vein similar to Blasi et al. (2016), this study looks at
whether articulatory feature (e.g., plosive, fricative, nasal, ve-
lar, labial) is more or less found in certain semantic domain
(e.g., telic events, human vocal sounds, motion, appearance)
following cross-linguistic descriptions of ideophone meaning
(Dingemanse, 2012; Hamano, 1998; Van Hoey, 2018; Nuck-
olls, Swanson, Sun, Rice, & Ludlow, 2017). However, un-
like Blasi et al. (2016) who focused on identifying sound-to-
meaning mappings in arbitrary words, this study focuses on
words which are explicitly iconic in nature. If an oral ar-
ticulation is more attested in one semantic domain of ideo-
phones than another this could explain why some phonose-
mantic mappings might be perceived as imitative and there-
fore iconic of a given percept. Such mappings are therefore
explainable as perceptuo-motor affordances grounded in ges-
tural means, e.g., total closure of plosive articulation, affords
the semantic category of telic events and their percept coming
to an abrupt stop. We created a database of ideophones from
13 languages (in total, 1888 ideophones) to carry out our in-
vestigation on how articulatory properties of consonants pat-
tern with ideophone meaning.
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Background
Phonosemantics
Sub-phonemic sound-to-meaning mappings have been pro-
posed for a number of languages (Maduka, 1988; Waugh,
1994; Hamano, 1998; Oswalt, 1994; Assaneo et al., 2011;
Akita et al., 2013; Ayalew, 2013; Kwon & Round, 2015;
Blasi et al., 2016). The general assumption is loosely encap-
sulated by a broad hypothesis that every phoneme is meaning-
bearing, and that this meaning is rooted in its articulation
(Diffloth, 1979, 1994; Hamano, 1998; Dingemanse, 2018).
Though this study does not assume all phonemes to be mean-
ing bearing in all contexts, we do subscribe to the notion that
the meaning of a phonosemantic mapping for iconic word
should be rooted in its articulation following previous stud-
ies (Diffloth, 1979, 1994; Oda, 2001; Assaneo et al., 2011;
Taitz et al., 2018; Strickland et al., 2017).

Ideophone Database
Database
Currently there is no cross-linguistic database dedicated
solely to ideophone inventories. We created a database of
13 languages1 which were selected with the aim of being
as typologically diverse as possible despite the limited num-
ber of linguistic descriptions for ideophone inventories in the
world2). The languages are as follows with their number of
ideophones in brackets: Manyika Shona (Niger-Congo) [112]
, Uyghur (Turkic) [49], Manchu (Tungusic) [91], Chaoyang
Southern Min (Sino-Tibetan) [248], Ma’ai Zhuang (Kra-Dai)
[232], Kam (Kra-Dai) [223], Akan (Niger-Congo) [190] ,
Kisi (Niger-Congo) [98], Kuhane (Niger-Congo) [64], Pas-
taza Quichua (Quechuan) [283] , Upper Necaxa Totonac (To-
tozoquean) [146], Temne (Niger-Congo) [76] , Yakkha (Sino-
Tibetan) [76]. Due to their depictive nature, and the various
methods of elicitation, the ideophone inventory numbers re-
ported above are not absolute, but instead reflect a general
picture about the semantic ”visibility” of ideophones per lan-
guage. This is in line with a claim recently put forth by
Dingemanse (Dingemanse, in press) that ideophones form an
open class, speaking to the creative potential for newly coined
ideophones.

Total number of ideophones was 1,888. Ideophones were
entered into the database with their orthography (if available),
International Phonetic Alphabet (IPA) transcription, and re-
ported translation. A phonetically trained transcriber pro-
vided IPA transcription of words when original resources
do not provide IPA transcriptions. To analyze the pho-
netic properties of words, the transcriber also provided with
place (labial, coronal, dorsal, pharyngeal, laryngeal), manner
(sonorant, continuant, nasal, lateral, delayed release), and la-
ryngeal features (voice, spread glottis, constricted glottis) of

1(Franck, 2014; Gerner, 2005; Beck, 2008; Schackow, 2016;
Kanu, 2008; Childs, 1988; Ofori, 2009; Nuckolls et al., 2017; Xiao,
2015; Wang & Tang, 2014; Mathangwane & Ndana, 2014; ?, ?)

2Ma’ai Zhuang ideophones were collected during ongoing field-
work.

Table 1: Semantic features
Semantic Feature Description of [+] feature
[+/- animal] vocalization made by animals
[+/- appearance] depicts visual information, i.e., how some-

thing looks or degrees of visibility
[+/- friction] depicts rubbing together or rough contact

of surfaces (not necessarily active move-
ment), i.e., grinding, rustling, sharpening,
hacking up phlegm, tearing cloth

[+/- human] vocalization made by people, i.e., laughter,
crying, talking

[+/- loud] auditory information of inherently high
amplitude, i.e., explosion, screaming, shat-
tering

[+/- motion] depicts active (the act of X) movement,
i.e., walking, chopping, splashing, sneak-
ing, flapping, water boiling, bumping, spit-
ting, firecrackers exploding

[+/- sound] depicts auditory information (the sound of
X)

[+/- telic] depicts an event which reaches completion
[+/- wind] depicts movement of air, i.e., blowing,

coughing, gales

consonants for each ideophone. An independent transcriber
checked the validity of the transcriptions as well as featural
descriptions of ideophones. Ideophones were then coded for
semantic features following criteria below (Table 1).

Semantic Features

Feature were created to correspond to Dingemanse (2012)
implicational hierarchy of ideophones which lists the follow-
ing semantic categories: sound <movement <visual patterns
<other sensory perceptions <cognitive states. Additional
categories were created based on observations of what ideo-
phones depict cross-linguistically (Hamano, 1998; Hinton,
Nichols, & Ohala, 2006; Van Hoey, 2018; Nuckolls et al.,
2017). It is important to note that semantic features are not
mutually exclusive. An ideophone may be coded for multiple.
For example, the Chaoyang ideophone /hu.hu/ wind blowing
was coded with [+sound] (because this ideophone depicts an
auditory percept), [-telic] (because this ideophone does not
involve a perceived endpoint of an event), [+wind] (because
this ideophone involves a percept created by the movement of
air), and [-motion] (because this ideophone is not depictive of
an action plus its resulting sound or manner thereof). In total
18 features in Table 1 were considered.

Articulatory Features

We categorized place, manner and laryngeal features in our
phonetic transcriptions of ideophones into 7 groups (see Table
2), based on how the articulators (lips, tongue) and airflow are
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Table 2: Articulatory features
Articulatory Feature Description
[+labial] usage of one or both lips
[+tongue resting ] tongue is in resting/neutral po-

sition and not raised
[+tongue root] usage of back of tongue (dor-

sum)
[+airflow] air is forced out through a nar-

row channel in the mouth, i.e.,
fricatives

[+velum] (nasal) velum is lowered and air es-
capes through the nasal pas-
sage

[+oral contact] lips and/or tongue make con-
striction

[+vocal folds] vibration of the vocal folds

involved in their production3.
While some features can be subsumed by another, such

as [+labial] by [+oral contact], which is relevant to both the
lips and the tongue, the decision to test a more specific fea-
ture is to keep distinctive place features that are frequently
contrastive among ideophones; for example, in Chaoyang,
we have [+labial] [+oral contact] ideophone /pu.pu/ mean-
ing rapid movement and [-labial] [+oral contact] ideophones
/tsu.tsu/ whispering. Likewise, in Pastaza Quichua we have
[+labial] [+oral contact] /pAw/ manner of being turned down-
ward and [-labial] [+oral contact] /kw/ sound of stepping on
dry leaves. We also include [+tongue root], which is specific
to a particular part of an articulator given their frequent con-
trastiveness among ideophones. For example, in Akan we
have [+tongue root] /kuu/ call of a large bird and [-tongue
root] /tuu/ manner of hitting with the fist. The reason we cre-
ated encompassing features, i.e., [+oral contact] or [+tongue
resting], was so that general manner of the consonant is de-
scribed regardless of place in the oral tract. There are 14 ar-
ticulatory features when counting the negative counterparts of
Table 2. If properties of iconicity are truly universal, then we
predict that the universally accessible properties captured by
our articulatory features should bear the explanatory power
for what perceptuo-motor affordances underpin iconicity and
its notions of (analogical) depiction.

We coded semantic and articulatory features in Table 1 and
2 for all consonants found in the ideophones in our database
using binary features. Our coding did not consider syllable
structures or semantic hierarchy of ideophones, treating all
consonants in all ideophones equally. We measured the ra-
tio of each semantic feature given each articulatory feature to
see if a semantic feature is more likely to co-occur specifi-

3[+airflow] applies to IPA symbols /F B f v T D s z SZ ù Þ ç J x G
X K è Q h H/. [+tongue root] IPA = /j c Í k g ñ N ç J x G j î ń Ï/.
[+labial] IPA = / p b m à F B M v V f á w/. [+velum] IPA = /m M n ï
N ð/. [+oral contact] IPA = /p b m à F B M v V V f T D t d n r R z Ð ô l s
ì S Z ã ï ó Þ ù õ c Í ñ ç J j ń k N x Gî Ï á â ä w/. [+tongue resting]
IPA = / t è Q p b m à B F M v V f V/.

cally with certain articulatory features. We used chi-squared
tests to see if the distributions of a binary articulatory feature
differ between two samples: ideophones that have the seman-
tic feature X and those that do not in a given language. The
ratios then entered into a Wilcoxon’s sign rank test.

Hypotheses
We have made 4 preliminary hypotheses based on obser-
vations from the phonosemantic literature. These observa-
tions are grounded in perceptuo-motor analogy but have yet
to be tested for ideophone inventories across languages. (1)
Stop consonants, characterized by total occlusion of airflow,
i.e., [-airflow], have been observed for ideophones indicat-
ing complete, i.e., [+telic], events or events with abrupt end-
ings (Diffloth, 1979; Hinton et al., 2006; Hamano, 1998;
Alpher, 1994; Taitz et al., 2018; Strickland et al., 2017). (2)
Fricatives, i.e., [+airflow], have been associated to wind or
friction between two objects (Diffloth, 1979; Oswalt, 1994;
Hinton et al., 2006; Ofori, 2009; Taitz et al., 2018). Im-
provised vocal imitations have shown that (3) labial conso-
nants, i.e., [+labial], are associated with the sounds resulting
from motion, i.e., [+motion], (4) while dorsal consonants, i.e.,
[+tongue root], are associated with movement itself (Taitz et
al., 2018) i.e., [+motion] in our feature set.

Analysis
We analysed every semantic feature (32) against every articu-
latory gesture feature (16), and removed all the pairs when
there were two or more languages that did not have ideo-
phones with either the semantic feature, or the articulatory
gesture considered (n=213). In total, we analysed 299 pairs of
semantic features and articulatory gestures. When evaluating
the significance of a mapping between an articulatory gesture
and a semantic feature, we compared it against all ideophones
that did not have the semantic feature. To do this, we com-
pared on an individual-language basis the distributions of a
binary articulatory feature in two samples: ideophones that
have the semantic feature X (e.g. “human vocal” vs “not hu-
man vocal”) and those that do not in a given language. We
are thus testing for differences in distributions of a binary
feature. We first compare these ratios for each individual
language. Because the sample sizes were quite low in some
comparisons (5-6 samples for e.g. the “human vocal” cate-
gory in some languages), we use the chi-squared test. To test
whether mappings of articulatory gesture to meaning were
consistent across languages, we pooled the data from across
languages. We decided not to run tests on all the agreggated
ideophones across languages, as this would have been biased
by the differences in sample sizes across languages. Instead,
we compared the ratios from the previous analysis done at the
individual language level. There were many maximum ratios
(i.e. languages where all words have a given feature). We thus
used a wilcoxon’s sign rank test, since it is a non-parametric
test and does not assume the data to be normal like e.g. a
paired Student’s t-test.
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Table 3: Articulatory feature to semantic feature mappings
significant across 13 languages.

# Articulatory
Feature

Semantic
Feature

Correlation
across all
languages
(Wilcoxon’s
test p-
values)

Number
of individ-
ual lan-
guages,with
significant
chi-squared
(p<0.05)

1 -airflow +telic 0.0015 7
2 +airflow +wind 0.0015 6
3 -airflow +motion 0.0019 4
4 +airflow +friction 0.0024 4
5 +labial +motion 0.0107 4
6 -vocal

folds
+telic 0.0121 4

7 -tongue
resting

+telic 0.0159 4

Results
Out of 299 combinations of articulatory to semantic features,
69 combinations were significant across languages accord-
ing to Wilcoxon signed rank tests. To be conservative, we
used the results of the single-language chi-squared tests as
a threshold for reporting Wilcoxon signed rank tests across
languages. Specifically, Wilcoxon tests reported here are
only those that apply to combinations which were significant
(p < 0.05) for 4 or more languages on an individual basis. 7
articulatory feature and semantic feature, shown in Table 3,
were above this threshold. The correlations in Table 3 are or-
dered according to the number of languages who had a signif-
icant articulatory to semantic feature correlation. The correla-
tion of [-airflow] to [+telic] and [+airflow] to [+wind] are our
most robust articulatory feature to semantic feature mapping
(z = 0.00, p = 0.0015) across all languages, and are signif-
icant (χ2,p < 0.05) for 7 and 6 languages on an individual-
basis respectively. The correlation of [-airflow] to [+motion]
is significant across all languages (Wilcoxon, p = 0.0019).

Discussion
Our results overall show that certain articulatory properties
map to semantic features of ideophones from 13 languages.
More specifically, our results show that phonosemantic map-
pings as proposed in the ideophone literature (see Hypothe-
ses section, hypotheses 1-3) are supported, while [+/-tongue
root] was not significant for [+/- motion] as claimed by hy-
pothesis (4). Table 3 shows that five modes of articulation
create robust cross-linguistic patterns with regards to imita-
tive meaning. These five modes are: tongue movement, lip
movement, airflow, velum lowering (nasal airflow), and vocal
fold vibration. This suggests that the imitative nature of ideo-
phones is begotten from perceptuo-motor analogies afforded
by such articulatory properties. That is to say, imitative words
to an extent derive their imitative meaning through their ar-

ticulation, implying that articulatory properties of speech are
a potential route for explaining the iconic nature of words,
such as ideophones. By extension, words of contested iconic
nature could thus be deemed more or less iconic depending
on whether their articulatory properties support such a claim,
For example, if gl- of glisten, glimmer, glint was to be proven
iconic and therefore imitative, an analogy supported by artic-
ulatory features would be required to argue for its purported
meaning of luminescence.

If iconicity is imitative due to perceptuo-motor anal-
ogy (Dingemanse, Blasi, Lupyan, Christiansen, & Mon-
aghan, 2015) (relations made between sensory percepts and
movements), then articulatory properties should likewise map
to semantic features for reasons grounded in perceptuo-motor
analogy. In Table 4, we propose the perceptuo-motor analo-
gies that allow these articulatory properties to pattern with
their semantic features and are in turn embedded in a given
ideophone on a sub-phonemic level.

There are few things worth noting regarding the overlap
of semantic features. First is that the articulatory feature
[+airflow] corresponds to semantic features [+friction] and
[+wind] but not motion, i.e., [+air flow] corresponds to [-
motion]. This does not imply that [+friction] ideophones are
not coded for movement related meaning (as friction must
imply some kind of movement). Rather, this implies ideo-
phones which are no to do with motion4, and are thus beyond
motion on Dingemanse (2012) semantic hierarchy for ideo-
phones, involve [+airflow]. With that in mind, the finding that
[+labial] corresponds to [+motion] would imply that some
(not necessarily complete) occlusion of airflow made by con-
tact with the articulators, is involved in the perceptuo-motor
analogy of [+motion]. However, here we would argue that it
is the movement of the articulators, not the blockage of air,
which affords this perceptuo-motor analogy of movement.
This is because [+labial] allows for labio- and labiodental
fricatives which of course are consonants coded as [+airflow].
This is further supported by the fact that [-tongue resting],
i.e., tongue movement rather than lip movement, also cor-
responds with [+telic]. Implying that the tongue is used to
occlude air in the oral tract to give us the correspondence of
[-airflow] to [+telic].

Another observation regarding the overlap of features is
that the semantic feature [+telic] is associated with articu-
latory features [-vocal folds], and [-airflow]. Bear in mind
that our feature airflow does not encompass nasal consonants,
i.e., air escaping through the nose. We did not find the re-
lation of [+velum] to [+telic] to be significant overall using
our Wilcoxon signed rank test (p=0.0869) and thus it is unre-
ported in Table 4. However our chi-squared tests showed it to

4There are very few ideophones in our database which are [+mo-
tion] but [-sound]. If ideophones are [+motion] they are almost al-
ways [+sound], implying that the sound is resultative of the motion
and somehow semantically entails it. For example, an ideophone for
the sound of footsteps would be [+sound] and [+motion]. The re-
verse however is not true. For example, the sound of a cow or the
sound of wind blowing is [+sound] but [-motion].
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Table 4: Analogical justifications for articulatory feature and semantic feature correspondences across 13 languages.
# Articulation Corresponds Justification (≈ analogical to)
1 -airflow +telic airflow occlusion ≈ cessation of an event
2 +airflow +wind continual airflow ≈ air movement
3 -airflow +motion movement of articulators to obstruct airflow ≈ movement depiction
4 +airflow +friction airflow sibilance ≈ sibilance of friction and/or ≈ rubbing of two surfaces
5 +labial +motion movement of lips ≈ motion depiction
6 -vocal folds +telic lack of vocal fold vibration ≈ cessation of an event
7 -tongue resting +telic active tongue movement to create [-airflow] articulation ≈ cessation of an event

be significant (p< 0.05) in 5 languages on an individual basis
(Chaoyang, Akan, Kam, Maai, and Manyika Shona). Though
not as robust as other findings, taken together with the other
[+telic] associations, this [+velum] to [+telic] pattern would
suggest that unvoiced stops are likely associated with telic-
ity, nasal consonants are an exception. This implies that the
occlusion created by nasal consonants (air blocked from en-
tering the oral cavity) is just as important as the occlusion
of air from escaping the oral cavity for [+telic] ideophones.
We can propose that it is the articulatory gesture of blocking
of air, an articulatory property common to [+velum] and [-
airflow] consonants, that affords the perceptuo-motor analogy
of [+telic]. Vocal fold vibration is inherent to nasals. How-
ever, as our results show, [-vocal folds] is significantly asso-
ciated to [+telic] ideophones. This implies that the [-airflow]
consonants are those that are unvoiced. Based on the articula-
tory similarities between [-airflow] and [+velum] consonants,
we might also propose that the voicing inherent to nasals is
not as important for perceptuo-motor analogy of [+telic] as
the occlusion of air. Overall, our results also show for some
languages certain articulatory properties pattern with seman-
tic features while others do not. Therefore some perceptuo-
motor analogies could be language specific. These language-
specific results may have come about for a number of reasons.
Firstly, phoneme inventories differ across languages so it is
inevitable that some languages make use of certain articula-
tory features less than others, e.g., voicing. Crucially, we did
not take predictable phonotactic processes into account when
entering the ideophones into our database. Phonotactic pro-
cesses could result in the addition or deletion of certain seg-
ments in order to satisfy language-specific phonological rules
and thus potentially obscuring and/or skewing the articula-
tory features present for imitative purposes only. Controlling
for said phonotactic processes requires in-depth analysis per
language (Thompson & Do, in press). We would like to em-
phasize, however, that our main goal here was to see if there
were any cross-linguistic articulatory-semantic patterns de-
spite the presence of language-specific phonotactic patterns.
The significance of eight articulatory-semantic feature map-
pings show that this is possible.

Future directions of research could look into how syllable
structure affects the patterning of articulatory features with
semantic features. For example, stop consonants, character-
ized as [-airflow] in our study, might be more attested in codas

of ideophones depicting telic events, since the coda is the final
segment of a syllable and is thus considered imitative of an
events endpoint (Hinton et al., 1994; Strickland et al., 2017).
Articulatory properties of vowels are also an obvious direc-
tion for future studies, especially given what has been gleaned
from the rich literature on kiki-bouba studies (Lockwood &
Dingemanse, 2015), as well as recent acoustic work on vocal
imitations (Perlman & Lupyan, 2018). Given that we only re-
port correlations between individual articulatory features and
individual semantic features, future tests could look at how
features cluster together, e.g., [+labial] [-airflow] or [+telic]
[+motion]. Experimental research could test the results of
our study by seeing whether (1) articulatory feature and se-
mantic feature patterns are easily learnable for novel words
or ideophones, (2) speakers refer to these articulatory features
or perhaps exaggerate them when explaining the meaning of
ideophones, as with Dingemanse (2015)’s study on folk defi-
nitions of Siwu ideophones. Finally, our study unifies iconic-
ity in the spoken and visual modalities, since both rely on
movement to make imitative meanings.
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Abstract

Cumulative cultural evolution is a distinctively human form
of information-processing that endows our societies with im-
probable and efficient technologies. But how objective is this
process? A widely held conjecture is that human cognitive
biases can constrain cumulative cultural evolution, and there-
fore shape our discoveries. We present a Bayesian analysis of
a simple form of cumulative cultural evolution. This model
allows us to formulate and test the theoretical conjecture in
an experimental setting. Across a series of behavioural ex-
periments, we show that people’s inductive biases constrain a
population’s ability to discover counter-intuitive virtual tech-
nologies in a simple search problem. Our analysis highlights
formal relationships between cumulative cultural evolution,
Bayesian inference, and stochastic optimization.
Keywords: cumulative cultural evolution; inductive biases;
optimization; computation; Bayes; cultural evolution;

Introduction
We are surrounded by bizarre and complex objects that vastly
improve our lives. To our recent ancestors, many of the tools
and technologies we rely on today were inconceivable, yet
the same innovations will soon seem primitive to our descen-
dants. The capacity for cumulative discovery is a uniquely
human form of information processing on a breath-taking
scale – but how objective is this process? Is technologi-
cal evolution an unbiased search for optimal solutions to the
problems we face? Or is it shaped by the same representa-
tional constraints and biases that limit individuals?

This question has been widely discussed in the context of
cultural evolution (Mesoudi, 2016). Most theories of cultural
evolution agree on the conjecture that in some circumstances,
human cognitive biases must constrain cumulative cultural
evolution (Morin, 2016; Acerbi & Mesoudi, 2015; Claidière,
Scott-Phillips, & Sperber, 2014). This hypothesis has been
widely debated and examined in formal models (Claidière &
Sperber, 2007; Boyd & Richerson, 1985; Henrich & Boyd,
2002; Griffiths, Kalish, & Lewandowsky, 2008), but it has
never been tested experimentally. In part, testing this hypoth-
esis has been challenging because it is difficult to quantify
an appropriate set of expectations in an experimental setting
(Miton & Charbonneau, 2018).

In this paper, we develop a mathematical model of cumu-
lative cultural evolution that allows us to formulate these ex-
pectations precisely. Our model is derived from a Bayesian
analysis of individual cognition. The model makes quantita-
tive predictions about the circumstances under which induc-

tive biases are likely to stifle discovery. To test these pre-
dictions, we adapt a widely studied experimental paradigm
in which participants design and transmit a simple artificial
technology: virtual arrowheads. Our strategy is to first char-
acterise participants’ inductive biases in this context using se-
rial reproduction chain experiments. On the basis of these es-
timates, we conduct a series of arrowhead-design experiments
which differ only in the extent to which task reward structure
contradicts participants’ biases. In the process of formalizing
our predictions, we identify a formal relationship between cu-
mulative cultural evolution and stochastic optimization.

Background
Cumulative Cultural Evolution
Unlike other species, every generation of humans builds on
the insights and actions of their ancestors (Henrich, 2015).
When an Apple engineer develops iPhone security updates,
she makes use of cognitive resources expended by Turing al-
most a century before. In this sense, people alive today ex-
tend the computations initiated by people who faced simi-
lar problems in the past. What kind of process allows us to
effectively pool computational resources with strangers over
seemingly unbounded timescales? Computation over genera-
tions depends on a proclivity to learn from the people around
us and the artefacts they create. When this kind of learning
is repeated over time, a stochastic process is induced. This
process is called cultural transmission (Boyd & Richerson,
1985). In some species, cultural transmission leads to cumu-
lative innovation. This special case is known as cumulative
culture (Mesoudi & Thornton, 2018) and is surprisingly rare
(Whiten, Caldwell, & Mesoudi, 2016).

Discovering Technologies
There are many forms of cumulative culture, but one simple
example has been heavily studied: refinement of technologies
towards consistent functional objectives. Outside of the lab-
oratory, examples of this process are easy to find: motorcy-
cles today are faster, more efficient, more reliable, safer, and
longer-lasting than the motorcycles people rode during the
second World War. In an experimental setting, small-scale
analogues of this process have been studied in several do-
mains. For instance, Caldwell and Millen (2008) showed that
micro-societies of experimental participants discover cumu-
latively more effective ways to design a tall-standing tower
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of spaghetti. In these experiments, later participants observed
the designs of earlier participants, and created taller and taller
spaghetti towers as a result. Similar findings have been
reported in lineages of participants designing simple knots
(Muthukrishna, Shulman, Vasilescu, & Henrich, 2014), paper
aeroplanes (Caldwell & Millen, 2008), rice baskets (Zwirner
& Thornton, 2015), and fishing nets (Derex, Beugin, Godelle,
& Raymond, 2013), for example.

Inductive Biases in Cumulative Culture
Cumulative cultural evolution can be recreated and manipu-
lated in the laboratory. However, it remains unclear whether
the products of these processes are shaped by biases in the
way people think, or whether inductive biases and repre-
sentational constraints are effectively washed out over time.
This has been difficult to establish empirically, in part be-
cause it is often challenging to quantify the influence of peo-
ple’s inductive biases. Recent reviews have noted that exper-
imental tasks often feature unconstrained or difficult to quan-
tify design spaces (Miton & Charbonneau, 2018), and that
there is a need for a better understanding of the information-
processing dynamics that link cognition and cultural evolu-
tion (Mesoudi & Thornton, 2018; Heyes, 2018). Mathemat-
ical analyses have repeatedly identified the potential for hu-
man biases to shape cumulative cultural evolution (Claidière
& Sperber, 2007; Boyd & Richerson, 1985; Griffiths et al.,
2008). However, extending abstract models to an experimen-
tal setting remains a challenge. Here, we introduce a formal
model that is closely related to these theories of culture, but
derived from a Bayesian analysis of cognition, and therefore
directly applicable in an experimental context. Our analysis
extends prior Bayesian models of cultural evolution (Griffiths
& Kalish, 2007; Navarro, Perfors, Kary, Brown, & Donkin,
2018) to the cumulative case. The model we introduce allows
us to specify formal predictions about the circumstances in
which inductive biases constrain cumulative cultural evolu-
tion, and test those predictions experimentally.

Model: Optimization by Cumulative Culture
Our analysis applies to settings in which the design features
of a technology can be described in terms of (n) continu-
ous valued parameters Θt ∈ Rn. This setting offers a natural
connection to prior experimental work, in which participants
modify design features such as length, height, width, angles,
crossing points, mass, or hue.

Induction of a Design
Each new individual estimates these design features from
artefacts produced by the previous generation. If this estima-
tion procedure can be given a formulation as Bayesian infer-
ence, then an individual’s estimate Θ̂ can be decomposed into
a trade-off between two quantities: noisy empirical observa-
tion of the true design features Θ; and inductive biases im-
posed by cognition. Inductive biases can expressed as a prior
distribution p(Θ). Using this framework, Θ̂t can be treated as

a random variable distributed according to the posterior dis-
tribution implied by a Bayesian model of learning.

Innovation
After estimating the existing design, each participant attempts
an innovation. Assume a f : Θ→ R is a function that re-
flects the utility of a technology with respect to it’s design
features. In the literature on cultural evolution, this quan-
tity would sometimes be referred to as a fitness landscape.
We will make the assumption that individuals are capable of
bounded, local innovation. This is appropriate to scenarios
in which innovation is largely driven by an ability to iden-
tify similar but improved variants of whatever already exists,
through limited experimentation with minor design variations
for example. Local information about f can be naturally ex-
pressed as its gradient with respect to design features, evalu-
ated at Θt . We denote this quantity ∇ f = ∇Θ f (Θt).

Diffusion Chains
These assumptions formalize a simple theory of cumulative
culture as repeated cycles of observation, induction, and local
innovation, leading to the expression:

Θ
t+1 = Θ

t −α∇ f − (Θt − Θ̂
t) , (1)

where t ∈ 1, . . . ,T denotes a specific generation in a transmis-
sion chain. This equation describes a single step of a trans-
mission chain in terms of the relationship between an exist-
ing technology (Θt ), its utility ( f ), its status with respect to
human cognitive constraints and the fidelity of transmission
(Θt − Θ̂t ), and an innovation rate (α). We examine the prop-
erties of this general model under some simplifying assump-
tions.

Assumption 1: Gaussian Prior & Observation Noise As-
sume individual learning can be modelled as probabilistic in-
ference in a Gaussian model: observations of an existing de-
sign are noisy, and this noise can be approximated by Gaus-
sian corruption of the true design features; inductive biases
can be approximated by a Gaussian distribution.

Assumption 2: Independent Features Individual design
features θi ∈ Θ can be treated independently. This is a limit-
ing assumption, but nonetheless appropriate to many relevant
contexts. If µi is the prior expectation, the posterior expecta-
tion is:

E
[
θ̂

t
i
]
= λiµi +(1−λi)θ

t
i (2)

where λi = σ2
i /(σ

2
i + δ2

i ) reflects the relative variance of the
prior (δ2

i ) and observation noise (σ2
i ) – in other words, the

strength of an inductive bias p(θi) relative to the fidelity of
transmission.

Chain Dynamics
The expected change at each generation can be written:

E
[
θ

t+1
i −θ

t
i
]
= λi(µi−θ

t
i)−α∇ f . (3)
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which implies no further accumulation in expectation when
∇ f = ∇∗f , where ∇∗f ≡ (µi−θt

i)(λi/α). This cultural process
will halt if the potential for local innovation drops below a
threshold determined by: the distance of the current design
from the prior expectation (µi−θ), relative to a willingness to
explore (α), weighted by the balance of prior and empirical
leniencies in learning (δ2

i /σ2
i ).

Assumption 3: Quadratic Utility Landscape The fate of
the process is closely tied to the utility landscape in which it is
operating. A simple but broad class of cases can be captured
by the assumption that there is an optimal design Θ∗, and that
f can be locally approximated by a quadratic surface with the
optimum design at its minimum / maximum. In this regime,
utility decreases with squared distance from the optimum at a
rate proportional to a parameter a. A utility landscape that can
be described in this manner has gradients ∇ f = a(θ−θ∗i ). A
transmission process acting on a utility landscape of this form
will halt in expectation if it reaches θt

i = φ∗i :

φ
∗
i = λ

∗
i µi +(1−λ

∗
i )θ
∗
i (4)

which is a linear combination of the prior mean µi and the
optimum design θ∗i with mixing proportions:

λ
∗
i = σ

2
i /(σ

2
i +αas) (5)

where s = δ2
i +σ2

i . Equations (4) and (5) represent our main
theoretical result. Our analysis predicts that the outcome
of a transmission chain is a compromise between the in-
ductive biases of individuals and the optimal design. When
these conflict, the balance of the compromise is quantifiable
from the relationships between: transmission fidelity (σ2

i ),
strength of inductive bias (δ2

i ), an exploration rate (α), and
the slope of the utility landscape (a). The weighting factor
0 ≤ λi ≤ 1 interpolates between cultural evolutionary pro-
cesses that are constrained by inductive biases (λ→ 1) and
therefore dragged back toward the prior p(θi), and processes
that are dominated by information contained in the the util-
ity landscape (λ→ 0), and therefore destined to discover an
objective optimum.

Biased Computation by Cumulative Culture
One way to interpret this finding is as a description of the
computation that is being implemented by the process we
have analysed – the computation implemented by a chain of
individuals. Two analogies motivate this interpretation. First,
equation (5) has the same form as equation (4). At each gen-
eration, an individual person performs a computation that we
formalized as a sample from the posterior distribution in a
Bayesian model of inference. This computation is biased and
local: the expectation is a linear combination of the individ-
ual’s inductive bias and the currently existing design θt . How-
ever, the chain as a whole can be understood to implement a
biased but global computation: equation (5) describes the ex-
pectation of a posterior distribution computed by the same
kind of learner after observing (a noisy realisation of) the op-

timal design θ∗. Second, in the Gaussian case, equation (1)
can be rewritten as:

θ
t+1
i = θ

t
i−α∇ f −λi(θ

t
i−µi)+ ε

t
i (6)

which is a form of stochastic gradient descent with regular-
isation. Stochastic optimization and Bayesian inference are
known to be related (Mandt, Hoffman, & Blei, 2017). This
highlights a common interpretation of cognitive and cultural
processes – they are both forms of information processing.
This cultural process solves an optimization problem subject
to regularisation by human inductive biases. In the remainder
of this paper, we test this prediction.

Experiment: Discovering Virtual Technologies
We adapted an experimental paradigm that has been widely
used to study the influence of social learning on cumula-
tive culture (Mesoudi, Chang, Murray, & Lu, 2015). The
experimental task involves designing a virtual arrowhead.
The arrowhead has a number of attributes (e.g. length,
width) that can be modified and achieves a score when de-
ployed on a virtual hunt. The score reflects the number
of calories of food earned by the arrowhead. Participants’
goal was simply to test and redesign a single arrowhead
they inherited, in an attempt to increase its score. This
paradigm allowed us to construct a low-dimensional search
problem in which we hypothesised that task-naive partici-
pants would display biased expectations. Athough there is
signfificant discussion surrounding the definition of cumu-
lative cultural evolution, a central requirement is that over
time, it’s products must“enhance some measure of perfor-
mance...[through]...sequential improvements...” (Mesoudi &
Thornton, 2018). In our experiment, unconstrained cumu-
lative cultural evolution would correspond to the chains of
participants sequentially designing arrowheads that achieve
higher scores until the maximum score is achieved.

Method
Stimuli The experiment was presented as a website. Partic-
ipants designed a virtual arrowhead using two HTML range
sliders which modified its width and length. Figure 1 shows
the design space. During experimental trials, the screen was
split into left (25% screen width) and right (75% screen
width) panels. The left panel displayed the participant’s esti-
mate of the arrowhead they inherited in reduced proportions
that nonetheless preserved the design. Underneath was a de-
piction of two range-sliders positioned in accordance with the
arrowhead’s attributes, and text indicating the number of calo-
ries that the arrowhead earned. The main panel (Right) dis-
played an arrowhead in the center, pointing downwards. Two
range-sliders were located beneath the arrowhead. Moving
a range-slider modified either the length or the width of the
arrowhead dynamically. Both dimensions of the arrowhead
could take values ranging between 50 and 150 pixels.

Arrowhead scores were determined by a quadratic func-
tion of the form f (θi) =

1
2 a(θi−θ∗i )

2 + c, where θ∗i is the
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Figure 1: Regularly sampled virtual arrowheads in a design space
implied by the ability to modify two features – length and base
width.

optimum value for feature θi. We chose to use this family
of functions because it constructs a smooth utility landscape
with a single optimum. Previous work has focused on con-
ditions that allow populations to search effectively through
more complex landscapes with both local and global optima
(Acerbi, Tennie, & Mesoudi, 2016). In contrast, our anal-
ysis focuses on a problem that should be relatively easy to
solve optimally if people’s inductive biases do no constrain
cultural evolution. Quadratic functions are also the class of
landscapes we examined in our theoretical analysis.

Within the family of quadratic landscapes, we required a
function which was: smooth over the full range; did not re-
turn negative scores; had an optimum (maximum) score that
lies within a semantically reasonable range given the framing
of the task. To meet these requirements, we set α =−30 and
c = 10000 for all experiments and divided the result by 100.
Given our settings of θ∗i (see below), the maximum available
score was 1000 calories. Calories decreased away from θ∗i at
a rate given by ∇ f =− 3

10 (θ
t
i−θ∗i ). To award a score, we com-

puted f for both arrowhead features (length and base width)
and awarded the mean.

Procedure Participants were informed that: they would go
on a virtual hunt; their task was to design a virtual arrowhead
that will earn as many calories of food as possible on the hunt;
a bonus payment would be made in proportion to the number
of calories their arrowhead earned. After consenting to the
experiment, participants completed an Information Trial (IT),
during which they observed the arrowhead they had inher-
ited (first generation participants inherited an arrowhead with
a randomly sampled design). This arrowhead was displayed
in the center of the right panel for 3000 milliseconds. Par-
ticipants then recreated the arrowhead as accurately as pos-
sible. Participants then proceeded to the first Modification
Trial (MT). The participant’s estimate of the arrowhead de-
sign was displayed as the arrowhead they inherited in the left

panel. Participants completed four MTs. During each MT, θ̂t
i

was displayed in the left panel. At the beginning of an MT, no
arrowhead was displayed in the right panel, and the positions
of the range-sliders were randomised. Participants could not
proceed to the next trial until at least one range-slider had
been modified. Upon modifying any of the rage-sliders posi-
tions, the arrowhead was redrawn. Modifications were lim-
ited to a range of ±30 pixels around θ̂t

i . This enforced a
weak restriction on the innovations participants could make
in accordance with our theoretical model. There was no limit
to the number of times participants could modify the range-
sliders in a given MT. Once satisfied, participants could click
Submit to obtain feedback – the number of calories earned by
the current arrowhead design. Arrowheads evaluated during
previous MTs were displayed (in reduced proportions) in the
left panel, in trial order. After completing four MTs, partici-
pants were informed that their opportunity to test arrowheads
was complete and proceeded to the test trial (TT). Participants
were reminded that the arrowhead they designed during this
trial would determine a bonus payment. TT was identical to
MT in all other respects.

Participants Participants (n = 1000) were recruited online
using Amazon’s Mechanical Turk. The experimental proto-
col was approved by the University of California, Berkeley’s
Committee for the Protection of human Subjects. Participants
were paid $0.50 to complete the experiment, and awarded a
performance-based bonus of up to $0.50. Most participants
completed the experiment in less than three minutes. Data
from any participants who completed the experiment in less
than 20 seconds were rejected.

Figure 2: Participant view of the experiment. Screenshot shows
the fourth Modification Trial. At this point in the expreriment, the
participant has completed the Information trial (and recreated their
inherited arrowhead, shown first in the left panel) and three Modifi-
cation Trials (the arrowheads tested by the particiant so far and their
scores are shown in the left panel).
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Figure 3: All arrowheads produced by participants at generation 3
or later in 20 serial reproduction chains of 10 generations each. A
sample based approximation to participants’ inductive biases, p(θ).

Results

Reproduction Chains We first ran a simpler experiment
using the same stimuli. This experiment used serial repro-
duction chains to characterise participants’ inductive biases in
our stimulus set. In these chains, each participant completed
an IT, but did not proceed to MT and TT. Each participant
observed the arrowhead designed by the previous participant,
and was asked to reproduce it as accurately as possible. Previ-
ous mathematical (Griffiths & Kalish, 2007) and experimen-
tal (Griffiths et al., 2008; Xu & Griffiths, 2010) research has
established that serial reproduction chains characterise partic-
ipants’ inductive biases. Figure 3 shows the distribution of ar-
rowheads produced by all participants at generation 3 or later
(in all our analyses, the first two generations of a chain are ex-
cluded as burn-in generations to minimise the effects of ran-
dom initial conditions), across 20 serial reproduction chains
of 10 generations each. This collection of arrowheads can
be understood as a sample-based approximation to the prior
distribution p(Θ). The empirical mean of this distribution is
µ̂width = 111, µ̂length = 118. People favoured arrowheads that
are relatively long and relatively wide.

Optimization Chains In light of participants’ inductive bi-
ases, we conducted four experiments. We treat these as sepa-
rate experiments rather than experimental conditions because
they were carried out sequentially. Each experiment (20
chains of 10 generations) featured a utility landscape with
a differently located optimum but the same calorie gradient
surface. Our prediction was that differently located optimums
would lead to differential discovery of those designs, and dif-
ferential task success (number of calories). Our mathematical

analysis identified the distance between the optimum arrow-
head and the mean of the prior distribution p(θ) as the cru-
cial predictive quantity: optimal arrowheads that are farther
from the prior distribution should be harder to find because
they are less intuitive. Figure 4 shows our results. Experi-
ment 1 (θ∗width = 115,θ∗length = 115) was designed to be most
consistent with people’s inductive biases. In this experiment,
the arrowheads people designed scored well (mean calories
M = 948, SD = 46). Experiment 4 was least consistent with
people’s biases, contradicting people’s expectations in both
dimensions. Success in the task suffered as a result (M = 794,
SD = 183). Experiments 2 (θ∗width = 75,θ∗length = 115, M =
912, SD = 98) and 3 (θ∗width = 115,θ∗length = 75, M = 845,
SD = 132) were designed to contrast with people’s biases in
one of the two dimensions – width and length respectively.

We combined data from all four experiments and com-
puted the difference between the optimum arrowhead and
the mean of the prior distribution. The main prediction of
our formal model (equation 4) can be rearranged into a lin-
ear model of the form φ∗i = µ̂i + β(θ∗i − µ̂i). This allowed
us to perform an ordinary least squares regression analysis
of this model in our experimental data. The prediction was
upheld. Accounting for the mean of the prior distribution
(β̂ = 1.0, p < .001) and the difference between the mean of
the prior and the optimum design (β̂ = 0.42, p < .001) ac-
counted 96% of the variance in the features of the arrowheads
people produced (R2 = 0.962). We also analysed task suc-
cess, and found significant differences in the distribution of
arrowhead scores in all pairwise comparisons of our four ex-
periments (at α = .05). Only the comparison between exper-
iments 3 and 4 (t(197) = 3.2, p = 0.0017) was not significant
at α = .001. Figure 4 (b) shows how task success reduced
over the four experiments. Finally, we computed the predic-
tions of our mathematical model under the inferred mixing
proportions λ explicitly. Figure 4 (c) shows these predictions.

Conclusion

We introduced a simple formal theory of cumulative cultural
evolution. We used this theory to predict how the inductive
biases of individuals would constrain a cultural process. We
tested this prediction in a series behavioural experiments. We
found that discovery of an optimal virtual technology in a
simple search problem was impeded by people’s inductive bi-
ases. These results reinforce a theoretical conjecture that had
previously not been studied empirically. Our analysis high-
lighted formal connections between cumulative cultural evo-
lution, Bayesian inference, and stochastic optimization. Our
results suggest a more general insight: identifying the algo-
rithm that is implemented by a cultural process can allow us
to characterise the computation it performs, yielding a cog-
nitive interpretation of the process in information-processing
terms. Our results showed that computation by cumulative
culture can be biased. This naturally raises the question: un-
der what circumstances is computation by culture unbiased?
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(a)

(b)

(c)

Figure 4: Results of all optimization experiments. Above (a): ker-
nel density estimates of the distribution of arrowheads produced by
all participants at generation 3 or later. Dotted lines show the loca-
tion of the optimum arrowhead in design space. Middle (b): The
distribution of scores obtained by the arrowheads produced by par-
ticipants at generation 3 or later in all optimization chains. The Eu-
clidean distance between the optimum arrowhead and the mean of
the prior distribution predicts task success (No. calories). Below
(c): Mean arrowhead design produced by all participants at gener-
ation 3 or later in all optimization chains (yellow cross), alongside
the mean design predicted by our mathematical model (after fitting
λ to experimental data, blue circles), the empirical mean of the prior
distribution (µ̂, green plus), and the experiment-specific optimum
design (black arrowhead).
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Abstract
Constrained by results from classic behavioral experiments we
provide a neural-level cognitive architecture for modeling be-
havior in working memory tasks. We propose a canonical
microcircuit that can be used as a building block for work-
ing memory, decision making and cognitive control. The con-
troller controls gates to route the flow of information between
the working memory and the evidence accumulator and sets
parameters of the circuits. We show that this type of cognitive
architecture can account for results in behavioral experiments
such as judgment of recency, probe recognition and delayed-
match-to-sample. In addition, the neural dynamics generated
by the cognitive architecture provides a good match with neu-
rophysiological data from rodents and monkeys. For instance,
it generates cells tuned to a particular amount of elapsed time
(time cells), to a particular position in space (place cells) and
to a particular amount of accumulated evidence.
Keywords: Cognitive architecture; Neural-level modeling;
Working memory; Cognitive control; Decision making; Judg-
ment of recency; Probe recognition; Delayed-match-to-sample

Introduction
Behavioral experiments provide important insights into hu-
man memory and decision making. Building neural systems
that can describe these processes is essential for our under-
standing of cognition.

Here we propose a neural-level architecture that can model
behavior in different working memory based cognitive tasks.
The proposed architecture is composed of biologically plau-
sible artificial neurons characterized with instantaneous firing
rate and with the ability to: 1) gate information from one set
of neurons to the other (Hasselmo & Stern, 2018; Bhandari
& Badre, 2018; Sherfey, Ardid, Miller, Hasselmo, & Kopell,
2019) and 2) modulate the firing rate of other neurons via gain
modulation (Salinias & Sejnowski, 2001). The architecture
is based on a canonical microcircuit that represents continu-
ous variables via supported dimensions (Shankar & Howard,
2012; Howard et al., 2014). The microcircuit is implemented
as a two-layer neural network. The same microcircuit proto-
type is used for maintaining a compressed memory timeline,
evidence accumulation and for controlling the flow of actions
in a behavioral task. Here we demonstrate that this archi-
tecture can be used for modeling behavioral responses and
neural activity in a variety of working memory tasks.

A neural architecture for cognitive modeling
We sketch a neural cognitive architecture and apply it to three
distinct working memory tasks. The architecture is com-

posed of multiple instances of a canonical microcircuit (Fig-
ure 1). This microcircuit represents vector-valued functions
over variables. These functions can be examined through at-
tentional gain field and then used to produce a vector-valued
output. We first discuss the properties of the microcircuit.

Function representation in the Laplace domain
The microcircuit consists of two layers. The first layer ap-
proximates the Laplace transform of f(t) (a vector across the
input space) via set of neurons which can be described as
leaky integrators F(t,s), with a spectrum of rate constants s.
Each neuron in F(t,s) receives the input and has a unique rate
constant:

dF(t,s)
dt

= α(t) [±sF(t,s)+ f(t)] , (1)

where α(t) is an external signal that modulates the dynamics
of the leaky integrators. If α(t) is constant, F(t,s) codes the
Laplace transform of f(t) leading up to the present. It can be
shown that if α(t) = dx/dt, F(t,s) is the Laplace transform
with respect to x (Howard et al., 2014). We assume that the
probability of observing a neuron with rate constant s goes
down like 1/s. This implements a logarithmic compression
of the function representation.

The second layer f̃(t, ∗x) computes the inverse of the
Laplace transform using the Post approximation. It is imple-
mented as a linear combination of nodes in F(t,s): f̃(t, ∗x) =
L-1

k F(t,s). The operator L-1
k approximates kth derivative with

respect to s. Because L-1
k approximates the inverse Laplace

transform, f̃(t, ∗x) provides an approximation of the trans-
formed function. It turns out (Shankar & Howard, 2012) that
the width of the activity of each unit in f̃(t, ∗x) depends linearly
on its value of

∗
x with a Weber fraction that is determined by

the value of k.

Accessing the function
The representation described above stores working memory
as a vector-valued approximation of a function over an inter-
nal variable. We assume that this entire function cannot be
accessed all at once, but that one can compute vector-valued
integrals weighted by attentional gain over the function. The
microcircuit includes an attentional gain function G(

∗
x) that is
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Figure 1: A schematic of a neural-level circuit that can be used to model different behavioral tasks. This circuit was used to implement
all the tasks described here. The diagram on the left-hand side displays a configuration of the circuit composed of three blocks: working
memory, evidence accumulator and cognitive control. The cognitive control block executes a sequence of actions. While a particular action
is executed (e.g. waiting for a probe) the sequence is paused by setting its own α to 0. To move to the next action α is set to ±1. Some
actions will access working memory and feed the memory output to the evidence accumulator (e.g. to compare the probe with the content
of memory). Output of the evidence accumulator is sent to the cognitive control block where it is used to trigger an appropriate action (e.g.
press the left button). Each of the three blocks on the left-hand side is implemented with the microcircuit shown on the right-hand side.
The microcircuit takes a vector input (fed into F(t, ∗x)) and outputs a vector of the same size (through f̃(t, ∗x)) selected by the attentional gain
field G(

∗
x) (multiple arrows from G(

∗
x) represent that it can select different

∗
x from f̃(t, ∗x)). Depending on the initialization and inputs, this

multipurpose microcircuit can run a predefined sequence in a self-modulating manner (by modulating its own α), store a compressed memory
representation through sequential activation in f̃(t, ∗x) or encode functions of variables (e.g. accumulated evidence) for which a temporal
derivative is available.

externally controllable. The output of the microcircuit at any
moment is:

O(t) =
N

∑
i=1

G(
∗
xi)f̃(t,

∗
xi), (2)

where N is the number of values of
∗
x used to implement the

function approximation f̃. In models used here we restrict
G(

∗
x) to be unimodal across

∗
x. Attentional gain field can be

made narrow and then activated sequentially, allowing a scan
of the function representation or it can be made broad to sum
across the

∗
x. This enables one to construct cognitive models

based on scanning (e.g., Hacker, 1980) or to construct global
matching models (e.g., Donkin & Nosofsky, 2012).

Working memory: Functions of time
When α(t) is constant, f̃ maintains an estimate of f(t) as a
function of time leading up to the present and we write f̃(t,

∗
τ).

If the input stimulus was a delta function at one point in the
past, the units in f̃(t,

∗
τ) activate sequentially with temporal

tuning curves that are broader and less dense as the stimu-
lus becomes more temporally remote (Figure 2A). Neurons
with such properties, called time cells, have been observed
in mammalian hippocampus (MacDonald, Lepage, Eden, &
Eichenbaum, 2011) and prefrontal cortex (Tiganj, Kim, Jung,
& Howard, 2017). Furthermore, different stimuli trigger dif-
ferent sequences of cells (Tiganj et al., 2018), Figure 2B.
Taken together at any time t, f̃(t,

∗
τ) can be understood as a

compressed memory timeline of the past. The application
of the Laplace transform in maintaining working memory in
neural and cognitive modeling has been extensively studied
(e.g., Shankar & Howard, 2012; Howard, Shankar, Aue, &
Criss, 2015).

Evidence accumulation: Functions of net evidence
In simple evidence accumulation models, the decision vari-
able is the sum of instantaneous evidence available during
the decision-making process. In these models, a decision is
executed when the decision variable reaches a threshold. By
setting α(t) to the amount of instantaneous evidence for one
alternative, we can construct the Laplace transform of the net
amount of decision variable since an initialization signal was
sent via the input f (t). If no new evidence has been observed
at a particular moment then dF(t,s)

dt = 0, thus all the units re-
main active with sustained firing rate. Large amount of evi-
dence will, on the other hand, mean a fast rate of decay. In-
verting the transform results in a set of cells with receptive
fields along a “decision axis” (Howard, Luzardo, & Tiganj,
2018) consistent with recent findings from mouse recordings
(Morcos & Harvey, 2016).

Cognitive control: Functions of planned actions
The program flow control activates a sequence of actions nec-
essary for completion of a behavioral task. For instance, a
typical behavioral task may consist of actions such as attend-
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Figure 1: Constructing a scale-invariant compressed memory representation through an integral transform and its inverse. A.
Microcircuit for representing variables via supported dimensions by implementing equations (1) and (2). B. A response of the network to a

delta-function input. Only three nodes in F(s) and three nodes in f̃ (
⇤
t) are shown. Nodes in f̃ (

⇤
t) activate sequentially following the stimulus

presentation. The width of the activation of each node scales with the peak time determined by the corresponding
⇤
t, making the memory

scale-invariant. Logarithmic spacing of the
⇤
t makes the memory representation is compressed.

Figure 2: A schematic of a neural-level circuit that can be used
to model different behavioral experiments. The three blocks:
working memory, program and evidence accumulator are each im-
plemented with the microcircuit shown in Figure 1A. Program block
sequentially executes actions which include waiting for the probe,
gating information from working memory to the evidence accumu-
lator and reading the output of the evidence accumulator.

evidence accumulation process a(t) will be again set to zero,
then back to -1 when the sufficient amount of evidence has
been accumulated and it is time to take the next action.

Integrating the microcircuits into a framework for
modeling behavior

The three blocks described above: working memory, evidence
accumulation and program control are all constructed from a
same microcircuit (Figure 1A). Each circuit has an input (which
is unused for the evidence accumulation and the program con-
trol blocks), a (which is kept at 1 for the working memory

block) and output.
We connected the three blocks such that that program con-

trol block gates information from the working memory to the
evidence accumulation block and monitors its output (Fig-
ure 2). In general, depending on a behavioral task that is
being modeled, one could use a different number of blocks
connected in different configurations.

Results
First, we evaluate the ability of the proposed architecture
in modeling behavior using human data from the JOR task
(Singh & Howard, 2017). To model the JOR task, the first step
of the model was to wait for the probe item to appear. After
that, the gates were set to scan the memory representation
sequentially from more recent to more distant past. At each
step, the value found in the memory was used to drive two
evidence accumulators, one accumulator for each probe item.
Once one of the two evidence accumulators reached a preset
threshold, the program would continue executing and take an
appropriate action (left or right choice). Variability in the re-
action times was obtained by adding additive Gaussian noise
to the evidence accumulation process. Results in Figure 3C
indicate that the model captures well the aspect of the real
data (Figure 3A) that suggests sequential scanning: reaction
time depends on the lag of the more recent probe item and
does not depend on the lag of the more distant probe item.
In addition, the model is consistent with the data regarding
compression of the memory representation (Figure 3B - data,
Figure 3D - model): the reaction time depends sublinearly on

Figure 2: A scale-invariant compressed memory representation through an integral transform and its inverse: model and neural data
A. A response of the network to a delta-function input. Activity of only three nodes in each of the two layers is shown. Nodes in f̃ (

∗
τ) activate

sequentially following the presentation of input stimulus f . The width of the activation of each node scales with the peak time determined
by the corresponding

∗
τ, making the memory scale-invariant. Logarithmic spacing of the

∗
τ makes the memory representation compressed.

B. Top: During DMS task sequentially activated cells in monkey lPFC encode time conjunctively with stimulus identity (firing rate encodes
visual similarity of the stimuli - stimuli in “Best category” were visually more similar to stimuli in the “Same category set” than to stimuli
in the “Different category set”). The three heatmaps show neural activity during the stimulus presentation (first 0.6 s) and the delay period
(following 1 s) averaged across trials. (Taken from Tiganj et al. (2018)). Bottom: Activity of the units in the working memory block of the
architecture resembles the neural data.

ing to stimuli, detecting the probe, accumulating evidence
and taking an appropriate action depending on which of the
available choices accumulated more evidence. These opera-
tions require the ability to route information to and from the
working memory and evidence accumulation modules. For
instance, in order to compare a probe to the content of mem-
ory, one might route the output of the working memory unit,
filtered by a probe stimulus, to the α(t) of an evidence accu-
mulation unit. Because various operations take place in se-
ries, we can understand them as a function of future planned
actions. Rather than past stimuli, the vectors in F(t,s) and
f̃(t,

∗
τ) can be understood as operations that affect other units

(each action has a corresponding two-layer network turning
F(t,s) and f̃(t,

∗
τ) into vectors across the action space).

Different cognitive models correspond to different initial
states in F(t,s) and f̃(t,

∗
τ). The actions will be executed se-

quentially by setting α(t) < 0, winding the planned future
closer and closer to the present. For instance, if the first step
of a behavioral task is to wait for a probe, then that action will
set the controller’s α(t) to 0 until the probe is detected. Once
the probe is detected, α(t) will be set to a default value of -1
so the neurons in the first layer will grow exponentially and
the sequence loaded in f̃(t,

∗
τ) will continue evolving.

Integrating microcircuits into cognitive models
The three blocks described above: working memory, evi-
dence accumulation and cognitive control are all constructed
from the same microcircuit (Figure 1 right-hand side). Each

circuit has an input, α and output. To demonstrate the util-
ity of this approach, we connected the three blocks such that
the program control block gates information from the work-
ing memory block to the evidence accumulation block and
monitors its output (Figure 1 left-hand side).

Results
We demonstrate performance of the proposed architecture on
three classical behavioral tasks: Judgment of Recency (JOR),
probe recognition and Delayed-Match-to-Sample (DMS). We
compare the results of the model with behavioral data (for
JOR and probe recognition) and neural data (for DMS). Crit-
ically, even though these three tasks have very different de-
mands, the neural hardware for the models is identical. The
only difference is in the initial state of the program block. Af-
ter initialization, each model runs autonomously and is self-
contained.

Judgment of Recency: Sequential scanning of the
memory timeline
In JOR subjects are presented with a random list of stimuli
(e.g. letters or words) one at a time, and then probed with
two stimuli from the list and asked which of the two stimuli
was presented more recently. The classical finding is that the
time it takes subjects to respond depends on the recency of the
more recent probe, but not the recency of the less recent probe
(Figure 4A) (Hacker, 1980; Singh & Howard, 2017). This re-
sult is consistent with a self-terminating backward scan along
a temporally organized memory representation, suggesting

1120



A

B

C

Figure 3: Example of a JOR task implemented with the pro-
posed architecture. The implementation is done with microcircuits
that correspond to those in Figure 1. Each square corresponds to a
single neuron. Squares in the middle layer of each panel correspond
to single neurons from f̃(t, ∗x) (neurons from F(t,s) are not shown).
Shading reflects the activity of the neuron at a given time step; darker
shading means less activity. A. At this time step all the seven items
from the test list have been presented and they are stored in the se-
quentially activated memory. The two probe items T and Q are at the
input. B. The program (cognitive control) block sequentially gates
the information from the working memory into the α neuron of the
evidence accumulator (DIFF action in the program block), causing
sequential activation in the accumulator. C. After the evidence accu-
mulator reaches the threshold, program control continues execution
by activating an appropriate action (in this case RIGHT).
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Figure 2. Accuracy, correct RT and incorrect RT are plotted as a function of the lag to the less
recent probe. Di↵erent lines represent di↵erent values of the lag to the more recent probe. (darker
lines correspond to more recent lags). a. Accuracy depends on the lag to the more recent item and
also shows a weak distance e↵ect (note that the lines are not flat). b. Correct RT depends strongly
on the lag to the more recent probe. The flat lines suggest that there was not an e↵ect of the lag to
the less recent probe (see text for details). c. Incorrect RT for incorrect responses depends on the
lag to the less recent probe, but at most weakly on the lag to the more recent probe (see text for
details).

with independent intercepts for each participant. The accuracy decreased with an increase
in the lag to the more recent probe by .078 ± .002, t(1918) = �31.9, p < 0.01 per unit
change in lag. Accuracy also increased with the lag to the less recent probe by .023± .002,
t(1918) = 9.73, p < 0.01 per unit change in the lag. These findings are consistent with the
findings from prior studies.

Correct response time depended strongly on the lag to the more recent probe but not on the
lag to the less recent probe

The response times for the correct responses depended strongly on the more recent lag
as seen in Figure 2b. The median response time varied from .72±.02 s for the most recent lag
to 1.36± .06 s for a lag of six. In contrast to the distance e↵ect seen in accuracy Figure 2a,
the lines in Figure 2b appear to be flat. In order to assess this distance e↵ect more directly,
we calculated the slopes of lines in Figure 2b separately for each participant and performed
a Bayesian t-test (Rouder et al., 2009) on the slopes. This analysis showed “substantial
evidence” (Wetzels & Wagenmakers, 2012; Kass & Raftery, 1995; Je↵reys, 1998) favoring
the hypothesis that the slopes are not di↵erent from 0 (JZS Bayes Factor = 3.3). A linear
mixed e↵ects analysis allowing for independent intercepts for each participant showed a
significant e↵ect of the lag to the more recent probe, .124± .006 s, t(478) = 21.6, p < 0.001.
These results replicate prior studies, but extend them by establishing positive evidence for
the null using the Bayesian t-test.

Response time varies sub-linearly by lag to the more recent item

Figure 2b suggests that correct RTs depended prominently on the lag to the more
recent item. Further it appears that the spacing between these lines goes down as the lag
increases. This suggests that the RT depends sub-linearly on the lag to the more recent
probe, as predicted by a backward self-terminating scanning model that scans along a
temporally-compressed representation.

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/144733doi: bioRxiv preprint first posted online Jun. 1, 2017; 
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Figure 4: The model captures behavioral results in the JOR
task. A. In JOR, median response time for correct responses de-
pends strongly on the recency of the more recent probe but not the
recency of the less recent probe. Shade of the line denotes lag of the
more recent item, with the most recent item shown in black and the
most distant item shown in the lightest shade of gray. (From Singh
and Howard (2017).) B. In JOR, median response time varies sub-
linearly with recency (x-axis is log-spaced). C.,D. Results of the
model corresponding to A and B respectively.

that subjects maintain working memory as a temporally or-
ganized, scannable representation. Moreover, the response
time is a sublinear function of the lag (Figure 4B) (Singh &
Howard, 2017), suggesting that the working memory repre-
sentation is log-compressed, as proposed by earlier modeling
work (Howard et al., 2015; Brown, Neath, & Chater, 2007).

In the model of JOR, the first action was to wait for the
probe item to appear (Figure 3A). After that, the gain field
over

∗
τ was set to scan the memory representation sequentially

from more recent towards more distant past. At each step, the
value found in the memory was used to drive two evidence
accumulators, one independent accumulator for each probe
item (Figure 3B). Once one of the two evidence accumula-
tors reached a threshold, the program executed an appropri-
ate action (left or right choice, Figure 3C). Variability in the
response times was obtained by adding Gaussian noise to the
evidence accumulation process.

Results in Figure 4C indicate that the model captures well
the aspect of the data that suggests sequential scanning (Fig-
ure 4A): response time depends on the lag of the more recent
probe item and does not depend on the lag of the more distant
probe item. In addition, the model is consistent with the data
regarding compression of the memory representation (Figure
4B - data, Figure 4D - model): the response time grows with
the lag of the more recent item.

Old-new probe recognition: Global matching model
using the memory timeline
Similarly to JOR, in old-new probe recognition task subjects
are presented with a random list of stimuli one at a time.
After the list is presented subjects are probed with a single
probe that was or was not an item from the list. Subjects
choose either Old or New to indicate their memory. The well-
established behavioral results indicate that the response time
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increases and accuracy decreases with increasing lag of the
probe item (Figure 5A). In other words, if the probe item was
further in the past (had larger lag) subjects will take longer to
respond and their accuracy will be lower than if the probe was
presented less far in the past. Models based on global match-
ing, such as EBRW have managed to capture subjects accu-
racy and response times (Donkin & Nosofsky, 2012; Nosof-
sky, Little, Donkin, & Fific, 2011).

Our implementation of probe recognition was similar to
JOR, but with several important differences. The main differ-
ence between the two tasks was in the way the memory was
accessed. Unlike in the implementation of JOR where G(

∗
x)

was a delta function resulting in serial scanning, in probe
recognition task G(

∗
x) was uniform. This means that the entire

memory representation was accessed simultaneously, rather
than sequentially scanned. This type of memory access falls
under the umbrella of global matching models which includes
e.g. EBRW, SAM, Minerva and TODAM (Raaijmakers &
Shiffrin, 1980; Murdock, 1982; Hintzman, 1988; Nosofsky
et al., 2011).

Figure 5B shows model performance in probe recognition.
The two qualitative features observed in the data were cap-
tured with the model: response time increased and accuracy
decreased as the lag of the probe item increased. Overall, the
result of the model resembles the data reported by Donkin
and Nosofsky (2012).

Delayed-Match-to-Sample: Comparing model
neurons to empirical evidence for conjunctive
coding of what and when
In DMS subjects are presented with a sample stimulus fol-
lowed by a delay interval, followed by a test stimulus. The
action that subjects need to take (e.g. pressing a left or right
button) depends on whether the two stimuli were the same or
different. We modeled the task with the same components as
the JOR task. The only differences were in 1) how the probe
item was set (in DMS the second stimulus is by construction
the probe, while in JOR the probe is marked by presenting
two stimuli at the same time) and 2) what parts of the working
memory were gated to the evidence accumulator (in DMS one
accumulator accumulated evidence for presence of the probe
item in the memory and the other accumulator accumulated
evidence that any other item was found in the memory, while
in JOR each of the two probe items had its own evidence ac-
cumulator). While simple in terms of behavior, DMS task
is often done on animals while recording activity of individ-
ual neurons. Neural recordings during the delay period of
this task show evidence for existence of stimulus-selective se-
quentially activated cells (Tiganj et al., 2018) that correspond
well to the neural activity produced by the sequential memory
used here (Figure 2B).

Conclusions
Here we provided an architecture that is based on realis-
tic neural data and that can account for non-trivial behavior.

A
Power-Law Model of Memory Strength 3

for items at the greatest lags (first and second serial positions 
of the study list) saw a slight boost. Öztekin et al. (2010,  
Fig. 2) observed a similar pattern of results, although their data 
were averaged across participants and pairs of adjacent serial 
positions.

Figure 2 shows detailed RT distributions for each of the 
study-probe lags for Participant 3. (The RT distributions for 
the other participants were essentially identical to those of  
Participant 3; see Figs. S1–S3 in the Supplemental Material 
available online.) The cumulative-distribution-function plots 
shown in the figure provide an efficient means of simultane-
ously illustrating accuracy and the form of the correct (hit) and 
incorrect (miss) RT distributions in each lag condition. Each 
plot is made up of quantile estimates from correct and incor-
rect RT distributions. The quantile estimates (diamond sym-
bols) show the RT below which .10, .30, .50, .70, and .90 of 
the responses in that distribution fall. The positions of the 

quantiles on the x-axis reflect the speed at which responses  
are made, so that slower distributions stretch further to the 
right. The heights of the quantiles indicate, separately for  
correct and incorrect trials, the absolute cumulative proportion 
of responses with RTs below the quantile cutoff. Therefore, 
note that the relative heights of the correct and incorrect  
distributions reflect the proportion of correct versus incorrect 
responses at each cumulative RT. The curves reach asymptotes 
at the overall correct and incorrect response proportions at 
each lag.

Figure 2 shows that there was a systematic effect of lag on 
the RT distributions. As lag increases, the median of each dis-
tribution (third diamond within each plot) shifts to the right 
and the distribution becomes more positively skewed (the 
points spread out to the right). This tendency is pronounced at 
the early lags and slows down for the larger ones. Figure 3 
shows the RT distributions (for all participants) for trials on 
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Figure 5: The model captures behavioral results in the probe
recognition task. A. In probe recognition response times increase
and accuracy decreases as the lag of a probe item increases. Circles
correspond to data points and solid line is a fit obtained with EBRW
model. Taken from (Donkin & Nosofsky, 2012). B. Results of the
model capture qualitative properties of the data. Response times are
shown with standard deviation.

In particular, the behavioral results of JOR task are consis-
tent with the hypothesis that the subjects are scanning along
a compressed timeline. The same architecture was used to
model DMS task, resulting in neural representation of work-
ing memory that closely corresponds to the neural data. Fi-
nally, we have also captured qualitative properties observed in
probe recognition task by applying an approach analogous to
global matching models, but implemented on a neural-level.

Critically, implementation of all three tasks uses the same
neural hardware, differing only in the initial condition of the
controller. This work is complementary with ongoing efforts
of building cognitive architectures such as ACT-R (Anderson,
Matessa, & Lebiere, 1997) and SOAR (Laird, 2012). The dis-
tinction of the present work is in its attempt to build such ar-
chitecture with neuron-like units, similar to Spaun (Eliasmith
et al., 2012), but with a different type of neural representation.
The present work commits to a specific type of representa-
tion: variables are represented as supported dimensions via
neural tuning curves, tuned to a particular amount of elapsed
time, accumulated evidence or a position in a sequence.
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Abstract 

Semantic knowledge can facilitate or distort new memories, 
depending on their alignment. We aimed to quantify 
distortions in memory by examining how category 
membership biases new encoding. Across two experiments, 
participants encoded and retrieved image-location 
associations on a 2D grid. The locations of images were 
manipulated so that most members of a category (e.g. birds) 
were clustered near each other, but some were in random 
locations. Memory for an item’s location was more precise 
when it was near members of the same category. 
Furthermore, typical category members’ retrieved locations 
were more biased towards their semantic neighbors, relative 
to atypical members. This demonstrates that the organization 
of semantic knowledge can explain bias in new memories. 
Keywords: episodic memory; semantic memory; category 
membership; typicality; distortion 

Introduction 
Episodic and semantic memory are commonly studied as 
distinct cognitive phenomena, the former defined as 
memory for ‘personal experiences and their temporal 
relations’ and the latter as memory for the ‘meaning of 
words, concepts, and classification of concepts’ (Tulving, 
1972). While this distinction has led to important 
characterizations of both memory systems, it also 
oversimplifies the complexity in memories that comprise 
both episodic and semantic elements. In other words, it 
neglects the critical notion that new experiences are made 
up of re-combinations of objects, places, and people for 
which we already have semantic knowledge. We aimed to 
probe interactions between the two systems by quantifying 
how semantic knowledge distorts new episodic learning. 

Research on schemas, a type of semantic knowledge 
defined as a structure of associated information (Bartlett, 
1932; Ghosh & Gilboa, 2014), sheds some light on how 
prior knowledge influences new episodic memory 
formation. The benefit of prior knowledge for episodic 
memory is widely documented (Bransford & Johnson, 1972; 
Alba & Hasher, 1983). Similarly, the presence of prior 
knowledge accelerates the integration of novel words into 
existing memory networks (Coutanche & Thompson-Schill, 
2014). However, new encoding can also be biased by prior 
knowledge, resulting in false memories or confabulation 
(Warren, Jones, Duff, & Tranel, 2014; Webb, Turney, & 
Dennis, 2016). Taken together, these findings suggest that 
whether prior knowledge helps or hinders encoding depends 
on the match between the old and new information. 

One weakness of this work is that the operationalization 
of prior knowledge often ignores its rich, hierarchical 
structure (Collins & Loftus, 1975). In such a structure, 
concepts vary in the similarity of their features, giving rise 
to categories. Typical category members are defined as 
items that share the greatest number of features with other 
members, and thus are the best examples of that category 
(Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). As 
a result, typical items are thought to be more strongly 
associated with category neighbors, relative to atypical 
items. The consequences of these strong associations are 
well documented: typical items are more quickly 
categorized, more efficiently recognized, and less resistant 
to disruption by brain damage (Patterson, 2007). 
Furthermore, the features of typical items are more often 
attributed to category neighbors (Osherson, Smith, Wilkie, 
López, & Shafir, 1990; Rips, 1975). As an example, if a 
typical item, rather than an atypical item, is accompanied by 
a shock, participants are more likely to anticipate shocks 
with other category members (Dunsmoor & Murphy, 2014). 
Examining how new memories are formed in the context of 
this structure may lead to a better understanding of the 
interactions between episodic and semantic memory. 

One promising approach to examining such interactions is 
by considering retrieval as a construction of different 
sources of information. According to this view, retrieval is 
not a veridical recapitulation of past events, but instead an 
imperfect recombination of event-specific details and other 
knowledge (Addis, Pan, Vu, Laiser, & Schacter, 2009). 
Because episodic memories are often noisy and incomplete, 
successful remembering is thought to combine these partial 
representations with knowledge from prior experiences 
(Huttenlocher, Hedges, & Vevea, 2000). Integrating prior 
knowledge with episodic memories can thus be thought of 
as a way to improve the ‘signal’ of a memory. Yet, it also 
introduces systematic errors if there are discrepancies 
between a new memory and prior knowledge. For example, 
exposure to semantically related words (e.g., sour, candy, 
sugar) often produces a false memory for a non-studied 
word (sweet; Roediger & McDermott, 1995). Such errors 
are also captured with continuous measures of bias; for 
example, memory for the color of shapes is biased towards 
canonical hues (Persaud & Hemmer, 2014), and estimates of 
the size of fruits and vegetables are biased by both their 
superordinate and subordinate mean sizes (Hemmer & 
Steyvers, 2009). However, it is unknown whether other 
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properties of semantic knowledge, like category typicality, 
exert similar distortions on new encoding. 

We aimed to quantify distortions in episodic memories 
due to prior knowledge by examining how differences in 
category typicality bias new memories for item-location 
associations. In two experiments conducted on Amazon 
Mechanical Turk (AMT), participants encoded and retrieved 
image-location associations on a 2D grid. Critically, the 
locations associated with each image were determined by 
semantic relatedness ratings, such that most members of the 
same category (e.g. birds) were located near each other, but 
some typical and atypical members were located elsewhere. 
With this design, participants could learn that items from a 
certain category tended to be located in a certain area as 
they encoded item-specific locations. 

We used a continuous retrieval measure to disentangle 
biases driven by semantic knowledge from errors due to 
forgetting. Critically, these two measures varied 
independently such that memory for an item could be biased 
towards or away from category neighbors regardless of its 
precision. In both experiments, we used these measures to 
test two predictions. First, we predicted more precise 
memory for items located near category members, relative 
to those located farther away, which would replicate past 
observations that new memories can benefit from prior 
knowledge if they are aligned. Second, for those typical and 
atypical items located far from category neighbors, we 
predicted that their direction of error would be different, 
such that retrieval of typical items would be more biased 
towards category neighbors relative to atypical items. Such 
a bias would reflect stronger associations between typical 
category members and their category neighbors. We did not 
have strong predictions about precision by typicality, except 
for the critical notion that any observed differences in bias 
would be independent of differences in precision. 

Experiment 1: Stimulus Development 
In the first experiment, we developed a data-driven 
approach to create item-location associations for the 
memory task. Specifically, we used semantic relatedness 
ratings from a separate set of participants to define the 
images’ locations and sort them according to their typicality. 

Method 
Participants 24 participants (23 – 49 years old, 9 female) 
completed semantic relatedness judgments. The University 
of Pennsylvania Institutional Review Board (IRB) approved 
all consent procedures. 

 
Materials Stimuli comprised 70 100x100-pixel color 
images on white backgrounds (35 animals, 35 objects). 
Based on pilot data, we selected images with equivalently 
high recognition across these two superordinate categories.  
 
Odd-Man-Out Procedure On each trial, participants were 
presented with three images from a superordinate category 
and were instructed to click on the image that was least 

similar to the other two. Once an image was chosen, the 
images faded away and three new images were displayed 
after a 200-ms interval. Participants were encouraged to 
respond in 2 – 4 seconds. They were instructed to make 
their decisions based on many factors, like whether animals 
belonged to the same family or shared similar habitats, and 
whether objects served a similar purpose or tended to be in 
similar locations. Based on prior piloting, participants 
completed a random sample of 2,620 combinations per 
superordinate category, of the 6,545 possible combinations 
(choose 3 of 35). The trials were divided into 20 separate 
batches, expected to take 12 - 15 minutes each, and 
participants were given 1 week to complete them. Of the 35 
invited to participate, 24 completed it and 3 were excluded.  

The responses were used to create similarity matrices for 
each participant and superordinate category. Starting with a 
35 x 35 matrix of zeros, for every trial on which an odd 
image was chosen, the value for the other two increased by 
1. The summed values across all trials were then divided by 
the number of times the two images appeared in the same 
trial. Cells in the matrix thus ranged from 0 to 1, with higher 
values corresponding to greater similarity between the 
items. We computed split-half correlations as a test-retest 
reliability measure for each participant (group mean r = .60, 
SD = .24). The reliability of the 3 excluded participants was 
>3 SD lower than the group mean (all r’s < .04). Matrices 
from the 21 remaining participants were averaged into a 
separate matrix for animals and for objects. 
 
Image-Location Associations Each image was paired with 
a spatial location on a white 600x1200-pixel rectangle with 
gray gridlines forming a 50x50-pixel grid. The locations 
were determined by applying multidimensional scaling 
(MDS) to the similarity matrices from the odd-man-out 
procedure. Each matrix was projected into two dimensions, 
where the x and y coordinates of an item determined its 
location on the grid. Thus the locations of items represented 
participants’ 2D organization of animals and objects. 

We then used k-means clustering of these projections to 
determine the categories within animals and objects that 
were captured in the 2D locations. The animal and object 
locations were separately entered into 10 k-means clustering 
algorithms with 1 to 10 clusters. The optimal number of 
clusters was chosen by plotting the sum of within-cluster 
squared error as a function of the number of clusters used in 
the algorithm. The ‘bend’ in this elbow plot signifies the 
fewest number of clusters that minimize the distance 
between items in the same cluster. This procedure revealed 
3 animal categories (birds, mammals, and sea creatures) and 
3 object categories (kitchen, tools/personal care, and office). 
These clusters were used to identify typical and atypical 
category members. The center of each cluster was defined 
as the average x and y coordinate of its constituent items. 
Then the items were sorted by their distance to its center. 
The closest 20% were labeled ‘typical’ and the furthest 20% 
‘atypical’. 
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Experiment 1: Memory Task 
The item-location associations developed in the prior 
section were used in an episodic memory task. We probed 
whether the precision of participants’ location memory was 
related to the consistency between an item’s spatial location 
and the locations of its category neighbors, and whether bias 
was influenced by its category typicality. 

Method 
Participants There were 25 participants in the experimental 
group (21 - 65 years old, 9 female) and 35 in the control 
group (20 - 61 years old, 16 female). The University of 
Pennsylvania IRB approved all consent procedures. 
 
Materials See Stimulus Development section. 
 
Image-Location Associations The locations paired from 
each image were derived from semantic relatedness 
judgments such that category neighbors were clustered 
together (see Stimulus Development). The locations of the 
typical and atypical items were manipulated to be 
inconsistent with the semantic relatedness ratings. 
Specifically, they were randomly assigned locations closer 
to one of the other two cluster centers from the same 
superordinate category (Figure 1A). In total, 42 images were 
associated with locations consistent with the ratings 
(‘consistent’), and 28 were associated with a random 
location (‘inconsistent). Of the inconsistent items, 14 were 
typical and 14 were atypical category members. The 
projections for animals and objects were arranged side-by-
side, randomized for each participant (Figure 3A). 
 

 Figure 1 (A) Consistency and typicality for ‘birds’. Black 
indicates ‘consistent’ and red indicates ‘inconsistent’ items. 
Inconsistent items were either typical or atypical category 
members. (B) Retrieval measures for an item biased towards 
its category neighbors. Solid red line indicates error. Solid 
blue line indicates bias. 
 

In the control group, all image-location pairings were 
randomly shuffled within superordinate category. This 
group viewed the same locations as the experimental group, 
but the images assigned to the locations did not cluster by 
category. In other words, the locations that had originally 
been associated with (in)consistent or (a)typical images 
could be associated with any image in that superordinate 
category, rendering these conditions meaningless. 

Memory Procedure The memory experiment comprised an 
encoding phase and a retrieval phase, separated by a 5-
minute break. On each encoding trial, participants viewed 
an image beneath the grid and a red dot corresponding to 
that image’s location. They were instructed to drag the 
image onto the dot, click the mouse button once it was 
positioned over the dot, and memorize its location for a later 
memory test. Images were presented three times, in three 
rounds of encoding separated by 1-min breaks. The retrieval 
task was identical to encoding, but with no dot. Participants 
were instructed to drag the image to its associated location. 
The trial order was randomized1. 
 
Statistical Analyses Two dependent measures were 
established to quantify error and bias for each image (Figure 
1B). Error was defined as the distance between an image’s 
encoded and retrieved location, where greater values 
indicate less precision. Bias was defined as the relative 
difference in distance between an item’s cluster center and 
its encoded versus retrieved location: (encoded – center) – 
(retrieved – center). Thus, values > 0 indicate that retrieval 
was biased towards the cluster center, and < 0 indicate bias 
away from the cluster center. Both measures were averaged 
across trials by consistency with the relatedness ratings 
(consistent vs. inconsistent) and by typicality (atypical vs. 
typical) and entered into two-tailed paired t-tests and 
repeated measures ANOVAs. 

Results 
Error We computed a group (experimental, control) x 
consistency (consistent, inconsistent) ANOVA to examine if 
memory precision was modulated by the consistency of item 
locations with those of other category members. This 
revealed a main effect of group, F(1,58) = 7.04, p = .01, and 
consistency, F(1,58) = 8.46, p = .005. These effects were 
qualified by an interaction, F(1,58) = 5.82, p = .02 (Figure 
2A), driven by less error for consistent items relative to 
inconsistent items in the experimental group, t(24) = 4.11, p < 
.001, but not the control group, t(34) = 0.63, p = .54.  

We next asked whether, among the inconsistent items, 
there were differences in precision by typicality. A group x 
typicality (typical, atypical) ANOVA revealed a main effect 
of group, F(1,58) = 4.16, p = .046, but no reliable effect of, or 
interaction with, typicality (both F’s < 2.03, p’s > 0.16). 
 
Bias We next asked whether the direction of error differed 
for typical versus atypical category members. We computed 
a group x typicality ANOVA amongst the inconsistent 
items, with bias as the dependent variable (Figure 2B). We 
found a main effect of group, F(1,58) = 9.89, p = .003 and 
typicality, F(1,58) = 5.46, p = .02, and a group x typicality 

                                                             
1Due to a bug, the trial order and locations of the inconsistent 

items were randomized identically in all participants. Findings 
from this cohort are reported in this proceeding. After finding the 
error, we ran a replication experiment (N = 35) where both were 
randomized individually. All findings were successfully replicated.  
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interaction, F(1,58) = 14.12, p < .001. This interaction was 
driven by greater bias towards category neighbors for 
typical items relative to atypical items in the experimental 
group, t(24) = 6.76, p < .001, but not the control group, t(34) = 
0.55, p = .59. 

As predicted, typical items were retrieved as closer to 
their category neighbors relative to atypical items. It could 
be the case, however, that this bias was driven by an 
unrelated difference in how typical and atypical items’ 
locations were retrieved – one possibility is that typical 
items were retrieved more centrally in the display. To test 
this possibility, we computed each item’s average bias 
towards the two other clusters in the superordinate category 
and entered it into a group x typicality ANOVA. There was 
no main effect of or interaction with typicality (both F’s < 
.34, both p’s > .56). This suggests that retrieval of typical 
items was specifically biased towards category neighbors. 

 

 
Figure 2 Experiment 1 results. (A) Average error by 
consistency. (B) Average bias by category typicality. 
Condition labels in the control group indicate the locations 
to which (in)consistent and (a)typical items had been 
assigned in the experimental group; these locations were 
randomly assigned images in the control group. Lines 
indicate participants. Error bars signify standard error of the 
mean (SEM). *** p < .001. 

Discussion  
We found that participants’ retrieval was more precise for 
items located near category neighbors, replicating prior 
observations of enhancements in memories that are 
consistent with prior knowledge. Furthermore, of the items 
that were located far from category neighbors, typical items 
were more biased towards their category neighbors relative 
to atypical items, despite no reliable differences in 
precision. Together, these results suggest that differences in 
typicality govern the extent of distortion in new memories. 

Experiment 2: Stimulus Development 
In Experiment 1, we developed data-driven methods to sort 
items by category typicality and assign them to spatial 
locations based on their semantic relatedness. We next 
developed a conceptual replication, using different stimuli, 
to investigate whether we would observe the same effects 
with more standard procedures to define category 
membership and typicality. 

Method 
Participants 216 participants (27 per category) completed 
an item ranking procedure. The University of Pennsylvania 
IRB approved all consent procedures. Demographics were 
not collected due to experimenter error. 

 
Materials Stimuli comprised 160 100x100-pixel color 
images on white backgrounds (80 animals, 80 objects). 
These superordinate categories were divided into 4 
categories with 20 images each: birds, insects, sea creatures, 
mammals, clothes, furniture, kitchen, and office. The 
categories were selected from prior studies investigating 
categorization norms (Deyne et al., 2008; Uyeda & 
Mandler, 1980). 
 
Ranking Procedure We modified a validated item ranking 
task (Djalal, Ameel, & Storms, 2016) to sort category 
members by their typicality. Extensive instructions with 
examples were given to ensure participants understood the 
sorting procedure. For each category, participants viewed 20 
images in a box labeled ‘Sort these’. Underneath, there were 
two empty boxes labeled ‘Typical’ and ‘Atypical’. 
Participants were instructed to drag 10 images into each 
box. They were allowed to drag images freely across the 
three boxes in any order. This resulted in a row of 10 images 
per box. Then, within each box, participants sorted the 10 
images on a scale ranging from most (a)typical to less 
(a)typical. Arrows and labels in the two boxes indicated the 
direction that images were to be sorted. The resulting spatial 
positions in the two boxes were concatenated into a ranked 
list of category typicality and averaged across participants. 

Experiment 2: Memory Task 
Results from the ranking task were used in Experiment 2 to 
define category membership and typicality for a memory 
task identical to that of Experiment 1. We also aimed to rule 
out the possibility that memory was more precise for 
consistent items because they were more densely clustered, 
increasing the likelihood of guessing the correct location. 

Method 
Participants 35 participants were in the experimental group 
(22 - 70 years old, 14 female) and 35 in the control group 
(24 - 72 years old, 16 female). The University of 
Pennsylvania IRB approved all consent procedures. 
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Materials See Stimulus Development section. 
 

Image-Location Associations To generate items’ locations, 
the memory grid was divided into halves with animals on 
one side and objects on the other, randomized across 
participants. Each side was divided into four quadrants. 
Within each quadrant, items from one of the four categories 
were spaced roughly uniformly apart, resulting in an even 
distribution of items across the grid (Figure 3B). 

As in Experiment 1, some items were assigned locations 
away from category neighbors. The 15% most typical and 
15% most atypical items were swapped across categories, 
where each quadrant had an equal number of typical and 
atypical items from the other three quadrants from the same 
superordinate category. In total, 112 images were located in 
the quadrant consistent with their category (‘consistent’), 
and 48 in a different quadrant (‘inconsistent). Of the 48 
inconsistent items, 24 were typical and 24 were atypical 
category members. In the control group, images were 
randomly assigned to locations within each superordinate 
category, identically to the procedure in Experiment 1. 

 
 

Figure 3 Example memory displays for Experiment 1 (A) 
and Experiment 2 (B). Each word represents the location of 
its corresponding image. Colors indicate categories. Black 
dots indicate a category’s cluster center. Each image-
location association was presented and tested one at a time. 
 
Memory Procedure The timing and instructions were 
identical to those of Experiment 1, with an additional 
confidence measure that will not be discussed. 
 
Statistical Analyses The analyses were identical to those in 
Experiment 1. 

Results 
Error We computed a group (experimental, control) x 
consistency (consistent, inconsistent) ANOVA and found a 
main effect of consistency, F(1,68) = 38.63, p < .001, but not 
of group, F(1,68) = 0.01,  p = .91. Critically, there was also a 
group x consistency interaction, F(1,68) = 35.33, p < .001 
(Figure 4A). This interaction was driven by less error for 
consistent items relative to inconsistent items in the 
experimental group, t(34) = 7.35, p < .001, but not the control 
group, t(34) = 0.24, p = .81. As in Experiment 1, memory 
precision was modulated by the consistency of an item’s 
location with those of its category neighbors. 

We next asked whether, among the inconsistent items, 
there were differences in error by typicality. A group x 
typicality (typical, atypical) ANOVA revealed no main 
effect of group, F(1,68) = 1.24, p = .27. Interestingly, in 
contrast to Experiment 1, we found a main effect of 
typicality, F(1,68) = 9.65, p = .003, qualified by a group x 
typicality interaction, F(1,68) = 5.77, p = 0.02. This 
interaction was driven by increased error for typical items 
relative to atypical items in the experimental group, t(34) = 
3.43, p = .002, but not the control group, t(34) = 0.59, p = .56. 

 
Bias We next focused on differences in bias by typicality 
and computed a group x typicality ANOVA amongst 
inconsistent items. We found no reliable main effect of 
group, F(1,68) = 1.47, p = .23 and a trending effect of 
typicality, F(1,68) = 3.10, p = .08. There was a reliable group 
x typicality interaction, F(1,68) = 5.91, p = .02 (Figure 4B). 
This interaction was driven by greater bias for typical items 
relative to atypical items in the experimental group, t(34) = 
2.56, p = .01, but not the control group, t(34) = 0.58, p = .56, 
replicating the observed difference in bias by typicality in 
Experiment 1. 

 

 
Figure 4 Experiment 2 results. (A) Average error by 
consistency. (B) Average bias by category typicality. Lines 
indicate participants. Error bars signify SEM. *** p < .001. 
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General Discussion 
Across two experiments, we found that manipulating the 
match with prior semantic knowledge – by leveraging 
differences in category typicality – can influence the 
precision and distortion of new memories. Participants were 
able to learn associations between an image’s category 
membership and its location on a grid, and this knowledge 
enhanced their memory of the locations of specific items. 
Precision of this memory was greater if the items clustered 
near others from the same category. For items that were 
located away from category neighbors, participants made 
systematic errors: typical category members were retrieved 
closer to category neighbors than atypical category 
members. These results were observed in two experiments 
despite differences in the number and type of categories, 
method of determining typicality, and mapping between 
category membership and spatial location. 

Our findings that consistent items were more precise than 
inconsistent items (in both experiments), and that precision 
was greater in the experimental group (in Experiment 1 
only), are consistent with a large and diverse body of work 
showing that prior knowledge facilitates memory for related 
stimuli (Alba & Hasher, 1983). Our findings extend these 
results by showing that prior knowledge can improve 
encoding of new, unrelated features of an item. In our 
experiment, participants mapped items onto spatial locations 
on a grid. These locations were not intrinsically related to 
the items (e.g., nothing about the concept of a ‘spatula’ 
implies that it should be located on the top right corner of a 
grid). However, by associating these locations with the 
semantic organization of the items, participants treated 
location as a new ‘feature’ of items that was explained well 
by their category membership. Thus, prior knowledge can 
help to organize the encoding of unrelated contextual 
details. 

When locations did not match expectations, participants’ 
memory was prone to systematic biases. In both 
experiments, retrieval of typical category members was 
more biased towards category neighbors relative to retrieval 
of the atypical category members. While it is well known 
that memory can be easily distorted (Loftus & Palmer, 
1974; Roediger & McDermott, 1995), much of this past 
work is focused on discrete differences in memory retrieval 
(e.g. was a word recalled or not). Using continuous reports 
allows retrieval to be broken down into item-specific error 
and systematic influences of a particular category or 
structure (Huttenlocher, Hedges, & Duncan, 1991; Hemmer 
& Steyvers, 2009; Persaud & Hemmer, 2014). This prior 
work also demonstrates that new encoding can be biased 
towards similar stimuli, for example, that memory for the 
color of an object is biased towards a canonical color. We 
extended this work by showing that semantic knowledge 
can exert a stronger or weaker influence on new encoding 
depending on semantic properties like the typicality of 
category members, and that such bias can operate 
independently of memory precision. 

What can these biases tell us about how category 

members are organized; specifically, why is memory for 
typical members more biased towards neighbors? One 
possibility is that typical items are more strongly ‘pulled’ by 
neighboring items on account of their stronger associations. 
This interpretation would mirror observations that 
participants are more likely to cluster the recall of typical 
items relative to atypical items (Bousfield, Cohen, & 
Whitmarsh, 1958). Alternatively, because typical items are 
more similar to other category members, it may be easier to 
confuse their locations with other item locations that happen 
to be near the cluster center. This explanation is not specific 
to category membership but could be applied to any set of 
memoranda that vary in similarity. Yet another possibility is 
that because typical items are the closest match to their 
category, they are more efficiently encoded, but at a cost to 
in-depth processing of their novel details (Sweegers, 
Coleman, van Poppel, Cox, & Talamini, 2015) – like their 
associated location. As we cannot adjudicate between these 
interpretations with the present design, we have developed 
follow-up experiments to examine these alternatives. 

In summary, we have presented an investigation of the 
biases that semantic knowledge exerts on episodic encoding. 
This work demonstrates that semantic knowledge and 
episodic memory are closely intertwined and offers an 
opportunity to better understand the interactions between the 
two systems. 
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Abstract

It is well-known that in free recall participants tend to recall
words presented close together in time in sequence, reflecting
a form of temporal binding in memory. This contiguity effect
is robust, having been observed across many different experi-
mental manipulations. In order to explore a potential boundary
on the contiguity effect, participants performed a free recall
task in which items were presented at rates ranging from 2 Hz
to 8 Hz. Participants were still able to recall items even at
the fastest presentation rate, though accuracy decreased. Im-
portantly, the contiguity effect flattened as presentation rates
increased. These findings illuminate possible constraints on
the temporal encoding of episodic memories.

Keywords: Free recall, lag-CRP, contiguity effect

Introduction
Cognitive neuroscientists have hypothesized that the success-
ful retrieval of an episodic memory is accompanied by a
“jump back in time,” a recovery of the previous memory’s
spatiotemporal context (Tulving, 1983). In free recall stud-
ies, this recovery manifests as the contiguity effect, wherein
following the successful recall of an item, the next item to be
recalled is more likely to be a close temporal neighbor than
a more distant one (Kahana, 1996). This distance is mea-
sured as lag, a directed distance between items in a study list.
For example, in the list “absence, hollow, pupil, river, dar-
ling”, the lag from absence to river is +3, while the lag from
darling to pupil is −2. In free recall studies the contiguity
effect is typically asymmetric, such that forward transitions
are more likely to take place than backward transitions of the
same distance. This effect is robust, appearing across a vari-
ety of methodological manipulations (Kahana, 2012; Healey
& Kahana, 2014). For instance, the contiguity effect is ob-
served with more or less the same properties for lists of dif-
ferent modalities (Kahana, 1996), when rehearsal is discour-
aged (Howard & Kahana, 1999), and when words are widely
separated in time (Howard, Youker, & Venkatadass, 2008;
Unsworth, 2008). Healey and Kahana (2014) noted that the
contiguity effect was observed for every individual partici-
pant in a free recall study of 126 subjects. Thus far, dramatic
effects on the contiguity effect in free recall have primarily
been observed comparing patient populations; older adults
and memory disordered individuals show impaired contigu-

ity effects (Kahana, Howard, Zaromb, & Wingfield, 2002;
Palombo, Di Lascio, Howard, & Verfaellie, 2019).

Beyond the contiguity effect, free recall contains many
other well-explored patterns of behavior. Individuals exhibit
a strong recency effect during immediate free recall tests
(Glanzer & Cunitz, 1966). In addition, participants exhibit
a primacy effect such that items at the beginning of a stud-
ied list are more likely to be recalled (B. B. Murdock, 1962).
Both primacy and recency effects are observed in the initi-
ation of free recall, and are both also robustly observed in
the probability of first recall, a measure of the serial position
curve considering only the first recall (Hogan, 1975; Lam-
ing, 1999). The relative strength of primacy and recency
is not constant however (B. B. Murdock, 1962). For exam-
ple, Davelaar, Goshen-Gottstein, Ashkenazi, Haarmann, and
Usher (2005) found that presentation rates affect the rela-
tive strength of primacy and recency, with primacy becoming
more prevalent as the presentation rate is increased.

The ubiquity of the contiguity effect in free recall presents
something of a challenge for models of memory encoding—
if nothing affects the contiguity effect, it makes it more dif-
ficult to understand how it comes about. Conversely, if we
knew boundary conditions on the contiguity effect it would
perhaps shed light on the processes supporting the binding of
experiences presented close together in time. In this study we
explore the effects of increasing presentation rates on the con-
tiguity effect. If the contiguity effect is disrupted at a particu-
lar rate, that suggests the time scale over which the encoding
processes necessary for temporal binding take place.

Considerations from the ERP literature and rapid serial vi-
sual presentation (RSVP) literature inform the time scale over
which contiguity might be disrupted. A to-be-remembered
stimulus typically evokes a P300 waveform approximately
500 ms in duration that is thought to represent the updat-
ing of memory representations, even when the stimulus du-
ration itself is on the order of 2 seconds (Donchin, 1981).
At presentation rates approaching 10 Hz, there is evidence
that individual list items are no longer processed as discrete
items, and instead are merged into a single extended cogni-
tive event. For example, individual items in 10 Hz lists re-
ceive very low hit rates in an immediate recognition test even
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when the stimuli are never-before-seen natural images (Potter
& Levy, 1969). This poor performance is in stark contrast to
the excellent recognition memory for long series of images at
slower rates of presentation (Standing, 1973; Brady, Konkle,
Alvarez, & Oliva, 2008). However despite this lack of mem-
orability, it is also clear that each item in a 10 Hz stream is
processed to some degree, since it is possible to detect spe-
cific target items with high probability (Potter, 1976). If the
processing of individual items in a list undergoes a qualita-
tive change as the presentation rate is increased to the point at
which the representations blend together, then the CRP, pri-
macy effect, and recency effect may be altered. For example,
the CRP effect may depend on the ability to place individual
items into a discrete temporal representation, and thus it may
disappear with faster presentation rates. The probability of
first recall could also be altered, since a long-running stream
of rapidly presented items imposes a sequential cost on subse-
quent items due to encoding interference from previous items
(Wyble, Bowman, & Nieuwenstein, 2009).

Methods
Participants
Three hundred and thirty undergraduates from Syracuse Uni-
versity participated in this study. Participants were excluded
if they failed to recall a correct word in at least one trial
(n = 15), and if they did not perform all three conditions
(n = 7). Data from 308 participants were used in subsequent
analyses.

Procedure
Participants took part in 18 trials. Each trial consisted of
20 words from the Toronto Noun Pool (Friendly, Franklin,
Hoffman, & Rubin, 1982). Words were visually displayed
at three presentations rates: 2 Hz, 4 Hz, and 8 Hz. Partici-
pants completed six trials in each condition. Trial order was
randomized. Before the start of a trial, participants viewed a
bar that discretely rotated at the same rate that words would
be presented to help orient them to the upcoming trial (e.g.,
before a 2 Hz trial the bar would move twice every sec-
ond). Following the presentation of the list, participants were
prompted to verbally recall as many words as possible from
the list. Responses were recorded and later parsed using a
semi-automatic speech parsing algorithm.

Analysis
We first examined whether presentation rate affected the av-
erage number of valid recalls in a trial. This was done with
a repeated measures ANOVA. Post-hoc paired permutations
(5000 iterations) and Cohen’s D effect sizes on mean recalls
were then performed to determine significant differences. Se-
rial position curves (SPC) were computed to show the overall
probability of a word being recalled based on its position in
the list for each participant. We examined whether the re-
cency and primacy effects changed as a function of presen-
tation rate. We performed a paired permutation test in order
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Figure 1: A boxplot of median number of words recalled per
trial across participants and presentation rates, with interquar-
tile range, 95% confidence intervals and outliers. Participants
recalled fewer words as presentation rate increased.

to predict the difference in the probability of recall for the
first and last items in the list (i.e., probability for position 20
minus probability for position 1).

The probability of first recall (PFR) was calculated by di-
viding the number of times each serial position was recalled
first by the total number of first recalls. We then averaged
these probabilities across participants per condition. Finally,
we calculated the conditional response probability (CRP) for
each lag by dividing the number of correct recall transitions at
a given lag by the total number of possible correct transitions
at that lag. In order to control for serial position effects, which
differed across conditions, we restricted the lag-CRP analysis
to transitions within the middle of the list where probability
of recall was approximately equal across presentation rates.
In order to test for differences in the CRP at each lag across
conditions, we performed a number of mixed-effects logistic
regressions. We estimated the CRP as a function of the inter-
action between the following fixed-effects predictors: abso-
lute lag, its direction (backwards or forwards from the previ-
ously recalled item), and presentation rate. We report Z- and
T-scored coefficients for all mixed-effects models.

Results
To anticipate the results, memory performance was reduced at
faster presentation rates. We replicated previous findings with
respect to changes in the serial position curve at fast presen-
tation rates. Critically, the contiguity effect, even measured at
serial positions that avoided contributions from primacy and
recency, was severely disrupted at fast presentation rates.

As Presentation Rate Increases, Fewer Words are
Recalled
As shown in Figure 1, the total number of words recalled de-
creased as presentation rates increased (2 Hz: mean = 3.54,
SD = 0.85; 4 Hz: mean = 2.86, SD = 0.662; 8 Hz: mean
= 2.41, SD = 0.62; ANOVA: F(2,614) = 309.2, p < 0.001).
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Figure 2: Probability of first recall. Participants tended to
begin recall by naming an item from the beginning or end
of the list. As presentation rates increased, the probability
of initiating recall at the end of the list decreased, and the
probability of initiating recall with at the beginning of the list
increased.

Post-hoc paired permutations confirmed these results, show-
ing that the presentation rate of 2 Hz yielded significantly
higher number of recalls than 4 Hz (p < 0.001, Cohen’s D
= 0.9) and 8 Hz (p < 0.001, Cohen’s D = 1.5), and that 4 Hz
produced significantly more recalls than 8 Hz (p < 0.001,
Cohen’s D = 0.69). This result is consistent with previous
findings that faster presentation rates decrease the number of
words recalled in a free recall task (B. B. Murdock Jr, 1960).

Increasing Presentation Rates Increases the
Primacy Effect and Decreases the Recency Effect
Participants were more likely to begin recall by reporting a
word at the beginning or end of the list (Figure 2). As the
presentation rate increased, participants initiated recall less
frequently at the end of the list and more frequently at the
beginning of the list. This was confirmed by paired permu-
tation tests which indicated that the probability of beginning
a recall with the first item in a studied list was greater at 8
Hz than both 4 Hz (p < 0.001,Cohen’s D = 0.24) and 2 Hz
(p < 0.001,Cohen’s D = 0.43), and greater for 4 Hz than 2
Hz (p < 0.001,Cohen’s D = 0.18). Conversely, the probabil-
ity of first recalling the last item in a list was greater for 2
Hz than both 4 Hz (p = 0.002,Cohen’s D = 0.16) and 8 Hz
(p< 0.001,Cohen’s D= 0.40), and higher for 4 Hz than 8 Hz
(p < 0.001,Cohen’s D = 0.25).

As shown in Figure 3, participants showed a higher rate of
recalling words from the beginning and end of a list compared
to words in the middle (Figure 3). Consistent with previous
findings, increasing presentation rates resulted in lower recall
for the final item in the list. This was as confirmed by a paired
permutation test which found that the probability of recalling
the last item in a list was greater for 2 Hz than both 4 Hz (p <
0.001,Cohen’s D = 0.50) and 8 Hz (p < 0.001,Cohen’s D =
0.65), and greater for 4 Hz than 8 Hz (p = 0.01,Cohen’s D =
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Figure 3: Probability of recall as a function of position in
study list. Participants showed the highest level of perfor-
mance for items at the beginning and end of the list. As
presentation rate increased, participants showed a tendency
to have a lower recency effect in comparison to the primacy
effect.

0.15). In contrast to the PFR, increasing presentation rates
did not improve the overall probability of recalling the first
item in a list. Rather, it was found that the probability of
recalling the first item of a list was greater at 2 Hz than 4 Hz
(p = 0.008,Cohen’s D = 0.17), and otherwise there were no
significant difference (all p > 0.05).

The Contiguity Effect Flattens At Higher
Presentation Rates
Figure 4 shows the number of transitions between each se-
rial position in each of the three conditions. The primacy
and recency effects can be readily distinguished, as is the
tendency to make remote transitions to the beginning of the
list. The contiguity effect can be seen as a slightly darker
shade along the diagonal; the forward asymmetry appears
as a darker shade just above the diagonal. As expected, the
contiguity effect appeared to decrease as presentation rate in-
creased. Because primacy and recency effects are a confound
in identifying the contiguity effect we calculated the lag-CRP
using only transitions that came from items from the middle
of the list (serial positions 7-13).

Figure 5 displays the average probability of transitioning
from a recalled word to a word at a given lag (with lag 0
corresponding to the diagonal of the matrices in Figure 4),
and appears to show a reduction in the temporal contiguity
effect as the presentation rate increases. We performed a
mixed effect logistic regression to estimate the probability of
recall based on absolute lag for each presentation rate sepa-
rately. This showed that distance from the previously-recalled
item significantly decreased the probability of recall for 2 Hz
(z = −9.74, p < 0.001) and 4 Hz (z = −4.93, p < 0.001),
but not for 8 Hz (z = −0.70, p = 0.48). We then computed
another mixed effects logistic regression to test the interac-
tion between absolute lag, its direction (backwards or for-
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Figure 4: Matrices showing the number of total valid recall transitions between any two study list positions for each presentation
rate separately. Colors and numbers correspond to the number of such recalls summed across participants. Transitions between
extreme positions in study lists correspond to primacy and recency effects, which persist across rates. In contrast, the likelihood
of recalling nearby items (i.e., close to the diagonal) appears to decrease as presentation rate increases.

wards from the previously recalled item), and the presenta-
tion rate. This analysis showed that transitions in the for-
ward direction were more probable than backward transi-
tions (z = 4.18, p < 0.001); transitions at more distant lags
were less probable (z=−4.83, p < 0.001); probabilities were
higher for 2 Hz compared to 4 Hz (z = −2.28, p = 0.02)
and 8 Hz (z = −3.63, p < 0.001); the effect of absolute lag
was stronger for forward transitions than backwards transi-
tions (z =−2.71, p < 0.01), and the effect of lag was stronger
for 2 Hz compared to 4 Hz (z = 2.11, p = 0.03) and 8 Hz
(z = 3.12, p < 0.01). All other interactions showed no signif-
icant effects (all p> 0.05). These results show that increasing
the presentation rate of studied words decreases the contigu-
ity effect.

Discussion
Remembering past events is associated with a jump back in
time, manifesting in a higher probability for temporally con-
tiguous elements to be subsequently recalled. In this study,
we investigated whether higher presentation rates would neg-
atively impact the temporal contiguity effect. Many of our
results were consistent with previous free recall studies. For
instance, the average number of words recalled per list de-
creased as the presentation rate increased. Also, as the pre-
sentation rate increased, the recency effect was diminished.
While the primacy effect increased in looking at the proba-
bility of first recall, there was not a clear effect on the overall
probability of recalling the first item. The novel contribu-
tion of this paper is the finding that the temporal contiguity
effect was disrupted by fast presentation rates, most notably
in the 8 Hz condition. These findings suggest that encoding
processes taking place on the order of 125 to 250 ms are im-
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remains asymmetric. At 8 Hz there is no positive evidence
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portant for binding items to their temporal context.
Our results pose questions about the relation of presenta-

tion rate and neural coding. Medial temporal lobe theta (3-
8 Hz) is related to successful encoding in free recall, par-
ticularly when binding elements temporally (Nyhus & Cur-
ran, 2010; Sederberg, Kahana, Howard, Donner, & Madsen,
2003). In addition, Guderian, Schott, Richardson-Klavehn,
and Düzel (2009) have shown that prediction of successfully-
recalled items relies on theta frequency. While presentation
rates of 2 Hz and 4 Hz are mostly contained within this fre-
quency band, 8 Hz lies at the upper bound of human theta. It
is possible that presening eight words per second outpaces en-
coding processes that depend on theta (Hasselmo, Bodelón, &
Wyble, 2002), thus explaining why lag-CRPs become weaker
for this presentation speed. Examination of encoding and re-
trieval periods using EEG and ECoG could help address this
issue in the future.
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Abstract 
When introducing a novel mathematical idea, should we 
present learners with abstract or concrete examples of this 
idea? Considerable efforts have been made over the last decade 
to settle this question in favor of either abstract or concrete 
representations. We contribute to this discussion through a 
critical replication and extension of a well-known study in this 
area. Whereas the target article argues for the general 
superiority of abstract representations, we demonstrate that 
seemingly minor modifications of the study design indicate 
otherwise. Our results suggest that the previously reported 
“advantage of abstract examples” manifested not because 
abstract examples are advantageous in general, but because the 
earlier studies utilized concrete examples that are 
pedagogically suboptimal. 

Keywords: mathematics education; examples; abstract versus 
concrete; transfer of learning; replication 

Introduction 
The use of abstract or concrete representations during 

mathematics and science instruction has been called a 
“longstanding controversy” (Fyfe, McNeil, Son, & 
Goldstone, 2014), and with good reason. Conceptually, we 
might argue that concrete representations have the advantage 
of connecting to students’ existing knowledge. On the other 
hand, abstract representations have the advantage of 
eliminating potentially extraneous perceptual elements. But 
the elimination of these “extraneous” elements may also 
reduce the degree to which students can ground a particular 
representation in their prior knowledge. An advantage of 
abstract representations is thus at odds with an advantage of 
concrete representations. Which is better? A review of 
literature suggests that the answer depends on who asks the 
question: both pro-concrete and pro-abstract advocates are 
able to cite research where concrete or abstract 
representations are more, or less, effective (see, e.g., 
Koedinger, Alibali, & Nathan, 2008; Schalk, Saalbach, & 
Stern 2016, for examples). 

In this paper, we contribute to the debate through a 
replication and extension of a well-known and unique study 
in this area, in particular the central experiment discussed in 
Kaminski, Sloutsky, and Heckler (2008), “The Advantage of 
Abstract Examples in Learning Math.” 

Compared to other papers on the topic, Kaminski et al. is 
unique in that it makes a universal argument in favor of 
abstract representations. In particular, the authors argue that 

“Instantiating an abstract concept in a concrete, 
contextualized manner… obstructs knowledge transfer. At 
the same time, learning a generic instantiation allows for 
transfer” (p. 455). In their study, abstract representations are 
in general superior to concrete representations.  

Being a rare mathematics education article published in 
Science, the study caught the attention of not only other 
scholars, but found recognition in the popular media circuit 
as well. In a New York Times science column, Chang (2008) 
praised the article, criticized other education researchers for 
failing to conduct proper research (i.e., “randomized, 
controlled experiments”) and made an even stronger 
recommendation: “let the apples, oranges and locomotives 
stay in the real world and… focus on abstract equations.” 
Similar articles appeared in Le Monde, De Standaard, and 
elsewhere. 

Various elements of the study were criticized over the next 
few years (see De Bock, Deprez, Dooren, Roelens, & 
Verschaffel, 2011, for a summary). These criticisms 
frequently took the form of conceptual disagreements 
published in math education journals. Despite these 
conceptual critiques, or perhaps because of them, Kaminski 
et al. remains steadily cited over the last decade. 

The core of the present text is an empirical argument for a 
more critical re-interpretation of Kaminski et al. In our 
critical iteration of the experiment, we made relatively minor 
modifications to the design that nonetheless appear to have 
had a large impact on the results. We also extended the design 
to include additional transfer domains, including transfer to a 
formal mathematical context. The accelerated development 
of formal knowledge is, after all, a key motivation behind 
using examples in a math classroom. Our results do not 
support the hypothesized advantage of abstract examples; on 
the contrary, they favor the concrete example. 

In order to contextualize our own critical replication and 
extension, we first discuss the central experiment reported by 
Kaminski et al. (2008), as well as De Bock et al.’s (2011) 
replication, the first to empirically challenge the original. 

Kaminski, Sloutsky, and Heckler (2008) 
Kaminski et al. reported a number of experiments drawn 

from Kaminski’s (2006) dissertation. In this paper, we focus 
on the central experiment, as it forms the foundation of their 
argument. Here we summarize this experiment, and refer the 
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reader to Kaminski et al. online supplemental materials for a 
more extensive description.1 

The experiment consisted of two phases. In the learning 
phase, undergraduate students (Ohio, USA) were introduced 
to a mathematical concept, that of an abstract group of order 
3 via rules and examples of these rules. (Briefly, an abstract 
group of order 3 is a set of three elements and a binary 
operation that satisfies certain abstract rules—closure, 
associativity, identity, and inverse. As a consequence of these 
rules, all mathematical groups of order 3 are isomorphic to 
each other.) The manipulated variable in the study was 
whether students were introduced to this mathematical 
concept via more concrete or more abstract representations. 

In the concrete representations condition, participants were 
provided with three icons of a cup—1/3 full, 2/3 full, and 3/3 
full—and rules for combining these cups. In the abstract 
representations condition, participants were provided with 
three generic shapes—a flag, a square, and a circle—and 
rules for combining these shapes. Unbeknownst to the 
participants, adherence to these rules (in either condition) is 
mathematically equivalent to operating in an abstract group 
of order 3. 

At the end of the learning phase, a multiple-choice test was 
administered. The second phase—transfer phase—began 
immediately after completing this test. There, participants 
were presented with new, seemingly arbitrary icons of real-
world objects (e.g., a vase). Unlike in the learning phase, 
participants received no explicit training in the transfer 
domain; they were, however, told that these icons combine in 
ways structurally identical to the rules they just learned, and 
provided four examples. Then they answered a series of 
questions structurally identical to the ones they encountered 
in the learning phase. The training and the tests were 
accomplished individually via a computer terminal. 
 
Table 1: Average scores (SD), as a percentage. A indicates 

that the learning phase was conducted with abstract 
instantiations, C with concrete ones. 

 

Condition Learning Transfer 

A 
(N = 18) 

80 
(13.7) 

76 
(21.6) 

C 
(N = 20) 

76 
(17.8) 

44 
(16.0) 

 
See Table 1, above, for a descriptive summary of their 

results. For now, we note that the “abstract representations” 
learning condition drastically outperformed the concrete 
condition on the transfer test: 76% to 44%. This difference is 
remarkable, all the more so as there were apparently no 
differences in learning scores or learning times. 

                                                        
1 The experiments presented are easier to grasp visually. See 

http://www.sciencemag.org/cgi/content/full/320/5875/454/DC1 

De Bock et al. (2011) 
In their replication of Kaminski et al., De Bock et al. argued 

that the transfer domain used by Kaminski et al. is better 
interpreted as an “abstract transfer” (a terminology we will 
also use), because it satisfies Kaminski et al.’s own definition 
of an abstract instantiation. De Bock et al. made the 
reasonable prediction that, while learning with abstract 
instantiations may transfer better to an abstract domain, 
concrete instantiations may transfer better to a concrete 
domain. 

To test this hypothesis, undergraduate students (Belgium) 
were randomly assigned to one of four conditions:  

§ AA, abstract learning then abstract transfer 
§ AC, abstract learning then concrete transfer 
§ CA, concrete learning then abstract transfer 
§ CC, concrete learning then concrete transfer. 

That is, De Bock et al. kept the two-phase format of the 
original study, but expanded it to include a transfer to a more 
concrete domain. 

For abstract and concrete learning, and abstract transfer, De 
Bock et al. used identical materials to Kaminski et al. For 
concrete transfer, they repurposed one of the alternate 
concrete learning conditions in the original study—that of a 
pizza divided in thirds. 
 

Table 2: Average scores (SD), as a percentage. See text, 
above, for a description of the four conditions. 

 

Condition Learning Transfer  

AA  
(N = 23) 

71 
(16.3) 

75 
(15.8) 

AC 
(N = 30) 

64 
(14.6) 

73 
(17.5) 

CA 
(N = 28) 

77 
(12.1) 

50 
(17.9) 

CC 
(N = 24) 

76 
(14.6) 

84 
(10.0) 

 
See Table 2, above, for a descriptive summary. In brief, the 

results confirmed the original findings, as well as De Bock’s 
own hypothesis. In their words: “if transfer to a new abstract 
domain is targeted, abstract instantiations are indeed more 
advantageous than concrete instantiations” (p. 120). They 
continue, “However… the opposite holds as well: Transfer to 
a new concrete domain is more enhanced by a concrete 
learning domain than by an abstract one” (p. 120). While not 
contradicting the original study, De Bock et al. demonstrated 
that there is more there than meets the eye. 
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Present Study 
We questioned whether the observed “advantage of 

abstract examples” was due—at least in part—to certain 
pedagogically suboptimal aspects of the design, which we 
detail below. To the best of our knowledge, neither De Bock 
et al., nor anyone else using Kaminski et al.’s materials (e.g., 
Kaminski, Sloutsky, & Hecker, 2013; McNeil & Fyfe, 2012), 
attempted to improve the materials (as a teacher might). In 
addition to these pedagogical modification, we also extended 
the study beyond the original transfer task, as detailed below. 

Design modifications and justifications 
We identified two aspects of the original materials for 

improvement. First, the  concrete representations used in the 
main study—those of 1/3, 2/3, and 3/3 liquid-filled cups2— 
caught our attention. The cover story for this instantiation 
involved combining two or more cups, and trying to 
determine the “left-over.” For instance, 2/3 + 2/3 = 1/3 left-
over. Why did Kaminski et al. use the full cup (3/3) as the 
identity element? The authors presumably used this scheme 
because it matches our everyday intuition that 1/3 + 2/3 = 3/3. 
There are at least two issues with this. First, it leads to 
unintuitive calculations, such as 3/3 + 3/3 = 3/3. More 
critically, 1/3 + 2/3 = 3/3 is precisely the wrong intuition for 
mod 3 arithmetic (arithmetic of groups of order 3), because 
there 1 + 2 does not equal 3, but 0. 

To us, this suggested that Kaminski’s study was not 
optimized for learning in the concrete condition. An 
introductory example, we hold, should align not mismatch 
the superficial concrete elements with the target 
mathematical structure. Consequently, the concrete 
representations of cups filled with varying quantities of liquid 
were modified from 1/3, 2/3, and a full cup (3/3) to 1/3, 2/3 
and an empty cup (0/3). This leads to initially surprising but 
more structurally appropriate 1/3 + 2/3 = 0/3. 

Our second concern had to do with the “cover stories” for 
each of the instantiations. Across these, participants were put 
into drastically different roles, some believable, others not. 
These cover stories are as follows (drawn from Kaminski et 
al. supplementary materials, and Kaminski, 2006):  

Abstract instantiation: an archeologist trying to make sense 
of symbolic combinations left by an ancient civilization. 

Concrete (main): an employee at a detergent company 
calculating the left-over after quantities of liquid are 
combined. 

Concrete (alternative): a pizzeria owner discussing the 
chef who systemically and persistently burns predetermined 
portions of every pizza. 

Concrete (alternative): an employee at a tennis ball factory 
dealing with malfunctioning machines producing incorrect 
quantities of balls. 

Transfer: an anthropologist trying to understand a 
“children’s game from another country.” 

                                                        
2 Again, we invite the reader to consult the supplementary online 

materials from the original study. These can be found at:  
http://www.sciencemag.org/cgi/content/full/320/5875/454/DC1 

While university students are surely capable of handling 
nonsense cover stories, such as the one where “the cook 
systematically burns a portion of each group order,” we had 
concerns about their uneven, varying quality. Specifically, 
we felt that—pedagogically speaking—the concrete 
instantiations cover stories were poor in quality, while the 
generic and transfer narratives impressed us as reasonable. 
We conjectured that this matters, because a “reasonable” 
story may be more likely to connect to and activate relevant 
prior knowledge without also being overly distracting. In 
contrast, a cover story concerning a pizzeria where “the cook 
systematically burns a portion of each group order” is at odds 
with any prior knowledge one might have concerning 
pizzerias, cooking, or business profitability. 

A closely related concern has to do with our general sense 
that the framing of the generic instantiation (an archeological 
discovery) and the transfer instantiation (a game from another 
country) had more to do with each other than the concrete 
instantiations (all of which had to do with odd work). 

In response, we made the following modification to the 
study: every cover story was changed to “a children’s game 
from another country.” We generally accept that children 
play all kinds of games, and recognize that games can involve 
more concrete instantiations (e.g., combining cups of liquid), 
or more abstract instantiations (e.g., combining symbols). In 
other words, this particular cover story was chosen because it 
naturally accommodates concrete as well as abstract 
representations. 

Because the students in our study would be asked to solve 
multiple transfer tests rather than one, a compromise was 
made to remove 4 items from the multiple-choice tests (same 
4 from each test); this reduced the number of items on each 
of the tests from 24 to 20. Specifically, the items removed 
were 5, 8, 13, and 17 from the original abstract learning 
instantiation, and all the corresponding items from the other 
tests. (Of those, items 5 and 8 were chosen for elimination 
because they were basic and replicated across other 
questions. Items 13 and 17 were chosen because they used 
noticeably more text than the other items, a pattern we 
worried would become apparent across the phases.) 

In addition to these modifications to the original study, we 
extended the study by introducing two additional transfer 
phases. Similar to De Bock et al.’s study, and for the same 
reason, we employed a concrete transfer task structurally 
identical to the original abstract transfer task. While De Bock 
et al. repurposed the alternative pizza concrete instantiation 
for this phase, we repurposed the tennis ball factory concrete 
instantiation. 

Finally, we introduced a formal transfer phase, a group of 
order 5 and consisting of 0, 1, 2, 3, and 4. That is, addition 
mod 5, formally presented, where 2 + 2 = 4, yet 4 + 2 = 1, 4 
+ 3 = 2, and so on. We introduced this transfer test to evaluate 
a particular claim by Kaminski et al., namely that abstract 
representations lead to superior transfer because they support 
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a deeper understanding of underlying mathematics. But, if 
students indeed developed a “deep understanding” of groups 
(or, at least, modular arithmetic), then it stands to reason that 
they should be able to transfer this knowledge to a formal 
instantiation of a group of order 5, which shares many 
similarities with a group of order 3. In this phase, just as in 
the other transfer phases, participants were not explicitly 
instructed on the rules, but provided with a few examples and 
told that the rules of this system are similar to the rules of the 
previous systems. This phase contained only 11 multiple 
choice items, focusing on deeper understanding of underlying 
principles, for example each element having an inverse. 

Method 
Undergraduate students attending a public university in 

Switzerland were randomly assigned to one of the (concrete 
or abstract) learning conditions (38 each; a priori power 
analysis informed by the original studies indicated that this 
number was sufficient).3 Students majoring in mathematics 
or a computer science field were excluded. Training included 
explicit training in the rules, with accompanying examples 
(as in the original study). After this learning phase was 
completed, participants completed three more transfer phases 
in the following order: abstract, concrete, and formal. 
Transfer phases did not include explicit training, but did 
provide a few examples and inform participants that the rules 
are “the same” as in the previous tasks (again, as in the 
original study). To (partially) account for order effects, half 
the participants in each condition instead completed the 
phases in the following order: learning, concrete, abstract, 
formal (formal transfer was always last). No order effects 
were observed, and the orders are combined for this analysis. 

As an illustration, this is what the cover stories and 
representations looked like for each phase: 
 
Learning, abstract:  
In another country, children play a game that involves three 
symbols:  ,  , and  . 
 
Learning, concrete:  
In another country, children play a game by combining cups 
with different quantities of water: , , and .  
 
Transfer, abstract:  
In another country, children play a game that involves these 
three objects: 

 (a ladybug) 

 (a vase) 

 (and a book).  
 

                                                        
3 A third condition, a modification of the abstract learning 

instantiation, was also investigated in the study. As it has no bearing 
on our current discussion, it is omitted from the analysis. 

Transfer, concrete:  
In another country, children play a game that involves these 
three objects: 

 - a container with two tennis balls 
 - a container with one tennis ball 
 - a container with zero tennis balls. 

 
The final phase, formal transfer, did not use a cover story. 

There, participants were told that they will work with “a 
number system” and provided with examples of that system. 

As in the original study and De Bock’s replication, the 
study was completed individually, on a computer terminal, 
and there were no breaks during the study. The majority of 
participants completed the study within an hour, with no one 
taking more than 75 minutes. The study was conducted by 
assistants blind to the study expectations. 

Reliability analysis for the learning, abstract transfer, 
concrete transfer, and formal transfer tests yielded 
McDonald’s ω of 0.893, 0.857, 0.888, and 0.856, 
respectively. 

Analysis 
No participants were excluded from our analysis. The 

significance of this is addressed in the Discussion. 
For inferential tests (JASP, 2018), Mann-Whitney U test 

was used as the data were not normally distributed. As is 
commonplace in education research, we report Cohen’s d; 
however, we prioritize the rank-biserial correlation rB as a 
more appropriate, unbiased effect size measure. 

Results 
Table 3, below, provides descriptive statistics for the 

present study. There were no significant differences in time 
for completion. 
 
Table 3: Average scores (SD), as a percentage. A indicates 

that the learning phase was conducted with abstract 
instantiations, C with concrete ones. (Note that “Transfer 

Abstract” in this study corresponds to “Transfer” in 
previous studies reported in Table 1 and Table 2.) 

 

 Learning Transfer 
Abstract 

Transfer 
Concrete 

Transfer 
Formal 

A 
(N = 38) 

70 
(24.8) 

78 
(18.3) 

90 
(14.3) 

70 
(24.9) 

C 
(N = 38) 

95 
(12.1) 

73 
(25.9) 

95 
(10.7) 

78 
(27.7) 

 
Comparing concrete to abstract learning conditions, we 

found a significant difference between the learning scores in 
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favor of the concrete learning condition, Mann-Whitney U = 
1167.5, p < .001, rank-biserial correlation rB = 0.617 with 
95% CI [.429, .754] (Cohen’s d = 1.276). On abstract 
transfer, we found no difference on performance, U = 701.5, 
p = 0.835, and a very small effect size, rB = -0.028 with 95% 
CI [-.282, .229] (Cohen’s d = -0.176). On concrete transfer, 
we found evidence in favor of the concrete condition, U = 
913.5, p = .033, and a small-to-moderate effect, rB = 0.265 
with 95% CI [.010, .488] (Cohen’s d = 0.396). Finally, formal 
transfer favored the concrete condition, but this difference 
was not significant, U = 877, p = .103, rB = 0.215 with 95% 
CI [-.043, .446] (Cohen’s d = 0.304). 

To check for the influence of outliers, we excluded all 
participants who scored more than two standard deviations 
from the mean on any of the tests (same criterion used by 
Kaminski et al. and de Bock et al.). Three participants were 
excluded from each condition. Two results were affected. 
First, the difference on concrete transfer changed from 
significant to trending in favor of the concrete learning 
condition, U = 758.5, p = .064. Second, the differences on 
formal transfer reached significance, U = 777, p = .048, and 
a small-to-moderate effect in favor of the concrete learning 
condition, rB = 0.269 with 95% CI [0.003, 0.499] (Cohen’s d 
= 0.408). 

Discussion 
We aimed to critically replicate and extend an influential 

study that argued for the advantage of abstract 
representations in learning mathematics. We made two 
modification to the original study: (1) using an icon of an 
empty cup rather than a full cup in the concrete learning 
condition, and (2) keeping the “cover stories” similar to each 
other across the tasks. These modifications were made with 
the intent of removing pedagogically suboptimal elements 
present in the original design. We also extended the study by 
included a more concrete transfer task and a formal transfer 
task. Overall, our results put into question the previously 
reported advantage of abstract examples. 

Whereas Kaminski et al. found no difference in the 
learning scores, and De Bock’s study found a small 
difference in favor of the concrete instantiation, we found a 
significant and very large effect in favor of the concrete 
instantiation. How is it that the concrete instantiation 
condition in our study performed much higher than 
participants in the original, and even De Bock’s study, on 
both learning and abstract transfer? In the original study, 
concrete learning to abstract transfer showed 44%, compared 
to 76% for abstract learning to abstract transfer. In De Bock’s 
study, students fared slightly better, at 50% vs. 75%. In the 
present study: 73% vs. 78%. 

We briefly entertained the (surely self-satisfying) notion 
that our students are more capable. However, this explanation 
is unlikely, because our students scored comparatively 
similar on the other comparable tests, for example across the 
abstract learning condition to abstract transfer (Kaminski: 
80%, De Bock: 75%, present study: 78%). This suggests that 
the concrete instantiation condition performed better because 

of the changes made to the original materials. But those 
changes, as detailed earlier, were minor. Of these, we 
conjecture that using an empty cup rather than a full one may 
have made the largest difference, as this modification better 
aligned the concrete representation with the underlying 
mathematical notion. 

As with De Bock et al., we found evidence in favor of the 
concrete instantiation on the concrete transfer test, although 
in our case this evidence was not robust. 

Furthermore, once outliers were removed, we found 
evidence in favor of concrete instantiations on the formal 
transfer test, as well. 

An additional point on data analysis may be worth 
considering. When analyzing our data, we chose to conduct 
analysis on all the participants, and again after removing 
those participants scoring more than two standard deviations 
from the mean. In contrast, the results reported by Kaminski 
et al. and De Bock et al. (the later following the former), were 
performed after eliminating participants who scored below 
chance on the learning test, for “failing to learn” (as well as 
removing the outliers, as we did). This is an unusual method 
of removing participants in an educational study, and one not 
conceptually justified in previous articles. Note that it biases 
the results in favor of students who found the materials useful 
in the first place. This is an artificial restriction—imagine a 
mathematics professor evaluating her teaching but refusing 
to consider those students who “failed to learn” from her 
lectures, as determined by a learning test immediately 
following the lecture. 

In our data, this “failure to learn” elimination favored the 
abstract learning condition, because only in that condition did 
the students score below chance on the learning test. It did 
not favor it enough to impact the results, but it suggests that 
this particular elimination introduces bias in favor of the 
abstract instantiation. This does not explain the drastic 
differences between our results and those of previous studies, 
but it raises a question as to why this particular method was 
employed in the first place. After all, we researchers are 
unlikely to eliminate data that favors our predictions. 

Limitations 
Because our design makes not one but multiple 

modifications to the original study, further work is needed to 
identify the impact of each modification, as well as to 
investigate the potential mechanisms through which these 
modifications influence the learning process. 

Summary and Implications 
We made a relatively minor change to the concrete learning 

instantiation in Kaminski et al., in addition to making the 
various “cover stories” similar to each other. In turn, we 
observed results that contradict Kaminski et al., and partially 
support De Bock et al. 

Overall, our findings suggest that, if only one instantiation 
is to be used, and for these types of tasks: 
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Concrete representations facilitate the initial learning of a 
mathematical concept better than abstract representations of 
the same idea. 

On an abstract transfer, there is no notable advantage 
between learning via concrete or abstract representations. 

On a concrete transfer, learning via concrete 
representations is preferable, although this difference is 
relatively small. 

When transferring to a formal domain, learning via 
concrete representations may be preferable, although this 
difference is, again, relatively small. 

Can the current study make any pedagogical 
recommendations? De Bock et al. (2011) and Jones (2009) 
caution, and we concur, that brief interventions of this sort 
should not be applied directly and uncritically to mathematics 
classrooms. Seen from that perspective, this study claims no 
more than the following: concrete instantiations may be more 
or less useful, depending on their quality and context. To be 
clear, we do not advocate concrete examples as universally 
advantageous. We agree with Lampinen and McClelland 
(2018), who argue that it is not the static qualities of 
“abstractness” or “concreteness” that are likely to impact 
learning; rather, learning depends on the interactive aspects 
of the learning environment (see Abrahamson & Trninic, 
2015). As such, the existence of universally “ideal” learning 
examples seems unlikely. 

The scholarly value of this study lies instead in its contrast 
to previous work, which found a significant and large effect 
in favor of the abstract learning instantiation. Our results 
provide an alternative explanation for those earlier findings. 
The “advantages of abstract examples” of Kaminski et al. did 
not manifest because “abstract examples” are better in 
general. It was because, in that particular design, the concrete 
learning condition was suboptimal. 
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Abstract 
Ambiguity pervades language. One prevalent kind of 
ambiguity is indirect requests. For example, “My office is 
really hot” could be intended not only as a complaint about 
the temperature, but as a request to turn on the AC. How do 
comprehenders determine whether a speaker is making a 
request? We ask whether the prosody of an utterance provides 
information about a speaker’s intentions. In a behavioral 
experiment, we find that human listeners can identify which 
of two utterances a speaker intended as a request, suggesting 
that speakers can produce discriminable cues. We then show 
that the acoustic features associated with an utterance allow a 
classifier to detect the original intent of an utterance (74% 
accuracy). Finally, we ask which of these features predict 
listener accuracy on the behavioral experiment. 

Keywords: indirect requests; prosody; language production; 
language comprehension; inference 

Introduction 
People often make requests indirectly. For example, “Can 
you open that window?” is literally a question about the 
hearer’s ability to open the window, but is often intended 
instead as an implied request for the hearer to open the 
window. Some indirect requests use a highly 
conventionalized form (in this example, “Can you X?”). 
But other indirect requests are less conventional, such as 
“My office is really hot.” Indirect requests have been a topic 
of active research for decades in psycholinguistics (Gibbs, 
1979), philosophy (Searle, 1990), cognitive psychology 
(Holtgraves, 1994), and natural language processing 
(Perrault & Allen, 1980; Williams et al, 2018) for several 
reasons. First, they’re exceedingly frequent. One study 
eliciting requests from participants found that over 80% 
were indirect in some way (Gibbs, 1981). Second, 
successfully comprehending indirect requests requires the 
hearer to make inferences about the speaker’s intent, using 
linguistic and other contextual knowledge, potentially 
involving diverse cognitive systems, which can pose 
challenges to computational implementations of language 
comprehension (Briggs, Williams, & Scheutz, 2017). But it 
still remains to be determined what information human 

comprehenders use to recover the intended interpretation of 
a potential indirect request. 

Previous work suggests that successfully understanding 
indirect requests requires the integration of extra-linguistic 
contextual information. For conventional indirect requests, 
comprehenders can use the form of the utterance as a partial 
cue to its meaning. Consequently, conventional indirect 
requests are thought to be easier to understand (Gibbs, 
1981), and in some cases the request interpretation may 
even be the default (Gibbs, 1986). But even conventional 
indirect requests can pose a challenge: the conventionality 
of a particular form is still dependent on context (Gibbs, 
1986), and canonical forms can even lead listeners to 
misidentify intended questions as requests (e.g. “Can you 
play tennis?”), as has been reported for individuals with 
anterior aphasia and right-hemisphere brain damage (Hirst, 
LeDoux, & Stein, 1984).  

Less conventional indirect requests, such as “My office is 
really hot”, require the hearer to infer both the speech act 
(e.g. is it a request?) as well as the intended substance of the 
request, and are thus thought to incur higher processing 
costs than their literal, non-request counterparts (Tromp, 
Hagoort, and Meyer, 2016), as well as more conventional 
indirect requests (Gibbs, 1981). Successful disambiguation 
of these utterances may benefit from co-speech gesture and 
eye gaze (Kelly et al, 1999), as well as a representation of 
what is mutually known across interlocutors (Gibbs, 1987; 
Trott & Bergen, 2018).  

Finally, indirect requests have proven challenging for 
machine language understanding. Wizard-of-Oz style 
experiments show that human speakers continue to use 
indirect requests when speaking to robots (Briggs, Williams, 
& Scheutz, 2017), even when those robots demonstrably 
cannot understand them (Williams et al, 2018). Current 
state-of-the-art solutions (Briggs, Williams, & Scheutz, 
2017) use rules relating utterance forms to contexts to 
probabilistically derive the intended interpretation of 
ambiguous utterances like “Can you knock down the red 
tower?” While these solutions work well for established 
utterance-context mappings, they could still benefit from an 
increased understanding of precisely which disambiguating 
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information is available (e.g. paralinguistic or extralinguistic 
cues), and which is actively exploited by human 
comprehenders.  

Specifically unexplored to date as a candidate source of 
disambiguating information, is prosody: the intonational, 
rhythmic, and tonal properties of how an utterance is spoken 
or signed.  

Prosodic Cues for Disambiguation 
Previous work on other kinds of linguistic ambiguity has 
already demonstrated that prosodic cues can provide 
disambiguating information about a speaker’s intent. 

For one, prosodic features such as pitch and pause 
duration can act as “parsing instructions” for listeners. 
Using speech synthesis, Beach (1991) modified the pitch 
and duration of critical regions of sentences involving 
temporary ambiguity (e.g. whether a noun phrase was 
functioning as a sentential complement or direct object), and 
found that participants were able to identify the intended 
parse without listening to the entire utterance. Similarly, 
Price et al (1991) found that FM radio newscasters, naïve to 
the purposes of the experiment, produced marked prosodic 
cues that aided listeners’ comprehension of parenthetical 
statements, apposition, and prepositional phrase attachment 
ambiguities. This boost in comprehension may even occur 
before the ambiguity is encountered, as suggested by 
differences in the visual scan patterns of listeners tasked 
with determining which object a speaker was referring to 
(Snedeker & Trueswell, 2003). Nonetheless, there are still 
substantial debates about the conditions under which 
speakers reliably produce such cues––some studies 
(Allbritton et al, 1996; Snedeker & Trueswell, 2003) have 
found that discriminating prosodic cues disappear in the 
presence of sufficiently disambiguating contextual 
information, while others (Schafer et al, 2000; Speer et al, 
2011) have found that they persist, and have argued that the 
failure to find such cues is due to limitations on the 
elicitation paradigms used (e.g. being non-interactive or 
having low stakes). Regardless, the evidence shows that 
when such cues are available, listeners improve at 
identifying the intended syntactic parse––pointing to a clear 
role for prosodic features in syntactic disambiguation.   

There is also a growing body of evidence that prosody 
helps a comprehender decipher a speaker’s pragmatic 
intentions. Early work (Shriberg et al, 1998) found that 
including prosodic features from conversational speech 
(including duration, pause, F0, energy, and speech rate) 
improved a classifier’s ability to categorize utterances by 
Dialogue Act, above and beyond a model equipped with 
only statistical word-level features. While these results do 
not indicate that human comprehenders infer a speaker’s 
intentions on the basis of prosodic-level features, they do 
suggest that such features are, in principle, useful. More 
recently, Hellbernd & Sammler (2016) asked whether 
trained human speakers could produce cues that identified 
the intended speech act of one-word utterances––e.g. 
producing the word “beer” as a Warning, Criticism, or 

Suggestion. In a behavioral task, human listeners 
successfully identified the speaker’s intended speech act for 
82% of words (and 73% of non-words). The authors also 
trained a machine learning classifier to categorize speech act 
using prosodic features (duration, mean intensity, 
harmonics-to-noise ratio, mean fundamental frequency, and 
pitch rise), obtaining 92% accuracy for words (and 93% for 
non-words).  

Additional evidence that people use prosody to 
disambiguate comes from research on irony detection. 
Listeners were able to identify the presence (or absence) of 
irony in spontaneously-produced speech from radio shows 
when presented in auditory, but not written, format (Bryant 
& Fox Tree, 2002), suggesting that success was at least 
partially dependent on information contained in the speech 
signal (though see Bryant & Fox Tree (2005) for further 
discussion of whether these prosodic features are global or 
local, and whether they are uniquely characteristic of irony 
in particular). More recent studies (Deliens et al, 2018) have 
confirmed that prosodic features aid in the detection of 
irony; however, listeners appear to exhibit a speed/accuracy 
trade-off in the integration of prosodic vs. contextual 
congruity cues, respectively.  

Finally, beyond the level of individual speech acts, 
prosodic features have been shown to improve the detection 
of a speaker’s attitudinal stance (Pell et al, 2018; Ward et al, 
2017; Ward et al, 2018). Features such as speech rate and 
pitch can also influence judgments about the perceived 
politeness of a speech act, including requests (Caballero et 
al, 2018), though as has been pointed out, the information 
conveyed by a given prosodic feature is not necessarily 
independent from the social-interactional context in which 
that feature is observed (Wichmann, 2000; Culpeper, 
Bousfield, & Wichmann, 2003).  

Together, these findings indicate that speakers are capable 
of producing signals whose prosodic features provide 
information about the intended syntactic parse or pragmatic 
interpretation. Critically, these signals are reliable enough to 
be detectable––and useful––to both human and machine 
comprehenders.  

However, the role of prosodic features in signaling the 
intended interpretation of potential indirect requests is 
currently unexplored. Do speakers and hearers use prosody 
to overcome the pragmatic ambiguity intrinsic to the most 
common way to make requests? We addressed this in the 
current work through three core questions. First, can 
speakers produce reliable cues to indicate to human listeners 
whether or not they are making a request? Second, which 
cues do speakers actually produce? And third, are these the 
same cues that listeners seem to use?  

Note that all critical data, as well as the code to reproduce 
the analyses described below, can be found online at: 
https://github.com/seantrott/prosody_indirect_requests.  

Experiment: Listener Judgments of Intent 
In a behavioral experiment, we asked whether speakers can 
produce reliably discriminable prosodic cues. Specifically, 
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we asked whether these prosodic cues reliably aid human 
listeners in discriminating the speaker’s pragmatic intent. 
On each trial, participants were given two recordings of the 
same utterance by the same speaker (e.g. “Can you open 
that window?”, or “My soup is cold”), and were asked to 
select which of the two utterances was intended as a request. 
If speakers can produce detectable, reliable cues, then 
participants should be able to identify which utterance was 
produced as a request; but if speakers cannot produce such 
cues, or if the cues they produce are not usable by human 
listeners, then participants should perform at chance.  

Methods 
Participants 78 participants, all native English speakers, 
were recruited from Amazon Mechanical Turk. We aimed to 
recruit 80 participants, but Mechanical Turk under-sampled 
to 78 participants. The mean age of our participants was 37 
(SD=11), ranging from 20 to 69. 30 identified as female, 45 
as male, 2 as non-binary, and 1 declined to answer. Each 
participant was paid $2 for participating, and the experiment 
took on average 24 minutes to complete. 
Materials We recorded five English speakers (2 male, 3 
female). Speakers were given 12 utterances to produce (6 
conventional indirect requests of the form “Can you X?”, 
and 6 non-conventional indirect requests of the form “My X 
is Y”), and were instructed to say each utterance twice––
once as a request, and once as a literal question or statement. 
They were allowed to read over the utterances before 
speaking. The experiment was implemented using JsPsych 
(de Leeuw, 2015).  
Procedure After completing an audio check, participants 
were instructed that they would listen to a series of paired 
utterances. They were told that one member of each pair 
was always intended as a request, and the other member was 
not. Their task was to indicate which was the request by 
selecting one of two buttons (either “First” or “Second”, 
corresponding to the first or second utterance presented).  

On each trial, participants heard two utterances, 
containing the same words and produced by the same 
speaker, with 1 second of silence following each utterance. 
The order of the utterances (e.g. whether the request or non-
request version came first) was counterbalanced within-
speaker using a weighted randomization scheme (e.g. for 
each speaker-block, 6 trials contained the request version 
first, and 6 contained the non-request version first). After 
listening to both versions, participants indicated which one 
they thought was intended as a request via button-press. 

Each participant performed 60 trials (12 utterance pairs 
for each of the 5 speakers), blocked by speaker. The order 
of the trials within each speaker-block was randomized, as 
was the order of speaker-blocks. 

Results 
All statistical analyses were performed in R (R Core Team, 
2017), using the lme4 package (Bates et al, 2015). Random 
effects structure was determined by beginning with the 

maximal model, then reducing as needed for model 
convergence (Barr et al, 2013). 

Our first question was whether participants could 
successfully determine which utterance was intended as the 
request. To test this, we built a generalized linear mixed 
effects model, with response (First or Second) as the 
dependent variable, and correct answer (First or Second) as 
a fixed effect, as well as random slopes for the effect of 
correct answer for both subjects and items (as well as 
random intercepts for both). We compared this full model to 
a reduced model omitting the fixed effect of correct answer, 
and found that the full model explained significantly more 
variance [X2(1)=24.97, p=5.8*10-7]. In other words, 
participants were able to discriminate request and non-
request utterances at a rate above chance. 

We were also interested in which characteristics predicted 
accuracy on particular items––were participants better at 
identifying pragmatic intent for certain forms (conventional 
vs. non-conventional), or for certain speakers? We used 
nested model comparisons, with correct (Yes or No) as a 
dependent variable, by-item random slopes for speaker, by-
subject random slopes for form, and random intercepts for 
both items and subjects, to determine whether form, 
speaker, and their interaction explained independent sources 
of variance in participant accuracy. A model with fixed 
effects for both form and speaker explained more variance 
than a model with form alone [X2(4)=11.5, p=.02], as well 
as a model with speaker alone [X2(1)=5.2, p=.02]. Adding 
an interaction between form and speaker explained 
additional variance [X2(4)=14.1, p=.007]. In other words, 
certain speakers produced more discriminable signals 
overall, and conventional requests were generally easier to 
identify than non-conventional requests, except in the case 
of one speaker, “S2” (see Figure 1).  

 

 
Figure 1: Human accuracy was above chance for all 
speakers and forms. Accuracy was higher for some speakers 
(e.g. S3, S4) and some forms (e.g. conventional requests). 
Dotted red line signifies chance (50%). 

 
One possibility is that participants improved in accuracy 

over the course of the experiment, perhaps learning which 
prosodic features signaled intent. We compared a model 
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with correct (Yes/No) as a dependent variable, Order (1-60) 
as a fixed effect, and random intercepts for subjects and 
items, to a model omitting the fixed effect of Order, and 
found that the full model did not explain significantly more 
variance [X2(1)=.7, p=.4]. Thus, there is no evidence that 
participants improved over the course of experiment. 
However, it is also possible that participants improved 
within each speaker-block, but that this adaptation did not 
carry over across blocks. To test this, we replaced Order 
with Order-within-block (1-12) as a fixed effect; a model 
including Order-within-block explained marginally more 
variance than a model omitting this term [X2(1)=3.1, p=.08]. 
This explanatory power was independent from the 
variability explained by speaker, as determined by 
comparison of a model including fixed effects of both 
speaker and Order-within-block to a model with only 
speaker [X2(1)=3.3, p=.07]. Adding an interaction between 
these factors did not increase explanatory power [X2(4)=3.3, 
p=.5]. This provides weak evidence for within-block 
adaptation or learning, but requires further analysis and 
experimentation. 

Analysis of Acoustic Features 
Listener judgments of pragmatic intent in the behavioral 
experiment described above demonstrated that speakers 
produced signals that increased communicative success. 
However, this analysis does not indicate which acoustic 
features predict a speaker’s intended pragmatic 
interpretation. Here, we asked whether seven acoustic 
features reliably predicted a speaker’s intent. Predictive 
power was assessed in two ways. First, we asked about the 
explanatory power of each variable in turn using nested 
model comparisons. Second, we used leave-one-out cross-
validation to determine how the combination of all features 
improved the ability of a classifier to identify intent.   

Data Processing 
For each of the 120 recordings (5 speakers producing 12 
utterances with two versions each), we used Parselmouth 
(Jadoul et al, 2018), a Python interface to Praat, to extract 
the following acoustic features: mean F0, range F0 (max F0 
– min F0), standard deviation of F0, duration (number of 
voiced frames), mean intensity, standard deviation of 
intensity, and slope of F0 (slope of regressing F0 ~ time). 
We then z-scored each of these variables with respect to 
each speaker’s mean and SD, to account for considerable 
variability in speakers overall. 

Results 
First, we asked how much independent variance was 
explained by each feature in turn, comparing a full model 
(including all seven features) to a model omitting only the 
feature under consideration. In each case, the full model 
included intent (Request vs. Non-Request) as a dependent 
variable, fixed effects for each of the seven acoustic 
features, and random intercepts for each utterance. We 
adjusted for multiple comparisons using Holm-Bonferroni 

corrections (Holm, 1979). In each case, a positive 
coefficient represents a higher likelihood of a Non-Request, 
while a negative coefficient represents a higher likelihood of 
a Request. 

For a logistic regression model predicting intent of all 
items (e.g. both conventional and non-conventional 
utterances), model fit was improved by including mean 
intensity [X2(1)=8.7, p=.003, padj=.02] and SD intensity 
[X2(1)=7.8, p=.005, padj=.03]. Higher-intensity utterances 
were more likely to be Requests [b=-.69, SE=.25, p=.006], 
as were utterances were with greater variation in intensity 
[b=-1.1, SE=.4, p=.01]. No other acoustic features 
significantly improved model fit after correcting for 
multiple comparisons.  

Because human listener accuracy differed significantly as 
a function of form (see the behavioral experiment), it is 
possible that distinct prosodic features predict intent for 
conventional and non-conventional requests. Thus, we ran 
the same analysis as above twice: once on only conventional 
and once on only non-conventional requests. 

For a model predicting intent of only conventional 
requests, model fit was improved by including F0 slope 
[X2(1)=7.8, p=.005, padj=.03], SD intensity [X2(1)=7.7, 
p=.005, padj=.03], and F0 duration [X2(1)=8.8, p=.003, 
padj=.02]. More positive slopes were associated with Non-
Requests, e.g. literal questions [b=1.1, SE=.5, p=.01], as 
were longer utterances [b=1.1, SE=.4, p=.01] and less 
variation in intensity [b=-1.1, SE=.4, p=.01].   

For a model predicting intent of only non-conventional 
requests, model fit was significantly improved by including 
F0 duration [X2(1)=19.6, p=9.7*10-6, padj=.00004], with 
longer utterances having a higher probability of being 
Requests [b=-2.5, SE=.94, p=.008].  

In sum, we identified several acoustic features that predict 
pragmatic intent. Overall, intent was predicted by mean 
intensity and SD intensity. For conventional requests in 
particular, intent was predicted by F0 slope, F0 duration, 
and SD intensity; for non-conventional requests, intent was 
predicted by F0 duration. These results suggest that those 
features could, in principle, be used to identify the intent of 
an ambiguous utterance. 

To determine whether the combination of all seven 
acoustic features could improve a classifier’s ability to 
detect intent, we used leave-one-out cross-validation 
(LOOCV). A model including all seven acoustic features (as 
well as their interactions with form) accurately predicted 
intent on 74% of the held-out items, a rate substantially 
above chance (50%). 

Predicting Accuracy from Acoustic Features 
By regressing pragmatic intent against extracted acoustic 
features, we isolated multiple features that appear to indicate 
intent of either conventionally or non-conventionally 
formatted utterances: F0 slope, F0 duration, mean intensity, 
and SD intensity. However, this does not entail that listeners 
actively exploit differences in these features to infer intent. 
It could be that these features are statistically reliable, but 
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not psychologically valid. Which, if any, of these features 
actually benefit listeners? 

One way to test this is to ask: do by-item differences in 
any of the acoustic features explain independent sources of 
variance in listener accuracy, above and beyond the full 
model specified above in the behavioral experiment 
(containing an interaction between form and speaker)? If 
larger differences from a given dimension (e.g. F0 slope) 
consistently predict accuracy, this suggests that listeners are 
actively benefitting from those differences, and are thus 
consistently sampling and deploying information about that 
particular dimension. 

Data Processing 
For each utterance pair, we computed the difference of each 
z-scored feature between the Request version and the Non-
request version. Thus, a positive value for F0 slope 
difference indicates that the Request version had a larger 
slope than the Non-request version, while a negative value 
indicates that the Non-request version had a larger slope. 
We repeated this procedure for each acoustic feature.  

Results 
We asked about the informativeness of each acoustic feature 
(as well as its interaction with form) using nested model 
comparisons. The explanatory power of a given variable 
was determined by comparing a model including that term 
to a model without it. We adjusted for multiple comparisons 
using Holm-Bonferroni corrections (Holm, 1979).   

The full model included the terms from the maximal 
model specified in the behavioral experiment, with correct 
(Yes/No) as a dependent variable, an interaction between 
form and speaker, fixed effects for both form and speaker, 
and random intercepts for subjects and items. It also 
included each of the seven acoustic features, as well as their 
interaction with form.  

 

 
Figure 2: Differences in z-scored F0 slope by form and 
accuracy. Conventional items with a larger difference 
between the Request and Non-Request version (specifically, 
where the slope on the Non-Request version was more 
positive than the slope on the Request version) were more 
likely to be answered correctly. 

Model fit was significantly improved by the interaction 
between F0 slope difference and form [X2(1)=16.98, 
p=3.78*10-4, padj=.0005], but was not significantly improved 
by F0 slope difference alone (padj>.1). The direction of this 
interaction is illustrated in Figure 2: accuracy on non-
conventional items was not significantly impacted by the 
difference in F0 slope between the Request and Non-
Request differences, whereas a larger difference for 
conventional items predicted more accurate responses. 
Specifically, conventional items on which the Non-Request 
version had a more positive slope than the Request version 
(and thus their difference was more negative) were more 
likely to be answered correctly [b=-.4, SE=.1, p=5.5*10-5]. 

Model fit was also improved by the interaction between 
mean F0 and form [X2(1)=10.6, p=.001, padj=.01], as well as 
the main effect of mean F0 [X2(1)=15.03, p=.0001, 
padj=.001]. Specifically, conventional items on which the 
Request version had a lower mean F0 than the Non-Request 
version were more likely to be answered correctly [b=-.47, 
SE=.14, p=.001]. Because these comparisons included a 
term for F0 slope, this does not appear to be due simply to 
conventional Non-Request items exhibiting a sharper final 
rise (e.g. more positive slope). Differences in mean F0 
explained independent sources of variance from F0 slope. 

A model including an interaction between mean intensity 
and form did not explain more variance than a model 
omitting that term, but the fixed effect of mean intensity did 
improve model fit [X2(1)=9.7, p=.002, padj=.02]. 
Specifically, items on which the Request version had a 
higher overall mean intensity than the Non-Request version 
were marginally more likely to be answered correctly [b=.1, 
SE=.05, p=.06].  

Model fit was also improved by the interaction between 
SD intensity and form [X2(1)=7.12, p=.008, padj=02], though 
not the fixed effect of SD intensity alone (padj>.1). 
Conventional items on which the Request version exhibited 
greater variation in intensity than the Non-Request version 
were more likely to be answered correctly [b=.29, SE= .11, 
p=.007].  

In summary, four of the acoustic features we extracted 
predicted listener accuracy––F0 slope, mean F0, mean 
intensity, and SD intensity. F0 slope appeared to be useful 
primarily for conventional requests (with more positive 
slopes indicating the literal, Non-Request interpretation). 
Mean F0 was helpful for both, though again, appeared to be 
particularly predictive of accuracy on the conventional items 
(with higher mean F0 on the Non-Request versions 
predicting higher accuracy). Mean intensity was predictive 
of accuracy on both kinds of items; items on which the 
Request version exhibited higher overall intensity than the 
Non-Request version were more likely to be answered 
correctly. Finally, SD intensity was particularly helpful for 
conventional items––Request versions with more variability 
in intensity than their Non-Request counterpart were more 
likely to be correctly identified.  
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General Discussion 
Human listeners were able to discriminate the pragmatic 
intent of potential indirect requests, indicating that speakers 
can produce discriminable cues, at least when made aware 
of an utterance’s different interpretations. We extracted 
seven acoustic features from each recorded utterance, and 
found that four of these features were predictive of listener 
accuracy in the behavioral experiment: F0 slope, mean F0, 
mean intensity, and SD intensity. Specifically, larger 
differences in each of these features were associated with 
more accurate responses; some were primarily helpful for 
conventional items (F0 slope, SD intensity, mean F0), while 
others were helpful for both (mean intensity). 

Additionally, using leave-one-out cross-validation, a 
machine learning classifier trained on these features (and 
their interaction with utterance form) successfully identified 
the intent of potential request utterances 74% of the time 
(where chance is 50%). Thus, prosodic features are not only 
useful to human comprehenders attempting to discriminate a 
speaker’s pragmatic intent––they are also informative to 
machines, suggesting that they could perhaps be integrated 
into existing natural language understanding architectures 
(Briggs et al, 2017). 

Open questions remain. First, we noted a weak effect of 
Order-within-block, but not Order overall, on accuracy. 
That is, there is no evidence that listeners improved over the 
course of the entire experiment, but they might have 
improved while listening to each speaker. If true, this 
provides weak evidence for adaptation to each speaker, 
which may not successfully carry over across speakers. The 
effect was marginally significant. Since it arose during 
exploratory data analysis, it requires further investigation. 

Second, a limitation of the behavioral experiment is that 
participants were asked to explicitly discriminate between 
two versions of the same utterance (e.g. “which was the 
request?”), rather than classifying an individual utterance 
(e.g. “is that a request?”). The latter design is clearly more 
applicable to real-world scenarios, in which comprehenders 
do not have immediate access to alternative versions of an 
utterance. We are designing a new set of studies to ask 
whether comprehenders can identify whether a given 
utterance was intended as a request, and whether the same 
acoustic features—e.g. F0 slope, mean intensity, etc.—
predict their response. This task design will also allow more 
direct comparison to the classifier’s results, so that we can 
determine whether the classifier is using similar features 
(and making similar errors) as human comprehenders. 

Third, a long-standing question in the literature on 
prosody and pragmatic intent is whether particular prosodic 
features convey direct information about the intended 
speech act, or whether they function primarily as contrastive 
markers, which invite the listener to perform additional 
inference. For example, prosodic features may not directly 
convey sarcastic intent, but rather prompt listeners to 
integrate other multimodal, contextual information to 
recognize irony (Attardo, Eisterhold, Hay, & Poggi, 2003; 
Bryant & Fox Tree, 2005). Our experiment was not 

designed to adjudicate between these two possibilities, but 
our results do suggest that the answer is nuanced, and likely 
falls somewhere in between. Certain features, such as F0 
slope, were predictive only of accuracy for conventional 
forms (E.g. “Can you open that window?”), and thus might 
be more aptly described as “marking” a deviation from the 
default interpretation of modal interrogatives as requests 
(Gibbs, 1986). But other features, such as mean intensity, 
predicted accuracy across forms; in both cases, items with 
higher intensity on the Request version (vs. the Non-
Request version) were more likely to be answered correctly.        

Finally, perhaps the most obvious question is whether, or 
under what conditions, these kinds of prosodic cues would 
actually be produced. Speakers in our experiment were 
made aware of the two interpretations of each utterance, and 
were explicitly asked to produce utterances consistent with 
those interpretations. While our results indicate that 
speakers can produce discriminable cues, they do not 
demonstrate that speakers actually do. A similar issue arises 
in the study of prosodic cues for syntactic disambiguation––
some (Allbritton, 1996; Snedeker & Trueswell, 2003) have 
found that these cues are no longer present when the 
utterance is produced in a disambiguating context, while 
others (Schafer et al, 2000; Schafer et al, 2005) have argued 
that the cues are produced regardless of how much 
information is provided by the context. Thus, the question 
becomes: are the discriminable prosodic features we 
observed automatically and conventionally associated with 
pragmatic intent, or are they deployed strategically for a 
particular audience in a particular context? 
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To Catch a Snitch: Brain potentials reveal knowledge-based variability 
in the functional organization of (fictional) world knowledge during reading 

 
 

Abstract 

People vary in what they know, yet models of language 
processing do not take this variability into account. We 
harnessed the temporal sensitivity of event-related brain 
potentials alongside individual differences in Harry Potter (HP) 
knowledge to investigate the extent to which the availability 
and timing of information relevant for real-time word 
comprehension are influenced by variation in degree of domain 
knowledge. We manipulated meaningful (category, event) 
relationships between sentence contexts about HP stories and 
critical words (endings), assessed via behavioral ratings and by 
measuring similarity of word embeddings derived from a high-
dimensional semantic model trained on HP texts. Individuals’ 
ratings were sensitive to these relationships according to the 
degree of their domain knowledge. During reading, N400 
amplitudes (neural measures of semantic retrieval) also 
reflected this variability, suggesting the degree to which 
information relevant for word understanding is available 
during real-time sentence processing varies as a function of 
individuals’ domain knowledge. 

Keywords: language processing, ERPs, knowledge, individual 
differences 

Introduction 
Across cognitive systems, world knowledge allows 
individuals to organize raw sensation into meaningful 
experiences. Understanding language is no exception—
words cue world knowledge which can be rapidly brought to 
mind in real time (e.g., Hagoort et al., 2004), incrementally 
and sometimes even predictively (reviewed in Altmann & 
Mirković, 2009; Kutas, DeLong, & Smith, 2011). A more 
precise description of how this occurs—including which 
types of knowledge, their organization, and the timing of their 
use—requires a closer look at knowledge availability in real 
time. It is, however, experimentally challenging to capture 
the specifics of an individual’s world knowledge with 
standard laboratory procedures. 

Troyer and Kutas (2018; Troyer, Urbach, & Kutas, under 
review) provided a potential solution by focusing on a 
restricted domain of knowledge with the requisite properties 
for online language processing studies, including a large, rich 
set of verbal descriptions, wherein college-aged young adults 
differed in their degree of knowledge—the fictional world of 
Harry Potter (HP) by J.K. Rowling. Troyer & Kutas (2018) 
recorded EEG while participants with varying degrees of 
knowledge about HP read sentences that described general 
topics, followed by sentences that described events from the 
HP stories; sentences ended either in contextually supported 
or unsupported words. Across participants, and for both 
sentence types, the effect of contextual support was present 
on N400 amplitudes—a brain potential sensitive to factors 
impacting the ease of retrieval from semantic memory, with 
larger reductions in N400 (i.e., more positive-going 
potentials) associated with greater ease of retrieval (reviewed 

in Kutas & Federmeier, 2000). But critically, participants’ 
degree of HP knowledge influenced the size of this effect 
only for the sentences about HP. More specifically, 
individuals’ HP knowledge was correlated with N400 
amplitudes to contextually supported, but not to unsupported, 
words. These results empirically demonstrate that the rapid 
influence of written sentence context, known to modulate 
N400 brain potentials, is a function of each individual’s 
knowledge. 

These findings are not surprising given the vast literature 
showing that people rapidly make use of a variety of word 
and world knowledge as they understand words in real time, 
such as orthographic neighborhood density (Laszlo & 
Federmeier, 2009), word frequency (Van Petten & Kutas, 
1990), and non-linguistic knowledge including the 
organization of categories in semantic memory (Federmeier 
& Kutas, 1999), facts about the world (Hagoort et al., 2004), 
generalized event knowledge (Metusalem et al., 2012), 
personal preferences (Coronel & Federmeier, 2016), and 
fictional characters (Filik & Leuthold, 2013). It stands to 
reason that the structure and organization of individuals’ 
knowledge would have consequences for the availability, 
contents, and timecourse of bringing to mind these varied 
sources of knowledge in real time. 

One way to ask whether and, if so, when people bring 
different types of information to mind as they read sentences 
is to probe them with words that are linguistically anomalous, 
yet systematically related to the sentence context and/or a 
likely upcoming, linguistically licensed word. This related 
anomaly paradigm has been fruitfully employed to 
investigate the influence of the functional organization of 
semantic memory on sentence processing. For example, in 
sentence contexts setting up an expectation for the word 
pines, categorically related words (e.g., another type of tree, 
palms) elicited reduced N400 amplitudes compared to words 
from a different category (e.g., tulips), but which were larger 
than those to the expected word (Federmeier & Kutas, 1999, 
2002). In a different study, where individuals read short 
paragraphs about common events (e.g., playing football) that 
set up linguistic expectations for a word (e.g., touchdown), 
unexpected and linguistically unlicensed words related to the 
event being described (e.g., helmet) also elicited reduced 
N400 amplitudes compared to unrelated words (e.g., license) 
(Metusalem et al., 2012). It is worth noting that the “related 
anomaly” in Federmeier & Kutas shared many features with 
an expected word whereas in Metusalem et al. the related 
anomaly was related in one or more of several ways to the 
generalized event being described in the context, but not did 
not share features with the linguistically expected word. 
Nonetheless, the related anomaly ERP effects in both studies 
had a similar timecourse and scalp topography, maximal 
around 400 ms over centro-parietal recording sites, 
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suggesting that people made quick use of both types of 
related information during real-time sentence processing. 

The availability of related/relevant information stored in 
semantic memory during real-time language processing 
must, at least to some degree, be modulated by each 
individual’s degree of domain knowledge. Indeed, the 
literature on expert knowledge proposes that the functional 
organization of information around themes, events, and 
categories is likely to depend on individuals’ degree of 
expertise (reviewed in Ericsson et al., 2006). To investigate 
the extent to which variation in domain knowledge influences 
the nature and timing of the availability of knowledge stored 
in long-term memory during real-time sentence processing, 
we probed semantic memory using a related anomaly 
paradigm incorporating sentences describing the narrative 
world of Harry Potter. 

Using freely available materials (including Wikipedia and 
HP fan sites) along with the text of the HP book series by J.K. 
Rowling, the first author created a set of 156 sentence pairs 
that accurately described events and entities from the series. 
Each sentence context ended either in (a) a contextually 
Supported (and linguistically expected) word; (b) a word 
which was factually incorrect and Unrelated to the context 
and to the supported word; and (c) a word which was 
factually incorrect but which was Related in one of two ways 
to the context and/or contextually supported word. For half 
of the materials, the related words were taken from the same 
category as the linguistically expected word, as in Federmeier 
& Kutas (1999). For the remaining materials, the related word 
was related in some way to the episode/event being described 
by the preceding sentence context, as in Metusalem et al. 
(2012). Based on the previous findings, we expected that both 
types of relationships would lead to N400 related anomaly 
effects which might be similarly influenced by the degree of 
individuals’ domain knowledge. Three lists were constructed 
such that each sentence frame and each critical word 
appeared only once per list (examples provided in Table 1). 

In order to verify that the words we deemed related via 
category or event to contextually supported words were 
indeed more closely related than the unrelated ending, we 
conducted a series of experiments to examine these 
relationships. First, we trained a high-dimensional 
semantics/language model directly on the text of the HP book 

series; we then asked whether the word embeddings learned 
by the model reflected the manipulation in our materials (e.g., 
with Supported-Related word embeddings being closer in 
semantic space than Supported-Unrelated word embeddings). 
Next, we conducted two experiments asking participants of 
varying degrees of HP knowledge to rate critical words from 
our materials for their similarity and relatedness, 
respectively. Finally, with these measures in hand, we 
conducted an EEG/ERP study to ask to what extent and when 
domain knowledge impacts the availability of contextually 
supported as well as contextually unsupported yet 
functionally (categorically, event-based) related knowledge 
during written sentence comprehension. 

Experiment 1: Word embeddings 
We trained a word2vec model (Mikolov et al., 2013a,b) on 
the text from the HP book series. This model uses a neural 
net to learn word embeddings (vectors) in high-dimensional 
semantic space from word co-occurrences in the input. The 
semantic “contents” of such embeddings can reflect various 
aspects of meaning, including category and event-based 
relationships (reviewed in Lenci, 2018). We could then use 
these embeddings to quantify relative similarities/differences 
between word pairs (or average vectors computed over 
sequences of words). 

Methods 
Word2vec model. We trained a word2vec model 
(distribution by D. Yaginuma, https://github.com/dav/ 
word2vec) on the text from the seven books of the HP series, 
taken from the official electronic publication 
(https://usd.shop.pottermore.com)—a total of 1,125,854 
words, with a vocabulary size of 8,046 words (subject to the 
constraint of each word appearing at least 5 times in the HP 
books). We used the continuous bag-of-words (CBOW) 
architecture, which learns to predict a word based on its 
context—in our case, a window of 10 words on either side. 
Each word from the HP books was modeled as a point (i.e., 
vector) in a 200-dimensional space. 
 
Word-word similarity Using this model, we extracted word 
embeddings for critical words from each of our experimental 
conditions (Supported, Related, and Unrelated). For each 
 

Table 1. Sample HP sentence materials. 
 

Sentence frame Supported Related Unrelated Related 
Anomaly 

Type 
Sybill Trelawney is a Hogwarts Professor. She 

teaches 
Divination Transfiguration basilisk Category 

In Quidditch, games are usually won in one 
way. This is when the seeker catches the 

Snitch Bludger dragon Category 

Harry has a patronus. It takes the form of a stag dementor Sectumsempra Event 
When Harry is one year old, Hagrid brings him 

to the Dursleys’. For transportation, he 
uses a borrowed 

motorcycle Sirius Vow Event 
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item (156 total), we then computed the cosine similarity 
(angular distance) between the word embeddings for 
Supported-Related and Supported-Unrelated pairs of critical 
words. We expected that the similarity for the Supported 
word-Related word pair would be greater Supported word-
Unrelated word pair. 

 
Sentence context-word similarity We also extracted word 
embeddings for each word (where possible) of our sentence 
pair frames/contexts. To create a single embedding (i.e., 
vector) for each item’s sentential context, we took the 
average of all its words’ vectors. We then computed the 
cosine distance between this aggregate context vector and the 
vector for each ending type (Supported, Related, Unrelated). 
We expected this distance would be greatest for the Context-
Supported pair, followed by Context-Related and finally 
Context-Unrelated.	
Results 
As expected, we found that word embeddings—derived from 
a corpus of the HP novels’ text—for Supported words were 
more similar to Related words than to Unrelated words (Fig. 
1a). This pattern held for both category- and event-related 
item subsets, though it was somewhat larger within category-
related items (p < .01). Also as expected, average word 
embeddings for sentential contexts were most similar to 
Supported words, followed by Related and Unrelated words 
(Fig. 1b). This pattern held both for category- and event-
related item subsets. These findings show that the high-
dimensional semantic space learned by the word2vec model 
captured systematic, meaningful differences in the 
relationships between the sentence context and the 
Supported, Related, and Unrelated endings. 

 

Experiments 2a-b: Ratings studies 
To further assess the manipulation in the HP sentences, and 
to examine the extent to which the manipulation was 
dependent on HP knowledge, we conducted two behavioral 
studies, asking participants to rate critical word-pairs 
(Supported-Related and Supported-Unrelated) on similarity 
(Exp. 2a) or relatedness (Exp. 2b). These criteria were chosen 
specifically to examine the two types of relationships we 
targeted in our HP sentence materials, namely categorical 
relationships (words share many similar features) and event 
relationships (words are related via an event/episode from the 
HP books). In addition, these experiments allowed us to 
assess the ratings of similarity/relatedness as a function of 
individuals’ degree of HP knowledge. We expected that 
individuals with greater knowledge would be more sensitive 
to our experimental manipulations—i.e., that more 
knowledgeable individuals would indicate relatively greater 
similarity/relatedness for Supported-Related than for 
Supported-Unrelated word pairs. 

 
 
 

(a) 

 
(b) 

 
Fig. 1. (a) Across items and within each subset (Category-
related, Event-related), mean cosine similarity for Supported 
& Related endings is greater than for Supported & Unrelated 
(all ps < .01). (b) For all 156 items (and within each subset) 
there was a significant three-way difference between cosine 
similarity of averaged word embeddings for sentences and 
Supported < Related < Unrelated endings. 

 

Methods 
Participants 24 participants completed similarity ratings; 25 
different participants completed relatedness ratings. All 
participants were UCSD students; they received partial 
course credit as compensation. 

 
Procedure For the similarity ratings experiment, participants 
were asked to consider word-pairs in the context of the Harry 
Potter stories and to judge their similarity in meaning using a 
scale ranging from 1 (“not similar at all”) to 7 (“nearly the 
same meaning”). They were given the following guide to 
judging similarity of word meanings: 

 
(1) Do the two word meanings behave similarly (e.g., 

do they perform the same actions)? 
(2) Do the two word meanings share physical / sensory 

properties (e.g., do they look, taste, smell, sound or 
feel similarly)? 

(3) Do the two word meanings share many functional 
properties (e.g., are they used in similar ways, or do 
they serve a similar purpose)? 

(4) Do the two word meanings share any other 
properties and/or features in common? 
 

For the relatedness ratings experiment, instructions were 
similar, except participants were asked to judge words on 
how related they were using a scale ranging from 1 (“not 
related at all”) to 7 (“very closely related)”. They were given 
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the following guide to judge whether the pairs were 
meaningfully related: 
 

(1) How likely are the words to show up within the 
same context (that is, in/around the same part of the 
HP stories)? 

(2) How important does one word seem to be for 
understanding the meaning of the other? 

(3) Are the two words related via some theme, topic, 
event, or episode/scenario in the HP stories? 

(4) Are the two words related via any other 
relationship? 
 

Participants in Exp. 2a-b also completed a 10-question trivia 
quiz assessing their HP knowledge and a questionnaire about 
their HP experience. 

Results 
As expected, mean similarity ratings for Supported-Related 
word pairs were greater than those for Supported-Unrelated 
word pairs (Fig. 2a). This pattern was similar for both the 
category- and event-related item subsets, but was larger for 
the category-related subset, which might be expected based 
on greater similarity due to feature overlap between members 
of the same category (compared to words related via an event 
or episode).. Also as expected, HP knowledge was positively 
correlated with the size of the effect (i.e., similarity for 
Supported-Related word pairs minus similarity for 
Supported-Unrelated word pairs) at r = .51, p < .05. 

In addition, mean relatedness ratings for Supported-
Related word pairs were greater than those for Supported-
Unrelated word pairs (Fig. 2b). This pattern was similar for 
both the category- and event-related item subsets. Also as 
expected, HP knowledge was positively correlated with the 
size of the effect (i.e., relatedness for Supported-Related 
word pairs minus relatedness for Supported-Unrelated word 
pairs) at r = .68, p < .001. 

We also examined the correlation between the word2vec 
cosine similarity measures (Exp. 1) and the similarity and 
relatedness ratings for Supported-Related and Supported-
Unrelated word pairs, respectively (Exp. 2). Cosine similarity 
was positively correlated with both similarity (r = .43, p < 
.0001) and relatedness (r = .26, p < .01) ratings for the 
Supported-Related word pairs, but not for the Supported-
Unrelated word pairs (n.s.). 

These results empirically indicate that our Supported 
sentence endings were indeed more similar/related to our 
Related, compared to Unrelated, endings. Moreover, that the 
size of these effects was positively correlated with HP 
knowledge further supports the notion that sensitivity to the 
relatedness manipulation depends on knowledge specific to 
the HP book series. Next we describe an ERP/EEG study 
designed to investigate the extent to which individual 
differences in domain knowledge influence the availability of 
information relevant for word processing—i.e., information 
cued by categorically / event related words—during real-time 
sentence processing. 

 
(a) 

 
(b) 

 
Fig. 2. (a) Across items and within each subset (Category-
related, Event-related), similarity ratings for Supported & 
Related endings are greater than Supported & Unrelated (all 
ps < .01); this effect was larger for the category-related subset 
of items compared to the event-related subset (p < .0001). (b) 
Across items and within each subset, relatedness ratings for 
Supported & Related endings are greater than Supported & 
Unrelated (all ps < .001). 

Experiments 3a-b: ERP studies 
In Experiment 3, we asked whether certain aspects of the 
functional organization of semantic memory—namely 
organization of words/concepts via categories (wherein 
members share many similarities/features) and event/episode 
relationships—would be available to comprehenders as they 
read sentences about a fictional domain. We were particularly 
interested in whether the availability of not just the 
contextually supported information, but also the contextually 
unsupported, related information would be a function of the 
degree of individuals’ domain knowledge. 

To this end, participants of varying degrees of HP 
knowledge read 156 sentence pairs about the fictional world 
of HP while we recorded EEG (Experiment 3b). Sentences 
ended in a critical word that was either Supported, Related, 
or Unrelated (HP sentence materials described above). Three 
lists were then constructed so that every participant read each 
sentence frame and each critical word only once. That is, 
even though the same critical word appeared in other 
conditions on other lists, it never appeared in the critical 
position more than once in the same list. All but three words 
appeared as critical words in two or all three conditions. We 
expected that for individuals knowledgeable about HP, we 
would see a three-way difference in the amplitude of N400 
potentials to the critical words, with the largest amplitude for 
Unrelated, the most reduced amplitude for Supported, and an 
intermediate amplitude for Related. We also expected that 
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N400 amplitude to Supported words would be positively 
correlated with HP knowledge (replicating Troyer & Kutas, 
2018 and Troyer, Urbach, & Kutas, 2018). Moreover, we 
expected that N400 amplitude to Related words would be 
positively correlated with HP knowledge, consistent with the 
real-time use of differential functional organization of long-
term memory as a function of degree of domain knowledge. 
For visualization of ERPs, we present subgroups of 
participants based on a median split on HP knowledge. 

To demonstrate (a) that individuals spanning a range of HP 
knowledge scores could elicit N400 effects, more generally, 
and (b) that the relationship between HP knowledge and 
N400 effects was specific to sentences about HP, we also 
recorded EEG while the same participants read sentences 
about general topics (Experiment 3a). Due to time 
constraints, we included only 40 such sentences, half of 
which ended in a contextually Supported word / the best 
completion (determined by an offline cloze norming task in 
which participants provided completions to sentence frames) 
and the other half of which ended in a contextually 
Unsupported word (a plausible word that was low-cloze). 

Methods 
Participants 48 students from the UCSD community 
participated in the EEG study (Experiments 3a-b). 

 
Experimental procedures Participants were instructed to 
silently read sentences for comprehension, first about general 
topics (Experiment 3a) and then about Harry Potter 
(Experiment 3b). In each experiment, the whole first sentence 
appeared in the center of the screen. When ready, participants 
pressed a button to move on to the second sentence, which 
was presented one word at a time in the center of the screen 
with a 500 ms SOA (200 ms on, 300 ms off). Following the 
ERP study, participants completed a 10-question HP trivia 
quiz and a questionnaire about their HP experience. 

In addition, we collected several other measures of 
individual differences to better understand group differences 
among participants (see Troyer & Kutas, 2018, for more 
details). We combined measures of general print/reading 
experience (media and reading habits questionnaire, author 
and magazine recognition tests; Stanovich & West, 1989) for 
an aggregate reading experience score, and we also collected 
a measure of general knowledge (trivia quiz developed from 
freely available materials), and verbal working memory 
(sentence span, Daneman & Carpenter 1980). Finally, we 
administered a debriefing questionnaire. 

 
ERP recording and data analysis The electro-
encephalogram (EEG) was recorded from 26 tin electrodes 
geodesically arranged in an ElectroCap, with impedances 
kept below 5 KΩ. Recordings were referenced online to the 
left mastoid and re-referenced offline to an average of the left 
and right mastoids. EEG was recorded by Grass bio-

amplifiers with a bandpass of .01-100 Hz at a sampling rate 
of 250 Hz. Trials contaminated by artifacts (e.g., eye 
movements or blinks) were not included in analyses. 

Grand average ERPs to sentence-final words were 
computed across all 26 recording sites for each experiment 
and by Ending Type (3a: Supported / Unsupported; 3b: 
Supported / Related / Unrelated). For statistical analyses, we 
used linear mixed effects models and focused on a region of 
interest (ROI) where N400 effects are typically largest, 
including an average of 8 centro-parietally distributed 
channels (MiCe, LMCe, RMCe, MiPa, LDPa, RDPa, LMOc, 
and RMOc) in a canonical N400 time period (250-500 ms) 
relative to a 200 ms pre-stimulus baseline.  

Results 
ERPs from our centro-parietal ROI are shown in Fig. 3. 

ERPs to critical words are characterized by N1 and P2 
sensory components. Across all participants, the P2 is 
followed by a relative negativity (N400), which is most 
reduced for Supported words compared to Unsupported 
(Control) and Unrelated/Related (HP) words. 

Experiment 3a: Control sentences. Our primary aim in 
analyzing the control experiment was to ask (a) whether 
individuals, irrespective of their degree (or depth) of HP 
knowledge, would elicit standard N400 effects to 
contextually supported vs. unsupported words in sentences 
about general topics and (b) to determine whether HP 
knowledge influenced the size of this effect. We predicted 
that HP knowledge would have a specific influence on 
sentences about HP, but not on the size of the effect for 
control sentences. Our results confirmed this prediction. We 
observed main effects of ending type (Supported < 
Unsupported; p < .0001) and HP knowledge (individuals with 
greater HP knowledge tended to yield overall somewhat more 
positive-going N400 potentials; p < .01), but critically, no 
interaction between ending type and HP knowledge. That is, 
the size of individuals’ N400 reduction to contextually 
supported, compared to unsupported, words did not differ as 
a function of individuals’ degree of HP knowledge. 

Experiment 3b: HP sentences. We expected that HP 
knowledge would modulate N400 amplitude to contextually 
supported words in sentences about HP, as in previous 
studies. In addition, we asked whether HP knowledge would 
also modulate N400 amplitude to contextually unsupported, 
but related, words in HP sentences. We observed a reliable 
interaction between HP knowledge and ending type (p < .05) 
and followed up using planned comparisons examining (a) 
the Unrelated vs. Supported endings and (b) the Unrelated vs. 
Related endings, finding that HP knowledge interacted with 
ending type in both cases (both ps < .05). Follow-up analyses 
revealed that HP knowledge was correlated with N400 
amplitudes to Supported words (Pearson’s r = .57, p < .0001) 
and Related words (Pearson’s r = .47, p < .001), but not to 
Unrelated words (n.s.). 
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Due to some differences present in similarity metrics for 
category- vs. related-anomaly subgroups of items (Exp. 1-2), 
we also tested whether there were systematic differences in 
the N400 response between subgroups of materials. 
However, linear mixed effects models revealed no interaction 
of ending and related anomaly type on N400 potentials nor 
any interaction between these predictors and HP knowledge. 

To rule out the possibility that other existing individual 
differences (namely reading experience, general knowledge, 
and verbal working memory scores) could better account for 
the observed variability in N400 ERPs, we tested a model that 
incorporated fixed effects of ending type, HP domain 
knowledge, general knowledge scores, reading span scores, 
and aggregate reading experience scores along with 
interaction terms for each individual differences measure 
with ending type. We compared this model and a similar 
model that did not incorporate interaction terms with any 
individual differences measures (except for the HP domain 
knowledge-by-ending type interaction term), and found that 
the more complex model did not explain additional variance. 

Discussion 
We asked whether, when, and to what extent individuals’ 
degree of domain knowledge of the fictional world of HP 
would reliably influence the availability of meaningfully 
relevant information during written language comprehension, 
even when it was linguistically unexpected. To that end, we 
assessed a set of materials in which sentence contexts set up 
expectations for contextually supported words, along with 
sentence endings that were contextually unsupported, but 
were meaningfully related or unrelated to the sentence 
contexts and/or to the supported endings. In a word-by-word 
reading ERP study, we probed the extent to which real-time 

access to the same sentence endings was modulated by 
domain knowledge. 

Importantly, individuals’ degree of HP knowledge did not 
influence the size of the contextual support effect for Control 
sentences about general topics. Replicating Troyer & Kutas 
(2018), we found that N400 reduction to supported words 
was strongly predicted by degree of domain knowledge. 
Moreover, we observed a similar pattern for critical words 
that were contextually unsupported, yet related to the 
sentence context and/or supported word.  

These results suggest that variation in knowledge—even of 
a fictional narrative world—influences what knowledge is 
retrieved in real time, which we believe is likely to reflect the 
way that knowledge is functionally organized. Our results 
further suggest that having relatively more knowledge, and 
thereby more organization around categories and/or events, 
allows for quick availability of this relevant organization 
during real-time reading. That is, knowledgeable individuals 
can quickly (pre)-activate relevant featural and/or thematic 
(as in the event-related subset of items) information—the 
very knowledge that is needed to make sense of words in real 
time. Moreover, individuals’ degree of knowledge seems to 
predict the likelihood with which and/or extent to which such 
information becomes available for use. These methods and 
findings invite new research using knowledge-based 
individual differences to better understand how language 
processing interfaces with knowledge in real time. For 
example, future work could combine subject-level domain 
knowledge and sentence-and-word-level similarity and/or 
relatedness measures (e.g., based on computational models 
(Exp. 1) or human judgments (Exp 2.)) to investigate their 
joint influences at the individual trial level. 
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Environmental Regularities Shape Semantic Organization throughout Development  
 

 

Abstract 

Our knowledge of the world is an organized lexico-semantic 
network in which concepts can be linked by relations, such as 
“taxonomic” relations between members of the same stable 
category (e.g., cat and sheep), or association between entities 
that occur together or in the same context (e.g., sock and 
foot). Prior research has focused on the emergence of 
knowledge about taxonomic relations, whereas association 
has received little attention. The goal of the present research 
was to investigate how semantic organization development is 
shaped by both taxonomic relatedness and associations based 
on co-occurrence between labels for concepts in language. 
Using a Cued Recall paradigm, we found a substantial 
influence of co-occurrence in both 4-5-year-olds and adults, 
whereas taxonomic relatedness only influenced adults. These 
results demonstrate a critical and persistent influence of co-
occurrence associations on semantic organization. We discuss 
these findings in relation to theories of semantic development. 

Keywords: semantic development; semantic organization; 
categories 

Introduction 

Our knowledge about the world is fundamental to many of 

the cognitive feats we accomplish on an everyday basis, 

including applying what we know to new situations, 

retrieving knowledge from memory, and incorporating new 

information into existing knowledge (Bower, Clark, 

Lesgold, & Winzenz, 1969; Heit, 2000; Tse, Langston, 

Kakeyama et al., 2007). These feats are possible due to the 

organization of our knowledge into an interconnected 

lexico-semantic network of related concepts (Cree & 

Armstrong, 2012; McClelland & Rogers, 2003). For 

example, our knowledge of dogs is often connected to our 

knowledge of other similar animals (e.g., cats), as well as to 

our knowledge about the contexts in which dogs appear, 

such as with leashes and doghouses.  

Although the fact that our concepts are organized is 

hardly controversial (e.g., McClelland & Rogers, 2003), the 

processes that drive the development of semantic 

organization are a topic of considerable debate. To date, this 

debate has focused on how connections between concepts 

from the same stable, “taxonomic” category (e.g., animals, 

foods) are formed, in spite of the fact that they may be 

difficult to observe: Members of the same (especially  

superordinate) taxonomic category do not necessarily look 

similar, or occur together. Some have proposed that 

semantic development begins with easy to observe relations 

that are then used to bootstrap taxonomic knowledge 

(Lucariello, Kyratzis, & Nelson, 1992). Alternately, others 

have proposed that we are endowed with early-emerging 

biases towards learning taxonomic relations (e.g., Gelman & 

Markman, 1986).  

The goal of this research is to investigate another 

possibility: That easy to observe relations – specifically, co-

occurrence – play a fundamental role in shaping knowledge 

organization from early in development through adulthood. 

In this paper, we first review traditional theoretical accounts 

that have focused on taxonomic relations, then highlight key 

findings suggestive of a role for co-occurrence that these 

accounts fail to capture, and an alternate perspective that we 

test in the present experiment.  

Traditional Accounts of Semantic Development 

Most extant accounts of the development of semantic 

organization have focused on how semantic knowledge 

becomes organized according to membership in taxonomic 

categories, such as foods. According to some accounts, 

referred to here as restructuring accounts, taxonomic 

relations are the endpoint of development. Critical to these 

accounts is the idea that the order in which relations 

between concepts are acquired is dictated by how 

observable they are. For example, it is easy to observe that 

cups have the same shape, or reliably co-occur with juice or 

milk, whereas membership in the same superordinate 

taxonomic category is more difficult (if not impossible) to 

observe. Restructuring accounts propose that early 

organization is shaped by information readily available in 

the environment, and that taxonomic knowledge comes to 

replace this (more rudimentary) organization.  

An early restructuring account was proposed by Inhelder 

and Piaget (1964), in which the transition to taxonomic 

organization is driven by experiences that highlight the 

inadequacy of earlier modes of organization (although the 

mechanisms by which this transition occurs are not clear). 

Another, more specified restructuring account is Nelson and 

Lucariello’s (1992) slot-filler account, which highlights 

environmental input in which some members of the same 

taxonomic category play the same role in the same context, 

such as some members of the taxonomic category of foods 

(e.g., eggs and bacon) reliably being eaten in a breakfast 

context. According to this account, young children are 

sensitive to these regularities, such that semantic knowledge 

is first organized into contextually-constrained taxonomic 

groups, which are gradually integrated together as children 

recognize when entities play the same role in different 

contexts (e.g., foods being eaten in different meal contexts).  

According to another set of accounts, referred to here as 

taxonomic bias accounts, taxonomic relations predominate 

semantic organization from early in development due to 

early-emerging (possibly innate) biases towards learning 

which entities are members of the same taxonomic category. 

These biases include beliefs that entities in the world belong 

to taxonomic categories, and that labels are indicative of 

category membership (e.g., Gelman & Coley, 1990). A role 

for other types of environmental input, such as the regularity 

with which entities co-occur, is not specified. 

A final type of account reviewed here, which we refer to 

as featural learning, posits that the development of semantic 

organization is driven by detecting clusters of features 
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whose appearance in entities is reliably correlated, and 

which are often associated with taxonomic category 

membership (Rosch, 1975). For example, membership in 

the category of birds is associated with possessing wings, 

feathers, and a beak. Featural learning accounts propose that 

sensitivity to these correlations yields taxonomic 

organization (e.g., McClelland & Rogers, 2003). In contrast 

with taxonomic bias accounts, featural learning accounts 

argue in favor of the gradual emergence of taxonomic 

organization over the course of development. However, 

featural learning accounts do not consider spatial or 

temporal co-occurrence of items in the world (or language) 

as contributors to semantic organization. 

Environmental Regularities Overlooked by 

Traditional Theoretical Accounts 

Of the influential accounts reviewed in the previous section, 

only some restructuring accounts posit any role in semantic 

development for environmental regularities with which 

entities and their labels co-occur. Even in these accounts, 

these regularities are ultimately overwritten. However, 

several findings highlight a potential importance of co-

occurrence regularities throughout development.  

First, statistical learning studies suggest that sensitivity to 

the regularity with which different entities co-occur is 

apparent from very early in development (Bulf, Johnson, & 

Valenza, 2011). Moreover, numerous findings attest to the 

influence on children’s reasoning of semantic relations that 

may be derived from co-occurrence, such as schematic 

relations between entities that occur in the same context 

(e.g., cow and barn) and thematic relations between entities 

that play complementary roles (e.g., nail and hammer) 

(Blaye, Bernard-Peyron, Paour, & Bonthoux, 2006; Fenson, 

Vella, & Kennedy, 1989; Lucariello et al., 1992; Walsh, 

Richardson, & Faulkner, 1993). Additionally, a handful of 

studies conducted by Fisher, Godwin and Matlen (Fisher, 

Matlen, & Godwin, 2011; Matlen, Fisher, & Godwin, 2015) 

point more directly towards an influence of co-occurrence 

on children’s semantic reasoning. In these studies, 

participants were asked to infer whether a property (e.g., 

“has blicket inside”) attributed to a target (e.g., glove)  was 

shared by either a strongly taxonomically related item (e.g., 

mitten) or a more weakly taxonomically related item (e.g., 

sweater). These studies revealed that four year old children 

only reliably chose the strongly taxonomically related item 

when its label co-occurred with the target either in corpora 

of children’s speech input (e.g., bunny-rabbit, Fisher et al., 

2011) or an empirically manipulated speech stream (Matlen 

et al., 2015). These findings suggest that accounts of 

semantic development that do not posit any role for co-

occurrence are at best incomplete. 

Second, a handful of findings suggest that semantic 

relations that may be derived from co-occurrence continue 

to shape semantic organization into adulthood. For example, 

Lin and Murphy (2001) found that relations between entities 

that adult raters judged as associated in scenes or events 

(which likely co-occur) had a pervasive influence on adults’ 

categorization and reasoning that was frequently greater 

than the influence of taxonomic relations. This evidence is 

inconsistent with restructuring accounts, in which an early 

influence of co-occurrence is eventually overwritten. 

Finally, the potential contributions of co-occurrence 

regularities are highlighted by a mechanistic account and 

corroborating behavioral evidence presented by Sloutsky, 

Yim, Yao, and Dennis (2017). According to this account, 

exposure to co-occurrence regularities in language fosters 

both the learning of associations between concepts whose 

labels directly co-occur in sentences (e.g., fork and 

spaghetti), and between taxonomically related concepts 

whose labels share patterns of co-occurrence (e.g., spaghetti 

and pie). However, whereas co-occurrence in a sentence can 

be directly gleaned from input and therefore rapidly learned, 

shared patterns of co-occurrence that often link members of 

the same taxonomic category are learned more slowly 

because they can only be derived from multiple instances of 

direct co-occurrence. This account predicts both that (1) 

direct co-occurrence should contribute to semantic 

organization throughout development, and (2) the 

contributions of direct co-occurrence to semantic 

organization should be evident earlier in development than 

the contributions of taxonomic relatedness. Initial evidence 

for this account comes from a series of experiments 

presented in Sloutsky et al. (2017) in which children and 

adults were asked to infer the category membership of a 

novel word (e.g., whether it was an animal or a machine) 

that was presented within a list of familiar words. Both 

children and adults readily inferred the category 

membership of the novel word when it appeared in a list of 

words that are associated (and therefore likely to co-occur) 

with the same category. For example, participants inferred 

that the novel word referred to an animal when it appeared 

in a list of words including “furry” and “zoo”. However, 

only adults inferred this meaning when the novel word 

appeared in a list of words referring to members of the 

category, such as “lion” and “bunny”.  

Together, these prior findings suggest that co-occurrence 

regularities may shape semantic development. However, in 

addition to being overlooked in traditional theoretical 

accounts of the development of semantic organization, this 

possibility has received only limited empirical investigation 

to date, and the way in which it has been investigated  has 

not been designed to assess relational knowledge for items 

that actually co-occur in the environment. Critically, this 

research has instead investigated knowledge for relations 

between items either judged by researchers or participants 

as co-occurring according to researcher-specified criteria, or 

produced in free association tasks. Neither ratings nor free 

associations are inputs from the environment from which 

semantic relations can be learned: They are outcomes of 

relations already learned and present in semantic knowledge 

(Hofmann, Biemann, Westbury et al., 2018). A more direct 

investigation of the role of co-occurrence in shaping 

semantic development could be accomplished by assessing 
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the contributions of co-occurrence regularities present in 

actual environmental input. 

Current Study 

The overall purpose of the current study was to investigate 

the contributions of co-occurrence regularities and 

taxonomic relatedness to the organization of lexico-

semantic knowledge from early childhood to adulthood. 

This investigation was designed to arbitrate between 

competing theoretical accounts of the development of 

knowledge organization. Specifically, restructuring accounts 

predict that co-occurrence should contribute to knowledge 

organization in childhood, but be replaced by taxonomic 

relations in adulthood. Both taxonomic bias and featural 

learning accounts are agnostic about the contributions of co-

occurrence, but whereas the former predict that taxonomic 

relations should contribute from childhood through to 

adulthood, the latter predict that the contributions of 

taxonomic relations should substantially increase with age.  

A different developmental pattern is predicted by recent 

proposals that highlight a key role throughout development 

for co-occurrence in which it both directly fosters relations 

between concepts, and indirectly fosters relations between 

concepts that share patterns of co-occurrence and are often 

taxonomically related (e.g., Sloutsky et al., 2017). 

Specifically, such proposals predict that the contributions of 

co-occurrence should be evident in both children and adults, 

whereas contributions of taxonomic relatedness should be 

evident only later in development.   

We accomplished this investigation by measuring the 

degree to which familiar concepts were related in young 

children (4-year-olds) and adults’ semantic knowledge when 

either the concepts’ labels reliably co-occur in linguistic 

input, or when they are members of the same taxonomic 

category. To target actual experienced co-occurrence, we 

identified pairs of words familiar to young children that co-

occurred more reliably with each other than with other 

words in corpora of child-directed speech.  

To measure the contributions of co-occurrence and 

taxonomic relations to children and adults’ lexico-semantic 

knowledge, we used a Cued Recall paradigm to measure the 

effects of co-occurrence and taxonomic relatedness on 

memory retrieval. We selected this paradigm for two 

reasons. First, the sensitivity of this task to semantic 

relatedness is attested by numerous findings that semantic 

relatedness influences the accuracy with which people 

(including children) recall word pairs and lists (Bjorklund & 

Jacobs, 1985; Blewitt & Toppino, 1991). Second, this task 

facilitates a comparison between children and adults 

because it measures contributions to lexico-semantic 

knowledge without requiring participants to reason about 

relations, which adults may more easily. 

Method 

Participants  

The sample included 30 4-5 year old children (Mage=4.50 

years, SD=1.62 years), and 29 Adults (Mage=20.16 years, 

SD=3.66 years). The child age group was selected because 

the 4-5 year period is one during which the nature of 

relations that organize lexico-semantic knowledge has been 

the subject of active debate (Lucariello et al., 1992; Nguyen 

& Murphy, 2003; Waxman & Namy, 1997). Children were 

recruited from families, daycares, and preschools in a 

metropolitan area in a Midwestern US city. Adults were 

undergraduates from a public university in the same city and 

participated in exchange for partial course credit.  

Stimuli and Design  

The primary stimuli used in this experiment were word pairs 

that belonged to one of three Semantic Relatedness 

conditions: Co-Occur (pairs that reliably co-occurred with 

each other more often than with other words in child speech 

input), Taxonomic (words close in meaning from the same 

taxonomic category) or Unrelated. (words that neither 

reliably co-occur nor are similar in meaning).  

Co-Occurrence Criteria. The first step taken to select 

pairs in each condition was to identify a set of words for 

which lexical norms collected using the MacArthur-Bates 

Communicative Development Inventory (MB-CDI) were 

available from WordBank (an open database of children's 

vocabulary development, Frank, Braginsky, Yurovsky, & 

Marchman, 2016), and measure their rates of co-occurrence 

in 25 child speech input corpora from the CHILDES 

database (MacWhinney, 2000). To reduce the computational 

expense of measuring word co-occurrence rates, some 

classes of words that would a priori not be used as stimuli 

were removed, such as sounds (e.g., “moo”), leaving a list 

of 538 words.  Additionally, to ensure that co-occurrences 

were measured from speech input, CHILDES corpora were 

pre-processed to remove speech produced by children. Co-

occurrences between these words were then calculated by 

taking all possible pairs of words in this set, and calculating 

how frequently they co-occurred with each other within a 7-

word window across 25 CHILDES corpora. Finally, to 

account for the fact that more frequent words co-occur with 

other words simply by chance, t-scores (Evert, 2008) were 

calculated for each word pair using the formula below based 

on their measured co-occurrence frequencies (O), adjusted 

for the frequency of co-occurrence expected by chance 

based on their respective frequencies across the corpora and 

the size of the corpora (E): 

Table 1: Pairs of words used in the Co-Occur, Taxonomic, 

and Unrelated conditions 

Co-Occur Taxonomic Unrelated 

bottle baby ball puzzle crayon frog 

foot shoe pig bear towel bread 

brush hair horse bunny blocks cereal 

cup juice carrot banana balloon tree 

cheese mouse fork bowl sheep pancake 

car street popcorn fries pizza lion 

soup spoon airplane boat fish bed 

milk cow sock pajamas duck swing 
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Word pairs for use in the Co-Occur condition were then 

selected as pairs of nouns with t-scores > 2.5 (following 

Baayen, Davidson, & Bates, 2008) in which, according to 

lexical norms accessed from WordBank, both words were 

produced by >80% of 36-month-old children (one year 

younger than children in our sample).  

Taxonomic Criteria. Taxonomic relatedness was 

determined based on both the membership of concepts in 

the same taxonomic category (e.g., clothing, foods, animals) 

and similarity in meaning between their labels. Similarity in 

meaning was measured as similarity between the definitions 

of candidate words from WordNet (a database of word 

definitions composed by lexicographers). This measure 

captures the essence of taxonomic relatedness – i.e., close 

similarity in meaning – without relying on participant 

judgments that may be influenced by non-taxonomic 

relations (Wisniewski & Bassok, 1999). In WordNet, nouns 

are first grouped into sets of synonyms, which are in turn 

linked into a hierarchy according to “IS A” and part-whole 

relations. Similarity in meaning between word pairs was 

measured using Resnik similarity, i.e., the information 

content (specificity) of the word lowest in the WordNet 

hierarchy within which the pair of words is subsumed. For 

example, dog and cat are subsumed within carnivore, 

whereas dog and kangaroo are subsumed within mammal; 

because the information content of carnivore is greater than 

the information content of mammal, Resnik similarity is 

higher between dog and cat versus dog and kangaroo. 

Candidate Taxonomic pairs nouns with Resnik 

similarities of > 5 and t-scores < 1.5 in which both were 

produced by at least 80% of 36-month-old children 

according to WordBank norms. The rationale of the Resnik 

similarity criterion of > 5 is illustrated in Fig. 1, which 

shows that this value distinguished between same- vs. 

different-category items.  

Unrelated Criteria. Candidate Unrelated word pairs 

were noun pairs that met the WordBank production norm 

criterion with t-scores and Resnik similarities of < 1.5. 

Composition of Full Set. From the sets of candidate 

pairs, eight pairs were selected for each of the Relation 

conditions (Co-Occur, Taxonomic, and Unrelated) such 

that: 1) The mean percentage of 36-month-olds who 

produced the words in the pairs according to Wordbank 

norms was equated across conditions, and 2) No words 

appeared in more than one condition (Table 1). An 

additional 4 nouns that met the WordBank production norm 

criterion were selected to construct pairs used for 

demonstration and practice (see Procedure below). All 

words were recorded by both a male and a female speaker 

using an engaging, child-friendly intonation.  

The eight pairs in each Relation condition were divided 

into two Stimulus Sets, each with four pairs in each 

condition, because pilot testing indicated that 12 pairs was 

the maximum number that could be presented to children 

without producing floor effects. Within each Stimulus Set, 

each word in a pair was randomly assigned to be either the 

Cue or Target. In the experiment, Cue words were presented 

using the male speaker’s voice, and Targets using the 

female’s voice. Additionally, the 12 word pairs were 

pseudorandomized into three blocks, such that each block 

contained 1-2 pairs from each condition. The order of these 

blocks was counterbalanced across participants.  

Procedure. Adult participants were tested in a quiet 

space in the lab, and children were tested either in a quiet 

space in the lab, or at their preschool or daycare. The 

procedure was identical for adults and children (including 

the auditory presentation of the same recorded Cue-Target 

pairs), with the exceptions that: 1) Instructions were 

conveyed by an experimenter for children, and as text on a 

computer screen for adults, and 2) Children made verbal 

responses recorded by the experimenter, whereas adults 

typed responses.   

To start, participants were informed that they were 

going to play a game with two sock puppets depicted on the 

computer, Izzy and Ozzy, in which Izzy and Ozzy would 

say pairs of words. The two demonstration/practice 

unrelated Cue-Target spoken word pairs were then played, 

while animations depicted one puppet “saying” the Cue 

word, and the other saying the Target word. Participants 

 
Figure 1: Graphs depicting Resnik similarity between one item from a Taxonomic pair and: (1) The other item from the 

pair (highlighted), (2) Other items from the same taxonomic category, and (3) Items from other categories.  
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then completed two practice rounds with the same Cue-

Target pairs consisting of a Study Phase, in which 

participants were instructed to remember the words that 

went together in pairs, and a Test phase, in which only the 

Cue in each pair was presented and participants were 

prompted to either say or type the Target that had been 

spoken by Ozzy. Participants received corrective feedback 

after each practice trial, and completed up to three practice 

rounds until they either responded with the correct Target 

for both Cues within around, or the experiment was 

terminated.  

Participants then proceeded to complete the three 

blocks of Cue-Target pairs in the Stimulus Set to which they 

had been randomly assigned. Each block followed the same 

Study and Test phase format as the practice rounds, with the 

exception that participants did not receive feedback. 

Results 

The primary outcome measure of interest for this study was 

the accuracy with which participants recalled Target words 

paired with Cues in each of the three Relation conditions: 

Co-Occurrence, Taxonomic, and Unrelated1. Responses 

were scored as accurate when participants made responses 

identical to the Target, morphological variants of the Target 

(e.g., “spoons” instead of “spoon”), or close synonyms to 

the Target (e.g., “road” instead of “street”). 

                                                           
1 We also analyzed participants’ errors to test the frequency with 

which the incorrect responses participants in each age group 

produced either co-occurred with or were taxonomically related to 

the Cue. However, these analyses did not contribute meaningfully 

to our results. The majority of incorrect responses in both age 

groups were other words from the set of word pairs the participant 

heard (64% in children, 82% in adults). Of these responses, only a 

small minority (7-14%) were either co-occurring with or 

taxonomically related to the Cue, which was likely the result of the 

random chance with which some words from the list, when 

randomly recombined with Cues, happen to be related to them in 

some way. Of responses not drawn from the list of word pairs, the 

only detectable pattern was a tendency for children to respond with 

incorrect words that co-occurred with the Cue (52%) more often 

than words that were taxonomically related to the Cue (6%). This 

pattern mirrors the results of analyses of children’s accuracy.  

All analyses were conducted in the R environment. 

Mixed effects models were generated using the lme4 (Bates, 

Maechler, Bolker, & Walker, 2015) package, and 

corresponding 2 or F-statistics for main effects and 

interactions were generated using the car package (Fox & 

Weisberg, 2011). 

Preliminary Analyses: Stimulus Set Comparison 

We first tested whether any effect of condition varied across 

the two Stimulus Sets in children and adults. For data from 

each age group, we generated a binomial generalized linear 

mixed effects model with Accuracy (0 or 1) as the outcome 

variable, Relation condition (Co-Occurrence, Taxonomic, 

and Unrelated) and Stimulus Set (1 vs. 2) as fixed effects, 

and participant and item as random effects. This analysis 

revealed no significant interaction between Relation 

condition and Stimulus Set (ps > .23). For all subsequent 

analyses, we therefore collapsed across Stimulus Sets. 

Primary Analyses 

Accuracy by age and condition is presented in Figure 2. To 

test the relative influences of Relatedness conditions (Co-

Occurrence, Taxonomic, and Unrelated) on accuracy, we 

generated an omnibus binomial generalized linear mixed 

effects model with Accuracy (0 or 1) as the outcome 

variable, Relatedness condition and Age group (children and 

adults) as fixed effects, and participant and item as random 

effects. This analysis yielded main effects of Relatedness 

condition (2(2)=25.26, p<.001) and Age group 

(2(1)=10.36, p=.001) that were qualified by an interaction 

(2(2)=7.87, p=.02).  

To investigate the interaction between Relatedness 

condition and Age group, we conducted two sets of 

analyses: A first set in which we compared the effects of the 

different Relatedness conditions in each Age group, and a 

second set in which we compared the effects of each 

Relatedness condition in children versus adults.  

Relation Conditions in Each Age Group. In these 

analyses, we generated for each age group a binomial 

generalized linear mixed effects model with Accuracy as the 

outcome variable, Relatedness condition as a fixed effect, 

and participant and item as random effects. These models 

 

Figure 2: Accuracy in children (left) and adults (right) in the Relation Conditions. Error bars represent standard errors.  
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revealed significant effects of Relatedness condition in each 

age group (ps < .001) (Figure 3). To conduct pairwise 

comparisons of the Relatedness conditions in each age 

group, we re-generated the model for each age with each of 

the Relatedness conditions as the reference level, and 

applied Bonferroni-adjustments to the resulting p-values. In 

children, these analyses revealed significant differences 

between the Co-Occurrence (M=0.60, SD=0.49) and both 

Unrelated (M=0.25, SD=0.43) and Taxonomic conditions 

(M=0.29, SD=0.45) (ps < .001), but no difference between 

the Taxonomic and Unrelated conditions (p > .99). In adults, 

these analyses revealed a significant difference between the 

Co-Occurrence (M=0.71, SD=0.46) and Unrelated 

conditions (M=0.34, SD=0.48)  (p < .0001), the Taxonomic 

(M=0.59, SD=0.49)  and Unrelated conditions (p=.033), and 

no significant difference between Co-Occurrence and 

Taxonomic conditions (p=.237).  

Comparison of Children and Adults. To compare the 

accuracy of children versus adults in each Relatedness 

condition, we generated a binomial generalized linear mixed 

effect model for each Relatedness condition, each with Age 

Group as a fixed effect, and participant and item as random 

effects. Additionally, we applied Bonferroni-adjustments to 

all p-values to correct for multiple comparisons. These 

analyses revealed only a significant difference between 

children and adults in accuracy in the Taxonomic condition 

(p<.001). In comparison, there was no significant difference 

in accuracy between children and adults in either the Co-

Occur or Unrelated conditions (ps>.2). 

General Discussion 

The purpose of the present experiment was twofold: (1) To 

investigate how semantic development is shaped by co-

occurrence regularities and taxonomic relatedness, and (2) 

More broadly, to investigate whether the development of 

semantic organization involves the maintenance of early-

emerging taxonomic organization throughout development 

(as in taxonomic bias accounts), the restructuring of 

semantic organization (as in restructuring accounts), or the 

addition of new semantic knowledge that does not replace 

earlier-emerging knowledge.  

In this experiment, we observed substantial effects of co-

occurrence in both young children and adults. In contrast, an 

influence of taxonomic relatedness was only apparent in 

adults. Importantly, due to our use of an implicit measure of 

semantic knowledge, this developmental pattern is unlikely 

to be attributable to developmental improvements in 

reasoning. These findings therefore support a key role for 

co-occurrence in semantic development, and are consistent 

with an overall developmental trajectory in which some 

types of semantic knowledge (such as taxonomic) tend to 

supplement rather than supplant earlier-emerging 

knowledge.  

Generalizability of Findings 

In order to evaluate the support for a key role for co-

occurrence in lexico-semantic development, it is important 

to consider the possibility that the cued recall paradigm used 

in this experiment biased the results in favor of this 

outcome. Specifically, accurately recalling pairs of words 

may better evoke participants’ prior knowledge of word 

pairs that they have experienced occurring together than 

their knowledge of taxonomically related words.  

However, this possibility is undermined by corroborating 

evidence from very different paradigms that do not involve 

recalling word pairs. First, as described in the introduction, 

findings from studies conducted by Fisher, Godwin, and 

Matlen (Fisher et al., 2011; Matlen et al., 2015) have 

provided evidence for the contribution of co-occurrence to 

semantic reasoning. Specifically, these studies found that 

young children only reliably infer that an item shares a 

property with another, strongly taxonomically related item 

when their labels co-occur (e.g., bunny-rabbit). Moreover, 

the pattern of results in adults and children has recently been 

replicated using another, very different paradigm in which 

the contribution of a given form of relatedness is measured 

based on the degree to which it interferes with participants’ 

ability to identify when a picture (e.g., of a baby) does not 

depict the same thing as a preceding word (e.g., “bottle”) 

(Unger & Sloutsky, Under Review). Taken together, these 

findings suggest a general contribution of co-occurrence to 

lexico-semantic knowledge that is not dependent upon the 

use of a cued recall-based assessment. 
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Impatient to Receive or Impatient to Achieve: Goal Gradients and Time
Discounting
Oleg Urminsky

University of Chicago, Chicago, Illinois, United States

Indranil Goswami
University of Buffalo, Buffalo, New York, United States

Abstract

When people behave impatiently, prioritizing sooner outcomes at the expense of latter ones, is it because they value
achieve their goal sooner, or because they value receiving the benefits sooner? Prior research has often confounded goal
gradient (the stronger motivational effect of more proximal goals) and time discounting effects on decision-making. We
first establish a preference to invest in the earlier of two equally difficult goals (e.g, a first-goal preference) that could be
explained either by relative goal gradients or by differences in time discounted value. We then experimentally separate
the timing of goal completion and reward receipt. We find separate and disassociated large goal gradient and somewhat
smaller time discounting effects. Our results suggest that goal gradient effects may provide a partial, but substantial,
explanation of time discounting and, consequently, can inflate estimated discount rates when not accounted for.
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Abstract 
Most theories of kind representation suggest that people posit 
internal, essence-like factors believed to underlie kind 
membership and the observable properties of members. 
Across two studies (N = 234), we show that adults can 
construe properties of social kinds as products of both internal 
and structural (stable external) factors. Internalist and 
structural construals are similar in that both support formal 
explanations (i.e., “category member has property P due to 
category membership C”), generic claims (“Cs have P”), and 
a particular pattern of generalization to individuals when the 
individuals’ category membership and structural position are 
preserved. Our findings thus challenge these phenomena as 
signatures of essentialist thinking. However, once category 
membership and structural position are unconfounded, 
different patterns of generalization emerge across internalist 
and structural construals, as do different judgments 
concerning category definitions and property mutability. 
These findings have important implications for reasoning 
about social kinds. 

Keywords: structural explanation; kind representation; 
generalization; essentialism; inherence; social categorization 

Introduction 
Kind representations allow people to organize, store, and 
use conceptual information efficiently and productively. We 
rely on our representations of social groups and natural 
kinds to make sense of the world, generate explanations, and 
make predictions about the individual category members we 
encounter. Most theories of kind representation, especially 
for natural and social kinds, emphasize an internalist bias, a 
tendency to look “within” the kind for deep, causally active, 
and explanatorily powerful factors that hold categories 
together, and that shape and maintain the properties of their 
members. This internalist bias can take the form of 
assumptions about internal causal structure (psychological 
essentialism; Gelman, 2003), or a preference for explanations 
citing factors that are inherent, as opposed to contextual or 
extrinsic (inherence heuristic; Cimpian & Salomon, 2014). 
Different manifestations of internalist bias have been widely 
documented (Haslam et al., 2010; Gelman, 2003; Rangel & 
Keller, 2011), and it has been proposed as a conceptual 
default, with profound – and often negative - consequences 
for the way we think about and behave towards members of 
social categories. For example, explaining a dearth of 
women in mathematics by appeal to their “essential” or 
inherent nature can discourage girls from pursuing careers 
in this field (Leslie, Cimpian, Meyer, & Freeland, 2015). 

Some linguistic forms have been argued to promote 
internalist construals, in particular of social kinds. Generic 
expressions, which attribute a property to a category in 
general (e.g., “women fail math tests”) have received 
particular attention (e.g., Cimpian, 2010; Cimpian & 
Markman, 2010; Rhodes, Leslie, & Tworek, 2012). There is 
also evidence that formal explanations, which appeal to 
category membership to explain a property (e.g., “Priya 
doesn’t like math because she’s a girl”), reflect internalist 
beliefs (Gelman, Cimpian, & Roberts, 2018; Prasada & 
Dillingham, 2006). 

While internalist modes of thinking have been extensively 
explored in the psychological literature, alternative ways of 
representing kinds have received much less attention. One 
such alternative is structural thinking, and in particular, a 
structural construal of category-property connections 
(Haslanger, 2015; Vasilyeva, Gopnik, & Lombrozo, 2018). 
On a structural construal, stable associations between 
categories and their properties arise from stable external 
constraints acting on category members. For example, the 
categories “women,” “men,” “Blacks,” and “Latin@s” 
occupy relatively stable social positions within a given 
social structure. These positions can differ across cultures 
and possess their own properties. To illustrate, the generics 
“women don’t drive,” or “women are bad a math,” can be 
true in one social system but false in another. Such culture-
dependence is one cue that a property-category association 
should be attributed to a social position rather than to the 
category occupying that position.  

Because a social position and the category that occupies it 
can share the same label (e.g., “women”), we contend that 
generics and formal explanations can be interpreted in either 
internalist or structural terms. For example, a person could 
endorse a formal explanation (“He ended up in prison 
because he’s Black”) or a generic (“Black men end up in 
prison”) for different reasons: under an internalist construal, 
attributing the property (“being in prison”) to the category 
itself (e.g., presumed criminal inclinations), or under a 
structural construal, attributing the same property to the 
social position, constituted by a conglomeration of stable 
constraints acting on members of the category in virtue of 
occupying that position (e.g., unequal opportunities for 
Black youth, biased hiring and other barriers to wealth, 
racial profiling by the police, etc. – all the factors that 
together constitute the social position “Black” in the US). 

In the current research, we test the prediction that adults 
can construe property-category associations in either 
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internalist or structural terms, and that both construals 
support formal explanations (Study 1) and generics (Study 
2). However, we also investigate important ways in which 
internalist and structural construals are expected to differ. 
Because internalist and structural construals allocate 
different roles to category membership (vs. a category’s 
social position) in explaining an associated property, we 
expect internalist and structural construals to result in  
different intuitions about using the property in category 
definitions (Study 1), different “mutability” judgments 
about true category membership when the property is 
removed (Study 1), and different patterns of property 
generalization as category membership and/or social 
position change (Study 2).  

Documenting these predicted patterns of similarity and 
difference across internalist and structural construals is 
important for a number of reasons. First, alternatives to 
internalist thinking have rarely been articulated and tested. 
Documenting a psychologically real alternative can thus 
enrich our understanding of the mental representations that 
support our thinking about social (and potentially non-
social) kinds. Second, given that internalist construals have 
been linked with the perpetuation of stereotypes and other 
negative social effects (Bastian & Haslam, 2004; Cimpian, 
2010), an alternative form of construal could identify 
changes in mindset that would mitigate these effects. A 
structural construal is especially promising in that it 
explains (rather than ignores) property-category associations 
that in fact obtain (such as a low proportion of women in 
math) while also pointing to structural factors that could be 
targets of intervention. 

While structural explanation has received attention within 
the philosophy of social science (Ayala, 2018; Ayala & 
Vasilyeva, 2015; Haslanger, 2015; Garfinkel, 1981), there 
has been little empirical work on the topic to date. In a 
recent paper, Vasilyeva, Gopnik, and Lombrozo (2018) 
reported a study investigating structural thinking in adults 
and children aged 3-6. Using open-ended explanations, 
category definition tasks, mutability judgments, and 
measures of formal explanation, they found that even 3-
year-olds showed signs of early structural thinking, with 
greater differentiation between internalist and structural 
construals in older children and adults. The present work 
goes beyond Vasilyeva, Gopnik, and Lombrozo (2018) in 
five important ways: in using more realistic social 
categories (a group of immigrants); in exploring structural 
reasoning about novel social groups; in using a wide range 
of properties matched in terms of property/cue validity 
(Study 1) or content (Study 2); in the introduction of a 
control condition (Study 1 and Study 2), and in exploring 
judgments concerning generics and generalizations under 
different conditions (Study 2). 

Study 1 
In Study 1, we introduce participants to a novel social 

category (“Borunians,” an immigrant group in the fictional 
country of Kemi), along with a suite of associated properties 
(e.g., holding low-paying jobs). Across properties, we vary 

whether the category-property connections are explained in 
a way that is internalist (e.g., appealing to group identity), 
structural (appealing to social position), or incidental (the 
associations just happen to be true). To test whether this 
manipulation is successful in inducing different construals, 
we adapt measures originally developed in Prasada and 
Dillingham (2006, 2009) to differentiate “principled” and 
“statistical” connections, and used also in Vasilyeva, 
Gopnik, and Lombrozo (2018). These measures include 
partial definition evaluation (i.e., whether the category can 
be defined in terms of the property), category mutability 
ratings (i.e., whether an individual missing the property is a 
true category member), and formal explanation evaluation 
(i.e., whether the presence of the property can be explained 
by appeal to category membership). 

First, as explained in the introduction, we expected both 
internalist and structural construals to support formal 
explanations (e.g., “He holds a poorly paid job because he’s 
a Borunian”). Second, we expected the internalist and 
structural conditions to differ with respect to partial 
definitions and mutability. A definition of a category in 
terms of an “essential”/inherent feature should be more 
appropriate than a definition citing a feature that holds only 
in virtue of a category’s position in a social structure. 
Likewise, removing an internal feature should produce more 
damage to category membership than removing a feature 
acquired through a social position, and therefore contingent 
on external structure. These predictions found support in 
Vasilyeva, Gopnik, and Lombrozo (2018); we test them 
here with a more realistic social kind, a broader range of 
features, and a modified mutability measure. 

Finally, and going beyond Vasilyeva, Gopnik, and 
Lombrozo (2018), we included features with an “incidental” 
explanation for which we predicted a profile of effects 
different from either internalist or structural thinking, based 
on Prasada and Dillingham (2006, 2009). We expected that 
incidental features would not support definitions and would 
be seen as easily mutable (like structural features), but that 
they would not support formal explanations (in contrast to 
both internalist and structural features). 

Method 
Participants Seventy-seven participants (38 women, 39 
men; mean age 33) were recruited on Amazon MTurk in 
exchange for $1.50; in this and subsequent studies 
participation was restricted to workers with an IP address 
within the United States and with a HIT approval rating of 
95% or higher from at least 50 previous HITs. An additional 
33 participants were excluded for failing a memory check. 
 

Materials, Design, and Procedure Participants read a short 
vignette introducing the novel social category of  
“Borunians” -  a group of immigrants settled in a fictional 
country, Kemi, who originally immigrated from Bo-Aaruna. 
Borunians  were  characterized  by 18 unique features, with 
6 of each type: Internalist (tying the feature to Borunians’ 
tradition  and   identity),   incidental  (roughly  equivalent  
to   Prasada   and   Dillingham’s   (2006)  “statistical”),  and  
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Table 1. Examples of features used in Study 1. 
 

Internalist: Borunian 
traditions are extremely 
important to them, and 
form part of their identity: 
Borunians have a special 
tattoo on one arm. 

Incidental: Here are some statements about 
Borunians that are true, but there’s nothing about 
these features that ties them to Borunian culture, 
tradition, personality or anything about their place 
in Kemi society: Borunians barbeque in their back-
yards all year round, so they buy a lot of 
barbequing coal all year round. 

Structural: Here are a few characteristics that Borunians have due to 
their position in the Kemi society and governmental policies 
applying to Borunians: Borunians are not allowed to take any job 
with an income over 20,000 Kemi dollars per year (approximately 
20,000 USD) if other appli-cants for the same job include Kemi 
citizens who are equally or more qualified. Due to this regu-lation, 
Borunians hold mostly poorly paid jobs. 

 

 

structural (tying the feature to the structural constraints 
acting on Borunians due to their position within Kemi 
society). Sample features are shown in Table 1. All features 
were presented in generic form. A norming study with a 
separate group of 23 participants verified that the three 
feature types did not differ in mean cue and category 
validity. 

After learning the features, each participant performed 
one of three judgments – formal explanation (e.g., Question: 
Why does he hold a poorly paid job? Answer: Because he is 
a Borunian. How good is this explanation? 1 not good at all 
- 7 very good), partial definition (e.g., Question: What is a 
Borunian? Answer: A Borunian is a person who holds a 
poorly paid job. How good is this answer? 1 not good at all 
– 7 very good), or mutability (e.g., Imagine an alternative 
world where people we call Borunians do not hold mostly 
poorly paid jobs. From your perspective, would you call 
them really and truly Borunians? (1 definitely no - 7 
definitely yes). Each judgment involved 18 ratings, one 
about each feature. Prior to the main set of ratings, 
participants practiced the judgment type they were assigned 
on two practice trials that involved rating a feature of a dog 
(“has four legs”) and of a barn (“is red”). 

In sum, the study implemented a 3 (judgment type: formal 
explanation, partial definition, mutability; between subjects) 
by 3 (feature type: internalist, structural, incidental; within 
subjects) design.  
Results and Discussion 
Participants’ ratings were analyzed in an ANOVA with 
feature type as a within-subjects factor and judgment as a 
between-subjects factor, followed by planned t-tests. The 
main  effect  of  judgment  was  significant, F(2,74) = 5.70, 
p = .005,  ηp2  = .133, and the main effect of feature type was  
 

 
 

Figure 1: Participants’ ratings as a function of feature type and 
judgment in Study 1. Error bars represent 1 SEM. 

 

marginal, F(2,148)=2.99, p=.053, ηp2=.039. However, of most 
theoretical importance was the significant interaction 
between judgment and feature type, F(4,148)=31.54, p<.001, 
ηp2=.460. As shown in Figure 1, each feature type had a 
unique “profile” across the three judgments. As predicted, 
and replicating Prasada and Dillingham’s (2006, 2009) 
findings, internalist features (relative to incidental features) 
better supported formal explanations (p=.003) and 
definitions (p<.001), and were judged less mutable (p< .001). 
Also as predicted, structural features (relative to internalist 
features) supported definitions less strongly, and mutability 
judgments more strongly (ps<.001). However, they 
supported formal explanations to the same extent (p=.327), 
and more strongly than incidental features did (p<.001).   

In sum, we find the predicted profile of effects for category- 
property associations introduced with a structural explanation. 
These associations behaved like internalist features in 
supporting formal explanations, but like incidental features in 
terms of partial definitions and mutability. It is worth noting 
that this structural pattern of responses was elicited by 
offering appropriate cues in the feature description, but did 
not require any explicit guidance or training in structural 
reasoning. This suggests that this mode of thinking may 
occur naturally in adults’ cognitive lives when appropriate 
cues are present. It’s also notable that the cues took the form 
of explanations, which presumably fed into causal-
explanatory models that supported a representation that 
attached the property to the category versus the social 
position it occupied. 

Study 2 
In Study 2, participants received information about the 

prevalence of a property in the Borunian population, as well 
as an internalist, structural, or no explanation for the category- 
property association. Participants then rated their endorsement 
of a corresponding generic claim (“Borunians [have 
property]”), and generalized the properties in question to 
individual targets that varied both in category membership 
(same or different) and in social position (same or different). 

This design allowed us to test two predictions. First, we 
predicted that internalist and structural construals would 
similarly support generic claims, with higher endorsement 
the greater the prevalence. Prior work has already shown 
that an internalist construal is not necessary for a generic to 
be endorsed; even statistical connections can support 
generics (Prasada & Dillingham, 2006, 2009; Tessler & 
Goodman, 2016). However, a structural construal 
additionally supports an interpretation of a generic claim 
whereby the category label refers to the social position that 
the category occupies.   
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Second, we predicted different patterns of generalization 
for properties explained internally vs. structurally as the 
generalization target varied in category membership and 
social position. In most real-life contexts, social category 
and social position are confounded, meaning that both 
internalist and structural explanations support the extension 
of category properties to individual category members 
(albeit for different reasons). De-confounding the category 
and position in our task, however, allows a predicted 
divergence between internalist and structural consturals to 
emerge. We expected a structural explanation to support 
greater generalization on the basis of shared position 
(relative to internalist), and an internalist explanation to 
support greater generalization on the basis of shared 
category (relative to structural). Additionally, we expected 
the effect of prevalence on generalization to be moderated 
by explanation, such that for participants who received a 
structural explanation (vs. internalist), prevalence effects 
would be weaker when social position was not preserved, 
and for participants who received an internalist explanation 
(vs. structural), prevalence effects would be weaker when 
category membership was not preserved. Comparisons to 
the control condition allowed us to assess the extent to 
which these effects were driven by a structural construal, an 
internalist construal, or both. 

Method 
Participants One-hundred-and-fifty-seven adults (76 
women, 80 men, 1 agender; mean age 37) participated 
online in exchange for $1.50. An additional 30 participants 
were excluded for failing memory and attention checks. 
Materials, Design, and Procedure We developed a new set 
of twelve features describing a fictional immigrant category, 
Borunians, introduced as in Study 1, and an internalist 
explanation and a structural explanation for each feature 
(see Table 2 for sample features and explanations). For the 
internalist condition, we intentionally chose a range of 
explanations spanning from more biological to those citing 
group preferences, values, and traditions (see further 
comments on this in the General Discussion). We also took 
care to keep the internalist and structural explanations of 
similar average length. 

Each participant was assigned to one explanation 
condition (internalist, structural, or control), and completed 
two blocks of measures: generic truth ratings, and individual 
generalizations. In the generic truth rating block, participants 
saw the 12 features of Borunians, one at a time, in a random 
order, each accompanied by prevalence information (e.g., 
“Percentage of Borunians who hold poorly paid jobs: 
48%”). For participants in the internalist or structural 
conditions, this was also accompanied by an explanation of 
the corresponding type (e.g., “Reason: in order to hire a 
Borunian for a well-paid job, employers in Kemi are 
required to file complicated government paperwork”). The 
feature prevalence (i.e., the percentage of Borunians with 
the feature) was drawn from a pool of 12 unique values, 
binned into Low (M=25%, range 20-29), Medium (M=50%, 
range 46-55), and High (M=75%, range 71-80). Below the 
prevalence information and explanation (if presented), 
participants read a generic statement attributing the feature 
to the category (e.g., “Borunians hold poorly paid jobs”), 
and were asked to classify it as “True” or “False.”  

In the individual generalization block, participants were 
asked to generalize a property from the kind (Borunians) to 
an individual. Participants were asked to rate their 
confidence that one of the properties previously attributed to 
Borunians (e.g., “holds a poorly paid job”) held for that 
individual on a 9-point scale ranging from -4 (I’m confident 
it’s false) to +4 (I’m confident it’s true). Crucially, we 
manipulated both the category membership and the social 
position of the target individual: same vs. different category 
membership, and same vs. different social position. The 
resulting four scenarios are described in Table 3.  

To ensure that participants still remembered the 
prevalence level and the explanation of each feature, the 
generalization rating block was split into three sets of four 
questions each. Each set of four questions was preceded by 
a reminder display with four features along with their 
prevalence levels and explanations (repeating the 
information from the first block). Further, to reduce memory 
load for prevalence levels, all four features in a set were 
pulled from the same prevalence bin (e.g., all had High 
prevalence). Following the reminder, participants saw

Table 2. Sample features and explanations used in Study 2. Each explanation was presented within the frame “Reason: [explanation].” 
 

Feature Internalist Explanation [Reason: ….] Structural explanation  [Reason: ….] 
Follow a largely 
vegetarian diet 

… a deficiency in digestive enzymes required for 
digesting meat 

…special access to municipal subsidies to purchase vegetables 
directly from local farmers  

Sell artisan souvenirs …a natural affinity for design and great facility with  
fine-motor tasks 

....special subsidies from the Kemi government to Borunians to 
obtain vendor permits for artisan booths 

Get sunburn easily …a genetic variation which makes Borunian skin very 
vulnerable to the effects of sunlight 

…a high proportion of contaminants and skin irritants in the 
neighborhoods where Borunians live; these substances make their 
skin vulnerable to the effects of sunlight 

Participate in donkey races …agility and inherent skill with animals …not allowed to participate in horse or car races 
Live with their parents 
through adulthood 

…a special value attached to family and elders, as well  
as living in tight-knit communities 

… inability to afford the cost of maintaining independent residences 

Hold poorly paid jobs … strong preference to work regular hours; avoidance  
of demanding jobs that may require over-time 

…in order to hire a Borunian for a well-paid job, employers in Kemi 
are required to file complicated government paperwork 

Have poor credit ratings …Borunians’ reliance on a peculiar calendar with a 
different month length results in frequent late payments 

….government banks imposed an additional step to verify every 
transaction for new immigrants, resulting in frequent late payments 
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Table 3. Descriptions of generalization targets produced by crossing same/different social category with same/different social position 
(note: social position is not the same as geographic location; non-Borunians in Kemi occupy a different social position from Borunians). 
 

Scenario Category Position Description 

ALL SAME Same Same Azz is a Borunian, and lives in Kemi. 

MOVED Same Different Nuvo is a Borunian who moved from Kemi a long time ago, and now lives in a completely different 
country, with an entirely different social system and regulations. 

ADOPTED Different Same Pau is a NON-Borunian by birth, who was adopted into a Borunian family in Kemi at a very young 
age, a long time ago, in a secret adoption (meaning the fact of adoption was never revealed, nobody 
except the parents knew that the child was adopted, and the child was brought up as a Borunian). 

ALL DIFFERENT Different Different Eken is a NON-Borunian who lives in Kemi.  

 
the four generalization questions (one from each row of 
Table 3), in random order. The assignment of features to 
prevalence levels and question types, as well as the order of 
question sets, were counterbalanced across participants. 

At the end of the survey, participants responded to a 
series of memory and comprehension checks (e.g., asking 
them to classify a list of characteristics and explanations as 
mentioned vs. not mentioned in the survey), as well as 
individual difference measures that are not analyzed here.  

Results 
Generic Truth Ratings Data were analyzed in a mixed 
effects logistic regression, predicting generic truth ratings 
from numerical prevalence, explanation, and their 
interaction (allowing for random intercepts for participants 
and items). To compare all three explanation conditions in 
this and the following regression models, the model was fit 
with the control condition as the reference group, and then 
re-fit with the structural condition as the reference group. 
Prevalence was the only significant predictor (p<.001): the 
odds of a “true” judgment increased 1.10 times per unit of 
increase in prevalence. Binning the prevalence predictor 
into three levels, the mean proportions of “true” responses 
were .25 (Low), .74 (Medium), and .94 (High). All other 
predictors were not significant, ps ³ .244, indicating that 
explanation condition did not affect overall generic 
endorsement, nor moderate the effect of feature prevalence. 
 

 
 

 
Figure 2: To represent the interactions between explanation 

condition, shared category membership, and shared social position, 
we created “generalization difference scores” (mean difference in 

generalization to individual in same vs. different category, and 
same vs. different social position). Error bars represent 1 SEM. 

 

Individual Generalization A hierarchical linear model 
predicting individual generalization from centered numerical 
prevalence, explanation condition, shared category (yes or no), 
and shared social position (yes or no), with random 
intercepts across participants, revealed a four-way 
interaction, p=.001. To investigate this interaction further 
we ran additional analyses. First, to evaluate the prediction 
that an internalist explanation elevates the importance of 
shared category membership as a basis for generalization 
(relative to structural or control), we dropped prevalence 
and shared social position from the model, and predicted 
individual generalization from condition and shared social 
category. As expected, we observed significant interactions 
between regressors. The effect of shared category membership 
was stronger in the internalist condition relative to structural, 
p=.006, and to control, p=.002, which did not differ from each 
other, p=.734 (Figure 2). Second, to evaluate the prediction that 
a structural explanation elevates the importance of shared social 

position as a basis for generalization (relative to internalist 
or control), we predicted individual generalization from 
condition and shared social position. Again, we observed 
the expected interactions between regressors (see Figure 2), 
revealing a stronger effect of shared social position in the 
structural condition than either the internalist, p=.014, or 
control condition, p<.001. The internalist condition also 
heightened the relevance of social position relative to the 
control condition, p=.036, which suggests that our 
internalist explanations (perhaps by appealing to culture) 
also involved some social / structural elements. 

Next, we addressed the prediction that the effect of 
prevalence on generalization would be moderated by 
explanation type. Given that the prevalence estimates that 
were offered corresponded to Borunians in Kemi (and not 
necessarily to non-Borunians or Borunians in other social 
positions), we expected the effect of prevalence to weaken 
with distance from the “ALL SAME” generalization target. 
However, we also expected that a change in category 
membership would attenuate the effect of prevalence more 
strongly in the internalist than in the structural condition, 
and that a change in social position would attenuate the 
effect of prevalence more strongly in the structural than in 
the internalist condition. To address this prediction, we 
considered the two cells that crossed category membership and 
social position (“ADOPTED” and “MOVED”; see Table 3), 
and ran separate models predicting individual generalization 
from prevalence and explanation condition (see Figure 3).  
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In the “MOVED” scenario, prevalence positively 
predicted generalization, β=.41, p<.001. Mirroring the results 
presented in Figure 2, participants were also less likely to 
generalize in the structural condition than in the internalist 
condition, B=-.45, p<.001, or in the control, B=-30, p=.008 
(the latter two did not differ, B=.15, p=.181). Most crucially, 
however, we also observed interactions, such that the effect 
of feature prevalence was weakened in the structural condition 
relative to the internalist condition (B=-.31, p=.002) and control 
(B=-.33, p=.001); the effect of prevalence did not vary across 
the latter two explanation conditions (B=.018, p=.865).  

In the “ADOPTED” scenario, prevalence positively 
predicted generalization, β=.67, p<.001. However, the 
predicted interaction between prevalence and explanation, 
with an attenuated effect of prevalence in the internalist 
condition (relative to control) was only marginal, B=-.19, p= 
.0502. Moreover, contrary to our expectations, the effect of 
prevalence was significantly attenuated in the structural 
condition (relative to control), B=-.33, p=.004. The extent to 
which the prevalence effect was attenuated, relative to control, 
did not differ across the two explanation condition, p=.117. 

Finally, we considered the remaining two generalization 
targets, “ALL SAME” and “ALL DIFFERENT,” for which 
we did not predict differential effects of explanation type. In  

 
 
 

 
 

Figure 3: Mean individual generalization ratings as a 
function of within-category feature prevalence (binned into 

low, medium, and high ranges for presentation) and 
explanation type, split by the scenario (same or different 

category, and same or different social position). Error bars 
represent 1 SEM. 

predictor of generalization, β = 70, p<.001, and both the 
“ALL SAME” scenario, prevalence was a positive 
internalist and structural explanations boosted generalization 
relative to control (BInt=.20, p=.031; BStr=.19, p=.036); the 
internalist and structural explanations did not differ, p=.945. 
As predicted, there were no significant interactions, ps ³.780.  

In the “ALL DIFFERENT” scenario, feature prevalence 
did not predict generalization, β=.10, p=.162. Participants 
were less likely to generalize in either explanation condition,   
relative to control (BInt vs. control =-.39, p=.005; BStr vs. control =  
-.34, p=.013); the two explanations did not differ, p=.708. As 
predicted, there were no significant interactions, ps >.238. 

Discussion 
Study 2 identified important respects in which internalist 
and structural construals overlap: both support generics, and 
both are equally sensitive to within-category/position 
statistics when it comes to endorsing generics or drawing 
generalizations to individuals within the same 
category/position. On the other hand, internalist and 
structural construals diverge when it comes to 
generalizations that break the typical confounds between 
categories and social positions:  an internalist construal 
favors generalization (and reliance on within 
category/position statistics) across changes in social 
position; a structural construal is less sensitive to the 
preservation of category membership.  These patterns 
emerged clearly in the “MOVED” scenario; the 
“ADOPTED” scenario (which was also the most unusual) 
was less clear. 

In real life, the divergence between internalist and 
structural construals might be even more pronounced than 
that observed here. For experimental purposes, we used the 
same features across explanation conditions; as a result, 
many invoked culture and group identity, possibly 
downplaying more internalist factors. Indeed, shared social 
position was more influential overall than shared category, 
and shared position boosted the generalization of internalist 
features relative to control (Figure 2). Plausibly, the 
internalist condition could have been made “more 
internalist” by using different feature sets across conditions 
and citing exclusively biological factors in internalist 
explanations, as is common within the abundant literature 
documenting essentialist (or more broadly internalist) 
reasoning. Given that our goal was instead to document the 
reality of a structural construal as distinct from an internalist 
construal, we opted for greater experimental control over 
maximally representative features.  

General Discussion 
Across two studies we document underappreciated 

flexibility in people’s construal of social kinds: in addition 
to adopting an internalist construal (familiar from prior 
research), people are capable of adopting a structural 
construal, which makes sense of observed correlations 
between properties and categories without tying them to the 
inherent nature of the category. Given the dangers of 
internalist construals in the social domain, an alternative that 
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makes sense of observed correlations without perpetuating 
them could be of no small social value.  

Contrary to the dominant view, generic language does not 
necessarily convey or induce essentialist beliefs: in Study 1, 
the generic language that introduced a category-property 
association did not prevent an alternative construal, and in 
Study 2, both construals supported the endorsement of 
generic claims. This calls for refining numerous claims  
about generics and formal explanations as ways of inducing 
essentialism or signaling which kinds should be 
essentialized (e.g., Rhodes, Leslie, & Tworek, 2012). At the 
same time, it remains a possibility that internalist construals 
are the default, or cognitively less demanding. 

 Our generalization results also have important 
implications: from a theoretical standpoint, they offer yet 
another illustration of how explanation shapes 
generalization (Lombrozo & Gwynne, 2014; Sloman, 1994; 
Vasilyeva & Coley, 2013; Vasilyeva, Ruggeri, & 
Lombrozo, 2018), directing it along the dimensions of 
shared category and/or position. From a methodological 
standpoint, they offer a cautionary note about interpreting 
generalization measures as indices of essentialism; 
willingness to generalize a category’s property can signal 
either an internalist or a structural construal. Finally, from a 
practical standpoint, getting a fuller picture of how people 
generalize from categories to individual has important real-
life implications (e.g., a manager deciding whether to hire a 
woman, based in part on an inference about whether she’ll 
take a parental leave). 

One interesting question that deserves future attention is 
how people represent and reason about the “cultural” 
properties of social groups, such as food or religious 
customs. Where do such features fall on the internalist-
structural continuum? One possibility is to identify 
“cultural” with “structural.” However, many aspects of 
culture, including preferencves, values, and attitudes, can be 
understood in internalist terms, where cultural properties 
reflect shared internal characteristics. Consistent with these 
dual interpretations, the very same cultural properties in 
Study 2 were treated  as internalist (through explanations 
citing “a special value attached to family and elders” or “a 
strong preference to work regular hours”) or as structural 
(by attributing them to stable external constraints). 
However, the question of how people reason about 
“cultural” features in more naturalistic contexts remains 
open.  

In sum, across two studies, we show that internalist and 
structural construals elicit different representations of 
categories: in the former case a property is attached to the 
category, in the latter case to its social position. While both 
kinds of representations can effectively track environmental 
statistics and support inferences, they work differently, in 
ways that could have tangible social consequences.  
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Abstract 

Most research on how children learn the mapping between 
words and world has assumed that language is arbitrary, and 
has investigated language learning in contexts in which objects 
referred to are present in the environment. Here, we report 
analyses of a semi-naturalistic corpus of caregivers talking to 
their 2-3 year-old. We focus on caregivers’ use of non-arbitrary 
cues across different expressive channels: both iconic 
(onomatopoeia and representational gestures) and indexical 
(points and actions with objects). We ask if these cues are used 
differently when talking about objects known or unknown to 
the child, and when the referred objects are present or absent. 
We hypothesize that caregivers would use these cues more 
often with objects novel to the child. Moreover, they would use 
the iconic cues especially when objects are absent because 
iconic cues bring to the mind’s eye properties of referents. We 
find that cue distribution differs: all cues except points are more 
common for unknown objects indicating their potential role in 
learning; onomatopoeia and representational gestures are more 
common for displaced contexts whereas indexical cues are 
more common when objects are present. Thus, caregivers 
provide multimodal non-arbitrary cues to support children’s 
vocabulary learning and iconicity – specifically – can support 
linking mental representations for objects and labels. 

Keywords: language development; word learning; iconicity; 
onomatopoeia; co-speech gestures; child directed speech; 
naturalistic observation. 

Introduction 
Understanding how children acquire language, its onset and 
the developmental path thereafter - is one 
of the great challenges for the social sciences, with critical 
implications for education and for intervention in atypically 
developing children. Vocabulary learning is a central part of 
language development and is characterized as a hard 
problem: How do children know that the sounds 
people produce are ‘words’ for objects, actions and 
properties? At the core of most existing proposals is the long-
held assumption that language is purely arbitrary: there is no 
recognizable link between a label and the corresponding 
referent in the world (e.g. between the English word dog and 
the furry, four-legged animal; de Saussure, 1916). 
Arbitrariness makes the task of learning words 
especially hard: how can children learn the correct referent in 
a visually cluttered world (where multiple objects, actions 
and properties are all possible candidates for a given label), 
or even worse, when the objects, actions and properties talked 
about are absent from the immediate environment?  

However, in addition to being arbitrary, language presents 
also other types of form-meaning mapping characterized by 
a more transparent and motivated link (Dingemanse et al. 
2015). For example, iconicity, across languages, can be found 
in the phonology of words, e.g. in onomatopoeia such 
as meow or drip. This expressive richness is particularly 
prominent once we look at the multimodal communicative 
context in which language is learnt: prosodic 
modulations (e.g. prolonging a vowel to indicate prolonged 
extension, loooong), iconic, representational gestures (e.g., 
tracing an up and down movement with the index finger 
while talking about a bouncing object), points and hand 
actions with objects (e.g., showing a toy hammer to a child or 
showing how to use the toy hammer) also contribute to the 
meaning of the message. In vocabulary learning, these iconic 
and indexical communicative cues may scaffold the mapping 
between words and world (Perniss et al., 2010; Perniss & 
Vigliocco, 2014).  

Such cues have been previously documented. Onomatopoeia 
are over-represented early on in children’s language 
development, both in children’s vocabularies (Laing, 2014) 
and in the input they receive (Perry et al., 2017), though this 
prevalence declines as children age. Points have been 
reported as the most common gestures used by caregivers 
especially with very young children (under the age of 2, 
Iverson et al. 1999; Özçalıskan & Goldin-Meadow 2005), 
helping to isolate the referent from a complex scene and to 
link it to the provided label. Though points are common, 
iconic gestures are also present in parental input from early 
on in child development (Rowe et al., 2008), and present in 
the gestural repertoires of children (Acredolo & Goodwyn, 
1988). Furthermore, Rowe et al. (2008) showed that parents’ 
gesture use (including points and iconic gestures) predicts 
children’s gesture use, which in turn predicts later vocabulary 
development, suggesting the importance of such cues for 
overall language development. Lastly, research has shown a 
link between direct manipulation of objects (i.e., hand 
actions) in caregiver-child interaction and children’s learning 
(see Rohlfing 2011 for a review). However, most previous 
studies focus on a single cue (e.g. gestures or hand actions), 
rather than considering how the different cues are used 
together (and together with speech). Cartmill et al. (2013) 
find that the quality of parental communication, 
operationalised as how predictable certain words are given 
the surrounding context (e.g. speech, gesture, surrounding 
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objects), predicts child vocabulary size at 54 months. Though 
this suggests that the multiplex nature of child-directed 
communication might scaffold language learning, they do not 
analyse the information provided by different cues. 
Moreover, most studies have focused on learning contexts 
where label and referent co-occur spatially and temporally 
(e.g., when objects are present in the visual scene, or words 
are uttered while actions are ongoing). However, displaced 
contexts (i.e., when objects are absent) can also provide 
learning opportunities and previous research indicates that 
children do learn in these contexts (e.g., Tomasello, Stroberg 
& Akhtar 1996).  

Here, we provide a first investigation that comprehensively 
assesses the distribution of iconic and indexical cues both in 
learning contexts in which objects are present, and contexts 
in which they are absent.  We expect to find that iconic cues 
(onomatopoeia and representational gestures) will be 
especially important in displaced contexts because iconicity 
can evoke perceptual or auditory features of the object, in this 
way providing an imagistic link with the referent and help in 
bringing it to the ‘mind’s eye. Both iconic and indexical 
(points and actions with objects) cues can single out referents, 
when present, in complex and messy visual scenes, and thus 
provide cues to solve the referential ambiguity problem. 

We use a semi-naturalistic method in which we video-
recorded caregivers interacting with their child talking about 
objects (provided by the experiments) which were either 
known and unknown to the child. We introduced this 
manipulation as cases in which the child is unfamiliar with 
the object and its label are more clearly learning episodes. 
Moreover, we manipulated whether the objects talked about 
are either present or absent.  We focus on children aged 2 to 
3 years old as this is a time of remarkable vocabulary growth 
in which all critical elements of child-directed language are 
present, communication about displaced referents is present, 
and finally, at which children are assumed to be able to 
understand and produce iconic gestures (Özcaliskan & 
Goldin-Meadow, 2005). 

Method 
Participants. Thirty-four caregiver-child dyads participated 
in the study. The language used between the caregiver and 
the child was British English. All children included in our 
sample were aged between 24 and 42 months. 

Materials. We used toys from four categories: foods, musical 
instruments, animals and tools. We chose these categories 
because they are very common for children of this age and 
because they offer opportunities for vocal and manual 
iconicity. We created sets of 6 toys from each of the four 
categories, such that each set contained 3 toys known and 3 
toys unknown to the child (based on parental reports). Toys 
were selected for each child from a larger set of about 20 toy 

                                                
1 Performance on the CDI was at ceiling and therefore no analyses 

including this measure are reported. 

items per category, each of which were used for a roughly 
equal number of participants.  

Procedure. Caregiver-child interactions took place in the 
families’ homes. Before the session, caregivers were given a 
list of toy names from our full list and they were asked to 
indicate whether their child knew those objects and those 
words. They were also asked to fill in the Oxford 
Communicative Development Inventory (OCDI)1. During 
the session, two experimenters visited the family, and 
recorded interactions with two videocameras (one focusing 
on the caregiver, one focusing on the child and the interaction 
space).  One experimenter checked the correct working of the 
videocameras while the other carried out the manipulations. 
The interactions were carried out at a table with the caregiver 
and the child sitting at 90 degrees from each other. Caregivers 
were asked to interact with their child in a natural way, as 
they usually did, but to try to talk about each of the objects 
provided. Drawings of the set of toys was given to the 
caregiver to help them remember which toys were in the set.  
The order of object present vs absent was counterbalanced 
across participants. When the interaction started with objects 
present, the experimenter brought to the table 6 toys from one 
category (e.g., animals) and left the room. The dyad talked 
about these toys for 3-5mins, then the experimenter re-
entered the room, asked the child to help in tidying up the 
toys and then left the room for the displaced condition asking 
the caregiver and child to continue to talk (again for 3-5mins) 
about the toys they just played with. The experimenter then 
reappeared with a new set of toys until all toy categories had 
been used. When the toy absent condition came first, the 
caregiver was asked to begin talking about the toys that were 
about to come while she was going to get them from another 
room (caregivers were first familiarised with the toys). After 
3-5mins, the experimenter brought in the set of toys, 
repeating this process for all four categories. The whole 
recording session lasted approximately 45-60 mins. 

Coding of caregiver communication. The caregiver 
communicative behaviour was coded in the following 
manner.  
(1) Speech. Data was transcribed by utterance, which is our 
unit of analysis (Berman & Slobin 1994). Lexical elements 
were transcribed further for onomatopoeias (including lexical 
onomatopoeia as well as sound effects) and for explicit 
mention of the referent (the toys in our sets) label. For each 
utterance, we coded the topic, as the specific toy (or multiple 
toys) that each utterance referred to, regardless whether labels 
were produced or not. Utterances were assigned to the 
known/unknown condition on the basis of their topic. 
Utterances not about the toy referents were coded as “other” 
for topic and were not included in any analysis.  
(2) Points: gestures (using the index finger or the whole 
hand) that single out a referent by pointing to it;  
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 (3) Iconic/representational gestures: gestures that represent 
referents by e.g. depicting aspects of their shape or 
manipulation. 
 (3) Hand actions: We coded hand actions and movements 
performed while holding or manipulating an object. These 
were divided into (i) deictic (i.e., showing) and (ii) depicting 
(e.g., demonstrating the use of a tool). Hand actions were 
only coded for the toys we provided, and thus can only occur 
in the toy present condition.  

Thus, we distinguish in our coding between iconic cues 
(onomatopoeia and representational gestures) and indexical 
cues such as points. Another category is hand actions. Hand 
actions are indexical in that they direct attention to the 
referent. They can however, differ and we coded separately 
those that depicted some properties of the referent (depicting 
hand actions) from hand actions that showed the object to the 
child (deictic hand actions). We consider the distinction 
between iconic and indexical cues to reflect two different 
manners in which cues can be non-arbitrary: iconic cues 
stand for the object; indexical cues provide a visual link to 
the object but they do not stand for it. Fig. 1 shows 
screenshots of the different categories. 

 

Results 
Before looking at the distribution of the multimodal cues, we 
examined the distribution, across our four conditions, of 
caregiver utterances. Figure 2 illustrates how often parents 
talk about objects across conditions. Parents talk more when 
toys are present, and talk more about items unfamiliar to the 
child than those that are familiar. The larger number of 
utterances with objects present may indicate that it is easier 
to maintain the child’s attention, or greater ease of production 
about present objects than about objects that need to be 
recalled. 
 

 
Iconic and indexical cue use. The primary aim of this study 
is to understand whether, and how, parents use 
onomatopoeia, representational gestures, points and hand 
actions (deictic and depicting) in their interactions with 
children. As such, we analysed whether age, familiarity 
(known vs. unknown object) and presence (present vs. 
absent) affect the use of each cue type. 

Analyses use logistic mixed effects models to asses which 
factors affect the presence of absence of different cues. Age 
of the child (in months), presence or absence of the object, 
and familiarity of the label (known/unknown) were included 
as centered fixed effects, as well as their interaction, and the 
centered fixed effect of category (category is a control 
variable). We included a random intercept for participant 
with random slopes of presence/absence and label familiarity, 
plus their interaction. Dependent variables are 
presence/absence of each cue – referent label, onomatopoeia, 
representational gesture, point, hand action – in an utterance 
in a given condition). This model structure is used in all 
models throughout this section, unless otherwise specified. In 
the interest of space, only the effects of interest are reported 
here. Full results from the models can be found at 
https://osf.io/yegxh/.  

First, we find that parents make use of all of these cues: 
approximately 39% of all utterances (11, 755 out of 30,283 
utterances) in the dataset are modified by at least one iconic 
or indexical cue. Figure 3 shows the proportion of each cue 
across conditions in the study. Second, the proportion of 
points is low in comparison to the other, especially manual, 
cues. We attributed this to the affordances of the interaction 
context: toys were in close proximity to the caregiver and the 
child, therefore hand actions in this context can take the place 
of points (indeed, deictic hand actions represent 57% of all 
hand actions). Deictic and depicting hand actions are by 
definition only present when objects are present. These are 
more common for unknown than known objects and their 
frequency is not modulated by the children’s age. Points are 
more common when objects are present, but we find no 
modulation regarding the familiarity of the label, or based on 
the age of the child. 

Figure 1. Examples of communicative behaviors coded in the 
different categories. 
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Crucially, iconic cues that can be used across all our four 
conditions (onomatopoeia and representational gestures) 
show a clear effect of both toy presence and familiarity. In 
particular, for onomatopoeia we find that caregivers use them 
more often when toys are absent. We also find an interaction 
between familiarity and toy presence. When toys are present, 
caregivers use onomatopoeia more with known items. 
However, when toys are absent, we see the reverse, such that 
onomatopoeia occur more for unknown items. Interestingly, 
onomatopoeia decrease as the child’s age increases; parents 
use fewer onomatopoeia with older children. For 
representational gestures, we see that these are 
overwhelmingly used when toys are absent and for unknown 
objects. No effect of age is observed. Table 1 summarises the 
model results.  

 
Within utterances, cues can co-occur with other cues within 
and across modalities (e.g., in an utterance we may have a 
hand action and a representational gesture; or we may find an 

onomatopoeia and a hand action). Co-occurrences between 
cues (e.g., between onomatopoeia and hand actions) were 
remarkably rare in the dataset, occurring in only 
approximately 3% of parent utterances. Although we have a 
high proportion of cue modifications, we do not see a high 
proportion of cases where multiple cues co-occur.  
 
Label use. Finally, we looked how often parents use explicit 
labels for the objects (e.g. saying the word ‘cat’). We find that 
parents use explicit referent labels more when the objects are 
not present, and tend to use the label more for familiar objects 
than unfamiliar objects. Analysis of a model predicting 
referent use confirms this: a decrease in referent use for 
unknown labels, compared with known ones (β=-0.43, 
SE=0.06, z=-7.60, p<0.001), and a decrease in referent use in 
the toy present condition, compared to the toy absent (β=-
0.90, SE=0.08, z=-11.22, p<0.001). We also address the 
question of whether and when any of our multimodal cues co-
occur with explicit naming of referents. If cues specifically 
help to link label and referent, then we might expect that use 
of multimodal cues occur in close proximity to the referent.  
 

Table 1. Summary of model results from logistic mixed effects 
models. Output variable given in bold. Note that the model for hand 
action does not include toy presence, as hand actions are not 
possible in cases where toys are absent. 
 
All of the cues we coded for can co-occur with explicit 
labelling of the referent (e.g., naming the referent while 
producing a hand action or representational gesture; naming 
the referent in the same utterance in which an onomatopoeia 
is produced). We found that, overall, the multimodal cues 
occur with explicit naming of a referent approximately 35% 
of the time. Figure 4 illustrates referent-cue co-occurrence 
across conditions. We subsetted rows in the dataset where 

Onomatopoeia β SE  z p 
Age -0.05 0.02 -2.39 0.02 
Label familiarity -0.04 0.13 -0.33 0.74 
Presence -0.53 0.14 -3.77 <0.001 
Familiarity*Pres. -0.85 0.21 -4.10 <0.001 
Points     
Age -0.004 0.02 -0.19 0.85 
Label familiarity -0.14 015 -0.95 0.34 
Presence 1.62 0.25 6.46 <0.001 
Familiarity*Pres. 0.54 0.34 1.60 0.11 
Gesture     
Age 0.006 0.03 0.18 0.86 
Label familiarity 0.14 0.20 0.70 0.48 
Presence -3.42 0.19 -18.18 <0.001 
Familiarity*Pres. -0.86 0.33 -2.60 0.009 
Hand actions     
Age -0.02 0.02 -1.10 0.27 
Label familiarity 0.25 0.06 4.14 <0.001 
Hand action type (deictic-depicting)  
Age 0.03 0.03 0.86 0.39 
Label familiarity 0.07 0.14 0.45 0.65 
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any of our four cues were produced, to analyse how co-
occurrence between cues and labels differed across 
conditions. The model revealed both an effect of familiarity 
(β=-0.32, SE=0.08, z=-4.30, p<0.001), and of toy presence 
(β=-0.58, SE=0.12, z=-4.98, p<0.001). Label-cue co-
occurrence occurs more when toys are absent, and when the 
label is known to the child.  
 

Discussion 
The work reported here aimed to characterize the distribution 
of iconic and indexical cues in the input to 2-3 year-old 
children. We see that approximately 40% of the clauses 
produced by caregivers contains at least one of these 
multimodal cues which often co-occur with explicit labelling 
of objects especially when toys were present and unknown to 
the child.  
 
Iconicity as a bridge between words and world 
One main goal was to establish if multimodal cues are 
differentially distributed across contexts: (i) whether the 
child knows the object and its label, and (ii) whether the 
objects being talked about are present in the communicative 
context vs. absent. The latter manipulation has been 
introduced in order to assess the extent to which the 
multimodal communicative strategy of caregivers is 
responsive to the presence vs. absence of object, and whether 
they modify their language based on the physical setting in 
which the communication takes place.  
 
The hypotheses we have test is one in which non-arbitrary 
cues in learning provide a stepping stone to the child to bridge 
between words and world (Perniss & Vigliocco, 2014). Both 
iconic and indexical cues can single our referents when these 
are present in the environment. Moreover, iconic cues can be 
used when the objects are absent to bring to the mind’s eye 
properties of referents. Thus, indexical and iconic cues may 
play an important role in learning. We see that this is the case 
in our data. With the exception of points, which are equally 
likely for familiar and unfamiliar objects (and labels), all 
other cues are more commonly used for unknown objects 
(learning contexts). Crucially, the iconic cues (onomatopoeia 
and representational gestures) are also used more often when 
the objects are not present in the physical environment. The 
results for iconic cues are in line with previous work using a 
similar paradigm, where it was found that deaf caregivers 
modify iconic signs in British Sign Language (BSL) to 
highlight iconic properties of signs (e.g., enlarging the up-
and-down movement path of the arm in the sign HAMMER) 
far more often when objects where absent than present 
(Perniss et al., 2017), suggesting that this tendency holds 
across language modalities. In contexts where the label is 
known to the child, we see that while representational 
gestures are still overwhelmingly most common for displaced 
contexts, this is not the case for onomatopoeia. Another 
interesting difference between onomatopoeia and 
representational gestures (as well as all other cues) is that 

onomatopoeia show a decrease with age, in the age range we 
considered (24-42 months). This finding is in line with 
previous work showing that use of onomatopoeia in 
caregivers and children’s speech decreases from 0.8 to 2 
years (Kauschke & Hofmeister, 2002; Kauschke & Klann-
Delius, 2007; Laing, 2014). It has been suggested that for 
spoken languages, iconicity embedded in wordforms as 
onomatopoeia may act as a bootstrapping mechanism, a sort 
of protolanguage, guiding infants’ attention to the fact that 
what comes out of the mouth is linked to what happens in the 
world (see Imai & Kita, 2014; Laing, 2014).  
 
Iconic vs Indexical cues 
We have distinguished points from representational gestures: 
points don't stand for an object - like representational gestures 
do - but they direct attention to the object via direct deixis. 
Just like representational gestures, they are non-arbitrary. 
Although, in principle iconic cues could be found both when 
objects are present as well when they are absent, they are far 
more common in displaced contexts (note however that we 
observe depicting hand actions in situated contexts); points 
also, in principle could be found in both contexts, but they are 
overwhelmingly more common in situated contexts (and 
deictic hand actions can only be present in situated contexts). 
This is in line with what was observed in a previous study in 
BSL where pointing was also much more common in situated 
than displaced contexts, though the use of indexing to 
abstract locations in space is common in signed language 
(Perniss et al., 2017). In the introduction, we mentioned two 
ways in which non-arbitrary cues can support language 
development. First, they can help singling out referents when 
these are present. Both iconic and indexical cues can do this, 
however, indexical cues may be better placed, as they can be 
used from earlier age and they provide an unambiguous 
visual link to the referent. Second, they can help evoking - 
via imagery - properties of referents that are not present. 
Iconic cues are best suited to support this type of learning 
scenario. Note that our study might have called for the use of 
iconic cues also linked to learning about properties of novel 
objects. When children were presented with unfamiliar 
objects, caregivers also used iconicity (especially depicting 
hand actions) to show the child how the object is used, or how 
it moves. 
 
How are cues orchestrated? 
Previous work suggests that some cues co-occur. For 
example, Laing et al. (2017) showed that onomatopoeia are 
usually prosodically marked and Kita (1997) reports that 
representational gestures tend to co-occur with onomatopoeic 
and other sound-symbolic words in Japanese. However, we 
did not observe any tendency for cues to co-occur (although 
we did not code for prosody in our dataset at this point and 
therefore we acknowledge that things might be different 
when considering prosody). For the cues we have considered, 
it is clear that caregivers choose one cue, presumably on the 
basis of affordances of the objects (e.g., onomatopoeia for toy 
animals, representational gesture for tools) to associate to 
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each utterance. We found that explicit label productions are 
more likely to co-occur with a multimodal cue when objects 
are absent and when objects are known to the child. Precisely 
why this may be the case is unclear; given that labels 
themselves appear more frequently when toys are absent, it 
may be that parents use the label in conjunction with cues 
when toys are absent to make reference to a given object more 
salient. When the toys are present, it is possible to interact 
with or point to the toys, making direct reference less 
necessary.  

Conclusions 
This study provides a first snapshot of the distribution of 
multimodal cues in child-directed language. We found a clear 
indication that iconic as well as indexical cues are well 
represented in caregivers’ input and crucially, they are 
especially used in those contexts where they may be most 
useful to children: namely in learning contexts, where the 
objects and labels talked about are unfamiliar to the child and 
when the learning occurs in displaced contexts where the 
objects are not available. It is important to note that the work 
reported here only provides a partial picture, however. First, 
the interactions in this study are focussed on contexts of play, 
which may not be representative of other interactional 
contexts. Secondly, missing from the current picture is 
prosodic modulation, which is a key feature of child-directed 
speech (e.g., Fernald & Simon, 1984; Fernald, 1989; Fernand 
et al., 1989) and which has been shown to be associated to 
onomatopoeia (Laing, 2017). Finally, and most important, is 
the fact that the present work focuses on the communication 
by the caregiver only, without considering the child’s 
communication, thus giving the impression that the child is a 
passive receiver of input from caregivers. There is clear 
evidence this is not the case (e.g. Pereira, Smith & Yu 2014), 
however, while we plan to code the children’s productions, 
we nonetheless believe that considering the distribution of 
multimodal cues in caregivers’ communication can already 
provide insight into important questions that has received 
little attention so far such as which and how cues are used in 
displaced contexts.   
 
The work reported here was supported by a ESRC grant 
(ES/P00024X/1) and ERC Advanced Grant (743035) to GV. 
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Abstract

Formal theories of grammar and traditional parsing models,
insofar as they presuppose a categorical notion of grammar,
face the challenge of accounting for gradient judgments of
acceptability. This challenge is traditionally met by explaining
gradient effects in terms of extra-grammatical factors, positing
a purely categorical core for the language system. We present
a new way of accounting for gradience in a self-organized
sentence processing (SOSP) model, which generates structures
with a continuous range of grammaticality values. We focus
on islands, a family of syntactic domains out of which
movement is generally prohibited. Islands are interesting
because, although most linguistic theories treat them as
fully ungrammatical and uninterpretable, experimental studies
have revealed gradient patterns of acceptability and evidence
for their interpretability. We report simulations in which
SOSP largely respects island constraints, but in certain cases,
consistent with empirical data, coerces elements that block
dependencies into elements that allow them.
Keywords: whether islands; subject islands; D-linking;
acceptability; ungrammaticality; gradient effects;
self-organized sentence processing model; SOSP

Introduction1

Acceptability judgments are gradient: sentences’
acceptability spans from full acceptability to full
unacceptability passing through a range of intermediate
values which can be statistically distinguished.
Grammaticality, on the contrary, is traditionally conceived
of as categorical: sentences are either grammatical or
ungrammatical but cannot be “partially” (un)grammatical.
Degrees of acceptability have been attributed to
extra-grammatical factors, such as memory limitations,
plausibility etc. It is commonly assumed that this view
comes with the advantage of simplicity: a grammar
admitting only two states is claimed to be simpler than a
grammar involving a continuous, infinite, number of states.
We argue that, despite its apparent simplicity, this position is
actually less parsimonious than one that accounts for graded
acceptability judgments as deriving from the grammar
itself. We present a self-organized sentence processing
(SOSP) framework, which accounts for gradient effects
through a single mechanism of structure building (e.g.

1This work was supported, in part, by a grant from the Marica de
Vincenzi Foundation.

Tabor & Hutchins, 2004; Smith & Tabor, 2018; Villata,
Tabor, & Franck, 2018). Unlike most classical parsing
and grammatical models, SOSP conceives of grammar as
residing in a continuous space where fully grammaticality
and fully ungrammaticality are two endpoints of a continuum
(e.g. Kempen & Vosse, 1989; Cho, Goldrick, & Smolensky,
2017). As a result, gradient effects are understood as
generated by the grammar itself, rather than deriving from
extra-grammatical factors. To test this theory, we focus
on what is arguably one of the most prototypical, and yet
also most theoretically challenging syntactic phenomena:
islands. Islands are encapsulated syntactic environments
out of which almost nothing can be extracted (Ross, 1967).
Islands come in two flavors: strong and weak. Strong islands
are claimed to block all kinds of extraction. In particular, non
D(iscourse)-linked (e.g. what, who) and D-linked elements
(e.g. which NP) are equally unextractable from strong
islands. This is illustrated in (1) and (2) for subject islands,
where the NP (what or which dissertation) is extracted from
a NP subject (the first chapter of )2:

(1) *What do you think [the first chapter of ] is full of errors?
(2) *Which dissertation do you think [the first chapter of ]
is full of errors?

In contrast, weak islands are traditionally claimed
to be selective: they prohibit the extraction of non
D-linked wh-elements, but allow the extraction of D-linked
wh-elements (e.g. Cinque, 1990; Rizzi, 1990). This is
illustrated in (3) and (4) for whether islands, where the
extraction of the NP is from a whether-clause:

(3) *What do you wonder [whether the student read ]?
(4) Which book do you wonder [whether the student read ]?

The sharp distinction between the examples in (1), (2)
and (3) on the one hand, which are standardly deemed
ungrammatical, and (4) on the other, which is typically
considered grammatical, is very much in line with the
traditional, categorical view of grammar, which only
admits binary outcomes. However, with the development

2The island domain is in brackets, and the asterisk indicates
ungrammaticality.
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of finer-grained techniques for gathering acceptability
judgments, experimental studies have revealed gradient
patterns of acceptability for island effects. Here we focus on
three empirical facts indicating gradient island effects.

First, acceptability judgment studies have revealed that
weak island acceptability is gradient (e.g. Sprouse, Wagers,
& Phillips, 2012; Sprouse & Messick, 2015). In particular,
D-linked whether islands (4) are more acceptable than non
D-linked ones (3), and yet still ungrammatical, contra the
traditional wisdom that conceives of D-linked whether islands
as grammatical (see Villata, Rizzi, & Franck 2016 for
similar evidence for wh-islands). These studies used a
2x2 factorial design that isolates the island effect from two
processing factors that are known to interact with the effect:
(i) STRUCTURE TYPE (island vs. non-island),3 and (ii)
DEPENDENCY LENGTH (long vs. short) (5). The contrast
between (5a) and (5c) isolates the cost of structure, while the
contrast between (5a) and (5b) isolates the dependency length
effect. We define the island effect as a statistical interaction
between the two factors: it is what remains after the linear
sum of the two processing factors is taken into account.

Sprouse & Messick (2015) found a significant interaction
for both non D-linked and D-linked whether islands,
indicating an island effect in both cases. However, the island
effect was stronger in the non D-linked condition as compared
to the D-linked condition, providing evidence that D-linking
reduces the island effect in weak islands (see Figure 5;
empirical data are in black).

(5) Factorial design measuring the whether island effect

a. NON-ISLAND, SHORT
Who/Which woman thinks that John bought a car?
b. NON-ISLAND, LONG
What/Which car do you think that John bought ?
c. ISLAND, SHORT
Who/Which woman wonders whether John bought a car?
d. ISLAND, LONG
What/Which car do you wonder whether John bought ?

The second empirical fact is that D-linking interacts with
island types: while D-linking ameliorates the acceptability of
weak islands, it does not help strong islands — e.g., subject
islands. Example (6) shows a corresponding factorial design
for subject islands, and Figure 6 (black lines) shows the
empirical data from Sprouse & Messick (2015).

(6) Factorial design for measuring the subject island effect

a. NON-ISLAND, SHORT
Who/Which leader thinks the speech interrupted the TV
show?
b. NON-ISLAND, LONG
What/Which speech does the leader think interrupted the
TV show?

3“Island” here does not refer to an island-violating structure, but
to the mere presence of a structural domain that does not tolerate
extractions, like a whether embedded clause or a complex subject.

c. ISLAND, SHORT
Who/Which leader thinks the speech by the president
interrupted the TV show?
d. ISLAND, LONG
Who/Which politician does the leader think the speech by

interrupted the TV show?

Third, D-linked whether islands with an intransitive
embedded verb (e.g., Which joke does the comedian wonder
whether the audience laughed?) are less acceptable than
those with a transitive embedded verb (e.g.,Which necklace
does the detective wonder whether the thief stole?), an
effect that was significant for both D-linked and non
D-linked whether islands, although it was greater for the
former (Villata, Sprouse, & Tabor, 2018) (Figure 1). We
take this result as evidence that whether islands, though
ungrammatical, are interpreted. This suggests that the
dependency between the extracted wh-phrase and the gap
inside the island can, at least sometimes, be established.

Figure 1: Acceptability proportions for weak islands (data
from Villata, Sprouse, & Tabor (2018)).

Summarizing: First, weak islands are ungrammatical.
Though D-linking improves their acceptability, it does not
cancel the island effect. Hence, their acceptability is gradient.
Second, D-linking does not improve the acceptability of
strong islands. Hence, gradience is not evident in all cases.
Third, the evidence suggests that weak islands are interpreted.
Hence, the dependency between an extracted wh-phrase and
a gap inside the island can sometimes be established. The
last fact seems to point to an account of islands not couched
in terms of perfectly impenetrable syntactic domains.

In the next section we introduce the SOSP model. In
the section Model Implementation we describe SOSP’s
implementation and, in the section Simulations, we describe
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how the model accounts for the data at hand.

The SOSP Model
In SOSP, structures are formed through continuous dynamical
interaction among their constituent elements. Building on
several linguistic foundations (Fillmore et al., 1988; Fodor,
1998; Gazdar, 1981) and following the psycholinguistic
formulation of Kempen & Vosse (1989), we take the
constituent elements to be treelets. Treelets are subtrees
formed by a mother node and a finite number of daughter
nodes that become active when a word is encountered.
Each treelet is associated with a vector of syntactic and
semantic features that specifies the properties of the word
and its expected dependents. Treelets interact in all possible
ways to form structure, creating competition for attachment.
Attachments between treelets with a good feature match
generally outcompete attachments with a poor feature match,
which leads the system to stabilize, most of the time, on a
grammatical structure. Structures in which all attachments
perfectly satisfy the requirements of the feature vectors of the
treelets receive the maximum harmony value of 1. Harmony
is a formal measure of the degree of coherence in a set of
interacting treelets — details below (e.g. Smolensky, 1986).

Importantly, SOSP also allows the generation of
intermediate structures, i.e. structures with a harmony
value strictly between 0 and 1 (0 harmony = no structure).
This happens when an attachment is made between treelets
whose features only partially match. This can happen in
two ways. First, due to noise in the system, attachments
between treelets with a poor feature match can sometimes
outcompete attachments between treelets with a good feature
match. However, this will happen in a small proportion of
the cases, for attachments with a good feature match tend
to win competitions. Second, when no optimal bond is
available, as in ungrammatical sentences and difficult garden
paths, the system forces the attachments to form anyway,
generating (sub-optimal) structures. This leads to a variety of
differently-valued outcomes which are internally generated
(i.e. generated by the functioning of the system itself), rather
being the result of factors that are external to the system.

Model Implementation

The implemented model (Smith & Tabor, 2018) consists
of sets of differential equations that converge on fixed
points corresponding to locally optimal structures. Treelets
are encoded as banks of feature vectors (all of the same
dimensionality, n f eat) with one bank for each attachment site
(mother/daughters). The general implementation is achieved
by first determining all the possible structures (both fully
and partially grammatical) that can be formed from the
vocabulary of the language, treating the concatenated banks
of features and link values as forming a single vector space,
and identifying the location of each locally optimal structure
in this space. The local harmony, hi, associated with such a
point in the feature space is given by (1):

hi = ∏
l∈links

(
1− dist(fl,daughter , fl,mother)

n f eat

)
(1)

where dist(~x ·~y) is Hamming distance between ~x and ~y. In
other words, the local harmony is a product, across links, of
a measure of similarity between the daughter feature vector
fl,daughter and the mother feature vector fl,mother on the end of
each link. Thus, if every link has a perfect match, then hi is
maximal and equals 1. The minimum possible value is 0, and
various degrees of mismatch give intermediate values.

For each such structural locus, we specify a radial basis
function (RBF), φi (Muezzinoglu & Zurada, 2006):

φi(x) = exp
(
− (x−ci)

|(x−ci)
γ

)
Here, x is the state of the system encoding the values of all
features on all activated treelets and all possible links between
them, ci is the location of the ith (partial) parse, | denotes
the vector transpose, and γ (a free parameter) specifies the
width of the RBFs. We define the harmony function H(x)
as the height of that RBF among n RBFs that is maximal at
x, where n is the number of optimal and partially-optimal
structures (harmony peaks) that can be formed with the
currently activated elements, and hi is the height of the i’th
mode:

H(x) = max
i∈1...n

hiφi(x) (2)

This equation interpolates a harmony landscape between the
structural loci, ci, associated with the local harmony peaks.4

Parsing starts with all features equal to 0. The perception
of the first word of a sentence causes features of a lexical
treelet associated with that word to be turned on. This,
in turn, causes links and additional treelet feature banks
corresponding to the most viable parse of just that word to be
turned on. In SOSP, treelets are interacting subsystems that
attempt to assemble themselves through local interactions
that locally maximize harmony. This is implemented as noisy
gradient ascent on the harmony surface, H(x):

dx
dt

= ∇xH(x) =− 2
γ
himax(x− cimax)φimax(x)+

√
2D dW (3)

where D > 0 scales the magnitude of the Gaussian noise
process dW . In other words, the system moves approximately
uphill on the harmony landscape as it processes each word.
Moving uphill is equivalent to growing the link structures
and adjusting values of unspecified or conflicting features to

4This definition differs from the form specified in Smith & Tabor
(2018) who summed the RBFs to form H. We have found that, in
systems with many harmony peaks, if a summation is used, there
are often ganging effects that influence the structure of the gradient
and flummox effective parsing: many proximal ungrammatical
structures gang together to pull the state toward their mean and
away from a lone worthy grammatical candidate. Humans seem to
be strongly influenced by the presence of a good candidate even if
there are also many bad ones around, so the max method yields more
plausible parsing than does the summing method when the language
model is realistically rich.
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reach a locally optimal parse state. After a local optimum is
reached, new features specified by the next word are turned
on (moving the system off its current hilltop and into a nearby
valley). The gradient ascent process then begins anew and a
new harmony maximum is reached, corresponding to the next
step of the parse. Across multiple trials, the noise produces
a distribution over the harmony maxima, generally favoring
those that correspond to plausible parses of the input seen up
to the present moment. At the end of parsing a sentence, the
system will be at a particular harmony peak that has a value
between 0 and 1. We take this harmony value to correspond
to the model’s assessment of the acceptability of the sentence.

Simulations
In the terms of the model, based on the empirical results
reviewed above, we identify the following desiderata:
(i) non D-linked whether islands should receive a low
harmony value, and D-linked whether islands should receive
a higher, but not maximal, harmony value; (ii) the
high-but-not-maximal harmony for D-linked whether islands
should be generated by linking the gap to the filler inside the
island with some strain, in line with experimental findings
suggesting that these structures are interpreted (Villata,
Sprouse, & Tabor, 2018); (iii) subject islands should receive a
low harmony value irrespective of the presence of D-linking
(comparable to non D-linked whether islands) .

Figure 2 portrays the model’s processing of a non-D-linked
whether island. The model considers, in parallel, all
conceivable parses of the input string. However, since many
of these parses have extremely low harmony and do not have
much influence on the processing, the figure only shows
those that play a significant role in the parsing dynamics.
One reads the figure from left to right and bottom-up.5

Typically, when a word is perceived, bonds between treelets
form. For example, when “you” is perceived, a bond between
“NPyou”, the mother of “you”, and “NPyou”, the daughter of
“S/NPwhat”, typically forms. Bonds between treelets that are
formed by the system are illustrated with dashed lines, while
straight lines indicate the treelet’s structure as it is defined
in the lexicon based on phrase structure rules (e.g. S → NP
VP). Crucially, the treelet feature vectors are mutable within a
range of values corresponding to the syntactic/semantic range
that the treelet affords. For example, in the present case, the
mother of the “S → NP VP” treelet has mutated to acquire
a slash buffer that specifies the syntax and semantics of the
fronted element “what”. Due to this mutation, links can often
achieve a perfect feature match, causing the relevant term in
Equation (1) to take on the value, 1.

The crucial developments in the case of the non-D-linked
whether sentences occur when the words “wonder” and
“whether” are perceived. As shown in Figure 2, the system
is deciding between two possible, not-fully-grammatical
structures at “wonder”. The first, shown by the left

5The model employs slash-propagation (Gazdar, 1981) to
implement long-distance dependencies.

Figure 2: Simplified tree for non D-linked whether island.
Subscripts indicate which feature has been transmitted to the
node (e.g. S/NPwhat means that what has been propagated to
the S node). Words in orange are those that trigger coercion.
Wavy orange lines illustrate the dynamic of the coercion.
Here the parsing that ultimately wins out in most trials is the
one on the left branch (bold font).

VP-branch, respects the constraint imposed by the verb
“wonder”, which cannot take as a complement an element
with a slash feature. This implements the “islandhood” of the
CP-complement of “wonder”. This parse makes it possible
for “Vwonder → wonder” to attach with perfect harmony to
its CP-complement, but at the cost of failing to propagate
the slash buffer (“/NPwhat”) onto the VP node below. We
assume this failure has a cost, but not a severe cost because
“what” is a very abstract element, so its encoding plausibly
contains only a few features — that is to say, the difference
between the “NPwhat” slash buffer and an empty slash buffer
is a small difference. This mild penalty is indicated by the
orange color of the link between “VP/NPwhat” and “VP”. The
second parse in Figure 2, shown by the right-branch, takes an
opposite approach: it propagates the slash buffer, “/NPwhat”,
onto the VP node below, but it can only do this by coercing
“wonder” into a verb that licenses slash propagation. We have
taken the verb “think” as a canonical example of such a verb.
The orange squiggly line from ”Vthink” to ”Vwonder” indicates
this penalty. Again, this penalty is not extreme because
the semantics and syntax of “wonder” and “think” are fairly
similar. At the next word, “whether”, the system undergoes
a second coercion, of “whether” into “that”. This coercion,
which is triggered by the requirements of the verb “think”,
allows the slash buffer to propagate down the tree, for “that”,
unlike “whether”, does not act as a slash propagation blocker.
As before, although this coercion comes at a cost, the cost is
mild, because of the similarity of the two complementizers.
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We now consider the case of the D-linked whether-island,
illustrated in Figure 3. In this case, not propagating the slash
feature onto the VP node (the parse on the left-branch) comes
with a strong penalty (illustrated by the red squiggly line
in the figure). This is because, D-linked words, unlike non
D-linked ones, are associated with a rich bundle of semantic
and syntactic features. As a result, failing to propagate
the features associated with D-linked NPs incurs a strong
penalty. The system therefore tends to prefer the second
parse (right-branch): the close analogy between “think”
and “wonder”, and “that” and “whether” makes the mild
coercions option better than any other parsing option, leading
the parser to stabilize on the option that propagates the slash
buffer inside the whether island.

In subject islands, on the contrary, there is no such close
analogy between the words in the sentences and alternatives
in the lexicon. As a result, the parser systematically fails to
consider the possibility of propagating the slash feature down
the subject branch and then is caught up short when a gap
appears in the subject, and no gap appears in the main verb
phrase (see Figure 4).

Figure 3: Simplified tree for D-linked whether island. Words
in orange trigger a mild coercion, while words in red trigger
a severe coercion. Here the parsing that ultimately wins out
in most trials is the right branch (bold font).

We ran 20 runs of the model on simplified versions of
each sentence in examples 5 and 6 (no determiners, ignoring
English do-support). The model, somewhat revised from
the one described in the first, reviewed version of this
paper, is both an elaboration and a simplification of the
model described in Smith & Tabor (2018).6 It used 45

6We describe the revised model here rather than the original one
because its assumptions are more plausible and easier to describe, as
requested by several anonymous reviewers, and the causal dynamics
by which it produces the data points reported here—specified in the
analyses above—are the same as those previously described.

Figure 4: The low-harmony structure that stabilizes when the
model is presented with a subject island.

distinct feature vectors for coding the lexical and syntactic
nodes needed for the tree configurations described in the
analyses above (as well as variants needed for all the stimulus
sentences listed in (5) and (6)). Whereas previous versions of
the model were hand-coded with roughly plausible linguistic
features, the current version started by generating random
bit vectors in 20 space for each feature vector (which was
either a mother or a daughter of a treelet). This made
all the feature vectors relatively distant from one another.
Then, in keeping with the hypotheses described above, the
vector for “wonder” was made to be equal to the vector for
“think” except in two dimensions where it had contrasting
bits; the vector for “whether” was analogously made similar
to the vector for “that”; and the vector for “CP/What”
was analogously made similar to the vector for “CP” (i.e.,
to CP with an empty slash buffer). SOSP entertains a
plethora of possible ways of combing the treelets, most of
which give rise to very low harmony structures. In the
simulations reported here, motivated by the assumption that
many of the low-harmony variants have little effect on the
parse trajectory and to simplify implementation, we only
considered the variants that we have mentioned as alternatives
in the analyses above. An earlier version of the model had
trouble telling sentences apart if many were included in the
stimulus set. Here, we introduced a two-fold magnification
of the dimension coding the features for the lexical elements.
This effectively moved the harmony peaks for sentences with
different word forms farther apart from one another, causing
the system to prefer parses that are faithful to the input,
though not rigidly—see Levy (2008). To allow the model
to detect harmony maximization upon processing of each
word, we allowed the dynamics to settle through a quadratic
velocity profile: the model had to speed up (associated with
reaching the steep section of one of the RBF humps) and then
slow down (indicating that it was topping out on a harmony
maximum) before moving on to the next word.
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In addition to the number of feature dimensions (20)
and the degree of lexical isolation (2 x) mentioned above,
important free parameters are γ, specifying the width of the
RBFs, D, specifying the magnitude of the noise, and ρ which
takes its values in [0, 1] and determines how far over the
velocity “hump” the model must travel before moving to
the next word (ρ = 1 implies immediate transition, ρ = 0
implies infinite processing time per word), and ∆t which
specifies the step size in the Euler Integration that we used
to approximate the dynamics. We explored these parameters
by hand finding a way to roughly optimize behavior in a
test grammatical sentence and the D-linked whether island
extractions (D-linked, whether, island, long) to establish the
settings γ = 4, D = 7× 10−1, ρ = 0.4, ∆t = 0.5 and then
examined the results in the other fourteen conditions.

One other point about the implementation is particularly
important. The current versions of SOSP add dimensions
to the state space with every new word (these dimensions
correspond to the feature banks in treelets that the word
introduces, and to the links this treelet can potentially form
with other activated treelets). The behavior of the dynamical
equations is sensitive to the dimensionality, so to achieve
reasonable parsing, such an implementation needs to change
the dynamical parameters (γ, D, ρ, ∆t) as the sentence grows.
We do not think this is very plausible. Instead, we think the
dimensionality of human processing is kept roughly constant
via a focusing mechanism (possibly related to what is called
“Working Memory” in other work). We suspect that the
form of this focusing involves fractal scaling as has been
proposed in work on neural encoding of arbitrary dependency
languages (Plate, 2003; Tabor, 2000). However, we do not
know how to apply such scaling techniques to the SOSP
encodings, so we have used a kind of Poor Man’s focusing
method: run the dynamics on just the vectors associated with
the current word and the previous word. Coupled with slash
propagation, this technique is capable of tracking of all the
dependencies needed for the current stimuli.

Figures 5 and 6 present a comparison of the predicted
island effects by the SOSP model (in red) and the observed
island effects (in black)—the model exhibited very little
variance within trials so no model error bars are shown.7

Indeed the qualitative behavior of the model matched the
desiderata we have mentioned, often succeeding in linking
the gap to the fronted element in D-linked whether islands,
and in extractions from non-islands, but not in the subject
islands, and rarely in the non-D-linked whether islands.

7For subject islands, Sprouse & Messick (2015) report a reverse
effect of D-linking, with D-linked subject islands showing a stronger
interaction than non D-linked ones. However, this reverse D-linking
effect appears to be driven by the non-island/long condition, which
exhibited lower ratings in the non D-linked than the D-linked
condition. Although it is unclear what might have driven this
effect, for current purposes it is sufficient to observe that the
reverse D-linking effect is not driven by the island condition itself.
Moreover, the ratings for the island condition are comparable with
those obtained by the non D-linked whether island, and also by the
Complex NP and adjunct islands tested by Sprouse & Messick (not
reported here), for which no reverse D-linking effect was observed.

Figure 5: Interaction plots for whether island. The points
correspond to the 4 conditions in (5). Empirical results are in
black (data from Sprouse & Messick, 2015) and results from
the model’s simulation are in red.

Figure 6: Interaction plots for subject island. The points
correspond to the 4 conditions in (6). Empirical results are
in black (data from Sprouse & Messick, 2015) and results
from the model’s simulation are in red.

Discussion
We reported three empirical findings from the literature
pointing to gradient effects in island acceptability. We
presented a new way to account for islands’ ungrammaticality
in a self-organized sentence processing (SOSP) framework.
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SOSP’s key novelty lies in its conception of grammatical
states as lying in a continuum of grammaticality values. As
a consequence, and unlike traditional theories of grammar,
SOSP treats degrees of acceptability as deriving from the
grammar itself, rather from extra-grammatical factors. This
occurs because self-organizing treelets, not being under the
control of a central coordinator, build whatever structure they
can, sometimes achieving only partial coherence. This is
the case of D-linked whether islands: the system succeeds
in coercing them into a non-island structure, leading to
the propagation of the slash feature inside the island, thus
rendering these structures interpretable, in line with empirical
findings. However, coercion comes at a cost, which is what
causes the sentence to be given a suboptimal harmony value
by the model, thus accounting for the fact that D-linked
whether islands, although improved as compared to non
D-linked ones, are still degraded. Importantly, the system
is also able to generate extreme grammaticality values, in
line with classical models. On the ungrammatical side,
this happens when no grammatical parse is available and
no coercion can take place, either because no grammatical
structure is similar-enough to the to-be-parsed structure or
because the system is not sufficiently prompted in undergoing
the coercion. The first case is illustrated by subject islands,
where no alternative (coerced) parse is available. The second
case is illustrated by non D-linked whether islands: here the
non D-linked wh-phrase is not powerful enough to cause
the system to discover the coercion, resulting in failure to
propagatied the slash feature inside the island, and very low
harmony value.

Shortcomings of the current model are that the treelet
forms are based on linguistic theorizing, not on a
machine-learning method. A machine learning approach
would make the method more completely formalized. Also,
the feature vector composition, which ends up determining
the harmony values, was mainly random. It will be valuable
to explore more realistic feature analyses motivated by
linguistic theory. Finally, as noted above, it is desirable to find
a more principled method of keeping the state space finite.

All in all, we argue that SOSP offers a valuable new
way of approaching the relationship between grammar and
processing. It is closely related to generative linguistic
theory. Nevertheless, it differs in non-trivial ways from
traditional assumptions, notably continuity, and a central role
for processing in grammatical explanation. We hope our
results will spur new discussion on these topics.
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Abstract 

What are the categorical distinctions shared between 
conceptual and visual representations? One distinction may 
be between bounded and unbounded entities. Previous 
research in sign language has shown that even non-signers 
associate signs with repetitive motion with atelic verbs, such 
as “run”, and signs with sudden motion with telic verbs, such 
as “arrive”. In our first study, we show this distinction holds 
even when the visual stimuli depicted bear no intrinsic 
linguistic reference: we used non-linguistic random dot 
motions. In our second study, we demonstrate this association 
occurs spontaneously, even when subjects are not making 
explicit semantic judgments about verbs. We use a cross-
modal lexical decision task in which verbs and non-words 
appear superimposed on bounded or unbounded dot stimuli. 
We find congruency when the motion boundedness matches 
the conceptual boundedness of the verb. Together, these 
studies provide evidence for an automatic link between visual 
and conceptual boundedness in the mind. 

Keywords: telicity; motion perception; visual boundedness 

Introduction 

Language allows us to describe our own perceptual 

experience and understand the experiences of others. As 

social creatures, this is critical. Thus, an understanding of 

how and what information is common between language 

and perception is both interesting and important. One 

category of information that might be shared across these 

two systems is boundedness. In the current work, we 

investigated whether the visual perceptual system makes a 

distinction between bounded and unbounded stimuli, and 

whether this distinction is common across visual and 

linguistic experience (i.e., through verbs and verb phrases).  

To understand what we mean by visual boundedness, 

imagine you’re observing an event (e.g., something moving 

across your field of vision), but everything is blurred so that 

you cannot make out objects or what category of event is 

taking place. Because the low-level motion properties of the 

scene are preserved, you could still perceive the motion 

properties of the event, such as whether it started and 

stopped. In other words, there are perceptual correlates of 

boundedness even when you do not have access to high-

level information about objects, goals, or events. 

A second form of boundedness is telicity, or conceptual 

boundedness. Telicity is a similar concept to visual 

boundedness but in the linguistic domain. Telicity refers to 

whether an event described by a verb or verb phrase is 

construed as having an intrinsic endpoint (telic) or an 

undefined one (atelic; Vendler, 1957). For instance, “run” is 

an atelic verb. While a person could not run forever, the 

verb itself does not entail an endpoint. This is as opposed to 

a verb such as “arrive.” There is a definite endpoint entailed 

by the verb such that the event has only occurred when 

someone arrives at their destination. A simple test for this 

distinction is to probe the felicity or grammaticality of a 

sentence when adding the phrases “for an hour” (atelic) and 

“in/within an hour” (telic; Todorova, Straub, Badecker, & 

Frank, 2000). For example, one could say someone ran for 

an hour but could not say someone ran in an hour; 

conversely, it is infelicitous to say someone arrived for an 

hour but fine to say someone arrived within an hour.1 

One way to investigate the link between visual and 

conceptual boundedness is through sign language, as sign 

language is inherently both linguistic and visual. In Malaia 

& Wilbur (2012), signers were instructed to produce signs 

for verbs, and motion capture technology was used to record 

the maximum deceleration, maximum velocity, and duration 

of the signs. It was found that the motion properties of the 

signs for atelic verbs, e.g. “run”, are consistent with one 

another, and visually distinct from telic verbs, e.g. “arrive”. 

Such findings suggest that signs carry information about 

verb telicity iconically in the form of the sign itself. 

However, although this study showed that a difference in 

telicity may be visually distinct, it does not indicate whether 

humans have access to this boundedness distinction 

(whether implicitly or explicitly). Strickland et al. (2015) 

addressed this issue: they demonstrated that even among 

non-signers, there is an implicit bias to map atelic signs (i.e. 

                                                           
1 However, this rule is not absolute. For example, the telic verb 

die can be used with both “in an hour”, an instantaneous event, and 

“for an hour”, an extended process with an undefined endpoint. 
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signs for atelic verbs) onto atelic verbs and telic signs (i.e. 

signs for telic verbs) onto telic verbs. In that study, English-

speaking individuals without sign language experience were 

shown an atelic or a telic sign and were forced to choose 

one of two verbs that they believed matched the meaning of 

that sign. For example, participants viewed the sign for 

“float” (an atelic verb) and were asked to choose between 

two words that differed in telicity (e.g., “float” vs. “leave”). 

Participants significantly preferred the verb that matched the 

sign in telicity, even when neither verb referred to the true 

meaning of the sign (e.g., “talk” vs. “buy”), and even for 

verbs with no visual correlate (e.g., “think” vs. “decide”). 

This shows that the human mind has access to boundedness 

information in visual input and can associate it implicitly 

with word meanings that are conceptually bounded, even 

though iconicity for telicity does not exist in their own 

language. 

Although the Strickland et al. (2015) results are 

compelling, the scope of their conclusions is limited to 

perception within linguistic communication. Sign language 

is inherently linguistic and referential. Thus, participants can 

presume that these visual cues have specific linguistic 

meanings. This raises the question of whether these results 

only hold when people are performing a task where they 

must map from one language to another (even if one of the 

languages is a visual one that they have no knowledge of). 

We address this question here via a new set of 

experiments. We used visual stimuli that were not overtly 

referential. Participants were shown non-linguistic motion 

composed of scrambled dots (extracted from biological 

motion stimuli) that could not be recognized as interpretable 

events, but nevertheless contained motion information 

consistent with bounded or unbounded events. 

In the first experiment, participants were asked to make 

atelic vs. telic verb choices after viewing the visual 

stimulus, just as in Strickland et al. (2015). As these random 

dot motions are not linguistic or referential, positive 

findings would offer strong support for a connection 

between visual and conceptual boundedness. In the second 

experiment, we test whether such an association is 

automatic. In a cross-modal lexical decision task, we 

observed a congruency effect, such that participants were 

faster to confirm that a stimulus was a word when the 

background motion matched the boundedness of the 

displayed verb. 

Experiment 1: Verb-Motion Matching 

In this experiment, each trial consisted of the participant 

viewing a 3-second video clip of scrambled moving dots 

derived from biological motion stimuli, after which the 

participant had to indicate which of two visually presented 

verbs (one atelic and one telic) best described the clip. The 

video clip was designed to depict an unbounded or a 

bounded event as determined by separate ratings of the 

repetitiveness of the motion. It was predicted that 

participants would be more likely to select telic verbs for 

bounded events and atelic verbs for unbounded events. 

Following Strickland et al. (2015), effects of motion 

boundedness were tested within three different semantic 

domains of verbs: Physical (e.g., fly vs. hit), Social (e.g., 

argue vs. give) and Mental Verbs (e.g., think vs. decide). If 

effects hold for all three types of verbs it suggests that 

motion boundedness is linked to the abstract notion of 

telicity rather than, for example, spatial-motion aspects of 

the events denoted by these verbs. 

Method 

Participants Twenty-four participants were recruited from 

the University of Pennsylvania undergraduate body and 

participated for course credit. This was the same number as 

in the Strickland et al. (2015) study as their effect size was 

not available for a power analysis. All participants were 

fluent speakers of English with normal or corrected to 

normal vision.  

Visual Materials A personal computer running the 

Psychophysics Toolbox Version 3 for MATLAB was used 

to run this experiment (Kleiner et al., 2007). Sixty biological 

motion, or biomotion, videos of three seconds from the 

CMU Graphics Lab Motion Capture Database were used 

with the BioMotion Toolbox (van Boxtel & Lu, 2013). 

Biomotion videos are produced via motion capture, 

whereby each joint on a person’s body is attached to a 

sensor. The positions of these sensors are then recorded 

during movement. This produces a video, composed of dots, 

in which the overall shape, size, and movement of an 

individual is maintained but the fine details and body form 

are removed.  

Crucially, in our versions, body structure information was 

removed from these videos while preserving the overall 

motion signal. This was done by randomizing the start point 

of each individual dot, but then preserving its relative 

motion path from that start point. For example, the dot that 

corresponded to the person’s right elbow may, at the start of 

the animation, be located to the left of where their left ankle 

was and the dot corresponding to their left ankle may now 

start right above where their right knee was. This removes 

the benefits of being able to tell what action is occurring 

(because the intact structure of the body is removed) and 

ensures that participants only get information about the 

motion properties of the dots, e.g., velocity and acceleration.  

Selection and Norming of Video Materials Videos were 

initially selected by JW, and then their boundedness was 

confirmed using a norming procedure. JW rated a random 

set of 574 scrambled videos from the CMU database on 

perceived boundedness. Subsequently, we presented 79 

unbounded and 61 bounded candidate videos to twenty-two 

undergraduates in a norming study. Although the CMU 

database includes descriptions for each video, they were 

ignored for video selection. Using these ratings, we chose a 

set of 60 videos to use in the subsequent experiments. 

Participants were asked to rate each video for 

repetitiveness or deceleration (between subjects) on a scale 

1186



of 1 to 7, e.g “Rate the video based upon how repetitive you 

think the motion is” or “based upon how fast you think the 

motion decelerates.” These properties were used as they 

were found to be indicators of boundedness in previous 

studies (Malaia & Wilbur, 2012; Strickland et al., 2015). 

Although our intention was to define bounded videos as 

those with the highest deceleration and least repetition in the 

motion, deceleration ratings proved inconclusive as across 

all videos there was little deviation from the average of 4. 

That is, across all 140 videos participants tended to choose a 

middle value (SD = 0.85). This was perhaps due to the 

difficulty of the task and the nature of the stimuli 

(independently moving dots). In contrast, repetition ratings 

had high variety across items and participants (SD = 1.51). 

As a result, only the repetition ratings were used to select 

the sixty videos for the main study. The sixty videos were 

selected by taking the 40 videos with the highest average 

ratings and the 40 videos with the lowest average ratings 

and then sorting these videos by lowest standard deviation 

across ratings. The 30 videos from each group with the 

lowest standard deviation were then selected. We 

considered the videos with high repetition ratings as 

Unbounded and videos with low repetition ratings as 

Bounded. The mean repetition rating for unbounded videos 

was 5.70 and for bounded videos was 1.91, and the two 

groups differed reliably (p = <0.0001). 

Verbal Materials Five atelic and five telic verbs were 

chosen from each of three separate conceptual domains: 

physical, social, and mental. This resulted in fifteen telic 

and fifteen atelic verb pairs. Each pair consisted of one telic 

and one atelic verb, approximately matched for log 

frequency.  Fourteen of the 18 Strickland et al. verbs were 

used (4 not used due to low frequency), with an additional 

sixteen verbs (seven telic and nine atelic) generated by 

author JW to maintain approximate match in log frequency. 

The verbs were the following. Atelic: run, fly, play, paint, 

sing, think, consider, imagine, dream, study, talk, discuss, 

fight, love, argue; Telic: enter, die, leave, hit, grab, decide, 

accept, forget, choose, remember, marry, sell, buy, give, and 

take. To create each participant’s list of paired verbs for 

each trial, the atelic and telic verbs for each domain were 

shuffled and then paired (within domain) to produce fifteen 

total pairs (five for each domain). This shuffling was 

performed four times (60 trials in total). Verb pairs (trials) 

were shuffled and paired randomly with videos. 

Procedure During the experiment, participants were 

instructed that they would be shown a short clip of moving 

dots and asked to choose which of two verbs better fit the 

clip. They were told to use their intuition to make their verb 

choice and that there was no right answer. After the 

instructions, two practice trials were given.2 On each trial, 

participants were shown the video twice before making their 

selection, to ensure they could adequately perceive the 

                                                           
2 Thus, there were 2 practice videos and 58 trial videos. Later 

“test” trials using these videos were discarded from analysis. 

motion. The video slowly faded in over the first half second 

and then faded out during the last half second to diminish 

influences of motion onset. After the video disappeared, the 

two verbs appeared on the screen, one on each side. 

Participants then made their selection (f for left or j for 

right). See Figure 1 for a schematic of trial types. 

 

 

Figure 1: Trial schematics for Experiment 1 (explicit 

matching) and 2 (lexical decision). In Exp. 1, participants 

watched a 3 second video twice, then made a choice of 

which of two verbs better fit the video. In Exp. 2, during the 

second viewing, they were instead given a lexical decision 

(word/nonword) or attention task. Lines with arrows 

illustrate motion paths and were not seen by subjects. 

Results 

Figure 2 presents the mean proportion of telic verbs selected 

(subject means) as a function of whether the motion event 

was unbounded or bounded, overall and separately for each 

verb domain. As predicted, telic verbs were selected less 

often for Unbounded motion events (M=0.39, SE=0.02) than 

for Bounded motion events (M=0.55, SE=0.02). Moreover, 

the effect of motion Boundedness was very similar for each 

verb domain. 

To test for reliability, we used a multilevel logistic 

regression to model binary trial-level choices for the telic 

verb. Fixed effects consisted of motion Boundedness 

(bounded vs. unbounded), Verb type (physical, social or 

mental), and the interaction. The maximal random effects 

structure was used for each subject and a random intercept 

was used for each item (each video). The significance of 

factors was performed by comparing likelihood-ratio values 

for nested models that included main effects and 

interactions of factors to models without them. 

The best-fitting model showed a reliable effect of motion 

Boundedness (β=0.339, SE=0.096, z=3.531, p=0.0004), but 

no reliable effects or interactions with Verb type. Removing 

Verb type and the interaction from the model did not 

decrease the fit of the model (χ2(4)=4.38, p=0.346), but 

further removing the effect of Boundedness did (χ2(1)= 

27.92, p<0.0001) – indicating that the motion Boundedness 

of the videos reliably predicted telic choices. 
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Figure 2: Mean proportion of telic verb choices as a 

function of Motion Boundedness (Unbounded, Bounded), 

overall, and by verb domain. Average of Subject Means. 

Error bars indicate ±1 Standard Error. 

One concern is that people may have developed a strategy 

over time or discovered the purpose of the experiment and 

acted accordingly. Although unlikely, as no participant 

revealed an explicit awareness of the hypothesis or purpose 

when questioned, we examined the time course of the effect. 

If it was an explicit strategy, we might expect a difference 

between the beginning and the end of the experiment. We 

tested whether there was a statistical difference between the 

first twenty trials and last twenty trials regarding whether 

participants showed a differing proportion of telic verb 

preference for bounded and unbounded videos. This test 

showed no significance (paired t (23) = -0.635, p = 0.532), 

suggesting a strategy did not emerge during the experiment. 

Discussion 

The current results show that the visual system can 

distinguish between “bounded” and “unbounded” motion 

stimuli, as defined by repetitiveness. Furthermore, people 

are biased to associate visual boundedness with conceptual 

boundedness in verbs. Surprisingly, this occurs even when 

these verbs have no visual manifestation, as is the case for 

the domain of mental verbs. This implies that people were 

implicitly encoding boundedness and telicity when 

observing these biomotion stimuli. Put another way, these 

results show that the distinction of boundedness that is 

present in both the visual and linguistic systems is shared or 

otherwise accessible by the two systems. This extends 

Strickland et al. (2015) by demonstrating that this 

association is not just due to the referential task (associating 

two linguistic items), but rather it exists even when using 

visual stimuli that have no inherent referential properties 

(i.e. scrambled biomotion stimuli). Thus, it appears that 

conceptual boundedness is a basic property of the visual and 

linguistic systems. 

Although we find these results to be compelling, it would 

be of interest to understand if similar results can be obtained 

when participants are not attempting to link the video of the 

motion event to the linguistic stimuli. That is, could such a 

connection between motion boundedness and linguistic 

telicity arise spontaneously, even when linguistic 

judgements do not involve connecting the verb to the 

motion video? If so, it would suggest that the perception of 

motion boundedness automatically activates linguistic 

telicity. We explore this issue in Experiment 2. 

Experiment 2: Cross-Modal Lexical Decision 

In this experiment, we present preliminary results from two 

versions of a cross-modal lexical decision task. Each trial 

involved the participant viewing the same clips used in Exp. 

1. However, participants were not presented with a forced 

choice task.  Instead, for target trials, a single telic or atelic 

verb appeared centrally over the video, and the participant’s 

task was to make a lexical decision (word / nonword). The 

core prediction of this experiment is the following: If the 

perception of motion boundedness spontaneously activates 

linguistic telicity, then we would expect a congruency effect, 

such that Bounded motion events would speed judgments of 

telic verbs whereas Unbounded motion events would speed 

judgments of atelic verbs. 

The results are preliminary because each version of the 

experiment suffered from some issues related to response 

time measurement precision, such that we may have been 

underpowered to detect robust results in either alone. 

Nevertheless, across versions, the patterns are significant 

and consistent with our hypothesis. Thus, we present both 

sets of results together, noting differences between versions 

below as needed. Further versions of the experiment with 

more precise RT measurements are planned. 

Differences between Versions of the Experiment Each 

version of the experiment suffered from precision issues 

with RT collection. In version 1 of the experiment, 

participants used a keyboard to make their responses (f for 

word, j for nonword, or spacebar if the dots changed color). 

However, due to a coding error, responses were only 

recorded at each screen refresh (every 16.67 ms); thus, these 

measurements were imprecise. In version 2, we used an E-

prime button box instead of keyboard, since it is known for 

its measurement precision. Mean accuracy and mean RTs 

were nearly on par across experiments. However, the 

buttons on the button box used in version 2 were 

differentially sensitive; 4-5% of trials were timeouts, while 

those in version 1 were nearly 0%, suggesting that 

sometimes the buttons were not responsive. 

Other differences were the following. In version 1, 

unbounded videos were randomly assigned one of the onset 

times for the bounded video. In version 2, this assignment 

was fixed for each list. That is, in version 2, unbounded 

video A would always have onset time of bounded video 1, 

video B would have onset time of bounded video 2, etc. 

Method 

Participants Experiment 2 consisted of two separate 

versions. A total of 116 subjects were recruited from a 
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university’s undergraduate student body. Participants were 

excluded based on pre-determined criteria: accuracy below 

80% on any of the three tasks (described below). After 

exclusion, there were 54 in the first version and 47 in the 

second. For both versions, the goal sample size was 

determined by doubling the sample size of experiment 1. 

The data from participants 49-54 from version 1 were 

included due to this experiment being underpowered 

(described below). Students signed up to participate in 

exchange for study credit. All participants were fluent 

English speakers with normal or corrected to normal vision.  

Materials The same materials from Experiment 1 were used 

(i.e., the same fifteen telic and atelic verbs across three 

domains and the same sixty test videos).  

An additional sixty videos from the CMU Graphics Lab 

database were used for filler attention trials (described 

below). An additional twelve videos and four verbs were 

used for practice trials. Sixty-four non-words were created 

using Wuggy, a word generation tool that creates nonwords 

matched with inputted real words on phonotactics and word 

length (Keuleers & Brysbaert, 2010). These non-words were 

used for the lexical decision task (described below). 

Although our videos were rated for overall boundedness 

in the previous norming study, this does not indicate when 

in the video a boundary occurred. To ensure that the onset 

time of the word stimulus coincide with a motion boundary 

(for bounded videos), study authors JW and AH and 

research assistants chose the boundary point by watching 

each video frame by frame. In version 1, JW and AH 

individually watched and chose the points. If the differences 

between the two values was more than thirty frames, JW re-

watched the video and made the final decision. If the 

difference was less than thirty frames, the average of the 

two was taken. In version 2, to get a more reliable value for 

boundedness point, median frame values for each video 

across an additional four research assistants, in addition to 

JW and AH, were taken. The average difference between 

the first and second experiment version was three frames. 

Since each video was only 3 seconds long, boundaries 

closer than 0.5 seconds towards the beginning or end of the 

video were constrained to be at 0.5 or 2.5 seconds, 

respectively. Since they do not have a motion boundary, the 

distribution of onset times for unbounded videos and filler 

(attention) videos were matched to the bounded videos. 

Procedure During the experiment, there were three trial 

types: two were lexical decision (word or non-word). In 

these trials, participants simply had to press one button if 

the string of letters that appeared was a word, and another if 

it was not. The third trial type was an attention catch task, 

designed to ensure participants attended to the visual dot 

stimulus. In this catch task, dots would briefly change color 

from white to blue (0.5 sec); thus, this task made no 

reference to visual motion. 

Participants were instructed to press a different key for 

each of these three trial types. On each trial, one of the three 

visual changes would appear: a word superimposed on the 

dot stimuli, a non-word on the dot stimuli, or the color 

change type. Participants were not made aware of what the 

current or next trial would be ahead of time. After the 

instructions were given, twelve practice trials (four of each 

type) were given. On each trial, participants were shown the 

3-second video twice to ensure they could adequately 

perceive the full motion. The visual stimulus appeared at the 

pre-determined onset time during the second viewing. The 

videos faded in and out over the first and last half second to 

avoid sudden visual transients. 

The visual stimuli (word, non-word, color change) 

appeared either at the pre-selected onset frame, or 0.25 sec 

after (counterbalanced with each condition). However, this 

timing factor was collapsed over in analyses. 

Each verb and nonword was paired once with a bounded 

video and once with an unbounded video. There were 192 

total trials (60 word, 60 non-word, 60 catch, 12 practice). 

Results  

The results for the first and second version of the 

experiment are being presented together. For an explanation 

and discussion of this decision, see below. Reaction times 

+/- 2.5 SDs from each subject mean were excluded (2.9% of 

trials), as well as timeout trials. Word trials: Accuracy 

94.8% (SD 3.5%), mean RTs 676 ms (SD 119ms); Non-

word trials: Accuracy 92.3% (SD 5.1%), mean RTs 808ms 

(SD 155ms); Attention trials: Accuracy 94.1% (SD 4.0%), 

mean RTs 629ms (SD 139 ms). All statistical analyses were 

performed on inverse RTs (-1000/RT), on accurate word 

trials only. Inverse RTs were used to improve normality of 

RT distributions for model fitting (Baayen & Milin, 2010). 

Figure 3 presents the inverse reaction time (subject 

means) as a function both of verb telicity (telic vs. atelic), 

and motion boundedness (whether the visual stimulus was 

unbounded or bounded). As predicted, we observe an 

interaction between verb telicity and visual boundedness on 

reaction times for lexical decision: reaction times to atelic 

verbs were faster when the visual motion was unbounded, 

and reaction times to telic verbs were faster when the visual 

motion was bounded. However, the effect here was subtler 

than in Exp. 1, as should be expected: participants were not 

performing an explicit matching task but deciding whether 

the word that appeared was a real word or a non-word (or 

were performing a color change detection task, for filler 

trials). 

To test for reliability, we used a multilevel linear 

regression to model inverse reaction time. Fixed effects 

consisted of Verb Telicity (telic vs. atelic), Motion 

Boundedness (bounded vs. unbounded), Verb Type 

(physical, social or mental), and all relevant interactions. To 

account for mean RT differences in experiment versions, a 

main effect of experiment Version was also included. The 

maximal random effects structure that converged was used 

for each subject (random intercept and random slopes for 

telicity and motion boundedness), and a random intercept 

was used for each verb. We compared nested models with 

and without these factors and interactions. 
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Figure 3: Mean inverse response times (-1000/RT) on 

lexical decision trials (word only), as a function of verb 

telicity (telic, atelic) and motion boundedness (unbounded, 

bounded).  Average of Subject Means. Error bars indicate 

±1 Standard Error. Up indicates slower RTs, down faster 

RTs, as is standard for raw RT plots. 

The best fitting model was one that included main effects 

and interactions of Verb Telicity and Motion Boundedness, 

and Verb Type and Motion Boundedness. This model 

produced a reliable interaction between Verb Telicity and 

Motion Boundedness (β=6.56, SE= 2.91, t(5555)=2.26, 

p=0.024). Telicity and Motion Boundedness were contrast 

coded in the following way: telic=1, atelic=-1; 

unbounded=1, bounded=-1. Thus, the positive β indicates 

greater RTs for the mismatched conditions (e.g. 

telic+unbounded or atelic+bounded). Adding a triple 

interaction of Telicity, Boundedness, and Verb Type only 

marginally improved the fit (χ2(4)=8.34, p=0.08). Further, 

removing the interaction of Telicity and Boundedness did 

decrease the fit of the model (χ2(1)=5.09, p=0.024). This 

confirms the interaction of Verb Telicity and Motion 

Boundedness that we expected. 

Discussion 

Experiment 2 results produced a pattern of congruency that 

would be expected if the perception of motion boundedness 

activated linguistic telicity. Reaction times to atelic verbs 

were faster when preceded by Unbounded as opposed to 

Bounded motion events whereas the opposite was found for 

telic verbs. That this effect arose even though participants 

were not trying to relate the verbs to the motion videos 

suggests that the relation between boundedness and telicity 

occurs spontaneously, without conscious effort.  

There are a few important issues that force us to see these 

results as preliminary and necessary of replication. Even 

though the timing issues mentioned in the Method section 

merely decrease RT precision, it is also the case that the 

results of both versions were pooled post-hoc, after 

discovering these RT precision issues. Although these are 

not small issues that should be overlooked, we believed it 

was still worthwhile to report on these data as they are 

promising, consistent with the judgment data of Experiment 

1, and spur the need for replication. 

Although we did not find strong evidence for differences 

among verb domains in the congruency effect, future 

replications with higher power will allow us to determine 

whether this difference is real, and if so, whether only 

certain of the domains (e.g. physical) demonstrate the effect. 

Nevertheless, results of Experiment 1 (matching) and 

Experiment 2 (lexical decision) do suggest that the 

congruency effect is general, regardless of domain. 

General Discussion 

We have shown here that the motion properties of what 

can only be characterized as scrambled moving points of 

light yield systematic and expected interpretive responses 

from observers, concerning the detection of motion 

boundedness, and its relation to conceptual and linguistic 

telicity. 

In Experiment 1, we observed that participants were more 

likely to choose a telic verb over an atelic verb to describe a 

bounded non-repetitive motion, even when the meanings of 

these verb pairs denoted abstract mental events (e.g., think 

vs. decide). This extends the Strickland et al. (2015) 

findings to visual stimuli more generally, even stimuli 

without linguistic and referential properties (signs). 

Experiment 2 offered preliminary results that activation of 

conceptual telicity from motion signals arises automatically, 

such that telic verbs show a congruency effect with bounded 

motion and atelic verbs show an effect with unbounded 

motion. Activation of concepts from motion signals has 

been observed before in similar tasks, e.g., that upward 

motion will speed reaction time to rise as opposed to fall 

(Meteyard et al., 2008). Additionally, previous research has 

shown that the ability to judge an action verb on a lexical 

decision task is correlated with the ability to judge a non-

scrambled point-light action on an action decision task, e.g. 

is this a valid human action (Bidet-Ildei & Toussaint, 2015). 

What is surprising in the present study is that activation is 

for a highly abstract categorical feature (boundedness) that 

arises from seemingly continuous motion signals, and that 

the activation affects judgments even for verbs labeling 

events in the social and mental domains, which have no 

overt visual boundedness cues. 

Observing an implicit association between visual and 

linguistic boundedness suggests there is an underlying 

amodal conceptual distinction that both systems have access 

to: a distinct categorical representation of boundedness, 

which may indeed be a conceptual primitive similar to that 

proposed for causation (see, e.g., Jackendoff, 1996; Rolfs, 

Dambacher, & Cavanagh, 2013). Of course, a representation 

of boundedness is not limited to the event domain; things 

may be conceived of as objects or substances, which have 

perceptual consequences of their own (vanMarle & Scholl, 

2003). In future work we plan to refine our experimental 

tasks to replicate our lexical decision effects in the event 

domain, and to determine if they extend to boundedness 

across conceptual domains (events and objects). 
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Abstract 
The ability to anticipate, attend and respond appropriately to 
specific stimuli is involved in the execution of everyday tasks. 
The current investigation examined the relations between 
cognitive skills measured by the NIH Toolbox and changes in 
the power of mu oscillations during anticipation of and in 
response to a tactile stimulus. Electroencephalographic (EEG) 
activity was measured after a visuospatial cue directed adults 
(n=40) to monitor their right or left hand for upcoming tactile 
stimulation. In the 500 ms prior to the onset of the tactile 
stimulus, a desynchronization was apparent 8 – 14 Hz at 
contralateral central sites, consistent with prior investigations 
of mu rhythm; a widespread synchronization was apparent in 
the 250 ms proceeding delivery of the tactile stimulus. The 
extent of contralateral reduction in mu power was associated 
with speed processing ability, while ipsilateral mu power was 
associated with flanker performance and marginally correlated 
with card sort performance. Regression further probe the 
significance and specificity of these effects. Increases in mu 
power following onset of the tactile stimulus were not 
associated with any behavioral measures. Mu modulation 
during attention to a specific bodily location appears related to 
variability in the broader ability to regulate behavior in a goal-
directed manner, and perhaps to speed of stimulus processing. 

Keywords: tactile; mu; EEG; executive function; 
sensorimotor; oscillations; anticipation;  

Introduction 
Anticipation of an impending event or sensation can guide 
perception and action. In experimental settings, when the 
presentation of a visual, auditory or tactile stimulus is 
preceded by a stimulus-relevant cue, participants report 
higher rates of accurate stimulus perception and demonstrate 
more rapid reaction time than when a stimulus is presented 
without a preparatory cue (Posner, 1980; Frey et al., 2015). 
These behaviors suggest prior to stimulus presentation, 
deployment of attention in a selective, focused manner is 
conducive to stimulus processing (van Ede & Nobre, 2017). 
Exploiting the temporal precision of electroencephalogram 
(EEG), we can eavesdrop on the changes in neural 
oscillations which occur before and after the presentation of 
a stimulus (Cheyne et al., 2003; Engel, Fries, & Singer, 
2001), with the goal of identifying how these changes 
facilitate perception and the regulation of behavior. 
  In this  study we assessed individual differences in 
oscillatory neural responses during anticipation of a tactile 
stimulus and in response to that stimulus. We investigate the 

association of subject-specific changes in oscillatory activity 
with variation in 1) reaction time in responding to the tactile 
stimulus, 2) general processing speed and receptive language 
abilities, as well as 3) executive function abilities, or the 
constellation of skills involved in the regulation of behavior. 

The Active Role of Alpha Oscillations in Perception 
  Oscillatory activity in the alpha band of the EEG signal, 
broadly defined as activity within the 8-14 Hz frequency 
range in adults, has been identified as a correlate, gate and 
predictor of behavioral responses and cognitive functioning 
(Zanto & Gazzaley, 2009; van Ede & Nobre, 2017). As the 
most prominent oscillation in the EEG, alpha-range signals 
were originally associated with an ‘idling’ state but are now 
seen as more active in perceptual and cognitive processes 
(Klimesch et al., 1998). The oscillations apparent in the EEG 
signal arise from fluctuations in the polarity of cortical tissue, 
which reflect the shifting, homeostatic balance of 
postsynaptic potentials released by assemblies of excitatory 
pyramidal cells and inhibitory interneurons (Lopes da Silva, 
2013; Cohen, 2016). The presence (or mere expectation) of a 
stimulus disrupts the default synchronized firing rate of post-
synaptic potential which generated the rhythmic alpha 
activity, eliciting an event-related desynchronization  (ERD) 
in the oscillatory signal (Haegens et al. 2011; Lopes da Silva, 
2013). Changes in amplitude, phase and frequency of 
oscillations evoked by a discrete event can be computed using 
event-related spectral perturbation (ERSP), in which 
sinusoidal wavelets are used to estimate the shift in amplitude 
and phase of EEG oscillations in each successive, 
overlapping time window (Pfurtscheller & Da Silva, 1999; 
Makeig & Delorme, 2004). Thus, ERSP can quantify the 
changes in power of a given frequency range (relative to a 
baseline period), tracking the temporal sequence of 
postsynaptic potentials discharged synchronously from a 
particular neuronal population (Klimesch et al., 1998; Lopes 
da Silva, 2013). 
  To study changes in alpha power in anticipation of or in 
response to an upcoming event or stimulus, participants are 
presented with a cue that orients them to a feature of the 
forthcoming stimulus. In the widely-used Posner paradigm, a 
spatial cue indicates whether a visual stimulus will be 
presented to the participant's right or left visual field (Posner, 
1980). During the interval following the cue but prior to the 
predicted onset of a visual stimulus, anticipatory ERD of 
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rhythmic alpha activity is observed over contralateral visual 
cortex, measured as a decrease in alpha power relative to 
baseline (Thut et al., 2006; Nobre & van Ede, 2017).   
   Contemporary accounts of ‘top-down’ or attention-related 
modulation of alpha-range activity rest upon the inhibition-
timing hypothesis (Klimesch, Sauseng, & Hanslmayr, 2007), 
which explains that during rest, oscillatory EEG activity 
arises from the synchronized cortical firing of neurons that 
may limit the sampling of sensory events (Schroeder & 
Lakatos, 2009). When a stimulus disrupts the default state of 
rest or inattention, there is a reallocation of resources diverted 
to the local processing of the new or expected stimulus, which 
is facilitated by the suppression or inhibition of global neural 
activity. As such, widespread increases in alpha power from 
baseline reflect inhibited sampling of irrelevant sensory 
events, which permit concentrated cortical firing by neurons 
in the sensory cortex relevant to the stimulus. Focused 
attention and perceptual awareness of a stimulus is thus 
facilitated by concomitant global increases and local 
decreases in alpha power, indicating an adjustment in the 
sampling of sensory events adaptive to the expected temporal 
and spatial presentation of an upcoming stimulus (Frey et al., 
2015; Schroeder & Lakatos, 2009; Thut et al., 2006). During 
anticipation, it is thought that sensory-specific alpha 
responses initiate the coordination of multisensory attentional 
control networks, enabling dynamic prediction of events 
across modalities and preparation for action (Engel, Fries & 
Singer, 2001; Sadaghiani & Kleinschmidt, 2016). In reaction 
to a stimulus, during rest and under most other conditions, 
these modality-specific alpha rhythms exhibit dissociable 
properties and operate independently (Mazaheri et al. 2009). 
Thus, the state of stimulus anticipation enables a unique 
opportunity for studying variability in oscillatory neural 
activity and centrality to behavior (Weiss et al., 2018). 
  Although much of the extant work on alpha power 
fluctuations has focused on the visual alpha rhythm at 
posterior occipital sites, another prominent alpha-range 
oscillation is the sensorimotor mu rhythm observed at central 
electrode sites (Jones et al., 2010;  Pfurtscheller, 1989). 
Expectation of tactile stimulation in adults elicits changes in 
the mu rhythm which exhibit a somatotopic pattern 
(Anderson & Ding, 2011; Jones et al., 2010), in accord with 
the organization of the homunculus (Penfield & Boldrey, 
1937).  Jones et al. (2010) demonstrated reductions of mu 
power in anticipation of tactile stimulus, with responses 
lateralized according to the direction of a spatial cue (pointing 
left or right) as participants monitor their hands in expectation 
of sensation. Particularly when a distracting tactile sensation 
is presented simultaneous to the uncued hand, ipsilateral 
increases in mu power have also been demonstrated during 
the suppression of tactile attention (Haegens, Luther, & 
Jensen, 2012; van Ede, de Lange, & Maris, 2014). The utility 
of mu oscillatory power as an index of individual difference 
in behavior, beyond tactile stimulus processing to more 
general control of voluntary attention and action (executive 
functioning), has yet to be fully explored. 

Anticipatory Mu Power and Tactile Processing   
   Across auditory, visual and tactile modalities, both 
contralateral alpha ERD and increases in ipsilateral alpha 
power during stimulus anticipation and response have been 
correlated with behavioral responses to stimuli (Thut et al., 
2006; van Ede et al., 2014; Frey et al., 2015). In the tactile 
modality, the relation between mu power and behavioral 
indicators of tactile processing appears to differ depending on 
the strength and salience of the expected tactile stimulation, 
as well as the load on tactile attention (Haegens et al., 2012; 
Gomez-Ramirez, Hysaj, & Niebur, 2016). When a reliable 
spatial cue directs participants to expect tactile stimulation at 
the cued location, the magnitude of anticipatory mu ERD in 
electrode sites over the contralateral somatosensory cortices 
is linearly, inversely associated with rate of stimulus 
detection (Anderson & Ding, 2011; Haegens et al., 2011; 
Jones et al., 2010). Van Ede et al. (2012) examined 
anticipatory and post-stimulus mu power to parse their 
relative contributions to behavioral indicators of tactile 
processing. The authors reported that anticipatory mu ERD 
significantly accounted for the accuracy of participant’s 
tactile judgements, while both the magnitude of anticipatory 
mu ERD and post-stimulus mu increases in mu power 
accounted for participant’s reaction time to the stimulus. 
Reductions in anticipatory contralateral mu power have also 
been linearly associated with higher hit rates on tactile feature 
detection and temporal judgement tasks (Gomez-Ramirez et 
al., 2016).  
   Haegens, Handel and Jensen (2011) employed 
magnetoencephalography to investigate whether the 
lateralization of anticipatory mu oscillations varied according 
to how accurately a visual arrow cue relayed the location 
(right or left thumb) of an upcoming tactile stimulus. The 
authors reported that anticipatory contralateral mu power 
significantly distinguished between trials with above- and 
below-average reaction times, but not in accurate 
identification of the tactile stimulus (Haegens et al., 2011). 
This relation depended on the validity of the visual cue in 
predicting the location of the tactile stimulus. The authors 
found that the extent of oscillatory mu modulation reflects the 
predictability of the environment, such that differences in 
ipsilateral and contralateral mu power decreased under 
conditions with increasing uncertainty. 
  When tactile stimulation is expected simultaneously to a 
target location and another body part, it appears that  variance 
in ipsilateral mu may index the suppression of tactile 
attention, partially accounting for behavioral responses to a 
tactile stimulus. In a subsequent MEG study, Haegens, 
Luther and Jensen (2012) reported that when tactile 
stimulation is presented simultaneously to the cued and 
uncued hand, both ipsilateral and contralateral mu power 
significantly distinguish between correct and incorrect trials. 
Thus, similar to the importance of increases in ipsilateral 
anticipatory alpha power in the visual modality in accounting 
for variability in stimulus response (Thut et al., 2006; Frey et 
al., 2015), anticipatory ipsilateral mu power may facilitate 
focus when tactile attention is under load. 
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   To address inconsistencies in the literature associating 
oscillatory mu activity with task-specific indicators of tactile 
processing, we note the potential importance of subtle 
differences in task demands (Gomez-Ramirez et al., 2016). 
The dynamic adjustment of lateralized mu modulation to 
anticipated features of a tactile stimulus may be indicative of 
its sensitivity to the load on tactile attention, divided by 
managing competing expectancies, allocating tactile 
attention according to goals and bracing for potential 
distraction (Haegens et al., 2012). 
   One suggestion arising from work linking anticipatory 
neural responses to basic sensory responses is the proposition 
that ‘low-level’ indicators of attentional processing 
reciprocally influence, gate and cascade into individual level 
differences in the ‘higher-order’ ability to control behavioral 
responses (Engel, Fries & Singer, 2001; Gazzaley and Nobre, 
2012; Sadaghiani & Kleinschmidt, 2016). We further suggest 
that executive function, defined by the planning, regulating 
and monitoring of goal-directed behavior, may partially be a 
manifestation of individual differences in how adults use 
information in their environment to anticipate upcoming 
sensory events and adjust their behavior to such expectancies. 

The Present Study 
The goal of the current investigation is to utilize an individual 
differences approach to the analysis of sensorimotor mu 
oscillatory activity during anticipation of and in response to 
a tactile stimulus. Our objectives were (i) to develop a 
subject-specific approach to identifying sensorimotor mu 
rhythm reactivity (ii) to examine whether mu reactivity is 
associated with variance in participant’s reaction time in 
stimulus detection (iii) to test if mu reactivity is associated 
with variance in a battery of cognitive skills, which includes 
measures of receptive language, processing speed and 
executive function. We employed a task in which a visual cue 
directed adults to focus their attention on a specific bodily 
location (the left or right hand) in anticipation of a tactile 
stimulus to that location. Using a foot pedal, participants 
responded to the tactile stimulus to indicate whether they 
detected one or two stimuli. We expected neural indicators of 
heightened attention (greater mu desynchronization or ERD 
in the contralateral hemisphere, and greater mu 
synchronization or ERS in the ipsilateral hemisphere) to 
relate to higher-order cognitive abilities (i.e., the executive 
function measures) and response time to target stimuli. 
   The logic of presenting a preparatory cue in a different 
modality from the target stimulus allows temporal and spatial 
differentiation of anticipatory activity (over sensory cortex 
relevant to the target) from neural responses elicited by the 
cue. There are also several strengths of employing 
somatosensory rather than visual targets: (i) Compared with 
the visual modality, tactile attention is not complicated by 
factors such as ocular shifts or visual preference; (ii) Neural 
indices of anticipation of touch are readily measurable 
through EEG recordings from electrodes overlying 
somatosensory cortex (Anderson and Ding, 2011; Haegens et 
al., 2011; Jones et al., 2010); (iii) The ability to focus 

attention to a body part in expectation of touch may be 
amenable to change and enhancement via specific 
interventions (Jones et al., 2010). 

Methods 
Fifty undergraduate students received course credit in return 
for participation. Data from six participants were excluded 
from analyses due to technical issues. Four additional 
participants were excluded due to excessive artifact that 
contaminated more than 25% of trials. The final analyzed 
sample comprised 40 participants (mean age = 21.24 years; 
SD = 3.85; 37 females). All participants were right-handed 
according to the Oldfield Handedness questionnaire, 
neurologically healthy, and had normal or corrected vision. 
Once consented, participants were fitted with an EEG cap and 
tactile stimulators, seated at a table facing a computer screen, 
and instructed to rest their hands on their lap, out of sight.  

Procedure  
Participants were instructed to prepare for tactile stimulation 
to the index finger of the hand indicated by the direction of 
the arrow, and to indicate how many stimuli they detected 
(one or two) by pressing a foot pedal once or twice. The foot 
used to report stimulus detection was counterbalanced across 
participants. The specific sequence of visual stimuli in each 
trial comprised a fixation cross for 500 ms, followed by the 
arrow cue for 2250 ms, followed by a response screen that 
read “Copy with Your Foot!” (Figure 1). The tactile 
stimulation was delivered 1500 ms after the onset of the 
arrow cue, which remained on the screen for the 750 ms 
following tactile stimulation. The direction of the arrow was 
randomized, with an equal number (100) of left and right 
trials. Individual participant’s reaction time was retrieved 
from the onset of the response screen to the foot pedal press. 
Two tactile stimuli were delivered in rapid succession 
(“double stimuli”) on 20 out of the 200 trials, and 80 single-
pulse trials were delivered to the right or left hands of 
participants. Prior to the experimental trials, 5 practice trials 
were presented to ensure that participants distinguished 
between the single and double tactile stimuli. 

 

 
Figure 1. Trial structure: A fixation point was displayed 
for 500 ms, followed by an arrow spatial cue displayed 
continuously for 2250 ms, and the onset of the tactile 

stimulus occurred 1500 ms later (at 0 ms). The response 
prompt was displayed 750 ms after the tactile stimulus. 

 
  Tactile stimuli were delivered to the distal tip of the left and 
right index fingers using an inflatable membrane (10 mm 
diameter; MEG Services International, Coquitlam) mounted 
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in a plastic casing and secured with a finger clip. The 
membrane was inflated by a short burst of compressed air 
delivered via flexible polyurethane tubing (3 m length, 3.2 
mm outer diameter). The compressed air delivery was 
controlled by STIM stimulus presentation software in 
combination with a pneumatic stimulator unit (both from 
James Long Company, Caroga Lake) and an adjustable 
regulator that restricted the airflow to 60 psi. To generate 
each tactile stimulus, the STIM software delivered a 10 ms 
trigger that served to open and close a solenoid in the 
pneumatic stimulator. Expansion of the membrane started 15 
ms after trigger onset and peaked 35 ms later, with a total 
duration of membrane movement of around 100 ms.  
EEG Recording and Processing EEG was recorded at a 512 
Hz sampling rate using a stretch cap (ANT Neuro, Berlin) 
with electrodes placed at Fp1, Fpz, Fp2, F3, Fz, F4, F7, FC6, 
FC1, FC2, FC5, F8, Fz, C3, Cz, C4, CP1, CP2, CP5, CP6, 
T7, T8, P3, Pz, POz, P4, P7, P8, O1, Oz, O2, GND, and the 
left and right mastoids. Vertical EOG was recorded above 
and below the orbital rim of the left eye. Conducting gel was 
used and scalp electrode impedances were kept under 25 kΩ 
(values were typically lower). EEG channels were collected 
referenced to the vertex (Cz) and were re-referenced offline 
to an average mastoids reference prior to further analysis. The 
signal was amplified using optically isolated, high input 
impedance (> 1 GΩ) custom bioamplifiers (SA 
Instrumentation) and digitized using a 16-bit A/D converter 
(+/- 2.5 V input range). Bioamplifier gain was 4000 and filter 
(12 dB/octave rolloff) was set to .1 Hz (high-pass) and 100 
Hz (low-pass).  
  Initial processing of the data utilized the EEG Analysis 
System (James Long Company) followed by analysis using 
the EEGLAB toolbox (Makeig et al., 2004) implemented in 
MATLAB. Independent component analysis was used to 
clear the EEG data of ocular and muscle artifact (Hoffmann 
and Falkenstein, 2008). Visual inspection of the EEG signal 
rejected epochs containing excessive remaining artifact. 
There was no difference in the number of usable trials 
between the left and right cued conditions (p = 0.81). Out of 
80 trials, the mean number of artifact-free trials per condition 
was 69 (SD = 5.62). 
  For each single-pulse trial with a correct behavioral 
response, an epoch of 2500 ms was extracted (beginning 
2000 ms prior to onset of the tactile stimulus and extending 
500 ms after tactile stimulus onset). To avoid contamination 
of the anticipatory and response window by stimulus 
delivery, we set the initial membrane expansion as the onset 
of the tactile stimulus (0 ms) and the post-stimulus window 
to 20ms following the peak of membrane expansion. Spectral 
power over this epoch was estimated using Gaussian-tapered 
Morlet wavelets (Makeig & Delorme, 2004). Changes in 
power were computed as event-related spectral perturbation 
(ERSP) from initial visual cue presentation until after tactile 
stimulus presentation (i.e., -1500 to 300 ms) relative to a 500 
ms baseline preceding the visual cue (i.e., -2000 to -1500 ms 
prior to tactile stimulation onset). For statistical analyses, a 
key variable was anticipatory mu ERSP, which was extracted 

from mean ERSP value at C3 or C4 from 8 – 14 Hz in the 
500 ms prior to onset of the tactile stimulus to the onset of the 
tactile stimulus (0 ms). We extracted post-stimulus mean mu 
ERSP by extracting the mean mu ERSP for the period from 
the delivery of the tactile stimulation at 20 ms to the 
following 270 ms. 
Behavioral Measures Following the tactile task and removal 
of the EEG cap, four tasks from the NIH Cognition Toolbox 
were administered (for details, see Zelazo et al., 2013): the 
Flanker task, the Card Sort task, a Processing Speed task, and 
a picture vocabulary test that measured Receptive Language. 
On the Card Sort task, participants selected one of two test 
stimuli which matched either the shape or color of the target 
stimuli. In the Flanker task, participants indicated the 
direction of a central arrow that was presented between 
distracting ‘flanker’ arrows. Processing Speed was measured 
by the average reaction time to detecting if two images were 
identical. Participant’s scores on the Card Sort and Flanker 
tasks were calculated to reflect both accuracy and reaction 
time for participants who correctly identified targets on 80% 
of trials; accuracy alone was considered when this threshold 
was not met. For all four measures, we used t-standardized 
test scores (standardized around µ=100) provided by the NIH 
Cognitive Toolbox.  

Results 

Behavioral Responses to Tactile Stimuli 
Aggregated across the sample (N = 40), participants correctly 
identified the single or double tactile stimuli on 96.7% of 
trials. Reaction time was calculated as the duration from 
response screen until the initiation of the foot pedal press. 
Only single-stimulus trials were included in analyses. 

Identifying Mu ERSP  
Time-frequency plots (Figure 2) show a clear mu rhythm (8-
14 Hz) ERD at the central electrode site (C3 or C4) 
contralateral to cue direction. In contrast, there was minimal 
change in mu power at the central electrode ipsilateral to the 
cue direction. Significant differences between contralateral 
and ipsilateral central sites (Figure 2) are driven by mu ERD 
during anticipation of tactile stimulation (-500 ms to 0 ms) at 
the site contralateral to the cue direction. At the left central 
electrode site (C3), mu ERD was apparent as participants 
attended to their right hand. At the right central electrode site 
(C4), mu ERD was present during attention to the left hand.  
Quantifying Anticipatory and Post-Stimulus Mu ERSP 
The envelope of the amplitude-modulated signal was 
computed via the Hilbert transform (“hilbert” function in 
Matlab), which discards phase information and reveals 
oscillatory power fluctuations over time. A subject-specific 
approach to identifying peak mu activity was used, with a 
peak quantified in R as the largest local maximum within 
the 7-14 Hz range (Goljahani et al., 2014). This value was 
extracted from individual participant power spectra for C3 
and C4, for each condition (right/left).  
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Figure 2. Time-frequency plots showing ERSP (event-

related spectral perturbation) at left and right central sites 
(C3/C4) across a range of 5-20 Hz for the period from 1500 

ms before the tactile stimulus (0 ms) to 300 ms after.  
 
The bin with the highest number of observations was centered 
at 10.5 Hz. The mean alpha peak frequency across subjects 
was 10.1 Hz with a between-subject SD of 2.1 Hz and the 
median was 10.4 Hz.  

A repeated-measures ANOVA was conducted, comparing 
anticipatory mean 8-14 Hz ERSP in the -500 to 0 ms window 
prior to tactile stimulation, by electrode (C3/C4) and cue 
direction (left/right). No main effects were observed. A 
significant interaction was observed between cue direction 
and electrode, F (1, 39) = 25.757, p < .001, η2p = 0.398. As 
suggested by the ERSP scalp maps (Figure 3), this interaction 
was driven by greater mu ERD at the contralateral site than 
at the ipsilateral site. When stimulation was expected to the 
left hand, greater mu ERD was observed at C4 (M = -0.461, 
SD = 0.988) than at C3 (M = -0.022, SD = 0.984, t = 3.246, 
p < .001, d = .588). When stimulation was expected to the 
right hand, greater mu ERD was observed at C3 (M = -0.398, 
SD = 1.026) than at C4 (M = -0.077, SD = 0.844, t = -3.246, 
p < .002, d = -0.513). 
  A repeated-measures ANOVA was conducted, comparing 
mean 8-14 Hz ERSP in the 20 to 270 ms window by electrode 
(C3/C4) and cue direction (left/right). No main effects were 
observed. A significant interaction was observed between cue 
direction and electrode, F (1, 39) = 11.823, p < .001, η2p = 
0.233. Following stimulation of the left hand, mu ERSP was 
greater at the ipsilateral site C3 (M = 0.308, SD = 1.337) 
compared to the contralateral site C4 (M = -0.083, SD = 
1.555, t = -3.506, p = .015, d = .403). Following stimulation 
to the right hand, mu ERSP was greater at the contralateral 
site C3 (M = 0.393, SD = 1.545) compared to ipsilateral site 
C4 (M = 0.079, SD = 1.686, t = -2.240, p = .031, d = -.354 ). 
  To examine the relations between mu ERSP and scores on 
the behavioral tasks, the dependent variables used in the 
previous ANOVA were collapsed into contralateral (mu 
ERSP at C3 for the right hand cue and at C4 for the left hand 
cue) and ipsilateral (mu ERSP at C3 for the left hand cue and 
at C4 for the right hand cue) mean mu ERSP values.    

 
Figure 3. Scalp maps showing mean ERSP for the 

anticipatory period (-500 to 0 ms) and stimulus response 
period (20-270 ms) at each of 30 electrodes. Mu power for 

each participant was calculated for the subject-specific 
frequency band (+/-2 Hz) at C3 and C4.  

 
Correlation of Mu ERSP with Behavior 

Pearson correlations were computed among ipsilateral and 
contralateral mu ERSP in anticipation of (anticipatory) and 
in response to (post-stimulus) tactile stimulation, and the 
measures from the NIH Cognitive Toolbox. Contralateral 
anticipatory (CL TA) mu ERSP was inversely associated 
with Processing Speed (PS) (r = -.321, p = .02), while Flanker 
score was significantly associated with ipsilateral 
anticipatory (IP TA) mu ERSP (r =.293, p = .03). Similarly, 
Card Sort was marginally associated with ipsilateral 
anticipatory mu ERSP, (r = .230, p = .06).   Processing Speed 
ability and task-specific reaction time were significantly 
correlated (r = .245, p = .02). Language (PVT) was not 
significantly correlated with other measures; contralateral 
tactile response (CL TR) mu ERSP was marginally 
associated with processing speed, (r = -.219, p = .07), but 
ipsilateral tactile response (IP TR) did not relate with other 
behavioral measures. 
 
Table 1. Correlation Matrix of Study Variables. 
 CL TA 

Mu 
ERSP 

IP TA 
Mu 

ERSP 

CL TR 
Mu 

ERSP 

IP TR 
Mu 

ERSP 

Flan-
ker 

(EF) 

Card 
Sort 
(EF) 

PS PVT 

CL TA   
IP TA  
Mu ERSP 

    
 — .017 .718 .667     

— 
   

  —   

IP TA  
Mu ERSP 

    
 — 

   
 — .421 .511     

— 
   

  —   

Flanker  .006 .293 .021 .067 —   —    

Card Sort  -.001 .230 .018 .110 .598   —   

PS -.254 -.043 -.219 .016 .333 .421   
PVT -.100 -.047 -.132 -.137 -.203 .079 .047  

Reaction 
Time .026 .117 .052 .008 .047 .115 .245 -.092 
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Regressions of Anticipatory Mu ERSP with Behavior 
To address our hypotheses on the relations between cognitive 
skills and neural indicators of anticipation, multiple 
regressions were conducted predicting scores on the Flanker, 
Card Sort, Receptive Language, and Processing Speed tasks 
from contralateral and ipsilateral mu ERSP. For both Flanker 
and Card Sort tasks, greater ipsilateral mu ERSP was 
associated with better EF task performance. Flanker 
performance was related to ipsilateral mu ERSP, t (39) = 
2.026, β = 0.531, p = 0.046, but not with contralateral mu 
ERSP. Card Sort performance was also related with 
ipsilateral mu ERSP, t (39) = 2.219, β= 0.576, p= 0.033, but 
was not significantly associated with contralateral mu ERSP. 
Contralateral mu ERSP was related to Processing Speed, t 
(39) = -2.418, β= -0.621, p= 0.021, and marginally associated 
with ipsilateral mu ERSP. Receptive Language scores were 
not related to anticipatory mu ERSP, nor were there further 
significant relations detected among regressions of 
behavioral measures and contralateral and ipsilateral mu 
tactile responses. Further, variance accounted for in Card Sort 
and Flanker by anticipatory ipsilateral mu ERSP remained 
significant when the extent of mu ERSP during the response 
to the tactile stimulus was used as a covariate. Similarly, 
variance in Processing Speed accounted for by anticipatory 
contralateral mu ERSP remained significant when controlling 
for variance in post-stimulus mu ERSP. 

Discussion 
  We were interested in whether individuals differed in their 
neural activity during anticipation of and in response to a 
tactile stimulus, and whether such differences had 
meaningful relations with behavior, including indicators of 
tactile attention relevant to the task and measures of other 
attentional and cognitive skills. Consistent with previous 
investigations, sensorimotor mu ERD was observed in the 
hemisphere contralateral to the expected location of a tactile 
stimulus, indicating that participants indeed directed their 
attention to the relevant hand during the anticipatory epoch 
(Haegens et al., 2011; Anderson & Ding, 2011; Van Ede et 
al., 2014). The magnitude of contralateral mu ERD was 
associated with how quickly and accurately participants 
compared the similarity of two stimuli on a separate task 
assessing processing speed. In turn, performance on the 
processing speed task was found to be related to how quickly 
participants pressed a foot pedal to indicate how many tactile 
stimuli they perceived in the EEG task. Individual differences 
in executive function were also associated with variation in 
the magnitude of anticipatory mu oscillations, but only at 
central electrodes sites ipsilateral to the cued hand.  

Mu activity in the ipsilateral somatosensory cortices is 
relevant to the coordination of behavioral responses, with 
animal and human research indicating that somatosensory 
processing is distributed across bilateral primary sensory 
cortices (van Ede et al., 2014; Tamè et al., 2016). The 
dynamic adjustment of bilateral mu modulation to anticipated 
features of a tactile stimulus indicates that oscillations 
originating in the somatosensory cortices are acutely 

sensitive to the load on tactile attention (Gomez-Ramirez et 
al., 2016; Haegens et al., 2012). In primates and humans, 
neural responses in bilateral somatosensory cortices may 
serve to simultaneously managing competing expectancies, 
reflecting allocation of tactile attention according to goals 
and bracing for potential distraction (Haegens et al., 2012; 
Tame et al., 2016) 
    In interpreting the relation of ipsilateral mu activity (rather 
than contralateral mu ERD) to executive function, we look to 
two possible explanations for the generation of alpha 
oscillations. Global alpha oscillations have been ascribed an 
inhibitory function (Klimesh et al., 1998; Mahzeri and 
Jensen, 2010). In past examinations of anticipation in the 
visual and auditory modalities, the ‘gating’ function of 
increases in alpha power has offered an account for the 
association between anticipatory ipsilateral alpha power with 
task-relevant stimulus detection rate and speed of behavioral 
responses across sensory modalities (Frey et al., 2015). 
Alternatively, and supported by previous investigations of 
anticipation in visual and tactile modalities (van Ede et al., 
2014; Thut et al., 2006), the ipsilateral mu power over the 
relevant sensory cortices might increase or hover at baseline 
to suppress sampling of events at the unattended location 
(Shroeder and Latkos, 2009). These complementary accounts 
of anticipatory alpha oscillations may provide insight into 
how variability of neural responses contributes to individual 
differences in measures of cognitive ability. 

The association of processing speed ability and reductions 
of mu power expands the existing literature focused on 
relations of mu modulation with task-specific reaction time.  
A previous investigation of children aged 6-8 found a 
significant association between executive function abilities 
and contralateral reductions of mu power (Weiss et al., 2018). 
There may be developmental differences in how attention is 
allocated in expectation of a tactile stimulus: speculatively, 
younger children may deliberately focus on monitoring 
sensation at the cued location while adults deploy effort into 
inhibiting sensation at the uncued bodily location. Such task-
specific strategies could explain the observed patterns of 
lateralized mu oscillations and the difference in which 
hemisphere accounted for a greater share of variance in 
executive function skills. It is possible that attention to bodily 
sensations and variability in perceived boundaries between 
the body, peripersonal space and extrapersonal space 
contributed to these developmental and individual 
differences (Bremner & Spence, 2017), or that mu 
oscillations may have greater inter-individual variability than 
other alpha-range rhythms (Coll et al., 2017). Regardless, our 
findings indicate that neural responses during anticipation of 
a tactile stimulus index variation in stimulus processing 
speed, which could cascade into meaningful individual 
differences captured by measures of executive function 
(Willougby et al., 2018). 

 Further studies can address the potential utility of mu 
oscillations as an indicator of individual differences in how 
attention is deployed to the body. Neural responses during 
anticipation of a stimulus may offer a potential source of 
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variation in behavioral responses and stimulus processing 
speed, which could cascade into individual differences in 
measures of executive function.  
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Abstract

Recurrent Neural Networks (RNNs) trained on a language
modeling task have been shown to acquire a number of non-
local grammatical dependencies with some success (Linzen,
Dupoux, & Goldberg, 2016). Here, we provide new evidence
that RNN language models are sensitive to hierarchical syntac-
tic structure by investigating the filler–gap dependency and
constraints on it, known as syntactic islands. Previous work
is inconclusive about whether RNNs learn to attenuate their
expectations for gaps in island constructions in particular or
in any sufficiently complex syntactic environment. This paper
gives new evidence for the former by providing control studies
that have been lacking so far. We demonstrate that two state-
of-the-art RNN models are are able to maintain the filler–gap
dependency through unbounded sentential embeddings and are
also sensitive to the hierarchical relationship between the filler
and the gap. Next, we demonstrate that the models are able
to maintain possessive pronoun gender expectations through
island constructions—this control case rules out the possibil-
ity that island constructions block all information flow in these
networks. We also evaluate three untested islands constraints:
coordination islands, left branch islands, and sentential subject
islands. Models are able to learn left branch islands and learn
coordination islands gradiently, but fail to learn sentential sub-
ject islands. Through these controls and new tests, we provide
evidence that model behavior is due to finer-grained expecta-
tions than gross syntactic complexity, but also that the models
are conspicuously un-humanlike in some of their performance
characteristics.

Keywords: Syntactic Islands, Recurrent Neural Networks,
Blocking Effects, Acquisition of Syntax

Introduction

Recurrent Neural Networks (RNNs) with Long Short-Term

Memory architecture (LSTMs) have achieved state-of-the-

art scores at a number of natural language processing tasks,

including language modeling and parsing (Hochreiter &

Schmidhuber, 1997; Jozefowicz, Vinyals, Schuster, Shazeer,

& Wu, 2016). In addition, they have begun to be used

as a plausible sub-symbolic model for a variety of cogni-

tive functions, including visual perception and language pro-

cessing and comprehension (J. Elman, 1990). However, the

distributed representations learned by RNNs and neural net-

works in general are notoriously opaque, posing a challenge

for their interpretability as models of human sentence pro-

cessing and for their controllability as NLP systems.

One recent line of work aims to uncover what these ‘black

boxes’ learn about language by treating them like human psy-

cholinguistic subjects. In this psycholinguistic paradigm

RNNs trained on the language modeling task are fed hand-

crafted sentences, designed to expose their underlying syntac-

tic knowledge (Linzen et al., 2016; McCoy, Frank, & Linzen,

2018). Much of this work has investigated what RNNs trained

on a language modeling objective are capable of learning

about natural syntactic dependencies. For the purposes of

this investigation, we define dependency as any systematic

co-variation between two words. For example, in one experi-

ment networks were tested as to whether they had learned the

number agreement dependency between a subject and a verb.

They were fed with the prefix The key to the cabinet... and

correctly gave a higher probability to the grammatical is over

the ungrammatical are. Networks were shown to successfully

complete this task for a number of languages, as well as for

sentences whose content words were replaced with random

alternatives of the same syntactic category rendering them

syntactically licit but semantically implausible (Gulordava,

Bojanowski, Grave, Linzen, & Baroni, 2018).

But learning that covariance exists between certain words

or word forms, without reference to their relative positions,

is not enough to say that the RNN models have fully learned

a dependency. Natural language dependencies consist of co-

variation between two elements in certain syntactic positions.

Agents must both attend to the structural relationship between

the two elements bound by the dependency and filter out in-

tervening material in syntactically irrelevant positions. The

subject–verb number agreement task above provides com-

pelling evidence that RNNs are capable of the latter: they

were able to maintain correct predictions despite a number

of distractors that mismatched the subject in number, such as

cabinet in the example provided (Marvin & Linzen, 2018).

Evidence suggesting that RNN language models are also

sensitive to the structural relationship between the two bound

elements has emerged from the study of filler–gap depen-

dencies (Wilcox, Levy, Morita, & Futrell, 2018; Chowdhury

& Zamparelli, 2018). The filler–gap dependency is the depen-

dency between a filler—such as who or what—and and a gap,

which is an empty syntactic position. Crucially, filler–gap de-

pendencies are subject to a number of constraints, known as

island constraints, which are a set of structural positions that

prevent the filler and the gap from entering into a dependency

with each other (Ross, 1967). (1-b) gives one example island,

in which the dependency is blocked by a wh-complementizer.

(1) a. I know what the guide said that the lion devoured

yesterday. NO VIOLATION

b.*I know what the guide said whether the lion devoured

yesterday. WH-ISLAND ISLAND VIOLATION

While it has been shown that both simple Elman RNNs and

more contemporary LSTMs are able to represent the basic

covariance between fillers and gaps, as well as other non-

structural aspects of dependency, it is still uncertain whether
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the models are sensitive to island constraints (J. L. Elman,

1991). Previous work has demonstrated that two state-of-the-

art models are sensitive to three of the most-studied island

constraints (wh-islands, complex NP islands and adjunct is-

lands) but insensitive to a fourth (subject islands) (Wilcox et

al., 2018). Others have concluded that the models are merely

sensitive to syntactic complexity plus order. Chowdhury and

Zamparelli (2018) compared sentence-level perplexity scores

obtained by RNN LMs for wh-questions that violate island

constraints, and yes-no questions and statements that violate

no grammatical rules but contain the same syntactic struc-

tures. While the models obtained better perplexity scores

on the statements compared to the island-violation questions,

they performed similarly on the island-violations and non-

violating yes/no questions. These results may indicate that

RNNs are not learning to attenuate their expectations for gaps

in island constructions in particular, but in any sufficiently

complex syntactic environment.

This paper adjudicates between these two accounts of

model behavior by providing control studies that have been

lacking so far. In the first section, we demonstrate that two

state-of-the-art LSTM models are sensitive to some forms

of syntactic complexity, but not to others. Models are able

to maintain the filler–gap dependency through unbounded

sentential embeddings and yet are sensitive to the hierar-

chical relationship between the filler and the gap, suggest-

ing that only specific types of syntactic complexity block

gap expectations. In the second section, we turn to posses-

sive pronoun gender dependencies, demonstrating that the

models are able to maintain general expectations through is-

land constructions—it is not the case that island constructions

block all information flow in these networks. In this section

we also evaluate three untested islands constraints: coordi-

nation islands, left branch islands, and sentential subject

islands. Models are able to learn left branch islands and coor-

dination islands gradiently, but fail to learn sentential subject

islands. Through these controls and new tests, we provide

evidence that model behavior is due to finer-grained expecta-

tions than gross syntactic complexity, but also that the mod-

els are conspicuously un-humanlike in some of their perfor-

mance characteristics.

Methods
Language Models

We assess two state-of-the-art pre-existing LSTM models

trained on English text for a language modeling objective.

The first model, which we refer to as the Google Model,

was trained on the One Billion Word Benchmark and has

two hidden layers with 8196 units each. It uses the output

of a character-level convolutional neural network (CNN) as

input to the LSTM (and was originally presented as the BIG

LSTM+CNN Inputs) (Jozefowicz et al., 2016). The second

model, which we refer to as the Gulordava Model was se-

lected for its previous success at learning the subject-verb

number agreement task. It was trained on 90 Million tokens

of English Wikipedia, and has two hidden layers of 650 units

each (Gulordava et al., 2018).

Dependent Measure: Surprisal

In this work we take a grammatical dependency to be the co-

variance between an upstream licensor and a downstream li-

censee. We assess the model’s knowledge of the dependency

by measuring the effect that the licensor has on the surprisal

of the licensee, or on material immediately following the li-

censee when it is a gap. Surprisal, or negative log-conditional

probability , S(xi) of a sentence’s ith word xi, tells us how

strongly xi is expected under the language model’s probabil-

ity distribution. For sentences out of context, the surprisal is:

S(xi) =− log p(xi|x1 . . .xi−1). Surprisal is known to correlate

directly with processing difficulty in humans (Smith & Levy,

2013; Hale, 2001; Levy, 2008). In this work, we expect that

grammatical licensors set up expectations for licensee, reduc-

ing its surprisal compared to minimal pairs in which the licen-

sor is absent. We derive the word surprisal from the LSTM

langauge model by directly computing the negative log of

the predicted conditional probability p(xi|x1 . . .xi−1) from the

softmax layer.

Experimental Design: Wh-Licensing Interaction

The filler–gap dependency is biconditional: Fillers set up ex-

pectations for gaps and gaps require fillers to be licensed. To

measure this bi-directionality we employ the 2x2 interaction

design proposed in Wilcox et al.. There, the authors mea-

sure the wh-licensing interaction, which they compute from

four sentence variants, given in (2), that contain the four pos-

sible combinations of fillers and gaps for a specific syntac-

tic position. Note that the underscores are for presentational

purposes only, and were not included in test items. Subse-

quent examples will be given via the (2-d) example, but all

four variants were created in order to compute the licensing

interaction.
(2) a. I know that you insulted your aunt yesterday. [-FILLER -

GAP]
b. *I know who you insulted your aunt yesterday. [+FILLER

-GAP]
c. *I know that you insulted yesterday. [-FILLER +GAP]
d. I know who you insulted yesterday. [+FILLER +GAP]

If the filler sets up an expectation for a gap, then the filled

syntactic position where a gap would typically occur should

be more surprising in contexts that contain an upstream filler.

That is S(b)− S(a) should be a large positive number. If

the gap requires a filler to be licensed, then the transition

from the embedded verb to the S-modifying PP ‘yesterday’

that skips over the otherwise-required grammatical object

should be more surprising in contexts without an upstream

filler. That is, S(d)− S(c) should also be a large negative

number. We can assess how well the model has learned

both expectations by measuring the difference of differences:

[S(b)−S(a)]− [S(d)−S(c)]. This is the wh-licensing interac-

tion. If the models are learning the filler–gap dependency, we

expect this to be a large positive number, with typical models

showing about 4 bits of licensing interaction in simple object

extracted clauses such as (2). Although we might expect the
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Figure 1: C-Command in a binary-branching tree structure. γ
c-commands all the nodes in blue, but does not c-command

the black nodes.

strongest difference in surprisal between (2-a) and (2-b) to be

on the filled-gap position, your aunt, this material is elided in

two of the conditions. Therefore, in order to keep the mea-

surement site the same across all four conditions, we measure

wh-licensing interaction in the post-gap prepositional phrase

(‘yesterday’ in (2)).

In previous work using this methodology, RNN knowledge

of island constraints was assessed by comparing the licensing

interaction in island configurations to that in non-island min-

imal pairs. Strong evidence for an island constraint would be

if the wh-licensing interaction dips to zero for a gap in island

position, indicating that the model has decoupled expecta-

tions for fillers from gaps in this position. In practice we look

for a significant decrease in wh-licensing interaction as indi-

cation that the models have learned to attenuate their expecta-

tions for gaps within islands. We derive the statistical signifi-

cance of the interaction from a mixed-effects linear regression

model, using some-coded conditions (Baayen, Davidson, &

Bates, 2008). We include random intercepts by item but omit

random slopes as we do not have repeated observations within

items and conditions (Barr, Levy, Scheepers, & Tily, 2013).

In our figures, error bars represent 95% confidence intervals

of the contrasts between conditions, computed by subtract-

ing out the by-item means before calculating the intervals as

advocated in (Masson & Loftus, 2003). 1

Syntactic Complexity

Unboundedness

The filler–gap dependency can span through a potentially un-

bounded number of sentential embeddings. To test whether

models’ expectations were attenuated with greater embed-

ding depth, we created 23 items in five experimental condi-

tions with between 0 and 4 layers of embedding and gaps in

either object or indirect object (goal) position, following the

examples in (3), and measured the licensing interaction in the

post-gap material. (In this and subsequent examples, the ma-

terial in which the interaction is measured will be highlighted

in bold.)

(3) a. I know who you insulted at the party. [OBJECT GAP,

0 LAYERS]

1Our studies were preregistered on aspredicted.org: To
see the preregistrations go to aspredicted.org/blind.php?=X
where X ∈ {sz8f5d,2r2eu7,zt73qt,es8rx7,f9pk9f,se6i2e}.

b. I know who the gardener reported the butler said the

hostess believed her aunt suspected you insulted at

the party. [OBJECT GAP, 4 LAYERS]

c. I know who you delivered a challenge to at the

party. [GOAL GAP, 0 LAYERS]

d. I know who the gardener reported the butler said the

hostess believed her aunt suspected you delivered a

challenge to at the party. [GOAL GAP, 4 LAYERS]

The results for this experiment can be seen in figure 2, with

the object gap results on the top and goal gap results on

the bottom. First, we find a significant interaction between

fillers and gaps resulting in supperaditive reduction of sur-

prisal (p < 0.001 for all conditions) indicating that both mod-

els have learned the filler–gap dependency. Starting with the

object gap conditions: For the google model, we find no

effect of embedding depth on the wh-licensing interaction

(p > 0.85 in all cases); for the gulordava model, we find a

significant decrease in wh-licensing interaction only between

the no embedding conditions and conditions with 3 or 4 ad-

ditional layers of embedding (p < 0.001 in both). When the

gap occurs in the goal position, for the google model, we find

no significant effect of embedding depth of the wh-licensing

interaction. For the gulordava model, we find a generally

smaller wh-licensing interaciton, as well as a significant ef-

fect of embedding between the no embedding condition and

conditions with two or more additional embedding layers

(p < 0.05, p < 0.05, p < 0.01 for 2 ,3 and 4 layers). We take

these results to indicate that the google model has learned the

unboundedness of the filler–gap dependency whereas the gu-

lordava model has learned only relative unboundedness and

shows behavior that reflects human performance more than

human competence. However, these results indicate that both

models can, in principle, thread their expectations for gaps

through complex syntactic structures, if we take the number

of syntactic nodes as a proxy measure for syntactic complex-

ity.

Syntactic Hierarchy

Although the filler–gap dependency is unbounded, it is sub-

ject to a number of hierarchical constraints, the most basic

of which is that the filler must be “above” the gap, struc-

turally. Here, we take this to mean that the filler must c-

command the gap, although the precise relationship is more

complex (Pollard & Sag, 1994). Structurally-speaking node γ
c-commands node δ if neither node directly dominates the

other and every node X that dominates γ also dominates

δ. Figure 1 demonstrates this relationship, with the noes c-

commanded by γ highlighted in blue.

To assess whether the models had learned this constraint

on the structural relationship we created 24 variants following

the examples in (4) and measured the wh-licensing interaction

in the post-gap PP. If the model has learned the structural con-

straints on the filler–gap dependency, an undischarged filler in

the matrix clause should not make a gap in subsequent parts

of the sentence more or less likely, leading to near-zero li-

censing interaction in the Matrix Clause condition.
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Figure 2: Effect of sentential embedding and syntactic hierarchy on wh-licensing interaction.

(4) a. The fact that the mayor knows who the criminal shot

shocked the jury during the trial. [SUBJECT]

b.*The fact that the mayor knows who the criminal shot

the teller shocked during the trial. [MATRIX]

The results from this experiment can be seen in Figure 2, on

the far right panel. We find strong licensing interaction for the

grammatical Subject Clause conditions (in red), but a strik-

ing reduction in licensing interaction for the Matrix Clause

conditions (in blue), which is significant for both models

(p < 0.001). As the results in (2) and Wilcox et al. have

shown that RNN models are insensitive to linear distance be-

tween the filler and the gap, we take these results suggest that

it is the relevant structural properties which block the models’

expectations for gaps inside the matrix clause.

Island Effects: Gender Expectation vs.

Filler–Gap Dependency

Island constraints are specific syntactic configurations that

block the filler–gap dependency. One way to show that the

RNN models are learning island conditions as constraints on

the filler–gap dependency is to demonstrate that they are ca-

pable of threading other expectations into island configura-

tions. To do this, we used pronoun gender expectation be-

tween a gendered noun, such as ‘actress’ or ‘husband’, and a

possessive pronoun such as ‘his’ or ‘her.’. Nouns that carry

overt gender marking or culturally-imbued gender bias set

up expectations that subsequent pronominals match them in

gender. Previous work has shown that humans thread ex-

pectations set up by cataphoric pronouns into syntactic is-

lands (Yoshida, Kazanina, Pablos, & Sturt, 2014). Cataphoric

pronouns are pronouns that precede the nominal element to

which they refer, as in (5).

(5) Her manager revealed that the studio notified Judy

Dench about the new film.

Because cataphoric pronouns are relatively less frequent than

anaphoric pronouns, which follow the nominal to which they

refer, we use sentences such as those in (6) to assess whether

RNN LMs can thread expectations into island environments.

We measure the strength of the gender expectation by calcu-

lating the difference in surprisal between the matching con-

dition and the mismatching condition, or S((6-b))-S((6-a)). If

the models attenuate their expectation for gender agreement

in island positions, then we expect an interaction between

MISMATCH and ISLAND resulting in supperaditivally lower

surprisal.

(6) a. The actress said that they insulted her friends.

[MATCH, CONTROL]

b.#The actress said that they insulted his friends. [MIS-

MATCH, CONTROL]

c. The actress said whether they insulted her friends.

[MATCH, ISLAND]

d.#The actress said whether they insulted his friends.

[MISMATCH, ISLAND]

In order to test whether the models maintained their gen-

der expectations through island constructions, we created six

suites of experiments following the pattern of (6) for six of

the most frequently studied islands constructions. For each of

the gender expectation experiments, we created 30 variants,

15 with masculine subjects and 15 with feminine subjects and

measured the surprisal at the possessive pronoun. The results

are presented on the bottom row in Figure 3 alongside model

performance on the filler–gap dependency for the same syn-

tactic constructions (top row). For the filler–gap dependency,

results for four islands had already been tested in Wilcox et al.

(2018), which we present alongside novel results for Coordi-

nation Islands, Sentential Subject Islands and Left-Branch Is-

lands, the latter separately without a gender expectation con-

trol. For these experiments, we created between 20-24 ex-

perimental items and measured the wh-licensing interaction

in the post-gap material. We take a reduction in wh-licensing

interaction in island constructions and no such reduction in

the gender expectation as evidence that the model has both

learned the island constraint, and has applied that constraint

uniquely to the filler–gap dependency.

Wh-Islands The wh-constraint states that the filler–gap

dependency is blocked by S-nodes introduced by a wh-

complimentizer, as demonstrated in the unacceptability of

(7-b) compared to (7-a). We created experimental items fol-

lowing the examples in (7) and measured their gender expec-

tation and filler–gap dependency (filler–gap dependency ma-

terials were taken from Wilcox et al.).

(7) a. I know who Alex said your friend insulted yester-

day. [CONTROL, FILLER–GAP]

b.*I know who Alex said whether your friend insulted

yesterday. [ISLAND, FILLER–GAP]

c. The actress said they insulted {his/her} friends.

[CONTROL, GENDER EXP.]

d. The actress said whether they insulted {his/her}

1202



google gulordava

0

1

2

3

4

W
h

−
L

ic
e

n
s
in

g
 I

n
te

ra
c
ti
o

n

Wh Islands
google gulordava

0

2

4

Adjunct Islands
google gulordava

0

1

2

3

4

Complex NP Islands
google gulordava

0

2

4

6

Coordination Isl.
google gulordava

0.0

2.5

5.0

7.5

Subject Islands
google gulordava

0

1

2

3

4

5

Sentential Subj.

google gulordava

0

1

2

3

4

5

G
e

n
d

e
re

d
 E

x
p

e
c
ta

ti
o

n
 E

ff
e

c
t

google gulordava

0

2

4

google gulordava

0

1

2

3

4

5

google gulordava

0

1

2

3

4

5

google gulordava

0

2

4

google gulordava

0

1

2

3

4

5

Figure 3: Effect of island construction on gender dependency.

friends. [ISLAND, GENDER EXP.]

The results for this experiment can be seen in the far left panel

of Figure 3, with island structures graphed in blue and non-

island controls in red. We find a significant difference in li-

censing interaction between the island and non-island condi-

tions for both the google and gulordava models (p< 0.001 for

both models), but no such difference in gender expectation.

Adjunct Islands Gaps cannot be licensed inside an ad-

junct clause, as demonstrated by the relative unacceptability

of (8-a) over (8-b).

(8) a. I know what the librarian placed on the wrong

shelf. [CONTROL, FILLER–GAP]

b.*what the patrong got mad after the librarian placed

on the wrong shelf. [ISLAND, FILLER–GAP]

c. The actress thinks they insulted {his/her} perfor-

mance [CONTROL, GENDER EXP.]

d. The actress got mad after they insulted {his/her} per-

formance. [ISLAND, GENDER EXP.]

The results for this experiment can be seen in Figure 3, sec-

ond panel from the left. We find a significant reduction of

wh-licensing interaction between the control and island con-

ditions in the case of the filler–gap dependency for both mod-

els (p < 0.001 google; p < 0.01 gulordava; materials taken

from ]Wilcox et al.). However, we find no effect of syntactic

structure on the gender effect.

Complex NP Islands Gaps are not licensed inside S-nodes

that are dominated by a lexical head noun, as demonstrated by

the relative badness of (9-b) compareid to (9-a).

(9) a. I know what the actress bought yesterday. [CON-

TROL, FILLER–GAP]

b.*I know what the actress bought the painting that de-

picted yesterday. [ISLAND, FILLER–GAP]

c. The actress said they saw her {his/her} performance.

[CONTROL, GENDER EXP.]

d. The actress said they saw the exhibit that featured

{his/her} performance. [ISLAND, GENDER EXP.]

We created items follwing the examples in (9), with filler–

gap items adopted from (Wilcox et al., 2018). The results

from this experiment can be found in the middle-left panel

of Figure 3. We found an effect of syntactic location on

wh-licensing interaction for both models (p < 0.001 google;

p< 0.01 gulordava) but no such interaction for gender expec-

tations.

Coordination Islands The coordination constraint states

that a gap cannot occur in one half of a coordinate structure

as demonstrated by the difference between (10-b) and (10-a),

in which a whole conjunct has been gapped.

(10)a. I know what the man bought at the antique shop.

[CONTROL, FILLER–GAP]

b.*I know what the man bought the painting and at the

antique shop. [ISLAND, FILLER–GAP]

c. The fireman knows they talked about {his/her} per-

formance. [CONTROL, GENDER EXP.]

d. The fireman knows they talked about the football

game and {his/her} performance. [ISLAND, GENDER

EXP.]

We created experimental items following the examples in

(10). Results can be seen in 3 center-right panel. For the

filler–gap dependency, in both models there is a significant

difference between the control condition and island condi-

tions (p < 0.05 for both models). These results indicate that

the models have somewhat attenuated expectations for gaps

when they occur in the second half of a coordinate struc-

1203



ture. However, note that, at least for the google model, the

wh-licensing interaction is significantly greater than zero, in-

dicating that this model still maintains some expectation for

gaps in this syntactic location. For both models there is no

difference in gender expectation between the control and is-

land conditions).

Subject Islands Gaps are generally licensed in preposi-

tional phrases, except when they occur attached to sentential

subjects. We created experimental items following the exam-

ples in (11), with filler–gap materials adapted from Wilcox et

al..

(11)a. I know what fetched a high price. [CONTROL,

FILLER-GAP]

b.*I know who the painting that depicted fetched a

high price. [ISLAND, FILLER–GAP]

c. The actress said they sold the painting by {his/her}
friend. [CONTROL, GENDER EXP.]

d. The actress said the painting by {his/her} friend sold

for a lot of money. [ISLAND, GENDER EXP.]

The results from this experiment can be seen in Figure 3, sec-

ond panel from the right. For the filler–gap dependency, we

found a significant difference between the control and island

condition in the case of the gulordava model (p < 0.01), but

no such reduction in the case of the google model. For gen-

der expectation, we found no significant difference between

the two conditions.

Sentential Subject Islands The sentential subject con-

straint states that gaps are not licensed within an S-node that

plays the role of a sentential subject. To assess whether the

RNN models had learned this constraint we created items fol-

lowing the variants in (12).

(12)a. I know who the seniors defeated last week. [CON-

TROL, FILLER–GAP]

b. I know who for the seniors to defeat will be trivial.

[ISLAND, FILLER–GAP]

c. The fireman knows they will save {his/her} friend.

[CONTROL, GENDER EXP.]

d. The fireman knows for them to save {his/her} friend

will be difficult. [ISLAND, GENDER EXP.]

The results for this experiment can be seen in Figure 3, in the

far right panel. We found no decrease in gender expectation

between the control and island conditions for either model.

Likewise, for the filler–gap dependency we found no signifi-

cant decrease in wh-licesning interaction between the island

and non island conditions in either model. These results in-

dicate that neither model suspends its expectations for gaps

within sentential subjects.

Left Branch Islands The left-branch constraint states that

modifiers which appear on the left branch under an NP cannot

be gapped, which accounts for the relative ungrammaticality

of (13-b) compared to (13-a). Because possessive pronouns

cannot grammatically occur in left-branches under an NP, this

experiment examines only the filler–gap dependency. We cre-

ated 20 items following the examples in (13) and measured

the wh-licensing interaction in the post-gap material.
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Figure 4: Left Branch Islands.

(13)a. I know what color car you bought last week.

[WHOLE OBJECT]

b. I know what color you bought car last week. [LEFT

BRANCH]

The results from this experiment can be seen in Figure 4 with

experimental conditions on the x-axis and wh-licensing inter-

action on the y-axis. We see strong wh-licensing interaction

in the two whole object conditions, but a significant reduction

in licensing interaction when the gap consists of the Adjective

Phrase modifier (p < 0.001 for the google model; p < 0.05

for the gulordava model). This results indicate that the mod-

els have learned the left branch islands, insofar as they do not

expect left-branching modifiers to be extracted without the

NP to which they are attached.

For every condition tested we found that the expectation

set up by gendered subjects for possessive pronouns is not

affected by the pronoun’s location inside island constructions.

For the three novel structures, we found that the two models

tested are sensitive to left branch islands and gradiently to

coordination islands, but not to sentential subject islands.

Discussion
The filler–gap dependency has been the focus of intense re-

search for over fifty years because it is both far reaching and

tightly constrained. It can be threaded through a potentially

unbounded number of sentential embeddings; yet the filler

must syntactically dominate the gap and the dependency is

subject to a number of highly-specific blocking ‘island’ con-

ditions. In this work we have shown that RNNs trained on

a language modeling objective have learned both the power

and the constraints imposed on this dependency. First, we

provided evidence that they are able to thread the dependency

through an unbounded number of sentential embeddings, and

have also learned the constraints that govern the syntactic hi-

erarchy of the filler relative to the gap.

Second, using gender expectation effects, we have demon-

strated that the models are able to thread some contextually-

dependent expectations into island constructions, providing

evidence that previously-observed island effects have been

learned for the filler–gap dependency in particular, and are

not due to the model’s inability to thread any information

into syntactic islands. In addition, we have increased the ex-

perimental coverage of island effects, demonstrating that the

models were able to learn left-branch islands and gradiently
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learn coordination islands, but failed to learn sentential sub-

ject islands. This brings the total number of islands learned

to 5/7 for the google model and 6/7 for the gulordava model.

Although some of the model behavior remains strikingly un-

like human acceptability judgements (in e.g. coordination is-

lands), these experiments demonstrate that sequence models

trained on a language modeling objective are able to sepa-

rate natural language dependencies from each other and learn

different fine-grained syntactic rules for each.
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Abstract 
Learning constitutes an essential part of human experience 
over the life course. Independent of the domain, it is 
characterized by changes in performance. But what cognitive 
mechanisms are responsible for these changes and how do 
situational features affect the dynamics? To inspect that in 
more detail, this paper introduces a cognitive modeling 
approach that investigates performance-related changes in 
learning situations. It leverages the cognitive architecture 
ACT-R to model learner behavior in an interrupted learning 
task in two conditions of task complexity. Comparisons with 
the original human dataset indicate a good fit in terms of both 
accuracy and reaction times. Although interruption effects are 
more obvious in the human data, they are prevalent as well in 
the model. Furthermore, the model can map the learning 
effects, particularly in the easy task condition. Based on the 
existing mapping of ACT-R module activity with fMRI data, 
simulated neural activity is computed to investigate underlying 
cognitive mechanisms in more detail. The resulting evidence 
connects learning and interruption effects in both task 
conditions with activation-related patterns to explain changes 
in performance. 

Keywords: Learning; Interruption; Cognitive performance; 
ACT-R; Simulated neural activity 

Introduction 
As an omnipresent requirement, learning happens 

throughout the entire life. From speaking the first words as a 
child to operating new technical devices as an elderly, the 
establishment of knowledge structures constitutes a core 
outcome of learning processes of all kind. Previous research 
indicated benefits in terms of performance, once already 
existing knowledge structures can be applied automatically 
(e.g., Wirzberger, Herms, Esmaeili Bijarsari, Eibl, & Rey, 
2018). Besides these internally occurring process-related 
changes, externally induced situational characteristics such 
as interruptions also effect cognitive performance. 
Interruptions are highly prevalent across various contexts in 

daily life, including learning situations (e.g., Scheiter, 
Gerjets, & Heise, 2014). They can be described as usually 
neither planned nor expected cognitive breaks in the task 
performed up to that time (Brixey et al., 2007). To avoid or 
at least minimize resulting impairments, the interplay of 
interruptions and learning effects needs to be inspected in 
more detail on a cognitive level. On this account, 
computational cognitive modeling approaches offer a 
promising way to gain insights into underlying dynamics.  

Based on that, the current paper introduces an ACT-R 
model that performs an interrupted learning task and is 
inspected in terms of behavioral parameters and underlying 
neural processes. After briefly describing the modeled 
experimental task and core results from human data, the 
paper outlines characteristics of the cognitive architecture 
ACT-R (Anderson, 2007). Following an explanation of the 
underlying model concept, the behavioral results obtained 
from the model runs are presented and compared with the 
described human data. The subsequent chapter addresses 
model performance on a neural level by reporting results 
from simulated fMRI analyses.  

In summary, the obtained evidence highlights the 
connection of observable changes in cognitive performance 
due to learning and interruption effects with the mechanism 
of activation. 

Task outline 
The task setting underneath the cognitive model is 

reported in more detail in Wirzberger, Esmaeili Bijarsari, and 
Rey (2017). Participants in this study had to learn four 
abstract geometric symbol combinations via trial and error by 
verifying feedback (Shute, 2008) over a total of 64 trials. As 
outlined in Figure 1, they were shown the first part of the 
combination at the beginning of a trial and had to select the 
appropriate response by mouse click. Afterward, they were 
informed about the correctness of their response as well as 
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the correct response in terms of errors. Task complexity was 
represented by the number of symbols in a defined order that 
formed a combination. In the easy task condition, symbol 
combinations consisted of two symbols (input-response), 
whereas in the difficult task condition three symbols (input-
input-response) formed a combination. 

 
 

 
 

Figure 1: Sample learning trial in the easy task condition 
(adapted from Wirzberger et al., 2017). 

 
At five pre-defined stages over the task (i.e., after trials 8, 

24, 32, 40, and 56), an interrupting visual search task was 
induced. As displayed in Figure 2, it required participants to 
count the number of two out of four types of geometric 
symbols on a visual search screen and provide their responses 
afterward. The screens were accompanied by an instruction 
on the target symbols. A high similarity to the symbols used 
in the learning task (Gillie & Broadbent, 1989; Trick, 2008) 
and an appropriate task duration (Monk, Trafton, & Boehm-
Davis, 2008) should ensure its interrupting potential.  

 
 

 
 

Figure 2: Sample interruption trial (adapted from 
Wirzberger et al., 2017). 

Experimental results 
In terms of reaction times in correctly solved trials, Figure 

3 shows that participants speed up with increasing task 
progress in both conditions. Standard errors decrease over 
trials due to the increasing number of correct reactions. In 
addition, resumption effects are observable in both 
conditions, but are more distinctive in the easy task condition. 

Approaching accuracy, Figure 4 indicates that participants in 
the difficult task condition learn slower, but in the end both 
conditions reach a comparable level. Again, resumption 
effects are more prevalent in the easy task condition. These 
effects raise the question which cognitive mechanisms 
underlie the observed learning- and interruption-related 
patterns. 

Computational cognitive modeling 
Building on vested psychological evidence on human 

information processing, computational cognitive modeling 
approaches offer the opportunity to derive well-founded 
explanations of behavioral phenomena. The idea of building 
models to explain cognitive phenomena has already been 
discussed by Wegener (1967), who outlined the indicative 
value of an electronic simulation of mental processes for 
deriving and validating the related hypotheses.  

Constituting a prevalent and broadly used production-
based approach, ACT-R (Anderson, 2007) is particularly 
characterized by its modular brain-inspired structure. The 
included modules represent goal planning (goal module), 
declarative memory (declarative module), intermediate 
problem states (imaginal module), action coordination 
(procedural module), the handling of visual and auditory 
inputs (visual and aural module), and motor and vocal outputs 
(motor and vocal module). The mapping of these modules on 
corresponding regions-of-interest (ROIs) in the human brain 
has been validated with fMRI data by Borst, Nijboer, 
Taatgen, van Rijn, and Anderson (2015). For instance, when 
a model retrieves content from declarative memory, 
increased activity in the declarative module corresponds to 
activity in the prefrontal cortex, which has proven to be 
sensitive to both retrieval and storage operations. Activity in 
the goal module corresponds to activity in the anterior 
cingulate cortex, which is involved in higher-level control 
functions such as attentional allocation or performance 
monitoring.  Buffers with limited capacity serve as interface 
between modules and enable their communication. They can 
hold one information element at the same time, representing 
existing limitations in information processing resources.   

ACT-R uses a hybrid approach of both symbolic and 
subsymbolic mechanisms: chunks of information from 
declarative memory are retrieved not only on the match of 
content but also based on their level of activation. Activation 
is calculated from the history and context of use of a chunk 
and has to exceed a defined threshold to be eligible for 
selection. The full equation for each chunk i involves the 
components displayed in the subsequent equation: 
 
									𝐴# = 	𝐵# +	''𝑊)*𝑆*# +	'𝑃𝑀.# + 	𝜀.													(1)

.*)

 

 
The recency and frequency of use of the chunk i is reflected 

by the base-level activation Bi. Each time a chunk is 
presented, its base-level activation is increased, which decays 
as a power function of the time since that presentation. These 
decay effects are summed up and then transformed 
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logarithmically. With the spreading activation mechanism 
(Anderson, 2007), ACT-R accounts for the fact that 
activation is distributed across related chunks that share 
information elements. It is represented in the equation by Wkj, 
the amount of activation from source j in buffer k, and Sji, the 
strength of association from source j to chunk i. Wkj and Sji 
are summed over all buffers that provide spreading activation 
and all chunks in the slot of the chunks in buffer k. As humans 
sometimes retrieve related but ultimately wrong information 
from memory, ACT-R further includes a partial matching 
mechanism. Based on initially defined similarities between 
chunks, a mismatch between request and actual retrieval is 
calculated. The higher the mismatch, the more the activity of 
the chunk is penalized (Lebiere, 1999). In the equation, P 
reflects the amount of weighting given to the similarity in slot 
l and Mli represents the similarity between the value l in the 
retrieval specification and the value in the corresponding slot 
of chunk i. Mli is summed over the slot values of the retrieval 
specification. The value of ε represents noise, which is 
computed at the time of a retrieval request for each chunk.  

Model concept 
Each model run starts with an initial set of the task goal 

to the symbol learning task, which is assumed to result from 
the previously read instruction. In the following, each 
learning trial builds upon three task-related steps: at first, the 
presented symbol is encoded, which is repeated for the 
second symbol in the case of the difficult condition. This 
procedure stores an intermediate representation of all 
encoded visual content in the problem state (Borst, Taatgen, 
& van Rijn, 2010, 2015; Nijboer, Borst, van Rijn, & Taatgen, 
2016), for instance, the input symbols ‘square – circle’ in the 
difficult condition. Next, the model attempts to retrieve the 
associated response symbol from declarative memory. In the 
second step, a response is selected from the provided 
opportunities on the screen, either according to the retrieved 
chunk or by random choice in case of no successful retrieval. 
In the final step, the model searches for visual feedback on 
the given response and, in the case of a false response, an 
update of the existing intermediate representation. The final 
information contains both the input and the correct response 
parts of the symbol combinations, such as ‘square – circle – 
square’ in case of the previous example.  

In the first trials, there is no sufficiently matching content 
or no content at all to retrieve, resulting in slower and less 
accurate responses. After being presented the input symbols 
several times and retrieving related content from declarative 
memory, the model performance gets increasingly faster and 
more accurate due to increasing chunk activation. In the 
current task, the above outlined spreading activiation 
mechanism particularly effects the difficult task condition. In 
more detail, symbol combinations including the same input 
symbols, such as ‘square – circle’ and ‘circle – square’, 
obtain equal activation, independent of the correct symbol 

                                                        
1 In addition to the base model and the reported model, models 

including either only spreading activation or partial matching were 

order. Following the concept of element interactivity in 
instructional research (Sweller, 2010), task demands increase 
with more logically interrelated information elements that 
have to be processed simultaneously. In the current task, the 
symbols that form a combination can be regarded as 
information elements that are related to each other by order. 
Without considering the order information, a wrong input-
response association is more likely to be retrieved, which is 
then penalized by the partial matching mechanism. In 
consequence, due to more potentially mismatching 
information, the chunks in the difficult condition receive less 
activation and are harder to retrieve.  

Following a goal change due to the bottom-up triggered 
saliency of the interrupting task, the task procedure involves 
the steps of searching, counting, and responding to the 
indicated target symbols. Using a color to indicate the task 
switch followed the model implemented by Wirzberger and 
Russwinkel (2015) and represents the immediate attention to 
the related screen change. Tying in with evidence on pre-
attentive and attentive processes in the visual module of 
ACT-R (Nyamsuren & Taatgen, 2013), the second visual-
location request in the visual search is enhanced by additional 
information on stimulus color that relates to distinct 
characteristics of the presented symbols. After finishing the 
counting part that also employs the problem state (Borst et 
al., 2010, 2015; Nijboer et al., 2016), on each of the two 
response screens the model encodes the requested symbol 
and attempts to retrieves the potential answer. Again, the 
possibility to retrieve a wrong answer persists due to the 
partial matching mechanism. When resuming the learning 
task, in line with Altmann and Trafton (2002) the model 
attempts to retrieve the previous task goal and thus restores 
its representation. Emerging interruption effects can be 
attributed to a decay in the activation of chunks related to the 
learning task that slows down subsequent retrieval requests 
(Borst et al., 2010, 2015; Trafton, Altmann, Brock, & Minz, 
2003).  

Model comparison 
The inspected model data based on n = 100 model runs in 

each condition to obtain robust conclusions from the average 
model performance. A further goal was to achieve a balanced 
fit pattern across both accuracy and reaction time in either 
condition. Compared to a base model1 that includes neither 
spreading activation nor partial matching, the overall root 
mean squared scaled deviation (RMSSD) decreased by 
almost one standard error and fit indices were quite aligned.  

Besides the shared prevalence of interruption effects, in 
both conditions the model speeds up in reaction time over 
trials. The visual inspection in Figure 3 indicates that it can 
map the decreasing progression particularly in the difficult 
task condition. However, the model performs slightly slower 
than human participants during most of the trials. On the level 
of numerical goodness-of-fit indices, the model achieved 

inspected. Due to the superior fit, only the final model that applies 
both mechanisms is reported. 

1208



RMSSD = 2.16 and R² = 0.58 in the difficult task condition. 
Apart from a subtler decrease in the beginning, the mapping 
also fits quite well for later trials in the easy task condition. 
On a numerical level, RMSSD = 1.67 and R² = 0.52 resulted 
in this condition. 

 

 

 
 

Figure 3: Comparison of human and model behavior in 
terms of reaction time. Red dashed lines indicate the first 

trial that immediately follows an interruption. 
 
 

 

 
 

Figure 4: Comparison of human and model behavior in 
terms of accuracy. Red dashed lines indicate the first trial 

that immediately follows an interruption. 

For accuracy, Figure 4 indicates that the model can map the 
progression in human behavior quite well in the easy task 
condition, although it achieves a higher performance in the 
end and shows a subtler reflection of interruption effects. On 
a numerical level, RMSSD = 1.51 and R² = 0.69 were 
achieved in this condition. The model in the difficult task 
condition learns slower compared to the easy task condition, 
but still faster than the human participants. However, apart 
from the nearly perfect location match in the last data points, 
it cannot fully map the final increase in the human data. The 
goodness-of-fit indices for the difficult task condition 
resulted in RMSSD = 2.07 and R² = 0.57. 

Simulated fMRI data 
Based upon the already mentioned mapping of activity in 

ACT-R modules on defined brain regions, simulated neural 
activity in predefined ROIs is computed to investigate 
underlying cognitive mechanisms in more detail (Borst & 
Anderson, 2017). This approach uses the recorded start and 
end times of module activity to simulate a signal comparable 
to the blood oxygenation level obtainable via fMRI, which 
shows peaks about 4-6 s after the occurrence of neural 
activity. In the first step, the activity of each inspected 
module is represented as 0-1 demand function and convolved 
afterward with the hemodynamic response function displayed 
in Figure 5. As an example, related to the task of the current 
model, longer retrieval times due to lower levels of chunk 
activation would result in increased activity in the declarative 
module. Such patterns are expectable in early stages of the 
task, with increased task difficulty, or caused by decay during 
an interruption, and would be observable by higher peaks in 
the resulting simulated signal.  

 

 
 

Figure 5: Hemodynamic response function (adapted from 
Borst & Anderson, 2017). 

 
Prevalent changes in the declarative module activity across 

the learning task, which simulates activity in the prefrontal 
cortex, are displayed in Figure 6. Whereas blue lines 
represent the first third of the trials in the task, the red lines 
indicate the middle third of the trials, and the black lines refer 
to the last third of the trials. The curves predict a decrease in 
cognitive activity in later task stages in both conditions in the 
prefrontal cortex due to task-inherent learning processes. In 
the difficult task condition, represented by the dashed lines, a 
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higher level of activity is prevalent across all stages, with a 
particularly distinctive peak across early task stages. As 
already outlined, this relates to increased retrieval demands 
from lower levels of chunk activation. 
 

 

 

Figure 6: Simulated neural activity in the declarative 
module (corresponding to activity in the prefrontal cortex) 

across stages of the learning task. 
 
Comparisons between the interrupting task and the 

learning task are depicted in Figure 7 and Figure 8. These 
include a separate visualization of the resumption phase (red 
lines), defined as the first trial that immediately follows the 
interrupting task. Across all inspected modules, activity 
levels in the interrupting task do not differ between both task 
conditions, since the solid and dashed blue lines overlap 
almost all the time. For both the declarative module, relating 
to the prefrontal cortex, and  the goal module, relating to the 
anterior cingulate cortex, a higher activity across resumption 
trials compared to the remainder of trials in the learning task 
(black lines) is predicted for both conditions. In addition, 
differences between task conditions during the resumption 
phase are predicted for the anterior cingulate cortex and 
indicate higher levels of activity in the easy task condition. 
Even if these effects are less obvious in the behavioral model 
data, this also corresponds to the higher prevalence of 
resumption effects in the easy condition in the human data. 

 

 
 

 
 

Figure 7: Simulated neural activity in the declarative 
module (corresponding to the prefrontal cortex) across 

interruption, resumption, and learning stages. 

 
 

 
 

Figure 8: Simulated neural activity in the goal module 
(corresponding to the anterior cingulate cortex) across 

interruption, resumption, and learning stages. 

Discussion 
The current model explores cognitive mechanisms that 

underlie changes in performance due to the inserted 
interruptions and task-related learning processes. Comparing 
model performance across both conditions on a behavioral 
level, the obtained results indicate a good fit in terms of 
reaction times and accuracy. The model can map both the 
learning-related increase in performance and the decrease in 
performance due to experiencing an interruption. A potential 
improvement to increase the visibility of interruption effects 
in the model might involve adjusting when the model starts 
to retrieve information related to the correct response symbol. 
For the difficult task condition, the accuracy result pattern 
hints on a shift in task-related strategies. Due to the small 
number of learned symbol combinations, over time people in 
the difficult condition might have applied a more heuristic 
encoding strategy with focus on the first symbol, directly 
mapping task execution in the easy task condition. Taking 
this into account, the current modeling approach offers 
potential for future work by explaining such strategy shift 
with a more complex model on both the level of production 
rules and corresponding selection mechanisms.  

The pattern observed in the simulated neural activity 
relates to the fact that the model needs to invest a higher 
amount of declarative memory resources upon each retrieval 
request in the early task stage due to the lack of suitable 
chunks and lower levels of chunk activation. The smaller 
level of cognitive activity with increasing task progress 
emphasizes the prevalence of learning effects in both 
conditions, as existing content in the declarative memory 
receives increasingly higher activation and thus can be 
retrieved faster and more accurately. In the difficult task 
condition, invested declarative resources are constantly 
higher across all stages, which by closer inspection relates to 
effects of spreading activation and the increased influence of 
partial matching that penalizes chunk activation and extends 
retrieval times. Increased levels of resumption-related 
activity in the declarative module arise from the activation 
decay in chunks related to the acquired symbol combinations. 
Observable differences in goal activity during the resumption 
stage align well with predictions stated by the memory-for-
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goals model (Altmann & Trafton, 2002). They relate to the 
demand to rebuild the goal-representation of the learning task 
after each interruption. The obtained fMRI  predictions will 
be compared with human data sets in the next step. 

Conclusion 
Taken together, the obtained results emphasize the 

importance of considering activation-related dynamics when 
approaching changes in performance in learning situations. 
The outlined cognitive modeling approach inspects the 
influence of both internal and external factors in these 
contexts and can be taken as promising step to investigating 
related patterns of cognitive resource investment. Since it 
extends beyond human experiments and model-based 
behavior on a neural level, it provides a more detailed 
understanding, which is crucial for developing adequate 
support and minimizing harmful effects.  
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Abstract 

It is unknown whether modality affects the efficiency with 
which humans learn novel word forms and their meanings, 
with previous studies reporting both written and auditory 
advantages. The current study implements controls whose 
absence in previous work likely offers explanation for such 
contradictory findings. In two novel word learning 
experiments, participants were trained and tested on 
pseudoword - novel object pairs, with controls on: modality of 
test, modality of meaning, duration of exposure and 
transparency of word form. In both experiments word forms 
were presented in either their written or spoken form, each 
paired with a pictorial meaning (novel object). Following a 20-
minute filler task, participants were tested on their ability to 
identify the picture-word form pairs on which they were 
trained. A between subjects design generated four participant 
groups per experiment 1) written training, written test; 2) 
written training, spoken test; 3) spoken training, written test; 4) 
spoken training, spoken test. In Experiment 1 the written 
stimulus was presented for a time period equal to the duration 
of the spoken form. Results showed that when the duration of 
exposure was equal, participants displayed a written training 
benefit. Given words can be read faster than the time taken for 
the spoken form to unfold, in Experiment 2 the written form 
was presented for 300 ms, sufficient time to read the word yet 
65% shorter than the duration of the spoken form.  No modality 
effect was observed under these conditions, when exposure to 
the word form was equivalent. These results demonstrate, at 
least for proficient readers, that when exposure to the word 
form is controlled across modalities the efficiency with which 
word form-meaning associations are learnt does not differ. Our 
results therefore suggest that, although we typically begin as 
aural-only word learners, we ultimately converge on 
developing learning mechanisms that learn equally efficiently 
from both written and spoken materials.  

Keywords: modality effects; word learning; vocabulary 
acquisition; reading 

Introduction 

Novel words can be encountered through listening to speech 

or through reading text. Inherent properties of each modality 

will have specific processing demands and will pose specific 

constraints on the learning mechanisms that enable learning 

in these modalities. It is, however, not yet understood 

whether these modality-specific demands influence the 

efficiency of learning in these modalities. The present study 

aimed at investigating to what extent the modality in which 

information is presented affects the efficiency of learning 

novel word form – meaning associations. 

The existing literature shows conflicting findings 

regarding the effect of modality on novel word learning. 

Concerning word form learning only, benefits have been 

found in favour of the spoken modality (Bakker, Takashima, 

Van Hell, Janzen, & McQueen, 2014; Van der Elst, Van 

Boxtel, Van Breukelen, & Jolles, 2005). Multiple theoretical 

explanations have been proposed for these observed auditory 

learning benefits. Firstly, it has been argued that learning 

from spoken input is more efficient as a result of such 

mechanisms being developmentally and/or evolutionarily 

older than those operating on written stimuli (Bakker et al., 

2014).  

Further, evidence suggests that, relative to the visual 

modality, in the auditory modality stronger associations 

develop between sequential events (Penney, 1989) and/or 

that temporal events are more accurately stored (Glenberg & 

Jona, 1991). Auditory cortices have been suggested to be 

more sensitive to sequencing information, due to the 

sequential nature of auditory information (Frost, Armstrong, 

Siegelman & Christiansen, 2015).  

Cognitive load theory (Sweller, Van Merrienboer & Paas, 

1998) also predicts a spoken learning benefit when learning 

word forms and visual meanings (e.g. a picture or graph) in 

combination. It argues that cognitive overload is less likely 

under conditions in which information processing can be 

divide between the visuo-spatial sketchpad and phonological 

loop (Baddeley, 1992), compared to conditions in which all 

information must be processed within the same modality and 

thus by the same cognitive resources.  

In contrast to the above, a written advantage has also been 

observed particularly when word forms are learned in 

conjunction with their meanings,  (Balass, Nelson, & Perfetti, 

2010; Nelson, McEvoy, & Schreiber, 2004; Van der Ven, 

Takashima, Segers, & Verhoeven, 2015). Multiple theories 

have also been proposed in explanation for these findings. It 

is argued that when reading (novel words) phonological 

representations are automatically activated alongside 

orthographical representations, therefore, two separate 

representations of the word form are stored. However, on 

exposure to the spoken word form, automatic activation of its 
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orthographic form is less likely (Perfetti, Bell & Delaney, 

1988; Paivio, 1991). Further, the spoken modality is fleeting 

by nature, posing additional demands on attention and 

working memory capacity. Reading allows rereading and 

processing at one’s own pace and this flexibility leads to 

greater availability of memory and attentional cognitive 

resources for learning (Van der Ven, 2015). 

Alternatively, in contrast to the above findings it remains 

possible that learning mechanisms operating on written and 

spoken stimuli are equally efficient and instead observed 

contradictory effects result from modality specific biases in 

the experimental design. Although typically, prior to literacy, 

word learning is only possible via the auditory modality, it is 

feasible that proficient readers develop learning mechanisms 

that overcome modality specific constraints such that 

learning occurs equally effectively in both modalities. 

Previous studies, that have reported modality effects, have 

potentially generated contradictory findings due to an 

absence of one or more of the following controls. First, 

exposure duration was not controlled in studies that found a 

written learning advantage (Balass et al., 2010; Nelson et al., 

2006; Van der Ven et al., 2015). People were given unlimited 

time with the spoken and written materials, but the exact 

exposure time was not measured. Participants thus might 

have exposed themselves more to materials in one modality, 

evoking a learning effect that does not result from a more 

efficient modality specific learning mechanism but simply 

due to a mechanism having greater exposure to the stimulus.  

Second, in all studies that found a written benefit the test 

was presented in a written form (Balass et al., 2010; Nelson 

et al., 2006; Van der Ven et al., 2015); likewise, some studies 

that found a spoken benefit performed only a spoken test 

(Van der Elst et al., 2005). According to Tulving and 

Thomas’s (1973) encoding specificity principle, recall is 

enhanced if the conditions during retrieval match the 

conditions during learning. Thus, such modality effects 

observed in these studies might be evoked by encoding 

specificity rather than by differences in the efficiency of the 

spoken and written learning mechanisms. Similarly, studies 

examining learning of word form-meaning associations only 

used written meanings. Thus, the congruency of the format 

between written word forms and written word meanings 

potentially benefits learning in the written modality.  

Fourth, many previous studies have used explicit learning 

tasks (Balass et al., 2010; Nelson et al., 2006; Van der Ven et 

al., 2015). Therefore, in such studies, it is difficult to exclude 

the possibility that observed modality effects do not result 

from modality-specific conscious learning strategies, such as 

repeating heard words or rereading written words, rather than 

differences in the efficiency of modality specific cognitive 

mechanisms.  

Finally, many previous studies (Bakker et al., 2014; Balass 

et al., 2010; Nelson et al., 2006; Van der Ven et al., 2015; 

Van der Elst et al., 2005) do not control for cross-modal 

orthographical and phonological transparency. Therefore, 

any learning benefit observed may not result from differences 

in the efficiency of learning mechanisms but instead may 

result from it being easier to accurately transform the 

phonological form to the orthographic or vice versa.  

In order to gain an understanding of modality effects on 

word learning it is first necessary to control for each of these 

potential confounds.  The present study aims to do precisely 

this, controlling for the many confounds that have potentially 

generated observed modality effects that do not result from 

difference in efficiency of the spoken and written learning 

mechanisms.  

In two experiments, participants learned 24 Dutch-like, 

fully transparent pseudowords and pictorial meanings. After 

a short period of consolidation, participants were tested on 

their knowledge of the learned word forms and meanings. A 

between-subjects design generated four participant groups 

per experiment 1) written training, written test; 2) written 

training, spoken test; 3) spoken training, written test; 4) 

spoken training, spoken test. In addition, non-verbal IQ, 

vocabulary and reading tasks were administered to control for 

differences across groups. In Experiment 1 written word 

forms were presented for a time period equal to the duration 

of the spoken form. In Experiment 2, to control for the fact 

that a written word can be read quicker than its spoken form 

takes to unfold, the written stimulus was presented only for 

the period necessary to read the written stimulus.  

Experiment 1 

Methods 

Participants 60 participants (M = 22.96 years, SD = 2.53; 46 

female) were recruited. All participants were right-handed, 

with no language, sight or hearing disorders. Participants 

earned €10 for participating. 

 

Design The two between-subjects factors were modality 

during training and modality during testing. Words could be 

learned in either modality and also testing could occur in two 

modalities. There were therefore four between-subjects 

conditions. Participants were randomly assigned to a 

condition. 

 

Materials Twenty-four orthographically and phonologically 

transparent Dutch pseudowords were created using Wuggy 

(Keuleers & Brysbaert, 2010). The words had a 

Levenshtein’s Distance (Levenshtein, 1966) of above three to 

avoid confusability. Pilot studies ensured the words were not 

reminiscent of existing Dutch words. The words varied 

between five and nine letters and four and eight phonemes 

and graphemes. Speech duration of the words varied between 

664 and 993 ms.  

In addition twenty-four pictures of unknown objects from 

The Novel Object and Unusual Name (NOUN) Database 

were used (Horst & Hout, 2016). The pictures were not 

visually similar to each other. To limit item-specific effects, 

for each group of four participants the pictures were 

randomly assigned to one of the word forms. 
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Procedure Participants were trained and tested on the same 

day. First the training phase was administered. The 

experiment was designed to minimize opportunities for 

participants to utilize explicit learning strategies. For this 

reason no explicit instruction to learn the picture–word form 

pairs or indication of a later test was provided, images and 

word forms were presented briefly and in rapid succession, 

and both auditory and visual masks immediately followed 

presentation of the word form. In each trial (Figure 1), 

participants saw a fixation cross (250 ms), a picture (1000 

ms), then again saw a fixation cross (250 ms), either heard 

the word or read the word depending on the condition, and 

then heard a auditory mask in the form of a continuous tone 

and saw a visual mask in the form of a grey diamond (500 

ms). The exposure to the word form varied for each word: the 

written word was presented for the speech duration of that 

specific word (M  = 863 ms, SD = 97 ms). The next word in 

the training sequence always had a Levenshtein’s distance 

above three and a different onset. Each training trial was 

repeated seven times in a blocked, semi-randomized order. 

To ensure attention during the training phase, eight pictures 

of familiar known objects (e.g. a bus) were shown in-between 

the trials and participants had to press a button as soon as they 

saw one of these familiar objects. Participants were instructed 

to pay attention to the pictures and words and press a button 

if they saw one of the eight familiar objects, but critically 

were not explicitly told to learn the word form – picture pairs. 

 

 

 
Figure 1: Experimental procedure of a training trial 

 

The training phase was followed by a filler task. This 

purely visual, nonverbal IQ-task lasted for 20 minutes 

(Raven’s progressive matrices, 1965). Then, in the test phase,  

participants performed a subsequent matching task. 

Participants saw a fixation cross (250 ms), a picture (1000 

ms), then again a fixation cross (250 ms), heard or saw the 

word depending on the condition, and had to decide within 2 

seconds whether the picture and word matched  what they had 

learned by using a button box. The written words were again 

presented for a time period equal to the speech duration of 

that particular word. Each word was presented twice: once 

with the correct picture and once with a foil picture (i.e., a 

different picture presented in the training phase). There were 

several constraints regarding the relationship between the foil 

picture and the target word form. The corresponding learned 

word form of the foil picture did not share the onset of the 

target word form and possessed a Levenshtein’s distance of 

above four. Regarding the order of the trials, the 

corresponding word form of the next (foil) picture could not 

be one of the previous ten word forms. Also, half of the target 

words were first shown with the correct picture before they 

appeared with a foil picture and vice versa. Participant’s 

ability to identify both matching and mismatch picture-word 

form pairs was recorded. Then, several individual difference 

tests were administered, including word reading, pseudoword 

reading (Van den Bos, Spelberg, Scheepsma & de Vries, 

1994; Brus & Voeten, 1973) and vocabulary (Dunn, Dunn, & 

Schlichting, 2005).  

Results 

Violin plots depicting, per condition, the proportion of 

picture–word form pairs that were correctly identified as a 

match or mismatch can be found in Figure 2.  

 

 
 

Figure 2: Proportion of correctly identified matching and 

mismatching picture-word form pairings per participant 

 

A mixed effects logistic regression model (lme4 package: 

Bates, Maechler, Bolker, & Walker, 2015) using R (R 

Development Core Team, 2008) was constructed with 

response on test (match or mismatch) as the dependent 

variable, i.e. whether a participant recorded the 

corresponding image and word form pair as matching or 

mismatching. Model structure was compatible with the 

conventions of standard signal detection analysis and was 

consistent with current best practice (e.g. Jacobs, Dell, 

Benjamin, & Bannard, 2016; Zormpa, Brehm, Hoedemaker 

& Meyer, 2019). The model included fixed effects of trial 

type (whether the trial was a match or mismatch), training 

modality (written or spoken) and test modality (written or 

spoken), in addition to their interactions. The full random 

effect structure was also included in the model with random 

intercepts and slopes by item for trial type, training modality 

and test modality, and random intercepts and slopes by 

participant for trial type.  
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Model results revealed a main effect of trial type, showing 

participants displayed sensitivity to trained versus untrained 

picture–word pairs, providing a match more frequently when 

presented with the picture – word pairs on which they were 

trained (estimate = -1.03, SE = 0.16, z = -6.35, p < .001). The 

interaction between trial type and training modality was also 

significant (estimate = 0.29, SE = 0.13, z = 2.20, p = .03) with 

participants in trained on written word forms displaying 

greater sensitivity in identification of trained vs. untrained 

picture – word for pairs. Finally, a significant interaction 

between trial type and test modality was also observed 

(estimate = -0.37, SE = 0.13, z = -2.78, p = 0.006) with 

participants displaying greater sensitivity when tested on 

spoken word forms.  

Conclusion 

Experiment 1 results show that when controlling for 

exposure time by providing equal exposure duration in both 

modalities, learning from written materials is greater. One 

explanation for this might be differences between modalities 

in the speed with which the full word form can be accessed 

from the stimulus. The speech duration of the word forms was 

between 664 and 993 ms, and thus, the written words were 

presented for a duration of between 664 and 993 ms, 

depending on the word. First pass single word reading is 

however much faster than the reading time provided in 

Experiment 1. Literature using lexical decision or naming 

tasks show that bisyllabic word can be read at between 525-

610 ms, and pseudowords between 575 and 650 ms 

(Brunswick, McCrory, Price, Frith, & Frith, 1999; De Groot 

& Nas, 1991; Schilling, Rayner, & Chumbley, 1998; Weekes, 

1997). However, these estimates include time necessary to 

make a decision and speech planning. Studies using ERP and 

eye-gaze measures, which give a more accurate estimate of 

reading times, show that frequent, known words can be read 

around 150 ms and infrequent words within 200-250 ms 

(Rayner, Pollatsek, Ashby, & Clifton Jr, 2012; Schilling et 

al., 1998; Sereno, Rayner, & Posner, 1998). This means that, 

although exposure time to the written and spoken stimuli was 

equal in Experiment 1, people had more time with the full 

word form in the written condition.  

Experiment 2 tested whether the modality effects found in 

Experiment 1 would hold if exposure to written and spoken 

materials was equivalent, taking into account that written 

information is presented instantaneously and that reading is 

faster than listening to speech. Literature has shown that 

people need slightly longer to read infrequent words (200-

250 ms) than frequent words (150 ms). Pseudowords are thus 

likely to be read slightly slower. Therefore, in Experiment 2, 

the written exposure time was set at 300 ms for all 24 words, 

which is a written exposure time reduction of 65% on average 

relative to Experiment 1.  

Experiment 2 

Methods 

Participants 30 participants (M = 23.02 years, SD = 2.40; 26 

female), all right-handed, with no language, sight or hearing 

disorders participated in this experiment. Participants earned 

€10,- for participating. 

Design Experiment 2 only concerned written modality 

learning. Testing occurred in both modalities, creating two 

conditions. Participants were randomly assigned to a 

condition. 

 

Materials The materials were the same as in Experiment 1. 

 

Procedure The procedure was similar to that of Experiment 

1, except for the training phase. In the training phase, the 

written word was now presented for 300 ms rather than the 

speech duration of that specific word. This reduced the total 

duration of the training phase by 560 ms. To ensure that this 

shortening of the trial did not affect learning, in each trial the 

first fixation cross was elongated from 250 to 530 ms and the 

mask at the end of a trial was elongated from 500 to 780 ms. 

After training participants again performed a non-verbal IQ 

test, followed by the picture-word form matching task and the 

individual difference measures. 

In addition, to test that 300 ms was sufficient time for 

participants to read the word-forms, a simple retyping task 

was added to test whether participants could read 120 

additional Dutch pseudowords equally well when presented 

for either 300 ms or 860 ms (the mean written exposure time 

of Experiment 1). This retyping task was only administered 

to the participants in the written training condition.  

Results 

One participant from Experiment 2 had to be removed, 

because no buttons were pressed during the matching task. 

Violin plots of the accuracy data can be found in Figure 2. 

Four one-way ANOVA’s indicated that the six groups (four 

from Experiment 1 and two from Experiment 2) did not differ 

regarding average general IQ (F(5,83) = 0.46, p = .81), 

vocabulary (F(5,83) = 0.64, p = .67), word reading (F(5,83) 

= 0.69, p = .63) or pseudoword reading ability (F(5,83) = 

0.67, p = .65).  

To analyse performance on the retyping task, a frequentist 

mixed-effect logistic regression model was applied using R 

package lmer (lme4 package: Bates, Maechler, Bolker, & 

Walker, 2015) with retyping accuracy as dependent variable, 

and word length and exposure time (300 or 860 ms) as 

independent variables, plus a random intercept by participant 

and word. This analysis showed no difference in accuracy of 

retyping after a 300 or 860 ms exposure (estimate = 0.54 SE 

= 1.81, z = 0.29, p = .77). 

The mixed-effects logistic regression model used to analyse 

results in Experiment 1, was extended to analyse results of 

both experiments, with modality at training now possessing 

three levels: spoken training in Experiment 1, written training 
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in Experiment 1 where written exposure time was equal to 

spoken exposure time, and written training in Experiment 2 

where written exposure time was reduced to 300 ms. The bias 

effects of modality at training and test on hits and false alarms 

are illustrated in Figure 2. 

Analyses revealed a significant main effect of trial type 

with participants more likely to produce a match response 

when trials included the picture – word form pairs on which 

they were trained (estimate = -0.73, SE = 0.19, z = -3.89, p < 

0.001). The interaction between trial type and training 

modality was not significant when comparing the reduced 

written training condition (Experiment 2) to that of the 

spoken training condition (estimate = -0.24, SE = 0.25, z = -

0.96, p = 0.34) indicating that sensitivity of participants did 

not differ significantly between groups. Similarly, the 

interaction between trial type and training modality was not 

significant when comparing the reduced written training 

condition (Experiment 2) to the longer written training 

condition (Experiment 1) (estimate = -0.38, SE = 0.25, z = -

1.52, p = 0.13). The three-way interaction between training 

modality, test modality and trial type was significant when 

comparing the two written conditions (estimate = -0.73, SE = 

0.25, z = -2.90, p = 0.004). The three-way interaction was not 

significant (estimate = -0.43, SE = 0.25, z = -1.69, p = 0.09) 

when comparing the longer written training condition 

(Experiment 1) to the spoken training condition or the 

reduced written training condition (Experiment 2) to the 

spoken training condition (estimate = 0.31, SE = 0.25, z = 

1.25, p = 0.21). Thus, participants trained in the longer 

written condition (Experiment 1) displayed greater sensitivity 

during the spoken test than participants trained in the shorter 

written training condition (Experiment 2) or spoken training 

condition. 

Conclusion 

Experiment 2 aimed to investigate whether the written 

modality benefit found in Experiment 1 resulted from 

participants having more time with the word form in the 

written condition, due to the fact that it takes longer for a 

spoken word to unfold than to read its written from. By 

reducing written word exposure to 300 ms per word, we 

controlled for this inherent advantage of the written modality. 

Results showed that when the exposure time to the written 

materials was reduced, learning in the written condition did 

not differ from that in the spoken condition. Further, this was 

not a result of participants having insufficient time to read the 

written form as participants did not differ in their ability to 

retype written pseudowords when they were presented for 

300 ms or 860 ms.  

General Discussion 

This study aimed to test whether modality specific learning 

mechanisms, engaged when learning novel picture–

pseudoword form pairings, are more effective when words 

are presented in their written or spoken form. This study is 

the first to test for such effects of modality while controlling 

for the following factors, which potentially give rise to 

modality effects independent of differences in the efficiency 

of modality specific learning mechanisms: 1) differences in 

orthographic and phonological transparency, 2) congruence 

in modality of word form and word meaning, 3) duration of 

exposure, 4) engagement of explicit learning strategies, 5) 

congruence in modality of training and modality of test. 

Our results showed that when the duration of written and 

spoken exposure is equal (the written stimulus is presented 

for a time period equal to the duration of the spoken word), 

participants’ accuracy in identifying picture-word form pairs 

is greater when trained on written word-forms. This finding 

replicates earlier findings of a written learning benefit when 

learning word forms and their meanings (Balass et al., 2010, 

Nelson et al., 2004, Van der Ven et al., 2015).  

However, Experiment 2 shows that the written learning 

benefit disappears when controlling for the fact that the time 

required to read a word in its written form is shorter than the 

time required for its spoken form to unfold. Our results 

demonstrate that once controlling for this property of reading 

there is no additional advantage in learning word form – 

picture associations when words are presented in their written 

rather than spoken form.  

Our conclusions are therefore at odds with previous studies 

that argue for differences in the efficiency of modality 

specific learning mechanisms. Based on the results produced 

by this study we believe such findings are likely driven by an 

absence of one or more of the confounds listed above (see list 

1-5), which alone may generate such observed modality 

effects.  

Bakker et al, (2014), one of few studies to train and test 

participants in both modalities, provides evidence that 

auditory benefits of learning novel word forms emerge only 

at longer periods of consolidation. Within their study 

phoneme and letter monitoring tasks were used to probe 

lexical integration of novel word forms after 24 hrs and 8 

days. It is feasible therefore that the findings within the 

current study are limited to short-term episodic memory. This 

can be tested in a follow up study by extending the current 

paradigm to include tests of lexical integration at longer 

periods of consolidation. 

Unexpectedly, our results did not produce a modality 

congruency effect as predicted by Tulving and Thomas’s 

(1973) encoding specificity principle, in that the 

experimental groups for which the test modality was the same 

as the training modality, did not show superior performance. 

Paradoxically, the written benefit observed in Experiment 1 

was mainly driven by the written learning spoken test group. 

However, we believe this to be caused by the perceived 

erratic response window in the written test condition. 

Participants were required to respond within 2 seconds plus 

the speech duration of the written word. Because they did not 

hear the word, the response time was therefore difficult to 

predict. This conclusion is supported by participant’s 

performance on the same task in Experiment 2, when 

participants were habituated in the written training phase to a 

fixed exposure time which did not appear to result in a 

decrease in performance on the written test. 
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Still, our experiments do not provide evidence for Tulving 

and Thomas’s (1973) encoding specificity principle, since 

participants in all cross-modal conditions were consistently 

able to recognize words in a modality in which they had not 

seen the word form before. Further, no interaction was 

observed between the written reduced training condition of 

Experiment 2 and the spoken test condition of Experiment 1, 

indicating that when participants have equivalent exposure to 

either the written or spoken word form in training, their 

ability to recognise the novel word form in the alternative, 

unseen modality does not differ.   

Within the current study, attempts were made to limit 

strategic cross-modal encoding: no explicit instruction to 

learn the materials was provided, participants were trained in 

a single modality, stimuli were presented rapidly, and visual 

and auditory masks immediately followed the presentation of 

the word form. Thus, our results suggest that proficient 

readers, such as those tested in our study, automatically 

rapidly recode novel word forms into both their phonological 

form when presented with  written stimulus (Perfetti et al., 

1988) and their orthographic form when presented with an 

auditory stimulus. 

Our findings also do not support a developmental and/or 

evolutionary advantage for learning from spoken materials. It 

appears that even though the ability to learn from written 

materials has developed later in human’s lives and their 

evolution as a species, this ability is sufficiently developed in 

adult proficient readers to perform equally effectively. 

This study set out to test for modality effects on novel word 

learning. Specifically it tested for differences in the efficiency 

of modality specific mechanisms engaged when learning  

novel object - pseudoword pairs, from either spoken or 

written stimuli. Results showed a written benefit when equal 

exposure time was provided. However, once we controlled 

for the fact that reading allows faster access to the full word 

form than listening to speech, no modality effect was 

observed. This suggests that modality specific learning 

mechanisms operating on spoken or written stimuli were 

equally efficient. Given that we typically begin learning 

words from auditory input only, the findings of the present 

study indicate that once we become proficient readers, the 

cognitive system converges on learning equally efficiently 

from both modalities.  
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Abstract

How does time pressure influence attitudes towards uncer-
tainty? When time is limited, do people engage in different
exploration strategies? We study human exploration in a range
of four-armed bandit tasks with different reward distributions
and manipulate the available time for each decision (limited
vs. unlimited). Through multiple behavioral and model-based
analyses, we show that reactions towards uncertainty are influ-
enced by time pressure. Specifically, participants seek out un-
certain options when time is unlimited, but avoid uncertainty
under time pressure. Moreover, larger relative differences in
uncertainty between options slowed down reaction times and
dampened the drift rate of a linear ballistic accumulator model.
These results shed new light on the differential effect of uncer-
tainty and time pressure on human exploration.
Keywords: Exploration-exploitation; Uncertainty; Time Pres-
sure; Directed Exploration; Multi-armed Bandits

Introduction
Searching for rewards requires navigating the exploration-
exploitation dilemma: Should one exploit options known to
produce high rewards, or explore lesser known options to
gain information that could potentially lead to even higher
rewards? Because optimal solutions (Gittins, 1979) are gen-
erally intractable in realistic settings, practical solutions usu-
ally rely on heuristics (Auer, Cesa-Bianchi, & Fischer, 2002),
which can be classified as directed exploration, random ex-
ploration, or both.

Directed exploration is often implemented using an explo-
ration bonus that inflates the expected value of an option pro-
portional to the estimated uncertainty, to encourage the explo-
ration of uncertain options. Whereas earlier studies produced
mixed evidence for the use of exploration bonuses in human
reinforcement learning (Daw, O’doherty, Dayan, Seymour, &
Dolan, 2006), there is now an increasing amount of evidence
for directed exploration in vast problem spaces (Wu, Schulz,
Speekenbrink, Nelson, & Meder, 2018), planning (Wilson,
Geana, White, Ludvig, & Cohen, 2014), dynamic decision
making (Knox, Otto, Stone, & Love, 2012), and simple two-
armed bandit tasks (Gershman, 2018).

Unlike directed exploration, random exploration increases
choice stochasticity in accordance to the agent’s uncertainty
about the value of available actions (Speekenbrink & Kon-
stantinidis, 2015). One recent theory proposed that random
and directed exploration can be dissociated, where the bal-
ance is influenced by the total and relative uncertainty of
available options (Gershman, in press). If there are multiple

options with similar expected rewards, directed exploration
makes an option more likely to be sampled when its uncer-
tainty is higher relative to the other options (Schulz & Ger-
shman, 2019). We make use of this effect by studying how
patterns of decision making and exploration are affected by
both uncertainty and expected reward in a four-armed ban-
dit task. Compared to previously studied two-armed bandit
tasks, the richer set of options makes exploration more perti-
nent and observable over more trials. Crucially, we manipu-
late the presence or absence of time pressure to gain insights
into the cognitive processes underlying exploration. If di-
rected exploration is a reasoned and controlled process, which
requires taking the uncertainties of each options into account,
then time pressure may limit the capacity for directed explo-
ration.

As predicted, we find that participants are more likely to
sample options with high relative uncertainty in the absence
of time pressure. However, when we impose time pressure by
limiting the allowed decision time to under 400 milliseconds,
we find that relative uncertainty reduces the probability that
an option is chosen. Additionally, relative uncertainty slows
down reaction times more strongly and dampens the evidence
accumulation process more heavily under time pressure. In
other words, time pressure moderates the effect of environ-
mental uncertainty, such that risk-seeking behavior arising
through directed exploration transforms into risk-aversion un-
der time pressure. These results enrich our understanding of
human exploration strategies under changing task demands.

Experiment
Participants and Design. We recruited 99 participants (36
female, aged between 21 and 69 years; M=34.82; SD=10.1)
on Amazon Mechanical Turk (requiring 95% approval rate
and 100 previously approved HITs). Participants were paid
$3.00 for taking part in the experiment and a performance
contingent bonus of up to $4.00 (calculated based on the per-
formance of one randomly selected round). Participants spent
13.0 ± 5.6 minutes on the task and earned $5.87 ± $0.91 in
total. The study was approved by the Ethics Committee of
the Max Planck Institute for Human Development.

We used a 2×4 within-subject design to examine how the
presence or absence of time pressure and the payoff structure
of the task (see Fig. 1b and Tab. 1) influenced choices and
reaction times. In total, the experiment consisted of 40 rounds
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Figure 1: Experimental design. We used a four-armed bandit task
where each option was randomly mapped to the Q, W, O, and P keys
on the keyboard. a) In unlimited time rounds, participants could take
as long as they wanted to make each selection and received positive
feedback (happy face) and were shown the value of the acquired
payoff. b) In limited time rounds, participants were only given 400
ms to make each selection. If they exceeded the time limit, they
would forgo earning any rewards, and received negative feedback
(sad face) along with the value of the payoff they could have earned
(crossed out).

with 20 trials each. In each round, a condition was sampled
(without replacement) from a pre-randomized list, such that
each combination of time pressure and payoff structure was
repeated five times, with a total of 100 trials in each.

Materials and Procedure. Participants were required to
complete three comprehension questions and two practice
rounds (one with unlimited time and one with limited time)
consisting of 5 trials each before starting the experiment.
Each of the 40 rounds was presented as a four-armed ban-
dit task, where the four options were randomly mapped to the
[Q,W,O,P] keys on the keyboard (Fig. 1). Selecting an option
by pressing the corresponding key yielded a reward sampled
from a normal distribution, where the mean and variance was
defined by the round’s payoff structure (Fig. 2a and Tab. 1).
Participants completed 20 trials in each round and were told
to acquire as many points as possible.

Before starting a round, participants were informed
whether it was an unlimited or a limited time round. In un-
limited time rounds, participants could spend as much time as
they needed to reach a decision, upon which they were given
feedback about the obtained reward (displayed for 400 ms)
before continuing to the next trial (Fig. 1a). In limited time
rounds, participants were instructed to decide as fast as pos-
sible. If a decision took longer than 400 ms, they forfeited
the reward they would have earned (presented to them as a
crossed-out number with an additional sad smiley; Fig. 1b).
We used the same inter-trial period of 400 ms to display feed-
back about obtained rewards in both limited and unlimited
time rounds.

We applied a random shifting of rewards across rounds
(i.e., different maximum reward) to prevent participants from
immediately recognizing when they had chosen the optimal
option. For each round, we sampled a value from a uni-
form distribution U(30,60), which was then added to the
rewards. Together with random shifting, we also truncated
rewards such that they were always larger than zero. In or-

Table 1: Payoff Conditions

Payoff Conds Means (µ) Variances (σ2)

IGT [−10,−10,10,10] [10,100,10,100]
Low Var [−10,− 1

3 ,
1
3 ,10] [10,10,10,10]

High Var [−10,− 1
3 ,

1
3 ,10] [100,100,100,100]

Equal Means [0,0,0,0] [10,40,70,100]

der to convey intuitions about the random shift of rewards,
payoffs were presented using a different fictional currency in
each round (e.g., ß, Þ, ϑ), such that the absolute value was
unknown, but higher were always better.

At the end of each round, participants were given feedback
about their performance in terms of the bonus they would gain
(in USD) if this was the round selected for determining the
bonus. The bonus was calculated as a percentage of the total
possible performance, raised to the power of 4 to accentuate
differences in the upper range of performance:

Bonus =
(

total reward gained
mean reward of best option×20 trials

)4

×$4.00

Payoff conditions We used four different payoff conditions
as a within-participant manipulation (Tab. 1 and Fig. 2a).
Each payoff condition specified the mean µi and variance σ2

i
of the reward distribution Ri ∼ N (µi,σ

2
i ) for each option i.

Each distribution was randomly mapped to one of the four
[Q,W,O,P] keys of the keyboard in each round. The Iowa
Gambling Task (IGT) is a classic design that has been re-
lated to a variety of clinical and neurological factors affecting
decision-making (Yechiam, Busemeyer, Stout, & Bechara,
2005; Bechara, Damasio, Damasio, & Anderson, 1994). We
implemented a reward condition inspired by the IGT such that
there are two high and two low reward options, with a low
and high variance version of each. We also constructed two
conditions with equally spaced means, but with either uni-
formly low variance or uniformly high variance. Lastly, the
equal means condition had identical means and gradually in-
creasing variance, such that we can observe the influence of
uncertainty independent of mean reward.

Behavioral Results
Participants acquired higher rewards in the unlimited than in
the limited time condition (Fig. 2b; t(98) = 3.1, p = .002,
d = 0.3, BF = 10). Participants also improved over trials,
signified by an average correlation between trial and rewards
(Spearman’s ρ(98) = 0.16, p < .001, BF > 100). This cor-
relation did not differ between limited and unlimited time
rounds (t(98) =−1.3, p = .196, d = 0.1, BF = .25).

We also compared performance across payoff conditions.
This is possible, since all games had the same expected re-
ward under the assumption of a random sampling strategy.
We found that participants performed better in the IGT-like
condition than in the low variance condition (t(98) = 3.2,
p = .002, d = 0.3, BF = 14). We see an even larger dif-
ference when comparing the low variance and high variance
conditions, which had the same means but different levels of
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Figure 2: Payoff conditions and behavioral results. a) Four different payoff conditions were combined with either limited or unlimited
time rounds to create 8 different scenarios. Each condition specifies a normal payoff distribution for each option; the means and variances
are shown in Table 1. Each dot represents a randomly drawn payoff, while the Tukey boxplots and half violin plots show the distribution for
100 simulated draws. Note that rewards were randomly shifted in each round by adding a constant ∼U(30,60) to all payoffs. b) Learning
curves of average participant performance (using unshifted rewards) over trials by payoff condition. Ribbons indicate standard error. c)
Choice proportions (normalized for chance) for each option, mapped to the canonical ordering shown in panel a). d) The entropy of choices
in each round, where higher entropy corresponds to more diverse choices and the dotted line indicates random chance (i.e., playing each arm
with equal probability). Each dot represents a participant, and overlaid are Tukey boxplots with the diamond indicating the group mean. e)
Distributions of reaction times in milliseconds (ms) and shown on a log scale. The vertical dotted line indicates the time limit (400 ms) of the
limited time condition

risk and uncertainty. Participants performed substantially bet-
ter in the low variance condition than the high variance condi-
tion (t(98) = 6.2, p < .001, d = 0.6, BF > 100). Thus, higher
variance increased the difficulty of the task. Lastly, partici-
pants performed better in the high variance than in the equal
means task (t(98) = 25.5, p < .001, d = 2.6, BF > 100),
which is intuitive since improvement is not possible if all
arms have the same mean reward.

Choice proportions. Figure 2c shows the proportion of
choices, which illustrates differences across time conditions.
We used a Bayesian mixed-effects logistic regression and

found that in the IGT condition, participants chose the high
reward-low variance option (indicated as ‘O’ in Fig. 2c) less
frequently in the unlimited time than in the limited time con-
dition (β̂ = −.22, 95% Highest Posterior Density (HPD) in-
terval: [−.28,−.15], BF > 100)1.

Additionally, we also find differences across time-pressure
conditions in the Equal Means task, where participants se-
lected the highest variance option (‘P’) more frequently in
the unlimited time condition β̂ = .11, 95% HPD: [.05, .17],

1We use Bridge sampling (Gronau, Singmann, & Wagenmak-
ers, 2017) to approximate the Bayes Factor by comparing against an
intercept-only null model (i.e., without time pressure as a predictor).
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BF = 15). This illustrates a shift in preferences away from
uncertain options when time pressure is introduced. Whereas
participants tend to be risk-seeking and choose highly uncer-
tain options under unlimited time, they become more risk-
averse and choose them less often under time pressure.

We also calculated the Shannon entropy of participants’
choices in each round (Fig. 2d), where higher entropy corre-
sponds to higher diversity of choices and the maximal entropy
strategy would be to choose each option an equal number of
times (indicated by the dotted line). Averaged across partic-
ipants, we find higher choice entropy (i.e. more diversity in
choice) under unlimited time than limited time (t(98) = 4.1,
p < .001, d = 0.4, BF > 100). This further strengthens the
evidence for reduced exploration under time pressure, since
we find a lower diversity of choices.

Reaction times. Figure 2d shows reaction times. Unsur-
prisingly, participants responded faster in the limited time
than in the unlimited time conditions (comparing RTs in log-
ms: t(98) = 9.7, p < .001, d = 1.0, BF > 100). There were
no differences across payoff conditions (F(3,95) = 0.12,
p = .951, BF = 0.01).

Model-Based Analyses
In order to model learning and decision making in our task,
we use a Bayesian mean tracker (BMT) as a reinforce-
ment learning model for estimating rewards and uncertainties,
which are then updated based on prediction error. The BMT
is a variant of a Kalman filter, but assumes a time-invariant
reward distribution (as is the case in our experiment) instead
of a dynamically changing one. Both models use an updating
rule based on prediction error, and have been described as a
Bayesian extension of the classic Rescorla-Wagner model of
associative learning (Gershman, 2015). Variants of the BMT
have been used to describe human behavior in a variety of
multi-armed bandit and decision-making tasks (Gershman,
2018, in press; Yu & Dayan, 2003; Schulz, Konstantinidis,
& Speekenbrink, 2015; Dayan, Kakade, & Montague, 2000;
Speekenbrink & Konstantinidis, 2015).

The BMT learns a posterior distribution over the mean re-
ward µ j for each option j. Rewards are assumed to be nor-
mally distributed with a known variance but unknown mean.
The prior distribution of the mean is also a normal distribu-
tion. This implies that the posterior distribution for each mean
is also a normal distribution:

p(µ j,t |Dt−1) = N (m j,t ,v j,t) (1)

where Dt−1 denotes the previously observed rewards for all
options. For a given option j, the posterior mean m j,t and
variance v j,t are only updated when it has been selected at
trial t:

m j,t = m j,t−1 +δ j,tG j,t [yt −m j,t−1] (2)
v j,t = [1−δ j,tG j,t ]v j,t−1 (3)

where δ j,t = 1 if option j is chosen on trial t, and 0 otherwise.
Additionally, yt is the observed reward at trial t, and G j,t is

defined as:
G j,t =

v j,t−1

v j,t−1 +θ2
ε

(4)

where θ2
ε , referred to as the error variance, is the variance of

the rewards around the mean. For our model-based analysis,
we set the error variance to 1 (which led to competitive task
performance in prior simulations).

Intuitively, the estimated mean of the chosen option m j,t is
updated based on prediction error, which is the difference be-
tween the observed reward yt and the prior expectation m j,t−1,
multiplied by learning rate G j,t ∈ [0,1]. At the same time, the
estimated variance v j,t of the chosen option is reduced by a
factor 1−G j,t . The error variance (θ2

ε) can be interpreted
as an inverse sensitivity, where smaller values result in more
substantial updates to the mean m j,t , and larger reductions of
uncertainty v j,t . We set the prior mean to m j,0 = 45 and the
prior variance to v j,0 = 55 based on the expectation across
payoff conditions.2

Results
We followed Gershman (in press) and generated predictions
from the BMT by feeding in a participant’s observations on
a particular round until time t, and then predicting the mean
and standard deviation for each option at time point t + 1.
We used the resulting predictions of rewards and uncertainties
to conduct three model-based analyses of choices, reaction
times, and evidence accumulation.

Choices. In our first analysis, we assessed how the pre-
dicted mean and uncertainty of an option affected the like-
lihood of it being chosen on each trial (estimated separately
for limited and unlimited time conditions). We applied hierar-
chical Bayesian inference to estimate the parameters of a soft-
max policy, under the assumption that a participant’s choice
on each trial is influenced by both the predicted mean and
uncertainty of an option, where each participant’s parameters
are assumed to be jointly normally distributed. The probabil-
ity of choosing option j on trial t is a softmax function of its
decision value Q j,t :

P(Ct = j) =
exp(Q j,t)

∑
4
k=1 exp(Qk,t)

. (5)

The decision value Q j,t is a linear function of the estimated
mean m j,t and uncertainty √v j,t (estimated as a standard de-
viation) of each option according to the BMT:

Q j,t = β1m j,t +β2
√

v j,t . (6)

Formally, we assume that the β-coefficients for each partici-
pant βi = (β1,i,β2,i) are drawn from a normal distribution

βi ∼N (µβ,σ
2
β
), (7)

2We use the shifted reward values that were observed by partic-
ipants, where the means in each condition were centered on 0 and
shifted by U(30,60).
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Figure 3: Posterior parameter estimates. a) Effects of BMT predicted mean rewards (β̂1) and uncertainties (β̂2) on an option’s probability of
being chosen, estimated by a hierarchical Bayesian softmax regression. b) Influence of BMT means (β̂1) and uncertainties (β̂2) on participant
response times, estimated by a hierarchical Bayesian linear regression. c) Influence of BMT means (β̂1) and uncertainties (β̂2) on drift rates
in a Bayesian Linear Ballistic Accumulator model. In all plots, the vertical dashed line indicates an effect of 0, while the black dot indicates
the mean effect and confidence intervals show the 95% highest posterior density (HPD).

and we estimate the group-level mean µβ and variance over
participants σ2

β
. We used the following priors on the group-

level parameters:

µβ ∼N (0,100) (8)

σβ ∼ Half-Cauchy(0,100) (9)

In each time condition, we arrive at group-level parameter es-
timates describing how expected rewards (β1) and uncertainty
(β2) influence choice probability under the softmax policy.

We estimated the hierarchical model using Hamiltonian
Markov chain Monte Carlo sampling with PyMC3 (Salvatier,
Wiecki, & Fonnesbeck, 2016). The results (Fig 3a) show that
the expected value of an option increased choice probability
for both the limited time (β̂1 = .11, 95% HPD: [.10, .13]) and
the unlimited time conditions (β̂1 = .19, 95% HPD: [.17, .2]).
Options estimated to have higher expected rewards were more
likely to be chosen in both conditions, with a stronger effect
in the unlimited time conditions.

Notably, we found contrasting effects of uncertainty on
choice probability. In the unlimited time conditions, un-
certainty had a positive effect on choice probability (β̂2 =
.26, 95% HPD: [.16, .36]). This replicates previous find-
ings reported in two-armed bandit tasks without time pressure
(Gershman, 2018, in press). However, uncertainty had a neg-
ative effect on choice probability in the limited time condition
(β̂2 = −.10, 95% HPD: [−.18,−.02]). Thus, whereas par-
ticipants sought out uncertain options in the unlimited time
condition, they shunned uncertain options in the limited time
condition.
Reaction Time. Our second analysis looked at how the es-
timated means and uncertainties of options influenced reac-
tion times. We normalized the BMT predictions of mean re-
ward and uncertainty by calculating the difference between

the chosen option and the average of the unchosen options
on each trial. Thus, positive values indicate that expected
reward/uncertainty are relatively larger than those of the un-
chosen options. We regressed these normalized means and
uncertainties onto participant log reaction times3 in a hierar-
chical Bayesian linear regression, using the same priors over
the β-coefficients as before (Eq. 9).

The resulting posterior parameter estimates (Fig. 3b) show
that participants were faster at choosing options with rela-
tively higher expected reward in both conditions, but with
a stronger effect in the unlimited (β̂ = −.01, 95% HPD:
[−.013,−.008]) than in the the limited time condition (β̂ =
−.004, 95% HPD: [−.005,−.002]). Furthermore, partic-
ipants were slower at choosing options with higher rela-
tive uncertainty in both the limited (β̂ = .02, 95% HPD:
[.01, .03]) and the unlimited conditions (β̂ = .03, 95% HPD:
[.02, .04]). Thus, whereas higher relative value made par-
ticipants act faster, higher relative uncertainty slowed them
down. This differs from previous findings using two-armed
bandits (Gershman, in press), which showed higher relative
uncertainty makes participants choose faster.

Evidence Accumulation. In our third analysis, we used
the Linear Ballistic Accumulator (LBA; Brown & Heathcote,
2008) to model choices and reaction times simultaneously.
This model assumes that choices are the result of a process in
which evidence for each option is accumulated continuously
over time, and that option is chosen for which the accumu-
lated evidence first exceeds a set decision threshold.

Formally, the LBA assumes that, after an initial period of
non-decision time τ, evidence for an option j on trial t ac-
cumulates at a rate of v j,t , starting from an initial evidence

31 ms was added to each RT to avoid log(0). Additionally, RTs
were truncated at 5000 ms.
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level p j,t ∼U(0,A). Evidence accumulates for each option j
until a threshold b is reached. We follow the Bayesian imple-
mentation proposed by Annis, Miller, and Palmeri (2017) and
assume that the priors for the drift rates stem from truncated
normal distributions

v j,t ∼N (2,1) ∈ (0,∞). (10)

Additionally, we assume a uniform prior on non-decision
time

τ∼ Uniform(0,1), (11)

and a truncated normal prior on the maximum starting evi-
dence

A∼N (0.5,1) ∈ (0,∞). (12)

Finally, we reparameterized the model by shifting b by k units
away from A, and put a truncated normal distribution as the
prior on the resulting relative threshold k:

k ∼N (0.5,1) ∈ (0,∞). (13)

We estimated the LBA parameters for each participant in
every round using No-U-Turn Hamiltonian MCMC (Hoffman
& Gelman, 2014), with reaction times truncated at 5000
ms. Participants had higher mean drift rates under limited
time compared to unlimited time (t(98) = 7.1, p < .001,
d = 0.7, BF > 100), consistent with the need to arrive at de-
cisions more quickly. Participants in the limited time con-
ditions also had shorter non-decision times τ (t(98) = −4.6,
p < .001, d = 0.5, BF > 100), less maximum starting evi-
dence A (t(98) = −7.8, p < .001, d = 0.8, BF > 100), and
lower relative thresholds k (t(98) =−5.2, p < .001, d = 0.5,
BF > 100), compared to participants in the unlimited time
conditions. Thus, our LBA results confirm the intuition that
participants thought more carefully about different options
given unlimited time.

We then regressed the BMT predictions of relative ex-
pected reward and relative uncertainty for each option onto
its estimated drift rate using a Bayesian linear regression. The
result of this analysis revealed that the relative expected value
of an option had a positive effect on drift rate for both the
limited (β̂ = .43, 95% HPD: [.41, .44]; see Fig. 3c) and un-
limited time conditions (β̂ = .48, 95% HPD: [.46, .49]), with
a stronger effect in the latter. Conversely, relative uncertainty
had a negative effect on drift rate, which was larger in mag-
nitude for the limited (β̂ = −.59, 95% HPD: [−.61,−.58])
than for the unlimited time conditions (β̂ =−.38, 95% HPD:
[−.39,−.36]). Thus, the behavioral patterns in Figure 2b sug-
gest that uncertainty reduced the rate of evidence accumula-
tion, with a stronger effect under time pressure than in the
unlimited time conditions.

Discussion and Conclusion
How do people explore uncertain options under time pres-
sure? We investigated this question using several variants of

a four-armed bandit task with continuous rewards, while ma-
nipulating the available decision time to be either unlimited
or limited to less than 400 ms.

Our models showed that higher relative uncertainty made
an option more likely to be chosen in the absence of time
pressure. This matches previous findings showing evidence
for an exploration bonus consistent with directed exploration
(Gershman, in press). However, putting participants under
time pressure inverted this relationship, and caused uncer-
tainty to reduce the probability that an option was chosen.
Thus, the uncertainty bonus found in standard multi-armed
bandit tasks can turn into an uncertainty penalty when peo-
ple are under time pressure. This is similar to findings from
description-based gambles, where time pressure increased
risk aversion (Nursimulu & Bossaerts, 2013).

We also found that relative uncertainty slowed down
choices and dampened evidence accumulation. These results
suggest that uncertainty can have reversible effects on pref-
erence: sometimes people seek out uncertainty, and some-
times they actively avoid it. Both of these cases suggest peo-
ple track uncertainty in their expectations, and that uncer-
tainty feeds into the decision-making process. This is similar
to what has been observed in tasks that directly elicit confi-
dence judgments (Boldt, Blundell, & De Martino, 2017; Sto-
jic, Schulz, Analytis, & Speekenbrink, 2018; Schulz, Wu,
Ruggeri, & Meder, 2018; Wu, Schulz, Garvert, Meder, &
Schuck, 2018), while previous work has shown that changing
the context from only gains to adding risky options can also
cause a shift from actively seeking uncertainty to avoiding it
(Schulz, Wu, Huys, Krause, & Speekenbrink, 2018).

Our results provide a richer understanding of the cogni-
tive processes underlying human learning and exploration.
While we found evidence that time pressure reduces di-
rected exploration—consistent with directed exploration be-
ing a controlled and reasoned process—we did not pre-
dict uncertainty avoidance under time pressure. Together
with the finding that relative uncertainty slowed down re-
action times and dampened evidence accumulation, our re-
sults suggest that time pressure does not eliminate the
ability to track uncertainty. Rather, it alters attitudes
towards it, from seeking out uncertainty to avoiding it.
Future studies should therefore investigate the conditions
that cause uncertainty-seeking or uncertainty-avoidance and
test whether uncertainty-avoidance is a deliberate behavior
(Schulz, Klenske, Bramley, & Speekenbrink, 2017).
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Preschoolers jointly consider others expressions of surprise and common ground
to decide when to explore

Yang Wu
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Abstract

Prior work on early social learning suggests that children are sensitive to adults pedagogical demonstrations and ver-
bal instructions. Yet, people also display various emotional expressions when interacting with children. Here we show
that young children draw rich causal inferences and guide their own exploration based on others expressions of surprise.
Preschoolers (age:3.0-4.9) saw an experimenter discover a function of a novel causal toy. Then, either the same experi-
menter or a nave confederate expressed surprise while playing with the toy behind an occluder. Children explored the toy
more broadly to search for a hidden function following the experimenters surprise than following the confederates surprise,
suggesting that children integrated others expressions of surprise and others epistemic states to infer the presence of hidden
functions and explore accordingly. This study synthesizes perspectives from literature on social learning, exploration, and
affective cognition towards a more comprehensive science of learning. Preprint:https://psyarxiv.com/ckh6j

1226



A predictability-distinctiveness trade-off in the historical emergence of word forms
Aotao Xu (a26xu@uwaterloo.ca)

Computer Science Program, University of Waterloo

Christian Ramiro (chrisram@berkeley.edu)
Cognitive Science Program, University of California, Berkeley

Yang Xu (yangxu@cs.toronto.edu)
Department of Computer Science, Cognitive Science Program, University of Toronto

Abstract

It has been proposed that language evolves under the joint con-
straints of communicative expressivity and cognitive ease. We
explore this idea in the historical emergence of word forms.
We hypothesize that new word forms that enter the lexicon
should reflect a trade-off between predictability and distinc-
tiveness. An emergent word form can be highly predictable if
it efficiently reuses elements from the existing word forms, re-
sulting in low cognitive load. An emergent word form should
also be sufficiently distinctive from the existing lexicon, facil-
itating communicative expressivity. We test our hypothesis by
examining the properties of 34,478 emergent word forms over
the past 200 years of Modern English. We show how word
forms at future time t + 1 are bounded statistically between
n-gram generated word forms (highly predictable) and slang
words that are outside the standard lexicon (highly distinctive)
at time t. Our work supports the view of cognitive economy in
lexical emergence.

Keywords: word form; lexicon; lexical emergence; language
evolution; cognitive economy

Introduction
The lexicon is a central locus of human thought, but it un-
dergoes constant change over time. In particular, new words
may emerge due to changing sociocultural needs, resulting in
growth of the lexicon. Taking the English lexicon as an exam-
ple, it has grown by approximately tenfold over the past mil-
lennium, with more than 150,000 word forms having emerged
from the period of Old English to the present day (Figure 1a).
Here we ask what principles might underlie the historical
emergence of word forms above and beyond the external so-
ciocultural factors that could influence lexical emergence.

Our starting point is the idea that language evolves under
the dual considerations of communicative function and cogni-
tive effort (Labov, 2011; Jespersen, 1959; Otto, 1956; Kirby,
Tamariz, Cornish, & Smith, 2015), a prominent proposal that
has been framed similarly in linguistics as the principle of
least effort (Zipf, 1949) and in cognitive psychology as the
principle of cognitive economy (Rosch, 1978). This pro-
posal also relates to a growing line of research that explores
design principles of language through the lens of efficient
communication (Piantadosi, Tily, & Gibson, 2012; Kemp &
Regier, 2012; Kemp, Xu, & Regier, 2018). Most relevant to
the current study is work by Labov who suggests that words
may be selected under the joint constraints of least effort (cf.
Zipf, 1949)—a drive for cognitive ease of production, and the
competing force of communicative informativeness (Labov,

2011). There is evidence for each of these constraints in the
design of word forms. For example, it has been shown that
word forms that conform to well-formed phonotactic prop-
erties can facilitate production (Edwards, Beckman, & Mun-
son, 2004), and words that sound similar to many existing
words, or having dense lexical neighbourhoods, tend to re-
duce speech error (Stemberger, 2004). On the other hand,
separate work has suggested that perceptual distinctiveness
matters in the lexicon because it minimizes confusion and fa-
cilitates clarity in communication (Flemming, 2004; Meylan
& Griffiths, 2017).

We extend previous work by exploring principles in the
historical emergence of novel word forms. We believe that
the same proposal of language evolution should apply to ex-
plaining how new word forms enter the lexicon over time.
In particular, we hypothesize that the emergence of word
forms should trade off predictability against distinctiveness.
An emergent word form is highly predictable if it efficiently
recombines elements from existing word forms, resulting in
low cognitive effort in production and memory. Our notion
of predictability is rooted in classic work by Shannon (1951)
on the information analysis of English text. However, this
criterion of predictability is likely in competition with dis-
tinctiveness: An emergent word form should be sufficiently
distinctive from words in the existing lexicon, hence gener-
ating minimal confusion and facilitating communicative ex-
pressivity. Predictability and distinctiveness trade off against
each other because a highly predictable word form is neces-
sarily similar in form to existing words, so it is unlikely to be
distinctive. Similarly, a highly distinctive word form is nec-
essarily novel in its composition, so it is unlikely to be very
predictable. Here we examine the possibility that the emer-
gent word forms in history are shaped under these two joint
forces, such that they appear sandwiched between (plausible)
word forms that are highly predictive and those that are highly
distinctive (see Figure 1b for illustration).

We test our hypothesis by examining new word forms that
entered the Modern English lexicon over the past 200 years.
At each future decade t + 1, we compare the actual emer-
gent words against a control set of computer-generated words
and slang words that did not enter the standard lexicon up to
the previous decade t. We show how the actual word forms
are interleaved between the highly predictable and distinctive
control words in terms of their statistical properties.
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Figure 1: Illustration of the phenomenon of lexical emergence and our hypothesis. a) Growth of the English lexicon over the
past 800 years based on data from the Historical Thesauraus of English (HTE). Lexicon size represents the number of unique
word forms that exist during this period, and examples of emergent words are shown at respective years of emergence. b) The
hypothesis that emergent words (middle) at future time t+1 should reflect a trade-off between predictability and distinctiveness
among the space of plausible word forms (on the two sides) given the current lexicon at time t, or effectively sandwiched.

Materials and Methods
We analyzed 34,478 word forms during each decade from
1800 to 1980 as recorded in the Historical Thesauraus of En-
glish (HTE) (Kay, Roberts, Samuels, & Wotherspoon, 2017)
(https://ht.ac.uk/) which is based on the Oxford En-
glish Dictionary. We considered single-word lexemes that
are composed of 26 English letters (a-z) and took the first
year recorded in HTE for a given word form as its emerging
date. We focused our analysis on the Modern English pe-
riod due to both orthographic and phonetic changes in words
during the remote periods of Old English and Middle En-
glish (Baugh & Cable, 1993, p279), and the lack of control
words for the same periods that is critical for our analyses.
We grouped word forms according to the lengths of their or-
thographic forms, and we considered lengths ranging from
4 to 9 because lengthier words are more likely formed due to
rule-based compositional strategies (Krott, 1996). The group-
ing by word length is necessary because longer words are by
chance more distinctive in form than shorter words, so a prin-
cipled analysis of our trade-off hypothesis should be inde-
pendent of length. We focus on reporting results based on or-
thographic forms, although we observed similar results with
phonological forms that we do not include here due to space
limit.

We used two standard measures to quantify the statis-
tical properties of word forms along the predictability–
distinctiveness dimension: letter n-gram probability and lex-
ical neighbourhood density. We quantify the two measures
for word forms at a future decade t + 1 based on statistical
properties of the existing lexicon at a decade earlier at t. For-
mally, we define the probability of an emergent word form
w of length |w| by using the n-gram probabilities of its con-

stituent letters (or phonemes), extending the classic work by
Shannon on information analyses of English words (Shannon,
1951):

pt+1(w) =
|w|

∏
i=1

pt(li|l<i) (1)

= pt(l1|·)× pt(l2|l1)× pt(l3|l2, l1)× (2)
... ×pt(l|w||l|w|−1, ..., l1)

Equations 1-2 effectively estimate how probable a novel
word form w would be at decade t+1 given the n-gram statis-
tics at the current decade t. We considered n-gram of up to
order 5 because statistics of higher orders are sparse and pro-
hibitively expensive to compute. Under this measure, a highly
predictable word form at t + 1 for a given length should be
one that maximizes the n-gram probability based on the lex-
ical statistics at t. On the contrary, a highly distinctive word
form should have low predictability that minimizes the same
probability measure.

To ensure the robustness of our approach, we considered
lexical neighbourhood density as an alternative measure. We
define the neighbourhood density of an emergent word form
w based on how similar it is to existing word forms v in the
lexicon at time t (Lt ), grounded in the psycholinguistic study
of English word forms by Bailey and Hahn (2001):

NDt+1(w) = ∑
v∈Lt

e−d(w,v) (3)

Equation 3 effectively estimates how crowded a novel word
form w would be at decade t + 1 given existing word forms
at the current decade t. We used the standard Levenshtein
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edit distance for calculating d(·, ·) that considers if two word
forms are similar or distant based on the number of edits re-
quired to match the forms via insertion, deletion, or substitu-
tion (Yarkoni, Balota, & Yap, 2008; Bailey & Hahn, 2001).
For example, the edit distance between “cat” and “maths”
is 3 since the edit involves one substitution and two inser-
tions. Similar to the case of the n-gram measure, a highly
predictable word form at a given length should be one that
maximizes neighbourhood density at t + 1. On the contrary,
a highly distinctive word form should not be crowded and
hence minimizes its lexical neighbourhood density.

To evaluate the hypothesis that emergent word forms trade
off predictability against distinctiveness, we considered a set
of control word forms that are representative of the extremi-
ties of this dimension yet did not formally enter the English
lexicon. Our goal is to assess whether the trade-off hypoth-
esis might explain why certain word forms have entered the
lexicon over time, whereas other plausible forms have not ap-
peared. Because the set of all possible word forms is enor-
mous (e.g., there are over 10 million possible word forms of
length 5 that did not appear in English up to 1980), we chose
control words by focusing on word forms that are either likely
to be very predictable or distinctive.

We first obtained the predictable control set by generating
word forms according to the n-gram probability measure in
Equations 1-2. At each yet-to-emerge decade, we sampled
these word forms from the n-gram statistics obtained from
the previous decade in a sample size that matches the number
of the emergent words. The sample does not intersect with
the lexicon, but it can intersect with the set of actual emerg-
ing words. We then partitioned these control words by length
and calculated their n-gram probabilities and neighbourhood
densities according to Equations 1-3. This control word set
approximates the extremity of predictability because the can-
didates are directly generated from the distribution of the ex-
isting lexicon, so they should be statistically equivalent to the
existing word forms in the lexicon. Because n-gram probabil-
ity correlates with neighbourhood density (Sanders & Chin,
2009), we also expect this word set to have high (but not nec-
essarily the maximal) neighbourhood density. If the trade-off
hypothesis is correct, the emergent word forms should gener-
ally have lower but not near-identical n-gram probability and
neighbourhood density to this control set.

We next obtained the distinctive control set by sampling
word forms from slang that did not enter the standard En-
glish lexicon. Slang is likely to represent the extremity of
distinctiveness because slang words are known to differ from
the standard lexicon (Mattiello, 2008, 2013), and 2) they
serve as a more conservative measure for plausible word
forms (plausible because a subset of slang can eventually
become actual words (Baugh & Cable, 1993, p293)) than
random samples of non-existent word forms that can be dis-
tinctive but not permissible, e.g., “jxyzh” is very distinc-
tive from existing words in English but it is not permissi-
ble based on the knowledge of English. We drew data from

a large online resource, the Urban Dictionary (https://
www.urbandictionary.com/), for this control set. We used
word forms containing only the letters a-z conforming to the
same selection standard with the emergent words. During
each decade of interest, we excluded homographs of word
forms or words that have overlapping lemma in the lexi-
con via the lemmatizer from the Natural Language Toolkit
(NLTK) (Bird, Klein, & Loper, 2009). We then sampled
from the rest of the 317,403 unique word forms in matching
size to the emergent lexicon per length, and calculated the n-
gram and neighbourhood statistics for these word forms. If
the trade-off hypothesis is correct, the emergent word forms
should generally have higher but not near-identical n-gram
probability and neighbourhood density to this control set.

Results

We evaluated our hypothesis by first examining whether
newly emerging word forms tend to fall between predictable
control words and distinctive (slang) control words in terms
of n-gram probability and lexical neighbourhood density. At
each decade, we compared the actual emergent word forms
to the two sets of control words of the same length under the
two measures separately. We took the average values of the
two measures for each word group and every length that we
examined.

Figure 2 summarizes the results for these comparisons for
every decade from 1800 to 1980 and word forms of lengths
4 to 9. In most cases, we observed that the emergent word
group is situated in the middle between the predictable and
distinctive control word sets, and the rank order of these three
groups based on n-gram probability and neighbourhood den-
sity conforms to our prediction. Specifically, the predictable
control words exhibit the highest mean predictability, man-
ifested in the highest overall n-gram probability (or equiva-
lently, the lowest overall negative logarithmic n-gram prob-
ability) and lexical neighbourhood density among the three
groups. In comparison, the slang/distinctive control words
exhibit the highest mean distinctiveness, manifested in the
lowest overall n-gram probability and neighbourhood den-
sity. The emergent word group tends to fall in between the
two control groups.

To evaluate the significance of these trade-offs, we tested
a null hypothesis for each comparison between the emergent
group and each of the control groups. The null hypothesis
is that the mean estimate of the emergent word set does not
differ in n-gram probability or lexical neighbourhood density
from each of the control sets. We tested this by performing a
two-tailed t-test for every comparison. Across different word
lengths and time periods, we observed consistent evidence for
rejecting the null hypothesis (see Figure 3; the variations in
the magnitude of p values correlate with time and changing
sample sizes, as the number of actual emergent words are dif-
ferent in every decade). These results show that the emergent
words are significantly different from the control words.
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Figure 2: Summary of main results on the trade-off hypothesis of lexical emergence. Each of the panels summarizes the
results computed under one of the two measures: a) n-gram probability (negative logarithm) and b) neighbourhood density.
The vertical axes represent magnitudes under these two measures, and the horizontal axis represents the temporal dimension
where each tick corresponds to one decade over the period between 1800 and 1980. Each subplot corresponds to the results for
word forms of a different length as specified. Dots (green), stars (red), and circles (blue) correspond to the n-gram (predictable)
control words, the actual emergent words, and the slang (distinctive) control words, respectively. Each error bar indicates a
95% confidence interval (constructed from the t-distribution) for the estimated mean value of the control group. This confidence
level is uncorrected for multiple comparisons, and we expect 5% of all intervals to exclude emergent word groups by chance.
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Figure 3: Time courses of p-values. Panels on the left sum-
marize the comparison of the emergent word sets against the
corresponding predictable control sets. Panels on the right
summarize similar comparisons against the distinctive con-
trol sets. The comparisons were based on the measures from
a) n-gram probability and b) neighbourhood density. The ver-
tical axis indicates p-values from the t-tests in logarithmic
scale, and the horizontal axis represents the time dimension
in decades. The black dashed line represents the significance
level p = 0.05. For each measure, we made 216 simultaneous
uncorrected tests, so we expect 11 rejections by chance.

To assess the robustness of these findings, we performed
similar analyses based on 1) word forms defined in phono-
logical space as opposed to orthographical space; 2) alterna-
tive lexicons obtained by excluding morphologically derived
words from the HTE data; 3) an alternative control set based
on slang words from a historical resource as opposed to a
modern resource. We found that the effects are robust to this
variation in design choices, and we omit the details of these
analyses due to space constraints. In sum, this set of results
provide empirical evidence for our proposal that emerging
word forms reflect a trade-off between predictability and dis-
tinctiveness and suggest why certain words have entered the
lexicon over time, but others have not.

As a follow-up analysis, we assessed whether we can reli-
ably predict emergent word forms from possible words that
did not formally enter the lexicon. In particular, we per-
formed a simple logistic regression analysis to predict the
identity of each word form from the three groups: emer-
gent words, predictable control words, and distinctive con-
trol words. We applied a logistic classifier with L2 penalty
and the multinomial loss function using the scikit-learn
package (Pedregosa et al., 2011). For each future decade,
we trained the classifier using data from the previous decade
t and used the same classifier to make predictions for data
from t +1. We used three feature sets for classification: 1) n-
gram probabilities of words from the three groups; 2) lexical

neighbourhood densities of the same words; 3) a combination
of their n-gram probabilities and neighbourhood densities.

In general, we observed that predictive accuracies of the
three word groups are above chance (33.3% for a three-way
classification) under all three feature choices for each decade
and length that we considered (predictive accuracy when us-
ing neighbourhood density, mean = 43.0%, and standard de-
viation across word length groups and time periods, SD =
4.2%; using n-gram probability, mean= 61.0%, SD = 3.6%;
using the combined features, mean= 61.0%, SD = 3.6%).
We noted that the above-chance predictive accuracies are sus-
tained over time, suggesting the trade-off holds generally and
not just for certain periods in the history of Modern English.
We also noted that the n-gram model performed generally
better than the neighbourhood density model, partly because
one of the control word groups was directly simulated using
n-gram statistics.

Overall, these findings suggest that there are predictable
differences in the compositional structure of emergent word
forms and that of n-gram generated and slang word forms
from the control groups.

Figure 4 further demonstrates the trade-off idea with three
example word forms chosen from the three word groups in the
1930s, along with their nearest-neighbour word forms mea-
sured by edit distance from the same period. The emergent
word form “macro” reflects a trade-off in neighbourhood den-
sity: It has fewer 1-edit lexical neighbours (6) than the highly
predictable n-gram generatd word “codet” (9 neighbours), but
it has more neighbours than the highly distinctive slang word
“porph” that has the fewest neighbours (3).

codet comet
covetcodegodetcodel

codexcadet coded coder

Neighbours of n-gram form "codet"

macro macrio
mucromaro

macron
micro macho

Neighbours of emergent word "macro"

porph porch
morph

porth

Neighbours of slang word "porph"

a

b

c

Figure 4: Demonstration of the predictability-distinctiveness
trade-off. Panels a), b), and c) show an example word form
and its lexical neighbours from the lexicon in the 1930s under
the n-gram control set, emergent word set, and slang control
set, respectively. The examples are placed in the center, sur-
rounded by their neighbours. Each example word is exactly
one edit distance away from each of its neighbours.
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Conclusion

We have shown that the historical emergence of English word
forms follows a trade-off between predictability and distinc-
tiveness. This trade-off is manifested in the properties of
emergent words that straddle between 1) highly predictable
computer-generated word forms that conform to statistical
properties of the existing lexicon, and 2) highly distinctive
word forms originated from slang that had not yet enter into
the standard lexicon. We have suggested that such a trade-off
may reflect the general principles of language evolution dis-
cussed in prior work, under the joint functional pressures for
communicative expressivity and cognitive ease (Labov, 2011;
Jespersen, 1959; Otto, 1956). Future research should explore
whether the same set of principles holds in the emergence of
word forms in languages other than English and how word
forms interact with meaning (cf. Ramiro, Srinivasan, Malt, &
Xu, 2018) in lexical evolution.
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Abstract

The ability to estimate task difficulty is critical for many real-world decisions such as setting appropriate goals for ourselves
or appreciating others’ accomplishments. Here we give a computational account of how humans judge the difficulty
of a range of physical construction tasks (e.g., moving 10 loose blocks from their initial configuration to their target
configuration, such as a vertical tower) by quantifying two key factors that influence construction difficulty: physical effort
and physical risk. Physical effort captures the minimal work needed to transport all objects to their final positions, and is
computed using a hybrid task-and-motion planner. Physical risk corresponds to stability of the structure, and is computed
using noisy physics simulations to capture the costs for precision (e.g., attention, coordination, fine motor movements)
required for success. We show that the full effort-risk model captures human estimates of difficulty and construction time
better than either component alone. Preprint link https://arxiv.org/abs/1905.04445.

1233



Tensions Between Science and Intuition in School-Age Children 
 

Andrew G. Young (ayoung2@oxy.edu), Isabel Geddes, Claire Weider, & Andrew Shtulman 
(shtulman@oxy.edu) 

Department of Psychology, Occidental College 
1600 Campus Road, Los Angeles, CA 90041 

 
Abstract 

Adults with extensive science education exhibit cognitive 
conflict when reasoning about counterintuitive scientific 
ideas, such as whether clouds have weight or whether bacteria 
need nutrients. Here, we investigated whether elementary-
school-aged children show the same conflict and whether that 
conflict can be reduced by targeted instruction. Seventy-eight 
5- to 12-year-olds verified, as quickly as possible, statements 
about life and matter before and after a tutorial on the 
scientific properties of life or matter. Half the statements were 
consistent with intuitive theories of the domain (e.g., “frogs 
reproduce”) and half were inconsistent (e.g., “cactuses 
reproduce”). Participants verified the latter less accurately and 
more slowly than the former, both before instruction and 
after. Instruction increased the accuracy of participants’ 
verifications for counterintuitive statements within the 
domain of instruction but not their speed. These results 
indicate that children experience conflict between scientific 
and intuitive conceptions of a domain in the earliest stages of 
acquiring scientific knowledge but can learn to resolve that 
conflict in favor of scientific conceptions. 
 
Keywords: conceptual development, scientific reasoning, 
explanatory coexistence, intuitive theories 

Introduction 
Our first theories of natural phenomena are often 
incompatible with the scientific theories we learn later in 
life. We first conceive of heat as an invisible substance that 
flows in and out of objects rather than kinetic energy at the 
molecular level (Reiner, Slotta, Chi, & Resnick, 2000). We 
conceive of forces as properties imparted to objects, 
propelling them forward, rather than as interactions between 
objects, changing their velocity (McCloskey, 1983). Colds 
and flus are thought to be caused by cold air rather than a 
virus (Au et al., 2008). And lunar phases are thought to be 
caused by the earth’s shadow on the moon rather than our 
changing view of the moon’s illuminated surface (Trundle, 
Atwood, & Christopher, 2002). 

Our first theories are known as folk theories, naïve 
theories, or intuitive theories. They are developed by 
children from a variety of inputs, including innate biases, 
firsthand experience, cultural artifacts, and cultural beliefs 
(Carey, 2009; Shtulman, 2017; Vosniadou, 1994). Intuitive 
theories play the same inferential role as scientific theories, 
helping us explain past events, predict future events, and 
intervene on present events (Gopnik & Wellman, 2012). 
They differ from scientific theories, however, in that they 
carve up the world into entities and processes that do not 
align with the true causes of natural phenomena. 

One well-studied example of intuitive theories are 
children’s theories of life (Hatano & Inagaki, 1994; 

Slaughter & Lyons, 2003; Stavy & Wax, 1989). Life is a 
metabolic state—the consumption of energy to further an 
organism’s survival and reproduction—but young children 
do not know of the internal components of organisms that 
make metabolism possible. In the absence of such 
knowledge, they interpret “life,” “living,” and “alive” as 
descriptions of motion. Entities that move on their own are 
deemed alive, regardless of their metabolic status. Thus, 
preschoolers mistakenly classify moving but nonliving 
entities, like the sun and the clouds, as alive, and they 
mistakenly classify living but nonmoving objects, like 
plants and trees, as not alive. These mistakes persist until 
children conceive of life as supported by the interrelated 
functions of internal organs, typically by age ten. 

Another well-studied example are children’s theories of 
matter (Carey, 1991; Nakhleh, Samarapungavan, & Saglam, 
2005; Smith, 2007). Matter is anything composed of atoms, 
but many such substances betray no perceptible sign of their 
underlying composition. Gases, vapors, and microscopic 
objects are all composed of atoms, but children can neither 
see them nor hold them, so they classify them as 
nonmaterial. They also deny that such entities have weight 
or take up space. Children also make the converse mistake 
of classifying nonmaterial entities that they can see or feel 
as matter, including echoes, shadows, and heat. This pattern 
persists until early adolescence, when children learn a 
particulate theory of matter in introductory physical science. 

Learning to reinterpret phenomena covered by an intuitive 
theory through the lens of a scientific theory requires 
conceptual change, or knowledge revision at the level of 
individual concepts. Conceptual change has traditionally 
been viewed as a process of restructuring and replacement 
(Carey, 1985; Chi, 1992; Nersessian, 1989; Vosniadou, 
1994). Intuitive theories are restructured to accommodate 
counterintuitive scientific information and are thus replaced 
in the process, in the same way that remodeling a house 
erases the footprint of its original layout. 

This view has been challenged by recent research 
revealing that intuitive theories are not entirely erased by 
scientific theories and will, in fact, influence domain-
relevant reasoning under cognitive load or cognitive 
impairment. In the domain of life, for instance, college 
undergraduates instructed to classify entities as “alive” or 
“not alive” as quickly as possible are prone to make the 
kinds of mistakes preschoolers make, classifying moving 
but nonliving things as alive and living but nonmoving 
things as not alive (Goldberg & Thompson-Schill, 2009). 
That is, undergraduates are less accurate at classifying 
plants as alive relative to animals, and they are less accurate 
at classifying dynamic objects (like clocks, geysers, comets, 
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and rivers) as not alive relative to static ones. They are also 
slower to do so. Similar results have been found for 
Alzheimer’s patients with moderate dementia, who not only 
misclassify moving but nonliving entities as alive but also 
explicitly define life in terms of motion rather than 
metabolic activity (Zaitchik & Solomon, 2008). Even 
elderly adults without Alzheimer’s Disease are inclined to 
make these errors (Tardiff, Bascandziev, Sandor, Carey, & 
Zaitchik, 2017), indicating that motion-based conceptions of 
life are pervasive across the lifespan and must be inhibited 
to reason about life as a metabolic process. 

Early intuitions about matter also reemerge under 
cognitive load. Adults instructed to decide whether 
something is material or nonmaterial as quickly as possible 
will mistakenly classify gases and heft-less objects, like dust 
and snowflakes, as nonmaterial and mistakenly classify 
perceptible forms of energy, like rainbows and lightning, as 
material (Shtulman & Legare, 2019). Adults also make 
systematic mistakes in deciding whether an object will sink 
or float. An object’s buoyancy is related to its density—a 
property that makes sense only if matter is composed of 
smaller particles. When adults are shown two balls of equal 
size, one made of wood and one made of lead, they judge 
that the wood ball is more likely to float than the lead one. 
But shown a large ball of wood and a small ball of lead, 
they take reliably longer to make the same judgment (Potvin 
& Cyr, 2017; Potvin, Masson, Lafortune, & Cyr, 2015). 

Research over the past decade has revealed that this 
pattern is widespread (Shtulman & Lombrozo, 2016). 
Adults verify counterintuitive scientific ideas more slowly 
and less accurately than closely-matched intuitive ones in 
several domains, including astronomy, genetics, mechanics, 
thermodynamics, and evolution (Shtulman & Harrington, 
2016; Shtulman & Valcarcel, 2012). And these effects been 
observed in several populations, including high schoolers 
(Babai, Sekal, & Stavy, 2010), undergraduate science 
majors (Foisy, Potvin, Riopel, & Masson, 2015), high 
school science teachers (Potvin & Cyr, 2017), and elderly 
adults (Barlev, Mermelstein, & German, 2018). Even 
professional physicists (Kelemen, Rottman, & Seston, 2013) 
and professional biologists (Goldberg & Thompson-Schill, 
2009) exhibit cognitive conflict when reasoning about 
counterintuitive scientific ideas. Such conflict indicates that 
early intuitions about natural phenomena survives the 
acquisition of scientific knowledge in some form or another. 

In previous research (Young, Laca, Dieffenbach, Hossain, 
Mann, & Shtulman, 2018), we sought to determine whether 
participants could be trained to verify counterintuitive 
scientific ideas more quickly and more accurately. We 
focused our investigation on statements about life and 
statements about matter. Some statements were intuitive 
(e.g., “bricks have weight,” “goats need nutrients”), and 
others were counterintuitive (e.g., “dust has weight,” “yeast 
needs nutrients”). Participants completed this task before 
and after a tutorial on the scientific properties of life or 
matter. The tutorials helped participants close the gap in 
accuracy between intuitive and counterintuitive statements 

within the domain of instruction but not the gap in latency. 
In other words, the tutorials were ineffective at reducing the 
immediate conflict elicited by counterintuitive statements 
(as indexed by response times), but they did help 
participants favor scientific responses over intuitive ones. 

In the present study, we extended this line of research to 
elementary-school-aged children. Our motivation was 
threefold. First, children are in the earliest stages of learning 
science, and it’s unclear whether their nascent scientific 
theories would pose a measurable challenge to their well-
worn intuitive theories of the same phenomena. Second, any 
conflict that children experience between science and 
intuition may be more malleable than that experienced by 
adults, either because children’s scientific theories are less 
developed (and thus more easily bolstered) or because their 
intuitive theories are less entrenched. Third, adapting our 
task for use with children may have pedagogical value if it 
proves to be an informative measure of early science 
learning or early scientific reasoning. 

Our study followed the same protocol as Young et al. 
(2018), which included a pretest, a tutorial, and a posttest. 
At pretest, we expected children to show conflict between 
science and intuition, given that the children in our age 
range were beginning to learn about life and matter in 
school, but it was an open question whether that conflict 
would manifest itself in both response accuracy and 
response latency. Children might, for instance, verify 
counterintuitive statements less accurately than intuitive 
ones but show no difference in speed. At posttest, we 
expected children to verify counterintuitive statements more 
accurately within the domain of instruction, but it was an 
open question whether they would also verify those 
statements more quickly. 

Method 
Participants 
Seventy-eight children in kindergarten through 6th grade 
participated. Their mean age was 8 years and 7 months, and 
they were approximately balanced for gender (37 female, 41 
male). Children were recruited from public playgrounds and 
a children’s museum, and they completed the study onsite.  

Materials 
Statement-Verification Task. We measured the conflict 
between science and intuition using a child-modified 
version of Shtulman and colleagues’ statement-verification 
task. Children were presented with four types of scientific 
statements and asked to judge those statements as “true” or 
“false” as quickly as possible. Some statements were true 
from both a scientific perspective and an intuitive 
perspective (“tigers need nutrients”); some were false from 
both perspectives (“forks need nutrients”); some were true 
from a scientific perspective but false from an intuitive 
perspective (“bacteria need nutrients”), and some were false 
from a scientific perspective but true from an intuitive 
perspective (“fire needs nutrients”). The first two types of 
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statements will be referred to as intuitive and the latter two 
types as counterintuitive. 
 For each domain, statements were generated by pairing 
three predicates with 32 entities. In the domain of life, the 
predicates were “reproduces,” “needs nutrients,” and “grows 
and develops.” In the domain of matter, the predicates were 
“has weight,” “takes up space,” and “is made of atoms.” The 
biological predicates apply to all living things, but we 
predicted that children would be more inclined to apply 
them to entities that appear to move on their own. Likewise, 
the physical predicates apply to all material things, but we 
predicted that children would be more inclined to apply 
them to entities that can be seen or felt. These predictions 
were derived from prior work with adults (Young et al., 
2018), as well as the extensive literatures on intuitive 
theories of life and matter referenced above. 

We created the four types of statements by pairing 
predicates with four types of entities, as shown in Table 1. 
In the domain of life, those entities were animals (deemed 
alive by both science and intuition), inanimate artifacts and 
inanimate natural kinds (deemed alive by neither science 
nor intuition), plants and microorganisms (deemed alive by 
science but not by intuition), and animate natural kinds 
(deemed alive by intuition but not science). In the domain of 
matter, those entities were physical objects (deemed 
material by both science and intuition), abstract ideas 
(deemed material by neither science nor intuition), gases 
and other bulk-less or heft-less objects (deemed material by 
science but not by intuition), and the visible or tangible 
components of energy transfer (deemed material by intuition 
but not science). 
 Children completed the task on an iPad. Statements were 
displayed on the screen and children responded via touch 
screen. Twenty-two children opted into a version of the task 
that played audio recordings of the statements as they were 
displayed on the screen, thus supporting children who had 
difficulty reading independently. Audio recordings of each 
statement were generated via Apple’s macOS text-to-speech 
engine. Children who listened to the audio-recorded stimuli 
received only four of the six predicates (randomly selected), 
due to the additional time required to play the recordings. 
 
Tutorials. Children completed a tutorial on life or matter 
midway through the experiment. The tutorial on life 
emphasized that all living things need energy and nutrients, 
grow and develop, react to stimuli in their environment, and 
reproduce. It also addressed the misconception that life is 
synonymous with self-directed motion, providing examples 
of entities that do not appear to move on their own but are 
alive (e.g., moss) and entities that move on their own but are 
not alive (e.g., comets). The tutorial on matter emphasized 
that all matter occupies space, has weight, is made of atoms, 
and can undergo phase transitions. It also addressed the 
misconception that matter is synonymous with visibility or 
tangibility, providing examples of entities that cannot be 
seen or felt but are material (e.g., gases) and entities that can 
be seen or felt but are not material (e.g., lightning). Both 

tutorials contained a mixture of text, images, and videos and 
took approximately seven minutes to complete.  
 

Table 1: Sample items used in the biological statements 
(top) and physical statements (bottom), organized by their 

role in scientific and intuitive views of the domain. 
 

Is it alive? Intuition: Yes Intuition: No 
Science: Yes Rabbits 

Turtles 
Snails 

Mushrooms 
Grass 

Bacteria 
Science: No Sun 

Wind 
Fire 

Hammers 
Caves 
Shells 

 
Is it matter? Intuition: Yes Intuition: No 
Science: Yes Bricks 

Ice 
Logs 

Smoke 
Snowflakes 

Air 
Science: No Rainbows 

Shadows 
Heat 

Dreams 
Songs 

Numbers 

Procedure 
Each study session proceeded in three phases. First, children 
verified 48 statements about life and 48 statements about 
matter (pretest). Next, they completed a tutorial on life or 
matter. Last, they verified 48 additional statements about 
life and 48 additional statements about matter (posttest). 
Children were randomized to tutorial condition—41 
received the tutorial on life and 37 received the tutorial on 
matter. 

Children completed the pretest and posttest in blocks. 
They saw a screen introducing a particular predicate (e.g., 
“Does it grow and develop?”), followed by 16 statements 
with that predicate (e.g., “Seaweed grows and develops”). 
Four of the statements were scientifically and intuitively 
true; four were scientifically and intuitively false; four were 
scientifically true but intuitively false; and four were 
scientifically false but intuitively true. The statements were 
randomly ordered within a block, and the blocks were 
randomly ordered within the testing phase, meaning that 
biological and physical predicates were intermixed. 
Children saw the same predicates at pretest and posttest, but 
those predicates were paired with 16 new entities. The 
entities presented at pretest for half the children were 
presented at posttest for the other half and vice versa. This 
variable was crossed with whether children received the 
tutorial on life or the tutorial on matter to ensure that the 
effects of the tutorial were not confounded with the effects 
of particular pretest or posttest items. 

Results 
The statement-verification task yielded two outcome 
measures: response accuracy and response latency. We 
analyzed each outcome with a linear mixed model (LMM), 
with statement type (intuitive or counterintuitive), test 
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(pretest or posttest), instruction (instructed or uninstructed), 
and their interactions as fixed effects and by-participant and 
by-predicate random effects. The response latency model 
additionally adjusted for whether children read or listened to  
the statements. Models with maximal random effects 
structures had convergence issues, and thus we followed the 
procedure recommended by Bates, Kliegl, Vasishth, and 
Baayen (2015) to guide removal of random effects that were 
not supported by the data. Inference for fixed effects was 
carried out via Type 3 likelihood ratio test (LRT) model 
comparison.  

The present analyses collapse across tutorial domain (life 
or matter) for lack of space and focus instead on whether the 
statements were targeted by instruction or not. Children did 
verify biological statements more accurately than physical 
statements (87% vs. 75%). However, mean response 
latencies were similar across domains, as were the effects of 
the tutorial. 

Finally, we did not consider age effects in the following 
analyses. In general, older children were more accurate, 
faster, and learned more from instruction. However, the 
overall pattern of reported results was similar across the age 
distribution of our sample.  

Response Accuracy 
As seen in Figure 1, there was an effect of statement type, 
such that children verified intuitive statements more 
accurately than counterintuitive statements, LRT χ2(1) = 
12.18, p < .001. Overall, accuracy for intuitive statements 
was 18.4% greater than accuracy for counterintuitive 
statements, 95% CI [12.1, 24.7].  

Additionally, there was a three-way interaction between 
statement type, test period, and instruction, LRT χ2(1) = 
25.17, p < .001. We were specifically interested in 
children’s response to instruction. In the instructed domain, 
children’s posttest accuracy for counterintuitive statements 
was 11.9% greater than their pretest performance, 95% CI 
[9.4, 14.4]. However, pretest and posttest scores were 
similar for intuitive statements in the instructed domain and 
similar for both statements types in the uninstructed domain. 
Thus, instruction was effective at improving children’s 
accuracy at verifying counterintuitive scientific ideas within 
the targeted domain. 

Response Latency 
Following prior research, we analyzed response latencies for 
correctly verified statements only. Before doing so, we first 
removed latencies shorter than 250 ms, as responses 
produced that quickly were unlikely to have been deliberate. 
Second, we calculated the mean response latency across 
participants and statements (M = 2743 ms) and removed 
latencies more than two standard deviations above the mean 
(i.e., latencies greater than 7565 ms). We then calculated the 
mean latency for each predicate, separating intuitive 
statements from counterintuitive statements and pretest 
statements from posttest statements. 

 
 

Figure 1: Estimated proportion of correct verifications by 
statement type, test, and instruction. Error bars represent 

standard errors. 

 
 

Figure 2: Estimated response latency for correct 
verifications by statement type, test, and instruction. Error 

bars represent standard errors. 
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As seen in Figure 2, there was an effect of statement type, 
such that children correctly verified counterintuitive 
statements more slowly than intuitive statements, LRT χ2(1) 
= 90.16, p < .001. Response latencies for counterintuitive 
statements were 278 ms slower than response latencies for 
intuitive statements, 95% CI [222, 335]. 

 Additionally, there was an effect of test, such that 
children correctly verified statements faster at posttest than 
pretest, LRT χ2(1) = 6.22, p = .013. Response latencies at 
posttest were 246 ms faster than response latencies at 
pretest, 95% CI [70, 421]. We suspect this effect was due to 
increased familiarity with the task, as it did not vary by 
instruction and statement type (three-way interaction: LRT 
χ2(1) = 1.14, p = .285). 

Discussion 
Do elementary schoolers exhibit cognitive conflict when 

reasoning about counterintuitive scientific ideas? Our 
findings suggest they do. Children between ages five and 
twelve were slower and less accurate at verifying scientific 
statements that conflict with their intuitive theories of life or 
matter (e.g., “bacteria grow and develop,” “steam is made of 
atoms”) relative to closely-matched statements that accord 
with those theories (e.g., “tigers grow and develop,” “rocks 
are made of atoms”). Instructing children on the scientific 
properties of life or matter increased their accuracy for 
counterintuitive statements in the instructed domain but not 
in the uninstructed domain. However, instruction did not 
reduce the gap in response latency between counterintuitive 
and intuitive statements, at least in comparison to the 
uninstructed domain. These findings indicate that children 
experience conflict between scientific ideas and intuitive 
ideas, despite limited exposure to science, but this conflict 
can be resolved in favor of scientific ideas with targeted 
instruction. 

Our findings parallel those of Young et al. (2018), who 
administered the same task to adults. Adults were faster and 
more accurate overall, but both children and adults verified 
counterintuitive statements more slowly and less accurately 
than closely-matched intuitive statements. The effect of 
instruction was also similar across age groups, increasing 
participants’ accuracy at verifying counterintuitive 
statements but not their speed. Thus, the same signatures of 
cognitive conflict observed in adults were observed in 
children ten to fifteen years younger. 

Our findings accord with other findings on the speed and 
accuracy of children’s scientific reasoning, documented by 
Vosniadou et al. (2018). Vosniadou and colleagues asked 
third- and fifth-graders to sort physical and biological items 
into one of two categories: a category that emphasized the 
item’s intuitive features or a category that emphasized its 
scientific features. The categories were characterized by 
exemplars rather than by labels. For instance, on one trial 
participants decided whether water should be grouped with 
other liquids (coke, lemonade, milk) or with other forms of 
H2O (ice, vapor, snow). Children of all ages preferred 
intuitive categories over scientific categories, and they took 

longer to make their judgments when they opted for the 
scientific category instead. Vosniadou et al.’s findings, like 
our findings, suggest that children must suppress an 
intuitive conception of the target item in order to endorse a 
competing scientific conception. 

Vosniadou and colleagues did not administer a tutorial to 
their participants, and it’s open question whether instructing 
participants on the scientific properties of the target items 
would change the nature of their categorizations. They did, 
however, measure executive function skills—namely, set-
shifting ability and inhibitory control—and they found that 
children with higher executive function were more likely to 
categorize the target items by their scientific properties and 
were also faster to do so. Children with higher executive 
function have also been found to learn more from science 
instruction in the domain of vitalist biology (Bascandziev, 
Tardiff, Zaitchik, & Carey, 2018). Future research is needed 
to determine whether executive function plays a role in 
children’s statement verifications as well. If it does, 
executive function tasks could be administered alongside 
our statement-verification task as a diagnostic for assessing 
young children’s understanding of science and their 
receptiveness to science instruction. 

One limitation of the current study is that we sampled 
children who had already begun learning the scientific 
properties of life and matter in school. Younger children 
(i.e., preschoolers) would likely show a different pattern of 
results. Without any scientific knowledge of life or matter, 
they should view statements like “bubbles have weight” and 
“dandelions need nutrients” as demonstrably false. Their 
accuracy for such statements would be lower, but their 
responses should be faster. Thus, in comparison to older 
children, younger children should show a larger gap in 
response accuracy between intuitive and counterintuitive 
statements but a smaller gap in response latency. And 
teaching preschoolers about the scientific properties of life 
or matter should increase the gap in latency, not reduce it. 
There are challenges, however, to adapting the task for use 
with preschoolers. Preschoolers are unlikely to know the 
meaning of terms like “atoms,” “nutrients,” and 
“reproduces,” and the alternative terms they do know may 
not carry the same meaning. “Has babies,” for example, 
may not be a substitute for “reproduces” because the 
offspring of plants, fungi, and bacteria are rarely referred to 
as “babies.” 

In conclusion, we have shown that tensions between 
science and intuition emerge early in the acquisition of 
scientific knowledge. While children can be taught to 
privilege scientific ideas over intuitive ones, the conflict 
between them—as manifested in slower response times for 
statements that elicit both ideas—appears to be immediate 
and robust. 
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Abstract 

Many studies have investigated the roles that area and number 
play in visual quantity estimation. Yet, recent work has 
shown that perceived area is not equal to true, mathematical 
area. This simple fact calls into question many findings in 
numerical cognition and suggests a new theoretical 
perspective: that area estimation plays a dominant role in 
visual quantity estimation. We examine two ‘case studies’: 
(1) a ‘general magnitude’ account of visual quantity 
estimation, which posits bi-directional influences between 
area and number. In contrast with prior work, controlling for 
perceived area reveals a unidirectional relation between area 
and number (Experiments 1 and 2), and (2) acuity of area and 
number estimation (Experiment 3). We show how an 
understanding of the perception of area forces a reevaluation 
of several findings concerning the relative acuity of number 
and area estimation. Combined, and in contrast to many prior 
studies, our findings suggest a dominant role of area in visual 
quantity estimation.  

Keywords: approximate number, number, area, perception 

Introduction 

The ability of human adults, infants, and nonhuman animals 

to rapidly approximate large numbers is a cornerstone of 

research on numerical cognition. This propensity 

supposedly relies on an evolutionary ancient system -- the 

Approximate Number System -- which serves as a 

foundation for downstream numerical and mathematical 

ability (Cantlon & Brannon, 2007; Dehaene, 1997; 

Feigenson et al., 2004; Xu & Spelke, 2000).  

Yet this widely accepted notion also raises questions: in 

our evolutionary environment, how often would number 

have been the most relevant cue for approximating quantity? 

Area perception rather than number perception would seem 

to have been prioritized evolutionarily: if foraging for food, 

for example, would you prefer to have 100 berries, or 50 

berries four times in volume? Nevertheless, approximate 

area has been vastly understudied relative to approximate 

number (but see Brannon et al., 2006; Lourenco et al., 2012; 

Odic et al., 2013). In hundreds of studies, numerosity is 

assumed to be perceived independently of area (and other 

continuous dimensions; e.g., average size, density, or 

convex hull), thereby relegating area manipulations to little 

more than pesky control conditions in ‘bigger’ questions 

about number. 

However, visual area approximation has recently emerged 

as an ability in its own right. Recent work has revealed that 

the visual approximation of area is guided by a cue other 

than area (Yousif & Keil, 2019). Instead, visual 

approximations of area are roughly equivalent to the sum of 

objects’ dimensions rather than their product, resulting in 

potentially large distortions of perceived space. This 

continues to be true after accounting for confounds such as 

numerosity and perimeter. This phenomenon is known as 

the ‘Additive Area Heuristic’ (AAH).   

An area estimation heuristic raises questions about the 

relation between area and number. While numerous papers 

have documented bidirectional ‘congruity effects’ between 

area and number (e.g., Hurewitz et al., 2006, Walsh, 2003), 

perceived area (per the AAH) may not be influenced by 

numerosity; these past results may arise because of a 

confound between perceived area and numerosity (Yousif & 

Keil, 2019). Only when unconfounded is it possible to 

understand the relation between number and area in visual 

quantity estimation.  

The AAH calls into question many other findings in the 

field of numerical cognition, raising the possibility that 

many of them can also be explained by a failure to account 

for perceived area. For example: if numerosity does not 

influence the perception of area, does the perception of area 

influence the perception of numerosity? Though this 

question has been asked before (e.g., Hurewitz et al., 2006), 

it has operated under a false premise: that true, 

mathematical area accurately reflects the percept of area. 

Thus, to the extent that area perception is best captured not 

by mathematical area but by some other means (e.g., the 

AAH), this question ought to be revisited. 

If perceived area is dissociable from mathematical area, it 

suggests a reinterpretation – and, in some cases, a 

reexamination – of many prior findings. The present work 

explores the relation between number and perceived area in 

the context of two ‘case studies’: (1) a ‘general magnitude’ 

account of number and area, and (2) relative area and  
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Figure 1. An example display for Experiments 1-3. Most 

observers report that the left panel is greater in area, despite the 

fact that the two are equal in true area. However, the left panel is 

greater in ‘Additive Area’ (which causes the illusion). 

 

number estimation acuity. In both cases, we demonstrate 

that accounting for perceived area reveals a qualitatively 

different pattern from what has been previously observed. 

The current study 

In a first experiment, we assess the ‘general magnitude’ 

account of number and area approximation by examining 

how increased ‘Additive Area’ (AA) affects numerosity 

estimation. To do so, we manipulate AA while number is 

held constant. Most work has suggested bidirectional 

interactions between area and number (e.g., Hurewitz et al., 

2006), but recent work has shown that manipulating number 

does not influence perceived area (Yousif & Keil, 2019). 

Here, we show that this relation is in fact unidirectional in 

that perceived area influences number judgments to a large 

extent. In a second experiment, we follow up on this by 

pitting AA and number against each other in a maximally 

implicit design, by having one group of observers make area 

judgments and another group of observers make number 

judgments on the exact same stimuli. Again, we 

demonstrate influences of area on number perception. In a 

third experiment, we assess number estimation acuity under 

different conditions (e.g., controlling AA vs. true, 

mathematical area). Number acuity appears to differ 

dramatically depending on how area is controlled. 

Experiment 1: Area influences number 

Mimicking a design in prior work (Yousif & Keil, 2019), 

we created stimuli for which additive area, mathematical 

area (MA), and number could be manipulated 

independently. AA is used as a proxy for perceived area, 

given the prior work showing that AA captures perceived 

area more accurately than MA. Observers viewed two 

stimuli side-by-side and were simply asked to indicate 

which was greater in number.  

 

 

Method 

Participants 100 observers were recruited via Amazon 

Mechanical Turk. Observers were excluded if and only if 

they began but did not complete the task (5 observers). All 

observers consented prior to participation, and these studies 

were approved by the IRB at Yale University. 

Stimuli All of the stimuli were generated via custom 

software written in Python with the PsychoPy libraries 

(Peirce, 2007). The aim was to create pairs of stimuli that 

varied in either AA, MA, or number while the other values 

were equated. For each stimulus pair, we randomly 

generated an initial set of discs (ranging from 20 pixels to 

100 pixels in diameter, with a buffer of at least 10 pixels 

between any two discs), then pseudo-randomly generated a 

second set of objects based on a given AA/MA/Number 

ratio (specific values varied for each experiment; see, e.g., 

Table 1). The displays always had between 20 and 26 discs 

(the initial set always having 20). Stimulus pairs were 

generated randomly until a pair met both the AA, MA, and 

number criteria, at which point that pair would be rendered 

another time and saved. The second stimulus always had 

more area (whether AA or MA) than the initial stimulus. 

For the details of how AA, MA, and number covaried, see 

Table 1. All discs were rendered with a thin, black border 

(4-pixel stroke width). The images depicted in Figure 1 are 

representative of those used in the experiment. 

Procedure The task itself was administered online via 

Amazon Mechanical Turk, using custom software. On each  

 
Table 1. The number, AA, and MA ratios for Experiment 1.   
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Figure 2. Results from Experiment 1. Three number ratios are represented along the x-axis. Green bars represent MA-controlled sets, 

where AA varied in three steps. Red bars represent AA-controlled sets, where MA varied in three steps. Lighter bars represent lower ratios. 

E.g., for the leftmost set of green bars, the lightest bar represents the lowest AA ratio and the darkest bar represents the highest AA ratio. 

Error bars represent +/- 1 SE. The dashed line represents chance performance. 
 

trial, observers saw two spatially separated sets of lavender-

colored dots, presented side-by-side in the center of the 

screen, with 50 pixels of space in between (see Figure 1). 

Each stimulus was 400 pixels by 400 pixels. The stimuli 

were always counterbalanced so that an equal number 

containing more AA, MA, or number appeared on each side 

of the screen. Observers were instructed to press ‘q’ if the 

image on the left had more cumulative number, and ‘p’ if 

the image on the right had more cumulative number. They 

were also given an additional, explicit warning to respond 

according to number regardless of area. The stimuli stayed 

on the screen for 700ms, but there was no time limit on 

responses. Between each trial, there was a 1000ms ITI. 

Observers completed 72 trials. All trials were presented in a 

unique random order for each participant. Observers 

completed two representative practice trials before 

beginning the actual task.  

Results and Discussion 

The results of Experiment 1 are shown in Figure 2. An 

ANOVA revealed a main effect of numerosity, confirming 

that observers were able to discriminate on the basis of 

numerosity, F(2,93)=149.65, p<.001, ηp
2=.61. Further, 

increased MA generally decreased the probability that an 

observer would select a stimulus as more numerous 

F(2,93)=12.78, p<.001, ηp
2=.12. Yet, critically, increased 

AA did increase the likelihood that observers would indicate 

a stimulus was more numerous, F(2,93)=49.08, p<.001, 

ηp
2=.34 (and this pattern was observed across all ratios, as 

can be seen in Figure 2). Note that this is in stark contrast to 

other results  

showing that changes in numerosity do not influence area 

judgments (Yousif & Keil, 2019).  

These results (in combination with prior results) suggest a 

relation between perceived area and perceived number – but 

one that is unidirectional (i.e., perceived area influences 

number, but not vice versa). In contrast to a ‘general 

magnitude’ account, which predicts positive relations 

between various magnitudes, the present results suggest area 

may play a dominant role in quantity estimation. However, 

these results do not reveal the extent to which number is 

perceived independently of AA. The following experiments 

aim to address that question. 

Experiment 2: Number versus area 

To understand whether the results of Experiment 1 could be 

explained by a General Magnitude account (e.g., a ‘more-is-

more’ heuristic), we directly pitted AA and number against 

each other in a between-subjects experiment. In this way, 

we can directly assess the effect of increased area on 

number perception and vice versa. Borrowing from previous 

work which dissociated AA and MA (Yousif & Keil, 

2019we manipulated both AA and number while holding 

the other constant. In one condition, observers made area 

judgments; in another condition, a separate group of 

observers made number judgments.  

Method 

Participants 200 observers were recruited via Amazon 

Mechanical Turk (100 for each condition). Observers were 

excluded if and only if they began but did not complete the 

task (3 observers, all in the area condition). All observers 

consented prior to participation, and these studies were 

approved by the IRB at Yale University. 
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Figure 3. Results from number discriminations (A) and area discriminations (B) in Experiment 2. The green bars represent trials where AA 

varied (in a 1.1, 1.2, or 1.3 ratio) but number was held constant, while the red bars represent trials where number varied (in a 1.1, 1.2, or 1.3 

ratio) while AA was held constant. The y-axis represents the propensity to choose ‘more’, whether that be more number or more area. Error 

bars represent +/- 1 SE. The dashed line represents chance performance.  

 

Stimuli The stimuli for this experiment were generated in 

the same way as those of the prior experiment. The same 

stimuli were used for each condition. There were seven 

ratios: three in which number varied (in a 1.1, 1.2, and 1.3 

ratio) while AA was held constant, three in which AA 

varied (in a 1.1, 1.2, and 1.3 ratio) while number was held 

constant, and one in which both were held constant (to serve 

as a baseline). 

Procedure The procedure is identical to Experiment 1 

except that observers completed 84 trials instead of 72. For 

the number judgment condition, the instructions were the 

same. For the area judgment condition, observers were told 

the following: “Your task is simply to indicate which set of 

circles has more cumulative area. In other words: if you 

printed the images out on a sheet of paper, which would 

require more total ink?” Later, they were told: “The sets of 

dots will sometimes vary in number, but the number of dots 

does not matter. Instead, you should answer only which has 

more area, regardless of number.” 

Results and Discussion 

The results of the number discrimination condition are 

shown in Figure 3a. Observers indicated that images 

containing more discs were more numerous (t(96)=11.85, 

p<.001, d=1.20). However, observers also indicated that 

images with greater perceived area (but were equal in 

number) were more numerous (t(96)=5.35, p<.001, d=.54). 

In other words, it appears that the perception of area affects 

the perception of numerosity.  

The results of the area discrimination condition are shown 

in Figure 3b. Observers indicated that images greater in AA 

were greater in perceived area (t(96)=17.60, p<.001, 

d=1.76). However, observers were slightly below chance 

when selecting between displays equal in AA but differing 

in numerosity (t(96)=5.81, p<.001, d=.58). Thus, all else 

equal, observers judged displays with more number to have 

less area – replicating the findings of recent work (Yousif & 

Keil, 2019) but in stark contrast to many existing studies 

(e.g., Hurewitz et al., 2006).  

These results suggest three primary conclusions. First, the 

results of the number discrimination condition cannot be 

explained by a response bias to simply pick the image with 

‘more’ on some dimension. Indeed, observers indicated that 

displays with more number appeared to have less 

cumulative area. Second, this experiment provides 

converging evidence with Experiment 1 that perceived area 

influences perceived numerosity (i.e., people confuse ‘more’ 

perceived area for ‘more’ number). Third, and critically, this 

experiment shows that number does not influence perceived 

area. This indicates a unidirectional relation between 

perceived area and number (in contrast to views that posit 

bidirectional interactions between these domains of 

magnitude; e.g., Walsh, 2003). There is an effect of number 

on area (such that more number is related to less perceived 

area) – but our findings challenge a general magnitude 

account, and are contrary to prior work (e.g., Hurewitz et 

al., 2006). 

Experiment 3: Number and area acuity 

A third experiment assessed number discrimination acuity 

(i.e., the level of precision with which observers can 

discriminate two non-symbolic numerosities) in a more 

traditional number acuity task, while controlling for either 

AA or MA. We predicted that performance will be lower 

when AA is controlled. The goal of this study is to ascertain 

whether there is a ‘true’ number discrimination acuity (or 

area discrimination acuity, for that matter), as this would 

bear on studies that have tried to interpret relative acuity in 

each domain (e.g., Lourenco et al., 2012; Odic et al., 2013). 
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Figure 4. Results from Experiment 3. Five number ratios are 

represented along the x-axis. Green bars represent MA-controlled 

sets, where AA varied. Red bars represent AA-controlled sets, 

where MA varied in three steps. The y-axis represents accuracy for 

number discriminations, i.e., the proportion of time observers 

chose the display that was more numerous. Error bars represent +/- 

1 SE. The x-axis corresponds to chance performance. 

Method 

All elements of the experimental design were identical to 

those of Experiment 1, except as stated below. 80 new 

observers were tested via Amazon Mechanical Turk. One 

observer was excluded for failing to complete the task. 

Observers completed number discriminations at five distinct 

ratios: 1.10, 1.20, 1.30, 1.40, and 1.50. Half the trials were 

controlled for AA, and the other half of trials were 

controlled for MA (while allowing the other dimension to 

vary). The displays always had between 10 and 30 discs (the 

initial set having 10 half the time, and 20 the other half of 

the time). Observers completed 80 trials.  

Results and Discussion 

The results of Experiment 3 are displayed in Figure 4. 

Accuracy was indeed lower for the AA-controlled trials, 

t(79)=6.97, p<.001, d=.79, and this was independently true 

for each number ratio (ps<.002). Of the 80 observers tested, 

66 were as good or better at discriminating number in the 

MA-controlled condition (where AA varied; p<.001). 

Critically, performance across the two different area 

controls was highly correlated r(78)=.69, p<.001 – about as 

highly as performance in each condition was to itself (MA-

control: r=.66; AA-control: r=.65).  

Once again, differences in perceived area strongly 

influenced perceived number. While prior work has made 

conclusions on the basis of relative acuity (e.g., Lourenco et 

al., 2012; Odic et al., 2013), these results suggest that 

comparing acuity across dimensions should be interpreted 

with caution. In other words: what is ‘true’ number acuity, if 

number acuity varies so greatly across different area 

controls? This is especially relevant for developmental 

studies which make claims about relative acuity across 

development (e.g., Odic et al., 2013). 

General Discussion 

Our first two experiments demonstrate that accounting for 

perceived area challenges our understanding of the relation 

between area and number. In particular, we have shown an 

apparent unidirectional relation between area and number 

such that area influences number judgments but not the 

other way around. This contrasts with work documenting a 

bidirectional relation and forces a reconsideration of the 

roles of area and number in quantity estimation. 

In addition, we have shown how accounting for perceived 

area challenges our understanding of area and number 

acuity. In particular, number discrimination acuity appears 

to vary dramatically depending on whether AA or MA is 

controlled (as revealed explicitly in Experiment 3, but also 

evident in the results of Experiment 1). This raises questions 

about prior studies that have interpreted the relative acuity 

of area and number discriminations (e.g., Lourenco et al., 

2012; Odic et al., 2013).  

Conclusion: is number special? 

Is number special in visual processing? The answer to this 

question seems obvious: the field of numerical cognition is 

perhaps one of the largest and most prominent in all of 

cognitive science, and the ability to discriminate visual 

number is often thought to be the foundation of our ‘core’ 

mathematical competency (Feigenson et al., 2004). Yet, this 

seemingly obvious conclusion is not evident from first 

principles. In what evolutionary context would an 

approximate number system have been more critical for 

survival than approximate area or volume? Few plausible 

examples come to mind.  

Our studies do not ask whether number is special 

somewhere in the mind. Instead, the question is whether 

number is special visually – or even whether, as more 

extreme views have suggested, it is a visual feature (like 

color or orientation; e.g., Anobile et al., 2016; Burr & Ross, 

2008). This question has been heavily discussed (e.g., 

Durgin, 2008; Leibovich et al., 2017). Yet this debate, here 

and elsewhere, has been plagued by the use of artificial 

stimuli with a seemingly unbounded number of possible 

confounds.  How can one hope to isolate numbers amidst 

the continuous dimensions of area, perimeter, convex hull, 

density, average element size, variance in element size, 

variability in inter-dot distance, etc. (some of which are 

often negatively correlated with one another)? This list is 

only a small subset of all the continuous cues that may be 

related to the perception of number.  

The present work is not immune to such confounds. 

However, our studies do provide clear predictions about a 

particular cue, AA, (rather than a collection of them) and its 

relation to numerosity. This prediction is borne out of the 

theoretical position that visual number estimation is unlikely 

to have been prioritized in evolution. More consequentially, 

we find clear influences of area on number, but not the other 

way around.  

What should be said, then, about the perception of 

number? We have presented evidence for area playing a 
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dominant role in quantity estimation, automatically and 

irresistibly influencing the estimation of number. Yet, 

number discrimination ability across very different displays 

(i.e., displays controlled for either AA or MA), is highly 

correlated – suggesting that number estimation cannot be 

explained by perceived area (or by some superficial strategy 

that operates differently over different sets of stimuli). Thus, 

while the human visual system is clearly able to extract 

number, it does not seem to be wired to do so first and 

foremost. Indeed, area may play the leading role in quantity 

estimation.  This also suggests that number may not be a 

true visual feature as has been claimed (see Burr & Ross, 

2008).   

Across several paradigms and stimuli configurations, one 

salient pattern consistently emerges: area influences number 

approximation but not the other way around. This is a 

fundamentally different pattern from what has been 

observed in tasks that do not control for AA, and these 

findings offer a new theoretical perspective on the relation 

between number and area in vision: that number may not be 

so special after all.  
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Abstract 

The cognitive system readily detects statistical relationships 
where the presence of an object predicts a specific outcome. 
What is less known is how the mind generates predictions 
when multiple objects predicting different outcomes are 
present simultaneously. Here we examine the rules with which 
predictions are made in the presence of two objects that are 
associated with two distinct outcomes. In three experiments, 
participants first implicitly learned that an object predicted a 
specific target location in a visual search task. When two 
objects predicting two different target locations were present 
simultaneously, participants were reliably faster to find the 
target when it appeared in the conjunctive location than in 
disjunctive locations. This was true even if participants were 
not consciously aware of the association between the objects 
and target locations. The results suggest that in the presence of 
multiple predictors, statistical learning generates implicit 
expectations about the outcomes in a conjunctive fashion. 

Keywords: Implicit learning, regularities, conjunctive 
inference, visual search, attention 

Introduction 
The visual environment contains widespread regularities in 

terms of co-occurrences between individual objects or events 
over time. For example, the red light turns on after the yellow 
light at traffic intersections, and thunder follows lightening in 
a thunderstorm. The mind can detect such regularities 
effortlessly, automatically, or even outside of conscious 
awareness. One form of extracting these regularities (i.e., A 
predicts B) is statistical learning, which involves the 
detection of statistical relationships among individual objects 
over space or time (Fiser & Aslin, 2001; Saffran, Aslin, & 
Newport, 1996; Turk-Browne, Jungé, & Scholl, 2005). 
Statistical learning occurs incidentally to ongoing tasks and 
quickly after a few exposures to the regularities (Turk-
Browne, Scholl, Johnson, & Chun, 2010), and proceeds 
without explicit awareness or conscious intent (Baker, Olson, 
& Behrmann, 2004). 

The implicit extraction of regularities has a number of 
consequences on the representations of the individual objects 
that comprise the regularities. Recent studies suggest that 
statistical learning spontaneously biases attention to the co-
occurring objects in a persistent manner (Zhao, Al-Aidroos, 
& Turk-Browne, 2013; Yu & Zhao, 2015), interferes with 
summary perception (Hall, Mattingley, & Dux, 2015; Zhao, 
Ngo, McKendrick, & Turk-Browne, 2011), updates object 
representations (Yu & Zhao, 2018a, Yu & Zhao, 2018b), 
facilitates the compression of information in working 

memory (Brady, Konkle, & Alvarez, 2009; Zhao & Yu, 
2016), and leads to automatic transitive inferences (Luo & 
Zhao, 2018). 

To date, research on statistical learning has predominately 
focused on the relationship between individual objects or 
events. However, in the broader visual environment different 
objects or events are often present at the same time where 
each predicts a specific outcome. For example, excessive 
smoking can lead to cardiovascular problems as well as lung 
complications, while excessive alcohol consumption can lead 
to similar cardiovascular problems and also potential brain 
damage. When excessive smoking occurs with excessive 
drinking, what consequences would follow? In this example, 
a conjunctive inference would generate an expectation that 
satisfies both predictors (i.e., cardiovascular problems), 
whereas a disjunctive inference would generate an 
expectation that satisfies either one of the two predictors (i.e., 
cardiovascular problems, lung complications, and potential 
brain damage). When people are presented with both 
predictors at the same time, what kind of inference do they 
make automatically (Mendelson, 2009)? Understanding 
automatic conjunctive or disjunctive inferences can help 
illuminate reasoning biases such as the conjunction fallacy 
where people mistakenly judge a conjunctive statement to be 
more probable than a disjunctive statement (Tversky & 
Kahneman, 1983). 

In the current study, we examine the rules with which 
predictions are made in the presence of two objects that are 
associated with two distinct outcomes. In a visual search 
paradigm, participants first viewed one color circle and then 
searched for a target (a rotated T) in an array during the 
exposure phase. Each color predicted a specific location of 
the target in the array. For example, after a blue circle the 
target would always appear in the top half of the array; and 
after a red circle the target would always appear in the left 
half of the array. The question is: Where was the target 
expected to appear when both the blue circle and the red 
circle were present at the same time? A conjunctive 
prediction would suggest that the target was expected to 
appear in the top left quadrant of the array, whereas a 
disjunctive prediction would suggest that the target was 
expected to appear in the top half or the left half of the array. 
Importantly, at the inference phase when both color circles 
were present, the target was equally likely to appear in any 
quadrant of the array. We used response time of target search 
during the inference phase to gauge in which location the 
target was expected to appear.  
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In Experiments 1 and 2, we found that participants were 
reliably faster to find the target when it appeared in the 
conjunctive quadrant than in the disjunctive quadrant. This 
was true even if participants were not consciously aware of 
the association between the color circles and target locations 
during debriefing. We further replicated the finding in 
Experiment 3 where the two predictors were two feature 
dimensions in one object. This effect was equally strong 
whether participants implicitly learned the association or 
were explicitly told about the association. 

Experiment 1 
This experiment examined which type of inference 
participants would make when they saw a pair of colors, each 
predicting a different half of the array. 

Participants 
A total of 120 students (81 female, mean age=20.0 years, 
SD=2.3) from the University of British Columbia (UBC) 
participated for course credit. 

Stimuli 
For each trial in the experiment, participants saw one colored 
circle first, followed by a search array (Figure 1). The color 
circle could appear in one of four colors (R/G/B): red 
(255/0/0), yellow (255/255/0), blue (0/0/255), or grey 
(192/192/192). Each circle subtended 2.2° of visual angle. 
For each search array following the circle, 16 objects were 
presented in an invisible 8-by-8 grid. Each cell in the grid 
subtended 1.7° of visual angle. The 8-by-8 grid was divided 
into four 4-by-4 quadrants, where each quadrant was 
separated from the adjacent two quadrants by 2.2° of visual 
angle. Each quadrant contained four objects, where no row or 
column in the quadrant could be empty. 
 Out the 16 objects in each array, 15 were distractors in 
“L” shapes, randomly pointing to the left or right. There was 
only one target in each array, which was a rotated “T”, 
randomly determined to be pointed to the left or right. 
Participants were asked to find the target “T” and indicate 
which direction the “T” was pointing (left or right) by 
pressing a key on the keyboard, as quickly and accurately as 
possible. 
 For each trial, the color circle was presented on the screen 
for 1000ms. Followed by a 1000ms blank screen, the search 
array appeared on the screen until response. There was a 
1000ms blank screen interval between trials. 

Procedure 
Participants first completed the exposure phase (Figure 1). 
During exposure, one color circle appeared on the screen at a 
time followed by a visual search array. Each of the four colors 
was presented for 40 times during exposure, resulting in a 
total of 160 trials (the order of the trials was random). Each 
color predicted that the target “T” in the search array always 
appeared in a unique half of the array (the top, left, bottom, 
or right half). For example, after the blue circle, the target 

always appeared in the top half of the array. After the red 
circle, the target always appeared in the left half of the array. 
The target location within each half of the array was counter-
balanced between the two quadrants (e.g., counterbalanced 
between top-left and top-right quadrants for the top half of 
the array), and the target location within each quadrant was 
randomly determined. The color-location associations were 
randomly determined for each participant but remained fixed 
throughout the experiment for the participant. 
 We wanted to examine whether there were differences in 
conjunctive inferences made from explicit knowledge versus 
incidentally learned predictions. Therefore, half of the 
participants (N=60) were randomly selected to be explicitly 
told about the associations between colors and target 
locations before exposure (explicit condition), and the other 
half were told to only pay attention to the color circle and 
search for the target (implicit condition). 
 

 
Figure 1. Experiment 1 exposure phase. Each color circle 
predicted the location of the target in the subsequent search array. In 
the visual search task, participants saw the color circle first, and then 
searched for a target (the rotated “T”) and judged the direction of 
target as quickly and accurately as possible. 
 
 After exposure, participants completed the inference 
phase (Figure 2). During this phase, two color circles were 
presented at the same time in each trial, followed by a search 
array. There were six unique color pairs. Each color pair and 
the following search array were presented four times in the 
inference phase in a random order, resulting in 24 trials in 
total. In each trial, the target appeared in any of the four 
quadrants with equal probability (the top-left, top-right, 
bottom-left, and bottom right quadrant). The location of the 
target within the quadrant was randomly determined. 

Since the target now appeared in the four quadrants with 
equal probability, faster response time in target search in a 
given quadrant would indicate that the participant prioritized 
that quadrant for target search. This would mean that the 
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participant expected that the target would appear in that 
quadrant, suggesting a prediction of where the target would 
appear after seeing the two color circles. 

 

 

Figure 2. Experiment 1 inference phase. The four colors were 
combined into six color pairs. The pairs were presented first, 
followed by a search array. The target appeared in all four 
quadrants with equal probability following each pair. Based on the 
color-location associations during exposure, there were four types 
of target location following each color pair. These include the 
locations consistent with a conjunctive inference (C), locations 
consistent with a disjunctive inference (D), and the impossible 
locations (I). 
 

During the inference phase, the two color circles were 
presented next to each other horizontally or vertically 
(randomly determined), and the order of the two colors for 
each pair was counter-balanced. Based on the color-location 
associations during exposure, there were four types of target 
location following each pair: locations consistent with a 
conjunctive inference (C), locations consistent with a 
disjunctive inference (D), and the impossible locations where 
the target would never appear based on the prior color-
location associations (I). In both the explicit and implicit 
conditions, participants were only told that they would now 
see two color circles appearing simultaneously on the screen 
before each search array, and they were asked to search for 
the target as in the exposure phase. 
 After the inference phase, participants in the implicit 
condition also completed a test phase to probe their 
awareness of the color-location associations. They were 
asked where the target would appear (the top, left, bottom, 
and right half of the array) after seeing each of the four colors, 
so guessing would result in an accuracy of 0.25 in the test 
phase. 

Results and Discussion 
The test phase accuracy for participants in the implicit 
condition was 0.51, reliably above chance [chance=0.25, 
p<.001],  indicating that participants in the implicit condition 
have successfully learned the color-location associations. 

We then analyzed the responses time (RT) of correct trials 
in the inference phase to see what type of inferences 
participants made when they saw the color pairs. We grouped 
the trials in the inference phase into four types: conjunction, 
disjunction (2 quadrants vs. 4 quadrants), and impossible. 
Take the blue and red pair, the blue circle previously 
predicted that the target would appear in the top half of the 
array and the red circle previously predicted that the target 
would appear in the left half of the array. This means that the 
top left quadrant was the conjunctive quadrant, the top right 
and the bottom left quadrants were the disjunctive quadrants, 
and the bottom right quadrant was the impossible quadrant. 
For example, faster RT in the conjunctive quadrant would 
indicate that participants expected the target would appear in 
that quadrant, suggesting a conjunctive prediction. We 
plotted the RT in each type of quadrant in the inference phase 
(Figure 3). 
 

 
Figure 3: Experiment 1 results. The response time (RT) for each 
type of trials was graphed separately for the explicit and implicit 
conditions (Error bar reflect ± 1 SE; **p<.01, ***p<.001). 

 
 A 2 (condition: explicit vs. implicit, between-subjects) × 
4 (trial type: conjunctive, 2-quadrant disjunctive, 4-quadrant 
disjunctive, and impossible quadrant, within-subjects) 
mixed-design ANOVA revealed a significant main effect of 
trial type [F(3,354)=16.04, p<.001, ηp

2=0.12], but no main 
effect of condition [F(1,118)=3.27, p=.07, ηp

2=0.03], or 
interaction [F(3,354)=1.29, p=.28, ηp

2=0.01]. This suggests 
that participants attended to the four quadrants differently 
during the inference phase, suggesting that they made 
specific predictions about where the target would appear. 
There was no significant difference in RT across different 
trial types when the knowledge was explicitly told vs. when 
the knowledge was implicitly learned. Post-hoc Tukey HSD 
tests showed that RT in the impossible trials was reliably 
slower than that in the other three types of trials [p’s<.03], the 
RT in the 2-quadrant disjunction trials was not reliably 
different from that in the 4-quadrant disjunction trials 
[p=.99], and the RT in the conjunction trials was reliably 
faster than both the 2-quadrant and 4-quadrant disjunction 
trials [p’s<.01]. We then performed planned contrast analysis 
separately for the implicit and explicit conditions. The 2-
quadrant and 4-quadrant disjunction trials were combined as 
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one category in the analysis. For both conditions, RT in 
conjunction trials was significantly faster than that in 
disjunction trials, which in turn was faster than that in the 
impossible trials [p’s<.01]. 
 Additionally, we examined RT performance separately 
for learners (whose test phase accuracy>0.25, N=42) and 
non-learners (whose test phase accuracy≤0.25, N=18). For 
learners, RT in conjunction trials was significantly faster than 
that in disjunction trials [p=.014], which in turn was faster 
than that in the impossible trials [p<.001]. For non-learners, 
RT in conjunction trials was marginally faster than that in 
disjunction trials [p=.09], but there was no difference in RT 
for the disjunction and impossible trials [p=.97]. This 
suggests that participants with higher test phase accuracy 
showed the effect more robustly than participants with lower 
test phase accuracy did. 
 These results suggest that when two objects each 
predicting a different outcome were presented at the same 
time, participants automatically made a conjunctive 
prediction which contained the shared property of the 
different outcomes. 

Experiment 2 
One explanation for faster RT in the conjunction trials in 
Experiment 1 was that the conjunctive quadrant was smaller 
in terms of spatial scope than the disjunctive quadrants. The 
smaller spatial scope might have facilitated visual search, 
leading participants to prioritize the conjunctive quadrant 
over the other quadrants. To examine this possibility, in 
Experiment 2, we aimed to equate the spatial scope of 
conjunctive and disjunctive quadrants in the inference phase. 

Participants 
A new group of 120 students (95 female, mean age=20.2 
years, SD=1.9) from UBC participated for course credit. 

Stimuli and Procedure 
The stimuli and procedure in the experiment were the same 
as those in Experiment 1, except for one critical difference:  
During the exposure phase, after a color circle, the target 
could appear in three of the four quadrants. This means that 
in the inference phase, for each pair of color circles, two of 
the quadrants on the array would be consistent with a 
conjunctive inference, and the other two quadrants would be 
consistent with a disjunctive inference (Figure 4). 
 

 
 
Figure 4: Experiment 2 paradigm. The stimuli and procedure 
were the same as those in Experiment 1, except that each color 
predicted the target would appear in three quadrants in the array 
during exposure. Consequently, two quadrants during the inference 
phase were consistent with a conjunctive inference (C), and the 
other two were consistent with a disjunctive inference (D). 

Results and Discussion 
The test phase accuracy for participants in the implicit 
condition was 0.31, which was not reliably above chance 
[p=0.11], suggesting that participants in the implicit 
condition did not successfully learn the color-location 
associations during exposure. This may be due to the 
difficulty of learning that the target could appear in three 
quadrants instead of two. 

A 2 (condition: explicit vs. implicit, between-subjects) × 2 
(trial type: conjunctive vs. disjunctive, within-subjects) 
mixed-design ANOVA revealed a marginal interaction 
between condition and trial type [F(1,118)=3.865, p=.05, 
ηp

2=0.03], but no main effect of condition [F(1,118)=0.40, 
p=.53, ηp

2=0.00], or trial type [F(1,118)=1.22, p=.27, 
ηp

2=0.01]. We then compared the RT in conjunction and 
disjunction trials separately for the implicit and explicit 
conditions. In the explicit condition, RT in conjunction trials 
was reliably faster than that in disjunction trials 
[t(1,59)=2.03, p<.05, d=0.24], but in the implicit condition, 
the RT in conjunction trials was not reliably different from 
that in disjunction trials [t(1,59)=0.66, p=.51, d=0.07] (see 
Figure 5). 
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Figure 5: Experiment 2 results. The RT for each type of trials (C 
for conjunction, D for disjunction) was graphed separately for the 
explicit and implicit conditions (Error bar reflect ± 1 SE; *p<.05). 
 

These results suggested that when participants learned the 
color-location associations, they automatically made 
conjunctive inferences when they saw two color circles, even 
when the conjunctive quadrants were of the same spatial 
scope as the disjunctive quadrants. On the other hand, if 
participants did not successfully learn the color-location 
associations, they failed to make such conjunctive inferences. 

Experiment 3 
In Experiments 1 and 2, the two color circles were presented 
simultaneously side by side during the inference phase to 
elicit conjunctive predictions. An alternative method to 
represent conjunctions is to combine two features into one 
object, such as combing the color red and the shape square 
into a red square (Treisman & Gelade, 1980; Singer & Gray, 
1995). Therefore, in this experiment, we tested this 
alternative presentation where the two predictors were 
combined into a new object, rather than manifesting them as 
two different objects, to elicit conjunctive predictions. 

Participants 
A new group of 60 students (47 female, mean age=19.6 years, 
SD=2.6) from UBC participated for course credit. In the 
current experiment, only the implicit condition was examined 
(we did not examine the explicit condition due to time 
constraints in participant recruitment). 

Stimuli and Procedure 
The stimuli and procedure in the experiment were the same 
as those in Experiment 1, except for two critical differences. 

First, during the exposure phase there were two color 
circles (red and blue, as described in Experiment 1) and two 
textured circles (dotted and stripy circles, see Figure 6). The 
two color circles were always presented with a filled texture, 
and the two textured circles were always presented in a black 
color (R/G/B: 0/0/0). The two color circles always predicted 
two parallel halves of the array (e.g., the top and bottom 
halves), and the two textured circles predicted the other two 
halves of the array (e.g., the left and right halves). The 
assignment of a color or texture to a given half was 

randomized across participants, but remained constant for a 
given participant throughout the experiment. 
 

 
 
Figure 6. Experiment 3 paradigm. Two unique colors and two 
unique textures each predicted the target location in the following 
array during exposure. Circles with both a unique color and a unique 
texture were presented one at a time during inference. The trial types 
during the inference phase were the same as those in Experiment 1. 
 

Second, during the inference phase participants saw one 
circle at a time on the screen. Each circle contained one of the 
two colors and one of the two textures presented in the 
exposure phase (i.e., a blue stripy circle, a blue dotted circle, 
a red stripy circle, or a red dotted circle). There were four 
trials for each unique colored textured circle. Since a color 
and a texture never predicted two parallel halves during 
exposure, there were three types of trials in the inference 
phase as in Experiment 1: conjunctive trials where the target 
could appear in a conjunctive quadrant (C), disjunctive trials 
where the target could appear in a disjunctive quadrant (D), 
and impossible trials where the target never appeared in a 
quadrant based on exposure (I). 

Results and Discussion 
The test phase accuracy in this experiment was 0.33, which 
was marginally above chance [p=.07], suggesting that 
learning was weak.  

As before, we analyzed RT of correct trials in the inference 
phase (Figure 7). A one-way repeated-measures ANOVA 
revealed a main effect of trial type [F(2,118)=5.32, p<.001, 
ηp

2=0.24]. Post-hoc Tukey HSD tests showed that there was 
reliable RT difference in the conjunction trials and 
impossible trials [p<.01]. Other pair-wise comparisons were 
numerically similar to those in Experiment 1, but not 
statistically reliable [p’s>.11]. These results suggest that the 
participants made conjunctive predictions when the two 
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features were presented in a new object. However, the effect 
was not as strong as in previous experiments. 
 

 
Figure 7: Experiment 3 results. The RT for each type of trials was 
graphed (Error bar reflect ± 1 SE; **p<.01). 
 

General Discussion 
In this study, we examined how predictions were made in 

the presence of two objects that were associated with two 
different outcomes. Using a visual search paradigm, unique 
colors (all three experiments) or textures (Experiment 3) 
predicted a specific location of the target in the search array 
in the exposure phase. In the inference phase, we examined 
where the target was expected to appear when two color 
circles (Experiments 1 and 2) or a circle with a unique color 
and a unique texture (Experiment 3) were presented at the 
same time. Importantly in the inference phase, the target 
appeared in any location with equal probability. 

Based on the speed of visual search (RT), we found that 
participants were faster to find the target when it appeared in 
a conjunctive quadrant than in disjunctive or impossible 
quadrants. This was surprising because the simultaneous 
presentation of the two circles or features did not necessarily 
dictate a conjunctive or disjunctive inference. For example, 
just because the blue circle previously predicted the top half 
and the red circle previously predicted the left half, the blue 
and red circles together, in principle, could predict either the 
top left quadrant (conjunctive inference), or the top left, top 
right, and bottom left quadrants (disjunctive inference). What 
we found was that participants automatically prioritized the 
conjunctive quadrant over the disjunctive quadrant in the 
visual search task, at the presence of the two predictors. This 
conjunctive preference occurred without prior instructions, or 
even explicit awareness of the color-location associations. 

Across all three experiments, participants were not told 
anything about where to look when two color circles or two 
different features were presented together. Therefore, the 
differential RT in the conjunctive quadrant indicated an 
automatic expectation resulting from the previously learned 
color- or feature-location associations during exposure. 

In Experiment 1, the expectation to find the target in a 
location consistent with a conjunctive prediction was equally 
strong whether participants implicitly learned the 
associations or were explicitly told about the associations. 
However, in Experiment 2 when there was no successful 
learning of the associations in the implicit condition, this 

conjunctive prediction was absent. In fact, the conjunctive 
prediction was only present when participants were explicitly 
told about the color-location associations in the explicit 
condition. This suggests that the conjunctive predictions were 
only made when participants have successfully learned the 
color-location associations, either after implicit statistical 
learning, or after explicit instructions of these associations. 

It is important to note that the disjunctive quadrants in the 
current study were exclusively disjunctive, not containing the 
conjunctive quadrant. The fact that the RT in the disjunction 
trials was faster than that in the impossible trials but slower 
than that in the conjunction trials suggests that the impossible 
quadrant may be inhibited and the conjunctive quadrant may 
be prioritized during visual search. 

We think that both the learning process and the prediction 
process were implicit. In all three experiments, participants 
were not told anything about the object-location associations 
before the exposure phase in the implicit condition. That is, 
participants were only told to find the target in the search 
array and were not told that the object before each search 
array predicted the location of the target. Therefore, learning 
of the associations in the implicit condition was automatic 
and implicit. In the inference phase, there was no explicit 
instruction as to what to do with the two objects. Again, 
participants were only told to find the target in the search 
array. Moreover, the target in the inference phase could 
appear in any quadrant with equal probability, so the two 
objects were completely task-irrelevant. Finally, the RT was 
relatively fast so any explicit reasoning process may not 
occur in the period between object presentation and target 
search. For these reasons, we think that the conjunctive 
predictions were implicit. 

There are several limitations of the current study. First, we 
only presented two objects side by side, or two features in a 
single object as cues. There might be other ways to represent 
such joint cues using semantic categories (e.g., if object A is 
associated with the “dog” category and object B is associated 
with the “small” category, will people automatically predict 
Chihuahuas and Pomeranians upon seeing A and B?). 
Second, we only used RT as a measure to probe whether 
participants made conjunctive or disjunctive predictions. A 
richer method can involve eye tracking to see the timecourse 
of attention to the different quadrants in the inference phase. 
Finally, there was a confound of proximity in the current 
study, where the conjunctive quadrant was spatially closer to 
the disjunctive quadrant than to the impossible quadrant. This 
could explain the RT advantage of the disjunction trials over 
the impossible trials. 

In conclusion, the current results suggest that in the 
presence of multiple predictors, statistical learning generates 
automatic expectations about the outcomes in a conjunctive 
fashion. 
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Abstract
It has been argued that semantic categories across languages
reflect pressure for efficient communication. Recently, this
idea has been cast in terms of a general information-theoretic
principle of efficiency, the Information Bottleneck (IB) prin-
ciple, and it has been shown that this principle accounts for
the emergence and evolution of named color categories across
languages, including soft structure and patterns of inconsistent
naming. However, it is not yet clear to what extent this ac-
count generalizes to semantic domains other than color. Here
we show that it generalizes to two qualitatively different se-
mantic domains: names for containers, and for animals. First,
we show that container naming in Dutch and French is near-
optimal in the IB sense, and that IB broadly accounts for soft
categories and inconsistent naming patterns in both languages.
Second, we show that a hierarchy of animal categories derived
from IB captures cross-linguistic tendencies in the growth of
animal taxonomies. Taken together, these findings suggest that
fundamental information-theoretic principles of efficient cod-
ing may shape semantic categories across languages and across
domains.
Keywords: information theory; language evolution; semantic
typology; categories

Introduction
Cross-linguistic studies in several semantic domains, such as
kinship, color, and numeral systems, suggest that word mean-
ings are adapted for efficient communication (see Kemp, Xu,
& Regier, 2018 for a review). However, until recently it had
remained largely unknown to what extent this proposal can
account for soft semantic categories and inconsistent naming,
that could appear to pose a challenge to the notion of effi-
ciency, and how pressure for efficiency may relate to language
evolution. Recently Zaslavsky, Kemp, Regier, and Tishby
(2018; henceforth ZKRT) addressed these open questions by
grounding the notion of efficiency in a general information-
theoretic principle, the Information Bottleneck (IB; Tishby,
Pereira, & Bialek, 1999). ZKRT tested this formal approach
in the domain of color naming and showed that the IB prin-
ciple: (1) accounts to a large extent for cross-language vari-
ation in color naming; (2) provides a theoretical explanation
for why observed patterns of inconsistent naming and soft se-
mantic categories may be efficient; and (3) suggests a possi-
ble evolutionary process that roughly recapitulates Berlin and
Kay’s (1969) discrete implicational hierarchy while also ac-
counting for continuous aspects of color category evolution.

However, it is not yet clear to what extent these results may
generalize to other semantic domains, especially those that
are fundamentally unlike color.

Here we test the generality of this theoretical account by
considering two additional semantic domains: artifacts and
animals. These domains are of particular interest in this con-
text because they are qualitatively different from color, they
have not previously been comprehensively addressed in terms
of efficient communication, and at the same time it is possi-
ble to apply to them the same communication model that has
previously been used to account for color naming.

First, we consider naming patterns for household contain-
ers. This is a semantic domain in which categories are known
to overlap and generate inconsistent naming patterns (Ameel,
Storms, Malt, & Sloman, 2005; Ameel, Malt, Storms, & Ass-
che, 2009). Although it has previously been shown that con-
tainer naming in English, Spanish, and Chinese is efficient
compared to a large set of hypothetical naming systems (Xu,
Regier, & Malt, 2016), that demonstration did not consider
the full probability distribution of names produced by dif-
ferent speakers, did not explicitly contrast monolingual and
bilingual speakers, and was based on a smaller set of stim-
uli than we consider here. In this work we show that the full
container-naming distribution in Dutch and French, including
overlapping and inconsistent naming patterns, across a large
set of stimuli, both in monolinguals and bilinguals, is near-
optimally efficient in the IB sense.

Second, we test the evolutionary account of ZKRT in the
case of animal categories. By analogy with Berlin and Kay’s
implicational hierarchy of color terms, Brown (1984) pro-
posed an implicational hierarchy for the evolution of ani-
mal taxonomies based on cross-language comparison. We
show that aspects of this hierarchy are captured by a sequence
of efficient animal-naming systems along the IB theoretical
limit. Our results also support the view that both perceptual
and functional features shape animal categories across lan-
guages (Malt, 1995; Kemp et al., 2018).

The remainder of this paper proceeds as follows. First, we
review the theoretical framework and formal predictions on
which we build. We then present two studies that apply this
approach to the aforementioned semantic domains.
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complexity
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q(w|m)

Figure 1: Communication model adapted from ZKRT. A
speaker communicates a meaning M by encoding it into a
word W according to a naming distribution q(w|m). This
word is then interpreted by the listener as M̂ . Complexity
is a property of the mapping from meanings to words, and
accuracy is determined by the similarity between M and M̂ .

Theoretical framework and predictions
We consider here the theoretical framework proposed by
ZKRT, which is based on a simplified interaction between
a speaker and a listener (Figure 1), formulated in terms of
Shannon’s (1948) communication model. The speaker com-
municates a meaning m, sampled from p(m), by encoding it
into a word w, generated from a naming (or encoder) distribu-
tion q(w|m). The listener then tries to reconstruct from w the
speaker’s intended meaning. We denote the reconstruction by
m̂w, and assume it is obtained by a Bayesian listener.1 These
meanings, m and m̂w, are taken to be mental representations
of the environment, defined by distributions over a set U of
relevant features. For example, if communication is about
colors, then U may be grounded in a perceptual color space,
and each color would be mentally represented as a distribu-
tion over this space.

Under these assumptions, efficient communication systems
are those naming distributions that optimize the Information
Bottleneck (IB; Tishby et al., 1999) tradeoff between the
complexity and accuracy of the lexicon. Formally, complex-
ity is measured by the mutual information between meanings
and words, i.e.:

Iq(M ;W ) =
ÿ

m,w

p(m)q(w|m) log q(w|m)
q(w) , (1)

which roughly corresponds to the number of bits used to en-
code meanings into words. Accuracy is inversely related to
the discrepancy between m and m̂w, measured by the ex-
pected Kullback–Leibler (KL) divergence between them:

Eq[D[mÎm̂w]] = E
m≥p(m)

w≥q(w|m)

C
ÿ

uœU
m(u) log m(u)

m̂w(u)

D
. (2)

Accuracy is defined by Iq(W ;U) = Eq[D[m̂wÎm0]], where

1The reconstruction of a Bayesian listener with respect to a given
naming distribution is defined by m̂w =

q
m q(m|w)m.
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Figure 2: The black curve is the IB theoretical limit of effi-
ciency for container naming, obtained by varying —. Points
above this curve cannot be achieved. Complexity and accu-
racy tradeoffs in the four naming conditions are near-optimal.

m0 is the prior representation before knowing w, and maxi-
mizing accuracy amounts to minimizing equation (2).2

Achieving maximal accuracy may require a highly com-
plex system, while minimizing complexity will result in a
non-informative system. Efficient systems are thus pressured
to balance these two competing goals by minimizing the IB
objective function,

F— [q] = Iq(M ;W )≠—Iq(W ;U) , (3)

where — Ø 0 controls the efficiency tradeoff. The optimal
systems, q—(w|m), achieve the minimal value of equation (3)
given —, denoted by Fú

— , and evolve as — gradually shifts from
0 to Œ. Along this trajectory they become more fine-grained
and complex, while attaining the maximal achievable accu-
racy for their level of complexity. This set of optimal systems
defines the theoretical limit of efficiency (see Figure 2).

If languages are pressured to be efficient in the IB sense,
then for a given language l with naming system ql(w|m),
two predictions are made. (1) Deviation from optimality,
or inefficiency, should be small. This is measured by Ál =
1
—l

(F—l
[ql] ≠ Fú

—l
), where —l is estimated such that Ál is min-

imized. (2) The dissimilarity between ql and the correspond-
ing IB system, q—l

, should be small. This is evaluated by a
dissimilarity measure (gNID) proposed by ZKRT. In addition,
ZKRT suggested that languages evolve along a trajectory that
is pressured to remain near the theoretical limit.

These predictions were previously supported by evidence
from the domain of color naming. To apply this approach
to other domains, i.e. to instantiate the general communica-
tion model, two components must be specified: a meaning
space, which is the set of meanings the speaker may commu-
nicate; and a prior, p(m), also referred to as a need distri-
bution (Regier, Kemp, & Kay, 2015), since it determines the
frequency with which each meaning needs to be communi-
cated. In the following sections we present two studies that

2See (Zaslavsky et al., 2018) for detailed explanation.
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Figure 3: A. Two dimensional nMDS embedding and color coding of the containers stimulus set used by White et al. (2017).
Images show a few examples. B. Monolingual naming distributions for Dutch (upper left) and French (lower left), together with
their corresponding IB systems (right column), are visualized over the 2D embedding shown in (A). Each color corresponds to
the color centroid of a container category, w, based on the color map in (A). Colors show category probabilities above 0.4, and
color intensities reflect the values between 0.4 and 1. White dots correspond to containers for which no category is used with
probability above 0.4. Legend for each language shows only major terms.

follow this approach and test its predictions in qualitatively
different semantic domains.

Study I: Container names
The goal of this experiment is to test the theoretical predic-
tions derived from IB in the case of container naming. It is not
clear whether previous findings for color would generalize to
this case for several reasons. First, the representation of arti-
facts is likely to involve more than just a few basic perceptual
features, unlike color. Second, categories in this domain are
believed to be strongly shaped by adaptation to changes in the
environment (Malt, Sloman, Gennari, Shi, & Wang, 1999).
At the same time, container categories tend to overlap, as in
the case of color categories, posing a similar theoretical chal-
lenge to explain this observation in terms of communicative
efficiency. Finally, the bilingual lexicon in this domain has
been extensively studied, and it has been shown that bilin-
gual naming patterns tend to converge (Ameel et al., 2005,
2009). However, it is not yet clear whether this convergence,
or compromise, comes at a cost in communicative efficiency,
or whether it may actually be formalized and explained in
terms of efficiency.

Data. To address these open questions, we consider sort-
ing and naming data collected by White et al. (2017), relative
to a stimulus set of 192 images of household containers (see
Figure 3A for examples). This set is substantially larger than
those used in previous container-naming studies (e.g. Malt et
al., 1999; Ameel et al., 2005), thus providing a better rep-

resentation of this semantic domain. In the naming task, 32
Dutch and 30 French monolingual speakers, as well as 30
bilingual speakers, were asked to provide names for the con-
tainers in the stimulus set. Bilingual participants performed
the task once in each language. The container-naming dis-
tribution in each of the four conditions (language ◊ linguis-
tic status) is defined by the proportion of participants in that
condition that used the word w to describe a container c. A
separate sorting task was performed by 65 Dutch speakers,
who were asked to organize all containers into piles based on
their overall qualities. Participants were also allowed to form
higher-level clusters by grouping piles together. White et al.
(2017) evaluated the similarity between two containers, de-
noted here by sim(c,cÕ), based on the number of participants
that placed them in the same pile or cluster (see White et al.,
2017 for detail). In both tasks, participants were instructed
not to take into account the content of the object (e.g., water).

Model. We ground the meaning space in the similarity data,
following a related approach proposed by Regier et al. (2015)
and Xu et al. (2016). While these data are from Dutch speak-
ers, there are only minor differences in perceived similarities
among speakers of different languages (Ameel et al., 2005).
Therefore, we assume that these similarity judgments reflect
a shared underlying perceptual representation of this domain.
We take U to be the set of containers in the stimulus set,
and define the mental representation of each container c by
the similarity-based distribution it induces over the domain,
mc(u) Ã exp(“ · sim(c,u)), where “≠1 is taken to be the
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empirical standard deviation of sim(c,u). In contrast with
the case of color, in which these mental representations were
grounded in a standard perceptual space, here there is no stan-
dard perceptual space for containers, and so our assumed un-
derlying perceptual representation requires further validation,
which we leave for future work. We define the need distribu-
tion, p(mc), by averaging together the least informative (LI)
priors for the different languages, as proposed by ZKRT. We
used only the monolingual data for this purpose, and regular-
ized the resulting prior by adding ‘ = 0.001 to it and renor-
malizing.

Results
We estimated the theoretical limit of efficiency for container
naming by applying the IB method (Tishby et al., 1999), as
ZKRT did in the case of color naming, here with 1500 val-
ues of — œ [0,1024]. We evaluated the empirical complex-
ity and accuracy in the four naming conditions by entering
the corresponding naming distributions in the equations for
Iq(M ;W ) and Iq(W ;U). The results are shown in Figure 2
and Table 1. It can be seen that container naming in Dutch
and French lie near theoretical limit, both for monolinguals
and bilinguals, and that bilinguals achieve similar levels of
efficiency as monolinguals (Table 1). In all four cases, the
corresponding IB solution is at —l ¥ 1.2, suggesting that there
is only a weak preference for accuracy over complexity in this
domain, as also found for color naming.

Consistent with the empirical observations of convergence
in the bilingual lexicon, the complexity-accuracy tradeoffs in
bilinguals are closer to each other (Figure 2, orange and red
dots) compared to the monolingual tradeoffs (Figure 2, blue
and green dots). This may be explained by a need to reduce
the complexity of maintaining two naming systems simul-
taneously, while achieving monolingual-like levels of effi-
ciency in each language. To test this possibility, we compared
two joint French-Dutch systems that bilinguals may employ:
one that randomly selects one of the two monolingual sys-
tems to name objects, and another that randomly selects one
of the two bilingual systems. We found a 0.16% reduction
in the complexity of the joint bilingual system compared to
the joint monolingual system. Although this is a small ef-
fect, it may accumulate across domains to have a substantial
impact. In addition, our simple calculation did not take into
account similar word forms, which may also reduce complex-
ity (Ameel et al., 2005). Thus, this finding suggests that the
convergence in the bilingual lexicon may be shaped, at least
in part, by pressure for efficiency.

The remainder of our analysis focuses on the monolingual
systems, as they are more distinct and presumably more rep-
resentative of each language. To get a precise sense of how
challenging it may be to reach the observed levels of effi-
ciency, we compared the actual naming systems to a set of
hypothetical systems that preserve some of their statistical
structure. This set was constructed by fixing the conditional
distributions of words, while shifting how they are used by
applying a random permutation of the containers. For each

Table 1: Evaluation of the IB container-naming model.
Lower values indicate a better fit of the model. Values for
hypothetical systems are averages ±SD over 10,000 systems.

Inefficiency Dissimilarity
Dutch monolingual 0.16 0.11

bilingual 0.17 0.12
hypothetical 0.29 (±0.02) 0.59 (±0.05)

French monolingual 0.18 0.11
bilingual 0.17 0.09
hypothetical 0.31 (±0.01) 0.56 (±0.06)

language we constructed 10,000 such hypothetical systems.
Table 1 shows that these hypothetical systems are substan-
tially less efficient than the actual systems, and are also less
similar to the IB systems. In fact, both languages achieve
better (lower) scores than all of their hypothetical variants,
providing a precise sense in which they are near-optimal ac-
cording to IB. One possible concern is that this outcome may
be a result of the LI prior, which was fitted to the naming data.
To address this, we repeated this analysis with a uniform need
distribution. The results in that case are similar (not shown),
although as expected the fit to the actual systems is not as
good compared to the LI prior.

The low dissimilarity scores for the actual languages,
shown in Table 1, suggest that the observed soft category
structure in this domain may also be accounted for by the
IB systems. This is indeed supported by a fine-grained com-
parison between the naming distribution in both languages
and their corresponding IB systems. To see this, we embed-
ded the 192 containers in a 2-dimensional space by applying
non-metric multidimensional scaling (nMDS) with respect to
the similarity data, similar to Ameel et al. (2009). This was
done using the scikit-learn package in Python. We initialized
the nMDS procedure with a solution for the standard metric
MDS that achieved the best fit to the similarity data out of
50 solutions generated with random initial conditions. For
visualization purposes, we assigned a unique color to each
container. The resulting 2D embedding and color coding of
the containers stimulus set are shown in Figure 3A.

The monolingual systems in Dutch and French are shown
in Figure 3B, together with their corresponding IB systems.
These two IB systems are very similar, although not identi-
cal, which is not surprising given that the naming patterns
in Dutch and French are fairly similar. Both the actual sys-
tems and the IB systems exhibit soft category structure and
similar patters of inconsistent naming, as shown by the white
dots. In addition, since each category is colored according to
its centroid, similarity between the category colors together
with their spatial distribution reflect the similarity between
the full naming distributions. For example, the IB systems
have a category that is similar to fles and bouteille, as well
as a category that is similar to doos and boı̂te in Dutch and
French respectively, although these categories in the IB sys-
tems are a bit narrower. The IB systems also capture the
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Figure 4: A. Brown’s (1984) proposed hierarchy for animal categories. B. Subset of the conditional probabilities of features
(columns) given animal classes (rows), for the 5 most familiar classes and 12 most frequently generated features. C. Theoretical
limit for animal naming. Colored dots along the curve correspond to the systems shown in (D), with k = 2,3,4 categories.
D. Animal category hierarchy derived from IB. Each level corresponds to an IB system. Each box corresponds to a category,
which is represented by its top five classes (left) and features (right) and their probabilities given the category.

category tube quite well in both languages. However, there
are also some apparent discrepancies. For example, the dis-
tinction between bouteille and flacon in French is reflected
in both IB systems, although Dutch does not have the same
pattern in this case (Ameel et al., 2005).

This analysis shows that efficiency constraints may to a
substantial extent explain the container-naming distribution
in Dutch and French, including soft category boundaries and
inconsistent naming observed empirically, both in monolin-
guals and bilinguals. It thus supports the hypothesis that a
drive for information-theoretic efficiency shapes word mean-
ings across languages and across semantic domains. How-
ever, since this analysis is based only on two closely related
languages, we were not able to test how well the results for
this domain generalize across languages. Important direc-
tions for future research include testing whether these results
generalize to other, preferably unrelated, languages, and fur-
ther testing the extent to which the convergence in the bilin-
gual lexicon is influenced by pressure for efficiency. The next
section focuses on another semantic domain for which we are
able to obtain broader cross-linguistic evidence.

Study II: Folk biology
Cross-language variation and universal patterns in animal
taxonomies have been extensively documented and stud-
ied (Berlin, 1992), however this domain has not yet been ap-
proached in terms of efficient communication. By analogy
with Berlin and Kay’s theory, Brown (1984) proposed an im-
plicational hierarchy for animal terms, based on data from
144 languages. Brown identified six stages for animal tax-
onomies, as illustrated in Figure 4A. Languages at the first
stage do not have any lexical representation for life-forms.

Languages at stages 2-4 add terms for fish, bird and snake,
but Brown does not argue for any particular order for these
categories. Terms for mammal and wug (“worm-bug”, refer-
ring in addition to small insects) are added in stages 5 and 6,
again with no implied order. Much of the data analyzed in this
domain is not fine-grained, and Brown’s proposal has been
criticized (Randall & Hunn, 1984) mainly due to lack of suf-
ficiently accurate data. Nonetheless, his observations can be
considered as a rough approximation of cross-linguistic ten-
dencies in this semantic domain. Therefore, in this work we
aim at testing whether broad cross-linguistic patterns, as sum-
marized by Brown’s proposal, can be accounted for in terms
of pressure for efficiency. More specifically, our goal is to
derive from the IB principle a trajectory of efficient animal-
naming systems, analogous to ZKRT’s trajectory for color,
and to compare this trajectory to the naming patterns reported
by Brown. However, unlike previous comparisons to IB op-
tima, due to the nature of available data, here we only attempt
to make coarse comparisons.

To derive a trajectory of efficient animal-naming systems,
we first need to specify the communication model in this do-
main. We ground the representations of animals in high-level,
human-generated features. Specifically, we consider the Leu-
ven Natural Concept Database (De Deyne et al., 2008), which
contains feature data and familiarity ratings for animal classes
(e.g., “cat”, “chicken”, etc.). These data were collected from
Dutch speakers, and then translated to English. We fol-
low Kemp, Chang, and Lombardi (2010), who considered
113 animal classes and 757 features from this database, and
for each feature u and class c estimated the conditional prob-
ability p(u|c) based on the number of participants who gen-
erated this feature for that class (see Figure 4B for exam-

1258



ples). We take U to be the set of animal features, and assume
each animal class is mentally represented by the distribution
it induces over features, i.e. mc(u) = p(u|c), as estimated
by Kemp et al. (2010). In addition, we follow Kemp et al.
(2010) in using a familiarity-based prior over animal classes,
in which the probability of a class is proportional to its famil-
iarity score. We define the need distribution to be this prior.

Given these components, we estimated the theoretical limit
for animal naming (Figure 4C) using the same method as be-
fore, this time with 3000 values of — œ [0,213]. We then
selected the most informative systems with k = 2,3,4 cat-
egories. The number of categories, k, was determined by
considering categories w with probability mass q—(w) >
0.00001. These systems are shown in Figure 4D, where
each layer of the hierarchy corresponds to a system and
each box corresponds to a category within that system. The
top layer, with a single category, corresponds to a non-
informative system that does not distinguish between differ-
ent animal classes. This can be considered as a stage 1 system
in Brown’s sequence. The second layer (shown in orange)
roughly corresponds to a stage 2 system. It consists of a fish
category, as can be inferred from the distribution it induces
over features and animals, and another category for all other
animals. It lies very close to the origin in Figure 4C, as it
maintains little information about most animals. The third
layer (shown in red) corresponds to a system with categories
for fish and wug, as well as a category that is dominated by
birds and mammals. The bird-mammal category has greater
probability mass (0.8) than the wug category (0.14), suggest-
ing that it is more prominent even though these two categories
appear together. This transition deviates from Brown’s se-
quence in the early appearance of wug (although not strongly
weighted here), and in lacking a snake category (although an-
imals from that category do appear in the Leuven database).
One possible explanation for this deviation is that the fea-
ture data on which we relied were obtained from Dutch par-
ticipants, and are thus strongly biased toward Western soci-
eties. In the next layer (shown in blue), the 3-category system
evolved to a 4-category system by refining the bird-mammal
category, resulting in a system that roughly corresponds to a
Brown stage 6 system, with the exception of snake.

These results suggest that animal naming systems may
evolve under efficiency pressure much as color appears to, de-
spite the qualitative difference between these domains. How-
ever, in order to test this proposal more comprehensively,
fine-grained cross-linguistic animal naming data is required,
comparable to the naming data for colors and containers. The
fact that systems along the theoretical limit capture some
cross-linguistic tendencies in animal taxonomies is notable,
given that our characterization of the domain, in terms of fea-
tures, was necessarily strongly biased toward animal repre-
sentations in Western societies. This finding supports the idea
that to some extent at least there is a shared underlying repre-
sentation of animals across cultures (Mayr, 1969), while also
raising the interesting possibility of some cross-language and

cross-cultural differences in underlying representations. It is
also worth noting that the salient features in the IB systems
tend to be both perceptual (e.g., “is big”) and functional (e.g.,
“is edible”), suggesting that both types of features may shape
animal categories across languages, and that this may be con-
sistent with pressure for efficiency (Kemp et al., 2018).

Although we introduced the hierarchy in Figure 4D as an
account of category structure across languages, the same hi-
erarchy could potentially serve as a model of hierarchical
structure within a single language. This within-language in-
terpretation resembles previous applications of the IB prin-
ciple to language (Pereira, Tishby, & Lee, 1993), although
these applications were based on corpus statistics. The
within-language interpretation seems useful in the case of an-
imal taxonomies, a semantic domain with strong hierarchical
structure, as opposed to containers and even colors. A possi-
ble, yet speculative, reconciliation of the within-language and
cross-language interpretations is that speakers may internally
represent a hierarchy induced by an evolutionary sequence.
For example, Boster (1986) showed that English speakers can
recapitulate Berlin and Kay’s implicational color hierarchy in
a sequential pile-sorting task. Thus, it seems at least possible
that a similar phenomenon may also hold for animal cate-
gories.

General discussion
Artifacts, animals, and colors are qualitatively different ele-
ments of human experience, yet our findings suggest that their
semantic representations across languages is governed by the
same general information-theoretic principle: efficient cod-
ing of meanings into words, as defined by the IB principle.
We have shown that this theoretical account, which was pre-
viously tested only in the domain of color naming (ZKRT),
generalizes to container names and animal taxonomies. This
finding resonates with the proposal that word meanings may
be shaped by pressure for efficient communication (Kemp
et al., 2018). However, it goes beyond that proposal by ex-
plaining how pressure for efficiency may account for soft cat-
egories and inconsistent naming, both in monolinguals and
bilinguals, and how it may relate to language evolution.

An important direction for future research is to test to what
extent our results extend to other semantic domains, and ide-
ally, to the lexicon as a whole. While it may not be possible
to apply this approach to every aspect of the lexicon, we be-
lieve that the theoretical formulation considered here may be
broadly applicable across semantic domains.
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Abstract 
How do learners gather new information during word 
learning? We present evidence that adult learners will choose 
to receive additional training on object-label associations that 
reduce ambiguity about reference during cross-situational 
word learning. This ambiguity-reduction strategy is related to 
improved test performance. We find mixed evidence that 
children (4-8 years of age) show a similar preference to seek 
information about words experienced in ambiguous word 
learning situations. In an initial experiment, children did not 
preferentially select object-label associations that remained 
ambiguous during cross-situational word learning. However, 
this may be explained by some children having relatively high 
certainty about object-label associations for which they did 
not see evidence disconfirming their initial hypothesis. In a 
second experiment that increased the relative ambiguity of 
two sets of novel object-label associations, we found evidence 
that children preferentially make selections that reduce 
ambiguity about novel word meanings. 

Keywords: cross-situational word learning; mutual 
exclusivity; active learning; self-directed learning; sampling 

Introduction 
What makes us seek out new information during learning? 
One proposal is that information-seeking behavior is driven 
by uncertainty reduction (e.g., Kidd & Hayden, 2015). A 
variety of studies have demonstrated that – at least in some 
contexts - children are motivated to gather information to 
reduce the uncertainty after ambiguous or surprising events 
(Schulz & Bonawitz, 2007; Stahl & Feigenson, 2015). 

To what extent does ambiguity-reduction play a role in 
word learning? A classic problem is how learners 
disambiguate the meaning of words in potentially 
ambiguous situations (Quine, 1960). One solution is that 
children can disambiguate word meanings by tracking co-
occurrences of object-label pairs across multiple ambiguous 
situations (Yu & Smith, 2007). This proposal would be 
particularly powerful if learners are naturally drawn to 
isolating object-label associations that have remained 
ambiguous over the course of past learning (Hidaka, Torii, 
& Kachergis, 2017). A previous study of cross-situational 
word learning has shown that being able to actively select 
sets of object-label pairs to learn about increases 
participants’ accuracy compared to a passive condition in 
which random sets of objects are presented (Kachergis, Yu, 
& Shiffrin, 2013). However, we still know little about what 
sampling strategies adult and child learners display when 
given the opportunity to control their learning input. 

In the current work, we investigated whether adult and 
child learners seek information that aids in reducing 

ambiguity about the meaning of novel words. We 
manipulated the ambiguity of novel word mappings by 
varying the degree to which object-label pairs co-occurred 
with one another during cross-situational word learning 
(Experiments 1A, 1B, 2A) or whether children could use 
mutual exclusivity to disambiguate the referents of novel 
words (Experiment 2B). The central question was whether 
adults and children would choose to learn more about those 
items that most strongly reduce referential ambiguity. 

Experiments 1A & 1B 
We tested whether adult learners would seek information 
that aided in disambiguating reference. Participants 
completed a cross-situational learning task in which their 
goal was to learn a set of object-label associations by 
determining the referent of each label across training. 
Participants were then given the opportunity to select which 
object-label association they would hear on the next 
learning trial. The central question was whether adult 
learners would make selections that reduce referential 
ambiguity about the novel object-label associations. We 
collected data in an online experiment (Experiment 1A) and 
in an in-lab experiment (Experiment 1B) that we discuss 
together due to their similarity in design and results. 

Method 
Participants. For Experiment 1A, we recruited 31 
participants through Amazon Mechanical Turk. Three 
participants were excluded for not passing an initial auditory 
attention check (2) or for restarting the experiment (1). All 
participants were assigned to the Fully Ambiguous 
Condition (n = 28) and paid $0.75 for completing the study.  

For Experiment 1B, 62 University of Wisconsin-
Madison’s undergraduates participated for course credit and 
were randomly assigned to the Fully Ambiguous Condition 
(n = 28) or the Partially Ambiguous Condition (n = 34). 

 
Stimuli. The object stimuli were 8 images of novel ‘alien’ 
creatures used in previous word learning studies (Partridge, 
Mcgovern, Yung, & Kidd, 2015). 8 novel word stimuli 
(beppo, finna, guffi, kita, noopy, manu, sibu, tesser) were 
recorded by a female native speaker of English and 
normalized in duration and average loudness. The 
association between each label and its target referent and the 
roles of the stimuli within a condition were randomized 
across participants. The stimuli were presented using a web-
based experiment created using jsPsych (de Leeuw, 2014). 
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Design & Procedure. The experiment was split into a 
Training Phase, a Sampling Phase, and a Test Phase. 

Training Phase. Participants completed 24 cross-
situational learning trials (2 blocks of 12 trials), presented in 
random order. The goal was to learn the association between 
eight novel labels and their referents. On each training trial, 
participants were presented with two referents and two 
labels. The labels appeared sequentially in random order, 
both visually and auditorily. Consequently, the association 
between a particular label and its referent remained 
ambiguous on any single trial, but could be disambiguated 
by aggregating information across trials. Each object and its 
label occurred 6 times across the 24 training trials. 

 

 
 

Figure 1. Overview over one block of the Training Phase 
for the Fully Ambiguous Condition and the Partially 

Ambiguous Condition 
 

We manipulated whether the object-label associations 
became disambiguated across trials during training, and 
therefore, how uncertain participants were at the onset of the 
Sampling Phase about the specific object-label pairs. Across 
Experiments 1A and 1B, participants were assigned to one 
of two conditions: the Fully Ambiguous condition or the 
Partially Ambiguous condition. In the Fully Ambiguous 
condition, half of the object-label pairs remained 
ambiguous: two sets of two items were yoked together such 
that they were never disambiguated across training 
(ambiguous items; Figure 1, top left). The remaining items 
in the Fully Ambiguous condition were disambiguated 
across trials, occurring with three different object-label pairs 
(disambiguated items; Figure 1, right panel). In the Partially 
Ambiguous condition, two sets of two objects were grouped 
such that two specific objects co-occurred on 4 out of their 6 
occurrences, but each occurred with one other object from 
the ambiguous object set on the remaining 2 trials (partially 
ambiguous items; Figure 1, bottom left). The other four 
objects were disambiguated as in the Fully Ambiguous 
condition. Note that across both conditions, participants saw 
each individual object and label equally frequently. 

Sampling Phase. Participants next completed four 
sampling trials. On each trial, all 8 objects appeared in 
randomized locations. Participants were instructed to select 
which of the 8 items they wanted to hear in the next cross-
situational learning trial. After participants’ selection, a 
second object was chosen at random from the remaining 
objects. The two objects and their labels then appeared 
together in a cross-situational word learning trial with the 
same structure as in the training phase.  

Test Phase. Participants’ knowledge of the object-label 
associations was probed in an 8-AFC recognition test. On 
each test trial, all 8 objects appeared in randomized 
locations on the screen, along with one of the 8 labels. 
Participants were then asked to select the object that went 
with the label. No feedback was provided after a choice. 
Participants were tested on each label in random order, for a 
total of 8 recognition test trials. 

 
Predictions. We predicted that participants would be more 
likely to choose to learn more about the ambiguous items 
than about the disambiguated items in the sampling phase. 
For the Partially Ambiguous condition, we expected 
participants to have a weaker preference for ambiguous 
items over the disambiguated items, since adults accurately 
tracking the co-occurrence evidence could successfully 
learn all word-referent pairs. We did not predict large 
differences in test accuracy between items. One possible 
outcome was that test accuracy would be higher for items 
that were disambiguated during training. However, another 
possibility was that ambiguous items could be learned at 
comparable levels to disambiguated items if participants 
preferentially sampled ambiguous items.  

 

Results 
Sampling choices. We report the results combining the data 
from Experiments 1A and 1B for convenience – however, 
qualitatively similar results are obtained when considering 
the data from Experiment 1A or Experiment 1B separately. 
We used the lme4 package version 1.1-18-1 in R (version 
3.5.1) to fit a logistic mixed-effects model testing 
participants’ likelihood of making an ambiguous selection 
against a chance level of 0.5 (Bates & Maechler, 2009; R 
Development Core Team, 2018), including by-subject and 
by-item random intercepts and a fixed effect for condition. 
In the Fully Ambiguous condition, participants were more 
likely to choose ambiguous items than disambiguated items, 
b = .59, z = 3.61, p < .001. Participants chose an object from 
the ambiguous set on 63.4% of trials (95% CI = [55.7%, 
71.0%] (Figure 2A). Participants in the Partially Ambiguous 
condition selected the partially ambiguous items on 47.8% 
of trials (95% CI = [39.1%, 56.5%]), thus showing no 
sampling preference between the two item types (p = .64). 
Participants were in the Fully Ambiguous condition were 
more likely than participants in the Partially Ambiguous 
condition to select the more ambiguous object-label 

1262



associations, b = .68, z = 2.64, p = .008. Non-parametric 
analyses yielded equivalent results. 

 
Test performance. Overall, participants showed learning of 
the label-object pairs, accurately selecting the correct 
referent in both the Fully Ambiguous condition (M = 
69.2%, 95% CI = [60.8%, 77.5%], chance = 12.5%) and in 
the Partially Ambiguous condition (M = 77.6%, 95% CI = 
[67.1%, 88.0%]) (Figure 2B). Notably, within the Fully 
Ambiguous condition, test accuracy was lower for the 
ambiguous items (M = 61.6%) than for the disambiguated 
items (M =76.8%; logistic mixed-effects model with by-
subject and by-item random intercepts and a by-subject 
random slope for item type, z = 3.25, p = .001).  
 

 
Figure 2. (A) Proportion of more ambiguous items selected 

in each condition and (B) test accuracy by condition and 
item type. Error bars in represent within-subject 95% CIs. 

 

 
 

 Figure 3. Relationship between choosing more ambiguous 
items and test accuracy for each condition. Error bands 

represent +/-1 SE. 
 

Relationship between sampling and test performance. In 
the Fully Ambiguous condition, participants who chose 
more objects from the ambiguous set during the sampling 
phase accurately identified more words at test, r(54) = .48, 
95% CI = [0.25, 0.66], p < .001 (Figure 3). There was no 
significant relationship between participants’ tendency to 
select the partially ambiguous items and their accuracy at 
test (r(32) = -.11, p = .50). 

 

Discussion 
In a cross-situational learning task, adult learners chose to 
learn more about those object-label pairs that remained 
ambiguous throughout training. Adults showed this 
tendency when the object-label pairings were truly 
ambiguous based on the training evidence (Fully 
Ambiguous condition), but not when the object-label pairs 
became disambiguated at any point during training (Partially 
Ambiguous condition). While participants showed poorer 
overall learning of the (more difficult) ambiguous object-
label pairs, their success at test correlated strongly with the 
degree to which they chose more ambiguous items during 
the sampling phase. This experiment provides ‘proof-of-
concept’ evidence that adult learners will seek to reduce 
ambiguity about object-label associations when given the 
opportunity to control which items they will learn about.  

Experiment 2A 
Next, we asked whether children would demonstrate a 
similar tendency to seek new words that reduce ambiguity 
during cross-situational learning. As in Experiment 1A, 
children (4-8 years of age) first completed a cross-
situational word learning task. Across training, one set of 
novel object-label associations could be inferred based on 
the object-label associations they co-occurred with, while 
another set of words remained ambiguous. Then, 
participants were given the opportunity to sample object-
label associations presented in isolation, i.e. in unambiguous 
learning trials. The central question was whether children 
would prefer to select object-label associations with 
ambiguous evidence during training, suggesting that 
children sample words that reduce referential ambiguity. 

Method 
Participants. We recruited 38 participants (M = 5.9 years, 
range = 4.1 – 8.1 years, 19 female) at a local children’s 
museum. Two additional participants were excluded due to 
inattention during experiment.  

 
Stimuli. The object stimuli were 8 images of novel ‘alien’ 
creatures used in previous word learning studies (Partridge 
et al., 2015) and 2 cartoon images of familiar animals 
(penguin, dog). 8 novel word stimuli (biffer, deela, guffi, 
sibu, tibble, leemu, zeevo, pahvy) and two familiar word 
stimuli (penguin, dog) were recorded by a female native 
speaker of English and normalized in duration and average 
loudness. The association between each novel label and its 
novel target referent, as well as the particular roles of the 
novel word-referent stimuli, were randomized across 
participants. The stimuli were presented using in a web-
based experiment created in jsPsych (de Leeuw, 2014). 
 
Design & Procedure. Children were tested in a quiet room 
in the children’s museum on a 10.1” Samsung Galaxy Note 
tablet. An experimenter guided children through the 
experiment by giving instructions at the beginning of each 
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new phase. The experiment was presented as a game in 
which a cartoon bear named Teddy would first teach 
children the names of new alien friends, and then ask 
children to help her find her friends. The experimenter 
began with the following introduction:  

In this game, Teddy went up to space and met 
a bunch of new alien friends. Teddy is going to 
tell you the names of aliens, and your job is to 
try to remember which name goes with which 
alien. Later, you’re going to help Teddy find 
them.  

The experiment then proceeded to a Practice Phase, 
followed by the main experiment consisting of three phases: 
the Training Phase, the Sampling Phase, and the Test Phase. 

Practice Phase. Participants first completed a practice 
phase in which they encountered the two familiar word 
object stimuli and two novel object-label associations. We 
introduced this short practice phase to give children 
experience with the overall structure of the main experiment 
under less demanding circumstances, using a smaller set of 
items and mixing familiar and novel items. First, children 
were exposed to 4 training practice trials similar in structure 
to the training trials in the main experiment. On each trial, 
two referents appeared on the screen on either side of the 
Teddy character and children heard two labels, one for each 
object, in random order. On the first trial, children always 
saw the two familiar items (i.e., the penguin and the dog), 
followed by a second trial in which children saw two novel 
object-label associations (i.e., an ambiguous labeling event). 
On the final two training practice trials, children saw each of 
the familiar items occur with one of the two novel items 
(permitting the disambiguation of the novel object-label 
associations). Next, children saw two sampling practice 
trials, in which children had the opportunity to select which 
of the four items they wanted to learn about next, followed 
by four practice test trials, in which participants’ knowledge 
of the items was tested in a 4-AFC recognition test. The 
procedure for each of these practice trial types mirrored the 
procedure for the Sampling Phase and the Test Phase 
described in more detail below. 

Training Phase. Participants completed 9 cross-situational 
learning trials (3 blocks of 3 trials each). On each training 
trial, participants saw two referents appear on the screen on 
either side of the Teddy character and heard the labels of the 
two objects presented sequentially in random order. Next, 
the objects switched locations in a brief animation, and 
participants heard the same two labels presented in the same 
order. We introduced this trial repetition with flipped 
locations in order to reduce children’s tendency to interpret 
the labeling event as moving from left to right on the screen, 
i.e. assuming that the first label went with the object on the 
left and the second label went with the object on the right.  

As in the Fully Ambiguous condition of Experiment 1A, 
we manipulated whether the object-label associations could 
be disambiguated across trials during training (Figure 4). 
Every object-label pair occurred on three cross-situational 
training trials. Four of the objects occurred with three 

different object label pairs (disambiguated items). The 
remaining two object-label associations always occurred 
with one another (ambiguous items), such that children 
never saw evidence allowing them to link the two words 
unambiguously with their respective referent. 

 

 
 

Figure 4. Overview over the design of the Training and 
Sampling Phase in Experiment 2A 

 
Sampling Phase. After completing the training phase, 

participants completed four sampling trials. On each 
sampling trial, all 6 referents appeared in randomized 
locations on the screen. Participants were instructed to 
select which of the 6 items they wanted to learn about next 
(Figure 4). When participants tapped one of the 6 referents, 
a brief animation moved the item to the center of the screen 
while the remaining items disappeared, and the referent was 
subsequently labeled in isolation.  

Test Phase. Participants’ knowledge of the object-label 
associations was probed in a 6-AFC recognition test. On 
each test trial, all 6 referents appeared in randomized 
locations on the screen surrounding the Teddy character. 
When participants tapped Teddy in the center of the screen, 
they heard one of the 6 labels. Participants were instructed 
to help Teddy by selecting the friend she was looking for. 
No feedback was provided after a choice. Participants were 
tested on each label in random order, for a total of 6 
recognition test trials. 
 
 
Predictions. As in Experiment 1A, our main prediction was 
that children would preferentially select object-label 
associations that remained ambiguous during the cross-
situational word learning trials of the training phase. 

Results 
Sampling choices. Contrary to our prediction, children did 
not preferentially select ambiguous object-label associations 
during the Sampling Phase, b = -0.01, z = -.11, p = .91. 
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Participants chose an object from the ambiguous set on 
32.9% of trials (95% CI = [27.1%, 38.7%]). 
 
Test performance. Overall, participants showed significant 
learning of the label-object pairs, choosing the correct object 
to go with a label at above-chance levels (chance = 0.167), 
M = 38.6%, 95% CI = [30.7%, 46.5%], t(37) = 5.65, p < 
.001. However, surprisingly, children performed more 
accurately on the ambiguous items (M = 48.6%, 95% CI = 
[36.9%, 60.4%]) than on the disambiguated items (M = 
33.6%, 95% CI = [24.9%, 42.2%]), b =.68, z = 2.23, p = 
.028. When tested on ambiguous items, children had a 
strong preference to select one of the two ambiguous objects 
(61.8% of trials, 95% CI = [50.7%, 72.9%]) over the four 
disambiguated objects (chance = 0.33). When tested on 
disambiguated items, children tended not to choose the two 
ambiguous objects, selecting them on only 18.4% of trials 
(95% CI = [12.8%, 24.1%]). 

Discussion 
Unlike adult learners, children did not show a preference for 
selecting object-label associations for which they had 
experienced ambiguous evidence during training. 
Interestingly, children performed better at test for 
ambiguous object-label associations than for object-label 
associations that were disambiguated across training trials. 
There are likely two reasons why children showed higher 
accuracy on the ambiguous items. First, since the two 
ambiguous items always co-occurred with one another, the 
training could help learners constrain the set of possible 
competitors for a given ambiguous label to two objects 
(compared to four possible objects for the disambiguated 
items). Indeed, children appeared to constrain their choices 
to the two objects that co-occurred on ambiguous trials 
when tested on their respective labels and rarely chose these 
objects when tested on the labels that occurred with the 
disambiguated objects  

Second, anecdotally, we observed that many children 
explicitly pointed to specific objects during training while 
listening to each label and even repeated the respective label 
for each object. This behavior may indicate that some 
children were making an explicit hypothesis about each 
word mapping (Trueswell, Medina, Hafri, & Gleitman, 
2013). If a child formed a specific hypothesis about the 
mapping between the two labels and objects on the first 
ambiguous trial, they would subsequently hear evidence that 
would appear to confirm their hypothesis: the two labels and 
the two objects would occur together again on the 
subsequent two training trials. “Hypothesis-testers” would 
never experience evidence disconfirming their initial 
hypotheses and thus have a 50% chance of responding 
correctly at test for these items (note that our child 
participants’ test accuracy was 48.6% on average). 
Crucially, one consequence of learners approaching the task 
in this manner is that the two object-label associations 
deemed “ambiguous” according to the experimental design 
may have actually appeared less ambiguous to children 

performing the task than the putatively disambiguated items. 
Thus, in our next step, we adapted the task to create a 
learning situation in which one set of object-label 
associations would be more clearly ambiguous from the 
standpoint of the child learner. 

Experiment 2B 
In Experiment 2B, we sought to increase the likelihood that 
children would perceive some novel object-label 
associations as more ambiguous than others. We used 
mutual exclusivity to increase the ease with which children 
could infer word-referent pairs for one set of novel objects 
(Markman & Wachtel, 1988) while maintaining the 
ambiguity of a second set of novel word-referent pairs as in 
the previous experiments. By giving children the 
opportunity to infer the referents for novel objects occurring 
in mutual exclusivity trials, we aimed to make it easier for 
children to recognize the referential ambiguity of novel 
object-label associations that always co-occurred.  

Method 
Participants. We recruited 53 participants (M = 5.7 years, 
range = 4.1 – 7.9 years, 32 female) at a local children’s 
museum. One additional participant was excluded due to 
experimenter error.  
 
Stimuli. The novel object and word stimuli were six images 
and recordings composed of a subset of the items used in 
Experiment 2A. In addition, 4 cartoon images of familiar 
animals (cow, dog, monkey, pig) along with audio 
recordings of their respective labels were used. All word 
stimuli were recorded by the same female native speaker of 
English and normalized in duration and average loudness. 
 
Design & Procedure. The procedure and testing conditions 
were identical to Experiment 2A. The experiment followed 
the same structure as Experiment 2A, beginning with a 
Practice Phase and then proceeding through three phases: 
Training Phase, Sampling Phase, and Test Phase. 

Training Phase. Participants completed 9 cross-situational 
learning trials (3 blocks of 3 trials each) with 6 object-label 
pairs, two familiar object-label pairs (e.g., pig and dog) and 
four novel object-label pairs chosen randomly from the set 
of novel stimuli. As in Experiment 2A, on each trial, 
participants saw two referents appear on the screen and 
heard two labels presented in random order. Two novel 
object-label associations always occurred with one another 
(ambiguous items), mirroring the ambiguity manipulation 
from Experiments 1A/B and 2A. The two remaining novel 
object-label associations were each yoked to one of the two 
familiar object-label pairs (i.e., one alien always occurred 
with the dog image, while the other always occurred with 
the pig image; mutual exclusivity items). We reasoned that 
children would successfully disambiguate reference for 
mutual exclusivity items (i.e., when seeing an image of a 
dog and a novel “alien”, on hearing the words leemu and 
dog, children would successfully infer that leemu referred to 
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the novel alien). This would make it more likely that the 
ambiguous items would be perceived by child learners as 
having high referential uncertainty. As in previous 
experiments, all novel objects and their labels occurred 
equally frequently across the training phase. 

Sampling Phase. Participants next completed two 
sampling trials. On each trial, the four novel objects 
appeared on the screen and children were instructed to 
choose which object they wanted learn more about. The 
procedure was otherwise identical to Experiment 2A. 

Test Phase. Participants’ knowledge of the six words 
from the training phase (4 novel, 2 familiar words) was 
tested in a 6-AFC recognition task as in Experiment 2A. 

Results 
Sampling choices. Children preferentially selected 
ambiguous object-label associations during the Sampling 
Phase, b = .58, z = 2.87, p = .004. Participants chose an 
object from the ambiguous set on 64.2% of trials (95% CI = 
[55.0%, 73.3%]) (chance level = 0.5; Figure 5A). The 
likelihood of children making ambiguous selections 
increased with age, b = .49, z = 2.42, p = .016 (logistic 
mixed-effects models; Figure 5B). 
 

 
 
 

Figure 5. Proportion of ambiguous item selections in 
Experiment 2B overall (A) and across age (B). Error bars 
represent 95% CIs and error bands are +1/-1 SEs based on 

model estimates. 
 
Test performance. Overall, participants showed significant 
learning of the label-object pairs, choosing the correct object 
to go with a label at above-chance levels (chance selection 
of novel object = 0.25), M = 59.9%, 95% CI = [50.4%, 
69.4%], t(52) = 7.38, p < .001. Accuracy for mutual 
exclusivity items (M = 64.2%, 95% CI = [53.2%, 75.1%]) 
and for the ambiguous items (M = 55.7%, 95% CI = 
[44.0%, 67.3%]) was similar, b =.45, z = 1.20, p = .23.  

Discussion 
When given the opportunity to select which object-label 
pairs they wanted to learn more about, 4-8-year-olds 
preferentially selected object-label pairs that remained 

ambiguous during training over object-label pairs that could 
be disambiguated through mutual exclusivity. These 
findings demonstrate that – at least in some ambiguous 
word learning situations – children prefer to select learning 
events that aid in reducing referential uncertainty. The 
tendency to make ambiguity-reducing selections began to 
emerge around 5 years of age in our sample.  

General Discussion 
When learning the referents of novel labels in ambiguous 
contexts, adult learners chose to learn more about object-
label associations that remained more ambiguous at the end 
of training. These choices appear to help learners improve 
performance: participants’ learning performance at test was 
higher if they had selected more ambiguous items during the 
Sampling Phase. It is interesting to note the modest 
magnitude of adults’ preference on the task: ambiguous 
items were selected on slightly less than two-thirds of 
adults’ sampling trials. This may be partly related to the 
design of the sampling phase, which allowed for a number 
of potentially successful sampling strategies (e.g., selecting 
a known word on each sampling trial in order to hear that 
known word in combination with other words). However, 
another intriguing possibility is that there are individual 
differences in how adults organize their learning, and that 
these differences may lead to distinct learning outcomes.  

We find mixed evidence that children spontaneously 
sample object-label associations that reduce ambiguity. 
When presented with a similar task, 4-8-year-olds did not 
choose to learn about object-label associations that 
remained ambiguous during training. However, we think 
this result may be partially explained by the fact that word-
referent pairs occurring in ambiguous contexts also never 
provided children with evidence that could disconfirm an 
existing hypothesis about word reference. In a simplified 
design that highlighted the ambiguous nature of the trials in 
which two referents always occurred together, older 
children in our sample chose to learn about items that 
reduced uncertainty about the words’ referents. 

Children have substantial control over their “curriculum” 
as they learn new words in the world (Smith, Jayaraman, 
Clerkin, & Yu, 2018), with potentially immense 
consequences for the difficulty of the learning problem they 
face (Hidaka et al., 2017). The results from Experiment 2B 
are consistent with results from domains such as causal 
learning that suggest that children are motivated to explore 
novel objects when presented with confounded evidence 
(e.g., Schulz & Bonawitz, 2007). However, the limits on the 
extent to which children spontaneously make ambiguity-
reducing selections also raise important questions about 
what sampling strategies children employ when in control of 
what they learn next. A key question for future research will 
be investigating how children’s sampling strategies and the 
structure of their environment interact to support learning.  
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Abstract

Speakers often face choices as to how to structure their in-
tended message into an utterance. Here we investigate the in-
fluence of contextual predictability on the encoding of linguis-
tic content manifested by speaker choice in a classifier lan-
guage, Mandarin Chinese. In Mandarin, modifying a noun
with a numeral obligatorily requires the use of a classifier.
While different nouns are compatible with different SPECIFIC
classifiers, there is a GENERAL classifier that can be used with
most nouns. When the upcoming noun is less predictable,
using a more specific classifier would reduce the noun’s sur-
prisal, potentially facilitating comprehension (predicted to be
preferred under Uniform Information Density, Levy & Jaeger,
2007), but the specific classifier may be dispreferred from a
production standpoint if the general classifier is more easily
available (predicted by Availability-Based Production; Bock,
1987; Ferreira & Dell, 2000). Here we report a picture-naming
experiment confirming two distinctive predictions made by
Availability-Based Production.
Keywords: Language production; speaker choice; Chinese
classifiers; noun predictability

Introduction

The simple act of speaking may typically seem effortless, but
it is extraordinarily complex. Speakers must plan the message
they wish to convey, choose words and constructions that ac-
curately encode that message, organize those words and con-
structions into linearly-sequenced utterances, keep track of
what has been said, and execute each part of their speaking
plans at the correct time. Throughout this process, speak-
ers face choices in structuring their intended message into an
utterance. One central question for a computationally precise
theory of language production is thus: When multiple options
are available to express more or less the same meaning, what
general principles govern a speaker’s choice? To what extent
do speakers make choices that potentially facilitate compre-
henders, and to what extent do they make choices that are
preferable from a production standpoint? Here we approach
these questions from the standpoint of contextual predictabil-
ity, which is known to affect a wide range of speaker choices.
Specifically, we investigate the influence of contextual pre-
dictability on the encoding of linguistic content manifested
by speaker choice in a classifier language. Two major the-
ories of sentence production, Availability-Based Production
(ABP; Bock, 1987; Ferreira & Dell, 2000) and Uniform In-
formation Density (UID; Levy & Jaeger, 2007; Jaeger, 2010),
make conflicting predictions about the distribution of speaker
choices when more than one classifier could be used in a

given context. We report a language production experiment
on classifier choice that adjudicates between these theories.

In languages with a grammaticalized count–mass distinc-
tion, such as English, count nouns such as table can be
used with a numeral directly and typically exhibit a singular–
plural morphological marking (e.g., one table, three tables),
whereas mass nouns such as sand cannot co-occur with nu-
merals directly without some kind of measure word (e.g.,
three cups of sand) and do not have a plural morphology on
the noun (e.g., *three sands). In classifier languages such
Mandarin, in contrast, nouns lack obligatory singular–plural
morphological marking and cannot directly co-occur with nu-
merals. Instead, a numeral classifier is required when a noun
is modified by a numeral or a demonstrative. Linguists gen-
erally agree that there is a distinction between two types of
Chinese classifiers: count classifiers, which we focus on here,
and mass classifiers (Tai, 1994; Cheng, Sybesma, et al., 1998;
Li, Barner, & Huang, 2008). 1 Among count classifiers,
which are used with nouns that denote individuals or groups
of individuals, different SPECIFIC classifiers are compatible
with different nouns, but the GENERAL classifier ge (*) can
be used with almost any noun. Often, the choice of general
versus specific classifier for a given noun carries little to no
meaning distinction for the utterance, as illustrated in (1) and
(2) below.

(1) ⌘
wo
VÜ
mai-le

 
san

tai

5⌘
diannao

I sold three CL.machinery computer (“I sold three comput-
ers”)

(2) ⌘
wo
VÜ
mai-le

 
san
***
ge

5⌘
diannao

I sold three CL.general computer (“I sold three computers”)

In this study, we focus on speaker choice between general
and specific count classifiers for nouns where both options

1A count classifier (e.g., two CL.top hat (“two hats”)) is used
to categorize a class of noun entities in reference to their salient
perceptual properties, which are often permanently associated with
the entities named by the class of nouns. A mass classifier (e.g.,
two box (of) hat (“two boxes of hats”)) creates a unit and form a
temporary relationship with the noun. Because using different mass
classifiers often change the semantics of the noun phrase, here we
only focus on count classifiers (henceforth, classifiers).
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convey more or less the same meaning. When the upcom-
ing noun is unpredictable, a specific classifier would con-
strain the range of possible nouns more than the general clas-
sifier, thus increasing the predictability of the upcoming noun
and potentially benefiting comprehension. The Uniform In-
formation Density account thus predicts that speakers will
prefer specific classifiers for unpredictable nouns. However,
Availability-Based Production predicts that the specific clas-
sifier may be dispreferred from a production standpoint if the
general classifier is more easily available. Which of these two
accounts better predict classifier choice in real-time produc-
tion? In other words, does noun predictability affect classifier
choice, and if so, in which direction? Here we use a picture-
naming experiment to address this question.

Before diving into the experiment, we first briefly intro-
duce why we focus on predictability effects and how the two
accounts predict speaker choices with regard to optional re-
duction in language.

Predictability Effects on Optional Reduction

It has been shown that contextual predictability plays a role in
optional reduction in language, where more predictable con-
tent tend to yield a greater rate of reduction in the linguistic
form. At the lexical level, predictable words are phonetically
reduced (Jurafsky, Bell, Gregory, & Raymond, 2001; Bell,
Brenier, Gregory, Girand, & Jurafsky, 2009; Seyfarth, 2014)
and tend to have shorter forms (Piantadosi, Tily, & Gibson,
2011; Mahowald, Fedorenko, Piantadosi, & Gibson, 2013).
At the syntactic level, optional function words are more likely
to be omitted when the phrase they introduce is predictable
(Levy & Jaeger, 2007; Jaeger, 2010). For example, in En-
glish relative clauses (henceforth RCs) such as (3), speakers
can but do not have to produce the relativizer that. We refer
to the omission of that as OPTIONAL REDUCTION.

(3) I created a mobile app dancers like.

(4) I created a mobile app that dancers like.

For optional function word omission, predictability effects
have been argued to be consistent with both the speaker-
oriented account of Availability-Based Production, where the
speaker mentions material that is readily available first, and
the potentially audience-oriented account of Uniform Infor-
mation Density, where the speaker aims to convey informa-
tion at a relatively constant rate. These two accounts have
proven difficult to disentangle empirically. For different rea-
sons, both accounts predict that the less predictable the clause
introduced by the function word, the more likely the speaker
would be to produce the function word that.

Uniform Information Density

Uniform Information Density proposes that within bound-
aries defined by grammar, when multiple options are avail-
able to express the message, speakers prefer the variant that
distributes information density more uniformly throughout
the utterance, to lower the chance of information loss or mis-

communication (Levy & Jaeger, 2007; Jaeger, 2010). Mul-
tiple formalizations are possible under this account (Genzel
& Charniak, 2002; Aylett & Turk, 2004; Maurits, Navarro, &
Perfors, 2010; Levy, 2018).

In (3), where the relativizer that is omitted, the first word of
the relative clause w1 (dancers in this case) is highly unpre-
dictable and would convey two pieces of information: both
the onset of the relative clause and part of the content of
the relative clause itself. These both contribute to the infor-
mation content of w1, which can be measured using SUR-
PRISAL, the negative log-probability of the word in context:
� logP(w|Context) (Hale, 2001; Levy, 2008; Demberg &
Keller, 2008; Smith & Levy, 2013). In (4), having that at
the onset of the RC splits these two pieces of information
apart, offloading the relative clause’s onset onto that so that
dancers only conveys relative clause-internal content and thus
has lower information content, potentially avoiding a peak in
information density and thus facilitating comprehension.

Availability-Based Production

Availability-Based Production proposes that production is
more efficient if speaker mentions material that is readily
available first. According to ABP, speaker choice is governed
by: 1) when a part of a message needs to be expressed within
an utterance; 2) when the linguistic material to encode that
part of the message becomes available (Bock, 1987; Ferreira
& Dell, 2000). Specifically, if material that encodes a part of
the message becomes available when it comes time to convey
that part of the message, it will be used. However, if that ma-
terial is not yet available, then other available material will be
used, as long as it is compatible with the grammatical context
produced thus far and it does not cut off the speaker’s future
path to expressing the desired content. This is also referred
to as THE PRINCIPLE OF IMMEDIATE MENTION (Ferreira &
Dell, 2000).

Suppose a speaker has just uttered the word app in (3) and
has in mind to convey the remainder of the utterance meaning
as a relative clause. If the word dancers becomes available
quickly, then according to the principle of immediate men-
tion, a sentence without that should be produced (see (3)).
If dancers does not become available quickly, however, ABP
predicts that the speaker will utter that to buy more time for
dancers to become available. (Note that this account relies
on an implicit auxiliary assumption that that that will gener-
ally become available quite quickly; this assumption is ren-
dered plausible by the fact that it is a high-frequency word
used in a wide variety of contexts.) If the first word of the
RC takes longer to become available the lower its contex-
tual predictability—an assumption consistent with previous
work on picture naming (Oldfield & Wingfield, 1965) and
word naming (Balota & Chumbley, 1985)—then the less pre-
dictable the relative clause, the lower the probability that its
first word, dancers, will be available at when the speaker
reaches the RC, and the higher the probability that the speaker
will use that. Since an RC is required after app in order for it
to be followed by the word dancers, the lower the contextual
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probability of an RC the lower the contextual probability of
its first word, predicting the empirically observed relationship
between phrasal onset probability and optional function word
omission rate.

Distinguishing theories of predictability-driven

speaker choice

Although UID and ABP are substantially different theories
of what drives speaker choice, they make the same prediction
for the effect of contextual predictability on optional reduc-
tion of function words for cases such as (3). It is thus intrinsi-
cally difficult to use optional reduction phenomena to tease
these accounts apart. Prior work (Jaeger, 2010) acknowl-
edged this entanglement of the predictions and attempted to
tease these accounts apart via joint modeling using logistic re-
gression. There are other phenomena for which the accounts
make similar predictions, as well. Consider the case of or-
dering choices for words or phrases, such as subject–object
versus object–subject word order for languages in which
both options are available, such as Russian. Availability-
Based Production predicts that whichever becomes avail-
able earlier will be uttered first (Levelt & Maasen, 1981); if
the lexical encodings of more contextually predictable ref-
erences tend to become available more quickly, then more
predictable arguments will tend to be uttered first. This pre-
diction is indeed likely to be true: a given-before-new word
order preference is widely recognized to influence many lan-
guages (Behaghel, 1930; Prince, 1981; Gundel, 1988), and
discourse-given entities are generally more contextually pre-
dictable than discourse-new entities. But UID turns out to
make the same prediction. Two arguments of the same verb
generally carry mutual information about each other, so any
argument will typically be less surprising if it is the latter of
the two. Thus, putting the argument that is more predictable
from sentence-external context before the less-predictable ar-
gument will lead to a more uniform information density pro-
file and will be preferred.

In the case of speaker choice for Mandarin classifiers, how-
ever, UID and ABP turn out to make different predictions as
we describe in the next section. The empirical facts regarding
speaker choice for classifiers are thus of considerable theoret-
ical interest.

Predictions on Mandarin Classifiers

Zhan and Levy (2018) have argued that UID and ABP
make different predictions on Mandarin Classifier use with
regard to noun predictability. As regards UID, the choice be-
tween a specific classifier and a general classifier will typi-
cally affect the contextual predictability of the noun modified
by the classifier. In particular, a specific classifier constrains
the space of possible upcoming nouns more tightly than the
general classifier (Klein, Carlson, Li, Jaeger, & Tanenhaus,
2012), thus generally reducing the actual noun’s surprisal.
The UID hypothesis thus predicts that speakers choose a spe-

cific classifier more often when the noun predictability would
otherwise be low than when the noun is more predictable.

This is because the use of a specific classifier makes the dis-
tribution of information density more even between the noun
and the classifier.

Availability-Based Production, on the other hand, makes
different predictions than UID. The fundamental prediction
of ABP is that the harder the noun lemma is to access, the
less often the speaker will use a specific classifier, provided
two plausible assumptions. First, the general classifier ge is
always available, regardless of the identity of the upcoming
noun, as it is the most commonly used classifier and is com-
patible with practically every noun. Second, in order to ac-
cess and produce an appropriate specific classifier, a speaker
must complete at least some part of the planning process for
the production of the nominal reference: accessing the noun
lemma, or minimally accessing the key semantic properties
of the referent that determine its match with the specific clas-
sifier. On these two assumptions, any feature of the language
production context that makes the noun lemma less accessi-
ble or that more generally makes noun planning more dif-
ficult will favor the general classifier. In out-of-linguistic-
context picture naming, for example, noun lemma accessi-
bility is known to be driven by noun frequency (Oldfield &
Wingfield, 1965). The lower the noun frequency, the less ac-
cessible the noun lemma, thus the less likely a specific clas-
sifier will be used. To make predictions about the effect of
noun predictability on classifier choice in linguistic contexts,
we must add a third, theoretically plausible assumption: that
less predictable noun lemmas are harder and/or slower to ac-
cess than more predictable noun lemmas. On these three as-
sumptions, in corpus data the link between noun lemma ac-
cessibility and classifier choice will show up as an effect of
noun predictability, which by hypothesis is determining noun
lemma accessibility. For less predictable nouns, their specific
classifiers will less likely be available to the speaker when
the time comes to initiate classifier production. Because noun
lemmas need to be accessed in order to produce specific clas-
sifiers, and the less predictable the noun, the harder the noun
lemma is to access and hence the specific classifier associated
with the noun becomes available by the time a classifier needs
to be produced.

In other words, the link between noun lemma accessibil-
ity and classifier choice will manifest in different predictions
depending on whether one we are looking at usage in lin-
guistic context versus picture-naming. Under our assump-
tions about ABP, we can identify three predictions. First, in
out-of-context picture naming, speakers should as described
above choose the general classifier more often the more fre-
quent the noun (provided there is high naming agreement for
the picture, so that there is not competition among nouns
that affects the production process). Second, in corpus data,
speakers should as described above choose a general classi-
fier more often the less predictable the noun. Finally, we can
add a third prediction based on the temporal dependence of
specific classifier production on noun planning: when speak-
ers are under greater time pressure, they should produce the
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general classifier more often, as it can be used even when
noun planning has not proceeded far enough for a specific
classifier to be available.

Zhan and Levy (2018) tested the second prediction in an in-
vestigation of naturally occurring texts, using language mod-
els to estimate noun predictability and mixed logistic regres-
sion to infer its relationship with classifier choice. They found
that the less predictable the noun, the lower the rate of using
a specific classifier. While these results lend support for the
Availability-Based Production account, the study has some
limitations. One limitation is that the corpus being used was
a collection of online news texts. Written language may serve
as a first approximation of testing theories of language pro-
duction, but it would be ideal to use real-time language pro-
duction task to further test the hypotheses. Another limitation
is that there was no experimental control of context, so it is
possible that predictability was confounded with some other
contextual factor that was not included in their regression
analysis but that is actually responsible for speaker choice.

In the present study, we use a real-time language produc-
tion task involving picture naming varying noun frequency
and whether speakers are put under time pressure, allowing
us to further investigate the two models of language produc-
tion by testing the first and third predictions described above.

Methods

We used a picture-naming experiment to test the predictions
of Uniform Information Density and Availability-Based Pro-
duction by manipulating noun frequency and whether or not
the speaker is under time pressure. This picture-naming ex-
periment offers a simple yet effective way to elicit real-time
language production.

Participants

Thirty-six self-reported native speakers of Mandarin Chinese
were recruited via Witmart, a China-based online crowd-
sourcing platform. Participants received compensation for
their time.

Materials

We adapted images from the Pool of Pairs of Related Ob-
jects (POPORO) (Kovalenko, Chaumon, & Busch, 2012) im-
age set to create our visual stimuli. We selected images from
the image set based on the following criteria: 1) the image can
be described by a count noun; 2) the preferred count noun is
compatible with the general classifier and at least one specific
classifier. We developed a web-based version of the experi-
ment using jsPsych (de Leeuw, 2015), a JavaScript library
for creating behavioral experiments in a web browser. We es-
timated the frequencies of occurrence of the preferred count
nouns from SogouW (Sogou, 2006), a word frequency dictio-
nary for online texts in Chinese.

Procedure

Participants were presented with scenes of various countable
object kinds such as cabbages and tables. Figure 1 shows a

Figure 1: Sample visual display for the picture-naming exper-
iment. The red dot below the picture is the recording light.
Below it is the text indicating the status of the recorder, in
this case, it is ”recording stopped”. The English translation
for the sentence in the bottom is: “Please describe the num-
ber and the name of the objects in the picture.”

sample display. In each scene, there were several instances
of the same object kind. The number of objects in each trial
varied from two to four. Participants were asked to describe
the number and the name of the object in Mandarin, eliciting
utterances such as “three CL chairs” which we recorded.

Participants were assigned to one of the two conditions. In
the Quick condition, recording started 50 ms after the picture
was shown, indicated by a recording light at the bottom of
the picture. Each trial ended after 5 seconds of recording,
and the next trial began automatically. In the Slow condition,
recording stared 3 seconds after the picture was shown, and
participants clicked on the screen to move toward the next
trial.

Predictions

Availability-Based Production predicts that (1) the rate of
specific classifier use will be lower in the Quick condition,
when speakers are under time pressure, than in the Slow con-
dition; and (2) the rate of specific classifier use will be lower
for less frequent nouns. This latter prediction derives from
evidence that lexical access, as manifested by response la-
tencies, takes longer for lower frequency words in language
production experiments requiring word production outside
of sentence context; this holds not only for picture naming
(Oldfield & Wingfield, 1965), as we require of participants
here, but also of visually-presented word naming (Balota &
Chumbley, 1985). If lower-frequency nouns are slower to ac-
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Figure 2: Quick vs. Slow manipulation and rate of using
a specific classifier as opposed to the general classifier ge.
Error bars are standard errors over by-participant means.

cess, their specific classifiers may also be slower to access
and thus less often used than the general classifier, which is
available for all nouns.

The predictions of Uniform Information Density for the ef-
fect of the Quick/Slow manipulation are unclear. As regards
noun frequency, UID predicts that if anything low-frequency
nouns should have a higher rate of specific classifier usage, as
a noun’s frequency may effectively serve as its predictability
in this experimental setting without broader linguistic con-
text.

Analysis

Audio responses were first transcribed to texts using Google’s
speech-to-text application programming interface (API), and
then checked manually to correct transcription errors. We ex-
cluded trials when the participant did not produce a classifier
or a noun. For each item, we used the nouns that were most
frequently produced as the noun for that item. We also com-
piled a list of acceptable nouns for each items, and excluded
nouns that were not on the list.

We used a mixed-effect logit model to investigate whether
noun frequency and time pressure affect classifier choice. The
dependent variable was the binary outcome of whether the
general classifier or a specific classifier was produced. For
each noun type, we also identified its preferred specific clas-
sifier (using native speaker introspective judgment and pre-
dominant responses by experimental participant, which were
concordant). We included two predictors in the analysis: log
noun frequency and condition. We included noun, preferred
specific classifier, and participant as random factors. We used
the maximal random-effects structure with respect to these
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Figure 3: The relationship between noun frequency and rate
of specific vs. general classifier use in picture naming.

two predictors (Barr, Levy, Scheepers, & Tily, 2013). For
condition, this entailed random slopes by noun and by pre-
ferred specific classifier, but not participant because the con-
dition manipulation was between subject. For log noun fre-
quency, this entailed a random slope by participant. The full
formula in the style of R’s lme4 is:

response ˜ log_noun_freq + condition
+(1+condition|noun)
+(1+condition|preferred_spec_cl)
+(1+log_noun_freq|participant)

Statistical significance was determined using Markov chain
Monte Carlo (MCMC) methods in the R package MCMCglmm
(Hadfield, 2010) with p-values based on the posterior distri-
bution of regression model parameters with an uninformative
prior, as is common for MCMC-based mixed model fitting
(Baayen, Davidson, & Bates, 2008).

Results

Looking just at the Quick/Slow contrast, we find (Figure 2)
that speakers produced more instances of the general classi-
fier when they are under time pressure than when they are
not (p < 0.05), suggesting that specific classifiers are slower
than the general classifier to access and thus supporting the
Availability-Based Production account.

Further breaking out our results by noun log-frequency, we
find (Figure 3) that the lower frequency the noun, the more
likely a general classifier is to be produced (p < 0.001). This
pattern holds within both experimental conditions and is con-
sistent with previous results from the corpus analysis (Zhan
& Levy, 2018), and also supports the Availability-Based Pro-
duction account.
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One potential concern arises in the frequencies of the dif-
ferent specific classifiers. One could argue that it was not
the noun’s frequency that determined the use of the general
classifier, rather it was the frequency of the preferred specific
classifier that affected the choice of which classifier was used.
In the mixed-effect logit model presented above, we included
a by-specific-classifier random intercept, which largely rules
out the possibility that specific classifier frequency were con-
founding the effect of noun frequency. To further investigate
this issue, we tried a version of our regression model that also
includes a fixed effect for the log frequency of preferred spe-
cific classifier as a control factor. We did not find any qual-
itative change to the results. The effects of noun frequency
(p < 0.001) and condition (p < 0.05) on classifier choice re-
main qualitatively similar to the results of the original model.
Furthermore, in this new analysis, there is no effect of specific
classifier frequency on classifier choice (p = 0.483). This ad-
ditional analysis suggests that it is unlikely that specific clas-
sifier frequency to be driving the effect of noun frequency.

Conclusion

Using a picture-naming experiment, we show that
Availability-Based Production predicts speakers’ real-
time choices of Mandarin Chinese. The lower a noun’s
frequency, the more likely a general classifier is to be used.
We also found that the use of classifier is moderated by
whether the speaker is under time pressure when speaking,
where the speaker tends to produce more instances of the
general classifier if they are under greater time pressure
to speak. This real-time effect confirms that the general
classifier is easily accessible when the speaker is about to
produce a noun phrase with numeral.

Taken together, the present study and previous corpus work
on Mandarin classifier (Zhan & Levy, 2018) offer converg-
ing evidence regarding the relationship between noun fre-
quency, predictability, and classifier choice, and thus shed
light on the mechanisms influencing speaker choice. While
the corpus work provides ecological validity through natural-
istic data, the experimental work helps us to eliminate poten-
tial correlation-based confounds with a clean setup, and en-
ables us to get dense data that are theoretically important but
naturalistically sparse. When combined together, this work is
complementary with previous corpus work and together paint
a more comprehensive picture of language production.

These studies also underscore the importance of investi-
gating a wide variety of speaker choice phenomena, taking
advantage of the many types of phenomena offered by the
languages of the world. Optional reduction and word order
choice are perhaps the best-studied types of such alternations,
but they have proven ill-suited to teasing apart the predic-
tions of Uniform Information Density and Availability-Based
Production. The approach taken here could be extended to
the many types of classifier systems in languages around the
world, and might inspire investigation of yet different speaker
choice configurations that shed new insights into the mecha-

nisms of language production.
In future work on classifier choice, we plan to investigate

other potentially relevant factors such as mutual information.
It is possible that some classifier-noun pairs are especially
prominent and accessible in memory. If the mutual informa-
tion between the noun and classifier is high, speakers might
be more likely to use that classifier for the noun selected. Al-
though we have not found direct evidence supporting the UID
hypothesis, it is possible that this particular experimental set-
ting is not very communicative in nature. In future work, we
plan to do an real-time language production experiment in a
more communicative setting, with virtual or real listeners in
the experiment to further test speaker choice in language pro-
duction. We also plan to add additional production measures
such as phonetic reduction of classifiers, pause durations, and
disfluencies to enrich our understanding of language produc-
tion.

Viewed most broadly, using speaker choice in classifier
production as a test case has helped us investigate computa-
tionally explicit theories of language production, and advance
our understanding of the psychological processes involved in
converting our thoughts to speech.
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Abstract 
Decision makers often reject mixed gambles offering equal 
probabilities of a larger gain and a smaller loss. This important 
behavioral pattern is generally seen as evidence for loss 
aversion, a psychological mechanism according to which 
losses are given higher utility weights than gains. In this paper 
we consider an alternate mechanism capable of generating 
high rejection rates: A predecisional bias towards rejection 
without the calculation of utility. We use a drift diffusion 
model of decision making to simultaneously specify and test 
for the effects of these two psychological mechanisms in a 
gambling task. Our results indicate that high rejection rates for 
mixed gambles result from multiple different psychological 
mechanisms, and that a predecisional bias applied prior to the 
computation of utility (rather than loss aversion) is the primary 
determinant of this important behavioral tendency.  

Keywords: drift diffusion model; risky choice; predecisional 
bias; loss aversion 

Introduction 
Consider a gamble that offers you a gain of $11 if a coin toss 
lands heads, and a loss of $10 if it lands tails. Would you 
accept or reject this gamble? Most people choose to reject 
similar positive expected value mixed gambles (gambles that 
offer both a possibility of a gain and a possibility of a loss; 
Kahneman & Tversky, 1979; Samuelson, 1960), suggesting 
an aversion to risk. Yet risk aversion for such small 
monetary payoffs cannot be easily explained by 
conventional applications of expected utility theory. Such 
models predict that anyone who rejects a 50-50 gamble 
between a gain of $11 and a loss of $10, displays such a 
strong degree of risk aversion, so as to also reject a 50-50 
gamble involving a loss of $100 (regardless of the magnitude 
of the corresponding gain; Rabin, 2000). 

This (clearly unreasonable) prediction presents 
compelling evidence against expected utility theory, and 
indicates that additional psychological mechanisms need to 
be incorporated into models of risky choice in order to 
account for high rejection rates in mixed gambles (Rabin, 
2000). The psychological mechanism that is widely 
considered to be responsible for these high rejection rates is 

loss aversion, which states that losses have a greater impact 
on utility than gains (Kahneman & Tversky, 1979; Kőszegi 
& Rabin, 2007; Rabin & Thaler, 2001). For example, in the 
mixed gamble presented at the start of this paper, loss 
aversion predicts that individuals experience more negative 
utility from the $10 loss than positive utility from the $11 
gain. Thus the gamble, despite having a positive expected 
value, appears unattractive, and is rejected.  

If loss aversion is the only mechanism responsible for the 
rejection of mixed gambles, an individual’s degree of loss 
aversion can be estimated by observing how likely he or she 
is to accept or reject such gambles. This measure can then be 
used to relate loss aversion to various psychological, clinical, 
and neurobiological variables. Following this logic, 
researchers have argued that loss aversion plays an important 
role in irrational financial decision making, problem 
gambling, suicidal decision making, and incorrect affective 
forecasting (Hadlaczky et al., 2018; Kermer, Driver-Linn, 
Wilson, & Gilbert, 2006; Lorains et al., 2014; Takeuchi et 
al., 2015); in explaining differences in risky decision making 
between decision contexts (Polman, 2012; Schulreich, 
Gerhardt, & Heekeren, 2016; Vermeer, Boksem, & Sanfey, 
2014) and between individuals with varying psychological 
traits, demographic profiles, and life experiences (Barkley-
Levenson & Galvan, 2014; Bibby & Ferguson, 2011; Pighin, 
Bonini, Savadori, Hadjichristidis, & Schena, 2014; Sokol-
Hessner, Hartley, Hamilton, & Phelps, 2015a); and in 
determining physiological and neural responses to risky 
prospects (Canessa et al., 2017; De Martino, Camerer, & 
Adolphs, 2010; Gelskov, Henningsson, Madsen, Siebner, & 
Ramsøy, 2015; Lazzaro, Rutledge, Burghart, & Glimcher, 
2016; Markett, Heeren, Montag, Weber, & Reuter, 2016; 
Sokol-Hessner, Lackovic, Tobe, Camerer, Leventhal, et al., 
2015b; Tom, Fox, Trepel, & Poldrack, 2007).  An influential 
example of this approach is presented in Tom et al. (2007): 
In this paper, neural activity is correlated with loss aversion, 
measured using gamble rejection rates, and is used to 
identify brain regions that encode loss aversion in risky 
choices involving mixed gambles.  

However, loss aversion may not be the only mechanism 
responsible for the rejection of mixed gambles. Another 
possibility, one which we explore in the present paper, is that 
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individuals exhibit a predecisional bias towards rejecting 
such gambles. Psychologically, this form of behavior may 
reflect a general preference for the status quo, whereby a 
decision to accept a lottery is regarded as a departure from 
one’s status quo (Gal, 2006; W. Samuelson & Zeckhauser, 
1988). We refer to this tendency as a predecisional bias to 
capture the intuition that individuals may be predisposed 
towards maintaining the status quo in mixed gamble tasks 
even before they have inspected and learnt about the 
monetary amounts that could be gained or lost. Although 
such a tendency could be overridden after monetary amounts 
are evaluated, we would nonetheless expect the 
predecisional bias to influence people’s decisions and, in 
many settings, lead to a higher probability of rejection than 
acceptance. An important prediction of this account is that 
the effect of such a bias would be greatest early on in the 
decision, and would diminish as the decision maker 
deliberates about the money that could be gained or lost. 

Although the predecisional bias mechanism provides a 
fairly intuitive explanation for high rejection rates in mixed 
gambles, it hasn’t yet been formally compared against loss 
aversion, which remains the dominant explanation for this 
important behavioral phenomenon. The reason for this is that 
predecisional biases cannot be accommodated within the 
types of economic models used to specify loss aversion and 
predict risky choice. Typically, these models assume that 
choices depend entirely on utility, which itself is a product 
of the gains and losses offered by the gamble in 
consideration (e.g., Kahneman & Tversky, 1979). Thus there 
is no place for a mechanism that influences choice prior to 
the formation of utility.  

There are, however, neurocomputational models of 
decision making that permit a more nuanced understanding 
of the deliberation process underpinning people’s choices. 
One such model is the drift diffusion model (DDM), which 
assumes that individuals gradually accumulate evidence 
over the time course of the decision, with the decision being 
made when evidence reaches a threshold value (e.g., Bhatia, 
2014; Dai & Busemeyer, 2014; Krajbich, Armel, & Rangel, 
2010; Ratcliff, 1978). The evidence being accumulated 
depends on features of the choice alternatives, such as gains 
and losses, and subsequently on relative utilities. However, 
the start of this accumulation process can be biased towards 
a response (such as rejection), even before these utilities 
have been evaluated by the decision maker.  

Mathematically, DDM implements a sequential 
probability ratio test, and with this interpretation, its 
predecisional bias can be seen as a biased prior. The DDM 
has also been shown to capture aspects of neural information 
processing, for which a predecisional bias corresponds to a 
bias in baseline firing rates (Bogacz, Brown, Moehlis, 
Holmes, & Cohen, 2006; Gold & Shadlen, 2007). In either 
case, a predecisional bias in the DDM generates unique 
patterns in response times, and can be quantitatively 
estimated and differentiated from other DDM parameters 
(including those that govern the use of decision features like 
gains and losses) with a combination of choice and response 

time data (White & Poldrack, 2014). In prior work, 
psychologists and neuroscientists have used these estimates 
to compare predecisional biases against alternate decision 
mechanisms in a variety of perceptual, lexical, and motor 
choice tasks (Leite & Ratcliff, 2011; Mulder, Wagenmakers, 
Ratcliff, Boekel, & Forstmann, 2012; A. Voss, Rothermund, 
& Voss, 2004; White & Poldrack, 2014). The goal of this 
paper is to use a similar methodology to establish the extent 
to which a predecisional bias can account for choices in the 
popular mixed gamble task.  

As an example of this task, consider the decision to accept 
or reject a gamble 𝑖, offering a 50% chance of gaining 𝐺#	and 
a 50% chance of losing 𝐿# . The utility for accepting the 
gamble in the presence of loss aversion is given by 𝑈# =
𝐺# 	− 	𝜆 ∙ 𝐿# (as the probabilities of the gains and losses are 
identical, they can be ignored without any effect on model 
predictions). Here 𝜆 is the loss aversion parameter, where 
𝜆 > 1  indicates the larger impact of loss than gains. 
Assuming that the utility for rejecting the gamble is 0, the 
decision maker will accept gamble 𝑖  when 𝑈# 	> 	0 , and 
reject the gamble when 𝑈# 	< 	0. Stochasticity in choice can 
be modelled with a logistic response function. With such 
specification, the magnitude of λ (the loss aversion 
parameter) can be estimated using a logistic regression: 
𝐴#	~	𝛽2 ∙ 𝐺# −	𝛽3 ∙ 𝐿# . Here Ai is the participant’s binary 
response to the 𝑖th gamble (1 if Accept, 0 if Reject), and 𝛽2 
and 𝛽3  are regression coefficients that yield 𝜆 = 𝛽3/𝛽2 . In 
practice, researchers often include an additive intercept (𝛼) 
in the logistic regression: 𝐴#		~	𝛼 +	𝛽2 ∙ 𝐺# −	𝛽3 ∙ 𝐿#.  Here 
the additive intercept corresponding to a fixed impact on 
utility favoring acceptance or rejection.  

Although commonly used to make inferences regarding 
the psychological and neural underpinnings of risky choice 
(Tom et al., 2007), the logistic model outlined above 
neglects the possibility that decision makers may be 
predisposed towards one of the choice options (acceptance 
or rejection) prior to evaluating the underlying utilities. To 
permit this possibility, we model the decision using a drift 
diffusion process, which is illustrated in Figure 1A. This 
model assumes that decision makers accumulate evidence in 
favor of accepting vs. rejecting the gamble over time, with a 
drift rate that relates the utility of the gamble to the 
accumulation process. To keep model specifications 
consistent with the static logistic model outlined above, we 
write the drift rate for a trial involving gamble 𝑖¸ as 𝑣# =
𝛼	 +	𝛽2 ∙ 𝐺# −	𝛽3 ∙ 𝐿# . Choices are made when the 
accumulated evidence reaches a positive threshold +𝜃 
(corresponding to acceptance) or a negative threshold −𝜃 
(corresponding to rejection). The magnitude of 𝜃 quantifies 
the amount of evidence required for reaching a decision. 
Mechanistically, this threshold captures the speed-accuracy 
tradeoff in decision making, with higher value of 𝜃 
generating slower but more accurate choices.  

In the DDM, the predecisional bias takes the form of a 
starting point 𝛾	 > 	0, that is closer to +𝜃 (predisposing the 
decision maker towards accepting the gamble), or 𝛾	 < 	0 , 
that is closer to – 𝜃  (predisposing the decision maker 
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towards rejecting the gamble). When 𝛾 = 0, the preference 
accumulation process starts from a neutral state, and the 
choice probabilities generated by the DDM are identical to 
those predicted by the static logistic model introduced above. 
Allowing for the gradual accumulation of evidence prior to 
the decision enables the DDM to predict response times 
(RTs). The response time in a trial is assumed to be the time 
taken for the accumulating evidence to reach a decision 
threshold added to a fixed non-decisional time τ (which 
captures the time taken to perceive the stimuli, execute 
motor responses after the decision has been made, and so on).  

The response times predicted by the DDM depend 
critically on the gamble that is offered on a given trial. 
Responses times on trials with extremely desirable or 
undesirable gambles (which generate large positive or 
negative drift rates) will be shorter, capturing the fact that 
easier decisions are made relatively quickly compared to 
more difficult decisions. Besides the influence of the specific 
gamble at hand, response times also depend on the 
predecisional bias. If there is a predecisional bias in favor of 
rejection (𝛾	 < 	0), response times associated with rejection 
will tend to be shorter than those associated with acceptance, 
and correspondingly, the rejection rates in quicker choices 
will be higher than those in slower choices, controlling for 
the difficulty of the choice in consideration (see Figure 1A). 
Intuitively, the effects of the drift rate (i.e. the utilities used 
in evaluation) persist throughout the preference 
accumulation process; whereas the impact of a non-neutral 
starting point (predecisional bias) gets gradually washed out 
over time. Crucially, such a prediction cannot be made by 
the DDM in the absence of the predecisional bias (i.e. when 
𝛾 = 0, and DDM choice probabilities mimic the standard 
logistic specification), indicating that the choice-RTs 
patterns can be used as a behavioral marker to infer the 
existence of a predecisional bias (White & Poldrack, 2014).  

Methods 

Our main experimental task incentivized accept-reject 
decisions for mixed gambles with a 50% chance of a gain 
and a 50% chance of a loss. We preregistered our study at 
OSF(https://osf.io/varx6/?view_only=b9b9f84bd9fc4a56b8
df19ea02998fec). In addition to our preregistered study, we 
also conducted three additional non-incentivized studies 
(Experiments 1A-1C), which we do not report in the paper 
due to space limit. The main conclusions of Experiment 2 
were replicated in those studies.  

Experimental design 
Participants. 49 participants were recruited from a paid 
participant pool at the University of Pennsylvania. 
Procedures. Participants were instructed to accept or reject 
a sequence of 200 gambles, presented in four blocks of 50 
gambles. Each gamble had two possible outcomes: A gain of 
some amount of tokens occurring with a 50% chance and a 
loss of some amount of tokens occurring with a 50% chance. 
The outcomes were displayed side by side, with 

positive/negative values indicating gains and losses (see 
Figure 1B). Participants pressed up or down arrow keys on a 
keyboard to indicate acceptance or rejection, with the 
specific key-response associations alternating across blocks 
to control for response biases favoring one of the keys. 
Choices and reaction times were recorded.  

Figure 1 A: The drift diffusion model. B: Task presentation. 
 
Each token was worth US$0.10, and participants began 

the experiment with an endowment of 100 tokens (US$10).  
Participants were informed that their choices in the 
experiment would determine their bonus payment, which 
they would receive on top of a fixed show-up fee of US$8. 
This was accomplished by selecting one of the gambles at 
random. If the participant rejected the gamble, the bonus 
payment would be 100 tokens (US$10). If the participant 
accepted the gamble, then they would flip a coin in front of 
the experimenter to play out the gamble. Their received 
token amount would be their initial endowment (100 tokens 
= US$10) plus or minus the gain or loss associated with the 
coin flip. Average total payments in the experiment were 
US$ 10.43 per participant. 
Stimuli. The possible gain and loss values were taken from 
the set of {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} tokens, or 
equivalently US$ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. With this 
stimuli set we were able to generate a total of 100 unique 
gambles.  We counterbalanced the positions of the gain/loss 
outcomes across blocks, resulting in 200 total trials. 

Model Fitting 
The models were fit to choice and RT data using HDDM 
(Wiecki, Sofer, & Frank, 2013), a Python package for 
hierarchical Bayesian estimation of drift-diffusion models, 
using its default priors. To fit the models, 4 chains of 50,000 
samples were generated, where the first 25,000 were burn-
ins, and a thinning of 2 was applied.  

Results 
Overall, the average rejection probability across participants 
was 71.5%, with 79.6% of participants being more likely to 
reject than accept the gambles. These probabilities are 
significantly different to 50% which is the rate we would 
expect if choices were made by chance or if individuals did 
not display loss aversion or predecisional biases (𝑝 < 0.001 
when compared to 50% using t-tests). On average, 
participants accepted the gambles only when the size of the 
gain exceed 1.75 times the size of the loss. This pattern of 
behavior can be explained by both the loss aversion and the 

(B) (A) 
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predecisional bias mechanisms. According to a model with 
loss aversion but no predecisional bias, the probability of 
acceptance is greater than the probability of rejection only 
when the utility for the gamble exceeds 0, which happens 
only when the size of the gain exceeds the size of the loss by 
a large enough margin to counteract loss aversion. 
According to a model with a predecisional bias but no loss 
aversion, the probability of acceptance is greater than the 
probability of rejection only when the utility of the gamble 
is large enough to override the starting point bias favoring 
rejection. This happens only when the size of the gain 
exceeds the size of the loss by a large enough margin, giving 
a sufficiently positive utility.  

 
Figure 2. A: Choice-RT relationships. Error bars indicated 95% CI. 
B: Loss aversion in the DDM. C: Predecisional bias and additive 
intercept in the drift rate. Most participants have negative posterior 
means for predecisional bias (i.e., bias towards rejecting gambles). 
In panel B and C each dot represents a participant and the error bars 
indicate 95% posterior credible intervals for the parameters in the 
two figures.  

 
We also found that rejections were quicker than 

acceptances. Overall, the average rejection decision took 
1.30 seconds, whereas the average acceptance decision took 
1.72 seconds (the difference is significant: 𝑡(46) =
4.04, 𝑝 < 0.001). Additionally, 74.5% of participants took 
less time to reject than to accept. The RT distributions for 
acceptance and rejections are different from each other 
(Wilcoxon signed rank test: 𝑉 = 935, 𝑝 < 0.001).  

Although the observed response time pattern appears 
consistent with those generated by a predecisional bias 
favoring rejection, they do not control for choice factors 
(gains and losses) of the gamble, and thus can also be 
generated by a DDM model without this bias. More 
specifically, it is possible that trials on which gambles are 
rejected involve highly undesirable gambles (and therefore 
quicker response times), whereas trials on which gambles 
are accepted involve only moderately desirable gambles 
(and thus slower response times). To address this issue, 
Figure 2A shows these choice-RTs patterns, with RTs 
adjusted for choice factors. These adjusted RTs are residuals 
from participant-level regressions, in which log RTs are 
regressed on gain values and loss values of the mixed 
gambles for each participant. With choice factors controlled 
for, we observe a negative relationship between choice 
probability and response time for rejection decisions, and a 
positive relationship between choice probability and 
response time for acceptance decisions, showing that 
decision makers are quicker to reject and slower to accept. 
This is a novel behavioral pattern that suggests that our 

participants displayed a predecisional bias favoring rejection. 
Importantly, this pattern cannot be generated by a DDM 
model with only loss aversion and no predecisional bias (or 
by the standard logistic specification of the loss aversion 
mechanism).  

A more rigorous comparison of the loss aversion and 
predecisional bias mechanisms requires quantitative model 
fitting. We did so using hierarchical Bayesian techniques 
applied to choice and RT data. This approach allows for 
three flexible parameters for the drift rate (𝛼, 𝛽3 and 𝛽2) as 
well as a flexible starting point bias (𝛾), threshold (𝜃) and 
non-response time (𝜏).  Thus this model can simultaneously 
display both loss aversion and a predecisional bias. We also 
allowed the threshold (𝜃) to be dependent on the monetary 
loss, in order to capture the effect of losses on attention ( as 
specified in our preregistration plan; Yechiam & Hochman, 
2013).  

Overall, we observe best-fit parameter values such that 
𝛽3 > 𝛽2 for 85.7% participants, with 57.1% of participants 
having a 95% credible interval for 𝛽3 − 𝛽2  that is strictly 
positive. The posterior mean of 𝜆 = HI

HJ
 averaged across our 

participants is 2.11  ( 𝑆𝐷 = 1.35 ). We also observe a 
negative posterior mean of 𝛾	 for 77.6% participants 
(significant for 69.4% of participants as indicated by 95% 
credible intervals). The averaged participant-level posterior 
mean of 𝛾  is −0.24  (𝑆𝐷 = 0.25 ) across all participants. 
Finally, we observe a negative posterior mean of 𝛼 for only 
40.8% participants (significant for 12.2% of participants as 
indicated by 95% credible intervals), with a mean value of 
𝛼 = 0.05 (𝑆𝐷 = 0.45) across our participants. This analysis 
indicates that most participants display loss aversion and 
predecisional biases favoring rejection, but do not display 
any systematic additive intercepts in the drift rate. The 
posterior means for participant-level parameters are shown 
in Figures 2B and 2C.  

To better understand the descriptive power of the 
predecisional bias, and to compare it against the descriptive 
power of loss aversion, we also fit three restricted variants 
of the DDM. The first constrained model set 𝛽3 =
𝛽2	 (eliminating loss aversion while permitting flexible 
values of 𝛾, as well as other DDM parameters). The second 
set 𝛾 = 0  (eliminating the predecisional bias while 
permitting flexible values of 𝛽3  and 𝛽2 , as well as other 
DDM parameters). The third constrained model is a baseline 
model that set both 𝛽3 = 𝛽2  and 𝛾 = 0  (but permitted 
flexible values for the remaining DDM parameters). We 
compared the relative fits of these three constrained models 
against each other, and against the full model. The model 
comparisons were performed using the deviance information 
criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 
2002), which measures model fits while penalizing model 
complexity to avoid over-fitting. Smaller DICs indicate 
better model performance. This measure revealed that 
despite having more parameters than the remaining models, 
the full model (𝐷𝐼𝐶 = 16,871) generated the best fit to the 
observed data (indicated by DIC differences between this 
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model and the remaining models, which we denote as ΔDIC). 
Conversely, despite having fewer parameter than the other 
models, the baseline model generated the worst fit to the 
observed data ( 𝐷𝐼𝐶 = 18,456 , ΔDIC = 1,586 ). This 
indicates that loss aversion and predecisional biases are 
useful for describing behavior in our experiment. However, 
out of the two constrained models, the one that set	𝛽3 =
𝛽2	(𝐷𝐼𝐶 = 17,332, ΔDIC = 461) yielded much better fits 
than the one that set 𝛾 = 0 (𝐷𝐼𝐶 = 17,979, ΔDIC = 1,108), 
indicating that the predecisional bias plays a more important 
role than loss aversion.  

Although our quantitative fits do provide strong evidence 
in favor of the predecisional bias mechanism, using such fits 
as a single piece of evidence for theory testing is problematic 
(Roberts & Pashler, 2000). Ideally, we should also compare 
our models in terms of their ability to account for a 
qualitative behavioral marker, in this case, the finding that 
rejection rates are higher for trials with shorter RTs 
compared to trials with longer RTs (Figure 2A, and solid 
blue lines in Figures 3A-D). As discussed above, this pattern 
is consistent with the effect of a predecisional bias towards 
rejecting mixed gambles. A model without such a bias 
cannot account for RT differences between acceptance and 
rejection, controlling for choice factors. To establish this 
more rigorously, we used simulated data from the best-
fitting full and constrained models. In line with our intuition, 
we found that the choice-RT relationship can be captured by 
the best-fit full model (Figure 3A), as well as by the best-fit 
constrained model with flexible predecisional bias but no 
loss aversion (Figure 3B). However, both the best-fit model 
with loss aversion but no predecisional bias (Figure 3C) and 
the best-fit baseline model (Figure 3D) fail to capture this 
relationship. This finding provides one explanation for why 
the predecisional bias plays a more important role than loss 
aversion in our quantitative model fits.  

In our final analysis we tested the relationship between 
individual-level model parameters and observed 
heterogeneity in participant behavior. For this purpose, we 
correlated best-fitting participant-level estimates of loss 
aversion ( 𝜆 = 𝛽3/𝛽2 ) and predecisional bias ( 𝛾 ) with 
average participant-level rejection rates. The Pearson 
correlation between acceptance rates and the predecisional 
bias is 0.91 ( 𝑡(47) = 	14.79, 𝑝 <
0.001;	𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛	𝐶𝑜𝑟𝑟 = 0.92, 𝑝 < 0.001 ); whereas the 
correlation between acceptance rates and loss aversion is 
−0.25  ( 𝑡(47) = 	1.78, 𝑝 = 0.08; 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛	𝐶𝑜𝑟𝑟 =
−0.43, 𝑝 = 0.002 ). These correlations are displayed in 
Figures 3E and 3F. From the perspective of describing 
participant heterogeneity, the predecisional bias is clearly 
the more important psychological mechanism.  

Did the participants develop the predecisional bias over 
the course of the experiment, or did they already have a 
predecisional bias for gamble choices based on previous life 
experiences? To test this, we examined the choice-RT 
relationship (the behavioral marker for predecisional biases) 
in the first 25 trials of the experiment (first half of the first 
block). As Figure 3G shows participants were quicker to 

reject gambles than accept gambles when choice factors are 
controlled for. In other words, participant already had a 
predecisional tendency to reject gambles, even when they 
had limited knowledge regarding the gain and loss value 
distributions involved in the experiment.   

Figure 3. A-D: Choice-RT relationships for observed data (solid 
lines) and model simulated data (dashed lines). Rejection rates are 
higher in quicker trials compared to slower trials, controlling for 
choice factors (gain and loss values). This pattern can only be 
generated by models that permit a predecisional bias (panels A and 
B). MAE: Mean absolute error. E-F: Relationships between the 
DDM mechanisms and acceptance rates. Each dot represents a 
participant. The predecisional bias is more strongly correlated with 
the observed choice outcomes, compared to loss aversion. G: 
Choice-RT relationship for observed data in the first 25 trials of the 
experiment. 

Discussion 
The results presented above have a number of important 
implications for the study of risk preference. First, these 
results shed light on the psychological underpinnings of one 
of the most important behavioral findings pertaining to risk: 
The rejection of small scale 50-50 mixed gambles with 
positive expected values (Kahneman & Tversky, 1979; 
Samuelson, 1960). They show that this phenomenon is not 
just a product of loss aversion (i.e., higher weights attached 
to losses relative to gains), but is also due to a predecisional 
bias favoring the status quo. This bias generates a tendency 
to reject the gamble even before the gamble’s payoffs are 
evaluated, and the effect of this bias is the strongest early on 
in the decision process. For this reason, the predecisional 
bias makes unique predictions regarding the relationship 
between response time and rejection probability. Our 
experiments provide novel evidence in support of these 
predictions, indicating that a model equipped with a 
predecisional bias is necessary to account for behavioral 
patterns in mixed gamble tasks.  

We also used model fitting to evaluate the relative 
contributions of the loss aversion and predecisional bias 
mechanisms. Although both loss aversion and predecisional 
bias play a valuable quantitative role, a model with the 
predecisional bias but without loss aversion fits better than a 
model with loss aversion but without predecisional bias. A 
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second test evaluating the predictive power of best fit model 
parameters shows that individual-level predecisional bias 
parameters correlate more strongly with individual-level 
rejection rates than do individual-level loss aversion 
parameters. These findings provide strong quantitative 
evidence that predecisional biases are the primary 
determinant of high rejection rates in mixed gamble tasks. In 
doing so they complement recent experimental results 
showing that loss aversion is not as good of a descriptor of 
choice behavior as has been previously assumed (Bhatia, 
2017; Birnbaum, 2008; Erev, Ert, & Yechiam, 2008; Ert & 
Erev, 2013; Walasek & Stewart, 2015).  

Our findings have important implications for how we 
interpret people’s tendency to reject mixed gambles. A lot of 
prior work in psychology, economics, and neuroscience 
infers loss aversion through mixed gamble rejection rates, 
and subsequently uses this measure of loss aversion to 
explain the effect of social, cognitive, emotional, 
developmental, demographic, clinical, physiological, and 
neural variables on risky choice (e.g., Bibby & Ferguson, 
2011; Canessa et al., 2017; Engelmann et al., 2015; Gelskov 
et al., 2015; Hadlaczky et al., 2018; Kermer et al., 2006; 
Lazzaro et al., 2016; Lorains et al., 2014; Markett et al., 2016; 
Pighin et al., 2014; Polman, 2012; Tom et al., 2007; Vermeer 
et al., 2014). Yet our results indicate that these explanations 
may be incorrect, and that these variables may be better 
understood in terms of predecisional bias tendencies. Thus, 
for example, the well-known finding that ventral striatum 
activity correlates with mixed gamble rejection rates (Tom 
et al., 2007) could be due to the relationship between brain 
activity and predecisional bias rather than the relationship  
between brain activity and loss aversion, as is commonly 
assumed. Additional research is needed to untangle these 
relationships, and future work should consider the 
possibility that gamble rejection rates, as well as the 
psychological and neurobiological correlates of high 
rejection rates, can be understood in terms of multiple 
different psychological mechanisms.  

The tests presented in this paper rely critically on response 
time data: without this type of data, it would be impossible 
to identify and measure the predecisional bias. Our analysis 
uses the drift diffusion model to account for trends in 
response time data, and by doing so, illustrates the 
descriptive power of this popular neurocomputational theory 
(Ratcliff, 1978). The DDM has been previously used to 
model perceptual, lexical, motor phenomena, and the 
predecisional bias has been shown to be an important 
parameter in these low-level tasks (e.g., Forstmann, Ratcliff, 
& Wagenmakers, 2016; Mulder et al., 2012; Ratcliff et al., 
2004; Ratcliff, Smith, Brown, & McKoon, 2016; White & 
Poldrack, 2014). Additionally, this bias has a theoretically 
compelling interpretation in terms of baseline firing rates in 
neural models and statistical priors in optimal sequential 
evaluation tasks (Bogacz et al., 2006; Gold & Shadlen, 2007). 
Recent work applying DDM and related models to 
preferential choice data has also shown that these models 
provide a powerful account of a variety of choice anomalies. 

We recommend that future research utilizes the DDM, 
alongside response time data, to obtain a more 
comprehensive understanding of the psychological and 
neurobiological determinants of risky choice.  
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Abstract

Choice behavior can be influenced by many different types of incidental contextual effects, including those pertaining to
presentation format, emotion, social belief, and cognitive capacity. Many of these contextual effects form the basis of
nudges, used by academics and practitioners to shape choice. In this paper, we use data from a very large-scale choice
experiment to uncover a space of contextual effects. We construct this space by analyzing fifteen contextual effects using
the parameters of the drift diffusion model (DDM). DDM is a quantitative theory of decision making whose parameters
offer a theoretically compelling characterization of the cognitive underpinnings of choice behavior. By representing a large
number of contextual effects in terms of how they influence the parameters of the DDM, our space is able to precisely
measure, quantify, and compare the contextual effects, and interpret these effects in terms of their behavioral, mechanistic,
and statistical implications.
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Abstract 

It remains unclear whether multimedia facilitates or impairs 
knowledge acquisition. Here we examined whether subtitles 
and video content facilitate comprehension of documentaries 
consisting of statements of facts and whether the 
comprehension depends on participants’ cognitive abilities 
and eye movement strategies during video watching. We 
found that subtitles facilitated comprehension regardless of 
participants’ cognitive abilities or eye movement strategies 
for video watching. In contrast, with video content but not 
subtitles, comprehension depended on participants’ auditory 
working memory, task switching ability, and eye movement 
strategy. Through the Eye Movement analysis with Hidden 
Markov Models (EMHMM) method, we found that a 
centralized (looking mainly at the screen center) eye 
movement strategy predicted better comprehension as 
opposed to a distributed strategy (with distributed regions of 
interest) after contributions from cognitive abilities were 
controlled. Thus, whether video content facilitates 
comprehension of documentaries depends on the viewers’ eye 
movement strategy in addition to cognitive abilities. 

Keywords: multimedia; eye-movement; hidden Markov 
model 

Introduction 
Multimedia learning refers to knowledge construction from 
both verbal and pictorial information, with the verbal form 
including spoken words or printed texts, and the pictorial 
form including illustrations, graphs, pictures, photos, 
animations, and videos (Mayer, 2014a). The modality 
principle suggests that it is generally beneficial to receive 
both visual and audio information in the learning process 
(Low & Sweller, 2014). Similarly, subtitles have been 
shown to enhance learning:  same-language subtitles in 
video advertisements were shown to enhance the viewers’ 
memory of the brand and slogan (Brasel & Gips, 2014), and 
watching recorded lectures with subtitles was associated 
with better comprehension performance (Kruger & Steyn, 
2014).  

The cognitive theory of multimedia learning further posits 
that learning would be undermined if multiple sources of 
information are received from the same perceptual channel, 
and would be facilitated if different sources of information 
are received from independent channels (Mayer, 2014b). 
For example, people displayed worse learning outcome 
when watching animations with on-screen texts than 
without because both text and animation information came 
from the visual modality (Mayer, Heiser & Lonn, 2001). 
However, some more recent research reported no trade-off 
between image and text processing (Perego, Del Missier, 
Porta & Mosconi, 2010; Kruger, Soto-Sanfiel & Doherty, 
2017), and that participants learning through multimedia 
displayed better knowledge acquisition and improved 
content comprehension as compared with those who learned 
through text reading or traditional lectures in academic 
learning (Starbek, Erjavec, Starcic & Peklaj, 2010).  

The inconsistent findings in the literature may be due to 
differences in the type of learning materials used and 
learners’ language proficiency across studies. The effect of 
multimedia learning may depend on how the most important 
information for comprehension was delivered. For example, 
for documentaries containing mainly statements of facts, the 
auditory narratives may contain most of the information, 
and thus video content may be distracting and impair 
comprehension whereas same-language subtitles may be 
helpful especially for second-language learners. Indeed, 
unsubtitled videos were reported to create a higher cognitive 
load (as indicated by pupil diameter change) and frustration 
levels (as measured by EEG) than subtitled versions for 
students learning English as a second language (Kruger, 
Hefer & Matthew, 2013). In contrast, for learning involving 
graphic demonstrations, video content may contain 
additional information, which may compete with on-screen 
texts for cognitive resources.  

In addition, individual differences in cognitive abilities 
and strategies may also influence whether multimedia helps 
or impairs learning. For example, the ability to flexibly 
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switch attention among various sources of information and 
to focus on the relevant information while inhibiting 
irrelevant information may be important for successful 
multimedia learning (Miyake et al., 2000). Indeed, research 
has reported that readers with high working memory 
capacity were more effective in selecting and integrating 
information and achieved better comprehension in 
multimedia learning (Schnotz, 2005; Fenesi, Kramer & 
Kim, 2016). Similar results were found for those with better 
task switching ability (Baadte, Rasch & Honstein, 2015).  

Another possible factor is individual differences in 
cognitive strategy or perception style, which may be better 
revealed through eye tracking (Hyona, 2010; van Gog & 
Scheiter, 2010). Previous research using eye tracking to 
understand multimedia processing typically only focused on 
group level comparisons, such as comparing adults’ and 
children’s learning (D’Ydewalle & De Bruycker, 2007). 
However, recent studies have reported significant individual 
differences in eye movement patterns that can reflect 
differences in cognitive strategy and perception style (e.g., 
Chan, Chan, Lee & Hsiao, 2018). It is possible that 
participants adopting different eye movement strategies 
during multimedia learning differed in whether multimedia 
facilitates or impairs learning. 

Here we aimed to examine how individual differences in 
cognitive abilities and eye movement strategies modulate 
multimedia learning of documentaries consisting of mainly 
statements of facts, and thus the important information 
would be mainly in the auditory narratives. Specifically, we 
examined how adding subtitles and video content would 
influence participants’ comprehension of auditory science 
documentaries, and whether participants’ working memory 
capacity, switching ability, and eye movement strategy for 
video watching could predict the comprehension of the 
documentaries. We recruited native speakers of the 
language used in the documentaries to control for language 
experience. To discover common eye movement strategies 
for video watching from the participants and quantitively 
measure individual differences in eye movement pattern, we 
used the Eye Movement analysis with Hidden Markov 
Models (EMHMM, Chuk, Chan, & Hsiao, 2014) method to 
analyze eye movement data. In this method, each 
participant’s eye movement pattern during a visual task is 
summarized using an HMM, including personalized regions 
of interest (ROIs) and transition probabilities among the 
ROIs. Individual HMMs then can be clustered according to 
similarities to discover common strategies in the 
participants (Coviello, Chan & Lanckriet, 2014). The 
similarity between a participant’s eye movement pattern to a 
common strategy can be assessed as the log-likelihood of 
the participant’s eye movement data being generated by the 
HMM of the common strategy. This quantitative measure of 
eye movement pattern similarity then can be used to 
examine the associations between eye movement patterns 
and other cognitive measures. We hypothesized that (1) 

subtitles are helpful in the comprehension of the 
documentaries because of the exact match to the content of 
the documentaries, which may facilitate retrieving the 
meanings of the auditory narratives, (2) people with higher 
working memory capacity or task switching ability may 
show better comprehension when learning from 
documentaries with video content, and (3) people with more 
explorative eye movement patterns during video watching 
may be more distracted by video content, leading to worse 
comprehension performance. 

Methods 

Participants 
Sixty native Mandarin speakers (40 females, 18 to 30 years 
old, M = 21.07, SD = 3.32) were recruited from the 
University of Hong Kong. Participants were from different 
majors except for ecology, astronomy, geography and 
chemistry, which were the topics of the documentary clips 
used here. All participants reported normal or corrected-to-
normal vision.  

Materials 
The materials consisted of 16 documentary video clips in 
ecology, astronomy, geography, and chemistry, with 4 clips 
in each topic. The length of each clip was 75 s, and the 
resolution was 1920 x 1280 pixels. All clips used were 
produced by China Central Television (CCTV) and 
Shanghai Education Television (SETV) and were accessible 
to the public. The clips were selected based on the following 
criteria: a) Mandarin narratives; b) with simplified Chinese 
subtitles; c) not translated from foreign languages; d) 
produced as statements of facts, as to ensure the 
understandability of the clips to native speakers and to avoid 
possible linguistic biases. 

 
 

Figure 1: Four conditions of documentary presentation. 
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Each documentary could be presented in 4 different 
conditions: a) Audio baseline condition (i.e., narrated sound 
only without video content or subtitle, with a static icon 
presented at the center of a black screen); b) Subtitles-only 
condition (i.e., Audio baseline condition with original 
subtitles); c) Video-only condition (i.e., narrated sound with 
full-screen video content, with a fixed title masking the 
original subtitles); and d) Video with subtitles condition (i.e., 
narrated sound with both video content and original 
subtitles; Figure 1). Among the 16 original video clips, half 
of them had subtitles located on the bottom left of the screen, 
while the other half set the subtitles on the bottom center.  

Design 
Here we examined how video content and subtitle affected 
comprehension of documentaries. The independent 
variables were video content (with vs. without) and subtitle 
(with or without), resulting in four experimental conditions: 
audio baseline, subtitles only, video only, and video with 
subtitles. Each participant viewed 16 clips in total with 4 
clips in each condition (one from each topic); the clips used 
in the 4 conditions were counterbalanced across participants. 
The dependent variable was accuracy in answering 
comprehension questions related to the clips. Repeated 
measures ANOVA was used for the data analysis. 

In a separate analysis, we examined whether eye 
movement strategies used in the video only and video with 
subtitles conditions could predict comprehension of 
documentaries. The EMHMM approach was used (Chuk et 
al., 2014). More specifically, for each of the two video 
conditions separately, we used one HMM to summarize a 
participant’s eye movement pattern across all clips. We then 
clustered the individual HMMs into two groups according to 
similarities to discover two representative eye movement 
strategies among the participants. Participants’ eye 
movement pattern similarity to the two strategies then could 
be quantitatively assessed by calculating the log-likelihood 
of their data being generated by the HMM of the 
representative strategies. We examined whether this eye 
movement pattern similarity measure could predict 
participants’ comprehension. 

We also examined whether participants’ cognitive 
abilities could predict comprehension of documentaries. 
Participants completed a n-back task for testing working 
memory capacity (Owen, McMillan, Laird & Bullmore, 
2005), a Tower of London task for assessing executive 
function and planning abilities (Shallice, 1982), and a 
multitasking task for testing task switching abilities (Pashler, 
2000). We then performed a hierarchical analysis to 
examine whether eye movement pattern could still predict 
comprehension after variation due to cognitive abilities was 
controlled. 

Procedure 
Comprehension of Documentaries During the task, 
participants’ eye movements were recorded by an eye 
tracker, Eyelink1000. The tracking mode was pupil and 
corneal reflection with a sampling rate of 1000 Hz. Stimuli 
were displayed on a 22” CRT monitor with a resolution of 
1920 by 1440 pixels and 150 Hz frame rate. The viewing 
distance was 60 cm. The standard nine-point calibration 
procedure was carried out before the experiment and 
whenever the drift correction error was larger than 1° of 
visual angle. Each trial started with a white solid dot 
appearing at the center of the screen. Participants were 
asked to look at the dot whenever it appeared for drift 
correction. Afterwards, a documentary clip was played in 
full screen. After each clip, participants were asked to 
answer 6 aurally-presented multiple-choice questions 
(MCQs) according to the content. The MCQs were 
presented one at a time binaurally in Mandarin, and the 
voice was synthesized by the online Baidu voice producer. 
Participants could replay each question unlimited times 
before their response. Participants performed the task in the 
4 different documentary presentation conditions in separate 
blocks, with the block order counterbalanced across 
participants. They proceeded to the cognitive tasks 
described below after the comprehension task. 
 
Cognitive Tasks  
1. N-back Test: Two-back tests with 3 types of stimuli, 
including visual English letters, spoken numbers, and 
irregular shapes (Figure 2A) were used to test visual and 
verbal working memory. For each type of stimuli, 
participants were presented with 30 items one at a time, 
each for 2.5 s with a 0.5 s interval (Lau et al., 2010), and 
asked to judge whether the item presented in a trial matched 
the one that appeared 2 trials back.  
2. Tower of London Test: Participants were asked to move 
3 color discs one at a time from an initial position to match a 
goal position with the minimum number of moves, and to 
plan the moves in mind before execution (Figure 2B; 
Phillips, Wynn, McPherson & Gilhooly, 2001). Participants 
completed 10 trials. The total number of moves, total 
execution time, and total preplanning time before executing 
the first move were measured. Five practice trials were 
provided.  
3. Multitasking Test: Four types of figures with different 
combinations of shapes and fillings were used as the stimuli 
(Figure 2C). The stimuli were presented one at a time in 
either the top or the bottom half of a box at the center of the 
screen (Figure 2C, left). Participants were asked to perform 
a dual task where they judged the shape of the figure (the 
shape task) as fast and correctly as possible when the figure 
was presented in the top half of the box, and judged the 
number of dots in the filling of the figure (the filling task) 
when the figure was presented in the bottom half of the box 
(Stoet, O’Connor, Conner & Laws, 2013). The figure was 
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presented for 2500ms, followed by a 500ms blank screen. 
Participants were asked to respond by the end of the 3-
second trial. A shape-only and a filling-only task were 
tested sequentially before the dual-task to measure 
participants’ baseline behavior where no task switching was 
involved.  Their task switching ability was measured as the 
response time (RT) in the dual task minus the average RT 
during the two no-switching tasks. 

 
 

Figure 2: (A) 12 pictorial stimuli (Attneave and Arnoult 
structures) in the 2-back test, (B) Example of Tower of 
London test, (C) Stimuli used in the multitasking test. 

Results 

Effect of Video Content and Subtitle 
The results showed a significant main effect of subtitle, F 
(1, 59) = 13.359, p = .001 (Figure 3). There was no main 
effect of video content or interaction between video content 
and subtitle. This result suggested that subtitles, but not 
video content, facilitated comprehension of documentaries.  

 
 

Figure 3. Effect of video content and subtitle on the 
comprehension of documentaries.  

Eye Movement Strategies for Viewing Videos 
Using the EMHMM method, for the video-only and video 
with subtitles conditions separately, we summarized each 
participant’s eye movement pattern using an HMM. For 
each HMM, a variational Bayesian method was used to 
determine the optimal number of ROIs. More specifically, 
we ran each HMM with a different number of ROIs 
(ranging from 1 to 6) 300 times with a random initialization 
each time and selected the model with the largest log-
likelihood given the data. We then clustered all individual 

HMMs into two groups and generated a representative 
HMM for each group with the number of ROIs set to 4.   

Figure 4 shows the results of the Video-only condition. In 
the strategy on the top, after an initial fixation at the center 
of the video, participants had 8% of probability to look at 
either the blue ROI containing a logo on the bottom right or 
the green and the pink ROIs containing the fixed title on the 
bottom center of the screen. Afterwards, they tended to stay 
in the same ROI or switch back to the red ROI, or 
occasionally switched among the green, blue, and pink ROIs. 
We referred to this strategy as the distributed strategy. 46 
participants were classified in this group. In contrast, in the 
strategy on the bottom, there were overlapping ROIs around 
the screen center, and participants mainly focused at the 
center of the screen. We referred to this strategy as the 
centralized strategy. There were 14 participants in this group. 

 
 

Figure 4. Distributed (top) and centralized strategies in 
the video only condition. Ellipses show ROIs as 2-D 

Gaussian emissions. The table shows transition probabilities 
among the ROIs. Priors show the probabilities that a 

fixation sequence starts from the ellipse. The image on the 
right shows raw eye fixation data and their ROI assignments. 
 

To better understand the relationship between eye 
movement pattern and comprehension performance, 
following previous studies (e.g., Chan et al., 2018), we 
defined a Distributed-Centralized scale (D-C scale) for each 
participant as 
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Where D is the log-likelihood of the participant’s eye 

movement data being generated by the representative HMM 
of the distributed strategy, and F is the log-likelihood of the 
participant’s data being generated by the representative 
HMM of the centralized strategy. This log-likelihood 
measure reflects the similarity of the participant’s eye 
movement pattern to the representative strategies. A more 
positive value in the D-C scale indicated higher similarity to 
the distributed strategy, whereas a more negative value 
indicated higher similarity to the centralized strategy. We 
found that participants’ D-C scale was negatively correlated 
with comprehension performance in the video-only 
condition, r = -.291, p = .024: the more distributed the 
pattern, the lower the performance in comprehension 
(Figure 5A). 

 
 

 Figure 5. Correlation between eye-movement pattern and 
comprehension performance in the (A) video-only, and (B) 

video with subtitles condition. 
 

A similar analysis was conducted with eye movement 
data in the video with subtitles condition. Figure 6 shows 
the results of clustering participants’ eye movement patterns 
into 2 groups. The 2 groups showed similar concentrations 
on the ROIs on the bottom left and bottom center of the 
screen, where the subtitles were located, in addition to the 
screen center. Group 1 strategy showed a higher probability 
to look at the subtitle regions after looking at the screen 
center. One-third of the participants (20 out of 60) adopted 
Group 1 strategy (one participant’s eye movement data was 
invalid due to technical problems). We also measured 
participants’ eye movement pattern similarity using the 
Group 1-2 scale in the same way as the D-C scale, and 
found that it did not correlate significantly with 
comprehension performance (Figure 5B). 

Effect of Cognitive Abilities and Eye Movement 
Strategy on Comprehension 

The above results suggested that in the video-only 
condition, participants’ online eye movement pattern (D-C 
scale) predicted participants’ comprehension. In addition to 
eye movement strategy, we found that comprehension 
performance was also significantly correlated with auditory 

working memory ability as measured in the n-back task, r 
= .337, p = .008, and task switching ability as measured in 
the multitasking test r = .262, p = .043. To examine whether 
eye movement pattern significantly contributed to 
comprehension after variation due to cognitive abilities was 
controlled, a three-stage hierarchical multiple regression 
was conducted to predict comprehension score. At stage 
one, auditory working memory capacity (N-back test) 
contributed significantly to the regression model, F(1,58) = 
7.432, p = .008, and accounted for 11.4% of the variation. 
Adding task switching ability (Multitasking test) to the 
regression model explained an additional 5.5% of the 
variation in comprehension and the change in R2 was 
significant, F(2,56) = 5.813, p = .005. Finally, introducing 
eye movement pattern (D-C scale) explained an additional 
7.9% of the variation in comprehension score and this 
change in R2 was significant, F (3,57) = 6.172, p = .001. 
Thus, when watching video documentaries without subtitles, 
participants’ online eye movement behavior played an 
important role in comprehension in addition to cognitive 
abilities. A similar regression analysis was conducted for 
predicting comprehension performance in the video with 
subtitles condition, and no significant predicting variable 
was found.  

 

 
 

Figure 6. The two strategies observed in the video-with-
subtitles condition. 
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Discussion 
The present study aimed to investigate the role of video and 
subtitle in knowledge-based multimedia learning, with the 
effect of individual differences in multimedia processing 
including cognitive abilities and eye movement strategies 
considered. We hypothesized that for documentaries 
consisted of statements of facts, where auditory narratives 
provide most of the information, subtitles would facilitate 
comprehension due to the exact match to the content. In 
contrast, with video content, the comprehension may depend 
on participants’ working memory, planning, and task 
switching abilities, as well as their eye movement strategy. 
Consistent with our hypothesis, we found that subtitles 
facilitated comprehension whereas video content did not. 
Through the EMHMM method, we discovered the 
distributed and centralized eye movement strategies in 
watching videos without subtitles. Interestingly, the more 
similar participants’ eye movement pattern to the distributed 
strategy, the worse their comprehension in the video-only 
condition. Hierarchical regression analysis further showed 
that, while both auditory working memory and task 
switching abilities were significant predictors for 
comprehension, participants’ eye movement pattern 
contributed significantly to comprehension after variation 
due to these cognitive abilities was controlled. This result 
showed that the facilitation of video content in the 
comprehension of documentaries depended on participants’ 
online eye movement strategy in addition to working 
memory and task switching abilities. In contrast, 
participants’ comprehension in the video with subtitles 
condition did not depend on either cognitive abilities or eye 
movement strategy.  

Our results showed that adding subtitles is beneficial to 
knowledge acquisition of documentaries consisting of 
statements of facts. Previous studies on the effect of 
subtitles have reported inconsistent findings, with some 
showing that on-screen text is distracting (Mayer, Heiser & 
Lonn, 2001) whereas others suggesting facilitating effects 
(Starbek et al., 2010). This inconsistency may be due to 
differences in the amount of information carried in each 
medium during multimedia learning. In cases where 
pictorial stimuli contain important content for knowledge 
acquisition, simultaneous on-screen texts may be distracting 
(e.g., Mayer, Heiser & Lonn, 2001). In contrast, for 
materials where auditory narratives already provide most of 
the information for learning, such as the documentaries used 
in the current study, subtitles that match well with the 
auditory narratives may help maintaining participants’ 
attention to the content of the knowledge and consequently 
facilitate comprehension (Kruger, Hefer & Matthew, 2013).  

The finding that the distributed eye movement strategy, as 
opposed to the centralized strategy, was correlated with 
worse comprehension may be related to how attention was 
allocated in these two cases. According to the cognitive 
theory of multimedia learning (e.g., Mayer, 2014), engaging 

in active eye movement planning as demonstrated in the 
distributed strategy where there were specific ROIs located 
at different regions of the video may increase the cognitive 
load, resulting in decreased attentional resources for 
listening comprehension. The EMHMM method allows 
discovery of representative eye movement strategies from 
individual patterns in a data-driven fashion and provides a 
quantitative assessment of eye movement pattern 
similarities, leading this novel finding.  

We also observed that in the video with subtitles 
condition, most participants focused on the subtitle locations 
in addition to the screen center, and participants’ 
comprehension could not be predicted by either eye 
movement strategies discovered in this condition, working 
memory ability, or task switching ability, in contrast to the 
video-only condition. This result suggests that subtitles with 
video may help maintain participants’ attention to a specific 
location of the video and reduce the possibility of active eye 
movement planning to other regions of the video, resulting 
in more attentional resources to listening comprehension 
and reduced task switching requirements. The redundancy 
effect from subtitles may also decrease the demands on 
working memory. 

Previous research has suggested that cognitive abilities 
such as working memory capacity could modulate 
multimedia learning effects (Fenesi, Kramer & Kim, 2016). 
Here we further showed that in addition to working memory 
and task switching abilities, comprehension performance in 
the video-only condition could be predicted by online eye 
movement strategy: people who adopted a more centralized 
eye movement pattern had better comprehension. Future 
work will examine whether an explicit instruction of using a 
centralized eye movement strategy during video 
documentary viewing will facilitate comprehension.  

To conclude, here we showed that for knowledge 
acquisition from auditory narratives, subtitles facilitated 
comprehension, whereas with video content, comprehension 
depended on participants’ working memory and task 
switching abilities, as well as online eye movement strategy. 
When watching videos without subtitles, participants’ 
comprehension could be facilitated by better auditory 
working memory and task switch abilities, and a more 
centralized eye movement pattern. In contrast, when 
watching videos with subtitles, subtitles seemed to have 
attracted and stabilized eye movements as well as reduced 
the demands on working memory and task switching, and 
thus neither cognitive abilities nor eye movement strategy 
could predict comprehension performance. These findings 
demonstrated the importance of taking individual 
differences into account in the research on instructional 
design and science of learning, and eye tracking with 
EMHMM provides a useful tool for revealing and 
quantitatively assessing these individual differences.  
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Abstract
Manufacturing systems of the future need to have flexible re-
sources and flexible routing to produce extremely personalized
products, even of lot size equal to one. In this paper we have
proposed a framework, which is designed to achieve this goal.
Towards this we have integrated an established cultural evolu-
tion model to achieve desirable flexibility of resources and ac-
ceptable routing time. Promising results are evidenced through
a simple proof-of-concept agent-based simulation. The simu-
lation results reveal that the products need to move less in more
diversified cultural groups when looking for suitable resources.
It was also observed that the more time we provide for cultural
dissemination, the cultural groups become increasingly coher-
ent due to homophily. For scenarios, which require diversifica-
tion of resources, we need to find a balance between coherence
and diversification. This paper provides first insights into these
aspects for a production shop floor.
Keywords: Industry 4.0; resource flexibility; routing flexibil-
ity; personalized production; cultural dissemination; group co-
herence.

Introduction
The industrial manufacturing paradigm has already evolved
from mass production to mass customization. Fueled by
initiatives like Industry 4.0 (Lee, Bagheri, & Kao, 2015),
we foresee a further improvement in coming years, namely
the paradigm of personalized production. Personalized pro-
duction targets an extremely flexible manufacturing system
which could respond to predicted and unpredicted changes
in the production environment and allows customers to cre-
ate and design themselves (Hu, 2013; Mourtzis & Doukas,
2014). Manufacturing systems supporting personalized pro-
duction should exhibit the following features (Ogunsakin,
Mehandjiev, & Marı́n, 2018):

• Resource Flexibility: flexibility of processing stations (or
machines) to make multiple parts, which means that one
processing station is not designated for one task and can
perform different tasks as required.

• Routing Flexibility: flexibility to execute same operation
(or function related to a task) using multiple processing sta-
tions, which means that a single task can be performed by
many processing stations.

• Lot Size Flexibility: ability to produce a very small cus-
tomized and/or personalized lot size in a non-batch mode,
which is a direct consequence of at least (if not any other
dimension) the above two features.

The progress towards a truly flexible manufacturing system
(FMS) is naturally driven by technological needs from indus-
trial process management viewpoint, which falls into general
knowledge areas of scheduling (Wang, Zhong, Dai, & Huang,
2016; Marichelvam, Prabaharan, & Yang, 2014), resource op-
timization (Ogunsakin et al., 2018; Beruvides, 2017), con-
straint satisfaction (Ezpeleta, Colom, & Martinez, 1995), and
related.

Still, the body of work considering the aspect of ”person-
alization” is quite lean and requires further attention. Real-
izing this, several projects and activities are already under
progress. One significant effort endeavours to develop cog-
nitive products and production systems incorporating human-
like capabilities like ”perception, understanding, interpreta-
tion, memorizing and learning, reasoning, planning and hence
cognition-based acting” (Pro2Future, n.d.). The project is
about complex cognitive modalities of humans, products and
machines and their interrelationships. In this paper, we argue
that one does not need to have high-level cognitive capabili-
ties to be effective. At a scale of a population or a group, a
very basic level cognition of interacting agents may result in a
desirable global situation. We just need to find the conditions
in which this may happen.

Agent-based modeling (ABM) (Bonabeau, 2002) is a
method used for modeling such inquiries. One particular area
of interest of a production unit is the layout of shop floor
which should be optimized for maximum gain in productiv-
ity, particularly in case of FMSs. This case study is adopted
in our paper. At a conceptual level, a group of agents com-
prising an interactive social network is augmented with the
notion of culture to ground them with the physical world.

Most optimization mechanisms (as stated above) either
consider a mathematical abstraction or imitate a real-world
situation as their manufacturing environment (which is
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mostly static) while modeling, and then proposing a solution
within these presumptions. A more recent work (Ogunsakin
et al., 2018) also considers mobile processing stations as a
mean to achieve flexibility of shop floors. The idea is to
make resources available as and where these are required. Al-
though, this approach addresses the challenge of routing flex-
ibility to an extent, the capabilities of resources still remain
static.

In our research, we are mostly focusing on resource flexi-
bility, which means that the processing units are able to dy-
namically change their capabilities and therefore a resource
is able to perform several tasks. The goal is to keep resources
stationary (and avoid expensive process of mobility) and ar-
range resources in groups of complementing capabilities. Ide-
ally, a resource would designate itself for a capability that
would optimize the manufacturing process in several dimen-
sions, such as production rate, lead-time per order and reac-
tivity index (Ogunsakin et al., 2018). However, we only focus
on resource availability and mobility of products.

We postulate that flexibility in resources, routing and per-
sonalizing relate to evolution of culture as it emerges at the
physical level due to local interactions of mostly stationary
individuals. In the context of resources (processing units) of
a production shop floor, we seek for groups of complement-
ing capabilities, self-organizing to produce an approximately
optimized layout for the products, which ensures availabil-
ity of resources and reduces products’ mobility. This novel
idea would provide an entirely new perspective for the future
research in this domain.

In the next section, formal definition of culture and cultural
diversification is presented; followed by detailed description
of the methods. Next, we present details about our model and
simulation; followed by discussion on initial findings. We
end the paper with an elaborate outlook of future work.

Culture, Diversification and FMS
A culture is a multi feature system evolving in time. One
characteristic of culture is its coherence when seen from out-
side. Definitely, this coherence results due to a majority of
people trying to acquire a similar behavior (often termed as a
trait) in a certain context (often termed as a feature).

Relating these concepts to FMS, we need to conceptualize
features and traits of resources and products, where a resource
is a processing unit in the production line, whereas a product
is obviously a product under production. Although a product
can also be considered as a cultural entity, it is not the case for
the purpose of this paper. Only a resource is a cultural entity.

Resources are flexible, initially having some randomly
chosen features and a randomly chosen trait against a feature.
For example, a processing unit may have ability to perform
one, two or more tasks T1, T2, ... with certain levels of pre-
cision P1, P2, .... Here, a tuple consisting of n values is a
set describing capabilities of a resource. For example, the set
{P2, P1, P3} can be interpreted as: this resource can perform
task 1 with precision 2, task 2 with precision 1 and task 3 with

precision 3. Furthermore, it cannot perform any other task.
Further, all products have a sequential list of capability re-

quirements. For example, a product with set {P1, P1, P2}
requires task 1 with precision 1, followed by task 2 with pre-
cision 1, finally followed by task 2 with precision 2. The
question is: would cultural diversification be able to gener-
ate a physical layout that would ensure availability of capable
resources with minimal mobility for all the products in the
system? Technically, what are conditions which lead us to an
acceptable (and approximate) solution of the problem?

Such a scheme is naturally compatible with the re-
quirement of a flexible manufacturing system stated above,
namely, flexibility in resources, routing and personalizing.
Axelrod provides evidence in his seminal work (Axelrod,
1997) for such a simple configuration of cultural descriptions
which can result into a locally coherent, but globally polar-
ized culture as a consequence of localized interactions of par-
ticipating entities.

Our intuition is that unbounded coherence between cultural
groups would not help in this scenario. The reason is that lim-
itless coherence has no control over where the boundaries of
the global polarization would occur, which is not compati-
ble with a system which seeks for economy of resources and
optimizations in several dimensions. That is the reason, we
try to find conditions which end up in approximately accept-
able structuring in terms of coherence (termed as limited co-
herence) vs. polarization. To achieve this, we have taken
motivation from Centola et. al’s work (Centola, Gonzalez-
Avella, Eguiluz, & San Miguel, 2007) in which a random drift
is used to deviate a highly coherent environment. This drift
is achieved through change in the neighborhood of an agent.
Theoretically it is possible to do it, however in scenarios like
FMS it is not practical as we cannot move processing units so
frequently after deployment. Hence, we have fine tuned Ax-
elrod’s model of cultural dissemination (Axelrod, 1997) with
focus on limited coherence between cultural groups and tried
to find out how much we can achieve and in which condi-
tions. Definitely, at run time, the dynamics of requirements
and products may change and make a particular layout ex-
tremely inefficient. To address it, a further investigation is
required, which is planned for the future.

Methods
Axelrod’s Model of Cultural Dissemination
Axelrod’s model (Axelrod, 1997) thrived for cultural ho-
mogeneity (Bednar, Bramson, Jones-Rooy, & Page, 2010),
where adjacent cultures get influence from each other. The
model is based on cultural components defined by three fac-
tors: features, traits and persons. A culture has many features,
such as habits of eating, recreation and leisure. These features
may not be identical across different cultures. Each of these
features have several traits, which may differ across cultures.
A person is a placeholder of a culture described by one of f
features and t traits. Axelrod proposed a model seeking for
cultural homogeneity proclaiming that different cultures are
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destined to cohere together so that they appear as a cultural
unity, but at the same time, there exists a clear-cut differenti-
ation between cultures.

Figure 1: Initial distribution of a 25× 7 grid constituted by
blocks of culture (anchored on central black persons); each
block is a tuple of 3, representing three features (green, blue,
yellow) of three traits each (3 shades of a color). Each cell’s
color has a meaning; for example, all green cells have ca-
pability to perform task 1 with precision value 0, which is
followed by precision values of task 2 (0, 1 or 2); last value
is not path dependent and represented by z. Possible combi-
nations of colors are shown with values; each tuple relating
to a person on the top-left corner. A product has a unique
sequence of task to perform represented with an arrow shape
(at the bottom center of the space).

Axelrod model was able to demonstrate that the above two
(rather contradictory) goals can be achieved by a simple in-
teraction model (realized through N coordination games) be-
tween neighboring persons. Axelrod showed that N coordi-
nation games are necessary for a broader scale evolution of
a culture. Furthermore, groups’ consistency across different
aspects of societal norms makes a group culturally coherent
and different from others.

We developed a simple simulation model for demonstra-
tion purposes using NetLogo (Tisue & Wilensky, 2004). Fig-
ure 1 presents a grid of 25×7 cells. Each cell is represented
by a person (in black) and the corresponding culture acquired,
depicted by cell color of the cell the person is occupying.

Axelrod’s model calculated similarity s between neighbor-
ing cultures (based on Von Neumann’s neighborhood). If s is
not 1 (100%), with a probability p, the value of a di f f erent
column of a person is replaced by the corresponding value
of the neighboring person. This simple mechanism is able
to generate clusters of coherent cultures as shown in Figure
2. If we define diversity index as the mean diversification of
cultures of all persons when compared to their neighbors, the
Axelrod model would converge into a single culture most of
the time with diversity index equal to 0. This is not desirable
in the context in which we want to use this model. Therefore,
the model was extended as detailed in the following.

Model Motivation: Constrained, N-Coordination
Games for Cultural Diversity
Before describing the model, we will emphasize the scenario
given in Figure 1. Given that a processing unit is able to per-
form three possible tasks with three possible precision values,

Figure 2: Axelrod’s Model: Evolution of cultures shown in
Figure 1. (a) at simulation iteration 10000 showing clusters
of cultures starting to form. (b) at simulation iteration 20000
showing further consolidation of clusters of cultures. The
evolution is destined to end up in very few cultures (1 or 2).

we can see a clear capability matching through colors. Fur-
thermore, a product is introduced which need to complete a
sequence of three tasks offered by different resources. We
hypothesize that using the constraint, N coordination games,
we can achieve cultural diversity closer to what is desirable.
This would directly impact products’ traversing efforts in a
positive way.

The Proposed Diversity Dissemination Mechanism
The Axelrod model is too skewed towards coherence and
would end up in too few cultures. Hence we propose to re-
fine the Axelrod model in the following way. Axelrod model
seeked for similarity s between neighboring cultures. If s is
not 1 (100%), with a probability p, the value of a di f f erent
column of a culture is replaced by corresponding value of the
neighboring culture. We extend this model by applying an
extra constraint. That is, the replacement is only possible if
s is also less than a threshold th, which is for now given a
static value of 0.5. This obviously increases the overall diver-
sity index of the system as shown in Figure 3. Before analyz-
ing the impact of this refinement we explain the mechanism
of product traversing.

Traversing Mechanism
All products have a sequence of tasks to perform in the form
[x, y, z]. A product first gets the value x, and maps it onto
resources with identical capability and residing close to its
position. Let’s denote the resource with r. After visiting r,
the product seeks for the next nearest resource corresponding
to y. It is assumed that y has a relationship with x. This means
that, in terms of colors, this cell (and the resource residing on
top of it) should have the same color. The last task z is inde-
pendent and just show the range of flexibility that the system
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Figure 3: Proposed Model: cultural diversity at iteration (a)
iteration 10000 and (b) 20000.

Figure 4: Traversing behavior in random configuration of re-
source capability.

may have.
An Example Walk-through on Random Configuration (with-
out applying diversification mechanism): Referring to Figure
4, each resource (black agent at the center of a cell) is ran-
domly populated with vector [x y z], where x, y and z may
have three possible values 0, 1 and 2. Products have to per-
form three tasks in a sequence. One product (at the center) has
to perform task 1 with precision 0, task 2 with precision 1 and
task 3 with precision 1. It starts at the position marked with
red circle. First it performs task 1 with precision 0. That takes
it 2 steps to the top left cell, which has the nearest resource
with this capability. Next, it has to perform task 2 with preci-
sion 1. The nearest resource, which has first column equal to
0 (assuming a connection between task 1 and 2) and second
column equal to 1 is the resource at the bottom; hence the
product would move there. Next task is task 3 with precision
1. Assuming that it is an independent task, the product would
try to find the nearest resource that has the third column equal
to 1 (any color). This can be any resource (cell at the left is
selected). Hence, the mobility index of this product is 4, the
total number of hops traversed. The other two products also
traverse to complete their tasks. The average mobility index
turns out to be 3.94.

It seems that random configurations would be the best, but
this cannot be the case in a structured environment, particu-
larly in case of an assembly line type of manufacturing.

Figure 5: Traversing behavior in random Layout without di-
versification applied.

Figure 6: Traversing behavior in Axelrod’s Model.

Analysis of Initial Findings
Definitely, the introduction of th retains diversity index in
case of extension of Axelrod’s model. This helps in task com-
pletion capability of the system. This claim can be verified by
analyzing the mobility of products and the diversity index in
three cases. We have used 25 products distributed at three
places. In each case, the simulation was run for 100 times
and the results were averaged. In the following, we present a
sample visualization for each case which is close to average
values, at two sampling points (iteration 10000 and iteration
20000) if applicable.

Random Layout
In Figure 5, the system has a diversity index equal to 0.70
and a mobility index equal to 3.4. This is also confirmed by
the graphs shown in Figure 8 (diversity index) and Figure 9
(mobility index). As we mentioned already, random config-
uration is most flexible and would always be best in its task
completion capability. However, this configuration is unreal-
istic. In reality, we need to plan placement of resources and
deploy them accordingly.

Axelrod’s Model
In case of Axelrod’s model, we have analyzed the results for
diversification period of 10000 and 20000 iterations. These
two situations are represented in Figure 6. With increasing
polarization and decreasing diversity index, the average mo-
bility index drops. After running the simulation for 100 runs
and averaging, it was observed (see Figure 8 (diversity index)
and Figure 9 (mobility index)) that mobility index is just less
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Figure 7: Traversing behavior in proposed Model.

Figure 8: Graph showing diversity index of 100 simulations
runs.

than 8 (diversity index = 0.35) in case the diversification hap-
pens for 10000 iteration, whereas, mobility index is slightly
higher than 8 (diversity index = 0.30) in case the diversifica-
tion happens for 20000 iteration. As shown in Figure 6, this
decrease is due to nonavailability of resources indicated by
products turning into black color.

Proposed Model
Lastly, the proposed model solves the above issue. We can
see a smooth performance of tasks for all the products, which
is evident from Figure 7. Again, we have analyzed the re-
sults for diversification period of 10000 and 20000 iterations.
These two situations are represented in Figure 7. After run-
ning the simulation for 100 runs and averaging, it was ob-
served (see Figure 8 (diversity index) and Figure 9 (mobility
index)) that mobility index is equal to 4.57 (diversity index =
0.49) in case the diversification happens for 10000 iteration,
whereas, mobility index is about 5 (diversity index = 0.45) in
case the diversification happens for 20000 iteration.

Comparative Analysis
As diversity decreases, the availability of resources becomes
more difficult. In this particular scenario, the products need

Figure 9: Graph showing mobility index of 100 simulations
runs.

to move less in more diversified cultural groups. The ideal
case is random layout in which the products need to move
the least. As diversity decreases from random layout to Ax-
elrod’s model, the mobility increases substantially. In case
of Axelrod’s model, it was also observed that the more time
we provide for cultural dissemination, the cultural groups be-
come increasingly coherent. In the simulation world’s geom-
etry used, the number of culture clusters goes down to a few
if the number of iterations is increased to 100000. Obviously,
this is not an interesting case to show. However, in the case of
the proposed model, this does not happen with such high in-
tensity. In fact, the diversity index never drops below 0.4 and
interestingly it reaches an equilibrium in most runs. Hence,
it is possible to provide a drift against unbounded homophily
effect resulting into an extremely low diversification by us-
ing a simple threshold based control mechanism. The graphs
shown in Figure 10 validate our claim.

Conclusion and Outlook
Manufacturing systems of the future need to have flexible re-
sources and routing to produce extremely personalized prod-
uct, even of lot size equal to one. What we have seen is that
flexible manufacturing systems can be realized without mov-
ing the resources (processing units) by enabling reconfigu-
ration of capabilities of resources based on dissemination of
culture concept proposed by Axelrod. However, the Axel-
rod model has a focus on coherence of cultural groups, which
most of the times ends up in one or very few cultures. If we
equate such an instance of a culture with a single capability of
a resource, we are left with extremely limited resources and
products cannot complete their production life cycle.

Hence, we proposed to have a constrained cultural coher-
ence mechanism by introducing a threshold. This tiny devel-
opment has a significant impact on the increase in diversity of
the culture along with related resources being in close vicinity
to each other on average. This not only ensured an increase in
resource availability as a whole, but also managed to decrease
the mobility of products in search of suitable resources.

However, the real contribution of the paper is integration of
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Figure 10: Comparative Analysis of diversity index: Axelrod’s Model vs. Proposed Model.

manufacturing processes with cultural considerations, which
naturally fits into the problem. In our view this is a novel ap-
proach of real significance. However, the work reported in
this paper is just a proof-of-concept. We need to have more
thorough experiments to measure the efficiency of the model
in challenging environments such as environments having in-
flow and outflow points, more in-depth capabilities and richer
relationships between tasks.

In the next phase of the project, we will induct models of
dynamics, which include timing of tasks, conflict and dead-
lock resolution between products seeking for identical re-
sources, and more realistic analytics such as production rate,
lead-time per order and reactivity index. Lastly, we would
also include an autonomous learning system, which would
help resources learn and change their configurations on the
fly based on product types, requirements and trajectories.

Acknowledgment
The authors would like to acknowledge support by FFG
funded Pro2Future under contract No. 6112792.

References
Axelrod, R. (1997). The dissemination of culture: A model

with local convergence and global polarization. Jour-
nal of conflict resolution, 41(2), 203–226.

Bednar, J., Bramson, A., Jones-Rooy, A., & Page, S. (2010).
Emergent cultural signatures and persistent diversity:
A model of conformity and consistency. Rationality
and Society, 22(4), 407–444.

Beruvides, G. (2017). Artificial cognitive architecture with
self-learning and self-optimization capabilities. case
studies in micromachining processes.

Bonabeau, E. (2002). Agent-based modeling: Methods and
techniques for simulating human systems. Proceed-
ings of the National Academy of Sciences, 99(suppl 3),
7280–7287.

Centola, D., Gonzalez-Avella, J. C., Eguiluz, V. M., &
San Miguel, M. (2007). Homophily, cultural drift, and
the co-evolution of cultural groups. Journal of Conflict
Resolution, 51(6), 905–929.

Ezpeleta, J., Colom, J. M., & Martinez, J. (1995). A petri
net based deadlock prevention policy for flexible man-
ufacturing systems. IEEE transactions on robotics and
automation, 11(2), 173–184.

Hu, S. J. (2013). Evolving paradigms of manufacturing: from
mass production to mass customization and personal-
ization. Procedia CIRP, 7, 3–8.

Lee, J., Bagheri, B., & Kao, H.-A. (2015). A cyber-physical
systems architecture for industry 4.0-based manufac-
turing systems. Manufacturing Letters, 3, 18–23.

Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). A
discrete firefly algorithm for the multi-objective hybrid
flowshop scheduling problems. IEEE transactions on
evolutionary computation, 18(2), 301–305.

Mourtzis, D., & Doukas, M. (2014). Design and plan-
ning of manufacturing networks for mass customisa-
tion and personalisation: challenges and outlook. Pro-
cedia CIRP, 19, 1–13.

Ogunsakin, R., Mehandjiev, N., & Marı́n, C. A. (2018). Bee-
inspired self-organizing flexible manufacturing system
for mass personalization. In International conference
on simulation of adaptive behavior (pp. 250–264).

Pro2Future. (n.d.). Area 4.1 cognitive prod-
ucts. Retrieved from http://www.pro2future.at/
research-en/areas-en/area-41-en/

Tisue, S., & Wilensky, U. (2004). Netlogo: A simple en-
vironment for modeling complexity. In International
conference on complex systems (Vol. 21, pp. 16–21).

Wang, M., Zhong, R. Y., Dai, Q., & Huang, G. Q. (2016).
A mpn-based scheduling model for iot-enabled hybrid
flow shop manufacturing. Advanced Engineering In-
formatics, 30(4), 728–736.

1295



The price of knowledge: Children infer epistemic states and desires from
explorations cost
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Abstract

When deciding whether to explore, people must consider both their need for information, and the cost of obtaining it.
Thus, to judge why someone explores (or decides not to), we must consider not only their actions, but also the cost of
information. Do children attend to the cost of agents exploratory choices when inferring what others know or desire
to know? In Experiment 1, four- and five-year-olds judged that an agent who rejected an opportunity to gain low-cost
information must have already known it. In Experiment 2, four- and five-year-olds judged that an agent who incurred
a greater cost to gain information had a greater epistemic desire. In two control experiments, we show that these results
cannot be explained by a low-level heuristic linking competence with knowledge. Our results suggest that childrens Theory
of Mind includes expectations about how costs interact with epistemic desires to produce action.
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Abstract 

When deciding how to act in new situations, we expect agents to 
draw on relevant prior experiences. This expectation underlies 
many of our mental-state inferences, allowing us to infer agents’ 
prior knowledge from their current actions. Do children share 
this expectation, and use it to infer others’ epistemic states? In 
Experiment 1, we find that five- and six-year-olds (but not four-
year-olds) attribute additional knowledge to agents whose prior 
experiences cannot explain their success. In Experiment 2, we 
find that six-year-olds (but not younger children) also attribute 
greater knowledge to agents whose prior experience cannot 
explain their failure. We show that by age five or six, children 
expect ignorant agents’ beliefs (and therefore their actions) to be 
guided by their prior knowledge. This work adds to a growing 
body of research suggesting that, while infants can represent 
mental states, the ability to infer mental states continues to 
develop throughout early childhood. 

Keywords: Ignorance; Knowledge; Social Cognition; 
Theory of Mind 

Introduction 
To discuss someone’s ambitions, frustrations, or 
disappointments is to talk about a mind that works much 
like our own, except that we cannot see it or know what it 
knows. Yet, we make surprisingly accurate inferences about 
what others think or want, just by watching how they act. 
For example, if your friend gives you her keys but later 
rummages in her bag upon reaching the car, you might infer 
that she forgot you have them. If she doesn’t slow for a 
pedestrian at a crosswalk, you’d probably assume she didn’t 
see them. And if she suddenly takes a detour, you might 
suspect she knows something you don’t (perhaps the usual 
route is under construction). 

The ability to infer other people’s thoughts and desires 
from their behavior involves building a working model of 
how their mental states relate to their actions. The 
foundations of this capacity, called a Theory of Mind 
(Dennett, 1987; Gopnik & Wellman, 1992), are in place and 
at work early in infancy (Woodward, 1998; Liu, Ullman, 
Tenenbaum, & Spelke, 2017) but continue to mature 
throughout early childhood (Wellman, Cross, & Watson, 
2001), and well into adolescence (Richardson, Lisandrelli, 
Riobueno-Naylor & Saxe, 2017). 

Within Theory of Mind, our ability to reason about other 
people’s beliefs—what they know, what they don’t, and 
what they think they know—is particularly slow to develop. 
While infants can represent other people’s beliefs (Onishi & 

Baillargeon, 2005), knowledge (Surian, Caldi & Sperber, 
2007), and ignorance (O’Neill, 1996), children do not use 
these representations explicitly until several years later 
(Bartsch & Wellman, 1995; Wellman, et al., 2001). 

As adults, we understand that other people’s past 
experiences shape their current beliefs, and that these beliefs 
guide their actions. If, for example, your friend starts their 
car by inserting and turning a key, you can reasonably 
predict they will try the same the first time they drive yours. 
And you’d expect this even if you know your car works 
differently (for example, starting when a button is pushed in 
proximity to the key fob).  

This expectation not only allows us to predict how others 
will act: it also allows us to infer what they know by 
observing how they act. In the example above, if your friend 
defied your expectations by immediately locating the button 
that starts your car, you might wonder if they had some 
prior experience you didn’t know about (perhaps they’ve 
driven other cars like yours before). Such reasoning may 
seem intuitive, but how exactly do we predict what actions 
agents are likely to take in new situations? Prior research 
suggests that adults solve this problem by integrating over 
agents’ uncertainty (Baker, Jara-Ettinger, Saxe, & 
Tenenbaum, 2017). For instance, when we reason about an 
agent who does not know whether a car starts via a key or a 
button, we consider what they would do in each situation, 
and we expect them to choose a plan weighted by their 
confidence. 

While effective, these types of inferences are 
computationally complex. They require considering 
multiple possible worlds (at least implicitly), and deciding 
what an agent would do in each. Perhaps unsurprisingly, 
children’s expectations for how ignorant agents are likely to 
act appear to rely on simpler strategies. Children sometimes 
equate being ignorant with getting things wrong (Ruffman, 
1996; Saxe, 2005); although, in other contexts, their 
intuitions reverse (Friedman & Petrashek, 2009; German & 
Leslie, 2001).  

While expecting ignorant agents to fail may support 
accurate inferences and useful predictions, such strategies 
are limited. Even ignorant agents can make reasonable 
guesses based on past experience. For instance, even if 
you’ve only used PC’s, you probably have some idea of 
what you’d try if you had to turn on a Mac. And ignorant 
agents can always get lucky, succeeding by chance.  
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Do children understand how previous experiences affect 
agents’ future actions? And do they leverage this 
expectation to infer what an agent knows based on what she 
does? In the current work, we investigate these questions 
with four- to six-year-olds. The ability to explicitly and 
flexibly represent beliefs emerges in the mid-preschool 
years (e.g., Rubio-Fernández, 2019; Wellman et al., 2001). 
Therefore, if children have expectations about the relation 
between ignorance and action, we might expect them to 
emerge in this age range. 

In two experiments, participants watched two puppets 
learn how to activate a novel toy. Each puppet later 
attempted to activate a different (but outwardly identical) 
toy. One agent’s actions were consistent with their prior 
experience, while the other agent’s actions were inconsistent 
with their prior experience. In Experiment 1, both agents 
succeeded in activating a toy. If children expect agents to 
act based on their prior knowledge, they should judge that 
the inconsistent agent (whose actions cannot be explained 
by their experience with the initial toy) must have had 
additional knowledge. We find that five- and six-year-olds 
(but not four-year-olds) attribute additional prior knowledge 
to this agent.  

To control for the possibility that children attribute 
knowledge to agents who teach them something new, in 
Experiment 2, children learned how a toy worked, and then 
watched two agents fail to activate this toy. Children again 
judged that the inconsistent agent (whose action couldn’t be 
explained by his experience with the initial toy) had greater 
additional knowledge. These results suggest that by age 
five, children expect ignorant agents to act according to 
their prior knowledge, and further, that children leverage 
this expectation to infer what others know from what they 
do. All experiments’ procedures, predictions, exclusion 
criteria, and analyses were pre-registered. 

Experiment 1 
In Experiment 1, children watched two puppets learn how to 
activate a novel toy. Next, each puppet was given the 
chance to activate a different toy (always outwardly 
identical to the original). One puppet stated that his chosen 
toy worked the same as the original, and pressed the same 
button he had seen activate the original toy. The other 
puppet stated that his chosen toy worked differently to the 
original, and pressed a different button. Both puppets 
succeeded in activating their chosen toy. Children were then 
asked which of the two agents already knew how the toys 
worked. 

If children expect ignorant agents to behave in accordance 
with their prior beliefs, then they should judge that the agent 
who acted inconsistently with their prior experience is more 
likely to be knowledgeable. But if children attribute 
epistemic states by relying on a rule of thumb (e.g., 
expecting ignorant agents to be wrong), or have no 
representation of what it means to be ignorant, then children 
should have no preference for either agent.  

Method 
Participants 72 four-, five- and six-year-olds (mean age: 
5.46 years, range: 4.05 – 6.99 years; n = 24 participants per 
age group) were recruited at a local children’s museum. 22 
participants were excluded from the analyses and replaced 
because: they did not pass the pre-registered inclusion 
questions (n = 9), due to experimenter error (n = 5), 
interruptions from other children (n = 3), because the 
participant did not answer the test question within 30s (n = 
2), distraction (n = 1), interference with the procedure (n = 
1), or due to developmental delays (n = 1). 
 
Stimuli Stimuli consisted of two male puppets, and three 
novel toys. These toys were externally identical machines, 
each covered in black construction paper and measuring 
approximately 5 x 3 x 2.75 in. Toys had three buttons on 
top: a red button in the middle, and two black buttons 
flanking the red one (see Figure 1).  

Although they all looked the same, the toys worked in 
different ways. The first toy (called the “training” toy) 
activated and played music only when the central red button 
was pressed. Of the remaining toys, the “consistent” one 
worked the same way. However, the “inconsistent” toy 
worked differently: only pressing the black button to the 
participant’s far left made it activate. For clarity, we refer to 
this button as the “correct” black button, and the other as the 
“incorrect” black button (since it did not activate the toy).  
 
Procedure First, participants were familiarized with the 
training toy (which turned on when the central red button 
was pressed). Participants learned that the red button made 
the toy go, but that the black buttons did nothing. They were 
then given a chance to press all of the buttons themselves. 
Next, participants were introduced to two puppets. The 
experimenter explained that she was going to show the 
puppets how the toy worked, and told the puppets that while 
the red button made the toy go, the black buttons did not do 
anything. Upon the experimenter’s request, the puppets 
pressed the red button together.  

Next, the remaining toys were placed on the table (one on 
either side of the training toy). The experimenter explained 
that one of the puppets had snuck out from under the table 
and played with all the toys, and discovered which buttons 
made the toys play music. The other puppet had stayed 
underneath the table, and hadn’t seen anything. The child’s 
task was to help figure out which puppet had snuck out and 
played with all the toys.  

Each puppet was questioned individually, while the other 
agent was placed under the table. During his turn, each 
puppet was asked: “Can you show us how to make one of 
these toys go?" To make the relation between agents’ 
actions and their experience with the initial toy more 
explicit, each agent explained himself as he acted. One 
puppet chose the consistent toy, saying, “Hmm. Well, the 
red button made this [original] toy go, so the red button 
makes this toy go too,” pointing to the two relevant buttons 
as he spoke. Finally he pressed the red button, successfully 
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activating the toy. The other puppet chose the inconsistent 
toy, saying, “Hmm. Well, the red button made this [original] 
toy go, but this black button makes this toy go,” pointing to 
the two relevant buttons as he spoke. Finally he pressed the 
correct black button, successfully activating the toy. 

After each puppet demonstrated one of the toys, the 
experimenter asked the test question: “[Child name], 
remember how I told you at the beginning of the game that 
only one of my friends snuck out from underneath the table, 
and played with all the toys? Can you tell me, which one of 
my friends snuck out and played with all the toys?” 
Participants were then asked to explain their answer. The 
memory check questions (pre-registered as inclusion 
questions) were asked last, with subjects asked to match 
each puppet to the toy he had demonstrated: “[Child name], 
can you remind me, which friend showed us how to make 
this toy go [both puppets point to a toy]? And which friend 
showed us how to make this toy go [both puppets point to 
the other toy]?” 

Puppets always demonstrated the toy they were standing 
closest to. This was to avoid pragmatic concerns that could 
arise if puppets undertook a cost to demonstrate a particular 
toy. Therefore, the puppet on the experimenter’s left hand 
demonstrated the leftmost toy, and vice versa. The identity 
of the puppet whose turn was first, and the toy this agent 
acted on was always counterbalanced. Additionally, the side 
each puppet was presented on (left/right) was randomized.  

 

 
Figure 1: Procedure of both experiments. In Experiment 1 
both puppets succeeded in activating the toy. In Experiment 
2, both failed. Crucially, one agent’s actions were always 
consistent with his prior experience (pressing the red 

button); the other agent’s were not (he pressed one of the 
black buttons). 

Results and Discussion 
Two coders who were not involved in data collection 
determined exclusions. The first coder determined whether 
the experiment had been run correctly, blind to children’s 
final answers. The second coder coded only children’s 
answers, unaware of each puppet’s role (that is, whether he 
demonstrated the consistent or inconsistent toy). 22 
participants were excluded and replaced (see Participants).  

Overall, of 58.3% of children judged that the agent who 
pressed the black button (and acted inconsistently with his 
prior experience) was more likely to have had additional 
knowledge. This proportion is not reliably different from 
chance (42 of 72; 95% CI: 47.2 – 69.4). However, a logistic 
regression predicting performance based on age revealed a 
significant age difference (β = 0.87, p = .006). While only 
37.5% of four-year-olds judged that the agent who activated 
the inconsistent toy had prior knowledge (9 of 24; 95% CI: 
16.67 - 58.33), 66.6% of five-year-olds (16 of 24; 95% CI: 
50 – 87.5) and 70.8% of six-year-olds (17 of 24; 95% CI: 
54.17 - 87.5) selected this agent. And consistent with five- 
and six-year-olds’ success, a logistic regression predicting 
performance based on age also predicts that children will be 
more likely to answer the test question correctly (as opposed 
to incorrectly) by 5.04 years of age. 

These results suggest that children do not simply expect 
ignorant agents to act successfully or unsuccessfully. 
Rather, by age five, children seem to expect ignorant agents 
to act reasonably, applying their prior knowledge in novel 
situations. This is consistent with prior findings that 
children do not think ignorance means having a false belief 
(Friedman & Petrashek, 2009; Jara-Ettinger, Floyd, 
Tenenbaum, & Schulz, 2017). If children assumed that 
ignorant agents should fail due to a false belief, then 
participants should have judged that both agents were 
equally knowledgeable (since both were successful). Our 
results suggest that by age five, children make principled 
belief inferences from agents’ behavior. Specifically, 
children expect both knowledgeable and ignorant agents to 
act consistently with their prior knowledge, and they use 
these expectations to infer what other people know. 

Note, however, that children were only ever taught how 
the training toy worked. If children (reasonably) assumed all 
the toys worked in the same way, they may have been 
surprised to see a puppet activate the inconsistent toy. 
Perhaps children attributed greater knowledge to this agent 
not because his actions were inconsistent with his prior 
knowledge, but because the actions (and their outcome) 
were inconsistent with children’s own beliefs. In other 
words, children might simply attribute knowledge to agents 
who teach them something new, or show them something 
unexpected. We test this possibility in Experiment 2.  
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Experiment 2 
Participants in Experiment 1 learned only how the first 
(training) toy worked. If participants attributed greater 
knowledge to the inconsistent actor because he taught them 
something new or unexpected, teaching children how all the 
toys work should cause performance to fall to chance 
because, now, neither agent can provide any novel 
information.  

To address this, Experiment 2 differs in three substantial 
ways. First, we taught participants how all the toys worked. 
To reduce concerns about memory load, we used only two 
machines in this task: the training toy, and the inconsistent 
toy. Second, when trying to activate the novel toy, both 
puppets failed. One puppet pressed the red button 
(consistent with his prior experience), and one pressed the 
incorrect black button (inconsistent with his prior 
experience). Finally, we emphasized throughout that one of 
the puppets knew more, but not all, about the toy, making it 
plausible that both puppets could fail. Together, these 
changes allow us to test whether children attribute greater 
prior knowledge to agents whose actions are not explained 
by their prior experience, even when the agent fails to 
achieve their goal. 

Method 
Participants 72 four-, five- and six-year-olds (mean age: 
5.56 years, range: 3.99 – 6.92 years; n = 24 participants per 
age group) were recruited at a local children’s museum. 26 
participants were excluded from analyses and replaced 
because: they did not pass the pre-registered inclusion 
questions (n = 13), due to experimenter error (n = 5), 
interruptions or interference with the procedure (n = 3), 
because the participant did not answer the test question 
within 30s (n = 3), because the participant had already 
participated in the past (n = 1), or due to developmental 
delays (n = 1). 
 
Stimuli Materials were identical to those of Experiment 1, 
except that now only two machines were used: the training 
toy, and the inconsistent toy.  
 
Procedure Experiment 2 began identically to Experiment 1. 
Participants and then puppets were familiarized with the 
training toy. Next, after placing the puppets underneath the 
table, the experimenter produced the additional 
(inconsistent) toy. In contrast to Experiment 1, the 
experimenter told participants that this toy was “a little bit 
different.” She explained that the red button did not activate 
this toy, and that only one of the black buttons (the correct 
black button) made the toy play music. She demonstrated all 
of the buttons, and then allowed the participant to press each 
button. Thus, participants were explicitly taught how the 
toys worked, and experienced for themselves that the toys 
worked differently. 

Next, both puppets returned. The experimenter explained 
that one of the puppets had seen the toy before, and knew a 
little bit about it. And she explained that the other puppet 

had never seen the toy before. The experimenter noted that 
one of the puppets knew more about the toy, but she didn’t 
know which one. The participant’s task was to help the 
experimenter identify which puppet knew more about the 
toy.  

Each puppet was asked to make the toy go in turn. During 
each puppet’s turn, the other agent was placed underneath 
the table. One puppet’s actions were consistent with his 
prior knowledge, saying, “Hmm. Well, the red button made 
this [original] toy go, so the red button makes this toy go 
too,” pointing to the two relevant buttons as he spoke. He 
pressed the red button. The button did not activate the toy, 
and the puppet exclaimed “oh!” in surprise when nothing 
happened. The other puppet’s actions were inconsistent with 
his prior knowledge, saying, “Hmm. Well, the red button 
made this [original] toy go, but this black button makes this 
toy go,” pointing to the two relevant buttons as he spoke. He 
pressed the incorrect black button. The button also did not 
activate the toy, and the puppet exclaimed “oh!” in surprise 
when nothing happened. 

After each puppet pressed a button, the experimenter 
asked the test question: “[Child name], remember how I told 
you that one of my friends knows more about this toy? Can 
you tell me, which friend knows more?” Participants were 
asked to explain their answer. The inclusion questions were 
asked last, with children asked to match each puppet to the 
button he had pressed on the novel (inconsistent) toy: 
“[Child name], can you remind me, which one of my friends 
pressed this button [both puppets point to one button]? And 
which one of my friends pressed this button [both puppets 
point to the other button]?”  

The identity of the puppet whose turn was first, and the 
button this agent pressed was always counterbalanced. 
Additionally, the side each puppet was presented on 
(left/right) was randomized. 

Results and Discussion 
Results were coded as in Experiment 1, with 26 participants 
excluded and replaced (see Participants). Overall, 61.1% of 
participants attributed knowledge to the puppet who pressed 
the black button, a proportion reliably higher than chance 
(44 of 72; 95% CI: 50 - 72.2). A logistic regression 
predicting performance based on age did not reveal a 
significant age difference (β = 0.42, p = .14). But while 
participants in all age groups preferred to attribute 
knowledge to the agent whose actions were inconsistent 
with his prior experience, only six-year-olds’ preferences 
were robust. While 70.8% of six-year-olds judged that the 
agent who pressed the black button was more 
knowledgeable (17 of 24; 95% CI: 54.17 - 87.5), only 54% 
of four-year-olds (13 of 24; 95% CI: 33.33 - 75) and 58% of 
five-year-olds (14 of 24; 95% CI: 37.5 - 79.17) also made 
this judgment. In sum, although no age difference was 
obtained, only six-year-olds reliably judged that the agent 
whose failure was inconsistent with his prior experience had 
greater knowledge. 
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These findings suggest that children do not simply 
attribute knowledge to agents who show them something 
new. If they did, they should have performed at chance, as 
neither puppet taught children anything new. Instead, our 
results suggest that, by age six, children not only expect 
ignorant agents to act based on their prior knowledge, but 
also understand that knowledge runs along a continuum: 
agents can know more or less about any given topic. Thus, 
by age six, children attribute more knowledge to agents 
whose prior experience cannot explain their actions, even 
when these actions fail to fulfill their goal. 

Experiment 1: 
Who Knows?

Experiment 2: 
Who Knows More?
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Figure 2: Results from both experiments. The error bars are 
bootstrapped 95% confidence intervals, and the dotted line 
indicates chance performance (50%). In Experiment 1, five- 
and six-year-olds judged that an agent whose success could 
not be explained by his prior experience had additional 
knowledge. In Experiment 2, six-year-olds judged that an 
agent whose failure could not be explained by his prior 
experience had additional (albeit incomplete) knowledge. 

General Discussion 
To successfully interact with others, we must understand 

what they know and believe, what they feel, and what they 
want. Children understand the link between mind and 
behavior early in life, inferring goals (Csibra, Gergely, Bíró, 
Koós & Brockbank, 1999; Jara-Ettinger, Gweon, Schulz & 
Tenebaum, 2016), beliefs (Onishi & Baillargeon, 2005; 
Rubio-Fernandez & Geurts, 2013) and desires (Doan, 
Denison, Lucas & Gopnik, 2015; Repacholi & Gopnik, 
1997) from others’ actions. Yet, while much work has 
shown that even young children have expectation about how 
knowledgeable agents should behave (Surian, Caldi & 
Sperber, 2007), less work has investigated whether children 
understand how ignorant agents might apply their prior 
knowledge to new situations. 

Here we found that preschoolers expect ignorant agents to 
act based on their prior knowledge. When agents’ past 
experience cannot explain their actions, children infer that 

these agents must have additional knowledge. In 
Experiment 1, five- and six-year-olds (but not four-year-
olds) judged that an agent whose observable past experience 
could not explain his successful actions must’ve had 
additional knowledge. In Experiment 2, four- to six-year-
olds (but only six-year-olds reliably) judged that an agent 
whose observable past experience could not explain his 
failure must’ve had some (incomplete) additional 
knowledge. 

Our results show that, by age five, children expect past 
experiences to shape agents’ beliefs and guide their actions 
in new situations. These results are consistent with related 
work, which suggests that children do not reliably link 
ignorance to specific outcomes (Friedman & Petrashek, 
2009; German & Leslie, 2001; Ruffman, 1996).  

These findings also suggest several broader implications. 
First, while we often talk about “knowing” or “not 
knowing,” knowledge is not binary. People are rarely 
completely ignorant or completely knowledgeable. More 
frequently, knowledge lies along a continuum. In 
Experiment 2, six-year-olds succeeded in identifying which 
of two agents knew more, even when both agents were 
wrong. If children believe that agents can only be fully 
knowledgeable or fully ignorant, they may not have 
attributed even partial knowledge in this case (perhaps 
judging that any agent who is wrong is equally ignorant). 
The results of this experiment suggest that, by age six, 
children represent knowledge and ignorance as two poles of 
the epistemic continuum, leveraging their expectations 
about how prior experience should affect agents’ actions to 
infer the extent of their knowledge. 

Second, these findings provide insight into the 
development of children’s epistemic inferences. While prior 
work has thoroughly investigated young children’s ability to 
represent others’ beliefs (e.g., Onishi & Baillargeon, 2005; 
Wellman et al., 2001), less research has investigated how 
children infer belief from action. In our tasks, children had 
to infer agents’ beliefs from their actions. This required 
understanding that each agent pressed the button they 
believed would make the toy go, and considering what role 
their past experiences played in shaping these beliefs. Past 
work suggests that children infer knowledge from action via 
a naïve theory of knowledge: a set of expectations about 
how ignorant and/or knowledgeable agents should act 
(Aboody, Huey, & Jara-Ettinger, 2018). Our results are 
consistent with this account, demonstrating that across 
varied contexts, children can infer what others know or 
believe by observing their actions.   

Our results also open avenues for future work. First, 
Experiment 2 shows that children do not simply attribute 
knowledge to agents who show them something new or 
surprising. However, other simple rules may explain 
participants’ performance. For example, children may 
expect ignorant agents to act the same way they’ve acted in 
the past, without representing their knowledge or beliefs. In 
our studies, specifically, children may have solved the task 
by matching agents’ current actions to their prior acts, 
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licensing knowledge any time these acts were inconsistent. 
Future work can address this possibility by providing agents 
with knowledge, but not experience (e.g., by telling the 
puppets in Experiment 1 how the toy works but not allowing 
them to try it for themselves).  

A second possibility is that children expect ignorant 
agents to try whatever is most reasonable, not in the context 
of agents’ knowledge, but in the context of what children 
themselves think is reasonable. For example, children in our 
task could have assumed that the red button was the most 
obvious thing to try (regardless of agents’ past experiences), 
and attributed prior knowledge to any agent who rejected 
this obvious solution. While it is unclear whether children in 
fact find the red button to be the obvious solution in this 
task, future work can address this possibility by reversing 
Experiment 1, and introducing children to a training toy that 
works the same as the inconsistent toy. If children now 
attribute greater knowledge to the agent who presses the 
(more visually salient) red button, this would show that 
children do not just think that ignorance means trying the 
most perceptually obvious answer. 

Third, in both experiments, puppets’ actions differed, but 
so did their explanations of their actions. Namely, one agent 
said: “Hmm. Well, the red button made this [original] toy 
go, so the red button makes this toy go too,” and the other 
said, “Hmm. Well, the red button made this [original] toy 
go, but this black button makes this toy go.” Although only 
two words differed between explanations, it is possible that 
this could explain children’s epistemic attributions in our 
task. Note, however, that this would be consistent with our 
account, showing that children attribute knowledge to those 
who explicitly reject past experience. In addition, if the 
linguistic cue guides children’s inferences, this would be 
interesting in its own right—the difference between “so too” 
and “but” is subtle, and to our knowledge, little work has 
investigated how such words affect children’s belief 
inferences. To identify whether these explanations were 
critical to children’s inferences, future work will leave them 
out. If children make the same judgments, this would 
provide evidence that performance in this task did not hinge 
upon puppets’ explanations.  

Fourth, in Experiment 2, it is possible that children did 
not think both puppets were equally wrong. Conceptually, 
the puppet who pressed the black button may have been 
closer to being right (since he knew that one of the black 
buttons made the toy go). It is possible that children didn’t 
consider whether agents’ prior knowledge explained their 
actions, and instead simply attributed greater knowledge to 
the agent who was closer to being correct. While possible, 
this account does not explain children’s success in 
Experiment 1. Furthermore, it is unclear how to 
operationalize what it means to be “closer” to being right in 
Experiment 2: while one agent was conceptually closer 
(pressing a black button), the other was physically closer 
(pressing the red button, which was right next to the correct 
black button). It is unclear how the magnitude of agents’ 
errors may have guided children’s inferences in the current 

task, but future work should investigate how this factor 
affects children’s epistemic judgments.  

Last, across both experiments, children’s preferences 
strengthened with age (significantly in Experiment 1, and 
non-significantly in Experiment 2). Four-year-olds’ failures 
in both experiments are consistent with prior work, which 
suggests that the ability to infer knowledge from behavior 
continues to develop between the ages of four and five 
(Aboody, Huey & Jara-Ettinger, 2018). But while five-year-
olds succeeded in Experiment 1, they were not reliably 
above chance in Experiment 2. Why might this be?  

One possibility is that identifying a completely 
knowledgeable agent (Experiment 1) is easier than judging 
which agent has greater (but still incomplete) knowledge 
(Experiment 2). Furthermore, given that children may 
equate accuracy with knowledge (Brosseau-Liard & Birch, 
2010; Ronfard & Corriveau, 2016), it might be harder for 
them to attribute knowledge in the face of a failure.  

It is also possible that five-year-olds do attribute 
knowledge based on a rule (for example, attributing 
knowledge to agents who act in a surprising way). This 
could explain their weaker performance in Experiment 2, 
although it is unclear why four-year-olds would not have 
followed the same rule (which would have led to success in 
Experiment 1). It is possible that four-year-olds have no rule 
for inferring belief from knowledge, five-year-olds depend 
on a rule (e.g., knowledge = rejecting the obvious), and six-
year-olds have a deeper understanding of how prior 
knowledge shapes beliefs. Finally, it is always possible that 
task demands affected children’s performance, although this 
would fail to explain the difference in five-year-olds’ 
performance across the two studies. Future work will 
address these possibilities to further clarify how children’s 
epistemic intuitions emerge and develop.   

In sum, across two experiments, we find evidence that 
young children have expectations for how prior knowledge 
is likely to shape people’s beliefs and guide their behavior. 
We find that children use these expectations to infer what 
others know (or don’t know) from their actions and that, by 
age five, children do not expect ignorant agents to act as 
blank slates; rather, they expect ignorant agents to leverage 
relevant prior knowledge when planning their actions. 
Altogether, our findings suggest that even young children 
may understand how ignorance begets belief and action.  
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Abstract 

Early mathematics skills are an important predictor of later 
academic, economic and personal success. Children born 
preterm, about 10% of the US population, have an increased 
risk of deficits in mathematics. These deficits may be related 
to lower levels of executive functions and processing speed. 
We investigated the development of mathematics skills, 
working memory, inhibitory control and processing speed of 
healthy children born very preterm (between 25 and 32 weeks 
gestational age, n=51) and full-term (n=29). Children were 
tested annually from ages 5 to 7 years. We found persistent 
lower overall mathematics skills in the preterm group, driven 
by differences in more informal skills (e.g. counting) at earlier 
time points, and by differences in more formal skills (e.g. 
calculation) at later time points. We did not find significant 
differences between preterm and full-term born children in 
spatial working memory capacity or processing speed. 
However, these cognitive measures were significant 
predictors of mathematics skills in the preterm but not the 
full-term group, hinting towards the use of different strategies 
when solving problems.  

Keywords: Early Mathematics; Executive Functions; 
Cognitive Development; Preterm Birth; longitudinal;  

Introduction 
Mathematics skills are beneficial for success in life. Early 
mathematics skills at school-entry are predictive of later 
academic achievement (Duncan et al., 2007; Geary, Hoard, 
Nugent, & Bailey, 2013), and socioeconomic status (Ritchie 
& Bates, 2013). 

Very preterm birth (before 33 weeks of gestation) has a 
negative effect on academic achievement in general 
(Johnson, Wolke, Hennessy, & Marlow, 2011), and 
mathematical ability in particular (Akshoomoff et al., 2017; 
Taylor, Espy, & Anderson, 2009). Every year about 15 
million children are born preterm, with preterm birth rates 
ranging from 5-18% (Liu et al., 2016). Recent studies on the 
effects of preterm birth often examine children born 
extremely preterm (<28 weeks) and/or with very low birth 
weight (<1500g). However, these individuals make up a 
small proportion of the preterm born population. 
Furthermore, with medical advances, severe complications 
of preterm birth can be treated, and the rates of preterm born 
children without severe neurodevelopmental disorders have 
increased. Yet even in otherwise healthy children, preterm 

birth is associated with long-term cognitive consequences 
such as developmental and learning problems (Anderson, 
2014). 

Mathematical ability is related to executive functions and 
processing speed in typically developing children (Geary, 
2011; Purpura, Schmitt, & Ganley, 2017). The core 
executive functions are working memory, inhibitory control 
and shifting (Miyake, Friedman, Emerson, Witzki, & 
Howerter, 2000). These cognitive skills are affected by 
preterm birth (Aarnoudse-Moens, Duivenvoorden, 
Weisglas-Kuperus, Van Goudoever, & Oosterlaan, 2012) 
and are likely to be related to mathematics deficits.  Rose, 
Feldman, and Jankowski (2011) showed that differences in 
math and reading skills of 11 year old full-term and preterm 
children can be explained through preterm deficits in 
executive function and processing speed. They argue for a 
cascade of effects: preterm birth leading to lower processing 
speed, leading to lower executive functions, leading to 
lower math and reading scores. It is unknown when this 
cascade of effects begins and how processing speed, 
executive functions, and mathematics achievement are 
connected during early childhood. 

While we know that preterm birth affects processing 
speed and executive functions, and that children born 
preterm exhibit deficits in mathematics achievement, to our 
knowledge no study has investigated these components 
longitudinally in preterm born children during childhood. 

The Present Study 
The present study examines how mathematics ability 
develops and how it is related to other neuropsychological 
functions following preterm birth. The children in this study 
were born between 25 and 32 weeks gestational age. They 
are considered healthy and do not suffer from any severe 
medical conditions or neurodevelopmental disorders. 
However, they make up about 2% of the general population 
in the US and are thus an important group to study. This 
longitudinal comprehensive study allows controlling for 
individual differences and will give insight into the 
development of the interplay of processing speed, executive 
functions, motor skills and mathematics ability. 
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Methods 

Participants 
Participants were preterm and full-term children who were 
tested at three time points, each about a year apart. First 
testing was performed within six months of starting 
kindergarten, at a mean age of 5.3 years (SD: 0.38). Mean 
age for the following two time points was 6.4 (SD: 0.37) 
and 7.3 (SD: 0.35), respectively. A total of 51 preterm and 
29 full-term children completed the mathematics, working 
memory, and inhibition tests at all three time points. Not all 
of these children completed the other cognitive and 
behavioral measures; sample size for each of the subtests is 
stated below.  

The preterm sample was primarily recruited from the UC 
San Diego High-Risk Infant Follow Up Clinic. Inclusion 
criteria was gestational age at birth of <33 weeks. Out of the 
51 children in the preterm group, 10 children were born <28 
weeks gestational age, and 41 children between 28 and 32 
weeks gestational age. We did not find a correlation 
between gestational age at birth and mathematics 
performance within the preterm group, therefore the 
children were not further divided into subgroups. In the 
following the term preterm includes both the extremely and 
very preterm born children of this study. 

 Exclusion criteria from the preterm sample were a history 
of severe brain injury (e.g., cystic periventricular 
leukomalacia), disability (e.g., bilateral deafness or 
blindness), genetic abnormalities likely to affect 
development, and acquired neurological disorder unrelated 
to preterm birth.  

Inclusion criteria for the full-term sample was gestational 
age at birth of >38 weeks and no history of neurological, 
psychiatric, or developmental disorders. All participants had 
a score of 80 or higher on the Verbal Comprehension Index 
of the Wechsler Preschool and Primary Scale of Intelligence 
(WPPSI-IV) to insure comprehension of tasks (Wechsler, 
2012).  

Participant characteristics are summarized in Table 1. A 
social economic status (SES) score was calculated as the 
sum of rank in maternal education and household income. 
Maternal education was ranked as 1: high school, 2: 1-3 
years of college, 3: four year college, 4: professional/ post-
graduate degree. Household income was ranked as 1: less 
than $50,000, 2: $50,000 - $99,999, 3: $100,000 - $199,999, 
4: $200,000 and above. 

By definition, the preterm and full-term group differed in 
gestational age at birth (F=693.86, p<0.0005) and birth 
weight (F=338.96, p<0.0005). They were not significantly 
different in terms of gender composition, household income 
or socioeconomic status (SES) composite. Maternal 
education was significantly higher in full-term compared to 
preterm children (F=4.74, p=0.033). They did not differ in 
age at any testing time. 

 

Table 1: Participants characteristics. GA: gestational age, 
SES: socioeconomic status  

 

 
Preterm (n=51) Full-term (n=29) 

GA at birth (weeks):  
mean (min-max) 29.5 (25-32) 39.7 (38-41) 

Birth weight (g):  
mean (min-max) 

  1328 
   (680-2410) 

  3411 
   (2353-4422) 

Gender (% female)    47.1    48.3 

SES composite:  
mean (min-max) 
Maternal education 
    High school 
    1-3 years college 
    College graduate 
    Professional   
Household income 
    Less than $50,000 
    $ 50,000 - $99,999 
    $100,000 - $199,999 
    $200,000 and above 

5.0 (2-8) 
 

2.47 (1-4) 
13.7% 
35.3% 
41.2% 
9.8% 

2.52 (1-4) 
15.7% 
31.4% 
35.3% 
15.7% 

5.43 (2-8) 
 

2.93 (1-4) 
10.3% 
20.7% 
34.5% 
34.5% 

2.50 (1-4) 
3.4% 

44.8% 
44.8% 
3.4% 

Cognitive and Behavioral Measures 
Measures of mathematics ability, working memory, 
inhibitory control, processing speed, and motor skills, were 
examined. A number of tasks were drawn from the 
Cambridge Neuropsychological Testing Automated Battery 
(CANTAB). These tasks are well established and 
standardized computerized non-verbal tasks, administered 
on a touch screen. They are suitable for children 4 years of 
age and older. In addition, a more challenging task was 
administered that can be thought of as a composite measure 
of executive functions and motor skills, the Head Toes 
Knees Shoulders (HTKS) Task. To be able to parse apart the 
effect of motor function on HTKS performance, the 
Movement Assessment Battery for Children (MABC-2) was 
administered.  
 
Mathematics Ability was assessed via the Test for Early 
Mathematics Ability, Third Edition (TEMA-3, Ginsburg & 
Baroody, 2003). It is designed for children between 3:0-8:11 
years of age. It comprises up to 72 items. The items can also 
be broadly categorized into informal and formal 
mathematics, and more specifically into seven 
subcategories: Verbal Counting, Counting Objects, 
Numerical Comparison, Numeral Literacy, Set 
Construction, Calculation, and Number Facts (Ryoo, et al. 
2015). Measure of overall performance is the TEMA-3 total 
(raw) score. 
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Spatial Working Memory was assessed via the CANTAB 
Spatial Working Memory (SWM) task. The participant’s 
task is to find a token that is hidden under one of several 
colored boxes. Once found, the token is hidden again, but 
not under the same box twice. Thus the participant has to 
remember where the tokens were previously found. The 
number of trials is gradually increased up to eight boxes. 
Working memory is measured inversely based on the 
number of errors made (searching under the same box 
multiple times). 
 
Inhibitory Control was assessed via the CANTAB Stop 
Signal Task (SST). The participant has to choose between 
pressing one of two buttons depending on where an arrow 
points. If they hear an auditory signal when the arrow 
appears, the participant has to withhold their response and 
not press the button. Performance is measured via the stop 
signal reaction time in the second half of the task, were poor 
performance is reflected in longer reaction times. 
 
Processing Speed was assessed via the CANTAB Reaction 
Time Task (RTI). The participant holds a button at the 
bottom of the touch screen. Above the button are five 
circles. Once a yellow dot appears in one of the circles, the 
participant releases the button at the bottom and taps the 
circle with the dot. Performance is measured via median 
response time of pressing the circle in which the yellow dot 
appeared. 10 preterm children from the full sample did not 
complete the RTI, resulting in a sample size of 41 preterm 
and 29 full-term children. 
 
The Head Toes Knees Shoulders (HTKS) Task can be 
seen as a composite measure of executive function and 
motor skills (Ponitz et al., 2008). It has three rounds: In the 
first round the participant has to touch their toes when the 
examiner says to touch their head and vice versa. In the 
second round the participant has to touch their knees 
whenever the examiner says to touch their shoulders and 
vice versa. The third round includes all four body parts and 
requires remapping of the previously learned instructions. 
This task requires working memory, as the participant has to 
keep in mind which body part to touch instead of the one the 
examiner said; inhibitory control, as the participant has to 
keep themselves from plainly following the instruction, 
shifting, as the instructions change; and motor control. The 
task was added while the study was already ongoing, 
leading to a relatively small sample of 33 preterm and 13 
full-term children who were assessed at all three time 
points. 
 
Motor Skills were assessed using the Movement 
Assessment Battery for Children-2 (MABC-2; Henderson, 
Sugden, & Barnett, 2007). It tests manual dexterity, aiming 
& catching, and balance. The total test scores were used to 
compare motor skills. In this analysis, the MABC-2 is used 
to disentangle wheather performance differences in the 

HTKS are due to differences in motor or executive function. 
Thus the MABC-2 was examined on the same sample as the 
HTKS. It was administered at time point 1 and 3 only.  

Results 

Executive Functions, Processing Speed & Motor 
Skills 
Group differences in cognitive and behavioral measures 
other than mathematics ability are summarized in Table 2. 
Spatial working memory scores did not differ significantly 
between preterm and full-term children at any time point. 
The stop signal reaction time in the SST was significantly 
longer in the preterm group at time 1 and 2, and approached 
significance at time 3. A longer reaction time indicates more 
difficulty with inhibitory control. Processing speed as 
measured via reaction time in the RTI did not differ 
significantly between groups in the 5 choice version of the 
RTI. Performance on HTKS was significantly lower in 
preterm children at all three time points. Preterm children 
also scored significantly lower on MABC-2 at the two time 
points in which motor function was measured.  

Correlation analysis between performance on these 
cognitive and behavioral tasks controlled for time point, 
SES, and group revealed that performance on HTKS was 
correlated with errors on the SWM (r=-0.204, p=0.035), 
SST reaction time (r=-0.202, p=0.036), and reaction time on 
RTI (r=-0.313, p=0.001). Importantly, HTKS and MABC-2 
total scores were not correlated (r=0.097, p=0.317). Thus 
differences in HTKS reflect differences between 
participants other than motor function. 

 
Table 2: Group differences in performance on the spatial 
working memory (SWM), the stop signal task (SST), the 
reaction time task (RTI), the Head Toes Knees Shoulders 
(HTKS) task, and the Movement Assessment Battery for 
Children-2 (MABC-2) as measured via ANOVA. ° no 
significant difference, ↑ sign. longer in the preterm group, ↓ 
sign. lower in preterm group.  n.d.: no data. 

 
 

Task 
Time point 1 

        F (p) 

Time point 2 

       F (p) 

Time point 3 

       F (p) 

SWM ° 
0.507 

(0.478) ° 
3.374 

(0.070) ° 
0.218 

(0.642) 

SST ↑ 
4.627 

(0.035) ↑ 
6.503 

(0.013) ° 
3.328 

(0.072) 

RTI  ° 
0.302 

(0.585) ° 
2.128 

(0.149) ° 
1.205 

(0.276) 

HTKS ↓ 
7.648 

(0.008) ↓ 
8.628 

(0.005) ↓ 
4.685 

(0.008) 

MABC-2 ↓ 
14.303 

(<0.0005) 
 n.d. ↓ 

24.092 
(<0.0005) 
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Mathematics Skills 
Preterm born children had lower TEMA-3 total scores 
compared to full-term born children on all three time points. 
The difference decreased from time 1 to 2, and increased 
again at time 3 (figure 1, table 3). Categorization of TEMA-
3 test items into subcategories according to Ryoo et al. 
(2015) revealed that differences between preterm and full-
term children did not share a common developmental 
pattern. Verbal Counting, a more informal skill showed 
group differences at age 5 and 6 that diminished at age 7 
(figure 2). Similarly, other skills such as Numerical 
Comparison and Counting Objects showed a narrowing of 
the performance gap between preterm and full-term born 
children between time point 1 and 3. In contrast, at age 5, 
preterm children did not score significantly lower on items 
testing for Set Construction, a more formal, skill. Over time, 
the a deficit emerged such that preterm born children scored 
about 15 percent points below full-term children at age 7.  
Differences in Calculation skills were present at all time 
points. Notably, the differences show a high increase over 
time, with about twice the effect size at time point 3, 
compared to 1 and 2. Performance of both groups on 
Number Facts was a floor at time point 1, and at time point 
2, preterm and full-term children did not score significantly 
differently. However, by time point 3, large differences 
emerged, with lower scores in the preterm sample. 

In the following Verbal Counting and Calculation skills, 
as well as the overall TEMA-3 performance are analyzed in 
more detail. These skills were chosen as they exemplify the 
differential trajectories of informal and formal skills. 

 

 
Figure 1: Standardized mathematics ability score of preterm 
and full-term group. The preterm group has a lower score at 
all three time points. * p < 0.05, ** p < 0.01. 
 
Repeated measures ANOVAs showed a significant 
interaction of time and group for Verbal Counting (F=4.234, 
p=0.016, η2=0.051) and Calculation (F=7.079, p=0.001, 
η2=0.083). TEMA-3 total score showed a significant effect 
of time and group, but not their interaction (F=1.272, 
p=0.283, η2=0.016). A three-way ANOVA with time and 
skill (Verbal Counting/Calculation) as within subject 
repeated measures and group as between subjects factor 
revealed a significant interaction between time, skill, and 
group (F=11.191, p<0.005, η2=0.125).  
 

 Time point 1 Time point 2 Time point 3 
 Full-term Preterm  Full-term Preterm  Full-term Preterm  
Skill M (SD) M (SD) F (p) M (SD) M (SD) F (p) M (SD) M (SD) F (p) 

Total score 
38.75 

(15.89) 
29.36 

(12.30) 
8.689 

(0.004) 
55.36 

(12.26) 
48.37 

(13.57) 
5.265 

(0.024) 
75.19 

(16.92) 
63.56 

(11.76) 
13.065 
(0.001) 

Verbal 
Counting 

50.49 
(26.72) 

34.87 
(20.24) 

8.693 
(0.004) 

75.86 
(18.05) 

63.03 
(19.68) 

8.343 
(0.005) 

86.95 
(13.51) 

83.19 
(11.32) 

1.763 
(0.188) 

Counting 
Objects 

77.34 
(19.66) 

64.99 
(14.37) 

10.403 
(0.002) 

89.66 
(12.01) 

85.99 
(12.61) 

1.611 
(0.208) 

97.04 
(5.89) 

92.16 
(10.81) 

5.056 
(0.027) 

Numerical 
Comparison 

37.55 
(16.38) 

27.67 
(15.46) 

7.234 
(0.009) 

51.72 
(8.54) 

43.33 
(13.34) 

9.186 
(0.003) 

60.92 
(12.46) 

54.68 
(10.15) 

5.904 
(0.017) 

Numeral 
Literacy 

40.95 
(24.07) 

24.26 
(16.09) 

13.765 
(<0.0005) 

66.81 
(19.27) 

58.82 
(18.42) 

3.361 
(0.071) 

86.64 
(14.15) 

75.98 
(13.66) 

10.971 
(0.001) 

Set 
Construction 

50.57 
(13.80) 

46.62 
(11.76) 

1.838 
(0.179) 

72.03 
(16.96) 

59.48 
(13.67) 

13.065 
(0.001) 

87.74 
(14.95) 

72.11 
(14.80) 

20.455 
(<0.0005) 

Calculation 
23.75 

(13.19) 
15.90 

(13.01) 
6.668 

(0.012) 
49.04 

(18.43) 
37.04 

(22.07) 
6.136 

(0.015) 
88.89 

(44.64) 
59.48 

(27.83) 
13.197 
(0.001) 

Number Facts Performance at floor  
10.73 

(15.57) 
5.66 

(16.24) 
1.852 

(0.177) 
49.43 

(31.23) 
23.53 

(23.59) 
17.544 

(<0.0005) 

Table 3: Summary of TEMA-3 overall performance (total score) and score of distinct skills as defined by Ryoo, et al. (2015). 
Scores presented as percentage of total possible score. M: mean, SD: standard deviation, group comparisons via ANOVA.    
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Effect of Executive Functions and Processing Speed 
on Mathematics Skills  
Linear models were used to determine which of the 
cognitive and behavioral measures are predictive of 
mathematics skills. As the sample size for HTKS is 
considerably smaller, two separate models were evaluated: 
Model 1 used SWM, SST and RTI as predictors, while 
model 2 used HTKS score as predictor (table 4). Time point, 
SES and gender were included in all models. Time point and 
SES were significant predictors for both groups, and gender 
was a significant predictor in the full-term but not the 
preterm group. 

In model 1, SWM and SST were predictive of Verbal 
Counting and Calculation in the preterm group. RTI was 
predictive of Verbal Counting but not Calculation. In 
contrast, SWM was not predictive in the full-term group for 
either skill, and SST was a significant predictor only for 
Verbal Counting. RTI did not significantly predict either 
skill. 

Model 1 was a better fit when predicting Verbal Counting 
(r2=0.6293) compared to Calculation skills (r2=0.4580) in 
the preterm group. Conversely, the model performed 
slightly better when predicting Calculation (r2=0.5743) 
compared to Verbal Counting (r2=0.5261) skills in full-term 
children.  

Model 2 showed that in both groups performance on 
HTKS was predictive of Verbal Counting, but not 
Calculation.  Consequently, it was a better fit when 
predicting Verbal Counting compared to Calculation skills. 

 
 
 
 

Table 4: Summary of linear models predicting Verbal 
Counting and Calculation Skills in full-term and preterm 
born children, respectively. Time point, SES and gender are 
included in all models. Model 1 additionally uses SWM, 
SST and RTI as predictors, model 2 uses HTKS. 
 
 Verbal Counting Calculation 

 Full-term Preterm Full-term Preterm 

Base Model – predictors: Time point, SES, gender 

Adj. r2 0.4974 0.5852 0.5275 0.4166 

Model 1 – n(preterm)=41, n(full-term)=29 

Adj. r2 0.5261 0.6293 0.5743 0.4580 

    Predictors: std. β coeff. (p) 

SWM -0.0259 
(0.2084) 

-0.0309 
(0.0137) 

-0.0376 
(0.0522) 

-0.0245 
(0.0190) 

SST -0.0080 
(0.0129) 

-0.0037 
(0.0309) 

-0.0043 
(0.1426) 

-0.0035 
(0.0155) 

RTI 0.0003 
(0.9025) 

-0.0036 
(0.0299) 

-0.0025 
(0.0844) 

-0.0009 
(0.5056) 

Model 2 – n(preterm)=33, n(full-term)=13 

Adj. r2 0.5549 0.6528 0.4942 0.4061 

    Predictors: std. β coeff. (p) 

HTKS 0.0570 
(0.0316) 

0.0559 
(0.0008) 

0.0473 
(0.1607) 

0.0233 
(0.1351) 

Figure 2: Development of Verbal Counting (left) and Calculation skills (right) as measured via the Test of Early Mathematics 
Ability – Third Edition (TEMA-3). Error bars: 95% confidence interval. * p < 0.05, ** p < 0.01, n.s.: p > 0.05  
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Discussion 
The present study examined the trajectories of specific 
mathematics skills and overall mathematics ability in 
preterm and full-term born children from before starting 
kindergarten to the end of first grade (age 5 to 7). Consistent 
with previous studies, we found lower overall mathematics 
score in the preterm born group at all time points. This 
observation by itself masks the fact that the differences 
between preterm and full-term group are not consistent over 
time. Importantly, one has to distinguish between the 
developmental trajectory of informal skills (e.g. Verbal 
Counting) and formal skills (e.g. Calculation).   

We found a deficit in Verbal Counting skills in preterm 
compared to full-term children at time point 1 and 2. 
However, by time point 3, there were no significant group 
differences. This type of developmental pattern signals an 
initial delay of Verbal Counting skills in preterm children, 
followed by catch up in skill level.  

In contrast, the difference in Calculation skills between 
preterm and full-term group increases over time. This is 
likely because more formal mathematics skills are 
commonly introduced in kindergarten, and rapidly develop 
with schooling. We predict that this deficit in the preterm 
group will persist over time, and possibly increase further. 
In line with this, mathematics deficits have been found in 
pre-teens (Akshoomoff et al., 2017; Rose et al., 2011), and 
teenagers (Litt et al., 2012) born preterm. The same applies 
for other aspects of formal mathematics, such as Set 
Construction and Number Facts.   

Differences in mathematics skills might be mediated to 
some extent by differences in other cognitive functions 
(Mulder, Pitchford, & Marlow, 2010). We examined 
measures of spatial working memory, inhibitory control, 
processing speed, and motor function. Interestingly, while 
there were no group differences in SWM, we found that it is 
predictive of both Verbal Counting and Calculation skill in 
preterm but not full-term children. Similarly, we did not 
find significant differences in processing speed between 
preterm and full-term children, and performance on RTI was 
predictive of Verbal Counting in the preterm group only. 
This may indicate that the two groups are employing 
different problem-solving strategies. Children born preterm 
may rely on different cognitive processes as they develop 
mathematics skills. 

Preterm compared to full-term children show significantly 
longer reaction times at the SST, an inverse measure of 
inhibitory control, at time point 1 and 2. While SST is 
predictive of Verbal Counting in both groups, it is predictive 
of Calculation in the preterm group only. This may be 
another hint towards more effortful task completion in the 
preterm born children, and potentially having to recruit 
inhibition skills to a greater extent than full-term children.  

The HTKS, a task requiring working memory, inhibitory 
control, shifting, and motor skills, revealed deficits of the 
preterm compared to the full term group at all time points. 

Since there was no correlation between performance on the 
HTKS and the MABC-2, it appears to reflect group 
differences in composite executive function ability that is 
not driven by the group differences in motor control.  

Performance on the HTKS has previously been shown to 
be predictive of academic achievement of typically 
developing children in kindergarten (McClelland et al., 
2014). Consistent with this, we found that HTKS scores 
were a significant predictor for Verbal Counting, but not 
Calculation for both groups. However, the number of 
participants who were administered the HTKS was smaller, 
and it remains to be examined if the results hold up with a 
larger sample size. 

Our study is an important contribution to the existing 
body of literature as it examines the crucial transition from 
preschool through the end of first grade, capturing the first 
formal instruction of mathematics in school. Further follow-
up of these children, and their formal mathematics skills in 
particular, would give valuable insight into the potential 
differences in developmental trajectory of preterm and full-
term born children from childhood through adolescence.  

It should be noted that this preterm group had no 
significant neonatal complications and was considered 
healthy. Nevertheless, we found deficits in mathematics 
skills, particularly in formal skills at age 7, that may be 
heralds of important inequalities later in life (Basten, Jaekel, 
Johnson, Gilmore, & Wolke, 2015). These differences are 
important to consider for parents and teachers of preterm 
born children, and for our society at large. 
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Abstract 

Understanding, predicting, and learning from other people’s 
actions are fundamental human social-cognitive skills. Little 
is known about how and when we consider other’s actions 
and outcomes when making our own decisions. We developed 
a novel task to study social influence in decision-making: the 
social multi-armed bandit task. This task assesses how people 
learn policies for optimal choices based on their own 
outcomes and another player's (observed) outcomes. The 
majority of participants integrated information gained through 
observation of their partner similarly as information gained 
through their own actions. This lead to a suboptimal decision-
making strategy. Interestingly, event-related potentials time-
locked to stimulus onset qualitatively similar but the 
amplitudes are attenuated in the solo compared to the dyadic 
version. This might indicate that arousal and attention after 
receiving a reward are sustained when a second agent is 
present but not when playing alone. 

Keywords: Decision-Making; Uncertainty; Multi-Armed 
Bandit; Social Interaction; Dyadic EEG 

Introduction 
For successful social interaction it is useful to represent and 
predict other people’s actions and the consequences of those 
actions. Joint action is defined as the ability to coordinate 
one’s actions with others to achieve a goal (Vesper et al., 
2016). Although it occurs in many sorts of human activities, 
it can be conveniently studied using the social or two-player 
versions of standardized cognitive tasks. Such tasks 
modified for social interactions can reveal complex dynamic 
in people's use of social information for judgments and 
action-planning. 

For example, the joint Simon task (Sebanz, Knoblich, & 
Prinz, 2003) is a modified, two-player version of the 
standard Simon task that measures stimulus-response 
compatibility. Participants learn to respond with left or right 
button press for visual or auditory cues and show a longer 
reaction times are shorter when the cue location is 
compatible with the response hand, than when the cue 
occurs contralaterally. This Simon effect (Simon, 1990), 
interestingly, remains in the two-player version in which 
each participant is only responsible for one stimulus-
response pair (Sebanz et al., 2003). This can be interpreted 
as evidence that human action planning is automatic and is 
elicited by processing another person's actions as well as 
planning and executing our own actions. The propensity to 
develop this ability might have evolved to enable efficient  

social learning (Kilner, Friston, & Frith, 2007; Liao, Acar, 
Makeig, & Deák, 2015). Particularly under conditions of 
uncertainty, the capacity to observe, encode, and imitate 
others' actions can be beneficial (Laland, 2004), permitting a 
sort of vicarious embodied modeling. 

However, it is not always adaptive to generalize from 
other’s actions and outcomes to one’s own. The findings 
from joint Simon and other tasks have shown that 
representation of other’s internal states occurs even when it 
is unnecessary, or disadvantageous, for optimal task 
completion. To study the extent to which people use 
observation of other’s actions and outcomes to influence 
their own choices, even when it is unfavorable, we 
developed a novel task: the social multi-armed bandit task. 
The standard multi-armed bandit is a single-player paradigm 
to study decision-making under uncertainty. Named after 
the ‘one-armed bandit’ slot machines of casinos that have a 
fixed reward probability, multi-armed bandit tasks present 
several different options (‘arms’) of different, unknown 
reward probabilities. They manifest a classic exploitation/ 
exploration problem (Cohen, McClure, & Yu; Gittins, 
Glazebrook, & Weber, 2011). Commonly, after an initial 
phase of exploration players employ one of two strategies: 
maximizing or matching. Maximizing, or consistently 
choosing the most-rewarding arm (based on prior 
observations), is the optimal strategy for problems with 
static reward probabilities. By contrast, matching, or 
choosing each arm in proportion to its relative reward 
probability, is suboptimal but nevertheless seen in humans 
and other animals (Sugrue, Corrado, & Newsome, 2004).  

Notably, although a great deal of problem solving and 
prediction updating occurs in social or joint tasks, only a 
few studies have included multiple decision-makers in 
social versions of prediction tasks such as multi-armed 
bandit, and even these have not investigated effects of social 
interaction or observation on decisions (Liu & Zhao, 2010). 

In addition to studying behavior, we recorded participants' 
electroencephalogram (EEG) and pupil size as physiological 
metrics of cortical and neuromodulatory concomitants of 
social decision-making. These bio-sensing methods may 
provide insights into the underlying neural dynamics of 
decision-making with high temporal resolution. Both of 
these physiological measures are common in affective 
computing (Partala, 2003) to measure valence and arousal, 
and cortical changes (Fink, 2009). 
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The present study 
The present study aims to address a “key question of today's 
cognitive science: how and to what extent do individuals 
mentally represent their own and others' actions, and how 
do these representations influence, shape, and constrain an 
individual's own behavior when interacting with others?” 
(Dolk et al., 2014).  

To do so, we converted a classic three-armed bandit 
paradigm into a turn taking game. Reward probabilities for 
the three arms were different for each of two participants, 
allowing us to estimate the distinct effects of their own and 
their partner's action and outcome history on their ongoing 
decision-making. We studied three outcome measures:  
(1) decision-making behavior, (2) event-related EEG 
potentials, and (3) pupil dilation. Details are described 
below.  

In the multi-player version, the probabilities remain 
constant for each player, however, they differ between the 
two players (see Table 1). This allows us to examine to what 
extent each participant takes into account their own and 
their partner's choices and outcomes. We expected to 
observe two different core strategies:  

Egocentric strategy: Participants might make their 
decisions only based on their own outcome history and 
ignore information from their partner's outcomes. Players 
using this strategy should converge on choosing their own 
highest gaining arm (90% reward probability) most of the 
time.  

Joint strategy: Participants might take into account 
information from their partner's outcomes to the same extent 
as information from their own outcomes. Players using this 
strategy should not converge on choosing one arm, because 
all arms average the same reward probability if both 
participants' outcomes are encoded equally. Alternately, in 
an intermediate strategy, participants might take into 
account their partner's outcomes but weigh them less than 
their own outcomes, and then more slowly converge on their 
own optimal choice. 
 
Table 1: Reward probabilities for the different arms of the 
social multi-armed bandit 
 

 Arm 1 Arm 2 Arm 3 
Player 1 30% 60% 90% 
Player 2 90% 60% 30% 

 
 

Experiment 1 

Participants 
Participants were 28 female undergraduate students (14 
dyads) recruited through the university’s SONA system. 
They received course credit for participation in addition to a 
small monetary reward based on performance in the social 
multi-armed bandit (0.05 USD per reward).  

One pair was excluded from EEG and eye-tracking 
analysis due to recording failure; another pair was excluded 
because one player chose the same arm on every trial. This 
left behavioral data from 26 participants, EEG data from 12 
participants, and pupillometry data from 12 participants. 

Experimental Design 
The (social) multi-armed bandit was described to 
participants as ‘the ice-fishing game’ and presented on a 
touchscreen. They were shown three ‘ice holes’ (arms) 
distinguished by shape, at approximately equal distances 
from each other (see Figure 2). The arms were associated 
with discrete and constant reward probabilities (30%, 60%, 
and 90%) unknown to the players. Upon choosing and 
touching a hole, participants heard and saw differential 
reward feedback. Participants had 100 trials each (200 total) 
to catch as many fish as possible, choosing one ice hole per 
trial. Each participant played the game once on their own 
(solo version) and once as a turn-taking game (dyadic 
version). For each dyad of participants, EEG and 
pupillometry data were collected from one player, and 
behavioral data were recorded from both. 
 

 

 
Figure 1: The game screen when a player has won a reward 
(green fish). The display shows the two players' 
accumulated rewards as well as which player's turn it is. 

 

 
Figure 2: Two participants playing the social multi-armed 
bandit. The player on the left is wearing an Emotiv EEG 
headset and PupilLabs eye-tracker. 
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Data Acquisition 
The game was presented on a table-mounted capacitive 
touch screen monitor (diagonal: 66cm). During the dyadic 
turn-taking game the participants sat facing each other 
(figure 2). An Emotiv headset (www.emotiv.com) recorded 
14-channel EEG data, and a PupilLabs headset (pupil-
labs.com/pupil/) captured pupillometry data. These sensors 
were chosen for participants' comfort and natural movement 
during a social interaction. EEG was sampled at 128 Hz, 
and the eye-facing camera sampled at 120 Hz. PupilLabs 
Software was used to detect the pupil in each frame and 
calculate its diameter. Lab Streaming Layer (LSL) (Kothe, 
2015) was used to synchronize all of the data streams (i.e. 
EEG, eye-gaze video, and game events) by time stamping 
each event and each sample.  

Synchronized EEG and pupillometry data were locked to 
participants' game choices in LSL-created XDF files so that 
behavioral and physiological data were epoched to trials. On 
each turn the 2 sec of data following the outcome stimulus 
presentation (win/loss) was used for further analysis. 

Data Analysis 
The first 20 trials of each game for each player were 
considered training trials, to teach the participant the game. 
These trials were not considered in the current analyses.  

 
Decision-Making Behavior Participants' ice hole choice 
patterns were analyzed via Kullback-Leibler divergence 
(KLD), a measure of relative entropy.  

𝐷!"(𝑝, 𝑞)   =    𝑝(𝑥!)
!

!!!

∗ 𝑙𝑜𝑔
𝑝(𝑥!)
𝑞(𝑥!)

 

This quantifies the divergence of one probability 
distribution to another one. In our experiment we use the 
KLD to measure the difference between a participant's 
observed choices, and expected choices according to 
potential strategies. We hypothesize the employment of four 
different strategies with the expected choice probabilities as 
summarized in Table 2. For the egocentric-maximizing 
strategy, the player chooses the highest gaining arm (arm 3) 
at every trial. In the egocentric-matching strategy, each arm 
is chosen in proportion to their reward probability. The 
joint-equal strategy assumes that the outcomes of both 
players are weighted equally, resulting in an apparent 
reward probability of 60% for each arm. In that case each 
arm is chosen ⅓ of the trials. The joint-social strategy 
assumes a social value of the arm that has an equal, 
relatively high reward probability for both of the players 
(arm 2) and is thus chosen most often.  

KLD of observed vs. expected probability distribution for 
each of the hypothesized strategies was calculated and 
compared to classify each participant's preferred strategy. 
As the joint strategy is not applicable in the single-player 
version, only the two egocentric strategies were compared. 
 
 

 
Table 2: Expected choice probabilities for player 1 for each 
of the four hypothesized strategies. Reward probabilities for  
 

Strategy of player 1 Arm 1 Arm 2 Arm 3 

Ego- 
centric 

maximizing 0% 0% 100% 

matching 16.7% 33.3% 50% 

Joint 

equal 33.3% 33.3% 33.3% 

social 0% 100% 0% 

 
 
 

Game Data The game data was an 8 x 200 matrix which 
included the turn number, player number, reward state, 
choice, time taken, player 1 reward and player 2 reward. In 
the single player case the last value was set as -1 and 
disregarded. 
 
EEG Data The EEG data was cleaned using EEGLAB’s 
Artifact Subspace Reconstruction (ASR) noise removal 
pipeline (Delorme, 2004; Mullen, 2013). Region of interest 
was the occipital cortex (channel O1). 

 
Eye-Tracking Data The current analyses only consider a 
single channel containing pupil diameter information. 
Samples with abnormally high or zero pupil diameter values 
(due to detection errors or eye blinks) were ignored and data 
was interpolated by adjacent values. 

After interpolating, the data was normalized to range 
between 0 and 1 to account for discrepancies in pupil 
diameter across subjects. 
 
Further Analysis Epochs for each trial containing the 
response and 2 seconds of subsequent data (including the 
reward outcome). Our goal was to illustrate the pupil 
dilation (indicating autonomic response) and cortical 
dynamics (focusing on updating responses) upon perceiving 
a reward stimulus after choosing a specific action. 

 Pupil and EEG data for each type of choice and reward 
combination were then averaged across all subjects. For 
EEG data, each channel was averaged independently, to 
facilitate Event Related Potential (ERP) analyses. The 0.2 
sec of data before the event were used as baseline for the 
normed succeeding EEG data, to control variance in EEG 
amplitude across subjects. 
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Results 
Decision-Making Behavior Over the course of the game, 
participants received information through trial and error and 
could learn that different arms were associated with 
different probabilities of receiving a reward. In the solo 
version, participants chose the highest gaining arm more 
often than the other two. Table 3 summarizes the decision-
making behavior via mean total scores and mean number of 
choices for each arm. Participants distributed their choices 
more equally and scored lower during the dyadic game.  

 
Table 3: Means (SD) of each decision type in the single- and 
multi-player games. All measures differ significantly 
between single and multi-player version (p<0.001). 
 

 
Reward 

probability 
30% 60% 90% 

No. of 
choices 
by game 
version 

single 7 
(5.0) 

17 
(10.3) 

56 
(13.4) 

multi 
18 

(9.1) 
32 

(15.1) 
30 

(19.5) 

 
Mean total score in the single-player game was 76 (SD: 7.0) 
compared to 63 (SD: 10.1) in the multi-player game 
(p<0.001).  

For each version, participants were categorized based on 
the strategy employed. For each strategy, KLD was 
calculated between the observed and the expected choices. 
70% (18/26) of participants employed a maximizing 
strategy in the solo version. In the dyadic version, strategies 
were more varied (see Figure 3). Most common was the 
joint-social strategy, used by 32% (9/28). There was no 
correlation between individuals' strategies in the solo and 
dyadic versions. 

Strategy use affected overall scores in the dyadic version 
(F=6.083, p=0.004) and had a marginally significant effect 
in the solo version (p=0.073). 

 
Brain Dynamics ERP locked to outcome stimuli for each of 
the differentially rewarding arms were compared between 
three conditions: (1) solo: a player’s responses in the solo 
version of the game, (2) dyad (self): a player’s responses to 
an outcome of their own action, and (3) dyad (other): a 
player’s responses to an outcome of the partner’s action. 

Figure 4 illustrates the findings. The ERP displayed a 
prominent positive potential around 300ms (P3) after dyadic 
self-reward events in the dyadic version, but not for 
partner’s reward or for reward in the solo game. We also 
note that the ERP response for partner’s rewards as well as 
for own-reward in the solo game is attenuated but follows 
the same profile as that of the self-reward condition. 
 
 

 
Figure 3: Distribution of strategies being employed by the 
participants in the single- and multi-player game, as 
determined via KLD. 
 

 
Figure 4: ERP after reward at arm 3 (90%/30%) averaged 
across participants from channel. Dyad (Self): player 
receives reward in dyadic version, Dyad (Other): player 
observes partner receive a reward in dyadic version, Solo: 
player receives a reward in solo version. 
 

 
Figure 5: Pupillometry data after reward at arm 3 
(90%/30%) averaged across participants from channel. 
Dyad (Self): player receives reward in dyadic version, Dyad 
(Other): player observes partner receive a reward in dyadic 
version, Solo: player receives a reward in solo version. 
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Pupillometry Pupil dilation significantly increases initially 
(Figure 5) when a reward is obtained for the player 
themselves when playing the social multi-armed bandit, but 
not in the single-player version and not when observing the 
partner receive a reward. After this initial response, we see 
that after 0.8 seconds of the reward onset, pupil diameter 
increases for the Dyad (Other) condition whereas it 
decreases for the self-reward one. 
 
Discussion 
The Social Multi-Armed Bandit revealed that adults take 
into account information from others’ when making 
decisions. In consistency with previous studies, the majority 
of participants employed maximizing strategy in the solo 
version of the task. With this novel paradigm we found that 
this is not the case when there is a second player present, 
and when the reward probabilities for the arms are not the 
same for the two players. Instead, more than half of the 
participants employed a ‘joint’-strategy, in which the 
actions and outcomes from the other player are integrated 
with their own when making decisions. One explanation for 
this phenomenon is a high prior belief of the same 
underlying probability structure for both players. This is 
likely the case because the visual representation remains 
constant throughout the game aside from updating the score 
count and the display whose turn it currently is. This issue is 
addressed in Experiment 2. 

The ERP time-locked to stimulus onset showed a 
qualitatively similar pattern after receiving a reward at arm 
3 (90%/30% reward probability) for the three conditions 
analyzed. However, the amplitude is highest when receiving 
a reward in the dyadic version, and attenuated when 
observing the partner receive a reward. When receiving a 
reward in the solo version of the game, the amplitude is also 
attenuated in comparison to receive a reward in the presence 
of a second player. We believe that this is due to the higher 
stakes and reward scenario attached with the dyadic version 
of the game. 

Interestingly, pupil dilation increases drastically at about 
0.6 seconds after stimulus onset when receiving a reward in 
the dyadic version of the game. In contrast, pupil dilation 
after observing the partner receive a reward has a longer 
latency of about 0.8 second. This likely reflects differential 
activation of the parasympathetic nervous system (PNS) for 
self/other reward scenarios. 
 

Experiment 2 
Participants 
Participants were 32 undergraduate students (16 dyads, 10 
female-female, 4female-male, 2 male-male) recruited 
through the university’s SONA system. They received 
course credit for participation in addition to a small 
monetary reward based on performance in the social multi-
armed bandit (0.05 USD per reward). 
  
 

Experimental Design 
The experimental design of Experiment 2, is very similar to 
experiment 1. The modifications of the experiment are: 

(1) Whereas in experiment 1, one person in each dyad 
played the solo version of the game before the dyadic 
version and the other person played in the reverse order, in 
experiment 2 both played the solo version either before or 
after the dyadic version. In other words, game order was 
randomly assigned by dyad. This ensured that the game 
process was not driven by prior knowledge of only one of 
the players.  

(2) To reduce the prior belief of a constant underlying 
reward structure of the game, we changed the background 
color of the game after each turn, such that there was a 
distinct visual cue to signal each player's turns.  

(3) EEG data was recorded from both participants in 
Experiment 2 (vs. only one participant per dyad in Exp. 1). 
Pupillometry data was not recorded. 
 
Data Acquisition 
See Experiment 1. 
 
Data Analysis 
As in Experiment 1, the first 20 trials were excluded from 
analysis. 
 
Decision-making behavior  
The analysis performed in Experiment 1 is based upon the 
assumption that participants make use of particular 
strategies. In this experiment, a different type of analysis 
was performed, considering choice behavior ‘bottom-up’ 
without assumptions of specific strategies. 
Participants’ choices were analyzed via the Jensen-Shannon 
Divergence (JSD). The JSD is a distance metric between 
two probability distributions and based on the KLD: 
 

𝐷!" 𝑝, 𝑞 =    !
!
𝐷!" 𝑝, 𝑥 +   !

!
𝐷!" 𝑞, 𝑥  

 
with    𝑥 = (𝑝 + 𝑞)/2 
 
The JSD between the relative choice distribution of the last 
80 trials of the participants’ empirical behavior and the 
relative choice distribution if all choices were made towards 
the highest gaining arms (=(0,0,1), maximizing strategy) 
was used to analyze the data. Hence, the decision-making 
behavior for each participant could be characterized by their 
JS divergence in the solo and the dyadic version. As 
reference, the JS divergence of relative choice distribution 
between matching behavior (0.17, 0.33, 0.5) and 
maximizing (0,0,1) is 0.31. This value was used to further 
cluster participants into ‘learners’ (JSD < 0.31) and ‘non-
learners’ (JSD ≥ 0.31).  
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Results 
Decision-Making Behavior Participants could be 
categorized into four groups, depending on if they learned 
which option was the highest gaining in the solo and/or 
dyadic version of the game. 50% (16/32) of participants 
were grouped into ‘learners’ in the solo version, but into 
‘non-learners’ in the dyadic version. As shown in Figure 6, 
in the solo version, they choose the 90% reward arm 
significantly more often than the other two arms (F = 179.1, 
p < 0.0005) and significantly more often than in the dyadic 
version (F = 59.7, p < 0.0005). 22% (7/32) of participants 
were clustered into ‘learners’ in both versions of the game, 
and 19% (6/32) were clustered into ‘non-learners’ in both 
versions of the game. 9% (3/32) were clustered into 
‘learners’ in the dyadic version of the game, but not in the 
solo version. 
 

 
 
Figure 6: Choice behavior of 50% of participants who 
learned which arm has the highest reward probability in the 
solo but not the dyadic version of the multi-armed bandit. 
 
 

 
Figure 7: ERP after reward at arm 3 (90%/30%) averaged 
across participants from channel. Dyad (Self): player 
receives reward in dyadic version, Dyad (Other): player 
observes partner receive a reward in dyadic version, Solo: 
player receives a reward in solo version. 
 

Brain Dynamics ERPs were examined at channel O1 of 
participants who chose the highest gaining arm most of the 
time in the solo version, but not in the dyadic version 
(Figure 7). We observed a high increase in amplitude for the 
Dyad (Self) condition. In comparison, there was a negative 
deflection in ERP for the Dyad (Other) and Solo condition.   
 
Discussion 
Even when the prior belief of a common underlying reward 
structure was decreased, half of the participants integrated 
information gained through observation of their partner 
similarly as information gained through their own actions.  
In Experiment 2, our goal was to combine the subjects’ 
decision-making behavior with their physiology. Similarly 
as in Experiment 1, the ERP time locked to stimulus onset 
when receiving a reward at arm 3 showed a high increase in 
amplitude for the Dyad (Self) condition. In comparison, 
there was a negative deflection in ERP for the Dyad (Other) 
and Solo condition.  We consider this a good starting point 
to move towards extracting more high-level features such as 
EEG power spectrum density, mutual information and pupil 
diameter-based fixations and saccades in the future. 
 

General Discussion 
We developed a Social Multi-Armed Bandit task to examine 
the influence of social interaction on decision-making. We 
found that while some individuals do figure out that the 
other player’s information does not apply to them, the 
majority of participants converged to a suboptimal decision-
making strategy. We termed this strategy ‘joint’ as it most 
likely emerges through averaging the reward probabilities 
for both players. Measurement of electrophysiology showed 
a distinct P3 when the player receives a reward in the dyadic 
version of the multi-armed bandit but not the solo version. 
P3 is thought to emerge through stimulus-driven ‘top-down’ 
processes when the participant pays focused attention to a 
task. The distinct presence of the P3 in the dyadic task 
might thus hint towards heightened attention, particularly 
towards own rewards, in the presence of another player. 
Interestingly, the pupillometry data revealed a similar 
pattern as the ERP.  

This task has considerable possibilities for further studies 
of social interaction. Next steps include a similar experiment 
with participants are previously acquainted with each other, 
e.g. friends, and children with their parents. It is likely that 
having a prior relationship with the other partner will alter 
the joint strategy for one or both partners. It would also be 
interesting to test how an asymmetric relationship (e.g., 
parent-child) would influence decision-making strategies, 
compared to a more symmetric relationship.  It is possible 
that less-experienced participants (e.g., children) are more 
likely to follow, or match, the behavior of a ‘reliable’ 
person, as is the case in imitation (Poulin-Dubois, Brooker, 
& Polonia, 2011). Lastly, this task might give interesting 
insights into decision-making processes of neuro-divergent 
people, particularly those with potential differences in social 
behaviors (Montague, 2018). 

1316



Acknowledgements  
This study was funded with an Innovative Research Grant 
from the Kavli Institute for Brain and Mind. 

References  
Cohen, J. D., McClure, S. M., & Yu, A. Y. (2007). Should I 

stay or should I go? How the human brain manages the 
trade-off between exploitation and exploration. 
Philosophical Transactions of the Royal Society of London 
B: Biological Sciences, 362(1481), 933-942. 

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source 
toolbox for analysis of single-trial EEG dynamics including 
independent component analysis. Journal of neuroscience 
methods, 134(1), 9-21. 

Dolk, T., Hommel, B., Colzato, L. S., Schütz-Bosbach, S., 
Prinz, W., & Liepelt, R. (2014). The joint Simon effect: a 
review and theoretical integration. Frontiers in Psychology, 
5, 974. 

Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., 
Hauswirth, V., Fally, M., ... & Neubauer, A. C. (2009). The 
creative brain: Investigation of brain activity during creative 
problem solving by means of EEG and fMRI. Human brain 
mapping, 30(3), 734-748. 

Gittins, J., Glazebrook, K., & Weber, R. (2011). Multi-armed 
bandit allocation indices. John Wiley & Sons. 

Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive 
coding: an account of the mirror neuron system. Cognitive 
Processing, 8(3), 159-166. 

Kothe, C. (2014). Lab streaming layer (LSL). 
https://github.com/sccn/labstreaminglayer. Accessed on 
February, 1, 2019. 

Liao, Y., Acar, Z. A., Makeig, S., & Deak, G. (2015). EEG 
imaging of toddlers during dyadic turn-taking: Mu-rhythm 
modulation while producing or observing social actions. 
NeuroImage, 112, 52-60. 

Liu, K., & Zhao, Q. (2010). Distributed learning in multi-
armed bandit with multiple players. IEEE Transactions on 
Signal Processing, 58(11), 5667-5681. 

Montague, P. R. (2018). Computational Phenotypes Revealed 
by Interactive Economic Games. In Computational 
Psychiatry. 

Mullen, T., Kothe, C., Chi, Y. M., Ojeda, A., Kerth, T., 
Makeig, S., ... & Jung, T. P. (2013, July). Real-time 
modeling and 3D visualization of source dynamics and 
connectivity using wearable EEG. In 2013 35th annual 
international conference of the IEEE engineering in 
medicine and biology society (EMBC) (pp. 2184-2187). 

Partala, T., & Surakka, V. (2003). Pupil size variation as an 
indication of affective processing. International journal of 
human-computer studies, 59(1-2), 185-198. 

Polich, J. (2007). Updating P300: an integrative theory of P3a 
and P3b. Clinical neurophysiology, 118(10), 2128-2148. 

Poulin-Dubois, D., Brooker, I., & Polonia, A. (2011). Infants 
prefer to imitate a reliable person. Infant Behavior and 
Development, 34(2), 303-309. 

Sebanz, N., Knoblich, G., & Prinz, W. (2003). Representing 
others' actions: just like one's own?. Cognition, 88(3), B11-
B21. 

Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004). 
Matching behavior and the representation of value in the 
parietal cortex. science, 304(5678), 1782-1787. 

Vesper, C., Abramova, E., Bütepage, J., Ciardo, F., Crossey, 
B., Effenberg, A., ... & Schmitz, L. (2017). Joint action: 
mental representations, shared information and general 
mechanisms for coordinating with others. Frontiers in 
psychology, 7, 2039. 

Wellman, H. M., Cross, D., & Watson, J. (2001). Meta‐
analysis of theory‐of‐mind development: The truth about 
false belief. Child development, 72(3), 655-684. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1317



Using Machine Learning to Guide Cognitive Modeling:
A Case Study in Moral Reasoning

Mayank Agrawal (mayank.agrawal@princeton.edu)
Department of Psychology, Princeton University

Joshua C. Peterson (peterson.c.joshua@gmail.com)
Department of Computer Science, Princeton University

Thomas L. Griffiths (tomg@princeton.edu)
Departments of Psychology and Computer Science, Princeton University

Abstract

Large-scale behavioral datasets enable researchers to use com-
plex machine learning algorithms to better predict human be-
havior, yet this increased predictive power does not always lead
to a better understanding of the behavior in question. In this
paper, we outline a data-driven, iterative procedure that allows
cognitive scientists to use machine learning to generate mod-
els that are both interpretable and accurate. We demonstrate
this method in the domain of moral decision-making, where
standard experimental approaches often identify relevant prin-
ciples that influence human judgments, but fail to generalize
these findings to “real world” situations that place these prin-
ciples in conflict. The recently released Moral Machine dataset
allows us to build a powerful model that can predict the out-
comes of these conflicts while remaining simple enough to ex-
plain the basis behind human decisions.

Keywords: machine learning; moral psychology

Introduction
Explanatory and predictive power are hallmarks of any use-
ful scientific theory. However, in practice, psychology tends
to focus more on explanation (Yarkoni & Westfall, 2017),
whereas machine learning is almost exclusively aimed at pre-
diction. The necessarily restrictive nature of laboratory exper-
iments often leads psychologists to test competing hypotheses
by running highly-controlled studies on tens or hundreds of
subjects. Although this procedure gives a better understand-
ing of the specific phenomenon, it can be difficult to gener-
alize the findings and predict behavior in the “real world,”
where multiple factors are interacting with one another. Con-
versely, machine learning takes full advantage of complex,
nonlinear models that excel in tasks ranging from image clas-
sification (Krizhevsky et al., 2012) to video game playing
(Mnih et al., 2015). The performance of these models scales
with their level of expressiveness (Huang et al., 2018), which
results in millions of parameters that are difficult to interpret.

Interestingly, machine learning has long utilized insight
from cognitive psychology and neuroscience (Rosenblatt,
1958; Sutton & Barto, 1981; Ackley et al., 1985; Elman,
1990), a trend that continues to this day (Banino et al., 2018;
Lzaro-Gredilla et al., 2019). We believe that the reverse di-
rection has been underutilized, but could be just as fruitful.
In particular, psychology could leverage machine learning to
improve both the predictive and explanatory power of cog-
nitive models. We propose a method (summarized in Figure
1) that enables cognitive scientists to use large-scale behav-

Figure 1: A systematic, data-driven procedure for building in-
terpretable models that rival the predictive power of complex
machine learning models.

ioral datasets to construct interpretable models that rival the
performance of complex, black-box algorithms.

This methodology is inspired by Box’s loop (Box &
Hunter, 1962; Blei, 2014; Linderman & Gershman, 2017),
a systematic process of integrating the scientific method with
exploratory data analysis. Our key insight is that training a
black-box algorithm gives a sense of how much variance in
a certain type of behavior can be predicted. This predictive
power provides a standard for improvement in explicit cogni-
tive models (Khajah et al., 2016). By continuously critiquing
an interpretable cognitive model with respect to these black-
box algorithms, we can identify and incorporate new features
until its performance converges, thereby jointly maximizing
our two objectives of explanatory and predictive power.

In this paper, we demonstrate this methodology by building
a statistical model of moral decision-making. Philosophers
and psychologists have historically conducted thought exper-
iments and laboratory studies isolating individual principles
responsible for human moral judgment (e.g. consequentialist
ones such as harm aversion or deontological ones such as not
using others as a means to an end). However, it can be diffi-
cult to predict the outcomes of situations in which these prin-
ciples conflict (Cushman et al., 2010). The recently released
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Moral Machine dataset (Awad et al., 2018) allows us to build
a predictive model of how humans navigate these conflicts
over a large problem space. We start with a basic rational
choice model and iteratively add features until its accuracy
rivals that of a neural network, resulting in a model that is
both predictive and interpretable.

Background
Theories of Moral Decision-Making The two main fam-
ilies of moral philosophy often used to describe human be-
havior are consequentialism and deontology. Consequential-
ist theories posit that moral permissibility is evaluated solely
with respect to the outcomes, and that one should choose
the outcome with the highest value (Greene, 2007). On the
other hand, deontological theories evaluate moral permissi-
bility with respect to actions and whether they correspond to
specific rules or rights.

The trolley car dilemma (Foot, 2002; Thomson, 1984)
highlights how these two families differ when making moral
judgments. Here, participants must determine whether it is
morally permissible to sacrifice an innocent bystander in or-
der to prevent a trolley car from killing five railway work-
ers. The “switch” scenario gives the participant the option to
redirect the car to a track with one railway worker, whereas
the “push” scenario requires the participant to push a large
man directly in front of the car to stop it, killing the large
man in the process. Given that the outcomes are the same for
the “switch” and “push” scenarios (i.e., intervening results in
one death, while not intervening results in five deaths), con-
sequentialism prescribes intervention in both scenarios. De-
ontological theories allow for intervening in the “switch” sce-
nario but not the “push” scenario because pushing a man to
his death violates a moral principle, but switching the direc-
tion of a train does not.

Empirical studies have found that people are much more
willing to “switch” than to “push” (Greene et al., 2001; Cush-
man et al., 2006), suggesting deontological principles factor
heavily in human moral decision-making. Yet, a deontologi-
cal theory’s lack of systematicity makes it difficult to evaluate
as a model of moral judgment (Greene, 2017). What are the
rules that people invoke, and how do they interact with one
another when in conflict? Furthermore, how do they interact
with consequentialist concerns? Would people that refuse to
push a man to his death to save five railway workers still make
the same decision and with the same level of confidence when
there are a million railway workers? Any theory of human
moral cognition needs to be able to model how participants
trade off different consequentialist and deontological factors.

Moral Machine Paradigm As society anticipates au-
tonomous cars roaming its streets in the near future, the trol-
ley car dilemma has left the moral philosophy classroom and
entered into national policy conversations. A group of re-
searchers aiming to gauge public opinion created “Moral Ma-
chine,” an online game that presents users with moral dilem-

(a) An autonomous car is headed towards a group of
three pedestrians who are illegally crossing the street.
The car can either stay and kill these pedestrians or
swerve and kill three other pedestrians crossing legally.

(b) An autonomous car with five human passengers is
headed towards a group of pedestrians who are illegally
crossing the street. Staying on course will kill the pedes-
trians but save the passengers, while swerving will kill
the passengers but save the pedestrians.

Figure 2: Two sample dilemmas in the Moral Machine
dataset. In every scenario, the participant is asked to choose
whether to stay or swerve (Awad et al., 2018).

mas (see Figure 2) centered around autonomous cars (Awad et
al., 2018). Comprising roughly forty million decisions from
users in over two hundred countries, the Moral Machine ex-
periment is the largest public dataset collection on human
moral judgment.

In addition to the large number of decisions, the exper-
iment operated over a rich problem space. Twenty unique
agent types (e.g. man, girl, dog) along with contextual infor-
mation (e.g. crossing signals) enabled researchers to measure
the outcomes of nine manipulations: action versus inaction,
passengers versus pedestrians, males versus females, fat ver-
sus fit, low status versus high status, lawful versus unlawful,
elderly versus young, more lives saved versus less, and hu-
mans versus pets. The coverage and density of this problem
space provides the opportunity to build a model that predicts
how humans make moral judgments when a variety of differ-
ent principles are at play.
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Predicting Moral Decisions
As described earlier, the iterative refinement method we pro-
pose begins with both an initial, interpretable model and a
more predictive black-box algorithm. In this section, we do
exactly this by contrasting rational choice models derived
from moral philosophy with multilayer feedforward neural
networks.

Model Descriptions

We restricted our analysis to a subset of the dataset (N =
12,478,340) where an empty autonomous vehicle must de-
cide between saving the pedestrians on the left or right side
of the road (see Figure 2a for an example). The models we
consider below are tasked to predict the probability of choos-
ing to save the left side.

Interpretable Models Choice models (CM) are ubiquitous
in both psychology and economics, and they form the basis of
our interpretable model in this paper (Luce, 1959; McFadden
et al., 1973). In particular, we assume that participants con-
struct the values for both sides, i.e., vleft and vright, and choose
to save the left side when vleft > vright, and vice versa. The
value of each side is determined by aggregating the utilities
of all its agents:

vside = ∑
i

uili (1)

where ui is the utility given to agent i and li is a binary indi-
cator of agent i’s presence on the given side.

McFadden et al. (1973) proved that if individual variation
around this aggregate utility follows a Weibull distribution,
the probability that vleft is optimal is consistent with the ex-
ponentiated Luce choice rule used in psychology, i.e.,

P(vleft > vright) = P(c = left|vleft,vright) =
evleft

evleft + evright
(2)

In practice, we can implement this formalization by us-
ing logistic regression to infer the utility vector u. We built
three models, each of which provided top-down different con-
straints on the utility vector. Our first model, “Equal Weight,”
required each agent to be equally weighted. At the other ex-
treme, our “Utilitarian” model had no restriction. A third
model, “Animals vs. People,” was a hybrid: all humans were
were weighted equally and all animals were weighted equally,
but humans and animals could be weighted differently.

Research in moral psychology and philosophy has found
that humans use moral principles in addition to standard util-
itarian reasoning when choosing between options (Quinn,
1989; Spranca et al., 1991; Mikhail, 2002; Royzman &
Baron, 2002; Baron & Ritov, 2004; Cushman et al., 2006).
For example, one principle may be that allowing harm is more
permissible than doing harm (Woollard & Howard-Snyder,
2016). In order to incorporate these principles, we moved be-
yond utilitarian-based choice models by expanding the defi-
nition of a side’s value:

vside = ∑
i

uili +∑
m

λm fm (3)

where fm is an indicator variable of whether principle m is
present on the side and λm represents the importance of prin-
ciple m. We built an “Expanded” model that introduces two
principles potentially relevant in the Moral Machine dataset.
The first is a preference for allowing harm over doing harm,
thus penalizing sides that require the car to swerve in order
to save them. Another potentially relevant principle is that it
is more justified to punish unlawful pedestrians than lawful
ones because they knowingly waived their rights when cross-
ing illegally (Nino, 1983). This model was trained on the
dataset to infer the values of u and λ.

Neural Networks We use relatively expressive multilayer
feedforward neural networks (NN) to provide an estimate of
the level of performance that statistical models can achieve in
this domain. These networks were given as inputs the forty-
two variables that uniquely defined a dilemma to each partici-
pant: twenty for the characters on the left side, twenty for the
characters on the right side, one for the side of the car, and
one for the crossing signal status. These are the same inputs
for the “Expanded” choice model. However, the “Expanded”
model had the added restriction that the side did not change
an agent’s utility (e.g., a girl on the left side has the same util-
ity as a girl on the right side), while the neural network had
no such restriction.

The networks were trained to minimize the crossentropy
between the model’s output and human binary decisions. The
final layer of the neural networks is similar to the choice
model in that it is constructing the value of each side by
weighting different features. However, in these networks,
the principles are learned from the nonlinear interactions of
multiple layers and the indicators are probabilistic rather than
deterministic.

To find the optimal hyperparameters, we conducted a grid
search, varying the number of hidden layers, the number of
hidden neurons, and the batch size. All networks used the
same ReLU activation function and and no dropout. Given
that most of these models both performed similarly and
showed a clear improvement over simple choice models, we
did not conduct a more extensive hyperparameter search. A
neural network with three 32-unit hidden layers was used for
all the analyses in this paper.

Model Comparisons

Standard Metrics Table 1 displays the results of the four
rational choice models and the best performing neural net-
work. All models were trained on eighty percent of the
dataset, and the reported results reflect the performance on the
held-out twenty percent. We report accuracy and area under
the curve (AUC), two standard metrics for evaluating classi-
fication models. We also calculate the normalized Akaike in-
formation criterion (AIC), a metric for model comparison that
integrates a model’s predictive power and simplicity. All met-
rics resulted in the same expected ranking of models: Neural
Network, Expanded, Utilitarian, Animals vs. People, Equal
Weight.
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Table 1: Comparison of Standard Metrics

Model Type Accuracy AUC AIC

Equal Weight 0.571 0.616 1.301
Animals vs. People 0.630 0.702 1.234
Utilitarian 0.732 0.780 1.146
Expanded 0.763 0.826 1.046
Neural Network 0.774 0.845 0.983

Performance as a Function of Dataset Size Table 1
demonstrates that our cognitive models aren’t as predictive as
a powerful learning algorithm. This result, however, is only
observable with larger datasets. Figure 3 plots each metric for
each model over a large range of dataset sizes. Choice models
performed very well at dataset sizes comparable to that of a
large laboratory experiment. Conversely, neural networks im-
proved with larger dataset sizes until reaching an asymptote
where N > 100,000, at which point they outperform rational
choice models. These results suggest that while psychologi-
cal models are robust in the face of small datasets, they need
to be evaluated on much larger ones.

Identifying Explanatory Principles
The neural network gives us an aspirational standard of
how our simpler model should perform. Next, our task is to
identify the emergent features it constructs and incorporate
them into our simple choice model.

Calculating Residuals in Problem Aggregates By aggre-
gating decisions for each dilemma, we can determine the em-
pirical “difficulty” of each dilemma and whether our models
predict this difficulty. For example, assume dilemmas A and
B have been proposed to one hundred participants. If ninety
participants exposed to dilemma A chose to save the left side
and sixty participants exposed to dilemma B did, the empiri-
cal percentages for A and B would be 0.90 and 0.60, respec-
tively. An accurate model of moral judgment should not only
reflect the binary responses but also the confidence behind
those responses.

We identified the specific problems where the neural net-
work excelled compared to the “Expanded” rational choice
model. Manually inspecting these problems and clustering
them into groups revealed useful features beyond those em-
ployed in the choice model that the neural network is con-
structing. We formalized these features as principles and in-
corporated them into the choice model to improve prediction.
Two examples are represented in Table 2.

Table 2a describes a set of scenarios where one human
is crossing illegally and one pet is crossing legally. Empir-
ically, users tend to overwhelmingly prefer saving the hu-
man, while the choice model predicts the opposite. Our
choice model’s inferred utilities and importance values reveal
a strong penalty (i.e., a large negative coefficient) for (1) hu-
mans crossing illegally and (2) requiring the car to swerve.

However, the empirical data suggests that these principles are
outweighed by the fact that this is a humans-versus-animals
dilemma, and that humans should be preferred despite the
crossing or intervention status. Thus, the next iteration of
our model should incorporate a binary variable signifying
whether this is an explicit humans-versus-animals dilemma.

We can conduct a similar analysis for the set of scenarios
in Table 2b. Both models output significantly different
decision probabilities, the neural network being the more
accurate of the two. Most salient to us was an effect of
age. Specifically, when the principal difference between the
two sides is age, both boys and girls should be saved at a
much higher rate, and information about their crossing and
intervention status is less relevant. To capture this fact, we
can incorporate another binary variable signifying whether
the only difference between the agents on each side is age.

Incorporating New Features The two features we identified
are a subset of six “problem types” the Moral Machine re-
searchers used in their experiment: humans versus animals,
old versus young, more versus less, fat versus fit, male versus
female, and high status versus low status. These types were
not revealed to the participants, but the residuals we inspected
suggest that participants were constructing them from the raw
features and then factoring them into their decisions.

Incorporating these six new features as principles resulted
in 77.1% accuracy, nearly closing the gap entirely between
our choice model and neural network performance reported
in Table 1. Figure 4 illustrates the effects of incorporating
the problem types into both the choice model and the neu-
ral network in details. Importantly, we observe that “Neural
Network + Types” outperforms “Neural Network” at smaller
dataset sizes, but performs identically at larger dataset sizes.
This result suggests that the regular “Neural Network” is con-
structing the problem types we identified as emergent features
given sufficient data to learn them from. More importantly,
our augmented choice model now rivals the neural network’s
predictive power. And yet, by virtue of it being a rational
choice model with only a few more parameters than our “Ex-
panded” (and even the “Utilitarian”) model, it remains con-
ceptually simple. Thus, we have arrived at an interpretable
statistical model that can both quantify the effects of utili-
tarian calculations and moral principles and predict human
moral judgment over a large problem space.

Figure 4b still displays a gap between the AUC curves, sug-
gesting there is more to be gained by repeating the process
and potentially identifying new even more principles. For ex-
ample, the last iteration found that when there was a humans-
versus-animals problem, humans should be strongly favored.
However, residuals suggest that participants don’t honor this
principle when all the humans are criminals. Rather, in these
cases, participants may favor the animals or prefer the crim-
inal by only a small margin. Thus, our next iteration will in-
clude a feature corresponding to whether all the humans are
criminals. Our model also underperforms by overweighting
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(a) Dataset Size vs. AIC (b) Dataset Size vs. AUC (c) Dataset Size vs. Accuracy

Figure 3: Test-set performance metrics of choice models and neural network1 as a function of dataset size. Models were trained
on five 80/20 training/test splits. Error bars indicate ±1 SEM.

Table 2: Problem Aggregate Comparisons (Left Side Save Percentage)

Left Side Agents Right Side Agents Car Side Empirical CM NN

Pregnant Woman Crossing Illegally Cat Crossing Legally Left 0.779 0.411 0.797
Stroller Crossing Illegally Cat Crossing Legally Left 0.826 0.425 0.801
Dog Crossing Legally Male Doctor Crossing Illegally Right 0.312 0.693 0.293
Cat Crossing Legally Man Crossing Illegally Right 0.308 0.692 0.266
Old Woman Crossing Illegally Cat Crossing Legally Left 0.670 0.306 0.622

(a) Problems indicating Human vs. Animals Principle

Left Side Agents Right Side Agents Car Side Empirical CM NN

Old Man Crossing Legally Boy Crossing Illegally Right 0.350 0.647 0.341
Old Woman Crossing Legally Girl Crossing Illegally Right 0.337 0.642 0.321
Man Boy Left 0.113 0.417 0.097
Old Woman Crossing Legally Girl Crossing Illegally Left 0.268 0.570 0.269
Old Woman Woman Right 0.256 0.475 0.269

(b) Problems indicating Old vs. Young Principle

the effects of intervention. In problem types such as male
versus female and fat versus fit, the intervention variable is
weighted much differently than in young-versus-old dilem-
mas. The next iteration of the model should also include this
interaction. Thus, this methodology allows us to continuously
build on top of the new features we identify.

Conclusion
Large-scale behavioral datasets have the potential to revo-
lutionize cognitive science (Griffiths, 2015), and while data
science approaches have traditionally used them to predict
behavior, they can additionally help cognitive scientists con-
struct explanations of the given behavior.

Black-box machine learning algorithms give us a sense of
the predictive capabilities of our scientific theories, and we
outline a methodology that uses them to help cognitive mod-
els reach these capabilities:

1. Amass a large-scale behavioral dataset that encompasses a
large problem space

2. Formalize interpretable theories into parameterizable psy-
chological models whose predictions can be evaluated
1While a batch size of 8,192 was used for Table 1, a batch size

of 512 was used here because of the smaller dataset sizes.

3. Compare these models to more accurate, but less inter-
pretable black-box models (e.g., deep neural networks,
random forests, etc.)

4. Identify types of problems where the black-box models
outperform the simpler models

5. Formalize these problem types into features and incorpo-
rate them into both the simple and complex models

6. Return to Step 4 and repeat

We applied this procedure to moral decision-making, start-
ing off with a rational choice model and iteratively adding
principles until it had a comparable predictive power with
black-box algorithms. This model allowed us to quanti-
tatively predict the interactions between different utilitar-
ian concerns and moral principles. Furthermore, our re-
sults regarding problem types suggest that moral judgment
can be better predicted by incorporating alignable differences
in similarity judgments (Tversky & Simonson, 1993), such
as whether the dilemma is humans-versus-animals or old-
versus-young.

The present case study, while successful, is only a limited
application of the methodology we espouse, and further
demonstrations are required to illustrate its utility. It will be
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(a) Dataset Size vs. AIC (b) Dataset Size vs. AUC (c) Dataset Size vs. Accuracy

Figure 4: Test-set performance metrics before and after incorporating new principles. Models were trained on five 80/20
training/test splits. Error bars indicate ±1 SEM.

particularly interesting to apply our method to problems with
even larger gaps between classic theories and data-driven pre-
dictive models. It is also likely that transferring insights from
data-driven models will require moving beyond the sorts of
featurization we consider here (i.e., problem clustering). In
any case, we hope the microcosm presented here will inspire
similarly synergistic approaches in other areas of psychology.

Acknowledgments. We thank Edmond Awad for providing guid-
ance on navigating the Moral Machine dataset.
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Abstract 

How do people understand concepts such as dog, aggressive 
dog, dog house or house dog? The meaning of a concept 
depends crucially on the concepts around it. While this 
hypothesis has existed for a long time, only recently it has 
become possible to test it based on neuroimaging and quantify 
it using computational modeling. In this paper, a neural 
network is trained with backpropagation to map attribute-
based semantic representations to fMRI images of subjects 
reading everyday sentences. Backpropagation is then 
extended to the attributes, demonstrating how word meanings 
change in different contexts. Across a large corpus of 
sentences, the new attributes are more similar to the attributes 
of other words in the sentence than they are to the original 
attributes, demonstrating that the meaning of the context is 
transferred to a degree to each word in the sentence. Such 
dynamic conceptual combination effects could be included in 
natural language processing systems to encode rich contextual 
embeddings to mirror human performance more accurately. 

Keywords: Context Effect; Concept Representations; 
Conceptual Combination; fMRI Data Analysis; Neural 
Networks; Embodied Cognition 

Introduction 

In the embodied cognition approach. (Barsalou, 2008, 

Binder et al., 2009), the meaning of a concept is not a set of 

verbal features that people associate with the concept, but 

rather a set of neural processing modalities that are involved 

while experiencing instances of the concept. This approach 

provides a direct correspondence between conceptual 

content and neural representations, and suggests that 

concepts can be represented through a number of weighted 

semantic dimensions that correspond to different brain 

areas. Recently it has become possible to ground this 

approach to brain imaging. In particular, Binder et al. (2009) 

identified a distributed large-scale brain network linked to 

the storage and retrieval of words. This brain network was 

used as the foundation for the Concept Attributes 

Representation (CAR) theory (a.k.a. the experiential 

attribute representation model). CAR theory proposes that 

words are represented as a set of weighted attributes 

stimulated by context. 

People weigh concept features differently based on context, 

i.e., they construct a meaning dynamically according to the 

combination of concepts that occur in the sentence. Such 

conceptual combination either uses an attribute of one 

concept to describe another (in attribute combination) or 

forms some relation between two concepts to create a new 

one (in relational combination). In case of attribute 

combination, the modifier features adapt other concepts in 

the combination to some degree, and as a result, the words 

involved are alike (Wisniewski, 1998). For example, 

listeners must realize that red apple could mean just a fruit 

having a certain color by selecting salient features that 

dominate in the combination. The noun apple is defined by 

color, size, shape, taste, etc. and one or more of those 

dimensions will be modified during the attribute 

combination. In relational combination, the modifier 

features have nothing to do with the combination. For 
example apple basket or apple pie contain a variety of 

relations that often do not include apple’s features as in 

apple baskets are not edible, red or a fruit. To help 

understand that apple pie is made of apples but apple 

baskets are not, a thematic relation needs to be built based 

on world knowledge about plausible combinations. Both 

attribute and relational combinations play an important role 

in the construction of new or complex concepts (Gagné & 

Shoben, 1997; Murphy 1990; Pecher, Zeelenberg, & 

Barsalou, 2004). 

This paper focuses on the attribute combination process. 

It describes how such a dynamic construction of concepts in 

the brain can be quantified. This question has been studied 

in previous work anecdotally, by analyzing a few example 

cases of how the meaning attributes are weighted differently 

in various contexts for individual concepts, combinations of 

concepts, and for sentences (Aguirre-Celis & Miikkulainen, 

2017, 2018). The current study expands on this prior work 

by evaluating the robustness and generality of these 

conclusions across an entire corpus of sentences and 

semantic roles. A neural network is trained to map brain-

based semantic representations of words (CARs) into fMRI 

data of subjects reading everyday sentences. 

Backpropagation is then repeated separately for each 

sentence, reducing the remaining error by modifying only 

the CARs at the input of the network. As a result, the 

strengths of the attributes in the CARs change according to 

how important each attribute is for that sentence context.  

The CAR theory is first reviewed, and the sentence 

collection, fMRI data, and word representation data 

described. The computational model is presented, followed 

by the experiments: an example individual case of how 
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conceptual combinations affect word meanings, and an 

aggregate study across a corpus of sentences. 

 
Figure 1: Bar plot of the 66 semantic features for the concept table. 

The values represent average human ratings for each feature. 

Given that table is an object, it gets low weightings on human-

related attributes such as Face, Speech, Head, and emotions 

including Happy, Sad, and Angry, and high weightings on 

attributes like Vision, Shape, Touch, and Manipulation. 

Concept Attribute Representation Theory 

CAR theory represents the basic components of meaning 

defined in terms of observed neural processes and brain 

systems thereby relating semantic content to systematic 

modulation of neuroimaging activity (Anderson, et al., 

2016; Binder, et al., 2009). They are composed of a list of 

modalities that correspond to specialized sensory, motor and 

affective functions, and are therefore not limited to the 

classical sensory-motor dimensions of most embodied 

theories.  

CARs capture aspects of experience central to the 

acquisition of event and object concepts, both abstract and 

concrete. For example, concept ratings on visual and 

sensory components include brightness, color, size, shape, 

temperature, weight, pain, etc. These aspects of mental 

experience model each word as a collection of a 66-

dimensional feature vector that captures the strength of 

association between each neural attribute and the word 
meaning. For instance, Figure 1 shows the CAR for the 

concept table.  

The attributes in CAR theory were selected after an 

extensive body of physiological evidence based on two 

assumptions: (1) All aspects of mental experience can 

contribute to concept acquisition and consequently concept 

composition; (2) experiential phenomena are grounded on 

neural processors representing a particular aspect of 

experience. For a more detailed account of the attribute 

selection and definition see Binder, et al., (2009, 2011, 

2016a, and 2016b). The next section describes how the 

CAR theory is instantiated by acquiring attribute ratings 

from human subjects. 

Data Preparation 

Three data collections were used in this study: A sentence 

collection prepared by Glasgow et al., (2016), the fMRI 

images for these sentence by the Medical College of 

Wisconsin (Anderson, et al., 2016; Binder, et al., 2016), and 

semantic Vectors (CAR ratings) for words obtained via 

Mechanical Turk (Anderson, et al., 2016; Binder, et al., 

2009). In addition, fMRI representations were synthesized 

for individual words from the sentence fMRI. Each of these 

data collections is described in more detail below. 

Sentence Collection 

The sentence set was prepared for the fMRI study as part of 

the Knowledge Representation in Neural Systems Program 

(KRNS). A total of 240 sentences were composed from two 

to five content words from a set of 242 words (141 nouns, 

39 adjectives and 62 verbs). The words were selected 

toward imaginable and concrete objects, actions, settings, 

roles, state and emotions, and events. Examples include 

couple, author, boy, theatre, hospital, desk, red, flood, 

damaged, drank, gave, happy, old, summer, chicken, dog.  

The sentence collection is not fully balanced and 

systematic, but instead aims to be a natural sample. In order 

to investigate the effect of context, pairs of contrasting 

sentences were identified in this collection in an early study. 

This pairs include differences and similarities such as live 

mouse vs. dead mouse, family celebrated vs. happy family, 

and playing soccer vs. watching soccer. The resulting 

collection of 77 such sentences, with different shades of 

meaning for verbs, nouns and adjectives, as well as different 

contexts for nouns and adjectives was used to identify 
anecdotal examples (Table 1). However, the entire colection 

of sentences was used in the aggregate study described 

below. 

 
Table 1: Contrasting Sentences. Sentence examples with 

differences and similarities in meaning. For instance, the role of 

the verb flew is used in two different contexts, bird and duck flying 

(animate) vs. plane flying (inanimate). Such sentence pairs 

illustrate the idea of conceptual combination well. However, the 

entire set of sentences was used in the aggregate study described in 

this paper. 

 
 

Neural fMRI Representation of Sentences  

To obtain the neural correlates of the 240 sentences, 

subjects viewed each sentence on a computer screen while 

in the fMRI scanner. The sentences were presented word-

by-word using a rapid serial visual presentation paradigm, 

with each content word exposed for 400ms followed by a 

200ms inter-stimulus interval. Participants were instructed 

to read the sentences and think about their overall meaning. 

Eleven subjects took part in this experiment producing 12 

repetitions each. The fMRI data were preprocessed using 

standard methods, including slice timing and motion 

correction (AFNI software, Cox 1996). The most stable, 

SEMANTIC CONTRAST SENTENCES

GOOD

AGGRESSIVE

94
112

The soldier delivered the medicine.
The soldier kicked the door.

ANIMAL

OBJECT

203
207

210

The yellow bird flew over the field.
The duck flew.

The red plane flew through the cloud.

BAD PEOPLE

NATURE

119
152

99

The dangerous criminal stole the television.
The mob was dangerous.

The flood was dangerous.
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active and discriminative voxels were then selected and 

Principal Component Analysis and zero mean normalization 

were performed on them. These transformed brain 

activation patterns were converted into a single-sentence 

fMRI representation per participant by taking the voxel-wise 

mean of all repetitions (Anderson, et al., 2016; Binder, et 

al., 2016, 2016b). To form the target for the neural network, 

the most significant 396 voxels per sentence were then 

chosen (to match six case-role slots of the content words 

consisting of 66 attributes each) and scaled to [0.2..0.8]. 

Synthetic fMRI Word Representations 

The neural data set did not include fMRI images for words 

in isolation. Therefore a technique developed by Anderson 

et al. (2016) was adopted to approximate them. The voxel 

values for a word were obtained by averaging all fMRI 

images for the sentences where the word occurs. These 

vectors, called SynthWords, encode a combination of 

examples of that word along with other words that appear in 

the same sentence. Thus, the SynthWord representation for 

mouse contains aspects of running, forest, man, seeing, and 

dead, from sentence 56:The mouse ran into the forest and 

sentence 60:The man saw the dead mouse. 

This process of combining contextual information is 

similar to many semantic models in computational 

linguistics (Baroni et. al., 2010; Burgess, 1998; Landauer et 
al., 1997; Mitchell & Lapata, 2010). In other studies, this 

approach has been used successfully to predict brain 

activation (Anderson, et al., 2016; Binder, et al., 2016a, 

2016b; Just, et al., 2017).  

Due to the limited number of combinations, some of 

SynthWords became identical and were excluded from the 

dataset. The final collection includes 237 sentences and 236 

words (138 nouns, 38 adjectives and 60 verbs). 

Semantic CAR Representations for Words 

CAR ratings were collected for the original set of 242 words 

(Glasgow et al., 2016) through Amazon Mechanical Turk. 

In a scale of 0-6, the participants were asked to assign the 

degree to which a given concept is associated to a specific 

type of neural component of experience (e.g., “To what 

degree do you think of a table as having a fixed location, as 

on a map?”). Approximately 30 ratings were collected for 

each word. After averaging all ratings and removing 

outliers, the final attributes were transformed to unit length 

yielding a 66-dimensional feature vector (Figure 1). 

Note that this approach build its representations by 

directly mapping the conceptual content of a word 

(expressed in the questions) to the corresponding neural 

processes and systems for which the CAR dimensions stand. 

This approach thus contrasts with systems where the 

features are extracted from text corpora and word co-

occurrence (Baroni et. al., 2010; Burgess, 1998; Harris, 

1970; Landauer & Dumais, 1997).  

 

 

Computational Approach 

The approach for quantifying the effect of context in the 

fMRI data is based on the FGREP neural network (Forming 

Global Representations with Extended BP, Miikkulainen & 

Dyer, 1991). The idea is to train a neural network to predict 

what the sentence fMRI should be, based on the CAR 

representations, and then use FGREP to modify the CARs 

so that that prediction becomes correct. 

Therefore, a simple three-layer neural network is first 

trained to map the CAR representations to word fMRI (in 

the left side of Figure 2, the mapping from CARWords, or 

word attribute ratings, to SynthWords, i.e., fMRI synthetic 

words). 

After training, this network is used to predict what the 

sentence fMRI would be without the context effects. The 

SynthWords in the sentence are averaged to form this 

prediction called SynthSent. The SynthSent is then 

compared to fMRISent (the original fMRI data) to form an 

error signal. 

That signal is backpropagated through the network (right 

side of figure 2), but the neural network weights are no 

longer changed. Instead, the error is used to change the 

CARWords (which is the FGREP method). This 

modification can be carried out through multiple iterations 

until the error goes to zero, or no additional change is 

possible (because the CAR attributes are already at their 

max or min limits). Eventually, the revised CARWord 

represents the word meaning for the current sentence such 

that when combined with other CARWords in the sentence, 

the prediction of sentence fMRI is correct. 

For the experiments, the FGREP model was trained 20 

times with different random seeds for each of the eleven 

fMRI subjects. A total of 20 different sets of 786 context-

based word representations (one word representation for 

each sentence where the word appear) were thus produced 

for each subject. Afterwards, the mean of the 20 

representations was used to represent each word. 

Results 

Previous work showed (1) that words in different contexts 

have different representations, and (2) these differences are 

determined by context (Aguirre-Celis & Miikkulainen 2017, 

2018). These effects were demonstrated by analyzing 

individual sentence cases across multiple fMRI subjects. 

This paper verifies these same conclusions in the aggregate 

through a statistical analysis across an entire corpus of 

sentences. It measures how the CAR representation of a 

word changes in different sentences, and correlates these 

changes to the CAR representations of the other words in 

the sentence. In other words, it quantifies the conceptual 

combination effect statistically across sentences and 

subjects. 
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Figure 2: Using FGREP to quantify the effect of context on word meaning. Brain-based semantic representations (CARs) are changed 

based on a difference of predicted and actual fMRI image for a sentence. (1) Propagate CARWord to SynthWord. (2) Construct SynthSent 

by averaging the words into a prediction of the sentence. (3) Compare SynthSent against Observed fMRISent. (4) Backpropagate the error 

with FGREP for each sentence, freezing network weights and changing only CARWord. (5) Repeat until error reaches zero or CARs reach 

their upper or lower limits. As a result, the changes in CARs illustrate the effect of context on word meaning. 
 

 

A detailed individual example of the conceptual 

combination effect is first presented, followed by the 

aggregate analysis. 

The Conceptual Combination Effect 

As discussed above, in CAR theory, concepts’ interactions 

arise within multiple brain networks, activating similar brain 

zones for both concepts. These interactions determine the 

meaning of the concept combination (Binder, 2016a, 

2016b). 

As an example, consider the noun-verb interactions in 

Sentence 200: The yellow bird flew over the field, and 

Sentence 207: The red plane flew through the cloud. Since 

bird is a living thing, animate dimensions related to agency 

such as sensory, gustative, motor, affective, and cognitive 

experiences are expected to be activated, including 

potentially attributes like Speech, Taste, and Smell. In 

contrast, plane flew is expected to activate inanimate 

dimensions related to perceiving an object, as well as 

possibly Emotion, Cognition, and Attention. 

Figure 3 shows the CARs for the word flew in the two 

sentences after they were modified by FGREP as described 

in Figure 2 and averaged across all 11 subjects. In Sentence 

200 there were indeed high activations on animate attributes 

like Small, Pain, Smell and Taste, Audition, Music, Speech, 

as well as Communication and Cognition. In contrast, 

Sentence 207 emphasizes perceptual features like Color, 

Size, and Shape, Weight, Audition, Loud, Duration, Social, 

Benefit, and Attention.  

These results illustrates the effect of conceptual combination 

on word meaning. As the context varies, the overlap on 

neural representations create a mutual enhancement, 

producing a clear difference between animate and inanimate 

contexts. The FGREP method then encodes this effect into 

the CAR representations where it can be measured. In other 

experiments, a similar effect was observed for several other 

noun-verb pairs, as well as several adjective-noun pairs. In 

the next section the effect is quantified statistically across 

the entire corpus of sentences. 

Aggregation Analysis 

So far, the conceptual combination effect has been 

demonstrated in a number of example cases, like the one 

above, and others in earlier work (Aguirre-Celis & 

Miikkulainen 2017, 2018). The goal of the aggregation 

study in this paper is to demonstrate that the effect is robust 

and general across the entire corpus of sentences and case 

roles. The hypothesis is that similar sentences have a similar 

effect, and this effect is consistent across all words in the 

sentence.  

W’2:SynthWordW'1:SynthWord W’3:SynthWord W’2:SynthWordW'1:SynthWord W’3:SynthWord

fMRISent

(w'1+w'2+w'3)/3

SynthSent

?

W2:builtW1:engineer W3:computer W2:built W3:computer

ɛ=error

forward backward

SynthSent
(Revised)

CARWord

W1:engineer

(w'1+w'2+w'3)/3

CARWord (Revised)

1327



 
Figure 3: Contrasting the conceptual combination effect in two different sentences. In Sentence 200 (blue bars), the CAR representation 

modified by FGREP for the word flew has salient activations on animate features, presumably denoting bird properties like Pain, Small, 

Smell and Taste, and Communication. In Sentence 207 (white bars), it has high activations on inanimate object features, describing a Loud, 

Large, and Heavy object such as a plane. 

 

 

This hypothesis was verified in the following process: 

1. For each subject, modified CARs for each word in 

each sentence were formed through FGREP as 

described in Figure 2.  

2. A representation for each sentence, SynthSent, was 

assembled by averaging the modified CARs.  

3. Clusters of sentences were formed by running the 

Matlab function linkage on the set of SynthSents. 

Linkage measure the distance between clusters 

using the Ward method and the distance between 

elements with Euclidean distance. It treats each 

sentence as a single cluster at the beginning and 

then successively merges pairs of clusters. The 

process was stopped at 30 clusters, i.e., at the point 

where the granularity appeared most meaningful 

(e.g., sentences describing open locations vs. 

closed locations).  

4. For each cluster, CAR representations with similar 

roles (agent, verb patient) were identified.  

5. For each word in each such role, the differences 

between the modified CAR representations and the 

original CARs were calculated and averaged, and 

statistical significance of the difference measured 

using t-test across the entire set for each CAR 

dimensions.  

6. The CARs of the other words in the sentence were 

averaged.  

7. Pearson's Correlations were then calculated 

between the modified CARs and the averages 

CARs of other words across all the dimensions.  

8. Similarly, correlations were calculated for the 

original CARs.  

9. These two correlations were then compared. If the 

modified CARs correlate with the CARs of other 

words in the sentence better than the original 

CARs, there is evidence of context effect based on 

conceptual combination 

In other words, this process aims to demonstrate that 

changes in a word CAR originate from the other words in 

the sentence. As in the example presented in the previous 

subsection, the noun-verb combination of bird flew and 

plane flew showed how some of the noun properties 

(animate/inanimate) were transferred to the verb, adapting 

the combination to the extent that the words share similar 

features. For example, if the other words in the sentence 

have high values in the CAR dimension for Small, then that 

dimension in the modified CAR should be higher than in the 

original CAR for that word. The correlation analysis 

measures this effect across the entire CAR representation. It 

measures whether the word meaning changes towards the 

context meaning. 

The results are shown in detail in Table 2. The 

correlations are significantly higher for new CARs than for 

the original CARs across all subjects and all roles. As a 

summary, the average correlation was 0.3201 (STDEV 

1328



0.020) for original CAR representations and 0.3918 

(STDEV 0.034) for new CAR representations. The results 

indeed confirm that the conceptual combination effect 

occurs reliably across subjects and sentences, and it is 

possible to quantify it by analyzing the fMRI images using 

the FGREP method on CAR representations. 

 
Table 2: Correlation results. Average correlations analyzed by 

word class for 11 subjects comparing the original and new CARs 

vs. the average of the other words in the sentence. A moderate to 

strong positive correlation was found between new CARs and the 

other words in the sentence suggesting that features on one word 

are transferred to other words in the sentence during conceptual 

combination. 

 

 
 

Discussion and Future Work 

This study aimed to verify the hypothesis that during 

sentence comprehension, people adjust the word meanings 

according to the combination of the concepts that occur in 

the sentence. This effect had been demonstrated in 

individual cases before, and the goal was to demonstrate it 

more broadly across many subjects, and entire corpus of 

sentences, and different semantic case roles in the sentence. 

The correlation results indeed demonstrated that the effect is 

robust, and can be quantified by analyzing fMRI images 

through the FGREP mechanism. 

These findings are significant considering that the dataset 

was limited and was not designed to answer the question of 

dynamic effects in meaning. In the future, it may be possible 

to extend the data with identical contexts and contrasting 

contexts, and such fully balanced stimuli could be used to 

test the hypothesis more systematically.  

Similarly, it would be desirable to extend the data with 

fMRI images of individual words. The current approach of 

synthetic words (SynthWords) is an approximation often 

used in computational linguistic (Baroni et. al., 2010; 

Burgess, 1998; Landauer et al., 1997; Mitchell & Lapata, 

2010) and neural activity prediction research (Anderson, et 

al., 2016; Binder, et al., 2016a, 2016b; Just, et al., 2017). 

The FGREP process of mapping semantic CARs to 

SynthWords and further to sentence fMRI, refines the 

synthetic representations by removing noise. Still, such 

representations blend the meanings of many words in many 

sentences, therefore including word fMRI should lead to 

stronger and clearer results. 

One important advantage of CAR theory is that it is 

grounded on brain representations, and therefore a good 

choice when mapping semantic representations to fMRI. In 

the future, it would be interesting to compare whether 

similar effects can be observed with semantic 

representations based on co-occurrence in text corpora, or 

perhaps even a combination of the two. Another important 

direction of future work is to take advantage of this effect in 

an artificial natural language processing system. The vector 

representations for words can be modified dynamically 

based on context. Such a process should match human 

behavior better, and result in a more effective and robust 

system. 

Conclusion 

This paper shows how word meanings change dynamically 

depending on context. Using FGREP as a mechanism it was 

possible to show that the difference between the expected 

and observed fMRI images can indeed be explained by a 

change in CARs. Across an entire corpus of sentences, the 

new CARs are more similar to the other words in the 

sentence than to the original CARs, demonstrating how 

features of the context are transferred to each word in the 

sentence. In the future it may be possible to utilize such 

dynamic representations in an artificial natural language 

processing system, by making the word embeddings more 

sensitive to the semantic meanings that humans actually 

perceive. 
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Abstract

Numerosity is informative for living organisms. It can
transmit, among many things, amount of food available,
heading direction of the troop, which group could win a
territorial dispute, the decision of were to build a beehive.
Given its ecological importance, we test the hypothesis
that numerosity captures visual selection. In five exper-
iments we confirmed that an irrelevant visual stimulus
that was numerically large slowed down participants in
detecting a task-relevant visual target (Exp. 1 and 2). This
capture was not driven by sensory variables that could cor-
relate with numerosity: cumulative area (Exp. 3) and ele-
ment size (Exp. 4). We also confirmed that the underlying
numerosity representations were analogue, not set-based
(Exp. 5). In a crowded visual scene numerosity is a rele-
vant cue for visual selection, but represented only in ap-
proximate/coarse fashion.
Keywords: Attention; Attention capture; Numerosity

Introduction
Numbers can guide visual selection (Hamilton, Mirkin, &
Polk, 2006; Reijnen, Wolfe, & Krummenacher, 2013; So-
bel, Puri, & Faulkenberry, 2016; Utochkin, 2013). Imag-
ine going to a crowded town fair for the first time, with
different novel attractions. Your decision on where to look
will be affected by the number of people around each at-
traction. Number is a natural and intuitive cue for be-
havior in uncertain contexts (Arganda, Pérez-Escudero,
& de Polavieja, 2012).

A recent review proposed a list of features that could
guide attention in visual search and placed them in a
scale with five levels of certainty (Wolfe & Horowitz,
2017). The "undoubted guiding attributes" were color,
motion, orientation, and size. On the lower side of the
scale, the "probably not guiding attributes" were, among
others, material type, blur, optic flow, and 3D objects.
Importantly, our feature of interest, namely numerosity,
was on the third level of certainty: "Possible guiding at-
tributes". This means that even though there are some
indications in the literature that it is a guiding feature,
more research is required.

A classic task to study attention capture is the addi-
tional singleton search task (Theeuwes, 1992). This is a
visual search task in which participants have to locate
a distinct shape, say a diamond, among many other ho-
mogenous shapes present in the visual field, say circles.
All the shapes have a line segment inside and subjects
must report the orientation of the line in the distinct
shape. The main experimental manipulation is that in a
set of trials one of the homogenous shapes is turned into
a distractor, usually by coloring it differently (e.g. all the
shapes are green, including the target, but one is red, the

distractor). The notable result is that response times are
slower when there is a distractor, suggesting interference
in the visual selection of the target. Moreover, the single-
ton search task is a compound task: participants perceive
shape but report line orientation thus the effect is due to
perceptual interference not response difficulty.

In a series of experiments we modified the singleton
search task and created a distractor by placing more lines
inside one of the non-target circles (Fig. 1; Exp. 1)
or making the target more numerous while displaying
a shape distractor (Exp. 2). A slower response time in
the former and no distraction in the latter would indicate
spontaneous capture of attention by numerosity.

We further explored whether equating total white-
ness inside each of the shapes (Exp 3) (lines were
white against a black background) or reducing element
size/width could modify the effect (Exp. 4). The overall
results indicate that the presence of number capture is
robust to those perceptual features and they are consis-
tent with the idea that number is a perceptual dimension
guiding visual selection on its own terms (Anobile, Cic-
chini, & Burr, 2016).

No	distractor	 Distractor	

EXP.	1		
(number	capture	A)	

No	distractor	 Distractor	

EXP.	3		
(cumula6ve	whiteness)	

No	distractor	 Distractor	

EXP.	2		
(number	capture	B)	

No	distractor	 Distractor	

EXP.	4		
(line	size/width)	

Figure 1: Tasks. In experiments 1,3, and 4 participants
had to report the orientation of the line(s) inside the dia-
mond shape (vertical or horizontal). In experiment 2 they
reported the orientation of the more numerous one i.e.
shape is the distractor. In half of the trials there was a
distractor (counterbalanced blocked design). There were
3 different set sizes: 3, 5 (presented here), and 7.
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Experiments 1-4: Numerosity Guides
Visual Selection

Methods
All experimental procedures adhered to university stan-
dards, as approved by the Research Subjects Review
Board. For each experiment we aimed to recruit 10 sub-
jects, based on sample sizes of similar attention capture
studies (Theeuwes, 2010).

Participants. 42 university students participated in
four experiments (26 females, mean age: 21.21 years, s.d.:
3.43. We assigned 10 to each experiment; 2 were dropped
due to lack of task enhancement (sleepiness and high er-
ror rate). They received $10 as compensation. The task
took approximately 60 minutes, including instructions.

Stimuli. Display elements were equally spaced around
a fixation point of an imaginary circle (3.4° in radius).
Each display element was either a circle (1.4° in diame-
ter) or a diamond (1.4° on each side). Inside each shape
there was one or four line segments (0.42° in length) ran-
domly oriented. The orientation inside the target was not
random; it could be either vertical or horizontal. Shapes
and lines were white on a black background. Participants
saw three different set sizes: 3, 5, or 7 shapes equally dis-
tributed across trials (Fig. 1 has examples of set size 5).

Procedure. Subjects sat 50 cm from screen and placed
their head on a chin rest. Each trial began with a fixa-
tion cross and eyes were monitored with an EyeLink 1000
desktop mount system. Images only appeared if fixation
was confirmed. After a random fixation time (700 ms –
1700 ms), the fixation-cross disappeared and the shapes
became visible. Set size changed randomly on each trial,
as well as the position of the target and distractor. The
task was to report the orientation of the lines in the tar-
get using ’z’ and ’/’ in a qwerty keyboard to indicate ver-
tical or horizontal, respectively. In experiment 1,3, and 4
the target was the diamond shape, and in experiment 2
the shape with more lines inside. Distractors were num-
ber (Exp. 1 and 3), a diamond shape (Exp. 2), or line
width (Exp 4) (Fig. 1). Instructions emphasized a quick
but accurate response. If a response was not detected af-
ter 1200 ms., the display images disappeared, the trial
aborted, and a reminder text indicated that the response
was too slow.

There were 240 training trials and 300 test trials with
four resting breaks. Training and test trials were iden-
tical but we only analyzed test trials. The objective of
training was to make subjects as fast as possible. Tri-
als were blocked. One half had no distractor and the
other did. Half of the subjects started with no distractor.
Before starting, participants received an explanation of
the blocked design and saw example images of each block
with the main elements (target and distractor) pointed
out. When a new block started, an on-screen instruction
reminded participants whether there was going to be a
distractor or not.

Data analysis. We analyzed each experiment indi-
vidually using repeated measures ANOVAs on response
times. To statistically compare effect sizes across exper-
iments, we bootstrapped the distribution of effect size
differences and compute a 95% confidence interval (sam-
ples = 1000) (Kirby & Gerlanc, 2013). For effect size we
used the generalized Eta squared of the ANOVAs, suited
for repeated measures analysis (Bakeman, 2005). No re-
sponse time outlier detection was implemented as all tri-
als were forced to last less than 1200 ms (see Procedures
above). We report correct trials in the main text (error
rates were low). All analysis were done in R.
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Figure 2: Experiment results. Alongside each plot there
is an example image of the corresponding distracting con-
dition (set size 5). Plots are colored red for significant
distractor effects (p < 0.05). Bars are within subject stan-
dard errors (Cousineau et al., 2005).

Results
The presence of a number distractor increased response
times in participants of Exp. 1 (Fig. 2). A repeated mea-
sures ANOVA on response times found main effects of
distractor (F(1, 9) = 41.138, p < 0.001, η2

g = 0.099), set size
(F(2, 18) = 4.166, p = 0.032, η2

g = 0.046), and their interac-
tion (F(2, 18) = 4.998, p = 0.018, η2

g = 0.029). The slope of
response time in no distractor trials is indistinguishable
from zero (1.73 ms per shape; Table 1) and when there
is a distractor it increases (9.31 ms/shape) causing the
interaction effect. These slopes are really shallow sug-
gesting that the diamond shape can be located in paral-
lel when there is no distractor and even when there is a
distractor the detection is much faster than a traditional
serial process (Bacon & Egeth, 1994).

In the next experiment we aimed to check if capture
occurred due to the generic presence of structured, but
irrelevant, information in the visual field. With the same
stimulus a different set of participants did the mirror
task of Experiment 1: report the line orientations of the
circle with more lines and be distracted by the diamond
shape (Fig. 1). This time there was no significant at-
tention capture (Fig. 2; distractor: F(1, 9) = 0.651, p =
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0.440, η2
g = 0.002, set size: F(2, 18) = 18.914, p > 0.001,

η2
g = 0.017, interaction: F(2, 18) = 1.038, p = 0.374, η2

g
= 0.002). Even though not significant, there was still a
minimal distraction in Exp. 2 in the same direction as
Exp. 1 (Fig. 2) In such cases is important to statisti-
cally compare effect sizes (Nieuwenhuis, Forstmann, &
Wagenmakers, 2011). We bootstrapped the difference of
the effect sizes (η2

g) of the distractor in both experiments
(Exp. 1 minus Exp. 2). The obtained 95% confidence in-
terval is positive [0.037, 0.142], meaning that the effect of
distractor is highly unlikely to be larger in Exp. 2., con-
firming that subjects were at most weakly distracted by
shape.

This is not saying that number is uniquely special. In
a supplemental experiment we found that a square shape
can also capture attention and previous work has estab-
lished that forms are attractive (Theeuwes, 1992). The
unique finding of Exp. 1 and 2 is that sensory stimula-
tion was identical but when human observers are asked
to find shape they are distracted by number but not vice
versa. This asymmetry is not self-evident as in both ver-
sions number and shape are irrelevant for orientation de-
tection.

An alternative explanation for the asymmetry is that
in Exp. 2 the distractor was a shape which has noth-
ing to do with the target (lines) and so is less distracting.
In Exp. 1, on the other hand, the distractor were lines
and the task was to detect orientation of lines, and so
is more distracting. However, we selected the Theeuwes
task precisely to avoid such confounds. Participants need
to detect the relevant feature, shape or number, and then
report the orientation. The alternative strategy of trying
to directly detect line orientations in this type of task has
been shown to be too inefficient (Theeuwes, 2010). That
being said, if the alternative explanation holds, our re-
sult would implicate that numerosity breaks the strategy
of detecting the feature and reporting the orientation; an
interesting finding on its own terms that does not invali-
date Exp. 1 findings.

In our stimulus capture seems to be driven by a parser
that detects more lines. During training and between
blocks participants were reminded that the distractor
had more segments. And, prefacing the next set of exper-
iments, attention capture was not detectable when nu-
merosity was equal (Exp. 4). It only appeared when there
was an increase in the number of lines (Exp. 3).

The next pair of experiments probe with more detail
the sensory aspects of the more numerous lines that could
have mobilized attention. In Exp. 3 we equated total
amount of whiteness in all shapes by making single seg-
ments four times thicker (Fig. 1). If the observed num-
ber capture in Exp. 1 is due to an overall integration of
whiteness (cumulative area/brightness) then distraction
should disappear. This was not observed. There were
detectable interferences of the irrelevant more numerous

Table 1. RT slopes
Exp. 1 Exp. 2 Exp. 3 Exp. 4

No distractor 1.73 1.31 6.79* 1.21
Distractor 9.31* 5.58* 11.56* 6.98*
* p<0.05

location (Fig. 2; distractor: F(1, 9) = 4.137, p = 0.072, η2
g

= 0.040, set size: F(2, 18) = 8.702, p = 0.002, η2
g = 0.071,

interaction: F(2, 18) = 4.618, p = 0.024, η2
g = 0.016). A

direct comparison of effect sizes in Exp. 1 and Exp. 3
actually includes the possibility that the distractor effect
is larger when cumulative area is controlled for (95% CI
of Exp. 1 minus Exp. 3: [-0.006, 0.116]). The slopes re-
lating set size and RT were again really low (Table 1),
lower than a steorotypical serial search (Bacon & Egeth,
1994; Treisman & Gelade, 1980), indicating that the task
was done in partially parallel fashion. Number capture is
not related in a simple manner to an attraction to overall
whiteness.

It is possible that what drove number capture in Exp. 3
was the width of the lines (Fig. 1). In Exp. 4 we fixed the
number of lines inside each of the shapes and made their
line width three times bigger than the one in the distrac-
tor. If line width is the critical distracting aspect in Exp.
3, then Exp. 4 should reveal attention capture. This was
not observed (Fig. 2; distractor: F(1, 9) = 1.332, p = 0.278,
η2

g = 0.007, set size: F(2, 18) = 2.767, p = 0.089, η2
g = 0.011,

interaction: F(2, 18) = 1.079, p = 0.360, η2
g = 0.003). A

comparison of the effect sizes of Exp. 3 and 4 indicates
that distraction was more notable in the latter (95% CI of
Exp. 3 minus Exp. 4: [0.004, 0.066]). Again, the slopes
were really shallow suggesting an efficient search pro-
cess, close to parallel (Table 1). Line width draws little
attention in our visual stimulus.

Discussion
Attention is captured by numerosity, beyond basic per-
ceptual features that could correlate with number: cu-
mulative area/whiteness and element size/width. This
was obtained with a compound visual search task that
differentiates perception from response difficulty. This is
important because distractor effects can be traced back
to perceptual interference and not to response interfer-
ence (Theeuwes, 2010). The overall results are consistent
with the idea that numerosity is a basic perceptual fea-
ture that guides attention (Anobile et al., 2016; Wolfe &
Horowitz, 2017).

Previous reports have demonstrated the importance
of number for attentional process. Reijnen et al., 2013
used a task where the target and distractors were nu-
merical. However they used large numerosities and the
task of participants actually required numerical estima-
tion. Here we confirmed attentional effects with a much
simpler compound visual task with small numerosities.
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Utochkin, 2013 found that numerosity guides attention
as an aide to find perceptual features, in their case color.
Thus, numerosity was actually useful in their task. Our
Exp. 1 - 4, numerosity was irrelevant and as such is
closer to the notion of attention capture.

Attention capture is usually framed around the con-
ceptual dichotomy of bottom-up or top down sources of
the observed distraction (Theeuwes, 2010). However,
the notion of priority maps, a working space that inte-
grates current goals, selection history, physical salience,
is perhaps more relevant (Awh, Belopolsky, & Theeuwes,
2012). For our purposes, number must induce a prior-
ity signal and be a relevant source of information for the
nervous system to be able to capture attention. Visual
selection would emulate other decision contexts in which
numerosity is routinely used, mostly as an heuristic to
solve complex uncertain choices (Gigerenzer & Brighton,
2009; Reyna & Brainerd, 2008).

There is great deal of debate on the abstract or sen-
sory nature of number (Anobile et al., 2016; Gebuis, Ka-
dosh, & Gevers, 2016; Leibovich, Katzin, Harel, & Henik,
2017) . We argue that the number capture observed here
is consistent with the proposal that number is abstract
and a basic perceptual feature. First, the sensory aspects
evaluated (cumulative whiteness and element size/width)
failed to capture attention. Second, the shallow slopes re-
lating set sizes and response times were not so different
from previous attention capture studies using other ba-
sic perceptual stimulation (e.g. color) ((Bacon & Egeth,
1994; Theeuwes, 1992). They were not necessarily dif-
ferent from zero to claim any preattentive mechanism,
but they are certainly really close to those previous works
that demonstrated attention capture from basic features.

There are at least three limitations of our study. First,
we did not control for line separation, which may be a
feature driving attention in our task. If line separa-
tion means frequency then we are not sure how to dis-
tinguish frequency from number as they would correlate
perfectly. Also, even though we cannot rule out that pos-
sibility, a recent review on features that have been found
to guide attention did not report line separation (Wolfe &
Horowitz, 2017).

The second limitation is that we did not control for
overall contrast. We manipulated line width to control
for cumulative area effects (Exp. 3 and 4) and the num-
ber distractor ended up looking more dim (Fig. 1). We
would argue that this actually made our results more
robust because it is not about higher contrast. Still, it
would have been interesting to determine how much of
the effect changes with different contrast levels.

The third and final limitation is that attention may
have been driven by the presence of a texture formed
by the patch with more lines. However, we would argue
that texture is a vague term and we narrowed down on
an aspect, namely numerosity. Also, texture is obtained

preattentively (Julesz, 1981) and search slopes in Exp.
1-4 were different from zero.

In general, as with most studies of numerosity, it is
almost impossible to discard 100% that our results are
not influenced by a preattentive sensory features. They
may indeed have a role in the underlying effect but we
think that there is sufficient evidence in the literature to
believe that number is a basic sensory aspect (Anobile et
al., 2016); and we think our results add to that line of
research.

In many behavioral contexts numerosity is a ba-
sic heuristic that hinders or facilitates learning and
decision-making (Gigerenzer & Brighton, 2009; Reyna &
Brainerd, 2008). Also, the approximate number system
seems to influence higher order behavior such as risk at-
titudes and math scores (Halberda, Mazzocco, & Feigen-
son, 2008; Schley & Peters, 2014). Our study furthers the
link between numerosity and attention which may pro-
vide clues on why raw numerosity is such a strong driver
of learning and behavior.
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Abstract

Probabilities can be described by a numerator and a de-
nominator and students and decision-makers are not in-
different to numerical values of the components. For in-
stance, when people compare two equal ratios their choices
gravitate to the option with larger number, even if they
know both ratios are equal. To the date, however, it is un-
clear if whole number biases are present in other cultures.
We tested a farming-foraging group living in the Bolivian
rain forest in a simple 2AFC ratio comparison task. Af-
ter appropriate training, the Tsimane were highly accu-
rate in this task, confirming that visual proportional rea-
soning is present across cultures. Importantly, they had
a strong tendency to favor large numbers in equal ratio
comparisons, similar to what is found in educated popu-
lations. Even though our sample size is moderate (n=76),
the whole number bias we found occurred under good pro-
portional reasoning. The bias may be a general feature of
cognition, rather than a cultural or education artifact, that
may help humans solve ambiguous situations.
Keywords: Tsimane; Numerical cognition; Fraction;
Probability; Whole number bias

Introduction
Detecting differences in discrete visual ratios is useful.
They convey a variety of critical information, like how
much units of food there is available per competitor or
heading direction of a troop by a majority rule (Real,
1993; Strandburg-Peshkin, Farine, Couzin, & Crofoot,
2015). Infants, indigenous population without formal ed-
ucation, and non-human primates can act upon proba-
bilities expressed by visual proportions (Denison & Xu,
2010; Fontanari, Gonzalez, Vallortigara, & Girotto, 2014;
Rakoczy et al., 2014). The spontaneous mapping of visual
ratios to probabilities in the context of no formal educa-
tion suggests that this is a core cognitive feature akin to
detectors of abstract numerosity and geometry relations
found across cultures and species (Carey & Spelke, 1994;
Spelke & Lee, 2012)

Discrete probability comparisons, however, suffer from
numerosity interferences (Reyna & Brainerd, 2008). It
is much easier to compare ratios when the largest one
happens to have the larger numerosity. It is unclear if
this is caused by cultural characteristics shared by West-
ern, Educated, Industrialized, Rich, and Democratic peo-
ple (WEIRD) (Henrich, Heine, & Norenzayan, 2010) or if
sticking to numerosity is a general feature of how quo-
tients are compared in the mind (Alonso-Diaz, Pianta-
dosi, Hayden, & Cantlon, 2018). The latter option is
what we call an intrinsic whole number bias: a pull to-
wards numerical magnitude even though ratio estimates
are available. The presence of ratio estimates is critical

because it distinguishes it from denominator-neglect or
any other strategy used to cover up the inability to com-
pute the value of the fraction.

Previous work probing proportional reasoning in non-
WEIRD people, found that the Kaqchikel and K’iche’,
two indigenous Mayan groups in Guatemala, had refined
probabilistic abilities in the absence of formal probabil-
ity education (Fontanari et al., 2014). Of importance, one
of the experiments (Exp. 2) revealed that proportional
reasoning was not affected by the numerosity of the op-
tions. Participants excelled in comparing 0.25 against
0.75, both when the larger probability had more or fewer
number of winners.

Experiment 2 of Fontanari et al., 2014 established
probabilistic cognition with no formal education but there
were no indications in their study of a whole-number
bias, and their analyses nor experimental design tried to
uncover one. In fact, to the best of our knowledge, there
is no evidence of the whole number bias outside WEIRD
populations (perhaps in other species, but not across the
WEIRD-NON WEIRD divide). There are at least three
hypothesis. Our hypothesis is that it should be similar
in NON-WEIRD humans because is a reflection of the
inner workings of basic perceptual proportional choice
(Alonso-Diaz et al., 2018). A second hypothesis is that
the whole-number bias is a mistake caused by deficient
education (Reyna & Brainerd, 2008). Under this hypoth-
esis, the whole-number bias should be notably stronger
in the NON-WEIRD humans because they lack formal
education on probability principles. The third and final
hypothesis is that the bias only appears in WEIRD hu-
mans because of specific cultural practices (e.g how they
learn probabilities and fractions).

We tested a 2AFC ratio comparison task in the Tsi-
mane’, a farming-foraging group living in the Bolivian
rain forest (Huanca, 2008). A wealth of studies have been
done on the Tsimane’s cognitive and decision making pro-
cesses (Apaza et al., 2003; Apaza et al., 2002; Godoy & Ja-
cobson, 1999; Godoy, Jacobson, & Wilkie, 1998; Henrich
et al., 2010; Kirby et al., 2002; McDermott, Schultz, Un-
durraga, & Godoy, 2016; Piantadosi, Kidd, & Aslin, 2014;
Reyes-Garcıa et al., 2003). Their aptitude to probabilis-
tic cognition, however, has not been properly researched.
The Tsimane are fairly isolated, with low literacy, and
no formal instruction on probability principles. We hy-
pothesized the existence of probabilistic reasoning in the
Tsimane. Perhaps more important, a detectable bias to-
wards more numerous options in equal ratio trials.
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To detect a whole-number bias, we will exploit the fact
that when ratios are equal participants should be indif-
ferent to the numerosity of the options and pick ran-
domly; but this is not observed empirically (Denes-Raj,
Epstein, & Cole, 1995) even when the proportions are
known to be equal (Alonso-Diaz et al., 2018). To be clear,
the bias is not exclusive to equal ratio trials. Also, we are
not suggesting that only on them probabilistic reasoning
fails. The bias towards larger numerosities is intricate
and with many explanations (Alonso-Diaz et al., 2018).
We are using equal ratio trials as a methodological tool
to detect the bias in an indigenous population.

The originality of our work is that we seek an in-
trinsic whole number bias, one that is detected under
appropriate probabilistic reasoning (Alonso-Diaz et al.,
2018). To prove good reasoning we will use congruent
(the larger probability has larger numerosity), incongru-
ent (the larger probability has smaller numerosity) and
equal ratio trials. Congruent and incongruent trials will
help us discard illusory Stroop effects by which the irrele-
vant dimension of numerosity could affect ratio estimates
by changing the subjective psychophysical properties of
the alternatives (Barth, 2008). In simple words, if the
Tsimane are successful in both congruent and incongru-
ent trials we can be sure that they tried to pick the best
ratio, not the one with more numerosity.

Their choice on equal ratio trials will be a metric on
how intense the bias is. If it is considerably larger or
smaller, then we can conclude that cultural practices (e.g.
formal education) affect the bias. If it is similar, then
it is consistent with being a generic human adaptation
(Alonso-Diaz & Penagos, under review).

Methods
The study procedures were approved by the Gran Con-
sejo Tsimane’ (Tsimane’ grand council), as well as in-
stitutional IRBs. Tomás Huanca and the Centro Bo-
liviano de Investigación y de Desarrollo Socio Integral
(CBIDSI) provided logistic support (translators, trans-
portation, and general expertise about the Tsimane com-
munity).

Participants. We evaluated two groups of Tsimane.
This was not an explicit design strategy but rather re-
flects the dynamics of field-work (details below). The first
group received verbal instructions in their native lan-
guage (n=86, 60 females, M age = 34.13 years, s.d. =
15.09, Education M = 3.18 years, s.d. = 3.28). The second
received non-verbal training version (n=78, 53 Females,
Age M = 31.884 years; s.d. = 14.528; Education M =
4.012 years, s.d. = 4.037). 76 Tsimane succeed non-verbal
training (two subjects failed the training stage). We only
present the results for the Tsimane who did non-verbal
training (see Alonso-Diaz, 2017 for the verbal-training
sample). Each Tsimane did many cognitive tasks sequen-
tially including language, numerosity, color perception,

Train	1	 Train	2	 Train	3	

Train	4	 Train	5	 Train	6	

Equal	Num.	1	 Equal	Num.		2	

Larger	Num.	1	

Smaller	Num.	1	 Smaller	Num.	2	

Equal	Prob.	1	 Equal	Prob.		2	 Larger	Num.	2	

TRAIN	

TEST	

Figure 1: Training and test trials. The ratios of winners
(red) to losers (black) in Test trials were 0.5 and 0.75. The
titles in the Test images indicate whether the largest ra-
tio had equal, smaller, or larger number of winners or
if both options had equal probability. Cyan titles indi-
cate stimulus that just a subsample of Tsimane observed
(n=24). If a participant is successful in all control trials
(Equal, Smaller, and Larger Num.), we would be more
confident that the bias in Equal Prob. trials is intrinsic
i.e. it can appear under proper proportional reasoning.

and the probability task reported here.
Materials and Procedure. Participants saw two im-

ages, one to the left and another to the right side. Each
image was presented in individual laminated sheets (le-
gal size) that contained a mix of red and black dots (Fig.
1). Participants had to select the option with best chances
of winning (red). The best option was randomly placed on
either side. The Tsimane heard a verbal instruction in
their native language.

The behavior of the initial 86 Tsimane (those who only
received verbal instructions) was hard to classify as ei-
ther following ratio or numerosity (an analysis of this
subsample is provided in Alonso-Diaz, 2017). To make
sure it was not related to translation issues, halfway dur-
ing field research we included non-verbal training with
feedback. After verbal instructions we randomly pre-
sented six pair of training images until all were correct
i.e. we cycled through them until all responses were cor-
rect and most Tsimane were quick dispatching training.
Training trials were mostly trivial (5 out of 6) in that one
side only had winners (Fig. 1), randomly placed to the
left or right side. The intention of trivial trials was to de-
ter number-based strategies: the correct option had the
same, fewer, or more winners than the wrong side. We
presented test trials (Fig. 1) in pseudo-random order with
no feedback.

Of the 76 participants with non-verbal training, 52 did
three types of test trials: 1) both ratios had equal num-
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ber of winners, 2) the best ratio had smaller number of
winners, and 3) ratios were identical but one had more
winners (Figure 1). To further discard a strategy of low-
number of losers (the confound present in Fontanari et
al., 2014 Maya’s study), the last 24 Tsimane saw the
same images as the 52 but also new Test images with
identical number of losers (blacks) (and also one more
training image, Fig. 1 cyan color).

Data analysis. We will use the following acronyms: EN
= both ratios had equal numerator; SN = larger ratio had
smaller numerator; LN = larger ratio had larger numera-
tor; EP = both images had equal probability. In EP accu-
racy reflects the proportion of choices favoring the option
with larger numerosity

Binomial tests evaluated if performance was greater
than chance. In control trials (EN, SN, and LN), chance
means picking the larger ratio more than 50% of the
times. In test trials (EP), chance means picking the op-
tion with larger numerosity more than 50% of the times.
In the binomial tests we used the total number of choices.
Because each Tsimane made two choices on each trial
type (Fig. 1), n = 2 times sample size.

We classified each Tsimane’s behavior according to one
of the following potential strategies: consistently picked
A) More winners; B) Fewer winners; C) More total num-
ber of balls; D) Fewer total number of balls; E) More
losers; F) Fewer losers; G) Larger ratio; H) Other. Some
behaviors were ambiguous as they could be consistent
with more than one strategy. For instance, in the stimuli
presented to the subsample of 52 Tsimane (the one sim-
ilar to Fontanari et al., 2014), being correct in all trials
and selecting the option with fewer losers when both ra-
tios were equal will necessarily occur if the agent decides
based on fewer losers or the larger ratio. When such cod-
ing conflicts occurred, we used the unambiguous behav-
ior. In the example, we would code the Tsimane as follow-
ing a strategy that picks fewer losers because a strategy
of only ratios will be random when both bags have equal
ratio.

Results
Tsimane’s accuracy in test trials was high (Fig. 2A; EN:
149/152 = 0.98 trials correct, p < 0.001; SN: 143/152 =
0.94, p < 0.001; LN: 40/48 = 0.83, p < 0.001; EP: 66/152
= 0.43, p = 0.12). Fig. 2A seems to suggest that in equal
probability trials (EP) the Tsimane did not tend to pick
the bag with larger numerosity. A closer look reveals that
the majority of Tsimane behave in accordance to a ratio-
based strategy (n = 36), followed by strategies that follow
small number of balls (n = 26), other unidentifiable strat-
egy (n = 8), low number of losers (n = 4), and large num-
ber of winners (n = 2) (Fig. 2B). The diversity of strate-
gies is only normal in such unnatural task. Interestingly,
we detected a large number bias in equal probability tri-
als in Tsimane’ whose performance was flawless in EN,
SN, and LN test trials (52/72 = 0.72 trials favored the op-

tion with more winners, p < 0.001). As a reminder, EN,
SN, and LN were control trials for a simple numerosity-
based behavior. For instance, a Tsimane who had only
followed large numerosities would have failed in both SN
trials because in those trials the larger probability had
smaller numerosity. This means that the manifestation
of the whole number bias in equal ratio trials is hardly
explained by a straightforward behavior based on numer-
ical cardinalities in those who did not fail in EN, SN, and
LN trials.
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Figure 2: Accuracy (A), distribution of strategies (B), and
whole number bias in the Tsimane who were reliably
coded as following a ratio-based strategy (C). In A: LN:
the best ratio had the large numerator (winners); EN:
both ratios had equal numerator; SN: the best ratio had
small numerator; EP: both options had equal probability.
In EP accuracy reflects the proportion of choices favoring
the option with larger numerosity. Dashed line is chance.
Error bars are 95% confidence intervals of a binomial test
(all p<0.05, except EP).

The rate of the bias is comparable to the one found in
American adults doing a similar one-shot task. (Fig. 2C;
χ2 (1) = 1.469, p = 0.225; American data in (Alonso-Diaz
et al., 2018) ). The Tsimane whose behavior is consis-
tent with ratio use (n=36) exhibit the same intuition to
favor large numbers in ambiguous contexts. We empha-
size that in the other strategies is hard to classify the
bias as such because it is baked in the actual definition
e.g. in a “large # win” strategy the task is solved following
winners. We argue that the theoretically relevant bias is
when appropriate proportional reasoning is present.

As it was mentioned in the methods, some participants
did additional trials in which both images had identi-
cal number of losers. The reason for this was to dis-
card a losers-based behavior. An analysis of these two
subsamples reveals a similar pattern. In the subsample
that did not see images with identical number of losers
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(n=52) they had a behavior above chance in all control
trials (chance means picking the larger probability) and
in equal probability trials (chance means picking the the
image with larger numerosity) (i.e. all binomial tests
p<0.05) confirming the presence of a whole number bias.
Of those 52, 48 had perfect performance in control trials
and also revealed a whole number bias in equal prob-
ability trials albeit not significant (30/48 = 0.625, p =
0.11). This first subsample was clearly trying to solve
the task through ratio-based strategies because they suc-
ceeded in SN, LN, and EN trials. However, when faced
with equal ratio trials they showed a whole-number bias.
This does not necessarily mean that in equal ratio tri-
als their proportional reasoning shuts down (Alonso-Diaz
et al., 2018); our experimental design cannot solve that
question.

In the second subsample, we can definitely discard a
loser-based strategy (n = 24). Their behavior in control
trials was different than chance (i.e. all binomial tests
p<0.05), and revealed a whole number bias in equal prob-
ability trials (22/24 = 0.91 trials favored the option with
more winners, p < 0.001). Thus, the effect was partic-
ularly present in those who we can discard any form of
number-based strategy in SN, LN, and EN trials.

A caveat of our results is that even though significant,
we had a small sample size (n=76), specially the ones
that we can confidently discard a number-based strategy
(n=24). Future work could increase sample size, but two
things make us confident of the results. First, the whole
number bias is not a controversial finding (e.g. Alonso-
Diaz et al., 2018; Reyna and Brainerd, 2008). Second,
the bias we reported was stringent, making sure that it
was present under proper proportional reasoning.

Discussion
The Tsimane’, similar to other populations (Mayas, hu-
man infants, non-human primates), are capable of visual
proportional reasoning. Even though the task used was
artificial, based on laminated sheets, it was possible to
elicit ratio-based responses. Perhaps more relevant, in
ambiguous trials, in which both options had equal prob-
ability, the intuition of adult Tsimane was in line with
that of adult Americans: pick the option with larger nu-
merosity. This was not a number-based strategy induced
by lack of proportional abilities as they were very capa-
ble of solving congruent (larger prob. has more winners),
incongruent (larger prob. has fewer winners), and trials
where the large probability had the same number of win-
ners as the wrong alternative.

Perhaps more insightful is that the bias was compara-
ble in size between WEIRD and NON-WEIRD samples
(Fig. 2C). Because we obtained the bias under good pro-
portional reasoning and with equal ratio trials, it sug-
gests that numerosity could be a generic cognitive tool
to solve ambiguity, not merely a quick heuristic to sub-

stitute an inability to compute ratios as previously pro-
posed. In fact, the bias could be a sign of adaptive agents
(Alonso-Diaz & Penagos, under review).

The automatic activation and use of numerical values,
despite appropriate visual proportional reasoning, is con-
firmable through more rigorous psychophysics tasks and
computational models (Alonso-Diaz et al., 2018). What
is suggestive of the Tsimane results is that number in-
trusions may not be a WEIRD phenomenon of developed
economies (Henrich et al., 2010) but the outcome of some
generic computation, perhaps influenced by the fact that
larger numerosities elicit a greater sense of confidence
and capture attention (Alonso-Diaz, 2017; Alonso-Diaz &
Cantlon, 2018).

The intuition of relying in numerosities is usually ob-
served during learning and manipulation of symbolic
fractions (Ni & Zhou, 2005; Siegler, Fazio, Bailey, &
Zhou, 2013). At the same time, there is growing evi-
dence that perceptual and symbolic systems are not in-
dependent (Melnick, Harrison, Park, Bennetto, & Tadin,
2013), for instance the approximate number system cor-
relates with formal math tests (Halberda, Mazzocco, &
Feigenson, 2008). It is possible, then, that the effects of
number in perceptual proportional reasoning transpire to
symbolic education and decision-making settings where
numerosity should not be employed.

An alternative explanation of our results is that the
Tsimane tested were not fully illiterate (mean years of ed-
ucation 4.012) and some negative pedagogical influence
in those years may have impacted behavior in our task.
The main problem with this interpretation is that the
Tsimane succeeded in ratio comparisons with different
numerosity manipulations. If anything, the contra argu-
ment is also plausible: education might have helped them
in solving the task. Rather, we argue that the intuition of
relying in larger numerosities is a generic feature of cog-
nition. The human mind is endowed with probabilistic
knowledge. However, the mechanisms that lead to overt
probabilistic behavior do not necessarily drop the numer-
ical values, even when holistic ratio computations are
available. Number intrusions seem to be present across
cultures.

Another interesting result is that the Tsimane re-
quired non-verbal training to succeed in our task. The
first subsample only received verbal instructions in their
native language but their performance was lower than
those who received non-verbal training (see Methods). It
is hard to narrow down the reasons for such difference
between verbal and non-verbal instructions but it is rele-
vant for future studies on non-WEIRD populations.
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Abstract 

A novel experimental method is motivated and applied in an 
effort to test for effects of category learning on perceptual 
discrimination so as to clearly distinguish category boundary 
effects of expansion and compression from changes in 
sensitivity to stimulus dimensions.  The method includes a 
control group performing a task that, like category learning, 
requires attention to one systematically varying stimulus 
dimension rather than another.  Discrimination accuracy is 
tracked over time and measured using a psychophysical 
staircase procedure tailored to individual participants that 
doesn’t rely on memory.  Initial results suggest improvement 
in discrimination accuracy over time, particularly on the 
dimension relevant to the categorization or control task, but 
no evidence of category boundary effects or effects of 
category learning on dimension perception stronger than those 
of the control task.  Possible reasons for this and directions for 
further research are briefly discussed. 

Keywords: categorical perception; categorization; learning;  
expansion; compression; dimensional modulation; selective 
attention 

Introduction 
It is well known that various kinds of experience can 
produce perceptual learning, i.e., improved ability to 
distinguish objects, features, or values on a dimension 
(Goldstone, 1998).  One of the processes that is claimed to 
have special effects on the perceptual judgment of stimuli is 
learning to categorize the items, the phenomenon known as 
learned categorical perception (CP) (Goldstone & 
Hendrickson, 2009).  Learned CP effects reported in the 
literature include boundary effects whereby items placed in 
different categories become more distinguishable, 

sometimes called expansion, and/or items placed in the 
same category become less distinguishable, sometimes 
called compression.  However, these are not always clearly 
distinguished from dimension-wide effects where there is 
sensitization to the category-relevant dimension(s) and/or 
desensitization to the category-irrelevant dimension(s). 

There are potentially many tasks besides category 
learning that require or benefit from greater attention to one 
dimension rather than another whereas only category 
learning would be expected to produce the boundary effects 
of expansion and/or compression.  It is therefore very 
important that measures of learned CP carefully distinguish 
dimensional effects from boundary effects, something that 
previous research has not necessarily done. An important 
goal of the work reported here is to develop a method that 
distinguishes boundary effects of category learning from 
dimension-wide effects and, if category learning does cause 
dimension-wide effects, to determine if it does so to a 
greater extent than a task that doesn’t involve category 
learning. 

One reason that learned CP effects are of theoretical 
interest is that they may provide key evidence of genuine 
top-down effects on perception, an issue of considerable 
current controversy (Firestone & Scholl, 2016).  But since 
the vast majority of learned CP evidence is based on 
measures that rely on memory (e.g., successive judgments 
of pairs of stimuli for same-different or similarity 
judgments), it is hard to argue that they are genuinely 
perceptual effects rather than reflecting higher level 
cognitive processes.  Another purpose of the method 
adopted here is to eliminate the role of memory and 
determine if learned CP effects still occur. (Of course, even 
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if they do, other challenges raised by Firestone and Scholl 
might still need to be addressed.) 

An examination of the existing body of learned CP 
research also reveals a bewildering pattern of effects and 
non-effects (compression vs. expansion vs.  both, boundary 
effects with or without accompanying dimensional effects 
and vice versa, etc.).  Researchers rarely have specific 
predictions regarding which effects will or won’t occur and 
often don’t distinguish clearly between them or test for all 
of them.  As noted above, our study will clearly distinguish 
boundary effects from dimension-wide effects of category 
learning. 

A recent p-curve meta-analysis of this body of research 
(Andrews, de Leeuw, Larson, & Xu, 2017) found a low 
level of statistical power, suggesting that it may be 
unproductive to try to interpret the patterns of effects and 
non-effects in the existing literature, since low statistical 
power is likely to produce both false positive and false 
negative results.  Without a firm grasp on which learned CP 
effects do and don’t occur under what conditions, it will be 
very difficult to make progress understanding the theoretical 
basis of learned CP or modeling the relevant mechanism(s). 
In addition to simply running better powered studies, 
another strategy to increase the informativeness of the data 
that are collected is to use analysis techniques such as 
Bayesian statistics that indicate the relative support for 
different hypotheses regarding learned CP effects, including 
the null hypothesis of no effects. 

Another important methodological feature that renders 
previous results difficult to interpret is the fact that learned 
CP experiments almost always use a before-after 
comparison, a control group that only performs the final 
task performed by the learning group after category training, 
or at most, a control group that receives passive exposure to 
the category training stimuli. The goal of the research 
reported here is to address this and the other features of 
learned CP research that render its results ambiguous.  Our 
approach relies on the use of a new method for tracking the 
effects of learning to categorize a set of patterns over time 
and in comparison to the effects of performing an 
appropriate non-category-based control task.  Tracking 
over time is important for addressing another ambiguity 
when effects are only measured after training:  expansion 
effects cannot be distinguished from a combination of 
compression and sensitization to the category-relevant 
dimension.  These could potentially be distinguished if they 
emerge at different rates or times over the course of training. 
In order to track effects of learning over time, we test for 
changes in discrimination ability using a psychophysical 
staircase procedure throughout the entire experiment, 
alternating with classification or control task trials.  

Because we use simultaneous stimulus presentation to 
avoid memory effects, a standard same-different or XAB 
task would allow successful performance based on the 
comparison of meaningless pixel-level features. We 
therefore developed a stimulus set where the potentially 
category-relevant dimensions vary both systematically in 

one respect (e.g., number/density of dots inside a circle) and 
also randomly (e.g., the exact location of the dots). This 
means that two stimuli with the same values on the two 
systematically varying dimensions will not be identical, 
much in the same way that individual instances of real 
world categories are usually unique.  This allows us to use a 
variation on same-different judgments that highlights the 
role of the dimensions and works with simultaneous 
presentation, as explained in the method section.   

The above features of our method make it different from 
the usual learned CP experiment in a number of ways, but 
we think it is essential to determine whether learned CP will 
occur under these more controlled conditions. If it does not, 
we can systematically re-introduce more traditional 
methodological features, such as successive presentation on 
the discrimination test, to determine which are necessary to 
produce the effects in order to better understand them.  
While we only report one experiment and acknowledge that 
our method likely needs adjustment to be fully successful in 
achieving its goals, our hope is that by sharing our work at 
this stage we can obtain useful feedback to inform and guide 
our next steps. 

 
Method 

All study materials, data, and analysis scripts are available 
at this OSF site:  https://osf.io/msq57/. 

Participants 
A total of 101 participants (52 women; mean age 34.8; age 
range 18-72) were recruited using the online crowdsourcing 
platform Prolific and paid $4 for participating.  Data from 8 
participants were missing or incomplete leaving a final total 
sample size of 93. 

Stimuli 
Stimuli for this experiment were sunbursts. The 
number/density of dots and lines was systematically varied 
across stimuli but the exact placement of the dots and lines 
and the length of the lines were random (see Figure 1). For 
each participant in the experimental group (see below), 
category membership was randomly assigned to be based on 
either line or dot density. The density of dots or lines in a 
particular stimulus ranges from 300-2000 dots and 30-550 
lines.  (Each range is treated as 0.0-1.0 here.) 

Procedure 
The software jsPsych was used to create the experiment (de 
Leeuw, 2015).  Phase 1 used a same-different task variant 
we call the odd-one-out task. Four sunbursts appeared 
simultaneously:  three had the same dot and line densities 
and one differed on one of those dimensions. Participants 
had 4 seconds to press a number key (1-4) to indicate the 
odd one out and receive feedback (see Figure 2). 

At the beginning of Phase 1, the dimension that differed 
in the odd one differed by a large amount from the others. 
This distance was subsequently adjusted through a  staircase  
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Figure 1.  The stimulus space illustrating the two 

dimensions and the two possible sets of categories. 
 
 

 
 

Figure 2.  An odd-one-out trial display in Phase 1. 
 
procedure, decreasing or increasing by 15% depending on 
whether the response was correct or incorrect. Trials 
continued until at least eight reversals occurred on each 
dimension. The goal of Phase 1 was to identify an 
approximation of each individual participant’s just 
noticeable difference (JND) on each dimension, defined as 
the average of the distances of the last four reversals. 

In Phase 2, odd-one-out trials alternated with one of two 
other tasks, classification or number judgment, to which 
participants were randomly assigned. For both tasks, a 
single sunburst appears with a question and participants 
press a key to answer and receive feedback (see Figure 3).  

 

 
 

Figure 3.  A classification task trial display (left) and a 
number judgment task trial display (right) in Phase 2. 

 
The number judgment (control) task is to say “more” (M) or 
“less” (L) in response to a question about the number of dots 

or lines, where the number varied from trial to trial.  For a 
given participant, the number judgment questions are 
always about just one of the two dimensions, randomly 
assigned, so that the control task matches the category 
learning task in relying on attention to one “relevant” 
dimension to answer correctly.  For the classification 
(“experimental”) group, the randomly assigned relevant 
dimension defined the category boundary as shown in 
Figure 1. 

The specific stimuli used in Phase 2 odd-one-out trials 
were initially based on each JND value from Phase 1 for 
each participant and dimension. The sets of four stimuli (see 
Figure 2) were of three types as shown below in Figure 4.  
For both BE (between category) and WI (within category) 
comparisons, the odd one out differed from the other three 
only on the relevant dimension while for IRR comparisons, 
it differed only on the irrelevant dimension. All 48 possible 
adjacent stimulus pairs were used as the basis for the odd-
one-out trials and drawn from the participant’s JND-based 
dimensional space at a given moment.  

Phase 2 trials proceeded in 40 blocks each containing six 
odd-one-out trials (one BE, two WI, and three IRR trials to 
sample the stimulus space evenly) and six classification or 
number judgment trials in a random order.  The staircase 
procedure on the odd-one-out task was continued 
individually for each participant throughout Phase 2 just as 
in Phase 1, but separately for these six comparison subtypes. 
This controls for discriminability differences due to 
stimulus magnitude (e.g., Weber’s law).  Since adjacent 
dimensional values were already near JND level, the 
proportion change from one trial to the next of that subtype 
was reduced from 15% to 5% and the maximum distance 
allowed between dimension values was .33. 

 

 
 

Figure 4.  Illustration of the six comparison subtypes for 
the odd-one-out trials with dots as the relevant dimension. 

Analysis Plan 
A traditional learned CP analysis takes a behavioral measure 
such as similarity rating or same-different accuracy and 
compares the experimental (category learning) and control 
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groups on that measure for between-category vs. within-
category pairs.  Our experiment tracked changes in the size 
of the distance between the two dimensional values used in 
odd-one-out task trials. Therefore, our learned CP measure 
was the change in this value for a given dimension from the 
beginning to the end of Phase 2. If participants improved on 
the odd-one-out task, their scores will be negative since they 
will become able to accurately judge smaller differences, 
and a larger negative score represents more improvement. 
Because differences in speed of discriminating between-
category vs. within-category pairs are sometimes taken as 
evidence for CP, we also used mean correct reaction time 
over the last four blocks on odd-one-out trials as an alternate 
measure. We standardized RTs within subject by converting 
them to z scores.  Note that for both of these measures, a 
smaller score reflects better performance. 
   It is traditional for the above types of analysis to adopt 
some criterion of successful category learning and exclude 
participants who don’t meet it.  However, the choice of the 
criterion is arbitrary, may well influence the results, and is 
not explicitly motivated in learned CP research.  In addition, 
because our continuous staircasing procedure kept 
dimensional differences between adjacent stimuli near JND, 
we expected category learning to be relatively difficult and 
produce a wide range of performance levels.  Since it seems 
reasonable to predict that learned CP measures should 
positively correlate with category learning success (see 
Gureckis & Goldstone, 2008 for a similar approach and 
positive evidence), we only reported that type of analysis. 
 

Results 
Figure 5 shows an example of a result of the Phase 1 
staircase procedure for illustrative purposes.  Participants 
whose Phase 1 JND on either dimension exceeded the 
maximum of .33 allowed in Phase 2 by more than .05 were 
excluded from subsequent analysis since the Phase 2 
staircasing procedure would not apply correctly to them.  
This produced a final n of 72 (35 control, 37 experimental). 
 

 
 
Figure 5.  Example outcome of Phase 1 staircase procedure. 
 

The mean proportion correct over Phase 2 on the 
classification task was .678 (SD = .145) and on the number 
judgment task it was .807 (SD = .13). 

Phase 2 began with dimensional differences based on 
each individual participant’s Phase 1 JND.  Did the staircase 
procedure continuing throughout Phase 2 (in alternation 

with the classification or number judgment task) produce 
further perceptual learning?  Figure 6 shows that in general, 
averaging across all participants, it did, particularly on the 
relevant dimension comparisons, as one might expect. 
Using the mean distance change for each participant 
averaging over the three odd-one-out trials differing on the 
relevant dimension (BE, WI1, and WI2) in the final block, 
the mean of the entire sample (M = -2.57) was significantly 
less than zero (t(71) = -3.547, p < .0001).  This was not the 
case for the irrelevant dimension (averaging over IRR1, 
IRR2, and IRR3 trials) (M = -0.72, t(71) = -0.996, p = .16). 
A one-tailed paired samples t-test yielded a significant 
difference between relevant and irrelevant mean distance 
change (t(71) = -2.014, p = .024). 

 

 
 
Figure 6.  Overall perceptual learning in the experiment; the 
y axis represents number of staircase steps, e.g., a change in 
distance of -10 means the staircase has gotten 10 steps more 

difficult, indicating improved discrimination accuracy. 
 

The left panel in Figure 7 illustrates the pattern that would 
be expected to hold for the control group, with better 
performance on the number judgment task coinciding with 
better performance on the odd-one-out task only (or to a 
greater degree) for the dimension relevant to the number 
judgment task, and no difference in the patterns for between 
and within category comparisons.  The right panel shows 
what the pattern would be if the experimental group showed 
learned CP boundary effects, with better classification 
performance associated with better odd-one-out perfor- 
mance on between-category comparisons (expansion) and/or 
worse odd-one-out performance on within-category 
comparisons (compression) relative to the control group.  If 
the experimental group were to show stronger sensitization 
to the relevant dimension or desensitization to the  irrelevant  
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Figure 7.  Relationship between classification or number 
judgment task performance (x axis) and either dependent 

variable (y axis) predicted by learned CP boundary effects. 
 
 

dimension relative to the control group, the patterns would 
be slightly different, but we will focus on the boundary 
effects that are typically what is meant by learned CP. 

Figure 8 shows the actual relationship in our data between 
total distance change over Phase 2 (y axis) and an estimate 
of the probability of a correct response at the end of Phase 2 
on the number judgment (left) or classification (right) task 
(x axis) obtained by fitting a logistic regression model for 
each individual subject. 

Overall there is a weak negative relationship such that 
discrimination performance tended to be better when 
classification or number judgment was more accurate, 
perhaps reflecting a general effect of effort. These data were 
analyzed using a Bayesian linear model to predict total 
distance change from three variables:  comparison type 
(between, within, or irrelevant), group (control or 
experimental), and estimated final performance on the 
number judgment or classification task.  The model also 
included the three-way interaction between these three 
variables  since,  as shown in  Figure 7, this  would  have  to 
be present if learned CP effects occurred.  The analysis 
produced a BF10 of 119 for the estimated final performance 
variable, supporting the effort effect mentioned previously.  
To assess evidence for the critical three-way interaction, we 
determined the ratio of the BF10 for the full model 
containing the three predictor variables and the three-way 
interaction (.94) to the BF10 for the model containing just 
the three predictor variables (7.18).  This yielded a BF10 of 
.131 indicating moderate support for H0 and therefore no 
evidence for learned CP. 

The same analysis was performed for the RT measure 
(see Figure 9) and showed only one  result favoring the 
alternative  hypothesis  and   that  was  for  comparison  type 

 
 

Figure 8.  Relationship between estimated final performance 
on the classification or number judgment task and actual 

discrimination accuracy improvement over Phase 2 for the 
three comparison types. 

 
 

 
 

Figure 9.  Relationship between estimated final performance 
on the classification or number judgment task and 

standardized mean correct RT on the last four blocks of 
Phase 2 for the three comparison types. 

 
(BF10 = 41).  The graph shows this to be due to irrelevant 
dimension odd-one-out trial responses being slower in 
general than relevant dimension trials of either type.  The 
ratio of the BF10 for the full model containing the three 
predictor variables and the three-way interaction (.095) to 
the BF10 for the model containing just the three predictor 
variables (.942) yielded a BF10 of .101.  This constitutes 
fairly strong support for H0 and thus no learned CP effects. 

Discussion 
This experiment employed a novel methodology designed to 
rigorously test for learned CP effects.  Stimuli varied 
systematically on two dimensions, only one of which was 
relevant for either category learning or a control task.  The 
stimuli also varied in random low-level features to allow for 
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simultaneous presentation in the discrimination (“odd-one-
out”) task to eliminate reliance on memory.  A staircasing 
procedure was used to initially determine the JND for each 
participant on each dimension and this staircasing continued 
with discrimination trials alternating with classification or 
control task trials to allow for continuous measurement of 
discrimination ability on each dimension.   

The results provide evidence of sensitization to the 
relevant dimension for both the classification task and a 
control task that was comparable in requiring attention to 
one of the two dimensions. This was seen in significant 
discrimination performance improvement from the 
beginning to the end of Phase 2 for the sample as a whole on 
the relevant but not the irrelevant dimension.  The 
interesting question then is whether there were differences 
in discrimination performance between the two groups that 
fit any of the patterns consistent with learned CP. 

We did not report traditional analyses of learned CP 
effects, comparing successful category learners to the 
control group on our odd-one-out performance measures as 
a function of comparison type, due to the arbitrariness of 
setting a criterion for successful learning and the fact that 
our continuous staircasing procedure kept discrimination 
across the category boundary difficult.  Instead, we 
examined whether learned CP effects appeared in the form 
of different relationships between category learning 
performance and discrimination performance as a function 
of comparison type and in relation to the control group. 

The only effects we found were a positive correlation 
between success on the classification or number judgment 
task on the one hand and the odd-one-out task on the other, 
and slower response times by the end of the experiment for 
odd-one-out trials that required distinguishing stimuli 
differing on the irrelevant dimension.  The critical three-way 
interaction between group, comparison type, and level of 
classification or number judgment performance that would 
be required in order to demonstrate any variety of learned 
CP effects was lacking for both dependent measures, and 
the analyses showed more than anecdotal support for its 
absence. 

Note that if learned CP effects had occurred in this 
experiment, our continuous measurement of discrimination 
ability on the three types of comparisons would have been 
valuable for tracking the emergence of different types of 
effects (e.g., expansion vs. compression) and would have 
potentially allowed us to distinguish otherwise similar end 
results (i.e., expansion vs. a combination of compression 
and relevant dimension sensitization).  However, since we 
did not obtain any learned CP effects overall, we were not 
able to take advantage of this capability. 

There are many possible reasons for these negative 
results, due to the ways in which our methodology deviated 
from typical learned CP experiments.  Perhaps the 
constantly changing stimulus set and its randomly varying 
sub-features below the dimensional level prevented learned 
CP from occurring.  Or it may be that constantly alternating 
between a classification task and the odd-one-out task 

interfered with learned CP.  If learned CP effects depend on 
memory and thus require tasks with a delay between stimuli 
in order to occur, our simultaneous stimulus presentation 
would be the cause.  Or it could be that, previous evidence 
of boundary effects notwithstanding, so-called learned CP 
effects are really due to paying attention selectively to one 
dimension rather than another, and thus also occur as a 
result of other tasks besides category learning such as the 
number judgment task used by our control group. 

We believe it is very important to determine the 
conditions under which learned CP effects do and do not 
occur, which has not been addressed sufficiently in the 
literature.  Our negative results can provide a useful initial 
reference point.  One strategy for building on this would be 
to next conduct a traditional version of the experiment 
utilizing a fixed set of the same stimuli and and a successive 
presentation version of our discrimination task to establish 
whether learned CP effects do occur under those conditions.  
If they do, methodological changes can then be incorporated 
one at a time, such as simultaneous rather than successive 
discrimination testing and comparison to a control group 
that performs a task requiring attention to one dimension, to 
determine which manipulations change and/or eliminate 
learned CP effects.  This would allow us to make real 
progress in understanding the phenomenon of learned CP 
and its scope and limits. 
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Abstract 
It is presently unclear how localized, word association network 
representations compare to distributed, spatial representations 
in representing distant concepts and accounting for priming 
effects. We compared and contrasted 4 models of representing 
semantic knowledge (5018-word directed and undirected step 
distance networks, an association-correlation network and 
word2vec spatial representations) to predict semantic priming 
performance for distant concepts. In Experiment 1, response 
latencies for relatedness judgments for word-pairs followed a 
quadratic relationship with network path lengths and spatial 
cosines, replicating and extending a pattern recently reported 
by Kenett, Levi, Anaki, and Faust (2017) for an 800-word 
Hebrew network. In Experiment 2, response latencies to 
identify a word through progressive demasking showed a linear 
trend for path lengths and cosines, suggesting that simple 
association networks can capture distant semantic 
relationships. Further analyses indicated that spatial models 
and correlation networks are less sensitive to direct 
associations and likely represent more higher-level 
relationships between words.  

Keywords: neural networks; word2vec; semantic priming; 
semantic space model; word association; network science. 

Introduction 
Understanding language requires the retrieval of meaning 

from underlying semantic representations of words. A class 
of models of semantic memory represent words as nodes in a 
large memory network, where words with similar meanings 
are connected to each other via edges (see Kenett, Kenett, 
Ben-Jacob & Faust, 2011; Steyvers & Tenenbaum, 2005). 
Semantic network models propose localized word 
representations, in contrast to feature-based or distributed 
space models (Smith, Shoben & Rips, 1974; Landauer & 
Dumais, 1997). 

Spatial models of semantic memory represent words in a 
multi-dimensional space, where words are an aggregate of the 
individual dimensions of the space. The spatial dimensions 
are derived from statistical co-occurrences in natural 
language. For example, Latent Semantic Analysis (LSA; 
Landauer & Dumais, 1997) is a distributional model that 
measures semantic similarity by calculating co-occurrences 
of words in a text corpus. LSA successfully simulates 
complex human behavior in a variety of cognitive tasks but 

has had difficulty accounting for semantic priming effects 
(Hutchison et al., 2008) and power laws (Steyvers & 
Tenenbaum, 2005), suggesting that spatial models may have 
some limitations.   

A more recent spatial model, word2vec (Mikolov, Chen, 
Corrado & Dean, 2013) has received considerable attention 
in the fields of computer science and natural language 
processing. word2vec uses neural networks to compute 
continuous vector representations of words. These semantic 
representations can then be used to compute an index of 
semantic similarity between words via vector cosines (higher 
cosines indicate greater semantic similarity). Interestingly, 
word2vec is able to solve verbal analogy problems (e.g., king: 
queen::man:?) using simple vector arithmetic, although 
recent research suggests that word2vec successfully captures 
only certain, simpler types of semantic relationships and not 
others (Chen, Peterson & Griffiths, 2017). The question of 
whether individuals use an association-based representation 
or represent meaning in a high-dimensional space is currently 
controversial (Griffiths, Steyvers & Tenenbaum, 2007; 
Jones, Gruenenfelder & Recchia, 2011). Thus, direct 
comparisons among different types of meaning 
representations and how they account for more distant 
semantic relationships is an important next step for the field.  

Recently, Kenett, Levi, Anaki and Faust (2017) used a 
semantic relatedness task to explore the impact of network 
path length derived from an 800-word Hebrew semantic 
network. The Hebrew network was created using correlations 
from continuous free association responses of 60 participants 
to 800 target words (for complete methodology, see Kenett et 
al., 2011). The results from the semantic relatedness task 
indicated that as network path length between word pairs 
(i.e., shortest distance between two words in the network) 
increased, fewer word pairs were judged as related. They also 
reported a quadratic relationship between path length and 
response latencies to make relatedness judgments, such that 
response times (RTs) increased for word pairs at shorter path 
lengths (e.g., BUS-CAR), but after path length 3, RTs 
systematically decreased for word pairs at longer path lengths 
(e.g., CHEATER-CARPET). They also showed that this 
network outperformed LSA and another measure of semantic 
distance, Positive Pointwise Mutual Information (PPMI) in 
explaining task performance. However, given that Kenett et 
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al. used a novel association-correlation methodology based 
on a Hebrew network, it remains unknown how simpler 
association networks (e.g., Steyvers & Tenenbaum, 2005) 
and more recent spatial models (e.g., Mikolov et al., 2013) 
capture such distant semantic relationships.  Moreover, it is 
important to extend the Kenett et al. network structure to a 
larger English-based network analysis to examine the 
generalizability of their findings.    

The present set of experiments were designed to compare 
and contrast the structural differences between three different 
network-based models and the word2vec model, across two 
behavioral tasks. It is important to note here that we do not 
claim that association-based networks are a complete account 
of semantic memory, but the issue we are interested in 
whether networks created from simple associations can 
indeed capture distant semantic priming effects, and how they 
compare to other models of semantic memory, such as spatial 
models and the association-correlation network. There is a 
rich tradition of using network-based models to 
accommodate priming effects (Anderson, 2000; Collins & 
Loftus, 1975), and we were mainly interested in comparing 
different types of network-based approaches to each other in 
accounting for this well-studied task, and also to other spatial 
representations. In Experiment 1, we extended and replicated 
the patterns reported by Kenett et al. in the Hebrew semantic 
relatedness task in three large semantic networks in English 
along with cosines from the word2vec model. We created 
these networks from a 5018-word database of free association 
norms collected by Nelson, McEvoy & Schreiber (2004) to 
examine the extent to which network path lengths would 
predict performance in the relatedness judgment task.  

A potential concern regarding the performance of network 
models created through human association norms in 
Experiment 1 is both relatedness judgments and word 
associations direct attention to the meaning dimension, and 
thus the patterns observed may just be due to overlap in the 
type of task. Further, the quadratic pattern observed may just 
reflect how the semantic “distance” between two words 
might influence the related/unrelated decision and how a 
particular individual partitions items into these arbitrary 
categories. We attempted to address this concern by 
employing a task that does not require accessing meaning-
related information to make the response. Thus, in 
Experiment 2, participants first viewed a briefly presented 
prime (120 ms) and then identified targets through a visual 
demasking task. Hence, we were able to directly compare the 
different network configurations and spatial representations 
in accounting for performance in two behavioral tasks. 

Semantic Network Construction 
To construct the semantic networks, we used a 5018-word 
database of free-association norms collected by Nelson et al. 
(2004), in which 150 participants on average wrote down the 
first word that came to mind in response to approximately 
120 word-cues. The cues were selected by Nelson et al. after 
multiple rounds of data collection, and typically, the most  
 

frequent responses for each of the cues were contained within 
the 5018 cues themselves. Responses were included only if 
at least two participants produced the same response, thus 
excluding idiosyncratic responses from the database. 
Responses that were not within the 5018 cues were also 
excluded during network construction. We constructed three 
networks from this database: an Association-Correlation 
Network (ACN), an Undirected Step Distance Network 
(Undirected SDN) and a Directed Step Distance Network 
(Directed SDN). 

Association-Correlation Network 
The ACN was created based on the methodology described 
by Kenett et al. (2011). Associative responses to 5018 cue 
words were first converted into a matrix, in which each 
column represented a cue word, and each row indicated 
unique associative responses for the target word. This matrix 
was converted to an association-correlation matrix, where the 
correlations between two target word profiles (i.e., the words 
produced to the two targets) was calculated based on the 
Pearson’s formula. This correlation matrix was converted 
into a weighted, undirected network, such that each target 
word was a node in the network, and the correlation between 
two target words represented the weight of the edge between 
them. This fully-connected network was then reduced to a 
planar maximally filtered graph, resulting in a smaller planar 
network (a network in which no edges cross each other) with 
the same target nodes, but only edges that represent the most 
relevant associations between target words. Path length 
between word-pairs was then calculated as the shortest path 
from one word to another in this smaller network. Figure 1 
(Left panel) displays a large-scale visualization of the ACN, 
and Figure 2 (Left panel) displays the 6-step shortest path 
from RELEASE to ANCHOR.  

Undirected and Directed Step Distance Networks 
Following Steyvers and Tenenbaum (2005), in the Directed 
SDN, two words (a and b) were connected by an edge if the 
word a evoked the word b as an associative response for at 
least two participants in the Nelson database. In the 
Undirected SDN, words were connected if a evoked b or b 

Figure 1: Large-scale visualization of the Association-
Correlation Network, Directed and Undirected Step 

Distance Networks. 
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evoked a, independent of the associative direction. Path 
length for each word pair in the network was calculated as the 
shortest path from one word to another. Figures 1 and 2 
(Middle and right panels) display visualizations of the two 
SDNs, and the shortest path from RELEASE to ANCHOR. 

Network Comparisons 
Table 1 displays the network parameters for the three 
networks. As is evident from the large-scale visualizations, 
ACN is sparser than the SDNs, with a greater clustering 
coefficient (an index of network connectivity, i.e., the extent 
to which neighborhoods of neighboring nodes overlap) and 
longer average path lengths, indicating more distant 
associations compared to the direct associations captured by 
SDNs with shorter path lengths overall. Table 2 displays the 
correlation among the path lengths derived from each of the 
networks for the sets of words used in our experiments. As is 
clear, there were considerable differences across the different 
types of network configurations. As shown in Figure 1, the 
ACN is a sparsely connected network, in which obscure, 

 
Table 1: Network parameters for the semantic networks 

 

Note. n = the number of nodes; <k> = average number of 
connections; L = average shortest path length; D = diameter of 
network; C = clustering coefficient; Lrandom = average shortest path 
length with random graph of same size and density; Crandom = the 
clustering coefficient for a random graph of same size and density. 
 

Table 2: Correlation matrix for network path lengths and 
word2vec cosines for word-pairs in Experiments 1 and 2 

 

 ACN Undirected 
SDN 

Directed 
SDN 

word2vec 
Cosines 

ACN 1 - - - 
Undirected 

SDN .49 1 - - 

Directed 
SDN .35 .58 1 - 

word2vec 
Cosines -.42 -.55 -.45 1 

 
Note: All correlations were significant at the p < .05 level 
 
higher-level associations are closely represented (e.g., 
TRAGEDY-REMORSE is 1 step away), whereas several 
direct (e.g., VOLCANO-ASH is 15 steps away) and mediated 
associations (e.g., LION-STRIPES is 38 steps away) are 
exaggerated. Overall, path lengths derived from the two 
SDNs were very highly correlated, suggesting that the simple 
associative networks largely overlap in their network 
structure, and differ from the ACN. 

Vector Cosines via word2vec 
The word2vec model (Mikolov et al., 2013) trains neural 
networks based on words that naturally co-occur in a text 
corpus and uses this contextual information to predict a 
word’s immediate contextual neighborhood.  Typically, these 
contextual words have probabilities associated with them, 
which indicate the likelihood of words co-occurring together 
in natural language. If two words occur in similar contexts, 
the model learns similar vector representations for those 
words. Cosines between these vector representations thus 
serve as indices of semantic similarity. For all the word pairs 
used in the current experiments, we obtained word2vec 
cosines from a pre-trained model trained on 100 billion words 
from a Google News dataset (Mikolov et al., 2013). Table 2 
displays the correlations between word2vec cosines and path 
lengths derived from the three networks described above. 
Note that word2vec cosines were negatively correlated with 
the path lengths, due to the direct cosine similarity measure 
used. Further, there were considerable differences across the 
models in the extent to which they captured “semantic 
similarity”, given that the average correlation among all the 
measures was only .46.  

Experiment 1 

Methods 
Participants Forty Amazon Mechanical Turk users (Mage= 
37 years, SD = 10.4) and 40 undergraduate students (Mage= 
20 years, SD = 0.8) recruited from Washington University in 
St Louis participated in the study. All participants were self-
reported native English speakers. 
 

 Simple Step  
Distance Networks 

Association-
Correlation Networks  

 Undirected Directed English Hebrew 
n 5018 5018 5018 800 

<k> 22 12.7 5.85 5.94 
L 3.04 4.27 23 10 
D 5 10 61 25 
C .186 .186 .69 .68 

Lrandom 3.03 4.26 1.95 3.94 
Crandom .004 .004 .05 .005 

 
Figure 2: Shortest path from RELEASE to ANCHOR in the 
Association-Correlation Network, Undirected and Directed 

Step Distance Networks. 
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Materials In order to extend and replicate the Kenett et al. 
study, we randomly sampled 40 word-pairs from path lengths 
1, 2, 3, 4, 6 and 15 from the ACN. The stimuli consisted of 
1200 distinct word-pairs across 5 lists. For each word-pair 
sampled from the ACN, we also obtained path lengths in the 
Undirected and Directed SDN and obtained vector cosines 
from the word2vec model. We also obtained lexical 
characteristics (word length, frequency, lexical decision 
times and concreteness) for all the words from the English 
Lexicon Project (ELP; Balota et al., 2007) and used these as 
covariates in our analyses. All items used  in the current study 
are available at https://github.com/abhilasha-kumar/Distant-
Semantic-Connectivity.  

Procedure 
The relatedness task was developed in JSPsych, an online 
software for conducting psychological experiments. Each 
participant completed the experiment online. Following 
Kennett et al., on each trial, participants saw a fixation cross 
for 200 ms, followed by a blank screen for 100 ms. Then, the 
prime was briefly presented for 120 ms, followed by the 
target for 120 ms. Participants decided whether the prime and 
target were related or unrelated and responsed by pressing a 
key (K or L, counterbalanced). After a response, participants 
saw a blank screen for 500 ms before the next trial.  

Results 
There were no differences in the overall patterns between the 
five lists, or the Amazon Mechanical Turk or Washington 
University sample, thus all analyses included the full sample.  

 
Effect of ACN Path Length on RTs To replicate the 
analysis procedures reported in Kenett et al. (2017), each path 
length was first classified as related or unrelated, based on the 
percentage of related and unrelated responses to specific 
word pairs. The following were the percentages of “related” 
responses for the path lengths: 1 (66%), 2 (47%), 3 (29%), 4 
(27%), 6 (16%) and 15 (13%). Based on these percentages 

and the criterion of at least 50% of words producing a related 
response, only path length 1 was considered related, and the 
remaining path lengths were considered unrelated. To 
minimize any effects of slowing and individual differences, 
all RTs faster than 250 ms and slower than 2000 ms were 
removed. Second, a mean and standard deviation were 
calculated from the remaining trials for each participant and 
any RTs that exceeded 3 standard deviations (SDs) from the 
participant mean were also removed. This process excluded 
5.4% of the total trials. After this trimming procedure, we 
standardized the remaining trials within each participant and 
conducted all primary analyses using trial-level standardized 
RTs. A repeated measures Analysis of Variance (ANOVA) 
on mean RT revealed a significant main effect of path length, 
F1(5, 395) = 7.42, p < .001, ηp2 = .09. RTs significantly 
increased from path length 1 to 2 (p = .006), decreased from 
path lengths 2 to 3 (p = .001) and 4 to 15 (p = .015). As shown 
in Figures 3 and 4, we successfully replicated the pattern 
reported by Kenett et al. for RTs as a function of path length 
in the ACN. Importantly, this pattern persisted after including 
degree of relatedness as a predictor in our analyses, 
standardizing the RTs and controlling for lexical variables 
such as word frequency, length, concreteness and 
standardized lexical decision times, as well as mean degree 
(i.e., number of direct neighbors of the words) using linear 
mixed effects models.  
 
Effect of SDN Path Length on RTs In addition to the ACN 
based on Kenett et al., as noted, we also examined the effect 
of path lengths derived from two SDNs (Undirected and 
Directed) based on the method used in Steyvers and 
Tenenbaum (2005) on standardized RTs in the relatedness 
task. As shown in Figure 4, both the Undirected and Directed 
networks also showed a quadratic trend for standardized RTs 
as a function of path length, with RTs significantly rising 
from path lengths 1 to 2 (p<.001) and then reliably decreasing 

 
Figure 3: Response times for relatedness judgments in 

Experiment 1 and Kenett et al. (2017) 

 
Figure 4: Standardized RTs for relatedness judgments in 
Experiment 1 as a function of network path lengths and 

word2vec cosine quintiles (reverse-scored) 
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from path length 2 onwards. We observed a significant 
decline in RTs from path lengths 3 to 4 in the Undirected (p 
< .001), and from 2 to 5 in the Directed network (p < .001). 
 
Effect of word2vec Cosines on RTs We also computed 
vector cosines derived via word2vec for each of the word 
pairs in Experiment 1. As shown in Figure 4, continuous 
word2vec cosines successfully predicted standardized RTs to 
make relatedness judgments (b = -.22, t = -3.54, p < .001), 
and reproduced the quadratic pattern previously observed. 

Discussion 
The results from Experiment 1 provide strong evidence for 
multiple-step priming in the relatedness judgment task, and 
also replicate and extend the quadratic pattern observed by 
Kenett et al. (2017) for the Hebrew network. In addition, 
simple directional and nondirectional SDNs also captured 
distant semantic relationships between concepts. This is 
noteworthy, as it indicates that the number of “steps” in the 
ACN do not necessarily reflect direct associative strength, at 
least based on distances captured by simple SDNs. Of course, 
this does not imply that the ACN distances are unimportant, 
as the ACN shows comparable performance in the current 
task. We also found that the word2vec model successfully 
captured the quadratic trend, although there do seem to be 
differences in the semantic information captured by all the 
models, based on the relatively low correlations across the 
networks. 

It is important to note that the nature of the relatedness 
decisions is likely driving the quadratic trend. Specifically, 
RTs are slowed to make “unrelated” decisions for the more 
ambiguous items e.g., at path lengths 2 and 3. Interestingly, 
the RTs for only the “related” decisions continued to increase 
with greater path lengths, a finding that is more consistent 
with a spreading-activation account. In addition, the 
networks in this study were explicitly created from free 
association norms, and their explanatory power may reflect 
the high degree of overlap between the base task (free 
association) and the relatedness judgment task. Thus, in 
Experiment 2, we explored whether network path length and 
vector cosines can account for semantic priming in a primed 
progressive demasking task, which does not explicitly 
involve explicit semantic retrieval to make a response. 

Experiment 2 

Methods 
Participants Thirty-nine young adults (Mage = 20.9 years, 
SD= 2.8) were recruited from undergraduate courses at 
Washington University in St Louis. All participants were 
Native English speakers. 
 
Materials One list of 240 items was randomly chosen from 
one of the five lists used in Experiment 1. As before, the list 
contained 40 word-pairs from path lengths 1, 2, 3, 4, 6 and 15 
from ACN. Each word pair also had corresponding path 
lengths in the undirected and Directed SDN, as well as 

word2vec cosines. This list was then used to create two lists 
counterbalanced across participants, so that each word was a 
prime as well as a target in the study.  

Procedure 
The primed progressive demasking task was developed using 
E-Prime 2.2. Participants saw a black fixation cross on the 
screen for 500 ms. Next, a blank screen was displayed for 200 
ms, followed by the prime word, displayed for 120 ms. 
Immediately after, the target word was progressively 
demasked on the screen. During progressive demasking, the 
display alternated between the target (e.g., XXXX) and a 
mask (a row of pound signs matching the length of the word, 
e.g., ######). The total duration of target-mask pair was held 
constant at 500 ms but the ratio of target display time to target 
display time progressively increased. The duration of the 
target increased at each cycle (0, 16, 32,...,500 ms) and the 
duration of the mask decreased (500, 484, 468,…0 ms). The 
demasking procedure continued until the target was fully 
revealed for 500 ms, or until the target was identified by the 
participants by pressing the spacebar and typing in the target 
word. The next trial began immediately after typing the target 
and pressing spacebar.  

Results 
Effect of ACN Path Length on RTs All trials in which the 
correct target was not identified were excluded from analyses 
(2.7%). Next, we standardized the RTs to identify the target 
as in Experiment 1. A repeated measures ANOVA revealed a 
significant effect of path length, F1(5,190) = 53.85, p < 0.001, 
ηp2 = .586. As shown in Figure 5, we observed a significant 
increase in RTs from path lengths 1 to 2 (p <.001), and 2 to 3 
(p <.001). Differences between RTs at path length 3 and 
higher ACN path lengths were not reliable. These effects 
persisted after controlling for lexical variables & mean 
degree (i.e., number of direct neighbors of the words).  
 
Effect of SDN Path Length on RTs. We also examined the 
effect of path lengths from the Undirected and Directed SDNs 
on standardized RTs. As shown in Figure 5, path lengths from 
the Undirected SDN significantly predicted RTs to identify 
the target. RTs increased from path length 1 to 2 (p = .001), 
from path lengths 2 to 3 (p < .001), and then marginally from 
3 to 4 (p = .058). Path lengths from the Directed SDN also 
predicted RTs to identify the target. RTs increased from path 
lengths 2 to 3 (p = .015) and 4 to 5 (p = .038). 
 
Effect of word2vec cosines on RTs We also obtained vector 
cosines derived via word2vec for each of the word pairs, as 
in Experiment 1. As shown in Figure 5, continuous word2vec 
cosines also successfully predicted standardized RTs to 
identify the target ((b = -1.34, t = -9.18, p < .001). 
 
Model Comparisons Because the results from this task were 
not complicated by the relatedness decision as in Experiment 
1 (i.e., RTs should be linearly related to demasking 
performance), we were able to directly compare the model 
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estimates. To estimate the unique variance accounted for by 
each type of network configuration at the item level, we 
calculated the individual R2 for each model, as well as 
estimates of AIC and BIC, after controlling for covariates. As 
shown in Table 3, the models had overall comparable fits, and 
explained a significant amount of variance over and above 
the model with just the covariates, although as discussed 
before, these models seem to capture somewhat different 
semantic information.  

Discussion 
Results from Experiment 2 indicated that network path 
lengths can indeed account for performance in a progressive 
demasking task. RTs linearly increased as a function of SDN 
path lengths and word2vec cosines. This is especially 
interesting as the demasking task does not require any direct 
retrieval of semantic association to make the response, and 
yet, we see that path lengths derived from word associations 
directly predict demasking response latencies. Further, we 
found reliable differences at relatively distant path lengths in 
the simple association networks, suggesting that simple 
association networks are able to capture distant semantic 
relationships in the memory network, even in tasks that do 
not necessarily direct attention to semantics. Interestingly, we 
find that path lengths from the ACN increase linearly only up 
to 3 steps, after which the network seems to no longer be 
sensitive to priming effects in this task, suggesting 
differences in the network structures.  

General Discussion 
A primary goal of the present study was to compare the extent 
to which measures of semantic similarity derived from 
different types of network-based models explained distant 
semantic priming. In Experiment 1, we replicated and 
extended a pattern previously reported by Kenett et al. (2017) 
to a larger 5018-word association network in English and also  

 
Table 3: Model comparison metrics for Experiment 2 

 

Model R2 (%) AIC BIC Likelihood 
ratio test 

Covariates 13.33 561.9 586.1 --- 
ACN 26.99 500.8 545.1 p <.001 

U-SDN 22.16 523.3 559.6 p < .001 
D-SDN 25.98 506.4 550.8 p <.001 

word2vec 28.03 486.8 515 p < .001 
 
compared their graph-theoretical approach of capturing 
semantic similarity with simpler Undirected and Directed 
Step Distance Networks (Steyvers & Tenenbaum, 2005). Our 
results indicated that simple association networks can also 
capture similar distant relationships between words in the 
lexicon. Experiment 2 indicated that network models also 
successfully capture performance in tasks that do not directly 
rely on word association.   

As described earlier, the ACN uses correlations between 
association responses and a planarity criterion to construct 
the network, and possibly captures more higher-level 
associations. This leads to several direct word associations 
(e.g., TIGER-STRIPES is 37 steps away in the ACN and 1 
step away in the SDNs) being dropped, giving rise to more 
high-level associations (e.g., SUEDE-SERPENT is only 2 
steps away in the ACN but farthest, i.e., 4 steps away in the 
SDNs). The SDNs, on the other hand, capture direct 
associations between words. Importantly, given that all 
networks had comparable fits, it seems that each network 
captured different sources of variance in the task. 

It is possible that the ACN may be differentially sensitive 
to semantic relationships if a different criterion for network 
construction was used, or possibly in a conceptually driven 
semantic task, which would suggest that different types of 
stimuli/tasks emphasize different properties of the lexicon. 
Indeed, Gruenenfelder, Recchia, Rubin and Jones (2015) 
recently argued for a hybrid representation of semantic 
memory and suggested that individuals switch between a 
contextual representation and associative networks when 
generating free associations. Our results suggest that there 
may also be differences in how individuals use semantic 
representations in tasks that do not explicitly involve word 
association but are still sensitive to semantic relationships. 

Another important goal of the current study was to 
investigate how network-based models of semantic 
representation compare to a distributed model, word2vec, 
which has been shown to explain human performance in 
some semantic tasks. Our results indicate that word2vec 
successfully captures similar patterns of behavior as the 
semantic networks. However, we also observed important 
differences in the semantic relationships captured by each of 
the models. For example, the word BOXING is 2 steps away 
from the word SPLINTER in the Undirected SDN but is very 
weakly associated in the word2vec space with a cosine of -
0.022. Thus, there appear to be differences in the type of 
semantic information the models capture, e.g., the path from 

Figure 5: Standardized RTs to identify target word in 
demasking in Experiment 2 as a function of network path 
lengths and word2vec cosine quintiles (reverse-scored) 
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BOXING to SPLINTER is mediated by the word PAIN in the 
association networks, but it is possible that this particular 
usage of SPLINTER does not co-occur in the same contexts 
as BOXING very often, which is the mechanism underlying 
word2vec model. Thus, these findings indicate that the nature 
of the task as well as the underlying representation are both 
critical variables that determine the extent to which semantic 
models explain human performance. Importantly, the tasks in 
the current study focused on semantic priming, and it is 
possible that spatial models and correlation networks are 
most useful in conceptual tasks like verbal analogies.  

There were some limitations to the current study. First, the 
Hebrew network used in Kenett et al. (2017) was based on 
responses from a continuous free association task, whereas 
the Nelson et al. norms are based on a discrete free 
association task. The validity of both continuous and discrete 
responses has been debated (Hahn, 2008; Nelson, McEvoy & 
Dennis, 2000) and our use of discrete responses may have 
produced a different network structure than one based on 
continuous responses. However, given that the English ACN 
and SDNs were created from the same norms, we believe that 
the differences observed between the ACN and the SDNs 
were not critically influenced by the nature of associative 
responses per se, although this issue deserves further 
exploration. Further, the word2vec model was trained on a 
Google News corpus, which is very different from the Nelson 
et al. database, and the type of corpus can impact how well 
semantic models account for performance (Recchia & Jones, 
2009). Thus, the nature of the task, stimuli and training 
corpora are all likely to influence the extent to which 
semantic models explain cognitive task performance. 

In conclusion, the current set of experiments investigated 
the predictive power of path lengths derived from three large 
semantic networks and cosines derived from a neural network 
model in two behavioral tasks and provided strong evidence 
for multiple-step priming. We also demonstrated important 
structural differences between correlation-based networks 
and simple association networks and showed that simple 
association networks are also able to capture relatively distant 
semantic relationships. Finally, we showed that word2vec 
successfully captures similar behavioral patterns across two 
tasks. However, based on preliminary analyses, it appears 
that word2vec and the ACN are more likely to capture higher-
level semantic representations, whereas simple step networks 
are more likely to capture direct associations.  Clearly, further 
work is needed to substantiate these observations.   
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Garnering Support for Number and Area as Integral Dimensions
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Abstract

Non-numerical magnitudes such as cumulative area, element size, and density influence the perception of number. How-
ever, it is unclear whether interactions between number and non-numerical magnitudes reflect independent representations
that interface vis--vis other systems (e.g., language) or, conversely, reflect holistic perception of number and other mag-
nitudes. In the present work, we found converging evidence that number and cumulative area are perceptually integral
dimensions. Whether assessed explicitly (Experiment 1) or implicitly (Experiment 2), perceived similarity for dot arrays
that varied parametrically in number and area was best modeled by Euclidean, as opposed to city-block, distance. Criti-
cally, we also found that the integrality of number and area is comparable to other integral dimensions (Exp. 1: bright-
ness/saturation; Exp. 2: radial frequency components), but different from separable dimensions (Exp. 1: shape/color; Exp.
2: thickness/curvature). In summary, these findings suggest that non-symbolic number perception is holistic, such that the
processing of non-numerical magnitudes is obligatory.
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Abstract

In this paper we present a model of three central aspects of
probabilistic cognition: event prediction, feature formation,
and attention allocation. While most models of probabilistic
reasoning take a parameter estimation and error minimisation
approach (sometimes referred to as ‘predictive coding’, and of-
ten described in terms of Bayesian updating), our model takes
a contrasting frequentist hypothesis-testing approach. This
choice is motivated by a series of recent results suggesting that
people’s probabilistic reasoning follows frequentist probability
theory. In simulation tests we demonstrate that this frequentist
model, in which predictive features are formed by a process of
null hypothesis significance testing, can give a successful ac-
count of event prediction and attentional switching behaviour.

Introduction
There are, broadly speaking, two approaches to statistical rea-
soning: a ‘parameter estimation’ approach (associated pri-
marily with Bayesian statistics), where some form of genera-
tive model is used to predict data and the estimation process
involves adjusting parameters of this model so as to reduce er-
rors in prediction; and a ‘hypothesis testing’ approach (asso-
ciated primarily with frequentist statistics) where a decision is
made to reject a hypothesis (that is, to reject a possible gener-
ative model) when the probability of the observed data under
that model is less than some significance level. Most current
models of probabilistic cognition, learning and attention take
the parameter estimation and error minimisation approach,
sometimes referred to as ‘predictive coding’; this approach
is naturally described in terms of Bayesian priors (values of
generative model parameters) which are ‘updated’ by expe-
rience, to produce more accurate posterior estimates of those
parameters (see e.g. Clark, 2013; Griffiths and Tenenbaum,
2006; Tenenbaum et al., 2011; Miller et al., 1995).

In this paper we present a model of probabilistic cogni-
tion based on frequentist hypothesis-testing rather than pa-
rameter estimation and error minimisation. We apply this
model to the processes of probabilistic learning, feature for-
mation, event prediction, and attention. There are three mo-
tivations for this frequentist hypothesis-testing approach to
probabilistic cognition. First, the contrasting parameter es-
timation and hypothesis-testing approaches to statistical rea-
soning are known to have different strengths and weaknesses:
modelling probabilistic cognition via frequentist hypothesis-
testing is worthwhile because it allows us to see this type of
cognition in a new light.

Second, the hypothesis-testing approach applies very natu-
rally to one core aspect of probabilistic cognition; that of de-
cision making. Decision making is central to feature forma-
tion (given observed pattern of co-occurrence between events,
how do we decide whether to treat that pattern as represent-
ing a single complex event, and so form a feature represent-
ing that event?), event prediction (given estimated probabil-
ities of various future events or outcomes, how do we de-
cide which event to predict?) and attention (given multiple
sources of information, how do we decide whether to direct
our attention to one source rather than another?) The frequen-
tist hypothesis-testing approach was specifically developed to
guide decision-making on the basis of data (see e.g. Fisher,
1937), and so provides a natural normative framework for
modelling decision making in prediction, feature formation
and attention allocation.

Finally, this model is motivated by recent evidence sug-
gesting that people’s probabilistic reasoning processes follow
the requirements of frequentist probability theory (Costello
and Watts, 2018a, 2016), and that a range of well-known bi-
ases in probabilistic reasoning can be explained as a conse-
quence of regression produced by random variation or noise
in normatively correct frequentist reasoning (Costello and
Watts, 2014, 2018b). The model described here represents a
computational implementation of this account; in this model
random variation arises simply as a consequence of sampling.

We present this model incrementally, focusing first on pre-
diction, feature formation and probabilistic learning for a
single ‘stream’ of input (that is, with fixed attention). We
then generalise to learning, feature formation and prediction
across multiple simultaneous streams of input (where atten-
tion moves from stream to stream). We test the frequentist ap-
proach by comparing the effectiveness of an attention switch-
ing mechanism derived from frequentist hypothesis testing
against the effectiveness of a switching mechanism based on
error minimisation (as used in predictive coding), and against
a random switching baseline.

The model
At an abstract level, temporal prediction involves taking a
temporally ordered stream of categorical events or labels,
such as

A,B,S,A,B,S,A,−,S,A,−,S,−,A,B,S,A,B,A,B (1)
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and predicting the next event in the stream. Our model pre-
dicts future events in such sequences by constructing fea-
tures from observation of a given stream, identifying features
which allow statistically reliable predictions, and then com-
bining these ‘predictive features’ to give an overall predicted
probability for the next event in the stream.

Each feature in our model consists of an antecedent event
A, a consequent event S, and a time interval t between them.
Each feature also holds two counts: k, a count of the number
of times A has been followed, after time t, by S; and n, a count
of the number of times A has been followed, after time t, by
any event. Finally, each feature holds a conditional probabil-
ity P(S|A) = k/n, representing the probability of seeing the
consequent S at time t after the occurrence of the antecdent
A.

The antecedent A in a given feature may be a single event
(e.g. the label A as a predictor of the next event, in our exam-
ple in (1)), or may be a combination of events occurring over
time (e.g the consecutive labels A,B as a predictor of the next
event). Our model stores, in ‘Short Term Memory’ (STM),
the N most recent events in the stream. Our model stores,
in ‘Long Term Memory’ (LTM), a large number of simple or
complex features that have been observed, with some features
marked as ‘reliable’, meaning that there is statistically signifi-
cant evidence supporting the relationship between antecedent
A and consequent S in that feature. These reliable features are
used to make predictions about the next event in the stream.
The model has two free parameters: N, the size of short term
memory, which we set by default at 4, and c, the significance
criterion, which we set by default at c = 0.05.

Reliable features and prediction
To decide whether a given feature describes a statistically re-
liable relationship between antecedent A and consequent S,
our model follows the hypothesis-testing approach of stan-
dard frequentist probability theory. We consider two possible
cases: one where the antecedent event is a single ‘atomic’
event; and one where the antecedent is a complex or compos-
ite event, made up of multiple subevents.

In the case of a single event as antecedent A, we have two
hypotheses: a null hypothesis (that there is no relationship
between A and S; under this hypothesis the probability getting
S after A is simply the base probability of event S, P(S)) and
an alternative hypothesis (that there is a reliable relationship
between A and S; under this hypothesis the probability seeing
S after A is given by P(S|A)). The probability of obtaining
k instances of S after A in a sample of n occurrences of A,
assuming that P(A) = p, is given by the binomial

Bin(k,x, p) =
(

n
k

)
pk(1− p)n−k (2)

This means that if Bin(k,n,P(S)) < c, for some critical sig-
nificance level c, then we can reject the null hypothesis that
P(A) = P(S), and can instead accept the alternative hypothe-
sis, that there is a reliable predictive relationship between A

and S. When Bin(k,n,P(S)) < c the model thus marks the
feature linking A with S after time t as a statistically reliable
predictive feature.

We now consider the situation where we have a complex
event made up of sub-events A and B (each of which may
itself be made up of further subevents), and where this com-
plex event AthenB is itself an antecedent of our consequent
S. Here we take k to represent the number of times conse-
quent S has occurred at time t after antecedent AthenB in the
observed time series, and n to represent the number of times
any event at all has occurred at time t after antecedent AthenB
in the series. In this situation we test against three possible
‘null hypotheses’: that P(S|AthenB) = P(S), as before; that
P(S) = P(S|A) (that the probability getting S after AthenB is
simply the probability of getting S after A, P(S|A)); and that
P(S) = P(S|B) (that the probability getting S after AthenB is
simply the probability of getting S after A, P(S|B)). These
three ‘null hypotheses’ are tested using the binomial as be-
fore. If all three tests are significant, the model concludes that
the complex feature AthenB is itself a distinct, statistically re-
liable predictor of the occurrence of S: given that AthenB has
occurred, the probability of S is given by P(S|AthenB) (rather
than by P(S),P(S|A) or P(S|B)). By contrast, if there is no
additional relationship between the feature AthenB and S be-
yond that given by A, B, and the base rate P(S) then we can
say that A and B (or some combination of their subevents) are
independent predictors of the consequence S.

Using this hypothesis-testing procedure our model iden-
tifies, for a given sequence of events, the set of indepen-
dent, statistically reliable, features occurring in that sequence
which predict a given event S at the next timestep. Following
standard frequentist probability theory the overall predicted
probability of S is calculated by ‘ORing’ these independent
predictions

Pr(S|A1, . . . ,An) = 1− ∏
i=1..n

(1−P(S|Ai)) (3)

to give an overall predicted probability for S occurring next
in the sequence.

An example
We can give an example of the model’s operation for our ex-
ample sequence in (1). In that series there are 20 events in to-
tal, of which 5 are S (so P(S)= 0.25). There are 3 occurrences
of B followed one step later by S, and 1 occurrence of B fol-
lowed one step later by a different event. To test the hypothe-
sis that the occurrence of B predicts the occurrence of S at the
next time step, we calculate the probability of seeing 4 occur-
rences of B, 3 of which are followed by S, if S was occurring
at its base rate probability of 0.25: Bin(3,4,0.25) = 0.0469.
Since this probability is less than our significance criterion
of c = 0.05 we conclude that there is a statistically reliable
relationship between B and S. Similarly, there are 5 occur-
rences of A followed two steps later by S, and 1 occurrence of
A followed two steps later by a different event. To test the hy-
pothesis that the occurrence of A predicts the occurrence of S
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two steps later, we calculate the probability of seeing 6 occur-
rences of A, 5 of which are followed by S, if S was occurring
at its base rate probability of 0.25: Bin(5,6,0.25) = 0.0004.
This probability is also less than our significance criterion of
0.05 and we conclude that there is a statistically reliable rela-
tionship between A and S.

We also consider the complex predictive feature AthenB.
There are 3 occurrences of AthenB followed one step later
by S, and 1 occurrence of AthenB followed one step later
by a different event. Since we’ve seen 4 occurrences of B,
3 of which were immediately followed by S, we estimate
P(S|B) = 3/4 = 0.75. Testing against the hypothesis that
the observed relationship between AthenB and S is explained
simply be the presence of B we calculate the binomial prob-
ability Bin(3,4,0.75) = 0.42, and we see that there is no evi-
dence for an additional relationship between the AthenB and
S beyond that given by B. Since we’ve seen 5 occurrences
of A, 4 of which were immediately followed by S, we esti-
mate P(S|A) = 4/5 = 0.8, and since Bin(3,4,0.8) = 0.41 we
similarly see that there is no evidence for an additional rela-
tionship between the AthenB and S beyond that given by A.
We can thus conclude that the complex event AthenB is not a
reliable predictor of S; instead, the two simple events A and
B are independent predictors of the occurrence of S, with A
predicting S after 2 steps with P(S|A) = 0.8, and B predicting
S after 1 step with P(S|B) = 0.75. If events A,B have just
occurred, the probability of S occurring next is obtained by
ORing the predictions of these two statistically reliable fea-
tures, giving

P(S) = 1−(1−P(S|A))(1−P(S|B)) = 1−0.2×0.25 = 0.95

as the predicted probability of S occurring at the next timestep
in the stream shown in (1).

Switching between multiple streams
In this section we apply this model to feature formation and
prediction across multiple different streams of input. We as-
sume a single Long Term Memory (LTM), as before. To deal
with multiple streams of input we assume multiple separate
STM stores, one for each stream, and with each STM storing
the last N events that have occurred in that stream. The model
uses the statistically reliable features in LTM to calculate pre-
dicted probabilities for the next event in each input stream.
The predicted next event for input stream i is calculated by
finding statistically reliable predictive features in LTM whose
antecedent event has occurred in ST Mi (that is, in the store of
recent events from stream i), and then combining the predic-
tions from those features as described above.

Prediction, for each stream, happens in parallel and is com-
putationally cheap (there are typically very few statistically
reliable predictive features whose antecedents are present in
a given STM). Learning and feature formation, however, are
computationally ‘expensive’ and so take place only for one
particular stream: the stream that is the current focus of at-
tention. The model forms new features, updates antecedent

and consequent occurrence counts, and identifies statistically
reliable predictive features just as before, but only for this fo-
cal stream.

As the overall goal of the model is to accurately predict
its environment (to accurately predict event occurrence in all
streams), the model must occasionally switch its focus of at-
tention from one stream to another. Attentional switching is
a form of decision making: the model must decide to switch
attention away from one stream of input (and so cease any
predictive learning from events in that stream) and towards
another stream of input (so beginning the process of learn-
ing from events in that new stream). The overall goal of the
model is to form statistically reliable predictive features; sat-
isfaction of this goal requires a decision process where atten-
tion is switched towards streams where statistically reliable
predictive features are more likely to be formed, and away
from streams where such reliable features are less likely to
be formed. As before, frequentist hypothesis testing gives a
natural and normatively correct way to make such switching
decisions.

Suppose we are considering forming a reliable feature
ApredictsS, and have observed k instances of A followed by S,
out of n occurrences of A overall. This feature will be judged
reliable when the observed pattern of co-occurrence between
A and S has a low probability of occurrence under the null hy-
pothesis that A does not predict S (when bin(k,n,P(S))< c).
This means that the lower the value of this binomial expres-
sion bin(k,n,P(S)), the more likely it is that the null hypothe-
sis is false and the there is some reliable relationship between
A and S. In other words, if we have we have some feature
for which bin(k,n, p) > c (some feature which is not yet re-
liable), then the probability that this feature will become re-
liable is proportional to 1− bin(k,n, p). More generally, if a
given stream i contains a number of not-yet-reliable features
with counts k j and n j and null hypothesis values p j, then the
overall probability of forming a reliable feature in that stream
is obtained by ORing the individual probabilities of each of
these features becoming reliable, as given in the expression

F(i) = 1− ∑
j= not yet
reliable

feature in
stream i

bin(k j,n j, p j) (4)

The greater the value of this expression F(i) for a given
stream i, the greater the probability that switching atten-
tion to that stream will lead to the formation of a new reli-
able predictive feature. The model uses these values F(i) to
guide switching; at each timestep the model calculates F(i),
the probability of constructing a new reliable feature, for all
streams i including the current stream x, and identifies the
stream max with the highest value. If F(max)− F(x) > s,
where s is a switching decision criterion (if the chance of
forming a new feature in stream max is s greater than the
chance of forming a new feature in the current stream) then
the model switches attention to stream max; otherwise atten-
tion remains in the current stream.
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Testing the Model
We test our model via Markov Chain Monte Carlo simulation,
as follows.

Any process producing a series of events can be repre-
sented by an nth order Markov chain (for some value of n).
Such chains thus represent realistic generative models of se-
quential event occurrence. For each stream of information
in our simulation, we construct a generative n-th Markov
chain with m = 4 (4 distinct categorical events) and n = 4
( the current state consists of the last 4 events). There are
44 = 256 distinct states in this chain, each with 4 transition
probabilities. For each state these 4 transition probabilities
are assigned random values, normalised so their sum for that
state equals 1. Each stream thus represents a (randomly con-
structed) Markov chain process.

We use the Markov chain to generate a large sequence of
categorical events from that stream. We first pick an 4 initial
events at random, representing the initial state of the Markov
Chain. We identify the 4 transition probabilities associated
with that state, and choose one transition (one new event)
at random, proportional to its transition probability from the
current state in the Markov Chain. The selected event is
added to our sequence of generated events. The new state of
our Markov model now consists of the 4 most recent events
(three previous events and the event that was just added to the
series), and the cycle repeats.

The events for each stream are fed in parallel to our model,
which forms statistically reliable predictive features, makes
predictions for the next event to occur at each time step in
each stream, and switches attention between streams as de-
scribed above.

After an initial training phase we continue running the
model and the Markov Chain generators for an additional
test phase. We gather, at each time step of this phase, the
model’s predicted probability for each event in each stream,
and whether or not that event actually occurred. We assess the
model by gathering together all cases where the model pre-
dicts that an event will occur with probability in some range
R. If the model is accurate, the proportion of those predicted
events that did actually occur should be in or near the range
R. For example: we gather together all cases where the model
predicted some event with probability in the range 0.1−0.15.
If the model’s predictions are accurate, then the predicted
event should have actually occurred around 10%− 15% of
the time; the probability (or proportion) of actual occurrence
of the predicted event should be close to the range 0.1−0.15.

Test 1: Learning from a single stream
Table 1 shows results obtained when running the model with
a single stream of input (no switching between streams), for a
5000 timestep training phase (during which the model formed
predictive features) followed by a 5000 timestep test phase
(during which we gathered the model’s predicted probabili-
ties for the next event, at each timestep). This table gives the
proportion of times the model’s predicted event occurred, for

Table 1: This table shows the number of times our model
predicted that an event would occur with a probability that fell
into a given range R (column 2), and of those predictions, the
number of times when the predicted event actually occurred
(column 3). If the model is making accurate predictions, the
proportion of occurrence of the predicted event (the observed
probability, column 4) should follow the range value R. The
two values are highly correlated (r = 0.99) indicating that the
model is predicting event probabilities accurately.

Predicted
probability

range R

Number of
predictions

in R

Predicted
event

occurred

Observed
probability
of predicted

event

0.05 - 0.10 1393 193 0.14
0.10 - 0.15 2268 401 0.18
0.15 - 0.20 2600 516 0.19
0.20 - 0.25 3016 6463 0.21
0.25 - 0.30 3901 1094 0.28
0.30 - 0.35 3341 1005 0.3
0.35 - 0.40 1806 597 0.33
0.40 - 0.45 788 272 0.35
0.45 - 0.50 307 117 0.38
0.50 - 0.55 171 64 0.47

correlation with probability range R 0.99

prediction ranges from 0.05− 0.10 to 0.55− 0.60. As the
table demonstrates, the model’s predicted probabilities corre-
sponded closely with the actual probability (or proportion) of
occurrence of the predicted event.

As Table 1 also demonstrates, there is regression in the
model’s predictions: for low predicted probability ranges, ob-
served event probabilities tend to be significantly higher than
the probability range, while for high predicted probability
ranges, observed event probabilities tend to be significantly
lower than the probability range. This pattern of regression
in turn implies that the models predicted probabilities are re-
gressive towards the center of the probability scale, relative
to true event probabilities Erev et al. (1994). This pattern of
regression is just as assumed in Costello & Watts frequentist
account of probabilistic reasoning (Costello and Watts, 2014,
2016, 2018a,b). This model thus provides a mechanistic im-
plementation of that account, in which regression arises as a
consequence of random sampling variation.

Test 2: Learning from a multiple streams
To test the hypothesis-testing model of switching given
above, we test the model in the same Random Markov chain
regime, but with 5 parallel streams of input, each with its own
randomly initialised Markov Chain generator. Specifically,
we compare learning under this model against learning under
random switching, and learning under an alternative ‘predic-
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Table 2: Average observed probability of occurrence of pre-
dicted event for prediction range R, across all streams. Ob-
served probabilities are calculated as in Table 1. Data is given
for each switching mechanism, running the model for 5000
times/steps in each case. Both the ‘Switch to max error’ and
the ‘switch to form reliable features’ switching methods gave
predictions closely correlated with observed probability.

Observed probability of predicted
event for predictions in range R

(by Switching method)

Range R Random
switching

Switch to
max. error

Form reliable
features

0.05 - 0.10 0.17 0.00 0.14
0.10 - 0.15 0.18 0.16 0.17
0.15 - 0.20 0.17 0.17 0.19
0.20 - 0.25 0.17 0.19 0.21
0.25 - 0.30 0.2 0.22 0.25
0.30 - 0.35 0.34 0.32 0.3
0.35 - 0.40 0.41 0.39 0.34
0.40 - 0.45 0.48 0.45 0.39
0.45 - 0.50 0.56 0.49 0.39
0.50 - 0.55 0.49 0.61 0.42

correlation 0.90 0.98 0.99

tive coding’ model of attentional switching, where we switch
attention to the stream where errors in event prediction are
highest.

Random switching As a baseline for comparison, we run
the model with a fixed-length random-choice method for
switching between streams. Under this switching method,
the model will remain in a certain stream for 100 timesteps
at a stretch; after each sequence of 100 timesteps has passed,
the model will switch to a randomly selected other stream.
Given that the learning model performs well in learning to
predict events in a single stream, we expect that the model
will perform relatively well in predicting events across multi-
ple streams under this random switching regime.

Switching to minimise predictive error As an alternative
for comparison, we run the model with a switching method
designed to minimise predictive error. In the predictive cod-
ing view, a learning model makes predictions which are com-
pared with outcomes: attention is driven towards locations
where those predictions are incorrect (and so more learning
is required) and away from locations where predictions are
accurate (and so less learning is needed). In our model, pre-
dictive error in a given stream at a given time is simply equal
to the predicted probability of the event that actually occurred
in that time: if S is the event that actually occurs and the
model’s prediction probability for S was high, then there is
little predictive error; if S occurs and the model’s prediction

Table 3: Average correlation between observed and predicted
event probability, obtained after learning with each switching
method, for runs of different length (500,1000,5000,10000
and 50000 times/steps). Both the ‘Switch to max error’ and
the ‘switch to form reliable features’ switching methods gave
predictions that were more closely correlated with observed
even occurrence rates, with the ‘switch to form reliable fea-
tures’ approach giving the highest average correlation be-
tween observed and predicted probability.

Correlation between observed and
predicted probability

(by Switching method)

Run size
Random
switching

Switch to
max. error

Form reliable
features

500 0.85 0.96 0.88
1000 0.89 0.97 0.96
5000 0.9 0.98 0.99

10000 0.9 0.98 0.99
50000 0.9 0.96 0.99

probability of S was low, there is significant predictive error.
To implement a switching mechanism based on predictive

error, we give a method which calculates, for each stream
i, the average predicted probability of the last N events that
occurred in this stream. The lower this average, the more
prediction error in stream i. Letting G(i) be equal to 1 mi-
nus the average prediction probability for stream i, the model
uses a decision criterion s to guide switching; at each timestep
the model calculates G(i) for all streams i including the cur-
rent stream x, and identifies the stream max with the highest
value. If Gmax−G(x) > s (if prediction error in stream max
is s greater than that in the current stream) then the model
switches attention to stream max; otherwise attention remains
in the current stream.

Results
We ran the model separately with each of the three different
switching mechanisms described above, and with different
number of training and test timesteps (500,1000,5000,10000
and 50000 timesteps: in each case the training phase was the
same length as the test phase). As before, we grouped the
model’s predictive probabilities into a series of ‘buckets’ or
ranges R (so one bucket would hold all cases where the model
predicted some event with a probability between 0.05 and 0.1,
another would hold all cases where the model predicted some
event with a probability between 0.1 and 0.15, and so on). For
each bucket we counted the number of times the predicted
event actually occurred. If the model is accurate, the pro-
portion of those predicted events that did actually occur (the
observed probability of occurrence of predicted events), for a
given range R should be in or near the range R (the predicted
probability for those events).
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Table 2 shows the results of this analysis of model predic-
tion for the 5000 timestep run with each of the three switching
methods. This table gives the observed probability of events
whose predicted probability fell in range R, in runs of the
model with each of the 3 possible switching methods. The
observed probabilities shown here are averages across predic-
tions made in all 5 parallel streams of input, in a single run
of the model (observed probabilities in each stream closely
follow the pattern seen here, and closely follow the pattern
seen in Table 1). As this table shows, there was a reliable
correlation between the range in which the model predicted
an event will occur and the actual rate or ratio of occurrence
of that event, for all switching methods. This is expected:
as we saw in the earlier ‘single-stream’ simulation tests, the
model does well in learning to predict events accurately from
observed event sequences, and so we would expect the model
to learn to predict all streams relatively well no matter what
attentional switching mechanism was being used.

The table also shows that both the ‘switch to form reli-
able features’ and the ‘switch to maximum error’ methods
give results that matched observed probabilities much more
closely than those given by the ‘random switching’ mecha-
nism. These results demonstrate the contribution that effec-
tive attentional switching can make to prediction accuracy.

Table 3 shows the correlation between model predicted
probabilities and observed event probabilities for each
switching method, across increasing training and test time.
As this table shows, correlation between predicted and ob-
served probabilities increased with learning to some degree
for all switching methods, but increased to very high correla-
tion values for both the ‘switch to max error’ and the ‘switch
to form reliable features’ methods. Taken together, these re-
sults demonstrate that this hypothesis-testing model forms
features which reliably predict future events, and switches at-
tention in a way that maximises formation of such features.

Conclusions
We have described a computational model of prediction, fea-
ture formation, and attentional switching. This model is in-
teresting because it is based on the frequentist, hypothesis-
testing approach to statistical reasoning, as opposed to the
parameter-estimation approach currently popular in models
of these cognitive processes. This model represents a compu-
tational implementation of a general account of probabilistic
reasoning, also based on frequentist probability (Costello and
Watts, 2014, 2016, 2018a). That account sees human proba-
bilistic reasoning as being based on normatively correct pro-
cesses, but subject to random variation or ‘noise’: that noise
has systematic regressive effects, producing a range of bi-
ases in people’s probabilistic judgement. The computational
model implemented here demonstrates just the pattern of re-
gression assumed in that more general account, and so inher-
its its account for those biases.

The frequentist, hypothesis-testing approach described
here may usefully address two problems with the standard
parameter-estimation approach to probabilistic prediction.

These problems arise because the Bayesian approach to learn-
ing and prediction often require the specification of initial
priors, in two separate ways. First, such models require ini-
tial assumptions as to the form of the generative model being
used to predict data (assumptions which specify which fea-
tures are ‘available’ for use in prediction, for example, and
which features are not). The hypothesis-testing approach de-
scribed here in some ways avoids this requirement, by pro-
viding a mechanism whereby predictive features are ‘built’
out of observed event. Second, such models require assump-
tions as to the initial values of parameters in that generative
model (assumptions about the initial, prior, probability dis-
tribution associated with features in the generative model).
The hypothesis-testing approach described here avoids this
requirement also, because features are not identified as ‘re-
liable’ (and so do not contribute to predictions) until the
events making up those features have been repeatedly ob-
served (that is, until any initial ’prior’ has been made irrel-
evant by repeated experience with the events in question).
These points suggest that an integrated approach, combining
the parameter-estimation and the hypothesis-testing perspec-
tives, may prove insightful. Understanding the interplay be-
tween hypothesis testing and parameter estimation in human
probabilistic reasoning is an important aim for future work.
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Abstract 

Many industry professionals are poorly calibrated, overestimating 
their ability to make accurate forecasts. Previous research has 
demonstrated that an individual’s calibration in a specific domain 
can be improved through calibration training in that domain; 
however devising a training program for each specific domain 
within a field is laborious. A more efficient method would be if 
individuals from different disciplines could undertake the same 
general training and transfer the skills learnt to their respective, 
specific domains. This study investigated whether calibration 
training in a general domain was transferable to the specific 
domain of petroleum engineering. The results showed that, whilst 
the feedback training was effective within the general domain, 
there was only limited transfer to the specific domain. This is 
argued to be due to recognition failure, where the participants 
failed to recognise that the skill learnt through training in the 
general domain could be transferred to the specific domain.  

Keywords: calibration; overconfidence; training; skill 
transfer. 

Introduction 
In technical disciplines and industries, individuals are 

required to provide range estimates, such as 80 percent 
confidence intervals, for uncertain parameters used in 
modeling and decision making (see, e.g., Capen, 1976). The 
accuracy of the individual’s estimates can greatly influence 
decisions, with significant impacts on company bottom lines 
(see, e.g., Welsh, Begg & Bratvold, 2007). Calibration is the 
measure of how well individuals’ estimates match real 
world outcomes (Lichtenstein, Fischhoff & Phillips, 1982). 
For example, if a weather forecaster makes multiple 
predictions of an 80% chance of rain, and on 80% of those 
occasions it does rain, they are well calibrated (for 80%), 
meaning they have a higher likelihood of providing more 
accurate estimates, which lead to more informed decisions. 

Poor calibration in range estimation tasks can result from 
cognitive biases (e.g., biases from the anchoring and 
availability heuristics; Tversky & Kahneman, 1974) and is 
described as overprecision - one type of overconfidence bias 
(Moore & Healy, 2008). Overprecision describes the 
observation that individuals provide overly narrow ranges 
that do not represent their true degree of knowledge (Moore, 
2008). The tendency for individuals to be over-precise in 
estimation has been demonstrated repeatedly (e.g., Soll & 
Klayman, 2004; Lichtenstein et al., 1982) and seems to 
affect experts similarly to novices (McKenzie, Lierch & 
Yaniv, 2008). (NB, many studies use the term 
‘overconfidence’ rather than overprecision and, in order to 

stay consistent with past literature, this will be done 
hereafter.) 

Calibration Training 
Past research has shown calibration can be improved 
through debiasing techniques, the most effective being 
domain-specific performance feedback training, wherein a 
subject receives timely feedback on the accuracy of their 
estimates within a particular area of knowledge (e.g., a field 
like petroleum engineering or meteorology; see, e.g.: Adams 
& Adams, 1958; Fischhoff, 1981) or learns this over an 
extended period in an amenable environment (see, e.g., 
Tetlock & Gardner, 2016). Whilst domain-specific training 
may be effective, devising training programs for numerous 
specific domains within a wider field or industry is 
laborious. For example, oil industry personnel include 
engineers and geoscientists across various specialties and a 
generalised training program, with calibration training learnt 
in a general domain and learnings transferred to specific 
domains, would be a more efficient method of improving 
calibration for a company employing these people. 

Despite this previous research on domain-specific 
performance feedback training, it has seldom extended to 
the idea of creating generalised performance feedback 
training. Adams and Adams (1961) showed that training a 
subject’s calibration in a series of tasks lead to an 
improvement in calibration in a separate task, an idea 
termed “generalisation”; although the degree of 
improvement in the untrained task was lower than in the 
trained task. Lichtenstein & Fischhoff (1980) showed that 
calibration training in a base task improved calibration in 
other, similar, tasks but not on dissimilar tasks, which was 
attributed to the subjects’ inability to spontaneously relate 
the new task to the base task.  

Similarly, Bornstein & Zickafoose (1999) demonstrated 
that individuals’ confidence and accuracy were stable across 
domains of general knowledge and eyewitness memory, and 
that training using general knowledge questions reduced 
overconfidence in eyewitness memory. Improvements in 
calibration and resolution, however, were not observed, 
implying no improvement in accuracy. Thus, the above 
studies suggest that generalised training could be effective 
but, given inconsistent results and the fact that this was not 
their primary focus, the question of whether generalised 
training transfers to specific domains remains open.  

An argument supporting the plausibility of the 
generalizable calibration training is analogical transfer, 
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where studies have shown transfer of knowledge (although 
not calibration training) across domains. Analogical transfer 
involves the use of a familiar problem to solve a novel 
problem of the same structure (Reeves, 1994). By 
identifying similarities in the structure of base and target 
problems, a subject can transfer the principles of the base 
problem to solve the target problem (Glick & Holyoak, 
1983). Analogical transfer is argued to be the main method 
used to solve novel problems in all domains (Rumelhart, 
1989). Given this, if the process of improving calibration 
training can be stripped down to its base structure, 
analogical transfer may facilitate transfer of calibration 
training across domains. 

Whilst the structural similarities of the base and analogue 
problems are essential to facilitate transfer, they do not 
guarantee recognition of the relationship, which would 
prevent spontaneous transfer from one problem to the next 
without instructions or help (Day & Goldstone, 2012). 
Recognition failure is argued to occur largely as a result of 
dissimilar surface elements in the respective problems (Day, 
2012) – for example, questions drawn from different 
domains - but may be improved by providing multiple base 
problems, as this will allow the subject to derive a more 
general analogy (Glick & Holyoak, 1983). Recognition 
failure may provide an explanation for the limitations in 
generalisation seen in Lichtenstein & Fischoff (1980), and 
Bornstein & Zickafoose (1999). Conversely, Adams and 
Adams (1958) achieved moderate generalization - using 
training in multiple, different tasks. 

Given the paucity of research into the generalization of 
calibration training and the apparent absence of research 
connecting transferability of calibration training to 
analogical transfer, this paper has the opportunity to fill a 
distinct research gap. The research is further warranted by 
the paper’s focus on the practical issue of how best to 
provide training.  That is, seeing whether analogical transfer 
facilitates calibration training transferring to a new domain 
is both practically and theoretically interesting. 

Aims 
Given the unclear evidence in the literature, this paper’s 
primary aim is to see whether generalised training in 
calibration can be developed to enable transfer of improved 
calibration to problems in a different, specific knowledge 
domain – specifically, petroleum engineering. This leads to 
two main hypotheses, as shown below: 

 
H1: Calibration training will improve calibration within the 

domain in which the training is given. 
H2: Improvements in calibration training will transfer to a 

new, specific domain. 
 

It is important to highlight that the term “general domain” 
is used to describe a domain, unrelated to the specific 
domain, in which training will be given. The term 
generalized training thus refers to training applied in the 
general domain. In the context of a real world application it 

makes sense for the general domain selected to be general 
knowledge, as this domain is accessible to all, and is clearly 
separate from a subject’s specific domain of expertise. A 
general domain in this context could, however, be any 
domain other than the participant’s specific domain. 

Methodology  
Participants 

Participants were 54 (15F and 39M) recent (n=7) and 
current (n=47) students of the Australian School of 
Petroleum, University of Adelaide, ranging in age from 18 
to 35 (M=22, SD=3.0). Previous experience with calibration 
varied amongst the participants, with 31 participants having 
previously undertaken a course that taught calibration, and  
15 who had not undertaken the course but who indicated 
(prior to the study) that they understood what calibration 
was and how it affects decision making. Participants entered 
a draw (1 in 6 chance) to win one of several $200 gift cards. 

Materials 
Testing materials consisted of three questionnaires - two 
general knowledge, and one in the domain of petroleum 
engineering - and a feedback/training package (described 
below). In this scenario, petroleum engineering is the 
specific domain, and general knowledge the general domain. 
Petroleum engineering was chosen to be specific domain 
due to the higher level of expertise in this field (compared to 
the general populace) shared by all participants. This higher 
level of experience is expected to elevate their knowledge of 
this domain above the participant’s understanding of more 
general knowledge; separating it from the general domain. 
In terms of knowledge transfer, the assumption is that 
participants may think differently about their area of 
specialty than general knowledge questions and, thus, that 
recognition failure across the two domains may be more 
likely. 

The first general knowledge test – designated “Pre-
Training” - contained 30 questions; however, the number of 
questions in the remaining tests (designated “Post-Training” 
and “Domain Specific”) were reduced to 20 each following 
participant feedback. The tests consisted of questions that 
had definite numerical answers and were sufficiently 
difficulty for participants not to simply know the true 
answer. An example of a question used in the general 
knowledge domain (i.e., the Pre-Training and Post-Training 
questionnaires) was “How many countries does the Nile 
River cross over?” For comparison, an example question 
used in the Domain Specific questionnaire was “How many 
times greater is the Young's Modulus of a stiff sandstone 
compared to the Young's Modulus of coal?” 

In all cases, participants were asked to provide a low and 
a high value such that they were 80% confident their range 
would contain the true value. (The initial page of each test 
provided information about how to answer the questions, 
including an example question.) 

While the second test is designated “Post-Training”, 
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feedback materials were provided only to the Experimental 
Group. This was a pdf document, consisting of: information 
about calibration and overconfidence, a calibration curve 
illustrating the subject’s under/overconfidence, a histogram 
showing the subject’s calibration score relative to other 
participants, and a graphical depiction of the subject’s 
confidence intervals, plotted against the corresponding true 
answers. These figures were intended to help participants 
understand the degree of overconfidence they had shown in 
the Pre-Training test. Each figure was accompanied by a 
short explanation, and information on methods for 
improving calibration on the remaining tests – including 
recognition of their current calibration in order to prompt 
them to give wider ranges. 

Procedure 
After registering their interest, participants were provided 
with links to access the Pre-Training questionnaire online 
(on SurveyMonkey) with instructions to complete each 
question by providing 80% confidence interval estimates. 
Based on the results of the Pre-Training questionnaire, 
participants were divided into two groups with similar levels 
of calibration. Feedback training was then distributed to the 
Experimental Group via email, at most two weeks after 
completing the test, with instructions to read and understand 
the material completely before continuing to the general 
knowledge Post-Training questionnaire). To test whether 
participants understood the feedback, a four-question quiz 
was given on the material covered in the training package. 
Participants who scored less than 3 out of 4 (2 participants) 
were moved from the Experimental Group to the control 
group, as it was adjudged they had not read the material and 
hence not received the feedback (NB – while recognizing 
that removing the participants may have been a more 
appropriate, this choice was made in light of the already 
small sample). Links to the Post-Training and the Domain 
Specific questionnaires were then provided to participants 
straight after the feedback training was distributed.  

Improvements in calibration due to the feedback training 
were measured by comparing the Experimental Group’s 
Post-Training and Domain Specific questionnaires to 
baselines of the Experimental Group’s Pre-Training 
questionnaire and the Control Group’s Post-Training and 
Domain Specific questionnaires. Comparisons were made 
under the assumption that the tests were of equal hardness 
and both groups were equally well calibrated. This yields 
measures of both the effectiveness of the feedback training 
and the transferability of the training across domains. 

Results 
Descriptive Statistics 
Table 1 shows the demographics for the experimental and 
control groups while Figure 1 shows the mean calibration 
achieved by each group under each condition (with 95% CIs 
- recalling that questions asked for 80% ranges meaning 
numbers under 80% reflect overconfidence). Prior 

experience refers to the knowledge the participants had 
acquired regarding calibration and overconfidence prior to 
this experiment’s start. Participants who answered ‘Yes’ 
indicated they had received prior training or learning 
regarding calibration and overconfidence. ‘Partial’ referred 
to participants who believed they understood the concepts at 
least vaguely. ‘No’ referred to the participants believing 
they had no understanding of calibration or overconfidence. 

 
Table 1. Descriptive statistics for demographic variables 

including prior knowledge of calibration by group  
 Overall Control Experimental 
N 54 29 25 
Gender (%) M: 72 

F:28 
M: 72 
F: 28 

M: 72 
F: 28 

Age (SD) 22.0 (3.0) 22.7 (1.3) 22.3(4.2) 
Prior 
Experience 
(%) 

Yes: 57 
Partial:28 
No:15 

Yes: 72 
Partial:24 
No: 4 

Yes: 40 
Partial:28 
No:32 

 
Looking at the figure, ones sees clear evidence of 

overconfidence across both groups and tests with none of 
the 95% CIs containing the ‘expected’ 0.8 proportion 
correct. The two groups seem to show similar levels of 
calibration on the Pre-Training questionnaire and Domain 
Specific Test but differ on the Post-Training questionnaire. 

 

Figure 1. Calibration by group and condition. 

Repeated Measures ANOVA 
A Repeated Measures ANOVA was used in SPSS to test the 
two hypotheses simultaneously. Table 2 summarises the 
significant results from this. 

As shown in Table 2, participant’s calibration scores 
differ across the three tests and there is also an interaction 
between test and group – supporting the observations made 
above. Independent samples t-tests were used, post-hoc, to 
compare the mean calibration scores of the Control Group 
and Experimental Group for each of the three tests as shown 
in Table 3. The tests indicated that, for both the Pre-
Training questionnaire and Domain Specific questionnaire, 
the difference observed in mean calibration score between 
the Experimental and Control Group was not significant. 
However, there was a significant difference in the means of 
the Experimental and Control Groups on the Post-Training 
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questionnaire with the mean calibration score of the 
Experimental Group noticeably higher. This supports 
Hypothesis 1 – that the feedback training improved the 
experimental group’s Post-Training questionnaire results. 

 
Table 2: Significant results of RM ANOVA 

 
Table 3: Independent t-tests between Experimental and 

Control Group for each questionnaire. 
Questionnaire t(52) p 
Pre-Training  0.925 .359 
Post-Training  -2.189 .033 

Domain Specific  0.164 .871 
 
Paired samples t-tests were used, post-hoc, to compare the 
relative difficulty of the tests, and to verify improvements in 
calibration observed in the independent samples t-tests. The 
tests, shown in Table 4, indicated that differences in the 
means between all the Control Group’s tests were non-
significant. That is, the tests were equally difficult for the 
Control group. Conversely, the tests indicated that 
differences in the means between all Experimental Group 
tests were significant – as shown in Table 5.  
 

Table 4: Paired t-tests between each questionnaire for the 
Control Group. 

Comparison t(28) P 
Pre-Training– Post-Training  0.852 .402 
Post-Training– Domain Specific  0.627 .536 
Domain Specific– Pre-Training  1.315 .199 
 

Table 5: Paired t-tests between each questionnaire for the 
Experimental Group. 

Comparison t(24) p 
Pre-Training– Post-Training  -5.368 0.000 
Post-Training– Domain Specific  3.633 0.001 
Domain Specific– Pre-Training  -2.439 0.023 
 

The results of the ANOVA and t-tests, along with 
observation of Figure 1, suggest no significant difference in 
calibration scores in the Control Group – as would be 
expected. However, the figure and analyses show that 
calibration score for the Post-Training questionnaire of the 
Experimental Group is significantly higher than both the 
Experimental Group’s Pre-Training questionnaire, and the 
Control Group’s Post-Training questionnaire, which is taken 
as evidence that feedback training improved calibration.  

The near-identical scores of the Control and Experimental 
groups on the Domain Specific questionnaire, however, 
suggests this benefit did not transfer to the new domain. 
That is, despite all tests using the same question format 
(80% confidence intervals), the change in domain was 
seemingly sufficient to prevent the training transferring, 
meaning Hypothesis 2 was not supported. A caution to this 

interpretation, however, is the observation that the 
Experimental Group’s calibration in the Domain-Specific 
questionnaire was significantly higher than in the Pre-
Training questionnaire, but statistically no different to 
Control Group’s calibration in the Domain-Specific 
questionnaire. This discrepancy is explored further, below. 

Discussion 
 

Experimental Findings 
Baseline Measure 
The performance on the Pre-Training questionnaire between 
the Experimental Group and the Control Group suggested 
both groups were similarly calibrated, indicating that the 
method for dividing participants into two groups was 
successful and that the control group can, justifiably, be 
compared to the experimental group as a baseline.  

The consistent results of the Control Group across all tests 
similarly showed that each test was of similar difficulty, 
justifying comparisons between tests within a group.  

 
Feedback Effectiveness 
The comparison between the mean calibration scores of the 
Pre-Training questionnaire and Post-Training questionnaire 
of the Experimental Group shows that the feedback was 
effective - to a degree. This was reinforced through the 
comparison of the Experimental Group and the Control 
Group for the Post-Training questionnaire, which also found 
a significant result. Between the Pre-Training questionnaire 
and the Post-Training questionnaire for the Experimental 
Group, calibration scores improved by 17% (from 42% to 
59%). This improvement in calibration was expected, as a 
wealth of previous research has shown that performance 
feedback training improves a subject’s calibration (Adams 
& Adams, 1961; Lichtenstein & Fischhoff, 1980; Moore et 
al., 2017; Stone & Opel, 2000). 
 
Transfer 
As noted above, the comparison of the Experimental and the 
Control Groups on the Domain-Specific Test showed no 
significant difference, suggesting the Experimental Group 
was not able to transfer their knowledge of calibration to a 
different domain and thus arguing for recognition failure. 

Comparing the Experimental Group’s Pre-Training and 
Domain Specific results, however, showed a significant 
result driven by an approximately 8% increase (from 42% to 
50%) in the Experimental group’s mean calibration score. 
Considering the two tests were of similar difficulty – 
according to the baseline measure from the Control group - 
the significant increase in calibration suggests participants 
were able to, at least partially, transfer their skills from the 
general knowledge domain to the specific domain of 
petroleum engineering and that this is being obscured in the 
analyses above by the Experimental Group’s slightly lower 
scores on the Pre-Training questionnaire. 

To quantify the extent of the transfer, the Post-Training 

Comparison F(df) F-value P-value 
Questionnaire F(2,104) 10.4 <0.001 

Questionnaire*Group F(2,104) 6.1 0.003 
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questionnaire was compared to the Domain-Specific for the 
Experimental Group. This showed an ~10% decrease in 
mean calibration score from the Post-Training questionnaire 
to the Domain-Specific Test (60% compared to 50%, 
respectively). This significant difference suggests 
participants were not able to transfer all of what they had 
learnt about improving calibration to the new domain. 
Looking solely at the Experimental group’s results in Figure 
1 suggests that about half of the improvement seen 
following training transferred to the Domain Specific Test. 

This, of course, contradicts the previous results and the 
discrepancy between these means that no strong conclusion 
can be drawn regarding whether the transfer of knowledge 
between domains did or did not occur. However, one 
conclusion that can be drawn is that, if the transfer occurred, 
it is well under 100%, in agreement with Adams & Adams 
(1961). This is also reminiscent of Glick & Holyoak’s 
(1983) work on analogical transfer, where they argue that 
incomplete transfer may be due to recognition failure; that 
is, a failure to recognise the similarities in the problem 
structure and, hence, to recognise that the skills used 
successfully in one problem are applicable to the other.  

While the question formats used in the three tests herein 
were identical – asking for 80% confidence intervals - it is 
possible that having experience in a domain evokes a 
different thought process to that which may be used to solve 
general knowledge type questions - reminiscent of 
knowledge partitioning (Lewandowsky & Kirsner, 2000) - 
and suggesting that individuals’ domain specific knowledge 
could be separated from their general knowledge and thus 
processes used to access one may not work for another. 

This may have caused the participants to not recognise the 
similar structure between the general knowledge and 
specific domain type questions. That is, participants may 
have simply not recognised that their calibration training 
should also be applied to the specific-domain questions.  

External Factors 
Initial Calibration and prior knowledge 
Simple comparisons showed participants, regardless of their 
stated prior experience with calibration (trained, aware or 
unaware) had similar calibration, and similar improvement 
after feedback. This is likely due to participants with prior 
knowledge not being able to apply the knowledge they 
learnt previously when setting confidence intervals. These 
results suggest that participants with previous experience 
with calibration were unsuccessful in reducing their 
overconfidence long-term, likely due to the fact they did not 
receive frequent calibration training or regularly practice 
calibration – as has been observed in previous research (see, 
e.g., Welsh, Bratvold & Begg, 2005). 

Caveats 
Sample Size 
The sample size was smaller than hoped, as a result of strict 
time constraints for the project, meaning that statistical 
power is low. A larger sample might, for example, have 

helped determine to what extent transfer was actually 
occurring or whether the effect is an artefact of differences 
between groups and tests aligning coincidentally. As noted 
above, the low sample size also resulted in the decision to 
move participants from the experimental group and control 
group. 

 
Expertise 
The type of questions asked throughout the Domain-
Specific Test were designed to relate to the expertise of the 
participants. As petroleum engineering students, participants 
have increased knowledge about the petroleum engineering 
field, but would not be classified as ‘experts’. This is doubly 
true, as the sample includes student participants from 
different year levels and thus with differing amounts of 
learning within the field. This concern is somewhat 
alleviated by the fact that the majority of participants were 
final year students or recent graduates, who could be 
expected to have similar levels of understanding of the field 
(which might, in fact, be less true of professionals further 
into their careers who tend to specialise into a sub-field). 
The selection of students of all year levels as the sample, 
however, meant that, despite all of the questions being 
related to the oil and gas industry, they had to be kept 
general enough that all participants could reasonably 
understand what they referred to – rather than being 
specific, technical questions that only a fully trained 
petroleum engineer could understand. That is, while the 
questions were about petroleum engineering, they did not 
truly test fundamental skills learnt by the participants. 
Questions more central to the petroleum engineering domain 
would provide a more accurate measure of knowledge 
transfer across domains but would require an expert sample. 
 
Testing Conditions 
As noted, all tests were online, meaning participants were 
unable to ask clarifying questions if they did not understand 
the point of the test - or may have approached the test in 
unanticipated ways. Although instructions indicated that 
questions should take no longer than 30 seconds, many 
participants spent much longer than that on some questions, 
which may have repercussions on the consistency of the 
answers. Future work could, therefore, be conducted face to 
face, or more time be spent explaining the purpose of the 
test, possibly with the aid of a video. This would make it 
easier to see if participants are engaged in the test and 
answering the questions as expected. Conducting training 
feedback sessions in person could also be beneficial in 
ensuring that the main points of the training session are 
highlighted to the participant, so that they can better learn 
how to improve their calibration for future tests. 

 
Questions 
Another concern related to the amount of time available to 
pilot the general knowledge questions with people similar to 
the expected participants. As noted elsewhere, the study was 
conducted as part of the student authors’ coursework and, as 
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such, had to be completed within semester, meaning that 
time for piloting was limited. While efforts were made to 
include a wide variety of questions participant feedback 
indicated there were several questions where some 
participants did not understand what the question was 
asking, and hence had no point of reference.  

Future Research 
As noted in the acknowledgements, this experiment was 
conducted as part of the first three authors’ final-year, 
undergraduate, research project. As such, there were strict 
time and budgetary constraints which dictated the approach 
taken and resulted in unavoidable limitations. Given this, 
and the equivocal evidence observed herein, larger, more 
rigorous follow-ups are warranted.  

 
Analogical Transfer 
The results from this paper could be extended to determine 
the true extent at which analogical transfer of calibration 
training can occur. As shown by Glick & Holyoak(1983), 
one method to overcome recognition failure and improve 
transfer is to provide hints about applying the solution of the 
base problem to solve the analogue problem. In terms of this 
study, providing hints could simply entail telling 
participants to apply the training to the specific domain. The 
purpose of these hints is to remind the participants to use the 
knowledge and skills learnt from the training on the Post-
Training questionnaires, in order to improve calibration. 
Directly reminding them to incorporate these skills when 
providing their ranges, would show how much of the 
training could be transferred in optimal conditions.  
 
Individual Differences 
An interesting approach would be to examine responses to a 
larger study of this type at an individual level – in order to 
determine whether the group-level improvements are driven 
by the majority of people improving a small amount or a 
smaller number of people showing a large improvement in 
calibration. Which of these better represents the true state of 
nature has implications for how to improve training 
processes. If the first, one might consider that better, or 
more intensive training is required to get participants closer 
to optimal calibration. If some participants are reaching 
optimal calibration with the current training, by comparison, 
the characteristics of or explanations provided by those 
participants might help improve current training to assist 
others in achieving similar benefits.  

 
Initial Calibration 
The results from this experiment suggested that having prior 
knowledge of calibration did not influence the participants 
calibration estimates at any point during the test (in line 
with previous research from Welsh et al, 2005). An 
extension to the research could thus conduct a second, Post-
Training questionnaire at a later date to determine if the 
effectiveness of the feedback training remained over time 
for participants who either had or had not been provided 

continuing feedback aimed at maintaining better calibration. 
This could assist in determining how durable any benefits of 
training are and, thus, how often they need to be reinforced. 

Conclusion 
Participants in this experiment showed levels of 
miscalibration in the form of overconfidence (overprecision) 
consistent with previous literature. The Control group, who 
received no feedback on their performance, showed very 
similar levels of overconfidence across the three tests with 
around half of their (theoretically) 80% interval estimates 
containing the true value on each test – suggesting that they 
were appropriately matched for difficulty and that the 
participants degree of expertise within a specific domain did 
not alter their degree of calibration relative to the general 
knowledge domain. Additionally, no benefit was seen for 
participants who reported having prior experience or 
knowledge of calibration and overconfidence.  

The feedback training provided to participants in the 
Experimental group proved effective, increasing the number 
of their ranges containing the true value from 42% to 60%. 
Whether this benefit transferred to the Domain-Specific 
Test, however, was less clear, with different analyses 
pointing in different directions. The Experimental group did 
not significantly outperform the control group on the 
Domain Specific Test (in fact, they performed very slightly 
but not significantly worse). This may, however, reflect 
their having started from a somewhat lower base – as their 
Domain Specific Test results were significantly better than 
their own Pre-Training questionnaire results. 

Given this conflict, the strongest conclusion that can be 
drawn is that, while it seems that transfer may have 
occurred, it was less than complete and that future research 
is needed to more accurately determine the bounds on the 
efficiency of transfer of expertise in calibration across 
domains. 
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Abstract

Efficient data compression is essential for capacity-limited sys-
tems, such as biological memory. We hypothesize that the need
for efficient data compression shapes biological perception and
perceptual memory in many of the same ways that it shapes
engineered systems. If true, then the tools that engineers use
to analyze and design systems, namely rate-distortion theory
(RDT), can profitably be used to understand perception and
memory. To date, researchers have used deep neural networks
to approximately implement RDT in high-dimensional spaces,
but these implementations have been limited to tasks in which
the sole goal is compression with respect to reconstruction er-
ror. Here, we introduce a new deep neural network architecture
that approximately implements RDT in a task-general manner.
An important property of our architecture is that it is trained
“end-to-end”, operating on raw perceptual input (e.g., pixels)
rather than an intermediate level of abstraction, as is the case
with most psychological models. We demonstrate that our
framework can mimick categorical biases in perception and
perceptual memory in several ways, and thus generates spe-
cific hypotheses that can be tested empirically in future work.
Keywords: Perception; memory; deep neural networks;
rate-distortion theory; categorical bias

Introduction
Biological cognitive systems are not infinite. For instance,
it is commonly hypothesized that people have finite atten-
tional and memory resources, and that these constraints limit
what people can process and remember. In this regard, bio-
logical systems resemble engineered systems which are also
capacity-limited. For any capacity-limited system, biologi-
cal or engineered, efficient data compression is paramount.
After all, a capacity-limited system attempting to achieve its
goals should maximize the amount of information that it pro-
cesses and stores, and this can be accomplished through effi-
cient data compression. Of course, this raises the question of
what one means by “efficient”.

In engineered systems, resources (e.g., bandwidth, finite
memory) are limited, and thus system designers allocate these
resources so as to maximize a system’s performance, a pro-
cess referred to as “bit allocation” (Gersho & Gray, 1992).
Consider the design of digital compression algorithms. For
example, file sizes can be reduced by a substantial factor us-
ing JPEG (image) or MP3 (audio) compression while still
maintaining enough fidelity for most applications. When
thinking about how to best perform bit-allocation, engineers
must consider several questions. Which data items are fre-
quent, and thus should be encoded with short digital codes,
and which data items are infrequent, and thus can be assigned
longer codes? Which aspects of data items are important to

task performance, and thus should be encoded with high fi-
delity via long codes, and which aspects are less task relevant,
and thus can be encoded with lower fidelity via short codes?
For example, frequencies beyond the range of the human
ear are less important when compressing audio waveforms
with MP3, and can be stored with less fidelity. To address
these questions, engineers have developed rate-distortion the-
ory (RDT), a sophisticated mathematical formalism based on
information theory (Cover & Thomas, 1991).

Our goal in this paper is two-fold. First, although
exact methods already exist for RDT analysis in low-
dimensional spaces, approximate methods are needed for
high-dimensional spaces. To date, researchers have used deep
neural networks to approximately implement RDT in high-
dimensional spaces, but these implementations have been
limited to tasks in which the sole goal is data compression
with respect to reconstruction error (e.g. Ballé, Laparra, &
Simoncelli, 2016). An innovation of the research presented
here is that we introduce a new deep neural network archi-
tecture that approximately implements RDT in a task-general
manner. That is, our architecture discovers good data com-
pressions even when the data will be used for regression, clas-
sification, recognition, or other tasks. An important property
of our model is that it is trained “end-to-end”, operating on
raw perceptual input (e.g., pixels) rather than intermediate
levels of abstraction (e.g., orientation, texture, shape), as is
the case with most psychological models. In this way, our
framework represents an early step toward scaling up models
of perception and perceptual memory toward levels of com-
plexity faced in real-world situations.

Our second goal is to present one important and previ-
ously uninvestigated implication of efficient data compres-
sion which can be compared against empirical phenomena
in perception and perceptual memory. While in this paper
we present only a qualitative comparison, future work can fo-
cus on more rigorous, empirical evaluations of the hypotheses
that our modeling framework generates. Specifically, we ex-
amine the phenomenon of categorical bias, which we explain
in more detail below.

Principles of Efficient Data Compression and
their Implications for Perception and Memory

This section examines important principles and implications
of efficient data compression. We focus on one implication in
particular, categorical bias, and draw a connection between
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categorical bias in efficient compression and that found in
perceptual memory.

All physically-realized systems are finite, and thus have fi-
nite limits on processing and storage capacities. For people,
this implies that faulty perception and memory—what engi-
neers refer to as “lossy compression”—is inevitable. If per-
ception and memory cannot be perfect, can they at least be
as good as possible given their capacity limits? This ques-
tion has been explored in the context of low-level percep-
tion (“efficient coding”; see Barlow, 1961; Simoncelli & Ol-
shausen, 2001), and researchers have found that low-level
perceptual representations tend to be highly efficient with re-
spect to the statistics of the environment.

Here, we focus on explaining higher-level sensory percep-
tion from the standpoint of efficient data compression. As we
show in our results and analyses below, abstraction and cate-
gorization may be data-efficient strategies in many capacity-
limited situations. There is strong empirical evidence that
people employ these strategies in memory. For instance, re-
search suggests visual working memory (VWM) avails of a
wide array of summary statistics (e.g. Brady & Tenenbaum,
2013; Brady, Konkle, & Alvarez, 2009; Sims, 2016; Mathy &
Feldman, 2012). In addition, various forms of abstract con-
ceptual structures have been studied extensively in the con-
text of long-term memory (LTM), such as schemas and scripts
(Bartlett & Burt, 1933; Schank & Abelson, 1977).

A central assumption for our analysis below on categor-
ical bias is that memory traces decay. Evidence for decay
can be found in many experiments, including iconic visual
memory and VWM (e.g. Sperling, 1960; Luck, 2008). We
account for the decay of individual memory traces by hypoth-
esizing that memory is biased toward representing recent in-
formation because recent information tends to be more task-
relevant (Anderson, 1991). Consequently, memory engages
in a form of adaptive bit-allocation in which fewer resources
are devoted to older perceptual traces (suggesting that these
traces are recoded in more compact and abstract ways over
time) until so few resources are devoted to a trace that, ef-
fectively, the trace has fully decayed. This process frees up
resources that can then be used to encode new information.

We propose that this reallocation happens both across and
within memory subsystems. Within a subsystem (e.g. visual
short-term memory), an individual trace tends to lose infor-
mation over time to decay. Across systems, decay rates for in-
dividual traces vary. First, at stimulus offset, highly-detailed
sensory information decays very rapidly. Next, sensory (e.g.
iconic) memory representations are less detailed (more cate-
gorical) and decay more slowly. Short-term or working mem-
ory representations contain still less detail about the stimu-
lus, are even more categorical and abstract, and decay more
slowly than those of sensory memory. Finally, LTM contains
the least amount of detail about the originally-observed stim-
ulus, is the most categorical and abstract, and decays slowest.

For a well-designed system with limited storage, making
decay rates proportional to information content is an efficient

strategy—abstract representations (e.g those found in LTM)
have low information content, and therefore can be retained
“cheaply”. As an analogy, imagine you are trying to make
room on a full hard drive. It would be efficient to first remove
large video files, before worrying about much smaller text
files. Because highly abstract traces can be retained cheaply,
LTM can accrue and store a large amount of traces over time.
By contrast, working or sensory memory subsystems contain
more detailed representations, and therefore cannot keep as
many traces concurrently.

Consistent with our theory, experimental findings indicate
that nearly all subsystems are influenced by a mix of percep-
tual and conceptual factors, but that the balance tilts more
in favor of the conceptual the longer something is held in
memory. Irwin (1991, 1992) demonstrated that iconic mem-
ory maintained more visual detail about an array of dots than
VWM, whereas VWM representations seemed to be more ab-
stract, coding information in a way that was robust to spatial
translations. Brady and Alvarez (2011) found that observers’
memories for the size of an object are systematically biased
toward the mean of the object’s category (see also Hemmer &
Steyvers, 2009). Several experiments also indicate that mem-
ories for spatial location are biased toward spatial “proto-
types” (Huttenlocher, Hedges, Corrigan, & Crawford, 2004;
Huttenlocher, Hedges, & Duncan, 1991; Huttenlocher, New-
combe, & Sandberg, 1994). VWM representations not only
encode “gist” or summary statistics (Oliva, 2005) over low-
level visual features and textures, they also summarize high-
level constructs such as the emotion of a face (Haberman &
Whitney, 2007, 2009).

Visual LTM representations appear to be even more ab-
stract. Konkle, Brady, Alvarez, and Oliva (2010) performed
a visual LTM experiment in which subjects studied images of
real-world objects drawn from different categories. Subjects
studied between one and 16 exemplars per category, and later
performed memory recognition test trials. It was found that
as the number of exemplars from a category increased during
study, memory performance decreased. Further analysis re-
vealed that the conceptual distinctiveness of a category—low
when category exemplars belong to the same subcategories
and high when exemplars belong to different subcategories—
is correlated with visual LTM performance but perceptual dis-
tinctiveness is not. The authors concluded that “observers’
capacity to remember visual information in long-term mem-
ory depends more on conceptual structure than perceptual
distinctiveness” (Konkle et al., 2010, p. 558).

To understand how abstraction results from efficient com-
pression, it is important to understand the two central prin-
ciples of RDT, which we name the “Prior Knowledge Prin-
ciple” and the “Task-Dependency Principle”. Now, we will
briefly explain each principle and intuitively how each one
can give rise independently to categorical representations.
Prior Knowledge Principle: Prior or domain knowledge
is crucial to designing information-efficient systems. Accu-
rate knowledge of stimulus statistics allows an agent to form
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efficient representational codes given a limited capacity. To
code a stimulus efficiently, a code must be designed using
knowledge of the statistics of the to-be-coded items. Consider
Morse code which is an algorithm for encoding letters of the
alphabet as binary signals (“dots” and “dashes”). The design-
ers of this code realized that they could increase its efficiency
(i.e., decrease average code length) using knowledge of letter
frequencies by assigning the shortest binary sequences to the
most frequently transmitted letters. The more “peaky” the
frequency of letters, the less information messages convey,
and the shorter codes can be on average. For example, if 90%
of the English language consisted of the letter ‘e’, then mes-
sages could be coded much more compactly on average than
with real English in which e’s are not nearly so frequent.

In many domains, the stimulus prior (i.e. distribution over
stimuli) is highly peaked around several values. For example,
if the set of stimuli consists of many photographs of various
apples and bananas, this would constitute two different peaks
(or modes) in the space of images around apples and bananas
respectively. Efficient data compression predicts that these
types of “modal” stimulus distributions will result in cate-
gorical bias. Specifically, as memory capacity is decreased
(e.g. when decaying from short-term to LTM), representa-
tions should be attracted to one of the two modes, resulting in
categorical bias.
Task-Dependency Principle: In addition to prior knowl-
edge, for a code to be optimal, it must also take into account
the current behavioral goals (or task) of an agent. Codes
should allocate resources according to how an agent will use
the encoded information. In particular, if it is costly to an
agent to confuse stimulus values x and y, then codes should
be designed so that these values are easily discriminated, even
if this means a loss of precision for other discriminations.

As was the case with prior knowledge, efficient data com-
pression predicts that certain behavioral goals will result
in categorical bias. Namely, if effective behavior depends
on making category distinctions, then when capacity is de-
creased, efficient codes should become more biased toward
category prototypes, even when the stimulus prior is uniform.
Thus, efficient data compression produces two distinct hy-
potheses for the existence of categorical bias. Either it re-
sults from modalities in the stimulus prior or from behavioral
goals. These hypotheses may be evaluated in future work.

In the next section, we present the RDT formalism in order
to make the prior knowledge and task-dependency principles
mathematically precise. Then, we will demonstrate in simu-
lation that each principle can indeed give rise to categorical
bias.

Overview of Rate-Distortion Theory
Information theory addresses the problem of how to send
a message over a noisy channel (e.g., a telephone wire) as
quickly as possible without losing too much information.
How much information can be sent per unit time (or per sym-
bol) is the information ‘rate’ of a channel. Rate-distortion the-

ory focuses on the case when the capacity (or rate) is too low
to send the signal perfectly for a particular application (e.g.,
trying to hold a video conference with a slow internet connec-
tion). In this situation, one’s goal is to design a channel that
minimizes the average cost-weighted error (or distortion) in
transmission, subject to the capacity limitation. Crucially, the
optimization depends on two factors: (i) the prior distribution
over inputs to the channel, and (ii) how the transmitted signal
will be used after transmission. The first factor is important
because common inputs should be transmitted with greater fi-
delity than uncommon inputs. The second factor is important
because, depending on the application, some kinds of errors
may be more costly than others.

Whereas much of the cognitive science literature uses the
number of remembered “items” as a measure of memory ca-
pacity, information theory defines channel capacity as the mu-
tual information between the input distribution and the output
distribution. That is, if you know what comes out of a chan-
nel, how much information does that give you about what was
inserted into the channel? If mutual information is high (high
capacity), then the outputs tell you a lot about the inputs, but
if it is low (low capacity), then the channel does not trans-
mit as much information. The mutual information I(x;y) for
discrete random variables x and y is given by:

I(x;y) = ∑
x,y

p(x,y) log
p(x,y)

p(x) p(y)
. (1)

In the case of memory, sensory stimuli (e.g., pixel values)
can be regarded as inputs to a channel, and neural codes are
the channel’s outputs (e.g., firing rates, changes to synaptic
weights). The capacity of memory is the mutual information
between the stimulus distribution and the neural code.

RDT seeks to find the conditional probability distribution
of channel outputs (neural codes, denoted x̂) given inputs
(sensory stimuli, denoted x) that minimizes an error or dis-
tortion function d(x, x̂) without exceeding an upper limit C
on mutual information. For example, the distortion could be
defined as the squared difference between the channel input
and output, (x− x̂)2. Mathematically, this minimization is the
following constrained optimization problem:

Q∗ = argmin
p(x̂|x)

∑
x,x̂

p(x) p(x̂|x) d(x, x̂)

subject to I(x; x̂)≤C
(2)

where Q∗ is the optimal channel distribution.

Rate-Distortion Theory and Categorical Bias
Above, we described abstract or categorical representations
as being an efficient strategy for compression, and pointed
to evidence that human cognition makes use of this strat-
egy. Furthermore, we noted that as the average information-
content of memory traces decreases, the degree of categori-
cal bias increases. We suggested that LTM might be viewed
as using highly-compressed and categorical compressions,
whereas perception uses less-compressed, less-categorical
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compressions. For example, suppose you view an image of
an apple. At short delays, you may remember that it was a red
apple, at a longer delay, you may only remember that it was
an apple, and perhaps at still longer delays, you may only re-
member that you saw a fruit. At long delays, categorical bias
is large, because your memory for one apple is very similar to
your memory for a different apple. Here, we demonstrate this
phenomenon in simulation. We use a toy, one-dimensional
domain in which it is possible to find the optimal lossy com-
pression. In experiments below, we use approximate methods
to extend this result to high-dimensional spaces, closer to the
level of complexity that real brains must cope with.

As mentioned above, lossy compression can produce cate-
gorical bias when the stimulus prior is modal or when the loss
function penalizes miscategorizations. Figure 1 demonstrates
categorical bias effects in each case for unidimensional stim-
uli. The top panel (A) shows the case of a modal prior and
squared error loss for d, while the bottom panel (B) shows the
case of a uniform prior and categorical loss for d. According
to the categorical loss, there is high cost to misremembering
a stimulus that belongs to category A as one that belongs to
category B, but low cost to misremembering a stimulus as an-
other member of the same category. For example, consider
plants that can be grouped as edible or poisonous. Misre-
membering a poisonous plant as an edible plant has high cost,
whereas misremembering an edible plant as a different edible
plant has low cost.

Figure 1A and B illustrate that channels optimized for a
modal prior or a categorical loss, respectively, yield strong
categorical bias at low capacity, but little at higher capac-
ity. In the top rows of each (low capacity), p(x̂|x) is nearly
identical for all values of x = x0 within a category, but dif-
fers for two x0 from different categories. In both A and B,
categorical bias arises because values closer to the modes
are “safer” when capacity is low and transmission errors are
likely. On the other hand, at high capacity (bottom rows),
p(x̂|x) is tightly peaked around the true input x0 in both cases.
In experiments below, for brevity we only elicit categorical
bias via the distortion function (panel B).

RDT Neural Networks
Although RDT can be implemented exactly to find optimal
compressions for problems using low-dimensional stimuli,
it is too computationally expensive to be used with high-
dimensional stimuli. Therefore, researchers have considered
approximate implementations based on deep neural networks.
To date, however, these implementations have been limited to
tasks in which the sole goal is data (e.g., image) compres-
sion (e.g. Ballé et al., 2016). In this section, we introduce a
new deep neural network architecture that approximately im-
plements RDT in a task-general manner. In other words, our
architecture discovers good data compressions even when the
data will be used for regression, classification, recognition, or
other tasks. Like previous RDT neural network implementa-
tions, our architecture is trained “end-to-end”, meaning that it

A

B

Figure 1: Illustration of how categorical bias can be explained via
the prior (A) or the distortion function d (B). Horizontal axes plot
stimulus space, vertical axes plot probability, dotted vertical line is
the category boundary, solid vertical line marks the true stimulus
value (x = x0), and orange line plots output distribution p(x̂|x). In-
put distribution p(x) is given by the blue line. Top and bottom rows
in A and B show results for low and high capacity channels, re-
spectively. In A, distortion function was squared error and p(x) was
bimodal. In B, distortion function was a weighted sum between a
pure categorical loss and a square-error loss with weights of 1 and
0.001, respectively, and p(x) was uniform.

operates on raw sensory input (e.g., pixel values) rather than
intermediate levels of abstraction (e.g., orientation, texture,
shape), as is the case with most psychological models. The
combination of end-to-end operation and task generality rep-
resents an important step toward scaling up models of per-
ception and perceptual memory toward levels of complexity
faced in real-world situations.

Rate-distortion (RD) Autoencoders: A key component
of our models is the “autoencoder”, parameterized models
(e.g., neural networks) that map inputs to themselves sub-
ject to an information bottleneck. This bottleneck “forces”
a model to find a more abstract, latent representation of the
data. These abstract representations can then be used in sub-
sequent tasks. Conventional neural network autoencoders
consist of one or more ‘encoder’ layers, a middle ‘latent’
layer, and one or more ‘decoder’ layers. The latent layer typ-
ically has many fewer units than there are input dimensions,
effectively reducing the dimensionality of the representation.

RD autoencoders differ from traditional autoencoders in
that (i) they have a stochastic latent layer, and therefore a clear
probabilistic interpretation, and (ii) a regularization term is
added to the training objective function which acts to con-
strain how much information is represented in the latent units.
If the coefficient on this term is high, then the network will
seek a highly compressed latent representation. In our ex-
periments, the latent unit activations are our models’ “mem-
ory” of an input. Several variants of the rate-distortion au-
toencoder have been proposed, but here we choose the β-
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Variational Autoencoder (β-VAE; Alemi et al., 2018).
Architecture: The models for all experiments presented

here are defined by deep feedforward neural networks. Our
general architecture (see Figure 2) consists of two modules:
a β-VAE autoencoder and a decision module. The decision
module takes as input the memory code (i.e., the activations
of the latent units in the autoencoder) and optionally a task-
related “probe” image, and outputs a decision variable. For
example, in a change-detection task, the input to the autoen-
coder would be a target image, the input to the decision mod-
ule would be a probe image and memory representation of
the target, and the output of the decision module would be
the probability that the probe is different than the target. Cor-
respondingly, the training objective function has three terms,
which can all be weighted differently to achieve different
tradeoffs, corresponding to: (1) the distortion (or error) of
the autoencoder’s image reconstruction, (2) the information
capacity of the memory representation, and (3) the decision
error. Crucially, we can manipulate what kind of information
is encoded in memory by varying how much reconstruction
error is weighted relative to decision error during training, as
well as how one kind of decision error is weighted relative to
others (e.g., up-weighting errors along one stimulus dimen-
sion relative to other dimensions).

Implementation Details: Specific architectural choices
for both experiments discussed below were standard within
the neural network literature, and no specific fine-tuning was
required to produce our results. In Experiment 1, we chose
standard fully-connected layers with ‘tanh’ activation func-
tions. The encoder and decoder both had two hidden layers,
and the decision module had one. The latent layer and all hid-
den layers had 500 units. However, results were relatively in-
sensitive to the choices of number of hidden units and layers,
as long as the number of units was large. In Experiment 2,
the encoder was composed of four 3× 3 convolutional lay-
ers (32, 64, 64, and 64 filters for each layer, respectively),
followed by a fully-connected layer with 1000 units. There
were 1000 latent (memory) units. The decoder mirrored the
encoder, except that convolutional layers were replaced with
standard convolution-transpose layers. All hidden units used
rectified-linear activations (ReLU). Again, a range of archi-
tectural choices can produce similar results. Finally, the de-
cision module output was a single sigmoidal unit in Experi-
ment 1, while in Experiment 2, the output was a softmax layer
with one output unit for each of the three categories. All net-
works were trained with the “Adam” optimization algorithm.

Training sets: For Experiment 1, the dataset consists of
images of an artificial plant-like object which we varied along
two dimensions: leaf width and leaf angle. Images were con-
verted to gray scale, down-sampled, and cropped to a size of
120× 120 pixels. The space was discretized to 100 values
along each dimension, for a total of 10,000 unique stimuli.

For Experiment 2, we used the Fruits-360 database1. We
chose a subset of the classes to train on, specifically apples,

1https://github.com/Horea94/Fruit-Images-Dataset
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encoder decoder

Figure 2: Schematic of the general model architecture. Dark gray
boxes represent a vector of pixel values, while other boxes represent
layers (or a set of layers) in the network. Layer that represents the
memory code is in red.

tomatoes, and bananas. We augmented the dataset during
training by randomly zooming and cropping inputs, as well as
flipping the inputs horizontally at random. All images were
resized to 112×112 pixels.

Experiment 1: Artificial Images: Experiment 1 used
the artificial plants dataset to demonstrate that the categorical
bias effect depicted in Figure 1 extends to models operating
in high-dimensional pixel-space. We show that, as expected,
when a limited-capacity network is highly penalized for mis-
categorizing a stimulus, its memories exhibit categorical bias.

We trained the architecture on the full plants dataset. Fol-
lowing panel B in Figure 1, the training objective function
was a mixture of pixel reconstruction error and categorical er-
ror, with a high relative coefficient on the latter. Specifically,
the decision module was tasked with deciding whether the tar-
get image (input into the autoencoder) was the same category
as a subsequent randomly-chosen probe image (input to the
decision module). Given the high penalty for miscategoriza-
tion, the optimal strategy for a model with very little capacity
is to store little more than the category label. Figure 3 demon-
strates this outcome by plotting target image reconstructions
(outputs from the decoder) corresponding to a range of pos-
sible inputs. At low capacity (top panel), reconstructions of
exemplars to the left of the category boundary are all nearly
identical, and reconstructions of exemplars to the right of the
boundary are also nearly identical. However, reconstructions
on one side of the boundary are quite different from those
on the other. In other words, there is a strong bias in the re-
constructions to the appropriate category means, and thus a
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sharp discontinuity at the category boundary. These results
imply that at low capacity, the memory representation is a
code that simply indicates which category the input belonged
to. The best the autoecoder can do in this case is to produce
the mean or prototype of that category. At higher capacities,
the memory code contains more perceptual details beyond the
category membership.

Experiment 2: Natural Images Experiment 2 used the
Fruits-360 dataset to show that our approach scales to natu-
ral images. Again, we show that our models have increasing
categorical bias as capacity decreases. However, our analyses
in this experiment differ in a few ways. First, because nat-
ural image datasets do not contain a clear set of dimensions
along which stimuli vary (like leaf width and leaf angle in Ex-
periment 1), we indirectly measure the categorical bias in the
trained models using autoencoder reconstructions and princi-
ple components analysis (PCA). An additional difference is
that the decision module was trained to categorize each im-
age, rather than to detect a change between target and probe.

Figure 4 (top panel) shows image reconstructions from the
autoencoder at high, medium, and low capacity. These im-
ages demonstrate that the amount of detail that is retained in
memory decreases as capacity decreases. At low capacity,
the reconstructions are clearly categorical: each type of fruit
corresponds to a unique output, which is the average of all im-
ages in that category. At medium capacity, different varieties
within each species of fruit can begin to be distinguished. The
figure’s bottom panel demonstrates that the model’s memory
codes become more categorical at lower capacities. We per-
formed PCA on memory vector activations and plotted stim-
uli in the space defined by the first two principle components.
At medium or low capacity, memory codes for stimuli that
belong to the same class are very similar, whereas at high ca-
pacity, memories of stimuli within a category are quite distin-
guishable from each other, and thus more perceptual details
may be recovered2.

Conclusion
We have argued, from both theoretical and empirical stand-
points, that efficient data compression may be a central goal
of perceptual and memory subsystems. In future work, we
will discuss the extensive empirical evidence that efficient
data compression is implemented in biological perception and
memory, beyond the limited examples given here. In the cur-
rent work, we highlighted one interesting piece of evidence
that neural systems follow these principles, specifically that

2Note that even though the principle-components space appears
to scale with capacity, this does not imply that the degree of categor-
ical bias stays constant. For example, if the magnitude of noise that
is added to the latent activations is fixed, more separation between
two points in principle-components space implies that the decoder
can more easily distinguish between them despite the noisiness. In
fact, as network capacity is increased, the magnitude of noise added
to the latents tends to decrease (because this allow more informa-
tion to be stored), and thus two points that are a distance d apart
in principle-components space are at least as distinguishable at high
capacity compared to low capacity.

categorical representations are prevalent in memory. In sim-
ulation, we showed how categorical representations can be
a natural outgrowth of efficient compression. These mech-
anisms for categorical bias generate hypotheses that can be
tested in future empirical work. Because our modeling frame-
work operates in an end-to-end and task-general manner, we
believe that it shows promise for being scalable in ways that
most psychological models are not.
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Abstract

We show, contrary to some recent claims in the literature, that
prototype distributional semantic models (DSMs) are capa-
ble of representing multiple senses of ambiguous words, in-
cluding infrequent meanings. We propose that word2vec con-
tains a natural, model-internal way of operationalizing the dis-
ambiguation process by leveraging the two sets of represen-
tations word2vec learns, instead of just one as most work
on this model does. We evaluate our approach on artifi-
cial language simulations where other prototype DSMs have
been shown to fail. We furthermore assess whether these re-
sults scale to the disambiguation of naturalistic corpus exam-
ples. We do so by replacing all instances of sampled pairs
of words in a corpus with pseudo-homonym tokens, and test-
ing whether models, after being trained on one half of the cor-
pus, were able to disambiguate pseudo-homonyms on the ba-
sis of their linguistic contexts in the second half of the cor-
pus. We observe that word2vec well surpasses the baseline
of always guessing the most frequent meaning to be the right
one. Moreover, it degrades gracefully: As words are more
unbalanced, the baseline is higher, and it is harder to surpass
it; nonetheless, Word2vec succeeds at surpassing the baseline,
even for pseudo-homonyms whose most frequent meaning is
much more frequent than the other.
Keywords: distributed semantic models; word meaning; am-
biguity; prototype models; exemplar models; word2vec

Introduction
A central question for the cognitive science of language is
how word meanings are represented in the minds of lan-
guage users. Distributional semantic models (DSMs) repre-
sent word meanings as vectors in a high-dimensional space
(Landauer & Dumais, 1997; Erk, 2012). The location of these
points is based on the words in the neighbouring linguistic
context (e.g., a window of words around the target word, or
the document the word occurs in). DSMs have been success-
ful in simulating diverse facets of human cognition, such as
similarity judgments and analogy completion (e.g., McNa-
mara, 2011; Pereira, Gershman, Ritter, & Botvinick, 2016).

Given that a vast majority of the words in English (and
presumably most languages) are ambiguous (Klein & Mur-
phy, 2001), the question arises whether a single vector, which
functions as a ‘prototype’ of the word’s meaning, can ad-
equately represent the multiple meanings of an ambiguous
word. Several researchers have argued that this is indeed the
case. Schütze (1998), Burgess (2001), and Kintsch (2001)
each show, using different models and set-ups, how aggre-
gate representations of the context words can disambiguate
ambiguous words. Arora, Li, Liang, Ma, and Risteski (2018)

propose that word vectors are combinations of the vectors of
the component meanings, and that these meaning vectors can
be recovered from the ‘compact’ representation. Further cir-
cumstantial evidence for the adequacy of prototype represen-
tations comes from the fact that the DSMs successfully model
various aspects of cognition even when representing a mas-
sively ambiguous vocabulary (Pereira et al., 2016).

Other work, however, suggests that single vector represen-
tations are inadequate for the representation of word mean-
ing ambiguity. In the computational linguistics literature, this
consideration has led to approaches in which multiple vector
representations are learned for a word, each serving as the
prototype of one of its senses (Reisinger & Mooney, 2010;
Li & Jurafsky, 2015). In cognitive science, this assumption
has led to the proposal of exemplar-based models, in which
a word meaning is represented not as one or more prototype
vectors, but as a weighted trace of the memorized contexts
that a word occurred in. Jamieson, Avery, Johns, and Jones
(2018), for instance, demonstrate that their exemplar-based
model of word meaning representation succeeds where two
widely-used DSMs (LSA; Landauer & Dumais, 1997 and
BEAGLE; Jones & Mewhort, 2007) fail: While the proto-
type DSMs are able to represent the dominant (most frequent)
meaning of a word, subordinate meanings are poorly captured
by a single vector, suggesting that these models cannot reli-
ably identify the intended meaning of an ambiguous word in
context.

Given the general success of prototype DSMs, such a fail-
ure to simulate a key cognitive behaviour would indeed be
worrisome if it applied to the entire class of approaches.
However, Beekhuizen, Milić, Armstrong, and Stevenson
(2018) show in a series of corpus experiments that not all pro-
totype DSMs behave alike in representing ambiguous mean-
ings. In this paper, we will argue that claims concerning the
inadequacy of prototype DSMs are not justified. We will do
so by showing that another prototype DSM, the CBOW al-
gorithm of word2vec, has model-internal properties that en-
able it to disambiguate word meaning, and to succeed at ac-
curately representing the infrequent meaning of ambiguous
words. Crucially, we believe that this success in disambiguat-
ing infrequent meanings is driven by the fact that word mean-
ing interpretation is distributed over two sets of representa-
tions in word2vec.
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Our Approach
Word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean,
2013) is a word embedding model that learns a distributed
semantic space that enables it to best predict words from
their contexts. Figure 1 illustrates the process graphically,
when using the continuous bag-of-words (CBOW) algorithm
of word2vec. Each word in the vocabulary is represented as a
row vector in the context matrix C and as a column vector in
the target word matrix T . At every training step, the model is
given a target word t as well as a window of k context words
on either side of the target word. The model then learns to
best predict the target word from the context words.

To determine its prediction, word2vec first takes the vec-
tor representations in C of the k context words and averages
them, forming the aggregate context vector a. The context
vector a is then compared with the current word representa-
tions in T to predict which word is most likely the target in
that context. Intuitively, the more similar the context a is to
the current vector representation of a word in T , the higher
the predicted probability of observing that word. In training,
after making a prediction for an example context, the model
checks how far it is off from the desired probability distribu-
tion – that is, a probability of 1 for observing the given target
word t and 0 for all other words – and proportionally updates
the vectors in both C and T to minimize this error.

Although word2vec trains both a context matrix C and tar-
get matrix T , researchers typically just use one set of the
trained representations (those of the context matrix C) as the
resulting DSM of word meaning. Then, for disambiguating
a word, a natural approach is to combine the vector repre-
sentations (from that matrix) for the ambiguous word and
its (presumably disambiguating) context words, and then to
compare the resulting vector to other representations – for in-
stance, synonyms of the two possible meaning of the ambigu-
ous word – from the same matrix, under the assumption that
the aggregate vector will be closest to the appropriate syn-
onym (i.e., the one corresponding to the intended meaning of
the ambiguous word). This approach has been explored in
computational linguistics by Iacobacci, Pilehvar, and Navigli
(2016).

In contrast, we propose a novel approach to using
word2vec representations in modeling the disambiguation
process, by drawing on its training procedure to derive the
contextual interpretation of a word. Our insight is that both
the context matrix C and the target matrix T contain learned
knowledge that is important in disambiguation, just as they
work together in the training process to form compatible rep-
resentations of the context and target words (cf. Mitra, Nal-
isnick, Craswell, & Caruana, 2016). Rather than throwing
away this important information and using representations
from just one of the matrices, we use both the C and T ma-
trices: We form an aggregate context vector a using C as a
representation of the context of a word to be disambiguated,
and compare that aggregate vector to representations of syn-
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Figure 1: Word2vec model, using the CBOW algorithm

onyms of its possible meanings embedded in the target word
matrix T .

The use of a part of the training procedure is desirable, as
it addresses an issue Jamieson et al. (2018) raise, namely that
the prototype DSMs that have been shown to work use ad-
hoc patches that are added to the models in order to represent
word meanings in context. For word2vec, the aggregate con-
text vector a is a representation of the context that is native to
the model, as is the process of comparing a to representations
in the T embedding space.

On a conceptual level, we believe that word2vec reflects an
important property of word meaning interpretations, namely
that they are not completely represented ‘in’ the word itself
(cf. Elman, 2009). The word can be thought to provide a
‘sketch’ of the meaning (Levinson, 2000) that is completed
through inferential processes by the linguistic and extralin-
guistic context in which it is embedded (e.g. Sperber & Wil-
son, 1986). This consideration is in fact one of the motiva-
tions of an exemplar-based approach. However, in word2vec
too, ambiguous meanings are similarly not fully ‘represented’
in the word vectors of C or T . Rather, C and T , along with
the algorithm that compares them, share the responsibility for
predicting the target words from the context.

With regard to interpretation of infrequent meanings of a
word, this approach gives word2vec an advantage. Given that
word2vec’s objective is to predict the target word, it suffices
to optimize the representations in T so that the vector of the
ambiguous target word represents just enough of the infre-
quent meaning to enable the appropriate context words to pre-
dict it (cf. the notion of ‘good enough semantic processing’
in Ferreira, Bailey, & Ferraro, 2002; Frisson, 2009). In the
experiments below, we will illustrate how using the context
and target matrix together allows word2vec to represent in-
frequent word meanings and identitfy them in context.

Artificial Language Simulations
As a first proof of concept, we replicate the artificial language
simulation of Jamieson et al. (2018), which compared dis-
ambiguation in an exemplar-based model of word meaning
to two prototype DSMs, and found the latter less successful.
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An artificial corpus was generated in which the homophone
sound form /breIk/ (i.e., the sound of break or brake) was
used in three contexts corresponding to three different mean-
ings (to brake a car, to break the news, or to break a plate;
henceforth all referred to as break). The models were tested
to see whether they could identify each of the three meanings
of break used in various disambiguating contexts (e.g., man
break car, woman break news, woman break plate). Aside
from sentences containing break, sentences with verbs that
are synonymous to one of the three meanings were gener-
ated as well (e.g., woman stop car, man report news, man
smash glass). These unambiguous verbs enabled evaluation
of whether disambiguation models were able to identify the
correct meaning of break in the context. Crucially, the cor-
pus was generated either so that all meanings of break were
equally frequent (balanced), or so that one meaning was 4
times as frequent as the other two meanings (unbalanced).
For further details, see Jamieson et al. (2018).

We replicate this experiment for word2vec by generating
the corpus in the same way as outlined above and train-
ing word2vec on it.1 We then apply our approach using
word2vec (described in the previous section) to see if it can
correctly disambiguate the different meanings of break. To
do so, we see whether the prediction of break in a sample
context (e.g., woman+car) is as strong as the prediction of
the appropriate unambiguous word (in this case, stop), and
much stronger than the inappropriate unambiguous words
(those corresponding to the other meanings of break). Im-
portantly, the approach follows the flow of the learning pro-
cedure of word2vec: we average the representations of the
context words in C to create an aggregate context vector a,
and then compare a to the representation in T of each of the
four different words (break, stop, smash, report) to determine
the strength of prediction.

As Figure 2 shows, word2vec successfully predicts both
break and its contextually appropriate synonym, both for
the balanced corpus (where the three meanings of break
are equally frequent) and the unbalanced corpus (where one
meaning is more frequent than the others). Note that in all
cases, the aggregate context vector is about as similar to the
correct unambiguous verb as it is to break. For example, the
model has learned that in the context of woman and news,
both report and break are similarly predicted, and thus are
similar to each other in this context.

Interestingly, we found that this behaviour is only present
when both C and T are used; when aggregating context word
vectors in C and then comparing them to the vectors of the
unambiguous words in C again, the appropriate disambigua-
tion behaviour was not achieved.2 This means that word2vec

1In all experiments reported, we used the implementation of
word2vec in gensim (Řehůřek & Sojka, 2010), using CBOW
with 200 vector dimensions, a window size of 5, a mini-
mum frequency of 1, and otherwise default parameter settings.
All software used is available as supplementary material at
https://tinyurl.com/w2vcogsci.

2We also tried other ways to use word2vec, including its Skip-

is able to represent the contextually disambiguated meaning
of a verb through the interaction of its context matrix C with
its target matrix T . This behaviour can be expected, as the
training algorithm of word2vec optimizes the similarity of the
aggregate representations in C (i.e., the vector a) to that of the
target word in T . That is: a and the vector of the target word
in T are (by design) embedded in the same space, whereas
an aggregate representation of the context words in T (as op-
posed to the individual words’ representations in T ) and the
vector of the target word in T are not.

Our successful results contrast with those in Jamieson et
al. (2018), who found that, while their exemplar-based word
meaning model (Instance Theory of Semantics, henceforth
ITS) performed well in this task, the two prototype DSMs –
LSA and BEAGLE – were not as successful. In particular,
in the balanced condition, all three models show the desir-
able disambiguation behaviour, but in the unbalanced condi-
tion, ITS can successfully disambiguate, but LSA and BEA-
GLE cannot. For these prototype models, only the most fre-
quent meaning (the stop sense of break) is activated correctly,
whereas the contexts of infrequent meanings (the report and
smash senses) also activate (incorrectly) the most frequent
meaning.

While our approach using word2vec demonstrates that
a prototype DSM can successfully disambiguate infrequent
meanings, a potential point of criticism is that our approach
may work in an artificial setting like this, but not when the
model is trained on a corpus with a realistic vocabulary size
and many more unique contexts. After all, a realistic set-up
necessitates a far greater degree of compression to allow for
a maximally accurate prediction given only 200 dimensions
to store all information in — and thereby a greater chance of
having infrequent meanings being pushed out by the more
frequent ones. Furthermore, the artificial language set-up
tests the disambiguation on the data it was trained on, and so
we are not directly addressing whether the model can carry
out disambiguation in a generalizable way. These issues led
to the design of the next experiment.

Disambiguation in a Naturalistic Setting
While the artificial language experiment provides a proof-of-
concept of contextual disambiguation, it cannot test whether
models have generalizable knowledge that scales to natural-
istic contexts. The obstacle to larger-scale, more realistic
scenarios is that testing disambiguation requires knowing the
“correct” answer – that is, for any given instance of an am-
biguous word in context, we need to know which meaning
was intended in order to judge whether a model is perform-
ing appropriately. This requires a natural corpus that has the
instances of homonyms annotated with the correct meaning
in each case.

Since no such corpora of substantial size exist, we follow
Arora et al. (2018) in adopting a method of using “pseudo-

Gram variant, but CBOW with both C and T matrices was the most
robust with unbalanced homonyms.
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Figure 2: Cosine similarities between the word2vec repre-
sentations of the context words (on x-axis) and the represen-
tations of the target words (in legend), for the balanced corpus
and the unbalanced corpus.

homonyms” – pairs of words that are considered as if they
were a single word. For example, if we consider the set of
usages of pizza and water as if they were a single word with
meanings PIZZA and WATER, then we would have a corpus in
which all the instances in context of pizza water are known
to be disambiguated as either PIZZA or WATER (correspond-
ing to the original word in that instance).

This set-up allows us to present our word2vec-based dis-
ambiguation approach with test cases (contexts containing
a pseudo-homonym), and see whether it can identify which
component meaning of the pseudo-homonym was intended
in that context. We similarly evaluate the performance of ITS
(Jamieson et al., 2018) on the same data, to see how our ap-
proach, based on a prototype DSM, compares to an exemplar-
based approach to word meaning.

We use the TASA corpus of Landauer, Foltz, and Laham
(1998), with the first half of the corpus as training data, and
the second half as test data. Using a training-test split of the
data, we made sure the models were actually tested on their
capacity to disambiguate target words in novel, unseen con-
texts. We sampled 100 pairs of non-homonymous words that
were similar to one of the real homonyms listed in Armstrong,
Tokowicz, and Plaut (2012) in their length, frequency, and
relative frequency of the two component meanings. This was
done to make sure the pseudo-homonyms displayed similar
relevant properties as real homonyms (Piantadosi, Tily, &
Gibson, 2012).3 We next explain how we can test each model
under this approach.
Pseudo-homonym set-up for word2vec. For word2vec,
we need to modify the corpus to enable training on a set

3Due to the random sampling, we ran three simulations, each
with a new set of 100 pseudo-homonyms, and report aggregate find-
ings of the three simulations.

of pseudo-homonyms, which were created by merging two
non-homonymous words – e.g., replacing all instances of the
words pizza and water with the single token pizza water.
The context and target matrices of word2vec were trained
once on the original version of the training data, yielding
C and T , and again on the version with pseudo-homonyms,
yielding C′ and T ′. In this way, we have representations both
for the pseudo-homonyms and for their component words in-
dividually. Then, for each instance of a pseudo-homonym in
the test data, say pizza water, we tested whether its aggre-
gate context vector a from C′ (based on the pseudo-homonym
version of the corpus) was more similar to the correct or in-
correct component meaning representation in T – pizza or wa-
ter – whichever occurred in the original corpus).4

Pseudo-homonym set-up for ITS. ITS (Jamieson et al.,
2018) follows the intuition that an accurate representation
of word meaning is derived from all previously encountered
instances of the word. Starting with words represented as
high-dimensional random vectors, ITS represents the memory
trace of each document in a corpus as the sum of the random
vectors of all the words in that document. Word meanings
in context are then derived from the matrix of memory traces
by presenting the model with a probe in the form of a set of
words, and retrieving its echo: an aggregate of all memory
traces, weighted by how similar they are to the probe. Fig-
ure 3 presents a graphical representation of the echo retrieval
process.

In our ITS set-up, we constructed a matrix of 20K-
dimensional memory traces for the training portion of the
original TASA corpus. Then, for each instance of either of
the component words of a pseudo-homonym in the test data,
a context probe was constructed out of the five words to the
left and to the right of the word (excluding stopwords and
punctuation), plus the two component words of the pseudo-
homonym themselves. The echo of this aggregate probe was
retrieved and compared to the echo of each component word
individually. The component word whose echo had the high-
est cosine similarity to the echo of the aggregate context
probe was selected as the disambiguated meaning.5

Results This approach gives us 91,703 ambiguous pseudo-
homonym tokens in the test data, aggregated over the 3 simu-
lations (on average 306 per pseudo-homonym). We find that
word2vec scores an overall accuracy (proportion of correctly
disambiguated test items) of .85 versus .69 for ITS. This
means that overall, word2vec is better able to disambiguate
words in their naturalistic contexts.

It is important to also consider how these accuracies com-
pare to a chance baseline – is either model doing better than
random guessing? Assuming there is some way to know
which is the most frequent (dominant) meaning, a model that
always guessed the dominant meaning would achieve a score

4To compare vectors from C′ to those from T , we use Orthogonal
Procrustes, a standard method, to rotate T to T ′ so the vectors are all
in a compatible vector space.

5This set-up was found to yield the best results for ITS compared
to other set-ups we tried.
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Figure 3: A visual example of the retrieval of an echo in ITS
through the selective activation of memory traces when pre-
sented with a probe.

of .73 for our pseudo-homonyms – i.e., the average relative
frequency of the dominant meaning. This seems like a rea-
sonable baseline to assume, since we are interested in whether
a model can learn the non-dominant meanings of ambiguous
words. For each simulation, a two-tailed paired-samples t-test
compared the accuracy per pseudohomonym for the model
predictions and the dominant meaning baseline. In all sim-
ulations, word2vec did significantly better than the baseline
(Sim. 1: T = 9.71, p< 0.001 / Sim. 2: T = 11.96, p< 0.001 /
Sim. 3: T = 10.01, p < 0.001). ITS, however, performed sig-
nificantly worse than the baseline (Sim. 1: T = 3.32, p< 0.01
/ Sim. 2: T = 2.34, p < 0.05 / Sim. 3: T = 2.74, p < 0.01).6

Critical for our purposes is whether each model not just
performed accurately for words with balanced meanings, but
also was able to accurately disambiguate cases where one
of the meanings is much more dominant. To assess this,
we look at each pseudo-homonym individually. To compare
fairly across pseudo-homonyms with different baselines (dif-
ferent degrees of dominance of meanings), we need a mea-
sure which looks at the amount by which each model sur-
passes (or falls short of) that baseline. A common measure to
do so is the so-called reduction in error rate over the baseline
(RER), defined as the amount by which the model improves
over the baseline, divided by the error rate of the baseline.7

Figure 4 plots the RER for each pseudo-homonym as a
function of its baseline (the relative frequency of its domi-
nant meaning). The lines indicate the best linear fit between
the two per simulation (all linear fits with Pearson’s r are sig-
nificant at p < .001). Both models display a downward slope
across all simulations. This is unsurprising, since we would
expect for any model that it is more difficult to disambiguate
a very unbalanced homonym toward the infrequent meaning.

However, as can be gleaned from Figure 4, the slopes
for word2vec are less negative than those of ITS, a differ-

6By virtue of transitivity, this also means that word2vec per-
forms better than ITS (Sim. 1: T = 12.13, p < 0.001 / Sim. 2:
T = 11.82, p < 0.001 / Sim. 3: T = 11.23, p < 0.001).

7That is, RER= (model acc−baseline acc)/(1−baseline acc)

Figure 4: Reduction in error rate over the baseline (RER),
aggregated over the three simulations. Dots (orange trian-
gles for ITS, blue circles for word2vec) represent pseudo-
homonyms. Regression lines are given for each simulation
(orange dashed lines for ITS, blue solid lines (all overlap-
ping) for word2vec). The black line represents zero error rate
reduction; values below 0 are error rate increase, above 0 er-
ror rate reduction.

ence that is significant across all three simulations (Sim. 1:
T = 3.03, p < .01 / Sim. 2: T = 4.83, p < .001 / Sim. 3:
T = 2.90, p < .01). This means that word2vec degrades more
gracefully as homonyms become more unbalanced than ITS.
Indeed, ITS only surpasses the baseline for relatively bal-
anced items, and is unable to do better than the baseline for
items whose most frequent meaning has a relative meaning
frequency of around .66 or more. By contrast, the regression
lines for word2vec only touch the null line (meaning always
guessing the most frequent meaning) for the most unbalanced
pseudo-homonyms (right end of the x-axis).

This means that, contrary to the predictions of Jamieson
et al. (2018), and arguments raised in the computational lin-
guistics literature (Reisinger & Mooney, 2010; Li & Juraf-
sky, 2015), not all prototype DSMs are unable to represent
a contextually-resolved meaning of an unbalanced ambigu-
ous word: word2vec performs adequately on such disam-
biguation tasks. Scaling up the disambiguation experiment
to a more naturalistic corpus size and set of contexts, our
approach using word2vec consistently surpasses the most-
frequent sense baseline, and can thus be said to robustly re-
solve lexical ambiguities on the basis of the context words.
Furthermore, word2vec degrades gracefully: it is harder to do
better than chance for very unbalanced items than it is for bal-
anced ones, but word2vec nonetheless on average surpasses
the baseline even for very unbalanced pseudo-homonyms.

General Discussion
In this paper, we set out to show that, contrary to claims
in the literature (Griffiths, Steyvers, & Tenenbaum, 2007;
Reisinger & Mooney, 2010; Jamieson et al., 2018), proto-
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type distributed semantic models are capable of represent-
ing infrequent meanings of ambiguous words. We proposed
that word2vec contains a natural, model-internal way of op-
erationalizing the disambiguation process, and tested this ap-
proach successfully on the artificial language simulations for
which Jamieson et al. (2018) showed that other prototype
DSMs failed.

Importantly, we further assessed whether these results
scaled to the disambiguation of naturalistic corpus examples.
We generated a pseudo-homonym corpus by replacing all in-
stances of sampled pairs of words in a corpus with pseudo-
homonym tokens. We then trained word2vec on one half
of the corpus, and assessed if the model was able to dis-
ambiguate pseudo-homonyms on the basis of their linguistic
contexts in the second half of the corpus. We observed that
our disambiguation approach using word2vec well surpasses
the baseline of always guessing the most frequent meaning
to be the right one, in contrast to an exemplar-based model
(Jamieson et al., 2018). Word2vec moreover degrades grace-
fully: as words are more unbalanced (i.e., as the most fre-
quent meaning has a higher relative frequency), the baseline
is higher, and it is harder to surpass it. Word2vec nonetheless
succeeds at surpassing the baseline, even for very unbalanced
pseudo-homonyms.

A follow-up question is why Word2vec can represent infre-
quent meanings while LSA and BEAGLE cannot. It is tempt-
ing to speculate that this is due to the fact that word2vec vec-
tors are trained to predict words, whereas LSA and BEAGLE
vectors reflect the counting of words, and prediction-based
DSMs have been found to outperform count-based DSMs
(Baroni, Dinu, & Kruszewski, 2014). However, Levy and
Goldberg (2014) argue the skipgram variant of word2vec per-
forms implicit factorization of a count-based matrix in its
objective function, so the actual differences between count-
based and prediction-based models are not completely clear.
This is an open area of research to which our findings con-
tribute an important data point – i.e., that our approach to
using the prediction mechanism of word2vec in semantic
disambiguation outperforms a non-predictive approach us-
ing count-based DSMs (BEAGLE and LSA, as shown in
Jamieson et al., 2018). A relevant future step is the compari-
son of our approach using the CBOW algorithm of word2vec
to other prediction-based models or variants such as skip-
gram (Mikolov et al., 2013), as well as other contemporary
approaches such as GloVe (Pennington, Socher, & Manning,
2014) and ELMo (Peters et al., 2018).

Another option is that it is the use of both the context word
and target word matrices that allows us to achieve these re-
sults. Whereas off-the-shelf vectors have been used exten-
sively in cognitive modeling experiments, our paper proposes
to use a model-internal approach that leverages the fact that
word2vec represents meaning as context word vectors and
as target word vectors. This approach addresses the concern
of Jamieson et al. (2018) that many prototype models only
have ad hoc ways of carrying out the disambiguation proce-

dure. It furthermore instantiates two critical points of the per-
spective on lexical semantics put forward by Elman (2009),
namely: (1) that the drive to predict upcoming (linguistic) be-
haviour has sizable impact on the kinds of representations
learned, and (2) that the interpretation of a word is always
a function of some prior knowledge of the word as well as
its context. It is effectively this idea that, combined with
high-parametric representations and an abundance of data to
train on, has led to the success of contemporary NLP word-
meaning models such as ELMo (Peters et al., 2018).

We would like to argue that because of this distributed way
in which word2vec learns to predict words, its representa-
tions reflect the important point that not all of a word meaning
representation needs to be stored ‘inside of’ the word itself,
but also by how word meanings relate to other word mean-
ings (i.e., the ‘oppositions’ with other lexical items they have;
Trubetzkoy, 1969 (1939)), as well as by rich pragmatic inter-
pretive processes (Sperber & Wilson, 1986; Levinson, 2000).
An important goal for the cognitive sciences of word mean-
ing is to develop computationally precise models of how these
processes work and interact. The present paper constitutes a
stepping stone towards that goal.
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Abstract

The Remote Associates Test (RAT, CRA) is a classical creativ-
ity test used to measure creativity as a function of associative
ability. The RAT has been administered in different languages.
Nonetheless, because of how embedded in the language the
test is, only a few items are directly translatable, and most of
the time the RAT is created anew in each language. This pro-
cess of manual (and in two cases computational) creation of
RAT items is guided by the researchers’ understanding of the
task. However, are the RAT items in different languages com-
parable? In this paper, different RAT stimuli datasets are an-
alyzed qualitatively and quantitatively. Significant differences
are observed between certain datasets in terms of solver per-
formance. The potential sources of these differences are dis-
cussed, together with what this means for creativity psycho-
metrics and computational vs. manual creation of stimuli.
Keywords: Remote Associates Test; RAT; CRA; Creativity;
Creativity evaluation and metrics; Creativity Test

Introduction
The Remote Associates Test is a creativity test often used
in the literature (Ansburg & Hill, 2003; Cunningham, Mac-
Gregor, Gibb, & Haar, 2009; Mednick & Mednick, 1971;
Cai, Mednick, Harrison, Kanady, & Mednick, 2009; Ward,
Thompson-Lake, Ely, & Kaminski, 2008).
A RAT problem given to a participant contains three words,
for example FISH, MINE, RUSH; the participant has to come
up with a fourth word related to all of the three given words.
In this case, GOLD is an answer, because the compounds
GOLD FISH, GOLD MINE, GOLD RUSH can be built with
it. For a human or a machine (Olteţeanu & Falomir, 2015)
to solve the RAT, knowledge about the compound words of a
language is needed.

Because solving the RAT relies on knowing various ex-
pressions and compound words from a language, native
speakers have an advantage and are generally the target pop-
ulation when deploying the RAT. This raises the need for var-
ious RAT stimuli sets in different languages.

As the RAT relies on knowledge and expressions which are
language specific, the RAT is, in most part, not translatable
between languages. An exception to this are the rare cases in
which all compounds required as knowledge by a RAT item
in a specific language also exist in another language - for ex-
ample GOLDFISCH, GOLDMINE, GOLDRAUSCH as the
German counterpart of the above mentioned query.

As only a few items are translatable, RAT sets of items are
created anew by researchers in each language. This entails

that RAT queries are probably impacted by the language it-
self, and quite likely by the preferences and knowledge of
compound words of the stimuli dataset authors. The Re-
mote Associates Test (RAT) is administered in many creativ-
ity studies, in the native language of the participants. Results
reported in these studies are therefore impacted by the quality
and difficulty of RAT items in each language. How can this
impact be assessed?

No overview exists of the human performance in the RAT
/ CRA in the different languages. Such an overview would
help us understand whether significant differences exist be-
tween performance on different RAT problem sets in the var-
ious languages in which it is employed. If no significant dif-
ferences exist, this may indicate that results reported on cre-
ativity studies which use the RAT in different languages are,
indeed, cross-comparable. If a significant difference however
does exist, the comparability of the RAT across languages
may require more nuance, and the development of an under-
standing of the sources of this difference.

This paper sets out to construct an overview of the RAT
across eight languages and two types of the RAT (compound
and functional), and provide an initial analysis between RAT
sets across all these languages.

The RAT and languages
Sets of RAT / CRA problems of the following languages were
analyzed - please note that some languages come with multi-
ple datasets (D):

– German (Landmann et al., 2014)

– Chinese (Shen, Yuan, Liu, Yi, & Dou, 2016)

– Italian (Salvi, Costantini, Bricolo, Perugini, & Beeman,
2016)

– Romanian (Olteţeanu, Taranu, & Ionescu, n.d.)

– Polish (Sobków, Połeć, & Nosal, 2016)

– English D1 (Bowden & Jung-Beeman, 2003)

– English D2 (Olteţeanu, Schultheis, & Dyer, 2017)

– English D3 (Olteţeanu, Schöttner, & Schuberth, 2019)
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– Finnish (Toivainen, Olteţeanu, Repeykova, Likhanov, &
Kovas, 2019)

– Russian (Toivainen et al., 2019)

RAT comparison
A qualitative and quantitative comparison of the RAT datasets
above is provided in the next sections.

Qualitative comparison
English datasets D2 and D3 contain different types of items:
compound versus functional. For compound items, the re-
lationship between the three given words and the answer
word is a relationship manifested in language – for exam-
ple, GOLD FISH, GOLD MINE and GOLD RUSH are com-
pounds which all appear in language. By contrast, the re-
lationship between functional query words and the answer
reflects a functional relationship between the two, but may
or may not be a compound linguistic relationship. For ex-
ample, the relationship between CLOCKWISE and RIGHT
or WRONG and RIGHT is a functional relationship. Of the
above datasets, English D3 is functional.

Independent of the compound/functional classification,
RAT problems have also been divided into two types based
on the order of the words: homogeneous and heterogeneous
items. RAT items are homogeneous if the solution word is
either a prefix or a suffix to all the three words of the problem
(like in the query FISH, MINE, RUSH, where GOLD acts as
a prefix to each of the query items). Problems are heteroge-
neous, if the solution word is the prefix for some of the words
and a suffix to other words of the problem (e.g. in the query
RIVER, NOTE, ACCOUNT, the answer BANK is a suffix for
the first word, and a prefix for the other two).

Of the above datasets, the German, Italian and English D1
ones distinguished between the heterogenous and homoge-
neous type of the queries. ANOVA with task type as a factor
were run by the authors on these sets. The task type fac-
tor showed no significant effect on Accuracy (the number of
queries solved by the participants). In the German version,
a significant effect of the task type factor was observed on
reaction times.

Finally, of the dataset items above, most are manually cre-
ated. An exception to this are items from the English D2 and
English D3 datasets. English D2 (Olteţeanu et al., 2017) suc-
cessfully attempts the computational creation of RAT items,
and compares results with an existing (English D1) norma-
tive dataset. English D3 (Olteţeanu et al., 2019) applies the
computational approach using a new type of language knowl-
edge to the creation of functional items, thus resurrecting an
older idea of Worthen and Clark (Worthen & Clark, 1971)
regarding the existence of such items, and their differences
to compound items. These items are compared to compound
items in the paper.

Quantitative comparison
In the following, a descriptive statistics overview of the differ-
ent datasets is provided. To answer the question whether dif-

ferences exist between RAT datasets in the various languages,
Welch’s unequal variances t-test is used on each two language
pairs to determine the effect of language on the Remote As-
sociates Test.

Descriptive data
The various RAT datasets contained varying numbers of
items, between 17 (Polish) and 144 (English D1). Further-
more, the various items were deployed either (a) giving par-
ticipants different timeframes to solve each query, between 2s
and 60s, or (b) without setting a time limit. Since 2s, 5s and
7s timeframes were only used once across these datasets, only
items between 15s and 60s are analysed in this paper. The
stimuli were deployed on populations of various sizes, with
n ranging between 26 and 317 participants. The Accuracy
(number of correct answers given by the participants) fluc-
tuated between .31 and .58. The response times ranged be-
tween 7.26s and 37.34s. Please note that means and standard
deviations were calculated for this paper from the given data,
where they were not provided by the initial dataset. Table 4
gives an overview of all the datasets and various descriptive
metrics across all languages.

Cronbach’s alpha
Cronbach’s alpha is the most commonly used method for es-
timating the reliability of a test, as reflected by its internal
consistency between items. Scores below 0.5 indicate an un-
acceptable internal consistency, whereas higher scores indi-
cate a better one. Generally scores above 0.7 are considered
to reflect an acceptable amount of reliability, and an α above
0.9 is excellent. The Cronbach α scores were calculated by
authors for some of the intial papers (see Table 4) and vary
between .73 and .99.

Differences between languages
In order to measure differences between languages, heteroge-
nous and homogeneous items were combined and Welch’s
unequal variances t-test was conducted to measure the dif-
ference between means on two existing performance metrics:
Accuracy and Response Times.

Accuracy in 15s timeframe
As shown in Table 1, there were significant differences of
means between:

• Italian (M = .39; SD = .23) and German (M = .30;
SD = .27); t(250) = 2.86, p = .0046

• Italian and English D1 (M = .31; SD = .22);
t(253.88) = 2.95, p = .0035

Table 1: Welch test results for accuracy in a 15s timeframe
accuracy GER ITA

15s t df p t df p
ITA 2.86 249.99 .005** - - -

ENG D1 0.13 260.92 .89 2.95 253.88 .004**
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Accuracy in 30s timeframe
Like displayed in Table 5, there were significant differences
of means between:

• Chinese (M = .58; SD = .25) and Polish (M = .41;
SD = .23); t(38.29) = 4.92, p < .0001

• Chinese and German (M = .30; SD = .27);
t(254.28) = 5.92, p < .0001

• Chinese and English D1 (M = .31; SD = .22);
t(265.86) = 3.47, p = .0006

• English D1 and German; t(262.27) = 2.72, p = .007

Accuracy without timeframe
As reported in Table 6, there were significant differences of
means between:

• English D2 (M = .52; SD = .14) and Finnish (M = .46;
SD = .11); t(93.95) = 2.1, p.038

• English D3 (M = .33; SD = .16) and Romanian (M = .54;
SD = .43); t(83.26) = 3.98, p = .0002

• English D3 and Russian (M = .55; SD = .14);
t(92.87) = 3.73, p = .0003

• English D3 and English D2; t(93.46) = 3.83, p = .0002

RT in 15s timeframe
As presented in Table 2, there was a significant difference of
means between:

• English D1 (M = 7.26; SD = 1.65) and Italian (M = 6.52;
SD = 1.46); t(258.86) = 3.87, p = .0001.

RT in 30s timeframe
As shown in Table 3, there were significant differences of
means between:

• English D1 (M = 10.45; SD = 3.47) and Polish
(M = 14.03; SD = 3.06); t(21.38) = 4.48, p = .0002

• Chinese (M = 9.74; SD= 3.13) and Polish; t(20.7)= 5.42,
p < .0001

RT without timeframe
As stated in Table 7, there were significant differences of
means between:

• Finnish (M = 37.34; SD = 17.36) and Romanian
(M = 15.37; SD = 10.53); t(52.72) = 6.67, p < .0001

• Finnish and Russian (M = 23.53; SD = 10.38);
t(58.18) = 5.05, p < .0001

• Finnish and English D2 (M = 14.52; SD = 9.89);
t(76.07) = 4.79, p < .0001

• Finnish and English D3 (M = 11.68; SD = 10.96);
t(67.26) = 6.48, p < .0001

• Russian and English D3; t(83.71) = 2.99, p = .004

• Russian and Romanian; t(91.38) = 3.37, p = .001

• English D2 and English D3; t(91.92) = 2.09, p = .04

Discussion and further work
The hardest sets to solve seem to be the English D3 set of
items from Study 2, with a an average accuracy of .30, and
the Finnish dataset in terms of response times, with a mean
37.34 seconds. The response times of the Russian RAT were
also noticeably higher (23.53s).

This paper set out to compare the RAT in different lan-
guages, and across different datasets. Significant differences
were observed between multiple languages and datasets, on
both the Accuracy and Response Times performance metrics.

The significant difference observed between the English
D2 and English D3 sets may have as a source the difference
between types of items (compound versus functional).

In the cases in which a significant difference exists between
different language datasets, various causes could act as the
source:

(a) different population samples are more creative (or at least
better at the associative factor in creativity);

(b) the RAT is more difficult in some languages, because of
the language itself and the cognitive factors resulting from
encoding linguistic knowledge and solving the RAT in that
language and/or

(c) sets of RAT queries vary in difficulty, because they are cre-
ated without using standardized methods, thus depend on
the inspiration and knowledge base of the researchers cre-
ating them.

This initial investigation shows that differences between
the RAT in various languages need to be addressed in more
detail. Before cross-comparison of creativity results can be
declared, the source of these differences needs to be found.
Experimental or analytical setups need to be designed in or-
der to establish which one of (a), (b) and (c), or combination
thereof, is the source of the differences.

An initial thought on establishing comparability could be
to attempt to find translatable items across the various lan-
guages. By keeping stimuli items constant, differences of cre-
ativity pertaining to the population or use of language could
be established.

However, even if translatable, the same RAT items may
not be the same difficulty in different languages. Some light
on this is shed by computational models like comRAT-C
(Olteţeanu & Falomir, 2015), essentially models of memory
search, which can solve the RAT by organizing their knowl-
edge in a semantic net-like structure and propagating activa-
tion through word associations. The comRAT-C’s probability
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of solving a query correlates with human performance. This
model entails that, even if different RAT queries can be trans-
lated in different languages, equivalence does not necessarily
exist between them: the number of word associates and the
strength of association may not be the same in different lan-
guages. Different tools may thus need to be used to try to
establish query equivalence.

A potential solution may be to establish a stronger item
equivalence in computational terms: for example by us-
ing computational RAT query generators like comRAT-G
(Olteţeanu et al., 2017), to create sets of items where a high
degree of control can be maintained over the number of asso-
ciates and the association strength of the query words. Such
approaches have already proven fruitful in the deployment
of more precise empirical designs (Olteţeanu & Schultheis,
2017), and in the creation of other types of items (Olteţeanu
et al., 2019).

Another direction of future work would be to establish a
creative association measure which transcends the constraints
of language like a visual Remote Associates Test - some work
in this direction has already been done by (Olteţeanu, Gau-
tam, & Falomir, 2015; Toivainen et al., 2019).

This paper gives an overview of RAT datasets in multi-
ple languages, and shows that cross-linguistic comparability
should not be taken for granted in the case of this broadly
used creativity test.
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Olteţeanu, A.-M., & Falomir, Z. (2015). comrat-c : A com-
putational compound remote associate test solver based on
language data and its comparison to human performance.
Pattern Recognition Letters, 67, 81-90.
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Appendix
Table 2: Welch test results for RT in a 15s timeframe

RT ITA
15s t df p

ENG D1 3.87 258.86 .0001***

Table 3: Welch test results for RT in a 30s timeframe
RT ENG D1 CHI D1
30s t df p t df p

CHI D1 1.77 265.91 .08 - - -
POL 4.48 21.38 .0002*** 5.42 20.7 2e-5****
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Table 4: Number of elements(|x|), sample size(n), mean(x̄) and standard deviation(s) of accuracy and response time and Cron-
bach’s α for the RAT in the different languages. S1 and S2 reflect different studies using the same set of stimuli.

Timeframe Accuracy x̄ (s) RT x̄ (s) Cronbach’s α

Language in sec |x| n sum per item per item [sec] Accu RT
German both 60 130 80 54.99 (34.97) .44 (.27) 16.97 (7.12) - -

heterogeneous 60 56 80 26.10 (15.79) .47 (.28) 15.80 (6.70) - -
homogeneous 60 74 80 30.19 (19.17) .41 (.26) 18.50 (7.50) - -
German both 30 130 80 - .39 (.27) - - -
German both 15 130 80 - .30 (.27) - - -

Chinese 30 128 123 74.46 .58 (.25) 9.74 (3.13) .92
Italian both 15 122 317 47.58 (28.06) .39 (.23) 6.52 (1.46) - -

heterogeneous 15 66 317 25.48 (14.72) .39 (.22) - - -
homogeneous 15 56 317 22.12 (13.44) .40 (.24) - - -

Romanian none 111 63 59.94 (47.73) .54 (.43) 15.37 (10.53) .93 .97
Polish 30 17 206 6.90 (3.90) .41 (.23) 14.02 (3.06) .79 -

English D1 both 30 144 289 72.72 .51 (.25) 10.45 (3.47) - -
heterogeneous 30 59 289 29.74 .50 - - -
homogeneous 30 85 289 42.93 .51 - - -

English D1 both 15 144 289 - .31 (.22) 7.26 (1.65) - -
English D2 both none 100 113 52.64 (16.16) .53 (.16) - .94 .99

comRAT-G none 50 113 26.20 (7.03) .52 (.14) 14.52 (9.89) .85 .99
Bowden, J.-B. none 50 113 26.41 (11.24) .53 (.23) 16.56 (12.84) .93 .99

English D3 S1 fRAT none 75 26 35.27 (7.99) .47 (.11) 13.91 (8.42) - -
comRAT none 50 26 25.02 (7.26) .50 (.15) 12.38 (6.23) - -

English D3 S2 fRAT none 48 61 17.10 (5.77) .36 (.12) 14.14 (13.39) .79 .90
Compound both none 48 61 15.85 (7.60) .33 (.16) 11.68 (10.96) .87 .96

comRAT-G none 24 61 7.25 (3.72) .30 (.16) 11.00 (10.62) .75 .93
Bowden, J.-B. none 24 61 8.61 (5.06) .36 (.21) 11.64 (0.65) .85 .92

Finnish none 47 67 21.60 (5.30) .46 (.11) 37.34 (17.36) .73 -
Russian none 48 67 26.60 (6.90) .55 (.14) 23.53 (10.38) .83 -

Table 5: Welch test results for accuracy in a 30s timeframe

accuracy GER CHI D1 POL
30s t df p t df p t df p

CHI D1 5.92 254.28 1e-8**** - - - - - -
POL 0.39 43.32 .7 4.92 38.29 2e-5**** - - -

ENG D1 2.72 262.27 .007** 3.47 265.86 .0006*** 2.03 36.62 .05

Table 6: Welch test results for accuracy without timeframe

accuracy ROM FIN RUS ENG D2
no tf t df p t df p t df p t df p
FIN 1.66 78.25 .10 - - - - - - - - -
RUS 0.32 91.93 .75 1.71 90.40 .09 - - - - - -

ENG D2 1.00 74.86 .32 2.10 93.95 .038* 0.66 89.52 .51 - - -
ENG D3 3.98 83.26 .0002*** 1.82 92.66 .072 3.73 92.87 .0003*** 3.83 93.46 .0002***

Table 7: Welch test results for response time without a timeframe

RT ROM FIN RUS ENG D2
no tf t df p t df p t df p t df p
FIN 6.67 52.72 2e-8**** - - - - - - - - -
RUS 3.37 91.38 .001** 5.05 58.18 5e-6**** - - - - - -

ENG D2 1.96 66.05 .054 4.79 76.07 8e-6**** 0.30 80.50 .76 - - -
ENG D3 0.64 68.42 .52 6.48 67.26 1e-8**** 2.99 83.71 .004** 2.09 91.92 .04*
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Abstract

Narrative processing is an important skill to model both
from a cognitive science perspective and a computa-
tional modeling perspective which applies to intelligent
agents. Communication between humans often involves
storytelling patterns that make the mundane exchange of
information more interesting and with proper emphasis
on important communicative goals. Current narrative
generation models evaluate their generations based
on either a priori domain semantics (e.g. game state
for an in-game conversation with player agents) or
generic text quality measures (e.g. coherence). However,
in utilizing storytelling as a communicative tool for
real-world interactions, domain-specific approaches fail
to generalize and text quality measures fail to ensure
that the narrative is perceived as interesting. Hence, such
generation needs to consider the cognitive processes
involved in the perception of narrative. Using theories of
cognitive interest, we present results of an investigation
of whether word embeddings (e.g. GloVe (Pennington,
Socher, & Manning, 2014)) could be used to model and
estimate cognitive interestingness in stories.

Introduction and Background
In computational narrative generation, the communication
context for which the narratives are generated plays an in-
tegral role in determining both the method constraints dur-
ing the generation and the evaluation metrics for the result-
ing narratives. Not all approaches to narrative generation are
compatible with all narrative communication paradigms, be-
cause they result in vastly different qualities in the generated
narratives and also differ in their assumptions and constraints.

Moreover, no single set of evaluation or optimization met-
rics can ensure the success of a narrative generator across
multiple paradigms. Such “success” is usually dependent
upon being received positively by the audience and achiev-
ing any potential communicative or social goals. In simpler
terms, a “good” narrative has to be interesting to the audi-
ence.

Entertainment, and games in particular, have been a promi-
nent context for narrative generation and communication.
Many games change the events that are not (at least directly)
in control of the player, or affect what the players say (in
voice or text), in order to create the “best” storyline possible
with a goal of maximal immersion and character believability
(Mateas & Stern, 2003; McCoy, Treanor, Samuel, Mateas, &
Wardrip-Fruin, 2011; Ryan, Mateas, & Wardrip-Fruin, 2016).
Other games can involve an interactive settings, where the
player can influence the progression of the story through mak-
ing choices (Riedl & Bulitko, 2012).

In such game-related use cases, it is often possible to in-
fer the quality or interestingness of the generated story using
known domain semantics. For instance, if a simple genera-
tor is making a story about chess, it is easy to know which
sequence of events or moves are worthy of being recited as
a story, since we know the significance of every move, or
sequence of moves, to the game progression or to the win-
ning chances of each side. Similar inferences about event se-
quences can be made about more complex games as well,
given that some game semantics are available. Moreover,
even when games are not involved, many story modeling and
narrative generation approaches rely on a semantic model of a
particular domain (e.g. characters, goals, entity relationships,
etc.) which allows the derivation of a sequence of events and
ultimately a narrative, such as in (Elson, 2012a). The same
is true about classic story generation systems that while in-
spiring, rely on a bank of previous stories and their assumed
structures to generate new ones with a measure of interesting-
ness or success, such as Minstrel (Turner, 1994) and Mexica
(PÉrez & Sharples, 2001).

Other narrative generation approaches are less dependent
on a particular context of communication and use case, and
consequently, do not depend on a priori semantic models. In-
stead, they attempt to generate narrative of stories that make
general sense (as a sequence of events) and contain correct
sentences (if presented in text). Thus, in order to assess the
quality of the generated story, such approaches often focus
on the general properties and qualities of the generated text,
such as coherence or the causal plausibility of the sentence
ordering (Papineni, Roukos, Ward, & Zhu, 2002). This way
of generating narrative is sometimes referred to as open story
generation (Martin et al., 2017; Swanson & Gordon, 2008).

Improving on generic text-based evaluation metrics, in
(Purdy, Wang, He, & Riedl, 2018), a set of proxy measures
are introduced to assess the “story quality” in an open story
generation task. These measures are shown in (Purdy et al.,
2018) to correlate with human judgment of story quality;
hence, they can be used towards a better evaluation of the
generated narrative and an easier and faster fine-tuning of
many generative models, such as Recurrent Neural Networks
(RNNs). They include:

- Correct grammar use (“grammaticality”),
- Complexity of used language (“narrative productivity”),
- Similarity of adjacent sentences (“local contextuality”),
- Level of adherence to the usual ordering of events in most
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stories, e.g. “eat” comes after “order” (“temporal order-
ing”).

Humans possess an intuitive evaluation metric for stories,
one that goes beyond linguistic measures. Expert human sto-
rytellers are not considered experts merely because of the
quality of their use of language (however sophisticated it may
be), but also because of their ability to tell stories that seem
interesting to a large number of audience. Such experts mas-
ter narrative authorship techniques and can recognize the pro-
cesses involved in human’s cognitive perception of narrative.
In other words, they tell stories in ways that are informed
by their understanding of how human perception of narrative
works.

To that end, proxy measures introduced above are a useful
start to assessing narrative quality when it is not tied to
a specific domain of semantics. However, an important
aspect of story quality, i.e. “how good a story is”, depends
on more complex evaluations metrics than language use,
local contextuality, or the normality of the event orderings.
While those measures are relevant, they do not inform the
generation process about the perception of narrative. Ideally,
a generator should also optimize for its generated narratives
to be perceived as interesting. Moreover, as mentioned
above, a computational generation of narrative heavily
depends on the communication context in which it operates.
A particular reason why a focus on narrative perception is
imperative is the rapid evolution of such contexts, which
will increasingly include interactive and sociable agents (e.g.
embodied or virtual agents (Goodrich, Schultz, et al., 2008;
Fong, Nourbakhsh, & Dautenhahn, 2003) or conversational
agents (NPR, 2017)).

Story Interestingness
Storytelling, as an intuitive, natural and commonplace human
behavior, seems deceptively simple to judge in terms of “in-
terestingness”. However, similar to some other intuitive and
natural behaviors, such as nodding and gazing, it is extremely
complicated to predict or reconstruct a story’s interestingness.
This perceived interest can be subjective, is often cultural and
it can also change over time (e.g. a popular movie’s narrative
becomes less popular among a new generation). Moreover,
the subtleties and arts of authorship makes the ways in which
a narrative can seem interesting incredibly diverse, subtle and
nuanced. Despite such difficulties, there are ways in which we
can start understanding this phenomenon and begin develop-
ing proxy measures for perceived story interestingness, to be
used in generative models. To this end, the related work in the
field of cognitive science is a great resource to draw from.

While various types of interest can be established in a
story, many researchers have broadly categorized these inter-
ests in two main groups. Under various names, such as indi-
vidual and situational (Hidi & Baird, 1986), or cognitive and
emotional (Kintsch, 1980), researchers have focused on the
source of interest to make such categorization. “Cognitive”

interests are largely the properties of the narrative (or author-
ship techniques) and “emotional” interests are largely rooted
in an audience’s predispositions. The latter group is more
subjective, and can consist of instinctive “absolute” (Schank,
1979) interests (e.g. danger, power, sex), or “topic interests”
(Campion, Martins, & Wilhelm, 2009).

While it is plausible to assume that all kinds of interest
affect each other when it comes to perception, cognitive in-
terests are categorized as the less subjective factors, ones
that have a larger focus on the stimuli: the properties of the
narrative. Many researchers have developed theories of the
mechanisms that lead to the establishment of cognitive in-
terest in stories. Notable theories include: unexpectedness
(Schank, 1979), the interaction between background knowl-
edge, uncertainty and postdictability (Kintsch, 1980), incon-
gruity (Mandler, 1982), change in one’s belief (Frick, 1992),
generation of inference (Kim, 1999), and the generation of
predictive inference (Campion et al., 2009).

Many of these theories above are conceptually close to and
can overlap with each other. In this paper, we focus on two
of these theories that represent familiar notions: unexpect-
edness (closely related to surprise) and predictive inference
(closely related to foreshadowing).

A detailed overview of the theories of story interestingness
is provided in (Behrooz, Mobramaein, Jhala, & Whitehead,
2018).

Search for Specificities
Another reason for creating proxy measures for story inter-
estingness is the potential roles of such measures in choosing
an appropriate set of specificities in a narrative.

Picking the Right Specificity in a Situated Context If a
narrative generation system, for instance one used by an agent
operating in the real world, attempts to build a narrative from
events that have previously happened, there would be a search
problem involved to choose which observations, details or
specificities (if any) should be included in the story. At a min-
imum, a sequence of events can be described as a mundane
narrative that minimally describes the story’s events. How-
ever, the inclusion of certain specificities about the elements
in the story is usually what allows for authorship skills.

The “Chekhov’s Gun” principle says: “every element in a
story must be necessary, and irrelevant elements should be
removed.” On the other hand, many seemingly unnecessary
parts of a telling of a story serve the particular purpose of
making the narrative more interesting (e.g. through foreshad-
owing or red herring techniques). For instance, specifying
that “the moon was shining bright” a few events before two
characters (that the audience may suspect are in love) kiss
for the first time, asserts a property of the moon that is (most
likely) inconsequential to what happens in the story, but is
nonetheless a part of what makes the telling of it interesting.

Thus, while completely irrelevant details and specificities
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can violate Chekhov’s Gun principle, some details and
specificities, when chosen and employed in an informed and
artistic way, can contribute to the interestingness of narrative
when perceived by an audience.

Complementing Approaches That Involve Generalization
of Concepts This search problem can also arise when
generative neural networks (such as RNNs) are used to gen-
erate stories. In order to increase the chances of convergence
in such models, researchers sometimes replace verbs and
words in a story corpus that is used to train the model with
generalized concepts (Martin et al., 2017) using semantic
word networks such as VerbNet and WordNet (Schuler,
2005; Miller, 1995). This would result in the replacement of
both of the words “car” and “automobile”with the semantic
label “self-propelled vehicle.n.01”, and consequently, it
becomes easier for the model to find event patterns involving
either of these words. However, the narratives generated
using such models would then also include the generalized
concepts, and hence, they can be more mundane and less
specific as a result. Having proxy measures to find the more
interesting specificities may offer a solution to this problem.
In particular, word vectors can help with choosing a specific
instance of a semantic label. This lack of specificity can
occur in any generative method for open story generation
that involves generalization of concepts or events, and
consequently results in mundane generated stories, such as
in (Li, Lee-Urban, Johnston, & Riedl, 2013).

Cognitive Interest as a Proxy Measure
In the absence of a domain’s semantic model (as explained
in previous sections), we explore the idea of using word
embedding vectors with the goal of developing proxy
measures for story interestingness. Word vectors introduce
a way to estimate the semantic similarity and relationships
between words, largely based on co-occurrence. The rapid
improvements in deep learning have greatly contributed to
the quality of word embeddings and they have seen much
success in many computational linguistic tasks. In this paper,
we investigate the use of word embeddings to estimate the
cognitive interest in stories.

Foreshadowing
As briefly reviewed before, one of the main causes of the es-
tablishment of cognitive interest in stories is predictive in-
ference by the audience (Campion et al., 2009). Among the
diverse set of reasons why and ways in which a reader may
try to infer what will occur in the continuation of a story,
we focus on a common way in which authors attempt to
intentionally cause such inference in the reader. Commonly
known as foreshadowing (Chatman, 1980), this authorship
techniques involves giving readers implicit hints that can, in
various ways, provide clues about the upcoming noteworthy

events in the story. Foreshadowing can have various degrees
of subtly. In some cases, it can create a vivid question mark in
user’s mind about why a particular point is mentioned in the
story (e.g. “the road seemed scary and dark, with no barriers
in the middle of it”). In such cases, foreshadowing is more
likely to lead to predictive inference. At other times, what
is also recognized as foreshadowing may be too subtle of a
hint to drive predictive inference and may not pose a question
mark to the user until a later event reveals a rather cryptic
connection. In both cases, the goal is for the reader to realize
this connection and make sense of a “coherent macrostruc-
ture” of the story in retrospect; a notion called postdictability
by Kintsch (Kintsch, 1980).

There have been a few notable attempts to generate
foreshadowing in stories. Minstrel (Turner, 1994), relying
on a bank of stories that it has seen before and knows
about, attempts to foreshadow those upcoming events that
are uncommon and hence unexpected. In (Bae & Young,
2008), another planning-based system provides solutions for
generating foreshadowing and flashbacks for events that are
found to be surprising. Suspenser (Cheong & Young, 2006)
uses similar approaches to generate suspense in a planning-
based story generation system. While our focus on cognitive
interest and foreshadowing is not part of a story generation
system, it can be used in one and the aforementioned system
are a great source of inspiration for our work. However, as ex-
plained earlier, our focus is on systems that cannot assume the
levels of semantics needed for use in planning-based systems.

Using Word Vectors to Find Foreshadowing

Estimating the presence of foreshadowing, without a
semantic model of the domain, is a complicated task.
Foreshadowing can take many different shapes, be causal
or non-causal, and can depend on domain-specific clues.
However, certain cases of foreshadowing involve usage of
words that co-occur in many contexts and hence, are likely to
have similar word vectors in an embedding space. This is the
main intuition behind our approach.

Obtaining the Story Keywords Consider the example
story in Table. 1. It contains a case of foreshadowing with
a potential to cause predictive inference in the reader: event
5 (waiter is distracted and tired) foreshadows event 7 (food is
wrong, waiter apologizes). Treating all the words in the story
as a bag-of-words, we first remove stop words (e.g. “the”,
“is”), and then further narrow down our selection of words
using part-of-speech tags. In order to focus on the words that
capture most of the events and descriptions in the story, we
select verbs, nouns and adjectives. Specifically, for verbs we
use verb roots extracted via VerbNet (Schuler, 2005) and for
nouns we exclude named-entities such as “Sam”. It is worth
noting that the current target for state-of-the-art open story
generation approaches is short stories that are 6-10 sentences
(Purdy et al., 2018).
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Table 1: An example story which contains a case of foreshad-
owing. The numbers on the left are story event indexes.

1 Sam and Judy went out for dinner at
their favorite restaurant.

2 While driving to the restaurant, Judy’s
favorite song played on the radio.

3 Sam found a parking space at the very
front of the restaurant.

4 Sam and Judy were seated immediately
and ordered their favorite food to the
waiter.

5 The waiter looked distracted and tired
but was polite while taking their order.

6 Sam’s favorite song played on the radio
while they waited for their food.

7 When the waiter returned with their food
it was all wrong! The waiter apologized
and returned a few minutes later with
the correct order.

8 Sam and Judy enjoyed their meal.
9 They paid their tab, left a tip for the

waiter, and drove back home.

Table 2 shows the keywords extracted as above for the story
in Table. 1 (using Stanford CoreNLP (Manning et al., 2014)
for part-of-speech tags).

Table 2: Extracted keywords from the story in Table. 1.
waiter, return, pay, song, seat, order,
radio, look, go, apologize, dinner, take,
home, wrong, favorite, find, space, leave,
minutes, restaurant, food, enjoy, parking,
tired, drive, distracted, front, correct,
meal, tip, tab, play, wait

Vectorizing and Visualizing the Story Keywords We
used GloVe embeddings, pre-trained on Wikipedia articles,
in order to obtain a set of vectors that represent the words in
Table 2. Hence, this set of vectors represent the major occur-
rences and descriptions in the story, as they map onto the em-
bedding space at use. Moreover, by extension, these vectors
can also represent major groups of concepts that are perceived
by the audience when reading the story.

The original embedding space used is 300-dimensional. In
order to visualize the word vectors, we used the T-SNE algo-
rithm (Maaten & Hinton, 2008) to yield a 2-D representation
of them. The results can be seen in Fig. 1.

Interpreting the Vector Space The T-SNE visualization
shows to us that certain clusters of words can be distinguish-
able from others. These clusters can semantically categorize
the contents of the story without any semantic models of the

Figure 1: 2-dimensional T-SNE visualization of the GloVe
vectors representing the keywords in Table 2.

domain, such that each focus on a particular aspect of the
story, involving its own events, objects and specificities. At-
tempting to extract some of the clusters seen in Fig. 1, we
notice the following by grouping the words that are reason-
ably close to each other:

• dining: waiter, restaurant, dinner, meal, food,
tip, tab

• car: parking, front, seat, space, drive

• logistics: return, take, wait, go, leave

• music: song, radio, enjoy, favorite

• cashier: pay, order

• searching: look, find

• mistake-recovery: distracted, tired, apologize,
wrong, correct

• play-minute-home: play, minute, home

It is also worth noting that other unsupervised clustering
approaches, such as K-means, would lead to very similar
clusters. We used T-SNE for this analysis because K-means
proved less deterministic and could yield less predictable
results depending on its starting state; however, the distance
between two given pairs of word vectors is constant, hence,
T-SNE depicts an appropriate representation of those con-
stant distances.

Finding the “Key Event” Usually, a key event in a short
story (or a segment of a long one) is the target of foreshad-
owing. In classic dramatic structures, such event can play the
role of the story “climax” (Elson, 2012b). Alternatively, an
“inciting incident” in the story (McKee, 1997) can become
the subject of foreshadowing. Such events are often followed
by a resolution (e.g. the correct food order is then brought,
in our example story). Usually, this key event is unexpected,
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surprising, or otherwise interesting to the audience, such that
it would justify the telling of the story in the first place. Find-
ing this key event without semantic models of the story’s
domain is not an easy task. Most techniques employed for
this purpose depend on irregularities and unexpectedness in
a story. In order to find irregularities, one would need to first
develop an understanding of regular progressions of the story
first (without relying on a priori semantics about them). In
(Behrooz, Swanson, & Jhala, 2015), for instance, sequence
modeling is employed to build a model of regular event se-
quence in a domain, and subsequently, irregular progressions
of the story and the events that cause them are identified.

In this paper, we use the cosine similarity of vectors repre-
senting all of the verbs in the story in order to find the most
anomalous verb. Based on the above, this verb has the high-
est chance of being part of the key event. In Table 3, all of the
roots of the verbs in the story in Table 1 are listed along with
the cosine similarity metric between each verb root vector
and the mean of all verb root vector in the story. This mea-
sure can indicate how close or far each verb vector is from
the rest of the verbs in the story, and hence, how semantically
related or unrelated.

Table 3: Verb roots of all of the verbs in the story in Table 1
(excluding stop words), along with a cosine similarity dis-
tance between each verb root vector and the mean of all verb
root vectors. Verb roots are obtained using VerbNet (Schuler,
2005), and word vectors using a pre-trained GloVe model
(Pennington et al., 2014).

Verb root Cosine similarity
go 0.838

drive 0.517
play 0.609
find 0.734
seat 0.416
order 0.566
look 0.698
take 0.839

favorite 0.458
wait 0.697

return 0.697
apologize 0.335

enjoy 0.57
pay 0.631

leave 0.744

As we can see in the Table 3, the verb apologize is the
most anomalous verb in our example story, since it has the
lowest cosine similarity score with the mean of all verb root
vectors. We identify this verb as the key verb in the story, and
since the key verb is mentioned in event 7 (in Table 1), we
also identify that event as the key event in the story.

Finding the Foreshadowing Cluster Given the key event
and key verb, as described above, we can use the keyword
clustering of the story, seen in 1, to find out if there exists a
cluster whose constituent keywords:

1. play a role in the key event and include the key verb, and,

2. play a role in one other preceding event (or sentence) in the
story.

With such constraints considered, we can see that the
mistake-recovery can be the foreshadowing cluster; a
cluster that includes the words involving the foreshadowing
in the story.

Finding the Foreshadowing The preceding event or
sentence in the story in Table 1, in which the foreshadowing
cluster plays a role, is event 5. Hence, we can guess that
event 5 has a chance of foreshadowing our key event, 7.
Moreover, as a whole, these steps can result in an estimate of
the presence of foreshadowing in the story.

Unexpectedness
As mentioned before, many approaches to open story gener-
ation focus on finding the usual progressions of events in the
story. Among such approaches are story scripts (Schank &
Abelson, 2013) which argue that plots about many domains
of storytelling usually follow a similar general pattern. An-
other example are Plot Graphs (Li et al., 2013), which use
crowdsourcing to build networks of usual progressions and
precedence rules of events (e.g. a graph covering many of
the usual paths that a “dining at a restaurant” story would
cover). In (Purdy et al., 2018), using a corpus of movie plot
summaries, a temporal ordering network is created to cap-
ture the common ordering of verbs in stories. The resulting
proxy measure, introduced earlier as “temporal ordering”, is
then used to find the extent to which a new sequence of events
adheres to the common ordering of events in stories.

While such adherence would help estimate a correct causal
chain of events or logical precedence between them, it is
noteworthy that one of main reasons for cognitive interest
in stories is the unexpectedness of events (Schank, 1979).
Hence, as a story generator would benefit from a proxy
measure for correct temporal ordering of events, it may also
benefit from one that rewards it for having some unexpected
event.

“The Inverted-U Function” Kintsch (Kintsch, 1980)
argues that cognitive interest can be an “inverted-U” function
of knowledge and uncertainty about the story. Simply
described, this view argues that if a story creates too many
or too few question marks in user’s mind, it is less likely to
be perceived as interesting. This guides us towards a proxy
measure that can have a higher value if a story deviates in
small amounts from the usual ordering of events, and a lower
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Figure 2: An illustration of a cognitive interest proxy measure
based on unexpectedness and inspired by Kintsch arguments
(Kintsch, 1980). The area marked as A denotes a story that
does not sufficiently adhere to the usual ordering of verbs (or
events). C shows an area where there is no or too little devi-
ation from the usual ordering for the story to cause cognitive
interest. B shows an area indicating that the story generally
adheres to the usual ordering, but contains enough deviations
and hence may cause cognitive interest.

value if it deviates too much from (or does adheres at all
to) the usual ordering. Using a temporal ordering network,
for instance, an unexpectedness proxy measure can have its
highest value if most but not all (e.g. 90%) of the pairs of
verbs in the story adhere to the network’s order. The proxy
measure would sharply decrease if this adherence ratio is
much less, or approaches 1. An illustration of such proxy
measure function can be seen in Fig. 2.

Unexpectedness and Word Vectors Using a vector space
that represents verbs (or sentences (Pagliardini, Gupta, &
Jaggi, 2017)) in a story, the distance between each vector and
the average of all vectors belonging to a story (similar to Ta-
ble 3) can estimate how unexpectedly each verb is perceived
compared to the rest of the story. Hence, in order to follow
an inverted-U pattern, a proxy measure of unexpectedness
can have the highest value when most entries in Table 3 have
large values, but at least one entry has a much lower value
than others.

Conclusion

Communication context is a consequential factor in narrative
generation, in terms of approach, constraints, and evaluation
criteria. Certain narrative generation approaches are tied to
a specific communication context (e.g. games) and depend
on that context’s a priori semantics to evaluate how good
a generated story is. Other approaches are not bound to a
specific context (called open story generation) and often

use generic text quality measures to assess the quality of
the story. Given the importance of narrative perception in
real-world use cases of such story generation (e.g. by an
intelligent agent), we draw from theories of cognitive interest
and investigate the use of word embeddings vectors to find
how interesting a generated narrative is. Specifically, we
assess the existence of predictive inference (through fore-
shadowing) and unexpectedness in stories, using GloVe word
vectors (Pennington et al., 2014). We plan to evaluate this
approach in a situated scenario and seek to find correlations
between proxy measures of cognitive interest and judgments
of human subjects.
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Abstract 
People predict incoming words during online sentence 
comprehension based on their knowledge of real-world events 
that is cued by preceding linguistic contexts. We used the 
visual world paradigm to investigate how event knowledge 
activated by an agent-verb pair is integrated with perceptual 
information about the referent that fits the patient role. During 
the verb time window participants looked significantly more at 
the referents that are expected given the agent-verb pair. 
Results are consistent with the assumption that event-based 
knowledge involves perceptual properties of typical 
participants. The knowledge activated by the agent is 
compositionally integrated with knowledge cued by the verb 
to drive anticipatory eye movements during sentence 
comprehension based on the expectations associated not only 
with the incoming word, but also with the visual features of its 
referent. 
 
Keywords: event knowledge; anticipatory eye movements; 
visual perception; prediction. 

 

Introduction 

People use their experiences of events in the world to 
organize their semantic knowledge about objects and actions 
(Radvansky & Zacks, 2014). For example, the event of 
“going to a restaurant” implies the presence of waiters, 
tables, food, and money as well as actions of cooking, 
serving, and eating. Several studies have illustrated the 
central role of knowledge about events in online sentence 
comprehension. Event knowledge is cued by lexical items, 
integrated to form a coherent representation of the situation 
being described, and used to generate expectations about 
incoming input. (Tanenhaus et al., 1995; Altmann, 1999; 
Altmann & Kamide, 1999, 2004, 2007; Kamide et al., 2003; 

Knoeferle, Crocker, Scheepers, & Pickering, 2005; 
Knoeferle & Crocker, 2006, 2007; Bicknell et al. 2010; 
Matsuki et al. 2011; Metusalem et al., 2012). In this paper, 
we present an eye-tracking experiment that investigates the 
hypothesis that event knowledge activated during sentence 
comprehension is inherently multimodal, because it derives 
from people’s sensori-motor (i.e., watching and performing 
events) and linguistic experiences (i.e. talking and reading 
about events), and allows people to generate expectations not 
only about the most likely noun filler of a verb’s thematic 
role (e.g., ball as a typical patient of throw), but also about 
the visual properties of the noun referent (e.g., oval ball vs. 
round ball). 

We used the visual world paradigm to investigate how 
event knowledge activated by an agent-verb pair is 
integrated with perceptual information about the referent that 
fits the patient role. For instance, the noun ball can refer to a 
small white baseball, to a large orange basketball, or to a 
large oval (American) football. We call these nouns 
perceptually underspecified, because the noun in isolation 
does not entail a specific type of perceptual referent. This 
affects the kind of predictions that people will generate. 
Compare for instance the following sentences: 
(1) a. The man threw the ball. 

b. The quarterback threw the ball. 
In (1a), we cannot anticipate which type of ball was 

thrown, without further contextual information. Conversely, 
in (1b) we can predict that the ball is likely to be an oval 
football. Our hypothesis is that this prediction about the 
patient in (1b) depends on the integration of event-based 
knowledge cued by the agent and the verb. In particular, 
quarterback activates knowledge about football, including 
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that the ball is oval. Once this information is integrated with 
throw, predictions are generated that make ball a highly 
expected patient noun and allow comprehenders to anticipate 
the specific object to which it refers. 

In the present experiment, participants read sentences such 
as The doctor/bartender uncaps the bottle, in which agent-
verb pairs denote events that activate knowledge about 
plausible noun fillers of the patient role. The visual scenes 
contained two objects that may fit the event expressed by the 
verb (a pill bottle and a beer bottle). The patient role was 
filled by a perceptually-underspecified noun that can denote 
both objects (bottle). Anticipatory eye movements on the 
predicted object mirror the integration of the event-based 
knowledge activated by the agent-verb pair and perceptual 
information coming from the visual input during online 
sentence comprehension.  
 

Related Studies 

Words encode mutual expectations between events and their 
typical participants (McRae et al., 1998; Ferrettti et al., 2001; 
McRae et al., 2005; Hare et al., 2009). McRae, et al. (2005) 
found that agents, patients and instruments prime verbs that 
describe events in which they typically are involved (waiter, 
chainsaw and guitar prime verbs like serving, cutting and 
strummed). Bicknell et al. (2010) conducted an Event 
Related Potential (ERP) experiment to investigate whether 
an already filled role affects how another role can be filled. 
They found that typical agent-patient pairs such as 
journalist-spelling and mechanic-brakes in The journalist 
checks the spelling and The mechanic checks brakes elicited 
reduced N400s as compared to The journalist checked the 
brakes and The mechanic checked the spelling. The effects 
on N400 amplitudes show both generalization across input 
modalities and regularity between N400 properties and 
sensory, conceptual and linguistic factors, suggesting that the 
effects are modality sensitive but not modality specific 
(Kutas & Federmier, 2011). According to Kuperberg and 
Jaeger (2016), “prediction” concerns a change in the state of 
the language processing system based on the context prior to 
the availability of new input. The context involves both 
linguistic and extralinguistic information, that can facilitate 
the processing of new information at multiple levels of 
representation, which interact and communicate during 
language processing. Contextual information includes 
semantic knowledge about specific events, event structures, 
event sequences, and general schemas (Altmann & 
Mirković, 2009; Radvansky & Zacks, 2014). According to 
Knoeferle and Guerra (2016), during sentence 
comprehension visual perceptual information interacts with 
word knowledge. Some eye tracking studies have 
manipulated argument-verb combinations to investigate 
anticipatory eye movements (Altmann & Kamide, 1999; 
Kamide, et al., 2003; Knoeferle & Crocker, 2006, 2007).  

Altmann and Kamide (1999) investigated the hypothesis 
that people tend to predict which object will fit the patient 
role after hearing the verb. They used sentences like The boy 
will eat the cake in combination with pictures of a boy, a 
birthday cake, a toy car, a toy train and a ball. Subjects 
fixated the single edible object in the scene (birthday cake) 
more often than the other depicted objects before hearing 
cake. By contrast, when subjects heard The boy will move the 
cake with the same visual scene they looked equiprobably at 
all of the movable objects. This shows that verb selectional 
preferences constrain the set of possible objects that follow 
the verb. Kamide, Altmann and Haywood (2003) 
investigated whether agent-verb pairs elicit anticipatory eye 
movements toward entities that fit the patient role. Sentences 
such as The man will ride the motor bike and The girl will 
ride the carousel were combined with pictures of a 
motorbike, a carousel, a beer and a sweet. The same visual 
scene was presented while participants listened to The man 
will taste the beer and The girl will taste the sweet. 
Anticipatory eye movements on the predicted objects 
(motorbike and carousel; beer and sweet) were triggered by 
the verb. The results are consistent with the assumption that 
expectations associated with agent-verb pairs help people to 
predict which entity fills the incoming patient role. 

Knoeferle and Crocker (2006, 2007) performed an eye 
tracking experiment to investigate the interplay between 
current visual context and event knowledge during sentence 
comprehension. Sentences such as The detective will soon 
spy on the pilot and The wizard will soon spy on the pilot (in 
German) were combined with pictures of a wizard looking a 
pilot through the telescope, a detective serving the pilot some 
food, a pilot and a tree. In the verb time window (spy) when 
listening to The wizard will soon spy on the pilot (which 
corresponds to the event occurring in the visual scene) 
participants often looked more at the wizard, though spying 
is a detective’s typical action. Since the visual scenes 
provided information that conflicts with typical event 
knowledge (wizard spies vs. detective spies), the outcomes 
are consistent with the assumption that listeners exploit 
information coming from current visual context during 
online comprehension. These studies suggest that contextual 
information includes multiple types of knowledge such as 
event structures and sensory input. Predictions are strongly 
associated with the interplay among words, event 
contingencies and conceptually combined knowledge 
(Altmann & Mirković, 2009; Altmann & Kamide, 2004, 
2007; Barsalou, 2008; Hagoort et al., 2004). 

Experiment 

We investigated how event knowledge activated by an agent-
verb pair influences pre-activation of multimodal 
information about the referent that fits the patient role. 
Sentences like The doctor uncaps the bottle were combined 
with four pictures such as a pill bottle (target), a beer bottle 
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(action related object), a syringes (agent related object) and 
a comb (unrelated object), as shown in Figure 1: 

1. target objects fit the patient role given the agent-verb 
combination. Since doctors prescribe and sometimes 
administer medication, typically they open pill bottles rather 
than beer bottles; 

2. action related objects fit the verb (a beer bottle can be 
uncapped), but not the agent-verb combination 

3. agent related objects corresponded to objects that 
commonly occur in situations together with the agents, such 
as doctors and syringes; 

4. unrelated objects were not congruent with the agent, 
verb, or agent-verb combination. 

 

 
Figure 1. Combination of visual and linguistic stimuli. 
 
The sentence stimuli were divided into two lists and the 

targets of the first list became the action related objects in the 
second list, which contained the same verb but a different 
agent. In The bartender uncaps the bottle, for example, the 
beer bottle was the predicted object (target), and the pill 
bottle was the action related object. Since the verb-patient 
pairs co-occur with different agents in the two lists, the agent 
related objects changed as well. The noun bartender cues 
situations that involve objects such as taps and mug, while 
doctor triggers situations involving surgical scalpels and 
stethoscopes. The agents activate knowledge about objects 
that commonly occur in the events performed by them 
(targets and agent related objects). 
 

Method 

Norming 
We measured the strength of the association between the 
agents and the predicted object (target) images. We used the 
Figure Eight crowdsourcing platform1 to create a task in 
which participants evaluated how likely it was that the agent 
and the object appeared in the same situation, using a scale 
that ranged from 1 (not very likely) to 7 (very likely). 

                                                           
1 https://www.figure-eight.com/ 

Participants read the name of the agent, such as doctor, 
opened the link for the object picture (pill bottle), and rated 
“How likely is it that the person and the object appear in the 
same situation?”. The mean ratings were 6.3 and the 95% 
confidence interval was 0.1. Thus, the agents and the objects 
were judged to co-occur strongly in the same real-world 
situations. 
 

Participants 
Twenty-four University of Western Ontario undergraduate 
students were compensated $10 for their participation. They 
ranged in age from 19 to 28 years. All participants had 
normal or corrected to normal visual acuity and self-reported 
English as their native language. Self-reportedly, 
participants had never endured a traumatic brain injury or 
illness and were not currently diagnosed with any major 
psychiatric illness.  
 

Sentences 
There were 60 trials consisting of 30 experimental and 30 
filler trials. In the experimental trials, participants heard 
sentences in which the agent performs an action that could 
be associated with two pictures in the visual scene, the target 
and the action related object. The patient role was filled by a 
perceptually underspecified noun that could refer to both 
objects. The sentences were split into two lists to present 
only one type of verb-patient pair to each participant. Fifteen 
filler trials consisted of two pictures of objects that could be 
denoted by the same word but the sentence did not refer to 
either of them. It referred instead to a third object. For 
example, The man does not like candies was combined with 
pictures of a candy, a fishing hook, a coat hook and a 
candelabra. An additional 15 filler sentences had various 
syntactic structures and one word referred to one of the 
pictures (e.g., Karen made the tea with her new pot with 
pictures of a teapot, a marble, a picture frame, a mitten). We 
used four practice trials to familiarize participants with the 
experiment. 
 

Auditory Stimuli 
A female native English speaker recorded all sentences. 
They were recorded using Audacity Cross-Platform Sound 
Editor 2.2.2 (released February 20 2018), and annotated by 
marking relevant points of the sentence using a customized 
script in Praat 6.0.37 (retrieved February 3 2018). For each 
sentence we set a pointer at: agent onset, agent offset/verb 
onset, verb offset/second article onset, second article 
offset/patient onset and patient offset as well as the start and 
end of the sentence. The agent offset/verb onset was 
normalized in all auditory files (1200 ms). 
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Visual Stimuli 
All images were presented at 300x300 pixels in colour. Each 
picture was placed in a different quadrant of the screen at a 
45-degree angle from the center. The location of the four 
images was randomized across trials and participants. The 
pictures were selected from BOSS2, KONKLAB3 and 
COGPSY Image Corpora.  
 

Eye Tracker 
We used a desktop mounted Eyelink 1000 and Experiment 
Builder, Version 1.10.1241 software (SR Research Ltd.). 
The camera lens was positioned approximately 60 cm from 
the participant’s head at an approximately 35-degree angle 
to the participant’s eyes. Participants were positioned 70 cm 
away from a 16-inch monitor displaying the visual stimuli 
(resolution set to 1024 x 768 dpi). Calibration was performed 
prior to the start of the experiment, as well as at any time the 
equipment registered significant head movement. 
 

Procedure 
During the first ten seconds of each trial a fixation cross was 
presented. The participant was then redirected to calibration. 
After three seconds during which the participant fixated the 
cross, this was replaced by the four trial images. Participants 
had one second to become familiar with the images before 
the auditory stimulus began. A series of red circles were 
flashed in the center of the screen to bring the participant’s 
attention back to the fixation cross. The sentence began when 
participants fixated the cross. The four pictures remained on 
the screen while the sentence was presented and participants’ 
eye movements were recorded. An additional 300 ms of 
silence followed the end of the sentence. When the images 
disappeared, the next trial began. Before starting the session, 
participants were assigned to a list. Each list contained three 
trial blocks. At the start of the experiment, participants 
received the following instructions: “You will see a display 
with four pictures while hearing a sentence. There is no task 
involved; just look at the pictures and listen to the sentences. 
We’ll start with some practice trials to see how it works.” 
The first block contained four practice trials. Thereafter, 
participants saw: “This is the end of the practice sessions for 
part one. Do you have any questions before the experiment 
begins?” The other two trial blocks contained the 
experimental and filler trials randomly presented for each 
participant. Instructions were repeated at the start of each 
block. An equal number of experimental and filler items 

were presented in each list. Participants were given a short 
break between blocks to rest their eyes. 
 

 

Figure 2. Example of the procedure for one trial. 
 

Results 

We recorded the proportion of fixations on the target pictures 
and compared them to the proportions of fixations on the 
other pictures (agent related, action related and unrelated) in 
specific time windows (agent, verb and patient). We 
analyzed three time windows: the agent (bartender); the verb 
+ article (uncaps the), which is the anticipatory time window, 
and the patient (bottle). The Area Of Interest (AOI) for each 
picture consisted of each screen quadrant. The analyses were 
conducted with RStudio Version 1.1.463 (2009-2018). We 
fit one Linear Effects Mixed Model (LMER) for each time 
window using the lmer() function from the linear mixed 
effects package lme4 (Bates et al., 2015; Baayen et al., 2008; 
Barr et al., 2013). The four AOIs and the two lists are the 
fixed effects. We calculated two random slopes accounting 
for random effects (subjects and trials). Fixed and random 
effects remain stable for each model and during all the 
analyses conducted on the dataset. For each time window, 
we calculated estimated means of proportions, Standard 
Errors, t-values, and p-values of AOIs comparisons (Table 
1). 

Agent window 
The agent time window extended from agent onset (610 ms) 
to verb onset (1200 ms). The duration was 590 ms. The 
onsets of the spoken sentences were preceded by a silence to 
normalize the verb onset (457 ms). There were no significant 
differences in proportions of fixations. Moreover, there were 
no significant differences in proportions of fixations between 
the action, agent related and unrelated objects (Table 1). 
 

 

                                                           
2 https://sites.google.com/site/bosstimuli/ 
2 http://konklab.fas.harvard.edu/# 
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Figure 3. Proportions of fixations on AOIs across the sentence time course. “Art”, “Agent”, “Verb” and “Patient” correspond 
to the mean onset of the first article (456 ms), agent (610 ms), verb (1200 ms) and patient (1899 ms). 
 

Table 1. Results of comparisons between pairs of AOIs in each time window (* = p < 05). 
 

Time Window Comparison Estimate SE t value p-value 

Agent 

Target-ActionRel 0.01 0.02 0.51 0.62 

Target-AgentRel 0.00 0.02 0.21 0.83 

Target-Unrelated 0.04 0.02 1.68 0.11 
ActionRel-AgentRel -0.01 0.02 -0.31 0.76 

ActionRel-Unrelated 0.03 0.02 1.26 0.22 
AgentRel-Unrelated 0.03 0.02 1.56 0.13 

List1-List2 0.03 0.03 1.07 0.30 

Verb 

Target-ActionRel 0.17 0.03 5.91 3.84e-06* 
Target-AgentRel 0.08 0.02 4.74 8e-05* 
Target-Unrelated 0.22 0.03 8.05 2.19e-08* 

ActionRel-AgentRel -0.09 0.02 -3.72 0.001* 

ActionRel-Unrelated 0.05 0.02 3.18 0.002* 
AgentRel-Unrelated 0.14 0.02 6.19 1.30e-06* 

List1-List2 0.05 0.03 1.85 0.08 

Patient 

Target-ActionRel 0.35 0.04 8.02 2.97e-08* 

Target-AgentRel 0.31 0.04 7.42 1.16e-07* 

Target-Unrelated 0.43 0.04 11.48 2.80e-11* 
ActionRel-AgentRel -0.04 0.02 -1.79 0.09 
ActionRel-Unrelated 0.81 0.02 4.88 1.83e-05* 

AgentRel-Unrelated 0.12 0.02 6.71 1.78e-07* 
List1-List2 0.03 0.02 1.73 0.1 

 

 

Verb window 
The verb time window extended from verb onset (1200 ms) 
to the second article offset/patient onset (1899 ms). The 

duration was 699 ms. Participants fixated the object that fit 
the agent-verb combination more often than the objects that 
were associated with the verb only, the agent only or the 
unrelated object. Furthermore, the agent-related and action-
related objects were fixated significantly more often than the 
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unrelated object. Finally, participants fixated the agent-
related object more often than the action related object. 
 

Patient window 
The patient time window extended from the patient onset 
(1899 ms) and to end of sentence (2524 ms). Again, 
participants fixated the object that fit the agent-verb 
combination more often than each of the other objects. Both 
the agent-related and action-related objects were fixated 
more often than the unrelated object. 
 

Discussion 

Our results support the hypothesis that the knowledge 
activated by the agent concerning events in which it typically 
appears is compositionally integrated with knowledge cued 
by the verb, so as to drive anticipatory eye movements during 
online sentence comprehension. This is consistent with the 
assumption that during language comprehension people 
generate expectations using their multimodal knowledge 
about experienced situations in the world (Zwaan & 
Radvansky 1998; Barsalou 2008; Radvansky & Zacks 2014). 
Such integrated multimodal event knowledge allows 
comprehenders to resolve the perceptual underspecification 
of the patient noun and to anticipate the appropriate type of 
referent in the situation triggered by the agent-verb 
combination. According to Huettig and McQueen (2007), 
there is an interplay during the comprehension between the 
stored knowledge of visual properties of referents elicited by 
the spoken words and perceptual information in the current 
visual input. Our results suggest that the information in the 
current visual context was integrated with event knowledge 
cued by agent-verb pairs, eliciting the knowledge of the 
correct referent of the unfolding patient role. This is also 
consistent with Altmann and Kamide (1999), Kamide, 
Altmann and Haywood (2003), and Knoeferle and Crocker 
(2006, 2007), who demonstrated that word meaning 
combines with visual perceptual information to contribute to 
predictive processes involving event-based knowledge. This 
supports the hypothesis that the stored event knowledge is 
associated with perceptually based information that can be 
elicited by the current visual context and by specific agents. 
These cue information about particular referents that could 
fit the unfolding patient. What distinguishes this study from 
Kamide et al. (2003) is the use of very specific agents 
(doctor/bartender vs. girl/man) and referents (pill bottle/beer 
bottle vs. sweet/beer) in linguistic and visual stimuli 
respectively. Their combinations allowed us to investigate 
the hypothesis that comprehenders make extremely fine-
grained predictions about referents of patient roles exploiting 
the event knowledge cued by agent-verb combinations and 
the visual context. 

From a computational linguistic perspective, predicate-
argument expectations have been modeled using 
distributional semantics (Erk, Padò and Padò 2010; Erk & 

Padò 2008; Lenci 2011; Santus et al. 2017). Distributional 
Semantic Models collect corpus-based co-occurrence 
statistics and encode them in vectors (also known as word 
embedding) that represent word meaning according to the so-
called Distributional Hypothesis (Lenci 2018). Since these 
models represent the meaning exclusively in terms of 
connections between words, several recent studies have 
focused their attention on the combination of textual and 
visual information extracted from pictures, yielding 
Multimodal Distributional Semantic Models (Bruni, Tran, 
Baroni 2014; Lazaridou, Pham & Baroni 2015; Kiela 2016). 

We plan to use multimodal distributional semantics to 
model the behavioral data we have collected in our 
experiment. We expect this computational model should be 
able to predict that a quarterback throws an oval ball while a 
pitcher throws a small white ball based on the integration of 
multimodal distributional information cued by lexical items. 
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Abstract

Human decision-making deviates from the optimal solution,
i.e. the one maximizing cumulative rewards, in many sit-
uations. Here we approach this discrepancy from the per-
spective of computational rationality and our goal is to pro-
vide justification for such seemingly sub-optimal strategies.
More specifically we investigate the hypothesis, that humans
do not know optimal decision-making algorithms in advance,
but instead employ a learned, resource-constrained approxima-
tion. The idea is formalized through combining a recently pro-
posed meta-learning model based on Recurrent Neural Net-
works with a resource-rational objective. The resulting ap-
proach is closely connected to variational inference and the
Minimum Description Length principle. Empirical evidence
is obtained from a two-armed bandit task. Here we observe
patterns in our family of models that resemble differences be-
tween individual human participants.

Keywords: Bounded rationality; computational rationality;
variational inference; reinforcement learning; meta-learning;
individual differences; multi-armed bandit

Introduction
In this work we study human decision-making strategies
on a stationary multi-armed bandit task. These are among
the simplest sequential decision-making problems, that
require reasoning about trade-offs between exploration and
exploitation. In the special case of an infinite horizon and
geometric discounting their Bayes-optimal solution is the
Gittins index strategy (Gittins, 1979), while in general it is
defined as the result of a planning process in an augmented
Markov Decision Process (Duff & Barto, 2002). Prior
work however suggests, that several heuristics appear to be
favourable as a model of human decision-making, when
compared to the Bayes-optimal solution (Steyvers, Lee, &
Wagenmakers, 2009; Zhang & Angela, 2013).

Understanding human cognition in terms of heuristics
has been a major theme in cognitive science over the
past decades (Tversky & Kahneman, 1974; Simon, 1990;
Gigerenzer & Todd, 1999). They can be viewed as crude, but
realizable, approximations of optimal behavior. Heuristics
are thus connected to the idea of rationality under resource
constraints, which is commonly referred to as bounded ratio-
nality (Simon, 1972), computational rationality (Gershman,
Horvitz, & Tenenbaum, 2015), or resource-rationality
(Griffiths, Lieder, & Goodman, 2015). Examples for re-
source constraints include related prior experience on a given
task, limited capacity of our brain or restricted deliberation

times. For a more general overview of computational ratio-
nality we refer the reader to Gershman et al. (2015). Here
we are interested in the hypothesis, that humans employ a
learned, resourced-constrained approximation of an optimal
decision-making strategy. More specifically we show, that
different, potentially sub-optimal, human strategies emerge
naturally in artificial learning systems when varying the
strength of the constraints placed upon them. For a real-
ization of this principle, we rely on information-theoretic
concepts, similar to the approach of Ortega and Braun (2013).

We instantiate a particular kind of such resource-rational
agents using recent advances from the meta-learning lit-
erature (Wang et al., 2016; Duan et al., 2016). In this
framework the algorithm to be learned is parametrized by
a Recurrent Neural Network (RNN). RNNs are known to
be Turing-complete and hence are in theory able to realize
any algorithm (Siegelmann & Sontag, 1991). The RNN is
trained on a set of related tasks to act as an independent
Reinforcement Learning algorithm for solving the original
problem. We treat all parameters of the RNN as random
variables and infer approximate posterior distributions by
solving a regularized optimization problem. Varying the
regularization factor leads to a spectrum of resource-rational
algorithms, each possessing different properties. Models
with large constraints need to rely more on prior assumptions
and thus prefer simple strategies, while models with weaker
constraints will approach the optimal solution (up to the
representational capabilities of the RNN and the limitations
of the meta-learning procedure).

The resulting approach is closely related to the Minimum
Description Length (MDL) principle (Hinton & Van Camp,
1993; Grunwald, 2004), which asserts that the best model
is the one, that leads to the best compression of the data,
including a cost for describing the model. The bits-back
argument establishes a link between the MDL principle and
Bayesian learning (Honkela & Valpola, 2004), opening up
connections to Bayesian theories of cognition (Griffiths,
Kemp, & Tenenbaum, 2008). Indeed several heuristics have
been recently interpreted as Bayesian models under strong
priors (Parpart, Jones, & Love, 2018).

Our hypothesis is validated on a classical two-armed ban-
dit task. However we view multi-armed bandits merely as
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the first step towards investigating more complex tasks and
the proposed algorithm is not limited to any specific problem
class. The following section first introduces the framework
in more general terms, before considering multi-armed ban-
dits as a special case. We then identify different strategies
of human participants and subsequently show how the pro-
posed class of models captures important characteristics of
human behavior on both a qualitative and quantitative level.
Our results indicate, that the seemingly sub-optimal decision
strategies used by humans might be a consequence of the con-
straints under which these very strategies are learned.

Methods
Reinforcement Learning
Let M = (S ,A , p,γ) be a Markov Decision Process (MDP),
with a set of states S , a set of actions A , a joint distribution
over the next state and a scalar reward signal, describing the
dynamics of the environment, p(st+1,rt |st ,at) and a discount
factor γ ∈ [0,1]. The objective of a Reinforcement Learning
(RL) agent is to find a policy π(at |·), that maximizes the dis-
counted, expected return Ep,π [∑

∞
t=0 γtrt ] without having direct

access to the true underlying dynamics p.

Learning Reinforcement Learning Algorithms
Following the approach of Wang et al. (2016); Duan et al.
(2016) we want to learn a RL algorithm for solving a MDP
sampled from a distribution over MDPs. We parametrize
the algorithm to be learned with a Recurrent Neural Net-
work (RNN), in form of a Gated Recurrent Unit (Cho et al.,
2014), followed by a linear layer. The set of all model pa-
rameters is denoted with θ in the following. The RNN takes
previous actions and rewards as inputs in addition to the cur-
rent state, making the output a function of the entire history
Xt = (s0,a0,r0,s1 . . . ,at−1,rt−1,st). A good algorithm has to
integrate information from the history in order to identify the
currently active MDP, based on which it subsequently has to
select the appropriate strategy. The RNN is trained to accom-
plish this using standard model-free RL techniques. In this
work we utilize n-step Q-Learning (Mnih et al., 2016), al-
though in theory any other algorithm could be applied as well.
The RNN implements a freestanding RL algorithm through
its recurrent activations after training is completed (the pa-
rameters of the RNN are held constant during evaluation).
Throughout this work we use the abbreviation LRLA – for
learned Reinforcement Learning algorithm – to refer to this
kind of model. Alternatively we can view this procedure as
a model-free algorithm for partially observable MDPs, where
the hidden information consists of the currently active task.

Resource-Rational Decision-Making
We consider maximizing the following regularized objective
for inferring a distribution qφ over parameters θ of LRLAs:

L(φ,X,y) = Eqφ(θ) [log p(y|X,θ)]−βKL(qφ(θ)||p(θ)) (1)

where the hyperparameter β controls how much the pos-
terior is allowed to deviate from the prior in terms of the

Kullback-Leibler (KL) divergence. We assume a likelihood
p(y|X,θ), that factorizes over data points ∏

N
i=1 p(yi|Xi,θ)

and we approximate each factor with a normal distribu-
tion of fixed scale σy: N (yt ;Qθ(Xt ,a),σy). In our setting
Qθ(Xt ,a) corresponds to the RNN output after seeing his-
tory Xt and yt corresponds to the n-step return ∑

n−1
k=0 γkrt+k +

γn maxa Qθ(Xt+n,a). The corresponding policy is derived as
follows:

π(at |Xt) =

{
1 if at = argmaxa∈A Qθ(Xt ,a)
0 else

(2)

Setting β to a specific value can be interpreted as implicitly
defining a constraint on KL(qφ(θ)||p(θ)). Importantly the
KL term determines how much the model parameters can be
compressed in theory (Hinton & Van Camp, 1993). Hence
our models are resource-constrained with regard to a hypo-
thetical lower bound on their storage capacity. Intuitively,
if the regularization factor β is large, parameters are forced
to match the prior closely. In this work we employ priors
favoring simple functions, hence models are only allowed to
realize more complex functions as β→ 0.

Bayesian Interpretation
If we set β= 1, we recover the evidence lower bound (ELBO)
as an objective for performing variational inference. In the
setting of large data-sets subsampling techniques are often
employed to approximate Equation 1 using mini-batches B
of size M with an appropriately scaled log-likelihood term:

log p(y|X,θ)≈ N
M ∑

i∈B
log p(yi|Xi,θ) (3)

If data arrives in sequential fashion, as it does in the RL
setting, the data-set size N is not known in advance and has
to be treated as an additional hyperparameter. This leads to a
Bayesian interpretation of Equation 1 even for β 6= 1. For any
values of β and N maximizing Equation 1 is equivalent to
performing stochastic variational inference with an assumed
data-set size of N̂ = N

β
. In practice we optimize a by N−1

scaled version of Equation 1, which leads to N̂−1 as a factor
for the KL term.

In the following section we investigate whether we can un-
derstand individual differences in human decision-making in
terms of optimal solutions to Equation 1 for varying values
of β. It is worth clarifying, that we are only interested in
the computational aspects of this hypothesis, i.e. we want
to test, whether human decision-making can be characterized
through resource-rational strategies. We do not attempt to an-
swer how this objective is realized on an algorithmic or im-
plementational level.

Technical Details
We maximize Equation 1 using standard gradient-based opti-
mization techniques. For this we simulate k environments in
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Figure 1: Illustration of different algorithms for two-armed bandits. Middle: Definitions of the respective policy. Bottom:
Coefficients obtained from fitting the probit regression (Equation 5) to corresponding trajectories. Error bars indicate the
uncertainty (one standard deviation) in the coefficients estimated through a Laplace approximation. Note, that for LRLAs the
coefficients are task-dependent. For this plot we use the set of two-armed bandits described in the later sections to compute the
coefficients. Φ denotes the cumulative distribution function of a standard normal distribution.

parallel and update the model at the end of each episode. All
models in this work employ a group horseshoe prior, which
can be viewed as a continuous relaxation of a spike-and-slab
prior (Mitchell & Beauchamp, 1988), over their weights:

s∼ C+(0,τ0); z̃i ∼ C+(0,1);

θ̃i j ∼N (0,1); θi j = θ̃i j z̃is

and we represent the approximate posterior qφ(θ) through
a fully factorized distribution as proposed in (Louizos, Ull-
rich, & Welling, 2017). The hyperparameter of the horseshoe
prior is fixed to τ0 = 10−5. The horseshoe prior is a sparsity-
inducing prior, which causes our models to implement simple
functions in absence of any experience. During training we
approximate the expectation of the log-likelihood term with a
single sample from qφ(θ) and make use of the reparametriza-
tion trick (Kingma & Welling, 2013). Resampling of weight
matrices is done only at the beginning of an episode as pro-
posed in Gal and Ghahramani (2016); Fortunato, Blundell,
and Vinyals (2017). Target values yt are computed using the
maximum a posteriori estimate of a separate target network
(Mnih et al., 2013; Lipton et al., 2017). For additional details
we refer the reader to the publicly available implementation1.

Multi-Armed Bandits
Experiments in the following section involve a multi-armed
bandit task. These are MDPs consisting of a single state. At
each step t an agent selects one out of multiple actions and
is rewarded according to an unknown, stationary distribution
based on its choice. This interaction is repeated T times.

The trade-off between exploiting good options and explor-
ing yet unknown ones is the central theme in multi-armed
bandits (and in RL in general). Methods for resolving this
exploration-exploitation dilemma can be categorized in two
major groups: directed and random exploration strategies.

1https://github.com/marcelbinz/MDLDQN

Directed exploration attempts to gather information about un-
certain, but learnable, parts of the environment, while random
exploration injects stochasticity of some form into the policy.
Gershman (2018) showed, that these two principles can be
distinguished exactly under certain conditions. For this we
consider a two-armed bandit task with normal distributions
over both the mean of rewards for each arm and their reward
noise at each time-step. Let N (ra;µ0,a,σ0,a) be an indepen-
dent normal prior over expected rewards for each action a and
N (ra;µt,a,σt,a) be the posterior after t interactions. Many
popular strategies can be formulated using the parameters of
these distributions. Define:

Vt = µt,0−µt,1

RUt = σt,0−σt,1 (4)

TUt =
√

σ2
t,0 +σ2

t,1

Vt constitutes the estimated difference in value, while RUt
and TUt describe relative and total uncertainty respectively.
Choice probability in Thompson sampling (an example for
random exploration) is only a function of Vt and TUt , while
it is a function of Vt and RUt for the UCB algorithm (an ex-
ample of directed exploration). Figure 1 (middle row) shows
definitions of all strategies under consideration. For a given
set of observed trajectories D one can fit a probit regression
model to infer the importance of factors from Equation 4:

p(at = 0|D,w) = Φ(w1Vt +w2RU t +w3Vt/TU t) (5)

Analyzing the resulting coefficients w can reveal, which
exploration strategy generated the observations, as shown
in Figure 1 (bottom row). We utilize this form of analysis
throughout the following sections.

Empirical Analysis
Human Participants
We initially inspect human exploration strategies on a two-
armed bandit task with episode length T = 10. The mean
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Figure 2: Visualization of human policies alongside resource-constrained LRLAs. Left: Probit regression coefficients of pro-
totype participants. Prototypes were obtained from a mean-shift clustering, shown in the middle plot. Colors correspond to
clusters. Error bars indicate the uncertainty (one standard deviation) in the coefficients estimated through a Laplace approxima-
tion. Middle: UMAP (McInnes & Healy, 2018) embedding of coefficients for all participants. Right: Joint UMAP embedding
of coefficients for human participants and LRLAs ∈HLRLA.

reward for each action is drawn from N (µa;0,
√

100) at the
beginning of an episode and the reward in each step from
N (rt ;µat ,

√
10). Intuitively we expect some participants to

be more proficient at the task, for example because they
have more experience at related problems (higher N̂), while
the opposite is true for others. We rely on data gathered
by Gershman (2018), which contains records of 44 partici-
pants, each playing 20 of the aforementioned two-armed ban-
dit problems. Figure 2 (middle) shows the result of fitted
probit regression coefficients for individual participants. This
analysis reveals three major subgroups within the population,
each using a different set of strategies. We visualize coeffi-
cients of three example participants (Figure 2, left) and ob-
serve, that a large fraction is well-described through Thomp-
son sampling (clusters 2 and 3), while other participants have
tendencies towards a mixture of strategies (cluster 1).

Learned Reinforcement Learning Algorithms
Next we show, that optimizing LRLAs with different reg-
ularization factors leads to the emergence of diverse ex-
ploration pattern. We train otherwise identical models for
N̂ ∈HLRLA = {256,512,1024,2048,4096,8192} on the same
two-armed bandit task until convergence and report average
results over 10 random seeds unless otherwise noted. Equa-
tion 1 is approximated with a batch of samples from complete
episodes of 16 parallel simulations and gradient-based opti-
mization is performed using Adam (Kingma & Ba, 2014).
Figure 3 (left) shows, that performances continuously im-
proves as N̂ increases, confirming our expectation that models
become more sophisticated for large N̂. Fitting the aforemen-
tioned probit regression model to the resulting policies (Fig-

ure 3, right) reveals value-based characteristics at one end of
the spectrum. Towards the other end we observe coefficients,
that slowly transition to those of the unconstrained (β = 0)
model.

Modelling Human Behavior

We are mainly interested in whether the set of resource-
constrained LRLAs can help us to understand human behav-
ior on an individual level. To answer this question, we com-
pare the optimized models to human decision-making strate-
gies in terms of the probit regression analysis. We visualize
the regression coefficients for 50 models (10 for each value
of N̂ ∈ HLRLA, excluding N̂ = 256) alongside those of the
human participants in Figure 2 (right). Although some parts
of the low-dimensional embedding are over- and underrepre-
sented, the overall variation of human exploration strategies
is captured by the resource-constrained LRLAs.

Model Comparison

The regression analysis performed so far provides only
qualitative indicators for our hypothesis. In order to obtain
a quantitative measure for the explanatory power of the
proposed hypothesis, we performed a Bayesian model
comparison. Figure 4 (left) shows log-likelihoods for each
participant and model. We observe, that different participants
are modelled best with different values of N̂.

To verify that the class of resource-constrained LRLAs
HLRLA contains a good model, we compute Bayes fac-
tors (BF) between the marginal probability of the resource-
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Figure 3: Results for optimized LRLAs with different N̂. Left: Visualization of per episode regret averaged over 10 models and
1000 episodes. Horizontal lines correspond to the performance of a value-directed policy and an unconstrained LRLA. Right:
Coefficients of the probit regression from Equation 5. Error bars indicate standard deviations across the 10 models.

constrained LRLAs and a value-directed policy:

logBFi = log p(Di|HLRLA)− log p(Di|Hvalue-directed)

p(Di|HLRLA) =
1

|HLRLA| ∑
H∈HLRLA

p(Di|H) (6)

where Di refers to all actions taken by a specific participant
and 1

|HLRLA|
is a prior that corrects for multiple comparisons

across different values of N̂. The resulting logBFs (see
Figure 4, right) reveal strong evidence for 42 of the 44
participants in favor of the class of resource-constrained
LRLAs, when compared with the baseline. This indicates,
that one of the models in HLRLA explains the participant’s
behavior much better than the value-directed policy. There
are nine participants best described by letting N̂ = 512, nine
by N̂ = 1024, 20 by N̂ = 4096 and six by N̂ = 8192. This
heterogeneity highlights, that the model class is able to ac-
comodate individual differences between human participants.

Finally we want to show, that the proposed class of models
captures exploration strategies across all participants better
than any standard exploration strategy alone. To verify this,
we computed Bayes factors between ∏i p(Di|HLRLA) and
two baseline exploration strategies: ∏i p(Di|HThompson) and
∏i p(Di|HUCB). We find 2logBF = 72.8 against Thompson
sampling and 5391.4 against UCB, indicating that our class of
models is overall better at representing exploration strategies
for all participants in comparison to any single, fixed strategy.

Discussion
In this work we proposed a justification for seemingly
sub-optimal human strategies in sequential decision-making
problems based on the idea of computational rational-
ity. We view human decision-making as an instance of
a learned, resource-constrained RL algorithm. This is
formalized through learning distributions over parameters of

a meta-learning model with a regularized, resource-rational
objective. The emerging spectrum of strategies resembles
characteristics of human decision-making without being
explicitly trained to do so. Additional model comparison
suggests, that the resulting resource-constrained LRLAs
describe human policies well on a quantitative level. How-
ever, the correspondence between human behavior and the
LRLA model class is not perfect. Looking at Figure 2 (right)
we observe, that some clusters are not represented exactly.
Furthermore it remains open, why none of the participants is
best described through the model with N̂ = 2048. Accounting
for these observations remains a question for future work.

The analysis on the two-armed bandit task presented in this
work can be extended in several ways. Relating deliberation
times to regularization factors could, for example, provide
additional evidence for our hypothesis. It also remains to
be seen whether our conclusions transfer to other sequential
decision-making problems beyond the bandit setting. In
this context we are especially interested in tasks, where
descriptive models of individual human behavior consist of a
set of different heuristics. We are also interested in methods,
that allow us to disentangle resource-rational behavior from
the Bayesian interpretation.

Recent work on model-free meta-learning methods, simi-
lar to the one employed in this work, indicates an emergence
of model-based behavior (Wang et al., 2016) and causal rea-
soning (Dasgupta et al., 2019) as well as the ability for few-
shot learning (Santoro, Bartunov, Botvinick, Wierstra, & Lil-
licrap, 2016), properties supposedly absent in artificial sys-
tems. Having systems capable of such feats, opens the possi-
bility for interesting studies on human cognition.
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Figure 4: Model comparison of the set of resource-constrained LRLAs with a value-directed baseline. Left: Log-likelihoods
for each participant and model. Higher values indicate a better fit. Right: Bayes factors (see Equation 6) for each participant i.
The dotted horizontal line (equal to 10) corresponds to the threshold for very strong evidence (Kass & Raftery, 1995) in favour
of HLRLA.
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Predicting Learned Inattention from Attentional Selectivity and Optimization 
 
 
 

Abstract 
Although selective attention is useful in many situations, it also 
has costs. In addition to ignoring information that may become 
useful later, it can have long term costs, such as learned 
inattention – difficulty in learning from formerly irrelevant 
sources of information in novel situations. In the current study we 
tracked participants’ gaze while they completed a category 
learning task designed to elicit learned inattention. During 
learning an unannounced shift occurred such that information that 
was most relevant became irrelevant, whereas formerly irrelevant 
information became relevant. We assessed looking patterns 
during initial learning to understand how different aspects of 
attention allocation contribute to learned inattention. Our results 
indicate that learned inattention depends on both the overall level 
of selectivity (measured as entropy of proportion of looking to 
each feature) and the extent to which participants optimized 
attention (becoming more selective over time). 

Keywords: selective attention; categorization; learning; 
attention 

Introduction 
Category learning is a critical cognitive process that enables 
abstract thought and allows for generalization of knowledge 
to novel situations. Since the early work by Shepard, 
Hovland, and Jenkings (1961) selective attention has been 
considered a critical component of categorization and 
category learning. Selective attention refers to the ability to 
prioritize task-relevant information and filter out task 
irrelevant information (Desimone & Duncan, 1995; Hanania 
& Smith, 2010; Plude, Enns, & Brodeur, 1994; Pashler, 
Johnston, & Ruthruff, 2001; Yantis, 2000). 

Most models of categorization and category learning adopt 
the Shepard et al. (1961) view and consider selective 
attention a critical contributor to human categorization. 
Exemplar models (Hampton, 1995; Medin & Schaffer, 1978; 
Nosofsky, 1986), prototype models (Smith & Minda, 1998), 
clustering models (Love, Medin, & Gureckis, 2004), and dual 
process models (Ashby, Alfonso-Reese, Turken, & Waldron, 
1998) all include some form of selective attention as a factor 
determining the influence (or weight) of stimulus dimensions 
on categorization. According to some of these models, as 
participants learn categories, they tend to shift attention to 
features that are more likely to predict category membership, 
while attending less to less predictive features, the idea 
known as attention optimization. This idea has been 
confirmed empirically: there is eye-tracking evidence 
indicating that when learning categories, people indeed tend 
to optimize their attention over time, increasing fixating at the 
features most predictive of a category and decreasing fixating 
at irrelevant features (Rehder & Hoffman, 2005; Blair, 
Watson & Meier, 2009). 

Costs and Benefits of Selectivity  
Although selective attention is often beneficial in many 

learning scenarios (e.g. faster, efficient processing of 
attended information), selective attention also has costs 
(Best, Yim, & Sloutsky, 2013; Hoffman & Rehder, 2010; 
Plebanek & Sloutsky, 2017; Rich & Gureckis, 2018). Some 
of the costs are relatively short-term: people miss non-
selected information. Other costs are longer term in that they 
affect future learning. One such short-term cost is that non-
selected information is filtered out. Focusing attention is a 
tradeoff in that it results in efficient learning and 
performance, but it also results in missing information that 
could be used later.  

While short-term costs of selectivity affect only the task at 
hand, longer term costs also affect performance on future 
tasks. One type of long-term cost has been recently discussed 
by Rich & Gureckis (2018), who referred to it as a “learning 
trap”. The authors demonstrate that under certain 
circumstances selective attention can be a trap in that it can 
result in getting stuck on inaccurate representations of the to-
be-learned structure and preventing the exploration needed to 
discover the correct structure. This happens particularly when 
there are possible negative outcomes to exploring, in which 
case selective attention results in overgeneralizing which 
things should be avoided. 

A more general long-term cost is that selective attention 
may result in learned inattention (see Hoffman & Rehder, 
2010, for a review) – difficulty in learning from sources of 
information that were uninformative in a previous situation. 
Optimizing one’s attention to the currently most relevant 
sources of information can result in not only learning to 
ignore currently irrelevant sources of information, but 
continuing to ignore these sources in novel situations in the 
future (Kruschke & Blair, 2000). As a result, if those sources 
of information become relevant later, learning is more 
difficult than it would have been if one had not first learned 
to ignore them. Learned inattention can be detrimental when 
task demands change, or when a new classification contrast 
depends on previously irrelevant features.  

For example, Hoffman & Rehder (2010) had participants 
learn to classify stimuli consisting of three dimensions. 
Learning occurred in either a classification condition or a 
feature inference condition. In classification, participants 
predict the category label from all of the stimulus’ features. 
In inference they predict one missing feature from the label 
and the remaining features. 

In the first phase of the experiment only dimension 1 was 
relevant to distinguish two categories, while the other two 
were irrelevant. In a second phase, only dimension 2 was 
relevant for distinguishing two new categories, while in a 
third phase dimension 3 was relevant for a novel contrast 
between categories. Classification encourages selective 
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attention since only a single feature predicts category 
membership. Inference, on the other, encourages distributed 
attention, since participants may need to predict any of the 
three features. 

Participants performing the classification task were 
impaired at learning the new contrast when the relevant 
dimension changed compared to participants doing the 
feature inference task. Additionally, eye-tracking showed 
that the classification participants were much less likely to 
fixate the relevant dimension after learning it was irrelevant 
in a prior phase of the experiment compared to baseline levels 
at the start of the experiment. These costs occurred because 
learners selectively attended the relevant feature while 
classifying the stimuli—optimizing their attention to ignore 
(or inhibit) the other features.  

The Current Study 
The goal of this study is to further investigate learned 
inattention during category learning by examining how 
different aspects of attention allocation contribute to learned 
inattention. This study also serves as a first step toward a 
larger investigation of developmental differences in attention 
allocation and optimization and their consequences. The 
current study investigates only adults, but developmental 
implications and predictions for children are touched on in 
the Discussion. 

In our experiment, we presented participants with a 
category learning task while tracking their gaze. The to-be-
learned categories had a rule-plus-similarity structure, with 
one deterministic feature perfectly predicting category 
membership and multiple probabilistic features, providing 
good, but imperfect prediction (see Deng & Sloutsky, 2016, 
for a similar structure). In addition, one feature was 
completely irrelevant to categorization.  

Given the structure, participants could either form a rule-
based representation (by relying on the deterministic feature) 
or a similarity-based representation (by relying on all 
features). So, either selective or distributed attention could 
lead to effective learning. Once participants mastered the 
categories in this initial phase, there was an unannounced 
shift in the category learning task. After the shift, feature 
dimensions that had been deterministically predictive in 
became irrelevant, and features that had been irrelevant in 
became deterministically predictive. 

Learned inattention was expected to produce costs on 
learning in Phase 2, making participants less likely to attend 
to and learn to use the new deterministic feature. We 
examined what aspects of attention during initial learning 
were most likely to manifest these costs. In particular we 
investigated the effects of overall selectivity and of attention 
optimization (increase in selectivity over time).  

 

 
Figure 1. Examples of stimuli. The stimuli were creatures 
composed of seven discrete-valued dimensions differing in 
shape and color. One Deterministic feature perfectly 
predicted category membership (the tail in this example). One 
Irrelevant feature was the same across both categories (the 
button on the neck here). Five Probabilistic features predicted 
category membership with 80% accuracy. After an 
unexpected shift occurred, the Deterministic became 
Irrelevant, and the Irrelevant feature became Deterministic 
Probabilistic features were unchanged by the shift. 

Method 

Participants 
A total of 38 adults (26 women) participated in the 
experiment. Participants were undergraduate students 
participating for course credit.  

Materials and Design 
Stimuli were colorful images of creatures composed of seven 
discrete-valued dimensions (see Figure 1). The creatures 
were divided into two categories, referred to as Flurps and 
Jalets. Of the seven features (antenna, head, body, button, 
hands, feet, and tail), one feature deterministically predicted 
category membership (henceforth the Deterministic feature), 
five features were probabilistically predictive with 80% 
accuracy (the Probabilistic features), and one feature was 
non-predictive—having the same value across all exemplars 
of both categories and therefore irrelevant to classification 
(i.e., the Irrelevant feature). Table 1 shows the stimulus 
structure used in the task. 

Stimuli were organized into pairs of complementary sets. 
Each set in a pair was identical to its counterpart except that 
the Deterministic and Irrelevant features swapped roles. 
Probabilistic feature values and the category labels remained 
the same. As discussed below, participants learned one set in 
Phase 1 of the experiment (i.e., before the shift), and then the 
stimuli were unexpectedly replaced with the complimentary 
set for Phase 2 (i.e., after the shift). There were two pairs: one 
where feet and hands were the Deterministic/Irrelevant 
features, one where tail and neck button were the 
Deterministic/Irrelevant features. Which pair was presented 
and which set in that pair was learned in Phase 1 were 
counterbalanced between participants. 
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Stimulus sets also contained Ambiguous items. These were 
hybrid items having the Probabilistic features from one 
category and the Deterministic feature from the other 
category. These items were presented only during the testing 
sessions and were designed to test which features controlled 
categorization. There were 10 Ambiguous items total per 
set—one corresponding to each exemplar seen during 
training (i.e. with identical Probabilistic features but with the 
Deterministic feature from the opposite category). These 
items allow us to determine whether participants’ category 
judgments were based more on the single Deterministic 
feature or on one or more of the Probabilistic features. 
 

Table 1. Stimuli structure during training 
 

 

Procedure 
Adult participants conducted a classification procedure 

while their gaze was monitored with an EyeLink 1000 
hydraulic-arm eyetracker at 500Hz (SR research, Ontario, 
Canada). The experiment was divided into two phases. Both 
phases contained a training section (with feedback) followed 
by a testing section (no feedback). In Phase 1 participants 
learned to classify two categories of creatures (and then were 
tested), and then in Phase 2 an unannounced shift occurred 
wherein the previously Deterministic feature and the 
previously Irrelevant feature swapped roles.  

The formerly Deterministic dimension took on a new, 
previously unseen, value that was fixed across all stimuli of 
both categories, while the formerly Irrelevant dimension now 
had two new potential values that perfectly predicted 
category membership. Participants were given no warning 
that this shift would occur at any point. Like Phase 1, Phase 
2 consisted of training followed by testing. 

At the beginning of the experiment participants were given 
information about the Deterministic and Probabilistic 
features. For Probabilistic features they were told that most 
of the members of the category had that particular feature 
value. For the Deterministic feature they were told that all 
members of category A have one value while those of 
category B have another value, while being shown both. The 
Irrelevant feature was never mentioned in the instructions. 
These informative instructions were included to ensure good 
learning in Phase 1, since any expected costs due to the shift 
rely on the categories initially being learned well. 
Additionally, as noted above we plan to eventually 

investigate developmental differences, and young children 
require this type of informative instructions and feedback in 
order to learn well within the timeframe of the experiment. 
 
Training Training in each phase consisted of 30 trials (in 3 
blocks of 10 trials). In each block of 10 trials the ten training 
exemplars, five from each category, were presented in 
random order, so participants saw each exemplar three times 
throughout training (see Table 1 and Figure 1).  

On each training trial, one stimulus was presented in the 
middle of the screen and participants indicated which 
category they thought it belonged to. Corrective feedback 
was then given which tried to equally encourage attention to 
general appearance (similarity-based responding) and to the 
Deterministic feature (rule-based responding). For example 
feedback would be “Correct this is a Flurp. It looks like a 
Flurp and has the Flurp hands.”, or “Oops this is actually a 
Jalet. It looks like a Jalet and has the Jalet hands.”, in the case 
where hands were the Deterministic feature. 

In Phase 2, after the unannounced shift, feedback was 
simplified to mention only the correct category without 
drawing attention to the features (e.g. “Correct this is a 
Flurp.”). While this change in feedback may have given 
participants some indication that a change had occurred, it 
was necessary so that participants would need to figure out 
on their own the new contingencies between features and 
categories. That learning process in Phase 2, discovering 
what is informative, is the critical area of interest, while 
parity between Phase 1 and 2 is not critical. 

 
Testing Testing in each phase consisted of 20 trials. Again, 
participants saw the stimuli one at a time and classified each 
one, but no feedback was provided during the test. The 10 
items seen during training (henceforth the High Match items) 
and 10 Ambiguous items were each presented once, in 
random order. These two types of items, respectively, were 
the basis for the behavioral measures of general shift costs 
and shift costs due to learned inattention. 

Accuracy on High Match items indicates how well each 
participant learned during the immediately prior training 
session. A decrease in accuracy from Phase 1 to Phase 2 on 
these items would indicate a general cost (in terms of poorer 
learning) due to the unexpected shift, which may occur for a 
number of reasons. 

Responses to the Ambiguous items, in contrast, provide the 
cornerstone of our behavioral analyses related to learned 
inattention. Prior to the shift they provide the baseline level 
that each participant tended to categorize based on the single 
Deterministic feature. After the shift responses to the 
Ambiguous items tell us whether participants learned and 
used the rule on the new Deterministic (formerly Irrelevant) 
feature. Low deterministic responses indicate learned 
inattention since it suggests that the participant had difficulty 
finding the new rule on the feature that was previously 
irrelevant. 
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Results 

Behavioral Results 
Initial learning in Phase 1 was good overall (see Figure 2). 
Mean accuracy was 92.1% correct. A repeated measures 
ANOVA found a main effect of block [F(1,75) =. 14.74, p = 
0.0003, partial h2 = 0.164] suggesting that participants 
learned well during training. Categorization accuracy on 
High Match items during the test was also high (M =  93.9% 
correct). 

Responses to the Ambiguous items provide insight into 
which features controlled participants’ categorization: 
Responding based on the Deterministic feature points to rule-
based categorization, whereas responding based on the 
Probabilistic features suggests similarity-based (or at least 
non-rule-based) categorization. Distributing attention during 
training could lead to either type of responding (since all 
features were attended), but selective attention to the 
Deterministic feature should only result in rule-based 
categorization. Participants were overwhelmingly 
deterministic in their categorization of the Ambiguous items: 
88.4% deterministic responses, which was well above 
chance, t(37) = 9.69, p < 0.001, d = 1.57.  

 
Post-shift Learning Participants learned well in Phase 2 
after the shift (77.0% correct), which was above chance, t(37) 
= 19.09, p < 0.001, d = 3.10, but accuracy was lower than 
prior to the shift, t(37) = 6.91, p < 0.001, d = 1.12, which is 
expected—even in the absence of learned inattention—due to 
less informative feedback in Phase 2 compared to Phase 1 and 
any general costs of adapting to the shift. A repeated 
measures ANOVA on Phase 2 training accuracy found a main 
effect of block [F(1,75) = 7.192, p = 0.009, partial h2 = 
0.087], suggesting accuracy increased over time. Accuracy 
on High Match items during the test was significantly higher 
than chance (M = 81.3% correct), t(37) = 10.06, p < 0.001, d 
= 1.63, but was also lower than in Phase 1, t(37) = 3.52, p = 
0.001, d = 0.571, suggesting a learning cost due to the 
unexpected shift. This represents a general shift cost which 
may be due to a variety of factors including learned 
inattention. We assess costs specific to learned inattention in 
the next section. 

 
Shift Costs Due to Learned Inattention We assessed effects 
of learned inattention by examining responses to the 
Ambiguous items in the Phase 2 test (Figure 3). Learned 
inattention would result in relatively low levels of 
deterministic responses on the post-shift test, since 
participants would be less likely to attend to the previously 
Irrelevant (now Deterministic) feature, and thus would have 
difficulty learning the new rule on that feature. This would 
result in participants relying primarily on the Probabilistic 
features instead when making category judgments after the 
shift. Participants were significantly below chance, M 
=36.6%, t(37) = 2.53, p = 0.016, d = 0.41, suggesting that 
they primarily relied on Probabilistic features to categorize 
after the shift, in contrast to their behavior prior to the shift. 

Figure 3 shows individual participants proportion of 
classifying Ambiguous items based on the Deterministic 
feature in the post-shift test. 

 
 

 
Figure 2. Behavioral results. During initial training 
participants learned well and achieved high accuracy. A 
substantial drop occurred after the shift. Accuracy during test 
was high for old (High Match) items, and was lower after the 
shift, displaying a general cost of the shift. Responding based 
on the Deterministic feature was very high prior to the shift, 
but dropped substantially in the post-shift test, suggesting 
effects of learned inattention. Error bars represent standard 
error of the mean. 

 
 

 
Figure 3. Individual participants’ post-shift deterministic 
responding. Responses to Ambiguous items on the post-shift 
test varied widely between individuals. The majority 
classified based on the Probabilistic features, with some 
intermediate, and less than one-quarter of participants 
classifying based on the new Deterministic feature. 
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Eye-Tracking 
Regions of interest isolating each feature were used to 
calculate the proportion of each trial spent looking at each 
feature for each subject. Timepoints where participants were 
not looking at any of the features were removed. Figure 4 
shows the average proportion of looking at each feature type 
during training. Prior to the shift the proportion of the trial 
spent looking at the Deterministic feature increased over 
trials, while time spent looking at Probabilistic features 
decreased. Looking at the Irrelevant feature was extremely 
low throughout all of training (M = 2.82% of total looking 
time), but did decrease over the course of training—as 
measured by comparing block 1 (M = 3.60%) to block 3 (M 
= 1.52%), t(37) = 3.39, p = 0.002, d = 0.161. 

After the shift, looking at the previously Deterministic 
(now Irrelevant) feature dropped off rapidly, while looking to 
the Probabilistic features shot up. Critically, looking at the 
newly Deterministic feature (that was previously Irrelevant) 
did not increase from block 1 to block 3, t(37) = 0.53, p = 
0.600, demonstrating the effects of learned inattention. They 
continued to ignore this feature despite the high level of 
information it now contained. 

We assessed attentional patterns during initial learning by 
calculating the entropy (Shannon, 1948) for each trial. 
Entropy was defined as, 

 

𝑆 = −$𝑝& ∗ log(𝑝&)
-

&./

 

 
where pi is the proportion of the trial spent looking at feature 
i. Higher entropy indicates more distributed attention, where 
maximum entropy is produced by looking at all seven 
features equally, and lower entropy indicates more selective 
attention—focusing on a smaller number of features. We use 
entropy as a measure of selectivity rather proportion of 
looking at the Deterministic feature since some participants 
may have optimized their attention to one of the Probabilistic 
features, and that selectivity should still produce learned 
inattention despite being suboptimal. Entropy for each trial 
was normalized by dividing by maximum possible entropy, 
such that all values were between 0 and 1. 

Drop in entropy was calculated as average entropy per trial 
in block 1 minus average entropy in block 3. This served as a 
measure of attention optimization, since greater drops 
indicate an increase in selectivity of attention.  

We performed a logistic regression predicting 
classification of Ambiguous items on the post-shift test from 
average entropy during pre-shift training, the drop in entropy 
over training, and their interaction. This analysis revealed a 
significant interaction, z = 3.318, p = 0.001. To better 
understand the interaction, we divided participants into low 
and high entropy groups based on a median split. We then 
performed a logistic regression on Ambiguous item 
responses predicted from the drop in entropy for each group. 
For the low entropy group, there was a significant negative 
relationship between entropy drop and Ambiguous item 

responses, z = -3.153, p = 0.002, indicating that those who 
optimized their attention in the initial training were less likely 
to use the new Deterministic feature to categorize items after 
the shift (see Figure 5). In contrast, participants in the high 
entropy group did not show a relationship between the drop 
in entropy and responses to Ambiguous items, z = 1.899, p = 
0.0575. 

In other words, attention optimization was associated with 
greater learned inattention in the low entropy (selective 
attention) group, but not in the high entropy (distributed 
attention) group. This interesting interaction has important 
implications. It implies, not surprisingly, that a certain level 
of selectivity is necessary to produce learned inattention. But 
more importantly, this high level of selectivity is not enough. 
Learned inattention seems to also require that attention 
allocation be incrementally learned over time. This suggests 
that it occurs when people initially consider multiple features, 
but learn through experience to ignore them (in contrast to a 
top-down strategy implemented from the beginning to focus 
on one or few features). 
 

 
Figure 4. Proportion looking at each feature type during 
training. Note that the proportion for Probabilistic features is 
summed across all five Probabilistic features. During initial 
training looking to the Deterministic feature increased, while 
looking to the other features decreased (i.e. attention 
optimization occurred). Post-shift looking to the previously 
Deterministic feature quickly dropped and was replaced by 
increased looking to the Probabilistic features, while the 
previously Irrelevant (now Deterministic feature) remained 
low. Error bars represent standard error of the mean. 
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Figure 5. The role of selectivity and attention optimization. 
Overall entropy (how distributed attention was) interacted 
with the change in entropy (attention optimization) to 
produce costs consistent with learned inattention. 
Participants who were both highly selective (low entropy) 
and who optimized (large drop in entropy) were the least 
likely to categorize based on the new deterministic feature 
after the shift. Line shown the fit line of logistic regression. 
Dot color indicates deterministic responders (blue), 
probabilistic responders (red), intermediate (grey). 
 

Discussion 
Although selective attention is often effective and efficient, 
there are potential costs. One particular (longer-term) cost is 
that selective attention can result in learned inattention to 
non-selected information, which in turn affects future 
learning. In the current study, participants performed a 
category learning task designed to induce learned inattention 
while we tracked their gaze. Both behavioral and eye-
tracking measures showed evidence of learned inattention. 
When making category judgments after the unexpected shift, 
participants were less likely to use a stimulus dimension that 
was previously irrelevant, but was now highly informative. 
Eye-tracking showed that after the shift occurred, participants 
quickly shifted attention away from the previously 
informative (and now irrelevant) feature. Their attention 
instead shifted to probabilistically predictive features, but 
they continued to ignore the previously irrelevant, now 
perfectly predictive, feature—with looking to that feature 
remaining low and not increasing over the course post-shift 
training. Participants simply ignored this feature despite its 
potential usefulness in their task. 

The level of learned inattention that was exhibited varied 
across individuals, though. We used measures of selectivity 
and attention optimization for each individual to determine 
what aspects of initial learning best predicted the level of 
learned inattention that occurred. Our results suggest an 
interaction between these two measures, such that learned 
inattention was most likely for participants who were overall 
highly selective, but importantly, who optimized their 
attention over time. Participants who were highly selective 
from the beginning, and so did not optimize attention over 
time, did not show high levels of learned inattention (see 
Figure 5). These results suggest that learned inattention 

crucially depends on incremental learning over time, and is 
not simply an effect of ignoring sources of information, but 
of learning to inhibit them after initially considering them. 

Participants who did optimize attention over time, but 
whose attention was overall relatively distributed (having 
high entropy), also did not show high levels of learned 
inattention. One possibility is that these participants needed 
more time to optimize attention before reaching the level 
required for substantial learned inattention to occur, and that 
with more training trials they would reach that level. 

That both the level of selectivity and attention optimization 
predict individual differences in learned attention has 
important implications for cognitive development. Young 
children tend to distribute their attention broadly and do not 
optimize attention as much as adults do (Best, Yim, & 
Sloutsky, 2013; Deng & Sloutsky, 2016), so they may be 
largely protected against the adverse effects of learned 
inattention.  

Allocating attention is always a tradeoff: selective attention 
results in more efficient processing of attended information, 
but has several potential pitfalls, including learned 
inattention. In contrast, if attention is distributed, processing 
is less efficient, but these traps are avoided. Therefore, to 
allocate attention effectively estimations must be made about 
information’s potential future relevance. With less general 
knowledge, children have less basis to make solid 
conclusions about what might and might not be useful to 
know later. Additionally, these types of costs could be 
particularly damaging early in the learning process, and so 
perhaps children’s tendency to distribute attention may be not 
only a result of immature control, but also adaptive for their 
particular situation. Understanding the developmental 
differences in this process is an important direction for future 
research. 
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Translation Tolerance in Vision 
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Abstract 

A fundamental challenge in object recognition is to        
recognize an image when it is projected across different         
retinal locations, an ability known as translation tolerance.        
Although the human visual system can overcome this        
challenge, the mechanisms responsible remain largely      
unexplained. The ‘trained-tolerance’ approach holds that      
an object must be experienced across different retinal        
locations to achieve translation tolerance. Previous studies       
have supported this approach by showing that the visual         
system struggles to generalize recognition of novel       
objects to translations as small as 2° of visual angle. The           
present paper outlines a series of eyetracking studies that         
show novel objects can be recognized at translations as far          
as 18° from the trained retinal location, challenging the         
standard account of translation tolerance in neuroscience       
and psychology.  

Keywords: Translation Tolerance; Translation Invariance;     
Object Recognition; Vision 

Introduction.   
We can identify familiar objects despite the variable         

images they project on our retina, including variation in         
image size, orientation, illumination, and position on retina.        
How the visual system succeeds under these conditions is         
still poorly understood. Here we focus on our ability to          
identify objects despite variations in retinal location and        
consider the extent to which the visual system relies on          
“on-line” vs. “trained” translation tolerance. In the case of         
on-line tolerance, learning to identify an object at one         
location immediately affords the capacity to identify that        
object at multiple retinal locations. At one extreme, the         
visual system can immediately generalize to all locations        
(to the limit of visual acuity), what might be called on-line           
translation invariance; at the other extreme, generalization       
is limited to a few degrees of visual angle. Trained          
tolerance, by contrast, refers to the hypothesis that we learn          
to identify familiar objects across locations by explicitly        
training the visual system to identify each object across a          
broad range of retinal locations. On this view, one of the           
functions of eye-movements is to ensure that objects are         
projected to multiple locations. These two accounts       
trade-off on one another: the more restricted on-line        
translation tolerance is the more trained tolerance is        
required to support the ability to identify objects across a          
wide range of retinal locations.  

As detailed below, most of the empirical research in          
psychology and neuroscience suggests that on-line      
tolerance is restricted to a few degrees of visual angle, and           
to date, all neural network models of object identification         
show the same restriction. As a consequence, most        
theories of vision assume that trained tolerance plays an         

important role in our ability to identify objects across a          
range of retinal locations.  

Early long-term priming studies by Biederman and        
colleagues (Biederman & Cooper, 1991; Cooper,      
Biederman, & Hummel, 1992; Fiser & Biederman, 2001)        
provided evidence for extensive on-line translation      
tolerance, and indeed, in some cases, translation       
invariance. For example, Fiser and Biederman (2001)       
asked participants to name line-drawings of objects as fast         
and accurately as possible in a study phase. In a later test            
block, participants were faster and more accurate to name         
repeated images compared to a set of control objects         
(same name, different exemplar) regardless of whether       
retinal position was the same at study and test or          
displaced by 10 degrees (°) of viewing angle. A limitation          
of all these studies, however, is that they assessed priming          
for familiar objects, and accordingly, participants had       
seen the same type of objects in a wide variety of retinal            
locations prior to the experiment. This leaves open the         
possibility that the findings reflected trained rather than        
on-line translation tolerance within the visual system, or        
indeed, trained tolerance outside the visual system with        
priming effects occurring within semantic or verbal       
systems (Kravitz, Vinson, & Baker, 2008). 

In contrast with the Biederman studies, a number of          
authors have failed to observe robust translation tolerance        
for novel objects that participants had not seen prior to the           
experiment (e.g., Afraz & Cavanagh, 2008; Cox &        
DiCarlo, 2008; Dill & Fahle, 1997; Dill & Fahle, 1998;          
Newell, Sheppard, Edelman, & Shapiro, 2005). Figure 1        
outlines a selection of studies that used different        
experimental paradigms and found highly limited (in one        
case no) translation tolerance (adapted from Kravitz,       
Vinson, & Baker, 2008). Based on the outcome of such          
studies, Chen et al. (2017) state that “the        
translation-invariance of the human visual system is       
limited to shifts on the order of a few degrees - almost            
certainly less than 8°” (p.5). In line with this, Kravitz et           
al.’s (2008) review of behavioral studies found that “most         
of the training and matching studies found a significant         
decrement in discrimination performance with     
translations varying from 0.5° to 2°” (p. 118).   

Neural data are also consistent with the idea that          
on-line translation tolerance is highly limited. Researchers       
have identified neurons in inferior-temporal cortex (IT)       
with a range of receptive fields (ranging from 2.8° to 26°;           
for review see Kravitz et al., 2008). The larger receptive          
fields are thought to provide the neural underpinning of         
translation tolerance, but it is important to note that these          
receptive fields have only been observed for familiar or         
newly-trained stimuli that have been seen at multiple        
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retinal locations (e.g., Gross et al., 1972; Ito, Tamura,         
Fujita, & Tanaka, 1995; Tovee, Rolls, & Azzopardi,        
1994). Accordingly, these large receptive fields could       
reflect trained or on-line translation tolerance. Consistent       
with the former hypothesis, Cox and DiCarlo (2008) only         
observed small receptive fields for their novel stimuli that         
were trained in one location, as shown in Figure 1C. That           
is the neural data appear to mirror the behavioral data:          
robust translation tolerance and large receptive fields are        
found for familiar stimuli, limited generalization and       
small receptive fields are observed for unfamiliar stimuli.        
Indeed, Cox and DiCarlo reach a similar conclusion to         
Kravitz et al. (2008), writing “...the computational       
machinery of the ventral visual stream is not constructed         
in a manner that automatically produces position tolerance        
in IT, even across relatively small changes in retinal         
position. Instead, the creation and/or maintenance of IT        
position tolerance might require experience”.   
 

 
Figure 1. Behavioral studies of translation tolerance.  
 
Similarly, work with artificial neural network models        

has reported robust translation tolerance for words and        
objects at trained locations, but highly limited       
generalization to untrained locations. For example,      
Dandarund et al. (2013) and DiBono & Zorzi (2013)         
showed that that their models of visual word identification         
supported translation invariance, but the models were       
trained with each word at each location. Elliffe, Rolls and          
Stringer (2002) showed that a biologically inspired neural        
network model called VisNet supported on-line      
translation tolerance to untrained locations for simple       
stimuli, but each stimuli had to be trained at multiple          
spatial locations (after training in 7 locations the model         
generalized to an 8th and 9th location), and the authors          
tested small translations (translations of 8 pixels in a         
128x128 retina). The above behavioral, neural, and       
computational above findings have led most theorists in        
psychology and neuroscience to endorse the ‘trained’       
account of translation tolerance.  

Despite empirical and computational results, there are        
still reasons to question the trained tolerance hypothesis.        
Behavioural studies that failed to observe on-line       
translation (e.g., Figure 1) suffer from a number of         
limitations. For example, stimuli are typically unlike real        
objects (e.g., Dill & Fahle, 1997; see Figure 1a), and/or          
are very similar to each other (e.g., Cox & DiCarlo, 2008;           
see Figure 1c). Differentiating between highly similar       

items may rely on low-level visual representations that are         
retinotopically constrained (Kravitz et al., 2008).      
Additionally, stimuli in these experiments were typically       
trained at a given location for just 100ms (contrary to          
everyday visual experiences in which stimuli can be        
encoded for longer intervals). More extended studying       
time may be required for robust online translation        
tolerance. Consistent with the first possibility, Dill and        
Edelman (2001) observed much more extensive      
translation tolerance for unfamiliar objects that were more        
object-like and discriminable from one another. Indeed,       
they reported no significant reduction in performance in        
five of six experiments when images were displaced by 8          
degrees. And consistent with both possibilities, Bowers,       
Vankov and Ludwig (2016) reported more robust       
translation tolerance still when participants trained to       
identify more discriminable stimuli novel stimuli that       
were studied at one retinal location for longer periods of          
time. Indeed, in their Experiment 3, participants were ~80         
% accurate in naming novel objects following a shift of          
13° (when chance was 16.7 %). 

In this article we explore on-line translation tolerance         
in humans given the conflicting empirical evidence       
regarding on-line translation tolerance and the theoretical       
implications for theories of vision in psychology and        
neuroscience. Two gaze-contingent eye-tracking studies     
are reported and include the following critical design        
features. First, in all studies, 24 novel objects were used,          
each of which was a member of a pair of objects built            
from similar parts but in a different global configuration         
(see Method). Using a large set of stimuli of this sort           
should encourage participants to learn the complete       
objects rather than just the parts. Previous studies have         
rarely matched items on the basis of their parts (but see           
Dill & Edelman, 2001), and have typically included far         
fewer stimuli. Second, the novel three-dimensional      
objects we included were designed to be more naturalistic         
compared to the novel stimuli used in previous        
experiments, such as those depicted in Figure 1a and 1c.          
This makes it more likely that the visual system will          
process these new stimuli in a manner more similar to          
everyday recognition. Third, we included study conditions       
in which stimuli were presented for unlimited time at         
study as opposed to the brief display conditions in         
previous studies that may have artificially reduced on-line        
translation tolerance. Fourth, we included test conditions       
in which objects were presented for 100ms durations,        
reducing the likelihood that participants adopted artificial       
strategies at test. Note that the Bowers et al. (2016)          
experiments reporting robust on-line translation     
invariance included a smaller number of less realistic        
objects that were displayed for an extended time at test.          
Accordingly, the current studies provide a much stronger        
test of the on-line translation tolerance hypothesis. 
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Experiment 1. 

Method 
Participants and Equipment. Fifteen participants     
(Experiment 1a=6, 1b=9) were recruited from the       
University of Bristol’s course credit scheme for       
Psychology students. Eye-movements were monitored     
using the Eyelink 1000 plus system (SR Research).        
Stimuli were presented using Psychopy v1.85.3 (platform:       
Linux-Ubuntu), and on a 120Hz monitor with a spatial         
resolution of 1920 x 1080 pixels (screen width = 53cm),          
at a distance of 70cm. 
 
Stimuli. Twenty-four novel objects were taken from       
Leek, Roberts, Oliver, Cristino, and Pegna (2016). Each        
object was part of a pair that had similar local features but            
a different global configuration (see Figure 2). For each         
participant, one member of each pair was randomly        
assigned the label ‘A’ and the other was assigned ‘B’. 
 

 
Figure 2. Twenty-four novel objects. Each column       
contains a pair of objects that are matched for similar          
local features, but which differ in global configuration. 
  
Procedure. In the learning phase of the experiment        
participants were trained to categorize the 24 objects as         
‘A’ or ‘B’. Each object was presented one-by-one in the          
centre of the screen and occupied 5°x5° of visual angle.          
Participants were required to maintain their gaze on a         
centrally located fixation-cross for 1000ms for an object        
to appear. If gaze moved 1.5° beyond the fixation-cross, a          
mask replaced the object. The learning task was split into          
two phases: (i) Familiarization. The familiarization phase       
consisted of two presentations of each object. Each object         
was presented for an unlimited time and was accompanied         
by a sound-file indicating its category (A or B). (ii)          
Training. Each object was displayed at the same location         
without the sound file and for unlimited time until the          
participant pressed a button to indicate the image’s        
category. Audio feedback was then provided. The training        
phase continued until the participant correctly identified       
each object consecutively (i.e., 24/24 consecutive correct       
answers). After completing the first training phase (Block        
1), participants completed two additional training phases -        
Block 2 and Block 3 - which were identical except for           
their shorter presentation times of 500ms and 100ms        
respectively. 

After the learning phase, participants completed seven        
test-blocks, each consisting of 24 presentations (one of        
each object); each test-block differed in terms of        

horizontal eccentricity from the centre of the object to the          
central fixation cross (i.e., displacement from training       
location). Test blocks 1, 2, 3, 4, 5, 6 and 7 presented            
images at 0° (i.e, trained-position), 3°, 3°, 6°, 6°, 9°, and           
9° displacement from the centrally trained position,       
respectively. Test-blocks with the same displacement      
(e.g., block 2 and 3 were both 3°) differed in terms of            
presentation side (left or right). Within each test-block,        
order of presentation was randomised and no feedback        
was provided. In Experiment 1a images remained on the         
screen until participants responded. Experiment 1b was       
the same as Experiment 1a except that images were         
presented for 100ms at test in order to reduce possible          
response strategies. These final presentation durations are       
similar to previous studies that have failed to find online          
translation tolerance (see Figure 1).  
 
Results. 
 
Table 1. Mean (+/- 95% CI range) Accuracy in         
Experiment 1. Columns show displacement of the test        
presentation from the trained location. 
  Mean (+/- 95% CI range) Accuracy 

  0° 3° 6° 9° 

Exp 1a (N = 6) 
98% 
(5%) 

98% 
(3%) 

95% 
 (9%) 

94% 
(9%) 

Exp 1b (N = 9) 
98% 
(2%) 

95% 
(3%) 

91% 
(4%) 

84% 
(7%) 

  
As shown in Table 1, novel objects were recognised          

with high accuracy at untrained retinal-positions (chance       
is 50%). Even at the most distal untrained position (9°),          
objects were recognised with a mean accuracy of 94%         
when unlimited time was afforded at test (Experiment 1a),         
and although translation tolerance was reduced when       
stimuli were presented for 100ms at test (Experiments        
1b), accuracy was still 84% when at 9° displacement.  

Experiment 2. 
Experiment 2 served two purposes. (i) Although we         

observe near complete translation invariance for newly       
acquired objects displaced by 9° when objects were        
presented for an unlimited amount of time, there was a          
significant reduction when stimuli were presented for 100        
ms at test. In an attempt to reduce any effects of retinal            
specificity, Experiment 2a adopted a learning condition       
known as ‘location-training’ (i.e., training at the test        
location - see below). (ii) Experiment 2b also used         
location training to examine whether the robust on-line        
translation reported in our experiments (1a to 2a) could be          
extended to an even more distal untrained location, 18°         
from the trained location.  
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Location training has been used by previous studies to          
show that participants can overcome retinal-specificity for       
low-level visual discrimination tasks. Xiao et al. (2008)        
demonstrated that participants who had been trained to        
discriminate contrasts at location 1 showed complete       
transfer of this ability to location 2 only when they had           
also been trained to discriminate different stimuli on a         
different dimension (orientation) at location 2 (otherwise,       
learned contrast discrimination was location specific).      
Xiao et al. concluded that training at location 2 trained          
participants to overcome stimulus-nonspecific factors like      
local noise at the stimulus location, and this enabled         
complete location transfer. Our Experiment 2 investigated       
whether location training may also reduce retinal       
specificity in high-level visual recognition tasks      
(Experiments 2a and 2b investigated this at displacements        
of 9° and  18°, respectively). 
 
Participants, Equipment and Stimuli. Experiment 2 used       
identical equipment, stimuli and recruitment methods as       
Experiment 1. Ten participants were used in Experiment        
2a, and 10 different participants in Experiment 2b. 
 
Experiment 2a: Learning and Test Phase. During       
learning blocks 1 and 2, objects were trained for unlimited          
time and 100ms duration respectively, at the centre of the          
screen (at fixation). In block 3, ‘location training’ took         
place: twelve objects were trained at one peripheral        
location, 9° from the central fixation-cross and the        
remaining 12 objects were trained at a contralateral        
peripheral location, 9° to the other side of the         
fixation-cross (all presentations were 100ms). Participants      
were trained until they got 12/12 consecutive correct        
answers at each peripheral location. In the test phase,         
objects were tested at three test locations: 9° left, 9° right,           
and centre of fixation, giving three test conditions:        
“trained-central” (0° displacement from central training      
location), “trained-peripheral” (0° displacement from     
peripheral training location) and “novel-peripheral”     
locations (9° displacement from central training location,       
on the opposite side to the trained peripheral location).          
To control for possible order effects, the three test         
locations were randomly interleaved within each      
test-block.  
  
Experiment 2b: Learning and Test Phase. Experiment       
2b examined whether the robust on-line translation       
reported in Experiment 2a could be extended to an even          
more distal untrained location, 18° from the trained        
location. In order to displace presentations by 18° at test,          
images were presented at one peripheral location only        
(and never at central fixation): 12 images were presented         
9° to the right, and the remaining 12 were presented 9° to            
the left of central fixation (images were presented for         
unlimited time in block 1, and for 100ms duration in          

blocks 2 and 3). In an attempt to boost performance          
compared to Experiment 2a, participants were required to        
get 24/24 consecutive correct answers in each block. At         
test, objects were tested at two test locations: 9° left, and           
9° right of fixation, giving two test conditions:        
“trained-peripheral” (0° displacement from peripheral     
trained location) and “novel-peripheral” locations (9°      
displacement from central fixation, and thus 18°       
displacement from the opposite peripheral location).  
 
Results.  
Table 2. Mean (+/- 95% CI range) Accuracy scores in          
Experiment 2a and 2b. Columns show degrees by which         
the test presentation was displaced from the nearest        
training location and the screen position of that test         
presentation. 

  Mean (+/- 95% CI range) Accuracy 

Displacement 0° 0° 9° 18° 

Screen 
Position 

Centre 
(trained) 

Peripheral 
(trained) 

Peripheral 
(novel) 

Peripheral 
(novel) 

Exp 2a (N=10) 93% (5%) 83%  (5%) 81% (6%) not tested 

Exp 2b (N=10) not tested 97% (3%) not tested 89% (7%) 

 
The results of Experiment 2a and 2b are summarised         

in Table 2. In Experiment 2a, mean accuracy scores at the           
novel-peripheral position (9°) were significantly above      
chance and were nearly equivalent to those yielded in the          
trained-peripheral position (0° Peripheral). Thus,     
Experiment 2a provided strong evidence for robust online        
translation tolerance over 9° displacement even when       
objects are presented for just 100ms at test.  

In Experiment 2b, objects were recognised with a very         
high degree of accuracy even when the trained location         
was displaced by 18°. Moreover, 5 of the 10 participants          
scored above 90% on mean accuracy at 18°. As illustrated          
in Figure 3, the findings from Experiment 2b, show         
on-line translation tolerance for novel stimuli over much        
more distal displacements compared to all previous work.  

 
Discussion 
The present paper has provided evidence of robust on-line         
translation tolerance in the human visual system.       
Participants trained to recognise novel objects at one        
retinal position could recognise the same objects at        
untrained distal retinal-locations (up to 18°) with high        
accuracy.  

The findings are contrary to previous studies that         
demonstrate much more limited generalization over      
translations as small as 2 and 4° (e.g., Cox & DiCarlo,           
2008; Dill & Fahle, 1998) and that have been used to           
support trained theories of translation tolerance. Indeed, 
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Figure 3. Comparison of d-prime scores for previous and present experiments as a function of translation distance. For each                   
study, the experiment with the best performance at the largest displacement is illustrated. The present experiments (dashed                 
lines) show more robust on-line translation tolerance than the majority of previous experiments. Experiment 2b showed                
robust on-line translation tolerance over a larger translation distance (18°) than any previous experiment. d-prime scores                
were calculated using the psyphy package (Knoblauch, 2014) for R (R Development Core Team, 2018). 

advocates of the approach have recently claimed “the        
translation-invariance of the human visual system is       
limited to shifts on the order of a few degrees - almost            
certainly less than 8°” (Chen et al., 2017; p. 5). Rather,           
the present findings indicate that novel object recognition        
can be generalized on-line to more distal untrained retinal         
positions than previously demonstrated (see Figure 3):       
objects were recognised over translations as large as 18°         
with performance near 90%.  

Why was robust on-line translation tolerance       
demonstrated in the present experiments whereas most       
previous experiments demonstrated highly limited     
generalization? As described above, previous studies      
typically used stimuli that are unlike real objects and/or         
are very similar to each other. Differentiating such stimuli         
may rely on low-level visual processes that are highly         
retinotopically constrained. High-level visual processes     
may also be more retinotopically constrained under these        
conditions. Indeed, there is some physiological evidence       
that receptive field (RF) sizes of neurons in the         
infero-temporal cortex (IT) are a function of stimuli size         
(DiCarlo & Maunsell, 2003). The present study used more         
naturalistic stimuli and included a number of variations in         
the procedure used by most psychophysical studies,       
including extended sampling times and, in Experiment 2,        
‘location training’. The more naturalistic conditions may       
have encouraged recruitment of IT neurons with larger        

RFs. Other studies that have also observed robust        
translation tolerance have also used more naturalistic,       
easily discriminable stimuli (Dill & Edelman, 2001) and        
extended sampling times (Bowers et al., 2016), but our         
findings go beyond this work by showing that robust         
translation tolerance extends to 18° under conditions in        
which strategic processing is minimized (by flashing       
items at test for 100 ms and by including a large set of             
novel objects that differed in the configuration of similar         
parts).  

The findings are also relevant to computational        
modelling of the visual system. As noted in the         
Introduction, previous attempts to achieve on-line      
translation tolerance with artificial neural networks have       
reported highly limited tolerance. Such demonstrations      
may have been considered a strength given similarly        
limited tolerance reported in humans (e.g., Dill & Fahle,         
1997; 1998). The present results show the need for these          
models to capture the robust on-line translation tolerance        
we have reported in humans. There is reason to believe          
that at least one class of artificial neural network can          
achieve this. Deep convolutional neural networks (CNNs)       
are designed to support translation tolerance by including        
convolutional layers and global pooling layers.      
Convolutions involve copying learning that occurs at one        
retinal location to other locations (the premise that        
information learned at one location is relevant at others),         
whilst pooling layers aggregate information from multiple 
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spatially organized units to a single unit in order to          
down-size the image. Both of these inbuilt (“innate”)        
mechanisms are widely claimed to support translation       
tolerance, but there is surprisingly little evidence as to         
whether these mechanisms can support robust on-line       
translation tolerance as we have observed. We are in the          
process of running simulations to assess whether CNNs        
can support our empirical results. 

Overall, the evidence outlined above is a clear         
demonstration that the human visual system can support        
recognition of novel objects at untrained distal retinal        
positions. Since the standard approach within psychology       
and neuroscience is to deny such robust generalization,        
there is a need for the field to more widely acknowledge           
an on-line generalization mechanism that can account for        
these results. 
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Abstract 

Using the prepositions in and on, Jamrozik and Gentner (2015; 
2014; 2011) explored a particular factor of meaning that was 
hypothesized to serve as a metaphorical link between spatial 
and abstract concepts. Across several studies, these researchers 
have provided evidence for the idea that there is a “continuum 
of control” that exists for both spatial and abstract uses of in 
and on. Our research explores other potential meaning factors 
that might play a role in non-spatial uses of in and on. Our 
results replicate and extend Jamrozik and Gentner’s (2011) 
findings. We advocate using a multi-componential approach as 
research involving indirect metaphors continues moving 
forward.  

Keywords: prepositions; spatial language; abstract language; 
metaphor; language understanding; semantics 

Introduction 

A popular assumption in cognitive linguistics is that 

metaphors are extremely common in both language and 

thought (e.g., Lakoff & Johnson, 1980). Historically, the 

evidence provided for this assumption has been primarily 

linguistic in nature. For example, a conceptual metaphor such 

as LOVE IS A CONTAINER is proposed to exist in the minds of 

speakers because it is natural to talk about people being in 

love or people falling out of love regardless of containment 

being a spatial concept and love being an abstract concept. 

One question, which arises from this assumption, is the nature 

of the connection between the spatial and the abstract. In 

other words, how might the spatial and abstract concepts 

activated by a conceptual metaphor be connected? 

The potential for this type of metaphorical connection is 

most apparent when people talk about abstract concepts, such 

as time, thoughts, and emotions, using terms drawn from 

physically-based domains, such as space, force, and motion. 

Jamrozik and Gentner (2015; 2014; 2011) have explored the 

possibility of such connections using the prepositions in and 

on. Steen (2010) refers to these as indirect metaphors. Across 

several studies, these researchers present evidence suggesting 

that control is an important concept not only for spatial uses 

of in and on but also for abstract uses of in and on. For 

example, consider the scenario of a marble in a jar that has 

been secured with a lid. The marble is considered the figure 

and the jar is the ground. Even if you were to shake the jar or 

turn it upside down, the marble has very little control over 

where it can be at any given moment in time. In other words, 

the ground has more control than the figure in this situation. 

Alternatively, consider the scenario of a marble on a plate. 

The marble is still the figure, but this time the plate is the 

ground. If you were to move the plate, the marble might 

easily roll right off. In this example, the figure has more 

control than the figure. Borrowing from Beitel, Gibbs, and 

Sanders’ (2001) terminology, the plate does not constrain the 

movement of the marble as well as the closed jar.  

Jamrozik and Gentner’s (2015) research suggests that this 

difference in the amount of control associated with in as 

compared to on—what they refer to as a “continuum of 

control”—also exists for abstract uses of in and on. Again, 

consider an example. If someone was described as being in 

trouble, participants in Jamrozik and Gentner’s (2015) 

studies thought that the figure had a low degree of control 

over their situation. If someone was described as being on a 

roll, participants in Jamrozik and Gentner’s (2013) studies 

thought that the figure had a higher degree of control over 

their situation. 

Jamrozik and Gentner (2015) selected control as their 

factor of interest because previous researchers (Coventry, 

Carmichael, & Garrod, 1994) have considered control to be 

the most likely candidate for extension to abstract contexts. 

Our goal is to extend Jamrozik and Gentner’s (2015) research 

by considering other factors that might be useful in 

differentiating between abstract uses of in and on. If control 

is not the only candidate for extension, then one place to look 

for other potential candidates is in literature involving the 

spatial semantics of the locative prepositions in and on.  

Early research on the spatial meaning of in and on tended 

to focus on the role of geometric constructs such as inclusion 

and contact (e.g., Bennett, 1975; Herskovits, 1986; Leech, 

1969; Miller & Johnson-Laird, 1976); however, these 

approaches cannot account for cases in which the necessary 

geometric constructs are present but the lexical item in 

question is dispreferred (e.g., a pear on a counter that is being 

covered by an overturned bowl is not considered in the bowl) 
as well as cases in which the necessary geometric constructs 

are not present but the lexical item in question is preferred 

(e.g., describing a book that is on top of another book as being 

on a table even though it is not directly in contact with or 

being supported by the table). In response to these 

inadequacies, researchers have developed more multi-
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componential approaches in which they propose that a variety 

of different factors feed into the meanings of spatial relational 

terms (Coventry & Garrod, 2004; Feist, 2000, 2010). These 

factors include geometric contact and geometric inclusion, 

which are factors less likely to extend to abstract concepts, as 

well as factors such as location control that are more likely to 

extend to abstract concepts. One example of a factor that may 

extend to abstract concepts is object association. More 

specifically, research by Coventry and Prat-Sala (2001) 

revealed a complex interaction between the factors of control 

and object association such that when figure control was 

high, acceptability of on was higher when the figure-ground 

combination was unusual (e.g., a brick on a plate) and lower 

when the figure-ground combination was expected (e.g., a 

fish on a plate). Whether or not this spatial factor of 

expectedness plays a significant semantic role in non-spatial 

uses of in and on and whether it has the same complex 

interaction with figure control has yet to be explored. 

Interestingly, Jamrozik and Gentner’s (2015) research on 

the abstract uses of in and on suggests another factor that 

should be taken into consideration. It is a factor that has not 

previously been considered as a spatial meaning component: 

valence. Throughout their studies, Jamrozik and Gentner 

(2011; 2014; 2015) provide a variety of stimulus examples. 

More often than not, these examples are indicative of a 

particular relationship between control and valence: 

Statements associated with higher figure control are often 

more positive (e.g., Jordan is on a roll) than statements 

associated with lower figure control (e.g., Casey is in a 

depression). Jamrozik and Gentner (2015) explain that this is 

evidence of a natural correlation between control and positive 

valence. They point out that the correlation is not perfect, and 

there are certainly examples for which the relationship does 

not hold (e.g., on thin ice; in shape). 

Given all of this, we first set out to explore the potential 

relationships between control, valence, and the 

comprehension of in and on in non-spatial contexts. We then 

set out to explore the potential relationships between control, 

valence, and expectedness and how these factors might 

influence the production of in and on in non-spatial contexts. 

Experiment 1 

In line with previous results (cf. Jamrozik and Gentner, 

2015), we predicted that participants would rate the figures 

of conventional on phrases as having more control than the 

figures of conventional in phrases. We also predicted that 

participants would rate conventional on phrases as more 

positive than conventional in phrases.  

Method 

Participants A total of 47 college students participated in 

exchange for course credit: 24 in Version 1 and 23 in Version 

2. The mean age of participants was approximately 19 (M = 

                                                           
1There were originally 20 catchtrials; however, due to 

experimenter error, one catchtrial in which the response was 

five was not included in the final version of the study. 

18.8, SD = 1.7). Forty were female (85%) and seven were 

male (15%). Only one participant reported being a non-native 

English speaker.  

 

Materials and Design Participants in this experiment were 

presented with 160 sentences. Each sentence consisted of a 

human figure and either a prepositional phrase or verb phrase. 

Of these sentences 89 were the target stimuli used by 

Jamrozik and Gentner (2015): 44 in sentences and 45 on 

sentences. We developed the remaining 71 filler sentences by 

following a procedure similar to the one described by 

Jamrozik and Gentner (2015) in which we selected 

conventional abstract uses of prepositions (other than in and 

on) and verbs from online idiom dictionaries and randomly 

assigned them common gender ambiguous names. Using a 

procedure similar to that described by Jamrozik and Gentner 

(2015), names were selected for use if they appeared in the 

top 1,000 names given to both males and females in social 

security records of American children born between 1990 and 

2000. Of the 71 filler sentences, 21 were prepositional 

phrases (e.g., Peyton is at ease; Bailey is under the weather), 

26 were verb + preposition phrases (e.g., Quinn is letting the 

cat out of the bag; Alex is beating around the bush), and 24 

were verb phrases (e.g., Noel is taking it easy; Taylor is 

jumping the gun). 

 

Procedure Participants took part in this study via 

SurveyMonkey.com. After consenting, participants were 

asked to answer a standard set of demographic questions: 

their age, gender, native language, and other languages they 

are able to speak, write, read, or understand. 

Participants then read and rated the 160 sentences 

described previously. Following from Jamrozik and Gentner 

(2015), the sentences were presented one at a time on the 

screen and in a pseudo-randomized order such that there were 

never two in sentences, on sentences, or target sentences 

presented back-to-back. Participants were instructed to 

“imagine the scenario each sentence describes and think 

about how much the person controls or is controlled by the 

situation” as well as “the degree to which the situation being 

described is likely to be a positive or negative event in that 

person’s life.” For each sentence, participants were presented 

with a figure-control question (i.e., “To what degree does the 

person have control of the situation?”) to which they would 

respond on a scale ranging from “1-extremely low control of 

the situation by the person” to “5-extremely high control of 

the situation by the person.” On the same page participants 

were presented with a valence question (i.e., “To what degree 

is the situation being described likely to be a positive or 

negative event in their life?)” to which they would respond 

on a scale from “1-extremely negative” to “5-extremely 

positive.” We also developed 191 catchtrials that were 

presented in a pseudo-randomized order such that there was 

only ever one catchtrial per sentence and never more than two 
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catchtrials appearing back-to-back. Catchtrials involved 

asking participants to provide a specific numerical rating 

from one to five on the scale provided.  

At the end of the experiment, participants were then 

presented with an electronic debriefing form. Two versions 

of the experiment were developed due to concerns that 

participants might simply provide the same response to both 

the figure control and valence questions. Participants were 

assigned to one version, and the only difference between 

them being that the valence scale response options were 

flipped such that “extremely positive outcome” was 

associated with one and “extremely negative outcome” was 

associated with five. These responses were reversed scored 

before analysis. 

Results 

Of the 47 participants described previously, 12 were removed 

from further data analysis: one for reporting a native language 

other than English, two for responding incorrectly to three or 

more of the catchtrials, and nine for not finishing the study. 

Thus, data for 35 participants were used in the following 

analyses. 

To determine whether the mean figure-control ratings 

produced by participants in the current study were aligned 

with the mean figure-control ratings produced by participants 

in Jamrozik and Gentner’s (2015) Experiment 1a, we 

conducted a pairwise correlation, r(88) = .94, p < .001. 

It should not be surprising, then, that when we conducted a 

mixed-model ANOVA with preposition as a within-subjects 

variable and version as a between-subjects variable that we 

found the same significant effect of preposition on ratings of 

figure-control reported by Jamrozik and Gentner (2015): 

Participants in the current study rated figures on ground as 

having more control (M = 3.6, SD = .48) than figures in 

ground (M = 3.1, SD = .47), F(1, 33) = 132.81, p < .001, ηp2 

= .801. As expected, there was no significant main effect or 

interaction involving version. 

To determine the proportion of stimuli that fit with our 

predictions, we conducted a median-split analysis using the 

control ratings. The results showed that our predictions held 

for 64% of the on sentences (ratings falling above the 

median) and 66% of the in sentences (ratings falling below 

the median). 

When we conducted a mixed-model ANOVA with 

preposition as a within-subjects variable and version as a 

between-subjects variable using valence scores, we found 

that participants rated figures on ground as more positive (M 

= 3.26, SD = .28) than figures in ground (M = 2.92, SD = .24), 

F(1, 33) = 103.97, p < .001, ηp2 = .759. We also expected that 

                                                           
2Due to experimenter error, the in sentence Noel is in the know 

was absent from the stimuli presented to the participants. 

Instead the filler phrase out of practice was inadvertently 

presented twice, once with the name Avery and once with the 

name Noel. Because the missing phrase would have likely been 

rated by our participants as positive and a situation in which 

there was low control of the situation by the person, this could 

be viewed as a confound since we may have inadvertently 

if participants were simply providing the same response to 

the control and valence questions that we would see 

significant difference across versions when the anchoring of 

the valence question was reverse. No significant main effect 

or interaction involving version was observed.2 

To determine the proportion of stimuli that fit with our 

predictions, we conducted a median-split analysis using the 

valence ratings. The results showed that our predictions held 

for 42% of the on sentences (ratings falling above the 

median) and 57% of the in sentences (ratings falling below 

the median). 

Discussion 

As predicted, we were able to replicate the results of Jamrozik 

and Gentner’s (2015) Experiment 1a using their set of 

conventional phrases. In addition to finding that on is 

associated with more figure-control than in, we also observed 

that on phrases were rated as more positive than in phrases. 

This evidence suggests that, in addition to control, valence 

may serve as a meaning component that can be used to 

differentiate between abstract uses of in and on. That being 

said, our median-split analyses revealed that control might 

play a more predictable role than valence across a variety of 

different contexts. We argue that these patterns are consistent 

with a multi-componential approach, meaning that 

consideration of a variety of different semantic factors might 

be useful when investigating the non-spatial semantics of in 

and on.  

A significant limitation of Experiment 1 is that these 

findings might also be due to a lack of counterbalancing 

because participants were always presented with the same 

order of ratings: control followed by valence. It could be that 

a significant effect of valence was found only because 

valence ratings were always considered through the lens of 

control.  It is also possible that these findings might simply 

be the result of characteristics particular to the sentences that 

were used as stimuli. Furthermore, even though using 

conventional phrases served to enhance the ecological 

validity of Experiment 1, it also limited the degree to which 

we were able to explore the potential interaction between 

control and valence. 

Experiment 2 

With mounting evidence that control is an important factor in 

distinguishing between the meanings of in and on in non-

spatial contexts, we wanted to take a multi-componential 

perspective and explore the potential relationships between 

control, valence, and expectedness and how these factors 

eliminated data that could have served to refute our hypothesis. 

To address this possibility, we eliminated from analysis the on 

phrase with the most positive valence rating (Adrian is on task; 

M = 4.71) and conducted the same set of analyses described in 

the main text. Even without this sentence, the pattern of results 

and the significance tests outcomes were the same: A 

significant main effect of preposition was found for both 

control and valence ratings. 
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might influence the production of in and on in non-spatial 

contexts.  

Method 

Participants A total of 122 college students participated in 

exchange for course credit. The mean age of participants was 

approximately 18 (M = 18.1, SD = 1.8). Nineteen were male  

 (16%) and 103 were female (84%). Only three participants 

reported being non-native English speakers.  

 

Materials and Design We developed 64 stories for this 

experiment. Eight base stories were created. The stories 

averaged 3 sentences (or 45 words) in length. Each base story 

was associated with a general theme and a fictitious person 

name that was gender ambiguous. Eight story types were 

developed from each base story by fully crossing the 

following factors: control of the figure (high vs. low), valence 

of the outcome (positive vs. negative), and expectedness of 

the scenario (expected vs. unexpected). Eight versions of the 

experiment were then created, each containing only one story 

from each base and only one of each story type. Each 

participant was randomly assigned to a particular version of 

the experiment, and the order in which the stories were 

presented to participants was completely randomized. 

We also selected eight nonwords to serve as novel 

prepositional objects for the production portion of this 

experiment. Using a procedure similar to the one described 

by Jamrozik and Gentner (2015), we generated these eight 

nonwords using the ARC Nonword Database (Rastle, 

Harrington, & Coltheart, 2002: https://www.cogsci.mq.edu. 

au/research/resources/nwdb/nwdb.html): vight, slief, thwom, 

yease, prach, gwinn, malse, and zaiff. The eight nonwords 

were assigned in a pseudo-randomized fashion such that each 

participant saw each nonword only once during the 

experiment and that each nonword appeared with a different 

story type across each of the eight versions. 

 

Procedure Participants took part in this study via 

SurveyMonkey.com. After consenting, participants were 

asked to answer a standard set of demographic questions: 

their age, gender, native language, and other languages they 

are able to speak, write, read, or understand. 

 We then asked participants to read and respond to eight 

short stories (see Table 1 for examples). Four catch trials 

were also included in each version of the experiment. 

Catchtrials involved asking participants to provide a specific 

numerical rating from one to five on the scale provided.  

 After reading each story, participants were presented with 

three questions and their respective scales: a figure-control 

question (i.e., “To what degree does the person have control 

of the situation?”) to which they would respond on a scale 

ranging from “1-extremely low control of the situation by the 

person” to “5-extremely high control of the situation by the 

person;” a scenario expectedness question (i.e., “To what 

degree is the situation natural and expected?”) to which they 

would respond on a scale ranging from “1-extremely 

unnatural and unexpected” to “5-extremely natural and 

expected;” and an outcome valence question (i.e., “To what 

degree is the situation being described likely to be a positive 

or negative event in their life?)” to which they would respond 

on a scale from “1-extremely negative” to “5-extremely 

positive.” Participants were then asked to imagine that they 

overheard someone talking about the fictitious person they 

just read about in the story and to decide whether in or on was 

more likely to appear in the novel statement that they 

overheard (e.g., “Adrian is ____ a gwinn”). 

After reading eight stories and responding to the four 

questions following each story, participants were then 

presented with an electronic debriefing form.  

 

Table 1: Example of two story types developed from one 

base story. 

Results 

Of the 122 participants described previously, four indicated 

that they were fluent in another language other than English 

but failed to specify which language despite explicit 

instructions to do so. It was determined that these failures to 

respond were likely due to participants not paying close 

enough attention to the questions being presented to them; 

therefore, their data was excluded from further analysis. Of 

the remaining 118 participants, 11 were removed from further 

data analysis: three for reporting a native language other than 

English, four for responding incorrectly to one or more of our 

four catchtrials, three for not finishing the study, and one for 

attempting to complete the study a second time. Thus, the 

data for 111 participants was used in the following analyses. 

 

Ratings We first needed to determine whether participants 

were sensitive to the ways in which we manipulated the three 

variables across the different story types; therefore, we 

conducted a one-way by items ANOVA for each factor. 

Table 2 shows that, on average, stories were rated in 

accordance with our manipulations. 

In order to explore the roles that outcome valence and 

scenario expectedness might play in decisions of figure-

control, we then conducted a repeated measures ANOVA on 

control ratings using figure-control, outcome valence, and 

scenario expectedness as within-subjects variables and 

version as a between-subjects variable. Version did have a 

significant effect overall, F(7, 103) = 4.75, p = .004, ηp2 = 

.180, suggesting that participants’ control ratings differed 

depending on the sets of stories they received. Moreover, 

Figure-control Valence outcome Scenario expectedness 

High Positive Expected 

Lee works at a local pizza place and has spent lots of time 

developing their customer service skills. Because of what they 

learned, Lee always wears a clean uniform to work. Lee just 

found out that they are going to be promoted.  

Low Negative Unexpected 

Lee’s parents forced them to get a job at the local pizza place 

owned by their family. Lee’s manager makes every employee 

wear a clown suit to work. Lee just found out that they are going 

to be fired. 
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every time version participated in an interaction, the 

interaction was statistically significant. Even though these 

complex interactions were not analyzed further, this pattern 

suggests that the following pattern of effects might be driven 

by only a subset of the stories presented to participants. 

 

Table 2: Mean ratings (and standard deviations) across 

factor levels for figure-control, outcome valence, and 

scenario expectedness. 

 

 

Of the three within-subjects variables, two had significant 

effects on participants’ ratings of control: figure-control and 

valence. The significant effect of valence was such that 

participants’ ratings of control were higher in response to 

high figure-control stories (M = 3.53, SD = 1.45) as compared 

to low figure-control stories (M = 2.59, SD = 1.38), F(1, 103) 

= 143.42, p < .001, ηp2 = 0.533. Such an effect is not 

surprising. What is more interesting is that ratings of control 

were also influenced by valence, F(1, 103) = 87.17, p < .001, 

ηp2 = .458. More specifically, ratings of control were higher 

in response to positive valence stories (M = 3.39, SD = 1.44) 

as compared to negative valence stories (M = 2.72, SD = 

1.47). Unlike valence, expectedness did not have a significant 

impact on participants’ control ratings: Control ratings made 

in response to stories with expected outcomes (M = 3.06, SD 

= 1.48) were not significantly different from stories with 

unexpected outcomes (M = 3.05, SD = 1.50). 

Interestingly, there were two significant interactions that 

did not involve the between-subjects variable of version. One 

was an interaction of figure-control and outcome valence, 

F(1, 103) =  41.02, p < .001, ηp2 = .285 (see Figure 1). This 

interaction was such that stories with positive outcomes 

received higher control ratings when they described high 

control situations (M = 4.10, SD = 1.16) as compared to low 

control situations (M = 2.69, SD = 1.34), F(1, 103) = 172.85, 

p < .001, ηp2 = 0.627; however, these differences in control 

ratings were observed to a lesser degree when stories with 

negative outcomes described high control situations (M = 

2.96, SD = 1.49) as compared to low control situations (M = 

2.49, SD =1.41), F(1, 103) = 15.85, p < .001, ηp2 = .133. 

The other interaction of interest involved expectedness, 

which alone did not have a significant impact on control 

ratings. The interaction of expectedness and valence, F(1, 

103) = 46.17, p < .001, ηp2 = .310, was such that  participants 

rated the figures of stories with positive outcomes as having 

more control when the scenario was expected than when it 

was unexpected, F(1, 103) = 23.01, p < .001, ηp2 = .183; 

however, the opposite pattern was observed for stories with 

negative outcomes: Participants rated figures as having less 

control when the scenario was expected than when it was 

unexpected, F(1, 103) = 18.31, p = .001, ηp2 = .151 (see 

Figure 2). 
 

 
Figure 1: Mean control ratings across levels of figure-

control and valence. 
 

 
Figure 2: Mean control ratings across levels of 

expectedness and valence. 
 

In addition to the pervasive influence of version, another 

concern arose during data analysis. Due to experimenter error 

34% of the stories presented to participants actually 

contained the lexical items in and on; therefore, it is possible 

that ratings of control might have had more to do with lexical 

priming than the factors of interest. This lexical items 

confound was distributed across versions such that of the 

eight stories read by each participant at least one but no more 

than three contained a lexical item confound. 

To analyze the impact that this lexical items confound may 

have had, we coded stories containing the word in as one and 

stories containing the word on as three. All “neutral” stories 

were coded as two, which included all stories that did not 

contain the lexical items in and on as well as two stories that 

contained both in an on. These codes were constructed such 

that high scores on the lexical items confound would be 

associated with high figure-control. The concern, then, was 

that high lexical confound ratings might predict high figure-

control ratings; however, the results of a linear regression 
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actually showed the opposite to be significant: Low lexical 

confound ratings were associated with higher figure-control 

ratings, F(1, 886) = 4.74, p = .030, with an R2 of .01. 

Participants’ predicted control ratings decreased -.19 points 

for each increase in lexical confound, suggesting that seeing 

the lexical item on (as opposed to in) caused participants to 

produce lower ratings of control. This is a surprising finding 

that cannot be readily explained on the basis of lexical 

priming and does not align with the findings of Jamrozik and 

Gentner (2015). 

 

Production We hypothesized that the factors of figure-

control, outcome valence, and scenario expectedness would 

have an influence on production. In particular, we were 

interested in the likelihood that participants would choose 

either in or on to complete a novel phrase about the figure 

described in the story. A mixed effect logistic regression 

analysis looking at the choice between in and on as a function 

of all three within-subjects factors, the between-subjects 

factor of version, and all of their possible interactions 

revealed only significant effects involving figure-control, 

F(1, 103) = 4.69, p = .033, and outcome valence, F(1, 103) = 

24.13, p < .001 (see Table 3). The figure-control effect was 

such that on was more preferred when figure-control was 

high (43%) and less preferred when figure-control was low 

(35%). The outcome valence effect was such that on was 

more preferred when the outcome was positive (47%) and 

less preferred when the outcome was negative (32%). Despite 

the pervasive influence of version in the ratings data, version 

did not play a significant role in production. 

 

Table 3: Percentage of on responses and number of biased 

version across the eight story types. 

 

Discussion 

The severe limitations related to this experiment do not allow 

us to make any strong claims regarding the observed findings; 

however, we think that a discussion of these findings is useful 

for generating hypotheses that can be addressed in future 

research. The most severe limitations of Experiment 2 

involve the unaccounted for variation across the story sets 

that resulted in significant effects tied to version and the 

lexical confounds present in particular stories. Another 

significant limitation of Experiment 2 is a lack of 

counterbalancing due to the fact that participants were always 

presented with the same ordering of ratings: control, 

expectedness, valence, and production. 

Very generally, the results of this experiment suggest that 

the relationships between control, valence, and expectedness 

may be more complex than we originally anticipated. For 

example, when stories had positive outcomes, participants’ 

ratings of control may have been influenced more by figure-

control than when stories had negative outcomes. It is 

possible that when situations have a negative outcome, we 

would prefer to think that the person did not have as much 

control over the events. Another potential example of these 

complex relationships is the significant interaction of 

expectedness and valence. What this interaction may suggest 

is that when ordinary events are involved, positive outcomes 

are associated with more figure control; however, when 

strange occurrences result in positive outcomes, people may 

be more likely to think that the person has less control over 

the situation. Interestingly, the pattern seems to switch when 

going from positive outcomes to negative outcomes. When 

something bad happens and it is an ordinary event, people 

may tend to sympathize and not attribute control to the person 

involved. When things go awry, the abnormality of a situation 

may cause us to think that the person had more control over 

the events that took place.  

As for the production of in and on, our results were 

consistent with Jamrozik and Gentner’s (2015) findings: On 

was more preferred when the person was described as having 

more control and less preferred when the person was 

described as having less control. We also found evidence to 

suggest that on may be more preferred when outcomes are 

positive and less preferred when outcomes are negative. 

Conclusion 

In the domain of spatial semantics the success of multi-

componential approaches is clear. Our data is consistent with 

the hypothesis that non-spatial uses of prepositions have a 

multi-componential structure like their spatial counterparts. 

As a case in point, consider the title of this paper. Despite the 

connections in has with negative valence, being in shape is 

not perceived as significantly worse (M = 4.57) than being on 

top of it (M = 4.63). Even though multiple factors of meaning 

will likely be needed to account for the types of complex 

patterns we observed in our data, what is less clear is the 

origin of these factors and the relative impact each of them 

might have during either comprehension or production. It 

may be that the spatial and abstract meanings of spatial 

prepositions share features due to happenstance; however, 

many cognitive linguists propose that the abstract meanings 

associated with indirect metaphors are derived via 

metaphorical connections from their spatially-based 

meanings (e.g., Brugman & Lakoff, 1988/2006; Tyler & 

Evans, 2001, 2003). We argue that future research should 

focus on exploring the implications this type of research has 

for theories of indirect metaphors, specifically, and lexical 

semantics, more generally. 

Figure-

Control 

Outcome 

Valence 

Scenario 

Expectedness 

% on 

Responses 

on vs. in 

Biased 

Versions 

High Positive Expected 57 1 vs. 1 

High Positive Unexpected 49 2 vs. 1 

High Negative Expected 30 1 vs. 1 

High Negative Unexpected 34 2 vs. 1 

Low Positive Expected 41 1 vs. 2 

Low Positive Unexpected 40 0 vs. 2 

Low Negative Expected 31 2 vs. 2 

Low Negative Unexpected 32 2 vs. 2 
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Abstract

How do children’s beliefs about a causal system influence their
exploration of that system? Children watched an experimenter
try to make a machine play music by placing blocks on top; one
block always activated the machine and the other block never
did (Deterministic condition), or one block activated the ma-
chine a higher proportion of times than the other (Probabilistic
condition). Subsequently, we measured children’s exploratory
behaviors without feedback (the machine never activated). We
predicted that children in the two conditions would differ in
their beliefs about how the system should work, leading to dif-
ferent hypotheses about why the machine was no longer work-
ing, and to differential exploration. Compared to the Proba-
bilistic condition, children in the Deterministic condition in-
tervened more often with the previously more effective block,
experimented more with how to activate the machine, and ex-
plored for less time. Children’s exploration provides a rich,
nuanced view of their causal reasoning.
Keywords: cognitive development; causal learning; causal un-
certainty; statistical learning; exploration

Introduction
Children continually learn about the causal relationships in
their environment: Switches turn on lights; germs make peo-
ple sick; unkind words make people sad. Learning such re-
lationships is not trivial because causal links are not directly
observable but rather inferred from statistical contingencies
between events. Furthermore, causal relationships are graded
in strength – you not only need to learn that a relationship
exists but also the probability of the cause generating the ef-
fect, which in turn can lead to more or less certainty about the
underlying causal structure (Griffiths & Tenenbaum, 2005).

From as young as 24 months, children can infer both the
existence of causal links and the relative strength of different
causes from deterministic and probabilistic data (Waismeyer,
Meltzoff, & Gopnik, 2015; for older children see, Gopnik et
al., 2004; Kushnir & Gopnik, 2007; Sobel, Tenenbaum, &
Gopnik, 2004). Further, children are more likely to trust tes-
timony that conflicts with probabilistic data (e.g., a block only
sometimes makes a machine play music) than testimony con-
flicting with deterministic data (e.g., a block always makes
a machine play music), suggesting sensitivity to the rela-
tive strength implied by these different patterns of evidence
(Bridgers, Buchsbaum, Seiver, Griffiths, & Gopnik, 2016).

The majority of prior research on children’s causal reason-
ing, however, has examined children’s judgments of causal
structure. That is, children are prompted to identify which
objects are causes and which are not or to produce a sin-
gle intervention on the system to bring about an effect (e.g.,
Bridgers et al., 2016; Buchanan & Sobel, 2011; Gopnik et

al., 2004; Kushnir & Gopnik, 2005; Kushnir, Wellman, &
Gelman, 2008; Sobel et al., 2004). These forced-choice de-
pendent measures provide insight into children’s inferences
about what is and what is not a cause, but more graded mea-
sures could provide additional insight into children’s sensitiv-
ity to causal strength, especially since causal strength itself is
inherently graded. Such measures could also reveal children’s
certainty or confidence in their inferences. Here, we look to
children’s exploratory behavior as a window into their causal
learning in the hope of gaining a more nuanced view.

Children are sophisticated active learners and acquire
knowledge from their own direct exploration of the world
(Schulz, 2012; Xu & Kushnir, 2013). Children’s exploratory
play is not just driven by their enjoyment but also by their
inductive inferences and expectations about how the world
works. For instance, if children learn that members of a cat-
egory have an unobservable property, they expect other cate-
gory members to also have that property and attempt to elicit
the property from them (Baldwin, Markman, & Melartin,
1993; Butler & Markman, 2012). The stronger the cues pro-
vided to category membership are (e.g., the objects are simi-
lar vs. different in appearance; have the same vs. different la-
bels), the longer children persist in their attempts to elicit the
property, revealing sensitivity to gradations in the inductive
strength of these cues (Baldwin et al., 1993; Schulz, Stand-
ing, & Bonawitz, 2008). Children also explore more when ev-
idence is ambiguous or an event challenges their prior beliefs.
They opt to play with causally confounded or belief-violating
toys over novel toys (Schulz & Bonawitz, 2007; Stahl &
Feigenson, 2015). In this play, they even spontaneously de-
sign novel interventions or experiments to test their beliefs,
and generate sufficient evidence to disambiguate the causal
system (E. B. Bonawitz, van Schijndel, Friel, & Schulz, 2012;
Gweon & Schulz, 2008; Legare, 2011; Schulz & Bonawitz,
2007). Taken together, childrens certainty and surprise ap-
pear to influence how much and how long they explore, mak-
ing exploration a good dependent measure of their underlying
beliefs and confidence in those beliefs.

Here, we take up the hypothesis that children’s free explo-
ration of a causal system is supported by some of the same
rational principles of inductive inference that inform their ex-
plicit causal judgments (e.g., Schulz, Standing, & Bonawitz,
2008). We examine children’s exploration in the context of
causal uncertainty, and in particular investigate how their ex-
ploration might differ after observing the deterministic vs.
probabilistic patterns of evidence often used in classic ex-

1429



periments on causal judgments. We predicted that children
would be sensitive to differences in causal strength implied
by deterministic vs. probabilistic data, and that this would be
reflected in their free play with a causal system. Using explo-
ration as a dependent measure has the additional benefit that
it is non-verbal and so could be particularly useful in mea-
suring young children’s certainty in their inferences; explicit
meta-cognition is still developing in early childhood, making
it difficult to elicit explicit certainty judgments from young
children (Ghetti, Hembacher, & Coughlin, 2013; Hembacher
& Ghetti, 2014).

A feature common to experiments using exploration as a
dependent measure is that children are presented with objects
that lack the previously observed property. This design de-
cision prevents children from eliciting confirmatory evidence
and eliminates the distraction of the interesting causal prop-
erty, to more easily isolate how children’s expectations af-
fect their play (see Baldwin et al., 1993; Schulz, Standing,
& Bonawitz, 2008). However, it also raises the question of
what conclusions children are drawing about their failed at-
tempts to elicit the property. This failure could be due to
the causal system (i.e., it does not work as expected or has
stopped working) or due to one’s own actions (i.e., I am do-
ing something wrong) (Karmiloff-Smith & Inhelder, 1974),
a distinction to which even 16-month-old infants are sensi-
tive when responding to their own failed actions (Gweon &
Schulz, 2011). Thus, children’s exploration may not only re-
flect uncertainty in their prior inferences about the causal sys-
tem but also uncertainty about why the system is no longer
working, making it a useful measure of both their initial in-
ductive predictions and how such predictions inform later in-
ferences about unexpected outcomes. Next, we present our
specific experimental hypotheses about how children’s sensi-
tivity to these sources of uncertainty might manifest in their
exploration of an inert causal system.

Overview
In the current experiment, four- and five-year-olds were intro-
duced to a machine that could be activated by placing blocks
on top. Children observed either deterministic or probabilis-
tic evidence that one of two blocks was better than the other
at making the machine go. Children were then given the op-
portunity to explore the blocks and the machine on their own,
but during this time, the machine never activated no matter
what interventions children performed.

We predicted that children’s exploration would reflect both
their initial inferences from the demonstrated data about how
the system works and their subsequent inferences about why
it was no longer working (Legare, 2011; Schulz, Hooppell,
& Jenkins, 2008). In both conditions, we predicted children
would first attempt to activate the machine with the block that
was demonstrated to be more causally efficacious. However,
when faced with evidence that this block was no longer work-
ing, children would explore differently across conditions.

Children in the Deterministic condition will likely develop
a strong expectation that the previously more effective block

should work (it always did before) and that the the previously
less effective block should not (it never did before), while
children in the Probabilistic condition should have less cer-
tainty about the causal strength of each block (both blocks
previously succeeded and failed in activating the machine).
We thus predicted that children in the Deterministic condi-
tion would persist in trying to activate the machine with the
previously better block more than children in the Probabilis-
tic condition, who would be more likely to explore the previ-
ously worse block.

The stronger belief in the previously better block’s efficacy
might also lead children in the Deterministic condition to in-
fer that the block is no longer working because they are do-
ing something wrong. If that is the case, children might not
only persist in trying this block but also be more likely to ex-
periment with different ways of activating the machine (e.g.,
placing the block in different locations on the machine) to try
and find the right way to use the block (Legare, 2011). How-
ever, this stronger initial belief in the better block’s causal
strength might also lead children to give up more quickly, be-
cause of a belief that they are still doing something wrong
(e.g., not placing the block in the right location) or that the
system has somehow changed (e.g., it is out of batteries). In
contrast, children in the Probabilistic condition might explore
longer overall, but produce less variable interventions. Since
the system is stochastic, if it is not activating it is not neces-
sarily because the system has stopped working or that they
are doing something wrong, so it is worth continuing to test
out the blocks.

Prior work has actually suggested that children engage in
more variable exploration when presented with ambiguous or
probabilistic evidence (see E. Bonawitz et al., 2011; Schulz,
Hooppell, & Jenkins, 2008). Here, we predict that the proba-
bilistic evidence will result in more even exploration of both
blocks and longer exploration overall. In contrast to previous
work, we anticipate that the deterministic evidence will ren-
der the inert system more surprising and so will lead to more
novel interventions to try to figure out why this is the case.

Given these predictions, we not only look at children’s
overall persistence and exploration time, but also at which
blocks children place on the machine and what else they try
with the blocks and the machine to see if these behaviors also
reflect different causal inferences and sources of uncertainty.

Methods
Participants
Seventy-seven children (41 4-year-olds and 36 5-year-olds;
38 females) were recruited from local museums in Toronto,
Ontario. An additional 10 children were tested but excluded
from analysis due to experimenter error (n = 5), missing date
of birth (n = 2), or ending the experiment early (n = 3).
Children were randomly assigned to the Deterministic con-
dition (n = 39, M(SD) = 59.43(6.30) months, 19 females)
or the Probabilistic condition (n = 38, M(SD) = 58.96(7.56)
months, 19 females). The diversity of the sample was repre-
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sentative of the diversity of the local population.

Materials
The causal system was presented to children as a machine
that could play music when blocks were placed on top. The
“machine” was a decorated cardboard box as shown in Fig-
ure 2A. There were four wooden blocks, differing in shape
and color, but similar in size: the red oval, yellow square,
blue triangle, and purple star blocks. The machine appeared
to play music when blocks were placed on top, but in reality,
it contained a wireless door bell that could be activated sur-
reptitiously by the experimenter via a hidden remote control.
For some children, a bell they could ring to indicate that they
were done exploring (n = 36) or a distractor toy (n = 2) were
also placed on the table.1

Procedure
Participants were tested individually in a quiet off-exhibit
location at the museum. Children’s behavior was video
recorded and coded offline by the second author.

Demonstration Phase The experimenter first introduced
the child to the novel machine, explained that you could make
the machine play music by putting blocks on top and that
some blocks made it play music while others did not. The
experimenter then brought out a pair of blocks, either the yel-
low square and red oval blocks, or the blue triangle and pur-
ple star blocks (counterbalanced across participants) and told
children that she had never played with these blocks before.

Next, the experimenter demonstrated each block on the
machine. In the Deterministic condition, each block was
placed on the machine six times; one block deterministically
activated the machine on all six trials (better block), while
the other block failed to activate the machine on all six tri-
als (worse block). In the Probabilistic condition, one block
was placed on the machine three times and activated the ma-
chine twice, always on the first and third trial (better block);
the other block was placed on the machine six times and also
activated it two times, on the second and fifth trial (worse
block). As in previous work, this pattern of data controls for
the frequency with which each block activates the toy, provid-
ing stronger evidence that children are reasoning about the
probability of each cause generating the effect and not just
the number of times the effect was associated with the cause
(Bridgers et al., 2016; Kushnir & Gopnik, 2007). We coun-
terbalanced which block was the better block and whether the
better block was demonstrated first.

The experimenter then asked the child which block was
better at making the machine play music. If the child did not

1We initially experimented with how children could indicate that
they were done. Children were either instructed to verbally alert the
experimenter (n = 39), given a fun distractor toy they could switch
to (n = 2), or told that the experimenter would bring out new blocks
when she returned and given a bell to ring when they were done
exploring (n = 36; we kept this latter version for our preregistered
replication of this pilot experiment). These approaches were evenly
distributed across conditions.

answer or chose both blocks, the experimenter asked them to
select one. The block children pointed to, touched, or named
was coded as their answer. If children answered incorrectly,
the experimenter corrected them (e.g., “Oh remember, the red
oval block was better at making the machine play music.”)

Exploration Phase The experimenter then informed the
child that she had to leave for a bit, and that the child could
play freely with the blocks and the machine while she was
gone. The experimenter left the table and pretended to be
busy in another part of the room. During this time, the child
could explore the blocks and machine but did not receive any
feedback, i.e., neither block activated the machine. If the
child asked the experimenter questions, she explained that
she was still working but the child could keep playing with
the blocks and machine, and let the experimenter know when
they were done. The experimenter returned when the child
indicated they were done or after two minutes.2 Lastly, the
child was given an opportunity to activate the machine with a
new pair of blocks to ensure they left in good spirits.

Exploration Phase Coding There were three main vari-
ables of interest. First, we measured the proportion of inter-
ventions children performed with the better block, out of the
total interventions they made with just a single block (single
trials). A single trial was when children placed a block that
was off of the machine onto the machine, or lifted and then
put back down part or all of a block that was already on the
machine. Each single trial was coded according to whether
the better or worse block was used. Only children who placed
a block on the machine were included in this analysis (Deter-
ministic condition: n = 33; Probabilistic condition: n = 35).
A small number of trials (3.4%) in which children placed both
blocks on the machine simultaneously were not included, but
were considered a strategy as described below.

Second, we measured the total time in seconds children
spent exploring the blocks and machine. Exploration began
when children first touched a block or the machine and ended
when they met any of the following criteria: They (1) ex-
plored for two minutes; (2) indicated that they were done;
(3) did not interact with the blocks or machine for 15 sec-
onds (end time was coded as the last second they touched the
block and/or the machine); (4) only played with the blocks off
of the machine for 15 seconds (end time was coded as the last
second when they removed the block(s) from the machine).
Children who never put the blocks on the machine and only
played with the blocks off of the machine, were coded as hav-
ing an exploration time of one second. Children who did not
interact with the blocks or machine at all even after additional

2We were initially concerned children might feel they had to ex-
plore until the experimenter returned and so would continue due to
normative pressures rather than interest. Thus, for a subset of chil-
dren (n = 23), evenly distributed across conditions, the experimenter
checked-in prior to 2 minutes if they stopped exploring for 5-10 sec-
onds, i.e., before their exploration had otherwise ended. Most chil-
dren, however, did stop exploring before 2 minutes had passed, so
we decided to remove these check-ins for the remaining children in
this experiment and the children in our preregistered replication.
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Figure 1: (A) Proportion of single trials children performed with the better block across conditions. (B) The amount of time
children explored the blocks and/or the machine across conditions. Median and 1st and 3rd quartiles are displayed. (C) The
total number of alternative strategies children performed across conditions. For all plots, dots are individual children.

encouragement from the experimenter were recorded as hav-
ing an exploration time of zero seconds. These children did
not indicate that they wanted to end the experiment; the ex-
perimenter also made clear through prompting that they could
place blocks on the machine, so we were confident they un-
derstood the instructions and interpreted their lack of explo-
ration as a choice not to explore, rather than confusion about
the task. Nine children did not place a block on the machine,
and this tendency did not differ by condition (Deterministic:
n = 6; Probabilistic: n = 3; two-tailed Fisher’s Exact test,
p = 0.481). The end of exploration was determined offline
according to the above criteria.

Third, we noticed that during children’s exploration, they
indeed performed alternative actions that were not demon-
strated by the experimenter. We considered these different ac-
tions experimentation or alternative strategies children were
employing to try to activate the machine. We identified seven
different types of strategies: (1) exploring the machine alone
(e.g. knocking on or poking it; flipping it over), (2) explor-
ing the blocks alone (e.g., tapping the blocks together off of
the machine or on the table), (3) flipping a block over to try
a different side, (4) placing the block in a different location
on the machine, (5) placing both blocks on the machine, (6)
dropping the blocks onto the machine from above, and (7)
applying force when placing the blocks on the machine (See
Figure 2A). Children received a score of 1 for each strategy
type they produced and a 0 otherwise (i.e., children could be
coded as exhibiting 0 to 7 different strategies). Note that this
is not a measure of how many times children produced a strat-
egy but rather a count of how many different kinds of strate-
gies children exhibited. Only children who interacted with
the machine at some point were additionally coded for strate-
gies (Deterministic condition: n = 33; Probabilistic condi-
tion: n = 35; same children as those included in analysis of
the proportion of single trials with the better block).

Results
Consistent with previous work, in response to the explicit
question about which block was better at activating the ma-
chine, the majority of children correctly selected the better

block (two-tailed Binomial test, p < 0.001; Deterministic:
37/39; Probabilistic: 33/38; two-tailed Fisher’s Exact test
comparing across conditions: p = 0.263). This was also
true when looking only at children who later placed a block
on the machine during exploration (two-tailed Binomial test,
p < 0.001; Deterministic: 31/33; Probabilistic: 32/35; two-
tailed Fisher’s Exact test across conditions: p = 1). These
children were similarly more likely to first intervene with the
better block, rather than the worse block (two-tailed Binomial
test, p < 0.001; Deterministic: 22/33; Probabilistic: 24/35;
two-tailed Fisher’s exact test across conditions: p = 1). In-
triguingly, these children were more likely to identify the bet-
ter block as the better cause (63/68) than to select it first to
place on the machine (46/68; two-tailed Fisher’s Exact test,
p < 0.001), suggesting they may have had motivations other
than maximizing the probability of activating the machine
when they first intervened.

To compare the proportion of single trials on which chil-
dren used the better block, the total time children explored,
and the total number of strategies children exhibited across
conditions, we conducted three one-way ANCOVAs with
condition as a factor and age in months as a covariate.

Children in the Deterministic condition intervened with the
better block on a higher proportion of single trials than chil-
dren in the Probabilistic condition (M±SE = 0.73±0.035 v.
0.59± 0.041, respectively; F(1,65) = 6.17, p = .016), and
this tendency to intervene with the better block did not differ
by age (F(1,65) = 0.23, p = .635). Children in the Deter-
ministic condition, however, explored for a shorter amount
of time than children in the Probabilistic condition (M±SE =
48.60±6.14 seconds v. 66.40±6.14 seconds, respectively).
This difference was significant (F(1,74) = 4.37, p = .040),
and the length of time children explored did not differ by
age (F(1,74) = 1.26, p = .264). If we only consider the
children who placed a block on the machine, the differ-
ence in exploration time is trending (Deterministic: M±SE
= 57.33±6.12 seconds; Probabilistic: 71.89±5.76 seconds;
F(1,65) = 3.07, p = .084). (See Figure 1A-B.)

Most children employed at least one alternative strategy in
their attempts to make the machine play music (Determin-
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istic: 29/33; Probabilistic: 29/35), and this tendency did
not differ across conditions (two-tailed Fisher’s exact test,
p = .735). However, children in the Deterministic condition
employed more strategies overall than children in the Prob-
abilistic condition (M±SE = 2.09± 0.23 v. 1.43± 0.20, re-
spectively; F(1,65) = 4.74, p = .033); children’s overall ten-
dency to perform these alternative actions did not differ by
age (F(1,65) = 0.18, p = .670). (See Figure 1C.)

Looking at the different strategies separately reveals that
the modal strategy in the Deterministic condition was flip-
ping the blocks over and in the Probabilistic condition, plac-
ing the blocks in different locations on the machine. Roughly
the same number of children in both conditions changed the
location of blocks (16 in Deterministic and 15 in Probabilis-
tic) but about twice as many children flipped blocks over in
the Deterministic than in the Probabilistic condition (21 v. 10
respectively), and this difference was significant (two-tailed
Fisher’s Exact test, p = .007). We are cautious to draw con-
clusions about the less common strategies since so few chil-
dren exhibited them overall, but they do provide additional
suggestive evidence that the conditions not only differed in
the total number of strategies children exhibited but also in
which strategies children employed. (See Figure 2B.)

Discussion
We provide evidence that children’s exploratory behaviors
can serve as a graded and detailed window into their causal
reasoning. We find that presenting children with covariation
information that deterministically or probabilistically sup-
ports a particular causal system leads them to explore this
system differently, reflecting different inferences about causal
strength and the uncertainty inherent in these inferences.

Children in both conditions drew rational inferences from
the evidence they observed about the relative causal strength
of the more effective (better) block compared to the less ef-
fective (worse) block. Children who previously observed de-
terministic evidence for the blocks’ effectiveness attempted
to activate the machine with the better block, rather than the
worse block, more often than children who observed prob-
abilistic evidence, suggesting a stronger inference that this
block should work. Children’s differential exploration across
conditions suggests they did not simply draw a binary infer-
ence about which cause was better but rather were sensitive
to the relative magnitude of causal strength.

Children’s exploration also provided a richer picture of
their causal inferences in this task than their causal judgments
prior to the exploration phase. The causal judgments revealed
that children had correctly inferred which block was more ef-
fective. If we had only considered this measure, however,
we would not have seen that children were differentiating be-
tween the evidence presented in each condition and correctly
retaining more uncertainty in the more ambiguous, proba-
bilistic case. Similarly, if we had only looked at children’s
first intervention on the machine, we would have lacked the
sensitivity to pick up on differences across conditions.

Interestingly, only about two-thirds (68%) of children
across conditions first intervened with the better block,
though over 90% explicitly identified this block as more ef-
fective. This is particularly surprising in the Deterministic
condition; in prior work using similar or even weaker pat-
terns of deterministic evidence, when explicitly asked to se-
lect a block to make the machine go, children overwhelm-
ingly tended to intervene with the more effective block (e.g.,
Sobel et al., 2004; Sobel, Sommerville, Travers, Blumenthal,
& Stoddard, 2009). Children’s first intervention in our task
suggests they were not simply motivated to generate the ef-
fect but rather to explore from the get go (e.g., perhaps some
children wanted to understand why the worse block did not
work or see if they could make it work). Direct questions
likely place pressure on children to respond correctly, while
self-directed exploratory play is more open-ended, removing
such pressures and potentially revealing different behavior.

Prior work shows that children explore more when pre-
sented with events that violate their expectations. In many
of these studies, including the present, children are not just
faced with evidence that the causal system works differently
than how they predicted but that it does not work at all. What
inferences do children draw about the source of their own
failed actions and how might their exploration reflect these
inferences? Children in the Deterministic condition may have
thought the problem lay with them since the evidence demon-
strated by the experimenter strongly suggested that one block
made the machine go and the other did not. These chil-
dren tended to exhibit a wider variety of alternative actions,
suggesting they may indeed have interpreted their failures to
elicit music from the machine as the fault of their own ac-
tions rather than the causal system. Children in the Proba-
bilistic condition, however, could explain away the lack of
activation due to the system’s stochasticity. Many did try at
least one alternative strategy but overall did not experiment
as much as children in the Deterministic condition, suggest-
ing they did not necessarily think the problem lay with them
but rather with the system itself. Indeed the one alternative
strategy more children in the Probabilistic condition produced
was exploring the machine on its own.

Though children in the Deterministic condition tried more
strategies, they actually appeared to give up more quickly,
exploring for a shorter amount of time overall than children in
the Probabilistic condition. One possible explanation for this
difference, consistent with why children in the Deterministic
condition may have experimented more, is that the lack of
machine activation led them to conclude more quickly that
they were incapable of activating the machine either because
they just could not figure out how or because it had stopped
working. In contrast, children in the Probabilistic condition
may have explored longer because they continued believing
the machine might activate.

Taken together, these different aspects of children’s explo-
ration – their tendency to explore the better block, to experi-
ment with different ways of activating the machine, and total
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Figure 2: (A) Examples of alternative actions or strategies children performed to try to activate the machine. (B) The total
number of children exhibiting each of the different strategies across conditions.

length of exploration – are suggestive of children integrat-
ing different sources of uncertainty. This includes uncertainty
about the causal system itself (which block is better, and how
much better) and uncertainty about the source of failure (“Is
it me or the world?”; Gweon & Schulz, 2011).

In the deterministic case, children appear to persist in be-
lieving that the better block should work, so something must
be wrong either with their own actions or with the blocks and
the machine (e.g. it ran out of batteries). This behavior sug-
gests continued certainty about how the causal system should
work (even after receiving negative evidence about the pre-
viously better block, they still do not think it is likely that
the previously worse block will work) but higher uncertainty
about what has gone wrong (resulting in them trying more
strategies to see if they can fix it).

In the probabilistic case, children appear less certain about
the causal relationships. The better block continuing to not
work is less surprising, because the system is stochastic.
Children therefore demonstrate high uncertainty about the
strength of the blocks and probability of activation (as evi-
denced by trying both blocks more evenly, rather than favor-
ing the previously better one) but lower uncertainty about the
source of failure (as evidenced by fewer strategies and overall
more persistence).

Decades ago, Karmiloff-Smith and Inhelder (1974) argued
that children’s exploration is not just driven by their prior im-
plicit theories but also by the evidence they generate as they
explore, and that their failures to bring about an expected out-
come would be interpreted as either relevant to their theory or
to their action. Moving forward, looking at the time course of
exploration (e.g., how early exploration differs from later ex-
ploration) could provide more compelling evidence for how
children’s inferences evolve as they accumulate evidence of
the system’s failure. For example, do the type of strategies
children employ change over time? Prior work indicates chil-
dren this age can design informative interventions to disam-
biguate causal evidence (Cook, Goodman, & Schulz, 2011).

Are children’s alternative strategies indeed targeting different
hypotheses across conditions about why the machine is not
working? In the present study, there are too few children who
perform any particular strategy to probe these questions in
more detail, but we are currently running a larger scale repli-
cation with over 100 children to address these questions (see
osf.io/sc54w for preregistration).

Children’s experimentation also raises interesting ques-
tions about conditions that lead to innovation. Along certain
dimensions, and consistent with prior work (e.g., E. Bonawitz
et al., 2011; Schulz, Hooppell, & Jenkins, 2008), determinis-
tic evidence seemed to constrain children’s exploration: they
were less likely to explore the block another person had
demonstrated to be less effective and explored for a shorter
total amount of time than children in the Probabilistic condi-
tion. Along other dimensions however, they appeared to be
more exploratory and innovative. They were more likely to
experiment with how they placed blocks onto the machine.
Children’s ability to generate alternative means for achieving
a goal and flexible problem solving in the face of failed ac-
tions is an interesting avenue for future work.

Exploration is a powerful, ecologically valid dependent
measure that is more sensitive than binary questions and does
not rely on children’s language skills or explicit introspec-
tion. It does come with limitations; it is indirect and influ-
enced by other factors besides children’s beliefs. The use of
open-ended, dynamic measures such as exploration, however,
in conjunction with direct questions will allows us to paint a
richer, more graded picture of children’s inferences, as well as
offer the potential of investigating how these inferences might
change across time and affect behavior. Just as children har-
ness the power of their exploratory play to learn about the
world, we, as scientists, can harness this same play to learn
more about what and how children learn.
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Abstract

Quantity can be expressed in a variety of ways and at dif-
ferent levels of precision. One factor that influences numer-
ical description of elements in a visual scene is how long the
scene is observed. We extend a previous incremental model
of numerical perception to model quantified description under
time constraints. Our extended model predicts that as presen-
tation duration decreases and as the quantity of items to be
enumerated increases, the frequency of inexact quantifiers will
increase. We conducted two human subject elicitation stud-
ies to test these predictions. Our findings were consistent with
our model’s predictions. Additionally, we demonstrate that our
novel model of incremental numerical perception and quanti-
fied description closely predicts the precise proportion of exact
numerical responses generated by in these experiments.
Keywords: numerical language; numerical perception; quan-
tifiers; subitizing; counting; estimation; computational model

Introduction
Quantity can be expressed in a variety of ways and at dif-
ferent levels of precision. Speakers can use exact numbers
to describe quantities (e.g., “there are twenty-two guests at
the party”) or they can use more vague language (e.g., “there
are many guests at the party”). Many factors influence the
form and degree of precision of quantified language a speaker
uses, including pragmatic considerations (Cummins, 2015).
For example, speakers can express quantities in strategically
vague ways for the purpose of influencing behavior (Hesse &
Benz, 2018).

In the context of visual scene description, another factor in-
fluences quantified language: how long the scene is observed.
Research in numerical perception suggests that mental repre-
sentation of visual quantity is incrementally acquired through
temporally extended and attentionally-dependent perceptual
processes (Trick & Pylyshyn, 1994; Railo, Koivisto, Revon-
suo, & Hannula, 2008). Glancing at a scene allows one to
form a less precise representation of quantity, while taking the
time to count each relevant item gives one a precise numeri-
cal representation of quantity. Using exact numbers when in-
sufficient time has been devoted to complete enumeration of-
ten results in incorrect numerical guesses, and psychologists
studying numerical perception often rely on analysis of error
patterns during exact number elicitation tasks to make infer-
ences about underlying processes and representations (e.g.,
Mandler & Shebo, 1982).

However, outside psychophysics experiments, people are
rarely forced to express themselves using only exact numer-

ical expressions. Some recent work has begun to examine
patterns of quantified language usage in more unconstrained
situations. In particular, Barr, Deemter, and Fernández (2013)
found that when individuals produce quantified reference ex-
pressions (QREs), the form of the QRE was dependent on the
numerosity of the sets under consideration. When the quanti-
ties in each set were large, people tended to produce relational
expressions (e.g., “my set is the largest one”). However, when
the target set of objects consisted of a small quantity, people
tended to produce QREs with exact numerical descriptors de-
spite inexact QREs being sufficient to disambiguate the ex-
pression. This result suggests that people balance pragmatic
concerns of informativity with minimization of perceptual ef-
fort or cost.

The contribution of this paper is two-fold. First, we ex-
tend a previous incremental model of numerical perception
to model quantified description under time constraints. This
provides an explicit model of perceptual cost that was lack-
ing in prior literature. The second contribution of this paper
is two novel human subject elicitation studies designed to test
the predictions generated by this model. Our extended model
predicts that as presentation duration decreases and as the
quantity of items to be enumerated increases, the frequency of
inexact quantifiers will increase. The findings from the exper-
iments were consistent with our model’s predictions. Addi-
tionally, we demonstrate that our novel model of incremental
numerical perception and quantified description closely pre-
dicts the precise proportion of exact numerical responses gen-
erated by in these experiments.

Computational Models of Numerical
Perception

The perception of numerosity consists of multiple processes,
each occurring at different rates and resulting in mental rep-
resentations of varying precision. Explicit counting provides
a slow, but precise, determination of number (Gelman & Gal-
listel, 1986) rooted in linguistic representation in a phonolog-
ical buffer (Whalen, Gallistel, & Gelman, 1999). Estimation
provides a rapid but less precise judgment of the quantity of a
group of objects (Barth, Kanwisher, & Spelke, 2003) rooted
in what has become known as the approximate number sys-
tem (ANS) (Dehaene, 2011). Between these two procedures,
a third process, called subitizing, provides both rapid and pre-
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cise judgments of numerosity, but only for small quantities,
from one to typically around four objects (Kaufman, Lord,
Reese, & Volkmann, 1949). Consequently, the range of nu-
merosities between one and four has become known as the
subitizing range. While debate still continues about the repre-
sentations and processes underlying subitizing, there are con-
verging lines of evidence that suggest that the object-tracking
system (OTS) plays a central role (Feigenson, Dehaene, &
Spelke, 2004).

Recently, there has been renewed interest in developing
neural models of numerical perception. These models typi-
cally focus on accounting for only a single process and form
of representation, such as estimation and the ANS (Chen,
Zhou, Fang, & McClelland, 2018) or counting and exact
number (Fang, Zhou, Chen, & McClelland, 2018). Some re-
searchers have begun to examine the generation of quantified
descriptions of visual scenes with varying levels of precision
(Pezzelle, Marelli, & Bernardi, 2017). However, these mod-
els also generally do not attempt to model the time course
of enumeration. The psychophysical literature on numerical
perception has shown that within the subitizing range, each
additional object requires only 40–100 ms to accurately enu-
merate, while outside the subitizing range, each additional
object requires 250–350 ms to enumerate (Trick & Pylyshyn,
1994). Most existing computational models of numerical per-
ception do not attempt to capture this aspect of enumeration,
nor do they provide accounts for how estimates can be refined
with additional time.

An Incremental Model
In contrast with these previous models, Briggs, Bridewell,
and Bello (2017) developed a computational model, im-
plemented in the ARCADIA cognitive system (Bridewell &
Bello, 2016), that models temporally extended numerical per-
ception and integrates various forms of numerical represen-
tation. The model contains components that implement three
distinct numerical representation systems: the ANS, the OTS,
and the phonological buffer. We will denote this model as
INP-Guess (incremental numerical perception and guessing).
INP-Guess operates by first ascertaining an approximate,

noisy estimate of quantity by deploying visual attention
toward the entire group of items to be enumerated.1 Subse-
quently, serial attention is deployed to each individual item
in the group. This process of serial attention first fills up
the visual short-term memory (vSTM) slots in ARCADIA’s
object-tracking system. If there are no more items to be
enumerated or no more available slots in vSTM, then a
lexical representation of the quantity of relevant items in
vSTM is subvocalized within the system’s phonological
buffer. After this point, subsequent serial focus to new items
is accompanied by subvocalization of the next count word in
the counting sequence.

1We refer the reader to the original model paper for details about
how visual attention is realized in the ARCADIA system.

Numerical Guessing. If the visual scene ends, or enumeration
otherwise ends, the model merges both the results from the
ANS and the lexicalized count into a single numerosity judg-
ment. If time allows for an explicit count to be fully generated
(i.e., all items had received individual attentional focus), the
explicit count is recorded. Otherwise, an educated guess is
made:

Guess(nc,ne,w) = nc + sample(N (ne−nc,
√

w · (ne−nc)))

where w denotes the Weber fraction of the ANS, ne denotes
the number of items that collectively received attentional fo-
cus during estimation, and nc denotes the number of items
that received individual focus during subitizing and counting.

As more items are individually attended to, an exact repre-
sentation of a lower bound on the number of visual items in
the scene increases. The equation above reflects the variance
of the noisy numerosity representation upon which linguistic
description is based decreasing as this lower bound increases.
Note, we are not proposing that serial deployment of attention
directly affects the variance of the representation produced by
the ANS. Rather, what we are proposing is that the partial ex-
act, lexical representation of number and the noisy ANS rep-
resentation are merged (Briggs, Bridewell, & Bello, 2017),
such that the resulting merged representation of numerosity
will have lower variance when more items have received se-
rial focus of attention. If there is enough time to devote atten-
tion to each item individually, then nc = ne and guess is equal
to the lexicalized count nc.

While the precise time Tattend it takes to fully attend to n
items individually within the INP-Guess model depends on
multiple task-related factors, we can formulate a mathemati-
cal approximation of the time required in a simple case (i.e.,
a single-task involving enumeration of all items in a visual
scene):

Tattend(n)≈ Tf ·min(rs,n)

+ ∏
max(rs,n)≤i≤n

Tsubvocal(i)+Tf

where Tf denotes the time necessary to attend to encode
a single item into vSTM, rs denotes the subitizing limit, and
Tsubvocal(i) denotes the time necessary to subvocalize the i-th
count word. Based on the original parameter values used by
Briggs and colleagues (2017), we set the following values:
Tf = 50ms, rs = 4. Subvocalization time Tsubvocal(i), varies
by number and is based on the formula from Huss and Byrne
(2003).

Therefore, the number of items nc that can be individually
attended to in INP-Guess within a time window of T can be
approximated as:

nc(T )≈ argmax
i≥0

{i|Tattend(i)≤ T −Testimate}

where Testimate denotes the time necessary for the initial es-
timation of quantity within the visual scene.

Briggs and colleagues (2017) demonstrated that the
INP-Guess model could account for the bilinear reaction time
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curve in enumeration (Trick & Pylyshyn, 1994). Addition-
ally, the INP-Guess model could account for the pattern of
error in studies of subitizing during conditions of divided at-
tention (Railo et al., 2008).

However, while being able to capture the pattern of error
in numerical guessing during tasks with time and attentional
constraints is desirable in a model of numerical perception, it
is an incomplete account of quantified language use. When
speaking with one another, people are faced with a variety
of communicative norms. Communicating exact numbers in
cases of noisy numerical representations would likely violate
these norms, including prohibitions against communicating
without adequate evidence (Grice’s Maxim of Quality) and
failure to be informative about one’s own certainty (Grice’s
Maxim of Quantity) (Grice, 1975). The use of inexact quanti-
fied description (e.g., “there are between 4 to 7 items”, “there
are about 6 items”, etc.) is one way to satisfy these commu-
nicate norms. While the wide range of quantified language
provides ample opportunity for investigation by researchers
in semantics and pragmatics (Cummins, 2015), an even more
basic question arises: how can we model when people decide
to use inexact quantified description?

Extension to Inexact Language
To model when people use inexact quantified descriptions, we
propose a simple extension to the INP-Guess model, which
we will denote as INP-Hedge. Instead of sampling a single
guess value, INP-Hedge obtains ν distinct guesses, which we
will denote as the multiset G = {g1, ...,gν}. This corresponds
to a collection of values an individual may find plausible. If
all the guesses in G are the same (g1 = g2 = ... = gν), then
we would predict an exact numerical description is generated
equivalent to the value of these guesses. Otherwise, we would
predict an inexact numerical description is generated, which
can be derived from the set of guesses. For instance, consider
a set of guesses G = {6,8,8}. Potential ways to linguistically
describe this set are “about eight” or “six to eight.”

How particular forms of inexact quantified description are
generated is a question beyond the scope of this paper. Here,
we do not attempt to model the distribution of specific forms
of inexact description. In the INP-Hedge model we currently
generate two forms of inexact expression: hedged numbers
(e.g., “about eight”) and intervals (e.g., “six to eight”). If the
majority of the sampled guesses are equal to a value X , then
INP-Hedge produces a hedged number expression anchored
in this majority guess (i.e., “about X”). Otherwise, the model
produces an interval response (“between X and Y ” ), where X
corresponds to the minimum guess and Y corresponds to the
maximum guess.

This quantified description mechanism is still preliminary,
and we will discuss how the INP-Hedge model can direct
future work on inexact quantifier realization in the general
discussion below. Overall, INP-Hedge assumes that speakers
would detect the uncertainty of their mental representation
of quantity by considering multiple plausible exact number
responses, and then elect to hedge their quantified descrip-

tions. Thus, the INP-Hedge model predicts that the limits
of human perceptual performance would influence language
usage, because there may be insufficient time to completely
eliminate uncertainty about quantity through serial attention.
Specifically, the INP-Hedge model predicts that enumeration
duration and numerosity have the following effects on
quantified language:

(P1) In the subitizing range (quantity 1-4), participants will
predominately use exact quantifiers.

(P2) For indefinitely long presentation durations, participants
will use exact quantifiers.

(P3) As presentation duration decreases, the frequency of
inexact quantifiers will increase.

If people elect to use inexact quantified language to avoid
being incorrect, as we hypothesized above, we can propose
one additional prediction:

(P4) In difficult duration/quantity pairings, participants that
responded by describing quantity using inexact quantifiers
will indicate higher confidence in the correctness of their
response vs. participants that responded in the same dura-
tion/quantity condition with exact numbers.

Experiment 1
To test our model’s predictions, we conducted an online nu-
merical perception and quantified language elicitation experi-
ment. Participants viewed videos in which varying quantities
of black dots were presented for varying durations.

Method
Participants. Thirty-nine participants (mean age = 36.3;
19 females, 19 males, and 1 other) volunteered through
the Amazon Mechanical Turk online platform (Paolacci,
Chandler, & Ipeirotis, 2010). All but one participant reported
being native English speakers.

Design, procedure, and materials. We manipulated the dura-
tion of stimulus presentation of dot clusters and the quantity
of elements (dots) presented. Three possible presentation du-
rations were used: 200 ms, 1000 ms, and an indefinite amount
of time (dots remained on the screen while participants re-
sponded). Three possible quantity ranges were used: [1−4],
[5−8], and [9−12]. The dot clusters in each video were ran-
domly arranged, and four videos were produced for each spe-
cific numerosity, yielding 16 unique videos for each stimulus
duration and numerosity condition (4 videos per number with
4 possible numbers per quantity range). Participants were
presented with one video from each of these duration/quantity
conditions in a random order, viewing nine videos in total.
Videos were 512x512 pixels in dimension with a light grey
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Stimulus Duration
Num. Range 0.2s 1.0s ∞ s

[1−4] 94.9% 97.4% 100.%
[5−8] 61.5% 87.2% 100.%
[9−12] 46.2% 53.8% 100.%

Table 1: Percentage of responses categorized as EXACT-NUM
by stimulus duration and numerosity range conditions in Ex-
periment 1.

background. A dark grey fixation cross appeared for one sec-
ond before the cluster of dots. A masker grid was displayed
following the stimulus interval (except in the indefinite enu-
meration time condition). After a video had concluded, par-
ticipants were asked to complete the following sentence, be-
ing as accurate and precise as possible:

“In the above video, there are black dot(s).”

Additionally, participants were asked to report their confi-
dence in their completed description (1 = very unsure to 5 =
very confident). Because we were primarily interested in in-
vestigating the precision of quantified description of a visual
scene, we used a free-response, sentence-completion task in-
stead of a completely free-response task. This was done to en-
courage quantified description and avoid descriptions of dot
clusters based on other attributes, such as spatial arrangement
(e.g., “I see a group of dots shaped like a constellation of
stars”).

Results
Analysis. The expressions used to complete the description
were categorized into five types: (1) exact numbers, which
we will denote as EXACT-NUM (e.g., “In the video above,
there are four black dot(s)”); (2) hedged numbers, denoted
as HEDGED-NUM (e.g., “In the video above, there are about
ten black dot(s)”); (3) intervals, denoted as INTERVAL (e.g.,
“In the video above, there are five to seven black dot(s)”);
(4) vague quantifiers, denoted as VAGUE-Q (e.g., “In the video
above, there are several black dots(s)”); and (5) other mis-
cellaneous expression, denoted as OTHER (e.g., “In the video
above, there are groups of black dot(s)”). Two annotators
classified each response. High inter-annotator agreement was
found (Cohen’s κ = .945). The proportions of exact numeri-
cal responses (EXACT-NUM) for each duration and numerosity
condition are reported in Table 1. All four predictions were
supported by the data.

Consistent with P1, 114 of 117 (97.4%) of responses in
conditions within the subitizing range were EXACT-NUM re-
sponses. Additionally, consistent with P2, only exact descrip-
tions were used when participants had an unlimited amount
of time to enumerate. Consistent with P3, the number of ex-
act responses decreased from 117 out of 117 in the indefi-
nite duration condition to 93 out of 117 with one second of
duration, yielding a significant difference (Fischer exact test,
p < .001). The number of exact responses further decreased

from 93 out of 117 to 79 out of 117 in the 200ms duration
condition, though this difference was only marginally signif-
icant (Fischer exact test, p = .054).

Finally, Wilcoxon-signed rank tests indicated confidence
ratings were significantly lower for exact responses than in-
exact responses for quantity ranges [5− 8] (p = .039) and
[9−12] (p < .001) at 200 ms presentation time and quantity
range [9−12] (p = .007) at 1000 ms presentation time, sup-
porting our final prediction (P4).

Intriguingly, only 23 out of the 39 participants (59%) used
inexact quantifiers. The other 16 out of 39 (41%) only
used exact number responses, guessing in cases of uncer-
tainty. As previously discussed, we would expect a partic-
ipant who uses inexact quantified descriptions to generate
these inexact descriptions to express uncertainty and avoid
incorrectness when exact enumeration is difficult. Therefore,
we would predict the EXACT-NUM responses from participants
who used only EXACT-NUM responses to be less accurate than
those generated by participants who switch between exact
and inexact expressions. The data supported this prediction.
The accuracy of EXACT-NUM responses from participants who
used only exact expressions (69.4%) was found to be lower
than those from participants who sometimes used inexact ex-
pressions (91.8%), yielding a significant difference (Mann-
Whitney U test, p < .001).

Model Fit
While our four main predictions were supported by the data,
we also sought to test how well the INP-Hedge model pre-
dicts the precise frequency of EXACT-NUM responses in each
stimulus duration and numerosity condition. We ran the
INP-Hedge model2 ten times on each video from Experiment
1. The proportion of exact quantifier responses produced
by INP-Hedge, compared with the human data from Experi-
ment 1, is found in Figure 1. The results of the human data
were highly correlated with the proportion of exact/inexact
quantifiers selected by the INP-Hedge model (Spearman’s ρ

= 0.938). Though the correlational fit is high, we can see
that INP-Hedge underestimates the amount of EXACT-NUM re-
sponses in the hardest duration and numerosity conditions.
Specifically, INP-Hedge underestimates exact responses in
numerosity ranges [5− 8] and [9− 12] by 43% and 28%, re-
spectively. Exact responses during medium durations (1000
ms) for larger numerosities ([9−12]) are also underestimated
by 33%.

What could explain this underestimation? Recall that a
sizable portion (41%) of participants only gave EXACT-NUM
descriptions. That is to say, about 4 out of every 10 partici-
pants guessed an exact number response when they were un-
certain about the quantity of dots. To account for this, we
revisited the Experiment 1 videos, running the INP-Guess
model four times on each video and the INP-Hedge model
six times (replicating the mixed set of strategies found in hu-
man participants). Not only was the correlational fit of this

2Setting ν = 3.
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Figure 1: Predicted proportions of EXACT-NUM responses based on our model (pink) and our model adjusted for the number of
participants that give only exact-number responses (yellow), compared with proportion of EXACT-NUM responses from human
data in Experiment 1 (blue).

mixed-model improved (Spearman’s ρ=.956), but the precise
predictions about exact response frequency are much closer
to the observed frequencies from the human data. Propor-
tion differences are reduced during short stimulus durations
(200ms) to 9% and 1%, for numerosity ranges [5− 8] and
[9−12], respectively. Finally, the difference in exact response
proportion is reduced to approximately 4% for larger quanti-
ties ([9−12]) during medium durations (1000ms).

Experiment 2
Roughly 40% of participants in Experiment 1 only gave exact
numerical responses. This is in line with other studies, where
a subset of participants use only exact numerical expressions
for all items. For instance, in a QRE elicitation task, about
20% of participants used only exact numerical expressions
(Barr, Deemter, & Fernández, 2013). However, unlike in Barr
and colleagues (2013), participants in Experiment 1 did not
have unlimited amounts of time to view stimuli. Therefore, it
seems likely that participants are limiting their set of potential
quantified response forms a priori. One possible explanation
is that because each trial in Experiment 1 involved a question
asking the participant to rate the confidence of their numerical
expression, participants may have felt less pressure to hedge
uncertainty about the observed quantity in the language of
the numerical expression itself. Rather, participants may have
been more inclined to guess an exact number, then hedge their
uncertainty in the confidence question. In Experiment 2, we
sought to eliminate this possibility.

Method
Participants. Forty participants (mean age = 35.4; 19 females
and 21 males) volunteered through the Amazon Mechanical
Turk online platform. All participants reported being native
English speakers.

Design, procedure, and materials. The experimental design,
procedures, and materials were identical to Experiment 1, ex-
cept in two respects. First, the confidence question was elim-
inated. Second, the number of trials each participant com-
pleted was increased to 18 (two trials per numerosity range
and stimulus duration condition). Videos were randomly
sampled from each stimulus duration and numerosity cate-
gory without replacement.

Results

As with Experiment 1, two annotators used the same labels
to categorize all the expressions participants produced. Inter-
annotator agreement was again high (Cohen’s κ = .938).
Table 2 lists not only the proportion of exact quantified de-
scriptions, but the precise counts of each type of expression
found. We found that 14 out of 40 participants (35%) in
Experiment 2 used only EXACT-NUM expressions, compared
with the 16 out of 39 (41%) in Experiment 1. While the
proportion of participants using only exact expressions
slightly decreased in Experiment 2, this difference is not
statistically significant (Fischer’s exact test, p = .647) given
the number of participants in each study. Consistent with
Experiment 1, we also found that EXACT-NUM responses
from participants who used only exact descriptions were
less accurate (61.9%) than those from participants who
sometimes used inexact expressions (88.9%), yielding a
significant difference (Mann-Whitney U test, p < .001).

Predictions. Aside from P4, which could not be tested as
there was no confidence data in this experiment, the main
predictions were also still supported. Consistent with P1,
233 out of 240 (97.1%) responses in the subitizing range
were exact. Also, 235 out of 240 (97.9%) responses in the
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Response [1−4] [5−8] [9−12]
Type 0.2s 1.0s ∞ 0.2s 1.0s ∞ 0.2s 1.0s ∞

EXACT-NUM 75 79 79 45 67 80 35 36 76
HEDGED-NUM 2 0 0 16 8 0 13 15 1
INTERVAL 1 0 0 9 4 0 14 13 0
VAGUE-Q 2 1 1 10 0 0 17 14 3
OTHER 0 0 0 0 1 0 1 2 0

Exp. 2: Exact % 93.8 98.8 98.8 56.3 83.8 100. 43.8 45.0 95.0
Model (INP-Hedge): Exact % 85.3 100. 100. 18.4 86.9 100. 3.4 20.9 100.

Model (40% INP-Guess): Exact % 90.3 100. 100. 52.2 90.6 100. 45.3 49.4 100.

Table 2: Counts of response types by stimulus duration and numerosity conditions for Experiment 2.

indefinite duration condition were exact, consistent with P2.
Consistent with P3, the number of exact responses decreased
from 235 out of 240 in the indefinite duration condition
to 182 out of 240 with one second of duration, yielding a
significant difference (Fischer exact test, p < .001). The
number of exact responses further decreased from 182 out
of 240 to 155 out of 240 in the 200ms duration condition,
yielding a significant difference (Fischer exact test, p= .009).

Model Fit. The pattern of exact/inexact response was sim-
ilar to Experiment 1. Correlation of the proportion of ex-
act is high (Spearman’s ρ = 0.926). Underestimation of
usage of exact numerical expressions remains in the post-
subitizing range for short stimulus durations (200ms) and
larger numerosity ranges. Specifically, INP-Hedge under-
estimates exact responses in numerosity ranges [5− 8] and
[9− 12] by 38% and 40%, respectively. Exact responses
during medium durations (1000 ms) for larger numerosities
([9−12]) are also underestimated by 24%. Our mixed model,
(40% INP-Guess, 60% INP-Hedge) increases model corre-
lation (Spearman’s ρ = 0.944), while reducing this observed
underestimation. Proportion differences are reduced during
short stimulus durations (200ms) to 4% and 3%, for numeros-
ity ranges [5−8] and [9−12], respectively. Finally, the differ-
ence in exact response proportion is reduced to approximately
4% for larger quantities ([9− 12]) during medium durations
(1000ms).

General Discussion
The results of our two quantified language elicitation experi-
ments demonstrate that the use of precise quantified language
to describe visual scenes decreases with decreased viewing
time or increased stimulus quantity. Future computational
models of quantified description of visual scenes, regardless
of how they are implemented, need to account for this phe-
nomenon to fully capture human quantified language use.
We contend that to make sense of these results, one must
view numerical perception as a temporally extended process
in which uncertainty is reduced by additional perception of
the visual scene. Both computational models we presented
above, INP-Guess and INP-Hedge, account for this reduc-

tion of uncertainty by a proposed model of serial deployment
of attention to individual items in the visual scene.

While we have demonstrated that a combination of these
psychologically grounded and attention-driven models of nu-
merical perception and quantifier use is able to closely fit
human patterns of quantified language use under time con-
straints, many open questions still remain. One question
raised by our quantifier elicitation experiments (and results
from Barr and colleagues, 2013) is how do people decide to
constrain the set of quantifiers they elect to even consider gen-
erating? Because our elicitation experiment contained rela-
tively small quantities of visual items (1-12), participants may
have felt that the degree of potential error in exact number
guessing to be acceptable. With this explanation, increas-
ing the number of potential visual items (e.g., 50-120) may
reduce the proportion of participants giving only exact re-
sponses. Likewise, task motivation and context would po-
tentially affect quantifier use. Situations were precision is
critical and error may lead to highly negative consequences
are likely to elicit more exact quantified language.

This work raises another series of questions regarding the
realization of inexact quantified language. If people do con-
sider multiple forms of inexact quantified language, how do
people choose the precise language to use in a particular con-
text? The mechanism for selecting different forms of quan-
tified description in our proposed model is still rudimentary.
However, it does begin to make some predictions. For in-
stance, the current model would predict that the bounds of
interval expressions would increase proportionally with re-
duced enumeration time or increased numerosity. In future
work, we hope to address a variety of these open questions
and hypotheses.
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Abstract

Modern society frequently requires that we express our sub-
jective senses in objective, shared formal systems; this en-
tails mapping multiple internal variables onto a common scale.
Here we ask whether we accomplish this feat in the case of
estimating number by learning a single mapping between ex-
plicit numbers and one integrated subjective estimate of nu-
merosity, or if we separately map different perceptual features
onto numbers. We present people with arrays of dots and ask
them to report how many dots there are; we rely on the sys-
tematic under/overestimation of number at higher quantities to
estimate error in the mapping function. By comparing how this
error changes over time, as the mapping fluctuates for different
visual cues to numerosity, we can evaluate whether these cues
share a single mapping, or are mapped onto number individu-
ally. We find that area, size, and density all share a common
mapping, indicating that people obtain a unified subjective es-
timate of numerosity before mapping it onto the formal number
line.
Keywords: numerosity; number; estimation

Introduction
Human reasoning and planning frequently involves mapping
internal estimates onto formal systems: we can compare the
weights of two rocks using our subjective sense of weight, but
to provide an estimate of one rock’s weight in kilograms re-
quires mapping that subjective sense of weight onto a formal
metric system. This task of expressing our internal subjective
senses in objective, standard systems is commonplace, from
making time estimates to evaluating prices. To accomplish
this we somehow learn to map from perceptual and internal
states onto formal systems like weight in kilograms. The task
is often complicated by the fact that we might have many sub-
jective variables that must map on to the same formal system:
weight might be estimated by the pressure a rock exerts on
our hand, or by its inertia as we try to move it. How do we
deal with multiple subjective cues: do we map each one in-
dividually onto the formal system, or do we combine them to
come up with a single subjective estimate, and then map that
estimate onto the formal system? In this paper, we approach
this question for people’s ability to estimate numerosity.

Based on a quick glance at a display of many objects, peo-
ple can estimate the number of objects present in the dis-
play. Even if there is insufficient time to explicitly count the
objects, there are enough visual features that correlate with
number, that a number estimate may be obtained just based on
these internal, analog signals which together give us a sense

of “Approximate Magnitude”. Imagine for example stepping
into a room full of people: as you look around, you can get a
rough sense of how many are present just based on the density
of the crowd and the size of the room faster than you would
be able to count each person individually. In general, dis-
plays with higher numerosity tend to have objects distributed
over a larger portion of the visual field (area) and the number
of objects in a constant area tends to be higher, either be-
cause the objects themselves tend to be smaller (size), or be-
cause the inter-object distances are smaller (spacing/density).
These separate cues to numerosity may be treated in different
ways by the visual system. They may be combined into one
internal representation of numerosity which forms the basis
of estimation. Or, because visual cues to numerosity all tend
to correlate together in the real world, it may not be neces-
sary to undertake the extra calculation of integrating them to
form an internal sense of number. Instead, these features may
be mapped onto numbers directly. Both explanations posit
internal representations which must be mapped onto formal
numbers when making estimates, but differ as to how this
mapping occurs.

A large body of research has examined the representations
that support our internal sense of number but comparatively
little work examines how we might map from that internal
sense to number estimates. The degree to which we directly
perceive and represent number is an area of active debate
(for a recent review see Leibovich, Katzin, Harel, and Henik
(2017)). Researchers have proposed that an internal sense of
number, the “Approximate Number System” or ANS, exists
in many animals and is developed by infants at a young age
(Feigenson, Dehaene, & Spelke, 2004). However, compet-
ing accounts emphasize that perceptual features of a quan-
tity such as size, area, and density are highly correlated with
number: this has led some to argue that our ability to estimate
numerical quantities can be served directly by these continu-
ous magnitudes without any internal number sense (Gebuis &
Reynvoet, 2012) or that insofar as we have an internal repre-
sentation of number, it is assembled directly from our sense
of continuous magnitudes (Leibovich et al., 2017).

The present experiment is agnostic about the precise mech-
anisms for visual processing and internal representation of
numerosity. We are interested in understanding how people
map from various internal representations to the formal num-
ber line during numerical estimation. One hypothesis is that
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(a) A relationship between visual properties and number estimates
that relies on multiple independent mappings (numbered 1, 2, and 3)
from distinct visual features to an estimate “n”

(b) A relationship between visual properties and number that speci-
fies a single mapping (numbered 1) between some internal quantity
representation (the red incline) and an estimate “n”

Figure 1: Two different ways of thinking about how visual
cues to magnitude map onto numbers

people have multiple mappings which take as their inputs fea-
tures associated with numerosity such as size, density, and
area. Another hypothesis is that people instead have a sin-
gle mapping from some internal representation—whether a
number sense or a broader integrated magnitude—to an es-
timated quantity. Both mapping hypotheses are plausible a
priori and might inform the broader debate about how peo-
ple perceive or represent number. In what follows, we dis-
cuss in greater detail the research on number representation,
which supports the availability of various possible inputs to
this mapping function.

ANS and Continuous Magnitudes
The predominant theory in number processing holds that peo-
ple have an internal approximate number system which they
map onto the formal number system for purposes of estima-
tion and other related tasks (Izard & Dehaene, 2008). Work
in this space has sought to model the characteristics of this
number system, including how it is represented internally
(Izard & Dehaene, 2008) and how it develops in infants and
young children (Carey, 2009). Research on development of
the approximate number system has found that ability to dis-
tinguish between distinct numbers—the acuity of the approx-
imate number system—develops independently of ability to
discriminate area, density, length, and time (Odic, 2018) and
that acuity of number sense in children is correlated with
mathematical ability later in life (Halberda, Mazzocco, &

Feigenson, 2008). In line with the idea that numerosity is
a core part of how we represent the world around us, some
have argued that numerosity is even available as a primary
feature of perception and not reducible to related properties
like texture density (Burr & Ross, 2008). In support of this,
it has been shown that numerosity estimates are subject to vi-
sual adaptation effects, much like other visual properties such
as color and motion (Burr & Ross, 2008).

In contrast to proposals that humans have an internal ap-
proximate number system, some have argued that number es-
timation is inferred directly from visual properties that cor-
relate with number (Dakin, Tibber, Greenwood, & Morgan,
2011). Evidence that people’s ability to estimate quantities
stems directly from their processing of visual cues comes pri-
marily from work showing that people struggle to infer nu-
merosity independently of the information they receive from
visual cues (Leibovich et al., 2017). For example, Gebuis
and Reynvoet (2012) presented participants with a series of
dot arrays which manipulated the convex hull, aggregate sur-
face, and density of the dots such that none of these visual
properties correlated with true quantity across all the trials.
They found that participants’ estimates of the number of dots
in the arrays were largely explained by each of these features
even though these features provided no information about the
true number of dots. They argue that people are therefore un-
able to estimate numerosity independently of the visual cues
which tend to provide certain signals about numerosity. More
recent work has argued that the basis for our sense of num-
ber is our ability to process continuous magnitudes (density,
area, size, etc.): Leibovich et al. (2017) challenge the degree
to which research on the approximate number system is able
to isolate numerosity from visual cues and argue for a more
general magnitude system from which number is inferred.

Regardless of whether people have an internal sense de-
voted specifically to numerosity or assemble their sense
of quantity from continuous magnitudes that correlate with
number, it’s clear from the existing research that a.) nu-
merosity and visual features such as area, size, and density
are closely tied and b.) that a mapping from internal quantity
estimates onto the formal number system could plausibly take
as its inputs any combination of visual features and numerical
representation. In light of this, we propose two hypotheses
about how such a mapping might work. One holds that we
have multiple mappings from size, area, and density features
to number estimates. These mappings could independently
serve our estimation needs. The other holds that we have a
single mapping from some internal quantity representation
onto the number line. This internal representation could be
our approximate number sense or a quantity estimate assem-
bled by combining information from size, area, and density.
In what follows, we summarize research which has exam-
ined people’s performance on number estimation tasks and
describe a novel method of investigating mappings from in-
ternal number to formal number.
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Individual differences and drift in mental
number-line calibration
Work investigating the approximate number system has
sought to understand how we map from our internal sense
of number to the verbal number system. Several key findings
have informed this line of inquiry. First, people’s mapping
from internal quantity representations to formal numbers is
often miscalibrated (Izard & Dehaene, 2008). Specifically,
individuals asked to estimate quantities outside the subitiz-

ing range tend to systematically over- or underestimate those
quantities. This relationship follows a power law: the higher
the true quantity, the more people reliably over- or underesti-
mate (Izard & Dehaene, 2008). Second, the amount that peo-
ple are miscalibrated in their estimations varies considerably
across individuals (Vul, Barner, & Sullivan, 2013). Some
people reliably overestimate while others reliably underesti-
mate, suggesting that whatever mapping we use onto formal
number varies from person to person. Finally, the amount that
people are miscalibrated in their estimations varies within in-
dividuals. In other words, the degree to which people over- or
underestimate has been shown to drift over many successive
estimations (Vul et al., 2013).

In this study, we use the slow drift of individuals’ number
estimates to investigate the mapping between internal num-
ber and quantity estimates across various visual conditions.
If people rely on multiple mappings from independent visual
features to numerosity estimates, then we would expect these
mappings to drift independently over many estimates based
on different visual features. However, if people utilize a sin-
gular mapping function from some internal quantity estimate
onto number, then we would expect the drift in their estimates
to be invariant to changes in the visual cues used to form each
estimate. This difference is illustrated in Figure 1.

Experiment
We tested the degree to which the numerosity of a display
is estimated through independent mappings from correlated
visual features (e.g., size, area, and density) to number, or
if these features map onto a single internal numerosity esti-
mate, which is then mapped onto a symbolic number. We
presented participants with an estimation task in which the
stimuli varied along one dimension (size, area, or density)
as magnitude changed, while holding the other two dimen-
sions constant. We compared the drift in participants’ magni-
tude estimations across the three conditions to assess whether
number estimates may be independently obtained from size,
area, and density cues.

Participants
Participants were 57 undergraduates at the University of Cal-
ifornia, San Diego who received course credit for their partic-
ipation.

Methods
Participants were shown a series of dot arrays on a white
background like those in Figure 2. The dots appeared on

Figure 2: Sample stimuli for n = 50 and n = 500 across area,
size, and density conditions.

the screen for 500ms and then disappeared. Participants were
then prompted to guess the number of dots on the screen. We
did not use a mask between trials, as any aid that participants
received in estimating due to an after image would have been
consistent across all trials. For the first 25 trials, participants
were given feedback after each round about the true number
of dots they had just seen. Participants were awarded points
after each round on a logarithmic scale based on the differ-
ence between their guess and the true number of dots. Partic-
ipants performed 1,000 estimation trials or 50 minutes on the
task, whichever came first.

Stimuli
The number of dots on each trial was selected by sampling a
number between 10 and 750 from an exponential distribution
with a mean of 100. Each trial of the experiment was ran-
domly selected to vary one of the area, density, or size of the
dots while keeping the other two constant.

Trials that varied the area of the dots used a predetermined
constant for spacing between dots and dot size so that the
number of dots on the screen was indicated by how much
area the dots occupied. For trials that varied the density of
dots, dots were populated in a constant area on the screen
with a constant size: when there were more dots, the spacing
between them was lower and when there were fewer dots,
there was greater spacing between them. Finally, trials that
varied the size of the dots used a consistent area of the screen
and a consistent spacing between dots, generating larger dots
when there were fewer in a given trial and smaller dots when
the magnitude was greater. See Figure 2 for examples of dot
arrays that varied each visual feature. In each trial, a random
selection determined whether the dot display would vary size,
area, or density so that over the course of the experiment, all
three features would present cues to numerosity but on any
given trial, only one would be informative.

Results
To understand how well participants estimate visual quanti-
ties based on size, area, and density inputs, we can com-
pare their estimates for trials in which each of these fea-
tures were informative to the actual numbers presented. For
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Figure 3: Individual data for Number presented and number

reported from three sample participants. The degree to which
each particpant underestimates, overestimates, or is accurate
reflects individual differences in this task

perfect estimators, each estimate plotted this way would lie
along the identity line. Estimates show a high degreee of
variance across individuals: Figure 3 shows data from three
sample participants which illustrate this. Combining this data
across all participants, Figure 4 shows participants’ accuracy
by plotting their estimates alongside the true number pre-
sented for trials varying size, area, and density. Consistent
with earlier findings, people are accurate up to numerosities
of about 20-30, but they reliably underestimate larger num-
bers on average (even setting aside the individual variance:
see Vul et al., 2013). The underestimation pattern in a given
set of trials can be described as a bilinear function which fol-
lows the identity line up to a threshold, and deviates from the
identity line with some slope thereafter. This slope amounts
to the “calibration” of the mental number line (Izard & De-
haene, 2008), and was precisely shown to (a) vary across sub-
jects, and (b) within subjects, slowly drift over the course of
an experiment (Vul et al., 2013). Figure 4 shows that the cal-
ibration of the mapping to the formal number line is similar
regardless of whether area, size, or density is the numerosity-
informative variable.

Previous research has shown that perception of structure
and groupings can lead to systematic underestimation. For
example, objects connected by lines are underestimated rela-
tive to disconnected objects (Franconeri, Bemis, & Alvarez,
2009). When dot arrays are seen as grouped, the degree
to which they’re clustered increases underestimation (Im,
Zhong, & Halberda, 2016). Even sub-conscious processes
like statistical learning of co-occurrence in colored dot arrays
can lead to underestimation (Zhao & Yu, 2016). In the stim-
uli presented here, it is possible that perception of grouping
among dots on various trials led to underestimation. How-
ever, given the similarity in patterns of underestimation in

Figure 4: Number presented and number reported across es-
timate conditions. The red line is the median response for
each number presented. Participants show similar underesti-
mations across estimate conditions.

Figure 4 across modalities, it’s unlikely that underestimation
due to perceptual grouping affected the size, area, or density
informative trials more than any other.

Consistent individual differences across modalities
Dividing each participant’s estimates into blocks of size 50
(after the initial 25 “calibration” trials), we can evaluate the
best fitting slope estimates for each block in each condition.
For example, block 11 for each participant will contain trials
476–525. Of these, some number will be area trials, some
will be size trials, and some will be density trials. We can
extract the trials belonging to each estimate condition (size,
area, density) for a given block of trials for a given partici-
pant, and compute a best fitting slope for that subset of num-
ber estimates for that participant. This gives us a slope for
each estimate condition, for each participant, in each block of
50 trials over the course of the experiment.

To the degree that processes of estimating quantity based
on changes in size, area, and density are independently cal-
ibrated to the data participants have seen, individual differ-
ences in slopes should not be consistent across these different
modalities. However, if different variables are mapped onto
a subjective quantity estimate, and the uncertain, idiosyn-
cratic mapping lies between approximate number and re-
ported number, then an individual’s slope for area-determined
numerosity will be consistent with their density- and size-
determined numerosity as well.

Figure 5 shows each of the possible correlations between
best fitting slopes for size, area, and density estimates across
participants in each block: size-area slope correlations, size-
density slope correlations, and density-area slope correla-
tions. Block zero (trials 1-25) includes the trials in which
participants received feedback after each guess. In these tri-
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Figure 5: Slope correlations of size-area, size-density, and
density-area for the first 11 blocks of the experiment. Partic-
ipants received feedback in block 0. After that, correlations
across estimate conditions are relatively high and are tightly
coupled in remaining blocks (error bars indicate 95% confi-
dence intervals on the correlation coefficient).

als, participants were fairly accurate in their estimates. Corre-
lation between slope estimates in block zero is therefore low
due to low variance in slope estimates across all conditions as
a result of the feedback. However, from block one onwards,
correlation of slope estimates between size and density trials,
size and area trials, and density and area trials increases to
0.6–0.8. Critically, each of these three slope estimate corre-
lations (size-area, size-density, and density-area) remain high
and tightly in tandem from block one onwards. Such closely
aligned correlations would be unusual if variations in stimu-
lus size, density, and area across trials each directly and inde-
pendently enabled an estimate of quantity.

Consistent within-individual drift across modalities
The correlation between different slope estimates for each
block, described above, indicates how similar size, area, and
density estimates were to each other across participants in
each set of 50 trials throughout the experiment. In other
words, this shows whether individual differences in numeros-
ity estimations are consistent across modalities. Another fea-
ture of numerosity estimates is their drift in calibration over
time within individuals. Here, we examine the data from esti-
mation across modalities in light of this pattern: if size, area,
and density each independently map to a formal number es-
timate, the drift in calibration for each of these modalities
should be independent. However, if each modality maps to an
internal estimate and the drift reflects changes in the mapping
of internal estimates to formal number, then we will not de-
tect any difference in drift across modalities. Figure 6 shows
the correlation between slopes in blocks 1 – 11 for each possi-
ble comparison of estimate conditions: autocorrelation of e.g.
density slopes across blocks and correlations across modali-

ties of e.g. size to area slopes between each block. The over-
all pattern of correlations across blocks looks very similar for
each of these comparisons, further reinforcing the idea that
these features do not map separately onto number estimates.
Individual drift in over- and underestimations can be seen in
the lower correlation between blocks that are farther apart:
this pattern is also similar across comparisons.

To better compare the slope correlations within and across
modalities, we group pairs of blocks based on their temporal
separation: their trial distance. For example, the correlation
between blocks 1 and 4, and 2 and 5, and 3 and 6, all have
a trial distance of 3 blocks (150 trials). The decline in corre-
lations over longer trial distances indicates the drift of map-
ping over time. We can thus compare these cross-correlation
functions for different modality-modality comparisons. Com-
paring slope estimates for each block of a given condition to
those that are all an equal distance away in the same or al-
ternate estimate conditions gives us a correlation between tri-
als across a range of trial distances. Figure 7 shows these
correlations by distance for the same combinations of esti-
mate conditions shown in Figure 6. Across all comparisons,
the correlations decrease as distance between trials increases.
This drift in estimate slopes—the slopes of trial blocks far-
ther from each other are less similar to the slopes of closer
blocks—reflects the drift in calibration of the mapping func-
tion onto precise quantity over time (Vul et al., 2013).

To ensure that the “drift” shown in Figure 7 is not at-
tributable to differential distributions of each trial type across
blocks of increasing distances, we shuffled trial order for each
participant and re-calculated the correlation of slopes by trial
distance. For the shuffled data, the correlations within and be-
tween modalities were very stable across all trial distances: in
other words, there was no sign of systematic drift. We fit lin-
ear models to the mean correlations at each trial distance for
each modality comparison to ensure that indeed there was no
drift in the shuffled data: for the six comparisons shown in
Figure 7 (with shuffled trial order), none had a slope signifi-
cantly different from 01.

Figure 7 illustrates that the drift in calibration occurs not
only within each estimate condition but also across them:
size-density, size-area, and density-area slope comparisons
show similar decreasing correlations at greater trial distances.
Most importantly, these correlations over trial distances are
indistinguishable whether we consider within-modality corre-
lations (e.g., area-area) or across-modality correlations (e.g.,
area-size). The correlation of slopes over varying trial dis-
tances is indistinguishable within and across modalities. If
visual cues to density, size, and area each map to a subjective
numerosity which then maps to precise quantity estimates,
the similarity of slope correlations within and across esti-

1Shuffled trial order correlation slopes (per block): size-size 95%
CI = [-0.013, 0.001] p = 0.07, density-density 95% CI = [-0.010,
0.002] p = 0.16, area-area 95% CI = [-0.001, 0.015] p = 0.08, size-
density 95% CI = [-0.019, 0.003] p = 0.12, size-area 95% CI = [-
0.014, 0.003] p = 0.19, density-area 95% CI = [-0.006, 0.013] p =
0.39
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Figure 6: Slope comparisons between each block across all
estimate conditions. The correlation pattern is similar across
all these comparisons, a pattern seen when plotting correla-
tion by trial distance as well.

mate conditions could be accounted for by separate mapping
functions from visual properties to approximate number be-
ing similarly calibrated. The drift would then be attributed
to the mapping from this internal numerosity to the number
reported. If the estimation of reported quantities was accom-
plished by separate mapping functions from each of the visual
modalities, it would be improbable for these mapping func-
tions to change in lock-step, thus rendering the within- and
across-modality correlations identical.

Conclusion
We asked how people map their analog, perceptual features
onto explicit numbers. Specifically, we investigated whether
(a) people have one mapping from a cohesive, internal es-
timate of numerosity/magnitude onto the number line, or if
(b) people have multiple mappings onto number from differ-
ent visual features that tend to correlate with number. In this
experiment, we asked participants to estimate the number of
dots present in a display, while we varied which visual fea-
ture varied with number. The numerosity of the dot arrays
in a given trial could only ever be inferred from a single per-
ceptual modality (one of size, area, or density) of the dots.

Figure 7: Slope comparisons within and across estimate con-
ditions by trial distance. The correlation of slopes over vary-
ing trial distances is indistinguishable within and across es-
timate conditions (error bars represent standard error across
measurements of each distance).

Using results from prior research indicating that people drift
in their mapping of numerosity to number over the course of
many trials (Vul et al., 2013), we analyzed whether such drift
occurs independently across estimates based on size, density,
and area. We find that the (mis)calibration of numerosity onto
number is indistinguishable between size, area, and density
trials. Moreover, as this mapping drifts over the course of
many trials, it changes in lock-step for all the modalities, in-
dicating that there is only one mapping function that drifts,
which is shared across all modalities. From this we conclude
that size, area, and density all share a common mapping onto
formal number. In other words, perceptual features that are
cues to numerosity must be combined into an internal repre-
sentation of numerosity which is then mapped onto the formal
number line when reporting an exact number.

It would be rash to generalize these results to all cases in
which we might map subjective senses onto objective, ex-
ternal standards (e.g, estimating weight in kilograms, or our
willingness-to-pay in dollars). It seems likely that some for-
mal systems do not have a corresponding unified internal rep-
resentation, and instead have an assortment of independent
mapping functions which may be inconsistent and incom-
mensurate. However, these results are encouraging that for
at least some formal systems, we have unified, coherent in-
ternal representations that serve as their substrate. We postu-
late that the methods we develop here—of relying on fluctu-
ations in the mapping of subjective states onto formal, objec-
tive systems—might be used to identify whether notions like
“subjective value” are indeed unified monolithic entities, or
if they are an ensemble of related, but independent, internal
senses.
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Abstract

Accounts of human physical reasoning based on simulation
from a noisy physics engine have enjoyed considerable suc-
cess in recent years. However, simulating complex physical
dynamics can be a computationally expensive process, and it
is possible that people use faster, cheaper shortcuts to make
predictions and inferences in complicated physical scenarios.
Here we asked people to predict the eventual destination of a
ball on a 2D bumper table (in the style of Smith, de Peres, Vul,
and Tenenbaum (2017)). We designed scenarios that we ex-
pected would modulate the use of heuristics and simulation:
the bumper table provided varying degrees of containment to
constrain future outcomes and to make a containment heuris-
tic more useful, and could have more or less internal struc-
ture to vary the reliability of noisy simulation. As the con-
tainment heuristic becomes more useful, and as simulation be-
comes more expensive, we expected that people would switch
from using simulation to rely more on rapid heuristic-based
predictions and therefore respond faster. Instead, we found
that even when containment was very predictive, people were
progressively slower and less accurate as simulation complex-
ity increased, indicating that they persisted in using simulation
rather than containment heuristics.
Keywords: simulation; heuristics; physics

Introduction
In everyday life we are constantly tasked with making pre-
dictions about how physical objects will behave and inter-
act, whether changing lanes in traffic or stacking dishes in
the sink. Such inferences are so commonplace that we rarely
think twice about them. However, the mechanisms by which
we are able to make these inferences are far from obvious: at
a minimum, they require a rich understanding of how things
in the world tend to move and the ability to make rapid predic-
tions based on this knowledge, both non-trivial achievements
from a computational perspective.

Prior research has shown that a range of human physical
inferences can be captured by Intuitive Physics Engine mod-
els that rely on simulations of physical outcomes performed
with a probabilistic physics engine similar to those used in
computer games (Battaglia, Hamrick, & Tenenbaum, 2013).
By sampling from these simulations, probabilistic models can
generate a reasonable representation of the physical world
and make predictions accordingly (Ullman, Spelke, Battaglia,
& Tenenbaum, 2017). Such models have been successful in
reproducing human judgments across a range of tasks and do-
mains, from predictions about object balance (Battaglia et al.,
2013), mass (Hamrick, Battaglia, Griffiths, & Tenenbaum,

2016), and velocity (Smith & Vul, 2013) to liquid dynamics
(Bates, Yildirim, Tenenbaum, & Battaglia, 2018) and causal
attribution (Gerstenberg, Peterson, Goodman, Lagnado, &
Tenenbaum, 2017).

While simulation allows us to reproduce many features of
human physical reasoning, there are also situations where
people’s behavior is inconsistent with the use of an intuitive
physics engine (Smith, Battaglia, & Vul, 2018). Empirically,
human behavior sometimes differs significantly from predic-
tions made by simulation-based models, suggesting that we
have sophisticated strategies for avoiding simulations when
other forms of inference will suffice (Smith, Dechter, Tenen-
baum, & Vul, 2013). In particular, research on errors in phys-
ical judgment have shown that people often hold a number
of systematic biases which are inconsistent with even ba-
sic physical simulations (see Davis & Marcus, 2015 for an
overview of some of these). Underlying this difference is a
criticism of simulation as a computational account of all hu-
man physical reasoning: simulation of almost any sort, but
particularly of complex physical phenomena, may require
considering the interactions between a large number of ob-
jects over time. Because interactions between objects add
uncertainty to predictions (Smith et al., 2013), in complex
scenarios these simulations might therefore require keeping
a large number of objects in mind and yet still produce very
uncertain predictions. These sorts of considerations have led
some to argue for a limited role of simulation in human phys-
ical reasoning (Davis & Marcus, 2016).

In light of the challenges posed to a simulation-based ac-
count of human physical reasoning, what alternatives can ac-
count for people’s ability to make diverse predictions about
physical interactions in the world around them? A large body
of research supports the idea that humans are adept in their
use of heuristics and other simplified qualitative prediction
strategies, including in the domain of physical predictions
(Gigerenzer & Todd, 1999). Prior work has shown that people
can represent certain topological relationships like contain-
ment using only first-order logic (Davis, Marcus, & Frazier-
Logue, 2017). Given the large number of strategies available
to reasoners and the flexibility with which we navigate the
physical world, it has been proposed that humans selectively
utilize a toolbox of prediction techniques, including simula-
tion, qualitative reasoning, and logical inference, as well as
analogical and rule-based strategies (Davis & Marcus, 2015).
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Figure 1: A simple trial with partial containment and two ob-
stacles. At left is what participants see when prompted to
guess a target after 2.5s of animated ball movement. At right
is feedback after guessing “green” and seeing the ball ani-
mated on the remainder of its path.

The idea that humans are able to balance simulation-based
prediction with alternative prediction strategies is intuitively
appealing because it offers a way to unify simulation-based
accounts with complementary accounts of physical inference
based on e.g. topological and visual features. However, it
raises a number of additional questions. If humans are able to
flexibly recruit different strategies for making physical pre-
dictions, what determines the choice of one strategy over the
other? How and when do we switch between fine-grained
simulation methods and more coarse qualitative analyses?
The exact mechanisms for such decisions remain poorly un-
derstood. For example, when novel but reliable and visu-
ally salient heuristics are available, people often fail to use
them unless the existence of such heuristics are made explicit
(Callaway, Hamrick, & Griffiths, 2017). A simple hypoth-
esis is that compared to simulations, topological predictions
are faster, lower fidelity, and less generally applicable; conse-
quently, topology ought to be used when the scenario makes
topological cues particularly useful, and renders simulations
particularly imprecise and costly by complex scenarios. In
other words, if computationally expensive simulations are
unlikely or unable to produce a confident prediction, while
topology can, a rational agent should make a guess based
on simpler heuristics or visual features rather than waste re-
sources on repeated simulations.

In the present study, we tested the hypothesis that people
balance the precision and cost of simulation against the ap-
plicability of topological analysis when making physical pre-
dictions. Our experiment builds on prior research in several
important ways. First, we examine people’s reasoning about
containment scenarios because prior research has shown that
containment relationships can be expressed propositionally
and that intuitive inferences about containment can be made
with such knowledge-based reasoning even with very little
information (Davis et al., 2017). As such, it is an ideal sim-
plified model for physical inference. Second, containment
relationships can in some cases be visually processed rapidly

and automatically (Strickland & Scholl, 2015). Finally, prior
research has used a similar paradigm to explore the degree
to which people simulate or use topological inference when
making physical predictions in scenarios involving contain-
ment relationships. Smith et al. (2013) modeled inference on
a prediction task using noisy simulation but found that peo-
ple’s predictions were more rapid than the model predicted in
scenarios involving containment. Building on these results,
Smith et al. (2017) presented participants with similar tasks
in which a containment heuristic was available but found ev-
idence for simulation across all the tasks. However, in the
tasks presented to participants, the simulation required was
fairly straightforward and temporally limited. Therefore, in-
sofar as simulation and topological processing happened in
parallel or participants reasoned that simulation was a con-
sistently viable strategy, they may have failed to leverage a
more coarse containment-based judgment out of habit or con-
venience (Smith et al., 2017). We hypothesize that when
topological predictions are available and simulation proves
intractable or uncertain, participants will be more likely to
make their predictions based on topology. In line with this
hypothesis, Davis & Marcus (2015) argue that simulation is
most effective on relatively short time scales and small spa-
tial scales such that simulation is straightforward and reliable.
Here we violate this condition by including trials in which
the number of obstacles (complexity level) makes simulation
both more uncertain and potentially longer. We expect that
participants, faced with predictions involving unreliable sim-
ulations, will pursue alternative strategies for prediction: an
agent that rationally trades off the advantages of simulated
inference with the computational costs should select more
favorable knowledge-based inference strategies when condi-
tions support them.

Experiment

In the present study, we tested the hypothesis that people
would switch from using slower simulation to faster heuris-
tics when simulation becomes less efficient. Specifically, we
presented participants with a task which required them to
make predictions about the path of a ball in a series of two-
dimensional environments. We manipulated (a) how much
the topography of the environment allowed a simple topolog-
ical “containment” heuristic to identify the answer (degree of
containment), (b) the complexity and uncertainty of simula-
tions in the environment (degree of complexity). The core
prediction is that participants would favor using simulation to
obtain an answer when simulations were easy and topology
was uninformative, but would switch to relying on contain-
ment, or other coarse topological cues when they were partic-
ularly effective, and simulation was particularly ineffective.
Specifically, we rely on the assumption that using a fast con-
tainment heuristic would be more efficient than simulation,
thus we predict that for high-containment scenarios, increas-
ing complexity would decrease response times.
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Figure 2: Twelve trials for Scenario 1, increasing in simula-
tion complexity in the horizontal direction and containment in
the vertical direction (highest containment at top). The high
containment, high complexity trials offer a simple topological
prediction without needing to simulate the ball’s interaction
with the walls and obstacles.

Participants
Participants were 81 undergraduates from the University of
California, San Diego who received course credit for partici-
pation. The experiment lasted approximately 25 minutes.

Methods
We used a task that is very similar to Smith et al. (2017). Dur-
ing the experiment, participants were shown a series of trials
depicting a blue ball on a flat surface (600 pixels by 600 pix-
els). The ball was surrounded by walls and square obstacles
that the ball could bounce off. Each trial contained a red and a
green target and the goal of the task was to determine whether
the ball would hit the red target or the green target first (see
Figure 1). Before making a guess, participants were shown
2.5s of the ball’s movement, after which the ball paused in
its trajectory and participants pressed either the “R” or “G”
key to indicate their guess for the red or green target. After
participants made their guess (or 10s elapsed), the ball would
resume its movement until it hit one of the targets. At the end
of each trial, participants received points based on their accu-
racy and their response time: -10 for an incorrect guess, 0 for
no guess, variable points for a correct guess based on time to
respond (see Figure 1). The points for a correct guess were
allotted based on an exponential decay function of response
time so participants were rewarded for guessing quickly if
they could generate an accurate guess rapidly, but the penalty
for longer response times quickly diminished. To illustrate,
participants received 100 points for responses at 250ms, 71
points at 1000ms, and 45 points at 2000ms.

Participants read a brief set of instructions and completed
three practice trials before doing the experimental trials. Each
participant completed all trials in the experiment: 48 trials

representing each complexity and containment level across
four scenarios, with 64 “distractor” trials (discussed below)
for a total of 256 trials. The order of the trials was randomized
for each participant, as was the selection of the red and green
target for reach trial.

Stimuli

The trials were grouped into four qualitative scenarios, and
within each scenario they were parametrically manipulated
along two dimensions that modified the uncertainty of simu-
lations and the availability of topological predictions.

Scenario: Each trial belonged to one of four possible sce-
narios corresponding to the containment structure that the tar-
gets were placed in. For example, one scenario placed the ball
inside variants of a box where one of the targets was placed
in the opening, while another had the ball traveling down a
right-angled tunnel with a target at one end. (see Figure 5).

Containment: Each scenario had three distinct contain-
ment levels that varied how much the ball and one of the tar-
gets were contained by the set of walls in the scenario. In
the high containment trials for each scenario, the ball was
virtually guaranteed to hit one of the targets because the ball
and that particular target were almost entirely contained by
the walls. In the low containment trials, the walls provided
only minimal containment for the ball and one of the targets,
rendering topology and containment fairly uninformative.

Simulation Complexity: For each scenario and contain-
ment level, there were four complexity levels which varied the
degree of uncertainty involved in simulating the ball’s path.
This was accomplished by placing an increasing number of
square obstacles throughout the scene: simulation therefore
required accommodating the growing possibility of the ball
bouncing off one or more obstacles before hitting one of the
targets, making simulation results less certain. The lowest
complexity levels for each scenario and containment level had
no such obstacles, while the highest complexity levels had
eight obstacles spread throughout the scene (see Figure 2).

Each unique scenario, containment, complexity combina-
tion was rotated 90, 180, and 270 degrees to allow for more
trials and to prevent the scenarios from being too predictable.
In addition, there were 64 distractor trials that were iden-
tical to the high containment trials in each scenario, except
that both targets were placed inside or outside the contain-
ing structure. These were added to prevent participants from
adopting a strategy of assuming that every trial would have
a containment structure or other topological best guess once
they had seen a number of trials in which that was the case.

For each trial, we captured participants’ accuracy (correct
or incorrect) and response time. Previous results using the
same target task have provided evidence that participants are
likely to make simulated inferences for this task across a
range of scenarios and further that response time is corre-
lated with time required to simulate the outcome (Hamrick,
Smith, Griffiths, & Vul, 2015; Smith et al., 2017). We ex-
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pected response time to be a reasonable measure of partic-
ipants’ reliance on simulation for the inference in the task:
as the complexity of the simulation required to make a pre-
diction increased, so too should the response time. In con-
trast, predictions made via topological inference should show
little change in response time as complexity of the scene in-
creased. When one of the targets was clearly contained in the
same space as the ball, the uncertainty or duration of the ball’s
simulated path should not have had any bearing on judging
which target the ball would hit first if participants were tak-
ing advantage of this containment information. Therefore, we
expected to see a relationship between simulation complexity
and response time which held for trials in which participants
made a prediction by simulation but failed to hold for trials
where participants were instead using visual cues which fa-
cilitated more coarse topological predictions.

Results
Two of the 81 participants were excluded from analysis due to
technical difficulties logging their data. For each participant,
we excluded data from the 64 distractor trials. These were in-
cluded in the experiment to prevent the inference that all trials
would have a more and a less contained target. However, the
data from these trials is not relevant to the present analyses.
All subsequent analyses were therefore conducted with data
from 79 participants over 192 trials (twelve trials for each of
the four scenarios, rotated each of 0, 90, 180, and 270 de-
grees). For all analyses, response times were log-transformed
to account for their skewed distribution (Whelan, 2008) but
transformed back for reporting and display.

Response times
To assess whether participants were avoiding costly simula-
tions when simulations were particularly uncertain and topo-
logical conditions supported more efficient predictions, we
examined average response times across each level of com-
plexity and containment. The results are illustrated in Figure
3a. We were interested in comparing response times in low-
containment trials to high-containment trials, where an effi-
cient topological prediction about which target the ball would
hit was available. Rather than a stabilization or even a de-
crease in response time as complexity increased in high con-
tainment trials (signaling a switch to topological prediction),
Figure 3a shows that response times increased progressively
as containment increased from low to high and within each
containment level as complexity increased from none to high.
Moreover, the high-containment trials were slower, and less
accurate (Figure 3b), than low-containment trials.

In a repeated measures ANOVA, response times vary with
containment and complexity, (F(2, 156) = 55.63, p < 0.001
and F(3, 234) = 8.87, p < 0.001, respectively). However,
consistent with the fact that participants are not treating com-
plexity differently in high containment trials, there is no
containment-complexity interaction (F(6, 468) = 0.487). Par-
ticipants relying on topological information to infer which
target the ball would hit in high containment trials would have

(a) Response times across conditions

(b) Accuracy across conditions

Figure 3: (a) Mean response time across containment and
complexity levels. Despite the availability of simple topolog-
ical predictions in the high containment, high complexity tri-
als, response time is highest. (b) Mean accuracy across con-
tainment and complexity levels. Accuracy steadily decreases
at higher containment levels, even though more contained tri-
als would seem to make prediction more certain.

been able to do so quickly. As complexity increased, so too
would the time required to simulate the ball’s possible out-
comes. Therefore, predictions made via topological analysis
in high containment, high complexity trials could potentially
be done in less time than required for prediction by simula-
tion in trials with the same degree of complexity but lower
containment. Even with complexity levels which make simu-
lation difficult and topological information which makes pre-
diction simple, participants showed no sign of using a con-
tainment heuristic.

Accuracy
In light of our findings that response times both increased as
complexity increased within each containment level and also
increased across containment levels, one interpretation is that
this pattern was a result of a speed-accuracy tradeoff. Insofar
as additional complexity in a given scenario made simula-
tion more difficult and uncertain, participants may have spent
more time confirming their predictions without any other
change in their simulations or prediction strategies. To test
this, we looked at each participant’s accuracy in a given con-
tainment and complexity level (there are 16 trials in a given
containment and complexity level for each participant). The
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Figure 4: Performance of participants in high containment,
high complexity trials only by trial order quartile. Accuracy
remains close to chance and does not improve over the course
of the experiment, suggesting that participants likely did not
switch at any point to topological inference cues or other
strategies that would have improved their accuracy.

mean accuracy proportions across all participants for each
complexity and containment level are shown in Figure 3b.

In contrast to what would be predicted by a speed-accuracy
tradeoff in which the containment and complexity levels that
participants spent the most time on also have the highest ac-
curacy, mean accuracy steadily decreases from low to high
containment scenarios. In low containment trials, mean ac-
curacy was above 90% across all complexity levels, while
in high containment and high complexity trials, where par-
ticipant response times were the largest, accuracy was only
nominally above chance (95% CI 51.3% - 55.4%). In a re-
peated measures ANOVA, both containment and complexity
accounted for a significant portion of the variance in accu-
racy (F(2, 156) = 829.5, p < 0.001 and F(3, 234) = 15.7,
p < 0.001, respectively), as well as the interaction between
them (F(6, 468) = 61.79, p < 0.001). As the containment
and complexity of trials increased, participants spent more
time making judgments and their accuracy decreased: these
data are inconsistent with an account of prediction in which
people process topological features to make the judgment as
efficiently as possible. One alternative is that people persist in
simulating outcomes in such trials even when alternatives are
readily available. Under this account, participants would be
expected to simulate more as complexity increased in order
to overcome the uncertainty imposed by increases in com-
plexity. They might do this even when increasing levels of
containment made topological predictions simple.

Strategy changes
Another interpretation of the current results is that people
may have eventually switched to heuristic-based strategies in
the more complex trials, but not right away. We predicted that
the difficulty of simulation on high complexity trials would
encourage participants to employ alternative inference strate-
gies where available. But it may be that the complexity of a
trial in and of itself is insufficient to induce strategy change.
For example, participants might need to see several complex
trials and infer that high complexity trials are likely to recur

and are not “one offs”. Or, participants might overestimate
the accuracy of simulation-based inferences: only after get-
ting wrong answers on complex trials would they pursue al-
ternative inference strategies.

If participants were switching to heuristic-based strategies
as a result of familiarity with the task or low accuracy on
complex trials, we might expect a difference between high
complexity, high containment trials encountered earlier ver-
sus later in the experiment. This difference would be re-
vealed in changes in accuracy over the course of the exper-
iment: if participants eventually ended up using a topologi-
cal inference strategy for these high containment, high com-
plexity trials, we would expect near perfect accuracy for any
such trials. Figure 4 shows accuracy on high containment,
high complexity trials only, arranged by the trial order quar-
tile in which participants saw them. Participants performed
relatively poorly on the high containment, high complexity
trials at the outset. Critically, there is no sign of improvement
over the course of the experiment: in an ANOVA with par-
ticipants’ mean accuracy by quartile, accuracy did not vary
significantly across quartiles (F(1, 78) = 2.359, p = 0.129). If
participants had switched to a topologically based inference
strategy, we would expect an increase in accuracy since high
complexity, high containment trials enable a very confident
containment-based solution. Figure 4 suggests that direction-
ally, participants appeared to get worse on the high accuracy,
high containment trials and remain fairly inaccurate through-
out the experiment.

Scenario and rotation differences
A third account for the higher response times and lower ac-
curacy as containment and complexity increased is that this
overall pattern reflects a great deal of variance across scenar-
ios. In a repeated measures ANOVA of response time that
adds scenario on top of containment and complexity, there
are significant main effects of containment and complexity
(as described before) as well as scenario (F(3, 234) = 64.89, p
< 0.001), reflecting the fact that participants’ response times
seemed to vary across scenarios. In Figure 5, we show mean
response times across containment and complexity levels but
further broken down by scenario. The pattern of response
times is fairly consistent for low containment trials but the
directionality of response times as complexity increases in
high containment trials varies across scenarios. In scenar-
ios 1, 2, and 4, response times in high containment trials
stabilize or diminish at higher complexity levels, which is
qualitatively consistent with our hypothesis that participants
would make faster predictions when topological conditions
supported a coarse analysis and made simulation highly un-
certain. Indeed, the effects of containment and complexity
are not homogeneous across scenarios, revealed by significant
interactions between scenario and containment (F(6, 468) =
6.935, p < 0.001), and scenario and complexity (F(9, 702) =
4.662, p < 0.001). The three-way interaction between sce-
nario, containment, and complexity is weaker, but also sig-
nificant (F(18, 1404) = 1.626, p = 0.047), indicating that the
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(a) Response time broken down by scenario

(b) High containment example of each scenario (1–4)

Figure 5: (a) Response times are consistent across scenarios
in lower containment and complexity levels but diverge con-
siderably at higher containment and complexity levels. (b)
A high containment (low complexity) trial for each scenario.
Complexity was increased by adding more square obstacles.

pattern in scenario 3 is quite unusual. However, we cannot
confidently conclude that any of the scenarios would reliably
produce the sort of two-way interaction between containment
and complexity that our hypothesis predicts.

Finally, it is worth noting that even though rotated versions
of the trials were identical in configuration and ball move-
ments, simply turned 90, 180, or 270 degrees, participants
may have treated rotated versions of the trials differently. A
repeated measures ANOVA of response time as a function
of scenario and rotation found that rotation accounted for a
significant amount of the variance (F(3, 234) = 6.995, p <
0.001), scenario was significant (as outlined above) and that
there was a significant interaction between scenario and ro-
tation (F(9, 702) = 2.939, p = 0.002). Whether this reflects
some sort of bias towards e.g. the targets being at the top of
the screen is unclear.

Conclusion
In this study we presented participants with physical predic-
tion tasks that simultaneously varied the degree to which a
simple containment heuristic could be used to make effec-
tive predictions and the complexity required to simulate out-
comes instead. Our hypothesis was that as increasing com-
plexity made simulations more and more uncertain and effort-

ful, participants would pursue less costly topological predic-
tion strategies. When conditions permitted such knowledge-
based predictions, response times would reflect the rapid and
efficient use of containment heuristics. We found no evidence
of participants flexibly using heuristics when simulation was
complex. In fact, participants spent the longest on trials that
had the highest degree of containment; meanwhile, their ac-
curacy was lowest on these same trials.

Why might participants have spent more time and been less
accurate on trials where a simple containment-based predic-
tion was available? First, it’s possible that the structure of the
task at the outset biased participants towards a simulation-
based strategy in a way that might have been difficult to over-
come, even when complexity of trials made simulation diffi-
cult. Earlier work that used static control stimuli in a similar
task found evidence that people used simulation even with
static stimuli (Smith et al., 2017). Therefore, it’s possible
that participants had a high “fixedness” when confronted with
complex trials. Additionally, it has been shown that when ex-
plicitly instructed to apply distinct simulation strategies, par-
ticipants show notable performance differences on mental ro-
tation tasks (Flusberg & Boroditsky, 2011). In the present
study, participants were not instructed to simulate or make a
containment-based inference and were solving the problems
as they naturally would, but future work might look at how
instructions play a role in guiding more efficient strategies.

Alternatively, Smith et al. (2017) suggest that if simulation
and alternative prediction strategies are running in parallel,
detecting scenarios in which participants switch from a de-
fault simulation-based prediction to a more qualitative one
that is quicker but more coarse might require enough time for
simulation to run out. In the present study, average response
times in the slowest high containment, high complexity trials
were still less than one second on average (see Figure 3a).
Perhaps participants, upon finding that they were not able to
make an accurate simulation-based prediction on these trials,
still did not spend long enough attempting an accurate an-
swer to detect the containment relationship or make a predic-
tion based on such a holistic topological feature. Insofar as
the higher containment and complexity trials simply required
longer to visually process the full scene, participants may
have resorted to an even quicker and more general heuris-
tic in order to respond quickly, such as the target that was the
shortest Euclidean distance or seemed most directly along the
ball’s initial path irrespective of obstacles. Alternatively, par-
ticipants may have simply persisted in slower and less effi-
cient simulations on high containment, high complexity trials
rather than pursue alternate strategies (Hamrick et al., 2015).
Future research will need to carefully design stimuli in order
to control for the many ways participants might make predic-
tions and consider other hypotheses that allow for manipula-
tion of the uncertainty of simulations during prediction.
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Abstract

Children and adults prefer simpler to more complex explanations, a penchant they share with scientists and philoso-
phers. While the preference has been widely remarked, its mechanisms and justification remain contested (Kitcher1987,
Lombrozo 2007, Lombrozo2015). Explanations for the simplicity preference have included over-hypotheses, resource
rationality, pragmatic justifications, and quirks of the hypothesis generation process. We present a model of key results
from Pacer and Lombrozo (Pacer2017) and show that one form of the simplicity bias can be explained on probabilistic
grounds alone. This modeling work provides an explanation for one manifestation of the simplicity bias, and allows us
to formalize questions within the ’Explanation for Best Inference’ Framework (Lombrozo2015), asking explicitly what
makes the best explanation ’best.’
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Abstract
Language understanding requires listeners to quickly compress
large amounts of perceptual information into abstract linguis-
tic categories. Critical cues to those categories are distributed
across the speech signal, with some cues appearing substan-
tially later. Speech perception would thus be facilitated if gra-
dient sub-categorical representations of the input are main-
tained in memory, allowing optimal cue integration. How-
ever, indiscriminate maintenance of the high-dimensional sig-
nal would tax memory systems. We hypothesize that speech
perception balances these pressures by maintaining gradient
representations that are expected to facilitate category recog-
nition. Two perception experiments test this hypothesis. Be-
tween participants, an initial exposure phase manipulated the
utility of information maintenance: in the High-Informativity
group, following context always was informative; in the Low-
Informativity group, following context always was uninforma-
tive. A subsequent test phase measured the extent to which
participants maintained gradient representations. The Low-
Informativity group showed less maintenance, compared to the
High-Informativity group (Experiment 1). We then increased
the task demands and made the targets of the manipulation less
obvious to participants (Experiment 2). We found a qualita-
tively similar pattern. Together, these results suggest that lis-
teners are capable of allocating memory to gradient representa-
tions of the speech input based on the expected utility of those
representations.
Keywords: speech perception; cue integration; memory; ex-
pected utility

Introduction
Spoken (and signed) language is a temporally unfolding sig-
nal. In order to comprehend language, humans must quickly
compress kilobits of information per second into abstract lin-
guistic representations and meanings that contain more man-
ageable amounts of information. At the same time, cues
to linguistic categories often do not temporallly co-occur in
neatly delimited segments of the speech signal, but rather are
distributed across the signal. For example, one of the primary
cues to stop voicing in English is the duration of the preceding
vowel (Klatt, 1976). To make optimal categorization judg-
ments, listeners must retain some sub-categorical information
about the preceding vowel in memory in order to integrate
it with later-arriving information (i.e., the stop itself). This
kind of information distribution is typical across languages
and can occur at several timescales: cues to sound categories
can come not only from proximate acoustic properties, but
also from, e.g., later lexical and semantic context that can
occur anywhere. But maintaining rich representations of all
incoming input would seemingly overload working memory.
Thus, many theories of language processing claim that lis-
teners simply do not maintain gradient representations of the
input on any significant timescale, but instead immediately
compress input into abstract representations (Just & Carpen-
ter, 1980; Christiansen & Chater, 2016). According to these

accounts, listeners throw away rich representations of the in-
put as soon as a categorical perceptual judgment has been
made.

However, a growing body of literature has suggested that
listeners can and do maintain sub-categorical representations
of prior input (McMurray, Tanenhaus, & Aslin, 2009), even
at quite long perceptual timescales (Connine, Blasko, & Hall,
1991; Brown-Schmidt & Toscano, 2017; Gwilliams, Linzen,
Poeppel, & Marantz, 2018). For example, Connine et al.
(1991) exposed participants to sentences like “When the ?ent
in the [fender/campground]...”, where the ?-segment ranged
between /d/ and /t/ (by manipulating one of the primary cues
to voicing perception, the voice-onset time or VOT). The con-
text following the ?-segment contained additional semantic
context toward the identity of the original word. Participants
had to categorize whether they had heard the word “tent”
or “dent” in the sentence. Connine and colleagues found
that participants’ categorizations were influenced both by the
VOT of the sound and by subsequent context, suggesting
that listeners maintained a gradient representation of the ini-
tial sound for later use in cue integration and categorization.
Subsequent studies have confirmed that listeners can maintain
sub-categorical representations well beyond word boundaries
(Szostak & Pitt, 2013; Bushong & Jaeger, 2017; Bicknell,
Bushong, Tanenhaus, & Jaeger, under review).

How is this possible when language contains too much in-
formation to be held in memory indefinitely? We hypothe-
size that listeners use a memory strategy based on expected
utility: the more important a piece of input is deemed to be,
the more likely a detailed gradient representation should be
maintained in memory; the less important the input, the more
likely a categorical, less detailed representation will be main-
tained. In the case of the VOT and subsequent context ex-
ample above, we can operationalize utility as the likelihood
that subsequent context will be informative for categorization
of the current input—if there is likely to be later information
relevant to categorization, listeners should maintain a gradi-
ent representation of the speech input in order to be able to
use it during cue integration (when the relevant subsequent
context arrives).

In order to test this proposal, we conduct two experiments
where we manipulate the probability that subsequent content
in the sentence is relevant to the target word that participants
have to categorize. Participants listen to sentences where a
critical target word is acoustically manipulated to range be-
tween tent and dent. Like in the experiments by Connine
and colleagues, these words are embedded in sentences. Un-
like in earlier work, one group of participants hears sentences
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that always contain subsequent contextual information that
is informative for categorization, whereas another group of
participants hears sentences with uninformative subsequent
context. Following exposure, we then test how much partici-
pants in the two groups maintain sub-categorical representa-
tions about the target word. Here, we operationalize whether
participants are maintaining sub-categorical representations
of the initial target as the extent to which each group inte-
grates both acoustics of the target word and subsequent con-
text into their categorization responses.

General Methods
Participants
We recruited 128 native English-speaking participants each
for Experiments 1 and 2. Participants were recruited from
Amazon Mechanical Turk and rewarded $3.00 for their par-
ticipation. Participants could only participate in in either Ex-
periment 1 or Experiment 2. The average age of our par-
ticipants was comparable across experiments suggesting they
had similar amounts of language experience (Experiment 1:
37.55±12.04; Experiment 2: 34.14±8.11).

Materials
We take the paradigm from Bushong and Jaeger (2017) as a
starting point for our experiments. We constructed 12 sen-
tence triplets like the following:

(1) After the ?ent Sue had found in the campgrounds col-
lapsed, we went to a hotel. (tent-biasing context)

(2) After the ?ent Sue had found in the teapot was noticed, we
threw it away. (dent-biasing context)

(3) After the ?ent was noticed, we continued on our way. (neu-
tral context)

We manipulated two aspects of the sentence stimuli. First,
we acoustically manipulated the “?” to range between /d/ and
/t/ by changing the value of its voice-onset time (VOT), the
primary cue distinguishing voiced from voiceless syllable-
initial stop consonants in English. Based on norming and pre-
vious experiments, we chose to test VOT values of 10, 40, 50,
60, 70, and 85ms to cover a perceptual range from /d/ to /t/
with ambiguous points in between. Each VOT step occurred
equally often. Second, we manipulated whether later context
biased toward a /t/-interpretation (1) , /d/-interpretation (2),
or neither (3). Informative words in the subsequent context—
if present—occurred between 6-9 syllables after the target
word, as in (1) and (2) above.

Procedure
Both experiments consisted of two phases (participants were
unaware of this implicit structure): Exposure (72 trials)
and Test (48 trials). Participants were randomly assigned
to one of two groups: Low-Informativity exposure and

High-Informativity exposure. During exposure, the Low-
Informativity exposure group only heard sentences with neu-
tral subsequent context (e.g., sentence (3) above), such that
the only relevant information to sound categorization was
VOT. The High-Informativity exposure group, by contrast, al-
ways heard sentences that contained informative later context
(split evenly between /t/-biasing and /d/-biasing contexts), as
in previous studies. In the test phase, both groups heard sen-
tences that contained informative later context (split evenly
between /t/-biasing and /d/-biasing contexts). This allowed
us to assess context effects during the test phase, following
Connine et al. (1991). Figure 1 illustrates the design of both
experiments.

Both during exposure and test, participants’ task was sim-
ply to categorize whether they heard one of two alternative
words after they heard the full sentence. In Experiment 1,
participants always made judgments about our critical target
words of interest—i.e., they were asked whether they heard
“tent” or “dent” on every trial. In Experiment 2, on half of
all trials, participants instead had to categorize another word
in the sentence (e.g., for sentence (3) above they were asked
whether they heard “way” or “day”). We motivate this differ-
ence in design after presenting Experiment 1.

Predictions
We analyze responses from the test phase. Specifically, we
analyze the influence of VOT and subsequent context on cat-
egorization responses to assess whether listeners maintained
gradient representations of VOT. If participants maintain sub-
categorical information about the /t/ and /d/ in the target word
?ent until the end of the sentence, we should see effects of
both VOT and context. Critically, if listeners can monitor the
utility of subsequent context for the target word, and if expec-
tations about this utility affect the degree to which listeners
maintain sub-categorical representations, we should see that
the main effect of context is smaller in the Low-Informativity
exposure group, compared to the High-Informativity expo-
sure group. Note that observing a continuous effect of VOT is
not sufficient to establish that listeners maintain gradient rep-
resentations of VOT since this could still reflect initial deter-
ministic categorizations; it is the ability for listeners to inte-
grate continuous VOT information with later-arriving context
that is critical (for more discussion of this point, see Bicknell
et al., under review).

Experiment 1
The goal of Experiment 1 was to test the simplest version of
our proposal, whether listeners can adapt their expectations
about the utility of subsequent context and use them to guide
whether to maintain gradient representations of initial acous-
tic input.

Analysis
Following previous work (Bicknell et al., under review;
Bushong & Jaeger, 2017), we excluded participants whose
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Figure 1: Design of the two experiments. A: Experiment 1. B: Experiment 2.
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Figure 2: Experiment 1 test phase categorization results by
VOT, subsequent context, and exposure group. Error bars are
bootstrapped 95% confidence intervals over subject means.

categorization responses were not modulated by VOT, sug-
gesting that they did not understand the task. This resulted in
the exclusion of 11 participants for Experiment 1 (8.6%).

We fit mixed-effects logistic regression (Jaeger, 2008) pre-
dicting the proportion of /t/ responses in the test phase from
VOT (z-scored to help with model convergence), squared
VOT (z-scored), subsequent context (sum-coded: 1 = tent-
biasing vs. -1 = dent-biasing), group (sum-coded: 1 = High-
Informativity vs. -1 = Low-Informativity exposure), the
two-way interaction of group with subsequent context, and
the two-way interaction of subsequent context and squared
VOT.1 We included the interaction between squared VOT and
context to test whether listeners’ behavior was ideal observer-
like (for a longer discussion on why this is important, see
Bicknell et al., under review). The analysis also contained
the full random effects structure that allowed model conver-
gence. Analyses were conducted in the lme4 package in R
(Bates, Maechler, Bolker, Walker, et al., 2014).

1Fixed effects R formula: /t/-response ∼ VOT + VOT2

Context + Group + Group:Context + VOT2:Context.

Results
Figure 2 shows /t/-responses by group, VOT, and subsequent
context over the test phase.

We found main effects of VOT (β̂ = 2.87, p < 0.001),
squared VOT (β̂ = 1.15, p = 0.01) and subsequent context
(β̂ = 0.88, p < 0.001) such that participants were more likely
to respond /t/ when VOT increased and when subsequent con-
text was /t/-biasing. The interaction between squared VOT
and context was not significant (β̂ = 0.06, p = 0.47), replicat-
ing previous findings that suggest rational information inte-
gration.

There was no main effect of group on /t/-responses (β̂ =
0.01, p = 0.89). Crucially, there was a significant interaction
between group and context (β̂= 0.41, p= 0.001) such that the
High-Informativity group showed a larger context effect than
the Low-Informativity group. A simple effects analysis2 re-
vealed that both groups showed a significant context effect in
the same direction (High-Informativity group: β̂ = 1.25, p <
0.001; Low-Informativity group: β̂ = 0.47, p = 0.007).

Discussion
We found that both exposure groups showed effects of VOT
and subsequent context on their categorization responses,
suggesting that they maintained gradient representations of
speech input (VOT) in memory. As predicted, however, the
effect of context was much smaller for the Low-Informativity
group as compared to the High-Informativity group. These
results suggest that the average informativity of later con-
text influences whether listeners maintain gradient informa-
tion about VOT in memory.

Experiment 1 shares with most previous work on the main-
tenance of sub-categorical representations that our paradigm
involved a large degree of repetition (see Connine et al., 1991;
Szostak & Pitt, 2013; Bicknell et al., under review; Bushong
& Jaeger, 2017). This raises questions about the extent to
which the results of Experiment 1 generalize to scenarios
that more closely resemble the task demands of everyday lan-
guage processing. In particular, participants in Experiment 1
were asked to make categorization judgments about the same
critical target words of interest (tent and dent) throughout
the entire experiment. This target word always occurred in

2R formula: /t/-response ∼ VOT + Group / Context plus
the same random effects as the main analysis.
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Figure 3: Experiment 2 Test Phase categorization results by
VOT, subsequent context, and group. Error bars are boot-
strapped 95% confidence intervals over subject means.

the same position within the 12 different sentence contexts.
Additionally, subsequent information context (in the High-
Informativity exposure group) always occurred about 6-9 syl-
lables after the target. All of these factors likely directed par-
ticipants’ attention towards the target words.

One possibility is thus that the large context effects in
the High-Informativity group is due to participants limiting
their attention solely on the target word and the informa-
tive context. Similarly, the small context effect in the Low-
Informativity group might be due to participants recognizing
that they can do the task just as well while tuning out after
hearing the target word, as they always get asked about the
same target word. Experiment 2 presents a first step towards
addressing this question.

Experiment 2
Experiment 2 is identical to Experiment 1, except that partic-
ipants in both exposure groups of Experiment 2 only made
judgments about the target words of interest (tent and dent)
on half of the trials. On the other half of trials, participants
were instead asked to categorize another word in the sentence;
these alternate target words were never the informative sub-
sequent context words for our critical words of interest—i.e.,
participants were never asked about the word “campgrounds”
in sentence (1) above. This change from Experiment 1 had
two purposes: (i) it directed participants’ attention away from
the target words, thus allowing us to test how participants be-
have when targets are not perfectly predictable, as in natu-
ral speech; and (ii) made it more likely that participants in
both exposure groups remained attentive throughout the en-
tire sentence. One of our concerns about Experiment 1 is
that participants in the low-informativity group may have just
‘tuned out’ the rest of the sentence, and thus subsequent bias-
ing context in the test phase, after hearing the target word. We
reasoned that asking participants about words near the end of

the sentence would generally increase attention toward those
areas of the sentence, thus making it more likely that they
heard and processed the later context. Participants were not
told before the experiment what types of words they would be
making judgments about or how often, so it is unlikely that
they had a priori expectations about the distribution of tar-
get words (beyond general expectations about what kinds of
words are usually tested in experiments, e.g. content words).

Analysis
Analyses were identical to Experiment 1. Our exclusion cri-
teria resulted in the removal of 16 participants (12.5%) from
analysis.

Results
Figure 3 shows /t/-responses by group, VOT, and subsequent
context over the test phase.

We found main effects of VOT (β̂ = 0.71, p = 0.01),
squared VOT (β̂ = 1.68, p < 0.001) and subsequent context
(β̂ = 1.26, p < 0.001) such that participants were more likely
to respond /t/ when VOT increased and when subsequent con-
text was /t/-biasing. The interaction between squared VOT
and context was significant (β̂= 0.22, p= 0.01), in contrast to
Experiment 1. In Experiment 2, we did not find an interaction
between group and context (β̂ = 0.18, p = 0.14), although the
numerical difference was in the same direction. The simple
effects analysis revealed that both groups showed a signifi-
cant context effect in the same direction (High-Informativity
group: β̂ = 1.39, p < 0.001; Low-Informativity group: β̂ =
1.01, p < 0.001).

Discussion
The results of Experiment 2 are qualitatively similar to Exper-
iment 1: participants overall showed evidence of integration
of VOT and context into their responses, but the effect of con-
text was numerically smaller in the Low-Informativity group
than in the High-Informativity group. In contrast to Exper-
iment 1, this difference between groups was not significant.
This may suggest that shifting participants’ attention away
from our main manipulation made it harder to track how in-
formative subsequent context was for our target words. How-
ever, it is hard to draw firm conclusions from a null result. To
investigate whether the context effect difference is different
between the two experiments, we directly compare them.

Interestingly, we also found a significant interaction be-
tween squared VOT and context, suggesting that partici-
pants’ integration of VOT and context was non-optimal—
unintuitively, participants seemed to use context more for un-
ambiguous stimuli. This seems to contradict previous pro-
posals that context is either integrated as a constant regard-
less of ambiguity (optimal integration, Bicknell et al., under
review), or is used more for ambiguous than unambiguous
stimuli (Connine et al., 1991). Since this aspect was not
the focus of this experiment we will not discuss it further
here, but further work should investigate why we observe sub-
optimal integration behavior in this more naturalistic setting
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Figure 4: Model coefficients from combined analysis of Ex-
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(for a first step in modeling sub-optimal integration strategies
in this paradigm, see Bushong & Jaeger, 2019).

Comparison of Experiment 1 & 2
Since we observed a different pattern of results in Experi-
ments 1 and 2, we conducted a post-hoc combined analysis
in an attempt to assess overall evidence for the group by con-
text interaction across experiments. In order to test the re-
lationship between the group and context interaction and ex-
periment, we fit a combined regression model to both of the
datasets, allowing experiment (sum coded such that Experi-
ment 1 = -1, Experiment 2 = 1) to interact with context and
group. The other fixed effects remained the same as the above
analyses for both experiments.

Results
Figure 4 shows the results of the combined analysis of Exper-
iments 1 and 2.

In the combined analysis, we found main effects of VOT
(β̂ = 3.3, p < 0.001) and subsequent context (β̂ = 1.06, p <
0.001). There was also a significant interaction between
group and context (β̂ = 0.29, p < 0.001) such that the con-
text effect was larger for the High-Informativity group than
the Low-Informativity group. Critically, there was no three-
way interaction between experiment, group, and context (β̂ =
−0.09, p = 0.29), suggesting that the two-way interaction be-
tween group and context did not differ significantly across
experiments.

We also found an unexpected two-way interaction between
experiment and context (β̂ = 0.23, p = 0.008), such that the
context effect was larger in Experiment 2 than Experiment 1.
We return to this difference below. None of the other effects
reached significance (p > .2).

General Discussion
When comprehending language, listeners must process thou-
sands of bits of incoming information per second, compress-

ing it into more manageable abstract representations. How-
ever, sub-categorical information about input can be useful to
maintain in memory for later integration with relevant cues.
Previous work has shown that listeners seem to be able to
maintain such gradient representations in memory for up to
several seconds. Here, we asked how this is possible when
maintaining gradient representations of all incoming input
would presumably overload short-term memory. We pro-
posed that these effects may be driven by the expected utility
of maintaining such information. In the case of these exper-
iments, we tested this by manipulating the informativity of
subsequent context: we reasoned that if subsequent context
is likely to be informative for phonemic categorization, then
the utility of maintaining gradient representations of VOT is
higher, since it will be available for cue integration.

In Experiment 1, we found that both experimental
groups maintained gradient representations of VOT over the
timescale tested in this experiment (6-9 syllables). In line
with our predictions, this effect was significantly smaller
in the Low-Informativity group compared to the High-
Informativity group. This provides support for our hypothesis
that expected utility mediates maintenance of gradient repre-
sentations of speech input in memory.

In order to make our experiments more naturalistic, we
added an additional manipulation in Experiment 2. Partici-
pants were not always making judgments about our critical
target words of interest. Instead, on half of all trials (dur-
ing exposure and test), they made categorization judgments
about non-critical words in the sentence. This change in the
design takes a (small) step towards the task demands of nat-
ural language use: listeners don’t necessarily a priori know
which parts of the speech input they will need to comprehend
and respond to. When we made this change, we observed
the same numerical trend toward a smaller context effect in
the Low-Informativity group, but this difference was not sig-
nificant (p = 0.14). It is possible our manipulation in Ex-
periment 2 successfully directed participants’ attention away
from the tent- and dent-biasing context, so that participants
had a harder time estimating the informativity of subsequent
context.3 A follow-up combined analysis found no evidence
that there was a difference in the interaction between the two
experiments, though such an interaction might have been dif-
ficult to detect. We tentatively conclude that both experiments
support the hypothesis that listeners maintain gradient repre-
sentations according to their expected utility, but further ex-
perimentation with similar design is needed.

Of note, our follow-up analysis also found that participants
in Experiment 2 exhibited an even larger context effect as
compared to participants in Experiment 1. This might be
seen as surprising: if anything Experiment 2 directed atten-

3As suggested by Figures 2 and 3, the difference in the context
effects between experiments was driven by the Low-Informativity
group: post-hoc analyses revealed that the context effect was larger
in the Low-Informativity group in Experiment 2 compared to Ex-
periment 1, but there were no differences in the High-Informativity
group.
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tion away from the critical word, compared to Experiment
1. In Experiment 2, participants had to make categorization
judgments about words that occurred in different parts of the
sentence rather than only the tent and dent. Critically, partici-
pants were never asked to make judgments about the tent- and
dent-biasing context. The large context effect in Experiment
2 would thus seem to suggest that maintenance of gradient
representations in memory is the default during speech per-
ception, rather than the exception. While this interpretation
stands in stark contrast with received wisdom (Just & Car-
penter, 1980; Christiansen & Chater, 2016), it is line with
a number of other recent findings that have found mainte-
nance, for example, on the first trial of experiments (Bushong
& Jaeger, 2017) or for lexically heterogeneous stimuli in nat-
uralistic task-based language use (Burchill, Liu, & Jaeger,
2018; Brown-Schmidt & Toscano, 2017). Thus the present
results may suggest that ‘turning off’ maintenance, rather
than continued maintenance of gradient representations, re-
quires sustained attention to specific, known targets.

Why would listeners show such a robust maintenance ef-
fect? One possible explanation consistent with our expected
utility proposal is that natural language is typically infor-
mative: not only are low-level features like acoustic cues
highly correlated even at long distances (providing helpful
redundancy in light of perceptual inferences over noisy input,
Hermansky, 2018), speakers talk about coherent topics that
naturally provide semantic context that adds categorization-
relevant information about the speech signal. Given these
long-distance informational dependencies, maintaining gra-
dient representations will typically be beneficial since it al-
lows for optimal integration of these cues (Bicknell et al.,
under review). This would explain why we observe robust
maintenance effects in paradigms that test sentences which
follow these general natural constraints.

The present paradigm shares some caveats with previous
work (Bicknell et al., under review; Connine et al., 1991;
Szostak & Pitt, 2013): Experiments 1 and 2 involve a high
degree of repetition; very much unlike in everyday language
use, participants had to categorize the same word dozens of
times. While the results of Experiment 2 show that listeners
do maintain gradient representations about the speech input
even when the target word is not perfectly predictable, Exper-
iment 2 still allowed listeners to limit their attention—and
maintenance of gradient representations: the critical target
words (tent and dent) were the target of categorization on half
of all trials. It is thus an open question whether equally strong
maintenance of gradient representations is observed when it
is less clear which aspects of the speech signal will turn out
to be particularly relevant later (for preliminary evidence, see
Burchill et al., 2018; Brown-Schmidt & Toscano, 2017).
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Abstract

In this paper we explore the effect of normal aging on executive function and present a computational account of the effect
of aging in a standard executive task. We tested 25 younger adults and 25 older adults (both with no known neurological
condition) on the Wisconsin Card Sorting Task (WCST), a classic test of executive function. The test produces multiple
measures related to the types of error made by participants, the rate of learning, and so on. As hypothesised, results show
no difference between the groups in the number of perseverative errors (i.e., in continuing with a previously successful rule
in the presence of negative feedback), but a significantly increased tendency for older adults relative to younger adults to
commit set loss errors (i.e., to switch away from a rule despite positive feedback). We fit an existing neurocomputational
model of the task to the experimental data by searching through the models parameter space in order to find the best set of
parameter values for the two different age groups. This leads to a proposition regarding the effect of aging on the value of
the epsilon ctx parameter, which we argue elsewhere reflects cortical dopamine concentration. We further reanalyse the
data by clustering participants by performance (rather than by age) and show that there are multiple points in parameter
space that fit each cluster of participants. We argue on the basis of this and the behavioural data, that different parameter
values reflect different solutions to optimizing task performance, and that older participants may compensate for changes
in epsilon ctx (reflecting dopamine concentration) by effortful changes in other parameters (specifically, by increasing
attentional focus).
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Abstract

We propose a neural network model that accounts for the emer-
gence of the taxonomic constraint and for the whole object
constraint in early word learning. Our proposal is based on
Mayor and Plunkett (2010)’s neurocomputational model of the
taxonomic constraint and extends it in two directions. Firstly,
we deal with realistic visual and acoustic stimuli. Secondly,
we model the well-known whole object constraint in the visual
component. We show that, despite the augmented input com-
plexity, the proposed model compares favorably with respect
to previous systems.

Keywords: Neural Networks; Children; Language acquisi-
tion.

Introduction
How do infants learn the referent of words? As Quine (1960)
famously pointed out, for every word heard in a given cir-
cumstance, there are several possible referents: in order to
infer the appropriate one, infants have to rule out several pos-
sible alternatives. But how? Markman (1989) proposed that
infants rule out inappropriate referents by means of three con-
straints. By the taxonomic constraint children extend words
to taxonomically-related objects: when a child hears the word
“dog” pronounced by a caregiver while pointing at a specific
dog, she generalizes the referent of “dog” to all dogs, not just
to the one in front of her. By the whole object constraint
children assume that novel words refer to objects as a whole,
rather than to their parts, substance, color, or the visual con-
text in which it appears. Lastly, by the mutual exclusivity con-
straint children assume that two labels usually do not refer to
the same object.

This paper concerns the first two constraints, namely the
taxonomic and the whole object constraint.

Our starting point is Mayor and Plunkett (2010)’s neu-
rocomputational model of the taxonomic constraint. Their
model provides an account of how the taxonomic constraint
may emerge from infant experience, as the result of the in-
terplay between (i) taxonomic organization of visual inputs

in visual areas, (ii) phonetic organization of the acoustic in-
puts in acoustic areas, (iii) Hebbian learning developing con-
nections between the two organizing areas. The model uses
self-organizing maps (Kohonen, 2001) and Hebbian learn-
ing (Hebb, 1949), which are considered cognitively plausible
mechanisms, describing at an abstract level realistic forms
of information organization in the brain (Hebb, 1949; Mi-
ikkulainen, Bednar, Choe, & Sirosh, 2005). The powerful
interplay between these structures allows word-object asso-
ciations to taxonomically generalize after a single (one-shot)
joint word object presentation1.

Here we extend Mayor and Plunkett (2010)’s seminal
model in two directions:

1. We intend to investigate whether the taxonomic constraint
can emerge from experience if we consider realistic visual
and acoustic stimuli (photographic images with different
size, color, location in the picture, point of view, etc. and
audio excerpts embodying spoken words synthesized via
software) instead of the very simple, artificially built stim-
uli examined in the original model. A first effort in this di-
rection was undertaken by (Fenoglio, Esposito, & Gliozzi,
2017), in which, however, only realistic visual stimuli were
considered. Here we enrich that proposal by considering
visual and acoustic realistic stimuli (as well as the whole
object constraint, see below). To this purpose, we insert
in the model two deep architectures, one convolutional to
process visual stimuli and the other recurrent to process re-
alistic acoustic stimuli.

2. We insert the whole object constraint in the model.
Whether early learned or innate, the capacity of picking up
the objects in a scene is present in early infancy (see e.g.
Spelke, 1990). However, this primacy of the object concept

1For a critical discussion of the breadth of one shot learning
and fast mapping see for instance (Yurovsky, Fricker, Yu, & Smith,
2014) or (McMurray, Horst, & Samuelson, 2012).
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in visual scene analysis is not present in most recent convo-
lutional neural network (CNN) models, that are the state of
the art in vision tasks. In fact, these models usually process
visual images as a whole (object and background context
together), see e.g., (Zhu, Xie, & Yuille, 2017). Here we
overcome this limitation of CNNs by inserting a segmen-
tation module that extracts the object from the visual scene
before feeding it to the CNN for feature extraction. In the
experimental section we show that the whole object con-
straint improves the performance of the model.

Remarkably, our model replicates Mayor and Plunkett
(2010)’s performance with realistic visual and acoustic stim-
uli, albeit requiring very-few joint presentations of image and
spoken word pairs.

It is worth mentioning here that we do not try to maintain
that CNNs or LSTMs are cognitively plausible models of how
realistic stimuli are processed in biological brains – more de-
tails about this point in the “New Model” Section. We are just
validating the hypothesis that the (Mayor & Plunkett, 2010)
model could generalize to more complex stimuli and that the
whole-object constraint can be helpful in this model.

Mayor and Plunkett (2010)’s model
Mayor and Plunkett (2010) neurocomputational model of tax-
onomic constraint (Figure 1) is based on (i) a visual self-
organizing map (SOM) that processes visual inputs, (ii) an
acoustic SOM that processes acoustic inputs, (iii) Hebbian
connections between the two maps. Both self-organizing
maps and Hebbian learning are considered cognitively plau-
sible mechanisms (Hebb, 1949; Miikkulainen et al., 2005)

Figure 1: Mayor and
Plunkett (2010)’s model

Firstly, the two maps are in-
dependently trained (using the
standard learning algorithm for
self-organizing maps, see Ko-
honen, 2001) to categorize the
visual and the acoustic stim-
uli. This first learning phase
is preliminary to word learning,
and unsupervised, proper word
learning starting to occur once
infants have already started to learn to organize visual and
acoustic information in isolation.

In this way, the two maps learn to represent the stimuli
of their training set in a topologically significant way: close
units respond (activate) similarly to similar stimuli. The neu-
ral activation a j of a neuron j in response to a stimulus x is

defined as: a j = e−
q j
τ , where q j is the quantization error (i.e.,

the distance between the input vector x and j′s weight vector:
q j = ‖x−w j‖)), and τ is a parameter that modulates the neu-
ral activation. The neuron having the strongest activation is
the stimulus’ Best Matching Unit (BMU).

Once this first phase of learning is complete, the actual
word learning can start. This is the Hebbian Learning phase,
in which visual and acoustic stimulus are presented to their
respective maps and the synapses between the two maps are

strengthened. In particular, for each neuron v on the visual
map and neuron p on the acoustic map, the Hebbian connec-
tion uv,p is strengthened proportionally to the resulting neural
activations av and ap, as follows:

u′v,p = uv,p +1− e−λavap

where λ is the Hebbian training learning rate, and u′v,p is the
Hebbian connection after the update.

A single Hebbian learning event, combined with the pre-
viously acquired categorization capabilities of the visual and
acoustic SOMs, allows the model to generalize the associa-
tion to other stimuli belonging to the same category.

Comprehension is assessed by considering what visual cat-
egory is retrieved when a word is presented to the auditory
map and its activation is propagated via Hebbian connections.
Production is assessed by considering what word is produced
by the auditory map when a visual stimulus is presented to the
visual map and the resulting activation is propagated through
Hebbian connections.

The ability of the model to extend the learned word-object
associations to other words and objects belonging to the same
category is measured by the Taxonomic Factor, which is the
percentage of correct word-object associations generated by
the model (i.e., the average of the Production and Compre-
hension statistics). Results show that when the SOMs are
adequately trained the Taxonomic Factor reaches 80% after a
single joint word-object presentation.

New Model
We have enriched the original Mayor & Plunkett model
(2010) (and Fenoglio et al. (2017)) so that (i) it can deal
with realistic visual and acoustic stimuli, and (ii) it captures
the whole object constraint. A graphical representation of
the overall model is contained in Figure 2. For the visual
and the acoustic stimuli we propose to use Deep Neural Net-
works to act as powerful feature extractors: we use two deep
convolutional neural networks (Mask R-CNN and Inception
V3) to process visual information and a deep recurrent neu-
ral network (Deep Speech) to process acoustic information.
These models have been widely adopted for this purpose by
the Machine Learning community, as they are able to output
highly discriminative features (Razavian, Azizpour, Sullivan,
& Carlsson, 2014; Graves, Mohamed, & Hinton, 2013; Han-
nun et al., 2014). Even if it is not the main focus of this pa-
per, it is worth mentioning that these models have also been
proposed as realistic models of visual and acoustic process-
ing. Several studies establish a parallel between the represen-
tations of the visual input created by the different levels of
CNNs and the way in which visual stimuli are processed by
the visual cortex (Serre, 2016; Kriegeskorte, 2015; Khaligh-
Razavi & Kriegeskorte, 2014). Furthermore, comparisons
have been drawn between Recurrent Networks units (specifi-
cally the LSTM cell (Hochreiter & Schmidhuber, 1997)) and
biologically plausible models of working memory such as the
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PBWM model (prefrontal cortex and basal ganglia) (O’Reilly
& Frank, 2006).

Visual Component
The visual stimuli that we consider are images taken from
the Common Objects in COntext (COCO) dataset (Lin et al.,
2014). In this dataset images are labelled pixel-wise, mean-
ing that it is possible to extract the foreground objects from
the background scene (i.e. performing image segmentation).
As a first component of the visual module, we included a
Mask R-CNN segmentation model (He, Gkioxari, Dollár, &
Girshick, 2017), which separates foreground objects from the
background content. Then the foreground object is cut from
the background, the background erased and the new image so
obtained is fed into an InceptionV3 Deep Convolutional Net-
work (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016),
an architecture which displays human-like performance on
Object Recognition tasks. The deep network processes the
object and builds a representation for it. We extract the rep-
resentations (i.e. the neural activations) that are found in
the deepest layer before the fully connected neural classi-
fier (as they contain the most abstract features which have
the best chance to depict the abstract concept the object in-
stance refers to), and feed these representations to the visual
self-organizing map.

To summarise, we employ a stack of two Deep Neural Net-
works in our visual module: the first one segmenting the ob-
ject from the context; the second one analysing that output
by means of a standard convolutional deep network. This
architecture allows the model to overcome one limitation of
standard deep convolutional models that, differently from hu-
mans (Spelke, 1990), do not use the notion of object when
processing an image, and, on the contrary, rely very much on
background information in object recognition tasks (Zhu et
al., 2017).

Acoustic Component
We process spoken words using a Deep Speech Recurrent
Network (Hannun et al., 2014) which is close to the state of
the art in the Speech Recognition (i.e. parsing speech into
text) task. This network is able to extract highly discrimina-
tive representations from our input stimuli, which have been
generated using a realistic voice synthesizer that can be set
up to use both male and female voices as well as different re-
gional English accents. In our experiments, we had the gen-
erator pronounce labels from the COCO dataset. Similarly to
the visual module, we extract features by concatenating the
hidden state of the recurrent units after each time step. The
resulting vector representations are then truncated to the same
length and reduced in dimensionality by means of principal
component analysis.

Overall Model
The upper component of the model, comprising the visual and
acoustic self-organizing maps and their Hebbian connections,
is trained as in the original (Mayor & Plunkett, 2010) model:

Visual Feature 
Extraction Network

Acoustic Feature 
Extraction Network

Segmentation 
Network

“dog”

Visual Module

Acoustic Module

Figure 2: Our model

at first the visual and acoustic self-organizing maps are sepa-
rately trained to organize their stimuli, then Hebbian learning
starts.

Similarly to the original model, in order to assess the qual-
ity of the word/object association (the Comprehension and
Production ability), we proceed as follows. For Production,
we present to the visual map a visual stimulus, individuate
a BMU, propagate its activity through Hebbian connections,
and then evaluate the induced activation on the acoustic map
with a cascading mechanism where neurons are interrogated
in order of activation intensity. The first neuron correspond-
ing to a single spoken word (i.e. a neuron that is the BMU
for a single acoustic stimulus category) indicates which word
is produced. We say that a Production task is successful if
the category of the word matches the category of the visual
stimulus. We proceed in a similar way for Comprehension.

Experiments
In our experimental phase, we set out to answer the following
two questions:

1. Does our extension to the original word learning model by
(Mayor & Plunkett, 2010) still account for the taxonomic
constraint? In other words, is it possible to use realistic
auditory and visual stimuli and achieve good word learning
performance?

2. Is the whole object constraint beneficial to the word learn-
ing process?

In order to extract whole object and non whole object rep-
resentations (the inputs of the visual SOM), we trained two
separate InceptionV3 networks for the same amount of time
(i.e. epochs, full passes of the COCO dataset). However, one
network was trained on images where the main object was cut
out using the Mask R-CNN model, while the other one em-
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ployed images that include a portion of the full visual scene2.
We refer to these models respectively as the “whole object”
and “non whole object” networks. Therefore, we explored the
impact of using one network or the other in our visual module
as a way to quantify the impact of including the whole ob-
ject constraint in the overall model. An early evidence of the
importance of the whole object constraint is provided by the
performances (in terms of Object Recognition accuracy) of
the two networks: the whole object network reaches a higher
accuracy (93%) than the non-whole object network (77%)
after the same amount of training time and similar learning
rate schedules3. For the experiments that follow, however,
we decided to only use as visual stimuli those images that
have been correctly classified by both networks; thus, both
convolutional models have perfect accuracy on the final vi-
sual dataset and can be compared on a fair ground. As far as
the acoustic stimuli are concerned, we used a voice synthe-
sizer to generate realistic voice recordings of both male and
female voices pronouncing the object categories which ap-
pear in the visual dataset. To augment the size of the auditory
dataset, we also varied the synthesizer’s pronunciation speed.
The representations were then extracted using a pre-trained
Deep Speech network4. We truncated the representations to a
length of 25 and kept the 20 most informative factors of varia-
tion using PCA. In the following sections, we report represen-
tation quality, SOM quality and taxonomic factor measure-
ments for a dataset composed by 1000 visual stimuli and 390
acoustic stimuli belonging to 10 different word-object cate-
gories.

Representation Quality
First off, we set out to understand whether the representations
extracted from the realistic stimuli are well-behaved. To this
end, we performed an experiment in which the representa-
tions are used as input for the k-Means clustering algorithm
with k, the number of clusters, set to 10. After fitting the clus-
tering model, we visualize the resulting clusters (see Figure 3)
using a histogram plot.

We also assess the trained SOMs’ topological organization
by visualizing them. In Figure 4, we see that representations
belonging to the same category are mapped on neurons that
are topologically close. Moreover, we evaluate the organiza-
tion quality by using the class compactness measure; this is
computed by averaging the Euclidean distances between neu-
rons that are BMUs for stimuli belonging to the same class
and dividing by the average distance between BMUs for any
stimulus. Lower values indicate better topological structure.

2More specifically, we used the bounding box information for
each object in COCO and expanded it by 40% so to preserve a sig-
nificant amount of visual context.

3We trained the whole object network for 60 epochs. We used
a learning rate of 10−3, decreasing it to 10−4 after 40 epochs. This
schedule, however, appeared to be very sub-optimal when training
the non whole learning network, as the object recognition accuracy
progressed very slowly. Therefore, the second network was trained
with a learning rate of 10−2 and decreased it to 10−3 after 40 epochs.

4https://github.com/mozilla/DeepSpeech/

(a) Non whole object representations.

(b) Whole object representations.

(c) Audio representations.

Figure 3: K-means clusters. Colors show how representa-
tions of each category contribute to the clusters.
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Averaging this formula over the categories in the dataset re-
sults in the overall SOM compactness value. We report (Table
1) lower compactness values for the SOM we trained on the
whole object representations, and robust compactness for the
non whole object and acoustic SOMs.

Word Learning
As an experimental evaluation of the overall model, we com-
pare the word learning capabilities of our model with and
without the whole object constraint. After training with a
number of joint word-object presentations, the model has to
be able to produce an appropriate acoustic stimulus when pre-
sented with an image (understanding) and viceversa (compre-
hension). The algorithm used to obtain the final word-object
association is described in the “New Model” Section.

In Figure 5 we report the understanding and comprehen-
sion performances alongside the Taxonomic Factor (their av-
erage). A set of stimuli (20% of all the visual and acoustic
representations) was reserved for testing and was excluded
from the training sets.

Discussion
Coming back to the questions we set out to answer at the start
of the section, Figure 5 makes apparent that our model man-
ages to perform word learning with appropriate performance
(set at a Taxonomic Factor of over 80% in (Mayor & Plun-
kett, 2010)) after very few word-object presentations. The
performance is also in line with previous work on this model
(Fenoglio et al., 2017), in which, however, very simplified
acoustic stimuli were considered. Therefore, this computa-
tional model can still account for the taxonomic constraint
even in the face of realistic visual and acoustic stimuli. As for
the contribution of the whole object constraint to the model,
we first observe that the comparison of the clusters is favor-
able to the whole object model (Figure 3); furthermore, the
self-organizing maps that were trained using the aforemen-
tioned representations display good topological organization
(Figure 4) and solid compactness values. In addition, as im-
plied by Table 1, the SOM trained with the whole object rep-
resentations displays stronger topological organization. As
for the word learning performance, we obtain a significantly
higher Taxonomic Factor when using the whole object repre-
sentations and conclude that including the whole object con-
straint in this model is highly beneficial.

Related Work
Our model bears some family resemblance to recent models
of image-speech association learning (Synnaeve, Versteegh,
& Dupoux, 2014; Harwath & Glass, 2015; Harwath, Tor-
ralba, & Glass, 2016; Chrupala, Gelderloos, & Alishahi,
2017), which, at least in part, have been proposed as cog-
nitive models of spoken words referent acquisition. Sim-
ilarly to Synnaeve et al. (2014), here we consider associ-
ations between images and single spoken words, whereas
Harwath and Glass (2015); Harwath et al. (2016); Chru-
pala et al. (2017) consider associations between images and

(a) SOM over non whole object representations.

(b) SOM over whole object representations.

(c) SOM over audio representations.

Figure 4: SOM representations. Colors represent different
categories, larger circles are for neurons that activate more
often.

Table 1: Compactness values for the three SOMs.

Visual Visual Acoustic
Whole Object Non Whole Object

0.228 0.372 0.429
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Figure 5: Taxonomic factor of the model, using an increasing
number of pairs of stimuli per class during the training of the
Hebbian Connections (on the x-axis).

more complex acoustic stimuli, as whole spoken sentences
(Harwath & Glass, 2015; Harwath et al., 2016; Chrupala et
al., 2017). With respect to all these models, the specificity of
our model is that it learns to generalize image-speech associ-
ations to whole visual categories and all phonetic variants of
a corresponding word, out of few positive joint image-speech
presentations, without any need of explicit counterexamples.
This parallels the training schedule by which humans usually
learn to associate words (or sentences) to visual stimuli.

Vinyals, Blundell, Lillicrap, Kavukcuoglu, and Wierstra
(2016) address the problem of One Shot Learning: how to
build models that reproduce the crucial ability of humans, in-
fants and adults, of learning out of few examples, as opposed
to the massive training currently used for many neural net-
work models? The proposed model is trained to integrate in
one-shot new observations into pre-existent knowledge, rep-
resented by a support set. Similarly to our work, representa-
tions extracted from pre-trained neural networks are also em-
ployed. The authors test their model on classification tasks
in which the training dataset is composed by 1 or 5 examples
for each category; while a direct comparison would not be
proper, as the experimental setups and datasets are fundamen-
tally different, it is worth mentioning that word learning in the
present approach does not rely on the supervised, gradient-
based optimization of a training objective (i.e. a loss func-
tion). On the contrary, in our model word learning emerges
after the unsupervised training of the SOMs and a few joint,
positive presentations of word-object pairs.

Conclusions
In this paper we expand on the the model originally in-
troduced by (Mayor & Plunkett, 2010) and extended by
(Fenoglio et al., 2017). Our work focused on two objectives:
allowing the model to process realistic acoustic stimuli, and
injecting the whole object constraint into it. We also intro-

duce experiments allowing one to assess the effects of these
two changes to the model.

In summary, the empirical evidence shows that the realistic
stimuli are not hindering the ability of the model to learn the
association between objects and word. In fact, even though
the greater complexity of the stimuli representation makes the
task harder, the system only requires a few joint presentations
to reach the 80% taxonomic accuracy performance shown in
the original work by Mayor and Plunkett (2010).

For what concerns the whole object constraint, the evi-
dence demonstrates the remarkable impact of this constraint
on the performances of the system. In practice the whole ob-
ject constraint allows for better performances with respect to
the model by Fenoglio et al. (2017) even considering that the
latter is dealing with simpler acoustic stimuli. It is worth de-
bating whether the whole-object representations extracted by
the visual module contain all the parts of the original objects.
Indeed, given the discriminative nature of the CNN training
process, the representations may only contain few, very spe-
cialized features which suffice for the classification task. As
a future work, one may investigate this problem by design-
ing experiments in which one studies whether the activation
of the visual SOM, elicited by an acoustic stimulus (a word),
allows one to reconstruct a prototypical version of the object
referenced by the word. Furthermore, we intend to investi-
gate how to cope with the uttering of whole sentences instead
of single words.
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Abstract 
Children learning language in multilingual settings have to 
learn that objects take different labels within each different 
language to which they are exposed. Previous research has 
shown that adults can learn one-to-one and two-to-one word-
object mappings via cross-situational statistical learning 
(CSSL), and that socio-pragmatic cues may differentially 
influence monolingual and bilingual adults’ learning of such 
mappings. However, the extent to which monolingual and 
bilingual learners can keep track of multiple labels from 
multiple speakers has not yet been investigated. We 
manipulated the number of speakers in a CSSL task that 
involved learning both mapping types. We successfully 
replicated previous studies that found that both monolinguals 
and bilinguals could learn both types of mappings via CSSL. 
In addition, we found that bilinguals showed a steeper learning 
rate for two-to-one mappings than monolinguals, and 
bilinguals were more likely to accept two words for the same 
object than monolinguals. These results show that the effect of 
speaker identity on tracking word-object mappings varies 
according to language experience. 

Keywords: statistical learning; bilingualism; mutual 
exclusivity; cross-situational learning; word learning 

 
The learning of the mapping between a word and its referent 
is difficult, as there are infinitely many potential referents for 
a word. This uncertainty is referred to as the “Gavagai” 
problem (Quine, 1960). The uncertainty is increased still 
further when children grow up in multilingual environments, 
as this means there are multiple words for a particular 
referent. The present study aims to investigate how speaker 
identity, as a socio-pragmatic cue, impacts on language 
learning under such conditions of referential and reference 
uncertainty. 

A prominent suggestion as to how language learners 
overcome the “Gavagai” problem has been that language 
learners make use of constraints on which mappings can be 
formed. For instance, the ME constraint suggests that 
language learners tend to assign only one word to a referent 
(Markman & Wachtel, 1988). When language learners hear a 
novel word and see a familiar object, of which they already 
know the name, and an unfamiliar object, they would, based 
on ME, pair the novel word with the unfamiliar object. Other 
constraints include the whole-object assumption and the 
taxonomic assumption (Markman, 1991; Markman & 
Hutchinson, 1984; Markman & Wachtel, 1988). Another 
account of word learning is the socio-pragmatic account, 

which suggests that language learners’ word learning rely on 
their socio-cognitive skills and the social cues available in 
communicative contexts (Tomasello, 2000). This account 
explains word learning in terms of language learners’ ability 
to actively monitor others’ attention (Akhtar & Tomasello, 
1996) and intention (Tomasello & Barton, 1994) to discover 
intended referents of novel words. In general, both of these 
accounts posit that language learners make use of certain 
strategies to limit the number of potential referents for a word 
to help solve the “Gavagai” problem. Yet, constraining the 
problem space is not the only way to solve the word-learning 
problem. 

Recently, cross-situational statistical learning (CSSL) 
ability has been proposed as a valuable contributor to word 
learning. Though the referent of a novel word might be 
ambiguous within the context of a single learning instance, 
across multiple learning instances, learners would be able to 
track the co-occurrences of the novel word and its referent, 
with which it reliably appears. This statistical information can 
then help learners to disambiguate which words refer to 
which referents. Yu and Smith (2007) presented adults with 
a series of trials containing two to four unfamiliar objects and 
novel words. Within each trial, the word-object pairings were 
ambiguous (i.e., novel words were presented in a random 
order in all trials and there was no correspondence between 
the order of words and the location of objects on the computer 
screen), but across trials, with the presentation of different 
combinations of novel words and their referring objects, the 
word-object pairings could become apparent. Yu and Smith 
found that adults could learn the meanings of words via 
CSSL. This finding has been replicated in various similar 
studies (e.g., Fitneva & Christiansen, 2011; Hamrick & 
Rebuschat, 2012; Monaghan & Mattock, 2012; 
Vouloumanos, 2008). 

In these studies, only one-to-one word-object pairs were 
used. Yet, although learners favour ME (i.e., one-to-one 
word-referent mappings) when learning the meaning of 
words, overcoming ME is important for learning categories, 
homonyms, and synonyms (e.g., Markman & Wachtel, 
1988). It is also particularly important for bilinguals as they 
have to learn translation equivalents (forming many-to-one 
word-referent mappings; e.g., both “apple” and “manzana” 
refer to a particular fruit) and interlingual homographs 
(forming one-to-many word-referent mappings; e.g., “tuna” 
refers to a kind of fish in English but prickly pear in Spanish). 
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Ichinco, Frank and Saxe (2009) familiarised and then 
tested adults on a set of one-to-one word-object pairs. Then, 
the participants were familiarised to a second set of one-to-
one word-object pairs. Some of the pairs in the second set 
required the remapping of objects or words. Thus, although 
each set consisted of one-to-one word-object pairs, across the 
two sets, there was a combination of one-to-one, two-to-one, 
and one-to-two word-object pairs. The two-to-one and one-
to-two word-object pairs were critical for testing whether 
adults could relax ME during a CSSL task. It was found that 
the participants were successful in learning the one-to-one 
word-object pairs and the first mapping of the two-to-one and 
one-to-two word-object pairs. By contrast, they failed to learn 
the second mapping of the two-to-one and one-to-two word-
object pairs. Ichinco et al. took the results of their study as 
evidence against a simple associative learning account of 
word learning. 

Yet, Kachergis, Yu and Shiffrin (2009) argued that the 
results of Ichinco et al.’s (2009) study could be due to a 
blocking effect, giving rise to the participants favouring the 
first mapping learnt. Using a similar paradigm to that in 
Ichinco et al.’s study, Kachergis et al. manipulated the 
number of occurrences of the second mapping of the word-
object pairs. It was found that the extent to which the 
participants relaxed ME – successful at learning the second 
mapping of the word-object pairs – was associated with the 
number of times they had been exposed to the pairs, such that 
the participants were more likely to relax ME when there was 
more evidence (i.e., exposure) in the input for the second 
mapping. 

These CSSL studies examined CSSL in a monolingual 
population. Only a few studies have looked at CSSL in a 
bilingual population. A study similar to that of Yu and 
Smith’s (2007) by Escudero, Mulak, Fu and Singh (2016) 
showed that bilingual adults could learn one-to-one word-
object pairs via CSSL, outperforming their monolingual 
counterparts. Another study by Poepsel and Weiss (2016) 
investigated whether bilingual adults would learn one-to-two 
word-object pairs better than monolingual adults do, owing 
to them encountering more instances where they have to relax 
ME in order to learn new words. They tested the participants’ 
learning of the first and second word-object mappings of the 
one-to-two word-object pairs in separate testing blocks after 
the first and second block of learning trials respectively, and 
tested all word-object mappings in the final testing block after 
the third learning block. Consistent with Poepsel and Weiss’ 
prediction, it was found that the bilingual adults were quicker 
than the monolingual adults at learning and showed higher 
proficiency in learning the one-to-two word-object pairs. 

Further, Benitez, Yurovsky and Smith (2016) familiarised 
monolingual and bilingual adults with a set of one-to-one and 
two-to-one word-object pairs and tested their learning of the 
word-object mappings. They found that the monolingual and 
bilingual adults performed similarly on the task. Both groups 
showed learning of both the one-to-one and two-to-one word-
object pairs, but both groups were better at learning the one-
to-one pairs. This is surprising, but not unreasonable, as 

monolinguals, who have to learn synonyms, are also 
experienced in learning two-to-one word-object mappings. 
An interesting finding of their study was that when a 
phonological cue distinguished sets of labels, the bilingual 
adults were more likely to learn both words of the two-to-one 
pairs. This suggests that bilingual adults are more sensitive to 
the linguistic cues that hint at different languages present in 
the linguistic input. Taken together, there is evidence that 
bilingual adults are better than their monolingual 
counterparts when it comes to learning word-object pairs that 
violate ME via CSSL. 

Other studies have investigated whether socio-pragmatic 
cues in the linguistic input would affect learners’ cross-
situational word learning (e.g., Metzing & Brennan, 2003; 
Trude & Brown-Schmidt, 2012). Poepsel and Weiss (2014) 
manipulated the socio-pragmatic information available to 
participants. In one condition, the participants were told that 
there were two languages involved in the task. In the other 
two conditions, the participants were not told anything 
explicitly, but in one of these conditions, the participants 
were provided with information on speaker identity – they 
heard a male and a female voice. In the two-voice condition, 
the two speakers used the same word to refer to a different 
object, which could be seen as an implicit cue that there could 
be two different linguistic structures involved in the task. It 
was found that the manipulation of socio-pragmatic 
information did not affect the monolingual adults’ 
performance on learning one-to-two word-object pairs. Yet, 
in multilingual environments it is more usual for one object 
to be labelled differently by distinct speakers. Whether 
varying speaker identity would affect bilingual adults’ cross-
situational word learning, and whether speaker identity can 
influence learning of two-to-one mappings is as yet unknown. 

The aim of the present study was to examine whether 
speaker identity would differentially affect monolingual and 
bilingual adults’ performance on a CSSL task that involved 
the learning of one-to-one and two-to-one word-object pairs. 
We included two conditions – one where there was a single 
speaker labelling objects in two ways, and one where 
different speakers labeleld objects in two ways. The present 
study employed a CSSL paradigm similar to that in 
Monaghan and Mattock’s (2012) study, which is slightly 
different from many of the CSSL paradigms used in other 
studies. The crucial difference was that the CSSL paradigm 
used in the present study did not distinguish between 
familiarisation and test trials – participants were required to 
make a forced choice response, without feedback, between 
two objects in all trials. This allowed an online measure of 
how quickly and reliably participants form one-to-one and 
two-to-one word-object mappings across trials. 

Another unique feature of the present study was that an 
additional ME block was administered at the end of the CSSL 
paradigm to determine whether successful learning of two-
to-one word-object pairs was due to successful tracking of 
two structures in the linguistic input or a general tendency to 
relax ME. 
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It was predicted that bilingual adults would be quicker and 
more accurate at learning two-to-one word-object pairs than 
monolingual adults. Also, it was predicted that the presence 
of speaker identity would further benefit bilingual adults’ 
learning of two-to-one word-object pairs due to them being 
more experienced than monolingual adults in using socio-
pragmatic information to track multiple structures in their 
linguistic input. 

Method 

Participants 
Forty monolingual (Mage = 22.80, SD = 4.56, 4 male) and 
forty bilingual (Mage = 23.58, SD = 3.71, 10 male) 
participants were recruited through SONA (the departmental 
online recruitment system) and advertisements on social 
networking websites. Half of the participants in each 
language group were randomly assigned to the one-speaker 
condition, and the other half the two-speaker condition. Nine 
additional participants were tested but excluded due to 
technical difficulties (n = 8) and experimenter error (n = 1). 

Participants rated their language proficiency on a 10-point 
Likert scale from 1 (limited knowledge) to 10 (highly 
proficient). Monolinguals rated their English proficiency at 
an average of 9.95 (SD = 0.22). Ten monolingual participants 
indicated exposure to additional languages, but were 
considered functionally monolingual, as all such proficiency 
ratings were below 4 (M = 2.23, SD = 0.93), a similar cut-off 
to that used in Poepsel and Weiss (2016). The bilingual group 
rated the proficiency of their first language at an average of 
9.85 (SD = 0.43) and that of their additional languages at an 
average of 7.36 (SD = 2.01). 

Materials and apparatus 
Fourteen images of unfamiliar objects and 20 novel words 
were selected from the Novel Object and Unusual Name 
(NOUN) Database (Horst & Hout, 2016). Sound files of the 
novel words were generated using the system voices Kate 
(female voice) and Daniel (male voice) on Macintosh 
computers. Pictures were randomly paired with the novel 
words for each participant, such that there were eight one-to-
one word-object pairs and six two-to-one word-object pairs. 
In the one-speaker condition, all words were uttered by the 
same speaker. The gender of the speaker was 
counterbalanced across participants assigned to the one-
speaker condition. In the two-speaker condition, half of the 
words were uttered by a male, and the other half a female. For 
words in the two-to-one word-object pairs, the two words 
referring to the same object were uttered by voices of 
different gender. The gender of speaker of each word was 
counterbalanced across participants assigned to the two-
speaker condition. In addition, eight images of familiar 
objects were selected from the TarrLab Object Databank 
(1996) for use in the familiarisation trials. Sound files of the 
familiar words were generated using the system voice Allison 
(female voice) on Macintosh computers. Note that this was a 
different voice from those used in the test trials, so that the 

participants did not have any reliable information on what 
language(s) the speakers in the test trials spoke. The pictures 
and audio files of words were presented on a Macintosh 
computer using PsychoPy (Peirce, 2009). 

Procedure 
The experiment took place in a quiet room. Participants were 
tested in groups of less than five people. After receiving an 
information sheet and signing informed consent, each 
participant was asked to complete the experiment on a 
Macintosh computer. Participants were asked to put on 
headphones for the experiment. 

For each trial, the participants saw two pictures presented 
on the screen. After 500 ms, they heard a word. The target 
and foil were randomised for screen position (left vs. right) 
across trials. The participants were instructed to press the 
right arrow key if they thought the word presented refers to 
the object on the right and press the left arrow key if they 
thought the word presented refers to the object on the left. 
The participants were also instructed to make a guess if they 
did not know the answer to any of the test trials. 

The participants first took part in a familiarisation block, in 
which they were presented with four trials containing known 
words and objects. This was to familiarise the participants 
with the experimental procedure. For the main experiment, 
the participants first took part in eight CSSL blocks of 40 test 
trials each. Within each of the CSSL blocks, each object 
occurred four times as the target and four times as the foil. 
The screen position of the target and foil were pseudo-
randomised, such that the target appeared an equal number of 
times as the left and as the right object. Words in the one-to-
one word-object pairs occurred four times within a block, 
whereas those in the two-to-one word-object pairs occurred 
only two times within a block. The order of trials within each 
block was pseudo-randomised, such that none of the objects 
appeared in two consecutive trials. An important point to note 
is that the participants were not provided with any 
information on the number of languages involved in the main 
experiment – the only socio-pragmatic cue available to them 
was the number of speakers in the task. The participants were 
allowed to take a short break after every two blocks. After all 
eight blocks, the participants were exposed to each one-to-
one word-object pair 32 times and each two-to-one word-
object pairs 16 times. 

Immediately after the eighth CSSL block, the participants 
took part in an ME block containing eight test trials. Each 
trial featured one of the objects from the one-to-one pairs 
from the CSSL blocks and a new unfamiliar object. Each 
object occurred one time as the target and one time as the foil. 
As in the CSSL blocks, the screen positions of the target and 
foil were pseudo-randomised. For each of the first four trials, 
the participants heard a word that they had just had the 
opportunity to learn during the CSSL blocks. These four trials 
served the purpose of familiarising the participants with the 
new unfamiliar objects and to control for a possible novelty 
bias during later trials, where the new unfamiliar objects were 
the target. For each of the final four trials, the participants 
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heard a new novel word, which was spoken by the speaker 
who spoke the word for the foil in the same trial. These final 
trials were critical for determining the extent to which the 
participants relied on ME when learning new words. If a 
participant was relying on ME, they would be more likely to 
choose the familiar object in the first four trials and the less 
familiar objects in the last four trials. However, if a 
participant was relaxing ME, their performance would be at 
chance level – choosing either object as the answer in any 
given trial. 

Upon completing the ME block, all participants were given 
a full debrief and received £3.50 for taking part in the 
experiment. Each testing session lasted less than 30 minutes. 

Results 

Learning over the training blocks 
Data from six participants, one from the monolingual group 
and five from the bilingual group were excluded from 
analysis, due to them not demonstrating learning across 
testing blocks (i.e., average proportion correct across first two 
blocks > average proportion correct across final two blocks). 

To compare whether number of speakers had influenced 
the monolingual and bilingual adults’ learning of the two 
types of mappings, generalised linear mixed-effects (GLM) 
modelling was used to predict the adults’ response accuracy. 
The data for GLM modelling consisted of the response 
accuracy from each participant on each trial, giving a total of 
23680 observations. 

A series of GLM models were fitted using the glmer 
function (family = binomial) in the lme 4 package in R. A 
backwards elimination approach was used, entering as fixed 
factors: language group, speaker number, block, mapping 
type of the target (whether it had one or two labels), and 
mapping type of the foil. Extraneous variables, including 
participant gender and speaker gender, did not influence the 
participants’ performance. For training accuracy, the best 
model (AIC = 19977.7, BIC = 20131.1, logLik = -9969.9, 
deviance = 19939.7) given the data is the model with the 
following fixed effects: the three-way interaction, all two-
way interactions, and main effects of block, language group, 
and target mapping and the main effect of foil mapping; the 
following random intercepts: subject, word, target, and foil; 
and the following random slopes: block on subject and 
language group on word and target. 

As expected, there was a significant effect of block (b = 
0.26655, 95% CI [0.2204, 0.3127]), suggesting that, in 
general, performance improved across testing blocks. The 
main effect of target mapping was also significant (b = 
0.74309, 95% CI [0.5191, 0.9670]). To our surprise, and 
contrary to Benitez et al. (2016), the participants were better 
at learning the two-to-one than one-to-one mappings. There 
was also a significant main effect of foil mapping (b = 
0.26248, 95% CI [0.1826, 0.3424]), suggesting that 
performance was better if the foil in a given trial was a two-
to-one mapping. In addition, the interaction between block 
and target mapping was also significant (b = 0.06914, 95% 

CI [0.0194, 0.1189]), showing a convergence of the 
participants’ performance in learning the two mapping types 
across blocks, such that although their learning of the two-to-
one mappings was better than that of the one-to-one 
mappings across blocks, their learning rate for the one-to-one 
mappings was steeper.  

Though there was no significant main effect of language 
group, the interaction between language group and target 
mapping was significant (b = -0.49190, 95% CI [-0.8068, -
0.1770]), indicating that although both language groups were 
better at learning the two-to-one mappings, the monolingual 
group’s performance difference between the two mapping 
types was greater than that of the bilingual group. 

Finally, there was a significant three-way interaction 
between block, language group, and target mapping (b = 
0.08267, 95% CI [0.0103, 0.1551]; see Figure 1). The three-
way interaction suggests that, for the monolingual group, the 
learning rate of the two-to-one mappings was more gradual 
than that of the one-to-one mappings, whereas for the 
bilingual group, there was faster learning of the two-to-one 
mappings over the blocks. 
 

 
Figure 1: Three-way interaction of block, language group 

and target mapping. 
 

Performance on the ME task 
Though there were no significant main effect or interactions 
with number of speakers in the task, it was possible that 
monolingual and bilingual speakers relied on different 
strategies – either relaxing ME or successfully tracking two 
labels in the linguistic input would produce a similar pattern 
of results. In order to determine whether the two language 
groups relied on similar strategies, their performance in the 
ME block was analysed. In any given trial, if a participant 
picked the object that was in line with the application of ME, 
they scored 1, otherwise they scored 0. Similar to the 
treatment of the data from the CSSL blocks, GLM models 
were fitted to participants’ scores on each trial (592 
observations). Predictor variables of the GLM models were 
language group, speaker number, and word type (familiar vs. 
new), and a backwards elimination approach was used. 

Extraneous variables, including participant gender and 
speaker gender, did not influence the participants’ 
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performance. The best model (AIC = 180.6, BIC = 202.6, 
logLik = -85.3, deviance = 170.6) given the data is the model 
with the following fixed effects: the two-way interaction and 
the main effects of language group and speaker number; and 
the random intercept of subject. 

Of particular note, the significant interaction between 
language group and speaker number (b = 3.3748, 95% CI 
[0.0054, 6.7442]; see Figure 2) suggests that although both 
language groups were able to systematically apply ME, there 
was a tendency for the bilingual group to relax ME when 
there was only one speaker in the task. 
 

 
Figure 2: Interaction between speaker number and language 

group. 
 

Discussion 
Using a CSSL paradigm, the influence of speaker identity on 
monolingual and bilingual adults’ learning of one-to-one and 
two-to-one word-object pairs was examined. In line with 
previous research (e.g., Benitez et al., 2016), our results 
showed that both monolingual and bilingual adults are 
capable of learning one-to-one and two-to-one word-object 
mappings through CSSL. Yet, inconsistent with Benitez et 
al.’s main finding, both groups of participants in the present 
study were better at learning the two-to-one than one-to-one 
word-object mappings. This could be due to the imbalanced 
number of objects for each type of mapping – there were six 
objects that mapped onto two words, whereas only four 
objects mapped onto one word. As the majority of the objects 
had two names, it was possible that the participants had 
formed an expectation that each object could take on two 
names and used this as a learning strategy for the task. 

This explanation is given further weight by the finding that 
the participants were more likely to accurately map a label to 
the target object if the foil object was a referent of a two-to-
one mapping. The indication here is that, in any given trial, if 
a participant had already learnt two labels for the foil, they 
would map the different word presented to the target, due to 
the foil already taking on the expected maximum number of 
words. Yet, in order to detect that some objects were named 
with one, and others with two, labels, participants had to gain 
this knowledge from tracking implicitly the association 
between particular words and objects over multiple scenes. 

That participants were adept at acquiring both one and two 
labels for objects so early in training demonstrates the power 
of this learning mechanism. Yet, it should also be noted in 
Benitez et al.’s study, there were instances where two-to-one 
mappings were better learnt than one-to-one mappings in that 
the presence of a second label seemed to have improved 
learning of the first label. Our task could be showing a similar 
advantage. 

However, there were subtle differences in the learning 
trajectory of the monolingual and bilingual speakers in our 
study. The significant three-way interaction between block, 
language group, and target mapping shows that the learning 
of the two-to-one mappings was different for the two 
language groups. The performance of the monolingual group 
showed less improvement in learning of the two-to-one 
mappings, whereas the bilingual group had a steeper learning 
rate for the two-to-one compared to one-to-one mappings. 
This steeper learning rate could be due to their experience 
with language. In bilingual adults’ linguistic environment, 
two-to-one word-object mappings would be more dominant 
than one-to-one word-object mappings. This experience 
could have benefited them in learning the two-to-one 
mappings in the task, which is in line with the finding of 
Kalashnikova, Mattock and Monaghan’s (2015) study that 
bilingual experience would lead to more flexible use of ME, 
exhibited by higher tendency to accept lexical overlap. 

Alternatively, the observed difference between the two 
language groups could be due to the monolingual adults 
displaying an early advantage in learning the two-to-one 
mappings from the first testing block, whereas the bilingual 
adults’ learning of the two mapping types did not differ until 
the third testing block. A possible explanation to this initial 
difference of the learning of the two-to-one mappings could, 
again, relate to the imbalanced number of objects pertaining 
to each type of mapping. The imbalanced number may have 
served as a cue for the monolingual adults to more readily 
learn two words for one object, which could have been salient 
because this was inconsistent with their usual experience (i.e., 
one-to-one word-object mappings being the norm). For the 
bilingual adults, as they frequently confront two-to-one 
word-object mappings, the imbalance may be less salient and 
thus a less effective cue to influence their cross-situational 
learning early on in the experiment. These significant 
interactions suggest that language experience plays a role in 
the application of different word-learning strategies. 

However, our results for the bilingual participants do not 
tally with those of Benitez et al.’s (2016) finding, which 
showed that bilingual adults’ learning of two-to-one word-
object mappings in a CSSL task was worse than their learning 
of one-to-one mappings. In Benitez et al.’s study, participants 
were presented with four objects and four words at a time 
during training, whereas the participants in the present study 
were only presented with two objects and one word at a time. 
The complexity of Benitez et al.’s task could have favoured 
the learning of one-to-one mappings. In their study, although 
the number of co-occurrences of each corresponding word-
object pair was the same for both mapping types, the spurious 
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co-occurrences of unpaired word-object mappings was 
higher for the two-to-one mappings, making the learning of 
the two-to-one mappings more difficult than that of the one-
to-one mappings. In the present study, although the 
participants were presented with fewer tokens of the two-to-
one mappings, the reduced number of objects and words in a 
given trial were likely to have more closely mimicked actual 
word-learning experiences than Benitez et al.’s task, making 
the learning of both types of mapping relatively easy to the 
participants in the present study.  

In addition, the design of the present study required 
participants to make a decision about a pairing on every trial, 
unlike in previous studies where participants went through a 
familiarization phase and then a test phase. This could have 
made the participants’ learning of the word-object mappings 
more explicit and highlighted to the participants that the 
majority of the mappings were two-to-one, giving rise to the 
observed better learning of the two-to-one mappings. 
Determining the extent of referential ambiguity and the 
relative occurrence of two-to-one versus one-to-one 
mappings in the language learner’s experience will enable us 
to determine more closely which experimental task better 
resembles natural language learning. 

In contrast to our prediction, manipulating speaker identity 
did not influence CSSL of either language group. It was 
perhaps less surprising for the monolingual group, as Poepsel 
and Weiss (2014) found that manipulating speaker identity 
did not affect monolingual adults’ learning of word-object 
mappings that violate ME. Taking into account Benitez et 
al.’s (2016) finding that linguistic cue could affect bilingual 
adults’ learning of two-to-one word-object mappings and the 
non-significant effect of speaker identity in the present study, 
it is likely that information about the languages involved in 
the linguistic input per se is more important than speaker 
identity as a cue in influencing bilingual adults’ word 
learning. In reality, information about languages in the input 
is a more reliable cue than speaker identity, as one speaker 
could speak multiple languages and different speakers could 
speak the same language.  

Nevertheless, speaker identity did seem to have an effect 
on the strategy used by the two language groups. In the ME 
block, both language groups demonstrated majority use of 
ME. Yet, when there was only one speaker involved in 
naming objects, the bilingual group showed a greater 
tendency to relax ME (Kalashnikova et al., 2015). This 
suggests that although speaker identity did not have an effect 
on the observed responses of the participants in the CSSL 
task, it may have altered the strategies that they use. The 
bilingual speakers were more likely than the monolingual 
speakers to relax ME when more than one language structure 
was used by the same speaker. This may have been due to 
greater familiarity by bilingual speakers that individuals may 
speak more than one language.  

In a broader sense, the results of the present study have 
demonstrated that language learners can flexibly use multiple 
word-learning strategies to learn different language structures 
in solving the “Gavagai” problem. In an environment with 

multiple language structures, learners have to quickly 
discriminate the different structures (Gebhart, Aslin & 
Newport, 2009). Previous studies (e.g., Qian, Jaeger & Aslin, 
2012) have shown that socio-pragmatic cues, such as a voice 
change, can help learners focus on the syntactic structures 
available in the input. The lack of overall influence of speaker 
identity on the CSSL task in the present study should, 
therefore, not be taken as evidence that socio-pragmatic cues 
do not contribute to word learning, as it could instead be that 
word learning across multiple situations does not rely so 
heavily on this particular socio-pragmatic cue. Other socio-
pragmatic cues, for example information on the languages 
that the speakers in the CSSL task speak or more information 
on the speakers’ linguistic identities, might be more effective 
in influencing learners’ reliance of word-learning strategies. 
Nevertheless, the results of the present study, in terms of 
trajectory of learning on the CSSL task and performance in 
the ME task, suggest that the extent to which a word learning 
strategy is relied upon depends in part on an individual 
learner’s previous experience with languages and the 
learning context. These results also begin to give us some 
insights into how language experience, contextual cues and 
task design contribute to shaping learners’ use of different 
word-learning strategies.  

In summary, we replicated previous studies that found that 
language learners are adept at accepting multiple labels for 
the same object. Curiously, when only one word is heard, and 
two possible objects viewed, both monolingual and bilingual 
speakers were better at learning two labels for an object than 
one label for an object. The effects of participants’ linguistic 
background exerted subtle effects on this ability, with a 
steeper learning rate of two-to-one mappings for bilinguals 
compared to monolinguals, and a greater ability for bilinguals 
to be flexible in the application of the ME constraint. These 
results show that the parameters determining how word-
object mappings are acquired and the role of language 
experience in driving this learning are complex and varied. 
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Abstract

We explore a nonparametric approach to cognitive modeling.
Traditionally, models in cognitive science have been paramet-
ric. As such, the model relies on the assumption that the data
distribution can be defined by a finite set of parameters. How-
ever, there is no guarantee that such an assumption will hold,
and it may introduce undesirable biases. For these reasons, a
nonparametric approach to model building is appealing. We
propose a novel framework that combines Gaussian Processes
with active learning (GPAL), and evaluate it in the context of
delay discounting (DD), a well-studied task in decision mak-
ing. We evaluate GPAL in a simulation and a behavioral exper-
iment, and compare it against a traditional parametric model.
The results show that GPAL is a suitable modeling framework
that is robust, reliable, and efficient, exhibiting high sensitivity
to individual differences.
Keywords: Gaussian processes; optimal experimental design;
delay discounting; nonparametric modeling; Bayesian infer-
ence

Introduction
Models of human cognition are built by designing an ex-
planatory or descriptive model that fits data generated in a
behavioral experiment. Although a model’s parameterization
is motivated by assumptions about the cognitive process un-
der study, the empirical data strongly influence model design.
Because of this, the design of the behavioral experiment from
which the data were generated (e.g., which stimuli were pre-
sented to participants) can introduce bias into the model. This
can occur, for example, by not sampling the stimulus space
adequately, which can then lead to an incomplete or imprecise
model. Two ways to reduce such bias are to not commit in ad-
vance to which stimuli should be sampled and to make as few
assumptions about the cognitive model as possible, such as
parameterization and functional form. In other words, make
model-building and data collection as data-driven as possible,
at least in the initial stage of model development. Gaussian
processes (GP) provide a means of achieving these two goals,
functioning as a nonparametric framework for experimenta-
tion. We evaluated the viability of a GP-based approach for
cognitive modeling in humans.

Researchers in psychology have explored the use of GP
to model human behavior (e.g., Cox, Kachergis, & Shiffrin,
2012; Griffiths, Lucas, Williams, & Kalish, 2009; Schulz,
Speekenbrink, & Krause, 2018; Song, Sukesan, & Barbour,
2018) but it has yet to be a wide-spread approach. Here,
we propose a flexible framework for cognitive modeling by

combining GP with active learning (GPAL). GPAL extends
traditional GP regression by including appealing features for
cognitive science tasks. GPAL is capable of simultaneously
modeling the data with minimal assumptions and optimizing
the experimental design to find the underlying function effi-
ciently. By virtue of being nonparametric, GPAL shows high
sensitivity to individual differences and is able to capture a
wider array of patterns compared to parametric approaches.
This sensitivity should provide high-fidelity models. Opti-
mization is desirable to minimize the length of a testing ses-
sion, such as when experimentation is expensive (neuroimag-
ing research) or time-constrained (clinical or special popula-
tions). While models produced by the nonparametric frame-
work may not provide interpretable parameters, inferences
about cognitive functioning can still be made by examining
mathematical properties of the function, such as gradient, cur-
vature or area under the curve.

In our study here, we examined the efficiency, reliability,
robustness, and sensitivity of GPAL in the context of model-
ing delay discounting (DD). Data were collected from 30 par-
ticipants in a delayed discounting task (e.g., ”Do you prefer
$10 today or $40 dollars in two weeks?”), which measures an
individual’s ability to delay gratification. This is a common
task in decision-making research, and performance shows a
strong correlation with other psychological phenomena, in-
cluding impulsivity and addiction (Green & Myerson, 2004).
The one-parameter hyperbolic model is a popular model that
assumes future rewards decline in value hyperbolically with
the length of the delay. Recent work from Cavagnaro, Ara-
novich, McClure, Pitt, and Myung (2016) used adaptive de-
sign optimization (ADO) to estimate the parameters of the
function in an active learning fashion. One of the conclusions
from that study is that none of the six models tested were able
to capture the full range of behavioral patterns participants
displayed in the task. Thus, DD provides a good test-bed in
which to evaluate GPAL. The present investigation represents
the first step toward validating GPAL as a premier modeling
tool for cognitive science research.

Gaussian Process with Active Learning (GPAL)

This section provides background on each component of the
proposed GPAL framework. Figure 1 shows a schematic rep-
resentation of it.

1479



Figure 1: Schematic representation of the GPAL framework. The task is formulated as an active learning based classification task. Virtual
anchors are used to restrict the sampling of the design space. On each trial in the experiment loop, an optimal design is picked from the
restricted design space according to the maximum entropy criterion, an observation is made, and the GP model and virtual anchors are
updated. After the looping, a post processing step may be used to refine the final GP model.

Gaussian Processes

Gaussian processes (GP) are tools for nonparametric
Bayesian modeling that establish priors over functions and
are a popular approach in machine learning for regression
and classification tasks (Rasmussen & Williams, 2006). For-
mally, GP is a stochastic (random) process where any subset
of random variables forms a Gaussian distribution. For a set
of observed value pairs (X , f ) and a set of unobserved pairs
(X̃ , f̃ ), the joint posterior distribution under GP is given by

[
f
f̃

]
∼N

([
µ
µ̃

]
,

[
K f , f K f , f̃
K f̃ , f K f̃ , f̃

])
(1)

where K is a kernel function that defines the covariance be-
tween two function values. The kernel function used in this
study is the squared exponential kernel which is defined by
a length scale parameter l that controls the smoothness and
the variance parameter σ2, which is a measure of the aver-
age distance to the mean. This kernel function is a popular
choice that has several desirable properties and is known to
work well with very smooth functions. The posterior in Eq.
1 can then be used to model F̃ using the conditional of the
multivariate normal distribution.

Many tasks in cognitive science such as DD are not able to
observe f directly due to the nature of human experiments.
Instead, it is common to give participant choices resulting in
multinomial observations. In the case of DD, participants are
given two choices on each trial, thus resulting in binomial
observations which can then be modeled as a GP binary clas-
sification task. This is commonly done by applying a sigmoid
transformation function (e.g., probit in our case) to restrict the
predicted values to a unit interval. As a consequence of this
transformation, the likelihood is no longer Gaussian and re-
quires the use of approximate methods to be estimated, such
as expectation propagation as done here. We direct the read-
ers to Rasmussen and Williams (2006), and Vanhatalo et al.
(2012) for a comprehensive tutorial on GP and related tech-
niques.

Active Learning
Behavioral experiments can be expensive in terms of both
money and time, and the more time an experiment takes, the
greater the chance that data quality will suffer due to fatigue
or boredom. Systems that incorporate active learning are
appealing because they mitigate these problems by optimiz-
ing efficiency through identifying highly informative design
points based on previous observations (e.g., Cohn, Ghahra-
mani, & Jordan, 1996). It is possible to incorporate active
learning in GP based system by deriving a measure of infor-
mation from the GP and then finding the design point that
maximizes this objective function. For our experiment, we
used entropy as an information theoretic objective function.
We use the derivation of entropy in Houlsby, Huszr, Ghahra-
mani, and Lengyel (2011) which approximates the entropy
for GP classification.

Like many tasks in cognitive science, design points in DD
are sampled from a discrete space. This space needs to be
sparse enough to allow human subjects to make meaningful
and differentiable choices. Thus, the search space for opti-
mizing experiments is significantly smaller than in other ar-
eas that would use this kind of approach, thereby making grid
search a better choice to maximize the entropy function than
the proposed method in Houlsby et al. (2011).

Constrained Gaussian Process
Models of natural phenomena are often constrained by prior
knowledge or experimental design. For example, when study-
ing natural organisms, the range of the model can be con-
strained by the physical limitations of such organism. Simi-
larly, a model can be constrained by the experimental design.
For example, researchers often design experiments such that
some of the outcomes are trivial and well-anticipated. Tra-
ditionally, these factors are incorporated in the model design
and the range of the parameters and design space. This is
a bit more difficult to do in GPAL since it is built to be a
fully general modeling tool. It is, however, possible to impose
some ”reasonable” constraints on the bounds, derivatives, and
convexity of a GP. For a more detailed explanation of these
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Figure 2: Example of a GPAL simulation using a hyperbolic model as the ground truth. The left panel show GPAL estimated models at
four different trials in a top-down view where the z-axis represents the probability of choosing the delayed reward as a function of the two-
dimensional, logarithmically scaled design space of (tLL, ASS). The x-shaped and circle-shaped samples in the middle panel represent virtual
anchor points and design points selected by GPAL, respectively. The blue and red circles represent choosing the immediate and delayed
reward, respectively. The convergence plot in the right panel represents the mean squared error (MSE) between the model at each trial and
the ground truth.

methods, see Da Veiga and Marrel (2012). For our delay dis-
counting experiment, we focus on two properties that are of-
ten desired in psychological tasks: (a) monotonicity; and (b)
local constraints.

Tasks based on subjective preference such as DD often
assume that humans follow the axioms of rationality. This
leads to researchers building monotonic models that predict
a preference for a choice with a higher reward value (or a
shorter delay) over another choice with a lower reward value
(or a longer delay), if all other things are equal. One way to
force monotonicity in GP models is by systematically adding
virtual observations in areas where the constraint is violated
(Riihimki & Vehtari, 2010). Specifically, this is done by
building a joint model of the GP and its derivative. The
derivative domain is then used to inject virtual observations
into the model when the derivative of the GP violates the
monotonicity constraint.

Regarding local constraints, experiments are often de-
signed in a way such that the outcomes are trivial for some
design points. For instance, the probability of preferring a
choice of $790 now to another choice of $800 in 10 years
should be virtually equally to 1. Ideally, we would like GPAL
to avoid sampling such trivial design points. Again, inspired
by Riihimki and Vehtari (2010), GPAL implements local con-
straints as follows: We can extend their idea of virtual noise-
less observations to local constraints by placing them in triv-
ial regions. We refer to these virtual observations as ”virtual
anchors”. Virtual anchors act as a prior to the function being
estimated by reducing its variance so as to avoid sampling
in this region. They also have the benefit of removing the
need for initial random sampling to start the active learning
process. Further expanding on this idea, we can cover large
areas of the design space with virtual anchors and systemati-
cally remove them using a moving margin that recedes when
a design point is sampled nearby. In our simulations and ex-

periment with human participants described below, we used
a linear receding margin, though other schemes could also be
used, depending upon the problem at hand. We would like
to note that these are preliminary results and future work will
focus on increasing the robustness of the model.

Models of Delay Discounting
Delay discounting (DD) is a preferential choice task that is of-
ten employed to measure impulsivity by quantifying the pref-
erence of an sooner-smaller reward (SS) against a later-larger
reward (LL). This measure of impulsivity has been linked
to various mental illnesses such as addiction, gambling, and
ADHD (Koffarnus, Jarmolowicz, Mueller, & Bickel, 2013;
Sharp et al., 2012; Reynolds, 2007). Models of DD typically
start by defining the relation between the value of a reward A
at time t as:

V = ADt (2)

where V represents the discounted value of A, and Dt the dis-
counting factor. Under this framework, DD behavior is mod-
eled by fitting choice data to a discounting curve that models
Dt as a function of t. A popular model of choices is the 1-
parameter hyperbolic model (Mazur [1987]):

Dt =
1

1+ kt
(3)

where k(> 0) is the parameter related to impulsivity in that
high values of k are associated with high levels of impulsiv-
ity. Participant choices are fitted to this model by defining a
sigmoid choice function for the probability of choosing the
LL option over the SS option:

P(LL|k,ε) = 1
1+ eε(VSS−VLL)

(4)

where VSS and VLL are the discounted values of the SS and LL
choice options, respectively, and ε (> 0) is a free parameter
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reflecting consistency of choice behavior. To aid participants
in making more meaningful choices and ease visualization,
we fix ALL to $800 and tSS to 0 weeks (i.e., an immediate
reward). Thus, the design space becomes a two-dimensional
space of (tLL, ASS).

Cavagnaro et al. (2016) extended the hyperbolic model to
include active learning by using an adaptive design optimiza-
tion (ADO) framework. ADO is a parametric framework for
Bayesian optimal adaptive experimentation that can be used
to select the most informative design for parameter estimation
as well as model discrimination (Cavagnaro, Myung, Pitt, &
Kujala, 2010; Myung, Cavagnaro, & Pitt, 2013). For our ex-
periments, we use ADO as baseline to compare the perfor-
mance of GPAL against a parametric model.

Simulations of GPAL
We first tested the feasibility of GPAL in a simulation study
in which GPAL was to recover a hyperbolic function used in
Cavagnaro et al. (2010) with 10% noise in the observations.
Virtual anchor points were incorporated by adding noiseless
design points with a value of one or zero at the extreme val-
ues of the design space. Figure 2 (left panel) shows an ex-
ample of the performance with a top-down view of the GPAL
estimated DD models at four different trials. Each plot in
the left panel represents the probability of choosing the de-
layed reward as a function of the ”later-larger” time tLL and
the ”sooner-smaller” value ASS. Both dimensions are plotted
in the log domain to highlight the difference between func-
tions in our experiments. The decision boundary refers to the
regions of interest where the probabilities are closer to 0.5.

The results suggest that GPAL can achieve reasonable con-
vergence within the first 20 trials. Afterwards, as shown in
the right panel, we see a decrease in performance (rise in
MSE), likely due to Gaussian noise. The design points (red
and blue circles) sampled by GPAL at the end of 50 trials, as
shown in the middle panel of Figure 2, are reasonable choices
that lie close to the decision boundary. The virtual anchors
(red and blue x-shaped symbols) provide a reasonable starting
point and leave enough distance in case the decision bound-
ary needs to be pushed in one direction or the other. That is,
the example shown on the left panel shows that by trial 10
the curvature hasn’t been captured yet and the model is still
heavily influenced by the anchors. By trial 30, we see a gen-
erally close match in shape, with a slight difference in very
steep regions as expected due to Gaussian noise.

Modeling Delay Discounting Using GPAL
Experiment

We recruited 30 participants from a pool of undergraduate
students at Ohio State University. Participants were asked
to perform a DD task over two sessions, ADO and GPAL.
The ADO session used ADO to fit the participant choices
to the hyperbolic model. The GPAL session fit the data us-
ing the GPAL framework with virtual anchors. Both sessions

Figure 3: Aggregated results from the experiment. The top panel
shows the MSE between the model at each trial and the last. The
bottom panel shows the MSE between the first and second session
for both experimental conditions.

were further divided into two identical and independent sub-
sessions to test for reliability.

The sessions were presented in random order and partici-
pants were unaware of the identity of the session they were
in. Each trial consists of a preference choice presented in the
format ”$X now or $800 in Y time in the future”. The value
of X (i.e., ASS ) ranged from $10 to $790 in multiples of 10
whereas the value of Y (i.e., tLL) took on 48 values ranging
from 1 day to 10 years spaced on a logarithmic scale. Each
session started with 5 practice trials to familiarize participants
with the task. This was followed by 20 trials for ADO and 50
trials for each of the two GPAL sub-sessions, for a total of 120
experimental trials. The two GPAL sessions were presented
as a single testing block with no break between them. The
number of trials was chosen based on previous ADO exper-
iments and GPAL simulations. All the GPAL software was
developed and implemented in MATLAB with the aid of GP-
Stuff library for Gaussian processes (Vanhatalo et al., 2012).

Results and Analysis
We tested GPAL on its efficiency, reliability, robustness and
sensitivity. Efficiency was assessed by comparing the conver-
gence speed between the two frameworks, ADO and GPAL.
We expect efficient models to converge quickly to a final solu-
tion. We measured this by the speed at which they approach
their final solution. Figure 3 (top panel) shows the MSE at
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Figure 4: An example participant with consistent results between
sessions in the GPAL condition but with inconsistent results in the
ADO condition.

each trial between the current estimated model and the last
model of the experiment. Both models achieve reasonable
convergence quickly with ADO flattening out at around 20
trials and GPAL at 30. GPAL starts with the advantage of
having access to the virtual anchors, which act as priors. This
means that the initial estimate is much closer to the its final
solution compared to ADO which is reflected in the initial
values of the results. However, ADO shows faster conver-
gence, which can be seen in the rate and consistency at which
the MSE decreases. This is an expected result since ADO as-
sumes a hyperbolic model which allows it to make stronger
inferences. We also expect efficient models to pick design
points that lie close to the decision boundary of each partici-
pant, as these represent the most informative points.

One way to assess reliability is by comparing the GPAL
function across the two testing sessions. GPAL, if reliable,
should produce consistent results across the sessions, and this
is what we find. Figure 3 (bottom panel) shows the MSE
between sessions for all 30 participants in both conditions.
Overall GPAL performance was good, with an average differ-
ence of 0.047, which is deemed quite small. For comparison
the average MSE between ADO sessions was 0.026. Again,
this is expected due to the added flexibility of GPAL.

As seen in Figure 3, the ADO condition had several out-
liers that were very inconsistent across sessions. Interest-
ingly, these participants were much more consistent in the
GPAL condition. Figure 4 shows an example in which the
results for the GPAL condition are significantly more consis-
tent than their ADO counterpart. This was the case for all the
outliers in the ADO condition. We find that this phenomena
tends to happen when GPAL predicts a function shape that is
hard for the hyperbolic model to fit in ADO.

Further inspecting the GPAL results, we find that inconsis-
tent samples are largely produced by a shift in the decision

Figure 5: Two selected examples of non-monotonic patterns that
consistently emerged during our experiments. The left panel is an
example of a non-monotonic pattern with respect to the monetary
reward dimension (i.e., y-axis). The right is an example of a non-
monotonic pattern with respect to both dimensions.

boundary in the extremes of the design space. Points in this
region are also more influential for GPAL because they de-
termine the concavity of the function whereas for ADO, this
is determined by the form of the hyperbolic function. These
results also suggest that participants tend to be less consistent
for designs in this region. Methods to address this problem
will be discussed in the next section.

Regarding robustness, we assessed this property by ex-
amining a model’s ability to predict unseen data. Opera-
tionally, robustness was measured by turning an estimated
model, whether ADO or GPAL, into a classifier by setting
a decision threshold for the predicted probability to gener-
ate predicted outcomes. We then tested classification perfor-
mance by performing cross validation between the observa-
tions of each session. In other words, the GPAL-estimated
model was used to predict the designs picked by ADO and
the ADO-estimated model was used to predict the designs
picked by GPAL. Note that both datasets are comprised of
data points that are considered to be hard by their respective
framework, making them significantly harder to predict than
a random sample. We found that ADO performed literally at
the chance level of 49.99% accuracy whereas GPAL achieved
a 56.53% accuracy. While this result is not particularly im-
pressive, we take this result as evidence that GPAL is able
to produce a better classifier or learn better from noisier data
than ADO. This result can also be taken as evidence of higher
sensitivity to individual differences, since we expect a sensi-
tive model to produce a better and more robust classifier.

Discussion and Conclusion
How does one build a model of human cognition? We in-
troduced GPAL as a data-driven (bottom-up), nonparametric
approach with the aim of overcoming biases in parametric
modeling approaches for model development and inference.
The diversity of data patterns in our experiments illustrates
these features of GPAL. GPAL can uncover concave, convex
and approximately linear shapes, and do so quickly, provid-
ing the modeler with a higher fidelity description of perfor-
mance. We envision researchers using this information in one
of two ways. The straightforward way is to use GPAL as an
exploratory tool for providing an unbiased picture of the raw
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data to aid the formulation of a parametric model. This gives
traditional models a stronger justification in which to ground
their assumptions. A second way to utilize GPAL is to replace
parametric models altogether. While this second approach re-
quires a paradigm shift in the way models are interpreted, it
comes with the potential benefit of providing more accurate
measurements. Below we illustrate these ideas by discussing
the benefits of GPAL in the context of DD.

Previous models of DD have assumed a monotonic func-
tion in both dimensions of money and time. This is a rea-
sonable assumption to make since participants are expected
to prefer larger sums of money and shorter time spans. How-
ever, Figure 5 shows a few instances that violate this ”ratio-
nality” assumption. It might be enticing to think that non-
monotonic functions in GPAL are a product of noise or model
biases. If this is the case, GPAL can be adapted to produce
monotonic function using the approach in Riihimki and Ve-
htari (2010). However, we believe that these non-monotonic
patterns are not caused by artifacts. To show this, we focus
on the two patterns exemplified in Figure 5. These patterns
can be seen across several different participants which we do
not show in the interest of space. Since these patterns are re-
peatable and present across several participants, we find it is
unlikely that they are a product of random noise. To support
this hypothesis, participants that showed non-monotonic be-
havior were given five additional trials in which GPAL picked
designs using gradient information to identify key regions of
non-monotonocity. This process gave a chance for partici-
pants to correct their choices to reflect a more conventional
function. However, only about a fourth of the participants
corrected themselves with the rest confirming their previous
behavior. We hypothesize that this non-monotonic, irrational
behavior is caused by the interaction between non-linearities
in the perceived value of money and delay time. Using the
two non-monotonic patterns shown in Figure 5, we provide
two possible explanations that would produce this outcome.
The first pattern on the left could be caused by a ”soft” thresh-
old at which the value of money rapidly decreases, making
the time component less relevant. Similarly, the pattern on the
right could be caused by a threshold in time at which the de-
layed reward becomes significantly less appealing. In short,
we think that being able to observe these kinds of patterns
using GPAL can be a powerful tool to justify choices in para-
metric models.

A more radical idea is to use GPAL as the primary model-
ing tool. One of the main benefits of a parametric approach
is the ability to formulate theories based on a small set of
parameter values. In the case of DD, the k parameter of the
hyperbolic model is of particular interest because it is thought
to be related to an individual’s impulsivity. An analysis such
as this is not possible when using a nonparametric model like
GPAL since the number of parameters is not constant. How-
ever, one could still extract meaningfully information from
a GPAL-estimated model. One approach that has been ex-
plored in the literature is to interpret the hyperparameters of

the kernel function (e.g. Wu, Schulz, Speekenbrink, Nel-
son, & Meder, 2018). In our case however, the hyperparam-
eters of the square exponential kernel do not relate well to
the k parameter. A different alternative could be to use the
(parameter-free) estimate of the area under the curve (AUC)
of the GPAL function across the input space as an alternative
to the k parameter. When this was done for the data from
our experiment, the AUC shows a positive correlation to the
k parameter. This suggest that the AUC could be used as a
measure of impulsivity in a fully nonparametric model but
more work needs to be done in this regard. More generally, it
is possible to attribute meaning to mathematical properties of
GPAL models, which would allow GPAL to function as a pri-
mary modeling tool. One benefit of this approach is that the
increased sensitivity of the framework might produce more
accurate measurements compared to their more constrained
counterpart. Additionally, these measurements come from
mathematical properties which can be applied to other types
of models allowing for easier comparison between models.

Future work will also focus on evaluating the performance
of GPAL in a wider array of behavioral tasks. This will al-
low us to show additional techniques that were not applicable
to the DD task. We must also address issues that come from
combining GP with active learning. We found that GPAL can
be overly sensitive when observations were sparse. While our
data suggest that the model is likely to converge within 30 tri-
als, we need to develop the means of ensuring model fidelity
while not sacrificing efficiency. The source of this problem is
likely due to the greedy nature of active learning. One way to
address this problem is to extend active learning to include a
bias towards region that are hard for human subjects.

In conclusion, the work in this paper represents a first step
towards the development of a novel modeling framework in
cognitive science. We propose the use of a nonparametric,
model-free approach for cognitive modeling based on GP.
This framework serves as a middle ground between raw-data,
which are hard to visualize, and parametric models, which
rely on strong assumptions. The experiments in the DD task
showed that GPAL is a practical framework that yields consis-
tent results efficiently. GPAL showed a high degree of sensi-
tivity to individual differences that were able to uncover non-
trivial patterns. This is exemplified by the presence of non-
monotonic discounting functions that are present in several
participants. These characteristics make GPAL a promising
tool for constructing unbiased and sensitive models of cogni-
tion.
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Abstract 
There has been much discussion around the Linguistic-Savings 
Hypothesis (LSH), which postulates that language can affect 
intertemporal choices of its speakers; the validity of this claim 
has remained controversial. To test the LSH independent from 
the possible influencing factors, such as cultural differences, 
we focused on the Japanese language, which features 
asymmetric tense marking, in that past tense is grammatically 
marked but future tense is not. Adopting a within-participant 
design, we compared the discounting behavior between past 
and future gains in native Japanese participants. Our results 
revealed that Japanese speakers tended to discount the values 
placed on rewards in an asymmetry way: to discount the value 
of past gains more heavily than that of future gains. We 
believed our results corroborated the LSH and linguistic 
relativity. 

Keywords: Intertemporal discounting; Intertemporal choice; 
Linguistic-Savings Hypothesis; Tense; Linguistic relativity 

 

Introduction 
Intertemporal choices, regarding trade-offs between time and 
benefits, are very common in everyday life, such as the 
decision on whether to spend the salary on a trip to Kyoto 
immediately after receiving it, or whether to save up for years 
to buy an apartment in Tokyo. Economical behaviors such as 
investment and insurance purchasing, as well as health issues 
such as nicotine addiction and drug abuse, are also 
manifestations of intertemporal decisions (see Thaler, 1981; 
Frederick, Loewenstein & O’Donoghue, 2002 for reviews). 
On a macro level, it may even play a part in very important 
economic issues such as national saving rates (Springstead & 
Wilson, 2000).  Because of this ubiquity and significance, 
intertemporal choices remain a topic of lasting research 
interest. 
    Numerous studies dealing with intertemporal preference 
and temporal discounting behavior have shown that people 
psychologically discount future gain or loss, and tend to 
discount more for longer temporal distance (Thaler, 1981; 
Kirby& Marakovic, 1996).  

    Previous studies have also found that intertemporal 
discounting behaviors vary individually and culturally (Gell, 
1992; Hofstede, 1997). One of the most intriguing hypotheses 
holds that people’s native language may exert an influence on 
their intertemporal choices (Chen, 2013). 

Does language matter in intertemporal 
discounting? 
Whether the language people speak will influence their 
intertemporal choices has recently been under hot debate. 
Linguistic-Savings Hypothesis (LSH), proposed by Chen 
(2013), has been one of the most intriguing hypotheses on 
this topic. According to Chen (2013), speakers of languages 
which grammatically distinguish between present and future, 
such as English, and speakers of languages with no such 
distinction, such as Mandarin, tend to have different feelings 
about temporal information, leading to different discounting 
behaviors. Specifically, for futureless language speakers, the 
distinction between present and future is vaguely construed, 
while speakers of languages with separate tense marking for 
present and future tend to perceive the distinction more 
clearly. As a result, speakers of a futured language tend to 
discount future rewards more heavily than those of a 
futureless language. Chen (2013) substantiated the 
hypothesis by results from analysis of massive databases of 
savings rates, health behaviors and retirement assets across 
many countries. This simple yet intriguing hypothesis has 
attracted major attention (e.g., by 2018, over 1,790 thousand 
views on TED talk, 2012). 
    Meanwhile, the hypothesis has been also criticized and 
challenged from multiple perspectives. First of all, it has been 
pointed out that the analysis of massive database is basically 
indirect (i.e., focusing on correlational relationships). Thus, 
the validity of causal inferences may be doubtful (Roberts 
&Winters, 2013). Secondly, it may be difficult to eliminate 
the influence of cultural differences. Previous cross-cultural 
analyses of temporal discounting behavior have generated 
contradictory results (Thoma & Tytus, 2018), thus rendering 
the results indefensible when taking cultural differences into 
account. Lastly, empirical evidence on the hypothesis is 
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mixed. While there is evidence from behavioral experiments 
in support of the LSH (e.g., Lergetporer et al., 2014), opposite 
results have also been obtained (e.g., Thoma & Tytus, 2018).  
     Against this background, our research started with the 
same point of view with the LSH, but tried to eliminate the 
influence of alternative explanations, such as the influence of 
cultural differences, by conducting the experiment using 
within-participant design. 

Asymmetric tense marking in Japanese 
In the present study, we examined how Japanese people 
discounted the value of past and that of future. 
    Even though the measurement of the intertemporal 
discount in past is not as familiar as that of future in the field 
of economics and psychology, it is widely applied in the field 
of health behavior. The discounting rate of past can be a valid 
indicator of patience as well as an effective predictor of 
cigarette and drug abuse.  
    Previous research found native speakers of English in the 
U.S. tend to discount the value of future and past gains in a 
symmetrical way, with no significant difference between the 
discounting rate for past and future gains (Bickel et al., 2008; 
Yi et al., 2006). This finding can be explained by the LSH, 
which predicts that the tense encoding in a language can 
influence its speakers’ time perception and intertemporal 
discounting behavior. Therefore, native speakers of English 
are predicted to discount the future and past values in the 
same way since both past tense and future tense exist in the 
English language. This symmetric tense marking in English 
can lead to the symmetric discounting behavior towards past 
and future gains. 
    However, not all languages encode tense in the same way. 
Japanese, for example, has asymmetric encoding in marking 
only the past tense. The grammaticalization of tense in 
English, Japanese, and Mandarin is summarized in Table 1. 
    The LSH can be tested in the Japanese language which 
features asymmetric tense marking. According to the LSH, 
the grammaticalization of tense in a language will influence 
its speakers’ discounting behavior towards past and future 
gains. Therefore, Japanese speakers are predicted to 
showcase discounting behaviors also in an asymmetric way. 
To be specific, since there is past tense and no future tense in 
Japanese, speakers may feel the distinction between past and 
present more clearly (i.e., larger) than that between present 
and future, leading to higher discounting rate for past gains 
than that for future gains. 
    In the current research, we recruited native speakers of 
Japanese as participants, and compared the discounting rate 
of past gains with that of future gains of each participant. 
Since only Japanese speakers were targeted, the effect of 
culture was controlled for. Furthermore, the within-
participant design also excluded the influence of other potent 
factors such as individual characteristics, educational level, 
and economic status between different groups.  
    To our knowledge, this is the first study to examine LSH 
directly by comparing discounting rates of past and future 

gains while excluding the influence of cultural differences as 
well as other factors. 

Statistical analyses 

Indicators and models of temporal discounting 
A brief account of the analytical procedure is given in this 
sub-section. The first step is to estimate the indifference point 
between two intertemporal choices (e.g., Kirby & Marakovic, 
1996; Toubia et al, 2013). An indifference point is reached 
where the amount available now (following Yi et al., (2006), 
we regarded ‘one hour ago’ and ‘in one hour’ as ‘now’) is 
equivalent to the delayed amount in the future. For instance, 
if a participant preferred to ‘receive ¥80,000 (¥10,000 is 
approximately $100) in one hour’ rather than ‘receive 
¥100,000 in seven days,’ but meanwhile chose to ‘receive 
¥100,000 in seven days’ rather than ‘receive ¥70,000 in one 
hour,’ we thus assume that the indifference point between 
now and a delay of seven days lies between ¥70,000 and 
¥80,000 and we determined the indifference point at a delay 
of seven days of ¥100,000 to be the average of two amounts 
(in the above example, ¥75,000 in one hour). Likewise, the 
indifference points can be located for the past scenarios. For 
example, if a participant preferred to ‘receive ¥60,000 one 
hour ago’ rather than ‘receive ¥100,000 seven days ago,’ but 
at the same time chose to ‘receive ¥100,000 seven days ago’ 
rather than ‘receive ¥50,000 one hour ago,’ we assumed 
¥55,000 as the indifference point.  
    Based on the estimated indifference points, we conducted 
both statistical and model-based analyses. For statistical 
analysis, we compared discounting rate and the Area Under 
the Curve (AUC) between values in the past versus future 
scenarios. Analysis was based on four models: linear model, 
exponential model, hyperbolic model, and q-exponential 
model, among which the fitted models serves as a basis for 
discussion on participants discounting behavior.  
    In the following section, we shall explain these methods 
in detail.  

Discounting rate 
Discounting rate of specific temporal distance (rd) can be 
calculated with the following equation: 
 

𝑟𝑑 =
𝑉0 − V′
𝑉0

 

 
where V0 is the original value and V’ the discounted value. 
    This equation estimates the discounting rate for each 
specific temporal distance. To reveal the general tendency in 

Table 1: Tense marking in English, Japanese, and Mandarin. 
 Past Tense Future Tense 

English + + 
Japanese + - 
Mandarin - - 
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individual participant’s discounting behavior, we also 
adopted AUC and model-based approaches. 

AUC 
AUC is a very common model-free approach to estimate the 
discounting behavior (Myerson et al., 2001). To calculate 
AUC, each indifferent value point should be plotted in the 
same figure and then lined up to form a curve. The area under 
the curve is then calculated to be AUC. In general, as a 
participant discounts the value more heavily, the AUC value 
become lower. 
    In the current study, we used the standardized AUC (i.e., 
ranging from 0 to 1) as an indicator of a general tendency of 
discounting. 

Model-based analyses 
In the following explanation of the four models, V’, V0, and d 
denote discounted value, original value, and the temporal 
distance, respectively. k and q are discounting and adjusting 
parameter, respectively.  
 
Linear Model  
Linear model is the simplest model to predict how value is 
discounted with the span of time.  
 

V′ = 𝑉0 − kd 
 
Exponential Model  
Exponential model is the standard model adopted in related 
empirical works, with an advantage in explaining drastic 
discounting behaviors. 

V′ = 𝑉0・𝑒−kd 
 
Hyperbolic Model  
Overall, the hyperbolic model (Mazur, 1987) shows a better 
fit than the exponential model for its strength in predicting a 
more decelerated rate of value depreciation over time, which 
resembles discounting behavior.  
 

𝑉′ =
𝑉0

1 + 𝑘𝑑
 

 
Q-exponential Model  
Apart from the most popular models (i.e., the exponential 
model and the hyperbolic model) in intertemporal behavior 
study, recent research suggests that q-exponential model 
could be a better fit since it can be seen as the generalized 
style of the above models (Cajueiro, 2006; Takahashi et al., 
2014).  
 

V′ =
𝑉0

(1 + 𝑘(1 − 𝑞)𝑑)
1

1−𝑞
 

 
In this model, q is the adjusting parameter and determines the 
form of fitting model. When q reaches 1, the model equals 

the exponential model. In contrast, when q reaches 0, the 
model equals the hyperbolic model. 
 

Behavioral experiment 
Participants Five hundred and five Japanese people (Mage 
= 45.08, SDage = 14.55) participated in this experiment, with 
balanced age groups, i.e., 98, 102, 102, 102, 101 participants 
respectively in their 20s, 30s, 40s, 50s and over 50s. There 
were 255 males and 250 females. They were recruited online 
and enrolled the study via the Qualtrics system 
(https://www.qualtrics.com). As a reward, each participant 
received a coupon which could be redeemed for online 
shopping in Japan. 
Tasks Participants were instructed to perform altogether the 
following three tasks. 
Task 1: Binary choice task Participants were instructed to 
make a series of binary choices in two hypothetical scenarios, 
i.e., past (Figure 1) and future (Figure 2).  
    In both scenarios, instructions were given (i.e., ‘Which 
option would you prefer?’) and participants were required to 
make binary choices between an ¥100,000 reward with 
temporal distance, and an immediate reward with 10 
monetary amounts evenly divided between ¥100,000 and 
¥10,000 (i.e. ¥10,000, ¥20,000, ¥30,000, …¥100,000). In the 
example, the temporal distance is 30 days and the choices are 
presented in a descending order (from ¥100,000 to ¥10,000). 
Six temporal distances (i.e., 1, 7, 30, 90, 180, and 365 days) 
were involved and the amounts were presented in two 
possible orders (ascending or descending).  
    Altogether, each participant was required to make 120 
binary choices (two tense scenarios × 10 monetary amounts

× six temporal distances) in this task. Presentation was 
counterbalanced for tense scenario (past or future) and order 
of amount (ascending or descending) and randomized for 
temporal distances. 
Task 2: Impulsiveness measurement Participants were then 
asked to answer the questionnaire of Barratt Impulsiveness 
Scale 11 (BIS11), a widely-used measure of individual 
impulsivity (Patton et al., 1995) containing 30 questions. The 
Japanese version of the scale was used in the present study 
(Someya et al., 2001). 
Task 3: Demographic information collection Participants 
were requested to report age, sex, nationality and language 
skills. The language skills reported included four languages, 
i.e., Japanese, English, Mandarin and French, and 
participants’ self-evaluation was anchored on a scale of 101 
points, from 0 (Unable to Understand), 40 (Conversational 
Level), 70 (Business Level) to 100 (Native Speaker Level).  
Procedure All the participants were presented with the 
same questions, and with the order of task 1, task 2 and task 
3. The questions in the task 2 and task 3 were presented in the 
same order for all participants and the questions in task 1 
were kept counting balanced (as described above). All the 
questions were presented in Japanese. 
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Figure 1: Binary choice task: past scenario 

 

 
Figure 2: Binary choice task: future scenario 

 

Results 

General tendency 
Based on participants’ answers in the discounting task, we 
identified the points where the immediate reward of ¥100,000 
was equivalent to the amount at temporal distances of 1, 7, 
30, 90, 180, 365 days in the past as well as in the future 
scenario for each participant. 
    Then, we calculated the indifference points by averaging 
the equivalent amounts for each temporal distance and 
plotted them. We fitted the four models to data and chose the 
best one based on Akaike information criterion (AIC). AIC 
for each model is summarized in Table 2. It was found that 
q-exponential was the best model for both past and future 
discounting. Thus, we analyzed the data based on the q-
exponential model. 
    Figure 3 showed the indifference points plot and q-
exponential model for past and future discounting. Overall, 
as predicted, Japanese speakers discounted past gains 
(kpast=0.480) more heavily than future gains (kfuture=0.229). 

We also used the indicator of (Area Under the Curve) to 
evaluate the temporal discount. We standardize the area to 
restrict the value from 0 to 1. The average AUC of past gains 
(MAUCpast=0.547) is significantly smaller than that of future 
gains (MAUCfuture=0.624, t(504) = 6.843, p < .001, d = 0.305), 
suggesting that the value of past is more sensitive to time 
transition. 

Figure 4 shows the discounting rates for each temporal 
distance (1, 7, 30, 90, 180, and 365 days) in past and future 
scenarios, with significant differences between the two 
scenarios for all temporal distances: 1d (t(504) = 4.770, p 
< .001, d = 0.212), 7d (t(504)= 3.980, p < .001, d = 0.177), 
30d (t(504) = 5.602, p < .001, d = 0.249), 90d (t(504) = 4.780, 
p < .001, d = 0.213), 180d (t(504) = 5.503, p < .001, d = 
0.245) and 365d  (t(504) = 5.710, p < .001, d = 0.254). 
    In line with our prediction, results suggest that Japanese 
speakers tended to discount past gains more drastically than 
future gains, as indicated by data of discounting rate, AUC 
and q-exponential model. This finding also supported the 
LSH. 

 
Table 2: AIC for the models. 

 Past Future 
Linear 15.092 13.789 

Exponential 28.231 25.576 
Hyperbolic 26.249 23.906 

Q-exponential 9.472 8.031 
 

 
Figure 3: Q-exponential model fits for discounting results. 
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Figure 4: Discounting rate for each temporal distance.  

Individual differences and personal characteristics 
To further assess individual differences and the effect of 
demographic factors, we fitted individual participants’ data 
with each of the four models to decide on the best-fitting 
model for individuals (evaluated by AIC), as summarized in 

Table 3. Although the q-exponential model was found to be 
the best-fitting for the overall data, the linear model explained 
the individual data the best. However, other models were also 
selected with non-negligible proportions, making it difficult 
to directly compare individual behaviors. Therefore, we used 
AUC to evaluate the discounting behavior at the individual 
level. 
    To identify the tendency of individuals, we first executed 
k-means clustering to categorize the AUC values obtained 
in past and future scenarios.  
    The first step is to determine the optimal number of 
clusters. We applied 30 indices in the R package ‘NbClust’ 
(Charrad et al.,2014) and experimented with the optimal 
cluster number from two to ten. Among the 30 indices, 27 
returned valid results. Although two clusters were suggested 
by the largest number of indices (8/27), it gave much less 
information than three clusters, suggested by the second 
largest number of indices (6/27). Balance between 
parsimony and informativeness, we decided on three as the 
optimal number of clusters as shown in Figure 5. Each dot 
displays data for one individual, and the triangles represent 
the center of each cluster. 
    Figure 5 showcases the plausible clustering of participants’ 
discounting behavior into three groups, i.e. high discounting 
group (green dots, n=136), middle discounting group (blue 
dots, n=183) and low discounting group (red dots, n=186). 
The diagonal line represents identical discounting rate of past 
and future gains. The dots above the line are individuals who 
discounted the value of future gains more, while those below 
the line denote individuals who discounted the value of past 
gains more. 
    As the figure illustrates, individuals of the three clusters 
show very different tendencies. On average, the discounting 
rate for past and future gains is very close in both high 
(MAUCpast=0.205, MAUCfuture=0.200) and low (MAUCpast=0.905, 
MAUCfuture=0.883) discounting group. However, it is obvious 
that participants in the middle discounting group discount the 
value of past gains much more heavily than that of future 
gains (MAUCpast=0.436, MAUCfuture=0.676). Thus, although the 
LSH well predicted the general tendency of the participants’ 
discounting behaviors, it failed to capture the specificity at 
the individual level as it was found to have explained 
individuals with middle level discounting behaviors better 
than on average. 
    We then conducted multiple regression analysis to identify 
individual characteristics that have influenced discounting 
behavior. To reveal a full picture, we included age, 
impulsiveness (measured by BIS-11 questionnaire), language 
ability (in English, Mandarin and French) as numerical 
independent variables, and sex (male = 1, female = 0) and 
tense (past = 1, future = 0) as dummy independent variables, 
to predict AUC. Since we have confirmed that all participants 
reported that Japanese is their native language, we excluded 
the variable of Japanese skill. We also confirmed that 
correlations between every two variables were low (cor<.2). 
    As multiple regression results (Table 4) show, among all 
variables, tense (past or future) and impulsiveness had 
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significant influences on discounting behaviors (p < .01). The 
significant effect of tense is consistent with our major finding 
that people have the tendency to discount the value of past 
gains more strongly than that of future gains. With regard to 
impulsiveness, participants who scored high in the BIS-11 
questionnaire tended to have stronger discounting behaviors 
than those with lower scores in the measurement. This result 
is consistent with that in the previous study, suggesting that 
in general impulsive individuals tend to showcase more 
drastic discounting behaviors (Bickel et al., 2008). No 
significant influence was found for the other variables. These 
results indicated that the difference of discounting behavior 
was explained more in terms of impulsiveness than other 
demographic factors such as age and sex. Besides, we tried to 
include the interaction factor of tense and impulsiveness in 
the model and found there was no significant interaction 
between tense and impulsiveness (p > .1). The result implied 
that impulsiveness and tense functions on temporal 
discounting separately. 

 
Table 3: Individual best model percentage. 
 Past Future 

Linear 264 (52.3%) 286 (56.6%) 
Exponential 90 (17.8%) 78 (15.5%) 
Hyperbolic 80 (15.8%) 59 (11.7%) 

Q-exponential 71 (14.1%) 82 (16.2%) 
 

Table 4: Multiple regression results for AUC values. 
 Est. SE p 
Tense -0.077 0.020 p<.001 
Age 0.000 0.001 p=.966 
Sex 0.008 0.020 p=.683 
English Skill -0.001 0.001 p=.375 
Mandarin Skill -0.001 0.001 p=.320 
French Skill 0.002 0.002 p=.373 
Impulsiveness -0.005 0.001 p<.001 

 

  
Figure 5: Cluster analysis result of AUC values. 

Discussion  
The present study examined the LSH by comparing past and 
future discounting behaviors of individual Japanese speakers 
to eliminate the influence of potent factors such as culture. 
We found that Japanese speakers discounted the value of past 
gains more than that of future gains. This pattern was 
consistent with the prediction based on the asymmetric 
grammatical marking of tense in Japanese as there is 
grammatically marked past tense but no future tense. Thus, 
our results supported the LSH.  

Moreover, detailed analysis of individual characteristics 
revealed that although the theory could explain the general 
tendency of discounting behavior, remarkable individual 
differences remained unexplained. Furthermore, our results 
suggested that the difference in discounting behavior was 
explained more in terms of impulsiveness than in terms of 
demographic characteristics. 

Finally, we need to acknowledge that our study focused 
only on Japanese speakers. Even though there were several 
previous studies on native English speakers in the U.S. and 
found they discounted the value of future and past gains in a 
symmetrical way, we haven’t replicated this result and 
executed the direct comparative analysis by far. This may 
cause some doubt and alternative explanations here. Our next 
step is to collect data from native speakers of English and 
Mandarin for comparative studies to strengthen and broaden 
our conclusion. 
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Abstract 

Despite the fact that priming is one of the most studied           
phenomena in cognitive psychology, many questions remain       
about exactly when, why and under what task conditions we          
ought to observe priming in the lab, and what types of           
relationships between words or concepts reliably lead to        
priming. This project contrasted two priming experiments       
where the primary manipulation was the decision the subjects         
were making about words (as well as manipulating other         
factors, like relatedness proportion, known to affect priming).        
We found evidence that: 1) automatic priming for        
semantically related words does happen under some       
conditions, but 2) semantic priming, and whether it happens         
independent of association, is dependent on the task in which          
participants are engaged. These results provide evidence for        
the context sensitive nature of the activation of semantic         
memory. 

Keywords: Semantic memory ; Semantic Priming;     
Associative Priming; Goals; Explicit Awareness 

Introduction 
Priming, or the improvement in performance in a        

perceptual or cognitive task relative to some baseline, is one          
of the most studied effects in cognition (McNamara, 2005).         
Much of this interest is because of priming’s potential for          
giving us a window into our representations and how we          
access them. For example, if the word or concept dog is           
responded to more quickly when it is preceded by the word           
or concept cat then when it is preceded by shoe, it suggests            
that our representation of dog and cat share some relation,          
association, or overlap that dog and shoe do not (Collins &           
Loftus, 1975). 

By discovering systematicities about what kinds of       
words or concepts prime each other, cognitive scientists        
hope to unravel the nature and structure of how knowledge          
is represented. For example, McRae, de Sa, & Seidenberg         
(1997) found different patterns of priming for human-made        
artifact and natural kind words, leading to claims about         
differences in the nature of the representations of those         
words’ meanings. Statistically significant priming was only       
found between natural kind words if those words had high          
correlated feature overlap. In other words, priming was        
observed between words like canary and robin, which share         
a set of intercorrelated features that co-occur across a broad          

range of words, like “has wings”, “has feathers”, and “can          
fly”. But no priming was observed between words like         
raspberry and ruby, despite the fact that they superficially         
share many features in common (like “is red”, “is small”          
and “is round”). Unlike “has wings”, “has feathers”, and         
“can fly”, these features are not correlated across a broad set           
of items. McRae et al found that, in contrast to natural kind            
words, priming occurred for human-made artifact words that        
had high feature overlap, regardless of whether those        
features were correlated or uncorrelated. Based on these        
results, McRae et al. argued that correlated features are in          
some way important to the representational structure of        
natural kind concepts but not artifact concepts. 

Decades of research has investigated a wide range of         
relationships between words, and whether those      
relationships lead to priming, including: normative      
association strength, co-occurrence in language, synonymy,      
antonymy, perceptual similarity, feature overlap, shared      
category membership, shared script/schema membership,     
functional relations, and others (for review, see Hutchison,        
2003; & McNamara, 2005). However, conclusions about       
what types of relations systematically lead to priming are         
made difficult by the fact that many factors unrelated to the           
target-prime relationship also influence the extent to which        
semantic priming occurs. One such factor found by Moss et          
al. (1995) is that words belonging to the same category          
prime when presented auditorily, but not as text. 

A second moderating factor is the type of task subjects          
are asked to perform during presentation of a target, can          
influence priming results. Examples of tasks are naming the         
target word aloud, or deciding whether the target is a legal           
string in the English language. The latter is called a lexical           
decision task, which we will abbreviate LDT. 

A third moderating factor is the time duration between         
the prime and target (the stimulus onset asynchrony, or         
SOA). Hutchison (2003) reviewed 36 experiments (shown       
in Figure 1 below) examining priming for words belonging         
to the same category (and which were not normatively         
associated). He found that in experiments where the task         
was lexical decision, priming almost always occurred       
regardless of SOA, whereas in naming studies, priming        
effects were much less consistent. 
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A final moderating factor is the relatedness proportion        
(RP) of words in the study. In a typical study this can range             
from as high as 50% of the items being related, to           
sometimes being as low as 5% (Hutchison, 2003). Like         
SOA, RP effects can dramatically alter whether words of         
certain types prime each other. RP and SOA are often seen           
as working in a similar mechanistic fashion, by altering the          
extent to which the subject is explicitly aware of the          
potential for a relationship between the prime and target.  

 
Figure 1. Priming effect sizes for same category words (in          
ms) in 36 experiments, as a function of task (lexical decision           
vs. naming) and short (<300 ms) or long (>300 ms) SOA.           
Data taken from Hutchison (2003) Table 4. 
 

When subjects have a long time to process the prime, and a            
high proportion of items are related, there is a high chance           
they are making active, explicit, or strategic predictions        
about the items (Neely, 1991). In contrast, when the speed is           
very quick, or a small proportion of items are related, the           
chance of this is much reduced, and priming effects are          
often attributed to unconscious or automatic effects like        
spreading activation (Collins & Loftus, 1975). 

With so many factors moderating or eliminating       
priming effects, we do not yet understand priming well         
enough to use it as a tool for probing which words’ or            
concepts’ representations are related. In this paper, we hope         
to bring some clarity to these issues. We do so by           
controlling and contrasting task, SOA, and RP within the         
same experiment and using the same items. This will allow          
us to see if semantic priming can be consistently obtained          
and the factors that affect these priming effects. In doing so,           
we hope to answer three primary questions. 

First, can we reliably obtain priming for items that are          
semantically related (in terms of being from the same         
category), in the absence of other types of relations? For          
example, one other factor moderating the studies shown in         
Figure 1 was the extent to which the words were          
normatively associated (e.g. the prime reliably elicited the        
target in a free association task). Of the studies shown that           
failed to find semantic priming, the overwhelming majority        
used same category words that were not normatively        

associated, whereas the studies that did find priming used         
words that were both associated and from the same         
category. This had led some to argue that most priming is           
“associative” priming, and that purely semantic (e.g.       
category or feature-based) priming are rare, weak, or        
nonexistent. This explanation is somewhat dissatisfying,      
however, because the fact that two words are associated in a           
normative task does not tell us much about the nature or           
cause of that association. 

One possible explanation for the lack of priming        
without association deals with the strength of the similarity         
of the items. In some of the studies testing same-category          
priming for unassociated words, the category-based      
relationship was rather weak. For example, Shelton &        
Martin (1992)’s experiments 2 and 3 found priming times of          
2 ms and -23 ms (in a long SOA LDT task), but many of              
their “related” items were of questionable relatedness,       
including dirt and cement, soup and juice, barn and home,          
and duck and cow. Thus, in this experiment the lack of           
associativity was confounded with the lack of strong        
semantic similarity (in terms of feature overlap or any other          
definition). Other studies, such as McRae and Boisvert        
(1998) that used more strongly related words, found        
evidence for semantic priming in the absence of association.         
In order to address the question of whether semantic         
priming exists independent of association, in our       
experiments we choose items that are from the same set of           
eight categories (mammals, birds, fruits, vegetables,      
vehicles, clothing, weapons, and tools), and were as highly         
similar as possible, but varied the degree of association so          
that its effect could be investigated statistically as a         
covariate in our analyses. 

Second, is semantic category-based priming consistent      
across different relatedness proportions and stimulus onset       
asynchronies? As noted, there has been inconsistency in        
whether semantic priming is found with short SOAs or low          
RPs, leading some to suggest that semantic priming (as         
opposed to associative priming) is only an explicit or         
strategic phenomenon that occurs when subjects might be        
aware of the fact that words in the study are related, and that             
therefore automatic unconscious semantic priming does not       
occur. But again, many of these studies have problems,         
ranging from small sample sizes to relatively dissimilar        
“semantically related” words, to not fully crossing RP and         
SOA. In the experiments described below we ran different         
sets of subjects in a 2x2x2 design crossing extremely short          
SOAs (50ms) and moderately short SOAs (250ms), two RP         
conditions (0.25 and 0.50 related), in addition to whether the          
words’ meanings are related or unrelated (priming would or         
would not be expected). 

A third question being tested in this paper is whether          
automatic priming is dependent on the task-related goals of         
the subject. Contrary to the depiction of semantic priming as          
a static phenomenon by a large majority of the literature,          
Willits et al. (2015) found that what types of         
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verb-instrument relations led to priming could be       
manipulated by changing the task. In tasks that had a          
linguistic bias (such as naming words aloud), priming was         
observed for words that that have strong linguistic        
co-occurrence relationships, but not for words that were        
semantically related that do not co-occur frequently. In        
contrast, in tasks that were heavily semantic (such as         
making a category decision about the target word), priming         
occurred for those words that shared a semantic relationship,         
regardless of their linguistic co-occurrence probability.      
Across the current two experiments, we manipulated the        
task in a similar fashion, observing whether semantic        
priming is independent of the tasks-specific goals. In        
Experiment 1, subjects’ task was to decide whether the         
target was a concrete (vs. abstract) entity. Unlike other tasks          
often used in semantic priming (like naming and lexical         
decision), this task is one that involves activation of         
semantic information, and thus may make semantic priming        
more likely. In Experiment 2, the subjects performed a         
semantic categorization decision, deciding if words      
belonged to a particular category (selected from the same         
eight categories from which the stimulus words were        
drawn). Critically, sometimes the related pairs were aligned        
with the category decision being made (e.g. eagle-hawk for         
“is the second word a bird” vs. “is the second word a            
vehicle). Thus, the contrast between Experiments 1 and 2         
allows us to investigate the extent to which semantic         
priming is consistent across tasks, and whether or not it          
matters that the kind of semantic relationship being primed         
is consistent with the subject’s current goal.  

Experiment 1: 
Priming in a Concrete/Abstract Decision Task 

In Experiment 1, subjects saw a sequence of 128         
prime-target pairs. They were asked to judge whether the         
target was a concrete real object (like a rock, bird, or cloud)            
or an abstract concept (like truth, beauty, or honesty). Half          
the items were concrete, and half the items were abstract.          
Among the concrete items, either 50% or 25% of the items           
were semantically related. Subjects were randomly assigned       
to each RP condition, and to either a 50 ms or 250 ms SOA              
condition. This resulted in a 2x2x2 mixed design, with RP          
and SOA as between-subject factors, and prime-target       
relatedness as a within-subject factor. 
 

Method 
Subjects. There were 339 undergraduate students who       
participated in the experiment for course credit. All subjects         
were fluent speakers of English. 
Procedure. Subjects were seated in front of a computer         
screen. Each of 128 trials consisted of the presentation of          
the following sequence of events. First, a fixation cross for          
50 ms. Second, the prime word (for either 25 ms or 225 ms,             
depending on SOA condition). Third, a pattern mask        
(“&&&&&&”) for 25 ms (with the duration of the prime          

word plus the pattern mask constituting the SOA). Fourth,         
the target word, which stayed on the screen until a response.           
The inter trial interval was one second. Subjects were         
required to answer yes or no as to whether the target word            
was a concrete real object. The trials were randomly divided          
into eight blocks of 16 words, allowing the subjects a brief           
resting period between each block. 
Materials. Each subject saw 128 noun-noun trials which        
consisted of 64 concrete-abstract pairs and 64       
concrete-concrete pairs. The specific 64 concrete-concrete      
trials varied across subjects depending on their RP        
condition. The 128 words making up the 64        
concrete-concrete pairs were chosen according the      
following parameters. First, 16 words from eight semantic        
categories (mammals, birds, fruits, vegetables, vehicles,      
clothing, weapons, and tools) were chosen resulting in 64         
pairs that were from the same category, maximized semantic         
similarity, while varying normative association strength.  

The experiment’s 64 related pairs were then arranged        
into counterbalanced lists that re-paired 50% or 75% of the          
targets with unrelated primes (depending on the RP        
condition). These lists also ensured that each prime and         
target occurred only once in each list, and that each word           
occurred as a related prime and target, and as an unrelated           
prime and target across different lists. For example, the         
RP=.50 condition had four lists, so that dog could occur as a            
related prime and target (dog-cat, and cat-dog) and an         
unrelated prime and target (dog-shoe and shoe-dog) across        
the four lists. Each subject saw only one list. 

The 128 words making up the concrete-abstract trials        
were chosen by selecting 64 abstract words and then pairing          
each one with an unrelated concrete prime word (chosen         
equally distributed from the same eight categories). These        
same 64 concrete-abstract pairs were added to each of the          
lists described above. Note that this means that the RP          
conditions could be considered .25 and .125 rather than .5          
and .25, depending on whether you are considering the         
relatedness of all trials, or of just the concrete-concrete yes          
trials which constituted our analyses. 

Results and Discussion 
As per standard convention in priming experiments, we        

first inspected accuracy scores to check to make sure there          
were no speed accuracy tradeoffs. Then we analysed the         
reaction times in the yes trials, after removing outlier trials          
that were shorter than 400 ms or greater than three standard           
deviations of the mean leaving 20,560 trials (out of 21,234          
total yes trials) left for analyses. The resulting mean reaction          
times for related and unrelated trials in our four RP-by-SOA          
conditions are shown in Figure 2. 

Next, we used relatedness, SOA, and RP as fixed         
factors predicting RT in a mixed-effects regression model,        
with subject and target word as random factors (Bates,         
Maechler, Bolker & Walker, 2015). The results of this         
model are shown in Table 1. We found significant main          
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effects of relatedness which did not interact with either SOA          
or RP. Thus we found evidence for a priming effect          
independent of SOA or RP, and no evidence that our  

 
Figure 2. Mean reaction times (and standard deviations        
computed across subjects) in an abstract/concrete judgement       
task for related and unrelated trials as a function of          
relatedness proportion and stimulus onset asynchrony. 
 

Table 1. Fixed effects of mixed effect model analyzing         
reaction time on yes trials in Experiment 1. As per          
convention, t scores of greater than 2 are typically         
considered statistically “significant” (Baayen, 2008). 
Fixed Effect  b  t 
Relatedness  -15.6  -5.39* 
SOA  -26.7  -2.34* 
RP  -1.20  -0.10 
Relatedness x SOA  -2.92  -0.51 
Relatedness x RP  5.74  0.99 
SOA x RP  7.58  0.33 
Relatedness x SOA x RP  -21.6  -1.87 
 

Table 2. Fixed effects predicting residual variance in RT         
after removing variance in RT predictable by normative        
association strength in Experiment 1. 
Fixed Effect  b  t 
Relatedness  -8.22  -1.48 
SOA  -21.9  -1.73 
RP  -2.76  -0.22 
Relatedness x SOA  3.97  0.36 
Relatedness x RP  12.4  1.11 
SOA x RP  -1.06  -0.04 
Relatedness x SOA x RP  -38.0  -1.71 
 

subjects were generating strategic expectations about      
prime-target relationships, even in SOA/RP conditions that       
encouraged such expectations. 

We also fit a second model to the RT data after           
removing the variance in RT that could be predicted by          
association strength. This removal of variance was done by         
excluding the 15,175 trials that: 1) involved normatively        
associated prime-target pairs, and 2) included targets shared        

by the normatively associated prime-target pairs so as to         
ensure equal treatment, leaving 5385 trials for analysis. The         
effect of relatedness disappeared after removing variance in        
RT predictable by normative association strength. Thus, in        
an abstractness judgement task, although we found evidence        
for an RP and SOA-independent priming effect, we did not          
find evidence for priming due to “semantic” relatedness (i.e.         
high similarity items belonging to the same category), when         
the effect of normative association was removed. This is         
true even though our items were picked to maximize         
strength of the relationship between the related prime and         
target items. 

Experiment 2: 
Priming in a Category Decision Task 

Experiment 2 was designed to investigate the extent to         
which the priming results found in Experiment 1 were         
dependent on the task in which the subject was engaged. In           
Experiment 2, subjects’ performed a category decision task,        
deciding if the target word belonged to a specific category          
(one of the same eight from which the stimuli were drawn). 
 

Method 
Subjects. There were 253 undergraduate students who       
participated in the experiment for course credit. All subjects         
were fluent speakers of English. 

 

Materials. Items here were identical to those of experiment         
1 but for one difference: the no trials were, like the yes            
trials, concrete-concrete pairs drawn from the same eight        
categories. These no trials were chosen such that their         
relatedness proportion matched that of the subject’s       
condition (either 0.25 or 0.50). Thus, each block consisted         
of related pairs that aligned with the category decision         
relevant for that block, unrelated pairs with either prime or          
targets (but not both) aligned with the category, as well as           
related trials that were misaligned with the category. As an          
example, consider Table 3, with a sample showing two         
counterbalanced lists of eight items. 
 

Table 3. Sample items demonstrating related and unrelated        
pairings in Experiment 2 when task was to decide “Is the           
second word a mammal?” and RP=0.50. For this sample of          
words, other counterbalancing lists would have been created        
allowing all words to serve as both primes and targets in           
both related and unrelated trials, across different subjects. 
 
Prime 

  
Target 

  
Condition 

 Correct 
Response 

dog 
rat 
eagle 
hammer 
sword 
subway 
moose 
zebra 

 cat 
mouse 
deer 
cow 
knife 
train 
shirt 
blueberry 

 Related 
Related 
Unrelated 
Unrelated 
Related 
Related 
Unrelated 
Unrelated 

 Yes 
Yes 
Yes 
Yes 
No 
No 
No 
No 
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Procedure. The procedure in Experiment 2 was identical to         
that of Experiment 1 except for the nature of the yes-no           
decision, now a category decision. The 128 trials were         
divided into eight blocks, such that the specific category         
about which the subject was evaluating the word changed         
every 16 trials. These eight categories were the same from          
which the items were drawn. The order of the eight blocks           
was randomized across subjects. 
 

Results and Discussion 
Data in Experiment 2 were analyzed the same way as          

we analyzed the data in Experiment 1. 14,977 trials (out of           
17,092 total yes trials) were left after our trimming process.          
The mean reaction times in each condition are shown in          
Figure 3.  

 
Figure 3. Mean reaction times (and standard deviations        
computed across subjects) in a category judgement task. 
 

Again, we used relatedness, SOA, and RP as fixed         
factors predicting RT in a mixed-effects regression model,        
with subject and target word as random factors. The results          
of this model are shown in Table 3. We found a significant            
main effect of relatedness, and also a significant interaction         
of relatedness with RP (but not SOA). 
 

Table 4. Fixed effects of mixed effect model analyzing         
reaction time on yes trials in Experiment 2. 
Fixed Effect  b  t 
Relatedness  -22.1  -4.95 
SOA  -42.6  -2.95 
RP  -3.15  -0.22 
Relatedness x SOA  4.76  0.69 
Relatedness x RP  -19.3  -2.77 
SOA x RP  67.8  2.35 
Relatedness x SOA x RP  -4.35  -0.31 
 

As per Experiment 1, we also fit a second model to the            
RT data after removing the variance in RT that could be           
predicted by association strength. This removal of variance        
was done by excluding the 10,563 trials that 1) involved          
normatively associated prime-target pairs, and 2) included       
targets shared by the normatively associated prime-target       

pairs so as to ensure equal treatment, leaving 4414 trials for           
analysis. 

The results of Experiment 2 turned out interestingly        
different than those of Experiment 1. Here, the main effect  
 

Table 5. Fixed effects predicting residual variance in RT         
after removing variance in RT predictable by normative        
association strength in Experiment 2. 
Fixed Effect  b  t 
Relatedness  -33.4  -3.05 
SOA  -40.2  -2.40 
RP  9.36  0.56 
Relatedness x SOA  -2.23  -0.17 
Relatedness x RP  -2.10  -0.16 
SOA x RP  80.8  2.41 
Relatedness x SOA x RP  0.63  0.02 
 

of relatedness survived the removal of normatively       
associated word pairs. Thus, the priming observed in        
Experiment 2 was at least partly due to semantic         
relatedness, independent of association. This stands in sharp        
contrast to the way that the priming observed in Experiment          
1 can be attributable to effects of normative association. 

Why the difference between Experiments 1 and 2? In         
comparison to an abstract/concrete judgement decision,      
semantic information (in particular, semantic similarity,      
overlapping semantic features, or the category to which a         
word belongs) is clearly more relevant when the task in          
which the subject is engaged is a category judgment         
decision. The results of Experiment 2, and their contrast         
with Experiment 1, strongly suggested that the       
manifestation of semantic priming depends on the goals or         
task in which a person is engaged. If their goals beg heavy            
use of knowledge about semantic features, empirical       
phenomena of cognitive access like priming should be        
organized semantically. 

There was a significant Relatedness x RP interaction        
found in the model that included normatively associated        
pairs. However, this interaction disappeared in the model        
that excluded normatively associated pairs. This is a curious         
finding. Alone, these results might suggest that RP effects         
are selective and only relevant to associative priming.        
Unfortunately, this conclusion is untenable. Experiment 1,       
where priming was associative in nature, showed no RP         
effect at all. We are still left with some uncertainty about the            
exact role that RP plays in priming. 
 

General Discussion 
“Priming is an improvement in performance in a        

perceptual or cognitive task, relative to an appropriate        
baseline, produced by context or prior experience.”       
(McNamara, 2005). Priming is typically called semantic       
when the improvement in performance is brought about by         
prior experience with semantically related concepts. Due to        
the fleeting nature of semantic priming, some have        
expressed doubts that it reflects the true organization of         
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concepts in our mind. If semantic priming only manifested         
itself in conditions that encouraged strategic processing, no        
researcher would be able to use it as evidence that semantic           
memory is organized semantically. Given further evidence       
that semantic priming is predictable by word association        
norms, it might even be reasonable to say that semantic          
memory is instead organized associatively. However, this is        
not the conclusion warranted by our data. In Experiment 2,          
we found evidence for automatic priming (i.e. priming even         
with very short SOAs and low RPs) for words with no           
associative relationship. 

Despite these findings, it should be stressed that        
automatic semantic priming is nonetheless a fleeting       
phenomenon. Consistent with other work about the task        
and/or goal dependent nature of semantic activation (Willits        
et al., 2015), we found that priming does not occur          
independent of task, or with words of low relatedness         
(Shelton & Martin, 1992). Our results indicate that semantic         
priming should only manifest reliably when subjects’ goals        
involve heavy usage of semantic information. Subjects’ task        
in Experiment 2 was heavily reliant on semantic        
information, where they were required to make decisions        
about the words’ membership to categories that were        
directly aligned to the related vs. unrelated contrasts in         
stimuli. Experiment 1 on the other hand, required a lighter          
use of semantic information where nuanced distinctions       
between and matches of sets of features were not needed.          
Instead, all that was needed was whether or not the word           
referred to something that is tangible.  

Given the ubiquity of SOA effects in the priming         
literature, it might be remarkable that our experiments        
showed no effects of SOA on priming at all. It is worth            
noting, though, that one of our limitations lie in our SOA           
manipulations: they were relatively small (50 ms vs. 250         
ms) compared to some previous work (which has        
investigated SOAs as long as 1000 ms). While many have          
argued that 250 ms is where strategic effects begin to          
appear, it lies too close to the borderline for us to be certain             
of any conclusions drawn about pure-SOA effects. Future        
work could extend these studies to using much longer         
SOAs, resolving this uncertainty about strategic effects. 

Other future directions include investigating the true       
nature of associative priming, a phenomenon that, because it         
is defined by a word norm task, is unsatisfying as a           
mechanistic explanation for priming. An alternative would       
be to ground associative priming in something more        
tangible as a mechanistic explanation. Willits et al. (2015),         
for example, used language co-occurrence statistics to       
fruitfully predict priming results. Corpora analyses therefore       
offers a step away from defining the phenomenon by a word           
norm task. Finally, given our promising results of the         
existence of semantic priming under at least some        
circumstances, it is natural that another next steps would be          
a computational model that is able to predict priming at the           
level of individual words and/or subjects. Such a model         

would be a major step towards a truly mechanistic and          
unambiguous account of the source of lexical priming        
effects. 
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Abstract 
 

With two experiments, we begin an inquiry into the 
perceived explanatory value of mathematical entities in 
everyday explanations. This work is motivated by a 
philosophical debate about the role mathematical entities 
play in explanation. Simply put, are the mathematical 
entities themselves explanatory, or is mathematical talk 
elliptical or shorthand for talk about the physical entities we 
are concerned with?  Across the two experiments, we found 
clear evidence that situational factors affected how the 
mathematical entities were considered. However, when 
those situational factors are accounted for, participants 
tended to see more explanatory value for mathematical 
entities that point to other objects involved in the explanation 
as opposed to mathematical entities that assume the 
explanatory role themselves. 
 
Keywords: explanation; mathematical explanation; 
indispensability argument; nominalism; platonism 

 
As scientists, we often appeal to mathematical entities 
within the explanatory frameworks we adopt. These 
entities can take a variety of forms, from simple numerals 
(e.g., ‘7’ and ‘thirty’) and functions (e.g., ‘f(x)’) to complex 
computational models. Most cognitive scientists, but by no 
means all, recognize the usefulness of this mathematical 
information, and there has been extensive commentary on 
its role and how it should be interpreted. In recent years, 
philosophers have taken up this question with an increased 
focus on historical and contemporary case studies in the 
natural sciences (e.g. Lange, 2016; Pincock, 2011). 
However, outside of these formal, scientific frameworks, 
there is arguably a less well developed sense of what role 
mathematical entities play in explanations.   

In this paper, we consider how a live philosophical 
debate about the explanatory role of mathematical entities 
relates to everyday explanations. Do mathematical entities 
contribute to the explanatory work themselves or are they 
“merely” drawing out the structure necessary for the 
explanation, identifying the relevant conceptual entities 
that are actually doing the explanatory work? 

Within philosophy of mathematics, platonists affirm the 
existence of mind-independent and abstract mathematical 
objects, while nominalists deny that there are any such 

entities (see Cowling, 2017, for a general discussion of the 
platonist-nominalist debate). An influential line of 
argument in defense of platonism is the “Indispensability 
Argument”, which posits that an ontological commitment 
to mathematical entities of the sort held by platonists is 
warranted because mathematical entities like numbers and 
functions play an indispensable explanatory role (Colyvan, 
1998). Put differently, platonists make a claim about what 
exists—namely, that along with concrete entities like 
electrons and tables, there are also imperceptible, non-
spatiotemporal mathematical entities. In contrast, 
nominalists deny that mathematical entities exist while 
acknowledging that we must nevertheless explain their 
usefulness in explanations. We examine whether this 
distinction that has motivated philosophical debate plays a 
role in everyday explanation. 

In most scientific frameworks, mathematical entities are 
used to provide formal descriptions of processes and 
components theorized within conceptual frameworks. For 
instance, in the categorization literature numerous 
mathematical models have been proposed to account for 
how individuals organize items into coherent classes. 
These models vary from rather simple computations of 
feature overlap among the items to complex systems of 
probabilistic computation. They employ mathematical 
entities in a variety of ways, but there is no assumption that 
the explanatory value of the models rests on a commitment 
to the existence of those mathematical entities. Instead, the 
mathematical entities reference the things, e.g. the features, 
that are doing the explanatory work.  We describe this 
approach as a nominalist friendly (NF) position. On 
nominalism and the various accounts that have been 
developed to account for mathematical explanation, see 
Burgess and Rosen (1997). 

One can also accept an ontological commitment to the 
mathematical entities and allow them to assume 
explanatory relevance. In this case, the mathematical 
entities themselves ground the explanation as opposed to 
simply representing the physical-causal entities and their 
relations. For instance, consider the explanation for why 
certain species of cicadas emerge from their nymph state in 
either 13 or 17 year cycles. The explanation for these life 
cycles can be understood in terms of avoiding predation 
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(the cicadas would evolve to have a life cycle that 
minimizes overlap with the life cycle of predators), but that 
explanation ultimately rests on the fact that 13 and 17 are 
prime numbers. The mathematical reality of prime 
numbers is that they cannot be factored. The explanation 
for the life cycle of these species of cicada thus relies on a 
commitment to the mathematical entities as having 
particular qualities and would therefore be no less real or 
existent than familiar objects like chairs and racecars 
(Baker, 2005). We describe this stance as a platonist 
friendly (PF) position. 

We use this philosophical debate to background an initial 
inquiry into how lay people use and evaluate mathematical 
entities in everyday explanations. We want to be clear that 
we do not think that people ponder the ontological 
commitments they are making as they produce or evaluate 
these kinds of explanations. However, there may be an 
effect tied to whether the explanations induce genuine 
ontological commitments to mathematical entities. Indeed, 
platonists who endorse the indispensability argument 
standardly assert that, without PF-friendly claims, certain 
proposed explanations will seem non-explanatory and that, 
generally, PF explanations are superior to NF explanations 
(Colyvan, 2018). As we consider below, whether the 
mathematical entities are represented with regard to their 
number theoretic value or are merely non-referring 
placeholders for information about the items they reference 
will, according to platonists, impact explanatory processes. 

Psychologists have examined why people engage in 
explanation, what implications explaining has for other 
cognitive activities, and what cognitive structures underlie 
explanation. There is evidence that people value 
explanations that are simple and provide coverage in terms 
of how widely the explanation can be applied (Lombrozo, 
2012). There is also evidence that explanatory processes 
rely on structured internal representations (Chin-Parker & 
Bradner, 2017; Johnson, Johnston, Koven, & Keil, 2018). 
These two aspects of explanation suggest that the 
ontological commitment could indeed play a role in how 
people regard explanations. For instance, if an explanatory 
relationship is represented in terms of the number 
theoretical values (e.g. 5 < 6), it might be considered 
simple and widely applicable. If the mathematical entities 
facilitate the kind of structured representations implicated 
in explanatory processes, there could be a preference for 
PF explanations. 

However, insights from the psychological study of 
mathematical reasoning complicate this simplistic 
rendering of the situation. This literature is vast, so we 
focus here on two issues. First, there is variability in the 
ability of people to use and understand mathematical 
information (Rittle-Johnson, 2017). This variability in 
mathematical reasoning would likely impact whether an 
individual is able to easily use the mathematical 

information to instantiate the requisite representations that 
the explanatory processes operate over. Second, how the 
information is presented also impacts mathematical 
reasoning (Koedinger, Alibali, & Nathan, 2008). In a 
simple problem, people tend to be more successful when 
the relevant information is grounded, when it has a clear 
relationship to concrete referents. When the information is 
presented in a more abstract manner, e.g. algebraic 
notation, people are less able to solve the problem. At the 
same time, the more abstract mathematical entities can 
facilitate more complex mathematical reasoning. Given 
these patterns, we expect the type of explanation may 
interact with the content of the explanation. 

We use the logical form of the sentence to determine the 
ontological commitment of a mathematical statement. For 
example, ‘Thirteen is prime’ is PF because it entails that 
there is something that is prime, which is logically 
equivalent to the claim that thirteen—a mathematical 
entity—exists. A NF stance would, consequently, be one in 
which mathematical terms only appear in non-subject 
positions—e.g., ‘There are thirteen dogs’. Here, 'thirteen' 
merely modifies the subject, dogs, and the sentence directly 
entails that there are dogs, but does not, without auxiliary 
logical assumptions, entail that there is a number thirteen. 
We note, however, that this assumption is a familiar point 
of controversy among philosophers and linguists and it is 
far from clear that lay persons are sensitive to the complex 
relationship between syntactic position and ontological 
commitment even if such a view is defensible upon 
sustained philosophical analysis (see Hofweber, 2016, for 
a recent discussion). In taking on this account of 
ontological commitment for the present study, we are, in 
part, investigating whether certain factors that philosophers 
of mathematics to take to be of paramount importance are 
represented in everyday explanatory practices.  

To begin our inquiry (Experiments 1a and 1b), we asked 
participants to generate, and subsequently evaluate, 
explanations for a series of scenarios. The scenarios varied 
in terms of their content so that we could assess the 
generalizability of the participants’ ontological 
commitments across situations. By asking the participants 
to both generate and evaluate explanations, we were also 
able to assess whether those commitments vary across 
different explanatory processes. Thus, the first experiments 
allowed us to examine whether there is a consistent 
preference for one type of explanation over the other, or 
whether the explanation and, in turn, commitment to 
mathematical entities varies between individuals, 
situations, and how the information is used. Because of the 
exploratory nature of this inquiry, we focus on describing 
the patterns of participant responses relevant to these topics 
as opposed to testing a priori hypotheses. 

Experiment 2 presents a more controlled examination of 
the issue. We used modified versions of the cicada life-
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cycle scenario (Baker, 2005) and asked participants to rate 
the explanatory value and complexity of various 
explanations the cicada life cycle. As prior, the 
explanations varied in terms of whether the mathematical 
entities made a NF or PF commitment. Also, we varied 
whether the mathematical terms were developed using a 
more or less specific example. This manipulation was 
intended to affect the ease with which participants could 
represent the information provided in the explanation.  

When the explanation was developed using a more 
specific example, we expected that the participants should 
find the explanation to be less complex and they should 
give higher explanatory ratings for PF explanations. This 
prediction rests on the idea that the grounded mathematical 
terms could be more easily incorporated into an internal 
representation and the PF explanation would provide better 
coverage because it reflects the existence of those entities. 
However, when the explanation was developed with a less 
specific example, we expected that the participants would 
rate it as more complex and they should give higher 
explanatory ratings for the NF explanations. If the 
participant has more difficulty representing the situation 
due to the development of the mathematical terms, an 
explanation that does not rely on the existence of those 
mathematical terms should be seen as more explanatory.  

In sum, we predict a main effect of the information in the 
explanation (specific vs. non-specific) on the complexity 
ratings, and an interaction between the development and 
the ontological commitment (PF vs. NF) for the 
explanatory ratings. These predictions rest on the 
assumption that the explanatory value will reflect both the 
generalizability and simplicity of the explanation. In order 
to get a better understanding of the individual differences 
in play, we also asked participants to report their comfort 
with mathematics and belief about the existence of 
mathematical entities. 

 
Experiments 1a and 1b 

Methods 
Participants Undergraduate students participated as 
partial fulfillment of a requirement for an introductory 
psychology course. Thirty participants completed Exp. 1a. 
Forty participants completed Exp. 1b. Two participants in 
Exp. 1b failed to complete the explanation generation task, 
but they did provide ratings of the explanations. 
Materials and Procedure The two studies used the same 
materials, but the method of data collection differed. In 
Exp. 1a, participants completed the study in small groups. 
Materials were projected onto a screen, and participants 
wrote out their responses in prepared packets. In Exp. 1b, 
participants completed the study on-line by completing a 
questionnaire created using the Qualtrics platform. See the 

Appendix for the full set of materials used in Exp. 1a and 
Exp. 1b. 

Four scenarios were developed for this experiment. Each 
scenario presented a set of initial conditions that included 
mathematical entities (e.g. “The editor of the Daily News 
has 127 remaining newspapers to deliver and only three 
paperboys to deliver them.”) and then a specific why-
question related to those conditions (e.g. “Why can’t the 
editor distribute the papers equally to each of the 
paperboys?”). The scenarios were designed such that it was 
possible to answer the question by positing the existence of 
the mathematical entities (a PF explanation), but a suitable 
explanation could be made without such a commitment (a 
NF explanation). In Exp. 1a, the order of the scenarios was 
balanced, and in Exp. 1b, the order of the scenarios was 
randomized. In both cases, participants were presented 
with the scenario and why-question and asked to generate 
a response. 

After responding to all of the scenarios, the participants 
were told that other students had also generated 
explanations and those explanations needed to be 
evaluated. The participants were presented with the same 
four scenarios – the order of the situations was again 
balanced (Exp. 1a) or randomized (Exp. 1b). Each scenario 
was accompanied by two short explanations. One of the 
explanations reflected PF commitment (e.g. “Because 127 
is not divisible by three”) and the other reflected NF 
commitment (e.g. “Because if he gives each paperboy 42 
papers, there will be one paper remaining”). In Exp. 1a, 
participants were asked to select which of the two 
explanations they considered to be the better explanation. 
In Exp. 1b, the participants were asked to rate how 
explanatory each explanation was. Along with each 
explanation was a slider that could be adjusted from 0 (“not 
explanatory”) to 10 (“ideally explanatory”). 
 
Results 
Explanation Generation The explanations generated by 
the participants were coded as to whether they rested on a 
PF claim, a NF claim, or whether the claim was ambiguous. 
The explanations were independently coded by two of the 
study authors, and disagreements were resolved through 
discussion including the third author. The inter-rater 
agreement was 87% for the responses from Exp. 1a and 
84% for responses from Exp. 1b. Disagreements were 
easily resolved. 

The distribution of the explanatory claims was similar 
across the two studies. In Exp. 1a, 62% of the explanations 
were NF, 31% PF, and 8% ambiguous.  In Exp. 1b, 65% 
were NF, 31% PF, and 4% ambiguous. The results 
indicated that people tend to rely more on NF claims, but 
that they also will invoke PF claims when deemed 
appropriate. None of the participants in either study 
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generated PF explanations for all four scenarios, 8% 
generated three PF explanations, 22% generated two PF 
explanations, 49% generated a single PF explanation, and 
16% generated no PF explanations. The scenario being 
explained had an effect on the type of explanation 
generated. In the “paperboy” scenario, participants readily 
generated PF explanations (85% of the explanations), 
while in the other three scenarios, they tended to rely on 
NF explanations (over 75% of the explanations for each 
scenario). 
Explanation Selection, Exp. 1a The variability between 
participants and among scenarios is also evident in Exp. 1a 
when the participants were asked to select one explanation, 
NF or PF, as more explanatory. No participant consistently 
selected the PF explanation for every scenario while only 
six participants consistently selected the NF. 
 

 Table 1: Explanation Selection in Exp. 1a 
 

Scenario PF Selection NF Selection 
Championship 13/30 17/30 
Fishing 5/30 25/30 
Paperboy 22/30 8/30 
Wheat 9/30 21/30 

 
In order to assess explanatory preference, the selection 

data for each situation were compared to an assumed equal 
distribution of explanation types using a one-sample 
binomial test. In both the “fishing” and “wheat” scenarios, 
the participants showed a consistent preference for the NF 
explanations (both ps < .05). In the “paperboy” scenario, 
the participants showed a clear preference for the PF 
explanation (p < .05).  Only the “championship” scenario 
had a distribution that indicated that the participants had no 
preference for the type of explanation. 

We did not find evidence that participants made a 
consistent ontological commitment across the generation 
and selection tasks. When the participant generated a PF 
(or NF) explanation for a particular scenario, they 
subsequently selected the same type of explanation for that 
scenario only 52% of the time. 
Explanation Rating, Exp. 1b The participant ratings for 
the PF and NF explanations for each scenario were 
analyzed using a 2 (type of explanation) X 4 (scenario) 
repeated measures ANOVA. There was no overall effect of 
the type of explanation, F(1, 37) = 0.37, p = .55, hp

2 = .01, 
a significant effect of the scenario, F(3, 111) = 6.70, p < 
.001, hp

2 = .15, and a significant interaction between the 
type of explanation and the scenario, F(3, 111) = 8.54, p < 
.001, hp

2 = .18. As can be seen in Figure 1, the explanations 
for the “championship” scenario were significantly lower 
than the ratings for the other three scenarios (all ps < .01). 

Figure 1: Mean Rating for PF and NF Explanations by 
Scenario from Exp. 1b 

Note. Error bars represent 95% confidence intervals. 
 
The other scenarios did not differ significantly from one 
another. Paired sample t-tests revealed that the ratings for 
the PF and NF explanations in the “championship” and 
“wheat” scenarios were not different; t(39) = -1.25, p = .22, 
and t(39) = -0.64, p = .53, respectively. However, the type 
of explanation did affect the ratings in the “paperboy” 
scenario, t(39) = 3.14, p < .01, and “fishing” scenario, t(39) 
= -3.03, p < .01, although in opposite directions. 

In Exp. 1b, the participants showed a more consistent 
pattern of commitment to a particular type of explanation 
than in Exp. 1a. Overall, the participants gave a higher 
rating to the explanation that matched the type of 
explanation they had generated 66% of the time. However, 
this was primarily driven by participants that generated NF 
explanations and subsequently rated the NF explanations 
as better. The participants that initially generated PF 
explanations rated the PF explanations as better only 50% 
of the time. 

Experiment 2 
Methods 
Participants Participants (n = 173) were obtained using 
the Mechanical Turk platform. They had to have above a 
98% positive approval rating and successfully completed 
at least 100 tasks within the system. Eight participants were 
removed for not following directions. The questions 
included in this study were embedded within an unrelated 
memory study. Participants were paid for their 
participation. 
Design Explanations varied in terms of commitment of the 
mathematical entities (either NF or PF) and how the 
mathematical terms were developed in the explanation 
(whether they contained a specific or non-specific 
example). Combining these factors created four conditions, 
and participants were randomly assigned to one condition. 
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Materials and Procedure Participants completed the 
study online using the Qualtrics platform. Each participant 
read a short passage about cicadas that provided some basic 
information about their appearance and diet. Importantly, 
they were informed about the cicada life-cycle being either 
thirteen or seventeen years. The description ended with the 
statement, “A question that has interested scientists is why 
cicadas have this particular life-cycle.” Four different 
explanations were created to address that question. 

All of the explanations consisted of six sentences, the 
first and last sentences were identical across all of the 
explanations. The second sentence reintroduced the idea 
that the life cycle of the cicadas was either thirteen or 
seventeen years. In PF explanations that point was 
connected to the notion that these numbers are prime: 

Interestingly, 13 and 17 are prime numbers – this 
means that no smaller value (such as 2 or 3) can be 
divided into these numbers. 

In the NF explanations, the number of years was connected 
to the notion that those numbers could not be evenly 
segmented: 

Interestingly, cicadas' life-cycles are 13 or 17 years 
long – this means that these periods cannot be 
segmented evenly into durations of two years, 
durations of three years, and so on. 

In all explanations, the next (third) sentence noted that the 
length of the life cycle minimized overlap with potential 
predators. In the PF explanations, this point was explicitly 
tied to the fact that the length of the life-cycle was a prime 
number. In the NF explanations, the point was tied to the 
length of the life-cycle generally. The fourth and fifth 
sentences developed the idea raised in the third sentence 
with either a specific or non-specific example. For 
instance, in the specific PF explanation, the example 
described how a predator with a three year life cycle would 
overlap with cicadas with a thirteen year life cycle only 
once every 39 years, but it would overlap every life cycle 
with a cicada that had a twelve year life cycle. In the non-
specific PF explanation, the development of the 
explanation relied on algebraic notation:  

If a predator of the cicada had a life-cycle of x years 
(where x is equal to 2, 3, or 4), it would threaten 
cicadas with a 13 year life-cycle only once every 13*x 
years because that number would be the first number 
that can be divided by both x and 13. 

In the NF explanations, the specific and non-specific 
examples differed similarly except the examples referred 
to how the life-cycle could be segmented as opposed to the 
characteristics of prime numbers. 

Immediately following the explanation, two rating scales 
were presented. The first scale asked participants, “How 
well does the above account explain the cicada life-
cycle?”. The participants could move a slider along a scale 
from 1 (“Not at all explanatory”) to 9 (“Very 

explanatory”). The second scale asked, “How complex 
would you consider the explanation provided above?”. The 
scale went from 1 (“Extremely simple”) to 9 (“Extremely 
complex”). 

Following the critical questions, the participant was 
asked, “Would you consider yourself to be a scientist?” and 
“Are numbers real?” (Yes/No options for both measures). 
There was also a measure where the participant was asked 
to report their comfort with math from 1 (“Not 
comfortable”) to 9 (“Very comfortable”). 

   
Results 
The participants in the study predominately reported that 
they did not consider themselves scientists, (7.5% 
responded “yes” and 92.5% responded “no”) and that they 
considered numbers to be real (95.4% responded “yes” and 
4.6% responded “no”). Overall, they reported that they 
were “reasonably comfortable” with math (m = 5.62, s = 
2.23), but there was some variability in those responses. 
Importantly, the reported comfort with math did not 
meaningfully vary by condition, F(3, 169) = 1.71, p = .16, 
h2 = .03. 

The explanatory ratings were analyzed using a 2 
(specificity) X 2 (commitment) ANOVA (see Figure 2). 
There was no effect of specificity on the explanatory rating, 
F(1, 169) = 0.12, p = .73, hp

2 = .001. The mean for the 
specific explanations (m = 6.41, s = 2.03) was similar to the 
mean for the non-specific explanations (m = 6.32, s = 2.05). 
There was a significant effect of the mathematical 
commitment on the ratings, F(1, 169) = 3.85, p = .05, hp

2 = 
.02. The mean for the NF explanations (m = 6.67, s = 1.86) 
was significantly higher than the mean for the PF 
explanations (m = 6.06, s = 2.17). There was no interaction 
between the specificity and mathematical commitment of 
the explanations, F(1, 169) = 1.19, p = .28, hp

2 = .01. 
The complexity ratings were similarly analyzed (see 

Figure 3). There was no effect of specificity on the 
complexity rating, F(1, 169) = 1.88, p = .17, hp

2 = .01. The 

Figure 2: Mean Explanatory Ratings from Exp. 2 
Note. Error bars represent 95% confidence intervals. 
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Figure 3: Mean Complexity Ratings from Exp. 2 
Note. Error bars represent 95% confidence intervals. 

 
mean for the specific explanations (m = 6.36, s = 1.90) was 
similar to the mean for the non-specific explanations (m = 
6.74, s = 1.82). There was a significant effect of the 
mathematical commitment on the ratings, F(1, 169) = 4.49, 
p = .04, hp

2 = .03. The mean for the NF explanations (m = 
6.26, s = 1.88) was significantly lower than the mean for 
the PF explanations (m = 6.85, s = 1.81). There was no 
interaction between the specificity and the mathematical 
commitment, F(1, 169) = 0.21, p = .65, hp

2 = .001.  
The participant ratings of how explanatory and complex 

the explanations were had a weak, negative relationship, r 
= -0.12, p = .10. There was no relationship between the 
participants’ reported comfort with math and their 
explanatory (r = -0.02, p = .80) or complexity (r = -0.01, p 
= .88) ratings. There were too few people that reported 
themselves to be scientists (or to not believe numbers to be 
real) to assess how those factors might have impacted their 
ratings of the explanations. 

Discussion 
Experiments 1a and 1b showed that there is variability in 

the mathematical commitments people are willing to make 
when generating or evaluating explanations for relatively 
simple situations. It was clear that the variability was not 
simply an individual difference issue – i.e. there was no 
evidence that some people always use and value PF entities 
and other people do not. This result suggests, contrary to 
some philosophical discourse, that there are not 
distinctively nominalist or platonist reasoners.  

The variation in Exp. 1a and 1b appeared to be largely 
driven by differences among the scenarios. Across both 
samples and all measures, participants readily committed 
to PF explanations for the “paperboy” scenario. It involves 
the simplest mathematical relations as the explanatory 
value rests on a single mathematical operation. The 
“fishing” scenario tended to be the one where explanations 
ontologically committed to mathematical entities were 
least valued, and that scenario involves multiple operations 

across several potential numerical values. The other two 
scenarios tended to show less consistent patterns of 
response. This suggests to us that the complexity of the 
structure of putative explanations might drive much of the 
variation seen in the participants’ preferences for the 
different types of mathematical explanations. Further 
study, and more careful control, of the various factors that 
differentiate these kinds of everyday explanations should 
provide more clarity as to why people shift in the 
ontological commitments.  

In Experiment 2, we did not find the predicted effect of 
the specificity on the rated complexity of the explanations. 
We also did not find the predicted interaction between the 
specificity and the type of mathematical commitment on 
the explanatory value. However, among the non-specific 
explanations, the explanatory ratings differed between the 
PF and NF conditions (p = .03). Even though our 
manipulation of specificity did not have the expected effect 
on the complexity ratings, the participants responded to the 
PF and NF explanations differently when the information 
was non-specific. 

The main results of Experiment 2 were that participants 
considered the PF explanations to be less explanatory and 
more complex than the NF explanations. It is possible that 
the mathematical relations underlying prime numbers are 
more difficult for people to grasp than we had anticipated. 
If that is the case, the results across the two experiments 
align; with more difficult mathematical relations, people 
perceive the explanations are being less explanatory. This 
assessment fits with recent work by Johnson, Johnston, 
Koven, and Keil (2017) and aligns with findings that there 
is a negative relationship between complexity and 
explanatoriness in non-mathematical explanations 
(Lombrozo, 2012). However, that relationship may not 
always hold (Johnson, Valenti, & Keil, 2017). 
Alternatively, it is possible that the participants were 
receptive to the more verbal depictions of the mathematical 
relations found in the NF explanations (see Koedinger & 
Nathan, 2004). This would suggest that it could relate more 
generally to how easily participants are able to represent 
the relations that underlie the explanation. 

The present results suggest that lay people often find NF 
explanations satisfactory and, in certain instances, 
preferable to PF explanations. So, if platonists seek to 
defend the existence of mathematical entities because of 
their explanatory value or because of the manifest 
superiority of platonist over nominalist explanations, the 
present study provides preliminary evidence that such 
claims cannot be substantiated by our everyday 
explanatory practices, which are often quite friendly to 
would-be nominalists. We fully recognize we are not able 
to resolve the philosophical debate that backgrounds this 
study, but it does provide an interesting glimpse into how 
people use mathematical information in explanations. 
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Appendix: Exp. 1a and 1b Materials 
 
Championship Scenario 
Central High School hosts the league basketball 
championship game every three years and they host the 
league volleyball championship every four years. 
Eighteen years ago, they won both championships on 
their home court. Why can't they duplicate that feat this 
year?  
(PF) Because the 18 is a multiple of three, but not four. 
(NF) Because it will be another six years until they host 

both championship games again. 
 
Fishing Scenario 
Lana has $30 and wants to buy a fishing rod, fishing reel, 
and fishing line. There are two rods priced at $21 and 
$22. There are three reels priced at $7, $8, and $9. Fishing 
line is $2. Lana wants to spend exactly $30. Why should 
Lana buy the $21 rod? 
(PF) Because the sum of 22, 7, and 2 is greater than 30. 
(NF) Because any way of combining the $22 rod purchase 
with the purchase of a fishing reel and fishing line 
requires spending more than $30. 
 
Paperboy Scenario 
The editor of the Daily News has 127 remaining 
newspapers to deliver and only three paperboys to deliver 
them. Why can’t the editor distribute the papers equally to 
each of the paperboys? 
(PF) Because 127 is not divisible by three. 
(NF) Because, if he gives each paperboy 42 papers, there 

will be one paper remaining. 
 
Wheat Scenario 
Fred needs 86 lbs of wheat for winter and he can’t afford 
to waste any money on unused wheat. Wheat comes in 
bags of 8 lbs. He has 54 lbs of wheat already. Why can 
Fred avoid buying any unnecessary bags of wheat? 
(PF) Because Fred must buy 32 lbs of wheat, and thirty-

two divided by eight is four. 
(NF) Because Fred must buy 32 lbs of wheat, and if Fred 

buys four 8 lb bags, he will have 32 lbs. 
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Abstract

In mathematical cognition, problem difficulty is a central vari-
able. In the present study, problem difficulty was operational-
ized through five arithmetic operators — addition, subtrac-
tion, multiplication, division, and modulo — and through the
number of carries required to correctly solve a problem. The
present study collected data from human participants solving
arithmetic problems, and from multilayer perceptrons (MLPs)
that learn arithmetic problems. Binary numeral problems were
chosen in order to minimize other criteria that may affect prob-
lem difficulty, such as problem familiarity and the problem
size effect. In both humans and MLPs, problem difficulty was
highest for multiplication, followed by modulo and then sub-
traction. The human study found that problem difficulty was
monotonically increasing with respect to the number of car-
ries, across all five operators. Furthermore, a strict increase
was also observed for addition in the MLP study.

Keywords: problem difficulty; arithmetic cognition; binary
numeral system; connectionist model; multilayer perceptron

Introduction

Mathematical cognition is the field of research concerned

with the cognitive processes that underlie mathematical abili-

ties (Campbell, 2005). Mathematical cognition involves com-

plex mental activities, such as identification of relevant quan-

tities, encoding those quantities into an internal representa-

tion, mental comparisons, and cognitive arithmetic. Most no-

tably, cognitive arithmetic is concerned with the mental rep-

resentation of numbers and arithmetic, and the processes that

access and use this knowledge (Ashcraft, 1992).

In cognitive arithmetic, problem difficulty is a central vari-

able (Ashcraft, 1992, 1995). There are at least three crite-

ria for operationalizing problem difficulty: (a) operand mag-

nitude (e.g., 1 + 1 vs. 8 + 8); (b) number of digits in the

operands (e.g., 3 + 7 vs. 34 + 78); and (c) the presence or ab-

sence of carry1 operations (e.g., 15 + 31 vs. 19 + 37). In par-

ticular, criterion (c) has been further investigated with regard

to the number of carries required to correctly solve a problem

(Fürst & Hitch, 2000; Imbo, Vandierendonck, & Vergauwe,

2007). In the present study, we investigated how the num-

ber of carries affected problem difficulty. Response time (RT)

1A carry in binary addition is the leading digit 1 shifted from
one column to a more significant column when the sum of the less
significant column exceeds a single digit. A borrow in binary sub-
traction is the digit 10(2) = 2 shifted to a less significant column in

order to obtain a positive difference in that column. This paper refers
to borrows as carries.

1011

× 1101

11110000

1011

0000_

1011__

1011___

Carries

Add

10001111 Result

0011 Result

0011 1011

- 0 Subtract

10

- 00 Subtract

101

- 011 Subtract

0101

- 0011 Subtract

0010 Result

0011 Result

0011 1011

- 0 Subtract

10

- 00 Subtract

101

- 011 Subtract

0101

- 0011 Subtract

0010

Add Subtract Multiply Divide Modulo

11110 Carries

1111

+ 1011

11010 Result

120 Carries

1001

− 0010

0111 Result

112 Carries

1000

− 0101

0011 Result

10100 Carries

1011

+ 1010

10101 Result

+

Figure 1: Guiding examples of the five operators with carries.

from the time a participant sees a problem to the time the par-

ticipant answers the problem was used in the present study to

measure problem difficulty.

Previous studies that examine the ways humans process

numbers are mostly based on the highly familiar decimal

numeral system. Instead, the present study used the binary

numeral system, which may offer a novel way to mitigate

against the effect of previous experience with conventional

mathematical operations. Moreover, since the binary system

uses only 0 or 1 digits, it may reduce the problem size effect;

criterion (a): problems with smaller operands (e.g., 5+ 2,

4−1) are solved more quickly and accurately than problems

with larger operands (e.g., 7+ 6, 9− 6) (Campbell, 1994;

LeFevre et al., 1996; Miller, Perlmutter, & Keating, 1984).

Therefore, to observe the effect of carries on problem diffi-

culty, the present study employed the binary system to control

for familiarity with the decimal system and criterion (a).

Extending the connectionist approach (Rumelhart & Mc-

clelland, 1986) to address problems of mathematical cogni-

tion may help us understand in detail why mathematics is

hard (McClelland, Mickey, Hansen, Yuan, & Lu, 2016). This

approach is effective because connectionist models are able

to learn many aspects of mathematical cognition. Also, these

models offer the possibility to provide concrete instantiations

of the mechanisms that grasp the nature of human knowledge

and learning within the domain of mathematics.

Previous research has demonstrated how the connection-

ist model can simulate arithmetic operations. For instance,

McCloskey and Lindemann (1992) simulated associative-

memory neural networks that learn single-digit multiplication

operations. However, these networks were unable to learn all

the given arithmetic operations. Utilizing recent advances in
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deep learning, Kaiser and Sutskever (2016) implemented a

recurrent network capable of learning either addition or mul-

tiplication of two long binary numbers. This model achieved

100% test accuracy. Franco and Cannas (1998) designed mul-

tilayer perceptrons (MLPs) that computed either the addition

or multiplication of two binary numbers. The MLPs were

constructed with at least one hidden layer and binary step

functions as activations. Instead of being learned from data,

the weights of the MLPs above were analytically designed.

Hoshen and Peleg (2016) made MLPs that learned arithmetic

addition, subtraction and multiplication from images of two

7-digit decimal integers through a numerical method.

The MLP was chosen as the connectionist model for the

present study due to its strong learning ability, owing to the

universal approximation theorem. According to the theo-

rem, an MLP can learn any function if its hidden layers

are large enough and its activation functions are squash-

ing functions like sigmoid (Hornik, Stinchcombe, & White,

1989). This implies that MLPs should be capable of learn-

ing arithmetic/modulo operations including addition, subtrac-

tion, multiplication, division, and modulo2. Also, MLPs are

a general type of neural networks capable of learning through

backpropagation (Rumelhart, Hinton, & Williams, 1986).

Based on these properties, we applied the MLP model to help

better understand problem difficulty in arithmetic/modulo op-

erations. In order to measure MLP’s problem difficulty, we

used conquest epoch, which is the number of epochs taken

by a model to correctly learn a given problem set. We pro-

pose this empirical measure since complex nonlinear map-

pings from harder problems to their correct answers tend to

require more epochs than easier problems. In this regard, the

conquest epoch can be used to measure the difficulty of learn-

ing and solving a particular problem set by MLPs.

Previous studies used one or two arithmetic operators to

study problem difficulty. In contrast, the present study inves-

tigated problem difficulty across five arithmetic operators3 —

addition, subtraction, multiplication, division, and modulo.

The present study also examined problem difficulty across

the number of carries for each operator. This provides a more

complete view of the impact of both arithmetic operators and

carries on problem difficulty. Furthermore, as far as we know,

the present study is the first to investigate the impact of oper-

ators and carries on problem difficulty in the context of both

humans and connectionist models.

Datasets

Operation Datasets For each operator, we constructed an

operation dataset, containing all possible operations between

two 4-digit binary nonnegative integers (ranging [0,24− 1])
that generate nonnegative results. The dataset consists of

(x,y) where x is an 8-dimensional input vector that is a con-

catenation of the two operands, and y is an 8-dimensional out-

2The present study refers to the modulo operation as modulo.
3Strictly speaking, modulo is not an arithmetic operator; how-

ever, for simplicity, the present study assumes there are five arith-
metic operators including modulo.

Table 1: Operation and carry datasets. One operation dataset

exists for each operator, and this dataset is subdivided into

carry datasets.

Operation datasets

# Carries (n) + − × ÷, mod

0 81 81 161 214
1 54 27 11 13
2 52 19 17 9
3 42 9 20 4
4 27 29
5 5
6 4
8 8
12 1

Total 256 136 256 240

Carry datasets 5 4 9 4

put vector that is the result of computing the operands. In Ta-

ble 1, ‘Total’ is the number of pairs in each operation dataset.

Let us simply refer to, for example, the operation dataset of

subtraction as the subtraction dataset, and problems from the

subtraction dataset as subtraction problems. The subtraction

dataset is nearly half the size of any other dataset because

only problems satisfying a−b≥ 0 were included. In the case

of division and modulo, the dataset size is 240 = 28−24 be-

cause a÷b where b= 0 were excluded. The entirety of these

operation datasets was used to train MLPs.

Carry Datasets Operation datasets were further subdivided

into carry datasets. A carry dataset refers to the total set of

problems requiring a specific number of carries to solve cor-

rectly, for a given operator. With n denoting the number of

carries required to correctly solve a problem, multiplication

has 9 possible n. Hence, multiplication has 9 carry datat-

sets. The number of carry datasets for the other operators are

shown in Table 1. Let us simply refer to the carry dataset in-

volving n carries as the n-carry dataset, and problems from

the n-carry dataset as n-carry problems.

Experiment 1: Humans

Participants

153 undergraduate students (89 men, 64 women) from vari-

ous departments completed the experiment for course credit.

The average age of participants was 21.3 (SD= 1.8).

Materials

Problem Sets A problem set for a specific operator was

given to participants. Problems in a problem set were evenly

distributed across carry datasets so that participants answered

equal numbers of questions from each carry dataset. Question

distributions per problem set were as follows: addition – 50

problems across 5 carry datasets; subtraction – 40 problems

across 4 carry datasets; multiplication – 45 problems across 9

carry datasets; division – 40 problems across 4 carry datasets;
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modulo – 40 problems across 4 carry datasets. Arithmetic

problems were randomly sampled from each carry dataset

without replacement; let us refer to a set of problems sam-

pled from an n-carry dataset as an n-carry problem set. Sam-

pling without replacement prevented participants from an-

swering previously seen problems. However, in rare cases

where the number of problems in a specific carry problem

set were insufficient4, participants were presented with the

same problem multiple times. Each participant was given a

unique randomly sampled problem set. In a given problem,

two operands were given in a fixed 4-digit format (Figure 2).

This was done in order to control for the extraneous influence

of the number of operand digits on problem difficulty, as out-

lined by criterion (b) in the introduction.

Calculation Guidelines Calculation guidelines were pre-

pared for participants because of their unfamiliarity with the

binary system. The guidelines first explained the concept of

binary numbers, followed by guiding examples with detailed

step-by-step calculations, based on the right-to-left standard

algorithm (Wu, 2011). Guiding examples (Figure 1) for each

operator were organized as follows: addition – 2 addition

problems; subtraction – 2 subtraction problems; multiplica-

tion – 1 multiplication problem with 2 addition problems; di-

vision – 1 division problems with 2 subtraction problems;

modulo – 1 modulo problem with 2 subtraction problems.

More than one carry was involved in all guiding examples so

that participants grasped the mechanism of carry operations.

Procedure

Participants were randomly assigned to a subset of problems

pertaining to one of the five operators; 30 students were as-

signed to addition, 30 to subtraction, 33 to multiplication, 30

to division, and 30 to modulo. Participants studied detailed

calculation guidelines containing one or two guiding exam-

ples (Figure 1) for a given operator until they fully under-

stood the given operator. Participants then began the experi-

ment, solving problems through the command line interface

(Figure 2). The use of pen and paper was permitted to as-

sist in problem solving. After solving each problem, the true

answer was displayed (Figure 2) in order to help participants

understand their mistakes and perform more accurately for

subsequent problems.

Figure 2: Sample program output.

4This was the case for the multiplication 6-carry and 12-carry
problem sets, the subtraction 3-carry problem set, and the divi-
sion/modulo 2-carry and 3-carry problem sets.

Results

If a participant provided a correct answer for a problem, it is

reasonable to assume that this participant performed the cor-

rect number of carries to arrive at that answer. As such, only

RTs for correct answers were used in Experiment 1. Data

and detailed analytical results are available in the footnoted

repository5.

Response Time by Operator Each participant’s mean RTs

across all five operators were analyzed. Let us denote the

mean RT for a problem set of operator ∗ as RT ∗. Anal-

ysis of Variance (ANOVA) was used to investigate differ-

ences in RT ∗ across the five operators ∗ ∈ {+,−,×,÷,mod}.
ANOVA showed significant differences between all RT ∗

[F(4,148) = 78.65, p < .001, η2 = .68]. Further, a post

hoc analysis was performed to analyze comparisons between

all RT ∗. The results of the Games-Howell post hoc test can

be denoted by using the following notation6: RT× > RT+,

RT× > RT−, RT× > RT÷, RT× > RTmod , RTmod > RT+,

RTmod > RT÷ [p < .001], RTmod > RT− [p < .05], RT+ <
RT− [p < .01], but RT+ ≈ RT÷, RT− ≈ RT÷ [p > .05].
These results can be summarized as: RT+ � RT÷ � RT− <
RTmod < RT× (Figure 3a).

(a) Humans: Mean RT. (b) MLPs: Conquest epoch.

Figure 3: Problem difficulty by operator. The error bars are

±1SD.

Response Time by Carries Each participant’s mean RTs

across carry problem sets were analyzed. Let us denote the

mean RT for an n-carry problem set of operator ∗ as RT ∗n .
Addition had 5 types of n-carry problems, n ∈

{0,1,2,3,4}. ANOVA showed significant differences be-

tween all RT+n [F(4,145) = 43.45, p< .001, η2 = .55]. The
Games-Howell post hoc test revealed that RT+0 < RT+1 <
RT+2 , RT+0 < RT+3 , RT+0 < RT+4 , RT+1 < RT+3 , RT+1 <
RT+4 [p < .001], RT+2 < RT+4 [p < .05], but RT+2 ≈ RT+3 ,

RT+3 ≈ RT+4 [p> .05]. These results can be summarized as:

RT+0 < RT+1 < RT+2 � RT+3 � RT+4 (Figure 4a). As such, for

5https://github.com/sungjae-cho/cogsci2019
-appendix/tree/master/human

6A≈ B denotes E[A] and E[B] are not significantly different [p>
.05]. A < B and B > A denote A and B are significantly different
[p < .05] and their expectations hold E[A] < E[B]. A � B �C � D
represents A≈ B but A is less than any other right-hand operand (C,
D); namely, A<C and A< D. Likewise, concerning D, it indicates
C ≈ D, A< D and B< D.
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(a) Addition. (b) Subtraction. (c) Multiplication. (d) Division. (e) Modulo.

Figure 4: Humans: Mean RT by carries. The error bars are ±1SD.

(a) Addition. (b) Subtraction. (c) Multiplication. (d) Division. (e) Modulo.

Figure 5: MLPs: Conquest epoch by carries. The error bars are ±1SD.

n ∈ [0,2], RT+n was strictly increasing7, but for all n, RT+n
was monotonically increasing8.

Subtraction had 4 types of n-carry problems, n ∈
{0,1,2,3}. ANOVA showed significant differences between

all RT−n [F(3,116)= 46.07, p< .001, η2= .54]. The Games-

Howell post hoc test revealed all pairs of RT−n had significant

differences. More specifically, RT−0 < RT−1 < RT−2 , RT−0 <
RT−1 < RT−3 [p < .001], RT−2 < RT−3 [p < .05]. The results
can be summarized as follows: RT−0 < RT−1 < RT−2 < RT−3
(Figure 4b). Therefore, RT−n was strictly increasing with re-

spect to the number of carries n.

Multiplication had 9 types of n-carry problems, n ∈
{0,1,2,3,4,5,6,8,12}. ANOVA showed significant differ-

ences between all RT×n [F(8,284) = 9.24, p < .001, η2 =
.21]. The results of the Games-Howell post hoc test can be

summarized as follows: RT×0 < RT×3 [p< .05], RT×0 < RT×6
[p < .01], RT×0 < RT×4 , RT×0 < RT×5 , RT×0 < RT×8 [p <
.001], RT×1 < RT×8 [p < .05], RT×2 < RT×5 , RT×2 < RT×8
[p < .01], RT×3 < RT×8 [p < .05]; there were no significant

difference between the remaining pairs RT×n , and only RT×12
was not significantly different from any other RT×n . These

results can be summarized as: for n ∈ [0,8], RT×n was mono-

tonically increasing (Figure 4c).

Division had 4 types of n-carry problems, n ∈ {0,1,2,3}.
ANOVA showed no significant differences between all RT÷n
[F(3,116) = 1.20, p > .05, η2 = .03]. These results can be

summarized as: RT÷0 ≈ RT÷1 ≈ RT÷2 ≈ RT÷3 . Despite no sig-

nificant difference between any RT÷n , a weak monotonically

7For every x and x� such that x< x�, if f (x)< f (x�), then we say
f is strictly increasing.

8For every x and x� such that x< x�, if f (x)≤ f (x�), then we say
f is monotonically increasing.

increasing trend in mean RT was observable (Figure 4d).

Modulo had 4 types of n-carry problems, n ∈ {0,1,2,3}.
ANOVA showed significant differences between all RTmod

n

[F(3,116) = 7.78, p< .001, η2 = .17]. The Tukey HSD post

hoc test revealed that only RTmod
0 had significant differences

from any other RTmod
n . Specifically, RTmod

0 < RTmod
1 [p <

.05], RTmod
0 < RTmod

2 , RTmod
0 < RTmod

3 [p < .001]. These

results can be summarized as: RTmod
0 < RTmod

1 ≈ RTmod
2 ≈

RTmod
3 (Figure 4e). RTmod

n was monotonically increasing.

Experiment 2: Connectionist Models

Model

3000 MLPs (Figure 6) were trained for each operator. An

8-dimensional input vector comprised of two concatenated 4-

digit operands was fed to the MLP. The MLPs had only one

26-unit hidden layer with sigmoid. An 8-dimensional output

Hidden layer 

Output layer 𝐩

(sigmoid, 8 units)

64 units, sigmoid

Input layer 𝐱

(8 units) 

Operand 1 Operand 2

0 1 1 0 1 1 0 1

.1 .1 .3 .6 .4 .1 .8 .9

Prediction result ො𝐳

(TLU, 8 units)
0 0 0 1 0 0 1 1

Figure 6: The structure of the multilayer perceptron. The

model above predicts that 110+1101 is equal to 10011.
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vector with sigmoid was used in order to match the maximum

digit output of the arithmetic results. The predicted result is

acquired by processing the output layer through the threshold

logic unit (TLU), which transforms output numbers to 1 if

they are greater than 0.5, and to 0 otherwise.

Training Settings

MLPs learned arithmetic operations by using backpropaga-

tion (Rumelhart et al., 1986) and a stochastic gradient method

(Bottou, 1998) called Adam optimization (Kingma & Ba,

2015) with settings: α= .001, β1 = .9, β2 = .999, ε= 10−8.
An entire operation dataset was utilized as a training set to

train an MLP. For each epoch, a 32-sized mini-batch was ran-

domly sampled without replacement (Shamir, 2016) from the

training set. The weight matrix W [l] in layer l was initial-

ized to samples from the truncated normal distribution rang-

ing [−1/
√
n[l−1],1/

√
n[l−1]] where n[l] is the number of units

in the l-th layer; all bias vectors b[l] were initialized to 0. The

objective function was the sum of the cross-entropy H be-

tween the true result z(x) and output activation vector p(x)
where x is an input vector from a mini-batch: ∑xH(z,p) =

∑x [−z(x) · log(p(x))− (1− z(x)) · {1− log(p(x))}].
For every epoch, accuracy was evaluated on the total op-

eration dataset and each carry dataset (Table 1). When 100%

accuracy for a carry or operation dataset was attained, the cur-

rent number of epochs was recorded as the conquest epoch of

the dataset. Training was stopped when 100% accuracy for

the operation dataset was reached.

Results

Data and detailed analytical results are available in the foot-

noted repository9.

Conquest Epoch by Operator The conquest epochs of

MLPs across operation datasets were analyzed. Let us de-

note the conquest epoch for the operation dataset of oper-

ator ∗ ∈ {+,−,×,÷,mod} as e∗. ANOVA showed signif-

icant differences between all e∗ [F(4,14995) = 92838.78,
p < .001, η2 = .96]. The Games-Howell post hoc test re-

vealed that the differences between all pairs of e∗ were sig-

nificant [p < .001]. More specifically, these results can be

summarized as: e÷ < e+ < e− < emod < e× (Figure 3b). This

mirrors the ordering of the three highest mean RT in humans,

as seen in Experiment 1.

Conquest Epoch by Carries The conquest epochs of

MLPs across carry datasets were analyzed for each operator.

Let us denote the conquest epoch of the n-carry dataset for

operator ∗ as e∗n.
Addition had 5 carry datasets, n ∈ {0,1,2,3,4}. ANOVA

showed significant differences between all e+n [F(4,14995) =
11835.66, p< .001, η2 = .76]. The Games-Howell post hoc

test revealed that all pairs of e+n were significantly different

[p < .001]. These results can be summarized as: e+0 < e+1 <

9https://github.com/sungjae-cho/cogsci2019
-appendix/tree/master/mlp

e+2 < e+3 < e+4 (Figure 5a). As such, the conquest epoch e+n
was strictly increasing with respect to n. Again, this mirrors

results of RT+n from Experiment 1.

Subtraction had 4 carry datasets, n ∈ {0,1,2,3}. ANOVA
showed significant differences among all e−n [F(3,11996) =
2831.77, p < .001, η2 = .41]. The Games-Howell post hoc

test revealed that all pairs of e−n were significantly different

[p < .001]. These results can be summarized as: e−0 < e−1 <
e−3 < e−2 (Figure 5b). Therefore, the conquest epoch e−n was

strictly increasing for both n ∈ {0,1,2} and n ∈ {0,1,3}.
Multiplication had 9 carry datasets, n ∈

{0,1,2,3,4,5,6,8,12}. ANOVA showed significant differ-

ences between all e×n [F(8,26991) = 5024.17, p < .001,
η2 = .60]. The Games-Howell post hoc test revealed

that differences between all pairs of e×n were significant

[p < .001]. Specifically, the results can be summarized as:

e×8 < e×12 < e×6 < e×0 < e×5 < e×3 < e×2 < e×1 < e×4 (Figure 5c).

Division had 4 carry datasets, n ∈ {0,1,2,3}. ANOVA

showed significant differences between all e÷n [F(3,11996) =
17788.62, p< .001, η2 = .82]. The Games-Howell post hoc

test revealed that all pairs of e÷n had significant differences

[p< .001]. More specifically, the results can be summarized

as follows: e÷1 < e÷3 < e÷2 < e÷0 (Figure 5d). Thus, the con-

quest epoch e÷n was not increasing with respect to n.

Modulo had 4 carry datasets, n ∈ {0,1,2,3}.
ANOVA showed significant differences between all emod

n

[F(3,11996) = 7281.45, p < .001, η2 = .65]. The Games-

Howell post hoc test revealed that all pairs of e÷n had

significant differences [p < .001]. The results can be

summarized as follows: emod
0 > emod

1 > emod
2 > emod

3 (Figure

5e). Hence, the conquest epoch emod
n was strictly decreasing

with respect to n.

Discussion and Conclusion

Experiment 1 Results of the present study demonstrate

how problem difficulty varies depending on the five arith-

metic operators and the number of carries. In Experiment

1, results showed that for the five operators, problem diffi-

culty was monotonically increasing with respect to the num-

ber of carries (Figure 4). Notably, for subtraction, RT was

strictly increasing (Figure 4b). Another notable result was

that RT for multiplication was the highest among the five op-

erators (Figure 3a). In order to successfully perform multi-

plication, several sub-multiplication steps must first be com-

pleted (e.g. 1011× 1 = 1011, 1011× 0 = 0, see Figure 1).

A participant may have to complete as many as 4-operand

addition steps in order to correctly solve a single multiplica-

tion problem (Figure 1). It has been shown that the number

of steps (DeStefano & LeFevre, 2004) and operands (Seitz

& Schumann-Hengsteler, 2000, 2002) involved in arithmetic

problems increases working memory demands. As such, the

additional arithmetic steps involved in multiplication prob-

lems may have led to multiplication having the highest RT

among the five operators. It is worth highlighting that par-

ticipants solved the same 12-carry problem five times, due to
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there being only one problem in the 12-carry dataset (Table

1). This problem repetition may be responsible for the de-

creased RTs seen in the 12-carry problem set, relative to the

8-carry problem set (Figure 4c). As such, it is not valid to

compare RT of the 12-carry problem set to other carry prob-

lem sets. Like multiplication, modulo problems also require

many sub-operations to solve correctly. This may explain

why modulo had substantially higher RT than addition, sub-

traction, and division (Figure 3a). Within the modulo prob-

lem set, RT for the 0-carry problems was significantly less

than RT for problems involving carries (Figure 4e). However,

no significant difference was found in RT between any pair

of problem sets involving carries. Modulo involves the use of

arithmetic sub-operations in order to correctly answer prob-

lems (Figure 1). However, unlike in multiplication, the sub-

traction sub-operations involved in modulo problems showed

consistent patterns. The second operand of the sub-operations

was always equivalent to either 0 or the denominator (e.g.

11, see Figure 1). These patterns may have lowered RT for

higher n-carry datasets (Figure 4e). For division, even if a

given problem was an n-carry problem, it did not necessar-

ily involve n carries, as the final subtraction sub-operation

may have been unnecessary in solving the problem (Figure

1). This may have meant that the number of carries in a divi-

sion problem did not always impact on RT (Figure 4d).

Experiment 2 Experiment 2 found that problem difficulty

(conquest epoch) for addition, subtraction, and division was

substantially less than problem difficulty for multiplication

and modulo. Addition, subtraction, and division may have

been easier for MLPs to learn than the other two operators,

due to the repeated occurrence of digit patterns in these prob-

lems. This implies MLPs learned multiplication and modulo

problems by memorizing each problem, rather than by find-

ing digit patterns. This experiment also found that addition

problem difficulty for MLPs was strictly increasing with re-

spect to the number of carries involved in a problem (Figure

5a). However, no such increase was seen in the other opera-

tors (Figure 5b, 5c, 5d, 5e). Generally, MLPs are sensitive to

statistical properties of experience, such as the frequency and

typicality of patterns they meet while they learn (Rumelhart

& McClelland, 1986). In this regard, MLPs appear to re-

quire more epochs to conquer datasets that contain lots of in-

frequent and atypical patterns. However, the frequency and

typicality of patterns in our datasets does not offer a satisfac-

tory explanation as to why an increasing relationship between

problem difficulty and carries was observed in addition, but

not for the other operators.

Experiments 1 & 2 Comparing Experiment 1 with Exper-

iment 2, humans and the MLPs showed partial similarities

in their solving of binary arithmetic problems. For both hu-

mans and the MLPs, problem difficulty was highest for mul-

tiplication, followed by modulo and then subtraction. (Figure

3). Addition problem difficulty for both humans and MLPs

showed increasing trends as a function of the number of car-

ries (Figure 4a, 5a). However, the trajectories of these in-

creases followed notably different paths (Figure 4a, 5a).

Contributions The present study makes four notable con-

tributions to the current literature on mathematical cognition

and cognitive science: Firstly, the present study compares

problem difficulty across the five operators. This contrasts

with preceding work, which has generally dealt with three or

fewer operators. Furthermore, to the best of our knowledge,

the present study is the first to investigate problem difficulty

with regards to the modulo operation. Secondly, the present

study for humans showed that the number of carries had a

discernible effect on problem difficulty across four of the five

arithmetic operators: addition, subtraction, multiplication,

and modulo. Thirdly, the use of the binary numeral system

allowed the present study to somewhat control for other crite-

ria that may have impacted problem difficulty. These criteria

include the problem size effect and over-familiarity with the

decimal numeral system. This allowed for a targeted investi-

gation into the effect of carries on problem difficulty. Finally,

the present study found that MLPs experienced problem dif-

ficulty for some operators similarly to humans: For both hu-

mans and MLPs, problem difficulty was highest for multipli-

cation, followed by modulo and then subtraction (Figure 3a,

3b). Also, the effect of carries on problem difficulty in addi-

tion problems showed increasing trajectories for both agents

(Figure 4a, 5a). This supports previous research (McClelland

et al., 2016) suggesting that there may be some similar cog-

nitive processes underlying mathematical cognition in both

humans and connectionist models.

Future Study Future studies should aim to uncover what

underlying mechanisms caused the MLPs to experience rela-

tive problem difficulty similarly to humans across the five op-

erators. Also, the internal representations MLPs use to per-

form arithmetic operations could be investigated. However,

MLPs do not have the innate ability to dynamically process

information as humans do. MLPs always take a fixed num-

ber of computational steps to produce answers, while humans

take a variable amount of time to produce answers. One direc-

tion for future work could introduce a new dynamic connec-

tionist model to learn arithmetic, namely, a recurrent network

such as the Elman network (Elman, 1990) or the Jordan net-

work (Jordan, 1997). Such recurrent networks can produce

answers through variable computational steps depending on

the problem. These variable steps can be directly compared

to humans’ RT, providing a more valid comparison to human

arithmetic cognition.
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Abstract

Do children’s flexible causal inferences promote more cre-
ative causal discovery for observing adults? Inspired by a task
in which children are more likely to consider unconventional
causal forms (Lucas, Bridgers, Griffiths, & Gopnik, 2014;
Wente et al., 2019), we designed a new method in which child-
adult pairs work together to solve a causal task and assessed
the relative influence of each member of the pair on the other’s
causal inference. Consistent with previous research, children
were better than parents at learning the unusual conjunctive re-
lationship, suggesting that children make more flexible causal
inferences than adults. Our research also revealed a surpris-
ing and new result – that observing a child explore broadly
helped parents to be more flexible and open-minded in their
causal learning. In contrast, a child observing an adult’s ex-
ploratory interventions had no negative consequence on the
child’s ability to infer the correct relation. Follow-up exper-
iments explored the degree to which this child-led bootstrap-
ping for adults was due to the particular exploratory evidence
generated by the child during play, or merely the presence of
a child. Results suggest that both factors may play a role in
shaping adult’s causal inferences.

Keywords: causality, cognitive development, parent-child in-
teraction

Introduction
Like scientists, children explore, discover, and learn. Those
of us with the good fortune to spend ample time with these
little scientists can’t help but be inspired by their curiosity
and reminded of our own creative and inquisitive pasts. As
Gopnik (2016) has suggested, childhood may be a unique
time for greater exploration, cognitive flexibility, and cre-
ativity, leading to innovation for our species driven by our
youngest. Of course, much research has focused on how
children learn from adults, but perhaps there are cases when
adults can learn from these innovative explorers. Perhaps
there are cases when the flexible minds of children lead to
knowledge and learning when adults lack.

Indeed, evidence from several research studies indicated
that children learn specific and abstract causal structure and
sometimes do so more readily than adults (Gopnik et al.,
2017; Lucas et al., 2014; Wente et al., 2019). These find-
ings suggest that children may be more open to new possibil-
ities and willing to consider different hypotheses than adults
(Gopnik et al., 2017). Often times, children encounter and
explore new information in the presence of adults who may
hold contrasting ideas about the world. Here we ask, how
do children and adults interact with each other to explore and
come to understand the world around them? In this study, us-
ing a new method in which child-adult pairs work together to
solve a causal task, we look at whether exploratory patterns

differ between children and adults and the extent to which
these differences have consequences for causal inference in
the observers.

Young children’s ability to infer abstract causal principles
has been studied using the forms of overhypotheses including
conjunctive and disjunctive causal relationships. An overhy-
pothesis is a broad framework that constrains the range of
hypothesis learners consider (Goodman, 1955; Griffiths &
Tenenbaum, 2007). A conjunctive causal relation is a func-
tional form in which multiple causes jointly produced an ef-
fect; a disjunctive relation is a functional form in which a sin-
gle cause can bring out an outcome independently (e.g., see
Cheng, 1997). These overhypotheses are not bounded to a
particular context but are applicable to many other scenarios,
and having these assumptions shape future learning by limit-
ing the number of possible hypotheses that are considered.

Prior research has revealed developmental differences in
inferring a certain form of overhypotheses (Lucas et al.,
2014). After having the same amount of exposure to evi-
dence that is statistically best explained by (the unconven-
tional) conjunctive causal form, children outperformed adults
by correctly generalizing the conjunctive causal relationship
to new objects. While both adults and children were success-
ful at inferring a disjunctive form, the ability to infer conjunc-
tive forms appears to be decreased with age. When given evi-
dence that supported a conjunctive form, adults instead main-
tained a disjunctive relationship (Lucas et al., 2014). The de-
velopmental differences in learning of the conjunctive (but
not disjunctive) causal form suggest that young children are
more flexible than adults in incorporating evidence to guide
future learning (See also Gopnik et al., 2017; Wente et al.,
2019; Gopnik, Griffiths, & Lucas, 2015).

In these past studies, participant’s ability to infer abstract
causal forms was tested by asking for judgments about the
causal efficacy of each cause or to use potential causes to
produce an outcome. However, in these studies, participants
were not given the opportunity to explore and generate their
own evidence. Thus, it remains an open question whether
adult and child participants will generate different patterns of
exploration when given the opportunity to test out possible
causal forms.

One concern is whether children will be able to generate
meaningful play at all. However, recent findings are sup-
porting the claim that young children may be more com-
petent and capable explorers than previously believed. For
example, children shape their explorations to conduct inter-
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Figure 1: Stimuli and task procedure; During two sets of training, parent-child pairs watched experimenter demonstrating
evidence in favor of a conjunctive causal form. Following the training, parent-child pairs were randomly assigned to solo,
child-led, and parent-led conditions. In the solo condition, the parent and child each explored the set of testing objects. In the
child-led group, the child explored the testing objects while parent watched. In the parent-led group, the parent explored the
testing objects while the child watched. Finally, the experimenter asked the parent and child individually to judge whether each
object was a blicket and to turn on the machine.

ventions to deconfound variables (Schulz & Bonawitz, 2007;
Schulz, Kushnir, & Gopnik, 2007; Schulz, 2012; Schulz,
Gopnik, & Glymour, 2007). Further, children plan their fu-
ture exploration based on the inference about pedagogical
goals of teachers based on available information (Bonawitz et
al., 2011; Eaves & Shafto, 2012; Gweon, Pelton, Konopka, &
Schulz, 2014). These studies provide evidence for the claim
that children’s exploration is guided by the evidence. How-
ever, it remains an open question whether the evidence gen-
erated during children’s and adults’ explorations may differ-
ently reflect beliefs going into the task.

Prior studies revealed developmental differences in the
conjunctive causal inference by examining child and adult
groups individually. Despite the importance of caregiver-
child interaction on play and development (Weisberg, Hirsh-
Pasek, & Golinkoff, 2013; Fisher, Hirsh-Pasek, Newcombe,
& Golinkoff, 2013; Honomichl & Chen, 2012), little is
known about the impact of observing either child’s or par-
ent’s patterns of exploration on one another. Thus, we were
also interested in whether observing children’s broad hypoth-
esis search would promote more creative and flexible think-
ing in causal learning for observing adults. Of course, observ-
ing adults’ exploration may also influence children’s conjunc-
tive causal learning. For example, instructions constrain chil-
dren’s explorations indicating that children are sensitive to
inductive biases in their explorations (Bonawitz et al., 2011).
Similarly, a body of literature on guided play highlights that
it is critical for adults to scaffold learning goals as well as let
children direct their exploration and discovery (Weisberg et
al., 2013; Fisher et al., 2013). This balance between scaffold-
ing and letting the child take the lead could be particularly

important when children and adults hold different assump-
tions about the world.

In the present work, we examined the extent to which ex-
ploration patterns differed between children and adults and
whether observing another’s exploration shaped consequent
learning. In Experiment 1, we examined children and their
parents’ exploration and learning following the exposure to
evidence consistent with a conjunctive causal relationship.
Critically, we manipulated who the actor was generating the
evidence including a child-led condition, parent-led condi-
tion, and solo conditions for each group as controls. Con-
sistent with prior research, we hypothesized that children
would be more likely than adults to generalize a conjunc-
tive causal relationship. However, we also predicted differ-
ential exploratory patterns for children and adults. We looked
at whether these differences have consequences for learning
in the observers. Specifically, observing parent-led explo-
ration may restrict children’s causal inference, thus resulting
in more adult-like responses. On the other hand, observing
child-led exploration may result in flexible learning in par-
ents.

Experiment 1
Methods

Participants Seventy-two parent-child dyads were re-
cruited from various settings (i.e., museum, home, and com-
munity event; Children: n = 72, 53% Female, M = 5.03, SD
= 0.84, Range = 4.0-6.9 years; Parents: n = 72, 56% Moth-
ers). The dyads were randomly assigned to the Solo (n =
24), Child-Led (n = 24), and Parent-Led (n = 24) conditions.
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Additional two dyads were recruited but excluded due to not
finishing the study (n = 1) or experimental errors (n = 1).

Stimuli and Apparatus Our procedure involved both real
objects and interactive video stimuli. The interactive video
stimuli were developed using jsPsych (De Leeuw, 2015) and
displayed on a touch-screen tablet computer (10.1-in. Galaxy
Tab; Samsung America, San Jose, CA). The video included
images of three circles, a square, a green button, and a car-
toon bear (see Figure 1). Images of objects were presented
on the three circles, and each object moved to the square
when tapped. The button was designed to test objects once
they were placed on the square. In addition, to provide a way
for participants to respond without influencing the listening
other, two identical yes-no response sheets were created so
participants could silently point to their response behind a
barrier. The sheets included two rectangles (green and red),
each includes a smiley or frowny face with “yes” or “no” writ-
ten at the bottom, respectively.

Procedure Participants were tested in a quite place. The
yes-no response sheets were placed in front of the partici-
pants. The experimenter asked a simple question about color
(i.e., Is this white?) to both the child and the parent. If partic-
ipants pointed to the wrong answer or responded verbally, the
experimenter asked additional questions until children suc-
cessfully responded using the yes-no response sheet.

Next, a backward blocking task was conducted (e.g. see
Sobel, Tenenbaum, & Gopnik, 2004). This task was designed
to acclimate the participants to an ambiguous causal reason-
ing task as well as familiarize participants with the instruc-
tions. The participants were introduced to a machine that de-
tects “wugness”. The experimenter explicitly stated that wugs
are very rare and can not be judged solely by looking, but they
possess wugness inside them. First, the experimenter placed
two potential causes (Objects A and B) on the machine, which
produced an outcome. Then the participants observed that the
outcome occurred with the presence of only one of the causes
(A). After observing these two events, the participants were
asked to judge whether each object (A, B) was a wug, respec-
tively.

Upon the completion of the backward blocking task, the
experimenter introduced the tablet and stated that they would
now play a completely different game (see Figure 1). The
experimenter also mentioned that blickets are very rare and
can not be judged just by looking, but have blicketness in-
side them. After a brief introduction to the features of the
tablet game, the experimenter introduced an object (C) and
ask if the participant thought that object as a blicket with-
out any evidence; this allowed us to test participants’ priors
for the probability of an object being a blicket. Then the ex-
perimenter presented the first set of three training objects (D,
E, F) which activated the machine according to a conjunc-
tive causal rule. This was followed by another set of different
training objects (D’, E’, F’) that also provided evidence for a
conjunctive rule, as in Lucas et al. (2014).

Figure 2: Differing exploratory patterns as measured by total
object used (left) and unique actions (right) during the Ex-
ploration Phase. Compared to children, parents used more
unique combinations of objects, but also fewer objects were
tried on each trial. Error bars denote SE.

Following the two training trials, the experimenter intro-
duced the new set of three testing objects (G, H, I) that the
participants would have the opportunity to explore and test
themselves. During this phase, one object (I) was perma-
nently attached to the square. This was designed so that the
evidence generated during the free intervention phase would
maintain ambiguity. At the beginning of the exploration
phase, the participants were told that the object (I) was stuck
on the machine and that they can test the object (I) by itself
or with the other objects. There were four exploration trials,
and participants could choose one of the four possible options
(I, GI, HI, GHI) in each trial. Our critical between-subjects
design varied who controlled the interventions. In the solo
condition, both parent and child had their own tablets, and
could not see the screens or exploratory choices of the other.
In the Child-Led condition, the child made all intervention
choices while the parent watched. In the Parent-Led condi-
tion, the parent made all intervention choices while the child
watched. Participants were given four intervention trials (a
trial was counted once the participant depressed the test but-
ton); the intervention choices were recorded automatically
with the tablet software. Next, the experimenter asked the
parent and child to judge whether each object was a blicket.
Lastly, as our critical test measure, the experimenter asked
the parent and child individually to generate the effect using
the objects (“Which of these objects would you use to turn on
the machine?”). We coded whether two or more objects were
used.

Results
We first assessed what kinds of interventions children and
adults performed during the exploration phase. Results re-
vealed that overall, children were more likely than adults to
explore objects jointly, Welch t(90.5) = 3.19, p = .001 (Fig-
ure 2, left), suggesting that children may have been more
amenable to the conjunctive rule as early as the exploration
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phase. However, the quality of children’s interventions was
not strictly better than adults: parents tried more deconfound-
ing causal explorations by testing more unique combinations
of objects, t(72.9)= -2.36, p = .021 (Figure 2, right). Within
each age group (child and adult, respectively), there was no
significant difference between solo and joint groups, p >
.250.

Critically, we explored whether any particular group was
more successful at generating the correct response in the final
test phase. Overall, and replicating previous findings, chil-
dren performed better on average than the adults, χ2(1) =
20.39, p < .001. We conducted a logistic regression to pre-
dict the probability of selecting one or more objects to ac-
tivate the machine as a function of condition. As shown in
Figure 3, the parents in the Child-Led group were more likely
to use multiple objects to activate the machine than those in
the Parent-Led group, b = 1.44, p = .022, suggesting that ob-
serving evidence generated by children helped parents to be
more flexible and exploratory in their own causal inferences.
The probability of choosing multiple objects as blickets in the
Parent-Solo condition did not differ from that in the Child-
Led condition b = 0.84, p = .152, or the Parent-Led condition,
b = 0.59, p = .353.

Consistent with previous research, children were better
than parents at learning the unusual conjunctive relationship,
suggesting that children make more flexible causal inferences
than adults. Our research also revealed a surprising result –
that merely observing a child’s exploratory behavior may suf-
fice to help parents to be more flexible and open-minded in
their causal learning. Two possible explanations exist for this
result. One possibility is simply that watching a child inter-
act with the toy (regardless of the patterns of exploration) was
sufficient to get adults in a childlike frame of reference, open-
ing their mind to a broader set of hypotheses. Another pos-
sibility is that the particular evidence generated by children
(which differed from adults) was critical in helping adults in-
fer the conjunctive form. In Experiment 2, we explored these
possibilities by having adults view a child actor perform in-
terventions for all conditions. Critically we varied the par-
ticular interventions presented, yolking the evidence to the
specific interventions attempted in the Child-Solo, Child-Led,
and Parent-Led conditions of Experiment 1.

Experiment 2

Methods

Adults participants were recruited from Amazon Mechani-
cal Turk. The final sample of 72 participants were randomly
assigned to the Child-Solo-Exploration-Data (n = 24), Child-
Led-Exploration-Data (n = 24), and Parent-Led-Exploration-
Data (n = 24) conditions. An additional 10 participants were
excluded from analysis because of the failure to pass an at-
tention check question. Participants were paid $.75 for com-
pleting the 6-8 minute survey.

Figure 3: Proportion of participants who selected multiple
objects on the final test trial by condition (Solo, Child-Led,
Parent-Led). Children correctly attempted multiple objects to
turn on the machine regardless of condition. However, adults
were only more likely to test multiple objects in the Child-
Led condition. Error bars denote SE.

Procedure
The stimuli and procedure was the same as that of Experi-
ment 1 except the following differences. First, the data col-
lection was conducted online; thus, the training phase was in-
troduced with a series of screenshots of tablet games, and the
participants were required to click a button to proceed. Sec-
ond, for the exploration phase, the participants saw a video of
a preschooler trying to figure out which objects are blickets
using the tablet game. The same child actor generated differ-
ent exploratory patterns, which was organized to match the
patterns of exploration data generated from the three condi-
tions (Child-Solo, Child-Led, Parent-Led) in Experiment 1.
The preschooler was described to the participants as being a
randomly selected example of a child exploring the toy.

Results
We used a logistic regression model as a function of condition
(Child-Solo-Exploration-Data, Child-Led-Exploration-Data,
Parent-Led-Exploration-Data) to predict the probability of
using two or more objects to turn on the machine. There was
a significant difference between the Child-Solo-Exploration-
Data (67%) condition and the Parent-Led-Exploration-Data
(38%) condition such that the group of participants who ob-
served child-solo-exploration data showed a higher probabil-
ity of using multiple objects to activate the machine compared
to those who observed parent-led-exploration data, b = 1.20,
p = .046. Unexpectedly, there was also a marginally sig-
nificant difference between the Child-Solo-Exploration-Data
(67%) and Child-Led-Exploration-Data condition (42%), b =
1.02, p = .085.

These results revealed that observing children’s ex-
ploratory patterns based on broad, exploratory hypotheses
supported adults’ learning of an unconventional abstract
causal form (at least in cases when data from the Child-
Solo-Exploration-Data condition were observed). Experi-
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ment 2 provides additional support for the idea that observ-
ing child-generated exploratory patterns increases the flexi-
bility of adult’s causal reasoning. It remains unclear whether
the child-generated exploratory evidence alone would be suf-
ficient to promote adults’ causal reasoning, or whether it is
this evidence in conjunction with a child-directed play that
helps adults. Further, Experiment 2 was conducted via an
online survey platform; thus, the findings may be limited
in their generalization to adults in a live setting. To ex-
plore this further, in Experiment 3, we used an in-lab set-
ting to conduct child-yoked interventions, but performed by
adults. We focus our attention on the two critically differ-
ent yolked-data conditions: Child-Led-Exploration-Data and
Parent-Led-Exploration-Data.

Experiment 3

Methods

Forty-eight undergraduate students (M = 20.60, SD = 3.13,
range: 18-31 years) were randomly assigned to the Child-
Led-Exploration-Data (n = 24) or Parent-Led-Exploration-
Data (n = 24) conditions. An additional 5 participants were
excluded from analysis because of experimental errors in gen-
erating the data from the yolked trials.

Procedure

The stimuli and procedure was the same as to that of Experi-
ment 1 except the following differences. First, the data collec-
tion was conducted in the lab. Second, each participant was
paired with a confederate who secretly worked with the lab
but who was introduced as another naive participant. During
the exploration phase, the participant observed the confeder-
ate exploring the testing objects, as if choices were “in the
moment” decisions. Instead, however, the confederate com-
pleted the four exploration trials as yolked to the data gener-
ated from the two conditions (Child-Led, Parent-Led) in Ex-
periment 1.

Figure 4: Histogram of age of participants for each condition
(Child-Led-Exploration-Data, Parent-Led-Exploration-Data)
in the sample. Age was ranged from 18 to 31 years.

Figure 5: Proportion of participants who selected multi-
ple objects for each condition (Child-Led-Exploration-Data,
Parent-Led-Exploration-Data). Adults in the Child-Led-
Exploration-Data condition were more likely to use two or
more objects to turn on the machine than those in the Parent-
Led-Exploration-Data condition. Shading indicates 95% con-
fidence intervals.

Results
Comparing overall performance in terms of endorsement of
two or more casual blocks between Child-Led-Exploration-
Data and Parent-Led-Exploration-Data conditions revealed
no overall differences, χ2(1) = 0.35, p = .555. This result is
surprising, given the condition differences observed in Exper-
iment 2. One possible explanation for this difference is that
indeed the presence of the child generating the particular in-
terventions was required to help adults consider the unlikely
conjunctive form.

However, we also noticed that the age of the partici-
pants in our lab sample (ranging from 18-31 years; see Fig-
ure 4) significantly differed from the parents in Experiment
1 (ranging in mid-thirties to forties), and so we performed
an unplanned exploratory analysis using a logistic regression
model with age as a continuous variable and condition (Child-
Led-Exploration-Data, Parent-Led-Exploration-Data) to pre-
dict the probability of using two or more objects to turn on the
machine. In fact, there was a significant interaction between
age and condition such that the group of participants who ob-
served child-led-exploration data showed a higher probability
of using multiple objects to activate the machine compared to
those who observed parent-led-exploration data with increas-
ing age, b = 1.46, p = .018 (see Figure 5). The pattern stayed
the same for a narrower age range (18-24 years).

These results suggest that while child-yoked interventions
may assist adults with causal form inferences, age may mod-
erate this effect. Specifically, observing child-generated ev-
idence was particularly helpful for the older participants of
our sample.

Discussion
Consistent with previous research showing that adults are less
likely to generate a conjunctive causal form than children,
children were better than parents at generalizing the unusual
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conjunctive form to their exploration and learning (Gopnik
et al., 2017; Lucas et al., 2014; Wente et al., 2019). By ex-
amining exploration, we revealed that parents tried more de-
confounding explorations than children. In contrast, children
performed more interventions that involved multiple blocks,
suggesting that children were engaging in hypothesis confir-
mation consistent with having inferred the conjunctive form
from the previous training trails.

Strikingly, parents in the Child-Led group were more likely
to generalize the conjunctive relationship than those in the
Parent-Led group. Child-yoked interventions performed by
either a child or adult similarly improved causal form infer-
ences, suggesting that observing evidence generated by chil-
dren may help adults to be more flexible in their own causal
inferences.

In our study, young children generalized the unconven-
tional conjunctive relationship to their exploration and learn-
ing regardless of whether the free play period was led by an
adult or not. Of course, if children had already inferred the
correct causal form from the initial training trials, than any
intervention observed would continue to confirm children’s
overhypothesis because we designed the toy to produce out-
comes consistent with the conjunctive form. In contrast, if
adults had not yet inferred the correct form prior to the ex-
ploration phase, then observing their children repeatedly use
multiple blocks to activate the machine may have been suf-
ficient to raise the salience of this alternative hypothesis and
facilitate learning.

The results from Experiments 2 and 3 suggest that adults’
causal inferences can benefit from observing child-yoked ex-
plorations, especially when those exploratory patterns were
generated by a child than an adult. However, as these two
experiments were conducted in different environments (in-
person vs. online), the contextual factor may have contributed
to the differences. Thus, an important next step would be to
test the effect of the age of the model who demonstrates child-
led exploratory patterns in the same setting. Future work will
examine whether watching a video of an adult demonstra-
tor performing child-yoked interventions similarly improves
adults’ causal form inferences, controlling for the familiarity
of the adults to the demonstrator. Further, future studies could
explore the characteristics of adult observers such as age and
experience working with young children.

The current findings show the importance of observing
other’s exploration when beliefs are in conflict with each
other. Adults at least may be able to recognize the rela-
tionship between attempted interventions and considered hy-
potheses, raising awareness of hypotheses that were not previ-
ously considered. Such an account is consistent with the Wis-
dom of the Crowds (Vul & Pashler, 2008) or the adage that
two heads are better than one. However, our results go one
step further, suggesting that even observing the exploratory
actions of another may help bootstrap inference to the best
explanation.

More broadly, these findings support the importance of

adult-child play, but with a surprising twist. Adults may ben-
efit from play with children (rather than the other way around,
as is often considered in the literature). Such work suggests
the importance of giving children opportunities to lead their
own exploration and discovery.

Parent-child joint play occurs in numerous settings involv-
ing both concrete and digital materials. In light of the perva-
sive interactive technology in young childrens everyday lives,
it is important to understand how these tools can be used not
only to transmit information but also support active explo-
ration and discovery. This line of research can help us under-
stand the ways in which parents and children conjunctively
learn about the world.
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Abstract

How do we seek information from our environment to find solutions to the questions facing us? We pose an open-ended
visual search problem to adult participants, asking them to identify targets of questions in scenes guided by only an in-
complete question prefix (e.g. Why is..., Where will...). Participants converged on visual targets and question completions
given just these function words, but the preferred targets and completions for a given scene varied dramatically depending
on the query. We account for this systematic query-guided behavior with a model linking conventions of linguistic refer-
ence to abstract representations of scene events. The ability to predict and find probable targets of incomplete queries may
be just one example of a more general ability to pay attention to what problems require of their solutions, and to use those
requirements as a helpful guide in searching for solutions.
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Abstract 

Both behavioral studies and the neurophysiological data 

modelling suggested female advantage in memory for objects, 

however, most research pertained to long-term memory, 

whereas data from visual working memory (VWM) are 

scanty. In a large sample of 2044 people, the number of 

objects supposedly encoded in VWM was measured during 

the change detection task. The stimuli were either relatively 

familiar geometric shapes or less familiar Greek symbols. 

Controlling for the general ability level, a small but 

significant advantage for memorizing shapes in VWM was 

found in females over males, but no effect was observed for 

memorizing abstract symbols. The present results support 

neuroimaging models of human cognitive architecture, 

suggesting that female VWM relies on a more complex 

network of domain-specific brain modules, as compared to 

males. Consequently, formal models of VWM and related 

cognitive processes should account for sex and material type. 

Keywords: visual working memory, sex differences, change 

detection task, neural architecture of memory 

Introduction 

Notable sex differences are observed in human memory, 

especially in long-term memory (LTM) and episodic 

memory (Halpern, 2013; Kimura, 1999). Research suggest-

ed that female brains are more effective in encoding and 

retrieving information pertaining to objects, episodes, faces, 

and verbal material, whereas males seem to better memorize 

spatial information (for reviews see Cahill, 2006; Herlitz & 

Rehnman, 2008). However, a relatively smaller number of 

studies were devoted to sex differences in working memory 

(WM), making this topic worth of closer examination. 

WM is defined as a key neurocognitive mechanism 

responsible for active maintenance, effective updating, and 

controlled retrieval of task-relevant information during short 

periods of time (Cowan, 2001). At the same time, WM is 

believed to block task-irrelevant and distracting information 

(Kane & Engle, 2002). WM operation relies on short-term 

memory (STM), but most likely also involves memory 

processes beyond the sheer passive storage in STM. The key 

feature of WM is its limited capacity comprising the 

simultaneous representation of only several “chunks of 

information,” being objects, their features, and their 

bindings. Given that WM is a key construct in psychology 

as well as a strong predictor of complex cognitive abilities, 

such as problem solving, fluid reasoning, and education 

(Kane, Hambrick, & Conway, 2005), vast research has been 

devoted to the neurocognitive underpinnings of WM. 

Establishing whether sex differences, commonly observed 

in other types of memory, do exist also in the case of WM 

performance, may contribute to our understanding of WM 

mechanisms. Moreover, if potential sex differences in WM 

are driven by the type of to-be-memorized content, in either 

a similar or a different way, in comparison to the content 

effects found for the other memory systems, such an 

observation may provide additional evidence for theoretical 

models that assume either close links between WM and 

LTM (Crowder, 1993; Nairne, 2002; Neath & Suprenant, 

2003) or their relative separateness (e.g., Cowan, 2001; 

Kane & Engle, 2002; Vogel, Woodman, & Luck, 2001). 

The data can also guide design of the future studies on WM. 

Sex differences in working memory 

Early studies reported sex differences in WM that matched 

those found for LTM, with verbal tasks such as the reading 

span favoring females (e.g., Cochran & Davis, 1987), 

whereas spatial tasks such as the Corsi blocks favoring 

males (e.g., Grossi, Matarese, & Orsini, 1980). However, 

later studies reported differences that either were negligible, 

or highly variable from task to task (e.g., Duff & Hampson, 

2001; Lejbak, Crossley, & Vrbancic, 2011; Postma, Jager, 

Kessels, Koppeschaar, & van Honk, 2004; Reed, Gallagher, 

Sullivan, Callicott, & Green, 2017; Robert & Savoie, 2006; 

for meta-analyses see Halpern, 2013; Voyer, Postma, Brake, 

& Imperato-McGinley, 2007; Voyer, Voyer, & Saint-Aubin, 

2017; Wang & Carr, 2014). 

 Crucially, Speck et al. (2000) suggested that most of these 

cognitive studies were underpowered to detect robust sex 

differences in WM, whereas functional brain connectivity 

patterns differentiating females and males may be more 

informative than comparing WM capacity between females 

and males. Indeed, such patterns have been found (Filippi et 

al., 2013; Grabowski, Damasio, Eichhorn, & Tranel, 2003; 

Piefke et al., 2005). A comprehensive meta-analysis of 44 
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neuroimaging papers that studied males and another 15 that 

studies females, which used activation likelihood estimation 

(ALE) method, identified the brain regions most likely 

associated with sex differences. It showed that besides large 

overlapping structures in the frontal and parietal cortices, 

which are commonly attributed to WM, the female 

performance seems to depend also on additional prefrontal 

sites as well as hippocampus and anterior cingulate, whereas 

the male performance relies on additional parietal sites as 

well as insula (Hill, Laird, & Robinson, 2014).  

 However, it is still interesting to see how the observed sex 

differences in the brain activations might translate into 

behavioral differences in coping with tasks tapping WM. 

Only, a larger power is most likely needed to detect such 

behavioral consequences of neural differences. The present 

study aimed to investigate sex differences in visual working 

memory (VWM) using the varied types of to-be-memorized 

content. On the basis of previous research on sex differences 

in LTM, as well as interpreting the Hill et al.’s findings, it 

was assumed that the involvement of hippocampal regions 

in female WM may result in a better encoding of more 

concrete and familiar objects by females, as compared to 

males, because neurons in and around hippocampus are 

known to encode episodic information that can be linked to 

existing memory traces (see Eichenbaum, Yonelinas, & 

Ranganath, 2007; Wixted et al., 2014). The involvement in 

male WM of parietal and insular regions, commonly 

associated with awareness and attention (see Cowan et al., 

2011; Eckert et al., 2009), can in turn yield the male 

advantage in encoding of less concrete and unfamiliar 

objects, which cannot be easily memorized using episodic 

and semantic traces, and thus require increased attentional 

effort. Indeed, some studies on episodic memory suggested 

the female advantage in recall and recognition of concrete 

pictures (Herlitz, Airaksinen, & Nordström, 1999) and 

familiar odors (Lehrner, 1993), but no advantage for more 

abstract images (ink blots and snow crystals; Goldstein & 

Chance, 1970) and unfamiliar odors (Öberg et al., 2002). 

Unfortunately, such a prediction has never been tested with 

regard to WM nor in large samples. 

The present study analyzed data of 2044 people, collected 

over several published studies, conducted in the authors’ 

laboratory between year 2007 and 2018. All these studies 

assessed VWM capacity using a simple recognition 

paradigm, called the change detection task, with stimuli 

being either geometric shapes or Greek symbols. The 

systematic use of the shape and the symbol variant of the 

change detection task gave an unique opportunity to check 

the sex × material interaction in a sample size never 

examined to date, which might allow to overpass the Speck 

et al. objections regarding the behavioral studies of sex 

differences in WM. In line with Hill et al. (2014), the female 

advantage in VWM capacity for more concrete, more 

familiar geometric figures was expected, as such figures 

could be encoded via episodic/semantic traces in and around 

hippocampus, which was a brain structure identified as a 

more specific to females. The male advantage in VMW 

capacity for more abstract, more unfamiliar Greek symbols 

was predicted, as such symbols could not be easily 

associated with episodic/semantic information, and might 

require increased attentional effort supported by the parietal 

sites and insula, found to be more active in males. Although 

the classification of shapes as more concrete, while Greek 

symbols as more abstract is not univocal (see Discussion), 

these two kinds of material were clearly different, and the 

examination of sex × material interaction was worthwhile. 

The study 

Participants 

The total sample encompassed 1310 females (aged 17 to 46 

years, M = 23.2, SD = 4.6) and 734 males (aged 18 to 46 

years, M = 23.7, SD = 4.7). All participants were recruited 

from general population via internet adverts, in a Central-

European city. The prevalence of females in the sample 

unfortunately resulted from the robust tendency for female 

enrolment in the psychological study recruitment. All 

participants signed a written consent to participate, were 

screened for normal or corrected-to-normal vision and no 

history of neurological problems, and were informed that 

they could stop the experiment and leave the lab at will. All 

data were anonymized. All other procedural aspects of the 

study conformed to the WMA’s Declaration of Helsinki. 

Materials 

The stimuli in each trial of the symbol variant of the change-

detection task were randomly drawn from the set of 16 

small Greek letters (α, β, δ, θ, λ, μ, π, etc.), whereas in the 

shape variant they were drawn from the set of 16 simple 

shapes (circle, square, rhombus, etc.). Each stimulus was 

approximately 2×2 cm in size and was presented in black on 

a grey background. Each variant included either 60 or 90 

trials, depending on a study (preceded by several training 

trials). Each trial consisted of a virtual, 4 × 4 array filled 

with several stimuli (see Fig. 1). From four to nine stimuli 

were used across studies. The array was visible between 1 s 

and 4 s (depending on set size), and was followed by a 1-s 

black square mask. On random, either the second array was 

identical to the first or both differed by exactly one item at 

one location. Either the new or random item, respectively, 

was highlighted by a square border. The task was to press 

one of two response keys (Z, M) depending on whether the 

highlighted item differed or not. The order of task variants 

was random between the studies, and they were preceded 

and followed by other tasks. The task score was the 

estimated average number of objects that were effectively 

maintained in VWM (k; Rouder et al., 2011), calculated as 

the participant’ difference between the proportion of correct 

responses for arrays with the item change and the proportion 

of incorrect responses for unchanged arrays, multiplied by 
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the set size. For example, if in a six-object condition 80% 

correct was scored in the former trials, and 70% correct was 

scored in the latter trials, formula yielded k = 6 × (.80 - .30) 

= 3 objects supposedly maintained in VWM. Thus, the k 

value is relatively insensitive to the actual set size.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Example stimuli and the sequence of events in the 

change detection task used in the study. The familiar shapes 

condition is shown; in the abstract symbols condition the 

task was identical except for Greek symbols were displayed. 

The “no-change” trial is shown; the “change trial was 

identical except for the shape (or symbol) surrounded by the 

rim in the bottom screen differed from the respective shape 

(or symbol) in the top screen.  

As a short presentation time (2.5 s on average) and the 

graphical nature of stimuli practically eliminated their 

verbalization, it was assumed that the main difference 

between the tasks pertained to the concreteness and 

familiarity of stimuli, predicted to be larger for geometric 

shapes that commonly appear in the environment, whereas 

expected to be smaller for foreign Greek symbols that are 

not taught in schools and are rarely encountered in daily life 

and media in Poland, where the studies were held. 

Additionally, general fluid intelligence (gf) was screened 

with two reasoning tests, Raven’s APM (Raven et al., 1983) 

and (depending on a study) either Figural analogies 

(Chuderski & Nęcka, 2012) or Culture Fair Test Version 3 

(Cattell & Cattell, 1961). The test results were converted to 

Z scores, separately for each study, and then averaged to 

yield the gf factor value. As VWM capacity strongly 

correlates with fluid intelligence (see Kane et al., 2005), this 

gf factor was used as a covariate in comparisons between 

females’ and males’ VWM scores, in order to make sure 

that any sex difference in fluid intelligence does not account 

for the expected sex differences in VWM. 

Results 

Males displayed the mean gf value of 0.047 (SD = 0.960), 

whereas females scored gf = -0.019 (SD = 0.883), and this 

difference was not statistically significant, t(2042) = 1.59,  

p = .112. Fig. 2 presents the female and male distribution of 

k values, separately for each material variant. All four 

distributions were normal, and yielded comparable standard 

deviations both for the shape variant, SDfemale = 1.49, SDmale 

= 1.52, and the symbol variant, SDfemale = 1.49 , SDmale = 

1.52. Visual inspection of Fig. 2 suggests that in the shape 

variant the female distribution was shifted right, relative to 

the male distribution, while in the symbol variant the 

distributions closely matched. 

 To formally test this observation, the k values were 

submitted to ANCOVA, with sex and material as two 

factors, and the gf factor as a covariate. Fig. 2 shows the 

respective means and 95% CIs. The shape variant yielded a 

comparable performance (k = 3.05) to the symbol variant (k 

= 2.98), F(1, 4080) = 2.17, p = .141, suggesting that overall 

both materials were equally demanding. The key analysis 

pertained to sex differences. There was a marginal effect of 

sex (kfemale = 3.04, kmale = 2.99), F(1, 4080) = 4.09, p = .043, 

but the sex effect was qualified by its significant interaction 

with material, F(1, 4080) = 8.15, p = .004, η2 = .002. In the 

shape variant, females performed significantly better than 

males (Δk = 0.18), F(1, 4080) = 11.94, p = .0005, d = .20, 

but no significant sex difference was noted for the symbol 

variant, (Δk = -0.08), F(1, 4080) = 0.34, p = .559. For 

females, the difference between variants was statistically 

significant in favor of the shape variant (Δk = 0.20),  

F(1, 4080) = 8.15, p = .004, Cohen’s d = .13, while for 

males there was no significant difference between the two 

variants (Δk = -0.06), F(1, 4080) = 0.75, p = .385. 
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Figure 2: The distribution of k values for females and males. 

 

The above analysis was also run without gf as a covariate, 

using rmANOVA with sex as a between-subjects factor and 

material as a within-subjects factor. The effect of sex was no 

longer statistically significant, F(1, 2042) = 0.73, p = .392, 

but the interaction of this factor with material was fully 

comparable with the preceding analysis, F(1, 2042) = 15.21, 

p = .0001, η2 = .001. Female advantage over males for the 

shape material was highly significant, F(1, 2042) = 7.03,  

p = .008, while for the symbol material again there was no 

significant sex difference, F(1, 2042) = 1.35, p = .246. The 

shape material, as compared to symbols, yielded larger k 

values in females, F(1, 2042) = 23.67, p < .0001, but no 

significant difference related to material was noted for 

males, F(1, 2042) = 1.51, p = .215   

In order to validate the null sex effect for the symbol 

material, ANCOVA was applied to another sample of 1486 

people (aged 15 to 46, M = 22.76, SD = 4.06, Nfemale = 938), 

who performed only the symbol variant. They were also 

screened with two reasoning tests, which this time more 

visibly differentiated the two sexes, t(1484) = 2.41, p = .016 

(gffemale = -0.052, gfmale = 0.075, SDfemale = 0.89, SDmale = 

0.96). However, also in this sample ANCOVA showed no 

significant difference for the symbol material between 

females (k = 3.21) and males (k = 3.31), F(1, 1483) = 0.36, 

p = .546. This difference was not significant even when the 

two samples were combined, F(1, 2527) = 0.74, p = .389. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, no differences in correlation between the k and gf 

values was observed. For the shape material, the respective 

correlation coefficient was numerically the same both in the 

female and the male sub-sample, r = 40, p < .0001. It was 

quite comparable to the respective coefficients for the 

symbol material, rfemale = .37, rmale = .34, ps < .0001.  

Discussion 

Neuroimaging data (Hill et al., 2014) suggested that WM 

tasks, besides the common prefrontal and parietal sites, 

activate additional prefrontal and hippocampal regions in 

the female brains, whereas additional parietal and insular 

regions in the male brains. The present analysis of the large 

set of scores in the change detection task tested behavioral 

consequences of this female/male neuronal specificity. 

Results indicated that one potential consequence of the sex 

differences in brain networks underlying WM is the female 

advantage in VWM capacity for more concrete, more 

familiar stimuli (possibly encoded by episodic/semantic 

traces in and around hippocampus), which is absent for 

more abstract, less familiar stimuli (possibly requiring more 

attention rooted in parietal sites and insula). As the sample 

size was particularly large as for the WM research, the data 

were gf-corrected, and the female advantage was specific for 

one type of material but not for the other, the reported effect 

very likely reflects factual difference between the sexes, and 

not just a sample-dependent variation. 
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Fig. 3: Mean k values for females and males, depending on 

material type. Bars = 95% confidence intervals. 

 

 However, the female advantage for the shape material 

was quite small (Δk = .18). As the average VWM capacity 

was about three objects, females surpassed males by around 

6%. This amount is in line with the Hill et al. conclusion 

that the lion’s share of WM processing in both females and 

males relies on the shared prefrontal and parietal regions. 

However, given a strongly limited nature of WM, even such 

6% can count, and females’ potential reliance on specialized 

memory mechanisms may boost memory performance when 

a memorized content is compatible with those mechanisms. 

The present effect of stimulus familiarity was also much 

smaller than differences in episodic and semantic memory 

that were reported in the literature (see Cahill, 2006; 

Halpern, 2013; Herlitz & Rehnman, 2008; Kimura, 1999). 

 In contrast, the initially predicted male advantage for the 

symbol material was not observed in the data. After 

consideration, it seems that this prediction might be 

premature. Male advantage has been reported primarily for 

spatial material (Cahill, 2006; Grossi et al., 1980; Herlitz & 

Rehnman, 2008; Lewin, Wolgers, & Herlitz, 2001; Voyer et 

al., 2017), whereas more abstract material in fact did not 

differentiate the sexes (Goldstein & Chance, 1970). A more 

plausible interpretation of the null effect for the abstract 

symbols is that the additional involvement of attention 

might just have eliminated the female advantage rooted in 

more effective specialized memory processes (Herlitz & 

Rehnman, 2008; Voyer et al., 2007), but its contribution 

was too weak to yield the performance advantage of males. 

 One limitation of the study was the material used. Using 

other material than geometric shapes and Greek symbols 

would broaden the scope of conclusions that could be drawn 

from the present study. However, this study relied on the 

already existing data set, which included only two types of 

material. Moreover, the assumption that only shapes were 

familar to participants, and could be encoded in episodic 

memory, but the symbols could not, might be objected. 

Obviously, Greek symbols are also a kind of shapes, and at 

least some of them (e.g., α, β) could be verbalized, what 

helps in episodic encoding. So, we agree with all those 

objections. However, we think that the attenuated variant of 

this assumption, stating that shapes are relatively more 

familiar than Greek symbols (at least in the population with 

minimal exposure to Greek alphabet), and can be relatively 

more easily encoded in episodic memory, can be valid. 

Summary 

The present analysis of the existing large-size data set 

revealed the statistically significant difference between 

female and male WM performance on the relatively 

familiar, graphical material (but not on the more abstract 

material), which, on the one hand, most likely would be 

overlooked by a single study, whereas, on the other hand, 

might not be easily identifiable in meta-analyses of multiple 

studies applying diverse and not easily comparable methods. 

Overall, this kind of neuroimaging-driven psychometric 

analyses of sex differences in memory performance can 

shed light on the mechanisms underlying various memory 

systems as well as human cognitive architecture. The 

present study suggests that formal models of memory and 

related processes should account for sex and material type.   
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Abstract 
In the present study, we combined tDCS and EEG to examine the 
electrophysiological responses to the tDCS-induced effects on 
the face inversion effect showed in recent studies. A double-blind 
procedure with a between-subjects design (n=48) was used with 
the subjects, recruited from the student population, being 
randomly assigned to either tDCS anodal or sham condition. The 
tDCS stimulation was delivered over the DLPFC at Fp3 site for 
10 min at an intensity of 1.5mA while subjects engaged in an 
old/new recognition task traditionally used to obtain the 
inversion effect. The behavioural results generally confirmed 
previous findings. Critically, the results from the N170 show an 
effect of tDCS. Specifically, the tDCS procedure was able to 
modulate the N170 peak component by reducing the inversion 
effect on the latencies (i.e. less delay between upright and 
inverted faces) and by increasing the inversion effect on the 
amplitudes (i.e. larger N170 for inverted vs upright faces). We 
interpret the results based on the previous literature in regard to 
the inversion effect on the N170 component.  

Keywords: Inversion effect; tDCS; N170, perceptual learning 

Introduction 
Several researchers have studied the nature of face 

recognition skills by investigating the causes of a robust 
phenomenon known as the face inversion effect. This refers 
to reduced performance when we try to recognize familiar 
faces turned upside down (Yin, 1969). When it was first 
discovered this phenomenon was used as a marker for 
“specificity” of face processing. This was because the 
inversion effect was found to be larger for faces than for 
other visual stimuli such as houses or planes (Valentine & 
Bruce, 1986; Yovel & Kanwisher, 2005). However, 
Diamond and Carey’s (1986) finding of a large inversion 
effect for dog images when participants were dog breeders 
(vs that exhibited by novices), and Gauthier’s work on 
perceptual expertise and the inversion effect for novel 

categories of objects named Greebles (Gauthier & Tarr, 
1997) challenged the idea that faces are special and 
introduced “expertise” as a contributing factor to the 
inversion effect. Importantly, in 1997, McLaren using a set 
of artificial stimuli, checkerboards (so that expertise can be 
fully controlled), reported the first evidence of an inversion 
effect for novel stimuli that was predicted based on a specific 
model of perceptual learning, the MKM model (McLaren, 
Kaye & Mackintosh, 1989; McLaren & Mackintosh, 2000). 
Following this, Civile et al. (2014) extended McLaren’s 
findings to the type of old/new recognition task originally 
used to investigate the face inversion effect (e.g. Yin, 1969). 
Taken together, Gauthier and Tarr’s (1997), McLaren’s 
(1997), and Civile et al’s (2014) studies provide support for 
the Diamond and Carey’s (1986) expertise account of face 
recognition; they have also served as a basis for further 
investigations of face and object recognition using 
Electroencephalogram (EEG) derived event-related 
potentials (ERPs). 

Early studies on face recognition claimed the N170 ERP 
component to be the neural signature for face stimuli (Bentin 
et al., 1996). The N170 is a negative-polarity ERP deflection 
(peak) maximal at 140-200ms usually found at occipital-
temporal electrodes after a face stimulus is presented (Bentin 
et al., 1996; George et al., 1996). The N170 has been found 
to be larger in amplitude and delayed in latency for inverted 
faces compared to upright faces. This is what has been 
commonly defined as the inversion effect on the N170 
(Eimer, 2000). Rossion et al (2002) directly compared the 
N170 for faces and Greebles demonstrating how after the 
training phase with upright Greebles, the inversion effect 
(i.e. delayed and larger amplitude for inverted stimuli) was 
of a similar magnitude for both faces and Greebles. In a 
similar vein, Busey and Vanderkolk (2005) showed that 
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fingerprint experts exhibited an inversion effect on the N170 
(similar to that for faces) in response to images of 
fingerprints. Furthermore, Civile et al. (2014a, Exp. 4), 
found an inversion effect on the N170 for checkerboards 
drawn from a familiar prototype-defined category (a larger 
and delayed N170 for inverted checkerboards compared to 
upright ones). The results from these studies provided 
motivation for a departure from the original account of the 
N170 component as being specific to faces, toward a 
position where the inversion-induced enhancement and delay 
of the N170 can be obtained for non-face categories of 
stimuli if they are made sufficiently familiar.  

In recent years, Civile et al (2016) first, and then Civile, 
McLaren, and McLaren (2018a) (for a pilot see also Civile, 
Obhi & McLaren, 2018b) strengthened the analogy between 
the inversion effect for checkerboards (Civile et al., 2014), 
and that for faces, through demonstrating that they both 
share the same causal mechanism. Using a specific tDCS 
paradigm, the authors were able to modulate perceptual 
learning and selectively affect the robust inversion effect that 
otherwise would have been obtained for checkerboards and 
face stimuli. Anodal tDCS delivered over the DLPFC at Fp3 
site (see Ambrus et al., 2011 for an example of previous 
studies targeting the same brain area to modulate 
categorization for prototype-defined stimuli) for 10 mins at 
an intensity of 1.5mA eliminated the inversion effect found 
for checkerboards by reducing performance for upright 
checkerboards taken from a familiar category (compared to 
controls) (Civile et al., 2016). Critically, the same tDCS 
paradigm is also able to reduce the robust face inversion 
effect by affecting recognition performance for upright faces 
(Exp.1 and the replication Exp.2 in Civile et al., 2018a). 
Furthermore, through an active control study the authors 
showed that applying the same tDCS anodal stimulation on a 
different brain area did not result in any difference between 
the face inversion effect compared to the sham group (Exp.3, 
Civile et al., 2018a). Overall the results from these studies 
using tDCS show how a particular tDCS procedure can 
modulate perceptual learning and so reduce the robust 
inversion effect that would otherwise be obtained with 
checkerboards (after participants have gained enough 
expertise with them) or faces. 

In the present study, we extended the tDCS procedure 
adopted by Civile et al (2016) and Civile et al (2018a) to the 
face inversion effect on the N170 ERP component. To our 
knowledge,  this is the first study that attempts to examine 
the behavioural tDCS-induced effects on the inversion effect 
to electrophysiological responses on the N170.  Showing that 
the tDCS procedure used to affect the inversion effect for 
checkerboards and for faces can also modulate the N170, 
would strengthen the link between perceptual learning (and 
in general the expertise account) and face reocognition.  

Method 
Subjects 

Overall, 48 naïve (right-handed) subjects (18 male, 30 
Female; Mean age = 21.3 years, age range= 18-27, SD= 

2.25) took part in the study. Subjects were randomly 
assigned to either sham or anodal tDCS groups (24 in each 
group). All the subjects were students from the University of 
Exeter and were selected according to the safety screening 
criteria approved by the Research Ethics Committee at the 
University of Exeter.  The sample size was determined from 
earlier studies that used the same tDCS paradigm, EEG 
paradigm, face stimuli, and counterbalancing (Civile et al., 
2018a, b, c).  

Materials 
The study used a set of 256 face images standardized to 

grayscale on a black background (Civile et al., 2018a, b, c). 
All stimuli images were cropped removing distracting 
features such as hairline, and adjusted for extreme 
differences in image luminance. The stimuli, whose 
dimensions were 5.63 cm x 7.84 cm, were presented at 
resolution of 1280 x 960 pixels. The experiment was run 
using. Examples of the stimuli used are given in Figure 1. 
The experiment was run using E-prime software Version 1.1 
installed on a PC computer. 

The Behavioural Task 
The experiment consisted of a ‘study phase’ and an 

‘old/new recognition phase’ (Civile et al., 2018a,b,c). 
Study Phase. Once subjects gave their consent, the 
instructions for the Study Phase were presented on the 
screen. The aim of the task was for the subjects to try to 
memorize the faces presented on the screen. The trial started 
with a fixation cross (500ms) in the center of the screen, 
immediately followed by a blank screen (500ms), and then 
by a facial stimulus (3000ms). Then the fixation cross and 
the black screen were repeated, and another face presented, 
until all stimuli had been presented. Overall, 128 face stimuli 
were presented, 64 in their upright orientation and 64 were 
presented inverted. After all the 128 face stimuli had been 
presented, the program displayed another set of instructions, 
explaining the recognition task. 
Recognition Task. In this task, subjects were asked to press 
the ‘z’ key if they recognized the face stimulus as having 
been shown in the study phase on any given trial, or press 
‘m’ if they did not (the keys were counterbalanced). All the 
stimuli previously seen in the study phase were presented 
again, “old”, intermixed with 128 “new” faces split by the 
two conditions (upright and inverted). All the faces were 
presented one at a time at random order. The trial structure 
was as that in the study phase however this time the stimuli 
were presented for a longer period (4000ms).  

The tDCS Paradigm  
Stimulation was delivered by a battery driven constant 

current stimulator (neuroConn DC-Stimulator Plus) using a 
pair of surface sponge electrodes (7cm x 5cm i.e.35 cm2) 
soaked in saline solution and applied to the scalp at the target 
area of stimulation. We adopted the same tDCS montage 
used in Civile et al (2018a)’s study (Exp. 1 & 2). Hence, one 
of the electrodes (anode) was placed over the target 
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stimulation area (Fp3) and the other (cathode) on the 
forehead over the reference area (right eyebrow). The study 
was conducted using a double-blind procedure reliant on the 
neuroConn study mode in which the experimenter inputs 
numerical codes (provided by another experimenter 
otherwise unconnected with running the experiment), that 
switch the stimulation mode between “normal” (i.e. anodal) 
and “sham” stimulation. In the anodal condition, a direct 
current stimulation of 1.5mA was delivered for 10 mins (5 s 
fade-in and 5 s fade-out) starting as soon as the subjects 
began the behavioral task and continuing throughout the 
study. In the sham group, the identical stimulation mode was 
displayed on the stimulator and subjects experienced the 
same 5 s fade-in and 5 s fade-out, but with the stimulation 
intensity of 1.5mA delivered for just 30 s, following which a 
small current pulse (3 ms) was delivered every 550 ms 
(0.1mA over 15 ms) for the remainder of the 10 mins to 
check impedance levels. Subjects were randomly assigned to 
one of the tDCS groups (Sham or Anodal). For every subject 
the stimulation started at the beginning of the Study Phase 
and finished before the Old/New Recognition Task started.  

Given the novelty inherent in combining tDCS and EEG 
techniques, especially with using two separate pieces of 
equipment, it is worth noting some of the practical 
challenges faced during the implementation of the study. 
Specifically, we realised the tDCS stimulation (both sham 
and anodal) induced strong artefacts on the EEG data. Thus, 
we made sure that the tDCS stimulation ended by the end of 
the study phase before we started recording the EEG for the 
recognition phase. Hence, our analysis of the EEG data will 
be entirely for the recognition phase.  

EEG Recordings 
The EEG was sampled at 1000 Hz, with a band-pass of 

0.016-100 Hz, the reference at Cz and the ground at AFz 
using 32 Ag/AgCl active electrodes and BrainAmp 
amplifiers. The electrodes were placed on the scalp in an 
extended 10-20 configuration plus one on each earlobe 
(references during online recording). Their impedances were 
kept below 10 kΩ.  

Data Processing and Analysis 
As mentioned above in the tDCS Paradigm section the 

ERP analysis was limited to the recognition phase. Data 
processing was performed in BrainVision Analyzer. The data 
was first filtered offline using a Butterworth Zero Phase filter 
with a low cutoff of 0.5 Hz and a high cutoff of 30 Hz, each 
with a 24 dB/oct slope. Individual channels were manually 
inspected and removed from further analysis where physical 
interference from a tDCS electrode was noted during set-up, 
or where data otherwise showed signs of significant artefacts 
throughout. Electrodes retained the online reference to Cz. 
Peak amplitudes of the N170 were examined for differences 
between the experimental conditions. To improve the 
estimates of the amplitude and latency the N170 extraction 
was aided by linear decomposition of the EEG using 
Independent Component Analysis (ICA, Bell & Sejnowski, 
1995). The ICA was run separately for each subject using all 

scalp channels and the entire dataset. The EEG segments 
were then averaged for every participant and experimental 
condition. For each subject, we identified ICA components 
that: (1) showed a deflection (peak) in the N170 time-range 
(at 160-220 ms following stimulus onset), and (2) had a scalp 
distribution containing an occipital-temporal negativity 
characteristic of N170 (the scalp distributions of components 
are the columns of the inverted unmixing matrix). This 
resulted in 1-4 ICA components corresponding to the N170 
identified in most subjects - these were back-transformed 
into the EEG electrode space (by multiplying the 
components with the inverted unmixing matrix that had the 
columns corresponding to other components set to zero) and 
submitted to statistical analysis of N170 peak amplitude and 
latency. N170 latency and amplitude analyses were restricted 
to electrode PO8, (over the right temporal hemisphere) 
which often in the literature has shown bigger effects on the 
N170 (Civile et al., 2018c; Civile et al., 2014; Civile et al., 
2012; Rossion & Jacques, 2008).  

Results 

Behavioral Results 
Following Civile et al (2018a,b,c) the data from all the 

participants were used in the signal detection d' sensitivity 
analysis of the recognition task (seen and not seen stimuli for 
each stimulus type) where a d’ = of 0.00 indicates chance-
level performance (Stanislaw & Todorov, 1999). We 
assessed performance against chance to show that both 
upright and inverted face stimuli in both the tDCS sham and 
anodal groups across the three experiments were recognized 
significantly above chance (for Sham Inverted, Sham 
Upright and Anodal Upright we found p < .001 for this 
analysis, for Anodal Inverted we found p = .016). Each p-
value reported for the comparisons between conditions is 
two-tailed, and we also report the F or t value along with 
effect size. We also analyzed the reaction times (RTs) data to 
check for any speed-accuracy trade-off. We do not report 
this analysis here because it does not add anything to the 
interpretation of our results. For completeness, we give mean 
RTs for each of the stimulus’ conditions: Sham Upright = 
1240 ms; Sham Inverted = 1277 ms; Anodal Upright = 1263 
ms; Anodal Inverted = 1267 ms. 

d-Prime Analysis 
We computed a 2 x 2 mixed model design using, as a 

within-subjects factor, Face Orientation (upright or 
inverted), and the between-subjects factor tDCS Stimulation 
(sham or anodal). Based on previous studies (Civile et al., 
2018a,b) we expected the inversion effect for the anodal 
group to be smaller than that in the sham group. Analysis of 
Variance (ANOVA) revealed that numerically this was case 
but this time the interaction was not statistically significant, 
F(1, 46) = .947, p = .33, η2p = .02. There was a significant 
main effect of Orientation F(1, 46) = 43.95, p < .001, η2p = 
.48, which confirmed that upright faces were better 
responded to than inverted ones.  A main effect of tDCS 
Stimulation was found with performance in the anodal 
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stimulation (M=.343, SE=.06) being significantly reduced 
compared to that in sham group (M=.542, SE=.05), F(1, 46) 
= 5.39, p = .025, η2p = .10. Paired t test analyses were 
conducted to compare performance on upright and inverted 
face stimuli (the inversion effect) in each tDCS group (sham, 
anodal). Based on previous studies that used the same stimuli 
and tDCS paradigm (Civile et al., 2018a,b) our primary 
measure was the face inversion effect given by comparing 
performance on upright and inverted faces in each tDCS 
group. We also directly compared the performance for 
upright faces in the sham vs tDCS group. This is particularly 
appropriate because the same stimulus sets are rotated across 
participants in a counterbalanced manner; so that each 
upright face seen in the anodal group for a given participant 
will equally often serve as an upright face for the participants 
in the sham group. A significant inversion effect was found 
in the sham group (M=.495, SE=.10), t(23) = 4.97, p < .001, 
η2p = .38, and a numerically reduced inversion effect was 
found in the tDCS anodal group (M=.368, SE=.07), t(23) = 
4.62, p < .001, η2p = .25 (see Figure 1). Recognition for 
upright face stimuli in the anodal group was lower compared 
to that in the sham group, t(46) = 2.05, p = .051, η2p = .19. 
We also found a trend towards performance for inverted 
faces being reduced in the anodal relative to the sham group, 
t(46) = 1.81, p = .083, η2p = .16. 
Figure 1. Results for the old/new recognition task. The x-axis 
shows the stimulus conditions. The y-axis shows sensitivity 

d’ measure. Error bars represent s.e.m.  

Bayes Factor Analysis 
Because we did not find a significant interaction in this 

experiment, as we had expected, we performed Bayesian 
analyses to check that our results fell within the usual 
parameters of our previous work. Using the procedure 
outlined by Dienes (2011), we first conducted a Bayes 
analysis on the Face Orientation by Stimulation interaction. 
Thus, we used the interaction effect averaged over 
Experiments 1 and 2 (0.30) from Civile et al. (2018a; same 
tDCS procedure, behavioural paradigm, stimuli, and sample 
size as in the study here reported)’s work as the prior 
(standard deviation of p). Then we used the standard error 
(0.03) and mean difference (0.13) for the interaction in our 

study, assumed a one-tailed distribution for our theory, and 
gave it a mean of 0. This resulted in a Bayes factor of 
2162.84, which is strong evidence (greater than 10, for the 
conventional cut-offs see Jeffrey, 1961 and Dienes, 2011) 
indeed for the theory, in this case that the interaction will be 
positive and non-zero. Next, because in Civile et al. (2018a) 
both Experiments 1 & 2 had performance for the upright 
faces significantly better in the sham group compared to that 
in the anodal group, we calculated the Bayes factor for this 
effect in our study using as the prior the difference between 
sham minus anodal upright faces averaged over Civile et al. 
(2018a)’s Experiments 1 & 2 (0.28). We then used the 
standard error (0.11) and mean difference (0.26) between 
sham upright faces minus anodal upright faces in our study 
and assumed a one-tailed distribution for our theory with a 
mean of 0. This gave a Bayes factor of 8.10, which provides 
good evidence (as greater than 3) that sham performance on 
upright faces is higher than that under tDCS. 

N170 ERP Results 
In analyzing the N170 peak component we computed the 
same statistical analyses as for the behavioral data.  

N170 Peak Latency Analysis 
A 2 x 2 repeated measure ANOVA revealed a trend 

towards a significant interaction for peak latency, F(1,46) = 
3.26, p = .077, η2p = .06. A significant main effect of 
Orientation was found, F(1, 46) = 51.19, p < .001, η2p = .52. 
No main effect of tDCS Stimulation was found, F(1, 46) = 
.077, p = .783, η2p = .00. A significant inversion effect (i.e. a 
delayed N170 peak for inverted vs upright faces) was found 
in the sham group (M=7.95ms, SE=1.28), t(23) = 6.20, p < 
.001, η2p = .62, and a numerically reduced inversion effect 
was found in the tDCS anodal group (M=4.70ms, SE=1.22), 
t(23) = 3.86, p < .001, η2p = .39. No difference was found 
between the N170 latencies for upright stimuli in the anodal 
vs sham group, t(46) = .235, p = .815, η2p = .00. No 
significant difference was found between inverted faces in 
the anodal vs sham group, t(46) = .903, p = .375, η2p = .04. 

N170 Peak Amplitude Analysis 
A 2 x 2 ANOVA revealed a significant Orientation by 

Stimulation interaction for peak amplitude, F(1,46) = 4.06, p 
= .049, η2p = .09, and a main effect of Orientation, F(1, 46) = 
45.47, p < .001, η2p = .49. No main effect of tDCS 
Stimulation was found, F(1, 46) = .178, p = .679, η2p = .00. 
Contrarily to what we found for N170 latencies, the 
inversion effect (larger N170 for inverted vs upright faces) 
was found to be larger in amplitude in the anodal group 
(M=3.32µV, SE=.63) t(23) = 5.22, p < .001, η2p = .54, 
compared to that found in the sham group (M=2.41, SE=.52) 
t(23) = 4.32, p < .001, η2p = .44 (see Figure 2). No difference 
was found between the N170 amplitude for upright stimuli in 
the anodal vs sham group, t(46) =.033, p = .975, η2p =.00. 
Despite a numerically larger N170 for the inverted faces in 
the anodal vs sham group, no significant difference was 
found, t(46) = .882, p = .386, η2p = .03. 
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Figure 2. Waveforms at electrode P08 for the four 

conditions. The X axis shows the elapsed time after a 
stimulus was presented. The Y axis gives the amplitudes 

(µV) of the ERPs in the recognition phase of the experiment. 

General Discussion 
In the study reported here we examined the effects of 

tDCS on electrophysiological correlates of the face inversion 
effect. Specifically, we adopted the same tDCS procedure 
used by Civile et al (2018a,b) and Civile et al (2016) to 
modulate perceptual learning and affect the inversion effect 
for newly acquired stimuli (i.e. checkerboards) and long-
term learnt stimuli i.e. faces. Our behavioral results are in 
line with previous work. Despite the inversion effect in the 
anodal group being only numerically reduced compared to 
sham, the additional Bayes Factor analysis gives us 
confidence that our effects are in line with previous work 
(Civile et al., 2018a). Importantly, as in previous studies, we 
find that anodal tDCS is particularly effective in reducing the 
recognition performance for upright faces, a result also 
supported by the Bayes Factor analysis. Our behavioral 
results also hint at a tendency (not significant) for anodal 
tDCS to reduce performance for the inverted faces. This is a 
new trend that previous studies (Civile et al., 2018a,b) did 
not show.  

The most novel aspect of the present study involves the 
ERP results. To our knowledge, the current study provides 
the first evidence for tDCS being able to modulate a robust 
ERP component such as the N170 often associated with 
faces as well as sets of prototype-defined artificial stimuli 
that participants have become familiar with (Rossion et al., 
2002; Civile et al., 2014). Intriguingly, our results suggest a 
dissociation of the effects that tDCS has on the N170. 
Specifically, in the latencies we find tDCS reduces the 
inversion effect compared to sham (less delay between the 
peaks for inverted vs upright faces). At the same time, tDCS 
increases the inversion effect on the N170 amplitudes 
compared to sham (a larger difference between the peak 
amplitude of the N170 for inverted vs upright faces). The 
effects of tDCS on the N170 latencies are more easily 
interpreted. Specifically, on the expertise account we can 
argue that a delayed N170 is recorded for a target face or 
familiar stimulus as a consequence of the familiarity lost 
when the target stimulus is turned upside down. We know 
from the behavioral results that anodal tDCS affects 
perceptual learning (by reducing expertise) for upright faces, 
making them more similar to stimuli drawn from an 

unfamiliar category, and thus this would result in a latency 
more similar to that for inverted faces.  

Remarkably, the results from the N170 amplitude 
analysis provide some evidence for a dissociation from the 
tDCS-induced effects on the ERP latencies. Here anodal 
tDCS increased the inversion effect seen in the N170 
amplitudes, and the inverted faces in this condition were 
found to elicit the largest N170 (i.e. more negative) 
compared to all the other stimulus conditions. But we should 
beware of attributing this effect to the impact of tDCS on the 
inverted faces, as this wasn't independently significant. All 
we can be sure of is that the inversion effect (difference 
between peak amplitudes) increased as a result of tDCS. In 
line with our explanation for the N170 latencies, if we 
assume that anodal tDCS is affecting participant’s expertise 
for faces, then why would this have any impact on inverted 
faces when we have already argued that it will affect upright 
ones? Instead, it may be better to just focus on the significant 
effect (i.e. the difference between upright and inverted), and 
speculate that there may be some shift in baseline effects in 
our tDCS condition (not unlikely, we are, after all, activating 
a substantial region of frontal cortex using anodal 
stimulation) that results in the inverted face ERP apparently 
showing the greatest effect.  

 That still leaves us with the effect on peak amplitude to 
explain, and here it may be that we have to appeal to the 
difference between upright faces, for which we have 
expertise, and two different types of stimuli for which we do 
not. We assume that inverted faces do not benefit from our 
expertise with upright faces, whilst still acknowledging that 
they are readily recognized as faces. Another type of 
stimulus that would not benefit from expertise would be an 
entirely novel stimulus (a Greeble, a checkerboard). But this 
stimulus is not an inverted face. Now, if we postulate that 
tDCS makes the upright faces more like a novel stimulus, 
and that novel stimuli, other things being equal, do not show 
such a pronounced N170, then the greater difference from 
the inverted face N170 could be explained. Essentially, we 
would argue that tDCS shifts the upright face N170 towards 
that of a novel stimulus, which has a smaller amplitude and a 
greater latency, and that this is why we get our apparently 
"opposite" effects.  

Interestingly, something like this pattern of results has 
previously been found in EEG studies where the level of 
familiarity for the stimuli presented was manipulated directly 
by means of training to the stimuli or by altering the typical 
familiar stimulus configuration (e.g. rearrange the locations 
of the features within a face). In Civile et al. (2014)’s study, 
the N170 peak amplitudes for inverted checkerboards taken 
from a familiar category were larger compared to the other 
conditions (upright checkerboards from a familiar category 
and upright and inverted novel checkerboards). Furthermore, 
Civile et al (2018c) found normal inverted faces elicited a 
larger N170 amplitude compared to normal upright faces and 
scrambled (i.e. the facial features were shuffled) 
upright/inverted faces (see also Civile et al., 2012 for similar 
results using Thatcherised faces). Finally, also Rossion et al. 
(2002) showed (in the pre-training phase) the N170 peak 
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amplitude being larger for normal inverted faces compared 
to normal upright faces, and upright/inverted Greebles. 
Civile et al (2018c) suggested that this effect is due to the 
fact that the normal inverted faces possess all the configural 
information (spatial relations) of a normal upright face, but 
presented in an orientation that not only makes it difficult to 
make use of them but imposes an additional cost. Thus the 
idea here would be that the differences in the N170 caused 
by inversion only partly index the effect of perceptual 
learning (in the latencies), the amplitude difference reflects 
something else (perceptual effort perhaps). 

In conclusion, in the study reported here, we have 
provided some evidence in support of a tDCS procedure able 
to modulate the face inversion of the N170 component. 
Importantly, the tDCS-induced effects on the N170 seem to 
dissociate between latencies and amplitudes of the N170. 
Further studies will be needed to establish these effects.  
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Abstract

The phenomenon of insight (also called “Aha!” or “Eureka!”
moments) is considered a core component of creative cogni-
tion. It is also a puzzle and a challenge for statistics-based
approaches to behavior such as associative learning and rein-
forcement learning. We simulate a classic experiment on in-
sight in pigeons using deep Reinforcement Learning. We show
that prior experience may produce large and rapid performance
improvements reminiscent of insights, and we suggest theo-
retical connections between concepts from machine learning
(such as the value function or overfitting) and concepts from
psychology (such as feelings-of-warmth and the einstellung ef-
fect). However, the simulated pigeons were slower than the
real pigeons at solving the test problem, requiring a greater
amount of trial and error: their “insightful” behavior was sud-
den by comparison with learning from scratch, but slow by
comparison with real pigeons. This leaves open the question
of whether incremental improvements to reinforcement learn-
ing algorithms will be sufficient to produce insightful behavior.

Keywords: reinforcement learning; insight; creativity

Introduction

Insight moments are one of the most spectacular mani-

festations of human creativity. Revolutionary insights are

paradigmatic examples of creativity, whether historically sus-

picious (Aristotles’ “Eureka!”, Newton’s apple), or better

documented such as those described by the mathematician

Poincaré (1909) or the chemist Kekulé (Rothenberg, 1995).

In this article, however, we focus on the insights which occur

in everyday human and animal problem-solving.

Over a century of research in psychology underlies our

knowledge of insightful problem-solving. In contrast, to our

knowledge there has been relatively little work considering

insight from an artificial intelligence perspective, especially

since the momentous advent of deep learning techniques in

AI. We seek to remedy this omission. The objective is not

to build a precise model of biological neural processes, but

to uncover analogies between the two domains of deep Rein-

forcement Learning (RL) and biological insight. We do this

by simulating a classic experiment on insight (Epstein, Kir-

shnit, Lanza, & Rubins, 1984), dealing with insight in the

pigeon.

We will first discuss established results from insight re-

search in psychology on humans and animals, and the dif-

ficulties associated with modeling insight problems from a

machine learning perspective. We will then describe the orig-

inal experiment and its simulation, and the results obtained

using a simple deep RL approach (a deep actor-critic). Fi-

nally, we discuss the analogies between insight and various

sub-disciplines within reinforcement learning, suggesting di-

rections for future research.

Background: insight

Psychological research on insight begins with studies on

chimpanzees by Köhler (1921). These studies sought to

demonstrate that animals, far from being Cartesian automatas

as suggested in the work of Thorndike (1898), are capable

of human-like intelligence. One of Köhler’s experiments in-

volved attaching a banana to the ceiling of the chimpanzee

enclosure, and placing a box within the enclosure. The chim-

panzees had to carry the box underneath the banana and climb

onto it in order to reach the fruit. When solving the problem,

the chimpanzees displayed behavior that more closely resem-

bled Aristotle’s “Eureka!” than the trial-and-error learning of

cats locked in puzzle-boxes by Thorndike (1898). In Köhler’s

“gestalt” perspective, it was understood that chimpanzees had

to interpret the situation from scratch in order to discover the

“roundabout” way of reaching for the objective.

Later work by Birch (1945) showed that chimpanzee in-

sight was not achieved from scratch, but was instead made

possible by relevant prior experiences. Epstein et al. (1984)

showed that with adequate training, “even” pigeons could dis-

play the kind of insight observed in chimpanzees. Epstein’s

findings are robust: several variations of this experiment were

performed by Epstein and colleagues, and the original was

recently replicated by Cook and Fowler (2014). For Ep-

stein, who was a student of Skinner, this made the argument

that seemingly complex mental processes could be explained

from behaviorist principles.

There has been continued interest in insight since the cog-

nitive turn in psychology. This body of work has established

several key behavioral, cognitive, and metacognitive charac-

teristics of insight:

1. The insight sequence: search – (impasse) – restructuring –

verification (Ohlsson, 2011; Weisberg, 2015).

2. Insights are sudden and surprising to the problem-solver, as

evidenced by “feeling-of-warmth” ratings measuring sub-

jective closeness to the solution (Metcalfe & Wiebe, 1987).

3. The “restructuring” which accompany insight involves
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changes in problem representation (Knoblich, Ohlsson, &

Raney, 2001), in the heuristics used (Kaplan & Simon,

1990), and in the constraints on operators (MacGregor,

Ormerod, & Chronicle, 2001).

4. Insight depends on previous experience (Wiley, 1998) and

is facilitated by sleep (Wagner, Gais, Haider, Verleger, &

Born, 2004).

Recent research on insight has used imaging techniques

such as fMRI1. Much of this work has focused on associa-

tive cortices (notably middle and temporal gyri) and on hemi-

spheric differences (Kounios & Beeman, 2015); however the

involvement of structures associated with executive control is

a robust finding (prefrontal cortex, especially anterior cingu-

late cortex), and recent ultra high-field work (Tik et al., 2018)

suggests the involvement of deeper brain structures during

insight, including those underlying biological reinforcement

learning (subcortical dopaminergic structures including the

striatum, thalamus, nucleus accumbens and ventral tegmen-

tal area).

Summarizing: a rich body of research has investi-

gated insight according to different psychological research

paradigms, establishing the key characteristics of insight enu-

merated above. However, the precise nature of the cognitive

mechanisms that enable insight remains unclear.

This is not to say that there have not been models, or theo-

ries, of the cognitive basis of insight (computational, mathe-

matical, or otherwise); those of Hélie and Sun (2010), Friston

et al. (2017), Schilling (2005), and Stephen, Boncoddo, Mag-

nuson, and Dixon (2009) are among the most influential. A

review of and comparison with these variegated models is be-

yond the scope of this paper, if only due to their great di-

versity, which ranges from bayesian inference (Friston et al.,

2017) to dynamical systems (Stephen et al., 2009) and graph

theory (Schilling, 2005). We note in passing that the model

presented later in this article may be compatible with several

of these other models: for instance phase transitions such as

those described by Stephen et al. (2009) are conjectured to

occur in neural networks.

None of the four models mentioned above aim to give rise

to artificial agents capable of solving problems through in-

sight2. In contrast, we seek to produce a model of insight

problem-solving which, when implemented, not only pre-

dicts the behavior of a biological insightful problem-solver,

but also solves the problem.

AI: which insight problems to model?

Most of the contemporary insight literature focuses on hu-

mans, using a wide array of experimental designs (for in-

stance, the nine-dots problem (MacGregor et al., 2001), the

mutilated checkerboard problem (Kaplan & Simon, 1990), or

1See Sprugnoli et al. (2017) for a review of brain imaging stud-
ies.

2A notable exception is the model of MacLellan (2011), who
investigates insight as a change of heuristics in a search process, and
tests this on the nine-dot problem.

the Compound Remote Associates (Bowden & Jung-Beeman,

2003)). Despite their apparent variety, virtually all insight

studies involving humans make use of verbal instructions

which define the objective for the problem-solver in their lan-

guage.

Consider the nine-dot problem: the instructions specify the

number of segments, with constraints over their properties

(four segments, drawn in a sequence “without lifting the pen”;

every dot should end up on one of the segments). Language

thus allows for a description of the desired “goal-state” which

is abstract enough to specify the solution without giving it

away. Simulating such a problem using AI would require ei-

ther very task-specific algorithms (which seems to defeat the

point of replicating human insight), or the algorithmic mas-

tery of language as a prerequisite for understanding instruc-

tions.

A “roundabout” solution is to focus instead on insight ex-

periments which feature animals solving problems that are

not specified by instructions, but instead by some intrinsic

need, typically for food, and by the situation in which the ex-

perimenter puts the animal3. This is the approach taken in

this article.

Insightful (real) pigeons

The experiment by Epstein et al. (1984) is a reproduction of

Köhler’s banana-and-box experiment, adapted for pigeons.

Chimpanzees would naturally want to acquire a banana; but

pigeons might not be interested in that fruit. Therefore Ep-

stein et al. first reinforced pecking a facsimile banana (here-

after just “the banana”) by providing a suitable food reward

upon pecks. In the “test” situation, the banana is suspended

from the ceiling of the room, such that pigeons cannot reach

it by stretching towards it (they do not attempt to fly towards

it (Cook & Fowler, 2014)). However, a small cardboard

cube (“the box”) has been placed in the pigeon’s Skinner

box. The problem is solved when the animal pushes/pecks the

box underneath the banana and, standing on the box, reaches

for/pecks at the banana; see figure 1.

Figure 1: Left-to-right, then top-to-bottom: a pi-

geon solves the banana-and-box test (snapshots from

https://youtu.be/mDntbGRPeEU, with permission from Dr.

Epstein).

3See Shettleworth (2012) for a judicious review of insight re-
search on animals.
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Prior to this apparent display of ingenuity, the behavior of

Epstein’s pigeons was carefully shaped. Shaping is a tech-

nique used in animal training (with closely related applica-

tions in certain behavioural therapies for humans), consisting

of reinforcing successive approximations of a desired behav-

ior. Two skills (“behavioural repertoires”) are taught to the

pigeons by reinforcing the corresponding behaviors:

• In the absence of the banana: push a box to a green spot.

• With the box nailed underneath the banana, and in the ab-

sence of a spot: jump on the box and peck the banana.

Teaching pigeons to push a box towards an objective is

considerably more difficult than getting them to hop onto the

pre-placed box. To achieve this, Epstein et al. proceeded

gradually, the shaping sequence including teaching the pi-

geons to move the box, then progressively placing the box

at an increased distance from the spot. Additionally, the pi-

geons were sometimes put in the presence of the box and in

the absence of both banana and spot, in order to extinguish

aimless pushing behavior (which eventually would result, via

a random walk within the Skinner box, in reaching the correct

position and thereby triggering the food reward).

It is of special importance that the two behaviors are not

exactly applicable to the final test: the pigeons are trained to

push the box towards a green spot, but in the test situation

they must spontaneously generalize this behavior to a slightly

different problem: pushing towards the yellow banana. It is

by combining two behaviors, and generalizing one behavior

to a novel situation, that the pigeons solve the test task.

Epstein’s pigeons proved remarkably adept in the test - all

of them succeeding in minutes, save for one, and presenting

behavior that seemed insightful: after a period of hesitation

and some trial and error, the pigeons began acting in a seem-

ingly directed, intentional manner, moving the box towards

the banana and jumping on top of it. The lone laggard failed

in a manner reminiscent of AI failures: during the test, a pro-

jector had been used to illuminate the (filmed) performance.

When the additional lighting was turned off, the pigeon suc-

ceeded quickly.

Simulation

Admittedly, the displays of insight by Epstein’s pigeons are

less impressive than those of Köhler’s chimpanzees: they re-

ceived substantial training in the form of shaping. However,

just as pigeons could not solve the test without having first ac-

quired relevant skills, so chimpanzees were not able to solve

insight problems without having first engaged in spontaneous

play with the relevant objects (Birch, 1945). This suggests

that similar cognitive mechanisms may be at play, and that

it may be wise to begin by modeling the version of the task

completed by pigeons.

In addition to requiring no instructions or verbal skill, the

task used by Epstein et al. (1984) allows for a simulation

which preserves much of what makes the task difficult: the

pigeons had to combine pre-existing skills (pushing the box,

and jumping on top of it to peck at the banana) while also gen-

eralizing to a new stimulus (pushing is shaped using a green

dot, but in the test situation the pigeons must aim instead for

a banana).

Thus, in simulating this task, we seek to preserve the dif-

ficulty inasmuch as it is relevant to problem solving, as op-

posed to the complete difficulty of the task including subjec-

tive perception and full physical coordination.

Figure 2: Successive frames of an artificial pigeon solving

the “push box to spot” shaping task. The pigeon succeeded

despite a sub-optimal policy (first pushing the box in the

wrong direction, then pecking it out of corners). Also note

the stochasticity of the “peck” actions: pecking actions have

up to 4 different outcomes.

Task and shaping model

We model the task as an RGB image, such that the complete

situation is perceived at each time-step. The pigeon, box, ba-

nana and spot consist of squares identifiable by size and color.

For visualization, an interpretable representation is also pro-

vided (see figure 2). The dimensions of the various elements,

and the dynamics of the actions are chosen to match those ob-

served in the experiment. In particular, the size of the various

elements (Skinner box, pigeon, box, banana, spot), the ef-

fects of the actions (walking, directional pecking, and jump-

ing) and the consequences of interactions (box movement)

closely match those of the initial experiment.

Specifically, the pigeon has 9 actions: walking in either

cardinal direction, pecking towards either cardinal direction,

and jumping on/off the box. Walking is deterministic and

moves the pigeon by 1 square in the corresponding cardinal

direction unless an obstacle is present. Pecking the box will

result in its stochastic displacement in the general direction

opposite to that from which it was pecked: assuming there are

no obstacles and the box is not fixed in place, the box moves

with equal probability (0.25) by 1 or 2 squares forward, or by

1 square forward and 1 in either perpendicular direction. With

respect to direction, the pigeon can push the box south if the

northern edge of the pigeon is at least as far north as the north-

ern edge of the box, and if the pigeon is adjacent to the box;
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likewise (mutadis mutandis) for the other directions (refer to

figure 2 for some examples of stochastic box movement and

pigeon positioning). The white pigeon is 3×3, the orange box

2×2, the green spot and yellow banana are 1 square each, and

the background environment 10×10. Assuming squares ap-

proximately 4cm across, this roughly matches the size of the

real objects (10x10cm box, 7x2cm facsimile banana, 4x4cm

spot, approx. 25x8cm pigeons), Skinner box (45x45cm for

the square box), and the effects of recognizable discrete ac-

tions in the original. In Skinner boxes, pigeons are rewarded

by receiving food through a little window; in this simulation,

a reward of 10 is provided instantaneously upon success.

The artificial pigeons undergo shaping similar to that used

by Epstein et al.: artificial pigeons perform the push-to-spot,

jump-and-peck, or push-extinction tasks. In the push-to-

spot task, the box is initially placed immediately next to the

spot. The distance between the box and the spot is sam-

pled uniformly between 0 and X, where X increases progres-

sively as the artificial pigeons become more adept at solv-

ing the task: pigeons “graduate” to the next distance once

they achieve good performance (100 successive successes in

a maximum duration 50 timesteps each) on the task. Other

than box-spot distance, the position of the various elements

of the task is randomized for each shaping and test instance.

For jump-and-peck, the box is fixed in place underneath a

banana, and for push-extinction the box is present with no

reward is available. The three shaping tasks are interleaved.

Artificial pigeons trained in this way did not succeed at the

test on their first try in an “insightful” manner, unlike real pi-

geons. Instead, we present results for repeated tests, in which,

after training, the pigeons face a succession of randomized

test problems (with the box and banana placed randomly).

“Pigeon Insight” Model

Learning is modeled using deep Reinforcement Learning

(Sutton & Barto, 2018), specifically an actor-critic algorithm.

Reinforcement Learning is learning what to do in order to

maximize a reward signal, where obtaining a reward often

requires multiple successive actions. To know whether an ac-

tion was good, it is therefore useful to evaluate the resulting

situation, without waiting for the reward itself: if the new

situation is promising (as opposed to dire), the tendency to

repeat that action in similar contexts should be reinforced (as

opposed to weakened). Many reinforcement learning algo-

rithms exploit these ideas by making use of an actor which

selects actions, and a critic which evaluates situations and

generates a learning signal.

A technical description of these ideas and their implemen-

tation is given below in order to make the present work re-

producible. Readers who wish to familiarize themselves fur-

ther with Reinforcement Learning are encouraged to consult

the article by Kaelbling, Littman, and Moore (1996) or the

more expansive book by Sutton and Barto (2018). For a dis-

cussion of the connections between Reinforcement Learning

approaches in AI and in psychology, see chapters 14 and 15

of Sutton and Barto (2018, accessible online).

The simulated environment is a Markov Decision Process,

where images count as states s from a set S (s ∈ S ), pigeon

behavior as actions a ∈ A , with rewards r ∈ R (10 on suc-

cessful completion, 0 otherwise), and a transition function

p : S ×A×S → [0,1] defining the dynamics of the environ-

ment. In an actor-critic algorithm, the agent, with no prior

knowledge of the environment dynamics, learns from experi-

ence a policy πθ : S ×A → [0,1] (mapping states to a proba-

bility of selecting each action, based on the parameters θ of

the actor) and a value function vw : S → R (which denotes

the agent’s future prospects, or return, assuming it follows its

policy from the current state; it is approximated as v̂w based

on parameters w of the critic). Actor-critic systems are con-

sidered more plausible models for biological agents (Sutton

& Barto, 2018, pp395-402).

Two convolutional neural networks are used to approxi-

mate the value function v as v̂w (critic network) and to imple-

ment the policy (actor network). The architecture is shown

for the actor network in figure 3; the critic network is identi-

cal save for the last layer, which has only one output and no

nonlinearity. Learning proceeds online by gradient descent,

according to the update rules:

w← w+αwδ∇v̂w(S
′)

θ← θ+αθθθδ∇ logπθ(A|S)

Where S is the state, A is the action chosen (according to

the policy π), R is the reward, S′ the following state, and

δ = R+ γv̂w(S
′)− v̂w(S) is the one-step time-difference error.

We use a discount γ (0.9) and learning rates αw and αθ (0.003

and 0.0003). Thus, by way of the time-difference error, the

critic adjusts its estimate of the value of a state based on that

of the next state. Meanwhile, the actor learns to preferentially

select actions which lead to surprisingly high-valued states

(states with positive time-difference errors). The interleaved

processes of estimating the value of states and improving the

policy leads (demonstrably under certain conditions) to a lo-

cally optimal policy. In our implementation, the actor was

regularized based on the entropy of its output to ensure con-

tinued adequate exploration (as in Mnih et al. (2016)), and

learning and acting was parallelized (16 concurrent agents)

to accelerate computation time.

A first cohort of 20 agents was given shaping training up

to a performance of 90% completion within 50 time-steps,

and then continued learning in the test condition; we call this

condition 1. A second cohort of 20 was given more exten-

sive training (150,000 additional timesteps after meeting the

criteria for condition 1); we call this condition 2. The expec-

tation was that additional training would result in overfitting

and render transfer more difficult (as observed for human in-

sight in the work of Wiley (1998)). A third cohort was di-

rectly given the test without any prior training; we call this

condition 3. In all cases, the primary measure is the rate of

success: how likely each simulated pigeon is to succeed at

its task within 50 time-steps. This is measured as a running

average (cf. figure 4).
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Figure 3: The neural network architecture used for the ac-

tor. For illustrative purposes, example activations are given

in shades of grey, and example connections in red.

Results

Figure 4: Performance of the actor-critic model. All graphs

show the success rate for 20 runs, smoothed over 100 time-

steps; color bands show the standard deviation. Note that

the success rate is initially high during shaping because the

shaping tasks are easy in the beginning, and progressively

made more difficult as performance increases. Graphs A and

B show the performance for conditions 1 (dark green) and

2 (lighter orange) for the shaping and test, whereas Graph C

shows the performance for condition 3 (naive agents). Condi-

tion 2 had worse average performance on the test, with greatly

increased variance.

The shaping program was successful in improving perfor-

mance. Agents in conditions 1 and 2 transferred successfully

to the final task, rapidly learning the new task in condition

1, although there was often a delay for those of condition 2

who had been given more extensive training. Agents in con-

dition 2 showed considerable variance in the transfer - some

of them necessitating a much longer time than others. Con-

dition 1 and 2 both showed substantially better performance

than condition 3 on the test. These results are shown in figure

4.

In condition 1, agents adapted rapidly to the new task.

However, in condition 2 there often was a period of “im-

passe” during which the agents displayed low performance;

individual curves are shown in figure 5. These impasses re-

mained short compared to condition 3, but were substantial

compared to condition 1 (see figure 5b); impasse was fol-

lowed by a rapid performance increase, which was accom-

panied by an increase in expected value as estimated by the

critic components of the agents. There was also an increase

in positive time-difference errors, which correspond to unex-

pected progress, from the agent’s perspective.

Discussion

Did the simulated pigeons experience “insight”? Unlike the

real pigeons, few solved the test situation on their first try,

suggesting that out-of-the-box RL is not sufficient for insight.

However, especially for condition 2, they displayed patterns

that are reminiscent of findings on the insight process. Recall

the characteristics of insight enumerated in the background

section. Many of them are reflected in the behavior of the

deep RL agents:

1. The insight sequence: in condition 2 especially, one can

distinguish a fruitless search/impasse phase from a sudden

resolution.

2. Sudden and surprising solution: the sudden increase of

“feelings of warmth” in humans Metcalfe and Wiebe

(1987), i.e. their subjective appreciation of how close they

are to solving the problem, resembles the sudden increase

of the estimated value function in the agents. (Recall that

the value function, estimated by the critic component of the

agents, measures their expectation of acquiring reward; it

is thereby analogous to the “feelings of warmth” measure.)

The steepness of the learning curve for shaped agents (con-

ditions 1 and 2) is sudden by comparison to naive agents

(condition 3).

3. Restructuring: the agents ought to behave “as if” the yel-

low objective is the green spot with which they trained.

We conjecture that when the agent learns this, the rest of

the correct solution “falls into place” rapidly due to prior

learning4.

4. Role of experience: “insight” is made possible by prior

experience, with extensive experience having an ambigu-

ous role – too much experience being detrimental to per-

formance, as in Wiley (1998).

Additionally, we note several associations between the

concepts of reinforcement learning and those of psychology,

which are known in RL and cognitive psychology, but have

received little attention in the insight literature. Readers fa-

miliar with RL may have recognized transfer and curriculum

learning techniques used for instance in robotics; those well-

read in psychology noticed that the overfitting of condition 2

4The distributed nature of neural networks makes this difficult to
verify; we reserve such investigations to future work.
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(a)
(b)

Figure 5: (a) All “overfitting” transfer curves (orange, left), compared to learning from scratch (black, right), over 20 runs. (All

curves have been smoothed for readability, showing the average over 4000 timesteps.).

(b)A single learning curve on the test (one of the 20 shown in orange in subfigure (a)). The top curve is the cumulative TD-error,

the middle curve is the % of success, the bottom curve is the estimated value.

is reminiscent of the Einstellung effect, by which prior expe-

rience gets in the way of finding an optimal solution to a new

problem (Luchins, 1942).

Thus although the artificial pigeons needed a considerable

amount of interaction with the test by trial and error (note that

both pigeons (Epstein et al., 1984) and chimpanzees (Köhler,

1921; Birch, 1945) also showed some amount of trial and er-

ror even during the test), they also presented learning patterns

resembling those of insight: namely (1) a comparatively sud-

den increase of performance, accompanied by (2) an increase

in expected return, which (3) was made possible by a “just-

right” amount of prior experience.

The proposed model thus displays some characteristics of

insight while being limited in other respects. The most no-

table of these limitations is the time needed to discover the

full solution during the test. This might be a matter of learn-

ing quickly from limited data during the test (this is the so-

lution favored by Epstein (2014)), or of making use of more

profound regularities in the shaping tasks, e.g. via tempo-

ral abstraction as suggested by Colin, Belpaeme, Cangelosi,

and Hemion (2016). Alternatively, they might identify new

regularities between old and new tasks on the fly (Friston et

al., 2017), or use off-policy learning to make use of prior ex-

perience (as suggested by Richard Sutton in personal com-

munication; cf. Tolman and Honzik (1930)). Finally, perhaps

the use of model-based reinforcement learning allows for trial

and error to occur in subconscious simulation “in the agent’s

mind” (Hamrick et al., 2016; Hélie & Sun, 2010). These

various approaches are not mutually exclusive - indeed, all

of them are compatible, and perhaps only some (yet-to-be-

realized) combination of all of these methods can produce

behavior truly comparable to animal and human insight.

Conclusion

Insight problem-solving was historically presented by Köhler

as a challenge for Thorndike’s concepts of animal learning.

Nowadays Aha!-moments, due to the sheer speed of the phe-

nomenon in human beings and animals, remain puzzling for

modeling approaches that rely on statistical trial-and-error.

However, their apparent reliance on learning and thereby gen-

eralization, and their representational component, has made

them equally challenging for traditional cognitive models.

Both symbolic and statistical approaches have difficulty ex-

plaining insight.

We suggest that the statistical approaches offer, after all,

a promising avenue of research for explaining insight. The

established importance of learning for insight (Birch, 1945;

Wiley, 1998) suggests a model based on learning. Our results

show how transfer learning can accelerate the resolution of

a new problem to the point of making it seem, in contrast to

solving it “from scratch”, rather sudden. This and the focus of

contemporary machine learning techniques on representation

designates them as clear candidates for modeling insight.

We have presented a simulation of a psychological exper-

iment on insight, with the aim of proposing a model of the

cognitive processes underlying animal behavior in the exper-

iment. Our artificial pigeons were not a match for the real

pigeons performance-wise: they required more experience to

solve a simplified version of the task; their “insights” were

slower and clumsier. However the proposed model showed

qualitative properties reminiscent of those seen in pigeons.

It is a long way to recreating the insights of chimpanzees,

let alone humans; we have given some directions for future

research, and we hope that the methodology presented here

(replicating insight studies on non-human animals) can serve

as a basis for future investigations of the creativity of great

apes - such as ourselves.
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Abstract

People often navigate new environments and must learn about
how actions map to outcomes to achieve their goals. In this pa-
per, we are concerned with how people direct their search and
trade off between selecting informative actions and actions that
will be most immediately rewarding when they are faced with
new tasks. We find that some people selected globally infor-
mative actions and were able to generalize from few observa-
tions in order learn new reward structures efficiently. These
participants also displayed the ability to transfer knowledge
across similar tasks. However, a consistent proportion of par-
ticipants behaved sub-optimally, caring more about observing
novel information instead of maximizing reward. Across four
experiments, we present evidence that participants’ motivation
to explore was influenced by 1) how much they already knew
about the underlying task structure and 2) whether their obser-
vations remained available. We discuss possible explanations
behind people’s exploratory drive.
Keywords: active learning; generalization; exploration-
exploitation; transfer learning; data-availability;

Introduction
In order to act, plan, and achieve goals, people must learn
about their environment and the outcome of possible actions.
One reason for human successes in developing new theories
and strategies when confronted with new problems is that
people are not passive observers. Indeed, children ask in-
formative questions and can adapt their strategies when in-
quiring about things they don’t know (Ruggeri & Lombrozo,
2014), and play with new toys in ways that help them dis-
ambiguate uncertain causal relationships and gather informa-
tion (L. Schulz & Bonawitz, 2007; Cook et al., 2011). The
idea that humans learn and interact with their environment
by performing intuitive experiments, maximizing informa-
tion gain, is a popular one (Coenen et al., 2017; Gureckis
& Markant, 2012; Nelson, 2005; Gopnik et al., 2004).

In this paper, we are interested in how people learn to select
actions that are most rewarding when faced with a sequence
of novel but potentially related tasks. We designed experi-
ments to better understand people’s exploration and reward
maximizing strategies across a sequence of tasks. Do those
strategies evolve over time, as they encounter related tasks?
Can people transfer structural knowledge and improve their
performance by leveraging similarities between tasks? What
is the relationship between people’s search strategies, their
ability to learn and generalize from observations, and how
well they do?

When encountering new situations, people are often faced
with the decision of either gathering more information about
the task to improve the quality of their decision, or choosing
an action that has been shown to be rewarding (Hills et al.,
2015). A doctor might, for example, want to run more tests
to have a better diagnosis for their patient or give them the

treatment they believe will best relieve them from their symp-
toms. To better understand human decision strategies when
dealing with the explore-exploit trade-off, Multi-armed Ban-
dits (MAB) have been used extensively. In these experiments,
participants have to select between different possible actions
(e.g. the arms of a bandit) yielding stochastic rewards, so as
to maximize their rewards. In the real world, an essential part
of solving problems lies in discovering the underlying struc-
ture of the problem, where each action can be represented as a
set of continuous and discrete features. In a Contextual MAB
(CMAB), there are observable feature that provide informa-
tion about the arms’ reward distributions. Learning how fea-
tures relate to rewards allows for an efficient representation
of the environment, and enables the learner to generalize to
new events. Previous studies of human behavior in CMAB
problems have shown that people are able to generalize across
observations when faced with a large number of options, and
make use of uncertainty to direct their search (E. Schulz et al.,
2017; Wu et al., 2018; Borji & Itti, 2013). These experiments
have assumed the basic structure of the underlying problems
to be static, or known in advance. When confronted with un-
known task structures, Teodorescu and Erev (2014) showed
that people were able to adaptively learn purely exploratory
or purely exploitation-oriented policies. However, in their ex-
periment there was no systematic relationship between an op-
tion’s features and its reward, aside from whether it had been
previously explored.

Unlike a CMAB-type task, the tasks we presented to par-
ticipants were deterministic, meaning that re-selecting an op-
tion would always yield the same reward. This was done to
ensure a clear distinction between exploration and exploita-
tion in participant decisions. To examine people’s ability to
use generalization to guide their search we presented them
with tasks that contained a large number of choices and a rel-
atively limited number of actions, meaning that generalizing
over previous observations is necessary for optimal perfor-
mance. We chose a simple structure to ensure it would be
possible for participants to learn and exploit it when maxi-
mizing rewards.

Our first two experiments focus on sequential tasks where
participants had no prior information about the underlying re-
ward structure, and where a combination of exploration – to
discover task structure and discover optima – and exploita-
tion is necessary to do well. The next two experiments pro-
vided participants with training about the reward structures
before the task itself. In all of these experiments, we found
that some participants selected actions that resolved uncer-
tainty about the underlying structure of the task, and traded
off between exploration and exploitation in order to maximize
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reward. These participants were also able to transfer knowl-
edge across tasks and gradually improved their performance.
We also found a significant number of participants engaged in
purely exploratory behavior, consistently preferring to choose
novel actions, even when these actions were relatively unre-
warding. These results highlight the importance of studying
individual differences to better identify the multiple factors
that influence human behavior, and of accommodating these
differences in models of learning and exploration.

Experiment 1

Across our four experiments participants were given a se-
quence of grids composed of 9-by-9 arrays of tiles (see Fig-
ure 1), with each tile corresponding to a possible action. In
this paper, we limit our analysis to the first three grids pre-
sented to participants (out of nine), as the latent task structure
changed after that point. The grids studied here shared a sim-
ilar underlying task structure: they had the same kind of re-
lationship between features and rewards, but details of those
relationships varied. In our experiment an action consists of
selecting an individual tile, which has two features: its hori-
zontal (x), and vertical position (y). Participants had to select
tiles to maximize their cumulative rewards over 20 choices in
each grid. The task presents a classical explore-exploit trade-
off: Succeeding requires carefully balancing between choos-
ing new tiles to learn about the underlying reward structure or
re-selecting tiles that were observed to be rewarding. In Ex-
periment 1, participants received no prior knowledge about
the reward structure of the tasks, nor about whether the tasks
were related to one another in any way.

We predicted participants would be able to generalize from
previous observations and improve by using their growing
knowledge of the underlying task structure to select better
actions. We measure this by looking at whether participants
were able to select more rewarding tiles as they collected
more information, and whether they demonstrated confidence
in their knowledge by repeatedly selecting (i.e., exploiting)
optimal actions. Our second hypothesis was that partici-
pants would be able to re-use knowledge across grids, since
they shared the same structure, and thus improve their perfor-
mance from one grid to the next.

We also studied the distance between participants’ selec-
tions throughout the task to better understand their behavior.
Distance between selections is a useful marker of different
exploration strategies. For example, participants who seek
to reduce uncertainty about the task structure are likely to
select tiles that are far apart from each other, as these tend
to yield more information about the broad shape of the re-
ward function, in addition to having more uncertain rewards
themselves. We call these selections globally informative ac-
tions. In contrast, participants might sample tiles adjacent
to their previous observations, e.g., because they believe they
are close to a maximum or because they want to observe local
gradients. We call this kind of selection local search.

Figure 1: Screenshot of grid presented to participants after 5 ob-
servations. Note that in Experiment 1, the rewards disappear shortly
after a tile has been selected.

Methods We recruited 79 participants using Amazon’s Me-
chanical Turk service. They received $0.75-$1, which was
doubled for participants whose final scores were in the top
10 percent. Following the instructions given to participants,
we excluded participants whose performance was worse than
chance (n = 3). We also excluded participants who failed
to select more than 2 different tiles on the majority of grids
(n = 5), as it showed a lack of engagement with the task.

The three grids analysed here used a reward structure
where one location (xm,ym) was sampled uniformly at ran-
dom in each grid, and the grid’s maximum reward m was
sampled from (N (µ = 200,σ2 = 50)). The reward r for a
given tile location (x,y) was exponentially decreasing with
its Euclidean distance d from that maximum-reward tile:
r(x,y) = C · e−k·d((x,y),(xm,ym)), rounded to the nearest integer.
We chose an exponential relationship between features and
rewards to ensure there would be a clear advantage for partic-
ipants who discovered the maximum-reward tile. We chose
a constant (k = 0.4) that led to large differences between the
maximum and its closest neighbors while making it unlikely
that any tiles would have rewards of zero or one. We used
a random maximum reward in order to make it difficult for
participants to know they had found the most rewarding tile
without knowing the reward structure of the task.

When a tile was selected, the reward was displayed on the
tile for 1.5 seconds and added to the cumulative score on the
current grid. Participants could re-select tiles they had previ-
ously chosen. Participants were given no information about
the underlying structure of the grid prior to the task, and were
not informed that the tasks were related in any way, apart
from a note that there could be patterns behind the rewards.

Results and Discussion For this and all subsequent exper-
iments, we report the normalized scores (between 0 and 1),
by dividing each reward by the maximum reward in that grid.
We were first interested in seeing whether participants were
able to recognize similarities between tasks. We use a gen-
eral linear model (GLM), with the reward as outcome vari-
able. The turn and grid index were used as predictor vari-
ables. Both the turn (b = 0.02,se = 0.001, p < 0.001) and the
grid (b = 0.05,se = 0.005, p < 0.001) were significant fac-
tors. Following our hypothesis, participants selected better
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Figure 2: Each point represents a participant. The y-axis is the
average reward across all three grids. The x-axis is the proportion of
novel selections across all three grids. A value of 1 would mean only
selecting new tiles, 0 only selecting the previously-selected tiles.

tiles over time, suggesting that they were able to exploit the
underlying reward structure. Participants also improved their
performance across grids, suggesting they were able to trans-
fer structural knowledge across tasks (see Figure 3).

As a simple measure of a participant’s propensity to ex-
plore, we used the proportion of actions that selected a
previously-unseen tile (“exploration”) versus re-selecting a
previously-seen tile (“exploitation”). This distinction is more
natural in our tasks than in a traditional stochastic bandit task,
as in the latter it can be informative to re-select previously-
seen tiles to learn about their reward distributions. There
were significant behavioral differences indicated by how peo-
ple traded off between exploration and exploitation among
participants, and in the cumulative rewards they collected
(M = 0.49,SD = 0.30) (see Figure 2).

Twenty-two participants (31 percent) never re-selected
tiles more than twice in the majority of grids. We call these
participants full explore (FE) participants. We call the other
participants (n=49), that traded off exploration and exploita-
tion, Explore-Exploit (EE) participants.

EE participants improved across tasks (b = 0.07,se =
0.006, p < 0.001) (see Figure 3), supporting our hypothesis
that participants who used the underlying task structure to di-
rect their search and maximize reward were able to re-use
what they had learned to a new task.
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Figure 3: Performance of FE participants (n=22) and EE partici-
pants (n=49) in Experiment 1 across all three grids. Error bars in
this and all subsequent plots reflect standard errors of the mean.

Across all participants, the proportion of exploratory selec-
tions correlated negatively with score (r(140) = −0.71, p <
0.001), and FE participants earned lower scores than EE par-
ticipants (t(69) = 5.77, p < 0.001,d = 0.15). Their average

scores barely improved from one grid to the next (Figure 3;
b = 0.02,se = 0.008, p = 0.06).

We used a logistic regression model to evaluate partici-
pants’ ability to find the maximum across grids. More par-
ticipants found the maximum as they went on with the grids,
hinting that they were better at utilising the underlying task
structure (b = 0.64,se = 0.11, p < 0.001). Whether partic-
ipants were engaging in full exploratory or explore-exploit
strategies did not predict if they found the maximum in the
tasks (b < 0.001). Participants were significantly better than
chance at finding the maximua (0.65 of grids, vs. upper bound
chance proportion of 0.25; χ2(1,N = 1174) = 188.1, p <
0.001). Furthermore, participants had overall a strong ‘local
bias’ in their sampling, where they choose tiles close to their
last choice more often than chance given the distribution of
inter-tile distances (t(151) = −50.8, p < 0.001,d = −2.34)
(see Figure 4). This suggests that participants engaged in
local search strategies, rather than globally informative ac-
tions. Both EE and FE groups showed this bias, with adjacent
tiles selected in 49% of FE participants’ exploratory choices
(SD = 0.17) and 39% for EE participants (SD = 0.17).

In conclusion, Experiment 1 showed that some partici-
pants were able to learn the underlying task structure when
it was new and traded off between exploration and exploita-
tion to maximize their rewards. These participants transferred
knowledge across tasks that shared similarities in their under-
lying structure. However, a large proportion of participants
had a strong tendency to explore in circumstances where ex-
ploitation would have yielded much higher scores, preferring
unobserved tiles over known tiles with a high reward value.
FE participants presented some evidence for learning the un-
derlying structure, but this was not reflected in their score.
Why did so many participants adopt such an extreme ex-
ploratory policy? One possibility is that they were motivated
to learn more about the reward structure, or ensure they had
found the maximum possible reward, in line with the inher-
ent curiosity bias observed in people (Kidd & Hayden, 2015;
Gottlieb et al., 2013).
We also observed a locality bias in participants’ choices. This
may have been due to the memory demands of the task. Wu et
al. (2018) presented evidence that participants displayed an
ability to use generalization to direct their search. Unlike the
task used in their study, our task had the rewards disappear
after participants selected a tile. Remembering past observa-
tions when generalizing might be difficult, and could have led
participants to adopt policies that alleviated the complexity of
the task. For example, if participants tracked local gradients
in rewards and followed increasing rewards, this would only
require tracking 2-3 past observations while being less de-
manding than computing a surrogate model over the general
task structure. This would be consistent with the local search
strategies exhibited in other domains such as causal learn-
ing (Bramley et al., 2015) and category learning (Markant
et al., 2016), and the idea that people adapt their high-level
strategies to make the most of limited resources (Lieder et al.,
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2014). For FE participants, the local bias during exploration
could reflect a systematic and memory-efficient policy for ex-
haustively searching a subset of the tiles for a maximum.

Figure 4: Average distance between selections of EE and FE partic-
ipants in Experiment 1 presented with quantiles and kernel density
estimations. We use Euclidian distance between selections, with 0
counting for a re-selection of the previous click. The dotted line rep-
resents the average distance between all tiles in a grid. The shape of
the distribution is drawn using a (normal) Gaussian Kernel Density
Estimate cut at 0.

In Experiment 2, we presented participants with the same
task structure as in Experiment 1, but with changes designed
to understand and potentially reduce their strong tendency to
explore new tiles. These included persistent indicators of ex-
plored tiles’ rewards, checks of participants’ understanding
of the instructions, and different incentives.

Experiment 2
In this experiment, the reward associated with a given tile is
displayed continuously once it has been observed. We hy-
pothesized that with participants observations remaining vis-
ible, the overall reward pattern would be more evident. We
predicted that participants would be able to make more glob-
ally informative actions (i.e. exploratory selections would be
more distant from each other). Because the underlying struc-
ture is made more evident, we also assumed fewer partici-
pants would engage in full exploratory behavior.

Methods We recruited 72 participants using Amazon’s Me-
chanical Turk service identically to Experiment 1. Partic-
ipants all received a base payment of $0.75. The reward
scheme differed from that in Experiment 1: rather than grant-
ing bonuses to the top 10 percent, we gave all participants a
bonus proportional to their cumulative score, up a maximum
of $0.75. We excluded participants who failed to select more
than 2 different tiles on the majority of grids (n = 4). In Ex-
periment 2 when a tile is selected by a participant the reward
is continuously displayed on the tile and is added to the cur-
rent cumulative score on the current grid.

In another change from Experiment 1, tiles’ rewards were
persistently visible after they had been selected, under the
logic that it might improve participants’ ability to learn the
underlying reward structure and increase their ability to find
and exploit the maximum. We also added explicit instruc-
tions that participants could re-select tiles, and added a pre-
task questionnaire to make sure participants understood these
instructions. The questionnaire also required participants to
understand that their goal was to maximize reward (as op-
posed to discovering the underlying pattern, or finding the

maximum. Participants were not allowed to proceed with the
task until they answered all questions correctly.

Results and Discussion Contrary to our predictions that
participants would be less prone to full exploratory behav-
ior, a significantly larger proportion of participants showed
FE behavior in Experiment 2 as compared with Experiment
1 (.47, n = 32 vs. .31, n = 22; χ2(1,N = 139) = 18.6, p <
0.001). As in Experiment 1, the proportion of exploratory
selections correlated negatively with performance (r(134) =
−0.75, p < 0.0001). In Experiment 2, EE participants also
performed significantly better than FE participants (t(66) =
9.31, p< 0.0001,d = 0.23) and improved significantly across
tasks (b = 0.04,se = 0.007, p < 0.0001), whereas FE partici-
pants did not (b = 0.01,se = 0.006, p = 0.14).
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Figure 5: Performance of FE participants (n = 49.) vs EE partici-
pants (n = 36).

To understand the effect of having observations available
throughout the task, we compare the performance of EE
participants in Experiment 2 (n=36) to the performance of
EE participants in Experiment 1 (n=49). Overall, EE par-
ticipants in Experiment 2 (M=0.58) did slightly better than
EE participants in Experiment 1 (M=0.56) (b = 0.04,se =
0.008, p < 0.001). This was most pronounced in the first grid
(t(84) = 2.18, p = 0.03,d = 0.08). We conjecture that EE
participants in Experiment 2 learned the reward pattern faster,
and EE participants caught up in subsequent grids. This sup-
ports the hypothesis that visible observations allowed partic-
ipants to generalize better, by supporting more global strate-
gies. To test this idea, we looked at the inter-selection dis-
tances between the first 5 selections of participants. EE par-
ticipants’ choices in Experiment 2 were more global, with
greater distances than EE participants’ choices in Experiment
1 (t(84) =−2.25, p = 0.03,d = 0.66) (see Figure 6).

Figure 6: Comparison of distances between selections of EE par-
ticipants in Experiment 1 and Experiment 2 (see Figure 4 for de-
tails). EE participants in Experiment 2 selected more ”global” ac-
tions (longer distances between selections) during their first actions.

Why did more participants engage in FE behavior in Ex-
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periment 2? We conjectured that participants were more mo-
tivated to observe rewards for new tiles when previous re-
wards remained visible, because the overall pattern – and the
possibility of better understanding it – might have been more
salient to them.

In Experiment 3, we sought to understand why some par-
ticipants might want to select new tiles almost exclusively,
rather than occasionally exploiting what they had learned to
earn greater rewards. After Experiment 1, we hypothesized
that this might have been due to an intrinsic epistemic drive
in participants. Experiment 2 showed that for EE participants
were able to leverage visible observations to conduct more
global exploration, and led to a better overall performance.
However, the observable rewards also seemed to add an in-
centive for many participants to exclusively choose novel ac-
tions, rather than maximising rewards. We hypothesized that
this would only be the case for new tasks when participants
had no prior knowledge about the underlying reward structure
of the tasks, since new observations would not be very infor-
mative if participants had a prior about the underlying reward
structure.

Experiment 3

We designed Experiment 3 to control explicitly for the poten-
tial epistemic drive of FE participants by familiarizing them
with the underlying reward structures prior to the task. By
making the structure clear to participants prior to the tasks,
our primary prediction for Experiment 3 was that fewer par-
ticipants would engage in FE behavior. We presumed the in-
trinsic motivation of observing new observations would be
attenuated when participants did not gain new information
about the task from those observations.

We also hypothesized there would be weaker or no
progress across grids since participants would already be fa-
miliar with the reward structure when they engage with the
first grid. Because of the training, we predicted participants
would be more efficient at finding and re-selecting tiles with
high values, and would thus perform better overall than in
Experiment 1 and 2. Experiment 3 was set up identically to
Experiment 2. Participants were told about the underlying
pattern and given three practice grids so they could learn the
reward structure prior to the task.

Methods We recruited 43 participants using Amazon’s Me-
chanical Turk service, identically to Experiment 2, with the
following changes: Participants were only recruited for three
grids rather than nine, following the same reward pattern dis-
cussed in Experiment 1 and Experiment 2. Because of the
shorter duration, participants were paid a base reward of $0.2.
We used a proportionally larger bonus of $0.6 under the logic
that this would further reduce the effects of epistemic drive.
Apart from the training grids presented prior to the task, in-
structions were identical to Experiment 2. During the train-
ing, participants were told that each grid had one maximum
tile, and the closer a tile is to the maximum the higher the re-
ward. The first training grid had all rewards displayed and

participants were instructed to familiarize themselves with
the nature of the task. The next two grids were similar to
the grids in the actual task (i.e. only observed tiles display
reward values) but participants were encouraged to learn the
pattern as well as they could. Throughout the task, instruc-
tions regarding reward maximisation and the possibility of
reselecting tiles were also displayed. We excluded one par-
ticipant who failed to select more than two different tiles on
the majority of grids and one participant who reported not
following the instructions upon completing the experiment.

Results and Discussion Surprisingly, 37 percent (15 out of
41) of participants engaged in Full Exploration (FE) in Ex-
periment 3. The proportion of FE participants in Experiment
3 was significantly less than the 47 percent we observed in
Experiment 2 (χ2(1,N = 109) = 8.82, p = 0.003), but was
nonetheless a higher proportion than anticipated.

As expected, EE participants in Experiment 3 did not im-
prove significantly across grids, since they had been trained
extensively on the rule before the assessed task started (b =
−0.01,se = 0.008, p = 0.112). The average performance of
EE participants was significantly better than EE participants
in Experiment 2 (t(61) = 2.29, p = 0.03,d = 0.07) and EE
participants in Experiment 1 (t(74) = 3.11, p = 0.003,d =
0.09, suggesting that participants were able to learn the rule
during the training and relied on this knowledge when faced
with new grids in the task.
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Figure 7: Average performance of EE participants (participants
that traded off between exploration and exploitation) across all three
grids in Experiment 1, 2 and 3.

To understand the effect of prior knowledge on partici-
pants’ exploratory patterns, we compared how EE partici-
pants explored compared to EE participants in Experiment 2.
Participants in Experiment 3 were significantly more locally
biased in their initial five selections (t(359), p < 0.001,d =
1.19). Participants in Experiment 3 were already familiar
with the Location rule, and it is probable that they were
able to find the maximum by ascending towards the max-
imum through small incremental steps. EE participants in
Experiment 3 had a significantly lower proportion of res-
elections (0.19 in Experiment 3 vs 0.28 in Experiment 2)
(χ2(1,N = 1367)= 17.16, p< 0.001). Given their higher per-
formance scores, EE participants in Experiment 3 were likely
to have a strategy more adapted to the task than in Experiment
2, where participants were still learning the reward structure.
Indeed, EE participants in Experiment 2 had a tendency to
settle on a sub-optimal tile, finding the maximum tile in 0.62
of grids. EE participants in Experiment 3 took smaller ex-
ploratory steps but found the maximum in 0.81 of the grids
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(χ2(1,N = 185) = 6.69, p = 0.01).

Figure 8: Distance between selections of participants (see Figure 4
for details). EE participants in Experiment 2 had more global obser-
vations than EE participants in Experiment 3. This can be explained
by that fact that they had no prior knowledge about the task structure.

Contrary to our hypothesis, many participants still engaged
in full exploratory behavior. Given this result, we hypothe-
sized that participants might be motivated by observing new
rewards rather than learning the underlying reward structure
per se and that this effect might be emphasized when re-
wards remain visible after having been observed. Indeed, in
Experiment 2, where rewards remained visible, significantly
more participants engaged in full-exploratory behavior than
in Experiment 1. We designed Experiment 4 to account for
these two factors of epistemic motivation: 1) wanting to learn
about the underlying reward structure and 2) wanting to at-
tend novel information.

Experiment 4
Experiment 4 followed the design details of Experiment 3, ex-
cept that rewards were not displayed continuously after they
had been selected - they are displayed on the tile and disap-
pear shortly after, like in Experiment 1.

Our main hypothesis for Experiment 4 was that fewer par-
ticipants would engage in full exploratory behavior, since the
epistemic reward is attenuated by not having the tiles visi-
ble after they have been selected and having training grids
prior to the task. We predicted EE participants would perform
similarly or slightly worse than in Experiment 3, because of
the constraints of not having previous observations visible,
but better than in Experiment 1 and 2. We also predicted we
would observe little or no transfer effect across grids.

Methods 39 participants were recruited using Amazon Me-
chanical Turk. One participant was excluded for failing to
select more than two different tiles, and one was excluded
because their performance was worse than chance.

Results In agreement with our hypothesis, only one partic-
ipant out of 37 engaged in Full Exploration. This was signif-
icantly less than in any other experiment. This supports the
idea that participants’ strategies were driven by an epistemic
drive which was twofold:

First, participants were motivated to reveal the underlying
reward structure, e.g., reducing the entropy about the struc-
ture of the task, or about the location of the maximum. In-
deed, participants were less likely to engage in FE behav-
ior in Experiment 4 (known structure and disappearing ob-

servations) than Experiment 1 (unknown structure and disap-
pearing observations), and significantly less in Experiment 3
(known structure and visible observations) than Experiment
2 (unknown structure and visible observations).

Second, participants were motivated to observe the out-
comes of individual actions. In Experiment 1,2 and 3 a sig-
nificant proportion of FE participants selected the maximum
but consistently opted for selecting novel options rather than
re-selecting a previous maximum observation, with a pref-
erence for actions that were local to their last one. Partic-
ipants’ drive to select novel actions was enhanced by the
fact that information did not need to be kept in working
memory. They were less engaged in FE behavior in Exper-
iment 1 (non-visible observations) than Experiment 2 (visi-
ble observations), and, similarly, less in Experiment 4 (non-
visible observations) than Experiment 3 (visible observa-
tions). Though EE participants in Experiment 3 performed
slightly better than in Experiment 4, this was not significant
(t(61) = 0.93, p = 0.35,d = 0.04). Participants in Experi-
ment 4 improved their average performance slightly across
tasks (b = 0.02,se = 0.007, p = 0.02).

The average distance between the initial five exploratory
selections of EE participants was not significantly different
in Experiment 3 and Experiment 4 (t(309) = −0.90, p =
0.37,d = −0.15). EE participants in Experiment 4 explored
significantly more locally than EE participants in Experiment
1 (t(374) =−2.73, p = 0.007,d = 0.47). Like in Experiment
3, this supports the hypothesis that participants who were fa-
miliar with the underlying structure of the grid were able to
find the maximum by taking local exploratory steps until they
eventually found the maximum.

Conclusion
In this paper, we focused on the behavioural analysis of par-
ticipants across four experiments to study how people learn
to select rewarding actions in a sequence of novel tasks. We
found that some participants were able to learn the under-
lying structure while balancing exploration and exploitation
to maximize their rewards across tasks. They improved their
performance from one task to the next by transferring abstract
knowledge about their environment. However, consistently
across tasks, we observed that a significant proportion of par-
ticipants engaged in purely exploratory behavior, largely ig-
noring the reward incentive. We showed that this behavior
could be manipulated by controlling the availability of infor-
mation as the learner selected actions, and by giving prior
knowledge before participants engaged with the task. We
suggest that people are motivated by two types of epistemic
drives: 1) to reduce uncertainty and learn about the structure
of the task and 2) to observe new evidence, regardless of its
informativeness about the global task structure. The latter
was evident when participants continued valuing new actions
over maximising rewards, even when they were familiar with
the task structure.

Different mechanisms for curiosity have been discussed in
the literature, and could be connected to how people learn
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in new environments when combined with trying to achieve
goals or maximising utility. One such strategy is to entirely
dismiss reward feedback, giving rise to a strong novelty drive.
This novelty search mechanism has been been shown to be
very successful in the context of Evolutionary Strategies for
tasks with tricky reward functions (Lehman & Stanley, 2011).
Some studies have shown that people are biased towards sur-
prise (Gottlieb et al., 2013; Itti & Baldi, 2006). Selecting new
actions would make sense under the assumption of possible
change, or if one believes that the environment is trying to
fool us. Third, the idea of epistemic actions could explain
part of people’s strong drive to select new actions, especially
under the constraint of cognitive load, when storing observa-
tions is expensive or unrealistic. Epistemic actions refer to
actions in the world that help solve problems by changing the
mental state of the agent, as opposed to performing computa-
tions in the head (Kirsh & Maglio, 1994). An example of this
behavior is the use of sticky-notes, or of arranging documents
in a way that makes it easier to retrieve them rather than by
memory alone. In the case of our experiment, observing new
information might have been perceived as much cheaper than
the possibility of generalizing from few observations.

In our study, we highlight that studying individual differ-
ences amongst participants can help us better understand the
complex mechanisms at play during active learning in new
environments. We hope that by pointing out surprising facets
of human behavior, this empirical study can guide the design
of better computational models of human learning and ex-
ploration. We are currently investigating how computational
models of memory, generalization and search (León-Villagrá
et al., 2018; Wu et al., 2018; Lucas et al., 2015) can give
us further insight into people’s representations and strategies
when learning in new environments.
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Abstract 

Kinematic specification of dynamics (KSD) states that full-
body kinematic patterns of daily activities are reflective of a 
person’s plans, goals, and intentions. Furthermore, it has been 
shown that observers of those activities are well attuned to 
differences between those kinematic patterns. However, 
despite a substantial body of research on the identification of 
intentional motion, it is not yet clear what the essential 
kinematic information is required to perceive the intention 
from the kinematic pattern. Therefore, we analyzed four 
different intentional full body motions (sit-to-stand 
transitions: stand, press-stand, press-sit, and reach-up), to 
determine the essential kinematic information that 
differentiates them. We utilized principal component analysis 
(PCA), linear mixed models, and hierarchical multinomial 
logistic regression to create two predictive regression models 
that allow us to successfully identify and distinguish the four 
intentional motions.  

Keywords: Intention Recognition; Kinematic Specification 
of Dynamics; Sit-to-Stand Transition; Point-Light Displays; 

Introduction 

     Activities that people perform in their daily lives are 

reflected in a person’s full body kinematic patterns 

(Johansson, 1973). Moreover, human observers can easily 

perceive even small differences in the patterns of a person’s 

motion profile (Ansuini, 2005; Becchio, Manera, Sartori, 

Cavallo, & Castiello, 2012; Richardson & Johnston, 2005). 

It has therefore been argued that the information humans 

derive from another person’s biological motion profile can 

be used to establish successful coordination with others 

(Pezzulo, Donnarumma, & Dindo, 2013; Sartori, Becchio, 

Bara, & Castiello, 2009) and with intelligent machines, such 

as robots (Vernon, Thill, & Ziemke, 2016). 

Kinematic Specification of Dynamics  

     In order to study biological motion, Johansson (1973) 

created the first point-light displays by attaching small lights 

to his participants and limiting the exposure of his camera 

recording to capture only those lights. Johansson called 

these recordings point-light displays and discovered that 

when he placed the lights on key joint centers, observers of 

the displays could identify that the moving points 

represented a person performing a specific action.  

 Runeson (1994) framed the findings behind point-light 

displays in his principle of kinematic specification of 

dynamics (KSD). The KSD principle postulates that because 

movement kinematics are lawfully related to the dynamics 

that produce a movement, the movement specifies the 

dynamics from which it arose. In other words, the relations 

among a person’s joint centers and joint angles specify the 

action that they are performing.  

Specification of Action Capabilities  

Overall, kinematic information has been shown to be 

remarkably rich. For example, point-light displays of an 

actor pretending to lift a heavy box are noticeably different 

from displays of the actor actually lifting a heavy box 

(Runeson, 1994). Furthermore, observing the kinematics of 

a person can not only specify the action that is being 

performed, it can also carry rich information about the 

action capabilities of the observed person. For example, 

Ramenzoni, Riley, Davis, Shockley, & Armstrong (2008) 

have shown that after observers view another person 

walking, they become more accurate at estimating the 

walker’s maximum reach-with-jump height. Additionally, 

after watching another person walk while wearing (unseen) 

ankle weights, observers are sensitive to reductions in the 

walker’s maximum reach-with-jump height caused by the 

additional weight. These findings indicate that a person’s 

general movement pattern provides sufficient information to 

make an educated judgment of a person’s action 

capabilities. 

Specification of Intention 

     Although it is evident that people can distinguish another 

person’s activities based on the kinematic structure of the 

displayed motion, there has been some debate about the 

richness of KSD in terms of social interaction and 
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intentions. In general, it is hypothesized that the 

intentionality as reflected in human motion can be used to 

understand another person’s action plans. Thus, one’s own 

actions can subsequently be adjusted in response to this 

understanding and smooth action coordination can be 

executed (Becchio, Sartori, Bulgheroni, & Castiello, 2008). 

However, Jacob & Jeannerod (2005) argued that the 

kinematics involved at the start of a chain of movements 

might not reflect the end goal of that chain of movements, 

meaning the kinematics might not accurately reflect the 

intention. They proposed a thought experiment involving 

the story of Dr. Jekyll and Mr. Hyde; the two identities 

belong to the same person, but the former is a renowned 

surgeon who performs surgeries on anesthetized patients. 

The latter is a dangerous sadist who performs the same hand 

movements on his non-anesthetized victims. Jacob & 

Jeannerod argued that if someone were to witness one of the 

two identities reaching and grasping for a scalpel, then it 

would be impossible to specify the social nature and 

intention through the grasping motion.  

    Several studies were performed in response to Jacob and 

Jeannerod’s thought experiment and found evidence against 

their claim. Ansuini, Giosa, Turella, Altoè, & Castiello 

(2008) showed that prior intention shapes kinematics by 

measuring prior-to-contact grasping kinematics for reach-to-

grasp movements performed toward a bottle filled with 

water. By comparing hand shaping across tasks involving 

different subsequent actions such as pouring the water into a 

container, throwing the bottle, and moving the bottle from 

one spatial location to another, the authors demonstrated 

how prior intention in grasping an object strongly affected 

the positioning of the fingers, the duration of the reaching, 

and the contact phase of the movement. Becchio et al. 

(2008) performed a similar experiment investigating 

differences between grasping an object to move it to another 

location and grasping an object to hand it to another person. 

The velocities and shapes of participants’ hands for both the 

opening and closing phases of the grasping movement were 

significantly different between the two conditions, as well as 

the trajectory of the movement during the passing phase. 

While Becchio and colleagues demonstrated that movement 

kinematics differ based on the social or operational 

intention, Manera, Becchio, Cavallo, Sartori, & Castiello 

(2011) showed that observers can also differentiate between 

distinct reaching intentions. They presented point-light 

displays of different grasping movements including a slow 

grasping movement, a fast grasping movement, a grasping 

movement with the cooperative intention of passing an 

object to another person, and a grasping movement with the 

competitive intention of grabbing an object before another 

person. With only access to the kinematic information of the 

initial forward movement, observers were able to accurately 

classify which of the four actions was being presented 72% 

of the time, indicating that the observed kinematic patterns 

may be used for action coordination during joint activities 

(see also Sartori et al., 2009). 

 

Kinematic Specification of Action and Intention 

     Although it has been shown that one's movement 

kinematics provide the information necessary for another 

person to identify one’s action capabilities and intentions, 

the informational basis for this ability has not been 

identified (though see Ansuini, Cavallo, Bertone, & 

Becchio, 2015). Therefore, in the current study, we adopted 

a similar approach to Weast-Knapp et al. (2019) who used 

Principal Components Analysis (PCA) to decompose the 

kinematic data of walking movements to isolate the 

informational basis for an observer trying to perceive a 

person’s action capabilities. However, rather than focusing 

on the informational basis to estimate a person’s action 

capabilities, here we explore a different type of full-body 

movement (sit-to-stand transition, STS) that was executed 

with different intentions that altered the basic STS motion 

(see Figure 1b) in order to identify the essential kinematic 

information of a full-body motion with varying intentions. 

To gain insight on how people can perceive intention from 

motion, we must first confirm if the essential kinematic 

information is different between the motions. If the 

differences exist, the next goal will be to confirm that 

humans can extract the same information. Therefore, this 

paper tackles the first goal of clarifying the essential 

kinematic structures for STS intentional motion.   

a) 

 

 
 

b) 

 
 Stand Press-stand Press-sit Reach-up 

 

Figure 1: a) Experimental setup for data collection as 

established and published in Patil et al. (2018). b) 

Intentional sit-to-stand transitions. 
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Method 

     In order to enable the analysis of intentional motion, we 

utilized one subset of a larger data set that was originally 

collected in context of understanding joint angle variations 

for exoskeleton control (Patil et al., 2018). The data subset 

was taken from a healthy, 28-year old male participant.  

Setup and Procedure 

     In order to induce four different intentional STS 

transitions, a setup was created by Patil et al. (2018) as 

shown in Figure 1a. A button was placed in front of 

participants at the shoulder height while sitting and 1.6-

times the arm length from the shoulder. A pull switch was 

positioned above the participant at a height of 0.8 times the 

arm length and at a distance of 0.5 times the arm length 

from the shoulder while standing. Motion data was recorded 

using a 20-camera 3D motion capture system (Motion 

Analysis Corporation, Santa Rosa, CA). A 29-marker set 

based on the Helen Hayes body marker placement protocol 

(Kadaba, Ramakrishnan, & Wootten, 1990) was used to 

track the motion. A screen was positioned at eye level in 

front of the participant to provide instructions for the 

specific trial. Every trial started with the participant sitting 

at a stool (height 45.72 cm) without any hand or back rests.  

The participants were shown a “ready” signal on the 

screen and, after 3 seconds, the instruction to perform any of 

four randomized tasks marked the go-signal.  The 

participants performed 100 trials of four intentional STS 

transition tasks (25 trials per intention): stand - the 

participants were asked to stand up at a comfortable speed 

without any intention of subsequent activity, press-stand - 

the participants were asked to stand up from the chair while 

pushing the button in front of them and finish standing up; 

press-sit - the participants  were asked to stand up from the 

chair while pushing the button in front of them and to then 

immediately sit back down; reach-up - the participants were 

asked to stand up to pull on the switch above their head and 

after pulling the switch finish standing up. For all trials, the 

participants were instructed not to use their hands to push 

down on the chair or their thighs during STS and not to lift 

their feet from the heel or toes during the trial. The 

participants were allowed to take breaks whenever they felt 

fatigued. For the purpose of the current analysis, we 

included the first four trials of each performed intentional 

sit-to-stand transitions within the data subset.  

Data Analysis and Results 

Determining Essential Principal Components 

     Seven of the original 29 markers (corresponding to the 

head, right shoulder, right elbow, right hip, right knee, right 

ankle, and right hand) were selected to form a simple 

sideview configuration of each motion with the right side of 

the body represented. We cut off each time series using the 

furthest point forward in the motion of the hip marker as 

shown in Figure 1b. This served to truncate the movement 

to the initial intention-expressing forward portion of rising 

from a seated position and excluded the stand-to-sit 

backwards transition. In the future, we plan to use this 

motion data to explore how human observer respond when 

viewing it. The Y and Z coordinates of the recorded 3-

dimentional motion data were used to perform a Euclidean 

transformation which provided one value for each marker 

for each frame of the data set (cf. Weast et al., 2019). The 

data was then submitted to PCA via R (base package: 

prcomp). PCA is a statistical tool that allows for the 

reduction of high-dimensional data with the goal of 

revealing hidden structure in the underlying relationship 

between variables. For example, previous research has 

utilized PCA to uncover the most important factors 

contributing to variation in movement kinematics in gait 

(Vallery & Buss, 2006), juggling (Post, Peper, & Beek, 

2003) and even the movements of cooperating actors 

(Ramenzoni, Riley, Shockley, & Baker, 2012). Here, we 

used PCA to reduce the seven-marker data set to a subset of 

principal components (PC) that captured the dynamics of 

the kinematic movements. We decided to use PCA rather 

than machine learning techniques, as we are interested in 

which joint centers hold the essential kinematic information 

to differentiate the motions. Though machine learning can 

help determine the presence of differences and classify each 

motion, it will not offer insight as to which body segments 

participate in providing the structure that differentiates 

movements. Subsequent analyses were performed on this 

subset to identify the activity of key markers for 

discriminating between intended movements.  

We completed 16 PCA analyses, one per STS motion file 

(4 intentions × 4 repetitions). Each PCA analysis yielded a 7 

(markers) × 7 (PC dimensions) matrix of coefficients, as 

well as a vector of the amount of total variance accounted 

for by each PC. The variance vectors were used as criteria to 

reduce the original data to those PCs that (1) accounted for 

at least 10% of the total variance in the motion pattern, and 

(2) provided sufficient variation between intentional 

movement profiles to be a useful candidate for future 

discrimination.  PC1 and PC2 reliably met criteria (1), 

suggesting that the data could be reduced to the first two 

PCs without much loss in information. To determine (2) we 

submitted the percent explained variance of each PC to a 

linear mixed effects model (R package: lme4) with intention 

as a fixed effect and instance (each intentional motion was 

performed four times) as a random effect. For the sake of 

brevity, we only report the F-tests (Satterthwaite’s degrees 

of freedom method) for overall significance of the models. 

Only models for PC1, F(3,12) = 47.49, p < .001, and PC2, 

F(3, 9) = 54.51, p < .001, were significant, suggesting that 

the amount of explained variance for both PC1 and PC2 

differed by intentional movement. For the remaining PCs 

this relationship was non-significant, supporting our choice 

to further analyze PC1 and PC2.  
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Elimination of Non-significant STS Markers in 

PC1 & PC2 

Having reduced the data to the first two PCs, two 

additional sets of linear mixed model analyses (7 per PC1 

and PC2; 14 total) were completed to establish whether the 

PCA coefficients for each marker systematically varied as a 

function of the intentional motion.  

 

Table 1. Results of linear mixed model for STS markers 

on PCs 1 and 2 

 

Marker Model PC1 Model PC2 

M1 (Head) F = 86.10, p < .001 * F = 4.82, p = .03 * 

M2 (Shoulder) F = 100.44, p < .001 * F  = 9.37, p = .004 * 

M3 (Elbow) F = 8.52, p = .003 * F = .57, p = .65 

M4 (Hip) F = 132.40, p < .001 * F = 19.64, p < .001 * 

M5 (Ankle) F = 3.10, p = .08 F = .09, p = .96 

M6 (Knee) F = 1.07, p = .41 F = .08, p = .97 

M7 (Hand) F = 3,132, p < .001 * F = 2.86, p = .10 

* candidate markers 

 

Again, intentional motion was entered into the model as a 

fixed effect with instance as a random effect. The purpose of 

this series of analysis was to further reduce the 

dimensionality of the data by identifying candidate markers, 

whose activity might be used to build a parsimonious model 

for predicting the intended motion. In short, we sought to 

determine which markers might qualify for submission to a 

predictive model for intention, as well as how few may be 

used to build a model that reliably discriminates between the 

intentional movements.  

As can be seen in Table 1, the analysis on PC1 revealed 

that the coefficients corresponding to markers M1, M2, M3, 

M4, and M7 varied systematically as a function of 

intentional motion; repeating this analysis for the 

coefficients in PC2, we found significant systematic 

variability for markers M1, M2, and M4. These sets of 

markers provided a list of variables to enter into subsequent 

regression analysis for PC1 and PC2.Table 2. Results of 

linear mixed model for STS markers on PCs 1 and 2  

Regressing Intention Categories onto Candidate 

Markers 

     Using our candidate markers, we performed two 

hierarchical multinomial logistic regressions (one for each 

PC) to determine which combination of markers was most 

parsimonious in reliably discriminating between the 

intentional movements. For the analysis along PC1, a single 

marker per hierarchical step was loaded into the regression 

model in order from largest to smallest PCA coefficient 

mean. This resulted in a statistically significant model 

containing markers M7 (hand) and M3 (elbow), which 

improved the likelihood of determining the corresponding 

intentions, above and beyond the null (chance) model, as 

well as all models formed by prior steps in the analysis (see 

Table 2). 

 

Table 2. Summary of model results for hierarchical 

multinomial regression for STS markers in PC 1. Only 

models that yielded a significant improvement are reported. 

 

Step Variables Entered df 
Likelihood 

Ratio 
p 

1 M7 42 35.81 < .001 

2 final M7 + M3 39   7.85    .049 

 M7 = hand, M3 = elbow 

 

We followed an identical method for PC2, hierarchically 

entering each marker into the regression model beginning 

with the marker possessing the largest PCA coefficient 

mean. The resulting model was statistically significant, 

containing M1, M2, and M4, and improved the likelihood of 

determining the corresponding intentions, above and beyond 

the null (chance) model, as well as all models formed by 

prior steps in the analysis (see Table 3). 

 

Table 3. Summary of model results for hierarchical 

multinomial regression for STS markers in PC 2. 

 

Step 
Variables 

Entered 
df 

 Likelihood 

Ratio 
p 

1 M1  42  6.37 < .001 

2 M1 + M2  39  13.10    .004 

3 final M1 + M2 + M4   36  14.88    .002 

  M1 = head, M2 = shoulder, M4 = hip 

Examining Improved Accuracy from Model 1 to 

Final Model 

     Finally, we compared the accuracy in intention 

categorization for each of the regression results by 

calculating the predicted probabilities derived from the 

fitted values of the Step 1 and final models. For brevity, we 

report the predicted probability of the true (correct) 

intentional movement given the PC coefficients for each 

marker. As expected, we observed significant improvement 

in predictive probabilities from the first to the final models. 

For both PC1 and PC2, the predicted probabilities of the 

final model that corresponded to the correct intention was 

greater than 95%. Moreover, this was achieved using 

relatively few markers (PC1: 2 out of 7, PC2: 3 out of 7). 

Our results suggest that, for PC1, hand and elbow marker 

activity appear to provide the essential kinematic 

information to differentiate movement categories (see Table 

4). 
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Table 4. Correct predicted probabilities of multinomial 

regression models using PC1. 

 

 PC 1: Predicted Probabilities 

Intention Model 1 Final Model 

Stand 97.99% 100% 

Press-stand 70.20% 97.03% 

Press-sit 86.50% 98.70% 

Reach-up 58.22% 95.78% 

 

For PC2, the reduction to head, shoulder, and hip suggests 

that these markers may contain the essential kinematic 

information to further differentiates movement categories 

(see Table 5). 

 

Table 5. Correct predicted probabilities of multinomial 

regression models using PC2 

Discussion 

     We aimed to identify the essential kinematic information 

available to observers for distinguishing intentional STS 

transitions.   

Overall, the results suggest that, while the four intentional 

STS transitions (stand, press-stand, press-sit, reach-up) are 

built upon similar motion profiles, there are distinct 

differences regarding the essential kinematic information 

along the first two PCs, which allows for the accurate 

differentiation of each intention by means of a specific 

subsets of markers. Analyses of the coefficients in PC1 and 

PC2 sufficiently capture the majority of the variance 

attributed to differentiating the four intentional STS 

transitions. Additionally, the stratification of specific 

markers within the two PCs allows us to specify (and 

differentiate) the essential kinematic structure of each 

intentional motion. This provided the opportunity to 

formulate regression models that were capable of accurately 

predicting intention, above and beyond chance level. Both 

predictive models allowed for the classification of each 

intentional STS transition with 95-100% accuracy.   

Thus, within each PC, there exists essential kinematic 

information that can be extracted from the time series of 

similar, yet distinct, intentional motions. Each marker in the 

final model, can then be understood as one of the essential 

communicators of intention for each STS transition. In turn, 

the variation in coefficients indicates how each marker 

contributes to the overall movement pattern of each 

intention.  

For example, analyzing PC1 showed that the majority of 

variance in the motion data can be explained by the markers 

reflecting the arm motion (i.e.: elbow and hand marker). 

Considering that the arm motion differed significantly 

across intentions (e.g. reaching up vs. reaching forwards), 

this result is consistent with expectations. Subsequently, 

analyzing PC2 indicated the presence of additional essential 

kinematic information in the head, shoulder, and hip 

markers, which distinguishes suprapostural differences in 

the kinematics of the full-body motion. 

Ultimately, our results reinforce empirical findings 

showing that humans are capable of visually distinguishing 

different intentional motion patterns (c.f. Ansuini, 2005; 

Becchio, Manera, Sartori, Cavallo, & Castiello, 2012; 

Pezzulo, Donnarumma, & Dindo, 2013; Sartori, Becchio, 

Bara, & Castiello, 2009) by revealing the essential 

information that defines and differentiates the kinematic 

structure of intentional motion. 
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Abstract 

The importance of verbal and visuospatial working memory 
(WM) for co-speech gesture comprehension was tested in two 
experiments using the dual task paradigm. Healthy, college-
aged participants encoded either a dot locations in a grid 
(Experiment 1), or a series of digits (Experiment 2), and 
rehearsed them as they performed a discourse comprehension 
task.  The discourse comprehension task involved watching a 
video of a man describing household objects, and judging 
which of two words probes was most related to the video. 
Following the discourse comprehension task, participants 
recalled either the verbally or visuo-spatially encoded 
information. In both experiments, performance on the 
discourse comprehension task was faster when gestural 
information was congruent with the speech than when it was 
incongruent. Moreover, performance on the discourse 
comprehension task was impacted both by increasing the load 
on the visuospatial WM system (Experiment 1) and the verbal 
WM system (Experiment 2). However, in both studies effects 
of WM load and gesture congruency were additive, 
suggesting they were independent. 

Keywords: depictive gesture; discourse comprehension; 
iconic gesture; multimodal meaning; representational gesture;  
verbal working memory; visuospatial working memory 

Introduction 
Co-speech gestures, which are produced spontaneously in 
co-ordination with speaking, offer an exciting opportunity to 
explore the relationship between body movement and higher 
order cognitive functions, such as language comprehension 
and conceptualization (for review, see Goldin-Meadow, 
2003). To date, little research has addressed the cognitive 
resources that allow us to understand these gestures and to 
relate their meaning to that conveyed by the accompanying 
speech. Because gestures relate to linguistic information at 
varying levels of granularity, including the word-, phrase, 
and sentence- levels (Kendon, 2004), one fairly 
straightforward possibility is that working memory (WM) 
plays an important role in these processes, allowing listeners 
to maintain information conveyed in the gestural stream 
until it can be integrated with relevant information presented 
in the speech. 

   Previous research has contrasted the verbal resources 
hypothesis, that speech gesture integration primarily recruits 
verbal WM, with the visuo-spatial resources hypothesis, 
that speech gesture integration recruits the visuo-spatial 
WM system. That work employed a discourse 
comprehension task in which participants viewed a multi-
modal discourse prime of a speaker describing everyday 
objects, followed by a picture that participants judged as 
either related or unrelated to the prime (Wu &Coulson, 
2014). Reaction times for related picture probes are 
typically faster following discourse primes with congruent 
gestures that match the concurrent speech, relative to 
incongruent gestures that do not, suggesting congruent 
iconic gestures help convey information about the discourse 
referents (Wu & Coulson, 2014). 

Consistent with the visuo-spatial resources hypothesis, the 
magnitude of these congruity effects has been shown to be 
larger in participants with greater visuo-spatial WM 
capacity (Wu & Coulson, 2014). Moreover, imposing a 
concurrent verbal load during this task yielded additive 
effects of gesture congruity and WM load, while a 
concurrent visuo-spatial load yielded interactive effects, as 
gesture congruity effects were greatly attenuated under 
conditions of high visuo-spatial load (Wu & Coulson, 
2014). Prior research thus suggests that speech-gesture 
integration recruits cognitive resources shared by visuo-
spatial WM load tasks. 

One shortcoming of research by Wu and Coulson (2014) 
is that their measure of speech-gesture integration involved 
participants’ responses to picture probes that followed 
videos of multimodal discourse. Given that responding to 
pictorial stimuli presumably imposes a load on participants’ 
visuospatial processing resources, this task may 
overestimate the importance of visuospatial WM for the 
comprehension of co-speech gestures.  

The present study explored the role of verbal versus 
visuospatial WM in speech-gesture integration by utilizing a 
dual task paradigm similar to that in Wu & Coulson (2014). 
However, rather than using performance on a picture probe 
task to index comprehension of the gestures, we asked 
participants to choose which of two words was most related 
to the preceding discourse video. Experiment 1 paired this 
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discourse comprehension task with a visuospatial WM task, 
and Experiment 2 paired it with a verbal WM task.  

Experiment 1 
Experiment 1 tests how increasing the load on participants’ 
visuospatial WM system impacts their sensitivity to the 
meaning of co-speech gestures in multimodal discourse. The 
logic of the dual task paradigm is that if the two tasks recruit 
shared cognitive resources, engagement in the secondary 
task will impair performance on the primary one.  In 
Experiment 1, the primary task is that of discourse 
comprehension, as indexed by a word probe task, while the 
secondary task involved memory for a sequence of dot 
locations in a grid. We manipulated the difficulty of multi-
modal discourse comprehension by varying the semantic 
congruity of the gestures and the speech in our discourse 
videos. The difficulty of the visuospatial recall task was 
varied by asking participants to remember a sequence of 
either four locations (high load), or to remember a single 
location (low load). Consequently, if the recall task diverts 
cognitive resources from speech-gesture integration, it 
would be reflected in a change in the congruency effects as 
a function of visuospatial load – that is, either the 
amplification of congruency effects, the reduction of 
congruency effects, or their elimination altogether. 

Methods 
Participants Participants were 51 healthy undergraduates 
who, in exchange for participation, received extra credit for 
a course in cognitive science, linguistics, or psychology. 
Materials A total of 84 discourse primes were kindly 
provided by Dr. Wu. These primes were derived from 
continuous video footage of spontaneous discourse centered 
on everyday activities, events, and objects. The speaker in 
the video was naïve to the experimenters’ purpose and 
received no explicit instructions to gesture. Short segments 
(2-8s) were extracted in which the speaker produced both 
speech and gesture during his utterance. Topics varied 
widely, ranging from the height of a child, the angle of a 
spotlight, the shape of furniture, swinging a golf club, and 
so forth. For congruent primes, the original association 
between the speech and gesture was preserved. To create 
incongruent counterparts, audio and video portions of 
congruent clips were swapped such that across all items, all 
of the same speech and gesture files were presented; 
however, they no longer matched in meaning. 
 	In an independent norming study using a five point Likert 
scale, the degree of semantic match between speech and 
gesture in the congruent trials was rated on average as 1.6 
points higher than in the incongruent trials (congruent = 3.8, 
sd=0.8 versus incongruent = 2.2, sd = 0.7). Because of the 
discontinuity between oro-facial movements and verbal 
output in incongruent items, the speaker’s face was blurred 
in all discourse primes (i.e. both the congruent and 
incongruent version of each). 

Each discourse prime was followed by the presentation of 
two word probes arrayed vertically in the center of the 

monitor. The related probe was a word related to the audio 
content of the video, and was intended to specifically 
highlight the semantic content of the congruent gesture. The 
unrelated probe was intended to be unrelated to any aspect 
of the audio or video. The same two word probes followed 
the congruent and the incongruent version of each audio 
file. The location of the related probe (i.e. at the top or the 
bottom of the array) was chosen randomly on each trial. 

Half of the trials (n=42) were accompanied by a low load 
version of the visuo-spatial recall task, and half with a high 
load version of the same task. The visuospatial recall task 
was similar to the dot movement task employed by Wu & 
Coulson (2014), in which participants were asked to 
remember a single location in a 4 x 4 grid on low load trials, 
and an ordered sequence of four locations on high load 
trials. The gesture congruity and memory load 
manipulations were fully counterbalanced. 

Procedure Each trial began with a fixation cross (1s), 
followed by the encoding phase of the secondary task 
(visuospatial WM). Secondary encoding involved the visual 
presentation of a sequence of dots in a 4x4 grid. High load 
trials involved a sequence of four distinct locations, while 
low load trials involved the presentation of a single dot.  
Each dot remained visible on the grid for one second. A 
500ms pause concluded the encoding phase. 

The discourse comprehension portion of each trial began 
with a discourse video, presented at a rate of 30ms per 
frame in the center of a computer monitor. Immediately 
following the video offset, the probes appeared above and 
below the fixation cross. The mouse cursor was initialized 
to a location equidistant between the two. Participants were 
asked to respond by clicking the mouse in the square that 
contained the word that best matched the scenario described 
by the speaker. No feedback was given.  

After a 250ms pause, participants were prompted to recall 
the location of dots in the grid in the order that they had 
been presented. Written feedback (“correct” versus 
“incorrect”) was provided following each trial for 500ms. 
Between trials, the screen was blank for half a second and 
the mouse cursor was reset to a neutral hidden position. 

After completion of the dual-task portion of the 
experiment, verbal and visuo-spatial WM capacity were 
assessed through two short tests – an auditory version of the 
Sentence Span task (Daneman and Carpenter, 1980) and a 
computerized version of the Corsi Block task (Milner, 
1971). The Listening Span task involved listening to 
sequences of unrelated sentences and remembering the 
sentence final word in each. All trials contained between 
two and five items, and were presented in blocks of three.  
An individual’s span was the highest consecutive level at 
which all sentence final words were accurately recalled (in 
any order) on at least two of the three trials in a block. 

In the Corsi Block task, an asymmetric array of nine 
squares was presented on a computer monitor.  On each 
trial, between three and nine of the squares flashed in 
sequence, with no square flashing more than once. 
Participants reproduced patterns of flashes immediately 
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afterwards by clicking their mouse in the correct sequence 
of squares.  An individual’s Corsi span was the highest level 
at which at least one sequence out of five was correctly 
replicated (Conway et al., 2005).  The entire experimental 
session lasted approximately two hours. 

Results 

Visuospatial Recall Task Performance on the visuo-spatial 
recall task was indexed by the number of trials in which the 
participant correctly recalled all of the to be remembered 
locations. These values were subjected to repeated measures 
ANOVA with factors memory load (High, Low) and gesture 
congruity (Congruent, Incongruent). This analysis revealed 
only an effect of Load, F(1, 67) = 130.2, p < 0.05, ges = .24. 
Figure 1 shows the average number of correct trials in each 
condition and clearly indicates better performance in trials 
with a low load (1 dot location) than in the high load trials 
(4 dot locations). These data suggest the memory load task 
was more difficult in the high than the low load condition.  

 

Figure 1: Mean number of correct trials on the recall task in 
each condition of Experiment 1. 

To test the importance of WM capacity for sensitivity to our 
memory load manipulation, we computed the difference 
between each participant’s accuracy on the high and low 
load trials. We then constructed a linear model to predict 
this difference due to the load manipulation as a function of 
participants’ scores on the Corsi Block and Listening Span 
tasks. This model significantly predicted accuracy on the 
recall task, F (2, 64) = 5.18, p < 0.01, accounting for 
13.95% of the variance. ANOVA on the output of the model 
suggested scores on the Corsi Block Task served as 
significant predictors, F (1, 64) = 10.3, p < 0.01, while 

scores on the Listening Span did not, F (1, 64) = 0.03, n.s. 
The systematic relationship between scores on the Corsi 
Block Task with the visuo-spatial load effect supports our 
contention that the dots task recruits visuo-spatial WM. 

Discourse Comprehension Task 
Accuracy on the discourse comprehension task was 

scored by counting the number of correct trials in each 
condition for each participant. Figure 2 shows the mean 
scores in each condition. These values were subjected to 
repeated measures ANOVA with factors gesture congruity 
(congruent/incongruent) and memory load (high/low). This 
analysis revealed a main effect of gesture congruity, F(1, 
66) = 3.4, p < 0.05, ges 0.08, as participants were more 
accurate when speech was accompanied by congruent than 
incongruent gestures. Memory load was not significant, 
either as a main effect, F(1, 66) = 2.5, n.s., or as an 
interaction with gesture congruity, F(1, 66) = 1.08, n.s.  

Figure 2: Mean number of correct trials in the discourse 
comprehension task in Experiment 1. Error bars represent 

95% confidence intervals. 
To explore the relationship between sensitivity to gestures 
and our individual difference measures, we computed the 
difference between the total number of trials each 
participant responded to correctly in the congruent gesture 
condition and the incongruent gesture condition. A linear 
model was constructed to predict this difference score from 
the Corsi Span score and the Listening Span score. This 
model accounted for 10.4% of the variance in difference 
scores, F(2, 64) = 3.72, p < 0.05. ANOVA on the output of 
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the model suggested only Corsi Span scores served as a 
significant predictor, F(1, 64) = 5.3, p < 0.05.  

Response times for correct trials on the discourse 
comprehension task were analyzed with linear mixed effects 
models with fixed effects for gesture congruity and 
visuospatial load, and random effects for subject and item 
(viz., the audio file held constant across congruent and 
incongruent gesture versions of each stimulus). Random 
effect structure was determined via backwards model 
comparison using the step function in lmerTest, beginning 
with the ‘maximal’ structure allowed by the design.  

Mean response times in each condition are shown in 
Figure 3. Performance on this task was an additive function 
of gesture congruity, t = - 6.84, p < 0.001, with responses 
that were on average 383ms faster following congruent than 
incongruent gestures, and memory load, t = -3.95, p < 0.001, 
with responses an average of 170ms faster in high load trials 
than low load trials. The latter presumably results because 
participants desire to rush through the discourse 
comprehension task in order to ‘unload’ memory items in 
the recall task that immediately followed. 

Discussion 
Experiment 1 suggests a relationship between visuospatial 
WM capacity and sensitivity to speech-gesture congruity, 
but fails to support a causal link between visuospatial WM 
and the comprehension of gestures.  

First, did the visuospatial recall task (viz. the dot task) 
serve to divert visuospatial resources from the primary task? 
Indeed, recall performance was worse under conditions of 
high than low load. Moreover, participants’ performance on 
the dot task was systematically related to their visuospatial 
WM capacity as indexed by their scores on the Corsi block 
task. These data suggest that the dot task did indeed recruit 
our participants’ visuospatial processing resources, thereby 
making them less available for primary task performance. 

 
Figure 3: Mean response times in the discourse 

comprehension task in Experiment 1. Error bars depict 95% 
confidence intervals. 

 

Second, was the discourse comprehension task employed 
here sensitive to the relationship between the gestures and 
the speech? Participants responded more quickly and more 
accurately on trials preceded by discourse with congruent 
gestures than incongruent ones. Experiment 1 thus extends 
results reported in Wu & Coulson (2014), showing that the 
facilitative impact of congruent gestures can be detected 
with the word probe paradigm employed in the present 
study. Moreover, as in the report by Wu and Coulson 
(2014), the participants who scored the highest on our 
independent assessment of visuospatial WM capacity were 
those who showed the largest gesture congruity effects. 

Finally, how was performance of the discourse 
comprehension task impacted by the diversion of 
visuospatial processing resources? Apart from the gesture 
congruity effect noted above, the discourse comprehension 
task was also impacted by visuospatial load. Load had a 
somewhat paradoxical impact on responses as participants 
responded faster but less accurately on high load trials. 
Importantly, though, these two effects were additive, 
suggesting the discourse comprehension task proceeded 
somewhat independently of the visuo-spatial recall task.  

 

Experiment 2 
Experiment 2 paired the discourse comprehension task with 
a verbal WM task to explore how reducing the availability 
of verbal resources impacted participants’ sensitivity to 
iconic co-speech gestures. 

Methods 
Audio and video materials were identical to those used in 

Experiment 1, as were the word probes. As in Experiment 1, 
half of the trials were accompanied by a low load recall 
task, and half with a high load recall task. The secondary 
recall task was similar to the digit recall task employed by 
Wu & Coulson, in which participants were asked to 
remember a single digit on low load trials, and an ordered 
series of four digits on high load trials. As in Experiment 1, 
the gesture congruity and memory load manipulations were 
fully counterbalanced.  

During the encoding phase of the verbal task, a series of 
four numbers (each ranging between one and nine) were 
selected pseudo-randomly, and presented via digitized audio 
files while a central fixation cross remained on the computer 
screen. As for the visuospatial WM task in Experiment 1, 
the stimulus onset asynchrony for to-be-remembered items 
was 1 second. 

During the recall phase of the task, an array of randomly 
ordered digits from 1-9 appeared in a row in the center of 
the screen, and participants clicked the mouse on the 
numbers that they remembered hearing in the order that they 
were presented. Written feedback (either “Correct” or 
“Incorrect”) on the recall task was shown on the monitor for 
half a second after the final mouse click. 
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Results and Discussion 

Verbal Recall 
Performance on the verbal recall task was indexed by the 
number of trials in which the participant correctly recalled 
all of the to be remembered digits (see Figure 4). These 
values were subjected to repeated measures ANOVA with 
factors memory load (High/Low) and gesture congruity 
(Congruent/Incongruent). This analysis revealed only an 
effect of memory load, F(1, 47) = 35.9, p < 0.05, ges = .13. 
Figure 4 shows the average number of correct trials in each 
condition and clearly indicates better performance in the 
low load (1 digit) trials than in the high load trials (4 digits). 
These data suggest the task worked as intended to occupy 
verbal WM. 

To test the importance of WM capacity for sensitivity to 
our verbal memory load manipulation, we computed the 
difference between each participant’s accuracy on the high 
and low load trials. We then constructed a linear model to 
predict this memory load effect as a function of scores on 
the Corsi Block and Listening Span tasks. This initial model 
only approached significance, F (2, 45) = 2.92, p = 0.06. 
Backwards model selection via the step function in the 
MASS package in R indicated that the best model of 
memory load effects was one that included a single factor, 
participants’ Listening Span scores. 

  
Figure 4: Mean number of correct trials in the verbal 

recall task for each condition in Experiment 2. Error bars 
represent 95% confidence intervals. 

Accordingly, Corsi Span scores were dropped. The 
reduced model was significant, F(1, 46) = 5.81, p < 0.05, 
predicting  11.2% of the variance. The coefficient on the 
Listening Span factor was -1.2, indicating the load effect 
was most pronounced in participants with the lowest 
Listening Span scores. These data indicate a relationship 
between sensitivity to the digit load manipulation with our 
independent assessments of participants’ verbal WM 
capacity, consistent with our assumption that the digit recall 

task diverted verbal WM resources. The systematic 
relationship between scores on the Listening Span Task with 
the verbal load effect supports our contention that the digit 
recall task recruits verbal WM resources. 

Discourse Comprehension 
 Accuracy on the discourse comprehension task was 

scored by counting the number of correct trials in each 
condition for each participant. Figure 5 shows the mean 
scores in each condition. These values were subjected to 
repeated measures ANOVA with factors gesture congruity 
(congruent/incongruent) and memory load (high/low). This 
analysis revealed a main effect of gesture congruity, F (1, 
47) = 3.4, p < 0.05, ges 0.12, as participants were more 
accurate when speech was accompanied by congruent than 
incongruent gestures. Memory load was not significant, 
either as a main effect, F (1, 47) = 0.03, ges < 0.01 or as an 
interaction with gesture congruity, F (1, 47) = 1.34, n.s, ges 
< 0.01. 
  To explore the relationship between sensitivity to gestures 
and our individual difference measures, we computed the 
difference between the total number of trials each 
participant responded to correctly in the congruent gesture 
condition and the incongruent gesture condition. A linear 
model was constructed to predict this difference measure 
from the Corsi Span score and the Listening Span score. 
However, neither this model nor any of the models explored 
with backwards model selection provided a significant 
account of these effects, indicating the absence of a 
systematic relationship between working memory capacity 
and this measure of sensitivity to gesture congruity. 

Response times were analyzed in the same manner as in 
Experiment 1. Analysis involved the construction of linear 
mixed effects models with fixed effects of memory load and 
gesture congruity, and random effects of subject and item. 
As in Experiment 1, backwards model selection was used to 
simplify the random effects structure and choose the best 
model.  

 
Figure 5. Number of correct trials on the discourse 

comprehension task in each condition of Experiment 2. 
Error bars depict 95% confidence intervals. 
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As in Experiment 1, the memory load effect results due to 
a 122ms faster responses in the high load trials than in the 
low load ones, t = - 2.55, p < 0.05. Further, responses were 
327ms faster in the congruent trials than the incongruent 
ones, t = - 5.21, p < 0.001. Figure shows mean response 
times in each condition. 

 
Figure 5: Mean response times for the discourse 

comprehension task in each condition of Experiment 2. 
Error bars represent 95% confidence intervals. 

 

General Discussion 
Results of the present study provide only modest support for 
the visuospatial resources hypothesis, and no support for the 
verbal resources hypothesis. Reducing the availability of 
visuospatial resources impacted multimodal discourse 
comprehension, but did not modulate participants’ 
sensitivity to the semantic congruity of co-speech gestures. 
Likewise, reducing the availability of verbal resources 
impacted the discourse comprehension task, but did not 
modulate participants’ sensitivity to the semantic congruity 
of co-speech gestures. In Experiment 1, however, sensitivity 
to gesture congruity was systematically greater among 
participants with the greatest visuospatial WM capacity. 
Thus, while we find no support for a direct causal role of 
visuospatial WM and speech-gesture integration, 
visuospatial resources may be relevant to some aspect of 
gestural processing. 

Results of the present study stand in stark contrast to 
those reported in Coulson & Wu (2014) using the same 
discourse materials, the same secondary memory task, but 
that utilized a picture probe to test gesture comprehension 
rather than the word probes employed here. In tests with 
picture probes, Coulson & Wu (2014) found that 
participants were less sensitive to gesture congruity when 
visuospatial resources were taxed. In the present study, 
responses to word probes were significantly impacted by 
gesture congruity, but sensitivity to gestural information 

was similar under conditions of high and low visuospatial 
load. This discrepancy might result because the discourse 
comprehension task in Wu & Coulson (2014) was more 
taxing than that in the present study. Alternatively, it might 
be more related to the extent that the picture probe task 
draws more on the visuospatial resources shared with 
gesture processing than does the word probe task.  

Indeed, the latter interpretation is consistent with the 
similarity between the impact of verbal memory load in 
Experiment 2 of the present study with that in the parallel 
study in Wu & Coulson (2014). Using a picture probe to 
assess discourse comprehension, they found that 
performance was impacted both by gesture congruity and by 
verbal memory load, although the two factors did not 
interact. Similarly, here we find that performance on the 
word probe task was independently influenced by gesture 
congruity and by verbal memory load. The similar impact of 
verbal versus visuospatial memory load on discourse 
comprehension as assessed with the word probes employed 
here also mitigates the concern raised by Wu & Coulson 
(2014) that the two secondary tasks differ in their demands 
on central processing resources.  

We suggest that the greater impact of the dots task on the 
processing of picture probes than word probes may be 
indicative of the role that iconic co-speech gestures play in 
communication. Congruency effects on the word probe task 
suggest that speakers readily exploit the information in 
gestures to detect semantic relationships between novel 
words and the extant discourse context. However, perhaps 
because gestures are habitually used to interpret words, this 
process exerted minimal enough cognitive demands as to 
resist interference from concurrent demands on either verbal 
or visuospatial memory systems. By contrast, the picture 
probe task used by Wu & Coulson (2014) suggested that 
visuospatial resources were particularly important for 
detecting a relationship between the pictures and 
multimodal discourse about concrete topics.  

Future research should increase the demands of either the 
discourse comprehension task or those of the secondary 
memory tasks in order to elucidate the reason for our failure 
to observe a differential impact of memory load on 
sensitivity to gestures. Perhaps titrating memory load 
demands individually (as in Frank, et al., 2012) will allow 
us to better estimate its impact on discourse comprehension. 
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Abstract

Cognitive tests used to measure individual differences are gen-
erally designed with equality in mind: the same “broadly ac-
ceptable” items are used for all participants. This has unknown
consequences for equity, particularly when a single set of lin-
guistic stimuli are used for a diverse population of language
users. We hypothesized that differences in language variety
would result in disparities in psycholinguistically meaningful
properties of test items in two widely-used cognitive tasks, re-
sulting in large differences in performance. As a proxy for in-
dividuals’ language use, we administered a self-report survey
of media consumption. We identified two substantial clusters
from the survey data, roughly orthogonal to a priori groups re-
cruited into the study (university students and members of the
surrounding community). We found effects of both population
and cluster membership. Comparing item-wise differences be-
tween the clusters’ language models did not identify specific
items driving performance differences.

Introduction
Cognitive tests are increasingly used in research on individual
differences. For example, a number of recent studies reported
correlations between speech perception in noise and working
memory (for meta-analysis, see: Dryden, Allen, Henshaw,
and Heinrich 2017). Widely used tests for both (Daneman &
Carpenter, 1980; Kalikow, Stevens, & Elliott, 1977) were de-
veloped without much regard for potential individual differ-
ences in language experience, however. This raises the pos-
sibility that at least some of the variability in these tasks is
related to differences in participants’ language experience, as
demonstrated in studies of higher-level language processing
(Moore & Gordon, 2015; Wells, Christiansen, Race, Ache-
son, & MacDonald, 2009). Currently, it remains unclear how
much this robust correlation between the two tasks – found in
26 of the 30 studies surveyed by Akeroyd (2008) – reveals a
correlation between the target constructs or a latent variable
of language experience.

Linguists have long considered the communicative capac-
ities of every language to be equal and equally expressive
(Joseph & Newmeyer, 2012; Pellegrino, Coup, & Marsico,
2011). Guidelines from the American Speech-Language-
Hearing association on cultural competence encourage clin-
icians to take cultural variables into account in assessing
and treating language disorders and differences (American
Speech-Language-Hearing Association (ASHA), n.d.). De-
spite these commitments in allied fields, and the demon-

strable existence of multiple American Englishes (e.g. see
for review: Labov, Ash, and Boberg 2006; Schneider and
Kortmann 2004), most cognitive tests assume “Mainstream”
American English (MAE) as a default in the construction of
stimuli, potentially confounding cognitive test performance
with experience and fluency in MAE. Conversely, language
experience is not deterministically related to the usual fea-
tures that define distinct “dialects” – region, ethnicity, class,
etc. People are cosmopolitan and idiosyncratic in the lan-
guage experiences they seek out, and as a result, may be fa-
miliar with multiple language varieties, with potential conse-
quences for their performance on cognitive tests.

Statistical learning, hypothesized to underlie much of lan-
guage development (Elman, 2001; Seidenberg & MacDon-
ald, 1999), is driven by patterns in language input. Given
different input, then, language learners will necessarily con-
struct different distributional models to generate and process
speech and language. Online speech and language process-
ing relies heavily on learned statistical regularities to facili-
tate top-down anticipatory processes. This is evidenced by
the effects of surprisal observed when these anticipations are
violated (Federmeier, Mai, & Kutas, 2005; Kutas & Hill-
yard, 1980, 1984). Given the highly demanding nature of
online speech and language processing, anticipatory mech-
anisms help lessen the cognitive effort needed to accomplish
the task. The greater the difference between the listener or
reader’s language model and the statistics of the language
material they are processing, the greater the cognitive bur-
den on the listener. For example, intelligibility levels in noise
are better for one’s own dialect than for a familiar, but less
commonly encountered dialect (Clopper & Bradlow, 2008).
In children who prefer a non-mainstream English, familiar-
ity with “school English” is associated with performance on
literacy tests (Charity, Scarborough, & Griffin, 2004).

The current research examines the effect of variability in
language experience on cognitive tests. We hypothesized that
measuring people’s language experience indirectly, by hav-
ing them complete a “media diet” survey, would allow us to
identify distinct clusters of individuals based on their view-
ing, listening, and reading habits. We expect these clusters to
only loosely covary with the demographic factors that com-
monly define distinct “dialect” groups. This new measure
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of language differences between participants thus provides a
novel aspect of individual variability that we expect to mod-
erate performance on language-based cognitive tasks. As
this measure probes the role of language directly, it may be
more informative in predicting task performance variability
than standard demographic information. To test this we re-
cruit from two populations that differ along traditional demo-
graphic lines: USC undergraduates – typically high-SES stu-
dents pursuing higher education (Facts and Figures | About
USC, n.d.) – and members of the downtown Los Angeles
community – mostly African American and Latinx lower-
SES individuals, many of whom not pursuing education be-
yond high school (e.g. the zip code 90062: US Census Bureau
n.d.). We administer the aforementioned functional hearing
and working memory tasks and expect survey responses to at
least partly predict variability in task performance. As we ex-
pect this effect to be linguistic, we also predict that language
models trained on the media sources will predict participants’
behavioral performances.

Methods
Participants
We recruited participants from the USC undergraduate popu-
lation (N=70) and on a local community college campus (Los
Angeles Trade-Technical College, N=25). USC students par-
ticipated in exchange for course credit and community partic-
ipants were compensated for their time at $15 per hour, pro-
rated at 20 minute intervals. No requirements were placed on
age, but due to recruitment populations, 80% of participants
were between the ages of 19 and 26 (mean=22, std=6.25).

Cognitive Tests
To test participants’ language abilities, we used the reading
span task (Daneman & Carpenter, 1980) that was developed
to assess verbal working memory and the speech perception
in noise task (SPiN, Kalikow et al. 1977) that was developed
to assess functional hearing. The reading span task presents
sets of sentences to be read aloud while participants main-
tain the last word of each sentence in memory. At the end
of a set, participants are tested on how many sentence-final
words they can recall, and set length is increased until they
cannot complete the task. Testing is terminated when partic-
ipants cannot completely recall any of the three sets of sen-
tences at a particular set length. The SPiN consists of short
sentences presented over headphones in 12 talker babble (6
female, 6 male). Participants must identify the final word
of the target sentence. We used recordings from the Nation-
wide Speech Project (Clopper & Pisoni, 2006) to create the
stimuli and present trials at +6dB SNR which produced large
individual differences in accuracy in pilot results. We choose
these tests due to their importance as widely used individ-
ual difference measures in clinical populations to diagnose
age-related decline (Byrne, 1998), aphasia (Caspari, Parkin-
son, LaPointe, & Katz, 1998), Alzheimer’s (Kempler, Almor,
Tyler, Andersen, & MacDonald, 1998), and schizophrenia

(Stone, Gabrieli, Stebbins, & Sullivan, 1998). We also choose
these tests for the important – but often unacknowledged –
role language processing is likely to play in both.

Survey

We constructed an online survey (approx. 20 minutes long)
that probes participants’ current and formative media con-
sumption habits, elicits short language production passages,
and collects basic demographic information. We use this tool
to glean each participant’s media diet, which forms the ba-
sis for later linguistic grouping and analysis. We use the
language obtained from the sources participants report as a
model for participants’ actual language input and a proxy of
language experience.

Equipment

Subjects sat in a noise attenuating booth and participated in
the survey and behavioral tasks on a desktop PC computer.
USC participants were allowed to complete the survey on-
line prior to their lab session. Participants first completed
the reading span task, followed by the SPiN, and finally the
survey. The reading span task was administered and scored
by a researcher to ensure subjects read aloud continuously.
Upon completion of each sentence, the researcher advanced
the display to the next sentence in the set and solicited ver-
bal responses at the end of each set. After a brief training
phase, participants were not given feedback on their perfor-
mance and were not told their failure had caused the end of
the test, simply that it had ended. The SPiN test was ad-
ministered using Paradigm experiment software; participants
typed their responses into a free-response text box. Trials be-
gan after a 500ms delay once participants had submitted their
response. Stimuli were presented at a comfortable level, stan-
dard across participants.

Clustering

We create a media source space in which each dimension rep-
resents a reported source (e.g. movie) collected in our survey.
Each participant is thus represented as a binary vector in this
space, with 1s in dimensions corresponding to sources they
consume, and 0s in those they do not. To ensure each dimen-
sion is informative (and reduce the dimensionality), we only
represent sources reported 10 or more times – thus avoiding
dimensions that would only differentiate a few participants
(i.e. the rest would all receive 0s in that dimension). This
leaves 314 dimensions along which participants were clus-
tered using the k-means algorithm (Lloyd, 1982). Figure 1
shows the distortion values for different numbers of clusters,
revealing 3 clusters to be the inflection point at which more
clusters provide only marginal returns. The algorithm takes
this point as the true number of clusters because increasing
the number of clusters beyond this simply subdivides the true
clusters, thus over-fitting.
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Figure 1: K-means clustering reveals 3 clusters of partici-
pants in our media consumption space. This is evidenced by
the inflection in distortion decrease that occurs at k = 3.

Corpora Construction
We aggregate language data from the sources participants
reported in our survey for further linguistic analysis. This
produces two corpora (one for each cluster) that allow us to
model their language differences. We fully acknowledge the
difference between consuming sources as text, as our models
do, and speech, as our participants do. Despite this, however,
text fully captures the regularities of lexical and supra-lexical
features we expect to influence performance on our behav-
ioral tasks.

We collected each corpus by scraping repositories of televi-
sion scripts (Springfield! Springfield!), movie subtitles (YIFY
Subtitles), and song lyrics (the Genius API). For TV and mu-
sic, we collected all the content for one show (e.g. all the
scripts from Law & Order) or one artist (e.g. all the songs by
Bruno Mars). We then pre-process these sources by removing
anything the viewer would not hear (e.g. stage directions) and
anything non-linguistic (e.g. non-alphanumeric characters or
non-verbal noises).

Language and Surprisal Modeling
To model the language statistics of each cluster’s corpus,
we use 5-gram language models with backoff (Katz, 1987).
These models estimate the likelihood of a sentence as the
product of the conditional probabilities of its words given the
words that precede them. Thus for a sentence of length L, the
likelihood is:

L

∏
l=1

P(wl |wl−(n−1)...wl−1) (1)

where n is a hyperparameter set to control the number of
preceding words considered for context (n = 1 is simply the
marginal probability). Because the probability of encounter-
ing the preceding string of words in training decreases as the
length of the string increases, backoff allows the algorithm to
decrease n until the preceding string has been seen in training

(thus allowing the conditional probability to be estimated).
Therefore, while we initially set our n = 5, probabilities may
be calculated given less prior context.

In addition to the 5-gram model which proceeds from the
beginning of a sentence seeking to model its probability, we
also model the surprisal associated with encountering the fi-
nal word of the sentence. This is a particularly important
quantity considering both our behavioral tasks use sentence
final words as their testing target. While in theory the model
aligns with the concept of cloze probability – the probabil-
ity of the sentence-final word given every preceding word:
P(wL|w1...wL−1) – this rarely occurs in practice given the
sparseness of a training corpus. To model this, we adopt a
similar method to n-gram models with backoff. We calculate
the conditional probability of the last word given the n− 1
preceding terms:

P(wL|wL−(n−1)...wL−1) (2)

where we initialize n = 5 and reduce its value until the pre-
ceding string has been encountered in the training corpus
(n = 1 is simply the marginal probability of the word occur-
ring sentence-finally).

Results
Clustering
The clustering included all reported media sources and re-
vealed three clusters based on participants’ consumption
habits. Despite a substantial drop in distortion from 2 clusters
to 3 (see Fig. 1 for distortions), cluster 0 proved too small to
analyze: it contains just 2 participants. Its size precludes both
behavorial analysis, which requires an adequate number of
samples to be statistically feasible, and computational mod-
eling, which requires a corpus built from an adequate number
of reported sources (aggregated across a cluster). Given these
limitations, the following analyses will only use clusters 1 and
2 as the sample population (still 98% of the original sample).
This clustering, far from an artifact of random seed, proved
stable across random restarts. Over 1000 iterations, on aver-
age 75% of participants were re-clustered in the same groups
(see Behavioral Data for the effects on statistical tests).

Regarding cluster membership, we expected USC students
and community members to be unevenly distributed between
clusters, and this was true, although not categorically. As seen
in Table 1, the two are relatively balanced across clusters.
Thus, cluster membership and a priori group membership are
treated as orthogonal in the following analyses.

In addition to the a priori population, we examined the
distribution of traditionally considered covariates across the
clusters. We wanted to test whether self-reported media con-
sumption provided new information beyond existing mea-
sures (i.e. we were not just capturing an existing highly cor-
related dimension of variance). As seen in Table 1, typical
demographic variables were fairly evenly distributed across
the clusters. One-way chi-square tests revealed that none of
the demographic variables significantly differed from an even
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split across clusters (i.e. the expected values if cluster and
variable were independent).

Variable Level Cluster Ns Cluster %
1 2 1 2

Population USC 34 24 59% 41%
LATTC 7 13 35% 65%

Gender1 Female 33 21 61% 39%
Male 7 16 30% 70%

Schooling

High School 10 10 50% 50%
Associate 4 4 50% 50%

Some College 19 15 56% 44%
Bachelor’s 7 6 54% 46%
Master’s 1 2 33% 66%

Mono-
lingual

True 10 11 48% 52%
False 31 26 54% 46%

SES Self-
Report2

High 13 13 50% 50%
Medium 16 10 62% 38%

Low 12 14 46% 54%

Table 1: The distribution of traditionally considered covari-
ates across clusters is fairly even. We observe no obvious im-
balance between clusters along any demographic dimensions
our survey measured. One-way chi-square tests confirm this.

Given the orthogonality of self-reported media consump-
tion to traditional demographic variables, we hereafter focus
on the observed dimension of variance: media diet. We probe
how the clusters differ in their media habits in order to delin-
eate their makeup. We examine the clusters’ centroids to cal-
culate which dimensions (i.e. sources) they differ maximally
along. This provides a measure of which media sources are
most distinct between clusters. We find the following sources
to be the 5 most different between clusters 1 and 2 and pro-
vide the difference in mean consumption between the two
(i.e. x̄1− x̄2) in parentheses: Star Wars (.64, specific films
reported in the series were less powerful, on the order of .11-
.17), Yes! (-.47), CNN (-.26), People (-.12), and Harry Potter
(-.12). We hesitate to draw any conclusive generalities on the
two clusters’ media diets, but at a glance it appears that clus-
ter 1 consumes lots of high fantasy (Star Wars, Lord of the
Rings, The Chronicles of Narnia, etc.) while cluster 2 con-
sumes more nonfiction (Yes!, CNN, People, etc.).

Behavioral Data
As seen in Figure 2, the SPiN task revealed a main effect of
cluster, F(1,74) = 7.30, p < .01, but no main effect of popu-
lation and no interaction between the two. In the reading span
data, we again find a main effect of cluster, F(1,74) = 4.05,
p < .05, and a main effect of population F(1,74) = 13.57,
p < .001, and no interaction between the two. In our 1000
clustering iterations, 63% of iterations revealed statistically

1One participant in cluster 1 chose not to report gender.
2Participants reported their SES on a continuous scale. Here, we

bin responses into 3 quantiles to report distribution across clusters.

significant effects of cluster on the SPiN task (at α = .05).
This was not replicated with the span task, however: only 4%
of our iterations found statistically significant effects.

Figure 2: Results from the SPiN test reveal a significant dif-
ference between clusters but not populations. Reading span
also shows an effect of cluster, but a larger effect of popula-
tion. We observe no significant interactions.

The span test will play a minor role in further analyses,
due to the difficulty in handling test result data and its scoring.
Because the span task is terminated whenever participants fail
to recall a set, participants provide unequal numbers of ob-
servations. The analyses are additionally constrained by the
small number of items a typical participant completes. While
observations exist for items later in the test, they are for a
few extraordinary participants. This presents a problem not
only in the paucity of observations, but also in the fact that
these participants are unrepresentative of the general sample
in their task abilities. As such, both item-level statistics and
graphical representations are challenging.

Our survey obtains several pieces of demographic infor-
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mation that are traditionally considered relevant covariates of
performance on our cognitive tasks, such as socioeconomic
status (SES, self-reported), age, education level, and mono-
lingual status. None of these correlated significantly with per-
formance on either task.

Language Media Input Modality
The above findings of differences between cluster perfor-
mances motivated us to explore differences between clusters’
survey behavior (other than the categorical responses which
were used in clustering) to explain their performance data.
In particular, we wondered whether the stronger task perfor-
mances of cluster 1 might be due to increased experience with
the tasks of speech perception and reading.

To probe this, we tested whether cluster 1 reported signifi-
cantly more speech sources (TV, Movies, Music, and News
shows) and significantly more text sources (Books, News-
papers, Magazines, Online News, and other online reading)
than cluster 2. Indeed, we find that cluster 1 participants
report significantly more listening on average than cluster
2: t(42.82) = 3.09, p =< .005,d = 0.67 (a medium effect).
We also find that cluster 1 participants report significantly
more reading on average than cluster 2: t(72.6) = 5.10, p <
.001,d = 1.13 (a large effect). This may indicate an effect
of modality-specific training on task performance. To probe
this, we test the correlation between the number of speech
sources a participant reports and their SPiN task performance.
We test rank correlation rather than linear correlation as we
are unsure of the linearity of the relationship between number
of sources and modality-specific benefit, as well as to control
for the effect of outliers in both performance and reporting
volume. We observe a significant correlation between the
two: ρ(76) = .31, p = .005. We do not, however, observe
a significant correlation between number of text sources and
span performance.

We also tested whether past modality preference (solicited
with “when you were growing up...”) would relate to current
modality preference. We find a strong correlation between
the amount of spoken language items reported growing up
and amount of current items reported: r(76) = .91, p < .001.
This correlation extends to the number of written language
items, although not as strongly: r(76) = .49, p < .001.

Language Models
To evaluate the claim that our language models were captur-
ing meaningful statistical regularities in the language of each
cluster’s corpus, we tested whether the log-likelihood pro-
duced by a model for each of the test items would correlate
with mean performance on those items for the cluster. We
do not observe a significant correlation between cluster 1’s
5-gram model and performance on either the SPiN (r(48) <
0.01) or span (r(25)=−0.01). We also observe no significant
correlation between cluster 2’s 5-gram model and its perfor-
mances on SPiN (r(48) =−0.02) or span (r(25)< 0.01). Ad-
ditionally, we tested the correlation between cluster 1’s 5th-
order surprisal model and its performance and found no cor-

Figure 3: The non-correlation of cluster performance differ-
ences with model likelihood differences indicates the statisti-
cal information captured by the models is a poor predictor of
behavioral performance. The significant cluster performance
difference can be seen here by the majority of items occurring
above 0-difference on the y-axis. A LMS-Regression line is
drawn in red for reference.

relations with SPiN (r(48) = 0.07) or span (r(25) =−0.09).
Similar results were obtained for cluster 2 (SPiN: r(48) =
0.21, span: r(25) = 0.02).

In addition to modeling statistical properties of particular
items, we also tested whether the difference between the lan-
guage and surprisal models might capture the significant dif-
ferences we see on our behavioral tasks. This method avoids
any idiosyncrasies of particular items (as comparisons are
within item) and instead captures any language differences of
media sources. We again find a lack of significant correlation
between 5-gram likelihood differences and task performance
for both the SPiN (r(48) = 0.09) and span (r(25) = .25).
Similar results are observed for the 5th-order surprisal model
(SPiN: r(48)< 0.01, span: r(25)= 0.08). As shown in Fig. 3,
differences between the model likelihoods are close to zero
for most items, with a few outliers.

To examine the non-correlations and clustering around 0
on Fig. 3’s x-axis, we tested the correlation between mod-
els and found strong correlations for both the SPiN (r(48) =
0.94, p < .001) and span (r(86) = 0.97, p < .001) test. These
strong correlations, coupled with linear regression slopes of
β1 = 0.96 (SPiN) and β1 = 0.94 (span) imply nearly iden-
tical log-likelihood scores between models despite training
on categorically different sources. While the results reported
here are specific to 5-gram language models and 5th-order
surprisal models, other lower-ordered models of both yielded
similar results.

Discussion
We observed significant performance differences on a speech
perception in noise task and a working memory task between
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clusters of participants derived from self-reported media con-
sumption. These differences were above and beyond differ-
ences driven by a priori participant groups – students at a
university vs. participants from the surrounding community.
This clustering was robust to randomness and orthogonal to
any traditionally considered demographic variables. As we
have no reason to believe that the tests’ target constructs sys-
tematically vary between our clusters, we conclude that me-
dia diet represents an uncorrelated latent variable moderating
task performance. To our knowledge, our identifying media
consumption as a significant orthogonal predictor of cogni-
tive task performance is a novel contribution of this work.

This novel predictor is surprisingly powerful at explaining
language test performance considering its complete lack of
explicit linguistic information. In pursuing a linguistic ex-
planation for our finding, we used statistical language models
trained on sources participants reported consuming to analyze
test items. These models did not identify particular stimuli
driving performance differences, and we found no obvious
differences in how well stimuli fit our models. However, a
follow-up study we performed with more complex recurrent
neural models did in fact reveal a correlation between mod-
els trained on our media corpora and behavioral performance
(Courtland et al., 2019). This implies the statistics used here
are not sophisticated enough. Cloze probability, for exam-
ple, is computed as a simple ratio of the tokens of a word in
context to all tokens in that exact context in the corpus.

Also of note is the highly significant difference in the num-
ber of sources reported by cluster 1 compared with cluster
2. It is possible that the greater number of sources indi-
cates that cluster 1 contains more voracious consumers of me-
dia than cluster 2. This increased media consumption in the
modalities of our tests may be providing cluster 1 members
with modality-specific training they leverage at test time. In-
deed, the correlation we observed between number of speech
sources reported and SPiN performance supports this expla-
nation. This is especially plausible given that watching a TV
show or movie involves perceiving character dialog often ob-
scured by various sources of noise (soundtrack, sound effects,
etc.). It is also possible, however, that the increased responses
and performance from cluster 1 is indicative not of their in-
creased modality-specific training but rather a latent variable
such as attentiveness or enthusiasm at participating in all as-
pects of the study.

It should be mentioned that participants’ responses may
reflect a (possibly implicit) choice to make specific habits
known in the context of the survey. Given the importance of
shared experience in forming relationships, what pieces and
types of information people share and what they keep pri-
vate often acts as a type of signaling that forms the basis of
social cohesion. Thus, media diet survey responses may be
more appropriately interpreted as signalling membership in
a language community than literally reflecting the language
practices of that community. Indeed, the vast majority of
items in the corpora are professionally produced texts, which

are likely to differ less than spontaneous spoken and written
communication. In future work, we plan to obtain rich, nat-
uralistic language samples in addition to the media corpora
included so far to strengthen the evidence found here.

The identification of a dimension (other than the target con-
struct) that test performance differs significantly along brings
into question not only specific test validity probed here, but
also the validity of the entire practice of test item standardiza-
tion. This is true whether this dimension is categorical media
consumption, shown here, or the linguistic content of the me-
dia, shown in Courtland et al. (2019). Tests that use language
to probe target constructs must take the language of their test
into account – not as a static entity to be standardized, but
as the diverse and dynamic communication medium that it is.
Test validity relies on the ability to generalize a test’s result
to participants’ everyday behavior. This is only valid if the
test is representative of the language they encounter in their
daily lives (Coleman, 1964). Thus, tests employing standard-
ized language not only contain inherent inequity for those less
familiar with the test language, they are also less valid.

Here we aim to show that participants’ diverse language
experiences must be taken into account when diagnostic tools
like those tested here are designed. Ideally, given the unique
nature of language experience, test creators should strive to
create tests that present equal difficulty to each participant by
using personalized test language. This step to ensure equity
is especially important given that test scores cannot simply be
adjusted for using traditionally defined dialectal boundaries –
as demonstrated here by the uninformativeness of the demo-
graphic variables that define these boundaries.

Generating equitable stimuli is a difficult or possibly in-
feasible task for human researchers, but could potentially be
automated using generative models. If such models were
driven by statistics that are highly representative of partici-
pants’ language experience, they may do a better job of cap-
turing cognitive constructs without smuggling in variability
resulting from differences in language experience. Perhaps
the most exciting future direction of this research will be to
facilitate using more representative language statistics in de-
signing stimuli for cognitive tests. The study of how language
experience influences test performances that we take here rep-
resents a first step to understanding and mitigating this test
inequity.
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Abstract

Learning to read English requires learning the complex statis-
tical dependencies between orthography and phonology. Pre-
vious research has focused on how these statistics are learned
in neural network models provided with as much training as
needed. Children, however, are expected to acquire this knowl-
edge in a few years of school with only limited instruction. We
examined how these mappings can be learned efficiently, de-
fined by tradeoffs between the number of words that are explic-
itly trained and the number that are correct by generalization.
A million models were trained, varying the sizes of randomly-
selected training sets. For a target corpus of about 3000 words,
training sets of 200–300 words were most efficient, producing
generalization to as many as 1800 untrained words. Composi-
tion of the 300 word training sets also greatly affected general-
ization. The results suggest directions for designing curricula
that promote efficient learning of complex material.
Keywords: reading; efficient learning; generalization; compu-
tational modeling; human and machine learning

Introduction
Generalization—the ability to apply existing knowledge to
novel cases—is an important capacity observed, with varying
complexity, in many species (Santolin & Saffran, 2018). Hu-
man generalization encompasses a broad range of behaviors,
ranging from generalizations about the properties of three di-
mensional space to ones based on physical appearance. The
behavioral and neurobiological bases of generalization are a
focus of much research (e.g., Goldberg, 2009; Zhang, Ben-
gio, Hardt, Recht, & Vinyals, 2016).

Generalization is especially important in language acqui-
sition and learning to read. Children rapidly acquire knowl-
edge that allows them to generalize beyond the limited sample
of utterances they experience (Chomsky, 1965). The classic
demonstration is the WUG Test (Berko, 1958). A child who
has learned about plural formation can generalize to novel
cases: one wug, two wugs. Similarly, a beginning reader who
has learned correspondences between spelling and pronunci-
ation can read aloud nonce words such as NUST and GLORP
(Seidenberg & McClelland, 1989). Generalization has tra-
ditionally been taken as evidence for symbolic rules, but it
is also observed in neural networks of varying complexity
(Seidenberg & Plaut, 2014; LeCun, Bengio, & Hinton, 2015).

Our research examined generalization from a different
perspective, efficiency of learning. Efficiency is a con-
cern in real-world contexts in which, unlike most machine
learning applications, learning opportunities are constrained.

For example, children’s vocabulary development depends on
their time- and context-limited exposure to spoken language,
which varies considerably (Hart & Risley, 1995; Gilkerson
et al., 2017). The resulting differences in vocabulary size
and quality have an enormous impact on learning to read and
other aspects of schooling (Seidenberg, 2017). Knowledge
gaps cannot be closed solely through explicit instruction be-
cause there isn’t sufficient classroom time. The same holds
for learning mappings between written and spoken language.
Instruction (“phonics”) is helpful, but only a small subset of
patterns can be taught. In these and other knowledge do-
mains, children learn from relatively limited data and gen-
eralization is paramount.

In the classic WUG test generalization is assessed by per-
formance on nonce forms or, in machine learning, withheld
words. The exact composition of the examples that support
generalization is not the focus of attention, but is critical
in experience-limited domains. We therefore re-formulated
the generalization question as follows, using spelling-sound
knowledge as a test case:

• Children need to acquire the ability to generate pronuncia-
tions for many written words (the target set);

• They are explicitly taught the correspondences between
orthography and phonology for a much smaller subset of
words (the training set);

• Generalization is assessed in terms of correct performance
on untrained items from the target set, rather than nonce
forms. This shifts the focus of generalization to acquiring
real-world knowledge.

The research question is then how the size and compo-
sition of the training set affects generalization to untrained
items. Learning is efficient if the ratio between the number of
trained items and the number of generalization items is low.
We examined efficiency of learning as a function of the size
of the training set using simple, well-studied models of learn-
ing orthography-phonology correspondences (Seidenberg &
McClelland, 1989; Harm & Seidenberg, 1999). We also ex-
amined how efficiency was affected by the composition of a
training set of a given size. The results suggest that it may be
possible to structure children’s reading experiences in ways
that promote more efficient learning.
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Materials and Methods
Words
The simulations used a set of 2881 monosyllabic English
words employed in previous research (Harm & Seiden-
berg, 1999). Word length ranged from 2–8 letters and 1–7
phonemes.

Model architecture
The model was a simple feedforward network with an input
orthographic layer (102 units), an output phonological layer
(66 units) and a single hidden layer (100 units). It was struc-
tured and trained in standard ways, with weights updated
with gradient descent and backpropagation after accumulat-
ing cross-entropy error over all words in the training set.

Orthographic representations were generated as follows.
Words were centered on the vowel (or the first vowel in a
digraph), adding empty letters to the onset as necessary. If
the first vowel was followed immediately by a consonant, an
empty letter was also added between them, except in cases
where the consonant is voiced as part of the vowel (e.g., the
letter w in SAW). The letter y was treated as a consonant when
it began a word and a vowel otherwise. Finally, empty letters
were added to the end of each word, resulting in orthographic
codes of uniform length (14 letters including empty ones).

Each letter was represented by one unit in a 26 element
vector, with no units activated for the empty letter. The 14
vectors were concatenated to represent each word. To make
these representations more concise, they were stacked to cre-
ate a 2881×364 matrix, and all-zero columns were dropped,
leaving 102 units.

Phonological word forms were represented using 41
phonemes (26 consonants, 15 vowels). They were aligned on
the first vowel, adding empty phonemes at the beginning or
end to produce phonological representations of equal length
(10 phonemes including empty phonemes). Each phoneme
was defined by 25 phonetic features (Harm & Seidenberg,
1999). The 10 phoneme by 25 feature vectors were con-
densed by eliminating nodes for unused features, resulting in
an output layer with 66 features.

The model was implemented using scikit-learn in Python
3.6 using a multilayer perceptron, and training was executed
in parallel using HTCondor (Thain, Tannenbaum, & Livny,
2005) and computational resources maintained by the Center
for High Throughput Computing at UW Madison.

Model training
One million models were run, each using a set of words sam-
pled randomly without replacement from the 2881 word tar-
get set. Training sets ranged from 100 to 1000 words in in-
crements of 100, with an equal number of each size.

Each model was trained for 3000 weight updates with a
constant learning rate (0.1). The model was exposed to the
whole training set before each update. Each model was then
tested on the untrained remainder of the target corpus to eval-
uate generalization. An output pattern was scored as correct

if all unit activations were within 0.5 of their target state.

Model evaluation
Using all untrained words as the holdout set to evaluate gener-
alization performance for each model means that the holdout
set is not held constant. This is a deliberate design decision:
when a word is explicitly trained, it no longer needs to be gen-
eralized to. Training on exceptional, irregular words may be
the only way to accurately produce them—that explicit train-
ing not only develops the model to encode that orth-phon re-
lationship, but also removes that exceptional word from the
generalization set. On the other hand, this exceptional word
may not teach the model anything generally useful. The give
and take between what is in the training set or test set is cen-
tral to the research question.

An alternative approach is possible, where a single test set
is constructed a priori and used for all generalization. This
has the advantage of serving as a true benchmark, but poses
a critical challenge. It requires composing a representative
test set that expresses all relational othographic and phono-
logical structure. Our attempts at dimensionality reduction
on the model representations that map between orthography
and phonology for the full corpus indicate that 50 dimensions
are necessary to express 80% of the variance in that structure.
Sampling representatively from that high dimensional space
would be necessary for constructing a useful benchmark test
set. The problem of constructing this test set is the same as the
problem of constructing a representative and efficient training
set, and does not have a simple solution.

Results
Training set size and generalization
Figure 1A shows generalization to untrained items as a func-
tion of training set size. Smaller training sets afford more op-
portunities for generalization, but are less able to provide rep-
resentative coverage of the corpus. Increasing the size of the
training set produced diminishing generalization returns. In-
creasing training sets beyond 500 words did not yield greater

Size Mean (Ratio) Max (Ratio)

100 333 (3.33) 590 (5.90)
200 889 (4.45) 1252 (6.26)
300 1240 (4.13) 1546 (5.15)
400 1404 (3.51) 1634 (4.08)
500 1469 (2.94) 1668 (3.34)
600 1484 (2.47) 1654 (2.76)
700 1470 (2.10) 1618 (2.31)
800 1438 (1.80) 1566 (1.96)
900 1395 (1.55) 1510 (1.68)

1000 1344 (1.34) 1444 (1.44)

Table 1: Mean and maximum generalization performance
over 100k models fit with each training set size. Ratios di-
vide the previous descriptive statistic by the training set size.
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generalization.
Figure 1B shows total number of words correct (trained

and generalized). No model produced correct performance
for all words. Some words were only learned if they were in-
cluded in the training set; they were never produced correctly
by generalization. These include words with highly atypi-
cal spellings and pronunciations such as SIXTH, DRAUGHT,
SCHEME, COUPS, and JINX.

Figure 1C shows an index of training set efficiency, defined
as the number of words correct by generalization divided by
the number of words trained. Training sets with 100 words
are less efficient than those with 200 words on average and
in the limit, indicating that the larger set captures more of
the structure relevant to untrained words. Training sets of
300 words are somewhat less efficient than those with 200,
but after 300 words efficiency drops rapidly. Taking all three
metrics into account, 300 words appears to be a sweet spot
(see also Table 1).

Analyses of training environments containing 300 words
show that they yielded reading vocabularies of 1540 words
on average (SD = 76:62) and 1846 words at best (failing to
decode 1035). Given that efficiency is a primary concern for
early reading curricula, it is noteworthy that this is 75.5% of
the largest reading vocabulary achieved with any training set
(2444 words, achieved after training on 1000 words). Note
that this 598 word increase required growing the training set
by 700 words. If we subtract the training set from all reading
vocabularies and just focus on words that were generalized to,
the best model trained on 300 words (1546) achieves 92.7%
of the maximum amount of generalization achieved with any
training set (1668, achieved after training on 500 words).

These results indicate that nearly all systematic structure
relating English orthography and phonology within our cor-
pus of 2881 monosyllabic words can be learned from an ap-
propriately constructed 300 word subset. It is possible to es-
tablish a reading vocabulary of over 1800 words based on ex-
plicit training on only 300 words, a 6-fold return on instruc-
tional investment. However, achieving this level of perfor-
mance is highly dependent on the composition of the training
set: the best and worst models trained with 300 words are
separated in performance by over 600 accurate generaliza-
tions (min: 906; max: 1546). Thus, in future work it will
be important to understand how properties of training sets are
related to generalization.

What makes a word likely to be correct by
generalization?

The rates at which individual words were correct by general-
ization across training sets varied greatly, forming a roughly
bimodal distribution (Figure 2).

At one extreme are words that are correct by generaliza-
tion with almost any random selection of training words; at
the other are words that for which generalization is highly
sensitive to training set composition. The former contain
spelling patterns and orthography-phonology mappings that

Figure 1: Reading vocabulary size and generalization ability
for increasing training set sizes. A) The number of accurate
generalization peaks at lower training set sizes and B) the rate
of reading vocabulary growth slows. No model trained on
a subset of words is capable of reading all words. C) The
ratio of generalization performance and training set size, ef-
ficiency, is highest with training sets with 200–300 words.
Dots indicate the mean; dotted lines are±1SD; solid lines are
minimum and maximum values.

occur more often in this corpus; the latter words have less
common patterns and more idiosyncratic mappings.

Whether a word was likely to be generalized to was related
to quantifiable measures of orthographic, phonological, and
relational (mapping) typicality. We examined several lexical
factors that have been employed in previous research:

• Word length: number of letters

• Orthographic neighborhood: number of words whose
spelling differs from a word by a one letter substitution,
deletion, or addition (DLevenshtein < 1).

• Phonological neighborhood: number of words with the
same rime (e.g., for “must”, the “ust” words like “dust”
and “lust”).
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Figure 2: When aggregating over the 100k 300-word model
training environments, each word occurs in many test sets.
The proportion of times a word occurs in the test set and is ac-
curately generalized to corresponds to how difficult that word
is to learn. Representative words belonging to each bin are
displayed.

• Consistency: the proportion of words with a given word
body (the orthographic equivalent of the rime) and the
same phonological rime (e.g., for GAVE, the proportion of
-AVE words pronounced “ave”; (Plaut, McClelland, Sei-
denberg, & Patterson, 1996).

The correlations among these variables, and between these
variables and the probability of accurate generalization, are
reported in Table 2. The number of orthographic neighbors
tends to decrease as word length increases (r = −0:65); a
similar but weaker trend applies to the size of phonologi-
cal neighborhoods (r = −0:28). This is representative of
the English language in general. There is also a moderate
relationship between neighborhood size across modalities,
such that words that belong to large othographic neighbor-
hoods are expected to belong to large phonological neighbor-

WL ON PN Con.

Word Length 1.00
Orth. Neighbors -0.65 1.00
Phon. Neighbors -0.28 0.35 1.00

Consistency -0.03 -0.02 -0.02 1.00

P(accuracy) -0.27 0.47 0.28 0.38

Table 2: Correlation among lexical measures. The bottom
row reports the pairwise correlation of each variable with the
probability of generalization accuracy for each word, defined
as the number of times accurately generalized to divided by
the number of test sets a word appeared in.

hoods (r = 0:35). That this correlation is not higher demon-
strates the asymmetry of structure across the modalities. The
consistency of a word’s pronunciation given its orthography,
however, is uncorrelated with the modality-specific metrics.
Words are more likely to be generalized to if they are short,
belong to large phonological and (especially) orthographic
neighborhoods, and have consistent pronunciation given their
spelling (Table 2, bottom row).

Given the high correlations among variables, and to gain
perspective on how jointly-predictive these factors are of the
probability of accurate generalization, we regressed the prob-
ability of accuracy over test sets on all four variables in an ad-
ditive linear model (no interaction terms). This simple model
accounts for 39% of the variance in generalization accuracy.
Of the variables we considered, the consistency metric ac-
counted for the most unique variance (∆R2 = 0:15), but ortho-
graphic neighborhood size was a close second (∆R2 = 0:13).
Once accounting for other variables, phonological neighbor-
hood size and word length did not appreciably improve the
model.

These results are broadly consistent with previous research.
Effects of spelling-sound consistency have been observed
in many behavioral studies of skilled and beginning readers
(Jared, McRae, & Seidenberg, 1990), and simulated in earlier
models that examined performance over the course of learn-
ing many words (Seidenberg & McClelland, 1989; Plaut et
al., 1996). Our results suggest that factors that affected ease
of learning in the earlier models also affect probability of gen-
eralization as studied in the present work.

Out of the variables we considered, phonological neighbor-
hood size is the most studied in the context of word acquisi-
tion, where it is understood to influence the order in which
words are acquired (Storkel, 2003). Orthographic neighbor-
hood size is often studied in terms of performance, specif-
ically visual word recognition and lexical access (Andrews,
1997). It is also negatively correlated with age of acquisition
norms, which indicates that words with more dense ortho-
graphic neighborhoods tend to be learned earlier (Cameirão
& Vicente, 2010). Words with consistent orthographic to
phonology relationships are also processed more efficiently
(Ziegler, Ferrand, & Montant, 2004).

regressor η2
p ∆R2

Word length 0.01 0.00
Orth. Neighbors 0.17 0.13
Phon. Neighbors 0.03 0.02

Consistency 0.20 0.15

Table 3: Effect sizes for the regressors that account for vari-
ance in the probability of accurately generalizing each word.
These effect size metrics are perspectives on the unique vari-
ance explained by each variable. Because of collinearity
among the regressors, the sum of the ∆R2 values will be less
than total R2 = 0:39.
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What makes a good training set?

The word-level features reviewed above give some insight
into which words will tend to be generalized to, and which
will not, in the context of any given training set. The deeper
question pertains to the qualities of the training set foster the
most efficient generalization to untrained words in the lan-
guage. One angle on this question is to consider that the
word-level features are in fact reflective of how the word is
situated relative to the broader linguistic environment. While
we did not test this directly, it is plausible to assume that
neighborhood size predicts how likely a word is to be gener-
alized to. Good training sets are representative of the broader
environment. If a neighborhood is split across training and
test sets, the consequence is that the neighbors in the test set
have representation within the training set. Given that we
randomly split our corpus into training and test sets, there
is no guarantee that neighborhoods are efficiently split in this
way. However, words that belong to larger neighborhoods are
more likely to be split across training and test sets by chance,
so we might expect that training sets with larger orthographic
and phonological neighborhoods on average will foster more
generalization. It is clear that words with no orthographic
neighbors (n = 271) are generalized to far less often (median
probability 0.10) than words with at least one neighbor (me-
dian probability 0.56).

Such a crude metric, however, would be largely insensi-
tive to the relative composition of the two sets. For instance,
training sets that contain many words with large neighbor-
hoods may simply contain all the words belonging to those
large neighborhoods. Such a training set would be unrepre-
sentative of the test set, and unlikely to foster generalization.
What we would rather know is each word’s neighborhood size
relative to the number of its neighbors that also belong to the
training set.

On the other hand, orthographic and phonological neigh-
borhood structure is only helpful to the extent that they
are aligned. An orthographic neighborhood populated with
words with irregular and idiosyncratic pronunciations is not
likely to foster generalization on a reading-aloud task. Thus,
training sets that have a large and varied collection of words
with consistent pronunciations may be expected to generalize
well. While it is easy to determine the mean consistency of a
training set, it is less clear how to account for the variability
across consistent relationships and determine the representa-
tiveness of such relationships to the target environment.

We regressed the generalization performance of the
100,000 models trained on 300 word training sets on the mean
word length, orthographic and phonological neighborhood
sizes, and consistency over all 300 words in each set. The
effect sizes are reported in Table 4. We see that, despite being
a very crude measure, mean orth-phon consistency accounts
for about 13.6% of the variance unexplained by the other vari-
ables, indicating that item level characteristics may provide
insight on how to construct efficient training sets. However,
the vast majority of variance remains unexplained and pro-

regressor η2
p ∆R2

Word length 0.002 0.001
Orth. Neighbors 0.006 0.005
Phon. Neighbors 0.000 0.000

Consistency 0.137 0.136

Table 4: Effect sizes for the regressors used to account for
variance in generalization accuracy over the 100,000 models
fit to random 300 word training sets. Generalization was to
all untrained words in the corpus. Because of collinearity
among the regressors, the sum of the ∆R2 values will be less
than total R2 = 0:14.

vides fertile ground for continued research.

Discussion
We have established a computational procedure for investi-
gating two aspects of generalization in learning basic read-
ing skills: how many words need to be learned to generalize
to real English words yet to be learned, and what aspects of
reading vocabulary promote this transfer. Our findings indi-
cate that while printed vocabulary continues to grow along
with the number of words taught, the efficiency of learning
does not grow along with it.

These findings are relevant to real-world learning condi-
tions. As a human teacher grows the number of words they
would like to teach, the amount of learning time needed grows
along with it. Our findings suggest a trade-off where a smaller
number of words could be taught, increasing efficiency of
learning and teaching for sake of near-optimal generalization
capacity. This has potentially important implications for read-
ing education where there is a need to teach spelling-sound
patterns (phonics) but only enough time to sample from the
large set of patterns. Many educators oppose teaching phon-
ics because it is seen as requiring “drill and kill” amounts of
instruction and practice. This may be less of a concern if,
as our results suggest, patterns can be selected in a way that
maximizes generalization.

The problem of maximizing generalization with the small-
est possible training set can be formalized as a machine teach-
ing optimization problem (Zhu, 2015). We have drawn on this
literature by manipulating the learning environment while
holding the abilities of the learner constant, and then per-
forming careful analyses of the outcomes to identify the fac-
tors that contribute to training the most proficient models. In
doing so we have demonstrated systematic relationships be-
tween the composition of the training set and generalization
performance that machine teachers may be able to discover
and exploit.

These results are empirical; our next step will be to identify
properties of words and word-sets responsible for better gen-
eralization both at the word- and set-level. As indicated in our
regression model reported, item-wise measures of phonology,
orthography, and especially orth-phon consistency account
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for non-trivial amounts of generalization error. Next steps
will be oriented towards accounting for more of the variance
in generalization accuracy, and to scale up analyses to model-
wise characteristics that promote generalization. It may also
be possible to improve efficiency even further by using train-
ing sets attuned to children’s vocabulary development, and by
optimizing the sequence of learning experiences. Ultimately
the aim is to discover the principle axes of the orth-phon map-
ping space, and exploit that structure in a theory-driven way
to construct idealized training environments.

The reported models were trained on representations of the
orthography with 14 “slots” for letters and tested on phonol-
ogy with 10 “slots” for phonemes. This has consequences
for learning that are artificial relative to how a child learns
to decode orthography. Most salient is that each slot has an
independent set of weights that project to the hidden layer.
This means that what is learned about letters in one slot is
not necessarily transferred to other slots—once the model has
learned to pronounce the consonant K in the third slot, it will
fail to generalize that knowledge when presented with a K
in the fifth slot. This and other limitations of the slot based
representation scheme contribute to our focus (and the focus
of the modeling literature, generally) on monosyllabic words.
Monosyllabic words are short and fairly consistent in length
with a single vowel phoneme. After vowel-centering, the lim-
its of using slots are effectively attenuated in the monosyl-
labic context, but it is not a solution that scales up. Models
of reading that attempt to reflect more plausible visual pro-
cesses and accommodate disyllabic words are needed. The
slot-based approach may add some complexity to the decod-
ing problem while simplifying the “visual” experience of our
models.

Though preliminary, these simulations demonstrate that it
is possible to be more efficient with curricula that attend to
the number of words taught and the words that are prioritized
in teaching.
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Abstract

The iconic cross-modal correspondence between fundamental
frequency and location in vertical space (“high is up”) has long
been described in the literature. However, an explanation for
this relationship has not been proposed. We conducted an ex-
periment in which participants shot at cans projected on the
wall in different vertical positions. We found that mean funda-
mental frequency was significantly influenced by vertical head
position. Moving the head upwards changes the position of the
larynx, which pulls on the cricothyroid muscle and changes the
fundamental frequency. We thus propose that the iconic rela-
tionship between fundamental frequency and vertical space is
grounded in the body.
Keywords: iconicity; prosody; fundamental frequency; verti-
cal space; sensori-motor properties; embodied cognition

Introduction
Iconicity refers to the resemblance between the linguistic
form and the intended meaning (Blasi, Wichmann, Ham-
marstrm, Stadler, & Christiansen, 2016; Dingemanse, Blasi,
Lupyan, Christiansen, & Monaghan, 2015). The evidence
brought forward in the last decade suggests that iconicity is an
essential part of language (Perniss, Thompson, & Vigliocco,
2010; Perniss & Vigliocco, 2014). The origin of iconicity,
however, is far from clear (cf. e.g., Imai & Kita, 2014, p. 9).
This article brings together earlier work in phonetics and cog-
nitive sciences by discussing the relationship between iconic-
ity and prosody in speech.

The term prosody has often been used interchangeably
with intonation, though these terms are used in different ways
by different authors (for a discussion, cf. Hirst & Di Cristo,
1998). Here, we use prosody as an umbrella term for the
suprasegmental stress, rhythm, and intonation properties in
speech (Bussman, 1996; Trask, 2004). We investigate a sin-
gle basic aspect of prosody, fundamental frequency, which is
an acoustic correlate of intonation. Fundamental frequency
expresses the rate at which the vocal folds vibrate during
speech. It is most frequently measured in hertz. Pitch ex-
presses how fundamental frequency is perceived. It is quanti-
fied by listeners’ judgments. In this paper we use f0 in refer-
ence to production studies and pitch in reference to perception
studies.

Previous research has shown that there is a relationship be-
tween location in vertical space and pitch (in speech percep-
tion) or f0 (in speech production), though little in the way of
explanation has been proposed. In the literature, iconicity is

mainly considered to be both a finding and the explanation
for the finding: there is a form–meaning mapping, because
the relationship is iconic. However, no explanation is given
for why iconicity is present in natural language. Therefore,
the aim of this study is to investigate a potential origin for
iconicity. Using an experimental approach, we demonstrate
that there is a link between vertical head movement and f0.
We propose that the iconic correspondence between location
in vertical space and f0 is rooted in head movement required
to look at objects that are higher up. In other words, the origin
for the relationship between f0 and location in vertical space
lies in bodily constraints, namely vertical head movement.

Evidence for Iconic Pitch in Speech Perception
Researchers have long been interested in how people localize
sounds in vertical space and what kind of cognitive processes
are involved (e.g., Seashore, 1899). Pioneering work by Pratt
(1930) and Trimble (1934) and later experiments by Mudd
(1963) and Roffler and Butler (1968) show that, regardless
of the actual vertical position of the sound source, partici-
pants tend to locate high-pitched sounds higher in the vertical
plane and low-pitched sounds lower in the vertical plane (i.e.,
the Pratt effect, cf. above). Recent work by Parise, Knorre,
and Ernst (2014) provides an insight into the possible source
of this “frequency–elevation mapping.” The authors recorded
sounds in different natural environments with directional mi-
crophones mounted at various heights. They found a strong
correlation between the frequencies of the noises in the envi-
ronment, especially in the 1–6 kHz range, and the sound lo-
cation in the vertical space. After accounting for the filtering
properties of the outer ear, Parise et al. conclude that the ear
is fine-tuned to the statistics of the noises in the environment.
Thus, the relationship between a given sound’s frequency and
its vertical position is not language-specific. Apart from that,
their results suggests that the listeners’ expectations of an ob-
ject’s location in vertical space may be grounded in the sta-
tistical probabilities in the natural environment. It has to be
noted that the noises in the environment come from both ani-
mate, like birds, and inanimate sources, like wind in the trees.

In 1994, Ohala proposed the frequency code as a possible
cause of prosodic iconicity (Ohala, 1994). He argued that
in various species, low-pitched vocalizations are associated
with a large-sized animal, since the mass of the vocal folds
correlates with body mass and, thus, size. Both body mass
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and the size of an animal are crucial to estimate a potential
threat, which in the animal kingdom is a matter of life and
death. The lower the perceived pitch of a given animal, the
more threatening, dominant, or aggressive the animal is as-
sumed to be. And conversely, the higher the perceived pitch
emitted by the sound source, the smaller its size is estimated
to be, thus the source itself is interpreted as less threatening,
dominant, and aggressive.

Keeping in mind the studies mentioned above and Ohala’s
frequency code, when we consider humans, it is apparent that
there are two main, possibly contradictory, factors that af-
fect pitch estimation. The first is vertical position – higher
pitch is located higher in vertical space. The second factor
is body size – higher pitch is associated with smaller body
size. If two people of different size (height) stand beside
each other, the larger person’s mouth will always be higher
in the vertical plane. On the one hand, according to Ohala’s
frequency code, we would expect the larger person to emit
lower-pitched sounds. On the other hand, according to, e.g.,
Parise et al. (2014), the larger person, because their mouth is
higher up in the vertical plane, should sound higher-pitched.
This contradictory predictions have, to our knowledge, only
been addressed by one study (Pisanski, Isenstein, Montano,
O’Connor, & Feinberg, 2017).

Pisanski et al. (2017) explicitly investigated body size es-
timation based on pitch vs. vertical location. Their results
show that low pitch was associated with a large body size
even when it was played from a low vertical position. This
suggests that pitch cues override spatial cues in the body size
estimation. However, this finding may be due to the task,
which was to estimate the body size of an animate being.
Hence, animacy and the experimental task may also have in-
fluence on the perception of different frequencies.

Evidence for Iconic F0 in Speech Production
There is considerably less work on iconic f0 in speech pro-
duction. Although the effects found in the studies mentioned
below are mostly subtle, nevertheless they provide evidence
for the use of iconic pitch with regard to location in verti-
cal space. Items that are located higher up in vertical space
(whether they are actual objects or mental concepts located
in a metaphorical plane) are marked with higher fundamental
frequency than item that are located lower in space.

In a series of experiments, Clark, Perlman, and Johans-
son Falck (2014) asked the participants to read stories re-
lated to vertical motion (up vs. down), emotions (positive
vs. negative), and perceived sound (high-pitched vs. low-
pitched). The authors expected that the participants would
produce higher fundamental frequency in stories with higher
elevation in the physical space, positive emotions, and high
auditory pitch in contrast to stories reporting lower vertical
space, negative emotions, and lower auditory pitch. A signif-
icant effect was found only for stories describing a vertical
motion in which the f0 was on average 5 Hz higher in the
“up” condition than in the “down” condition.

Nygaard, Herold, and Namy (2009) investigated prosody

of adjective antonym pairs (e.g., happy/sad, big/small,
tall/short). The adjectives were embedded in carrier sen-
tences next to novel non-words and the participants were
asked to use infant-directed speech. Their analyses suggest
that the fundamental frequency was higher in the adjectives
happy, big, hot, tall, yummy and strong, compared to their
antonym counterparts. Depending on the item, f0 differences
were between 20 and 90 Hz. However they might have been
affected by how engaged the participant was in the infant-
directed speech task.

Another study that tackles the problem of iconic f0 with re-
gard to vertical space is that of Shintel, Nusbaum, and Okrent
(2006). The authors analyzed the fundamental frequency
of participants saying if an animated dot was moving up or
down. The data revealed a significantly higher f0 for the “up”
condition. The f0 differences were, however, relatively small,
similarly to those reported by Clark et al. (2014).

The reviewed previous literature, both in perception and
production, documents the relationship between f0 and loca-
tion in vertical space that is proposed to be iconic. But the
only explanation given for this relationship is iconicity itself.
The purpose of this study is to test one potential origin of
iconicity and thus also the origin of the relationship between
f0 and location in vertical space.

Potential Anatomical Explanations for the
Relationship between F0 and Vertical Space
The control of fundamental frequency is anatomically com-
plex. It involves a difference in the subglottal pressure be-
tween the lungs and the oral cavity, in addition to the tensing
of the vocalis muscles (the vocal folds). Moreover, different
extrinsic muscles can indirectly influence the vocal folds. For
example, activation of the cricothyroid muscle (CT) leads to
the rotation of the crycoid cartilage, which in turn tenses the
vocal folds, and thus increases f0 (Honda, 1996). Apart from
that, fundamental frequency can be lowered by the actions of
the external strap muscles (Erickson, Baer, & Harris, 1982).

But additional factors may come into play in f0 con-
trol by causing a change within the other parameters affect-
ing f0, e.g., by varying the muscle tension around the lar-
ynx. Anatomically, muscle tension around the larynx can be
changed by head movement. To the best of our knowledge,
only one empirical study exists showing the influence of head
motion on f0 in speech production (Munhall, Jones, Callan,
Kuratate, & Vatikiotis-Bateson, 2004). Their sentence-by-
sentence multiple regression analysis revealed that 63% of the
variation in the fundamental frequency could be explained by
speaker’s head movement during speech production. The up-
ward head motion raises the larynx, thereby pulling on the CT
muscle, which elongates the vocal folds and thereby increases
f0. Still, it has to be noted that the analyses were carried out
on recordings of only one speaker.

The aim of this study is to investigate the potential anatom-
ical origin of the iconic relationship between f0 and location
in vertical space. Our first hypothesis is that the fundamental
frequency is affected by the position of the head. Changes in
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the position of the head influence the placement of the larynx,
and simultaneously affect the fundamental frequency. We as-
sume that people look at an object, the head follows the gaze.
When an object is located higher up in space, people move
their head upwards and when it is located lower, they move
their head down. Thus, if an object is located at the higher
position in space, we expect a higher f0 within the utterance
produced at this head position. Our second hypothesis is that
the size of an object has an impact on the fundamental fre-
quency when referring to that object. We expect a higher f0
for smaller objects and lower f0 for larger objects.

Methods
Experimental Design
In the experimental task, participants were asked to “shoot”
cans, which were projected onto the wall in front of them,
with a laser pointer. Additionally, the participants had to say
the word written on the can. One of two words was written on
each can: piff [pIf] or paff [paf], both of which are German
onomatopoeic words imitating the sound of shooting, like En-
glish ‘bang’ or ‘pow’. To measure the hypothesized effect of
size of the object referred to, we used two sizes of cans in
the experiment – a small and a large one, which was approx-
imately twice as large. The cans appeared on five equidistant
positions on the vertical and horizontal axes, resulting in 25
possible positions. The varying vertical position of the can
enabled us to elicit the head movement, expected to have an
influence on fundamental frequency – according to the first
hypothesis. All conditions sum up to a total of 100 tokens per
participant: two words x two can sizes x five vertical positions
x five horizontal positions.

During the task, the participants stood at a landmark on the
ground, at approximately 1 m distance from the wall. The
projection surface measured 130 x 130 cm, with the lowest
edge starting at 145 cm above the ground. When a can ap-
peared, the participants were instructed to (1) point at the can
with a laser pointer, and (2) say the word written on the can.
After the participant successfully pointed at the can and ut-
tered the word written on it, an animation of the can falling
down was played and, after a short blank screen, a new can
in a different position appeared. The presentation of cans and
their animation was manually controlled to prevent the par-
ticipants from predicting when the next can would appear.

Five datasets with prerandomized order of presentation
were created to avoid order effects. For technical reasons, the
presentation of the stimuli was divided in two sections, both
of which consisted of 50 items. The whole experiment took
15–20 minutes, though the experimental task itself lasted no
longer than 5–6 minutes. This was highly relevant in order
to avoid boredom and its potential effect on fundamental fre-
quency. The main task was preceded by a short familiariza-
tion trial, which consisted of five items – cans with different
words written on them, than those that were used in the main
task. The participants were given no specific instructions re-
garding the alignment of their movements. If one of them

Figure 1: The placement of markers for the motion capture.

asked about it, they were told to act naturally, in a way sim-
ilar to pointing a laser pointer at a particular word or image
while giving an oral presentation.

Acoustic and motion data were recorded simultaneously
using a Sennheiser ME 64 cardioid microphone and an Opti-
track motion capture system (Motive, version 1.9.0) with 12
cameras (Prime 13). Motion data was captured at 120 Hz
sampling frequency and acoustic data at 44.1 kHz. In total,
15 markers were placed on different body parts of the par-
ticipants: three on the glasses (center, left, and right); one
each on the upper lip and the lower lip (jaw); one at the posi-
tion of the sternum; one approximately at the location of the
fourth thoracic spine vertebra; one on the laser pointer; and
symmetrically two on the shoulders, elbows, and wrists. The
placement of all markers is illustrated in Figure 1.

Due to technical problems with the recording equipment,
the data of one participant had to be excluded.

Participants

Since males have an on average lower fundamental frequency
than females, including different sexes would have yielded
an additional factor in the experimental design. To avoid
this, we focused on females as a participant group. A total
of 31 German native speakers took part in the study (mean
age = 27.84; mean height = 167.7 cm, with min = 152 cm
and max = 183 cm). Twenty-six participants were monolin-
gual and five reported being bilingual; all apart from one were
right-handed. The participants were all recruited using a par-
ticipant database. At the beginning of the session, they were
given information about the experiment and signed a consent
form. They received monetary compensation after the com-
pletion of the task. The project was approved by the ethical
board of the DFGS and preregistered at Open Science Frame-
work1.

1The OSF repository can be visited under the following address:
https://osf.io/ysr75/
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Data Preprocessing and Annotation
The acoustic data were automatically labeled at the phoneme
level using WebMAUS (Kisler, Reichel, & Schiel, 2017) and
subsequently manually corrected using Praat (Boersma &
Weenink, 2018). The on- and offset of the vowel were de-
fined as the onset and offset of vocal fold oscillations, respec-
tively. So far, we have annotated and corrected the data for
20 participants (mean age = 29.45; mean height = 165.5 cm,
with min = 152 cm and max = 177 cm). Mean fundamental
frequency was calculated for the whole vowel interval. The
fundamental frequency range was set to 150–400 Hz to avoid
octave jumps of the pitch tracker due to creaky voice.

The motion capture data were first extracted and processed
with Mokka version 0.6.2 (Barré & Armand, 2014), and sub-
sequently converted to be further processed with MATLAB
(version R2017b). The maximal vertical position of the poin-
ting wrist and of the center of the glasses were calculated
within the vowel interval, provided by the annotated acous-
tic data.

Statistical Analyses
All statistical analyses were carried out within the R environ-
ment, version 3.5.1 (R Core Team, 2018), using the following
packages: plyr (Wickham, 2011) for data wrangling, car
(Fox & Weisberg, 2011) and lme4 (Bates, Mächler, Bolker,
& Walker, 2015) for statistical modelling, RePsychLing
(Baayen, Bates, Kliegl, & Vasishth, 2015) for model evalu-
ation, and stargazer (Hlavac, 2015) for the output table.

After the initial data exploration, we were forced to ex-
clude the data of one participant (id7) from subsequent anal-
ysis. Her behavior during the experiment was atypical; she
shrieked and laughed a lot during the experiment. This later
had a negative effect on the reliable parameter extraction.
Thus, all results refer to the group of 19 female participants.

Results
General Remarks
Though we did not explicitly investigate the coordination be-
tween the head movement (gaze), articulation (lip and jaw
movement), and the pointing gesture, their temporal organi-
zation is shown in Figure 2 for reference. The speaker first
visually locates the target and elevates the head (in the ex-
ample shown in Figure 2, the target is situated higher in the
vertical space). Then she starts the pointing gesture by visi-
bly lifting the wrist. Finally, the speech itself begins. It can
be observed in the acoustic signal itself, but also in the larger
maximal distance of the upper lip and jaw.

Statistical Hypotheses Testing
The parsimonious mixed model approach was used to more
reliably analyze data that are highly variable between sub-
jects (Bates, Kliegl, Vasishth, & Baayen, 2015, p. 2). This
approach starts by calculating a maximal model, as suggested
by Barr (2013). Subsequently, a principal component analysis
of the random effects’ structure is run using the RePsychLing

Figure 2: An example of acoustic and motion data for a trial
with the stimulus located high in the vertical plane. Plots
from top to bottom: (1) acoustic signal; (2) vertical head po-
sition (dashed line), determined by the marker in the mid-
dle of the glasses; (3) upper lip (black line) and jaw (gray
line) markers; (4) marker on the pointing arm wrist (dashed
line). All motion data are in meters. Note that the arrows
in charts 2–4 only illustrate the coordination among different
body parts, but all positions are calculated within the vowel
interval.
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package (Bates, Kliegl, et al., 2015). This procedure allows to
reduce the random effects structure to the necessary compo-
nents, according to the variance in the data. It is done by an
iterative reduction of the model’s structure and step-by-step
comparison of subsequent models. In the current analysis,
the parsimonious best-fit model was in fact not significantly
different from the maximal model (p = 0.54).

All computed models consisted of the same set of fixed
factors: vowel in the uttered word, subject’s height, subject’s
head position, can’s vertical position, can size, and the inter-
action of vowel and can size. Random intercept for subject
was included in the random effects structure to account for
intersubject variability. The random slopes after the iterative
model reduction consisted of vowel in the uttered word, and
the interaction of vowel and can size.

The results of the the linear mixed effects model presented
in Table 1 reveal four main effects on the mean fundamental
frequency, namely that of: the vowel segment, participant’s
body height, participant’s head position, and the size of the
can. The first two effects have been described in the past.
No effect on the mean f0 has been found for either the can’s
vertical position or the interaction of vowel segment and can
size.

The effect of the vowel on the mean f0 is in line with pre-
vious reports on the intrinsic f0 in vowels (Whalen & Levitt,
1995; Whalen, Gick, Kumada, & Honda, 1999). This is the
most robust effect found in our data and it shows that higher
mean f0 values were found for the high vowel /I/ and lower
values for the low vowel /a/. Furthermore, the data show that
the taller the participant is, the lower her fundamental fre-
quency is. This negative effect found for participant’s height
corroborates with the frequency code (Ohala, 1994) and the
work by Pisanski and Rendall (2011).

Most importantly, both hypotheses put forward earlier gain
support from our analysis. The model shows that the mean
f0 increases with the elevation of the head, which is consis-
tent with the first hypothesis. In addition, the size of the can
had a significant impact on the mean f0 – participants pro-
duced lower mean f0 when referring to larger cans. This re-
sult is in line with the second hypothesis. However, it has
to be pointed out that the mean f0 differences found between
smaller and larger cans are rather small at only 2–3 Hz. Fi-
gure 3 illustrates that the effect found for size is the strongest
in the highest can positions (1 and 2) and it diminishes or
disappears completely at the lower positions (3–5).

Discussion
The analysis presented above demonstrates that in our data
the mean fundamental frequency is influenced by the vertical
head position rather than the vertical position of the object
referred to. In the computed best-fit model with mean funda-
mental frequency as a dependent variable, we found that the
tested anatomical factor – head position – plays a crucial role
for the mean f0. In contrast, a factor depicting a purely iconic
relationship in the location on the vertical plane – can’s ver-

Table 1: The results of the linear mixed model analysis. The
table shows the effect of fixed factors, listed on the left, on
the dependent variable: mean f0. The estimated effect size is
given for each factor, with the standard error given in brackets
in the line below.

Dependent variable:

Mean f0

Intercept 225.455∗∗∗

(5.358)
Vowel 15.978∗∗∗

(2.347)
Participant’s height −13.481∗∗

(5.986)
Head position 9.371∗∗∗

(3.041)
Can’s vertical position −0.441

(0.572)
Can size 2.225∗∗

(1.005)
Vowel * can size 1.326

(1.894)

Observations 1,872
Log Likelihood −7,841.494
Akaike Inf. Crit. 15,704.990
Bayesian Inf. Crit. 15,765.870

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Figure 3: Mean f0 values for the can in different sizes and
vertical positions. On the horizontal axis, 1 means high and 5
means low position. The darker line depicts a large-sized can
and the lighter one a small-sized can.
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tical position – did not significantly account for the variance
in the mean f0. Thus, we propose that the origin for the re-
lationship between f0 and location in vertical space in speech
production is rooted in the body and its sensori-motor prop-
erties. The cross-modal relationship between f0 and vertical
space, as discussed in the framework of iconicity, is not sim-
ply a result of an iconic form and meaning mapping (“high
is up”). It is a result of embodiment, driven by the sensori-
motor properties, which are influenced by the changes in the
head position.

Furthermore, we found that the size of an object had a sig-
nificant impact on mean f0 values in the current experiment
(cf. Figure 3). In speech production, a correspondence be-
tween fundamental frequency and size of an object has been
previously found in a story reading task by Perlman, Clark,
and Falck (2015), apart from other studies mentioned in the
introduction. In this study, participants were asked to read
stories with concepts of fast/slow and big/small. Reading
pace and f0 were measured and it was found that (1) the
stories with “fast” concepts were read faster than those with
“slow” ones, and (2) the stories with “big” concepts were read
with lower pitch than those with “small” ones. Our study sup-
plements previous findings on f0–size symbolism by showing
that participants reliably signal a difference in size of an inan-
imate object by adapting their fundamental frequency. There
is a large body of work on the iconic f0–size relationship on
the segmental level (cf. e.g., Shinohara & Kawahara, 2010;
Tsur, 2006; Ultan, 1978). It has been shown in various cross-
linguistic analyses that high vowels are more frequently used
in words depicting smaller objects, and low vowels in words
depicting larger objects. Therefore it was highly relevant to
control for the interaction of vowel and can size in the current
analysis, though no significant effect was found.

We would like to point out that even though vertical head
movement does affect the f0 in our data, it is not the only
thing that affects f0 in speech production. Speakers have a
high degree of control over f0 and it is often employed to
signal prominence in speech (Terken, 1991), such as word
stress and sentence accent. Speakers can manipulate their
pitch according to the needs of the communicative situation.
We found that speakers varied greatly in how they completed
the task. Some participants barely moved their head, while
others did, even if it did not seem necessary. Even though a
small number of participants showed very little head move-
ment, we still found that the head position was one of the
strongest predictors of mean f0 variance in our data.

The degree of the vertical head movement varied not only
between the participants, but also between the vertical posi-
tions of the cans. It can be seen in Figure 3 – lower vertical
positions (3–5) yield smaller or no differences in mean f0 be-
tween one another. This can be a side effect of a sufficient
body size to visually process lower targets. A thorough ana-
lysis of speaker behavior is yet to be conducted.

The present study proposes a potential origin for the iconic
relationship between f0 and object location in vertical space.

Our data show that head movement influences f0: upward
head movement leads to higher f0, which is most likely a re-
sult of the larynx pulling on the cricothyroid muscle. We thus
propose that the iconic relationship between f0 and vertical
space is rooted in the body: when looking at an object lo-
cated higher on the vertical plane, head movement generally
reflects the location of the object. In this case, the head move-
ment itself could be considered iconic, because the form is
aligned with the meaning – the head moves upwards toward
an upward target. Previous literature has already established
an iconic relationship between f0 and object location. Our
study supplements previous interpretations of this iconic re-
lationship with evidence that the correspondence stems from
bodily constraints. The upward movement of the head causes
physiological changes that influence f0. In this way, we ar-
gue that the correspondence between f0 and vertical space is
both embodied – because it is rooted in the body – and iconic
– because the form and the meaning correspond. “High is
up”, because the head moves upwards and the effect is thus
an embodied form–meaning correspondence.
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Abstract

While previous models of economic decision-making offer de-
scriptive accounts of behavior, they often overlook the com-
putational complexity of estimating expected utility. Here,
we seek to understand how both environmental and individual
constraints on cognition shape our daily decision. Informed
by the predictions of a recently-proposed resource-rational
process model of risky choice, sample-based expected utility
(SbEU; Nobandegani, da Silva Castanheira, Otto, & Shultz,
2018), we reveal that both time pressure and individual dif-
ferences in processing speed have a convergent effect on risk
preferences during a risky decision-making task. Under severe
time constraints, participants’ risk preferences manifested a
strong framing effect compared to little time pressure in which
choice adhered to the classic fourfold pattern of risk prefer-
ences. Similarly, individual differences in processing speed,
measured using an established task, predicted similar effects
upon risk attitudes as extrinsic time pressure. These findings
reveal a converging contribution of environmental and individ-
ual limitations on risky choice, and provide empirical support
for SbEU as a resource-rational process model of risky deci-
sion making. Notably, SbEU serves as a single-process model
of two well-established biases, and the transition between the
two, in risky choice.
Keywords: Behavioral economics; Risky decision-making;
Time pressure; Processing speed; resource-rational process
models

1 Introduction
Our capacity to adapt our decision-making strategies—
financial or otherwise—to environmental demands such as
time pressure is an invaluable asset for successful behav-
ior. From an online sale which expires in a few minutes, to
the rapid trading of stocks in volatile financial markets, our
decisions are inevitably constrained by time pressure. Fur-
thermore, internal limitations in processing speed—that is,
the speed with which an individual can perform any cogni-
tive operation—should interact with these environmentally
imposed limitations (Gigerenzer & Selten, 2002; Salthouse,
1985) as making a choice is widely thought to require a com-
putation of the relative values of the options under consider-
ation (Kahneman and Tversky, 1979). In light of these con-
straints, one might wonder if our apparent failures to abide
by rational decision-making frameworks (e.g., expected util-
ity theory) could reflect a strategic use of limited cognitive
resources. To this end, a number of recent theories have pro-
posed that human cognition, with all its apparent biases, can
in fact be understood as optimal response—subject to com-
putational and cognitive limitations (rational minimalist pro-
gram, Nobandegani, 2018; Griffiths, Lieder, & Goodman,
2015; Icard, 2014).

Thus, it is of interest to better understand both how we
have adapted our decision-making processes to meet these
demands and to what extent our ostensibly irrational choices
are shaped by these limitations. While previous work has in-
vestigated the effects of environmental constraints like time
pressure on irrational choice (Guo, Trueblood, & Diederich,
2017), here we seek to corroborate the contributions of both
environmental and individual limitations on risky decision-
making.

Perhaps one of the most studied departures from rational
theories of decision-making is the violation of description in-
variance, which posits that preferences should remain consis-
tent across choices, regardless of the context in which avail-
able options are presented. For example, according to ex-
pected utility theory (von Neumann & Morgenstern, 2007),
whether a decision is made to avoid a loss or seek gains, it
should not change one’s choice. However, this assumptions
is challenged by a wealth of data supporting the framing ef-
fect: people tend to be risk seeking for losses and risk averse
for gains (Tversky & Kahneman, 1981). Sensitivity to choice
framing has been documented in a variety of real-world cir-
cumstances including consumer (e.g., Levin & Gaeth, 1988;
Loke & Lau, 1992), and medical decisions (e.g., McNeill,
Pauker, Sox, & Tversky, 1982; Moxey, O’Connell, McGet-
tigan, & Henry, 2003). This classic pattern of choice—risk-
seeking in the domain of losses and risk-aversion in the do-
main of gains—is perhaps most famously explained by the
S-shaped utility function posited by prospect theory (Kahne-
man & Tversky, 1979; Tversky & Kahneman, 1992)—a well-
known descriptive model of choice behavior.

Prospect theory also explains another choice phenomenon:
a decision-maker’s risk preference depends not only on the
framing of the problem (gains vs. losses), but also the prob-
ability of the outcome (small vs. large) associated with the
risky option. For example, people buy lottery tickets for
which winning in unlikely (low probability gain) but prefer
to pay to insure their houses against unlikely disasters (low
probability loss). On the other hand, when faced with highly
probable outcomes, people prefer to select a sure gain over
a probabilistic one—“something is better than nothing”—
but prefer to risk it all when faced with two unfavorable
options—“Ive got nothing to lose” (Di Mauro & Maffioletti,
2004; Fehr-Duda et al., 2010; Kahneman & Tversky, 1979;
Markowitz, 1952; Scholten & Read, 2014; Tversky & Kah-
neman, 1992). According to prospect theory, the fourfold
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Figure 1: Sample-based expected utility (SbEU; Nobande-
gani et al., 2018) model predictions for the differential effect
of the number of samples on choice. With limited samples
(Left) model predicts a framing effect whereas, with more
samples, the model predicts more of a fourfold pattern.

pattern of choice arises from the interplay between the S-
shaped utility function and the subjective over-weighting of
small probabilities (below 1/3) and underweighting of large
probabilities (above 1/3) (Tversky & Kahneman, 1992).

While prospect theory offers a descriptive account for the
framing effects, it fails to explain either how the decision-
making process evolves over time, or how time constraints
might bear upon the decision-making process. In order to an-
swer questions about the role of time in these risky choices
one must turn to dynamic models of choice. Sequential sam-
pling models are a class of models which assume that choice
preferences are estimated by the simulation of an action’s po-
tential consequences and where samples are simulated out-
comes (Shadlen & Shohamy, 2016). In such models, each
simulation takes a non-negligible amount of time and can-
not be run in parallel, making time a valuable resource for
the decision-maker (Lieder, Griffiths, & Hsu, 2018; Noban-
degani, da Silva Castanheira, Otto, & Shultz, 2018). Thus,
both total available time and the speed at which these simu-
lations (i.e., samples) are run are directly proportional to the
total number of potential outcomes considered (i.e., samples).

If sampling is costly in terms of elementary mental pro-
cesses, then the number of effective ‘samples’ an indi-
vidual is able to draw in a fixed amount of time should
also vary in accordance with individual differences in the
speed at which an individual processes information—a well-
documented capacity limitation termed “processing speed”—
which varies considerably across individuals (Kail & Salt-
house, 1994). Accordingly, we leverage time pressure manip-
ulations and these individual differences in processing speed
to investigate the effect of limiting the number of samples

on risky decision-making. Using these two manipulations,
will test the effect of varying the number of samples on
risky decision-making. Our hypotheses on the directional-
ity of the effect of the time pressure are chiefly informed by
a recently-proposed resource-rational process-level model of
risky decision-making, sample-based expected utility (SbEU;
Nobandegani et al., 2018). Extending an earlier model by
Lieder et al. (2018), SbEU posits that an agent rationally
adapts their strategies depending on the amount of time avail-
able for deciding.

Recently, Lieder et al. (2018) proposed a rational process
model of risky choice. This model estimates the difference
in expected utility of two prospect by using importance sam-
pling, whereby outcomes are sampled in proportion to both
its objective probability and its utility (e.g., important out-
comes are overrepresented). Lieder et al.’s model, however,
was developed under restrictive technical assumptions, mak-
ing it only optimal when a large number of samples can be
drawn. Fortunately, recent developments have determined an
optimal sampling distribution which holds for both small and
large number of samples (Nobandegani et al., 2018). This
is of particular importance as mounting empirical evidence
suggests that decision-makers draw very few samples (e.g.,
Vul, Goodman, Griffiths, & Tenenbaum, 2014); thus, provid-
ing an opportunity to explore the effect of limiting cognitive
resources (i.e., available samples) on risk preferences.

Accordingly, we used SbEU to generate predictions of peo-
ple’s behavior for a mixture of gambles (i.e., both gains and
losses and large and small outcome probabilities) under both
conditions of time pressure—in which they can draw very few
samples (s = 1)—and less constrained conditions—in which
they can draw more samples (s = 2). Both prospects and
time conditions modeled are conceptually identical to those
experienced by participants during the task. As depicted in
Fig. 1, drawing more samples to estimate the expected util-
ity results in moving from a ‘pure’ framing effect (Fig. 1a) to
the classic fourfold pattern of risk preferences (Fig. 1b). This
prediction is in line with the empirical work which suggests
that time pressure reduces the amount of information one can
process (Miller, 1960; Zur & Breznitz, 1981), as the four-
fold pattern requires integrating both outcome and outcome
probability information (Kahneman & Tversky, 1979, 1979).
Thus, informed by the SbEU’s predictions, we sought out to
test whether the effects of time pressure on economic choice
would conform to the hypothesized pattern. Furthermore, as
these predictions are not specific to external time pressure, but
any internal constraint on the amount of information that can
be processed per unit time, we simultaneously test if differ-
ences in cognitive capacity (i.e., processing speed) can also
predict a similar pattern of results.

Method
Participants
Data were collected online using Amazon’s Mechanical Turk;
100 (41 Female) US-based adult volunteers (mean age =
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Figure 2: Screenshots of the Gambling task. Participants were given instructed to think about the gamble presented to them
before being prompted to respond. The time allotted to think about the problem varied between time pressure conditions: under
severe time pressure participants were given 1.5 second to think whereas under light time pressure participants had 5 seconds.
Gambles were represented as bar charts where the probability of an outcome was depicted as proportional to the size of the
colored portion. Color was used to emphasize the frame of the problem: red represented losses and blue represented gains.

34.77, SD = 9.88), recruited via Amazon’s Mechanical Turk
(Crump, McDonnell, & Gureckis, 2013), participated in the
experiment for a base remuneration of $3.00 USD and a cash
bonus—computed in proportion to the outcomes of all trials,
with a mean overall payment of $5.85 USD. This study was
approved by the McGill University Research Ethics Board.

Processing Speed Measurement
Individual differences in processing speed were assessed us-
ing a computerized Digit-Symbol Coding task (Mathias et
al., 2017; Salthouse, 1985) which we adapted for use online.
Participants were asked to indicate whether or not the digit-
symbol pair presented in the center of the screen matched ac-
cording to the key of associations presented to them. In order
to asses processing speed, participants were given 90 seconds
to respond to as many trials as correctly and quickly as possi-
ble. To ensure participants were taking the task seriously and
to minimize exclusions due to random responding, partici-
pants were asked to complete the task a second time if their
accuracy was below 70%. We subsequently only analyzed the
data from a participant’s final attempt at the task.

Risky Decision-Making Task
Participants were presented with 120 pairs of binary choices,
60 of which were presented during the light-time pressure
(LTP) block and the remaining 60 were presented in the se-
vere time pressure block (STP). Time pressure was manip-
ulated by allowing the participants either 1.5 seconds (STP

blocks) or 5 seconds (LTP blocks) to think about their choice.
After this lock-out period, participants had a 1 second win-
dow to respond in both time pressure conditions; this re-
sponse window was implemented to minimize the variabil-
ity in response times and isolate the effects of processing
speed on decision-making. Participants were prompted to
think about their choice before the response window opened
which was signaled by a switch in the cue—from “think” to
“choose”—and the image of two arrow keys. The order of
presentation of the two time pressure blocks was counterbal-
anced across participants.

Each pair of options involved a certain option and a risky
option with probability p of winning the indicated amount
and probability 1− p of winning nothing; all gambles were
of equal expected value except for 12 “catch” trials in which
the expected value greatly favored an option (expected value
= ±90). Half of the stimuli were framed as losses and half of
the stimuli were framed as gains. In both frames, the outcome
probability of the risky options varied between extremely
likely (0.90, 0.95 or 0.99) or extremely unlikely (0.10, 0.05,
0.01).

Information about each pair of options were presented in
a manner similar to that used by Tymula et al. (2012): at
the start of each trial participants were presented with two
stacked bar-graphs where framing was depicted by the color
of the bars (red for losses, and blue for gain) and the outcome
probability was depicted by the proportion of the bar which
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was colored (either red or blue), while the amounts ranged
from $1 to $200 (see Fig. 2). The outcomes of gain trials
were added to total earnings while the outcomes of loss trials
were subtracted from total earnings—making the task incen-
tives compatible. Participants were paid a bonus in proportion
to their total earnings.

Data Analysis
In order to ensure that participants’ choices were not made
randomly but were based on the information presented, par-
ticipants with less than 75% accuracy on catch trials across
both conditions (operationalized as the proportion of choices
which maximize expected value) were excluded from the
sample, resulting in the exclusion of 21 participants. Partici-
pants who also failed to score above 70% accuracy during the
last run of the digit-symbol task were also excluded from the
sample—one in total. Finally, six participants were excluded
for failing to meet the specified deadline resulting in a total
exclusion of 28 participants of the 100 collected.

We used a mixed-effects logistic regression to predict risky
versus certain choice on the basis of 1) the framing of the
problem (losses or gains) 2) the outcome probability (coded
as >0.5 or <0.5), and 3) time pressure condition (light or se-
vere), and all two- and three-way interactions between these
predictors. This regression model then gives us two terms
of interest: the two-way interaction between probability and
framing—an estimate of the fourfold pattern of choice effect
since it represents the extent to which mean differences be-
tween gain and loss frames depend on outcome probability
(large or small), and the three-way interaction between prob-
ability, framing and time pressure, which indicates the ex-
tent to which the presence of fourfold pattern is modulated
by time pressure. Similarly, two additional regression models
were run to test the effects of individual differences in pro-
cessing speed on choice within each time pressure condition.
Specifically, to assess the influence of individual differences
in processing speed on choice, a similar regression was run
for each time pressure condition except with normalized pro-
cessing speed score added as an independent variable instead
of time pressure condition. For all regressions, all categorical
independent variables were effect coded and entered as both
fixed and random effects. These regressions were estimated
using the lme4 package (Pinheiro & Bates, 2002) for the R
programming language.

Results
As predicted, under little time constraints participants exhib-
ited a fourfold pattern of choice: they were both sensitive to
the framing of the problem (β = 1.44, SE = 0.10, p < .001),
and the interaction between the outcome probability and the
framing of the problem (β =−0.37, SE = 0.18, p = 0.04).

However, under strong time pressure participants exhibited
a marked framing effect, becoming less sensitive to outcome
probability (β = 0.28, SE = 0.08, p = 0.001). Thus, the effect
of time pressure on risky choice, surprisingly, changed par-
ticipant’s preferences from one ostensibly irrational pattern

Figure 3: The effect of time pressure on risky decision-
making. Under the light time pressure condition (LTP; 5 sec)
participants showed more of a fourfold pattern compared to
when under the severe time pressure condition (STP; 1.5 sec).

to another (see Fig. 3).
However, it remains unclear if this change in preference is

a result of a reduction in the participant’s ability to compre-
hend the gambles offered and correctly respond. It is possible
that time limitations would lead to a nonspecific increase in
choice randomness, as opposed to the proposed reduction in
cognitive resources used. To test this alternative account, we
compared the percentage of correct responses to the catch tri-
als in the strong time pressure condition to test if it was sig-
nificantly higher than chance. Using an Exact Binomial test,
we were able to confirm that participants were capable of re-
sponding to the catch trials well above chance (Accuracy =
0.91, p≤ 2.2×10−16). This is to be expected as those partic-
ipants who did not respond accurately in general—either due
to lack of attention or understanding—were excluded from
the analyses.

Finally, individual differences in processing speed were
found to be related to risk preference in the predicted direc-
tion. Under light time pressure (LTP condition), individual
differences in processing speed interacted with both framing
of the problem (β = 0.29, SE = 0.13, p = 0.02) and the in-
teraction between outcome probability and the framing of the
problem (β = −0.51, SE = 024, p = 0.03). As processing
speed increased, the extent to which participants exhibited
a fourfold pattern also increased. Put another way, as pro-
cessing speed decreased they were less likely to endorse a
fourfold pattern (see Fig. 4). Moreover, these changes in risk
preferences were not likely due to random performance on
the task as processing speed and catch trials accuracy was not
correlated (r = −0.0081, p = 0.94). Similarly, under severe
time pressure (STP condition), both the two-way interaction
between processing speed and the framing of the problem
(β = 0.24, SE = 0.09, p = 0.01) and three-way interaction
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Figure 4: Under the light time pressure condition individual
differences in processing speed (PS) predicted the extent to
which participants endorsed a fourfold pattern. Processing
speed conditions were assigned based on a median split.

between outcome probability, framing, and processing speed
(β=−0.30, SE = 0.12, p= 0.01) were statistically significant
(see Fig. 5).

General Discussion
The results presented here show that both situational and per-
sonal factors which limit cognitive resources contribute to
changes in participants’ risk preferences. Under little time
constraints, participants produced a fourfold pattern of risk
preferences—consistent with prospect theory (Kahneman &
Tversky, 1979; Tversky & Kahneman, 1992). However,
as predicted by a recently-proposed sample-based variant of
expected utility theory, SbEU (Nobandegani et al., 2018),
limitations in available cognitive resources—induced either
through time pressure or measured by individual differences
in processing speed—lead participants to go from showing a
fourfold pattern to a framing effect.

While, descriptive models like prospect theory describe the
risk preferences when selecting between gambles, this pro-
vide no account for how these preferences evolve over time
or how limiting cognitive resources affects preferences. Thus,
our results surprisingly reveal that the ostensibly irrational
framing effect, fourfold pattern, and the demonstrated tran-
sition between the two, can all be explained as resulting from
rational use of limited cognitive resources.

Interestingly, Stanovich and West (1998) demonstrated that
performance on classic reasoning and judgment tasks and re-
lationships to measures of academic achievement, correlates
within individuals. Taken together with the results presented
here, there is mounting evidence that the use of heuristics and
biases may reflect the rational use of limited processing re-
sources, thus suggesting that future models of choice should
take into consideration individuals’ cognitive abilities (or lim-

Figure 5: Under the severe time pressure condition individual
differences in processing speed predicted the extent to which
participants endorsed a fourfold pattern. For ease of expo-
sition, processing speed scores (PS) were split based on the
median.

itations). However, more work needs to be done to identify
which specific cognitive capacities (e.g., processing speed or
working memory) significantly contribute to the use of certain
heuristics, thus providing an opportunity to better understand
the cognitive mechanisms required for the performance of a
given task.

Recent empirical work has also found time pressure to pro-
duce a similar pattern of results—severe time pressure lead
to stronger framing effects—but failed to observe a fourfold
pattern; instead they found individual preferences to reflect a
weaker framing effect under light time pressure (Guo et al.,
2017). However, the results were interpreted to arise from us-
ing a fast, intuitive systemas opposed to a slow, deliberative
system.

Some have suggested that heuristics and biases are more
than merely a result of flaws in human reasoning but are
adaptive strategies to deal with conditions of limited time,
knowledge or computational capacities (Simon, 1956; Todd
& Gigerenzer, 2012) or take advantage of the structure of in-
formation in the environment (Todd & Gigerenzer, 2012). In
fact, both experimental work (Goldstein & Gigerenzer, 2002),
and theoretical work (e.g., Nobandegani & Shultz, 2019) has
shown that fast and frugal algorithms can outperform stan-
dard integrative algorithms when knowledge is limited. Our
results are in accordance with this compromise between nor-
mative and heuristic views of cognition as we show that bi-
ases like the framing effect can be explained as a strategic use
of limited cognitive resources.

While previous work has also interpreted the framing ef-
fect as being a result of quick and intuitive thinking, these ex-
planations make appeal to dual-process theory (De Martino,
Kumaran, Seymour, & Dolan, 2006; Guo et al., 2017; Kah-
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neman & Frederick, 2005; Sloman, 1996; Stanovich & West,
1998). Surprisingly, here we show that a rational single-
process model can account for the observed results: an ap-
parent framing effect can arise from limiting the number of
samples in a resource-rational, sample-based expected utility
model, SbEU (Nobandegani et al., 2018). A single-process
framework is favorable over dual-process models as it pro-
vides a more parsimonious account of the observed effect.

Interestingly, unlike dual process theory would suggest,
our results reveal that even when using a slow, deliberative
system one can produce ostensibly irrational behavior. Con-
cretely, according to our findings, deliberation takes us from
one ostensibly irrational bias (framing effect) to another (the
fourfold pattern of risk preferences)—and, as our work sug-
gests, all of this can be understood as the optimal use of lim-
ited cognitive resources.
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Abstract 

Previous studies have shown that readers often overestimate 
the similarity between their perspective and the perspective of 
protagonists in a story. This egocentric projection is argued to 
originate from readers’ tendency to use their own knowledge 
as a frame of reference from which they (insufficiently) adjust 
away to account for protagonists’ less informed perspective. 
This experimental study demonstrated that readers use 
feedback about protagonists’ knowledge status to draw 
inferences that are more accurate on future perspective-taking 
trials. Readers who were given the opportunity to learn through 
feedback not only adjusted their perspective-judgment more 
than those who did not receive feedback, these readers also 
showed less egocentric projection on future assessments.  

Keywords: perspective-taking; egocentricity bias; anchoring 
and adjustment; privileged information; feedback 

Introduction 
Communication processes rely on our ability to successfully 
reason about others’ mental states. Research examining this 
perspective-taking, however, paints a contradictory picture 
with regard to communicators’ tendency to be accurate 
perspective-takers. On the one hand, a large body of research 
suggests that communicators rapidly and accurately assess 
others’ perspective (Brown-schmidt, Gunlogson, & 
Tanenhaus, 2008; Nadig & Sedivy, 2002). In contrast to this 
view, studies have shown that rapid (and automatic) 
judgments of others’ mental state are often influenced by 
communicators’ own knowledge and attentional status 
(Apperly et al., 2010; Keysar, Barr, Balin, & Brauner, 2000). 
These studies argue that perspective-taking activities follow 
an egocentric anchoring and adjustment process (Epley, 
Keysar, Van Boven, & Gilovich, 2004). During this 
perspective-taking process, communicators adopt another’s 
perspective by using their own perceptions as a frame of 
reference and adjust this frame to take into account possible 
informational differences between their own and others’ 
perceptions. These perspective-adjustments, however, are 
often insufficient due to the immediate accessibility or 
saliency of one’s own perceptions. The accessibility and, 
hence, saliency of one’s own knowledge in contrast to the 
seemingly impermeable nature of the other’s mind makes it 
hard for perceivers to ignore or suppress their own perception 
as a possible estimate of others’ perspective. The failures to 
inhibit one’s own perspective during perspective-taking may 
result in egocentric projection (Ames, 2004), during which 
perceivers wrongly assume that their private perspective is 
shared by others. 

Studies have shown that egocentric projection might also 
occur during reading when readers try to take story 
characters’ perspective (e.g., Keysar, 1994;  Weingartner & 
Klin, 2005, 2009). In these studies, readers overestimated the 
extent to which their knowledge was accessible to 
uninformed protagonists. That is, readers read stories in 
which a speaker protagonist sent an ambiguous message (e.g., 
“About that dancing class: I can’t think of better ways to 
spend my Tuesday evenings”) to a friend. Readers learned 
how to interpret the speaker’s message by the clarifying event 
information they received beforehand. When this 
disambiguating information suggested counterfactual (e.g., 
“The dance class had been dull”) rather than factual (e.g., 
“The dance class had been interesting) information, readers 
interpreted the speaker’s message to be sarcastic. This 
disambiguating information was not accessible to the 
recipient of the speaker’s message and, for each story, this 
addressee protagonist had no reason to believe that the 
speaker was being sarcastic. Studies showed, however, that 
readers were very likely to use their own interpretation of the 
speaker’s communicative intention to judge that the 
uninformed addressees would perceive the speaker’s 
message in a similar way. That is, when privileged 
information suggested that the speaker was being sarcastic, 
readers assumed addressees would also perceive this 
sarcasm. In these instances, readers’ own knowledge about 
the speaker’s experience “cursed” (Birch & Bloom, 2007; 
Keysar, 1994) their ability to suppress their own 
interpretation of the speaker’s communicative intention while 
imaging the perspective of the uninformed protagonists. 

Epley and his colleagues (2004) showed that this “curse of 
knowledge” (Keysar, 1994) effect on perspective-taking 
originates from an egocentric anchoring and insufficient 
adjustment process. In their “Sarcastic Messages” 
experiment, Epley et al. (2004) asked readers to read similar 
stories in which a speaker protagonist left ambiguous 
voicemail messages on the answering machine of his friends. 
Subsequently, readers indicated either the speaker’s intention 
with his voicemail or how they thought the recipient of the 
voicemail would interpret the message. Following egocentric 
anchoring, Epley et al. (2004) expected readers to interpret 
the addressee’s perception of the voicemail based on 
information that was accessible to themselves. Findings 
indeed showed that readers were more likely to indicate that 
addressees would perceive the speaker’s sarcasm when 
readers’ privileged information suggested the speaker was 
being sarcastic rather than sincere. Epley et al. (2004) further 
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showed that this perception of sarcasm was more moderate 
when readers only judged addressees’ interpretation of the 
message rather than only their own perception of sarcasm. 
The more moderate perception of the speaker’s sarcasm in 
the perspective-taking condition showed that readers 
acknowledged that the messages sounded more ambiguous to 
the uninformed addressees than to themselves. However, 
since readers still believed that addressees perceived the 
speaker’s sarcasm, readers’ perspective-judgments still 
reflected their own knowledge about the speaker’s 
communicative intention. Even though readers adjusted their 
egocentric interpretation into a more moderate judgment, 
these adjustments were not sufficient in order to reflect 
addressees’ true perspective. 

Inhibiting Egocentric Information 
Perceivers learning to inhibit their own cognitions during 
mental state reasoning can perhaps counter insufficient 
perspective-adjustments. For instance, recent perspective-
switching research (Samuel, Roehr-Brackin, Jelbert, & 
Clayton, 2018) showed that communicators found it difficult 
to switch back to an egocentric judgment once they had 
learned to adopt another frame of reference. In addition to 
this, it is argued that the more cues perceivers receive about 
the knowledge status of others, the less likely they are 
expected to engage in egocentric projection (Eyal, Steffel, & 
Epley, 2018; Keysar, Barr, & Horton, 1998; West, 1996). 
However, studies have shown that directing perceivers’ 
attention to focus on other people’s knowledge and 
attentional status does not always improve perspective-taking 
accuracy (Damen, Van der Wijst, Van Amelsvoort, & 
Krahmer, 2018; Eyal et al., 2018). For instance, in a direct 
replication and extension of Epley et al.’s (2004) “Sarcastic 
Messages” study, Damen et al. (2018c)1 examined whether 
explicit and repeated instructions to focus on addressee 
protagonists’ uninformed perspective helps readers to 
acknowledge that their privileged information was not 
accessible to these addressees. However, not only did Damen 
et al. (2018c) replicate readers’ egocentric anchoring and 
insufficient adjustment during perspective-taking, their 
findings also showed that explicit perspective-focus 
instructions did not stimulate the adjustment phase. 
Regardless of an explicit focus on addressees’ uninformed 
perspective, readers still overestimated the extent to which 
the uninformed protagonists shared their interpretation of the 
voicemail. 

Gaining Interpersonal Insight 
Readers in Epley et al. (2004) and Damen et al. (2018c) were 
more likely to rely on privileged rather than common-ground 
information while interpreting protagonists’ perspective. 
Interesting to note here is that readers’ perspective-taking 
appertained to a “top-down process” (Eyal et al., 2018), 

                                                   
1 Damen et al.’s (2018c) preregistration, materials and data are 

available in the Open Science Framework (doi: 
10.17605/osf.io/kv5mu). 

whereby readers selected perspective-information that, 
according to them, was the most relevant to use. In turn, 
highlighting or enhancing the accessibility of more reliable 
information (i.e., protagonists’ perspective) did not make 
readers more likely to use this information during mental 
state reasoning. This finding raises the question whether, 
during this top-down inferencing, readers did not see the need 
to adjust their judgment because they were unaware of its 
inaccuracy. In this case, increasing readers’ awareness of the 
inaccuracy of their judgments might make them better future 
perspective-takers. 

West (1996) found some support for this line of reasoning 
by showing that an awareness of inaccurate (egocentric) 
predictions allowed perceivers to learn from their mistake 
and to improve their perspective-taking skills. In West 
(1996), participants learned to predict a target’s preference 
for quilt patterns through the feedback they received from the 
target. In each trial, agents made a prediction of the target’s 
preference for the pattern (rated from “1 = dislike very much” 
to “7 = like very much”). Subsequently, the target responded 
by showing his actual preference (rating) for the pattern, after 
which agents rated their own preference. Findings showed 
that the agents’ first predictions of the target’s preferences 
showed egocentric projection. That is, if agents liked the 
pattern, they assumed the target did too. Interestingly, this 
egocentric projection decreased on subsequent trials due to 
the target’s feedback. The more agents learned about the 
target’s preferences, the less likely they were to project their 
egocentric preferences onto the target on subsequent 
perspective-taking trials. Apparently, feedback about their 
perspective-judgments allowed agents to disregard their own 
preferences and to select perspective-information that more 
reliably predicted the target’s true perspective.  

In addition, recent research by Eyal and colleagues (2018) 
showed that receiving accurate perspective-information 
rather than relying on existing knowledge improved 
communicators’ perspective-taking accuracy. In Eyal et al. 
(2018), romantic partners who had the opportunity to discuss 
each other’s preferences on a range of topics were able to use 
this gained insight on future assessments of their partner’s 
preferences. This in contrast to the partners in the 
perspective-taking conditions who were not given this 
discourse opportunity, but who had to rely solely on their 
imagination of their partner’s preferences. According to Eyal 
et al. (2018), the act of trying to take others’ perspective does 
not necessarily lead to a more accurate insight into these 
imagined mental states, because perceivers are very likely to 
select the wrong information to base their inferences on. In 
this sense, providing communicators with the opportunity to 
gain reliable perspective-information of which they are also 
aware of its appropriateness should improve perspective-
taking accuracy.  
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Current Study 
This study investigates the role of feedback as a strategy to 
gain accurate insight into others’ perspective. In particular, 
we examine whether confronting readers with the accuracy 
of their perspective-judgment (i.e., feedback) allows them to 
accurately assess protagonists’ perspective on subsequent 
perspective-taking trials. Additionally, we aim to explore 
whether readers adjust their perspective differently 
depending on how they gain this perspective-insight. In this 
study, we contrast two approaches. For the first approach, we 
rely on perceivers’  “bottom-up inferencing” (e.g., Eyal et al., 
2018), through which perceives gain interpersonal insight by 
perceiving others’ thoughts and actions. Since this strategy 
indirectly communicates to perceivers whether their first 
assessment had been correct, we will term this approach as 
indirect feedback. We contrast this approach against a 
strategy through which perceivers gain insight by receiving 
explicit feedback about the accuracy of their assessment (e.g., 
West, 1996). We will term this type of information as direct 
feedback and we will use this term to refer to the situation in 
which readers are made explicitly aware that they have made 
an error and why their judgment was inaccurate (e.g., Ellis, 
Loewen, & Erlam, 2019).  

This study replicates Damen et al.’s (2018c) study in which 
readers judge addressees’ interpretation of voicemails sent by 
a speaker protagonist. We extend the experimental design by 
adding a feedback manipulation and a subsequent second 
measurement of readers’ judgment of addressees’ 
interpretation of the voicemail. In line with previous 
egocentric anchoring findings (Epley et al., 2004; Damen et 
al., 2018c), we expect readers to overestimate the extent to 
which uninformed addressee protagonists will also perceive 
a speaker’s sarcasm. We expect that this egocentric 
projection occurs more at readers’ first than at their second 
prediction of addressees’ perspective. In addition, we expect 
that this relationship is qualified by whether readers receive 
feedback about the accuracy of their first prediction. In 
particular, compared to a baseline in which readers do not 
receive feedback, we expect that both feedback types will 
help readers to adjust their first prediction into a perspective-
judgment that more accurately reflects addressees’ sincere 
interpretation of the message. Finally, we expect that readers’ 
second predictions will be more accurate after they had been 
explicitly told their judgment had been wrong (direct 
feedback), than when readers need to infer the accuracy of 
their judgment from a description of addressees’ response to 
the message (indirect feedback). This study is preregistered 
in the Open Science Framework (doi 
10.17605/osf.io/kpw6u). 

Method 

Participants 
A total of 149 undergraduates were invited to participate in 
the study. Seven participants were excluded because they 
recognized the voice-actor (N = 5) or because they were non-
native speakers of the language of the experiment (N = 2). 

The remaining participants were randomly allocated to the 
control (N = 48), direct feedback (N = 47), and indirect 
feedback (N = 47) conditions (105 women, 37 men, Mage = 
21.57, age-range 18-38). 

Design 
In each condition, participants read 12 scenarios in which a 
speaker protagonist (Tom) left a voicemail-message on the 
answering machine of an addressee protagonist. After 
hearing this voicemail, participants judged the addressee’s 
perception of the speaker’s sarcasm both before (time 1) and 
after (time 2) they received feedback about their first 
perspective-judgment. This resulted in a 3 (Condition: 
control, direct feedback, indirect feedback) x 2 (Time: time 1, 
time 2) design in which Condition was treated as a between-
subjects factor and Time as a within-subjects factor.   

Procedure and Materials 
We replicated and extended the experimental materials and 
procedure of Damen et al.’s (2018c) “interpretation” 
condition. On a computer, participants read 12 stories 
describing an event in the life of Tom. For instance, in the 
story “The Dance Class”, participants read the following: 
 

Tom was on his way to the first night of his ballroom 
dancing class when he saw Eileen, an old friend from his 
dorm last year. When he told her that he was on his way to 
a ballroom dancing class, she excitedly replied, “I’m 
thinking of taking that class, but I can’t make it to tonight’s 
class--I am having dinner with friends. Could you call me 
when you get back and tell me how it is?” 
 
Subsequently, participants learned that Tom’s experience 

had been either negative (e.g., “(…) the instructor spent the 
entire time taking attendance and filling out lengthy forms 
and questionnaires.”) or positive (e.g., “(…) the instructor 
spent the entire time teaching the class fun, new dances.”). 
Both experiences followed with Tom leaving a voicemail on 
the answering machine of his friend. In “The Dance Class” 
story, Tom left the following message:  
 

Eileen, this is Tom. Hope you enjoyed your dinner. About 
that ballroom dancing class: Judging from tonight’s class, 
I can’t think of better ways to spend my Tuesday evenings. 
Anyways, give me back a call and I’ll fill you in on the 
details. Bye. 

 
We re-used the 12 voicemails from Damen et al. (2019b) 

who demonstrated the validity of the voicemails. In a separate 
rating experiment, Damen et al. (2019b) asked listeners to 
rate the voicemails in the absence of clarifying (positive, 
negative) event information (1 = as very sincere, 7 = as very 
sarcastic). This rating experiment showed that the voicemails 
sounded truly ambiguous to the uninformed listeners. That is, 
participants rated the voicemails to sound neither as very 
sarcastic or as very sincere (M = 3.73, SD = 0.83). 

1588



 

 

We followed the experimental procedure described in 
Damen et al. (2019b), and asked participants to indicate – 
immediately after listening to Tom’s voicemail – how the 
addressee protagonist (Tom’s friend) would perceive the 
voicemail message (1 = definitely as sincere, 7 = definitely 
as sarcastic). For this study, this constituted the first 
measurement of participants’ judgment of the addressee’s 
perception of sarcasm (time 1). All stories were presented to 
participants in digital booklets, and half the stories in these 
booklets described a positive event, whereas the other half 
described a negative event. We created four versions of these 
booklets: The first booklet contained a random order of 
negative versus positive events (booklet 1), and another one 
contained its mirror image (booklet 2). Additionally, for each 
booklet, we created a version that contained a reversed order 
of the events. In contrast to Damen et al. (2019b), we chose 
to focus on participants’ judgments of the addressee 
protagonist’s perspective only for those stories in which 
participants’ privileged information suggested that Tom was 
being sarcastic (negative events). We thereby treated the 
stories that suggested Tom was being sincere (positive event) 
as fillers. 

Additionally to our replication procedure, we manipulated 
the extent to which participants received feedback about their 
first judgment of the addressee’s perception of sarcasm. This 
feedback was automated in the sense that the computer 
provided participants with either direct or indirect feedback. 
In the direct feedback condition, participants’ received 
explicit feedback about the accuracy (i.e., ranging from “You 
are completely right!” to “You are completely wrong!”) of 
their judgment based on the answer they provided on the 7-
point scale (see Table 1). 
 

Table 1: Example of the direct feedback participants 
received after judging Eileen’s perception of sarcasm (1 

= definitely as sincere, 7 = definitely as sarcastic) 
 
Answer Direct Feedback 

1 “You are completely right! Eileen thinks that 
Tom liked the class.” 

2 / 3 “You are almost right! Eileen thinks that Tom 
liked the class.” 

4 “You are not right! Eileen thinks that Tom 
liked the class.” 

5 / 6 “You are wrong! Eileen thinks that Tom liked 
the dance class.” 

7 “You are completely wrong! Eileen thinks 
that Tom liked the class.” 

 
Participants in the indirect feedback condition received 

feedback about the accuracy of their perspective-judgement 
regardless of their choice on the 7-point scale. This feedback 
constituted a follow-up text that described addressees’ 
sincere interpretation of Tom’s voicemail. For instance in 
“The Dance Class” story, participants could derive from 
Eileen’s thoughts and actions in response to Tom’s voicemail 
that she thought that Tom had enjoyed attending the class:  

 
After saying goodbye to her friends, Eileen cycled home. 
She decided she was going to search for her dancing shoes 
the minute she would arrive at home. She could hardly 
wait to join Tom in the dance class. If Tom had liked the 
dance class, she definitely would like it too. 

 
In contrast to the two feedback conditions, participants in 

the control condition did not receive feedback about their first 
assessment of addressees’ perception of sarcasm. 
Subsequently to their first judgment, these participants read a 
follow-up text that described the addressee’s thoughts and 
actions that did not target her interpretation of the voicemail:   
 

After saying goodbye to her friends, Eileen cycled home. 
She and her friends had enjoyed dinner. They had known 
each other since high school and had built up a close 
friendship. Although they only saw each other a few times 
a year, it was always like they never had been apart. 
 
In all three conditions, participants subsequently re-judged 

addressees’ interpretation of the voicemail (1 = definitely as 
sincere, 7 = definitely as sarcastic). After this second 
assessment, participants answered a comprehension question 
that encouraged participants to attend to the materials. These 
12 questions did not target participants’ privileged 
information. When participants answered the comprehension 
question incorrectly, they were informed to attend to the 
materials more carefully. Participants answered almost all 
questions correctly (M = 10.52, SD = 1.07), but the number 
of correct responses differed between conditions, H(3) = 
9.73, p <.01. Pairwise comparisons with adjusted p-values 
showed that participants answered more comprehension 
questions correctly in the indirect feedback condition (M = 
10.81, SD = 0.95) than in the direct feedback condition (M = 
10.13, SD = 1.15), (p < .01). The accuracy scores did not 
differ between the control and the two feedback conditions (p 
> .05). After reading 12 stories, participants filled out their 
demographics and were debriefed about the purpose of the 
experiment. 

Results 
We computed a mean sarcasm score of participants’ first 
(time 1) and second (time 2) judgment of addressees’ 
perception of the speaker’s sarcasm for the scenarios in which 
participants’ privileged information suggested that the 
speaker was being sarcastic (negative events). We submitted 
these mean scores to a mixed analysis of variance in which 
Condition (control, direct feedback, indirect feedback) was 
treated as a between-subjects factor and participants’ 
judgment of addressees’ perception of sarcasm (Time; time 1, 
time 2) as a within-subjects factor. The means of participants’ 
judgment of addressees’ perception of sarcasm as a function 
of Time and Condition are presented in Figure 1. 
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Figure 1: Mean scores of participants’ judgment of 
addressees’ perception of sarcasm (1 = definitely as sincere, 

7 = definitely as sarcastic) as a function of Time (time 1, 
time 2) and Condition (control, direct feedback, indirect 

feedback). 
 

In line with our first hypothesis, participants thought 
addressees would perceive the speaker’s sarcasm more at 
their first (Mtime 1 = 3.68, SD = 1.19) than at their second 
perspective-judgment (Mtime 2 = 2.42, SD = 1.29), F(1, 139) = 
198.96, p < .001, ƞp

2 = .592.  
We expected that feedback (direct, indirect) would help 

participants to adjust their first prediction of addressees’ 
perspective into a judgment that more accurately reflected 
addressees’ sincere interpretation of the voicemail than when 
this feedback was absent (control). Results indeed showed 
that the main effect of Time was qualified by a significant 
interaction with Condition, F(2, 139) = 35.93, p < .001, ƞp

2 = 
.342. Pairwise comparisons that compared participants’ 
perspective-taking accuracy of their second perspective-
judgment showed that participants had more successfully 
adjusted their first prediction after they had received both 
direct (M = 1.89, SD = 0.13) and indirect (M = 1.58, SD = 
0.13) feedback, compared to the control condition in which 
this feedback was absent (M = 3.75, SD = 0.12), p < .001. The 
accuracy of participants’ second prediction did not differ 
between the two feedback types (p = .245). 
 Interestingly, results also showed that participants’ 
perspective-taking accuracy of their first prediction differed 
as a function of Condition. Pairwise comparison revealed that 
participants in the control condition (M = 4.43, SD = 0.14) 
thought addressees would perceive sarcasm more at time 1 
than the participants in both the direct (M = 2.67, SD = 0.14, 
p < .001) and indirect (M = 3.93, SD = 0.14, p < .05) feedback 
conditions. For their first prediction, participants in the 
indirect feedback condition also thought addressees would 
perceive sarcasm more than the participants in the direct 
feedback condition (p < .001).  
 To examine whether the degree to which participants 
adjusted their perspective differed as a function of Condition, 
we computed a mean difference score between participants’ 

                                                   
2 The findings remained unchanged when we controlled for the 

presentation order of the scenarios. 

first and second judgment of addressees’ perception of the 
speaker’s sarcasm and submitted this difference-score to an 
one-way analysis of variance. This follow-up analysis 
showed that participants’ perspective-adjustments differed 
between conditions, F(2, 139) = 35.93, p < .001. Simple 
contrasts revealed that participants had adjusted their 
perspective more in both the direct (Mdifference = 0.78, SE = 
0.16) and indirect (Mdifference = 2.34, SE = 0.16) feedback 
conditions compared to the control condition (Mdifference = 
0.68, SE = 0.15), t(139) = -4.63, p < .001. In addition, 
participants who had received indirect feedback had adjusted 
their perspective more than those who had received direct 
feedback, t(139) = 7.10, p < .001.  

Discussion 
This study examined the influence of feedback on readers’ 
perspective-taking. In an extension study of Damen et al. 
(2018c), we have shown that readers learned from the 
feedback they received to make better perspective-taking 
judgments immediately after the feedback (within the same 
trial) and on subsequent trials. The extent to which readers 
improved their perspective-taking accuracy depended on the 
type of feedback they received. In contrast to our expectation, 
we found that readers’ predictions were more accurate 
immediately after indirect rather than direct feedback. This 
could have been due to the benefit these readers had from 
having to exert more cognitive effort to calculate addressees’ 
interpretation. That is, readers who received the feedback 
indirectly not only had to infer addressees’ interpretation of 
the voicemail from the description of addressees’ actions and 
thoughts, these readers also had translate this information to 
a reliable score (i.e., 1 = definitely as sincere, 7 = definitely 
as sarcastic). This in contrast to the readers who were 
explicitly informed about the extent to which their judgment 
deviated from addressees’ actual interpretation (direct 
feedback) and who, therefore, could have converted this 
feedback to a rating more easily. 

Interestingly, the accuracy of readers’ first predictions also 
differed due to the type of feedback they had received on 
previous trials. Although readers receiving indirect feedback 
made better adjustment within the same perspective-taking 
trial, their first predictions on new trials showed more 
egocentric projection errors than those who received direct 
feedback3. This finding needs to be interpreted with caution, 
because it could have been the result of task characteristics. 
That is, for each trial, readers receiving direct feedback could 
have learned that a sincere interpretation (i.e., a score of 1) 
was the correct response for all experimental trials, reducing 
egocentric projection on first predictions. This in contrast to 
the indirect feedback condition in which readers could have 
been more cautious to assume the addressees’ sincere 
interpretation until they had actually received addressees’ 
reaction to the voicemail. However, in all experimental 
conditions and for each experimental trial, the correct 

3 This finding could also be an explanation as to why we see 
bigger adjustments in the indirect than the direct feedback condition. 
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response always reflected addressees’ sincere interpretation 
of the messages. Therefore, this possible confound cannot 
explain why there are still significant differences within 
experimental trials and adjustment differences across 
conditions. 

Although readers in the control condition did not receive 
feedback about the accuracy of their interpretation, these 
readers also adjusted their first prediction to a more accurate 
second prediction of the addressees’ perspective. This 
‘positive’ adjustment could have been the result of readers 
reflecting on their earlier assessment and subsequently 
coming to a more accurate conclusion (e.g., Epley et al., 
2004). However, important to note is that these adjustments 
were still less accurate than when readers were provided with 
reliable information (feedback) to base their re-assessment 
on. 
 In line with findings of both West (1996) and Eyal and 
colleagues (2018), this study showed that providing readers 
with reliable perspective-information (“perspective-getting”) 
allows them to disregard their own knowledge and to use this 
new information to more accurately predict others’ 
perspective. It should be noted that readers in this experiment 
paid attention to the feedback they received and, therefore, 
could have been more aware that they could or should use 
this information to adjust their predictions appropriately. In 
addition, in Eyal et al. (2018), the discourse through which 
partners gained relevant perspective-information was 
demarcated with regard to the topics partners had to discuss.  
Therefore, an interesting question for future research is 
whether this “perspective-getting” effect generalizes to 
situations in which reliable perspective-information (and its 
appropriateness) is not been made explicit. 
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Abstract concepts and the suppression of arbitrary episodic context 
 

Abstract 
Context is important for abstract concept processing, but a 
mechanism by which it is encoded and re-instantiated with 
concepts is unclear. We used a source-memory paradigm to 
determine whether episodic context is attended more when 
processing abstract concepts. Experiment 1 presented 
abstract and concrete words in colored boxes at encoding. At 
test, memory for the frame color was worse for abstract 
concepts, counter to our predictions. Experiment 2 showed 
the same pattern when colored boxes were replaced with 
male and female voices. Experiment 3 presented words from 
encoding in the same or different box color to determine 
whether a greater advantage is conferred by context retention 
in memory for abstract concepts. There was instead a 
disadvantage: abstract concepts were less likely to be 
identified when the encoding color was retained at test. 
Concrete concepts are more sensitive to simple episodic 
detail, and in abstract concepts, arbitrary context may be 
suppressed. 
Keywords: concepts, semantic memory, episodic memory, 
abstract concepts, concreteness 

Introduction 

Abstract concepts like decision are central to the 
human experience, yet little is understood about how 
they are processed. Contextual information is thought 
to be important to abstract concepts—the specific 
meaning of decision varies more depending on context 
than does the meaning of river. While a river in New 
England shares many properties with a river in Papua 
New Guinea, consider the case of decision: your 
decision on which beverage to buy at a café late at 
night differs greatly from the decision a judge might 
make in determining sentencing for a felon. It is the 
context which determines the antecedents, outcomes, 
and consequences in these two instantiations of 
decision. While it seems that context should be 
important in processing abstract concepts, the 
mechanism by which context is encoded and re-
instantiated with the concept remains unclear. One 
possibility is that the episodic memory system, which 
supports encoding and recall of contextually detailed 
memories, is critical in understanding abstract 
concepts. Thus, here we probed a potential mechanism 
underpinning abstract concepts’ sensitivity to context 
by using a source memory paradigm to test whether 
episodic context is better bound to abstract than 
concrete concepts.  

Episodic memory is classically defined as explicit 
memory for unique events (Tulving, 1983, 2002), 
where episodic context is the detail that colors an 
episode. There are circumstances under which we are 
more likely to encode, and therefore, recall the 
arbitrary contents of a particular episode (e.g., the 

color of a frame or the identity of a speaker). A 
standard paradigm for assessing this ability is the 
source memory task (see Davachi, 2006; Yonelinas, 
2001, 2002). In this task, participants are asked at test 
to determine whether an item (e.g., a word) was 
previously presented in an exposure phase, and then 
probed as to whether they can recognize some prior 
contextual detail. Greater confidence in having seen a 
word at exposure is associated with greater likelihood 
of having encoded the contextual detail (e.g., Kirwan, 
Wixted, & Squire, 2008; Yu, Johnson, & Rugg, 2012). 
Therefore, we would predict that greater confidence in 
having seen or heard a word during an encoding phase 
is associated with better memory for an arbitrary 
context, such as a box color or voice, at a test phase.  

In addition to confidence in recollection or strength 
of the memory, emotionality in words, including both 
valence and arousal (Kensinger & Corkin, 2003), 
influences the likelihood of recalling the context in 
which something was presented, suggesting that the 
content of the stimuli at exposure can influence the 
likelihood that the context is identified at test. More 
specifically, conceptual or semantic content might 
affect likelihood of context encoding. In this set of 
experiments, we investigated whether this is true for 
concreteness: are we better at encoding contextual 
detail for abstract than for concrete concepts?  

The notion that episodic context is more important 
for interpreting abstract concepts suggests that we 
should be more sensitive to the episodic context in 
which abstract concepts are placed and, in turn, be 
more accurate at retrieving even non-systematically 
related elements in the context. We opted to test this 
hypothesis by examining whether arbitrary contexts 
are better recognized when paired with abstract as 
compared to concrete concepts. Because memory is 
generally better for concrete than for abstract words 
(e.g., Paivio, Walsh, & Bons, 1994), we expected that 
although overall memory for concrete concepts would 
be better, when abstract concepts are correctly 
recognized, the context would be better encoded. To 
foreshadow the results, we find evidence against this 
hypothesis, suggesting that arbitrary episodic context 
may be inhibited in abstract concepts. In the General 
Discussion, we propose an alternative framework in 
which these results might be accommodated.  

In the studies below, context is operationally defined 
as an aspect of a stimulus that is irrelevant to the 
central stimulus, such as whether a target word is 
presented within a red or green frame or whether 
stimuli are presented in a male or female voice.  
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Experiment 1 

Methods 
Participants Forty-two University of Connecticut 
(UConn) students with normal or corrected-to-normal 
vision and hearing provided informed consent and 
received course credit for participating. One 
participant was excluded for non-compliance, leaving 
N = 41. The study was approved by the UConn IRB. 
Stimuli In the encoding phase, 100 (60 target, 40 non-
target) abstract (e.g., decision) and 100 (60 target, 40 
non-target) concrete (e.g., chair) noun concepts were 
used. (Non-targets were synonym words which 
functioned as positive responses for the synonym-
judgment task described below. Targets were non-
synonyms.) Stimuli were matched across all stimulus 
subsets on word length and word frequency based on 
English Lexicon Project data (Balota et al., 2007), and 
were sorted into abstract and concrete conditions 
based on Brysbaert, Warriner, and Kuperman’s (2014) 
concreteness norms (Table 1). Half of the words were 
enclosed in red boxes, and the other half in green, and 
this was balanced across concrete and abstract words. 
In the test phase, an additional 50 abstract and 50 
concrete words were added to the target and non-target 
items.  
Table 1 
Stimulus Characteristics 

 Targets Synonyms 
nletter logF conc nletter logF conc 

Abs 6.7 5.0 1.8 7.3 5.7 2.1 
Conc 7.0 5.1 4.9 6.2 5.7 4.8 

Procedure Participants performed a two-phase source 
memory task. Stimuli were presented visually one at a 
time, in pseudorandomized order, with an arbitrary 
box context (either a red or a green box). On each 
word, participants performed a synonym-judgment 1-
back task. To ensure that they did not ignore the boxes, 
the hand they used to make their response was 
determined by box color (left hand for words in green 
boxes and right for red). Stimuli were presented for 
2000 ms with a 1000-ms interstimulus interval. 
Participants were told there would be a later memory 
test on the words, but not that source (i.e., box color) 
memory would be tested.  

In the test phase, participants performed two tasks 
for each word. First, they responded whether they had 
seen the word at encoding, indicating their degree of 
confidence in the decision (high, medium, and low 
confidence for either “old” or “new”). Second, for old 
words, they indicated the color of the box on initial 
encoding. The task was the same for new words, 
except that they were asked simply to select the color 
they thought the box would have been had it been 

presented at encoding. Participants were given 6000 
ms each for the old/new and the box color judgment.  
Data analysis Data were analyzed using R. Memory 
for items (i.e., words) and their contexts (i.e., box 
color) was first analyzed using descriptive statistics, 
calculating accuracy, hit rate, miss rate, correct 
rejections, false alarms, and d' (calculated as z(Hit) – 
z(FA)) for all words, and accuracy was also assessed 
by level of confidence. Source (i.e., box) memory 
accuracy was calculated only for target hits, and was 
assessed across confidence levels. Source memory 
accuracy was analyzed as a function of word type and 
confidence in having seen the word at encoding. 
Logistic mixed effects models (lme4 package; Bates et 
al., 2017) were used to analyze the data, with subject 
and word as random intercepts, and word type 
(abstract or concrete), level of confidence (low, 
medium, high), and their interaction as treatment-
coded fixed effects. Each predictor was entered in a 
successive model, and statistical significance was 
assessed by comparing the models using likelihood 
ratio tests. Here, p-values < .05 were considered 
statistically significant. 
Results 
Item recognition First, to provide a baseline measure 
of memory for concrete and abstract words, we report 
the accuracy and hit, miss, correct rejection, and false 
alarm rates across all words (Table 2). Hit rates were 
higher and false alarms lower in concrete words, 
demonstrating the mirror effect (Glanzer & Adams, 
1985), which has previously been observed for 
concreteness (Glanzer & Adams, 1990). For overall 
accuracy, there were main effects of both word type 
and confidence. Concrete words were better 
recognized than abstract (χ2(1) = 10.21, p = .001), and 
accuracy increased with greater confidence (χ2(2) = 
571.37, p < .001). The interaction was non-significant. 
Among targets only (i.e., non-synonym words 
presented at encoding), there was no main effect of 
word type (χ2(1) = 0.29, p = .59), but a main effect of 
confidence level (χ2(2) = 675.22, p < .001), with words 
recognized better with higher confidence. The 
interaction was non-significant. Means and 95% CIs 
for word and source (i.e., box) memory are shown in 
Figure 1. Finally, d' analysis showed that when 
considering response sensitivity, accuracy was better 
for concrete concepts, t(39) = -5.37, p < .001.  
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Table 2 
Mean Item Recognition Accuracy 

Word 
type 

Acc Hit Miss CR FA d' 

Abstract .73 .77 .23 .65 .35 1.21 
Concrete .78 .81 .19 .71 .29 1.57 

Note. CR = correct rejection; FA = false alarm. 
Source memory Here, we included only trials for 
which the word had been correctly identified. There 
was a main effect of word, where the box was less 
likely to be remembered for abstract words (χ2(1) = 
5.45, p = .02), but not of confidence level. The 
interaction was non-significant. Participants were less 
likely to correctly remember the box color for abstract 
words (Figure 1). 

According to d' scores, there was a baseline 
advantage for recognizing concrete words, which 
would then bias the source memory models. Correct 
memory trials for abstract words may have been less 
likely to reflect true hits where the word was in fact 
encoded. Accordingly, we also constructed models 
with d' as a predictor. A likelihood ratio test comparing 
the model with both d' and word type versus the model 
with only d' was significant, χ2(1) = 5.27, p = .02, 
suggesting that the effect of word type, where box 
recognition was worse in abstract than it was in 
concrete concepts, was significant even after 
accounting for the d' concreteness advantage. 

 
Figure 1. Effects of concreteness on (a) overall item 
recognition accuracy and (b) source (i.e., box) 
memory.  
Discussion 
Source memory was worse for abstract concepts, and 
this was true even after controlling for a concreteness 
advantage detected in d'. Thus, the results of 
Experiment 1 ran counter to our hypothesis: source 
memory was worse for abstract than for concrete 
words, even when participants were highly confident 
in having seen the word at encoding. Why did this 
unexpected difference emerge? It may be that concrete 
concepts are more amenable to a mnemonic strategy 
wherein a color adjective (i.e., “red” or “green”) could 
readily be bounded to concrete objects (e.g., “table”), 

making source memory better for concrete words. 
Thus, it may be that contextual detail is better encoded 
in abstract concepts, but only when not systematically 
related to concrete objects (as may be the case for 
colored boxes). A second explanation is that counter 
to our main hypothesis, the concreteness advantage 
extends to memory for arbitrary contextual details. 
Experiment 2 evaluated these competing explanations. 

Experiment 2 

In Experiment 2, we utilized a variant of the source 
memory paradigm, where instead of the box, the 
context to be encoded was a male or female voice. 
Concepts were presented auditorily, and memory was 
assessed on visually presented words (e.g., Wilding & 
Rugg, 1996). In line with the original prediction that 
contextual detail is encoded to a greater extent in 
abstract concepts, it was predicted that source memory 
(i.e., male or female voice) would be better for abstract 
concepts. This prediction is further buoyed by the 
finding that person-related social properties may be 
more important for abstract concepts (Barsalou & 
Wiemer-Hastings, 2005).  
Methods 
Participants Forty-two UConn undergraduates with 
normal or corrected-to-normal vision who had not 
participated in Experiment 1 provided informed 
consent and were given course credit for their 
participation.  
Stimuli The words were the same as those used in 
Experiment 1, but rather than being presented visually 
they were instead recorded by a male and a female 
speaker, with half the words presented by the male 
speaker and half by the female speaker. As with box 
color, this list was held constant across participants. 
There were no differences in the length of the sound 
files between the two speakers, and all files were 
normalized to a peak amplitude.  
Procedure In the encoding phase, the procedure was 
the same as in Experiment 1. In the memory phase, the 
first judgment—whether the word was in the initial set 
(old) or not (new)—was the same. For the second 
judgment, participants were asked to indicate whether 
the person who said the word in the initial set was 
“Jane” or “Sid.” The test phase was conducted with 
visually presented words, as in Experiment 1 (for a 
similar paradigm, see Wilding & Rugg, 1996).  
Data analysis Data were analyzed in the same way as 
in Experiment 1. 
Results 
Item recognition Accuracy and hit, miss, correct 
rejection, and false alarm rates across all words are 
shown in Table 3. Among all words, there was a 
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significant main effect of both word type, with 
concrete words showing better recognition (χ2(1) = 
6.77, p = .009), and confidence level, with both 
medium and high showing greater accuracy than low 
confidence (χ2(2) = 610.85, p < .001). The word type 
× confidence interaction was non-significant. Among 
targets, there was a main effect of confidence (χ2(2) = 
961.49, p < .001), but not of word type. The interaction 
was significant (χ2(2) = 9.18, p = .01) at high 
confidence, suggesting that at greater memory 
strength, item recognition was worse for abstract 
words. Means and 95% CIs for the main effects of 
word type on word and source (i.e., voice) memory are 
visualized in Figure 2. Finally, d' analysis revealed that 
after considering response sensitivity, accuracy was 
better for concrete concepts, t(40) = -3.49, p = .001. 
Table 3 
Mean Word Recognition Accuracy 

Word 
type 

Acc Hit Miss CR FA d' 

Abs .70 .72 .28 .64 .36 1.04 
Conc .73 .77 .23 .67 .33 1.28 

Note. CR = correct rejection; FA = false alarm. 
Source memory Here, we again included only trials 
for which the word had been correctly recognized. 
There was a main effect of word type, with source 
memory for the voice context worse for abstract words 
(χ2(1) = 5.70, p = .02), as well as a main effect of 
confidence (χ2(2) = 25.22, p < .001). The interaction 
was non-significant. Thus, participants were again less 
likely to recognize the context correctly for abstract as 
compared to concrete words. Means and 95% CIs are 
shown in Figure 2. 

 
Figure 2. Effects of concreteness on (a) overall item 
recognition accuracy and (b) source (i.e., voice) 
memory.  

As in Experiment 1, d' was greater for concrete than 
it was for abstract concepts (Table 3), and so we 
constructed models with d' as a predictor. A likelihood 
ratio test comparing the model with both d' and word 
type versus the model with only d' was significant, 
χ2(1) = 5.75, p = .02, suggesting that the effect of word 
type, where source memory was worse for abstract 

than it was for concrete concepts, was significant even 
after accounting for the d' concreteness advantage.  
Discussion 
There was again a concrete word advantage in overall 
item recognition. Moreover, source memory for the 
voice context was worse for abstract concepts. This 
provides support for the interpretation that the 
concreteness advantage also extends to episodic 
memory, at least for memory for simple episodic 
detail. However, Experiments 1 and 2 showed a 
baseline memory advantage for concrete words, and 
thus they may have been more strongly encoded, and 
the strength with which the words were encoded, not 
concreteness, may have facilitated source memory. 
Accordingly, we conducted a third experiment.  

Experiment 3 

In Experiment 3, we simplified the memory phase by 
instead only probing recognition memory: half of the 
words were presented in the same box color as they 
were at encoding, while half of the words were 
presented in a different box color. The aim here was to 
investigate whether there is a selective advantage in 
recognition memory when the context is retained in 
abstract concepts—that is, is recognition memory 
facilitated to a greater extent in abstract concepts by 
context preservation? This would suggest that while 
the memory trace left by abstract concepts may be 
weaker, it can be strengthened when context is 
consistent across exposures. On the other hand, if 
recognition memory accuracy for abstract concepts is 
worse when the box color at encoding is preserved at 
test, it would suggest that arbitrary episodic detail may 
be inhibited in abstract concepts.  
Methods 
Participants Forty UConn undergraduates with 
normal or corrected-to-normal vision who had not 
participated in Experiment 1 or 2 provided written 
informed consent and received course credit.  
Stimuli The stimuli were the same as those in 
Experiments 1 and 2, and box color assignment was 
counterbalanced across participants. 
Procedure The encoding procedure was the same as 
in Experiment 1. At test, participants were asked to 
identify as many old words as possible, ignoring the 
color of the box. Words were presented in the red and 
green boxes. Half of the words retained the box color 
from encoding, and half changed color.  
Data analysis Item recognition data were analyzed in 
the same way as in Experiments 1 and 2. However, box 
retention (old vs. new) was used as a second fixed 
effect in the mixed logit model, and the interaction was 
word type × box retention.  
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Results and discussion 
Accuracy and hit, miss, correct rejection, and false 
alarm rates across all words are shown in Table 4. In 
overall old/new item recognition memory, there was a 
main effect of word type (χ2(1) = 12.29, p < .001), 
where memory was better for concrete words. Among 
targets only, there was no main effect of word type, 
nor was there a main effect of box retention. There 
was, however, an interaction between word type and 
box retention (χ2(1) = 4.92, p = .03; Figure 3). 
Accuracy was worse when the box color was retained 
in abstract concepts, again operating counter to the 
original hypothesis, and leading to the perhaps 
surprising conclusion that arbitrary episodic context 
may even be suppressed in abstract concepts.  
Table 4 
Mean Item Recognition Accuracy 

Word 
type 

Acc Hit Miss CR FA d' 

Abstract .76 .76 .24 .78 .22 1.59 
Concrete .81 .80 .20 .84 .16 2.04 

 

 
Figure 3. Plots showing (a) the main effect of 
concreteness on item recognition memory for all 
words and (b) the interaction between word type and 
box retention on target recognition memory accuracy 
(means and 95% CIs).  

General Discussion 

Abstract concepts are sensitive to context, but what is 
the mechanism by which this sensitivity emerges? The 
episodic memory system was identified as a potential 
candidate for encoding contextual information when 
processing abstract concepts. In Experiments 1 and 2, 
however, there was a concreteness advantage for 
recognizing episodic contexts. In Experiment 3, 
context preservation conferred a disadvantage for 
recognizing abstract concepts, suggesting the presence 
of a mechanism whereby arbitrary association are 
inhibited in the episodic experience(s) of the situations 
that activate abstract concepts.  

In spite of these findings, across several literatures it 
is agreed that context is critical for understanding 
abstract concepts. However, there are differences 
across frameworks in terms of the type of context 
specified as being critical to processing abstract 
concepts, ranging from semantically constraining 
linguistic context in context-availability theory 
(Schwanenflugel & Shoben, 1983), to thematic 
associations in the qualitatively different 
representations framework (Crutch & Warrington, 
2005), to meaningful situational and internal factors in 
grounded cognition (Barsalou & Wiemer-Hastings, 
2005). While this study sought to uncover a basic 
mechanism that might unify these approaches (i.e., 
sensitivity to episodic information), the results 
unequivocally ran counter to our hypothesis: there is a 
concreteness advantage for encoding simple episodic 
detail.  
Concreteness, context, and episodic memory 
Concreteness is a powerful organizing factor in 
semantic memory (e.g., De Deyne, 2017; Hollis & 
Westbury, 2016), and concreteness effects are near 
ubiquitous in recognition memory studies. The present 
results suggest that such effects extend beyond 
stronger memory for concrete concepts to better 
associative. relational memory for concrete concepts, 
at least when the relation is a simple, arbitrary context. 
One important consideration here is the way in which 
we might expect context to be differentially recruited 
for processing concrete and abstract concepts, as this 
has implications for the relation between context 
sensitivity and concreteness. 

In a review of the pervasiveness of context effects in 
cognition and perception, Yeh and Barsalou (2006) 
present two primary theses for how context affects 
concept processing: (1) contexts and concepts 
mutually activate each other, such that when 
processing a context, associated concepts are 
activated, and vice versa; and (2) when processing a 
concept in a particular context, properties of the 
concept which are relevant to that context become 
active. These two theses have different implications 
for the relation between context sensitivity and 
concreteness. 

The first thesis resonates strongly with context 
availability theory, and likely suggests a concrete word 
advantage: concrete concepts activate contexts more 
strongly because they have stronger implicit ties to 
specific contexts. Thus, building implicit, direct 
associations between context and concept may have 
been facilitated by a similar mechanism to that which 
underpins context availability effects—if concrete 
concepts are typically associated with these sorts of 
contexts, then such contexts (such as boxes and 
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voices) might be more likely to be encoded with 
concrete concepts.  

The second thesis may be more pertinent to abstract 
concept processing: when processing decision in the 
context of your choice of beverage at 9pm in the local 
café, the activated properties will be different from 
when processing decision in the context of a judge 
determining the appropriate sentence for a felon 
convicted of battery. That is, the schema-based 
knowledge necessary in these two situations differs 
considerably. Decision has a number of possible 
interpretations, and its precise meaning—and thus, the 
properties activated—depends on the situation and 
(systematically) associated schema-based knowledge. 
Research on the neural dynamics underpinning 
schema processing (e.g., van Kesteren et al., 2013) 
suggests that activating these systematic associations 
may in fact suppress the formation of associations with 
arbitrary elements of an episode. This dynamic is 
rooted in the interplay between neural systems in 
medial frontal and medial temporal lobe, where medial 
frontal activation when processing systematic 
associations may dampen activation of medial 
temporal lobe, thereby suppressing the formation of 
arbitrary bindings. Exploring these neural dynamics in 
this paradigm is an important direction for future 
work. 

In summary, we contend that abstract concepts 
activate systematic—or schema-based—contextual 
information, and when processing decision, the 
activation of schema-based information may in fact 
inhibit formation of arbitrary associations. This would 
explain why our arbitrary episodic contexts were not 
well remembered for abstract concepts (Experiments 1 
and 2) and why context retention may have even 
inhibited word recognition (Experiment 3). That is, 
abstract concepts may be particularly sensitive to 
systematic or schema-based contextual constraints, 
implicitly activating these associations when they are 
absent, and thus simultaneously inhibiting arbitrary 
contextual associations.  
Limitations 
The synonym judgment task used at encoding may 
have worked to a disadvantage: as abstract concepts 
tend to have more diverse meanings, synonym 
judgments may be more difficult for abstract concepts, 
as it must be determined whether any particular sense 
of the word is a synonym to the target (Hoffman et al., 
2013). Thus, an abstract concept like decision when 
paired with judgment might leave fewer resources 
available to process immediately available relational 
information (i.e., in the present study, the box color or 
the voice) because we must search for a context in 
which decision and judgment are in fact synonyms (a 
recent computational model makes this prediction; 

Popov & Reder, 2018). Relatedly, if abstract concepts 
are simply more difficult to process, and the context 
does not help with accessing the meaning of the word, 
it could render the immediate context less salient. 
Thus, future research on context encoding in abstract 
and concrete concepts might benefit from departing 
from low-level episodic contexts. While we focused 
on arbitrary episodic detail, it might be fruitful to 
instead explore systematic contextual relations. For 
example, abstract concepts are thought to be 
represented in thematic or associative networks (e.g., 
faith–church), and so we might expect to see an 
abstract advantage in such contexts (for related 
evidence showing precisely this in relational vs. entity 
concepts, see Asmuth & Gentner, 2017). Finally, our 
finding that context reinstatement did not improve 
item recognition even for concrete words was 
perplexing. This may be because we only used two 
contexts—context-preservation advantages may not 
be observed when the context is shared across too 
many items (Park et al., 2006). That said, with just two 
contexts, reinstatement still impaired item recognition 
for abstract words, implying that a context 
preservation disadvantage can be detected with only 
two contexts. Nevertheless, further research is 
necessary to better understand the interaction between 
abstract concepts and arbitrary episodic contexts. 
Conclusions 
This research suggests that arbitrary episodic detail is 
better bound with concrete than abstract concepts. 
Abstract concepts rely on situational context for 
interpretation, and given that activation of situational 
information is known to inhibit formation of arbitrary 
associations (van Kesteren et al., 2013), formation of 
arbitrary associations may be inhibited in abstract 
concepts. More broadly, the way in which the episodic 
memory system is recruited appears to differ as a 
function of concreteness, suggesting that engagement 
of the episodic memory system is modulated by 
semantic content.  
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Abstract

What does it take to learn a new word? Many of the words we
learn, we have learned from language itself – by encountering
them in various informative contexts. Here, we investigate the
limits of learning from context by studying how people learn
new words from very sparse contexts, at the extreme, a context
in which all content words are replaced by nonsense words. We
find that participants exposed to even such extremely sparse
contexts nevertheless learn something about the meaning of
words embedded in those contexts. Performance tended to be
better when knowledge was assessed by first directing people’s
attention to the part of speech of the target words.
Keywords: language; word learning; distributional semantics;
syntactic bootstrapping.

Introduction
How do we learn the meanings of words? One way is by as-
sociating words with external referents. This is of particular
importance in early word-learning when children’s vocabu-
lary is dominated by concrete nouns (“cup”, “nose”), action
verbs (“jump”, “bark”) and words used by children as imper-
atives (“more”, “up”). As we become more mature language
users, our vocabulary expands to contain a large proportion
of items that do not have concrete referents (e.g., “terrible”,
“hope” and “fun”). These words must be learned through lan-
guage itself.1

One way to learn word meanings through language is
through explicitly provided definitions. For example, on en-
countering the sentence “The Celtics Coach was livid over the
call, hurling an expletive at the officials.”, one might look up
“livid” to learn that a common meaning is “furiously angry”.
But we can also learn something about the possible meaning
of livid through its context. Indeed, school-age children learn,
on average, between 600 and over 3,000 new words per year
(Nagy & Herman, 1984; Nagy, Herman, & Anderson, 1985).
That these words are learned via direct instruction or through
dictionaries is highly unlikely (Nagy & Anderson, 1984).

In this work we investigate the limits of learning from lin-
guistic context. We already know that school-age children
and adults are adept at learning from informative contexts
such as the “livid” example above. We were curious whether

1Indeed, in the largest set of concreteness/abstractness norms
(Brysbaert, Warriner, & Kuperman, 2014), words were defined as
“abstract” if their meanings could not be communicated via direct
reference or through action, but rather would have to be explained
through language.

learning something about a word’s meaning is possible even
when contexts are highly impoverished. At the extreme, we
investigate learning meanings of nonce words from contexts
in which all content words are replaced with nonce terms.
How can people learn word meanings from contexts that
themselves contain only nonce words? One way is through
the use of morpho-syntactic cues.

The idea that people can learn words through morpho-
syntax is generally known as “syntactic bootstrapping”. Pre-
school children can use both morphology and syntax to infer
the meanings of novel words (Gleitman, 1990; A. E. Gold-
berg, 2003; Naigles & Swensen, 2007). In a classic demon-
stration, Brown (1957) showed 3-5 year old children images
such as a pair of hands emptying an odd container of a novel
slushy material. The children were then told that “in this pic-
ture you can see sibbing/a sib/some sib”, and were asked to
point to another instance of sibbing/a sib/some sib. The find-
ing that children were more likely to point to a substance
when presented with “some sib” and an object when pre-
sented with “a sib” suggests that they are learning (coarse)
aspects of meaning from morpho-syntactic cues. In a more
recent study, Naigles presented 2-year old children with the
novel word “gorping” and two videos of novel actions, one
causative and one non-causative. The sentence frame in
which the verb was presented influenced which action chil-
dren chose for the verb (Naigles, 1990). Although these
experiments show that even young children can make use
of morpho-syntactic cues to learn something about what the
word means, they do not tell us about the limits of our ability
to learn word meanings in this way. In these classic studies,
the to-be-learned are marked, e.g., by being the only unfamil-
iar word in the utterance. The contexts that are used tend to
be quite informative and the meanings being learned are con-
strained by the accompanying pictures or videos. Lastly, the
assessment of what is being learned in such studies tend to
be quite limited. The children in Brown’s study could answer
“correctly” simply by inferring that “sibbing” is an action,
without learning anything more specific about its meaning.

But we know that people can do more. For example, even
in a language with relatively simple morphology – English – a
sentence like “The gostak distims the doshes” is surprisingly
meaningful. We can infer that a “gostak” is doing something
(“distimming”) and it is doing it to the “doshes” (Ingraham,
1903). We may further infer that a gostak may be an animate
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Figure 1: Schematic for Experiment 1.

agent and “distimming” is an action that the gostak is capa-
ble of performing. Remarkably, even without any referential
context, exposure to sequences of such sentences appears to
be sufficient for people to navigate an entire virtual world.
Players of The Gostak (Muckenhoupt, 2001) quickly learn to
deave in the tavid dorl and gomb the stike.

Another hint that language contains rich cues to word
meanings comes from attempts to derive semantic represen-
tations from the ground up, by tracking word co-occurrences
to learn that words occurring in similar contexts have similar
meanings (Landauer & Dumais, 1997; Lany & Saffran, 2010;
Levy & Goldberg, 2014; Mikolov, Chen, Corrado, & Dean,
2013; Redington, Chater, & Finch, 1998) – the so-called dis-
tributional hypothesis of word meaning (Firth, 1957). Mc-
Donald and Ramscar (2001) tested the distributional hypoth-
esis by manipulating the linguistic context surrounding very
rare or nonce words showing that judgments involving the tar-
get words are affected by the distributional properties of the
manipulated linguistic environments.

Our main goal is to investigate the limits of people’s abil-
ity to learn word meanings from linguistic context. We do
this by exposing adult English speakers to contexts varying
in informativeness ranging from fully informative contexts –
passages of real English text containing real words unknown
to most of our subjects, to highly sparse contexts that con-
tain English morpho-syntactic cues (e.g., verb endings), but
in which all content words have been replaced by nonsense
words. We test people’s knowledge of both part of speech
information (the sole focus of much of the classic work on
syntactic bootstrapping), and knowledge of more specific as-
pects of meaning.

Experiment 1
In experiment 1, we tested the role of the linguistic context in
inferring word meanings for real, but rare English words (e.g.,
“kine”) that were presented in informative contexts and for
nonce words (e.g., “stronk”) placed in highly sparse contexts
which were stripped of almost all meaningful words.

Participants We recruited 114 participants from Amazon
Mechanical Turk (52 Males of average age = 37; 62 Females
of average age = 39). 68 of these participated in the main

word-learning experiment (32 in the nonsense-story condition
and 36 in the real-passages condition) and 46 participated in
the salience-norming task.

Materials Participant were randomly assigned to one of
two conditions: a nonsense-story condition and a real-
passages condition. For the nonsense-story condition, all par-
ticipants were exposed to the children’s story Why the cricket
chirps2. Participants were not provided with the story’s ti-
tle or any information about its content. Of the 604 total to-
kens in the story, 169 were open-class words. We replaced
all the content words with nonce words taken from the ARC
Nonword Database (Rastle, Harrington, & Coltheart, 2002).
These words were created from orthotactically legal bigrams,
onsets, and bodies. Fig. 1 shows a part of the resulting story.
Of the 136 word types in the story that were replaced with
nonce words, we selected 9 to serve as targets for later test-
ing. Participants did not know ahead of time which words
would be tested. The target words varied in frequency, occur-
ring between 2 and 18 times, and parts of speech: 4 nouns, 3
verbs, 2 adjectives. Derivational and inflectional morphemes
in the story were limited to a small number of cases (see Table
1 for morphological variation present for each target word).

For the real-passages condition, we matched each of the
9 target words in the nonsense-story condition with real, but
rare English words that were unlikely to be familiar to our
participants (e.g. “ratoon”, “pronk, “rawky”; henceforth real-
rare words). For each word, we selected 3-4 sentences in
which the word appeared from the Corpus of Contemporary
American English (COCA) and other online sources to serve
as the context (see Fig. 1). Participants’ word knowledge
in all conditions was tested using “drill-down questions” de-
signed to be sensitive to partial word knowledge. The first
question provided three options for part of speech and the
second question had participants choose between three word
meanings all within the chosen part of speech: 1 fully correct,
1 partially correct, and 1 incorrect (see Fig. 1).

Quantifying word salience We expected that people’s abil-
ity to infer word meanings would be influenced by the fre-

2https://www.freechildrenstories.com/why-the
-cricket-chirps

1600

https://www.freechildrenstories.com/why-the-cricket-chirps
https://www.freechildrenstories.com/why-the-cricket-chirps


quency with which the target word occurred in the passage.
But we also suspected that aside from frequency, performance
would also be related to a word’s salience (C. M. Brown,
1993). There is no single definition of salience, but intu-
itively, a word is salient to the extent that it communicates
the central point of a story. For example, words naming
the actions performed by a central character are more salient
than words describing aspects of the environment that a non-
central character inhabits. We quantified the salience of each
target word as the likelihood that it would be recalled by peo-
ple who read the original (unaltered) story. We recruited 46
participants from MTurk to read the original story and then
had 1 minute to recall all the words they could remember oc-
curring in the story. Salience for each word was defined as the
sum of the weights that the word obtained each time it was
listed: the weight was calculated as exponentially decreas-
ing in accordance with the order in which words were listed
by participants [(for each time the word was listed) weight =
(0.75ˆ(word n -1))] (see Table 1 for frequency and salience of
each target word).

Table 1: Frequency, salience and morphological variation for
target words

Target word Frequency Salience Derivational Morphology Inflectional Morphology
fly 18 6.59 1 derivational form (-er) 2 inflected forms (-ed; -ing)
cricket 16 31.69 none 1 inflected from (-s)
cold 7 5.69 none none
wing 6 8.26 none 1 inflected from (-s)
fast 6 3.76 none 2 inflected forms (-er; -est)
chirp 5 8.49 none 3 inflected forms (-s; -ed; -ing)
ant 5 6.91 none none
hop 5 1.06 none none
snow 5 2.56 none none
rub 4 1.90 none 2 inflected forms (-ed; -ing)
listen 4 1.47 none none
warm 4 1.31 none none
tree 3 0.44 none 1 inflected from (-s)
frozen 3 4.82 none none
ground 2 0.00 none none
owl 2 10.35 none none

Procedure General procedure is shown in Figure 1. At the
start of the task, participants completed a 10 item vocabu-
lary test (Wordsum; Malhotra, Krosnick, & Haertel, 2007)
and a pretest gauging familiarity with the target words. Par-
ticipants were then randomly assigned to the real-passages
or the nonsense-story condition. Those assigned to the real-
passages condition saw each (meaningful) context and an-
swered the two vocabulary questions for each of the 9 real-
rare words (in random order). Each word was tested imme-
diately after being presented in its context. The group was
then tested on nonce words (skoast, etc.). In contrast, partici-
pants in the nonsense-story condition saw the entire 604-word
nonsense-story and were then tested on the real-rare words,
and then on 9 of the target nonce words (in random order).
This design allowed each condition to serve as the control
for the other condition. Subjects in the nonsense-story con-
dition were asked to infer the meaning of the real-rare words
without exposure to the passages and vice versa. As an atten-
tion check, scattered among nonce and real-rare words were
questions about the meaning of familiar words (e.g. “little”,

“green”).

Results and Discussion We analyzed the data using lo-
gistic mixed effects models. In the initial analyses, we
treated partially and completely correct scores for specific
meaning as the same (i.e., a binary contrast between an ac-
curacy of 0 and 0.5/1). Figure 2 shows a clear interac-
tion between condition (real-passages, nonsense story) and
word-type (real-rare, nonce). This interaction was present
both for part of speech [z = 7.3, SE = 0.28, p < .001]
and word meanings [z = 9.1, SE = 0.29, p < .001] [ac-
curacy ˜ type of word*condition+(1|subj id)]. Participants
in the real-passages condition were significantly more ac-
curate at selecting meanings corresponding to the correct
part-of-speech of real words compared to participants in the
nonsense-story condition (i.e., those not exposed to the real
passages) [z = -3.7, SE = 0.39, p < .001]. They were also
better at choosing the more correct specific meanings [z =
4.6, SE = 0.4, p < .001] [accuracy (for specific meaning or
for part of speech) ˜ condition+(1|subj id)+(1|word)]. Note
that above chance performance for the real-rare words is ex-
pected even without being exposed to real passages because
some participants already know the meaning of these words.
Not surprisingly, accuracy on real-rare words was positively
associated with greater vocabulary as assessed by Wordsum.
This was true both for part of speech [z = 2.8, SE = 0.17, p
= .005] and specific meaning measures [z = 3.7, SE = 0.19, p
< .001] [accuracy (for specific meaning or for part of speech)
˜ condition*wordsum score+(1|subj id)+(1|word)]. Greater
familiarity with the target real-rare words (pretest) was posi-
tively related to selecting the correct part of speech [z = 2.1,
SE = 0.16, p = .033] and specific meaning [z = 2.9, SE = 0.16,
p = .004].

The results for the real-rare words tell us what we already
knew – people can infer word meanings from seeing the
words in context. We now turn to the nonsense-story con-
dition. Recall that these nonce words were seen in the con-
text of a 600+ word story in which all content words were
replaced by nonce words. Participants exposed to this ex-
tremely sparse context had significantly higher performance
in inferring the correct part of speech for the nonce words
[z = 3.9, SE = 0.23, p < .001] and in choosing the more
correct meanings [z = 4.4, SE = 0.25, p < .001]. The ben-
efit from reading the nonsense story was not limited to just
helping people choose the correct part of speech. Restricting
the analysis to only the trials on which participants chose the
correct part of speech, we find that exposure to the nonsense-
story still led to higher accuracy [z = 2.9, SE = 0.35, p = .004]
[accuracypart of speech ˜ condition+(1|subj id)+(1|word)]. Nei-
ther Wordsum nor Pretest scores predicted performance for
nonce words. Word frequency and word salience likewise did
not predict performance (z<1, but see Exps. 2 and 3).
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Figure 2: Accuracy for type of target word for Experiment
1. Horizontal dashed lines indicate chance-level. Error bars
indicate +/-1SE of the mean. Significant effect of context ex-
posure for nonce words in the nonsense-story is marked by a
squared shape around the relevant data-point in the graph.

Experiment 2

Experiment 1 showed that people can benefit from very sparse
contexts. One shortcoming of the study was that participants
in the real-passages and nonsense-story conditions were ex-
posed to contexts in a different way (short passages vs. one
long story; tested after each word vs. tested on all words at
once). In Experiment 2, we test participants in the same way
on all the same words, varying just the informativeness of the
context. We were also curious about whether it mattered how
word knowledge was assessed. Instead of using the “drill-
down” format that first asked about part of speech, we used
a more standard multiple-choice text, presenting all the 9 op-
tions for each word at the same time. Lastly, we parametri-
cally varied the informativeness of the context by replacing
different proportions of content words with nonce words.

Methods Participants were randomly assigned to one of six
conditions (see Table 2 for a summary). In the real-text con-
dition we exposed participant to the original Cricket story, in
which we replaced only the target words with real-rare En-
glish words. Thus, the linguistic context was still informative
(i.e., the target words were surrounded by meaningful words)
but it did not directly aim at communicating the meaning of
the target words, e.g., ‘You should find some shelter from the
cold night,’ said the smew. The mitius did not auscult, because
mitiuses do whatever they want. He decided to rest on a pile
of twigs. We progressively decreased the information pro-
vided by the context by replacing various proportions of the
remaining content words in the story with nonce words (40%,
60%, 90%, 100%). Lastly, we included a control group that
was tested on their knowledge of the real-rare words without
seeing any prior context.

Participants We recruited 246 participants from Amazon
Mechanical Turk (112 Male of average age = 35; 132 Females
of average age = 38). 38 participants were assigned to the
real-text condition, 36 to the 40% condition, 39 to the 60%

condition, 42 to the 90% condition, 52 to the 100% condition
and 39 to the control condition.

Procedure Participants in each condition were initially
tested on Wordsum and Pretest (following the procedure for
Experiment 1) and then randomly assigned to one of the six
conditions described above. All participants were then pre-
sented with the same 12 multiple choice questions (9 op-
tions per question) to assess their knowledge of the real-rare
words.

Results and Discussion Results are shown in Fig. 3.
Participants exposed to the full story clearly benefited in
inferring both part of speech [z = 5.9, SE = 0.22, p <
.001] and specific meaning [z = 5.6, SE = 0.25, p < .001]
of real-rare words [accuracy˜overall ˜ control vs full story
+(1|subj id)+(1|word)]. Similar results were found for the
40% and the 60% conditions, in which participants showed
compelling effects for both part of speech [z = 4, SE = 0.22, p
< .001] and specific meaning [z = 3.8, SE = 0.25, p < .001].
In contrast, when 90% or 100% of content words were re-
placed with nonce words, no significant benefit was observed
for either part of speech [z = 1.2, SE = 0.2, p = .226] nor
specific meaning [0.77, SE = 0.23, p = .444] results (Fig. 3).

Frequency of occurrence in the story was positively
associated with accuracy for the real-text condition,
[z = 2.7, SE = 0.16, p = .008] [accuracy ˜ con-
dition*frequency+(1|subj id)+(1|word)] and salience
[z = 2.3, SE = 0.16, p = .023] [accuracy ˜ condi-
tion*salience+(1|subj id)+(1|word)] in predicting accuracy
for specific meaning. More frequent and more salient
words benefited more from context. Similar effects were
found in the 40% and 60% conditions for accuracy on
specific meaning [frequency: z = 3.8, SE = 0.16, p <
.001; salience: z = 2.3, SE = 0.16, p = .023] [accuracy ˜
condition*wordsum scores+(1|subj id)+(1|word)]. Con-
trolling for pretest scores, greater vocabulary knowledge
(Wordsum) was positively associated with accuracy for
both part of speech [z = 2.7, SE = 0.12, p = .006] and
specific meaning [z = 2.7, SE = 0.14, p = .007]. Similarly,
previous word knowledge was positively associated with
part of speech accuracy [z =2.4, SE = 0.084, p = .018] and
specific meaning accuracy [z = 2.9, SE = 0.086, p = .003]
[accuracy ˜ condition*pretest scores+(1|subj id)+(1|word)].
These associations parallel the findings of the real rare words
condition of Experiment 1.

Exposure to a story in which 40%-60% of content words
were replaced with nonce words still allowed participants to
learn something about meanings of words occurring in the
story. There were two noteworthy differences between the
results of Experiment 1 and 2. First, unlike Experiment 1,
participants’ ability to benefit from the story context was pos-
itively associated with the frequency with which the word oc-
curred in the story and the word’s salience. These relation-
ships may stem from people’s greater baseline knowledge of
the (real-rare) target words. Second, exposure to a story in
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Table 2: Summary of type of context, type of target word and methods is assessing word meaning in each experiment.

Experiment Condition Name Type of Text Type of Target Word Example Words Question Test Type
Experiment 1 Real-passages Real-rare target words; informative text real-rare words ratoon; pronk; rawky drill-down

Nonsense-story Nonce-target words; nonsense story nonce words stronk; sprac; crex drill-down
Experiment 2 Real-text Real-rare target words: real story real-rare words auscult; lollop; smuir multiple choice

Real-words-nonce-context: 40% Real-rare target words; 40% of context replaced with nonce words real-rare words auscult; lollop; smuir multiple choice
Real-words-nonce-context: 60% Real-rare target words; 60% of context replaced with nonce words real-rare words auscult; lollop; smuir multiple choice
Real-words-nonce-context: 90% Real-rare target words; 90% of context replaced with nonce words real-rare words auscult; lollop; smuir multiple choice
Real-words-nonce-context: 100% Real-rare target words; 100% of context replaced with nonce words real-rare words auscult; lollop; smuir multiple choice
Control group No exposure to story real-rare words auscult; lollop; smuir multiple choice

Experiment 3 Real-words-nonce-context: 100% Real-rare target words; 100% of context replaced with nonce words real-rare words auscult; lollop; smuir drill-down
Control group Nonsense story with all words replaced with nonce words real-rare words auscult; lollop; smuir drill-down

which all the content words with nonce words did not lead to
greater-than-baseline performance on the word test. Experi-
ment 3 was designed to better understand this difference.
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Figure 3: Group performance for Experiment 2. Horizontal
dashed line indicated chance-level. Error bars indicate +/-
1SE of the mean.

Experiment 3
In Experiment 1, we found a significant effect of context ex-
posure in inferring the meaning of nonce words from non-
sense context. In Experiment 2 we assessed knowledge of
real-rare words instead of nonce words, and embedded them
in contexts of varying informativeness. Contexts in which
40-60% of content words replaced with nonce words were
helpful, but those in which more (90%-100%) of content
words were thus replaced, were not helpful. How do we
reconcile this difference? Aside from testing nonce words
vs. real-rare words, Experiments 1 and 2 differed in the way
word knowledge was assessed. Experiment 1 first asked
about part-of-speech. Experiment 2 presented all the meaning
choices together, intermixing meanings from different parts
of speech. We reasoned that explicitly asking people about
parts of speech (which are more directly bootstrapped by
morpho-syntactic cues) may make it easier for people to sub-
sequently access more specific aspects of the word’s meaning.
In Experiment 3 we tested the effect of exposing people to a
nonsense-story containing real-rare words as the real-words-
nonce-context (100%) condition of Experiment 2, but using
the drill-down question format of Experiment 1.

Methods Participants were randomly assigned to either the
real-words-nonce-context: 100% or to a control condition.

In the real-words-nonce-context, participants were exposed
to a nonsense-story containing the real-rare target words and
tested on those real-rare words (as in the 100% condition of
Experiment 2). Participants in the control condition were
shown a story with all nonce words (as in the nonsense-
story condition of Experiment 1) but at test were asked about
the meaning of the real-rare target words of the real-words-
nonce-context condition (i.e., they were asked about words
they did not see in the story).

Participants We recruited 81 participants from Amazon
Mechanical Turk (39 Male of average age = 37; 41 Females
of average age = 37). 41 to the real-words-nonce-context:
100% story condition and 40 to the control condition.

Procedure Participants in each condition were initially
tested on Wordsum and Pretest (following the procedure
for Experiment 1) and then randomly assigned to either the
nonsense-story condition or to a control group that was not
exposed to a story. All participants were tested on the same
set of drill-down questions.

Results and Discussion Results are shown in Fig. 4. We
found a significant effect of exposure to the linguistic con-
text in inferring the part of speech [z = 3, SE = 0.18, p =
.002] and the specific meaning [z = 2.6, SE = 0.2, p = .008]
of real-rare words when compared with the control condition
[accuracyoverall ˜ condition+(1|subj id)] (Fig. 4). When ex-
amining only trials on which participants inferred the correct
part of speech, the benefit of exposure to a nonce story on in-
ferring the correct specific meaning was no longer significant
[z = 0.5, SE = 0.31, p = .614] [accuracypart of speech ˜ condi-
tion+(1|subj id)+(1|word)]. To determine if the nonce-word
context in the present study was more effective than in the
equivalent condition of Experiment 2, we examined the inter-
action between experiment ( Exp. 2 vs. Exp. 3) and condition
(control group vs. real-words-nonce-context: 100%) [accu-
racy ˜ condition*experiment+(1|subj id)+(1|word)]. This in-
teraction was significant for both part-of-speech [z = 2.9, SE
= 0.18, p = .003] and specific meaning [z = 2.5, SE = 0.21,
p = .003]. As in Experiment 2, we found a significant effect
of both frequency and salience of the target words. The ben-
efit of being exposed to the nonce story was greater for more
frequent words [for part of speech: z = 2.1, SE = 0.14, p =
.035; for specific meaning: z = 2.5, SE = 0.15, p = .012] and
more salient words [for part of speech: z = 2.2, SE = 0.14, p
= .031; for specific meaning: z = 2.6, SE = 0.16, p = .009].
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Figure 4: Group performance for Experiment 3. Horizontal
dashed lines indicate chance-level. Error bars indicate +/-1SE
of the mean.

Controlling for pretest scores, greater vocabulary knowledge
(Wordsum) predicted higher accuracy for both part of speech
[z = 3.4, SE = 0.091, p = .001] and specific meaning [z = 3.1,
SE = 0.1, p = .002].

In Experiment 3, we observed an effect of context sim-
ilar to that observed in Experiment 1. People were able
to learn something about unknown words (here, real-rare
words) from contexts in which all content words were re-
placed by nonce words. The only difference between Exper-
iment 2 and the present study was in how word knowledge
was assessed. A plausible conclusion – though in need of
further testing – is that explicitly asking participants about a
word’s part of speech helps them deploy a more informative
prior within which to consider the specific meanings.

General Discussion
What are the limits of learning word meanings from lan-
guage? Our results show that participants were able to learn
something about what a word means from brief exposures
to such seemingly meaningless contexts as “The stronk rour-
thed daft to a dweave luk as the slom zeuded rhiecing.” For
example, after reading a 600+ word nonsense-word story con-
taining sentences like the one just used, 38% of participants
correctly inferred that “stronk” means “an insect” compared
to 0% of participants who were not exposed to the story.

Our attempt to replicate and extend the results of Exper-
iment 1 to using sparse contexts to inform the meanings
of real, but rare and generally not known words (e.g., aus-
cult, mitius), revealed that while partially informative con-
texts (40-60% of content words replaced with nonce words)
were helpful, more sparse contexts (90%-100% of content
words replaced) were not. We hypothesized that a key dif-
ference was the way that word knowledge was tested. In Ex-
periment 1, participants’ word knowledge was tested using
a drill-down format that asked participants to first consider
the word’s part of speech. In Experiment 2, participants were
asked to choose from among all the nine options visible at the
same time making part of speech a less salient dimension of
the word’s meaning in the testing phase. In Experiment 3 we

used the methods and materials of Experiment 2 with the test
format of Experiment 1. Highlighting part-of-speech infor-
mation using “drill-down” questions once again revealed that
participants were able to use the nonce-story context to infer
meanings of novel words.

Experiments 2-3 further showed that the effects of con-
text were positively associated with frequency and salience.
Words that were more frequent and more salient benefited
more from context. While frequency is perhaps the most of-
ten used predictor in studies of word learning, to our knowl-
edge, we are the first to examine the role of salience, defined
here a the likelihood that people recall reading the word (see
Table 1). What precisely makes a word salient requires future
research.

What information did people use to infer word meanings?
In the all-nonce-word conditions of Experiments 1 and 3,
greater than baseline performance cannot be explained by re-
liance on the meaning of English content words because no
recognizable content words were present. There were three
remaining sources of information: closed-class words, in-
flectional cues, and syntactic cues. Consider one sentence
from the story: “He thecked up into a dweave luk to fruth in
for a sparf snurv.” The remaining pronouns and prepositions
combined with inflectional cues can clearly be used to infer
that, e.g., “thecked” is an action being performed by an ani-
mate agent and that a “dweave” is likely to be some kind of
place. Implicit knowledge of English syntax such that verbs
follow “to” and objects tend to come after verbs offers further
guidance. What is remarkable is that participants are making
these inferences in parallel across dozens or even hundreds of
words and that a single exposure to the story is sufficient to
achieve above baseline accuracies.

Our work has two main limitations. First, successful use
of sparse contexts involving mostly or exclusively nonce
words clearly requires participants to already have sophisti-
cated knowledge of English and so while it can help us un-
derstand how adults learn new words from context, it does
not tell us how people learn enough English to make use of
such sparse contexts. Second, present experiments do not tell
us the relative importance of closed-class words, syntax, and
morphology. Answering this question would require manip-
ulating these sources of information independently. We can
also gain additional insights by conducting studies such as
this in more morphologically rich languages.

Conclusion
As has been long known, people are able to learn some-
thing about a word’s meaning from encountering it in con-
text. What is surprising is just how sparse and seemingly
uninformative that context can be. The facility that people
show in inferring word meanings from such sparse and seem-
ingly meaningless contexts suggests that we may be under-
estimating the role that morpho-syntactic and distributional
cues have on both learning word meaning and on acquiring
semantic knowledge that is embedded in language.
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Abstract 

In the present study, the correlations of eye blink rate (EBR) 

with the effective execution of early and late creative idea 

generation were explored. Participants engaged in a real-

world idea generation task. Resting state EBR (before the 

task) and task-evoked EBR (during the task) were measured 

using eye-tracking. The results showed that resting state EBR 

negatively correlated with the amount of generated ideas 

during early stage, but not late stage idea generation. Task-

evoked EBR did not correlate with the amount of generated 

ideas during early nor late stage idea generation. However, 

the change in EBR (from resting state to during early or late 

stage idea generation) positively correlated with the amount 

of ideas generated during early, but not during late stage idea 

generation. The contribution of this study is that it shows that 

EBR predicts and dissociates the effective execution of early 

and late stage creative idea generation. 

Keywords: Creativity; Eye Blink Rate; Idea Generation. 

Introduction 

Eye behaviours such as fixations, eye blink rate (EBR), and 

pupil size are increasingly used to study creativity (See 

Salvi & Bowden, 2016 for a review) – the creation of ideas, 

solutions, or products that are both original and appropriate 

(Abraham, 2018). One important result of such studies is 

that eye blink rate, the average number of blinks per minute 

(de Rooij & Vromans, 2018), predicts and dissociates 

performance on different types of psychometric tests of 

creative potential (e.g., Akbari Chermahini & Hommel, 

2010). Moreover, EBR has been used as a proxy for 

measuring fronto-striatal dopamine (Jongkees & Colzato, 

2016), cognitive control (Akbari Chermahini & Hommel, 

2010; 2012), motivation and affect (de Rooij & Vromans, 

2018), and internal cognition (Salvi et al., 2015; Walcher, 

Körner, & Benedek, 2017). Studies of EBR and creative 

potential therefore inform theory about the involvement of 

these neuro-psychological factors in creativity. 

Psychometric tests of creative potential, however, often 

suffer from poor ecological validity, casting doubt over their 

explanatory power for actual real-world creative idea 

generation (Zeng, Proctor, & Salvendy, 2011). The present 

study therefore explores the correlations of EBR with the 

effective execution of the creative idea generation process, 

using a task that resembles real-world creative tasks more 

closely than psychometric tests of creative potential. 

To enable creativity, people execute a creative process, 

which entails the execution of a set of cognitive processes 

and actions that enable a person to understand the problem 

that needs to be solved, generate ideas, and plan for further 

action (see Lubart, 2001 for a review). Idea generation is 

characterized by moving back and forth between generation 

and evaluation and is executed iteratively (Isaksen, Dorval, 

& Treffinger, 2010). In early stages of idea generation 

people typically retrieve concepts, which are synthesized 

into loosely formulated ideas, which process can involve 

remote association, conceptual combination, idea 

transformation, and analogical transfer (Finke, Ward, & 

Smith, 1992). The idea generation process evolves 

recursively, guided by the evaluation and selection of ideas 

for further development. Over iterations, and thus in late 

stages of idea generation, initially loosely formulated ideas 

are developed into more elaborately formulated ideas (Finke 

et al., 1992), and which process can be extended with 

combining previous ideas, filling in missing details, and 

simulating and testing implications and the validity of the 

ideas (Isaksen et al., 2010). 

Previous research suggested that EBR predicts and 

dissociates performance on different types of psychometric 

tests of creative potential. Resting state EBR (i.e., EBR 

measured while a person is relaxed and not engaged in a 

thinking task) predicted the amount of different concepts 

(flexibility) used during the alternative uses task (AUT) 

(Akbari Chermahini & Hommel, 2010), a test where people 

are asked to list as many creative uses for a common object 

as they can (e.g., presented stimulus: “Brick”, possible 

response: “Paper weight”) (Guilford, 1957). This 

relationship was best described with a quadratic (inverted 

U-shaped) function. In the studies by Akbari Chermahini 

and Hommel no correlations, linear or otherwise, were 

found between resting state EBR and the amount of listed 

uses (fluency) or the statistical infrequency of the listed uses 

(originality). The results of a study by Ueda and colleagues, 

however, suggested that resting state EBR predicted the 

amount of listed uses during the AUT, which was also best 

described by a curvilinear (inverted U-shape) function 

(Ueda, Tominaga, Kajimura, & Nomura, 2016). Moreover, 

resting state EBR negatively correlated with the amount of 

correctly solved items during the remote associates task 

(RAT) (Akbari Chermahini & Hommel, 2010; Ueda et al., 

2016), a test where people are asked multiple times to find 

the word that forms a compound word with each of the three 

given words (e.g., presented stimulus: “Fox, Man, Peep”, 

correct response: “Hole”) (Mednick & Mednick, 1971). In 

addition, Ueda and colleagues found that resting state EBR 

positively correlated with reaction time during the RAT.  

Previous studies also suggested that task-evoked EBR 

(i.e., EBR measured while actively engaged in a task), 

predicts and dissociates performance on psychometric tests 
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1 Note that the data for this paper was collected as part of a larger 

experiment on eye behaviour and idea generation. Although the 

EBR data is used only in the study presented here, the participants, 

tasks, and procedure is the same as in other studies based on the 

same data set.   

of creative potential. That is, task-evoked EBR positively 

correlated with the amount of uses listed during the AUT 

(Ueda et al., 2016). In the same study, task-evoked EBR did 

not significantly correlate with the amount of correctly 

solved items during the RAT, but did positively correlate 

with reaction time during the RAT. 

Studies on the change from resting state to task-evoked 

EBR add to these findings. That is, a study by Akbari & 

Hommel (2012) showed that the effects of stimulus induced 

increases in EBR on the amount of concepts used during the 

AUT differed significantly between people with low and 

high resting state EBR. That is, stimulus-induced increases 

in EBR led people with low resting state EBR to use more 

diverse concepts during the AUT than people with high 

resting state EBR. However, de Rooij & Vromans (2018) 

found no correlation or curvilinear relationship between the 

changes in EBR and the amount of uses, the amount of 

different concepts used, or the statistical infrequency of the 

responses during the AUT. Contrastingly, the same study 

showed that the change in EBR negatively correlated with 

the amount of correct responses to the RAT. However, when 

individual differences in positive and negative affect were 

taken into account, the interaction between a disposition to 

experience anxiety during creative tasks and the change in 

EBR positively correlated with the amount of correct 

responses to the RAT. 

The main limitation of the currently available research 

though, is that psychometric tests of creative potential, such 

as the AUT and RAT, suffer from poor ecological validity 

(Zeng et al., 2011). Tests such as the AUT, for example, 

rarely correlate stronger than .30 with questionnaires and 

with performance on creative tasks with high ecological 

validity. Specifically relevant for creative idea generation, is 

that there is no clear necessity for iteration in such tests 

(Zeng et al., 2011), which is an essential aspects of idea 

generation process execution, that leads to differences in 

performance during early and late stage creative idea 

generation (Lubart, 2001). It is therefore not known if and 

how the processes that underlie performance during the 

AUT and RAT, are also involved in early and late stage idea 

generation. Moreover, the AUT and RAT are rather abstract 

tasks and lack goals with personal relevance that typically 

characterize real-world creative tasks (Kilgour, 2006). This 

ignores the essential role of domain-specific knowledge, and 

is likely to engage motivation differently than in real-world 

creative idea generation tasks (e.g., de Rooij & Jones, 

2013). Thus, EBR may correlate differently, if at all, with 

performance during early and late stage idea generation in 

tasks that resemble real-world creative tasks more closely, 

than with performance during the AUT and RAT. 

What is clear from these psychometric tests of creative 

potential, is that there is no indication of a correlation 

between EBR and qualitative aspects of idea generation 

(Akbari Chermahini & Hommel, 2010; 2012; de Rooij & 

Vromans, 2018; Ueda et al., 2016). That is, none of the 

studies showed correlations between EBR and the 

originality of the responses during these tests. Rather, 

results of these studies showed correlations between EBR 

and the quantity of responses (e.g., the amount of ideas 

during the AUT, the amount of solved items during the 

RAT). These studies therefore contribute that the 

correlations, if any, between EBR and performance during 

early and late stage idea generation is likely quantitative, 

and thus indicative of effective execution of the idea 

generation process, rather than directly of creativity. 

Therefore, in the present study the correlations of EBR 

with the effective execution of the idea generation process 

(as measured by the amount of generated ideas) during early 

and late idea generation were explored, using a task that 

resembles real-world creative tasks more closely than 

psychometric tests of creative potential. 

Method 

To explore the correlation of EBR with the amount of ideas 

generated during early and late stage idea generation, an 

experiment was conducted.1 

Participants 

Seventy-eight people participated in this study (Mage = 

23.34, SDage = 3.46, 55 female, 23 male). They had normal 

or corrected-to-normal vision. Most (n = 76) were recruited 

via the participant recruitment system of a communication 

science department at a Dutch university. Participants 

received course credit as compensation for their time spent 

on the study. Two additional participants, recent graduates, 

requested to participate out of interest and did not receive 

compensation. On average, the participants self-reported to 

be moderately experienced with marketing (M = 3.79, SD = 

1.11) (1 = No experience, 5 = Very experienced). 

Idea generation task 

The participants engaged in an idea generation task, were 

they were asked to generate creative marketing ideas aimed 

at helping a web shop that sells bicycles to attract more 

visitors to their website. Their idea generation process was 

split up into two separate tasks, both of which each 

participant completed, to capture early and late stage idea 

generation. 

 

Task 1: Early stage idea generation 

To capture early stage idea generation, participants were 

asked to generate as many creative marketing ideas as they 

could (Figure 1b). This, to elicit a range of pre-inventive 

structures that participants could then combine and 

elaborate upon in the subsequent late stage idea generation 

task. To enable the measurement of EBR, the early stage 

idea generation task was cued. Each trial started with a 

fixation dot (5 seconds), after which participants were asked 
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Figure 1: Trial structure of the a) resting state, b) early stage, and c) late stage idea generation tasks, including measurement 

points for resting state and task-evoked EBR. 

to generate a creative marketing idea that was relevant to the 

provided problem description. There was no time limit. 

When a participant had generated an idea, the space bar 

could be pressed after which a text input field was presented 

on the screen where the participant could type in the idea 

they generated. This trial sequence was repeated a 

maximum of ten times. If the participants believed they 

could not generate any more ideas before the limit of ten 

trials was reached, they could type in ‘stop’ to end the early 

stage idea generation task, and start the late stage idea 

generation task. 

 

Task 2: Late stage idea generation 

To capture late stage idea generation, participants were 

asked to select two or more of their previously generated 

ideas to develop a more elaborate and detailed idea (Figure 

1c). For example, if a participant generated the ideas to use 

an “Instagram page” and “hire influencers to promote your 

Instagram posts” during early stage idea generation, these 

could then be combined and developed into a more detailed 

elaborate solution, (e.g., “where content developed for the 

Instagram page is suitable for hired influencers, with a 

follower demographic suitable for the web shop, which they 

can then share with their followers”). Their previously 

generated ideas were available to the participants during this 

task (they were listed on the computer screen). The same 

trial structure was used as during the early stage idea 

generation task. That is, participants were instructed to look 

at a fixation dot for 5 seconds, after which they had time to 

combine previously generated ideas into more elaborate 

ideas. After generating an idea, they pressed the space bar 

on the keyboard, and a text input field emerged where they 

could type in their idea. There was no time limit. However, 

there was a maximum of 3 trials. If they believed that they 

could not generate any more ideas before they reached the 

limit of three trials, they typed in “stop” to stop the task, and 

with that end the experiment. 

Assessment of the effective execution of the idea 

generation process 

To gain insight into how effective the idea generation 

process was executed idea generation fluency was assessed 

(i.e., the amount of ideas generated). Fluency is a commonly 

used performance indicator used in studies of idea 

generation (Guilford, 1957). In the present study, 

participants generated on average 6.25 ideas during early 

stage idea generation (SD = 2.33), and on average 2.28 ideas 

during late stage idea generation (SD = .78). 

Eye blink rate 

Eye blinks were recorded with a head mounted eye-tracker, 

and were defined as eye-tracker signal loss with a duration 

of 40-400 milliseconds (de Rooij & Vromans, 2018). EBR 

was defined as the average amount of blinks per minute, and 

was calculated based on the amount of recorded eye blinks 

and the amount time during which these were recorded. The 

following measurements of EBR were used: (I) Resting 

state EBR - EBR recorded in resting state before the creative 

idea generation task, where participants were asked to relax 

and watch a fixation dot for 120 seconds (Figure 1a); (II) 

Task-evoked EBR - EBR recorded during early stage and 

during late stage idea generation. EBR was recorded only in 

the parts of the trials where participants were thinking about 

their ideas (Figure 1b and 1c); (III) Change in EBR (task-

evoked – resting state EBR) - The change in EBR from 

resting state to early stage and to late stage idea generation. 

To reduce measurement error, only data from eye blinks 

recordings after 2 seconds of the start, and before 2 seconds 

of the end of each measurement, were used to calculate 

EBR. This helped prevent blinks due to changing screens at 

the start of a task, and pressing ENTER when an idea was 

generated, to confound the EBR measurements (de Rooij & 

Vromans, 2018). Three participants did not blink during 

resting state. This may indicate that participants simply did 

not blink for 120 seconds, but may also indicate 

measurement error. Since the latter cannot be ruled out 

resting state EBR of these three participants was not used in 

the analysis. Finally, as EBR is only stable in the morning, 

midday, and afternoon (Barbato et al., 2000), the experiment 

was organised only between 9 am to 5 pm. 

1608



2 Quadratic models were also tested by adding the squared EBR 

terms to the models presented in Table 2. No significant 

coefficients were found that add to the results obtained with the 

linear models. We also refer to Figures 2b-2d for visual inspection.  

Apparatus 

Materials were presented using dark letters against a grey 

background on a 22” Dell P2210 monitor (1680×1050 

resolution). EBR was recorded using the EyeLink II head-

mounted eye-tracker (SR Research Ltd.) at 250Hz. The 

cable that connected the eye-tracker to the computer was 

attached to the ceiling to reduce perceived weight and pull 

that may negatively affect comfort. LED lighting was used 

to diffuse environmental lighting as evenly as possible. The 

experiment was in OpenSesame with the PyGaze library 

(Dalmaijer et al. 2014). 

Procedure 

Participants received a written introduction to the 

experiment, signed informed consent, and filled in a short 

questionnaire about their socio-demographics and marketing 

experience. Information about the true purpose of the 

experiment was withheld at this stage. Participants were 

seated behind a computer screen in a sound proof booth. 

The head-mounted eye-tracker was installed and calibrated 

using a 5-point validation. The distance to the screen was 

approximately 70 cm. Then, participants could practice with 

the experiment software. After this, participants were asked 

to relax and look at a fixation dot for 120 seconds. Next, 

participants read the provided problem statement, and 

started with the idea generation task. Finally, the 

participants were debriefed in full, and after being asked 

whether they could guess the purpose of the experiment.  

Analysis 

The data obtained in the present study were analysed using 

generalized linear mixed models. The models were 

calculated using Satterthwaite approximation to account for 

the relatively small sample size. Robust covariances were 

used for the tested of fixed coefficients to handle violations 

of model assumptions. For models with the amount of 

generated ideas as the target, a negative binomial 

distribution was used with a log link. For the model with 

EBR as the target, a normal distribution with an identity link 

was used. Model terms and targets are presented in Table 2. 

Results 

Table 1: Descriptive statistics of EBR during resting state, 

early stage (task evoked), and late stage (task evoked) idea 

generation. 

 

 EBR 

 M SE n 

Resting state 13.23 1.21 75 

Early stage 7.18 .60 78 

Late stage 3.91 .40 78 
Note. M = mean, SE = standard error, n = count. 

 

The descriptive statistics are presented in Table 1. The 

results showed a significant main difference between the 

tasks for EBR, F(2, 228) = 32.07, p < .001 (Figure 2a).2  

The pairwise comparisons (not corrected) showed a 

significant difference in EBR between resting state and 

early stage, estimated difference = -6.06, t = 4.48, p < .001, 

95% CI[-8.72, -3.39], and late stage idea generation, 

estimated difference = -9.32, t = 7.30, p < .001, 95% CI[-

11.84, -6.81]; and between early and late stage idea 

generation, estimated difference = -3.27, t = 4.52, p < .001, 

95% CI[-4.69, -1.84]. These findings suggest that in the 

present study, EBR decreased from resting state, to early 

stage idea generation, to late stage idea generation. 

 

Table 2: Correlations and effects (GLMM) of resting state 

EBR, task-evoked EBR, and their difference with fluency 

during late and early stage idea generation. 

 

Model 

terms 

Correlations of Fluency with EBR 
Resting state Task-evoked Change EBR 

Intercept .83** (.06) .86** (.08) .81** (.06) 
Early stage 1.12** (.08) .92** (.10) 1.08**(.06) 
Late stage .a .a .a 
EBR >-.01 (<.01) -.01 (.02) >-.01 (<.01) 
Early stage 

x EBR 
-.01* (<.01) .02 (.02) .01 (<.01)** 

Late stage  

x EBR 
.a .a .a 

Note. Data are unstandardized coefficients and standard errors 

(between parentheses). a Reference variable. * p < .05, ** p < .01. 
 

The results showed a significant and negative interaction 

between idea generation stage and resting state EBR for the 

overall amount of generated ideas, b = -.01 t = 2.00, p = 

.049, 95% CI[-.02, -.01] (Table 2). Pearson correlations 

showed that this interaction effect could be explained by a 

significant and negative correlation between resting state 

EBR and the amount of generated ideas during early stage 

idea generation, r = -.170, p = .043, and a negative but not 

significant correlation between resting state EBR and the 

amount of generated ideas during late stage idea generation, 

r = -.039, p = .675 (Figure 2c). These findings indicate that 

resting state EBR negatively correlates with the effective 

execution of early but not late stage idea generation. 

The results showed no significant correlations between 

task-evoked EBR and the amount of generated ideas; and no 

significant interaction between idea generation stage and 

task-evoked EBR for the amount of generated ideas (Table 

2, Figure 2b). These findings indicate no relationship 

between task-evoked EBR and the effective execution of the 

creative idea generation process. 

Furthermore, the results showed a significant and positive 

interaction between idea generation stage and the change in  

EBR from resting state to each task, for the overall amount 

of generated ideas, b = .01, t = 3.04, p = .003, 95% CI[.01, 

.02] (Table 2). Pearson correlations showed that this 

interaction effect could be explained by a significant and 
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positive correlation between the change in EBR and the 

amount of generated ideas during early stage idea 

generation, r = .298, p = .010, and a negative but not 

significant correlation between the change in EBR and the 

amount of generated ideas during late stage idea generation, 

r = -.014, p = .904 (Figure 2d). These findings indicate that 

the change in EBR positively correlates with the effective 

execution of early but not late stage idea generation. 

Discussion 

In the present study, the correlations of EBR with the 

effective execution of the idea generation process (as 

measured by the amount of generated ideas) during early 

and late idea generation were explored, using a task that was 

designed to closely resemble real-world creative tasks. 

The results showed that resting state EBR negatively 

correlated with the amount of generated ideas during the 

early stage, but not during the late stage of creative idea 

generation (Figure 2c). This finding contrasts with previous 

research that suggested that the relationship between resting 

state EBR and the amount of generated ideas during the 

AUT best described with an inverted U-shape function2 

(Ueda et al., 2016), or that no significant correlation 

between the amount of ideas generated during the AUT and 

resting state EBR exists (Akbari Chermahini & Hommel, 

2010). Possibly, this finding is more in line with previous 

research that indicates that the amount of solved items 

during the RAT negatively correlates with resting state EBR 

(Akbari Chermahini & Hommel, 2010), but this finding has 

been inconsistent across studies, cf. (Ueda et al., 2016). 

The results also suggested that task-evoked EBR does not 

correlate with the amount of generated ideas during early 

nor during late stage idea generation (Figure 2b). This 

differs from previous research, which indicated task-evoked 

EBR positively correlated with the amount of uses listed 

during the AUT (Ueda et al., 2016); but is in line with 

results from the same study, which suggested that task-

evoked EBR did not significantly correlate with the amount 

of correctly solved items during the RAT. In addition, 

differences between early and late stage idea generation 

could also be explained by previous findings that suggest 

that EBR quickly increases right before generating problem 

solutions via spontaneous insight (Salvi et al., 2015). 

Speculatively, moments of insight could appear more 

frequently in early than in late stage idea generation, as in 

the latter people focus more on recombining existing ideas. 

The results of the present study, however, also suggested 

that the change in EBR (from resting state to during the 

tasks) positively correlated with the amount of ideas 

generated during early, but not during late stage idea 

generation (Figure 2d). This is in line with previous research 

 
   

Figure 2: a) Spaghetti plot showing EBR measured at resting state, early stage, and late stage idea generation for each 

participant; b) Scatter plot of fluency and task-evoked EBR for early and late stage idea generation; c) Scatter plot of fluency 

and resting state EBR for early and late stage idea generation; and d) Scatter plot of fluency and the difference between task-

evoked and resting state EBR for early and late stage idea generation. 
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that suggests that there are circumstances in which the 

change in EBR positively correlates with the amount of 

solved items, but not with related findings that suggest a 

negative correlation between the change in EBR and the 

amount of solved items during the RAT (de Rooij & 

Vromans, 2018). 

There are, of course, also limitations that threaten the 

validity of the results. Although the present study purports 

to use a task with high ecological validity, no claims can be 

made on specific aspects of its validity. That is, due to the 

novelty of the task no tests of validity have been done (cf. 

de Rooij, Vromans, & Dekker, 2018). Furthermore, to 

enable measurement of EBR, idea generation was cued and 

split up into two tasks, representing early and late stage idea 

generation. In reality, such an artificial separation does not 

typically happen, and may hamper the often free flowing 

nature of creative idea generation (Lubart, 2001), which 

threatens the ecological validity of the used creative idea 

generation task, (cf. de Rooij & Vromans, 2018). 

Furthermore, to accommodate eye-tracking measurements 

responses were cued and limited to 10 responses during 

early, and 3 responses during late stage idea generation, 

limiting variance. The limited variance of late stage idea 

generation could therefore alternatively explain why no 

correlation between EBR and the amount of ideas generated 

in late stage idea generation was found. Decisions made to 

support ecological validity also came at the cost of 

introducing potential confounding factors. That is, no 

counterbalancing between early and late stage idea 

generation is possible, so any found differences could be 

confounded by adaptation to light conditions. Finally, due to 

the use of a novel task, it is difficult to compare the results 

obtained in the present study to results from previous related 

work. This limits the degree to which the results of this 

study can be grounded in such previous work. Limitations 

such as these should be taken into account when interpreting 

and building upon the present study.  

The contribution of the present study is therefore that it 

shows for the first time that EBR predicts and dissociates 

the effective execution of early and late stage creative idea 

generation, using a creative task that resembles real-world 

creative tasks more closely than psychometric tasks of 

creative potential. Differences in the results between the 

present and previous studies using these psychometric tasks, 

show the importance of using tasks with higher face 

validity, as indeed, the results differ. This has implications 

for the development of theory on how the neuro-

psychological correlates of EBR relate to creative idea 

generation. 
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Abstract

Prior research showed that young children prefer to seek help
from actors who have demonstrated active learning compe-
tence. What inferences do people make based on the abil-
ity to search effectively, for example by asking informative
questions? This project explores across two experiments to
what extent adults and children (3- to 9-year-olds) general-
ize the ability to ask informative questions to other abili-
ties/characteristics. We presented participants with one mon-
ster who always asked informative questions and one who
always asked uninformative questions. Participants had to
choose which monster they thought was more likely to pos-
sess/was better at 12 different characteristics/abilities. Our re-
sults show a clear developmental trend. Three- and 4-year-
olds draw unsystematic inferences from the monsters question-
asking expertise. Five- and 6-year-olds identified the better
question asker as better at everything. Seven- to 9-year-olds
showed adult-like response patterns, selectively associating the
ability to ask good questions to related characteristics/abilities.

Keywords: active learning; social cognition; question asking.

Introduction
Children are natural born active learners. However, while
some skills and knowledge (e.g., basic laws of physics or
object functions) can be acquired by first-hand active explo-
ration or from observations, some other abilities (e.g., lan-
guage) strongly rely and build on social interactions. Indeed,
a vast body of research suggests that children are programmed
to learn from others since the very beginning. Already 6- to 9-
month-old infants are equipped with special attentional mech-
anisms to detect when a social partner is willing to transmit
information (Senju & Csibra, 2008; Csibra & Gergely, 2009),
and 9-month-olds use strategies such babbling or social refer-
encing to seek explanations from their caregivers when pre-
sented with unfamiliar objects (Goldstein & Schwade, 2009;
Walden, Kim, McCoy, & Karrass, 2007).
As soon as they can talk, children have more explicit ways
to elicit explanations or request information: they can ask
questions. Question asking is a powerful learning tool that
children rely on to enlarge, deepen, enrich and adaptively
revise their knowledge about the physical and social world
(Callanan & Oakes, 1992; Campos, 1981; Chouinard, Harris,
& Maratsos, 2007; Meltzoff, 1988b, 1988a, 1990). Previous
work demonstrated that children are very selective when de-
ciding whom to ask questions to, or more generally which
informants to rely on. This research suggests that children’s
trust is driven by a complicated mixture of inferences drawn
from the quality of the information provided (e.g., accuracy,

completeness; see Pasquini, Corriveau, Koenig, & Harris,
2007; Koenig, Clément, Harris, & Clement, 2004; Jaswal,
Croft, Setia, & Cole, 2010; Koenig & Jaswal, 2011) and the
characteristics of the agent providing the information (e.g.,
expertise, age, familiarity, culture; see Lutz & Keil, 2002;
VanderBorght & Jaswal, 2009; Kinzler & Spelke, 2011). As
an example, Kushnir, Vredenburgh, and Schneider (2013)
have shown that preschoolers use the quality of the informa-
tion provided as a cue to infer the informants’ scope of ex-
pertise. In their first study, they presented 3- and 4-year-olds
with two informants (a labeler and a fixer), two familiar tools
(a screwdriver and a wrench) and two unfamiliar electronic
toys with interesting light or sound effects. The labeler pro-
vided accurate labels for the tools that he had to use to fix a
broken toy, but did not manage to fix it. The fixer labeled the
tools inaccurately but managed to fix the toys. Both 3- and 4-
year-old children asked the labeler for help when they needed
to know labels for novel toys, and turned to the fixer when
they had to fix a broken toy, thus inferring expertise from the
quality of the information provided (Kushnir, Vredenburgh,
& Schneider, 2013).

Recent work shows that preschoolers are also sensitive to
the effectiveness of the active learning strategies of a poten-
tial informant. In particular, children identify and rely on
the most informative between two given questions already at
age 4 (Ruggeri, Sim, & Xu, 2017), although they cannot reli-
ably generate the most effective questions from scratch until
age 10 (e.g., Herwig, 1982; Mosher, Hornsby, Bruner, J, &
Oliver, 1966; Ruggeri & Feufel, 2015; Ruggeri & Lombrozo,
2015; Ruggeri, Lombrozo, Griffiths, & Xu, 2016). This re-
search suggests that the cognitive machinery to support ef-
fective question asking may develop much earlier than the
ability to generate effective questions from scratch. Why is
this the case? On the one hand, it might be that what hin-
ders younger children’s effective question-generation is that
their verbal abilities and vocabulary are not sufficiently de-
veloped. On the other hand, one intriguing possibility is that
children’s early ability to evaluate questions’ informativeness
allow them to assess another persons learning competence-
a cue that can be used to identify role models to imitate
and to learn how to learn from. Along these lines, a re-
cent study showed that 3- to 7-year-old children preferentially
sought help from a competent active learner who had fig-
ured out how to solve a problem by herself, over learners who
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had learned through passive observation or direct instruction.
Yet, this preference emerged only when the problem children
needed to solve was similar to the one the learners had previ-
ously solved, where they thought the active learners compe-
tence would be relevant (Bridgers, Gweon, Bretzke, & Rug-
geri, 2018). This paper investigates one crucial question aris-
ing from this perspective: How do children use active learn-
ing competence to identify role models, that is, what do they
infer based on someone’s ability to ask effective questions:
Are good question-askers smarter, more knowledgeable, or
better at solving problems? Do adults make similar infer-
ences and generalizations? To address these questions, we
explore to what extent adults (Study 1) and 3- to 9-year-old
children (Study 2) generalize question-asking competence to
other abilities/traits/characteristics.

We implemented a paradigm similar to that used in pre-
vious studies investigating the inferences and generalizations
children make based on the informants’ expertise and char-
acteristics. For instance, Brousseau-Liard and colleagues
(2010) presented 4- and 5-year-old children with two pup-
pets that labeled 4 familiar objects. One did so correctly,
and the other incorrectly. At test, children were asked to
indicate which puppet they thought was more likely to pos-
sess 12 different skills/characteristics encompassing six cat-
egories: knowledge of words (e.g., Who knows words for
lots of different machines?), talents (e.g. Who can draw
pretty pictures?), knowledge of facts (e.g., Who knows that
cats can see at night?), pro-social behavior (e.g., Who always
shares her toys?), and two control-questions on possessions
and situation-specific knowledge (e.g., Does she have a cat?;
Who knows where I put my books?). Their results suggest
that 5-, but not 4-year-olds, used the puppets’ past accuracy to
make explicit predictions about relevant characteristics such
as her knowledge of words and facts and her pro-social be-
haviour, but not about her talents, possessions or situation-
specific knowledge (Brosseau-Liard & Birch, 2010). Along
the same lines, Lane and colleagues (2013) presented 3- to 6-
year-old children and adults with three story books in which
two pictured characters exhibited contrasting traits: Honest-
dishonest, nice-mean, and smart-not smart. During the test
phase, participants were tasked to ask - and endorse - char-
acters’ testimony about novel objects’ names, about the con-
tent of a box that both characters had seen, and to attribute
knowledge about the content of a different box, where only
the negative informant had access to this information. Their
results show that children and adults prefer to ask and en-
dorse information about novel objects’ names provided by
people who are nice, honest and smart, whereas knowledge
attribution seems to be influenced by the informants traits,
following an age-graded decrease: 3- to 5-year-olds wrongly
attributed knowledge to the positive informant, as opposed
to 6-year-olds and adults, who correctly inferred the negative
character’s situation-specific knowledge (Lane, Wellman, &
Gelman, 2013).

Based on the results discussed above (e.g., Lane et al.,

2013), we expect to find an overall age-related decrease in the
extent of generalizations from question-asking expertise to
unrelated traits, abilities and characteristics, with older chil-
dren and adults being generally more selective than younger
children (see Mills, 2013 for a review on the development of
selective trust). However, because very few studies investi-
gating generalizations of expertise have considered a broad
children age range as well as adults, we don’t know when
mature, adult-like selectivity would emerge.

Study 1
The goal of this study was to assess adults’ intuitions about
the relationship between question-asking competence and 12
different abilities/traits/characteristics.

Participants Thirty adults (11 males; Mage= 28.09; SD =
7.63) participated in this study. All participants were re-
cruited and tested at the Museum für Naturkunde in Berlin,
Germany. Participants belonged to various social classes and
were native German or fluent in German. IRB approval was
obtained and participants gave informed consent to partici-
pate in the study. One additional participant was excluded
from the analyses due to missing data.

Design and procedure
The procedure consisted of two phases. The familiarization
phase was designed to introduce participants to two agents
(i.e., monsters), one who always asks informative questions
and the other who always asks uninformative questions. In
the test phase, we asked participants to rate the strength
of the association between the question-asking competence
illustrated in the familiarization phase and 12 given abili-
ties/traits/characteristics. We detail the two phases below.

Familiarization phase Participants were asked to read a
short storybook introducing two monsters, Bobo and Kila,
who ask their friend Toma some questions to find out what
happened on her first day at the new school. The storybook
consisted of five pages. Each of the first four pages presented
a different event taking place on Toma’s first day at the new
school (e.g., Toma drew a surprise welcome gift from a bag;
see Figure 1 for an example) and two related questions that
Bobo and Kila asked Toma (e.g., “Did you get a teddy bear?”
or “Did you get a red toy car?”). On the bottom of the page, 8
cliparts, arranged in a row, illustrated the options to be consid-
ered (i.e., the hypothesis space; e.g., which gifts were inside
the bag). Across the four scenarios, one of the monsters al-
ways asked informative questions, whereas the other always
asked uninformative questions. The informative question tar-
geted half of the hypotheses considered, either by asking a
hypothesis-scanning question that referred to a single hypoth-
esis presented 4 times (e.g., “Did you get a teddy bear?”,
where there were four teddy bears in the bag), or by asking
a constraint-seeking question that addressed a feature shared
by four of the hypotheses (e.g., “Did you get a round-shaped
toy?”, where there were four round-shaped toys in the bag).
The uninformative question targeted either an object that was
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not included in the hypothesis space (e.g., the red toy car;
hypothesis-scanning question) or a feature shared by all the
objects (e.g., a toy; constraint-seeking question). A fifth page
presented again the two monsters and summarized the les-
son to be learned from the familiarization phase, reminding
participants that “Bobo/Kila always asks good/bad questions,
because they are very informative/not informative at all. She
is a good/bad question asker!”

Figure 1: One scenario of the familiarization phase in which
Bobo, the green monster, asks an informative question and
Kila, the yellow monster, asks an uninformative question. In
this example, the informative question refers to a single hy-
pothesis presented 4 times, whereas the uninformative ques-
tion targets an object that was not included in the hypothesis
space.

Test phase In the test phase, participants were asked to
complete a paper-and-pencil survey consisting of 12 ques-
tions, presented in random order. For each question, par-
ticipants were asked to rate how much 12 different abilities,
traits or characteristics (see Table 1) related to the ability to
ask informative questions (e.g., “How much is being good
at treasure hunting related to the ability to ask informative
questions?”), on a scale from 0 (“not related at all”) to 10
(“strongly related”). The questions presented were selected
to include a set of abilities/traits/characteristics of different
kinds (i.e., intellectual skills vs. physical abilities, individ-
ual preferences or irrelevant characteristics) that, according
to our intuitions and to pilot survey data, are more or less re-
lated to the ability to ask informative questions, e.g., involve a
stronger or weaker strategic component. For instance, being
good at treasure hunting or at solving riddles might require
the ability to search for information and explore strategically,
whereas knowing many animal names refers to a domain-
specific knowledge that is more strategy-independent.

Results and Discussion
As can be seen from Table 1, “being clever” and “being good
at school” were rated as the most related to the ability to ask
good questions. The association with abilities with a strategic
component (i.e., “being good at treasure hunting” and “being
fast at completing puzzles”) were rated as medium-strong,
and that with domain-specific knowledge (i.e. “knowing

many animal names”) was judged as medium-weak. Interest-
ingly, “being friendly” was also rated as having a moderate-
weak association with question-asking competency, although
it had the highest between subjects variability. One possible
interpretation could be that being good at asking questions is
considered by some people, but not others, to indicate of a
person being socially smart, sociable or just generally more
likely to interact with others (Good, Slavings, Harel, & Emer-
son, 1987). Physical abilities or skills were rated low overall,
independently of whether they were more likely to involve a
strategic component (“being good at playing soccer”) or not
(i.e., “kicking a ball the furthest”). As expected, individual
preferences (e.g., “liking ice cream”) or irrelevant character-
istics (e.g., “seeing the farthest”,“having siblings”) were rated
very low, that is, were judged as not at all related to the ability
to ask informative questions.

Taken together, these results suggest that adults make dis-
tinct, graded, meaningful and fairly consistent inferences and
generalizations based on the ability to ask good questions.
Some abilities, traits and characteristics are considered to
be strongly related to question-asking competency, whereas
some others are considered to be only weakly related, or com-
pletely unrelated.
In Study 2 we explored to what extent such inferences
and generalizations undergo a developmental change across
childhood, and when adult-like intuitions might emerge.

Table 1: Study 1. Mean ratings of the strength of the as-
sociation between question-asking competence and the abili-
ties/traits/characteristics presented to adults in Study 1.

Abilities/traits/characteristics Mean SD
Being good at school 8.36 1.83
Being clever 8.30 1.91
Being good at treasure hunt 6.76 2.21
Being fast at completing puzzles 5.76 2.67
Knowing lots of animal names 4.20 2.68
Being friendly 3.56 3.16
Having siblings 2.13 2.53
Being good at playing soccer 1.63 2.08
Seeing the farthest 1.37 2.35
Scoring lots of goals 1.33 2.22
Kicking a ball the furthest 1.10 2.19
Liking ice cream 0.67 1.39

Study 2
Participants Participants were 40 3- and 4-year-old chil-
dren (21 males; Mage= 48.41 months; SD = 7.19 months), 40
5- and 6-year-olds (19 males; Mage= 7.18; SD = 6.52 months)
and 40 7- to 9-year-olds(18 males; Mage= 101.59 months;
SD = 9.74 months), recruited and tested at local museums
in Berlin. Participants belonged to various social classes and
were native German or fluent in German. IRB approval was
obtained and parents gave informed consent for their children
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to participate before the study. Twenty-four additional partic-
ipants were excluded from the analyses due to technical is-
sues (n = 2) and for failing the attention (n = 7), the memory
check (n = 9; see below), or both (n = 6; see below).

Design and procedure The design and procedure of Study
2 was identical to that of Study 1, with the following excep-
tions: First, the task (storybook and survey) was implemented
on a 10” Tablet. Second, the familiarization story and the test
questions were read to children by an experimenter, who also
reminded them, at the end of each scenario, which monster
was a good and which one was a bad question asker. Third, in
the test phase, instead of being asked to provide a rating from
0 to 10 as in Study 1, children were asked, for each question,
to select the monster they thought was more likely to pos-
sess/was better at the presented abilities/traits/characteristics.
Two cards illustrating the monsters were used to help children
indicate their preference. Finally, as an attention and memory
check, we asked children both at the beginning and at the end
of the test phase to indicate which monster was the best at
asking questions.

Results

Children’s selections were coded as “1” when they indicated
the good question asker, or “0” when they indicated the bad
question asker. Results are presented in 2. We performed
a multivariate regression with adults’ ratings in Study 1 as
predictors of children’s selections in Study 2. This analysis
revealed that adults’ ratings predicted 7- to 9-year-old
children’s response pattern (β = .025, t(12)= 3.19, p = .01; R2

= .455, F(1, 12) = 10.20, p = .01), but not 5- and 6-year-olds’
(β = .018, t(12) = 1.65, p = .12; R2 = .137, F(1, 12) = 2.75, p
= .12) nor 3- and 4-year-olds’ (β = .010, t(12)= .84, p = .41;
R2 = -.027, F(1, 12) = .716, p = .41). We then performed a
series of binomial tests to assess whether children’ prefer-
ence for the question asker on each ability/trait/characteristic
differed from chance (50%). The results (see Table 2)
show that the the extent of children generalizations strongly
varies between age groups. Generally, 3-to 4-year-olds’
showed a very unsystematic response pattern: They had no
preference for the good question asker for abilities, traits and
characteristics that both adults and older children deemed
related to question asking (e.g., “being good at school”,
“being good at treasure hunting”), but displayed a strong
preference for some clearly irrelevant questions (e.g., “having
siblings”, “seeing the farthest”). Five- to 6-year-olds clearly
overgeneralized: They extended question-asking competence
to both related and unrelated domains, selecting the good
question-asker above chance for 10 of the 12 questions
presented (“being good at school”, “being clever”, “being
good at treasure hunting”, “being fast at completing jigsaw
puzzles”, “knowing many animal names”, “being friendly”,
“having siblings”, “being good at playing soccer”, “seeing
the farthest”, “liking ice cream”). However, 7- to 9-year-olds
showed a systematic and meaningful attributions of relevant
abilties/traits/characteristics to the good question-asker, very

similar to the one found with adults in Study 1.

General Discussion
In this project we explored across two experiments to what
extent adults (Study 1) and 3- to 9-year-old children (Study
2) generalize question-asking competence to other abili-
ties/traits/characteristics. Taken together, our results suggest
a clear developmental trend: Three- and 4-year-olds drew un-
systematic inferences from the monsters question-asking ex-
pertise, showing no preference for the good question asker
when evaluating abilities, traits and characteristics that both
adults and older children deemed strongly related to question
asking (e.g., “being good at school”, “being good at treasure
hunting”). At the same time, they showed a strong preference
for the good question asker on some clearly irrelevant ques-
tions (e.g., “having siblings”, “seeing the farthest”). Five- and
6-year-olds identified the good question asker as better/more
likely to have nearly every presented ability/characteristic.
Seven- to 9-year-olds showed adult-like response patterns,
selectively associating question-asking competency to some,
relevant abilities and characteristics (e.g., “being good at
school” and “being clever”), but not to others (e.g., “kick-
ing a ball the furthest”, “seeing the farthest” and “liking ice
cream”).

Three- and 4-year-olds in our study failed to associate traits
and abilities such as “being good at school” and “being good
at treasure hunting” with question-asking expertise, an asso-
ciation rated strong by adults and older children. We should
notice that these two characteristics might have been difficult
to understand for children this age. On the one hand, they
probably do not have yet a clear idea of what “being good at
school” means, as they are not in school yet. On the other
hand, they might not appreciate the strategic component un-
derlying the ability of being good at treasure hunting. This
component seems to be more evident for them in the ability
of solving puzzles. Moreover, their preference response for
“knowing many animal names” suggests that young children
might consider semantic knowledge as connected to question
asking and maybe, more generally, to active learning compe-
tence. This is in contrast to the results obtained by Fusaro and
colleagues (2011) and Brosseau-Liard and Birch (2011). In
their studies, 4-year-olds generalized behavior to traits (e.g.
inferred that an accurate puppet would have been smart), but
did not make any generalization from behavior to semantic
knowledge (e.g., knowing animal habits; Fusaro, Corriveau,
& Harris, 2011) or did not endorse the accurate puppets’ tes-
timony about situation-specific knowledge (e.g., knowing the
content of a box; Brosseau-Liard & Birch, 2011).

Our results suggest that 5- and 6-year-olds considered ef-
fective question asking as an indicator of global rather than
a domain- or ability-specific expertise and of general likabil-
ity. This over-generalization trend is in line with some previ-
ous findings suggesting that children at this age tend to make
broader generalizations when the informant possesses some
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Table 2: Mean proportion of children who indicated the best question asker as more likely to possess each ability against chance
(50%; binomial test) in Study 2.

3-to 4-year-olds 5-to 6-year-olds 7-to 9-year-olds
Abilities/traits/characteristics Mean CI p Mean CI p Mean CI p
Being good at school .60 .43 - .75 .20 .83 .67 - .92 <.001 .83 .67 - .92 <.001
Being clever .68 .50 - .81 .03 .80 .64 - .90 <.001 .78 .61 - .89 .001
Being good at treasure hunting .58 .48 - .73 .34 .65 .48 - .79 .05 .68 .50 - .81 .03
Being fast at completing puzzles .68 .50 - .81 .03 .83 .67 - .93 <.001 .58 .40 - .73 .34
Knowing many animal names .78 .61 - .89 <.01 .78 .61 - .89 <.001 .75 .58 - .87 <.01
Being friendly .70 .53 - .83 .01 .93 .80 - .98 <.001 .73 .56 - .85 <.01
Having siblings .73 .56 - .85 <.01 .65 .48 - .79 .05 .68 .50 - .81 .03
Being good at playing soccer .45 .29 - .62 .52 .75 .59 - .87 <.01 .68 .50 - .81 .03
Seeing the farthest .75 .58 - .86 <.01 .68 .50 - .81 .03 .63 .45 - .77 .11
Scoring lots of goals .45 .29 - .62 .52 .55 .39 - .71 .52 .55 .38 - .70 .52
Kicking a ball the furthest .60 .43 - .75 .20 .60 .43 - .75 .20 .55 .38 - .70 .52
Liking ice cream .50 .33 - .66 1 .75 .58 - .87 <.01 .50 .33 - .66 1

kind of semantic knowledge (e.g., labels objects accurately,
Brosseau-Liard & Birch, 2010; knows causal properties of
an object, Sobel & Corriveau, 2010) and demonstrates socio-
moral goodness (Cain, Heyman, & Walker, 1997). However,
Bridgers and colleagues (2018) demonstrated that already at
age 4, children selectively generalize active learning effec-
tiveness only to tasks where this competence is deemed rele-
vant. This apparent inconsistency might indicate that children
have different intuitions and make different generalizations
depending on the different kinds of active learning compe-
tency an agent display (e.g., physical exploration versus ques-
tion asking), and this differential pattern might interact with
age. It would be interesting to explore this question in future
research.

The adult-like response pattern of 7- to 9-year old children,
who selectively associated question-asking competence only
to related abilities and traits, is in line with the few results
from previous research focusing on this age group (e.g., Lane
et al., 2013; Danovitch & Keil, 2004. For example, Danovitch
and Keil (2007) presented 6, 8 and 9- year-olds with four
short vignettes illustrating a character facing a moral dilem-
mas (e.g., respect another’s privacy) or involved in a scien-
tific problem (e.g., building a rocket). Following each vi-
gnette, participants were asked to choose what characteristics
the character would have needed to solve the problem (e.g.,
“Does he need to be nice with other people” or “Does he need
to be smart”). Their results showed that only starting at age 8
children consistently indicated that scientific skills were nec-
essary to solve scientific problems and that moral characteris-
tics were needed to solve moral dilemmas (Danovitch & Keil,
2007). Finally, it might be that to make selective, meaning-
ful inferences about question asking, one has to be good at
asking questions herself. In this respect, the developmental
trend found in this study might be reflective of children’s im-
provement in question-asking effectiveness. Future research
should explore whether and how children’s ability to ask in-

formative questions or search effectively more in general can
impact the inferences and generalizations they make based
on others’ active learning competence. Moreover, it seems
clear that even older children’s responses did not always and
perfectly reflect adults’ intuitions. This difference could be
resulting from the different ways in which participants were
asked to elicit their intuitions in Study 1 and 2.

It is crucial to note that in our studies the good ques-
tion asker was simply contrasted with a bad question asker,
who was not given any other positive nor neutral attributes,
whereas in many studies focusing on generalizations, includ-
ing those reviewed above, informants are presented as experts
in different domains (e.g., (Lutz & Keil, 2002; Kushnir et al.,
2013; Jaswal et al., 2010; Koenig, 2012). We are currently
finishing data collection on a follow up study in which we
implement the more traditional version of paradigm, contrast-
ing an agent who is good at asking questions and “finding out
things” with one that has a domain-specific expertise (e.g.,
knows everything about fish). Future work should also inves-
tigate the impact of such inferences and generalizations on
children’s learning and social behavior, for example examin-
ing under which conditions children would prefer to imitate,
learn or ask for help to someone they identify as an effective
active learner.

To conclude, this study is a first attempt at exploring what
children infer based on someone’s ability to ask effective
questions. We found an interesting developmental pattern
from unsystematic generalization, to overgeneralization, to
adults-like selective generalization, suggesting that children
at different ages use information about an agent’s active learn-
ing competence in different ways. This is a first step in under-
standing whether and how children use their sensitivity to oth-
ers’ active learning competence to navigate the social world,
identifying good role models to learn, and to learn how to
learn from.
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Abstract 

Prior knowledge has long been recognized as an important 
predictor of learning, yet the term prior knowledge is often 
applied to related but distinct constructs. We define a specific 
form of prior knowledge, ancillary knowledge, as knowledge 
of concepts and skills that enable learners to gain the most from 
a target lesson. Ancillary knowledge is not prior knowledge of 
the lesson’s target concepts and skills, and may even fall 
outside the domain of the lesson. Nevertheless, ancillary 
knowledge affects learning of the lesson, e.g., lower ancillary 
knowledge can hinder performance on lesson-related tasks. We 
measured ancillary knowledge, prior knowledge of the domain, 
and controlled for general ability, and found that (a) stronger 
ancillary knowledge and general ability predicted better 
performance on transfer tasks, but (b) prior knowledge of the 
domain did not. This research suggests that enhancing 
instruction by remediating gaps in ancillary knowledge may 
improve learning in introductory-level courses. 

Keywords: prior knowledge; ancillary knowledge; domain-
general knowledge; far transfer; introductory courses 

Introduction 

Learners in any given class often vary widely with respect to 

their knowledge of both the current material and the skills and 

concepts that may be considered ancillary to and supportive 

of the current material. At the college level, this is perhaps 

most evident in introductory-level courses, which by 

definition enroll many learners who are novices in a domain, 

and yet who bring all types and degrees of prior knowledge 

into the classroom. Before attending Introduction to 

Cognitive Psychology, for example, students may or may not 

have taken a general psychology course that included a high-

level introduction to many topics. They are also likely to have 

had different degrees of exposure to and practice with 

concepts and skills that could be considered supportive of 

learning Cognitive Psychology, e.g., graphing and 

experimental design. These topics, which may have been 

learned in the context of psychology or a different science or 

math context, are likely useful to students as they learn about 

cognitive psychology hypotheses, study designs, graphed 

results, and whether the data support these hypotheses. 

Despite the clear relevance of graphing and experimental 

design knowledge, rarely are they measured or their gaps 

addressed during instruction.  

We wished to evaluate whether such ancillary knowledge 

would predict performance on assessment items related to a 

new lesson better than prior domain (cognitive psychology) 

knowledge or knowledge of the specific lesson, which would 

suggest that this unmeasured and often unaddressed type of 

knowledge plays an important role in learning. 

Background 

Researchers have long considered prior knowledge critical 

for learning (Ausubel, 1968; Dochy, 1988; Jonassen & 

Grabowski, 1993). Across studies, it represents one of the 

largest sources of variance in pre/post-test measures, 

accounting for 30 to 60 percent of the difference in scores 

(Dochy, 1988). Prior knowledge explains performance over 

and above general ability. For example, it predicted learning 

of science concepts better than mental capacity and 

developmental level (Lawson, 1983) or formal reasoning 

ability (Zeitoun, 1988), and comprehension of text passages 

after accounting for IQ (Langer & Nicolich, 1981).  

The importance of prior knowledge for learning is well 

established, yet many studies do not provide explicit 

definitions of prior knowledge or use similar terms to 

reference distinct constructs (Dochy & Alexander, 1995). 

Consequently, important dimensions of prior knowledge may 

be overlooked, and research becomes inconclusive. In 

addition, some benefits of prior knowledge may be due to 

prior knowledge in the domain, ancillary knowledge, or both; 

similarly, learning difficulties may be due to knowledge gaps 

of either type. More generally, if learners vary in both types 

of prior knowledge, but the two types are not distinctly 

assessed, their role in learning cannot be clearly understood.  

Our research aims to distinguish these two types of prior 

knowledge: prior knowledge in the domain, i.e., concepts and 

skills within the target domain, from ancillary knowledge, 

i.e., knowledge of the concepts and skills that are outside of 

the target domain (but may be utilized in the target domain 

and additional domains; see Dochy, 1988). See Figure 1 for 

a graphical representation. In order to be considered ancillary 

knowledge, these concepts and skills should enable better 

learning of the new material, such as knowledge of graphing 

and experimental design may for many cognitive psychology 

topics. Bloom’s (1976) term for this idea was “cognitive 

entry behaviors,” which he defined as “those prerequisite 

types of knowledge, skills, and competencies which are 

essential to the learning of a particular new task or set of 

tasks" (p. 122).  
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Figure 1: Levels of domain knowledge include the domain, 

subdomains, and concepts and skills within the domain. 

Ancillary knowledge is domain-independent, but may 

nevertheless support learning in the domain. 

 

The mechanisms of support for learning are likely the same 

for both types of prior knowledge, including freeing up 

attentional resources and enabling greater comprehension 

and problem solving (Fincher-Kiefer, Post, Greene, & Voss, 

1988; Kintsch, 1994; Schauble, Glaser, Raghavan, & Reiner, 

1991; Siegler, 1986; Willingham, 2007). The key difference 

is that prior knowledge in the domain is obviously relevant 

and ancillary knowledge is often overlooked or deemed out 

of scope of the current instruction. 

This is particularly problematic for undergraduates, who 

are likely to have gaps in the types of ancillary knowledge 

that readily support experts as they encounter new topics. 

Schunn and Anderson (1999) contrasted experts’ and 

undergraduates’ performance on an experimental design task 

and found that the latter did not demonstrate the experimental 

design skills of using theory to design their experiment and 

relating results back to the theories at a proficient level. On 

the other hand, experts have a wealth of domain knowledge 

and tools they can bring to bear in new situations, such as 

knowledge of related studies or formulas typically used. 

Despite this, undergraduates have often acquired a 

measurable degree of general knowledge (Means & Voss, 

1985), general strategies (de Jong & Ferguson-Hessler, 

1996), and even subject-specific knowledge (Dochy & 

Alexander, 1995). Variability is heightened because the 

knowledge may have been learned and forgotten, partially 

learned, or not abstracted at a high enough level to be useful 

in new contexts. In other words, undergraduates’ base levels 

of knowledge are more sophisticated (tending toward greater 

richness) than younger students, but also more tenuous and 

incomplete than experts’ knowledge. Therefore, instead of 

categorizing subjects as experts or novices, we took a 

quantitative measure of ancillary and domain knowledge in 

our target population in order to pick up on this variability. 

In addition, in order to investigate the role of ancillary 

knowledge in undergraduate learning, we utilized a situation 

typical in introductory courses, namely one in which ancillary 

knowledge and domain knowledge were expected to vary 

greatly, but prior knowledge of the lesson was uniformly low 

(i.e., not at play). The specific lesson we chose was the 

Sternberg memory search paradigm and experimental results, 

as taught in an introductory Cognitive Psychology course at 

Carnegie Mellon University. A key advantage of this lesson 

was that several questions on the assessments were adapted 

from materials that had been used in the course and therefore 

already deemed suitable (i.e., challenging but within grasp) 

for the average ability level of our sample.  

We analyzed the lesson to determine what would qualify 

as ancillary knowledge – i.e., independent of the target lesson 

and yet expected to enhance learning of that lesson. We 

identified the following as relevant ancillary knowledge: 

variable selection and measurement, facility with graphed 

data and the lines that fit these data, and interpretation of 

graphed results in terms of theoretical relationships between 

variables. Consistent with this list, a reviewer of this paper 

shared that a lack of ancillary knowledge related to graphing 

prevented his or her students from fully understanding 

Sternberg’s hypothesis, his various independent variables 

and study results. In other words, missing ancillary 

knowledge (i.e., an inability to apply knowledge about y-

intercept and slope) affected the extent to which students 

were able to gain lesson-specific knowledge. 

In order to separate ancillary knowledge fully from the 

domain of cognitive psychology, we situated the pre-test 

questions in other domains, such as physics (for graphing 

questions) or social psychology (for experimental design 

questions). We measured prior knowledge in the domain by 

assessing knowledge of the subdomain of memory (e.g., 

chunking, serial position effect), as well as prior knowledge 

of the lesson (e.g., Sternberg’s paradigm, hypothesis, and 

results). See Table 1 for sample questions. 

Conceptual and Procedural Knowledge  

Our measures also differentiated between types of ancillary 

knowledge based on another dimension that is often included 

in studies of learning and performance: conceptual versus 

procedural knowledge. The classification of knowledge as 

conceptual or procedural is both common (Baroody, Feil, & 

Johnson, 2007; Crooks & Alibali, 2014) and useful for 

studying learning and performance. Researchers and 

educators sometimes call conceptual knowledge "knowing 

that" and procedural knowledge "knowing how,” or, even 

more simply, concepts (conceptual) and skills (procedural).  

Determining how to measure conceptual apart from 

procedural knowledge became a secondary focus of our 

work. Even though the labels conceptual and procedural 

suggest the idea of two independent categories, these 

knowledge types are often related. Rittle-Johnson and Siegler 

(1998) reported positive correlations between amounts of 

conceptual and procedural knowledge in four areas of math 

learning.  
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Table 1: Sample item from each of the six (6) knowledge types assessed at pre-test. 

 

      Knowledge Type                  Sample Item   

Ancillary Knowledge – 

Graphing 

  

(1) Conceptual Here is a Boxplot (also called a Box and Whisker plot). Circle any feature that can 

be determined. 

(2) Procedural What does the slope of an object accelerating uniformly look like on an 

acceleration vs. time graph? Hint: Sketch a graph with acceleration on the x-axis. 

Ancillary Knowledge – 

Experimental Design 

 

(3) Conceptual  A social psychology researcher is interested in whether cheerfulness and 

extroversion determine a person’s attractiveness. She does an experiment in which 

several participants view videos of interviews of everyday people and then rate the 

interviewee’s perceived cheerfulness, extroversion, and attractiveness […] Are the 

results correlational or causal? 

(4) Procedural Advertisements for an herbal product, ginseng, claim that it promotes endurance. 

As a researcher, how would you design a controlled experiment to test this claim? 

Describe each of the following: (e.g., groups, controls, dependent measure) 

Prior Knowledge – 

Subdomain (Memory) 

(5) Conceptual While recalling a mobile phone number, splitting it into groups of 3 or 4 digits 

tends to be easier to remember than a single long number. Why does this chunking 

process work? 

Prior Knowledge – 

Lesson (Sternberg) 

(6) Conceptual What did some researchers find surprising (counter-intuitive) about the mental 

search process Sternberg proposed? 

Furthermore, Rittle-Johnson, Siegler, and Alibali (2001) 

described conceptual knowledge as knowledge of principles, 

concepts, and rules and when to apply those principles, and 

procedural knowledge as routinized knowledge acquired 

from explicit practice of a given problem type. From this 

view, any novel problem requires conceptual knowledge, 

because it has been neither practiced nor routinized. This 

presented a challenge, as we wished to gauge procedural 

knowledge of graphing and experimental design via the pre-

test and then assess performance on novel procedural transfer 

problems at post-test. As stated, at pre-test, we addressed this 

issue by giving problems from outside the domain of 

cognitive psychology with the assumption that the procedural 

skills had been learned elsewhere. However, this was not 

possible at post-test, which was given in the context of the 

current lesson. 

At post-test, we assessed procedural knowledge as 

knowledge of steps that we considered scriptable, and 

therefore teachable, whether or not students actually learned 

that procedure in the context of our lesson. Procedural 

assessment items included finding a slope, determining the 

ratio of two slopes, designing an experiment, determining the 

nature of a novel search process by executing a learned 

algorithm, etc., all in the context of lesson-specific concepts.  

By contrast, conceptual items tested facts, principles, or 

declarative knowledge, for example asking students to recall 

a fact, explain an answer, label a diagram, graphically depict 

a concept, etc. 

Research Questions 

We tested two research questions. First, does ancillary 

knowledge predict performance on near and/or far transfer 

questions, controlling for both general ability (i.e., SAT 

scores) and prior knowledge in the domain (i.e., the 

subdomain of memory)? We hypothesized that ancillary 

knowledge would predict learning but that prior knowledge 

of the domain would not. 

Second, did we sufficiently distinguish conceptual and 

procedural knowledge types in the psychology domain? We 

measured concepts and procedures separately, on both the 

pre- and post-tests. Evidence that these variables are 

acceptably independent in terms of their correlations would 

be suggestive that our operationalization was successful. In 

addition, evidence that conceptual or procedural ancillary 

knowledge had differential patterns of association with the 

various post-test measures would also provide some support. 

Method 

Participants 

80 undergraduate students (Mage=19.85 years, 63.8 percent 

female) completed the study for course credit. 

Design and Procedure 

A correlational design was used to study how natural 

variation in ancillary knowledge (pre-test question types 1-4 

below) would relate to performance at post-test. On the pre-

test, four questions each assessed (1) graphing conceptual 

knowledge, (2) graphing procedural knowledge, (3) 

experimental design conceptual knowledge, and (4) 

experimental design procedural knowledge. In addition, four 

questions assessed (5a) prior knowledge of memory, and two 

questions assessed (5b) prior knowledge of the lesson. These 

last two questions (5b) were the only ones that repeated 

between pre- and post-test. They were ultimately not used as 

a pre-test measure, because we determined that participants’ 

knowledge of the target lesson was uniformly low/absent. 

Due to limited time for the experiment, our goal on the pre-

test was to sample sufficiently from each area of prior 

knowledge in order to determine a quantitative measure of 
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probable degree of knowledge in each area, not to try to 

assess each area in depth. 

Next, participants read a two-page lesson, which was about 

700 words with several figures, adapted from J.R. 

Anderson’s 8th Ed. Textbook, Cognitive Psychology and Its 

Implications. Then, participants completed a practice activity 

that was either conceptual or procedural in nature. The results 

of the practice manipulation and two additional measures of 

conceptual knowledge following the practice manipulation 

are not reported in this paper.  

Next, participants completed the Post-Test. To measure 

participants’ learning, we created four types of questions (and 

therefore four outcome measures): (1) Text-based Questions 

could be answered successfully if participants formed an 

adequate mental model of the text as they read. Participants 

did not need to bridge inferences, but rather draw from their 

memory of the text in order to recall information (see 

Kintsch, 1994; McNamara et al., 1996). (2) Near-transfer 

conceptual items were related to the lesson, but had not been 

stated directly in the text and therefore required bridging 

inferences. (3) Near-transfer procedural items required 

participants to perform procedures in the context of newly 

learned lesson concepts. For example, participants were 

asked to determine and compare the slopes of lines depicting 

the relationship between lesson-specific variables. This drew 

on preexisting knowledge of procedures (i.e., finding slopes 

and comparing their ratios) in the context of the lesson 

concepts. (4) Far-transfer items required participants to apply 

knowledge and skills they had learned (i.e., types and levels 

of variables, graphed data, and underlying hypotheses from 

Sternberg’s memory search paradigm) to other types of 

mental processes, including a visual search task and a mental 

rotation task. See Table 2 for sample post-test questions. 

Finally, participants were asked to provide demographic data 

and aptitude scores. 

In sum, there were nine predictor variables. Five were 

taken from the pre-test: (1) Ancillary Graphing, conceptual, 

(2) Ancillary Graphing, procedural, (3) Ancillary 

Experimental Design, conceptual, (4) Ancillary 

Experimental Design, procedural, and (5) Prior Knowledge 

Memory, conceptual. As stated, knowledge of the lesson was 

excluded from analysis because the pre-test items related to 

the Sternberg lesson were answered incorrectly or left blank 

(with only one subject answering one item correctly).  

The other four variables were covariates: (6) SAT Verbal 

scores, (7) SAT Math scores (if ACT scores were given, they 

were converted), (8) Reading Time, a measure of how long 

the participant spent on the lesson, and (9) English Native, a 

categorical variable indicating whether the student was a 

native English speaker from at least the age of six.

 

 

Table 2: Sample item from each of the four (4) outcome measures assessed at post-test. 

 

      Knowledge Types       Sample Items 

Text-based  
(1) Conceptual What did some researchers find surprising (counter-intuitive) about the mental search process 

Sternberg proposed? 

Near 

Transfer 

(2) Conceptual Which independent variable from the list above has the greatest influence on the slope of the line in 

the graph?  

(3) Procedural The graph below shows the relationship between Memory Set Size and Response Time for Foil trials 

(A) and Target trials (B). Compared with the increase in reaction time for B, the increase in reaction 

time for A is… 

Far 

Transfer 

(4) Conceptual 

& Procedural 

(mixed within 

each question) 

Consider a new type of mental task. This one involves conducting a visual search for an item, such as 

a red circle in a field of distractors (similar items). In Feature search, a person is asked to find the red 

o in a field of green x’s and o’s.  

(a) A feature search is most like a _____________ (parallel/serial) search. 

(b) Graph the lines for Target and Absent trials on the graph below. Label the lines. 

Analyses and Results 

Predictor Variables 

Predictor variables were tested for normality. Several of the 

variables were negatively skewed and/or kurtotic, including 

both pre-test concept variables (graphs, experimental design) 

and SAT scores. In these cases, each score was reflected and 

then logarithmically transformed. These transformations 

resulted in acceptable normality, and these variables were re-

reflected after transformation to aid in interpretation of beta 

coefficients. 

Procedural Knowledge types (i.e., Graphing, Experimental 

Design), Reading Time, and Prior Knowledge-Memory, were 

normally distributed. The categorical variable English Native 

Speaker was answered “yes” seventy-percent of the time. 

Four cases did not report SAT scores and so the variable 

means were imputed for those cases. 

Tests to see if the data met the assumption of collinearity 

indicated that multicollinearity was not a concern, with all 

VIF < 2. Correlations between each pair of predictor variables 

are reported in Table 3. The highest pairwise correlation was 

0.55, between SAT Math and Verbal, below the conservative 

cutoff of 0.7 for multicollinearity. Seven pairs of predictor 

variables were significantly, positively correlated. 
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Table 3: Correlations between predictor variables. 

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed). 

 

 
Graphing 

Concepts 

Graphing 

Procedures 

Exp. 

Design 

Concepts 

Exp. 

Design 

Procedures 

Memory 

Concepts 

SAT 

Verbal 

SAT 

Math 

Reading 

Time 

Graphing 

Concepts 
1        

Graphing 

Procedures 
0.336** 1       

Exp. Design 

Concepts 
0.060 0.135 1      

Exp. Design 

Procedures 
0.090  0.252* 0.183 1     

Memory 

Concepts 
0.209 0.172 0.169 0.095 1    

SAT  

Verbal 
0.254*  0.241* -0.026 -0.032 0.035 1   

SAT  

Math 
0.477**   0.345** 0.063 -0.127  0.159 0.547** 1  

Reading 

Time 
   -0.170 0.009 -0.177  0.072 -0.159    -0.064 -0.067 1 

         

Linear Regressions 

We regressed each of the Post-Test measures (Text-based 

Questions, Near Transfer Concepts, Near Transfer 
Procedures, and Far Transfer) on the nine explanatory 

variables in order to determine whether ancillary knowledge, 

prior knowledge in the domain, or general ability predicted 

performance. The model for Text-based Questions was the 

only model that was not significant. 

The Near Transfer Concepts model was significant, 

F(9,70) = 3.508, p = 0.001, R2 = .311, Adj. R2 = .222. Greater 

Ancillary Knowledge of Graphing Concepts (β = 4.426, t = 

1.957, p = 0.054) predicted better performance on near 

transfer concept questions. 

The Near Transfer Procedures model was significant, 

F(9,70) = 4.542, p = 0.001, R2 = .369, Adj. R2 = .288. Greater 

Ancillary knowledge of Graphing Procedures (β = 0.779, t = 

3.574, p = 0.001) predicted better performance on near 

transfer procedural questions. 

The Far Transfer model was significant, F(9,70) = 5.814, p 

= 0.001, R2 = .428, Adj. R2 = .354. Higher SAT Math score (β 

= 2.259, t = 2.330, p = 0.023) and greater Ancillary 

Knowledge of Experimental Design Procedures (β = 1.370, t 

= 4.114, p = 0.001) each predicted better performance. 

Finally, to test whether model fit was better when the four 

types of ancillary knowledge were entered as separate 

predictors in the model, as we had done, versus entered as a 

single predictor (and therefore treated as having a similar 

effect on learning), we compared Adj. R2, AIC score, and BIC 

score for each of the models. Adj. R2 and BIC are more 

sensitive to number of predictors and therefore penalize more 

for model size than AIC. The remaining predictors entered 

into the model were the same: SAT scores, Prior Knowledge 

of Memory, Reading Time, and English Native.  

Model fit scores are shown in Table 4. All six models were 

significant at the 0.001 level. In addition, the single score for 

ancillary knowledge was a significant predictor in each of 

those three models. There was a slightly higher Adj. R2 (0.005 

more variance explained) for the single predictor model for 

Near Concepts, and a lower Adj. R2 with the single predictor 

model for Near Procedures (0.009 less variance explained) 

and for Far Transfer (0.045 less variance explained). BIC, 

which penalizes more for number of predictors than AIC, was 

unsurprisingly lower in the single predictor models than the 

separate predictor models, signifying less overfitting. AIC 

was similar across the models, with the AIC for the single 

predictor model being slightly lower for Near Concepts and 

Near Procedures, but slightly higher for Far Transfer. 

 

Table 4: Model fit for separate vs. combined (i.e., a single, additive score) ancillary knowledge predictors. The separate 

ancillary predictor models had nine predictors, whereas the single ancillary predictor models had six.  

 
 Separate Ancillary Predictors Model (df=9) Single Ancillary Predictor Model (df=6) 

For Outcome 

Measure: 
R2 Adj. R2 BIC AIC R2 Adj. R2 BIC AIC 

Near Concepts 0.311 0.222 437.24 411.04 0.286 0.227 428.20 409.15 

Near Procedures 0.369 0.288 356.78 330.58 0.334 0.279 347.44 328.38 

Far Transfer 0.428 0.354 439.22 413.02 0.362 0.309 432.46 413.41 
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Discussion 

This research identified ancillary knowledge and skills that 

predicted performance on near and far transfer assessment 

questions related to a cognitive psychology lesson. In each 

case, more ancillary knowledge led to better performance. 

We measured four types of ancillary knowledge that had a 

low degree of intercorrelation, namely conceptual and 

procedural knowledge of graphing and experimental design. 

Furthermore, specific ancillary measures predicted the 

various post-test measures, and statistical models that treated 

the ancillary knowledge as distinct accounted for the same or 

more variance than those that treated the ancillary knowledge 

as monolithic. 

In addition, we found encouraging evidence that it is 

possible to operationalize assessment questions that differ on 

the conceptual and procedural knowledge dimension, and 

thereby measure them as distinct constructs, in this domain 

(i.e., cognitive psychology) and at this lesson and 

instructional level (i.e., introductory college coursework). 

Even though procedural assessment items are clearly 

dependent on a grasp of the lesson concepts in this context, 

we crafted procedural post-test questions that were predicted 

by ancillary procedural knowledge as assessed by pre-test 

problems in a different domain, suggesting that the 

procedural knowledge itself was uniquely important and 

domain independent. We do not interpret these results as 

implying that only procedural knowledge was needed for any 

of the assessment questions we labeled procedural (that is, 

independent of conceptual knowledge of the lesson).  

SAT Math scores were also predictive of success in the Far 

Transfer model. And while not reported above, SAT Verbal 

was nearly significant ( p = 0.068) in the Near Transfer 

Concepts model, and SAT Math was nearly significant ( p = 

0.076) in the Near Transfer Procedures model. It is not 

surprising that aptitude played a role in learning, particularly 

unsupported learning (e.g., no instructor) of a novel lesson, 

as students had to make sense of the material for themselves. 

Even so, ancillary knowledge was predictive over and above 

aptitude in the models.  

In contrast to ancillary knowledge and general ability, prior 

knowledge in the memory subdomain of cognitive 

psychology was not predictive in any of the models. This 

should not be interpreted as domain-specific knowledge 

failing to predict performance in general, however. Schunn 

and Anderson (1999) found that domain-specific knowledge 

contributed to the performance of experts, and we expect that 

if students continued studying in the domain, domain-specific 

knowledge would be more and more predictive of their 

performance. In this study, however, the novice status of the 

participants lent greater importance to the variability in their 

ancillary knowledge and its role in their learning.  

Finally, neither time spent reading the lesson nor native 

English speaker status from the age of six was predictive of 

performance, which is not surprising given that all students 

in our sample regularly do coursework in English, and that 

we also included a verbal aptitude measure in the model.  

One final note about the specific assessment questions 

written for each of the outcome measures, some of which 

came from an actual cognitive psychology course and some 

of which were written for this lab study. The type of ancillary 

knowledge that predicted greater success on each transfer 

measure was arguably both a function of the outcome type 

(conceptual or procedural) and also the specific questions 

written for the category. As seen in Table 2, many of the 

questions written for the Near Transfer Concepts measure 

asked students to assess the relative influence of study 

variables in graphs of data and as they related to various 

theories, and so knowledge of graphing concepts is a logical 

predictor. Many of the questions written for the Near Transfer 

Procedures measure asked students to apply procedures 

related to graphing and experimental design in the context of 

the newly learned topic. For example, they were asked to 

predict values of various independent variables (e.g., 

stimulus quality, biasing) in Sternberg’s experiment, imagine 

a graph for Accuracy instead of Reaction Time in Sternberg’s 

experiment, etc., and so knowledge of graphing procedures is 

likewise a logical predictor. 

For the Far Transfer measure, questions required students 

to apply their new lesson knowledge to mental processes that 

they had not previously encountered in their reading. 

Applying knowledge of the Sternberg paradigm in order to 

graph data and predict results for novel mental processes 

would likely benefit from greater knowledge of experimental 

design. Had we written different assessment questions, we 

expect that different ancillary knowledge structures would 

have been useful to the students, and a task analysis would 

have revealed that relevant knowledge. Furthermore, we 

consider it probable that ancillary knowledge structures 

beyond graphs, graphing, and experimental design could be 

measured and found predictive of better success at post-test. 

Our study had several limitations. First, we tested our 

hypotheses regarding ancillary knowledge in the context of 

one lesson, so demonstrating the generalizability of these 

findings will be critical. Psychology is a domain that is 

conceptually rich, and therefore future studies should include 

a greater number of ancillary constructs. Second, the design 

was correlational, so we could not rule out other possible 

causes of performance differences. Third, we did not attempt 

to remedy gaps in knowledge structures that we identified in 

order to determine how such intervention would impact 

learning. Studying methods of remediating specific skills in 

the context of a new lesson versus outside the context of the 

lesson could suggest productive instructional practices once 

gaps are identified. Finally, work to further differentiate 

conceptual and procedural ancillary knowledge would be 

useful. Due to time limits, we were only able to take gross 

measures of ancillary knowledge at pre-test. A greater depth 

of pre-assessment, paired with the use of methods such as 

think-aloud protocols, to detect conceptual or procedural 

processing during the assessment would aid our 

understanding of how undergraduates construct, structure, 

and utilize their knowledge when encountering a new lesson. 
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Conclusion 

We have defined a type of prior knowledge, ancillary 

knowledge, that differs from other types of prior knowledge 

in important ways. It is both domain-independent and yet 

relevant to learning of a target lesson. We also provide 

evidence that ancillary knowledge can be productively 

differentiated into various subtypes of knowledge (i.e., 

graphing vs. experimental design; conceptual vs. procedural).  

The distinction between ancillary knowledge and prior 

knowledge of the domain is relevant for researchers who 

study learning, and may have bearing on the design of pre-

tests. If the target population of students varies in level of 

domain-independent knowledge that may still have direct 

bearing on the lesson, pre-testing for ancillary knowledge (in 

addition to prior knowledge of the domain or lesson) would 

be relevant and potentially important for understanding 

patterns of learning.  

In addition, distinguishing ancillary knowledge has 

implications for the design of instructional materials. Finding 

ways to identify and close gaps in ancillary knowledge could 

enhance the effectiveness of instruction for novice learners 

and ultimately improve learning and transfer. 
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Abstract

Children quickly gain enormous linguistic knowledge during
early development, in part due to low-level features of their
parents’ speech. Some posit that parents contribute to their
child’s language development by tuning their own language
according to their child’s developmental abilities and needs
(Bruner, 1985; Snow, 1972). Here, we investigate this hypoth-
esis by examining ‘alignment’ at the level of syntax and func-
tion words in a large-scale corpus of parent-child conversations
and measuring its association with language development out-
comes. To do so, we employ a statistical model of alignment to
estimate its presence in our dataset and its predictive impact on
a measure of vocabulary development. Our results corroborate
previous findings, showing strong alignment for both parents
and children; in addition, we demonstrate that parental align-
ment is a significant predictor of language maturity indepen-
dent of demographic features, suggesting that parental tuning
has strong ties to a child’s language development.
Keywords: Language acquisition; statistical modeling; vocab-
ulary development

Introduction
Children make vast linguistic strides within their first few
years of life. In light of this, some researchers have offered
the linguistic tuning hypothesis, arguing that parents bolster
their child’s early language learning by calibrating the com-
plexity of their speech to the particular abilities and needs
of their children (Montag & MacDonald, 2015; Snow, 1972;
Thiessen, Hill, & Saffran, 2005). The idea is intuitive, but it
is unclear at what level of language tuning occurs (Hayes &
Ahrens, 1988; Sokolov, 1993; Spivey & Dale, 2006) and how
overt it is (Brown & Hanlon, 1970; Chouinard & Clark, 2003;
Hirsh-Pasek, Treiman, & Schneiderman, 1984).

A parallel yet complementary vein of language develop-
ment research investigates the presence of low-level cues in
parental speech and their influence on child language learn-
ing. From this research, we know that child-directed speech
contains features that facilitate language learning, and that
more exposure tends to result in better outcomes (Cameron-
Faulkner, Lieven, & Tomasello, 2003; Weisleder & Fernald,
2013). Related, caregivers from families of high socioeco-
nomic status (SES) tend to converse more with their children
than their lower SES counterparts, and these increases are as-
sociated with improved development outcomes such as vo-
cabulary size and school performance (Hoff, 2003; Walker,
Greenwood, Hart, & Carta, 1994). Moreover, differences
in SES-based language development are largely explained

by low-level features of parental child-directed speech such
as lexical diversity and sentence complexity (Hoff-Ginsberg,
1998; Rowe, 2008). So, given that granular aspects of
parental speech can have substantial effects on a child’s lan-
guage development, it may be that linguistic tuning occurs at
this level in subtle ways, particularly when it comes to non-
content words (i.e., words that are not central to the topic of
discussion.)

This idea of assessing the direct impact of a parent’s us-
age of non-content words on language development relates to
linguistic alignment, a phenomenon whereby conversational
partners tend to align aspects of their communicative style
and content according to various external influences (Pen-
nebaker, Booth, Boyd, & Francis, 2015). Alignment can oc-
cur at various levels of language, with some research (includ-
ing ours) focusing on the level of quasi-syntactic categories
(e.g., Ireland et al., 2010; Niederhoffer & Pennebaker, 2016).
These categories don’t strictly describe syntax; instead, they
aim to capture function words, which are more invariant to
context than content words. However, we often use the phrase
‘syntactic alignment’ here as shorthand for ‘alignment within
function word categories.’ As an example, see the exchange
between a child and parent presented in Table 1. The par-
ent’s usage of “across” directly following their child’s usage
of “across” presents alignment within the category of prepo-
sitions. Alignment need not involve repetition however; the
child’s use of “I” following their parent’s use of “I’ll” serves
as alignment within a category as well (the category of ‘I’ pro-
noun words.) Alignment between parents and children may
lend support to the linguistic tuning hypothesis - if parents
align to their children in a way that changes across develop-
ment, and that alignment has a concrete impact on a child’s
language acquisition, the tuning hypothesis could be vindi-
cated (Bruner, 1985).

Yurovsky, Doyle, & Frank (2016) investigates linguistic
alignment in CHILDES (MacWhinney, 2000), a natural lan-
guage corpus of conversations between parents and children
to assess whether tuning occurs at the level of function word
categories. They find that alignment does occur between both
parents and children; moreover, parents align less over time,
suggesting that the relationship their speech shares with their
child’s changes as a function of development. These results
present a powerful proof of concept that alignment within
function word categories exists between parents and children
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and changes over time, but it remains unclear whether align-
ment bears any sort of concrete, impactful relationship to lan-
guage development.

Parent I don’t know . I’ll have to think about it .
Child I was going to do the people across street .
Parent across the street ?
Child yeah .

Table 1: Excerpt from exchange between 38 month old child
and mother in LDP.

Here, we extend Yurovsky, Doyle, and Frank’s (2016)
model by applying it to the Language Development Project
(LDP) (Goldin-Meadow et al., 2014), a corpus of ecological
conversations between parents and their children over time,
collected from a socioeconomically diverse sample of parent-
child dyads. The variability present within this dataset aids
our estimation by offering a more robust picture of align-
ment as it actually occurs. We follow their method of as-
sessing alignment only within function words. Moreover, we
use alignment estimates alongside demographic information
to predict measures of vocabulary development, supporting
the linguistic tuning hypothesis by concretely showing how
parents’ sensitivity to their child’s linguistic needs and abili-
ties covaries with their development.

Model
The linguistic tuning hypothesis predicts that parents will cal-
ibrate their language in part by assessing their child’s needs
and abilities. So, we predict that parents will exhibit high
alignment to their young children, but will reduce their align-
ment as their children mature (and improve in linguistic ma-
turity.) To test this prediction, we employ an extended ver-
sion of the Hierarchical Alignment Model implemented in
Yurovsky et al. (2016) which both estimates the impact of
a speaker’s use of function word categories on their conver-
sational partner’s usage and uses these alignment estimates to
predict language outcome scores.

At base, for each utterance the model predicts whether
the speaker will produce a word from a given function word
category. This prediction is generated by two factors: the
speaker’s baseline propensity towards using that category and
the speaker’s tendency to align, producing words from a cat-
egory just used by their partner. In the model, the primary
computation mimics a standard logistic regression - the pro-
duction of a category within an utterance is treated as a binary
outcome variable impacted by a linear combination of pre-
dictor variables (here, baseline usage and alignment.) The
model’s hierarchical structure then allows the estimates of
baseline usage and alignment effects to be pooled across indi-
vidual speakers and categories in a way that ensures statistical
robustness.

The model used here then incorporates these alignment
and baseline usage estimates as predictors in a linear regres-

sion model of the Pearson Peabody Vocabulary Test (PPVT)
(Dunn & Dunn, 1997), a widely used inventory for track-
ing language development. Measures of vocabulary like the
PPVT offer a robust snapshot of overall language abilities
throughout early language development, with PPVT scores
in particular correlating with various other measures of cogni-
tive ability (Hodapp, Gerken, & 1999, 1999; Naglieri, 1981).
As one of various measures of cognitive and language ability
present within the LDP dataset, we selected the PPVT for its
reliability and validity in addition to it being a measure not
based solely on parent report. At this stage, PPVT is esti-
mated as a linear combination of predictors reflecting align-
ment and baseline usage estimates for both parents and chil-
dren, alongside other features representing demographic vari-
ables (e.g., child’s gender, mother’s education) and the child’s
age. Moreover, the PPVT was administered to each child in
LDP at least twice, allowing us to estimate interaction effects
between parameter and demographic variables with age.

category examples
article a, alot
certain altogether, must
conj but, or
discrep wanted, hoped
excl whether, not
i i’m, i
incl both, around
ipron thatd, whats
negate needn’t, oughtn’t
preps at, to
quant series, every
tentat anyhow, most
we we’d, lets
you youd, y’all

Table 2: LIWC Categories with example words.

Model Details

The structure of the model used here greatly resembles that
used in Yurovsky et al. (2016), in that it operates over utter-
ances represented as binary vectors, with indices indicating
the presence or absence of each of the 14 LIWC categories
used within alignment literatures (Pennebaker et al., 2015) to
designate function words (Table 2). The probability of pro-
ducing each category in each utterance is computed via two
parameters: the speaker’s baseline usage of that LIWC cat-
egory (hbase), and the change in that speaker’s baseline as a
function of interacting with the listener (halign). So, for a
given category c, for replies to utterances that don’t contain
c, the production parameter for that category is computed by
applying the inverse logit function to the appropriate baseline
log odds:

P(Productionc) = logit
�1(hbase

c
)

1628



Alternatively, replies to utterances that do contain c, the pa-
rameter computation takes into account the sum of the base-
line and alignment log odds:

P(Productionc) = logit
�1(hbase

c
+halign

c
)

To accommodate the variance in production across the
LIWC categories, each baseline usage parameter was drawn
from an uninformative prior (hbase ⇠ Uni f orm(�5,5));
alignment parameters were regularized towards 0 by way of
implementing a conservative prior (halign ⇠ Normal(0, .25)).

All parameters were estimated hierarchically, which allows
intelligent pooling of data across participants in the dataset.
To start, each subpopulation (i.e., parents vs. children) ob-
tained an estimate. Then, every speaker had an alignment
estimate drawn from their appropriate subpopulation (e.g., if
Speaker 22 is a child, their alignment estimate is drawn from
the estimate for children overall.) Category-level alignment
estimates were then drawn for each speaker (e.g., the align-
ment estimate for Speaker 22’s usage of determiners is drawn
from Speaker 22’s overall alignment estimate.) The order was
flipped for baseline estimates in order to better reflect empir-
ical baseline usages across LIWC categories; subpopulation
estimates produced category-level estimates, which then pro-
duced speaker-level estimates. As in Yurovsky et al. (2016),
we also include parameters that allow baseline and alignment
probabilities to change linearly over time (b and a respec-
tively).

Next, we extend the model used in Yurovsky et al. (2016)
by using estimated alignment (i.e., h parameters) to predict
PPVT scores, a measure of vocabulary development (Dunn
& Dunn, 1997). To do so, we implement a regression model
where PPVT scores are modeled as linear combinations of
various predictor variables. These predictor variables in-
cluded the child’s age, alignment parameter estimates for the
child and their parent, the mother’s education, the child’s gen-
der, as well as interaction effects for all variables with age.
We use mother’s education as a well known proxy for socioe-
conomic status (Hollingshead, 1975). Error variance for the
model (s) was also estimated.

The model implemented here then serves two purposes: (1)
It extends the analysis of Yurovsky et al. (2016) to a new
dataset, aiming to replicate previous findings in a more di-
verse and representative sample, and (2) It incorporates align-
ment estimates in a predictive model of early language out-
comes, serving to test the hypothesis that alignment has a sig-
nificant relationship with language development, even in the
presence of demographic features. To be specific, we hope
to replicate non-zero estimates for h parameters (demonstrat-
ing that alignment between parents and children exists across
datasets), positive b for children (showing that children in-
crease their baseline usage of categories over time), and neg-
ative a for parents (showing that parents decrease their align-
ment as their children age.) If the PPVT model estimates for
parameters corresponding to the main or interaction effects of
alignment are non-zero in the presence of demographic vari-

ables, we can infer that alignment has a relationship with vo-
cabulary development independent of features like socioeco-
nomic status, bolstering the linguistic tuning hypothesis.

Analysis
Data and Methodology
Conversations between parents and their children were drawn
from the Language Development Project Corpus (Goldin-
Meadow et al., 2014). Participants in the project were video-
recorded in their homes for ⇠ 90 minutes every four months
starting when the child was 14-months and ending at 58-
months. Additionally, all participants took the PPVT on at
least two occasions during the observation period. Partic-
ipants were selected in order to produce a diverse sample
demographically representative of the broader Chicagoland
area. LDP is smaller than other comparable corpora of child-
parent conversations (e.g., CHILDES), but it stands alone in
its broad representation of families across the socioeconomic
spectrum.

We selected for analysis all children who were typically de-
veloping and completed at least 10 of the 12 planned record-
ing sessions. Our sample consisted of 59 target children, 28
of whom were girls, 12 were Black and 6 were Multiracial.
Children were also socio-economically diverse, as measured
by mother’s education: 2 mothers had some highschool ed-
ucation, 7 had a highschool degree, 10 had some college or
trade school, 19 had college degrees, and 21 had advanced
degrees.

Following Yurovsky et al. (2016), successive utterances
from a speaker within a transcript were concatenated into a
single utterance. Individual utterances were then transformed
into binary vectors with indices indicating the presence or ab-
sence of each of the 14 LIWC categories. This pre-processing
turned every transcript into a speaker-reply format: each ut-
terance within a transcript was both a reply to the preceding
utterance and a message to the next one.

Each transcript was then compressed, yielding 4 numbers
for each LIWC category. For a pair of speakers A and B

in a transcript, for each LIWC category, we computed the
number of utterances from A to B containing the category
(Nalign), the number of utterances from A to B not contain-
ing the category (Nbase), the number of utterances containing
the category responding to an utterance containing the cate-
gory (Calign), and the number of utterances containing the cat-
egory responding to an utterance not containing the category
(Cbase). Aggregating in this way provided the platform for the
model’s sampling - for each transcript, C

base and C
align were

drawn from Binomial distributions parameterized by N
base

and N
align chances respectively, with probabilities computed

via the logistic regression models outlined above.
Sampling was performed using Stan, a probabilistic program-
ming language that implements Hamiltonian Monte Carlo
sampling methods (Carpenter et al., 2017). Posterior distri-
butions for each parameter in the model were estimated using
500 iterations of Bayesian sampling, generating mean assess-
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Figure 1: Posterior parameter estimates for alignment (h),
developmental change in alignment (a), and developmental
change in baseline function word production (b) for both
parents and children, as well estimated alignment between
parents for a baseline. Bars indicate means, error-bars in-
dicate 95% highest posterior density intervals generated via
Bayesian sampling.

ments with appropriate confidence intervals. 1

Results

Alignment estimates (halign) for parents and children were
both estimated above zero, corroborating the findings of
Yurovsky et al. (2016) in showing that both groups exhibit
alignment (Figure 1). We also replicate the finding that par-
ents appear to align more to their children than children align
to their parents.

The model estimates changes in baseline category produc-
tion across development (b) at approximately zero for par-
ents, but significantly above zero for children, replicating pre-
vious findings. Alignment is estimated as having a signifi-
cantly negative age effect (a) for parents in this dataset, repli-
cating an earlier finding that alignment from parents to chil-
dren tends to decrease over their child’s development (Figure
3).

The mean estimates for PPVT predictors are presented in
Table 2; they illustrate effects on a child’s average PPVT
score as well as estimates of interaction effects with age (i.e.,
the rate at which PPVT improves over development.) As ex-
pected, PPVT is positively associated with the age of the child
and their being female. Moreover, female children tend to
have a decreased age effect on PPVT; female children have a
higher average PPVT score relative to male counterparts, but
their scores improve over time more gradually. Mother’s ed-
ucation is negatively associated with PPVT, but has a slight
positive age effect. Alongside these demographic effects,
we see robust alignment effects on PPVT: child and parental
alignment are both associated with increased PPVT, but with
decreased age effects.

1Data and code available at https://github.com/callab/ldp
-alignment.

Parameter Estimate StandardError
Intercept -234.12 21.78
Age (years) 73.63 6.19
Female 53.46 7.20
Age x Female -10.56 1.84
Mother’s Education -19.08 2.59
Age x Mother’s Education 4.70 0.62
Child Alignment 28.68 1.28
Age x Child Alignment -62.89 4.83
Parent Alignment 409.79 36.24
Age x Parent Alignment -72.19 14.04

Table 3: Parameter Estimates for PPVT predictors (and inter-
cept) with standard errors. Parameters with ”x” denote esti-
mates of variable interaction.

Discussion
In an effort to understand and investigate how children rapidly
acquire language, some argue that the language parents pro-
duce to their children is somehow calibrated to the child’s
particular needs and abilities (Snow, 1972). While the idea is
theoretically compelling, empirical work has produced mixed
results, with strong results in favor of (Chouinard & Clark,
2003; Hirsh-Pasek et al., 1984) and against (Brown & Han-
lon, 1970; Hayes & Ahrens, 1988).

However, much of this prior work investigates tuning as
an overt effort on behalf of parents or tuning with respect
to content words, with less examining the potential role of
low-level syntactic influence (Hoff, 2003). Yurovsky et al.
(2016) presents just such an examination, demonstrating us-
ing Bayesian hierarchical modeling that parents align to their
children according to their particular language usage at the
level of function word categories. This paper extends their
model by applying it to a new socioeconomically diverse
sample of families (Goldin-Meadow et al., 2014) and leverag-
ing the model’s alignment estimates to predict language de-
velopment outcomes.

The analysis presented here replicates the findings of
Yurovsky et al. (2016), showing strong alignment effects
for both parents and their children, a substantial age effect
for baseline useage in children, and a significant negative ef-
fect of age on alignment for parents. Moreover, we demon-
strate that these alignment estimates have substantial power
in predicting vocabulary development measures, even in the
presence of demographic features such as gender and so-
cioeconomic status. We corroborate previous findings that
female children tend to have higher PPVT scores that im-
prove more gradually over time (Kaushanskaya, Gross, &
Buac, 2013; Lange, Euler, & Zaretsky, 2016). We con-
flict with other findings that positively associate child PPVT
scores with mother’s education (Di Cesare, Sabates, & Lewin,
2013; Schady, 2011); this may be due to idiosyncracies of our
dataset, including its limited size.

We show that parental alignment is associated with a rela-
tively large boost in average PPVT scores, but with a negative
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Figure 2: Model-estimated changes in linguistic alignment over development. Points indicate the mean of the posterior distri-
bution; shaded regions indicate 68% highest probability density intervals, equivalent to one standard deviation, for visualization
purposes.

age effect. The negative age effect may source from a ceiling
on PPVT - children with higher average scores may simply
have less ground to cover. Nevertheless, these results are con-
sistent with a concrete effect of parental alignment on vocab-
ulary development, and the linguistic tuning hypothesis more
broadly. A similar story is evident from child alignment esti-
mates: alignment has a small association with overall PPVT
score and an age effect comparable to parental alignment.
Here there may be a confound with childrens’ baseline lan-
guage production, in that children with lower production will
have lower PPVT and diminished alignment as a result; fu-
ture work should assess this interaction to better isolate the
effects of alignment.

Overall, these results show that parental alignment within
function word categories is a robust effect that appears to have
a relationship with childrens’ language development indepen-
dent of demographic correlates, serving to further the linguis-
tic tuning hypothesis.
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Abstract 
Is the nested sets approach to improving accuracy on Bayesian 
word problems simply a way of prompting a natural 
frequencies solution, as its critics claim? Conversely, is it in 
fact, as its advocates claim, a more fundamental explanation of 
why the natural frequency approach itself works? Following 
recent calls, we use a process-focused approach to contribute 
to answering these long-debated questions. We also argue for 
a third, pragmatic way of looking at these two approaches and 
argue that they reveal different truths about human Bayesian 
reasoning. Using a think aloud methodology we show that 
while the nested sets approach does appear in part to work via 
the mechanisms theorised by advocates (by encouraging a 
nested sets representation), it also encourages conversion of the 
problem to frequencies, as its critics claim. The ramifications 
of these findings, as well as ways to further enhance the nested 
sets approach and train individuals to deal with standard 
probability problems are discussed. 
 
Keywords: Nested Sets; Natural frequencies; Bayesian; Base 
rate neglect 

 

A recent meta-analysis (McDowell & Jacobs, 2017) 

conclusively demonstrated that when a Bayesian word 

problem is presented according to natural frequency (NF) 

principles, normative responding increases relative to the 

‘standard probability’ format (SP), with an average accuracy 

of around 24%. Both versions of the classic medical 

diagnosis problem can be seen below (statistical notation 

added). 

 
Standard probability format (individual chance): The chance 

of breast cancer is 1% [P(Ca)] for women at age forty who 

participate in routine screening. If a woman has breast cancer, the 

chance is 80% [P(Po|Ca)] that she will get a positive mammography. 

If a woman does not have breast cancer, the chance is 9.6% 

[P(Po|¬Ca)] that she will also get a positive mammography. A 

woman in this age group had a positive mammography in routine 

screening. What is the chance that she actually has breast cancer 

[P(Ca|Po)]? ____% 

 

Natural frequencies: 10 [F(Ca)] out of 1000 women at age forty 

who participate in routine screening have breast cancer. Out of the 

10 women with breast cancer, 8 [F(Po&Ca)] will get a positive 

mammography. 95 [F(Po&¬Ca)] out of every 990 women without 

breast cancer will also get a positive mammography. Here is a new 

representative sample of women at age forty who got a positive 

mammography in routine screening. What proportion of these 

women do you expect to actually have breast cancer [P(Ca|Po)]? ___ 

% 

                                                           
1 In fact, in some natural frequency versions, the final question is: 

‘How many of these women do you expect to actually have breast 

 

We can see several differences between these 

formats. Most obviously, the NF format uses frequencies 

(indicated by the ‘F’ notation) rather than percentages / 

probabilities (P), but more importantly, the figures are not 

normalized. In the SP format, the figures are normalized by 

the use of a standard denominator (percentages are one way 

of achieving this with a hidden denominator of 100, but 

normalized frequencies with other denominators are also 

possible). This difference in normalization firstly has a 

known effect on the number of computations required to 

solve each problem. In an NF format there are thought to be 

only two computational steps1: (1) summing the number of 

individuals with a positive result and cancer F(Po&Ca) with 

the number of individuals with a positive result but no cancer 

F(Po&¬Ca) and then (2) dividing F(Po&Ca) by this sum. The 

same formula can be used if those same numbers are given in 

percentage or probability format. 

 
𝐹(𝑃𝑜&𝐶𝑎)

𝐹(𝑃𝑜&𝐶𝑎) + 𝐹(𝑃𝑜&¬𝐶𝑎)
 𝑜𝑟

𝑃(𝑃𝑜&𝐶𝑎)

𝑃(𝑃𝑜&𝐶𝑎) + 𝑃(𝑃𝑜&¬𝐶𝑎)
 

  

However, normalized formats require an additional 

pre-step (you won’t see any of these figures in the standard 

probability format to the left). P(Po&Ca) must itself first be 

calculated by multiplying the proportion of individuals with 

cancer who get a positive result (P[Po|Ca]) with the total 

proportion of individuals with cancer P(Ca). Similarly, 

P(Po&¬Ca) must be calculated by multiplying P(Po|¬Ca) 

with P(¬Ca). For example, to calculate the proportion of 

women without breast cancer and a positive result, we 

multiply the percentage of women without breast cancer 

(99%) by the percentage of those women who get a positive 

result (9.6%). This may be a trivial calculation for most, but 

crucially, the solver first has to have an accurate 

representation of the problem in order to know that we (A) 

need to calculate this figure to solve the problem and (B) 

should multiply these two particular values rather than using 

some other figures or operation to compute it.  

As has been noted, in the natural frequency format, 

this figure is provided for us, which has widely been accepted 

as a potential confound by subverting the need for (A) 

entirely (however see Brase & Hill, 2015 for work suggesting 

this may not be an important factor). However, NF 

cancer? ___ out of ___’ This reduces the computational steps 

further, to one only: calculating the total positives. 
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proponents (e.g. Gigerenzer and Hoffrage, 1995) tell the story 

the other way around: normalization is an artificial (and 

relatively recent) human construct which transforms 

problems from a natural and solvable format to an unnatural 

and difficult one. These authors propose that normalization 

adds an additional difficulty by changing the structure of the 

information from that which would be obtained through 

‘natural sampling’ i.e. if we observed 1000 women one by 

one, taking note in each case whether they had cancer and 

whether they got a positive result. This information structure 

of the natural frequency format is thought to replicate the 

natural format that human beings experience in the world, 

and thus are predisposed in some way to work with, which is 

the true reason for the increased normative responding 

(Gigerenzer & Hoffrage, 1995). 

One concrete change however is that when 

information is presented in this way, the denominator of 

F(Po&¬Ca) (990) matches F(¬Ca). Other authors (e.g. 

Evans, Handley, Perham, Over & Thompson, 2000; Sloman, 

Over, Slovak & Stibel, 2003) have therefore claimed that 

rather than this having anything to do with ‘natural’ formats, 

this simply makes the ‘nested sets’ structure of the problem 

transparent (e.g. that women with a positive mammography 

but no breast cancer are a subset of the larger group of women 

without breast cancer). Nested sets advocates argue that this 

set structure revelation should be considered the more 

ultimate cause. They have sought to demonstrate that any 

method which reveals the nested sets structure of the problem 

will be equally successful. One example, using normalized 

percentages for the false positive and negative rates like the 

SP format but framing these in terms of proportions of groups 

(PP) rather than individual chance (an approach developed by 

Macchi [2000]), can be seen below: 

 
Nested Sets (Proportion Percentages): 10 F[Ca] out of 1000 

women at age forty who participate in routine screening have breast 

cancer. Out of the women with breast cancer, 80% [P(Po|¬Ca)] will 

get a positive mammography. Out of those women without breast 

cancer, 9.6% [P(Po|¬Ca)] will also get a positive mammography. 

Here is a new representative sample of women at age forty who got 

a positive mammography in routine screening. What proportion of 

these women do you expect to actually have breast cancer 

[P(Ca|Po)]? ___ % 

 

Macchi (2000) found an improvement in accuracy 

compared to an SP format, and no significant difference to an 

NF format. Following this and similar papers, NF proponents 

(Hoffrage, Gigerenzer, Krauss & Martignon, 2002) have 

argued that nested sets formats simply encourage solvers to 

construct an NF version of the problem for themselves, which 

is the ultimate reason for increased accuracy. This criticism 

seems all the more plausible for Macchi’s format, given that 

unlike the standard probability format, it presented the base 

rate as a frequency. It is important to note however that 

Gigerenzer and Hoffrage (1995) originally theorized based 

on evolutionary grounds that the phenomena of neglecting 

base rates (P[Ca] and P[¬Ca]) during solution should 

generalize to non-NF formats because that information is not 

required for solution in an NF format, which people are 

adapted to: 

 

“Base rate information need not be attended to in 

frequency formats (Result 3). If our evolutionary argument 

that cognitive algorithms were designed for frequency 

information acquired through natural sampling is valid, then 

base rate neglect may come naturally when generalizing to 

other information representations, such as the standard 

probability format (Gigerenzer & Hoffrage, 1995, pp. 29) 

 

While the authors refer specifically to the standard 

probability format here, the key point is that in evolutionary 

history humans have never had to complete the ‘pre-step’ 

required in the normalized format, because information has 

always been presented to them in the natural frequency 

format (and in which they can compute the normative answer 

without using the base rates), and so they may lack the 

capacity to do this, regardless of whether that normalized 

format is presented in the SP way, or in Macchi’s PP way. 

The simple fact that nested sets results defy this has been 

widely overlooked in the field, and in fact suggests a potential 

harmony between the two approaches, rather than a discord, 

at least at the pragmatic level. While people do indeed seem 

more capable of solving a Bayesian word problem in a natural 

frequency format, than in a standard normalized format, 

nested sets results show us that, with the right framing, people 

can solve normalized Bayesian problems too.  

A preliminary aim of this paper is to replicate 

Macchi’s approach, as it has only been demonstrated in a 

single experiment. Furthermore, it needs replication in a 

wider range of more ecologically valid situations, including 

with the base rate presented as a percentage (as mentioned, 

Macchi’s original format used a frequency base rate unlike 

the SP format) and with non-whole numbers. These factors 

may be present in real-world contexts and may add sufficient 

complexity to undermine the value of the format. We also aim 

to test the format in both simple (all women with breast 

cancer get a positive result) and hard (some women with 

breast cancer get a false negative) problems as both versions 

have been used widely in the literature.  

A more ambitious aim of this paper is to assist in 

settling the highly debated connection between nested sets 

and natural frequency formats. Over the past few years 

repeated calls have been made to resolve these differences 

between the two camps (Brase & Hill, 2015; McNair, 2015; 

Johnson & Tubau, 2015; McDowell & Jacobs, 2017). Given 

that these are fundamental questions about cognitive process, 

the same authors have repeatedly called for more process-

focused experiments. While two previous experiments 

(Gigerenzer & Hoffrage 1995; Macchi, 2000) used a ‘think 

aloud’ (TA) approach (where participants record their 

thought processes while solving the problem) in both cases 
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this was only used to report the types of errors participants 

make. We aim to make greater use of this data to shed light 

on the following questions. Does the nested sets approach 

work, as claimed by its advocates, by encouraging a 

representation of e.g. P(Po&¬Ca) as a subset of P(¬Ca) at the 

first, de-normalization step? Does the nested sets approach 

encourage individuals to construct a natural frequency 

representation for themselves, as claimed by Hoffrage et al. 

(2002)? Which of these are predictive of success on the 

problem? Finally, what else can we learn about the 

mechanisms by which Macchi’s nested sets approach 

achieves greater accuracy? 

 

Method 
521 participants were recruited through Amazon 

MTurk (55.3% female; mean age = 34.2 [SD = 11.6]). The 

experiment had eight between-subjects conditions, using a 2 

(standard probability [SP] vs proportion percentages [PP]) x 

2 (simple vs hard) x 2 (whole vs decimal) design. The PP-

hard-decimal condition can be seen below (with statistical 

notation, not shown to participants), and further materials and 

experimental data are available at https://osf.io/nd46g/. This 

is considered a decimal version because the product of 

computational step 1 (e.g. 10% x 76% = 7.6%) is a non-whole 

number. 

 
Every year the government advises women to take part in routine 

mammography screening using an X-ray machine to determine if 

they have breast cancer. Among women at age forty who participte 

in this routine screening 10% [P(Ca)] have breast cancer, while 

90% [P(¬Ca)] do not. However, the screening test is not always 

accurate. Specifically, out of those women who have breast cancer, 

only 76% [P(Po|Ca)] will actually get a positive mammography. 

Furthermore, out of all of those women who do not have breast 

cancer, 15% [P(Po|¬Ca)] will also get a positive mammography. 

What percentage of women at age forty who get a positive 

mammography [P(Po)] in routine screening actually have breast 

cancer[P(Ca|Po)]? ___% 

 

Participants were also required to record their 

thought process in an open text box. They could only submit 

their numerical response after they had submitted their 

thought process. All qualitative analysis of the TA data was 

undertaken blind to condition. Analysis was coded by two 

authors separately, with over 90% agreement. Discrepancies 

were resolved through the decision of a third coder. 

Participants were given a ‘normative’ label if their 

numerical response was within 1% of the Bayesian normative 

value. Beyond this however, we found seven participants 

who clearly demonstrated accurate reasoning, including all 

necessary computational steps, but made an arithmetic error. 

These participants were also labelled as normative. One of 

these participants was in the nested sets conditions, while six 

were in the standard probability conditions. 

 

Results 
General Results 
The overall proportion of the sample providing the normative 

response for the experiment was 13.5% with an average of 

9.0% for the SP conditions and 18.1% for the PP conditions. 

In Figure 1, normative proportions for all eight conditions can 

be seen. 

 

 
 

Figure 1. The percentage of participants providing the 

normative Bayesian answers across all eight conditions. Error 

bars represent one standard error. 

 

A binary logistic regression (BLR) using ‘normative 

response’ as the dependent variable and the three condition-

comparisons (SP vs PP; whole vs decimal; simple vs hard) as 

independent variables found a main effect for the SP-PP 

comparison (Wald Χ2 = 8.984, p=.003), no main effect for the 

whole-decimal comparison (Wald Χ2 = .184, p=.668) and no 

main effect for the simple-hard comparison (Wald Χ2 = 

1.350, p=.245). All subsequent analyses on ‘condition’ 

therefore compare SP to PP only. 

 

Nested Sets Representation 
Across all conditions, 87 (16.7%) individuals expressed a 

‘nested sets representation’ of the problem. For this 

classification, participants had to explicitly, in words, depict 

the group of individuals who had both a positive test result 

but not cancer (P[Po&¬Ca]) as a subset of the total 

individuals without cancer (P[¬Ca]). In the hard condition, 

they also had to express the group of individuals who had a 

positive result and cancer (P[Po&Ca]) as a subset of the 

individuals with cancer (P[Ca]). A mathematical formula was 

not sufficient to be assigned this code. An example comes 

from P261 who stated, “Of the 90% who do not have cancer, 

15% will get a positive mammography”. Here we can see a 

word-based representation of the individuals who do not have 

cancer but got a positive test result as a subset of those who 

do not have cancer. This classification was applied 

conservatively. For example, P498 who said “First what is 

15% of 90%, that is 13.5%” did not receive the classification. 

An example from the hard condition which did get this 
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classification comes from P138 who said “We know 10% of 

women will have breast cancer in the screen and 80% of those 

will show up positive […] Of the remaining 90 women who 

do not have breast cancer 10% will be given a false positive 

so an additional 9 women.” 

A BLR showed that this representation was 

unsurprisingly more common within the PP (24.0%) 

condition, which expressed the problem in this format, than 

in the SP (9.7%) condition (Wald Χ2 = 18.0, p<.001), which 

used an individual chance format. However clearly some 

individuals in the SP condition re-represented the problem in 

terms of nested sets. Furthermore, in both conditions, this 

representation was highly associated with normativity, as can 

be seen in Table 1. 

A BLR was run with normativity as DV, and 

condition and NS-representation as IV’s, and a unique 

predictive effect of NS-representation (Wald Χ2 = 123.6, 

p<.001) was found, but no unique effect of condition (Wald 

Χ2 = 0.04, p=0.837). 

 

Conversion to frequencies 
Across all conditions, 87 participants (16.7%) 

also converted the base rate in the problem from a 

percentage into a frequency before attempting solution 

(i.e. before providing an NS-representation or completing 

the first computational step). For this classification, a 

‘sample’ or ‘population’ of individuals as a frequency 

rather than a percentage or probability had to be expressed. 

For example, P105 said ‘To make my math easier, I am 

going to assume there are 100 women.’ and P186 began 

‘Out of 100 women, 10 have breast cancer, while 90 do 

not.’ Out of the 87 participants who converted the problem 

to whole numbers, 73 converted to a population of 100 

women. The number of individuals who made this 

conversion in each condition, crossed with those providing 

the NS-representation and the proportion of these 

subgroups providing the normative response can be seen 

in Table 1. A BLR with conversion as DV and condition 

as IV showed a predictive effect (Wald Χ2 = 7.3, p=.007). 

A BLR with normative response as DV and condition and 

conversion as IV’s showed a unique effect of conversion 

(Wald Χ2 = 128.9, p<.001) and a potential unique effect of 

condition (Wald Χ2 = 5.2, p = 0.041). 

To simultaneously test the impact of condition, NS-

representation and conversion upon normativity, a BLR was 

run. No main effect of condition was seen (Wald Χ2 = 0.172, 

p=0.68), but a unique effect of NS-representation (Wald Χ2 = 

93.2, p<.001) and of conversion (Wald Χ2 = 8.3, p=0.004) 

was seen. A table depicting these relationships can be seen 

below. 

 

Table 1. Percentage of individuals providing the normative 

answer organized by condition, NS-representation and 

conversion (total number of individuals in each subgroup 

regardless of normativity in parentheses). 

 
 Standard Probability Proportion Percent 

 No NS-

represe

ntation 

NS-

represe

ntation 

Total No 

NS-

represe

ntation 

NS-

represe

ntation 

Total 

N
o

- 

C
o

n
v

er
si

o
n
 

1.4 
(221) 

69.2 
(13) 

5.1 
(234) 

2.8 
(176) 

45.8 
(24) 

8.0 
(200) 

  
 

C
o

n
v

er
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o
n
 

5.0 
(20) 

84.6 
(13) 

36.4 
(33) 

5.9 
(17) 

78.4 
(37) 

55.6 
(54) 

  
  

  
  

  
  

T
o

ta
l 

1.7 
(241) 

76.9 
(26) 

(267) 
3.1 

(193) 
65.6 
(61) 

(254) 

 

From the raw data, we can see that in the absence of 

the NS-representation, conversion only appears to be 

associated with a small (~3%) increase in normativity, while 

in the presence of the NS-representation, converting appears 

to be associated with a much larger (~15-30%) increase. To 

check this, we ran two BLR’s, predicting normativity from 

conversion. Within those who did not produce an NS-

representation, no predictive relationship was seen (Wald Χ2 

= 0.81, p=0.21) while within those who did produce an NS-

representation, a predictive relationship was seen (Wald Χ2 = 

6.4, p=0.011). Dependency of this sort was not seen for the 

NS-representation, which was a significant predictor of 

normativity among those who did not convert (Wald Χ2 = 

69.3 p<.001) as well as those who converted (Wald Χ2 = 27.6, 

p<.001). For some individuals their process could not be 

determined (e.g. if they just provided a mathematical 

formula) but a few individuals were able to solve the problem 

without converting and also while apparently using a chance 

representation, such as P40: 

 
“There is a 10% chance that any woman over 40 has breast 

cancer [and] there is a 10% chance that a woman who does not have 

breast cancer over 40 gets a positive result. This means there is a 

9% chance of [a false positive] and a 19% chance that someone 

tests positive for breast cancer. Out of this there is a 10/19% chance 

that the diagnosis is correct meaning there is a 52.63% chance.” 

 

Errors 
The most common error within the SP condition 

(21.7%) was to provide the complement of the false 

positive rate, (1-P[Po|¬Ca]). This was much less common 

within the PP condition (5.5%). The TA data was coded 

for insight into common reasoning and a single piece of 

reasoning was highly prominent (45.8% of cases). This 

was the confusion of P(Po|¬Ca) with P(¬Ca|Po). 

Following this confusion, the subsequent accurate 
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deduction was made that 100% minus this value would 

give P(Ca|Po). For example, P228 said ‘The fact that 15% 

of positive mammographies are invalid means that 85% 

are valid. She therefore has an 85% chance of actually 

having breast cancer’, P20 said ‘I guess since 10% of 

positive tests are inaccurate, that means there’s a 90% 

chance of her having cancer’ and P133 said ‘Also of all 

the women who get a positive mammogram, 15% will not 

have breast cancer, so I think it is 85%.’ Each of these 

participants use language reflecting P(¬Ca|Po) but 

accompanying the percentage value representing 

P(Po|¬Ca), strongly suggesting a confusion between the 

two. P177 expressed this confusion more explicitly, saying 

‘But there is a 10 percent chance that a woman without 

breast cancer will get a positive mammogram [true, 

P(Po|¬Ca)], so 10 percent of the positive mammograms 

are not accurate [false, P(¬Ca|Po)]’. In the remainder of 

these participants’ TA data, the reasoning could not be 

extracted from the data. For example, many participants 

simply provided mathematical notation. 

 

Computational Steps 
A cumulative graph depicting the proportion of individuals 

reporting each of the three computational steps, step 1 the 

calculation of P(Po&Ca) and P(Po&¬Ca), step 2 the 

summing of these and step 3 the division of P(Po&Ca) by the 

sum as well as whether the participant provided the normative 

numerical value can be seen below for both conditions. For 

both conditions, the majority of individuals do not achieve 

step 1, with further substantial but smaller drop-off between 

this and step 2, and no substantial subsequent drop-off 

between these and step 3 or the normative response. In short, 

highly similar curves were seen for both the SP and PP 

conditions. The major difference between the two conditions 

was the number of individuals reporting step 1 (with more 

individuals reporting this in the PP condition). Similar 

proportional drop-off was subsequently seen in both 

conditions. Indeed, while condition was predictive of step 1 

(Wald Χ2 = 15.3, p<.001), when controlling for step 1, 

condition was not predictive of step 2 (Wald Χ2 = 0.19, 

p=.891), step 3 (Wald Χ2 = .988, p=.320) or the normative 

response (Wald Χ2 = 0.076, p=.783). 

 
 

Figure 2. Drop-off graph for each computational step. Error 

bars represent one standard error. 

 

Discussion 
We replicated Macchi’s (2000) finding in a larger 

sample, and across a range of different format types, 

including with percentage base rates with and without the 

possibility of false negatives and with whole numbers and 

non-whole numbers. In each case, Macchi’s proportion 

percentage format improved normativity over and above the 

SP format, with an overall increase from 9.0% to 18.1%. 

We found that normativity is highly associated with 

the individual reporting a representation of P(Po&¬Ca) as a 

subset of P(¬Ca) in their think aloud data, and in the hard 

condition, also P(Po&Ca) as a subset of P(Ca). This finding 

is not surprising within the proportion percentage group, as it 

could be argued that these individuals are simply 

regurgitating the text from the problem. However, crucially, 

this relationship also held within the standard probability 

format, where an ‘individual chance’ probability format (i.e. 

‘If a woman has cancer, her chance of …) was presented. This 

observational finding should also be considered in the context 

of previous experiments (e.g. Evans et al, 2000; Sloman et al, 

2003) showing that attempts to assist individuals in creating 

exactly this representation of the problem have been 

successful in increasing accuracy. Here we show that some 

individuals, without any prompt to do this, spontaneously 

adopt this representation, and this correlates highly with 

normativity. We also found some evidence that the NS-

representation may have a mediating effect on the impact of 

the NS format. This provides some complementary evidence 

to those papers that the mechanism by which nested sets 

formats achieve greater accuracy is at least partially that 

which they have espoused: by encouraging a nested sets 

representation of the structure of the problem. 

We also found that many individuals make a further 

spontaneous re-representation of the problem, and that this 

also correlates highly with normativity. This is the 

conversion of the problem from a percentage format into a 

frequency format. Interestingly, conversion alone seemed not 

to be predictive of normativity, however in combination with 

the NS-representation it was associated with higher rates of 

normativity than the NS-representation alone. The same was 

not true of the NS-representation. This was still highly 

predictive of normativity with or without conversion. 

Importantly, the majority of individuals who converted did so 

to a base of 100, making no mathematical change to the 

problem. This therefore seems to demonstrate a preference 

among our sample for working with frequency values over 

percentages, even when the absolute numbers (e.g. 20% vs 

20 women out of 100) and therefore calculations, are 

identical. Of course, we cannot resolve the ultimate reason 

for this, be that a greater evolutionary exposure towards 

frequencies or a current greater exposure to frequencies 

during our participants’ lives. We tentatively suggest a third 
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possibility. It may be difficult to mentally represent a 

percentage, abstract as it is, without it being a percentage of 

something tangible. Imagining 100 women may simply 

provide a concrete mental image which can be divided and 

sub-divided according to the percentages. It may also provide 

a platform for a simple internal narrative about these women 

and what happens to them. Whatever the ultimate reason 

however, this result does partially confirm Hoffrage et al’s 

(2002) conjecture. 

These findings have some relevance to the question 

of whether the elements that are thought to comprise the 

natural frequency format are separable, and if so, which 

elements are doing the ‘work’ in improving accuracy. Nested 

sets advocates have argued that the nested sets structure is 

doing all the work, and the frequencies are superfluous. 

Natural frequency advocates have argued that the two are 

inseparable. Here we find some tentative evidence that the 

two are separable (individuals who form a nested sets 

representation but do not convert to frequencies are still more 

successful than those who do not form that representation). 

However, even if separable, both the nested sets structure, 

and the use of frequencies (as opposed to percentages) appear 

to uniquely contribute to success, with the combination of 

both being more strongly associated with success than either 

alone. Importantly, without the nested sets structure, 

conversion to frequencies did not predict success, which may 

mirror findings that normalized frequency formats are no 

better than the standard probability format (e.g. Evans et al., 

2000). 

In terms of further investigation into the 

mechanisms of Macchi’s nested sets format, we presented 

evidence that relative to the SP format, more individuals 

achieve step 1 (de-normalization). However, controlling for 

this, the proportion of participants achieving subsequent steps 

is not different to the SP format. Related to this, an analysis 

of errors between conditions has shown that the classic 1-

P(Po|¬Ca) error was drastically reduced from 21.7% of total 

responses in the SP format to 5.5% in the PP format. This 

error, in line with previous theorizing (e.g. Braine and 

Connell, 1990) has been found here to principally stem from 

a confusion between the false positive rate P(Po|¬Ca) and 

P(¬Ca|Po). As has been mentioned, the clarification of the 

false positive rate (and the true positive rate in the hard 

condition) by encouraging individuals to see it as a subset of 

P(¬Ca) has long been theorized to be the mechanism by 

which nested sets formats work. The reduction of this error 

in the PP condition therefore seems to further support this 

theory. Given that the false positive rate is required for step 

1, it also provides further evidence that the impact of 

Macchi’s format is principally achieved at this step. 

As noted, Macchi’s format does not appear, upon 

the current evidence, to provide any additional support in the 

later stages of solution, most notably in getting from 

computational step 1 to step 2. At this step individuals need 

to recognize (A) that they require the total number of positive 

results, and (B) that they need to combine the false positives 

with the true positives to achieve this. So far, research has 

been principally focused on helping solvers form a 

representation of e.g. P(Po&¬Ca) as a subset of P(¬Ca). 

However, success on the final two steps may instead be a 

product of recognizing a different set relation, that of 

P(Ca&Po) and P(¬Ca&Po) as subsets of P(Po). We can 

clarify this distinction by displaying two tree structures of the 

medical diagnosis problem below. The top shows the classic 

structure, widely published, with the hypothesis, ‘Cancer’ as 

the first ‘division’, or first set of child nodes. However, the 

opposite structure is also possible, shown at the bottom, with 

the data, ‘Positive’ as the first set of child nodes. 

 

 
 

Figure 3. ‘Hypothesis First’ and ‘Data First’ tree diagram 

representations of the medical diagnosis problem. 

 

While perceiving the set relations in the hypothesis-

first version seems key to step 1, steps 2 (calculating total 

positives) and 3 (dividing cancer & positive by total 

positives) would seem to require an understanding of the set 

relations in (at least the left half) of the data-first diagram. For 

step 2, the addition, one must understand that P(Ca&Po) and 

P(¬Ca&Po) are subsets of P(Po). It seems to us that step 3, 

the division, should require only that same set relation i.e. that 

P(Ca&Po) is a subset of P(Po). To our knowledge this 

distinction has not been made before. We believe that in order 

to improve framing methods further, focus should be on 

helping individuals form these latter set representations at the 

most appropriate time to facilitate steps 2 and 3. 

In the medical diagnosis problem, the information 

related to steps 2 and 3 are contained within the question. In 
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our nested sets format, this is changed into a proportion form 

i.e. ‘What percentage of women at age forty who get a 

positive mammography…’, unlike the SP format, which is 

chance framed. While plausibly this could have helped 

solvers form exactly this latter subset representation, the 

current evidence suggests this did not have an impact. Future 

work may look to combine Macchi’s format with a question 

form used by Girotto and Gonzalez (2001) which was divided 

into two parts: first explicitly requiring the calculation of step 

2, and only then requiring calculation of step 3. 

Finally, it should be noted, that the accuracy 

percentage for participants in our NS group was lower than 

the average from the recent meta-analysis for natural 

frequency (~24%). It is difficult of course to make confident 

comparisons but given that we have found that the nested sets 

approach works via very similar mechanisms to the natural 

frequency approach, but requires one extra step (de-

normalization), and in some versions two extra steps, and 

furthermore that we have found a unique beneficial effect of 

frequencies, some greater accuracy on natural frequency 

versions seems plausible to us. Pragmatically therefore we 

would still advocate for natural frequencies as the primary 

method for communicating Bayesian problems to the public 

where that is possible, with proportion percentages as a 

backup where it is not. 

However, unfortunately when individuals do 

encounter Bayesian problems in the real world, they are often 

in the standard probability format. Sedlmeier & Gigerenzer 

(2001) have investigated the merits of preparing individuals 

via training to convert these into natural frequency versions 

themselves when they encounter them. This however requires 

considerable training. Our findings suggest that solvers can 

do more of the work themselves than was assumed by that 

research (i.e. can de-normalize the problem themselves) and 

therefore may only need to remember fewer ‘conversion’ 

steps. This may be valuable where the brevity of the training 

is important. In fact, our findings tentatively suggest 

substantial accuracy gains may be obtained by training 

people to following two simple rules when faced with an SP 

problem: 

 

1. Imagine 100 women (or whatever unit you’re dealing 

with). 

2. Imagine the percentages you’ve been given as 

proportions of these 100 women. 
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Abstract
While many solutions to the apparent civic online reasoning
deficit have been put forth, few consider how reasoning is of-
ten moderated by the dynamic relationship between the user’s
values and the values latent in the online content they are con-
suming. The current experiment leverages Moral Foundations
Theory and Distributed Dictionary Representations to develop
a method for measuring the alignment between an individual’s
values and the values latent in text content. This new measure
of alignment was predictive of bias in an argument evaluation
task, such that higher alignment was associated with higher
ratings of argument strength. Finally, we discuss how these
results support the development of adaptive interventions that
could provide real-time feedback when an individual may be
most susceptible to bias.
Keywords: myside bias; moral foundations theory; distributed
dictionary representations; civic reasoning

Introduction
The rise of social media has been accompanied by a rise in
smaller, decentralized media sources. One clear negative con-
sequence of this democratization of media has been an in-
crease in access to unreliable or misleading news stories. De-
spite their lack of credibility and veracity, these stories are
persuasive and appealing. Some estimates suggest that Amer-
icans fall for fake news headlines approximately 75% of the
time (Silverman & Singer-Vine, 2016), and that these stories
are generally more engaging than stories produced by tradi-
tional news outlets (Silverman, 2016).

The proposed solutions to these problems generally fall
into two categories. The first category leverages various ma-
chine learning methods (Conroy, Rubin, & Chen, 2015) to
create “fake news detectors.” While some of these classi-
fiers are quite sophisticated (Wang et al., 2018), these detec-
tors tend to limit their scope to the detection of stories that
are patently false. More nuanced instances of stories that
are merely misleading are generally beyond the purview (and
perhaps ability) of these systems (McGrew, Ortega, Break-
stone, & Wineburg, 2017). Moreover, even if accurate clas-
sification was possible, one might question whether it is in
our best interest to delegate this task to machines, potentially
allowing our own ability to critically evaluate media sources
to languish in the process.

In contrast to the content-driven detectors, other solutions
focus on improving the critical thinking skills of the media

consumers themselves. There is certainly evidence of a deficit
in this regard. A recent study of students in middle school,
high school, and college summarized the student’s “civic on-
line reasoning” (e.g. evaluating arguments, recognizing spin)
as simply, “bleak” (Wineburg, McGrew, Breakstone, & Or-
tega, 2016). Non-detector solutions tend to focus on strength-
ening these kinds civic reasoning skills. For example, Facti-
tious is a game created by the American University Game
Lab (Hone, Rice, Brown, & Farley, 2018) that is marketed as
a way to test the player’s ability to distinguish fake and real
news stories, but along the way teaches the player to identify
features like reliable sources and neutral language.

While the detectors focus on the media content itself (hop-
ing to fill the role of editor in the new democratized news
space), the civic education solutions focus instead on the
media consumers, with the hope that better critical thinkers
might be more or less immune to the appeal of misleading
content. Both of these approaches unfortunately tend to ne-
glect the dynamic relationship between the media content and
the media consumer. Consider the following actual fake news
headline:

“Pope Francis Shocks World, Endorses Donald Trump
for President”

If you happen to be a religious Trump supporter, this story
may seem plausible. After all, if you, a person of faith, have
found reason to endorse him, why shouldn’t another person of
faith. This headline confirms what you already believe to be
true. However, if you are not a Trump supporter, this headline
might raise several red flags. It is in that wave of skepticism
that you may dart your eyes to the URL in order to check the
credibility of the source. Because this headline runs counter
to your beliefs, you go searching for evidence to disprove it.
In either case, the degree of critical thought that is brought to
bear on the content is, at least to some extent, dependent on
the values and beliefs of the reader.

This tendency to evaluate arguments more favorably when
they align with your own views or beliefs (and conversely,
more critically when they do not) is formally known as my-
side bias (Baron, 2000). Numerous studies have shown
the effects of myside bias on reasoning to be reliable and
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strong (Klaczynski & Robinson, 2000; Stanovich & West,
1997), irrespective of intelligence (Stanovich & West, 2007;
Stanovich, West, & Toplak, 2013). Haidt’s Social Intuition-
ist Model of moral reasoning (Haidt, 2001) suggests that the
power of myside bias is likely due to the fact that the pri-
mary drivers of our moral judgments are intuitions and heuris-
tics. According to the Social Intuitionist Model, when we en-
counter a new piece of information, we have an immediate
and powerful intuition about whether we agree or disagree
with the information. Haidt argues that the vast majority of
these judgments are made automatically, using Kahneman’s
(Kahneman & Egan, 2011) System 1 thinking. Rational (or
System 2) thinking always comes after an intuitive judgment
has already been made, and only comes online if we are asked
to justify our position. In short, we are not, by default, the ra-
tional thinkers we think we are. Moreover, when we do make
use of our capacity for rational thought, it’s generally to jus-
tify a decision we have already made, not to search for the
truth.

Misleading and false news stories can exploit this vulnera-
bility by designing stories that strongly align with the prior-
held beliefs of the target audience. Because the reader wants
to believe the story is true (to affirm their reality), System 2’s
critical reasoning skills are never engaged. The bias literature
suggests that overcoming the strength of this intuitive appeal
may require more than detecting falsehoods or training con-
sumers to be more critical. Solutions that ignore the dynamic
relationship between the user’s beliefs and the beliefs latent
in the misleading media content are perhaps ignoring the very
feature that makes the target content so powerful.

Accurately capturing user beliefs is a daunting challenge.
Each user likely possesses countless individual beliefs, and
new beliefs are constantly being created in response to their
current political context. One solution is to instead measure
the foundational values that inform our beliefs. Moral Foun-
dations Theory (Haidt & Graham, 2007) argues that moral de-
cision making can be traced to a small set of foundational val-
ues (Care, Fairness, Loyalty, Authority, and Sanctity). These
moral foundations have been empirically shown to be highly
predictive of both general voting behavior (Franks & Scherr,
2015) as well as more specific political beliefs (e.g., “Cli-
mate change is real”) (Koleva, Graham, Iyer, Ditto, & Haidt,
2012; Rottman, Kelemen, & Young, 2014). Moral Founda-
tions Theory allows us to approximate beliefs in a theory-
driven, context-general way. This is crucial for any solution
intended for deployment on the internet, where the number of
unique-contexts is virtually infinite.

After deriving a measure of user values (as a proxy for
beliefs), the system must also be able to estimate the val-
ues latent in the text they are reading. Recently, Garten et
al. (2018) developed a methodology for estimating the val-
ues latent in short pieces of text (tweets), and demonstrated
that their methodology can accurately classify a tweet’s most
salient moral foundation (as measured by human raters).
What remains to be seen is if value classification methods

(like Garten’s) can be combined with measures of user values
to estimate the degree of alignment between the values of the
media consumer and the content they are consuming.

We would expect that any measure that accurately captures
this relationship between consumer and content should also
be able to predict the presence of myside bias. That is, when
alignment between user and content values is high, we expect
that the user will be biased to evaluate the content more favor-
ably. In this paper, we propose a method for measuring this
dynamic relationship between consumer and content values,
and demonstrate that the resulting metric can be used to pre-
dict bias in argument evaluation. Specifically, we test whether
the alignment between participants’ values and the values la-
tent in an argument predicts participants’ ratings of argument
strength. We hypothesized that higher alignment between
participant and content values will be associated with higher
ratings of argument strength, and that this relationship will
be present even in arguments specifically designed to confuse
our natural language processing method.

Practically, this methodology lays the groundwork for fu-
ture hybrid solutions that leverage technology alongside hu-
man critical thought to mitigate the impact of content de-
signed to confirm our values rather than disseminate true
information. Perhaps more importantly, this methodology
presents a novel, context-independent way to estimate the im-
pact of myside bias, a known, powerful moderator of every-
day reasoning.

Methods
Participants
Eighty (80) participants were recruited using the participant
recruitment platform Prolific. Participants were required to
be between 18-65 years of age, U.S. citizens, and not have
participated in any of our research group’s prior studies (due
to content similarity). Five participants exited the study be-
fore completing any significant portion of the main experi-
ment and were excluded from analyses. The estimated com-
pletion time (based on prior pilot studies) was approximately
15 minutes, and participants were paid $2.50 ($10/hour) for
participating.

Data Quality We mitigated the impact of potential gamers
in several ways. First, the post-test questionnaire included a
reading-check question. Participants who failed the reading-
check (n=7) were excluded from analyses. We also used
timing data to identify participants who were likely clicking
through the problems without reading the prompts. Specifi-
cally, participants who selected an answer less than two sec-
onds after a prompt loads (roughly the time needed to select
an answer after the page loads), at least 10 times (for half of
the problems), are labeled as gamers. We chose a threshold
of 10 problems for two reasons: 1) it is reasonable to assume
that participants who begin the experiment with the intention
of gaming the system will exhibit this behavior for at least
half of the problems, and 2) if we set this threshold too low,
we risk excluding participants who begin the experiment with
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Figure 1: Relevance to Moral Decisions by Moral Foundation
for more conservative and more liberal participants. These
values closely match previously observed values for liberals
and conservatives (Haidt & Graham, 2007), suggesting that
our sample was politically diverse.

good intentions, but get fatigued towards the end. Eight par-
ticipants met this criteria for gaming, and were excluded from
analyses.

Demographics Of the remaining 60 participants, 38 identi-
fied as male, 20 as female, and 2 as other. Participants ranged
in age from 18-62 years old (M=31.10). With respect to race
and ethnicity, 50 participants identified as Caucasian, 6 as
Hispanic, 3 as Black, and 1 as Asian. The majority (59%)
of participants reported having completed a college level ed-
ucation or higher, and a high number of participants reported
completing a master’s degree (n=19).

Political Diversity One of the key benefits of recruiting
participants from Prolific is that participants are drawn from
all over the country. If instead, we were to recruit participants
from our local community, we would likely get an unbal-
anced distribution of political beliefs (as our city has a history
of voting overwhelmingly in favor of one party). Recruiting
from across the country gives our sample a degree of political
diversity that would be impossible to achieve otherwise.

To evaluate if our sample was indeed politically diverse, we
used the composite measure of the Moral Foundations The-
ory Questionnaire (described below), called progressivism,
to divide our sample into two groups along the mean score.
Then, for each of the two groups we graphed the mean scores
of each foundation and compared them to known averages.
Figure 1 shows the mean scores for more liberal and more
conservative participants across the five moral foundations.
These values closely match previously observed values for
liberals and conservatives (Haidt & Graham, 2007), suggest-
ing that our sample was politically diverse.

Experiment Environment and Procedure

Participants completed the experiment online by navigating
through a web-based application. After completing a consent
form, participants were informed that the study consisted of

two sections. In the first section, they were asked to complete
a questionnaire (described below), and in the second section,
they were asked to rate a series of arguments (presented in
random order). After completing the two sections, the partic-
ipants were directed to a post-test questionnaire where de-
mographics information was collected, and then finally, to
the debriefing page, which clarified that any facts and figures
used in the study were entirely fictitious. The experiment was
estimated to take approximately 15 minutes to complete (ac-
tual median completion time was 12 minutes).

Moral Foundations Theory Questionnaire In the first
section of the experiment, each participant was required com-
plete the Moral Foundations Questionnaire (MFQ) (Haidt
& Graham, 2007). This 30-item questionnaire is designed
measure how relevant each one of the five moral founda-
tions (Care, Fairness, Authority, Loyalty, Sanctity) is to one’s
moral decision making. For example, participants are asked
to indicate the degree to which they agree with the follow-
ing statement: “Respect for authority is something all chil-
dren need to learn.” The final output of the questionnaire is
a vector of five scores that indicate the relative importance of
the five moral foundations to the participant’s moral decision
making. Ultimately, we are interested in constructing a model
that relates the values latent in text to the values and beliefs
of an individual person. This vector of five scores represents
the human side of that relationship.

It is worth noting that having the participants take the MFQ
before answering arguments designed to evoke moral deci-
sion making is not ideal. The questionnaire may cause partic-
ipants to be more conscious of their beliefs than they might
normally be if encountering these arguments in the real world.
However, this ordering is unfortunately necessary for later
stages of this project, where adaptive interventions designed
to promote analytic thinking use an individual’s scores on
the MFQ to decide when targeted feedback is needed most.
These future directions are explored in more detail in the Dis-
cussion section.

Rating the Strength of Arguments Participants were
asked to read and rate the strength of 20 arguments on a nine-
point Likert scale (1=Very Weak; 9=Very Strong). Each ar-
gument had three key features. First, each argument was de-
signed to evoke a specific moral foundation. For example,
the following argument was designed to evoke the Authority
foundation:

Greenville School District requires students to address
all adults as “Sir” or “Ma’am” and their students al-
ways score higher on state tests than ours. Instilling a
strong respect for authority for their teachers helps stu-
dents learn.

Regardless of the argument’s actual strength, we would ex-
pect that if a participant believes that respecting authority is
important, this argument will resonate with them. Each of the
five foundations is the focus of an argument four times, for a
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total of 20 arguments.
The second key feature is the relative quality of an argu-

ment. This is a categorical feature with two levels, high qual-
ity and low quality. The above argument is an example of
a low quality argument. In contrast, consider the following
argument:

The number of suspensions at Redbridge School District
has been slowly increasing for the past 5 years. Last year
they added three police officers to their staff and saw a
10% decline in suspensions. The presence of a strong
authority figure reduces bad behavior.

While this argument is certainly not airtight, it has several
attributes that make it a relatively higher quality argument.
First, it shows the reversal of a long-term trend, in contrast
to the low quality argument where no temporal context is es-
tablished. Second, it uses concrete figures that are relative to
the norm, as opposed to the low quality argument which uses
vague terms like “higher” to quantify changes. In general,
high quality arguments include information that can be used
to rule out some alternative explanations. Low quality argu-
ments leave open the possibility of alternative explanations.
Of the 20 arguments, half are high quality and half are low
quality.

The third key feature is congruence with the target founda-
tion. A potential limitation of the distributed dictionary rep-
resentation methodology (described below) is that statement
representations are formed using the representations of single
words. This means that, while this methodology should have
no problem knowing that the word “son” in the context of
the word “king” likely refers to the concept “prince,” it will
likely have more difficulty identifying the cultural nuances
between statements like “God is good” and “God is dead.”
The congruence feature is designed to test the robustness of
this methodology’s ability to adapt to these kinds of unfavor-
able circumstances. Consider again the two previous example
arguments. Both arguments 1) use language that evokes the
authority foundation, and 2) are supportive of that foundation.
In contrast, consider the following argument:

Woodford School District doesn’t allow teachers to rep-
rimand students, and last year they had fewer detentions
than our district. Students behave better when they’re
treated like equals instead of children

While this argument also evokes the Authority foundation,
this example argues against an increased respect for author-
ity. We would expect that participants that value authority
will be more skeptical of the claims in this argument, because
they violate their intuitions. Whether the model’s represen-
tation of the values latent in the argument is nuanced enough
to make the distinction between incongruent and congruent
arguments is an open question. Again, half (10) of the argu-
ments are congruent, half incongruent.

Analysis

Distributed Dictionary Representations The broad goal
of this experiment is to evaluate a method for comparing an
individual’s values with the values latent in the media they are
consuming. Using the MFQ, we are able to generate a theory-
driven estimation of the participant’s values. The next step
is identifying the values latent in a particular piece of text.
While historically this has been done using word-frequency
methods (i.e., counting the number of times terms in a con-
cept dictionary appear in the target text), these methods are
much less effective for analyzing small bodies of text (e.g.,
news headlines, tweets), which may not contain any of the
dictionary terms.

In contrast to word-frequency methods, distributed repre-
sentations (Mikolov, Chen, Corrado, & Dean, 2013) estimate
the meaning of words by comparing the numerous, varied
contexts that the word appears in within a large text cor-
pus. These models are rooted in the distributional hypothesis,
which states that words that appear in similar contexts likely
share some semantic features. The distributed representation
of a word is simply that word’s location in a low-dimensional
(10-10,000 dimensions) space. This location can be repre-
sented as a vector, which allows us to compute the semantic
distance between two concepts using cosine similarity.

Garten et al. (2018) extends this work in distributed repre-
sentations to incorporate concept dictionaries. A distributed
dictionary representation is computed by simply averaging
the distributed representations of all the words in the dictio-
nary. The result is a point in the semantic space that amplifies
the shared, core features of each of the component dictionary
terms. Because we are ultimately using an abstract represen-
tation of a concept, our dictionaries can be highly focused, in-
cluding only the most relevant terms. The current study uses
five such dictionaries (one per moral foundation), and each
dictionary contains four positive words (e.g., fairness, equal-
ity) and four negative words (e.g., unfair, injustice) related to
the moral foundation (e.g., fairness). Using distributed repre-
sentations allows for the effective analysis of small bodies of
text (such as the short arguments used in the current study),
because the method does not require any of the dictionary
terms to be present in the text. We used gensim (a Python
implementation of Word2Vec (Mikolov et al., 2013)) and the
pre-trained Google News corpus (approximately 100 billion
words) Word2Vec model1.

Alignment The output of the distributed dictionary repre-
sentation analysis is a vector of five values, indicating the av-
erage semantic distance between the words in the argument
and the words in each of the five moral foundation concept
dictionaries. To compute alignment, we compute the cosine
similarity between this vector and the vector of moral foun-
dation relevance scores outputted by the Moral Foundations
Questionnaire (i.e., the participant’s values). We then used a

1The pre-trained Google News model can be found here:
https://code.google.com/p/word2vec/
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normalized log-transformation to correct for skew. Alignment
is computed for each participant and argument combination.

Linear Mixed Effects Models Because it is impossible to
determine an objective rating of argument strength for the ar-
guments used in this study, we are less interested in the indi-
vidual rating of each argument and more interested in how a
participant rates arguments relative to one another (i.e., high
alignment vs. low alignment or high quality vs. low qual-
ity). To make use of all the data while accounting for differ-
ences in ratings across participants, we use a series of linear
mixed effects models, with participant as a random effect.
Similarly, to control for unintended variations in argument
strength, we include Argument ID as an additional random
effect. We compare models to one another using the Akaike
information criteria (AIC), which estimates the fit of a model
(lower scores are better). All reported coefficients are stan-
dardized.

Results
We used a series of mixed effects models to examine the rela-
tionship between alignment (between participant and argu-
ment values) and ratings of argument strength. To reduce
the possibility that any effect of alignment on ratings could
be attributed to differences in demographics, we tested for
collinearity between alignment and each demographic vari-
able (age, gender2, race, and education level). A series of
one-way analyses of variance (ANOVA) between alignment
and each of the three categorical variables (gender, race, and
education level) showed no evidence of collinearity. Simi-
larly, there was no significant correlation between alignment
and age.

A mixed effects model with participant and argument ID
as random effects, ratings of strength as the outcome variable,
and gender, race, educational level, and alignment as fixed
effects was generated3. Alignment was a significant predictor
of ratings when included alongside these demographics vari-
ables (β = 2.48, p < 0.01), providing further evidence that
any effect of alignment on ratings was not due to differences
in demographics.

Impact of Alignment when Controlling for Quality To
test if alignment’s impact persists when controlling for argu-
ment quality, we built a mixed effects model with partici-
pant and argument ID as random effects, ratings of strength
as the outcome variable, and alignment and argument quality
as fixed effects. We found that alignment was predictive of
ratings despite the presence of argument quality. It should be

2Participants identifying as “other” were excluded from this
analysis because the sample was very small (n=2).

3Note that age was excluded from the model because a one-
way ANOVA between age and education level indicated a signif-
icant relationship between age and education level. A Tukey’s
HSD test showed that participants at the graduate level (M = 35.33,
SD = 5.38) were significantly older than those below the college
level (M = 27.96, SD = 9.05). A likelihood ratio test showed that
education level was more explanatory than age, so age was excluded
in favor of education level.
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Figure 2: Relative impact of alignment on the ratings of high
and low quality arguments. Each data point represents the
average rating and alignment for all arguments within a cat-
egory (high or low quality) for one participant. On average,
participants rated high quality arguments as stronger than low
quality arguments. The ratings of both types of arguments
were associated with alignment scores.

noted that although participants on average rated high quality
arguments as significantly stronger (t(59) = 8.07, p < .001)
than low quality arguments (M = 5.06, SD = 1.72) (suggest-
ing some categorical validity), the labels “high” and “low” are
very much subjective labels. As such, we cannot objectively
compare the impact of alignment to the impact of quality.
Still, we can make a meaningful, subjective comparison be-
tween the impact of alignment and “quality” (as operationally
defined in this context). In this context, the impact of align-
ment on ratings of strength (β = 3.06, p < 0.001) was greater
than the impact of argument quality (β = 1.33, p < 0.01).

While on average, participants rated congruent problems
(M = 5.89, SD = 1.35) as significantly stronger (d f (59) =
2.27, p = 0.02) than incongruent problems (M = 5.57, SD =
1.40), congruence was not a significant predictor of ratings
when added to this model.

Interaction between Age and Alignment Previous re-
search suggests that, because reliance on heuristic reasoning
increases with age, older adults may be more likely to exhibit
biases in everyday reasoning (Klaczynski & Robinson, 2000).
To test whether this was true of our sample, we built a mixed
effects model with participant and argument ID as random
effects, ratings of strength as the outcome variable, and argu-
ment quality and alignment*age as fixed effects (where align-
ment*age is an interaction term). We found that there was a
significant interaction between alignment and age (β= 15.01,
p < 0.001), such that alignment’s impact increases as age in-
creases. This finding aligns with previous research. Addi-
tionally, this alignment*age interaction model had a better fit
(AIC=5033.05) than the previous model built without the in-
teraction term (AIC=5058.63).
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Figure 3: The interaction between age and alignment. Each
data point represents one participant’s average rating and
alignment scores. Alignment had a much larger impact on rat-
ings of strength for older participants (participants above the
median age) than younger participants. This conforms with
previous findings examining the relationship between bias in
argument evaluation and age.

Performance on Incongruent Problems A potential lim-
itation of this particular NLP method is its reliance on the
semantic relationships between isolated words. A robust
methodology should be able to accurately determine the va-
lence of an argument that may contain several words related
to a foundation, but nonetheless is incongruent with the be-
liefs of someone who values that foundation. To test the
robustness of our method, we built another iteration of the
above, best performing mixed effects model (including the
alignment*age interaction), but selected only incongruent ar-
guments (previously both congruent and incongruent prob-
lems were used). The impact of alignment on ratings of in-
congruent arguments also appears to be dependent on age,
as the interaction term alignment*age was again a signifi-
cant predictor of ratings of argument strength (β = 15.01,
p < 0.001). To examine this relationship further, we divided
the sample into two groups (older and younger) along the
mean age, and then calculated the correlation between par-
ticipants’ mean ratings and mean alignment for each group.
While we found a significant correlation between ratings and
alignment in the older group (r = 0.26, p < 0.001), we found
no such correlation in the younger group (see Figure 3).

Discussion
Our results demonstrate that distributed dictionary represen-
tations (DDR) combined with a measure of user values may
provide a reliable method for identifying when users may be
prone to biased reasoning. Because our method does not re-
quire labeled text data, it can be easily applied to real-world
data (such as social media posts). The only limitation on
this front is the identification of the user’s values. We do

this formally with the Moral Foundations Questionnaire, but
research has demonstrated that political orientations can be
predicted with a high degree of accuracy purely based off of
social media activity (Colleoni, Rozza, & Arvidsson, 2014).
Whether these predictions are as nuanced as those generated
by the theoretically grounded Moral Foundations remains to
be seen, but the potential for a fully automated method for
measuring a user’s susceptibility to myside bias exists.

We used incongruent problems to test the robustness of our
methodology. These problems were intentionally designed to
confuse the DDR method, and produced some interesting re-
sults. While alignment was predictive of ratings on incongru-
ent problems, this was only true for older participants. One
potential explanation for this difference is a lack of clarity
about what low scores on the moral foundations questionnaire
mean (specifically in this context as a proxy for beliefs). High
scores indicate a value is relevant, but do low scores indicate
indifference or impassioned opposition? Future work will re-
quire a qualitative exploration of these nuances.

Toward Adaptive Interventions

Our results suggest that we can leverage the dynamic rela-
tionship between user and content values to predict when the
user may be prone to biased reasoning. This work is the first
step toward providing adaptive, targeted interventions when
high alignment between user and content values is detected
(i.e., when the user is most prone to biased reasoning). It is in
these cases of high alignment that we are least likely to move
from System 1 (intuitive) to System 2 (rational) thinking, and
engage the reasoning processes that may mitigate bias. Adap-
tive interventions may be able to facilitate the engagement of
System 2 thinking in exactly these critical moments, making
users less vulnerable to content designed to exploit natural
biases. This kind of hybrid solution leverages the strength of
sophisticated machine learning methods, while still preserv-
ing the need for and power of human reasoning.

Conclusion
In this paper, we demonstrated that a measure of alignment
between a participant’s values and the values latent in short
arguments was a significant predictor of ratings of argument
strength. This was true even for nuanced arguments, designed
to confuse our methodology. These results underscore the
impact of values on the evaluation of everyday arguments,
and lay the groundwork for adaptive interventions designed
to mitigate everyday reasoning biases.
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Abstract

Computational thinking (CT) refers to a range of problem-
solving skills applicable to computer science and everyday life.
Although recent research in developmental cognitive science
suggests mental capacities relevant to CT may emerge quite
early in life, research on CT, and computer science educa-
tion more generally, has made little contact with this litera-
ture. As a way to better bridge these fields, we explore the
development of problem decomposition, a critical feature of
CT, in the spatial domain. We ask whether young children
can break a complex spatial problem down into subcompo-
nents that can be reassembled to solve the overarching prob-
lem. Across two experiments (Exp.1: 4- to 7-year-olds; Exp.2:
3- to 5-year-olds) that involve constructing block structures,
we demonstrate that some of the key capacities underlying
problem decomposition begin to emerge in preschool years and
develop throughout early childhood. Although preschool-aged
children struggle to solve an open-ended decomposition prob-
lem that requires generation and execution of decomposition
plans, even 4-year-olds can successfully evaluate the viability
of these plans. These results suggest that experimental meth-
ods in developmental cognitive science can inform CS edu-
cation research that focuses on promoting CT; by identifying
when and how CT concepts emerge in early childhood, we can
better create age-appropriate educational tools.
Keywords: computational thinking; problem decomposition;
problem solving; cognitive development; intuitive physics

Introduction
The ability to break down a large problem into smaller parts
is important for many real-world tasks. To decompose a prob-
lem effectively, one must understand its constraints, generate
potential solutions, and evaluate the strengths and weaknesses
of those solutions. Importantly, these steps are often better
taken before one actually acts; attempts to achieve a complex
task without proper planning can lead to unnecessary effort to
correct a mistake or even irreversible failure. But what does
it take to be good at problem-solving and planning?

More than a decade ago, Wing (2006) popularized the con-
cept of computational thinking (henceforth CT). CT is a term
that collectively refers to a range of skills that are crucial to
effective problem-solving, and it incorporates various cogni-
tive strategies considered fundamental to computer science
(CS) (Wing, 2006; Barr & Stephenson, 2011; Brennan &
Resnick, 2012). Mental activities like abstraction (i.e., gen-
eralizing problem features to preserve only relevant informa-
tion; Kramer, 2007) and problem decomposition (i.e., break-
ing a complex problem into solvable subcomponents; Barr &
Stephenson, 2011) are key components of CT. Indeed, these
skills are critical to building good computer programs; any-
one who has engaged in programming understands the impor-
tance of abstracting away from a problem to identify its basic

structure and decomposing that structure into solvable parts.
Yet, the importance of CT reaches far beyond program-

ming (Wing, 2006). Abstract thinking, problem decomposi-
tion, and the ability to evaluate potential plans are skills that
allow us to tackle a range of everyday tasks as well as larger,
more complex problems that involve multiple sub-goals, such
as conducting scientific research or building an architectural
project. In particular, to successfully achieve these larger
goals, one must: (1) represent the current state of the world
(i.e., what does the empty lot look like?, what materials do we
have?) as well as the state of the desired end-goal (i.e., what
do I want to build?), (2) identify the units that comprise the
end goal (i.e., what sub-goals should I complete?) and con-
struct the possible future states from applying these units (i.e.,
what will the structure look like given these components?),
and (3) evaluate the viability and effectiveness of different
sets of potential units and interventions (i.e., should we build
the columns or the roof first?, which size columns are most
suitable?). In other words, effective problem-solving involves
the representational and inferential abilities to generate pos-
sible ways to decompose the problem space and evaluate the
viability of a potential decomposition plan. By engaging in
these mental processes prior to executing a given plan, one
can solve a problem with less trial-and-error.

While CT has been a useful construct to raise awareness of
the relevance of these skills in both computing and everyday
life, it remains a difficult concept to operationalize or mea-
sure. This difficulty may arise from the fact that CT is not
a single thing; it is a collection of various mental operations
whose cognitive mechanisms are poorly understood. Further-
more, although CT presumably involves reasoning abilities
that have been topics of interest in cognitive development re-
search, this body of work has remained rather disconnected
from the literature in CS education, leading many CS educa-
tors to believe that CT develops relatively late in childhood
(Guzdial, 2015). Our goal is to take a step towards synthesiz-
ing these fields, and build on prior work to ask whether the
ability to decompose a complex problem—a key component
of CT—is present early in life. In the following, we summa-
rize related work on young children’s inferential capacities
and introduce a novel task for testing problem decomposition.

Prior work in cognitive development has revealed rich, so-
phisticated abilities in young children to engage in abstract
reasoning and learning (Gopnik, 2012; Schulz, 2012). Al-
though these studies are primarily aimed at identifying the
developmental origins of the human ability to engage in sci-
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entific thinking, collectively their findings suggest that the
basic representational and inferential capacities supporting
CT may emerge much earlier than previously thought. For
instance, preschool-aged children construct novel hypothe-
ses from observations via inductive generalization and design
novel experiments to test these hypotheses by engaging in se-
lection and isolation of relevant variables (Cook, Goodman,
& Schulz, 2011; Legare, 2012). These abilities are founda-
tional to successful problem solving.

Furthermore, CT involves the understanding that good
plans achieve a goal effectively and efficiently. Evidence
suggests the rapid development of planning abilities between
ages 4 and 6, including an increase in the number of steps
children can plan ahead to solve a problem (Klahr & Robin-
son, 1981) and improvements in the ability to deploy appro-
priate strategies depending on the task (Gardner & Rogoff,
1990). Prior work has also shown that even infants expect
rational agents to act in ways that minimize cost (Gergely,
Nádasdy, Csibra, & Bı́ró, 1995; Scott & Baillargeon, 2013),
and they infer the reward an agent assigns to a goal based on
the cost incurred to achieve it (Liu, Ullman, Tenenbaum, &
Spelke, 2017). By age 5, children can even design informa-
tive experiments to infer the subjective costs or rewards of
achieving a goal (i.e., an agent’s competence or preferences)
by systematically manipulating the objective rewards or costs
of completing a task (Jara-Ettinger, Gweon, Tenenbaum, &
Schulz, 2015; see Jara-Ettinger, Gweon, Schulz, & Tenen-
baum, 2016 for a review). Collectively, these early-emerging
capacities to generate and test hypotheses, engage in advance
planning, and reason about efficiency suggest that the basic
aspects of CT may emerge earlier than commonly believed.

Building on this prior literature, we designed a novel block-
building task to study one of the key components of CT:
problem decomposition. Block-building tasks are familiar
to young children, and have historically been considered a
useful domain for studying the development of planning and
problem-solving. Block construction has been shown to be an
indicator of early spatial skills (e.g., mental rotation, Brosnan,
1998), which correlate highly with later success in program-
ming and STEM (Cooper, Wang, Israni, & Sorby, 2015; Ver-
dine et al., 2014; Wai, Lubinski, & Benbow, 2009). Thus,
studying children’s ability to generate and execute an effec-
tive block-building plan can provide a unique window into
understanding the early development of CT. Yet, prior work
is largely limited to exploring childrens bottom-up building
processes, allowing them to build the target structure in a
piecemeal manner. Whether or not children can engage in
top-down problem decomposition remains an open question.

A key strength of our task is that it requires more than
merely copying a model block structure: children must figure
out a viable plan within the constraints of the task by decom-
posing the structure into appropriate parts. In simple block-
building tasks, one might succeed by accumulating raw ma-
terials (i.e., individual blocks) in a piecemeal fashion. Sim-
ilar to the ways beavers or birds build their dams or nests, a

child could repeatedly stack blocks to create a tower. How-
ever, imagine a child wants to build a structure resembling the
bridge in Figure 1. Simply accumulating individual blocks
isn’t sufficient; the child must first assemble the “legs,” and
then place a horizontal bar on top. If a child starts by creating
“pillars” that are as tall as the bridge itself (3 blocks), then a
single block in the middle would not stay in place. This exam-
ple demonstrates how a bottom-up building process can be in-
sufficient even for seemingly simple tasks. Rather, this prob-
lem resembles the way that we approach larger, real-world
engineering projects; we must take the desired goal, break it
into smaller problems, and determine how those components
should be solved and assembled within the constraints of the
task. Thus, the goal in designing our task was to provide a
context in which children would approach a complex problem
in a similar manner under clearly defined task parameters.

Recent work demonstrates that both adults and children
leverage intuitive physics when evaluating the stability of
block structures (Battaglia, Hamrick, & Tenenbaum, 2013;
Kamps et al., 2017; Yildirim, Gerstenberg, Saeed, Tous-
saint, & Tenenbaum, 2017), that children as young as 4
can gauge the difficulty of building such structures (Gweon,
Asaba, & Bennett-Pierre, 2017), and that they are capable
of copying a model block structure when given the required
pieces (Cortesa et al., 2018). Critically however, start-to-end
construction requires intelligently generating those pieces as
well. Computational models optimized to generate instruc-
tions for the construction of block structures identify struc-
tural components while accounting for the effect of gravity on
future layers (Zhang, Igarashi, Kanamori, & Mitani, 2017).
However, the ability to determine the required subcompo-
nents based on an intuitive understanding of task-specific
constraints has not been tested in young children, even though
such ability might provide the key foundation for a more gen-
eral ability to engage in problem decomposition.

In Experiment 1, we embedded the process of generating,
evaluating, and executing an appropriate decomposition plan
into a fun, engaging block-building task. Given a target struc-
ture, children had to identify the underlying substructures,
simulate ahead to determine if those substructures could com-
bine into a self-supporting building, and then execute this
plan to complete the task. In Experiment 2, we use a sim-
plified version of the task to ask whether young children’s
difficulty in Experiment 1 comes from the process of gener-
ating a plan with the appropriate subcomponents, rather than
the process of evaluating the viability of a given plan by en-
gaging in physical simulation.

Experiment 1
Methods
Participants A total of 112 children (Age: 4.00–7.99) were
recruited from a local children’s museum and a university-
affiliated preschool (38 4-year-olds: M = 4.56 (4.04–4.99); 31
5-year-olds: M = 5.43 (5.01–5.96); 23 6-year-olds: M = 6.49
(6.14–6.99); 20 7-year-olds: M = 7.61 (7.08–7.99)). They
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were randomly assigned to either the Standing Bridge condi-
tion (N=62) or the Sideways Bridge condition (N=50). We
planned to recruit at least 40 children in each condition who
successfully completed the task (10-12 in each age group).
Twenty-nine children were unable to accomplish the task,
and the successful subgroup included N=42 in the Standing
Bridge condition and N=41 in the Sideways Bridge condi-
tion. An additional 20 participants were dropped from analy-
ses because they: (1) did not speak English (N=3), (2) ended
the study early (N=7), (3) failed the warm-up task (N=6, see
Procedure), or (4) the experimenter made an error (N=4).

Stimuli For the main test trial, the model bridge was com-
prised of seven one-inch wooden cubes (three across the top
and two on each side as supports) painted metallic silver.
In the Standing Bridge condition, this bridge was presented
upright, and in the Sideways Bridge condition, it was lying
down (see Fig. 1). Children were given 3 individual un-
painted wooden blocks with which they could create sub-
structures using a “magic box.” The magic box (see Fig. 1)
was a cardboard box covered in felt with a small coin slot and
an output window. A wire connected this box to the “con-
struction zone” (a flat piece of foam core covered in black
felt) and a large plastic button, suggesting they were all part
of one causal mechanism. A coin was required each time the
child operated the magic box to create a substructure. Inside
the box were pre-assembled metallic structures. For the main
task, where children had 3 individual blocks, there were 4
possible configurations of shapes that children could make;
we prepared 4 metallic structures for each shape for a total of
16. We included additional structures for the practice trials.

Procedure Children were introduced to the experimenter’s
“magic box” which could turn a set of one-inch wooden
blocks into larger, metallic blocks of varying shapes. The
child had to first build a structure on the construction zone
using individual wooden blocks; after putting a coin in the
slot, children could press the plastic button to generate a sin-
gle metallic block that had the same shape as the structure
on the construction zone. In reality, when the child operated
the magic box, the experimenter surreptitiously reached into

Figure 1: Left: Experimental setup. A) magic box, B) coin
slot, C) output window, D) 1” wooden blocks, E) construc-
tion zone, F) plastic button; Right: Standing bridge (top) and
sideways bridge (bottom).

the box through a hidden opening, found the corresponding
metallic block, and placed it in the magic box output window
(see Fig. 1). From the child’s view, this created the illusion
that the child’s button press operated the magic box to gener-
ate the metallic structures.

A brief warm-up task ensured that the child understood the
purpose of the main task and how to operate the magic box.
In the warm-up, the child was given four wooden blocks, and
was asked to build a 4-block ‘T’ shape (Trial A), a 3-block
‘L’ shape (Trial B), a single block (Trial C), and an 8-block
cube (2x2x2) composed of two 4-block squares (Trial D). We
excluded children who failed to complete this pretrial task
from subsequent analysis to ensure that all children included
in the study understood the magic box paradigm and were
able to use the magic box to build metallic block pieces.

In the main task, children were asked to build a bridge us-
ing the blocks and the magic box. Critically, children had
only three wooden blocks such that the metallic blocks they
could build using the magic box was limited to a particular
set of shapes. They were also given 11 coins; this limited the
number of possible times children could generate a metallic
structure, providing a pressure to solve the task efficiently.

In the Standing Bridge condition, the upright bridge was
subject to the forces of gravity, and thus required a specific
block set and assembly sequence (i.e., set up two 2-block
bases and place a 3-block horizontal bar on top). The Side-
ways Bridge condition was identical to the Standing Bridge
condition except that the bridge was laid flat (and thus not
subject to the force of gravity). While the task still forced
children to decompose the structure, there were multiple pos-
sible solutions and the order of construction did not matter.
Thus, the Sideways Bridge condition still required the ability
to follow task instructions, create parts, and assemble the final
structure. However, the need to engage in advance planning
to generate the “correct” decomposition plan and evaluate its
viability was not as critical for success.

The children were given up to 10 minutes to build the
bridge, after which the experimenter stepped in to help and
ended the study. Often the child got stuck (signaled by asking
for help or a period of inactivity) or distracted, so to encour-
age the child to reengage, the experimenter offered one of two
pre-scripted prompts. Additionally, after an extended period
of inactivity or running out of coins, children were given the
option of restarting the task in the remaining time.

Results and Discussion
This was an exploratory study to see whether children could
engage in effective problem decomposition, rather than a test
of a priori hypotheses. However, we could imagine seeing a
few general trends in the data. First, we expected that children
would become more successful and more efficient at com-
pleting the task with age. We measured efficiency using two
different metrics: completion time (in seconds) and number
of coins used (3 was the minimum). Second, independent of
increasing performance with age, we also expected that chil-
dren would perform better (i.e., higher success rate, as well
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Figure 2: (A) Success rate in each age bin and in each condition. (B-C) Time-to-completion (B) and number of coins used to
complete the task (C) among the successful children, split by age and condition. Error bars: bootstrapped 95% CI.

as more efficient completion) in the Sideways Bridge condi-
tion than the Standing Bridge condition, because the Stand-
ing Bridge had just one viable 3-part decomposition solution.
Third, we predicted an age by condition interaction; the con-
dition difference would decrease with age as children become
more proficient at finding solutions without trial and error.

A logistic regression with condition (discrete) and age
(continuous) confirmed a relationship between age and suc-
cess rate (z = 2.41, p = 0.02). However, we did not see a
significant effect of condition (z = 0.47, p = 0.64) nor an in-
teraction between age and condition (z =−0.73, p = 0.47).

Given the increase in success rate with age, we further an-
alyzed data from the 83 successful children to see if chil-
dren become more efficient problem-solvers with age. First,
we looked at time-to-completion; a linear regression with
both age (continuous) and condition (discrete) as predictors
showed that older children take a shorter amount of time to
complete the task (t = −4.47, p < .001). While children
in the Sideways Bridge condition did not complete the task
faster than those in the Standing Bridge condition (t =−1.73,
p = 0.09), we did find an interaction between age and condi-
tion. However, the effect was in the opposite direction than
we had initially predicted: the difference in completion time
between conditions increased with age (t = 2.06, p = 0.04).

Another measure of efficiency—the total number of coins
used—also showed a similar pattern. A linear regression on
the 83 children who successfully completed the task revealed
that the number of coins children used to complete the build-
ing task decreased with age (t =−3.14, p = .002); also con-
sistent with time-to-completion, we did not find an effect of
condition (t = −1.49, p = .14) but the difference between
conditions increased with age (t = 1.96, p = .05).

We then looked at the proportion of children who com-
pleted the task with maximal efficiency (i.e., successfully
building the bridge using just 3 coins). A logistic regression
with condition and age showed an effect of age (z = 3.61,
p < .001). Children were also more likely to perform op-
timally in the Sideways Bridge than in the Standing Bridge
condition (z = 2.08, p = 0.04), and this tendency increased
with age (age by condition interaction, z =−2.54, p = 0.01).

Overall, data from this exploratory study showed a few
notable patterns. First, unsurprisingly, children became
more successful and more efficient at solving the task with
age across a number of measures: success rate, time-to-
completion, and number of coins used to finish the task.
These results are consistent with prior work showing that the
ability to plan ahead to solve problems develops rapidly dur-
ing preschool years. Second, we also found that the pro-
portion of children who finished the task with maximal ef-
ficiency varied across conditions. This pattern is also rea-
sonable given that the Standing Bridge required a more prin-
cipled, planned approach for success; due to the constraint
of gravity, there was only one viable decomposition solution
whereas the Sideways Bridge could be built in a few differ-
ent ways. Third, we found an age by condition interaction
in measures of efficiency (time-to-completion and number
of coins used); however, the difference between conditions
in efficiency increased with age, rather than decreasing with
age. In other words, only the older children showed the ex-
pected difference between conditions. This suggests that the
task was generally quite difficult for young children; even
though 4- and 5-year-olds still successfully passed several
practice trials and understood the task instructions, many of
them struggled to complete the task in both conditions.

Collectively, these data provide an informative window
into how children engage in problem decomposition to solve
a complex task. Older children’s near-perfect performance in
the Sideways Bridge condition suggests that they were able to
create substructures and use them to assemble the bridge cor-
rectly. Thus, the primary challenge children faced in this task
may have been identifying and generating a plan to construct
the “correct” components prior to building, especially when
there was just one solution (Standing Bridge condition).

The fact that younger children struggled in both conditions
raises questions about whether preschool-aged children suffer
from a genuine lack of ability to engage in problem decom-
position. However, the results do not allow us to directly ex-
plore this possibility because the task in Experiment 1 was
open-ended and required children to engage in all aspects
of problem decomposition—generating, evaluating, and ex-
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Figure 3: Percentage of children who completed the task with
maximal efficiency (only used 3 coins), collapsed into age
bins. Error bars are bootstrapped 95% CI.

ecuting solutions. However, there are reasons to believe that,
when the demands for generating the plans are removed, even
younger children can successfully evaluate the viability of a
given plan. Compared to the process of generating a plan for
decomposing a problem or a structure, evaluating the viability
of an existing plan is arguably an easier task. Prior work sug-
gests that preschool-aged children can easily assemble struc-
tures (Cortesa et al., 2018) and evaluate the relative difficulty
of building different structures (Gweon et al., 2017), suggest-
ing that even though the younger children in Experiment 1 (4-
and 5-year-olds) struggled to generate and execute the plans
themselves, they may be capable of evaluating the viability of
existing decomposition plans.

In Experiment 2, we test this hypothesis with a simple
binary-choice paradigm where we asked children to choose
one of two pre-generated plans (i.e., choose the plan that
would result in a self-supporting structure). Given the sim-
plicity of the task, in addition to 4- and 5-year-olds, who we
expected would succeed, we also tested 3-year-olds; while we
did not have strong a priori predictions regarding the 3-year-
olds’ performance, having a broader age group would allow
us to capture the developmental trajectory of this ability.

Experiment 2
Methods
Participants A total of 78 children were recruited from a
local children’s museum and a university-affiliated preschool
(28 3-year-olds: M = 3.51 (3.02–3.98); 26 4-year-olds: M =
4.42 (4.01–4.93); 24 5-year-olds: M = 5.52 (5.03–5.93)). An
additional 12 children were dropped from analyses because:
(1) they did not speak English (N=1), (2) they did not com-
plete the study (N=4), (3) they failed the pretrial task (N=3,
see Procedure), (4) parents interfered (N=1), or (5) the exper-
imenter made an error (N=3).

Stimuli Stimuli were similar to the blocks structures used
in Experiment 1. A ‘T’ shaped structure (practice trial) and
the upright bridge from Exp. 1 (main trial) were used as target
structures. For both trials we prepared two sets of blocks, pre-

configured in the shape of the target structure and laid flat on
the surface. Critically, only one of the two sets would result
in the correct self-supporting structure (see Fig. 4).

Procedure Children were introduced to block pieces of var-
ious shapes. In the practice trial, the experimenter presented
the T-shaped block structure along with two potential solu-
tions, and asked: “Can you help me build a new building that
looks just like this one and can stand up all by itself? We can
use these blocks (pointing to one set) or these blocks (point-
ing to the other set). Only one will work.”

After the child selected one set of blocks, the experimenter
allowed the child to use the selected blocks to construct the
target structure. Regardless of whether or not the child chose
correctly, the experimenter allowed the child to attempt con-
struction with the other set. After the child succeeded in con-
structing the structure with the correct block set and failed
with the incorrect set, the experimenter reiterated that the
child could build the building with one set of blocks but not
with the other, as it would fall over, so only one set would
work. We excluded children who failed to select one of the
block options in this pretrial task or who began playing with
the blocks before listening to the full explanation.

In the main task, the children were asked to choose one
of two solutions that would result in a standing bridge. We
marked a child as having made a selection when they physi-
cally picked up one of the sets of blocks. The position of the
correct solution (L/R) was counterbalanced across subjects.

Results and Discussion
We first ran a logistic regression on children’s choice with
age as a continuous variable. The effect of age was trending
towards significance (z = 1.81, p = 0.07). We then looked
at each age group separately. Three-year-olds’ responses did
not differ from chance (M = 0.57, CI = 0.39–0.75), whereas
four-year-olds (M = 0.81, CI = 0.65 – 0.92) and five-year-olds
(M = 0.83, CI = 0.67 – 0.96) showed robust success.

To succeed at this task, a child had to be able to understand
the constraints applied to the problem (gravity) and physically
simulate the stability of the resulting structure to choose the
appropriate solution. The success of four- and five-year-old
children on this task provides suggestive evidence that they
are already capable of such sophisticated physical reasoning.
The results also suggest that, even though children in this age
group struggled to complete the task in Experiment 1, their
difficulty with that task did not stem from an inability to as-
sess the viability of a given plan.

Figure 4: Schematic of two potential solutions presented to
children in Experiment 2.
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Figure 5: Success rate in Experiment 2. Error bars are boot-
strapped 95% CI. Dotted line indicates chance-level.

General Discussion
Our goal was to assess whether the basic capacities for prob-
lem decomposition—one of the key components of CT—are
present even early in childhood. In Experiment 1, we used a
block-building task that involves generating, evaluating, and
executing an appropriate decomposition plan to build a physi-
cal structure. The results suggest that capacities for top-down
design and problem decomposition continue to develop well
past the preschool years, and that children become more suc-
cessful and efficient with age. Although many younger partic-
ipants failed to complete the task in Experiment 1, in Experi-
ment 2 we find evidence for one of the key steps in successful
problem decomposition: children as young as age 4 were able
to evaluate the viability of potential solutions.

Experiment 1 featured a rather complex task with high ver-
bal demand for understanding the instructions, which may
have increased the task load. Furthermore, this study jointly
required top-down design to generate appropriate solutions,
evaluation of those solutions, and the actual execution of the
plan to assemble the components. Children’s struggle with
this task could reflect their difficulties in any or all of these
steps. Experiment 2 isolates one particular aspect of prob-
lem decomposition. Results suggest that 4- and 5-year-old
children can compare and evaluate two different decomposi-
tion solutions and select the correct one. These results com-
plement prior work (Cortesa et al., 2018) which showed that
young children can construct target structures from predeter-
mined components; beyond using a given set of components
to assemble the target structure, our results show that 4-year-
olds are able to reason ahead under the constraints of a task
to infer the correct set of components, even before they en-
gage in actual assembly. Collectively, these findings indicate
that some basic underlying capacities for problem decompo-
sition may begin to emerge in preschool years, but they also
continue develop well beyond this age.

One might wonder whether children’s abilities to engage
in problem decomposition in our task is restricted by the
physical/spatial domain. Prior work indicates that the abil-
ity to engage in basic spatial reasoning emerges early in life
(Newcombe & Huttenlocher, 2003). For instance, 5-year-olds
show successful mental rotation of a paper cut-out object on

a 2-D plane (Frick, Hansen, & Newcombe, 2013) and under-
stand how a scene would look from another person’s perspec-
tive (Borke, 1975). Our results suggest that even 4-year-olds
can mentally rotate a 3-D structure to assess its stability.

Our study focused on a concrete problem with a clear vi-
sual representation. Our tasks were intentionally reflective
of a thinking pattern common to programming. To solve a
programming problem a programmer must identify indepen-
dently solvable pieces, construct them separately, and then
recombine them into a cohesive solution. Of course, through-
out this process, the programmer must weigh constraints to
make decisions about optimal components or solutions. Simi-
larly, in Experiment 1, children had to identify, construct, and
reassemble components of a larger physical structure; there
was no possible way to build it directly. Thus, one impor-
tant question is whether the ability to decompose a problem
in the spatial domain extends to more abstract CT problems.
Future work might ask whether children’s success in this task
transfers to decomposition of larger tasks in other STEM ar-
eas, such as programming. One possibility is that training
children to engage in decomposing a physical structure might
also help them decompose a larger programming problem.

Another interesting avenue for future exploration is that the
use of concrete objects in physical space might make it easier
for children to engage in successful decomposition even in
these more abstract domains. Indeed, adults often transform
complex abstract tasks into concrete forms, such as diagrams,
to avoid trial-and-error in a complex project. We look for-
ward to future work that asks whether physical affordances
and manipulatives support children’s abstract problem solv-
ing in a similar way.

Mark Guzdial, a leading researcher in CS education, wrote:
“An open research question is what an elementary school
child can learn about computing and what should be taught
at what ages” (2015). Our work, along with prior research in
cognitive development, suggests that CT is not a unitary con-
struct that emerges at any single age. It involves a range of
mental operations which may involve independent develop-
mental trajectories. While children might be able to identify
flaws in systems or construct those systems from predeter-
mined parts in preschool, they may not develop the ability
to generate those parts until much later. Capacities underly-
ing other CT concepts, such abstraction, data representation,
or parallelization, likely also develop in a piecemeal manner
that remains to be discovered.

We look forward to more future work that bridges the gap
between cognitive development and CS education research.
Our work here represents a first step at demonstrating chil-
dren’s developing capabilities in a critical component of com-
putational thinking: problem decomposition. We show that
children may be able to learn basic computational thinking
skills as early as preschool, but that these capacities continue
to develop well into elementary years. As educators continue
to develop CS curriculum, these results can inform when and
how to teach early programming concepts to young students.
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Abstract 

In their current functional form, ACT-R’s retrieval equations 
do not account for the left side of the RT-distance relation, that 
is, that as memory activation decreases, so does response time 
for retrieval failures. To accommodate this effect, I propose 
that the memory system uses the familiarity of the encoded 
object to gauge how much effort it should devote to retrieval. I 
quantify the degree of familiarity through the match score, 
which is the output of a global matching process. Familiarity, 
in turn, directly determines what the retrieval threshold should 
be. Adding a familiarity process orthogonal to recollection is 
in line with neuroimaging results, which uncover parallel 
familiarity and retrieval processes. The developments in this 
paper extend ACT-R’s memory theory into a dual process 
theory. 

Keywords: ACT-R, declarative memory, familiarity, retrieval 
threshold 

Introduction 

Perhaps uniquely among current theories of memory, ACT-

R’s memory theory (Anderson & Schooler, 1991; Schooler 

& Anderson, 1997) assumes a recall process, but no 

familiarity process. Despite being a single-process theory, it 

has successfully accounted for both responses and response 

times (RTs) of not only various recall processes (e.g., 

Anderson, Fincham, & Douglas, 1999; Anderson & Rader, 

1999), but also of various recognition processes (e.g., 

Anderson, Bothell, Lebiere, & Matessa, 1998; Schneider & 

Anderson, 2012). Yet, at least one aspect of recall that ACT-

R does not currently account for is the shape of the RT curve 

of “No” responses. Here I put forth a proposal of extending 

this memory theory such that it can also accommodate the RT 

distribution of recall failures. This proposal is consistent with 

recent neural evidence of separate familiarity and recall 

processes (e.g., Borst and Anderson, 2015). Specifically, I 

suggest that (1) familiarity in ACT-R is modeled with a 

global-matching process and (2) the retrieval threshold is 

strategically varied as a function of familiarity.  

The Memory Theory behind ACT-R 

ACT-R makes the distinction between representations, which 

inhabit the symbolic level, and the equations governing them, 

which lie at the subsymbolic level. At the symbolic level, 

ACT-R represents items in declarative memory as chunks, 

which are a collection of one or more slot-value pairs. Facts, 

such as “Otters hold hands” and “Cherry coke tastes like 

                                                           
1 Typically set to d = 0.5. 

cyanide”, and experiences such as “I rappelled off a bridge 

on Sunday” are all stored as chunks in declarative memory. 

At the subsymbolic level, several equations determine 

whether chunks are likely to be retrieved or not and how long 

that will take. These equations take into account the prior 

history of encounter of the episodes or facts encoded in 

chunks as well as their relevance to the current context, and 

bind those together into a single quantity – a chunk’s 

activation. Each chunk i has an activation, Ai, associated with 

it that quantifies its strength. Activation is a dynamic quantity 

that models the logarithm of the odds (i.e., the log-odds) that 

a chunk is needed at this point in time in this context to 

achieve the goal the agent strives for. Activation is composed 

of base-level activation, Bi, the spreading activation, SAi, and 

noise, ε: 

𝐴𝑖 = 𝐵𝑖 + 𝑆𝐴𝑖 + 𝜀   (1) 

The base-level activation is a function of the chunk’s 

history: 

𝐵𝑖 = ln ∑ 𝑡𝑘
−𝑑𝑛𝑖

𝑘=1 ,   (2) 

where the decay parameter, d1, specifies the rate of forgetting 

over time, which is modeled with a power function. The 

power function was chosen, because the likelihood of 

encountering items in the real world also decays as a power 

function as time passes and the memory system is 

hypothesized to have adapted to this regularity (Anderson & 

Schooler, 1991). The parameter n is the number of encounters 

with the information that chunk i represents, and tk is the time 

since the kth encounter.  

Spreading activation SAi assesses a chunk’s relevance to 

the current context, where the current context consists of all 

chunks currently in the focus of attention (i.e., all chunks 

currently in the buffers of the various modules that ACT-R 

consists of). SAi assumes that chunks in declarative memory 

related to or previously encountered with chunks in buffers 

are more likely to be needed than those that are not. The 

amount of spreading activation to chunk i in declarative 

memory is a function of the associations between that chunk 

and the currently attended to chunks j: 

𝑆𝐴𝑖 = ∑ 𝑊𝑗𝑆𝑗𝑖𝑗 ,   (3) 

where the associative strength, Sji, between chunks i and j is 

weighted by the source activation, Wj, of chunk j in a buffer. 

The associative strengths, Sji, between chunks is 

approximated by 

𝑆𝑗𝑖 = 𝑆 − ln(𝑓𝑎𝑛𝑗),  (4) 

where S denotes the maximum associative strength and fanj 

is the number of chunks associated with a chunk j. The more 
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chunks are associated with a chunk in memory, the lower the 

associative strength between it and each of its associates 

becomes. Equation (4) is approximation of the Bayesian 

memory analysis that ACT-R is based on (Anderson & 

Milson, 1989) which assumes that each association of chunk 

j is equally likely to be needed. This approximation usually 

accounts sufficiently well for experimental regularities, but 

in some cases the full Bayesian equation needs to be 

summoned (see Anderson & Reder, 1999).  

Equations 2-4 determine the activation components 

summed in Equation 1, which then determines probability of 

retrieval and retrieval failure as well as retrieval time. 

Specifically, whenever Ai is above the retrieval threshold τ, 

the chunk can be retrieved, while if it is below that threshold, 

the chunk is not sufficiently active to be retrieved, resulting 

in a probability of retrieval pi as a function of threshold: 

   𝑝𝑖 =
1

1+𝑒
−

𝜇𝐴𝑖
−𝜏

𝑠

 ,   (5) 

where 𝜇𝐴𝑖
= 𝐵𝑖 + 𝑆𝐴𝑖 is the mean of the activation 

distribution. Retrieval time is also exponentially related to 

activation: 

   𝑡𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 = 𝐹𝑒−𝐴𝑖 .  (6) 

The latency factor F scales the resulting quantity into units of 

seconds. If the activation is below the retrieval threshold, the 

resulting retrieval failure time is constant: 

𝑡𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝐹𝑒−𝜏.  (7) 

ACT-R and Familiarity 

Recognition tasks in ACT-R have typically been modeled 

with the same retrieval process that recollection is modelled 

with, but with different parameters (see Anderson, Bothell, 

Lebiere, & Matessa, 1998), whereby no fluency or familiarity 

processes are mentioned. Yet, familiarity processes are 

explicitly mentioned in at least one (decision) model 

constructed in ACT-R, the fluency heuristic (Schooler & 

Hertwig, 2005).  

The Fluency Heuristic 

The fluency heuristic is a memory-based decision strategy 

that infers which of two alternatives scores higher on a 

criterion by choosing the alternative that is more fluent (i.e., 

more familiar). The fluency heuristic does not require a 

separate familiarity processes running in parallel to retrieval 

to model fluency. Instead, in its original definition, the 

fluency heuristic operationalizes fluency as the time it takes 

an object to be retrieved (Schooler & Hertwig, 2005). Later, 

this heuristic was redefined to rely on the newly developed 

ACT-R module for prospective time interval estimation 

(Taatgen, van Rijn, & Anderson, 2007), thus comparing the 

subjectively perceived retrieval times of the two alternatives 

and choosing the one that is subjectively faster to retrieve (see 

Dimov, Marewski, & Schooler, 2017; Fechner et al., 2016; 

Marewski & Schooler, 2011). Still, even in its updated 

version, the fluency heuristic does not assume a separate 

familiarity process, but continues to rely on a recall process 

paired with a process for estimating the time recall takes.  

Neural Evidence of Familiarity 

While, for the most part, the memory and decision tasks 

modeled with ACT-R did not necessitate two separate 

mnemonic processes, recently several neuroimaging studies 

examining the time course of associative recognition have 

provided evidence in favor of two processes operating in 

parallel: a familiarity process and a recollection process. 

Specifically, due to fMRI not providing the temporal 

resolution necessary to observe sub-second retrieval 

processes, both EEG (Borst and Anderson, 2015) and MEG 

(Borst, Ghuman and Anderson, 2016) were used to record 

brain signatures during this retrieval task. The brain 

signatures during associative recognition indicate the 

existence of a familiarity process commencing in parallel 

with a recollection process and finishing typically before, but 

not substantially before the recollection process.  How can 

we model this familiarity process with ACT-R?  

A Global-Matching Process in ACT-R to Model 

Fluency 

My first proposal is that familiarity in ACT-R is related to 

blending (Lebiere, 1998). Blending is a process in ACT-R’s 

declarative memory that produces a weighted average of a 

quantity over all chunks in memory that hold a value of that 

quantity, whereby the contribution of each chunk is weighted 

by its activation. The output of blending is a chunk holding 

the weighted average value.  This mechanism has been used 

to model mistakes that children make when engaging in 

arithmetic (Lebiere, 1999), choices in dynamic decision 

making tasks (e.g., Gonzalez & Dutt, 2011; Gonzalez, Lerch, 

& Lebiere, 2003) and belief updating in repeated games 

(Spiliopoulos, 2013) among others.  

At the subsymbolic level, the blended chunk is described 

with a match score M, which is the analogue of activation for 

the blended chunk. Just as the blended value, the match score 

is a function of the activations of the set of all chunks 

included in the blending process (called the match set MS): 

𝑀 = ln ∑ 𝑒𝐴𝑖
𝑖∈𝑀𝑆 .        (8) 

At first sight unintuitive, Equation 8 becomes clearer once 

we consider that activation is on a logarithmic scale (see 

Equation 2) and that all observables (Equations 5-7) are 

related to the exponent of activation. Summing the exponents 

of all relevant chunks’ activation and then taking the 

logarithm renders the resulting match score equivalent to the 

activation resulting from the cumulative experience of all 

blended chunks. For example, if we consider only base level 

activation, the resulting match score would be: 

𝑀 = ln ∑ 𝑒𝐴𝑖
𝑖∈𝑀𝑆 =  

     = ln ∑ 𝑒ln ∑ 𝑡𝑘
−𝑑𝑛𝑖

𝑘=1𝑖∈𝑀𝑆 = (9) 

     = ln ∑ ∑ 𝑡𝑘
−𝑑𝑛𝑖

𝑘=1𝑖∈𝑀𝑆  , 

which is the activation a chunk would have had it had the 

prior history of all blended chunks.  
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While activation is interpreted as the log-odds of a chunk 

being needed, the match score is the log-odds of any chunk 

in declarative memory being needed. The specific 

relationship that I propose is that the familiarity of an input is 

quantified by the match score produced by the blending 

process, that is, familiarity serves as a coarse gauge if any of 

the input is relevant to the task at hand. 

The RT-distance Relation and ACT-R 

In a recognition task, responses are classified as Hits and 

False Alarms (whenever the response is “yes”) and Misses 

and Correct Rejections (whenever the response is “no”). 

Whether responses are correct or not, there is a well-

established relation between the time that those responses 

take (RT) and how frequently the item was presented in the 

experiment or encountered in life: the RT-distance relation 

(Koppell, 1977). This relation states that response time is fast 

whenever items were presented very frequently or very 

rarely, resulting in a memory trace with a very high or very 

low strength. However, whenever the memory strength is in 

the middle ground, close to the retrieval threshold, responses 

take more time. In other word, RT decreases as the memory 

strength of an item lies further away (either to the left or to 

the right) from the retrieval threshold (see Figure 1 for an 

idealization). Consequently, both Hits and False Alarms 

become faster the higher memory strength is of retrieved 

items. Moreover, both Misses and Correct Rejections speed 

up the lower memory strength of the items that fail to be 

retrieved.  

 

 
Figure 1: RT-distance relation in recall. A memory item 

with a medium strength provides ambiguous information 

about whether it has been encountered in the past or not and, 

consequently, requires a longer time to be retrieved. Memory 

items with either very high or very low strength are both 

responded to quickly. 

 

In its current form, ACT-R’s memory theory accounts for 

half of the RT-distance relation: that related to successful 

retrievals (Hits and False Alarms). Yet, following from 

Equation 7, when an item of memory fails to be retrieved 

(Misses and Correct Rejections), ACT-R predicts a constant 

RT (see Figure 2), which contradicts the empirically found 

RT-distance relation.  

                                                           
2 The code used to generate Figures 2, 3 and 4 can be found in the 

Appendix. 

 

 
Figure 2: Relation between chunk activation and response 

time according to ACT-R. The grey line indicates the location 

of the threshold. Above the threshold, successful retrievals 

get progressively faster as one moves away from the 

threshold. Below the threshold, retrieval failures take a 

constant time irrespective of their distance from the 

threshold.  

Fluency Determines Threshold 

My second proposal aims to modify ACT-R’s memory to 

account for the RT-distance relation using the fluency 

process earlier introduced. Specifically, I propose that the 

retrieval threshold τ is not constant, but that it is a function 

(i.e., the negative) of an item’s familiarity (which I proposed 

to model with the match score): 

𝜏 =  −𝑀.  (10) 

Since M is the log odds that any chunk in memory is needed, 

-M is the log odds of no chunk being needed: 

−𝑀 =  − log (
𝑛𝑒𝑒𝑑 

¬𝑛𝑒𝑒𝑑 
) = log (

¬𝑛𝑒𝑒𝑑 

𝑛𝑒𝑒𝑑 
)  (11) 

In plain language, my proposal can be interpreted as the 

memory system dynamically adjusting the amount of effort it 

is willing to invest into a retrieval (as described by the 

retrieval threshold) as a function of how likely it is that no 

chunk in memory is ever needed, which is estimated via the 

fluency signal. If the global fluency signal is weak, that is, if 

the odds that any chunk in memory is needed at this moment 

is low, then the system will invest less resources into a 

retrieval attempt and abort it earlier. On the other hand, if the 

fluency signal is strong, the memory system will be ready to 

invest a lot of time into retrieval as it is more certain that it 

will retrieve a relevant chunk, even though in practice it will 

invest very little time as a successful retrieval will soon 

arrive.  

Resulting RT-distance relation 

When chunks are very distinct or, in the extreme case, 

when all chunks spread 0 activation to each other, the 

predominating factor in the match score is the activation of 

the chunk being probed as only this chunk will be included in 

the match set MS. In this case, the resulting RT-distance 

relation is almost entirely symmetric (see Figure 3)2. 

 

1656



 
Figure 3: Relation between chunk activation and response 

time according to our modification of the retrieval threshold 

in ACT-R. I assume that the only chunk in the match set is 

the chunk being probed.  

 

On the other hand, when other chunks are similar to the 

probed chunk and, thus, included in the match set, they 

increase the likelihood that any chunk in declarative memory 

will be needed. Consequently, the activation of the chunk 

representing the item being probed crosses the retrieval 

threshold at a lower value and, moreover, RT on retrieval 

failures decreases less and less steeply (see Figure 4)3.  

 

 
Figure 4: Relation between chunk activation and response 

time according to our modification of the retrieval threshold 

in ACT-R. The different curves correspond to various 

contribution to the match score of chunks that represent other 

items than the item being probed. As the similarity to the 

probed chunk increased, RT of retrieval failures increases. 

Discussion and Conclusion 

I proposed that familiarity in ACT-R is modeled with the 

match score from blending. This extends ACT-R’s memory 

theory to a dual-process theory of memory. Moreover, I 

hypothesize that the memory system relies on the familiarity 

signal to assess the amount of effort it should invest in 

retrieval before aborting it. This allows ACT-R to account for 

the RT-distance relation. Finally, the prediction that retrieval 

failures will take longer when the probed chunk is confusable 

with other chunks in memory also follows from this new 

formulation. The modification interprets the blending module 

                                                           
3 I have relied on a single parameter to quantify the total amount 

of spreading activation that comes from chunks not corresponding 

to the presented item. See the Appendix for model code.  

as a global-matching component of ACT-R’s memory and 

puts it in the tradition of many a memory models in 

psychology, which include TODAM (Murdock, 1982), 

MINERVA 2 (Hintzman, 1984) and SAM (Gillund & 

Shiffrin, 1984; Raaijmakers & Shiffrin, 1980; for an 

overview of global-matching models, see Humphreys, Pike, 

Bain, & Tehan, 1989). I will proceed by briefly comparing 

the proposed extension of ACT-R to two related theories of 

memory and discuss the potential issues with the current 

proposal. 

Comparison to Source of Activation Confusion 

A theory that shares its lineage with ACT-R’s is Source of 

Activation Confusion (SAC, Diana, Reder, Arndt, & Park, 

2006). This theory has been used to model a wide variety of 

memory phenomena in various tasks, among which cued 

recall (Reder, Park, & Kieffaber, 2007), perceptual match 

effects (Diana, Peterson, & Reder, 2004) and feeling of 

knowing (Schunn, Reder, Nhouyvanisvong, Richards, & 

Stroffolino, 1997). 

SAC is not based on the rational analysis of memory, yet 

many of the processes that it assumes are the same as those 

of ACT-R. First, it assumes that events and objects are 

encoded as chunks. Second, those chunks’ activations are 

also separated into a base-level and spreading-activation 

components. Third, base-level activation decays with time as 

a power law, while spreading activation is a function of co-

occurrence frequencies. Yet, there are at least two points of 

departure between ACT-R and SAC. First, SAC assumes that 

spreading activation slowly decays with time once the chunk 

that spreads activation is removed from the focus of attention, 

while in ACT-R this happens instantaneously. Second, in 

SAC a working memory of a limited capacity is populated 

with all chunks above a certain level of activation.4  

Unlike ACT-R, SAC is a dual-process theory: it includes 

both a familiarity and a recall process. The familiarity (or 

feeling-of-knowing) process stems from retrieval of the 

concept node, which is the internal representation of the 

probed item. Activation then spreads to associated nodes, 

which leads to cued recall. Thus, unlike the current proposal 

of extending ACT-R’s memory theory, in SAC familiarity 

does not result from a global-matching process, but from a 

retrieval of a single chunk.  

Note, however, that adding a global-matching process that 

determines the retrieval threshold can also benefit SAC. First, 

just like ACT-R, SAC does not model the RT-distance 

relation related to retrieval failures, because it assumes a 

constant threshold. By adding a threshold that is inversely 

related to the global-matching signal, SAC should also be 

able to accommodate this relation. Second, SAC assumes that 

the familiarity (those related with retrieval of the concept 

node) and recollection processes (those related to retrieval of 

episode nodes) rely on different thresholds, whereby the 

4 Note that ACT-R’s notion of working memory is more 

complicated in that it includes the buffers of all of its modules and 

potentially the content of the imaginal module, which stores task-

relevant information.   
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concept threshold is typically higher than the episode 

threshold. I posit that Equation 10 would accommodate that 

a higher threshold for the concept than for the episode node. 

Specifically, during retrieval, activation spreads from the 

concept and the context into the episode node. If the 

activation of the episode is high enough, it will be retrieved. 

In this case the high activation of the episode node would also 

imply a high overall match score and, consequently, a low 

retrieval threshold. On the other hand, if the episode node 

cannot be retrieved and, instead, the concept node is relied 

upon, this would imply that the episode node has a lower 

activation. Consequently, the overall match score will be 

lower, implying a higher retrieval threshold.  

Comparison to Retrieving Effectively from 

Memory 

Retrieving effectively from memory (REM; Shiffrin & 

Steyvers, 1997) is a memory model that stems from the 

tradition of SAM. REM is a global matching model – it 

assumes that the recall probe is matched to all memory traces 

in parallel. Similar to ACT-R’s memory theory, which is 

based on rational analysis, REM assumes that the memory 

system is optimally weighing signal and noise, and 

computing the likelihood that the probe has been encountered 

before in order to respond whether a presented item is 

recognized or not.  

REM has been extended to also model various cued recall 

(e.g., Diller, Nobel, & Shiffrin, 2001) and free recall (e.g., 

Lehman & Malmberg, 2013) phenomena. To this end, REM 

was complemented with a trace recovery process, which is 

executed if the global matching process indicates a likely past 

experience with the probe. The current extension of ACT-R 

to include familiarity as a global matching process is similar 

to REM in that (1) it is a dual process model, (2) familiarity 

is a global matching process, (3) recollection is the recovery 

of a single memory trace, (4) whether effort is invested in 

recollection is strategically determined by the familiarity 

signal.  

In addition to these similarities, there are several core 

differences between the two models. First, ACT-R assumes 

that base-level activation decays with time, while in REM 

and its extensions memory decay is generally absent. Second, 

ACT-R assumes that memory traces monotonically increase 

in activation with the number of encounters of the objects or 

events that they represent, while in REM a new trace can be 

created to store the encoded event/object or an already 

existing trace can be updated to store a more complete 

representation of the object. After a certain number of 

presentations, the object is perfectly encoded and no further 

updates of the memory trace(s) takes place. Which of those 

approaches provides a better description of memory 

phenomena is subject to further investigations.  

Limitations of the Current Proposal 

ACT-R’s theory of memory assumes that our memory 

system makes a guess about which items of memory are most 

likely to be needed, what the cost and benefits of retrieval will 

be, and optimally combines those. The current analysis does 

not take into consideration costs and benefits. Yet, this might 

be problematic as the blending process is much more 

computationally intensive than the retrieval process itself: the 

activations of all chunks are computed and inserted into 

Equation 8 and, moreover, the blended value needs to be 

computed. Perhaps one way to alleviate these considerations 

would be to separate the computation of the match score from 

the computation of the blended value. This way the 

familiarity process would only require the computation of the 

match score, which sums chunks activation – values that need 

to be computed for retrieval in any case. Moreover, this 

would make the proposed familiarity process as complex as 

that of any other global matching theory. 

To conclude, the current analysis is limited to only memory 

processes. Yet, neural data indicate that recollection, in 

addition to having a different neural signature than 

familiarity, also includes an additional decision phase (Borst, 

Ghuman, & Anderson, 2016). My analysis does not speak to 

the nature of these decision processes. Future work should 

focus on better understanding them. 
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Appendix 

Here I include the R code used to generate Figures 2, 3, and 

4. The two parameters that I specify are (1) the latency factor 

F and (2) the perceptual-motor time tpm. The precise values 

of these parameters (0.35 s and 0.8 s) were chosen to be 

realistic. Yet, their values do not change the functional form, 

which is what we are ultimately interested in.  

To generate Figure 2, I used the standard ACT-R equation 

(Equations 6 and 7), which assumes a constant RT below the 

threshold τ (here τ is set to 0) and an activation-dependent RT 

above threshold: 

 
F = 0.35; 

t_pm = 0.8; 

RTACTR <- function(A){  

  tau <- 0 

  if (A < tau){ 

    return(F + t_pm) 

  } else { 

    return(F*exp(-A)+t_pm) 

  } 

} 

 

To generate the data for Figures 3 and 4, I the modified 

equation that I propose: 

 
RTACTR_new <- function(A,A_rest){ 

  M <- log(exp(A)+exp(A_rest)) 

  tau <- -M 

  if (A < tau){ 

    return(F*exp(-tau)+t_pm) 

  } else { 

    return(F*exp(-A)+t_pm) 

  } 

} 

 

where Arest is the contribution to the match score of all non-

target items. To generate Figure 3, I assumed that Arest=0, 

while I used values of -10, -2, -1.2, and 0.8 to generate the 

plot in Figure 4.  
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Decoding Affirmative and Negated Action-Related Sentences in the Brain with
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Abstract

Recent work shows that distributional semantic models can be used to decode patterns of brain activity associated with
individual words and sentence meanings. However, it is yet unclear to what extent such models can be used to study and
decode brain activity patterns associated with specific aspects of semantic composition such as the negation function. In
this paper, we investigate the extent to which distributional semantic models of action-verbs correlate with brain activity
associated with negated and affirmative sentences containing hand-action verbs. Our results show reduced correlations for
sentences where the verb is in the negated context, as compared to the affirmative one, within brain regions implicated in
action-semantic processing. The results lend support to the idea that negation involves reduced access to aspects of the
affirmative representation and pave the way for further testing alternate distributional-based semantic models of negation
against human semantic processing in the brain.
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How time spent on feedback influences learning and gaze in categorization
training
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Abstract

Feedback is essential for many kinds of learning, but the cognitive processes involved in learning from feedback are
unclear. In models of category learning, feedback is typically treated as an error signal without a temporal component. We
conducted two simple category learning experiments that manipulated the duration of feedback (1s vs. 9s) and investigated
the effect on learning and gaze. In two different category structures, participants in the longer feedback condition learned
faster. The analysis of gaze data showed several findings. Participants in the 9s condition had longer fixations, and in both
conditions and experiments, participants spent far more time looking at stimulus features than the feedback. Overall, our
findings provide empirical support for the idea that feedback processes, and temporal factors more generally, have much
to tell us about how people learn categories.
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Abstract 

Metrics seeking to predict financial risk-taking behaviors typically 
exhibit limited validity. This is due to the fluid nature of an 
individual’s risk taking, and the influence of the mode and medium, 
which presents a decision. This paper presents two experiments that 
investigate how an existing risk elicitation task’s predictive capacity 
may be enhanced through the application of an interactive model of 
visual reasoning in a digitized version. In the first experiment, 60 
participants demonstrated their reasoning process. In the second 
experiment, 225 participants were randomly assigned into three 
groups, with the validated risk elicitation task compared as a control 
to interactive digital and non-interactive digital stimuli with pie 
charts. The experiments yielded significant results, highlighting that 
when participants interact with a graph to reason their choices, it 
leads to consistent choices. The findings have implications for 
improvement of the risk task's validity and the deployment of digital 
interactive assessments beyond laboratory settings. 

Keywords: visualization, decision-making, risk-taking, 
external representations, reasoning 

Introduction 
The ability to elicit the degree to which an individual or 
demographic is risk-taker or -averse has a value across 
various fields. Existing risk elicitation tasks have shown to 
have predictive capacity; however, in risk elicitation tasks 
that involve lotteries, a key constraint is participants’ limited 
understanding of the probabilities, representing the risk 
associated with each choice, in those tasks. If participants do 
not understand a probability-based question, their answers 
lack internal consistency. Whilst within these tests internal 
checks for validity exist, these alone allow only for the 
exclusion, rather than accommodation, of participants with 
low numeracy skills that have limited understanding of the 
probabilities presented in the task. As a result, findings can 
be skewed towards a subset of a larger sample, limiting 
validity and predictive capacity. 

Towards resolving this issue, this paper presents the 
findings of two empirical studies that were conducted to 
investigate the use of visualization reasoning methods as an 
assistive tool for users to understand the probability described 
and choose consistently in a risk elicitation task. Experiment 
1 sought to explore the most effective reasoning methods 
used by 60 participants in a risk elicitation task, by asking 
participants to illustrate their thought-process. Visual 

reasoning was identified as having the strongest positive 
effect, among all external representations used by the 
participants, on the consistency of their choices in the risk 
elicitation task (Holt & Laury, 2002), showing that it helped 
them understand the probabilities in the risk task. To confirm 
whether visual reasoning, which can be defined as using 
visuals to reason a probability problem, on risk elicitation 
task can help participants with low numeracy level, 
Experiment 2 translated the existing risk-elicitation task to 
two versions; a non-interactive visual digital version and an 
interactive visual digital version, in addition to the 
standardised (control) numerical format task. Our discussion 
and conclusions reflect on the relevance of the findings in 
terms of increasing the accessibility and meaningfulness of 
risk-elicitation tasks to less numerate participants by using 
visual reasoning processes and also the implications for the 
use of digital and interactive visual media in place of 
standardised paper based tasks. 

                                   Background 
Methods of risk-elicitation tasks can be broadly categorized 
into self-report questionnaires describing hypothetical 
situations; hypothetical choice problems; or computerized 
methods (Rohrmann, 2005). A range of moderating variables 
have been observed to affect the validity of the majority of 
these methods, leading to inaccurate results and predictions 
(Andersen et al., 2006; Dave et al., 2010). This can limit the 
scalability of an elicitation-exercise, and relates to a 
fundamental challenge in transferability of results to different 
contexts: any psychometric tool seeking to establish or 
predict behavior must consider the fluidity of individual 
characteristics, and furthermore how a slight change may 
result in a meaningful change in decision-making.  

 The Multiple Price List (MPL) task belonging to the 
category of hypothetical choice problems, wherein 
participants need to choose between a ‘safe’ or ‘risky’ bet 
over ten different lotteries, has demonstrated predictive 
capability and can be implemented straightforwardly 
(Andersen et al., 2006; Dave et al., 2010; Rohrmann, 2005). 
Holt and Laury’s variant of the MPL task has been examined 
in several studies (e.g.Nielsen, Keil, & Zeller, 2013; Dave et 
al., 2010), demonstrating significant predictive value but only 
for people with higher numerical skills who understand the 
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probabilities for each of the parameters (Dave et al., 2010). 
The additional value of Holt Laury’s MPL method is its 
capacity to identify the inconsistency rate in an individual’s 
responses, allowing these choices to be excluded. However, 
this results in decreasing the validity of the metric. 

To increase participants’ understanding of the 
probabilities presented in the Holt and Laury MPL method, 
researchers have explored the use of visual display formats to 
represent the lotteries which reflect the losses and gains of the 
two options, allowing for more consistent and rational 
choices (Boughera, Gassmann & Piet, 2011; Bauermeister & 
Mußhoff, 2016; Habib et al., 2016). According to empirical 
evidence, using visualization tools to illustrate the 
uncertainty of the variables has a significant merit for 
people’s informed decision making (Deitrick & Edsall, 
2006). Integrating visualizations in the reasoning process 
could help users with low numerical skills to choose 
meaningfully regarding the risk related choices (Padilla et. al, 
2018). Given that numeracy is an observed, reliable predictor 
of responses in risk elicitation tasks, a goal here is to address 
demographics or individuals who may have lower numeracy 
skills, but for whom a predictive mean of assessing their risk-
taking or aversion holds value. Additionally, cognitive 
thinking style has been suggested to be another influential 
factor in a person’s risk related choices (Frederick, 2005). 
Therefore, lower inconsistency rate achieved by presenting 
problems, which allows a wider range of individuals to 
respond consistently, would yield more reliable data. 
Research has illustrated the capacity of visualization to make 
probability reasoning more intuitive, and therefore better 
understood by participants (Hegarty & Kozhevnikov, 1999). In 
turn, this is shown to improve predictive validity. In the 
following section, visualization and external representations 
are briefly discussed. 

Visualizations and external representations 
Visualizations can become a reasoning process through 
interaction (Khan, Breslav & Hornbæk, 2018). For problems 
that involve probabilities, the individual relies on both 
internal visualization of the problem and the use of external 
representations such as sketches or diagrams to facilitate the 
solution. Visualizations serve as cognitive aids in problem 
solving situations (Khan, Breslav & Hornbæk, 2018; Padilla 
et al. 2018). However, individual differences, personality 
traits and cognitive abilities can have a significant effect on 
the use of a method that can aid the problem solving process 
(Ziemkiewicz et al., 2012; Gray & Holyoak, 2018). 
Therefore, visualization may not be the most appropriate 
external representation to assist in decision making for every 
individual (Starns et al., 2018). Even more, the type of 
visualization that can support the decision making for various 
tasks can differ significantly (Starns et al., 2018).  

According to Corter and Zahner (2007) when 
investigating external representations, there is a division into 
two categories: the first refers to external visual 
presentations, which are provided towards influencing or 
informing a decision-making process (Corter, & Zahner 

2007). The second involves understanding the internal 
representations the individual uses to reason when faced with 
a decision. The second involves the effects of user-generated 
visual representations while engaged in decision making and 
problem-solving activity. These internal representations, 
which can be defined as visual imagery (Corter & Zahner, 
2007), have a core role in the production of knowledge. When 
externalized, they can provide valuable insight into 
individual’s decision-making and aid successfully with 
problem solving (Gilbert, 2008). Empirical evidence suggests 
that using external representation to reason probabilities 
helps individuals to solve problems successfully (Corter & 
Zahner, 2007; Zhang 1997). In studies for logical reasoning, 
it has been argued that graphical representations allow the 
successful interpretation of abstract concepts (Zhang, 1997).  

As the body of research suggests that external 
representations may be able to aid the reasoning process in 
probability problems, the following studies investigate the 
use of external representations to help individuals choose 
rationally in a risk elicitation task with lotteries. The first 
experiment is looking to determine whether there is a 
significant relationship between level of education, numeracy 
level and cognitive thinking style in rational decision-making 
in risk elicitation tasks. The second experiment investigates 
whether an interactive pie chart approach can influence the 
rational decision making in those tasks. 

 
Experiment 1 

Method 
Participants Sixty volunteers from the UK participated in 
the study. The participants were divided into two groups 
depending on their educational level:  
Group 1: Thirty-five participants (21 m, 14 f) with an age 
range between 22 and 53 (M=29.5) volunteered to participate 
in the experiment and had completed a degree level or higher 
qualification. The participants were invited through snowball 
effect via the network of a UK SME in the energy sector, and 
a British University.   
Group 2: Twenty-five students from a further education 
college in the UK (4 f, 21 m), ranging in age 18-37 (M 
=20.64) volunteered to participate in the experiment and had 
not completed any degree-level qualification. The male 
participants outweighed significantly the number of females, 
this would be perceived as influencing the design and 
implementation of our study. All of them were assigned to 
the same experimental task as Group 1; similar research 
ethics procedures were also applied to this group. Participants 
were students in the Game Design and Web Design courses 
at a remedial programme. None of the participants had 
attended a course at a university level.  

Measures The Lipkus Numeracy scale developed by Lipkus, 
Samsa and Rimer (2001) was used for this study. It was 
selected among others as a numeracy assessment tool for this 
study because it has been used in similar research to assess 
basic arithmetic skill in the variety of groups (Peters et al., 
2006; Schapira et al., 2012). It is a short task, involving only 
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11 items, and consists of basic probability questions. These 
11 items assess how well people can transform probabilities 
to percentages, percentages into probabilities while also 
performing simple mathematical operations using 
percentages or probabilities. The possible total sum scores 
range 0 to 11, where higher scores indicate better numerical 
skills compared to lower scores.  

The Cognitive Reflection Test (CRT) (Frederick, 2005) is 
a three-item test, which is designed to assess individual’s 
ability to suppress an impulsive wrong answer in place of a 
more deliberative cognitively processed correct answer. CRT 
reveals a reflective thinker over an impulsive as the most 
intuitive answer of the task is the wrong one. The individual 
needs to reflect before finding the solution. This measure is 
scored by adding up the correct answers. Participants who 
scored 0 and 1 out of 3 were classified as low reflective 
thinkers, and those who scored 2 or 3 were classified as high 
reflective thinkers (Frederick, 2005).  
      The Holt and Laury standard version comprises of two 
options in ten different rows. The probabilities for the higher 
amounts are 10% and 90% for the lower amounts. The 
probabilities change from row to row while the payoff 
remains the same. Hence, the expectation values of the two 
options change in each row. In the first four rows, the 
expected value for option A is safer, and option B is riskier. 
Form the fifth row, and below the risky option, B has higher 
expected value. If participants are consistent with their 
choices, they change after some point from option A to option 
B. The time that they switch over, determines their risk 
attitude. All rows are presented at once to the participants, 
and they are asked in each row to decide which option they 
would prefer. This measure was not used as a risk assessment. 
Rather, it was used to identify whether any of the other 
parameters such as education, numeracy, cognitive thinking 
style or external representations would be able to predict the 
rational evaluation of option and which external 
representation used by the participants would facilitate 
consistent choices. 

Procedure Participants were given the participant 
information sheet informing them about the study and the 
informed consent form to sign. After the informed consents 
were obtained, participants started filling in the tasks using 
pen and paper. On average, each participant needed thirty 
minutes to complete all of the questionnaires.  

The participants were given the Holt and Laury task and 
they were instructed to answer using whatever external 
representation was more appropriate to them. All of the 
participants had 20 minutes to complete the Holt and Laury 
task.  

 
Results The independent variables were the education, 
numeracy, cognitive thinking style and external 
representational way. The dependent variable was the 
rational choice of the probabilities in the Holt and Laury task. 
In the context of this paper, is reflected as the participants’ 
random choices in the task which indicate that participants 

either change lotteries in each row or choose only one Option 
between the two lotteries over the ten rows which has been 
supported as an inconsistent pattern by other studies 
(Jacobson & Petrie 2009; Dave et al. 2010). A coding system 
was used to categorize the external representations that 
participants used for the Holt and Laury task. The coding of 
the external representations was based on the coding adapted 
from previous research studied (Corter & Zahner, 2007; 
Zahner & Corter, 2010). The identified types were numbers, 
graphs, pictures, non-diagrammatic (text), and we added the 
blank page that it was not included in the coding method of 
Corter and Zahner (2007). Each representation was coded 
with one according to the above-mentioned types and added 
to a table. For instance, if a participant approached the 
problem solution using numbers, pictures and words then 
these types were coded with 1 and the rest, graphs and the 
blank page with zero. To assess the reliability of the coding, 
two independent raters coded the responses. Cohen’s kappa 
was run to determine if there was agreement between the two 
raters’. A Cohen’s kappa of .957 and .977 represented almost 
absolute agreement between the two examiners for each of 
the five categories in the Holt and Laury task. To test the 
hypothesis whether participants who graduated from 
university would be more likely to answer rationally in the 
Holt and Laury task, a chi-square test of independence was 
performed. This test showed that participants who graduated 
from university were not more likely to answer rationally in 
the Holt and Laury compared to participants who had not 
graduated from university, X2 (1, N=60) = .429, p = .513. 

To determine the relationship between specific variables 
and the rational decision making in Holt and Laury task, a 
chi-square test of independence was used. Therefore, to 
examine whether participants who scored lower in the 
validated numeracy scale, was associated to their rational 
choices in the Holt and Laury, a chi-square test of 
independence was performed. Numeracy performance was 
divided into two groups, one group with participants who 
were scored high (9-10-11 correct) and another group with 
those that scored less (2-8 items correct). Because the 
distribution of data was highly skewed, as mean numeracy 
was 8.1 out of 11 (a =.63), a median split was used for 
analysis, although it was taken under consideration that this 
split can cause loss of power (Peters et al. 2006; MacCallum, 
et al., 2002). The data were binary (0 for most numerate and 
1 for less numerate). The chi- square was statistically 
significant X2 (1, N= 60) = 4.176, p = .041, showing that 
people who scored higher in the validated numeracy scale had 
a greater chance of choosing rationally in the Holt and Laury 
compared to those who scored lower. 

A chi-square test of independence was also performed to 
find out whether gender is associated with answering 
rationally or not in the Holt and Laury, to exclude it as a factor 
which influences the rational decision-making in this task. 
The results showed that there is no gender association with 
participants’ rational choices, X2 (1, N=60) = .019, p = .890. 
To test the hypothesis that participants who had graduated 
from university, would be more likely to use different 
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external representations compared to the participants who did 
not attend university, a chi-square test of independence was 
performed which showed that there is no difference among 
the external representations both groups used, X2 (4, N= 60) 
= 3.642, p = .457. To test the hypothesis that there was an 
association with correct answers in the CRT and the rational 
choices in Holt and Laury, Fisher’s Exact Test was 
performed. It revealed that participants who answered 
correctly more questions in the cognitive reflection task, they 
were more likely to answer rationally in the Holt and Laury, 
p<.05. The relation between numeracy and CRT was not 
examined as it was out of the context of the study.  

A logistic regression was performed to investigate if using 
any specific way of external representations would be more 
likely to predict a rational answer. The logistic regression 
model was statistically significant at p <.02 according to the 
model chi-square statistic, meaning that the use of external 
representations can predict the rational choices in Holt and 
Laury. According to the logistic regression, graphs were 
shown to predict the rational choices in Holt and Laury and 
blank page, which included the answers where there was no 
verbal, mathematical or visual decision making process to 
reason the choices in the task and resulted in irrational 
choices (Table 1). The software used for the statistical 
analysis was SPSS. 

 
 Table 1. Statistical significance of the independent variables 
in the logistic regression whether any of the external 
representation would be more likely to predict a rational 
answer. 

Experiment 2 
Method 
Participants In total 225 undergraduate computer science 
students, from a UK University, completed the tasks and the 
questionnaires. Participants in this study included 66 females 
and 159 males (M age = 29, age range 18 – 32). The 
allocation of the participant in three groups that were divided 
based on the respective format of Holt and Laury was 
randomized. Participants entered a lottery to win a £50 
Amazon voucher as incentive to take part in the experiment, 
which was communicated during the introduction session. 
 
Materials The materials used for this study include the Holt 
and Laury standardized version, the digital Holt and Laury 
displayed with pie charts and the digital Holt and Laury 

asking participants to fill in the pie charts before choosing the 
option. 

In the Holt and Laury task displayed with pie charts 
(Figure 1), every option between the two lotteries is 
represented with a pie chart, and there is a text describing the 
proportions about the payoffs on the pie chart. Next, to the 
pie chart, the relevant payoff was displayed textually. The 
task was deployed in Unity Game Engine and logged all user 
actions and choices. 
 

 

Figure 1. Holt and Laury displayed with non-interactive pie 
chart. 

The stimuli developed for this study (Figure 2), involved 10 
“empty” pie charts divided in 10 pieces with the proportions 
of each probability option of the lottery presented textually 
above them. Participants had to click on the region of the 
pieces on the pie chart to “fill them in” with specific colours 
according to the probabilities outlined in text and mark the 
pay offs of those pieces. For example, fill in with red one out 
of ten pies and fill in with blue nine out of ten. This way the 
participant can see clearly which option is more likely to 
happen. After the participants filled in the pie charts, they 
would choose one option. The stimuli was developed in a way 
that it did not allow the participant to choose the option before 
“filling in” the pie chart. Visually, the risk-taking task was 
very simple reflecting the standardised pen and paper HL task 
to avoid the effect of visual elements on participants’ decision 
making process. 

 

 
Figure 2. The empty circles where the participants had to “fill 
in” the parts for each pie chart before choosing the option. 

 
 
 
 
 

 B S.E. Wald df Sig Exp(B) 
Numbers -1.438 1.478 .947 1 .330 .237 
Graphs 3.095 1.431 4.675 1 .031 22.085 
Pictures .888 1.469 .365 1 .546 2.430 
Words .155 1.205 .017 1 .898 1.168 
Blankpag
e 

3.280 1.627 4.063 1 .044 26.577 

Constant -1.695 1.362 1.548 1 .213     .184 
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The numeracy test used is the Lipkus Numeracy scale 
(Lipkus, Samsa, & Rimer, 2001). A couple of demographic 
questions regarding participant’s age and gender and a self-
report of difficulty task were also involved in the 
experimental procedure. After they had completed the Holt 
and Laury tasks. They were asked to answer a question about 
task’s level of difficulty. The question about difficulty level 
was formed as follows: On a scale of 1-5 with one being very 
easy and five being very difficult, how difficult was this 
lottery task for you? The participants were asked to answer in 
a 5-pont Likert scale where one was very easy and five was 
very difficult. 

Procedure The experiment took place at the Faculty of 
Computer and Engineering at Coventry University and lasted 
approximately 30 minutes. It was divided into three stages. In 
the first stage, participants were given the participant 
information sheet informing them about the study and the 
informed consent form to sign. After the consent forms were 
obtained, in the second stage, the participants were given the 
numerical test and the demographic questions. When these 
were also collected, in the final stage, the participants were 
directed to five different rooms. Four rooms had computers 
where the interactive and non-interactive stimuli were set up. 
In the fifth room, the standardized Holt and Laury task was 
set up. The allocation of the participants to the rooms was 
random. The four rooms with the computer could fit 40 
people each and the fifth room was a lecture theatre for 200 
students’ capacity. Participants were instructed that they 
would have 20 min to fill in the tasks. The participants were 
randomly assigned to go into one of the five rooms. Finally, 
76 participants filled in the numerical display, 76 completed 
the pie chart display and 73 the interactive pie chart Holt and 
Laury task. Hence, Group 1 received the textual Holt and 
Laury task, Group 2 the Holt and Laury digital task displayed 
with pie charts and Group 3 received the digital interactive 
Holt and Laury method. The results are presented in the 
following section. After the completion of the task, each 
participant selected a small note from a lottery ball, all notes 
included numbers except from one that had the letter A and 
was referring to an Amazon Voucher of £50. 
 

Results According to participants’ irrational choices, 35 out 
of 76 (46%) participants showed an inconsistent behavior in 
Holt and Laury task numerical format, 27 out of 76 (35.52%) 
participants in the pie chart format and only 4 out of 73 
(5.47%) participants in the interactive pie chart Holt and 
Laury task format (Figure 4). McNemar’s test for related 
samples was applied between the interactive pie chart and 
numerical Holt and Laury format, which revealed a 
significant difference in the inconsistency rates between both 
display formats, p < .00 (Figure 3). McNemar’s test for 
related samples was also applied between interactive pie 
chart and pie chart Holt and Laury format w hich showed a 
significant difference between their inconsistency rates, p < 
.00 (Figure 3). McNemar’s test for related samples between 
the pie chart format and the numerical Holt and Laury format 
showed no significant difference between their inconsistency 
rates (Figure 3). 
Additionally, a binary logistic regression was performed to 
ascertain whether participants’ irrational choices in each 
display format (numerical, pie chart and interactive pie chart) 
could be predicted based on their age, gender, the level of 
their perceived difficulty and numeracy score in the validated 
scale. For the numerical Holt and Laury format, the binary 
logistic regression was statistically significant at the .00 level 
according to the model chi-square statistic suggesting that 
numerical level (Wald statistic equal to 12.2), difficulty 
perception (Wald statistic equal to 8.8) and the age (Wald 
statistic equal to 4.7), were shown to be significant at the .00 
level. Hence, they can predict participants’ choices in the 
Holt and Laury numerical task. For the pie chart Holt and 
Laury, the binary logistic regression showed that the model 
is not statistical significant, p < .178. The binary logistic 
regression for interactive pie chart Holt and Laury was 
statistical significant at the level of .025 according to the 
model chi-square statistic. The coefficient on the perceived 
difficulty had a Wald statistic equal to 5.42, which is 
significant at the .02 levels. The rest dependent variables of 
age, gender and numerical level were not statistically strong 
predictors of participants’ choices in the interactive Holt and 
Laury format. 
Participants took from 4 to 17 minutes to complete the Holt 
and Laury task using each representation type. The mean time 
taken to answer the task was 8.7 minutes with the interactive 

Figure 3. Participants’ choices over the three different display formats with 95% Confidence Intervals. Dependent 
variable was the inconsistency rate in each display format of the Holt and Laury task. The lower mean shows a more 
consistent rate. 
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pie chart, 8.3 using the passive pie chart and 8.5 for the 
numerical. Even though the mean differences show that using 
the passive pie chart took them slightly less to fill in 
compared to the interactive and numerical, there is no 
significant difference between the times spent in each format.  
 

             
Figure 4. Participants’ choices in relation to the presentation 
method of Holt and Laury. 

Discussion 
This paper presents the results of two experiments that 
investigated the methods that would assist in choosing 
rationally in a risk elicitation task. The findings from the 1st 
experiment validated empirical evidence that the use of 
external representations helps participants to understand the 
lotteries in the risk elicitation task. It also showed that using 
graphs has greater likelihood of choosing rationally in a risk 
elicitation task, compared to using images or any other way 
of external representation, as it has been supported by 
Hegarty and Kozhnenikov (1999). The study also showed 
that participants’ years of education did not influence their 
rational decision making. However, as participants were 
students from the United Kingdom this may not hold true for 
other cultures or audiences. Even though, it was found that 
there were no disparities between Groups 1 and Groups 2 
with substantially dissimilar educational levels, this may not 
be true for educational levels defined in qualitatively 
different ways from other participants, or contexts.  

 Pie charts were shown to be better suited as they are 
better known from the general public and easily 
comprehensible to compare the size of two proportions when 
they are accompanied by labels (Nelson, Hesse, & Croyle, 
2009). A step further though was demarcated in terms of 
asking participants to draw the pie charts themselves 
according to the label of probability along with the payoff 
displayed on the task, to test whether using external 
representation of pie charts would help them reason 
rationally. This outcome confirms the findings suggesting 
using graphs as external representation to facilitate successful 
probability problem solving (Hegarty, & Kozhevnikov, 
1999) and thus rational choices in the Holt and Laury task. In 

the 2nd experiment, it was shown that participants who scored 
low in the numeracy scale chose more rationally in the Holt 
and Laury task when interacted with pie charts than any other 
format, confirming the need for a visual reasoning process to 
assist problem solvers (Carlsson, Johansson-Stenman, & 
Martinsson, 2004; Brase 2009). The interactive pie chart 
format was filled in rationally from those that scored high and 
low on the numeracy scale, as it was indicated by the low 
consistency rate in the task (6.8%). This has a significant 
implication for future implementations of the task. This 
rational choice is linked to a meaningful contribution to the 
task for three main reasons. First, the task could be used by 
people with low numerical skills and reflect their accurate 
risk preferences. Second, when assessing population with 
specific characteristics to predict risk-taking behaviour in 
similar investment choices, participants’ choices in the task 
would be accurately predicted. Third, there would be less 
noise in the data and there would be less cases (if any) that 
data would be excluded from the analysis. However, a point 
that should be considered is that as the individuals are guided 
to answer consistently, the more consistent their answers the 
more variance would tend towards zero, thus the validity of 
the metric might be affected. Therefore, for future studies the 
validity of the metric needs to be examined and reassured. As 
this approach was only examined with UK University 
students, there is a limitation on generalizing to other cultures 
and audiences. Deploying a qualitative approach in 
conjunction to the quantitative methodology would enable to 
investigate more in depth on the underlying factors of why 
interacting with pie charts help people to understand the 
lotteries better. Finally, even though the average time spent 
in each display format of the task did not show any significant 
differences, future studies, need to explore whether using 
graphs to reason the choices in the Holt and Laury task, force 
the individuals with impulsive cognitive style to reflect more 
on their choices and aid their decision making.  

This interactivity with graphs where participants could 
engage with filling in the proportions of lotteries with one 
click and then choose the option for the task they would 
prefer, automatically simplifies the task for less numerate 
people and allows for employing digital mediums, such as 
mobiles, for experimentation outside of laboratory settings. 
The data supports the hypothesis that the use of interactive 
pie charts, is more likely to result in consistent choices. This 
outcome may extend to other interactive artefacts such as 
games, simulations or analytics software, for crowdsourcing 
data for cognitive science of specific groups’ (e.g. farmers) 
outside of the laboratory. 
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Abstract

We propose a unified explanation of contrastive and assimila-
tive adaptation aftereffects from the perspective of higher-level
cognitive processes: rational category learning and categorical
perception. We replicate (twice) previously reported assimila-
tive and contrastive effects (Uznadze illusion in visual modal-
ity), propose a rational computational model of the process,
and evaluate our model performance against the Bayesian lo-
gistic regression baseline. We conclude by discussing theo-
retical implications of our study and directions for further re-
search.

Keywords: adaptation aftereffects, perceptual biases, set il-
lusion, Uznadze illusion, computational modeling, categorical
perception

Introduction and Background
In many experimental settings, repeated exposure to stimuli
affects the perception of subsequent ones. These phenomena
are often referred to as the aftereffects of adaptation (Gibson
& Radner, 1937). For example, if a participant is repeatedly
presented with two circles, one bigger than another, she might
perceive equal circles as being different during the test trial
(Figure 1). Similar effects are manifest across a wide range of
experimental conditions, in different modalities, and on dif-
ferent levels of abstraction. Behavioral studies demonstrate
adaptation aftereffects in situations that run the gamut from
simple shape and motion perception under brief presentation
(Suzuki & Cavanagh, 1998; Chalk et al., 2010) to perception
and recognition of faces, facial expressions, gender, and race
(Webster & MacLeod, 2011; Leopold et al., 2001).

Contrastive and assimilative effects
It is possible to split all known adaptation aftereffects into
two broad categories: contrastive and assimilative (Howard
& Rogers, 1995). Contrastive aftereffects take place when the
test stimulus seems more different from those seen during the
adaptation phase (adaptors) than it would be perceived under
normal conditions. Assimilative aftereffects, in turn, produce
a reversed effect: the test stimulus is perceived as being more
similar to adaptors. There is evidence that these two types of
effects could occur in very similar and even identical experi-
mental settings (Uznadze, 1958; Fritsche et al., 2017; Chopin
& Mamassian, 2012). This raises a question: what deter-
mines whether a contrastive or assimilative aftereffect will
be present in a given trial?

A broadly accepted view is that the probability of con-
trastive aftereffects occurrence grows with increasing differ-
ence between the test stimuli and the adaptors, increased
length of adaptor presentation, as well as with the increase
of overall stimuli salience and contrast (Howard & Rogers,
1995; Palumbo et al., 2017; Fritsche et al., 2017; Chopin &
Mamassian, 2012).

Finding a mechanism that would explain the onset of both
types of adaptation aftereffects turned out to be challeng-
ing. Previously dominant framework of adaptation as neu-
ral fatigue proved unsuccessful in accounting for the wide
range of observed phenomena (Thompson & Burr, 2009). Re-
cent studies predominantly focused on uncovering the mech-
anisms of a particular type of aftereffect: either contrastive
(Webster & MacLeod, 2011; Rhodes & Jeffery, 2006; Grill-
Spector et al., 2006; Stocker & Simoncelli, 2006; Chopin
& Mamassian, 2012) or assimilative (Chalk et al., 2010;
Palumbo et al., 2017).

There are, however, models that propose potential mech-
anisms of both contrastive and assimilative effects in visual
(Wei & Stocker, 2015) and audial (Kleinschmidt & Jaeger,
2011) modalities. Wei and Stocker (2015) explained the op-
posite perceptual biases as a result of efficient coding con-
straints in a rational observer framework. Unfortunately, this
model falls short in accounting for the influence of the dif-
ference between the test stimulus and the adaptors on illusion
type (it predicts that this factor has no impact). At the same
time, similar aftereffects in phonetic adaptation were mod-
eled as Bayesian belief updating over two competing phonetic
categories (Kleinschmidt & Jaeger, 2011). The limitation of
this model is that it is designed for the task of forced choice
between two categories that are given in advance. In most
real-world and experimental adaptation scenarios, however,
the alternative categories are implicit.

Overall, none of the existing models provide a complete
account of the existing phenomena, which warrants further
research in this direction.

Adaptation aftereffects and categorization
We propose a high-level interpretation of adaptation biases
from a categorization standpoint. We argue that during the
adaptation phase a person forms the categories of “typical”
and “other” (atypical) stimuli. Learning is formalized us-
ing the ideal observer approach. The structure of the “typi-
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Figure 1: Uznadze visual illusion experimental procedure
During the adaptation phase, a subject is repeatedly exposed
to two circles, one being bigger than another. On the test
trial, two equal circles are presented, and the subject responds
whether they appear the same (no illusion) or, if not, which
one appears bigger (contrastive or assimilative illusion).

cal” category is estimated from observed adaptors, while the
“other” category is determined through its relationship to the
already learned one. The main assumption is that an observer
expects different visual categories to lie relatively far from
each other in the feature space. On the test phase, the ob-
server reconstructs the most likely true stimulus, given the
learned category structure and the noisy sensory observation.

There is some evidence that provides conceptual support
for our approach. First, in the domain of category learning,
there is a notion of categorical perception which refers to
phenomena whereby the same stimuli seem more different
or similar, depending on whether they belong to the same or
different categories in the learned conceptual structure (Gold-
stone, 1994, 1995; Goldstone & Hendrickson, 2010; Kuhl &
Iverson, 1995). Second, in the domains of color and speech
perception, perceptual bias toward the category prototype was
formalized as an optimal statistical inference of real stim-
ulus in high uncertainty conditions (Feldman et al., 2009;
Cibelli et al., 2016). These perceptual shifts resemble the
assimilative aftereffects. Third, a similar idea was success-
fully applied earlier in the domain of face perception: it was
shown that the contrastive aftereffects are directed precisely
toward the anti-prototype of the seen examples (Leopold et
al., 2001, 2005; Rhodes & Jeffery, 2006). Assimilative after-
effects were not, however, considered in these studies.

Overall, there is evidence that category attribution plays
an important role in perception. Although visual adaptation
is most commonly viewed as a low-level process, current
low-level models may not be able to fully capture the broad
spectrum of visual adaptation aftereffects and their dynamics
(Leopold et al., 2005) and are hardly compatible with inte-
rocular transfer of adaptation biases (Raymond, 1993). We
believe that the difficulties encountered by low-level expla-
nations, together with the successes of categorical perception
models, warrant considering alternative, high-level explana-

tions of perceptual aftereffects.
Our model builds upon the previous results and provides

a simple and unified interpretation of both assimilative and
contrastive aftereffects from a categorical perception stand-
point.

To test our interpretation, we use a visual version of the
Uznadze illusion (Figure 1). We replicate previously reported
results on the association between the probabilities of oppo-
site illusions with the length of the adaptation phase and the
difference between the adaptation stimuli (Uznadze, 1958,
1966). After that, we evaluate the performance of our model
on these data.

Experiment 1
This experiment replicated the findings reported in Uznadze
(1958, 1966).

Hypothesis: Difference between the adaptors and the test
stimulus, together with the number of adaptation trials, de-
termine the probability of assimilative vs contrastive afteref-
fect occurrence. In particular, the assimilative aftereffect is
associated with lower differences between stimuli sizes and
smaller numbers of adaptation trials, while the contrastive af-
tereffect onset probabilities follow a reversed pattern.

Procedure
Pairs of circles of different sizes were presented as adaptors.
We varied the magnitude of difference between adaptation
stimuli (from 1 to 3 individual differential thresholds) and
the number of adaptation trials (from 1 to 8) to evaluate their
effect on the probabilities of assimilative and contrastive illu-
sions. The procedure is illustrated in 1.

1. Estimation of individual differential thresholds. Two
circles (diameters: left 2.5cm, right 2.5 or 3.0cm) were pre-
sented to participants. They were asked to focus on the dot
in the center of the screen. We estimated participants’ dif-
ferential thresholds by the method of adjustment (Geschei-
der, 1997). That is, subjects saw two different circles and
altered the size of one of them until the circles appeared
equal to each other. In the second condition, the circles
were initially the same and subjects made them different.
We repeated this procedure six times and averaged the re-
sults to obtain the differential threshold estimate.

2. Adaptation phase. Subjects focused at a central dot on
the screen, while they were exposed to two circles (for 150
ms) several (1-8) times. The difference in size between the
two circles was 1, 2 or 3 individual differential thresholds.

3. Test phase. Participants saw two equal circles for 150ms
and reported whether they appeared the same. If there was
a perceived difference, participants identified which of the
two appeared larger. They were instructed to respond as
fast as possible and to rely only on their sensations. The
test trial was repeated until the “same” relationship was re-
ported 3 times in a row. This ensured that the aftereffect has
faded before the start of the next trial. We did not analyze
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the fading dynamics and only used the first test response in
further analysis.

This procedure was repeated 24 times for every participant
using all the combinations of experimental conditions. The
order of conditions was randomized.

4. Post-experimental interview. Participants shared their ex-
perience and strategy. The results of this stage were used
to check whether subjects responded purely based on what
they saw (as opposed to realizing that they experience an
illusion and correcting their answers).

Experiment was programmed and presented using Psy-
choPy software package (Peirce, 2007).

Participants
The initial sample consisted of 30 adult participants. Data
from 4 participants were excluded after the post-experimental
interview: they figured out that test circles are always equal,
and based their answers on this assumption, not on their ac-
tual perception. This results in a final sample of 26 partici-
pants (11 male, 15 female) aged from 18 to 47 years (mean
age: 22.27, sd: 5.65). All had normal or fully corrected vi-
sion.

Experiment 2
The second experiment investigated how robust are the ob-
served regularities. In particular, whether it is necessary to
account for individual differential thresholds.

Procedure
Experiment 2 replicates Experiment 1 with one qualitative
change: the difference between adaptation circles varies
in absolute units, not in individual differential thresholds.
Therefore, there is no stage of differential threshold estima-
tion. The left circle again has the diameter of 2.5cm, and the
diameter of the right circle is 0.1, 0.2, 0.3, 0.4, or 0.5cm big-
ger. The number of adaptation trials varies from 1 to 6. The
conditions are randomized.

Participants
Initial sample consisted of 55 adults. 5 adults were excluded
from subsequent analyses, because they figured out that test
circles are always equal and based their responses on this as-
sumption. This results in a final sample of 50 participants (22
male, 28 female) aged from 18 to 34 years (mean age: 22.91,
sd: 3.47). All of them had normal or fully corrected vision.
The sample was divided into two groups based on the results
of post-experimental interview:

1. Naive (35 adults). These participants did not realize that
test circles are always equal.

2. Non-naive (15 adults). These participants realized that
test circles are always equal, but followed the instruction
and tried to base their responses only on their sensations.

X s
iXi

µt µo σt σo

σnoise

zi

δµ

c

δµ ∼ Gamma(10,1)

µt ∼ Normal(0,6)

µo = µt −δµ

σt ,σo ∼Cauchy(0,5)

Xi ∼ Normal(µi,σi)

X s
i ∼ Normal(Xi,σnoise)

i ∈ {1...N}

Figure 2: Graphical model
Variables: Xi - real stimulus; X s

i - perceived stimulus (af-
ter adding perceptual noise); zi - indicator variable for the
class from which a real stumulus was generated (distributed
according to the Chinese Restaurant Process); µt and σt - µ
and σ of the typical class; µo and σo - µ and σ of another
(unobserved) class; δµ - the expected difference between two
classes; c - coupling probability for CRP; σnoise - perceptual
noise.

Computational Model
We formalize the process of adaptation as rational acquisition
of the “typical” and “other” stimuli categories. Perception is
modeled as an optimal probabilistic inference over the true
stimulus parameters given the learned category structure and
the noisy sensory input. Graphical model is presented on Fig-
ure 2.

1. Category learning. Category learning during the adapta-
tion phase is modeled as Bayesian inference of the “typ-
ical” category structure. Stimuli in our experiment could
be aligned along one relevant dimension (the magnitude of
difference between two circles) so we formalize a category
as a univariate normal distribution in this dimension. An
observer assumes that the true stimuli come from a normal
distribution with a mean difference between two circles µ
and a standard deviation σ. These are the parameters she
estimates to represent a category. Priors on the category’s µ
and σ are chosen arbitrarily and are set to be relatively dif-
fuse (given the scale of our feature): µ∼ normal(0,6) and
σ ∼ cauchy(0,5). These parameters are estimated purely
from the adaptive stimuli for every particular experimental
trial. The adaptive stimuli, in turn, are randomly gener-
ated from a normal distribution where µ is the difference
between adaptional stimuli in a given condition, and σnoise
is some random perceptual noise. We used 0.2 as a noise
in final model evaluation, however, we also checked that
changing this number does not influence the results. At the
end of this stage, the observer has estimations of µ and σ
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of the category.

2. Representation of the unknown category. The key as-
sumption of a rational observer in our model is that the
centers of two categories are more likely to be relatively
distant from each other than to be close (Figure 3). It is
formulated by adding a new parameter: difference between
category prototypes δµ with a prior Gamma(10,1) (model-
ing the opposite symmetric tail is not necessary in this case,
as its likelihood is always practically zero on the test trial).
Then, the estimation of the “other” category’s mean (µo)
for each experimental condition is simply µ̂t − δµ. Hence,
the prior assumptions on the structure of the unknown cat-
egory are shifted outward from the learned one. Thus, the
prior on µo is completely defined by an estimated µ of the
typical stimuli and the assumption on the difference be-
tween categories.

(a) After a small number of tri-
als, there is still a lot of variation
in the estimated typical distribu-
tion shape. The noisy test stim-
ulus is attributed to the typical
category with higher probability
and thus the reconstructed true
stimulus is shifted towards the
“typical” category prototype.

(b) After more trials, the
estimated typical distribution
shrinks, thus making the attri-
bution to the typical category
unlikely. Thus the reconstructed
source of the noisy stimulus is
shifted towards the closest peak
of the “other” category.

3. Test phase. Perception of the test stimulus is determined
by the decision of what category (“typical” or “other”) is
more likely to have generated it. Conditional probabilities
of the categories are calculated using Bayes’ rule (where zi
is a variable indicating category membership):

P(zi = j|X s
i ) =

f (X s
i |zi = j) ·P(zi = j)

f (X s
i )

=

=
f (X s

i |zi = j) ·P(zi = j)

∑
#cat
j=1 f (X s

i |zi = j) ·P(zi = j)

(1)

Likelihoods of the test stimulus for both categories are
taken from the corresponding estimated normal probabil-
ity density functions. The priors on whether a new stim-
ulus is coming from the known or a new category are es-
timated using the Chinese Restaurant Process (Anderson,
1991; Navarro & Kemp, 2017). Thus, the prior probability
that a new stimulus is generated from the “typical” cate-
gory is

P(zn+1 = typical) =
c ·n

1− c+ c ·n
(2)

where c is a probability that two observation come from the
same category (the coupling probability) and n is a number
of adaptation trials. The prior probability that a new stim-
ulus comes from an unknown category is

P(zn+1 = other) =
1− c

1− c+ c ·n
(3)

To efficiently reconstruct a real stimulus, perception is
shifted toward the probability density of its category. Due
to the aforementioned inference bias, the “atypical” and
“typical” category densities are shifted in opposite direc-
tions. Thus, assimilative illusion onset is formalized as
Bernoulli random variable with p = P(typical|test), and
the contrastive - as Bernoulli r.v. with p = P(other|test)
respectively.

Model fits 3 parameters: c (coupling probability), δµ (dif-
ference between prototypes of two categories), and σ (stan-
dard deviation of the “other” category).

Bayesian modeling for the paper was implemented using
Stan probabilistic language (Carpenter et al., 2017).

Results
Experiment 1
Assimilative aftereffect appeared 103 times (17%), con-
trastive - 153 times (25%). Notably, more than 50% of the
data consisted of the reports of stimuli equality, which corre-
spond to no illusion registered. “No illusion” instances were
excluded from the analysis. We applied mixed effects logis-
tic regression and Bayesian mixed effects logistic regression
(with non-informative priors). We used the difference be-
tween adaptation circles and the number of adaptation trials
as predictors, and the illusion type (contrastive (1) vs assim-
ilative (0)) as the outcome variable. This model can be ex-
pressed using the following formula:

illusion type ∼ number of adaptation trials +
difference between stimuli sizes + (1|participant)

The ANOVA comparison with a zero model was significant
(p< .001), as well as the tests for both individual coefficients:
number of adaptation trials (p < .001, est.= .133, sd = .036,
BF10 = 2.5) and difference between stimuli’ sizes (p < .001,
est.= .365, sd = .108, BF10 = 56.3). Both estimates are pos-
itive, in line with the the initial hypotheses.

Experiment 2
Assimilative aftereffect appeared 164 times (11%), con-
trastive - 402 times (28%). To analyse these data, we applied
the same frequentist and Bayesian mixed effects models to
the three (all, naive, and non-naive) groups separately.

1. For the whole sample, the difference between adaptation
circles and the number of adaptation trials are significant
predictors with p < .001 (est. = .537, sd = .093, BF10 =
47995.7) and p < .05 (est. = .171, sd = .07, BF10 = 4.8)
respectively.
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Table 1: Performance of Cognitive Model and Bayesian Logistic Regression.

Standard deviations are indicated in parentheses.
Measure Bayesian LR Cognitive Model

Experiment 1: assimilative Recall 0.296 (0.086) 0.577 (0.082)
Precision 0.521 (0.12) 0.522 (0.034)

Experiment 1: contrastive Recall 0.817 (0.065) 0.65 (0.056)
Precision 0.637 (0.018) 0.701 (0.032)

Experiment 2: assimilative Recall 0.057 (0.0049) 0.293 (0.057)
Precision 0.378 (0.228) 0.426 (0.044)

Experiment 2: contrastive Recall 0.97 (0.03) 0.845 (0.032)
Precision 0.73 (0.006) 0.754 (0.012)

2. For the group of naive participants, the difference be-
tween adaptation circles is a statistically significant pre-
dictor (p < .01, est. = .489, sd = .163, BF10 = 215.5).
The number of adaptation trials is not significant (p > .05,
est.= .105, sd = .9, BF10 = 0.5).

3. For the non-naive participants, both predictors are statisti-
cally significant: the number of adaptation trials (p < .05,
est. = 1.21, sd = .523, BF10 = 23.8) and the difference
between stimuli sizes (p < .001, est. = .518, sd = .151,
BF10 = 254.6).

The subsequent ANOVA model test (frequentist) was signif-
icant (p < .05) for all groups. All the estimates are positive,
in line with the initial hypotheses.

Model Evaluation
We compared our cognitive model against the Bayesian lo-
gistic regression baseline:

illusion type ∼ number of adaptation trials +

difference between stimuli sizes

Both the regression and the cognitive model have 3 parame-
ters. Bayesian logistic regression was chosen as a baseline,
since it is a very successful descriptive model with the same
amount of parameters. In particular, it outperforms a frequen-
tist logistic regression for our data.

The cognitive model fits the whole dataset better than the
baseline logistic regression models, but this does not guaran-
tee that the cognitive model would demonstrate better perfor-
mance on the out-of-sample data as well. Therefore, we used
random subsample cross-validation in order to evaluate and
compare the generalization performance of the models.

1. The data were randomly split into two subsets: train (50%
of assimilative data, 50% of contrastive data) and test (re-
maining 50% of assimilative and 50% of contrastive data)

2. Parameters of the models were estimated on the training
set

3. The performance measures (precision and recall) were cal-
culated for models’ predictions for the upheld test subset.

We repeated the above steps 50 times and calculated mean
precision and recall measures for both assimilative and con-
trastive classes, along with their standard deviations. The re-
sults are shown in the Table 1.

Evaluation metrics: Precision and Recall measures allow
us to compare models based on their sensitivity and accuracy
for both classes. Recall shows the proportion of the target
class occurrences that were accurately predicted. Precision
shows the proportion of the target class occurrences among
the predictions of that class.

The cognitive model repeats the main regularities found
in both experiments. In particular, it predicts assimilative il-
lusion more frequently for the smaller differences between
adaptive stimuli and number of trials, while the predictions
of contrastive illusion follow the reverse pattern. Importantly,
the logistic regression does not yield these types of regulari-
ties when it predicts assimilative illusion.

The estimates of the “other” category center were always
negative, which corresponds to the contrastive shifts in per-
ception.

Discussion
Replication
We replicated the results reported in Uznadze (1958, 1966).
The difference between adaptation stimuli sizes was a signif-
icant predictor of the aftereffect type in all collected datasets.
The number of adaptational trials was not a significant pre-
dictor for naive participants in the second experiment, but it
was significant in the remaining datasets. The signs of all the
coefficients were consistent with the initial hypotheses. The
effect proved robust to the scale of the differences between
stimuli, and overall, Experiments 1 and 2 yielded similar re-
sults.

We view this replication as an important impact of our pa-
per. The works of Uznadze are predominantly focused on
the study of “set”, or “set illusions”, which denote the same
group of phenomena as perceptual aftereffects. He performed
extensive studies of these effects in visual, auditory and hap-
tic modalities (Uznadze, 1966). Nevertheless, although the
so-called “Uznadze illusion” (perceptual aftereffect in hap-
tic modality) received some attention (Janzen et al., 1976;
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Wohlwill, 1960), most of his contributions remain untrans-
lated and almost entirely unknown to the scientific commu-
nity outside the post-Soviet space. We find, however, that
some of his findings are still relevant and could lead to a bet-
ter understanding of perceptual aftereffects. We hope that our
results would encourage further use of Uznadze visual illu-
sion in the studies of perceptual adaptation aftereffects.

Modeling
The proposed cognitive model performs better than Bayesian
logistic regression, which makes it a useful baseline for fur-
ther research. In particular, it is sensitive to both types of
aftereffect and yields more accurate predictions within these
categories.

More importantly, our model provides a simple and uni-
fied interpretation of seemingly disparate phenomena of as-
similative and contrastive aftereffects. This explanation is
based on the principles of rational analysis and an intuitive
assumption about the category structure inductive bias (dif-
ferent categories have non-coinciding centroids). Thus, our
model shows that the apparently low-level perceptual afteref-
fects may be explained from the logic of higher-level cogni-
tive processes, such as categorization. Moreover, it allows us
to view the role of adaptation aftereffects in perception from
a new angle: we demonstrate that they may serve as an im-
portant part of an optimal stimuli reconstruction process, as
opposed to being an artifact or an epiphenomenon.

Future directions
Our model is based on the high-level logic of perception and
is not bound to specific low-level mechanisms. This greatly
broadens the scope of its potential applications.

Firstly, there is a number of promising extensions of our
model within the domain of adaptation aftereffects:

• The model could be extended to account for the cases
of illusion absence (this could be done by incorporat-
ing individual perceptual differential thresholds). Since
the “no illusion” case is very common in our data, this
would make our account of the perceptual aftereffect phe-
nomenon much more complete.

• The model can be scaled to higher dimensions by using
a multivariate normal distribution for category representa-
tion. This makes it a good candidate for describing percep-
tion of high-dimensional realistic objects, such as faces.
In case of success, such a unified explanation of higher-
and lower-level perceptual processes may contribute to the
ongoing debate about the role and even mere presence of
top-down effects in perception (Firestone & Scholl, 2016).

Secondly, our model may be broadly applicable outside of
the domain of visual perceptual adaptation:

• There is a number of well-known spatial context effects in
the visual modality (demonstrated by Delboeuf, Ebbing-
haus, and Müller–Lyer illusions, among many others (Goto

et al., 2007)). The patterns of contrastive and assimilative
bias onsets in this domain are very similar to the tempo-
ral illusion we studied in this paper (Goto et al., 2007) and
may be interpreted in an analogous fashion.

• Our proposed rational categorical perception model could
account for enhanced discriminability and perceptual
tuning effects resulting from long-term adaptation. Chi-
nese Restaurant Process used in our model allows to opti-
mally refine the learned category structure as a number of
seen examples grows. Shifting percepts towards the true
category will be more and more beneficial as the category
structure is updated and refined.

Overall, the proposed model has a high promise in demon-
strating the role of category learning in perception. While the
potential importance of categorical perception has been stud-
ied before (e.g. Kuhl & Iverson (1995)), such studies focus on
situations when the category structure is known in advance.
Our results suggest that assuming that a person always tries
to group stimuli into categories (even in the short-term exper-
iments where no obvious categories are apparent) can greatly
broaden the scope of this approach and provide a unified ex-
planation to a wide range of perceptual effects.

To facilitate further research, we make all the data, analy-
ses, and code openly available 1.
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Abstract 

We used a population-level connectionist model of 
cognitive development to unify a range of empirical 
findings on the influence of socioeconomic status (SES) on 
behavior and brain development. The model captured 
qualitative patterns of development in behavior and brain 
structure, including reductions in connectivity across 
development (gray matter, cortical thickness) as behavioral 
accuracy increases. Individual differences in SES were 
implemented by altering the level of stimulation available in 
the environment. At the brain level, the model simulated 
non-linear effects of SES on cortical surface area (Noble et 
al., 2015), and faster cortical thinning across development in 
children from lower SES backgrounds (Piccolo et al., 2016). 
At the behavioral level, the model simulated the effect of 
SES on IQ, whereby gaps are observed to widen across 
development (von Stumm & Plomin, 2015). The model’s 
main shortcoming was insufficient growth in connection 
magnitude across development in lower SES groups, 
implying that some aspects of the growth of connection 
strengths may be maturational (e.g., myelination) rather than 
experience dependent. 

Keywords: socioeconomic status, brain, behavior, connectionist 
networks, multi-scale models, population modeling 

Introduction 
Differences in socioeconomic status (SES) have marked 
effects on cognitive development (Farah et al., 2006). These 
effects are not uniform across all areas of cognition and are 
stronger in the development of language and cognitive 
control (executive functions), where lower scores are 
observed in children from lower SES families. SES effects 
have been observed on intelligence (IQ) and indeed, it has 
been reported that gaps between children widen across 
development (von Stumm & Plomin, 2015; see Figure 1). 
SES refers to a marker for multiple potential causal 
pathways acting on cognitive development, among them 
effects on prenatal brain development, post-natal nurturing, 
and post-natal cognitive stimulation (Farah, 2017; 
Hackman, Farah & Meaney, 2017). 

Recent work in neuroscience has focused on the impact of 
SES on measures of brain structure, demonstrating that 
cortical surface area and cortical thickness in children and 
adolescents show small but reliable associations with 
differences in family income and parental education; in 
some cases, associations have been observed between SES 

and the size of particular brain structures, such as the 
hippocampus and amygdala (e.g., Noble et al., 2015). 
Although small in size, these effects can be non-linear: for 
example, while lower SES is linked with reduced cortical 
surface area, the impact is larger for the lowest SES groups 
(Figure 2). Moreover, effects on brain structure are strongest 
in areas linked with language (temporal) and executive 
functions (prefrontal); and measures of cortical surface area 
(but not thickness) have been shown to mediate the 
relationship between SES and behavior (Noble et al., 2015). 
SES can be seen to influence the rate of change of brain 
structure over development. The cortex usually thins from 
mid-childhood onwards. In children from low SES 
backgrounds, thinning was observed to be faster. Piccolo et 
al. (2016) found that while cortical thickness showed no 
main effect of SES, it thinned more quickly in lower SES 
children; conversely, cortical surface area was reduced in 
the lower SES children, but showed similar rates of change 
across SES groups. Neuroscience data, then, confirm the 
impact of SES, but do they point to the causal pathways by 
which it operates?  

Two challenges present themselves. First, we need a 
mechanistic account to explain how environmental 
influences produce linked effects on brain and behavior, 
which would provide a basis to evaluate competing accounts 
about causal pathways. Second, any putative causal 
explanation of SES effects must accommodate a range of 
other empirical phenomena: on developmental changes in 
brain structure, on the relationship between cognitive ability 
and various measures of brain structure, and on the origin of 
individual differences. The main qualitative patterns that 
must be captured are as follows. 

First, although behavioral accuracy typically increases 
across development, this is not the case for all measures of 
brain structure: some measures increase (white matter 
volume, cortical surface area) but others decrease following 
a peak in early or mid childhood (gray matter volume, 
cortical thickness) (e.g., Giedd et al., 1999; Sowell et al., 
2004). The mechanisms that drive these changes are still 
debated, but include myelination and pruning of local 
connectivity (synapses, dendrites, axons), but not generation 
or loss of neurons. 

Second, although environmental measures such as SES 
predict individual differences, a large proportion of variance 
in cognitive ability, brain structure, and change in brain 
structure across development is predicted by the genetic 
similarity between people – that is, these phenotypes are 
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highly heritable (Plomin et al., 2013). Heritability may be 
modulated by SES: it has been observed that in individuals 
from low SES backgrounds, the heritability of IQ can be 
reduced (e.g., Tucker-Drob & Bates, 2016). 

Third, brain structure is correlated with intellectual 
ability, with one meta-analysis showing correlations of 0.1-
0.3 between brain volume and IQ (McDaniel, 2005). Ritchie 
et al. (2015) found that brain volume explained 12% of the 
variance in general cognitive ability, cortical thickness 
another 5%, and all structural measures together up to 21% 
of the variance. These individual differences data imply that 
having more neural resources is better for cognition. IQ is 
also related to the rate of thinning of the cortex with age 
(Shaw et al., 2006). Higher IQ is associated with faster 
thickening of cortex across early childhood, and then faster 
thinning of cortex from mid-childhood onwards. Since 
cognition improves as gray matter reduces, the 
developmental data imply that having fewer neural 
resources is better for cognition. This inconsistency is 
rendered more puzzling by the observation that faster 
thinning of the cortex is linked with lower SES (Piccolo et 
al., 2016). Lower SES is associated with lower IQ (von 
Stumm & Plomin, 2015). How can higher IQ and lower SES 
both be linked to faster thinning of cortex, when higher IQ 
is itself associated with higher SES? This complex set of 
effects is summarized in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: SES gaps in intelligence widen across 
development (von Stumm & Plomin, 2015) 

 
In the current work, we use a multi-scale model to try and 

unify this complex pattern of data. The model is based on an 
artificial neural network (ANN) trained with 
backpropagation. In a multi-scale model, constrains are 
included at several levels of description (Thomas, Forrester 
& Ronald, 2016). Crucially, because the data concern both 
development and individual differences, it is necessary to 
simulate a population of individuals, and to model the 
influences on development that produce individual 
differences. Because the data span behavior, brain, SES, and 
genetics, the model must have analogues of each of these in 
its design. 

In connectionist models of cognitive development, 
abstract principles of neurocomputation are embodied in 
systems whose activation states correspond to concepts and 
whose inputs and outputs can be linked to behavior (see, 
e.g., Thomas & McClelland, 2008). Thomas (2016) argued 

 
 
 

Figure 2: The link between cortical surface area and 
family income (data re-plotted from Noble et al., 2015). 

 
Table 1: List of empirical phenomena to be simulated  

1. Behavioral accuracy increases across 
development 

2. Some measures of brain structure increase across 
development (white matter, cortical surface area) 

3. Some measures of brain structure reduce across 
development (gray matter, cortical thickness) 

4. Lower SES is associated with lower IQ and gaps 
widen across development 

5. Lower SES is associated with reduced cortical 
surface area, with larger effects at lowest SES 
levels 

6. 
 
7. 

Lower SES is associated with faster thinning of 
the cortex over development 
Lower SES is associated with reduced cortical 
surface area but no modulation of rate of 
development 

8. Cortical surface area partially mediates the 
relationship between SES and behavior 

9. Individual differences in behavior and brain 
structure are highly heritable 

10. Low SES can reduce the heritability of IQ 
11. Brain volume correlates with IQ 
12. Across development, higher IQ is associated with 

faster thickening and then faster thinning of the 
cortex 

that with a simple addition – the onset of pruning of unused 
connectivity after a certain point in training – these models 
could give plausible analogues to measures of brain 
structure, where the total number of connections would 
serve as an analogue to properties that decrease over 
development (gray matter, cortical thickness) – under the 
view that unused connections are pruned away, causing a 
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loss of volume; and the combined magnitude of connection 
weights (excitatory and inhibitory) would serve as an 
analogue of properties showing increases (white matter, 
cortical surface area) – under the view that retained 
connections are optimized through myelination, causing an 
increase in volume. We use the same scheme here. 

To capture genetic influences on behavior and structure, 
each network must have a genome and genomes must vary 
between individuals. To the extent that cognition is seen as 
information processing in the brain, genetic effects must 
translate to influences on neurocomputational properties. 
Accordingly, Thomas et al. (2016) used a method to 
simulate individual differences where the 
neurocomputational parameters of an ANN (e.g., number of 
hidden units, learning rate) were encoded in an artificial 
genome. Genetic variation produced parameter variation. In 
behavior genetics, the heritability of a phenotype such as 
behavior or brain structure is usually assessed using the twin 
design, where more heritable phenotypes show greater 
similarity between monozygotic (MZ) twins than dizygotic 
(DZ) twins. MZ twin networks can be simulated by 
networks with the same genome (and therefore, parameters), 
while DZ twins can be simulated by networks that share on 
average 50% of the gene variants in their genomes (see 
Thomas et al., 2016, for further details). Heritability of 
behavior and brain structure can then be simulated by 
comparing the respective correlations between MZ networks 
versus DZ networks. 

SES can plausibly be implemented in several ways 
(Thomas, Forrester & Ronald, 2013): it might influence how 
a network is constructed (equivalent to prenatal effects on 
brain development); it might influence the information on 
which the network is trained (equivalent to differences in 
levels of cognitive stimulation during post-natal 
development); or it might influence both factors. In the 
following simulations, we evaluated a model that 
implemented SES as differences in the richness of the 
training set. 

An ANN trained with backpropagation has very limited 
biological plausibility. We should therefore be clear what 
are our key assumptions in relating measures of network 
structure to measures of brain structure. They are as follows: 
(1) neuron number is fixed so that changes in structure 
reflect changes in connectivity; (2) structural measures that 
increase over development (cortical surface area, white 
matter) reflect increases in connection strength, while 
structural measures that decrease over development (cortical 
thickness, grey matter) reflect reductions in connection 
number; (3) connection strength increases can only be 
experience dependent; (4) connection strength decreases can 
be experience dependent (training reduces some 
connections), intrinsic (weight decay), or both (an intrinsic 
pruning process operates depending on connection strengths 
which in turn are influenced by experience); (5) connection 
number is intrinsic (growth) or an interaction with 
experience (pruning); (6) we did not include an assumption 
that connection growth might be partly experience / 

environment dependent, nor that there might be intrinsic 
contributions to connection strengthening (e.g., myelination 
occurring through maturation). 

The adequacy of the model in capturing the patterns of 
empirical data will serve as a test of these assumptions. 

Method 
The following simulations use a base model taken from the 
field of language development, addressed to the domain of 
English past-tense formation. Here, the model was 
employed in an illustrative setting, intended only as an 
example of a developmental system applied to the problem 
of extracting the latent structure of a cognitive domain 
through exposure to a variable training environment. The 
intention was to capture qualitative characteristics of the 
empirical data rather than to exactly calibrate variances 
from genetic and environmental sources to fit empirically 
observed estimates of heritability in certain populations. In 
that capacity, the past tense accuracy of the networks was 
taken as a metric of behavioral development, and of 
intelligent behavior more widely (that is, of the type 
measured by cognitive ability tests). However, the base 
model has been used to specifically simulate data on the 
influence of SES on children’s past-tense acquisition 
(Thomas et al., 2013). Full details of the current simulation 
can be found in Thomas (2016).   

Network architecture: The basic model was a 3-layer 
backpropagation network, with 57 input and 62 outputs. The 
process of network growth was not modeled, only the 
outcome of this process. The number and size of initial 
connections was influenced by several factors, including 
number of weight layers, sparseness of connectivity, and 
range of initial random variation. Connection pruning 
occurred after a specified training epoch, and removed any 
connections below a specified threshold with a specified 
probability. Each of these three parameters was free to vary 
between individuals. Pruning onset varied between 0 epochs 
and 1000 epochs, where 1000 epochs was full lifetime 
(median value 100 epochs); pruning threshold varied 
between a magnitude of 0.1 and 1.5 (median 0.5); pruning 
probability varied between 0 and 1 (median 0.05) per 
pattern presentation. Overall, fourteen neurocomputational 
parameters were free to vary between individuals. These 
were: the architecture (fully connected or three-layer), 
number of hidden units, sparseness of connectivity, sigmoid 
activation function temperature, activation noise added to 
unit net inputs, nearest neighbor output threshold, learning 
rate, backpropagation error measure (root mean square or 
cross entropy), momentum, initial weight variance, weight 
decay, pruning onset epoch, pruning threshold, and pruning 
probability (see Thomas, 2016, for parameter specifications, 
and range of values, for the GWEW condition).  

Training set: The training set comprised 508 artificial 
monosyllabic verbs, constructed using consonant–vowel 
templates and the phoneme set of English. Phonemes were 
represented over 19 binary articulatory features. The verbs 
conformed to the past-tense patterns observed in English, 
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with 410 regular verbs (forming the past tense via the +ed 
rule) and 98 irregular verbs of three types, no-change, 
vowel-change, and arbitrary (see Thomas et al., 2016, for 
more details). Training used pattern presentation in random 
order without replacement. 

Implementation of SES differences: Each simulated child 
was raised in a family with a given level of language 
stimulation, taken to be correlated to the family’s SES (Hart 
& Risley, 1995). A family quotient parameter was sampled 
uniformly between the range 0 and 1. This proportion was 
applied as a one-time filter on the full training set. A 
network raised in a family with a family quotient of 0.75 
would be exposed to a training set with around 75% of the 
training patterns. With a range between 0 and 1, networks 
could in principle be exposed to very few training patterns 
(see Thomas, 2016, for discussion).  

Implementation of genetic differences: Differences in 
learning ability arose from the net effect of small variations 
in all the neurocomputational parameters, under a polygenic 
model of intelligence (Thomas, 2018). For this simulation, 
all variation in these parameters was considered to be under 
genetic control. There was a random association of family 
quotient to genotype, that is, we did not simulate gene-
environment correlations. 

Simulation design: A population of 1000 networks was 
created in sets of pairs, either MZ or DZ twins. Each 
network was trained for 1000 epochs. Performance on the 
training set (regular and irregular verbs) and two network 
measures, total number of connections and magnitude of 
connections, were assessed across training. 

Results 
Developmental changes in behavior: Figure 3 shows the 

monotonic improvement in accuracy in regular and irregular 
(vowel-change) verbs across training, averaged across the 
whole population (Table 1, #1). 

Developmental changes in brain structure: Figure 4 plots 
the change in the magnitude of connections (gradually 
increasing) and the total number of connections (a non-
linear decline) across training, averaged across the whole 
population. The plot captures the increase and decrease of 
different structural measures (Table 1, #2 and #3). 

SES effects on behavior: The behavioral scores of the 
networks were split by their SES (upper quartile, family 
quotients >.75, lower quartile family quotients <.25). At 
each measurement point, the population distribution in 
accuracy values was used to convert accuracy to IQ scores, 
by deriving the population mean and standard deviation and 
transforming these to a mean of 100 and standard deviation 
of 15. Figure 5 plots developmental trajectories of IQs split 
by upper, lower and middle two quartiles. The plot captures 
a widening gap between the groups (Table 1, #4). In the 
simulation, this is the result of non-linear developmental 
trajectories, whereby the lower SES groups show earlier 
plateauing of performance. 

SES effects on brain development: Figure 6 shows a 
scatter plot of each network’s connection magnitude against 

SES (family quotient value), after 100 epochs of training. 
The simulations demonstrate a reliable association of SES to 
network structure. The pattern of a small effect size and 
non-linear relationship capture that shown in Noble et al.’s 
(2015) cortical surface area data, with larger reductions in 
area at the lowest SES levels (Table 1, #5). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Average population development for two 
behaviors, regular verb and irregular verb performance. 

(Error bars show standard deviations) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Average population changes in connection 
magnitude and number over development. 

(Error bars show standard deviations) 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5: Development of behavior split by SES quartile. 
 
Figure 7 separates the networks into the upper quartile 

and lower quartile according to SES and plots change in 
total number of connections across development (for 
simplicity, linking two points in training, epochs 25 and 
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250). There was no reliable main effect of SES on 
connection total (p=.547), but a reliable interaction, 
whereby connection total reduced more quickly in the lower 
SES quartile (F(1,498)=15.42, p<.001, ηp

2=.030). This 
occurred because lower SES networks received less 
stimulation, causing less strengthening of connections, and 
in turn greater vulnerability to later pruning processes. The 
result captures Piccolo et al.’s (2016) observation that cortex 
thins more quickly in children from a lower SES 
background, without overall differences in cortical thickness 
between groups (Table 1, #6). 

Figure 8 plots the equivalent simulation data for 
connection magnitude, split by SES quartile. The model 
shows a main effect of SES, with smaller magnitudes in low 
SES networks (F(1,498)=13.33, p<.001, ηp

2=.026), but also 
an interaction, where magnitude in low SES networks 
improves much more slowly ((F(1,498)=150.88, p<.001, 
ηp

2=.233). The first effect captures the smaller cortical 
surface area observed by Piccolo et al. (2016) for lower SES 
children, but the interaction does not accord with the 
empirical data – SES does not modify rate of change of 
cortical surface area (Table 1, #7, not captured). 

Brain structure mediates relationship of SES to behavior: 
Noble et al. (2015) found that cortical surface area mediated 
the relationship between SES and behavior but thickness did 
not. In the model, we observed increasing correlations 
between SES, connection magnitude, and behavior across 
training, such that a mediation effect was detectable by the 
end of training. Figure 9 shows that connection magnitude 
mediated associations between SES and regular verb 
performance (β=0.05, t(998)=8.44, p<.001, CI [.04; .07]). 
The Sobel test was significant, confirming partial mediation 
(Sobel-z=7.98, p<.001). Per Noble et al.’s findings, the 
analogue of thickness, connection number, did not show the 
mediation effect. This is because in the model, the 
correlation of SES to connection number did not reach 
significance (Table 1, #8). 

Heritability of individual differences: at 100 epochs, the 
correlations between twin pairs were as follows: Regular 
verb performance: MZ=.99, DZ=.61; irregular verb (vowel 
change) performance: MZ=.97, DZ=.49; connection 
magnitude: MZ=1.00, DZ=.44; connection total: MZ=1.00, 
DZ=.33. Where MZ correlations are higher than DZ 
correlations, this implies genetic influence. The difference 
between the correlations can be used to estimate the 
heritability of the phenotype. Under an additive model, the 
respective heritabilities are .76, .97, 1.12, and 1.34 (that the 
latter values exceed 1 shows that the genetic effects violate 
an additive model and there are dominance effects 
operating). These values are higher than observed for 
behavior and measures of brain structure (Plomin et al., 
2013). The simulations included no measurement error, 
which would appear as an environmental effect unique to 
each individual. Nevertheless, these high estimates of 
heritability imply the assumption that all 
neurocomputational parameter variation is under genetic 
control is not plausible, and that the environment 

contributes to variation in parameters (perhaps during 
prenatal brain development). However, the observed high 
heritabilities meant that effects of SES on brain and 
behavior were successfully simulated against a background 
of strong genetic influence on both measures (Table 1, #9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Connection magnitude versus SES 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Change in number of connections across 
development, split by SES. (Error bars = STD) 

 
Estimates of heritability were also observed to differ 

between upper and lower SES quartiles, with the lower SES 
quartile showing reduced heritability as the impoverished 
training set – rather than the neurocomputational parameters 
– became the limiting factor on performance. For example, 
for irregular verbs at 100 epochs, the upper quartile showed 
MZ correlation of .97, DZ .35, while in the lower quartile, 
these values were .95 and .60. The reduced gap between MZ 
and DZ correlations shows reduced genetic influence in the 
low SES group (Table 1 #10). 

Relation of intelligence to brain structure: The ‘ability’ of 
each network was assessed based on its behavior. We chose 
to assess this based on irregular (vowel-change) verb 
performance at an early point in development (50 epochs), 
which gave good sensitivity to discriminate between 
individuals. At 100 epochs, the correlation of ability with 
total connections was .352, and with magnitude was .371. 
This captures the empirical observation of the small 
correlation between brain size and intelligence (Table 1, 
#11).  
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Based on the ability measure, we derived upper quartiles 
(top 25%) and lower quartiles (bottom 25%) of ability. 
Figure 10 shows the change in total number of connections 
between two points in development, epoch 25 and epoch 
250. At epoch 25, high ability networks had reliably more 
connections (t(458)=8.74, p<.001, Cohen’s d=.81). We did 
not simulate the growth of connectivity, only the outcome of 
this process. The higher peak captures the outcome of 
putative faster thickening of cortex across development for 
children with higher IQs (Shaw et al., 2006). Across 
development, connection number fell reliably more quickly 
in high ability networks than low ability networks 
(F(1,458)=31.60, p<.001, ηp

2=.065). The faster fall is a side 
effect of the higher peak – the greater ability arises from the 
greater computational power of having a larger network, 
while larger networks experience faster pruning. The result 
captures the observation by Shaw et al. (2006) that cortex 
thins more quickly in children with higher IQ (Table 1, 
#12). 

Discussion  
The model was successful in qualitatively capturing 11 of 
12 target phenomena linking SES, IQ, brain development 
and behavioral development. The model used simple error-
driven backpropagation networks, where connection 
strengths are altered to improve performance. Links to brain 
structure were established by adding a pruning process that, 
after a certain point early in development, removes unused 
connections. Measures of network connectivity gave 
analogous fits to brain structure measures that either show 
increases with age (white matter, cortical surface area) or 
decreases (gray matter, cortical thickness). The match of 
simulation and empirical data supports the view that these 
brain measures represent the results of experience-
dependent strengthening of connectivity combined with 
intrinsic processes for connectivity growth and loss, where 
connectivity loss is dependent on the extent to which 
previous experience has strengthened connections. 

The successful simulation of SES patterns in behavior and 
brain support the view that a key element of these effects is 
the level of cognitive stimulation. However, this is unlikely 
to be the full effect, and other environmental influences on 
prenatal and postnatal development undoubtedly contribute 
(see, e.g., Betancourt et al., 2016, for SES-related gray 
matter differences observed in babies at 1 month of age, 
where experience-dependent effects have had little time to 
act). Extension of the model presented here is necessary to 
explore the possibility that environmental effects on brain 
growth may interact with, and indeed may be correlated 
with, differences in cognitive stimulation. 

The model failed in two regards. First, it did not capture 
the observed absence of SES effects in the rate of change of 
cortical surface area (Piccolo et al., 2016). The model did 
not show enough strengthening of connectivity across 
development in the low SES group. This implies that one of 
the assumptions of the model – that connection strength 
increases can only be experience dependent – is incorrect, 

and that there is a maturational contribution to connectivity 
increases (such as myelination). Second, its estimates of 
heritability were too high for individual differences in 
behavior and brain. In part, this is due to the absence of 
measure error in the simulations. But, consistent with above 
comments, it also demonstrates another initial assumption of 
the model is incorrect, that neurocomputational parameters 
are solely under genetic influence. 

 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 8: Change in magnitude of connections across 
development, split by SES. (Error bars = STD) 

 
Figure 9: Partial mediation between connection magnitude 

(CM), SES and behavior (regular verb accuracy) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Change in number of connections across 
development, split by behavioral ability. (Error bars = STD) 

 
A future extension of the model should investigate 

environmental influences on specifying network parameters, 
such as initial network growth. It should also be noted that 
the model set out only to simulate qualitative patterns, not to 
calibrate against precise ranges of genetic or environmental 
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variation, or to capture particular population mean levels of 
behavior at a given point in development. Some 
assumptions could be questioned, such as the extreme 
deprivation implied by training sets that could vary down to 
including no patterns. 

Implementation of a mechanistic model provides the 
benefit that it can reconcile apparent paradoxes in the 
empirical literature. Why are high IQs associated with 
having a bigger brain (as if more neural resources were 
better for cognition) but also associated with faster gray 
matter loss and cortical thinning (as if fewer resources were 
better)? The answer is that the network size is driving ability 
(so more is always better), but that a higher peak of network 
size is then associated with faster connectivity loss during 
pruning of unused resources (in the manner that higher 
mountain peaks have steeper sides). How can faster cortical 
thinning be simultaneously associated with higher IQ and 
lower SES (which is associated with lower IQ)? The answer 
is that in the higher ability networks, there are more spare 
resources to be lost during pruning so thinning is faster; in 
low SES networks, the small training set (equivalent to 
lower cognitive stimulation) produces less strengthening of 
connectivity so that connections are more vulnerable to loss 
when pruning starts, leading once more to faster thinning. In 
other words, rate of change of structure isn’t a direct marker 
of ability; ability is delivered by the full computational 
properties of the network and its developmental origins, not 
proxy measures like cortical thickness. 

The model presented here is highly simplified, employing 
a single artificial network with very restricted biological 
plausibility. The range of the phenomena that the model 
captures probably reflects the fact that the existing 
observations we have on behavior, brain structure, and SES 
give limited insight into the detailed neural processes 
underlying behavior, development, and environmental 
influences. Nevertheless, we argue here for the importance 
of building multi-scale models that integrate individual 
differences within a developmental framework, and which 
can therefore evaluate causal mechanisms linking SES, 
brain and behavior. With causal, mechanistic accounts in 
hand, we are better able to consider interventions to 
ameliorate the impact of poverty and deprivation on 
children’s development. The results here point to the 
importance of cognitive stimulation, and encourage 
interventions that seek to enrich that stimulation for children 
from poor backgrounds. 
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Abstract 

The linguistic-simulation approach to cognition predicts that 
language can enable more efficient conceptual processing than 
sensorimotor-affective simulations of concepts. We proposed that 
this has implications for working memory, whereby use of 
linguistic labels enables more efficient representation of concepts 
in a limited-capacity store than representation via full 
sensorimotor simulation. In two pre-registered experiments, we 
asked participants to remember sequences of real-world objects, 
and used articulatory suppression to selectively block access to 
linguistic information, which we predicted would impair accuracy 
and latency of performance in an object memory recognition task. 
We found that blocking access to language at encoding impaired 
memory performance, but blocking access at retrieval 
unexpectedly facilitated speed of responding. These results 
suggest that working memory for object concepts normally relies 
on language but people can flexibly adapt their memory strategies 
when language is unavailable. Moreover, our data suggest that a 
sequence of up to 10 object concepts can be held in working 
memory when relying on sensorimotor information alone, but this 
capacity increases when linguistic labels are available. 

Keywords: working memory; concepts; linguistic information; 
simulation; embodied cognition 

Introduction 

Although traditionally conceptual representations were 

considered amodal and removed from perceptual experience 

(Tranel, Damasio & Damasio, 1997), more recent evidence 

suggest that concepts are grounded in sensorimotor and 

linguistic experience (Barsalou et al., 2008; Connell & Lynott, 

2014; Vigliocco et al., 2009). Simulated representations engage 

the neural subsystems involved in sensorimotor, affective, 

introspective, and other situated experiences of a concept. For 

example, the concept “dog” includes its visual shape and 

colour, the action and feel of patting its fur, the sound of its bark, 

walking it on a leash, and the positive feelings towards a pet. 

The neural activation patterns involved in processing these 

experiences can later be partially re-activated (i.e., simulated) 

to represent a concept. Linguistic representations, on the other 

hand, comprise word (and phrase) labels associated with these 

sensorimotor-affective simulations, and the distributional 

patterns between them (statistical co-occurrences of words in 

language). For instance, seeing a terrier or hearing a bark will 

activate the label “dog”, and words that frequently appear in 

similar contexts, like “tail” or “leash”. These two components 

are interrelated and mutually supportive, and recent theories 

argue that both are intrinsic to conceptual representation 

(Connell & Lynott, 2014; Louwerse, 2011). That is, linguistic 

labels are part of concepts and conceptual processing uses 

simulation and linguistic information to varying extents 

depending on task demands, available resources, and other 

factors (Connell, 2018; Connell & Lynott, 2014). 

The role of simulation and linguistic components in cognition 

is illustrated by a range of empirical evidence. Neuroimaging 

research has shown that processing of action words (e.g. “pick”, 

“kick”) activates body part-specific motor areas (Hauk, 

Johnsrude, & Pulvermüller, 2004). Critically, processing of 

such words is selectively impaired in patients with 

neurodegeneration of the motor system – Parkinson’s disease 

(Boulenger et al., 2008). Behavioural experiments also show 

evidence for use of simulations: for example, people were faster 

to recognise a horizontally-oriented nail after reading “He 

pounded the nail into the wall” than “He pounded the nail into 

the floor” (Stanfield & Zwaan, 2001). Participants were also 

quicker to make a size judgment of manipulable objects than 

when the objects were too big to be physically manipulated 

(Connell, Lynott, & Dreyer, 2012). As for the linguistic 

component, information from language alone is powerful 

enough to inform responses across diverse conceptual tasks. 

Evidence comes from a range of paradigms, including property 

verification and generation (Louwerse & Connell, 2011; Santos 

et al., 2011), spatial iconicity judgements (Louwerse & 

Jeuniaux, 2010) and spatial cuing of attention (Goodhew, 

McGaw, & Kidd, 2014). Frequency of words co-occurring in 

the same context can predict how easily they are understood as 

a novel conceptual combination (Connell & Lynott, 2013). 

These findings show that both sensorimotor and linguistic 

information is functionally important to conceptual processing. 

Much evidence for the linguistic component centres on the 

usefulness of distributional information (i.e., co-occurrence 

relationships between words/phrases) in cognition. However, 

that is not its full role. Language is a unique human 

characteristic which allows us to communicate something in the 

past, future, or hypothetical existence (Barsalou, 2005), and 

allows us to concisely name a complex multimodal experience. 

The idea that language is beneficial for our cognitive processing 

has been around for a while (e.g.: Paivio, 1971), but recent 

theories have developed the role of linguistic labels in a number 

of new directions (e.g., Borghi et al., 2018; Connell, 2018; 

Lupyan, 2012).  Most relevant to our present purposes, Connell 

and Lynott (2014) propose that having labels for concepts 

enables a process of linguistic bootstrapping, whereby words 

and phrases act as linguistic placeholders in an ongoing 

representation when there are insufficient resources to maintain 

a sensorimotor simulation in full. These linguistic placeholders 

can later be fleshed out into a simulation again at any time if 
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resources become available. To date, the linguistic 

bootstrapping hypothesis has remained theoretical and has not 

been tested directly but there is indirect support for the idea in 

the wider literature. Working memory (WM) is necessarily 

limited in capacity – there are only so many concepts that can 

be maintained and manipulated at once – and recent evidence 

does suggest that linguistic information is more economical in 

representation (i.e., occupies less “space” in working memory) 

than sensory information (Langerock, Vergauwe, & 

Barrouillet, 2014). Further, explicitly labelling simple visual 

stimuli seems to increase memory capacity (Zormpa et al., 

2018). It is possible that when working memory capacity is 

strained to its limit, as when trying to maintain a representation 

of numerous concepts, a linguistic label could deputise for its 

referent sensorimotor information (e.g., word “dog” replaces 

simulation of dog) to free up space. 

It is currently unknown how many concepts (i.e., 

representations of real-world objects, events, and situations, 

such as dog, running, or holiday) can be maintained in working 

memory at once. Research on memory from the linguistic-

simulation perspective concentrated on the role of sensorimotor 

simulation in memory (Dutriaux, Dahiez, & Gyselinck, 2018; 

Vermeulen et al., 2013) rather than the interplay of simulated 

and linguistic information in capacity limits. Working memory 

research has established a central capacity limit of 4 items 

(Cowan, 2010), but research informing this has used simple, 

artificial stimuli (e.g., feature conjunctions such as red triangle; 

random word pairs such as desk-ball). Such stimuli do not 

generalise to naturalistic, real-world concepts that comprise rich 

sensorimotor and linguistic information from long-term 

memory, and that are typically represented in broader situated 

simulations where concepts to reinforce and cue one another 

(e.g., a dog that is running with a ball). Baddeley’s (2000) 

episodic buffer, a finite-capacity buffer that allows information 

from long-term memory to be integrated and manipulated goes 

some way to address these issues. For instance, participants 

remember sequences of words better when they are presented 

in meaningful sentences (i.e., that exploit interconnections 

between words) than in unstructured lists, which Baddeley and 

colleagues attribute to long-term knowledge retrieved to 

support representations in the episodic buffer. Nonetheless, not 

much is known about the role of simulated and linguistic 

information in representing concepts in working memory. 

The current study 

Our aim was to examine the role of linguistic and simulation 

components in working memory for real-world object concepts. 

In two pre-registered experiments, we presented ecologically 

valid sequences of object pictures (e.g., ingredients for a novel 

recipe) in a nonverbal paradigm, and tested recognition memory 

by asking participants to select the previously-presented objects 

from arrays of distractors. Critically, participants performed 

articulatory suppression (repeating aloud “the”) during item 

encoding and/or retrieval to block access to linguistic 

information. Articulatory suppression has been widely used in 

WM research (Baddeley, 1992), where it has been shown to 

interfere with verbal encoding but to have little effect on general 

processing in the central executive (e.g., De Rammelaere, 

Stuyven, & Vandierendonck, 2001; Jaroslawska et al., 2018). 

We used a no-suppression condition as a baseline instead of an 

alternative suppression task, such as spatial tapping or visual 

interference, because such tasks would have interfered with the 

sensorimotor representation of concepts and therefore could not 

provide a useful control in our experiment. Thus, we expected 

the articulatory suppression task to block participants’ access to 

the linguistic component of their conceptual representations.  

We hypothesised that storage of object concepts in working 

memory will normally rely on language (i.e., linguistic 

placeholders), and that speed and accuracy of performance will 

be impaired when access to language is blocked. We expected 

performance to be best with no articulatory suppression at either 

encoding or retrieval, when participants are free to use both 

linguistic and sensorimotor information. We expected 

performance to be worst with articulatory suppression at 

retrieval only, when participants can employ linguistic 

placeholders to encode more objects, but lose access to those 

objects at retrieval when access to linguistic information is 

blocked. We planned to estimate working memory capacity for 

sensorimotor representations of concepts by calculating the 

average number of objects correctly retrieved with articulatory 

suppression at both encoding and retrieval (i.e., when linguistic 

information was unavailable). 

Experiment 1  

In this first experiment (pre-registration, data, analysis code, 

and full results are available as supplemental materials at 

https://osf.io/acv3m/?view_only=c1799106289a4063abf2eaa4

90eae009), we presented six objects per sequence, based on 

estimates from Langerock et al. (2014) that only 2-3 complex 

representations can be maintained in the episodic buffer. 

Participants viewed images of objects in each sequence one at 

a time during the encoding stage, and then had to select an 

alternative image of each target object from an array of 

distractors during the retrieval stage. Articulatory suppression 

took place half the time at encoding (to block access to object 

labels and prevent the use of linguistic placeholders when 

storing objects in WM) and half the time at retrieval (to block 

access to linguistic placeholders stored in WM). 

Method 

Participants Thirty-two native speakers of English (27 

females; mean age = 21.2 years, SD = 3.2 years) were recruited 

from Lancaster University, for which they received course 

credit or a payment of £3.50. One participant was replaced due 

to a procedural error during testing. 

The sample size was determined using sequential hypothesis 

testing with Bayes Factors (Schönbrodt et al., 2017). We 

stopped at the minimum sample size N = 32 when the Step 3 

models for accuracy and Response Time (RT) cleared the 

specified threshold of evidence BF10 < 0.2. (model details in 

Design & Analysis section, full statistics in the Results section). 

 

Materials Test items comprised of 72 target objects, divided 

into 12 sequences, each designed to be an ecologically valid 
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order of objects that would be plausibly used in a real-world 

setting, such as ingredients used in the process of making a 

cake, or a set of tools used in order to hang a picture. Each 

sequence therefore consisted of 6 target objects for study during 

the encoding stage, and each target object was assigned five 

distractor items for display in an object array during the retrieval 

(testing) stage. Five distractor objects were selected from the 

same category (e.g., food items, clothing) of which three were 

chosen based on colour, shape or function of the target object. 

Target and distractor items could all be plausibly used in a 

particular sequence (e.g. recipe) so that the task maintained 

ecological validity, and it would not be obvious which item in 

the array was the correct one. 

To ensure the order of objects within each sequence was 

ecologically valid, we asked 9 naïve participants (who did not 

take part in the experiment) to rank-order the items according 

to how they are used in a given context. We used mean rank per 

object to finalise each sequence. For example: in the scenario 

Tools for hanging a picture on the wall, participants decided on 

the following order: spirit level, drill, screw plug, screw, 

screwdriver, picture frame. 

We sourced photographic images for all objects from license-

free online resources and edited them to appear on a uniform 

transparent background. To ensure that participants were tested 

on memory for object concepts, and not perceptual matching of 

a specific image, we prepared two different images for each 

target object: one for study during encoding and one for display 

in the distractor array during retrieval (e.g., showing an object 

from a different perspective or in a different colour). Images 

were scaled to 840 pixels along the longest dimension for 

objects presented during the encoding stage, and 470 pixels 

along the longest dimension for objects (targets and distractors) 

presented in the object arrays during retrieval. This resulted in 

a total of 504 object images: 72 target objects presented at 

encoding, 72 target objects presented at retrieval, and 360 

distractor objects presented at retrieval. Figure 1 shows sample 

stimuli. 

 

 

Figure 1: Diagram showing trial sequence and example stimuli 

at encoding and retrieval stages. 

Procedure Participants were tested individually. After signing 

the consent form, the experimenter explained and demonstrated 

articulatory suppression, asking the participant to practice it. 

Once the participant confirmed that they understood and could 

perform articulatory suppression correctly, they sat in front of a 

computer, provided demographic information and proceeded to 

instructions. Participants were told they would see a sequence 

of everyday objects appear one by one onscreen, and their task 

was to remember the objects; later, they would see groups of 

objects onscreen and they should click on the object that 

belongs to the sequence they had been asked to remember. 

Participants then commenced a practice sequence without any 

articulatory suppression at encoding or retrieval. When the 

participant confirmed that they understood the task and were 

happy to continue, they were instructed on the articulatory 

suppression condition for both encoding and retrieval (i.e. when 

to start and stop) and commenced the experimental trials. 

Articulatory suppression was manipulated between participants 

at encoding and within participants at retrieval. The order of 

retrieval conditions was counterbalanced, and six sequences 

were presented in a randomised order within each condition. 

Experiment presentation was controlled by PsychoPy software 

(version 1.84.1; Peirce, 2009). 

In the encoding stage, target objects were presented 

individually in a sequence (see Figure 1 for display times). Each 

sequence was preceded by a label (e.g. “cake recipe”). Once a 

full sequence of six target objects had been presented, 

participants saw a “wait” screen of 3 asterisks (“***”) for 10 

seconds before the retrieval stage began. In the articulatory 

suppression condition at encoding, participants repeated “the” 

aloud until this wait screen timed out. In the retrieval stage, 

participants saw a 2×3 array of six objects (one target object and 

five distractors) in random locations within the array (see Figure 

1). Response times were measured from the onset of the array 

display until the participant clicked on an object using the 

mouse. After the retrieval of all six target objects had been 

tested, a message on the screen asked participants to press space 

when they were ready to proceed to the next object sequence. 

After completing encoding and retrieval of six sequences, 

participants were instructed to take a self-paced break. They 

were then asked to switch to the counterbalanced articulatory 

suppression condition at retrieval (articulatory suppression at 

encoding remained constant). Participants then completed 

encoding and retrieval for six further object sequences. 

Design and Analysis We analysed accuracy (dummy coded: 

incorrect = 0, correct = 1) with a mixed-effects hierarchical 

logistic regression (binomial, logit link). Step 1 entered 

participants and items as crossed random effects, where items 

were defined as objects nested within sequences. Step 2 added 

encoding and retrieval as fixed effects (no articulatory 

suppression = 0, articulatory suppression = 1). Step 3 added the 

interaction of encoding and retrieval as a fixed effect. We ran 

Bayesian model comparisons between steps, with Bayes 

Factors (BF) calculated via Bayesian Information Criteria 

(Wagenmakers, 2007). Similarly, we analysed RT for correct 

responses in a mixed-effects linear regression with the same 

effects and model comparisons as above. All analyses were run 

in R software (lme4 package, R version 3.4.1, 2017). 
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Results and Discussion  

No trials were excluded on the basis of accuracy results1. For 

analysis of correct RTs, one trial was excluded as a motor error 

(faster than 300ms), and 27 trials were removed as outliers more 

than 3 standard deviations from the individual participant’s 

mean (total 0.015% data removed). 

Accuracy Bayesian model comparison showed equivocal 

evidence for Step 2 over Step 1, BF10 = 1.58; the data very 

weakly favoured the model containing articulatory suppression 

as fixed effects at encoding and retrieval over a model 

containing only random effects. There was strong evidence at 

Step 3 against the effect of the encoding-retrieval interaction on 

accuracy, BF10 = 0.02: the data were 47 times more likely under 

the Step 2 model without the interaction than the Step 3 model 

with the interaction. 

We used the coefficients in Step 3 model to estimate the 

marginal accuracy for each condition of encoding × retrieval 

articulatory suppression (see Table 1). As predicted, accuracy 

was best in the no-suppression/no-suppression condition (no 

articulatory suppression at encoding or retrieval), with 

participants correctly recognising 5.6 out of 6 objects per 

sequence on average. However, accuracy was worst in the 

suppression/suppression condition: object memory was least 

accurate when language access was blocked at both encoding 

and retrieval (5.0 objects per sequence). 

Finally, in an exploratory analysis not specified in the pre-

registration, we examined the individual coefficients in the most 

likely model of fixed effects (i.e., Step 2)2. Articulatory 

suppression at encoding had a negative effect on response 

accuracy, beta = -0.567, SE = 0.275, z = -2.06, p = .039, as did 

articulatory suppression at retrieval, beta = -0.436, SE = 0.121, 

z = -3.59, p < .001. That is, as we predicted, removing access to 

language impaired object memory accuracy. When access to 

labels was blocked at the point of encoding objects, people were 

76% more likely to make an error when later asked to recognise 

the object. Independently, when access to labels was blocked at 

the point of retrieving objects, people were 55% more likely to 

make an error. However, the inconsistency between equivocal 

Bayesian model comparison and significant regression 

parameters for Step 2 suggests that these effects should be 

treated cautiously. 

Response Times Model comparisons showed very strong 

evidence at Step 2 for the effects of articulatory suppression at 

encoding and retrieval, BF10 = 1808.04. However, there was 

strong evidence at Step 3 against the effect of the encoding-

retrieval interaction on RT, BF10 = 0.03: the data were 33 times 

more likely under the Step 2 model without the interaction than 

the Step 3 model with the interaction. 

We took the coefficients in the Step 3 model to estimate the 

marginal mean RT for each condition of encoding × retrieval 

articulatory suppression (see Table 1). Against our 

expectations, recognition of target objects was best (fastest) in 

                                                           
1 Exclusion criteria detailed in pre-registration 

 

the no-suppression/suppression condition (language available 

at encoding but not at retrieval), and worst (slowest) in the 

suppression/no-suppression condition (language available at 

retrieval but not at encoding).  People had most difficulty 

recognising the objects when language was blocked at the point 

of encoding but was available at retrieval. 

We report an exploratory analysis of the coefficients in the 

most likely model of fixed effects (i.e., Step 2). As expected, 

articulatory suppression at encoding increased RT, beta = 

408.57, SE = 172.32, t(31.99) = 2.371, p = .024. However, 

articulatory suppression at retrieval unexpectedly reduced RT, 

beta = -219.57, SE = 43.85, t(1770.74) = -5.007, p < .001). 

Closer examination of RT and accuracy suggested that this 

pattern was due to a speed-accuracy trade-off rather than 

facilitation of memory. When participants were asked to 

perform articulatory suppression at retrieval, response times 

were faster, but this was accompanied by lower accuracy, 

relative to no-suppression conditions (see Table 1). We discuss 

possible reasons for this trade-off below. 

Summary Overall, the results support the hypothesis that 

memory for object concepts normally relies on language. 

Blocking language access when encoding a real-world object 

sequence affected memory: speed and accuracy were both 

impaired relative to no suppression. This is consistent with the 

idea that object concept is stored in WM via sensorimotor 

simulation and its linguistic label, and memory is impaired 

when only sensorimotor simulation is available. 

However, blocking access to language while retrieving 

objects had unexpected effects. Rather than straightforward 

impairment, there was a speed-accuracy trade-off (low RT and 

accuracy), suggesting that articulatory suppression at retrieval 

caused participants to adopt an alternative, heuristic strategy 

that led to fast but inaccurate responding. Thus, the hypothesis 

that memory performance would be worst in the no-

suppression/suppression condition was not supported. This may 

be because participants knew, before they studied the object 

sequence, whether they would perform articulatory suppression 

at retrieval. Knowing that language would be unavailable 

during retrieval could have led participants to strategically rely 

on sensorimotor information even when they had language 

access at encoding. Another possibility is that performance was 

subject to ceiling effects. When language was not available, 

participants correctly recognised 5.0 items per sequence on 

average, indicating that they were able to represent five object 

concepts in working memory from sensorimotor simulation 

alone (more than the suggested episodic buffer capacity of 2-3 

items, Langerock et al., 2014). Thus, working memory capacity 

may not have been under particular strain, and participants did 

not have to replace some of the sensorimotor information with 

linguistic placeholders to remember the full sequence. We 

examine these possibilities in the next experiment. 

 

2 All coefficients for all models available in supplemental materials 
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Table 1: Marginal accuracy (%) from logistic mixed effect 

regression, and marginal mean RT (ms, with standard errors in 

parentheses) from linear mixed effect regression, for each 

articulatory suppression condition in Experiments 1 and 2. 

Encoding 

Retrieval 

No suppression Suppression 

% RT (SE) % RT (SE) 

Experiment 1     

   No suppression 92.9 2499 (137) 89.6 2288 (138) 

   Suppression 88.3 2916 (138) 82.7 2687 (139) 

Experiment 2     

   No suppression 92.0 2786 (144) 90.2 2635 (144) 

   Suppression 83.4 2854 (141) 82.7 2675 (141) 

Experiment 2 

In our second experiment (pre-registration, data, analysis code, 

and full results are available as supplemental materials at 

https://osf.io/acv3m/?view_only=c1799106289a4063abf2eaa4

90eae009), we presented 12 objects per sequence rather than 6, 

and made methodological improvements to the design. Our 

hypotheses remained the same. 

Method 

Participants As in Experiment 1, we used Bayesian sequential 

hypothesis testing to determine sample size.  Bayes Factors for 

Step 3 cleared the evidence threshold for the null at Nmin = 32 

for both RT (BF10 = 0.02) and accuracy BF10 = 0.03).  However, 

sequential analysis plots for the Step 2 model (the best-fitting 

model in Experiment 1) suggested that the level of evidence was 

still unstable for RT (i.e., BFs fluctuating between evidence for 

the null and the alternative, and equivocal evidence). We tested 

additional participants until it stabilised at N = 44. We therefore 

report results for 44 participants (33 female; mean age = 20.3 

years, SD = 5.4). All other BF inferences and parameter 

estimates were consistent between N = 32 and N = 44 (full data 

and statistics in supplementals). Three participants were 

replaced due to failure to follow instructions. 

Materials and procedure We used materials and procedure 

from Experiment 1 with the following methodological changes: 

to reduce the risk of ceiling effects, we paired sequences from 

Experiment 1, which resulted in six lists of 12 items each. 

Instead of a label for each list, participants were given brief 

information about the context (e.g.: “You are making dinner 

and need to remember your shopping list for a meal and tea. 

Press space to proceed to the list of ingredients.”), to provide a 

real-life, ecologically valid situation. 

To prevent participants’ knowledge of the articulatory 

suppression condition from affecting their encoding strategies, 

we altered the presentation of retrieval conditions. Instead of 

verbal instructions on articulatory suppression at the start of the 

experiment, participants saw an image of a mouth on the screen 

indicating the start of articulatory suppression, and the same 

image crossed out to indicate no articulatory suppression, 

before the encoding and retrieval stages on each trial. We then 

randomised the order of lists across retrieval conditions, so that 

participants did not know whether the trial involved articulatory 

suppression until encoding was complete. We also altered some 

of the distractors (N = 8; 0.015% of all items) to ensure that the 

target items were not easy to guess without relying on memory.  

The experimental design remained the same (i.e., articulatory 

suppression manipulated between participants at encoding and 

within participants at retrieval). 

We changed the “wait” screen to reduce the possibility of 

participants relying on perceptual matching (instead of memory 

for object concepts). Rather than passively looking at the 

screen, participants had to click on 4 dots appearing in random 

points on the screen to “calibrate the mouse”. Additionally, 

object presentation time during encoding was prolonged to 

2000ms, to give participants more time to encode the concept. 

Results and Discussion 

No trials were excluded on the basis of accuracy results.  For 

RT analysis of correct responses, 31 trials (0.012% of data) 

were removed as being more than 3 SDs above the individual 

participant’s mean. 

Accuracy Bayesian model comparison showed strong evidence 

against Step 2 over Step 1, BF10 = 0.017; the data were 57 times 

more likely under the Step 1 model containing only random 

effects than a model containing articulatory suppression as 

fixed effects at encoding and retrieval. There was also strong 

evidence at Step 3 against the effect of the encoding-retrieval 

interaction on accuracy, BF10 = 0.025: the data were 40 times 

more likely under the Step 2 model with no interaction than the 

Step 3 model with the interaction. 

We then used the coefficients in the Step 3 model to estimate 

the marginal accuracy for each encoding × retrieval articulatory 

suppression condition (see Table 1). As in Experiment 1, 

accuracy was best in the no-suppression/no-suppression 

condition (no articulatory suppression in either encoding or 

retrieval), with participants correctly recognising 11.0 out of 12 

objects per sequence on average. However, accuracy was worst 

in the suppression/suppression condition (9.9 objects 

remembered). Object memory was least accurate when access 

to language was blocked at both encoding and retrieval, in line 

with Experiment 1 but not our predictions. 

Although the BFs showed evidence against both models, we 

ran an exploratory analysis of the individual coefficients in the 

Step 2 model to make a comparison with Experiment 1. 

Articulatory suppression at encoding had a negative effect on 

response accuracy, beta = -0.736, SE = 0.273, z = -2.69, p = 

.007. As predicted, and replicating Experiment 1, removing 

access to language impaired object memory accuracy: when 

access to labels was blocked at encoding, people were 109% 

more likely to make an error when later attempting to recognise 

the object. Unlike Experiment 1, articulatory suppression at 

retrieval had little effect, beta = -0.117, SE = 0.100, z = -1.17, p 

= .243, decreasing the probability of a correct response by only 

12%.  However, the NHST effect of articulatory suppression at 

encoding was not consistent with the Bayesian model 

comparison at Step 2 (which added encoding and retrieval 

effects simultaneously), and so should be treated cautiously. 
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Reaction Time Bayesian model comparison showed equivocal 

evidence for Step 2 over Step 1, BF10 = 0.61. As in Experiment 

1, there was strong evidence at Step 3 against the effect of the 

encoding-retrieval interaction, BF10 = 0.02. 

We used the coefficients in the Step 3 model to estimate the 

marginal mean RT for each condition of encoding × retrieval 

articulatory suppression (see Table 1). Against our predictions, 

but in line with Experiment 1, recognition was best (fastest) in 

the no-suppression/suppression condition (language available 

at encoding but not retrieval), and worst (slowest) in the 

suppression/no-suppression condition (language available at 

retrieval but not encoding). People had most difficulty 

remembering objects when language was blocked at the point 

of encoding but was available at retrieval. 

We report an exploratory analysis of the most likely model of 

fixed effects (Step 2). Articulatory suppression at encoding had 

no effect on speed of recognition, unlike Experiment 1, beta = 

54.22, SE = 149.60, t(43.68) = 0.36, p = .719. Against our 

expectations but in line with Experiment 1, articulatory 

suppression at retrieval reduced RT, beta = -164.91, SE = 43.26, 

t(2430.48) = -3.81, p < .001. People were faster to recognise 

target objects if language was blocked at retrieval. Closer 

examination of RT and accuracy suggested that this may be due 

to a speed-accuracy trade-off, as in Experiment 1. Faster RTs 

due to articulatory suppression at retrieval were accompanied 

by a trend towards poorer accuracy, relative to no-suppression 

conditions (see Table 1). 

Summary The results were broadly in line with Experiment 1 

and support the hypothesis that memory for object concepts 

typically relies on language. Blocking language access while 

encoding a real-world object sequence impaired performance in 

terms of accuracy (but not latency), in line with the idea that an 

object concept is typically stored in WM via sensorimotor 

simulation and its linguistic label, and when only sensorimotor 

simulation is available, memory is adversely affected. 

However, blocking language access while retrieving objects 

from working memory resulted in faster speed of responding 

that was not completely eliminated by methodological changes. 

These results suggest that participants adopted a heuristic 

strategy for responding while performing articulatory 

suppression at retrieval.  For instance, participants may have 

adopted a satisficing approach to selecting the target object, 

based on a rapid assessment of superficial sensorimotor 

similarity between a concept in WM and the objects in the array, 

to compensate for lack of access to linguistic information. 

Alternatively, perhaps the articulatory suppression task itself 

made participants want to get through the task faster, which 

resulted in emphasis on speed at the cost of accuracy.  We plan 

to follow up these possibilities in future work.  

General Discussion 

The study is the first to take a linguistic-sensorimotor 

approach to working memory. We used real-world object 

sequences to account for the complex nature of naturalistic 

concepts that can draw upon information in long-term memory, 

and an articulatory suppression task to investigate the role of 

linguistic labels in working memory for such objects. We found 

that blocking language access at encoding impairs memory 

performance (poorer speed and accuracy in Experiment 1; 

poorer accuracy in Experiment 2), whereas blocking access to 

language during retrieval leads to an apparent speed-accuracy 

trade-off (faster speed and poorer accuracy in Experiment 1; 

faster speed in Experiment 2). 

The results support the sensorimotor-linguistic theories of 

conceptual processing that argue the importance of language in 

conceptual representation (Connell, 2018; Louwerse, 2011), 

and the linguistic bootstrapping hypothesis that proposes word 

labels act as placeholders in mental representations when 

resources are insufficient to maintain a full simulation (Connell 

& Lynott, 2014). When language is available, people encode 

objects in WM with linguistic labels and sensorimotor 

simulations, and when storage is at capacity, the linguistic 

placeholder can free up resources by allowing to drop a 

simulation. Experiment 2 results suggest that linguistic 

bootstrapping allows people to remember one extra concept in 

a sequence of 12 (11 rather than 10).  

We expected memory performance to be impaired the most 

when participants could use linguistic bootstrapping at 

encoding but had no access to object labels at retrieval (no-

suppression/suppression condition). This effect did not appear. 

Instead, when language access was blocked at retrieval, 

participants adopted an alternative, heuristic strategy to 

compensate for it, which resulted in a trade-off between speed 

and accuracy. Participants may have relied on an incomplete 

sensorimotor simulation in working memory (e.g., only the 

shape or the colour of the target object), which allowed them to 

respond quickly, but not always correctly. 

The results highlight the importance of language in working 

memory performance for real-world object sequences. We plan 

to explore encoding and retrieval processes in more detail by 

testing complex stimuli in sequences of varying lengths and 

under time constraints. 
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Abstract 

Young children are selective in deciding whom to help (i.e., 
they preferentially assist and share resources with prosocial 
versus antisocial others; Hamlin, Wynn, Bloom, & Mahajan, 
2011; Vaish, Carpenter, & Tomasello, 2010) but are they also 
selective in deciding how to offer help?  Here we show two to 
five-year-olds (N = 32; mean: 42.41 months; range 27-68 
months) characters who are distressed for different reasons: 
they are hurt, bored, or sad. Children of all ages tried to help 
the agent but the selectivity of children’s responses varied 
with age and condition; in particular, children’s responses to 
boredom and sadness became increasingly differentiated with 
age. 
 

Keywords: helping, empathy, social cognition, theory of 
mind, preschoolers, toddlers 

Introduction 
One of the more charming characteristics of young 

children is that they try to help others, even at ages when 
they themselves need help with almost every aspect of daily 
life.  Toddlers who struggle to put on their own socks will 
open doors and pick up objects for others (Warneken & 
Tomasello, 2006; 2007), point to show others the location of 
hidden objects (Liszkowski, Carpenter, Striano, & 
Tomasello, 2006), hug and pat distressed peers (Friedman, 
Zahn-Waxler, & Radke-Yarrow, 1982), and try to 
understand the causes of others’ distress (Knafo, Zahn-
Waxler, Van Hulle, Robinson, & Rhee 2008; Zahn-Waxler, 
Radke-Yarrow, Wagner, & Chapman 1992; Zahn-Waxler, 
Robinson, & Emde 1992).  Children’s empathetic and 
prosocial behavior increases between two and four years of 
age (Knafo et al., 2008; Volbrecht, Lemery-Chalfant, 
Aksan, Zahn-Waxler, & Goldsmith, 2004; Zahn-Walxer, et 
al., 1992). This is arguably mediated by broad changes in 
their theory of mind (Miller, Eisenberg, Fabes, & Shell, 
1996; Wellman, Cross, & Watson, 2001), specific changes 
in their emotion understanding and emotion regulation 
(Denham, 1998; Eisenberg, Spinrad, & Sadovsky, 2006), 
and increased socialization towards prosocial behaviors 
(Hoffman, 2000). 

But the selectivity of children’s helping behavior also 
increases over development (Hay & Cook, 2007; Hay, 

1994) -- and even the youngest children do not help others 
indiscriminately. Toddlers preferentially help prosocial 
versus antisocial others (Behne, Carpenter, Call, & 
Tomasello, 2005; Dunfield & Kuhlmeier, 2010; Hamlin, et. 
al., 2011; Vaish, et al., 2010).  By three, children consider 
others’ past contributions to shared goals (Baumard 
Mascaro, & Chevallier, 2012) and history of reciprocity in 
deciding how to allocate resources (Olson & Spelke, 2008). 
Four and five-year-olds evaluate relative ability in deciding 
how to divide labor to achieve cooperative and prosocial 
goals (Magid, DePascale, & Schulz, 2018).  By five and six, 
children’s attempts to inform others take into account the 
learners’ prior knowledge, past mistakes, and goals (Gweon, 
Shafto, & Schulz, 2014; Ronfard, Was, & Harris, 2016), the 
transparency and availability of information (Clegg & 
Legare, 2016; Ronfard, Was, & Harris, 2016), and the 
relative costs and benefits of information to the learner 
(Bridgers, Jara-Ettinger, & Gweon, 2016; Gweon & Schulz, 
2019).  

Thus, children’s helping behavior is sophisticated in many 
respects.  However, toddlers and young preschoolers are 
more likely to share resources or provide help with 
instrumental goals than offer comfort (Dunfield, Kuhlmeier, 
O’Connell, & Kelley, 2011; Newton, Thompson, & 
Goodman, 2016; Svetlova, Nichols, & Brownell, 2010).  
Similar results have been found in four and five-year-olds: 
they are more likely to help achieve goals than to share, and 
are least likely to try to offer soothing, encouragement or 
solace (Thompson & Newton, 2013).   

Because very young children are adept at inferring both 
others’ desires (e.g., Meltzoff, Gopnik, & Repacholi, 1999) 
and the goals of their failed intentional actions (e.g., 
Meltzoff, 1999), it may be relatively easy for young children 
to know what resources to offer and what actions to take.  
By contrast, it may be difficult for children to know what 
constitutes a helpful response to someone’s emotional 
distress.  Even as adults, we may understand perfectly well 
that someone is disappointed, agitated, or distraught and still 
find ourselves at a loss as to how to help them.   

However, even if children do not know how best to 
intervene, there is reason to think that they may be attuned 
even to relatively fine-grained distinctions among emotions.  

1690



Within hours of birth, newborns respond differently to 
distinct emotional expressions (Field, Woodson, Greenberg, 
& Cohen, 1982) and by seven months, babies distinguish 
emotions cross-modally and within valence (e.g., generating 
distinct responses to anger and fear; matching happy faces 
to happy voices and interested faces to interested ones; 
Serrano, Iglesias, & Loeches, 1992; Walker-Andrews, 1998; 
see also Soken & Pick, 1999; Soderstrom, Reimchen, 
Sauter, & Morgan, 2017).  Older infants map positively 
valenced emotions to the achievement of goals (Skerry & 
Spelke, 2014), and make nuanced distinctions among 
emotional expressions and connect them to their probable 
eliciting causes (Wu, Muentener, & Schulz, 2018).   

Nonetheless, children’s ability to categorize emotions 
(Widen & Russell, 2008; 2010), and their understanding of 
the way past experiences and social contexts shape the 
experience and expression of emotions (Pons, Harris, & de 
Rosnay, 2004), undergo considerable development between 
preschool and middle childhood.  Emotion regulation in 
particular is relatively protracted (Pons et al., 2004), and this 
may apply to the ability to regulate other’s emotions as well 
as one own.  Moreover, perhaps the most common way to 
try to regulate someone else's negative emotions is to talk to 
them, thus offering comfort might place high verbal 
demands on children.  The infrequency with which young 
children offer comfort may reflect limitations on their 
fluency, not their insight or compassion.  In the current 
study, we remove linguistic demands by giving children a 
choice of objects that might be helpful, allowing us to ask 
whether children can calibrate their responses to the 
particular nature of others’ distress. 

Here we focus on two to four-year-olds because we know 
children in this age range can use social and moral 
evaluation to decide whom to help (Behne et al., 2005; 
Dunfield & Kuhlmeier, 2010; Vaish et al., 2010; Baumard, 
et al., 2012; Olson & Spelke, 2008) but the degree to which 
they use social cognition to make distinctions about how to 
help remains an open question. We show children characters 
who are upset for one of three reasons: they have scraped 
their knee and are hurt, there is nothing to do and they are 
bored, or their parent has left them at daycare and they are 
sad.  In all cases, children are given a choice of three 
candidate offerings: a Band-Aid, a novel electronic toy, or 
the victim’s favorite stuffed animal. We selected these 
pairings because both the emotional states and the stimuli 
should be familiar to children in this age range and yet the 
complexity of the inferences required to intervene upon the 
emotional states might differ across categories.  In 
particular, children’s tendency to choose an intervention 
might be related to the intuitive likelihood that the 
intervention would successfully change the agent’s state.   

Children have abundant experience with minor scrapes 
and bumps (Fearon, McGrath, & Achat, 1996), and in the 
United States, “booboos” are reliably linked with Band-
Aids.  Crying in response to a minor injury is an ambiguous 
response with respect to the extent to which it reflects a 
physiological response to pain or an emotional response to 

the fear associated with the pain, but in either case, from the 
perspective of a child, a Band-Aid may seem to solve the 
underlying problem. By contrast, there is no single 
canonical response to either boredom or sadness; 
intervening on these emotional states requires both 
understanding why the person feels as she does and 
understanding the role that the various choices may play in 
changing this state. Nonetheless, the link between boredom 
and novelty is arguably almost as straightforward as the link 
between booboos and Band-Aids: Children themselves 
respond to novelty with interest (Berlyne, 1950; Hutt, 1970) 
and providing something that is interesting effectively 
solves the problem of being bored.  However, the distress of 
an agent who is sad about a separation is more complex.  
Children commonly regulate their sadness at separation 
from attachment figures with transitional objects (Kopp, 
1989; Winnicott, 1986). Critically however, the intervention 
serves to regulate the distressed emotion rather than to 
resolve it (i.e., the only intervention that really solves 
sadness at separation from a loved one is for the loved one 
to return).  Thus, although pilot data suggests that adults 
would offer Band-Aids, novel toys, and favorite stuffed 
animals in response to pain, boredom, and sadness 
respectively, children might well find some of these 
mappings easier than others. 

Of course, if children offer anything at all to an agent who 
is upset, they are providing an empathetic, prosocial 
response, and any well-intentioned intervention may be 
effective even if it is not directly connected to the 
underlying concern. Band-Aids can alleviate boredom and 
sadness; novel toys can distract from sadness and pain, and 
stuffed animals can help with both pain and boredom.  
Perhaps more critically, engagement, attention, and 
sympathetic concern may go a long way towards resolving 
distress, independent of the degree to which any given 
intervention is specifically tailored to the source of the 
recipient’s woes.  

Nonetheless, commonsense suggests that some of these 
offerings are more likely to be effective in some contexts 
than others, and the early sophistication of children’s 
helping behavior may relate to sensitivity to the contents of 
others’ minds and overall social acuity.  Thus, here we ask 
whether two to four-year-olds offer emotional comfort 
indiscriminately or whether they are sensitive to how 
different interventions might best alleviate different kinds of 
emotional distress.  

Experiment 

Participants 
Thirty-two children (M = 42.41 months, range: 27-68 
months) were recruited from an urban children's museum. 
Six children failed a practice trial but excluding them from 
the analysis made no difference to the results. Five 
additional children were recruited but excluded from 
analysis due to incomplete participation (N = 1), parental 
interference (N = 2), and incomplete consent forms (N = 2). 
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While most of the children were white and middle class, a 
range of ethnicities and socioeconomic backgrounds 
reflecting the diversity of the local population (47% 
European American, 24% African American, 9% Asian, 
17% Latino, 4% two or more races) and the museum 
population (29% of museum attendees receive free or 
discounted admission) were represented. 

Materials 
In the practice trial an Ernie puppet from Sesame Street and 
two toys (a squishy ball and a plastic strawberry) were used. 
The test trial materials included six Paw Patrol Band-Aids 
each depicting a different or different set of characters from 
the children’s series; six unique toys that lit-up, made funny 
sounds, and/or spun; and six unique stuffed animals.  The 
materials were arranged on a plastic tray so that one 
material of each of the three kinds was placed on the tray 
(left/right/middle arrangement counterbalanced); children 
were presented with a different set of three items on each 
trial.  (See Figure 1 for example presentation set).  We also 
used six pairs of hand puppets; each pair had a parent and a 
child puppet. Stickers and a sticker “bookmark” were used 
to keep the children on task.  See Figure 1 for examples of 
the stimuli. 
 

 
 
Figure 1: Examples of the puppets (left) and the toy, 
stuffed animal, and Band-Aid (right) 

Procedure 
Children were tested individually in a private testing room.  
Children participated in a practice trial and six test trials, 
two of each kind (Hurt, Bored, and Sad).  Sessions began 
with the experimenter explaining the task: "We're going to 
do six puppet stories okay? After each one, you get to put a 
sticker on this bookmark. Once we finish all six stories, you 
get to take the bookmark home. Does that sound good? 
Great! Before we start, we're going to do a practice story."  
 
Practice Trial: The experimenter brought out the Ernie 
puppet and said, "This is my friend Ernie. He's really 
hungry. He hasn't eaten all day.” Then the experimenter 
introduced the tray with the squishy toy and the strawberry.  
“Here we have a squishy toy and a strawberry. Which one 
of these things do you want to give him to make him feel 
better?" Choosing the correct option, the strawberry was 
met with positive feedback (Ernie said “thank you" and 
pretended to eat the strawberry “mm, mm, mm”); choosing 
the incorrect option was met with neutral feedback ("thank 

you").  Regardless of whether children passed the training 
trial, they continued onto the test trials.  

Figure 2: Example of the script and the three scenarios. 
 

Test Trial Each test trial began with the introduction of the 
child puppet and three things in his preschool: a new toy 
that the puppet had never seen before, the puppet's favorite 
stuffed animal, and a Band-Aid. The child was given each 
item one at a time and told to place the item in the tray once 
they were done looking at it. Children were allowed to play 
for as long as they liked to minimize the chance that 
children would choose an item just to play more with it. 
Children heard a core story and one of three possible 
endings: Hurt, Bored, and Sad. In the Hurt condition, the 
child puppet tripped and hurt his knee; in the Bored 
condition, the puppet got bored; in the Sad condition, the 
puppet got sad because he misses his mom. Participants 
were prompted to pick an item from the tray that would 
make the child puppet feel better.  (See Figure 2 for an 
example.)  Children received neutral feedback ("thank you" 
or "thanks for helping"); then a new pair of puppets and a 
new tray with three different items, one of each kind, was 
introduced.  The scenarios were presented in random order 
for the first three trials and this order was repeated for the 
last three trials. 

Results 
Children were counted as performing correctly if they chose 
the Band-Aid for the Hurt scenarios, the new toy for the 
Bored scenarios, and the stuffed animal for the Sad 
scenarios.  There was no effect of order on children’s 
performance (Kruskal-Wallis rank sum test, p = .44).   

Children had a choice of three items on each of the six 
trials.  They received one point for each correct choice.  
Overall, children performed above chance (mean = 3.5; one-
sample t-test, p < .0001). Only one child (the oldest) 
performed at ceiling but nine of the thirty-two children 
(28%) answered five of the six questions correctly (p < 
.0001 by binomial test). There was an effect of age on 
children’s overall score (r2 = 0.15, p < .0001; see Figure 3); 
older children performed better, and as clear in Figure 4, the 
effect was driven primarily by improvement in the Sad 
condition. 

 

This	is	my	friend	Charlie...	let's	see	what's	in	Charlie's	preschool.	Oh	look	a	Band-Aid!	Isn't	
that	nice?	Hmm,	what	else	is	in	Charlie's	preschool.	Oh	wow,	it's	a	cool	toy	that	Charlie's	
never	seen	before.	Isn't	it	neat?	Let's	see	what	the	last	thing	in	Charlie's	preschool	is.	it's	
his	favorite	stuffed	animal.	Isn't	it	cute	and	fluffy?	Okay,	let's	point	to	the	things	in	the	
tray.	Can	you	show	me	which	one	is	the	toy	Charlie's	never	seen	before?	Great,	what	

about	his	favorite	stuffed	animal?	Good	job,	and	the	Band-Aid?	Perfect!	Let's	put	the	tray	
to	the	side	and	hear	the	rest	of	the	story	(puts	tray	out	of	sight).	This	is	Charlie's	mom	
and	she	walks	with	him	to	school	everyday.	Here	they	are	walking	to	school	'walk	walk	
walk	walk	walk	walk	walk'	Once	they	get	there,	she	gives	him	a	nice	big	hug	'mmmmm'	

and	a	kiss	'mwah'	and	then	she	leaves.	

Charlie	looks	around	and	gets	
really	excited	to	play	with	

everything,	so	he	starts	to	run	
to	the	playground	and	then	
he	trips	"waaaa,	my	knee!	oh	
no	I	cut	my	knee	waaaa."	oh	
no	Charlie's	hurt.	He	cut	his	
knee.	Is	there	something	

here,	in	this	tray,	you	can	give	
him	to	make	him	feel	better?	

Charlie	looks	around	and	says,	
"Huh,	I'm	bored.	I'm	really	
bored.	I've	played	with	this,	
I've	played	with	that	and	I've	
played	with	that.	Humpf."	
Charlie's	bored.	Is	there	

something	here,	in	this	tray,	
you	can	give	him	to	make	him	

feel	better?	

Once	she	leaves,	Charlie	
gets	really	sad.	"Oh	I	miss	
my	mommy,	I	really	really	

miss	my		mommy"	
Charlie's	sad.	He	misses	
his	mommy.	Is	there	

something	here,	in	this	
tray,	you	can	give	him	to	
make	him	feel	better?	
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Figure 3: Children’s overall score as a function of age 
 

 
 
Figure 4: Children’s responses by age and condition  
 
The kind of scenario affected children’s score (Test of 

Equal Proportions, p < .001); thus we used pairwise 
comparisons to look within each scenario at children’s 
performance.  Children performed better in both the Hurt 
and Bored conditions than in the Sad condition (Hurt versus 
Sad;  p < .001; Bored vs. Sad, , p < .05; see Figure 5); 
children’s performance in the Hurt and Bored conditions did 
not differ from each other (Hurt vs. Bored; p = .26).  Within 
each condition, children performed above chance in both the 
Hurt (p < .0001 by Test of Equal Proportions) and Bored 
conditions (p < .0001); but their scores in the Sad condition 
were not significantly different from chance (p = 0.78). 

 
 
Figure 5: Children’s choice of each of the three responses 

by condition 

Discussion 
Above all, these results suggest that, at least in simple 

forced choice contexts with low verbal demands, very 

young children’s helping behavior is not restricted to 
resource sharing or assisting with functional, goal-directed 
actions; children seek to help relieve others’ distress and do 
so in ways that are responsive to distinct sources of negative 
affect. Although children’s ability to calibrate their response 
to the emotional state improved over development, even 
children as young as two and three distinguished upset due 
to pain and upset due to boredom and generated distinct, 
appropriate responses.   

As predicted however, children had more difficulty 
knowing how to respond to distress due to a separation.  We 
hypothesized that this might be because the impact of the 
intervention on the outcome was more uncertain. None of 
the candidate options would directly remove the source of 
distress; the best children could do would be to offer 
something that would help moderate it.  There are 
possibilities however.  Children may simply have preferred 
the fun toy to the stuffed animal – inflating their 
performance in the Bored condition and impairing it in the 
Sad condition.  We think this interpretation is unlikely 
however, given both the method and results: We 
intentionally allowed children to play with each item to 
satiation in advance to wash out any differential stimuli 
effects, and children had no difficulty overcoming any 
preference for the toy in the Hurt condition.   

Alternatively, young children might genuinely believe 
that the other options (toys or Band-Aids) were more likely 
to provide comfort than the stuffed animal – and indeed, at 
least for some children, in some contexts, this might be 
correct.  Indeed, emotion regulation is challenging because 
there are no determinate rules: what works one time might 
not work the next, and what works for one person might not 
work for another.  Nonetheless, within a given culture and 
context, there is a probabilistic relationship between certain 
responses and outcomes, and the current results suggest that 
children begin to learn these relations over the preschool 
years.  Future research might extend this study to older 
children to see if their responses are adult-like or even 
provide children with the option to not help the puppet.  
Future research might also look at children’s sensitivity to 
culturally specific, or family specific, dimensions of 
emotion regulation to look at how socialization affects 
children’s responses. 

Overall however, these results suggest that children’s 
empathetic responses are not monolithic.  With apologies to 
Tolstoy, even two-year-olds seem to recognize that every 
unhappy puppet is unhappy in its own way – and they offer 
solace accordingly. 
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Abstract

Transfer learning is fundamental for intelligence; agents ex-
pected to operate in novel and unfamiliar environments must
be able to transfer previously learned knowledge to new do-
mains or problems. However, knowledge transfer manifests
at different levels of representation. The underlying compu-
tational mechanisms in support of different types of transfer
learning remain unclear. In this paper, we approach the transfer
learning challenge by decomposing the underlying computa-
tional mechanisms involved in bottom-up associative learning
and top-down causal schema induction. We adopt a Bayesian
framework to model causal theory induction and use the in-
ferred causal theory to transfer abstract knowledge between
similar environments. Specifically, we train a simulated agent
to discover and transfer useful relational and abstract knowl-
edge by interactively exploring the problem space and extract-
ing relations from observed low-level attributes. A set of hier-
archical causal schema is constructed to determine task struc-
ture. Our agent combines causal theories and associative learn-
ing to select a sequence of actions most likely to accomplish
the task. To evaluate the proposed framework, we compare
performances of the simulated agent with human performance
in the OpenLock environment, a virtual “escape room” with a
complex hierarchy that requires agents to reason about causal
structures governing the system. While the simulated agent re-
quires more attempts than human participants, the qualitative
trends of transfer in the learning situations are similar between
humans and our trained agent. These findings suggest human
causal learning in complex, unfamiliar situations may rely on
the synergy between bottom-up associative learning and top-
down schema reasoning.

Introduction
The human capacity for inferring causal relations in un-
familiar environments is a hallmark of human intelligence
(Mackie, 1974) that is often taken for granted in daily life. An
illustrative example is that of the escape room—a prevalent
social activity where groups of people inside of a locked room
work together to complete sub-goals (puzzles) to achieve the
goal—escape from the room. In order to succeed, teams
must: (i) identify goal-relevant entities in the environment
among distractors, (ii) develop a causal model for individual
sub-goals, and (iii) interact with scene components to refine
entity- and goal-based hypotheses. In this paper, we propose
that inference in scenarios like the one above depends on two
critical learning components. First, attributes relevant to can-
didate causal hypotheses are learned by interacting with en-
tities in the scene, and second, causal hypotheses are refined
based on newly encoded attribute-based knowledge.

It is worth noting that the above approach is generally in-
consistent with early studies on causal learning in psycholog-
ical research (Holyoak & Cheng, 2011). Early studies pri-

marily focused on animal learning and conditioning experi-
mental paradigms, framing causal understanding as learned
stimulus-response relationships attained primarily through
observation (e.g., Shanks and Dickinson (1988)). Given as-
sociative weights on cue-effect links, the Rescorla-Wagner
model was often utilized to explain how humans (and non-
humans) construct expectations based on the co-occurrence
of perceptual stimuli (Rescorla & Wagner, 1972). However,
the knowledge that people have about causal mechanisms in
the distal world has been shown to extend beyond the co-
variation between observed (perceptual) variables. For in-
stance, adults interact with dynamic physical scenarios in
ways that maximize information relevant to their causal hy-
potheses (Bramley, Gerstenberg, Tenenbaum, & Gureckis,
2018), and even infants test their beliefs about the physical
characteristics of objects through exploration and experimen-
tation (Stahl & Feigenson, 2015).

Contrary to the associative account, researchers have
demonstrated that human learning and reasoning in novel
(causal) environments rely heavily on the discovery of ab-
stract causal structure (Waldmann & Holyoak, 1992) and
strength (Cheng, 1997) rather than purely associative (sta-
tistical) dependencies. More recently, the integration of
causal graphical models and Bayesian statistical inference
(i.e., Bayes nets) has provided a general representational
framework for how this structure and strength is learned
and transferred to novel situations (Griffiths & Tenenbaum,
2005, 2009; Tenenbaum, Griffiths, & Kemp, 2006; Bramley,
Lagnado, & Speekenbrink, 2015; Bramley, Dayan, Griffiths,
& Lagnado, 2017; Edmonds et al., 2018; Holyoak & Cheng,
2011). Under this framework, causal knowledge plays an
essential role in constructing a flexible model of the world
in which environmental states represent some status in the
world, and connections between states imply the strength of
a causal relationship.

We propose that creative discovery in novel domains re-
lies on both causal structure and associations. Knowledge
of causal structure enables agents to simulate how interven-
tions will influence the environmental state, and without asso-
ciations to guide exploration, the number of causal hypothe-
ses to consider becomes intractable. For problem domains
where the number of possible interventions is particularly
high, the need for associative “guidance” can drastically im-
prove decision-making. To solve this problem, we propose
a computational model that integrates two learning mecha-
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nisms: (i) a bottom-up process that determines which object
attributes are causally relevant, and (ii) a top-down process
that learns which abstract causal structures accomplish a task.
The outcomes of actions are used to update the causal hy-
pothesis space, and simulated agents learn a dynamics model
capable of solving a challenging task.

We implement the proposed model in a virtual “escape
room” environment where agents (human and artificial) are
trapped in a room containing a single locked door and a set of
conspicuous levers. The door of this room will unlock after
the agent has interacted with the levers in a specific sequence.
An agent placed in such a room may begin to randomly push
or pull on the levers and revise their theory about the door’s
locking mechanism based on observed changes. Once an
agent discovers a single solution, they are placed back into
the same room and tasked with finding the next solution. The
agent “escapes” from a room after finding all of the solutions
which can be used to unlock the door.

After escaping from a room, agents are placed in a similar
room but with newly positioned levers. Although the levers
are in different positions, the new room is governed by the
same abstract rules as the last (unknown to the agent). Thus,
the agent’s task is to identify the role of each lever in a new
room. If the agent makes use of some knowledge from pre-
vious trials, we expect to observe fewer attempts in solving
the problem. Because these rules are abstract descriptions of
the latent state of the escape room, we refer to the underly-
ing theory as a causal schema (i.e., a conceptual organiza-
tion of events identified as cause and effect; Heider, 1958).
Once learned, this schema enables agents to transfer between
different arrangements of levers in the room. The present
work models the causal learning process from a hierarchical
Bayesian perspective and makes three major contributions:
1. Utilizes a bottom-up associative learning paradigm to de-

termine which attributes of the scene contribute to causal
relations.

2. Utilizes a top-down causal schema model of the general-
ized operation of the environment to quickly adapt to sim-
ilar but new scenarios.

3. Leverages causal hypotheses to learn a world model capa-
ble of transferring knowledge between seemingly dissim-
ilar but structurally and causally equivalent environments.

The remainder of the paper is structured as follows. First, the
OpenLock environment and experimental procedure are de-
scribed, followed by an analysis of human performance from
Edmonds et al. (2018). Next, components of the proposed
model are described and corresponding results are provided.
Finally, the paper concludes with a discussion of results and
directions for future work.

Experiment: OpenLock Task
Participants
A total of 160 undergraduate students (114 female; mean
age= 21.6) from the University of California, Los Angeles
(UCLA) Department of Psychology subject pool and were
compensated with course credit for their participation.

Arm

Lever

Door

button

Door

(a)

(b)

(c)
Figure 1: (a) Initial configuration of the room containing
three active levers. All levers begin pulled toward the robot
arm located at the center of the display. The arm interacts
with levers by pushing/pulling them outward/inward. Only
push actions are needed to unlock the door in each room (un-
known to agents). White levers never move; this information
is not explicitly stated. Once the door is unlocked, the green
button can be clicked to command the arm to push the door
open. The black circle located opposite the door’s red hinge
represents the door lock indicator (present if locked, absent if
unlocked). (b) Pushing on a lever. (c) Opening the door by
clicking the green button.

Materials and Procedure
In this section, we outline the OpenLock task, initially pre-
sented in Edmonds et al., 2018. In the task, agents are re-
quired to “escape” from a virtual room by unlocking and
opening a door. The door unlocks after manipulating the
levers in a particular sequence (see Figure 1). Each room
consists of seven levers surrounding a robotic arm that can
push or pull on each lever. While a subset of the levers is al-
ways involved in the locking mechanism (i.e., active levers;
colored grey), other levers are not causally relevant (i.e., in-
active levers; colored white). Agents observe the color of the
levers and are expected to learn that grey levers–but not white
levers–are always part of solutions in each room. Importantly,
agents are tasked with finding all possible solutions for open-
ing the door within a room. Participants are explicitly told
that their goal is to open the door and are informed of how
many solutions they have remaining in this room.1

The mechanics underlying the environment obey one of
two causal schemas: Common Cause (CC) and Common Ef-
fect (CE) (see Figure 2). Requiring agents to find all solutions
within a specific room ensures that agents abstract CC or CE
schema structures. While a single solution corresponds to a
single causal chain, a schema relies on nodes that are shared
between multiple chains. Agents operate under a movement-
limit constraint, where only three movements can be used to
either (i) push or pull on levers (active or inactive), or (ii)
push open the door. This constraint was placed on the agent
to confine the search depth of possible solutions. After three
movements, the episode terminates and the environment re-

1The video instructions presented to participants can be viewed
at https://vimeo.com/265302423
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CC3
L0

L1 L2

D D

(a)

CE3
L1 L2

L0

D

(b)
Figure 2: Common Cause (CC) and Common Effect (CE)
structures used in the OpenLock task, in which Li indicates a
lever in the scene, and D indicates the effect of opening the
door. In (a) CC3 and (b) CE3 condition, both include three
causal cues but with different causal structures.

sets, regardless of the outcome. Agents also operate under
a limited number of episodes (30) in a particular room, re-
gardless of whether all solutions are found. We denote three
movements as an attempt and each room as a trial. After
completing a trial, agents move to a new trial (i.e., room)
with the same underlying causal schema but a different lever
arrangement. This setup ensures that agents do not overfit
their understanding of the environment to a single trial; i.e., if
agents are forming a useful abstraction, the knowledge they
acquired in previous trials should aid in their ability to find
all solutions in new trials. Note that in a 3-lever room, an op-
timal agent should produce both solutions within 3 attempts.
One attempt may be used to identify the role of the observed
levers in the abstract structure, and the remaining attempts are
used for each solution.

Human Results
The analyses reported herein expand on previous behavioral
findings by examining the number of attempts needed to find
each solution rather than accumulating all solutions (see Hu-
man Data, Edmonds et al., 2018). The purpose of this ex-
ploration was to tease apart the separate learning components
involved in the OpenLock task. Participants who failed to find
all solutions in the allotted maximum number of attempts in
any trial were removed from the analysis (24 participants re-
moved from each condition). Eighty human participants were
assigned to each condition (CC and CE).

We first examined whether the number of attempts needed
to find each solution varied across trials. The behavioral data
from each experimental condition is depicted in Figure 4.
For participants who trained under a Common Cause (CC)
schema, attempts needed to find the first solution decreased
significantly following both the first trial (t(55)= 6.80; p<
.001) and second trial (t(55)= 2.52; p= .02). First solution
attempts also showed a marginal decrease following the fifth
trial (t(55)= 1.99; p= .051). For the second solution, the
number of attempts needed decreased significantly following
the first trial only (t(55)= 4.40; p< .001). A similar trend
was observed for participants assigned to the Common Ef-
fect (CE) condition—attempts needed to find the first solution
decreased following the first trial (t(55)= 5.30; p< .001) and
third trial (t(55)= 2.19; p= .03), and attempts needed to find
the second solution decreased following the first trial only
(t(55)= 2.36; p= .02).

The human results demonstrate that regardless of which
causal schema participants trained with, significant learning
appeared to occur in the early trials for both the first and sec-
ond solution. However, the learning rate for the first solution
was much faster, and the learning rate for the second solution
was relatively less pronounced. In the next sections, we de-
scribe our computational approach and report whether it can
account for human performance.

Model Details
We begin by describing our agent’s process for combining
top-down (abstract) causal knowledge with bottom-up (asso-
ciative) attribute knowledge. The agent decides which action
to perform by (i) computing the posterior probability of each
candidate causal chain and (ii) making a selection using the
computed posterior and a model-based planner.

Causal Theory Induction: To explain trends in human per-
formance, we follow a Bayesian account of how hierarchical
causal theories can be induced from data (Griffiths & Tenen-
baum, 2005, 2009; Tenenbaum et al., 2006). The key insight
in this framework is that hierarchy enables abstraction, and
theories provide general background knowledge about a task
or environment at the highest level. Theories consist of prin-
ciples; for example, an analysis of evolutionary traits between
species can be represented with a taxonomic tree and muta-
tion processes (example from Tenenbaum et al. (2006)). Prin-
ciples lead to structure; for example, a tree describing how
primates evolved and split into species over time. Finally,
structure leads to data; such as shared genes among primates.

The goal of this work is to model a human decision-
making process where agents are required to learn transfer-
able knowledge between different yet similar environments.
We approach the problem from the perspective of active
causal theory learning, where we expect an agent endowed
with no information to learn the underlying abstract mechan-
ics and commonalities between environments through inter-
action. This approach naturally places the focus of the learn-
ing task on how the agent decides the best action to take next
and how to effectively integrate the results into the agent’s
model of the world.

In this work, we adhere to two general principles of learn-
ing: (i) causal relations induce state changes in the envi-
ronment, and non-causal relations do not (referred to as our
bottom-up β theory), and (ii) causal structures that have pre-
viously been useful may be useful in the future (referred to
as our top-down γ theory). Specifically, the environment
provides a set of attributes, such as position and color, and
our agent learns which attributes are associated with levers
that induce state changes in the environment. Our agent
also learns a distribution over abstract causal structures (i.e.,
schemas) that provide generalized notions of task structure.

We define a causal chain hypothesis space, ΩC, over pos-
sible causal chains, c∈ΩC. Figure 3b shows the structure of
the causal chain. Each chain is defined by a tuple of sub-
chains c=(c0, . . . ,ck), where each subchain is defined as a
tuple ci =(ai,si,cra

i ,crs
i ). Each ai represents an action node

that the agent can intervene on (execute), and the space of ac-
tions, ΩA, consists of pushing and pulling on every lever and
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Abstract schema, gA
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Figure 3: (a) An illustration of hierarchical structure of the
model. A bottom-up associative learning theory, β, and a top-
down causal theory, γ, serve as priors for the rest of the model.
The model makes decisions at the causal chain resolution. (b)
Atomic causal chain. The chain is composed by a set of sub-
chains, ci, where each ci is defined by: (i) ai, an action node
that can be intervened upon by the agent, (ii) si, a state node
capturing the time-invariant attributes and time-varying flu-
ents of the object, (iii) cra

i , the causal relation between ai and
si, and (iv) crs

i , the causal relation between si and si−1.

pushing on the door. Each si represents a state node. The state
node is defined as a tuple, si =(φi, fi), where φi is a vector
of time-invariant attributes and fi is a vector of time-varying
fluents. The state node is influenced by taking action ai ac-
cording to the causal relation cra

i and may be affected by a
previous state node through the causal relation crs

i . For in-
stance, in Figure 1a and Figure 3b, the action push for the
leftmost lever may transition the lever from the fluent pulled
to pushed through cra

0, which in turn transitions the upper-
most lever from locked to unlocked according to crs

1.
The space of attributes is denoted as Ωφ, consisting of po-

sition and color. The space of fluents, ΩF , consists of bi-
nary values for lever status (pushed or pulled) and lever lock
status (locked or unlocked). The space of states is defined
as ΩS =Ωφ×ΩF . The space of causal relations is defined
as ΩCR =ΩF×ΩF , capturing the possibly binary transitions
between previous fluent values and the next fluent values.

We assume agents can directly intervene on (i.e., control)
actions, but cannot directly intervene on fluents. This distinc-
tion adds significantly more complexity to the causal chain
hypothesis space but means that we do not assume the effects
of actions, nor do we assume an agent can directly intervene
on the value of a particular fluent. We assume that an agent
can execute any action within the action space (through an
intervention on the action node in the causal chain), but how
that action affects the state of the world must be learned (i.e.,
the effects of the actions are learned).

Decomposing states into time-invariant attributes and
time-varying fluents aids in the computational complexity of
learning and inference; our agent assumes attributes cannot
be changed by actions or other states. In addition, because
the attributes are time-invariant, attributes offer a grounding
upon which the agent can learn knowledge, regardless of the
executed action sequence or lever configuration. In contrast,
the fluents are time-varying and include the latent state of the
lever’s internal locking mechanism; i.e., locked or unlocked.

The agent learns how to influence these latent states through
observational cues about which attributes are associated with
a particular fluent. Attributes are defined by low-level fea-
tures of an object, e.g., position, color, shape, orientation,
etc.. These low-level attributes provide general background
knowledge about how specific objects change under certain
actions (for instance, which levers can be pushed or pulled).

A background theory encodes general knowledge that can
be used to induce or evaluate a structural representation. We
use two background theories—one for bottom-up features,
denoted β, to learn beliefs about which attributes of objects
indicate the object can be interacted with to produce a causal
effect. This low-level knowledge about object attributes and
their propensity to be involved in causal relationships pro-
vides information to transfer between similar but different en-
vironments governed by common underlying dynamics. The
second background theory provides a top-down abstraction,
denoted γ, that assumes tasks have similar causal structure
across slightly different environments; i.e., changes in the ob-
servable environment do not alter the underlying causal struc-
ture of a task.

Attribute Learning: Attributes provide time-invariant
properties of an object. Categories of objects often share
common attributes; e.g., all cups share a common shape, all
stop signs are red, etc.. However, objects in a category may
vary in their physical form but share common functionality;
for instance, light switches come in a number of shapes and
sizes, but all examples share a common mechanism to transit
between states.

We learn which attributes are relevant to our causal hy-
potheses via a Bayesian learning process, based on our
assumption that causal relationships induce state changes.
Therefore, an object changing states under an action indi-
cates that the object’s attributes may be related to a causal
relationship. These attributes provide generalization clues for
the agent, such as insights into which low-level attributes in-
dicate that the corresponding object is part of a solution. This
knowledge is invariant across trials and causal schemas.

The agent’s belief in an attribute being causal is mod-
elled with a multinomial distribution Mult(θ) parameterized
by θ. The posterior distribution of θ given observed data X
and the bottom-up theory β follows a Dirichlet distribution:
p(θ|X;β)=Dir(α′), where α′ is given by a maximum a pos-
teriori (MAP).

Attributes are learned in two different time scales: a global
timescale to learn attributes across all trials (between tri-
als) and a local timescale to learn attributes specific to this
trial (within trials). This separation allows the agent to
adapt quickly to trial-specific knowledge while maintaining
a global understanding across all trials. In each timescale, we
perform this attribute learning in the following steps: (i) draw
a sample (produce an observation by selecting an intervention
and observing the result), (ii) accept the sample if the envi-
ronment changed state in any way (i.e., there was an effect
from the intervention), and (iii) increase α of each attribute’s
Dirichlet distribution according to observed outcome.

A Dirichlet distribution, Dir(αG), is used to model the pos-
terior of the global attribute distribution. After finishing a
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trial, the agent’s global Dirichlet parameters, αG, are updated
to incorporate the observed data within a trial.

For each trial, we initialize the parameters of the local at-
tribute Dirichlet distribution, Dir(αL), with a scaled sample
from the global Dirichlet, αL = kθ, where θ∼Dir(αG). This
scaling factor k reduces the variance and enables fast adapta-
tion of the agent’s local attribute beliefs. In our experiments,
we set k to initialize the local Dirichlet to have αL ∈ [1,10].

We introduce an additional variable, ρ to represent a casual
event according to our background theory β; i.e., that causal
events induce state changes in the environment. We use a
local prior over attributes as our bottom-up associative learn-
ing theory. We compute the likelihood that the attributes of
a particular chain c are causally relevant given a background
theory β as:

p(ρ|c;β)= ∏
ci∈c

p(ρi|ci;β), (1)

where p(ρi|ci;β) is computed as

p(ρi|ci;β)∝ ∏
φi j∈si
si∈ci

p(ρi|φi j;β) (2)

where φi j is the j-th attribute from the i-th subchain. The
term p(ρi|φi j;β) represents the probability that attribute φi j
adheres to the background theory β. Here, β represents the
probability that attribute φi j is associated with objects that in-
duce state changes. Note that p(ρi|φi j;β) is parameterized by
a sample from the local attribute Dirichlet distribution. After
finishing an attempt, we update the parameters αL of the lo-
cal distribution to incorporate the outcome of the attempt and
resample θ.

Recall our associative theory: causal relationships induce
state changes in the environment; practically, p(ρi|φi j;β) rep-
resents the probability that attribute φi j is associated with ob-
jects that produce state changes, under the assumption these
attributes are independently associated with causal events. In
our domain, an agent using this theory should learn that grey
levers are involved in causal events and white levers are not.
Additionally, the agent should initially believe that position
is an important attribute for detecting causal relationships.
However, as the agent observes multiple configurations of
levers with different positions of grey levers, every position
will be involved in causal events, and therefore this belief
should approach the uniform distribution.

This bottom-up inference enables agents to leverage low-
level associative information about causal relationships. We
then transfer this belief between trials, thereby enabling our
agent to leverage the knowledge acquired in one trial to trans-
fer to the next trial. The agent updates its belief regarding
which attributes it believes are causal after each attempt.
Abstract Schema Learning: Learning attributes that cor-
respond to causal cues is critical for an agent expected to learn
how an environment operates. However, many environments
share common high-level abstract causal structures. For in-
stance, switches come in all different shapes and sizes tailored
to specific tasks—from a light switch to a circuit breaker to

a railroad switch. Each of these domain-specific mechanisms
share a common abstract functionality—changing the state of
some object from one discrete state to another.

We propose a model to learn abstract structural models that
can be used to instantiate domain-specific models to achieve a
task in an environment. This abstract knowledge is assumed
to be useful across domains, and agents may acquire a col-
lection of useful abstract models of different functionality.
Our model considers learning abstract knowledge as a form
of model selection, where the agent hypothesizes a space of
potential abstract structures and updates the beliefs in those
abstract structures based on its experience in the environment.

More specifically, we consider an abstract causal schema,
gA, from a hypothesis space of abstract schemas, ΩGA , to be
a structural description of some causal relationships (see Fig-
ure 2). The space ΩGA is enumerated in this work; i.e., all pos-
sible structural combinations of N = 2 trajectories (i.e., causal
chains) with length K = 3 are considered (since there are two
solutions and three actions per attempt). We introduce a prior
over abstract schemas, p(gA;γ), that is a multinomial distribu-
tion parameterized using a sample from the abstract schema
Dirichlet distribution, Dir(αA). After completing a trial, the
abstract schema that encodes the solutions found in this trial
receives a parameter update in the Dirichlet distribution—i.e.,
an increase to the solution abstract schema’s αA.

These abstract structures are not bound to any particu-
lar instantiation of attributes, states, or actions. Instead,
they encode common structural properties under varying
instantiations—knowledge that may be useful when an ob-
servational setting is changed. In our task, abstract schemas
encode the abstract structures, some of which are useful for
solving OpenLock (i.e., CC or CE), and we should expect
agents to have a biased prior towards these structures.

Next, we consider an instantiated schema, gI , to be a com-
position of causal chains, c∈ΩC. Instantiated schemas share
the same structure as abstract schemas, but contain specific
assignments for each ai, si, cra

i , and crs
i of each subchain in

the schema. We compute the belief in an instantiated schema
gI according to the hierarchical structure in Figure 3a:

p(gI |do(q);γ)= ∑
gA∈ΩGA

p(gI |gA,do(q))p(gA;γ), (3)

where do(q) represents an intervention where the agent per-
forms q—the solutions found thus far, a set of action se-
quences q= {A0,A1, . . . ,An}, where Ai is an action sequence.
The do() operator is the intervention operation presented by
Pearl (2009), which allows the agent to bias its top-down in-
ference towards instantiated schemas that contain solutions
already found. Next, we compute the top-down belief in a
causal chain by summing over instantiated schemas that con-
tain the chain:

p(c|do(q);γ)= ∑
gI∈ΩGI

p(c|gI ,do(q))p(gI |do(q);γ). (4)

These terms enable top-down inference on which chain is
most likely to adhere to instantiated schemas that reflect ab-
stract causal structures that have been useful in the past.
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Learning which abstract schemas were successful in previ-
ous trials can be leveraged when the agent faces a new room
configuration with the same underlying abstract mechanism
governing the lock.

Intervention Selection: We formulate our intervention se-
lection as a combination of the top-down and bottom-up
causal chain beliefs, and we consider our learning mecha-
nisms, γ and β, to be independent. We compute the poste-
rior of the chain based on our top-down belief and bottom-up
likelihood, assuming a uniform prior p(ρ):

p(c|ρ,do(q);γ,β)∝ p(c|do(q);γ)p(ρ|c;β). (5)

Our agent maintains an explicit notion of the goal of the
task—to open the door. Human participants were also told
the precise goal of the task. Thus, we frame our intervention
selection process as a form of model-based planning. Our
agent seeks to infer the causal chain most likely to achieve
the goal—opening the door—given the agent’s current model
of the environment. The agent’s model of the environment
comes from two forms of learning: bottom-up associative at-
tribute learning and top-down abstract schema learning.

We define a target goal of our planner as a particular state
of the environment, denoted s∗. Given a target goal our agent
models its current state as a tuple of (n,q), where n represents
the number of solutions remaining, and q the set of solutions
already executed. The agent seeks to execute a causal chain
c in the hopes of transitioning n to n−1. The agent replans
after every attempt until it finds all solutions the room; i.e.,
when n= 0. Thus, our final planning objective at time t is to
pick the causal chain with the maximal posterior subject to
the constraints that the chain contains the target goal state s∗

(i.e., the door being pushed) and is not in the agent’s set of
solutions executed q:

c∗t = argmax
c∈ΩC

p(c|ρ,do(q);γ,β) s.t. s∗ ∈ c∧c 6∈ q, (6)

where p(c|ρ,do(q);γ,β) is defined in Equation 5. This state
definition matches information provided to human partici-
pants and places the focus of our planner on achieving task-
level goals.

Among the chains that satisfy the constraints, we rely on
our chain posterior to capture which chains are causally plau-
sible. The posterior combines the top-down structural knowl-
edge with the bottom-up attribute knowledge. This combina-
tion is powerful for two reasons: (i) bottom-up knowledge bi-
ases beliefs towards structures that contain attributes that have
been present in causal events in the past, and (ii) top-down
knowledge allows the agent to bias beliefs towards structures
that have been useful in the past.

Model Results
We train our agent in the same fashion as humans; specif-
ically, we allow the agent to complete 80 trials in CC and
CE escape rooms (same number as human participants). The
agent is also limited to 3 actions in an attempt and 30 attempts
within a trial. Any agent that did not complete all trials was

removed from the study (same as human participant data—no
agents were removed from the CC condition; 7 agents were
removed from the CE condition).

Figure 4 compares human and model performance. The
model shows a similar trend as humans but with slightly
worse performance in each trial2. For the agent assigned to
the CC condition, the number of attempts needed to find the
first solution decreased significantly following the first trial
(t(79)= 8.09; p< .001) and second trial (t(79)= 4.04; p<
.001). The CE agent required less attempts to find the first
solution following the first trial only (t(72)= 6.23; p< .001).
Decreases in first and second solution attempts were not sig-
nificant between the remaining trials.

These results demonstrate that our model is roughly ca-
pable of capturing learning rates of human participants but
does not capture all significant changes in the number of at-
tempts needed: e.g., in both the CC and CE conditions, the
number of attempts needed by participants to find the second
solution consistently decreased following the first trial. How-
ever, our model overall effectively captures general trends
in human performance: the number of attempts needed to
find all solutions matches well to humans and decreases near-
monotonically, albeit at a lesser rate.

2Example solution executions for human participants and the
model can be viewed at https://vimeo.com/334518941

(a) (b)

(c) (d)

(e) (f)
Figure 4: Comparison of human and model results for the
common-cause CC3 condition and the common-effect CE3
condition. (a) and (b) compare the total number of attempts to
find all solutions; (c) and (d) compare the number of attempts
to find the first solution; (e) and (f) compare the number of
attempts to find the second solution.
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Conclusion
In this work, we showcase a hierarchical model based on as-
sociative learning and schema reasoning. Our model inte-
grates two learning mechanisms: (i) a bottom-up theory that
learns which attributes have causal associations in the envi-
ronment, and (ii) a top-down theory that learns useful abstract
structures in the environment. Our agent chooses an interven-
tion based on the posterior of causal chains and updates its
model using the observed outcome of the intervention. Model
results show that our hybrid agent is able to capture general
trends observed in human participants and captures some of
the statistical significance observed in human performance.
These results suggest that human causal learning may consist
of a mechanism that combines bottom-up associative learning
with top-down reasoning about causal structure.

The underlying computational framework presented here
is broadly applicable outside of the OpenLock environment;
it can be applied to any reinforcement learning environment
where: (i) underlying dynamics are constrained by some
causal structure; (ii) interactive elements have observable fea-
tures which signal causal relevance; and (iii) physical loca-
tions of key elements change over time. In the future, we
hope to expand our model to account for more extreme ob-
servational changes. For example, what if levers could sud-
denly be rotated instead of pushed/pulled? What if new col-
ors were introduced which provided further cues about causal
relevance? And what if the environment began operating in
a probabilistic fashion where levers may fail to actuate prop-
erly? Future behavioral and computational work should ex-
amine how these processes integrate in more complex scenar-
ios that provide a closer approximation to the real world.

Discussion
What other theories may be useful for learning causal re-
lationships? The background theories presented here—
namely that causal relationships induce state changes and ab-
stract causal knowledge can be reused—provide reasonable
background theories. However, other background theories
may also be appealing. For instance, Pearl (2009) defines a
stricter definition of causal relations based on whether or not
a causal relation is identifiable in a directed acyclic graph.
How can hypothesis space enumeration be avoided?
The spaces of ΩgA and ΩgI are enumerated in this work. Hy-
pothesis space enumeration can quickly become intractable
as problems increase in size. While this work used a fixed,
fully enumerated hypothesis space, future work will include
examining how sampling-based approaches to iterative gen-
erate causal hypotheses (e.g., see Bramley et al. (2017)).
What are the other possibilities of bottom-up associative
criteria? Our method treats low-level attributes as the cri-
teria for our bottom-up associative learning. However, other
possibilities are equally valid. For instance, a modeler could
pair attributes with specific actions and learn distributions
of causal effects over this pairing. This decision ultimately
comes down to the resolution of the problem being consid-
ered and what is appropriate to correctly model the problem.

How is this work connected to reinforcement learning
(RL)? The model-based planner is closely related to
model-based RL. Our problem setting could be cast in terms
of a 0-1 reward function—the agent receives a reward of 1
if the door is opened, and 0 otherwise. However, model-
based RL typically assumes a world model is provided, but
our agent iteratively updates its conception of world dynam-
ics through associative learning and schema reasoning.
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Abstract

Many actions have both an intended primary effect and unin-
tended, but foreseen side effects. In two experiments we inves-
tigated how people morally evaluate such situations. While a
negative side effect was held constant across conditions in Ex-
periment 1, we varied features of the positive primary effect.
We found that judgments of moral justification of actions were
sensitive to the numerical ratios of helped versus harmed enti-
ties as well as to the kind of state change that was induced by
an agent’s action (saving entities from harm versus improving
their status quo). Judgments of moral responsibility for side
effects were only sensitive to the latter manipulation. In Ex-
periment 2, we found initial support for a subjective utilitarian
explanation of the moral justification judgments.
Keywords: Moral Reasoning, Causal Reasoning

Introduction
Research on moral judgments often probes people’s intu-
itions about moral dilemmas. One of the most famous and
well-studied dilemmas is the so-called trolley problem (Foot,
1967). In the side effect variant of trolley dilemmas, agents
have a choice between letting a runaway trolley kill several
people or an action that redirects the trolley to a different track
where it would kill fewer people. The primary question in
these studies is typically whether it is morally permissible to
act. Many factors have been identified that influence people’s
intuition about this question (for an overview see Waldmann,
Nagel, & Wiegmann, 2012).

The two dominant normative ethical approaches, utilitar-
ianism and nonconsequentialism, largely agree in this sit-
uation. According to utilitarian recommendations, the ac-
tion should be performed whenever its positive consequences
outweigh the negative effects. Nonconsequentialist theories,
such as the Doctrine of Double Effect (DDE, see Mikhail,
2011), arrive at similar conclusions for this case. The focus
of the DDE and nonconsequentialism in general lies on the
causal structure mediating acts and outcomes. In the side ef-
fect variant of the trolley dilemma, acting is considered per-
missible because the negative effect is not an intended means,
but merely a foreseen side effect, and is not out of propor-
tion to the positive effect. Psychological research on the side
effect dilemma has shown that subjects indeed take the al-
ternative outcomes into account when assessing the action’s
permissibility (e.g., Mikhail, 2011; Cohen & Ahn, 2016).

Evaluating Actions and their Side Effects
The focus of research on trolley dilemmas is on how people
evaluate the permissibility of an action that causes two out-
comes. All theories assume that in the side effect dilemma,
both outcomes are compared and affect the moral evaluation,

but little is known about the functional form of this compar-
ison. A typical claim is that harming is permissible if the
good outweighs the bad, but it is unclear whether this de-
cision is just based on a simple categorical decision about
which value is larger, or whether gradual differences between
outcome values affect the decision. Few studies have system-
atically manipulated the numbers of victims that are saved
or harmed in moral dilemmas (but see Cohen & Ahn, 2016;
Waldmann & Wiegmann, 2012).

Cohen and Ahn (2016) postulate a subjective utilitarian
analysis. For each item or set of items (e.g., 5 people) subjects
provided an estimate of their personal value. The personal
values were affected by the type of item and their number, al-
though the number turned out to have a relatively small effect.
These estimates of the personal values were then used to pre-
dict subjects’ judgments about choice situations in which one
set of items is about to be destroyed (or killed) when no action
is taken but saved when the agent acts, which in turn would
destroy (kill) a second set of items. According to the categori-
cal utilitarian decision strategy, the action is chosen that saves
items with the higher personal value. The model also predicts
reaction times: Given that the comparison is typically influ-
enced by uncertainty, a faster reaction time is predicted when
the difference between values becomes larger.

One key goal of our project is to provide further tests of the
subjective utilitarian model. A salient problem of the current
version of the model is that it lacks generality. Its predictions
are based on the personal values of the items involved in the
outcomes but this model neglects that actions cause transi-
tions between states. An evaluation of an action thus needs to
take into account the values of the states of the items in the
presence versus the absence of the action. Cohen and Ahn
(2016) did not consider how subjects assess the personal val-
ues of the items in their destroyed or dead states, probably
because this was the standard state in the absence of an ac-
tion across all item sets. However, actions can also improve
the state of items that otherwise would be in a normal state,
or they could be saved from a disease that would harm, but
not kill them. To provide a full utilitarian account of how
outcomes of actions should be evaluated we suggest that peo-
ple compute contrasts between the personal values of the out-
comes in the presence versus the absence of the target action.
We will also argue that sometimes more than two states need
to be considered. We will present an experiment that presents
a wider range of actions, which allows us to test our subjec-
tive utilitarian model against theories that are not sensitive to
different types of states in the presence and absence of the
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target action.
A further focus of our study is to investigate how the re-

lation between the number of people that are positively or
negatively affected by the action influences the degree to
which people find the action morally justifiable and the agent
morally responsible for the outcomes, especially the negative
side effect. We systematically manipulated the numbers in-
volving the positive primary effect while holding the negative
side effect constant (see also Waldmann & Wiegmann, 2012,
for a similar design but different tasks). For example, in one
of our experimental conditions, ten members of a tribe are
harmed by an action that would save a varying number of
members of a different tribe. According to Cohen and Ahn’s
(2016) model, an act involving a negative side effect should
lead to faster reaction times the more entities are helped com-
pared to harmed. If reaction times indicate certainty about
an act’s permissibility, one can also derive from this theory
the prediction that justification ratings should be affected in a
similar manner.

One limitation of trolley studies is that so far they have fo-
cused on a particular type of situation in which the primary
goal is to save victims that otherwise would be killed. It may
well be that acts that lead to negative side effects are only con-
sidered justified when the primary effect targets entities that,
prior to the intervention, are threatened to be harmed. The
primary effect may be less effective as a justification when
the act is supererogatory and just improves the states of en-
tities that prior to the act are in a normal state. For exam-
ple, instead of saving varying numbers of victims from grave
harm, the people may be fine prior to the act, with the act just
improving their health and living conditions. The theory pro-
posed by Cohen and Ahn (2016) does not make predictions
here because it only takes into account the personal values of
the entities in their intact state. We will in Experiment 2 test
a modified account that postulates that subjects take into ac-
count personal values of states in both the presence and the
absence of an action. This account makes predictions for the
difference between saving entities or improving their states.

Another limitation of the typical trolley dilemma studies
is that they have focused on situations in which saving and
harming are causally achieved by redirecting a harmful entity
(the runaway trolley). In order to widen the range of stud-
ied dilemmas and to be able to manipulate the prior state of
the entities involved in the primary goal, we tested a different
causal structure in which a helpful act rather than a threat was
redirected (see also Ritov & Baron, 1999; Bartels & Medin,
2007). For example, in the condition involving two tribes, a
dam may be opened that redirects water from one tribe to the
other. Redirecting might save tribe members from a negative
state or improve their normal situation.

Finally, a limitation of previous research is that the test
question typically focuses only on the act leading to two out-
comes. We are also interested in how people evaluate the two
outcomes individually. We therefore added as test questions
requests to judge moral responsibility for the negative side ef-

fect. Our goal was to test whether these judgments are also
influenced by the value of the primary effect (e.g., number of
victims). If subjects just focus on the side effect, the primary
effect should not have an influence. However, if the status
quo or the number of affected entities are used as exonerating
factors, their impact should also be seen in moral responsibil-
ity ratings for the side effect.

Together, these manipulations and the studied judgments
widen the focus of previous work on people’s moral intu-
itions about cases with multiple effects. The aim of the first
experiment was to test whether the relation between primary
and side effect of an action influences moral justification as-
sessments. Moreover we were interested in whether the pri-
mary effect influences moral responsibility assessments for a
bad side effect. We tested whether these two types of moral
queries are affected by the kind and number of entities that are
potentially harmed or saved, and by their state change due to
a possible intervention. Experiment 2 inquires to what extent
the results of Experiment 1 can be explained by a subjective-
utilitarian framework.

Experiment 1
We constructed three scenarios in which an agent decides to
perform an action with a positive, intended primary effect
and a negative, unintended (but foreseen) side effect. The
negative side effect was held constant across conditions and
always consisted in killing 10 entities (people, animals, or
plants). We varied whether 1, 5, 20 or 100 entities benefitted
from the action. Furthermore, we manipulated whether these
entities were in a negative or a neutral state prior to the ac-
tion. In the situations in which the entities were in a negative
state, they would have died without the agent’s action; in the
contrasted normal state condition, the action would merely
cause additional benefit (e.g., people improving their living
conditions or plants growing better).

Design, Material and Procedure1 450 participants were
recruited via the UK based platform Prolific Academics for a
compensation of £0.25 (£6 per hour). Inclusion criteria were
a minimum age of 18 years, English as a first language, a
study approval rate on the platform of at least 90%, and not
having participated in previous studies with similar material.
Participants were randomly allocated to one of 24 conditions
(primary effect: saving vs. improving; number of helped en-
tities: 1 vs. 5 vs. 20 vs. 100; affected entities: people vs. ani-
mals vs. plants). Here is an example vignette from the saving
conditions. The example describes a condition in which 100
people are saved by the action, who otherwise would die:

Suzy is the prime minister of Tolosia, a mountainous coun-
try with many distant and small villages. The villages are
populated by different indigenous tribes. She is authorised to
make all decisions about the country’s welfare that she deems
appropriate. One day, she learns that a mountain village has

1The full material and data for both experiments are available
under https://osf.io/jcux6/
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suffered from an ongoing drought that left its inhabitants, the
Aba tribe, in poor health due to lack of water. Exactly 100
people belong to the Aba tribe, all of whom are in critical
condition and will die if nothing is done. Suzy could order
to open a dam that would redirect a mountain river towards
the Aba tribe. With a quick water supply, the 100 members of
the Aba tribe could recover. However, the redirection of the
river could also cause a lack of water in another mountain
village, home to the Beba tribe, causing its 10 members to die
of thirst within a few days. All of the 10 members of the Beba
tribe are fine at the moment. Since both mountain villages are
inaccessible to any means of transport, redirecting the river
is the only currently available measure to influence the well-
being of the two tribes. Here is a schematic representation of
the two tribes and the current state of their members:

Suzy is aware of all the facts. She wants the 100 members
of the Aba tribe to recover, but also not to cause any harm to
the 10 members of the Beba tribe. She decides to open the
dam and redirect the mountain river. All of the 100 members
of the Aba tribe recover. However, all of the 10 members of
the Beba tribe die within a few days.

The figure was followed by the instruction: “Here is a
schematic representation of the tribes and their state after
the river has been redirected“ along with the same figure as
above in which the lower labels now read “all in normal state”
for the Aba tribe and “all dead” for the Beba tribe. In the
corresponding improving condition, the vignette stated that
the Aba tribe could vastly improve their health and lifes-
pan with an extra water supply (no threat by a drought was
mentioned). In the subsequent test phase participants were
asked to rate the extent to which they saw the agent’s ac-
tion as morally justified (“To what extent was Suzy’s action
morally justified ?”). The moral responsibility question fo-
cused on the side effect (“To what extent is Suzy morally re-
sponsible for the members of the Beba tribe dying?”). As
a control, we also asked about the primary goal (“To what
extent is Suzy morally responsible for the members of the
Aba tribe improving their health?”). Ratings were given on a

10-point Likert scale with the endpoints labelled “not at all”
(1) and “fully” (10). Justification and responsibility ques-
tions were presented on two separate pages, with page or-
der counterbalanced between participants; order of the two
responsibility questions within the respective page was ran-
domized. Subsequently, two manipulation check questions
assessed whether people had correctly understood how many
entities were harmed and helped in the scenario.

Results and Discussion 18 participants were excluded for
failing at least one of the manipulation check questions, leav-
ing data of 432 participants for the analysis (mean age = 34.4,
SD = 11.93). We conducted a 2 (primary effect) x 3 (entity)
x 4 (numbers) x 2 (test question order) ANOVA for each of
the three dependent variables. Since our study is partly ex-
ploratory, we used a conservative significance threshold that
takes into account the number of tests in the models (here:
p<.003). Results for the 432 valid subjects can be seen in
Figure 1.

Moral justification ratings were higher the more entities
were helped compared to harmed, F(3, 384) = 8.81, p<.001, η2

= .06. Additionally, a large effect was obtained between the
conditions saving and improving, F(1,384) = 130.74, p<.001,
η2 = .25. The interaction was not significant (p=.37). Partic-
ipants gave the highest justification ratings when the primary
effect was an instance of saving and more entities were saved
than killed.

Post hoc tests (Newman-Keuls) for the saving condition
revealed that the case in which only one entity was saved as
a primary effect was judged significantly less morally justi-
fied than the cases in which twenty or a hundred entities were
saved. The other cases did not differ significantly from each
other. In the improving condition, post hoc tests showed no
significant differences.

There was also a main effect of vignette. Subjects consid-
ered the action as most morally justified when the affected
entities were plants (M = 5.23, SD = 2.6 ), followed by an-
imals (M = 4.41, SD = 2.52), and people (M = 3.84, SD =
2.77), F(2,384) = 14.39, p<.001, η2 = .07. A possible reason
for this ordering might be that harming people may be seen
as a harsher moral violation than harming plants and there-
fore less justifiable by good effects. Animals seem to be in
the middle.

Additionally, a small unexpected order effect was found.
Ratings were slightly higher when the moral justification
question was presented after the moral responsibility ques-
tions (M = 4.88, SD = 2.71) compared to before (M = 4.12,
SD = 2.62), F(1,384) = 12.51, p<.001, η2 = .03.
Moral responsibility ratings for the negative side effect were
generally high, but not detectably influenced by the number
of helped entities, F(3,384) = 0.35, p = .79 (see Fig. 1). How-
ever, the ratings were lower when the action’s primary effect
was an instance of saving (M = 8.09, SD = 2.23) rather than
improving (M = 9.12, SD = 1.59), F(1,384) = 33.51, p<.001,
η2 = .08. The interaction was not significant (p=.61). Moral
responsibility ratings for the positive primary effect were
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high (M = 8.23, SD = 2.31) and not influenced by any ma-
nipulation.

In sum, the moral justification ratings of the action were
sensitive to the relation between the primary and the side ef-
fect. The more entities were helped as a primary effect, the
more justified the action was judged. This pattern shows that
moral justification is a continuous quantity that is sensitive
to the relative size of the outcomes. A novel result concerns
the comparison between different status quos, which gener-
ated the largest effect. If entities are saved from a threat, the
action was seen as substantially more justified than when the
primary goal is just to improve states starting from a neutral
state.

The fact that subjects took into account both the primary
and the side effect in their justification judgments is predicted
by both nonconsequentialist and utilitarian accounts. How-
ever, the specific theory proposed by Cohen and Ahn (2016)
does not predict the largest effect in our experiment: Subjects
clearly differentiated between saving entities versus improv-
ing their state. Simply using assessments of personal values
of the entities does not predict these effects without taking
into account the personal values of the states of the entities in
the absence of the action. We will test a modified model that
is sensitive to state changes in Experiment 2.

An interesting unexpected finding was that moral respon-
sibility ratings proved insensitive to the number of helped en-
tities, but were reduced when the action’s primary effect was
an instance of saving rather than improving. This latter effect
makes it unlikely that the lack of an effect of number is due
to a ceiling effect. A possible interpretation of this pattern
may be that subjects tried to focus on the side effect alone but
were influenced by features of the primary effect that have
a large impact on justification, such as the status quo, rather
than only a small effect, such as the numbers.2

Experiment 2
The aim of the second experiment is to investigate to what ex-
tent the effects observed in Experiment 1 could be explained
by a a variant of a subjective utilitarian theory that in cru-
cial aspects differs from the one proposed by Cohen and Ahn
(2016). Cohen and Ahn (2016) modeled choices as decisions
based on the personal values of the entities involved in the
alternative outcomes. For example, the task in their second
study was to choose which of two sets of items should be
saved and which destroyed in a dilemma. The model claims
that the differences between the personal values of the two
sets of items predict judgments. The focus on the personal
values of the items seems appropriate here because all actions

2In this experiment, moral justification was assessed globally
(i.e., for a whole action), while responsibility was assessed sepa-
rately for the single effects. One might worry that this does not
allow us to tell whether the differences between the two judgments
are driven by the type of judgment or by the focus of the question on
global or separate outcomes. We therefore conducted a follow-up
study in which we fully crossed these two factors. We found that
the type of judgment seems to be the driving factor. The study is
available online along with materials and data.

represented a choice between leaving the items intact or de-
stroying (or killing) them. This restriction of the task allowed
Cohen and Ahn (2016) to focus on the personal values of the
affected items. However, the model is a too restrictive as a
general model of moral reasoning. We suggest that the focus
should be on actions, which can cause transitions between
various states, not only between the states dead and alive or
intact and destroyed. For example, in our Experiment 1 we
presented cases in which actions improved states of entities
that prior to the intervention were in a normal state.

To overcome the limitations of the model proposed by Co-
hen and Ahn (2016), we here propose a variant of a subjective
utilitarian theory that focuses on actions and models them as
state changes. When people evaluate an action, they should
be sensitive to both the outcomes in the presence of the action
but also to what happens in the absence of the action. For ex-
ample, an action that improves the state of an entity can be
represented as the difference between the personal values of
the improved state and the normal state prior to the action.
More complex state transitions are conceivable, and in fact
in Experiment 1 we presented scenarios in which the entities
shifted between four possible states (normal, threatened, im-
proved, dead). In the present study we collected assessments
of personal values of all the entities for these four states and
used these assessments to predict the justification judgments
obtained in Experiment 1.

Figure 2 shows how we adapted our model to the cover sto-
ries in Experiment 1. In the example in Figure 2, 100 people
are under the threat of dying prior to any action. In the ab-
sence of an action (i.e., omission) they would die, which is
modeled here as the contrast of the personal values between
death and a critical state (second component of Figure 2a). In
the presence of the action, the people in critical state would
be shifted into a normal, healthy state, here represented as the
difference between the personal values of a critical versus a
normal state (first component of Figure 2a). The overall util-
ity of saving the people is modeled as the sum of these con-
trasts because the action both prevents the people from being
killed and puts them from a critical into a healthy state. Thus,
the representation of the saving action considers both the ef-
fects of the potential action and of its omission. In the case of
improving (not depicted), the model simplifies to a contrast
between the values of the improved versus the normal states.
The second component in the equation in Figure 2a would
amount to 0 in this case because there is no threat to the nor-
mal state. Finally, Figure 2b shows how we model the total
utility of the action in a scenario with multiple effects: It is
the sum of the median utilities of the primary effect (saving)
and the harmful side effect (killing 10 people).

Design, Material and Procedure The design of our basic
value estimation task largely follows the methodology de-
scribed in Cohen and Ahn (2016) but assesses a wider range
of possible states of entities. Like Cohen and Ahn (2016),
we tested the influence of the numbers of entities (1 vs. 5
vs. 10 vs. 20 vs. 100) on personal value assessments in
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Figure 1: A: Means and 95% confidence intervals for moral justification ratings in Experiment 1, B: Total utility estimates
generated by our model in Experiment 2.

separate experimental groups to avoid demand characteris-
tics (i.e., participants feeling pressured to assign exactly five
times the value of one entity to a group of five of the same
entities). Within each group, we presented instances of peo-
ple, fish and roses, each of them in all of the states that were
described in Experiment 1 (normal vs. threatened vs. im-
proved vs. dead). Thus, each participant judged 12 stimuli,
in randomised order.3 Like Cohen and Ahn, we presented
people with a measuring standard to calibrate their value esti-
mates. They were told that “one healthy chimpanzee” should
be taken to have a value of 1000. If they valued any item half
(or twice or any other ratio) as much as one healthy chim-
panzee, they should assign the corresponding value to the
item (e.g., a value of 500 if they value an item half as much
as the chimpanzee). Participants were further instructed that
“personal value” does not necessarily correspond to mone-
tary value and that they should judge the entities’ value in
their current state. 250 participants (mean age = 36.6, SD =
13.5, 67% female, 32% male, 1% other) were recruited on
Prolific Academics and completed the survey for a compen-
sation of £0.40 (£6 per hour). Inclusion criteria were identical
to Experiment 1, and not having participated in Experiment
1.

3With the exception of the ”10 entities” condition, which referred
to the constant side effect. Here, we only needed estimations of each
set of entities in their normal and dead states since the side effect
entities never were in other states.

Results and Discussion To test our model, we used the
value estimates of the four states of the entities to generate
predictions for the justification assessments. Following the
rationale outlined in Figure 2 we generated predictions for all
24 experimental conditions.The results are shown in Figure
1B. The total utilities overall capture the patterns found in
Experiment 1, even though the maximal range of values was
much wider for people cases compared to animals and plants
(see Fig. 1A). Most importantly, the total utility estimates re-
flected the differences between improving versus saving, at
least for people (Kruskal-Wallis χ2 = 6.14, p =.01) and ani-
mals (Kruskal-Wallis χ2 = 6.14, p =.01)4. In both cases the
total utility for saving was larger than for improving, which
mirrors the effects in Experiment 1. The corresponding ef-
fect for plants was not significant when correcting for mul-
tiple testing. Moreover, we did not find significant effects
for the manipulation of the number of the affected entities
for either people, animals or plants. But note that this effect
was fairly small in Experiment 1 (and also in Cohen & Ahn,
2016). Also, this factor was the only one manipulated be-
tween subjects, which may have led to reduced sensitivity to
this factor.

As an overall test of the fit of our model to the data of Ex-
periment 1, we conducted a linear regression analysis with to-

4We used again a conservative significance threshold that takes
into account that we tested each factor separately for each entity
category (here: p<.017).
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Figure 2: Rationale of our calculation of an action’s total utility, spelled out for the example of the saving 100 people scenario.
See text for explanation.

tal utilities estimated by our model as the predictor and mean
moral justification ratings obtained in Experiment 1 as the cri-
terion. The model fit the data well and explained a substantial
amount of variance in the criterion, F(1,22) = 16.31, p<.001,
R2 = .43, RMSE = 1.14.

General Discussion
The main goal of our study was to provide more fine-grained
evidence on how moral judgments are influenced by charac-
teristics of multiple effects of an action in dilemma situations.
Experiment 1 showed that judgments of moral justification
for the agent’s action increased with more favourable ratios
of helped compared to harmed entities, but were even more
influenced by the change of state that was induced by the
agent’s action (saving vs. improving). Moral responsibility
judgments for the negative side effect were only affected by
the latter manipulation but not by the number of affected en-
tities.

In Experiment 2 we tested a novel subjective utilitarian
model that goes beyond previous proposals. Whereas Co-
hen and Ahn (2016) claimed that moral decisions are based
on the personal values of the affected entities in their healthy
or intact states, we argued that this assumption restricts their
model to a small set of situations in which actions destroy or
kill entities. Our goal was to propose a model that is more
general. A basic assumption of our model is that actions can
be modelled as state changes and that moral judgments are
sensitive to both the states that entities are in prior and fol-
lowing a target action. This model allowed us to not only
model cases of killing and saving but also, for example, cases
of improvement.

Although our results in Experiment 2 showed that the new
model explains a substantial amount of variance, it does not
capture all effects. One reason for this may have been the
necessary differences in the designs of Experiments 1 and 2.
But there may be other reasons: For example, to demonstrate
the increase of expressiveness of our model, we suggested
a model for the cover stories of Experiment 1 that captures
transitions between the four possible states mentioned there.

Given that utility measurements are unreliable and influenced
by additional factors, making the model more complex will
certainly reduce its fit to the data.

Future research will also have to investigate whether there
are alternative models that may also capture the results. As
in the case of improving, we could, for example, generally
use a more basic utilitarian model that only compares the two
states in the presence versus absence of the action (e.g., dead
vs. alive in the case of saving). Future research will need
to test in greater detail the assumptions entering the different
variants of the model.

We labeled our model ”subjective utilitarian” because it
was inspired by the theory of Cohen and Ahn (2016). How-
ever, we mentioned in the introduction that both utilitar-
ian and nonconsequentalist theories predict that in side ef-
fect dilemmas the outcomes should be compared. Thus, our
model may also be viewed as a component of a nonconse-
quentialist account. One possible way to test the two alterna-
tive theoretical possibilities is to take a closer look at the as-
sumption that actions can be modeled as state changes. This
assumption embodies the utilitarian claim that it is only the
outcomes that matter, not the type of action leading to the
outcomes. We suspect, however, that the type of action and
the type of causal relations leading to the changes may also
matter (see Kamm, 2007; Waldmann, Wiegmann, & Nagel,
2017). Future research will have to further explore these is-
sues.
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Abstract

Modern deep neural networks require a tremendous amount
of data to train, often needing hundreds or thousands of la-
beled examples to learn an effective representation. For these
networks to work with less data, more structure must be built
into their architectures or learned from previous experience.
The learned weights of convolutional neural networks (CNNs)
trained on large datasets for object recognition contain a sub-
stantial amount of structure. These representations have par-
allels to simple cells in the primary visual cortex, where re-
ceptive fields are smooth and contain many regularities. In-
corporating smoothness constraints over the kernel weights
of modern CNN architectures is a promising way to improve
their sample complexity. We propose a smooth kernel regu-
larizer that encourages spatial correlations in convolution ker-
nel weights. The correlation parameters of this regularizer are
learned from previous experience, yielding a method with a
hierarchical Bayesian interpretation. We show that our corre-
lated regularizer can help constrain models for visual recogni-
tion, improving over an L2 regularization baseline.
Keywords: convolutional neural networks; regularization;
model priors; visual recognition

Introduction
Convolutional neural networks (CNNs) are powerful feed-
forward architectures inspired by mammalian visual process-
ing capable of learning complex visual representations from
raw image data (LeCun et al., 2015). These networks achieve
human-level performance in some visual recognition tasks;
however, their performance often comes at the cost of hun-
dreds or thousands of labelled examples. In contrast, children
can learn to recognize new concepts from just one or a few ex-
amples (Bloom, 2000; Xu & Tenenbaum, 2007), evidencing
the use of rich structural constraints (Lake et al., 2017). By
enforcing structure on neural networks to account for the reg-
ularities of visual data, it may be possible to substantially re-
duce the number of training examples they need to generalize.
In this paper, we introduce a soft architectural constraint for
CNNs that encourages smooth, correlated structure on their
convolution kernels through transfer learning.1 We see this as
an important step towards a general, off-the-shelf CNN regu-
larizer that operates independently of previous experience.

The basis for our constraint is the idea that the weights of a
convolutional kernel should in general be well-structured and
smooth. The weight kernels of CNNs that have been trained
on the large-scale ImageNet object recognition task contain a
substantial amount of structure. These kernels have parallels
to simple cells in primary visual cortex, where smooth re-
ceptive fields implement bandpass oriented filters of various
scale (Jones & Palmer, 1987).

1Experiments from this paper can be reproduced with the code
found at https://github.com/rfeinman/SK-regularization.

(a) VGG16 layer-1 kernels

(b) i.i.d. Gaussian (L2-reg) (c) correlated Gaussian (SK-reg)

Figure 1: Kernel priors for VGG16. The layer-1 convolution kernels
of VGG16, shown in (a), possess considerable correlation structure.
An i.i.d. Gaussian prior that has been fit to the VGG layer-1 kernels,
samples from which are shown in (b), captures little of the structure
in these kernels. A correlated multivariate Gaussian prior, samples
from which are shown in (c), captures the correlation structure of
these kernels well.

The consistencies of visual receptive fields are explained
by the regularities of image data. Locations within the kernel
window have parallels to locations in image space, and im-
ages are generally smooth (Li, 2009). Consequently, smooth,
structured receptive fields are necessary to capture important
visual features like edges. In landmark work, Hubel & Wiesel
(1962) discovered edge-detecting features in the primary vi-
sual cortex of cat. Since then, the community has successfully
modeled receptive fields in early areas of mammalian visual
cortex using Gabor kernels (Jones & Palmer, 1987). These
kernels are smooth and contain many spatial correlations. In
later stages of visual processing, locations of kernel space
continue to parallel image space; however, inputs to these
kernels are visual features, such as edges. Like earlier lay-
ers, these layers also benefit from smooth, structured kernels
that capture correlations across the input space. Geisler et
al. (2001) showed that human contour perception–an impor-
tant component of object recognition–is well-explained by a
model of edge co-occurrences, suggesting that correlated re-
ceptive fields are useful in higher layers of processing as well.

Despite the clear advantages of structured receptive fields,
constraints placed on the convolution kernels of CNNs are
typically chosen to be as general as possible, with neglect
of this structure. L2 regularization–the standard soft con-
straint applied to kernel weights, which is interpreted as a
zero-mean, independent identically distributed (i.i.d.) Gaus-
sian prior–treats each weight as an independent random vari-
able, with no correlations between weights expected a priori.
Fig. 1 shows the layer-1 convolutional kernels of VGG16, a
ConvNet trained on the large-scale ImageNet object recog-
nition task (Simonyan & Zisserman, 2015). Fig. 1b shows
some samples from an i.i.d. Gaussian prior, the equivalent
of L2 regularization. Clearly, this prior captures little of the
correlation structure possessed by the kernels.
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A simple and logical extension of the i.i.d. Gaussian prior
is a correlated multivariate Gaussian prior, which is capable
of capturing some of the covariance structure in the convolu-
tion kernels. Fig. 1c shows some samples from a correlated
Gaussian prior that has been fit to the VGG16 kernels. This
prior provides a much better model of the kernel distribution.
In this paper, we perform a series of controlled CNN learn-
ing experiments using a smooth kernel regularizer–which we
denote “SK-reg”–based on a correlated Gaussian prior. The
correlation parameters of this prior are obtained by fitting a
Gaussian to the learned kernels from previous experience. We
compare SK-reg to standard L2 regularization in two object
recognition use cases: one with simple silhouette images, and
another with Tiny ImageNet natural images. In the condition
of limited training data, SK-reg yields improved generaliza-
tion performance.

Background
Our goal in this paper is to introduce new a priori structure
into CNN receptive fields to account for the regularities of
image data and help reduce the sample complexity of these
models. Previous methods from this literature often require a
fixed model architecture that cannot be adjusted from task to
task. In contrast, our method enforces structure via a statis-
tical prior over receptive field weights, allowing for flexible
architecture adaption to the task at hand. Nevertheless, in this
section we review the most common approaches to structured
vision models.

A popular method to enforce structure on visual recogni-
tion models is to apply a fixed, pre-specified representation.
In computational vision, models of image recognition con-
sist of a hierarchy of transformations motivated by principles
from neuroscience and signal processing (e.g., Serre et al.,
2007; Bruna & Mallat, 2013). These models are effective at
extracting important statistical features from natural images,
and they have been shown to provide a useful image represen-
tation for SVMs, logistic regression and other “shallow” clas-
sifiers when applied to recognition tasks with limited training
data. Unlike CNNs, the kernel parameters of these models
are not learned by gradient descent. As result, these features
may not be well-adapted to the specific task at hand.

In machine learning, it is commonplace to use the features
from CNNs trained on large object recognition datasets as a
generic image representation for novel vision tasks (Donahue
et al., 2014; Razavian et al., 2014). Due to the large vari-
ety of training examples that these CNNs receive, the learned
features of these networks provide an effective representation
for a range of new recognition tasks. Some meta-learning
algorithms use a similar form of feature transfer, where a fea-
ture representation is first learned via a series of classification
episodes, each with a different support set of classes (e.g.,
Vinyals et al., 2016). As with pre-specified feature models,
the representations of these feature transfer models are fixed
for the new task; thus, performance on the new task may be
sub-optimal.

Beyond fixed feature representations, other approaches use
a pre-trained CNN as an initialization point for a new net-
work, following with a fine-tuning phase where network
weights are further optimized for a new task via gradient
descent (e.g., Girshick et al., 2014; Girshick, 2015). By
adapting the CNN representation to the new task, this ap-
proach often enables better performance than fixed feature
methods; however, when the scale of the required adapta-
tion is large and the training data is limited, fine-tuning can
be difficult. Finn et al. (2017) proposed a modification of
the pre-train/fine-tune paradigm called model-agnostic meta-
learning (MAML) that enables flexible adaptation in the fine-
tuning phase when the training data is limited. During pre-
training (or meta-learning), MAML optimizes for a repre-
sentation that can be easily adapted to a new learning task
in a later phase. Although effective for many use cases, this
approach is unlikely to generalize well when the type of adap-
tation required differs significantly from the adaptations seen
in the meta-learning episodes. A shared concern for all pre-
train/fine-tune methods is that they require a fixed model ar-
chitecture between the pre-train and fine-tune phases.

The objective of our method is distinct from those of fixed
feature representations and pre-train/fine-tune algorithms. In
this paper, we study the structure in the learned parameters of
vision models, with the aim of extracting general structural
principles that can be incorporated into new models across a
broad range of learning tasks. SK-reg serves as a parameter
prior over the convolution kernels of CNNs and has a theo-
retical foundation in Bayesian parameter estimation. This ap-
proach facilitates a CNN architecture and representation that
is adapted to the specific task at hand, yet that possesses ad-
equate structure to account for the regularities of image data.
The SK-reg prior is learned from previous experience, yield-
ing an interpretation of our algorithm as a method for hierar-
chical Bayesian inference.

Independently of our work, Atanov et al. (2019) developed
the deep weight prior, an algorithm to learn and apply a CNN
kernel prior in a Bayesian framework. Unlike our prior, which
is parameterized by a simple multivariate Gaussian, the deep
weight prior uses a sophisticated density estimator parame-
terized by a neural network to model the learned kernels of
previously-trained CNNs. The application of this prior to
new learning tasks requires variational inference with a well-
calibrated variational distribution. Our goal with SK-reg dif-
fers in that we aim to provide an interpretable, generalizable
prior for CNN weight kernels that can be applied to existing
CNN training algorithms with little modification.

Bayesian interpretation of regularization

From the perspective of Bayesian parameter estimation, the
L2 regularization objective can be interpreted as performing
maximum a-posteriori inference over CNN parameters with
a zero-mean, i.i.d. Gaussian prior. Here, we review this con-
nection, and we discuss the extension to SK-reg.
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θ1M
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Figure 2: SK-reg workflow. A) First, a CNN is trained repeatedly (20x) on an object recognition task. B) Next, the learned parameters of each
CNN are studied and statistics are extracted. For each convolution layer, kernels from the multiple CNNs are consolidated, yielding a kernel
dataset for the layer. A multivariate Gaussian is fit to each kernel dataset. C) SK-reg is applied to a fresh CNN trained on a new learning task
with limited training data (possibly with a different architecture or numbers of kernels), using the resulting Gaussians from each layer.

L2 regularization. Assume we have a dataset X =
{x1, ...,xN} and Y = {y1, ...,yN} consisting of N images xi
and N class labels yi. Let θ define the parameters of the CNN
that we wish to estimate. The L2 regularization objective is
stated as follows:

θ̃ = argmax
θ

log p(Y | θ;X)−λ∗θ
T

θ. (1)

Here, the first term of our objective is our prediction accuracy
(classification log-likelihood), and the second term is our L2
regularization penalty.

From a Bayesian perspective, this objective can be thought
of as finding the maximum a-posteriori (MAP) estimate of the
network parameter posterior p(θ | Y ;X) ∝ p(Y | θ;X)∗ p(θ),
leading to the optimization problem

θ̃ = argmax
θ

log p(Y | θ;X)+ log p(θ). (2)

To make the connection with L2 regularization, we assume
a zero-mean, i.i.d Gaussian prior over the parameters θ of a
weight kernel, written as

p(θ) =
1
Z

exp
(
− 1

2σ2 θ
T

θ
)
. (3)

With this prior, Eq. 2 becomes

θ̃ = argmax
θ

log p(Y | θ;X)− 1
2σ2 θ

T
θ,

which is the L2 objective of Eq. 1, with λ = 1
2σ2 .

SK regularization. The key idea behind SK-reg is to ex-
tend the L2 Gaussian prior to include a non-diagonal covari-
ance matrix; i.e., to add correlation. In the case of SK-reg,

the prior over kernel weights θ of Eq. 3 becomes

p(θ) =
1
Z

exp
(
− 1

2
θ

T
Σ
−1

θ
)

for some covariance matrix Σ, and the new objective is written

θ̃ = argmax
θ

log p(Y | θ;X)−λ∗θ
T

Σ
−1

θ. (4)

Hierarchical Bayes. When Σ is learned from previous ex-
perience, SK-reg can be interpreted as approximate inference
in a hierarchical Bayesian model. The SK regularizer for a
CNN with C layers, ΣΣΣ= {Σ1, . . . ,ΣC}, assumes a unique zero-
mean Gaussian prior N (θi;0,Σi) over the weight kernels for
each convolutional layer, θθθ = {θ1, . . . ,θC}. Due to the regu-
larities of the visual world, it is plausible that effective general
priors exist for each layer of visual processing. In this paper,
transfer learning is used to fit the prior covariances ΣΣΣ from
previous datasets X1:M−1 and Y 1:M−1, which informs the so-
lution for a new problem XM and Y M , yielding the hierarchi-
cal Bayesian interpretation depicted in Fig. 3. Task-specific

Level 3: Hyperprior

Level 2: Prior

Level 1: CNN parameters

!

"

#2#1 #3 #M…

Y1 | X1

" = {Σ1,…,ΣC}
# = {θ1,…,θC}

Y2 | X2 Y3 | X3 YM | XM

Figure 3: A hierarchical Bayesian interpretation of SK-reg. A point
estimate of prior parameters ΣΣΣ is first computed with MAP estima-
tion. Next, this prior is applied to estimate CNN parameters θθθ

j in a
new task.
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CNN parameters θθθ
1:M are drawn from a common ΣΣΣ, and ΣΣΣ has

a hyperprior specified by β. Ideal inference would compute
p(Y M|Y 1:M−1;X1:M), marginalizing over θθθ

1:M and ΣΣΣ.
We propose a very simple empirical Bayes procedure for

learning the kernel regularizer in Eq. 4 from data. First,
M−1 CNNs are fit independently to the datasets X1:M−1 and
Y 1:M−1 using standard methods, in this case optimizing Eq.
1 to get point estimates θ̃θθ

1:M−1
. Second, a point estimate Σ̃ΣΣ

is computed by maximizing p(ΣΣΣ|θ̃θθ1:M−1
;β), which is a sim-

ple regularized covariance estimator. Last, for a new task M
with training data XM and Y M , a CNN with parameters θθθ

M is
trained with the SK-reg objective (Eq. 4), with ΣΣΣ = Σ̃ΣΣ.

This procedure can be compared with the hierarchical
Bayesian interpretation of MAML (Grant et al., 2018). Un-
like MAML, our method allows flexibility to use different ar-
chitectures for different datasets/episodes, and the optimizer
for θθθ

M is run to convergence rather than just a few steps.

Experiments
We evaluate our approach within a set of controlled visual
learning environments. SK-reg parameters Σi for each con-
volution layer θi are determined by fitting a Gaussian to the
kernels acquired from an earlier learning phase. We divide
our learning tasks into two unique phases, applying the same
CNN architecture in each case. We note that our approach
does not require a fixed CNN architecture across these two
phases; the number of feature maps in each layer may be eas-
ily adjusted. A depiction of the two learning phases is given
in Fig. 2.

Phase 1. The goal of phase 1 is to extract general principles
about the structure of learned convolution kernels by training
an array of CNNs and collecting statistics about the resulting
kernels. In this phase, we train a CNN architecture to classify
objects using a sufficiently large training set with numerous
examples per object class. Training is repeated multiple times
with unique random seeds, and the learned convolution ker-
nels are stored for each run. During this phase, standard L2
regularization is applied to enforce a minimal constraint on
each layer’s weights (optimization problem of Eq. 1). After
training, the convolution kernels from each run are consoli-
dated, holding each layer separate. A multivariate Gaussian
is fit to the centered kernel dataset of each layer, yielding a
distribution N(0,Σi) for each convolution layer i. To ensure
the stability of the covariance estimators, we apply shrinkage
to each covariance estimate, mixing the empirical covariance
with an identity matrix of equal dimensionality. This can be
interpreted as a hyperprior p(ΣΣΣ;β) (Fig. 3) that favors small
correlations. The optimal mixing parameter is determined via
cross-validation.

Phase 2. In phase 2, we test the aptitude of SK-reg on a new
visual recognition task, applying the covariance matrices Σi
obtained from phase 1 to regularize each convolution layer i
in a freshly-trained CNN (optimization problem of Eq. 4). In
order to adequately test the generalization capability of our

Figure 4: Exemplars of the phase 1 silhouette object classes.

Layer Window Stride Features λ

Input (200x200x3)
Conv2D 5x5 2 5 0.05
MaxPooling2D 3x3 3
Conv2D 5x5 1 10 0.05
MaxPooling2D 3x3 2
Conv2D 5x5 1 8 0.05
MaxPooling2D 3x3 1
FullyConnected 128 0.01
Softmax

Table 1: CNN architecture. Layer hyperparameters include window
size, stride, feature count, and regularization weight (λ). Dropout
is applied after the last pooling layer and the fully-connected layer
with rates 0.2 and 0.5, respectively.

algorithm, we use a new set of classes that differ from the
phase 1 classes in substantial ways, and we provide just a few
training examples from each class. Performance of SK-reg is
compared against standard L2 regularization.

Silhouettes
As a preliminary use case, we train our network using the
binary shape image dataset developed at Brown University2,
henceforth denoted “Silhouettes.” Silhouette images are bi-
nary masks that depict the structural form of various object
classes. Simple shape-based stimuli such as these provide
a controlled learning environment for studying the inductive
biases of CNNs (Feinman & Lake, 2018). We select a set of
20 well-structured silhouette classes for phase 1, and a set of
10 unique, well-structured classes for phase 2 that differ from
phase 1 in their consistency and form. The images are padded
to a fixed size of 200×200.

During phase 1, we train our network to perform 20-way
object classification. Exemplars of the phase 1 classes are
shown in Fig. 4. The number of examples varies for each
class, ranging from 12 to 49 with a mean of 24. Class weight-
ing is used to remedy class imbalances. To add complexity to
the silhouette images, colors are assigned randomly to each
silhouette before training. During training, random transla-
tions, rotations and horizontal flips are applied at each train-
ing epoch to improve generalization performance.

We use a CNN architecture with 3 convolution layers, each
followed by a max pooling layer (see Table 1). Hyperparam-
eters including convolution window size, pool size, and fil-
ter counts were selected via randomized grid-search, using a
validation set with examples from each class to score candi-
date values. A rectified linear unit (ReLU) nonlinearity is ap-
plied to the output of each convolution layer, as well as to the

2The binary shape dataset is available in the “Databases” section
at http://vision.lems.brown.edu
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(a) First-layer kernels

(b) Gaussian samples

Figure 5: Learned first-layer kernels vs. Gaussian samples. (a) de-
picts some of the learned first-layer kernels acquired from phase 1
silhouette training. For comparison, (b) shows a few samples from a
multivariate Gaussian that was fit to the first-layer kernel dataset.

fully-connected layer. The network is trained 20 times using
the Adam optimizer, each time with a unique random initial-
ization. It achieves an average validation accuracy of 97.7%
across the 20 trials, indicating substantial generalization.

Following the completion of phase 1 training, a kernel
dataset is obtained for each convolution layer by consolidat-
ing the learned kernels for that layer from the 20 trials. Co-
variance matrices Σi for each layer i are obtained by fitting
a multivariate Gaussian to the layer’s kernel dataset. For a
first-layer convolution with window size K ×K, this Gaus-
sian has dimensionality 3K2, equal to the window area times
RGB depth. We model the input channels as separate vari-
ables in layer 1 because these channels have a consistent in-
terpretation as the RGB color channels of the input image.
For remaining convolution layers, where the interpretation of
input channels may vary from case to case, we treat each in-
put channel as an independent sample from a Gaussian with
dimensionality K2. The kernel datasets for each layer are cen-
tered to ensure zero mean, typically requiring only a small
perturbation vector.

To ensure that our multivariate Gaussians model the kernel
data well, we computed the cross-validated log-likelihoods
of this estimator on each layer’s kernel dataset and compared
them to those of an i.i.d. Gaussian estimator fit to the same
data. The multivariate Gaussian achieved an average score
of 358.5, 413.3 and 828.1 for convolution layers 1, 2 and 3,
respectively. In comparison, the i.i.d. Gaussian achieved an
average score of 144.4, 289.6 and 621.9 for the same layers.
These results confirm that our multivariate Gaussian provides
an improved model of the kernel data. Some examples of
the first-layer convolution kernels are shown in Fig. 5 along-
side samples from our multivariate Gaussian that was fit to
the first-layer kernel dataset. The samples appear structurally
consistent with our phase 1 kernels.

In phase 2, we train our CNN on a new 10-way classi-
fication task, providing the network with just 3 examples
per class for gradient descent training and 3 examples per
class for validation. Colors are again added at random to
each silhouette in the dataset. The network is initialized ran-
domly, and we apply SK-reg to the convolution kernels of
each layer during training using the covariance matrices ob-
tained in phase 1. Our validation set is used to track and save
the best model over the course of the training epochs (early

Misk
arb
bottle

brick
carriage

dude
flatfish
hand
horse
textbox

ValidateTrain Test

Figure 6: Silhouettes phase 2 datasets. 3 examples per class are
provided in both the train and validation sets. A holdout test set with
6 examples per class is used to evaluate final model performance.

Method λ Cross-entropy Accuracy
L2 0.214 2.000 (+/- 0.033) 0.530 (+/- 0.013)
SK 0.129 0.597 (+/- 0.172) 0.821 (+/- 0.056)

Table 2: Silhouettes phase 2 results. For each regularization method,
the optimal regularization weight λ was selected via grid-search.
Results show the average cross-entropy and classification accuracy
achieved on the holdout test set over 10 phase 2 training runs.

stopping). A holdout set with 6 examples per class is used
to assess the final performance of the model. A depiction of
the train, validation and test sets used for phase 2 is given
in Fig. 6. The validation and test images have been shifted,
translated and flipped to make for a more challenging gen-
eralization test. Similar to phase 1, random shifts, rotations
and horizontal flips are applied to the training images at each
training epoch. As a baseline, we also train our CNN using
standard L2 regularization.

The regularization weight λ is an important hyperparame-
ter of both SK and L2 regularization. Before performing the
phase 2 training assessment, we use a validated grid search to
select the optimal λ for each regularization method, applying
our train/validate sets.3 The same weight λ is applied to each
convolution layer, as done in phase 1.

Results. With our optimal λ values selected, we trained our
CNN on the 10-way phase 2 classification task of Fig. 6,
comparing SK regularization to a baseline L2 regularization
model. Average results for the two models collected over 10
training runs are presented in Table 2. Average test accuracy
is improved by roughly 55% with the addition of SK reg, a
substantial performance boost from 53.0% correct to 82.1%
correct. Clearly, a priori structure is beneficial to generaliza-
tion in this use case. An inspection of the learned kernels con-
firms that SK-reg encourages the structure we expect; these

3To yield interpretable λ values that can be compared between
the SK and L2 cases, we normalize each covariance matrix to unit
determinant by applying a scaling factor c, such that det(cΣ) = det(I).
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kernels look visually similar to samples from the Gaussian
(e.g. Fig. 5).

Tiny ImageNet
Our silhouette experiment demonstrates the effectiveness of
SK-reg when the parameters of the regularizer are determined
from the structure of CNNs trained on a similar image do-
main. However, it remains unclear whether these regulariza-
tion parameters can generalize to novel image domains. Due
to the nature of the silhouette images, the silhouette recogni-
tion task encourages representations with properties that are
desirable for object recognition tasks in general. Categorizing
silhouettes requires forming a rich representation of shape,
and shape perception is critical to object recognition. There-
fore, this family of representation may be useful in a variety
of object recognition tasks.

To test whether our kernel priors obtained from silhouette
training generalize to a novel domain, we applied SK-reg to
a simplified version of the Tiny ImageNet visual recognition
challenge, using covariance parameters fitted to silhouette-
trained CNNs. Tiny ImageNet images were up-sampled with
bilinear interpolation from their original size of 64× 64 to
mirror the Silhouette size 200× 200. We selected 10 well-
structured ImageNet classes that contain properties consistent
with the silhouette images.4 We performed 10-way image
classification with these classes, using the same CNN archi-
tecture from Table 1 and applying the SK-reg soft constraint.
The network is provided 10 images per class for training and
10 per class for validation. Because of the increased com-
plexity of the Tiny ImageNet data, a larger number of exam-
ples per class is merited to achieve good generalization per-
formance. A holdout test set with 20 images per class is used
to evaluate performance. Fig. 7 shows a breakdown of the
train, validate and test sets.

A few modifications were made to account for the new im-
age data. First, we modified the phase 1 silhouette training
used to acquire our covariance parameters, this time apply-
ing random colors to both the foreground and background of
each silhouette. Previously, each silhouette overlaid a strictly
white background. Consequently, the edge detectors of the
learned CNNs would be unlikely to generalize to novel color
gradients. Second, we added additional regularization to our
covariance estimators to avoid over-fitting and help improve
the generalization capability of the resulting kernel priors.
Due to the nature of the phase 2 task in this experiment, and
the extent to which the images differ from phase 1, additional
regularization was necessary to ensure that our kernel priors
could generalize. Specifically, we applied L1-regularized in-
verse covariance estimation (Friedman et al., 2008) to esti-
mate each Σi, which can be interpreted as a hyperprior p(ΣΣΣ;β)
(Fig. 3) that favors a sparse inverse covariance (Lake &
Tenenbaum, 2010).

Similar to the silhouettes experiment, the validation set is

4Desirable classes have a uniform, centralized object with con-
sistent shape properties and a distinct background.
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Figure 7: Tiny ImageNet datasets. 10 classes were selected to form
a 10-way classification task. The train and validate sets each contain
10 examples per class. The holdout test set contains 20 examples
per class.

Method λ Cross-entropy Accuracy
L2 0.450 1.073 (+/- 0.102) 0.700 (+/- 0.030)
SK 0.450 0.956 (+/- 0.180) 0.776 (+/- 0.035)

Table 3: Tiny ImageNet SK-reg and L2 results. Table shows the
average cross-entropy and classification accuracy achieved on the
holdout test set over 10 training runs.

used to select weighting hyperparameter λ and to track the
best model over the course of learning. As a baseline, we
again compared SK-reg to a λ-optimized L2 regularizer.

Results. SK-reg improved the average holdout perfor-
mance received from 10 training runs as compared to an L2
baseline, both in accuracy and cross-entropy. Results for each
regularization method, as well as their optimal λ values, are
reported in Table 3. An improvement of 8% in test accuracy
suggests that some of the structure captured by our kernel
prior is useful even in a very distinct image domain. The
complexity of natural images like ImageNet is vast in com-
parison to simple binary shape masks; nonetheless, our prior
from phase 1 silhouette training is able to influence ImageNet
learning in a manner that is beneficial to generalization.

Discussion
Using a set of controlled visual learning experiments, our
work in this paper demonstrates the potential of structured
receptive field priors in CNN learning tasks. Due to the prop-
erties of image data, smooth, structured receptive fields have
many desirable properties for visual recognition models. In
our experiments, we have shown that a simple multivariate
Gaussian model can effectively capture some of the structure
in the learned receptive fields of CNNs trained on simple ob-
ject recognition tasks. Samples from the fitted Gaussians are
visually consistent with learned receptive fields, and when ap-
plied as a model prior for new learning tasks, these Gaussians
can help a CNN generalize in conditions of limited training
data. We demonstrated our new regularization method in two
simple use cases. Our silhouettes experiment shows that,
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when the parameters of SK-reg are determined from CNNs
trained on a similar image domain to that of the new task, the
performance increase that results in the new task can be quite
substantial–as large as 55% over an L2 baseline. Our Tiny
ImageNet experiment demonstrates that SK-reg is capable of
encoding generalizable structural principles about the corre-
lations in receptive fields; the statistics of learned parameters
in one domain can be useful in a completely new domain with
substantial differences.

The Gaussians that we fit to kernel data in phase 1 of our
experiments could be overfit to the CNN training runs. We
have discussed the application of sparse inverse covariance
(precision) estimation as one approach to reduce over-fitting.
In future work, we would like to explore a Gaussian model
with graphical connectivity that is specified by a 2D grid
MRF. Model fitting would consist of optimizing the non-zero
precision matrix values subject to this pre-specified sparsity.
The grid MRF model is enticing for its potential to serve as
a general “smoothness” prior for CNN receptive fields. Ulti-
mately, we hope to develop a general-purpose kernel regular-
izer that does not depend on transfer learning.

Although a Gaussian can model some kernel families suf-
ficiently, other families would give it a difficult time. The
first-layer kernels of AlexNet–which are 11× 11 and are vi-
sually similar to Gabor wavelets and derivative kernels–are
not well-modeled by a multivariate Gaussian. A more so-
phisticated prior is needed to model kernels of this size ef-
fectively. In future work, we hope to investigate more com-
plex families of priors that can capture the regularities of fil-
ters such as Gabors and derivatives. Nevertheless, a simple
Gaussian estimator works well for smaller kernels, and in the
literature, it has been shown that architectures with a hierar-
chy of smaller convolutions followed by nonlinearities can
achieve equal (and often better) performance as those will
fewer, larger kernels (Simonyan & Zisserman, 2015). Thus,
the ready-made Gaussian regularizer we introduced here can
be used in many applications.
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Abstract 
The semantics of spatial terms has attracted substantial 
attention in the cognitive sciences, revealing both compelling 
similarities and striking differences across languages. 
However, much of the evidence regarding cross-linguistic 
variation pertains to fine-grained comparisons between 
individual lexical items, while cross-linguistic similarities are 
found in more coarse-grained studies of the conceptual space 
underlying semantic systems. We seek to bridge this gap, 
moving beyond the semantics of individual terms to ask what 
the comparison of spatial semantic systems may reveal about 
the conceptualization of locations in English and Mandarin 
Chinese and about the nature of potential universals in this 
domain. We subjected descriptions of 116 spatial scenes to 
multidimensional scaling analyses in order to reveal the 
structures of the underlying conceptual spaces in each 
language. In addition to revealing overlaps and divergences in 
the conceptualization of space in English and Mandarin, our 
results suggest a difference in complexity, whereby Mandarin 
terms are accommodated by a lower-dimensional similarity 
space than are English terms.  

Keywords: spatial semantics; universals; cross-linguistic 
variation 

Introduction 
All peoples, in all languages, have occasion to talk about the 
locations of objects in their environments – environments 
which are fundamentally similar. Despite this, the 
vocabularies of space differ strikingly across languages, 
fueling interest in spatial semantics across the cognitive 
sciences. Most notably, scholars have observed that both the 
number and the nature of the contrasts that are encoded vary 
markedly from language to language (Bowerman 1996; 
Bowerman & Choi 2001; Feist 2000; Gentner & Bowerman 
2009; Landau & Jackendoff 1993), with the result that 
“translation equivalents” for spatial terms can be quite 
different in meaning (Feist 2013; Trujillo 1995). 

As a case in point, the range of spatial configurations that 
can be described using the English preposition on is divided 
amongst three prepositions – op, aan, and om – in Dutch 
(Gentner & Bowerman 2009); Dutch thus routinely encodes 
distinctions that are optional in English. More strikingly, 
even the dimensions of contrast encoded in spatial semantic 
systems may vary across languages: whereas English 
encodes a distinction between containment and support, 
Korean encodes a distinction between tight and loose fit 
(Bowerman & Choi 2001) that neutralizes the 
containment/support contrast.  

Tempering these findings of variation is an overall 
structuring of the semantic domain of topological relations 

which appears to be shared cross-linguistically. For example, 
despite finding evidence of a “fractionated picture of 
overlapping contrasts” (Levinson & Wilkins 2006, p. 520) 
which echoes the variation briefly reviewed above, Levinson 
and Wilkins argue that the extensional ranges of the 
adpositions in the dozen languages they studied suggest a 
common underlying conceptual space. This is consistent with 
earlier findings suggesting that topological notions may be 
organized in a coherent conceptual space characterized by a 
small set of “attractors” – groups of situations that are likely 
to be lexicalized in similar ways across languages (Levinson 
& Meira 2003), including “ATTACHMENT”, “IN”, and 
“ON-TOP”. Thus, while the semantics of individual spatial 
terms in different languages may differ from one another, the 
underlying conceptual components that make them up are 
argued to be drawn from a common set. This conclusion is 
supported by the work of Feist (2008), who found that the 
extensional ranges of spatial terms across a sample of 24 
languages could be accommodated by a two-dimensional 
similarity space, with one dimension encoding the degree to 
which the reference object constrains the location of the 
located object, while the second dimension encodes the 
relative vertical positions of the two objects. Taken together, 
these studies in semantic typology suggest that the cross-
linguistic variation that has often been noted is overlaid upon 
a common conceptual core. 

The stark contrast between the word-level evidence of 
cross-linguistic variation and the system-level evidence of a 
common conceptual core raises many questions regarding the 
conceptualization of space. Is cross-linguistic variation 
limited to fine-grained details of lexical encoding, leaving a 
substantial universal conceptual basis intact? This would 
suggest that, while languages vary in the contrasts they mark, 
each structures its semantic system around fundamentally the 
same topological concepts. Or is the fine-grained cross-
linguistic variation evidence of deeper differences in the 
nature of the topological concepts underlying the meanings 
of spatial terms? This would suggest that the system-level 
similarities that have been observed are in fact quite abstract, 
with variation arising within the set of topological concepts 
upon which the meanings of lexical items are based. 

Zhang, Segalowitz, and Gatbonton (2011) began to address 
questions such as these, asking whether Mandarin Chinese 
and English differ with respect to the conceptual specification 
of containment and support rather than merely in the mapping 
of these two concepts onto spatial lexemes. They had 
speakers describe a set of 116 line drawings depicting a range 
of topological relations in order to examine the lexicalization 
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of containment and support in the two languages. Each of the 
elicited spatial terms was classified as encoding containment, 
support, or “other concepts”, and the extensions of 
containment-encoding and support-encoding lexemes in the 
two languages were compared. They found that 
approximately half of the pictures were categorized similarly 
at this broad level of detail (either as examples of 
containment or as examples of support) by speakers of the 
two languages, representing a large overlap in how the 
concepts of containment and support may be represented in 
English and in Mandarin. However, Zhang and her 
colleagues also noted differences in the uses of containment-
encoding and support-encoding adpositions: Mandarin 
speakers described a larger proportion of the pictures using 
support-encoding lexical items than using containment-
encoding lexical items, while English speakers evidenced the 
opposite pattern. Much of this difference could be accounted 
for via a difference in the encoding of partial inclusion and of 
part-whole relations: these relations tended to be described 
using support-encoding adpositions in Mandarin, but 
containment-encoding adpositions in English. This pattern of 
results suggests cross-linguistic differences in the boundaries 
separating the two conceptual categories, despite overlap in 
their cores, thus situating variation as a lexicalization 
phenomenon, rather than as evidence that the conceptual 
systems – and the topological concepts themselves – differ. 

In a similar vein, Johannes and her colleagues asked 
whether the cores of lexicalized containment and support 
concepts were similar across languages (Johannes et al. 2015; 
Landau et al. 2017). They asked speakers to describe scenes 
predefined as representing subtypes of containment or 
support, then examined the rate of use of the Basic Locative 
Construction1 for each subtype. For both concepts, they 
found that the rate of use of this construction was highest for 
a similar range of subtypes across the languages sampled, 
suggesting that these subtypes may constitute universal 
conceptual cores for containment and support.  

Before we can conclude that the conceptual cores are 
indeed universal, however, we need to take a closer look at 
the extensions of containment- and support-encoding spatial 
terms as a source of evidence for the underlying structures of 
the concepts, without prejudging the status of either the 
adpositions or the scenes as exemplars of containment or 
support. In their study, Zhang et al (2011) classified each 
adposition a priori as encoding support, containment, or 
“other concepts”; they then used this classification to explore 
the kinds of situations that will be encoded as either 
containment or support in Mandarin and in English. In so 
doing, they neutralized fine-grained contrasts marked by the 
lexical items in the two languages, in essence positing that 
coherent, unified concepts of support and containment are 
encoded in English and Mandarin. In a parallel fashion, 
Johannes and her colleagues (2015; Landau et al. 2017) 

                                                        
1 Although Levinson and Meira (2003, p. 486) define this 

construction as “answers to where questions”, Johannes and her 
colleagues limited their investigation to BE in/on (and its equivalent 
in the other languages studied).  

classified the scenes used in their studies as exemplars of 
either containment or support. In addition, they limited the 
scope of their study to variation in the use of BE in/on (and 
its translation equivalents), leaving fine-grained semantic 
contrasts unexplored. This methodology likewise assumes 
the existence of coherent, unified concepts of support and 
containment. Such unified concepts, however, cannot be 
assumed. As a case in point, the coherence of support as a 
universally salient concept has been contradicted by cross-
linguistic evidence, with support relations clustering with two 
different groups of scenes in Levinson and Meira’s (2003) 
analysis. In abstracting away from the semantic richness of 
the spatial adpositions and the complexity of the scenes, these 
studies may have inadvertently introduced a universal 
structure to the systems rather than objectively testing for its 
presence. In this paper, we reintroduce the semantic richness 
of the spatial terms while removing the a priori 
categorization of the scenes and adpositions in order to better 
assess the degree of similarity between the Mandarin and the 
English spatial semantic systems. 

Spatial semantics in paradigmatic perspective 
In order to better understand the comparison between the 
Mandarin spatial descriptors and the English ones, we shift 
the focus of our attention from the spatial terms as exemplars 
of abstract concepts to the spatial terms as indicators of 
linguistically-relevant degrees of similarity amongst spatial 
scenes (cf., Croft 2010; Feist 2008; Levinson & Meira 2003). 
Because words name categories, when speakers use a single 
word to describe two scenes, they are relying on a perceived 
similarity between the scenes that enables the sameness of 
description. Conversely, when two scenes are described 
using different words, speakers are highlighting differences 
between the scenes. 

We can examine the patterns of similarity that underlie a 
language’s semantic system via statistical techniques such as 
multidimensional scaling (MDS). MDS uses the co-
occurrence of lexical items and pictures to construct a 
similarity space in which the placement of each picture is a 
function of the extent to which the lexical items used to 
describe it overlap with the lexical items used to describe 
each of the other pictures in the set. For example, consider 
the two pictures in Figure 1.  If one speaker described the 
apple as in the bowl and the boat as in the water, this would 
provide evidence that the two scenes are similar, and should 
be placed close together in the similarity space. However, if 
another speaker instead described the boat as on the water, 
this would temper that judgment of similarity, and result in 
some distance between the two pictures. By adding in 
evidence from multiple speakers, a fuller picture may emerge 
of the extent to which each pair of pictures is treated as 
similar by speakers of a language. 
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Figure 1: Two spatial scenes (from Bowerman & Pederson 

1992b) 
 
The output of multidimensional scaling is a similarity 

space reflecting this evidence, in which the placement of 
points (each representing a picture in the set) is a function of 
the overlap between the set of spatial terms used to describe 
that picture and the sets of spatial terms used to describe all 
the other pictures under study. The more shared spatial terms 
in the elicited descriptions for a pair of pictures, the closer the 
pictures will be in the final similarity space (see Croft 2010; 
Croft & Poole 2008; Feist 2008; Levinson & Meira 2003). 
Hence, the similarity space presents a visual representation of 
the conceptual space underlying the uses of the spatial terms.  

To assess the adequacy of the account of the patterns in the 
data provided by the similarity space, we can examine both 
the percent correct classification, indicating the proportion of 
the pictures in the solution that are placed correctly relative 
to the elicited naming patterns, and the aggregate 
proportional reduction of error (APRE), indicating the extent 
to which the resulting solution improves upon a solution 
which places all of the pictures in a single category (see Croft 
& Poole 2008; Poole 2000, 2005 for further discussion). The 
APRE is measured on a scale from 0-1, with higher values 
indicating fewer errors in the model. 

With a cross-linguistic data set, MDS returns a 
representation of a space upon which all the languages in the 
set may be overlaid such that the distinctions marked in each 
language isolate contiguous sets of points (Croft & Poole 
2008; Feist 2008); the fewer that are miscategorized, the 
better the solution. As such, MDS provides a means by which 
we may identify potential universals underlying the semantic 
systems of a varied set of languages (Feist 2008; Levinson & 
Meira 2003). In the current study, we use MDS to construct 
separate similarity spaces for a set of simple spatial scenes as 
described by speakers of Mandarin and by speakers of 
English. With single-language data sets such as these, the 
conceptual space that MDS returns is one that only respects 
the distinctions marked in that language, thus providing a 
representation of the similarities amongst the pictures in the 
set as encoded in the naming patterns of the language under 
study. Comparison of the conceptual spaces resulting from 
separate MDS analyses, thus, gives a novel view into the fine-
grained differences in the contrasts marked within the 
semantic systems of the examined languages, thus enabling a 
richer comparison than has been possible in previous work. 

Method 
 
The Corpus We used the 5800 picture descriptions (2900 
descriptions from each language) collected by Zhang et al. 

(2011). The descriptions were elicited using 116 simple line 
drawings: 65 pictures from Bowerman and Pederson’s 
(1992b) Topological Relations Picture Series (pictures 18, 
20, 24, 33, 47, and 59 were excluded; see Zhang 2013) and 
an additional 51 developed by Zhang (2013). Each drawing 
depicts two objects – one highlighted in yellow, and one in 
black and white – in a simple spatial relation, with the names 
of the objects printed below the picture (in English or in 
Mandarin, as appropriate). The pictures depicted a range of 
topological relations; example pictures are shown in Figure 
1. The pictures were printed two to a page, vertically aligned. 

The set of pictures was described by 25 native speakers of 
English living in Montreal, Canada, and 25 native speakers 
of Mandarin living in Harbin, China. All speakers reported 
themselves either to be monolingual, or to have only limited 
knowledge of a second language. The pictures were presented 
in random order, and participants were asked to describe for 
each the location of the yellow object with respect to the 
black and white one. 
 
Analysis In order to be able to compare the structuring of 
space in the two languages, the English and Mandarin 
descriptions were analyzed separately. We used Poole’s 
Optimal Classification nonparametric unfolding algorithm 
(Poole 2000, 2005; see also Croft 2010; Feist 2008) to 
perform MDS analyses of the two sets of descriptions. 

Our procedure was as follows. First, we identified the 
spatial terms used in each of the elicited descriptions. 
Because our aim was to analyze spatial term usage at a fine 
level of detail, we considered each adpositional expression to 
be a separate spatial term, hence in was separate from inside; 
on, from on top.  This resulted in identification of 36 spatial 
terms in Mandarin and 38 in English. Next, we constructed 
two matrices – one for each language – with the 116 pictures 
defining the rows and with the elicited spatial terms defining 
the columns. Within each matrix, we then filled in each cell 
to indicate whether the spatial term heading the column had 
been used by any participant to describe the picture heading 
the row (cf., Feist 2008). These matrices were then input into 
the Optimal Classification algorithm as implemented within 
the R programming environment. 

 
Results 
We look first at the results for each language separately, 
beginning with English. Next, we turn to the comparison 
between the English solution spaces and the Mandarin ones. 
 
English The lowest dimensional fit that provided a high rate 
of correct classification and a substantial improvement over 
a null model (i.e., one in which all the pictures are in a single 
category) was the two-dimensional solution, with 97.7% 
correct classification and an APRE of .765. The conceptual 
space associated with this solution is presented in Figure 2. 

A close examination of Figure 2 reveals that the 
dimensions in the solution space readily admit of semantic 
interpretation. The x-axis, anchored by pictures of a ball 
underneath an upside-down bowl (and, hence, located at its 
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interior) [picture number 110] and of a muscle in a leg [83] 
on the left end, and by pictures of a city at the shore of an 
ocean [109] and of a rope wound around a tree stump [43] on 
the right, corresponds to a continuum between interior 
location and surface contact. The y-axis, on the other hand, is 
anchored by pictures of a dog resting beside a dog house [6] 
and of a garden on the bank of a river [108] on the upper end, 
and by pictures of a gate in a fence [136] and of a muscle in 
a leg [83] at the lower. This axis thus corresponds to variation 
in the amount of control that the ground exerts over the 
figure. Along the y-axis we also see variation in the 
alienability of the objects (i.e., the extent to which the relation 
between them is inherent to their nature [Strazny 2005]), with 
more alienable connections (including tree/house [49] and 
garden/river [108]) anchoring the upper end of the dimension, 
and more inalienable connections (including muscle/leg [83] 
and gate/fence [136]) anchoring the lower end. 
 

 
 
Figure 2: 2-dimensional solution for English. Each number 
represents one picture in the set. 
 

The addition of more dimensions improved the fit and, 
even more so, the APRE. The analysis in four dimensions 
provided the best fit, with 99.5% correct classification, and 
an APRE of .947 (see Tables 1 and 2). 

 
Mandarin The lowest dimensional fit that provided a high 
rate of correct classification and a substantial improvement 
over a null model was again the two-dimensional solution, 
with 98.8% correct classification and an APRE of .889. The 
conceptual space associated with this solution is presented in 
Figure 3. 

A close examination of the solution space reveals that the 
dimension located along the x-axis encodes a continuum 
between interior location and surface contact. This dimension 
is anchored at the left end by pictures of a ball underneath an 
upside-down bowl [110], of a circle surrounded by a 
rectangle [91], and of a house surrounded by a fence [60], and 
at the right end by pictures of a garden on the bank of a river 

[108], of a city on the shore of an ocean [109], of a crease in 
a pair of pants [86], and of a tree at the top of a hill [65]. The 
y-axis, on the other hand, encodes variation in the alienability 
of the two objects. This axis is anchored at the upper end by 
alienable pairs such as a ball underneath an upside-down 
bowl [110], a ball under a chair [16], and a garden on the bank 
of a river [108]; the axis is anchored at the lower end by 
inalienable pairs such as a curve in a road [88], a tree growing 
at the top of a hill [65], and a bump in a road [123]. 
 

 
 
Figure 3: 2-dimensional solution for Mandarin. Each number 
represents one picture in the set. 
 

The analysis in three dimensions provided the best fit, with 
99.4% correct classification, and an APRE of .947, while the 
gains associated with a higher dimensional fit were more 
modest (see Tables 1 and 2). 

Comparing the solution spaces 
There are a number of ways in which we can compare the 
structurings of the spatial semantic domain in English and 
Mandarin. At a broad level, we can ask whether the two 
languages differ in the complexity of the structure of the 
domain, whereas at a more fine-grained level we can ask 
whether – and how – conceptual distinctions differ across the 
two languages. 

Turning first to the question of complexity, we compared 
the two languages with respect to the adequacy of the 
similarity spaces produced by the MDS analyses. Despite the 
fact that the two languages yielded comparable numbers of 
spatial terms (36 in Mandarin; 38 in English), we observed 
that the Mandarin data was better accommodated at all 
dimensionalities than was the English data, for both measures 
of fitness. Table 1 shows the correct classification rates at 
one, two, three, and four dimensions for both languages. 
Although the adequacy of the solutions for the two languages 
was comparable, we note that the Mandarin solution correctly 
classified a slightly higher proportion of the pictures than did 
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the English solution at each of the four levels of 
dimensionality considered. This pattern is replicated for the 
other fitness statistic, the APRE, for which the differences in 
adequacy between the Mandarin solutions and the English 
ones are more pronounced. 

 
Table 1: Correct classification rates for four MDS solutions 
in both languages 
 

 Mandarin English 
1 dimension 96.4% 95.5% 
2 dimensions 98.8% 97.7% 
3 dimensions 99.4% 98.6% 
4 dimensions 99.7% 99.5% 

 
 
Table 2: APRE for four MDS solutions in both languages 
 

 Mandarin English 
1 dimension .659 .551 
2 dimensions .889 .765 
3 dimensions .947 .864 
4 dimensions .976 .947 

 
Pushing this observation farther, we found that the optimal 
solution in Mandarin was achieved with fewer dimensions 
than in English, underscoring differences between the two 
languages in the degree of complexity encoded in topological 
spatial terms and hinting at differences between the two 
languages in the semantic structuring of this domain. 
Notably, the fitness statistics for the three-dimensional 
Mandarin solution and the four-dimensional English solution 
were almost identical (99.4% and 99.5% correct 
classification, respectively, and APREs of .947). 

Looking more closely at the placements of the individual 
pictures, we can ask whether the semantic structurings 
associated with the two languages differ at a finer-grained 
conceptual level. To do this, we compared the one-. two-, and 
three-dimensional semantic spaces across the two languages, 
asking in each case whether the placements of the pictures 
along each dimension correlated across the two languages. 

We looked first at the one-dimensional solutions, which 
correctly classified a substantial proportion of the pictures for 
each language, but presented a relatively modest 
improvement over a null model. Our analysis revealed a 
substantial overlap in the placement of pictures along the one-
dimensional solution (r = .68, p < .0001), suggesting 
significant similarity in the ways in which English and 
Mandarin group situation types in the spatial domain. 

In both languages, we observed that the lowest dimensional 
solution that provided both a high rate of correct 
classification and a substantial improvement over a null 
model was the two-dimensional solution, so a comparison of 
the two-dimensional solutions will be especially important to 
our understanding of cross-linguistic variation in this domain. 
At first blush, the English and Mandarin two-dimensional 
solutions share many similarities: both include one 

dimension that encodes a continuum between inclusion and 
surface contact and one dimension that encodes the 
alienability of the figure-ground relation. However, a closer 
look reveals that these similarities are but part of the story, 
co-existing with important differences in the details of the 
solution spaces. 

We consider first the details of the continuum between 
interior and surface contact. While the English and Mandarin 
continua overlap, reflected in high correlation between the 
coordinates along this dimension across the two languages (r 
= .75, p < .0001), we noted important differences in the 
placements of many of the pictures in our set. First, we 
observed that some pictures, such as the crease in pants [86] 
and the light bulb in a socket [133], are located toward the 
surface contact end of Mandarin’s Dimension 1 but more 
centrally in the English solution space. In addition, many 
examples of three-dimensional full inclusion (e.g., an apple 
in a bowl [2] and a fish in a fishbowl [32]) can be found 
towards the center of the expanse of Mandarin’s Dimension 
1, but farther towards the inclusion end of Dimension 1 in 
English. Looking more closely, we observed that the sets of 
pictures anchoring the inclusion end of Dimension 1 differed 
between the two languages: in English, this dimension is 
anchored by examples of three-dimensional inclusion such as 
a ball underneath an upside-down bowl [110] and of a muscle 
in a leg [83], whereas in Mandarin this dimension is anchored 
by examples of two-dimensional inclusion such as a circle 
surrounded by a rectangle [91] and a house surrounded by a 
fence [60]. Whereas all these scenes could be classified as 
“containment” (cf., Johannes et al. 2015; Landau et al. 2017), 
these differences suggest that even though both Mandarin and 
English draw upon a contrast between inclusion and surface 
contact, the Mandarin system privileges two-dimensional 
over three-dimensional inclusion, whereas the English 
system privileges three-dimensional over two-dimensional 
inclusion. In addition, this dimension is far more spread out 
in English than in Mandarin, suggesting not only differences 
in the nature of the inclusion concept, but also differences in 
the linguistically-relevant degree of similarity amongst the 
pictures along this dimension. 

Turning to the second dimension, we noted less overlap in 
the semantic interpretation (above), reflected in weaker 
correlation between the coordinates along this dimension 
across the two languages (r = .36, p < .0001). Furthermore, 
whereas this dimension encodes alienability in both solution 
spaces, this factor is connected to the amount of control 
exerted by the ground in English, but not in Mandarin. This 
suggests that control may play a larger role in the semantics 
of English spatial terms than in the semantics of the Mandarin 
terms.  In addition, this data suggests that the closeness of the 
relation between two objects may be more likely to be 
independently assessed and taken into account for speakers 
of Mandarin than for speakers of English. 

Finally, we compared the three-dimensional solutions, 
which improved substantially beyond the two-dimensional 
solution in English, but less so in Mandarin. Just as the gains 
in moving from two dimensions to three differed in the two 
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languages, we also observed that the placements of the 
pictures were less congruent in the three-dimensional 
solutions (dimension 1: r = .60, p < .0001; dimension 2: r = 
.37, p < .0001; dimension 3: r = .28, p = .0023) than what had 
been observed for the two-dimensional solutions. This 
decrement in congruence suggests greater differences 
between the two semantic systems become evident at more 
fine-grained levels of analysis. 

Conclusions 
Our study extends the evidence regarding cross-linguistic 
variation in the semantics of spatial terms beyond 
comparisons of the meanings of individual terms by 
comparing and contrasting the conceptual spaces underlying 
the semantics of spatial terms in English and in Mandarin. 
Whereas our findings reinforce the conclusion from past 
work (i.e., Feist 2008; Levinson & Meira 2003; Levinson & 
Wilkins 2006) that the conceptual spaces underlying spatial 
relational inventories are subject to similar factors across 
languages, this similarity is tempered by evidence that both 
the factors and the conceptual spaces themselves differ in 
subtle ways across languages.  

We consider first the findings regarding the spatial 
semantic systems in the two languages. Our Mandarin data 
was accommodated with fewer dimensions than was our 
English data, suggesting that the semantic complexity of 
spatial relational systems varies cross-linguistically. 
Furthermore, whereas the optimal scaling solution in 
Mandarin drew upon two dimensions, echoing Feist’s (2008) 
optimal solution for a cross-linguistic dataset, the optimal 
solution for our English dataset required additional 
dimensions. This may indicate that each language elaborates 
on and, hence, may add complexity beyond a universal 
conceptual core. Thus, while this conceptual core may 
provide a skeletal structure for how humans think and talk 
about spatial location (cf., Feist 2008; Levinson & Meira 
2003), it markedly underspecifies what we need to encode in 
order to effectively function in a spatial world. 

The strongest correlation between the solution spaces for 
the two languages involved Dimension 1 of the two-
dimensional solutions, which encoded a continuum between 
interior location and surface contact. In addition to reflecting 
the importance of the distinction between containment and 
support (cf., Zhang 2013), this dimension echoes continua 
that have emerged from other cross-linguistic studies of the 
semantics of spatial terms, including Bowerman and 
Pederson’s (1992a; see also Bowerman & Choi 2001) 
similarity gradient and the dimension corresponding to 
location control in Feist’s (2008) MDS analysis. However, 
whereas Feist’s (2008) MDS solution conflated location 
control and the interior-surface continuum, suggesting that 
the two may often be inseparable, the English solution 
reported here separates the two as individual dimensions. 
This suggests that, whereas both factors are important cross-
linguistically and are related, individual languages will make 
use of different options regarding the extent to which factors 
are separated in their semantic systems.  

Our findings further suggest that cross-linguistic variation 
may extend beyond fine-grained details of lexical encoding 
into the nature of the topological concepts themselves. As in 
the work of Johannes and her colleagues (2015; Landau et al. 
2017), our findings underscore the importance of 
containment and support concepts in the semantics of 
topological terms. However, a close examination of the 
continuum between interior and surface contact in the 
solution spaces for English and Mandarin revealed that the 
distribution of inclusion scenes differs considerably across 
the two languages, suggesting differences in the underlying 
containment concepts. In English, we observed that scenes in 
which the ground surrounded the figure in three dimensions 
were placed farther toward the interior end of the continuum 
than were scenes in which the ground surrounded the figure 
in two dimensions, suggesting that three-dimensional 
inclusion is more prototypical than is two-dimensional 
inclusion in this language. In contrast, in Mandarin we 
observed the opposite pattern, suggesting that two-
dimensional inclusion constitutes a better example of the 
concept than does three-dimensional inclusion in this 
language. While inclusion played an important role in 
structuring spatial semantics in each case, the conceptual 
cores around which the inclusion concepts were structured 
differed. Thus, cross-linguistic differences lie not only in the 
ways terms are distributed relative to a conceptual distinction, 
but also in the kinds of scenes considered to be best examples 
of the anchoring conceptual categories. 

Whereas MDS allows visualization of the conceptual space 
underlying semantic systems, it does not afford a picture of 
the meanings of the lexical items themselves, nor does it 
afford a close look at the encoding possibilities for individual 
spatial scenes. The lower correlations observed between the 
dimensions of the three-dimensional solutions suggest that 
important cross-linguistic differences may only become 
evident when viewed at this fine-grained level of analysis. In 
future work, we will complement the current analysis with 
analyses focused on these two aspects of spatial semantics. 
To better understand the detailed ways in which the lexical 
items relate to one another, we will examine frequencies of 
use of each term for each picture – i.e., the behavioral profiles 
(Gries 2010) of each of the elicited terms. To better 
understand variation in the codability of the scenes, we will 
assess the breadth of descriptions elicited by each scene. 
Taken in combination with the current study, these analyses 
will afford a better understanding of the ways in which 
individual lexemes fit together to create a semantic system. 

Taken together, the current results present a rich picture of 
the interplay between universals and variation in the 
semantics of spatial terms. While languages may draw upon 
a common set of concepts to structure meanings in this 
domain, these concepts may in fact be quite underspecified. 
As a result, the variation in meaning that has been observed 
across languages may be indicative of variation in the ways 
in which the universal conceptual core has been developed in 
each language in order to produce a useful set of concepts for 
communication. 
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Abstract

This study utilises an experiment famous in quantum physics,
the Stern-Gerlach experiment, to inform the structure of an ex-
perimental protocol from which a quantum cognitive decision
model can be developed. The ’quantumness’ of this model
is tested by computing a discrete quasi-probabilistic Wigner
function. Based on theory from quantum physics, our hypothe-
sis is that the Stern-Gerlach protocol will admit negative values
in the Wigner function, thus signalling that the cognitive de-
cision model is quantum. A crowdsourced experiment of two
images was used to collect decisions around three questions re-
lated to image trustworthiness. The resultant data was used to
instantiate the quantum model and compute the Wigner func-
tion. Negative values in the Wigner functions of both images
were encountered, thus substantiating our hypothesis. Find-
ings also revealed that the quantum cognitive model was a
more accurate predictor of decisions when compared to pre-
dictions computed using Bayes’ rule.
Keywords: quantum cognition; decision-making; complex
Hilbert space; binary response; cognitive modelling

Introduction
A generally accepted notion is that we can approximately
access cognitive states through questioning and observation,
and whilst this measurement is not deemed to be perfect, it
is a standard means of experimental practice in the psycho-
logical discipline. This notion relies on the fact that these
internal states hold distinct values and by measuring them,
we are merely attempting to record what is already there.
Often, probabilistic outcomes of these measures appear to
be illogical and do not follow the laws of classical proba-
bility, for example, cognitive biases identified in decision-
making (Tversky & Kahneman, 1974). Quantum cognition
has emerged as an alternative means of analysing probabilis-
tic outcomes that do not follow these classical laws. Its poten-
tial derives from an alternative probability which has success-
fully been used to address human decision making considered
paradoxical, generate non-reductive understandings of human
conceptual processing, and provide new understandings of
perception and human memory (Bruza, Wang, & Busemeyer,
2015; Busemeyer & Bruza, 2012). The present paper extends
current approaches to quantum modelling by means of two
new aspects: 1) the Stern-Gerlach experiment, to inform an
experimental protocol from which a complex Hilbert space
model can be constructed and 2) the discrete Wigner function

Figure 1: S.G. Setup using colour-type measurements (C) and
shape-type measurements (S) in place of spin measurements
at different orientations.

to perform a check on ’quantumness’ of cognitive systems
being modelled.

The Stern-Gerlach Experiment
The Stern-Gerlach (S.G.) experiment (Sakurai & Commins,
1995) takes a beam of particles (for example, silver atoms)
and observes their spin using a device that creates an elec-
tromagnetic field (S.G. device). This device can be placed at
different orientations to observe spins at associated orienta-
tions. Due to the fact that a particle’s spin is a complex con-
cept to describe, we will substitute this property with colour
and shape in our description of the S.G. experiment in the
interests of clarity. For the following, we will describe the
experiment as having two orientations of S.G. devices: one
oriented one way to measure one type of spin (we will call
this a ’colour-type’ measure differentiating purple from yel-
low), and another oriented orthogonal to the first to measure
a second type of spin (we will call this a ’shape-type’ mea-
sure differentiating circular from rectangular). Each enable
measurement of separate aspects of the same object (two ori-
entations of spin, or colour and shape in our analogy).

The experiment involves a beam of atoms hitting an S.G.
device which splits it into two separate beams: one purple
beam and another yellow beam. A second S.G. device of the
same orientation as the first (colour-type) is placed in the path
of the purple beam. This time, the beam does not split, and
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only one beam of purple atoms come out, as one would expect
(i.e. we assume no yellow atoms to have entered it due to the
separation performed by the first S.G. device). We then place
a shape-type S.G. device in-between the two colour-type S.G.
devices, which splits the first purple beam into circular and
rectangular atoms before hitting the second colour-type de-
vice (see figure 1).

In a classical system, we would expect only one beam to
emit from the second colour-type device, as, again, we would
assume that only purple atoms were sent that way from the
first device. A quantum system, however, does not work in
this way. In a quantum system, the second colour-type de-
vice will emit two beams after the original beam of purple
atoms has passed through the shape-type device, as illustrated
in figure 1. This is because the shape-type measurement has
destroyed the first measurement of colour, essentially reset-
ting it. This can only happen if a particle’s properties are not
simply observed in a predefined definite state, but are deter-
mined at the point of measurement.

A Cognitive Analogue
This concept can be applied to cognitive measures, however,
in a slightly more complex way. Due to the potential of mem-
ory effects inherent in repeating a question in a string of only
three total questions, we utilise a more complex version of
the S.G. experiment, where a third question is introduced.
The general concept, however, remains the same. When one
considers a question or makes a decision, they may simply
be accessing an internal state predetermined by a range of
variables such as past experience, knowledge, predisposition,
values, what they had for lunch that day, etc. On the other
hand, they may be creating the state only at the point of mea-
surement (i.e. considering a question or making a decision).
To place this in the context of the S.G. experiment, consider
three questions asked after presentation of an image: Do you
feel a sense of trust when viewing this (T), do you feel that
the person in this image is attractive (A), and do you feel that
the image may have been manipulated (M). Taking a clas-
sical position, one could describe this system in the follow-
ing way: A person views an image and this event interacts
with internal variables to create a variety of probable judg-
ments of this image, including judgments of trust, attractive-
ness and manipulation. A person then considers the sequen-
tial questions of trust, attractiveness and manipulation, each
time taking an internal measurement of the predefined values
that each of these hold in the person’s internal state. On the
contrary, taking a quantum position would instead describe
no definite judgments to be formed at the point of viewing
the image, but only at the point of considering each question.
This view would also posit that each question would destroy
the measurement of the prior question, in the same way the
shape-type S.G. device did in our above example.

This article presents an experimental protocol that is anal-
ogous to the S.G. experiment in order to derive a quan-
tum model of decision making. For this purpose a complex
Hilbert space is used.

Derivation of a Quantum Model of Decision Making
from the S.G. device
As described above, the basic idea behind the model is to
translate the S.G. device into cognitive science by way of
analogy; human subjects correspond to silver atoms and ques-
tions correspond to S.G. devices. As a running example we
will use an image trustworthiness task whereby subjects are
asked whether they trust (T) an image, whether they find the
subject of the image attractive (A) and whether they deem the
image to be manipulated (M) e.g., photoshopped. The par-
ticular order of questions is determined by the order of the
devices in the S.G. device as depicted in figure 2.

The derivation of the quantum model corresponding to the
S.G. device comprises two steps: In the first step, a complex
Hilbert space model with states and operators is constructed.
In the second step, a criterion for checking the ‘quantumness’
of the model is applied by using a discrete Wigner function.

The cognitive decision space is modelled by means of a
complex Hilbert space model (HSM), i.e., a complex vector
space, equipped with an inner product with a positive definite
metric (Sakurai & Commins, 1995). Any yes/no outcome of a
specific question X , is denoted by a ket |X ,±〉 using the Dirac
notation, where +/- respectively denotes a yes/no outcome :

|X〉= α|X ,+〉+β|X ,−〉, α,β ∈ C

in which |α|2 and |β|2, based on the Born rule, give the prob-
ability of observing the positive and negative answers. In ad-
dition, outcomes are orthogonal, 〈X ,±|X ,∓〉 = 0 and prob-
abilities are normalized, |α|2 + |β|2 = 1. Also, an observ-
able is defined as a Hermitian operator. Without going into
the technical details, a Hermitian operator Â is a special type
of matrix where the eigenstates correspond to outcomes that
are observed, and the corresponding eigenvalue relates to the
probability of observing that outcome. The Pauli matrices
σi, i = 1,2,3,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

along with the identity matrix I2×2, form an orthogonal basis
for the complex Hilbert space of all 2× 2 matrices. As a
consequence, any operator such as Â can be expressed by Â =
a0I +∑

3
i=1 aiσi, in which ai ∈ R with i = 0,1,2,3.

Steps to construct a complex HSM Based on the preced-
ing formalism, the following steps are used to derive the
quantum model from the S.G. depicted in figure 2:

1) A quantum state is defined by the first question T based
on relative frequencies of yes/no outcomes sampled from the
experimental data, |T 〉 =

√
Pt(+)|T,+〉+

√
Pt(−)|T,−〉, in

which Pt(+) and Pt(−) are respectively probability of finding
positive and negative responses to the question T . Also, we
can consistently define the projection or filtering-type quan-
tum cognitive operator π̂t(±) = |T,±〉〈T,±|, so that Pt(±) =
〈T |π̂t(±)|T 〉. The filtering-type operators π̂t(±) satisfy the
completeness relation, π̂

†
t (+)π̂t(+) + π̂

†
t (−)π̂t(−) = I2×2,
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Figure 2: A cognitive analogue to a S.G. experiment where Trustworthiness (T) is asked first, followed by Attractiveness (A),
then Manipulated (M).

and the operator T̂ is defined as : T̂ = π̂t(+)− π̂t(−) = σz,
where σz is the Pauli matrix in direction z.

2) In the second step, we obtain the probability of find-
ing positive and negative responses to the second question A
through the first question T . Hence, we can define the cog-
nitive state regarding a decision of attractiveness A in the ba-
sis of the state of trustfulness T , i.e., |A,+〉= cos θa

2 |T,+〉+
sin θa

2 |T,−〉 and |A,−〉 = sin θa
2 |T,+〉 − cos θa

2 |T,−〉. The
filtering-type measurement operators πa(±) can be written as
follows:

π̂a(±) =
1
2

[
I2×2± sinθaσx± cosθaσz

]
.

Hence, the operator Â is given by

Â =

[
cosθa sinθa
sinθa −cosθa

]
(1)

in which θa characterizes a specific direction, which can be
computed from the experimental data. By applying the Born
rule, the conditional probabilities can be computed. For ex-
ample,

P(A =+|T =+) = |πa(+)πt(+)|T 〉|2 = Pt(+)cos2 θa

2
, (2)

3) A similar method to step 2) derives another filtering-type
operator corresponding to the third question M,

π̂m(±) =
1
2

[
I2×2± sinθm cosφmσx± sinθm sinφmσy± cosθmσz

]
in which θm can be obtained, despite of the fact that we must
have extra information for acquiring φm. Note that the states
of third question M are defined as follows:

|M,+〉 = cos
θm

2
|T,+〉+ eiφm sin

θm

2
|T,−〉,

|M,−〉 = e−iφm sin
θm

2
|T,+〉+ cos

θm

2
|T,−〉.

4) In the last step, probabilities of the third question M
are computed based in light of the outcomes from the second
question A:

P(M =+|A =+,T =+) = |πm(+)πa(+)πt(+)|T 〉|2

= Pt(+)cos2 θa
2 (+)

(
cos2 θa

2 cos2 θm
2 + sin2 θa

2 sin2 θm
2

+ 1
2 sinθa sinθm cosφm

)
. (3)

By using the previous equations, values of φm can be com-
puted.

Determining quantumness using the discrete Wigner dis-
tribution When we construct the Hilbert space structure of
the cognitive state and associated operators, we can examine
the quantumness of the cognitive state. Quantum physics has
a range of criteria for this. In this article we will employ one
such criterium, namely the negative discrete Wigner function,
where the negativity of the function can be interpreted as a
signature of quantum interference. In order to explain the
discrete Wigner function, the continuous Wigner function is
first introduced. For a continuous phase space (q, p), the con-
tinuous Wigner distribution is defined by

WΨ(q, p) =
1

2π

∫
∞

−∞

dx〈q− x
2
|x〉〈x|q+ x

2
〉eipx. (4)

Therefore, the expectation value of an arbitrary operator X̂ ,
by using the Wigner distribution, is given by

〈X̂〉= Tr[ρ̂X̂ ] =
∫ ∫

dx d pW (x, p)X̃(x, p), (5)

in which X̃(x, p) is the average of a physical quantity over the
phase space. Assuming two arbitrary states |ψa〉 and |ψb〉, it
can be verified that:

|〈ψa|ψb〉|2 = Tr[ρ̂aρ̂b] =
∫

dx d pWψa(x, p)Wψb(x, p). (6)

If we consider a situation in which two states are orthogonal,
i.e., ∫

dx d pWψa(x, p)Wψb(x, p) = 0, (7)
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at least in part of the region in phase space, one of the above
mentioned Wigner distributions has to be negative. The val-
ues in Wigner distributions still sum to 1 even when values
happen to be negative, which is why Wigner distributions are
termed “quasi-probability” distributions. The negativeness of
the Wigner distribution can be the result of the following two
facts: Firstly, the accessibility of information for a system
described by the quantum formalism is when the system is
described by classical probability (Goh et al., 2018; Vourdas,
2019). Secondly, the negativeness can be interpreted as quan-
tum contextuality (Huang, Yu, & Zhang, n.d.; Raussendorf,
Browne, Delfosse, Okay, & Bermejo-Vega, 2017; Kocia &
Love, 2017).

The binary nature of the responses implies a discrete, rather
than continuous phase space. We apply a generalized ver-
sion of the continuous Wigner function (Wootters, 1987). In
fact, by defining a geometrical structure on the discrete phase
space, such as parallel line, etc., and using a Finite Field Fn,
a discrete Wigner distribution can be defined (Gibbons, Hoff-
man, & Wootters, 2004; Galvao, 2005; Di Matteo, Sánchez-
Soto, Leuchs, & Grassl, 2017).

Due to the fact that we have binary responses, the discrete
phase space occupies a 2× 2 array of points where q runs
along the horizontal axis and p runs along the vertical axis,
as shown in figure 3. We place the origin, (q, p) = (0,0), at
the lower left-hand corner. We define a line λ in the 2× 2
phase space as the set of two points satisfying an equation of
the form aq+ bp = c, where a, b, and c are elements of Z2
(Z2 constraints numbers to binary 0s and 1s) where a and b
cannot both equal zero. It has the following conditions: (i)
given any two distinct points, exactly one line contains both
points;(ii) given a point α, if a line λ does not contain α, there
is exactly one line parallel to λ that does contain it (iii) two
lines that are not parallel intersect in exactly one point. In
the preceding conditions, two lines can be considered paral-
lel if they can be represented by equations having the same
values for a and b but different values for c. In the case of a
binary response, therefore, a line connecting (0,0) and (0,1)
is parallel with the line that connects (1,0) and (1,1). More-
over, two equations p+q = 0 and p+q = 1, with p,q ∈ Z2,
give the lines connecting points (1,0) and (0,1) and the par-
allel line connecting (0,0) and (1,1). Finally, the line (0,0)
and (1,0) is parallel with the line (0,1) and (1,1). Figure 3
demonstrates these striations in (1), (2), and (3) respectively.
Note that the lines drawn in (2) are technically parallel based
on the equation described above. As is the case in the con-
tinuous phase space, the integral of the Wigner function over
the strip of phase space bounded by the lines aq+bp= c1 and
aq+bp = c2 is the probability that the operator aq̂+bp̂ will
take a value between c1 and c2 (Wootters, 1987), the discrete
Wigner function has to satisfy the following equation:

Tr (|αi, j〉〈αi, j|ρ) = ∑
α∈λi, j

Wα, (8)

Figure 3: The striations of the 2×2 phase space. Each point
occupies a quadrant.

in which ρ is density matrix,

ρ̂ =
1
2
(I +~r ·σ) = 1

2

(
1+ rz rx− iry

rx + iry 1− rz

)
. (9)

and |αi, j〉 are three mutually unbiased bases for a two-
dimensional Hilbert space, with the following property:

|〈αi, j|αk,l〉|2 =
1
2

if i 6= k, (10)

where i = 1,2,3 indexes the mutually unbiased bases and j =
1,2 indexes the basis vector in each mutually unbiased bases,
with the following condition 〈αi, j|αi,k〉|2 = δ j,k. Naturally,
we can consider a one-to-one map between Pauli matrices σi
and striations Si.

Experiment
Participants
Participants consisted of 300 members of the crowdsourcing
platform Prolific, 187 of which were male, 110 female, and 3
who preferred not to disclose their gender. Participants were
over 18 years and from a variety of countries across North
America (39.7%), Europe (32.3%), UK (22.9%), Australia-
sia (4.0%) Middle East (0.7%) and Asia (0.3%). Participants
were randomly assigned to one of 4 conditions, each with 75
participants. All participants had been verified as proficient
in English by Prolific. Remuneration was in the form of a
small payment (£.23), as per Prolific convention, and an in-
formed consent page was presented to participants prior to
commencement.

Materials
Questions asked were as follows: While viewing, did you
feel a sense of trust? (T), Did you feel that this person was
attractive? (A), and Did you feel that this image may have
been photoshopped? (M). Question orders were TAM and
T MA for each image. Questions were selected based on the
likelihood that the operators associated with these variables
would be non-commutative. In other words, we were expect-
ing some order effects between variables/operators, meaning
that they are not entirely independent of one another. For ex-
ample, we expect the probabilities associated with the ques-
tion of attractiveness (A, given T) and the probabilities asso-
ciated with the question of manipulated (M, given T & A) to
be different if the order of A and M were to be reversed (i.e.,
T MA, with M|T , and A|T & M). The image stimuli used to
gather ratings of the above dimensions are shown in Figure 4.
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(a) Image 1: Unedited. (b) Image 2: Edited.

Figure 4: Image Stimuli

Figure 5: Table (A) and (B) correspond to Image 1 (unedited).
Probabilities relating to the first question (T ) are depicted in
the first columns; the second column states conditional prob-
abilities of the second question given first one, i.e., P(A =
±|T =+) in Table (A) and P(M =±|T =+) in Table (B); the
third column indicates conditional probabilities of the third
question given the first and second questions.

Design
Each image was presented with two question orders, creating
a between subjects design with four conditions. The depen-
dant variables were ratings of trustworthiness, attractiveness
and image manipulation.

Procedure
In all conditions, participants completed an online experiment
by first perusing a short description on the Prolific site, if de-
ciding to continue, they then clicked a link to the project page
which begins with short instructions and a link to the consent
form to read before continuing. The design of the experiment
was aimed at accessing fast intuitive responses, rather than re-
sponses based on analytical thinking, as this was believed to
be analogous to the short distances between measurement de-
vices in the S.G. experiment (i.e. fast measurements restrict-
ing interacting influences). To this end, instructions included
a notice to look out for a button popping up for some partic-
ipants that afforded a bonus (distraction to assign less cogni-

Figure 6: Table (A) and (B) correspond to Image 2 (edited).
Probabilities relating to the first question (T ) are depicted in
the first columns; the second column states conditional prob-
abilities of the second question given first one,i.e., P(A =
±|T =+) in Table (A) and P(M =±|T =+) in Table (B); the
third column indicates conditional probabilities of the third
question given the first and second questions.

tive resources to the decision task), questions were asked with
emotive wording (to help prompt intuitive thinking), and both
image display and questions included a time limit (2 seconds
for the image and 4 seconds for each question). Participants
could only view one question at a time, with each subsequent
question hidden until an answer had been given for the pre-
ceding one. Lastly, participants were asked to provide one or
two words to describe their first impressions of what they saw,
as well as a confidence rating for their combined judgments,
and were asked their gender and the country they resided in.

Results
Based on the probabilities shown in Table 5 (A), (B) and Ta-
ble 6 (A), (B), the cognitive states associated with the first
question T are given by:

|T1〉 =
√

0.85|T1,+〉+
√

0.15|T1,−〉, (11)

|T2〉 =
√

0.59|T2,+〉+
√

0.31|T2,−〉. (12)

where the subscripts respectively denote the unedited and
edited images.

According to probabilities in the second column in Table
5 (A), (B) and also by using the equation (2), the angles be-
tween operator T̂ and Â, as well as T̂ and M̂, are respectively
given by θ

(1)
a = 51.42 and θ

(1)
m = 99.79 for the unedited im-

age. By using the same method, in the second column of
Table 6 (A), (B), the angles between the operators T̂ and Â,
as well as T̂ and M̂, are obtained respectively by θ

(2)
a = 71.20

and θ
(2)
m = 87.70 for the edited image. By using equation (3)

together with the third column of Table 5 (A), (B) and Table 6
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Figure 7: Comparison of actual probabilities (Experimental Data) of the third question Attractiveness (A) to predicted proba-
bilities computed by the Born rule (Quantum Probabilities) and Bayes’ rule (Classical Probabilities).

(A), (B), we obtain respectively φ
(1)
m = 85.99 and φ

(2)
m = 85.30

for the unedited and edited images.
Comparison of prediction of decision: quantum proba-
bilities vs. classical probabilities For the prediction com-
parison, we consider a new situation in which the the order
of questions is altered. According to operators Â and M̂ and
new preparation state |T 〉, we obtain the probability of posi-
tive and negative answers and compare them with the experi-
mental data. Indeed, as defined in equation (3), the phase in-
terference φm appears in the probability of the third question.
The predictions of the quantum model are compared to clas-
sical probabilities in the following way: The cognitive S.G.
device depicted in Figure 2 can be modelled by using the
chain rule: P(T,A,M) = P(T )P(A|T )P(M|A,T ). The three
distributions on the RHS are empirically collected from the
S.G. device. Similarly, in the new situation the order of the A
and M magnets are reversed so the chain rule is written out as
follows: P(T,M,A) = P(T )P(M|T )P(A|M,T ). Therefore,

P(M|A,T ) = P(M|T )P(A|M,T )
P(A|T ) (13)

P(A|M,T ) = P(A|T )P(M|A,T )
P(M|T ) (14)

The LHS of both equations constitute predictions based
on classical probability theory. As evidenced by Figure
7 (A) and (B), the predicted results calculated based on
the HSM are generally closer to the actual probabilities
than the classical predictions. Figure 7 compares results of
probabilities of the decision regarding manipulation given
attractiveness and trustworthiness, for the unedited and
edited images respectively.

Wigner functions for both images By using equation (9):

rx = 2
√

Pt(+)(1−Pt(+)), ry = 0, rz = 2Pt(+)−1,

The discrete Wigner distribution that is obtained is the fol-
lowing:

W =
1
4

(
1+ rx + rz 1− rx + rz
1− rx− rz 1+ rx− rz

)
(15)

Therefore, the Wigner distributions for both unedited (W1)
and edited (W2) images are given as follows:

W1 =

(
0.63 0.13
−0.13 0.36

)
, W2 =

(
0.53 0.03
−0.03 0.47

)
(16)

Discussion
The Wigner function of both images showed negative values.
Therefore, the cognitive analogue of the S.G. experiment that
produces quantum models in physics, also produces a quan-
tum model for cognitive decision making.

It is known from physics that negative values in the Wigner
function are a consequence of quantum interference effects.
The negative values are a consequence of the fact that once a
particle has passed through a magnet its polarization (either
+ or -) is not retained when it arrives at the next magnet. This
is a consequence of the the fact that a particle is always in a
superposed state each time it interacts with a magnet. As a
result of the interaction, a particular polarization will be ob-
served. In terms of the cognitive analogue depicted in Figure
2, the preceding can be translated as follows: Even though
a subject has already decided that they trust (T=+) the im-
age and have deemed the face to be attractive (A=+), when
they are presented with the decision about whether the im-
age is manipulated, at that decision point they are necessar-
ily superposed with respect to trust and attractiveness. This
can only occur when the decision perspectives are incompat-
ible. Incompatibility is indeed present in the HSM as the op-
erators corresponding to decisions of trustworthiness T̂ , Â,M̂
do not pair-wise mutually commute: [T̂ , Â] 6= 0, [T̂ ,M̂] 6= 0,
[Â,M̂] 6= 0.

Incompatibility generates interference effects which gen-
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erate probabilities of outcomes, that is they are fundamen-
tally different from standard probabilistic models (Bruza et
al., 2015). As stated above, the cognitive S.G. device de-
picted in Figure 2 can be modelled by using the chain rule:
P(T,A,M) = P(T )P(A|T )P(M|A,T ). This expresses that the
underlying probabilistic model of the device is simply the
joint probability distribution P(T,A,M). The critical point is
that the structure of the event space underpinning P(T,A,M)
assumes that the variables are jointly measurable, e.g., the
subject can simultaneously access information regarding the
attractiveness of the face and whether the image is manipu-
lated. The previously mentioned incompatibility in the HSM
[Â,M̂] 6= 0 implies that this assumption does not hold. Con-
sequently, the subject cannot cognitively form the joint distri-
bution P(T,A,M). In short, the HSM provides a probabilistic
framework which does not rely on the assumption that vari-
ables are jointly measurable. This has been one of the key fea-
tures of quantum models of cognition (Busemeyer & Bruza,
2012).

The use of three operators is crucial in the derivation of the
two-dimensional Hilbert space because three operators neces-
sarily entail that a complex Hilbert space must be used. The
use of less than three operators necessarily implies that the
cognitive decision model can be expressed as a real-valued
Hilbert space, which has been the practice thus far in quantum
cognition research. The significance of this difference lies in
the complex phase factor exp(iφm) which cannot be derived
unless there are three operators. We speculate that it is this
phase factor which generates the interference effects for the
Wigner function to go negative and hence become quantum.
To the best of our knowledge, this study is the first to: a) de-
velop a specialised protocol to genuinely exploit the complex
Hilbert space by constructing three operators and states, and
b) utilise the Wigner function to determine the quantumness
of a cognitive state.

Moreover, this determination is straightforward and does
not suffer from the challenges and controversies associated
with using contextuality to determine whether the cogni-
tive system is quantum-like (Dzhafarov, Kujala, Cervantes,
Zhang, & Jones, 2016; Bruza & Fell, 2018).

Conclusions and future work
This article has demonstrated the specification and valida-
tion of a quantum decision model by employing an experi-
mental protocol derived from quantum physics. The proto-
col involved three binary decisions in a forced choice design.
Future studies may investigate the measurement of decisions
by asking binary questions of any number of points within a
spectrum of responses by extending the quantum model de-
scribed in this paper.

Acknowledgments
This research was supported by the Asian Office of Aerospace
Research and Development (AOARD) grant: FA2386-17-1-
4016

References
Bruza, P., & Fell, L. (2018). Are decisions of image trust-

worthiness contextual? a pilot study. In A. Lambert-
Mogiliansky & B. Coecke (Eds.), Quantum interaction:
11th international conference (qi’2018). Springer.

Bruza, P., Wang, Z., & Busemeyer, J. R. (2015). Quan-
tum cognition: a new theoretical approach to psychology.
Trends in Cognitive Sciences, 19(7), 383 - 393.

Busemeyer, J., & Bruza, P. (2012). Quantum cognition and
decision. Cambridge University Press.

Di Matteo, O., Sánchez-Soto, L. L., Leuchs, G., & Grassl, M.
(2017, Feb). Coarse graining the phase space of n qubits.
Phys. Rev. A, 95, 022340.

Dzhafarov, E., Kujala, J., Cervantes, V., Zhang, R., & Jones,
M. (2016). On contextuality in behavioural data. Philo-
sophical Transactions of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences, 374.

Galvao, E. F. (2005). Discrete wigner functions and quantum
computational speedup. Physical Review A, 71(4), 042302.

Gibbons, K. S., Hoffman, M. J., & Wootters, W. K. (2004).
Discrete phase space based on finite fields. Physical Review
A, 70(6), 062101.

Goh, K. T., Kaniewski, J., Wolfe, E., Vértesi, T., Wu, X., Cai,
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Abstract 

The use of abstract higher-level knowledge (overhypotheses) 

allows humans to learn quickly from sparse data, and make 

predictions in new situations. Previous research has suggested 

that humans may be the only species capable of abstract 

knowledge formation, but this remains controversial, and there 

is also mixed evidence for when this ability emerges over human 

development. Kemp et al. (2007) proposed a computational 

model of overhypothesis formation from sparse data. We 

provide the first direct test of this model: an ecologically valid 

paradigm for testing two species, capuchin monkeys (Sapajus 

spp.) and 4-5-year-old human children. We compared 

performance to predictions made by models with and without 

the capacity to learn overhypotheses. Children’s choices were 

consistent with the overhypothesis model predictions, whereas 

monkeys performed at chance level.  

Keywords: Overhypotheses, abstraction, generalization, animal 

cognition, computational modeling, cognitive development 

Introduction 

For long-lived species that exploit a complex environment 

it might be beneficial to transfer adaptive behavior across 

situations, through the formation of abstract generalizations. 

For example, if a primate learns that one tree grows figs, a 

second papaya and a third nuts, at a more abstract level she 

is also exposed to the regularity: “Trees carry a uniform fruit 

type”. Learning this abstraction would make just one bite of 

fruit from a new tree sufficient to decide whether or not 

continued foraging in this tree would be beneficial.           

In the developmental literature the term ‘overhypotheses’ 

(Goodman, 1955) describes such higher-order 

generalizations at an abstract level that inform inferences 

about more specific hypotheses (Kemp, Perfors, & 

Tenenbaum, 2007). Kemp et al. (2007) developed a 

computational model that suggested that, in principle, 

overhypotheses can be learned quickly from sparse data and 

used to make wide-ranging predictions in new situations.  

Evidence for a possible early emergence of this ability 

during human infancy comes from a study using looking-

time methodology. Dewar and Xu (2010) presented 9-

month-olds with sampled evidence supporting the 

                                                           
* Equal contribution 

overhypothesis that containers are filled with objects of the 

same shape. In a test situation, infants looked longer when 

two differently shaped objects were drawn from the same 

container, contradicting this overhypothesis, than when two 

uniformly shaped objects were sampled.  

Despite this evidence for early overhypothesis formation, 

other methods show contrasting results. A common method 

to assess understanding of the abstract concepts “same” and 

“different” is the relational matching-to-sample (RMTS) 

task. Here, participants are presented with an example 

stimulus pair (either two of the same or two different items) 

as well as two test pairs, and must select the pair with the 

matching abstract relation to the example. Hochmann et al. 

(2017) showed that children begin to succeed in a 2-item 

RMTS task by the age of 5 but not earlier (see Kotovsky & 

Gentner, 1996 for a similar result). However, labeling the 

relations verbally enables children to succeed in the RMTS 

task as early as age 2 (Christie & Gentner, 2014).  

In contrast, in an anticipatory looking time procedure, 

Hochmann, Carey and Mehler (2018) showed that 7 and 12-

month-olds were sensitive to the abstract relation of same 

but not different. Similarly, 18- to 30-month-old children 

correctly selected either a matching or a dissimilar pair of 

objects following evidence that their relation was causally 

relevant (Walker & Gopnik, 2014).  

In addition, only a few non-human species master the 

RMTS task, usually after lengthy training regimes (e.g. 

Truppa, Mortari, Garofoli, Privitera, & Visalberghi, 2011; 

see also Smirnova, Zorina, Obozova & Wasserman (2015)), 

and often only with multi-stimulus arrays instead of 

stimulus pairs (see Wasserman & Young, 2010 for a review; 

the latter also helping 3-year-olds succeed, Hochmann et al., 

2017). As a result, some have suggested that the RMTS task 

can be solved by perceptual processes alone, and that 

abstract knowledge is a uniquely human capability (Penn, 

Holyoak, & Povinelli, 2008; Vonk, 2015). In a different set 

of tasks, chimpanzees and bonobos have been suggested to 

use relative spatial relations such as “top” or “middle” to 

find hidden food rewards (Haun & Call, 2009; Christie, 

Gentner, Call & Haun, 2016). However, it is not clear 

whether searching based on relative rather than absolute 
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spatial relations represents the same kind of abstract 

knowledge as concepts such as “same” and “different”.            

In summary, the question of whether abstract knowledge 

formation is an evolutionary primitive, shared with other 

species and emerging early in human development, or a 

recently-evolved, late-developing skill, is complicated by 

considerable methodological differences between the tasks 

used across ages and species. Further, as in other areas of 

cognitive development, there is something of a dissociation 

between looking time results that suggest an early-emerging 

conceptual competence, and later emerging success on 

choice-based measures by older children. One concern is 

that successful discrimination in infant looking time tasks 

may not require the same kind of conceptual competence as 

paradigms requiring participants to use their knowledge to 

make a choice (e.g., Hood, 2004). 

We therefore designed a task that could be used across 

species, to examine abstract knowledge formation in an 

ethologically valid context without extensive training or 

explanation, based on the original idea of overhypothesis 

formation by Goodman (1955). Importantly this allowed us 

to test a theoretical computational model for how limited 

data can be sufficient for overhypothesis formation in this 

task (Kemp et al., 2007). Similar to Dewar and Xu’s (2010) 

infant looking time study, we adapted Goodman’s thought 

experiment, in which bags of marbles can be either uniform 

or mixed in color, to create a choice paradigm suitable for 

older children and capuchin monkeys. We presented 

sampled evidence from three containers either supporting 

the overhypothesis that rewards are sorted by their size or 

by their type. At test, participants were presented with two 

new containers and one example item from each: a small, 

high-valued reward from A and a large, low-valued reward 

from B (Figure 1). Participants then chose between two 

covert samples from these new containers. Differential 

choice between conditions—namely, choosing A to obtain 

a high-valued option in the type condition, but choosing B 

to obtain a large item in the size condition—would reflect 

sensitivity to the overhypotheses governing object sorting.   

 

Computational Model 

Probabilistic hierarchical Bayesian models have frequently 

been proposed as computational models of children’s rapid 

early learning (Kemp et al., 2007; Tenenbaum, Kemp, 

Griffiths, & Goodman, 2011). They demonstrate how, in 

principle, knowledge can be acquired at multiple levels of 

abstraction simultaneously, after only seeing small amounts 

of data. Kemp et al. (2007) show how more abstract 

hypotheses can constrain the hypothesis space at lower 

levels, leading to rapid inferences when encountering new 

but related situations. Due to the interdependence of 

concrete observations and higher-order concepts, these 

models do not exhibit the tension between low-level and 

higher-level learning often discussed in the animal 

literature. However, while the Kemp et al. model has 

successfully characterized existing findings in the 

developmental literature, the model’s predictions have not 

been directly empirically tested in children or animals.  

Here, we extended the Kemp et al. (2007) model with a 

rational choice rule, allowing us to directly compare the 

model's predictions for which test container (A or B) 

learners should choose to receive a reward from with new 

empirical data. We infer the relative utilities of the different 

reward types, based on the participants’ choices in 

preference testing, following the inverse preference model 

developed by Lucas et al. (2014).  

 

Model Overview.  

Figure 1 provides an overview of both our task and of the 

computational model. In this model, items are sampled from 

evidence containers, each of which has a distribution of 

items with different features (i.e., item type and size). These 

distributions capture a first level of abstract knowledge 

(level 1), describing the kinds of items likely to be found in 

this specific container. Simultaneously, the model also 

represents a more abstract level of knowledge (level 2), 

which describes the probability distribution over 

containers—the extent to which containers in general tend 

to be mixed or uniform, and the distribution of features 

across containers. Using this hierarchical structure, the 

model captures how specific observations of samples from 

individual containers can be used to simultaneously infer 

parameters at multiple levels of abstraction.  

  

Learning Overhypotheses.  

As in Kemp et al., (2007) we use a Dirichlet-multinomial 

model (Gelman, Carlin, Stern & Rubin, 2003). The 

individual sees evidence items yi with d feature dimensions 

(in our case d = 2: the item’s type and size), sampled from 

each evidence container i. We assume that items are drawn 

randomly and independently from each container and that 

the item’s type is determined independently of its size. The 

item types (sizes) are sampled from 𝒚𝒅
𝒊  ~ Multinomial (𝜽𝒅

𝒊 ), 

the distribution over item types (sizes) in that container. 

Each container’s distribution over item types (sizes), 𝜽𝒅
𝒊 , is 

in turn sampled from a Dirichlet distribution, parameterized 

by a scalar αd and a vector βd, 𝜽𝒅
𝒊 ∼ Dirichlet(αd, βd). These 

hyperparameters characterize the overhypothesis across 

containers. αd parameterizes the extent to which items in 

each container are uniform in type (size). βd represents the 

type (size) distribution across the entire set of containers. αd 

is in turn sampled from an exponential distribution, αd ∼ 

Exponential(1), and βd from a symmetric Dirichlet 

distribution, βd ∼ Dirichlet(1).  

To model overhypothesis formation, we infer 

𝑝(𝛼𝑑 , 𝜷𝑑|𝒀𝒅) (referred to as 𝑝(𝛼, 𝜷|𝒀) for simplicity 

below), the posterior distribution over (α, β), given the 

observed items yi, drawn from the N evidence containers,  
 

𝑝(𝛼, 𝜷|𝒀)  ∝ ∫ ∏ 𝑝(𝒚𝒊|𝜽𝒊)𝒑(𝜽𝒊|𝛼, 𝜷)𝑝(𝛼)𝑝(𝜷) 𝑑𝜃𝑁
𝑖=1   (1) 

 

estimated using the Metropolis-Hastings algorithm. Here 

we used 5 chains with 2000 samples and a burn in of 1000. 
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Predicting the content of the test buckets  

 We would like to predict the type (size) of the jth (unseen) 

sample from the new test container i+1, given already 

known samples from this test container, -j (everything not 

j), and the overhypotheses inferred from the evidence 

containers. For a Dirichlet-Multinomial distribution, 

𝑝(𝑦𝑗
𝑖+1| 𝒚−𝒋

𝒊+𝟏, 𝛼, 𝜷), the posterior predictive distribution for 

the type (size) of the next item in the container, given the 

previously seen items and the hyperparameters 𝛼, 𝜷, has a 

simple closed form solution. Marginalizing over 𝑝(𝛼, 𝜷|𝒀), 

the posterior distribution over possible values of α and β, 

estimated from the evidence containers give us, 
 

𝑝(𝑦𝑗
𝑖+1| 𝒚−𝒋

𝒊+𝟏) = ∬ 𝑝(𝑦𝑗
𝑖+1| 𝒚−𝒋

𝒊+𝟏, 𝛼, 𝜷)𝑝(𝛼, 𝜷|𝒀) 𝑑𝛼, 𝑑𝜷     (2) 
 

Approximated by averaging 𝑝(𝑦𝑗
𝑖+1| 𝒚−𝒋

𝒊+𝟏, 𝛼, 𝜷) across 

sampled values of 𝑝(𝛼, 𝜷|𝒀). 

 

Predicting choice of test item 

Given the distribution over possible next items from each 

test container, we would like to predict the learner’s choices. 

We assume that learners are choosing which box to take the 

next item from based on the expected utility of the next item 

from each container. As in Lucas et al. (2014), we assume 

that the utility of an item x is just the product of the utility 

of its individual features. For simplicity we assume that 

utility scales linearly with item size, sx, so that the utility of 

item x, is ux = 𝑠𝑥 ∙ 𝛿𝑡𝑥 , where 𝛿𝑡𝑥
 is the learner’s utility for one 

unit of item type tx. The utility of a container is calculated 

by summing the utilities of each possible item, weighted by 

its probability of being the next item. As in previous work, 

we assume that learners become exponentially more likely 

to choose a container i as its expected utility increases. 
 

𝑃(𝑐 = 𝑖|𝑢) =  
𝑒𝑢𝑖

∑ 𝑒
𝑢𝑗

𝑗
    (3) 

 

 

 

Inferring reward utilities. 

To compute the relative utilities of the different reward 

items, prior to the main experiment, we conducted a series 

of preference tests, where participants chose which of two 

reward items they wanted. For simplicity, we only included 

the categorical item types high, medium and low-value. 

Comparisons included choices between different item types 

of fixed size, between different sizes of the same type, as 

well as mixed comparisons between large items of low value 

and small items of high value.  

Following the preference inference model described in 

Lucas et al. (2014), we assume that learners choose items 

based on their relative utilities as in equation 3. We infer 

item type utilities u from learner’s choices c, separately for 

each species, by computing the posterior probability 

𝑝(𝑢|𝑐) ∝ 𝑝(𝑐|𝑢)𝑝(𝒖), estimated using the Metropolis-

Hastings algorithm. Following Lucas et al. (2014), we 

assume that the type preferences δ are normally distributed, 

with 𝜇 = 0, and variance σ2 = 2 (however the inferred 

preferences are robust to different values of σ2). Here we 

used one chain with 10000 samples and a burn in of 500. 

 

Model Predictions. 

Using this approach, we inferred strong preferences for high 

vs low value items for both species (children: 0.62; 

monkeys: 1.19). We used each species item utilities, 

separately inferred from their preference task data, to make 

a priori choice predictions for our experiment. Model 

predictions based on Level 2 abstraction (abstraction across 

containers) make clear contrasting choice predictions 

between the size and type conditions for both species after 

only one trial (one set of 3 evidences containers; Figure 2a). 

Predictions across subsequent trials, after seeing up to 6 sets 

of evidence containers get asymptotically more extreme 

(Figure 2b). In contrast, for a lesioned model capable of only 

Level 1 abstraction, and thus not learning from the evidence 

containers, the test container with the small, high value item 

is the preferred choice independent of condition.  

 

Figure 1: Hierarchical Bayesian model of overhypothesis formation. The parameters α and β describe an overhypothesis at 

the second level of abstraction: α represents the extent to which containers in general tend to be uniform for a given feature 

dimension, and β captures the feature variability across all containers. Feature distributions of a specific container (θi, Level 

1 abstraction), are constrained by overhypotheses at Level 2, and in turn constrain the items yi sampled from that container. 
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Experiment 1: Abstraction across containers 

Methods 

Participants. Participants were 80 4- to 5- year-old children 

(M age = 4.9 yrs, 50% female), recruited at two local 

museums in Toronto, Canada. Eight additional children 

were excluded from analysis because they ended the game 

early (n = 5) or due to experimenter error (n=3). Seventeen 

brown capuchin monkeys (Sapajus spp., M age = 6.5 yrs, 

29% female) completed a preparatory food preference 

testing. Due to motivation decline only 11 monkeys finished 

the main study and are included in the data analysis.  

 

Materials & Procedure. For the monkeys, nine different 

types of food items (divided into 3 categories: high, medium 

and low value) and 5 item sizes were used. Rewards for 

children were stickers picturing either animals (high value) 

or simple shapes (low value). Size was manipulated by the 

number of stickers on a strip, varying from 1 to 5. To 

encourage consistent sticker preferences across children, 

they were given the task of filling in a zoo map with as many 

animals as possible, making animal stickers more valuable 

than shape stickers. Prior to the main experiment, both 

species received preference testing, details of this procedure 

are given below. All sessions were video recorded. 

Main Experiment. For both species the procedure in each 

trial was very similar. The experimenter successively 

sampled four example items from each of 3 evidence 

containers into transparent cups (monkeys), or onto metal 

frames (children), starting always on the left side. 

Depending on the condition, the items from one container 

were either all of the same type but of varying sizes (type 

condition) or all identical in size but different in type (size 

condition, see Figure 1). During the sampling, the 

experimenter closed her eyes and kept her head upright to 

create the illusion of random sampling.  

Subsequently, two new test containers were brought 

forward, with the other containers and their evidence still in 

view of the participants off to the side. The experimenter 

first simultaneously sampled one evidence item from each 

test container. This was always a small, high-valued reward 

from container A and a large, low-valued reward from 

container B (item types counterbalanced). The experimenter 

then sampled another item from each container 

simultaneously, this time keeping the reward items hidden 

in her closed hands. The closed hands were extended 

towards the participants so that they could indicate their 

choice by reaching towards one of the hands. Participants 

were rewarded with the chosen item. Reward items were 

chosen to be in line with the condition overhypothesis (i.e., 

of the expected type or size), at least of medium value in the 

size condition, and otherwise randomly sampled.  

For monkeys, the experimenter crossed her hands in half 

of the trials (a procedure they are familiar with) to ensure 

they tracked the hidden sample in the experimenter’s hand 

and were not just pointing towards the sampled items. For 

children, hands were never crossed. In comparison to the 

monkeys, children’s pointing was not restricted by a choice 

panel and thus they were able to clearly indicate a specific 

hand rather than only a side (unlike the monkeys children 

also had no prior experience with this procedure and showed 

confusion about the hands crossing in a pilot study).  

Due to the small available sample, monkeys experienced 

both conditions, size and type, in a within-subject ABAB 

design, with the first condition counterbalanced across 

monkeys. Here, two different kinds of containers, bags and 

boxes (counterbalanced), were used, so that any 

overhypothesis could be tied to a specific kind of container. 

Monkeys received 16 sessions with 3 trials each, with 4 

sessions per block. Children were tested in a between-

subject design to allow us to test them in a single session in 

a science museum. and thus only presented with one 

container type (boxes). They received one session of 6 trials.  

Importantly, as for the monkeys, they did not receive any 

explicit instruction concerning the abstract rules governing 

the reward distribution.  

Reward Preference Testing. Prior to the main experiment, 

we conducted preference testing to ensure that participants 

preferred bigger over smaller (size comparisons) and high 

over low-value rewards (type comparisons). Further small, 

high-value items were compared to large, low-value items 

(mixed comparisons). Monkeys received 9 kinds of size 

comparisons, one for each food type. There were also 6 

kinds of type and mixed comparisons respectively, as each 

of the three high-value items was compared to two low-

value items. Finally, the least liked high-value item was 

compared to all 3 medium valued items to ensure a clear 

preference. Monkeys received 10 trials for each of the 24 

comparisons, presented over 24 sessions. Food items were 

presented in a covered forced choice procedure, where the 

monkeys first saw the food on the experimenter’s palms and 

then had to choose between her closed fists.  

Children first received a warm-up of 3 trials in which they 

were familiarized with the closed-hands choice procedure. 

Due to the constraints of museum testing, children were 

presented with a reduced preference procedure of two 

preference trials each for the type and size comparisons. A 

subset of n=58 children also received two mixed trials. 

Following preference testing, for the main experiment, 

novel stickers were used, and children were asked to find a 

lot of animals for a new, blank zoo map.  

Results 

Reward Preference Testing. In the type comparisons, both 

species significantly preferred high-value items over 

equally sized low-value alternatives (Capuchins: M = 0.86, 

SD = 0.12, t(16)=11.78, p<0.001; Children: (M = 0.94, SD 

= 0.18, t(79) = 22.33, p < 0.001). Capuchins further 

preferred the least liked high value item over equally sized 

pieces of medium-valued foods (M = 0.89, SD = 0.06, 

t(16)=25.07, p<0.001). Both groups also significantly 

preferred large over small items (Capuchins: M = 0.83, SD 

= 0.06, t(16)=23.96, p<0.001; Children: M = 0.83, SD = 

0.32, t(79) = 9.11, p < 0.001). In the mixed comparisons 

1734



 

 

both groups expressed a significant preference for the small, 

high-valued items over the big, low-value option 

(Capuchins: M=0.96, SD = 0.04, t(16) = 48.52, p <0.001; 

Children: (M = 0.92, SD = 0.21, t(57) = 15.68, p < 0.001). 

Further, no difference in performance was found between 

the choice presentation with crossed and straight hands. 

Main Experiment. Monkeys were equally likely to choose 

the sample from the container with the small high-value 

example in both conditions (paired t(10)= 0.27, p = 0.79), 

and chose at chance level (12/24 trials) between the two 

hidden samples (type: M = 12.45, SD = 1.37, t(10) = 1.10, 

p = 0.30; size: M = 12.27, SD = 1.95, t(10) = 0.46, p = 0.65). 

Unlike the preference testing, multiple monkeys 

expressed a bias regarding the side of their chosen reward 

sample or the side of the container (7/11 monkeys chose 

either a consistent hand-side or a consistent container-side 

in more than 80% of trials). They did not reach more 

frequently to the side of the small, high-valued sample (M = 

0.52). There was no improvement from the first block to the 

second in either condition (type: Mfirst = 0.52, Msecond = 0.52; 

size: Mfirst = 0.51, Msecond = 0.51).  

Children chose the sample from the container with the 

small, high-value example item more often in the type 

condition than the size condition, t(77.50) = -5.18, p < 

0.001. When compared to chance (3/6 trials), only the 

choices in the type condition were significantly different 

(type: M = 4.28, SD = 1.41, t(39) = 5.70, p < 0.001; size: M 

= 2.7, SD = 1.30, t(39) = -1.45, p = 0.15).  

The Level 2 models for both species predict a clear 

distinction between both conditions in the tendency to 

choose the item from the container with the small, high-

value example item (Figure 2). Choice predictions are 

stronger for monkeys as the inferred utilities for low and 

high-value items based on their reward preferences are more 

extreme. When compared to the empirical data, the 

monkey’s chance level performance is in stark contrast to 

the predictions of a model that learns overhypotheses, using 

item utilities inferred from the monkey’s food preferences. 

For children the level 2 overhypothesis model predictions 

qualitatively fit the data well and the trajectory across trials 

shows a similar trend for both data and model predictions. 

 

Discussion 
As predicted by the model fit separately to their 

preference data, children made different choices in the size 

and type conditions despite the evidence from the test 

containers being the same in both cases, suggesting that they 

formed overhypotheses. However, their performance only 

differed significantly from chance in the type condition, 

which could suggest that they are only capable of forming 

abstract rules about certain reward properties. Alternatively, 

children might have a strong prior towards sorting by type, 

which is possibly more common in children’s experience, or 

the two features might have had an unequal salience based 

on pre-existing preferences or the task description (see also 

Kemp et al., 2007 for discussion of the ‘shape bias’ in word 

learning). However, children did show a preference for 

larger items when presented with a simple choice in the 

preference test, suggesting they attended to this dimension. 

Interestingly, the overhypothesis model fit to children’s 

preferences also predicted a smaller distinction from chance 

in the size condition, suggesting that this result may 

nonetheless be consistent with the overhypotheses. Future 

work could try to increase sample size or change utilities to 

differentiate lack of attention to the size dimension from a 

smaller predicted difference in utility between containers. 

The monkeys’ performance suggests that they were not 

able to form overhypotheses about the food distribution 

pattern across containers. Their failure on the second level 

of abstraction could be due to a failure to form abstractions 

about containers in general (Level 2 overhypotheses), or 

based on the inability to infer the content distributions of 

each evidence container (Level 1 overhypotheses) based on 

the sampled evidence. However, as with any negative result 

from a complex task, there could be other limiting factors, 

specifically the sampling procedure required sustained 

attention and inhibition skills which could be an impeding 

factor for the performance of monkeys (Tecwyn, Denison, 

Figure 2: a) Model Predictions for a learner capable of Level 2 or Level 1 abstraction and empirical results (mean across 

trials ± SE) for the choice for the sample from the box with the small, high-valued example item for capuchin monkeys 

and children. Model predictions are shown for one trial with 3 evidence boxes. b) Children’s level 2 model predictions 

and data (M ± SE) over the course of six trials. Significant differences between the size and the type condition are indicated. 

1735



 

 

Messer, & Buchsbaum, 2017), a point we will return to in 

the general discussion.   

Experiment 2: Abstraction within a container 

To test the hypothesis that monkeys did not form Level 1 

generalizations about the contents of the containers in 

experiment 1 (precluding generalization over containers – 

Level 2), we conducted a second experiment, with reduced 

task demands. Here, we presented subjects with only two 

containers from which we sampled four evidence items 

each. Now, the choice items were sampled directly from 

these containers, so that no generalization to new containers 

(Level 2) was required. However, participants would still 

have to form Level 1 generalizations to choose successfully. 

 

    

Methods 

Participants. Participants were 47 4- to 5- year-old children 

recruited at two local museums in Toronto (M age = 5.0 yrs, 

50% female, n= 24 in type condition, n= 23 size condition). 

Two additional children were excluded because they ended 

the game early or due to experimenter error. The total 

sample of capuchin monkeys (Sapajus spp.) consisted of 13 

individuals. Ten had previously completed Experiment 1. 

Out of the 13 subjects, 11 participated in both conditions 

whereas two participated only in one of the conditions.  
 

Design and Procedure. All sessions were video recorded. 

The procedure was similar to Experiment 1. This time only 

two containers were presented on the table and four items 

were sampled from each successively. Subsequently, the 

experimenter extracted the two choice items directly from 

these containers, kept them hidden in her hand and 

requested the participant to choose. In the size condition, the 

same four types of rewards, two low- and two high-value, 

were drawn from both containers in a randomized order 

whereby one container only yielded small (size 1) and the 

other one only big (size 5) items. The reward was identical 

to one of the four types previously drawn from the container. 

In the type condition, items of the same type in the sizes 1, 

2, 4 and 5 were drawn from the container. Thereby one 

container offered only low-valued and the other only high-

valued items. The reward was a randomly sized piece of the 

expected type for this container. Monkeys received 3 

sessions of 8 trials each per condition with order of 

condition counterbalanced. Children received one session of 

6 trials in a between-subject design beginning with a 

preference testing of two size and two type comparisons.  

Results and Discussion 

Children performed significantly above chance (3/6 trials) 

in the type condition (M = 4.42, SD = 1.28, t(23) = 5.41, p 

< 0.001) but not in the size condition (M= 3.30 , SD = 1.22, 

t(23) = 1.19, p = 0.25). Monkeys performed at chance level 

(12/24 trials) in both conditions (type: M = 12.09, SD = 

0.94, t(10) = 0.32, p = 0.76; size: M = 12.09, SD = 0.54, 

t(10) = 0.56, p = 0.59). The choice predictions of models 

based on the inferred feature distribution in each container 

(Level 1 abstraction) showed a clear tendency to choose the 

next item from the container with high-value items in the 

type condition and from the container with large items in the 

size condition. The strong type preferences of both species, 

lead to a greater predicted container preference in the type 

condition. Whereas the monkeys performed at chance level 

in both conditions, children’s performance resembled the 

model prediction in both conditions, showing strong 

performance in the type condition whereas choices in the 

size condition were at chance. This suggests that children 

are able to form abstractions at both levels whereas capuchin 

monkeys in our study were unable to engage in any level of 

abstraction, though we emphasize that the reasons for this 

failure remain ambiguous (lack of ability or task demands). 

General Discussion 

We presented two studies testing abstraction, and the 

predictions of the Kemp et al. (2007) overhypothesis model, 

using a choice paradigm in children and capuchin monkeys. 

Across both experiments, none of the capuchin monkeys 

showed the pattern predicted for a learner capable of 

forming overhypotheses along the item size or type 

dimensions. In contrast, children treated the same evidence 

differently when they had previously experienced that items 

were sorted by size or type. Their performance was well 

characterized by a hierarchical Bayesian model, fit to their 

actual reward preferences. They showed a significant 

difference between conditions after just a few trials.   

    The model predictions based on capuchin’s preferences 

support that the presented evidence was sufficient for the 

formation of overhypotheses, but the monkeys did not show 

this ability in this paradigm. The monkeys’ results are in line 

with low success rates achieved after long training regimes 

in previous studies on abstract concept formation and 

analogical reasoning in capuchins (Flemming, 2011; 

Kennedy & Fragaszy, 2008; Truppa et al., 2011). We can 

also rule out some other possible explanations for their 

failure. Monkeys did not show a preference for the side 

exhibiting the small, high-value item (showing some 

Figure 3: Model predictions (left) and empirical data (right, 

M ± SE) for the correct choices of children and monkeys in 

the type (high-value item) and size (large item) condition. 
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understanding of the procedure: they were not simply trying 

to acquire the samples). No individual monkey showed a 

difference between conditions, and the sample was 

sufficient to detect significant food preferences, suggesting 

that this was also not a sample size limitation.  

Still, it remains possible that other tasks demands masked 

monkeys’ abstract reasoning abilities. Monkeys and apes 

can infer a hidden item sampled from a clear population 

(Tecwyn et al.,  2017; Eckert, Rakoczy, & Call, 2017; 

Rakoczy et al., 2014). However, apes’ ability to make 

inferences about hidden populations based on visible 

samples (as in this study) was recently shown to be more 

limited (Eckert, Rakoczy, & Call, 2017). Future work will 

explore abstract reasoning with reduced task demands, e.g. 

by allowing the subjects to sample items themselves. 

Nevertheless, the approach taken here, in which subjects do 

not need to be trained to make arbitrary judgements about 

abstract relations but simply need to secure the best rewards, 

is a promising avenue for future research. 

The findings from 4-5 year-olds are in line with infants’ 

performance in causal learning and looking time procedures 

but stand in contrast to children’s limited spontaneous use 

of abstract concepts in RMTS tasks (Hochmann et al., 

2017), perhaps due to a reduced need for training. This 

approach could be extended to toddlers to bridge the gap 

across ontogeny.  

In summary, we conducted the first direct test of the 

hierarchical Bayesian approach described by Kemp et al. 

(2007) in children and animals, and extended it to make 

choice predictions based on item utilities. We have shown 

that it is a promising model for how children are able to form 

generalizations from sparse evidence. We suggest that 

further application of computational models to empirical 

data of overhypothesis formation is desirable to understand 

its development over early childhood, and to further 

understanding possible species differences. 
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Abstract 

The ability to imagine alternative possibilities plays a crucial 
role in everyday cognitive functioning beginning in early 
childhood. Across two studies, we ask whether individual 
differences in young children’s (Mean Age = 5.01; SD = 0.78 
Range = 2) fluency in generating alternative possibilities 
relates to a particular type of social-cognitive counterfactual 
judgment, namely children’s belief in the possibility to “act 
otherwise” when actions go against stated strong desires (i.e. 
“free will”). We found that the fluency of generating ideas 
was a consistent individual difference that held regardless of 
domain. We also found that individual children’s fluency 
predicted judgments of free will for themselves (Study 2) but 
not for others (Study 1). Our findings raise new questions 
about how counterfactual thinking enables children to 
overcome psychological barriers to self-control, and how 
stimulating the imagination facilitates developing cognitions 
that rely on it. 

Keywords: counterfactual thinking, free will, social 
cognition, modal cognition 

Introduction 
The ability to imagine alternative possibilities is ubiquitous 
in human cognition. Broadly, it is invoked in all types of 
modal thinking: how we imagine counterfactually what 
could have been in the past, hypothetically what might be in 
the future, and normatively what should or ought to be 
(Lewis, 1973; Balke & Pearl, 1994; Woodward & 
Hitchcock, 2003). Imagining possibilities is a critical 
cognitive skill underlying our memory for past events 
(Schacter et al., 2015), ability to plan for the future 
(Baumeister, Vohs, & Oettingen, 2016), our moral 
judgments (Phillips & Cushman, 2017; Phillips, Luguri, & 
Knobe, 2015), and our causal cognition (Engle & Walker, 
2018). Moreover, this type of thinking is governed by a 
common cognitive and neural architecture (De Brigard et 
al., 2013). Recently, researchers have claimed that it plays a 
role in a host of psychological processes that develop in 
early childhood, including future thinking (Atance & 
Meltzoff, 2005), causal inference (Walker & Gopnik, 2013; 
Engle & Walker, 2018), imaginary play (Taylor et al, 2018; 
Weisberg & Sobel, 2012), self-regulation (White et al., 
2017), and social and moral judgment (Kushnir, 2018).    

Separate from this, there has been a long research 
tradition focused on ability to imagine alternative 
possibilities as a stable individual difference, relating it to 

differences in creativity and intelligence. Most of this work 
utilizes a classic method developed by Guilford (1967) in 
which people are asked to generate many unique alternative 
possible uses for a common object (e.g. a tissue).  
Conservatively, these tasks capture individual differences in 
verbal fluency, performance on these “idea generation” 
paradigms also relates to individual differences in creativity 
and intelligence (Wallach & Kogan, 1965; Nusbaum & 
Silva, 2011). There is recent evidence that modified 
versions of tasks such as Gilford’s capture stable individual 
differences in children as well, even when controlling for 
age and verbal IQ (Taylor et al., 2018).  

To date, however, no studies have linked individual 
differences in “idea generation”, either in adults or children, 
to the types of cognitions that have been hypothesized to 
rely on modal thinking. Here we explore one such link: we 
examine whether individual differences in the ability to 
generate alternative ideas relate to a particular social-
cognitive skill that relies on counterfactual thinking – 
children’s judgment of their own and others’ freedom of 
choice. 

Counterfactual thinking has been argued to be the basis of 
folk intuitions of freedom of choice (i.e. “free will”, Alquist 
et al., 2015; Nichols, 2011). Studies show that when adults 
make free will judgments, they consider whether or not 
there were alternative choices available (Feldman, 
Baumeister, & Wong, 2014). Children’s early developing 
intuitions about free will are also based on the ability to 
represent alternative possibilities. For example, infants are 
more impatient with an agent when the agent is unwilling to 
act (they understand that a possible alternative is available) 
than when the agent is unable to act (they understand that no 
possible alternative is available, Behne et al., 2005). 
Preschoolers can answer explicit questions about whether an 
agent can and can’t do otherwise when actions are possible, 
impossible, or limited by social and moral considerations 
(Nichols, 2004; Schult & Wellman, 1977; Shtulman & 
Phillips, 2008). As part of this ability, children generate 
explanations about what alternative actions are available if 
an agent chooses to “do otherwise.” 

Children’s beliefs about free will also undergo important 
developmental changes, changes that may be linked to their 
counterfactual thinking. For example, 6-year-olds are more 
likely to endorse the free will to act against desires than 4-
year-olds (Kushnir et al., 2015). Furthermore, older children 
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are more likely than younger children to endorse the 
freedom to act against moral and social norms (Chernyak et 
al., 2013; Chernyak, Kushnir, & Wellman, 2010). 
Moreover, younger children have difficulty distinguishing 
improbable from impermissible events more generally 
(Lane et al., 2016; Shtulman & Carey, 2007; Shtulman & 
Phillips, 2008). Together these studies suggest that a 
domain-general cognitive mechanism is responsible for the 
developmental shift.  

One intriguing possibility is that the ability to fluently 
generate ideas about possible alternative actions underlies 
children’s judgments of free will. That is, in order to make 
judgments of free will (or possibility more generally) 
children are attempting to imagine any situations in which 
an action could be different, and, if they can think of one or 
more such situations readily and easily, they answer in the 
affirmative. For example, a child may be able to easily 
imagine how yummy crackers could be inedible for all sorts 
of reasons, thus they answer that one can choose not to eat 
them. Anecdotally, this hypothesis has some support from 
the post-hoc justifications that children come up with 
following the initial yes/no judgment. The large majority of 
their justifications are imagined alternative scenarios (i.e. 
“because some crackers aren’t good for you” Kushnir et al, 
2015). Under this model, individual differences in free will 
judgments should relate to individual differences with a 
facility for idea generation.  

To test this, we conducted two studies using the third 
person (Study 1) and first-person (Study 2) versions of the 
free will questions from Kushnir et al. (2015). Overall, we 
hypothesized that children’s free will judgments would 
replicate prior work, such that there would be some 
variability in children’s free will beliefs, and also age-
related changes. Like prior work, we expect lower free will 
beliefs (and more variability) for first-person question 
(Study 2) than for third-person (Study 1).  

We also measured children’s ability to generate 
alternative possibilities using a battery of idea generation 
tasks. Our tasks had a structure modeled after standard 
creativity task (e.g. “uncommon uses task” Milgram & 
Milgram, 1976; Wallach & Kogan, 1965) with some notable 
differences. First, we scored children on idea fluency only. 
That is, we did not compare each idea to the sample-wide 
list of ideas to score its originality. Fluency was captured by 
coding for number of unique ideas listed a child gives for a 
particular question. 

Second, we asked children to list as many alternative 
possibilities they could think of in each of three different 
domains – Physical, Fantastical, and Social/Psychological. 
The Physical question was adapted from Guilford (1967) 
and asked about alternative uses for a tissue. The Fantastical 
questions were adapted from Taylor et al. (2018) asking 
children to imagine what the world would be like if certain 
laws of our world were changed (ability to walk on walls, 
people have tails). We added to these our own set of 
Social/Psychological questions which asked children to 
come up with ways to help a sad friend feel better (social) or 

make themselves feel better when they are sad 
(psychological).  

Including a range of idea generation tasks across these 
domains allowed us to explore the generality of the 
relationships: we were able to check whether children who 
generate a lot of ideas in one domain also do so in others.  
Moreover, Since children’s free will beliefs are part of their 
developing social-cognition, our addition of questions which 
explore children’s social and psychological idea generation 
allowed us to check whether social/psychological ideas are 
specifically related to free will beliefs over and above other 
types of ideas.  

Study 1 

Method 
 
Participants A total of 43 4–6-year-olds (Mage = 5.07, SDage 
= 0.80, Nfemale = 23) were recruited at a science museum in a 
small city in the northeastern United States.  
  
Procedure Children were interviewed individually in a 
quiet room at a museum. The procedure began with the free 
will questions, adapted from Kushnir et al. (2015). Two 
Action questions (one about food and one about activity) 
asked children to judge whether an agent could “choose to” 
act against or whether they “have to” act in accordance with 
the stated desire (e.g. “Even though she does not like the 
cracker, can she just choose to eat the cracker or does she 
have to not eat the cracker?”). Two Inhibition questions 
(one about food and one about activity) asked children to 
judge whether an agent could choose to not act (i.e. inhibit 
action) or whether they have to act on a stated strong desire 
(e.g. “Even though she wants to know about the box, can 
she just choose not to look into the box or does she have to 
look into the box”). Note that the free will questions offer 
children a forced choice between a stated action (e.g. eating 
a yummy cookie) and a general possibility of acting 
otherwise without explicitly stating any alternative actions. 
Question order was counterbalanced. Order of the options 
within the question (“choose to” vs “have to”) was 
counterbalanced. There were also two Control questions, 
Simple free action (e.g. “Can she step off a chair?”) and 
Physically Impossible action (e.g. “Can she run through a 
wall?”). The majority of children (86%) answered these 
control questions correctly, ensuring children understood 
and could follow the form of the target questions about 
acting against desires.  

After the free will questions, children completed the idea 
generation task battery. This began with a warm-up question 
about uncommon uses for a pen (“Besides [drawing/writing] 
can you think of some things to do with [pen]?”) that was 
used to familiarize children with the question format and 
idea probes (“what else?”). Following the warm-up, the idea 
generation task battery consisted of three question types in a 
latin-square counterbalanced order:  
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Physical (one, Gilford 1967): Children were asked for the 
common use of, and then ideas for uncommon uses of, a 
tissue (“Can you think of some things you can do with it 
besides [common use]?”). 

Fantastical (two, Taylor et al, 2018): Children were asked 
to “imagine what if we all woke up tomorrow and every 
person [had a tail/could walk on walls]. What would the 
world be like if we all [had tails/could walk on walls]?” 

Social/Psychological (one third-person, one first-person). 
Children were asked to think of ways to make a friend 
/themselves happy when the friend/they themselves are sad. 
(e.g. “Imagine that one day [your friend/you] [was/are] very 
sad and didn’t want to play at all. What things could you do 
to make [your friend/yourself] feel better and want to play 
again?). 

For each question, children were encouraged using the 
probe “what else?” to keep generating ideas until they chose 
to stop (e.g. saying they had no more ideas). Children also 
participated in a storytelling task at the end of the procedure, 
but those results are not reported here.  

 
Coding For the free will task, children received a score of 
0-2 for each story type, Action and Inhibition (2 meaning 
they said “choose to” for both food and activity questions). 
Two coders independently scored each response. A Cohen’s 
k indicated agreement between the two coders for each 
question (κs > .83, ps < .0005). Discrepancies were resolved 
through discussion.  

For the idea generation tasks, the number of unique 
responses were recorded for each question. Uniqueness was 
defined as any difference from previous responses (e.g. “we 
could wag our tails” versus “we could bounce on our tails”). 
Two coders were trained on the coding scheme. A Cohen’s 
k indicated agreement between the two coders for each 
question (κs > .867, ps < .0005). Discrepancies were 
resolved through discussion.   

 

Results 
 
Free Will A repeated measures ANCOVA with Question 
Type (Action vs Inhibition) as a within-groups factor and 
age as a covariate found a marginal main effect of Question 
Type (F(1) = 3.17, p = .083) and a marginal age effect (F(1) 
= 3.097, p = .086) and no interaction. Replicating past work, 
children’s free will scores were higher for Action (M = 1.45, 
SD = 0.78) than in Inhibition (M = 1.13, SD = 0.82; t(39) = 
2.177, p = .036). In addition, scores were significantly 
above chance for Action (t(39) = 3.636, p = .001) but not 
Inhibition (t(41) = .927, p = .359). We found a significant 
positive correlation between age and Inhibition score (r = 
.376, p = .014), but not age and Action score (r = .088, p = 
.590).  
 
Idea Generation Table 1 shows the descriptive statistics for 
each idea generation task as well as the correlations between 
them. The results point to group-level and individual 
consistency across domains. On the group level, a repeated 
measures ANCOVA with Question Type (Physical vs 
Fantastical_Tails vs Fantastical_Walls vs Social vs 
Psychological vs Total) and age as a covariate found no 
effect of Question Type (F(1) = 2.58, p = .117), no effect of 
age (F(1)=.013, p = .911), and no interaction. Also, the 
number of unique ideas generated was positively correlated 
across domains (ps < .05); children who generated more in 
one domain tending to generate more in another.  
 
Relationship between Free will beliefs and Fluency 
Children received a score of 0-4 for total free will 
judgments (combined Action and Inhibition scores). Total 
free will score did not significantly correlate with any of the 
idea generation scores separately or total idea generation 
score (see Table 1).  

 
Table 1: Relationships between idea generation questions across domains in Study 1. Relationship between idea 

generation and third-person free will judgments included in final row. 
 
 Physical Fantastical 

Tails 
Fantastical 
Walls 

Soc/Psych 
third- 
person 

Soc/psych 
first- 
person 

Total number 
of ideas 
generated 

Physical  
(M = 4.73, SD = 4.62) 

- .500** .571*** .728*** .382* 

Fantastical Tails  
(M = 4.70, SD = 5.06) 

- - .367* .365* .645*** 

Fantastical Walls  
(M = 4.28, SD = 3.83) 

- - - .410** .374* 

Social/psychological third-person  
(M = 4.29, SD = 5.44) 

- - - - .420** 

Social/psychological first-person  
(M = 2.79, SD = 2.55) 

- - - - - 

Third-person Free Will  .075 .037 .144 -.112 -.060 .032 

*p<.05; **p<.01, ***p<.001       
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Discussion 
In this study, we examined children’s third-person free will 
judgments, children’s ability to fluently generate alternative 
possibilities, and the relationship between two. Patterns of 
children’s free will judgment by age and type of question 
(action vs inhibition) mirrored past work. Children 
generated an average of 4-5 ideas per domain (with the 
exception of first-person social/psychological ideas). Idea 
generation was consistent across Physical, Fantastical, and 
Social/Psychological domains, both at the group level and at 
the individual level. Our findings of cross-domain 
consistency in idea generation suggest that these tasks, if 
properly validated (e.g. by controlling for verbal IQ, see 
Taylor et al, 2018), could be used to measure fluency in 
children. 

We did not find significant relationships between idea 
generation scores and third-person free will judgments. One 
reason could be that there was not enough variability in free 
will judgments, which were relatively high in this study 
even for the youngest children.   

More substantively, taking this third-person view may 
facilitate children’s reasoning about possible actions in 
itself, and thus our third-person task may not be demanding 
enough to demonstrate the role of individual differences. 
Recent work has shown that, like adults, children are subject 
to such “psychological distance” effects when reasoning 
about possibility, choice, and future desires (Bowman-
Smith, Shtulman & Friedman, 2018; Lee & Atance, 2016; 
Kushnir et al, 2015). Relatedly, taking a third-personal view 
on actions can facilitate higher-cognitions required for 
immediate (White & Carlson, 2015) and future-oriented 
(Atance, Louw & Clayton, 2015) self-regulation. In Study 2 
we explore whether fluency has more predictive power in 
explaining individual differences in children’s beliefs about 
their ability to act against and inhibit desires which they 
have expressed for themselves, rather than those given for 
another person.  

Study 2 

Method 
 
Participants A total of 28 4-6-year-olds (Mage = 4.93, SDage 
= 0.77, Nfemale = 19) were recruited at a science museum in a 
small city in the northeastern United States. Data collection 
is still ongoing and preliminary results are reported. 
 
Procedure Children were interviewed individually in a 
quiet room at a museum. The procedure consisted of the 
first-person free will questions followed by the idea 
generation task battery in a counterbalanced order.  

The free will task was similar to Study 1, but the 
questions first asked children to think of their own desires 

(e.g. “think of a [food you really like]/[something you really 
like to do]” and then referenced the child’s response rather 
than the desires of someone else (e.g. “If you really wanted 
to [eat/do X], could you just choose to…”). Question order 
was counterbalanced. Order of the answer choices within 
the question (“choose to” vs “have to”) was 
counterbalanced. The two Control questions had the same 
form as in Study 1. A majority of responses to these control 
questions (82%) were correct. A Cohen’s k indicated 
agreement between the two coders for each question (κs > 
.82, ps < .0005). Disagreements were resolved through 
discussion. 

After the free will questions, children completed the idea 
generation task battery, exactly as in Study 1. Coding 
followed the same procedure as in Study 1. Two coders 
were trained on the coding scheme. A Cohen’s k indicated 
agreement between the two coders for each question (κs > 
.815, ps < .0005). Disagreements were resolved through 
discussion. 

Results  
 
Free Will A repeated measures ANCOVA with Question 
Type (Action vs Inhibition) as a within-subjects factor and 
age as a covariate found no effect of question type (F(1) = 
.151, p = .701), no effect of age (F(1) = .151, p = .701), and 
no interaction. In addition to not being different from each 
other or correlated with age, children’s free will scores were 
significantly below chance for Action (M = 0.64, SD = 0.70; 
t(25) = -2.132, p = .043) but not Inhibition (M = 0.96, SD = 
0.89; t(25) = -.225; p = .824). We further confirmed that 
rates of “choose to” responses were low by comparing to 
responses in Study 1.     T-tests of overall “choose to” scores 
showed that they were significantly lower in Study 2 than in 
Study 1 (Study 1: M = 2.58, SD = 1.299, Study 2, M = 1.60, 
SD = 1.354; t(63) = 2.897, p = .005).  

 
Idea Generation Table 2 shows the descriptive statistics for 
each idea generation task as well as the correlations between 
them. As in Study 1, the results point to group-level and 
individual consistency across domains. On the group level, a 
repeated measures ANCOVA with Question Type (Physical 
vs Fantastical_Tails vs Fantastical_Walls vs Social vs 
Psychological vs Total) and age as a covariate found no  
effect of Question Type (F(1) = .137, p = .715), no effect of 
age (F(1) = 2.450, p = .132), and no interaction. Also, we 
found correlations between the tasks, not all approached 
significance. However, a 2 (Study: Study 1 vs Study 2, 
between subjects) x 6 (Question: Physical vs 
Fantastical_Tails vs Fantastical_Walls vs Social vs 
Psychological vs Total, within subjects) ANCOVA 
controlling for age revealed a marginal effect of Study (F(1) 
= 3.157, p = .081), no main effect of Question (F(1) = 
1.778, p = .187), and no interaction. 

1741



Relationship between Free will beliefs and Fluency 
Children received a score of 0-4 for total free will 
judgments. Total free will score was significantly correlated 
with the number of ideas generated in the Fantastical Tails 
task (r = .493, p = .020).  Total free will score was also 
significantly correlated with the number of ideas generated 
across all tasks (r = .428, p = .047). (see Table 2).  

Discussion 
In this study, we examined children’s first-person free will 
judgments, children’s fluency with generating alternative 
possibilities, and the relationship between the two. 
Children’s first-person free will judgments were lower and 
more variable than children’s third-person free will 
judgments, replicating past findings and supporting the idea 
that psychological distance facilitates children’s ability to 
think about alternative possible actions.  

As in Study 1, idea generation was consistent across 
Physical, Fantastical, and Social/Psychological domains at 
the group level and to a large extent at the individual level. 
Though our second sample was smaller, we again found 
reliable individual differences in counterfactual fluency 
using this measure. 

Importantly, children’s fluency predicted their judgments 
that they could possibly choose to act against their own 
most and least desired foods and activities. This relationship 
suggests that facility in generating multiple alternative 
possibilities might contribute to children’s free will beliefs. 
Implications of this are discussed further below.   

General Discussion 
In this project, we examined whether individual differences 
in the ability to generate multiple alterative possibilities in 
an idea generation task relate to children’s first-person or 
third-person free will judgments. We conducted two studies 
that measured a child’s third-person or first-person free will 

judgments and their ability to fluently generate alternative 
possibilities. Overall, we found consistency in children’s 
fluency across domains and we found that children’s first-
person free will judgments relate to overall fluency across 
domains and fluency within one of the fantasy domains.  

Children’s first-person free will judgments were also 
related specifically to one of our fantasy idea-generation 
tasks – imagining a world where everyone has tails. It is 
worth noting that we did not find comparable correlations 
between free will beliefs and social-psychological idea 
generation (e.g. ideas for making a friend happy when she is 
sad). This suggestive result (based as it is on a small 
sample) requires further study, but parallels links found in 
recent work by White et al. (2017) showing that pretending 
to be a superhero or other fantasy character has advantages 
for self-regulation. Together with this work, our results raise 
interesting questions about whether fantasy or pretense, 
rather than general theory-of mind abilities, might present 
unique advantages to children’s developing ability to 
overcome struggles of will power and self-control.  

Evidence of our hypothesized relationship between 
children’s first-person free will judgments and their overall 
fluency is both correlational and preliminary, thus 
examining causal links is question for future research.  
Establishing causal links will have implications for 
understanding the mechanisms by which children’s 
imaginations help them overcome psychological barriers in 
their self-beliefs.    

One potential mechanism is a direct pathway from idea 
generation to judgments of choice and possibility. To 
explore this further would require experimentally limiting or 
enhancing idea generation in children and then exploring 
downstream effects on free will judgments. Other potential 
causal mechanisms are more indirect, via a third factor (or 
set of factors) that is responsible for both imaginative idea 
generation and judgments of free will. Language 
development is one candidate causal influence on both; 

 
Table 2: Relationships between idea generation questions across domains in Study 2. Relationship between idea 

generation and first-person free will judgments included in final row. 
 

 Physical Fantastical 
Tails 

Fantastical 
Walls 

Soc/Psych 
third- 
person 

Soc/psych 
first- 
person 

Total number 
of ideas 
generated 

Physical  
(M = 3.42, SD = 2.75) 

- .207 .684*** .448* .354+ 

Fantastical Tails  
(M = 3.04, SD = 2.16) 

- - .389+ .185 .049 

Fantastical Walls  
(M = 3.38, SD = 3.35) 

- - - .544** .285 

Social/psychological third-person  
(M = 2.77, SD = 1.90) 

- - - - .266 

Social/psychological first-person  
(M = 1.73, SD = 1.69) 

- - - - - 

First-person Free Will  .211 .493* .356 -.108 .259 .428* 

+p<.1, *p<.05; **p<.01, ***p<.001       
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ideational fluency is known to be correlated with verbal 
ability, a fact which is supported in our study by 
intercorrelations between ability to generate ideas across 
physical, fantastical, and social/psychological domains. 
Social-cognitive skills are also correlated with language 
development (e.g. Astington & Jenkins, 1999; Carlson & 
Moses, 20001). Additional work is needed to investigate 
what influence, if any, developing verbal abilities have on 
the link between the two. 

Perhaps a more interesting possibility is that one specific 
aspect of language development, semantic fluency, plays an 
important causal role.  Indeed, semantic fluency tasks which 
require a child to list as many examples from a category in a 
specified amount of time (Kave, Kigel, & Kocvha, 2008) 
bear a resemblance to idea generation tasks such as the 
UUT: both require the child to have enough knowledge to 
explore a space of possibilities within a specified category. 
But idea generation tasks also go beyond semantic fluency 
because they require extending and conceptually re-
combining familiar ideas and concepts in novel ways (e.g. 
other uses for a tissue). Conceptual re-combination 
additionally require other cognitive facilities like cognitive 
flexibility and, in first-personal cases, knowledge that is 
episodic or autobiographical (Schacter & Addis, 2007). We 
therefore don’t believe it is likely that semantic fluency 
alone explains the link between idea generation and free will 
judgments, but this is a question that is beyond the scope of 
our data to address. 

Despite recent agreement that the ability to imagine 
alternative possibilities is an important cognitive skill, few 
studies have examined how individual differences in modal 
cognition play a role in the ordinary judgments that rely on 
it. Perhaps capturing these differences can help explain 
variability and developmental changes in judgments of 
possibility (Shtulman & Carey, 2007; Lane et al, 2016), 
episodic future thinking (Atance & Melzoff, 2005, Atance et 
al, 2015) and counterfactual/hypothetical reasoning (Beck, 
Robinson, Carroll & Apperly, 2006) and causal inference 
(Walker & Gopnik, 2014). The approach outlined here 
could also be used to explore whether cultivating an ease 
with imagining new ideas could help children master basic 
(but difficult) social, cognitive and self-regulatory tasks.  
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Abstract 

Children learn the meaning of number words by going through 
a systematic set of stages of knowledge that culminates in their 
mastery of counting. Theoretical work has long suggested that 
children’s acquisition of counting is not procedural, but 
semantic: all counters understand that counting computes 
cardinality. Yet, recent research has cast doubt on whether 
early counters truly understand the meaning of these words. 
Here we show that early counters also have an immature 
understanding of how one-to-one correspondence between an 
ordered list and a set of objects can be used to compute exact 
cardinality. Nonetheless, this understanding is improved when 
cues to quantity, such as size, are highlighted. Our results add 
to a growing body of work suggesting that counting is not a 
final stage in children’s path to number, but a powerful tool 
that they can use to build and strengthen their intuitions about 
cardinalities. 

Keywords: Cognitive development; number cognition; one-
to-one correspondence. 

Introduction 
 

Children go through a systematic set of stages of 
knowledge when they learn number words and counting 
(Carey, 2009; Wynn, 1990; Fuson, 1988). First, children 
memorize the count list without knowing what these words 
mean (akin to learning a song like “eeny, meeny, miny, moe, 
…”), usually around the age of two. Children then slowly, but 
steadily, uncover the meaning of the words “one,” “two,” 
“three,” and sometimes even “four,” taking approximately 
six months to learn the meaning of each word. Children at 
these stages are called one-, two-, three-, and four-knowers, 
respectively, or subset-knowers collectively. After learning 
the meaning of the first three or four words, something clicks 
in children’s minds. Rather than continuing to learn the 
meaning of number words one at a time, children suddenly, 
in what seems like a stroke of insight, grasp the logic of 
counting. Children at this stage, called full counters1, can 
determine the size of any set (as long as they have memorized 
the count list up to that number). This last transition is a major 
milestone: the mastery of counting (Carey, 2009; Wynn, 
1990; 1992; Piantadosi, Tenenbaum, & Goodman, 2012; 
Sarnecka & Lee, 2009; Lee & Sarnecka, 2010). 

                                                   
1 Full counters are classically called Cardinal Principle knowers (or 
CP-knowers for short; Carey, 2009; Lee & Sarnecka, 2010; 
Sarnecka & Lee, 2009; Piantadosi, Jara-Ettinger, & Gibson, 2014). 
Here we use a more neutral term that describes procedural 

Theoretical work suggests that, in order to count 
correctly, children must understand five principles (Gelman 
& Gallistel, 1987). First, children must understand that any 
collection of objects can be counted (abstraction principle). 
To do so, objects must be placed in one-to-one 
correspondence with number words (one-to-one 
correspondence principle). The order in which the objects are 
counted is irrelevant (order irrelevance principle) but the 
order in which the number words are recited is not (stable 
order principle). When these steps are executed correctly, the 
word associated with the last object refers to the total number 
of objects in the set (the cardinal principle). 

Research has long focused on the acquisition of the 
cardinal principle, as it is thought to be the key principle that 
marks the difference between children who can count, and 
children who cannot (Carey, 2009; Piantadosi, Tenenbaum, 
& Goodman, 2012). Yet, recent research has cast doubt on 
whether early counters have indeed grasped the conceptual 
logic of the cardinal principle. In a now classical study, 
Davidson, Eng, & Barner (2012) showed that children who 
had recently learned to count failed seemingly simple 
questions like determining whether “five” is more than 
“four.” This work suggests that children’s mastery of 
counting is a procedural milestone—learning to perform a 
complex set of rules in a systematic way—rather than a 
sematic milestone—learning that all number words refer to 
exact quantities and that counting computes a set’s 
cardinality. 

Nonetheless, if early counters are only missing the 
cardinal principle, they should understand how the rest of the 
principles combined can be used to determine a set’s 
cardinality. Consider, for instance, watching an agent count 
two sets of objects. If the agent counts up to “six” in one set 
and up to “seven” in the second set, we can recognize that the 
second set has more objects because the set of words “one, 
two, …, seven” is larger than the set of words “one, two, …, 
six.” Conceptually, this kind of inference only requires 
understanding that the objects were placed in one-to-one 
correspondence with the ordered list of number words. In 
practice, however, this type of inference is unavailable 
because it requires representing the list of words as a set of 
objects. However, if the objects were placed in one-to-one 

competence without commitment to conceptual change because 
recent work suggests full counters may not know the cardinal 
principle yet (Davidson, Eng, & Barner, 2012; Jara-Ettinger, 
Piantadosi, Spelke, Levy, & Gibson, 2017).  
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correspondence with a visible set of objects, young counters 
may be able to perform these inferences. 

Research into children’s understanding of number 
principles suggests this may be the case. Three-year-olds 
understand that two small sets placed in one-to-one 
correspondence must be of equal size (Sophian, 1988; 
Gelman, 1982), and, at an earlier age, 18-month-olds 
preferentially look at counting events that follow one-to-one 
correspondence over events that do not (and this preference 
disappears when the agent uses novel words or beeps; 
Slaughter, Itakura, Kutsuki, & Siegal, 2011). At the same 
time, classical studies were performed with small sets that 
even infants can track, independent of their knowledge of 
number (Feigenson & Carey, 2003; Feigenson, Carey, & 
Hauser, 2002), and children’s performance in other 
numerical tasks suggests that young children do not grasp the 
full significance of how one-to-one correspondence relates to 
exact number (Shipley & Shepperson, 1990; Izard, Streri, & 
Spelke, 2014). 

Here we test if young counters can determine a set’s 
cardinality by watching an agent apply all the counting 
principles using a list where the words are not names for 
cardinalities. We introduced participants to an ordered list of 
animals that someone used to count two sets of objects. 
Children could not see the two sets of objects, but they could 
see the agent placing them in one-to-one correspondence with 
the animal list in a stable order. If children understand the 
logic of these principles, they should be able to determine 
which of the two sets has more objects (as this only requires 
seeing on which set the counter reached an animal further 
along in the list). If, however, children are unable to identify 
which set has more objects, this would suggest that a robust 
understanding of how these counting principles help reveal 
exact cardinality emerges after children learn to count.  

Experiment 1  
In Experiment 1 participants watched an agent count two 

sets of hidden objects by placing them in one-to-one 
correspondence with an ordered list of animals (Figure 1a). 
Participants were then asked to determine which of the two 
boxes had more objects. Participants completed three trials. 
Two of these trials were controls to ensure that children 
understood that the agent was placing the animals in one-to-
one correspondence with the objects. The first control trial 
contrasted two with three objects (such that, if children 
understand that the agent was placing the unobservable 
objects in one-to-one correspondence with the animals, they 
should identify the box with three objects by simply tracking 
the small quantities; Feigenson & Carey, 2003; Feigenson, 
Carey, & Hauser, 2002). The second control trial contrasted 
three with six objects (such that if children understand the 
one-to-one correspondence between objects and animals, 
they should identify the box with six objects by relying on 
their approximate number system; Xu & Spelke, 2000; Xu, 
2003; Lipton & Spelke, 2003; Wood & Spelke, 2005). 
Finally, the critical trial contrasted six versus seven objects, 
which can only be solved if children understand how a proper 

application of counting principles reveals exact cardinality. 
Hypotheses, procedure, exclusion criteria, and analyses were 
pre-registered. 

 
Methods  

Participants. 60 full counters, as determined by the Give-
N Task (Wynn, 1992; Carey, 2009, Sarnecka & Lee, 2009; 
Lee & Sarnecka, 2010) were recruited for this study (mean 
age: 4.88 years; range = 3.35-5.98). Twenty-nine additional 
children were recruited for the study, but not included 
because the experimenter determined they did not know how 
to count based on pre-registered criteria (n=16; see 
Procedure); because a coder blind to hypothesis determined 
that the participant did not know how to count (n=10; see 
Results) or because they declined to complete the study (n=3 
participants; see Results). 

Stimuli. The stimuli consisted of two bowls and ten 
bouncy balls for the Give-N task. For the animal task, the 
stimuli consisted of an ordered animal list, composed of eight 
animals ordered by size (Figure 1a), eight erasers, and three 
videos, each showing an agent counting objects in two 
opaque boxes using the ordered animal list. 

Procedure. 
Give-N Task. Children were presented with one bowl 

with ten bouncy ball and one empty bowl. The task always 
began with a request to move four bouncy balls from one 
bowl to the other. After each query, all bouncy balls were 
returned to the first bowl. If the child succeeded in this first 
trial, the next request was to move five bouncy balls. If the 
child failed, the next request was to move one bouncy ball. 
The task then followed a stair-cased procedure: children were 
asked to move N+1 bouncy balls if they moved N bouncy 
balls correctly, and were asked to move N-1 bouncy balls 
otherwise, with two exceptions: the same request was 
repeated when children failed at N=1 and when they succeed 
at N=8 (ensuring that moving all bouncy balls was never the 
correct answer). 

Whenever children’s error was off by (at most) two 
bouncy balls, the experimenter asked “Is that N bouncy balls? 
Can you count them for me please?” If the child recognized 
an error, the experimenter asked “Can you fix it so there are 
N bouncy balls in the bowl?” The experimenter recorded the 
original and the revised answers, and used the final answer to 
determine the next trial. Only participants who correctly 
moved four bouncy balls at least once proceeded to the one-
to-one correspondence task (as determined in the pre-
registration; although note that all participants who 
participated in the one-to-one correspondence were coded 
afterwards to test if they knew how to count; see Results). 

Animal task. Participants were introduced to a non-
numeric ordered list that consisted of eight animals ordered 
from left to right based on size (from smallest to largest; 
Figure 1a): ant, mouse, cat, pig, cow, bear, elephant, giraffe. 
Children were given a printed version of this list that they 
could consult at any time. To show how an agent would count 
using this list, the experimenter counted a line of four 
identical objects visible to the child using the list (“ant, 
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mouse, cat, pig”), and then counted a line of eight visible 
objects using the list (“ant, mouse, …, elephant, giraffe”). 
The experimenter counted out loud while using their finger 
to touch each item as they pronounced each animal name in 
the non-numeric ordered list and emphasized the final word. 
The experimenter then restated the final word of the count list 
(e.g., “there are giraffe objects”). After the warm-up, children 
completed three test trials (order counterbalanced across 
participants). In each trial, participants watched a video of an 
agent counting the objects in two boxes. The boxes were 
visible, but their contents were not. Immediately after 
counting the items in the box, the agent placed a picture of 
the corresponding animal on each box and then stated how 
many items were in the box using the non-numeric animal 
list. The animals were scaled by size on the printed list that 
children received, and on the pictures attached to the boxes 
(see below). 

 

 
Figure 1. a) Animal list used in Experiment 1. b) Results 
from Experiment 1. The x axis shows the trial and the y 
axis shows the percentage of participants who correctly 
identified the box with more objects. Vertical lines show 
95% bootstrapped confidence intervals. Overall, 
participants were able to identify which box had more 
objects in all three trials. 

 
The three counterbalanced trials consisted of a 2 v. 3 trial, 

a 3 v. 6 trial, and a 6 v. 7 trial. In the 2 v. 3 trial the agent 
counted two objects in one box and then three objects in 
another box using the animal list (order in which boxes were 
counted counterbalanced). In the 3 v. 6 trial the agent counted 
three objects in one box and then the agent counted six 
objects in another box using the non-numeric ordered list 
(order counterbalanced). Finally, in the 6 v. 7 trial the agent 
counted six objects in one box and then seven objects in a 
second box using the non-numeric ordered list (order 
counterbalanced). The first two trials were control trials, as 
they could be solved by tracking number of words uttered via 

the parallel individuation system (2 v. 3 trial; Feigenson & 
Carey, 2003; Feigenson, Carey, & Hauser, 2002), or they 
could be distinguished through the approximate number 
system (3 v. 6 trial; Xu & Spelke, 2000; Xu, 2003; Lipton & 
Spelke, 2003; Wood & Spelke, 2005). The last trial (6 v. 7) 
was the critical one, as it can only be solved by understanding 
how the assignment of objects to animals reveals exact 
cardinality. 

Trial order was counterbalanced across participants. In all 
videos, the agent counted out loud while using their finger to 
touch the inside of the box as they pronounced each animal 
name in the non-numeric ordered list. After each video, 
children were shown a picture of the two boxes, each labeled 
with the animal corresponding to the number of objects in the 
box, and they were asked which box has more blocks in it.  
Results and Discussion  

A coder blind to the experiment hypothesis coded 
whether children who participated in the one-to-one 
correspondence study knew how to count, based on their 
Give-N responses.  

Participants who were not determined to be full counters 
by decision of a coder blind to hypothesis were excluded 
from the study and replaced (n = 10). An additional 3 
participants were excluded and replaced because they did not 
want to complete the study.   

Figure 1b shows the results from the experiment. 
Participants overwhelmingly succeeded in the 2 v. 3 and in 
the 3 v. 6 trials, showing that they understood the task. Of the 
60 full counters included in the study, 88.3% (95% CI: 78.33-
95.00; N=53 participants) correctly identified the box with 
more objects in the 2 versus 3 trial, and 81.7% of participants 
(N=49; 95% CI: 70.00-90.00) correctly identified the box 
with more objects in the 3 versus 6 trial. 

Participants also succeeded in the critical 6 v. 7 trial. 
86.6% of participants (N=52; 95% CI: 78.33-96.97) correctly 
identified the box with more objects in the 6 v. 7 trial. 
Together, these results suggest that children were able to 
understand that the number of recited animals revealed the 
quantity of objects in the set. 

To test for any developmental change, we ran a mixed-
effects logistic regression predicting children’s response in 
the critical number trial (6 v. 7) as a function of age (as a 
continuous variable), with trial order as a random intercept. 
These results suggested that children’s performance 
improved as a function of age (β = 1.87, p < 0.01; See Figure 
2). 

Children’s ability to succeed in the 6 versus 7 trial of this 
experiment suggests that children understand how following 
the counting principles can reveal a set’s cardinality. 
Critically, this understanding can happen without 
recognizing that the words themselves are names for different 
set sizes. 

 At the same time, it is possible that children’s 
performance was facilitated by the use of an animal list 
ordered by size. Specifically, children may have simply 
followed a heuristic where they always pointed to the larger  
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animal without a deep understanding of how counting 

relates to cardinality. We test for this possibility in 
Experiment 2.  

 
Experiment 2 

 Experiment 2 was conceptually identical to Experiment 1, 
with the difference that we used an animal list where the 
animals were no longer ordered on the basis of size, such that 
animals associated with larger quantities were not visually 
larger. Hypotheses, procedure, exclusion criteria, and 
analyses were pre-registered. 
 
Methods  

Participants. 60 full counters, as determined by the Give-
N Task (Wynn, 1992; Carey, 2009, Sarnecka & Lee, 2009; 
Lee & Sarnecka, 2010) were recruited for this study (mean 
age: 4.67 years; range = 3.01-5.99). Nineteen additional 
children were recruited for the study, but not included 
because the experimenter determined they did not know how 
to count based on a pre-registered criterion (n=9; see 
Procedure); because a coder blind to hypothesis determined 
that the participant did not know how to count, as determined 
by a pre-registered coding procedure (n=8; see Results); or 
due to an error playing the experiment videos (n=2; see 
results). 

Stimuli. Stimuli were identical to those in Experiment 1 
with one exception. The counting list for this study consisted 
of eight different animals, ordered by color (Figure 3a).  

Procedure. Methods for this study were identical to those 
from Experiment 1 with one exception. Instead of ordering 
the list by size, we now used a list of animals ordered by color 
(green, blue, purple, magenta, pink, red, orange, yellow): 
alligator, frog, octopus, butterfly, flamingo, lobster, fox, duck 
(Figure 3a). The size of the animals was matched on the 
printed list that children received and on the pictures attached 
to the boxes. Children completed the Give-N task, and the  

 
 

warm-up, as described in the previous experiment, using 
this new ordered list. 

Children then completed the  same three counterbalanced 
trials from Experiment 1: a 2 v. 3 trial, a 3 v. 6 trial, and a 6 
v. 7 trial. After each video, children were shown a picture of 
the two boxes, each labeled with the animal corresponding to 
the number of objects in the box, and asked which box has 
more blocks in it. 
 
Results and Discussion 

Results were coded in the same way as Experiment 1. 
Eight participants were excluded from the study because they 
had not yet learned how to count. Two additional children  
were excluded because the experimental videos did not load 
properly. 

Figure 3b shows the results from the experiment. Overall, 
participants succeeded in the two control trials, confirming 
that participants understood that the agent who counted was 
placing the objects in one-to-one correspondence with the 
animal list, and that the uttered animals revealed the number 
of objects in the set. Of the 60 full counters included in the 
study, 81.7% of participants (N=49; 95% CI: 71.67-91.67) 
correctly identified the box with more objects in the 2 v. 3 
trial, and 80.0% of participants (N=48; 95% CI: 70.00-90.00) 
correctly identified the box with more objects in the 3 versus 
6 trial. By contrast, only half of participants were now able to 
solve the critical 6 v. 7 trial. In this critical trial, only 55.0% 
of participants (N=33; 95% CI: 41.67-68.33) identified the 
box with seven objects. 

To test for any developmental change, we ran a mixed-
effects logistic regression predicting children’s response in 
the critical number trial (6 v. 7) as a function of age (as a 
continuous variable), with trial order as a random intercept. 
These results suggested that children’s performance did not 
improve as a function of age (β = 0.3; p = 0.29; See Figure 
3). 

 

 
Figure 2. Participant responses in both experiments. Each dot represents a participant answer. The x-axis shows their age, and the y axis shows 
whether they identified the box with more objects. Data is minimally jittered on the y-axis for visibility purposes but was not jittered on the x-axis. 
Color indicates the experiment and the lines show logistic regressions. 
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Figure 3. a) Animal list used in Experiment 2. b) Results 
from the experiment. The x axis shows the trial and the y axis 
shows the percentage of participants who correctly identified 
the box with more objects. Vertical lines show 95% 
bootstrapped confidence intervals. Overall, participants were 
able to identify box had more in the the 2 vs 3 and the 3 vs 6 
trials. By contrast, only half of the participants succeeded in 
the critical 6 vs 7 trial. 

 
These results conflict with those from Experiment 1, and 

they suggest that children did not recognize that the animal 
list could be used to determine exact cardinality. If they did, 
they could have solved the 6 v. 7 trial simply by consulting 
the list of animals and checking whether the set crocodile-
lobster (six animals) was smaller or larger than the set 
alligator-fox (seven animals) were farther along the list. Note 
also that children always had a printed version of the list in 
front of them, and that pictures of the corresponding animals 
were placed in front of each box, minimizing concerns 
explainable by memory constraints. 

These results suggest that children’s success in 
Experiment 1 was supported by the use of animals ordered by 
size. Similarly, their overall failure in this experiment 
suggests that children understood that animals were being 
placed in one-to-one correspondence with the animal list, as 
they were able to solve the two control trials, but that they did 
not recognize that, through this process, children could 
determine the exact number of objects in the set. 

General Discussion 
Here we tested whether children who can count 

understand how the counting principles can be used to 
determine a set’s exact cardinality, even without knowing the 
cardinal-principle—the understanding that the last word 
during counting refers to the size of the entire set. In 
Experiment 1 children watched an agent count the number of 
objects in two opaque boxes via one-to-one correspondence 
with a non-numerical animal list ordered by size (Figure 1a). 
Children were able to identify which box had more objects 

when the agent counted two objects in one box and three 
objects in the other, when the agent counted three objects in 
one box and six objects in the other, and when the agent 
counted six objects in one box and seven objects in the other 
(Figure 1b). Experiment 2 replicated this study using an 
animal list where the size of the animals was kept constant 
(Figure 3a). While children continued to successfully identify 
the larger set in the two control trials, their performance was 
drastically lower in the critical trial (Figure 3b). 
 Children’s success in the two versus three trial, and in the 
three versus six trial in both experiments shows they 
understood that the number of words the agent uttered 
revealed the quantity of objects (Note also that children 
completed two warm-up trials where they saw the agent place 
two visible sets of objects in one-to-one correspondence with 
the animal list). However, success in these trials does not 
imply a mature understanding of how the counting procedure 
reveals exact cardinality. Past research has shown that 
children can distinguish between two and three sounds via the 
parallel individuation system (Feigenson & Carey, 2003; 
Feigenson, Carey, & Hauser, 2002) and that they can 
distinguish between three and six sounds via the approximate 
number system (Xu & Spelke, 2000; Xu, 2003; Lipton & 
Spelke, 2003; Wood & Spelke, 2005). By contrast, because 
children cannot perceptually distinguish between six and 
seven sounds, they could only solve this by understanding 
how the counting procedure reveals exact cardinality. 
 Critically, in our study, children did not need to 
understand the cardinal principle to succeed. If children 
recognized that the agent was placing the hidden objects in 
one-to-one correspondence with the animal list, they could 
have solved the task through at least two strategies. A first 
strategy is through awareness that, when counting principles 
are applied, later items reveal greater quantities. If children 
understood this, they would need to only find which animal 
comes later in the list to perform at ceiling. However, even if 
children did not recognize that later symbols in a count list 
reveal greater quantities, they could have solved the task 
through a second strategy: When the agent counted up to a 
certain animal, children could consult their list and see a set 
of animals that is numerically identical to the set of hidden 
objects (e.g., when the agent counted to butterfly in 
Experiment 1, children could see their list and recognize that 
the set of animals starting in crocodile and ending in butterfly 
is a set of the same size than the set of hidden objects that was 
counted). Through this strategy, children could recognize that 
one of the sets of animals is a subset of the other, making it 
trivial to identify which bowl had more objects. 
 The results from Experiment 1 are consistent with two 
possibilities. A first possibility is that children’s ability to 
determine which of two sets had more objects improves when 
we the list includes a cue to number (by ordering the animal’s 
based on size; Figure 1a). However, it is also possible that 
varying the size of the animals did not help children link the 
animal list to cardinalities. Instead, children may have simply 
selected the larger animal without conceptually 
understanding why this would be the correct answer. Note, 
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however, that children’s performance in the 2 v. 3 and the 3 
v. 6 trials was near-identical in Experiment 1 and Experiment 
2. If children were simply pointing to the larger animal in 
Experiment 1, one might expect better performance relative 
to Experiment 2. In addition, older children were more likely 
to succeed in the 6 v.7 trial in Experiment 1. Intuitively, if 
children were relying on a size heuristic, younger children 
should have succeeded as well. Future work will test if this 
alternative can explain children’s improved performance in 
Experiment 1. 
 In this study we recruited three-, four-, and five-year-olds 
and only tested children who were able to count. Because, in 
the US, children usually learn to count at around age four 
(Piantadosi, Jara-Ettinger, & Gibson, 2014; Wynn 1990, 
1992), it is likely that most of our participants had just learned 
how to count. However, older participants are more likely to 
have known how to count for a longer time such that 
experience with counting and age were likely correlated in 
our sample. Thus, our finding that children improved in the 6 
v. 7 trial in Experiment 1 does not reveal whether this 
improvement was due to age, or due to experience with 
counting. Future work will disambiguate between these 
possibilities. 

Altogether, our results suggest that children who know 
how to count have yet to reach a mature understanding of how 
the counting principles reveal exact cardinalities. Our results 
add to a body of work that suggests that children’s mastery 
of the counting procedure is not a final milestone in 
children’s mastery of number words. Related work has also 
shown that young counters may also lack the cardinal 
principle (Davidson, Eng, & Barner, 2012; see introduction 
for review). Combined, this work suggests that when children 
learn to count, they master a set of procedural rules with only 
a partial understanding of how these rules relate to 
cardinality. Under this view, children’s ability to count may 
be a building block towards their understanding of number 
words and cardinality rather than an endpoint. By learning to 
count, children may begin to notice a relationship between 
the set size and the final number word when counting, helping 
them realize that counting computes cardinality. Future work 
will test this hypothesis. What our findings do show, is that 
children’s mastery of counting is an intermediate step in 
children’s path to knowledge, and we add to a growing body 
of work suggesting that children’s acquisition of procedural 
number knowledge may precede a mature understanding of 
the meaning of number words and counting (Jara-Ettinger, 
Piantadosi, Spelke, Levy, & Gibson, 2017; Davidson, Eng, & 
Barner, 2012; Cheung & LeCorre, 2015). 
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Toddlers recognize multiple polysemous meanings and use them to infer additional
meanings
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Abstract

Up to 80% of words have multiple, related meanings (polysemy), yet work on early word learning has almost uniformly
assumed one-to-one mappings between form and meaning. Using a looking-while-listening procedure, we present the
first evidence that toddlers (n=40) can recognize multiple meanings for common nouns, e.g., dog collar, shirt collar. In an
English-meaning condition, toddlers were tested on their ability to recognize multiple English meanings for polysemous
words such as cap (e.g., a baseball cap and a bottle cap). Another condition prompted toddlers with the same English
words (e.g., cap), but target referents instead corresponded to the words polysemous extension in an unfamiliar language,
(e.g., lid is a meaning for Spanishs cap, tapa). Toddlers looked to the correct targets above chance on both trial types,
but with greater accuracy on English-meaning trials, demonstrating a recognition of familiar word-meaning pairs and an
ability to infer potential new meanings.

1752



Do Neural Language Representations Learn Physical Commonsense?

Maxwell Forbes†, Ari Holtzman†‡, and Yejin Choi†‡
{mbforbes, ahai, yejin}@cs.washington.edu

†Paul G. Allen School of Computer Science and Engineering, University of Washington
‡Allen Institute for Artificial Intelligence

Abstract

Humans understand language based on the rich background
knowledge about how the physical world works, which in turn,
allows us to reason about the physical world through language.
In addition to the properties of objects (e.g., boats require fuel)
and their affordances, i.e., the actions that are applicable to
them (e.g., boats can be driven), we can also reason about if–
then inferences between what properties of objects imply the
kind of actions that are applicable to them (e.g., that if we can
drive something then it likely requires fuel).
In this paper, we investigate the extent to which state-of-the-
art neural language representations, trained on a vast amount of
natural language text, demonstrate physical commonsense rea-
soning. While recent advancements of neural language mod-
els have demonstrated strong performance on various types of
natural language inference tasks, our study based on a dataset
of over 200k newly collected annotations suggests that neural
language representations still only learn associations that are
explicitly written down.1

Keywords: physical commonsense, natural language, neural
networks, affordances

Introduction
Understanding everyday natural language communication re-
quires a rich spectrum of physical commonsense knowl-
edge. Consider the example dialog sketched in Figure 1.
A simple observation that, “The blender is broken again!”
triggers myriad pieces of implied understanding (e.g., that
something which requires electricity will only work with a
source of power). Such knowledge is rarely stated explicitly
(Van Durme, 2010), and instead can be inferred on-the-fly as
needed.

In this paper, we study physical commonsense knowledge
underlying natural language understanding, organized as in-
teractions among three distinct concepts: (i) objects, (ii) their
attributes (properties), and (iii) the actions that can be applied
to them (affordances) (Figure 1, bottom). The premise of our
study is that language models trained on a sufficiently large
amount of text can recover a great deal of physical common-
sense knowledge about each of these concepts. However, as-
pects of this knowledge may only be implicit in natural lan-
guage utterances. For example, answering a question from
the Winograd Schema Challenge (Levesque, Davis, & Mor-
genstern, 2012)—”The trophy would not fit in the brown suit-

1Visit https://mbforbes.github.io/physical-commonsense
for our data, code, and more project information.
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Are you sure it’s                     ?
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Figure 1: Natural language communication often requires
reasoning about the affordances of objects (i.e., what actions
are applicable to objects) from the properties of the objects
(e.g., what are the size, weights, material of the objects) and
vice versa. We study the extent to which neural networks
trained on a large amount of text can recover various aspects
of physical commonsense knowledge.

case because it was too big. What was too big?”—implicitly
requires the physical commonsense reasoning that “in order
to fit X in Y, X should be relatively smaller compared to Y”,
which essentially requires reasoning about the affordances of
objects (fit X in Y) from their attributes (relative size of X and
Y).

In this paper, we investigate the extent to which neural lan-
guage models trained on a massive amount of text demon-
strate various aspects of physical commonsense knowledge
and reasoning. Our analysis includes word embeddings such
as GloVe (Pennington, Socher, & Manning, 2014), as well as
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more recent contextualized representations like ELMo (Peters
et al., 2018) and BERT (Devlin, Chang, Lee, & Toutanova,
2018). Such models are trained without supervision by ex-
posing them to billions of words, and allowing them to ex-
tract patterns purely from token prediction tasks that can be
derived directly from raw text. These language representa-
tion models have established unprecedented performance on
a wide range of evaluations, including natural language infer-
ence and commonsense reasoning.

How much do these large, unsupervised models of lan-
guage learn about physical commonsense knowledge? Some
recent work has studied the capabilities of word embeddings
to predict an object’s properties (Rubinstein, Levi, Schwartz,
& Rappoport, 2015; Lucy & Gauthier, 2017). Motivated
by these efforts to understand language representations, we
present several contributions. We contribute two datasets: the
abstract dataset, a refreshed version of the McRate dataset
(McRae, Cree, Seidenberg, & McNorgan, 2005), pruned and
densely annotated to eliminate false negatives present in pre-
vious work; and the situated dataset, with annotations for ob-
jects’ properties and affordances in real-world images sam-
pled from the MS COCO dataset (Lin et al., 2014). As in
previous work, we consider the prediction task of linking ob-
jects and their properties (O←→P), but with our new situated
dataset, we are also able to study the connection between
objects and their affordances (O←→A), as well as between
affordances and properties (A←→P). We also study the lat-
est models from the natural language processing community
(ELMo, BERT) using in-context word representations, and
present results for all of our proposed datasets and tasks. Our
analysis suggests that current neural language representations
are proficient at guessing the affordances and properties of
objects, but lack the ability to reason about the relationship
between affordances and properties itself.

Characterizing Objects through
Properties and Affordances

Properties
We use the term properties to refer to the static characteristics
of objects. They encompass our commonsense understanding
of what something is like. For example, we might say that
an apple has the property of being edible, or that a plant is
stationary.

As with McRae et al. (2005), properties capture the general
perception of a thing. Exceptions naturally arise. For exam-
ple, specific instances can violate the general properties of an
object, such as the inediblilty of a rotten apple. Additionally,
subtypes can diverge from the exemplar of a category, as with
the Venus flytrap, a plant with the ability to move.

Affordances
We express an object’s actions with verbs. One way to fo-
cus on understanding the actions of objects is to focus on
their affordances. Coined by Gibson (1966), this term ini-
tially described animal-perceived uses for an object, but has

since come to mean the perceived uses of an object in a given
environment (Norman, 1988; Gaver, 1991).

Here, we take a simpler, human-centric definition. We con-
sider an object’s affordances to be, “what actions do humans
take with an object?” For example, boots commonly afford
wear, kick off, lace up, and put on.

Inference Between Affordances and Properties

Affordances and properties exhibit a surprising connection.
As humans, we are able to infer many of an object’s affor-
dances based on its properties (A←P). The same is also true
in the reverse (A→P).

Consider an exchange: “You think you could fit that boul-
der in your truck?” “No way! That thing was so big you
could go for a hike on it.” We might sketch out some of this
information as:

fit x into y =⇒ x <size y

hike(x) =⇒ x�size HUMAN

While the above information only concerns a property’s
relative value (comparative size), all kinds of information tra-
verse this edge implicitly:

She plugged in her robot.

plug-in(x) =⇒ uses-electricity(x)
He poured coffee into the cup

pour-into(x) =⇒ holds-liquid(x)
It shattered on the floor.

shatter(x) =⇒ rigid(x)

The implications ( =⇒ ) should be taken with a probabilis-
tic grain of salt. However, they capture our intuitions about
what we expect to be true. Wouldn’t it be surprising to shatter
something that isn’t rigid, or plug-in something that doesn’t
take power?

Humans use the link between affordances and properties
to recover information. Can machine learning models do the
same? It is is difficult to model these implications based on
text alone because there is no direct evidence for the implied
information. Any implication that can be trivially understood
by a person is precisely the kind of information left unsaid.
Who would write, “If I can walk inside my house, I know that
my house is bigger than I am?” Nevertheless, we naturally
understand that: x walk-inside y =⇒ x <size y.

Directly attacking the link between affordances and prop-
erties requires access to implications across the edges. With-
out such information, we can use objects as a proxy to un-
derstand how much modern neural networks know about this
edge. For example, taking an object like boots, and using
only its top affordances wear, kick off, and lace up, can we
predict its properties?
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Statistics

Total Statistics

Abstract
Objects 514 411 train / 103 test
Properties 50 obj/prop: 60 median (3 min, 302 max)

prop/obj: 8 median (1 min, 23 max)
Annotations 77,1000 3 anns/datum
Situated
Objects 1,024 80 unique, split: 64 train / 16 test
Properties 50
Affordances 3072 3 affordances / object (by design)
Annotations 156,672 3 anns/datum

Examples

Objects Properties Affordances

harmonica, van expensive, squishy pick up, remove
potato, shovel used as a tool for cooking pet, talk to
cat, bed decorative, fun cook, throw out

Table 1: Statistics and examples for the proposed abstract and
situated datasets (based on (McRae et al., 2005) and (Lin et
al., 2014)).

Experiments

Tasks

As shown at the bottom of Figure 1, our problem space nat-
urally defines three edges in a graph. A property prediction
task may attempt to produce the human-labeled set of proper-
ties given a new object (O→P) (Lucy & Gauthier, 2017). Pre-
dicting affordances can be done similarly: given a new object,
can its top affordances be distinguished from others (O→A)?
And finally, the troublesome but fertile edge between proper-
ties and affordances: can a model predict the set of properties
compatible with an affordance (A→P)?

We frame each scenario as a series of joint reasoning tasks.
Given two instances (e.g., an object and a property), a model
must make a binary decision as to whether they are compat-
ible. For example, predicting which properties out of a to-
tal of k are compatible with an object o will be set up as k
compatibility tasks (o, pi)→ {0,1}. We denote the tasks as
object-property (O←→P), object-affordance (O←→A), and
affordance-property (A←→P).

Data

To fuel experiments in these three tasks, we introduce two
new datasets. The first we call the abstract dataset, which is
a set of judgements elicited from only the name of the object
(e.g., wheelbarrow) and property (e.g., is an animal). The
second is the situated dataset, where properties and affor-
dances are annotated on objects in the context of real-world

pictures.2

Abstract Dataset Several lists of properties (McRae et al.,
2005), categorization schemes (Devereux, Tyler, Geertzen, &
Randall, 2014), and quantification layers (Herbelot & Vec-
chi, 2015) have been proposed. We take the set of objects and
properties from McRae et al. and perform filtering and pre-
processing similar to Lucy and Gauthier (2017). We also in-
clude the set of objects from the MS COCO dataset (Lin et al.,
2014), collapse similar objects (e.g., many bird species) and
add seven new properties (such as man-made and squishy).
We end up with a set of 514 objects and 50 properties. We
re-annotate all 25,700 object-property pairs to eliminate false
negatives from the original McRae data collection process
and provide labels for new entries. We annotate each pair
three times for a total of 77,100 annotations, and keep only
labels with ≥ 2/3 agreement.

Situated Dataset We also annotate instances of objects sit-
uated in photographs. Images have the great advantage of
resolving visual ambiguities of appearance, shape, and form.
For example, a bottle has different properties if it is a glass
beverage container or plastic shampoo tube. Only a few non-
visual properties (e.g., smelliness) must then be inferred from
the environment.

To build the an experimental situated testbed, we sample
images from the MS COCO dataset (Lin et al., 2014). We
constrain each image to have between three and seven objects
to avoid scenes that are too sparse (often portraits) or dense
(cluttered collections). We also ensure that we have at least
five samples of each of the 80 unique object categories in the
dataset. We end up with 1,024 objects across 220 images.
We then annotate all 50 properties (introduced in the abstract
dataset) for each object, annotating each three times for a total
of 153,600 labels. We filter using the same scheme (≥ 2/3
agreement).

In addition to the properties, we also collect annotations of
the affordances for all objects in the situated dataset. We al-
low annotators to choose from the 504 verbs from the imSitu
dataset (Yatskar, Zettlemoyer, & Farhadi, 2016). We provide
common variants of each verb that include particles, allowing
annotations such as pick up and throw out. Annotators select
the top three to five affordances that come to mind when they
see the selected object in the context of its photograph. We
again perform this annotation three times for each object, and
aggregate the verbs chosen to pick the top three most common
affordances for each object. We end up with a set of sparsely
labeled affordances for each situated object. We perform bal-
anced negative sampling by selecting k = 3 affordances for
each datum and setting their labels to zero.

Detailed statistics and examples for both datasets are
shown in Table 1.

2Annotations for both datasets are performed by workers on
Amazon Mechanical Turk.
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Abstract Situated

O←→ P O←→ P O←→ A A←→ P

obj prop µF1 sig obj prop µF1 sig obj aff µF1 sig aff prop µF1 sig

RANDOM 0.25 0.26 0.26 *** 0.24 0.25 0.22 *** 0.53 0.62 0.51 *** 0.24 0.26 0.23 ***
MAJORITY 0.34 0.11 0.31 *** 0.16 0.05 0.17 *** 0.82 0.68 0.82 *** 0.18 0.05 0.17 ***
GLOVE 0.63 0.47 0.63 * 0.55 0.39 0.57 ** 0.85 0.73 0.86 ← 0.27 0.13 0.29
DEP-EMBS 0.62 0.42 0.60 ** 0.54 0.36 0.54 0.84 0.67 0.84 0.26 0.12 0.28
BERT 0.62 0.48 0.60 *** 0.53 0.38 0.56 0.85 0.70 0.85 0.26 0.12 0.28 **
ELMO 0.67 0.55 0.67 ← 0.58 0.44 0.58 ← 0.84 0.71 0.85 0.31 0.17 0.34 ←

HUMAN 0.78 0.80 0.67 0.70 0.69 0.61 0.83 0.93 0.80 0.65 0.67 0.40

Table 2: Macro F1 scores per category (object, property, affordance) and micro F1 score (µF1) on both the abstract and situated
test sets. Highest model values are bolded. Statistical significance (sig) is calculated with McNemar’s test, comparing the
best-scoring model (by µF1, denoted ←) with each other model. Stratified p-values are shown, with * for p < 0.05, ** for
p < 0.01, and *** for p < 0.001. Human performance is estimated by 50 expert-annotated random samples from the test set
(no McNemar’s test).

Models
Word embeddings We consider four representations of the
words involved in the tasks. Two of the representations are
word embeddings. These map single words to vectors in
Rd . We use GloVe embeddings (Pennington et al., 2014)
as they have proven effective at object-property tasks in the
past (Lucy & Gauthier, 2017). We also use Dependency
Based Word Embeddings (Levy & Goldberg, 2014), as they
may more directly capture the relations between objects and
their affordances. In both cases, d = 300, and we use the
GloVe embedding variant with the largest amount of pretrain-
ing (840 billion words).

Contextualized representations The other two represen-
tations are ELMo (Peters et al., 2018) and BERT (Devlin et
al., 2018), which are contextualized. These require full sen-
tences (as opposed to single words) to compute a vector, but
in turn produce results more specific to words’ linguistic sur-
roundings. For example, ELMo and BERT produce different
representations for book in “I read the book” versus “Please
book the flight,” while word embeddings have only a single
representation.

To account for this, we generate sentences using the rele-
vant objects, properties, and affordances for the task at hand.
For example, to judge accordion and squishy, we would gen-
erate “An accordion is squishy.”

For ELMo, we then take the final layer representations for
the two compared words, each of which is a d = 1024 length
vector. For BERT, we take the overall sentence representation
and sum across the final four layers, which produces a single
d = 1024 vector.

Finetuning Given the word representations above, we fine-
tune each of the models by adding trainable multilayer per-
ceptron (MLP) after the input representations. This allows
models to learn interrelations between the two categories at

hand, essentially calibrating the unsupervised representations
into a compatibility function. We use a single hidden layer
in the MLP, and train using mean squared error loss with L2
regularization.

To summarize, for two words (wi,w j) which can be written
together in a sentence s = w1...wn, we have for a model m,

r(wi,w j) =


〈m(wi),m(w j)〉 if m ∈ {GL., D.E.}
m−1
{i, j}(s) if m = ELMO

∑`∈{−4...−1}m`(s) if m = BERT

ŷwi,w j ∝ σ(wT
2 a(wT

1 r(wi,w j)+b1)+b2)

L(wi,w j,y,θ,λ) = (y− ŷwi,w j)
2 +λ‖θ‖2

2

where m(·)`i is an embedding of the ith token in the layer `,
a is a nonlinear activation function, y ∈ {0,1} is the ground
truth label, θ = {w1,w2,b1,b2} are trainable parameters, and
λ is the regularization strength.

We optimize all models using gradient descent, and tune
all hyperparameters using k-fold cross validation with k = 5.

Baselines We compare performance for these models
against two simple approaches. The random baseline sim-
ply flips a coin for each compatibility decision. The majority
baseline uses the per-class majority label for the training set,
aggregating by property for the O←→ P and A←→ P tasks,
and by affordance for the O←→ A task.

Human performance Finally, we estimate human perfor-
mance on this task. We sample 50 samples at random from
the test set for each task, and have an expert annotate them.
For fairness to the models, we do not show the expert the pho-
tographs or exact instance from which the situated examples
are drawn.
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Property and Affordance F1 Scores by Class Property Accuracy by Category

(a) (b)

(c)

(d)

Figure 2: Detailed results of top performing model (ELMo) on the affordance-property compatibility task (A←→P) in the
situated dataset. (a) F1 scores are plotted per property (left) and affordance (right). (b) Properties are divided into four categories
and plotted by accuracy. (c), (d) Both property and affordance F1 plotted against word frequency in natural language text.

Results
A summary of all model performances is shown in Table 2.
Consistent with prior work that has studied object and prop-
erty compatibility (Lucy & Gauthier, 2017), we find good but
not perfect performance (close to 0.70 F1 scores) on the ab-
stract dataset (task O←→ P). Models fare slightly worse on
the situated O←→ P task, with the best performance below
0.60 F1. This effect is consistent in the human expert scores
as well. Though this dataset is larger, the introduction of con-
text allows for greater variance in the properties of an object.

The object-affordance compatibility task (O←→ A) yields
significantly higher numbers. Not only is this task statisti-
cally easier (as demonstrated by the strong majority baseline),
but this edge is the only one directly observed in language.
All models pretrained on text have been exposed to many in-
stances of likely verbs for each object considered. In fact, all
pretrained models perform in the same range as human abil-
ity, and there is no statistically significant difference between
the models for this task.

However, all models struggle with the affordance-property
task (A←→ P). The highest F1 scores are in the 0.30s, with
the random baseline achieving the highest macro F1 score by
property. While this task is also the most difficult for humans,
their macro F1 scores for both affordances and properties are
more than double that of the best performing models. We
posit that the inference between affordances and properties
requires multi-hop inference that is simply not present in the
pretraining of large text-based models. We provide further
analysis in the following section.

Analysis
Models achieve reasonable performance predicting the com-
patibility of both properties and affordances with objects.
However, the task requiring inference between affordances
and properties (A←→P) confounds even the strongest mod-
els.

We explore this result through a detailed analysis of the

top performing model. Figure 2 presents a breakdown of
ELMo’s results on the affordances-property compatibility
task (A←→P) on the situated dataset. From the leftmost
graph (a), we observe that a per-property analysis shows a
largely bimodal split between properties that are fully pre-
dicted (1.0 F1), and went completely unmodeled (0.0 F1).
Affordances, on the other hand, lie more evenly across the F1
range. Because the task involved the compatibility between
properties and affordances, mass for correct predictions must
be shared between the two data groups. That so few proper-
ties achieved a high F1 score suggests that many affordances
rely on only a few properties for accurate prediction.

We perform further analysis to investigate which kinds of
properties yielded better affordance-property modeling. We
categorize each property into four coarse classes: functional
(e.g., is used for cooking), encyclopedic (e.g., is an animal),
commonsense (e.g., comes in pairs), and perceptual (e.g., is
smooth). Figure 2 (b) shows a breakdown of property per-
formance grouped by these four categories. (Here, we plot
accuracy instead of the sharper F1 metric to better illustrate
the spread of performance.) Functional properties exhibit the
highest performance. This makes intuitive since, because
functional capabilities are directly tied to an object’s affor-
dances. In contrast, perceptual properties exhibit generally
lower and inconsistent performance than other categories. We
suspect that perceptual observations observed in text are not
expressed with affordances, making this connection difficult
for models. Largely perceptual features can be written about
with simple verbs (hear, see, feel), giving them less implicit
evidence than more nuanced properties. Finally, encyclope-
dic and commonsense properties fall somewhere in the mid-
dle. These properties, which involve an object’s general char-
acteristics (like requires gasoline, lives in water, or has a
peel), correlate with a variety of verbs. But they may only
be directly expressed at a distance from a verb, making the
inference between them still challenging.

Our final analyses in Figure 2 (c) and (d) investigate
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whether there is a link between the predictive power of the
model and how often a word is used in text. We compute
the frequencies of all affordances and properties occurring
in natural language using the Google Web 1T corpus, an n-
gram corpus computed from approximately one trillion words
(Brants & Franz, 2006). Figure 2(c) plots the F1 score of
properties against how frequently they appear in natural lan-
guage; 2(d) plots the same for affordances. We include a best-
fit line along with confidence intervals shown as one standard
deviation of the data. We do not observe a statistical correla-
tion between how much affordances and properties are writ-
ten about, and how well neural models are able to connect
their effects; a single confidence interval spans both positive
and negative slopes. This lack of clear correlation is surpris-
ing, because large state-of-the-art neural textual models gen-
erally improve with repeated exposure to instances of words.
Except for the three most common words measured by prop-
erty F1 score, the rest of the data shows a strikingly uniform
distribution of F1 scores for any choice of frequency in nat-
ural language. This suggests that current neural models are
fundamentally limited in their capacity for physical reason-
ing, and that only new designs—not more data—can allow
them to acquire this skill.

Discussion
Despite being able to associate a considerable range of infor-
mation with the names of objects, neural models are not able
to capture the more subtle interplay between affordances and
properties. In some sense, this result is unsurprising. Col-
lecting information around an object can be informed largely
by the co-occurrence of words around that object’s various
mentions. Affordances that imply properties (and the reverse)
are rarely mentioned together; their mutual connotation nat-
urally renders joint expression redundant. Hence, priorless
models that learn from statistical associations falter. Given
the depth of the networks used in models such as ELMo and
BERT, complex inter-parameter structure arises, but the la-
tent semantic patterns that describe physical commonsense
are much weaker than more superficial patterns that arise due
to grammar or domain, making it difficult to capture.

This evidence feeds into theories of embodied cognition
(Gover, 1996; Wilson, 2002), which suggest that the nature
of human cognition depends strongly on the stimuli granted
by physical experience. If this is so, then how is information
encoded in our physical experience such that we can make
predictions? If we assume a form of mental simulation, then
what are the mental limits on its reliability? From an artificial
intelligence perspective, the more interesting proof is in the
principles of creating such a mental simulator. If we are to
simulate human capacity for thought, how actually must we
simulate elements of the physical world?

With the rise of physics engines, our ability to model
physical inferences grows (Wu, Yildirim, Lim, Freeman, &
Tenenbaum, 2015). However, while this may make us bet-
ter at anticipating human predictions about physical situa-

tions through perceptual stimuli (Gerstenberg, Zhou, Smith,
& Tenenbaum, 2017), there is still a long way to go before
we understand the inferences that are being made through
more symbolic stimuli, such as language. Exploring the
mechanisms underlying this communication using an implicit
shared world model will require us to either develop access
to such a world model, or expose algorithms to predictions
of that world model by directly querying humans. Bridging
the inductive biases learned from simulation (Battaglia, Ham-
rick, & Tenenbaum, 2013) and those discovered by scientists
(Lake, Linzen, & Baroni, 2019) to make inferences implicit
in text will lead to a more cohesive model of commonsense
physics. We expect such a model to bear great fruit in studies
of communication rich with physical implications.
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Abstract

Cognitive development is often characterized in term of dis-
continuities, but these discontinuities can sometimes be appar-
ent rather than actual and can arise from continuous develop-
mental change. To explore this idea, we use as a case study the
finding by Stager and Werker (1997) that children’s early abil-
ity to distinguish similar sounds does not automatically trans-
late into word learning skills. Early explanations proposed
that children may not be able to encode subtle phonetic con-
trasts when learning novel word meanings, thus suggesting
a discontinuous/stage-like pattern of development. However,
later work has revealed (e.g., through using simpler testing
methods) that children do encode such contrasts, thus favoring
a continuous pattern of development. Here we propose a prob-
abilistic model describing how development may proceed in
a continuous fashion across the lifespan. The model accounts
for previously documented facts and provides new predictions.
We collected data from preschool children and adults, and we
showed that the model can explain various patterns of learning
both within the same age and across development. The find-
ings suggest that major aspects of cognitive development that
are typically thought of as discontinuities, may emerge from
simpler, continuous mechanisms.

Keywords: word learning, cognitive development, computa-
tional modeling

Introduction
Cognitive development is sometimes characterized in terms
of a succession of discontinuous stages (Piaget, 1954). Al-
though intuitively appealing, stage theories can be challeng-
ing to integrate with theories of learning, which typically
posit that knowledge and skills improve incrementally with
experience. Indeed, one of the central challenges of cognitive
development has been to explain transitions between stages
which appear to be qualitatively different (Carey, 2009).

Nevertheless, at least in some cases, development may only
appear to be stage-like. This appearance can be due, for ex-
ample, to the use of a cognitively-demanding task which may
mask learning, or to the use of statistical thresholding (in
particular, p-value < 0.05) which can create a spurious di-
chotomy between success and failure in observing a given
behavior. In such cases, positing discontinuous stages is un-
necessary. Instead, a continuous model—involving similar
representations across the lifespan—may provide a simpler
and more transparent account of development.

We use a case study from word learning literature. Stager
& Werker (1997) first showed that children’s early ability
to distinguish similar sounds does not automatically trans-
late into word learning skills. Indeed, though infants around
14-month old can distinguish similar sound pairs such as
“dih” and “bih”, they appear to fail in mapping this pair to
two different objects. Follow-up studies have focused on

proposing possible explanations for this observed gap be-
tween speech perception and word learning (e.g., Fennell &
Waxman, 2010; Hofer & Levy, 2017; Rost & McMurray,
2009; Stager & Werker, 1997).

By around 17 m.o, children succeed in the same task
(Werker, Fennell, Corcoran, & Stager, 2002). How does de-
velopment proceed? Early accounts assumed that children
encode words in a binary way: they either fail or succeed in
encoding the relevant phonetic details (simultaneously with
the meanings). This account suggested a discontinuous/stage-
like pattern of development whereby younger children fail to
encode the contrastive phonetic detail, whereas older children
succeed.

Subsequent findings have suggested otherwise. On the
one hand, 14-month-olds—who typically fail in the original
task—succeed when an easier testing method is used, even
under the same learning conditions (Yoshida, Fennell, Swing-
ley, & Werker, 2009). They also succeed when uncertainty
is mitigated via disambiguating cues (e.g., Thiessen, 2007).
On the other hand, adults show patterns of learning similar
to those shown by 14-month-olds when the task is more chal-
lenging and when the similarity between words increases (Pa-
jak, Creel, & Levy, 2016; White, Yee, Blumstein, & Morgan,
2013).

This pattern of evidence points towards another scenario,
where the representations are encoded in a probabilistic
(rather than binary) way, and where development is contin-
uous, rather than stage-like (see also Swingley, 2007). On
this account, correct representations are learned early in de-
velopment, but these representations are encoded with higher
uncertainty in younger children, leading to apparent failure in
relatively demanding tasks. Development is a continuous pro-
cess whereby the initial noisy representations become more
precise. In addition, more precise representations are still im-
perfect: Even adults show low accuracy learning when the
sound contrasts are subtle, e.g., non-native sounds (Pajak et
al., 2016).

We provide an intuitive illustration of how such an account
explains patterns of learning and development in Figure 1.
We observe low accuracy in word learning when the percep-
tual distance between the labels is small relative to the un-
certainty with which these labels are encoded. For example,
in Stager and Werker’s original experiment, children are sup-
posed to associate label 1 (“bih”) and label 2 (“dih”) with ob-
ject 1 and object 2, respectively. Though infants could learn
that the label “bih” is a better match to object 1 than “dih”,
they could still judge the sound “dih” as a plausible instance
of the label “bih”, thanks to the relatively large uncertainty
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of the encoding, and this confusion leads to “failure” in the
recognition task. According to this account, accuracy in word
learning improves if we increase either the perceptual distinc-
tiveness of the stimuli (e.g., through using different-sounding
labels) or the precision of the encoding itself (e.g., across de-
velopment).

Building on this intuition, the current work proposes a
probabilistic model, which we use to both account for previ-
ous experimental findings, and to make new predictions that
have not been tested before. Using new data collected from
both preschool children and adults, we show that the model
can explain various patterns of learning both within the same
age and across development.

Figure 1: An illustration of the probabilistic/continuous ac-
count using simulated data. A word is represented with a dis-
tribution over the perceptual space (indicated in red or blue).
When the uncertainty of the representation is large relative to
the distance between the stimuli (top panel), an instance of
the red category (indicated with a star) could also be a plausi-
ble instance of the green category, hence the low recognition
accuracy score. The accuracy increases when the stimuli are
less similar (left panel), or when the representations are more
precise (right panel).

Model
Probabilistic structure
Our model consists of a set of variables describing the gen-
eral process of spoken word recognition in a referential sit-
uation. These variables are related in a way that reflects the
simple generative scenario represented graphically in Figure
2. When a speaker utters a sound in the presence of an object,
the observer assumes that the object o activated the concept C
in the speaker’s mind. The concept prompted the correspond-
ing label L. Finally, the label was physically instantiated by
the sound s.

A similar probabilistic structure was used by Lewis &
Frank (2013) to model concept learning, and by Hofer &
Levy (2017) to model spoken word learning. However, the

Figure 2: Graphical rep-
resentation of our model.
Circles indicate random
variables (shading indi-
cates observed variables).
The squares indicate fixed
model parameters.

first study assumed that the sounds are heard unambiguously,
and the second assumed the concepts are observed unambigu-
ously. In our model, we assume that both labels and concepts
are observed with a certain amount of perceptual noise, which
we assume, for simplicity, is captured by a normal distribu-
tion:

p(o|C)∼N (µC,σ
2
C)

p(s|L)∼N (µL,σ
2
L)

Finally, we assume there to be one-to-one mappings be-
tween concepts and labels and that observers have success-
fully learned these mappings during the exposure phase:

P(Li|C j) =

{
1 if i = j
0 otherwise

Inference
The learner hears a sound s and has to decide which object
o provides an optimal match to this sound. To this end, they
must compute the probability P(o|s) for all possible objects.
This probability can be computed by summing over all possi-
ble concepts and labels:

P(o|s) = ∑
C,L

P(o,C,L|s) ∝ ∑
C,L

P(o,C,L,s)

The joint probability P(o,C,L,s) is obtained by factoring the
Bayesian network in Figure 2:

P(o,C,L,s) = P(s|L)P(L|C)P(C|o)P(o)

which can be transformed using Bayes rule into:

P(o,C,L,s) = P(s|L)P(L|C)P(o|C)P(C)

Finally, assuming that the concepts’ prior probability is
uniformly distributed1, we obtain the following expression,
where all conditional dependencies are now well defined:

P(o|s) = ∑C,L P(s|L)P(o|C)P(L|C)

∑o ∑C,L P(s|L)P(o|C)P(L|C)
(1)

1This is a reasonable assumption in our particular case given the
similarity of the concepts used in each naming situation in our ex-
periment.
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Figure 3: An overview of the task used in this study.

Task and model predictions
We use the model to predict performance in the word learn-
ing task introduced by Stager & Werker (1997), with a two-
alternative forced choice as in Yoshida et al. (2009). In this
task, participants are first exposed to the association between
pairs of nonsense words (e.g., “lif”/“neem”) and pairs of ob-
jects. The word-object associations are introduced sequen-
tially. After this exposure phase, participants perform a series
of test trials. In each of these trials, one of the two sounds is
uttered (e.g., “lif”) and participants choose the corresponding
object from the two alternatives. An overview of the task is
shown in Figure 3.

We used Equation 1 and the probability distributions de-
fined above to obtain the exact analytical expression for the
probability of accurate responses p(oT |s) (target object oT
given a sound s) in the simple case of two-alternative forced
choice in the testing phase of our experimental task:

P(oT |s) =
1+ e−(∆s2/2σ2

L+∆o2/2σ2
C)

1+ e−(∆s2/2σ2
L+∆o2/2σ2

C)+ e−∆s2/2σ2
L + e−∆o2/2σ2

C

(2)
Figure 4 show simulations of the predicted accuracy (Ex-

pression 2) as a function of the distinctiveness parameters (∆s
and ∆o) and the precision parameters, i.e., the variances of
the distributions p(s|L) and p(o|C). To understand the quali-
tative behavior of the model, we assumed for simplicity that
the precision parameter has similar values in both distribu-
tions, i.e., σ = σC ≈ σL (but we will allow those parameters
to vary independently in the rest of the paper).

The simulations explain some previously documented
facts, and make new predictions:

1) For fixed values of ∆o and σ, the probability of accurate
responses increases as a function of ∆s. This pattern ac-

counts for the fact that similar sounds are generally more
challenging to learn than different sounds for both children
(Stager & Werker, 1997) and adults (Pajak et al., 2016).

2) For fixed values of ∆s and ∆o, accuracy increases when
the representational uncertainty (characterized with σ) de-
creases. This fact may explain development, i.e., younger
children have noisier representations (see Swingley, 2007;
Yoshida et al., 2009), which leads to lower word recogni-
tion accuracy, especially for similar-sounding words.

3) For fixed values of ∆s and σ, accuracy increases with the
visual distance between the semantic referents ∆o. This
is a new prediction that our model makes. Previous work
studied the effect of several bottom-up and top-down prop-
erties in disambiguating similar sounding words (e.g., Fen-
nell & Waxman, 2010; Rost & McMurray, 2009; Thiessen,
2007), but to our knowledge, no previous study in the lit-
erature tested the effect of the visual distance between the
semantic referents.

Experiment
In this experiment, we tested participants in the word learn-
ing task introduced above (Figure 3). More precisely, we
explored the predictions related to both distinctiveness and
precision. Sound similarity (∆s) and object similarity (∆o)
were varied simultaneously in a within-subject design. Two
age groups (preschool children and adults) were tested on the
same task to explore whether development can be character-
ized with the uncertainty parameters, σC and σL. The exper-
iment, sample size, exclusion criteria and the model’s main
predictions were pre-registered.

Methods
Participants We planned to recruit a sample of N = 60 chil-
dren ages 4-5 years from the Bing Nursery School on Stan-
ford University’s campus. Here we report data from N =
55 children. An additional N = 35 children participated but
were removed from analyses because they were not above
chance on the catch trials due to the challenging nature of our
procedure (see below). We also collected a planned sample
of N = 100 adult participants through Amazon Mechanical
Turk. We planned to exclude data from participants who did
not do well on the catch trials (N = 26) and from partici-
pants who were familiar with the non-English sound stimuli
we used in the adult experiment (N = 0), yielding a final sam-
ple of N = 74.

Stimuli and similarity rating The sound stimuli were
generated using the MBROLA Speech Synthesizer (Dutoit,
Pagel, Pierret, Bataille, & Van der Vrecken, 1996). We
generated three kinds of nonsense word pairs which varied
in their degree of similarity to English speakers: 1) “dif-
ferent”: “lif”/“neem” and “zem”/“doof”, 2) “intermediate”:
“aka”/“ama” and “ada”/“aba”, and 3) “similar” non-English
minimal pairs: “ada”/“adha” (in hindi) and “aQa”/“aèa” (in
arabic).
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Figure 4: The predicted probability of accurate responses in the testing phase as a function of stimuli distinctiveness ∆s and ∆o
and representation precision σ (for simplicity, we assume here that σ=σC=σL). Dashed line represents chance.

As for the objects, we used the Dynamic Stimuli javascript
library2 which allowed us to generate objects in four different
categories: “tree”, “bird”, “bug”, and “fish”. These categories
are supposed to be naturally occurring kinds that might be
seen on an alien planet. In each category, we generated “dif-
ferent”, “intermediate” and “similar” pairs by manipulating
a continuous property controlling features of the category’s
shape (e.g, body stretch or head fatness).

In a separate survey, N = 20 participants recruited on Ama-
zon Mechanical Turk evaluated the similarity of each sound
and object pair on a 7-point scale. We scaled responses within
the range [0,1]. Data are shown in Figure 5, for each stimulus
group. These data will be used in the models as the perceptual
distance of sound pairs (∆s) and object pairs (∆o).

Design Each age group saw only two of the three levels of
similarity described in the previous sub-section: “different”
vs. “intermediate” for preschoolers and “intermediate” vs.
“similar” for adults. We made this choice in light of pilot
studies showing that adults were at ceiling with “different”
sounds/objects, and children were at chance with the “simi-
lar” sounds/objects. That said, this difference in the level of
similarity is accounted for in the model by using the appro-
priate perceptual distance used in each age group (Figure 5).

To maximize our ability to measure subtle stimulus ef-
fects, the experiment was a 2x2 within-subjects factorial de-
sign with four conditions: high/low sound similarity crossed
with high/low visual object similarity. Besides the 4 condi-
tions, we also tested participants on a fifth catch condition
which was similar in its structure to the other ones but was
used only to select participants who were able to follow the
instructions and show minimal learning.

Procedure Preschoolers were tested at the nursery school
using a tablet, whereas adults used their own computers to
complete the same experiment online. Participants were
tested in a sequence of five conditions: the four experimental
conditions plus the catch condition. In each condition, par-

2https://github.com/erindb/stimuli
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Figure 5: Distances for both sound and object pairs from an
adult norming study. Data represent Likert values normalized
to [0,1] interval. Error bars represent 95% confidence inter-
vals.

ticipants saw a first block of four exposure trials followed by
four testing trials, and a second block of two exposure tri-
als (for memory refreshment) followed by an additional four
testing trials. The length of this procedure was demanding,
especially for children, but we adopted a fully within-subjects
design based on pilot testing that indicated that precision of
measurement was critical for testing our experimental predic-
tions.

In the exposure trials, participants saw two objects associ-
ated with their corresponding sounds. We presented the first
object on the left side of the tablet’s screen simultaneously
with the corresponding sound. The second sound-object as-
sociation followed on the other side of the screen after 500ms.
For both objects, visual stimuli were present for the duration
of the sound clip (800ms). In the testing trials, participants
saw both objects simultaneously and heard only one sound.
They completed the trial by selecting which of the two objects
corresponded to the sound. The object-sound pairings were
randomized across participants, as was the order of the condi-
tions (except for the catch condition which was always placed
in the middle of the testing sequence). We also randomized
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the on-screen position (left vs. right) of the two pictures on
each testing trial.

Results

We first analyzed the results using a mixed-effects logistic
regression with sound distance, object distance and age group
as fixed effects, and with a maximal random effects structure
(allowing us to take into account the full nested structure of
our data) (Barr, Levy, Scheepers, & Tily, 2013). We found
main effects for all the fixed effects in the regression. For the
sound distance, we obtained β= 0.52 (p < 0.001), replicating
previous findings. For object distance, we found β = 0.83 (p
< 0.001), and this finding confirms the new prediction of our
model. Finally, for the age group, we obtained β = 0.76 (p <
0.001), showing that performance improves with age.

We next fit our model (using Equation 2) to the partic-
ipants’ responses in each age group using non-linear least-
squares. The values of ∆s and ∆o were set based on data from
the similarity judgment task (Figure 5). The model has two
degrees of freedom for each group, i.e., σC and σL. We call
it the double-variance model. Figure 6 (dashed lines) shows
the predictions. The double-variance model captures the be-
havioral patterns in both age groups: starting from a low ac-
curacy recognition when both the sound and object distances
are small, the model correctly predicts an increase in accu-
racy when either the sound distance or the object distance
increases. Further, accuracy is correctly predicted to be max-

imal when both the sound and object distances are high.
The values of the parameters were as follows. Children

had a label-specific uncertainty of σS = 0.83 [0.64, 1.02]3,
and a concept-specific uncertainty of σC = 0.31 [0.11, 0.51].
Adults had a label-specific uncertainty of σS = 0.12 [0.12,
0.13], and a concept-specific uncertainty of σC = 0.17 [0.16,
0.18]. As predicted, the uncertainty parameters were larger
for children than they were for adults, showing that the prob-
abilistic representations becomes more refined (that is, σ be-
comes smaller) across development. The developmental ef-
fect was more important for the label-specific uncertainty.

The double-variance model explained almost all the vari-
ance in the participants’ mean responses. To investigate
whether the model’s strong predictive power was due to over-
fitting, we fit a simplified version with only one degree of
freedom (i.e., a single variance common to both sounds and
objects). This single-variance model also captured the main
qualitative patterns and remained highly predictive (R2 =
0.95). This result suggests that the explanatory power of the
model is largely due to its structure, rather than its degrees of
freedom.

General Discussion
This paper explored the idea that some seemingly stage-like
patterns in cognitive development can be characterized in a

3All uncertainty intervals in this paper represent 95% Confidence
Intervals.
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continuous fashion. We used as a case study the seminal work
of Stager & Werker (1997) showing a discrepancy between
children’s speech perception abilities and their word learning
skills. While much of the previous investigation of this find-
ing has been interested in the source of this discrepancy, here
we have explored how it could arise from continuous devel-
opmental change in perceptual uncertainty.

Building on some previous discussions (e.g., Swingley,
2007; Yoshida et al., 2009), we proposed a model where
perceptual stimuli are encoded probabilistically. We tested
the model’s predictions against data collected from preschool
children and adults and we showed that developmental
changes in word-object mappings can indeed be character-
ized as a continuous refinement (i.e., uncertainty reduction)
in qualitatively similar representations across the life span.

The model made a new prediction which we tested exper-
imentally: Learning similar words is not only modulated by
the similarity of their phonological forms, but also by the vi-
sual similarity of their semantic referents. More generally,
since visual similarity is an early organizing feature in the
semantic domain (e.g., Wojcik & Saffran, 2013), our find-
ing suggests that children may prioritize the acquisition of
words that are quite distant in the semantic space. This sug-
gestion is supported by recent findings based on the investi-
gation of early vocabulary growth (Engelthaler & Hills, 2017;
Sizemore, Karuza, Giusti, & Bassett, 2018).

One limitation of this work is that the model was fit to data
from children at a relatively older age (4-5 years old) than
what is typically studied in the literature (14-18 month-old).
We selected this older age group to optimize the number and
precision of the experimental measures (both are crucial to
model fitting). Data collection involved presenting partici-
pants with several trials across four conditions in a between-
subject design. It would have been challenging to obtain such
measures with infants.

In sum, this paper proposes a model that accounts for the
development of an important aspect of word learning. Our ac-
count suggests that the developmental data can be explained
based on a continuous process operating over similar rep-
resentations across development, suggesting developmental
continuity. We used a case from word learning as an exam-
ple, but the same idea might apply to other aspects of cog-
nitive development that are typically thought of as stage-like
(e.g., acquisition of a theory of mind). Computational mod-
els, such as the one proposed here, can help us investigate the
extent to which such discontinuities emerge due to genuine
qualitative changes and the extent to which they reflect the
granularity of the researchers’ own measurement tools.

All data and code are available online at
https://github.com/afourtassi/kidswitch
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Abstract

Human analogical ability involves the re-use of abstract, struc-
tured representations within and across domains. Here, we
present a generative neural network that completes analogies
in a 1D metric space, without explicit training on analogy.
Our model integrates two key ideas. First, it operates over
representations inspired by properties of the mammalian En-
torhinal Cortex (EC), believed to extract low-dimensional rep-
resentations of the environment from the transition probabil-
ities between states. Second, we show that a neural network
equipped with a simple predictive objective and highly general
inductive bias can learn to utilize these EC-like codes to com-
pute explicit, abstract relations between pairs of objects. The
proposed inductive bias favors a latent code that consists of
anti-correlated representations. The relational representations
learned by the model can then be used to complete analogies
involving the signed distance between novel input pairs (1:3
:: 5:? (7)), and extrapolate outside of the network’s training
domain. As a proof of principle, we extend the same architec-
ture to more richly structured tree representations. We suggest
that this combination of predictive, error-driven learning and
simple inductive biases offers promise for deriving and utiliz-
ing the representations necessary for high-level cognitive func-
tions, such as analogy.

Keywords: abstract structured representations; analogy; neu-
ral networks; predictive learning; relational reasoning;

Introduction
Analogy requires the flexible, yet orderly, transfer of ab-
stract knowledge within and between domains. Although this
transfer occasionally enables new theoretical insights (e.g.,
Rutherford’s planetary model of atomic structure or the hy-
draulic model of blood circulation (Gentner, 1983)), it also
provides critical support for basic cognitive functions, such
as memory retrieval, categorization, and schema induction
(Gick & Holyoak, 1983; Doumas, Hummel, & Sandhofer,
2008; Gentner & Forbus, 2011; Holyoak, 2012). Here, we
test the idea that representations of abstract, structural rela-
tionships can be derived using simple forms of training. We
evaluate whether these representations can, in turn, support
higher-level functions such as analogical inference, without
any explicit training on analogy itself.

Specifically, we test the idea that abstract, structured rep-
resentations arise from learning systems that (a) exploit the
vast amounts of observational data available to natural agents
((Rao & Ballard, 1999), O’Reilly, Wyatte, and Rohrlich,
2017) coupled with (b) particular inductive biases in the
learning algorithm and network architecture.

We explore what particular input representations and
model architectures enable the extraction and utilization of
this relational knowledge. To do so, we focus on model-
ing signed distance relations in a 1-dimensional (1D) domain
(e.g., analogies such as 1:3 :: 5:7), and conclude by extend-
ing the principles to analogies involving a simple family tree
structure.

Throughout, we take inspiration from the representational
properties of the mammalian Entorhinal Cortex (EC), be-
lieved to extract low-dimensional representations of the met-
ric structure common across environments from the transi-
tion probabilities between states (Dayan, 1993; Gustafson &
Daw, 2011; Stachenfeld, Botvinick, & Gershman, 2017). We
then propose a learning procedure that combines error-driven
learning and an inductive bias that naturally extracts explicit
relational representations from pre-structured, EC-like repre-
sentations of the current domain. We show that this combina-
tion of representation and model architecture can support ana-
logical inference, and extrapolate well outside the network’s
training domain.

Methods
Input Representations We focus first on the 1D domain.
What input representations enable relation learning that can
support analogy (e.g., Figure 1A)? Here, we compare place
codes, a successor representation (SR) of states, and lower di-
mensional representations generated by eigendecompositions
of this SR matrix, truncated to 10, 5, or 2 components.

For the place code representation, locations are represented
as 1xN one-hot vectors, each orthogonal to the others. This
set of representations forms an nXn identity matrix (see Fig-
ure 1C, upper left panel), and thus lacks intrinsic structural
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information about the domain. It is therefore, a priori, a
poor candidate for discovering relational structure that could
support analogy, which requires knowledge about structural
equivalences (e.g., that the difference between 1-3 is the same
as 5-7).

Figure 1: Schematic representation of the 1D domain. (A)
depicts the task the network will perform: a signed distance
analogy in 1D (here, 5:3 :: 8:?). (B). Following Stachen-
feld et al. (2017), we use a random-walk transition matrix
to compute the Successor Representation (SR), and derive a
low-dimensional representation of the domain by computing
the eigendecomposition of the SR. (C) The three forms of
representations are compared as inputs to the network: place
codes, the SR, and various number of eigenvectors of the SR.

We therefore extend the representation to carry informa-
tion about the similarity structure of the dimension. To do
so, we use the successor representation (SR) (Dayan, 1993).
The SR is a predictive representation of possible future states,
and thus carries information about the dimension’s intrinsic
structure. To illustrate, imagine, an animal navigating a linear
track, with equal probability of moving to spatially adjacent
states at successive time points (See Figure 1B). Experience
along the track allows learning state-state transition probabil-
ities. The SR encodes the likelihood of visiting a particular
location si, given a trajectory initiated in a particular state s.
The resulting nXn SR matrix is a collection of these condi-
tional probabilities (See Figure 1C, upper right panel). The
probability of visitation is high for neighboring states, but
low for distant states. Although the SR has primarily been
used in learning spatial structure, we take this approach to be
representative of continuous dimensions, more broadly (e.g.,
brightness, loudness, pitch, etc., as well as semantic dimen-
sions such as animacy, size, or agreeableness). The SR can
be acquired using a temporal difference learning algorithm
(Dayan, 1993). Here, however, we simply stipulate a transi-
tion matrix with equal probability of transitioning to adjacent
states and a discounted value of future states of 0.9 (results
are robust to this parameter). For the SR, the resulting input
representation is an nXn matrix in which nearby states have
similar representations.

Representing this similarity structure makes the SR a bet-
ter candidate for analogical inference than a pure place code.
However, it is still a high-dimensional representation that

does not compactly encode variation along the dimension of
interest. Critically, recent work has shown that a spectral rep-
resentation of the SR provides an abstract, implicitly struc-
tured representation of the domain (Stachenfeld et al., 2017).
Intriguingly, this spectral representation of the SR resem-
bles the representational properties of grid-like cells in me-
dial entorhinal cortex. Entorhinal cortex (EC) is believed to
encode low-dimensional representations of the metric struc-
ture of the environment (Hafting et al., 2005; Gustafson and
Daw, 2011; Stachenfeld et al., 2017). Here, we take grid-
cells in EC to reflect a more general idea: the decomposi-
tion of transition probabilities into low-dimensional embed-
dings provides an abstract, implicitly structured representa-
tion of a domain. When domains share an underlying tran-
sition structure, these representations can be used to support
analogies. To implement our 1D case, we follow Stachen-
feld et al. (2017) and compute the eigendecomposition of the
square (nXn) SR matrix. The eigenvalues (λ) are obtained
solving det(M−λI) = 0, where M is the SR matrix, and I the
identity matrix. We can obtain the corresponding eigenvector
(Ui) for a particular eigenvalue (λ i) by solving MUi = Uiλi
for Ui. Finally, we encode each location in the native space
using its eigencoordinates (Uλ) (Figure 1C, lower left panel).
We compare models trained on the top 10, top 5, top 2 highest
eigenvalue eigenvectors (e.g., Figure 1C, lower right panel),
and the neural network learns over these eigencoordinate rep-
resentations, which implicitly encode the ordering and neigh-
borhood relations among the locations. Finally, we include
a scrambled version of the top 2 eigenvectors. This scram-
bled version removes the true similarity structure in the na-
tive space, and serves as a control to ensure that the neural
network is not simply memorizing its inputs.

Model Architectures. We trained and tested networks on
each of the input representations described above. Each net-
work was constructed to take a pair of inputs (A and B — we
refer to objects and relations, themselves, using non-italicized
capitalized letters, and a model’s representations of them us-
ing italicized lower-case (e.g., a and b)), and trained to pre-
dict each member of the pair from the other. We evaluated
five competing model architectures, that we describe in de-
tail below. In all models, representations of A converge on a
common learned internal layer, which can then encode their
relationship R. The ability to form a systematic, abstract re-
lational encoding (r) is a primary focus of this paper. We
evaluate the ability of r to support simple metric analogies by
completing problems of the form A:B as C:? (e.g., 1:3 is to
5:?, answer: 7).

r is computed as,

r = fΘ(a,b)

where a and b are representations of the two input objects
to be related, and Θ are the learned encoder parameters (by
default, a one layer multiple layer perceptron (MLP) with 100
rectified linear units (RELU)) and (r) is the activation state
across two linear nodes.
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To train the model, the latent state r is composed with the
object A representation (a) to predict B (b̂), and composed
with the object B representation (b) to predict A (â).

â = gΦ (r,b) b̂ = gΦ (r,a)

where, â is the predicted version of a, g is the decoder func-
tion (a one layer MLP with 100 RELU units), with learned
parameters Φ. r is r = fΘ(a,b), as above, and b is the input
representation of object B. Likewise for b̂, mutatis mutandis.

The representations r , a , and b are thus arguments to func-
tions parameterized by the encoder and decoder. Here, we
control the selection and application of these arguments by
hand, but not their values, therein focusing on the problem of
representation learning.

Intuitively, the objective of the model is to learn a repre-
sentation that enables transformation of the representation a
to match representation b, and vice versa. The loss is the
mean squared error of the reconstruction across both objects,
and weights of the encoder (Θ) and decoder (Φ) are jointly
updated using standard backpropagation (Rumelhart, Hinton,
& Williams, 1985). We emphasize that the network is trained
to minimize reconstruction error ((a− â)2 +(b− b̂)2), not to
complete analogies.

Model architectures are shown in Figure 2. All 5 models
consist of two linear nodes in the latent space (r), but differ
in how they constrain the nodes in r to be used. For models 1
and 2, the same 2D vector of r is used in both â= gΦ (r,b) and
b̂ = gΦ (r,a). Model 2 differs from Model 1 only in allowing
separate decoder parameters to be learned for â = gΦa (r,b)
and b̂ = gΦb (r,a). These models are free to learn how to use
these nodes (r) to predict across a and b. By contrast, models
3, 4, and 5 specifically commit each of these two nodes to
separately predicting a and b, which we refer to as ra and
rb, respectively. That is, â = gΦ (ra,b), and b̂ = gΦ (rb,a).
Models 3, 4, and 5 all share decoder parameters across â. and
b̂.

Models 4 and 5 involve chaining the two latent nodes in
r (ra and rb), such that one of the components of the rela-
tional representation is a function of the other. The motiva-
tion for this chaining of latent nodes is as follows. Recall that
activation in ra encodes information necessary to transform
b to a when passed through the decoder, and vice versa for
rb. Although the input representation may contain implicit
information about the relationship between A and B, the en-
coder must extract this information and explicitly represent
relational information in a low-dimensional form. Logically,
in a metric space, how A relates to B cannot change without
affecting how B relates to A – the two predictive tasks im-
posed on network. The chain weights in models 4 and 5 force
such a bi-directional dependence in r (See Figure 2). While it
is possible that an unconstrained neural network could learn
the dependence between ra and rb, we find that, using the cur-
rent objective, this does not occur reliably without imposing
the constraint that ra = fΘ (a,b), and rb = raW +bias.

Model 4 imposes the weakest version of this constraint, by
allowing the weight W (that links ra and rb) to be randomly

initialized. However, randomly initializing the chain weight
fails to exploit all the world-structure that may be easily in-
corporated. Critically, the general relation between the com-
ponents ra and rb should be anti-correlated (e.g., the “bigger”
A is than B, the ”smaller” B is than A). That is, ra, rb can be
thought of as conjugate pairs (e.g., +-2). A prior that biases
the network toward the discovery of this relational structure
can easily be implemented by initializing W to -1. We refer to
this architecture as the conjugate symmetry prior, as it favors
extracting a representation in r that treats ra and rb as a con-
jugate pair, reflected about zero. Note that this was strictly
an initialization, and that W was free to vary over training.
Empirically, we find that it tends not to vary over the course
of training when initialized to -1.

Analogy Evaluation. We address whether the trained net-
works can perform analogy as follows. First, two object rep-
resentations (a and b) are passed to the network, and the re-
sulting latent state (r) is computed, and manually clamped to
use for analogical completion. Next, a third object represen-
tation (c) is passed directly to the decoder without modifying
r. The decoder then generates the expected d (d̂), given c
and the latent state r that was previously computed from the
ab pair, as d̂ = gΦ (r,c). To quantify a network’s analogical
ability, we compute the cosine similarity between d̂ and d, as
well as the cosine similarity between d and three randomly
chosen foils. If the correct mapping is more similar than all
three incorrect mappings, the network is determined to have
succeeded on that trial. Chance performance on this metric is
thus 25%.

Our primary results involve a 1x80 space (Figure 3). We
also explore 1x20, 1x40, and 1x160 spaces, and the ability to
generalize between them (Figure 5). In all cases, we trained
the model on 500 ab pairs from the same space, and held 100
unique pairs from that space out of training for model testing.
The number of possible pairs varies by the size of the native
space. For example, in the smallest space (1x20), there are
380 possible ab pairs, entailing that some were necessarily
repeated in training. At the other extreme (1x160), there are
25,540 possible pairs, and only 500 were selected for train-
ing, meaning that the network only experienced 2% of the
possible space of relation-tokens. We trained the network us-
ing batch sizes of 64 samples and the ADAM optimizer (with
a constant learning rate of 3x10−4), implemented in Tensor-
flow. We trained all networks for a fixed number of 1000
batches. This was sufficient to observe reliable asymptotes
in training loss. Unless otherwise indicated, we ran 50 repli-
cations of each network with random encoder and decoder
weights and random samples from the training set, and plot
the mean and 95% CI for each class of networks and input
representations.

Results
Analogy Results Across Input Representations and Archi-
tectures. In the models explored here, we find that success
on these analogies requires both a particular input representa-
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Figure 2: Schematic of model architectures. In each model, the encoder infers the relation r between a and b. The decoder
predicts a given b and r, and predicts b given a and r. Gray boxes indicate activity vectors (inputs, outputs, or hidden states).
Colored boxes indicate parameterized functions (linear layers or multilayer neural networks); boxes with the same name and
color indicate shared parameters.

Figure 3: Analogy results for different model architectures. We see that only Model 5 (conjugate symmetry prior) trained on a
low dimensional eigenrepresentation (e.g., 2 and 5) reliably learns relations enabling analogical completion.

tion and a particular architecture (See Figure 3.) Only models
that integrate a low-dimensional eigenrepresentation of the
SR (such as the top 2 or top 5 eigenvectors), and learn over
this representation using a conjugate symmetry prior on the
relational representation (Model 5) reliably complete analo-
gies involving novel tokens (e.g., 1:3 :: 5: ? (7)). In the
1x80 space, this combination of architecture and top-2 eigen-
vectors averaged analogical performance of 90.5% across 50
iterations, well above a priori chance levels of 25%. Place
codes, the full SR matrix, and scrambled eigenvectors never
extracted relational representations that support analogical
completion, regardless of architecture. Likewise, Models 1-4
did not reliably extract the appropriate relational structure, re-
gardless of the input representation employed (i.e., even when
the input representation was the top 2 or 5 eigenvectors).

Why is this particular combination of input representations
and architectural biases important? The highest-eigenvalue

eigenvectors carry implicit structural information about the
dimension. In this 1D space, the 2nd eigenvector (Fiedler
vector) here monotonically increases over the range of the
domain, and is thus the closest approximation to a linear rep-
resentation of the native space in the set of eigenvectors. (See
Figure 1). In learning over these representations, Model 5
biases the network to represent the explicit bidirectional re-
lation between a and b using anti-correlated conjugate pairs,
reflecting the structure of the components of the relational
representation (See Figure 4). This bias appears necessary
for backpropagation to reliably learn suitable encoder and de-
coder parameters to support analogy, when using the transfor-
mational objective we employ, here (i.e., â = gΦ (Ra,b), and
b̂ = gΦ (Rb,a)).

Figure 4 shows the latent representations in the two nodes
of r for single, randomly chosen runs of all 5 models when
trained on the top-2 eigenvectors. For Models 3-5, these
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two nodes are functionally restricted, corresponding to ra and
rb. Notably, we see that in Model 5, the latent activations
(ra,rb) approximate anti-correlated linear representation of
the signed distance. Moreover, for a given signed distance,
ra and rb are in conjugate symmetric states (0+ ra,0− rb),
reflected about the X axis. Note also that many different A,B
pairs will produce the same signed distance. For example, 10-
5, 23-18, and 76-71, would all be at the same position along
the X axis in Figure 4, given that they are all equal in signed
distance. Only Model 5, with the conjugate symmetry prior,
extracts similar representations in r, encoding the abstract re-
lational structure as stationary over the range of inputs.

It is worth noting how this relates to the parallelogram
model (Rumelhart & Abrahamson, 1973), which captures the
abstract logic of linear analogies in vector space. The par-
allelogram model completes the analogy using fixed vector
addition and subtraction operations D = (B-A) +C. We note
that we do not see our model as standing in competition with
an algorithmic parallelogram computation, a la (Rumelhart &
Abrahamson, 1973). Instead, the focus of our model as de-
riving useful representations from experience, using only ob-
servation and standard gradient-based learning, coupled with
particular inductive biases. Our model can be thought of
as learning an encoding from the input (canonical) space to
a latent space in which a linear parallelogram-like compu-
tation (B-A+C, (Rumelhart & Abrahamson, 1973; Mikolov,
Sutskever, Chen, Corrado, & Dean, 2013)) of the analogy can
be performed. Here, we use the conjugate symmetry prior on
the chained weight connection to encourage ra to encode the
trajectory from b to a, and rb to encode the reverse trajectory
from a to b.

Generalization across 1D native spaces of various size.
Here, we show that the extraction of relational information
not only allows the network to complete analogies within the
domain over which it has been trained, but also to general-
ize out of the domain of its support (i.e., pure extrapolation).
To do so, we train the network on one range of magnitudes
(1x20,1x40, 1x80, or 1x160), and test its analogical perfor-
mance on magnitudes outside of that range (see Figure 5).
For example, one network is trained on inputs that differ in
magnitude between 1 and 20 units (1x20 space), and then
tested on inputs that differ by different ranges of magnitudes
(e.g., 1x40, 1x80, 1x160). We repeat this procedure by train-
ing on all four ranges, and testing on the others. Note that
these different ranges have the same underlying, local transi-
tion structure (See Figure 1), but different numbers of states.
In all cases, the network can generate analogies in ranges of
magnitudes that are beyond the scope of training without fur-
ther weight updates, including extrapolating from learning in
the 1x20 range and testing in 1x160. Thus, given the assump-
tion of suitable procedures for re-computing and normaliz-
ing the eigendecomposition in novel domains, this algorithm
can naturally generalize to similarly structured environments
without retraining.

Extracting and utilizing tree structured representa-

tions. Thus far, we have focused on analogy in 1D linear
spaces. However, it is clear that human reasoning also ex-
ploits other forms of relational structure present in the envi-
ronment (e.g., (Kemp & Tenenbaum, 2008)), such as trees,
rings, and radial geometries. To explore whether the model
presented above can be extended to learn, and make use of
other, non-linear structure in generalization and analogical in-
ference, we apply it to a simple hierarchical graph.

Specifically we use a tree composed of two identically
structured “families” with connected root nodes (See Figure
6). Both families have 4 generations (levels), with equiva-
lent number of individuals per generation. Edges in the graph
exist only between parents and children (results are similar
when edges between siblings are included). To generate the
transition matrix, we assume that the probability of moving
from one node to another is 1/node degree, and compute the
eigendecomposition over this random-walk transition matrix.
Based on the results of the 1D case, we use the top 2 eigen-
vectors, and compare the performance of Models 1 (standard)
and Model 5 (conjugate symmetry prior), including a version
of Model 5 with scrambled eigenvectors.

For this tree, the top 2 eigenvectors are highly struc-
tured and interpretable (See Figure 6): the highest eigenvalue
eigenvector carries information about family identity, and the
second highest-eigenvalue eigenvector about generation, in-
variant to family. We imposed two further constraints on the
analogy test used for the 1D space. First, (a,b) training pairs
were constrained to come from the same family. Second, the
siblings of the target node were prevented from being foils
(though, of course, other close relatives such as cousins, par-
ents, or children could be included as foils). Notably, we
again see that Model 5, with a conjugate symmetry prior,
learning over the top-2 eigenrepresentations is able to suc-
cessfully complete the multiple choice analogy tasks, despite
no experience with the particular (a,b) pairs, and no direct
training on analogy. See Figure 6. Although this particular
tree structure is a simplification of more complex structures
observed in the world, our results suggest that the model can
be applied usefully to more complex structures than the sim-
ple linear 1D metric focused on above.

Discussion
Here, we considered the possibility that abstract relation
learning can derive from the combination of (a) error-driven
learning using the vast amounts of perceptually observational
data available ((Rao & Ballard, 1999; O’Reilly, Wyatte, &
Rohrlich, 2017), with (b) particular inductive biases in the
learning algorithm and network architecture. We compared a
variety of input representations and model architectures, test-
ing their ability to extract relational information and use that
to complete novel analogies in simple 1D and tree structure
domains, without explicit training on analogy. We found that
two properties of the models are critical for exhibiting this
ability. First, the inputs to the model must be mapped into
a canonical representational space that carries implicit struc-
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Figure 4: Latent node activations for two nodes as a function of signed distance when trained on top-2 eigenvectors. Only
Model 5 (conjugate symmetry prior) learns representations that reliably track the ground truth signed distance. Note that
different input pairs produce the same signed distance (e.g., 55-51, 11-7). Every possible pair was plotted here, resulting in the
visible, thin individual lines. Notably, only Model 5 reliably produces similar activations in r for different tokens of the same
signed distance. Note also that the two latent nodes are anti-correlated.

Figure 5: Analogy results when training and testing on native
spaces of different size, but the same transition structure.

tural information about the domain (i.e., ordering and neigh-
borhood relations). Learning over these low-dimensional,
structured representations (Figure 1) enables the extraction of
explicit relational representations, that can be used for anal-
ogy. Mapping to a canonical space also allows generaliza-
tion across environments of different sizes that share structure
(Figure 5).

The particular canonical representation we employ is in-
spired by the relationship between hippocampal place cells
and grid cells in medial entorhinal cortex. These grid-cells
have been suggested to reflect a decomposition of the predic-
tive map reflecting the transition structure common to spa-
tial environments (Stachenfeld, Botvinick, Gershman, 2017).
Evidence for grid-cells has been found in the human brain
beyond EC, in medial PFC, posterior cingulate, and lateral
inferior parietal cortex (Doeller et al, 2010; Jacobs et al.,
2013; Constantinescu et al., 2016), and in conceptual (non-
spatial) tasks (Constantinescu et al., 2016). We thus take grid-
cells to be one example of the abstract, structured represen-
tations that may be shared across domains and exploited for

high-level relational reasoning tasks, such as analogy. More
broadly, we suggest that similar mechanisms for extracting
low-dimensional structure may support other common repre-
sentational forms. Kemp and Tenenbaum (2008) provide a
small inventory of representational forms that recur in human
cognition (rings, chains, grids, hierarchies, trees, orders), pre-
senting a hierarchical Bayesian model that identifies the best
structural form for a dataset. Understanding how biologically
plausible predictive learning mechanisms (coupled with in-
ductive biases) may extract other representational structures
is a topic of ongoing work.

Second, we show that if a simple neural network ar-
chitecture is trained on pairwise relationships among these
dimensionally-reduced encodings, and is imbued with a sim-
ple, local inductive bias that favors the extraction of conjugate
bidirectional relationships among those pairs, it can learn rep-
resentations that allow it to carry out analogical completions,
and generalize this ability well out of the range of its training
domain. Intuitively, we can think of the network as asking:
having seen a and b, how would I transform a to make it b,
and vice versa? We combine this objective with a prior on
the relational representation that favors dedicated, but sys-
tematically anti-correlated, nodes in the latent space (ra ,rb).
These nodes may be thought of as a conjugate pair of compo-
nent relational representations that can be used to reconstruct
a(ra,b) and b(rb,a). Notably, the learned relations (or tra-
jectories) in the latent space are abstract and approximately
stationary with respect to the input domain (i.e., 1-3 = 15-
17) (See Figure 4), and can be composed with other object
representations to generate analogies.

Though these results are encouraging, they rely on a sim-
plified version of the problem that humans face in generating
analogies. One of the most notable features of human ana-
logical ability is the ability to select the relevant dimension
of variation from the indefinite number of possible relations
that might obtain. Indeed, some of the limits in applying the
parallelogram procedure (B-A +C) on semantic embeddings
as a model of human ability stem from problems handling se-
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Figure 6: Extraction and utilization of structured representa-
tions for the particular tree shown in (A). (B) visualizes the
2nd and 3rd largest eigenvalue eigenvectors. Here, locations
in the tree (shown in the upper portion of B) are linked to the
points in the eigenplots (lower portion) that share color and
brightness. The 2nd EV can be seen to encode family identity
(one red, one blue), and the third encodes generation invariant
to family (varying in brightness). (C) shows analogy results
for this domain.

quencing and context-sensitivity (Chen, Peterson, & Griffiths,
2017). Here, we have pre-selected the relevant dimension for
the analogy, focusing instead on general mechanisms for ac-
quiring and utilizing these structured representations. How-
ever, a proper understanding of analogy, and human intelli-
gence more broadly, requires directly addressing the relevant
search and attentional selection problems, which we see as a
critical target for future work.
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Abstract 

In this paper, we examine the success of developmental 
distributional analysis in English, German and Dutch. We 
embed the mechanism for distributional analysis within an 
existing model of language acquisition (MOSAIC) that 
encodes increasingly long utterances, and compare results 
against a measure of ‘noun richness’ in child speech. We show 
that, cross-linguistically, the mechanism’s success in building 
an early noun class is inversely related to the complexity of the 
determiner and noun gender system, and that merging of 
determiners gives very similar results across languages. These 
results suggest that children may represent grammatical 
categories at multiple levels of abstraction that reflect both the 
larger category as well as its finer structure. 

Keywords: language acquisition; cross-linguistic; 
distributional analysis. 

Introduction 
A major question in the study of language acquisition is how 
children acquire grammatical categories such as noun and 
verb. One source of information that children might draw on 
in this process is distributional information – nouns and verbs 
tend to occur in different lexical contexts (i.e. are preceded 
and followed by different sets of words). An influential 
approach to the learning of word classes through 
distributional analysis is that of Redington, Chater and Finch 
(1998) who show that it is possible to accurately cluster 
words into syntactic categories on the basis of the distribution 
of a small set of high frequency words that precede and 
follow them. The basic ideas behind distributional analysis 
have been employed and adapted by several other authors 
and, in some cases, applied to other languages (Frank et al., 
2013; Mintz, 2003; Keibel, 2005). 

However, a major weakness of many studies of 
distributional analysis is that, while they explore mechanisms 
that are thought to operate in language-learning children, they 
make limited contact with the developmental literature and 
child data. Thus, the focus tends to be on building large word 
classes with high accuracy. As a result, distributional analysis 
is often carried out on large corpora of complete utterances 
and hence ignores the developmental fact that most of 
children’s early utterances are just one or two words long.  

Freudenthal et al. (2016a, b) aimed to develop a more 
plausible mechanism by 1. gradually expanding the contexts 
available to the mechanism in a developmentally plausible 
way, and 2. simulating actual child data. Freudenthal et al. do 
this in the context of MOSAIC (Freudenthal et al. 2007, 
2015), a computational model that has been used to simulate 
a range of phenomena in language acquisition. The key 

learning constraint in MOSAIC is an utterance-final bias: 
MOSAIC builds up the representation of the input it is trained 
on in a right-to-left manner. This feature interacts with the 
statistics and structure of the input language and is 
responsible for MOSAIC’s successful simulation of 
(amongst others) cross-linguistic differences in the rates at 
which children produce Optional Infinitive errors. 

As MOSAIC sees more input, it represents longer 
(utterance-final) phrases and thus has more contexts available 
for distributional analysis. Freudenthal et al. show that, in 
English, their developmental version of distributional 
analysis initially tends to link together nouns (which tend to 
occur in utterance-final position), a finding that is consistent 
with the claim that children acquiring English form a 
productive noun category earlier than they form a productive 
verb category (Akhtar & Tomasello, 1997; Olguin & 
Tomasello, 1999; Tomasello & Olguin, 1993). 

Freudenthal et al. (2016b) also show that MOSAIC builds 
an initial noun class that is sufficiently large to simulate the 
rate of noun use in early child speech. Introducing a measure 
of noun richness – the ratio of the number of nouns over the 
number of nouns plus main verbs – they show that this ratio 
is considerably higher in early child speech than in child-
directed speech. Simulations with MOSAIC show that 
roughly half of this difference can be explained through high 
noun richness in the utterance-final phrases in the model’s 
output. Productive use (i.e. substitution) of distributionally 
similar words was sufficient to raise noun richness in 
MOSAIC’s output to levels near those found in English-
speaking children.  

Taken together, these results show that it is possible to 
perform a developmentally plausible distributional analysis 
and use it to simulate actual child data, and thus greatly 
enhance the psychological plausibility of the approach. 
However, Freudenthal et al. (2016b) only apply their 
mechanism to English, a language that has a relatively fixed 
word order and is morphologically impoverished, two 
features that are likely to benefit distributional analysis. 

The main aim of this paper is to extend this developmental 
distributional analysis to German and Dutch, two languages 
that have more variable word order, and are morphologically 
more complex (in particular, through their use of gender and 
case). Our main focus will be on how comparable the results 
of distributional analysis are, and how well they fit child noun 
richness scores in the three languages. In particular, we will 
focus on the complexity of the determiner and noun gender 
system. Incorporating the analyses within a computational 
model that learns progressively longer sequences also allows 
us to gradually expand the contexts available for 

1773



distributional analysis and investigate how this interacts with 
the word orders of the three languages. 

Typology of German and Dutch 
German, Dutch and English differ in a number of ways that 
are relevant for the current analyses. Typologically, the main 
difference is that English is an SVO language, while German 
and Dutch are SOV/V2 languages where verb position is 
dependent on finiteness – finite forms take second position 
(see utterances 1a, 1b and 1c) whilst nonfinite forms take 
final position (see utterances 2a, 2b and 2c). 

 
1a. I eat a cookie (E) 
1b. Ich esse ein Keks (G - I eat a cookie) 
1c. Ik eet een koekje (D - I eat a cookie) 
 
2a. I want to eat a cookie. 
2b. Ich moechte ein Keks essen (G - I want a cookie eat) 
2c. Ik wil een koekje eten (D - I want a cookie eat) 
 
3a. Do you want a cookie? 
3b. Willst du ein Keks? (G – Want you a cookie) 
3c. Wil je een koekje? (D – Want you a cookie) 
 

English and German/Dutch also differ in terms of question 
formation (see utterances 3a, 3b and 3c). Where English 
forms (polar) interrogatives through the use of dummy modal 
do, German and Dutch use (main) verb inversion. These 
features mean that German and Dutch have a more variable 
word order, which may impact on the general success of 
distributional analysis. The verb-final feature may result in 
lower numbers of nouns occurring in utterance-final position. 
This in turn may affect the early construction of a noun class 
through distributional analysis. However, it also raises the 
possibility that German and Dutch children may show lower 
levels of noun richness than English children. A similar claim 
has been made for children learning languages such as 
Mandarin Chinese and Korean (Choi & Gopnik, 1995) 

 
Table 1: Case marking in German 

 Nom. Gen. Dat. Acc. 
Masc. ein/der eines/des einem/dem einen/den 
Fem. eine/die einer/der einer/der eine/die 
Neut. ein/das eines/des einem/dem ein/das 
Plural --/die --/der --/den --/die 

 
 

A second way in which the three languages differ is in their 
use of noun gender and case. English has neither gender nor 
case (except on personal pronouns). German has three 

                                                           
1 Though vestiges of a third gender remain. 
2 There actually are a number of phonological, 

morphological, and semantic cues to German gender. 
MacWhinney et al. (1989) show that a neural network trained 
on 38 of these cues can correctly classify held out nouns. 
However, since Macwhinney et al.’s model learns in a 

genders and marks case on articles and adjectives. Dutch is 
like German in that it has gender, but is like English in that it 
does not mark case. Table 1 illustrates the Gender/Case 
system of German, for the definite and indefinite article. 
German gender extends to demonstratives,  possessives and 
quantifiers. 

Standard Dutch distinguishes two genders1 (common and 
neuter), which take the same indefinite article (een), but differ 
in the definite article (de/het). Gender is marked on adjectives 
by the addition/omission of an -e suffix. This suffix is applied 
to all adjectives preceding common gender nouns. For neuter 
nouns it is applied to adjectives following the definite, but not 
the indefinite article. Dutch gender extends to demonstratives 
(but not possessives and quantifiers). 

One of the consequences of the different case and gender 
systems of the three languages is that the degree of lexical 
variation in the position preceding nouns is largest for 
German, intermediate for Dutch and lowest for English, 
Construction of a noun category through distributional 
analysis is therefore likely to be least constrained in English 
and most constrained in German. However, while gender 
may hinder the learning of a noun class, it marks a distinction 
that children need to acquire, and, since it has very little 
(transparent) semantic or phonological basis2, it is very likely 
to be one that has to be learned distributionally. We will 
examine how the complexity of the determiner system affects 
the learning of both the overall noun class as well as the finer 
gender classes. We will first perform a distributional analysis 
whilst differentiating between all determiners, and then 
compare the results with an analysis  in which we conflate 
case and gender by merging the different forms of 
determiners. Keibel (2005) has previously shown that 
merging determiners in this way is beneficial for learning the 
German noun category.  

Corpora used 
A challenge in cross-linguistic research involving corpora of 
child-directed speech (CDS) is that of ensuring 
comparability. The number of corpora available is limited 
and they differ in terms of size, recording situations, age 
range of the target children and availability of morphological 
information. We aimed to select from CHILDES a set of 
corpora for each language that were as comparable as 
possible in terms of their overall size. For English we selected 
the 6 largest sub-corpora from the Manchester corpus 
(Theakston et al., 2001). The Manchester corpus contains 
corpora for 12 individual children, and contains part-of-
speech information for child and adult speech on the 
morphology (MOR:) tier. The selected corpora typically 
contained 30,000-35,000 utterances of child-directed speech 

supervised manner, gender information is actually available 
to the model. Since gender is essentially defined 
distributionally, lexical contexts appear a more potent cue to 
identifying a noun’s gender. 
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per child. For German we selected the Rigol corpus, 
consisting of 4 children with roughly 45,000 child-directed 
utterances per child. After limited cleaning up of the corpus, 
we were able to run the CLAN mor facility, which was able 
to assign part-of-speech information to ~99% of all word 
tokens in the corpus. For Dutch, we selected the two children 
from the Van Kampen corpus. These corpora contain 65,000 
and 25,000 maternal utterances. Since there is currently no 
functioning mor-grammar for Dutch, we assigned to the 
words in these corpora the most common part of speech 
derived from the Treetagger (Schmid, 1994). 

Study 1: Child Noun Richness 
The first analysis concerned children’s cross-linguistic use 

of nouns and (main) verbs3. All the corpora used consist of 
multiple recordings (tapes) at different child ages. For all 
corpora we counted the number of nouns and verbs in child 
and adult speech on a tape-by-tape basis, and plotted noun 
richness (i. e. #nouns / (#nouns + #verbs)) relative to the 
child’s Mean Length of Utterance (MLU) for the relevant 
tape. In line with current practice in MOSAIC, analysis was 
performed on utterance types. Figure 1 shows the trendlines 
for the scatterplot of English, Dutch and German child, and 
child-directed speech. For clarity, individual data points are 
not plotted. As can be seen, noun richness scores look 
remarkably similar across the three languages. While German 
child noun richness is (initially) lower than it is for Dutch and 
English, it is considerably higher than it is for adults, and thus 
suggests that, cross-linguistically, children are equally 
productive around nouns in the early stages. 
 

 

Fig. 1: Noun Richness in English, German and Dutch. 

 

 
                                                           
3 For Dutch and German, modal verbs were included as these can 

be used as main verbs. Copulas were excluded for all languages. 
4 Run number reflects number of exposures to the input. 

Study 2: Simulations with MOSAIC 

Training MOSAIC models 
MOSAIC learns from orthographically-transcribed child-
directed speech and generates as output corpora of speech 
that can be directly compared to child speech. Learning in 
MOSAIC is slow, and takes place by feeding input through 
the model multiple times. With each exposure, MOSAIC 
represents more and longer (utterance-final) phrases and is 
thus capable of producing more and longer output, as is true 
of developing children. A detailed description of MOSAIC 
and how it is trained is provided in Freudenthal et al. (2015). 

For the current analyses, we performed a distributional 
analysis at several points in the models’ development. Here, 
we report results from selected runs between 36 and 50.4 Over 
this range, the MLU of the utterances represented in 
MOSAIC (and hence of its output corpus) increases from 
roughly 2 to 5 words – and thus increasingly approximates 
corpus-wide statistics. The key consideration here is that, 
early in training, MOSAIC represents short utterance-final 
phrases that extend further to the left with increased training. 
This feature, which is responsible for MOSAIC’s successful 
simulation of a number of phenomena in child speech, has the 
potential to interact with word order in shaping the cross-
linguistic results of the distributional analysis. 

The distributional analysis 
The distributional analysis was carried out in the same 
manner for all languages. The target words were the 1,000 
most frequent words for a given corpus, and the context 
words the 150 most frequent words. Utterance endings were 
also included as contextual elements. At each point in 
training, we searched the phrases represented in MOSAIC for 
the target words, and noted how often the context words 
occurred in the preceding and following position. Thus, for 
each target word, we generated two vectors that contained the 
counts for the context words in preceding and following 
position. Similarity between words was expressed as the 
similarity between these vectors, and two words were 
considered to be of the same class if their similarity exceeded 
a threshold value for both preceding and following position. 
For the current analyses we expressed similarity in both a 
non-parametric and a parametric way. We used a Spearman 
rank-order correlation, as well as cosine similarity based on 
the square root of the vector counts5. Freudenthal et al. (2013) 
have shown that (for English) a parametric measure is better 
for classifying nouns, while the rank order is better for 
classifying verbs. In the current analyses, the rank-order 
correlation gives better results when applied to English, while 
the parametric gives better results for German. This finding 
is in line with reports by Redington et al. (1998) for English 
and Keibel (2005) for German. Importantly, however, the two 

5 This is a departure from Freudenthal et al. (2016b) who used a 
distance measure that discarded frequency as well as counts from 
interrogative contexts. 
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measures give qualitatively similar results when used in 
isolation, but better quantitative results when combined. 

Results 
 Unmerged determiners 

Results for the distributional analysis are reported in Table 2, 
which shows the number of linked words, overall accuracy 
(proportion of same class links), noun richness (ratio of noun-
noun to noun-noun plus verb-verb links) as well as numbers 
of links and accuracy for verbs and nouns. Two words were 
considered to be of the same word class if their rank-order 
correlation in preceding and following position exceeded 
0.40, or their cosine similarity exceeded 0.65.  

As can be seen in Table 2, the distributional analysis in 
English results in an early noun class, with verbs being 
classified later in development. This pattern is consistent with 
children showing early productivity around nouns and late 
emergence of a productive verb class (Akhtar & Tomasello, 
1997; Olguin & Tomasello, 1993; Tomasello & Olguin, 
1993). 

It is also apparent from Table 2 that the mechanism is 
capable of classifying words with high accuracy, particularly 
for nouns, but also for verbs (in the later stages). Table 2 also 
shows that results for the Dutch distributional analysis are 
similar to those for English, though the mechanism is less 
successful in linking nouns, and is less accurate overall. 
German results mirror those from Dutch, but the 

distributional analysis is even less successful at building a 
noun class. Thus, the models never exceed 1000 noun links, 
even in the later stages. Across runs, the German noun class 
is approximately a quarter of the size of the English noun 
class. 

The results from Table 2 thus suggest that the less 
constrained word order in Dutch and German leads to lower 
overall accuracy, but also that the size of the noun class is 
inversely related to the complexity of the determiner system. 
This pattern is not surprising, but it appears to be in conflict 
with the child noun-richness data from Fig. 1, which suggest 
that children from all three languages are equally productive 
around nouns. It also suggests that German and (to a lesser 
extent) Dutch MOSAIC models may struggle to simulate 
early child noun richness scores6. 
 Merged determiners 

We examined whether German and Dutch gender and case 
hamper the construction of a noun category by merging 
determiners into one lexical item, and adding their respective 
counts. For German, this meant that all 6 forms of the definite 
article were merged, as were all 6 forms of the indefinite 
article (thus maintaining the distinction between the definite 
and indefinite article). For Dutch, we merged both forms of 
the definite article. Since there is only one form of the 
indefinite article, this cannot be merged. Results for the 
distributional analysis with merged determiners are shown in 
Table 3.  

 
Table 2: Results of Distributional Analysis for English, Dutch and German 

Run Links Overall 
accuracy 

Noun-
richness 

Nouns Verbs Noun-
accuracy 

Verb-
accuracy 

English        
36 1,641 0.80 0.94 1,218 70 0.83 0.42 
38 2,215 0.80 0.91 1,553 153 0.83 0.52 
40 3,037 0.83 0.89 2,230 237 0.85 0.63 
44 4,144 0.90 0.86 3,164 437 0.91 0.81 
50 4,576 0.91 0.83 3,375 615 0.92 0.87 
        

Dutch        
36 1,140 0.73 0.95 774 34 0.77 0.23 
38 2,030 0.78 0.96 1,467 62 0.80 0.38 
40 2,995 0.81 0.96 2,260 90 0.82 0.43 
44 3,496 0.85 0.91 2,582 256 0.85 0.75 
50 3,310 0.84 0.80 2,122 502 0.84 0.86 
        

German        
36 841 0.52 0.93 282 20 0.54 0.27 
38 935 0.61 0.89 383 43 0.64 0.47 
40 1,227 0.71 0.87 581 86 0.71 0.61 
44 1,985 0.78 0.78 905 253 0.80 0.84 
50 2,563 0.79 0.52 754 697 0.83 0.89 

 

                                                           
6 Note, though, that since (unlike Freudenthal et al., 2016b) we do 

not currently generate output from MOSAIC, we cannot directly 
relate the size of the noun class to child noun richness scores.  
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Table 3: Results of Distributional Analysis with merged determiners for Dutch and German. 

Run Links Overall 
accuracy 

Noun-
richness 

Nouns Verbs Noun-
accuracy 

Verb-
accuracy 

Dutch        
36 1,515 0.70 0.96 997 37 0.73 0.17 
38 2,749 0.76 0.96 1,955 70 0.78 0.30 
40 4,140 0.80 0.96 3,134 104 0.81 0.36 
44 5,151 0.84 0.93 3,940 292 0.86 0.65 
50 4,788 0.84 0.84 3,290 573 0.85 0.80 
        
German        
36 2,091 0.49 0.97 836 27 0.51 0.15 
38 2,399 0.56 0.95 1,095 58 0.57 0.26 
40 3,543 0.65 0.94 1,914 131 0.65 0.40 
44 5,992 0.73 0.91 3,540 364 0.74 0.73 
50 6,287 0.76 0.80 3,226 816 0.77 0.84 

It is evident from Table 3 that the merging of determiners 
results in an increase in the number of nouns that get linked 
for both languages, but that this increase is considerably 
larger for German (by a factor of 4) than it is for Dutch (by a 
factor of 0.4). It is also obvious that the overall results for 
Dutch and German are now quite similar to the results of the 
English analysis (though overall accuracy scores are still 
lower for Dutch and German), and more in line with the 
cross-linguistic child noun richness scores (see Fig. 1).  

Taken together, these results suggest that gender and case 
are detrimental to learning a noun category through 
distributional analysis. However, if children are able to 
ignore the identity of determiners, distributional analysis 
yields remarkably similar results across the three languages, 
despite their differences in word order. 

Learning gender subclasses 
The fact that gender (and case) hamper the learning of a noun 
category is not surprising since gender divides the noun 
category into a number of subcategories that differ in their 
distributional characteristics. A relevant question therefore is 
to what extent maintaining the distinction between the 
different determiners allows the mechanism to distinguish 
(and hence children to learn) the different noun genders. This 
was investigated by taking the noun-noun links from Table 2, 
and determining to what extent these involved nouns from the 
same and different genders. Results (confusion matrices) 
from run 50 are shown in Tables 4 (German) and 5 (Dutch).  

Comparison of Tables 4 and 5 reveals that the 
distributional analysis is remarkably good at distinguishing 
the German gender subcategories, at least for the singular 
genders. At one level, this is not surprising since merging the 
determiners increases the size of the German noun class four-
fold. However, inspection of the actual forms of the German 
determiners (see Table 1) shows that 6 different forms of each 

determiner are used in a paradigm containing 16 cells. Most 
determiners therefore occur with nouns of different genders, 
suggesting that the German genders are quite confusable. 

 
 
  

Table 4: German Gender Confusion Matrix (run 50) 
 Masc. Fem. Neut. Pl. 
Masc. 216 15 39 5 
Fem. 15 198 0 18 
Neut. 39 0 203 2 
Pl. 5 18 2 25 

 
Table 5: Dutch Gender Confusion Matrix (run 50) 

 Common Neuter Plural 
Common 1415 187 102 

Neuter 187 249 10 
Plural 102 10 17 

 
Table 4 shows that the distributional analysis is far less 
successful in Dutch, with many neuter and plural nouns being 
linked to common gender nouns. This is caused by the fact 
that Dutch gender is marked on the definite, but not on the 
indefinite article. The Dutch noun genders are thus 
distributionally more similar, and far more confusable than 
the German noun genders. Since there are few cues to 
grammatical gender other than distributional information, 
these results suggest that acquisition of gender may be more 
challenging for Dutch- than for German-learning children. 

Conclusions 
The main conclusion to be drawn from the analyses reported 
here is that they provide strong support for the viability of 
distributional analysis. Thus, we show that it is possible to 
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obtain plausible (and very similar) results across three 
different languages that differ in their word order as well as 
the detail of their gender and case system. Importantly, we do 
so using a fixed set of parameters, and in the context of a 
computational model that gradually expands the contexts 
available to the mechanism – allowing us to investigate how 
the increasing length of utterances that children represent 
may affect their word class learning. Moreover, by 
comparing the results to actual child data (noun richness), we 
were able to evaluate the relative size of the (early) noun class 
across the three languages. 

However, it is also clear that the successful construction of 
a noun category depends critically on the complexity of the 
determiner system, and hence on how determiners are treated. 
If the identity of the German determiner is maintained, 
distributional analysis results in a noun class that is very 
small compared to Dutch and English, but that distinguishes 
between the different genders quite successfully. Merging the 
determiners brings the size of the verb class more in line with 
English and Dutch, but necessarily conflates the different 
genders. This effect is less pronounced in Dutch. However, 
the finer-grained structure of Dutch gender is distributionally 
less well-defined, and thus suggests that it may be more 
difficult to acquire for language-learning children. 

The German (and Dutch) results thus suggest that 
grammatical categories need to be represented at different 
levels of abstraction that reflect both their more general 
properties as well as their finer-grained structure. The 
suggestion that children may represent both ‘merged’ and 
‘unmerged’ determiners may seem surprising since one of the 
key characteristics of children’s early speech is the fact that 
it lacks closed-class items like determiners. However, there 
is actually considerable evidence that children represent more 
of the closed class items than they produce.  

Lew-Williams and Fernald (2007) show that Spanish three-
year-olds in a looking-while-listening task can use the 
identity of (gendered) determiners to orient towards a target 
of the relevant gender. Similar findings have been reported 
for 24-month-old children in French (van Heugten & Shi, 
2007), a language where, like Spanish, the determiner is fully 
predictive of the gender of the noun. Interestingly, children 
learning Dutch appear delayed relative to French children in 
this task (van Heugten & Johnson, 2011), thus providing 
support for the notion that the relatively poor separation of 
Dutch gender found in the current analyses may make it 
particularly hard to acquire. Studies on German (Hőhle et al., 
2004) also show that children as young as 16 months (but not 
12 months), can distinguish between novel words used in a 
nominal vs. verbal context after being habituated with a 
determiner-novel word sequence, but not after a pronoun-
novel word sequence. These results suggest that children can 
use determiners to classify nouns from a very young age, but 
equally that they can use gender information in the on-line 
processing of speech, at least in languages where determiners 
reliably predict gender. 

Taken together, the results also highlight the strengths of 
our approach. By embedding distributional analysis within an 

existing model of language acquisition that simulates 
children’s increasing MLU, applying it to three different 
languages, and comparing it to actual child data, we were able 
to investigate how word order and the complexity of the 
determiner system affect the formation of an early noun class, 
as well as the potential implications this has for children’s 
representations of closed class items. 
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Abstract
Given identical informational content, the order in which you
receive spatial information may heavily influence the correct-
ness of your mental representation. This can reveal important
insights into the specifics of human spatial cognition and the
way we integrate information. Despite its importance in ev-
eryday life, its causes and the mental processes involved still
remain an open question. Most cognitive models so far have
focused on modeling only answer distributions or just the most
frequent answer given by all participants.
In this paper we take a rather radical approach: We turn to
the individual spatial reasoner and focus our analyses on the
stream of spatial information and related reaction times, i.e.,
how the spatial information is represented and cognitively pro-
cessed. By spanning a space of 243 cognitive spatial models,
some of which outperform the current state-of-the art models,
it is possible to test the goodness of general principles under-
lying such models.
Keywords: Spatial Cognition; Reasoning; Continuity Effect;
Cognitive Models

Introduction
Imagine that you are new to a city. It is a common experience
that it is not very likely that you will have all spatial infor-
mation available at the same time. Rather, you will receive it
piece by piece. However, the way of how we receive spatial
information can impact our mental representation, the time
to understand the information, and possible conclusions we
draw. But how do we process information mentally that we
receive? How do we possibly integrate the spatial information
into a mental representation? How difficult is it to process
the information? What can existing cognitive approaches and
computational models contribute?

Spatial relational information can be formulated by two ob-
jects and a relation: the first object is the object to be located,
the relation gives information about how the objects are spa-
tially connected, and the second object which is termed the
reference object. Consider the following:

(1) The post office is to the left of the train station.
The train station is to the left of the main street.
The main street is to the left of the park.

Can you easily build a mental representation integrating this
information at the same time? You should have no difficulty
at all! Even receiving this information step-by-step, each new
information nicely integrates with the most recent informa-
tion. Such a problem is called a continuous description. Con-
sider now the following description:

(2) The train station is to the left of the main street.
The park is to the right of the main street.
The post office is to the left of the train station.

This time, it might have taken more time and a bit more
difficult to build a mental representation from the given asser-
tion. While the information content was identical to before,
the information could not be so easily integrated as in prob-
lem (1). This was mainly due to the last assertion that related
the post office to the train station. Such problems are coined
semi-continuous. Consider now this last description:

(3) The post office is to the left of the train station.
The park is to the right of the main street.
The train station is to the left of the main street.

Again, if you have received the assertions piece by piece,
building an internal representation might have been again
more difficult. While again the description has the same in-
formation content as all descriptions before, the first and the
second assertion were unrelated, requiring to build two unre-
lated scenarios. Hence, such a problem description is coined
discontinuous. All three problems allow for constructing an
identical arrangement of the objects, namely

post office – train station – main street – park.

Such an arrangement of objects from the assertions is called
a model of the assertions. These three problems have been
investigated by psychologists in the so-called continuity ef-
fect (e.g., Ehrlich & Johnson-Laird, 1982; Knauff, Rauh,
Schlieder, & Strube, 1998). But, why does the second and
especially the third problem appear to be more difficult to
be processed by humans? The stream of information makes
the difference between problem descriptions. In continuous
and semi-continuous descriptions, a common middle-term of
two successive assertions exists. Since this is not the case
in discontinuous orders, these assertions are more difficult to
process and may even require to keep two distinct pieces of
information in working memory.

Because of the fine-grained nature of this effect, model-
ing the cognitive processes which underlie it can give in-
sight into how exactly spatial information is processed in the
mind. Several cognitive models have been proposed for spa-
tial relational reasoning, among which an implementation in a
cognitive architecture (Ragni, Fangmeier, & Brüssow, 2010),
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a model for reasoning with intervals (Schlieder & Berendt,
1998), and a stand-alone cognitive architecture (Schultheis
& Barkowsky, 2011) (for a recent overview see Friemann &
Ragni, 2018). To account for the continuity effect, a cog-
nitive model needs to describe the nature of constructing a
spatial model in great detail. This includes the introduction
of a measure of difficulty, the mental cost, of a specific mental
operation to account for the increase in reading times and the
drop in accuracy. The cognitive models which satisfy these
requirements are the spatial reasoning as verbal reasoning
model (Krumnack, Bucher, Nejasmic, & Knauff, 2010) and
preferred inferences in reasoning with spatial mental models
(PRISM, Ragni & Knauff, 2013), which we now introduce.

Cognitive Theories, Models, & Complexity
Verbal Reasoning Model (Krumnack et al., 2010). The
core assumption underlying the Verbal Model is that deduc-
tion processes does not necessarily require deduction-specific
mechanisms to operate on internal representations. Instead, a
simple order of object terms and some verbal cognitive mech-
anisms might guide the reasoning process. Following Polk
and Newell (1995), cognitive processes in deductive reason-
ing might be based upon the same processes as language com-
prehension and generation. The model satisfies the criteria of
verbal reasoning as outlined by Polk and Newell (1995). Ver-
bal in that sense refers to transforming between verbal and
semantic representations, that is constructing the queue (en-
coding) and “reading out” information that is not explicitly
provided by verbal descriptions. It is assumed that reason-
ing is accomplished by applying well-trained linguistic pro-
cesses. The approach does not obviate specific mechanisms
but provides a more parsimonious explanation on how infer-
ences can be drawn from given information without assuming
additional mechanisms.

The computational model assumes the mental spatial struc-
ture to resemble a queue. In the same vein, each mental model
has an implicit direction. This direction depends on the rela-
tion in the first premise and is contrary to the explicit direction
in this relation. This can be understood as simulating an ex-
pectation on where the next object is about to appear, which
can be easily understood by considering Table 3. For exam-
ple, if the first premise was “The mango is to the left of the
pear”, the implicit direction would be to the right:

On the other hand, if the first premise was “The pear is to
the right of the mango”, the implicit direction is to the left:

PRISM (Ragni & Knauff, 2013). PRISM is an implemen-
tation of the theory of preferred mental models. The model
simulates and explains how preferred models are constructed,
inspected to find a putative conclusion, and then varied to find
possible counter-examples. A spatial working memory struc-
ture is operationalized by a spatial array. A spatial focus in-

serts tokens into the array, inspects the array to find new spa-
tial relations, and relocates tokens in the array to generate al-
ternative models of the problem description, if necessary. The
focus also introduces a general measure of difficulty based
on the number of necessary focus operations (rather than the
number of models).

Mental Costs and Complexity. The computational model
PRISM was the first model to predict reasoning difficulty of
spatial problems by assigning unit costs to the focus opera-
tions in a spatial working memory, a location where spatial
models are built (Ragni & Knauff, 2013). By the numbers of
operations PRISM is able to explain among others the conti-
nuity effect: as a successive insertion of the terms from left to
right, do cost less than switches in the focus direction (semi-
continuous case), which costs less than to generate, group,
and insert different submodels (discontinuous case). The Ver-
bal Model uses a similar cost measure.

The Order of Information Effect: Data

The order effect for human inferences has been reported in
a number of articles (e.g., Ehrlich & Johnson-Laird, 1982;
Knauff et al., 1998; Nejasmic, Bucher, & Knauff, 2015) and is
explained with the effort to construct a mental representation
of the assertions.

Table 1: Order of assertions in Knauff et al. (1998) and
Nejasmic et al. (2015). Please note that∼ represents the rela-
tion, which is ‘left of’ in the case of Experiment 1 in Nejasmic
et al. (2015) and Knauff et al. (1998), and ‘right of’ in the case
of Nejasmic et al. (2015).

Order Assertions

continuous A ∼ B B ∼ C C ∼ D
semi-continuous B ∼ C C ∼ D A ∼ B
discontinuous C ∼ D A ∼ B B ∼ C

Knauff et al. (1998) conducted an experiment, inspired
by research of Ehrlich and Johnson-Laird (1982), to test ef-
fects on response times and error rates of continuous, semi-
continuous, and discontinuous orders of spatial assertions
(cp. Table 1) using the relation ‘left of’.

The processing times and error rates are summarized in Ta-
ble 2. While the continuous and semi-continuous order lead
to a similar error rate of about 40%, reasoning about discon-
tinuous orders of assertions was more difficult and lead to
about 50% errors. Note that the processing time for the third
assertion in discontinuous order compared to the other asser-
tions is significantly higher.

Nejasmic et al. (2015) investigated underlying cognitive
processes in two experiments using a random presentation of
the 72 problems of the three premise orders continuous, semi-
continuous and discontinuous. Each premise was presented
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Table 2: The four-term-problems in the experiment of Knauff
et al. (1998) with reading-times (RT in seconds) and error
rates (in percentage correct). Participants were presented with
interval relations.

Assertion
Order RT 1 RT 2 RT 3 Error rates

continuous 13.0 11.2 10.9 39.7
semi-continuous 13.6 11.0 11.9 40.1
discontinuous 12.4 13.9 19.5 50.0

sequentially (in a self-paced manner and only one premise
visible at a time). The premise described the spatial relation
between four small, equal-sized, and disyllabic objects (tools,
fruits, or vegetables) for example: “The mango is left of the
pear, the pear is to the left of the kiwi, the kiwi is to the left
of the apple.”

The instruction was to imagine the arrangement described
by the premises (in the example: mango – pear – kiwi – ap-
ple). Subsequently participants were asked to define the cor-
rect arrangement by typing the initial letters of the named
objects using the computer keyboard. After the last letter
was entered, the trial finished automatically. The next trial
started not before the participant hit the “return” key. The
program recorded (a) premise reading times (respective time
from stimulus onset to key press calling up the next premise),
(b) the number of correct responses, and (c) corresponding
response times (time from request onset till enter of the last
letter).

Experiment 1 and 2 differ mainly in the used relation re-
sulting in different working direction. In Experiment 1 the re-
lation ‘left of’ was used suggesting a working direction from
left to right. In contrast, Experiment 2 used the relation ‘right
of’ resulting in a working direction from right to left. The
position of new named objects is leftmost (see Table 3).

Table 3: Example premises and models for a continuous order

Experiment 1 Experiment 2
Premise Model Premise Model

1 A left of B AB D right of C CD
2 B left of C ABC C right of B BCD
3 C left of D ABCD B right of A ABCD

Results from the first experiment are in line with previous
findings concerning the continuity effect. Participants need
more time to process unrelated information and more errors
occur in the discontinuous condition. In the second experi-
ment the continuity effect was presumably counteracted by
the working direction. Although processing third premises
in the discontinuous condition took the most time, there was
an overall and consistent increase of reading times over all

conditions. It was expected that reasoners find it more dif-
ficult to work in the culturally nonpreferred right-to-left di-
rection, but in the case that the continuity effect results from
the integration of two separate models when confronted with
discontinuously presented information, the working direction
should not matter. So, results support the assumption that
one preliminary model is constructed and modified in cases
of discontinuity.

Results and Discussion on Aggregated Data
The Kendall rank correlation coefficient τb with the mean re-
action times for Experiment 1 and 2 of Nejasmic et al. (2015)
and the reported data in Knauff et al. (1998) was calculated.
We removed all reading times which were outside the 1.5 in-
terquartile range. The results can be found in Table 4.

Table 4: Correlations and significance level for PRISM and
the Verbal Model on the aggregated experimental data.

PRISM Verbal Model
rτb p rτb p

Nejasmic et al.: Exp 1 .800 .007 0.730 .018
Nejasmic et al.: Exp 2 .033 1 0.225 .501
Knauff et al. .730 .182 .609 .044

For Experiment 1 from Nejasmic et al. (2015), PRISM had
a better correlation than the Verbal Model. The same proce-
dure was done with the data from (Knauff et al., 1998) (Ex-
periment 3 in Table 4), which used the same setting as Experi-
ment 1. PRISM and the Verbal Model correlated significantly
with the data.

For Experiment 2 however, the correlations dropped
strongly. This indicates that the process to generate a men-
tal model are different from relational descriptions from left
to right than building directions from right to left.

As outlined above, many cognitive models have focused
on explaining aggregate data. But, how good are these mod-
els in predicting each individual reasoner? And, are there
other models that can predict individual reasoner better? To
further investigate the performance of the models, we turn to
the individual reasoners.

To approach this challenge, there are two possibilities: cre-
ating cognitive models which are adaptable to, or creating
cognitive models designed for individuals.

The remainder of this paper will investigate the second op-
tion. Taking features of models from the literature and in-
sights from psychological experiments, we will span a large
space of possible cognitive computational models for spatial
relational reasoning.

Generating the Space of Spatial Reasoning
Models

To investigate the goodness of the general assumptions, we
looked at a whole family of potential models. This approach
is driven by the idea that individual participants may not use
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the same strategy and their flow of information processing
may differ. Hence, rather than constructing a certain model,
we identified features in which potential models can differ.
These are inspired by proposed cognitive models for spatial
relational reasoning in the literature. PRISM, for example,
proposes a mental model manipulation device, called focus,
which acts just like a foveal area for mental models. The Ver-
bal Model assumes that a spatial mental model has an implicit
direction, which can offer an explanation for the better per-
formance in modeling the right-to-left task from Experiment
2 (Krumnack, Bucher, Nejasmic, Nebel, & Knauff, 2011). As
for the discontinuous case, the Verbal Model does not offer a
solution for the presentation of discontinuous information, as
in the connection of two formerly unrelated chunks of infor-
mation. PRISM on the other hand offers a solution in the form
of constructing two unrelated mental models, and integrating
them group-wise when connecting information is presented.

We chose 8 partly interdependent features to span the space
of investigated models, leading to 243 possible cognitive
models:

Mental Spatial Structure
The main difference between the Verbal Model and PRISM
is the underlying spatial representation structure. PRISM as-
sumes a grid-like structure in the human mind, with a mental
focus which inspects one object at a time, can move through
the mental representation object by object with an unary cost
in each direction, and is persistent throughout the whole task
(Ragni & Knauff, 2013). The Verbal Model on the other hand
proposes a queue-like structure, meaning that there exists an
implicit direction in the mental model, which is dependent on
the relation in the first premise (Krumnack et al., 2010). The
question whether a mental model has an implicit direction is
the focus of the first three main features, leading to the first
23 +1 possibilities:

Implicit Model Direction Inspired the Verbal Model, mod-
els can have a queue-like mental spatial structure with an
implicit direction. Moving through this queue in the im-
plicit direction is assumed to be computationally cheap,
while moving against this direction is costly. The oppo-
site assumption would be a grid-like mental array similar
as is used in PRISM.

Persistency of Direction In the Verbal Model, the implicit
direction depends on the relation in the first premise. For
the relation ‘left of’, the direction of the queue would be
to the right and vice versa. We added this dependency as
a possible feature, as well as the possibility of a reversed
dependency, i.e. for the relation ‘left of’, the direction of
the queue would be to the left as well.

Preliminary Integration Following the research in
Nejasmic et al. (2015), it seems likely that when
reading discontinuous information, such as “a is left of b,
c is left of d”, reasoners build a preliminary, connected
model instead of a second, disjunct model. Therefore,

we introduced this idea as another feature for models
which assume an implicit direction: Construct a temporary
model with the discontinuous information inserted into the
mental model in direction of the queue.

Focus
Moving through the mental model is, in PRISM and the Ver-
bal Model, assumed to require some mental operation. Fol-
lowing the terminology in PRISM, we introduce this idea as
the so called focus, a device which is able to move through
the mental model object by object.

If including the focus into the cognitive model, we can
further differentiate between different types of foci. For ex-
ample, while PRISM has a persistent mental focus through-
out the whole task, the Verbal Model implicitly introduces a
focus-like notion which resets with each premise. The idea
is that when a premise contains an object which is already in
the queue, the model has to move through the queue from the
position of this object. In a sense, this could be described as a
focus with the ability to jump. The focus feature adds another
23 + 1 possibilities, as a model which assumes a focus can
have any of the three mentioned focus features:

Jumping Focus As in the Verbal Model, when reading a
premise, the focus can jump to the addressed object which
is already existent in the mental model. After this jumping,
the focus then has to move one by one.

Access Tail In a queue-structure, like it is assumed in the
Verbal Model, the first element, the start of the queue, can
be easily accessed. One could assume that the last element,
the tail of a mental model, can be accessed just as easily.

Find Reference Object When a premise is read, the object
which is already in the mental model has to be found to de-
termine the positioning of the new object. However, if both
items already exist in the queue, the relative positioning of
the objects in the model have to be compared against the
new premise. If the focus position is on one of the objects,
it could be that for determining the relation between the ob-
jects, the focus now only has to move to the other object.
However, taking into account the difference between the
object to be located and the reference object, it is possible
that the focus has to first move to the reference object and
then to the object to be located to determine the relation
between these objects.

Processing the Relation ‘right of’
The experiments in Nejasmic et al. (2015) indicated that pro-
cessing the sentence “a is right of b” is more difficult (at least
for speakers of a language which is written from left to right
(Krumnack et al., 2011)) than the ‘left of’-relation. While the
queue-structure in the Verbal Model can account for this fact,
we introduced two features to allow a model with a direction-
neutral spatial structure, like the one used in PRISM, to show
this asymmetry. This feature space comprises 3 possibilities.
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Revert When reading “a is right of b”, insert b to the right of
a first, only to break up that connection and insert it on the
left.

Revert only the First Premise Revert only on the first
premise, after then the insertion to the left is automatically
correct. A model which has the revert-feature, does not
have the feature of reverting only the first premise, as the
latter is included in the former.

These features result in the following equation for the
space of cognitive models:

(23 +1)︸ ︷︷ ︸
implicit direction

· (23 +1)︸ ︷︷ ︸
f ocus

· 3︸︷︷︸
reverting

= 243 (1)

Results and Discussion
Best Models for all Participants

Table 5: Correlations rτb for individual data from Experiment
1 and all generated models.

Median Max PRISM Verbal Model

Exp. 1 .197 .22 .22 .218
Exp. 2 -.023 .059 -.05 -.05

To examine the goodness of fit of the generated models for
the whole group of participants, we calculated the Kendall
rank correlation coefficient τb for each model and normalized
reading time of participants in the two experiments. The pro-
cess for normalization was to first correct the reading times of
each participant in each condition for outliers, and second to
divide the reading times of a specific participant by her max-
imum reading time. This was done to account for individual
processing speed differences and resulted in reading times be-
tween 0 and 1 for each trial without losing the relative speed
differences of a specific reasoner across trials and conditions.
Results from the correlation can be seen in Table 5.

In Experiment 1, PRISM was among the best models,
correlating significantly with the normalized reading times
(p< .001), as did the Verbal Model (p< .001). Again, Exper-
iment 2 was much harder to predict for all models. However,
also the close to significant correlation of the Verbal Model
with the aggregated data disappeared when calculating the
correlation with each individual reasoner. It even showed a
significant negative correlation (p = .001). The correlation
coefficient for PRISM was not significant (p = .051). Calcu-
lating the correlation for both experiments, the models which
performed best (rτb= .171, p < .001) had the following con-
figurations:

The models assume a mental spatial structure that is, con-
trary to the Verbal Model, persistent in its direction: a right-
wards directed queue turned out to perform quite well. Con-
trary to the results from Nejasmic et al. (2015), models with
no preliminary integration of features performed better on the

two experiments combined. This indicates that this feature
needs more investigation in terms of cognitive modeling and
psychological investigation. A spatial focus structure with the
ability to jump turned out to give the highest performance.
The presence of the features considering the access of the last
element (tail) and finding the reference object, in the config-
urations, seems to be, at least within this analysis paradigm,
irrelevant.

This indicates several things, among which: (i) that PRISM
and the Verbal Model are good models to reproduce the left-
to-right tasks, (ii) that for the right-to-left relations, there exist
models which can approximate the individual data points bet-
ter than the models from the literature, and (iii) that restrict-
ing cognitive model of spatial reasoning to use only a single
model for all participants might soon hit an insurmountable
upper bound.

Best Models for Individual Participants

To explore further the idea that individual reasoners may use
different strategies, operations or structures, we again calcu-
lated the Kendall τb coefficient, but this time we allowed for
each participant to be assigned the cognitive model which fits
best. With this, the median correlation was rτb= .25, with a
maximum of rτb= .489 (p < .001).

The previously for the population identified best models
only occurred in 42.9% of participants of Experiment 1, and
in 14.3% of participants in Experiment 2. The percentage, to
which features are present in the individual models, can be
seen in Tables 7 and 8.

Table 7: Percentage to which main structural features are
present in the best models for the individual reasoner.

Direction Preliminary
No Direction Left Right Integration Focus

Exp. 1 16.6% 21.9% 61.6% 52.4% 63.2%
Exp. 2 0% 42.9% 57.1% 28.6% 92.9%

Table 8: Percentage to which secondary features are present
in the best models for individual reasoner. The percentages
are conditional in the case of focus features, because they
only apply if the focus is present.

Focus
Jumping Tail Access Find Ref. Revert Revert First

Exp. 1 55.7% 50.0% 50.0% 30.8% 65.4%
Exp. 2 65.3% 50.0% 53.8% 17.9% 28.6%
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Table 6: Best cost assignment for individual reading time prediction. Possible cost assignments were in the interval between 0
and 1, in increments of 0.1. This assignment yielded a median correlation of rτb= 0.302.

Initialization Insert Group Break Links Move with Dir. Move against Dir. Tail Access New Start Jump

0.7 0.1 0.1 0.1 0.8 0.5 0.8 0.3 0.8

Alternative Cost Measure
To examine the adequacy of the unary cost measure, we per-
formed a search on the assignment between model actions
and mental costs. This was done using Python’s scipy li-
brary for scientific computing1. Using a random search al-
gorithm, we explored the space of cost assignments in the
interval between 0 and 1, in increments of 0.1. The goal is
to find values for the costs, such that the correlation is max-
imized. For each assignment, we calculated the Kendall τb
correlation between the predicted costs of each model and
each participant’s outlier corrected reading times of Experi-
ments 1 and 2 from Nejasmic et al. (2015). We then selected
the best model for the individual participants and took the
mean of their correlations as the utility for the optimization.
The best cost assignment can be taken from Table 6.

Using this method, the best configuration we found
achieved a median correlation of rτb= .302. The most expen-
sive actions in the assignment were the jumping movement,
the access of the tail, and the movement in direction of the
queue, or in any direction if there is no implicit direction. Ini-
tialization of a model is also costly. The direction against the
implicit direction was chosen to be less costly than moving
with the direction. Inserting a new object is not expensive in
this assignment, as were breaking connections and setting a
new starting node (as was assumed in Krumnack et al., 2011).
Similarly, the cost of grouping objects into chunks, which was
set to have a cost of n-1 with n being the number of objects in
Ragni and Knauff (2013), was also assigned a low cost.

General Discussion
In this paper, we analyzed 243 cognitive models of spatial
relational reasoning on their capability to predict individual
reading times from studies on the continuity effect. These
models comprised configurations of features from successful
cognitive models from the literature and psychological exper-
iments. While many configurations performed well on aggre-
gated data and a model building direction from left ro right,
none of them, including the cognitive models from the lit-
erature we based this study on, were able to correctly pre-
dict reading times for a direction from right to left. We then
followed the notion that different people might use different
strategies, and investigated whether assigning a specific cog-
nitive model to individual reasoners would greatly improve
performance. While we reached a better correlation using this
method, it was still in question why the correlation did not in-
crease even further. We thus challenged the unary cost mea-

1www.scipy.org/

sure proposed in Ragni and Knauff (2013). Using a search al-
gorithm, we investigated whether a different cost assignment
would lead to better predictions for the individual. While the
fit got better, it still demonstrates that the individual variety
is not yet captured. Especially Experiment 2, which explored
a presentation of spatial information using the relation ‘right
of’ revealed a low correlation, on the individual, but also on
the aggregated level.

We explored the space of possible cognitive models for
spatial relational reasoning using features present in cogni-
tive models from the literature. However, this space did not
yield a model which was able to predict reading times across
tasks robustly. This can be due to several issues: (i) the core
assumption of these models, that we build an abstract spatial
representation (a mental model) is wrong, (ii) the true men-
tal processes in our brain when processing spatial relational
information differ from those assumed in the models of the
literature, or (iii) the assumption of a sequential processing
of spatial information has to be revised. The construction
of a mental model nonetheless is a notion which is broadly
accepted (Johnson-Laird, 2004; Ragni & Knauff, 2013). If
the mental processes of model construction differ from those
presumed by the state-of-the-art cognitive models, it stands
to reason what other processes could be taking place. The se-
quential processing is common to most cognitive spatial mod-
els (Friemann & Ragni, 2018). Modeling of individual data
is limited, as individual data, and especially reaction time, is
noisy. However, if cognitive models fit averaged data well,
but are not able to capture any single individual in the experi-
ment, the meaning of cognitive modeling and goodness-of-fit
needs to be reevaluated.

Conclusion
It seems we are still far from understanding the way our mind
integrates spatial information. This study challenged com-
mon assumptions and practices from the area of cognitive
modeling for spatial reasoning. These customs are found to
be insufficient when applying them to the modeling of whole
empirical data sets instead of the aggregated data. There is
still much to be learned about the way we process streams
of information, what mental operations are performed, and in
how far we can generalize conclusions from the aggregated
data to the individual human mind.
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Abstract 

Achieving linguistic proficiency requires identifying words 

from speech, and discovering the constraints that govern the 

way those words are used. In a recent study of non-adjacent 

dependency learning, Frost and Monaghan (2016) 

demonstrated that learners may perform these tasks together, 

using similar statistical processes — contrary to prior 

suggestions. However, in their study, non-adjacent 

dependencies were marked by phonological cues (plosive-

continuant-plosive structure), which may have influenced 

learning. Here, we test the necessity of these cues by 

comparing learning across three conditions; fixed phonology, 

which contains these cues, varied phonology, which omits 

them, and shapes, which uses visual shape sequences to 

assess the generality of statistical processing for these tasks. 

Participants segmented the sequences and generalized the 

structure in both auditory conditions, but learning was best 

when phonological cues were present. Learning was around 

chance on both tasks for the visual shapes group, indicating 

statistical processing may critically differ across domains. 

Keywords: statistical learning; speech segmentation; 
generalization, language learning; non-adjacent dependencies; 
implicit learning 

Background 

Learners must master a number of critical tasks in order to 

reach linguistic proficiency, including learning how to 

segment individual words from speech, and learning to 

identify the constraints that govern the way those words are 

structured and used. Learners are remarkably adept at these 

tasks, thanks in part to the myriad cues that speech contains 

that may assist learning. One such cue is the statistics that 

describe co-occurrences of items in speech; for instance, the 

co-occurrence of syllables provides a helpful cue to what 

constitutes possible words, while information about how 

those words are used in combination helps learners to discern 

how the language operates. The ability to detect and draw on 

this distributional information - statistical learning - is 

suggested to play a key role in language acquisition, for both 

segmenting speech and for learning about grammatical 

structure (e.g., Conway, Bauernschmidt, Huang, & Pisoni, 

2010; Frost, Monaghan, & Christiansen, 2019; Redington & 

Chater, 1997). 

Since word- and structure-learning appear to have distinct 

requirements, it is unsurprising that the nature of the 

(statistical) processes that underlie these tasks has been 

subject to substantial debate (e.g., Peña, Bonatti, Nespor, & 

Mehler, 2002; Perruchet, Tyler, Galland, & Peereman, 2004). 

Central to these discussions have been questions concerning 

the types of computations required to discover word-like and 

rule-like items in speech, and learners’ capacity to do so by 

computing over co-occurrence statistics. 

These issues have been extensively tested using a classic 

artificial language learning paradigm (Peña et al., 2002), 

which examines learners’ ability to acquire linguistic 

structure that is defined in terms of non-adjacent 

dependencies (i.e., an AxC structure, where A and C are 

syllables that reliably co-occur, regardless of which x syllable 

intervenes). AxC languages are used to jointly assess 

learners’ capacity for statistical word and structure learning, 

since they contain novel words that learners must discover 

(AxC strings), in addition to structural regularities within 

those words (A-C relationships).  

Initial studies using this paradigm suggested that learners 

perform statistical computations on the non-adjacent 

dependencies to segment the speech into individual AxC 

strings (or words), but perform more abstract computations 

on those words in order to learn about their structure - and 

perhaps do so only when speech segmentation has been 

resolved (typically by inserting pauses between words in the 

training stream).  

A recent study by Frost and Monaghan (2016) expanded 

on this work, aiming to shed further light on two key 

questions about how word- and structure-learning unfold in 

language acquisition:  whether these tasks occur sequentially 
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or simultaneously, and whether they may actually utilize 

similar statistical computations – contrary to prior 

suggestions. In their study, participants were able to draw on 

the non-adjacent dependencies to segment continuous speech 

into words, and to learn about the non-adjacent dependency 

structure that those words contained, possibly simultaneously 

(though further work is required to conclusively establish the 

time-course of learning for these tasks). The key difference 

between this and earlier work on this phenomenon was a 

slight methodological change which addressed a possible 

confound in the previous measure of generalization. 

Specifically, prior generalization tasks typically required 

learners to indicate a preference for ‘rule words’ over part-

words, with rule words comprising a trained dependency, 

intervened by an onset/coda from another dependency (e.g., 

A1A2C1 or A1C2C1). While such comparisons do permit 

assessment of preference for the overall structure, they 

require learners to use trained A and C items flexibly in a way 

that deviates from their knowledge of syllable position, which 

may affect performance. Indeed, using amended test items 

(trained dependencies with entirely novel intervening items), 

Frost and Monaghan (2016) demonstrated that adults can 

segment statistical nonadjacent dependencies and generalize 

them to novel grammatically consistent instances in the 

absence of additional information, such as pauses between 

words (see Isbilen, Frost, Monaghan, & Christiansen, 2018, 

for a replication of this effect). 

This finding was contrary to prior suggestions that these 

tasks are fundamentally computationally distinct (e.g., Peña 

et al., 2002), and provides crucial evidence to suggest that 

learners may draw on the same type of statistical processing 

mechanisms for both of these tasks, and they may do so at the 

same time during language learning.  

However, one possibility that cannot be overlooked is that 

learning in this study was not just driven by computations 

over transitional probabilities; learning may have been 

assisted by the phonological properties of the language. In 

line with Peña et al.’s (2002) landmark study, Frost and 

Monaghan (2016) employed an artificial language that 

contained both statistical dependencies between elements, 

and phonological structure, which aligned with the non-

adjacency structure such that A and C syllables contained 

plosives, whereas intervening x syllables contained 

continuants. 

Prior research has noted that the pattern of phonological 

information in artificial languages can significantly benefit 

learning, and phonological similarity between related 

elements has been found to support learning of non-adjacent 

dependencies in particular. For instance, in a series of 

experiments with a similar paradigm, Newport and Aslin, 

(2004) demonstrated that learning nonadjacent dependencies 

between syllables was remarkably difficult to accomplish in 

the absence of phonological cues (though the difficulty there 

may also have been due to additional factors, including 

learnability of the language - i.e., the number of 

dependencies, and the number of intervening items, which 

has been shown to impact learning - together with the relative 

complexity of some of the tests). Similarly, in Gomez and 

Gerken (1999), dependency learning was supported by 

phonological distinctions between A/C items and x items, 

where A and C were bisyllabic, and x were monosyllabic. 

Yet, research has also suggested that this phonological 

information should not be essential for learning to take place 

(Onnis, Monaghan, Christiansen, & Chater, 2004). Further 

research is therefore required to assess the extent to which 

this phonological information guided learning in Frost and 

Monaghan’s (2016) study, to determine whether learners can 

indeed discover words and structures together, from 

distributional information alone. 

In the present paper, we replicate Frost and Monaghan 

(2016), to confirm that participants can compute over non-

adjacent dependencies to learn about both words and 

structure. We also test whether scores on these tasks 

correlate, to further assess whether these abilities are similar, 

or distinct. Crucially, we also compare performance for this 

replication against that for a condition in which participants 

are trained on the same language but with a more varied 

phonology (i.e., without phonological cues). Examining the 

extent to which segmentation and generalization are possible 

in the absence of these phonological cues will provide critical 

insights into how learners rely on statistical computations 

during language acquisition, by removing the possibility that 

successful performance is due to additional information 

outside of the syllable distribution.  

While manipulating properties of the language allows us to 

determine how multiple cues interact with statistical learning, 

it does not inform us about whether that learning is due to 

domain-specific mechanisms, or whether language learning 

involves the specific application of general-purpose learning 

mechanisms (Frost, Monaghan, & Tatstumi, 2017; 

Siegelman & Frost, 2015). To further explore adults’ capacity 

to compute non-adjacent dependencies, we also assessed 

whether their ability to do so is unique to language, by 

extending the paradigm to examine non-adjacent dependency 

learning from non-linguistic sequences (comprising shapes). 

This condition will help constrain theorizing on the generality 

of the mechanisms used for these tasks. 

Thus, in this study we examine whether adults’ capacity for 

segmenting and generalizing non-adjacent dependencies 

extends to more varied linguistic stimuli, or if it is contingent 

on a correspondence between distributional and phonological 

cues to structure. We will also assess whether this capacity is 

similar or different across modalities. We expect that 

participants will demonstrate knowledge of words and 

within-word structure (i.e., non-adjacent dependencies) in 

both language conditions (Frost & Monaghan, 2016; Onnis et 

al., 2004), and in the shapes group, in line with the suggestion 

that statistical learning mechanisms may serve learning 

broadly across modalities (e.g., Frost et al., 2017). We predict 

that segmentation and structure learning will benefit from 

phonological cues, but that these will not be essential for 

learning (Onnis et al., 2004). Further, we expect that structure 

learning will be better for linguistic than nonlinguistic input 

(due to increased experience with learning linguistic structure 
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relative to structured sequences of shapes; Siegelman & 

Frost, 2015). 

Method 

Participants 

90 Cornell University undergraduates (age: M = 19.6 years, 

range = 18-24 years; 49 females, 41 males) participated for 

course credit. All participants were native English speakers.  

Design 

Participants were randomly allocated to one of three 

conditions (each N = 30): fixed phonology, where AxC 

sequences contained plosive-continuant-plosive structure 

(Frost & Monaghan, 2016, Peña et al., 2002), varied 

phonology, which randomized the allocation of plosives and 

continuants to different positions within words, and shapes. 

These conditions permit comparison of learning from the 

original training input (fixed phonology) with an amended 

version containing no reliable phonological cues to word 

structure (varied phonology), and also a non-linguistic 

analogue. This will provide critical assessment of whether the 

pattern of learning demonstrated by Frost and Monaghan 

(2016) is unique to the properties of the input used in that 

study, or whether it can be extended to more varied linguistic 

input, as well as input in a different modality. 

Stimuli 

Speech stimuli were created with Festival speech 

synthesiser, from a pool of 9 monosyllabic items (pu, ki, be, 

du, ta, ga, li, ra, fo), as used in Peña et al. (2002), and three 

additional monosyllabic items (ve, zo, thi). These additional 

syllables were reserved for the generalization task for the 

fixed phonology group in line with prior research (Frost & 

Monaghan, 2016), but formed part of the general syllable 

pool for the varied phonology group, to maximise variability. 

Shape stimuli were created from the Fiser and Aslin (2002) 

set of novel shapes (novel shapes in black on a grey 

background). 

Familiarization Syllables/shapes were concatenated into 

triadic sequences that followed an AxC structure, with A, x, 

and C representing an individual syllable/shape. There were 

three A-C pairings, and three x items that could be used in all 

pairings (A1X1–3C1, A2X1–3C2, and A3X1–3C3), giving 9 

strings in total. 

For the fixed phonology condition, syllables were mapped 

onto words pseudorandomly, such that A and C syllables 

were plosives, whereas x syllables were continuants, 

meaning each AxC string had a plosive-continuant plosive 

structure (e.g., puraki). For the varied phonology condition, 

syllables were randomly allocated to A, x, and C positions, 

meaning there were no reliable phonological cues that could 

guide learning. For the shapes condition, shapes were 

randomly allocated to A, x, and C positions, providing a 

visual non-linguistic analogue of the varied phonology 

condition. See Table 1 for example stimuli for each condition. 

 

Table 1: Example stimuli for each condition 

Condition Triads 

Fixed 

Phonology 

 

puliki, puraki, pufoki 

beliga, beraga, befoga 

talidu, taradu, tafodu 

 

Varied 

Phonology 

 

 

livedu, liradu, likidu 

fovezo, forazo, fokizo 

bevepu, berapu, bekipu, 

Shapes 

 

 

 

 

 

 

 

 

  

 

Syllable/shape triplets were concatenated into 

familiarization streams containing 900 sequences (100 

repetitions of each individual AxC sequence), in line with the 

materials used by Frost and Monaghan (2016). For speech 

stimuli, this was done using the Festival speech synthesizer 

(Black et al., 1990), and for shape stimuli this was done using 

Eprime 2.0. For all conditions, training streams contained no 

immediate repetition of individual AxC sequences.  

For the fixed phonology and varied phonology conditions, 

the training stream lasted for 10.5 minutes, and was edited to 

have a 5-second fade-in and fade-out, to avoid providing cues 

to word boundaries.  

For the shape sequences, presentation of the training 

stream took 22 minutes overall. For comfort this was split 

into 3 blocks of 300 sequences, and participants were invited 

to take short breaks in between blocks if desired. To ensure 

stimuli were analogous to the linguistic input, sequences were 

programmed such that shapes were presented sequentially, 

one by one. Shapes were presented for 225 ms in the centre 

of the screen, with a 225 ms inter-item interval between all 

shapes for comfortable viewing (note that since this occurs 

between all shapes, it does not cue segmentation). 

Presentation criteria were in line with those used in a 

comparable study by Frost et al. (2017). Analogous to the 5 

second fade-in/-out applied to the speech streams, visual 

sequences always began and ended mid-triad, to prevent 

participants receiving any information about sequence 

boundaries at the start/end of the streams (this is true for the 

beginning and end of the entire sequence, and also for either 

side of the scheduled breaks). 

To control for the relative ease of learning particular 

dependencies, for each condition 8 versions of the language 

were generated and counterbalanced across participants. For 

the varied phonology and shapes stimuli, these were created 

by randomly assigning syllables/shapes to A, x and C roles. 

For the fixed phonology stimuli, these were created by 

1789



randomly assigning plosives to the A and C roles, while x 

items were always the same (see Frost & Monaghan, 2016). 

Testing Learning was assessed using a two-alternative 

forced-choice (2AFC) test of segmentation and 

generalization. This contained 18 trials, nine of which 

assessed segmentation, and nine of which assessed 

generalization. Segmentation trials contained word versus 

part-word comparisons, with words being AxC items that 

occurred in the training stream, and part-words spanning 

word boundaries such that they comprised the end of one 

word and the start of another (e.g., xCA, CAx). 

Generalization trials contained rule-word versus part-word 

comparisons, where rule-words were trained dependencies 

but with novel intervening items (e.g., A1NC1), and part 

words were structured as before, but with one syllable 

replaced with a novel syllable (e.g., NCA, CNA, CAN). This 

was to control for the possibility that participants’ responses 

on these trials were due to novelty alone (see Frost & 

Monaghan, 2016, for further discussion. Ongoing work by 

Isbilen, Frost, Monaghan and Christiansen further explores 

these generalization effects using A1N1C1 vs. A1N1C2 

comparisons).  

Procedure  

Familiarization Participants were presented with a 

familiarization stream which comprised either sequences of 

speech (10.5 minutes), or sequences of shapes (~22 minutes). 

Participants were instructed to pay attention to the sequences, 

and the shapes group was instructed to take optional breaks 

at the designated pauses if required. 

Testing At test, participants completed a 2AFC task 

comprising 18 trials; nine segmentation trials (words versus 

part-word comparisons) and nine generalization trials (rule-

words versus part-word comparisons). Presentation of 

segmentation and generalization trials was randomized. 

Participants were instructed to carefully listen to/look at each 

test pair, and indicate which of the two best matched the 

training stream they had just heard/seen.  

 

Results and Discussion 

Accuracy Scores 

Accuracy scores for each condition are shown in Figure 1. 

One-sample t-tests (two-tailed) were conducted on the data 

for each group to compare performance to chance. 

For the fixed phonology group, performance was 

significantly above chance for both the segmentation (M = 

.709, SD = .245), t(29) = 4.659, p < .001, d = .853 and 

generalization tasks (M = .661, SD = .173), t(29) = 5.100, p < 

.001, d = .936, replicating Frost and Monaghan’s (2016) 

demonstration that learners can segment and generalize non-

adjacent dependencies from continuous speech. For the 

varied phonology group, performance was also significantly 

above chance for both tasks (segmentation: M = .623, SD = 

.199, t(29) = 3.391, p = .002, d = .618;  generalization: M = 

.594, SD = .217, t(29) = 2.366, p = .025, d = .433), suggesting 

that acquisition of statistically defined non-adjacent 

dependencies in this task is not contingent on the 

phonological properties of the speech input (i.e., 

phonological similarity between dependent syllables). 

For the shapes group, however, performance on the 

segmentation task was only marginally above chance (M = 

.552, SD = .156), t(29) = 1.827, p = .078, d = .333), and 

performance on the generalization task was at chance level 

(M = .485, SD = .205), t(29) = -.410, p = .685, d = -0.073) – 

indicating that adults’ ability to segment and generalize 

sequences using non-adjacent transitional probabilities may 

not extend to visually presented non-linguistic input.  

Segmentation and generalization performance were 

significantly correlated for the fixed phonology (r = .385, p = 

.036) and varied phonology (r = .625, p <. 001) groups, but 

not for the shapes group (r = .281, p = .133). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Pirate plot depicting performance on the 

segmentation and generalization tasks for each condition. 

Mean scores are shown in black, with standard error in white. 

The distribution of scores is depicted in red for the 

segmentation task, and blue for the generalization task, with 

individual participants’ scores in grey. The dashed line 

indicates chance level.  

Comparing performance across groups 

To compare performance across each of these groups, 

Generalized Linear Mixed Effects (GLMER) analysis was 

conducted on the data, examining whether segmentation and 

generalization scores differed according to whether 

participants were trained on sequences comprising varied or 

fixed phonology, or shapes. A significant main effect of 

condition would imply different overall performance across 

the groups, while a significant main effect of test type would 

indicate that participants performed differently on the 

segmentation and generalization tasks overall. An interaction 

between these variables would tell us that participants’ 

performance on the segmentation and generalization tasks 

differed as a function of their condition – indicating that 

adults’ capacity for statistical learning on these tasks differs 

M
ea

n
 A

cc
u

ra
cy

 (
%

) 

Generalization 
Segmentation 

1790



across conditions, and possibly across domains, shedding 

light on the generality of the possible mechanism(s) that may 

underlie performance.  

GLMER analysis was performed on the data (Baayen, 

Davidson, & Bates, 2008), modelling the probability (log 

odds) of response accuracy at test considering variation 

across participants and materials. The model was built 

incrementally, with random effects of subjects, particular 

test-pairs, and language version (to control for variation 

across the randomized assignments of phonemes to 

syllables). Random slopes were omitted if the model failed to 

converge with their inclusion (Barr, Levy, Scheepers, & Tily, 

2013).  

We then added condition (varied phonology, fixed 

phonology, and shapes) as a fixed effect, and considered its 

effect on model fit with likelihood ratio test comparisons. 

There was a significant effect of condition (model fit 

improvement over the model containing random effects: 

(2)2 = 7.903, p = .019), with the shapes group performing 

significantly worse than the fixed phonology group 

(difference estimate = -.767, SE = .257, z = -2.987, p = .003). 

The fixed phonology group also outperformed the varied 

phonology group, however this difference was marginal 

(difference estimate = -.389, SE = .217, z = -1.788, p = .074).  

We then added test type (segmentation and generalization), 

to see whether participants performed differently on each 

type of task. The effect of test type was marginal (model fit 

improvement over the model containing random effects: 

(2)2 = 3.144, p = .076) with participants performing better 

on the segmentation task than the generalization task 

(difference estimate = .224, SE = .125, z = 1.791, p = .073). 

We then added the interaction between condition and test 

type, to see whether performance on the tasks differed 

according to the input participants had received. The 

interaction was not significant (model fit improvement over 

the model containing random effects: (2)2 = .366, p = .833), 

suggesting participants performed similarly across each of 

the conditions. See Table 2 for a summary of the final model.

Table 2: Summary of the GLMER (log odds) for accuracy scores. 

 

1620 observations, 90 participants, 18 trials. R syntax for the final model is: NAD_DG3 <- glmer (testresponse.ACC ~ 

condition + test_type + (1|subject) + (1+lang_ver|test_pair), data =NAD_DG, family=binomial, 

control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=100000))).

General Discussion 

 

Recent evidence for the similarity (and possible simultaneity) 

of statistical segmentation and generalization has advanced 

our understanding of the way these processes unfold during 

language acquisition (see Frost & Monaghan, 2016, and see 

e.g,, Peña et al., 2002 and Perruchet et al. 2004, for more on  

 

 

 

 

 

the earlier debate about the nature of these tasks). Yet, due to 

the phonological properties of the training language, it is 

possible that learning in this recent study was not solely 

contingent on the statistical regularities contained within the 

language; learning may have been assisted by the plosive-

continuant-plosive structure that AxC sequences adhered to 

(e.g., Newport & Aslin, 2004). 

Fixed effects 
Estimated 

coefficient 
SE 

Wald confidence 

intervals 

2.50%        97.50% 

 

z 

 

 

Pr (>|z|) 

(Intercept) .7405 .2082 .3325 1.149 3.557 .0004 

Condition: Shapes -.7658 .2583 -1.272 -.2595 -2.965 .003 

Condition: Varied Phono .-.3883 .2183 -.8161 .0395 -1.779 .0753 

Test_type .2235  -.0211 .4680 1.791 .07332 

       

Random effects Variance Std. Dev.     

Subject (Intercept) .355 .5958     

Test Pair (Intercept) .5871 .773     

Lang_version .0019 .0435     

  

AIC 

2097.6  

 

BIC 

2140.8  

 

logLik    

-1040.8  

 

Deviance 

2081.6 

  

1791



To explore this possibility, the study at hand examined 

adults’ capacity for non-adjacent dependency learning across 

three conditions; the first of which used the input from Frost 

and Monaghan (2016) (see also Peña et al., 2002), which 

contained the phonological structure described above (termed  

the fixed phonology condition). The second condition omitted 

these phonological cues, such that AxC sequences had no 

fixed phonological structure (the varied phonology 

condition). The third condition tested learning from 

sequences of shapes, to provide a non-linguistic assessment  

of non-adjacent dependency learning, with a view of 

considering whether learning was comparable across 

modalities — perhaps drawing on similar statistical 

mechanisms. The critical test was whether participants in 

each group demonstrated learning (i.e., performed above 

chance), and whether performance in the varied phonology 

and shapes groups differed significantly from the fixed 

phonology group. 

Participants in both language conditions performed 

significantly above chance on the segmentation and 

generalization tasks. This finding replicates the results of  

Frost and Monaghan (2016), showing that speech 

segmentation and structural generalization may proceed 

together during language learning, and can be accomplished 

from the same distributional statistics (though additional 

research is required to conclusively establish the precise 

time-course of learning for these tasks). Further, our results 

demonstrate that adults’ capacity for learning non-adjacent 

dependencies extends to more phonologically diverse input. 

However, the difference in overall performance in these 

conditions was approaching significance, with results 

indicating that phonological cues were advantageous for 

learning (evidenced by marginally higher scores for the fixed 

phonology than the varied phonology group) — in line with 

Newport and Aslin’s (2004) suggestion that such cues were 

important for learning. Critically though, our data indicate 

that these cues were not essential (Onnis et al., 2004). 

In previous studies of word and structure learning, 

segmentation and generalization have tended to be tested 

separately. In the current study, these tasks were completed 

by all participants (within subjects). We show that the same 

learners can segment non-adjacencies from speech, and 

generalize them to new instances (see also Isbilen et al., 

2018). In line with previous studies, performance on the 

segmentation task was higher than that seen for the 

generalization task (see Isbilen et al., 2018, for a comparable 

finding), and crucially performance on these tasks was 

significantly correlated for both language conditions — 

adding further support to the notion that they may be 

underpinned by similar mechanisms. 

The results for the shapes group followed the same general 

pattern as those seen in the varied phonology and fixed 

phonology conditions, with a trend toward higher 

performance on the segmentation task than the generalization 

task. However, scores for this group were significantly lower 

than those seen for the fixed phonology group, with accuracy 

scores on the segmentation task being only marginally above 

chance, while performance on the generalization task was at 

chance level. It is important to note that the shape stimuli 

differ from the speech stimuli in two key ways: they are both 

visual and non-linguistic, and therefore differ both in 

modality and domain. Thus, this pattern of results could be 

attributed to a number of possible explanations. 

One possibility for the difference between the language and 

the shape task is that there are critical differences in statistical 

learning across modalities, with tasks being underpinned by 

different mechanisms (e.g., Conway & Christiansen, 2005). 

A second possibility is that, for the shapes group, 

performance could have been negatively affected by 

participants’ relative lack of experience with learning 

distributionally defined streams containing sequences of 

visual non-speech input (compared to experience with heard 

speech) (e.g., Siegelman et al., 2018). Another possibility is 

that the difference in performance is due to key differences in 

task demands: in the speech conditions, the presentation of 

stimuli is such that participants have no choice but to attend 

(be that actively, or passively). However, in the shapes 

condition, this is not necessarily the case. Thus, it is possible 

that the lower scores observed for this group are (at least in 

part) due to participants attending less to the input during 

training (and thus, learning less during familiarization). 

Ongoing replications of this work employing a cover task that 

maintains participants’ attention will help to unpack these 

possibilities.  

To summarise, these data provide further evidence that 

adults can compute non-adjacent dependencies to discover 

words and within-word structure from continuous speech. 

This supports the notion that these tasks may be underpinned 

by similar statistical processes, and may occur together 

during language learning. Further, results illustrate that these 

abilities are not dependent on phonological cues, suggesting 

that adults’ capacity for performing statistical computations 

over linguistic input is even more powerful than previously 

suggested. 
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Abstract 
Convergent and divergent thought are promoted as key 
constructs of creativity. Convergent thought is defined and 
measured in terms of the ability to perform on tasks where 
there is one correct solution, and divergent thought is defined 
and measured in terms of the ability to generate multiple 
solutions. However, these characterizations of convergent and 
divergent thought presents inconsistencies, and do not capture 
the reiterative processing, or ‘honing’ of an idea that 
characterizes creative cognition. Research on formal models 
of concepts and their interactions suggests that different 
creative outputs may be projections of the same underlying 
idea at different phases of a honing process. This leads us to 
redefine convergent thought as thought in which the relevant 
concepts are considered from conventional contexts, and 
divergent thought as thought in which they are considered 
from unconventional contexts. Implications for the assessment 
of creativity are discussed. 

Keywords: Alternate Uses Task; concepts; context; 
convergent thinking; divergent thinking; potentiality; 
quantum model; Remote Associates test 

Introduction 
Other species perceive, make decisions, and take action, but 
our ability to adapt ideas to our own needs, tastes, and 
perspectives, and express ourselves through language, art, 
technology, and other means, is exceptional. Thus, 
understanding creative thinking is central to understanding 
our humanness.  

In creativity research, as in other areas of cognitive 
science, there is a long history of dual process theories, 
which assert that there are two kinds of thought, or that 
thought varies along a continuum between two extremes 
(Evans & Frankish, 2009; James, 1890/1950, Sloman, 
1996). In the creativity literature the distinction is usually 
made between convergent and divergent thinking1. 
Convergent thought is defined and measured in terms of the 
ability to perform on tasks where there is a single correct 
solution, while divergent thought is defined and measured in 
terms of the ability to generate multiple different 
solutions (Guilford, 1967). A widely used test of convergent 
thinking is the Remote Associates Test (RAT) (Mednick, 
1968). A typical RAT question is: What is the common 
associate of TANK, TABLE, and HILL? The answer is: 
TOP. A widely used divergent thinking test is the Alternate 

                                                        
1 Sometimes the distinction is between associative and analytic 

thought (e.g., Chrusch, C. & Gabora, L., 2013), or executive 
versus generative (e.g., Ellamil, Dobson, Beeman, & Christoff, 
2012). See (Sowden et al., 2014) for how convergent and 
divergent thinking relate to other dual process theories.  

Uses task, which asks questions like ‘think of as many uses 
as you can for a brick’ (Christensen, Guilford, Merrifield, & 
Wilson, 1960). Responses are most often rated in terms of 
fluency, the total number of ideas generated in a given time. 
Often they are additionally rated in terms of originality, the 
number of unusual or statistically infrequent ideas. Fluency 
and originality are considered to reflect the quantity and 
quality of ideation performance, respectively. Occasionally 
they are also rated in terms of flexibility, the number of 
different categories of ideas. On rare occasions answers are 
rated for elaboration: the amount of detail given, or 
evidence that the individual has followed an associative 
pathway for some distance.  

Although these characterizations of convergent and 
divergent thought have stuck for half a century, as 
formulated, they present inconsistencies. For example, it is 
often said that a creatively demanding problem requires 
both convergent and divergent thought (e.g., Beersma & De 
Dreu, 2005; Gibson, Folley, & Park, 2009; Kerr & Murthy, 
2004). However, given that convergent and divergent 
thought are defined in terms of the number of correct 
solutions, this makes no sense. A problem either has one 
correct solution or it has many; it cannot have both one and 
many. Moreover, the way convergent and divergent thought 
have been defined and measured is inconsistent with how 
people think about creativity; for example, although 
divergent thinking is thought to be the most promising 
candidate for the foundation of creative ability (Plucker & 
Renzulli, 1999; Runco, 2007), performance on the RAT 
would seem to be a better indicator of creativity than many 
tasks that would be classified as a divergent thinking task, 
such as ‘list as many things as you can that are red’. Finally, 
it is often noted that earlier responses on a divergent 
thinking task are less creative than latter ones (Beaty & 
Silvia, 2012), but if divergent thinking is characterized in 
terms of the number of possible responses, this is the 
opposite of what one should expect, because with each 
response one gives, the number of remaining possible 
responses decreases by one. Thus, the conventional view 
would predict that, as one proceeds, one should start 
thinking more convergently, not more divergently.  

More fundamentally, as noted elsewhere (Piffer, 2012), 
divergent thinking research, and creativity research in 
general, emphasizes the generation of multiple ideas over 
what is sometimes called honing—recursively reflecting on 
a question or idea by viewing it from different perspectives 
with the output of each such reflection providing the input 
to the next (Gabora, 2007, 2017). One thereby comes to a 
deeper, more nuanced understanding of it. Honing differs 
from elaboration in that it does not include additions or 
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modifications to the idea that are tacked on willy-nilly; it 
refers specifically to modifications that arise in response to 
an overarching conceptual framework that is shepherding2 
the creative process. The structure of this overarching 
framework reflects the individual’s worldview: their self-
organizing web of understandings about their world and 
their place in that world (in other words, the creator’s mind 
as experienced ‘from the inside’).  

Like other self-organizing systems, a worldview 
continually interacts with and adapts to its environment to 
minimize internal entropy, a measure of uncertainty and 
internal disorder. Hirsh, Mar, and Peterson (2012) use the 
term psychological entropy to refer to anxiety-provoking 
uncertainty, which they claim humans attempt to keep at a 
manageable level. Noting that uncertainty can be 
experienced not just negatively as anxiety but also 
positively as a wellspring for creativity (or both), the term 
psychological entropy has been expanded to refer to 
arousal-provoking uncertainty. Redefining psychological 
entropy in terms of arousal rather than anxiety is consistent 
with findings that creative individuals exhibit greater 
openness to experience and higher tolerance of ambiguity 
(Feist, 1998), which could predispose them to states of 
uncertainty or worldview inconsistency (Gabora, 1999). 
Their higher variability in arousal (Martindale & 
Armstrong, 1974) reflects a predisposition to invite 
situations that increase psychological entropy, experience 
them positively, and resolve them. In this way, 
psychological entropy—a macro-level variable acting at the 
level of the worldview as a whole—generates emotions that 
play a role in guiding and monitoring creative tasks.  

Thus, honing continues until psychological entropy 
decreases to an acceptable level. In Piagetian terms, during 
honing the individual assimilates each new understanding of 
the idea, and the individual’s worldview changes to 
accommodate this new understanding. Insight is then 
explained in terms of self-organized criticality (SOC) 
(Gabora, 2001, 2017; Schilling, 2005), a phenomenon 
wherein, through simple local interactions, complex systems 
tend to find a critical state poised at the cusp of a transition 
between order and chaos, from which a single small 
perturbation occasionally exerts a disproportionately large 
effect (Bak, Tang, & Weisenfeld, 1988). Thus, while most 
thoughts have little effect on one’s worldview, an idea we 
call insightful is one for which one thought triggers another, 
which triggers another, and so forth in an avalanche of 
conceptual change. 

Surely, whether one is writing a novel, or composing a 
symphony, or inventing a new kind of solar panel, this kind 
of honing process is central to the creative act. Moreover, 
the ability to hone an idea may have little to do with the 
ability (or patience) to engage in a futile exercise like 
coming up with uses for a brick, or things that are red. A 
refinement on conventional measures of divergent thinking, 
in which participants indicate what they think are their two 

                                                        
2 This word is chosen deliberately because it implies that the 

process is neither entirely top-down nor entirely bottom-up. 

most creative answers, and these answers are rated on a 5-
point scale, shows good reliability and high predictive 
validity without the fluency confound (Silvia et al, 2008). 
However, one could still score highly on this version of the 
test without having engaged in honing. 

Our conception of convergent and divergent thinking may 
be distorted by our everyday experience in the physical 
world; because objects in the world exist in different places 
and have distinct, definite boundaries, it may be difficult to 
wean ourselves from the intuition that ideas in the mind do 
as well. It has been argued on the basis of evidence from 
research on the attributes of associative memory, that the 
common assumption that creativity involves searching 
through a space of discrete, separate possibilities, selecting 
the best, and tweaking it, is misleading (Gabora, 2007, 
2010, 2018). This is also what is suggested by research on 
the formal structure of concepts and their interactions. The 
goal of the rest of this paper is to, without going into 
mathematical details, show how this research on concepts 
points to a new conception of convergent and divergent 
thinking that resolves the above inconsistencies, and 
potentially catalyzes a deeper understanding of how the 
creative process works.  

The approach to concepts that I will draw upon is 
sometimes (somewhat unfortunately) referred to as the 
quantum approach (Aerts, Gabora, & Sozzo, 2013; Aerts & 
Gabora, 2005; Blutner, Pothos, & Bruza, 2013; Busemeyer 
& Bruza, 2012; Busemeyer & Wang, 2018;; Gabora, 2001; 
Gabora & Aerts, 2002; Pothos, Busemeyer, Shiffrin, & 
Yearsley, 2017). It is called this not because it has anything 
to do with quantum particles, but because it uses 
generalizations of mathematical structures originally 
developed for quantum mechanics. The motivation and 
rationale for this approach are provided elsewhere (Aerts, 
Broekaert, Gabora, & Sozzo, 2016b; Bruza, Busemeyer, & 
Gabora, 2009). For now it is noted that this research by no 
means aims to reduce cognitive psychology to physics. 
Rather, much as was the case with other branches of 
mathematics such as complexity theory and even number 
theory, structures originally developed by physicists were 
later found to have applications in other domains. In the 
quantum approach, concepts are viewed not as fixed 
representations or identifiers, but as bridges between mind 
and world that are sensitive to context and that 
actively participate in the generation of meaning (Gabora, 
Rosch, & Aerts, 2008). 

Potentiality, Context, and Creative Thought 
The gist of the new view of creative thought suggested by 
concepts research is conveyed by the photograph below of a 
woodcutting with light shining on it from three different 
directions, yielding three differently shaped shadows: that of 
a G, an E, and a B (Figure 1). Though each shadow is 
different, they are all projections of the same underlying 
object. We could say that the woodcutting has the 
potentiality to actualize different ways, and to actualize in 
one of these ways requires an observable or context, in this 
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case, light shining from a particular direction. We can refer 
to the state of the woodcutting when no light is shining on it 
as its ground state. While it is tempting to assume that a 
bout of creative thought entails the generation of multiple 
distinct, separate ideas, there may be a single underlying 
mental representation that, like the woodcuttings, is ill-
defined, and affords some degree of ambiguity in its 
interpretation. Just because the different sketches of a 
painting, or prototypes of an invention, take different forms 
when expressed in the physical world, that doesn’t mean 
they derive from different underlying ideas in the mind. Just 
as the three shadows of each of the two woodcuttings in 
Figure 1 are projections of the same underlying object, the 
sketches or prototypes may be different external realizations 
of the same underlying idea at different stages of a creative 
honing process. In other words, these different outputs are 
different articulations of the idea as it appears looked at 
from different perspectives. Midway through a creative 
thought process one may have an inkling of an idea but not 
yet know whether, or exactly how, it could work. Because it 
is ‘half-baked’, it may be more vulnerable to interpretation, 
meaning that it could appear quite different when looked at 
from a different perspective.  
 

 

Figure 1: Photograph of ambiguous woodcuttings taken 
from the front cover of ‘Gödel, Escher, Bach: An Eternal 

Golden Braid’ by Douglas Hofstadter (1979). The top ‘trip-
let’ (as he calls them) is not simply a rotated version of the 

one below it; it is a different shape. (Used with permission.) 
 

Note that the two woodcuttings in Figure 1 have two 
different shapes, yet they yield the same three shadows. To 
distinguish the shape of the woodcutting above from the 
woodcutting below would require that light be shown on 

them from still more angles, casting shadows that would not 
look like any particular letters we know. Similarly, the more 
complex one’s unborn creative idea, the more honing steps 
required to discern its underlying form and whittle it down 
as needed. Since it has the potential to manifest different 
ways, we can say that it is a state of potentiality. 

In the quantum approach to concepts, this kind of 
potentiality is described as a superposition state represented 
by a vector in a complex Hilbert space. Concepts act as 
contexts for each other that alter how they are experienced; 
for example, the concept TREE might make you think of a 
deciduous tree (one with leaves), but in the context 
CHRISTMAS, you might think of a coniferous tree (one 
with needles and cones). Each possible context may 
actualize the potentiality of the concept differently, and 
these possible actualizations are represented by basis states. 
The actual, existing context is treated as an observable that 
determines how the concept changes in light of this context. 
It might change in such a way as to alter the weights of 
certain properties. (For example, ‘talks’ and ‘lives in a cage’ 
are not considered properties of BIRD but they are 
considered properties of PET BIRD  (Hampton, 1987); thus, 
the context PET is influencing the properties we ascribe to 
BIRD.) A context can also alter the typicalities of certain 
exemplars. (As a canonical example, guppy is not 
considered a typical exemplar of PET, nor of FISH, but it is 
considered a typical exemplar of PET FISH (Osherson & 
Smith, 1981).) In the absence of any observable—i.e., when 
a concept is not being viewed from any particular context, 
or thought about at all—the concept is said to be in a ground 
state. In its ground state there are no properties associated 
with the concept, but also, there are no properties that are, a 
priori, excluded from it; thus, you could say it is a state of 
infinite potentiality. Conceptual change due to the impact of 
a context is modeled as collapse of the vector representing 
the concept to one of its basis state, as shown in Figure 2.  

 

   

Figure 2: A graphical depiction of a vector |Ψñ representing 
the concept TREE is shown in black. In the default context, 
TREE may be more likely to collapse to projection vector 

|dñ which represents DECIDUOUS TREE (tree with leaves) 
than to collapse to projection vector |cñ which represents 

a0 

|dñ 

|cñ 

|cCñ 

|dCñ 

a1 

b0 

  b1 

D 

|ΨCñ 

 

|Ψñ 
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CONIFEROUS TREE (tree with needles and cones). This 
can be seen by the fact that subspace a0 is smaller than 

subspace a1; i.e., a0 is closer to the xy origin than a1. In the 
context CHRISTMAS, shown in blue, the concept TREE is 
likely to collapse to the orthogonal projection vector |cCñ, 
representing CONIFEROUS TREE, as shown by the fact 

that b0 is larger than b1. (After collapse, the projected vector, 
|ΨCñ, is the same length as the original due to 

renormalization). 
 

This approach has enabled us to cope with some of the 
non-compositional ways in which people use concepts—
famously said to be the biggest challenge facing cognitive 
science (Fodor, 1998)—by describing them in terms of 
effects such as entanglement3 and interference4 (Aerts, 
Sozzo, & Gabora, 2016; Aerts & Sozzo, 2014; Busemeyer 
& Bruza, 2012). The approach can be applied to concept 
combinations and more complex compounds of concepts 
such as decisions (e.g., Busemeyer, Wang, & Townsend, 
2006; Yukalov & Sornette 2009) jokes (Gabora & Kitto, 
2017), worldviews (Gabora & Aerts, 2009), and creativity 
(e.g., Gabora & Carbert, 2015). For example, working with 
data from a study in which participants were asked to rate 
the typicality of exemplars of a concept for different 
contexts, and introducing a state-transition threshold, we 
built a model of how exemplars of a concept arise in 
divergent versus convergent modes of thought (Veloz, 
Gabora, Eyjolfson, & Aerts, 2011). By lowering a threshold 
of allowable deviation from the default context, seemingly 
atypical exemplars appeared as new possibilities. Honing an 
idea can be modeled as reiterated collapse, resulting in a 
change of state of the idea, which induces the conceptual 
framework to subject the idea to a new context, which in 
turn brings about a new collapse, and so forth, until the idea 
is sufficiently robust in the face of new contexts that it no 
longer undergoes change-of-state (Gabora, 2017). In short, 
it is becoming possible to move beyond crude conceptions 
of creative cognition to a more refined understanding that is 
aligned with and informed by advances in the adjacent area 
of concepts research. 

Redefining Convergent and Divergent Thought 
Let us now see how this can pave the way to a new 
conception of convergent and divergent thought. There is a 
relationship between the weights on the properties of a 
concept in a particular state, and its susceptibility to collapse 
to any particular new state. For example, if you think about 
TREE in terms of only its most typical properties such as 
‘grows in the ground’, your next thought may be about 
something else that grows in the ground, such as a 

                                                        
3 Entanglement is a phenomenon first encountered in particle 

physics wherein the state of one entity cannot be described 
independently of the state of another, and any measurement 
performed on one influences the other.  

4 Interference is the annihilation of the crest of one wave by the 
trough of another when they interact. 

FLOWER. However, if you think about TREE in a way that 
encompasses not just typical properties such as ‘grows in 
the ground’ but also atypical properties, and in particular 
those implied by the context, your next thought may be 
about something semantically distant from TREE; for 
example, a poet might think of a word that rhymes with 
TREE such as BEE. Recall how, in its ground state, there 
are no properties associated with a concept, but also, no 
properties excluded from it. This means that, for any 
concept there exists some context that could come along and 
make any given property become relevant. The more exotic 
the context, the more atypical the properties that are evoked, 
and thus the more unconventional the subsequent thought.  

This suggests that in convergent thought an idea is refined 
by considering compound of concepts in their conventional 
contexts. Because one is not concerned about all the remote 
ways in which the object of thought could be related to other 
things, but instead working with it in its most compact form, 
mental energy is left over for complex operations. This then 
is why convergent thought is conducive to unearthing 
relationships of causation, or thinking analytically, as well 
as simply carrying out rote tasks. 

Conversely, in divergent thought one reflects on an idea 
by considering a particular compound of concepts from 
unconventional contexts. This is conducive to unearthing 
relationships of correlation, i.e., forging new connections 
between seemingly unrelated areas, as in analogical 
thinking. Note that the more unconventional the contexts 
one calls up, the seemingly less sensible the next thought 
may be, and therefore the more honing that may be required 
to coax it into a form that eventually makes sense. It is for 
this reason that the products of divergent thought (as 
redefined here to mean thinking of ideas from 
unconventional contexts) may require extensive honing. 

Implications for Assessment 
On the basis of this view of convergent and divergent 

thinking, let us now re-examine the tests used to assess 
these constructs. Although the RAT (Mednick, 1968) is 
used to assess convergent thinking because each question 
only has one correct answer, to determine the common 
associate of TANK, TABLE, and HILL you have to think of 
at least one of these words in a context that is not its default 
context. For example, unless you are a retailer in the 
business of selling tank tops you likely interpret the word 
TANK in terms of its meaning as a military vehicle. 
Therefore, if we go with the redefinition of convergent 
thinking as mental operations wherein the contents of 
thought are viewed from conventional contexts, convergent 
thought is insufficient to solve the RAT. The RAT is 
actually more appropriately used as a test of divergent 
thinking. This is consistent with the RAT’s wide usage as a 
test of creativity despite that convergent thought is 
contrasted with divergent thought and divergent thought is 
frequently equated with creativity.  

Since in divergent thinking tasks such as the Alternate 
Uses task people only reflect upon an idea from 
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unconventional contexts after they have generated 
conventional responses, these tasks only test for divergent 
thinking during the latter part of the task. Thus it makes 
sense that, as noted by Beaty and Silvia (2012), this is when 
the most creative responses occur.  

Neither the RAT nor conventional divergent thinking tests 
assess the capacity to hone an idea in a reiterated manner 
such that uncertainty decreases to an acceptable level and 
the idea transitions from ill-defined to well-defined. 
Amobile’s (1982) consensual assessment technique, which 
involves asking multiple experts to evaluate the creativity of 
a work, is better in this regard, but it undoubtedly measures 
not just divergent thinking but what is sometimes called 
contextual focus: the capacity to spontaneously shift 
between convergent and divergent thought as needed, in 
response to the situation one is in (Gabora, 2010). What is 
required is a new approach to creativity testing in which 
each step in a creative process is broken down into a series 
of states and contexts, and the type and magnitude of 
conceptual change from one step to the next are analyzed so 
as to better understand the interplay of convergent and 
divergent thinking. Steps in this direction are underway 
using studies of artmaking (Choi & DiPaola, 2013) and 
computational models (Bell & Gabora, 2016; DiPaola, 
2017; DiPaola, Gabora, & McCaig, 2018; McCaig, DiPaola, 
& Gabora, 2016), as well as technologies such as functional 
magnetic resonance imaging (Jung & Vartanian, 2018). 

Conclusions 
The constructs of convergent and divergent thought have 
been around for half a century, and the way they are defined 
and measured has changed little in that time. Meanwhile, we 
have made headway in understanding the dynamics of the 
compounds of concepts that constitute ideas, and in 
modeling how they interact as one thought gives way to the 
next. Given the presence of inconsistences in how 
convergent and divergent thought are conventionally 
defined and measured, it seems appropriate to revise our 
understanding of them in light of recent advances in 
understanding the internal workings of these processes. This 
paper has shown how formal research on concepts can pave 
the way to a new way of defining, measuring, and thinking 
about convergent and divergent thought.  

Note that this is not the only potentially fruitful avenue 
for research yielded by a joining of forces between research 
on concepts and research on creativity. For example, there 
are hints that the above-mentioned presence of interference 
and entanglement effects in empirical studies of conceptual 
change are related to creativity, but to date this has not been 
systematically explored. Another direction for future 
research concerns the role of incubation: the idea that 
setting a creative task aside for a while, or incubating on it, 
can promote insight. One could model this as letting the 
idea return to its ground state such that it sheds its coterie of 
typical properties (and contexts), and taps into its reservoir 
of infinite potentiality (in the sense that no properties are 
definitively present nor absent). 

Another intriguing prospect this line of inquiry leads to is 
the following. Creative people are more subject to 
adoration, as well as social disapproval and even bullying, 
and it is generally assumed that this is because they violate 
social norms (Sternberg & Lubart, 1995). However, this 
may not be the whole story. I have suggested that the 
creative mind is in the process of honing ambiguous mental 
forms, and indeed it has long been thought that creative 
people are particularly comfortable with ambiguity (e.g., 
Tegano, 1990; but see also, Merrotsy, 2013). This may 
include ambiguity with respect to how they themselves 
come across, which in turn may make them more vulnerable 
to other people’s projections. In other words, they may be 
more subject to misinterpretation, appearing as Gods or 
Goddesses to some, and as devils to others. 

It is hoped that this paper has provided a glimpse of how 
formal models of concepts can play a key role in the 
development of a 21st Century understanding of this most 
human of abilities, the ability to create. 
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Abstract 
Although Darwinian models are rampant in the social 
sciences, social scientists do not face the problem that 
motivated Darwin’s theory of natural selection: the problem 
of explaining how lineages evolve despite that any traits they 
acquire are regularly discarded at the end of the lifetime of the 
individuals that acquired them. While the rationale for 
framing culture as an evolutionary process is correct, it does 
not follow that culture is a Darwinian or selectionist process, 
or that population genetics provides viable starting points for 
modeling cultural change. This paper lays out step-by-step 
arguments as to why a selectionist approach to cultural 
evolution is inappropriate, focusing on the lack of 
randomness, and lack of a self-assembly code. It summarizes 
an alternative evolutionary approach to culture: self-other 
reorganization via context-driven actualization of potential. 

Keywords: acquired trait; cultural evolution; inheritance; 
natural selection; population genetics; self-other re-
organization 

Introduction 
Though several of the deepest evolutionary thinkers of the 
20th Century cautioned against the over-zealous application 
of Darwinian theory (Claidière, Scott-Phillips, & Sperber, 
2014; Fracchia & Lewontin, 1999; Mayr, 1996; Tëmkin & 
Eldredge, 2007), Darwinian models are rampant in the 
social sciences. The frameworks of population genetics has 
been applied to cultural evolution (Boyd & Richerson, 
1988; Brewer et al., 2017; Cavalli-Sforza & Feldman, 1981; 
Creanza, Kolodny, & Feldman, 2017; Henrich et al., 2016), 
as well as to archaeology (O’Brien & Lyman, 2000), 
economics (Essletzbichler, 2011; Hodgson, 2002; Nelson & 
Winter, 2002), neuroscience (Edelman, 2014), the evolution 
of languages (Fitch, 2005; Pagel, 2017), and the unfolding 
of a creative idea in the mind of an individual (Campbell, 
1960; Kronfeldner, 2014; Simonton, 1999; for counter-
arguments see Gabora, 2007). This paper focuses 
exclusively on the question of whether cultural evolution is 
Darwinian. This is a different project from that of 
examining how natural selection has shaped the propensity 
for culture, language, artifacts, and so forth; it models 
cultural change itself as a second Darwinian process.  

The rationale is that since cultural forms, like biological 
forms, evolve, i.e., exhibit cumulative, adaptive, open-ended 
change, culture constitutes a second evolutionary process. 
This is undoubtedly true. However, cultural Darwinism goes 
further than the claim that culture evolves; it assumes that 
the formal framework of population genetics, with 
appropriate tinkering to accommodate culture-specific 
phenomena, provides a viable foundation for modeling this 
second evolutionary process. 

Many have laid out the similarities and differences 
between biological and cultural evolution (Godfrey-Smith, 
2012; Jablonka & Lamb, 2014; Mesoudi, 2007; Wagner & 
Rosen, 2014). The issue addressed here is not how similar 
they are, but the extent to which the algorithmic structure of 
cultural evolution merits importation of a Darwinian 
framework. This paper lays out two arguments against this 
project, breaking them down step by step so as to facilitate 
the identification and settling of any points of disagreement. 
The first, the weaker argument, pertains to the issue of 
randomness. The second pertains to the existence of a self-
assembly code. We will see that due to limited interaction 
with cognitive science, cultural evolution research has paid 
little attention to structure of the human minds that evolve 
culture, and the processes by which elements of culture take 
form. This has led to the misapplication of evolutionary 
concepts to culture, resulting in lack of appreciation of its 
essentially non-Darwinian character. The paper concludes 
with a brief discussion of an alternative, non-Darwinian 
evolutionary framework for culture. 

Definitions 
It is true that any definition of a term is fine so long as 
everyone agrees how it is being used. However, part of why 
it has been difficult to nail down the extent to which cultural 
forms evolve in the same sense as biological forms is that, 
in drawing parallels between biological and cultural 
evolution, existing terms have been stretched beyond their 
conventional meanings. When they are used in ways that do 
not capture the deep structure or essence of their original 
meaning, or when a biological referent is misleadingly 
retained in a cultural context, misunderstanding can result. 
The matter is tricky, for although cultural evolution 
constitutes a separate evolutionary process with its own 
evolving structures and processes, it is inextricably 
interwoven with biological evolution1. To maintain clarity, 
key terms used in this paper are defined below: 
Acquired trait: a trait obtained during the lifetime of its 
bearer (e.g., a scar, a tattoo, or a memory of a song) and 
transmitted horizontally (i.e., laterally).2 
Culture: extrasomatic adaptations—including behavior and 
artifacts—that are socially rather than sexually transmitted. 

                                                        
1 For example, maternal diet during lactation can influence food 

preferences in offspring (Bilkó et al., 1994). 
2 These are acquired traits with respect to biological evolution. It 

will be argued that with respect to cultural evolution all traits are 
acquired. 
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Darwinian process: an evolutionary process that occurs 
through natural or artificial selection.3 
Darwinian threshold: transition from non-Darwinian to 
Darwinian evolutionary process (Woese, 2002; Vetsigian, 
Woese, & Goldenfeld, 2006). 
Evolutionary process: a process that exhibits cumulative, 
adaptive, open-ended change.  
Gene: a component of a self-assembly code, i.e., a unit of 
heredity.4 
Generation: a single transition period from the internalized 
to the externalized form of a trait.   
Horizontal transmission: The spread of a trait within a 
generation. 
Inherited trait: a trait (e.g., blood type, or the capacity to 
suntan) that is transmitted vertically (e.g., from parent to 
offspring) by way of a self-assembly code (e.g., DNA). 
Modern Synthesis: merging of Darwin’s theory of natural 
selection and Mendelian genetics in the 1940s. 
Organism: the living expression of a particular self-
assembly code, sometimes referred to as an ‘individual’. 
Phylogenetic network: model of the relationships amongst 
variants that is pictured as reticulate, or ‘network-like’. 
Phylogenetic tree: model of the relationships amongst 
different species that is pictured as branching, or ‘tree-like’. 
Population genetics: branch of biology central to which is 
a mathematical theory of how organisms evolve through 
natural selection due to changes in gene frequencies. It was 
originally developed by Fisher (1930), Wright (1931), and 
Haldane (1932) and subsequently expanded (Hartl & Clark, 
2006).  
Selection: differential replication of randomly generated 
heritable variation in a population over generations such that 
some traits become more prevalent than others. Selection 
may be natural (due to non-human elements of the 
environment) or artificial (due to human efforts such as 
selective breeding), and it can occur at multiple levels, e.g., 
genes, individuals, or groups (Lewontin, 1970). 
Selectionist process: like the term ‘Darwinian process’ this 
refers to an evolutionary process that occurs through natural 
or artificial selection. (It will be used from this point on 
because it avoids potential confusion caused by the fact that 
Darwin considered other possibilities.) 
Self-assembly code: a set of self-replication instructions. 
Self-other Reorganization (SOR): a theory of how both 
culture, and early life, evolve through communally 

                                                        
3 Although evolution by selection is the process Darwin’s name 

became most synonymous with, it is interesting to note that 
amongst his many musings was a theory of  pangenesis involving  
transmission of acquired traits (Darwin, 1868). 

4 In biology, the term ‘gene’ generally refers to a sequence of DNA 
or RNA nucleotides that code for a molecule with a particular 
function. It will be argued that, with respect to cultural evolution, 
there is no self-assembly code, and thus no equivalent to the 
gene. 

exchanging, self-organizing networks that generate new 
components through their interactions. Based on post-
Modern Synthesis theory and findings in biology. 
Vertical transmission: The inheritance of a trait from one 
generation to the next by way of a self-assembly code. 

It is important to point out that we are using the term 
‘selection’ in its technical, scientific sense. The word 
‘selection’ also has an ‘everyday’ sense in which it is 
synonymous with ‘choosing’ or ‘picking out’. One could 
say that selection—in the everyday sense of the term—
occurs in a competitive marketplace through the winnowing 
out superior products. However, the discussion here 
concerns whether selection in the scientific sense of the term 
is applicable to cultural evolution. 

Note that, with respect to biological evolution, a new 
generation (one transmission event) generally (though not in 
horizontal gene transfer) begins with the birth of an 
organism. It is not impossible for the same trait to be 
transmitted horizontally in one generation and vertically in 
another. However, with respect to cultural evolution, a new 
generation begins with the expression of an idea (again, one 
transmission event). Thus, over the course of a single 
discussion, an idea (a cultural trait) can undergo many 
generations. It can be said that cultural evolution proceeds 
more quickly than human biological evolution5, since the 
lengthy period we associate with biological generations, 
from birth through development to puberty and reproductive 
maturity to parenthood, is in general significantly longer 
than the stretch of time between when an individual acquires 
a cultural trait (e.g., an idea) and then expresses (their own 
version of, or their own take on) that cultural trait.  

Note also that vertical and horizontal transmission must 
be defined with respect to the relevant evolutionary process. 
A common error is to refer to the transmission of cultural 
information from parent to offspring as vertical transmission 
(e.g., Cavalli-Sforza & Feldman, 1981). The parent-child 
relationship is with respect to biological evolution; they are 
parent and child with respect to their status as biologically 
evolving organisms, but with respect to their status as 
participants in cultural evolution, there is no basis for this 
parent-child distinction. Indeed, while childbirth entails one 
mother and one father, there is no limit to the number of 
‘parental influences’ on the ‘birth’ of an idea.  

A related error is to say that in cultural evolution there is a 
third form of transmission, oblique transmission, in which 
traits are transmitted from non-kin members of the parental 
generation (e.g., Cavalli-Sforza & Feldman, 1981), for as far 
as cultural evolution is concerned it is irrelevant whether the 
information comes from biological kin or non-kin.  

In a similar vein, although dual inheritance theorists 
speak of culture as a second form of inheritance (Henrich & 
McElreath, 2007; Richerson & Boyd, 1978; Whiten, 2017; 
Müller, 2017), the distinguishing feature of an inherited trait 
is that it is transmitted vertically—e.g., from parent to 
                                                        
5 We are not referring here to clock time but to the relative mean 

duration of biological versus cultural generation processes. 
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offspring—by way of a self-assembly code (e.g., DNA), and 
therefore not obliterated at the end of a generation. This is 
not the case with respect to cultural traits (Gabora, 2011). 
(Nor, as we shall see, is it even the case for all biological 
traits.)  

As a final preliminary note, it is important to keep in mind 
that organisms (including humans) are affected by 
epigenetic processes that influence the regulation and 
expression of genetic traits  due to interactions with the 
environment, as well as selection effects operating on 
groups as well as individuals (Wilson, 1975). For simplicity, 
this paper does not explore these complications in detail but 
their relevance to the argument presented here is discussed 
elsewhere (Voorhees, Read, & Gabora, in press). 

Randomness 
It is possible for a selectionist model to be applicable even if 
the underlying process is not random, but in that case, 
although not genuinely random, the process must be 
approximated by a random distribution.6 Biological 
variation is not genuinely random (for example, we can 
trace the source of some mutations to various causal agents; 
see Caporale 2000) but the assumption of randomness 
generally holds sufficiently well to serve as a useful 
approximation.7  

With respect to culture, variation is not randomly 
generated, nor can it be described by a random distribution. 
Selectionist cultural theorists sometimes concede this point 
(Heyes, 2018), but fail to recognize its implications for the 
assumed validity of a selectionist framework. Natural 
selection acts upon nonrandomly generated variation, but to 
the extent that variation is not randomly generated, the 
distribution of variants reflects whatever is biasing the 
generation away from random in the first place, rather than 
selection (i.e., differential selection on the distribution of 
randomly generated heritable variation in a population over 
generations). Let us break this argument down step by step. 
1. Natural selection is a two-step process, consisting of (i) 

generation of random variants that differ in fitness, 
followed by (ii) differential survival and reproduction of 
the fittest variants.  

2. The first step provides variation upon which selection 
can operate, and the adaptiveness of the process resides 
not in the first step (how variants are generated) but the 
second (how fit variants are selected). 

3. To the extent that variants do not differ in fitness, their 
evolution is attributed not to selection but to random 
genetic drift (Fisher, 1930; Hartl & Clark, 2006).8 

                                                        
6 Few things other than radioactive decay are truly random. 
7

 Actually, in some biological situations, such as assortative mating, 
the assumption of randomness does not hold, and in such cases 
natural selection is not an appropriate model. 

8 Drift has been demonstrated in human culture (Bentley, Hahn, & 
Shennan, 2004), and in a computational model of cultural 
evolution (Gabora, 1995). 

4. To the extent that the generation of variants cannot be 
described by a random distribution, their evolution is 
attributed not to selection but to the nature of this 
nonrandom generation process. 

5. Cultural change cannot be approximated by a random 
distribution; it is orders of magnitude more non-random 
than biological evolution. It is strategic and creative, 
with ideas emerging due to spreading activation and 
overlap amongst distributed mental representations 
encoded in associative memory (Gabora, 2013). 

6. Therefore, a selectionist model is inappropriate to the 
description of cultural change.  

In the cultural Darwinism literature there is much 
discussion of social learning (obtaining existing information 
from someone else), and some mention of individual 
learning (obtaining existing information through nonsocial 
means), but little about creativity, reasoning, planning, 
problem solving, i.e., the the highly non-random higher 
cognitive processes that generate cultural novelty. In a 
paper titled “grand challenges for the study of cultural 
evolution” (Brewer et al., 2017), absent from among the 
eight challenges is the challenge of studying the creative 
processes that fuel cultural evolution. The closest they come 
is to ask “How are innovations selectively transmitted” and 
“Do innovations create feedback loops leading to 
cumulative culture?” It seems that understanding how 
innovations come about in the first place is more 
fundamental than knowing how they are “selectively 
transmitted” or whether they create feedback loops. Without 
the creative generation of cultural novelty, there is no 
cultural evolution. As demonstrated in an agent-based 
computational model of cultural evolution (Gabora, 1995); 
when agents never imitate, cultural evolution does occur, 
albeit slowly, as each agent figures things out on its own, 
but when agents never create, there is no cultural evolution 
at all. Thus, understanding creativity would appear to be the 
‘grandest’ challenge of all for cultural evolution research. 

The ‘randomness’ argument puts a major dent in the 
theory that cultural evolution is selectionist, but it does not 
destroy it altogether. It is possible that after variation has 
been generated by way of nonrandom processes there might 
still be work for selection to do in winnowing out the very 
fittest. However, we now turn to the more serious problem, 
that in cultural evolution there is no self-assembly code.  

Self-assembly Code 
In biological evolution there are two kinds of traits: (1) 
inherited traits (e.g., blood type), transmitted vertically from 
parent to offspring by way of genes, and (2) acquired traits 
(e.g., a tattoo), obtained during an organism’s lifetime, and 
transmitted horizontally amongst conspecifics.9 A 
selectionist explanation works in biology to the extent that 
retention of acquired change is negligible compared to 
                                                        
9 This is a simplification, for there exist traits that are encoded in 

genetic material, but this genetic material does not constitute a 
full-fledged self-assembly code (see Bonduriansky & Day, 2009). 
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retention of selected change; otherwise the first, which can 
operate instantaneously, overwhelms the second, which 
takes generations. Transmission of acquired traits is avoided 
through use of a self-assembly code (such as the genetic 
code), i.e., a set of instructions for how to reproduce. 
Because a lineage perpetuates itself using a self-assembly 
code, inherited traits are transmitted while acquired traits are 
not.10  

Now let us turn to culture. In cultural evolution, there is 
no self-assembly code, and no vertically transmitted 
inherited traits; all change is acquired.11 Therefore, cultural 
evolution is not due to the mechanism Darwin proposed: 
differential replication of heritable variation in response to 
selection. The only response to this argument I know of 
comes from Mesoudi (2007): “[the] point concerning the 
lack of self-assembly codes in cultural entities is, again, 
well-taken when compared to many biological organisms, 
but may not hold if we take viruses as our biological 
exemplar, which similarly cannot self-replicate in the 
absence of a host, or … the evolution of early RNA-based 
life before DNA-based replication mechanisms evolved.” 
This response evades the problem, for the argument is not 
that cultural evolution differs from biological evolution, but 
that the assumptions underlying the formal framework 
developed to describe evolution by natural selection renders 
it inapplicable to culture. Indeed, it is also inapplicable to 
the description of some aspects of biological evolution, but 
that should be more reason for concern, not less. 

Thus, to help determine whether there is a genuine flaw in 
the argument, and if so pinpoint what that flaw is, we again 
break the argument down into steps: 
1. To the extent that an evolutionary process is amenable to 

a selectionist model, there are two kinds of traits: 
vertically transmitted inherited traits, and horizontally 
transmitted acquired traits. 

2. Acquired traits are discarded from a lineage at the end of 
every generation. 

                                                        
10 An organism may bypass the disappearance of acquired traits 

through niche construction, i.e., by modifying its environment in 
such a way as to influence the behavior (and potentially gene 
regulation) of offspring. Thus, by ‘building acquired traits into 
the environment’, one generation may influence the traits 
exhibited by the next (Lewontin, 1998). However, acquired 
change is sufficiently negligible relative to inherited change that 
a selectionist explanation is still of value in explaining biological 
evolution. 

11 An anonymous reviewer suggested natural language is a cultural 
self-assembly code. However, (1) natural language is not a set of 
encoded instructions for the self-replication of natural languages, 
and (2) culture does not exhibit the signature characteristics of 
evolution by way of a self-assembly code: lack of transmission  
of acquired traits, and culture is characterized by horizontal not 
vertical transmission. Nevertheless, culture may be moving 
toward a cultural Darwinian threshold. In other words, it may 
exist in the state biological life was in before LUCA (last 
universal common ancestor) (Woese, 1998). 

3. This means that evolution (i.e., cumulative, open-ended, 
adaptive change) in biological lineages cannot be 
explained in terms of acquired traits. 

4. Therefore, it is explained in terms of inherited traits. 
5. In biological evolution, inherited traits are not discarded; 

they are preserved by way of a self-assembly code. The 
code’s low-level information-bearing components must 
be organized in an orderly manner so they can be parsed 
into meaningful units; otherwise, the precisely 
orchestrated process by which the code is expressed to 
generate offspring is disrupted. 

6. The population genetics framework was developed to 
explain change in a system such as this where the slow 
process of selection for inherited traits over generations 
is not drowned out by the fast process of acquired 
change (which can take place over milliseconds). 

7. Biological evolution is therefore explainable in terms of 
differential selection on the distribution of randomly 
generated heritable variation in a population over 
generations, i.e., natural selection. 

8. Since acquired change operates markedly faster than 
inherited change, to the extent that acquired change is 
not wiped out at the end of each generation, a population 
genetics framework is inappropriate as an explanatory 
model. 

9. In cultural evolution, there is no distinction between 
vertically transmitted inherited traits and horizontally 
transmitted acquired traits. Since all traits are 
horizontally transmitted, we may refer to them as 
cultural acquired traits. 

10. Cultural acquired traits are not regularly discarded from 
cultural lineages at the end of generations. 

11. This means that evolution (i.e., cumulative, open-ended, 
adaptive change) in cultural lineages can be explained in 
terms of acquired traits. 

12. Moreover, culture is not transmitted by way of inherited 
traits. 

13. Therefore, cultural change, unlike biological change, 
cannot be explained in terms of change in the frequency 
of inherited traits; there exists no basis upon which to 
explain cultural evolution in terms of differential 
selection of inherited traits on the distribution of 
randomly generated heritable variation in a population 
over generations, i.e., using a selectionist framework. 

14. Cultural evolution must therefore be explained entirely 
in terms of changes to acquired traits. 

This argument has important implications for how 
cultural data is modeled. Since biological acquired traits are 
usually (though not always) discarded, and since a self-
assembly code must stay intact to preserve its self-
replication capacity, the joining of bifurcations in biological 
lineages is rare; thus, a phylogenetic tree correctly captures 
the branching structure. However, since cultural acquired 
traits are not discarded, and there is no cultural self-
assembly code, the joining of bifurcations in cultural 
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‘lineages’ is commonplace, and thus the structure is 
network-like rather than the tree-like (Gabora, 2006b). This 
difference has been demonstrated mathematically using 
split-decomposition graphs (Bandelt & Dress, 1992; 
Wägele, 2005). Dress and colleagues showed that while 
biological data generate branching graphs, reanalysis of data 
from a psychological experiment in which people were 
asked to estimate the subjective distance between colours 
gives a very different structure (Dress, Huson, & Moulton, 
1996). This difference in the deep structure of biological 
data and cultural data such as languages, concepts, and 
artifacts arising from human cognition, is why phylogenetic 
tree models of culture are problematic. 

Self-Other Reorganization (SOR): An 
Alternative Approach to Cultural Evolution 

The above analysis precludes a selectionist but not an 
evolutionary framework for culture. Indeed, research since 
the Modern Synthesis has shown that even life itself is only 
partially explained through recourse to a selectionist 
framework; for example, though biological traits are 
generally obtained through vertical inheritance, horizontal 
gene transfer (HGT) involves horizontal transmission 
(Ochman et al., 2000). Evolution can occur in the absence of 
selection, and the importance of non-selectionist processes 
in evolution is increasingly recognized (Kauffman, 1993; 
Killeen, 2017; Woese, 2002). Research on the origin of life 
suggests that early life consisted of autocatalytic protocells 
that evolved through a non-selectionist means, and natural 
selection emerged later from this more haphazard, ancestral 
evolutionary process (Baum, 2018; Cornish-Bowden & 
Cárdenas, 2017; Gabora, 2006; Goldenfeld, Biancalani, & 
Jafarpour, 2017; Hordijk, Steel, & Dittrich, 2018; Steel, 
2000; Vetsigian, Woese, & Goldenfeld, 2006). This non-
selectionist process requires (1) a self-organizing network of 
components that generate new components through their 
interactions, (2) the network should be able to reconstitute 
another like itself through haphazard (not code-driven) 
duplication of components, and (3) interaction amongst 
networks. This process can be referred to as Self-Other 
Reorganization (SOR) because it involves an interplay 
between self-organized internal restructuring, and 
communal exchange amongst autocatalytic structures. 
Change occurs not through selection but through a process 
that has a completely different mathematical description: 
context-driven actualization of potential (Gabora & Aerts, 
2005). The entity changes through interactions with its 
world, which in turn alters its potential for future 
configurations. Like selectionist evolution, SOR has 
mechanisms for preserving continuity and for introducing 
novelty, but unlike selectionist evolution, it is a low-fidelity 
Lamarckian process. The distinction between these two 
processes is summarized in Table One. 

Vetsigian et al. (2006) showed that to cross the Darwinian 
threshold from non-selectionist to selectionist evolution 
requires the emergence of a self-assembly code. There is no 
evidence that culture has crossed this threshold, and it does 

not possess the sine qua non of having crossed it: vertical 
transmission and lack of transmission of acquired traits. It 
has been proposed that, as did early life, culture evolves 
through SOR (sometimes referred to as ‘communal 
exchange’) (Gabora, 1999, 2004, 2019). Here, the self-
organizing networks are not protocells exchanging catalytic 
molecules, but minds exchanging ideas. Tools improve and 
fashions change not through selection but through context-
driven actualization of potential (Gabora & Aerts, 2005). As 
parents share knowledge with children, an integrated 
network of understandings takes shape in their minds, and 
they become creative contributors to cultural evolution. 

There are other network-based approaches (e.g., Bentley 
& Shennan, 2003), and non-selectionist models of cultural 
evolution, e.g., those based on the Price equation (e.g., El 
Mouden, André, Morin, & Nettle, 2014). SOR’s uniqueness 
lies in its emphasis on the emergence of a network of 
understandings that is reinforced and expanded upon 
through its ongoing use as a scaffold to interpret and reflect 
upon new information; in other words, that crosses the 
threshold from ‘deep learning’ to ‘deep reflection’. It has 
been noted that a tension exists between cultural evolution 
theory and the literature on human nature (Lewens, 2017). 
Because SOR is not incompatible with transmission of 
acquired traits, and because it recognizes the integrated, 
‘self-mending’ nature of a mind, SOR provides a natural 
means of reconciling cultural evolution and human nature. 

 
Table One: Comparison between evolution through 

selection and evolution through Self-Other Reorganization. 
 

 Selection Self-other Re-
organization 
(SOR) 

Unit of self-
replication 

Organism Self-organizing 
autocatalytic 
network 

Mechanism for 
preserving 
continuity 

Reproduction (vertical 
transmission), 
proofreading enzymes, 
etc. 

Communal 
exchange 
(horizontal 
transmission) 

Generation of 
novelty 

Mutation, 
recombination 

Creativity, 
transmission error 

Self-assembly 
code  

DNA or RNA None 

High fidelity Yes No 
Transmission of 
acquired traits 

No Yes 

Type  Selectionist Lamarckian (by 
some standards) 

Evolution 
processes it can 
explain 

Biological  Early life; 
horizontal gene 
transfer, culture 

Conclusions 
Darwin faced the problem of explaining how lineages 
evolve despite that acquired changes are lost from a lineage 
when the individuals that acquired them dies. Darwin’s 
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solution was to come up with a population-level (macro) 
explanation. His theory of natural selection holds that 
although acquired traits are discarded, inherited traits are 
retained, so evolution can be explained in terms of 
preferential selection for those inherited traits that confer 
fitness benefits on their bearers. Cultural evolution research 
does not face the problem that motivated Darwin’s 
solution—that of explaining how evolution takes place 
despite the discarding of acquired traits—because cultural 
acquired traits are not discarded. Thus, while the rationale 
for framing culture as an evolutionary process is correct, it 
does not follow that culture is a selectionist process, or that 
population genetics provides a viable starting point for 
modeling cultural change. Cultural evolution research has 
been carried out largely independent of research on the 
mental structures that actually evolve culture. This has led 
to the mis-application of biological constructs such as 
generations, inheritance, and vertical / horizontal 
transmission. This in turn has hindered appreciation of the 
dependence of vertical inheritance on a self-assembly code, 
and recognition of the implications of its absence in cultural 
evolution. The field needs cognitive scientists to uncover the 
cognitive processes by which culture actually takes shape. 

Psychologists use the term mental set to refer to the 
persistent use of problem-solving strategies that worked in 
the past even when these strategies are not appropriate to the 
problem at hand. It appears that the persistent application of 
a selectionist framework to cultural evolution, despite that 
the conditions that make that framework applicable in 
biology are not present with respect to culture, may be an 
instance of mental set. This paper has laid out step-by-step 
arguments as to why a selectionist approach to culture is 
inappropriate, and pointed to an alternative approach. 
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Abstract
To understand the representations learned by neural networks
(NNs), various methods of measuring unit selectivity have
been developed. Here we undertake a comparison of four such
measures on AlexNet: localist selectivity (Bowers et al., 2014);
precision (Zhou et al., 2015); class-conditional mean activity
selectivity CCMAS (Morcos et al., 2018); and top-class se-
lectivity. In contrast with previous work on recurrent neural
networks (RNNs), we fail to find any 100% selective ‘local-
ist units’ in AlexNet, and demonstrate that the precision and
CCMAS measures are misleading and suggest a much higher
level of selectivity than is warranted. We also generated ac-
tivation maximization (AM) images that maximally activated
individual units and found that under (5%) of units in fc6 and
conv5 produced interpretable images of objects, whereas fc8
produced over 50% interpretable images. Furthermore, the
interpretable images in the hidden layers were not associated
with highly selective units. We also consider why localist rep-
resentations are learned in RNNs and not AlexNet.
Keywords: localist representation; grandmother cells; dis-
tributed representations.

Introduction
There have been recent attempts to understand how neural
networks (NNs) work by analyzing hidden units one at a time
using various measures such as localist selectivity (Bowers
et al., 2014), class-conditional mean activity selectivity (CC-
MAS) (Morcos et al., 2018), precision (Zhou et al., 2015),
and activation maximization (AM) (Erhan et al., 2009). These
measures are defined below, and they all provide evidence
that some units respond selectively to categories under some
conditions.

Our goal here is to directly compare different measures of
object selectivity on a common network trained on a single
task. We chose AlexNet (Krizhevsky et al., 2012) because it
is a well-studied CNN and many authors have reported high
levels of selectivity in its hidden layers via both quantitative
(Zhou et al., 2018, 2015) and qualitative methods using Ac-
tivation Maximization (AM) images (Nguyen et al., 2017;
Yosinski et al., 2015; Simonyan et al., 2013). Our main find-
ings are:

1. The different measures provide very different estimates of
selectivity.

2. The precision and CCMAS measures are misleading with
near perfect selectivity scores associated with units that
strongly respond to many different image categories. CC-
MAS scores are also ambiguous, as explained below.

3. There are no localist ‘grandmother cell’ representations
in AlexNet, in contrast with the localist representations
learned in some RNNs.

4. Units with interpretable AM images do not necessarily cor-
respond to highly selective representations.

5. New selectivity measures are required to provide a better
assessment of the learned hidden representations in NNs.

Bowers et al. (2014, 2016) assessed the selectivity of hid-
den units in recurrent NNs using networks similar to those
developed by Botvinick & Plaut (2006) designed to explain
human short-term memory performance. They reported many
‘localist’ units that are 100% selective for specific letters or
words, where all members of the selective category were
more active than and disjoint from all non-members, as can
be shown in jitterplots (Berkeley et al., 1995), see Fig. 1 for a
unit selective to the letter ‘j’).

These localist representations were compared to ‘grand-
mother cells’ as discussed in neuroscience (Bowers, 2017a).
Bowers et al. (2014) argued that the network learned these
representations in order to co-activate multiple letters or
words at the same time in short-term memory without pro-
ducing ambiguous blends of overlapping distributed patterns
(the so-called ‘superposition catastrophe’). Consistent with
this hypothesis, localist units did not emerge when the model
was trained on letters or words one-at-a-time (a condition in
which the model did not need to overcome the superposition
catastrophe (Bowers et al., 2014)), see Fig. 1 for an example
of a non-selective unit)

In parallel, researchers have reported selective units in the
hidden layers of various CNNs trained to classify images into
one of multiple categories ((Zhou et al., 2015; Morcos et al.,
2018; Zeiler & Fergus, 2014; Erhan et al., 2009), for a review
see (Bowers, 2017a)). For example, Zhou et al. (2015) as-
sessed the selectivity of units in the pool5 layer of two CNNs
trained to classify images into 1000 objects and 205 scene
categories, respectively. They reported multiple ‘object de-
tectors’ (as defined below) in both networks. Similarly, Mor-
cos et al. (2018) reported that CNNs trained on CIFAR-10 and
ImageNet learned many highly selective hidden units, with
CCMAS scores often approaching the maximum of 1.0.

Note that these later studies show that selective represen-
tations develop in CNNs trained to classify images one-at-
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Figure 1: Examples of selectivity measures used. Top left: jitterplot of unit 113 in an RNN under the superposition constraint
selective the letter ‘j’. Top middle: jitterplot of non-selective unit 160 found when RNN trained on words one-at-a-time;
from (Bowers et al., 2016). Top right: activation maximization (AM) image of a unit in conv5 of AlexNet that looks like a
lighthouse; from (Nguyen et al., 2016). Bottom: highest activation images for a ‘lamp’ detector with 84% precision in layer
pool5 of AlexNet; from (Zhou et al., 2015).

a-time. This appears to be inconsistent with Bowers et al.
(2016) who (a) failed to obtain selective representations for
letters or words under these conditions (see Fig. 1); and (b)
it suggests that there are additional pressures for CNNs to
learn selective representations above and beyond the chal-
lenge of overcoming the superposition catastrophe. How-
ever, the measures of selectivity that have been applied across
studies are different, and accordingly, it is difficult to directly
compare results.

In order to directly compare and have a better understand-
ing of the different selectivity measures we assessed (1) lo-
calist, (2) precision, and (3) CCMAS selectivity on the prob,
fc8, fc7, fc6, and conv5 layers of AlexNet. We also introduce
a new measure called top-class selectivity, and show that the
precision and CCMAS measures provide much higher esti-
mates of object selectivity compared to other measures. Im-
portantly, we do not find any localist ‘grandmother cell’ rep-
resentations in the hidden layers of AlexNet, consistent with
the hypothesis that the superposition catastrophe provides a
pressure to learn more selective representations (Bowers et
al., 2014, 2016).

In addition, we compared these selectivity measures to a
state-of-the-art activation maximization (AM) method for vi-
sualizing single-unit representations in CNNs (Nguyen et al.,
2017). AM images are generated to strongly activate individ-
ual units, and some of them are interpretable by humans (e.g.,
a generated image that looks like a lighthouse, see Fig. 1). For
the first time, we systematically evaluated the interpretability
of the AM images in an on-line experiment and compare these
ratings with the selectivity measures for corresponding units.
We show that hidden units with interpretable AM images are
not highly selective.

It is important to emphasize that these different measures
have all been used to provide insights into the same set of
issues. For example, both interpretability of generated im-
ages (Le et al., 2011) and localist selectivity (Bowers et al.,
2014) have been used to make claims about ‘grandmother

cells’. The different measures have also been directly com-
pared to one another. For example, Zhou et al. (2015) claim
that the object detectors learned in CNNs play an important
role in identifying specific objects, whereas Morcos et al.
(2018) challenge this conclusion based on their finding that
units with high CCMAS measures were not especially impor-
tant in the performance of their CNNs. Indeed, based on the
finding that high CCMAS scores were not predictive of per-
formance, Morcos et al. wrote: “...it implies than methods for
understanding neural networks based on analyzing highly se-
lective single units, or finding optimal inputs for single units,
such as activation maximization (Erhan et al., 2009) may be
misleading”. This makes a direct comparison between mea-
sures all the more important.

Methods
Networks and Datasets All ∼1.2M photos from Ima-
geNet2010 (Deng et al., 2009) were cropped to 277× 277
pixels and classified by the pre-trained AlexNet CNN
(Krizhevsky et al., 2012) shipped with Caffe (Jia et al.,
2014), resulting in 721,536 correctly classified images.
Once classified, the images are not re-cropped nor subject
to any changes. In Caffe, the softmax operation (Denker
& leCun, 1991) is applied at the ‘prob’(ability) output
layer that contains 1000 units (one for each class). We
analyzed these prob units, the fully connected (fc) layers:
fc8 (1000 units) that encodes the outputs prior to the
softmax operation, fc6 and fc7 (4096 units), and the top
convolutional layer conv5 which has 256 filters. We only
recorded the activations of correctly classified images. The
activation files are stored in .h5 format and can be retrieved at
https://bristol.codersoffortune.net/AlexNet Merged/.
We selected 233 conv5, 2738 fc6, 2239 fc7, 911 fc8, and 954
prob units for analysis.

Localist selectivity Here we define a unit to be localist for
class A if the set of activations for class A was disjoint with
those of not A (¬A).

Localist selectivity is easily depicted with jitterplots in
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which a scatter plot for each unit is generated (see Figs. 3
and 4). Each point in a plot corresponds to a unit’s activation
in response to a single image, and only correctly classified
images are plotted. The level of activations is coded along
the x-axis, and an arbitrary value is assigned to each point on
the y-axis (they are jittered).

Top-Class selectivity Top-class selectivity is related to lo-
calist selectivity except that it provides a continuous rather
than discrete measure. We counted the number of images
from the same class that were more active than all images
from all other classes (what we called the top cluster size)
and divided the cluster size by the total number of correctly
identified images from this class. 100% top-class selectivity
is equivalent to a localist representation.

Precision The precision method of finding object detectors
(Zhou et al., 2015, 2018) involves identifying a small subset
of images that most strongly activate a unit and then identi-
fying the critical part of these images that are responsible for
driving the unit. Zhou et al. (2015) took the 60 images that ac-
tivated a unit the most strongly and asked independent raters
to interpret the critical image patches. Zhou et al. (2015) de-
veloped a precision metric that calculated the percentage of
the 60 images that raters judged to depict the same class of
object (e.g., if 50 of the 60 images were labeled as ‘lamp’,
the unit would have a precision index of 50/60 or 83%; see
Fig. 1). Object detectors were defined as units with a pre-
cision > 75%: they reported multiple such detectors. Here
we approximate this approach by considering the 100 images
that most strongly activate a given unit and assess the highest
percentage of images from a given output class.

CCMAS Morcos et al. (2018) introduced a selectivity in-
dex based on the ‘class-conditional mean activation’ selectiv-
ity (CCMAS). The CCMAS for class A compares the mean
activation of all images in class A, µA, with the mean ac-
tivation of all images not in class A, µ¬A, and is given by:
(µA−µ¬A)/(µA +µ¬A). Morcos et al. (2018) states that this
metric should vary within [0,1], with 0 meaning that a unit’s
average activity was identical for all classes, and 1 meaning
that a unit was only active for inputs of a single class. Here,
we assessed class selectivity for the highest mean activation
class (CCMAS) as well as for the class with the second high-
est mean activation µA (what we call CCMAS 2) in order to
assess the extent to which CCMAS reflects the selectivity to
one class.

Activation Maximization We harnessed an activation
maximization method called Plug & Play Generative Net-
works (Nguyen et al., 2017) in which an image generator
network was used to generate images (hereafter, AM im-
ages) that highly activate a unit. We generated 100 sepa-
rate images that maximally activated each unit in the conv5,
fc6 and fc8 layers of AlexNet and displayed them in a grid
format. We then asked 333 participants to judge whether
they could identify any repeating objects, animals, or places
in images after receiving some practice trials. Participants
were recruited using Prolific (Attrition, n.d.; Palan & Schit-

ter, 2018), with the experiment run online using gorilla (Go-
rilla Experiment Builder, n.d.). Readers can test themselves
at: https://research.sc/participant/login/dynamic/63907FB2-
3CB9-45A9-B4AC-EFFD4C4A95D5.

Results
Comparison of selectivity measures.
The mean top-class, precision, and CCMAS selectivities
across the conv5, fc6 and fc7 layers are displayed in Fig. 2a–
c. We did not plot localist selectivity as there were no localist
‘grandmother units’ at any internal level (and only 10% at
the prob layer, due to the softmax function). The first point to
note is that the top-class, precision, and CCMAS measures all
increased in the higher layers, showing that they capture de-
grees of selectivity ignored by the localist measure. Second,
the top-class selectivity was extremely low across the hidden
layers, with means below 0.25% in the the conv5, fc6, and fc7
layers. Third, the different measures provided very different
estimates of selectivity. In contrast with top-class selectiv-
ity, the mean precision scores are over an order of magnitude
larger in the hidden layers of network, with average precision
scores of 9.6%, 12.1%, and 15.4% in layers conv5, fc6, and
fc7, respectively. Similarly, the CCMAS measure suggests
a much higher level of selectivity than top-class selectivity,
with mean scores of .49, .84, and .85 in the conv5, fc6, and
fc7 layers, respectively.

This discrepancy is most striking for the units with the
highest precision and CCMAS scores. For example, in Fig. 3
we illustrate why the unit fc6.1199 with the highest preci-
sion (95%) in fc6 should not be considered a Monarch but-
terfly detector. Fig. 3a depicts a jitterplot of activations to all
accurately identified images, with Monarch butterfly images
found across the range of activations. Fig. 3b shows a his-
togram that plots the distribution of activations for Monarch
butterflies. By far the most common activation to correctly
identified Monarch butterflies is 0 and the mean is 39.2±0.6.
Figures 3 displays example images with 0 (right top), mean
(right middle) and maximal (right bottom) activations, and all
are identifiable as Monarch butterflies. Thus, classifying this
unit as a Monarch butterfly detector is misleading.

Another surprising result is that we did not obtain any
100% top-class selectivity units (localist units) in the prob
layer of AlexNet. Rather, the mean top-class selectivity was
∼80% in the prob layer, and only ∼5% in fc8 (prior to the
softmax being applied). Fig. 4 depicts the pattern of activa-
tion for units fc8.11 and prob.11 that are examples of the most
top-class selective units in these layers (responding to im-
ages of ‘goldfinch’ birds with top-class selectivity measures
of 8.4% and 95.2%, respectively). Clearly these units do re-
spond much more selectively than the most selective units in
earlier layers (c.f. Fig. 3), and at the same time, the jitter-
plots show why we did not observe any localist units (a few
‘goldfinch’ images were less active than a few images from
other categories).

These jitterplots also show that top-class and localist se-
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Figure 2: Selectivity measures across different layers of AlexNet. Left: top-class selectivity. Middle: precision 100 (the
percentage of the top 100 images which are members of the top class). Right: Class-conditional mean activity selectivity
(CCMAS), N.B. as the mean of the unselected classes (µ¬A can be less than zero) the CCMAS can go above its expected
maximum of 1.

Figure 3: Data for unit fc6.1199. Left: activation jitterplot: black squares: Monarch butterfly images; grey circles: all other
classes. Middle: histogram of activations of Monarch butterflies. Right: example ImageNet images with activations of 0.0
(top), the mean (middle), and the maximum (bottom) of the range. Unit fc6.1199 has a precision of 95% over the top 100
images (98.3% over the top 60) and is thus classified as a butterfly detector, yet there are Monarch butterfly images covering
the whole range of values, with 72 images (5.8% of the total) having an activation of 0.0.

Figure 4: Example data from the fc8 and prob layers. Left:
jitterplot activations for unit fc8.11 that has a top-class selec-
tivity of 8.4%. Right: jitterplot activations for prob.11 (i.e.
post-softmax) that has top-class selectivity of 95.2%. Acti-
vations for the ‘ground truth’ class ‘goldfinch’ are shown as
black squares, all other classes are shown as greyscale circles.

lectivity provide somewhat misleading estimates of selectiv-
ity as well. Consider Fig. 4(left) that depicts a substantial
overlap between goldfinch and non-goldfinch activations on
unit fc8.11. The 8.4% top-class selectivity score captures the
selectivity for the most highly active goldfinch images, but

it is blind to the fact that almost all goldfinch images have
a reasonably high level of activation (more than most non-
goldfinch images). The problem with localist selectivity is
highlighted in Fig. 4(right) that shows that the measure misses
all but the most extreme version of selectivity. Together, these
findings suggest that new selectivity measures are required to
better characterize the representations in NNs: precision and
CCMAS measures strongly overestimate selectivity, and lo-
calist and top-class selectivity provide either a too strict or
too narrow a measure of selectivity.

Additional problems with the CCMAS measure

The main problem with the precision and CCMAS measures
is that they provide misleadingly high estimates of selectiv-
ity, but the CCMAS measure has some additional limitations.
First, if the CCMAS provided a good measure of a unit’s class
selectivity then one should expect that a high measure of se-
lectivity for one class would imply that the unit is not highly
selective for other classes. However, the CCMAS score for
the most selective category and the second most selective cat-
egory CCMAS 2 were similar across the conv5, fc6 and fc7
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a. One active item from one class. b. Archetypal ‘grandmother’ unit. c. One class more active than the others.
CCMAS = 1, CCMAS = 1, CCMAS = 0.06,

precision = 11%, TCS = 1%. precision = 100%,TCS = 100%. precision = 100%, TCS = 100%.

Figure 5: Example of where the CCMAS does not match intuitive understandings of selectivity. Generated example data:
(a) If a unit is off to all but a single image from a large class of objects, the CCMAS for that class is 1 (maximum possible
selectivity). (b) If a unit is strongly activated to all members of one class and off to everything else (an archetypal ‘grandmother’
cell) the CCMAS is the same as for (a) although the precision and top-class selectivity is vastly different. (c): If a unit has high
activations for all classes, but one class (black squares) is 0.1 more than all others (coloured circles), the CCMAS is very low
(0.06) despite being %100 top-class selective. The generated examples are for 10 classes of 100 items

Figure 6: Example AM images that were either judged by all participants to contain objects (top row) or judged by all par-
ticipants to be uninterpretable as objects (bottom row). The human judgement for conv5.183 (top left) was ‘dogs’ and the
top-class was ‘flat-coated retriever’. For fc6.319 (top middle) subjects reported ‘green peppers’ or ‘apples’ (all classified as
the same broad class in our analysis), and the CCMAS and top-class was ‘Granny Smith apples’. For fc8.969 (top right) hu-
mans suggested ‘beverage’ or ‘drink’: ground truth class for this unit is ‘eggnog’. The ground-truth for fc8.865 (bottom right)
is‘toy-store’.

layers, with the mean CCMAS scores .491, .844, and .848,
and the CCMAS 2 scores .464, .821, .831. For example,
unit fc7.0 has a CCMAS of .813 for the class ‘maypole’,
and a CCMAS 2 score of .808 for ‘chainsaw’ (with neither of
these categories corresponding ‘orangutan’ that had the high-
est precision of score of 14% and a top-class selectivity score
of .001%).

Second, the CCMAS measure provides an ambiguous mea-
sure of selectivity. To illustrate, consider the artificial scatter
plots depicted in Figs. 5a,b. Here we obtain the same per-
fect CCMAS scores for one unit that selectively responds to
one member of a category and another unit that selectively
responds to all members of a category. This is problematic
for a measure designed to assess *class* selectivity. Third, as
shown in Fig. 5c, it is even possible to have a low CCMAS
score for a unit with 100 percent top-class selectivity (that is,
a low CCMAS selectivity for a grandmother cell). Together,
these characteristics of the CCMAS measure may help ex-
plain why why Morcos et al. failed to observe the functional
importance of units with high CCMAS scores.

Human interpretation AM images

For the behavioral experiment, one hundred generated im-
ages were made for every unit in layers conv5, fc6 and fc8 in
AlexNet, as in Nguyen et al. (2017), and displayed as 10×10
image panels. A total of 3,299 image panels were used in the
experiment (995 fc8, 256 conv5, and 2048 randomly selected
fc6 image panels) and were divided into 64 counterbalanced
lists for testing. To assess the interpretability for these units
as object detectors, paid volunteers were asked to look at im-
age panels and asked if the images had an object / animal or
place in common. If the answer was yes, they were asked to
name that object simply (i.e. fish rather than goldfish). Anal-
yses of common responses was done for any units where over
80% of humans agreed there was an object present.

The results of the behavioral experiment in which humans
rated AM images are reported in Table 1. Consistent with
past research, the generated images in the output fc8 layer
were often interpreted as objects, and when they were given
a consistent interpretation, they almost always (95.4%) cor-
respond to the trained category. By contrast, less than 5%
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Table 1: Interpretability judgements. Number of judgments for conv5, fc6 and fc8 were 1332, 10,656 and 5,181, respectively.

LAYER % YES % OF UNITS % OVERLAP % OVERLAP
RESPONSES WITH ≥ 80% AMONG BETWEEN HUMANS AND:

YES RESPONSE HUMANS TOP CLASS CCMAS CLASS

conv5 21.7% ±1.1% 4.3% ± 1.3% 89.5%±5.7% 34.1%±14.4% 0%
fc6 21.0% ±0.4% 3.1% ± 0.4% 80.4%±4.1% 23.3%±5.9% 18.9% ±5.9%
fc8 71.2% ±0.6% 59.3% ±1.6% 96.5%±0.4% 95.4%±0.6% 94.6% ±0.7%

of units in conv5 or fc6 were associated with consistently in-
terpretable images, and as can be seen in Table 1, the inter-
pretations only weakly matched the category with the highest
top-class or CCMAS selectivity. The frequency with which
objects were seen by the participants was similar in layers
conv5 and fc6 layers and increased in fc8, consistent with the
top-class and and precision measures of selectivity.

Apart from showing that there are few interpretable units in
the hidden layers of AlexNet, our findings show that the inter-
pretability of images does not imply a high level of selectivity
given the maximum top-class selectivity for the hidden units
is well under 10% (Fig. 2). In most cases, the top-class selec-
tivity of the interpretable units was well under 1%. To briefly
illustrate the types of images that participants rated as objects
or non-objects see Fig. 6.

Discussions and Conclusions
Our central finding is that different measures of activation
selectivity support very different conclusions when applied
to the same units in AlexNet. In contrast with the precision
(Zhou et al., 2015) and CCMAS (Morcos et al., 2018) mea-
sures that revealed some highly selective units for objects in
layers conv5, fc6, and fc8, we found no localist representa-
tions, and the mean top-class selectivity in these layers was
well under 1%. These findings are in stark contrast with the
many localist ‘grandmother cell’ representations learned in
RNNs (Bowers et al., 2014, 2016; Bowers, 2017b).

Not only did the different measures provide very different
assessments of selectivity, we found that the precision and
CCMAS measures provided highly misleading estimates. For
example, a unit with over a 75% precision score for Monarch
butterflies had a top-class selectivity of under 5%. Although
Zhou et al. (2015) used 75% precision scores as the crite-
rion for ‘object detectors’, it is inappropriate to call this unit
a Monarch butterfly detector given that it did not respond
strongly to the majority of Monarch butterfly images (and in-
deed, the modal response was 0.0; see Fig. 3).

At the same time, we identified problems with the local-
ist, top-class, and activation maximization (AM) methods
as well. The localist selectivity measure failed to obtain
any localist representations, even at the output prob layer of
AlexNet. This measure is so extreme that it misses highly
selective representations that are of theoretical interest. The

top-class selectivity does provide a graded measure of selec-
tivity (with 100% top-class selectivity equivalent to a localist
grandmother cell), but it can underestimate selectivity when
a few member from outside the top-class are highly activated
(see Fig. 4 (right) for an example). At the same time, the
human interpretation of AM images provides a poor measure
of hidden-unit selectivity given that interpretable AM images
were associated with low top-class selectivity scores. These
findings highlight the need to provide better measures of se-
lectivity in order to better characterize the learned represen-
tations in NNs.

What should be made of the contrasting findings that lo-
calist representations are found in RNNs, but not in AlexNet?
The failure to observe localist units in the hidden layers of
AlexNet is consistent with the Bowers et al. (2014) claim that
these units only emerge in order to support the co-activation
of multiple items at the same time in short-term memory.
That is, localist representations may be the solution to the su-
perposition catastrophe, and AlexNet only has to identify one
image at a time. This may help explain the reports of highly
selective neurons in cortex given that the cortex needs to co-
activate multiple items at the same time in order to support
short-term memory (Bowers et al., 2016). It should be noted
that the RNNs that learned localist units were very small in
scale compared to AlexNet, and accordingly, it is possible
that the contrasting results reflect the size of the networks
rather than the superposition catastrophe per se. Relevant to
this issue, Karpathy et al. (2016) reported examples of se-
lective representations in a larger RNN with long-short term
memory (LSTM) trained to predict text. Although they did
not systematically assess the degree of selectivity, they re-
ported examples that are consistent with 100% selective units,
for similar findings see Lakretz et al. (2019). It will be in-
teresting to apply our measures of selectivity to these larger
RNNs. It should also be noted that there are recent reports of
selective representations in Generative Adversarial Networks
(Bau et al., 2019) and Variational Autoencorder Networks
(Burgess et al., 2018) where the superposition catastrophe is
not an issue. Again, it will be interesting to assess the se-
lectivity of these units according to our measures in order to
see whether there are additional computational pressures to
learn highly selective or even grandmother cells. We will be
exploring these issues in future work.
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Abstract

Children exploit regular links between the meanings of words
and the syntactic structures in which they appear to learn about
novel words. This phenomenon, known as syntactic bootstrap-
ping, is thought to play a critical role in word learning, espe-
cially for words with more opaque meanings such as verbs.
We present a computational word learning model which re-
produces such syntactic bootstrapping phenomena after expo-
sure to a naturalistic word learning dataset, even when under
substantial memory constraints. The model demonstrates how
experimental syntactic bootstrapping effects constitute rational
behavior given the nature of natural language input. The model
unifies computational accounts of word learning and syntactic
bootstrapping effects observed in the laboratory, and offers a
path forward for demonstrating the broad power of the syntax–
semantics link in language acquisition.

Keywords: syntactic bootstrapping; word learning; computa-
tional models

Children face multiple challenges of induction when ac-
quiring their first language. They must work out the most
fundamental features of language: that words exist, and that
they can be used to refer to entities and relations out in the
world. At a higher level, they must work out what words ac-
tually mean, and how those words can productively combine
with other words to form phrases and sentences.

A successful research program has identified how children
as young as 13 months can learn the meanings of a particular
class of words — concrete nouns — from noisy observations
of adult language use (Smith and Yu, 2008; Trueswell et al.,
2013). While nouns often pick out concrete referents which
are easily identifiable by a listener, other classes of words
pose more substantial learning problems. Verbs, for exam-
ple, often have no concrete reference in the perceptual world
which the child directly observes. Certain verb meanings may
also be under-determined by the perceptual facts: verb pairs
such as chase and flee or hit and kick often pick out the same
events, though they have vastly different meanings (Gleitman
et al., 2005).

These features make learning verb meanings a challenge
for both children and adults. The productive vocabularies
of young children are heavily skewed toward frequent nouns
with concrete referents (Fenson et al., 1994). Adult subjects
in laboratory language learning experiments also routinely
struggle to identify verb meanings from observations of their
use (Gillette et al., 1999). But children somehow climb over
these learning barriers to become adults who can give and

take or hit and kick. We must account, then, for how that
learning goes through. First, because verbs make reference
to abstract events and relations between entities, we must ac-
count for the representations of such events and relations in
the mind of the child. In other words, we must account for
the target representations of word learning. Second, we must
explain what information sources children exploit in order to
learn which words pick out which events and relations. Be-
cause perceptual information under-determines the solution
to this learning problem, there must be other sources of infor-
mation in the learner’s experience which help determine the
meanings of these words.

This paper addresses the theory of syntactic bootstrapping,
which claims that children exploit systematic relations be-
tween the syntactic structures in which verbs are used and
their semantics in order to learn about the meanings of novel
words (Landau and Gleitman, 1985; Fisher et al., 2010). Af-
ter reviewing corpus and experimental evidence regarding the
syntax–semantics link, we formalize syntactic bootstrapping
in a probabilistic computational model, proceeding from min-
imal assumptions about the structure of the lexicon to a model
which replicates the qualitative behavior of children in syn-
tactic bootstrapping experiments. We show how the knowl-
edge assumed by this model can be learned from scratch on
naturalistic data, as it constructs both a concrete lexicon and
abstract beliefs about the correspondence between verb form
and meaning.

Syntactic bootstrapping
On the syntactic bootstrapping account, children analyze the
syntactic structures in which verbs appear in order to predict
aspects of their meaning not well determined by the percep-
tual context. At a high level, this theory is a claim about the
relation between two representational spaces in the mind of
the learner: the space of meanings M and the space of syn-
tactic representations S. As such, these theories must make
assumptions about the structure of these spaces. As we will
see, many theories regarding the syntax–semantics link pre-
suppose the existence of core meaning predicates such as
CAUSE and BECOME (Levin and Rappaport Hovav, 2011;
Pinker, 1989). While such predicates have been motivated
by theoretical work elsewhere in cognitive development (see
e.g. Hespos and Spelke, 2004; Muentener and Carey, 2010),
the continued success of the syntactic bootstrapping paradigm
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Figure 1: From Kline et al. (2017), fig. 2. Scene pairs contrast
minimally in the presence or absence of a causation event. In
the “causal” scene, the puppet moves to contact the toy, which
immediately activates; in the “noncausal” scene, the puppet
moves but does not contact the toy, and the toy only activates
after a delay.
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Figure 2: From Kline et al. (2017). Children point to the
“causal” scene when given a positive sentence with a novel
transitive verb (can you find where she wugged the round
thing?), and to the “noncausal” scene for a negative sentence
with a novel transitive verb (... didn’t wug the round thing?).

provides orthogonal positive evidence for the reality of these
structures in the mind of the child.

Corpus studies have shown how aspects of verb mean-
ing both coarse-grained (causation and movement) and fine-
grained (movement of liquids vs. movement of solids) can
be predicted from the constructions in which verbs appear
(Naigles and Hoff-Ginsberg, 1995; Levin, 1993). Decades of
experimental evidence also support the idea that children ex-
ploit such structural relationships between a verb’s syntactic
behavior and its meaning. One of the most productive lines of
research has focused on the correspondence between a verb’s
appearance in transitive syntactic constructions (the X Ys the
Z) and a semantic predicate CAUSE (Naigles, 1990). Some
of the most recent experimental evidence argues for such a
fine-grained link between transitive syntax and physical cau-
sation (Kline et al., 2017). Kline et al. presented children
with pairs of scenes, each involving a moving puppet and a
toy which activated or lit up. An example scene pair is shown
in Figure 1. While each scene pair involved similar motion
events, a “causal” scene in each pair also exhibited an event
of external causation, using cues known to be salient to young
children (spatial and temporal continuity between an agent’s
action and an object’s response) (Michotte, 1963; Muentener
and Carey, 2010). In two-alternative forced choice test tri-
als, children were given a sentence containing a novel verb
and asked to pick the scene it referred to: either in a positive

frame (Can you find where she wugged the round thing?) or
a negative frame (... didn’t wug the round thing?). Figure 2
shows the main effect in the experiment of Kline et al. (2017).
Across several tested minimal-contrast scene pairs, children
preferred to point at the causal scene when queried with the
positive frame and at the non-causal scene when queried with
the negative frame.

The findings of Kline et al. show that 3- and 4-year-olds
latch onto a reliable relationship in English between transitive
syntax and the semantic predicate CAUSE documented else-
where in the cognitive development literature. This is a case
of syntactic bootstrapping: children exploit a word’s syntactic
behavior in order to make guesses about its meaning.

As a broad theory regarding the construction of the lexi-
con, though, syntactic bootstrapping needs to eventually do
quite a bit more work. Taken to its extreme, it needs to ex-
plain how each of the semantic contrasts present in a mean-
ing space M can be explained by corresponding contrasts in
a syntactic representation S. In the absence of other good ac-
counts of verb meaning, the contrast between chase and flee
and the contrast between hit and kick, for example, must be
predictable from contrasts in syntactic behavior. To test the
full power of syntactic bootstrapping as a theory of the con-
struction of the lexicon, then, we must further formalize our
assumptions about the structure of the syntactic space S and
the meaning space M, and provide clear proof of the learn-
ability of relations between the two spaces.

The remainder of this paper takes some first steps in that di-
rection. We first formalize syntactic bootstrapping in a prob-
abilistic model, showing how we can proceed from minimal
assumptions about the structure of the lexicon to a model
which replicates the qualitative behavior of children in syn-
tactic bootstrapping experiments. We next show how this
probabilistic model can be learned from scratch on natural-
istic data, constructing both a concrete lexicon and abstract
beliefs about the syntax–semantics link through only unsu-
pervised experience of ambiguous language use in grounded
contexts.

Related work
Most past computational models of word learning have fo-
cused on the acquisition of words with concrete referents, ex-
plaining the learning dynamics and characteristic patterns of
success and failure observed in adults and children (Frank
et al., 2009; Trueswell et al., 2013; Stevens et al., 2017). Our
model will replicate the important structural features of these
models — explicit representations of uncertainty over pos-
sible lexica, stored under strong resource limitations — and
further extend to the more challenging task of acquiring verb
meanings, which have either ambiguous reference or no con-
crete reference at all in the world of the learner.

While other computational models have been used to repli-
cate verb learning and syntactic bootstrapping phenomena
(Abend et al., 2017; Barak et al., 2014; Alishahi and Steven-
son, 2008), they have been deployed only in simplified learn-
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Syntactic types: {S,N}
Semantic predicates: {BECOME(·, ·),CAUSE(·, ·),CONTACT(·, ·),MOVE(·), . . .}

Form w Syntax sw Meaning mw Weight θw

push S\N/N λy.λx.CAUSE(x,MOVE(y)) 0.3
activate S\N/N λy.λx.CAUSE(x,BECOME(y,ACTIVE)) 0.5
touch S\N/N λy.λx.CONTACT(x,y) 0.5

go S\N λx.MOVE(x) 0.4
sneeze S\N λx.SNEEZE(x) 0.4

the N/N λx.ι(x) 1.1
girl N λx.FEMALE(x) 0.6
toy N λx.TOY(x) 0.8
toy N λx.FEMALE(x) 0.3

Lexicon Λ

X/Y : m1 Y : m2
>

X : m1(m2)

Forward application

Y : m2 X\Y : m1
<

X : m1(m2)

Backward application
Ruleset
R

the girl pushes the toy

sw = N/N N S\N/N N/N N
: mw = ι : λx.FEMALE(x) : λy.λx.F(x,y) : ι : λx.TOY(x)

> >

N : ι(λx.FEMALE(x)) N : ι(λx.TOY(x))
>

S\N : λx.F(x, ι(λx.TOY(x)))
<

S : F(ι(λx.FEMALE(x)), ι(λx.TOY(x)))

Analysis AU

L

Figure 3: A CCG combines a learned lexicon Λ with a fixed
ruleset R in order to yield analyses of input utterances. The
bottom of the figure shows an analysis of the utterance the
girl pushes the toy (read from top to bottom), which jointly
yields syntactic and semantic representations of the sentence.

ing situations, where a learner is shown utterances explicitly
paired with their ground-truth meaning representations (or
a set of possible meaning representations). In contrast, our
model learns in a distantly supervised setting: it is only ex-
plicitly told that the utterances have meanings which are true
in the current scene, and must work out word-level meanings
and utterance-level meanings on its own. Because no word-
level meanings are ever explicitly presented to the learner, it
must induce word meanings by searching through the infinite
space of possible lambda-calculus meaning representations.
This learning setting is thus qualitatively different than the
direct-supervision setting studied in past bootstrapping work.

We see our model as complementary to those of Sadeghi
and Scheutz (2018) and Gauthier et al. (2018), who show how
more minimal syntactic representations can support specific
types of early syntactic bootstrapping. Our model integrates
both a full syntactic formalism and a general ability to track
probabilistic links between syntactic and semantic represen-
tations. As such, the model is able to scale to the more com-
plex syntactic bootstrapping phenomena studied in this pa-
per, using syntactic features to resolve finer-grained features
of verb meaning.

A formal model

We visualize the major details of our model in Figure 3. A
learner constructs a lexicon Λ, associating particular word-

w

sw mw Γ

|U |

T LU

w Wordform
sw Syntactic type of

wordform w
mw Meaning of word-

form w
Γ Scene/context
U Utterance (word se-

quence)
T Derivation (syntactic

analysis)
L Logical form (se-

mantic analysis)

Figure 4: A generative model of an utterance U situated in a
scene Γ, drawing on lexical items (w,sw,mw) ∈ Λ.

forms w with syntactic types sw and meanings mw.1 The
syntactic types of words are represented using the formal-
ism of combinatory categorial grammar (CCG; Steedman and
Baldridge, 2006). Word meanings are represented as expres-
sions in a typed lambda calculus, built from core semantic
predicates ranging from concrete properties (e.g. FEMALE)
to abstract relations (e.g. CAUSE). These representations
draw on the lexical conceptual structures often discussed in
literature on the syntax–semantics link (see e.g. Levin and
Rappaport Hovav, 2011).

The contents of this lexicon are combined with parsing
rules in order to produce joint syntactic and semantic repre-
sentations of full utterances. Figure 3 shows how entries from
the lexicon Λ combine with a ruleset R to analyze a sentence.

The grammar’s syntactic types describe how words com-
bine with their arguments. These syntactic types may be of
either a primitive type (e.g. N) or of functional type (e.g.
S/N). Functional types combine with syntactic arguments to
their left or right, eventually yielding a phrase of a particular
primitive type.

The CCG rule set R, shown in the middle of Figure 3, spec-
ifies these combination rules.2 Figure 3 (lower section) shows
how the two rules in our ruleset are used to analyze the ex-
ample sentence the girl pushes the toy. After first retrieving
lexical entries for each of the tokens in the sentence (top row),
we iteratively run the application rules, composing functional
types with primitive types to their left or right. Whenever
such syntactic composition occurs, we likewise unify the cor-
responding semantic expressions by function application.

Each CCG analysis yields a tree structure (bottom of Fig-
ure 3) whose root contains the syntactic type and semantic
analysis of the entire input string. We call this final semantic
representation the logical form of a sentence, and the partic-
ular tree structure of rule applications the derivation (analo-
gous to a syntactic parse). We let A = 〈L,T 〉 denote the full
analysis of an utterance, where L is the logical form and T is
the derivation.

1This walkthrough involves a minimal amount of equations, fo-
cusing instead on applications to concrete word learning problems.
Model details are provided in the appendix of this paper.

2See Steedman and Baldridge (2006) for a full description.
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Scene Events

Γ1 CAUSE(girl,BECOME(toy,active))
CONTACT(girl, toy); MOVE(girl)

Γ2 BECOME(toy,active); MOVE(girl)

Table 1: Two sample scene representations from our model
of the two-alternative forced choice test trial of Kline et al.
(2017).

We next design a minimal probabilistic model on top of
this CCG formalism which can realize, among other things,
the behavior of the children in the experiment of Kline et al.
(2017). Our model adapts past work on probabilistic CCGs
(see e.g. Zettlemoyer and Collins, 2007; Artzi and Zettle-
moyer, 2013), adding a critical inductive bias linking syn-
tactic and semantic representations within the lexicon. We
illustrate the model as a plate diagram in Figure 4, and walk
through its behavior in the following paragraphs.

We will walk through this model in the context of the Kline
et al. (2017) paradigm, showing how it can realize the sub-
jects’ observed behavior. For the rest of this section, we as-
sume the provisional lexicon shown in the top of Figure 3, as-
sociating particular words with candidate syntactic types and
meanings. Later, we will remove this assumption and show
how such a lexicon can be learned from experience alone.

Consider an utterance U = the girl pushes the toy given in
a grounded context Γ.3 We can combine the CCG framework
with our weighted lexicon to compute the probability of an
arbitrary analysis:

P(A = 〈L,T 〉 | Λ,Γ) ∝ P(Γ)P(L | Γ)exp( ∑
(w,sw,mw)∈T

θw) (1)

where P(Γ) is a uniform prior over potential contexts, and
P(L | Γ) is one only when a logical form L is true of the con-
text Γ. The final term in the above equation does the ma-
jority of the work, combining the weights θw of lexical en-
tries involved in the derivation T . The lexicon in Figure 3
licenses multiple analyses of the sentence the girl pushes the
toy, since it contains two candidate entries for the word toy.
Equation (1) can be used to rank the resulting analyses —
one of which is shown in the bottom section of Figure 3 —
according to the constituent lexical weights θw.

In the experiment of Kline et al. (2017), a child hears the ut-
terance U = the girl gorps the toy and is asked to pick which
of two scenes Γ1,Γ2 the utterance refers to. We represent the
scenes as lists of propositions like those in Table 1.

Unlike our previous example, this utterance contains a
novel word which has no corresponding entries in the lexi-
con. We must induce candidate syntactic types sw and mean-
ings mw using the remainder of the probabilistic model.

We begin by enumerating the possible syntactic types sw of
the novel word. Given the contents of the provisional lexicon

3Contexts will become relevant later in the paper. See Table 1
for an example context representation.

Λ (shown in the top left of Figure 3) and our parsing ruleset,
there is just one syntactic analysis of gorps which yields a
valid parse. This parse has the same structure as that shown
in bottom section of Figure 3. The parse assigns the word the
syntactic type S\N/N: the syntactic type of a transitive verb.4

We next make predictions about the candidate meanings of
gorps. This prediction process is visualized in Figure 5. We
begin by sampling meanings mw conditioned on the possible
syntactic representations sw. This is the point at which syn-
tactic bootstrapping plays a critical role: the model calculates
a distribution P(mw | sw = S\N/N), which we expect should
favor meanings involving the predicate CAUSE:

P(predicatei | sw) ∝ C+ ∑
(si,mi,θi)∈Λ

:sw=si∧predicate∈mi

θi (2)

P(mw | sw) ∝ ∏
predicatei∈mw

P(predicatei | sw) (3)

where C is a smoothing constant, fit as a hyperparameter.
Equation (2) aggregates the total weight mass in the lexicon
allocated to any particular predicate for lexical entries with
syntactic type sw. The product term of Equation (3) combines
these individual predicate probabilities in order to score pos-
sible complete meanings mw of the word gorps. The left panel
of Figure 5 shows a ranked list of meanings computed by this
equation under our provisional lexicon.

Each candidate meaning and syntactic representation of the
word gorps, when combined with the rest of the words in the
sentence, yields a full syntactic derivation T and logical form
L. These utterance-level meaning representations are scored
based on the scene Γ. Here we incorporate the critical con-
straint that logical forms L must consist of messages which
are true of the scene Γ. This effectively filters the candidate
complete meanings L, yielding a renormalized distribution
over full sentence meanings as shown in the middle panel of
Figure 5.

We can combine the above distributions in order to per-
form the critical inverse inference P(Γ |U,Λ): which scene
does the utterance the girl gorps the toy refer to? This dis-
tribution is computed via Bayes’ rule, yielding the posterior
distribution shown in the right panel of Figure 5. The positive
sentence containing the novel word gorps is predicted to refer
to the scene with a salient causation event. By a similar logic
as shown in this walkthrough, the negative sentence the girl
doesn’t gorp the toy is taken to refer to the scene missing the
salient causation event.

This section has demonstrated how the probabilistic model
sketched in Figures 3 and 4 reproduces syntactic bootstrap-
ping behavior, using the transitive syntax of novel words
to predict meanings containing the semantic predicate of
CAUSE. The model integrates the CCG parsing formalism
with a statistical mechanism for tracking the relations be-

4In cases where there are multiple syntactic types for a novel
word, they are scored according to a distribution P(sw | Λ), given in
Equation (9).
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Word meaning mw Mass

λy.λx.BECOME(x,y) 0.0091
λy.λx.CONTACT(x,y) 0.0091
λy.λx.CAUSE(x,MOVE(y)) 0.0079
. . .

Meaning given
transitive syntax:

P(mw | sw = S\N/N)

Logical form L Mass

CONTACT(girl, toy) 0.869
CAUSE(girl,BECOME(toy,active)) 0.131

Full sentence meanings P(L | mw)

gorps

doesn’t gorp
0

0.5

1

P
(Γ

1
|U

,Λ
)

2AFC choice P(Γ | L)

Figure 5: Computation of the meaning of a novel word gorps in the sentence the girl gorps the toy proceeds in three steps:
word meanings are enumerated according to a distribution P(mw | sw) (Equation (3)), full sentence meanings L are produced
via CCG parsing, and the candidate scenes Γ1, Γ2 are scored according to which sentence meanings are true of which scene.

tween syntactic structures and their semantic correlates, help-
ing the learner to make predictions about the meanings of
novel words.

Learning

The previous section assumed that the learner already pos-
sessed a knowledge state as given in Figure 3, where word-
forms like girl and push already have correct meaning repre-
sentations. In this section, we show how such a lexicon can
be acquired across multiple instances of ambiguous language
use in context, in a manner that requires minimal long-term
memory capacity and remains robust to noise in the input.

We expose our model to a sequence of observations O =
(〈Ui,Γi〉) of utterances Ui grounded in particular scenes Γi.
We proceed by observing each data point Oi in sequence and
updating a lexicon Λ, inducing novel lexical entries as nec-
essary and updating weights θw in the lexicon. The learner
never directly observes the mapping between words and their
referents, or between sentences and their meanings. The task
of the learner is to derive word meanings, and methods for
composing words, such that each utterance Ui is true in its
context Γi.

We also constrain our word learner to encode only a lim-
ited number of lexical entries per word at all times. We label
this limit `, and evaluate its influence as a free parameter in
the following experiments. Concretely, after each observa-
tion Oi, we retain only the ` highest-weight lexical entries per
wordform.

Let Λi be a learner’s lexicon representation before observ-
ing the example Oi. Suppose that the utterance Ui is observed
in a context Γi which contains a novel word w = gorps: the
girl gorps the toy. The machinery already presented in the
previous section can be used to induce candidate novel mean-
ings for the word gorps. In order to support incremental
learning, we include an additional weight update step after
each utterance is observed. Given the utterance Ui, we up-
date the weights of each lexicon entry in order to increase
the probability of observing the utterance under the model
given in Figure 4. Further details on the learning algorithm
are given in the appendix.

Entity Properties

s AGENT,FEMALE
r AGENT
t TOY

Entities
MOVE(r)
CONTACT(s, t)
CAUSE(s,BECOME(t,

ACTIVE))

Events

“the torp pilks
the norp”

Utterance

Figure 6: An example observation. Utterances refer to objects
(the norp) or events (the torp pilks the norp).

Figure 7: Online accuracy in predicting sentence meanings
for word learning models with different numbers of allowed
stored meanings `. Shaded regions represent 95% CI.

Experiments
We deploy the above learning model on a synthetic dataset
in which short utterances pick out objects, events, and rela-
tions in a simulated environment. This environment is sim-
ilar to those used in artificial intelligence research on visual
question answering (see e.g. Johnson et al., 2017), but con-
tains more complex utterances which make reference to ab-
stract events and relations (such as causation, state change,
and movement). Figure 6 shows an example scene–utterance
pair drawn from this dataset.

We generate observations Oi by first sampling a context Γi.
Each context contains a random number of entities (agents
and objects), and a random number of events relating those
entities, structured as propositions like those shown in Ta-
ble 1. Contexts always contain multiple simultaneous events,
such that the learner is only ever exposed to ambiguous and
indirect observations of sentence meaning.

Each entity and event is assigned a fixed random word-
form throughout the experiment, and utterances are gen-
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erated by combining the wordforms for the involved enti-
ties and events according to pre-designed templates. For
example, if we sample a scene which contains an event
CAUSE(girl,MOVE(toy)), we might generate an utterance
the torp pilks the norp, where torp refers to female agents,
norp refers to toys, and the whole sentence must pick out the
complete event structure. We also randomly generate nega-
tive utterances, where verbs are modified by words to their
immediate left who function to negate the overall sentence
meaning. For example, the torp doesn’t pilks the norp has the
meaning ¬CAUSE(girl,MOVE(toy)).5

The task of the learner is to infer the meanings of each of
these words by observation of random scenes Oi = 〈Ui,Γi〉.
While we have access to the ground-truth correspondence be-
tween sentences and their full logical forms during scene gen-
eration, this mapping is not provided to the learner.

We evaluate the learner’s lexicon acquisition by two met-
rics: 1) its accuracy in predicting the ground-truth semantic
representations of test sentences, and 2) its accuracy in the
syntactic bootstrapping two-alternative forced choice task of
Kline et al. (2017). Figure 7 shows the model’s performance
on the first across learning time, as the model is incrementally
exposed to more examples Oi. Both graphs contrast models
with different settings of the hyperparameter `, which con-
trols the maximum number of entries that can be stored across
observations for any wordform in the lexicon. For all settings
of ` > 1, the model reaches high performance within 100 ex-
amples. All models reach perfect performance on the second
syntactic bootstrapping 2AFC task after just a few examples:
the correct acquisition of just one or two transitive verbs is
enough to support the induction of a productive belief about
the link between verb syntax and semantics.

The results in Figure 7 demonstrate that even highly
resource-constrained Bayesian learners can acquire an accu-
rate lexicon in a data-efficient manner. These same learners
quickly derive a syntactic bootstrapping capacity from their
own lexicons, supporting more efficient learning in the future.

Conclusion
This paper has presented a computational word learning
model which actively tracks the correspondences between the
syntactic and semantic behavior of words. We demonstrated
how this framework can capture experimentally observed
syntactic bootstrapping phenomena, and that such phenom-
ena can be explained as the rational behavior of a cross-
situational learner exposed to a corpus of naturalistic data.
Critically, both word learning (of nouns and verbs) and also
the acquisition of the high-level syntactic bootstrapping be-
havior still go through given substantial long-term memory
constraints, in which models store just a few candidate inter-
pretations per wordform in their language.

As a computational model of acquisition, this framework

5The training corpus is generated from a collection of 3 unique
referents and 5 unique event types, each of which has one fixed re-
ferring expression. This yields a total of 51 unique utterances.

makes predictions about how people should interpret and gen-
eralize novel words. Our framework allows us to make rigor-
ous and explicit statements about the structure of the mental
representational spaces underlying these generalizations. In
ongoing work, we are using the same model class presented
in this paper to detect candidate links between word syntax
and word semantics which a rational learner can (and should)
exploit.
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Model details
This final section provides mathematical details on the model for
completeness.

Reading from Figure 4, the probability of a full utterance is:

P(U | Γ,Λ) ∝ P(Γ)∑
L,T

P(T | Λ)P(U | T )P(L | T,Γ,Λ) (4)

We assume a uniform prior over scenes P(Γ), and let P(U | T ) be
1 exactly when the span of T is equivalent to U , and zero otherwise.
Lastly, we define the probability of a logical form L in terms of the
derivation T and context Γ as follows:

P(L | T,Γ,Λ) = P(L | T,Λ)P(L | Γ) (5)
P(L | T,Λ) ∝ 1{L is determined by T,Λ} (6)

P(L | Γ) ∝ 1{L is true in Γ} (7)

Novel word induction Given a novel word w, we resort to
the full Bayesian model to make predictions about its syntactic type
sw and meaning mw.

P(w→ (sw,mw) |U,Γ) ∝

P(sw | w)P(mw | sw)P(U | Γ,Λ∪ (w,sw,mw)) (8)

The only term not yet defined is the distribution over syntactic types
P(sw | w). This distribution is computed by simple inspection of
the lexicon. The probability mass assigned to a particular syntactic
category s is proportional to the total weight assigned to entries in Λ

with category s:

P(sw | Λ) ∝ C+ ∑
(w,sw,mw,θw)∈Λ

θw (9)

where C is a smoothing constant.
As shown in the earlier model walkthrough, Equation (8) is used

to initialize the weights for the lexical entries of novel words.

Weight updates Let g be the highest probability correct anal-
ysis of a sentence 〈L,T 〉, and let B be the set of the k most probable
incorrect analyses.6 For each lexical entry xi = (wi,si,mi,θi) with
weight θi, we perform the following perceptron update:

θi += η(1{xi ∈ g}− 1
|B| ∑b∈B

1{xi ∈ b}) (10)

where η denotes a learning rate, and xi ∈ A is true iff the lexical item
xi participates in the analysis A. Note that this update will only affect
lexical entries with wordforms used in the utterance Ui.

6Here a “correct” analysis is one which has nonzero probability
under Equation (1). Note that, consistent with the cross-situational
paradigm, only analyses with meanings that are true of Γi have
nonzero probability.
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Abstract 
In natural languages, closed-class items predict open-class 
items but not the other way around. For example, in English, if 
there is a determiner there will be a noun, but nouns can occur 
with or without determiners. Here, we asked whether language 
learners’ computations are also asymmetrical. In three 
experiments we exposed adults to a miniature language with 
the one-way dependency “if X then Y”: if X was present, Y 
was also present, but X could occur without Y. We created 
different versions of the language in order to ask whether 
learning depended on which of these categories was an open or 
closed class. In one condition, X was a closed class and Y was 
an open class; in a contrasting condition, X was an open class 
and Y was a closed class. Learning was significantly better 
with closed-class X, even though learners’ exposure was 
otherwise identical. Additional experiments demonstrated that 
the perceptual distinctiveness of closed-class items drives 
learners to analyze them differently; and, crucially, that the 
primary determinant of learning is the mathematical 
relationship between closed- and open-class items and not their 
linear order. These results suggest that learners privilege 
computations in which closed-class items are predictive of, 
rather than predicted by, open-class items. We suggest that the 
distributional asymmetries of closed-class items in natural 
languages may arise in part from this learning bias. 

Keywords: language acquisition; statistical learning; 
computational mechanisms; morphosyntax; function words; 
closed-class items 

Introduction 
In natural languages an important contrast is between open 
class lexical items—for example, nouns or verbs—and closed 
class or function items—for example, is or the.1 Open class 
categories like noun or verb contain many members and 
typically carry the important lexical content of the sentence. 
In contrast, closed class items, which are used to mark 
grammatical functions of other words, are typically very 
short, few in number, are each used with high frequency, and 
occur in predictable positions in their phrases. For example, 
English marks definiteness with the article the, which is one 
of the most frequent words in the language and always occurs 
before its noun. There is wide variation in the distribution of 
functional items across languages: in contrast to English, 
definiteness in Amharic is marked on lexical items in a 
particular structural position and can attach to nouns, 
adjectives, numerals, or even verbs depending on sentence 

                                                        
1 The terms ‘functional item’ and ‘closed class’ are often used 

interchangeably. We adopt the terminology of closed and open 

structure (Kramer, 2010). The distribution of closed-class 
items is always predictable in certain ways, but learners must 
do a substantial amount of distributional analysis in order to 
learn the particular patterning of closed-class items in their 
language. The goal of the present paper is to explore the 
computational mechanisms that enable language learners to 
do this. 

From previous research we know that closed-class items 
draw special attention from language learners. Infants can 
identify them on the basis of correlated distinctive 
phonological, prosodic and distributional properties such as 
short duration, light syllable structure, and high frequency 
(Shi, Morgan, & Allopenna, 1998; Shi, Werker, & Morgan, 
1999), and children begin to represent these items long before 
producing them (Shafer, Shucard, Shucard, & Gerken, 1998; 
Shi, Werker, & Cutler, 2006). Early attention to closed-class 
items could facilitate other aspects of language acquisition. 
For example, since these items often occur at grammatically 
important parts of the sentence (e.g., phrase boundaries), 
focusing on them could help learners acquire grammatical 
structure. There is substantial empirical support for this idea, 
known as the Anchoring Hypothesis (Mintz, 2006; Morgan, 
Meier, & Newport, 1987; Valian & Coulson, 1988; Zhang, 
Shi, & Li, 2015).  

However, it is not yet clear what computational 
mechanisms underlie learners’ distributional analyses, once 
they have noticed closed-class items. The literature on 
statistical learning has not focused particularly on closed-
class items; and only a few studies identify specific statistical 
computations that learners might draw on. These studies have 
revealed, for example, that learners can compute transitional 
probabilities to find word boundaries (Aslin, Saffran, & 
Newport, 1998; Saffran, Aslin, & Newport, 1996; Saffran, 
Newport, & Aslin, 1996) and to acquire grammatical phrases 
(Thompson & Newport 2007). Despite this progress, we are 
only beginning to identify the computational mechanisms 
underlying many aspects of language acquisition. It thus 
remains a mystery how learners manage to sort out patterns 
as complicated as (for example) Amharic definiteness. What 
kind of computations would a learner need to perform in 
order to acquire this type of pattern? 

Consider the statistical information about closed-class 
items that is present in learners’ input. As already noted, these 
items generally do not independently contribute semantic 

classes because these terms more readily apply to our miniature 
languages. 
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meaning; rather, they specify the grammatical properties of 
the meaning-bearing elements (the lexical categories). This 
role gives closed-class items a highly predictable syntactic 
context. For example, the indicates that its noun refers to a 
specific referent identifiable in context and therefore must 
appear with a corresponding noun, never alone. In statistical 
terms, the probability of seeing a noun, given that there is a 
determiner, is 100%. The reverse is not true, however, since 
nouns can occur in a variety of grammatical contexts, with or 
without determiners.2  

The statistical asymmetry in the distribution of closed- and 
open-class items is especially interesting in light of the recent 
emphasis in syntactic theory on the role of functional 
categories in sentence structure (see Rizzi & Cinque, 2016 
for discussion and historical context). Increasingly, linguists 
have argued that properties of closed-class items determine 
the behavior of other words in the sentence. This extends 
beyond the presence of certain open-class categories to their 
positions in the sentence as well. To illustrate, consider the 
pattern of verb placement in French. Lexical verbs such as 
“eat” (mang-) can either precede or follow the negative 
marker (pas) depending on whether the verb is 
morphologically finite, as in tu manges pas? (“You’re not 
eating?), or non-finite as in tu vas pas manger? (“You aren’t 
going to eat?”). Linguists capture this contingency between 
finiteness and verb position by positing that the abstract 
features of finite and non-finite morphemes are represented 
in different positions in the sentence. If there is finite 
morphology, there will be a verb and that verb will occur in 
the “finite” position (pre-negation). In this way the presence 
and location of verbs is determined by the kind of 
morphology that occurs in the sentence. 

Of course, linguists’ analyses are intended to be formal 
mathematical descriptions of sentence structure, and not 
necessarily claims about the psychological representation of 
sentences. However, this kind of analysis demonstrates an 
important empirical point: regularities of word order and 
word form can be stated as restrictions on the distribution of 
closed-class items. Consider now the problem of 
distributional learning. One way to begin learning, given this 
view from syntactic theory, would be to identify closed-class 
items (for example, based on their salient perceptual 
properties) and then proceed to learn their distribution. 
Because this distribution is asymmetrical—closed-class 
categories always predict but are not predicted by open-class 
categories—the computations that learners perform could 
also be asymmetrical. Learners need to learn what a closed-
class item predicts—the presence of other categories, the 

                                                        
2 In some cases, predictiveness goes both ways (e.g., in French, 

all non-proper nouns require determiners). Nonetheless, computing 
how often determiners are accompanied by nouns will always reveal 
a pattern, whereas the reverse computation only sometimes will. 
Thus analyzing closed-class items as predictive of open-class items 
is the most effective way to discover linguistic patterns.  

3 Of course closed-class items do not appear randomly in 
sentences. Their presence is determined by the semantic meaning 
that the speaker wishes to express. The learner does eventually need 

placement of words, and so on—but they need not expend 
any effort finding distributional patterns that a closed-class 
item is predicted by, because there are none.3 

Here we explored the possibility that learners privilege 
computations in which closed-class items are predictive of 
open-class items over computations in which they are 
predicted by open-class items. In Experiment 1 we exposed 
adult learners to a miniature language containing a one-way 
grammatical dependency between two form-class categories, 
X and Y. When an X word was present, a Y word always had 
to be present as well, but Y words could occur with or without 
X words (“if X then Y”). This is mathematically like the 
relationship between determiners and nouns in English. In 
two contrasting conditions, we assigned different types of 
words to the X and Y categories. In one condition the 
predictive category (X) was a closed class (short, 
monosyllabic, and containing only one item, ka), while in the 
other condition the predictive category was an open class 
(mono or disyllabic and containing three possible lexical 
items). Learning was better when X was closed-class, 
suggesting that learners’ computations are biased: they 
identify patterns where closed-class items are predictive of 
open-class items more readily than the reverse. Additional 
experiments demonstrated that learners analyze closed-class 
items differently because they are perceptually distinctive 
(Experiment 2) and that learning outcomes are driven by the 
mathematical relationship between closed- and open-class 
items and not their linear order (Experiment 3). Together, the 
results suggest that learners analyze closed-class items in 
certain biased ways, searching preferentially for the kinds of 
patterns that exist in natural languages. In the Discussion we 
return to the question of why learners should be biased in this 
way. We do not mean to suggest that they know in advance 
about languages in particular, but rather that their 
computational biases may shape languages to be structured in 
this way. 

Before proceeding, it is important to clarify a component 
of our experimental design. The artificial language that we 
created for these experiments is not very language-like. The 
experiments are focused on a specific computational question 
about how learners analyze closed and open-class items. To 
test our hypothesis, it was necessary to design a language that 
could only be learned by computing the precise mathematical 
relationship between two specific terms (X and Y). Therefore 
X was the only category whose distribution with respect to 
other words was constrained; all other words in the language 
appeared and disappeared freely, which is unlike the more 
constrained sentence structure of natural languages. This 

to learn which meanings go with which forms, but this is a separate 
and somewhat uncorrelated problem. As the comparison between 
Amharic and English definiteness marking illustrates, learning that 
a given form means “definite” does not tell the learner where, 
distributionally, that form occurs, nor does learning the distribution 
of a form reveal its meaning (e.g., both definite and indefinite 
articles precede nouns in English). Both learning problems are 
important, but we are concerned here only with the distributional 
one. 
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experimental design allowed us to test empirically whether 
learners’ computational analyses are biased in a certain way. 
If the results of these experiments do reveal such a bias, this 
would be motivation to explore how this bias affects the 
acquisition of more naturally structured languages—a line of 
work that is in progress. 

Method 

Participants 
Three groups of sixteen adults from the Georgetown 
University community (age 18-28, mean=20.4) participated 
in this study. Two additional participants’ data did not save 
due to an error. 

Description of the miniature language 
The design of the language used in all three experiments is 
summarized in Figure 1. The word order was AXYBC, where 
each letter represents a form-class category. All categories 
were optional, with the constraint that only up to three 
categories could be omitted per sentence (i.e. sentences must 
each have at least two words). The fixed and consistent rule 
of the language was that if X was present, Y had to be present 
(“if X then Y”). Thus every sentence with X also contained 
Y, but sentences with Y did not have to contain X. Note that 
this dependency is defined in terms of the conditional 
relationship, not the linear order, of X and Y. In Experiment 
1, X preceded Y while in Experiment 3 X followed Y; this 
did not change the conditional relationship between the two 
terms. 

In each experiment we created different versions of the 
language in order to ask whether learning this conditional 
relationship between X and Y depended on which of these 
terms was a closed-class or an open-class category. None of 
the words had any meaning, so this contrast was defined by 
the number of words in each category and the phonological 
properties of those words. Each experiment had a condition 
where X was closed class and Y was open class (Closed X) 
and a contrasting condition where X was open class and Y 
was closed (Open X). Across experiments we varied the 
phonological properties of the closed-class item and the 
linear order of X and Y. 
 
Experiment 1 In this experiment the closed-class category 
contained a single item ka, which had several properties 
common to closed-class items in English: it was short, lacked 
a coda or consonant clusters, and was high frequency by 
virtue of being the only member of its form class. Each open-
class category contained three words that were a mixture of 
mono- and disyllabic forms. All words in the language, 
including the closed-class item, carried stress (i.e., ka was not 
prosodically dependent on any other item). In the Closed X 
condition, the X category contained ka and Y contained lapal, 
tombur, and zup. Thus the closed-class item ka predicted any 
of these three open-class items. In the contrasting Open X 
condition, X contained lapal, tombur, and zup and Y 

contained ka. Here the closed-class item ka is predicted by 
each of three open-class items.  

 

 
 

Figure 1: Design of the miniature languages used in 
Experiments 1-3. The critical feature of all languages is a 

one-way dependency between X and Y: every sentence with 
X also contained Y, but Y occurred without X. In 

Experiments 1 and 2, X came before Y (XY); in Experiment 
3, X came after Y (YX). Each experiment had a condition 

where X was closed class and Y was open (Closed X) and a 
contrasting condition where X was open class and Y was 
closed (Open X). If learners are biased to analyze closed-

class items as predictive, learning should always be better in 
the Closed X condition (marked with yellow stars).  

 
Other than the specific lexical items in the X and Y 

categories, the two languages were identical. In both 
languages, sentences with X must also contain Y, while 
sentences with Y may or may not contain X. Because either 
X or Y is ka, learners in both conditions had an “anchor” for 
their distributional analyses. In both conditions, the 
predictive category (X) comes before the category it predicts 
(Y); this linear order was like subjects’ native language, 
English, where (for example) determiners precede nouns. (In 
Experiment 3 we reversed the linear order such that the 
predictive category came last, as in languages like Japanese.) 
At a lexical level, in both conditions the dependency involved 
exactly one closed-class item and three open-class items; 
acquiring the dependency required computing exactly three 
word-level forward transitional probabilities (either X1-Y1, 
X1-Y2, X1-Y3 in the Closed X condition or X1-Y1, X2-Y1, 
X3-Y1 in the Open X condition). Our manipulation did of 
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course create different statistical patterns at the item level. In 
the Closed X condition, each of the three possible X-Y 
sequences had a transition probability of 0.33, whereas in the 
Open X condition each X-Y sequence had a transition 
probability of 1.0. Thus the item-level transition probabilities 
cued the XY unit more strongly in the Open X condition. 

Because these languages are structurally identical except 
for the closed-open class contrast for X and Y, learning 
outcomes will differ only if learners’ computational analyses 
treat closed-class and open-class items differently. If learners 
preferentially analyze closed-class items as predictive, they 
should easily learn “if X then Y” in the Closed X condition, 
where ka predicts an open-class category; but they should 
struggle in the Open X condition, where ka is predicted by an 
open-class category. Alternatively, if learners analyze closed-
class and open-class items similarly, learning outcomes will 
be equivalent across conditions.  

 
Experiment 2 Part of the hypothesis is that the 
distinctiveness of closed-class items drives learners to 
analyze them differently. In Experiment 2 we tested this by 
making the closed-class item less distinctive. Here the closed-
class item (daygin) was disyllabic, carried initial stress, and 
had a closed final syllable, making it phonologically like the 
open-class words in the language; its only distinguishing 
property is its high frequency. If distinctiveness of ka drove 
learning outcomes in Experiment 1, learning should be 
weakened in Experiment 2. 
 
Experiment 3 In Experiments 1 and 2 the Closed X condition 
was superficially like English: the closed-class item came 
before the open-class item (Figure 1). English does also have 
closed/open dependencies where the closed-class item comes 
last (e.g., walk + s), but only in morphology. Therefore better 
learning for Closed X in Experiments 1 and 2 could be due to 
a preference in native speakers of English for syntactic 
phrases where frequent words come first (cf. Gervain et al., 
2013). In Experiment 3 we changed the word order of the 
language so that Y preceded X. Now the Open X condition is 
superficially more like English (frequent word first), whereas 
the Closed X condition is superficially like Japanese 
(frequent word last). If learning outcomes in Experiments 1 
and 2 reflect superficial word order biases, then the results of 
Experiment 3 should be opposite to those of Experiment 1, 
with better learning for Open X. However, if learning 
outcomes depend on the structural relationship between 
closed-class and open-class items rather than superficial 
linear order, results should be similar to those of Experiment 
1: Closed X should learn “if X then Y” and Open X should 
fail. 

Materials 
We generated a 38-sentence exposure set by selecting two 
sentence types for each of the 19 structures. The sentence 
structures were always the same across conditions and 
experiments, but the actual sentence strings differed across 
conditions and experiments according to the lexical items in 

the X and Y categories and the linear order of X and Y. 
Sentence sound files were created by concatenating 
individually recorded words (spoken by a female native 
speaker of English) with 50 msec of intervening silence. The 
38-sentence exposure set was presented 16 times as part of a 
1-back task (see Procedure).  

Procedure 
Participants learned the language through a computer game. 
A robot “Bot” instructed participants to listen as an alien 
named Zooma practiced saying sentences in an alien 
language. After each sentence, participants pressed a button 
to indicate whether Zooma had just repeated herself. After 
exposure, participants began the test. Bot explained that 
Zooma would try to say each sentence two different ways, 
and the participants’ job was to decide which one was better. 
The entire experiment lasted approximately 45 minutes. 

Test 
Learning was measured with a two-alternative forced-choice 
(2AFC) test. The structure of the test was identical across 
experiments. Specific test strings varied according to the 
vocabulary of the language. The target choice on each trial 
was always a grammatical complete sentence. The alternative 
was identical to the target except that either one word was 
changed, or the words were the same but in a different order. 
The test was designed to ask whether participants had 
acquired a very specific piece of knowledge: the precise 
conditional relationship between X and Y. In order to answer 
this question it was important to create test items on which 
all other distributional properties (e.g., bigram frequency) 
were controlled. Only two types of test items could be 
carefully controlled in this way, described below. Items with 
confounds (not scored) included four additional items testing 
XY constituency and 20 items testing the XY relationship 
within longer sentences. In addition, we included four items 
testing basic word order and six filler items in order to 
balance the frequency with which targets and foils for the 
critical XY trials appeared on the test. Results for these items 
are not described for space reasons, but they are generally 
consistent with the results here. 

There were two trials for each of the critical test item types. 
One item type served as a constituency test: XY was 
compared to YB (Experiments 1,2) or XB (Experiment 3). 
Both choices are legal two-word sequences (in Experiments 
1 and 2, both choices are also complete sentences). They have 
the same relative frequency in learners’ input, and are medial 
bigrams in the basic sentence structure (AXYBC 
(Experiments 1,2) or AYXBC (Experiment 3)). However, X 
and Y are related grammatically whereas the elements in the 
foil sequence are not. A preference for XY would indicate 
that participants represent this grammatical relationship. A 
second item type (AY vs. AX) tested whether participants 
learned that X predicts Y, but not the reverse. In Experiments 
1 and 2, both choices are legal two-word sequences and 
occurred in learners’ input with the same relative frequency; 
the two sequences had exactly the same forward transitional 
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probability (.36). However, only AY is a complete sentence. 
AX is a grammatical sequence but not a complete sentence, 
since it contains X but not Y. If participants have learned that 
X predicts Y (but not the reverse), they should prefer AY over 
AX. In Experiment 3, the foil was no longer a grammatical 
sequence in the language. Thus, it should be relatively easier 
in Experiment 3 than in Experiments 1 and 2 for both 
conditions to do well on these test items. Accuracy on the test 
was measured as choice of the target sequence. 

Results 
In Experiment 1 we asked whether learning of “if X then Y” 
would be different when X was a closed versus open class. 
Figure 2 illustrates that the answer is clearly yes. In the 
Closed X condition, learners chose the target item much more 
often than learners in the Open X condition (Closed X: 84%, 
Open X: 53%, t(14) = 3.16, p = .007). The grammatical 
coherence of XY as a unit was identical in these two 
conditions, since X always perfectly predicts Y. Yet learning 
outcomes differed across conditions, indicating that learners 
analyze closed-class items as predictive of open-class items 
more readily than the reverse. 

Part of our hypothesis was that learners analyze closed-
class items differently because these items are distinctive. In 
Experiment 2 we tested this by making the closed-class item 
less distinctive: here it was high frequency but 
phonologically like the open-class words in the language. 
Learning in the Closed X condition in this experiment was 
weaker than in Experiment 1 (Figure 2) and was no longer 
significantly better than the Open X condition (t(14) = 1.94, 
p = .07). This supports our hypothesis: closed-class items are 
analyzed differently because they are distinctive.  

 
Figure 2: Choice of the target item (darker colors) or foil 
(lighter colors) on the 2AFC test in Experiments 1 and 2. 
 

In Experiment 3 we asked: did the Closed X condition 
perform better because their language was superficially like 
English (the frequent item came first)? In this experiment Y 
came before X, but X still predicted Y. Thus the Open X 
condition was superficially like English. However, the Open 
X learners still struggled to learn “if X then Y” (59% correct, 
not significantly different from chance: t(7)=2.05, p = .08). 
In contrast, the Closed X condition continued to perform well 
above chance (72% correct, t(7)=2.97, p = .02), even though 
their language was superficially unlike English and more like 
an unfamiliar language, Japanese. These results demonstrate 
that the primary determinant of learning is the mathematical 

relationship between closed-class and open-class items and 
not their linear order.  

The results just reported are collapsed across two types of 
items: the constituency test (YX vs. XB) and the predictive 
direction test (AY vs. AX). Based on these collapsed results, 
learning in the Open X condition appears to be slightly better 
than expected. Although learners were not significantly 
above chance, the difference was marginal, and accuracy was 
numerically higher than in Experiment 1 (59% vs. 53%). An 
analysis of results for the two different test item types 
provides some insight. In Experiments 1 and 2, results were 
equivalent across item types. However, the Open X condition 
in Experiment 3 showed a different pattern (Figure 3): 
learners passed the constituency test (88% correct), but were 
numerically below chance on the predictive direction test 
(33% correct). A 2-way mixed ANOVA over condition and 
trial type confirmed this impression statistically: there was no 
main effect of condition (F(1) = 2.07, p = .17), but there was 
a significant main effect of test item type (F(1) = 4.77, p = 
.047), and—importantly—a significant interaction between 
condition and test item type (F(1) = 7.45, p = .02), driven by 
a preference in the Open X condition for the ungrammatical 
sequence *AX over AY. 

Why would the Open X condition perform so poorly on the 
AY/*AX items? Based on the raw statistical properties of 
learners’ input, these items should be easy: *AX is not a 
complete sentence or even a legal sequence, whereas AY is 
both. In fact, an explanation for these results is provided by 
our hypothesis: that learners attend to (or search for) some 
statistical patterns over others, prioritizing patterns in which 
closed-class items are predictive. Such a bias would lead 
learners in the Open X condition to initially analyze their 
closed-class item Y as predictive of another item. 
Statistically, the item that Y best predicts is X (the probability 
that a sentence contains X, given that it contains Y, is .53). 
Thus, a preference for *AX could reflect an incorrect 
hypothesis that the conditional relationship between X and Y 
is reversed (“if Y then X”). This generalization is not 
consistent with learners’ input, but it is consistent with the 
patterning of closed-class items in natural languages.  
 

 
Figure 3: Choice of the target item (darker colors) or foil 

(lighter colors) on the two item types of the 2AFC test in 
Experiment 3. Participants in Closed X still learned, even 
though the linear order was opposite English. In contrast, 
participants in Open X succeeded on the constituency test 
(YX/XB) but not the predictive direction test (AY/AX), 

apparently having incorrectly analyzed Y as predictive of X. 
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Discussion 
In three experiments, we showed that adults easily acquire a 
grammatical dependency “if X then Y” when X is a closed-
class, but fail to acquire the same dependency when X is an 
open class (Experiment 1). Successful learning of “if X then 
Y” is facilitated by the distinctive perceptual properties and 
high frequency of the closed-class item (Experiment 2). 
Importantly, the primary determinant of learning is the 
mathematical relationship between closed-class and open-
class items and not their linear order (Experiment 3). These 
results suggest that learners privilege computations in which 
closed-class items are predictive of open classes—the same 
computations that are most relevant for natural language 
dependencies. 

We emphasize that, within each experiment, the Closed X 
and Open X conditions had exactly the same statistical 
evidence for the rule “if X then Y”: class X always perfectly 
predicted class Y. Furthermore, learners in contrasting 
conditions were always exposed to the same number of 
lexical items, sentence structures, and sentence types. To 
acquire the XY rule, learners needed to compute exactly three 
transitional probabilities, and contrasting conditions within 
each experiment always contained the same linear direction 
of the X-Y relationship (forward for Experiments 1 and 2, 
backward for Experiment 3). Despite this mathematical 
equivalence, learning was always better when X was a closed 
class. If participants were computing statistics over items 
rather than classes, the results are even more striking: in that 
case, participants learned three low-probability dependencies 
with a predictive closed-class item (kaàlapal, kaàtombur, 
kaàzup) more easily than three high-probability 
dependencies with a predictive open-class item (lapalàka, 
tomburàka, zupàka).  

These results indicate that—whether learners computed 
statistics over classes or items—their distributional analyses 
are biased. Rather than tracking all possible pairwise 
transitional probabilities involving a closed-class item, 
learners apparently analyze closed-class items 
asymmetrically, more easily learning patterns in which a 
closed-class item is predictive of another element than 
patterns in which it is predicted by another element. 

Conclusion 
The original idea of the Anchoring Hypothesis (Valian & 
Coulson, 1988) was that, because closed-class items tend to 
occur at grammatically important points in the sentence, 
focusing on them could help learners acquire grammatical 
structure. Our results add a computational component to this 
approach. Our hypothesis is that, because closed-class items 
are noticed first, due to their distinctive phonological 
properties and their high frequency, these will be the constant 
terms in learners’ computations; other patterns are learned 
and represented relative to them.  

A learning mechanism that operates in this way would 
ultimately represent a broad range of language patterns in 
terms of the distribution of a small set of closed-class items. 
As we pointed out in the Introduction, this is increasingly the 

way that language patterns are described by modern syntactic 
theory as well. The results of our experiments suggest that 
human languages may acquire this type of structure at least 
in part as a consequence of computational biases in the 
human language learner. This account is appealing because, 
if correct, it would explain the privileged role of closed-class 
items in human linguistic representations without positing 
that these representations are innate. However, it is important 
to note that in all three experiments, learners’ preferred 
conditional relationship had the same abstract structure 
(though not always the same linear order) as the closed/open 
dependencies in all natural languages, including English. It is 
difficult to rule out the possibility that learning was affected 
by participants’ experience with this abstract property of 
natural languages; even infants have experience with closed-
class items (cf. Shi et al., 1998). Studies of learning in a non-
linguistic domain could be informative (cf. Saffran, Johnson, 
Aslin, & Newport, 1999).  

Our results raise several other important questions. First, 
what about closed-class items that behave differently? Our 
claim is that learners analyze closed-class items as predictive 
of open-class items, and that this approach is useful because 
it matches the abstract structure of grammatical dependencies 
in natural languages. However, there are exceptions to this 
pattern. For example, pronouns like him do not depend on 
open-class items the same way that articles do. Interestingly, 
pronouns are also special in other ways (Chomsky, 1980). 
The proposed computation could be useful not only for 
discovering predictive dependencies, but also—when this 
analysis fails to uncover a dependency—for flagging 
elements with a more complex grammatical distribution. 
Second, we must also ask whether this computational bias is 
present in children, who are the real natural language 
learners. Our results in ongoing work with child participants 
suggest that they do share this bias. This in turn raises a 
puzzle: if children organize their languages around closed-
class items, why do they not produce these words in their own 
speech for several years? The available evidence suggests 
that children do indeed process closed-class items early, 
despite omitting them in production (Gerken et al., 1990; Shi 
et al., 2006; Zhang et al., 2015). Future work is required to 
understand the discrepancy between what children represent 
and what they initially produce. Finally, we need to test our 
predictions on materials that are more like natural languages 
than what we have studied here. In order to test our 
computational predictions most cleanly, the languages in 
these experiments were unlike natural languages in several 
ways: all of the categories other than X and Y were optional, 
there was only a single grammatical phrase (XY), and none 
of the words had any meaning.  We are in the process of 
testing whether learners privilege the same types of 
computations in the acquisition of miniature languages that 
are more natural. If so, we can ask what kinds of natural 
language patterns can be acquired and represented using 
these privileged computational mechanisms, and to what 
extent these learning mechanisms explain why these patterns 
come to exist in languages of the world. 
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Abstract

In this paper, we study cross-cultural differences in strategic
reasoning in turn-taking games, as related to game-theoretic
norms as well as affective aspects such as trust, degrees of risk-
taking and cooperation. We performed a game experiment to
investigate how these aspects play a role in reasoning in simple
turn-based games, known as centipede-like games, across three
cultures, that of The Netherlands, Israel and India. While there
is no significant main effect of nationalities on the behaviour
of players across games, certain unexpected interactive effects
are found in their behaviour in particular games.
Keywords: intercultural differences; game theory; reasoning in

games; trust and trustworthiness; risk considerations; cooperation

Introduction
Cognitive science is not only concerned with universal pat-
terns of cognition, but also variations in those patterns, in-
duced by relevant factors. As D’Andrade (1981) and Levin-
son (2012) argue, studying variation, and in particular cross-
cultural differences, provides important insights. In this arti-
cle, we study cross-cultural differences in strategic reasoning
in turn-taking games, as related to affective aspects such as
trust, degrees of risk-taking and cooperation. To this end, we
performed a game experiment in three countries: The Nether-
lands, India and Israel.

Cross-cultural differences and games
It has been known for a long time that in turn-taking games
of perfect information, people in general do not act exactly
according to the prescriptions of game theory, which are
based on the common knowledge of the rationality of partici-
pants (Aumann, 1995; Nagel & Tang, 1998). There has been
a lot of interest in the possible differences between people
from different countries with respect to adherence to game-
theoretic predictions (Camerer, 2011). Note that national cul-
tures should not be interpreted in an essentialist way: Cul-
tural tendencies can be induced by incentives (Peysakhovich
& Rand, 2016). For our experiments, we are mainly inter-
ested in four aspects:

- adherence to strategies defined in game theory, namely, for-
ward versus backward induction;

- degree of trust and degree of trustworthiness;

- degrees of risk-taking;
- cooperative versus competitive tendencies.

As far as we know, our experiment is the first one to com-
pare adherence to forward induction versus backward induc-
tion reasoning between different nationalities. The notions
of forward and backward induction are explained in the next
subsection on games.

With respect to trust and cooperation, however, there have
been a number of previous cross-cultural studies, using both
games in which participants meet an opponent only once and
games in which they repeatedly interact with the same oppo-
nent (Roth et al., 1991; Ho & Weigelt, 2005; Henrich et al.,
2005). Differences in trust, cooperativeness, and risk-taking
between British and Japanese participants in turn-taking cen-
tipede games have been studied in Krockow et al. (2017).

Trust and trustworthiness Yamagishi & Yamagishi
(1994) have distinguished two types of trust:

- assurance-based trust needed in relationships with high so-
cial certainty with an expectation of future interaction;

- general trust needed in encounters with strangers with low
social certainty and low expectation of long-time future in-
teraction.

Yamagishi & Yamagishi (1994) have also shown that dif-
ferent cultures score very differently on these two types:
Assurance-based trust is high in cultures like Japan, as incen-
tivized by long-time employment by the same company. In
the United States and Great Britain, in contrast, high general
trust corresponds with the prevalence of short-time employ-
ment and commerce with strangers. Based on the literature,
we expect that trust for strangers is relatively low in India
(where assurance-based trust is high, like in Japan) and high
in The Netherlands (like in Great Britain), with Israel proba-
bly in between.

Cooperation, competition, and self-interest According
to Hofstede (1991) (see the left part of Figure 1), Israel is
an interesting mix between collectivist cultures such as In-
dia, which are expected to be more cooperative in nature,
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Figure 1: Individualism and uncertainty avoidance ratings of
Israel, the Netherlands and India. The numbers for the coun-
tries were provided by the country comparison tool on Hof-
stede’s website https://www.hofstede-insights.com/,
based on the six dimensions distinguished by Hofstede
(1991).

and individualist ones such as the Netherlands, in which self-
interested behaviour is more common.

Attitudes toward risk According to Hofstede (1991),
people in Israel predominantly try to avoid uncertainty, while
people in The Netherlands are rather neutral and people in
India can handle uncertainty and risk most easily, see the
right part of Figure 1.

The main focus of this paper is an experiment to inves-
tigate how the above-mentioned aspects play a role in rea-
soning in simple turn-based games, known as centipede-like
games, across the three cultures. The games are introduced in
the next subsection.

Games for the experiment

The participants in our experiments played a turn-based game
called Marble Drop (Figure 2) against a computer opponent,
and accordingly, we denote the two players by ‘C’ and ‘P’.
An important advantage of using computer opponents in ex-
periments with turn-taking games is that the experimenter can
control the strategies used by the computer opponent, which
allows better interpretation of the participants’ decisions. The
choice of the Marble Drop games was inspired by (Halder et
al., 2015; Ghosh et al., 2017; Verbrugge et al., 2018). These
games can be visually represented as binary tree structures
(Figures 3 and 4). The difference between Game 1 and Game
2 lies in the payoff of player C when choosing a at C1. That
payoff of player C after choosing a is also the only difference
between Game 3 and Game 4. In addition, the only difference
between Game 1 and Game 2 on the one hand and Game 3
and Game 4 on the other hand is the payoff of player P af-
ter choosing h at P2. Since the structure of these games is
reminiscent of a centipede, with its body extending from top

Figure 2: Marble Drop game. Players, assigned blue and or-
ange, control the marble’s course by opening the left or right
trapdoor of their color once the purple marble arrives there.
When the purple marble ends up in a certain bin, each player
earns the marbles of their color in that bin. This example
payoff structure corresponds to Game 1 of Figure 3 below.

left to bottom right, the games are termed as ‘centipede-like’
games.1

In the textbook approach of solving such turn-based games
in game theory, players who are commonly known to be ra-
tional use the backward induction (BI) strategy (Perea, 2010):
one should ignore previous information, and work backwards
from the end of the game tree to reach a decision. For exam-
ple, in the ‘orange’ player’s last turn in the marble drop game
(Figure 2), he has to decide between going to the left or to
the right, for payoffs of 4 or 3 orange marbles, respectively.
Using BI, because 4 is more than 3, he chooses to go left, de-
livering the outcome pair (1,4): 1 for the blue player, 4 for the
orange player. One can then continue backwards to compare
the left and right choices in the blue player’s second turn:
going right gives (1,4) while going left gives (3,1); because
3 is more than 1, the blue player would choose to open the
left blue trapdoor. One then continues to reason backwards
to compare the actions in the orange player’s first turn, where
the outcome is (1,2) when playing left and (3,1) by playing
right. One assumes that, 2 being more than 1, the orange
player chooses to open the left orange trapdoor. Finally, one
compares the actions in the blue player’s first turn, where go-
ing left leads to (4,1) and going right leads to (1, 2). Because
4 is more than 1, the blue player will choose to open the left
trapdoor to obtain 4 points. Note that playing rationally by
BI does not necessarily lead to the outcome with the highest
sum of players’ payoffs – that would have been achieved by
both players choosing to open their right trapdoors at all four
decision points and ending up with a combined payoff of 6+3.

The ‘surprising opponent’ component of these experimen-
tal games comes from the fact that player C (blue) when start-
ing the game does not always play according to the strategy

1The games we consider do not always comply with the condi-
tions on payoffs of the original centipede game (Rosenthal, 1981).
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C1 P1 C2 P2
(6,3)

(4,1) (1,2) (3,1) (1,4)

b d f h

a c e g

C1 P1 C2 P2
(6,3)

(2,1) (1,2) (3,1) (1,4)

b d f h

a c e g

Game 1 Game 2

C1 P1 C2 P2
(6,4)

(4,1) (1,2) (3,1) (1,4)

b d f h

a c e g

C1 P1 C2 P2
(6,4)

(2,1) (1,2) (3,1) (1,4)

b d f h

a c e g

Game 3 Game 4
Figure 3: Collection of the main games used in the experiment. The ordered pairs at the leaves represent payoffs for the
computer (C) and the participant (P), respectively.

P1 C2 P2
(6,3)

(1,2) (3,1) (1,4)

d f h

c e g

P1 C2 P2
(6,4)

(1,2) (3,1) (1,4)

d f h

c e g

Game 1′ Game 3′

Figure 4: Game 1′ corresponds with the parts of Games 1 and 2 from P1 onwards. Game 3′ corresponds with the parts of Games
3 and 4 from P1 onwards.

described above. Note that in Games 1-4 in Figure 3, the BI
strategy suggests for player C to choose a at the first decision
node. In our experiment, the computer player often goes to
the right to give player P (orange) a turn to move in the game.
The orange player may or may not take into account this ‘sur-
prising’ move of the blue player while considering his future
moves. He can disregard his opponent’s past move and play
as if he is playing a ‘new’ game from the current turn and
continue according to the BI strategy. Such players would
play as if they were playing Game 1′ or Game 3′ (see Figure
4). Alternatively, the orange player can play according to a
completely different strategy as described below.

In forward induction (FI) reasoning, a player takes into
account his opponent’s past moves and tries to rationalize
the past behaviour in order to assess that opponent’s future
moves (Perea, 2010). We consider a particular kind of for-
ward induction reasoning here, namely, extensive-form ratio-
nalizability (Pearce, 1984). The underlying idea is that when
a player is about to play at a decision point that has been
reached due to some strategy of the opponent that is not con-
sistent with common knowledge of rationality for each of the
players, the player may still rationalize the opponent’s past
behaviour. For example, suppose that the participant P has

the opportunity to play at her first pair of orange trapdoors
in the marble drop game (Figure 2, corresponding to Game 1
of Fig. 3), which has been reached because the computer C
has chosen to open the right blue trapdoor. This first move
is inconsistent with the choice determined by the assumption
of rationality of both players (see BI example above), that is
to open the left blue trapdoor. The participant might reason
as follows: “The computer will definitely refrain from choos-
ing the left trapdoor at his next choice getting 3 marbles, be-
cause he could have got more (4) marbles had he chosen the
left trapdoor in his first decision node. He must be thinking
that I would choose the right trapdoor in my second decision
node if it is reached, in which case he would get 6 marbles,
which is more than 4. So, if I choose the right orange trap-
door now, he will choose the right blue trapdoor at his next
choice, and then I could choose the left trapdoor which would
give me 4 marbles, more than the 2 marbles I would get if I
chose the left trapdoor now.” According to extensive form ra-
tionalizability, it would therefore be irrational for a computer
opponent C to choose b at C1 only to choose e later at C2 in
Game 1 and in Game 3. However, it would be possible for
the computer opponent to behave in this way in Game 2 and
in Game 4. Similarly, extensive form rationalizability would
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also consider it rational for a computer opponent C to play e
at C2 in Game 1′ and in Game 3′.

Ghosh et al. (2017) investigated whether people are in-
clined to use forward induction in centipede-like games,
rather than backward induction, in an experiment performed
in The Netherlands. They found that in the aggregate, par-
ticipants showed forward induction behaviour in response to
their opponent surprisingly deviating from backward induc-
tion behaviour right at the beginning of the game. How-
ever, participants’ verbalized strategies most often mentioned
their own attitudes towards risk and those they assigned to the
computer opponent, sometimes in addition to considerations
about cooperativeness and competitiveness, rather than game-
theoretic considerations. In our current study, we investigate
variations in reasoning strategies across nationalities.

Hypotheses
We first note that in all these games, we are trying to study
participants’ reasoning methods in terms of their moves (i.e.,
participants’ behaviour). There are certain challenges regard-
ing linking behaviour in games to the underlying reasoning
processes of players. For example, one can explain a given
action in a turn-based game with different reasoning patterns.
In this paper, we interpret the moves with respect to particu-
lar reasoning patterns they represent, namely, game-theoretic
reasoning strategies such as backward and forward induction
reasoning as well as strategies influenced by affective aspects
like trust, degrees of risk-taking and cooperation.

In Game 1 and Game 3, the action c at P1 would suggest
backward induction reasoning performed by the participant.
In addition, the same action might also suggest uncertainty
avoidance or risk-averseness in the participant. On the other
hand, the action d might suggest a risk-taking attitude in addi-
tion to extensive-form rationalizable (forward induction) rea-
soning. Taking note of such variations in reasoning patterns,
we now formulate hypotheses about the cultural differences
that we expect, based on the relevant features discussed in the
Introduction.

Backward versus forward induction, uncertainty avoid-
ance and trust Taking a cue from the fact that at P’s first
decision point, the uncertainty avoidance action is the same as
the backward induction reasoning action in all our experimen-
tal games, we argue that there is a link between these two rea-
soning patterns in the present context. Accordingly, because
of highest uncertainty-avoidance we expect that backward in-
duction reasoning is strongest in Israel, then the Netherlands,
then India. So we expect the ‘safe’ choice of c (backward in-
duction) at the first decision point P1 in all the games of Fig-
ure 3 to be most prevalent in Israel, followed by The Nether-
lands, and least in India.

Looking more specifically at game items, the higher level
of generalized trust in The Netherlands than the two other
countries leads us to expect higher choices of d especially in
Game 1 and Game 3, based on forward induction and/or trust
that the other player will reciprocate and choose f at C2.

Cooperation and trustworthiness With respect to self-
interested goals, in Games 3, 4 and 3′, choices g and h pro-
vide the same number of points to the participant, namely
4. Among these, g is the competitive choice (allowing only 1
point to C) and h the cooperative one (allowing 6 points to C).
Based on the collectivist culture in India, we expect h to be
chosen most in India (we expect more than 50 % h), followed
by Israel (mix of collectivist and individualist), followed by
The Netherlands (individualist).

Methods
The experiment was conducted at the Indian Statistical Insti-
tute in Kolkata, The Open University of Israel, and the Insti-
tute of Artificial Intelligence at the University of Groningen,
The Netherlands. In each of the three countries, a (different)
group of 50 Bachelor’s and Master’s students from several
disciplines took part. That is, the experiment included 50 In-
dian students (44 male, mean age 24.0), 50 Dutch students
(26 male, mean age 23.8), and 50 Israeli students (23 male,
mean age 27.1).2 The participants had little or no knowledge
of game theory.

The tasks that the participants had to perform in these ex-
periments are mentioned in Table 1. Participants were in-
structed by an experimenter at the university, who was also
available for questions. The participants played the turn-
based games through a graphical interface on the computer
screen (Figure 2). Participant were informed that each round,
they would play against a different computer opponent (C,
blue). Each of these opponents would play according to some
plan that was a best response to some plan of the participant.
The participant’s goal was that the marble should drop into
the bin with as many orange marbles as possible. The com-
puter’s goal was that the marble should drop into the bin with
as many blue marbles as possible. Before the experiment it-
self, participants played 14 games to familiarize them with
the game and its controls, the colored marbles, and the turn-
taking aspect of the game.

In some rounds of each game, the participants’ were asked
certain multiple-choice questions regarding the choices of
their opponent: (i) “The computer just chose to go [direc-
tion computer just chose]. If you choose to go [direction cor-
responding to playing d], what do you think the computer
would do next?” or, (ii) “The computer first chose to go
[direction computer chose at its first decision point]. When
you made your first choice, what did you think the computer
would do next if you chose to go [direction corresponding to
playing d]?” Three options were given regarding the likely
choice of the computer: “I think the computer would most
likely open the left side” or “I think the computer would most
likely open the right side” or “Both answers seem equally
likely”. The first two answers translated to the moves e or
f of the computer, respectively. In case of the third answer,
we assumed that the participant was undecided regarding the

2We’d like to thank the experimenters Eric Jansen, Saikat Palit,
Aviel Swissa and Stav Edry.

1832



computer’s next choice.
Participants were paid according to the number of marbles

they gained in one of the experimental games, selected at ran-
dom for each participant. Participants were paid proportion-
ally to the number of marbles they gained (1-4), irrespective
of the number of marbles gained by the computer opponent.
The amounts were balanced across countries so that the min-
imum payout would be enough to go out for coffee, while the
maximum amount would pay for going out for pizza.

For the current study, we compare data between the par-
ticipants of India, Israel and The Netherlands, all of whom
performed the same tasks.

Step 1 - Introduction to the experiment.
- Instructions to the participants.

Step 2 Practice Phase: 14 marble drop games.
Step 3 - Experimental Phase: 48 marble drop games, divided

into 8 rounds of 6 different games each, distinguishing
factor being the pay-off structures.
- Each of the 6 games of Figures 3, 4 occurs once in
each round; the 6 games occur in a random order
in each round.
- Questions were asked about computer’s behaviour
in several rounds.

Step 4 Questions were asked at the end of the experiment
regarding decisions at all nodes of a sample game.

Table 1: Steps of the experiment

Results
As mentioned in the description of the marble drop game,
participants face up to two decision points, P1 and P2, when
playing the games represented in Figures 3 and 4. The first is
whether to stop the game by choosing c or continue playing
by choosing d at their first decision point P1. To determine
to which extent nationality influences this decision, we per-
formed logistic regression of their first decision on Game (1,
2, 3, 4, 1′, 3′), nationality (India, Israel, The Netherlands),
and their interaction.

Trust versus uncertainty avoidance, forward versus
backward induction
Figure 5 depicts the proportion of d choices in Games 1, 2,
and 1′. In addition, Table 2 shows the estimation results of
logistic regression of the participants’ tendency to choose d in
these games. In this regression, Dutch nationality and Game 1
are taken as the base case scenario and each coefficient is read
as a change in the likelihood of playing d when compared to
a Dutch participant playing Game 1.

Table 2 shows that there is no significant main effect of na-
tionality on the behaviour of players. On average, we there-
fore find no differences in the levels of trust and uncertainty
avoidance across nationalities for their first decision. How-
ever, we do observe a significant main effect of Game 2. Re-

Variable Coefficient z value
India -0.035 -0.250
Israel -0.334 -1.240
Game 1′ -0.100 -0.489
Game 2 -0.609 -2.787**
Israel × Game 1′ 0.557 2.038*
Israel × Game 2 0.724 2.593**
India × Game 1′ 0.337 1.316
India × Game 2 0.510 1.875

Table 2: Estimated logistic regression coefficients for the pro-
portion of d choices in Games 1, 2, and 1′. Coefficients rep-
resent the difference in d choices compared to Dutch partic-
ipants in Game 1. Significance at the 5% level and 1% level
are indicated by * and **, respectively.

Figure 5: Proportion of d choices in games 1, 2, and 1′ across
nationalities. Whiskers indicate one standard error.

call that participants who engage in forward induction rea-
soning would be more likely to pick d in Game 1 than in
Games 2 and 1′. The results in Table 2 are consistent with for-
ward induction reasoning, since the coefficients of Game 1′

and Game 2 are both negative. Interestingly, only the dif-
ference between Game 1 and Game 2 is significant. That is,
even though Game 1′ and Game 1 provide participants with
different information on their opponent’s strategy, participant
choices do not differ significantly.

In addition, there is a significant interaction between
Game 2 and Israeli nationality. Together, these results indi-
cate that while Dutch participants are more likely to choose d
in Game 1 than they are in Game 2, Israeli participants tend
to choose d less in Game 1 than in Game 2. Thus, while some
Dutch participants may have used forward induction, Israeli
participants’ behaviour does not show a lot of strategic rea-
soning per se.

Figure 6 shows the proportion of d choices in Games 3,
4, and 3′. Table 3 shows the estimation results of the logis-
tic regression for these games, where Game 3 and Dutch na-
tionality are the base case scenarios. The table shows that
only Game 4 has a coefficient that deviates significantly from
zero, indicating that participants were less likely to choose d
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Variable Coefficient z value
India -0.373 -0.519
Israel -0.601 -0.993
Game 3′ -0.184 -0.879
Game 4 -0.428 -1.989*
Israel × Game 3′ 0.195 0.666
Israel × Game 4 0.117 0.249
India × Game 3′ 0.162 0.559
India × Game 4 0.357 0.637

Table 3: Estimated logistic regression coefficients for the pro-
portion of d choices in Games 3, 4, and 3′. Coefficients rep-
resent the difference in d choices compared to Dutch partici-
pants in Game 3. Significance at 5% level is indicated by *.

Figure 6: Proportion of d choices in Games 3, 4, and 3′ across
nationalities. Whiskers indicate one standard error.

in Game 4 than they were in Game 3. Note that this is con-
sistent with forward induction reasoning, which would lead a
participant to be more likely to choose d in Game 3 than in
Games 4 and 3′.

Similar to the findings presented in Table 2 for Games 1, 2
and 1′, Table 3 shows that none of the nationality-dependent
coefficients differ significantly from zero. In particular, for
the participants’ first decisions in Games 3, 4 and 3′ , there
appear to be no significant differences in trust and uncertainty
avoidance across nationalities.

Competition, cooperation and trustworthiness
In addition to the decisions at the first decision point P1, we
performed a logistic regression on participants’ choices at
their second decision point P2 to investigate differences in co-
operation and trustworthiness. Since the choices of the par-
ticipants affect their own payoffs in Game 1, 2, and 1′, our
analysis of participant behaviour at decision point P2 is lim-
ited to Games 3, 4, and 3′, in which their choice only affects
the payoff of the computer opponent, their own payoff being
4 in all cases. Participants could choose the cooperative op-
tion h, which would yield the opponent a payoff higher than
their own, or the competitive option g, which would leave the
opponent with the lowest possible payoff.

Figure 7 depicts the proportion of h choices in Games 3, 4,

Variable Coefficient z-value
India -0.942 -1.043
Israel -1.714 -2.467*
Game 3 -0.344 -0.403
Game 3′ -0.279 -0.219
Israel × Game 3 0.276 0.138
Israel × Game 3′ 0.097 0.442
India × Game 3 -0.516 -1.185
India × Game 3′ -0.744 -1.537

Table 4: Estimated logistic regression coefficients for the pro-
portion of h choices in Games 3, 4, and 3′. Coefficients rep-
resent the difference in h choices compared to Dutch partici-
pants in Game 4. Significance at 5% level is indicated by *.

Figure 7: Proportion of h choices in Games 3, 4, and 3′ across
nationalities. Whiskers indicate one standard error.

and 3′. In addition, Table 4 shows the logistic regression re-
sults on the proportion of h choices, where Dutch nationality
and Game 4 are taken as the base case scenarios. The results
show no significant differences in the decision to choose g or
h across games. That is, the interpretation participants have
of the opponent’s previous actions do not appear to affect par-
ticipant choices at the second decision point significantly.

While Table 4 shows that the differences between Dutch
and Indian participants are not significant, Israeli participants
were significantly less likely to choose h than Dutch partici-
pants. Moreover, Figure 7 shows that across Games and na-
tionalities, participants were more likely to choose the option
that would yield the opponent a lower payoff. Overall, partic-
ipant behaviour can therefore be described as competitive.

Discussion and conclusion
We hypothesized that at their first decision point, participants
from Israel would show uncertainty avoidance behaviour
most often in our experiment, followed by those from The
Netherlands and finally India. However, our results suggest
that on average, levels of uncertainty avoidance in centipede-
like games are similar across nationalities. Based on our re-
sults, we were not able to distinguish any differences between
Israeli, Dutch, and Indian participants in choosing a certain
outcome over an uncertain outcome.
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Interestingly, our results do confirm our hypothesis that ac-
tions of Dutch participants can be interpreted as indicative of
forward induction. In contrast, the actions of Israeli partici-
pants showed no strategic behaviour at all. This may indicate
that Israeli participants were more likely to distrust or to get
confused by a surprising opponent.

We hypothesized that, based on the collectivist nature of
Indian society, at least half of the Indian participants would
show cooperative behaviour. In contrast, our results show
high levels of competitiveness across nationalities. When
faced with the choice of giving their opponent a high pay-
off or a low payoff at their last decision point, participants
on average preferred to give their opponent a low payoff. In
fact, while we expected Dutch participants to be more self-
interested than Indian and Israeli participants, Figure 7 sug-
gests Dutch participants to be the least competitive.

In general, the previous actions of the opponent did not
influence participants’ decisions to behave competitively or
cooperatively. However, Figure 7 shows an interesting trend
suggesting that Indian participants are cooperative towards
opponents that have previously behaved cooperatively to
them: the more often an opponent has surprised the an Indian
participant by choosing the uncertain, possibly cooperative,
option, the more likely they are to respond cooperatively.

In summary, the take-home message of our experiment is
that the levels of uncertainty avoidance are similar across na-
tionalities, and that Israeli participants are more likely to dis-
trust an opponent. Levels of competitiveness are high for all
three cultures, but surprisingly, the Dutch are the least stingy.

Future work This inter-cultural study is based only on the
decisions made by the participants. In order to be able to
draw conclusions about the reasoning strategies behind the
decisions, we are currently looking at the reaction times of
the participants, similar to Bergwerff et al. (2014). We intend
to continue our study on the differential roles of affective and
game-theoretic aspects, by designing new experiments based
on both perfect and imperfect information turn-taking games.
We will apply techniques such as eye-tracking and compu-
tational cognitive modeling to be better able to distinguish
reasoning strategies (Meijering et al., 2012; Top et al., 2018).
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Abstract

When people understand language about their own actions they activate premotor regions they use to perform these actions.
Do people understand language about other peoples actions by imagining how they perform these actions themselves, or
how they perceive others performing them? Here, we recorded BOLD fMRI while left- and right-handers read about and
then imagined their own unimanual actions (e.g. you write) or others actions (e.g. she writes). When imagining their
own manual actions, participants preferentially activated PMC circuits controlling their dominant hand. By contrast, when
imagining others actions, participants PMC activity reflected both how they perform actions themselves and how they
typically see actions performed by right-handers (about 90% of people they see). Language-induced motor imagery for
our own actions reflects how we use our own bodies, whereas imagery for others actions also reflects how others use their
bodies, even if their bodies differ from our own.
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Abstract 

Scientific norms value skepticism; many religious traditions 
value faith. We test the hypothesis that these different 
attitudes towards inquiry and belief result in different 
inferences from epistemic behavior:  Whereas the pursuit of 
evidence or explanations is taken as a signal of commitment 
to science, forgoing further evidence and explanation is taken 
as a signal of commitment to religion. Two studies (N = 401) 
support these predictions. We also find that deciding to 
pursue inquiry is judged more moral and trustworthy, with 
moderating effects of participant religiosity and scientism. 
These findings suggest that epistemic behavior can be a social 
signal and shed light on the epistemic and social functions of 
scientific vs. religious belief. 

Keywords: explanation; evidence; information search; 
science; religion; moral cognition 

Introduction 
In his influential work on the sociology of science, Robert 

Merton introduced the idea of “organized skepticism” as a 
norm that governs the scientific enterprise. “Most 
institutions demand unqualified faith,” he wrote, “but the 
institution of science makes skepticism a virtue” (Merton, 
1973). Whether or not this norm accurately characterizes all 
scientific behavior and aspirations, it nicely encapsulates a 
value that many uphold: the value of critical and unlimited 
inquiry. 

Yet in some walks of life, skepticism and unfettered 
inquiry can compete with other values. For instance, 
demanding an explanation for a friend’s loyalty, or hiring a 
private investigator to gather evidence that a spouse is 
indeed faithful, could damage those relationships by sending 
a signal about one’s (uncharitable) beliefs or (weak) 
commitment to the relationship. In fact, in economic games, 
examining the available evidence can be a maladaptive 
strategy for promoting cooperation (Hoffman, Yoeli, 
Nowak, 2015). As Merton suggested, organized skepticism 
can interfere with “values which demand an unquestioning 
acquiescence.”  

Within some religious traditions, willingness to believe 
(e.g., in Jesus or in God) in the absence of evidence is itself 
regarded as a virtue. In the well-known story of “doubting 
Thomas,” to take an example from the Christian tradition, 
Jesus tells his apostle who demanded evidence: “because 
thou hast seen me, thou hast believed: blessed [are] they 
that have not seen, and [yet] have believed” (John 20:29). 
Indeed, faith – whether it is faith in God or in one’s partner 

– may be an epistemic attitude that involves a certain 
abdication from the need for further evidence (Buchak, 
2012).  

The diverging norms of skepticism and faith introduce an 
interesting possibility: that the choice to pursue (vs. forgo) 
inquiry could send a signal about the strength and nature of 
one’s commitments to scientific versus religious norms, and 
correspondingly, to science versus religion. That is, 
demanding further evidence or explanation could be seen as 
a mark of commitment regarding science, but a sign of doubt 
or insincerity in religion, at least within those traditions that 
value faith. Insofar as commitment to skeptical versus faith-
based norms are taken to have other social or epistemic 
implications, we might also expect individuals who decide 
to pursue or forgo further inquiry regarding scientific or 
religious matters to be judged differentially moral, 
trustworthy, or committed to truth. 

Based on these ideas, the current paper asks the following 
two questions: (1) What kinds of social and moral 
inferences do people (specifically, American and 
predominantly Christian adults) make on the basis of 
another person’s decision to pursue or forgo inquiry? (2) Do 
inferences vary across scientific and religious domains?  

Prior work 
Research has shown that people interpret others’ 

decisions as signals of moral and socially relevant traits. For 
example, those who make harm-averse moral judgments or 
engage in third-party punishment are more trusted and 
preferred as social partners (Everett, Crockett, Pizarro, 
2016; Jordan, Hoffman, Bloom, Rand, 2016). Moral values 
and group affiliation are also thought to influence belief 
formation and revision: increased analytic thinking is 
associated with more polarized views, potentially because 
analytic individuals use different evidence to support pre-
determined conclusions (Kahan & Stanovich, 2016). It 
remains unknown, however, whether people infer moral and 
social traits on the basis of epistemic behaviors, namely, the 
decision to pursue or forgo information search. In the 
current work we consider two epistemic behaviors: pursuing 
versus forgoing an explanation, and pursuing versus 
forgoing further evidence. 

Prior work has found that judgments about the “need for 
explanation” differ across the domains of science and 
religion (Liquin, Metz, & Lombrozo, 2018). In particular, 
participants judged scientific statements – such as “the 
center of the earth is very hot” – to demand an explanation 

1837



to a greater extent than religious statements – such as “there 
is a hell” – even when confidence in the truth of the two 
statements was matched. When participants were presented 
with the “explanation” that it’s a mystery (e.g., “Why is the 
center of the earth very hot [is there a hell]? It’s a mystery”), 
they judged the answer more acceptable for religious 
questions than for scientific ones. These findings suggest 
that explanation-seeking – or abdication from explaining – 
could play different roles within science vs. religion, 
consistent with the diverging norms of skepticism vs. faith.  

There is also reason to believe that science and religion 
could differ when it comes to attitudes towards evidence. 
Van Leeuewen (2017) develops a proposal according to 
which science and religion tend to involve distinct epistemic 
attitudes – what he calls factual belief versus religious 
credence. A characteristic of the latter is that it is 
“evidentially invulnerable”: religious credences are not 
typically extinguished by contrary evidence. If this view is 
right, evidence should be more relevant to the evaluation of 
factual versus religious propositions.  

In sum, prior work suggests that various decisions can 
serve as social signals, and that the domains of science and 
religion could differ in the epistemic attitudes they typically 
involve. Across two studies, we investigate novel questions 
that build upon this work: whether epistemic behaviors (the 
decision to pursue vs. forgo explanation or evidence) send 
different social signals across domains. 

Study 1 
In study 1, we examine the inferences that people make 
from an agent’s epistemic behavior. To do so, we presented 
a story about a character, Jen, who learns about a new issue: 
either near-death experiences or the shroud of Turin 
(scenario: NDE vs. shroud). These issues were chosen 
because they can be framed as scientific or religious 
(domain: scientific vs. religious). Jen contemplates whether 
the issue demands an explanation or whether the issue 
requires more evidence (inquiry: explanation vs. evidence). 
Critically, Jen ultimately decides that it does or does not 
(decision: pursue vs. forgo). Participants rated the morality 
of Jen’s behavior, her trustworthiness, and her commitment 
to truth, science, and religion. We predicted that the 
decision to pursue inquiry would be taken as a signal of 
scientific commitment, and the decision to forgo as a signal 
of religious commitment. We also predicted (but failed to 
find) that these effects would be strongest within their 
corresponding types of framing.  

Method 
Participants Participants in Study 1 were 97 adults 
recruited from Mechanical Turk (63 male, 34 female, mean 
age 36, range 22-73). Participation was restricted to MTurk 
workers in the U.S. who had completed 5000 past HITs with 
a minimum approval rating of 99%. Nine additional 
participants were excluded for leaving responses blank. 
 

 

Materials & Procedures Participants were randomly 
assigned to read one of 16 vignettes about Jen, who learns 
about an issue and decides whether to inquire further about 
it. The issue was either near-death experiences or the shroud 
of Turin (scenario: NDE vs. shroud), framed in a scientific 
or religious manner (domain: scientific vs. religious). For 
example, the text for the shroud of Turin with a scientific 
framing included the following: 

 
Jen learns about the shroud of Turin, a piece of cotton 

cloth that may have been the burial shroud that Jesus (1st 
century preacher and religious leader) was wrapped in 
after being crucified by the Roman government. 

Scientific findings in disciplines ranging from 
chemistry to biology shine light on whether the shroud of 
Turin is indeed the burial shroud of Jesus. Multiple 
radiocarbon dating and vibrational spectroscopy tests date 
the shroud between 300 BC and 400 AD, corresponding 
with the timing of Jesus’s crucifixion. 

Though most scientific leaders believe the shroud to be 
the burial cloth of Jesus, the matter is still not settled. 
Some people believe that it is not authentic and/or was 
created at a later date. 
 
The version with religious framing was similar, but 

instead of offering scientific evidence and appealing to 
scientific consensus, it included biblical references and 
appealed to consensus among religious leaders.  

After reading this information, participants learned about 
Jen’s subsequent epistemic behavior: she either decided to 
pursue further inquiry or not (inquiry decision: pursue vs. 
forgo), and her inquiry took the form of either seeking (or 
not seeking) further evidence or seeking (or not seeking) an 
explanation (inquiry: evidence vs. explanation). Following 
prior work (Liquin et al., 2018), explanation seeking was 
framed broadly: that is, the specific type of explanation 
available (such as mechanistic or teleological) was not 
specified. For the Shroud of Turin, for example, participants 
read one of the following sentences, depending on inquiry 
condition (evidence vs. explanation) and decision (indicated 
by text in brackets): 

 
Evidence: Jen decides that she does [not] need more 
evidence that the cloth was the burial shroud that Jesus 
was wrapped in.  
Explanation: Jen decides that she does [not] need an 
explanation for how the shroud came to have its 
characteristic markings. 
 
Crossing scenario (NDE vs. shroud), domain (scientific 

vs. religious), decision (yes vs. no), and inquiry (evidence 
vs. explanation) resulted in the 16 distinct vignettes. 

After reading the vignette, participants were asked to rate 
14 statements designed to probe their inferences about Jen, 
including her morality, trustworthiness, commitment to 
truth, commitment to science, and commitment to religion. 
All items and rating anchors are indicated in Table 1. Items 
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about truth, science, and religion were presented in random 
order before items about morality and trustworthiness. Nine 
participants failed to answer at least one item and are 
therefore excluded from reported analyses. Participants then 
answered an open-ended question about what they thought 
of the fact that Jen did [not] pursue further evidence or 
explanation. We do not analyze these open-ended responses 
here. 

Next, participants completed a set of individual difference 
measures, which are not reported here. Finally, participants 
reported their political orientation, age, and gender.  
 

Table 1: Study 1 and 2 rating questions. Items with an 
asterisk were reverse-scored. For the composite measures, 
we additionally report Cronbach’s α (Study1 / Study 2).  

 
Moral and character inferences  

Morality  
Jen’s decision that […] was…  
(1 = “very immoral/bad” – 7 = “very moral/good”)  
Trustworthiness  
Jen is probably…  
(1 = “very untrustworthy” – 7 = “very trustworthy”)  
Commitment to truth  (α = .88 / .79) 
Jen values truth above all.  
When it comes to what she believes, Jen cares 

about getting things right.  
Jen is not concerned about whether she is right or wrong.* 
Jen values some things more than getting things right.* 
(1 = “strongly disagree” – 7 = “strongly agree”)  
Commitment to science (α = .94 / .94) 
Jen has a strong commitment to the methods of science.  
Jen is a deeply scientific person.  
Jen values her identity as a scientifically-minded person.  
Jen trusts scientific authorities.  
(1 = “strongly disagree” – 7 = “strongly agree”) 
Commitment to religion (α = .93 / .94) 
Jen has strong religious faith.  
Jen is a deeply religious person.  
Jen values her religious identity.  
Jen trusts religious authorities.  
(1 = “strongly disagree” – 7 = “strongly agree”) 

Results 
Our key dependent variables were the single ratings for 

morality and trustworthiness, as well as our composite 
ratings for commitment to truth, science, and religion, which 
were calculated by averaging the four ratings for each scale. 
The reliability of these scales, as assessed by Cronbach’s α, 
ranged from good to excellent (see Table 1). For each 
dependent variable, we performed an ANOVA with domain 
(scientific vs. religious), decision (yes vs. no), scenario 
(Shroud of Turin vs. NDE) and inquiry (evidence vs. 
explanation) as between-subjects factors (see Figure 1a). 
Given the large number of tests, we adopted the more 
conservative p-value of .01 as our threshold for significance; 
we report all significant effects. 

The ANOVA with ratings of morality as a dependent 
variable revealed a main effect of decision: deciding to 
inquire was rated morally better than deciding not to, F(1, 
81) = 37.58, p < .001. Analysis of trustworthiness as a 
dependent variable also revealed a main effect of decision, 
f(1,81) = 22.22, p < .001, such that the character was rated 
as more trustworthy when she decided to inquire than when 
she decided not to.  

Analyzing composite ratings of commitment to truth also 
showed a main effect of decision, f(1,81) = 70.40, p <  .001, 
with decisions to inquire associated with higher perceived 
commitment to truth. However, this effect was qualified by 
a significant interaction with domain, such that decision had 
a greater impact on perceived commitment when the issue 
was framed as religious, f(1,81) = 8.41, p = .005.  

Composite ratings of commitment to science exhibited a 
similar pattern, revealing a significant main effect of 
decision in the same direction, f(1,81) = 45.208, p < .001, as 
well as a marginal interaction with domain, trending in the 
same direction, f(n) = 5.95, p = .02.  

Finally, composite religious commitment ratings revealed 
a significant main effect of decision, f(1,81) = 45.618, p < 
.001, but in a direction opposite to that observed for our 
other dependent variables: the decision to inquire was 
associated with a decrease in perceived commitment to 
religion. Once again, there was a suggestive trend for 
decisions to be more informative in the religious domain 
(decision x domain interaction), f(1,81) = 2.72, p = .10. 
There was also a significant main effect of scenario, 
qualified by an interaction with decision, such that 
perceived commitment to religion was rated higher when 
Jen learned about the shroud of Turin, f(1,81) = 10.68, p = 
.001, especially when Jen decided not to pursue more 
information, f(1,81) = 9.56, p = .002. 
 
Discussion 

Participants in our study viewed evidence- and 
explanation-seeking behaviors favorably: participants 
viewed the decision to pursue both evidence and 
explanation as morally good and a cue to trustworthy 
character. Critically, evidence- and explanation- seeking 
was also treated as a signal of commitment to truth and 
science, where forgoing further inquiry was treated as a 
signal of commitment to religion. These effects were 
remarkably consistent across modes of inquiry (evidence 
versus explanation), and across our manipulation of domain 
(science versus religion), though we found modest evidence 
that pursuit decisions might be regarded as more 
informative in the domain of religion than science. 

We initially hypothesized that the effect of inquiry 
decisions on inferences about the inquirer would be 
moderated by participants’ own religious and scientific 
commitments. Because our sample was overwhelmingly 
non-religious, however, we were unable to test this 
hypothesis. We revisit this question in Experiment 2, for 
which we recruited a more religious sample. 
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Study 2 
In Study 2, we again tested the effect of epistemic behaviors 
(pursuing vs. forgoing evidence vs. explanation) and 
domain (religious vs. scientific) on inferences about 
morality, trustworthiness, commitment to truth, commitment 
to science, and commitment to religion. However, we 
restricted participation to MTurk workers from the nine 
states in the U.S. with the highest proportion of religious 
residents – this involved drawing from the generally 
protestant population of the South (Lipka & Wormald, 
2016). We also aimed to strengthen the manipulation of 
domain (religious vs. scientific), editing scenarios to be 
more identifiably religious or scientific. Finally, by 
including a larger and more religious sample, we aimed to 
test two hypotheses about individual differences that could 
moderate the effect of inquiry decision on perceived 
morality and trustworthiness: religiosity and scientism. 
Specifically, we predicted that more religious participants 
might see greater value in the epistemic attitude of faith, 
resulting in higher ratings of morality and trustworthiness 
(relative to non-religious participants) after Jen decides to 
forgo further inquiry. On the other hand, participants who 
endorse a narrow commitment to science might be 
especially likely to value associated norms (such as 
organized skepticism) and therefore judge Jen more 
favorably (relative to less-scientistic participants) when she 
decides to pursue inquiry. 

Method 
Participants Participants in Study 2 were 304 adults 
recruited from Amazon Mechanical Turk (117 males, 186 
females, mean age 40, range 19 to 77). Participation was 
restricted to MTurk workers from Alabama, Mississippi, 
Tennessee, Louisiana, Arkansas, South Carolina, West 
Virginia, Oklahoma, and Georgia. Thirty-six additional 
participants were excluded for failing one or more attention 
checks (explained below).   
 
Materials & Procedures The materials and procedures 
were the same as those in Study 1, with the following 
modifications. First, we made slight modifications to the 16 
original vignettes to further differentiate the religious and 
scientific framing. For example, for the religious version of 
the Shroud of Turin vignette, we replaced the original 
sentence “could it be the burial shroud of Christ,” with 
“could it be the burial shroud of Jesus Christ, son of God?” 
Second, we collected fewer individual difference measures 
than in Study 1. Those retained included the religiosity 
inventory from Pennycook et al. (2012; sample items: 
“There is a life after death,” “Religious miracles occur”), the 
moralized rationality and importance of rationality scales 
from Stahl et al. (2016), and the scientism scale from Farias 
et al. (2013; sample items: “Science provides us with a 
better understanding of the universe than does religion,” 
“Science is the most valuable part of human culture”), 
presented in this order. An attention check (“select ‘strongly 
agree’”) was included in the religiosity inventory, and 31 

participants were excluded for failing to answer correctly. 
Participants then reported their political orientation, age, and 
gender.  

Finally, participants answered two additional attention 
check questions about the content of their vignette and Jen’s 
decision; these were simple multiple-choice questions based 
on what they had read (e.g., “What did Jen decide?”). Four 
participants were excluded for failing to answer at least one 
question correctly.  

 

 
Figure 1: Mean ratings in Study 1 and 2 for the inferred 

characteristics of the vignette’s character as a function of 
domain and her decision to pursue or forgo further inquiry. 

Error bars correspond to SEM.  
 

Results 
As with Study 1, our key dependent variables were the 

single ratings for morality and trustworthiness, as well as 
our composite ratings for commitment to science, religion, 
and truth, calculated by averaging the four ratings for each 
scale. The reliability of these scales, as assessed by 
Cronbach’s α, ranged from good to excellent (see Table 1). 
For each dependent variable, we performed an ANOVA 
with domain (scientific vs. religious), inquiry decision 
(pursue vs. forgo), inquiry type (evidence vs. explanation), 
and scenario (shroud vs. NDE) as between-subjects factors 
(see Figure 1b). Given the large number of tests, we adopted 
the more conservative p-value of .01 as our threshold for 
significance, and we report all significant effects. 

The ANOVA with ratings of morality as a dependent 
variable again revealed a main effect of decision, f(1, 288) = 
39.50, p < .001, as well as a marginal interaction between 
domain, decision, and inquiry type, f(1, 288) = 6.51, p = .01. 
Both kinds of inquiry were associated with higher moral 
goodness judgments, but explanation-seeking behaviors 
were more informative for morality in a scientific context 
than a religious one, and conversely, evidence-seeking 
behaviors were more informative in a religious context than 
a scientific one. There was also an interaction between 
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decision and scenario, such that the main effect of decision 
was more pronounced in the NDE scenario, f(1,288) = 6.95, 
p = .008. 

Analysis of trustworthiness judgments also revealed a 
main effect of decision, f(1,288) = 20.25, p < .001, with the 
decision to pursue inquiry associated with greater 
trustworthiness.  

Analyzing composite ratings of commitment to truth 
revealed a main effect of decision, f(1,288) = 266.52, p <  
.001, with greater perceived commitment when inquiry was 
pursued, and a main effect of inquiry type, f(1,288) = 16.78, 
p < .001, with greater perceived commitment in the 
evidence condition than in the explanation condition. There 
was also a marginal interaction between decision and 
domain, f(1,288) = 4.52, p = .03, with decision having a 
greater impact in the religious condition. 

Analysis of commitment to science revealed a main effect 
of decision, f(1,288) = 111.10, p < .001, as well as an 
interaction between decision and domain, f(1,288) = 9.3, p = 
.003. As in Study 1, Jen was regarded as having a higher 
commitment to science when she sought out evidence or 
explanation, with a greater effect of decision with religious 
framing. There were also main effects of domain and 
scenario, such that Jen was perceived as having a higher 
commitment to science both when the issue was framed as 
scientific, f(1,288) = 21.23, p < .001, and when the issue 
was near-death experiences rather than the shroud of Turin, 
f(1,288) = 9.48, p = .002. 

The ANOVA with composite commitment to religion 
revealed a main effect of decision in the opposite direction 
of truth, morality, truth commitment, and science 
commitment, as in Study 1. Forgoing inquiry was associated 
with greater commitment to religion, f(1,288) = 86.626, p < 
.001. There was also a main effect of scenario, f(1,288) = 
38.349, p < .001,  as well as an interaction between decision 
and scenario, f(1,288) = 15.75, p <.001: for the Shroud of 
Turin scenario, perceived commitment to religion was 
higher overall, and decision was more influential. 

We additionally explored whether two of our individual 
difference measures, religiosity and scientism, moderated 
the effect of inquiry decision on perceived morality and 
trustworthiness (see Figure 2). To test for a moderating 
effect of religiosity, we constructed two pairs of linear 
mixed effects models (predicting morality or 
trustworthinesss), treating participant religiosity (centered) 
and decision as fixed factors, and treating scenario as a 
random factor with respect to intercept. We fit a full model 
with the main effects of both fixed factors as well as their 
interaction and a partial model that included the same 
factors without an interaction. An ANOVA comparison of 
the two models revealed that the full model better predicted 
moral judgments, X2(1) = 7.28, p = .006, and trustworthiness 
judgments, X2(1) = 14.56, p < .001. As participant 
religiosity increased, epistemic decision mattered less for 
judgments of morality and trustworthiness. Equivalent 
analyses for participant scientism also revealed that a model 
with the scientism-decision interaction term better predicted 

morality, X2(1) = 15.19, p < .001, and trustworthiness, X2(1) 
= 27.776, p < .001. However, the pattern was opposite to 
that observed for religiosity: participants rejecting scientism 
were likely to see forgoing inquiry as more moral and 
trustworthy, whereas participants endorsing scientism saw 
the pursuit of inquiry as more moral and trustworthy. 

 
Figure 2: Moral and trustworthiness judgments by 

participant scientism and religiosity.  

Discussion 
In Study 2, we replicated our main findings from Study 1 
with a larger and more religious sample drawn 
predominantly from the American South. Jen was regarded 
as more moral and trustworthy for seeking evidence and 
explanations. Inquiry behaviors were associated with an 
increase in commitment to truth and science, but a decrease 
in commitment to religion. We also found additional 
evidence of a trend observed in Study 1: inquiry decisions in 
the domain of religion (vs. science) were generally more 
informative in the sense that they had a larger impact on 
inferences about Jen’s commitments, especially to science.   

Going beyond Study 1, we identified two individual 
difference factors that moderated the effect of inquiry 
decision on inferences about morality and trustworthiness: 
religiosity and scientism. Scientistic participants were 
inclined to draw inferences about Jen’s morality and 
trustworthiness that were more dependent on her decision 
about whether to pursue or forgo inquiry, showing a more 
pronounced effect favoring inquiry. On the other hand, 
religious participants tended to draw inferences about Jen’s 
morality and trustworthiness that were less dependent on her 
decision about whether to pursue or forgo inquiry.  

General discussion 
People infer a number of moral and social traits from 

another person’s epistemic behavior. We found evidence 
that pursuing inquiry is viewed as a signal of commitment to 
truth and to science, but that forgoing inquiry is perceived as 
signaling commitment to religion. A person who pursues 
evidence or explanation is regarded as more moral and 
trustworthy, but only among certain groups: for more 
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religious participants, the effect of inquiry on inferences of 
trust and morality diminishes; for participants who very 
strongly reject scientism, the relationship reverses.  

Keeping track of epistemic behavior is key to learning 
from others. The finding that adults infer moral character 
traits from an agent’s epistemic behavior contributes to a 
literature showing a connection between how people track 
others’ epistemic and moral status. Research has shown that 
young children use epistemic markers, such as past 
accuracy, to guide evaluations of source trustworthiness 
(Birch, Vauthier, & Bloom, 2008). However, children also 
use a source’s moral qualities, such as niceness/meanness, 
in evaluating the truth-value of a claim (Landrum, Mills, & 
Johnston, 2013). Adults are less likely to trust a source with 
different political values, even when the information is non-
political, e.g., about geometric shapes (Marks, Copland, 
Loh, Sunstein, & Sharot, 2018). Future research should 
investigate why we use moral information in epistemic 
judgments and epistemic information in moral judgments. 
When does trusting a source mean trusting a person?  

The social consequences of information search might 
carry implications for real epistemic decisions. People often 
face the choice between accepting a proposition at face 
value and searching for more information. Our research 
suggests the possibility that epistemic considerations (e.g., 
strength of prior evidence, uncertainty) may not fully 
account for behavior. Social context may play a role in the 
decision-making process. For instance, a person who wants 
to signal commitment to religion may be more likely to 
forgo inquiry, risking false beliefs for potential social 
rewards (a “display of faith”). A person could also choose to 
pursue costly inquiry (high search cost, low information 
value) to be perceived as moral and trustworthy (a “display 
of skepticism”).  

The current studies are limited in a number of respects, 
including the range of materials and underspecified forms of 
inquiry. Explanation in particular was broadly defined in our 
experimental materials. There are different kinds of 
explanations, and participants may have differed in what 
they took an explanation to be. Indeed, given differences in 
the need for explanation across domains (Liquin, Metz, & 
Lombrozo, 2018), and differences in the kinds of 
explanations offered across domains (e.g., Kelemen, 2004; 
Lupfer, Brock, & DePaola, 1992), it could be that different 
kinds of explanations are more or less closely tied to 
religious and scientific norms.  

It’s also important to note that our sample – while diverse 
in some respects – drew from an overwhelmingly Christian 
(and mostly Protestant) population, considerably limiting 
the extent to which we can make general claims about 
religion or religiosity. Indeed, we expect a great deal of 
heterogeneity in religious attitudes towards inquiry, and 
additionally expect that scientific propositions can be “taken 
on faith.” Future work should explore this heterogeneity, for 
instance testing more diverse samples, and additionally 
consider how a more nuanced understanding of science (as 
opposed to the “scientism” measured here) might affect 

attitudes towards and inference from the choice to seek 
further explanation or evidence. 

Despite these limitations, the present work contributes to 
a growing body of work suggesting that beliefs and 
processes of belief revision are sensitive to both epistemic 
and social goals. Researchers have proposed that religious 
belief serves a social coherence function (Norenzayan, 
2013), and politicized “scientific” beliefs (such as the 
endorsement or rejection of anthropogenic climate change 
or human evolution) are strongly related to cultural / group 
identity (e.g., Kahan & Stanovich, 2016). As Van Leeuwen 
(2017) suggests: “If my credence that our god exists can be 
banished by something so trifling as mere evidence, how 
can you be sure that I am really committed to our group, 
which defines itself by allegiance to our god?” Our research 
shows that forgoing inquiry can send a signal of religious 
commitment. On the other hand, for most observers, the 
decision to inquire is considered the more moral action, and 
a stronger marker of trustworthiness, commitment to 
science, and commitment to truth. 
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Abstract 

Event cognition is a rapidly developing and promising 
research area. Meanwhile, some domains are not considered in 
detail in this scope. In particular, event cognition is not 
precisely explored from the perspective of cognitive 
development. In this paper, we compare the capacity to cut a 
visual narrative into events for kindergarten students, primary 
school students, high school students and adults. “The pear 
film” by W. Chafe (1975) is used as the material for our 
experiment. We also examine a correlation between event 
comprehension and other cognitive skills for primary school 
students. Our work provides clear evidence that, in contrast 
with high school students and adults, kindergarten students 
and primary school students perceive visual narrative on the 
surface level.    

Keywords: event cognition, event model, cognitive 
development, primary school students, narrative 
comprehension. 

Introduction 
Event cognition is an intensively developing domain of 

cognitive science and a promising avenue of research. A 
number of insightful conjectures and seminal ideas 
supported by dozens of experiments have been suggested in 
this domain over recent decades (Suh & Trabasso 1993; 
Zwaan et al. 1995; Zacks et al. 2001; Rinck & Weber 2003; 
Ditman et al. 2008; Shipley & Zacks 2008; Yarkoni et al. 
2008; Zacks et al. 2009; Tamplin et al. 2013; Radvansky & 
Zacks 2014; Zacks 2015; Richmond & Zacks 2017, etc.).  

The main results of this research line can be presented 
as follows: 

• Humans do not perceive reality in a continuous 
way; they cut it into a number of chunks called 
events. This feature is a fundamental characteristic 
of humans that underpins their way of reasoning 
and making decisions.  

• There is a high level of coherence among 
humans in cutting the stream of life into events; 
they detect event boundaries in a highly similar 
way. 

• A shift through event boundaries impairs an 
ability to predict a future state of affairs and also 
event memory; this is caused by a change of 
space, time, characters, objects, causes, and 
goals, concerned with a particular situation. 

• Event cognition is based on the creation and 
further elaboration of event models that "capture 
the entities and functional relations involved in 
understanding a specific state of affairs" 
(Radvansky & Zacks 2014, 17); event models 
allow to predict a development of such state of 
affairs within an event. 

• "...event cognition, and event memory in 
particular, appears to have distinct neurological 
underpinnings apart from more general 
knowledge... it seems possible to disrupt the 
long-term storage of event models, leaving more 
general knowledge intact, as well as the reverse, 
disrupting general knowledge, but leaving the 
ability to process and remember individual 
events" (Radvansky & Zacks 2014, 131).   

 
At the same time, some methodological flaws seem 

to hinder further development in this direction. Strangely 
enough, we could not find any working definition of both 
event and event model in works of event cognition 
researchers. We admit that the demand to define correctly 
the concept ‘event’ may sound a bit scholastic in this 
scope (see, e.g., Shipley 2008; Schwartz 2008 as an 
example of the discussion), but the concept ‘event model’ 
is the key concept which underpins the body of 
experimental research addressing event cognition.  
Nevertheless, the researchers usually focus on event 
boundaries and changes what take place when these 
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boundaries being passed, whereas a structure of an event 
model within boundaries is only sketched. The definition by 
Radvansky and Zacks quoted above is not clear-cut enough 
to apply it to a particular experiment (What does ‘a specific 
state of affairs’ mean? How can we measure it?), and it is 
not clarified in other works. Scholars usually pick out five 
aspects characterizing event model: temporality, spatiality, 
protagonist(s), causality, and intentionality (e.g., Rinck & 
Weber 2003, 1284–1285; Radvansky & Zacks 2014, 61); 
however, it is not clear how these aspects are represented in 
a particular event model.  

In other words, there is a bunch of important questions 
which remain unanswered in this scope. Let us stress only 
few of them. How many basic types of event model can be 
singled out? What is the structure of each of them; what are 
the cornerstones of this structure and links between them? 
Are there any discrepancies between event boundaries 
which separate events of the same type and boundaries 
which separate events of different types? Is the ability to 
produce event models innate, or it is a result of cognitive 
development? If the latter, how it develops through the life 
span? Is there any difference between event model typology 
for kids and adults? 

Indeed, there is no opportunity to tackle all these and 
similar questions here. We address only some of them 
concerned with the problem of cognitive development. To 
be more precise, we have explored how an ability to cut 
reality into events and to produce event models is acquired 
in childhood, what is the difference between kids and adults 
in event cognition, how an acquisition of this capacity 
correlates with language acquisition and the development of 
other cognitive skills (there are a few papers addressing age 
differences in event cognition (e.g., Copeland & Radvansky 
2007; Kurby & Zacks 2011), but they do not explore the 
problem from the perspective of cognitive development).  
This paper can be considered as the first step in this 
direction.  

Our work examines age differences in cutting a visual 
narrative into events as a part of a process of cognitive 
development. We have used "the Pear Film" made by 
Wallace Chafe and his colleagues in 1975 as a material for 
the experiments. Importantly, "the Pear Film" includes 
actions, pictures and sounds, but no words, deploying the 
same chain of events for all viewers. This film contains a 
wide range of interactions between protagonists, spatial and 
temporal changes; its understanding presupposes the 
capacity to ‘read’ complex intentions and distinguish 
between physical and social causality. In other words, it 
provides good material for producing different event 
models, and, therefore, for exploring event cognition from 
the perspective of cognitive development. It is worth also 
noting that "the Pear Film" has opened an avenue of 
research tackling different aspects of a language and culture 
interconnection in the process of conceptualizing particular 
stream of events (Bernardo 1980; Chafe 1980; Clancy 1980; 
Downing 1980; Du Bois 1980; Tannen 1980; Orero 2008; 
Fon et al. 2011; Matzur & Mickievicz 2012; Vilaró et al. 

2012; Blackwell 2015; Cummings 2015, 59–63; Kibrik et 
al. 2015; Glebkin et al. 2017).  

A plot of "the Pear Film" is important for 
understanding the results of our experiment, therefore, it 
looks reasonable to begin with a brief description of the 
story taken from Chafe 1980, XIII–XIV. 

The film begins with a man picking pears on a ladder 
in a tree. He descends the ladder, kneels, and dumps the 
pears from the pocket of an apron he is wearing into one 
of three baskets below the tree. He removes a bandana 
from around his reek and wipes off one of the pears. Then 
he returns to the ladder and climbs back into the tree. 

Toward the end of this sequence we hear the sound 
of a goat, and when the picker is back in the tree a man 
approaches with a goat on a leash. As they pass by the 
baskets of pears, the goat strains toward them, but is 
pulled past by the ruin and the two of them disappear in 
the distance. 

We see another closeup of the picker at his work, and 
then we see a boy approaching on a bicycle. He coasts in 
toward the baskets, stops, gets off his bike, looks up at the 
picker, puts down his bike, walks toward the baskets, 
again looking at the picker, picks up a pear, puts it back 
down, looks once more at the picker, and lifts up a basket 
full of pears. He puts the basket down near his bike, lifts 
up the bike and straddles it, picks up the basket and 
places it on the rack in front of his handlebars, and rides 
off. We again see the man continuing to pick pears. 

The boy is now riding down the road, and we see a 
pear fall from the basket on his bike. Then we see a girl 
on a bicycle approaching from the other direction. As 
they pass, the boy turns to look at the girl, his hat flies off, 
and the front wheel of his bike hits a rock. The bike falls 
over, the basket falls off, and the pears spill out onto the 
ground. The boy extricates himself from under the bike, 
and brushes off his leg. 

In the meantime we hear what turns out to be the 
sound of a paddleball, and we see three boys standing 
there, looking at the bike boy on the ground. The three 
pick up the scattered pears and put them back in the 
basket. The bike boy jets his bike upright, and two of the 
other boys lift the basket of pears back onto it. The bike 
boy begins walking his bike in the direction he was going, 
while the three other boys begin walking off in the other 
direction. 

As they walk by the bike boy’s hat on the road, the 
boy with the paddleball sees it, picks it up, turns around, 
and we hear a loud whistle as he signals to the bike boy. 
The bike boy stops, takes three pears out of the basket, 
and holds them out as the other boy approaches with the 
hat. They exchange the pears and the hat, and the bike 
boy keeps going while the boy with the paddleball runs 
back to his two companions, to each of whom he hands a 
pear. They continue on, eating their pears. 

The scene now changes back to the tree, where we 
see the picker again descending the ladder. He looks at 
the two baskets, where earlier there were three, points at 
them, backs up against the ladder, shakes his head, and 
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tips up his hat. The three boys are now seen approaching, 
eating their pears. The picker watches them pass by, and 
they walk off into the distance.  

We chose four age groups for the experiment: 5-7-year-
old kindergarten students (KS), 7-9-year-old primary school 
students (PS), 14-16-year-old high school students (HS), 
and adults (A).  

Based on the previous experiments (Glebkin et al. 
2017), we expected that kindergarten students and primary 
school students would be less skillful in producing event 
models than high school students and adults which would 
entail serious problems in detecting event boundaries for KS 
and PS subjects. In particular, in the case of "the Pear Film" 
they would be inclined to ‘paste’ event boundaries and to 
minimize a number of parts in this visual narrative. To be 
more precise, we supposed that a mean number of events for 
kindergarten students and primary school students would be 
less than for high school students and adults, and 
kindergarten students and primary school students would 
determine event boundaries in a less systematic way. We 
also expected to discover some correlation between the 
ability to cut a narrative into events and other cognitive and 
communicative skills concerned with story retelling for 
primary school students. Our hypothesis in this scope was 
that the more correct and more detailed was a film retelling 
the more accurate was a choice of event boundaries by a 
subject.   

 
Experiment 

Method 
Subjects.  34 (14 m, 20 f) 5-7-year-old kindergarten 
students; 73 (35 m, 38 f) 7-9-year-old Moscow primary 
school students; 36 (12 m, 24 f) 14-16-year-old Moscow 
high school students; 35 (13 m, 22 f, mean age 37) adults.  
Material. "The Pear Film" by Wallace Chafe (6 min 32 
sec). 
Procedure. The procedure of the experiment followed the 
model well-established in modern cognitive psychology 
(e.g., Newtson 1973; Speer et al. 2003). Each subject was 
processed individually. Where were two versions of the 
experiment. In the first version subjects watched the film on 
MacBook Air, 13,3՛՛, 2560x1600 two times. Before the first 
viewing, the subjects were instructed to watch the film 
closely as passive viewers. Before the second viewing,  they 
were asked to cut the film into events, i.e., the largest 
meaningful parts, in any way they find appropriate (this task 
is similar to the coarse segmentation task in Speer et al. 
2003). In addition, a special explanation was given to the 
groups of kindergarten students and primary school 
students. The idea of the event segmentation was illustrated 
on the example of book chapters and some other similar 
examples. Then the subjects watched the film for the second 
time and pressed a button at the beginning and at the end of 
any meaningful part of the film.  

In the second version, the procedure was similar, but 
after the first viewing the participants were asked to retell 

the story as precisely as they can. This version of the 
experiment was carried out only for primary school 
students. In order to make sure that the retelling has no 
significant influence on the event segmentation task, a 
control group of 20 primary school students was tested in 
the first version before the main experiment. No 
significant difference between two groups was discovered 
both in a total of episodes each subject cut the film (F (1, 
89) = 0.017; p=0.89) and in the percentage of subjects 
identifying main event boundaries (χ2 (12)=16.56, 
p=0,17). 

Two groups of parameters were measured. The first 
group represented the event segmentation task. It included 
two variables: a total of episodes that the film was cut into 
by each subject (TE), and, accordingly, a number of 
subjects pointed to a particular point as an event boundary 
(NS) (more precisely, because of some difference in 
subjects’ reaction time it was a set of points located near 
each other which can be considered as characterizing the 
same change of a situation).  Also for PS group a total of 
“right” boundaries for each subject (TBr) (i.e., the 
boundaries picked out by a significant number (40% and 
more) of adults and high school students) was calculated. 
We considered TBr as a characteristic of cognitive skills 
involved in event cognition important for the comparison 
with cognitive skills involved in narrative comprehension 
and retelling.  

The second group of variables, actual only for the 
primary school students, was concerned with the film 
retellings. It checked memory for events and also basic 
cognitive and communicative skills important for 
narrative understanding and retelling, namely, an ability 
to categorize objects, an ability to understand the causal 
chain of events and represent it in the retelling, the 
richness of language used by subjects. The set of 
variables was an extended version of the set of variables 
presented in Glebkin et al. 2017. The following variables 
were measured: the total number of words exploited in 
retelling, discounting selfrepetitions and false starts 
(TW); a total of events presented in retelling (TEr); a 
total of events correctly presented in retelling (TEc); a 
total of errors in action description (FA) (e.g., ‘guys 
picked up pears’ instead of ‘the boy hands pears to one 
of the guys’); a total of errors in object description (FO) 
(e.g., ‘apples’ instead of ‘pears’); a total of incorrect 
description of causal chain of events and sub-events 
(FC) (e.g., ambiguous reference, missing connections 
within an event and between events); a total of 
interpretations (TI) (e.g., ‘stole a basket of pears’ instead 
of ‘picked up a basket of pears’); a total of dependent 
words (TDp) (such as ‘who’, ‘which’, ‘because’, etc.); a 
total of details mentioned in the retelling (TDt) (e.g., the 
color of the bike, the peddleball, etc.). 

TEr, TEc and TDt may need a clarification. A total 
of events was calculated according to the most frequent 
event boundaries picked out by high school students and 
adults. These boundaries divide the film into meaningful 
episodes some of which are connected with others and 
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some are autonomous (e.g., appearance and disappearance 
of a man with a goat). The primary school students 
mentioned some episodes in their retellings and missed 
others. Some of mentioned episodes were retold correctly 
(all protagonists and main interactions between them were 
included in the description), others were presented with 
serious gaps (e.g., in the episode with the fall of the boy on 
the bike some subjects missed the girl on the bike). In 
other words, the complex TE-TEс characterizes the 
correctness of the film framework representation in a 
retelling.  

TDt points to another feature of the retellings. As a 
rule, PS subjects focused on actions and missed an 
appearance of protagonists, their clothes, scenery, etc. 
Only few of them mentioned such details. For us, such 
interest to particular details is a special cognitive 
characteristic important to event cognition. Some 
arguments for that are presented in the next sections.     

Results 
As predicted, a mean number of episodes that the pear 

film was cut into by each subject (TE) for KS was less than 
for PS, and TEPS was less than TEHS. At the same time, there 
were no significant difference between TEHS and TEA 
(TEKS=2.61; TEPS=4.58; TEHS=8.61; TEA=8.23; FKSPS (1, 
102) = 61.38;  pKSPS<0.001; FPSHS (1, 105) = 18.36; 
pPSHS<0.001; FHSA (1, 68) = 0.26; pHS=0.6).  

As we expected, KS were less consistent in the 
determination of event boundaries than PS, and PS were less 
consistent in that than HS and A. The distribution of 
subjects’ choices through the event boundaries, which are 
most frequent and most important for the narrative, is 
presented in Table 1. 

 
Table 1. The percentage of subjects identifying most 
frequent event boundaries  

 
№ Event boundaries A HS PS KS 
1 A man with a goat appears 49 47 17 11 
2 A man with a goat 

disappears 57 56 23 2 
3 A boy on a bike appears 49 52 26 22 
4 The bike boy stops near the 

baskets 17 13 20 11 
5 The bike boy steals a 

basket 71 69 30 13 
6 A girl on a bike appears 17 17 13 2 
7 The bike falls over 71 69 41 25 
8 Three boys appear 46 43 20 11 
9 The free boys finish to put 

the pears back in the basket 49 47 27 11 
10 The exchange of the pears 

and the hat 14 8 19 11 
11 The boy with the 

paddleball hands a pear to 
each his two companions 40 39 24 8 

12 The scene changes back to 60 56 24 5 

the tree 
13 The three boys pass by the 

picker 40 39 19 5 
 

The difference between the results of KS and PS and, 
accordingly, between the results of PS and HS is 
significant (χ2

KSPS(12)=26.27; p<0.05; χ2
PSHS(12)=70.18; 

p<0.001). Meanwhile, data for HS and A are located 
extremely close to each other. Fig. 1 presents these results 
in a graphic form.  
 

 
 
Fig. 1. The diagram of a percentage of subjects 
identifying main event boundaries for A, HS, PS and KS. 
 

Interestingly, a comparison of data within PS does 
not reveal any significant differences. In particular, the 
comparison of TE of 34 first year PS and TE of 26 second 
year PS (TE1PS=4.62; TE2PS=5.42) gives p=0.34; the 
comparison of TE of 26 second year PS and TE of 13 
third year PS (TE3PS=4.77) provides p=0.54. 

We also checked, as mentioned, a possible 
correlation between event cognition skills and skills in 
narrative comprehension and retelling for the group of 
primary school students. It seems reasonable to distribute 
all correspondences among three groups. The first group 
(p<0.001) includes the correlation between a total of 
episodes that the film was cut and a total of details 
mentioned in the retelling (r(TE,TDt)=0.422); the 
correlation between a total of “right” boundaries and a 
total of details (r(TBr,TDt)=0.410); and the correlation 
between a total of “right” boundaries and a total of events 
correctly presented in retelling (r(TBr,TEc )=0.420). The 
second group (p<0.01) includes the correlation between a 
total of episodes and the total number of words exploited 
in retelling (r(TE,TW)=0.383); between a total of “right” 
boundaries and the total number of words (r(TBr, 
TW)=0.344); between a total of episodes and a total of 
events correctly presented in retelling (r(TE,TEс )=0.382); 
between a total of “right” boundaries and a total of events 
presented in retelling (r(TBr, TEr )=0.339). The third 
group (p<0.05) includes the correlation between a total of 
episodes and a total of events presented in retelling (r(TE, 
TEr )=0.250); between a total of episodes and a total of 
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incorrect description of causal chain of events and sub-
events (r(TE,FC)=-0.245); between a total of episodes and a 
total of interpretations (r(TE,TI)=0.287); between a total of 
“right” boundaries and  a total of dependent words (r(TBr, 
TDp)=0.263); between a total of “right” boundaries and a 
total of incorrect description of causal chain of events and 
sub-events (r(TBr,FC )=-0.266); and between a total of 
“right” boundaries and a total of interpretations (r(TBr,TI)= 
0.261).  

Discussion 
The results support the conjecture of serious problems 

that kindergarten students and primary school students 
encounter when cutting a visual narrative into events. They 
lose some key event boundaries, and they are less consistent 
in detecting event boundaries than high school students and 
adults. In other words, they are inclined to interpret the 
narrative as the whole story not picking out any significant 
parts within it. Indeed, this does not mean that kindergarten 
students and primary school students do not cut the film into 
events when they watch it. They may encounter serious 
difficulties in making sense of the task. This is especially 
important for kindergarten students (primary school students 
perform similar tasks from time to time in their school 
lessons). Therefore, it is hard to distinguish between 
difficulties in defining events and event borders in process 
of real viewing (which is, mainly, unconscious) and 
difficulties in conscious efforts to cut the film into events.  

In order to cast additional light on this issue, some 
other data need to be addressed. In Glebkin et al. 2017 clear 
evidence was provided for serious problems which 
kindergarten students encounter in “The Pear Film” 
retellings in comparison with high school students (TW, 
TEr, FA, FO, FC, TI, TDp values differed significantly for 
KS and HS groups). Further investigations have shown that 
similar problems characterize retellings of primary school 
students. Therefore, difficulties in event cognition correlate 
in age aspect with difficulties in narrative comprehension 
and retelling, and we can expect substantial correlation in 
the acquisition of these groups of cognitive skills.       

A precise look to the data presented above might 
clarify this issue. In particular, the figures in Table 1 (and 
the diagrams in Fig. 1) are interesting. There are only three 
points in which high school students and adults are less 
consistent (or almost equally consistent) than primary 
school students: the moment of bike boy stopping near the 
baskets (Point 4); the moment when a girl on a bike appears 
(Point 6); and the moment when the bike boy and the boy 
with the paddleball exchange the pears and the hat (Point 
10). Why high school students and adults do not generally 
detect these points as event boundaries?  

In order to clarify this issue, let us focus on “The Pear 
Film” narrative at hand. Point 4 and Point 10 characterize 
some local changes in the narrative, but there are strong 
arguments for interpreting these points as situated within 
events; they are unlikely to be basic event boundaries. In 
particular, Point 4 is situated within the event “The bike boy 

steals a basket of pears”, and this was the reason for high 
school students and adults not to detect it as an event 
boundary. Similarly, Point 10 – the exchange of the pears 
and the hat – is not an event boundary, because the boy 
with the paddleball when taking three pears from the bike 
boy is expected to hand the pear to each of his two 
companions to end the event. 

The case of Point 6 – a girl on a bike appears – is a 
bit more complicated. The girl is a new character, and she 
is introduced in the story with a close-up, therefore, her 
appearance may look as the beginning of a new event. 
Meanwhile, she is not a main character; she is engaged in 
the event “The bike boy rides down the road”. Her part in 
this event is implemented later on when she brings to bear 
the boy’s fall. If so, this moment is unlikely to be an event 
boundary.  

Why, in this case, primary school students did often 
detect these points as event boundaries? There are, at 
least, two aspects of PS subjects’ strategy in event 
boundaries detecting which may underpin these particular 
decisions. Firstly, two levels in the structure of event 
model can be singled out. The first level characterizes 
changes in location, actions and interactions given in 
visual perception, situated, so to say, on a superficial 
level. For instance, “the boy’s bike falls over”. Some of 
such changes are autonomous, but some others are signs 
of elements, which are located on a deeper level and need 
a special interpretation (e.g., the fact, that the boy places 
the basket on the rack in front of his handlebars, and rides 
off, means that he steals the basket). On average, primary 
school students do not include some important links on 
the deeper level into their event models. As a result, their 
models are ‘poorer’ than and models of high school 
students and adults addressing the same event; they are 
‘flat’, but not ‘volumetric’ ones. If it is so, some changes 
in the visual field, such as ones, happened in Point 4, 
Point 6, and Point 10, are sufficient for them to detect 
these points as event boundaries.   

Secondly, an analogy with language comprehension 
helps to explore this issue from another perspective. 
Researchers single out three levels of text representation: 
the surface form, the propositional textbase, and the 
situation model (e.g., Schmalhofer & Galvanov 1986; 
Radvansky & Zacks 2014, 57–58). A difference between 
sentences on the first level concerns words and 
grammatical structures, but not the facts and their 
interpretation (e.g., Anna cleaned the room and then went 
to the cinema and After cleaning the room Anna went to 
the cinema). On the second level, a situation is the same, 
but a focus and an interpretation may be different (e.g., 
The ball flew into the goal from the foot of Peter and 
Peter scored a goal; in the first case it may be also 
ricochet). On the third level, the situations are different.  

If expanding this model on a visual narrative, a 
difference on the first level would mean different wide 
shots of the same event; difference on the second level – 
e.g., a close-up of different objects within the same event; 
and difference on the third level – different events. From 
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this perspective, in contrast with high school students and 
adults, primary school students are inclined to ‘paste’ 
together different levels. In particular, the close-up of the 
girl on a bike may be a reason for them to detect Point 6 as 
an event boundary.  

Finally, let us zoom in on the comparison between 
event cognition skills and skills in the narrative 
comprehension and retelling. These data support the 
conjecture that the ‘flat’ event model dominates for primary 
school students. The variable, which shows the most 
significant correlation with both a total of episodes and a 
total of right boundaries, is a total of details mentioned in 
the retelling (TDt). At the same time, TDt is hardly to be a 
characteristic of logical aspects of the narrative 
comprehension; rather, it characterizes visual attention and 
visual memory.  In other words, high TDt values are not 
valid signs of high quality of event models.  

Also, the strong correlation between a total of right 
boundaries and a total of events correctly presented in 
retelling, and a significant correlation between both a total 
of right boundaries and a total of events and the total 
number of words exploited in the retelling, between a total 
of episodes and both a total of events presented in retelling 
and a total of events correctly presented in retelling show 
that the more detailed a retelling is the more event 
boundaries are detected by the subject.  

The correlation between a total of events (or a total of 
right boundaries) and characteristics of understanding and 
representation of logical structure of the narrative (a total of 
incorrect description of causal chain of events and sub-
events; a total of interpretations; a total of dependent words) 
is less significant. It is worth paying special attention to the 
lack of any correlation between a total of events and a total 
of errors in object description (a variable characterizing 
categorization skills).  

Overall, our data support the conjecture that event 
models evolve through the life span, and event models of 
kindergarten students and primary school students subjects 
are  ‘poorer’ than whose of high school students and adults. 
Therefore, the age of 10-14 years old is likely to be crucial 
for the development of event cognition ability. The problem 
of correlation between this ability and other cognitive skills 
in diachronic perspective needs further investigation.  
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Abstract 

Becoming a proficient reader is a critical skill that supports 
future learning. Toward the end of the primary grades, 
reading becomes increasingly automatized, and children begin 
to transition from learning-to-read to reading-to-learn. Yet, 
the design of beginning reader books may be suboptimal for 
novice readers. Colorful illustrations that contain irrelevant 
information (i.e., seductive details) presented in close 
proximity to the text may increase attentional competition 
between these sources of information; thus, hampering 
decoding and reading comprehension. Study 1 examines this 
hypothesis by experimentally manipulating components of the 
book design (e.g., presence/absence of seductive details) and 
investigating its effect on attention and reading performance 
in first grade students. In Study 2, we conduct an analysis in 
which we identify common design features in books for 
beginning readers and examine the prevalence of design 
features that were found to tax attention in Study 1 and in 
prior research. Collectively this work identifies an important 
opportunity in which instructional materials can be optimized 
to better support children as they learn-to-read.  

Keywords: attention; selective sustained attention; reading 
comprehension, decoding, reading, book design 

 

Introduction 
Learning to read is an important skill that enables future 

learning (National Association for the Education of Young 
Children, 1998). As reading becomes increasingly 
automatized, children begin to transition from learning-to-
read to reading-to-learn, and thus can more readily apply 
this skill to learn novel information. But acquiring this skill 
set is challenging due to a number of factors including (but 
not limited to) deficits in prior knowledge (e.g., pre-reading 
skills such as phonological awareness; Kirby, Parrila, & 
Pfeiffer, 2003), learning disabilities (e.g., dyslexia), as well 
as cognitive limitations (e.g., working memory, processing 
speed; Jacobson et al., 2011). The difficulty many children 
experience in becoming competent readers is reflected in a 
2005 report in which only 31% of 4th grade students in the 

United States were identified as  “Proficient” or above on 
the NAEP reading assessment and rates were lower still for 
some groups of minority students: Black 13%, Hispanic 
16%, American Indian/Alaska Native 18% (Perie, Grigg, & 
Donahue, 2005, pp. 3-4). These sobering statistics highlight 
the need to identify malleable factors that can be leveraged 
to better support children’s reading achievement. One 
potential factor is book design.  

The design of beginning reader books may not be 
optimized to support early reading, which may further 
increase the difficulties children experience acquiring this 
skill. Prior research has found that the close proximity 
between text and illustrations in books for beginning readers 
increases attentional competition between these sources of 
information hampering reading performance (Godwin, Eng, 
Todaro, Murray, & Fisher, 2018; Torcasio, & Sweller, 
2010). By increasing the spatial separation between text and 
illustrations (Godwin et al., 2018) or reducing extraneous 
details from illustrations (Eng, Godwin, & Fisher, 2018), 
attentional competition is reduced (indexed by gaze shifts 
away from the text), and reading comprehension improves. 
These results are promising, as they point to a malleable 
factor (i.e., book design) that could in principle be 
optimized to better scaffold young readers’ attention to the 
text and in turn enhance their developing literacy skills. 
However, it is currently unknown whether these design 
choices (e.g., close proximity between text and illustrations, 
inclusion of irrelevant details in illustrations) are typical in 
beginning reader books. If these design choices represent a 
standard design practice, then this emerging body of 
research points to an unrecognized opportunity for 
intervention.  

The present paper reports two studies. Study 1 provides a 
conceptual replication of Eng et al. (2018), but also extends 
prior work with second grade students to a younger age 
group, first-graders. In Study 1, we investigate 
experimentally whether an element of the book design (i.e., 
presence/absence of attention-grabbing, but irrelevant to the 
text, details in illustrations) negatively affects children’s 
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attention to the text, diminishing their reading performance. 
Study 1 makes an important contribution given growing 
concerns regarding the replicability crisis (e.g., Camerer et 
al., 2018; Nosek et al. 2015). Study 2 makes a novel 
contribution by examining issues of generalizability, namely 
examining whether the design features of the book utilized 
in prior research are commonplace and thus represent a 
potential avenue for intervention. In Study 2, we conduct an 
analysis of 100 beginning reader books in which we identify 
common design features and assess how prevalent the 
design choices that were found to tax children’s attention in 
Study 1 (and in prior research) are in children’s books. 
 
Study 1 

Method 
Thirty first-grade children participated in the present study 
(M = 7.09 years, SD = .32 years, 16 females, 12 males, 2 
did not report). The sample represents local diversity with 
children being 63.3% White, 13.3% African American, 
16.7% Multi-Racial, and 6.7% reported as other. 
Participants were recruited from schools in and around a 
mid-sized city in the Northeastern United States. 
Participants were tested individually by trained hypothesis-
blind research assistants.  

Design and Procedure 
In order to ensure ecological validity, Study 1 utilized a 
commercially available beginning reader book selected from 
the Hooked On Phonics Learn to Read series. Children were 
asked to read aloud the book “Good Job Dennis,” by Amy 
Kraft. Following Eng et al. (2018), the book design was 
manipulated within-participants such that half of the book 
was presented in the Standard layout of unaltered pages 
from the commercially available book, and half of the book 
was presented in the Streamlined layout in which the 
illustrations were simplified by removing the irrelevant 
details. The presentation order of conditions (Standard 
condition or Streamlined condition first) was 
counterbalanced across participants. Each half of the book 
contained 6 pages. Minor modifications were made to the 
text to ensure that each half of the book had approximately 
equivalent number of words (average number of words per 
page: 43.0 first half, 42.3 second half). Identification of 
irrelevant details was based on a separate calibration study 
(Eng et al., 2018). Fifteen college students were given 
photocopies of the book and were asked to outline details in 
the illustrations that they believed were relevant to the story 
text for each page. The illustration details in which 
participants reached over 90% agreement were included in 
the Streamlined condition and all other remaining details 
were removed (See Figure 1A and 1B). 

The book was presented on a laptop computer and 
children’s gaze shifts away from the text were recorded 
using eye tracking technology. Decoding was assessed prior 
to reading the story (Word Recognition in Isolation Test) 

and while children read aloud (Running Record). Following 
the story, a post-test was administered to assess reading 
comprehension.  

 
 

 
Figure 1A: Sample page of the Standard layout condition 

 
 

 
Figure 1B: Sample page of the Streamlined layout 

condition 
 

Measures 
Gaze Shifts Children’s attention allocation to the text was 
measured using a RED250 mobile eye tracker 
(SensoMotoric Instruments, Inc.) in which gaze shifts away 
from the text were recorded. For each page of the book, 
Areas of Interest (AOIs) were created for the text, white 
space, and illustrations. The number of gaze shifts away 
from text AOIs (to illustration AOIs or white space AOIs) 
was calculated using the SMI BeGaze software and the 
average number of gaze shifts per page is reported. 
 
Decoding Measures Decoding is thought to be an important 
component of reading Fluency (Rasinski, 2004). The 
decoding measures assess children’s ability to accurately 
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identify words (either in isolation or embedded in text). Two 
decoding measures were employed: the Word Recognition 
in Isolation task and a Running Record. 
 
Word Recognition in Isolation Task Children completed a 
modified Word Recognition in Isolation (WRI) task which 
served as an independent measure of children’s ability to 
decode words fluently (Morris, 2013). The WRI was 
administered prior to children reading the story. Children 
are shown leveled lists of words and asked to read the words 
aloud as quickly and accurately as possible. The number of 
words read correctly (out of 100 possible words) within the 
time limit was recorded.       
 
Running Record (RR) The research assistant manually 
recorded the child’s decoding accuracy for each word in the 
story and the proportion of correct responses was calculated 
(Clay, 1972).   
 
Reading Comprehension Measure Children were asked 
six open-ended comprehension questions. Responses were 
recorded by hypothesis-blind research assistants. We 
slightly modified the questions provided by the book 
manufacturer to maintain the ecological validity of the 
comprehension assessment. Questions were designed such 
that they probed memory for content presented on specific 
pages. The post-test included six questions, three questions 
from each half of the book. Rather than scoring children’s 
responses in a binary fashion (correct vs. incorrect), partial 
credit was possible. In each half of the book, children 
completed two 2-point questions and one 3-point question 
and thus could earn up to 7 points per condition. For 
example, children were asked to recall Dennis’ job. 
Children earned full credit (2 points) if they stated that 
Dennis directs traffic and helps children cross the street. 
Partial credit (1 point) was awarded if children provided an 
incomplete answer (e.g., “he helps children”), and 0 points 
if children provided an incorrect answer or failed to recall 
Dennis’ job. The percentage of correct responses (out of 7) 
is reported. Scoring was completed by condition blind 
research assistants. To ensure inter-rater reliability, the data 
was scored twice by two research assistants and Cohen’s 
Kappa (Cohen, 1960) was calculated (.88). 

Results 
There were no significant differences in average reading 
time per page in the Standard condition (M = 55000.21 ms; 
SD = 35065.49 ms) compared to the Streamlined condition 
(M = 54066.81 ms; SD = 37571.03 ms), paired-sample t(29) 
= .27, p = .79. There were also no significant differences in 
participants’ Running Record scores while reading in the 
Standard condition (M = 94.78%; SD = 5.13%) compared to 
the Streamlined condition (M = 94.87%; SD = 5.03%), 
paired-sample t(29) = .34, p = .74. 

 
Reading Comprehension Children’s comprehension scores 
were significantly higher in the Streamlined condition (M = 

80.48%, SD = 20.37%) than in the Standard condition (M = 
51.90%, SD = 24.74), paired-sample t(29) = 4.72, p < .0001 
(see Figure 2); Cohen’s d = 1.26. In order to test for order 
effects, we conducted a mixed factorial analysis of variance 
(ANOVA), factoring condition order as the between-subject 
variable and comprehension as the within-subject variable. 
There was no main effect of condition order, F(1, 28) = .02, 
p = .90, and no significant interaction between order and 
comprehension, F(1, 28) = 2.09, p = .16. These results 
indicate that reading in the Streamlined condition resulted in 
higher comprehension compared to reading in the Standard 
condition, regardless of the amount of time spent reading, 
the quantity of words a child accurately read aloud, and the 
order in which the layout was presented. 
 
 

 
 

Figure 2: Percentage of correct answers on the story 
questions as a function of book layout.  ***p < .0001). 

 
 
Gaze Shifts On average, children switched their point of 
fixation away from the text 27.78 times per page (SD = 
26.48) in the Standard layout compared to 13.71 times in the 
Streamlined layout (SD = 11.07), paired-sample t(29) = 
4.67, p = <. 0001; Cohen’s d = .69. Three outliers were 
identified. With the removal of these outliers, there was still 
evidence of a significant main effect of book layout on 
children’s gaze shifts (paired-sample t(26) = 5.65, p<. 0001. 
Cohen’s d = .89). Children looked away from the text 
almost twice as much in the Standard condition than they 
did in the Streamlined condition (See Figure 3). 
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Figure 3: Average gaze shifts away from the text per page 

as a function of book layout. ***p < .001). 
 
The Role of Individual Differences Next we examined 
whether the Streamlined layout might be especially 
beneficial for children who often shift their attention away 
from the text. For this analysis, a difference score for each 
child was calculated by subtracting the Standard layout 
comprehension score from the Streamlined layout 
comprehension score. Difference scores estimated changes 
in reading comprehension performance from the 
Streamlined layout, such that higher and positive scores 
indexed greater gains in comprehension. Difference scores 
ranged from -57.14% to 85.71%, with a mean of 28.10% 
(SD = 33.24%). Children’s gaze shifts in the Standard 
layout condition were positively associated with 
Comprehension Gain scores (r = .49, p = .003), as shown in 
Figure 4. Thus, the Streamlined layout was especially 
helpful for children who frequently shifted their gaze while 
reading: the more children looked away from the text, the 
more their comprehension benefited from reading the book 
in the condition in which extraneous details were removed.  

 
Figure 4: Association between gaze shifts and 
comprehension gains with outlier removed. 

 
Unique Contribution of Gaze Shifts to Comprehension 
Gains To ensure that the findings were not entirely due to 
variance shared with reading ability, children completed the 
WRI test prior to the reading session to assess participants’ 
decoding fluency (M = 55.90, SD = 20.04). To examine the 
extent to which children’s gaze shifts away from the text 
while reading uniquely predicted how much children’s 
comprehension improved from the Streamlined layout 
condition, we conducted a multiple regression analysis that 
included gaze shifts and WRI scores as predictors of 
children’s comprehension difference scores. Results show 
that gaze shifts (β = 5.57, t = 2.28, p = .003) accounted for 
unique variance in comprehension gains when reading from 
the Streamlined layout, but reading fluency (indexed by the 
WRI) did not (p > .10; see Table 1). The results suggest 
gaze shifts away from the text while reading account for 
unique variance in comprehension gains independent of the 
overall reading ability.  
 
 

Table 1: Relation of Gaze Shifts to Comprehension Gains 
 

  β SE t 
Eye Gaze Shifts  3.37** 0.24  2.28 
WRI Score   -.55 0.32  -1.72 

** p < 0.01. R2 = .45. F = 11.05. df = 2, 27. 
 
 

Study 1 successfully replicates the results from prior 
research (Eng et al., 2018) with a younger age group (first-
graders) and demonstrates that extraneous illustration details 
are a source of distraction for beginning readers. 
Extraneous, nonessential illustration details were found to 
disrupt attention as evidenced by the increase in gaze shifts 
away from the text. This design choice not only affected 
children’s patterns of attention allocation, but it also reduced 
children’s reading comprehension. 

While the successful replication points to a robust 
finding, it remained unclear whether the design features 
characteristic of the book used in Study 1 are prevalent in 
other books for beginning readers. If the inclusion of 
irrelevant details in illustrations is a common practice, then 
it points to an opportunity in which we could better support 
children’s reading by modifying the design of beginning 
reader books. We begin to address this question in Study 2. 
 
Study 2 

Method 

Design and Procedure 
Guided by a children’s librarian, 100 children’s beginning 
reader books were selected from local libraries near a 
Midwestern town in the United States. The books were 
subsequently analyzed to investigate common design 
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elements. Books were pseudo-randomly chosen to ensure 
representation of multiple publishers (17 total) and topics. 
The sample of books represent work from 101 authors and 
92 illustrators. Trained coders rated each story page, 
excluding publisher pages, on 10 categories relating to 
aspects of the book design including: features of the 
illustrations (e.g., color, alignment, irrelevant details), text 
(location, enhancements), and general design (layout, use of 
white space, borders). Of particular interest for the present 
study was the category irrelevant details as well as page 
layout given that Study 1 and prior research (Eng et al., 
2018) have found that the inclusion of irrelevant details in 
illustrations as well as including illustrations in close 
proximity to the text (Godwin et al., 2018) increase 
attentional competition and reduce reading performance. 
The remaining 8 categories were included to provide a more 
comprehensive analysis of the common design features 
employed in beginning reader books.  

For each book, the percentage of pages in each category 
level was calculated and means for the data set are reported.  
Coders received extensive training on the coding protocol 
using worked examples. Coders also completed a training 
set, consisting of 7 beginning reader books in order to 
establish interrater reliability (Cohen’s kappa = .80, range: 
.76 to .85).  

Results 
All of the books were leveled for beginning readers. The 
average number of pages per book was 27 (SD =  8.77).  
 
Features of the illustrations 
Beginning reader books tend to contain illustrations that are 
very colorful and detailed: on average 93.42% of a book’s 
pages contained illustrations that included five or more 
colors and 97.79% of a book’s pages contain some or 
intermediate levels of detail. Most book pages contained a 
single illustration (93.19% of a book’s pages), and the 
illustrations were generally aligned to the text (86.98% of a 
book’s pages). However, the inclusion of irrelevant details 
in illustrations was found to be a common practice with 
86.56% of a book’s pages containing some or several 
irrelevant details.   
 
Features of the text and general layout 
Text location varied, but common text locations included 
centered at the top (35%) or bottom of the page (21.8%), or 
in multiple locations (13%). Design features intended to 
enhance the saliency of the text including text boxes, fading, 
or bubbles were rare (4.65% of a book’s pages) as were the 
use of borders (6%). Surprisingly, white space was not 
utilized on 28.73% of a book’s pages. Although publishers 
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tended to include some spatial separation between text and 
illustrations (62% of a book’s pages), embedding the text 
inside illustrations was also a frequent design choice 
(27.46% of a book’s pages).  

Discussion 
During the primary grades, young children are just 
beginning the challenging work of learning how to decode 
text. The difficulty many children experience aquiring 
literacy skills may be compounded by the design of 
beginning reader books. These instructional materials may 
fail to take an important cognitive constraint into 
consideration; namely, children’s immature attention 
regulation system (e.g., Ruff & Rothbart, 2001). Placing 
text and illustrations in close proximity may unintentionally 
create attentional competition between these sources of 
information, hampering reading comprehension. Such 
attentional competition may be particularly disadvantageous 
when illustrations contain irrelevant information. The 
present work explored this possibility with a group of first 
grade students (Study 1) and provides an extensive analysis 
of book design features that may influence children’s 
attention allocation across 100 beginning reader books 
(Study 2).  

Several notable findings emerged from this work: Study 1 
informs our understanding of how beginning readers 
allocate their attention while reading independently, and 
identifies a design feature that influences children’s ability 
to maintain attention to the text. The inclusion of irrelevant 
details in illustrations for beginning readers was found to 
disrupt attention allocation and hampered reading 
comprehension. This finding corroborates prior work (Eng 
et al., 2018) and provides an important conceptual 
replication with a novel age group; thus, demonstrating the 
robustness of the effect. Study 2 examined the prevalence of 
this design choice, as well as other design features, in books 
for beginning readers by conducting a detailed analysis of 
100 books. The results point to several common design 
features that may increase attentional competition for young 
readers including: embedding the text within the 
illustrations and often not including white space. Critically 
for the present work, illustrations containing irrelevant 
details was found to be a common design practice. The 
prevalence of these design choices point to an opportunity in 
which we could better support children’s emergent literacy 
skills by modifying the design of beginning reader books. 
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Abstract 

We investigated whether induced affective states can affect the 

process and outcomes of decisions under risk. A mood 

induction task was used to elicit a positive or negative mood in 

a sample of adult participants (N=48). The participants then 

responded to 28 decision problems, each offering a choice 

between two mixed-domain risky alternatives. The dependent 

variables of interest were decision-making choices, as well as 

an eye-tracking based attentional measure: the total fixation 

durations for certain critical aspects of the two presented risky 

decision options.  Mood condition did not have a significant 

main effect on participants’ choices, or on mean total fixation 

time for problems. However, fixation times showed a three-

way interaction between mood condition, domain (gain versus 

loss), and time (block). The fixation time data also provided 

some general insights into participants’ patterns of attention 

allocation during decision-making. They generally spent more 

time looking at values compared to probabilities, and more 

time looking at potential gains compared to losses (although 

this difference declined over time, especially for positive-mood 

participants). 

Keywords: emotion; decision making; mood induction; affect; 

allocation of attention; eye tracking; risk; cognitive processing; 

strategy; choice  

 

Incidental affect has been used to predict and explain a 

wide variety of judgments and decisions (Peters, Västfjäll, 

Gärling & Slovic, 2006). Incidental affect refers to feelings 

or mood states induced by a situation that is normatively 

irrelevant to a given decision. Most early studies on 

incidental mood induction took a simple valence-based 

approach, dividing emotions into positive and negative 

categories.  Researchers found that individuals in a happy 

rather than a sad mood tend to make optimistic judgments 

and choices by overestimating the likelihood of positive 

outcomes and underestimating the likelihood of negative 

outcomes (Loewenstein & Lerner 2003; Johnson & 

Tversky, 1983; Raghunathan & Pham, 1999).     

  More recent research has focused on how particular 

affective states can affect the general information 

processing strategy adopted by an individual, towards more 

analytic or more heuristic strategies (Lerner 2015). 

Findings suggest that individuals who are in a happy mood 

are more likely to adopt a heuristic processing strategy, a 

tendency to use intuition and “gut feelings” with relatively 

little attention being paid to details. By contrast, 

individuals who are in a sad mood are more likely to adopt 

a systematic processing strategy, with careful analysis of 

information (Bolte, Goschke & Kuhl, 2003; George & 

Dane, 2016; Schwarz & Clore, 1996; Schwarz, 2000).  

   Affective states may influence decision-making because 

the decision maker selectively attends to, encodes, and 

retrieves emotion-relevant information (Niedenthal & 

Setterlund, 1994). This phenomenon can be seen as 

consistent with the affect infusion model (AIM), which 

posits that affectively loaded information influences an 

individual’s cognitive and behavioral processes, pushing 

their decision outcomes in a mood-congruent direction 

(Forgas, 1995). If such mood priming occurs, then 

individuals in a positive mood should be more likely to 

access thoughts about the positive aspects of a risky 

situation compared to those in a neutral mood (Forgas & 

George, 2001; Nygren, Isen, Taylor & Dulin, 1996). Thus, 

positive moods may increase an individual’s risk-taking 

tendency with mixed-domain options, because positive 

potential outcomes will be emphasized over potential 

losses, so that risky choices will be perceived as more 

favorable. Individuals in a negative mood, by contrast, are 

more likely to access thoughts about the negative aspects 

of risky situations, which consequently would lead to more 

conservative decision-making choices so as to avoid 

potential loss (Yuen & Lee, 2003).  

  Nevertheless, prior research provides mixed results 

regarding the direction of influence of incidental affect on 

decision-making processes (Lerner, Li, Valdesolo & 

Kassam, 2015). An alternative model, the mood-

maintenance hypothesis (MMH), posits that incidental 

mood states motivate behavior such that individuals act to 

maintain or attain positive mood states (Kliger & 

Kudryavtsev, 2014). Accordingly, individuals in a positive 

mood avoid risk in order to maximize the likelihood of 

maintaining their positive mood, whereas individuals in a 

negative mood seek risk in an attempt to obtain gains that 
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might relieve their negative mood (Mishra, et al, 2010; 

Mishra, 2014; De Vries, Holland, & Witteman, 2008; Hills, 

et al, 2002).  

  The contrasting predictions of these models, we argue, 

can be directly examined using eye-tracking based 

attentional measures, in studies of mixed domain decisions 

under risk. This type of design allows us to track 

individuals’ focus of attention on both positive and 

negative aspects underlying their decision-making 

processes. Thus, by examining participant’s attention to 

gain vs. loss information, we can assess whether 

participants’ attention allocation is in line with the 

predictions of a mood-congruence (affect infusion) or 

mood-maintenance hypothesis.  

Empirical Study 

 

The purpose of the present study was to investigate the 

influence of induced affective states on the process and 

outcomes of decision-making with a set of risky choice 

problems. A mood induction task (watching short videos) 

was used to elicit a positive (happy) or a negative (sad) 

mood. Previous research has shown that the use of movie 

or story procedures is an effective means of manipulating 

participants’ moods (Drouveli & Grosskopf, 2016; Ellard, 

Farchione & Barlow, 2012; Gerrards-Hesse, Spies, & 

Hesse, 1994; Westermann, Spies, Stahl, & Hesse, 1996). 

The decision-making task using mixed domain problems 

gave participants a chance to systematically compare and 

weigh different aspects of the two risky decision options. 

According to an affect infusion or mood congruence (AIM) 

account, positive mood should enhance attention to 

information about gains, while negative mood should make 

information about losses more salient and more viewed.  In 

contrast, the mood-maintenance hypothesis (MMH) 

predicts that individuals in a negative mood should be 

especially motivated to attend to information about 

potential gains. Finally, from the standpoint of the 

heuristic/analytic dichotomy, we investigate the hypothesis 

that individuals in a negative mood may be more likely to 

adopt a systematic processing strategy, perhaps by 

calculating expected value or by using an equivalent 

procedure, whereas participants in a positive mood may be 

more likely to use a heuristic processing strategy (George 

& Dane, 2016; Schwarz & Clore, 1996; Schwarz, 2000).  

   It seems important in assessing the effects of incidental 

emotion on decisions to look at decision process (as well 

as outcomes). We accomplish this by using eye-tracking-

based attentional measures. By studying attention in the 

context of mixed-domain decision problems under risk, we 

can track the decision-maker’s focus of attention on 

positive (gain) and negative (loss) information. These 

aspects of the present study constitute a novel approach to 

investigating the possible influence of induced affective 

states on risky decision-making.  

 

 

Method 

Participants 

Forty-eight participants were recruited from a large private 

University community in North America, either by 

responding to flyers posted on campus bulletin boards or 

for course credit.  Participants included both undergraduate 

and graduate students (36 females and 12 males. Most 

(90%) participants ranged in age from 20 to 30 years, 94% 

had obtained at least a bachelor’s degree, and 88% had 

completed a basic statistics course. They participated in the 

study for either a payment of $10 or course credit.  

Overview of Procedure 

Participants were tested individually. They were informed 

that the purpose of the study was to examine the factors 

influencing decision-making for problems involving 

potential financial gains and losses, and the process of how 

such decisions were made. Each participant was randomly 

assigned to one of two mood induction groups: positive or 

negative. The participant first was taken through a 

calibration procedure with the eye-tracker, to enable 

accurate gaze point calculations. Following the viewing of   

the mood-induction movie clip, the participant was asked 

to make choices for each of 28 risky decision problems 

displayed on a computer screen equipped with an eye 

tracking equipment. During this task, participants were 

encouraged to work at their own pace.  

Mood Induction  

Movie clips were used to induce emotions “incidental” to 

the decision task. Two movie clips of similar length (6 to 7 

minutes), one categorized as “happy” (from The Muppet 

Show), and the other as “sad” (from Schindler’s List), were 

utilized. These clips have previously been shown to 

successfully induce positive and negative mood states, 

respectively (De Vries et al., 2008). The success of the 

mood induction procedure of the experiment was checked 

via a self-reported mood questionnaire administered after 

the video watching and before the decision-making task. 

All participants were asked to rate on a 7-point Likert scale 

(ranging from 1 to 7) how well each of the following terms 

(happy, joyful, cheerful, enthusiastic, sad, blue, upset, 

distressed) described how they felt at that moment. All of 

the terms are taken from the PANAS-X positive and 

negative affect schedule (Watson & Clark, 1999), and have 

been previously classified as representing either a positive 

valence or a negative valence. 

Mixed Decision-making Task 

Twenty-eight risky decision problems were presented, 

each consisting of two decision options (labeled ‘a’ and 

‘b’). Each option was a risky mixed prospect, consisting of 

a loss and a gain with associated (complementary) 

probabilities.  The display format for an example decision 

problem is shown in Figure 1. Note that an analytic strategy 
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such as calculating expected value (EV) requires attention 

to both values and probabilities for both gains and losses of 

each decision option (all eight discrete pieces of 

information).  

  A Tobii model T60 eyetracker (version:3.2.3) with 

associated software was used to monitor the participants’ 

attention paid to the eight consequential regions of each 

decision problem. Specifically, the eye tracking-based 

attentional measures included duration of fixations on eight 

critical regions, defined by: gain value, gain probability, 

loss value, and loss probability for each of the two decision 

options. The total fixation duration (TFD), in seconds, 

within each critical region or ‘area of interest’ (AOI) was 

computed as the total viewing time for each area across all 

episodes in which a participant had looked within the AOI, 

starting with a fixation within the AOI and ending with a 

fixation outside the AOI. Due to eyetracker calibration 

issues, we eliminated data from five participants whose 

fixations were not accurately identified, resulting in an 

effective N of 43 (positive mood condition n=21, negative 

mood condition n=22). 

   Participants’ choices on the twenty-eight decision 

problems were also analyzed, including whether they chose 

the EV-maximizing option.  

 

 
Figure 1.  Display format for a sample decision problem 

offering a choice between option a and option b. 

 

 

 Results 
  As a manipulation check for the mood induction 

procedure, summary positive and negative mood rating 

scores were obtained by averaging the participants’ self-

ratings on the four relevant adjective scales: positive = 

(happy, joyful, cheerful, enthusiastic), negative = (sad, 

blue, upset, distressed).  Figure 2 presents the mean rating 

scores on the positive words (Pos_Score) and negative 

words (Neg_Score), by condition (induced positive or 

negative mood). It can be seen that the mood induction was 

effective, as measured by the self-ratings of positive and 

negative mood. A multivariate ANOVA was conducted 

(overall) on the two self-rating summary dimension, and 

the overall omnibus F-test for the mood induction 

Condition was significant, F(2, 45) = 89.112, p<.001, 

suggesting strong mood-induction effects. Both positive 

(Pos_Score), F(1, 46) = 97.04, p<.001, and negative 

(Neg_Score), F(1, 46) = 124.47, p<.001, scores were 

significantly affected by the manipulation. 

 

Decision outcomes:  

To assess whether induced positive or negative mood 

affects the degree to which a participant engages in analytic 

processing, we first tested whether participants in the 

negative mood condition tended to show more EV-

maximizing choices (based on EV calculations or 

equivalent procedures) than did participants in the positive 

mood condition. The relevant data consisted of information 

on participant’s choice (a or b) for each pair of mixed 

domain problem. To analyze the data, we created a 

summary variable, EV score, defined as each participant's 

total number of EV-maximizing choices on those 28 pairs 

of problems. Therefore, these maximization scores could 

range from 0 to 28.  Descriptive statistics showed that for 

the negative mood condition, M = 19.3, s = 3.28; for the 

positive condition, M = 19.5, s = 3.88. A one-way ANOVA 

indicated that this difference in the mean maximization 

score was not significant (F(1, 46) = .026, p > .05).  

 

 
 

Figure 2.  Results of the manipulation check for the effects 

of viewing two alternative videos (Condition = NegMood, 

PosMood) on self-rated positive and negative emotional 

valence. 

 

Patterns of attention:  

   By analyzing the eye tracking-based attentional measure 

of total fixation durations (TFDs), we sought to find out 

how induced moods affect decision process, as reflected in 

the amount of attention that participants pay to certain 

critical aspects of the considered decision options. 

Specifically, we sought to answer the following questions: 

1) Do participants in a positive mood state tend to pay more 

attention to positive aspects of the problems (as consistent 

with an affect infusion or mood congruence account, 

AIM)? 2) Are participants in a negative mood state more 

likely to pay attention to the negative aspects of the 

problem (as consistent with AIM), or more motivated to 

seek out positive information (as predicted by the mood-

maintenance hypothesis, MMH)?   
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   Because our decision-making task included 28 relatively 

difficult problems, time effects (due to fatigue and/or 

practice) were thought likely to occur. Also, it is possible 

that any effect of the emotion manipulation might be short-

lived (Andrade & Ariely, 2009). Thus, we analyzed mean 

TFDs across four equal time blocks: problems 1-7, 8-14, 

15-21, and 22-28. Due to practice/fatigue effects, we 

expected to see a decreasing trend in TFDs.   

   The marginal-mean TFDs and standard deviations are 

presented in Table 2, for the main effects of Type of 

information and Domain.  

Participants in both mood conditions spent more time 

looking at values compared to probabilities, and more time 

looking at gains compared to losses. As expected, a time 

effect occurred whereby participants’ fixation time spent 

on ‘type’ and ‘domain’ generally decreased from block 1 

to block 4 (with exceptions for ‘values’ and ‘losses’ - an 

increase in TFDs from block 2 to block 3). One possible 

explanation is that block 3 contains relatively more high 

conflict problems (defined as having a small EV difference 

between the two options for each problem).

 

 

Table 2. Marginal (main effect) descriptive statistics for total fixation duration (TFD) by Type of information (values 

vs.probabilities) and by Domain (gains vs. losses) for each block of problems. 

 

    Negative Mood Positive Mood 

  Block M SD M SD 

Type of Values 1 67.26 6.07 70.69 7.08 

Information: 2 45.54 4.54 49.70 5.50 

 3 49.73 5.33 54.06 6.64 

 4 44.16 5.41 47.33 5.60 

 Probabilities 1 34.08 2.79 35.68 4.72 

 2 25.17 2.40 28.64 3.85 

 3 25.85 2.17 27.90 3.92 

 4 25.59 2.41 26.05 3.99 

Domain: Losses 1 38.87 4.41 39.92 4.60 

  2 26.85 2.72 29.76 3.74 

  3 29.93 3.50 35.20 4.61 

  4 26.86 3.26 31.71 4.81 

 Gains 1 62.46 4.36 66.45 7.26 

  2 43.86 4.15 48.58 5.75 

  3 45.65 3.90 46.76 5.98 

  4 42.89 4.53 41.66 5.02 

Inferential Analyses 

A repeated-measures ANOVA predicting mean TFD for 

each critical area was conducted using one between-subject 

factor of ‘condition’ (induced positive mood vs. negative 

mood), and three within-subject factors: ‘domain’ 

(potential gains vs. potential losses), ‘type’ of information 

(payoff values vs. payoff probabilities), and ‘block’ (1-4). 

Note that this analysis averages looking times (TFDs) for a 

given critical region (e.g., gain values) across the two 

decision alternatives. 

  In this ANOVA, statistically significant effects were 

found for the within-subject factors of Type (F(1, 41) = 

124, p < .001), Domain (F(1, 46) = 103.1, p < .001) and 

Block (F(2.685, 110.09) = 30.28, p < .001), with a two-way 

interaction between Type and Domain (F(1, 41) = 6.22, p 

=.017),  as well as a three-way interaction among 

Condition, Domain, and Block (F(2.337, 95.814) = 2.99, p 

=.038).  

   The descriptive and inferential results reveal that 

participants in both mood conditions spent significantly  

 

more time looking at values than probabilities, and more 

on gains than losses.  However, it must be recognized that 

these main effects are to some degree confounded with the 

left-right position of these quantities on the screen, so some 

of the differences might be due to a reading order effect. 

   To interpret the interaction patterns, we first examined 

the significant three-way interaction among Condition, 

Domain, and Block. This interaction is shown in Figure 3. 

In this interaction, the payoff value and probability for a 

decision option are not separated, presumably because 

participants’ looking times for these two components 

tended to be correlated. In Figure 4, it can be seen that 

looking times (TFDs) generally declined across the four 

blocks of problems (some small discontinuities between 

Blocks 2 and 3 are interpreted as being due to relatively 

difficult or high-conflict problems in Block 3). The main 

effect of Domain, with more time allocated to gain 

information, is also apparent. The interaction itself seems 

to be due to the fact that the difference in looking time for 

gains versus losses is very high in Blocks 1 and 2, and 

1861



much lower in Blocks 3 and 4. This pattern is more 

apparent in Figure 3, which plots those gain versus loss 

differences directly by comparing the difference between 

gain values and loss values, and in Figure 4. 

 

 
                                    
Figure 3. Mean Total Fixation Duration (s): Difference for 

Gain Values versus Loss Values, by Block and Condition. 

 

  Theoretically, the overall pattern of attention results can 

be explained in at least two ways. First, the positive 

induction may have had only a transitory effect, as follows. 

In the first two time-blocks, when the effects of the mood 

induction were presumably strongest, the pattern of means 

seems to be consistent with the Affect Infusion Model, 

such that participants in the positive mood condition paid 

slightly more attention to information about gains than did 

negative-mood participants. However, this difference 

declines in Blocks 3 and 4, perhaps due to a fading effect 

of the mood induction.  

   The second interpretation invokes the mood-

maintenance hypothesis (MMH). According to the MMH, 

negative-mood participants focused more on information 

about potential gains rather than losses, in order to try to 

attain a positive mood state, and this difference in attention 

persisted across all four blocks. In contrast, positive-mood 

participants initially also paid more attention to gains, 

perhaps to maintain their positive mood. But this effect 

faded relatively quickly for the positive-mood participants. 

It is possible that the positive mood induction (watching a 

silly video) had a more transitory effect than the negative 

mood induction (watching a clip depicting Nazi murders). 

But this interpretation should be substantiated via future 

research. 

 

Conclusion 
 

   The results did not provide evidence that induced 

positive or negative moods can affect the prevalence of 

analytic processing, at least as measured by EV-

maximization success.  Nor do they confirm the main 

predictions of the mood-congruence and mood-

maintenance hypotheses regarding attention allocation, as 

measured by total fixation durations (TFDs). Neither a 

main effect of condition nor an interaction of condition 

with domain on attention was found.  

   However, a significant three-way interaction among 

Domain, Condition, and Block was found (Figure 4). The 

nature of the interaction suggests that the mood induction, 

particularly the positive induction, may have had only 

a3transitory effect.  In the first two blocks, when the effects 

of the mood induction were presumably strongest, 

participants in both conditions paid more attention to 

information about gains, and participants in the positive 

mood condition paid slightly more attention to information 

about gains than did negative-mood participants. But this 

pattern is not confirmed by inferential tests. We should be 

aware that the samples size was relatively small. In order 

to detect effects of incidental emotion on such subtle 

patterns of attention allocation, many more participants 

would be needed.  

  Nonetheless, the significant main effects of Type of 

information and Domain (gain versus less) do suggest 

some insights into participants’ allocation of attention in 

their decision-making processes. These significant effects 

suggest that participants, regardless of their assigned mood 

conditions, allocate more attention to value information 

than to probabilities, and more attention to gains than to 

losses. We plan future investigations to confirm and further 

explore these findings. 

   Further research in this area might also explore other 

types of emotion induction manipulations, of varying 

strengths and durations, to more fully investigate the 

effects of incidental emotion on decision process and 

outcomes. 
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Figure 4.  The three-way interaction among mood induction Condition (P=positive mood condition; N=negative mood 

condition), Domain (1=loss, 2=gain), and Block. 
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Abstract

Human concept learning is surprisingly robust, allowing for
precise generalizations given only a few positive examples.
Bayesian formulations that account for this behavior require
elaborate, pre-specified priors, leaving much of the learning
process unexplained. More recent models of concept learning
bootstrap from deep representations, but the deep neural net-
works are themselves trained using millions of positive and neg-
ative examples. In machine learning, recent progress in meta-
learning has provided large-scale learning algorithms that can
learn new concepts from a few examples, but these approaches
still assume access to implicit negative evidence. In this paper,
we formulate a training paradigm that allows a meta-learning
algorithm to solve the problem of concept learning from few
positive examples. The algorithm discovers a taxonomic prior
useful for learning novel concepts even from held-out supercat-
egories and mimics human generalization behavior—the first
to do so without hand-specified domain knowledge or negative
examples of a novel concept.
Keywords: concept learning; deep neural networks; object
taxonomies

Introduction
One of the hallmarks of human intelligence is the ability to
rapidly learn new concepts given only limited information
(Lake et al., 2016). This task is difficult because we are often
presented with only a handful of (positive) examples of a new
concept, and no examples outside of the concept (negative
examples). Quine (1960) was the first to recognize that this
poses a seemingly crippling problem for induction: hearing
only the word “gavagai” as a rabbit passes by, we have no way
of knowing with certainty whether the new word applies to all
animals, all rabbits, one pet rabbit, potential food, or any other
of a nearly infinite number of likewise compatible hypotheses.

Nevertheless, humans appear to possess prior knowledge,
whether learned, innate, or both, that makes for effective gen-
eralizations even under such conditions. In some situations,
these constraints are simple and easy to model (Tenenbaum,
1999; Tenenbaum & Griffiths, 2001; Kemp et al., 2007). How-
ever, in general, modeling the rich prior knowledge that hu-
mans bring to bear on problems in complex domains such as
natural images is difficult and reliant on explicit domain knowl-
edge (Xu & Tenenbaum, 2007; Jia et al., 2013). A recent line
of follow-up work has made strides by using deep neural net-
works as a proxy for psychological representations (Campero
et al., 2017; Peterson, Soulos, et al., 2018). Although these
representations are largely perceptual, they are nevertheless an
improvement over hand-specified features given that they are

less prone to experimenter bias and have been shown to ex-
plain some aspects of human visual representations (Peterson,
Abbott, & Griffiths, 2018). However, unlike most cognitive
models of concept learning and unlike humans, these networks
are trained on millions of both positive and negative examples
of mutually exclusive categories. Moreover, they fail to cap-
ture the taxonomic biases that humans bring to bear in concept
learning (Peterson, Abbott, & Griffiths, 2018).

Challenged by the cognitive science community (Lake et
al., 2015), machine learning researchers have developed a
number of their own improvements to deep learning algo-
rithms to tackle the problem of learning from few examples
(e.g., Vinyals et al., 2016; Ravi & Larochelle, 2017). These
approaches constitute impressive new candidate accounts of
human concept learning from naturalistic stimuli, but differ
from human learning scenarios in that they (1) rely on negative
evidence to infer the extent of a novel concept, and (2) ignore
the overlapping and hierarchical structure of real-world con-
cepts that humans use to inform their generalization judgments
(Rosch et al., 1976; Xu & Tenenbaum, 2007).

In the following paper, we aim to address many of the short-
comings of previous work by demonstrating how a deep meta-
learning algorithm combined with a novel stimulus sampling
procedure can provide an end-to-end framework for model-
ing human concept learning, for the first time with no hand-
specified prior knowledge or negative examples of a novel
concept. We introduce a new, taxonomically structured dataset
of concepts compiled by sampling from both internal nodes
and leaf nodes within the ImageNet hierarchy (Deng et al.,
2009). Our method learns concepts at different levels of this
hierarchy, but the hierarchical structure itself is never provided
to the model explicitly at any point. To evaluate our model
against human behavior, we present a new human benchmark
inspired by Rosch’s classic object taxonomies (Rosch et al.,
1976). Our model not only mimics human generalization be-
havior, reproducing classic generalization gradients (Shepard,
1987; Xu & Tenenbaum, 2007), but also encompasses a gen-
eral taxonomic prior that allows for human-like generalization
even when presented with novel concepts from different image
taxonomies (i.e., held-out supercategories).

Background
Computational models of concept learning in cognitive science
have historically focused on the problem of density estima-
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tion (Ashby & Alfonso-Reese, 1995). Under this paradigm,
learning about a category C amounts to the estimation of the
density p(x |C), where x represents the space of stimuli. This
modeling framework assumes that a density can be learned for
each of a set of mutually exclusive categories, where positive
examples from one category implicitly serve as negative ex-
amples for all other categories. However, the conditions under
which humans learn concepts are rarely this straightforward.

Learning concepts from few positive examples. More re-
cent work has begun to examine how humans learn concepts in
more natural settings where often only a few positive examples
of a single concept are provided. Despite this impoverished
learning environment, even young children are able to gener-
alize surprisingly well (Carey, 1978; Markman, 1991). Ex-
tending Shepard (1987), Tenenbaum (1999) and Tenenbaum
and Griffiths (2001) formalize the concept learning problem
as follows: Given n positive examples x = {x1, ...,xn} of a
concept C, the learner estimates the probability p(x∗ ∈C | x)
that a new stimulus x∗ is also an example of that concept. The
challenge the learner faces in making such a generalization is
that the extension of C is underspecified (i.e., it could include
only the present examples, all possible stimuli, or anything
in between). To address this challenge, the authors propose a
Bayesian generalization model that averages the predictions
made by a number of hypotheses about the extent of C. By
making the plausible assumption that learners expect examples
to be randomly sampled from concepts, the authors show that
smaller hypotheses will be preferred, thus deriving constraints
on the expected extent of C.

Armed with this framework, Xu and Tenenbaum (2007) con-
ducted an extensive analysis of human generalization behavior
through word learning experiments. Participants were given
either one or three examples of a new concept such as “dax”
and asked to pick out other instances of that concept from a
set of test stimuli. The examples of each concept were unique
images that could be drawn from either a subordinate-level
(e.g., Dalmatian), basic-level (e.g., dog), or superordinate-
level (e.g., animal) category, and the test stimuli were sampled
from all three levels. An example of this task is shown in
Figure 1. Replicating Shepard (1987), the authors found that
generalization from a single example of a concept to a test
stimulus decreases with psychological similarity. However,
their experiments also yielded two new insights into human
concept learning:

1. Given multiple examples of a concept, generalization goes
only as far at the most specific level that contains those ex-
amples. For example, shown three examples from different
dog breeds, other dog breeds are included in the concept at
test time, but not other animals.

2. There is a bias towards generalizing to test items at the
basic level, in particular when only a single subordinate
example is shown. For example, given a single example of
a Dalmatian, participants predictably generalize the concept
to other Dalmatians, but also generalize to other breeds.

Test Phase - Pick everything that is a dax

Training Conditions - Possible examples of a dax
basicsubordinate superordinate

Figure 1: The word learning paradigm from Xu and Tenenbaum
(2007). In each trial, participants see a few instances exemplifying a
novel word such as “dax” and are asked to select other instances that
fall under the same word from a test array. The training conditions
vary by the levels of the underlying image taxonomy from which the
instances are drawn, e.g., Dalmatians (subordinate) vs. dogs (basic)
vs. animals (superordinate).

The only modification to the Bayesian concept learning model
required to capture these data was a structured, taxonomic
prior computed from human similarity judgments over the set
of objects used in the experiments. While this work constitutes
one of the first successful attempts to explain concept learning
in realistic contexts, it arguably leaves much of the structured,
taxonomic representation assumed and raises questions about
how this knowledge is acquired.

The role of prior knowledge. Given the aforementioned
dependence on highly structured priors in explaining people’s
robust generalization behavior, subsequent work has focused
on incorporating this information into the modeling of human
concept learning. Jia et al. (2013) provided an automated
framework for modeling human generalization behavior by
leveraging perceptual stimulus features provided by a com-
puter vision algorithm along with information contained in the
WordNet taxonomy (Fellbaum, 1998), but gave no account for
how this information is learned by humans. Kemp et al. (2007)
provided the first account of how such knowledge could be
acquired: The authors start with an unstructured representa-
tion and apply a structured hierarchical Bayesian model that
learns taxonomic abstractions from data. Despite its elegance,
the method does not immediately scale to high-dimensional
stimuli such as the images used in Jia et al. (2013).

Deep neural networks (LeCun et al., 2015) have served as
both candidate models of object perception and rich image rep-
resentations that can be used for cognitive modeling. However,
these model do not capture even coarse taxonomic information
out-of-the-box (Peterson, Abbott, & Griffiths, 2018). Despite
this, Peterson and Griffiths (2017) found that the sampling
assumptions of Bayesian concept learning could be verified in
human generalization judgments when modeling stimuli using
deep feature representations. Campero et al. (2017) deployed
a hierarchical model similar to Kemp et al. (2007) over a deep
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Superordinate Basic Subordinates

Musical
Instrument

Guitar Acoustic guitar Electric guitar
Piano Grand piano Upright piano
Drum Tambourine Bass drum

Fruit
Apple Delicious apple Mackintosh apple
Currant Black currant Red currant
Grapes Concord grapes Thompson seedless grapes

Tool
Hammer Ball-peen hammer Carpenter’s hammer
Saw Hack saw Cross-cutting saw
Screwdriver Phillips screwdriver Flat tip screwdriver

Clothing
Trousers Jeans Sweat pants
Socks Athletic socks Knee-high socks
Shirt Dress shirt Polo shirt

Furniture
Table Kitchen table Dining-room table
Lamp Floor lamp Table lamp
Chair Armchair Straight chair

Vehicle
Car Sports car Sedan car
Airplane Airliner plane Fighter jet plane
Truck Pickup truck Trailer truck

Fish
Snapper Grey snapper Red snapper
Trout Rainbow trout Lake trout
Salmon Atlantic salmon Chinook salmon

Bird
Owl Barn owl Great gray owl
Eagle Bald eagle Golden eagle
Sparrow Song sparrow Field sparrow

Table 1: The eight taxonomies adapted from Rosch et al. (1976).

feature space and found both good one-shot learning perfor-
mance as well as the ability to recover some stimulus clusters
representative of human categorization judgments. Noting that
most deep networks are trained using subordinate-level labels,
Peterson, Soulos, et al. (2018) trained a deep neural network
with coarser, basic-level labels to more closely mimic the su-
pervision children receive. A relatively simple generalization
model over the resulting representation reproduced both the
basic-level bias and the gradient of generalization from Xu
and Tenenbaum (2007).

Few-shot learning in machine learning. The problem fac-
ing cognitive models of concept learning is closely related to
one- or few-shot classification in machine learning, in which
the aim is to learn to discriminate between classes given only
a few labeled examples from each class (Fei-Fei et al., 2003;
Vinyals et al., 2016). A powerful solution to few-shot learn-
ing is meta-learning, where learning episodes—themselves
consisting of training and testing intervals—are used to train a
model to adapt quickly to solve a new task given only a small
amount of labeled task data (Schmidhuber, 1987). The learn-
ing episodes are leveraged in the form of a data-driven prior
that is combined with a small amount of test-time evidence
(i.e., a few “shots” of labeled data from a novel task) in order
to make a test-time inference.

Modeling Approach
We propose to bridge cognitive science and machine learn-
ing by formulating concept learning as a few-shot learning
problem. As we will see, the meta-learning problem formula-
tion allows a machine learning model to estimate a decision
boundary from only positive samples of a class, similarly to
how people learn concepts from only a few positive exam-
ples. Moreover, the use of a meta-learning algorithm provides
a principled way to present entirely novel concepts at test
time as held-out test tasks. As such, we can investigate the

taxonomic priors encoded in a neural network embedding
function, as compared to prior work that examines the repre-
sentations of images from categories observed during training
time (Peterson, Soulos, et al., 2018).

Concept learning as meta-learning. Meta-learning algo-
rithms aim to learn how to learn by extracting task-general
knowledge through the experience of solving a number of
specific tasks (Thrun & Pratt, 1998; Hochreiter et al., 2001).
In the case of concept learning, the jth task corresponds to
learning a decision boundary for the jth concept using only
positive examples, and meta-learning corresponds to learning
how to estimate decision boundaries for arbitrary unseen con-
cepts. We can thus formalize the concept learning problem as
the task of predicting a target label y (which indicates whether
or not the input belongs to a given category) from an input ob-
servation x (i.e., an image). Note that this formulation differs
from the standard discriminative classification problem, where
the task corresponds to a K-way discriminative classification
task in which each of the K class labels are mutually exclusive.

Formally, let T j = (X trn
j ,Y trn

j ,Xval
j ,Y val

j ) denote a task
drawn from a given task distribution p(T ), where X trn

j and
Y trn

j are a small collection of training inputs and labels, dis-
joint from validation samplesXval

j and Y val
j but belonging to

the same task T j. A meta-learning algorithm (e.g., Vinyals et
al., 2016; Ravi & Larochelle, 2017) aims to estimate parame-
ters θ that can be adapted to solve an unseen task T j ∼ p(T ),
using only the training samples (X trn

j ,Y trn
j ), to ensure the

updated model achieves good performance on the validation
samples (Xval

j ,Y val
j ) according to some loss function L .

In this work, we use the model-agnostic meta-learning
(MAML; Finn, Abbeel, & Levine, 2017) algorithm, which
formulates meta-learning as estimating the parameters θ of
a model so that when one or a few gradient descent steps
are taken from the initialization at θ on the training data
(X trn

j ,Y trn
j ), the updated model has good generalization per-

formance on that task’s validation set, (Xval
j ,Y val

j ). At test
time, a new task from the test set is presented to the model for
few-shot adaptation, i.e., gradient descent with (X trn

j ,Y trn
j ),

and computation of test-time performance metrics, e.g., accu-
racy on (Xval

j ,Y val
j ). The training examples in the inner gradi-

ent computation are strictly positive examples (i.e., Y trn
j = 1)

of a particular concept j, whereas validation examples in the
outer gradient computation include both positives and nega-
tives (i.e., Y val

j ∈ {0,1}); thus, at test time, the meta-learning
algorithm is able to estimate a decision boundary for a novel
concept from only positive examples of that concept.

Behavioral Experiment
In order to compare our method directly to human behavior,
we conducted a large-scale human generalization experiment
using a test set of naturalistic stimuli used for the simulations
in the next section. We assess generalization behavior using
a concept learning experiment that follows previous work on
Bayesian concept and word learning (Xu & Tenenbaum, 2007;
Abbott et al., 2012; Jia et al., 2013).
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Stimuli. We mapped a subset of the graph structure embed-
ded in the ImageNet dataset used for the ImageNet Large Scale
Visual Recognition Competition (ILSVRC; Russakovsky et
al., 2015) to the classic taxonomy used by cognitive scientists
and developed by Rosch et al. (1976). ILSVRC is a commonly
used object-classification dataset that contains more than 1
million images distributed across 1000 categories. Instead of
using the leaf classes as categories, we create concepts by pick-
ing a node in the ImageNet hierarchy and sampling images
from leaves dominated by the given node. Note that, in this
case, concepts are not necessarily mutually exclusive in the
sense that a single image may belong to one or more classes
(e.g., a Dalmatian may be labeled as both a dog and an animal).
If the exact subordinate node from Rosch et al. (1976) was not
available in ImageNet, we found a close semantic match via
the WordNet (Fellbaum, 1998) taxonomy. We provide the full
taxonomy for this dataset in Table 1.

Task. In each of 8 trials, participants observed 5 images
of a single concept, sampled from one of the three levels of
taxonomic abstraction. For instance, in a subordinate training
condition, the examples could be all Dalmatians; in a basic-
level training condition, all dogs; in a superordinate training
condition, all animals. To test generalization behavior, partici-
pants were then given a test array of 24 images and were asked
to pick which images also belonged to the learned concept.
The test array comprised 2 subordinate matches (e.g., other
Dalmatians), 2 basic-level matches (e.g., other breeds of dog),
4 superordinate matches (e.g., other animals), and 16 out-
of-domain items (e.g., inanimate objects), following Xu and
Tenenbaum (2007). See Figure 2 for an example set of training
and test stimuli. In total, we collected data for 180 unique
trials and 1 180 unique images.

Participants. We recruited 900 unique participants from
Amazon Mechanical Turk to each complete 8 trials as de-
scribed above, one randomly sampled for each of the superor-
dinate categories. The test sets were fixed within a superordi-
nate category. Participants were paid $0.40 each.

Results. Figure 3 (a) presents the results of the behavioral
experiment for each of the three taxonomic levels. As ex-
pected on the basis of previous work, there is an exponentially
decreasing generalization gradient as the level of taxonomic
abstraction of the test matches (bar color) increases. How-
ever, this effect diminishes as the intra-class variation of the
few-shot examples (x-axis) increases: Moving from the sub-
ordinate condition to the basic-level condition, we find an
increase in the number of basic-level matches selected from
the test set. The condition in which there is greatest intra-class
variation–the superordinate condition–exhibits only a small
generalization gradient.

(a)

(b)

(c)

(d)

Figure 2: Examples
of training stimuli for
the (a) subordinate, (b)
basic-level, and (c) su-
perordinate level train-
ing conditions, as well
as (d) a subset of the
stimuli from the test
array for a specific
concept learning task
(here, learning the con-
cept black currant (a),
currant (b) or fruit (c)).
The test array (d) dis-
plays, from left to right,
a subordinate match, a
basic-level match and
a superordinate match.

Meta-Learning Simulations
Our modeling goal is to investigate whether we can use meta-
learning to learn new concepts from only few positive exam-
ples, even though these concepts are potentially overlapping
and therefore not mutually exclusive. Furthermore, we aim
to investigate whether a meta-learning algorithm is able to
use information about the underlying concept taxonomy that
generates observations of the extension of a concept in order
to generalize to novel concepts in a human-like manner.

Meta-learning formalism. Our model observes K positive
examples x= {x1, . . . ,xK} of a concept C , and must learn
the generalization function p(x∗ ∈ C ) to correctly identify
whether a novel example x∗ is also a member of the concept.
Training proceeds as follows: A concept index j is sampled
from the meta-training set. Then, for K-shot learning, 2K
positive examples of the concept and K negatives are sampled.
The parameters θ are adapted using K of the positives, and
then the model is optimized with a loss computed using the
remaining positive and negative examples of the concept. At
test time, the model with trained parameters θ is presented
with K positive examples from a new concept in the test set;
the model adapts θ and is evaluated on its ability to distinguish
new positive examples of that concept from negatives.

Taxonomic dataset construction. For training and valida-
tion, we created a large-scale taxonomy of classes by using
the graph structure embedded in the subset of the ImageNet
dataset used for the ImageNet Large Scale Visual Recognition
Competition (ILSVRC; Russakovsky et al., 2015), similar to
the behavioral experiment described earlier, but using the en-
tirety of the ImageNet hierarchy. We then created few-shot
concept learning tasks for training by sampling positive and
negative examples for each concept, where negative examples
of a concept are generated by sampling from the complement
set of leaf nodes. Superordinate-level nodes are not shared
between training, validation, and test to ensure that test-time
generalization is measured on novel concepts. We use 494,
193, and 223 leaf nodes in the training, validation, and test
sets, respectively (c.f., 80, 20, and 20 in the few-shot classifi-
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Figure 3: Human behavioral data (a) and flat (b) and hier (c)
modeling results on the concept generalization task. The horizontal
axis identifies the training condition (i.e., the level of taxonomic
abstraction from which the few-shot examples are drawn). The
vertical axis identifies, for each type of match in {subordinate, basic-
level, superordinate}, the proportion of selections from the test array
(a), or the average probability of generalization (b, c).

cation dataset miniImageNet (Vinyals et al., 2016)). The train-
ing, validation, and test node sets do not comprise all of the
nodes in the ImageNet hierarchy, as some nodes are redundant
(i.e., have a single parent) or are too abstract to appropriately
define a visual concept (e.g., physical entity, substance, equip-
ment). We make use of the training and validation dataset
for training and hyperparameter selection, respectively; the
test set is not used in this work but reserved for future works
that may wish to perform large-scale evaluation of concept
learning. Instead, the evaluations reported in this work are
performed on the Rosch-inspired human benchmark described
above. We also wish to emphasize that while we make use of
the ImageNet hierarchy, we do so only to generate a natural
distribution of concepts to learn from, and never present the
explicit hierarchical relations to the model at any time.

We consider two dataset conditions in our simulations: In
the hier dataset condition, the meta-learning algorithm ob-
serves concepts sampled from the internal and leaf nodes of
the ImageNet hierarchy, and thus can learn a taxonomic prior;
in the flat dataset condition, the algorithm observes only leaf-
node concepts, and thus has no access to such information.

Hyperparameters. The base model that is optimized by
model-agnostic meta-learning (MAML) is a binary classifier
consisting of a convolutional neural network with a sigmoid
output.1 In our experiments, we downsample the images to

1The architecture of the model is similar to prior work in meta-
learning (e.g., Ravi & Larochelle, 2017) with 4 convolutional layers

each have a width and height of 84 pixels, as is common in
the use of miniImageNet (Vinyals et al., 2016) as a few-shot
learning dataset. We select hyperparameters on the same hi-
erarchically structured validation set for both the hier and
flat dataset conditions and evaluate algorithms after a fixed
number of training iterations (40K with a batch size of 4). We
take the value of the scalar output of the network evaluated on
a test example as the generalization probability and average
this quantity across all test examples from a specific level
of taxonomic match to produce the average generalization
probability. When reporting the average generalization proba-
bility metric, we standardize each set of probabilities for each
training condition by treating the distractor (out-of-domain)
generalization probability as a baseline of zero and further
dividing by the largest probability in the set. In line with prior
work (Peterson, Abbott, & Griffiths, 2018), this highlights the
quantity of interest: the relative differences in average gener-
alization probabilities across the subordinate, basic-level, and
superordinate levels of the taxonomy.

Results. The generalization gradient observed in humans
is also exhibited by the hier dataset condition in Figure 3
(c): When the few-shot examples are taken from a basic-level
category (the basic condition; e.g., different breeds of dog)
as opposed to a subordinate category (the subord. condition;
e.g., Dalmatians), the model generalizes to more basic-level
matches (e.g., different dog breeds) from the test array. In the
plot, this can be seen by comparing the ratio of subordinate
generalization (black column) to basic-level generalization
(blue column) within each training condition (i.e., the gap
between the black and blue bars is diminished in the basic
condition vs. the subord. condition). Furthermore, when the
few-shot examples are taken from a superordinate category
(superord. condition), both the model in the hier dataset
condition and humans are equally likely to pick subordinate,
basic-level, or superordinate matches from the test array. In
Figure 3 (a, c), this can be seen as the generalization to all
levels of the taxonomy (black, blue, and yellow bars) being
close to equal.

One notable departure of Figure 3 (c), from the human gen-
eralization behavior in Figure 3 (a), is overgeneralization to the
superordinate category in the subordinate training condition,
and to a lesser extent, in the basic-level training condition,
suggesting that it is difficult for the algorithm to discriminate
between basic-level and superordinate matches given only sub-
ordinate examples of a concept. Nevertheless, in comparison
to the flat dataset condition in Figure 3 (b), which does not
change generalization behavior on the basis of the training
condition, the behavior of the algorithm exposed to the hierar-
chically structured hier dataset suggests a learned sensitivity
to the underlying taxonomic organization of new concepts.

each with 32 3× 3 filters, leaky ReLU activation functions with a
slope of 0.2, and 2×2 max-pooling, all followed by a linear layer
with sigmoid activation. We do not employ batch normalization be-
cause of strong batch interdependence, as all of the training examples
for a concept are of the same (positive) class.
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Discussion
When humans are presented with an example from a new con-
cept, they can quickly infer which other instances belong to
that same concept even without the strong constraints provided
by negative examples. In order to achieve this feat, humans
bring to bear information about the taxonomic structure of
natural categories. Targeting the robustness of human gener-
alization even in highly novel domains (Schmidt, 2009), we
investigated the extent to which taxonomically structured bi-
ases for complex, naturalistic stimuli taken from the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) could
be acquired and leveraged to learn the extent of novel concepts
from only a few positive examples. In contrast to previous
work (Peterson, Abbott, & Griffiths, 2018), we validate the
generalization behavior of our model using unseen supercate-
gories drawn from the superordinate levels of Rosch’s classic
taxonomy (Rosch et al., 1976).

While our method is successful in both learning a general
taxonomic prior and exhibiting human-like generalization be-
havior, there is room for improvement as the quantitative gra-
dients are not a perfect match to humans. However, it should
be noted that our model faces the atypically challenging task
of both learning a highly structured representation for complex
stimuli and making use of it to generalize to entirely novel
concepts. As such, this framework draws on many of the
strengths of both cognitive models and deep neural networks
in machine learning, and constitutes the most comprehensive
account of human visual concept learning to date. Lastly, we
note that we do not build in any explicit preference for simple
concepts or attention to the number of examples (Tenenbaum,
1999; Peterson, Soulos, et al., 2018), although this may be an
interesting avenue for improvement in future work.
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Abstract

Recent work on adversarial examples demonstrates a brittleness of many state-of-the-art machine learning systems. We
investigate one human analog, asking: What fraction of natural speech can be turned into illusions which alter humans per-
ception or result in different people having significantly different perceptions? Using generated videos, we first empirically
estimate that 17% of words occurring in natural speech have some susceptibility to the McGurk effect–the phenomenon
by which adding a carefully chosen video clip to the audio channel affects the viewers perception of the message. We de-
velop a bag-of-phonemes prediction model for word-level illusionability that we extend with natural language modeling to
build a sentence-level framework. We train an instantiation using Amazon Mechanical Turk evaluations on sentence-level
illusions. Finally we generate several new instances of the Yanny/Laurel illusion, demonstrating that it is not an isolated
occurrence. The surprising density of illusionable instances warrants further investigation from cognitive and security
perspectives.
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Stopping Rules In Information Acquisition At Varying Probabilities And
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Abstract

An experiment aiming to assess the use of stopping rules in information acquisition was performed. An exploratory
experimental paradigm was used. Participants (47 healthy individuals) were requested to make a decision in 24 financial
scenarios with the possibility of buying information pieces. Participants were able to accept, reject or choose not to
decide. Behavioral, EEG, ECG and Eyetracker data were recorded and integrated offline for analysis. Results showed
that participants followed primarily Bayesian calculations in order to determine when to cease information acquisition and
decide. Participants would tend to rely more on the valences (BAL) of the information acquired (positive or negative)
than on sheer quantity. Acceptance tended to be made with mean positive BAL, rejection with mean negative BAL and
procrastination with mean zero BAL. Uncertainty was seen to affect the information acquisition and decision process;
EEG data suggest Slow Cortical Potentials at fronto-central electrodes for risk with low consequences and uncertainty
with high consequences. Eyetracker data shows greater mean fixation time for decisions and information areas of interest
(AOI). Heart rate data shows no difference in scenarios and/or information acquisition behavior, meaning that the decision
scenarios did not elicit significant emotional engagement. Integrated psychophysiological measures were of important
assistance to the conclusions given that they provided information as to what happened or not both behaviorally and
physiologically.
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Abstract 
Outside university, students encounter disciplinary practices 
mediated by technological resources. In this sense, the real 
world is decidedly resource-rich. In contrast, most educational 
assessments remain decidedly resource-poor. Situated versus 
mindbased perspectives of cognition fundamentally differ in 
the role they ascribe to such resources in cognition and 
learning. To mindbased perspectives, they are a source of input, 
to situated perspectives they are constitutive to cognition itself. 
We assessed the validity of resource-rich versus resource-poor 
assessments of learning outcomes from resource-rich versus 
resource-poor learning activities. The study implemented an 
in-class 2x2 between-subjects experimental design in an 
introductory programming course with 192 first semester BSc 
engineering students. Both types of assessment were sensitive 
to differences in learning outcomes, indicating validity for 
both. Results indicate resource-rich assessments may be more 
ecologically valid, while – intriguingly – the resource-poor 
assessments were more sensitive to transfer of learning. 
Furthermore, the resource-rich learning activities better 
facilitated learning for transfer. 
  

Keywords: assessment; examinations; resource-rich 
assessment; resource-affordances; higher education; learning 
science; computer science education; e-assessment; 
educational technology; situated cognition 

Introduction 
Examinations in (higher) education usually remain restricted 
to pen and an empty piece of paper – or in their computer-
based counterpart, keyboard, mouse, and a standardized e-
assessment environment. What examinations typically lack – 
indeed prohibit – is access to any additional resources. In this 
sense, conventional examinations are resource-poor. In 
contrast, upon leaving university students will usually have 
access to a wide array of resources, such as specialist tools, 
easy access to information, and support from networks of 
experts and peers. In this sense, most professional practices 
outside the classroom are decidedly resource-rich. However, 
if the practices in the real world – for which we ultimately 
learn – are resource-rich, how can we justify a resource-poor 
examination practice? Conversely, how could we 
demonstrate the need for examinations to become resource-
rich? In this study, we render first empirical evidence unto 
this question for the case of tools as resource. Specifically, 
we are interested in the question whether the availability or 
absence of disciplinary technological tools in an assessment 

environment has implications on the validity of the 
corresponding assessments of learning.  

Our research question lies at the intersection of three larger 
topics which to date have rarely been linked. First, the above-
mentioned discrepancy between (increasingly) resource-rich 
disciplinary practices versus resource-poor conventional 
examination practice and its implication on validity. Second, 
the resurgent epistemic debates on appropriate perspectives 
of cognition and learning. Third, advancements in 
educational technology, which enable novel learning and 
assessment environments. We will briefly elaborate on each. 

Resource-Rich Assessment 
When asked to formulate intended learning outcomes, 
lecturers typically emphasize outcomes associated with deep 
learning, transferrable skills, and rich conceptual 
understanding. Conventional examinations in contrast, are 
frequently associated with surface learning, cramming, 
factual recall, poor retention, and an inability to transfer  
(Biggs, 2014; Keehner, Gorin, Feng, & Katz, 2017). In other 
words, there seems to be a problem with the validity of 
conventional examinations: Lecturers intend to assess 
outcomes associated with deep learning, but in effect, 
students may achieve success through surface learning. To 
make matters worse, examinations strongly motivate student 
learning and when examinations reward surface learning, 
they also encourage surface learning. Assessment drives 
learning (Baird, Andrich, Hopfenbeck, & Stobart, 2017) and 
poor assessment drives poor learning. 

Alternative Assessment (Sambell, McDowell, & Brown, 
1997), Authentic Assessment (Gulikers, Bastiaens, & 
Kirschner, 2004), Assessment for Learning (Baird et al., 
2017), or Performance Assessment (Moss, 1992) all share 
with our proposition for resource-rich assessment a concern 
for the above-mentioned issues with assessment validity 
and/or assessment driven learning. However, none of these 
approaches foreground the access to relevant disciplinary 
resources (tools, information, and/or social interactions). We 
propose that the absence of relevant disciplinary resources in 
assessment contexts may be a crucial mediator of 
longstanding issues with both assessment validity and 
assessment driven learning. We propose three principal 
reasons for this. First, technological resources mediate and 
pervade an ever-increasing number of disciplinary practices: 
Computer scientists develop code in integrated development 
environments (IDEs), psychologists do statistics in R, 
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engineers design machine parts in CAD software, medical 
practitioners treat and diagnose patients with the aid of 
clinical decision support software, and virtually everyone 
writes texts with word processors. Second, learning sciences 
research indicates that successful, transferrable learning is 
associated with learners’ active engagement with appropriate 
tools and learning resources (e.g. Danish & Gresalfi, 2018; 
Schwartz & Martin, 2004; (Hmelo-Silver, Kapur, & Hamstra, 
2018). If successful learning is resource-mediated, then the 
resource-poorness of conventional examinations may explain 
issues with assessment driven learning: Resource-poor 
assessment may drive resource-poor learning. Third, 
cognition itself may be substantially resource-mediated.  

Cognition 
Established examination practice and its frameworks have 
been criticized for paying too little attention to the cognitive 
models in which they are grounded (Baird et al., 2017), 
and/or for being based on impoverished, outdated, or 
unsuitable models of cognition (Pellegrino, 2002; Sawyer, 
2014). For the purpose of this study, we compare a rigid 
interpretation of two contrasting perspectives of cognition: 
Cognition as mindbased processing versus cognition as 
situated action. The mindbased perspective corresponds to 
cognitivist (sic), computational, representational, 
information-processing, connectionist, or constructivist 
models of cognition and learning (Abrahamsen & Bechtel, 
2012; Shapiro, 2011). The mind is the manifest locus of 
cognition and learning, and mediator of the relationship 
between stimuli and response. Fundamental to this 
perspective is the ‘opening of the black box’ by modelling 
processes and states within the mind. Two simultaneous and 
intertwined streams of processing in the mind/brain together 
constitute cognition: Directed feedforward sensory-to-motor, 
stimulus-response, input-output streams of processing in 
combination with recursive feedback loops within the 
mind/brain itself. The contrasting situated model on the other 
hand, does not separate cognitive processing (‘mind’) from 
action (‘response’) or social and physical task contexts 
(‘stimuli’). Instead, it regards the dynamical interaction 
between the cognitive agent and those elements of the 
environment with which he/she situationally interacts as 
conjointly constitutive of cognition and learning: Cognition 
as situated action or as emergent upon loosely coupled 
processes in the agent-environment complex system (Clark, 
2012; Danish & Gresalfi, 2018; Hutchins, 1995). Actions of 
the cognitive agent effect changes in the environment, which 
in turn feed back to the cognitive agent in the form of 
new/altered stimuli. The directed stimulus-response flow of 
processing of the mindbound perspective is closed into a 
single complex system of dynamical feedback loops, from the 
cognitive agent through the environment back unto the 
cognitive agent him/herself. Examples of situated 
perspectives include embodied, extended, and distributed 
cognition, sociocultural theory, or social constructivism. 
While these situated perspectives have led to a rich body of 
research on learning and effective learning interventions, 

there is a lack of corresponding research in assessment and 
educational measurement (Mislevy, 2018 is one exception). 

Gibson (1977) introduced the term ‘affordance’ for 
“whatever it is about the environment that contributes to the 
kind of interaction that occurs [with the cognitive agent]”. 
Accordingly, we define the term resource-affordance for 
‘whatever it is about the disciplinary (technological) 
resources with which the cognitive agent interacts, that 
contributes to the kind of disciplinary practice that occurs’. 
Resource-affordances constitute the loose coupling of 
processes between the cognitive agent and the task 
environment. They are fundamental to the situated 
perspective. Much like a skier’s body is inseparably 
connected with his boots and skis in the practice of skiing – 
effectively forming a single functional unit – so too do a 
programmer’s mind and a computer-based programming 
environment interact in an inseparable manner in the practice 
of programming. Just as attempting to assess someone’s 
skills in skiing while denying them skis would be rather 
absurd, so it is absurd that we routinely assess students’ 
competency in computer science while denying them access 
to computers. It follows that the valid assessment of 
competency in disciplinary practices directly depends on 
adequate access to practice-relevant resource-affordances in 
the assessment task environment. Hence, the situated 
perspective demands an examination practice that is equally 
resource-rich (RR) as are the disciplinary practices in which 
we intend to assess competency. In the mindbased 
perspective on the other hand, there is no need to model 
resource affordances because cognition is fully contained in 
the mind/brain. Writing a recursive algorithm on paper or in 
a programming environment are not fundamentally different 
cognitive tasks, but fundamentally similar. Resources do not 
contribute anything substantial to cognition or its assessment. 
On the contrary, they are a potential source of construct 
irrelevant variance. Hence, the mindbased perspective of 
cognition favors a resource-poor (Rp) assessment practice. 
Indeed, we argue that a main reason for conventional 
examination practices being resource-poor likely lies in the 
fact that most students, teachers, educators, and assessment 
specialists share a deeply mindbased conception of cognition.  

Educational Technology 
Over the past years, educational technology and 
corresponding e-learning practices, including computer-
based assessments and examinations, have become 
increasingly widespread in higher education (Bennett, 2015; 
Crisp, Guàrdia, & Hillier, 2016; Halbherr, Reuter, Schneider, 
Schlienger, & Piendl, 2014). Computer-based assessment 
services frequently prioritize efficiency by focusing on auto-
correction, computer-adaptive testing, or remote proctoring – 
all largely within a conventional Rp paradigm. However, 
there also exists a competing trend, emphasizing the potential 
for improvements in examination quality by enabling 
examination task environments that are more authentic, 
competence-oriented, aligned with corresponding practice – 
and/or RR (Crisp et al., 2016; Halbherr, Dittmann-
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Domenichini, Piendl, & Schlienger, 2016). One example of 
such a learning and assessment environment is Code Expert. 

Code Expert 
Code Expert (Lehner, Avanthay, & Sichau, 2018) is a 
browser-based integrated development environment (IDE) 
and online learning environment developed at ETH Zurich. 
Code Expert facilitates open programming assignments for 
in-class or take-home exercises, as well as supervised 
examinations. Code Expert includes an auto-grader, which 
provides automatic and immediate feedback to students by 
compiling, running, and testing submitted code against 
predefined test cases. Furthermore, tutors can annotate or 
apply direct changes to students’ attempts in order to provide 
additional, more personalized feedback. The Code Expert 
interface is illustrated in Figure 1. It consists of a file system 
pane, a code editor window, a terminal and output window 
for compiling and running the code, and a tutorial pane for 
instructions, task descriptions, and learning materials. 

 

 
 

Figure 1: Schematic overview of Code Expert GUI. 
 

Method 
The study was conducted as part of an introductory course in 
programming for non-CS students at first year BSc level. The 
course focuses on imperative and object oriented 
programming paradigms, as well as problem solving, and 
uses Java as programming language and Code Expert as 
learning environment. 

In the study, we investigated how the presence or absence 
of resource-affordances of the Code Expert environment 
affected student learning on the one hand, and the assessment 
of corresponding learning outcomes on the other. Slightly 
different than usual, the main focus of this study is not on the 
learning activity, but on the assessments, more precisely: The 
validity of the assessments. Specifically, we are interested 
whether and to what extent RR versus Rp assessments are 
sensitive to differences in learning outcomes as induced by 
RR versus Rp learning activities. 

Validity 
Validity is “the degree to which a test or examination 
measures what it purports to measure” (Ruch, 1924). It is a 

unitary construct (Messick, 1989). It is an ontological and/or 
epistemic construct, rather than a statistical or psychometric 
one (Kane, 2006). This holds particularly true in the context 
of this study, since we do not have any impartial source of 
base truth against which we could validate the RR versus Rp 
assessments. Instead, validity has to be determined through 
an appropriate validity argument. Borsboom, Mellenbergh, & 
van Heerden (2004) propose the following operational 
definition of validity: “A test is valid for measuring an 
attribute if and only if (a) the attribute exists and (b) 
variations in the attribute causally produce variations in the 
outcomes of the measurement procedure”.  

Operationalizing Validity 
We apply the earlier propositions – resource mediation 
facilitates learning and cognition as a resource-mediated 
construct – to the above operational definition of validity. We 
operationalize variations in the measurement attribute – 
student learning – by letting one group of students learn with 
access to relevant resource-affordances, the RR learning 
condition (LC), while the other group is denied access, the 
Rp LC. Everything else is kept strictly identical across the 
two LCs. Subsequently, we assess half of students of each LC 
in a RR assessment with access to resource-affordances, the 
RR assessment condition (AC), or in a Rp assessment without 
access, the Rp AC. Again, everything else is kept strictly 
identical across the two ACs. We then evaluate whether the 
RR and/or the Rp assessment are able to differentiate between 
students from the RR LC versus the Rp LC. If they do, then 
this is evidence in favor of the assessment’s validity, and 
evidence against, if not. This results in a 2x2 between-
subjects experimental design. The RR LC versus Rp LC and 
the RR AC versus Rp AC constitute the independent 
variables, and assessment performances – to be more precise, 
the performance differences between the students in the RR 
LC and the Rp LC as measured either in the RR AC or the Rp 
AC – constitute the independent variables.  

Operationalizing the Resource-Affordances 
We identify the compiler as the key resource in the Code 
Expert environment. The compiler is both essential for 
generating the product of the practice – running code – as 
well as for sustaining the practices and processes required for 
achieving that goal. We thus operationalize the RR 
experimental conditions with a Code Expert environment 
with a fully functional compiler. The Rp conditions we 
operationalize with the identical Code Expert environment 
save for a deactivated compiler. This leads to the 
disappearance of the following resource-affordances: 
Students cannot compile or run code, correspondingly cannot 
receive any messages in the console from either the compiler 
or their compiled code, cannot run their code against test 
cases in the auto-grader, and there is no syntax highlighting 
of their code in the code editor. In the Rp condition, the 
students are essentially working with a ‘naked text editor 
version’ of Code Expert, while in the RR condition they have 
access to the fully functional Code Expert IDE. Across all 
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experimental conditions, students were instructed not to 
access any other resources (e.g. lecture notes, Google, 
StackOverflow, other Code Expert exercises) than those 
available through the study tasks in Code Expert.  

Learning and Assessment Tasks 
In the study’s learning activity, we introduced a new 
paradigm: Functional programming. Java implements 
functional programming with the Stream API. The learning 
activity consisted of an interactive self-study tutorial. Key 
concepts of functional programming were introduced and 
consolidated in five consecutive tasks using hands-on 
exercises with the example of manipulating data-streams of 
numbers. Students received the canonical solution to each 
tutorial task at the start of the subsequent tutorial step. This 
ensures that also the students in the Rp LC received adequate 
feedback on the correctness of their solutions. 

The subsequent assessment consisted of three tasks. In 
Task1 students had to perform identical manipulations of 
data-streams of numbers as in task 4 of the tutorial. Task1 
operationalizes the direct replication of learning. Task2 
introduced a novel and more complex problem that can be 
solved elegantly using the new paradigm. Task2 
operationalizes transfer of learning. In Task3, students had to 
manipulate streams of Java objects instead of streams of 
numbers after reading a brief introduction to a number of new 
concepts and operations for manipulating objects in a 
functional manner. Task3 operationalizes transfer of learning 
with the aid of a learning resource, i.e. students’ preparation 
for future learning (Schwartz & Martin, 2004). All three 
assessment tasks were scored manually by the course 
assistants. For each task 0, 1, 2, or 3 points were awarded 
according to task-specific rubrics. Small syntax errors, such 
as missing or unmatched brackets or slightly incorrect syntax 
in lambda expressions, were ignored. The manual scoring 
procedure was identical for both the RR AC and the Rp AC. 
To ensure a high correspondence with actual educational 
practice ‘in the wild’, both the learning activity and the 
assessment, all tasks contained therein, the scoring rubric, 
and the scoring procedure were all designed and performed 
entirely by the course lecturer and the course assistants, with 
no or only minimal intervention from the lead investigator. 

Hypotheses from the Cognitive Perspectives 
Let us now revisit the situated versus mindbased perspectives 
of cognition. What kind of results would each perspective 
predict for this experiment? To the situated perspective, the 
loose coupling of processes through resource affordances 
remains intact in the RR LC and the RR AC, while in the Rp 
conditions this coupling is severed. Hence, the RR and the Rp 
experimental conditions correspond to qualitatively 
fundamentally different kinds of cognitive processes – both 
regarding what is learned in the LCs, as well as regarding 
what is assessed in the ACs. Since programming is a 
resource-mediated practice, the situated perspective would 
predict larger learning gains in the RR LC, to which the RR 
AC is sensitive, but not the Rp AC (or only to a lesser extent). 

Furthermore, since cognition is emergent from the loosely-
coupled agent-resource complex system, the larger learning 
gains of the RR LC and the higher sensitivity of the RR AC 
would not merely relate to ‘superficial’ resource-specific 
knowledge, but also deep conceptual understanding and 
transfer of learning. To the mindbased perspective on the 
other hand, resources are not central to cognition. Decoupling 
should not affect learning as long as students still receive 
adequate feedback. If anything, the Rp LC should facilitate 
learning, particularly learning for transfer, because it reduces 
cognitive load associated with managing the resource, freeing 
up cognitive capacity for focusing on developing a deep 
understanding of underlying concepts. Furthermore, the 
mindbased perspective would expect the Rp AC to be more 
sensitive to differences in learning gains, especially transfer 
of learning, because it eliminates construct-irrelevant 
variance related to managing the resource and resource-
specific knowledge irrelevant to a deep understanding of 
underlying concepts. 

Procedure 
The study was conducted as part of regular in-class exercise 
activities of the first year BSc introductory programming 
course. The course took place across fourteen weeks, during 
fall semester 2018, from late September until late December. 
It entailed two weekly hours (i.e. 2x45 minutes) of lectures, 
two weekly hours of on-site exercises in small groups 
supervised by student teaching assistants (11 groups with 
between ca. 15-45 students each), weekly homework in Code 
Expert, and a final sixty minute summative examination in 
January 2019. The course is mandatory for first semester 
Bachelor students in Civil Engineering, in Geospatial 
Engineering, and in Environmental Engineering. The study 
activities took place in November 2018 during the second 
hour (45 minutes) of the on-site small group exercises of 
course weeks nine and ten, with one week between the 
learning activities and the assessments. We planned the study 
activities near the end of the course to ensure that all students 
were deeply familiar with the Code Expert environment, such 
that differences in assessment performance between the RR 
and Rp LCs could not reasonably be attributed to increased 
familiarity of students in the RR LC with surface features of 
the Code Expert environment. On the first study day, the 
students engaged in the learning activity consisting of the 
five-step tutorial on functional programming, either under 
RR (compiler active) or Rp (compiler deactivated) 
conditions. On the second study day, the students sat the 
assessment, again either under RR or Rp conditions. Time 
available for both the learning activity and the assessment 
was thirty minutes. While the students could progress 
through the five tutorial tasks at their own pace, in the 
assessment they had precisely ten minutes time available for 
each of the three tasks. In the week between day one and day 
two, there were no exercises or other activities related to the 
topics covered on day one. Figure 2 illustrates the 
experimental procedure: Group1 participated in the RR LC 
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and Rp AC; Group2 in the RR LC and RR AC; Group3 in the 
Rp LC and RR AC; and Group4 in the Rp LC and Rp AC. 

 

 
 

Figure 2: Illustration of the experimental procedure. 
 

Sample 
234 out of 272 enrolled students participated in the study. Of 
these, 21 students participated only on one of the two study 
days and had to be excluded from the analyses. For another 
21 students we could not rule out for certain, that they had 
not accessed tasks or resources not intended for their 
experimental conditions, and were also excluded. The 
resulting sample of n=192 students is distributed across the 
experimental conditions as follows: n(RR→RR)=49, 
n(Rp→RR)=48, n(RR→Rp)=53, n(Rp→Rp)=42.  

Results 
Table 1 reports the mean percentage of points achieved in the 
complete test consisting of Task1, Task2, and Task3; in the 
replication task Task1; and in the transfer tasks, Task2 and 
Task3 taken together. Three things are worth note. First, 
students in the RR LC outperform students in the Rp one both 
in the RR and in the Rp assessment and in all tasks. Second, 
the RR assessment is more difficult (i.e. students performed 
worse) than the Rp assessment for students of both the Rp 
and the RR LC. Third, the performance difference in the 
transfer tasks between the two LCs is larger for the Rp 
assessment, with a 27% difference (63% - 37%) compared to 
a 14% difference (36% - 22%) in the RR assessment. 
 

Table 1: Mean percentage of points achieved 
 

LC 
→AC 

RR 
→RR 

Rp 
→RR 

RR 
→Rp 

Rp 
→Rp 

Complete Test 46% 31% 70% 47% 
Task1 67% 50% 83% 67% 
Transfer Tasks 36% 22% 63% 37% 

 
Figure 3 illustrates the assessment results in the complete 

test, the direct replication task, Task1, and the transfer tasks, 

Task2 and Task3 together. The vertical histograms illustrate 
the frequencies (x-axis) of total points achieved (y-axis) for 
each of the four experimental groups. The background and 
bar colors represent the LCs and ACs, respectively, green for 
RR and yellow for Rp. To illustrate appropriate interpretation 
of the histograms: 67% of students in the RR→Rp 
experimental condition achieved the maximum of three 
points in Task1. Furthermore, non-parametric Mann-
Whitney U inferential statistics, corresponding p-values, 
effect sizes r, and mean ranks (lower values correspond to 
better performances) are reported for the comparisons 
between the RR LC and the Rp LC as measured in the RR 
AC and the Rp AC, respectively. Example: The comparison 
between the RR and Rp LC as measured by the complete test 
in the RR AC is highly significant with p=.008, U= 1’539, 
effect size r=.27 and better performance of the students from 
the RR LC (mean rank 41.43 < mean rank 56.42).  

All test and subtest comparisons between the RR and Rp 
LC are statistically significant. The reported effect sizes r 
constitute small to medium effects (Field, 2009). Effect sizes 
are consistently larger for the Rp test than for the RR test, are 
consistently larger for the transfer tasks than the direct 
replication task, and the difference in effect size between RR 
and Rp assessment is larger for the transfer tasks. 

 

 

 

 
 
Figure 3: Assessment performances and inferential statistics. 
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Discussion 

Learning 
The findings convincingly confirm the proposition that 
resource mediation facilitates learning. RR learning 
consistently outperformed Rp learning. Effect sizes were 
small to medium for the direct replication task and medium 
for the transfer tasks. Of particular note, the effect is 
consistent and robust even across RR and Rp ACs, and even 
after only thirty minutes of tutorial-guided learning. The fact 
that this effect was stronger in the transfer tasks, and not only 
in the RR AC but even more so in the Rp AC, is strong 
evidence that resource-mediation facilitates not just learning 
of superficial resource-specific details, but in fact deep 
conceptual understanding and successful learning for 
transfer. Furthermore, our results support the assumption that 
it is indeed the presence or absence of practice-relevant 
resource-affordances that mediated these differences in 
learning. First, because the only difference between the 
otherwise identical LCs was whether the compiler was active 
or not, second, because not only the students in the RR LC, 
but also the students in the Rp LC received feedback on the 
correctness of their solution. 

Assessment Validity 
Both the RR and the Rp assessments successfully 
differentiate between the two LCs and are thus sensitive to 
the experimental manipulation of resource-mediated 
learning. Hence, we cannot reject the validity of neither the 
RR nor the Rp assessment. However, the Rp assessment was 
more sensitive to the experimental manipulation than the RR 
one, and especially in the transfer tasks. We identify two 
possible reasons for this. First, the higher sensitivity of the 
Rp assessment could be an indicator of better validity of the 
Rp assessment in general. Alternatively, the higher 
sensitivity could be an indicator of superior differential 
validity of the Rp assessment for assessing the transfer of 
(resource-mediated) learning in specific, but not necessarily 
for learning outcomes as they relate to the disciplinary 
practice at large. Two observations support this second 
interpretation. First, the RR assessment was consistently 
more difficult than the Rp assessment. It clearly required 
students to demonstrate competencies that go beyond what 
would have been sufficient to succeed in the Rp assessment. 
Second, the RR assessment is more directly representative of 
the target disciplinary practice of programming (which also 
includes a functional compiler), i.e. it is more ‘ecologically 
valid’. If we assume that disciplinary competencies in all 
their complexity usually constitute the intended measurement 
constructs of examinations, then – somewhat paradoxically – 
the higher sensitivity observed in this study would imply that 
the Rp assessment suffers from construct underrepresentation 
in relation to the ecologically valid intended measurement 
construct. To further illustrate this argument: If the RR and 
Rp assessments captured the exact same amounts of variance 
in transfer of resource-mediated learning, but the RR 

assessment in addition also captured other variance relevant 
to competency in the disciplinary practice, then we would 
indeed expect precisely the observed pattern of higher 
sensitivity of the Rp assessment to the experimental 
manipulation. Taken together, this indicates that RR tasks 
may render more valid estimates of students’ effective 
competency in a target practice, while Rp tasks may be more 
valid for the differential assessment of associated 
(developing) conceptual understanding. 

Cognition 
Neither the proposed situated nor mindbased perspective 
facilitated the prediction of the study’s results. The 
mindbased perspective proved rather unsuitable for 
explaining the substantial and robust learning facilitation in 
the RR LC, while the situated perspective does not offer a 
meaningful account for the higher sensitivity of the Rp 
assessment. Regarding the ontological question of the nature 
of cognition, it is indeed quite intriguing that the uncoupled 
‘mindbound’ Rp assessment was more sensitive to transfer of 
resource-mediated ‘situated’ learning, than the RR 
assessment. This pattern in many ways appears reminiscent 
of learning as (resource) internalization in a Vygotskian or 
Piagetian sense. Alternatively, from a complex systems 
perspective we might conclude that the mindbased 
perspective does not adequately account for cognitive 
phenomena emergent from agent-resource interaction, while 
the situated perspective does not adequately account for near 
decomposability. Such considerations notwithstanding, our 
data show that there is something more complex going on 
than can be explained with either a rigidly mindbound or 
rigidly situated perspective alone. This approach did not lead 
to parsimony, but instead to poor predictions.  

Implications for Practice 
We identify three main implications for practice. First, the 
RR tasks were more difficult than the Rp ones. When moving 
from Rp assessments to RR ones, this increase in difficulty 
needs to be accounted for. We can confirm this experimental 
finding from our own experience in supporting lecturers 
when transitioning from conventional Rp paper-based 
examinations to RR computer-based ones – e.g. with Code 
Expert. The new RR examinations usually require 
substantially more time for students to be able to solve them 
meaningfully. Second, we found robust evidence confirming 
RR learning activities facilitate deep conceptual learning and 
successful learning for transfer. If assessment drives learning, 
then we are well advised to include at least some RR tasks in 
any examination, providing students an effective incentive to 
engage in according and productive RR learning activities. 
Third, mixed examinations consisting of both RR and more 
conventional Rp tasks may be best, because Rp tasks may be 
more suitable for the differential assessment of developing 
conceptual understanding, while RR tasks may be more 
suitable for ‘ecologically valid’ and exhaustive assessments 
of accomplished disciplinary competency. 
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Abstract

Listeners must integrate multiple sources of information to
construct an interpretation of a sentence. We concentrate here
on the alignment of prosodic and syntactic grouping during
online sentence comprehension. We present the results from a
pupillometry study on the use of prosodic boundaries in resolv-
ing well-known attachment ambiguities. Using growth curve
analyses to capture the non-linear dynamics of pupil dilation,
we found increased pupil excursions for sentences that were
disambiguated towards the dispreferred, non-local relation, es-
pecially when accompanied by supporting prosodic informa-
tion. However, when prosodic and structural information did
not align, pupillary response was muted, potentially indicating
a failure to commit to a specific interpretation. More generally,
the study shows how the currently under-utilized pupillometry
method offers insights into spoken language comprehension.
Keywords: Relative clause attachment; prosody; pupillometry

Introduction
Sentences like (1) are structurally ambiguous. The relative
clause (RC) after a complex noun phrase (NP) may be inter-
preted as modifying the first noun (NP1; in High attachment:
the maid was on the balcony) or the second noun (NP2; in
Low attachment: the actress was on the balcony).

(1) Someone shot the maid NP1 of the actress NP2

[RC who was on the balcony ]

Many classical theories of sentence processing assume a
strong role for relations privileging locality (Kimball, 1973;
Frazier & Fodor, 1978) or recency (Gibson, 1998). For ex-
ample, the principle of Late closure prompts the language
parser to resolve ambiguous strings like (1) towards a struc-
ture in which the RC attaches to the most recently accessed
constituent that is grammatically possible, resulting in a Low
attachment interpretation. Under their strongest interpreta-
tion, locality or recency based principles represent universal
properties of the human language processing system and are
not subject to variation within languages or individuals.

However, subsequent research has argued that the pre-
ferred interpretations of strings like (1) are moderated by a
great many other factors, such as plausibility, experience, or
prosodic grouping, and may even reflect parsing preferences
from specific languages (see Fernández, 2003 for review).

Several explanations for this variation have been proposed.
Perhaps the first study to find a High attachment preference
for non-local RC modification was Cuetos & Mitchell (1988),
who proposed that the statistics of a language strongly in-
fluence how the processor resolves ambiguity – i.e., a lan-
guage shows a High attachment preference because this res-
olution is the most frequent in the language. Others have ex-
plained the variation in terms of additional contraints com-
peting with a universal recency bias (Gibson et al., 1996),
or with respect to the availability of alternative parses in
different languages (Hemforth et al., 2000; Grillo & Costa,
2014; Grillo et al., 2015). Others still have exempted rela-
tive clauses from the domain of Late closure, instead argu-
ing that they are construed using a collection of grammati-
cal and non-grammatical interpretive principles (Gilboy et al.,
1995; Frazier & Clifton, 1996). While many factors may well
contribute to relative clause attachment preferences, we focus
here on the relation between prosodic and syntactic grouping
during online sentence comprehension.

In general, prosody refers to the organizational structure
of speech, expressed through changes in pitch, duration, and
amplitude, among other factors (Ladd, 2008). Although the
prosodic grouping of words can reflect metrical preferences
(such as the location of prominence or the alternation of feet),
it can also signal higher levels of linguistic structure, espe-
cially syntactic or information structural relations. We adopt
a simplified description of prosodic information, and concen-
trate on how prosodic groups are formed via the presence of a
prosodic boundary (%), which can be indicated by word final
lengthening, pitch movements that conventionally mark the
end of a group, and pauses in the speech signal.

Previous work indicates that the location of a prosodic
boundary between the complex NP and the relative clause
disambiguates RC attachment. A prosodic boundary placed
between NP2 and the RC (2b) results in a bias towards High
attachment, a generalization that appears to be robust across
languages (Jun, 2003). In contrast, a boundary separating
NP1 from NP2 (2a) appears to reinforce the low attachment
construal, even in languages with a general high attachment
preference (Fromont et al., 2017). We assume that in such
cases comprehenders interpret the prosodic boundary loca-
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tion as a cue to syntactic constituency (depicted as parenthe-
ses below) in an attempt to align prosodic and syntactic junc-
tures.

(2) Someone shot . . .

a. (the maid) % (of the actress who was on the balcony)
b. (the maid of the actress) % ( who was on the balcony)

As most studies on attachment ambiguity in complex NPs
are conducted using offline measures (though see, for in-
stance, Kim & Christianson, 2013 and Fernández & Seke-
rina, 2015), it is unclear whether prosodic boundaries guide
online sentence processing, and if so whether each bound-
ary location is used immediately. We report the results of a
pupillometry study addressing the role of prosodic boundaries
on attachment ambiguity resolution in real time comprehen-
sion. The experiment was designed to explore two distinct
possibilities. First, it is possible that non-local dependencies
are computationally taxing to process, regardless of prosodic
boundary information. In this case, we would predict that
(i) sentences grammatically disambiguated to a high attach-
ment construal would elicit processing costs, which (ii) would
not be mitigated by corroborating prosodic information. As
an alternative, it is possible that non-local dependencies are
avoided for independent prosodic reasons, e.g., if a bound-
ary after NP1 is preferred to keep the prosodic units of equal
weight (Fodor, 1998). Such a view would predict that high
attachment resolutions are only costly when not supported by
prosodic boundary information.

Pupillometry
Pupil dilation is likely to reflect a multitude of components,
some related to demands on cognition and attention, and oth-
ers to the autonomic nervous system. The pupil naturally fluc-
tuates, dilating in response not only to neural inhibition from
the parasympathetic oculoumotor system and the the nora-
drenergic system, but also to the presentation of an external
stimulus (Wilhelm et al., 1999), including emotionally arous-
ing stimuli, challenging math problems, and unconscious or
barely discernable stimuli (Beatty & Kahneman, 1966; Kah-
neman & Beatty, 1966; Hess & Polt, 1960; Laeng et al.,
2012).

Although the tools and techniques for pupillometry are still
developing, existing literature has already provided convinc-
ing evidence that pupil dilation indirectly indexes increased
demands on mental effort and attention associated with dif-
ficult to interpret material along various linguistic dimen-
sions (Schmidtke, 2018 for review). While some early studies
found a relation between increased pupil dilation and syntac-
tic complexity (Just & Carpenter, 1993), more recent stud-
ies have begun to explore a wider range of ways in which
pupil size might reflect other factors in language compre-
hension. Major findings include an association between in-
creased pupil size and structurally complex sentences (Dem-
berg & Sayeed, 2016), prosodic disambiguation in garden
path sentences (Engelhardt et al., 2010), semantic anomalies

(Demberg & Sayeed, 2016), lexical frequency or increased
emotional valence (Kuchinke et al., 2007), violations of ex-
pected meter (Scheepers et al., 2013), and inadequate or mis-
leading pitch accent (Zellin et al., 2011). In keeping with
the current pupillometry literature, we will assume, as a basic
linking hypothesis between cognition and behavior, that in-
creased pupil size indirectly reflects increased cognitive load,
including mental effort directed at managing language com-
prehension processes.

Further, pupillometry offers an appealing supplement to
other online methods. It is easy to administer and com-
paratively inexpensive, while offering an online and passive
measurement. As pupil size is not under conscious control,
pupil dilation measurements are likely to be resilient to task-
specific strategies that subjects may learn or employ during
the experiment. Thus, pupillometry studies offer a promis-
ing avenue for exploring the role of prosodic information in
resolving structural ambiguity.

Pupillometry study
Participants
Forty-eight native college-aged speakers of American English
were recruited from a Psychology Subject Pool at the Univer-
sity of California, Los Angeles, and were compensated with
course credit. No participant reported any history of hearing
loss or language disorder. Experimental sessions typically
lasted no more than 30 minutes.

Materials and method
Twenty quartets were constructed in a 2×2 design. Quartets
crossed Boundary location (post-NP1, post-NP2) and Attach-
ment (High, Low). All sentences involved a complex noun
phrase (the brother of the musicians) containing two noun
phrases (NP1, NP2) of opposite grammatical number, fol-
lowed by a relative clause disambiguated to high (modifying
NP1: the brother) or low (modifying NP2: the musicians)
attachment. The attachment height was grammatically speci-
fied by the plurality of the verb (was, were) within the relative
clause (who was really quiet), which was kept constant within
each quartet. Half of the items were disambiguated by the
singular form of the auxiliary (was), half by the plural form
(were). A sample item is shown in Table 1. In addition, com-
prehension questions were presented after half of the items
to encourage participants to pay attention. Questions did not
ask about relative clause attachment height.

We obtained measures for the lexical level characteristics
of length, frequency and number of syllables using the En-
glish Lexicon Project (Balota et al., 2007) for NP1 and NP2.
Nouns did not differ on length, number of syllables, or fre-
quency, as determined by several measures, including (log)
HAL (Lund & Burgess, 1996) and (log) SUBTLEXUS (Brys-
baert & New, 2009).

Sentences were recorded with a high-quality microphone
in a sound attenuated chamber by a trained phonologist. Au-
dio files were truncated after the relative clause (marked by
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Boundary High attachment Low attachment
NP1 Everybody met the brother % of the musicians who

was really quiet // although the club was really noisy.
Everybody met the brothers % of the musician who
was really quiet // although the club was really noisy.

NP2 Everybody met the brother of the musicians % who
was really quiet // although the club was really noisy.

Everybody met the brothers of the musician % who
was really quiet // although the club was really noisy.

Table 1: Sample quartet item crossing Boundary location (NP1, NP2) and Attachment (High, Low). The underlining identifies
the noun modified by the relative clause (who was really quiet). The prosodic boundary is indicated by the % symbol.

the // symbol in Table 2). 100ms of computer generated
silence was inserted after the relative clause, and the post-
relative clause segment was spliced into the recording, so that
pupillary response was recorded on acoustically identical ma-
terial within items. Items were then acoustically normalized
to make the transition into the spliced segment as seamless as
possible.

The 20 experimental item quartets were presented in coun-
terbalanced and individually randomized order, and were in-
terspersed with 40 items from two separate experiments (one
also manipulating boundary placement, and another manipu-
lating contrastive accent), along with 26 filler items unrelated
to any experiment. Participants were instructed to fixate on a
cross at the center of the screen without blinking for the du-
ration of the sentence. They were encouraged to blink before
and after the sentence presentation, and to rest their eyes as
needed, in order to minimize the possibility of eye blinks due
to fatigue.

Items were presented with Experiment Builder (SR Re-
search) to subjects over sound-isolating headphones in a mod-
erately lit room dedicated to experimentation. Eye position
and pupil area were recorded using an SR Research EyeLink
1000 Plus eye tracker sampling at 500Hz. The tracker was
mounted to the table at 55cm from a 27 inch LCD monitor
with a light gray background. A 5-point calibration proce-
dure was used before recording and as necessary, and drift
correction was conducted between every trial.

Results and discussion
Subjects performed very well on post-sentence comprehen-
sion questions (M = 96%), which did not probe the inter-
pretation of the relative clause. There was a marginal effect
of mismatches between Boundary location and Attachment,
so that comprehension questions following High attachment
sentences were less accurate when paired with an NP2 bound-
ary location (diff = 3%), and questions after Low attachment
sentences were less accurate when paired with an NP1 bound-
ary (diff = 3%), t = 1.96, p = 0.05. No other effects were
observed. The pattern suggests that incompatible boundaries
interfered with comprehension, but that there was no general
effect of boundary or attachment on general comprehension.
However, performance on all conditions was uniformly high,
averaging at 94% or above.

Pre-processing of gaze location and pupil size was con-
ducted in Data Viewer. Fixations outside of the fixation cross
were removed. Trials with eye blinks (less than 5% of the to-

tal data) were also removed to avoid reconstructing pupil size
during noisy trials. Mean pupil size was downsampled into
100 20ms bins starting from the end of the relative clause,
for a total recording time of 2000ms past the relative clause.
The remaining analyses were conducted in R (R Core Team,
2016). Data were fit with a growth curve model (Mirman,
2016) to avoid assuming a linear form or an arbitrary time
window for analysis. Growth curve models have been used
previously to quantify continuous changes in pupillary re-
sponse, and we adopt those authors’ interpretations of the
curve with respect to pupil response (Kuchinsky et al., 2013;
McGarrigle et al., 2017).

We report a third-order (cubic) orthogonal polynomial
model with fixed effects of Boundary, Attachment, and their
interaction on polynomial terms, and by-subject and by-item
random slopes (Baayen et al., 2008), as shown in Table 2.
Experimental predictor variables received deviation (sum)
coding with NP1 and Low Attachment conditions specified
as reference levels for their respective factors. Orthogonal
polynomials were used to avoid extreme multicollinearity be-
tween adjacent samples in the time series.

Estimate Std. Error t-value
(Intercept) 0.106 0.315 0.337*
Linear poly -0.857 0.237 -3.616*
Quadratic poly -1.799 0.246 -7.311*
Cubic poly 0.966 0.249 3.887*
NP2 0.241 0.023 10.485*
High 0.201 0.023 8.761*
Linear:NP2 1.152 0.237 4.858*
Quadratic:NP2 -0.2 0.246 -0.814
Cubic:NP2 0.191 0.249 0.769
Linear:High 0.774 0.237 3.263*
Quadratic:High -0.363 0.246 -1.473
Cubic:High -0.312 0.249 -1.255
NP2:High 0.001 0.023 0.065
Linear:NP2:High -0.578 0.237 -2.438*
Quad:NP2:High 0.342 0.246 1.390
Cubic:NP2:High 0.882 0.249 3.547*

Table 2: Growth curve analysis in a linear mixed effects re-
gression model. The * indicates a significant effect at the
α = .05 threshold.
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Figure 1: Percent change of pupil dilation over time with standard errors (left panel) and mean percent change of pupil size
collapsing across time bins (right panel).

In growth curve analyses, polynomial terms capture dis-
tinct components of the functional form of a curve as it de-
velops over time, and will be interpreted with respect to
pupil dilation as follows (Kuchinsky et al., 2013; McGar-
rigle et al., 2017). The INTERCEPT corresponds to the overall
mean pupillary response, so that positive coefficients indicate
greater amplitudes. The LINEAR polynomial term coefficient
corresponds to the slope of pupillary response, so that a pos-
itive increase in the coefficient indicates more steeply rising
pupil dilation. The QUADRATIC polynomial term describes
the shape of the primary inflection point, revealing the degree
to which the curve is non-linear. Negative quadratic coeffi-
cients indicate an inverted U-shaped curve, characteristic of
pupil peaks. The CUBIC term captures the properties of any
secondary inflection point in the curve, so that positive coeffi-
cients indicate that pupil dilation peaks are more compressed
or transient, rising and falling more sharply.

Positive coefficients of High attachment and NP2 boundary
indicate increased average pupil dilation (the area under the
curve) for High attachment over Low attachment, and NP2
boundary location over NP1 boundary location, respectively.
Interactions between the planned predictor variables and the
polynomial terms indicate how the experimental conditions
differentially affect the shape of the pupillary response over
time.

The mean change in pupil size for each condition is shown
in Figure 1. In the left panel, the shape of the best-fitting
non-linear regression line is plotted against change in pupil
size within a 2000ms period immediately after the relative
clause. The values on the vertical axis represent the percent

change from the baseline average, defined here as the entire
100ms segment of silence inserted between the end of the
relative clause and the remainder of the sentence (although
the club was really noisy). The right panel reports the overall
mean pupil change (with standard errors in grey) in pupil size
during the same period for visual comparison.

In the growth curve model, effects of all three orthogo-
nal polynomial terms were observed. Modulo the manip-
ulation, pupil growth was less steep (a negative Linear co-
efficient), showed greater inverted U-shaped curve (a nega-
tive Quadratic coefficient), and a sharper secondary point of
inflection (a positive Cubic coefficient), corresponding to a
change or bend in the direction of the response.

More importantly, the two experimental factors in the ma-
nipulation showed that a prosodic boundary after NP2, and
relative clauses that were grammatically disambiguated to
a High attachment relation elicited greater pupil excursions
from the grand mean compared to their respective NP1 and
Low attachment reference levels. Both NP2 boundary and
High attachment conditions also elicited more steeply rising
slopes, as indicated by their interaction with the linear orthog-
onal polynomial.

In addition, the interaction between NP2 boundary and
High attachment conditions further interacted with linear and
cubic polynomials, indicating that the NP2-High condition
elicited a smaller slope and increased transience of the pupil
peak. The overall interaction is perhaps best visualized in the
right panel of Figure 1, where the effect of NP2 is greater for
High attachment conditions.

Perhaps more intuitively, the plot in the left panel of Fig-
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ure 1 suggests the following conclusions. First, the conditions
where the syntax and the prosody aligned largely conform to
expectations. The theoretical baseline condition (NP1-Low)
elicited the least extreme growth in pupil size, whereas the
NP2-High elicited the most extreme changes. Low attach-
ment is thought to be compatible with a boundary after NP1.
Low attachment instantiates the empirically preferred relation
between a RC and a complex nominal head in English, and,
by hypothesis, is the least taxing relation to compute. The
fact that the response was relatively muted in this condition
is therefore entirely compatible with current linguistic the-
ory. Similarly for the NP2-High condition: a boundary af-
ter NP2 aligns with the proposed syntax of High attachment
structures. Assuming that non-local relations, including High
attachment, are costly to compute, the fact that the NP2-High
condition elicited the most extreme response is also consis-
tent with current theory. However, our findings do not support
the possibility that the bias against High attachment could be
solely attributed to lack of supporting prosodic information;
even when structures were disambiguated by prosodic bound-
ary location, High attachment structures elicited increased
cognitive load.

Second, the conditions where the prosodic grouping did
not align with the syntactic constituency reveal a more com-
plicated pattern. We predicted that the NP1-High attachment
condition would be more anomalous than the NP2-Low at-
tachment condition. Our reasoning was that the prosody of
NP1-High would encourage grouping the relative clause and
NP2 together, e.g. the musicians who was really quiet, cre-
ating a local number mismatch violation between NP2 (the
musicians) and the verbal agreement marker (was). In con-
trast, the NP2-Low condition (the musician % who was re-
ally quiet) is locally grammatically coherent despite an infe-
licitous prosodic boundary. However, the two mismatching
conditions elicited similar response patterns.

We entertained three main possible explanations. The first
was that, in cases of mismatching cues, the processor makes
weaker online processing commitments, and may defer the at-
tachment decision until later, if it commits at all, as in models
employing syntactic underspecification for attachment am-
biguities (e.g., Frazier & Clifton, 1996). This interpreta-
tion is broadly compatible with results from Johnson et al.’s
(2014) digit span task, which found decreased pupil size in
response to digit sequences exceeding normal capacity. De-
creased pupillary response may also indicate that the subject
has abandoned an excessively difficult task, highlighting the
role of attention in relating pupil size growth to cognitive ef-
fort (see also Beatty, 1982 and Winn et al., 2018)

A second possibility was that systematic differences be-
tween items may have prompted different processing strate-
gies. For example, half of the items were disambiguated with
the singular auxiliary marker (was), half were disambiguated
with the plural marker (were). Our intuition was that relative
clause attachment relations that were disambiguated with a
singular form (Everybody met the brother % of the musicians

who was really quiet) would be less anomalous than cases
with plural disagreement (I got a call from the friends % of the
lawyer who were in politics). We further addressed this pos-
sibility by including which number (singular vs. plural) was
used to disambiguate the attachment location. Impressionis-
tically, NP1-High conditions elicited greater pupil excursions
in the Plural condition. However, grammatical number failed
to differentiate effects within the statistical model.

A third explanation was that the processor resolves to High
or Low attachment on the basis of another unidentified fac-
tor, such as by-item differences in boundary strength, promi-
nence, or plausibility. To address these possibilities, we con-
ducted a post-hoc boundary identification and rating norm-
ing study. The post RC material was removed, and the items
were placed into four counterbalanced lists along with 46
filler items from the pupillometry experiment. Twenty addi-
tional participants from the same population as before were
instructed to listen to each sentence over headphones in a
noise-attenuated sound booth as many times as necessary, in
order to manually mark prosodic boundaries on written ver-
sions of the sentence, and to rate how well the produced sen-
tence matched its likely intended meaning (1 = completely
unnatural, 7 = completely natural).

While participants were at ceiling (99.8%) at identifying
the prosodic boundaries at the intended location after NP1
and NP2, additional boundaries after NP2 were perceived in
post-NP1 boundary conditions 22% of the time. Subjects
may have reverted to their default prosodic preference for
an additional, potentially weaker, boundary before the RC
(as discussed in Jun, 2003). Consistent with that interpreta-
tion, there was a main effect of prosody in ratings (p<.01), in
which NP2 conditions (M=4.80, SE=0.12) were rated a more
natural match with the intended meaning than NP1 conditions
(M=3.66, SE=0.11). The penalty for non-local relations was
evident in the ratings, as well. Sentences with Low attach-
ment RCs (M=4.41, SE=0.12) were rated as more naturally
matching with the prosody than sentences with High attach-
ment RCs (M=4.05, SE=0.12), p<.01. The two factors did
not significantly interact, suggesting that subjects were not
sensitive to mismatches between syntactic and prosodic cues
in this relatively conscious offline task.

General discussion
We used pupillometry to explore how prosodic and structural
information interact during online language comprehension.
Though relatively under-utilized in language processing re-
search, pupillometry offers a promising methodological av-
enue for exploring how prosodic and structural information
are integrated in real time processing. This method is espe-
cially useful for investigating how listeners use acoustic infor-
mation to construct an interpretation, and offers a naturalistic
and cost-effective complement to better known methods, such
as neuroimaging or eye tracking in the visual world paradigm.

The results of the study replicate the well-studied bias for
Low attachment of relative clauses in complex noun phrases
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in English, a preference known to be modulated by prosodic
boundary placement. However, our results cast doubt on an
account which would attribute the preference to a lack of
prosodic information alone. Even in the presence of overt
prosodic boundaries, sentences with non-local dependencies
were found to elicit online processing penalties. In addi-
tion, when the prosodic and grammatical information did
not agree, pupillary response was reduced, indicating that
prosody and structure are incorporated into an unfolding rep-
resentation in concert. While more work is needed to inves-
tigate how language users integrate multiple sources of in-
formation together, the current study is compatible with the
claim that comprehenders may avoid or delay making certain
processing decisions in the face of inconsistent information.

Acknowledgments
Our thanks to Bethany Sturman for recording and pre-
processing the materials, and to Joonhwa Kim, Nathan
Mallipeddi, Alison Suh, Chenchen Wang, and Rebecca Wu
for administering the study. Thanks also to Sun-Ah Jun for
discussion of prosodic boundaries and to the UCLA Psy-
cholinguistics Seminar for insightful comments.

References
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008).

Mixed-effects modeling with crossed random effects for
subjects and items. Journal of Memory and Language, 59,
390–412.

Beatty, J. (1982). Task-evoked pupillary responses, process-
ing load, and the structure of processing resources. Psy-
chological Bulletin, 91, 276-292.

Beatty, J., & Kahneman, D. (1966). Pupillary changes in two
memory tasks. Psychonomic Science, 5, 371–372.

Brysbaert, M., & New, B. (2009). Moving beyond Kučera
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Sample stimuli from experiment
Six additional experimental items (from a total of 20 sen-
tences). Low attachment disambiguation is presented prior
to High attachment disambiguation. Disambiguation was
evenly balanced across singular (was) and plural (were) aux-
iliary markers.

1. I got a call from the friends (%) of the lawyer (%) who was
/ were volunteering for the campaign // but my phone died
halfway through the call.

2. We were all listening to the neighbor (%) of the pilots (%)
who were / was raising exotic pets // even though we were
in a hurry.

3. I spoke to the apprentices (%) to the librarian (%) who was
/ were wearing blue jeans // but I do not remember what we
discussed.

4. Somebody saw the manager (%) of the architects (%) who
were / was planning to buy a Mercedes // although it was
very dark outside.

5. Someone kissed the sisters (%) of the medic (%) who was
/ were expecting to work late // yet nobody saw it happen.

6. Everybody admired the parent (%) of the artists (%) who
were / was dancing the waltz // even though there was no
music playing.
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Abstract

This study investigated how participant’s specificity in shar-
ing of information in collaborative problem solving was criti-
cal to them reaching a successful shared perspective. We ana-
lyzed participants’ communication strategies in a collaborative
task designed to make finding common ground challenging.
We set out to better understand the difference between suc-
cessful and unsuccessful collaborations by conducting a cog-
nitive task analysis. From participants’ utterances, we inferred
cognitive processes associated with repeating communication
moves and coded those processes as if-then production rules.
We thereby specified the communication strategies used during
interactions and developed a production-rule model to explain
whether and how shared perspective developed or not. Our
cognitive task analysis indicated that although all collaborating
pairs described the objects they were seeing with a variety of
features, the successful pairs were more specific in using com-
binations of features. Quantitatively, we found significant cor-
relations between frequency of combined feature statements
and success in sharing perspectives.
Keywords: Collaborative Problem Solving; Scientific Rea-
soning; Creativity; Coordination; Cognitive Task Analysis;
Production Rules

Introduction
As discussed by cognitive scientists Herbert Simon and Al-
lan Newell (Dasgupta, 2003), collaborative problem solving
based on different perspectives helps generate new knowl-
edge and scientific discoveries. Researchers in cognitive sci-
ence have investigated the nature of collaborative problem
solving (CPS), aiming to understand what kind of cognitive
process underlie interactions (Okada & Simon, 1997; Sa-
lomon, 2001). Throughout these studies, it has been noted
that CPS enables generation of meta-cognition, such as expla-
nation activities (Chi, Leeuw, Chiu, & Lavancher, 1994), ex-
ternalizing one’s thoughts (Shirouzu, Miyake, & Masukawa,
2002), and receiving reflective responses from recipients of
explanations (Miyake, 1986). Studies show that collaborating
with partners with different types of knowledge and perspec-
tives provides an opportunity to produce effective interactions
(Greeno & de Sande, 2007). However, when conducting CPS
research with individuals who hold different perspectives, it is
important to consider constraints, such as interpersonal con-
flicts, which may occur due to the discrepancies among per-
spectives (Hayashi, 2018). Previous studies of dyads show
that individuals work by role-sharing each other’s different
perspective (Hayashi, Miwa, & Morita, 2006). However, it is
not fully understood what kind of communication processes

underlie such activities, particularly regarding how dyads es-
tablish common ground by which to share their perspectives.
To investigate this issue, this study reanalyzed data from
Hayashi et al. (2006), by conducting cognitive-task analy-
sis (Koedinger & Terao, 2002; Rittle-Johnson & Koedinger,
2001). We first review the CPS literatures, discuss the con-
straints on communication, and explain how common ground
is achieved in our research paradigm (CPS based on different
perspectives). We then state our specific goals and hypothe-
ses.

CPS by taking different perspectives
Previous studies of scientific discovery in CPS showed sci-
entists reason by taking different perspectives during inter-
actions; this is termed distributed reasoning (Dunbar, 1995).
Discussing different types of knowledge among individu-
als provides opportunities to generate conceptual changes
(Roschelle, 1992), and is important for facilitating concep-
tual understanding (Greeno & de Sande, 2007). With this
theoretical background, studies have shown that arguments
and explanations within groups facilitate conceptual changes
(Asterhan & Schwarz, 2009). Arguments made by group
members by taking different perspectives are considered
types of constructive and interactive joint collaborative activ-
ity (Chi, 2009); this is accomplished by coordinating individ-
uals who hold different knowledge and perspectives. There
exist group-based learning practices called jigsaw learning
(Aronson & Patnoe, 1997), which focus on generating ar-
guments by bringing together group members with differ-
ent knowledge and asking them to discuss and integrate their
knowledge. Throughout such studies, results show that cog-
nitive bias and disagreements represent constraints on inter-
action; these factors should be considered when investigating
CPS performance. Taking in these issues into consideration,
Hayashi et al. (2006) conducted a laboratory based experi-
ment using a simple reasoning task in which participants ex-
perienced difficulties on establishing common ground about
each other’s perspective. The results showed that when par-
ticipants made substantive contributions to others by provid-
ing information by role sharing, they were able to generate
broader perspectives by which to solve the problem. More-
over, successfully establishing coordination, such as correctly
understanding others’ perspectives, led to success in collab-
orations. Regarding the coordination process, recent stud-
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ies of CPS have noted that collaborative problem-solving
is composed of the following phases: (1) task work (prob-
lem solving), which builds internal knowledge, and (2) team
work (coordination), during which internalized knowledge is
exchanged and shared to build collective knowledge (Fiore,
Rosen, Smith-Jentsch, Salas, & Letsky, 2010). However, it
is not fully understood what kinds of knowledge and interac-
tion strategies are used for coordination in team work, espe-
cially for CPS based on different perspectives, as considered
in Hayashi et al. (2006).

Grounding in CPS based on different perspectives
Communication studies in cognitive science have shown
how speakers establish common ground during conversation
(Richardson & Dale, 2005; Galantucci, 2005). Grounding is
the interactive process by which communicators exchange ev-
idence in order to reach mutual understanding (Clark, 1996;
Clark & Brennan, 1991). Studies of group decision-making
have indicated that information shared among group mem-
bers is an important factor in successful decision-making
(Tindale, Kameda, & Hinsz, 2003). Thalemann and Strube
(2004) showed that sharing information in initial and goal
stages leads to better performance during collaborative prob-
lem solving. In contrast, cognitive science studies of col-
laboration have shown that common ground is unnecessary
in cooperative tasks, in some cases (Barr, 2004). Computer
simulations using multi-agents showed that a population of
egocentric agents can establish and maintain systematic con-
ventions without sharing common knowledge. This observa-
tion is partially supported by empirical experimental results
Hayashi et al. (2006), which indicated that some participants
were able to complete a task (discovering a rule) by sim-
ply using the shared information without developing common
ground. However, when generating correct mental models of
others’ perspective during CPS, developing common ground
is necessary.

Then, what kinds of interaction processes can develop suc-
cessful grounding in CPS? Communication studies in cog-
nitive science show that individuals coordinate with each
other by generating explicit sign signals, which are implicitly
aware of each other (Galantucci, 2005). Garrod and Ander-
son (1987) investigated how dyads developed different lan-
guages associated with different mental models in a maze
configuration task. Individuals with different perspectives es-
tablished common ground by generating spatial descriptions
to successfully coordinate with each other. Additionally, in
the initial phase, speakers used detailed, concrete descriptions
to specify situations. Individuals used abstract signs as they
proceeded during the task. Analysis of communication in the
study of Hayashi et al. (2006) also showed that individuals
use spatial characteristics (called regions) regarding the pre-
sented stimuli. However, the aim of the dialog analysis in
this previous study was to capture the degree of perspective
bias; spatial expressions were analyzed based on which per-
spectives were mentioned. Therefore, further analysis of the
types of detailed knowledge that were used to attain shared

perspective and further establish common ground would be
valuable.

Goals and Hypotheses
The present study focused on how individuals share perspec-
tives while establishing common ground in CPS in which
members interact based on different perspectives. Based on
Hayashi et al. (2006), our first goal was to conduct a cog-
nitive task analysis to determine what kind of communi-
cation strategies participants used to reach shared perspec-
tives. The cognitive task analysis was based on the method
of Rittle-Johnson and Koedinger (2001) and Koedinger and
Terao (2002). According to Rittle-Johnson and Koedinger
(2001), developing cognitive models during cognitive-task
analysis enables one to specify unambiguous problem repre-
sentations and thus detail comparisons of the problem-solving
strategies. This is useful here in terms of specifying the types
of featured knowledge that were used during conversations
on sharing perspectives. We hypothesized that coding indi-
viduals’ utterances based on production rules would provide
knowledge regarding what types of featured knowledge are
used to share perspectives. Then, based on this cognitive task
analysis, our second goal was to investigate which type of
knowledge helps dyads to successfully reach shared perspec-
tives. We hypothesized that dyads who used more specific
features, and combinations of knowledge of those features,
would be more likely to reach a shared perspective.

Method
Participants
The present study reanalyzed the dataset of Hayashi et al.
(2006) by analyzing dyads working with different perspec-
tives (distributed view condition). The data of 22 Japanese
university students (5 female, 17 male; Mage: 20.73 years,
SD: 2.27) who participated in dyads were reanalyzed.

Task

Controlling the participants’ perspective
We reanalyzed data obtained from a simple rule-discovery
task called the figure-ground reversal task, which was devel-
oped by (Hayashi et al., 2006) (for details, also see Hayashi
(2018)). This task is similar to the story of ”blind men and the
elephant”, where all individuals were touching an elephant
but because they touched different parts they came to differ-
ent conclusions about what they are touching. Pairs of partici-
pants collaborated through computer terminals that were sep-
arated by a partition so that neither could see the partner’s dis-
play (see Fig 1). First, a square frame was presented for one
second, and then the stimulus was presented in the frame. The
presentation of a frame and a stimulus was considered as one
trial. The participants were instructed to find the sequence
rule of the number of objects that are presented through the
trials. The participants were told to discuss the target rule and
press the termination button presented on their screen when
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Figure 1: Experimental situation and task.

they reached the solution. The target rule was set to as the se-
quence of the sum of the black and white objects, i.e. the sum
of the numbers of white and black objects rotating between
6, 8, 10, and 12. To manipulate a situation where the dyads
were interacting based on different perspectives, principles
from Gestalt psychology (Koffka, 1935), were used where
the number of objects were fixed to change from figure to
ground based on the background color. By putting the ob-
jects in different background, participants are led to have one
of the distributed perspectives: i.e., either a perspective focus-
ing on black objects or one focusing on white. In an example
stimulus in Fig 1, there is a total of eight objects comprising
three black objects and five white objects. This stimulus is
displayed on either a black or white background and the par-
ticipants have distributed perspective focusing on either one
color as figure. The instructions stressed that the stimuli pre-
sented to each participant within the square frame were iden-
tical to each other, but the information about the background
color was not mentioned.

Controlling disagreement about each other’s
perspectives

To control how the dyads incorporated different perspectives,
the number of objects was adjusted to generate discrepancies
when participants reported the numbers. In the initial stage
(Introductory Phase), participants observed different colored
objects (figure color) but reported the same number of ob-
jects (see Fig 1). Previous results using this task showed that

participants reported the same number of objects in the Intro-
ductory Phase and therefore believed that they were looking
at objects of the same color. As shown in (3) in Fig 1, par-
ticipants simply reported varying numbers of objects (such as
3, 4, 5, or 6) in the Introductory Phase and thus generated
misconceptions regarding the target rule. On the seventeenth
trial (Conflict Phase), the number of the objects rotated by 3,
4, 5, or 6 and was scrambled. The number of objects was ar-
ranged so that only the sum of the number of objects would
represent a valid response. After the Conflict Phase, partici-
pants needed to modify their misconceived initial hypothesis
and instead count both black and white objects to discover the
rule. It should be noted that, the participants have to discover
the rule across observing the trials within the single task con-
ducted in this experiment.

Data collection

Task Analysis
This task could proceed by two different types of interaction:
(1) each participant reported only the number of figure ob-
jects (non-shared perspective method), or (2) each partici-
pant counted figure and ground objects (shared perspective
method). To proceed with method (2), participants need to
set a sub-goal, which was to develop mutual understanding
of why they were reporting different numbers after the 17th
trial. To develop a concrete shared perspective, they needed
to discuss details of the display and understand how to count
both figure- and ground-colored objects. Taking these issues
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into consideration, we provide an overview flowchart for rep-
resentative dyads working on the task by establishing com-
mon ground in Fig 2.

Figure 2: Flow of problem solving based on task analysis.

To establish common ground, featural knowledge, such as
(a) color, (b) shape, (c) location, and (d) background, was
essential. We conducted cognitive task analysis based on the
type of these features, as explained in the next section.

Production-rule model for shared perspective
Production rules in this study consisted of declarative and
procedural knowledge, as in ACT-R (Anderson, Corbett,
Koedinger, & Pelletier, 1995). The production rules were
stated in IF-THEN format, which consisted of declara-
tive chunks. In our task, we focused on the four types
of information shown, namely (1) location of the object:
?E[“location”’], (2) shape of the object: ?F[“shape”’], (3)
color of the object: ?G[“color”’], and (4) background of the
object: ?H[“background”’]. Using these variables, a declara-
tive knowledge “chunk” can be defined. For example, a chunk
associated with mentioning a particular object can be defined
in the following way.

#Location-shape
-color(3-way)

isa object
trial 1
number 1
location ?E[upper left]
shape ?F[tetra-zoid]
color ?G[white]
background null

In this analysis, we only focused on combinations with
color(?G[]) and other knowledge for the 2-way and 3-
way, because color information was considered key for
perspective-taking in this task. Next, we examined associa-
tions between the number of dyads who used specific featural
knowledge (using more feature combinations) and success in
sharing perspectives. Utilizing shared perspectives was de-
fined based on the following evidence: (1) explicitly men-
tioning that they can see the partner’s perspective (opposite
color to the background) during their grounding process, or
(2) counting both black and white colored shapes after their
grounding process. For example, evidence for (1) could be ”I
understand what you mean and I can see the tetra-zoid in the
black”, whereas (2) could be ”Now I know your perspective I
will count both and I see four in black and six in white.”

Results: Association between # of featural
knowledge types and shared perspective
For all 11 dyads, we conducted Fisher’s exact test to compare
2 (Featural knowledge: Mentioned vs. Not mentioned) × 2
(Shared perspective: Successful vs. Unsuccessful).

one-way strategy The results revealed no significant dif-
ferences between establishing shared perspective and feature
type, i.e., location (p = 0.49, FET), shape (p = 0.15, FET),
color (p = 0.27, FET), or background (p = 0.06, FET). This
indicates that sharing only one feature did not facilitate suc-
cess in sharing perspectives.

two-way strategy Results revealed significant differences
in establishing shared perspective by combinations of feature
types, namely according to color & location (p = 0.02, FET)
and the combination of color & shape (p = 0.02, FET). How-
ever, there was no relationship between establishing shared
perspective and the combination of color & background (p =
0.18, FET). Comparing these results with the one-way strat-
egy, we can see that the more features were mentioned during
the conversations, the more likely it was that participants suc-
cessfully shared perspectives.

three-way strategy There were also significant differences
between establishing shared perspective and three-way com-
bination of features, namely color & location & shape(p =
0.02, FET). This also supports the hypothesis that the more
features are used, the more participants are able to share per-
spectives. Table 2, 3, 4 shows a summary of the results. F/S
stands for feature mentioned/shared perspective, F/N stands
for feature mentioned/not shared perspective, N/S stands for
not feature mentioned/shared perspective, N/N strands for not
feature mentioned/not shared perspective.

Discussion and Conclusions
Our first goal was to conduct cognitive task analysis to under-
stand the types of featural knowledge that were used during
interactions during the grounding process. Based on Rittle-
Johnson and Koedinger (2001), we developed production rule
models for knowledge regarding features of the images pre-
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Table 1: Example dialog coded by production rules and types of chunks.

Speaker Example Dialog Productions rules Chunk Type

B
”I see a tetra-zoid
on the upper left corner”

If goal is to grounding
and there is an object ?E[upper left]
with feature ?F[tetra-zoid]
Then express ”the object is ?F[tetra-zoid]”

#Location-shape
(2-way)

A
”(tetra-zoid)On the upper left?
I don’t see such thing”

If goal is to grounding
and If partner says object has feature ?F[tetra-zoid]
and object does not have feature ?F[tetra-zoid]
in ?E[upper left]
Then express ”NO”and search new feature

#Location-shape
(2-way)

B
”What about a shape “T”
on the upper right?”

If goal is to grounding
and there is an object ?L[upper right]
with feature ?F[T]
Then express ”the object is ?F[T] at ?E[upper right]”

#Location-shape
(2-way)

A
”You mean (upper right
T) in black? Not in white?”

If goal is to grounding
and partner mentions a new feature perspective ?F[T]
and the object ?E[upper right] being is
discussed is ?G [Black]
Then confirm ?F[T] is ?G[Black] not ?G[White]

#Location-shape
-color(3-way)

A
”Oh! I see it(upper right
T) in black!”

If goal is to grounding
and there is an object ?L[upper right]
that matches the feature ?F[T] from partner
in color ?G[Black]
Then say ?G[Black] and ”yes”

#Location-shape
-color(3-way)

Table 2: Summary of association between knowledge types
and shared perspective: 1-way feature.

1-way feature F/S F/N N/S N/N
color 8 2 0 1
shape 7 1 1 2
location 6 1 2 2
background 6 0 2 3

Table 3: Summary of association between knowledge types
and shared perspective: 2-way feature. * indicates statistical
significance.

2-way feature F/S F/N N/S N/N
color & shape* 7 0 1 3
color & location* 7 0 1 3
color & background 5 0 3 3

sented in the experiment. The conversations within the dyads
were transcribed into production rules, defined by declarative
features of knowledge, which consisted of shape, location,
color, and background. Through this cognitive task analy-
sis, we discovered that dyads used combinations of featural
knowledge when developing mutual understanding of each

Table 4: Summary of association between knowledge types
and shared perspective: 3-way feature. * indicates statistical
significance.

3-way feature F/S F/N N/S N/N
color & shape & location* 7 0 1 3

other’s different perspectives. Simply put, collaborators who
were more specific about what they were talking about were
more likely to reach shared perspective. More precisely, our
cognitive task analysis indicated that although all collaborat-
ing pairs described the objects they were seeing with a variety
of features (e.g., color, shape, location), the successful pairs
were more specific in using combinations of features (e.g.,
”the white T in the upper right” rather than ”the white one”
or the ”the T”). Returning to the blind men and the elephant
example introduced earlier, our results suggest that might,
eventually, individuals reach agreement if they are more spe-
cific – describing as much as they can, the shape, texture,
smell, relative location of their observations, etc. Past stud-
ies of communication showed that speakers use combinations
of detailed spatial information to establish common ground
(Garrod & Anderson, 1987); the current results are consis-
tent with those studies. Moreover, once the participants es-
tablished common ground, they tended to use simple phrases
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when counting shared perspectives such as ”two-four”’ and
”four-four”. These can be considered as types of conceptual
packs (Brennan & Clark, 1996), which are used when com-
mon ground is established during conversations.

In our study, we used quantitative analysis to investigate
whether use of specific combinations of knowledge yielded
higher performance in sharing perspectives. As hypothesized,
dyads who were more specific in their grounding, i.e., men-
tioned more combinations of features, were more likely to
reach a shared perspective. More specifically, participants
who mentioned color and shape (2-way strategy), or color,
shape, and location (3-way strategy) performed relatively
well in sharing perspectives. Thus, specifying spatial infor-
mation facilitates success in shared perspectives. There may
be general critiques such as, “can common ground achieved
by simply describing what is relevant?” To answer this ques-
tion, we must first consider the point how did the partici-
pants determine what’s relevant. In trying to achieve common
ground with another, it seems possible, even likely, that one
cannot fully anticipate the ambiguities that the other person
may be experiencing or anticipate the alternative view of the
world that they are seeing and perceiving. As mentioned pre-
viously, from the example of the story of the “blind men and
the elephant”, what features to focus on may be unclear and
therefore, one cannot figure out what’s relevant. One can sim-
ply try to be as specific as possible about in describing what
they are seeing and perceiving.

Another important point that should be stressed from this
study is the type of expressions that the speakers were us-
ing after they recognized about their conflicts. In natural
conversations it is more efficient in most settings to not be
specific(Grice, 1975). However, in a situation such as in this
task, where participants have become aware of confusions
and discrepancies, one must work hard to avoid our natu-
ral tendencies to be more efficient (less redundant) in our
speech. Speakers need to strive for more redundancy and
explicitness. Apparently, this switch is not easy to make as
many of our participants do not seem to make the switch and
continue to speak in natural, efficient but less specific and re-
dundant ways. As future work, we will further investigate
these points to uncover the conversational dynamics and dis-
cover the mechanisms of shared understanding in collabora-
tive tasks.

This paper provides new implications regarding the meth-
ods one may use to capture the collaborative process in a sys-
tematic way. Although, there are limitations to the current
study, primary among which is the small number of dyads
used. As mentioned above, one of the next steps is to con-
duct a more focused experiment on how participants estab-
lish common ground. Specific analysis using eye movements
and conversational data will likely be useful to elucidate the
nature of coordination, too. Another possible future direc-
tions of this study is to further conduct simulations using the
production-rules to further confirm our results on how the in-
dividual establish common ground.
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Abstract

Decision models are formal algorithms that are used to represent decision processes and predict choice across a wide range
of disciplines. These models are often highly complex, which makes it difficult to understand the relationships between
different models, the unique features of individual models and, in turn, the fundamental properties of choice behavior
captured by these models. We address this issue in a large-scale computational analysis that uses parameter bootstrapping
cross-fitting techniques to derive pairwise measures of decision model distances. Our analysis includes over 80 prominent
models of risky and intertemporal choice, and results in an ontology of decision models, with data-driven model clusters
and hierarchies that synthesize over seven decades of quantitative research on human choice behavior.
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Abstract 

Visual thinking plays a central role in human cognition, yet we 
know little about the algorithmic operations that make it 
possible. Starting with outputs of a JIM-like model of shape 
perception, we present a model that generates object file-like 
representations that can be stored in memory for future 
recognition, and can be used by a LISA-like inference engine 
to reason about those objects. The model encodes structural 
representations of objects on the fly, stores them in long term 
memory, and simultaneously compares them to previously 
stored representations in order to identify candidate source 
analogs for inference. Preliminary simulation results suggest 
that the representations afford the flexibility necessary for 
visual thinking. The model provides a starting point for 
simulating not only object recognition, but also reasoning 
about the form and function of objects.  

Keywords: visual reasoning; shape perception; object files; 
structural description; type-token problem 

Introduction 
Visual thinking plays a central role in human cognition. From 
deciding whether a quantity of soup will fit into a storage 
container, to interpreting graphical representations of data, or 
reading a circuit schematic, people routinely engage visual 
reasoning in the service of understanding the world and 
solving problems. Visual thinking figures prominently in our 
most creative and uniquely human acts, including 
mathematics, engineering, art and design. But in spite of its 
centrality, comparatively little is known about the 
algorithmic basis for visual and visually-assisted reasoning 
(but see Hummel & Holyoak, 2001, Johnson-Laird, 1983, 
Lovett and Forbus, 2017, for progress in this direction). 
Instead, most computational work in high-level vision has 
been and continues to be addressed to the problem of object 
recognition, the tacit assumption often being that object 
recognition is the final stage of ventral visual processing, as 
though once an object has been visually recognized, there is 
nothing left to be done. Most models in this tradition, 
including modern deep nets for object recognition, represent 
objects as holistic templates of various kinds, which is a 
representational format that does not lend itself to any kind 
of explicit visual reasoning (Hummel, 2000; see Hummel, 
2013, for a review). 

The problem of visual thinking places strong constraints on 
the kinds of representations—for example of object shape or 
scene layout—the visual system must deliver to the rest of 

the cognitive architecture. It places equally important 
constraints on the kind of cognitive architecture that operates 
on those representations (Hummel, 2000; Lovett & Forbus, 
2017). In particular, that architecture must be prepared to 
reason and generalize extremely flexibly—specifically, with 
the flexibility of an explicitly relational (i.e., symbolic) 
system (Hummel & Holyoak, 1997, 2001, 2003a; Lovett & 
Forbus, 2017). And for that purpose, the visual system must 
be equipped to represent the visual world in terms of 
arrangements of objects and object parts in terms of their 
spatial relations (as opposed to, e.g., their literal locations in 
the retinal image; Hummel, 2000).  

 

 
 
Figure 1: An example of visual reasoning in a novel context 
(Green & Hummel, 2004). Even if one has never seen this 
image before, it is obvious that moving the hammer is ill-

advised. 
 

Consider, for example, the arrangement depicted in Figure 
1 (from Green & Hummel, 2004), and imagine oneself in 
need of the hammer. Upon a glance at the figure, it is clear 
that one should not simply pick up the hammer, as doing do 
would cause the wine glasses to fall and break. We can easily 
understand this property of Figure 1 in spite of the fact that, 
for most people, the arrangement in the figure is completely 
unfamiliar. To put the power of this inference into 
perspective, note that an associative response to Figure 1 
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(e.g., of the kind that would be learned by a deep net) might 
specify that there was something fragile in the scene, and it 
might even specify that a hammer as an object capable of 
breaking things, but would it would be incapable of even 
representing (much less inferring) a complex relational 
thought such as “moving the hammer is ill-advised because it 
would result in the wine glasses falling.” Although the natural 
associative relation between hammers and breaking is to 
think of hammers as objects that break things, in the case of 
Figure 1, the hammer is preventing the glasses from being 
broken.  

Making the appropriate inference about the arrangement in 
Figure 1 requires us to perceive the spatial relations between 
the hammer, the boxes and the wine glasses, and to infer from 
those relations what kinds of actions will and will not result 
in the glasses falling (Green & Hummel, 2004). Crucially, 
this inference depends much more on the relations between 
the objects than on the features or identities of the objects 
themselves: If we were to replace the wine glasses with a 
baby, the same relations would be in place, and the same 
inference would follow; the same is true if we replace the 
hammer with any other object of an appropriate size to 
support the box.  

Similarly, even recognizing and reasoning about a novel 
instance of a known object class (for example, a new kind of 
coffeemaker), requires this kind of representational 
flexibility: the carafe of a coffeemaker may not always be 
perfectly cylindrical, especially if its designer was feeling 
creative, but it will always reside below the filter basket. The 
coffeemaker may even contain extra parts (e.g. thrown in for 
flourish) or have parts removed for a minimalist aesthetic, but 
barring extreme artistic license, it will still be recognizable as 
a coffeemaker.  

In other words, visual inference, and even object 
recognition, depend on our ability to represent relations 
independently of the object/parts serving as arguments of the 
relations, and to simultaneously bind the objects/parts to their 
relational roles (Hummel & Biederman, 1992; Hummel & 
Holyoak, 1997, 2003a). 

In summary, what is needed is a visual system capable of 
delivering relational (i.e., symbolic) representations of  
objects or scenes in terms of their constituent parts and the 
relations among them, and a cognitive architecture that is 
capable of using those representations in order to make 
flexible relational inferences. 

Perceiving Relations with JIM and Reasoning 
About Them with LISA 
Models of high-level vision that generate explicitly relational 
representations are comparatively rare. The examples with 
which we are familiar are Winston (1975), Lovett and Forbus 
(2017), and Hummel and Biederman’s (1992; Hummel, 
2001; Hummel & Stankiewicz, 1996, 1998) JIM. We will 
focus on JIM, a neural network that was originally developed 
as a model of object recognition, and in that context has 
accounted for, and successfully predicted, a very large 
number of findings in the literature on shape perception and 

object recognition (for a review, see Thoma & Davidoff, 
2007). As such, JIM provides a psychologically and neurally 
plausible theory of the shape representations that can be 
derived from line drawings of objects. As elaborated shortly, 
the model is also useful as a basis for visual reasoning 
because it generates visual representations that are both 
explicitly relational and in a format that is directly usable by 
the LISA model of relational reasoning (Hummel & Holyoak, 
1997, 2003a). 

 

 
 

Figure 2: (a) A cone on top of a brick. (b) The JIM 
representation of a cone on top of a brick. Circles are units 
representing shape attributes. Bars indicate the activity of 

corresponding units over time, with black bars 
corresponding to the brick and gray to the cone. 

 
JIM (Hummel & Biederman, 1992) represents objects as 

configurations of geons (basic volumetric shapes; 
Biederman, 1987) in specific spatial relations to one another. 
For example, the simple object in Figure 2a would be 
represented as a cone on-top-of, smaller-than and orthogonal-
to a brick. The cone and brick are represented in JIM, not as 
atomic primitives, but as patterns of activation distributed 
over neuron-like units representing their shape attributes 
(Figure 2a). For example, the cone would be represented by 
units specifying that it has a curved cross section, a straight 
major axis, non-parallel sides, and a slightly elongated aspect 
ratio; the brick would be represented as having a straight 
cross section, a straight major axis, parallel sides, and a 
slightly elongated aspect ratio. The units representing the 
cone are bound to units representing its relational roles (here, 
smaller and above), and the units for the brick are bound to 
its roles (larger and below) by synchrony of firing: Units 
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representing the cone and its roles fire in synchrony with one 
another, and out of synchrony with the units representing the 
brick and its roles (Figure 2b). (These synchrony relations are 
established in the model’s V1- and V2-like first layers, by 
lateral interactions between local units representing the 
geons’ edges and the vertices where they coterminate; see 
Hummel & Biederman, 1992.)  

The resulting representations (Figure 2b) are then matched 
to stored representations in JIM’s long-term memory (LTM) 
for the purposes of object recognition. This representational 
format also happens to be identical to the format LISA 
(Hummel & Holyoak, 1997, 2003a) uses to represent role-
argument bindings for the purposes of relational reasoning. 
In LISA, relational roles and their arguments are represented 
as patterns of activation over units representing their 
semantic content, and bound into complete propositions by 
synchrony of firing: Within a proposition, such as on-top-of 
(cone, brick) or loves (John, Mary), units for a relational role 
(e.g., above, below, lover, or beloved) fire in synchrony with 
the units representing the arguments to which they are bound 
(with above firing with cone, or lover firing with John) and 
out of synchrony with the units coding the proposition’s other 
role bindings (below+brick or beloved+Mary).  

Armed with these representations, LISA accounts for 
roughly 100 major empirical phenomena in relational 
reasoning, including its development (e.g., Doumas et al., 
2008) and its decline with brain damage, normal aging, and 
frontotemporal dementia (for reviews, see Hummel & 
Holyoak, 2003b; Knowlton et al., 2012). As such, we take 
JIM and LISA as empirically well-grounded starting points 
for developing a model of visual thinking. 

Although the kinds of representations JIM generates 
provide a natural basis for reasoning by LISA, the problem 
remains of adapting JIM-like representations  for a LISA-like 
inference engine. That problem is the focus of the current 
modeling effort. 
 
Object Files as a Basis for Visual Reasoning 
Figure 2b illustrates the kind of distributed representation 
LISA uses to represent the semantic content of propositions 
in working memory (WM). To encode these representations 
into LTM, LISA uses a hierarchy of progressively more 
localist representations (Figure 3). At the bottom of the 
hierarchy, semantic units represent relational roles and their 
arguments in a distributed fashion (as in Figure 2b). 
Argument and role units (Figure 3) code arguments and 
relational roles in a localist fashion and share bidirectional 
excitatory connections with the corresponding semantic 
units. Sub-proposition (SP) units locally code role-filler 
bindings, such as above+cone and below+brick, and 
proposition units bind multiple role-filler bindings into 
complete propositions, such as on-top-of (cone, brick). 
Collections of related propositions are linked together with 
group (for our current purposes, object file) units. The 
resulting hierarchy of units serves both to represent 
propositions in LTM and as the basis for analogical mapping 
and the other functions LISA performs. 

This hierarchy serves as a natural way to represent 
structural descriptions of objects and scenes (a very similar 
hierarchy encodes objects into LTM in JIM; Hummel & 
Biederman, 1992). For example, in order to represent an 
object, propositions would represent the spatial relations 
among the object’s parts, and collections of such propositions 
would constitute a description of the complete object. 
Moreover, these descriptions can be nested hierarchically 
(with propositions taking other propositions as arguments; 
Hummel & Holyoak, 1997), making it possible to represent 
entire scenes as hierarchical collections of objects in various 
relations to each other. 
 

 
 

Figure 3. The LISAese representation of an object file. Left: 
representation of the proposition expressing the relations 
between the cone and the brick (roughly, on-top-of-and-
smaller-than (cone, brick)). In light gray: other potential 

propositions in the object file.  
 
Borrowing from Kahneman et al. (1992), we refer to 

collections of propositions encoding the properties of objects 
and/or scenes as object files. Importantly, the propositions 
composing an object file are assumed to encode (in the limit) 
everything visible about the object, including its shape, color, 
trajectory, and so forth. We also assume they are hierarchical, 
describing the properties of (and relations among) both whole 
objects and of individual object parts. In other words, we 
assume that the goal of early- and middle-vision, as well as 
visual attention, is to deliver a hierarchical description of the 
visual world. Although JIM provides an algorithmic basis for 
computing some of these properties and relations from object 
images, we assume that the visual input to the object files is 
much richer than any computational model is currently 
capable of providing. In the current effort, we therefore 
assume this visual input as a given to the model. Specifically, 
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we assume visual preprocessing that delivers descriptions of 
objects in terms of their properties (shape, color, etc.), spatial 
relations to one another, and the spatial relations among their 
parts. We assume that these descriptions are temporally 
bound into packages corresponding to bindings of relational 
roles to their arguments (e.g., Figure 2b; Hummel & 
Biederman, 1992), where the arguments can either be whole 
objects or object parts. 

The Model 
Given such a representation as a basic input, constructing an 
explicit object file from that input means encoding the 
propositions—i.e., collections of synchronized patterns of 
activation—into active memory (Cowan, 2001) so that they 
can be compared to the contents of LTM and reasoned about. 
The current model borrows and adapts elements of LISA’s 
self-supervised learning algorithm (Hummel & Holyoak, 
2003a) to accomplish this task. Like LISA and JIM, the 
current model uses synchrony of firing at multiple temporal 
scales in order to bind roles to their arguments, role-argument 
bindings into complete propositions, and collections of 
propositions into whole objects or scenes. 

At the fastest temporal scale (i.e., the phase, which we 
assume to last about 25 ms; Hummel & Holyoak, 1997), units 
coding relational roles fire in synchrony with the units coding 
for the features of their arguments. At the next temporal scale 
(the phase set, corresponding to about 100 - 200 ms), 
mutually desynchronized role-filler bindings are grouped into 
complete propositions. And at the slowest temporal scale 
(corresponding to about 200 – 1000 ms), multiple 
propositions (phase sets) are grouped into complete units—
either whole objects, or small groups of objects in specific 
relations (Green & Hummel, 2004). Each of these temporal 
scales corresponds to a specific kind of unit in the hierarchy 
in Figure 3, with the fastest corresponding to argument, role 
and SP units, the second slowest corresponding to 
proposition units, and the slowest to object file (group) units; 
units at each scale of the hierarchy integrate their inputs over 
corresponding temporal intervals (Hummel & Holyoak, 
1997).  

One at a time, patterns of activation corresponding to 
individual phases, i.e., parts or objects in specific relational 
roles, are presented to the model. These patterns correspond 
to packages being delivered by early to middle visual 
processing (e.g., in visual area LOC). In response to each 
such package, the model’s task is twofold: One task is to 
encode new packages (phases), as they arrive into active 
memory, and integrate them into the representation of the 
emerging object file (Figure 3). This operation is performed 
by a simple kind of mapping-guided Hebbian learning (i.e., 
Hummel & Holyoak’s, 2003a, self-supervised learning). At 
the same time, the model performs the parallel task of 
matching these incoming patterns to stored patterns in LTM 
(stored object files). That is, the model attempts to recognize 
each stimulus as an instance of a familiar object category at 
the same time as it encodes it into active memory as a new 
object file to be reasoned about. 

By the time several phase sets have been processed, the 
object file will contain a collection of propositions describing 
(for example) the object’s parts in terms of their spatial 
relations. If the object is familiar, the model will also have 
activated one or more existing object files in LTM, 
effectively recognizing/categorizing the object. The 
preceding describes the model in the language of visual 
cognition. In the language of analogical reasoning, the model 
will have encoded a new target analog (the object file) to be 
reasoned about, and it will have retrieved one or more source 
analogs (i.e., existing object files) to use in the service of 
reasoning about the target. Once this process is complete, the 
machinery of analogical reasoning (as embodied in LISA) 
can take over, mapping the target onto the source in order to 
identify corresponding elements and relations, using the 
source to drive inferences about the target, and inducing a 
more abstract schema capturing what the source and target 
have in common (Hummel & Holyoak, 2003a). 

Token Formation 
This very coarse description of the model’s operation 
necessarily glosses over numerous implementation details, 
but all of these are standard to LISA’s operation (see Hummel 
& Holyoak, 2003a, Appendix A). However, one aspect of the 
algorithm warrants discussion in greater detail. In LISA, 
argument, role, SP, proposition, and group units represent 
tokens of objects, roles, and so forth, in the context of the 
larger structure in which they reside. For example, the cone 
unit in Figure 3 represents a token of “cone” in the context of 
the specific object file depicted in the Figure; the abstract type 
“cone” is represented by the shape units (in LISA, “semantic 
units”) to which the token is connected (Figure 2b). This 
type/token distinction becomes apparent in the case of scenes 
containing more than one instance of a given object or geon: 
If an image contains, say, two cones, then the resulting object 
file must contain separate argument units for each, even if 
those units are connected to otherwise identical shape units: 
Constructing an object file from an image requires the model 
to distinguish clearly between types (“a cone”) and tokens of 
those types (“this cone”).  

Keeping this type/token distinction straight is complicated 
by the fact that a given token is likely to fire more than once 
in the output of visual processing: If the features of a cone 
fire at time t, and a cone also fired at time t-5, then how can 
we know whether the cone that is firing now is the same one 
(the same token) that fired 5 iterations ago? (In this respect, 
the object files created by the current model differ from those 
postulated by Kahneman et al., 1992, in that their object files 
were assumed to be unitary tokens for single objects. By 
contrast, the object files created here are hierarchical tokens 
that can, themselves, contain tokens for smaller parts.) 

The current model solves this problem by exploiting the 
role of mappings in self-supervised learning (Hummel & 
Holyoak, 2003a). In brief, the current model, like LISA, 
knows when a new token is required by knowing the 
mappings between the tokens composing the source of an 
inference (here, an object file in LTM) and those composing 
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the target of that inference (the emerging object file): If an 
unmapped token fires in the source, then a new token is 
required in the target. The current model exploits a similar 
constraint by mapping each token in the emerging object file 
to the location of the corresponding part or object in the 
image: In essence, it knows whether the cone firing at time t 
is the same token as the one from time t-5 by knowing 
whether they occupy the same location. (This heuristic is 
admittedly too simple and will fail with, for instance, moving 
stimuli. In general, we assume that tokens are distinguished, 
not by locations in the image, but by spatiotemporal 
trajectories in 3-space.) 

The model is still in an early stage of development—and 
is, itself, only a component of a much larger emerging 
model—but preliminary simulations provide an encouraging 
proof of concept. 

Simulations 
We ran four sets of simulations as basic tests the model’s 
ability to rapidly encode object files from oscillatory visual 
inputs of the kind illustrated in Figure 2b. In each simulation, 
objects were presented and encoded in the model’s LTM; 
subsequently, additional objects were presented to be 
encoded and categorized as one of the known objects. Objects 
were constructed by combining 14 parts, P1… P14, into 
arrangements by placing them in various two-place relations, 
with roles R1…R15. Each part was coded as a 10-
dimensional feature vector, and each role of a relation was 
also coded as a 10-dimensional vector. In addition, 6 units 
served as location tags, L1…L6, which as discussed above, 
permit the model to solve the type-token problem. The full 
feature space was thus 26-dimensional (10 for parts, 10 for 
roles, and 6 for location tags). The binding of a given part, Pi, 
to a given relational role, Rj, was implemented as the 
concatenation of vector Pi with vector Rj and location vector 
Lk (synchrony of firing is equivalent to vector addition). We 
manipulated the relationships between the stored and 
stimulus objects by varying the parts of the objects, P, the 
relations, R, and the locations L in which they were 
instantiated. For clarity in what follows, we will refer to a 
given part in a given location as Pi,k. The assignment of 
features to part vectors P, role vectors, R, and location vectors 
L was randomized on every simulation. 

Table 1 shows the library of objects used in all simulations. 
In the table, objects are denoted using the format (using 
object O1 as an example): 

 
[(P1,1, R1) + (P4,4, R2)], [(P1,2, R3) + (P4,4, R4)], 

 
where (P1,1, R1) denotes part P1 in location L1 bound to role 
R1, and (P4,4, R2) denotes P4, in L4, bound to R2; and the 
square brackets around these expressions indicate that roles 
R1 and R2 form a single relation linking P1 to P4. Note that P1 
appears in two locations in O1, L1 and L2, and thus instantiates 
two tokens of the same type in the representation of O1.  

Simulation 1 was the most basic test of the model’s ability 
to encode and match objects. We encoded objects O1-O3 into 

the model’s memory and then tested its ability recognize 
object O1. Unsurprisingly, it recognized O1 as O1 on three of 
three simulation runs, in the sense that it activated the O1 
group unit more than the group units for O2 or O3 (roughly 
0.7 versus 0.6 or less, respectively; objects O2 and O3 are as 
active as they are because there is no lateral inhibition 
between group [object file] units).  

Simulation 2 tested the model’s ability to recognize an 
object when it has an extra part. On three runs, the model was 
initially trained on objects O1-O3, and then tested with O4. O4 
is the same as O1, but with an extra part, P3, in a new relation 
to P4. In addition to encoding O4 as a new object file, the 
model also recognized it as most similar to object O1 with 
activation about 0.7, versus about 0.5 for O2 and O3. When 
the model was then tested with O1 as a stimulus (after O4 was 
encoded into memory), the model recognized O1 as O1 (about 
0.7), but also activated O4 as a close match (about 0.6 versus 
about 0.5 for O2 and O3). 
 

Table 1: Object Library for Simulations 
 

O1 [(P1,1, R1) + (P4,4, R2)], [(P1,2, R3) + (P4,4, R4)] 
O2 [(P5,5, R7) + (P11,11, R8)], [(P8,8, R9) + (P11,11, R10)], 

[(P10,10, R11) + (P11,11, R12)] 
O3 [(P13,13, R14) + (P4,4, R2)], [(P12,12, R13) + (P12,12, R14)] 
O4 [(P1,1, R1) + (P4,4, R2)], [(P1,2, R3) + (P4,4, R4)],  

[(P3,3, R5) + (P4,4, R6)] 
O5 [(P5,5, R7) + (P11,11, R8)], [(P10,10, R11) + (P11,11, R12)] 
O6 [(P6,6, R7) + (P11,11, R8)], [(P8,8, R9) + (P11,11, R10)], 

[(P10,10, R11) + (P11,11, R12)] 
 

Simulation 3 tested the model’s ability to recognize an 
object with a missing part. In three runs, the model was again 
trained with O1-O3 and tested with O5, which is like O2, but 
missing part P8. The model correctly recognized O5 as most 
similar to O2 on two out of the three runs. On the third run, 
the model classified O5 as most similar to both O2 and O1 
equally. We speculate that in this case the part and relation 
vectors randomly generated for O1 happened to be similar to 
those of O2, in which case this result would be an example of 
a neighborhood effect. However, in all simulations, when O2 
was re-presented after O5 was encoded, the model recognized 
it as an instance of O2, with O5 as a close second (both near 
0.7), preferentially activating both over O1. 

Finally, simulation 4 tested the effect of replacing one part 
with another. Again, in three runs, the model was trained on 
O1-O3, and then tested with O6 (O6 is like O2, but with P5 
replaced by P6). On two of three runs, the model recognized 
O6 as most similar to O2. On the third, the model slightly 
favored O3. Once again, we speculate that this result is due to 
neighborhood effects created by the randomization of the 
vectors. In all runs, when O2 was re-presented to the model, 
it activated O2 (greater than 0.7), with O6 as a close second. 

Discussion 
The online generation of object files from the output of 
middle-to-late vision is a crucial step in visual thinking. We 
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present a model that, starting with outputs of a JIM-like 
model of shape perception, generates representations that can 
be stored in memory for future recognition and can be used 
by a LISA-like inference engine to reason about those 
objects. Preliminary simulation results suggest that this 
approach provides a promising starting point for simulating 
both object recognition and the visual-cognitive interface. 

Simulations demonstrated that the model can correctly 
recognize familiar objects (simulation 1) as well as new 
objects created by adding (simulation 2), deleting (simulation 
3), and replacing (simulation 4) parts of familiar objects. All 
of these transformations pose problems for non-
compositional (e.g. template-based) accounts of object 
recognition (Biederman, 1987), but they are commonplace in 
human interactions with objects. Parts are often deleted by 
occlusion or by modification of the physical object (e.g. as 
when a tire is removed from a car); added, as when new parts 
are added to objects to extend functional capabilities;  or 
replaced (e.g., for styling reasons). These types of 
modifications are especially common in commercially 
designed objects, so our ability to recognize and reason about 
these objects depends on our ability to tolerate these types of 
modifications: The first time we see a new model of 
coffeemaker, we may decide that the styling is not to our 
liking, but we do not stare at it in confusion about what it is. 

Crucially, the representations used by this model are not 
only useful for recognition, as shown by the simulations, but 
also lend themselves naturally to reasoning about the objects’ 
function. In particular, these representations are already in 
“LISAese”, the representational format used by the LISA 
model, and as such are available to the full inductive power 
of that inference engine. For example, given an object file 
describing a novel coffee maker, LISA is well-equipped to 
infer that the handle is where the pot should be grasped, the 
filter basket is where the ground coffee should be placed, and 
the carafe is where the brewed coffee will collect. Once the 
model is supplied with a JIM-like front-end, it should be in a 
position to start with object images and end with inferences 
about those objects. 
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Abstract 
People often reason about omissions. One line of research 
shows that people can distinguish between the semantics of 
omissive causes and omissive enabling conditions: for 
instance, not flunking out of college enabled you (but didn’t 
cause you) to graduate. Another line of work shows that people 
rely on the normative status of omissive events in inferring 
their causal role: if the outcome came about because the 
omission violated some norm, reasoners are more likely to 
select that omission as a cause. We designed a novel paradigm 
that tests how norms interact with the semantics of omissive 
enabling conditions. The paradigm concerns the circuitry of a 
mechanical device that plays music. Two experiments used the 
paradigm to stipulate norms and present a distinct set of 
possibilities to participants. Participants chose which causal 
verb best described the operations of the machine. The studies 
revealed that participants’ responses are best predicted by their 
tendency to consider the semantics of omissive relations. In 
contrast, norms had little to no effect in participants’ responses. 
We conclude by marshaling the evidence and considering what 
role norms may play in people’s understanding of omissions. 

Keywords: omissive causes; enabling; allowing; modal 
semantics; norms; mental models 

Introduction 
A railway gatekeeper’s job is to open and close a crossing 
gate that lets trains pass. In 1902, the gatekeeper for the 
Somerset and Dorset railway was found guilty of 
manslaughter because he failed to close the gate (R. v. 
Pittwood, 1902). While he was at lunch, a train passed 
through the open gate and crashed into a horse and cart, 
killing one man and injuring another. The case describes an 
omissive cause: the jury held that the gatekeeper’s failure to 
close the gate caused the death of an innocent bystander. 

Omissive causation is a controversial topic amongst 
philosophers, psychologists, and legal scholars (Moore, 
2009; Bernstein, 2015; Henne, Pinillos, & De Brigard, 2017). 
People have little difficulty in distinguishing which event was 
causal from alternative events that are non-causal. But causes 
are often easy to establish when they occur in a particular 
place and at a particular time; for instance, throwing a switch 
at a particular time causes the particular gate to close, so it is 
easy to identify the intervening action as the cause. Since 
omissive causes—absences, failures to act, scarcities, etc.— 
do not occur in any spatial or temporal frame, they present 
unique difficulties for causal reasoning and theories of 
causation. 

One proposal suggests that norm violations affect causal 
judgments and play a fundamental role in establishing what 
constitutes a cause (Hitchcock & Knobe, 2009; McGrath, 
2005; Hart & Honoré, 1985). In the railway example, the 

gatekeeper was charged and found guilty because his 
occupation made it his responsibility to monitor the track. It 
may seem trivial that many other individuals—for instance, 
some passerby—also failed to close the gate, but previous 
philosophical treatments have difficulty explaining why only 
certain omissive causes are deemed relevant and not others 
(see McGrath, 2005; Bernstein, 2015). On the norm-based 
account, the passerby, unlike the gatekeeper, is not 
considered a cause, as there was no normative expectation for 
him to close the gate. The norm-based account provides an 
explanation for why people focus their attention on potential 
causes. Consistent with this view, recent studies show that 
reasoners view norm-violating omissions as causes but norm-
preserving events as non-causes or as enablers (Henne et al., 
2017; see also Clarke et al., 2013). 

Nevertheless, some theorists question whether norms 
determine the meaning of omissive causal statements or 
whether norms simply bias causal judgments (Bernstein, 
2014; 2017, p. 89-90). Consider the following statement: 

 

1. The drought caused the famine. 
 

Some argue that omissive causal statements as in (1) do not 
involve norms in any way, yet they are easy to comprehend. 
If norms were a central part of the meanings of causal 
relations, then the absence of any norm should render (1) 
uninterpretable (Bernstein, 2017). On such a view, norms 
may be relevant in establishing causal relations—such as in 
the train example—but they are not central to their meaning. 

One clue for what it means to be a cause comes from the 
application of causal verbs: “causes,” “enables,” and 
“prevents.” Each verb refers to a relation between two events, 
and those relations have stark differences in their semantics. 
Psychological accounts of causal reasoning identify 
differences in the way people understand causal verbs (e.g., 
Goldvarg & Johnson-Laird, 2001; Sloman, Barbey, & 
Hotaling, 2009; Wolff, 2007). Accordingly, a viable theory 
of how people understand and infer omissive relations must 
distinguish the semantics between them. Consider the 
following two statements: 
 

2a. An absence of light causes a flower to die. 
  b. An absence of light enables a flower to die. 

 
(2a) seems sensible, but (2b) does not, because (2b) implies 
that the flower can live without light. Likewise, in the 
following two statements: 
 

3a. A lack of insecticides causes insects to thrive. 
  b. A lack of insecticides enables insects to thrive. 
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 (3b) seems sensible, but (3a) does not, because (3a) 
inappropriately guarantees that insects will thrive once 
insecticides are eliminated. The distinctions may be 
compelling, but until recently, no theory of causal reasoning 
could explain them. 

A recent theory of omissive causation differentiates 
omissive causes from omissive enablers (Khemlani, 
Wasylyshyn, Briggs, & Bello, 2018). The theory is based on 
the idea that people represent causal scenarios by 
constructing and manipulating a set of discrete possibilities, 
i.e., mental models (Goldvarg & Johnson-Laird, 2001). The 
model-based theory—the “model theory,” for short—posits 
that omissive causes and omissive enabling conditions differ 
in the sets of possibilities to which they refer. On tasks that 
require reasoners to distinguish between the different 
relations, they should base their judgments on the semantics 
stipulated by the model theory (Khemlani et al., 2018). In 
contrast, if norms are central to the meaning of omissive 
relations, reasoners should base their decisions on norm-
violations (Henne et al., 2017). 

In what follows, we first delineate the predictions of the 
model theory and the norms hypotheses. We then describe an 
experimental paradigm that can test between the two 
predictions, and we present two novel experiments that test 
the competing predictions. The studies showed that reasoners 
separated omissive causes from omissive enabling conditions 
in a manner predicted by the model theory, and norm-
violations had little effect on their behavior. 

The model theory of causal reasoning 
The mental model theory of human reasoning proposes that 
humans reason based on representing sets of possibilities 
(Johnson-Laird, 2006). The meanings of spatial relations, 
temporal relations, and causal relations refer to the sets of 
possibilities consistent with each relation (Goodwin & 
Johnson-Laird, 2005; Khemlani, Barbey, & Johnson-Laird, 
2014). The model theory posits two systems of reasoning: a 
fast, intuitive system of reasoning constructs a single initial 
possibility—the “mental model”—to represent one or more 
assertions. Reasoners can formulate inferences rapidly by 
scanning that initial possibility, but those inferences are prone 
to error, because causal relations can be consistent with 
several possibilities. Errors can be corrected through 
deliberation, which is a process by which reasoners 
iteratively construct and consider alternative possibilities. 

Khemlani and colleagues recently extended the model 
theory to account for reasoning about omissive causation 
(Bello et al., 2017; Khemlani et al., 2018). Their account 
explains why people distinguish different omissive relations 
(Table 1). It appeals to the idea that people rapidly construct 
initial mental models, and then flesh out those initial models 
into “fully explicit” models. On this view, a mental model is 
a privileged, default possibility to which an omissive causal 
relation refers, whereas fully explicit models represent all the 
possibilities consistent with the modal semantics of the 
relation. The following diagram depicts the mental model of 
the omissive causal relation described in (2a): 

 ¬ light  death 
 
where ‘¬’ denotes the symbol for negation (Khemlani, 
Orenes, & Johnson-Laird, 2012). Here, the lack of light is 
interpreted as a negated event, and it arranges the two events 
in the same chronological order in which they would occur. 
Hence, the model represents a single iconic possibility. When 
reasoners deliberate, they can consider all of the possibilities 
that accord with the modal semantics of omissive causation 
(Table 1). They can accordingly build fully explicit models 
of (2a), which are depicted in this diagram: 
 
 ¬ light  death 

light  death 
light ¬ death 

 
where each row represents a separate possibility. The bolded 
row represents the mental model. The latter two possibilities 
show that if the flower receives light, it may die anyway (for 
some other reason), or it may not die at all. But the theory 
predicts that reasoners should be less likely to think of these 
latter two possibilities at the outset because most reasoners 
only construct and reason with the mental model.  

The theory posits that the mental model of omissive 
enabling conditions is the same as the mental model of 
omissive causation. Hence, the model of (3b) above is: 

 
 ¬ insecticide  thrive  

 
It predicts that reasoners who draw conclusions on the basis 
of mental models should often conflate the two assertions 
(e.g., Wolff, 2007; Frosch & Johnson-Laird, 2011). When 
reasoners distinguish between omissive causes and enabling 
conditions, they should do so on the basis of their modal 
semantics, i.e., on the fully explicit models of the relations. 
The fully explicit models of an omissive enabling condition 
are depicted in the following diagram: 

 
 ¬ insecticide  thrive  
 ¬ insecticide ¬ thrive 
  insecticide ¬ thrive 
 

Unlike omissive causes, omissive enabling conditions are 
consistent with the possibility in which both the cause and the 
effect do not hold, i.e., the situation in which insecticides are 
administered and insects subsequently do not thrive. 
Omissive enabling relations typically prohibit the possibility 
in which the cause and the effect both hold (A and B), e.g., 
the insects thrive even when they are sprayed with 
insecticide. But in some situations, omissive enabling 
relations can take on a weaker meaning and permit that 
possibility, as in, “The failure to cut the grass enabled it to 
grow.” The statement permits the possibility in which the 
grass is cut and it grows anyway (Table 1).  

The model theory accordingly makes the following general 
hypothesis about semantics of omissive relations: 
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Semantics hypothesis: On tasks that require reasoners to 
distinguish between alternative causal relations, they 
should discriminate between omissive causes and omissive 
enabling conditions on the basis of the possibilities unique 
to each relation. 

 
In contrast, reasoners are often susceptible to norm violations 
that affect their causal judgments (Henne et al., 2017). Hence, 
norm-based accounts posit the following hypothesis: 

 
Norms hypothesis: When norms are available, reasoners 
distinguish between causal relations by focusing on those 
candidate events that violate norms. Events that violate 
norms should be considered causes, whereas those that do 
not violate norms should be rejected as causes. 

 
In the next section, we describe a novel paradigm developed 
to test between the two hypotheses. 

A paradigm for testing semantics and norms 
Many existing paradigms test the meanings of omissive 
causes, but they do not typically encourage reasoners to 
consider and track multiple possibilities that are thought to be 
essential to the meanings (Henne et al., 2016; Khemlani et 
al., 2018; Wolff, Barbey, & Hausknecht, 2010; cf., Bello et 
al., 2017; Experiment 2). To try to overcome this limitation, 
we developed a novel paradigm that could be used to 
investigate how people distinguish the meanings of causal 
relations. 

The paradigm made use of diagrams akin to those shown 
in Table 2. The basic diagram depicts a machine with a 
speaker, a red battery, a safety switch (which appeared green 
or else black), a blue wire, and an unnamed yellow 
component. The diagram could vary in several ways in order 
to depict different possibilities. For instance, the speaker 
could be playing or not playing (depicted as a series of 
soundwaves or not); the blue wire could be connected to the 
red battery, or else not connected; and the safety is green 
when it is on and black when it is off. The safety switch 
allowed for the establishment of a norm: participants were 
taught that whenever the safety is on (colored green), the blue 
wire is not supposed to touch the battery. And when the safety 
is off (colored black), the blue wire is supposed to touch the 
battery. Hence, the machine could be depicted in 2 (sound or 
no sound) x 2 (wire connected or disconnected) x 2 (safety on 
or off) = 8 different configurations. Depending on the 
particular condition in the experiments, those various 
configurations either violated or preserved norms. And those 
various configurations were either compatible with a 
particular omissive causal relation or incompatible with it. 

The paradigm allows to directly compare predictions made 
by both the semantics hypothesis and the norms hypothesis. 
Experiments 1 and 2 provided participants a single trial in 
which they received three different diagrams (Table 2). After 
studying three different diagrams, participants were given a 
sentence completion task that tested their understanding of 
the scenario depicted. 

Experiment 1 
Experiment 1 presented participants with three separate 
diagrams. Participants only received diagrams that were 
either possible or impossible given causal and enabling 
relations: diagrams depicting context-dependent 
contingencies were not used in the experiment (Tables 1 and 
2). Half the participants saw a set of diagrams in which each 
diagram was compatible with the following omissive 
enabling relation: 
 

4.  The blue wire not touching the red battery allows the 
speaker to play music. 

 
The other half saw a set of diagrams that were compatible 
with (4) and the following causal assertion (5): 
 

5.  The blue wire not touching the red battery causes the 
speaker to play music. 

 
Because the experiment avoided context-dependent 
contingencies, the remaining diagrams compatible with (5) 
were also compatible with (4), so the set of diagrams were 
ambiguous: the model theory predicts that participants should 
treat them as depicting both omissive causes and omissive 
enabling conditions (Khemlani et al., 2018, Experiment 4). 

Participants were given a sentence completion task in 
which they chose the causal verb (“causes” or “allows”) to 
complete the following sentence: 
 

 The blue wire not touching the battery _______ the 
speaker to play music. 

 
Notably, for the purposes of the study, the verb “allows” was 
treated as equivalent to “enables”. The experiment 
accordingly tested the prediction of the semantics hypothesis 
that reasoners should select the causal verb that matched the 
possibilities depicted. Hence, the semantics hypothesis 
predicts that reasoners should select “allows” more often for 
the enabling condition than the ambiguous condition. 
Experiment 1 also tested the norms hypothesis. Half the 
conditions in the study concerned abnormal situations in 
which the safety was off, and the other half concerned normal 
situations in which the safety was on, and participants were 
instructed that the blue wire is not supposed to touch the 
battery when the safety was on, and that it was supposed to 
touch the battery when the safety was off. The norms 
hypothesis predicts that people should be sensitive to norm 
violations, i.e., they should be more likely to select the verb 
“causes” to fill in the sentence provided for abnormal 
omissions compared to normal ones. In turn, normal 
omissions should be judged to be involved in enabling 
relations. The semantic hypothesis, however, posits that 
participants’ responses should not vary as a function of 
whether the condition was abnormal or normal—only as a 
function of which set of possibilities participants considered. 
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Table 1: The table outlines the semantics of omissive causes and omissive enabling conditions. The rows separate omissive causes and 
omissive enabling conditions. The cells in each column describe whether each contingency is possible given a particular omissive relation. 
The mental models are always possible. The bolded column denotes the contingency diagnostic of omissive enabling conditions. 
 

 

Methods 
Participants A total of 822 adults participated in this study 
on Amazon Mechanical Turk (AMT). Of these participants, 
59 did not complete the study, and 26 were excluded for 
failing to pass two attention checks. Data were analyzed with 
the remaining 796 participants (Mage = 34, SD = 11.0, age 
range = [18-71], 43% females).  
 
Design and procedure Participants were randomly assigned 
to one of four possible conditions in a 2 (enabling vs. 
ambiguous) x 2 (normal vs. abnormal) between-participants 
design. Participants were acquainted with the machine in 
Figure 1 and its various components. After viewing and 
responding to instructions, participants were presented with 
three diagrams of configurations of the machine. The 
diagrams appeared on the screen simultaneously.  To check 
their comprehension of the machine and the three separate 
possibilities, they matched the possibilities with descriptions 
provided in a dropdown menu, i.e., they chose from the 
following options to describe each of the three diagrams: (1) 
“The blue wire touches the battery, and the speaker plays 
music,” (2) “The blue wire touches the battery, and the 
speaker does not play music,” (3) “The blue wire does not 
touch the battery, and the speaker plays music,” and (4) “The 
blue wire does not touch the battery, and the speaker does not 
play music.” The order in which the possibilities were 
presented was fixed. In the normal condition, the machine’s 
safety was green, so the blue wire was not supposed to touch 
the battery. The blue wire not touching the battery is normal. 
In the abnormal condition, the machine’s safety was black, so 
the blue wire is supposed to touch the battery. The blue wire 
not touching the battery is abnormal. Participants were 
explicitly instructed to attend to the color of the safety and 
what the blue wire was supposed to do. They were then asked 
to think back to their observations and then fill in the verb in 
the sentence: “The blue wire not touching the battery ______ 
the speaker to play music.” Participants could choose 
between the verb “causes” or “allows” from a drop-down 
menu, and they could not proceed until a choice was made. 
 
Post-experimental questionnaire Participants filled out a 
post-experimental questionnaire that asked them if they had 
paid attention and if they had taken the survey multiple times. 
Participants who reported affirmatively on either question 
were excluded. 

Results and discussion 
Figure 1 shows the proportion of participants who chose 
“allows” as a function of whether the condition was normal 
or not and as a function of whether the diagrams were 
consistent with the semantics for omissive enabling 
conditions or else ambiguous. Participants chose “allows” 
more often for diagrams consistent with enabling conditions 
than for ambiguous diagrams (74% vs. 54%; Mann-Whitney 
test, z = 5.65, p < .0001, Cliff’s 𝛿  = .19). Participants selected 
“allows” more often when the diagrams were presented in a 
normal rather than an abnormal context—although this result 
was not statistically significant (68% vs. 62%; Mann-
Whitney test, z = 1.72, p = .09, Cliff’s 𝛿  = .06). A follow-up 
generalized logistical mixed-model (GLMM) regression 
further revealed that the difference in selection between the 
two conditions was inconsistent with a significant effect (β = 
.00, p = .97), as was the interaction between the two 
conditions (β = .48, p = .12). Nevertheless, a planned 
comparison revealed that for ambiguous diagrams, 
participants selected “allows” more often when the diagrams 
were presented in a normal context rather than an abnormal 
context (61% vs. 49%, Mann-Whitney test, z = 2.35, p = .02,  
 

 
Figure 1: Proportion of participants who chose “allows” instead of 
“causes” in Experiment 1 as a function of whether participants saw 
normal or abnormal devices, and as a function of whether the 
diagrams were consistent with omissive enabling conditions only or 
consistent with both omissive causes and omissive enabling 
conditions. Error bars indicate 95% confidence intervals.

0.00

0.25

0.50

0.75

1.00

Diagrams
consistent with

'allows'

Ambiguous
diagrams

P
ro

po
rti

on
 o

f '
al

lo
w

s'
 s

el
ec

tio
ns Abnormal

Normal

 The four possible contingencies between A and B 
Omissive relation ¬A    B ¬A   ¬B   A   ¬B   A     B 
The lack of A causes B. Mental model Impossible Possible Context-dependent 
The lack of A enables B. Mental model Possible Possible Context-dependent 
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 Diagrams presented to participants  
Condition ¬wire   music ¬wire  ¬music   wire  ¬music   wire  music 

Ambiguous 
 

 (shown twice) 

Not shown to 
participants 

 

Not shown to 
participants 

Enabling  
 

 
 

  

Not shown to 
participants 

 

Table 2: The three diagrams presented to participants in enabling and the ambiguous conditions. These diagrams all depict the normal 
conditions, i.e., the safety is on, so the blue wire is not supposed to touch the red battery. In Experiment 1, participants were not provided 
with written cues about the condition of the safety switch. In Experiment 2, those cues were provided (as in the diagrams above).  
 
Cliff’s 𝛿 = .12). All data and analysis code available at 
https://osf.io/jf36w/. The result provides some support for 
the norm hypothesis, which predicts that people should be 
more likely to select “causes” (and less likely to select 
“allows”) for abnormal contexts. It also suggests that 
participants were sensitive to the norm manipulation: they 
comprehended the norms and took them into account in 
making their selections. If they had not, they would have 
shown no sensitivity to whether the diagrams were in 
normal or abnormal context. Yet, an analogous comparison 
for diagrams consistent with omissive enabling conditions 
was not reliable, and so the study revealed mixed support 
for the norms hypothesis. 

Experiment 1 corroborated the prediction that reasoners 
interpret omissive causes and enabling conditions in 
accordance with the semantics outlined by the model theory. 
Reasoners in the enabling condition selected “allows” more 
often than those in the ambiguous condition. Moreover, 
participants’ responses did not depend on whether a norm had 
been violated or not. If, as the norms hypothesis states, 
abnormal situations help reasoners choose which candidate 
events constitute causes, then those abnormalities appeared 
to have no effect on participants’ tendencies to select 
appropriate causal relations. 

One limitation of Experiment 1 is that reasoners may have 
simply failed to recognize abnormalities in the first place, i.e., 
they may not have encoded the black safety switch’s color, 
which was designed to serve as a cue that a norm had been 
violated. Another limitation of the study is that participants 
evaluated only one set of three diagrams and only one causal 
relation. Experiment 2 corrected for both of these limitations. 

Experiment 2 
Because participants may not have picked up on the norm 
distinction between conditions in Experiment 1, we sought to 
ensure that the difference was salient in Experiment 2. Hence, 
rather than just identifying the color as the difference in 
norms, Experiment 2 added the verbal cues “SAFETY ON” and 
“SAFETY OFF” to the diagrams (see Table 2). Moreover, the 

study employed a within-participants design to further 
validate the findings from Experiment 1 supporting the 
semantics hypothesis. Hence, each participant saw four 
distinct sets of three diagrams. 

Methods 
Participants A total of 215 adults participated in this study 
on AMT. Of these, 21 participants were excluded for failing 
to pass two attention checks. Data were analyzed with the 
remaining 194 participants (Mage = 33.82, SD = 9.39, age 
range [18-68] 40% females). 
 
 

 

 
Figure 2: The stimuli used in Experiment 2. Participants in the 
abnormal condition saw the machine with the black safety i.e., in the 
off position (top diagram), and those in the normal condition saw 
the machine with the green safety, i.e., in the on position (bottom 
diagram). 
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Design and procedure Participants acted as their own 
controls and received all four possible conditions in a 2 
(enabling vs. ambiguous) x 2 (normal vs. abnormal) within-
participants design. As in Experiment 1, participants were 
acquainted with the machine and its various components. The 
model conditions were constructed just as they were in 
Experiment 1 (see Table 2). The stimuli were modified such 
that the normal and abnormal conditions were more salient 
by adding the words “SAFETY ON” and “SAFETY OFF” to the 
diagrams (Figure 2). 

Results and discussion 
Figure 3 shows the proportion of participants who chose 
“allows” as a function of whether the condition was normal 
or not and as a function of whether the diagrams were 
consistent with the semantics for omissive enabling 
conditions or else ambiguous. As in Experiment 1, 
participants selected “allows” more often when the diagrams 
depicted possibilities uniquely consistent with omissive 
allowing relations rather than ambiguous possibilities (77% 
vs. 53%; Mann-Whitney test, z = 7.00, p < .0001, Cliff’s 𝛿  = 
.24). They didn’t reliably select “allows” more often for 
diagrams in an abnormal vs. a normal context (66% vs. 64%; 
Mann-Whitney test, z = .83, p = .41, Cliff’s 𝛿  = .03). GLMM 
regression analyses likewise corroborated the nonparametric 
analyses: it yielded an effect of whether the diagrams were 
ambiguous or consistent with omissive allowing conditions 
(B = 1.14, p < .0001), but no effect of normality (B = .15, p = 
.54) and no interaction (B = .02, p = .95). 

A planned comparison revealed that for ambiguous 
diagrams, participants did not reliably select “allows” more 
often for abnormal than normal contexts (55% vs. 52%; 

 

 
Figure 3: Proportion of participants who chose “allows” instead of 
“causes” in Experiment 2 as a function of whether participants saw 
normal or abnormal devices, and as a function of whether the 
diagrams were consistent with omissive enabling conditions only or 
ambiguous. Error bars indicate 95% confidence intervals. 

Mann-Whitney test, z = .61, p = .54, Cliff’s 𝛿  = .03). Hence, 
overall, the results are not consistent with the norms 
hypothesis, which states that reasoners should be more likely 
to select “causes” (and less likely to select “allows”) for 
abnormal vs. normal contexts. 

Just as in Experiment 1, the results of Experiment 2 support 
the prediction of the model theory with respect to its 
predictions about the semantics of omissive enabling 
conditions. Reasoners in the enabling condition selected 
“allows” more often those in the ambiguous condition. 
Moreover, participants’ responses did not depend on whether 
a norm had been violated or not. 

General Discussion 
Two experiments were designed to test how participants 
judge the causal effect omissive events have on outcomes. 
The experiments corroborated a recent theory of omissive 
causation, which predicts that reasoners should be able to 
distinguish omissive enabling conditions from other sorts of 
omissive relation (Khemlani et al., 2018). Moreover, the 
results showed that norm violations cannot explain the 
semantic difference between causes and enabling conditions. 

The results of these studies can help refine the role that 
norms play in causal reasoning. As Henne and colleagues 
(2017) show, norms help select potential causes and 
distinguish them from irrelevant non-causes. The present 
studies, however, show that norms do not always explain the 
difference between causes and enablers. When reasoners 
consider the distinctive possibilities consistent with enabling 
conditions norms have little to no effect on causal judgment. 
When reasoners consider only the mental model, norms may 
have a more prominent effect on causal judgment. A more 
robust extension of the model theory, i.e., one that explains 
how norms are represented and how they modulate 
possibilities could potentially explain both the semantics 
between different causal verbs as well as how reasoners 
isolate potential causes from non-causes. Such a theory 
would also have to be contrasted with recent models of causal 
strength that could potentially explain the norm effects and 
the results predicted by the model theory (Icard, Kominsky, 
& Knobe, 2018). 
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Abstract 

The learning and generalisation of grammatical regularities is 

fundamental to successful language acquisition and use. 
Research into statistical learning has started to consider how 
this process occurs through the implicit detection and 
assimilation of grammatical regularities. This study focuses on 
how adults and children generalise regularities and explores the 
role of explicit knowledge in this process. Across three 
experiments, adults and children learnt an artificial language 
containing two semantic categories denoted by a co-occurring 

determiner and suffix. Explicit knowledge of the regularities 
was associated with generalisation performance in adults but 
not children, even when adult word level knowledge was 
similar to children’s. The implications of these results for 
developmental theories of grammatical generalisation are 
discussed.  

Keywords: statistical learning, explicit knowledge, grammatical 
categories, artificial language, learning, generalisation.  

Introduction 

A key aspect of language acquisition and use is the ability 

to learn grammatical regularities that are present in the input, 

and generalise them to novel situations. Statistical learning 

(SL) has been suggested as one of the key mechanisms for the 
acquisition of grammatical regularities (Gómez & Gerken, 

2000). For example, corpus studies of child directed speech 

have shown the presence of two statistical cues, which 

reliably indicate grammatical categories: phonological and 

distributional cues (e.g. Monaghan et al., 2005). Phonological 

cues consist of speech sounds which are associated with word 

class (e.g. in English, phoneme length can indicate a noun or 

a verb), and can be at the word, syllable or phoneme level. 

Distributional cues relate to the linguistic context within 

which a word usually sits, for instance where two co-

occurring words (or morphemes) frame an interleaved word 
stem (e.g. ‘…is walking; Monaghan et al., 2005). Both adults 

and children use these cues in natural language learning and 

processing (e.g. Farmer et al., 2006; Lew-William & Fernald 

2007; 2010). Research using artificial languages 

incorporating these types of cues has also shown that adults 

and children are able to utilise them when learning 

grammatical categories (e.g. Lany & Saffran, 2010; 2011; 

Mirković, Forest & Gaskell, 2011; Mirković & Gaskell, 

2016; Frost, Monaghan & Christiansen, 2019).  For example, 

Gómez (2002) found that both young infants (17-19 months 

old) and adults were able to detect and learn distributional 

cues and Hall, Horne and Farmer (2018) demonstrated the use 

of distributional cues in the learning and generalisation of 

grammatical categories in older children (6-9 years old). 

The role of semantic cues has also been assessed. For 

example, in 20-month-old infants, the learning of semantic 

cues was supported by deterministic phonological and 

distributional cues for grammatical categories (Lany and 
Saffran, 2011), and to a lesser extent by probabilistic 

mappings between semantics and distributional cues (Lany, 

2014).   More recently, distributional cues have also been 

shown to enhance the learning of word-referent mappings in 

adults (Frost, Monaghan & Christiansen, 2019). Adults have 

also been shown to use semantic cues to generalise 

grammatical gender-like classes to previously unseen items, 

in a probabilistic artificial language (Mirkovic et al., 2011; 

Mirkovic & Gaskell, 2016). 

In sum, the research on both adults and children and infants 

demonstrates that they can use SL to learn grammatical 
categories from statistical cues. Although not all studies 

assess generalisation of newly formed grammatical 

knowledge to previously unseen items, those that do show 

that both adults (e.g. Mirković et al., 2011) and children and 

infants (e.g. Lany & Saffran, 2010; 2011; Wonnacott et al., 

2012) are able to do so. However, an important open question 

concerns the processes that support successful generalisation, 

and whether these processes differ in adults and children.  
It is typically assumed that SL is an implicit (unconscious) 

process that is invariant across different ages (e.g. Aslin & 

Newport, 2012). However, more recent studies (Batterink et 
al., 2015; Franco et al, 2011; Conway & Christiansen, 2005) 

suggest that both implicit and explicit processes play a role in 

adult statistical learning. By drawing parallels between the 

implicit learning literature (e.g. Reber, 1967) and SL, these 

authors consider how ‘implicit’ implicit learning tasks really 

are in the context of SL.  
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To test the relative roles of implicit and explicit processes 

in SL, Batterink et al., (2015) incorporated on-line measures 

of implicit learning (reaction times and ERPs) into a word 

boundary SL task with adults (based on the paradigm used by 

Saffran et al., 1996). The results suggested that both implicit 
and explicit processes were involved in the detection of word 

boundaries. In a similar vein, Smalle et al. (2017) used a Hebb 

sequence-learning paradigm to examine the relative role of 

explicit/implicit processing in children as compared to adults. 

Although both adults and children showed evidence of 

explicit awareness of the learned sequences, there were some 

notable developmental differences: adults’ explicit awareness 

emerged at an earlier point during learning than that of 

children. Furthermore, while explicit awareness was 

significantly associated with Hebb learning performance in 

adults, this association was not present in children. This 

suggests that adults were drawing on both explicit and 
implicit learning mechanisms during this task, while children 

relied on implicit learning (Smalle et al., 2017). These studies 

suggest that both explicit and implicit processes are involved 

in SL and that the relative contributions of these processes 

may differ between adults and children.  
 

Current Study 
The key aim of the current study was to examine the role of 

explicit knowledge in grammatical category generalisation, 

and whether this differs in children and adults. Across three 

experiments, participants were trained on an artificial 

language using phonological, distributional and semantic 

cues to create a grammatical gender-like noun class system 
(Mirkovic et al., 2011). We tested adult and school-aged child 

participants and examined the role of explicit knowledge in 

the generalisation of grammatical regularities to previously 

unseen items. We manipulated the type of training and the 

level of initial learning of the novel nouns.  
The artificial language consisted of the noun “classes” 

based on semantic, phonological, and distributional cues. To 

create the semantic cues, two semantic categories were used: 

animals and artefacts. The phonological cues were 

incorporated using a “suffix” (e.g. mofeem). The 

distributional cues were incorporated as a co-occurrence of a 
“determiner” and a “suffix” (see Table 1 for examples). Each 

determiner and each suffix was paired with a semantic 

category (animals or artefacts). This provided an aXb 

structure for animals and cXd structure for artefacts, with X 

denoting the interleaving arbitrary stem, a and c the 

determiner and the b and d the suffix. 

Across all studies participants were trained using a word 

learning task (with no reference to underpinning 

‘grammatical’ regularities. After training, they were tested on 

three generalisation tasks focusing on the three different cues 

(explained below). Levels of emergent explicit knowledge 

were assessed at the end of the experiment. Experiment 1 
included adults and children, while Experiments 2 and 3 

included adults only. Across the three experiments, we 

manipulated two factors that we hypothesised would 

contribute to generalisation and the emergence of explicit 

Table 1: Design of the noun classes 

 

 

 

 
 

 

 

 

 

knowledge: i) initial levels of word learning, and ii) type of 

training. In Experiment 1, participants were exposed to a 

fixed number of repetitions of the novel words at training 

using a word-picture matching task (WPM; Breitenstein et 

al., 2007), and a word repetition task. Experiments 2 and 3 

used criterion learning, with adult participants matched in the 

level of initial word learning to the children in Experiment 1. 
We hypothesized that levels of initial word learning may 

influence generalisation performance and levels of explicit 

knowledge of the ‘grammatical’ regularities. In addition, we 

removed word-picture matching from the training procedure 

in Experiment 3, to test the hypothesis that explicit selection 

may contribute to the emergence of explicit knowledge of the 

‘grammatical’ regularities. In all three experiments, we 

examined the extent to which generalisation performance was 

associated with the emergent explicit knowledge of the 

phonological, distributional, and semantic cues. 
 

Method 
Participants  

Experiment 1. Sixty-one participants took part: 31 adults 

with a mean age of 19.70 years (19.08-20.67 years; 1 male) 

and 30 children with a mean age of 10.21 years (9.67-10.82 

years; 13 males). The adult sample was drawn from the 

undergraduate population at the University of York and 
received course credits for their participation. The child 

sample was drawn from primary schools in North Yorkshire.  
Experiments 2 & 3. Thirty participants took part in 

Experiment 2 with a mean age of 20.77 years (18.17-32.58 

years; 4 male), and thirty in Experiment 3 with a mean age of 

21.09 years (18.25-31.58 years; 5 males). These two samples 

were drawn from the undergraduate population at the 

University of York and received course credits or payment 

for their participation.  
 
Stimuli The training and testing tasks in all experiments used 

pictures drawn from Rossion and Purtois (2001) object 

database (281x173ppi) and artificial words created from the 

English database of pronounceable nonwords (Rastle et al., 

2002). The artificial ‘words’ were constructed using the three 

elements described earlier (e.g. aXb) and were digitally 

recorded (produced by a native speaker of English).  This 

process was based on the stimuli created by Mirković et al., 
(2011). 

All arbitrary stem (X) elements consisted of one syllable 

with a CVC, CCVC or CVCC (C= Consonant, V = Vowel; 

‘CAT’ = CVC) structure. An overall balance of CVC, CCVC 

 
Determiner Suffix Examples 

animal tib eem tib mofeem = dog 

tib zeapeem = duck 

artefact ked ool ked larshool = table 

ked snarool=TV 
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and CVCC words between the animal and artefact training 

words was controlled for. The stem onset phoneme did not 

match the onset phoneme of the English word for the 

animal/artefact it was paired with. The same training and 

generalisation sets were used in all three experiments. 
Training Set: Thirty-two word-picture pairs were created 

(16 in each semantic category). Each word was paired with a 

picture, which denoted the assigned meaning of the word, 

providing the non-arbitrary semantic cue (see Table 1 for 

examples).  
Generalisation Sets: Three different sets of 8 generalisation 

items were designed to test post-training performance on 

previously unseen items. Each set consisted of 4 items that 

were consistent with the trained regularities, and 4 items that 

were inconsistent. Higher endorsement rates for consistent vs 

inconsistent items was taken to indicate learning of the 

regularities.  
Determiner and Suffix Generalisation. This task was 

designed to test learning of the mapping between the 

determiner and suffix, and the associated semantic category. 

Eight novel words were presented with novel picture 

pairings.  The four consistent items conformed entirely to the 

regularities present in the training set. In the four inconsistent 

items, the structure of the word conformed to the training set 

(e.g. tib darleem), but it was presented with a picture from the 

‘wrong’ semantic category (e.g. tib darleem was paired with 

an artefact, instead of an animal).  
Suffix-Only Generalisation. This task tested learning of the 

co-occurrence between the semantic category and the suffix 

specifically; that is, the ‘phonological’ cue. The 8 novel 

words were presented with novel picture pairings; as before, 

the 4 consistent items conformed to the regularities in the 

training set. In the inconsistent items, the determiner 

‘matched’ the picture, but the suffix did not match either the 

determiner or the picture (e.g.tib senool was paired with a 

picture of a goat; where the co-occurrence of ‘tib’ with the 

picture of an animal conformed to the training set, but the 

suffix ‘ool’ was inconsistent with both the determiner ‘tib’ 

and the semantic category of animal).  

Phonological Form Generalisation. This task specifically 
tested learning of the co-occurrence of the determiner and 

suffix; that is, the ‘distributional’ cue. Eight novel words 

were presented without pictures. The 4 consistent items 

conformed to the regularities used in the training set. The 4 

inconsistent items had a mismatch between the determiner 

and the suffix (e.g. tib jitool and ked narpeem).  
 
Procedure Participants completed all tasks in one session of 

approximately 40-60 minutes. Responses were recorded by 

the ‘DMDX’ programme (Forster & Forster, 2003) on a PC 

laptop computer. Participants were introduced to 

experimental tasks as a series of games involving ‘alien’ 

words introduced by a visiting extra-terrestrial. The training 

procedure varied across the three experiments, but they all 

used the same testing protocol. 

 

 

Experiment 1 training:  
Repetition: The thirty-two training stimuli were presented 

once within a block, for three blocks. Participants were 

instructed to look at the picture and listen to the ‘alien’ word 

and repeat the word aloud once.  Participants completed this 
task twice. 

WPM: Participants were presented with word-picture pairs 

and were instructed to judge if they thought the word and 

picture ‘went well together’. Participants were exposed to all 

32 word-picture pairs once. In addition, 16 of the word items 

were presented again paired with a different picture from the 

same semantic category (mismatch trials) for the ‘incorrect’ 

response. The participant responded using keys on the 

computer keyboard: a “happy face” if they thought the picture 

and word went well together and a “sad face” if they did not. 

Participants completed this task twice. 
Experiment 2 training:  
Repetition and WPM: For this experiment, the repetition 

and WPM tasks were merged. In each block, participants 

were exposed to all 32 word-picture pairs once. In addition, 8 

mismatch trials were included, in which the word items were 

paired with an incorrect picture from the same semantic 

category. Participants were instructed to look at the picture 

and listen to the ‘alien’ word and repeat it aloud once. They 

then pressed the space bar and then judged if the word and 

picture ‘went well together’ using the same WPM response 

procedure from Experiment 1.  
Each training block was followed by a word-learning test 

(described below). Training ended when the participant 

reached the same level of accuracy as that of the children in 

Experiment 1 (75%).  
Experiment 3 training:  
Repetition Only: The training set for Experiment 3 was the 

same as that for Experiment 2, including criterion learning. 

However, the training procedure was different in that it did 

not include WPM: participants had only to repeat the training 

items.  
All Experiments: Testing 
Word Learning –Two Alternative Forced Choice (2AFC): 

This task tested learning of the novel words. Each word was 
randomly presented once and was accompanied by the 

simultaneous presentation of two pictures (on either side of 

the screen), one of which was the correct trained picture. The 

‘foil’ picture was drawn from the trained pictures and was 

from the same semantic category. Participants responded 

using keys on the computer keyboard which corresponded to 

the on-screen picture presentation position.  

Generalisation: “Determiner and Suffix” and “Suffix 

Only” Generalisation. In both these tasks, participants were 

instructed to attend to ‘alien’ word and picture pairings (from 

the respective generalisation sets) and judge if they thought 
they ‘went well together’, pressing the happy or sad face 

accordingly.  

“Phonological Form”: Participants were instructed to listen 

to the ‘alien’ words from the generalisation set and asked to 

judge if the words ‘went well with’ the ‘alien’ language they 
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had been listening to, pressing the happy or sad face 

accordingly.  
Explicit Knowledge Questionnaire: Once all tasks were 

completed, participants were asked ‘Did you notice anything 

about the alien language? Did you use any kind of strategies 
or clues to decide whether the word and the picture 

matched?’ Answers were recorded manually and a score from 

0-3 was given separately for determiner and suffix 

knowledge: 0 for no reference to the morpheme or semantic 

dependency, 1 for knowledge of the morpheme but not the 

dependent semantic cue, 2 for partial knowledge of the 

morpheme and semantic dependency and 3 for full 

knowledge.  

 

Results and Discussion 
Word Learning: We examined the level of word learning in 

the three experiments by analysing performance on the 2AFC 

task at the end of training. One-sample t-tests against chance 

(.5) showed that all groups learned the novel words. 

(Experiment 1 adults, t(30)=28.93, p<.001; children, 

t(29)=9.10, p<.001; Experiment 2 adults, t(29)=21.17, 

p<.001; Experiment 3 adults, t(29)=21.83, p<.001; Figure 1).  
Adult participants in Experiments 2 and 3 were trained to the 
criterion matching the levels of child word learning in 

Experiment 1. To confirm that the word learning across the 

three studies matched as intended, we ran two multiple 

regressions with 2AFC performance as the outcome variable 

and group as the predictor variable coded using Helmert 

contrasts. The first set of contrasts showed that, as expected, 

adults learned more words in Experiment 1 (Adults1) than in 

Experiments 2 (Adults2) and 3 (Adults3; β=0.68, p<.001), 

and that there was no difference between the latter two 

(p=.293). The second set of contrasts showed that Adults2 

(p=.341) and Adults3 (p=.757) learnt an equivalent number 

of words to the children in Experiment 1 (Children1). These 
findings show that all participants demonstrated word 

learning. Crucially, these results indicate that criterion 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 1: Word Learning: Accuracy on the 2AFC task at the 

end of training.   

learning method used in Experiments 2 and 3 was successful 

at reducing the level of adult participants’ word-learning to 

that of the child participants in Experiment 1.  

 

Generalisation Tasks To analyse performance in the 
generalisation tasks, we derived an A’ metric based on the 

endorsement rates for consistent and inconsistent trials 

(Pallier, 2002). A’ scores above 0.5 were taken as indication 

that a participant could reliably endorse consistent trials more 

often than inconsistent trials, demonstrating learning of the 

regularities.   

 “Determiner and Suffix”: Figure 2 shows levels of 

generalisation performance for all groups on this task. One-

sample t-tests showed that only Adults1 performed 

significantly above 0.5 (t(30)=6.13, p<.001). Thus, only this 

group demonstrated learning and generalisation of the 

mapping between the determiner and suffix, and the semantic 
category.  

Using the same set of contrasts as in the analysis of word 

learning, with A’ performance as the outcome variable and 

group contrasts as the predictor variables, group comparisons 

further confirmed that Adults1 were significantly better at 

generalising this regularity than Adults2 and Adults3 

(β=0.30, p<.004). There was no difference between the 

Adults2 and Adults3 (p=.703), nor between Children1 and 

Adults2 (p=.451) or Adults3 (p=.916). 

“Suffix Only”: Figure 3 shows generalisation performance 

for all groups on this task. One-sample t-tests demonstrated 
that Adults1 (t(30)=3.45, p<.001) and Adults2 (t(29)=1.97, 

p=.029) performed significantly above an A’ of 0.5. 

Children1 (p=.762) and Adults3 (p=.500) did not. Therefore, 

only Adults1 and Adults2 showed learning and generalisation 

of the mapping between the semantic category and the suffix 

(the phonological cue). 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2: Performance on the “Determiner & Suffix” 

Generalisation Task 
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Figure 3: Performance on the Suffix Only Generalisation 

Task 

 

Group comparisons showed differences between Adults 1 

compared to Adults2 and Adults3 (β=0.25, p=.044) and 

between Children1 and adults 2 (β=0.35, p<.044).  There was 

no difference between Adults 2 and 3 (p=.148) or between 

Children1 and Adults3 (p=.581). 

 “Phonological Form”: As illustrated in Figure 4, 

participants in all groups and experiments performed at a 
similar level. One-sample t-tests demonstrated that only 

Adults1 performed significantly above 0.5 (t(30)=2.93, 

p<.001). Thus, only this group showed evidence of learning 

and generalising the co-occurrence between the determiner 

and the suffix (the distributional cue). 
The group comparisons showed there was no evidence of a 

differences in generalisation across the three experiments, or 

between adults and children (Adults1 vs. Adults2&3, p=.083; 

Adults2 vs. Adults3, p=.294; Children1 vs. Adults2, p=.513;  

  

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 4: Performance on the “Phonological Form” 

Generalisation Task 

 

Children1 vs. Adults3, p=.268). These results show only 

weak evidence for the learning and generalisation of the 

determiner + suffix co-occurrence in this paradigm. 

In summary, only adults in Experiment 1 demonstrated the 
ability to utilise all three statistical cues to generalise newly 

formed grammatical knowledge. Their performance was 

reliably different from that of children, and of adults in 

Experiments 2 and 3, when generalising the trained cues to 

novel exemplars.  
Given that Adults2 and Adults3 show the same level of 

word learning as Children1, this result suggests that the level 

of word learning may be a driver of grammatical 

generalisation and as such may explain some of the difference 

seen between adults and children in Experiment 1. This 

finding aligns with Bates and Goodman’s (1997) lexicalist 

theory, which proposes that the emergence of grammar 
depends on lexical learning. 

Although the lack of generalisation in children found here 

is in contrast to some previous studies in the literature (e.g. 

Hall et al., 2018; Lany & Saffran, 2010; 2011), this may be 

due to a number of factors, including the nature of the training 

and the structure and complexity of the regularities. In the 

current study, the training tasks always included 

simultaneous presentation of the referent with the novel 

words, unlike e.g. Lany and Saffran (2010; 2011) and Lany 

(2014), who trained participants on the phonological word 

form before introducing the referent, and  Hall et al., (2018), 
who trained participants on a language that did not include a 

referent. Moreover, the simultaneous presentation of all noun 

class cues (phonological, distributional, and semantic) in the 

current study may have increased the complexity of the task, 

and affected the relative salience of the cues. Thus, further 

research exploring these methodological differences would 

help to clarify the role of semantic cues, and the effects of 

sequential vs simultaneous presentation of different type of 

cue.   

 
Explicit Knowledge: Contributions to Generalisation 
Table 2 shows the explicit knowledge scores for each group, 

presented separately for each morpheme. These scores 

suggest greater explicit knowledge for determiners than for 

suffixes across all groups/experiments.  

A key aim in the current study was to assess the extent to 

which explicit knowledge contributes to generalisation 

performance, and whether this contribution differs in children 
and adults. We were specifically interested not in the group 

differences between children and adults (as children may be 

less able to verbalise their knowledge), but in the extent to 

which individual variation in the levels of explicit knowledge  

 

 

 

 

 

 

 

 

Table 2: Descriptive Statistics for Explicit Knowledge 
Scores 

 Determiner Suffix 

  M               SD  M               SD 

Adults1 2.39            1.02 0.58           1.03 

Children1 0.70            1.11 0.10           0.31 

Adults2 1.20            1.19 0.33           0.76 

Adults3 1.50            1.17 0.23           0.63 
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within each group contributes to generalisation performance. 

To address these questions, multiple regressions were carried 

out for each generalisation task. The outcome variable in each 

regression was the A’ score, while explicit knowledge scores 

for the relevant morpheme(s) were the predictor(s). For 
example, in the “phonological form” and “suffix only” 

generalisation tasks, only knowledge of the suffix was 

necessary for successful performance, so only suffix 

knowledge was used as a predictor, while for the “determiner 

and suffix” task, knowledge of both determiner and suffix 

was relevant. 

As illustrated in Table 3, for adults in Experiment 1 explicit 

knowledge of the regularities was a significant predictor of 

generalisation performance in the “determiner & suffix” and 

“suffix only” tasks, but not in the “phonological form” task. 

Explicit knowledge of the relevant morpheme facilitated 

performance in the generalisation tasks. The strongest effect 
was for knowledge of the determiner-semantic mapping, 

which accounted for 27% of the variance in the ‘determiner 

& suffix’ task. In contrast to the adults, explicit knowledge of 

the regularities in children did not significantly predict 

performance in any of the generalisation tasks. 

The pattern of results in Experiment 2 provides an 

informative comparison because the adults in this group 

showed low levels of generalisation (comparable to children), 

and intermediate levels of explicit awareness.  Nonetheless, 

variability in generalisation within this group was 

significantly predicted by explicit awareness of the relevant 
morphemes. As with adults in Experiment 1, the strongest 

effect was for knowledge of the determiner-semantic 

mapping, which in this case accounted for an even larger 

proportion (38%) of the variance in the ‘determiner & suffix’ 

task. Finally, the adults in Experiment 3, showed low levels 

of generalisation as well as low levels of explicit knowledge.  

In this case, and similarly to the children in Experiment 1, 

there was no clear evidence of facilitatory effect of explicit 

knowledge on generalisation performance. This may suggest 

that the use of the WPM training task could prompt the 
emergence and correct use of explicit knowledge, at least in 

adults.   

Overall these results suggest a partial role for explicit 

knowledge in grammatical generalisation for adults but not 

children. This still seems to hold when adults demonstrate 

similar levels of word learning and generalisation to children, 

suggesting that there may be differences in the extent to 

which adults and children draw on explicit processes when 

generalising in a grammatical SL task.   

 

Conclusion 
The current set of experiments demonstrates that explicit 

knowledge plays a role in grammatical category 

generalisation in adults but not children. This may be partially 
due to children’s lower level of word knowledge, given the 

lower level of generalisation performance in adults when 

levels of word knowledge were matched to those of children. 

However, adults with a lower level of word knowledge still 

demonstrated a partial involvement of explicit knowledge in 

the generalisation tasks. This suggests the possibility of 

developmental differences between adults and children in the 

role of explicit and implicit processes when generalising in 

SL tasks. In future studies, more sensitive measures that do 

not rely on verbal reports would provide further insights into 

the contributions of explicit knowledge in implicit learning 
tasks across development. 

 

Table 3: Multiple Regressions for the Role of Explicit Morpheme Knowledge on Generalisation Performance.   

 

                                                                  Experiment 1 Adults Experiment 1 Children 

 R2 B SE B ß p R2 B SE B ß p 

Determiner & Suffix Generalisation: 0.27     -0.02     

Explicit Determiner Knowledge 0.27 0.14 0.04 0.54 .002 -0.02 0.03 0.05 0.11 .558 

Explicit Suffix Knowledge 0.00 0.02 0.04 0.08 .599 -0.00 0.15 0.18 0.16 .403 

Suffix Only Generalisation: 0.16     0.01     

Explicit Suffix Knowledge  0.10 0.04 0.43 .015  0.16 0.13 0.21 ..259 

Phonological Form Generalisation: 0.05     0.03     

Explicit Suffix Knowledge  0.07 0.04 0.29 .112  0.22 0.15 0.26 .171 

                                                                  Experiment 2 Adults Experiment 3 Adults 

Determiner & Suffix Generalisation: 0.46     -0.03     

Explicit Determiner Knowledge 0.38 0.17 0.04 0.62 <.001 -0.03 0.03 0.04 0.11 .553 

Explicit Suffix Knowledge 0.07 0.13 0.06 0.30 .037 -0.00 0.08 0.08 0.19 .329 

Suffix Only Generalisation: 0.10     0.11     

Explicit Suffix Knowledge  0.12 0.06 0.36 .052  0.13 0.06 0.37 .044 

Phonological Form Generalisation: 0.18     0.12     

Explicit Suffix Knowledge  0.14 0.05 0.46 .011  -0.13 0.06 -0.38 .036 

Significant results are highlighted in bold. 

   Only morpheme knowledge salient to the generalisation task were included.     
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Abstract
Speech-acts can have literal meaning as well as pragmatic
meaning, but these both involve consequences typically in-
tended by a speaker. Speech-acts can also have unintentional
meaning, in which what is conveyed goes above and beyond
what was intended. Here, we present a Bayesian analysis of
how, to a listener, the meaning of an utterance can significantly
differ from a speaker’s intended meaning. Our model em-
phasizes how comprehending the intentional and unintentional
meaning of speech-acts requires listeners to engage in sophisti-
cated model-based perspective-taking and reasoning about the
history of the state of the world, each other’s actions, and each
other’s observations. To test our model, we have human partic-
ipants make judgments about vignettes where speakers make
utterances that could be interpreted as intentional insults or un-
intentional faux pas. In elucidating the mechanics of speech-
acts with unintentional meanings, our account provides insight
into how communication both functions and malfunctions.
Keywords: Bayesian modeling, social cognition, common
ground, speech-act theory, faux pas, theory of mind

Introduction
People sometimes communicate things that they did not in-
tend or expect. Consider the following vignette, adapted
from Baron-Cohen et al. (1999):

Curtains Paul had just moved into a new apartment.
Paul went shopping and bought some new curtains for
his bedroom. After he returned from shopping and had
put up the new curtains in the bedroom, his best friend,
Lisa, came over. Paul gave her a tour of the apartment
and asked, “How do you like my bedroom?”

“Those curtains are horrible,” Lisa said. “I hope you’re
going to get some new ones!”

Clearly, Lisa committed a social blunder or faux pas with
her remark. What happened here? When Lisa says, “Those
curtains look horrible,” she is merely stating her private aes-
thetic experience of the curtains. The literal meaning is
straightforward: The curtains look bad. And the intended or
expected meaning of her utterance is largely captured by this
literal meaning. However, to Paul, the utterance means more.
Specifically, what Lisa is really saying is that he chose horri-
ble curtains. Of course, Lisa did not “really” say that Paul’s

*The author’s affiliation with The MITRE Corporation is provided for identification
purposes only, and is not intended to convey or imply MITRE’s concurrence with, or
support for, the positions, opinions, or viewpoints expressed by the author.

choice in curtains was horrible—she had no intention of con-
veying such an idea. Paul might even realize this. Nonethe-
less, the remark stings. Why? Lisa and Paul each possess a
piece of a puzzle, and when put together, they entail that Paul
has awful taste in curtains. At the outset, neither one knew
that they each had a piece of a puzzle. But once Lisa makes
her remark, she inadvertently completes the puzzle, at least
from Paul’s perspective.

Standard models of communication (Grice, 1957; Sperber
& Wilson, 1986) tend to focus on how people use language
successfully. For example, people can imply more than they
literally mean (Carston, 2002), convey subtle distinctions via
metaphor (Tendahl & Gibbs Jr, 2008), and manage their own
and others’ public face using politeness (Levinson, Brown,
Levinson, & Levinson, 1987; Yoon, Frank, Tessler, & Good-
man, 2018). But things do not always go smoothly, as Paul
and Lisa’s situation indicates. Sometimes people find them-
selves having inadvertently stepped on conversational land-
mines, meaning things that they never anticipated meaning.
Notably, because such situations present complex dilemmas
of mutual perspective-taking against a backdrop of divergent
knowledge, they can serve as advanced tests of theory of
mind (Baron-Cohen et al., 1999; Zalla, Sav, Stopin, Ahade,
& Leboyer, 2009; Korman, Zalla, & Malle, 2017). But how
do people reason about such dilemmas? And how can this
be understood computationally? Disentangling unintentional
meaning can shed light on how communication works in a
broader social context as well as inform the design of artifi-
cial intelligences that interact with people.

Here, we develop a rational, cognitive account of interpret-
ing unintentional speech-acts that builds on existing Bayesian
models of language (e.g., Rational Speech Act [RSA] mod-
els [Goodman & Frank, 2016]). To do this, we analyze the
general epistemic structure of social interactions such as the
one described above and model listeners engaging in model-
based perspective-taking. In particular, our model explains
how the same utterance could be interpreted as either an (un-
intentional) faux pas or an intentional insult depending on
the context of a listener and speaker’s interaction. We then
test several model predictions in an experiment with human
participants. In the following sections, we outline our compu-
tational model, experimental results, and their implications.
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A Bayesian Account of Unintentional Meaning
During social interactions, people reason about the world as
well as each other’s perspective on the world (Brown-Schmidt
& Heller, 2018). Thus, our account has two components,
which we formulate as probabilistic models. First, we spec-
ify a world model that captures common-sense relationships
between world states, actions, and events. Second, we define
agent models of a speaker and listener reasoning about the
world and one another.

World Model
We model the interaction as a partially observable stochas-
tic game (POSG), a generalization of Markov Decision Pro-
cesses (MDPs) with multiple agents with private obser-
vations (Kuhn, 1953). Formally, a world model W “

xI ,S ,A ,Z,T y where:
• I is a set of n agents indexed 1, ...,n;
• S is a set of possible states of the world, where each state

s P S is an assignment to k variables, s“ px0,x1, ...,xkq;
• A “

Ś

iPI A i is the set of joint actions, i.e., every combi-
nation of each agent i’s actions, A i (including utterances);

• Z “
Ś

iPI Zi is the set of joint private observations, which
is every possible combination of each individual agent i’s
private observation set, Zi; and

• T “ Ppz,s1 | s,aq is a transition function representing the
probability of a joint observation z and next state s1 given a
previous state s P S and joint action a P A was taken.

In Curtains, the initial state, s0, includes Paul with the old
curtains in the apartment and Lisa elsewhere. There is also
a latent state feature of interest: whether Paul has good or
bad taste. At t “ 0, Paul’s action, aPaul

0 , is choosing new cur-
tains, while Lisa’s action, aLisa

0 , is going to the apartment.
The joint action, a0 “ paPaul

0 ,aLisa
0 q, results in a new state, s1,

with them both in the apartment, the curtains either good or
bad, and Paul’s taste. Paul’s observation, zPaul

0 , but not Lisa’s,
zLisa

0 , includes Paul having put up the curtains. These rela-
tionships between world states (e.g. Paul and Lisa’s loca-
tions), actions (e.g. Lisa walking to Paul’s apartment), and
observations (e.g. Paul observing himself put up the cur-
tains) are formally encoded in the transition function T . The
sequence of states, joint actions and observations resulting
from such interactions constitute the history up to a point t,
~ht “ ps0,a0,z0, ...,st´1,at´1,zt´1,stq.

Agent Models
Agents are modeled as Bayesian decision-makers (Bernardo
& Smith, 1994) who can reason about the world and other
agents as well as take actions—including making utterances.

Interactive Belief State Agents’ beliefs are probability dis-
tributions over variables that represent aspects of the current
state, previous states, or each other’s beliefs. The configu-
ration of these first- and higher-order, recursive beliefs con-
stitute their interactive belief state (Gmytrasiewicz & Doshi,
2005). We refer to an agent i’s beliefs as bi. For example,
if we denote Paul’s taste as the variable T Paul, then Paul’s

belief that his taste is good is bPaulpT Paul “ Goodq. Higher-
order beliefs can also be represented. For instance, we can
calculate Paul’s expectation of Lisa’s belief in his taste as
EbPaulrbLisaspT Paulq “

ř

bLisa bPaulpbLisapT Paulqq.
An agent i’s beliefs are a function of their prior, model of

the world, model of other agents, and observation history up
to time t, ~z i

t . Note that ~z i
t can include observations that are

completely private to i (e.g., Lisa’s personal aesthetic expe-
rience) as well as public actions and utterances (e.g., Lisa’s
remark to Paul). Thus, we denote Paul’s belief about his taste
at a time t as bPaul

t pT Paulq “ bPaulpT Paul |~zPaul
t q. Given a se-

quence of observations,~z i
t , posterior beliefs about a variable

X are updated via Bayes’ rule:

bpX |~z i
t q 9 bp~z i

t |XqbpXq (1)

“
ÿ

~ht

bp~z i
t |
~htqbp~ht ,Xq (2)

The capacity to reason about higher-order beliefs (e.g.,
Paul’s beliefs about Lisa’s belief in his taste), along with
Equation 2 express agents’ joint inferences about events and
model-based perspective-taking.

Speaker Model Speakers have beliefs and goals. When
choosing what to say, they may have beliefs and goals with re-
spect to the listener’s beliefs and goals. In our example, Lisa
may care about being informative about how she sees the cur-
tains, but may also think Paul cares about having good taste
in curtains and care whether she hurts his feelings. Follow-
ing previous work (e.g., Franke, 2009), we model speakers
as reasoning about changes in belief states. Here, we are in-
terested in how a speaker can intend to mean one thing but
inadvertently mean another. Thus, we distinguish between
state variables that the speaker wants to be informative about,
X Info (e.g., how Lisa sees the curtains), and evaluative vari-
ables, XEval, that the listener wants to take on a specific value
xEval˚ (e.g., Paul’s taste being good). The speaker then cares
about the changes in those quantities. Formally:

∆
L-Info
t “ bL

t`1pX
Info “ xInfoq´bL

t pX
Info “ xInfoq, (3)

where xInfo is given by~ht ; and,

∆
L-Eval
t “ bL

t`1pX
Eval “ xEval˚q´bL

t pX
Eval “ xEval˚q. (4)

A speaker who is interested in what the listener thinks
about X Info and XEval will, at a minimum, anticipate how their
utterances will influence ∆L-Info

t and ∆L-Eval
t . A speaker would

then have a reward function defined as:

RSpaS
t ,~z

L
t`1q “ θ

L-Info
∆

L-Info
t `θ

L-Eval
∆

L-Eval
t (5)

where the θ terms correspond to how the speaker values cer-
tain outcomes in the listener’s mental state. For instance, if
θL-Eval ă 0, the speaker wants to insult the speaker.

Given Equation 5, a speaker can take utterances based on
expected future utility/rewards (or value [Sutton & Barto,
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(a)

Those look

horrible!

Those look

horrible!

Those look

horrible!

(c)

Those look

horrible!

Speaker

Reasoning

Event

Sequence

Listener

Reasoning

(b)

Those look

horrible!
Speaker

Observation

History

Those look

horrible!Event

Sequence

Lisa believes that 

Paul did not choose 

the curtains and 

that he has good taste.

Paul actually chose the curtains

and does not have good taste.

Lisa does not like the curtains.

Paul initially believes that 

Lisa liked the curtains and 

that he has good taste.

Lisa’s remark leads Paul 
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Figure 1: Model and example of unintentional meaning. (a) Influence diagram with state, action, and observation dependencies.
Circles correspond to world state (e.g., st ) and observation (e.g., zi

t ) variables; squares correspond to agent action variables
(including utterances) (e.g., ai

t ). (b) Event sequence in Curtains (top) and speaker observation history (bottom). Lisa does
not observe Paul choose the curtains. Only Lisa experiences whether the curtains look good or bad and comments on this
experience. (c) Diagram of interactive belief state over time in Curtains.

1998]), where the expectation is taken with respect to the
speaker’s beliefs, bS

t . That is, given observations~zS
t , the value

of aS
t is V SpaS

t ;~zS
t q “ EbS

t

“

RSpaS
t ,~z

L
t`1q

‰

, and an action is cho-
sen using a Luce choice rule (Luce, 1959).

Listener Inference Our goal is to characterize how a
listener’s interpretation of an utterance can differ from a
speaker’s intended meaning, which requires specifying lis-
tener inferences. We start with a simple listener that under-
stands the literal meanings of words when spoken. Following
previous models (Franke, 2009; Goodman & Frank, 2016),
the literal meaning of an utterance aS is determined by its
truth-functional denotation, which maps histories to Boolean
truth values, rraSss :~ht ÞÑ y, y P tTrue,Falseu. A literal lis-
tener’s model of speaker utterances is:

bpaS |~htq 9

#

1´ ε if rraSssp~htq

ε if  rraSssp~htq

where ε is a small probability of aS being said even if it hap-
pens to be false.

We can also posit a more sophisticated listener who, rather
than assuming utterances literally reflect reality, reason about
how a speaker’s beliefs and goals mediate their use of lan-
guage. This type of listener draws inferences based on an
intentional model of a speaker that track the quantities in
Equations 3 and 4 as well as maximize the expected rewards.
These inferences, however, occur while the listener is also
reasoning about the actual sequence of events ~ht , making
it possible to draw inferences based on utterances that the
speaker did not anticipate.

Model Simulations

In the original Curtains scenario, Lisa was not present when
Paul put up the curtains. As a result, Lisa’s comment (“Those
curtains are horrible”) is interpreted in a diverging observa-
tion history context. But what if Lisa had been present when
Paul put up the curtains and made the same utterance? Given
a shared observation history, Lisa’s utterance is still offen-
sive, but now Lisa has all the information needed to realize it
would be offensive. Put simply, in the diverging history con-
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Model Predictions

Participant Results
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listener to feel

bad about ability
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bad about ability

Diverging History
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Scenarios/Conditions

** *********

****** ************

Figure 2: (a) Model predictions. The model predicts that the listener’s change in belief in the evaluative variable (∆L-Eval
t ) is

equally negative in the diverging and shared history scenarios. However, whether the speaker anticipated the offensiveness of
their comment differs between the two scenarios, as do the listener’s beliefs about the speaker’s anticipation. (b) Judgments
from all participants by question. Responses were normalized depending on whether response scales were valanced (Q1),
likelihood (Q2-Q7), or qualitative (Q8). (c) Judgments from participants who correctly identified whether the speaker knew the
listener modified the object. ˚ : pă .05, ˚˚ : pă .01, ˚˚˚ : pă .001.

text, the utterance is a faux pas, whereas in the shared history
context, it is an intentional insult.

In this section, we discuss how our model can be used to
make these intuitive predictions precise and explain how they
arise from agents’ interactions and model-based perspective-
taking within a shared environment. We implemented our
model in WebPPL (Goodman & Stuhlmüller, 2014), a pro-
gramming language that can express stochastic processes like
POSGs as well as Bayesian inference.

Generative Model
To model a scenario like Curtains, we define agents, objects,
and features assigned to them. These are the curtains, which
have a location (inside Paul’s apartment); the speaker (Lisa),
who has a location (inside or outside Paul’s apartment) and
a perception of the curtains (good or bad); and the listener
(Paul), who has a location (inside or outside) and ability to
choose curtains (high or low). Additionally, the listener can
either act on the curtains or not, while the speaker can enter

the apartment and make an utterance about the curtains (“the
curtains look good”, “the curtains look bad”, or <nothing>).
The truth-conditional semantics of the utterances map onto
world features in a standard manner, and we set ε“ .05.

Observations depend on whether agents and objects are co-
located and are defined as subsets of state and action vari-
ables. For instance, if Paul and Lisa are both inside the house
and Paul modifies the curtains, they both observe that Paul
acted on the curtains, but only Lisa directly knows whether
they look good to her. Finally, we define a state and action
prior for both agents such that the listener’s ability is initially
high (p“ 0.90), the speaker’s perception of the object is ini-
tially random (p“ 0.50), and the listener has a low probabil-
ity of modifying the object (p“ 0.05).

Model Predictions
Given the generative model, we can provide scenarios and
calculate aspects of the resulting interactive belief state (the
listener and speaker’s beliefs about the world and each other’s
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beliefs). In particular, we compare the results of a shared
history with those of a diverging history. In the shared his-
tory, the speaker and listener are both present when the lis-
tener modifies the object, whereas in the diverging history,
the speaker is not present when the listener acts on the object.
Otherwise, the two scenarios are the same and the speaker
comments on the curtains being bad. Figure 2a displays the
results of the simulation when given each of the two histories.
In both histories, the listener learns that their ability when
modifying the object, XEval, is low (i.e., ∆L-Eval

t ă 0). They
also learn about the informative variable (i.e., ∆L-Info

t ą 0).
However, the resulting interactive belief states differ in im-

portant ways. For example, in the diverging history, although
the listener concludes that the evaluative variable is low, the
speaker thinks the evaluative variable is high. Relatedly, the
speaker thinks the utterance was informative (EbS r∆L-Infos ą

0) but not offensive (EbS r∆L-Evals “ 0). Moreover, the listener
knows the speaker believes that their comment was expected
to be informative and not offensive. In the shared history,
this is not the case: The listener and speaker both believe the
evaluative variable is low, and they both know the resulting
informational and evaluative effects. Because they were both
present when the listener modified the object, they share ex-
pectations about the utterance’s meaning.

Put intuitively, whereas the shared history leads to an ex-
pected insult, the diverging history leads to a faux pas. Our
model explains this difference in terms of differential trans-
formations of the listener and speaker’s interactive belief
state.

Experiment
Our model explains how different observation histories re-
sult in interactive belief states, which can produce uninten-
tional meaning. To test whether this accurately describes
people’s capacity to reason about unintentional meaning, we
had people read vignettes that described scenarios involv-
ing shared or diverging observation histories. The under-
lying logical structure of all the vignettes mirrored that of
Curtains, and so the model predictions described in the
previous section apply to all of them. Participants then
provided judgments corresponding to predicted differences
in listener/speaker beliefs. The study’s main hypotheses
were preregistered on the Open Science Framework platform
(https://osf.io/84wqn). Overall, we find that our model
captures key qualitative features of people’s inferences.

Materials
We developed a set of vignettes that included interactions in
different contexts as well as different histories of interaction.
Each vignette involved a listener (e.g., Paul) who could po-
tentially interact with an object (e.g., curtains) as well as a
speaker (e.g., Lisa) who makes an utterance about their neg-
ative aesthetic experience of the object (e.g., “The curtains
look horrible”). In the shared history versions of the vi-
gnettes, the two agents were described as being both present
when the listener acted on an object. In the diverging history

versions of the vignettes, the speaker was not present when
the listener interacted with the object. Each vignette involved
one of five contexts: Curtain, Story-Prize, Wine-bottle, Cup-
cakes, and Parking. Thus there were a total of ten items (Di-
verging/Shared history ˆ 5 contexts). All items used in the
experiment are available on the primary author’s website.

Procedure
One-hundred participants were recruited via MTurk to partic-
ipate in our experiment using PsiTurk (Gureckis et al., 2016).
Each participant read one of the ten context-history items, and
then answered the following questions in order:
• Q1: At this point, how does <listener> feel about their

ability to <action>? [6 point scale ranging “Very Bad” to
“Very Good” with no neutral option]

• Q2: <listener> thinks that <speaker> expected that
their remark would make them feel <Q1 response>.

• Q3: <listener> thinks that in making the remark,
<speaker> wanted to make them feel <Q1 response>.

• Q4: <listener> thinks that <speaker> thinks that
<listener> <action>.

• Q5: <speaker> knew that <listener> <action>.
• Q6: In making the remark, <speaker> expected
<listener> to feel <Q1 response>.

• Q7: In making the remark, <speaker> wanted
<listener> to feel <Q1 response>.

• Q8: How awkward is this situation? [5 point scale ranging
“Not at all” to “Extremely”

The values for <listener>, <speaker>, and <action>were
specified parametrically based on the context, while the value
for <Q1 response> was filled in based on the answer to the
first question. The response scale for questions 2-7 was a
six-point scale ranging from “Definitely Not” to “Definitely”,
with no neutral point. We included question 8 because pre-
vious work studying faux pas have focused on this ques-
tion (Zalla et al., 2009). Participants were also given free
response boxes to elaborate on their interpretation of the sit-
uation and answered demographic questions.

Question β S.E. df t p
Q1 -0.06 0.07 94.0 -0.77
Q2 0.15 0.06 94.0 2.65 **
Q3 0.15 0.06 94.0 2.50 *
Q4 0.18 0.06 94.0 2.78 **
Q5 0.25 0.06 94.0 4.34 ***
Q6 0.14 0.06 94.0 2.53 *
Q7 0.15 0.06 94.0 2.64 **
Q8 0.04 0.05 94.0 0.78

Table 1: Tests for Diverging/Shared history factor.

Experimental Results
Manipulation check To assess whether the Diverg-
ing/Shared history manipulation worked, we examined re-
sponses to Q5 (whether the speaker knew the listener acted on
the object). A comparison in which the responses were coded
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Figure 3: Judgment correlations (Pearson’s r).

as Yes or No (i.e., above or below the middle of the response
scale) showed that it was effective (χ2p1q “ 7.92, p ă .01).
However, a number of participants (15 of 50 in Shared; 20
of 50 in Diverging) did not pass this manipulation check and
gave opposite answers than implied by the stories. Whether
their responses are included does not affect our qualitative re-
sults, and in our analyses we use the full data set. Figure 2c
plots the results for those who passed this check.

Judgment differences Responses paralleled the model pre-
dictions for the Shared versus Diverging history versions of
the vignettes (Figure 2b). For each judgment, we fit mixed-
effects linear models with context intercepts as a random ef-
fect and history as a fixed effect. Table shows tests of sig-
nificance on the Diverging/Shared history parameters. Judg-
ments about the listener’s feelings (Q1) were negative and not
significantly different, indicating that people perceived the
psychological impact (at least with respect to ability) of the
utterance as roughly equivalent. In contrast, questions about
the interactive belief state—the listener and speaker’s beliefs
about the world and each other’s beliefs (Q2-Q7)—differed
as predicted by the model. In particular, participants thought
that the speaker neither expected that their utterance would
hurt the listener’s feelings, nor that they wanted to do so. Par-
ticipants judged that the listener recognized this as well.

Judgment correlations Judgments among questions about
higher order mental states were strongly correlated, while
those between the higher order mental states and the lis-
tener’s action were weaker (Figure 3). Specifically, those
about speaker mental states (Q6, Q7) and listener beliefs
about speaker mental states (Q2, Q3) were all highly corre-
lated (all r P r0.77,0.91s, p ă .001). In contrast, questions
about knowledge of the object being modified (Q4, Q5) were
only moderately correlated with those about anticipated ef-
fects (Q2, Q3, Q6, Q7) (all r P r0.48,0.64s, pă .001).

Discussion
People’s actions can have unexpected consequences, and
speech-acts are no different. To understand unintentional
meaning though, we need to characterize how a communica-
tive act can lead to unanticipated epistemic consequences.
Sometimes, a listener can learn something from an utter-
ance that a speaker did not intend to convey or may not even
believe (e.g., as in Curtains). Here, we have presented a
Bayesian model and experiments testing how people reason
about scenarios involving unintentional speech acts. Specif-
ically, our account treats speech-acts as actions taken by a
speaker that influence a shared interactive belief state—the
beliefs each agent has about the world and each other’s be-
liefs. In doing so, we can capture the inferences that underlie
unintentional meaning.

The current work raises important empirical and theoreti-
cal questions about how people reason about interactive be-
liefs and unintentional meaning. For instance, our experi-
ments focus on third-party judgments about how a listener
interprets the unintended meanings of utterances, but further
work would be needed to assess how listeners do this (e.g.,
when the victim of an offhand comment) or even how speak-
ers can recognize this (e.g., realizing one has put their foot in
their mouth). Additionally, we have presented a Bayesian ac-
count of unintentional meaning in which agents reason about
a large but finite set of possible histories of interaction. In
everyday conversation, the space of possible histories can be
much larger or even infinite. It is thus an open question how
people can approximate the recursive inferences needed to
make sense of unintentional meaning.

A rigorous characterization of unintentional meaning can
deepen our understanding of how communication works in
a broader social context. For example, attempts to build
common ground through shared experience (Clark & Mar-
shall, 1981; McKinley, Brown-Schmidt, & Benjamin, 2017)
or manage face with polite speech (Levinson et al., 1987;
Yoon et al., 2018) could be understood, in part, as strate-
gies for forestalling unintentional meaning. And given that
intentionality plays a key role in judgments of blame (Baird
& Astington, 2004), phenomena like plausible deniability
could be understood as people leveraging the possibility of
unintentional meaning to covertly accomplish communicative
goals (Pinker, Nowak, & Lee, 2008). Although further inves-
tigation is needed to test the extent to which people can track
and influence interactive belief states (as well as how artifi-
cial agents can do so), this work provides a point of departure
for computationally investigating these social and cognitive
aspects of communication.
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Abstract 
Previous studies have shown that people can make adaptive in-
ferences based on memory-based simple heuristics such as 
recognition, fluency, or familiarity heuristic. In the present 
study, we discussed the adaptive nature of memory-based sim-
ple heuristics in a group decision making setting. In particular, 
we examined how the diversity of memory affected group de-
cision making when group members were assumed to make in-
ferences based on the familiarity heuristic. We predicted that, 
when the group members’ memories were diverse, group deci-
sion making would become more accurate. To examine this 
prediction, we conducted a behavioral experiment and com-
puter simulations, and our results generally supported the pre-
diction. We discuss the role of diverse memories in generating 
adaptive group decision making. 

Keywords: group decision making; heuristics; ecological ra-
tionality; diversity 

Introduction 
In research on human judgments and decisions, one of the 
most studied topics has been the heuristics people use. Previ-
ous studies have shown that, although heuristics can produce 
biases (e.g., Tversky & Kahneman, 1974), they generally re-
sult in adaptive judgments and decisions (e.g., Gigerenzer, 
Todd, & The ABC Research Group, 1999). Some heuristics, 
such as the availability (Tverky & Kahneman, 1973) or 
recognition heuristic (Goldstein & Gigerenzer, 2002), are 
highly related to the nature of an individual’s memory. We 
shall discuss the adaptive nature of memory-based simple 
heuristics in terms of group decision making. 

 How do memory-based simple heuristics work in a 
group decision making setting? Given that individuals can 
make adaptive judgments and decisions in general based on 
the memory-based simple heuristics, when each member re-
lies on such heuristics and the group makes a collective deci-
sion by, for example, simple majority rule, the group may be 
able to make good decisions in general. However, as de-
scribed above, heuristics produce biases. For some situations, 

biased inferences are enhanced, and group performance may 
be deteriorated. Thus, although memory-based simple heuris-
tics will enhance group decision making in general, they will 
also enhance biased group decision making in some cases. 
Fujisaki, Honda, and Ueda (2018) used computer simulations 
to show that a group does not always perform well when 
group members use strategies, which are regarded as gener-
ally adaptive in individual usage, because of biases generated 
by the strategies. 
 How, then, can the biases of memory-based simple 
heuristics in a group decision making setting be resolved? Re-
cently, research has discussed how groups can achieve good 
performance such as wisdom-of-crowds or collective intelli-
gence in terms of group diversity (e.g., Fujisaki et al., 2018; 
Jönsson, Hahn, & Olsson, 2015; Lorenz, Rauhut, Schweitzer, 
& Helbing, 2011; Luan, Katsikopoulos, & Reimer, 2012; 
Mavrodiev, Tessone, & Schweitzer, 2013). In group decision 
making based on members who use memory-based simple 
heuristics, if members’ memories vary (i.e., memories in 
group members are diverse), biases generated by heuristics 
may be resolved.  
 In the present study, we examined how the diversity 
of memories in group members works for group decision-
making with the following methods. First, we conducted a 
behavioral experiment about memories of city names. Using 
these data (i.e., actual memory data), we examined the accu-
racies of inferences made by hypothetical people who made 
inferences based on a memory-based simple heuristic. As an 
inference task, we used binary choice inference problems 
about population sizes (e.g., “Which city has a greater popu-
lation size, Tokyo or Chiba?”). For this task, people tend to 
rely on memory-based simple heuristics such as recognition 
(Goldstein & Gigerenzer, 2002), fluency (Hertwig, Herzog, 
Schooler, & Reimer, 2008), or familiarity (Honda, Abe, 
Matsuka, & Yamagishi, 2011; Honda, Matsuka, & Ueda, 
2017; Xu, González-Vallejo, Weinhardt, Chimeli, & 
Karadogan, 2018). Thus, people’s memories will affect the 
inference processes for this kind of problem. Finally, we 
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constructed a group of such hypothetical people and exam-
ined the performance of group decision making. 

How can memory diversity be generated? Given that 
the present study used city names as stimuli, we predicted that 
constructed memories about city names (e.g., recognitions of 
or familiarities with city names) were more dissimilar (i.e., 
diverse) between people in different areas than between those 
in the same area. Based on this consideration, we recruited 
participants from two areas (Tokyo and Osaka).  

In the following section, we shall report two studies: 
a behavioral experiment and a computer simulation. 

Study 1: Behavioral experiment 
We conducted a behavioral experiment about memories of 30 
cities in Japan. We examined whether recognitions and famil-
iarities regarding the 30 cities differed depending on the area 
participants lived in and analyzed the memory diversity.  

Method 
Participants We recruited participants in their 30s and 50s 
from two areas, Tokyo and Osaka, with the following defini-
tions: first, they were born in Tokyo (or Osaka); second, they 
had lived in Tokyo (or Osaka) for more than 20 years in total; 
and third, they had been living in Tokyo (or Osaka) during 
the past five years. As a result, we recruited 99 people in their 
30s in the Tokyo area (Mage = 35.48, SDage = 2.76, nfemale = 
49), 101 people in their 50s in the Tokyo area (Mage = 54.74, 
SDage = 2.51, nfemale = 50), 99 people in their 30s in the Osaka 
area (Mage = 35.15, SDage = 2.92, nfemale = 50), and 101 people 
in their 50s in the Osaka area (Mage = 53.92, SDage = 2.89, 
nfemale = 51). In total, 400 Japanese participated in the experi-
ment. 
Tasks, materials, and procedure We conducted a recogni-
tion task and measurement of familiarity. In the recognition 
task, participants were presented with a city name and an-
swered whether they knew the city. When participants knew 
the presented city, they were also asked about their level of 
familiarity with the city. They answered this question using a 
scale labeled “I know only the name” on the far left and “I 
know a lot” on the far right. This rating was recorded with 
100 points ranging from 1 (I know only the name) to 100 (I 
know a lot) depending on the familiarity level. In these two 
tasks, we used 30 Japanese cities based on Honda et al. (2017). 
15 of the 30 cities were from the difficult list, and the other 
15 were from the easy list (see Appendix for the specific city 
names). The definition of “difficulty” for the list lies in the 
difficulty of binary choice inferences about population size 
(Honda et al., 2017). Since memory-based heuristics in group 
decision making can work differently depending on the infer-
ence problems (see Fujisaki et al., 2018), we used these 30 
cities. We conducted the two tasks on the Internet. Each city 
name was presented individually. The presentation order of 
the 30 cities was randomized for each participant.  

Results and discussion 
First, we examined the similarities of memories. In this ex-
amination, we calculated Spearman’s correlation coefficient 

for familiarity ratings between two participants. We used the 
correlation coefficient as the criterion of similarity for mem-
ories between the two participants. We examined the differ-
ences in similarities as functions of area and age. As Table 1 
shows, we examined the distributions of correlation coeffi-
cients in 10 pairs of participants each for easy and difficult 
lists. For example, in the “Tokyo30s–Tokyo30s” pair, since 
there were 99 participants in their 30s in the Tokyo area, there 
were 4851 (99 × 98 / 2) pairs at most. In some cases (14 out 
of 800[400 participants × 2 lists]), participants provided the 
same familiarity ratings for 15 cities in a list. For this case, 
we excluded the data since we could not calculate correlation 
coefficients.  
 Table 1 shows the distributions of correlation coef-
ficients as a function of pair type. For each pair, we estimated 
a 95% confidence interval of the mean based on bootstrap-
ping using 5000 simulations. Familiarity ratings between two 
participants became more similar in pairs of individuals from 
the same area than different areas, supporting our prediction. 
In contrast, we did not find a specific trend of similarity in 
terms of the age difference.  

Next, we analyzed the similarity of memories in 
terms of ecological rationality (Gigerenzer & Todd, 1999). In 
this analysis, a participant was assumed to make inferences 
based on her/his memory as follows: s/he was presented with 
a pair of cities and made binary choice inference about pop-
ulation size (i.e., inferred which city had a greater population 
size). In making inferences, s/he used memory-based simple 
heuristics. We assumed that s/he used the familiarity heuristic 
(Honda, et al, 2011, 2017; Xu, et al., 2018). In this heuristic, 
s/he inferred that the more familiar city had the larger popu-
lation size. In Honda et al. (2017), for the inference in pair x, 
person i’s decision (D) is defined as follows: 

𝐷"(𝑥) = 𝑐"(𝐹𝐴"* − 𝐹𝐴",) (1) 
where FAiL and FAiS represent familiarities for the larger and 
smaller cities in pair x, and ci represents the scaling parameter. 
This scaling parameter for each person was selected so that 
the maximum or minimum value of D became 1 or −1. This 
model predicts that, when D(x) is larger than 0 and satisfies 
the decision threshold (i.e., D[x] > decision threshold), person 
i infers that the larger city has the larger population and that, 
when it is smaller than 0 and satisfies the decision threshold 
(i.e., −D[x] > decision threshold), person i infers that the 
smaller city has the larger population. In pairs in which par-
ticipants could recognize only the larger (or smaller) city, 
D(x) was set as 1 (or −1) so that they choose the larger (or 
smaller) city. This choice is consistent with the recognition 
heuristic (Goldstein & Gigerenzer, 2002), indicating that the 
familiarity heuristic model can explain inference patterns 
predicted by the recognition heuristic. 
 We then examined how accurate people’s memory-
based inferences were and discussed the diversity of memory 
from this perspective. In this examination, we set two criteria, 
validity and discrimination rates (Gigerenzer & Todd, 1999). 
The validity rate is defined as follows: 

𝑉 =
𝐻/

𝐻/ + 𝐻"
 

 

(2) 
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where Hc (or Hi) denotes the number of pairs for which a per-
son can use heuristic (i.e., D[x] exceeds the decision thresh-
old) and heuristic-based inference resulted in the correct (or 
incorrect) inference. That is, the validity rate means the accu-
racy of the familiarity heuristic. In contrast, the discrimina-
tion rate means the proportion of pairs in which a person can 
use the familiarity heuristic.  

We calculated the validity and discrimination rates 
for all 105 pairs in difficult and easy lists for each participant. 
In this calculation, we set the decision threshold as 0.3 based 
on the empirical findings in Honda et al. (2017). Figure 1 
shows the distributions of validity and discrimination rates 

for the two lists. We conducted 2 (area; Tokyo and Osaka) × 
2 (age; 30s and 50s) ANOVA for the two criteria (i.e., valid-
ity and discrimination rates) and the two lists, respectively.  

As for the validity rate, in the difficult list, a signif-
icant main effect of area was observed [F(1, 388) = 111.49, p 
< .001, η2 = 0.223], indicating that the familiarity heuristic by 
participants from the Tokyo area would have led to more ac-
curate inferences (MTokyo= 0.680, MOsaka = 0.488). No signifi-
cant main effect of age [F(1, 388) = 0.09, p = .77, η2 = 0.00] 
or interaction [F(1, 388) = 0.95, p = .33, η2 = 0.00] was ob-
served. In the easy list, a significant main effect of area was 
observed [F(1, 382) = 8.09, p = .005, η2 = 0.223], indicating 
that the familiarity heuristic by participants from the Osaka 

Table 1. Distribution of correlation coefficients for familiarity rating. The range (95% confidence interval) was estimated by 
bootstrapping with 5000 simulations. 

  Difficult list  Easy list 
  95% confidence interval  95% confidence interval 

Pair Area Lower bound Mean Upper bound  Lower bound Mean Upper bound 
Tokyo30s–Tokyo30s Same 0.197 0.205 0.212  0.191 0.199 0.207 
Tokyo30s–Tokyo50s Same 0.213 0.218 0.223  0.228 0.233 0.238 
Tokyo50s–Tokyo50s Same 0.234 0.241 0.248  0.283 0.290 0.297 
Osaka30s–Osaka30s Same 0.435 0.442 0.448  0.269 0.277 0.284 
Osaka30s–Osaka50s Same 0.471 0.475 0.479  0.251 0.256 0.261 
Osaka50s–Osaka50s Same 0.512 0.518 0.523  0.233 0.241 0.248 
Tokyo30s–Osaka30s Different 0.176 0.181 0.187  0.038 0.044 0.050 
Tokyo30s–Osaka50s Different 0.174 0.179 0.184  0.007 0.012 0.018 
Tokyo50s–Osaka30s Different 0.175 0.181 0.186  0.018 0.023 0.029 
Tokyo50s–Osaka50s Different 0.177 0.182 0.187  -0.004 0.001 0.007 

 

 
Figure 1. Validity and discrimination rates of the familiarity heuristic. 

 

 
Figure 2. Proportions of correct inferences for Osaka’s and Tokyo’s participants. Each point denotes the proportion of cor-
rect inferences for each inference problem [i.e., there are 105 (15 × 14 / 2) points in each list]. 
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area would have led to more accurate inferences (MTokyo= 
0.771, MOsaka = 0.814). No significant main effect of age [F(1, 
382) = 0.99, p = .32, η2 = 0.00] or interaction [F(1, 382) = 
0.32, p = .57, η2 = 0.00] was observed.  

As for the discrimination rate, in the difficult list, a 
significant main effect of age was observed [F(1, 396) = 5.32, 
p = .02, η2 = 0.01], indicating participants in 30s could have 
potentially used familiarity heuristic more often than those in 
50s (M30s= 0.499, M50s = 0.454). No significant main effect 
of area [F(1, 396) = 3.30, p = .07, η2 = 0.01] or interaction 
[F(1, 388) = 0.02, p = .89, η2 = 0.00] was observed. In the 
easy list, no significant effects were observed [main effect of 
age, F(1, 396) = 0.11, p = .75, η2 = 0.00; main effect of area, 
F(1, 396) = 1.76, p = .19, η2 = 0.00; interaction, F(1, 388) = 
1.01, p = .32, η2 = 0.00]. 

The above analyses indicated that, although similar-
ities of familiarity ratings and the nature of ecological ration-
ality differed depending on the areas, ages were not generally 
related. Thus, in the following analyses, we merged the data 
between the two generations. 

Next, we analyzed the accuracy of the familiarity 
heuristic for each inference problem. Figure 2 shows the re-
lationship of correct inference between the two areas. Each 
figure includes 105 points, each of which shows the propor-
tion of correct inference for each problem. Depending on the 
relationships about inference adaptivity (i.e., proportions of 
correct inferences were above the chance level [0.5] or not), 
we named pairs “Both adaptive,” “Both bias,” “Bias in To-
kyo,” and “Bias in Osaka.” If the participants in the two areas 
show the same adaptivity or bias, each point will lie on the 
diagonal line (i.e., proportions of correct inferences corre-
spond with each other). However, as is apparent in the figure, 
this was not true; the proportions of correct inferences varied 
depending on the areas, and the relationship of correct infer-
ences between the two areas was not strong (in the difficult 
list, r = 0.18, p = .07; in the easy list, r = 0.19, p = .05). Fur-
thermore, there were nonnegligible cases of “Bias in Tokyo” 
or “Bias in Osaka,” indicating that participants in each area 
showed opposite direction of inference accuracy. 

Altogether, we found that accuracy of the familiarity 
heuristic varied depending on the participants’ profiles. In 
particular, the area (i.e., Tokyo or Osaka) was highly related 
to the accuracy of the familiarity heuristic, indicating that 
ecological rationality of memory differed depending on the 
area participants were from. Thus, constructed memory in the 
two areas were diverse. 

Study 2: Computer simulations 
We conducted computer simulations about group decision 
making based on the behavioral experiment data. We con-
structed hypothetical groups that comprised participants in 
the behavioral experiment, and the groups made inferences 
about population. Then, we compared group performance in 
terms of diversity of group members (i.e., members from only 
Tokyo or Osaka or members from a mixture of Tokyo and 
Osaka). 

Method 
Group construction We set group size at 5, 10, 20, or 50. In 
constructing a group, we randomly selected group members 
from participants in the behavioral experiment. Groups were 
constructed from a single area (i.e., participants from only 
Tokyo or Osaka) and both two areas (i.e., mixture of partici-
pants from Tokyo and Osaka). 
Group decision making We set the following hypothetical 
group decision making situation. Group members made bi-
nary choice inferences about population size. They were pre-
sented with a pair of cities and made binary choice inference 
about population size (i.e., inferred which city had a greater 
population size). Here, each member was assumed to make 
inferences based on the familiarity heuristic, and the group 
made decisions based on simple majority rule (Hastie & Ka-
meda, 2005; Sorkin, Hays, & West, 2001). According to pre-
vious assumptions (Fujisaki et al., 2018), when a member 
could not make an inference (i.e., her/his inference did not 
exceed the decision threshold), s/he did not participate in the 
group decision making. Furthermore, when a group could not 
make decisions (i.e., an equal number of members chose dif-
ferent cities), the group randomly chose one city.  
Procedure The group made decisions for all 105 inference 
problems for the two lists. For each parameter setting (i.e., 
group size or diversity of group members), we constructed, 
in total, 5000 different groups based on random selection of 
members. We regarded the average of proportion of correct 
inference in the 5000 groups as the group performance in 
each parameter setting. 

Results and discussion 
First, we examined the performance in the single-area group 
(i.e., group members comprised participants from only Tokyo 
or Osaka). Figure 3 shows results of computer simulations. 
This shows the proportion of correct inferences for 105 infer-
ence problems each in the difficult and easy lists. Our find-
ings can be summarized with the following three points. First, 
when individuals showed accurate inferences on average (i.e., 
proportion of correct inferences exceeded the chance level), 
group decision making enhanced accurate inferences. Second, 
when individual inference showed biases on average (i.e., 
proportion of correct inferences fell below the chance level), 
group decision making deteriorated accurate inferences (see 
Osaka performance in the difficult list). Third, and most im-
portantly, individual performance did not always predict the 
better boost of group decision making. See the group perfor-
mance in the easy list. At the individual level, members in 
Osaka showed more accurate inferences than those in Tokyo 
(see group size 1 in Figure 3). Intuitively, the group that com-
prises Osaka members seemed to show better group perfor-
mance than that comprising Tokyo members since partici-
pants in Osaka showed more accurate inferences at the indi-
vidual level. However, this was not true, and the group of 
participants from Tokyo performed better than the group of 
participants from Osaka. This counter-intuitive phenomenon 
may occur because of the biases (Fujisaki et al., 2018). Re-
garding the problems wherein people have bias (i.e., mean 
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proportion of correct inference lies below the chance level 
[0.5] at the individual level), group decisions deteriorate ac-
curate inferences, and the mean proportion of correct infer-
ences reaches 0 as the number in the group increases. Actu-
ally, out of the 105 problems on the easy list, the proportion 
of biased problems for participants in Osaka was 0.234, and 
that for participants in Tokyo was 0.162. Thus, although par-
ticipants in Osaka showed more accurate inferences on aver-
age, they also showed more biases. Thus, in group decision-
making, inaccurate inferences were enhanced for more infer-
ence problems in Osaka than in Tokyo, and a counter-intui-
tive phenomenon occurred. 
 Next, we examined the performance of decisions in 
groups whose members were diverse (i.e., mixture of partic-
ipants). Figure 4 shows the performance of decisions for 
these groups. The x-axis indicates the proportion of members 
from Tokyo (i.e., 1 – the proportion is the proportion of mem-
bers from Osaka). Thus, the values 0 and 1 indicate that the 
group includes members from only a single area (i.e., the 

values correspond to those in Figure 3 in each parameter set-
ting). On the difficult list, the proportion of correct inferences 
in groups was boosted as the proportion of members from 
Tokyo increased. Since individual inferences in participants 
from Osaka were not accurate (i.e., their inferences were al-
most chance level), members from Tokyo boosted accurate 
inferences. On the easy list, the findings were highly intri-
guing. The peak of the group performance did not lie in the 
endpoint (i.e., group comprised members from a single area) 
but in the group that comprised members from the two areas. 
That is, when the group included diverse members, the group 
reached the highest performance. 
 In sum, we found that, when memories of group 
members were diverse, collective decisions by the group 
could be more accurate in some decision situations (e.g., 
when making collective decisions for the inference problems 
on the easy list).  

 
Figure 3. Performance of group decision making (i.e., proportions of correct inferences for 105 inference problems on the 
difficult and easy lists) in the group whose members were from a single area (i.e., Tokyo or Osaka). Group size 1 indi-
cates the mean proportions of correct inferences in individual inferences. The dotted line indicates the chance level of 
inferences.  

 
Figure 4. Performance of group decision making (i.e., proportions of correct inferences for 105 inference problems on the 
difficult and easy lists) in the group whose members were from two areas (i.e., Tokyo or Osaka). 
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General discussion 
Through a behavioral experiment and computer simulations, 
we found that diverse memories in group members enhanced 
accurate group decision making.  
 How was the effect of member diversity generated? 
The key was the biases. As Figure 2 shows, participants in 
each area had unique biases (i.e., “Bias in Tokyo” and “Bias 
in Osaka” in Figure 2). In the mixed group, these biases could 
be improved by members from different areas, leading to ac-
curate inferences. 
 Finally, we note the following two points about the 
difference in the adaptive nature of inferences between indi-
vidual and group decision making levels. First, adaptive heu-
ristics at the individual level do not indicate that such heuris-
tics also boost accurate inferences in group decision making 
(see Figure 3 regarding the easy list) since adaptive heuristics 
are accompanied by some biases. That is, group decision 
making can boost both accurate and inaccurate inferences. 
Second, such problems in group decision making can be re-
solved by the diversity of inferences. In the present study, we 
showed that diversity in memories could remedy individual 
biases. Diverse memories can produce different inferences 
even when people use the same heuristic. That is, people 
make inferences using superficially “different” strategies. 
This is basically consistent with previous findings that di-
verse inference strategies used by group members can boost 
group decision making (Fujisaki et al., 2018). These findings 
suggest that diversity in inferences plays a key role in im-
proving biases produced by individual inferences.  
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Appendix 
The two lists used in the present study. We used these lists 
based on Honda et al. (2017). 

Easy list Difficult list 
Yokohama-shi Kawaguchi-shi 

Osaka-shi Machida-shi 
Nagoya-shi Kohriyama-shi 
Sapporo-shi Takasaki-shi 

Kobe-shi Tsu-shi 
Kyoto-shi Sasebo-shi 

Fukuoka-shi Hachinohe-shi 
Hiroshima-shi Matsumoto-shi 

Sendai-shi Hitachi-shi 
Chiba-shi Yamaguchi-shi 

Niigata-shi Takaoka-shi 
Hamamatsu-shi Imabari-shi 
Kumamoto-shi Miyakonojo-shi 
Okayama-shi Ogaki-shi 

Kagoshima-shi Ashikaga-shi 
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Abstract

Humans readily form social impressions of faces at a glance,
whether assessing trustworthiness, attractiveness, or domi-
nance. However, little is understood about how such compu-
tations are carried out neurally. Here, we leverage a computa-
tional model of human face perception to quantify and charac-
terize the extent to which macaque monkey face patch neurons
encode information relevant for social trait perception. Specif-
ically, we use a social trait prediction model to estimate the
social trait ratings for face stimuli viewed by monkeys during
a neural recording experiment. We find that, while the monkey
face patch neurons are linearly tuned to facial features differ-
ent from those used by humans to make social judgments, the
subspace spanned by the face patch neurons and the subspace
spanned by the facial features supporting human social percep-
tion are highly overlapping. This result implies that the infor-
mation present in the monkey face patch neurons are largely
sufficient, after linear decoding, to support human social per-
ception, thus shedding light on the biological origin of human
social processing of faces.

Keywords: face perception; social perception; representation;
neural recording; face modeling

Introduction
Face processing plays a special role in human life, as it un-
derpins social interactions essential for survival and reproduc-
tive success (Olivola, Funk, & Todorov, 2014). Psychological
studies have shown that humans effortlessly and consistently
derive social characteristics (social, demographic, emotional
traits) from the appearance of faces of strangers (Willis &
Todorov, 2006). However, little is known about how such as-
sessments are represented or computed in the brain. In this
work, we leverage a computational model of human face per-
ception (Guan, Ryali, & Yu, 2018) to quantify and charac-
terize the extent to which face patch neurons in the macaque
monkey brain (Freiwald & Tsao, 2010) encode information
relevant for human social perception of faces.

One challenge for studying the relationship between neu-
ral responses and human face perception is that human face
images are high dimensional and vary among each other in
complex ways. To parameterize the space of human face
images, we adapt a popular computer vision algorithm, the
Active Appearance Model (AAM) (Cootes, Edwards, & Tay-
lor, 2001; Valentine, 1991). AAM provides a vector space
representation of face images with several desirable proper-
ties. Firstly, this representation is sufficiently rich such that
each face image corresponds to a unique point in this space.

Secondly, AAM is capable of generating realistic face im-
ages, helping to visualize the features encoded by neurons or
group of neurons. Thirdly, recent neural data suggest that face
patch neurons encode facial features similar to those in AAM
(Chang & Tsao, 2017). Here, we train our own version of the
AAM model (Guan et al., 2018) using a publicly available
face dataset (Bainbridge, Isola, & Oliva, 2013). This dataset
also contains human ratings along 20 social trait dimensions,
which we model linearly by regressing the trait ratings against
AAM latent features. Similarly, we linearly model the classi-
fication of gender and age based on human judgments of these
qualities on the same face dataset (Bainbridge et al., 2013).

The neural data we analyze are single cell recordings from
the face patch areas of the macaque monkey, recorded while
the animals viewed 37 human face images (Freiwald & Tsao,
2010) (the original dataset contained 41 face images, in 4 of
which the person’s eyes are fully or partially closed – these
4 are excluded from our analyses). The face patch areas of
the monkey inferotemporal (IT) cortex have been shown to
contain neurons that are highly selective for faces (Freiwald
& Tsao, 2010). Although face images used in the monkey
experiment have not been rated by human subjects for social
traits, we can predict the ratings by projecting the face stimuli
to our AAM model, and then use the pre-trained regression
models to predict the social ratings (Guan et al., 2018).

In the following, we first define and compute each neuron’s
Linear Response Axis (LRA), the linear axis within AAM
that best captures the tuning selectivity of a neuron. We then
characterize the properties of the LRA’s both individually and
as a population. Finally, we compare the facial features en-
coded by the neuronal LRA’s versus those necessary for hu-
man social perception.

Results
Predicting Social Trait Perception
In order to predict human social perception of the faces seen
by the monkeys, we utilize a model we recently developed
based on the Active Appearance Model (AAM) (Guan et al.,
2018). The model obtains a latent vector space representation
of face images, consisting of combined principal components
of shape and texture features (see Methods). We then use lin-
ear regression to model how latent features of a face give rise
to trait ratings (20 social traits as in (Bainbridge et al., 2013),
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plus the demographic traits gender and age, see Methods).
We find that this approach predicts human social ratings on a
novel face better than other humans’ rating on the same face;
it also achieves comparable performance to the state-of-the-
art convolutional deep neural network, but has the advantage
of having better interpretability (Guan et al., 2018).

Figure 1: The face model is a vector space representation,
whose axes represent the facial features that vary among face
images, and the mean of the training dataset sample is cen-
tered at the origin (by design). We utilize the publicly avail-
able dataset (Bainbridge et al., 2013) (1) to train the AAM
face model (2), obtaining 60 facial features. Using the same
datasets, we model human social perception (3), and estimate
the facial information encoded by each neuron (4).

Here, we can predict the human social ratings of the faces
viewed by the monkeys by projecting these face images
into the pre-trained AAM model. We first obtain the land-
marks of the face stimuli using the free software Face++
(https://www.faceplusplus.com), then projecting them into
the pre-trained AAM model (Guan et al., 2018) (Figure 1).
Each face stimulus is a point in a 60-dimensional latent space.
Figure 2 shows an example face image viewed by monkeys.
We then obtain the predicted social perception of each face
stimulus using the pre-trained Linear Trait Axes or LTA’s (see
Methods). The LTA of a trait represents the linear combina-
tion of facial features that maximally modulates human per-
ception of this trait (a similar variation in facial feature along
any other axis will induce a smaller change in average human
perception). For example, the face in Figure 2A is predicted
to be slightly more than 1 standard deviation more attractive
than the average face (in the training data); Figure 2C shows
predicted social ratings a number of traits.

One question we want to answer is how much information
related to each social trait is encoded in the neural responses
of the monkey face patch neurons. To have sufficient statisti-
cal power to assess this, we first need to make sure that the 37
face images span a substantial portion of the predicted trait
ratings. This is indeed the case, as can be seen in Figure 3
for ”happy” and ”attractive.” Figure 3A.ii visualizes a pair of
face images seen by the monkeys that are predicted by the
model to be less (left) or more (right) happy, and another pair
(Figure 3B.ii) that is predicted to be less (left) or more (right)
attractive. They are consistent with visual intuition.

Figure 2: Face representation and social trait estimation. (A)
An example face image viewed by the monkeys. (B) 5 exam-
ples (out of 20) of predicted social trait ratings for the same
face.

Figure 3: Social trait rating prediction. The histograms (left)
of predicted social traits and two face stimuli (right) that are
predicted by the model to vary in (A) happiness and (B) at-
tractiveness. Distribution of predicted ”happy” rating (A.i)
for the 37 face stimuli (red) and training data (blue).

To quantify the information related to human social percep-
tion encoded by the macaque face patch neurons, we compute
the correlation coefficient between each neuron’s mean firing
rate for each face (see Methods) and the predicted trait rating
of each face. A neuron is deemed to significantly encode a
trait if its correlation coefficient has a p-value < 0.05. We
find that 19 out of 22 traits are encoded by a significant frac-
tion of the neural population (Figure 4).
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Figure 4: Proportion of neurons significantly encoding var-
ious social and demographic traits. A neuron is considered
to significantly encode a trait if its MFR has significant cor-
relation (p < 0.05, corrected for multiple comparison) with
predicted ratings of viewed faces for that trait. The red line
indicates the threshold for determining whether a significant
(non-zero) fraction of neurons encode a trait at the signif-
icance level of α = 0.05). This analysis only consists of
the 265 neurons whose responses we can statistically reliably
model (see subsection on Linear Response Axis)

Linear Response Axis

To quantify the featural selectivity of each face patch neuron,
we first define and compute the Linear Response Axis (LRA)
of each neuron (see Figure 5A), which is just the normal-
ized regression coefficient vector. Each LRA is obtained by
regressing each neuron’s mean firing rate (MFR) against the
first k = 13 latent features of each image in the AAM space. k
is chosen to be 13 in order to maximize the number of neurons
whose response we can reliably estimate (i.e. significant cor-
relation between model-predicted MFR and observed MFR
on held-out faces, see Methods). For k = 13, we find that
we can reliably estimate the LRA of 265 neurons – unless
otherwise noted, all subsequent LRA-based analyses are per-
formed using only these 265 neurons. The LRA specifies the
linear axis that maximally accounts for variations in the neu-
ral response. We find that the average neural response along
the LRA is not only monotonically increasing, as found in
(Chang & Tsao, 2017), but in fact highly linear in this data
set; and like in (Chang & Tsao, 2017), the neural response to
the principal axis is completely flat. This replicates the find-
ing in (Chang & Tsao, 2017) that monkey face patch neurons
encode single axes in the AAM latent feature space.

While Figure 3 quantifies the relationship between social
traits and individual neuron’s MFR, we are also interested in
characterizing the facial features encoded by the neural pop-
ulation as a whole. Naively, we might do so by applying prin-
cipal component analysis (PCA) to the LRA’s. However, the
LRA’s compose a special sort of data, namely unit-length vec-
tors that lie on a hypersphere. If the LRA’s lie in a completely
balanced manner (by balanced, we mean that for each LRA,
there is an ”opposite” LRA that points approximately in the
opposite direction, so that the two neurons encode the same

Figure 5: Schematic illustration of Linear response axis
(LRA). The blue dots represent MFR of a neuron for different
face images. The blue hyper-plane is the best linear fit of the
neuron’s response to those face stimuli. LRA gives the axis
in the face space that yields the largest linear gradient for this
neuron’s MFR.

AAM axis but have opposite preferences), then PCA would
pull out the main directions encoded by neural LRA’s; but
if they are highly imbalanced, then PCA would instead pull
out something like the tangent subspace and yield something
uninterpretable. We therefore add an opposite LRA to each
estimated LRA, to artificially balance the LRA’s, and then ap-
ply PCA. We find that PC 1 alone explain 48.2% of the total
variance among the LRA’s, and the first 9 PC’s explain 95%
of the variance among the LRA’s (Figure 6). Relative to the
other features, the first PC plays an outsized role in terms of
the features that the neurons linearly encode.

Figure 6: Incremental and cumulative proportion of variance
explained by the PCs of neural LRAs. The histogram indicate
the explained variance by each LRA PC and the plot for the
accumulated explained variance.
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Figure 7: Synthetic face images along the top three LRA
PC’s. Each row shows how the mean face changes when pos-
itive (right) and negative (left) values are added to the mean
face along each PC.

To get a sense for the primary featural axes that face patch
neurons encode, we generate synthetic faces along each of the
first three PC’s (Figure 7). The first row of Figure 7 shows
how the middle face changes as it gains more positive (right
face) or more negative (left face) value along the first LRA
PC; the next two rows show the same for LRA PC 2 and PC 3,
respectively. The faces undergo interesting holistic changes
along each of the first three PC’s, consisting of some age-
and gender-related changes but also other harder-to-verbalize
structural changes.

To gain a more quantitative understanding of what the ma-
jor features the face patch neurons encode as a population,
we compute the expected correlation between each LRA PC
and social trait (Figure 8), which is just the dot product be-
tween each LTA and LRA PC (they are both unit lengths).
We find that all three LRA PCs significantly correlate with
age. The expected correlation coefficient (dot product) be-
tween age LTA and each of LRA PC1, PC2, and PC3 ρ=.48,
ρ=-.32, ρ=.67, respectively. In addition, PC1 and PC3 are
correlated with attractiveness (PC1: ρ=.35, PC2: ρ=.75), and
PC2 correlated with responsible (ρ=.67). This shows that
while the neural population as a whole encode features that
are highly correlated with those important for human social
perception, the most important featural dimension (PC 1) has
a poor correlation with any of the human social traits that we
considered.

Figure 9 illustrates yet another way to visualize the rela-
tionship between neural LRA’s and human LTA’s. It shows a
scatterplot of all the neural LRA’s (red), the “pposite LRA’s”
(gray), and the social LTA’s (green) projected into the sub-
space spanned by the Attractive and Responsible LTA’s, the

Figure 8: Expected correlation (i.e. dot product) between neu-
ral LRA PC’s and social trait LTA’s. Each row indicate ex-
pected c.c. for the various traits for each PC (blue: social
trait, magenta: demographic trait). The bars indicate the ab-
solute value of the correlation coefficients while the sign of
the correlation is represented by + and - sign in front of the
name of traits on x-axis. The traits are ordered in descending
order of expected c.c., separately for social and demographic
trait.

two traits that neurons as a population linearly encoded the
most information about. We see that, first of all, that most of
the social LTA’s are fairly close to unit length within this sub-
space, indicating that most of them point in a direction very
close to this 2D subspace. The neural LRA’s show a range of
distances from the origin, with the majority lying close to the
origin, indicating they primarily point in a direction far away
from this 2D plane that is quite important for human social
perception. The neurons that do have LRA’s pointing close to
this subspace (distance close to 1 from the origin) are mostly
pointing in the direction of traits such as familiar, intelligent,
and normal – the traits that have the greatest number of sig-
nificant correlation with neurons (Figure 4).

Conversely, we can also visualize all the projected LTA’s
and LRA’s in the subspace spanned by LRA PC 1 and PC 2
(Figure 10). Here, we see that the neural LRA’s are highly im-
balanced, with most LRA having a positive projection along
PC 1. We also see that most human LTA’s point in a direc-
tion far away from PC 1, but have a fairly large component
pointing in the direction of PC 2 (the exception is Attractive,
which has the opposite pattern).

Similarly, we can also visualize all the projected LTA’s and
LRA’s in the subspace spanned by LRA PC 1 and PC 3 (Fig-
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Figure 9: Projection of LRA’s and LTA’s onto the plane
spanned by Attractive and Responsible LTA’s. Red dots are
projections of LRA’s (gray for “opposite” LRA’s). Green dots
are projections of LTAs’. The label next to each green dot in-
dicates the trait.

ure 10). It is apparent that Attractive and Age have fairly
large components pointing along PC 3, along with traits such
as memorable, interesting, and confident.

Subspace Comparison
While the previous analyses suggest that there is some over-
lap in the facial features that are encoded by monkey face
patch neurons, and those that matter for human social trait
perception, here we quantify their overlap in a different way.
We compute how well (model-predicted) human social per-
ception can be computed from the information present in the
monkey face patch neurons (via simple linear decoding), and
vice versa. As shown in Figure 12, the LTA-predicted ratings
of the 22 social traits can be almost perfectly recovered from
the LRA-predicted neural response (265 neurons) to face im-
ages (R2 very close to 1); conversely, we find that the LRA-
predicted response of all 265 neurons can be perfectly recov-
ered from the LTA-predicted social trait ratings (22 traits),
where R2 = 1 in every case. This result suggests that facial
featural information present in the macaque face patch areas
is largely the same as those necessary for human social per-
ception.

Methods
The Face Model: AAM
The Face model is an instantiation of the Active Appearance
Model (Cootes et al., 2001; Guan et al., 2018). Each face im-
age has shape and texture features. The shape features consist

Figure 10: Projection of LRA’s and LTA’s onto LRA PC1 and
LRA PC2. Similar formatting as Figure 9.

of the (x,y) coordinates of a set of landmarks that are consis-
tently defined across faces. The texture features are the pixel
values (grayscale) of each face image after warping it to have
the same landmark locations as the averaged face. To reduce
the dimensionality and remove correlation between shape and
texture features, we perform additional Principal Component
Analysis (PCA) on shape and texture features and retain the
first 60 PC’s, resulting in a 60-dimensional AAM feature
space. AAM features form the basis of the Face Model that
jointly describes the variations of shape and texture of the
faces.

Social Trait Perception: Linear Trait Axis (LTA)
The Linear Trait Axis (LTA) β̃ for each social trait is com-
puted as the normalized regression coefficients of ratings re-
gressed against AAM features:

y = β~x+ ε

where y is the standardized ratings for the trait,~x is the AAM
features, and β is the vector of regression coefficients. The
linear trait axis (LTA) is defined as

β̃ =
β

||β||

The LTA specifies a direction in the face space that would
(linearly) maximally alter the perception of the trait.

Predicted social perception A novel face images can be
projected into the trained face model, resulting in a 60-
dimensional representation ~x. The predicted rating of a face
image is then given by

ŷ = β~x
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Figure 11: Projection of LRA’s and LTA’s onto LRA PC 1
and LRA PC 3. Similar formatting as Figure 9.

Figure 12: Comparison between LRA subspace and social
LTA subspace. The bars (blue: social trait, magenta: demo-
graphic trait) represent the amount of variance in LTA ex-
plained by LRA, measured in terms of R2.

with ~x as the 60-dim representation in the face model, and β

the regression coefficients for the target trait.

Neuron Encoding - Linear Response Axis (LRA)
Similar to LTA, the Linear Trait Axis (LRA) α̃ for each neu-
ron is the normalized regression coefficients of neurons mean
fire rate (MFR) regressed against AAM features.

r = α~x+ ε

α̃ =
α

||α||
where r is the neurons MFR,~x is the AAM features, and α is
the vector of regression coefficients. α̃ is the axis in the Face
Model that drives maximal (linear) variation of the neurons
response. Consistent with existing literature (Chang & Tsao,
2017), we find that MFR (averaged across neurons) increases
monotonically along the LRA, and is flat along the principal
orthogonal axis (data not shown).

Cross-validation is implemented to evaluate the reliability
of LRA estimation. When estimating the LRA for a neuron,
its true response to one stimulus is held out as test data. Using
the LRA fitted on the remaining faces, we can compare the
model-predicted MFR with the actual MFR on the held-out
data point. For each neuron, the same process is repeated for
every face image (as the test data point). We then the corre-
lation coefficient between the true MFR and model-predicted
MFR across all held-out data. The neuron is retained for fur-
ther analysis if the correlation is significant (p < 0.05).

Subspace Comparison

For two vector spaces A and B, let {a1,a2, . . .an} be a set of
vectors in A. The explanatory strength of space B for vector
a1 is determined by the percentage of variance of data from
space A explained by the best linear combination of Bs basis
vectors:

R2 = 1− ∑i(zi− zapprox)
2

∑i(zi− z̄)2 ,

where zi is the data projection on vector a1, z̄ is the mean, and
zapprox is the projection to space B.

Discussion

Our results indicate that, while macaque face patch neurons
are primarily tuned to combinations of facial features that are
rather different from those most important for human social
trait perception, one can easily go back and forth using a sim-
ple linear operation (linear decoding scheme). There is no
particular reason to expect that monkey face patch neurons,
or monkeys themselves should particularly care about social
trait perception of human faces. However, our results sug-
gest that human social perception of faces may arise simply
as linear decoding of featural information in a neural repre-
sentational system that humans and monkeys share with each
other, and with our common primate ancestors.

Leveraging computational modeling, our work represents
a novel way to retroactively analyze social perceptual infor-
mation or other face-related cognitive or perceptual informa-
tion in monkey neural recording data, even if no social rat-
ings are collected for the face images that the monkeys actu-
ally saw. We can also easily extend this framework to other
kinds of animal neural data, or to human neural recording (or
neuroimaging) data, obtained while experimental participants
viewed face images. Technologically, this approach presents
a promising approach for extracting much more information
out of neural data about the neural basis of face processing,
than has been hitherto possible.
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Abstract 
We examined if using meta-memory judgments to control 
restudy choices has a positive impact on undergraduate 
students’ memory performance, or whether simply making 
meta-memory judgments improved memory performance. 72 
undergraduates at the University of Exeter were randomly 
divided into three groups. Participants in group A, had a chance 
to make meta-memory judgments and restudied the words they 
chose (self- selection). Participants in group B, also made 
meta-memory judgments, but restudy for this group was 
matched to that of Group A (control 1). Group C did not have 
a chance to make meta-memory judgments and were also 
matched to Group A for restudy opportunities (control 2). The 
results indicated that making meta-memory judgments had a 
positive overall impact on memory performance if 
undergraduates were allowed to control their restudy 
opportunities.  Groups B and C showed no differences in 
memory performance, which means that making meta-memory 
judgments did not automatically improve memory 
performance. Group A restudied more of the words that they 
had rated as least well learned, and there were no significant 
differences between groups on test for the restudied words. 

Keywords: Meta-memory Judgment (MJ), Restudy Choices, 
Learning, Memory. 

Introduction 
Meta-memory judgments rely on an individual’s 

knowledge about how her or his memory processes affect 
their memory performance (Flavell, 1999; Hanczakowski, 
Zawadzka, & Cockcroft-McKay, 2014; Nelson, Dunlosky, 
Graf, & Narens, 1994). Efficient learning not only requires 
one to recognize information from memory, but also to be 
able to judge their level of confidence in material that they 
have previously learned and studied (Nelson, 1990; Nelson et 
al., 1994). One of the key reasons for studying meta-memory 
judgments is  because it serves two functions: monitoring of 
memory processes and control over study behaviour (Nelson, 
1990). The relationship between these functions is direct: 
people use memory monitoring, especially metamemory 
judgments, to decide which items need to be restudied and 
the length of time to be spent on them (Dunlosky & Hertzog, 
1997; Kornell & Metcalfe, 2006). The central question 
addressed here is, do meta-memory judgments lead to 
effective study decisions? To test this experimentally, this 
study assumed that there would be positive effects on 
memory performance when participants are able to monitor 
their learning and are also able to use it to control their 
restudy opportunities. 
Monitoring Accuracy: Studying cue-target word pairs is the 
most common approach used to investigate monitoring 

accuracy (Kimball, Smith, & Muntean, 2012; Nelson et al., 
1994; Pyc, Rawson, & Aschenbrenner, 2014; Robey, 
Dougherty, & Buttaccio, 2017; Thiede & Dunlosky, 1994). 
This study design typically involves participants studying the 
word pairs, then making a Meta-memory judgment (MJ) to 
rate their ability to recall the target word when a cue is 
presented in the final test. Finally, participants take recall and 
recognition tests, which allow the researchers to assess how 
MJ can predict memory performance (Hughes, Taylor, & 
Thomas, 2018). Meta-memory judgments can be made 
immediately after the word pairs are studied, or delayed and 
made to the cue word alone. According to Nelson and 
Dunlosky (1991) the most important difference between 
immediate and delayed MJ lies in the amount of information 
available to participants when they judge their level of 
confidence. Participants who have made an immediate MJ 
have their target information in working memory, by 
contrast, this target is not available in working memory for a 
delayed MJ. Participants instead need to retrieve it from long-
term memory. Several studies have investigated whether 
immediate MJ is more accurate than delayed MJ (Kimball et 
al., 2012; Nelson & Dunlosky, 1991; Pyc et al., 2014; Robey 
et al., 2017; Thiede & Dunlosky, 1994). While this study does 
not intend to assess the accuracy difference between these 
two processes, it uses the immediate MJ. The reason for 
choosing immediate MJ  is provided by Hughes et al. (2018)  
who found that  monitoring accuracy increases with 
immediate MJ when participants review material as a means 
of controlling repeated study or study- test practice. This 
study assumes that better meta-memory monitoring will lead 
to better restudy decisions, and also assumes that our main 
interest is in controlling restudy decisions at the time of study, 
rather than during later revision of the material. 
Effectiveness of self-regulation: Effective learning involves 
two skills as stated earlier: monitoring learning and 
controlling study based on that monitoring (Kornell & 
Metcalfe, 2006; Nelson, 1990). Giving participants the 
opportunity to have control over their choices of which words 
to restudy allows them to be more engaged with their learning 
and improves their performance in the final memory tests. 
Begg, Martin  & Needham (1992) and Hager & Hasselhorn 
(1992) concluded that self-memory monitoring is of no value 
to memory performance if participants did not control their 
study as well. In addition, Kornell & Metcalfe (2006) and 
Tullis & Benjamin (2012) tested the effectiveness of self-
selection on using metacognitive judgements to control 
learning and memory performance. They found that allowing 
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participants to control their learning had a positive effect on 
memory performance, long term learning and restudy 
choices.  Methodologically, these researchers have used 
different ways to test the effectiveness of self-regulation on 
memory performance. Some of these ways involve 
comparing memory performance between groups: an 
experimental group (allowed to choose) versus a control 
group (choices made for them) (e.g. Begg et al., 1992; 
Kimball et al., 2012; Kornell & Metcalfe, 2006), as well as 
establishing comparisons on the basis of the best learned or 
worst learned restudied items (Nelson et al., 1994), or items 
rated as most difficult by participants (Thiede & Dunlosky, 
1994).  In this study, memory performance will be compared 
between all items, including those selected for restudy or 
unselected items across groups (experimental and control; 
Begg et al., 1992; Kimball et al., 2012; Kornell & Metcalfe, 
2006). Several studies have shown that when allowing 
participants to judge their confidence and use that judgment 
to control their restudy decisions, the final memory 
performance was better than controls (Begg et al., 1992; 
Kimball et al., 2012; Kornell & Metcalfe, 2006; Nelson et al., 
1994; Tullis & Benjamin, 2012). The first aim of this research 
is to test if using meta-memory judgment to control restudy 
choices has a positive impact on undergraduate students’ 
memory performance, or whether simply making meta-
memory judgments improved memory performance. 
 

Method 
Summary of the task: Forty concrete Arabic nouns with 
their pronunciations and translations were used to create two 
lists of word pairs, twenty in each list. Words were limited to 
be between four to eight letters. The words were randomly 
selected to serve as practice (first list) and study (second 
list) word pairs. Each phase of the experiment (practice 
followed by main study) started with instructions, then each 
item from the appropriate word list was presented on the 
screen for ten seconds on a white background.  After each 
word, participants in Groups A (self-selection) and B had to 
judge their confidence of remembering the word in the future 
by rating their confidence from 1 to 9 (1=low confidence, 9= 
high confidence). Participants in Group C had to make a 
rating of how similar the Arabic word was to its English 
translation. Participants in Group A were then also asked if 
they needed to restudy the word just seen or not. Recall and 
recognition tests were given at the end of experiment.   
Experiment design: The experiment used a between-subject 
design with three groups: Group A, who both made meta-
memory judgments and could choose whether or not to 
restudy words (self-selection), control Group B, who made 
meta-memory judgments of their learning and experienced 
the same restudy opportunities as their counterpart in Group 
A (they were yoked to them), and control Group C, who did 
not make meta-memory judgments ratings but made 
similarity ratings instead, and were also yoked (in terms of 
restudy) to their counterpart in Group A. After seeing a word 
pair, participants first made their MJ to rate their meta-
memory confidence of remembering the word later. Then, in 

Group A, each participant was able to request a restudy 
opportunity for any word. If they did, they then also made a 
meta-memory judgment after restudy as well. In Group B, 
each participant made a MJ, then got the same restudy 
opportunities as one of the participants in Group A but had 
no choice in the matter. If they were given a restudy 
opportunity, then they also made a second MJ to that word 
pair. For Group C, each participant had a chance to study the 
Arabic words, however they did not make a MJ during the 
task, but did get the restudy opportunities of one of the 
participants in Group A, and made a second similarity 
judgement after any restudy opportunity. 
Participants: In this pilot study, random sampling was used. 
The participants of the study were 72 undergraduates from 
the University of Exeter; 24 in the meta-memory judgments 
and re-study (experimental group A), 24 in the MJ (control 
group B) and 24 in the No MJ (control group C) were random 
selected. The sample of the current study included 54 female 
and 18 male participants aged between 18 to 35 years, who 
did not speak the Arabic language and were enrolled in a 
variety of different subject disciplines.  They were recruited 
via posters, email advertising and through the University of 
Exeter’s Psychology Research Participation System. 
Participants were rewarded with a single payment of £5 or 
one credit on completion of the experiment, questionnaires 
and interview.  
Procedure: All stimuli were presented with Superlab on a 
PC. The outline of the procedure for the study is summarised 
diagrammatically in Figure 1. 

 
Figure 1 visual representation of the procedure. 

Participants first completed a practice phase, which included 
20 Arabic words with their translations and pronunciations in 
English. Then, participants in groups A and B made a 
judgment of how confident they were in their learning 
(selected number between 1 to 9). Whereas participants in 
group C made a judgment of how similar the English 
translation was to the Arabic pronunciation (again, a 1 to 9 
rating, the purpose of this instruction was to have the same 
procedure across groups).  After this, participants in group A 
were asked whether they would restudy this word if given the 
opportunity. Participants in group B and C were told that 
there was chance of repeating some words.  Participants in 
groups A and B again made a meta-memory judgment after 
restudying words, whereas participants in group C again rated 
the similarity of the English translation word to the Arabic 
pronunciation.  The same procedure was repeated in the study 
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phase, but this included 20 new Arabic words. In the last 
phase, participants were asked to recall all the English 
translations cued by the Arabic words from the study phase 
in a random order. After this there was a recognition test 
provided for each word. One Arabic word with three English 
translations appeared on the screen, one of which was the 
right translation; participants had to choose that one. The 
following sections now give details of our procedure. 
In the practice phase. Twenty Arabic words were presented 
in the middle of the screen between their translation and their 
pronunciation in English, with a font size of 16.  A fixation 
stimulus was presented before the word pair and a blank 
screen after the word pair for 1 second. All participants 
studied the same word pairs (but in a random order), and all 
the word pairs were presented for ten seconds. 
Meta-memory judgment: Participants in the meta-memory 
judgment A and B groups responded to the following 
instruction “Please select your level of confidence that you 
can remember this word pair by pressing the appropriate key 
from 1 to 9”.  Participants in group C in the non-meta-
memory judgment did not make meta-memory judgments, 
but were asked the following question “Please rate the 
similarity of the English translation of this Arabic word to its 
Arabic pronunciation by pressing a key from 1 (very low) to 
9 (very high)”.  
Restudy judgment. After making their meta-memory 
judgment, Participants in group A were asked “Would you 
like to re-study that Arabic to English translation? Press “y” 
for yes, “n” for no. If you’ve already re-studied once, then 
pressing either key will move you to the next trial”.  
Participants in group B and group C were told “Note that 
there is a chance that the word pair you have just studied will 
be repeated. Press “y” to move on to the next trial”. We 
arranged for participants in control group B and control group 
C to restudy the words determined by the matched 
participants in the experimental group A.  
Second meta-memory judgment. After restudying a word, 
participants repeated the judgement appropriate for the group 
they were in.  
Study Phase. In the main study phase, twenty new Arabic 
words with their translations and pronunciations in English 
were presented on the screen in a random order in a similar 
manner to the practice phase, and participants studied the 
pairs in order to remember them in the final recall test and 
recognise them in the final recognition test at the end of the 
experiment. All participants studied the same word pairs, and 
all the word pairs were presented for ten seconds at a font size 
of 16. They were then given meta-memory or similarity 
judgments and re-study opportunities as before. 
Final test. After participants had completed the practice 
phase and study phase for all the 40 words, they completed a 
final recall test followed by a recognition test. More 
specifically, they were asked to recall the English translations 
of all the words from the study phase (i.e. all 20 words in that 
phase). They were given their Arabic form and 
pronunciations in English on the screen in a random order as 
a cue, and participants were asked to provide the English 

translation by typing their responses on the keyboard within 
30 seconds. After all the words were tested in this way, a 
recognition test was given for each word. One Arabic word 
and English pronunciation with three English translations 
appeared on the screen, one of which was the right 
translation; participants had to choose this one. Another of 
the three translations was randomly taken from the practice 
phase, so that each practice word was used as a distractor 
once during this test phase.  The other incorrect distractor 
word was novel, and would not have appeared before. None 
of the words used in a given test trial was repeated in any 
other test trial. Again, 30 seconds were given to do this, and 
once a word was selected they moved on to the next trial. 
 

Results 
74 participants were run on this experiment. Two participants 
were excluded because they did not complete the recall test. 
The results for the remaining 72 participants are as follows: 
The first issue we looked at was to determine if either of our 
control groups differed on either recall or recognition 
performance (the means for these groups are shown in Figure 
2 below). They did not, both Fs<1, so we collapsed B and C 
into one overall control group and Compared this to A. An 
independent t- test used to examine the difference in the 
overall score between Experimental group A and this 
combined control group at recall gives a statistically 
significant difference between experimental group (M= 10, 
SD= 4.81) and control group (M=7.1, SD=3.78), t (70) = 
2.727, p<.001, the eta squared statistic (h2=.1) indicates a 
large effect size A similar test used to examine the difference 
in the overall score for recognition also revealed a statistically 
significant difference, t = (70) = 2.558, p=.013. The effect 
size, calculated using eta squared, was close to large 
(h2=0.09). This implies that simply making a MJ does not 
automatically confer a significant benefit, but in combination 
with being able to choose which words to restudy it is 
effective in enhancing memory. 

 
 

Fig. 2. This shows the difference between groups in their 
performance on the recall test and Recognition test. 
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The similar effects for recall and recognition suggest that 
both simply reflect memory for the word pairs, and this 
impression is confirmed by a correlational analysis. A 
Spearman rho test found a strong positive correlation at the 
0.005 level (1-tailed) between the two variables, rho=.740. 
Our next question was whether there was the expected 
relationship between the average MJ given to a word pair and 
performance on the recall and recognition tests? Obviously, 
we would expect higher average MJ to result in better 
performance on test. Correlations across participants failed to 
reveal any significant effects. When we compute this 
correlation across words, it failed to reveal a positive 
correlation between the MJ to a word pair and the recall test 
score for that word (r = .207, p=.079, n=48 1- tailed), but on 
the recognition test there was a significant and positive 
correlation between average MJ and performance (r= .439, 
p< .001, n=48, 1- tailed) with 19 % of the variance in 
recognition explained by this judgement. These results mean 
we have some evidence that some words are easier to learn 
than others. 
In addition, as illustrated in Figure 3, there were differences 
in the MJ given before and after restudy for the restudied 
words, and also differences in the MJ given to non-restudied 
words. We analyzed this by performing two separate 
ANOVAs. The first was used to compare the MJ to the 
restudied and non-restudied words using the first judgement 
given in both cases (this would be the only judgement in the 
case of the non-restudied words). Group (A vs. B) was also 
included as a factor. The interaction between the groups 
factor (A, B) and the study factor (non-restudy, restudy) was 
significant, F (1, 46) = 7.100, p=.011. If we look at Figure 3, 
we can see that the MJs for Group A are higher than those for 
Group B for the non-restudied words, but lower for the words 
that were chosen by Group A for restudy. This is what is 
driving the interaction. An independent t- test showed that 
there was a statistically significant difference in the MJ 
between groups for the non- restudied words in favour of 
group A, t (46)= 3.073, p<.001,  with large effect size (h2=.3). 
The difference for the restudied words is not significant. It 
would appear, then, that Group A selected words that they 
found particularly difficult for restudy, leaving the easier 
words, and that this selection was somewhat specific to them, 
even though the Group B participants obviously show 
considerable agreement in what are the easier and harder 
words. This last point is reinforced by the main effect of study 
in this analysis, with the MJ for non-restudied words being 
much higher than that for the restudied words, F (1, 46) 
=40.69, p<.001. 
The second ANOVA that we ran compared MJs to the 
restudied words before and after restudy. The interaction 
between groups (A, B) and study factor (before restudy and 
after) was just significant, F (1, 46) = 4.415, p=.041.  
Obviously, the effect of the factor of Study is stronger than 
this, the change from before to after is clear in Figure 3. The 
main effect for the type of MJ (before and after restudy) gave 
an F (1, 46) =35.197, p<.001, indicating that all participants 
show improved levels of confidence after restudying words. 

The interaction suggests that Group A improved more than 
Group B. Therefore, we have some evidence that restudy 
really helps participants to improve their level of confidence 
to remember the words in the final tests, and that effect was 
greatest when allowing participants to control their restudy 
opportunity. 
 

 
Fig 3. MJ before and after restudy and MJ for non-

restudied words for groups A and B, Error Bars: 95%CI.  

Turning now to a correlational analysis across participants, a 
Spearman rho test revealed a strong negative correlation 
between the mean of the initial MJ made by a participant and 
the number of requests for restudy in Group A, rho=.-.747 
n=24, p<.001 (1-tailed). This correlation means that people 
who tended to give a lower MJ on average also tended to ask 
to restudy more. In essence, it could be taken to suggest that 
people have some sense of whether they are finding the task 
easy or hard, and adjust their study strategy accordingly. 
Another Spearman rho test gives a statistically significant and 
large positive correlation between frequency of restudy for a 
participant and their recall performance. That is, the more 
times people restudy (on average) the better their ability to 
retrieve words in the recall test, rho= .661 n=72, p<.001. 
There is a similar effect with recognition, a significant large 
positive correlation between frequency of study and 
recognition test performance, rho=.610, n=72, p<.001. It is 
not hard to see why this would be the case. The more restudy, 
the more practice of the items one gets, and if that helps then 
the better he or she performs. But this then leaves us with a 
slightly paradoxical situation, where the participants that we 
would argue are finding the task hardest (as signaled by a low 
MJ on average) are actually the ones performing the best. 
Perhaps the low average MJs may actually reflect better self-
knowledge (i.e. a form of meta-memory) rather than ability 
as such. These are the people who know that they need to 
restudy, and do so, and benefit from it. Those with higher 
average MJs may be confident but may be mistaken in their 
confidence. It's also worth pointing out that the correlation 
between restudy request frequency and performance includes 
participants in Groups B and C who had no control over 
restudy. In some sense, the restudy manipulation was simply 
one imposed on them, and the result that more restudy 
benefitted performance is not surprising in that context. 
Finally, the correlations between MJ and test performance 
across subjects were not significant, so actually the paradox 
is not present in our data, just a potential feature of our theory. 
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After looking at the MJ data for the restudied and non-
restudied words, we quite naturally would like to know how 
performance differed for those word types, and whether it 
differed across groups. Having collapsed B and C into one 
group as they do not differ on these measures, there was a 
main effect on recall for the type of words F (1, 69) =20.284, 
p=<.001. Participants performed better on non-restudied 
words than on restudied words. An independent t- test found 
statistically significant differences between the experimental 
group A (M= .504, SD= .240) and the combined control 
group (M=.360, SD=.192) for non- restudied words, t (70) = 
2.734, p= <.001. The eta squared statistic (h2= .1) indicated a 
large effect size. Whereas the difference between 
experimental group A (M= .301, SD= .368) and the control 
group (M=.222, SD=.315) for restudied words was not 
significant t (70) = .940, p=.350. The fact that overall, 
participants recalled more words when they were not 
restudied we take to simply reflect the fact that these were the 
easier word pairs. The fact that Group A was better than the 
combined control on these words again suggests an item 
specific advantage based on Group A participants selecting 
the words. Whilst the words were generally the easier ones 
(hence the main effect), the agreement on this between Group 
A and controls was not complete. 
 

  
Fig. 4. Mean percentage of Final Recall and Recognition tests 
between restudied and non-restudied between groups A, B 
and C. Error Bars: 95%CI.  

Turning now to the recognition test, once again participants 
recognise more words from the non-restudied words than the 
restudied words, F (1, 69) =20.783, p<.001. After collapsing 
B and C into one control group, an independent t- test showed 
there was a statistically significant difference between the 
experimental group (M= .878, SD= .111) and control group 
(M=.791, SD=.148) for the non- restudied words, t (70) = 
2.515, p= =.014. The effect size, calculated using eta squared, 
was large (h2= .1). However, the difference between the 
experimental group (M= .599, SD= .463) and control group 
(M=.579, SD=.423) for restudied words was not significant t 
(70) = .184, p=.854. (See Figure 4). Just as before, we can 
attribute some of this advantage on test to Group A’s 
effective selection of the non-restudied words as the easier 
items, and that selection not transferring completely to the 
other groups. As a result, Groups B and C find these items 
harder on average and score lower on test. But the overall 
averages indicate general agreement about which are the 

more difficult items, as the overall means for the non-
restudied words are much higher than for the restudied ones. 
 

Discussion 
In this experiment, we have found a significant advantage for 
Group A over the other two groups in terms of performance 
on the tests used to assess memory, with no significant 
differences between Groups B and C. It can be concluded that 
using meta-memory judgments and allowing control of 
restudy has a positive impact on participant’s memory 
performance. The question now is why does this happen? Is 
it that the use of meta-memory allows our participants to 
select items that they find particularly difficult for restudy, 
thus improving performance? Or is it a more general effect? 
We can envisage two possibilities here. One is that people 
know how good their memories are and can make use of that 
knowledge to guide restudy. Another is that that giving 
people control over their choice of restudy items improves 
their motivation and engagement with the task. As we have 
seen and will see, there is evidence for both explanations, but 
what we can say is that simply "exercising" meta-memory, 
by giving a MJ to an item, is not in itself a significant factor 
in improving performance, otherwise there would be a 
significant difference between Groups B and C. 
These results are  in line with those of previous studies  Begg, 
Martin, & Needham (1992) and Hager & Hasselhorn (1992) 
who concluded that self-memory monitoring has no value for 
memory performance if participants did not also have control 
of their study. In addition, these results are in agreement with 
those obtained by Kornell & Metcalfe (2006) and Jonathan 
G. Tullis & Benjamin (2012) who tested the effectiveness of 
self-selection on the use of metacognitive control over 
learning and memory performance. They found that allowing 
participants to control their learning had a positive effect on 
memory performance, long term learning and restudy 
choices.  
This study found that there was a significant difference on MJ 
between non-restudy words and restudy words, and one 
possible explanation for this is that meta-memory monitoring 
helped participants in groups A  and B  to make their meta-
memory judgments so as to discriminate between items 
which were  more difficult and items that were easy and really 
sufficiently learned. These result are in line with those of 
previous studies who found that young subjects use their 
metacognition monitoring to distinguish between more 
difficult items (Li et al., 2018; Tullis & Benjamin, 2012;  
Tullis, Fiechter, & Benjamin, 2018; Zawadzka et al., 2018). 
Another significant finding was that meta-memory 
judgments could, to some extent, predict a participant’s 
restudy frequency. Participants in group A, requested restudy 
more often for items that they had judged as least well –
learned. This finding supports the work of other studies in 
this area   (e.g. Dunlosky & Hertzog, 1997; Li et al., 2018; 
Nelson et al., 1994; Jonathan G. Tullis & Benjamin, 2012). 
Equally, participants in group A and B show significant 
improvement in their MJ after restudying words. These 
results agree with the finding of other study such as 
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Zawadzka et al. (2018) who demonstrate that repeated 
learning in the same environment improved learning, and 
metacognition monitoring. Obviously we are unable to 
comment on the effect of restudying a word on learning here 
because we do not know what performance on the restudied 
words  would have been if they had not been restudied, but 
the positive correlation between frequency of restudying and 
test performance does fit in with the results cited. We intend 
to gather data that bears directly on this issue. 
We can interpret some of the correlational results very simply 
as meaning that higher confidence about learning translates 
into better memory performance later. This would fit well 
with an item-specific effect of meta-memory on these tasks, 
whereby items judged as hard by Group A participants were 
given a low MJ, and this was used to trigger a restudy request. 
The effect of this was to improve performance on these items, 
back up to the level shown by the controls, while the 
advantage on the items not chosen for restudy because they 
were easy was greater in Group A again because they were 
able to make the right choices for them. Whilst there is 
general agreement about which are the easy and hard word 
pairs across groups (as shown by the correlations by word for 
MJ and test performance reported earlier) there is enough 
disagreement for the control groups to not gain as much 
benefit from the restudy offered, and so Group A does better. 
This is one possible explanation for our results. 
But there may be more to this. Note that the MJ was, on 
average, higher in Group A than Group B, and, as we have 
seen, Group A performs better on test than Group B and C 
combined. The higher MJ in Group A could reflect increased 
confidence due to having control over which items are 
restudied, but this could be a general motivational effect 
rather than one based on meta-memory. To be clear, it could 
be that both the high MJ and better memory in Group A are 
both due to increased motivation due to their being in control 
of their restudy choices, in which case it would not be correct 
to say that the high MJ had some causal role in improving 
performance for Group A relative to Group B. Further 
research will be needed to disentangle the relationship 
between these variables. 
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Abstract 

The present study explores the impact of including social 
media messages on learning from television programs that 
broadcast pseudoscientific claims. Seventy-seven university 
students were allocated to one of three experimental 
conditions: viewing television content with messages 
supporting the claim, with opposing messages, or without any 
messages presented. Memory retention did not differ among 
the conditions. However, social media messages influenced 
validation of the arguments claimed in the video. The 
participants who watched the video with opposing messages 
showed significant decrease in positive attitude toward the 
pseudoscientific technology that claimed to be effective in the 
video. Additionally, the participants who watched the video 
with supporting messages made fewer critical comments and 
showed willingness to donate more to the activity using the 
pseudoscientific technology. The impact of including social 
media messages and the process of attitude change are 
discussed. 

Keywords: social media messages; learning from television 
programs; incorrect arguments; validation of argument; 
attitudes; retention.  

Introduction 

Learning from television programs with social 

media messages 

One of the major sources for everyday learning is television. 

Since television programs are designed with various styles, it 

is not easy to define the processes of learning from television 

in general. Thus, we begin by focusing on a relatively simple 

program that broadcasts experts’ explanations. Although the 

style is simple, we can find many examples of the type of 

television programs in which experts like scholars and 

scientists explain topics of interests such as politics, 

technology, and science.  

The present study investigates how social media messages 

impact learning from the “experts’ explanation” type of show. 

It is shown that people often access social media while 

watching television. It is also getting popular to include social 

media posts on the screen during such programs (Inuzuka, 

Tanaka, & Tsubakimoto, 2017; Barra & Scaglioni, 2014). In 

this case, the social media messages, which typically include 

hashtags, are searched and presented. (See Figure 1 for an 

example of how these feeds may be presented.) The programs 

usually include messages that consist mainly of text, such as 

posts on Twitter. Although the relationships between social 

media and viewing television programs have begun to be 

explored widely (e.g., Anstead & O’Loughlin, 2011; Ceron 

& Splendore, 2018; Miao, 2018; Waddell & Bailey, 2019), 

few studies investigate their impact on cognitive processes 

(e.g., Cameron & Geidner, 2014; Maruyama, Robertson, 

Douglas, Semaan, & Fucett, 2014; Maruyama, Robertson, 

Douglas, & Raine, 2017). Thus, we still lack evidence to 

discuss their effects on learning.  

In the present study, we focus on the impacts of social 

media messages on validation as well as memory retention. 

Validation is one type of integration process that requires 

activation of one’s prior knowledge and unfolding a logical 

argument (e.g., Halldorson & Singer, 2002; Lea, Mulligan, & 

Walton, 2005; Singer, Halldorson, Lear, & Andrusiak, 1992). 

The inclusion of social media messages may impact the 

validation process of the viewers; the messages can activate 

viewers’ knowledge or provide new information that is 

effective for appropriate validation. These social media 

messages, however, cannot always be effective for validation. 

The messages contain various opinions (D’heer & Verdegem, 

2015), and irrelevant and inappropriate messages can be 

included as well as helpful ones. Previous studies failed to 

investigate how qualitatively different messages impact 

viewers’ learning. Thus, the present study investigates the 

effects of different types of social media messages on viewers’ 

memory retention and validation of arguments provided in 

television programs. 

Learning from multimedia sources and the effects 

of including social media messages 

While the “experts’ explanation” type of television program 

may seem simpler than other styles, the situation can be 
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described as learning from multimedia materials. Watching 

the program, the viewers integrate the information presented 

in the speech and other visually presented materials such as 

graphs and illustrations. When social media messages are 

incorporated into the program, the viewers must integrate 

more information presented visually in the text of social 

media messages. 

The literature on multimedia learning suggests that the 

inclusion of social media messages may interfere with viewer 

comprehension since the messages may contain incoherent 

information. Mayer (2009) suggested a “coherent principle” 

in which learners understand a topic better when irrelevant 

and seductive elements are removed from the learning 

materials. The coherence principle can be explained by the 

split-attention effect theory; a multimedia resource results in 

less learning when it splits learners' attention (Sweller & 

Chandler, 1996). This attention split is more likely to occur 

when the resource contains information sharing the same 

modality and when it is not coherent with the other 

information presented (Mayer, 2009; Mayer & Moreno, 

1998). 

Consideration of the coherence principle led us to assume 

that the presentation of messages interferes with learning 

since these messages are not consistent with the main 

information of the contents. Inuzuka, Tanaka, and 

Tsubakimoto (2017, 2018), however, suggested that the 

effects of presenting social media messages on memory 

retention were limited. They compared the memory retention 

scores of participants who watched video material including 

and not including social media messages. Participants paid 

attention to the messages when presented but showed no 

significant difference in retention scores between the two 

groups.  

The gap between the coherent principal and the results of 

Inuzuka et al. (2017, 2018) can be interpreted from the 

standpoint of the difference in the level of comprehension. 

Research on multimedia learning suggested that violation of 

the coherent principal mainly influences the integration of 

learning materials and the learner's knowledge (Mayer, 2009). 

Thus, we can assume that Inuzuka et al. (2017, 2018) showed 

no significant effects of including social media messages 

since they examined memory retention, which did not require 

integration of the knowledge.  

The validation of false arguments  

Viewers activate their prior knowledge, integrate the 

information presented, and validate the arguments (e.g., 

Halldorson & Singer, 2002; Lea, Mulligan, & Walton, 2005). 

Validation of an argument is especially important when it 

comes to learning from television programs since the issues 

tackled in television programs are often relevant to viewers’ 

lives and require them to decide what to believe and what to 

do. Additionally, and more importantly, the media do not 

always provide fair and correct arguments. Consideration and 

validation of potentially biased information are among the 

most important practices in surviving the information age. 

 Research shows that people display difficulty rejecting 

information even when the texts they read are inconsistent 

with prior knowledge and even patently false (e.g., Gilbert, 

Krull, & Malone, 1990; Gilbert, Tafarodi, & Malone, 1993). 

Gerrig and Prentice (1991) revealed that it took longer to 

vilify a false statement as “incorrect” when participants read 

the statement discussed as truth in a narrative text. These 

studies suggest that learners accept what they have processed 

as truth first and resolve the validation afterwards. Rapp 

(2008) suggested that, when providing fake information 

within a context that casts doubt on correct information, the 

verification becomes even more difficult for learners.  

 To extend the above discussion, it is necessary to note that 

the above studies employed information regarding which the 

correctness of the arguments was apparent to the learners. 

Television programs, however, usually focus on issues on 

which learners do not possess much prior knowledge. In this 

case, the validation of incorrect argument becomes a more 

difficult and complex task that demands more deliberate 

consideration. Thus, we must employ an index other than 

reaction time. Consideration of new ambiguous topics should 

and can be measured more qualitatively using participants’ 

attitudes toward the topic, decision making, and the 

explanation of the situation related to the issue. 

The impacts of presenting social media messages 

We can predict that the presentation of social media messages 

changes the way viewers validate presented arguments. 

Maruyama et al. (2017) investigated the effects of referring 

to social media messages when watching a discussion on the 

television. They revealed that viewers’ attitudes were 

different in the direction of the social media messages. 

Similarly, Cameron and Geidner (2014) explored the effects 

of social media feeds on viewers’ opinion formation. They 

indicated that participants' opinions were found to conform to 

the majority opinion presented in the messages. These studies 

suggest that conformity process in which viewers may follow 

the majority of the people.  

 The above studies are limited, however, as they did not 

investigate the situation in which learners are required to 

validate incorrect arguments. When watching a discussion in 

which both sides of the argument can equally be justified, the 

viewers’ consideration and decision making would depend 

on what the majority says. Thus, conformity can best describe 

the impacts of social media messages, as depicted by 

Maruyama et al. (2017). However, the same may not be true 

when the argument claimed by the specialist on the television 

program is incorrect. Thus, this study aimed to examine 

whether the impacts of social media messages are valid when 

new and incorrect information is presented and to explore if 

the impacts are caused by conformity. 

Aim of the study 

The present study focused on how the incorporation of social 

media into television programs affects memory retention and 
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validation of incorrect arguments. More specifically, we 

examined the effects of social media messages by presenting 

either opposing or supporting messages for the 

pseudoscientific claims. We hypothesized the following: 

(1) The presentation of the social media messages does not 

interfere with memory retention that does not require 

integration of knowledge. 

(2) The presentation of social media messages impacts 

viewers’ validation of pseudoscientific claims. Namely, the 

viewers change their attitudes in the direction of the social 

media messages, and the viewers react differently to the 

situation in which they must make some decision. 

Method 

Participants 

Seventy-seven undergraduates participated in this study after 

providing informed consent and were assigned to one of three 

conditions: Supporting, Opposing, and Without message. As 

a reward for their participation, they received a 500 Japanese 

yen (approximately $4.50) cash voucher. 

Materials 

Fake television program The video material used by 

Inuzuka et al. (2017) was edited for the purpose of the present 

study (Figure 1). The original video was produced to mimic 

a scientific talk show. We omitted some parts of the video so 

that only the claim of one scientist (an actor) remained. 

Following the procedure above, the video material used in the 

present study was approximately eight minutes long. The 

scientist stated that “Effective Microorganisms” (EM) are 

effective for improving water quality. “EM” is a 

pseudoscience based on the idea that a particular collection 

of microorganisms can solve virtually all health and 

environmental problems. We chose the topic because it is 

relevant to participants’ lives and yet unfamiliar to them. 

Fake social media messages We included fake social media 

messages that simulated Twitter posts in the video material 

presented to the participants in the Supporting and Opposing 

message conditions. The messages consisted of text with each 

containing one or two short sentences. We designed three 

types of messages: opposing, supporting, and neutral (Table 

1). Neutral messages were developed for when neither 

supporting nor opposing messages were appropriate. Neutral 

messages were, therefore, included in both Opposing and 

Supporting conditions and were presented at the same time in 

both conditions. Opposing and supporting messages were 

included in the corresponding conditions, and each message 

was inserted at the bottom of the screen (Figure 1) 

approximately five seconds after the relevant topic was 

mentioned by the scientist. The participants assigned to the 

Without messages condition watched the video not including 

the messages. 

Retention test A retention test was developed with six quiz 

items (e.g., “What was the name of the two rivers that 

Scientist A claimed that EM cleaned up?”). The tests were 

administered after participants had watched the video.  

Attitude questionnaire To assess the participants’ validation 

of the video contents, whether the participants agreed with 

the effectiveness of EM was measured using a questionnaire. 

The attitude questionnaire was administered before and after 

the participants watched the fake video. It consisted of two 

subscales with three items each: positive attitude (e.g., “I 

think EM will somehow do some good”) and careful attitude 

(e.g., “We need more investigation on the effectiveness of 

EM”). The participants were asked to answer the items on 

seven-point Likert scales. 

 

 

 

Figure 1. A frame from the video material that mimics the 

television program displaying a social media feed saying, “So, 

the ‘power of nature’ means using microorganisms. Right?” 

 

 

 

Table 1. Examples of fake social messages used in the 

study. 

 Example 

Supporting 

(33) 

 

It is important to use an enriched compound 

of specific types of organic matter. I 

understand. 

Opposing 

(33) 

 

After all, I think EM is condensed organic 

matter. If so, there might be a risk of causing 

more pollution. 

Neutral 

(21) 

I agree that it is important to discuss in a 

scientific way. 

Note: The numbers in parentheses are the numbers of each 

type of message. Supporting messages were presented only 

to the participants in the Supporting condition and opposing 

messages to those in the Opposing condition.  
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Explanation and decision-making task Additionally, we 

developed a test in which a short story was introduced to 

qualitatively assess the consideration and validation of the 

argument. In that story, the following scenes were 

introduced: "You are considering making a donation, and a 

man comes and explains that NGOs are planning water 

quality-improvement activities using EM." The participants 

were asked to decide how much they would donate to that 

NGO (0–5000 JPY, approximately 40 USD). Participants 

were also asked to write comments and questions for the man 

in the story. 

Evaluations of the messages The participants in the 

Opposing and Supporting message conditions rated three 

questionnaire items on an 11-point scale: (1) the extent to 

which the social media messages were against the claim, (2) 

how much attention they paid to the messages, and (3) how 

much they considered the contents of the messages. 

Procedures 

Each participant was tested individually in a laboratory. Each 

session lasted approximately 30 minutes. After participants 

had signed a consent form, the experimenter introduced the 

video, explaining, “The video is a digest of a television 

program. In the program, a scientist will explain how they try 

to clear water pollution.” The experimenter then instructed 

the participants to watch the television show and learn from 

it. Each participant was randomly assigned to one of the three 

conditions: Supporting, Opposing, and Without messages. 

No instruction regarding the social media messages was 

given, so the participants were not aware of the differences 

among the conditions. After watching the video, participants 

responded to the retention test and attitude questionnaire. 

There was no time limit for completing the questionnaires, 

but participants did so within 10–15 minutes. 

Results 

The evaluation of messages 

Three participants were excluded from the following analysis 

since they reported that they knew about EM in advance. To 

confirm that the different types of social media messages 

were delivered to the participants, we employed the 

participants’ rating for the extent to which the social media 

messages were against the claim. The difference between 

conditions was significant, t(45) = 10.0, p < .001, d = 2.97. 

The mean scores were significantly higher than the neutral 

score (t(22) = 9.56, p < .001) in the Opposing condition and 

lower than the neutral score (t(22)= −5.31, p < .001) in the 

Supporting condition.  

Additionally, the participants’ rating for the extent of 

attention (t(45) = 2.13, p < .05, d = 0.63) and consideration 

(t(45) = 3.82, p < .001, d = 1.136) of the messages also 

differed between two groups, indicating that the participants 

assigned to the Opposing condition rated themselves as 

paying more attention and considered the messages.  

The effects of message presentation on retention 

test 

Each retention test item was scored with two points, and the 

total was used as the retention test score (Table 3). Fully 

correct answers were given two points, and partially correct 

answers, such as giving only one name of a river when two 

should be named, were given one point. The difference in 

retention test score among the conditions was analyzed with 

a one-way ANOVA. The result indicated no significant 

difference among the experimental conditions, F(2,70) = 1.45.  

The effects of message presentation on attitude 

For the analysis of attitude change, we used the average 

scores of positive and careful attitude questionnaire items. 

The mean scores for each subscale are shown in Table 3. The 

impact of message presentation was analyzed with two-way 

mixed ANOVAs. The dependent variables were positive and 

careful attitude scores, and the independent variables were 

conditions (Opposing, Supporting, and Without messages), 

time of measurement (pretest and posttest), and the 

interaction effect of two independent variables.  

The results of careful attitude score showed no significant 

main effects of experimental condition (F(2,71)= 1.78) and 

time (F(1,71)= 0.421), and there was no significant 

interaction effect either (F(2,71) = 0.745).  

On the other hand, the analysis of positive attitude revealed 

significant results. The main effect of time was significant 

(F(1,71) = 9.37, p < .01, ηp = .117), showing a decreasing 

tendency, while the main effect of condition was not 

significant (F(2,71) = 1.58). More importantly, the 

interaction effect of condition and time reached a significant 

level (Figure 2, F(2,71) = 10.22, p < .001, ηp = .224). 

Subsequent analysis of simple effect revealed that positive 

attitude was decreased significantly only in the Opposing 

condition, F(1,71) = 27.26, p < .001, ηp = .532). The change 

in other conditions did not reach a significant level (F(1,71) 

= 1.42 for the Without condition and F(1,71) = 1.21 for the 

Supporting message condition). The effects of conditions 

were significant only at the posttest (F(2,142) = 8.36, p < .001, 

ηp = .191), showing a significant difference between 

Opposing and Without message conditions (t(142) = 2.35, p 

< .05, d = 0.943) and between Opposing and Supporting 

message conditions (t(142)= −4.07, p < .001, d = 1.62). The 

difference between Without and Supporting message 

conditions was not significant, t(142)=1.68.  

The results of one-way ANOVA conducted on the 

explanation score showed a significant effect of condition 

(F(2,71) = 3.50, p < .05, ηp = .090), and the following multiple 

comparison (Holm) revealed that the difference between 

Supporting and Opposing message conditions was significant 

(t(71) = 2.55, p < .05, d = 0.710) with higher scores for the 

participants in the Opposing message condition. 
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Table 2. Average scores for evaluation of the messages  

 Supporting Opposing 

The messages against 

the claim 
3.86 (1.96) 9.25 (1.51) 

Attention paid to the 

messages 
7.25 (2.80) 8.75 (1.56) 

Consideration of the 

message contents 
5.46 (2.78) 8.05 (1.31) 

Note: The numbers in parentheses are standard deviations. 

 

 

Table 3. Average scores on the retention test, change in 

attitude, and critical thinking disposition scales for each 

experimental condition 

 Supporting Opposing Without 

Retention test 
7.71  

(2.31) 

8.44  

(3.17) 

7.42  

(2.39) 

Positive attitude    

Pretest 
3.63 

(0.58) 

3.91 

(0.64) 

3.68  

(0.54) 

Posttest 
3.84 

(1.04) 

2.29 

(0.79) 

3.44  

(1.15) 

Careful attitude    

Pretest 
3.64 

(0.43) 

3.76 

(0.67) 

3.75  

(0.15) 

Posttest 
3.64 

(0.41) 

3.92 

(0.41) 

3.72  

(0.52) 

Explanation score 
0.72 

(1.44) 

1.32 

(1.41) 

0.88  

(1.41) 

Donation 

amount (yen) 

1750.00 

(1161.00) 

916.00 

(1086.16) 

1071.67 

(1075.965) 

Note: The numbers in parentheses are standard deviations. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Changes in positive attitude as a function of 

message presentation. Error bars represent standardized 

errors. 

Explanation and decision-making task 

The explanation score was calculated based on the number of 

critical points included in the answer to the explanation and 

decision-making task. The participants were given one point 

each when referring to the following points: (1) suspicious 

effects of EM, (2) the lack of clear explanations for the 

mechanism, (3) the lack of consideration of side effects, (4) 

the need for solid data. Thus, the explanation score for each 

participant was in the range of 0–4. The donation amount 

indicated by the participants was also used as an index for the 

validation. The average scores and SDs are shown in Table 3. 

Additionally, the amount of money the participants were 

willing to donate for the activity using EM was compared 

among the conditions. One-way ANOVA revealed a 

significant effect of experimental condition (F(2,70) = 3.89, 

p < .001, ηp = .100). Multiple comparison (Holm) was 

conducted and showed significant difference between 

Supporting and Opposing message conditions (t(70)= −2.64, 

p < .05, d = −0.741). The participants in the Supporting 

message condition tended to donate more than those who 

watched the same video with opposing messages. 

 

Discussion 

The present study investigated the effects of including social 

media messages in a television program on which incorrect 

arguments were claimed. As predicted in Hypothesis 1, the 

results demonstrated no significant difference in retention. 

The result was consistent with previous studies using a 

similar method (Inuzuka et al., 2017; 2018) and with studies 

of multimedia learning (Mayer, 2009), suggesting that the 

incorporation of social media messages would not interfere 

with the memory of what had been discussed in the program. 

The results for attitude changes and explanation and decision-

making tasks also supported our hypothesis about the impact 

of social media messages on validation of the arguments 

(Hypothesis 2). The participants who watched opposing 

messages became less positive about the effectiveness of EM, 

the pseudoscientific technology. The participants’ 

explanation and decision also showed that those who watched 

supporting messages were relatively uncritical about using 

the pseudoscientific technology.  

The results of the present study suggested that showing 

counterarguments in text messages may support the viewers 

to consider and validate the information shown in the 

television programs more appropriately. Considering 

research showing that rejecting incorrect text is difficult for 

readers (Gerrig & Prentice, 1991; Gilbert et al., 1990; Gilbert 

et al., 1993; Rapp, 2008), it may be beneficial to incorporate 

these counter-messages for viewers.  

However, it should be noted that the messages included in 

the study were biased, either supporting or opposing the 

explanation of the expert in the program. Actual social media 

messages are supposed to be more varied including both 

appropriate and inappropriate arguments. As Inuzuka (2017) 
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showed that presenting varied messages did not significantly 

change the viewers’ attitude, the impacts of appropriate 

counterarguments may be wiped out when combined with 

inappropriate messages.  

While previous studies (Cameron & Geidner, 2014; 

Maruyama et al., 2014, 2017) suggested conformity as the 

mechanism underlying the effects of social media messages 

on the viewers’ attitude change, the present study brought up 

another possibility. The conformity hypothesis should predict 

that both opposing and supporting messages will have similar 

impacts on participants’ validation process. However, we 

found smaller attitude changes in the Supporting condition in 

the present study. The unequal results in our two conditions 

may be caused by the qualitative difference in the messages 

presented. The ratings of the consideration of messages 

showed that the participants in the Opposing condition 

considered the messages more than those in the Supporting 

condition (Table 2.).  

The difference may be caused by the effectiveness of the 

messages; the messages in the Opposing condition provided 

other perspectives from the expert’s explanation while the 

messages of the Supporting condition provided rephrasing 

and supplemental information. Thus, the participants may 

consider the messages of the Opposing condition to be more 

informative. If the above consideration stands, it can be said 

that the information contained in the messages is used in the 

process of deliberation rather than merely conformity. The 

next step of the research, therefore, should be to clarify if the 

impacts are caused by the conformity of deliberate 

consideration. 

The results also showed that the attention change led to 

decision-making in a more realistic situation. The 

participants in the Supporting condition tended to donate 

more with fewer questions about the appropriateness of the 

activity. Although the present study is based on a laboratory 

examination using a fake television program, the results 

provided eligible data to discuss the effects of showing biased 

information. Presenting biased information without 

counterargument may result in an actual disadvantage.  

The present study makes meaningful contributions toward 

understanding how we learn from a new type of media. The 

first is the suggestion that incorporation of social media 

messages affects individuals. The results of the present study 

broaden the previous studies on social media and television 

programs by showing that incorporation of meaningful 

messages would help viewers more appropriately validate the 

information. The second is the expansion of the research on 

validation of incorrect information to broader learning 

contexts. Previous studies mainly focused on information 

presented in texts and information the participants already 

knew. The present study highlights information that 

participants newly learn and suggests that using different 

media may be an effective way to present counterarguments.  

We should note, however, some limitations of the study. 

First, the instruction for the participants should be less 

instructive. We instructed the participants to learn from the 

television program to make sure they focused on the program, 

but the instruction may have influenced their attitude and 

caused better memory retention while they may have spared 

more attention for the social media messages if not for the 

instruction. Although we repeatedly found small effects of 

the social media messages on memory for detailed facts, it is 

important to test the impacts of those in more natural settings.  

Secondly, a more thorough comprehension test should be 

administered. In the experiment, we used a quiz to test the 

participants’ memory retention. The quiz mainly tapped 

detailed memory of the program contents. Open-ended 

questions and analysis of the structure of their memory would 

enable us to understand the impacts of social media messages 

on memory in more detail. 

Finally, the mechanism of the impacts of message 

presentation should be investigated in future studies. The 

impacts of social media messages shown in the present study 

supported the hypothesis that social media messages provide 

support for deliberate consideration or evaluation of 

information. Since the present study does not provide direct 

evidence to discuss the process of attitude change, there 

remains one alternative interpretation: conformity (c.f., 

Maruyama et al., 2017). However, relatively weak impacts of 

supporting messages suggest that the effects of messages may 

not be caused by conformity alone. If the participants reacted 

to the messages in the direction these messages suggest, the 

participants should change their attitude equivalently in both 

Supporting and Opposing conditions. The future direction of 

the study is more detailed investigation of the process of 

validation: conformity or deliberate consideration.  

Acknowledgments 

This work was supported by JSPS KAKENHI Grant Number 

15K04084. 

References 

Anstead, N., & O’Loughlin, B. (2011). The emerging 

viewertariat and BBC question time: Television debate 

and real-time commenting online. The International 

Journal of Press/Politics, 16, 440–462. 

Barra, L., & Scaglioni, M. (2014). TV goes social: Italian 

broadcasting strategies and the challenges of convergence. 

VIEW Journal of European Television History and 

Culture, 3(6), 110–124. 

Cameron, J. & Geidner, N. (2014). Something Old, 

Something New, Something Borrowed From Something 

Blue: Experiments on Dual Viewing TV and Twitter, 

Journal of Broadcasting & Electronic Media, 58, 400-

419 

Ceron, A., & Splendore, S. (2018). From contents to 

comments: Social TV and perceived pluralism in political 

talk shows. New Media and Society, 20, 659–675. 

D’heer, E., & Verdegem, P. (2015). What social media data 

mean for audience studies: A multidimensional 

investigation of Twitter use during a current affairs TV 

1947



programme. Information, Communication & Society, 18, 

221–234. 

Gerrig, R. J., & Prentice, D. A. (1991). The representation of 

fictional information. Psychological Science, 2, 336–340. 

Gilbert, D. T., Krull, D. S., & Malone, P. S. (1990). 

Unbelieving the unbelievable: Some problems in the 

rejection of false information. Journal of Personality & 

Social Psychology, 59, 601–613.  

Gilbert, D. T., Tafarodi, R. W., & Malone, P. S. (1993). You 

can’t not believe everything you read. Journal of 

Personality & Social Psychology, 65, 221–233. 

Halldorson, M., & Singer, M. (2002). Inference processes: 

Integrating relevant knowledge and text information. 

Discourse Processes, 34, 145–161 

Inuzuka, M., Tanaka, Y., & Tsubakimoto, M. (2017). 

Students’ comprehension of scientific discussion: Using 

eye-tracking technique to investigate the effects of social-

media messages on television. Proceedings of the 50th 

Annual Hawaii International Conference on System 

Sciences (HICSS), pp. 2106–2115. 

Inuzuka, M., Tanaka, Y., & Tsubakimoto, M. (2018). Do 

social media messages incorporated into television 

programming impact learning? The effects of disposition 

to critical thinking. Proceedings of the 40th Annual 

Conference of the Cognitive Science Society, pp. 524–529. 

Lea, R. B., Mulligan, E. J., & Walton, J. L. (2005). Accessing 

distant premise information: How memory feeds 

reasoning. Journal of Experimental Psychology: 

Learning, Memory, & Cognition, 31, 387–395. 

Maruyama, M. Robertson, S. P., Douglas, Semaan, B., & 

Faucett, H. (2014). Hybrid media consumption: How 

tweeting during a televised political debate influences the 

vote decision. Proceedings of the 2017 ACM Conference 

on Computer Supported Cooperative Work and Social 

Computing (CSCW ’14), pp. 1422–1432. 

Maruyama, M., Robertson, S. P., Douglas, S., Raine, R., & 

Semaan, B. (2017). “Social watching” a civic broadcast: 

Understanding the effects of positive feedback and other 

users’ opinions. Proceedings of the 2017 ACM 

Conference on Computer Supported Cooperative Work 

and Social Computing (CSCW ’17), pp. 794–807. 

Mayer, R. E. (2009). Multimedia learning. New York: 

Cambridge University Press. 

Mayer, R. E., & Moreno, R. (1998). A split-attention effect 

in multimedia learning: Evidence for dual processing 

systems in working memory. Journal of Educational 

Psychology, 90, 312–320. 

Miao, G. (2018). How television viewers use social media to 

engage with programming: The social engagement scale 

development and validation. Journal of Broadcasting & 

Electronic Media, 62, 195–214. 

Rapp, D. N. (2008). How do readers handle incorrect 

information during reading? Memory and Cognition, 36, 

688–701. 

Singer, M., & Halldorson, M. (1996). Constructing and 

validating motive bridging inferences. Cognitive 

Psychology, 30, 1–38. 

Sweller, J., & Chandler, P. (1994). Why some material is 

difficult to learn. Cognition and Instruction, 12, 185–233. 

Waddell, T. F., & Bailey, E. (2019). Is social television the 

“anti-laugh track?” testing the effect of negative 

comments and canned laughter on comedy reception. 

Psychology of Popular Media Culture, 8(1), 99–107.

 

1948



 

 

Wait for it! 
Stronger influence of context on categorical perception in Danish than Norwegian 
 

Byurakn Ishkhanyan (byurakn@cc.au.dk) 
School of Communication and Culture, Aarhus University, Denmark  

  
Anders Højen (hojen@cc.au.dk) 

School of Communication and Culture, Aarhus University, Denmark 
 

Riccardo Fusaroli (fusaroli@cas.au.dk) 
School of Communication and Culture & Interacting Minds Centre, Aarhus University, Denmark  

 
Christer Johansson (christer.johansson@uib.no) 

Department of Linguistic, Literary and Aesthetic studies, University of Bergen, Norway 
 

 Kristian Tylén (kristian@cc.au.dk) 
School of Communication and Culture & Interacting Minds Centre, Aarhus University, Denmark  

  
Morten H. Christiansen (christiansen@cornell.edu) 

Cornell University, Department of Psychology, Ithaca, NY 14850 USA 
School of Communication and Culture & Interacting Minds Centre, Aarhus University, Denmark  

 
 

Abstract 
Speech input is often noisy and ambiguous. Yet listeners 
usually do not have difficulties understanding it. A key 
hypothesis is that in speech processing acoustic-phonetic 
bottom-up processing is complemented by top-down 
contextual information. This context effect is larger when the 
ambiguous word is only separated from a disambiguating word 
by a few syllables compared to many syllables, suggesting that 
there is a limited time window for processing acoustic-phonetic 
information with the help of context. Here, we argue that the 
relative weight of bottom-up and top-down processes may be 
different for languages that have different phonological 
properties. We report an experiment comparing two closely 
related languages, Danish and Norwegian. We show that 
Danish speakers do indeed rely on context more than 
Norwegian speakers do. These results highlight the importance 
of investigating cross-linguistic differences in speech 
processing, suggesting that speakers of different languages 
may develop different language processing strategies. 

Keywords: categorical perception; speech perception; Danish; 
Norwegian, cross-linguistic studies 

Introduction 
Speech is often ambiguous and noisy. Yet most of the time 
listeners show remarkable skills in understanding what is 
being said. A possible explanation is that the imperfect 
acoustic-phonetic input is integrated with contextual 
information. Thus, to understand speech, listeners combine 
bottom-up acoustic-phonetic cues with top-down lexical-
semantic and pragmatic contextual information. This context 
effect might be particularly apparent when the acoustic-
phonetic information is unclear or noisy (e.g., Borsky, Tuller 
& Shapiro, 1998; Gaskell & Marslen-Wilson, 2001; Marslen-
Wilson & Welsh, 1978; Samuel, 1981). 

Despite the variability of the acoustic properties of 
individual sounds and the noisiness of the acoustic-phonetic 
input, the perception of speech sounds is categorical 
(Liberman et al., 1957). This means that a certain sound is 
usually perceived unambiguously (e.g., either as a /b/ or as a 
/p/); listeners ignore within-category acoustic differences 
while easily perceiving across-category acoustic differences 
of the same magnitude.  

Both within-word and sentential context facilitate sound 
categorization when the acoustic-phonetic information is 
ambiguous (Brown-Schmidt & Toscano, 2017; Bushong & 
Jaeger, 2017; Connine, Blasko & Hall, 1991; McMurray, 
Tanenhaus & Aslin, 2009; Szostak & Pitt, 2013). In a 
phoneme identification study, Connine et al. (1991) 
manipulated the onset of the target words dent/tent on a 
continuum from a clear [d] to a clear [th] with three 
intermediate steps. The listeners were presented with 
sentences biased either towards dent (After the _ent corroded, 
they patched it) or towards tent (After the _ent collapsed, we 
went home). Connine et al. (1991) showed that listeners often 
relied on the biasing word at the end of the sentence to 
disambiguate the target word, when the target word had an 
ambiguous onset, whereas they were not biased by the 
context (biasing word), when the target word had a 
phonetically clear onset. They concluded that top-down 
inference from the context is given more weight when the 
target input is ambiguous than when it is clear.  

In the same study, Connine et al. (1991) showed that the 
contextual biasing effect was present when the target word 
was separated from the disambiguating word by a small 
number of syllables (NEAR condition) but not when there 
was a larger number of syllables (FAR condition). The 
response time data, however, showed that in the FAR 

1949



 

 

condition, most of the time, the decision was being made 
prior to the availability of the disambiguating information, 
suggesting that there was an approximately 1 s window to 
make a decision based on acoustic-phonetic information prior 
to its decay. 

In an eye-tracking study, Brown-Schmidt & Toscano 
(2017) showed a context bias effect even when the 
ambiguous word is separated from the biasing context by six-
seven syllables. In fact, prior to disambiguation, the listeners 
fixated on the interpretation of the word that did not match 
the context but shifted their gaze only after having heard the 
biasing context. Similarly, Szostak and Pitt (2013) replicated 
the contextual biasing effects on ambiguous-sounding 
phoneme identification. Although smaller than in the NEAR 
condition, they also observed a biasing effect in the FAR 
condition. The authors suggested that the temporal window 
for disambiguating unclear acoustic-phonetic information 
may not be completely fixed, as suggested by Connine et al. 
(1991), but rather influenced by other factors, such as 
syntactic complexity or experience with language use.  

Another factor that could affect the temporal window may 
be the typological characteristics of a given language. 
However, so far, language processing studies have mainly 
focused on English, therefore making it difficult to generalize 
the findings to other languages. In fact, it is debated whether 
all languages are processed in the same way and thus findings 
in one are generalizable to the others (Pinker, 1994), or 
whether each language has its unique characteristics, shaped 
by language users (Evans & Levinson, 2009). In the current 
study we address the question of whether individual 
languages are all processed in the same way or afford 
different processing strategies. Specifically, we investigate 
potential differences in the processing of the two languages—
Danish and Norwegian—which are closely related but differ 
substantially in their phonological structure.  

The Case of Danish and Norwegian 
The relative weight that context is given in speech 
comprehension may vary from language to language, 
depending on the typological characteristics of a given 
language. We hypothesized that Danish may be a language, 
where top-down contextual processes is given larger weight 
than bottom-up acoustic-phonetic cues, compared to its close 
linguistic neighbors, Swedish and Norwegian. In terms of 
cross-linguistic comparisons, Danish and Norwegian thus 
allow for a well-controlled natural experiment. Denmark and 
Norway have a long common history, and have strong 
similarities in culture, education, politics, and other extra-
linguistic factors. The two languages also have very similar 
grammars, morphology, and vocabulary—but differ in their 
phonology: Danish has a much more opaque phonology than 
Norwegian.  

The sound structure of Danish is quite unique. Apart from 
having an unusually high number of vowels and vowel-like 
consonants, there is also a higher degree of syllabic reduction 
and assimilation of both vowels and consonants, compared to 
its close relatives Norwegian and Swedish (Basbøll, 2005). 

As a result, Danish is more difficult to acquire as a native 
language than Swedish and Norwegian (Bleses, Basbøll & 
Vach, 2011). There is also evidence that out of these three 
mutually intelligible Scandinavian languages, Danish is the 
most difficult to understand (Gooskens et al., 2010; Hilton, 
Schüppert & Gooskens, 2011). This may be due to the fact 
that there is generally a higher degree of syllabic reduction in 
Danish than in Norwegian and Swedish. Moreover, due to 
phonological reduction in Danish, some words sound 
identical to each other (Basbøll, 2005). In general, Danish 
speakers are thus exposed to a more imperfect and unclear 
acoustic-phonetic input compared to their Scandinavian 
neighbors. And, as a result, Danish speakers may rely on top-
down processes to a larger extent than Norwegian and 
Swedish speakers.  

In the current study, we adapted the paradigms used by 
Connine et al. (1991) and Szostak and Pitt (2013) to test the 
hypothesis that Danish speakers, due to the phonological 
peculiarities of the language, rely more on top-down 
processes than Norwegian speakers do. We predicted that 
when presented with ambiguous sounding words, Danish 
speakers would rely more on contextual cues compared to 
Norwegian speakers. In fact, for Danish speakers, we 
expected this effect to be present not only in the NEAR 
condition but also in the FAR condition, indicating that the 
acoustic-phonetic bottom-up input is given relatively less 
weight by Danish speakers than by Norwegian speakers. 
Moreover, we predicted that Danish speakers would be more 
inclined to wait until the end of the sentence to respond than 
Norwegian speakers (H1: language main effect). Following 
the findings for English by Szostak and Pitt (2013) and 
Connine et al. (1991), we expected that both Danish and 
Norwegian speakers would be affected by contextual bias 
(H2: contextual bias main effect) and that the effect would be 
stronger in the NEAR condition (H3: bias by distance 
interaction). Additionally, given the processing differences 
between Danish and Norwegian, we expected the bias effect 
to be stronger in Danish (H4: bias by language interaction) 
and the bias by distance interaction stronger in Norwegian 
(H5: bias by distance by language interaction). 

To test these hypotheses, we fitted our experimental data to 
a drift diffusion model (Ratcliff, 1978), which jointly takes 
into account responses and response times as dependent 
variables and allowed us to separate the time preceding the 
decision making process (non-decision time), the rate at 
which evidence is accumulated (drift rate) and the amount of 
evidence needed to make a decision (boundary separation, 
see Methods for details). We expected to observe a longer 
non-decision time in Danish speakers than Norwegian 
speakers (H1). We expected the evidence accumulation rate 
to be affected by contextual bias (faster in congruent 
contexts, H2). We expected both drift rate and boundary 
separation to be affected by contextual bias in a way that is 
modulated by distance (stronger effect for the shorter 
distance, H3), and by language (Danish speakers being more 
sensitive to context, H4). Finally, we expected both drift rate 
and boundary separation to follow H5: Norwegian speakers 
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will show a stronger bias by distance interaction, that is, the 
way distance modulates contextual bias will be more marked 
for them (H5).  

Method 

Participants 
Thirty-two Danish (22 female, age = 19 - 36 years, median = 
23, sd = 3.3) and 34 Norwegian (13 female, age = 19 - 28 
years, median = 22, sd = 2.5) right-handed native speakers 
participated in the study. The participants did not report a 
history of neurological or psychiatric disorders. The Danish 
speakers were tested at the Cognitive and Behavior Lab at 
Aarhus University in Denmark, while the Norwegian 
speakers were tested at the Faculty of Humanities at the 
University of Bergen in Norway. All participants received a 
monetary compensation for their participation.  

Materials 
We constructed 16 pairs of carrier sentences, half of which 
were biased towards the target word sendt, as shown in (1a) 
(Danish) and (1b) (Norwegian) and the other half towards 
tændt in Danish (2a) or tent in Norwegian (2b). In 8 pairs, the 
distance between the target and the disambiguating word was 
one syllable (NEAR condition); and in the remaining 8 pairs, 
it was 5-7 syllables (FAR condition). Importantly, in normal 
speech, except for the difference in the initial phoneme, the 
two target words have similar (rhyme) endings in both 
languages. 
 

(1a) Hun har sendt en (imponerende klar) mail. 
[ˈhun ˈhɑ ˈsεnts  eˀn (empoˈneˀʌnə klɑˀ) ˈmεjl] 
‘She has sent an (impressively clear) email.’ 

(1b) Hun har sendt en (imponerende klar) mail. 
[ˈhʉn ˈhɑɾ ˈsεnt en (empoˈneɾʌnə klɑɾ) ˈmεjl] 

(2a) Hun har tændt en (imponerende klar) lampe. 
[ˈhun ˈhɑ ˈtsεnts eˀn (empoˈneˀʌnə ˈklɑˀ) ˈlɑmbə] 

(2b) Hun har tent en (imponerende klar) lampe. 
[ˈhʉn ˈhɑɾ ˈtεnt en (empoˈneɾʌnə klɑɾ) ˈlɑmpə] 
‘She has turned-on a(n) (impressively clear) lamp.’ 

 
Both the Danish and the Norwegian stimuli were recorded 

by a native male speaker of the respective languages. The 
recorded Danish [s] and [ts] sounds in the target words sendt 
and tændt differed primarily according to the duration of the 
frication noise, the rise time of the noise, and the duration of 
the silent interval between noise offset and onset of the 
following vowel. The same was true for the Norwegian target 
words’ [s] and [th] sounds, which in addition differed in 
intensity. A ten-step s-t continuum was generated for each 
language by interpolating between the endpoints according to 
the above-mentioned acoustic differences and splicing the 
resultant sounds to a single token of tændt/tent. The continua 
had a clear [s] at one end and a clear [ts] (Danish) or [th] 
(Norwegian) at the other end and with eight intermediate 
steps.  

We then piloted the two continua (forced choice 
identification). Based on the identification functions we 
chose steps 4, 5 and 6 as they straddled the mean category 
boundaries in each language. These three intermediate steps 
and the endpoints were used in the experiment. Thus, there 
were 160 trial sentences in total. The experiment was 
programmed and carried out in PsychoPy2 v1.90.1. (Peirce & 
MacAskill, 2018). 

Procedure 
Prior to the experiment, the participants received detailed 
instructions on the screen in their native languages. They 
were told to indicate which word they thought they heard and 
they were warned that sometimes this would not be easy. The 
participants were also instructed that they could use any 
information in the sentence that may help them to make their 
decision (cf. Connine et al., 1991; Szostak & Pitt, 2013). 
Following the instructions, the participants completed a 
practice trial and then the real experiment began. The target 
words sendt and tændt/tent were presented in boxes in the 
upper left and right corners of the screen while the target 
sentences were played back through headphones. The 
participants responded by clicking on the appropriate word 
with the mouse. They were allowed to respond at any point 
during and after the sentence playback (cf. Connine et al., 
1991). There was a pause of 1.5 s between each trial, during 
which a blank screen was presented. The 160 stimuli were 
presented in a pseudorandomized order across four blocks of 
40 trials. The first two items of the experiment contained the 
endpoints [s] and [ts]/[th], respectively, in a congruent 
context. After each block, the participants had a self-paced 
short break. The whole experiment took 15 – 20 minutes. 
Responses and response times (RTs) were recorded as 
dependent variables. RTs were measured from the onset of 
the target word until the mouse click. 

Data Analysis 
Mouse clicks outside the boxes were recorded as missing 
values and were removed from the analysis. Further, 
responses corresponding to RTs higher than 3 standard 
deviations from the mean (> 8s) were also excluded from the 
analysis (2% of the total number of data points).  

We fitted a Bayesian multilevel drift diffusion model 
(DDM) to the response and RT data. DDM is a sequential 
sampling model that explains cognitive processes underlying 
decision-making in 2-choice discrimination tasks (Ratcliff & 
McKoon, 2008). Decisions are described by the following 
parameters: the drift rate (d) is the average rate of evidence 
accumulation; the boundary separation (a) is the evidence 
necessary to make a decision; the starting point (b) is the 
initial bias towards one of the response boundaries; and non-
decision time (t) is the part of the response time that is not 
involved in evidence accumulation (e.g., motor response 
execution). We conditioned drift rate and boundary 
separation on language, contextual bias (congruent/ 
incongruent), distance (NEAR/FAR) and continuum step as 
fixed effects, including their interactions, and participants as 
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varying effects, including varying slopes for bias, distance 
and step. We assumed no biased preference for a specific 
response and conditioned non-decision time on language and 
contextual bias only due to convergence issues. PSIS-LOO 
model comparison was used to select the relevant predictors 
to include (Vehtari, Gelman & Gabry, 2017), which led us to 
exclude step. We set weakly informative priors for d (mean = 
0, sd = 0.5), a (mean = 1.5, sd = 1) and t (mean = 0.2, sd = 
0.1). Model quality was thoroughly assessed via predictive 
prior and posterior checks, Rhat and divergence diagnostics. 
The model presented no divergences, and all chains mixed 
well and produced comparable estimates (Rhat < 1.01). In 
order to assess the evidence in favor or against our 
hypotheses, we used Evidence Ratio (ER, a generalization of 
Bayes factors allowing for directional hypotheses). An ER 
above 3 indicates moderate to substantial evidence for our 
hypothesis, below 0.3 indicates moderate to substantial 
evidence for the null hypothesis, and anything in between is 
inconclusive evidence (Morey, Rouder & Jamil, 2014). The 
models were implemented through the brms (Bürkner, 2017) 
and RWiener (Wabersich & Vandekerckhove, 2014) 
packages in RStudio v1.1.46, following the procedures of the 
tutorial written by Singmann (2017).  

Results 

Descriptive statistics are presented in Table 1. Full parameter 
estimates by condition are presented in Table 2.  
 
Table 1: Mean reaction times ± standard deviations (in 
seconds) and tændt/tent response mean proportions ± 
standard deviations for Danish and Norwegian and NEAR 
and FAR distances with the context biased towards sendt or 
tændt/tent.  
 

As predicted by H1, we observed substantial evidence for 
non-decision time being longer in Danish than in Norwegian 
in congruent context (Δt = 0.11 ± 0.02, ER > 1000), 
indicating that Danish speakers waited longer before starting 
to make a decision. 

As per H2, we found substantial evidence for contextual 
bias affecting Danish speakers in the NEAR condition. When 
the response (i.e., tændt) matched the contextual bias (biased 
towards tændt, congruent context), evidence accumulation 
was faster (Δd = 0.21 ± 0.1, ER = 45.5), than when the 

context did not match (biased towards sendt, incongruent 
context). There was also evidence that the boundary 
separation was larger for congruent context than for 
incongruent context (Δa = 0.98 ± 0.29, ER > 1000). Contrary 
to our expectations, however, there was no evidence that 
Norwegian speakers were affected by contextual bias (Δd = 
-0.06 ± 0.12, ER = 0.46; Δa = -0.2 ± 0.36, ER = 0.41). 

As expected (H4), we found substantial evidence for the 
bias effect being larger for Danish than for Norwegian 
speakers (ΔΔd = 0.27 ± 0.12, ER = 89.9, ΔΔa = 1.18 ± 0.39, 
ER = 999). In other words, Danish speakers relied more on 
contextual evidence: matching context sped up their evidence 
accumulation more than for Norwegian speakers.  

Table 2: The estimates of the diffusion drift model parameters 
per condition Bias (congruent/incongruent), Language 
(Danish/Norwegian) and Distance (NEAR/FAR). The 
parameters are drift rate (d), boundary separation (a) and 
non-decision time (t). 

 
We found moderate evidence that the drift rate was affected 

by contextual bias more in the NEAR condition than in the 
FAR condition in Danish speakers (H3: bias by distance 
interaction, ΔΔd = 0.15 ± 0.17, ER = 6.1). There was, 
however, no substantial evidence for boundary separation 
being affected by contextual bias differently according to 
distance (ΔΔa  = 0.37 ± 0.58, ER = 2.9). As for Norwegian 
speakers, there was no evidence either for drift rate (ΔΔd = -
0.12 ± 0.17, ER = 0.3) or boundary separation (ΔΔa  = -0.75 
± 0.68, ER = 0.16) being affected more in the NEAR than in 
the FAR condition (against H3). Finally, as predicted, 
distance did not affect Norwegian speakers as much as 

Language Distance Context 
bias 

RT (s) Response 
tændt/ 

tent (%) 
Danish NEAR sendt 2.08 ± 0.82 66 ± 12 

tændt 2.15 ± 0.90 72 ± 8 
FAR sendt 2.70 ± 1.07 66 ± 12 

tændt 2.71 ± 1.10 69 ± 10 
Norwegian NEAR sendt 2.49 ± 0.98 34 ± 16 

tent 2.56 ± 1.02 50 ± 24 
FAR sendt 3.38 ± 1.26 32 ± 18 

tent 3.35 ± 1.22 48 ± 22 

d estimate 95% CI 
congruent:Danish:NEAR 2.12 1.94 - 2.31 
incongruent:Danish:NEAR 1.91 1.75 - 2.07 
congruent:Norwegian:NEAR 1.92 1.72 - 2.12 
incongruent:Norwegian:NEAR 1.98 1.80 - 2.16 
congruent:Danish:FAR 1.79 1.59 - 1.98 
incongruent:Danish:FAR 1.74 1.56 - 1.93 
congruent:Norwegian:FAR 1.70 1.47 - 1.92 
incongruent:Norwegian:FAR 1.63 1.43 - 1.84 

a 
  

congruent:Danish:NEAR 3.90 3.00 - 4.72 
incongruent:Danish:NEAR 2.92 2.13 - 3.64 
congruent:Norwegian:NEAR 4.31 3.27 - 5.29 
incongruent:Norwegian:NEAR 4.52 3.58 - 5.41 
congruent:Danish:FAR 3.25 1.94 - 4.48 
incongruent:Danish:FAR 2.63 1.36 - 3.86 
congruent:Norwegian:FAR 4.09 2.69 - 5.47 
incongruent:Norwegian:FAR 3.55 2.16 - 4.98 

t 
  

congruent:Danish 0.57 0.54 - 0.6 
incongruent:Danish 0.71 0.68 - 0.73 
congruent:Norwegian 0.46 0.43 - 0.49 
incongruent:Norwegian 0.50 0.46 - 0.54 
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Danish speakers (H5, ΔΔΔd = -0.29 ± 0.18, ER = 16.7; ΔΔΔa 
= -1.11 ± 0.71, ER = 15.7). This is likely to be due to the 

absence of bias effect in Norwegian altogether. The DDM 
simulations per each condition are depicted in Figure 1. 

Figure 1: Simulation of the drift diffusion model for distance NEAR and congruent context (i.e. tændt bias) in A) Danish and 
C) Norwegian, and incongruent context (i.e. sendt bias) in B) Danish and D) Norwegian. The upper decision boundary is for 
the response tændt and the lower decision boundary is for the response sendt. The distance between the two boundaries is the 
boundary separation (a) and the evidence accumulation speed is the drift rate (d). While there is no credible difference in drift 
rate between congruent and incongruent contexts for Norwegian, there is evidence that the drift rate is smaller in the incongruent 
context than in the congruent context in Danish. Thus, when the context is incongruent, evidence is accumulated slower to 
make a decision about tændt. The highlighted line is an example of the decision process in each condition. 
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Discussion 
In the current study, we investigated whether contextual bias 
has a different effect on word recognition across the two 
related languages, Danish and Norwegian, and whether the 
distance between the target word and the disambiguating 
word affected word recognition across the two languages. We 
fitted our data to a drift diffusion model to obtain more subtle 
evidence about the cognitive processes underlying word 
recognition.  

We found strong evidence that contextual bias affected the 
drift rate (the speed with which evidence is accumulated) in 
the NEAR condition in Danish. This indicates that acoustic-
phonetic information alone is insufficient to make a decision 
and thus that additional evidence, such as contextual cues are 
integrated to support top-down processes of word 
comprehension. These findings are in line with previous 
evidence by Szostak and Pitt (2013) as well as Connine et al. 
(1991).  

Surprisingly, we did not find evidence for contextual bias 
effects in Norwegian, which contradicts the previous 
evidence for English (Brown-Schmidt & Toscano, 2017; 
Bushong & Jaeger, 2017; Connine et al., 1991; McMurray et 
al., 2009; Szostak & Pitt, 2013). It is possible that this is 
because top-down contextual information is assigned even 
less weight in speech processing in Norwegian than in 
English or Danish. Moreover, Norwegian speakers may have 
responded prior to hearing the biasing context, thus not 
having the opportunity of using contextual information. In 
line with this, we found that Danish speakers generally wait 
longer to respond than Norwegian speakers (longer non-
decision time in Danish compared to Norwegian, H1), which 
may be additional evidence that Danish speakers weight top-
down contextual information more than bottom-up acoustic-
phonetic information compared to Norwegians.  

In line with our hypotheses, we found that Danish speakers 
were more affected by contextual biases than Norwegian 
speakers (H4), and that the contextual bias was stronger for 
Danish speakers in the NEAR condition than in the FAR 
condition, compared to Norwegian speakers (H5). However, 
importantly, the H3 interaction results held only for Danish, 
likely due to the lack of a contextual bias effect in Norwegian.  

There was also some evidence that the bias effect on drift 
rate was stronger in the NEAR condition than in the FAR 
condition for Danish speakers but there was no credible 
evidence of the same effect on boundary separation. It is 
possible that a similar amount of information is necessary to 
make a decision about an ambiguous target word, as the 
nature of the information does not change across NEAR and 
FAR distances (i.e., the acoustic-phonetic cues are equally 
ambiguous and the disambiguating words remain the same). 
However, the speed at which this information is accumulated 
changes slightly. As Szostak and Pitt (2013) and Connine et 
al. (1991) suggested, there is a short temporal window to 
make a decision about the acoustic-phonetic information. 
Thus, in the NEAR condition, due to a higher drift rate in 
Danish speakers, it takes shorter time to choose a response 

that is congruent with the contextual bias (i.e., to respond 
tændt in a tændt-biased context).  

The above-mentioned effect on drift rate was stronger for 
Danish than for Norwegian, indicating that the temporal 
window suggested by Szostak and Pitt (2013) may indeed 
vary due to different factors, in this particular case, 
phonological differences between languages. We interpret 
this evidence as suggesting that top-down contextual 
inferences are more important for Danish speakers compared 
to Norwegian speakers, when faced with acoustic-
phonetically ambiguous stimulus. This may be because of the 
unique sound structure of Danish, which results in relatively 
more ambiguity in Danish speech than in other Scandinavian 
languages (Basbøll, 2005; Hilton et al., 2011; Gooskens et al., 
2010). Thus, in line with first language acquisition studies 
(Bleses et al., 2008; 2011), we provide evidence that Danish 
is processed differently also by adult native speakers, 
compared to native Norwegian speakers.  

It is possible that allowing participants to respond at any 
time during a trial may also have affected our results. Using 
the Connine et al. (1991) paradigm, Bushong & Jaeger (2017) 
showed that the context effect was smaller in the FAR 
condition, when the listeners could respond whenever they 
wanted. However, there was no difference between the 
NEAR and FAR conditions, when the listeners were forced 
to wait until hearing the biasing word to respond. In fact, the 
observation that participants change their response profile 
when forced to wait to the sentence offset, as shown by 
Brown-Schmidt & Toscano (2017), indicates that indeed free 
and forced responses may influence the decisions that 
listeners make. Thus, a future study comparing forced and 
free responses may shed light on the different strategies 
Danish and Norwegian speakers may be using when 
completing the task.   

The current study, however, has one important limitation: 
the steps of the [s]-[ts]/[th] continuum were not included in 
the DDM model. Step is a crucial feature and it could provide 
more nuanced information not only about the contextual bias 
and distance effect on word recognition processes but also 
how these processes vary cross-linguistically. Future work 
should include a nuanced modeling of step (e.g., as a 
monotonic but not necessarily a linear function) to assess 
whether step can be meaningfully included and help better 
explain the data. We anticipate that such analyses might 
provide a more detailed picture of the points in the continuum 
at which information is accumulated faster and at which more 
information is needed. Thus, a more complex drift diffusion 
model with the steps of the continuum as one of the fixed 
effect variables would shed further light on the cognitive 
processes underlying spoken word recognition when the 
acoustic-phonetic cues are ambiguous.  

Despite these limitations, our study suggests that Danish is 
processed differently compared to Norwegian. When 
exposed to ambiguous stimuli, Danish speakers rely more on 
top-down processes than Norwegian speakers. Contrary to 
the standard view that all languages are equally easy to learn 
and use (e.g., Pinker, 1994), we provide evidence that 
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languages can differ in how they are processed, as suggested, 
for instance, by Evans and Levinson (2009)— and that there 
may be a continuum of reliance on top-down processes, 
where English could be lying somewhere between Danish 
and Norwegian. However, future cross-linguistic studies are 
necessary to confirm this assumption.  

Acknowledgements 
This study was supported by Danish Council for Independent 
Research (FKK) Grant DFF-7013-00074 awarded to Morten 
H. Christiansen. 

References  
Basbøll, H. (2005). The phonology of Danish. Oxford 

University Press. 
Bleses, D., Basbøll, H., & Vach, W. (2011). Is Danish 

difficult to acquire? Evidence from Nordic past-tense 
studies. Language and Cognitive Processes, 26(8), 1193-
1231. 

Bleses, D., Vach, W., Slott, M., Wehberg, S., Thomsen, P., 
Madsen, T. O., & Basbøll, H. (2008). Early vocabulary 
development in Danish and other languages: A CDI-
based comparison. Journal of Child Language, 35(3), 
619-650. 

Borsky, S., Tuller, B., & Shapiro, L. P. (1998). “How to milk 
a coat:” The effects of semantic and acoustic information 
on phoneme categorization. The Journal of the Acoustical 
Society of America, 103(5), 2670-2676. 

Brown-Schmidt, S., & Toscano, J. C. (2017). Gradient 
acoustic information induces long-lasting referential 
uncertainty in short discourses. Language, Cognition and 
Neuroscience, 32(10), 1211-1228. 

Bushong, W., & Jaeger, T. F. (2017). Maintenance of 
Perceptual Information in Speech Perception. In CogSci. 

Bürkner, P. C. (2017). brms: An R package for Bayesian 
multilevel models using Stan. Journal of Statistical 
Software, 80(1), 1-28. 

Connine, C. M., Blasko, D. G., & Hall, M. (1991). Effects of 
subsequent sentence context in auditory word 
recognition: Temporal and linguistic constraints. Journal 
of Memory and Language, 30(1), 234. 

Evans, N., & Levinson, S. C. (2009). The myth of language 
universals: Language diversity and its importance for 
cognitive science. Behavioral and Brain Sciences, 32, 
429-448.  

Gaskell, M. G., & Marslen-Wilson, W. D. (2001). Lexical 
ambiguity resolution and spoken word recognition: 
Bridging the gap. Journal of Memory and Language, 
44(3), 325-349. 

Gooskens, C., Van Heuven, V. J., Van Bezooijen, R. & 
Pacilly, J. J. (2010). Is spoken Danish less intelligible than 
Swedish? Speech Communication, 52, 1022-1037. 

Hilton, N. H., Schüppert, A., & Gooskens, C. (2011). Syllable 
reduction and articulation rates in Danish, Norwegian and 
Swedish. Nordic Journal of Linguistics, 34(2), 215-237. 

Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, 
B. C. (1957). The discrimination of speech sounds within 

and across phoneme boundaries. Journal of Experimental 
Psychology, 54(5), 358. 

Marslen-Wilson, W. D., & Welsh, A. (1978). Processing 
interactions and lexical access during word recognition in 
continuous speech. Cognitive Psychology, 10(1), 29-63. 

McMurray, B., Tanenhaus, M. K., & Aslin, R. N. (2009). 
Within-category VOT affects recovery from “lexical” 
garden-paths: Evidence against phoneme-level 
inhibition. Journal of memory and language, 60(1), 65-91. 

Morey, R. D., Rouder, J. N., & Jamil, T. (2014). BayesFactor: 
Computation of Bayes factors for common designs 
(Version 0.9. 9). 

Peirce, J. W., & MacAskill, M. R. (2018). Building  
Experiments in PsychoPy. London: Sage. 

Pinker, S. (1994). The language instinct. New York: William 
Morrow & Co. 

Ratcliff, R. (1978). A theory of memory retrieval. 
Psychological Review, 85(2), 59. 

Ratcliff, R., & McKoon, G. (2008). The diffusion decision 
model: theory and data for two-choice decision 
tasks. Neural computation, 20(4), 873-922. 

Samuel, A. G. (1981). Phonemic restoration: insights from a 
new methodology. Journal of Experimental Psychology: 
General, 110(4), 474. 

Singmann, H. (2017, November 26). Diffusion/Wiener 
Model Analysis with brms – Part I: Introduction and 
Estimation [Blog post]. Retrieved from 
http://singmann.org/wiener-model-analysis-with-brms-
part-i/ 

Szostak, C. M., & Pitt, M. A. (2013). The prolonged 
influence of subsequent context on spoken word 
recognition. Attention, Perception, & Psychophysics, 
75(7), 1533-1546. 

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical 
Bayesian model evaluation using leave-one-out cross-
validation and WAIC. Statistics and Computing, 27(5), 
1413-1432. 

Wabersich, D., & Vandekerckhove, J. (2014). The RWiener 
package: An R package providing distribution functions 
for the Wiener diffusion model. The R Journal, 6(1), 49–
56. 

  

1955



Measuring how people learn how to plan
Yash Raj Jain

Rationality Enhancement Group, MPI for Intelligent Systems, Tübingen, Germany
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Abstract
How can people learn to make better decisions and be-
come more far-sighted? To make the underlying learning
mechanisms more accessible to scientific inquiry, we develop
a computational method for measuring the time course of
experience-dependent changes in people’s planning strategies.
We validated our method on simulated and empirical data: on
simulated data its inferences were significantly more accurate
than simpler approaches, and when evaluated on human data
it correctly detected the plasticity-enhancing effect of perfor-
mance feedback. Having validated our method, we illustrate
how it can be used to gain new insights into the time course
and nature of cognitive plasticity. Future work will leverage
our method to i) reverse-engineer the learning mechanisms
enabling people to acquire complex cognitive skills such as
planning and problem-solving and ii) measure individual dif-
ferences in cognitive plasticity.
Keywords: cognitive plasticity; planning; decision-making;
process-tracing; statistical methods

Introduction
One of the most remarkable features of the human mind is
its ability to continuously improve itself. As helpless babies
develop into mature adults, their brains do not only acquire
impressive perceptual and sensory-motor skills and knowl-
edge about the world but they also learn to think, to make
better decisions, to learn, and to monitor and adaptively reg-
ulate themselves. These phenomena are collectively known
as cognitive plasticity. Just like the acquisition of perceptual
skills (Hubel & Wiesel, 1970), the acquisition of cognitive
skills requires specific experiences and practice (van Lehn,
1996; Ericsson, Krampe, & Tesch-Römer, 1993).

Despite initial research on how people acquire cognitive
skills (van Lehn, 1996; Shrager & Siegler, 1998; Krueger,
Lieder, & Griffiths, 2017), the underlying learning mecha-
nisms are still largely unknown. Reverse-engineering how
people learn how to think and how to decide is very chal-
lenging because we can neither observe people’s cognitive
strategies, nor how they change with experience – let alone
the underlying learning mechanisms. Instead, cognitive plas-
ticity has to be inferred from observable changes in behav-
ior. This is difficult because each observed behavior could
have been generated by many possible cognitive mechanisms.
This problem is pertinent to all areas of cognition. As a first
step towards a more general solution, we develop a computa-
tional method for measuring how people’s planning strategies

change depending on the person’s experience. Initial work
suggested that metacognitive reinforcement learning might
play an important role in how people come to plan farther
ahead (Krueger et al., 2017) and which strategies they use
(Lieder & Griffiths, 2017) but the postulated mechanisms
are difficult to investigate because cognitive plasticity has re-
mained unobservable.

Our approach combines a recently developed process-
tracing paradigm that renders people’s behavior highly diag-
nostic of their planning strategies with probabilistic models
of planning and learning that constrain the space of poten-
tial cognitive mechanisms and exploit temporal dependencies
among subsequent planning strategies. Critically, our mea-
surement model can be inverted to infer the sequence of peo-
ple’s planning strategies from the clicks they make in the pro-
cess tracing paradigm. Our computational method makes it
possible to observe how people’s planning strategies change
from each decision to the next. This sheds new light on the
time course and the nature of metacognitive learning. Future
work will reverse-engineer the learning mechanisms that gen-
erate the cognitive plasticity our approach is bringing to light.

The plan for this paper is as follows: we start by developing
a computational method for measuring experience-dependent
changes in people’s planning strategies. Next, we validate
it on synthetic data and human data. We then illustrate the
utility of our method by measuring the time course of how
people learn how to plan, characterizing the revealed learning
trajectories, and testing hypotheses about cognitive plasticity.
In closing, we discuss directions for future work.

Methods
Process-tracing using the Mouselab-MDP paradigm
Planning, like all cognitive processes, cannot be observed di-
rectly but has to be inferred from observable behavior. This
is generally an ill-posed problem. To address this chal-
lenge, researchers have developed process-tracing methods
that elicit and record behavioral signatures of latent cogni-
tive processes; for instance decision strategies can be traced
by recording the order in which people inspect the payoffs of
different gambles (Payne, Bettman, & Johnson, 1993). While
these behavioral signatures are still indirect measures of cog-
nitive processes, they do provide additional information about
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Figure 1: Illustration of the Mouselab-MDP paradigm. Re-
wards are revealed by clicking, prior to selecting a path with
the arrow keys. The distribution of rewards underlying each
node at a given step is shown on the right.

what the underlying cognitive strategy might be.
Here, we employ a process-tracing paradigm that exter-

nalizes people’s beliefs and planning operations as observ-
able states and actions (Callaway, Lieder, Krueger, & Grif-
fiths, 2017; Callaway et al., 2018). Inspired by the Mouselab
paradigm (Payne et al., 1993), the Mouselab-MDP paradigm
uses people’s mouse-clicking as a window into their planning.

The Mouselab-MDP paradigm illustrated in Figure 1
presents a series of route planning problems where each lo-
cation (the gray circles), harbors a gain or loss. These poten-
tial gains and losses are initially occluded, corresponding to a
highly uncertain belief state. The participant can reveal each
location’s reward by clicking on it and paying a fee. This is
similar to looking at a map to plan a road trip. Clicking on
a circle corresponds to thinking about a potential destination,
evaluating how enjoyable it would be to go there, and adjust-
ing one’s assessment of candidate routes accordingly.

Measurement model
To develop an efficient computational method for inferring
the temporal evolution of people’s planning strategies, we
make the simplifying assumption that the trial-by-trial se-
quence of peoples’ cognitive strategies (S1,S2, · · · ,S31) forms
a Markov chain whose hidden states emit the observed pro-
cess tracing data collect on each trial (d1, · · · ,d31). This
hidden Markov model requires additional methodological
assumptions about i) how cognitive strategies manifest in
process-tracing data, ii) the space of cognitive mechanisms
that can be learned, and iii) the nature and amount of cog-
nitive plasticity that might occur. The following paragraphs
detail our assumptions about each of these three components
in turn.

Observation model. To plan in the Mouselab-MDP
paradigm participants have to gather information by making
a sequence of clicks. Our observation model thus specifies
the probability of of observing a sequence of clicks dt on trial
t if the strategy was St (i.e., P(dt|St)).

To achieve this, we quantify each planning strategy’s
propensity to generate a click c (or stop collecting in-

formation) given the already observed rewards encoded
in belief state b by a weighted sum of 29 features
( f1(b,c), · · · , f29(b,c)). The features describe the click c rel-
ative to this information (e.g., by the value of the largest re-
ward that can be collected from the inspected location) and in
terms of the action it gathers information about (e.g., whether
it pertains to the first, second, or third step)1. The depth fea-
ture, for instance, describes each click by whether it looks 1,
2, or 3 steps into the future. The features and weights jointly
determine the strategy’s propensity to make click c in belief
state b according to

P(dt|St) =
|dt|

∏
i=1

exp
(

1
τ
·∑|w

(S)|
k=1 w(S)

k · f (S)k (ct,i,bt,i)

)
∑c∈Cbt

exp
(

1
τ
·∑|w

(S)|
k=1 w(S)

k · f (S)k (c,bt,i)
) , (1)

where dt,i is the ith click the participant made on trial t (or the
decision to stop clicking and take action), the decision tem-
perature τ was set to 0.5 to match the variability of people’s
click sequences, and w(S) is the weight vector of strategy S.

Space of cognitive mechanisms. We formulated a set of
38 strategies (S )1 to describe the process tracing data from
Lieder (2018). These strategies include the optimal goal-
setting strategy (Callaway et al., 2018) that starts by inspect-
ing the possible final destinations and search-based planning
algorithms such as breadth-first search, depth-first search, and
best-first search (Russell & Norvig, 2016). 76.7% of the click
sequences were the most likely instantiation of one of the
38 strategies. The clicks of the remaining 23.3% of the se-
quences were, at worst, second most likely under the best fit-
ting strategy. These strategies differ in how much information
they consider (ranging from none to all), which information
they focus on, and in the order in which they collect it.

Building on the observation model in Equation 1, we rep-
resent each strategy by a weight vector w = (w1, · · · ,w29) that
specifies the strategy’s preference for more vs. less planning,
considering immediate vs. long-term consequences, satisfic-
ing vs. maximizing, avoiding losses (cf. Huys et al., 2012),
and other desiderata. These weights span a high-dimensional
continuous space with many intermediate strategies and mix-
tures of strategies. Cognitive plasticity could be measured by
tracking how those weights change over time. But this would
be a very difficult ill-defined inference problem whose solu-
tion would depend on our somewhat arbitrary choice of fea-
tures. As a first approximation, our method therefore simpli-
fies the problem of measuring cognitive plasticity to inferring
a time-series of discrete strategies.

To understand what types of strategies people use, we
grouped our 38 strategies using hierarchical clustering. This
requires measuring the similarity between strategies. Since
the strategies are probabilistic, we defined the distance metric
∆(s1,s2) between strategy s1 and s2 as the Jensen-Shannon

1A detailed description of the features and strategies is available
at https://osf.io/y58d3/?view_only=fa2f89de3aa04d4d87af3d050bb1a64c
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divergence (Lin, 1991) between the distributions of click se-
quences and belief states induced by strategies s1 and s2 re-
spectively, that is

(2)∆(s1,s2) = JS [p(d|s1), p(d|s2)] ,

and approximate it using Monte-Carlo integration.
Applying Ward’s hierarchical clustering method (Ward Jr,

1963) to the resulting distances suggested 11 types of plan-
ning strategies: acting impulsively without any planning,
finding a goal and immediately moving towards it, inspect-
ing both immediate and final outcomes (but no intermediate
ones), overly frugal goal setting strategies, goal setting strate-
gies that plan towards potential goals even when it is waste-
ful, exhaustive backward planning strategies that inspect all
of the states, other far-sighted strategies that inspect all poten-
tial final states, forward-planning strategies similar to depth-
first search, forward-planning strategies similar to best-first
search, strategies similar to breadth-first search, and strate-
gies that focus on the course of action that has received the
most consideration so far.

Prior on strategy sequences. Inferring a strategy from a
single click sequence could be unreliable. Our method there-
fore exploits temporal dependencies between subsequent
strategies to smooth out its inferences. Transitions from one
strategy to the next can be grouped into three types: repeti-
tions, gradual changes, and abrupt changes. While most neu-
roscientific and reinforcement-learning perspectives empha-
size gradual learning (e.g., Hebb, 1949; Mercado III, 2008;
Lieder, Shenhav, Musslick, & Griffiths, 2018), others sug-
gest that animals change their strategy abruptly when they
detect a change in the environment (Gershman, Blei, & Niv,
2010). Symbolic models and stage theories of cognitive de-
velopment also assume abrupt changes (e.g., Piaget, 1971;
Shrager & Siegler, 1998), and it seems plausible that both
types of mechanisms might coexist. To accommodate these
different perspectives, we consider three prior distributions on
participants’ trial-by-trial sequence of cognitive strategies.

The gradual learning prior (mgradual in Equation 3) as-
sumes that strategies changes gradually, that is

(3)P(St+1 = s|St ,mgradual) =
exp(− 1

τ
· ∆(s,St))

∑s′∈S exp(− 1
τ
· ∆(s′,St))

,

where S is the set of strategies, |S | is the number of strate-
gies, and the temperature parameter τ was set to achieve a
50% chance of a strategy change. By contrast, the abrupt
changes prior (mabrupt in Equation 4) assumes that transitions
are either repetitions or jumps.

(4)
P(St+1 = s|St ,mabrupt) =

pstay · I(St+1 = St) + (1− pstay) ·
I(s 6= St)

|S |−1
,

Finally, the mixed prior (mmixed in Equation 5) assumes that
both types of changes coexist.

(5)
P(St+1 = s|St ,mmixed) =

pgradual · P(St+1 = s|St ,mgradual)

+ (1− pgradual) · P(St+1 = s|St ,mabrupt).

In each of these three cases, we model the probability of the
first strategy as a uniform distribution over the space of deci-
sion strategies (i.e., P(S1) =

1
|S | ).

Together with the observation model and the strategy space
described above each of these priors defines a generative
model of a participant’s process tracing data d; this model
has the following form:

P(d,S1, · · · ,ST ) =
1
|S |
·

T

∏
t=2

P(St |St−1,m) ·P(dt|St). (6)

The three measurement models differ in the identity of m ∈
{mgradual,mabrupt,mmixed}. Inverting these models gives rise to
a computational method for measuring an important aspect of
cognitive plasticity.

Inference on cognitive plasticity
The models above describe how changes in cognitive strate-
gies manifest in process-tracing data. To measure those cog-
nitive changes, we have to reason backwards from the pro-
cess tracing data d to the unobservable cognitive strategies
S1, · · · ,ST that generated it. To achieve this, we leverage the
Viterbi algorithm (Forney, 1973) to compute maximum a pos-
teriori (MAP) estimates of the hidden sequence of planning
strategies S1, · · · ,ST given the observed process tracing data
d, the measurement model m, and its parameters (pstay for
mabrupt and pgradual and pstay for mmixed). To estimate the model
parameters we perform grid search with a resolution of 0.02
over pstay ∈ [0,1] for mabrupt and (pstay, pgradual)∈ [0,1]× [0,1]
for mmixed.

Inferring the hidden sequence of cognitive strategies in this
way lets us see otherwise unobservable aspects of cognitive
plasticity through the lens of a computational microscope.

Validating the computational microscope
Validation on synthetic data
To validate our “computational microscope” for looking at
cognitive plasticity, we apply it to simulated process tracing
data. To avoid bias towards any one of the three measurement
models, we used each of them to generate a data set with
100 simulated participants completing 31 trials each. We then
combined the resulting three data sets into a single data set
from 300 simulated participants.

We then inverted the three measurement models on each
of the simulated trials (d) and compared the maximum a
posteriori estimate of each strategy sequence (Ŝ) against the
ground truth (S) in terms of the proportion of correctly in-
ferred strategies and the distance between the inferred strate-
gies and the ground truth. To measure the distance between
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two sequences of n planning strategies we define ∆(v,w) as
1
n ·∑

n
i=1 ∆(vi,wi). For better interpretability, the relative dis-

tance ∆rel(s1,s2) = ∆(s1,s2)/∆̄ normalizes ∆(s1,s2) by the aver-
age distance between any strategy and its closest neighbour.

As a baseline, we evaluated the computational method that
inverts the observation model in Equation 1 on each click
sequences independently. This simple approach was suf-
ficient to infer the correct strategy about 81% of the time
(95% confidence interval: [80.2%,81.8%]). The average dis-
tance from the inferred strategy to the true one was only
21% of the average distance from each strategy to its closest
neighbor (∆rel(ŝbaseline,s) = 0.215, 95% confidence interval:
[0.20,0.23]). This shows that the simulated click sequences
were highly diagnostic of the strategies that generated them.

We found that exploiting the temporal dependencies
among subsequent strategies by using either of the three mea-
surement models significantly improved the proportion of
correctly inferred strategies to 88.5%, 88.3%, and 88.5% for
mgradual, mabrupt, and mmixed respectively (all p < 0.0001) and
decreased the average distance between the inferred strate-
gies and the ground truth by more than 40% (∆rel(ŝgradual,s) =
0.124, ∆rel(ŝmixed,s) = 0.124, and ∆rel(ŝabrupt,s) = 0.127, all
p < 0.0001). The minor differences between the accuracies
and distances achieved with the three measurement models
were not statistically significant (χ2(2) = 0.36, p = 0.8373
and F(2,897) = 0.06, p = 0.942 respectively). These results
suggest that – under reasonable, theory-agnostic assumptions
about what cognitive plasticity might be like – our computa-
tional microscopes for looking at cognitive plasticity can be
expected to produce more accurate measurements than sim-
pler methods.

Which measurement model is most suitable depends on
whether the measured changes are mostly gradual, mostly
abrupt, or a combination of both. This may vary across tasks
and participants. We therefore invert all three measurement
models on each participant’s data and select the most appro-
priate measurement model for each participant according to
the Akaike Information Criterion (Akaike, 1974). We then
interpret the inferences obtained from inverting the selected
model as the measurement of our computational microscope.

Validation on empirical data
To validate our computational microscope on empirical data,
we applied it to the Mouselab-MDP process-tracing data from
Experiments 1–3 by Lieder (2018) where 176 participants
solved 31 different 3-step planning problems of the form
shown in Figure 1. Concretely, we asked if our computational
microscope can detect the effect of an experimental manip-
ulation expected to promote cognitive plasticity, namely the
feedback participants in the second condition of Experiment 1
received on the (sub)optimality of their chosen actions. This
performance feedback stated whether the chosen move was
sub-optimal and included a delay penalty whose duration was
proportional to the difference between the expected returns of
the optimal move versus the chose one.

Our computational microscope successfully detected the

Figure 2: Feedback accelerates cognitive plasticity. This fig-
ure shows that feedback increased the amount of cognitive
plasticity at the beginning of learning.

effect of this manipulation. As shown in Figure 2, the in-
ferred learning-induced changes were significantly larger in
the feedback condition than in the control condition in the
first 15 trials and in trials 21–25 (p ≤ 0.012 for each 5-trial
bin) and nearly significant in trials 15–20 (p = 0.08) and tri-
als 25–30 (p = 0.06). Furthermore, Figure 2 also shows that
cognitive plasticity slowed down over time as participants
adapted to experiment’s stationary decision environment.

Next, we performed χ2-tests with the Sidak correction for
multiple comparisons to compare the frequencies of all pos-
sible strategy transitions (i.e., P(St+1|St)) between the ex-
perimental condition with action feedback versus the con-
trol condition. We found that action feedback selectively in-
creased the probability of eight performance-increasing tran-
sitions from a strategy with a lower average performance (St )
to a strategy with a higher average performance (St+1) and
significantly decreased the probability of five performance-
decreasing transitions and five strategy repetitions (St+1 =
St ). By contrast, the feedback decreased the frequency of only
one performance-increasing strategy-transition and increased
the frequency of only two performance-decreasing strategy
transitions.

Our method’s ability to detect the plasticity-enhancing ef-
fects of feedback suggests that its inferences provide a valid
measure of cognitive plasticity.

Shedding light on cognitive plasticity
Having validated our computational microscope on both sim-
ulated and empirical data, we now leverage it to measure how
people learn how to plan by applying it to the process trac-
ing data from the control conditions of Experiment 1 and the
training phases of the control conditions of Experiments 2
and 3 from Lieder (2018). In the following, we illustrate
how our computational microscope can be used to i) mea-
sure how people’s propensity to use different cognitive strate-
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Figure 3: Time course of strategy usage frequencies of the
five most common strategies.

gies evolves over time, ii) test theories of cognitive develop-
ment and cognitive plasticity, and iii) characterize people’s
metacognitive learning trajectories.

Temporal evolution of strategy frequencies. As shown
in Figure 3, we found that the most common initial strat-
egy was to act impulsively without any planning (No Plan-
ning). The prevalence of this strategy decreased gradually
over time from about 34% on average across the first five tri-
als to about 25% on average across the last five trials (χ2(1) =
7.95, p = 0.0048).2. Conversely, the frequency of the near-
optimal Goal Setting strategy increased from about 4% to
30% (χ2(1) = 148.85, p < 0.0001). The frequencies of the
two maladaptive strategies that decide based on immediate
rewards (Myopic Satisficing and Myopic Impulsive) dropped
from about 11% and 4% respectively to about 5% (χ2(1) =
11.74, p = 0.0006) and 0.6% (χ2(1) = 11.62, p = 0.0006) re-
spectively, whereas the frequency of the strategy One Final
Outcome that prioritizes long-term consequences increased
from about 1% to about 6% (χ2(1) = 20.22, p < 0.0001).
Jointly these strategies accounted for about 53%–72% of our
participants’ planning across the different trials of our exper-
iment.

Testing hypotheses about the nature of cognitive plastic-
ity. Prominent theories of cognitive development disagree
about whether it proceeds in discrete stages (Piaget, 1971)
with abrupt transitions or continuous gradual change (Siegler,
1996). Inspired by these theories, we asked to which extent
learning how to plan in the Mouselab-MDP paradigm pro-

2All χ2-tests in this paragraph compare the average frequency in
the first five trials against the average frequency in the last five trials.

ceeds through gradual changes versus abrupt transitions. Our
computational microscope suggested that cognitive plasticity
includes both gradual and abrupt strategy changes. We ob-
served that the data from 63.0%± 4.9% of our participants
was best captured by the abrupt model, while the data from
29.8%± 4.6% of the participants were best captured by the
gradual model, and the data from 7.2%±2.6% were best cap-
tured by the mixed model. A more fine-grained analysis of
the individual inferred transitions revealed that the majority
of strategy changes was gradual (i.e., 59.1%, χ2(1) = 56.8,
p < 0.0001) but there was also a non-negligible percentage
of abrupt changes (i.e., 40.9%). In total those different types
of strategy changes constituted 22.8% of all transitions; that
is 77.2% of the inferred transitions were strategy repetitions.

Siegler’s overlapping waves theory (Siegler, 1996) asserts
that multiple cognitive strategies are being used in parallel
at each time during cognitive development. It further as-
serts that the relative frequencies of these strategies shift to-
wards increasingly more adaptive strategies and that there are
intermediary strategies whose frequency waxes and vanes.
Under the strong assumption that the underlying plasticity
mechanisms are the same as those that drive learning in
the Mouselab-MDP paradigm, we predicted that the same
patterns should also occur in the participants’ strategy se-
quences. To test the first prediction, we performed χ2-
tests on the strategies’ frequencies in all bins of 5 consec-
utive trials. In support of the hypothesis that multiple dif-
ferent strategies are used at each point in time throughout
the learning process we found that on average 2.16 strate-
gies were each used by significantly more than 5% of our
participants in any given trial of the experiment (95% confi-
dence interval: [2.02,2.30]). Consistent with the prediction
that high-performing strategies become more prevalent over
time whereas low-performing strategies become less preva-
lent over time we found a significant rank correlation be-
tween each strategies’ average performance and the change in
their frequency from the first trial to the last trial (Spearman’s
ρ(37) = 0.39, p = 0.0154). On the population level, we did
not find any evidence for intermediary strategies whose aver-
age frequency across participants initially increases and later
decreases again. That is, there was no strategy whose fre-
quency was higher in the middle two time bins than in both
the first two time bins and the last two time bins. Yet, overall
the measurements we obtained with our computational micro-
scope suggest that learning in the Mouselab-MDP paradigm
is better described by the overlapping waves theory than by
stage theories of cognitive development.

Learning trajectories. To identify the most common learn-
ing trajectories, we categorized each inferred strategy as be-
longing to one of the 11 types of strategies described ear-
lier. We then extracted the order in which different strategy
types appeared in the inferred sequences. Using this analy-
sis, we found that there were almost as many unique learn-
ing trajectories as there were learners: The 110 participants
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who changed their strategy at least once displayed 94 unique
learning trajectories; that is 85.4% of the learning trajectories
were unique and the remaining trajectories were exhibited by
only 2–4 learners each. Zooming in on the 49 participants
who learned the near-optimal goal setting strategy, we found
that they reached the near-optimal goal setting strategy via 38
unique learning trajectories. Consistent with the overlapping
waves theory, we found that 84.2% of these learning trajec-
tories included at least one intermediary strategy between the
initial strategy and the final strategy. Most importantly, our
analysis revealed three dominant gateways to optimal plan-
ning: 35% of the penultimate strategies inspected all poten-
tial final states – whereas the optimal strategy stops searching
for better final states once it encounters the best possible out-
come – and sometimes planned backwards from undesirable
states; 27% of the penultimate strategies inspected the poten-
tial final states in a manner akin to the optimal strategy but
additionally and wastefully inspected paths towards undesir-
able final outcomes, and 21% of the penultimate strategies
inspected both immediate and final outcomes while ignor-
ing the intermediate states. This suggests that participants
discovered the optimal goal setting strategy via intermedi-
ate strategies that perform gratuitous planning. Furthermore,
we found that about 42% of participants who succeeded to
learn a near-optimal goal setting strategy started with strate-
gies that inspect both immediate and final outcomes without
looking at intermediate ones. In addition to the 110 par-
ticipants who changed their initial strategy, 66 participants
(37.5%) never changed their strategy. The majority of those
participants always acted impulsively without any planning
(21% of all participants). Consistent with the interpretation
that those participants were less engaged in the experiment
and had not paid close attention to the instructions, we found
that they performed substantially worse on the four attention
check questions at the end of the experiment than participants
who had demonstrated learning (1.7 errors vs. 0.8 errors on
average; t(111) = −5.80, p < .0001). In addition, 9% of all
participants always inspected immediate and final outcomes
while ignoring intermediate rewards, 4% always focused ex-
clusively on final outcomes, and 3.5% used other types of
strategies.

Discussion
We have successfully validated our method on both synthetic
and human data. The results suggest that our computational
microscope can measure cognitive plasticity in terms of the
temporal evolution of people’s cognitive strategies.

Our findings suggest that this method has great potential
for helping cognitive scientists uncover the mechanisms of
cognitive plasticity and how they are impacted by the learn-
ing environment, individual differences, time pressure, moti-
vation, and interventions – including feedback, instructions,
and reflection prompts.

We are optimistic that computational microscopes will be-
come useful tools for reverse-engineering the learning mech-

anisms that enable people to acquire complex cognitive skills
and shape the way we think and decide. To make this possi-
ble, we will extend the proposed measurement model to con-
tinuous strategy spaces, a wider range of tasks and strategies,
and learning at the timescale of individual cognitive opera-
tions. In addition, future work will also leverage our com-
putational microscope to elucidate individual differences in
cognitive plasticity within and across psychiatric conditions
and different age groups.

The tentative conclusions we obtained with our first proto-
type of a computational microscope for measuring cognitive
plasticity should be taken with a grain of salt because more
psychologically plausible distance metrics and more realistic
strategy representations could lead to different conclusions
about the nature of cognitive plasticity. In this first step, we
determined the similarity between strategies based on their
behavior. But two strategies that look very different could
result from similar mechanisms. Future work will identify a
low-dimensional continuous strategy space by decomposing
each strategy into its Pavlovian, habitual, and model-based
components (van der Meer, Kurth-Nelson, & Redish, 2012).
This more realistic representation will allows us to measure
the similarity between strategies by comparing the underlying
neurocomputational mechanisms. In addition, we will seek
to validate the robustness of our computational microscope
by measuring its performance on data generated from more
realistic models of cognitive plasticity (e.g., Krueger et al.,
2017; Lieder et al., 2018).

The approach developed in this paper makes it possible
to more directly observe the previously hidden phenomenon
of cognitive plasticity in many of its facets – ranging from
skill acquisition, learning to think differently, reflective learn-
ing, cognitive decline, self-improvement, changes in cogni-
tive dispositions, and the onset, progression, and recovery
from psychiatric symptoms and mental disorders. This will
make it easier to reverse-engineer people’s ability to discover
and continuously refine their own algorithms.
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Abstract 

So-called insight problems are believed to tap into sudden, 
creative thinking that is crucial for real problems. In contrast, 

recent findings suggest that solving insight problems depends 
on the same cognitive mechanisms that underpin systematic, 
analytical thinking. However, existing studies may have low 
ecological validity, because insight problems were usually 
presented in static formats (on paper, computer screen) which 
allowed no physical interaction with the problem elements. 
This study administered 8 established insight problems either 
in the static or interactive variants. It also probed two markers 
of analytical thinking: working memory capacity and reasoning 

ability. Virtually no difference in performance was observed 
between the static and interactive variants of insight problems 
with regard to (1) solution rate, (2) subjective experience of 
suddenness, pleasure, and relief accompanying the solutions, 
as well as (3) correlations with the working memory capacity 
and analytical reasoning tests. These results suggest that 
externalized/embodied/situated factors play no substantial role 
in insight problem solving and the crucial parts of this process 

seem to occur in the mind of a solver. 

 

Keywords: insight problem solving; analytical thinking; working 
memory; interactivity. 

Introduction 

An important category of problems investigated in the 

problem solving literature is so-called insight problems. Such 

problems are defined in the vague and misleading way that 

suggests a typical but wrong problem representation, so 

following this representation often results in an impasse. The 

correct solution can be found only when the problem is 

viewed from a novel perspective and can be appropriately 

restructured. Especially difficult are problems that require 

rejecting one strongly believed and subjectively obvious 

assumption that, however, is not implicated by the problem 

description (Knöblich, Ohlsson, Haider, & Renius, 1999). 

For example, when instructed to transform an incorrect 

equation including Roman numerals made of matchsticks: 

“VI = VI + VI” into a correct equation by moving just one 

matchstick (without adding or removing any matchsticks), 

people must realize that equations do not necessarily include 

only one equation sign and that two such signs can also be 

allowed, here resulting in the tautology “VI = VI = VI”. 

Insight problems have been studied intensively in cognitive 

science and psychology because many authors believe that 

they tap into mental processes that also play a role in “full-

blown” creative cognition, leading to great masterpieces, 

discoveries, and inventions (Ohlsson, 2011). 

The crucial controversy is whether the processing under-

pinning insight problem solving is distinct from solving so-

called analytical problems, such as complex but typical 

arithmetic equations, which are defined in a more precise 

way, and require more systematic construction of the problem 

representation, while including no tricky obstacles. Some 

evidence suggested that insight problem solving involves 

idiosyncratic processes: constraint relaxation, defocusing 

attention, and uncontrolled spread of activation in memory 

(Knöblich  et al., 1999; Kounios & Beeman, 2014), and so 

relies minimally on cognitive resources such as executive 

control and working memory capacity that typically 

determine success on analytical problems (see Wiley & 

Jarosz, 2012). Other evidence highlighted a large overlap of 

attentional, control, memory, reasoning, and imagery 

processes for insight and non-insight problems (MacGregor, 

Ormerod, & Chronicle, 2001; Weisberg, 2015). Specifically, 

two recent meta-analyses suggested that individual success 

on insight problems is strongly correlated with performance 

on analytical problems as well as with executive control and 

working memory tasks (Chuderski & Jastrzębski, 2018a; 

Gilhooly & Webb, 2018). 

However, such a similarity of insight and analytical 

thinking might result from the fact that most of the 

experiments to date presented insight problems in a static 

format, usually printed on a paper sheet or shown on a 

computer screen, and participants were not allowed to 

interact with the problem by manipulating its elements. For 

instance, in a typically administered matchstick arithmetic 

problem, there are no actual matchsticks to be manipulated; 

all transformations of the equation must proceed in the mind, 

and the potential solution has to be written down. This lack 

of interaction with the problem may to some extent impede 

more spontaneous, “fuzzy” cognition that might be crucial for 

creative solutions. Participants, forced to represent and 

explore the problem space solely in the mind, might be prone 

to using more systematic, gradual problem solving strategies 

typical for analytical problems, while in the contexts that are 
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more externalized/embodied/situated they switch to less 

systematic strategies, such as trial-and-error, remote 

associations, etc. Obviously, the former strategies are more 

strictly constrained by available attentional resources and 

working memory capacity, while cognitive load might be 

largely reduced when artefacts can be used. Also, as many 

real-life problems seem to be situated to a large extent (see 

Clark and Chalmers, 1998; Cowley & Vallée-Tourangeau, 

2010), investigating insight problem solving using non-

interactive paradigms may yield low ecological validity. 

Interactive insight problem solving 

Indeed, a few studies by F. Vallée-Tourangeau, who applied 

insight problems in such a way that problems elements could 

be manipulated, as compared to static variants, have shown 

that solutions occur more frequently when the problem can 

be interacted with. Substantial effects, reaching the doubled 

solution rates, have been reported for the well-known insight 

problems such as the cheap necklace (Henok, Vallée-

Tourangeau, & Vallée-Tourangeau, 2018; see also Fioratou 

& Cowley, 2009), the triangle of coins (Vallée-Tourangeau, 

2017), the anagrams (Vallée-Tourangeau & Wrightman, 

2011), the animals in pens (Vallée-Tourangeau, Steffensen, 

Vallée-Tourangeau, & Sirota, 2016), Luchins’ water jars 

(Vallée-Tourangeau, Euden, & Hearn, 2011), and matchstick 

arithmetic (Weller, Villejoubert, & Vallée-Tourangeau, 

2011). Also, some studies reported no difference in working 

memory capacity between solvers and non-solvers in the 

situated context. All this suggests that cognitive processing 

may change substantially in the embodied/situated contexts.  

Besides the fact that virtually all these data (except for 

Fioratou & Cowley, 2009) come from one and the same lab, 

and thus require independent replication, existing evidence 

needs to be extended for at least three reasons. First, each 

study examined a single insight problem, applied either in the 

computerized/paper format or in the interactive format. As 

different samples of participants were used in consecutive 

studies, it is not possible to compare across the problems the 

size of presumed benefit from interactivity. (Do all problems 

benefit equally?) Second, recent studies (Danek, Wiley, & 

Öllinger, 2016; Fleck & Weisberg, 2013) probed experience 

during solution (asked how sudden and surprising it was), and 

suggested that many insight problems, originally designed to 

require sudden restructuring, by some participants could be 

solved in a fully systematic, gradual way. Thus, probably no 

insight problem always elicits “pure” insight. Unfortunately, 

so far subjective measures of insight have not been combined 

with examination of interactivity. Examining if interactivity 

can affect the subjective experience of insight might reveal 

mechanisms facilitating solutions. Finally, because to date, 

single problems were studied, the resulting binary dependent 

variables prohibited a proper analysis of correlations between 

performance on insight problems, analytical problems, and 

working memory tests. (Do interactive variants correlate with 

cognitive aptitude more weakly than the static variants?) All 

these research goals have important ramifications for our 

understanding of insight problem solving.    

To tackle these three goals, the present study applied 8 

popular insight problems. They were organized in 4 pairs of 

comparable problems. In each pair, one problem was shown 

in a typical, paper-and-pencil format, while the other problem 

was applied in a way that allowed manipulating the artifacts 

comprising this problem. Which problem from each pair was 

applied in the static format, and which was applied in the 

interactive way, was randomized across the sample. This fact 

allowed the within-subjects manipulation of the presentation 

format that gave control over group differences in general 

performance. Moreover, the size of the expected interactivity 

effect could be compared across the problems, in order to see 

if the problems differ in how strongly they benefit from 

externalizing. Additionally, after each solution given to an 

insight problem, the four-dimensional scale that probed the 

subjective experience of suddenness, pleasure, relief, and 

certainty accompanying the solution, was applied in order to 

see if the surplus solutions, which were expected to occur in 

the interactive problem format, would consist primarily of 

solutions assessed subjectively as the Aha! experience. 

Finally, an established working memory test and a hallmark 

analytic reasoning test were applied in order to compare 

whether the correlations of these two measures with the 

interactive variants could really be weaker than the respective 

correlations with the static variants, the latter presumed to 

load more substantially on cognitive resources. 

The study 

Participants 

The total sample included 64 people (34 females; aged 19 to 

39, M = 25.8 y, SD = 5.3 y). All participants were recruited 

from the general population via internet adverts and paid an 

equivalent of 12 USD in local currency. They signed a written 

consent to participate, were screened for normal or corrected-

to-normal vision and no history of neurological problems, 

and were informed that they could stop the experiment and 

leave the lab at will. Data were anonymized. All other 

procedural aspects of the study conformed to the WMA’s 

Declaration of Helsinki. 

Insight problems 

Matchstick arithmetic. Two matchstick arithmetic problems 

consisted of incorrect arithmetic equations written using 

Roman numerals. One problem was the above described “VI 

+ VI = VI” equation. The second problem (I = II – II)  

required introducing a negative number (not a typical Roman 

numeral) by changing one of the sticks into the minus sign. 

The instructions were: “This equation consists of Roman 

numerals made of sticks. Unfortunately, the equation is 

wrong! Move exactly one stick so that the equation becomes 

correct. The allowed operations are „–,” „+” and „=.” You 

can’t remove any stick. Upright sticks and tilted sticks are not 
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interchangeable  („|/” is not „\/”).” In order to familiarize the 

participants with the Roman numerals, the instruction 

contained also a table linking each Arabic number with its 

Roman equivalent, up to number ten. In the interactive 

format, the equations were constructed out of plastic sticks. 

Triangle of coins/Eight coins. In the first problem, the 

participants were presented with a triangle facing upwards 

composed of 10 coins, and their task was to “Move exactly 3 

coins to make the triangle point downward.” In the eight 

coins problem, the participants were presented with a figure 

composed of 8 coins, and they had to “Move exactly 2 coins 

so that each of the 8 coins touches exactly 3 coins,” which 

requires realizing that the coins have to form 3D piles. Both 

configurations require breaking constraints (of the X-axis 

rotation and 2D solution, respectively). In the interactive 

formats of the two tasks, the initial configurations were 

composed of real coins that could be manipulated freely. In 

the triangle problem, the response included presenting to the 

research assistant all the steps that had led to the solution. 

Sheep in pens/Nine dots. In the first problem, the task was 

to  “Close the 11 sheep in 4 pens so that in each pen there is 

an odd number of sheep.” In the interactive format, the 

participants were given 11 small cloth figures of sheep and 4 

pieces of string. As it is impossible to divide the number 11 

into any combination of 4 odd numbers, the solution required 

embedding at least one of the pens inside another pen. In the 

nine dots problem, a 3×3 array of dots was presented and the 

task was to “Connect all the 9 dots with a broken line 

composed of 4 straight lines so that each following straight 

line begins at the end of the preceding line.” In the correct 

solution, the lines should extend beyond the square shape of 

the array, but most people constrain themselves to explore 

only lines that fit within the array. In the interactive format, 

the participants were given tacks, 4 pieces of string, and a 

piece of paper with 9 dots printed. 

Card split/Figure split. In the first task, participants were 

instructed to “Cut a hole in the card so that you can put your 

head through.” In the figure split, problem participants were 

presented with an L-shape figure and the task was to “Divide 

the figure into four identical parts.” Both problems require 

non-standard topological solutions. In the interactive formats 

of the tasks, participants were given scissors and several 

card/L-shape figures made of thick paper to experiment with.  

Problems administration. In all the 8 problems, there was 

an identical instruction for each variant, and the variants 

differed only in the presentation method and response format. 

In the static variant, problems were given on a sheet of paper, 

with a blank space for making notes and drawings, and for 

providing a solution using a pen. In the interactive variants, 

the participants were given a cardboard box with respective 

objects placed on it, but were not provided with anything to 

write with, so they had to physically manipulate the objects 

provided. Participants were tested in individual cabins. The 

time limit for each problem was 5 minutes. 

 

      Problems      Solutions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: The eight problems in initial configurations presented 

to the participants in the interactive format (left column) 

together with the sample correct solutions (right column). In 

the static format (not depicted) each problem elements were 

printed on a paper sheet, and a solution had to be drawn. 
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Subjective experience scale 

The scale was modelled after Danek and Wiley (2016), who 

tested which dimensions of subjective experience best predict 

correct solutions to insight problems (suddenness, pleasure, 

relief, certainty). Here, the instruction was “Please describe 

your subjective experience at the moment when you found 

the solution to this problem”, and the four questions were: 

“The solution came to me…” (Gradually – Suddenly) 

“At the moment of finding the solution my feelings were…” 
(Unpleasant – Pleasant), 

“When I realised the solution I felt…” (Tension – Relief) 

“My feeling that the solution was correct was…” (Uncertain 

– Certain) 

Ratings were recorded on a 19-point graphical scale (line of 

cells) for which the contradicting words (e.g. Unpleasant – 

Pleasant) occupied the extremes. Point “10” was marked with 

the text “Don’t know”, and served for inconclusive cases. 

Working memory task 

The letter complex span required memorizing 4, 6, or 8 

letters, which were drawn from 9 possible stimuli and were 

presented using a computer for 1.2 s apiece. After each letter 

presentation, participants indicated with a mouse button if a 

simple arithmetic equation (e.g., 2 × 3 – 1 = 5?) was correct. 

Then, they were to recall the letters in proper order. Five trials 

for each set size (in increasing order) were presented. The 

response procedure employed as many 3×3 matrices as was a 

particular set size. Each matrix contained all possible letters. 

Those letters that had been presented in a sequence should be 

selected in the matrices in the correct order. There was no 

time limit for responding. The dependent variable was the 

proportion of correctly selected letters. 

Reasoning test 

Raven Advanced Progressive Matrices (RAPM; Raven, 

Court, & Raven, 1983) consists of items that include a 3×3 

matrix of figural patterns which is missing the bottom-right 

pattern, and 8 response options presenting the potentially 

matching patterns. The goal was to discover the rules that 

govern the distribution of patterns and to choose the response 

option including the correct pattern that completed the matrix 

according to these rules. The 18 odd-numbered items were 

given with the 20-min. time limit. 

Procedure 

Participants were tested in groups of 5 to 9 people. They first 

undertook RAPM and the letter complex span (as well as 

several other cognitive tests unrelated to the present study). 

Then, they attempted the 8 insight problems in the fixed 

order. A random half of the sample attempted the odd-

numbered problems in the interactive variant and the even-

numbered problems in the paper-and-pencil variant. The 

other half used the paper and pencil for the odd-numbered 

problems and the interactive formats for the even-numbered 

problems. The entire session lasted about 2 hours. 

Results 

No one was able to solve correctly the Card split and Letter 

split problems, so the analysis pertained to the 6 remaining 

problems. Participants admitted familiarity with 11 out of 

384 problems applied, and these 11 problems were excluded 

from further analysis. Fig. 2 presents the number of correct 

solutions for each problem, for the static versus interactive 

format, separately. The Triangle of coins problem was the 

easiest one, solved by 37.5% of participants. In contrast, the 

8 coins and the 9 dots problems were most difficult, solved 

only by 7.8% of the sample. These solution rates matched 

some existing data for the same problems (e.g., Chuderski & 

Jastrzębski, 2018b, 2018c). Importantly, for no problem the 

difference between the static and the interactive format was 

statistically significant. The largest numerical difference was 

observed for the Triangle of coins problem, which was solved 

by 15 people (out of 32) in the static format, and by 9 (out of 

32) in the interactive format, but even this difference was far 

from reaching statistical significance, χ2(1) = 1.50, p = .220. 

Overall, 41 problems were solved with the paper and pencil, 

while 37 problems were solved in the interactive way, which 

is a totally non-significant difference. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: Number of insight problems (only those reported by 

the participants to be unfamiliar to them) correctly solved by 

the group who attempted a given problem in the static format 

(blue bars) vs. the group who undertook it in the interactive 

format (red bars). For no problem the difference between the 

conditions was significant at the p < .05 level. 
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Next, as it was possible that even though overall problem 

solving accuracy was not affected by the problem format, but 

it changed the way of processing the problems (at least the 

way subjectively experienced, and later reported, by the 

participants). Fig. 3 presents mean ratings for 4 indicators of 

insight: suddenness, pleasure, relief, and certainty, for 41 

problems solved in the static format versus 37 interactive 

problems. Mean ratings ranging from 11 to 16 suggest that 

solutions yielded experience more typical for insight than for 

gradual, analytical processing. These ratings were submitted 

to MANOVA, with the problem variant (static vs. interactive) 

as a factor. Wilks’ λ = 0.917 suggested no significant 

multivariate difference in experience between problem 

variants, p = .173. Second, single ratings were compared, 

with the Tukey correction for multiple comparisons. The only 

significant difference between the problem variants was 

noted for certainty, F(1, 76) = 4.45, p = .038, η2= .06, with 

interactive variants yielding 20% higher certainty of the 

correctness of the solution, as compared to the static variants. 

For the single problems, only the “VI = VI + VI” and the 

Triangle of coins problems yielded enough solutions (>20) so 

the accompanying reports could be compared meaningfully. 

For the former problem, significantly higher ratings in the 

interactive variant were observed for pleasure, F(1, 20) = 

7.58, p = .012, η2= .27. No significant difference in ratings 

between variants was observed for the latter problem. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Mean ratings for the reported subjective experience of 

suddenness, pleasure, relief, and certainty during correct 

solutions of insight problems, separately for the 41 problems 

in static variants versus the 37 problems in interactive 

variants. The star indicates a weak difference significant at 

the p < .05 level (for the experience of certainty). The three 

other differences were non-significant. 

Finally, for each participant her or his score on all the 6 

problems, the 3 problems applied in the static format, and the 

3 problems applied in the interactive formats were calculated. 

The Spearman rank correlation was computed to assess the 

relationship between the number of problems solved and the 

letter complex span and RAPM scores. The resulting 

correlations are presented in the Table. 

 

Table: Matrix of Spearman correlations between variables  

Variable 1. 2. 3. 4. 

1.All 6 problems 1    

2.Static variants .756 1   

3.Interactive variants .765 .195 1  

4.Complex span .404 .316 .282 1 

5.RAPM .640 .520 .465 .353 

Note. N = 64. All correlations significant at p < .05 except for 

the correlation between static and interactive variants.  

 

Overall, correlations between the insight problem scores and 

the complex span (rhos ≈ .3) and RAPM (rhos ≈ .5) were 

substantial. However, the difference in correlation with the 

complex span between the scores on static versus interactive 

variants equaled only Δrho = .034 that was far not significant. 

The analogical difference for RAPM equaled Δrho = .055, 

which was not significant, either.  

Discussion 

The present study aimed to examine the role of interactivity 

in the process of insight problem solving. More specifically, 

it aimed to test (1) whether insight problems could be more 

frequently solved when presented in the interactive format 

allowing physical manipulation of the problem elements, as 

compared to the static format; (2) whether solutions in the 

former format could yield different subjective experience of 

suddenness, pleasure, relief, and certainty than yielded by 

solutions in the static format; and (3) how much performance 

on the interactive variants depended on cognitive resources, 

in comparison to the static variants.  

 A variety of established insight problems were used, 

which ranged in difficulty from a complete floor up to over 

one-third of correct solutions. Given existing evidence, the 

present results were quite surprising. There was virtually no 

difference in problem solving accuracy, regardless of the 

format used. Subjective experience reported, especially the 

suddenness of solution, linked closely to actual insight, was 

comparable for both problem formats. One exception was 

slightly increased certainty in interactive problem variants, 

which might have resulted from the fact that interactively 

delivered solutions were more concrete, so they could be 

more directly evaluated than the solutions written on paper. 

Importantly, both the static and the interactive problem 

variants substantially depended on working memory capacity 

and analytic reasoning and did it in a fully comparable way. 

Consequently, no evidence was found for any substantial 
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effects of interactivity on the process of insight problem 

solving on the sample of diverse and established insight 

problems. As both static and interactive conditions 

substantially relied on working memory/reasoning ability, no 

evidence was found for the decreased role of analytic 

thinking in the interactive format. Thus, it seems that 

physically manipulating problem elements did not 

substantially decrease cognitive load or affect the use of 

strategies in the process of problem solving. 

On the other hand, it may be arguable to what extent the 

paper-and-pencil format, at least in case of some particular 

problems, is fully static, i.e. it does not provide any external 

support that may help in the process of solving. For example, 

making drawings and sketches may help to test hypotheses, 

keep track of the progress and perform simple trial-and-error 

strategies compared to problem solving without any external 

support provided. Thus, comparing interactive, static paper-

and-pencil and the “pure” static format at the same time 

should be considered in future studies.  

We cannot fully exclude the possibility that the null effects 

observed in the present study resulted from the selection of 

the particular problems or the specific way the interactive 

format was implemented in the given problems. If 

interactivity substantially affects only specific insight 

problems under some specific conditions it would be valuable 

to identify the characteristics of such problems that moderate 

this effect.  Also, one limitation of the present study is that 

although no substantial effects of interactivity were observed, 

the relatively low statistical power prevented the detection of 

any potential small effects. However, if the effects of 

interactivity are negligible or observed only in very specific 

problems or circumstances, it would be questionable whether 

the role of interactivity in the process of insight problem 

solving is an important research topic at all. 

Summing up, no evidence was found that manipulating 

physically problem elements when solving problems 

presumably involving insight helps to reach the correct 

solution. Neither the influence on the course of the problem 

solving process (the extent of its suddenness) nor on its 

affective consequences (pleasure, relief) were observed. 

Interactivity did not decrease a substantial reliance of the 

problem solving process on working memory capacity and 

reasoning ability, either. The only observed effect was a small 

increase in certainty about the solution (a meta-cognitive 

consequence). Thus, at least for the problems applied in the 

present study, externalized/embodied/situated factors played 

no substantial role in finding solutions, and the results are in 

line with the key role of analytic reasoning in solving insight 

problems. Still, more research is needed to comprehensively 

examine the potential role of interactivity in the process of 

insight problem solving.  
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Abstract 

Scientists seek to discover truths that are interesting and 
important. We characterized these notions by asking 
laypeople to assess the importance, interestingness, 
surprisingness, practical value, scientific impact, and 
comprehensibility of research reported in the journals 
Science and Psychological Science. These judgments were 
interrelated in both samples, with interest predicted by 
practical value, surprisingness, and comprehensibility, and 
importance predicted mainly by practical value. However, 
these judgments poorly tracked the academic impact of the 
research, measured by citation counts three and seven years 
later. These results suggest that although people have 
internally reliable notions of what makes science 
interesting and important, these notions do not track 
scientific findings’ actual impact. 

Keywords: Folk science; science methodology; interest; 
philosophy of science; scientometrics 

Introduction 
The scientific enterprise aims to uncover eternal truths, 
and psychological science seeks to understand the most 
fundamental aspects of the human condition. From our 
modern vantage point, we can see clearly which scientific 
theories and results have stood the test of time, as truly 
foundational scientific achievements—Euclid’s 
explication of geometry, Newton’s laws of motion, 
Smith’s insights about economic activity, Darwin’s theory 
of evolution are among the timeless truths that clarify the 
structure of the natural and social worlds. But as scientists 
in the trenches, it is much more difficult for us to know 
what research is truly significant. Mendel’s insights into 
genetics were ignored in his day, revolutionizing biology 
only decades later. The full significance of Bayes’ 
contributions to statistics long eluded the profession. 

Given these difficulties, scientists are likely to develop 
heuristics to evaluate scientific importance (Kahneman & 
Frederick, 2002). One particularly plausible heuristic is 
the counterintuitiveness or surprisingness of the research 
finding. For example, research on cultural narratives finds 
that minimally counterintuitive myths (relying mainly on 
intuitive concepts, peppered with a few counterintuitive 
ones) are most likely to be remembered and passed on 
(Norenzayan et al., 2006). Indeed, at a very general level, 
learning is likeliest to occur when the difference between 
expectations and reality (i.e., prediction error) is largest 
(Rescorla & Wagner, 1972). 

Surprise is often a good criterion for scientific 
importance. We might consider a scientific result to be 

important when it falsifies an element of a theory (Popper, 
1959/1934) or requires us to reconceptualize a topic of 
inquiry altogether (Kuhn, 1962). In Bayesian terms, a 
result is highly diagnostic when it is highly improbable on 
most theories but highly probable on another (i.e., P(E|H) 
is high but P(E) is low). As heuristics go, the extent to 
which a result encourages theory change is an excellent 
proxy for scientific importance. 

But often, this heuristic can lead us astray. This is 
because even practicing scientists have scientific theories 
and intuitive theories that co-exist in their minds 
(Goldberg & Thompson-Schill, 2009; Shtulman & 
Varcarcel, 2012). Thus, although the disagreement 
between a result and existing scientific theory is a 
plausible proxy for scientific importance, disagreement 
with one’s lay theory is not, if it is superseded by one’s 
scientific understanding. For example, suppose that a 
psychologist believes that our behavior is guided by the 
unconscious activation of stereotypes, as suggested in the 
social priming literature. These original effects are highly 
counterintuitive, and if true, of great scientific 
significance. However, even though conceptual 
replications of these priming effects (e.g., using different 
stereotypes) would no longer contradict scientific theory 
(assuming we accept the initial demonstration), they 
would remain counterintuitive relative to our folk theory. 
Thus, this creates a misalignment between the scientific 
and lay surprisingness of a particular finding. To the 
extent that scientists rely on their folk theories rather than 
their scientific understanding for evaluating whether a 
finding is surprising, they may share this misalignment. 

Regardless of the normative importance of 
counterintuitiveness, there is no question that many 
scientists prize it highly. Scientists, particularly during 
training, are often advised to seek out counterintuitive 
results. For example, one guide to doing “interesting” 
research advises (Gray & Wegner, 2013; pg. 550): 

 

One concrete test for evaluating ideas is to imagine the most 
surprising outcome possible (i.e., the best case scenario). If 
results were exactly as predicted, would they be interesting? If 
not, you should dream bigger when hypothesizing or perhaps 
consider the opposite of your hypothesis—if one way is 
intuitive, the opposite may be surprising. 
 

Whose intuitions are we trying to contradict? 
“Grandmothers, not scientists,” note the authors: “Ideally, 
research should counter both scientists’ and laypeople’s 
intuitions, but we emphasize the latter” (pg. 550). It is 
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hard to disagree with this as career advice, but it 
nonetheless raises uncomfortable concerns about 
replicability. After all, results with low prior probability 
are less likely to be true. Indeed, surprisingness is among 
the factors most associated with failure to replicate (Open 
Science Collaboration, 2012). It is presumably for this 
reason that the submission guidelines for Psychological 
Science now distinguish explicitly between “theoretical 
significance” (which is an acceptance criterion) and 
“surprising novelty” (which is not). 

In this paper, we test two sets of issues, with Study 1 
examining the folk science surrounding psychological 
research and Study 2 examining the natural sciences. 

First, we ask what factors drive laypeople’s judgments 
of how interesting and important scientific findings are. 
The opinions of laypeople, while likely divergent from 
experts, are important for two reasons. One reason is that 
scientists are laypeople in all fields aside from their own, 
and even in their own field may have lay intuitions that 
conflict with their scientific understanding of the field 
(Goldberg & Thompson-Schill, 2009). Thus, lay 
intuitions can creep into scientists’ evaluations of 
research. A second reason is that the opinions of 
laypeople directly impact what scientific research is 
conducted, since laypeople are the ultimate consumers of 
taxpayer-funded research and since many scientists 
prioritize newsworthiness (to laypeople) in choosing 
topics to investigate. We study, therefore, the relative 
importance of surprisingness, perceived scientific impact, 
perceived practical value, and comprehensibility in 
guiding judgments of importance and interest. 

Second, we ask how well these judgments track the 
objective academic impact of scientific findings, as 
quantified by their citations. Is the advice quoted above—
to prioritize counterintuitiveness to laypeople—sound, if 
one’s goal is to generate citations? Gray and Wegner 
(2013) suggest that it may be counterintuitiveness to 
scientists that drives citations in the short term, but to 
laypeople that drives citations in the longer term. We 
begin to examine this issue by looking separately at 
citation counts 4- and 7-years post-publication, testing 
whether lay judgments predict such measures of impact. 

Study 1 
In our first study, we looked at the factors influencing 
judgments of interest and importance, as well as citation 
counts, for articles published in Psychological Science. 

Method 
Participants. We recruited 60 participants from Amazon 
Mechanical Turk. Across our two studies, 57% of 
participants were female, 42% had completed at least a 4-
year college degree, and the average age was 35. Only 8% 
of participants had doctoral-level training in any field, so 
the vast majority of participants were laypeople in the 
specific fields featured in our studies. 

Participants were excluded if they incorrectly answered 

more than 30% of a set of 20 check questions (N = 8). 

Materials. The materials were derived from abstracts of 
40 articles appearing in the journal Psychological Science 
in the January, February, and March 2012 issues. A power 
analysis, treating item as the unit of analysis (like our 
main analysis below), revealed that 40 items is sufficient 
to detect correlations of r > .41 with 80% power. 

For each abstract, a short summary was developed by 
the second author. For example, the actual abstract of one 
article (Frankenstein et al., 2012) read: 

 

We examined how a highly familiar environmental space—
one’s city of residence—is represented in memory. Twenty-
six participants faced a photo-realistic virtual model of their 
hometown and completed a task in which they pointed to 
familiar target locations from various orientations. Each 
participant’s performance was most accurate when he or she 
was facing north, and errors increased as participants’ 
deviation from a north-facing orientation increased. Pointing 
errors and latencies were not related to the distance between 
participants’ initial locations and the target locations. Our 
results are inconsistent with accounts of orientation-free 
memory and with theories assuming that the storage of spatial 
knowledge depends on local reference frames. Although 
participants recognized familiar local views in their initial 
locations, their strategy for pointing relied on a single, north-
oriented reference frame that was likely acquired from maps 
rather than experience from daily exploration. Even though 
participants had spent significantly more time navigating the 
city than looking at maps, their pointing behavior seemed to 
rely on a north-oriented mental map.  

 

We anticipated that real scientific abstracts like this one 
would be too long, syntactically complex, and jargon-
filled to be comprehensible by most laypeople. Therefore, 
our summary version read: 

 

When presented with a virtual model of their hometown, 
people are able to more accurately point to familiar target 
locations when the people were oriented north and become 
progressively less accurate as they were oriented away from 
north. This suggests that people rely on a mental map that is 
oriented northward when trying to locate familiar places. 

 

Comparable summaries were constructed for all 40 
abstracts. Summaries were written at a minimum Flesch–
Kincaid grade level of 12 and were of similar length.  

We conducted pretests to ensure as strong of a 
perceived correspondence between the real abstract and 
summary as possible. In an initial pretest, each participant 
was assigned to read 10 of the abstracts along with their 
summaries, and rated their correspondence on a 0 (“A 
very poor match”) to 10 (“An excellent match”) scale. 
Any abstract with a score below 7 was targeted for 
revision and re-normed in a second pretest. All 
correspondences were rated above the scale midpoint in 
the second pretest (except one item which was omitted 
due to a coding error).  

As an objective measure of academic impact, we 
obtained the Google Scholar citation counts for each 
article approximately 4 years (on 26 March 2016) and 7 
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years post-publication (on 29 January 2019) (on the pros 
and cons of Google Scholar versus other bibliometric 
databases, see Harzing & Alakangas, 2016). These were 
square root transformed, to account for the skewness of 
citation data. 

Procedure. Participants each viewed 10 of the 40 
summaries (balanced across participants). For each 
finding, participants first read the summary and then, on 
subsequent pages, made six ratings: 

Interest. How interesting are these findings to you? 

Importance. How important do you think these findings are? 

Surprise. How surprising do you think these findings are? 

Scientific impact. How much do you think these findings will 
change the way scientists think about this topic? 

Practical value. How useful do you think this finding is on a 
practical level? 

Comprehensibility. How well do you think that you 
understand the description of this finding? 

These ratings were all made on scales from 0 (“Not at 
all…”) to 10 (“Very…”). Each rating was made on a 
separate page, with the summary repeated at the top of 
each page. The order of the interest and importance 
questions was counterbalanced across participants, and 
the other ratings were always made in the order above. 

After the main task, participants checked off, from a list 
of 20 concepts, those that had appeared in the summaries. 
Participants incorrectly answering more than 30% of 
these check questions were excluded to decrease noise 
due to inattentiveness. 

Results 
Overall, participants’ judgments were internally reliable, 
with significant correlations among many of our 
measures. However, these scores had little external 
predictive power: Citations 4 and 7 years later were not 
predicted by any judgment except comprehensibility. 

First-order correlations. We averaged, for each item, 
across participants’ ratings, and used these item-level 
means for our analyses. The first-order Pearson 
correlations among all measures are summarized in Table 
1. Before probing these associations more carefully using 
regression models, we make two observations. 

First, judgments of importance and interest were highly 
correlated, r(38) = .59, p < .001. Since these results are 
observational, this is consistent with several causal orders. 
It could be that importance is the more fundamental 
judgment, and these appraisals feed into interest. This 
would be consistent with the fact that usefulness 
judgments were even more strongly associated with 
importance, r = .79, than with interest, r = .61. 
Alternatively, interest could be the more fundamental 
judgment, with importance less natural to judge and 
confabulated in line with personal interest. Finally, these 
two assessments could be relatively independent, 

depending on a mix of the same factors (such as 
usefulness) and differentiating factors (such as 
comprehensibility, which is only associated with interest). 
 

 In Im Su SI PV 

Im .60*** —    

Su .59*** .49** —   

SI .55*** .59*** .76*** —  

PV .61*** .79*** .36* .56*** — 

Co .66*** .11 .16 –.05 .17 

º < .10            * < .05            ** < .01            *** < .001 
 
Note. Entries are first-order correlations among interest (In), 
importance (Im), surprise (Su), scientific impact (SI), practical 
value (PV), and comprehensibility (Co). 

 
Table 1: First-order correlations (Study 1). 

 
Second, in preparation for modeling interest and 

importance, we note that some of the other variables are 
strongly correlated, which can lead to a multicollinearity 
problem. Variance Inflation Factors were acceptable (VIF 
< 1.5 for the Step 1 models in Tables 2 and 6) for models 
that did not simultaneously include both surprise and 
scientific impact, which were correlated very highly, r = 
.76. This very high correlation suggests, perhaps not itself 
surprisingly, that laypeople tend to substitute the difficult 
question of what evidence tends to change scientists’ 
theories with the easier question of what they personally 
find surprising (Kahneman & Frederick, 2002). To 
address this problem, we omitted the scientific impact 
variable from the models. We included surprise rather 
than scientific impact since this seems to be the more 
natural assessment, but the results are similar if we 
instead include scientific impact or the average of the two. 

Predictors of interest and importance. Table 2 shows 
the regression coefficients predicting judgments of 
interest. The Step 1 model uses surprise, practical value, 
and comprehensibility to model interest, and the Step 2 
model adds importance to capture any added value. 

As shown in the regression table, the strongest predictor 
of interest was comprehensibility, followed by practical 
value, followed by surprise, but all three predictors were 
highly significant, making independent contributions to 
interest. Together, these factors accounted for 80% of the 
variance in interest across items. Adding importance did 
not add any predictive power. 
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 DV: Interest 

 Step 1 Step 2 
Su .26 (.06)*** .23 (.06)*** 
PV .33 (.07)*** .23 (.10)* 
Co .42 (.06)*** .43 (.06)*** 
Im  .15 (.12) 
R2 .802 .811 

 
 DV: Importance 

 Step 1 Step 2 
Su .18 (.08)* .11 (.10) 
PV .67 (.10)*** .57 (.12)*** 
Co –.04 (.08) –.17 (.13) 
In  .30 (.23) 
R2 .676 .690 

Note. Entries are unstandardized bs and SEs 
 

Table 2: Regression models (Study 1)  
 
The bottom panel of Table 2 shows the results of 

parallel regressions predicting importance. Comparably to 
the results of Table 1, adding interest has little predictive 
power beyond the other predictors. In this case, however, 
it is practical value that is doing nearly all of the 
predictive work: A 1 point increase on practical value is 
associated with a 0.67 point increase in importance. 
Surprise was weakly predictive in the Step 1, but not the 
Step 2, model. Overall, these variables predicted about 
68% of the variance in perceived importance across items. 

 
 Year 4 Year 7 

In .17 .19 
Im –.02 –.08 
Su –.15 –.12 
SI –.21 –.25 
PV –.03 –.06 
Co .35* .38* 

Note. Entries are first-order correlations with 
citations (square-root transformed) approximately 4 
years and 7 years post-publication. 

 
Table 3: Correlations with citations (Study 1)  

Predictors of citation count. Table 3 presents the first-
order correlations between citation count 4 and 7 years 
post-publication (square-root transformed) and the six 
measures collected in Study 1. Various regression 
specifications produce similar conclusions, so we focus 
here on the simple correlations as they avoid the 
multicollinearity issues mentioned above. 

At both time points, neither interest nor perceived 
importance significantly predict citation counts, nor did 
judgments of surprise, scientific impact, or practical 
value. The only significant predictor was 
comprehensibility, r(38) = .35, p = .028 and r(38) = .38, p 
= .017 at 4 and 7 years, respectively. 

Discussion 
Several results pop out in these data. First, judgments of 
interest and importance are fairly independent: They 
depend on different factors and do not predict one another 
once one adjusts for those other factors. 
Comprehensibility was the most important guide to 
interest, but had no impact on perceived importance (see 
Oppenheimer, 2006 for related findings). Practical value 
was the most important determinant of perceived 
importance, and also had a large effect on interest. 
Surprisingness was correlated with interest but not 
perceived importance. Second, these judgments had little 
predictive power for citation rates, either in the shorter- or 
longer-term. Comprehensibility had a moderately high 
correlation with citations, but no other factor did.  

Study 2 
The Study 1 results could very well be specific to 
psychology. For instance, people have much more 
detailed intuitive theories of psychology, since they can 
introspect about their own psychology, and therefore 
surprisingness could be seen as an especially strong cue to 
scientific impact. Study 2 repeated this procedure on 
natural science findings from Science magazine.    

Method 
We recruited 60 participants from Mechanical Turk. 
Participants were excluded using the same criterion as 
Study 1 (N = 14). 

The materials were the “editor’s summaries” of 40 
articles published in the January 6, January 13, and 
January 20, 2012 issues of Science magazine. These 
summaries are written by the editorial staff of the journal, 
rather than by us, eliminating the possibility of 
experimenter bias. We lightly edited the summaries to 
match the format of our Study 1 materials (replacing the 
authors’ names with “Researchers”). For example, the 
editor’s summary of one article (Fermi LAT 
Collaboration, 2012) read: 
 

Binary star systems that contain a neutron star or a black hole 
are expected to emit gamma rays. These gamma-ray binaries 
are a rare class of objects, which are also expected to emit x-
rays. Indeed, several such systems were initially detected 
through their x-ray emission. Researchers have reported the 
detection of a gamma-ray binary that was previously 
unknown as an x-ray source. Follow-up observations reveal 
that the system is also a source of x-rays and that the 
companion star is a class O star, a type that is very hot and 
very luminous. 

 

Participants read 10 of the 40 descriptions 
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(counterbalanced across participants), making the same 
six judgments as in Study 1, using a similar procedure. 

Citation counts were obtained using the same procedure 
as Study 1, on 17 August 2016 and 30 January 2019. 

Results 
Most of the key results from Study 1 were replicated. 
Surprisingness, practical value, and comprehensibility all 
predicted judgments of interest, while only practical value 
robustly predicted judgments of importance. Citations 
were marginally predicted by comprehensibility, as in 
Study 1, but also by judgments of practical value. 

Differences in means across studies. Table 4 presents 
the descriptive statistics for each judgment across each set 
of summaries. We compared the means on each measure 
across studies, using the false discovery rate procedure to 
adjust p-values for multiple comparisons (Benjamini & 
Hochberg, 1995). Overall, the natural science findings in 
Study 2 were viewed as less interesting than the 
psychology findings, t(78) = 3.51, p = .002, d = 0.78, 95% 
CI[0.41,1.48], but as more important than the psychology 
findings, t(78) = 2.82, p = .009, d = 0.63, 95% 
CI[0.18,1.06]. The natural science findings were also 
viewed as more surprising, t(78) = 2.68, p = .011, d = 
0.60, 95% CI[0.15,1.04], and more scientifically 
impactful, t(78) = 3.84, p < .001, d = 0.86, 95% 
CI[0.37,1.15], but of similar practical value, t(78) = 0.67, 
p = .51, d = 0.15, 95% CI[–0.33,0.66]. Finally, the 
psychology findings were much easier to understand, 
t(78) = 9.39, p < .001, d = 2.10, 95% CI[2.52,3.87]. 
 

 Study 1 
(Psychology) 

Study 2 
(Natural Science) 

In 5.88 (0.84) 4.93 (1.48) 
Im 5.74 (0.93) 6.36 (1.02) 
Su 4.26 (1.19) 4.86 (0.75) 
SI 5.35 (0.86) 6.11 (0.91) 
PV 5.50 (1.00) 5.67 (1.20) 
Co 7.80 (1.08) 4.60 (1.86) 

Note. Entries are means (SDs) across items. 
 

Table 4: Descriptive Statistics across Studies   
 
First-order correlations. Table 5 shows the first-order 
correlations for Study 2, analogous to Table 1. 

Like Study 1, there was a significant correlation 
between interest and importance, r(38) = .39, p = .013, 
although of more modest magnitude. The correlation 
between surprise and perceived scientific impact was also 
more modest. This weaker correlation, relative to Study 1, 
may have resulted from participants’ lesser ability to rely 
on intuitive theories of the natural sciences than of 
psychology, given introspective access to one’s own 
mental states. 

 
 In Im Su SI PV 

Im .39* —    

Su .35* .18 —   

SI .40* .87*** .27º —  

PV .45** .76*** –.02 .72*** — 

Co .89*** .22 .18 .18 .35* 
 

Table 5: First-order correlations (Study 2). 

Predictors of interest and importance. Table 6 shows 
the regression coefficients predicting interest and 
importance judgments, analogously to Table 2. 

The results are similar to Study 1. For interest 
judgments, we find that surprise, practical value, and 
comprehensibility are all significant predictors, with 
comprehensibility the strongest predictor, just like Study 
1. (However, surprise was a stronger predictor than 
practical value in Study 1, whereas the converse was true 
in Study 2.) Like Study 1, importance does not have any 
added predictive power; in this case, its collinearity with 
practical value leads both to be non-significant when 
entered simultaneously. 
  

 DV: Interest 

 Step 1 Step 2 
Su .41 (.13)** .36 (.14)* 
PV .21 (.08)* .09 (.13) 
Co .63 (.05)*** .64 (.06)*** 
Im  .18 (.15) 
R2 .854 .859 

 
 DV: Importance 

 Step 1 Step 2 
Su .29 (.14)* .21 (.16) 
PV .69 (.09)*** .64 (.10)*** 
Co –.06 (.06) –.19 (.13) 
In  .21 (.18) 
R2 .631 .645 

Note. Entries are unstandardized bs and SEs 
 

Table 6: Regression models (Study 2)  
 
For importance judgments, we find, just as in Study 1, 

that the key predictor is practical value, with a possible 
additional role for surprise. Given the high correlation 
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between scientific impact and practical value in Study 2, 
however (see Table 5), replacing surprise with scientific 
impact in the regression leads to a reversal of the 
coefficient magnitudes: Scientific impact is then a more 
robust predictor of importance than practical value, 
although both are significant in either model. (This is not 
true for Study 1, where scientific impact and surprise are 
basically interchangeable in the models.) 
 

 Year 4 Year 7 
In .16 .18 
Im .16 .18 
Su –.23 –.25 
SI .03 .04 
PV .43** .45** 
Co .27º .28º 

Note. Entries are first-order correlations with 
citations (square-root transformed) approximately 4 
years and 7 years post-publication. 

 
Table 7: Correlations with citations (Study 2)  

Predictors of citation count. Table 7 presents the 
correlations of our six judgment variables with citation 
counts approximately 4 and 7 years post-publication. 
Comprehensibility was a marginally significant predictor 
at both time points, r(38) = .27, p = .098 and r(38) = .28, 
p = .076, which is consistent with the predictive power of 
comprehensibility for citations in Study 1. Unlike Study 
1, however, practical value also predicted citation counts 
at both time points, r(38) = .43, p = .006 and r(38) = .45, 
p = .004. Thus, laypeople do appear to be able to extract 
some information that is predictive of the academic 
impact of scientific findings, but it is not necessarily 
reflected in their own judgments of importance. 

Discussion 
Study 2 replicated the main results of Study 1: 
Comprehensibility was a powerful cue to interest but not 
importance, although only a marginal predictor of 
citations in Study 2. Surprisingness was only a robust 
predictor of interest, but not importance, while practical 
value strongly predicted both. Unlike Study 1, practical 
value was a fairly strong predictor of citations, even 
though perceived importance was not. 

General Discussion 
Lay intuitions about scientific importance are, well, 
important. They impact our choices of research topics 
indirectly, as we try to appeal to laypeople’s interests, and 
directly, as we all have a layperson inside of us (Goldberg 
& Thompson-Schill, 2009). What scientific findings do 
laypeople consider interesting and important? How much 
do these judgments track objective scientific importance? 

Overall, comprehensibility is the most important 

predictor of interest. It is unclear whether this is because 
writing quality itself provokes interest, or because 
interesting findings are easier to explain clearly—quite 
possibly both. Scientists who wish to appeal to public 
interest ought to keep this demand for clarity in mind, 
rather than obscuring their work in jargon (see 
Oppenheimer, 2006). 

Perceived practical value was the most robust predictor 
of importance, although perceived scientific impact was 
also highly predictive in Study 2 (and difficult to 
distinguish from practical value). Surprisingness appears 
to be less predictive. This is, ironically, quite a 
counterintuitive result! Guides to doing “interesting 
research” (Gray & Wegner, 2013) and our professional 
intuitions point to the importance of surprising the reader. 
But laypeople may well be growing weary of surprising 
findings, as they encounter increasing levels of “click 
bait” reporting and all-too-frequent reversals of 
conventional wisdom (are we, or are we not, supposed to 
eat eggs now?). Future research might investigate the 
factors underpinning and moderating this relationship 
between surprise (e.g., Maguire, Maguire, & Keane, 
2011) and judgments of interest and importance. 

Finally, these results suggest caution regarding our 
ability to predict the impact of scientific research based 
on its relationship with our intuitive theories. Surprise had 
no impact on citations, but neither did interest or 
judgments of importance or scientific impact. The only 
factors impacting citation were comprehensibility (in both 
studies) and perceived practical value (in Study 2). 

It is important to understand how laypeople think about 
science because scientific progress tracks social 
priorities—scientists serve at the pleasure of society. To 
the extent that laypeople have systematic misconceptions 
about science, we must understand how those 
misconceptions might thwart the dissemination of science 
to the public, or even scientific progress itself. To the 
extent that laypeople have irreducible preferences over 
the kind of science they like to see, we must understand 
how those preferences might be reflected in the kind of 
research produced by scientific institutions.   

Several other research programs contribute to this broad 
goal. For example, people favor reductionist explanations 
(e.g., referring to smaller parts or component processes) 
even when the reductionist information makes no logical 
contribution to the explanation (e.g., Hopkins, Weisberg, 
& Taylor, 2016; Weisberg, Keil, Goodstein, Rawson, & 
Gray, 2008). As a second example, people have consistent 
intuitions about the limits of science, particularly of 
psychology (Gottlieb & Lombrozo, 2018), believing that 
phenomena are scientifically explainable to the extent that 
scientists can make falsifiable and reductionist claims 
about those phenomena (Johnson, Kim, & Keil, 2016). 

These research areas—characterizing what scientific 
explanations people find compelling and what scientific 
questions people find tractable—are valuable because 
they contribute to our understanding of how the lay public 
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interfaces with the scientific community. If people have 
an unjustified preference for neuroscientific explanations 
or an ill-founded belief that psychological phenomena are 
beyond the limits of science to comprehend, these may 
lead to society-wide distortions in our scientific priorities. 

Our work complements these approaches. While these 
other lines of research hint at what the public’s scientific 
priorities might be by characterizing folk scientific 
beliefs, the current studies take a more direct approach by 
asking what research people find interesting and 
important. If we believe that laypeople’s standards (e.g., 
regarding practically valuable findings as more important) 
are reasonable, then this is all to the better. To the extent 
that we find lay preferences more questionable (e.g., 
favoring counterintuitive findings as more interesting), 
this should catalyze a discussion about how society 
prioritizes research questions, how journals select 
research findings, and how scientists choose research 
topics. 

Scientists get into the business because they want to 
have an impact—maybe even to change the world. We 
may be less able than we believe to predict successfully 
what scientific innovations are indeed important. Doing 
so successfully may require us to step back and reconsider 
our habits of thought. 
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IMPACT OF CHESS TRAINING ON CREATIVITY AND INTELLIGENCE
Ebenezer Joseph
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Abstract

Research using short-term chess training programs has indicated an enhancement of cognitive functioning among children.
The aim of the study was to investigate the effect of 1-year systematic chess training on the creativity and intelligence of
children. A pretestposttest with control group design was used. Children who were studying in two government schools
and two private schools (grades 39) were selected randomly. They were then randomly assigned to experimental and
control groups, with 88 (50 boys, 38 girls) children in the experimental group and 90 (57 boys, 33 girls) children in
the control group. The experimental group underwent weekly 1-hour chess training for 1 year, while the control group
was actively involved in extracurricular activities offered by the school during the same period. Creativity was measured
by WallachKogan Creativity Test (Indian adaptation) and intelligence was measured by subtests of Wechsler Intelligence
Scale for Children: Fourth edition (WISC-IV), India. Analysis of covariance (ANCOVA) revealed significant improvement
in total creativity and Full Scale Intelligence Quotient (FSIQ) for experimental group compared to the control group. Chess
training as part of school activities appears to have a wide spectrum of outcomes.
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Abstract
Categories carve up the world in a structured way, allowing
people to inductively reason about the properties of novel ex-
emplars. Children are still in the process of learning category
structure, and often fail to leverage the inductive power of these
representations to their advantage. For example, young chil-
dren generally fail to recognize the value of sampling diverse
exemplars to support category-wide generalization. This study
investigates whether teaching children the structure within a
natural category increases diversity-based inductive reasoning.
In an informal science learning environment, we presented 259
children aged 5 to 8 years with exemplars of the three main
types of birds: raptors, songbirds, and waterbirds. After a short
dialogue pointing out the various within-type similarities and
between-type differences, children’s diversity-based inductive
reasoning did not significantly improve, despite them evidenc-
ing a better understanding of the category’s structure. Instead,
children tended to avoid sampling waterbirds, the least typical
cluster of birds. These patterns suggest that children’s neglect
of sample diversity is unlikely to be solely due to their relative
ignorance of category structure.
Keywords: category induction; diversity-based reasoning;
category learning; conceptual development

Introduction
Categories give us a way out of the infant’s problem of
“feel[ing] it all as one great blooming, buzzing confusion”
(James, 1890), allowing us to carve our sensations of the
world into classes that are distinguished by relevant proper-
ties. By picking out shared features while ignoring superficial
differences, categories enable us to learn inductively (Rips,
1975), and allow us to reason about unseen properties. For
example, having learned that one cat’s fur is soft, we might
generalize this to all cats, and proceed to seek out and pet all
cats. Assuming that categories are homogeneous, in that the
exemplars share many observable and unobservable features,
offers further inductive power (Gelman, 1988), but can also
lead to serious errors: your house cat may be amenable to pet-
ting, but a cougar may not be. Learning how to account for
such within-category variation while engaging in category-
based inductive reasoning is a nontrivial problem for children.

There is considerable evidence that adults take within-
category variability into account when evaluating the induc-
tive power of evidence. For example, when making infer-
ences about general properties of a category, adults view
some samples of exemplars from a category as more informa-
tive than others (Rips, 1975; Osherson, Smith, Wilkie, Lopez,
& Shafir, 1990). Sample diversity is one feature adults at-
tend to when evaluating evidential strength, with more diverse

samples (e.g., a lion and a house cat) being viewed as more
informative than nondiverse samples (two house cats) (Heit,
2000). Adults’ preference for diverse samples indicates that
they assume that observable variability across exemplars in a
category is often correlated with variance in the hidden fea-
tures, and it is thus informative to sample from diverse areas
of the distribution.

Adults find diverse samples more informative both when
choosing evidence to sample (Kim & Keil, 2003; Lopez,
1995; Rhodes, Brickman, & Gelman, 2008; Rhodes & Gel-
man, 2008) and when rating the strength of inductive argu-
ments (Osherson et al., 1990). In contrast, children below the
age of nine often fail to consider sample diversity (Gutheil
& Gelman, 1997; Rhodes & Gelman, 2008; Rhodes et al.,
2008). For example, before age 9, children are equally likely
to choose to examine an eagle and a robin as two robins to
see whether all birds have a given property (Rhodes et al.,
2008; Rhodes & Gelman, 2008). One reason why this might
be the case is that young children often assume categories to
be more homogeneous than adults do (Gelman, 2003). For in-
stance, preschool-aged children infer more readily than adults
that a property seen in one exemplar is true for the whole cat-
egory (Rhodes & Gelman, 2008). Moreover, preschool-aged
children believe that everyday categories identify an objec-
tive natural reality to a greater extent than adults do (Kalish,
1998). Directly linking this tendency to assume that cate-
gories are homogeneous to diversity-based reasoning, 7-year-
olds reliably chose diverse samples over nondiverse samples
after they were primed with an example highlighting within-
category variability (Rhodes & Brickman, 2010). This find-
ing supports the idea that young children may default to
a strong within-category homogeneity assumption, and also
shows that they sometimes recognize the value of diverse
samples when such an assumption is violated. Here, we
tested whether a more abstract variation prime–distinguishing
structured clusters within a category–induces a preference for
diversity-based reasoning.

The present study
Imagine that you are trying to determine whether a novel,
hidden property is true of all birds (e.g., “Do all birds have
scutella?”). Adults deem it better grounds for generalization
to the entire category when two dissimilar birds (e.g., an ea-
gle and a robin) are both found to have the hidden property,
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rather than two more similar birds (e.g., a robin and a swal-
low). In the model proposed by Osherson et al. (1990), the
greater strength of the argument based on dissimilar birds
is a result not of the similarity of the premise categories to
the conclusion category, but of their similarity to the lowest-
level category that covers both the premise and conclusion
categories—that is, birds. If on the other hand, one were
asked to determine if all songbirds have scutella, the robin
and swallow premises would offer a better match to the in-
ductive target, since the songbird cluster is the lowest-level
category covering both the premises and the target.

The goal of this study was to teach children more about
the heterogeneous structure of one natural category–birds–to
determine whether that knowledge improves their inductive
reasoning about that category. Specifically, this study taught
young children (ages 5-8) that the bird category is clustered
into songbirds, waterbirds, and raptors, and that birds within
each cluster share many visible (e.g., talon and beak shape)
and hidden properties. The didactic dialogue and displays
(see Figures 1 and 2) used to teach the clusters will also high-
light some of the variability within each cluster, and some
cross-cluster similarities. Our hypothesis was that teaching
children the clustered structure of the bird category may en-
courage them to represent the category more heterogeneously
(i.e., with clusters instead of a single prototype), and thus may
improve their diversity-based inductive reasoning—both for
induction to a cluster, and to the entire category of birds. This
study was conducted in the context of the American Museum
of Natural History’s Discovery Room with an interest in de-
veloping more effective exhibits.

Experiment
The purpose of the experiment is to investigate whether teach-
ing children the clustered structure of a natural category
(birds) improves their ability to do diversity-based inductive
reasoning. Specifically, after measuring children’s knowl-
edge of the bird category through pile sorting, we tested
two interventions–display cases (e.g., Figure 2) vs. poster-
based (e.g., Figure 1), presented along with a didactic dia-
logue meant to demonstrate that birds can be subcategorized
into three clusters: raptors, songbirds, and waterbirds. The
dialogue first highlights the variability of the category (e.g.,
“Some are big, some are small; some have bright colors...”
and then defines the three main clusters, emphasizing corre-
lated features and their causal relationships (e.g., “Most water
birds have webbed feet–see? That helps them swim.”) After
highlighting a few distinctive features for each cluster and
naming four examples of birds in each, children were given
a series of inductive sampling questions to generalize to ei-
ther a given cluster, or to the entire bird category. Finally, we
again measured children’s knowledge of birds by pile sorting.

Methods
Participants Participants in this experiment were 265 chil-
dren between the ages of 5 and 8 years old who were re-
cruited at the American Museum of Natural History’s Dis-

covery Room. Of the 265 children recruited (per intervention:
99 in None, 94 in Exhibit, and 66 in Poster), we analyzed the
data from 259 children (60 5-year-olds, 73 6-year-olds, 68
7-year-olds, and 58 8-year-olds) who completed the study.

Stimuli This task was designed to fit thematically with the
content of the AMNH Discovery Room activities, which em-
phasize the varying features between species of birds, among
other animals. Eight diverse birds from each cluster were se-
lected to be used as stimuli. Songbirds1 included were the
robin, swallow, starling, oriole, redwing blackbird, blue jay,
sparrow, and cardinal. Raptors included were the barred owl,
falcon, vulture, kestrel, barn owl, red-tailed hawk, bald ea-
gle, and kite. Water birds included were the tern, mallard
duck, puffin, sea gull, harlequin duck, flamingo, goose, and
anhinga. For the intervention conditions, four birds from each
cluster were selected to be shown either on a poster, shown in
Figure 1, or in display cases as in Figure 2. The same ex-
emplars were used in both intervention conditions. For the
sorting task, each of the 24 birds was printed in color on a
single 8.5 x 11” sheet of paper, with the size of each bird be-
ing according to their real-world scale. These birds appeared
in different combinations during the sampling questions, as
well. All materials and the protocol are available online.2

Figure 1: The experiment used four birds from each cluster
as stimuli. The poster intervention used this arrangement.

Procedure Children participated in the experiment during
individual sessions with trained undergraduate research assis-
tants in a corner of the AMNH Discovery Room. Participants
were randomly assigned to one of three intervention condi-

1Blue jays are not songbirds, so this cluster is more accurately
described as passerines. Colloquially, all are songbirds.

2https://osf.io/gzfk9/
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Figure 2: The display cases in the American Museum of Nat-
ural History’s Discovery Room, with the 12 bird specimens
used in the intervention.

tions: Poster, Exhibit, or None. Participants were first asked
to list all of the birds they could name, as a means of estab-
lishing rapport. Second, they were asked to sort 24 bird cards
(8 water birds, 8 raptors, and 8 songbirds) into piles “that
go together by nature.” They were given three baskets, but
were not explicitly told to form three piles—nor instructed
to if they asked. This sorting task offered a simple way of
measuring their knowledge of the category structure, and was
repeated at the end of the experiment to measure changes in
their representation of the category. After each sort, partici-
pants were asked to describe each of the piles they made.

In addition to a control condition with no dialogue or vi-
sual intervention (None), there were two intervention condi-
tions, using either a Poster (see Figure 1) or an Exhibit of dis-
play cases (see Figure 2) showing four birds from each clus-
ter. In the intervention conditions, the experimenter showed
the poster or display cases while giving a 2-minute dialogue
that stressed the diversity of birds (e.g., color, size, and beak
and talon shapes), while linking the distinguishing features
of each cluster to their habitat and food sources (e.g., “water
birds swim in the water with webbed feet and eat fish”).

After the dialogue, children were given a series of 18 2-
alternative forced choice induction sampling trials, an exam-
ple of which is shown in Figure 3. Each trial offered two
pairs of birds, and one bird was always shared across the
two pairs (i.e., the harlequin duck in Figure 3). Each trial
always offered a same-cluster pair (e.g., two waterbirds) and
a between-cluster pair (e.g., a waterbird and a raptor, as in

Figure 3). Children were told they were scientists trying to
determine whether all birds (on category induction trials) or
all birds of a given type (e.g., all raptors; cluster induction tri-
als) had some property (e.g., ‘podotheca’). They were asked
to choose which pair of birds (left or right) they would like to
test in order to make that determination. The first 9 sam-
pling trials had questions targeting induction to the entire
bird category, of the form: “You are a scientist who wants
to find out if BIRDS have podotheca. Which set of birds do
you want to look at to learn about BIRDS?” Three of these
category-induction trials were easy, in that the same-cluster
pair of birds on each trial would be two exemplars of the same
species (e.g., photos of two puffin exemplars). The other six
were difficult, in that the same-cluster pair showed birds of
different species (e.g., a duck and a puffin, in Figure 3). The
final 9 sampling trials had questions targeting each cluster (3
per cluster), of the form: “Here are two sets of birds. You are
a scientist who wants to find out if RAPTORS have cancella.
Which set of birds do you want to look at to learn about RAP-
TORS?” For each cluster, one of the cluster-induction trials
was easy (i.e., the same-cluster pair showed two birds of the
same species), while the other two per cluster were difficult,
with the same-cluster pair comprised of different species.

The same 12 exemplar birds were shown in the poster as in
the exhibit, and were also represented among the 24 cards for
sorting, and in the induction sampling trials. Thus, a total of
24 bird species (8 per cluster) were introduced in the experi-
ment, 12 of which were used in the interventions, and all of
which appeared in both the pile sorting and sampling trials.

W
R

W

Figure 3: Example of a difficult induction sampling trial. Par-
ticipants might be asked to choose which sample of birds (left
pair or right pair) they would like to test to determine whether
all birds (on category induction trials) or, e.g., all water birds
(on cluster induction trials) have a property (e.g., ‘scutella’).
For category induction, the right sample should be chosen
for testing, as it is more diverse, containing a water bird and
a raptor. For cluster (water bird) induction, the left sample
should be chosen, as it contains two water birds (harlequin
duck and puffin). On easy trials, one sample would contain
two identical birds (e.g., two puffins).
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Pre-Intervention Sort Post-Intervention Sort
size (111) cluster (120)

habitat (35) size (67)
mix (27) feature (21)

cluster (25) color (15)
feature (24) mix (12)
color (20) none (12)
none (10) habitat (11)

252 258

Table 1: Categories of participants’ pile sort explanations.

Results
Results were analyzed for 259 participants: 94 in the Exhibit
condition (24 aged-5, 26 aged-6, 20 aged-7, and 24 aged-8),
66 in the Poster condition (16 aged-5, 15 aged-6, 22 aged-
7, 13 aged-8), and 99 in the None condition (23 aged-5, 32
aged-6, 24 aged-7, 20 aged-8). Data from 8 other participants
were eliminated due to failure to complete the experiment or
experimenter error.

Bird Sorts Participants’ sorts of the 24 birds were first
examined according to the descriptions that they gave their
piles. Experimenters sanitized and aggregated the pile sort
descriptions, and attempted to assign a single label to the
scheme by which each participant carried out their first (pre-
intervention) and second (post-intervention) sorts. Partici-
pants’ aggregated pile sort explanations are shown in Table 1.
In some cases, participants gave no interpretable description
(none), or gave a mix of features (e.g., color and size for one
pile, habitat for another). It is clear that many participants,
both pre- and post-intervention, sorted according to a single
salient dimension such as size (111 first sort; 67 second), a
physical feature (24 first; 21 second) or color (20 first; 15 sec-
ond). However, cluster-based sorting is the only strategy that
saw a marked increase from the first to the second sort (25 to
120 participants), with most single-dimension strategies see-
ing corresponding decreases (e.g., size: 111 to 67; habitat: 35
to 11). In terms of their qualitative descriptions, participants
have largely shifted from single-dimension sorting strategies
to a cluster-based strategy. Next, we quantified the degree to
which participants’ sorts improve in each intervention condi-
tion with respect to the ground truth.

To measure the quality of participants’ sorts, we compared
the piles from each participant’s first and second sorts to the
objectively correct cluster sort (three piles: 8 raptors, 8 song-
birds, and 8 waterbirds). The similarity between a partici-
pant’s sort and the correct cluster sort was measured with the
adjusted Rand Index (Rand, 1971), which counts the number
of pairs of elements in S (the cards) that are in the same sub-
set in partition X (a participant’s piles) and in the same subset
in Y (the 3-pile objective), as well as the number of pairs of
elements in S that are in different subsets in X and that are in
different subsets in Y . These agreements between sort X and
sort Y are divided by the number of all possible pairs (agree-

ments + disagreements), and thus the Rand index is 0 when
two sorts do not agree on any pair of cards, and 1 when sorts
are exactly the same. The adjusted Rand Index corrects for
chance using the expected similarity of all pair-wise compar-
isons between clusterings specified by a random model, and
can thus on occasion have negative values if the index is less
than expected by chance (Hubert & Arabie, 1985).
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Figure 4: Mean pre-intervention sort quality (left panel) and
post-intervention sort quality (right panel) by age and inter-
vention condition. Error bars show +/-1SE.

The adjusted Rand Index of participants’ sorts and the
correct clustering (i.e., sort quality) were subjected to a re-
peated measures ANCOVA with sort (pre-/post-intervention)
as the repeated measure, age (5.00-8.93 years) as covari-
ate, and intervention condition (poster, exhibit, or none) as
a between-subjects factor. Sort quality improved more in
the intervention conditions (from pre- to post-intervention)
than in the control condition (as evidenced by an inter-
action of intervention and sort (F(2,253)=4.45, p = .01);
there were also subsumed main effects of sort (pre- to post-
intervention F(1,253)=97.42, p < .001) and intervention con-
dition (F(2,253)=3.49, p = 0.03). Participants in the two
intervention conditions showed more improvement in sort
quality (M = .25) than participants receiving no interven-
tion (Welch’s t(245.7)=2.93, p = 0.004). Sort quality also
improved more for older children than younger children (in-
teraction of age and sort (F(1,253)=13.75, p < .001), with
a subsumed main effect of age (F(1,253)=35.22, p < .001).
Figure 4 shows participants’ mean sort quality on the pre-
(first; left panel) and post-intervention (second; right panel)
sorts by age and condition. Having shown that the interven-
tions helped improve children’s understanding of the clus-
tered structure of the bird category, we turned to the induc-
tion sampling choices to determine if diversity-based reason-
ing also improved, using the quality of their second sort as a
covariate.

Induction Sampling Choices We separately analyze the
sampling trials that were targeted at inducing to a specific
cluster, and the sampling trials that were targeted at inducing
to the entire category. On the cluster induction trials, partici-
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pants should choose the pair of birds from the targeted cluster,
rather than the diverse pair. In contrast, on the category induc-
tion trials, participants should choose the diverse pair, with
birds representing two different clusters. Thus, to analyze
the cluster induction trials, participants’ binomial choices for
each trial (0=choosing the diverse pair, 1=choosing the clus-
ter pair) were subjected to a logistic mixed-effects regression
with intervention condition as a between-subjects factor and
trial difficulty (easy or difficult) as a within-subjects factor,
and age and quality of second sort as covariates3.

On the cluster trials, there was no significant main effect
of intervention (F(2,243.5)=0.70, p = .50), nor any signif-
icant interactive effects involving intervention, as shown in
Figure 5 (left). Children were more likely to select sam-
ples containing only members of the cluster that they were
trying to learn about (the more informative samples in this
case) with age, (F(1,244.2)=20.39, p < .001), and they were
also more likely to do so if they had more accurate rep-
resentations of the category structure as indicated by their
post-intervention category sort (F(1,246.1)=27.15, p < .001).
There was a significant interaction of age and second sort
quality (F(1,241.5)=5.57, p = .02). Shown in Figure 6, chil-
dren with high-quality (4th quartile: ARI> .65) second sorts
are near-ceiling at correctly choosing the within-cluster sam-
ple for induction–even the 5- and 6-year-olds. The clus-
ter pair was chosen significantly less often on difficult trials
(M = 0.69) than on easy trials (M = 0.77, F(1,255.2)=19.05,
p < .001). All other effects were not significant.
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Figure 5: Mean proportion of correct sampling choice–
nondiverse for cluster induction (left), and diverse for cate-
gory induction (right)–by age group and intervention condi-
tion. Error bars show +/-1SE, and dotted lines show chance.

To analyze the category induction trials, participants’ bi-
nomial choices for each trial (0=choosing the non-diverse
pair, 1=choosing the diverse pair) were subjected to a lo-
gistic mixed-effects regression with intervention condition as
a between-subjects factor and trial difficulty (easy or diffi-
cult) as a within-subjects factor, age and second sort qual-
ity, scaled and centered, as covariates. As seen in Fig-
ure 5 (right), there was no significant main effect of inter-

3Covariates scaled and zero-centered.
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Figure 6: Mean proportion of correct sampling choice for in-
duction (left: nondiverse for cluster, right: diverse for cate-
gory) as a function of age and quartile of 2nd sort’s quality.
Error bars show +/-1SE, and dotted lines show chance.

vention (F(2,266.0)=0.08, p = .93), nor any significant in-
teractive effects involving intervention: participants of all
ages were near-chance at correctly choosing the diverse pair
(F(1,267.1)=0.00, p = .98). There was no significant main
effect of second sort quality (F(1,269.6)=0.02, p = .88).
Easy trials had marginally higher performance than diffi-
cult trials (F(1,1384.6)=3.67, p = .06). There was once
again a significant interaction of age and second sort quality
(F(1,262.8)=5.61, p = .02), shown in Figure 6 (right). Chil-
dren with 4th quartile post-intervention sorts were picking the
diverse pair at close to chance rates at all ages, while 8-year-
olds with lower-quality sorts preferred the less informative,
nondiverse samples. All other effects were not significant.

Given that participants were at best choosing the diverse
sample at as often as expected by chance on category induc-
tion trials, we investigated whether they showed any system-
atic sampling strategies on these items. As a reminder, each
sampling trial presented three birds: one appearing in both
samples, one from the same cluster, and one from a differ-
ent cluster. We considered the possibility that, among the
two varying birds per trial, children preferred to sample some
types (i.e. clusters) of birds over others. Table 2 shows,
for each type of sampling trial (category vs. each cluster),
the proportion of trials on which participants chose a sam-
ple containing a bird of a given cluster. For category induc-
tion trials, participants avoided choosing samples with wa-
terbirds, choosing them only 21% of the time, significantly
different than the 40% raptors and 39% songbirds chosen
(χ2(2,N = 2,373) = 162.7, p < .001). Indeed, this bias
against sampling waterbirds extended to the cluster induction
trials: participants had lower rates of choosing a waterbird
to induce to all waterbirds (48%) than of choosing a raptor
to induce to all raptors (80%), or than choosing a songbird
to induce to all songbirds (71%). For incorrect answers, wa-
terbird was the least popular choice (0% for songbird trials
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Chosen:
Induce To: Raptor Songbird Waterbird
All Birds 0.40 0.39 0.21
Raptors 0.80 0.13 0.08

Songbirds 0.29 0.71 0.00
Waterbirds 0.36 0.16 0.48

Table 2: Participant’s choices on induction trials.

and 8% for raptor trials). It may be that participants avoid
waterbirds because it is the cluster that they find least typical
of birds. To verify this, we asked 13 adults to rate the typi-
cality (1-7; 1=atypical, 7=very typical) of the 8 waterbirds, 8
raptors, and 8 songbirds used in this experiment. They were
shown the same unlabeled pictures as children saw, in a ran-
domized order. On average, participants found songbirds the
most typical (M = 5.92), followed by raptors (M = 4.41), and
waterbirds (M = 3.54).

General Discussion
The present study investigated whether teaching children
about the clustered structure of the bird category would in-
crease the diversity of their sampling choices in a category
induction task. The didactic dialogue and intervention dis-
plays significantly shifted children’s representation of the bird
category, as evidenced by a shift from them sorting birds into
piles according to single dimensions (e.g., size or color), to
them predominantly sorting by cluster (songbird, waterbird,
and raptor) after the intervention. Moreover, children’s pile
sorts post-intervention were much closer to the actual clus-
ter structure, as measured by adjusted Rand index. Despite
this shift in children’s representation of the bird category, we
found no evidence that either intervention display improved
their category induction sampling choices. Children of all
ages were near-chance at choosing the diverse sample when
inducing to the category. Yet, the quality of children cate-
gory’s representations was indeed related to their sampling
behavior in some cases. Younger children with more accu-
rate category representations chose more informative samples
on the cluster-induction trials. Also, older children with more
accurate category representations chose diverse samples more
often than their age-matched peers with less accurate category
representations, although even these children did not choose
diverse samples more often than expected by chance.

Given that the intervention conditions increased the accu-
racy of children’s category representations, and category rep-
resentations were somewhat related to children’s sampling
decisions, it is surprising that the intervention was not pow-
erful enough to increase the efficiency of children’s sampling
strategies. One possibility is that children simply apply a dif-
ferent standard for evaluating the informativeness of samples.
For instance, Foster-Hanson et al. (2019) found that young
children prefer to examine highly prototypical examples in-
stead of samples that cover variation. This tendency might
have been behind children’s decisions in the present study to

avoid sampling waterbirds–the least typical birds presented
according to adult raters. From this perspective, although the
intervention made children more aware of the structured vari-
ability that exists within the category, perhaps it did not lead
them to view that variation as informative because they prefer
to rely on separate criteria (typicality) for evaluating samples
of evidence.

We conclude that it is unlikely that simply knowing the
clustered structure of a natural category is sufficient for chil-
dren to realize the inductive power of choosing diverse sam-
ples. There is certainly merit to learning the structure of nat-
ural categories beyond any benefit to diversity-based reason-
ing, but future interventions seeking to increase appreciation
for diverse sampling strategies may wish to demonstrate to
children the value of choosing diverse samples more directly.
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Abstract 

The ability to maintain attentive state over a period of time 

(i.e., Selective Sustained Attention) is important for higher-

order cognition but challenging to assess in preschool-age 

children. The TrackIt task was developed to address this 

challenge and has been argued to be sensitive to age-related 

differences in selective sustained attention in 3- to 5-year-old 

children. However, it remains unclear whether this 

improvement with age also (or predominantly) reflects 

improvement in children’s knowledge of different shapes 

used as stimuli in this task in prior studies. The current study 

addressed this possibility. Consistent with prior studies, we 

found clear age-related improvement in performance on 

TrackIt. However, we did not find evidence that shape 

knowledge played a role in TrackIt performance for children 

aged 2 to 5, suggesting that increased knowledge of geometric 

shapes is not sufficient to explain age-related improvement in 

performance and helping to validate TrackIt as an assessment 

of Selective Sustained Attention. 

 

Keywords: selective sustained attention; TrackIt 

Introduction 

The ability to maintain attentive state over a period of time 

(often referred to as Focused or Selective Sustained 

Attention) is important for higher-order cognition, including 

learning (e.g., Fisher & Kloos, 2016; Oakes, Kannass, & 

Shaddy, 2002). This ability undergoes marked development 

during the preschool years as shown by the increased time 

that children spend in this state during free play assessments 

of selective sustained attention (Ruff & Lawson, 1990; 

Sarid & Breznitz, 1997); however, few experimental 

paradigms capture usable data for children in this age range 

(for review see Fisher & Kloos, 2016). 

The TrackIt paradigm was designed to address this 

measurement gap. In the TrackIt task, participants visually 

track a target object moving along a random trajectory on a 

grid, while simultaneously ignoring distractor objects. At 

the conclusion of the trial, the objects disappear and the 

participant indicates the final location of the target on the 

grid. Prior studies suggest that nearly all preschool-age 

children can complete and provide usable data on this task 

(in contrast to other assessments, such as downward 

extension of the Continuous Performance Test; see Fisher & 

Kloos, 2016). Performance on this task shows considerable 

age-related improvement between 3 and 5 years of age 

(Fisher et al., 2013) showing that the task is 

developmentally sensitive. Importantly to this paper, the 

target and distractor objects in the TrackIt task are usually 

selected from a set of geometric forms (circle, diamond, 

square, triangle, pentagon) and iconic shapes (crescent, 

cross, arrow, semi-circle). 

Age-related improvement in performance on the TrackIt 

task during the preschool period has been interpreted as 

improvement in selective sustained attention (Brueggemann 

& Gable, 2018; Erickson et al., 2015; Fisher et al., 2013). 

However, shape knowledge is also known to improve 

during the preschool period (e.g., Clements et al., 1999; 

Verdine et al., 2016) and could be an important element of 

successful completion of the TrackIt task. Therefore, it 

remains unclear whether increased shape knowledge may 

account for the age-related improvement in performance on 

the TrackIt task. This finding would challenge prior 

interpretations that age-related changes in TrackIt 

performance primarily reflect improvement in selective 

sustained attention. 

Shape knowledge may play a role in the task in the 

following way. When distractors are unique from each other 

and from the target, all objects in the task are comparable in 

salience (Fisher et al., 2013). Therefore, participants need to 

encode the identity of the target object in order to 

successfully complete the task. Children may encode the 

identity of the target object by maintaining its visual 

representation in working memory and by using labels to 

refer to object shape. Younger children whose shape 

knowledge is still developing may encode the identity of the 

target object less robustly than older children with greater 

shape knowledge. 
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There is indirect evidence to support this possibility. 

Vales and Smith (2015) provided evidence that object labels 

help children maintain precise representations of objects in 

working memory during a visual search task. Consistent 

with this explanation, Doebel et al. (2018) showed that 

preschool children were better at a modified TrackIt task 

with novel shapes (for which children did not have 

consistent labels) when experimenters provided labels. This 

result was found even though children were able to identify 

the shape from a set of choices after the task was complete 

(i.e., a memory check). Thus, although children completing 

TrackIt with geometric forms have demonstrated memory 

check accuracy that is well above chance, the encoding 

necessary to recognize the target object after the trial may 

be insufficient to support accuracy on the main task. Instead, 

children’s own knowledge of shape names may facilitate 

their performance on the TrackIt task when the 

experimenter does not provide labels for the target objects 

(as is the standard procedure on the TrackIt task) by 

enabling the children to self-generate labels of the targets. 

It is possible that children may use non-canonical names 

for shapes when they do not know the proper labels. For 

example, when asked to describe geometric forms, Clements 

et al. (1999) found that young children tended to invoke 

visual descriptions of geometric forms (e.g., “pointy,” 

“round”, or “skinny”). However, such visual descriptions 

comprise non-unique labels (e.g., both a diamond and a 

triangle could fit the visual description “pointy”). Therefore, 

if younger children generate visual descriptor labels when 

they do not know the canonical labels, these visual 

descriptor labels may still be less helpful for encoding the 

target identity than canonical labels that are more likely to 

be known (and self-generated) by older children.  

In the current study we examined the possibility that age-

related improvement in performance on the TrackIt task 

may be attributed, at least partially, to age-related increase 

in shape knowledge. 

Experiment 1 

Method 
 

Participants 90 two- to five-year old children (M = 3.89 

years, SD = 9.4 months, range 2.58 to 5.77 years) 

participated in the study. Participants were drawn from 

public and private preschool and kindergarten programs. 

The data reported are part of a larger cross-sectional study 

for which data collection is in progress, that has a final 

intended sample size of 240 participants aged 2-7 years.  

That larger study is preregistered at aspredicted.org, and the 

anonymized preregistration is available here. The target 

shape analyses reported in this paper were not pre-

registered. Of the 90 participants recruited for this study, 3 

participants were excluded from the analysis because they 

refused or otherwise failed to complete ten trials or due to 

experimenter error. 
 

Materials and Apparatus The TrackIt task (freely 

available at http://www.psy.cmu.edu/~trackit) was presented 

on a Lenovo laptop screen with physical dimensions 19.1 

cm x 34.2 cm and pixel dimensions 1920x1080 pixels. 

Participants were seated at a desk facing the screen with 

their heads about 12 inches away from the screen. For each 

trial, the target and distractor objects were randomly picked 

without replacement from a set of unique objects spanning 9  

different shapes with 9 different color possibilities 

(81objects in total). See Figure 1 for examples. 

We expect that young children have differential 

knowledge of the shape stimuli used in the TrackIt task (i.e., 

children are likely to know some, but not all, of the nine 

shapes and their associated labels). Because encoding the 

identity of the target object is necessary to complete the 

TrackIt task, greater knowledge of a target shape may result 

in better accuracy on trials with that target shape relative to 

trials with a less familiar shape. To represent the relative 

familiarity of the target shapes to one another, we assessed 

the frequency of the stimuli using ChildFreq (Bååth, 2010), 

a tool that extracts word frequencies from the American and 

British parts of the Childes database (MacWhinney, 2010). 

In particular, we found the frequency of the canonical 

names for the nine shapes over the for the age range 12-35 

months (see Table 1). As is shown in Table 1, there was 

considerable variability in the frequency of the stimuli, 

ranging from 1 to 273 occurrences per million words. 

 

Table 1: Frequency of Stimuli in the Childes Database 

 

Stimuli Occurrences per   

1,000,000 Words 

Circle  273 

Triangle 165 

Square 126 

Cross 91 

Diamond 26 

Pentagon 11 

Arrow 1 

Crescent 1 

Semicircle 1 

 

Procedures The experimenter administered the TrackIt task 

to participants in a quiet room or hallway. In the TrackIt 

task, participants were asked to visually track a single target 

object as it moved on a grid among moving distractor 

objects. At the beginning of each trial, the objects appeared 

on the grid, centered in distinct grid cells, and the target 

object was indicated by a red circle around it. The initial 

positions of the objects were randomized. At the beginning 

of the task, participants were told that: 1) the objects will 

start moving around the grid when the experimenter presses 

a button; 2) the goal is to follow the target object with their 

eyes; 3) at some point the objects will suddenly disappear, 

and their job is to point to where the target object was when 

it disappeared.  

The experimenter started each trial with a button press 

after ensuring the participant was ready to begin. Upon 

starting the trial, the red circle disappeared, and the objects 
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began to move in curvilinear trajectories from grid cell to 

grid cell at a constant speed. At the end of each trial, all 

objects disappeared from the screen, and the participants 

were asked to indicate with their finger (on the touch 

screen) which grid cell the target object was last in before it 

disappeared. Each trial was followed by a memory check 

screen and a smiley face. Participants were told that the 

smile did not indicate a correct answer and rather that we 

were happy they were playing our game. See Figure 1 for a 

diagram of the task sequence. 

 

 
 

Figure 1: The TrackIt task pipeline. Panel A: static display 

of the stimuli before the trial starts; Panel B: the stimuli 

move along random trajectories during the trial; Panel C: 

response screen after the moving shapes disappear; Panel D: 

memory check; Panel E: a smiley face at the end of the trial. 

 

Participants completed 11 trials of the task. The first trial 

was a practice trial and was completed with assistance from 

the experimenter who traced the moving target with their 

index finger. The first trial was accordingly omitted from 

analysis. Participants were then told that they would need to 

complete the rest of the task by themselves, tracking the 

target with their eyes only. 

 

Design The sequence of positions in the path of each of the 

objects was randomized. Object motion display was set to 

30 frames per second. The minimum trial length was set to 

10 milliseconds. The parameters—grid size, number of 

distractors, and speed of objects—were determined by prior 

testing in TrackIt with a separate group of 3- to 5-year old 

children (Kim et al., 2017) and via pilot testing with two-

year-olds. The parameters were organized according to 

participant age and difficulty level as seen in Table 2.   

 

Table 2: TrackIt parameter combination used in each 

difficulty level 

 
Difficulty Age 

Group 

(years) 

Grid 

Size 

# of 

Distractors 

Object 

Speed 

(pix/s) 

Level 1 2-4 2x2 2 300 

Level 2 3-5 4x4 4 500 

Note: pix/s = pixels/second 

Separate groups of participants were tested in each 

difficulty level. We did not complete testing for age and 

level combinations that were likely to produce floor or 

ceiling effects. The final sample size per age and difficulty 

level is presented in Table 3. 

 

Table 3: Sample sizes and age statistics for each age group, 

for each difficulty level 

 
 

Age 

(years) 

Difficulty Level 1 Difficulty Level 2 

n/m/f Age Mean 

(Std) 

n/m/f Age 

Mean 

(Std) 

2 y.o. 13/8/5 2.89 

(0.12) 

-- -- 

3 19/7/12 3.53 

(0.27) 

20/12/8 3.56 

(0.24) 

4 14/7/7 4.39 

(0.26) 

12/5/6 

(1 not reported) 

4.31 

(0.15) 

5 -- -- 9/4/5 5.48 

(0.22) 

Note: n/m/f = sample size / # male/ # female. 
 

Results and Discussion 
 

Age and Task Level For each participant, we calculated an 

average accuracy score i.e., the proportion of ten trials for 

which the participant correctly identified the grid cell in 

which the target object disappeared. To investigate possible 

effects of participant age and task difficulty level, accuracy 

scores were submitted to a 2-way analysis of variance 

(ANOVA) with age and difficulty level as between-subject 

factors. This analysis indicated main effects of age (F (3, 

81) = 11.40, p < .001) and difficulty level (F (1, 81) = 

19.16, p < .001), but no age-by-difficulty interaction (F (1, 

81) = 1.65, p = .20) (See Figure 2). 

 

 
 

Figure 2: TrackIt accuracy improved with age for 

participants tested in Levels 1 and 2. 
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Post-hoc Tukey’s tests showed that, for Level 1, the 

tracking accuracy of 4-year olds was significantly above 

that of 2-year olds (adjusted p = .02) but not 3-year olds 

(adjusted p = .44). For Level 2, the tracking accuracy of 4-

year olds was significantly above that of 3-year olds 

(adjusted p = .03). However, the tracking accuracy of 5-year 

olds was not significantly above that of 4-year olds 

(adjusted p = .10). Nonetheless, there is an emergence of 

developmental trends that are consistent with Fisher et al. 

2013 and Kim et al. 2017 and further, planned data 

collection (i.e., to bring the number of participants in each 

cell to 20) will shed light on any further age-related 

differences. Post-hoc Tukey’s tests also showed that 3-year 

olds performed significantly better in Difficulty Level 1 

than in Difficulty Level 2 (p < .01). Surprisingly, 4-year-

olds did not show a significant difference in performance at 

Difficulty Levels 1 and 2 (adjusted p = .64). 

For all combinations of difficulty level and age group, 

TrackIt accuracy was above chance (25% given four 

response options in Level 1 and 6.25% given 16 response 

options in Level 2, all one-sample t s > 3.62, p s < .001), 

except for two-year-old children completing Difficulty 

Level 1 (one-sample t (12) = 0.63, p = .54). This result 

indicates that two-year-olds did not differ from chance 

performance on the TrackIt task. 
 

Shape Frequency Next we assessed the possibility that the 

frequency of a target shape influenced children’s 

performance on trials with that target shape. The average 

proportion of correct trials, sorted by target shape, ranged 

from 0.32 (diamond) to 0.44 (crescent). To determine 

whether TrackIt performance varied significantly by shape 

frequency, we conducted a logistic regression using shape 

frequency to predict accurate TrackIt responses while 

controlling for participant age and task difficulty level. 

Results of the regression indicated that participant age and 

task difficulty level, but not frequency of target shape, were 

associated with TrackIt performance (see Table 4). 

 

Table 4. Results from the logistic regression analysis: target 

shape frequency, difficulty level, and participant age as 

predictors of correct answer on a trial of TrackIt 

 
Predictor B SE B Wald P df 

Shape 

Frequency 
-0.00 0.00 -6.68 .89 868 

Difficulty 

Level 
-0.54 0.08 -0.14 <.001 868 

Participant 

Age 
0.98 0.10 -6.45 <.001 868 

 

Similarly, results of a Pearson correlation did not indicate an 

association between frequency of a target shape and 

children’s average TrackIt accuracy on trials of that target 

(r = -0.01, p = .72). See Figure 3. 

Based on these results, it does not appear that shape 

knowledge can account for any variability in TrackIt 

performance, a finding that helps to validate TrackIt as a 

 
 

Figure 3: Corpus frequency of target shapes did not account 

for variability in TrackIt performance. 

 

measure of selective sustained attention. However, there are 

several cautions in using frequency data as a proxy for 

shape knowledge. Some of these concerns are 

grammatical/technical in nature e.g., given the nature of the 

data, it is unknown what proportion of word utterances co-

occurred with a concrete or pictorial referent, and this co-

occurrence structure might matter for the encoding of the 

referent shapes. 

Relatedly, some of the stimuli names (see column 1 of 

Table 1) can be used as verbs with semantically-related 

meanings to the shapes whose names they share (e.g., circle, 

cross) and/or adjectives with meanings unrelated to the 

shapes whose name they share (e.g., cross). Some stimuli 

are both the nominal and adjectival form of the shape name 

(e.g., square); whereas, other shapes have a morphologically 

related but distinct adjective form (e.g., circular, triangular). 

These nuances might bias to the number of occurrences of 

each target shape in the ChildFreq database. Perhaps more 

critically, the nature of interactions captured in the Childes 

database may be biased toward free-play and informal 

interactions, rather than formal educational experiences. 

Accordingly, it might underestimate the frequency of less-

common shape names, to which children might be exposed 

in other, more explicitly educational interactions not 

captured in the data. 

Nonetheless, we posit that—for this age group—the 

relative frequencies observed likely comprise reasonable 

approximations of shape familiarity i.e., circle, triangle and 

square are the most common and early-emerging shape 

names in our stimuli set, with crescent and semi-circle being 

significantly less frequent. However, to address the concerns 

about using relative frequencies as a proxy for children’s 

shape knowledge, in Experiment 2 we directly assessed the 

shape knowledge of three- to five-year-old children, as 

described below. 

 

Experiment 2 

Method 
 

Participants We tested 32 participants to assess children’s 

knowledge of the shapes (M = 4.47 years, SD = 9.3 months, 

range 3.24 to 5.84 years). Participants were drawn from 

preschool and kindergarten programs. 16 of these children 
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were also participants in Experiment 1 (M = 4.29 years, SD 

= 8.7 months, range 3.35 to 5.70 years) and completed the 

shape knowledge task an average of 9.7 weeks after the 

TrackIt task. It is unlikely that participation in the TrackIt 

task affected children’s performance on the shape 

knowledge task. The total sample for Experiment 2 included 

11 three-year-olds (8 females, M = 3.56 years, SD = 1.9 

months); 11 four-year-olds (6 females, M = 4.52 years, SD 

= 3.0 months); and 10 five-year-olds (7 females, M = 5.40 

years, SD = 2.7 months). 

Given that (1) two-year-olds were at chance in identifying 

the last location visited by the target shape in Experiment 1 

and (2) pilot testing indicated that two-year-old children had  

difficulty producing verbal responses on the shape 

knowledge assessment, we did not include this age group in 

Experiment 2. 
 

Materials and Apparatus The physical equipment and 

child seating position is identical to those of Experiment 1. 

Shapes presented were the set of TrackIt stimuli, made 

identical in color and equated for overall size (see Figure 4). 

 

 
 

Figure 4: The set of geometric forms and iconic shapes 

comprising the TrackIt stimuli, presented on a single grid. 

 

Procedures Shapes were displayed one at a time in the 

center of a gray screen. Children were instructed to provide 

verbally the name of each shape and prompted to “make 

their best guess” as necessary. No feedback was provided on 

the accuracy of children’s responses. The experimenter 

demonstrated the task across 6 practice trials that presented 

the stimuli star, heart, and oval two times each. The nine 

stimuli were sampled without replacement, after which the 

block of nine was repeated two more times for a total of 27 

trials (3 presentations of each of the 9 target shapes).  

 

Results and Discussion 
 

As expected based on the ChildFreq statistics, children 

demonstrated superior knowledge of high-frequency shape 

names (e.g., circle, triangle) relative to low-frequency shape 

names (e.g., crescent, semicircle). Results of the Pearson 

correlation indicated that there was a positive association 

between shape frequency and children’s shape knowledge, 

(r = .82, p < .01) (Figure 5). Accordingly, we have put forth 

two complementary approaches for assessing shape 

familiarity for the TrackIt stimuli. 

To assess possible age-related changes in shape 

knowledge, we conducted an ANOVA on children’s shape  

 
 

Figure 5: Children’s accuracy in labeling shapes positively 

correlated with the frequency of those names in the corpus. 

 

knowledge using participant age and shape frequency 

predictors. This analysis indicated main effects of age (F (1, 

284) = 19.85, p < .001) and shape frequency (F (1, 284) = 

147.40, p < .001). 

Despite finding better shape knowledge in older children 

than in younger children, we did not find a relationship 

between children’s knowledge of shapes and average 

performance on TrackIt trials with that target shape (see 

Figure 6 for a visualization). 

 

 
 

Figure 6: Children’s accuracy in shape labeling and on 

TrackIt trials with that target shape, by age. 

 

We further assessed this relationship using a logistic 

regression on trial accuracy by proportion correct shape 

labels with a control for difficulty level (Table 5). 

 

Table 5. Results from the logistic regression analysis: 

proportion correct shape labels and difficulty level as 

predictors of producing a correct answer on a trial of TrackIt 

 
Predictor B SE B Wald P df 

Shape 

Label 
-0.26 0.23 -1.15 .25 868 

Difficulty 

Level 
-0.35 0.14 -2.48 .01 868 
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Similarly, results of a Pearson correlation did not indicate an 

association between average ability to name a target shape 

and accuracy on trials of that target (r = -0.04, p = .24).  
 

Other Names The results above are based on children’s 

productive shape knowledge of a single canonical name for 

each target shape (see column 1 of Table 1). We 

additionally assessed the extent to which the findings held 

when allowing for other valid names for the target shapes. 

Ten adult graduate students who were blind to the 

hypothesis (M = 28.62 years, SD = 6.33 years, range 25.15 

to 46.08 years) assigned each shape-label match generated 

by children in Experiment 2 no credit, half credit, or full 

credit. Adults rated all canonical names as full-credit 

responses. When indicated by consensus agreement (80 

percent) non-canonical names were assigned full-credit 

(e.g., “moon” for crescent, “plus” for cross) or half-credit 

(e.g., “ball” for circle, “right” for arrow). 

Using this coding scheme to represent children’s shape 

knowledge, there remained a positive association between 

shape frequency in the ChildFreq statistics and children’s 

shape knowledge (r = .82, p = .03). In addition, we still 

found evidence for age-related changes in shape knowledge: 

an ANOVA on children’s shape knowledge using 

participant age and shape frequency as predictors indicated 

main effects of age (F (1, 284) = 27.89, p < .001) and shape 

frequency (F (1, 284) = 81.48, p < .001). Importantly, we 

did not find a relationship between children’s knowledge of 

shapes and average performance on TrackIt trials with that 

target shape (see Figure 7). 

 

 
 

Figure 7: Children’s accuracy in shape labeling and on 

TrackIt trials with that target shape, by age, when allowing 

for non-canonical labels judged valid by adult participants. 

General Discussion 

Consistent with prior research, we found effects of age and 

task difficulty level on performance in the TrackIt task in 

Experiment 1 (Fisher et al., 2013; Kim et al., 2017). In 

Experiment 2, we also found that indeed children’s shape 

knowledge was related to age, with older children showing 

better shape knowledge of shape labels than younger 

children. We also found that across age, children showed 

better knowledge of shape labels for more frequently 

occurring labels. However, across Experiments 1-2 we did 

not find evidence that shape knowledge or frequency can 

account for age-related improvement in performance on the 

TrackIt task. Specifically, we did not find evidence that the 

frequency of a target shape, as derived from the ChildFreq 

database, was related to children’s performance on TrackIt 

trials using that target shape. Similarly, we did not find a 

significant relationship between children’s ability to label a 

target shape and their performance on trials involving that 

target shape. In contrast, our analyses indicate that children 

performed similarly across trials regardless of target shape.  

These findings help to mitigate concerns that shape 

knowledge may contribute to children’s performance on the 

TrackIt task, given that knowledge of the different target 

shapes is likely to emerge at different time points and rates 

(i.e., if knowledge of the target shape names were a critical 

aspect of task success, we would expect young children in 

particular to perform relatively better on trials with high-

frequency shapes relative to those with less familiar shapes). 

At the same time, that two-year-old children performed at 

chance overall (on both the main task and the memory 

check) might indicate that these youngest participants have 

difficulty encoding any target shape, regardless of its 

relative frequency. Additional development and school 

experience might support older children in recognizing the 

properties of shapes, even if they are not familiar with the 

canonical names of these shapes (as both the Childes 

database and children’s own performance suggest). 

One limitation of the current studies is that our analysis 

did not account for object color, the other dimension by 

which target and distractor shapes differed. Children with 

limited shape knowledge might nonetheless be successful in 

encoding the target object by using color labels (see 

Sandhofer & Smith, 1999, for a review of the time course 

and developmental dependencies of color term learning). 

We did not test for this hypothesis because currently the 

TrackIt output records only object shape but not color.  

Another limitation of the current set of studies is that 

some (but not all) of the children providing shape 

knowledge data in Experiment 2 also completed the TrackIt 

task in Experiment 1. An alternate design would have 

allowed us to more directly assess shape knowledge of 

TrackIt participants, rather than that of a representative peer 

group. 

 

Conclusions 

Across two experiments we obtained no evidence that shape 

knowledge contributed to children’s performance accuracy 

on the TrackIt task. Accordingly, the results of the present 

study help to mitigate the concern that shape knowledge 

may fully or partially account for the age-related changes in 

performance on the TrackIt task reported in prior studies.  

Overall, the reported results help to support the previous 

interpretation of this task as an assessment of selective 

sustained attention in young children (Erickson et al., 2015; 

Fisher et al., 2013; Kim et al., 2017). 
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Abstract 

 
This paper investigates whether a curiosity-based strategy 

could be beneficial to word learning. Children are active 

conversation partners and exert considerable influence over the 

topics that are discussed in conversation with their parents. As 

the choice of topics is likely to be intrinsically motivated, a 

formalization of curiosity is implemented in a word learning 

model. The model receives annotated Flickr30k Entities 

images as input, and is trained in two conditions. In the curious 

condition, the model chooses objects to talk about from the 

scene according to the curiosity mechanism, whereas in the 

random condition, the model receives randomly chosen objects 

as input. The goal of this study is to show how a curious, active 

choice of topics by a language learner improves word learning 

compared to random selection. Curiosity is found to make word 

learning faster, increase robustness, and lead to better accuracy. 

Keywords: word learning; curiosity; interaction; connectionist 
model. 

Introduction 

Language learning research focuses more and more on child-

parent interaction and the social aspects of early 

conversation. Children are active learners and have 

considerable agency as conversational partners. We will 

argue that curiosity is a plausible mechanism for the child to 

come up with new topics to talk about within this 

conversational context. While AI researchers have become 

inspired by the curiosity displayed by children, and have 

implemented intrinsically motivated exploration in computer 

models, this formalized curiosity has not been applied to 

computational models of language learning. At the same 

time, the implementations of curiosity in computer models 

are often not cognitively plausible or the degree of 

plausibility is unknown (as in reinforcement learning), or the 

input to the model lacks the complexity of the stimuli 

encountered by the word learner.  

Curiosity can be seen as a viable mechanism in language 

learning if it provides an advantage to the word learning 

child. In order to see whether curiosity is beneficial to the 

word learning process, we propose a curiosity-based model 

that chooses which object in a scene to talk about next. The 

model chooses its object of interest from among a number of 

objects in an image, and triggers the adult to provide 

linguistic input related to that object. The curiosity 

mechanism suggested by Twomey and Westermann (2018), 

which maximizes the product of subjective novelty and 

plasticity, was implemented to select the objects. To reflect 

the complexity of visual scenes encountered by the child, the 

model takes Flickr30k images as input, which depict 

everyday scenes and objects and have been annotated with 

captions. The accuracy and loss of the model with a curiosity-

based selection of topics were compared to those of a model 

that received the topics randomly. 

Related Work 

Interaction and Intentionality 

Given the social nature of early conversation, language 

should not be seen as a product but as a dynamic system for 

communication (Clark, 2016). Language is used and learned 

in order to convey and receive information. This means that 

the child is a conversation partner first, and a language learner 

second. Furthermore, young children are active speakers and 

language learners. Bloom et al. (1996) observed that children 

aged 9 through 24 months are most likely to speak first in 

conversation with their mother, and the mother to speak after 

the child. Their evidence did not support the scaffolding 

model, in which the parent takes a prominent role in the 

conversation by providing a framework that controls the 

elements beyond the capacity of the learner and lets the 

learner concentrate on those elements they are capable of 

producing. Rather, children initiate conversations and, as 

shown in several studies (Chapman, Miller, MacKenzie & 

Bedrosian, 1981; Bloom et al., 1996), mothers are likely to 

adopt the topic proposed by the child, and continue to talk 

about it.  

These studies show a pattern of turn-taking with a clear 

role division. Often, the child wants to discuss a certain topic 

and starts by talking about it. The parent makes sure they 

understand what the child is referring to by rephrasing what 

the child has said, which functions as feedback to the 
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language-learning child at the same time (Chouinard and 

Clark, 2003). The child then assesses whether the parent has 

understood the initial message, after which the conversation 

can continue. When children initiate conversations and their 

parents adopt the proposed topics, children can exert 

considerable influence on the topics that are discussed and 

consequently on the feedback they receive.   

Because children initiate conversations, and continue 

discussing the topic when they feel they have been 

understood, their choice of topics is unlikely to be random. 

As the language learner decides on the topic themself, taking 

in the current surroundings and situation, the choice is likely 

to be intrinsically motivated. Our study investigates whether 

a curiosity-based selection of the topics to be discussed 

enhances word learning through comprehension of the 

symbol-referent pair. 

Curiosity 

Curiosity is a form of intrinsic motivation. Intrinsic 

motivation can be defined as doing “an activity for its 

inherent satisfaction rather than for some separable 

consequence. When intrinsically motivated, a person is 

moved to act for the fun or challenge entailed rather than 

because of external products, pressures, or rewards” (Ryan 

and Deci, 2000, p. 56). In the 1950s, psychological research 

assumed that human behavior is mostly extrinsically 

motivated, by physical drives such as those to alleviate 

hunger and minimize pain. A major shortcoming of this 

theory was that it did not account for exploratory and other 

curious behavior in humans and animals—behavior that does 

not seek immediate reward (Oudeyer & Kaplan, 2007). 

When formalized to be programmed into a computer 

model or robot, intrinsic motivation and curiosity are often 

conflated (e.g. Pathak et al., 2017). Intrinsic motivation has 

mostly been applied in reinforcement learning, providing 

agents (robots and models) with an intrinsic desire to explore 

their environments and build better models and 

representations of them (Schmidhuber, 2010). Studies that 

implemented intrinsic motivation have shown that 

intrinsically motivated exploration increases the performance 

of a model when generalizing to other tasks (Pathak et al., 

2017), and this is likely to be the case for humans as well 

(Twomey & Westermann, 2018).  

Reinforcement learning implements a variety of 

formalizations of intrinsic motivation, such as maximizing 

the decrease of prediction errors, maximizing or minimizing 

predictability, or choosing the action that maximizes the 

agent’s ability to perform a task. Some approaches use 

predefined rewards or external signals that provide feedback 

on motor functions, both of which are certainly not 

cognitively plausible. Of other approaches, it is simply not 

known how cognitively plausible they are (Oudeyer & 

Kaplan, 2007; Twomey & Westermann, 2018). In fact, not a 

lot is known for certain about the workings of curiosity in 

human cognition in general and children’s cognitive 

development in particular.  

What is clear is that children are natural explorers, 

displaying a novelty preference from an early age. Novel 

stimuli have most potential to yield new insights upon 

exploration, as little is known about them yet. As a stimulus 

is perceived, it becomes less interesting over time 

(habituation), and other stimuli become more interesting 

relative to the current stimulus as they remain novel when not 

examined (Mather, 2013). 

Under various circumstances, however, children display 

familiarity preferences. While completely novel stimuli leave 

a lot to be explored, they can be uninteresting nonetheless as 

they differ greatly from the child’s state of knowledge. Some 

have suggested that a moderate discrepancy between a 

stimulus and the child’s representation of it could define the 

optimally interesting stimulus. What moderate means in this 

context, however, is not a trivial question. How familiarity 

and novelty preferences influence learning is little 

understood as of yet (Mather, 2013). 

In a recent publication on curiosity-based categorization in 

infants, Twomey and Westermann (2018; henceforth T&W) 

simulate infant categorization using an autoencoder, a model 

that learns to reproduce the input after reducing it to a 

compact representation. They defined curiosity as 

maximizing 

(i – o)o(1 – o)  (1) 

where i stands for the model input and o for the model output. 

(i – o) reflects the difference between the input and the 

output, which is the error of the autoencoder in response to a 

particular stimulus. o(1 – o) is the derivative of the sigmoid 

activation function. As such, this part of the formula reflects 

the potential update made to the model in response to this 

stimulus, when it is trained using gradient descent. The 

formula favors stimuli which the model is predicting least 

accurately (the difference between input and output is large), 

and stimuli where a small adjustment in representation has 

the greatest effect on the prediction in terms of accuracy (the 

sigmoid derivative is large). In T&W, the curiosity condition 

learned the most robust category, followed by the objective 

complexity condition. 

T&W provide a cognitively plausible mechanism of 

curiosity, that produced results that fit their empirical data 

well. That the implementation of curiosity outperformed the 

other three mechanisms shows that a learner would benefit 

from applying this strategy. The inputs used in the study are 

very interpretable, but also rather simple, consisting of eight 

training instances and three test instances that differed on four 

features. The present model will use the same curiosity 

mechanism, and see how it performs when provided with 

more complex input, consisting of a sizable set of images to 

approximate the complexity of the language learner’s 

surroundings. 

The model of T&W went through the stimuli without 

replacement, so that the model encountered every stimulus 

once per epoch. A drawback of this setup is that it does not 

correspond to how children encounter stimuli in real life, as 

children have no control over the order in which stimuli are 

1992



presented to them. It is also unlikely for children to come 

across a string of examples of a certain category presented 

one after the other. Objects and living things are often seen in 

isolation from other category members, and amid objects of 

a wide variety of other categories. Our model was therefore 

presented scenes containing multiple objects it could choose 

from. The model would pick one object, skipping the other 

objects as it went on to the next scene. It was free to look at 

the same or any other object in the scene during the next 

epoch, meaning that some objects could be ignored 

altogether. This made the input sequences of our two 

experimental conditions more different, and perhaps less 

comparable than in T&W’s case, but it also better 

approximated a word learning context, in which only certain 

aspects of a scene are in focus at any time.  

Methodology 

Model 

Our language learner model is inspired by a model of 

referential expression resolution (Rohrbach et al., 2017), 

which incorporates an expression generation module as well 

as the main expression resolution component, which allows 

it to learn under self-supervision. We implement a similar 

complementary setup, consisting of a listener and a speaker 

module. The listener represents a child learning which words 

represent which objects in the visual modality, by receiving 

linguistic input from an oracle, which represents an adult 

conversation partner. The listener learns through supervision, 

comparing the true referent of a word to the referent it 

expected, and updating its language knowledge accordingly.  

The incorporation of a speaker module in principle allows 

the model to be used in a conversational set-up, but in the 

current work, the emphasis is on comprehension. As we 

describe in more detail in the section on ‘Curiosity’, the 

model’s curiosity about an object is calculated based on the 

ability of the listener to comprehend the label the speaker 

would give it. The oracle labels the object the learner model 

is most curious about. In analogy, a parent might name an 

object their child points out. Learning, however, is not simply 

mapping the label to the correct object: just like in the random 

condition, the model learns by predicting the referent of the 

given word and getting feedback on this prediction. The 

curiosity mechanism affects only the order the stimuli are 

presented in, but not the learning process itself. Figure 1 

illustrates the architecture of the model. The listener learns to 

map a given word to its referent in the visual context. A visual 

scene consists of a number of objects. We extract a visual 

feature vector for each object using the VGG-16 object 

recognition model presented by Simonyan & Zisserman 

(2015), pretrained on ImageNet. We use the last fully 

connected 4096-dimensional layer, which contains high-level 

visual information. For each object in a given scene, the 

embedding of the word given by the oracle was concatenated 

to the object representation, which was input to the listener. 

The listener further consists of a 256-unit hidden layer 

followed by a sigmoid activation function, which is fully 

connected to a single output unit, also followed by sigmoid 

activation. Softmax applied to the concatenation of the output 

values for all the objects in a scene gives a distribution 

reflecting the probabilities of each object being the referent. 

The listener was trained under supervision using cross-

entropy loss on the concatenated output values. The loss 

function is a quantification of how far off the model’s 

prediction is from the actual target distribution. Hence, a 

lower loss value means a better performing model. 

 

Figure 1: Simplified graphical representation of the model. 

The speaker module learns to output a word, given an 

object.  Input to the speaker is a VGG vector, which is fed to 

a  256 unit hidden layer followed by sigmoid activation, and 

fully connected to the vocabulary-sized output layer. The 

speaker was trained using cross-entropy in a self-supervised 

manner. Rather than training on a single object VGG vectors, 

it was fed the sum of the VGG vectors of all objects in the 

scene, weighted by the Softmaxed output vector of the 

listener (using it as attention). The self-supervision signal 

consists of the original input word to the listener. Therefore, 

the speaker can be thought of as learning in an unsupervised 

manner, although its performance is dependent on that of the 

listener, which is trained under supervision.  

The model was trained using Adam optimization 

(Kingma & Ba, 2014) in batches of 40 images, for a 

maximum of 40 epochs. To decide on an initial learning rate, 

we ran both the ‘curious’ and the ‘random’ model, with 

learning rates ranging from .1 to .00001 for 20 epochs. We 

ran each condition-learning rate combination with 5 different 

random initializations. We found that the best scores on the 

validation data were sometimes obtained in epoch 20, which 

suggested the model might not have fully converged yet. We 

therefore decided to report on models trained for 40 epochs. 

A learning rate of .001 yielded the best results on validation 

data for both the listener and the speaker. The results reported 

reflect 20 different runs of both conditions, with learning rate 

set to .001. The model was implemented in PyTorch (Paszke 

et al., 2017). The code is available at 

https://github.com/DaanKeijser/Curious-Topics. 
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Data 

The Flickr30k dataset (Young et al., 2014) was used as visual 

input to the model. The dataset consists of 31,783 images 

taken from Flickr, annotated with five captions per image 

(158,915 in total) via crowdsourcing. The images depict 

everyday activities and scenes.  Plummer et al. (2015) 

expanded the dataset with Flickr30k Entities, by identifying 

which words in the captions refer to which entities in the 

images. They provided annotation for 244,035 such 

coreference chains, and located the entities they referred to in 

the images, resulting in 275,775 bounding boxes. It should be 

noted that this data has a high level of complexity, but the 

captions are not child-directed speech. 

Figure 2 gives an example of the data our model was 

trained on. On the visual side, we simplified the learning 

problem by excluding any referring expressions that 

described multiple objects, such as ‘plants’ and ‘pots’ in 

Figure 2.  Processing multi-word expressions requires a 

recurrent neural network and a cross-situational learning 

model, which is outside the scope of the current work. We 

therefore simplified the referring expressions to single words. 

The Flickr30k Entities “Sentences” files containing the 

annotated captions for each image were searched to find all 

descriptions for every object ID. From the expressions for 

every object ID, the most frequent word was chosen as the 

single word most likely to describe the object in the image. 

This required that at least two descriptions of the image 

mentioned the object by the same term, otherwise the object 

was excluded. The word selection was done after omission of 

very frequent, irrelevant words such as articles (‘a’, ‘an’, 

‘the’), third-person possessive determiners (‘his’, ‘her’, 

‘their’), the cardinal numbers one through ten, and primary 

and secondary colors (e.g. ‘orange’), including ‘silver’ and 

‘gold’. If multiple objects in an image had been labeled with 

the same word, only one of them was selected (the first one 

in the loop, not randomly). Finally, images were removed that 

contained fewer than two objects after preprocessing. 

This yielded a total of 86,748 word-object pairs, resulting 

in a vocabulary of 4,237 unique words. It should be noted that 

objects paired to the same word could still display great 

visual variability. The least frequent words (e.g. ‘beak’ and 

‘paste’) occurred only once, whereas the most frequent word 

occurred 7,891 times. The five most frequent words were 

man (7,891 times), shirt (4,536 times), woman (4,378 times), 

boy (1,477 times), and girl (1,428 times). The average 

frequency was 20.47 (SD = 172.33), and the median 

frequency was 2. After preprocessing, 24,670 images 

remained, of which 1,000 were set aside as validation data, 

and another 1,000 as test data. 

Table 1: Number of objects and baselines per split. 

 

Table 1 shows the total number of objects in the train and 

test splits of the data, as well as the baselines for the listener 

and speaker respectively. The listener baseline is one divided 

by the average number of objects per scene. The speaker 

baseline is the majority baseline of the most frequent word. 

The baselines represent the average accuracy obtainable by 

chance, which serves as the minimal performance expected 

of the model. High accuracy is only an indication of good 

performance if the model performs better than its baseline. 

Since many words occur only once or twice, there are 80 

words in the test set that do not occur in the training set, with 

a token frequency of 80, and 776 words, with a token 

frequency of 3413 in the test set, that do occur in the training 

set. These numbers might suppress test accuracy. 

Curiosity Mechanism 

In order to measure the effect of active and curious learning, 

the model which performed curiosity-based object selection 

was compared to a model that received the next object to 

learn about randomly. In the first condition, curiosity values 

were calculated for each object using T&W’s curiosity 

mechanism, and the object with the highest value was chosen  

to learn about. In the second condition, objects were 

randomly chosen from the scenes. The main purpose of the 

speaker part of the model was to produce a word guess as 

input to the listener so that the model could run without the 

input provided by the oracle. This way, the model could run 

(without weight updates) to compute curiosity values and 

Split Objects Listener baseline Speaker baseline 

Train 79,749 0.284 0.091 

Test   3,493 0.286 0.089 

Figure 2: Example image with captions and selected words. 
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choose the most interesting object to talk about, before 

running (with weight updates) to learn about the form-

meaning pair with feedback from the oracle. 

T&W’s curiosity mechanism (see equation (1)) was used 

to produce the curiosity values, where i was the object 

representation given as input to the speaker, and o was the 

object prediction produced by the listener. The curiosity 

values were computed element-wise, and the mean of the 

absolute values of the curiosity vector was taken as the 

curiosity value for an object in the scene. The object with the 

highest curiosity value was chosen as the next input for the 

speaker and target for the listener. 

The random and curious conditions were compared on 

listener loss and accuracy, which indicate the models’ ability 

to choose the appropriate referent of a word form. The loss 

and accuracy patterns produced over the 40 epochs were 

plotted to be interpreted as learning curves and compared 

between conditions. 

Results 

Figure 3 shows the value of the loss and accuracy of the 

listener, after each epoch of training. Curious listeners (the 

blue lines in all plots) show a consistent pattern: after one 

epoch of training, accuracy on the test set ranged from .49 

to .61, far above the baseline of .286. The accuracy on the test 

set steeply increased in the first few epochs, and kept 

increasing more slowly, but steadily over later epochs, 

converging somewhere around epoch 20 with accuracy 

from .71 to .74. At epoch 40, accuracy ranged from .72 to .75.  

The exception to this pattern is one particular run, which 

shows a similar learning trajectory but started and ended with 

a much lower accuracy, of .32 and .58, respectively. The 

general pattern is reflected in the plots of the loss on the test 

data.  

On the training data, accuracy also plateaued around epoch 

20, with accuracy from .80 to .83 for 19 runs, and only small 

gains in accuracy until epoch 40, with scores from .83 to .84. 

Note that the training loss continued to decrease after epoch 

20. This indicates the curious listeners started to overfit at that 

point, fitting to specific characteristics of the training set, that 

did not translate to accuracy or improvements on the test data. 

As we saw on the test data, one run shows a different pattern 

and reaches a maximum of .76 in accuracy on the training 

data. 

The pattern for listeners in the random condition (the 

orange lines in all plots) is more erratic. After one epoch of 

training, all random listeners started around or just above the 

baseline accuracy of .286. Some listeners in this condition 

barely outperformed the baseline at epoch 40. Others 

outperformed the baseline, but plateaued after 10-20 epochs, 

eventually reaching maximum accuracy scores ranging 

from .39 to .48 on test data. For 6 runs, the accuracy after 

epoch 1 was around the baseline, but increased steeply until 

epoch 20, and continued to increase slowly after that. At 

Figure 4. Test and train results of the speaker. 

Figure 3. Test and train results of the listener. 
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epoch 40, performance of 8 runs is slightly below that of most 

runs in the curious condition, with test accuracy ranging 

from .68 to .73, and train accuracy from .78 to .81. The same 

patterns are reflected in the loss plots. 

Test accuracy of speakers trained in the curious condition 

peaked somewhere between epoch 10 and 25 around .23, with 

the exception of the one run in which the listener was also 

less successful, which peaked at epoch 12, with an accuracy 

of .19. The loss value was lowest around epoch 8. After this 

epoch, the training loss was still consistently going down, and 

training accuracy going up. After epoch 8-10, the curious 

speakers were overfitting rather than learning. 

As with the listeners, initially, speakers in the random 

condition learned more slowly, as is reflected in the lower 

accuracy between epochs 1 and 20. In all random runs, the 

speaker outperformed the baseline. However, as was the case 

with the listeners in this condition, there are large differences 

between runs. Most runs plateaued relatively quickly, and 

peaked between .16 and .19, whereas in 8 of the 20 runs, 

accuracy continued to increase, eventually matching 

performance of the speakers in the curious condition, with 

accuracy peaking around .23. Although the training 

trajectories in the random condition are more discernable 

than for the curious condition, in all runs, performance on the 

training data continued to improve until epoch 40. As in the 

curious condition, all random speakers overfitted. 

Discussion 

Did curiosity increase the performance of the word learning 

model compared to the random choice of objects? Yes, the 

listener test loss decreased faster and the listener test accuracy 

increased faster in the curious condition than in the random 

condition. Whereas the curious model converged at a similar 

point on every run, the random model eventually equaled or 

approached the curious model on some runs, but learned 

nothing or was stuck in a local optimum on others. 

A pattern that can be discerned is that curiosity, aggregated 

over the different initializations, performs better from the 

start and learns faster than random selection. In this 

experiment, the random initialization of the weights meant 

that the first objects selected in the curious condition were 

just as random as those in the random condition. This 

changed after a few weight updates when the curiosity 

formula took effect—the difference in performance 

becoming apparent after a single epoch. This behavior is 

different from what is typically proposed, as intrinsic 

motivation is expected to make learning slower initially, but 

make up for that with increased performance and better 

generalization in the long run (Oudeyer & Kaplan, 2007). 

Another pattern that can be observed is that learning 

trajectories of curious learners were more similar to each 

other than those of random learners were. Curiosity seems to 

provide ‘robustness’, making learners less prone to being 

stuck in a local optimum.  

The near instant performance advantage of curiosity may 

be explained by the inherent advantage it has over random 

selection when dealing with token frequency. Having a good 

word representation for the corresponding object brings an 

increase in overall accuracy equivalent to its token frequency. 

Whereas random selection is prone to select objects with a 

high token frequency, curious selection can focus on highly 

frequent word-object pairs first, and ignore them later once 

their representation is already accurate. Further research 

could establish whether the selection by the curiosity 

mechanism matches this strategy. 

This would correspond to the notion that language is not a 

product, but a means for social interaction, where the child’s 

initial interest is to get the message across and language 

learning follows (Clark, 2016). The intentionality theory of 

language learning describes how such intrinsically motivated 

behavior can drive language learning (Bloom, 2000). As of 

yet, there is no empirical data on what criteria or strategies 

children use to pick topics to talk about. 

Whereas the model was evaluated on the listener 

performance (comprehension), the speaker’s main purpose 

was to enable the curiosity mechanism, which was used to 

train the curious model. The high train accuracy of the 

curious speaker increased the accuracy of the curiosity 

mechanism, thereby improving the curious listener’s 

comprehension. However, the speaker overfitted in both 

conditions, and did not generalize well to test data. The 

speaker test results therefore do not help to understand how 

improved comprehension leads to improved language 

production.  

We have shown that modeling the language learner as an 

active solicitor of input, rather than a passive receiver, can 

lead to different learning outcomes. When objects in the 

context are selected as a topic according to curiosity, word 

learning is faster and more robust than when topics are 

selected at random. Future work may explore the 

distributional properties of the topics selected by curiosity 

over the course of the learning process. 
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Abstract 

Few experiments have examined how people reason about 
durative relations, e.g., "during". Such relations pose 
challenges to present theories of reasoning, but many 
researchers argue that people simulate a mental timeline when 
they think about sequences of events. A recent theory posits 
that to mentally simulate durative relations, reasoners do not 
represent all of the time points across which an event might 
endure. Instead, they construct discrete tokens that stand in 
place of the beginnings and endings of those events. The theory 
predicts that when reasoners need to build multiple simulations 
to solve a reasoning problem, they should be more prone to 
error. To test the theory, an experiment provided participants 
with sets of premises describing durative relations; they 
assessed whether the sets were consistent or inconsistent. The 
results of the experiment validated the theory's prediction. We 
conclude by situating the study in recent work on temporal 
thinking. 

Keywords: events, temporal reasoning, durative relations, 
mental models, consistency 

Introduction 
A police officer stopped a driver on the suspicion of drunk 

driving near Vero Beach, FL. As the officer began to speak 
to the driver, he noticed an open bottle of Jim Beam on the 
passenger’s seat. The driver explained to the officer that he 
had not, in fact, been drinking while driving – because he only 
drank when the car was stopped at traffic lights. He was 
arrested after failing a field sobriety test (Simmons, 2018). 

In daily life, people use temporal relations such as “while” 
and “during” to convey information about events that endure 
across more than one point in time. Consider the function of 
the temporal preposition “during” in the following examples: 

 
1a.  The car broke down during the road trip. 
  b. Breckinridge graduated during the Progressive Era. 
 

The statements each describe a punctate event, i.e., a single 
point in time (e.g., the breakdown, the graduation), that 
occurred in the context of a period that extends across 
multiple time points (e.g., the road trip, the Progressive Era). 
The sentential connective “while” can yield similar 
interpretations, as in the examples in (2): 

 
2a.  The man slept while the neighbors fought. 
  b. The neighbors fought while the man slept. 

 
The examples show how syntax can change the way events 
are interpreted. For instance, (2a) seems to suggests that the 
neighbors fought for longer than the man slept, whereas (2b) 
seems to convey the opposite. Perhaps the two statements are 

compatible with one another, as in the situation in which the 
man started sleeping right as the fight began and woke up 
when the fight ended. 

Researchers in artificial intelligence have developed many 
systems of temporal logic to cope with reasoning about 
durative events (e.g., Allen, 1983, 1991; Freksa, 1992). 
Temporal logics often stipulate relations between intervals of 
time. The logics were designed to describe durative events as 
they occur in the world – they were not developed to capture 
how humans think about time. Hence, many temporal logics 
posit relations that don’t map onto prepositions or 
connectives in English. For instance, Allen’s (1983) system 
includes the following types of relation that connect event A 
with event B: 

 
AAAA A starts B. 
BBBBBBBB   
 
    AAAA A finishes B. 
BBBBBBBB   
 
AAAABBBB  A meets B. 

 
The repetitions of the letters are used to depict how one event 
endures across multiple points in time. The descriptions of 
the relations in natural language can be quite complex, e.g., 
you might describe the starts relation as: “Event A and event 
B began simultaneously, but event A ended before event B 
did.” Hence, while the relation is primitive in Allen’s 
calculus, it depends on the composition of several different 
concepts in natural language: beginnings, endings, and the 
preposition “before.” Despite the disparity between language 
and logic (see Knauff, 1999), researchers have built a wide 
variety of tools in artificial intelligence designed to explain 
what kinds of inferences can be drawn from the way relations 
between intervals interact (for reviews, see Fischer, Gabbay, 
& Vila, 2005; Goranko, Montanari, & Sciavicco, 2004). 

In contrast to the computational analyses of temporal 
reasoning, few studies have examined how people reason 
about durative relations such as “while” and “during.” Many 
studies have examined temporal relations such as “before” 
and “after” (Clark, 1971; Münte, Schiltz, & Kutas, 1998; 
Zhang et al., 2012), but durative temporal relations appear to 
be more complex – children comprehend and produce 
“while” after they understand the meanings of “before” and 
“after” (Keller-Cohen, 1981; Silva, 1991; Winskel, 2003). 
Previous work by Schaeken and colleagues investigated how 
adults reason about “while” (Schaeken, Johnson-Laird, & 
d’Ydewalle, 1996) using premises of the form X happened 
while Y happened. However, reasoners could draw inferences 
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from such relations without considering the durative nature 
of “while”, i.e., the problems in Schaeken et al.’s (1996) 
studies implied that the two events both started and ended at 
the same time. Nevertheless, their work revealed two central 
patterns of temporal reasoning: first, reasoners appear to 
simulate a mental timeline of events when they reason about 
time (Bonato, Zorzi, & Umiltà, 2012; Casasanto & 
Boroditzky, 2008). Second, some temporal reasoning 
problems are easy, and some are difficult: people are more 
prone to error and they take longer to complete certain 
temporal reasoning problems (Baguley & Payne, 2000; 
Schaeken & Johnson-Laird, 2000; Vandierendonck & De 
Vooght, 1997).  

Though no studies have examined how people reason about 
durations, many have focused on people’s ability to estimate 
the durations of experienced or anticipated events (Zakay & 
Block, 1997). In typical tasks, people make estimations in 
minutes and hours or by using more qualitative boundaries. 
The research has shown that people overestimate short time 
periods and underestimate longer ones (Lejeune & Wearden, 
2009), a robust pattern known as Vierordt’s law. Gennari and 
Wang (2019) showed that these estimation biases are 
correlated with the relative amount of represented 
information per timepoint. People “compress” 
representations to avoid maintaining a representation of all 
timepoints over which an event transpires (Faber & Gennari, 
2015, p. 157). The lesson for researchers interested in 
temporal reasoning is that some event representations can be 
compressed into a single timepoint, and reasoners can 
construe them as punctate events. Other event representations 
may resist such compression by requiring reasoners to 
maintain information about durations, i.e., information that 
spans two or more timepoints. Of course, even punctate 
events have some duration, but their duration is irrelevant to 
how people make inferences from them. 

One recent account by Khemlani, Harrison, and Trafton 
(2015a) sought to explain how reasoners construct a mental 
timeline to represent durative relations such as “while” and 
“during” by specifying how time representations can be 
compressed. The account builds on previous theories of 
temporal reasoning that assume people build mental 
simulations that consist of discrete tokens to reason about 
time (Schaeken & Johnson-Laird, 2000; Schaeken et al., 
1996). But Khemlani et al.’s account extends beyond 
previous research to make predictions about how people 
carry out different temporal reasoning tasks, such as 
reasoning about what is necessary, reasoning about what is 
possible, and assessing the consistency of a set of assertions 
(Khemlani, Lotstein, Trafton, & Johnson-Laird, 2015b). 

In this paper, we spell out the central principles of 
Khemlani et al.’s (2015a) account of durative reasoning and 
use it to derive predictions about whether certain reasoning 
problems should be easy or difficult. We describe a 
preregistered experiment that tested these predictions. We 
conclude by describing limitations of the study and why 
durative inferences pose unique challenges for investigators. 

Mental models of durative relations 
Khemlani et al.’s (2015a) account of durative reasoning is 

based on the idea that humans build discrete mental 
simulations of possibilities – mental models – when they 
reason (Johnson-Laird, 2006; Johnson-Laird, Girotto, & 
Legrenzi, 2004). The model theory applies to relational 
reasoning across several different domains (Goodwin & 
Johnson-Laird, 2005), including reasoning about space 
(Ragni & Knauff, 2013; Jahn, Knauff, & Johnson-Laird, 
2007), time (Schaeken et al., 1996; Schaeken & Johnson-
Laird, 2000), consistency (Jahn, Johnson-Laird, & Knauff, 
2004; Johnson-Laird, Girotto, & Legrenzi, 2004), and 
kinematics (Khemlani, Mackiewicz, Bucciarelli, & Johnson-
Laird, 2013). The theory rests on three fundamental 
assumptions: 
• Models are iconic. Mental models are discrete, iconic 

representations of possibilities. Iconicity constrains 
models so that their structure reflects the structure of what 
they represent (see Peirce, 1931-1958, Vol. 4). In the case 
of two or more events, models should be structured to 
reflect the events’ chronology, i.e., the way in which those 
events unfolded. Since models are discrete, they cannot 
directly represent how long one event took relative to 
another. The restriction allows reasoners to efficiently 
compress temporal models to uniformly represent events 
that endure across vastly different timescales, such as 
seconds or decades. 

• Intuition vs. deliberation. Reasoners rely on two 
primary processes of inference: an intuitive construction 
process and a deliberative revision process. The intuitive 
construction process rapidly builds and scans an initial, 
preferred mental model (Jahn et al., 2007). The process is 
subject to various heuristics and biases, and so reasoners 
who engage just the initial process are prone to make 
systematic errors (Khemlani & Johnson-Laird, 2017). A 
slower deliberative process can revise the initial models 
to search for alternative models and counterexamples to 
validate and correct any conclusions inferred by the 
intuitive process. 

• More models, more difficulty. A final assumption of the 
theory is that each model that a reasoner builds demands 
cognitive resources to maintain. Hence, reasoners tend to 
rely on their preferred models most of the time. If a 
reasoning problem can be solved successfully from the 
preferred model, it should be easy: reasoners should be 
faster and their responses should be more accurate. If, 
however, a problem demands that reasoners engage in 
deliberation, they should be slower and less accurate. 

We illustrate how the three principles apply to temporal 
reasoning by contrasting how the model theory treats 
punctate and durative events. Consider the premises in (3): 
 

3.  The meeting happened before the sale. 
The sale happened after the conference. 
The meeting happened before the conference. 
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The durations of the events in (3) are irrelevant, and so the 
premises can be represented as punctate events. The mental 
model representing the premises in (3) can be depicted in the 
following diagram: 
 
  meeting conference sale  
 
The diagram shows an arrangement of events in which time 
moves from left to right. Only one such arrangement is 
possible for (3). The model is parsimonious; it can be used to 
infer many different relations that are not made explicit in the 
premises: 
 

4a.  The conference happened after the meeting. 
  b. The sale happened after the meeting. 
  c. The conference happened before the sale. 
 

In contrast, the premises in (5) concern a durative relation: 
 

5.  The meeting happened during the sale. 
The meeting happened before the conference. 

 
The description is consistent with the following model: 

      saleSTART         saleEND  
             meeting           conference  
 
The model represents the durative aspect of the sale as two 
separate tokens (following Khemlani et al., 2015a): one token 
marks the sale’s beginning and the other marks its end. And 
the premises in (5) are consistent with at least one other 
model: 

      saleSTART                       saleEND  
              meeting  conference  
 
Hence, the premises in (3) are consistent with just one model, 
while the premises in (5) are consistent with multiple models. 

In general, the model theory predicts that people should be 
less accurate when reasoning about descriptions consistent 
with multiple models than about those consistent with one 
model. No other theory of reasoning makes an analogous 
claim (Khemlani, 2018; Knauff, 1999, p. 286 et seq.). We 
next describe an experiment that tested and corroborated the 
prediction. 

Experiment 
To test whether participants make more errors when 

reasoning about problems that elicit multiple models, our 
experiment presented them with one- and multiple-model 
descriptions of events that consisted of premises that 
described temporal relations. Their task was to evaluate the 
consistency of the premises by assessing whether all of them 
can be true at the same time. Previous studies used similar 
problems, but they examined how participants deductively 
inferred relations between two specified events (Schaeken et 
al., 1996). In daily life, reasoners are seldom provided such 
constraints, and so our experiment used a task that does not 

provide participants with any restriction on which premises 
to consider. The approach also has the advantage of using the 
same question across all problems, and so it uses a uniform 
task to test participants’ durative deductions. 

To balance out participants’ responses, half the problems 
were consistent and half were inconsistent. The theory 
predicts that people should be more accurate in assessing the 
consistency of one-model problems than multiple-model 
problems. 

Method 
Participants. 50 participants completed the experiment for 
monetary compensation ($2 and a 10% chance of a $10 
bonus) through Amazon Mechanical Turk. All of the 
participants were native English speakers, and all but 6 had 
taken one or fewer courses in introductory logic. 5 
participants were excluded from the analysis, either because 
of excessive and inappropriate keypresses, or else because the 
participant produced irrelevant debriefing responses. The 
analyses reported below are based on the remaining 45 
participants (21 female, mean age = 35.0). 
  
Preregistration and data-availability. The predicted effects 
were pre-registered through the Open Science Framework 
platform (https://osf.io/q45mw). The same link makes the 
data from the study available. 
 
Task and design. Participants carried out 16 different 
problems. Each problem comprised 3 premises that describe 
how 3 different events relate to one another. They were asked 
to judge whether the 3 premises could all be true at the same 
time. Half the problems concerned descriptions that were 
designed to yield one-model after the first 2 premises and the 
other half yielded multiple models after the first 2 premises. 
And half the problems used a 3rd premise that was consistent 
with the previous premises, while the rest used a 3rd premise 
that was inconsistent with the previous premises. 

The first premise of each problem was of the form: X 
happened during Y. Hence, the following is an example of a 
problem designed to yield one model:  

 
6a. X happened during Y. YSTART     X     YEND  

b. Y happened before Z. YSTART     X     YEND    Z  
c. X happened before Z. YSTART     X     YEND    Z  

 
A compressed model of events is provided next to each 
premise to show how Khemlani et al.’s (2015a) system would 
update the represention after interpreting new information. 
The bolded text shows how the final model would look. The 
problem presents a consistent description of events, since all 
three premises can be true at the same time. 

In contrast, the set of premises in (7): 
 

7a. X happened during Y.         YSTART        X     YEND  
  b. Z happened before X.    Z  YSTART        X     YEND      (i) 
        YSTART  Z    X     YEND     (ii) 
  c. Y happened during Z.            NO MODEL POSSIBLE 
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corresponds to a multiple-model problem, because the 2nd 
premise is consistent with at least two different situations: 
one in which Z happened before Y started (i), and another in 
which Z happened before X and they both happened during 
Y (ii). But neither of those possibilities are consistent with 
the third premise, therefore (7) is an inconsistent multiple-
model problem.  

The sixteen different problems used in the study are 
provided in the Appendix. The experiment implemented a 2 
(problem type: one- vs. multiple-model) x 2 (consistent vs. 
inconsistent) fully repeated-measures design. 
 
Materials. The temporal terms in each problem were replaced 
by descriptions of everyday events, e.g., X was replaced with 
“the meeting” and Y was replaced with “the snowstorm”. The 
materials were drawn from 16 sets of 3 events. Each set was 
designed to describe events that endure at comparable 
timescales, so that any event in the set could take place during 
any other event, e.g., 
 

The meeting happened during the snowstorm. 
The snowstorm happened during the ceremony. 
The meeting happened during the ceremony. 
The snowstorm happened during the meeting. 

 
and so on. Events that elicit strong punctative interpretations, 
such as “the sneeze,” were not used in the study, as they 
would yield peculiar and unbelievable descriptions, e.g., 
“The meeting happened during the sneeze.” Likewise, events 
were chosen so that they did not bear causal relations to one 
another. 

Each of the 16 materials was rotated over the designs for 
each participant. Therefore, across the experiment as a whole, 
each of the 16 material sets was applied to each of the 16 
problems approximately the same number of times. For any 
given participant, once the materials were assigned to the 
problems, the order in which the problems appeared was 
randomized. The counterbalancing scheme eliminated the 
possibilities that order effects and carry-over effects could 
account for participants’ responses.  
 
Procedure. Participants interacted with the experiment by 
registering responses through keyboard presses. For each 
problem, the participants were asked to consider an initial 
premise, and then pressed the spacebar to reveal each of the 
remaining premises on the screen. Previously revealed 
premises remained on the screen whenever the experiment 
displayed the next premise. The sequential display sought to 
encourage participants to read the sentences in the order 
displayed. Once a participant revealed all three premises, a 
prompt would appear that said: “Can all three of these 
sentences be true at the same time?” The ‘f’ and ‘j’ keys were 
used to indicate “yes” and “no” responses, respectively. 
Before taking part in the experiment proper, they completed 
an example problem and were shown a schematic of how 
their fingers should be placed on the keyboard. After 
completing all 16 problems, the participants were asked four 

open response debriefing questions, which probed their 
intuitive definitions of “before” and “during” as well as their 
reasoning strategies. 

Results and discussion 
Figure 1 plots the proportion of participants’ correct 
assessments of consistency as a function of whether the 
premises yielded one model or multiple models, and as a 
function of whether the problem they carried out was 
consistent or inconsistent. Participants were more accurate 
for one-model problems than multiple-model problems (78% 
vs. 69%; Wilcoxon test, z = 3.02, p = .003, Cliff’s 𝛿  = .43). 
The result corroborated the model theory’s central prediction 
that reasoners should find it easier to reason about one-model 
problems than multiple-model problems. The difference 
between participants’ accuracies did not reliably differ 
depending on whether the model was consistent or 
inconsistent (72% vs. 75%; Wilcoxon test, z = 1.12, p = .27, 
Cliff’s 𝛿  = .17). However, the interaction between the 
problem type (one- vs. multiple-model) and the consistency 
of the premises was reliable (Wilcoxon test, z = 4.03, p < 
.0001, Cliff’s 𝛿  = .42). The interaction is evident in Figure 1, 
which shows that consistent problems had a higher accuracy 
rate when the premises yielded one-model rather than 
multiple-models.  There was little difference by model 
quantity for inconsistent problems. 

To test whether the type of problem is robust to participant 
and item random effects, we fit a generalized logistic mixed 
model (GLMM) regression to the data. The fixed effects were 
the problem type (one- or multiple-model), the consistency of 
the problem, and their interaction. The random effects 
components included intercepts and random slopes for all 3 
fixed effects by participant. Intercepts also controlled for the 
items (paired syntax and material sets) and for the pattern of 
temporal relations in the three premises, i.e., 
“during/during/during”, “during/before/during”, etc. The  
 

 
Figure 1. The proportion of correct responses in the experiment as 
a function of the type of problem (one- or multiple-model) and as a 
function of whether the premises was consistent or inconsistent. 
Error bars indicate 95% confidence intervals. 

0.00

0.25

0.50

0.75

1.00

Consistent Inconsistent

P
ro

po
rti

on
 o

f c
or

re
ct

 re
sp

on
se

s

 One Model   
 Multiple Models

2001



temporal relation pattern was included because a handful of 
participants reported making judgments based on the pattern 
alone, and so we treated it as a relevant random effect factor 
beyond the individual items. The analysis revealed a reliable 
difference between one- and multiple-model problems when 
both participants and items were controlled for, b = 2.02, z = 
3.41, p = .0006, and a reliable interaction between 
consistency and the problem type (b = 2.35, z = 3.21, p = 
.0013). The GLMM therefore confirmed the nonparametric 
analyses. However, it further revealed a reliable effect of 
consistency: participants were more accurate on inconsistent 
problems than consistent problems (b = 1.82, z = 4.34, p < 
.0001); the model theory did not predict whether there would 
be an effect of consistency. The results of the regression 
analysis accordingly support the predictions of the model 
theory, though the analysis suggests that future studies should 
examine a broader set of problems to generalize beyond the 
four in each condition of the present experiment. 

General discussion 
How do people mentally represent and reason about 

durative temporal relations, i.e., relations such as “while” and 
“during”? Such relations describe events that persist across 
multiple points in time, and many logical frameworks exist 
that describe ideal temporal reasoning patterns (Fischer et al., 
2005; Goranko et al., 2004). But those frameworks do not 
explain how people represent durations, and so they cannot 
characterize the mental processes or the strategies people use 
when reasoning about time. A recent treatment of temporal 
reasoning explains how people mentally represent durations 
when they reason. It is based on the idea that people construct 
mental models, i.e., iconic mental simulations, to draw 
conclusions from premises or observations (Johnson-Laird, 
2006). Models implement a mental timeline, which people 
use to reason about events (Schaeken et al., 1996). To 
mentally simulate durative relations, reasoners do not 
represent all of the time points across which an event might 
endure. Instead, they construct discrete tokens that stand in 
place of the beginnings and endings of durative events 
(Khemlani et al., 2015a).  

One way to diagnose the model theory is to investigate how 
people assess the consistency of durative premises. In 
principle, the theory should make predictions about people’s 
assessments of consistency. It posits that if they can construct 
a coherent model of the premises, then those premises are 
consistent – they can all be true at the same time. If they fail 
to build a model of the premises, however, then they should 
consider the premises to be inconsistent (Johnson-Laird et al., 
2004). The theory has explained how people reason about the 
consistency of spatial relations (Jahn et al., 2004), and, given 
the strong relationship between temporal and spatial 
metaphors (Casasanto & Boroditsky, 2008; Gentner, 2001), 
it should also explain how people reason about the 
consistency of durative relations.  

We report an experiment that suggests it does. The 
experiment presented participants with a description of 
events as in (8): 

8a.  The burglar alarm happened during the fire. 
b.  The siren happened before the burglar alarm. 
c.  The fire happened during the siren. 

 
The description is inconsistent, and participants capably 
judged such descriptions to be inconsistent. In contrast, they 
had difficulty with descriptions of the following form: 
 

9a.  The burglar alarm happened during the fire. 
b. The siren happened before the burglar alarm. 
c.  The siren happened during the fire. 

 
Many reasoners incorrectly evaluated the three assertions as 
inconsistent. What explains the disparity? The model theory 
suggests that people rapidly constructed a simulation of the 
first two statements to yield a model akin to the following: 

           fireSTART              fireEND  
   siren             burglar alarm           
  
As the theory posits, models cost cognitive resources to 
maintain, and reasoners are reticent to alter the initial models 
of the premises they construct. The premise (9c) does not 
hold in the initial model above, and so reasoners who base 
their judgments of consistency on it should consider (9) 
inconsistent. Only reasoners who construct an alternative 
model of the premises should get the correct answer, as in this 
model: 

   fireSTART                      fireEND  
           siren     burglar alarm  
 
In general, the model theory uniquely predicts that 
participants should find one-model problems easier to reason 
about than multiple-model problems, and the experiment 
corroborated the prediction. 

One concern of the experiment is that the definition of 
“during” as an enclosure relation may have been overly 
restrictive. Consider example (7) above. If people take 
“during” to refer any two overlapping events instead of an 
enclosure relation, then the three premises could yield the 
following model: 

 

ZSTART       ZEND  

     YSTART      X      YEND  
 
Yet, a more permissive notion of “during” does not impact 
the central outcome of the experiment: if a problem is 
consistent under the restrictive construal of “during”, then it 
is consistent under the permissive construal as well. 
Nevertheless, reasoners were least accurate on consistent 
multiple-model problems – a result that corroborates the 
theory on any construal of “during.” 

There are at least three limitations of the experiment we 
report. First, a small set of participants self-reported that they 
adopted reasoning strategies based on rapidly assessing the 
relations in the premises. It is not clear to what extent 
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participants’ strategies attenuated or enhanced the difference 
in performance on one-model and multiple-model problems, 
but reasoners can spontaneously discover strategies when 
reasoning about punctate events (Schaeken & Johnson-Laird, 
2000), and so future studies should investigate what kinds of 
strategies participants develop, and how those strategies 
promote or inhibit the construction of models. Second, the 
current design did not explore the nature of participants’ 
errors. It could be that participants attempted to consider 
alternative models of the premises and failed; or it could be 
that participants chose not to consider alternative models in 
the first place. Future studies should explore why multiple-
model problems yield systematic errors. Finally, only a 
limited number of problems could be designed for the study 
given that they described three relations among three events: 
hence, the study examined only the small number of 
configurations possible for three events. Future studies 
should explore an expanded set of problems. Indeed, the 
language used to describe durational events goes beyond the 
preposition “during”. The connective “while” has a similar 
meaning, and both words are in the top 200 most frequent 
words in American English (Davies, 2008). Other words, 
e.g., “when”, can sometimes be used to situate durative 
events, and the various ways people describe and discuss 
events, durative and punctate, can provide insight into how 
people represent and reason about time. 

Temporal reasoning is an essential process that underlies 
how humans conceptualize time (Hoerl & McCormack, 
2019; Kelly, Prabhakar, & Khemlani, 2019). Reasoners 
routinely make inferences about durations in order to carry 
out time-dependent tasks, such as picking a friend up at the 
airport. The model theory provides an explanation of the 
mental representations people build and processes people use 
when they think and reason about temporal sequences. 
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Appendix. The 16 problems used in the experiment. 
 

Number of models Consistency First premise Second premise Third premise 
One model Consistent X happened during Y Y happened before Z X happened before Z 
One model Consistent X happened during Y Z happened during X Z happened during Y 
One model Consistent X happened during Y Y happened during Z X happened during Z 
One model Consistent X happened during Y Z happened before Y Z happened before X 
Multiple models Consistent X happened during Y X happened during Z Z happened during Y 
Multiple models Consistent X happened during Y Z happened during Y Z happened during X 
Multiple models Consistent X happened during Y Z happened before X Z happened during Y 
Multiple models Consistent X happened during Y Z happened during Y X happened before Z 
One model Inconsistent X happened during Y Y happened before Z Z happened during X 
One model Inconsistent X happened during Y Z happened during X Z happened before Y 
One model Inconsistent X happened during Y Y happened during Z X happened before Z 
One model Inconsistent X happened during Y Z happened before Y X happened before Z 
Multiple models Inconsistent X happened during Y Z happened before X Y happened during Z 
Multiple models Inconsistent X happened during Y X happened during Z Z happened before Y 
Multiple models Inconsistent X happened during Y X happened during Z Z happened before X 
Multiple models Inconsistent X happened during Y X happened before Z Z happened before Y 
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Thinking through the implications of neural reuse for the additive factors method 
 

 

 

 

 

Abstract 

One method for uncovering the subprocesses of mental 
processes is the “Additive Factors Method” (AFM). The AFM 
uses reaction time data from factorial experiments to infer the 
presence of separate processing stages. This paper investigates 
the conceptual status of the AFM. It argues that one of the 
AFM’s underlying assumptions is problematic in light of 
recent developments in cognitive neuroscience. Discussion 
begins by laying out the basic logic of the AFM, followed by 
an analysis of the challenge presented by neural reuse. 
Following this, implications are analysed and avenues of 
response considered. Keywords: additive factors method; 
seriality assumption; anatomical modularity; neural reuse. 

 Keywords: additive factors method, neural reuse, stage 
models, seriality assumption 

Introduction 

A good place to start when trying to understand a complex 

process or system is to determine its constitutive parts or 

modules. For example, to figure out how people succeed in 

visual search during reading, the time between stimulus and 

response can be broken down into an encoding, feature 

extraction and identification stage (Resink, 2005; Tovey & 

Herdman, 2014). The decomposition of the time between the 

stimulus and response enables discovery of the underlying 

subprocesses. The stimulus–response time intervals reflect 

the series of processing stages underlying complex 

behaviours.   
One method for uncovering the subprocesses of mental 

processes is the “Additive Factors Method” (henceforth 

AFM) (Townsend & Nozawa 1995; 2001, 2011, 2013; 

Coltheart, 2011). The AFM uses reaction time data from 

factorial experiments to infer the presence of separate 

modules or processing stages. A mental process can be 

broken down into subprocesses when those subprocesses are 

‘separately modifiable’ – that is, when each of the proposed 

modules can be modified without effect to the other, and vice 

versa. For example, to show that two stages A and B are 

separately modifiable it must be shown that two factors, F 

and G, affect only either A or B, but not both. In other words, 
F can affect A and G can affect B, but not the reverse. The 

result of an AFM analysis is what are called ‘stage models’.   

This paper investigates the conceptual status of the AFM. 

It argues that one of the AFM’s main assumptions is 

problematic in light of recent developments in cognitive 

neuroscience. In particular, the argument is that theories of 

neural reuse present a challenge to the conceptual link 

between AFM’s ‘seriality assumption’ and the single 

processor cases it relies on. Discussion begins by laying out 

the basic logic of AFM, followed by an analysis of the 

challenge presented by neural reuse theories. Implications are 
then analysed and avenues of response considered.  

The Additive Factors Method 

Factorial experiments are studies in which the effects of 

two or more variables are investigated by manipulating the 

presence of each factor across various conditions. In its 

simplest version (the complete factorial experiment), two 

factors are studied by comparing the difference each factor 

has on some measure of performance, such as reaction time. 

For example, to evaluate the effect of familiarity on pattern 
recognition, orientation (the rotation of a pattern) can be 

compared to familiarity (whether subjects are better or worse 

at recognising the pattern) (Tovey & Herdman, 2014). If 

orientation has an effect on familiarity, then conditions in 

which stimuli are presented with different orientations, e.g. 

00 vs. 900, will result in delays in the time required to 

recognize a pattern.   

Factorial experiments form the raw data of the AFM. 

Factorial data indicates whether two or more factors have 

either an additive or interaction effect on mean reaction time. 

Leaving interaction effects to one side for the moment, an 
additive effect involves two or more factors selectively 

influencing individual stages of a process. So, for example, if 

stage A normally takes 10ms and stage B normally takes 

15ms and F influences the length of A by 5ms and G 

influences the length of B by 7ms, then the total duration of 

time to complete the process that includes stages A and B will 

be the result of the presence of F and G. The total duration of 

a process is simply the added the sum of each stage as 

influenced by each factor.  

Factorial experiments supply modifiability information by 

revealing the selective influence of some factor(s) (Miller et 

al., 1995). When two or more factors affect the total duration 
of a process (measured using reaction time), the process can 

be separated into different modules or processing stages. 

When patterns of factor effects are observed, a set of 

hypothesized stages and factor relations that underlie the 

pattern are proposed. The effects inferred from the factorial 

experiments are what support inferences about the processing 

stages, justifying the decomposition of a process or stimulus-

response interval into distinct subprocesses.  

The Seriality Assumption 

One key assumption of the AFM is what Sternberg (2001, 

2013) calls the ‘seriality’ assumption. The seriality 

assumption says that the AFM can only be applied to 

processes that are sequentially arranged. For a process to be 

sequentially arranged, one of two situations must hold, either: 
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(i) the process must be data-dependent or (ii) a single 

processor must be responsible for carrying out the process.  

In the first set of cases, seriality depends on information 

being passed along from a previous stage of the process. To 

use a simple example, heading home from grocery shopping 
(stage 2) requires first having collected and bagged the 

groceries at the store (stage 1). In the second set of cases, 

seriality depends on a process being the result of a single 

processor. So, for example, if one bakes with two hands 

multiple steps can be accomplished in parallel, e.g., cracking 

and whisking eggs; while if one bakes with only one hand, 

then the process is limited to being complete one task at a 

time, e.g., cracking each egg individually and then whisking 

them all together.  

How a single process relates to a given processor or set of 

processors can also vary considerably from case to case. For 

example, for even a three stage process, there are several 
types of relations that might hold: (i) a separate processor 

might carry out each process, (ii) the same processor might 

carry out every process, or (iii) there be might some 

combination of the two, where one processor carries out two 

processes and another processor carries out one process. 

Figure 1 provides an illustration.   

 

 
Figure 1. Possible relations between processors and processes for a 

three stage process.  

 

What is interesting is that the seriality assumption 
maintains that in at least a subset of cases specialised 

structures are responsible for carrying out mental processes. 

That it is possible to find one-to-one mappings between 

process modules or stages and processing devices. Sternberg 

(2001), for instance, notes: “Perhaps more surprising is the 

finding of operations that are partially or wholly sequential 
when there is no data-dependence…The basis for the 

sequential structure in such cases may be that the system that 

carries out the set of operations, possibly the same single 

processor, is inherently limited in capacity” (original italics, 

p.735). Not only can processes be sequentially arrange when 

they involve data dependence but they can also be 

sequentially arranged when the realising processor has a 

limited capacity.   

However, notice that this is a claim about neural 

organisation. The single processor view says that neural 

organisation will take a ‘modular’ form in certain cases. That 

in at least some cases mental processes are implemented or 
realised by dedicated pieces of neural hardware. The claim is 

that what makes it possible for a given process to be serially 

arranged is the physical constraints of the realising processor. 

The view is one of a neural organisation wherein a particular 

sequential process is carried out by a chainlike structure of 

connected processing units. To support this claim, for 

example, Sternberg (2001) appeals to cases of highly 

specialised anatomical structures, such as the visual cortex of 

Macaque monkeys. Call this ‘anatomical modularity’.   

Of course, anatomical modularity is usually considered a 

‘functional’ theory, whereas processing stages are periods of 
time. Sternberg (2001), for instance, notes: “A stage theory 

says nothing about the pieces of physical anatomical 

machinery that carry out the operations in the two 

stages…information ‘transmitted from one stage to the next’ 

does not necessarily go from one place to another; the phrase 

is unfortunate because it suggests otherwise (p.732). 

Processor devices that carry out process stages might have 

functional properties, but the processing stages themselves, 

at least as informed by the AFM, are neutral with respect to 

such questions (Kersten, 2016). Nonetheless, there are 

reasons to see the two views as sides of the same coin. This 

is because while the processing stages themselves may not 
have functional properties, they are realised by processors 

that do, i.e. neurological structures. The point here is simply 

that the seriality assumption makes specific a claim about the 

relation between such subprocesses and processors. It does 

not make a claim about what features those subprocesses 

have.   

It will be worth dwelling on this point as it crucial for the 

argument to follow. For one might wonder whether 

‘anatomical modularity’ is not better understood as a claim 

about ‘functional’ organisation or architecture. If so, then the 

AFM would be involved in a form of functional 
decomposition, as it would be set to uncover functional 

architecture rather than neural organisation.  

Crucially, this is not the case. Stage models are set to 

uncover the subprocesses of mental processes, such as those 

involved in visual search, understood as epochs or periods of 
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time. Despite some shared inferential machinery, such as 

factorial experiments, the target and output of the AFM is 

importantly different from those methods aimed at providing 

functional decomposition (see Carruthers, 2006).  

A brief case study will help flesh out the point further. 
Consider Tovey and Herdman’s (2014) investigation of 

visual search during reading. Using the effects of familiarity 

on change perception via a 2 × 5 × 2 factorial design, Tovey 

and Herdman examined the effects of orientation (upright vs. 

inverted, set size (4, 7, 10, 13, 16) and change size (Small vs. 

Large) across four different experiments. In line with Rensink 

(2005), they suggested that change perception was divided 

into three process modules: a pre-processing stage, a feature 

extraction stage, and an identification stage. They proposed 

that an interaction between change size and orientation and 

change size and stimulus quality indicated that change size 

exerted an effect not only on the feature extraction stage but 
also on the identification stage of change perception. Figure 

2 provides an illustration of the model.  

 

 
 

Figure 1. Tovey and Herdman’s stage model. Visual search is 

divided into three stages: a pre-processing stage, a feature extraction 
stage, and an identification stage. 

 

To explain the effects of change size, Tovey and Herdman 

proposed a ‘gating’ mechanism. The gating mechanism 

redirects information to different stages of the process via 

detecting changes in size, either by passing the information 

on to the feature-extraction stage for further processing 
(assuming the changes are large) or by retaining and verifying 

the information at the identification stage (assuming the 

changes are small).  The problem is that introduction of a 

gating mechanism complicates interpretation of Tovey and 

Herdman’s model as a stage model. This is because it 

introduces functional properties into the model.   

Notice that Tovey and Herdman place change size outside 

of the processing stages, after feature extraction but before 

identification. This changes the structure of the diagram from 

a flowchart to a circuit diagram. The arrows no longer 

represent a succession in time of a series of processes but 

instead denote the flow of information. The gating 
mechanism is conceived of as the change size, representing 

the redirection of information from one stage to another, not 

only how change size influences time duration.  

However, if processing stages are events in time, they need 

to be strung together end to end, as in a flowchart. If the 

model represented the effect of change size, it would have to 

effect the period of time as represented by the box, not the 

passage or succession of time as represented by the arrows. 

When represented as a circuit diagram – that is, as describing 

how processing devices are connected – stage models 

misleading suggest that the process stages are also processing 
devices; an interpretation, which, as mentioned, fails to 

acknowledge the variety of possible relationships that might 

obtain between process stages and processing devices. 

Sternberg (2001) frames the point nicely: “It is remarkably 

easy to slip into a mode of thinking in which stages are 

processors rather than processes, actors rather than actions; 

confusion about what a stage might be finds its way into 

much writing on the subject, even by experts” (p.828). So 

while Tovey and Herdman’s results may be correct, their 

inclusion of a functional property complicates interpretation 

of the model (Kersten, 2016).  

The ambiguity introduced by the gating mechanism is 
suggestive of the nature of stage models. For if the AFM is to 

uncover the subprocesses (understood as epochs of time) of 

mental processes, then it cannot do so by revealing the 

functional properties of cognitive systems. If it did, this 

would blur the distinction between the AFM and other 

experimental methods. 

To illustrate, consider the method of double-dissociation. 

If two factors F and G are damage to different parts of the 

brain, and one can show using some measure, such as an 

EEG, that factor F influences performance on some task A 

but not task B, while G influences B but not A, then one can 
infer that the F and G perform different functions. The 

separate modifiability of tasks A and B by factors F and G on 

tasks A and B indicate that F and G are have different 

functions.  
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Contrast this with the AFM. Whereas double-dissociation 

uses a direct measure for separate modifiability (the 

differential activity of different brain regions), the AFM only 

indirectly tests for separate modifiability via mean-reaction 

times. It is interested in how a given process can be separated 
or ‘cut’ via finding the selective influence of different factors. 

What this means is that the focus in stage models is on 

temporal rather than functional properties. Thus, one thing 

that cannot be meant by the seriality assumption is that what 

constrains processing stages is functional modularity.   

The general point is that anatomical modularity forms more 

than just a peripheral assumption within the AFM. Indeed, it 

is what helps, in part, justify inferring the presence of serial 

processes. If two processes are not data-dependent and yet 

perform the same function, then it is safe to assume that they 

are realised by the same processor. That anatomical 

modularity should underlie part of the seriality assumption is 
not an insignificant result. The problem is that anatomical 

modularity is increasingly being called into question.  

Neural Reuse and the AFM 

Many of the cognitive functions once thought to have 

dedicated, isolated neural localisations (e.g., Broca’s area) 

are increasingly shown to engage a diverse range of neural 

units. In a recent meta-review, for example, Anderson and 

Pessoa (2011) found that 78 different anatomical regions 
were active in 95 tasks across 9 cognitive domains. Accounts 

of ‘neural reuse’ aim to describe how different brain regions 

often exploit, recycle, or redeploy neural circuitry for various 

cognitive ends (Hurley 2005; Dehaene & Cohen, 2007; 

Dehaene, 2009; Anderson 2007, 2011, 2014).  

A large swath of evidence now favours neural reuse as a 

thesis of neural organisation. To spare a long digression, 

consider a small sampling of some characteristic studies. 

Glenberg and Kaschak (2002), for instance, show that when 

asked to make sense judgments about different sentences 

participants take longer on sentences that run counter to the 

required action than those that do not. Richardson et al. 
(2003) show that certain sets of verbs, such as ‘hope’ and 

‘respect’, activate meaning-specific spatial schemas. 

Pulvermuller (2005) demonstrates that listening to action 

words, such as ‘lick’ or ‘pick’, activate regions of the primary 

motor cortex, areas often associated with the actions 

themselves. Casasanto and Boroditsky (2008) show that 

people are often unable to ignore irrelevant spatial 

information when making judgments about duration, but not 

the converse. That mental representations of time are 

intimately tied up with perceptions of space. Finally, 

Casasanto and Dijkstra (2010) demonstrate that there is a 
bidirectional influence between motor control and 

autobiographical memory. 

Neural reuse theories raise a number of interesting 

questions about cognition, such as whether a new ‘cognitive 

ontology’ needs to be developed (Anderson, 2014). However, 

for present purposes, the point to note is that neural reuse also 

raises questions for the second set of cases appealed to by the 

seriality assumption: namely, that some processes are 

sequentially arranged in virtue of being realised by single 

processors. The issue is that if neural reuse is true, then it is 

unlikely that there will be any single process that has a unique 

anatomical structure or processor supporting it. Finding a 
one-to-one mappings between processor and process will 

prove particularly troublesome if neural regions support 

multiple operations.  

 
Figure 3.Two possibilities of neural organisation for two cognitive 

operations.   

 

There seem to be two options. 1.1a represents a modular 
design, where each cognitive operation has specific dedicated 

neural circuitry. This is what is required by the second half of 

the seriality assumption. 1.1b, on the other hand, represents a 

neural reuse design, where each cognitive process is shared 

among a number of neural circuits. The AFM requires that 

1.1a hold for at least a subset of cases. However, if, as noted, 

neural reuse is true, then whatever else might be right about 

the AFM, the single processor cases might not exist. Neural 

reuse seems to challenge the link between the seriality 

assumption and one of its inferential bases.  

It is important to be clear about this point. For it might be 

still maintained that the AFM uncovers something about 
functional organisation. That it would not matter if the same 

neural hardware were involved in multiple operations 

because once those operations were fixed the AFM would be 

set to uncover functional organisation.  

But again, once it is appreciated that the target and output 

of the AFM is not functional models but models of temporal 

stages it follows that the underlying assumption about 

processors has to be about neural organisation. For although 

it is right to point out that neural architecture can stand in 

complex relations to functional architecture, such as 

distributed neural regions supporting a functionally modular 
architecture, such considerations cannot do much work here. 
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This is because they threaten to undermine the AFM’s 

conceptual standing. If AFM did reveal insights into 

functional architecture, then its distinctiveness would be 

undercut, for it would no longer reveal insights into the 

organisation of cognitive subprocesses understood as 
temporal sequences.  

Another tack would be try to accept the incompatibility of 

anatomical modularity and neural reuse but nonetheless 

reject neural reuse on the basis of the wider importance of the 

AFM. One might argue, in other words, something along the 

following lines: (1) AFM is essential to psychology; (2) AFM 

is incompatible with neural reuse; therefore, (3) neural reuse 

is false.  

But there are at least two problems with this type of 

argument. One is that it assumes that cognitive psychology 

can operate independently of cognitive neuroscience. That 

the conceptual autonomy of psychology ensures the survival 
of the AFM. However, the increasing integration of 

neurological data into cognitive theorising and modelling 

makes it unlikely that cognitive psychology will continue to 

function independently of the findings of cognitive 

neuroscience in this way (Forstmann et al. 2011; de 

Hollander et al., 2016). The other is that the argument 

problematically assumes that the choice facing the proponent 

of AFM is either/or: that either neural reuse has to be rejected 

or the AFM does. But no such dichotomy is required. As is 

argued later, it is possible to endorse a version of the AFM 

that drops anatomical modularity but which still nonetheless 
operates in other sets of cases. 

Three Options for the AFM 

It seems fair to say, then, that neural reuse casts some doubt 

on the inferential bases of one of the key assumption of the 

AFM. Given this, three options seem available to the 

proponent of the AFM. One is to drop the seriality 

assumption altogether. One might maintain that the AFM can 

continue on without the seriality assumption. This option 

seems undesirable insofar as the seriality assumption is part 
and parcel of the AFM logic. Separate modifiability only 

makes sense when the processes being investigated are 

sequentially arranged. Dropping seriality would be 

tantamount to dropping the method altogether; and scuttling 

the method altogether seems undesirable given the good deal 

of fruitful research that has been carried out using the AFM 

(e.g., Resink, 2005; Tovey & Herdman, 2014).  

A second option would be to reform the seriality 

assumption in light of neural reuse. One might claim, for 

instance, that serial processes can be the product of 

distributed neural processors. The problem with this option is 
that it undermines the inferential link between processor and 

processing stages. Anatomical modularity forms a key 

assumption within the AFM. Without it, the AFM would lose 

its ability to infer a serial ordering. Return, for example, to 

the baking case, it is only because there is one single 

processor that the stages are arranged serially. The addition 

of a second hand opens up the task to being achieved in 

multiple stages, i.e. in parallel. If multiple processors are 

admitted, then inferences to processing stages are 

underdetermined.   

But, one might object, it could be that a bunch of miniature 

‘hands’ accomplish the baking task. In other words, that a 
distributed network of miniature processors performs the task 

serially, whose actual decomposition is discoverable (at least 

in part) by the AFM. The problem with this rejoinder is that 

again misses the key point of stage models, and to lesser 

extent the baking example. For while it is true that adding 

more processors speeds up the process, it also makes it 

impossible to interpret the process as serially ordered. For 

example, switching to using two hands during the baking (i.e. 

allowing multiple processors) opens the process up to being 

completed in parallel. There is nothing that forces the process 

into being completed in successive stages. Thus, in assuming 

that a process is realised by distributed set of processors one 
undermines the ability to interpret that process as serial in the 

first place. The grounds for inferring seriality rests on the 

process being carried out by a single processor.   

Finally, one might jettison the seriality assumption’s 

commitment to the single processor view, i.e. anatomical 

modularity. This might preserve what is right about the AFM 

(i.e. inferring seriality on the basis of data-dependence), 

while dropping the theoretically suspect part (i.e. reliance on 

single processor cases). The idea would be to restrict the set 

of cases under which seriality could be legitimately inferred. 

That is, whereas previously cases of single processors and 
data-dependence cases could be used, now only data-

dependent cases would be allowed to infer seriality.   

For example, a study such as Tovey and Herdman’s would 

not be affected according to the third proposal, because visual 

search during reading is a data-dependent process. The 

serially ordering is dependent on each of the previous stages 

being completed before the next one begins; one cannot, for 

instance, detect the presence of certain letters before those 

letters have been registered by the visual system. Tovey and 

Herdman’s study does not rely on the single process cases to 

work, so it can still be used to infer separate modifiability. 

However, cases where seriality is inferred because of the 
supposed presence of a single processor, such as Scarbourgh 

and Landauer’s (1981) study on word repetition effects, 

would have to be dropped according to this proposal. So, 

although the removal of anatomical modularity might involve 

the loss of some of the AFM’s methodological punch, as not 

an insubstantial number of cases involve the assumption 

(Sternberg, 2001, p.831-2), the method itself would still be 

preserved in an attenuated form.   

Given the spread options, the third proposal seems the most 

preferable going forward. The first and third options suggest 

either too high a methodological price or an endorsement of 
a conceptual tension. Only option three seems to allow the 

AFM to continue on, though in slightly modified form. On 

the third proposal, serial stage models can be inferred, but 

only on the basis of data-dependent cases. The single 

processor cases underlying the seriality assumption need to 
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be bracketed, at least until such a time that neural reuse can 

be thoroughly vetted. This might be a welcomed result for 

some (Stanford & Gurney, 2011; Sternberg, 2013), but 

maybe not so much for others (Coltheart, 2011).  

So, to summarize, though not a devastating blow, neural 
reuse does represent a serious challenge to some aspects of 

the AFM. Insofar as neural reuse presents a challenge to 

anatomical modularity, and anatomical modularity falls out 

of the seriality assumption, some of the AFM’s conceptual 

foundations need to be reworked. The methodological 

implications still need to be worked out, but the conceptual 

moral seems relatively clear: the seriality assumption can no 

longer rely on single processor cases. Hopefully, then, in 

having identified the problem and charted some potential 

responses, the AFM can be put on surer theoretical footing 

going forward.   
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Abstract 

Previous research has found that verbs are more likely to adapt 
their meaning to the semantic context provided by a noun than 
the reverse (verb mutability). One possible explanation for this 
effect is that verbs are more polysemous than nouns, allowing 
for more sense-selection. We investigated this possibility by 
testing polysemy as a predictor of semantic adjustment. Our 
results replicated the verb mutability effect. However, we 
found no evidence that polysemy predicts meaning adjustment 
in verbs. Instead, polysemy was found to predict meaning 
adjustment in nouns, while semantic strain was found to predict 
meaning adjustment in verbs (but not nouns). This suggests 
that processes of meaning adjustment may be different for 
nouns vs verbs. 

Keywords: polysemy, mutability, computational linguistics, 
word2vec, semantics 

Introduction 
A remarkable aspect of language is that it is both stable 
enough to reliably convey meaning and flexible enough to 
accommodate unusual or semantically-strained utterances. 
For example, the sentence “The hostess galloped to the door” 
is a bit odd, but we can readily understand it as meaning “The 
hostess moved rapidly and somewhat gracelessly.” While 
overt metaphorical language has been studied extensively, 
there is much less work on how people resolve semantically-
strained utterances of this type, which may be far more 
prevalent than traditional “X-is-a-Y” metaphors.  

Gentner and France (1988) found that, in paraphrases of 
simple intransitive sentences of the form The noun verbed, 
participants tended to adjust verb meaning to a greater extent 
than noun meaning – a phenomenon termed the verb 
mutability effect. Mutability can be defined as the degree to 
which a word’s semantic interpretation differs across 
contexts. The verb mutability effect was found to be strongest 
when the stimulus sentence was semantically strained – that 
is, when the noun was incompatible with the paired verb’s 
expected argument, resulting in a nonliteral sentence. For 
example, one participant paraphrased The lizard worshipped 
as The reptile stared unblinkingly at the sun, largely 

                                                           
1 Our descriptions of sense-selection and online adjustment are 

similar (but not identical) to sense-selection and sense-creation as 
discussed by Gerrig (1989). 

preserving the meaning of the noun lizard while shifting the 
meaning of the verb worshipped dramatically.  

Little research has examined the processes that drive 
mutability – that is, how semantic structures are altered 
during these types of adjustments. In an initial investigation, 
Gentner and France (1988, Experiment 3b) proposed that 
verbs are adjusted in a graduated manner, by altering the 
domain-specific aspects of meaning just as far as is necessary 
to render a meaningful interpretation – a process they called 
minimal subtraction. We refer to accounts like these as online 
adjustment accounts, as they involve the adjustment of 
meaning in situ, constrained by the context provided by the 
noun. 

Another possibility, however, is that mutability is simply a 
matter of selecting an appropriate alternate meaning from a 
word’s extant senses. There is evidence suggesting that verbs 
are more polysemous than nouns across all frequency levels 
(Gentner, 1981).  Thus, higher verb mutability may simply be 
due to there being more available senses to choose from. We 
refer to this account as the sense-selection view.1  

Indeed, Gentner and France did not control for polysemy 
in their original study. We evaluated the polysemy of their 
stimuli by counting the number of synsets (i.e., senses or 
meanings) for each word in WordNet 2.1 (Miller, 1995).2 Our 
analysis found that the verbs from their study were 
significantly more polysemous than the nouns, MV = 4.13, 
SDV = 2.17, MN = 2.25, SDN = 1.39, t(14) = 2.06, p = .03 – 
leaving open the possibility that the greater verb mutability 
they observed was due to the relatively higher polysemy of 
the stimulus verbs.  

Thus, a more precise characterization of the processes 
underlying these types of semantic adjustments is needed – 
specifically, the extent to which sense-selection and/or online 
adjustment drive mutability needs to be better understood.  

To investigate this question, we tested polysemy as a 
predictor of mutability. If polysemy is found to predict 
mutability, it would provide evidence for the sense-selection 
account of meaning adjustment. If no such relationship is 
found, this would instead favor the online adjustment view. 

2 We chose WordNet 2.1 over newer versions due to concerns of 
a proliferation of synsets in later iterations. 

2011



 
 

In addition, we seek to understand whether the processes 
employed vary by word class. 

This study follows the paradigm established by Gentner 
and France. Participants were asked to paraphrase intransitive 
sentences of varying levels of semantic strain. These 
sentences were generated by combining 6 nouns and 6 verbs 
for a total of 36 stimulus sentences (see Figure 1).  

For verbs, two expected a human argument (complain, 
suffer), two expected a dynamic artifact object artifact (i.e., a 
man-made object that functions in some way) as an argument 
(pause, fail), and two expected a static inanimate object as an 
argument (dry, burn). For nouns, two were human (professor, 
queen), two were a dynamic artifact object (motor, bell), and 
two were static inanimate objects (tree, box). Combinations 
in which the noun was incompatible with the verb’s expected 
argument resulted in semantically-strained sentences (e.g., 
The box suffered), while those that were compatible resulted 
in unstrained sentences (e.g., The professor complained). 

Half the nouns and verbs used were highly polysemous (at 
least 10 senses) and half were low in polysemy (1-2 senses; 
see Figure 1). This resulted in both “balanced” combinations, 
where the noun/verb polysemy matched—both high (N+/V+) 
or both low (N-/V-)—and “unbalanced” combinations, where 
the noun/verb polysemy differed greatly (N+/V- or N-/V+). 
Thus, across the 36 stimulus sentences, every possible 
combination of high- and low- polysemy nouns and verbs 
was realized.  

Assessing Meaning Adjustment 
A thorny issue in this research is how to quantify meaning 
adjustment. Gentner and France, using human raters, 
approached this from three different angles. Across these 
techniques, they obtained converging evidence for the verb 
mutability effect; however, each method had drawbacks. 

In their divide and rate method, raters were asked to divide 
each paraphrase into the part that came from the noun (in the 
stimulus sentence) and the part that came from the verb. They 
then rated the similarity of each part to the original word. This 
was problematic for several reasons. It was time-consuming 
and labor-intensive, and judges often had difficulty deciding 
how to properly divide the sentence, resulting in a high 
amount of data loss. Worse, in some cases, some words in the 
paraphrase were clearly affected by both the original verb and 
noun, making division impossible. For example, consider the 
following paraphrase of The motor complained: The badly-
functioning engine let out a strange noise from its exhaust. 
Here, badly-functioning modifies the noun in a context-
specific manner (i.e., a motor can function badly but a rock 
cannot), but it also seems to owe its presence in the 
paraphrase to the original verb complained. The same case 
can be made for the phrase from its exhaust.  

                                                           
3 In the double paraphrase task, a new group of participants 

paraphrased the original paraphrases, and any reoccurrences of the 
original nouns and verbs were scored. There were higher rates of 
reoccurrence for nouns, indicating greater meaning preservation in 
the paraphrase. In the retrace task, a new group of participants were 

Therefore, a way to assess semantic change without 
dividing paraphrases into noun- and verb-originating 
components is necessary. Gentner and France employed two 
such methods: a double paraphrase and retrace task.3 While 
both these methods mirrored the results of the divide-and-rate 
approach in finding verb mutability, they were similarly labor 
intensive.  

In an attempt to address these issues, we used word2vec 
(Mikolov et al., 2013) to assess meaning adjustment. This 
allowed us to quantify semantic change by comparing each 
paraphrase as a whole to the initial noun and initial verb, 
without having to divide the paraphrases into components. 
This provided a hands-off approach that the reduced the time 
and labor costs of using human judges, as well as data-loss 
due to low inter-rater agreement. In addition, we hoped to 
obtain a finer-grained quantification of adjustment than was 
possible with Gentner and France’s methods. 

Against these advantages, however, we must ask whether 
vector-space word embedding models (WEMs) like 
word2vec can adequately capture human similarity 
judgments. We next describe these models and discuss issues 
in using them to assess similarity. 

Vector Space Word Embedding Models 
WEMs take as their foundation the notion that words are 
similar or related to the extent that they appear in similar 
contexts. WEMs are trained on a large corpus and derive a 
vector representation for each word (typically 100 to 300 
dimensions) based on co-occurrence patterns in the corpus. 
Thus, each word’s meaning is represented as a point in an n-
dimensional vector space. The relatedness between any two 
words is calculated by taking the cosine of the angle between 
their two associated vectors, resulting in a score between -1 
and 1. Scores closer to 1 indicate high levels of relatedness, 
and scores closer to 0 indicate low levels of relatedness.  

While promising in some areas, the evidence regarding 
WEMs’ ability to approximate human similarity judgments is 
mixed. Latent Semantic Analysis (LSA; Landauer & Dumais, 
1997) has been shown in a number of studies to match human 
judgments of similarity fairly well in certain contexts 
(Günther et al., 2016; Landauer & Dumais, 1997; Landauer 
et al., 1998). In addition, previous work has used it as a 
measure of semantic change over time (Sagi et al., 2011). 
Other studies, however, suggest that it fails to approximate 
human intuition, both in literal similarity judgments (cf., 
Simmons & Estes, 2006), and in relational similarity tasks 
(Chen et al., 2017) .  That the vectors used in WEMs lack 
explicit relational structure calls into question whether these 
problems are fully surmountable.   

Perhaps the deepest problem lies in the fact that WEMs do 
not provide a pure measure of similarity, as associations can 

given a set of paraphrases, as well as a list of the original eight nouns 
or verbs used, and asked to guess which noun or verb they thought 
had occurred in the stimulus sentence. They showed higher accuracy 
for nouns, indicating greater meaning preservation.  
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also influence their scores. For example, the words cow and 
milk cooccur frequently, resulting in a high cosine similarity 
score, despite the obvious fact that a cow is not at all similar 
to milk.  

Thus, we consider the present research to be in part an 
exploration of WEMs’ efficacy in this domain. Future work 
will involve comparing our word2vec results with human 
judgments. For now, we will provisionally assume that they 
can be used as an approximate assessment of similarity. We 
chose word2vec based on evidence that it outperforms other 
WEMs in approximating human similarity judgments in 
humans (Pereira, et al., 2016).4,5 

Method 

Participants   
112 undergraduates completed the study in person at the lab. 
One participant was excluded for not being a native speaker 
of English, one was excluded for providing nonsensical 
answers to all questions, and two were excluded for failing 
the catch-trial criteria of repeating a noun and/or verb on both 
catch trials, for a net of 108 participants. 

Materials 
6 nouns and 6 verbs were used to generate a total of 36 
intransitive sentences. Half of the nouns and half of the verbs 
used were highly polysemous, and half were low-polysemy. 
Polysemy was evaluated by counting synsets in WordNet 2.1, 
excluding any that referred to actual people, places, or events. 

The shaded cells in Figure 1 indicate the combinations in 
which the noun does not satisfy the verb’s expected 
argument, resulting in a semantically-strained sentence (e.g., 

                                                           
4 We used pretrained vectors available from Google, which were 

trained using the CBOW method on part of the Google News corpus 
(about 100 billion words), available at 
https://code.google.com/archive/p/word2vec/. 

The bell suffered). The unshaded cells indicate those 
combinations where the noun is compatible with the verb’s 
selectional restrictions, resulting in an unstrained sentence 
that is literally interpretable (e.g., The professor complained).  

Procedure 
Participants were university students who completed the 
study on a computer. They saw sentences one at a time and 
were told to paraphrase each sentence without repeating any 
of the original content words. They were asked to aim for a 
plausible interpretation of what the speaker meant, rather than 
a mechanical, word-by-word translation—e.g., to paraphrase 
The slimy senator as something like The corrupt politician 
rather than The gooey politician. 

So that each participant saw each noun and verb exactly 
once, the 36 total stimuli sentences were divided into 6 
different assignment factors of 6 sentences. Each assignment 
factor contained two strained and four unstrained sentences. 
Sentences were presented in randomized order. In addition, 
two catch trials were included. The catch trials were simple 
unstrained sentences designed to test for attention and 
following directions; the criteria for excluding a subject was 
repeating a content word in both of the catch trial paraphrases 
or any obviously nonsensical answers in either.  

Assessing Semantic Adjustment 
For each paraphrase, word2vec was used to obtain two 
similarity scores, representing the amount of semantic 
adjustment the initial noun or verb underwent, respectively. 
The following procedure was used. First, separate normalized 
vectors were derived for each initial noun and verb. Next, a 

5 We have also begun analyzing our results following the method 
outlined by Sagi (in press) for using LSA and other WEMs. 

Figure 1: Stimulus nouns and verbs. Shaded cells indicate combinations that result in strained sentences. Pluses and 
minuses indicate high or low polysemy, respectively. For example, - / + indicates a low-polysemy noun and high-
polysemy verb combination, while + / - indicates a high-polysemy noun and low-polysemy verb combination.  
 

   Human Dynamic Artifact Static Inanimate 

   complain suffer pause fail dry burn 

  # 
senses 

2 11 2 13 2 15 

Human 
professor 1 - / - - / + - / - - / + - / - - / + 

queen 10 + / - + / + + / - + / + + / - + / + 

Dynamic 
Artifact 

motor 2 - / - - / + - / - - / + - / - - / + 

bell 10 + / - + / + + / - + / + + / - + / + 

Static 
Inanimate 

tree 2 - / - - / + - / - - / + - / - - / + 

box 10 + / - + / + + / - + / + + / - + / + 
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vector for each paraphrase was generated by averaging its 
normalized component word vectors.6 Then the similarity of 
each paraphrase to the initial noun and to the initial verb was 
computed by taking the cosine of the angle between the 
vector representing the initial noun/verb and the entire 
paraphrase vector. 

Any words not found in the corpus were skipped (along 
with any stop words like the, a, etc.). If none of the words in 
the paraphrase were present in the word2vec dictionary, a 
null vector was generated. Any paraphrases generating null 
vectors were discarded (this only occurred twice).  

Coding 
Certain types of responses were excluded from analysis. 
First, blatantly noncompliant responses (e.g., paraphrasing 
The box dried as just fruit) were excluded. Second, responses 
that did not constitute a meaningful interpretation of the 
stimulus noun and verb were excluded as well. This included 
responses that described the context suggested by the 
stimulus sentence (e.g., paraphrasing The tree shivered as It 
is cold outside), as well as any mechanical, word-by-word 
paraphrases of strained sentences (e.g., paraphrasing The box 
complained as The object was frustrated). For unstrained 
sentences (which are literally interpretable), a word-by-word 
paraphrase is a meaningful paraphrase (e.g., paraphrasing 
The professor paused as The teacher stopped) and therefore 
were not discarded in these cases.   

Two human coders were used. Each coder was presented 
with the original sentence and its paraphrase and was asked 
to code each paraphrase as described above, resulting in the 
exclusion of 137 paraphrases. Cohen’s κ was run to 

                                                           
6 These sentence vectors can be viewed as representing the 

“average meaning” of all the words they contain (Landauer, et al., 
1998). 

determine interrater reliability. There was moderate 
agreement between the two judges, κ = 0.60, (95% CI, 0.52 
to 0.68), p < .0001.  

Analysis and Results 
The 108 participants generated a total of 648 paraphrases. 
137 paraphrases were discarded after coding, leaving a net of 
511 paraphrases. All analyses were conducted in R (R 
Development Core Team, 2008) using the lmer package 
(Bates, Mächler, et al., 2015). Fixed-effect hypothesis tests 
were conducted using a Satterthwaite approximation for 
degrees of freedom  (Luke, 2017). 

First, in order to test Gentner and France’s initial finding – 
that verbs are more mutable than nouns overall – a difference 
score for each paraphrase was calculated by subtracting verb 
score from noun score. Next, a linear mixed-effect model was 
fit, with the difference score as the dependent measure, the 
intercept (mean) as the fixed effect, and random intercepts for 
subject and item. The mean of the difference scores was 
found to differ significantly from 0, t = 2.99, p = .01, 
indicating that, on average, verbs (M = 0.23, SD = 0.11) 
changed their meaning significantly more overall than nouns 
did (M = 0.28, SD = 0.13; lower similarity scores correspond 
to greater amounts of semantic adjustment). 

Next, to test for effects of semantic strain and polysemy, 
two additional linear mixed models were fit: one for nouns 
and one for verbs. In both models, similarity score was the 
dependent measure, and polysemy (high vs. low), strain 
(strained vs. unstrained), and the interaction term were 
included as fixed effects. Both models were initially fit with 
random slopes and intercepts for subjects and random 

Figure 2. Noun and verb similarity scores. Note that lower scores indicate greater semantic adjustment. 
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intercepts for items. The random effects structure was then 
simplified as far as necessary as described in Bates, Kliegl, et 
al.  (2015). 

For verbs, the effect of semantic strain was significant, β = 
-0.18, SE = .08, F = 4.90, p = .03, with verb meaning being 
adjusted to a greater extent in the strained condition (M = 
0.20, SD = 0.09) than in the unstrained condition (M = 0.24, 
SD = 0.11). There was no significant effect of polysemy, F = 
0.98, p = .33, and the interaction was not significant, F = 0.62, 
p = .43). These results are shown in Figure 2a. 

For nouns, there was no significant effect of semantic 
strain, F = 0.11, p = .74. A significant main effect of 
polysemy was found, β = -0.19, SE = .06, F = 8.95, p = .01, 
with high-polysemy nouns (M = 0.25, SD = 0.15) being 
adjusted to a greater extent than low-polysemy nouns (M = 
0.30, SD = 0.11). The interaction was not significant, F = 
0.60, p = .44. These results are shown in Figure 2b. 

Discussion 
There were three objectives in the present research: (1) to 
replicate Gentner and France’s finding that verbs are more 
mutable than nouns under conditions of semantic strain, 
using new materials and a new method of assessment; (2) to 
better understand the processes that drive semantic 
adjustment; and, (3) to investigate possible noun-verb 
differences in these processes.  

The results regarding objective (1) were as predicted: on 
average, across conditions, participants adjusted verb 
meaning significantly more than noun meaning. In addition, 
verbs (but not nouns) were adjusted to a greater extent in 
strained contexts than in unstrained contexts (see Figure 2a). 
Both these results replicate Gentner and France’s findings 
and provide additional evidence for the verb mutability 
effect: during sentence interpretation, the verb’s default 
meaning is more likely to be adjusted to fit the context 
provided by the noun, rather than the reverse – especially 
under semantic strain.  

More surprising were the results regarding objectives (2) 
and (3). Polysemy significantly predicted meaning 
adjustment in nouns, but not verbs; and semantic strain 
predicted adjustment in verbs, but not nouns.  

This leads to the intriguing conclusion that the processes 
driving semantic adjustment vary by word class. That 
polysemy predicted noun adjustment favors the sense-
selection view. That it did not predict verb adjustment is 
evidence that their increased mutability is not a matter of 
having more senses to choose from; rather, online adjustment 
is taking place. Indeed, a qualitative examination of the 
paraphrases supports this explanation. For example, nouns 
were frequently paraphrased as close synonyms (e.g., tree as 
plant or oak; box as container), while verbs were frequently 
adjusted to express meanings that were outside the word’s 
existing set of senses (e.g., paraphrasing The box complained 
as The container couldn’t hold all of its contents).  

What explains the noun polysemy effect?   
That semantic strain predicted meaning adjustment in verbs 
but not nouns is consistent with our prediction that verbs are 
the locus of change in resolving strained utterances. What is 
more surprising is the effect of polysemy in driving meaning 
adjustment for nouns. Why did participants consistently 
adjust high-polysemy nouns to a greater extent than low-
polysemy ones—even in unstrained contexts, where no 
significant adjustment was necessary? We propose three 
possible explanations. 
 
1. Higher polysemy allows for more creativity.  The first 
possibility is that higher polysemy granted participants more 
freedom of interpretation, allowing them to choose a more 
distant meaning than was available with low-polysemy 
nouns. We believe this to be unlikely. Examining the 
paraphrases suggested that, regardless of polysemy (or 
strain), participants usually attempted to choose a meaning as 
close to the original noun as possible (unlike with verbs, 
whose meaning was often changed dramatically). For 
example, it’s not clear that, in substituting container for box 
(a high-polysemy noun), one has attempted to adjust meaning 
further than when one substitutes oak for tree (a low-
polysemy noun). The similarity scores for each pair, 
however, are 0.12 and 0.80 respectively – a relatively large 
difference.  
 
2. The results reflect a problem with word2vec.  A second 
possibility is that the observed effects of polysemy are simply 
an artifact of word2vec and don’t reflect actual human 
intuitions. In all WEMs, the meaning of a word derives from 
the contexts it appears in. A more polysemous word is likely 
to appear in a wider variety of contexts than a less 
polysemous word, rendering it less similar, on average, to any 
one of those meanings (cf., Beekhuizen et al., 2018). 
 
3. High-polysemy words are less similar to their 
synonyms than low-polysemy words are.  A third 
possibility is that the relationship between higher polysemy 
and lower similarity scores reflects a psychologically real 
pattern: namely, that the more polysemous a word is, the less 
similar it is, on average, to any one of its synonyms. In this 
account, polysemy significantly predicted adjustment in 
nouns because, for a high-polysemy word, any synonym one 
replaces it with will, on average, be less similar to the original 
word than when the same is done for a low-polysemy word, 
despite an equal intention to preserve meaning. That is, the 
subjective similarity between synonyms of a given word is 
lower for high-polysemy words than for low-polysemy 
words. If so, the difference in word2vec scores between box-
container and tree-oak reflects a real psychological 
difference.  

To decide between these latter two possibilities, we 
conducted a preliminary study with human raters. The results 
suggest that our WEM results do match human intuitions. We 
asked raters (N=18) to rate the similarity of eight nouns and 
verbs (drawn from Gentner & France, 1988) to their closest 
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synonyms, as determined by a thesaurus (Lewis, 1978).  Each 
base word was paired with three synonyms as well as one 
antonym as an attention check. Participants rated the 
similarity between each base word/synonym pair on a scale 
of 1 to 10, resulting in 865 target ratings. A linear mixed-
effects model analysis was conducted, with human similarity 
rating as the dependent measure, polysemy of the base word 
as the fixed effect, and random intercepts and slopes for 
subject and random intercepts for item. A significant negative 
correlation between polysemy and similarity rating was 
found, β = -0.20, SE = 0.09, F = 5.63, p = .02.  

Thus, we found evidence in favor of our third explanation: 
on average, the more polysemous a word was, the less similar 
it was considered to be to its synonyms. In this way, the 
human findings paralleled our results with word2vec. If this 
pattern generalizes across other materials, it will be important 
to understand the reasons for this converging result in humans 
and in WEMs.  

Do Noun and Verb Change Mean the Same Thing? 
There are several outstanding issues to acknowledge before 
concluding. First, an important question is whether semantic 
distance means the same thing for nouns as it does for verbs. 
In other words, are the two scales commensurable?  WEMs 
like word2vec are blind to syntactic category and thus employ 
the same method of generating and comparing vectors for 
both nouns and verbs (and all word classes). But whether 
humans judge similarity between nouns on the same 
dimensions that they do for verbs is unclear.  

Similarly, whether polysemy means the same thing for 
nouns and verbs is also uncertain. It is possible that verb 
meanings are extended differently than noun meanings, 
resulting in qualitatively different patterns of relatedness 
among senses. At present, little work has examined this issue.  

Lastly, one might question whether there is a circularity in 
assessing mutability using word2vec. As with polysemy, if 
verbs are more mutable than nouns overall, they likely appear 
in a wider variety of contexts than nouns. Thus, the vectors 
for any two verbs may, on average, be further apart than is 
the case for any two noun vectors.   

These objections are important and demand further 
investigation. At the same time, there are striking qualitative 
differences in the manner of adjustment for nouns versus 
verbs. As noted earlier, nouns are often paraphrased as close 
synonyms, whereas verbs are often extended in quite novel 
ways. This suggests that the verb mutability phenomenon is 
not simply a difference in similarity scales, but reflects a 
qualitative difference in processing.  

Conclusion 
There are three main findings. First, we replicated Gentner 
and France’s (1988) results: verbs changed their meaning 
more than nouns overall, and did so to a greater extent in a 
strained context. Second, we found evidence that both sense 
selection and online adjustment processes drive mutability. 
Third, we found that these processes differ between nouns 

and verbs. Semantic adaptation to context appears to be 
driven by sense-selection for nouns, but by online adjustment 
for verbs. 

We also presented initial evidence that the relationship 
between polysemy and meaning adjustment may reflect a 
property of polysemous words; namely, that higher-
polysemy words are, on average, perceived as less similar to 
their synonyms than low-polysemy words are. 

Our results invite a number of future research directions. 
First, the number of items used in this study is small. We are 
currently testing new word sets. Future work will also involve 
more systematic testing of specific verb classes to examine 
how well the results observed here generalize. Second, we 
plan to compare the WEM results with human judgments of 
similarity. Our ultimate goal is to provide a clearer 
characterization of the processes underlying semantic 
adjustment in nouns and verbs.  
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Abstract 

The purpose of the present study was to investigate the effects 
of addressee of verbalization, self or other, on insight problem 
solving. Thirty-five participants were assigned to one of the 
three conditions: toward-self verbalization, toward-other 
verbalization, or irrelevant verbalization (control). A 3-minute 
verbalization phase was inserted after 5 minutes of solving the 
T-puzzle. The participants were asked to write down their 
thoughts during the first 5 minutes as a record in the toward-
self verbalization condition, and as an instruction for other 
participants in the toward-other verbalization condition. The 
participants in the control condition were required to write 
down their concerns. After that, they were asked to engage in 
the puzzle again for 10 minutes. The results showed a 
detrimental verbalization effect while allowed a wide range of 
effects for the self vs other distinction going in either direction. 
We are using this study as a basis for a pre-registered report. 

Keywords: insight problem solving; verbalization; self vs 
other; metacognitive monitoring 

Introduction 

Collaboration is ubiquitous in our daily life. Previous studies 

have shown that collaboration facilitates problem solving 

(Miyake, 1986; Okada & Simon, 1997; Shirouzu, Miyake, & 

Masukawa, 2002). Specifically, collaboration is effective in 

solving problems when novel ideas or perspectives are 

needed. Insight problems are a typical example of this sort of 

problem. Since most studies have addressed whether or not 

collaboration can facilitate problem solving, little is known 

about why collaboration has facilitative effects on problem 

solving. By identifying the factors causing the facilitative 

effects of collaboration on problem solving, we may be able 

to collaborate with others more effectively.  

Diversity of background knowledge is assumed to be one 

of the most important factors causing the facilitative effects 

of collaboration on problem solving (Surowiecki, 2005). This 

hypothesis posits that people can make use of more diverse 

knowledge when working together. If the diversity of 

background knowledge was the only factor, then the 

facilitative effects of collaboration on problem solving would 

not be obtained when members have the same knowledge 

bases. Collaboration, however, facilitates problem solving 

even when there is little diversity in background knowledge. 

Bahrami et al. (2010) showed that two people working 

together to detect a subtle visual signal can do better than the 

best one working alone. Crucially, Kiyokawa (2002) showed 

that two people working together can solve a problem better 

than working alone even when one of the members was 

prohibited to express his/her ideas to solve the problem. 

Okada and Simon (1997) found that participants were able to 

reach the solution in a scientific discovery task when working 

together than when working alone but there was not a 

significant difference in diversity of hypotheses they 

entertained. It may be useful to consider factors other than 

diversity of background knowledge as contributing to the 

facilitative effects of collaboration on problem solving.  

Metacognitive Monitoring in Insight Problem 

Solving 

Facilitation of metacognitive monitoring during 

collaboration is another potential factor which may be 

responsible for the facilitative effects of collaboration on 

problem solving, especially insight problem solving. In other 

words, collaboration may facilitate insight problem solving 

because people can monitor their cognitive processes better 

when working together than when working alone. Previous 

studies have shown that metacognitive monitoring plays a 

critical role in problem solving. That is, the more 

appropriately one can monitor one’s cognitive processes, the 

better one can solve the problem. However, previous studies 

have also shown that metacognitive monitoring does not 

always work in problem solving, and in particular not for 

insight problem solving, when working alone (Metcalfe, 

1986; Metcalfe & Wiebe, 1987). This phenomenon is 

interpreted as implying that the processes underling insight 

problem solving when working alone is implicit and non-

reportable. Indeed, this dysfunction of metacognitive 

monitoring is assumed to be one of the factors responsible for 

the difficulty of insight problem solving. Since people cannot 

know correctly where they are in the problem space when 

working alone, they cannot choose their moves so as to head 

in the right direction, and as a result, cannot readily reach the 

correct solution. 

When working together, on the other hand, people have to 

communicate what they are thinking to their partners. 

Therefore, they have to change their thinking modes from 

implicit and non-reportable to explicit and reportable ones 

during collaboration. These changes in thinking modes when 

working together may enhance metacognitive monitoring and, 

as a result, facilitate insight problem solving. Based on this 

hypothesis, the tendency to think about one’s cognitive 

processes explicitly or verbally specifically in order to 
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communicate them to a partner may be a key contribution to 

the facilitative effect of collaboration. Therefore, not only an 

actual collaborative setting but also a hypothesized one will 

be enough for people to change their thinking modes and 

facilitate their metacognitive monitoring and performance in 

insight problem solving. To reconcile the claim that 

verbalizing to others is helpful with the previous claim that 

people have poor metacognition of insight processes, we 

draw a distinction between verbalizing to oneself as a target 

and verbalizing to others, which we now consider. 

Metacognitive Monitoring and Verbal 

Overshadowing Effect 

There is evidence relevant to our hypothesis in a line of 

research on the verbal overshadowing effect. These studies 

have shown that verbalization directed toward oneself 

disrupts insight problem solving and verbalization directed 

toward others does not. Schooler, Ohlsson, and Brooks 

(1993) showed that verbalizing thoughts after each trial when 

attempting to solve insight problems can disrupt 

performance 1 . This disruptive effect of verbalization on 

insight problem solving is called verbal overshadowing effect. 

The verbal overshadowing effect may originate from a 

dysfunction of metacognitive monitoring in insight problem 

solving. The hypothesized process is as follows. People 

cannot verbalize what they are actually thinking about 

because they cannot know where they are in the problem 

space. Therefore, they tend to verbalize what is easy to do so 

irrespective of their actual cognitive processes. As a 

consequence, they cannot make use of information other than 

what they verbalize and so find it hard to reach the correct 

solution (see also Kiyokawa and Nakazawa, 2006).  

Kiyokawa and Nagayama (2008), on the other hand, have 

found that verbalizing thoughts toward others does not 

disrupt but rather facilitates insight problem solving. They 

examined the effects of failure-focused verbalization on 

insight problem solving using the same task as that used in 

Kiyokawa and Nakazawa (2006). Participants were randomly 

assigned to either of the failure-focused verbalization or the 

irrelevant verbalization (control) conditions. The participants 

in the failure-focused verbalization condition were asked to 

write down the ways they thought inappropriate for solving 

the problem as advice toward other participants. The 

participants in the control condition were asked to describe in 

detail what they were studying and interested in. The results 

revealed that failure-focused verbalization facilitated insight 

problem solving. The study is consistent with, but was not 

designed to support the claim, that there is something 

                                                           
1  Schooler et al. (1993; Exp. 3) found verbalizing reduced 

percentage of problems solved in 6 minutes by 25% for insight 

problems and about 5% for non-insight problems, a difference of 

20%. Gilhooly, Fioratou & Henretty (2010) tightened up the design 

and compared percentage of insight with non-insight problems 

solved in 4 minutes. Crucially, for them verbalizing versus silence 

did not significantly interact with problem type, F = 1.63. Does this 

fail to replicate Schooler et al?  We need a Bayes factor to determine 

whether the data supported H0 over a reasonable H1. The raw 

beneficial about directing one’s verbalization to someone 

else rather than oneself, in acquiring a metacognitive grasp 

on where one might be in a problem space. Bahrami et al 

(2012) argue that a key function of meta-cognition is social 

collaboration; if this is so, engaging socially, or trying to, may 

facilitate what seems a private process, metacognition.  This 

is the claim we wish to test. The mechanism by which meta-

cognition, an apparently private process, is maximally 

engaged may thus paradoxically rely on social cues. 

Purpose of Present Study 

The purpose of the present study is to clarify the effects of 

addressee of verbalization, self or other, on insight problem 

solving in terms of metacognitive monitoring by examining 

the verbal overshadowing effects. Our hypothesis is that 

verbalizing one’s thought just as a record disrupts insight 

problem solving because metacognitive monitoring does not 

work well, whereas verbalizing one’s thought for 

communicating with other facilitates insight problem solving 

because it helps metacognitive monitoring.  

We will address this question by comparing each solution 

rate of the puzzle in the two experimental conditions and the 

control condition. The first experimental condition was the 

toward-self verbalization condition. In this condition, 

participants were asked to verbalize reflectively what they 

were thinking during struggling with the puzzle as a record 

for themselves. The second experimental condition was the 

toward-other verbalization condition, in which participants 

were asked to verbalize their thinking during the previous 

solving phase as advice for other participants. In the control 

condition, participants were asked to verbalize not their 

thinking about their problem solving but their recent concerns 

irrelevant to solving the puzzle. Thus, the theory that 

metacognition may not work in a solo setting but does best 

when engaged in a social context was tested by the following 

prediction: 1) less participants should solve the puzzle in the 

toward-self verbalization condition than in the toward-other 

condition. If in contrast there is just a general overshadowing 

effect, then there should be little difference shown in the 

previous contrast but 2) less participants should solve the 

puzzle in the verbalization conditions than in the control 

condition. We here investigate these predictions in an 

exploratory study, that is one that was not pre-registered, in 

order to have a firm basis for a pre-registered study. We will 

thus estimate the sort of effect sizes we find that are relevant 

to the predictions.  

interaction effect would be expected to be 20% (i.e. Schooler et al.’s 

effect) x 4/6 (correcting for time difference) = 13%.  In fact, 

Gilhooly et al. found a sample overshadowing effect of 4% for 

insight problems (57 – 53%) and 0% for non-insight (48 vs 48%), 

i.e. a raw interaction effect of 4% (with SE = 4%/√1.63 = 3.1%).  

Modelling H1 as a half-normal with SD = 7%, gives a Bayes factor 

BH(0,7) = 0.92, i.e. Gilhooly et al.’s interaction does not count against 

Schooler et al. 
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Method 

Participants 

Thirty-five participants were recruited from the participant 

pool of the School of Psychology at the University of Sussex. 

All were required to have UK or EU passports. They received 

2 course credits or 3 pounds for taking part in the study. The 

participants granted their informed consent before 

participation and the Ethical Committees both of the 

University of Sussex and Nagoya University approved the 

study. 

Design 

We used a between-participants design. The independent 

variables had three levels: toward-self verbalization, toward-

other verbalization, and irrelevant verbalization. The key 

dependent variable was the proportion of participants who 

solved the T-puzzle.  

Procedures 

The participants were randomly assigned to one of the 

following three conditions: toward-self verbalization, 

toward-other verbalization, or irrelevant verbalization 

(control). The experiment took place in a small room with the 

experimenter present and only one participant at a time. After 

providing their informed consent to the study, the participants 

engaged in a practice task for 3 minutes. Before the main task, 

as a practice task, they were asked to make a rectangle shape 

(see Figure 1 (b)) using the four pieces presented (see Figure 

1 (a)) for three minutes in order to get accustomed to 

manipulating the pieces they would use in the main task After 

that, they were asked to solve the main shape puzzle, called 

the T-puzzle on a display using a mouse for a total of 15 

minutes. In the puzzle, they were asked to form a T shape (see 

Figure 1 (c)) using the same four pieces as the practice task. 

They were asked to let the experimenter know when they 

think that they had reached the correct solution. Then the 

experimenter checked if they have reached the correct 

solution and if so, the solution phase was terminated at that 

time. If not, they continued the task. 

A 3-minute verbalization phase was inserted after 5 minutes 

of solving the puzzle. In this phase, the participants were 

asked to enter their thoughts using a keyboard following the 

particular instructions in each condition. The first two 

sentences in the instructions both in the toward-self and other 

verbalization conditions were the same as those used in 

Schooler et al. (1993). Those in the toward-self verbalization 

condition were instructed to write down what they were 

thinking about in the first 5-minute solution phase, as a record 

to themselves. The instruction was as follows. "Please write 

down, in as much detail as possible, everything you can 

remember about how you have been trying to solve the 

problem. Give information about your approach, strategies, 

any solutions you tried, and so on. Write as a record to 

yourself, like a diary of how you tried to solve the problem in 

the last five minutes. Remember you are addressing yourself 

in making these notes; it should feel exactly like talking to 

yourself. Try to write about 100 words. You can check how 

many words you have written by looking here. You can take 

3 minutes for this writing.”  

Those in the toward-other verbalization condition were 

asked to write down their thoughts in the first 5-minute 

solving phase as advice to other participants. The instruction 

was as follows. "Please write down, in as much detail as 

possible, everything you can remember about how you have 

been trying to solve the problem. Give information about 

your approach, strategies, any solutions you tried, and so on. 

Write instructions for other participants on how to solve the 

problem, based on what you found out in the last five minutes. 

Remember you are talking to someone else when making 

these notes; it should feel exactly like a conversation with 

someone else. Try to write about 100 words. You can check 

how many words you have written by looking here. You can 

take 3 minutes for this writing.”  

Those in the control condition are asked to write down their 

recent interests as an irrelevant topic to the puzzle. The 

instruction is as follows. "Please write down, in as much 

detail as possible, everything you can remember about what 

you have been interested in. Give information about your 

interests, hobbies, any things you want to do, and so on. Write 

about your interests that have nothing to do with the problem 

you have been trying to solve in the last five minutes. We 

 

 

 

 

 

 

 

                  (a) Used pieces         (b) Solution of the practice   (c) Solution of the T-puzzle 

Figure 1: Tasks. 
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want you to take a break from the problem. Remember to 

write about something other than the puzzle. Try to write 

about 100 words. You can check how many words you have 

written by looking here. You can take 3 minutes for this 

writing.”  

After the verbalization phase, the participants were required 

to solve the puzzle again for 10 minutes. They were given a 

hint to solve the puzzle. Specifically, they were asked to put 

the pentagon piece not vertically or horizontally but 

diagonally. This hint was shown to be effective in reaching 

the correct solution by Suzuki and Hiraki (1998). 
After the main task, the participants were asked to fill in a 

question sheet. The following questions were included in the 

sheet: (1) “Have you ever tried to solve this puzzle before?”  

(2) “If you answer “yes” in the first question, when it was it?” 

(3) “Did you know the correct solution to the puzzle before 

the experiment?” (4) “To whom did you address your verbal 

description in the middle of doing the puzzle?” “(5) What was 

your description about?” (6) “What’s your nationality?” 

Results 

Based on the answers to the questions (1) and (3), we made 

sure that none of the participants had experienced the T 

puzzle before the experiment or knew the correct solution. 

Based on the answers to the question (6), we also made sure 

that the nationalities of all the participants were UK or EU. A 

participant in the toward-other condition engaged in the 

practice task longer than 3 minutes and therefore the data of 

the participant was excluded from the analyses. 

Manipulation Check 

We checked whether the participants followed the 

instructions on the verbalization by the following two ways. 

First, we examined their recognized addressees based on the 

question (4) in the post-task questionnaire. Second, we 

examined what the participants wrote down in the 

verbalization session. We will report the 95% credibility 

intervals based on a uniform prior, which are numerically the 

same as 95% confidence intervals. 

Recognized Addressees Table 1 shows frequency of each 

option the participants selected as their addressees in the post-

task questionnaire in each condition. If the participants 

followed the instruction properly, the participants in the 

toward-self verbalization condition should have chosen “Self” 

and those in the toward-other verbalization condition “Other 

People”. Indeed, the selection rate of “Self” was considerably 

 

Table 1: Number of each option selection in each condition. 

  Toward-self Toward-other 

Self 10 2 

Other people 1 10 

Total 11 12 

 

Table 2: Number of participants who used or did not use 

“You” as a subject or imperative form at least once in their 

descriptions in each condition. 

  Toward-self Toward-other 

Used 1 9 

Did not use 10 3 

Total 11 12 

 

higher in the toward-self verbalization condition than the 

toward-other verbalization condition with odds ratio, OR = 

50.00, 95% CI, [3.88, 643.90]. 

What the Participants Verbalized We examined the 

quantity and quality of the participants’ verbalization in order 

to check whether they followed the instructions. First, we 

compared the number of words among these 3 conditions.  

Hopefully there would be only minor differences in the sheer 

quantity of their verbalization, as number of words, among 

these conditions (Toward-self verbalization: M = 92.8, SD = 

12.8; Toward-other verbalization: M = 80.6, SD = 16.3; 

Control: M = 82.5, SD = 19.5, 95%CI, Toward-self 

verbalization vs Toward-other verbalization: [-18.43, 42.90], 

Toward-other verbalization vs Control: [-35.68, 39.42], 

Toward-self verbalization vs Control: [-23.56, 44.29] ). 

Second, we examined the subjects and predicates the 

participants used in their verbalization. Specifically, we 

counted the number of participants who used "you" as a 

subject or imperative form at least in their description. If the 

participants followed the instructions, more participants in 

the toward-other verbalization condition should use "you" or 

imperative form than in the toward-self verbalization 

condition. Indeed, as Table 2 shows, more participants used 

“You” as a subject or imperative form in their description in 

the toward-other verbalization condition than the toward-self 

verbalization condition with odds ratio, OR = 30.00, 95% CI, 

[2.63, 342.75]. 

Task Performance 

The performance in each condition is shown in Table 3. First, 

we compared the solution rates between the toward-self and 

other verbalization conditions in order to test the effects of 

the addressee of verbalization on insight problem solving. 

Plausible odds ratios spanned interesting effect sizes around 

the null value of 1 (OR = 1.90, 95% CI [0.33, 11.01]).  

Next, we combined the data in the toward-self verbalization 

and in the toward-other verbalization conditions into the 

verbalization condition and compared the solution rates 

between the verbalization and control (non-verbalization) 

condition. The result showed that the solution rate could be 

higher in the control condition than the verbalization 

condition by a small to a considerable amount (OR = 5.00, 

95% CI, [1.03, 24.29]).  

In sum, while the evidence allowed a wide range of effects 

for the self vs other distinction going in either direction, the 
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Table 3: Performance in each condition. 

 
Toward-

self 

Toward-

other 
Control 

Solved 3 5 8 

Unsolved 8 7 3 

Total 11 12 11 

 

evidence favoured a detrimental verbalization effect rather 

than an overall positive effect of verbalization.  In particular, 

the crucial theoretical distinction between verbalizing to self 

vs other had a 95% probability of lying in the interval 1/3 to 

an effect as high as OR = 11, that is higher than the estimated 

effect of verbalizing versus non-verbalizing, for which OR = 

5 in our sample. 

Based on these rough estimates, we can now determine the 

sort of effect sizes we would expect in a follow up study, for 

which this report constitutes its pre-registration. Specifically, 

using the identical procedure as for this exploratory study, for 

analyzing results we will use an odds ratio of 5 as a roughly 

predicted effect size for our pre-registered experiment for all 

effects. The function of this exploratory study was to check 

the procedure worked smoothly and determine plausible 

possible effect sizes (Considering the past literature using the 

same task, Kiyokawa & Nakazawa, 2006, an odds ratio of 

3.11 was found for a verbal over-shadowing effect, which is 

in the same ballpark). We will use this estimate for Bayes 

factors to make existential claims of whether or not an effect 

exists. To get evidence for whether an effect does or does not 

exist, a rough idea of the scale of effect to be detected is 

needed. Following Dienes and Mclatchie (2018), we will 

model H1 by setting the SD of a half-normal to 5. We will 

collect participants until the contrast given as prediction 1) at 

the end of the introduction has a Bayes factor either greater 

than 3 or less than 1/3. 

Discussion 

In the present study, we investigated the effects of addressee 

of verbalization, self or other, on insight problem solving in 

terms of metacognitive monitoring by examining the verbal 

overshadowing effects. Our hypothesis was that verbalizing 

one’s thought just as a record disrupts insight problem 

solving because metacognitive monitoring does not work 

well, whereas verbalizing one’s thought for communicating 

with other facilitates insight problem solving because it helps 

metacognitive monitoring. The results showed that the 

manipulation worked well in terms of participants obeying 

instructions. Further, the results were consistent with a small 

to large verbal overshadowing effect on insight problem 

solving. Crucially, the results allowed a wide range of effects 

for the self vs other distinction going in either direction. In 

the following section, we will discuss the necessity of re-

examining the verbal overshadowing effect on insight 

problem by Bayes factors and another possible self vs other 

difference in metacognitive monitoring. 

Verbal Overshadowing Effect Should Be Examined 

Using a Bayes Factor 

There has been a debate between the special-process view 

and business-as-usual view of insight problem solving. The 

former posits that insight problem solving processes are 

implicit, unlike non-insight problem solving. The latter, on 

the other hand, assumes that the same processes used in non-

insight problem solving are involved in insight problem 

solving. Since the prediction for the verbal overshadowing 

effect based on the special-process view is different from that 

based on the business-as-usual view, previous studies have 

addressed whether or not the verbal overshadowing effect is 

obtained in order to determine which view is valid (Ball et al., 

2015; Fleck & Weisberg, 2004; Gilhooly et al., 2010; 

Schooler et al., 1993). Specifically, based on the special-

process view, verbalization should disrupt only insight 

problem solving. Based on the business-as-usual view, on the 

other hand, verbalization should disrupt neither insight nor 

non-insight problem solving. The evidence from the present 

study supports the special-process view. 

There is a methodological problem on how to determine 

whether or not the verbal overshadowing effect is obtained. 

Previous studies concluded that the verbal overshadowing 

effect was not obtained when there was a non-significant 

effect of verbalization on problem solving. But non-

significance includes both the case where the data were 

insensitive and where there is evidence for no verbal 

overshadowing. In contrast, Bayes factors distinguish 

evidence for no effect relative to a model of the sizes of effect 

expected, from no evidence at all. In our follow up 

experiment, we will use Bayes factors. 

Self vs Other Differences in Metacognitive 

Monitoring May Be Emerged Only by Attribution 

The present study was motivated by the self vs other 

difference in metacognitive monitoring when asked to 

communicate one’s thinking processes to others. If the 

function of metacognition is intrinsically social (Bahrami et 

al, 2012), the module or mechanism may be best engaged 

when social cues trigger it. But there may be other factors 

related to facilitation of metacognitive monitoring in insight 

problem solving during collaboration. Specifically, the 

facilitation of metacognitive monitoring may be obtained 

only by regarding the processes to be monitored as generated 

by others. (For example, the thinking of others may be 

regarded with more skepticism than one’s own thinking.) 

Several studies have supported this hypothesis. 

Schunn and Klahr (1993) compared performance on an 

insight-like rule discovery task between self- or other-

generated hypothesis conditions. The participants in the self-

generated hypothesis condition were asked to generate their 

own initial hypotheses. The participants in the other-

generated condition were given the most frequently 

generated hypothesis. The results showed that the hypothesis 
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was investigated more thoroughly in the other-generated 

condition than in the self-generated condition and that the 

participants in the other-generated condition terminated with 

incorrect solutions less than those in the self-generated 

condition. Kiyokawa, Ueda, and Okada (2004) compared the 

performance of an insight-like rule discovery task between 

the self- or other-generated hypothesis conditions. The results 

showed that the participants in the other-generated 

hypothesis condition outperformed those in the self-

generated hypothesis condition and that the plausibility 

dropped down after the participants in the other-generated 

hypothesis condition faced some counterevidence while that 

increased in the self-generated hypothesis condition. 

Kiyokawa, Izawa, and Ueda (2007) investigated effects of 

swapping between doing and observing a partner or oneself 

on insight problem solving using the T-puzzle. The results 

showed that swapping between doing and observing a partner 

solving the puzzle facilitated insight problem solving, 

whereas swapping between doing and seeing one’s past 

actions (i.e. within an individual) disrupted problem solving. 

Kotera et al. (2011) compared the performance of the T 

puzzle when they observed moves regarded as generated by 

oneself or by others. The results revealed that observation 

disrupted insight problem solving if one attributed the 

observed moves to oneself, but not if one attributed them to 

another person.  

However, all these results may also be explained by our 

original hypothesis, in the introduction, that it is simply 

engaging in a social way that maximizes the efficacy of meta-

cognition. Our replication of the current study (of which this 

paper constitutes its pre-registration) until we get evidence 

for or against the self versus other contrast being effective 

will help settle the matter: If other is more effective than self, 

then it may simply be a matter of engaging social cues. 
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Abstract

In a noisy but structured world, memory can be improved
by enhancing limited stimulus-specific memory with statisti-
cal information about the context. To do this, people have to
learn the statistical structure of their current environment. We
present a Sequential Monte Carlo (particle filter) model of how
people track the statistical properties of the environment across
multiple contexts. This model approximates non-parametric
Bayesian clustering of percepts over time, capturing how peo-
ple impute structure in their perceptual experience in order to
more efficiently encode that experience in memory. Each trial
is treated as a draw from a context-specific distribution, where
the number of contexts is unknown (and potentially infinite).
The model maintains a finite set of hypotheses about how the
percepts encountered thus far are assigned to contexts, updat-
ing these in parallel as each new percept comes in. We apply
this model to a recall task where subjects had to recall the posi-
tion of dots (Robbins, Hemmer, & Tang, 2014). Unbeknownst
to subjects, each dot appeared in one of a few pre-defined re-
gions on the screen. Our model captures subjects’ ability to
learn the inventory of contexts, the statistics of dot positions
within each context, and the statistics of transitions between
contexts—as reflected in both recall and prediction.
Keywords: Bayesian modeling; memory; learning; belief up-
dating

Introduction
Every cognitive function—perceptual inference, learning,
memory, decision making, etc.—takes place in context, and
understanding these cognitive functions requires understand-
ing the role that the context plays. When cognitive func-
tions are considered in isolation, context can appear to be a
source of errors, distraction, or added uncertainty. For ex-
ample, Roediger and McDermott (1995) induced “false re-
call” by having subjects study lists of near associates of a
word but not the critical word itself. However, when consid-
ered ecologically, larger-scale regularities in the environment
mean that context can function as a source of additional in-
formation, reducing the amount of information that must be
stored about particular instances. Evidence abounds that peo-
ple draw on the context an item occurred in as an additional
source of information (e.g., DuBrow, Rouhani, Niv, & Nor-
man, 2017; Huttenlocher, Hedges, & Duncan, 1991; Orhan
& Jacobs, 2013; Schulz, Franklin, & Gershman, 2018; Qian
& Aslin, 2014). In this view, so-called “false recall” is re-
ally a reflection of the mis-match between the experimenter’s
defined context and the subject’s inferred context.

However, this raises the question of what is a context, and
how do people know? For instance, Huttenlocher et al. (1991)
found that immediate spatial recall of a location in a circular
area is biased towards the average radius of all locations in
the experiment. They proposed that memory for an individ-
ual item’s location is encoded at two levels: the item itself,

Figure 1: All locations that subject 4 studied (left), color-
coded by their block (right), large dots show the average lo-
cation for each block, and the gray lines show the sequence
of blocks

and the category it was assigned to. However, their proposed
model does not address what constitutes a category or how
subjects decide, and instead simply defines the category based
on the long-run statistics of locations encountered in their ex-
periment. However, Robbins et al. (2014) discovered that in
a similar task with multiple (implicit) contexts, subjects re-
call draws on context-level statistics, rather than the long-run
(experiment-level) statistics.

Here, we propose a Bayesian model of learning and mem-
ory in multi-context environments, and apply this model to
the data from Robbins et al. (2014) human spatial memory ex-
periment. The model treats the problem of identifying latent
contexts as a sequential non-parametric clustering problem,
where agents must update their beliefs about which context
they are in and the properties of that context online, with one
data point at a time. This model thus captures psychological
constraints on the discovery of latent contexts which is not
captured by previous Bayesian models.

Data
The data we model is described in detail in Robbins et al.
(2014), but we provide a brief summary of the procedure here.
In this experiment, 8 participants were asked to record the lo-
cation of a dot presented in a circle (see Figure 1) and recon-
struct that location from memory. Participants were given a
cover story in order to keep the task engaging; they were told
that the circle was a garden and the dots were moles. In order
to save their garden, they had to “catch” the moles by clicking
on the locations where they saw them.

After an initial presentation of 20 dots at the center of the
circle, dots were presented in blocks (3, 6, 9, or 12 presen-
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tations in a cluster), sampled from a multinomial normal dis-
tribution with a mean of a given radius and one of three vari-
ances (0.01, 0.04, and 0.06 in a unit circle). There was no ex-
plicit signal to the subject when one block ended and the next
began. The mean angles and radii were informed by Hutten-
locher et al. (1991). There were 24 angle measures including
the axes, and the measures consisted of the same relative an-
gles in each quadrant. Four different distances measuring out
from the center of the circle to the circumference were chosen

Each dot was viewed for one second followed by a com-
bined visual mask and distractor task designed to remove the
dot from participants’ visual field and introduce uncertainty
in the memory process. This mask consisted of a grid of black
and white squares; after this mask was removed, an “X” ap-
peared on the screen and participants were asked to report the
color of the square (black or white)previously in that loca-
tion. Data from the distractor task was recorded but not ana-
lyzed. After the completion of the distractor task, participants
were asked to recall the location of the dot from memory by
clicking a spot in the circle. After every three trials, partici-
pants were asked to make a prediction about a future dot lo-
cation. Prediction trials alternated between prediction for the
next trial and prediction for five trials from now. Each block
(defined as a cluster of trials at one mean) was followed by a
prediction for the expected dot location 10 trials from the cur-
rent trial. This resulted in a total of 280 trials: 80 prediction
trials and 200 recall trials.

Modeling
Our model has three components. First, we model how peo-
ple infer the assignment of stimuli to contexts as nonpara-
metric Bayesian clustering, approximated sequentially with a
particle filter. Second, we model encoding and recall of loca-
tions as Bayesian cue combination with a prior from the con-
text (much like Huttenlocher et al., 1991). Third, we model
subjects’ predictions about future locations via the posterior
predictive distribution of the context model.

Context model
We modeled learners inferences about the underlying context
on each trial as a sequential Bayesian non-parametric cluster-
ing problem. The goal of the learner in this model is to infer
the cluster assignment zi of observation xi, given the previous
observations x1:i−1 and their labels z1:i−1:

p(zi = j|x1:i,z1:i−1)∝ p(xi|zi = j,z1:i−1,x1:i−1)p(zi = j|z1:i−1)

The sequential prior p(zi = j|z1:i−1) is a “Hibachi Grill
Process” (Fox, Sudderth, Jordan, & Willsky, 2011, 2A; Qian
& Aslin, 2014), which is like the standard Chinese Restaurant
Process (CRP) with an added (constant) probability assigned
to the previous state. This corresponds to the following gen-
erative model: with probability 0 < ρ < 1 the previous state
is picked, j = zi−1, and with probability 1−ρ a component is
chosen from a Chinese Restaurant Process with concentration
α, which assigns probability to each state proportional to the

number of observations assigned to it already,1 and creates a
new state with probability proportional to α > 0. We refer to
the ρ parameter as the “stickiness” because it controls how
likely, a priori, the model is to stick to the same state.

The likelihood p(xi|zi = j,z1:i−1,x1:i−1) = p(xi|x{k;zk= j}) is
computed by marginalizing over the mean and covariance of
a multivariate normal distribution given the data points previ-
ously assigned to that cluster and a conjugate Normal-Inverse
Wishart prior (Gelman, Carlin, Stern, & Rubin, 2003). This
has the advantage that it only requires tracking the sufficient
statistics of the previous observations from the cluster (sam-
ple mean and covariance), and not the individual observa-
tions.

Inference: Sequential Monte Carlo
Instead of a standard batch inference technique, we use an
online, Sequential Monte Carlo/particle filter technique. This
method approximates the posterior beliefs after i− 1 obser-
vations p(z1:i−1|x1:i−1) as a weighted population of K parti-
cles, each of which is one possible value of the i− 1 labels,
denoted z(k)1:i−1. This population of particles represents an im-
portance sample from the posterior. When a new observation
xi comes in, the population moves to target the updated pos-
terior p(z1:i|x1:i). There are many algorithms to do this, and
the effectiveness of a particular algorithm will depend on the
problem. We use the algorithm of Chen and Liu (2000), as
described in, Fearnhead (2004): for each particle k, a state as-
signment is sampled for xi according to p(zi|x1:i,z

(k)
1:i−1), and

the weight w(k)
i is updated by the ratio of

∑ j p((z(k)1:i−1, j)|x1:i)

p(z(k)1:i−1|x1:i−1)

to ensure that each particle’s weight reflects its ability to pre-
dict the point xi, rather than just explain it. When too much of
the total weight for the population (constrained to sum to 1) is
captured by a small number of particles (measured by the ra-
tio of the variance of the weights to their mean being greater
than 0.5), a new population is resampled (with replacement)
and the weights are set to be uniform.

This is for two reasons. First, because we wish to query
the model’s beliefs about the current context at every point
throughout the experiment, an online approximation is much
more computationally efficient. A batch algorithm like
Gibbs sampling or Hamiltonian Monte Carlo requires one full
sweep through the data for each sample, which must be done
independently for each data point, so drawing K samples for
each of N data points is O(KN2). A particle filter propagates
uncertainty with a fixed population of K particles, updating
each particle in parallel as each data point comes in, meaning
the complexity is only O(KN). This means it is possible to
effectively model longer experiments.

1One important difference from a standard CRP is that only non-
sticky transitions count for the purposes of sampling new states from
the CRP.
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Second, an online learning algorithm better approximates
psychological constraints on learning, and in particular un-
like batch MCMC algorithms does not assume that learners
can go back and revisit each observation and their decisions
about it.2 This class of models thus provides a possible bridge
between computational and algorithmic level approaches to
modeling learning and memory (Kleinschmidt, 2018; San-
born, Griffiths, & Navarro, 2010).

Encoding and recall
The noisy memory trace is modeled as a normal distribution
centered at the studied location x with an isometric covari-
ance matrix Σx, whose diagonal elements are all equal to σ2

x ,
which is a free parameter of the model. This noisy memory
trace is combined with a context prior, which is approximated
by the population of particles. Specifically, each particle k
represents one possible assignment of the observations x1:i to
clusters z(k)1:i . We can thus model each particle’s context as the
expected mean and covariance matrix for all the points that
particle k has assigned to the same cluster as the studied point
z(k)i :

µ(k)c ,Σ
(k)
c = E(µ,Σ)

p(µ,Σ|x1:i,z
(k)
1:i )

Then the best guess of the studied location under particle
k’s model of the context is the combination of a normal like-
lihood (from the noisy trace of the studied item) and a normal
prior (from the context), which works out to be the inverse
variance-weighted average of the two means:

x̂(k) = (Σ
(k)
c
−1

+Σ
−1
x )−1(Σ

(k)
c
−1

µ(k)c +Σ
−1
x x)

Prediction
To model subjects predictions about future locations, we sam-
ple 100 locations from the posterior predictive distribution of
the population of particles. To sample one predicted loca-
tion at a n trials in the future, we sample a particle from the
population according to their weights, draw a sample of n fu-
ture states from that particle’s Hibachi Grill Process, and then
sample one point from the posterior predictive distribution of
the resulting cluster. In the case that the predicted cluster is a
new cluster, we sample from the prior predictive.

Procedure
To evaluate this model, we simulated the data from Rob-
bins et al. (2014) with a range of parameter values. The
concentration parameter α was set to 0.01,0.1,1, or 10, and
the stickiness parameter ρ was set to 0.1,0.5, or 0.9. The
memory noise standard deviation parameter σx varied along
0.01,0.1,1, (for a circle with a radius of 1), although only
results from σx = 0.1 are presented here. The prior for the
cluster parameters was based on the distribution of true block
means/covariances. In principle, this could be inferred as well

2These approaches also do not preclude revising previous deci-
sions, they just do not require it.

Figure 2: Cluster assignment similarity matrix for clusters in-
ferred by one population of particles from subject 4’s studied
locations (left), with the true (experimenter-defined) blocks
outlined in colors (see Figure 1). The similarity matrix based
on the Euclidean distance between each location is shown for
comparison (right) and to show that the model groups some
similar locations into the same cluster even though they are
from different blocks.

but we leave that enhancement for future work. We ran 10
repetitions with each of the 36 combinations of parameters,
all of which used 100 particles for each subject’s data.

The particle filter algorithm was implemented in Julia 1.1
(Bezanson, Edelman, Karpinski, & Shah, 2017). The code,
simulation results, and Weave.jl (Pastell, 2017) source for this
paper is available from osf.io/dqz73/

Results
Clustering
First, how well does this algorithm do at recovering the un-
derlying cluster structure? This is not a straightforward ques-
tion to answer: each particle in the population represents a
potentially different assignment of observations to clusters,
and the cluster indices used in one particle might not align
with those in another particle. To get around this we look at
the assignment similarity matrix, which is an N×N matrix,
where element (i, j) is the probability that trials i and j are
assigned to the same cluster. This probability is calculated by
averaging across all particles in the population according to
their weight.

Figure 2 shows the assignment similarity matrix for one
subject, based on a 100-particle filter with α = 0.01,ρ = 0.9
(left) with the true, experimenter-defined block structure is
outlined in the colors from Figure 1, and the pairwise Eu-
clidean distance between the locations for comparison (right).
This example shows a number of important features of the
model’s inferences about the underlying changes in context.
First, relative to the experimenter-defined blocks, the model
occasionally undersegments, grouping adjacent blocks to-
gether into a single context. Second, the model also some-
times infers that it has returned to a previous context, instead
of creating a new context when it infers that the block has
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Figure 3: Subject 4’s recalled locations (gray arrows, point-
ing from studied to recalled location) compared with model
simulation (blue arrows; α = 0.01,ρ = 0.9,σx = 0.1)

changed. This can be seen from the off-(block)-diagonal en-
tries in the assignment similarity matrix (Figure 2, left). As
the Euclidean similarity matrix (Figure 2, right) shows, this
tends to happen when the points in two blocks are close to-
gether. Third, because of the online nature of the model, it
maintains relatively less uncertainty about the clustering of
early trials. Note though that Figure 2 shows the beliefs of
the model at the end of the experiment, which reflect the to-
tality of the locations it has encountered.

Recall

Next, we assess how well the inferred contexts can predict
recall. Figure 3 shows one subject’s actual deviations from
studied to recalled locations (gray arrows) versus the model’s
predicted deviations (blue arrows). To quantify goodness
of fit, we use the cosine similarity of the model’s and sub-
ject’s recall deviation (i.e., blue and black arrows in Figure
3), which ranges from 1 (deviations perfectly aligned) to −1
(deviations in opposite directions), with 0 corresponding to
orthogonal deviations. We chose this metric because it is less
sensitive to large outlier responses than mean-squared error,
and because approximations of the likelihood of a subject’s
response given the model is highly sensitive to free parame-
ters and difficult to reliably estimate. Moreover, the baseline
models we compare against also do not have straightforward
likelihood models, but they do make straightforward predic-
tions about the directions of recall deviations.

Figure 4 shows the cosine similarity with of all subjects’ re-
sponses with the multi-context Bayesian model. The ribbons
show the 95% bootstrapped confidence intervals over model
runs, which indicate that the approximate inference strategy
leads to reasonably consistent inferences for a given set of pa-
rameters. At all parameter settings, the model performs better
than chance, predicting subjects’ recall deviation directions at
a cosine similarity of around 0.1 (relative to a chance level of

Figure 4: Mean cosine-similarity of model predicted and ac-
tual recall deviations across parameter values (ribbons show
95% bootstrapped CIs over model runs). Gray lines show
baselines: always deviate toward center, average radius, and
center of true clusters

0). The model performs best for high ρ stickiness and low α

concentration.

We also compare the model’s performance against three
baselines. First, we compare it against a “known clusters”
model, which uses the true (experimenter defined) clusters
with the same Bayesian cue combination model of encoding
and recall. Second, we compare it to two baselines based on
previous literature on similar memory tasks (Huttenlocher et
al., 1991): one that always biases recall towards the center
(the average location of all trials), and one that biases recall
towards the mean radius.

First, at the whole range of parameters explored, the multi-
context model performs better than the center- or mean-
radius-biased baselines. Second, except for low stickiness
ρ = 0.1, our model provides a better fit to human behavior
than the “known clusters” baseline, which differs from our
model only in that the true cluster labels are provided for
each data point, rather than being inferred. This suggests
that, at least according to the cosine similarity metric, our
context-inference model better captures how people combine
information about the current context during recall than the
“ground truth” clusters.

However, an important caveat is that there is substantial
variability across subjects. The cosine similarity for α =
0.01,ρ = 0.9 has a 95% boostrapped CI across subjects of
[0.05,0.17], which while significantly better than chance is
not significantly better than the baseline models, even when
taking into account the substantial variability in the cosine
similarity for the baseline models themselves. With only 8
subjects in this dataset it is unclear how well the model’s per-
formance will generalize to other datasets, and future work
with better-powered designs is required.
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Figure 5: Subject 7’s (red points) and model’s (gray re-
gions) predictions about upcoming locations at various points
throughout the experiment and various prediction horizons.
The white points show the last recalled location.

Figure 6: Model predicted (α = 0.01,ρ = 0.9) and actual de-
viations from last studied point for prediction task. Small
points show deviations of predictions for each trial, and large
points show average deviations for each lag (1, 5, or 10 trials).

Prediction
Subjects also, every three recall trials, predicted the location
where points would appear in 1, 5, or 10 trials in the future.
This is a more explicit probe of what subjects know about the
cluster structure than the recall task. Figure 5 shows six ex-
amples of how the model’s prediction about upcoming loca-
tions capture subjects’ behavior. For +1 trial predictions, the
model’s distribution of predicted locations primarily reflects
its beliefs about the current cluster (as reflected by the higher
density of predictions near the white studied point), because
of the “sticky” Hibachi Grill Process prior on states. At +10
trials, the model is much more likely to predict the center
cluster, which recurs frequently throughout the experiment
(see also Figure 2). Likewise, subjects also have picked up
on this pattern and are more likely to predict locations close
to the center on +10 prediction trials.

Our model also captures how the average distance from the
last studied point increases as subjects are asked to predict the
location of points +1, +5, and +10 trials into the future (Fig-
ure 6, large points). Moreover, the model also captures vari-
ation within these delay levels: after removing the effect of
delay level by centering, the model’s and subjects’ prediction
deviations are correlated at ρ = 0.31 (95% bootstrapped CI:
[0.25,0.38], and significant at p = 0.014 in a mixed model
with random intercepts and slopes by subject).

Discussion
We have demonstrated that human recall and prediction in
a multi-context spatial memory task can be modeled by
a Bayesian model that infers the latent contexts via non-
parametric clustering. This model updates its beliefs online,
one observation at a time, with Sequential Monte Carlo. Ex-
ploring a range of parameters for the state transition prior,
we found that subjects recall behavior is best captured with
high “stickiness” (prior probability of remaining in the same
cluster) and low concentration (prior probability of creating
a new cluster). Together, this suggests that people expect—
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until they receive evidence to the contrary—that contexts will
continue for a number of trials, and that old contexts will re-
turn in the future.

While we treated these parameters as free when fitting our
model, this was merely a simplifying assumption that we
made to make the model easier to implement. It is possible—
and conceptually fairly straightforward in a Bayesian model
like this—that they could be inferred from the same data that
the model uses to infer the contexts themselves. It is thus
possible that our interpretation of what these parameter val-
ues mean for people’s expectations about the latent cluster
structure actually reflect what people have learned from their
experience in this particular experiment, where contexts do
tend to go on for a number of trials and recur multiple times
(at least for the central cluster). Future work is required to
tease these possibilities apart.

The possibility that people might be inferring the hyper-
parameters that govern how contexts change raises the ques-
tion of what kind of changes people expect in the structure of
contexts across environments. That is, are people’s models of
contexts nested hierarchically, in a way that allows for vari-
ation not only in the specific features of each context (e.g.,
the location of dots in space) but also the properties of how
contexts change within a larger context/environment (e.g., the
stickiness of contexts)? This calls for future experiments that
manipulate the generative model for the contexts themselves,
within subjects and over time.

More work is also needed to assess whether people actually
are remembering and revisiting old contexts, as our model
assumes. It is possible that people are really just detecting
changes in context, and creating a fresh representation of a
context every time they detect such a change. One way to ad-
dress this is by simulating such a change-point model, which
is the limiting case of our model when the concentration pa-
rameter α goes to infinity. Another way is to collect more
empirical data with changes in context explicitly designed to
elicit anticipation for returning to old contexts.

Finally, the strategy of our model—inferring discrete
changes in context and remembering contexts—presupposes
a particular underlying structure for how contexts actually
tend to change in the world. A number of different strate-
gies could be optimal, given different environments, and it
is an ecological question as to which strategies are likely to
be useful in the kinds of environments people tend to find
themselves in. For instance, environments where latent vari-
ables don’t change suddenly but rather drift slowly and con-
tinuously call for a very different family of strategies. So
while our model describes behavior well in this particular ex-
perimental environment, that does not necessarily mean that
it would also describe behavior well in an environment that
does not follow the structural assumptions that the model
makes.

Conclusion
In a structured world, local context—either simultaneous or
temporally extended—can provide a great deal of informa-
tion about how to interpret or remember stimuli. We have
proposed a Bayesian model that infers latent context variables
from unlabeled data, and uses that context to encode and re-
trieve information from memory. This model processes data
online, one observation at a time, and captures people’s be-
havior in a multi-context spatial memory task.
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Abstract 

Recently, cognitive science researchers have revealed that 
human cognition involves the body and is a kind of self-
organization phenomenon emerging from dynamic interaction 
across body-brain-environment. Some of the data obtained 
from such cognitive, behavioral, or physiological activities 
are often complicated in terms of non-stationarity and 
nonlinearity. Researchers have proposed several analytical 
tools and frameworks. Recurrence analysis is one of the 
nonlinear data analyses developed in nonlinear dynamics. It 
has been applied to various research fields, including 
cognitive science, for language (categorical) data or motion 
(continuous) data. However, most previous studies have 
applied recurrence methods individually to categorical or 
continuous data. We aimed to integrate these methods to 
investigate the relationship between speech (categorical) and 
motion (continuous) directly. To do so, we added temporal 
information (a time stamp) to categorical data and applied the 
joint recurrence analysis methods to visualize and quantify 
speech-motion coordination during a rap performance. Our 
pilot study suggested the possibility of visualizing and 
quantifying it. 

Keywords: Visualization; Quantification; Recurrence 
Analysis; Speech-Motion Coordination; Rap 

Introduction 

Cognition as a Self-Organizing Phenomenon 

Recent studies have revealed, theoretically and empirically, 

that we cannot separate cognition from the body and its 

environment, which are interdependent (e.g., Anderson, 

Richardson, & Chemero, 2012; Riley, Shockley, & Van 

Orden, 2012). This notion is called embodiment. From the 

viewpoint of embodiment, cognitive processes related to 

language and communication interact with bodily motion 

and behavior (e.g., Richardson, Dale, & Shockley, 2008; 

Shockley, Richardson, & Dale, 2009). We can consider 

cognition to be a complex phenomenon that emerges from 

the body-brain-environment interaction (e.g., Dale, Fusaroli, 

Duran, & Richardson, 2013; Richardson, Dale, & Marsh, 

2014). 

Research has shown that the body is not only connected to 

cognitive processes, but also to linguistic processes. Since 

McNeill (1992) found the significant relationship between 

gestures and speech, both in production and comprehension, 

the number of studies on co-speech gestures has increased. 

Previous research has shown that co-speech gestures 

facilitate the speaker’s speech process. For example, when 

participants were asked to not move their hands while 

speaking, the proportion of unfilled pauses (Graham & 

Heywood, 1975) or fillers (Rauscher, Krauss, & Chen, 

1996) increased. These findings suggest that speech is 

closely linked to meaningful hand movements. 

To deal with such a complex phenomenon, the dynamical 

systems approach (DSA) has been widely applied to human 

movement science, developmental psychology, and 

cognitive science. Compared to the traditional approach, 

assuming internal computation in the brain, DSA focuses 

more on interactions between the body (including the brain), 

environment, and task. The DSA has provided both a 

theoretical framework and analytical tools based on the 

nonlinear dynamics theory (e.g., Van Orden & Riley, 2005).  

Visualization and Quantification 

Recurrence Plot (RP): A RP is a two-dimensional graph 

visualizing recurring patterns of dynamical systems, in 

which the matrix elements correspond to those times at 

which a state of a dynamical system recurs in the phase 

space (Marwan, Carmen Romano, Thiel, & Kurths, 2007). It 

is an advanced technique of nonlinear data analysis and was 

originally developed in the fields of descriptive statistics 

and chaos theory (Eckmann, Kamphorst, & Ruelle, 1987). 

Recurrence Quantification Analysis (RQA): RQA is a 

method of nonlinear data analysis that quantifies the number 

and duration of recurrences of a dynamical system (Marwan 

et al., 2007). It was originally developed to uncover subtle 

time correlations and repetitions of patterns, and is 

relatively free of assumptions about data size and 

distribution (Zbilut & Webber, 1992). RQA can provide 

researchers with some useful measures to quantify self-

organizing dynamical system behavior. 

RP and RQA have been applied to both continuous data, for 

example, a numeric value obtained by sensor devices, and 

categorical data, for example, a letter or word sequence in 
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literature pieces (Coco & Dale, 2014). However, most 

previous studies have applied these recurrence methods 

(categorical or continuous) separately. We aimed to 

integrate the two within the same recurrence analytical 

framework in order to visualize and quantify speech-action 

coordination/coupling.  

For this purpose, we developed the categorical recurrence 

analysis and applied the joint recurrence analysis methods 

(see “Data Analysis” section under “Method”). If we can 

integrate these different types data within the same 

analytical framework, we are of the view that recurrence 

analysis can be extended widely to visualize and quantify 

various complex phenomena in cognitive science. As a first 

attempt to explore such a possibility, the current pilot study 

focused on a speech-motion coordination/coupling during a 

rap performance. Because rap or hip-hop music has a 

relatively obvious rhythm structure, and because mind-body 

coordination/coupling is important in rapping behavior, we 

assumed that this relationship would be relatively easy to 

extract using recurrence methods.  

Method 

Participants 

A professional rapper (male, 30 years old, right-handed) 

participated in our experiment. He has more than 15 years of 

rapping experience and was the champion of a national 

freestyle rap battle. He has also released his tunes as a 

professional musician. The participant signed an informed 

consent form, agreeing to participate in this study. 

Apparatus 

We used a 3D motion capture system (OptiTrack Flex13, 

Natural Point, Inc.) to measure the participant’s body 

movements (sampling frequency was 120 Hz) (Figure 1). 

Twelve reflective markers were attached to the participant’s 

body (head, both shoulders, both elbows, both wrists, hip, 

both knees, and both toes). We used Motive (Natural Point) 

to process the time series data, MATLAB (R2017b, 

MathWorks) and RStudio (1.1.423) to analyze the data. We 

also used a video camera (HDR-PJ720, Sony) (frame rate of 

50 FPS) and a headset microphone (Hafone). To analyze the 

audio data, we used Audiacity (2.2.2) after down-sampling 

at 25 FPS. 

 

 

Figure 1: An experimental situation and the motion capture 

system. 

Procedure 

We required a professional rapper to perform parts of his 

rap song, which included an Introduction, Verse, and Hook 

(totaling one minute). Before recording, we attached twelve 

reflective markers and a microphone to his body, and we 

asked him to stand in front of the camera. We then 

instructed him to perform naturally, as if he were presenting 

a live performance. After sound checking, we started the 

recording. In this presentation, we report the results of our 

analysis of part of the tune (from the first Verse and Hook). 

Data Analysis 

To visualize and quantify the rhythmic structure and 

coordinated behavior between the rap (speech) and body 

movement (motion), we applied recurrence analyses (for 

tutorials, refer to Wallot, 2017; Webber & Zbilut, 2005). 

We briefly describe these recurrence methods, and we 

introduce the joint recurrence method (Marwan et al., 2007) 

to integrate them as described in the following paragraph. 

In the case of continuous data, time series data are  

embedded, their trajectory is reconstructed in a higher 

dimensional phase space, and the distances between all 

possible combinations of each vector are calculated and 

distributed within a distance matrix (Webber & Zbilut, 

2005). All elements in the distance matrix with distances at 

or below the threshold (i.e., radius) are said to be recurrent 

(recurrence point) and are included in the recurrence matrix, 

while all other elements are excluded from it. Such 

calculations and definitions are used to construct a 

recurrence plot (RP), a method of visualization that shows 

the dynamic properties and temporal patterns of the system 

as a two-dimensional representation (Eckmann et al., 1987). 

A recurrence quantification analysis (RQA) allows 

researchers to quantify and assess the properties of a 

dynamical system, based on RP or the phase space 

trajectory (more detail in Webber & Zbilut, 2005). This 

study reported four RQA measures, namely, the recurrence 

rate (RR), percent determinism (DET), maxline (maxL) and 

mean line (L). RR is the density (percentage) of recurrence 

points in a RP; DET is the percentage of recurrence points 

forming diagonal lines in the recurrence plot given a 

minimal length threshold; maxL is the length of the longest 

diagonal line; L is the average of the diagonal line’s length 

(Coco & Dale, 2014). The units of these lines are indicated 

in time (e.g., seconds). If the length of these lines is long, it 

means that the system repeats the same state persistently for 

a long time. These measures have been interpreted as 

indexes related to stability or complexity of human 

motor/posture  systems (e.g., Pellecchia, Shockley, & 

Turvey, 2005; Riley, Balasubramaniam, & Turvey, 1999). 

In this study, we used only the hip and right wrist 

movements data in a vertical direction as continuous data (a 

collective marker of whole-body movement at the macro 

scale and a specific marker of rap-related rhythmic 

movement at the micro scale, respectively). After each time 

series was smoothed, it was then down-sampled at 25 Hz to 

integrate it with the categorical data. 
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In the case of categorical data, researchers generally need 

not to embed the data in a phase space, but to define the 

level or unit of analysis (e.g., a word or letter). Each unit is 

converted into numeric categorical sequence (e.g., 1, 2, 3, 

…). Researchers can create a recurrence point when the two 

series (original and self-copied sequential series) share the 

same state (i.e., the same word/letter) in time. Thus, the 

same RQA measures can be calculated and they provide 

meaningful indexes that can be considered dynamic natural 

language processing; for example, DET and RR are 

associated with compressibility ration and co-occurrence 

respectively (Dale, Duran, & Coco, 2018). 

We obtained sequential data by analyzing the lyrics and 

converting each voice unit into a Japanese vowel (a/i/u/e/o), 

a syllabic nasal (n), or an assimilated sound (x). We chose a 

vowel as a main unit of analysis, because rap lyrics tend to 

rhyme (match rhyming words at vowel level) more often in 

hip-hop music, generally. We then categorized vowels into 

numbers as follows: a(1), i(2), u(3), e(4), o(5), n(6) and x(7). 

To analyze the audio data, we imported the audio file into a 

software, played the voice at each frame (25 FPS), and 

judged how the voice sounded. If there was no voice, we 

categorized the frame into no-voice (0); If there was a voice, 

we categorized it according to each vowel, a syllabic nasal, 

or an assimilated sound as described above (1, 2, 3, 4, 5, 6, 

7). After categorization, we obtained two categorical data: 

first, sequential data of seven categories without any time 

information, and, second, time series data that included 

temporal information (i.e., a time stamp at 25 Hz) using 

eight categories from 0 to 7, as shown above. 

Most previous studies have applied these recurrence 

methods (categorical or continuous) separately, but we 

integrated them within the same recurrence analytical 

framework in order to visualize and quantify speech-action 

coordination/coupling. For this purpose, we developed 

categorical recurrence analysis by adding temporal 

information (i.e., a time stamp) and applied the joint 

recurrence method. 

The joint recurrence analysis was used to analyze two 

physically different time series (Marwan et al., 2007). A 

joint recurrence point can be considered as joint probability 

in which both systems have simultaneous recurrence points 

(more detail in Marwan et al., 2007). A joint recurrence plot 

(JRP) is a graph that shows all those times at which a 

recurrence in one dynamical system occurs simultaneously 

with a recurrence in a second dynamical system. In other 

words, the JRP is the Hadamard product of the recurrence 

plot of two systems (Marwan et al., 2007). JRPs capture the 

commonalities between two systems (i.e., signals or time 

series) as coinciding instances of recurrence between the 

individual RPs of those systems (Wallot, Roepstorff, & 

Mønster, 2016). First, each RP is constructed for each 

system, then their JRP can be computed by joining the plots 

together, so that common instances of recurrences are kept, 

but different instances between the two RPs are discarded 

(Wallot et al., 2016). JRQA measures such as RR and maxL 

as explained above (in Data Analysis) can be calculated 

from the JRP in the same way as auto/cross RQA. 

Originally, the joint method was proposed for two 

continuous time series, which can recur simultaneously in 

their individually reconstructed phase spaces, to compare 

two physically different systems at different units or 

dimensions. We extended this to compare continuous 

(motion) data with categorical data (rap). 

We performed recurrence analyses using the MATLAB 

toolbox "CRP TOOLBOX," version 5.22 (Marwan & 

Kurths, 2002), and the R package "crqa," version 1.0.9 

(Coco & Dale, 2014). We determined the optimal values for 

input parameters with reference to the standard guidelines 

for the RQA method (Webber & Zbilut, 2005) using 

average mutual information for determining the delay and 

false nearest neighbor method for determining the 

dimension (e.g., Marwan et al., 2007). As a result, for 

continuous data, we chose parameters of 10 for time delay, 

3 for embedding dimensions, and 0.75 for the radius with z-

score normalization, while for categorical data, we input 1 

for time delay and embedding dimensions, and .001 for the 

radius. 

Figure 2: Categorical recurrence plot (CaRP) of rap. 

a) Standard CaRP, b) Sample sequence of vowel, c) Part of CaRP, d) Proposed CaRP 
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Results and Discussion 

Categorical Recurrence Plot: Rap Data 

Figure 2a shows the categorical RP (CaRP) of the lyrics of 

the current rap song generated by the standard procedure 

(with neither temporal information nor a time stamp). Here, 

we report the partial result of analysis of the tune, the first 

Verse and the Hook. We indicated three phases consisting 

of the first part of the Verse (Phase 1), the latter part of the 

Verse (Phase 2), and the Hook by adding two blue lines (see 

Figure 2a). Using vowels as a unit of analysis, the lyric 

consisted of 359 units (Phase 1: 124, Phase 2: 129, Hook: 

106). The CaRP does not have random dots, but a structured 

pattern across the phases. The white bands observed in 

Phase 1 and Phase 2 (red arrows in Figure 2a) visually 

represent successive vowels, then a constant value (i.e., “a” 

repeated four or five times). 

Figure 2b presents a sample sequence of vowel units, while 

Figure 2c shows its CaRP, extracted from Figure 2a (red 

square). Red circle markers in Figure 2b indicate repetition 

(i.e., rhyming) of the same vowel units (i.e., a-i) four times 

in part of the lyric. The same part appears in Figure 2c as 

red lines parallel to the diagonal line in the center of CaRP. 

These parallel diagonal line structures can be interpreted as 

a rhyming structure, which appeared temporally. These 

results suggest that CaRP can provide a visualization of 

rhyming structure in musical lyrics. 

Figure 2d presents the proposed CaRP with temporal 

information (i.e., a time stamp at 25 FPS). It has 1527 points 

(25 Hz, approximately 60 seconds) including vowels and a 

no-voice zero value. Accordingly, it is possible that the 

same value (e.g., “a”) can appear successively; for example, 

“a” can repeat 25 times if the voice stays for one second. By 

adding such temporal information as a time stamp, we 

integrated categorical data with continuous data within the 

same framework (joint recurrence analysis), as discussed 

below. This new method seems to provide a more obvious 

structured pattern than the standard method, comparing 

Figure 2d and Figure 2a. For example, the transition point 

where the phase changed, or which was a break and pause 

in the tune, can be observed as a white band that indicates a 

no-voice state (red arrows in Figure 1d). These 

characteristics seem to express the original music (rap 

performance) and its temporal structure more clearly. 

Our results show that CaRPs can extract a repetitive 

structure or recurrence pattern of the lyric and rap 

performance. Our proposed method can visualize the RPs in 

a more informative way by including temporal information. 

In the future, quantification and analytical indexes of 

rhyming structure should be explored. 

Figure 3: Continuous recurrence plot (CoRP) of rap and Joint recurrence plot (JRP). 

a) CoRP of hip, b) CoRP of hand, c) JRP of rap-hip, d) JRP of rap-hand 
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Continuous Recurrence Plot: Motion Data 

Figure 3a represents the continuous RP (CoRP) of hip 

motion in the vertical direction. Blue lines separate the 

phases again. We assumed that the vertical hip motion could 

represent whole-body rhythm. The CoRP shows a 

recurrence pattern at the macro level, but not random dots. 

Interestingly, a white band can be observed at the center of 

the CoRP like the proposed CaRP (the first red arrow in 

Figure 2d). We could observe the change in bodily rhythm 

at this break point in the actual video data. In each phase, 

recurrence points are shown as a whole-body beat rhythm 

repeatedly. Furthermore, a similar recurrence structure can 

be found in the red areas (i.e., Phase 1-Phase 2, Phase 1-

Hook, and Phase 2-Hook). These results suggest that the 

participant beat out a rhythm with whole-body movement 

and that similar/common rhythm patterns can be found 

across the phases. 

Figure 3b shows the CoRP of hand (i.e., right wrist) motion 

in the vertical direction. Blue lines separate the phases again. 

We chose the right wrist marker motion for analysis, 

because the participant was right-handed and showed 

specific hand movements, such as beating or gesturing, 

during the rap performance. Compared with hip motion, 

hand motion seemed to be more closely related to rap 

performance and to have a high frequency. As a result, its 

RP (Figure 3b) shows a more detailed recurrence pattern at 

the micro level than that in Figure 3a. The white band in 

Hook phase (red arrow) corresponded to no-voice part, and 

the right hand stopped at this moment. 

Joint Recurrence Plot 

Figure 3c and Figure 3d depict the joint RP (JRP) of rap-hip 

coordination and rap-hand (i.e., right wrist) coordination. 

Blue lines separate the phases again. Compared to the CoRP 

of hip motion (Figure 3a), the JRP of rap-hip coordination 

seems to hold a common recurrence pattern at the macro 

level (red circles in Figure 3c). This suggests that the whole-

body rhythm was coupled with rap rhythm. Similarly, the 

JRP of rap-hand coordination (Figure 3d) seems to hold a 

common recurrence pattern with the RP of hand motion at 

the micro level (Figure 3b). This can also be considered rap-

hand coupling. These results indicate that JRPs can visualize 

speech-motion coordination/coupling during rap 

performance.  

Recurrence Quantification Analysis 

Table 1 shows the RQA measures quantified from each RP. 

Categorical RQA: The proposed method provided higher 

values in DET and maxL than the standard method. This 

came as a result of adding temporal information at 25 Hz, 

because it can realize successive value.  

Continuous RQA: The total hip RQA measures were higher 

than hand RQA measures. These results suggest that the 

participant maintained a stable whole-body rhythm, 

although he moved his dominant hand rhythmically, but in a 

complicated manner, synchronizing with the rap lyric and 

beat during rap performance. To address this possibility, the 

relationship between hand movement (e.g., gesture) and rap 

lyrics can be researched in more detail in future studies. 

Joint RQA: While RR and DET were higher in rap-hip 

coordination than in rap-hand coordination, interestingly, 

maxL was higher in rap-hand coordination than in rap-hip 

coordination. This suggests that hand movement is likely to 

couple with rap performance more sustainably and is 

involved in the content of the lyrics. We found that the right 

hand of the participant seemed to express the lyric contents, 

match with the rap tempo (e.g., beating rhythm) and 

correlate with rapping. 

 

Table 1: Recurrence quantification analysis measures. 

 
 Rap 

standard 
Rap 

proposed 
Hip 

vertical 
Wrist 
vertical 

Joint 
rap-hip 

Joint 
rap-hand 

RR 19.68 17.22 7.91 3.77 1.68 0.79 

DET 36.20 91.85 94.23 76.89 76.84 61.35 

maxL 18 60 435 229 16 35 

L 2.28 3.74 4.35 2.88 2.82 2.66 

General Discussion 

In this report, we introduced temporal information (i.e., a 

time stamp) to the standard categorical recurrence analysis. 

We showed the possibility of revealing the lyrical structure 

and the temporal structure (i.e., rhythm) of rapping (singing) 

or beat (music) itself more clearly. Furthermore, we applied 

the joint recurrence method to integrate categorical data 

(rap) with continuous data (bodily motion). By employing 

such integration, we showed the applicability of the joint 

recurrence method to the investigation of the speech-motion 

coordination/coupling and suggested the possibility of 

visualizing and quantifying it. 

Our current pilot study focused on hip-hop music, a music 

genre that has a relatively obvious rhythm and a 

repetitive/recurring structure (i.e., rhyme) in its lyrics, which 

helped us to investigate speech-motion relationship. We 

guessed that this relationship would be relatively easy to 

extract using the joint RP and RQA. Some similarities 

between rap dynamics and motion dynamics were found 

because common auditory information (i.e., a musical track) 

might affect these dynamics. 

Future Direction 

Given that we analyzed only one sample in this study, it 

needs to be confirmed whether our findings are robust by 

collecting and analyzing further data. If we could collect 

other rappers’ data, it would be possible to compare original 

data to virtual pair data of rap-motion coordination/coupling 

generated from other rappers’ performance data. This 

analysis would show that the current result was not 

produced by an artifact or possible random matching in 

terms of surrogate data method (e.g., Shockley, Baker, 

Richardson, & Fowler, 2007). It would heighten the 

applicability of the joint method that integrates categorical 

data (rap) with continuous data (motion). Although the 

present study focused on an intrapersonal coordination 
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between speech and motion, interpersonal coordination 

across participants can also be examined within the same 

framework as investigated by previous studies that have 

applied the recurrence analysis to various joint action tasks 

(e.g., Fusaroli, Konvalinka, & Wallot, 2014; Shockley & 

Riley, 2015). The proposed method should be applied to not 

only ready-made songs but also improvisational freestyle 

performance, including various music genres. 

Improvisational performance is more like everyday social 

interaction, in the sense that it also has complex aspects 

emerging from real-time interaction (Walton et al., 2018). 

The complex dynamical systems methods (e.g., recurrence 

analysis) are also expected to reveal the creative process in 

detail using more advanced techniques (e.g., the windowed 

sliding method; Coco & Dale, 2014; Kodama, Tanaka, 

Shimizu, Hori, & Matsui, 2018). We also aim to apply the 

framework not only to experimental  situations but also to 

more ecological situations, such as  the practical field of 

artistic performance, and daily natural conversations 

involving speech-motion coordination in the future 

(D’Ausilio, Novembre, Fadiga, & Keller, 2015; Sekine & 

Kita, 2015; Shimizu & Okada, 2018). 
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Abstract

We present a novel method for constructing neurally imple-
mented spatial representations that we show to be useful for
building models of spatial cognition. This method represents
continuous (i.e., real-valued) spaces using neurons, and iden-
tifies a set of operations for manipulating these representa-
tions. Specifically, we use “fractional binding” to construct
“spatial semantic pointers” (SSPs) that we use to generate and
manipulate representations of spatial maps encoding the posi-
tions of objects. We show how these representations can be
transformed to answer queries about the location and identities
of objects, move the relative or global position of items, and
answer queries about regions of space, among other things.
We demonstrate that the neural implementation in spiking net-
works of SSPs have similar accuracy and capacity as the math-
ematical ideal.

Keywords: Semantic Pointer Architecture; spatial semantic
pointer; spatial representation; fractional binding; continuous
spaces; spiking neural networks

Introduction
There is evidence for a wide variety of types of mental rep-
resentation. Some mental representations are well-described
using discrete structures (e.g., graphs, trees, lists, and so on).
Others are well-described using continuous structures (e.g.,
images, maps, surfaces, and so on). Here we propose a
kind of mental representation of continuous structures that is
amenable to neural implementation.

Recently, there have been several proposals for how neu-
ral networks can represent discrete structures. One family of
approaches, called Vector Symbolic Architectures (VSAs),
defines algebras over high-dimensional vector spaces, and
uses those algebras to encode such structures. VSAs
have been used to characterize a variety of cognitive be-
haviours, including analogical reasoning (Plate, 1994), lan-
guage processing (Jones & Mewhort, 2007), and concept
encoding (Crawford et al., 2015). Most VSAs are defined
over continuous vector spaces, including Multiply Add Per-
mute (MAP; Gayler, 2004), Holographic Reduced Represen-
tations (HRR; Plate, 1995), and Vector-derived Transforma-
tion Binding (VTB; Gosmann, 2018). When VSAs are used
to model cognitive behaviours, they essentially define meth-
ods for characterizing continuous vectors as both slots and
fillers and define a method of binding fillers to slots.

In this work, we will use the Semantic Pointer Architec-
ture (SPA; Eliasmith, 2013), which proposes a means of neu-
rally implementing VSAs for explaining cognitive behaviour
in biologically plausible spiking networks. This architecture
uses aspects of VSAs for cognitive representation, but the

SPA also addresses visual processing, motor control, mem-
ory, decision making, and cognitive control in ways that do
not use VSAs. However, all of these elements of the SPA use
representations called semantic pointers (SPs), which result
from compressing and decompressing information in cortex.
As a result, we can think of VSA algebras as proposing a
family of compression operators that are well-suited for cer-
tain cognitive tasks.

However, as with most uses of VSAs, in past work the
SPA addresses cognitive tasks with a focus on representa-
tions of discrete structures (i.e., discrete slots in a represented
structure). Here we propose a method for encoding cognitive
structures over continuous spaces. We call this kind of rep-
resentation “spatial semantic pointers” (SSPs). In this paper
we propose and examine in some detail a specific kind of SSP
implemented using a particular “fractional binding” operator
to encode real-valued quantities – although a variety of other
operators can be analogously defined.

In the remainder of the paper we provide a mathematical
definition of SSPs, and show how SSPs can provide a nat-
ural means of generating and manipulating representations
that are useful for spatial cognition. We identify desiderata
for spatial representation that are useful for cognitive expla-
nations. We then implement this representation both mathe-
matically and neurally, and perform simulation experiments
to demonstrate that it has a variety of useful properties, in-
cluding: being able to query a memory for its spatial or
non-spatial contents, representing multiple objects and loca-
tions simultaneously, spatially transforming memory contents
without decoding them, and representing regions of space of
various shapes and sizes. The choice of VSA and binding op-
erator used in this work allows the representation and various
transformations to be implemented efficiently by a spiking
neural network.

A spatial representation

Our proposed representation generalizes the notion of vec-
tor binding to continuous spaces. By analogy to fractional
powers defining the multiplication of reals, we define frac-
tional bindings for vectors in a vector space. To explain, let
us first consider binding a vector to itself a discrete number
of times. That is, let k ∈ N be a natural number, B ∈ Rd be a
fixed d-dimensional vector (i.e., semantic pointer), and ~ be
a binding operator. We can repeatedly bind B with itself k−1
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times1 as follows:

Bk = B~B~ . . .~B︸ ︷︷ ︸
B appears k times

. (1)

This representation has been used in several cognitive mod-
els, for instance, to encode the position (k) in a list in serial
working memory (Choo & Eliasmith, 2010). We propose to
generalize this to continuous quantities (as opposed to dis-
crete lists, for example) by permitting k to be real. Allowing a
real k means that the resulting vector Bk encodes a continuous
quantity. Most VSA operators can be interpreted in this man-
ner (including MAP (Gayler, 2004), VTB (Gosmann, 2018),
and HRR (Plate, 1995)), but not all (e.g., spatter codes (Kan-
erva, 1994)).

In the specific case of the SPA, we take the binding opera-
tor to be circular convolution (as proposed by Plate) and the
fixed d-dimensional vectors to be semantic pointers chosen
from the unit sphere. We then define our fractional binding
operation by expressing equation 1 in the complex domain:

Bk = F −1
{

F {B}k
}

, k ∈ R, (2)

where F {·} is the Fourier transform, and F {B}k is
an element-wise exponentiation of a complex vector—
analogous to exponentiation using fractional powers
(e.g., b2.5)—permitting k to be real.2 In the present paper, we
use unitary vectors for B due to the fact that their length does
not change with multiple bindings, and their inverse is equal
to their approximate inverse (see below).

This definition comes with many useful algebraic proper-
ties analogous to the relationship between multiplication and
exponentiation (e.g., b2.5b1.5 = b4), in particular:

Bk1 ~Bk2 = Bk1+k2 , k1,k2 ∈ R. (3)

In essence, fractional binding is to circular convolution as
exponentiation is to multiplication. We exploit equation 3
to perform semantically meaningful operations (e.g., shifting
space) in our experiments.

Next, we extend this representation to multiple dimensions,
which is the focus of our experiments below. In general, we
can represent points in Rn by repeating equation 2, n times,
using a different semantic pointer for each represented dimen-
sion (i.e., for each axis), and then binding all of the resulting
vectors together. For n = 2, we think of the representation
as encoding a continuous 2-D spatial representation (e.g., the
location of objects on a map). In this case, the SSP that rep-
resents the point (x,y) is defined as the vector resulting from
the function:

S(x,y) = Xx ~Y y, (4)

where X and Y are fixed semantic pointers, x and y are reals,
and we are using fractional binding as defined by equation 2.

1When k = 0 we get the identity vector corresponding to ~.
2For natural k, equations 1 and 2 are mathematically equivalent.

Similarly, the SSP that represents a continuous region (e.g.,
a solid rectangle), specified by some infinite set of 2-D points
R, is defined as:

S(R) =
∫
(x,y)∈R

Xx ~Y y dxdy. (5)

There are efficient ways to compute equations 4 and 5
with spiking neurons using the Neural Engineering Frame-
work (NEF; Eliasmith & Anderson, 2003). We use a publicly-
available implementation in several of our results below.

To represent a single object occupying some location or
region, we bind its semantic pointer representation, OBJ, with
the SSP from equation 4 or 5, respectively:

M = OBJ~S. (6)

In general, to represent a set of m labelled objects together in
the same memory, we can use superposition:

M =
m

∑
i=1

OBJi ~Si, (7)

with a distinct semantic pointer OBJi tagging each object.
Given a representation like that in equation 7, we can query

it in a number of ways. For example, to determine what object
is at location (x,y) we can compute:

M~ (Xx ~Y y)−1 = M~X−x ~Y−y. (8)

By the properties of binding and superposition, the resulting
vector will have highest cosine similarity (i.e., dot product)
with the object at (x,y).3 Note that the inverse used in equa-
tion 8 is approximate, but choosing X and Y to be unitary
vectors guarantees it is equal to the true inverse.

We can construct a heatmap of representations defined by
equation 7, to visualize a decoding of the objects back into the
original continuous space. For instance, for m = 2 (i.e., two
represented objects), taking the dot product of M~OBJ−1

i (M
is from equation 7) with vectors representing positions spaced
by ∆x and ∆y to tile the 2-D space, provides the visualization
of Figure 1.

In summary, fractional binding provides a scheme for en-
coding a set of n-dimensional points into a d-dimensional
SSP. This comes with an algebra for operating on these SSPs
in meaningful ways (e.g., querying, shifting, and so on).
When combined with the methods of the SPA, we can spa-
tially manipulate collections of objects in a spiking neural
implementation, as detailed in our experiments below.

Desiderata for spatial representation
To test if the proposed metric representation is useful, we con-
sider its ability to be used in a variety of ways for represent-
ing, querying, and updating representations of objects in a
spatial map. Here we describe the tests we perform, and in
the next section we present the results of these tests.

3This assumes d is sufficiently large, relative to m, as is typical
for VSAs.
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Figure 1: A heatmap visualizing the representation of two
objects at different locations, as specified by equation 7. This
graph is the sum of the decoding for each object.

The proposed desiderata for manipulating 2-D spatial rep-
resentations are identified and briefly described in Table 1.
In this table, M refers to the representation generated as de-
scribed in the previous section.

Example queries
To illustrate the application of representing objects at contin-
uous spatial locations using SSPs we demonstrate a variety
of example queries in Figure 2. A set of animals (items) at
random spatial locations are encoded into an SSP using equa-
tion 7 as shown in Figure 2a. This is accomplished by binding
the SP representing each object with the SSP corresponding
to its location, summing these values together, and then nor-
malizing the result.

Various queries can be made with this representation. Fig-
ure 2c (top) shows the results of asking for the locations of
different objects, decoded as a heatmap. If the object exists at
more than one location, the resulting SSP will be highly sim-
ilar to all of these locations (image on the left). If the object
does not exist at any location, the resulting SSP will not be
similar to any location on the heatmap (image on the right).
Figure 2c (bottom) shows the reverse is possible too: given a
location, find out which objects are at that location. If there
are no objects at the queried location, the result will be noise
and will not be similar to any object in the vocabulary (as
shown in the far right).

Location queries can also be extended to regions of space,
as shown in Figure 2b. If the region encompasses multiple
objects, all objects should be returned, as depicted by the bar
charts at the bottom. The region semantic pointers themselves
are a single vector that is formed by integrating over the spa-
tial semantic pointers within the region and normalizing the
result, as described by equation 5. This process creates a
vector that has a high dot product similarity with all vectors
within a particular area while having a low dot product with

Desiderata Description
Capacity Determine how many ob-

jects can be encoded into M
and a target object success-
fully decoded.

Query single object Find the location of an ob-
ject given the object and M.

Query missing object Indicate if an object is not
present when queried.

Query location Determine what object is at
a given location.

Query duplicate ob-
ject

Determine the positions of
multiple versions of the
same object.

Neural implementa-
tion

Implement the operations in
spiking neurons.

Region representa-
tion

Represent an entire region in
the 2-D space.

Query Region Determine which objects are
in a spatial region.

Shift single object in
group

Change the position of a sin-
gle object without decoding
M.

Shift whole group Change the position of all
objects in M similarly.

Readout (x,y) loca-
tion from SSP

Map from the SSP represen-
tation to the 2-D space.

Table 1: Desiderata for metric representations of space.

vectors outside the region. Two example represented regions
are illustrated in the heatmaps at the top of the figure. It is
important to note that due to the normalization, the dot prod-
uct with the region vector and a single point within the region
will decrease as the area of the region increases. The conse-
quence of this fact is that the optimal threshold for detection
is a function of the area.

Experimental methods
To quantify how well this spatial representation performs in
general for each of the desideratum a consistent measure must
be used. In this paper we chose to use the accuracy of the out-
put. When the output is a semantic pointer for an object, it is
considered correct if its vector is more similar to the vector for
the correct object than any other vector from a vocabulary of
objects. Vocabularies are randomly generated semantic point-
ers of between 4 and 48 items, as described below. Similarity
is determined by taking the dot product between vectors, with
a larger value corresponding to a better match. When the out-
put is a semantic pointer for a location, it is considered correct
when the represented location is within 0.5 units of the true
location. This threshold is chosen because it is approximately
the radius of the region of similarity that a spatial semantic
pointer has around itself.

The capacity calculation requires identifying a threshold
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(c) Location and item queries

Figure 2: Example queries of items, locations, and regions. a) An example memory encoded into an SSP. b) Region queries
applied to the memory in (a). c) Object (top) and location (bottom) queries applied to the memory in (a).

above which an item is identified as present in the represen-
tation. For this purpose we pick a threshold that is 3 sigma
above the mean, ensuring a 99.7% chance of accepting only
correct items.

For our capacity tests, we experiment with a dimension-
ality of 128, 256, and 512, and observe the overall effect
on performance. In all other tests we fix the number of di-
mensions to 512, which we have found achieves good per-
formance across a wide variety of tasks in both spiking and
non-spiking regimes.

For each desideratum, accuracy reported is the mean across
6,000 trials with memory sizes varying uniformly between 2
and 24 items. For each trial the vocabulary of objects is cho-
sen to be twice the number of objects encoded into memory
(i.e., 4 to 48).

Each object is assigned a random unitary vector. All se-

mantic pointers used in each task are normalized after every
operation. All 2-D coordinates used in the experiments are
chosen uniformly at random within the domain of -5 to 5 for
both x and y. The size of the domain in relation to the dimen-
sionality of the semantic pointers determines the ideal level
of performance (not shown).

Query single object Equation 9 is used to produce an SSP
representing the location of the desired object. Accuracy is
computed by decoding this high-dimensional vector, S, into
the 2-D coordinate it represents and comparing to the true
location.

S = M~OBJ−1. (9)

Query missing object Given a memory containing objects,
query an object that does not exist (using equation 9). The
correct behaviour is a result that is highly dissimilar to all
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locations within the domain of interest. This is determined
by the dot product of S and every SSP being less than 0.1.

Query duplicate object Given a memory containing many
objects with some duplicates, query an object that appears
twice. The correct behaviour is to return a spatial semantic
pointer that represents both locations of this object.

Query location Use equation 8 with the location for one of
the objects in memory. The correct behaviour is to return a
semantic pointer for the object at that location.

Query region On each trial a circular region is created with
a radius between 1 and 3 units and centered at a random loca-
tion. An SSP is constructed for this region using equation 5.
The inverse of this SSP is convolved with the memory to ob-
tain a semantic pointer representing all objects in the region.
Accuracy is computed by adding the number of objects cor-
rectly detected in the region to the number of objects correctly
not detected from outside the region and then dividing by the
total number of objects in the memory.

Shift single object in group Moving a single object within
a group can be accomplished by adding the object of inter-
est convolved with a vector that is the difference between the
start and end positions, as shown in equation 10. Accuracy
is reported for all objects as well as just the object that was
moved.

∆M = OBJ~∆S. (10)

Shift whole group The memory is convolved with an SSP
that corresponds to a random displacement, which leverages
the property of equation 3. An object query is then performed
for each object in the memory and the result is considered
correct if it moved by the displacement amount. A heatmap
visualizing the result of the two shifting operations is shown
in Figure 3 for a group of three identical objects.

Readout (x,y) location from SSP For the non-neural case
location is extracted from the maximum point in the heatmap.
In spiking neurons a heteroassociative memory is optimized
to map from a 512-dimensional SSP to a 2-D location.

Construct SSP from (x,y) location This can be computed
directly from equation 4. For the experiment using spiking
neurons each axis is first computed separately and then con-
volved together.

All experiments were repeated using networks of leaky
integrate-and-fire (LIF) neurons and the NEF to implement
the necessary transformations. In all trials 50 neurons were
used per dimension to represent the memory and to compute
circular convolutions.

Results
The results of the experiments for each of the desideratum are
shown in Table 2.4 As can be seen from the table, the SSP

4All source code required to reproduce these ex-
periments and generate the figures is available at
https://github.com/ctn-waterloo/cogsci2019-ssp.
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Figure 3: Shifting objects in memory. Left: The original
memory. Middle: Shifting the top left object. Right: Shifting
all three objects.

Desiderata Accuracy
Non-Neural Neural

Query single object 99.1% 95.7%
Query missing object 99.4% 96.7%
Query location 97.3% 94.7%
Query duplicate object 97.4% 95.3%
Query region 90.4% 73.5%
Shift single object in group
(all objects)

75.7% 67.3%

Shift single object in group
(moved object)

100.0% 100.0%

Shift whole group 97.8% 96.7%
Readout (x,y) location from
SSP

100.0% 94.1%

Construct SSP from (x,y) lo-
cation

100.0% 99.0%

Table 2: Experiments for the desiderata for metric representa-
tions of space. Accuracy is calculated using SSP representa-
tions containing 2 to 24 items. When the output is a location,
it is considered correct when the result is within 0.5 units of
the true location.

representation is able to address the desiderata quite well,
both in purely mathematical and neural implementations. The
worst performance is evident in the shifting of a single object
in a group. Specifically, the accuracy of the representation for
the objects that were not shifted decreases, while the accuracy
for the shifted object increases. This is due to normalization
effects making the moved object be re-encoded with a larger
relative magnitude than the rest of the items. Using a scaling
factor proportional to the number of items in the memory mit-
igates this effect (improves accuracy from 75.7% to 97.8%),
but in general the number of items within a memory is not al-
ways known without first retrieving items from memory, and
equation 10 is agnostic to the other contents of the memory.

To better characterize the capacity of a single memory us-
ing this representation we performed queries on memories
with progressively larger numbers of items encoded (see Fig-
ure 4). The shape of the curve is very similar for both loca-
tion and object queries since the decrease in the dot product
is mostly a result of the normalization of the memory to a
unit vector. The standard deviation for the dot product of two
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Figure 4: Memory capacity and accuracy as a function of the
number of items in the SSP for ideal and neural implementa-
tions while varying the dimensionality. Top panels show the
item and location capacity. Bottom panels show the item and
location accuracy.

random vectors in a unit hypersphere is
√

1/D where D is
the dimensionality of the space. The mean is zero, so for
512 dimensions this results in a 3-sigma threshold similar-
ity of 0.133. SSPs that represent coordinates within a finite
domain will span a smaller subspace of the hypersphere, so
their threshold will be a little higher. Specifically, we esti-
mated the threshold by generating 10,000 random SSPs from
a 10×10 2-D domain and computing the dot product between
every pair. The mean is approximately zero, and three stan-
dard deviations is 0.154. Consequently 99.7% of queries will
be above this value for items actually in the memory. The
accuracy plots show the importance of dimensionality on ac-
curacy of decoding memories.

Discussion
We have proposed a novel neural representation, SSPs, for
encoding structured continuous spaces using fractional bind-
ing. We have demonstrated that these representations satisfy
desiderata for representations that are useful for spatial cog-
nition. By implementing these methods at the level of spik-
ing neurons, this work enables future exploration of trade-
offs between neural constraints and performance for tasks of
increasing complexity. In addition, a spiking neural imple-
mentation serves as a prerequisite for constructing dynamical
models of spatial cognition that operate sparsely over time
and in an event-driven manner.

SSPs have many potential applications for modelling cog-
nitive phenomena that involve spatial reasoning over time,
such as path planning and navigation. Objects that a cog-
nitive agent encounters while traversing a space can be stored
in memory in such a way that their relative distances and di-
rections from each other are preserved.

The extension of Vector Symbolic Architectures to contin-

uous representation presented in this work is not limited to
representing physical space. Any continuous dimension over
which concepts may vary (e.g., mass, colour, value, and so
on) can utilize this representation.

While we have explored some of the capacity and accu-
racy limitations of this representation, it is important to note
that the effective capacity can likely be increased by hier-
archically chunking items into groups when encoding them
into the memory by using a similar technique as the method
demonstrated in Crawford et al. (2015).

Areas of future work include exploring the theoretical
foundations of this method to improve our understanding of
its strengths and limitations. As well, there remain many
questions regarding how well a cognitive model using these
representations can scale and how well the behaviour and
neural recordings from such a model match that of animals.
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Abstract 
Previous work has argued that young children do not answer 
counterfactual questions (e.g. “what would have happened?”) 
by constructing simulations of alternative possibilities in the 
way adults do. Here, we propose that children can engage in 
simulation when answering these questions, but consider 
different counterfactual possibilities than adults. While most 
previous research has relied on narrative stimuli, we use causal 
perception events, which are understood even in infancy. In 
Experiment 1, we replicate earlier findings that children 
struggle with counterfactual reasoning, but show that they are 
capable of conducting the required simulations in a prediction 
task. In Experiment 2, we use a novel multiple-choice method 
that allows us to study not only when children get it right, but 
also how they get it wrong. We find evidence that 4-year-olds 
engage in simulation, but preserve only some features of what 
actually happened and not others. 

Keywords: causality; counterfactual reasoning; perception; 
child development; multinomial process trees 

Introduction 
When considering whether some event C caused another 
event E, we do not merely consider events as they actually 
unfolded. Rather, we think about what could or would have 
happened had C been altered in some way (Byrne, 2016; 
Lewis, 1973). This capability for counterfactual reasoning is 
an essential, and perhaps even automatic, feature of causal 
cognition (Gerstenberg, Peterson, Goodman, Lagnado, & 
Tennenbaum, 2017), with a variety of consequences. For 
example, the relevance of different counterfactual 
possibilities affects causal judgments (Phillips, Luguri, & 
Knobe, 2015; Icard, Kominsky, & Knobe, 2017; Phillips & 
Kominsky, 2017), counterfactual reasoning undergirds 
emotions, like regret and relief (Beck & Riggs, 2014), and is 
an implicit component of Bayesian causal learning (Pearl, 
2000).  

One of the essential properties of counterfactual reasoning 
is simulation. When people engage in counterfactual 
reasoning, they construct a mental model of the events as they 
actually happened, and then imagine how the events would 
have unfolded if something about the situation had been 
different. This mental simulation is guided by a causal model 
of the situation which dictates the consequences of 
counterfactual interventions (e.g., Sloman & Lagnado, 2005).    

The developmental origins of counterfactual reasoning in 
the human mind remain a challenging mystery to cognitive 
science. Piaget held that counterfactual reasoning emerged in 
the developmental stage of “formal operations”, starting at 
about 12 years of age (Inhelder & Piaget, 1958). Later work 
found that children as young as 3 could answer certain 
counterfactual questions correctly. For example, presented 

with a story about a girl named Carol who walked across a 
floor with dirty shoes, 3-5-year-olds who were asked “what 
would have happened if Carol had taken her shoes off?” 
correctly answered the floor would be clean (Harris, German, 
& Mills, 1996). 

However, later work suggested that children may arrive at 
such answers without engaging in counterfactual simulation, 
and simply rely on conditional reasoning instead. In general, 
dirty shoes make floors dirty, while clean shoes leave floors 
clean (Rafetseder, Schwitalla, & Perner, 2013). However, 
basic conditional reasoning and counterfactual reasoning 
come apart in situations in which the outcome is causally 
overdetermined. When an outcome was overdetermined, this 
means that there were multiple individually sufficient causes 
such that the outcome would still have come about even if 
one (or more) of the causes hadn’t occurred. For example, if 
both Carol and Max walk across the kitchen floor with dirty 
shoes, and children and adults are asked what would have 
happened if Carol had taken her shoes off, adults say the floor 
would still have been dirty (because of Max), whereas 5-year-
olds overwhelmingly say the floor would have been clean. 
Remarkably, 10-year-olds responded at chance, and adult-
like performance emerged only around 14 years of age 
(Rafetseder et al. 2013). 

Recent work has, again, been more optimistic about 
children’s counterfactual reasoning abilities. When narratives 
are replaced by simple “blicket detector” causal systems in 
which only some blocks (called “blickets”) can make a 
machine go, children show above-chance success for 
overdetermined outcomes around age 6 (Gopnik & Sobel, 
2000), or even at age 4-5 (Nyhout & Ganea, 2019). 

However, we believe that what it means to succeed in 
counterfactual reasoning needs to be examined more closely. 
In the research to date, researchers have generally concluded 
that the reason why children answer these questions 
incorrectly, is because they do not simulate counterfactual 
alternatives, but instead arrive at their answers by some other 
reasoning strategy (Rafeteseder et al., 2013; Nyhout & 
Ganea, 2019). This is remarkable given that other work has 
found that children are quite adept at simulation when making 
predictions about events that have not yet occurred (Atance 
& O’Neill, 2005). Given that children can engage in 
simulation in some cases, and that adults naturally do so when 
answering causal questions (Gerstenberg et al., 2017), the 
assumption that young children fail to reason 
counterfactually because they do not engage in 
counterfactual simulation at all is worth re-examining. 

There is another possible reason for why children respond 
differently than adults: Rather than failing to simulate, they 
instead simulate different counterfactual alternatives than 
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adults do. This proposal aligns with a recent proposal that 
young children may consider a broader hypothesis space than 
adults do when engaging in causal reasoning (Gopnik et al., 
2017). Similar to how children may be more flexible in what 
hypotheses they consider in causal reasoning, it is possible 
that they also consider different possibilities than adults do, 
when simulating counterfactuals. Here, we are interested to 
see whether there is systematicity in the way in which 
children consider counterfactual possibilities. When children 
get the answer to a counterfactual questions wrong, are they 
just randomly guessing, or may they systematically consider 
different possibilities than adults do? Characterizing such 
potential systematicity could give unique insight into the 
development of counterfactual reasoning, and a deeper 
understanding of what features of an event children consider 
mutable (Byrne, 2016).  

In order to examine which specific counterfactual 
possibilities children consider, we depart from the narrative 
studies that have been used in most prior work. Narrative 
stimuli add a great deal of memory load and room for 
influence from idiosyncratic knowledge. The ideal stimuli 
would be a causal event that children understand nearly 
effortlessly, that they can see in full while answering a 
counterfactual question, and which offers the opportunity to 
ask not just whether they are simulating counterfactual 
alternatives, but which specific alternatives they consider. 

Simple physical interactions that fall under the category of 
“causal perception” perfectly fit these criteria. Events in 
which one object appears to collide with another and cause it 
to move are perceived as causal by 6 months of age (Leslie & 
Keeble, 1987; Saxe & Carey 2006; Kominsky et al., 2017), 
and recent work has used these events to demonstrate 
counterfactual simulation in causal judgment with adults 
(Gerstenberg et al., 2017). 

In the current work, we present two experiments 
investigating the development of counterfactual simulation, 
using causal perception events. In Experiments 1a and 1b, we 
replicate previous findings that children struggle with 
counterfactual reasoning in overdetermined cases, but in the 
domain of causal perception events. However, we also find 
that children are highly accurate when making predictions 
about these events, showing that they are able, in principle, 
to conduct the necessary simulations to answer the questions 
correctly. 

In Experiment 2, we present children with concrete 
counterfactual alternatives to causal perception events in a 
multiple-choice answer format similar to that employed by 
Rafetseder and Perner (2018). This response format allows us 
to examine not only whether children engage in 
counterfactual simulation, but which specific counterfactual 
possibilities they consider.  

Experiment 1a 
The goal of this experiment was to validate the domain of 
causal perception in the study of children’s counterfactual 
judgments, by having children make counterfactual 
judgments about  simple causal perception events. 

Methods 
Participants We planned to run 40 children in each age 
group (20 in each of two conditions), and continued 
collecting data until we had reached that target, replacing any 
participants that were excluded (see below). 40 5-6-year-olds 
(15 female), 40 7-8-year-olds (15 female), and 40 9-10-year-
olds (18 female) participated in Experiment 1a, recruited 
from local schools and children’s museums. In addition, 10 
5-6-year-olds (5 female), 3 7-8-year-olds (2 female) and 1  
(male) 9-10-year- old participated but were excluded from 
analyses based on predetermined exclusion criteria (see 
below). 
Stimuli and procedure We constructed simple animations 
modeled on those used by Gerstenberg et al. (2015) (see Fig. 
1, videos of the animations can be found here: 
http://osf.io/qwphr/). In these animations, there are two balls, 
A and E, a red area that was described as a “goal”, and black 
walls on either side of the goal. The stimuli were animated 
.gif files placed into a Qualtrics survey (Qualtrics, 2005). The 
survey was presented on an iPad. 

All participants first saw two training items in 
counterbalanced order. In one training item, ball A hit ball E, 
which then bounced off the wall above the goal. In the other 
training item, ball A hit ball E, which then went into the goal. 
Following each training trial, participants were asked two 
questions: “Before ball A hit ball E, was ball E moving or 
sitting still?”, and “Did ball E go into the goal?” Participants 
could verbally respond and the experimenter would record 
their answer, or older children could select the option on the 
iPad directly. If participants answered either question 
incorrectly on one of the training trials, they were shown that 
training animation a second time and asked again. 

Participants then saw one of two test trials, between-
subjects. In the “difference-making” condition, the animation 
was almost identical to the training item in which ball E 
bounced off the wall above the goal, except that there was a 
“brick wall” (see Fig. 1) that ball E bounced off of, and ball 
E went into the goal. In the “overdetermined” condition, the 
animation was almost identical to the training item in which 
the ball went into the goal, except that the ball bounced off 
the brick wall before going into the goal, thus leaving the 
outcome unchanged.  

Following the test trial, participants were asked the same 
two questions as in the training trials. If children answered 
either question incorrectly, they were not corrected but their 
data were excluded. Then, children were asked the critical 
test question: “What if the brick wall had not been there? 
Would ball E have gone into the goal?”  

Results and discussion 
Results can be found in Fig. 2. A simple inspection of this 
figure gives a clear sense of the results, which were similar 
across all age groups: Near-perfect performance on cases in 
which the brick wall made a difference (where the correct 
answer is that ball E would not have gone into the goal), but 
only roughly 50% accuracy for overdetermined events 
(where the correct answer is that ball E would still have gone 
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into the goal). A logistic regression with age group and 
condition as factors revealed a main effect of condition, ß = 
2.54, p = .02, but no effect of age group and no interactions, 
p > .9. As children demonstrated nearly uniform perfect 
performance in the difference-making condition (one 
incorrect answer in total), no further analyses were conducted 
for this condition. For the overdetermined condition, a 
logistic regression with age group also showed no effect of 
age (p > .3) and no significant intercept (p = .37), indicating 
that accuracy did not differ from chance (i.e., .5).  

These results are very similar to many earlier results 
investigating children’s counterfactual reasoning (e.g., 
Rafetseder et al., 2013): Children can answer counterfactual 
questions when the correct answer changes the outcome, but 
struggle in overdetermined cases. One reason for this could 
be that children are unable to successfully simulate the 
required counterfactual possibility in these causal perception 
events. Experiment 1b tested this hypothesis by asking 
children to make predictive simulations about these very 
events, without the brick wall. 

Experiment 1b 
In this experiment, we wanted to see whether children are 
capable of correctly predicting what will happen after the 
animation is paused. It is possible that children failed to 
answer the counterfactual question correctly in the 
overdetermined situation because they have trouble 
simulating what would have happened in this case. 

Methods 
Participants This study was stopped early due to the fact that 
all children responded correctly. Our final sample sizes were 
therefore 21 5-6-year-olds (10 female) and 26 7-8-year-olds 
(14 female) recruited from the same populations as 
Experiment 1a. In addition, 4 5-6-year-olds (2 female) and 1 
(male) 7-8-year-old were excluded based on predetermined 
exclusion criteria (see below). 
Stimuli and procedure The stimuli were similar to 
Experiment 1a with the following differences: Participants 
first saw four training trials in random order: Two in which 
ball E went into the goal and two in which it missed the goal. 

First, children saw an animation where ball A struck ball E, 
and ball E moved approximately halfway from its starting 
position to the left edge of the display (where the wall and 
goal are located). At this point the animation froze and a large 
“pause” icon appeared (that didn’t obstruct either of the 
balls). Children were then asked, “If ball E keeps going, will 
it go into the goal?” Children could respond “yes” or “no”. 
For the training trials, children then saw the rest of the 
animation. If children made incorrect predictions on at least 
two of these items, they were excluded from analyses on the 
basis that they did not understand the task. 

Following training, children saw two test trials, a 
“difference-making” trial and an “overdetermined” trial in 
counterbalanced order. The test trials were identical to those 
used in Experiment 1a, with two exceptions: First, the brick 
wall was not visible (i.e., identical to Experiment 1a’s 
training trials). Second, the animation paused on the frame in 
which the ball would have collided with the brick wall in 
Experiment 1a (participants had no way of knowing this). 
Participants were then asked the same question as in the 
training items, but were not shown the end of the animation. 
Note that the predictions that children are asked to make in 
Experiment 1b are identical to the counterfactual simulation 
that is required to answer what would have happened without 
the brick wall in Experiment 1a. 

Results and discussion 
Every single child who passed the training provided correct 
answers to both test questions (21/21 5-6-year-olds and 26/26 
7-8-year-olds). We report no statistical tests because the 
uniformity of these responses renders such tests 
uninformative. 

Experiment 2 
Experiment 1b showed that, in line with prior work, children 
are capable of engaging in the kind of physical simulation 
that is required to answer counterfactual questions correctly, 
but did not do so consistently for the overdetermined item in 
Experiment 1a. This result suggests that children’s 
counterfactual reasoning about causal perception stimuli is 
similar to their reasoning in other domains. However, we 

 

Figure 1. Example stimuli from Experiment 1a. In the 
difference-making event (left), the brick wall altered ball 
E’s trajectory such that it went into the goal. In the 
overdetermined condition (right), ball E also deflects of 
the wall, but would have gone into the goal regardless. 

 

 
Figure 2. Proportion of accurate responses to the 
counterfactual question in Experiment 1a.  
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cannot tell based on these findings why children sometimes 
get it wrong. One explanation is like that proposed by 
Rafetseder et al. (2013): Children did not engage in 
simulation at all when asked to consider the counterfactual 
question. While this is still possible, given that they are 
obviously capable of engaging in simulation, we must ask 
why.  

One possibility is that children cannot simulate while 
holding the event as it actually occurred in mind (Beck & 
Riggs, 2014). For example, a correct answer in Experiment 
1a requires mentally rewinding the animation and then 
simulating what would have happened without the brick. The 
corresponding prediction in Experiment 1b is simpler 
because the brick is not present in the scene, the clip is 
paused, and it only requires children to simulate the future 
without the need to go back in time.  

An alternative is that the wording of the question 
influenced children’s performance. Notably, we found a 
pattern that aligns more closely with Rafetseder et al. (2013) 
than more recent work (Nyhout & Ganea, 2019; Rafetseder 
& Perner, 2018). One key difference between our study and 
that of Nyhout and Ganea (2019) is that the question in 
Nyhout and Ganea was “would [outcome] still [have 
happened]?” (emphasis added). While a systematic 
investigation is necessary, children may sometimes be 
answering on the basis of pragmatic cues: Why ask “would 
the outcome have been different” if the outcome was 
unchanged? 

A second, not mutually exclusive alternative is that 
children did engage in simulation, but considered different 
counterfactual possibilities than adults did. We explore this 
possibility in Experiment 2 using a multiple-choice task 
modeled on Rafetseder and Perner (2018). We hypothesized 
that children may arrive at the wrong answer because they 
hold some of the features of the actual event constant, but 
allow other features to vary in ways that adults and older 
children do not. Based on pilot data, we predicted that 
children will specifically maintain the point of origin of a 
ball’s movement from the event they saw, much as we would 
expect adults to, but allow the initial trajectory of the ball to 
vary, which we would not expect adults to do.  

Methods 
Participants We pre-registered (https://osf.io/qn3b9) a 
planned sample size of 24 participants in each of three age 
groups: 4-year-olds, 5-year-olds, and 6-year-olds. We 
therefore recruited 24 4-year-olds (15 female), 24 5-year-
olds (7 female) and 24 6-year-olds (8 female). In addition, 6 
4-year-olds (2 female) and 2 (female) 5-year-olds 
participated but were excluded due to failing to complete the 
study (4) or parental interference (3; see below). Participants 
were recruited from TheChildLab.com (Sheskin & Keil, 
2018). 

 
Stimuli and apparatus Children saw a total of ten trials in 
which featured animated events, and then still images 
representing what actually occurred in the animation, as well 

as four counterfactual possibilities (see Fig. 3; Full stimuli are 
available online at https://osf.io/5jw6y/). 

Animated events were constructed using Flash, converted 
to a movie format, embedded in a PowerPoint presentation, 
and presented over a videoconferencing system. The 
animations were slightly modified from Experiment 1. This 
time, there was only one ball, resembling a soccer ball, and 
the brick wall was replaced with a triangular wedge with a 
wood texture. The background was made green with a white 
line to mimic a soccer field. The goal was turned into a grey 
rectangle, and there were no walls on either side of it. 

We created a total of eight test animations and two training 
animations. In all test animations, the ball entered the stage 
from the right side and moved in a perfectly horizontal 
trajectory. In six of the test animations, the ball deflected off 
of the wedge, which did (4 animations) or did not (2) change 
whether it went into the goal. In two other test animations, 
the ball did not interact with the wedge, and simply moved 
across the field in a straight line. 

Along with each test animation, we made a still image that 
showed the entire trajectory the ball had taken (center, Fig. 
3), which was visible while the child was answering the 
counterfactual question, thus eliminating memory load. In 
addition, we constructed still images representing four 
counterfactual possibilities for each animation (Fig. 3). In 
these counterfactual possibilities, the wedge was removed, 
and the complete trajectory of the ball was shown as in the 
still image of the actual event. These four possibilities were 
constructed in systematic ways for the six items in which the 
ball interacted with the wedge. 

• “Correct” (red): In this image, the ball is shown moving 
horizontally across the entire field, starting from the 
same point of origin that it had in the actual animation. 
In other words, it preserved both the origin and the initial 
trajectory of the ball. 

• “Match origin” (yellow): The ball started from the same 
point of origin, but had a diagonal trajectory, ultimately 
ending up in the exact same place as the ball ended up in 
the actual event, in which it deflected off the wedge. This 
option preserved the origin but not the trajectory of the 
actual event. 

• “Match trajectory” (purple): The ball originated from a 
y-coordinate that was level with where the ball ended in 
the actual animation, and the ball moved across the 
whole field in a perfectly horizontal trajectory. This 
option preserved the initial trajectory but not the origin 
of the actual event.  

•  “Match neither” (blue): The ball started from the same 
place as it did in the “match trajectory” image, but had a 
diagonal trajectory ending in the same place as the 
“correct” image, thus matching neither the point of 
origin nor the initial trajectory of the actual event.  

For the events in which the ball and wedge did not interact, 
the four images still contained two options that preserved the 
origin and two that preserved the trajectory, but because the 
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ball did not deflect off the wedge in the actual event, the 
“match origin” and “match trajectory” images in fact showed 
the ball ending up in a location that was not present in the 
original event, while the “correct” and “match neither” 
images did. The model we used to analyze children’s 
responses (described below) therefore does not apply to these 
images. 

In addition, there were two training animations, one in 
which the ball bounced off the wedge and one in which it did 
not interact with the wedge. In both training animations, the 
ball entered on a diagonal trajectory. No still image of the 
event was presented in the center of the response screen, and 
in the still images for training items, the wedge was still 
present, as the training task was matching the actual event 
rather than considering a counterfactual one. 
Procedure The script can be found in the presenter notes of 
the PowerPoint presentations at http://osf.io/5jw6y/ 

After parents gave informed consent, children were first 
shown the two training animations, and after each one asked 
to find the image that matched what they saw from the four 
possibilities. This was primarily to familiarize children with 
the multiple-choice response method. For test trials, children 
were asked “If there were no block on the field, how would 
the ball have moved?” 

The experimenter was blind to what the child was seeing at 
all times, and only recorded the color that they said. 
Children’s responses were then transcribed by another coder 
who was blind to condition, and later matched to images 
based on the condition the child had been assigned to (see 
data files in repository). There were two exclusion criteria: If 
the child failed to finish the study for any reason, or if the 
parent interfered in a way that guided the child toward a 
specific answer on any item, in the opinion of the 
experimenter or coder. As both were blind to what the child 
was seeing, these judgments could not be influenced by 
knowing what option the child was selecting. 
Analysis plan We focused on the six test items in which the 
ball collides with the wedge. For those items, we used a 
multinomial processing tree (MPT) model (Riefer & 
Batchelder, 1988) to model the proportions with which the 

different age group chose the four possible response options, 
P(C) (= “Correct”), P(O) (= “match origin”), P(T) (= “match 
trajectory”), and P(N) (= “match neither”). Our model has 
three free parameters, 𝒔, 𝒎𝒐, and 𝒎𝒕, which each represent 
the (conditional) probability of reaching a specific discrete 
cognitive processing stage (e.g., 𝒔 = probability of engaging 
in simulation). In addition, our model allowed for the 
possibility of unbiased guessing.  

The first parameter (s) represents the probability whether 
the children engage in simulation or not. If they do not (with 
probability 1–s), we assume children simply make an 
unbiased guess for one of the four response categories (i.e., 
the conditional probability of choosing any one response 
category is .25). We assume that this will be unbiased as the 
multiple-choice question lacks the pragmatic demands of the 
questions used in previous studies. In case children engage in 
simulation (with probability s), we assume two further 
(unordered) processing steps: how likely they are to maintain 
the origin from the actual world in their simulation 
(parameter 𝑚&), and how likely they are to maintain the 
trajectory (parameter 𝑚')? In order to examine this, we 
ignore the cases in which the ball does not interact with the 
block. For the remaining six cases, we can enumerate how the 
four different response categories follow from the assumed 
processes. For example, if children maintain both the origin 
and the trajectory (with probability 𝑚& ×𝑚'), they will 
provide the correct response. If, however, children only 
maintain the origin, but not the trajectory (with probability 
𝑚& × (1 −𝑚')), they will choose the “match origin” 
response option, 𝑃(𝑂). Analogous arguments can be made 
for 𝑃(𝑇) and 𝑃(𝑁). Thus, the following model equations are 
assumed to hold:  

 
𝑃(𝐶) = 𝑠 ×𝑚& ×𝑚' + (1 − 𝑠) × 0.25	
𝑃(𝑂) = 𝑠 ×𝑚& × (1 −𝑚') + (1 − 𝑠) × 0.25	
𝑃(𝑇) = 𝑠 × (1 −𝑚&) ×𝑚' + (1 − 𝑠) × 0.25	
𝑃(𝑁) = 𝑠 × (1 −𝑚&) × (1 −𝑚') + (1 − 𝑠) × 0.25 

 

 
Figure 3. Example item from Exp. 2, as a child would see 
it. The center image is a rendering of the video the child 
just watched. On this trial, red is “correct”, yellow is 
“match origin”, purple is “match trajectory”, and blue is 
“match neither”. 
 

 
Figure 4. Results of Exp. 2. Proportion of responses is on 
the y-axis, and chance responding is indicated at 25%. 
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To obtain estimates of the model parameters s, mo, and mt, 
we fitted the model to the aggregated data using maximum-
likelihood estimation. This provides us with a model-based 
estimate of how likely each age group is engaging in 
simulation, and the likelihood, in each age group, of 
maintaining the origin and the trajectory of the actual world.  
Note that, although the model is saturated (i.e., three free 
parameters for three independent data points provided by the 
multinomial distribution with four categories), it cannot 
account for any possible data pattern. That is, our model 
imposes testable constraints on the data. For example, it 
predicts that, after accounting for the proportion of unbiased 
guessing, the conditional ratio of 𝑃(𝐶)/𝑃(𝑂) must be equal 
to the conditional ratio 𝑃(𝑇)/𝑃(𝑁). Therefore, finding that 
the model adequately accounts for the data (i.e., it fits the 
data), provides some evidence for the underlying 
assumptions and validity of the interpretations associated 
with the parameters.  

Results and discussion 
Fig. 4 shows how often children chose each of the four 
options for the six test items where the ball collided with the 
wedge. For the two cases in which the ball and wedge did not 
interact, the correct answer was the modal response in every 
age group (4-year-olds: 50%; 5-year-olds: 71%; 6-year-olds: 
88%). 

A visual inspection of the figure suggests a clear pattern 
when it comes to choosing the correct answer: Above-chance 
performance emerges around age 6. However, it also appears 
that, of the three possible incorrect responses, all age groups 
preferred “match origin” over “match trajectory” and “match 
neither”, which suggests that the younger children are not just 
guessing randomly. Rather, they are simulating possibilities 
that maintain the origin but not the trajectory of the ball in the 
actual event. 

To verify this impression, we fit our MPT model to 
children’s responses. As our model was saturated, we used a 
double bootstrap procedure (van de Schoot, Hoijtink, & 
Dekovic, 2010) to evaluate model fit. This approach revealed 
a p-value of .04 (𝐺< = 3.48) for the 4-year olds and .05 
(𝐺< = 2.66) for the 5-year-olds, suggesting that the main 
patterns in the data were well accounted for, but there was 

some misfit. Specifically, the model cannot predict both 
𝑃(𝐶) < 𝑃(𝑂) and 𝑃(𝑇) > 𝑃(𝑁) at the same time, as was 
observed in the data. One possible reason for this misfit is 
individual differences in the simulation behavior of the 4- and 
5-year-olds, such that some individual children consistently 
responded in a particular way and others did not.  For 6-year-
olds, the fit was perfect (𝐺< = 0). Given the small magnitude 
of misfit, the model is interpretable, and we can evaluate the 
likelihood that children engaged in simulation, and how.  

The parameter estimates for each parameter in each age 
group, with 95% confidence intervals estimated by 
parametric bootstrapping, can be seen in Fig. 5. In short, we 
find little evidence for developmental change in mo or s, but 
a clear developmental increase in the estimate of mt. Put in 
plain terms, this analysis suggests that 4- and 5-year-olds 
were not significantly different from 6-year-olds or each 
other in their likelihood of engaging in simulation, nor in how 
likely they were to choose an option that maintained the ball’s 
point of origin from the actual event. However, 6-year-olds 
were significantly more likely than younger children to 
maintain the ball’s initial trajectory from the counterfactual 
event. In addition, for 6-year-olds we have considerably 
smaller CIs for s, indicating we that we have higher certainty 
that they engage in simulation most of the time. 

In short, children ages 4-5 do seem to engage in 
counterfactual simulation, and systematically hold constant 
some, but not all, features of the actual world in those 
counterfactual simulations, while allowing other features of 
the world (which older children hold constant) to vary.  

General Discussion 
In two experiments, we provide evidence that young children 
engage in counterfactual simulation, but do so in a different 
way than older children and adults. Experiment 1 validated 
the stimuli by replicating previous findings about children’s 
ability to answer counterfactual questions and conduct 
predictive simulations, but in the domain of causal 
perception. Experiment 2 asked children to choose among 
four counterfactual trajectories rather than answering a 
simple yes/no question, and found that when 4-5-year-old 
children engage in simulation, they consider counterfactual 
possibilities in which the origin of an object’s motion is 
preserved while its initial trajectory is allowed to vary, while 
6-year-olds are more likely to preserve both features in their 
counterfactual simulations. 

We consider these findings in the context of a general 
theory of children’s reasoning put forward by Gopnik et al. 
(2017): When reasoning about different possibilities, 
children’s hypothesis space may be quite different from 
adults, but the basic process of simulation could be very 
similar. In particular, this theory suggests that children have 
a broader and “flatter” hypothesis space (i.e., priors across all 
hypotheses are similar), in which they conduct a “higher-
temperature” (i.e., broader) search. This theory can be readily 
applied to children’s struggles with counterfactual reasoning: 
When considering counterfactual possibilities, children may 
be sampling from a broader set of possibilities, none of which 

 
Figure 5. MPT model parameter estimates for s, mo, and 
mt in each age group. Error bars are bootstrapped 95% CIs. 
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are favored over the others, and the way they pick 
possibilities out of this space is more random. 

However, unlike Gopnik et al. (2017), we find that children 
are only showing evidence of this broader search space for 
certain specific features of these events. In other words, while 
our results align with the general proposal that children 
conduct simulations over a “flatter” hypothesis space, the 
space is only flatter over certain “dimensions” (i.e., 
components) of the events being considered. In this case, 
children are unlikely to consider possibilities that change 
where the ball enters from, but between 4 and 6 they narrow 
the search space for the initial trajectory of the object to be 
more like adults’. 

This is a critical advance for understanding children’s 
reasoning. We must not only test whether they are searching 
a broader space of possibilities in general, but also identify 
the separate features of that hypothesis space and determine 
which aspects of the event-structure are treated in an adult-
like way (in this case the point of origin of the object’s 
motion). Doing so will not only help us better understand 
children’s reasoning processes, but allow us to predict 
specific challenges they face, or errors they will make. 

One limitation is that we selected the range of possibilities 
for children to consider, and so there may be a possibility that 
we did not include which they would prefer over and above 
the ones they selected here. While verbal pragmatics are no 
longer a viable explanation, there are other possible 
explanations for children’s responses that would not rely on 
simulation, such as path similarity, or some kind of 
contextual inference about the scenario, such as whether there 
is an agent launching the ball into motion.  

This work provides an exciting new approach to the study 
of counterfactual reasoning in development. We should 
consider that “failure” in these tasks may result not from a 
failure to simulate per se but rather from different 
assumptions about what to hold constant and what to change 
when simulating counterfactuals. 
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Abstract

Transmission of information by means of language is a po-
tentially lossy process. Especially adjunct information, such
as the graded degree of evidence, is a piece of information
that seems prima facie likely to be distorted by reproduction
noise. To investigate this issue, we present the results of a two-
step iterated narration study: first, we collected a corpus of
250 crime story reproductions that were produced in parallel
reproduction chains of 5 generations in depth, for 5 different
seed stories; a second separate large-scale experiment then tar-
geted readers’ interpretation of these reproductions. Crucially,
strength of evidence for the guilt of each story’s suspect(s)
was manipulated in the initial seed stories. Across genera-
tions, readers’ guilt perceptions decreased when the evidence
was originally strong, but remained stable when evidence was
originally weak. Analysis of linguistic measures revealed that
dissimilarity between a seed story and its reproduction, story
length, and amount of hedging language affected the readers’
own guilt perception and the readers’ attribution of guilt per-
ception to the author differently. The results provide evidence
that evidential information indeed influences guilt perception
in complex ways.

Keywords: experimental pragmatics; iterated narration; trans-
mission chains; uncertain evidence

Introduction
One of the central goals of language use is the exchange of
information. New information is obtained by reading the
newspaper, listening to a friend, etc., and often immediately
communicated as stories to other people it may be relevant
to. Yet this process of iterated reproduction is not innocu-
ous: the original story may be distorted or altered by various
sources of noise, including cognitive biases, memory recon-
struction processes, or other limits on information processing
capacity (Bartlett, 1932; Tversky & Marsh, 2000; Mesoudi
& Whiten, 2004; Griffiths & Kalish, 2007; Hills, 2018). The
game of Telephone is essentially a caricature of this process:
the first person whispers a sentence to their neighbor, who in
turn passes it on to the next person, and so on. The last person
in the transmission chain announces the sentence they ended
up with, which often differs remarkably from the initial seed
story. This simple game nicely exemplifies the information
loss and distortion that is associated with repeated exposure
and reproduction of information.

Bartlett (1932) first introduced the methodology of trans-
mission chains, i.e., chains of story reproductions, as a scien-
tific method. In a series of transmission chain studies, using
stories such as Native American tales or sport reports for re-
production, he observed a significant information loss in the
stories over generations of reproductions. He also reported
that the content of the reproduced stories increasingly aligned
with the reproducing author’s prior beliefs. Bartlett used
these observations as a foundation for his theory of memory
retrieval involving reconstruction processes.

In recent years, the transmission chain method has under-
gone a revival in cognitive and social psychology. Mesoudi
and Whiten (2004) showed that with each iteration descrip-
tions of everyday events, such as visits to a restaurant, became
more abstract, in line with hierarchically organized script
knowledge. Other research showed that reproductions can
be influenced by cultural, racial and gender stereotypes (e.g.,
Kashima, 2000). The iterated transmission method has there-
fore also been used as a tool to investigate cognitive biases
in general (e.g., Kalish, Griffiths, & Lewandowsky, 2007). In
evolutionary linguistics, the transmission chain method has
been used to study experimentally how iterated learning of
a language exerts a selective pressure on language itself, so
that learning biases create an indirect pressure on languages
to be efficiently learnable (e.g., Scott-Phillips & Kirby, 2010;
Kirby, Griffith, & Smith, 2014).

The transmission chain method thus presents an exciting
opportunity for asking questions at the interface of linguistics
and psychology. In particular, while previous studies have
focused particularly on properties of the reproductions them-
selves, we here present an extension in which we investigate
an external readership’s interpretative perspective on the re-
produced texts. We achieve this by a second experiment that
uses as materials the output from the previous iterated trans-
mission experiment. The stories used as seeds are five crime
or ethical violation stories based on true events (animal smug-
gling, arson, sexual assault, beehive destruction, and email
scams). Each seed started out with both a weak and a strong
evidence version (see Table 1). This manipulation has suc-
cessfully been used by (Van Prooijen, 2006) to uncover in-
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Figure 1: Overview of corpus of stories collected in Exp. 1.

and out-group effects in guilt judgments of suspects. Simi-
larly to that study, the different conditions were implemented
by adding a last sentence to each story that either suggested
strong or weak evidence for the suspect’s guilt. To evalu-
ate the interpretations of the stories that readers arrive at, we
collected answers to eight questions regarding the readers’
perception of the stories’ suspect(s), the readers guilt percep-
tion attributed to the author of the story, as well as, somewhat
less importantly, indexes of more general author and reader
related features, such as trustworthiness and subjective en-
gagement.

Experiment 1: corpus collection

Methods

74 undergraduate students participated in this online study
for course credit1. We constructed five stories (seeds) that
marked the beginning of each reproduction chain. Stories
were written in the style of short news articles and followed
a similar structure. They reported a crime or moral rule vi-
olation that occurred, the authorities’ determination of and
search for the perpetrator(s), and the possible punishment the
suspect(s) would face if found guilty. Furthermore, each of
these five seed stories occurred in one of two conditions: a
weak evidence and a strong evidence condition. Evidence
strength was manipulated in the final sentence of the story
(see example seed in Table 1).

Each participant read and reproduced five stories. For each
story, they were either assigned to read and reproduce the
seed story or continue an already started reproduction chain
where they read and reproduced a reproduction from previ-
ous participants. The assignment was random. On each trial,
participants first read a story. They were told to click the
‘Continue’ button when they were confident that they had in-
ternalized the story. Once they clicked the button, the story
disappeared and they were asked to reproduce it freely in a
text field. Order of stories was randomized.

1The current study was one several they could choose from.

Results
Participants produced 370 stories. For each seed, we defined
a complete chain as one that has 5 reproductions/generations.
For subsequent analysis, we randomly selected 50 complete
chains, evenly distributed across stories and conditions. This
yielded a corpus of 250 reproductions (5 seeds in 2 condi-
tions with 5 complete chains each, see Figure 1). This was
the maximal set of complete chains that was present in every
condition for each seed. This corpus is a rich source of lin-
guistic information which merits detailed investigation. Yet,
with an eye to clear operationalizability, we focus here on a
few general features, which we will subsequently use as pre-
dictors in the analyses of Exp. 2 below.

Proportion of hedges. As a proxy for vagueness, we ex-
tracted the number of hedges per story relative to its length.
The seed stories were designed to contain various hedges,
such as ”nearly”, ”about”, ”up to” or ”allegedly”. As shown
in Figure 2, the proportion of hedges decreased in each gen-
eration (β = −0.01, SE = 0.00, t = −4.16, p < 0.0001) ,
suggesting that participants portrayed the stories with more
certain language over generations. There was no signifi-
cant effect of evidence condition on proportion of hedges
(β =−0.00, SE = 0.00, t =−0.79, p < 0.44) .

Story length. As shown in Figure 2, the number of words
in a story decreased across generations (β = −17.12, SE =
1.02, t = −16.79, p < 0.0001), replicating a well-known
phenomenon in reproduction studies (Bartlett, 1932). While
the original seeds (generation 0) consisted on average of 159
words, that number dropped to 25 by generation 5. Exam-
ples of reproductions of the seed in Table 1 (strong condi-
tion) from generation 1 and 5 are shown in (1) and (2) below.
There was no significant effect of evidence condition on story
length.

(1) In late December 2017, a couple in Iowa went to check
on their beehives. They found a tragic scene: their hives
had been overturned and their equipment and facilities had
been ransacked. A few weeks later, the police arrested a
12-y.o. and 13-y.o. for the crime. They are charged with
multiple offenses, with fines up to $100,000 and up to 10
years in prison, yet will be tried as minors. The trial hasn’t
happened yet, but they seem guilty.

(2) A 12 and 13 year old were arrested for destroying a bee-
hive, and face up to 10 years of jail time.

Similarity of seeds and reproductions. To assess the sim-
ilarity between seed stories and their reproductions quantita-
tively, we computed the Jaccard distance between each repro-
duction and its generation 0 seed. Jaccard distance ranges be-
tween 0 and 1 (where 1 indicates greatest distance) and cap-
tures the amount of overlap between two stories in the fol-
lowing way:

DJ(X ,Y ) = 1− |X ∩Y |
|X ∪Y |

where X is the set of words in the reproduction and Y the
set of words in the respective original seed story. In this
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Table 1: Example of a seed story used in Exp. 1.

In late December 2017, a couple in Iowa was checking on their 50 beehives when they discovered a tragic scene.
The hives had been overturned and hacked apart, and the equipment had been thrown out of the shed and smashed.
This destruction caused the death of about half a million bees and approximately $60,000 in property damage. Nearly
three weeks later, police arrested two boys (12 and 13 years old) who, allegedly, were responsible for the damage.
The charges against them include criminal mischief, burglary, and offenses to an agricultural animal facility. Since
they are still minors, they will be charged in juvenile court where they face up to 10 years in prison and fines of up to
$10,000 if convicted.

(strong evidence condition) (weak evidence condition)
Police officials explained that the investigation is still in
progress, but the evidence so far overwhelmingly speaks
to the guilt of the suspects.

Police officials explained that the investigation is still in
progress, and the evidence so far doesn’t warrant rushed
conclusions about the guilt of the suspects.
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Figure 2: Mean of the three linguistic metrics (proportion of hedges (by number of words), number of words and Jaccard
distance) over generations of reproductions. Error bars indicate bootstrapped 95% CIs. Pink dots indicate generation mean,
gray dots are individual stories. The purple squares indicate the lowest possible distance given the mean length of the stories.

case, we took words as the basic unit over which distance
was computed. Figure 2 shows that DJ increased across gen-
erations (β = 0.08, SE = 0.01, t = 13.18, p < 0.0001) . This
is not surprising given that as the number of unique words
decreases, DJ between seed and any of its reproductions nec-
essarily increases. However, we will see later that length and
DJ have different effects on story interpretation. There was
no significant effect of evidence condition on Jaccard distance
(β = 0.00, SE = 0.02, t =−0.12, p < 0.91).

In sum, in a corpus of 250 reproductions of 5 seed stories,
the length of the stories, the similarity to the seed story, and
the proportion of hedges decreases over generations, regard-
less of the initial evidence strength condition.

Experiment 2: story ratings

In order to assess the extent to which, as a function of the
originally provided evidence, the generation of reproduction
affects readers’ interpretation of various features of the stories
we collected judgments from a second group of independent
participants. We were particularly interested in features re-
lated to the uncertainty of presented evidence and the associ-
ated judgments of suspect guilt. We also collected judgments
concerning the readers’ general attitude towards the author
and the story.

Methods
5392 participants were recruited over Amazon Mechanical
Turk. Each participant read one story from the 250 story
corpus reported in the previous section, and answered twelve
questions about the story (including four attention checks).
They indicated their response by moving a slider on a con-
tinuous scale (slider endpoints were coded as 0 - 100). Each
question was shown in isolation in a randomized order. Par-
ticipants spent on average two to three minutes on this exper-
iment and were paid $0.60 ($12-$18 per hour). The story was
visible throughout the experiment.

The list of questions asked is provided in (3) to (10). Ques-
tions (3)–(7) assessed the extent to which the reader believes
the suspect(s) is/are guilty of the alleged crime. Questions
(8)–(10) assessed the reader’s trust in the author, the extent
to which they considered the story to be objectively written,
and the extent to which they felt emotionally connected to the
story. Overall, participants were asked eight questions of in-
terest and four attention check questions designed to filter out
participants who were just clicking through the experiment.

(3) Strength of evidence: How strong is the evidence for the
suspect’s / suspects’ guilt?

(4) Suspect guilt: How likely is it that the suspect is / the
suspects in the crime are guilty?

(5) Suspect conviction: How likely is a conviction of the
suspect(s) in the crime?
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Figure 3: Mean ratings in strong (yellow) and weak (green) evidence condition for each dimension (facets).

(6) Suspect conviction justified: How justified would a con-
viction of the suspect(s) in the crime be?

(7) Author’s belief in guilt: How much does the author be-
lieve that the suspect is guilty?

(8) Trust in author: How much do you trust the author?
(9) Subjectivity of story: How objectively / subjectively

written is the story?
(10) Reader’s emotional engagement: How affected do

you feel by the story?

Results
Exclusions. We excluded 107 submissions because the par-
ticipants could not be uniquely identified due to a data sub-
mission error. Furthermore, 12 participants were excluded
because they completed the study multiple times (177 sub-
mission exclusions) and another 535 participants because
they failed at least two of the attention check questions. This
left us with 4573 participants (84.8% of the original set). Af-
ter exclusions, each reproduction received on average 17 rat-
ings, ranging from 9 to 22 and two outliers with 27 and 38
ratings. The original seed stories received between 25 and 31
ratings.

Analysis procedure. Of main interest was whether partic-
ipants give judgments of suspect guilt in line with the orig-
inally provided evidence, whether those judgments change
over generations, and whether those judgments pattern with
related measures of evidence for guilt, probability of convic-
tion, justification of conviction, and attributed suspect guilt
(i.e., an estimate of the author’s belief in the suspect’s guilt).
We refer to these measures as guilt related measures (ques-
tions 3–7). Additionally, we analyzed trust in the author,
story subjectivity, and emotional engagement as measures of
secondary interest (questions 8–10). Mean slider ratings cor-
responding to the analyses are shown in Figure 3. Judgments

were analyzed using linear mixed effects models. For each
question, slider rating was predicted from fixed effects of gen-
eration, condition (reference level: strong), and their interac-
tion. The models also included random by-story intercepts.
An overview of the results is shown in Table 2. Each row
presents the model results for one of the questions and the
columns show the model outcomes for fixed effects.

Generation and evidence strength effects on guilt re-
lated measures. We observed main effects of condition on all
guilt related measures (see first 5 panels of Figure 3) , such
that ratings in the strong condition were higher than ratings
in the weak condition, suggesting that participants in Exp. 1
were sensitive to the evidence strength manipulation (repro-
ducing stories in such a way that evidence strength informa-
tion was maintained); and also suggesting that participants in
Exp. 2 were sensitive to the reproduced evidence strength in-
formation in their judgments. We also observed significant
or marginally significant interactions between condition and
generation for all but one of the guilt related measures, such
that ratings decreased across generations in the strong condi-
tion but remained stable in the weak condition.

Generation and evidence strength effects on secondary
measures. The secondary measures look very different from
the guilt related measures. In particular, there were no sig-
nificant effects of evidence strength condition on any of the
measures with the following exception: stories were rated as
less subjective in the weak evidence condition in earlier gen-
erations, though subjectivity ratings did not vary as a function
of generation and remained on the ‘objective’ side of the scale
throughout. In contrast, both trust in the author and readers’
emotional engagement with the story decreased across gener-
ations. This is presumably the result of the stories becoming
shorter over generations (see Exp. 1) and readers therefore
having less material to be emotionally affected by, and less
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Table 2: Model output for each fixed effect (condition, generation, and their interaction) for each rated question (rows).

condition generation condition*generation

β SE p β SE p β SE p

strength of evidence -23.25 4.09 <0.0001*** -3.42 0.89 <0.001*** 2.59 1.26 <0.05*
suspect guilt -17.28 3.40 <0.0001*** -1.34 0.74 <0.08 1.90 1.05 <0.08
suspect conviction -27.01 4.15 <0.0001*** -2.79 0.90 <0.01** 2.74 1.28 <0.05*
suspect conviction justified -19.02 4.35 <0.0001*** -1.69 0.95 <0.08 1.43 1.34 <0.29
author’s belief in guilt -27.53 3.72 <0.0001*** -2.14 0.81 <0.01** 3.42 1.15 <0.01**
trust in author -0.82 2.25 <0.72 -1.94 0.49 <0.001*** -0.54 0.70 <0.44
subjectivity of story -6.12 2.21 <0.01** -0.86 0.48 <0.08 1.40 0.69 <0.05*
reader’s emotional engagement 0.85 2.99 <0.78 -1.49 0.65 <0.05* -1.11 0.92 <0.24

material to build trust in the author on in later generation sto-
ries.

Preliminary discussion. It seems prima facie plausible
that trust in the author, the subjective quality of the story, or
the reader’s emotional engagement with the story are impor-
tant factors in readers’ assessment of the described suspects’
guilt. But the presented data suggest otherwise. The guilt re-
lated measures are only weakly correlated with the secondary
measures (maximum correlation: r = 0.30, minimum corre-
lation: r = 0.01, mean correlation: r = 0.12). The evidence
strength effect was expected, given the strong manipulation in
the final sentence of the seed story. However, what it is that
changes over generations that affects the guilt related mea-
sures in the strong and weak evidence conditions differently
merits further investigation. The change across generations
is presumably driven by the content of the stories. We next
report a second set of analyses in which we assess the extent
to which the linguistic features reported in Exp. 1 predict rat-
ings in Exp. 2, focusing on the readers’ assessment of suspect
guilt and of attributed suspect guilt.

Effects of linguistic features on suspect guilt and au-
thor belief in suspect guilt. In this part of the analysis, we
focus on the measures of suspect guilt and author’s belief in
guilt (attributed suspect guilt). These measures are interest-
ing to examine in more detail because a) suspect guilt is the
main issue raised in the 5 seed stories, so it is relevant to
understand the linguistic conditions that lead to changes in
perceived guilt; and b) while there is no obvious reason why
readers’ ultimate beliefs and the beliefs they ascribe to the
author should differ after reading these stories, Degen et al.
(2019) showed that listeners maintain uncertainty about the
state of the world even when they ascribe a strong belief to
speakers. In the following, we therefore analyze for both
measures the effect of the proportion of hedges in a story,
story length, and dissimilarity between a story and its seed.

Results are shown in Figure 4. In order to analyze the ef-
fects of proportion of hedges, story length, and Jaccard dis-
tance on the two guilt measures of interest, we asked whether
the linguistic features explained variance above and beyond
generation. To assess this, we first residualized each fea-
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Figure 4: Linearly smoothed mean slider ratings as a function
of generation-residualized proportion of hedges (left), num-
ber of words (middle), and Jaccard distance (right). Suspect
guilt ratings shown in solid lines, author belief in suspect guilt
ratings shown in dashed lines. Gray ribbons indicate 95%
confidence intervals.

ture against generation, due to the substantial correlations be-
tween the features and generation observed in Exp. 1. The
final mixed effects linear regression models predicted slider
rating for each of the two measures and each of the three
linguistic features of interest from main effects of evidence
strength condition, residualized linguistic feature, generation,
the interaction between evidence strength condition (refer-
ence level: strong) and generation, and the interaction be-
tween evidence strength condition and residualized linguistic
feature.2

We observed significant interactions between evidence
strength condition and generation-residualized linguistic fea-
ture for two of the three linguistic features on the suspect
guilt measure (hedge proportion: β = −79.57, SE = 54.05,
t = −1.47, p < 0.15, story length: β = −0.18, SE = .06,
t =−2.93, p < .01, Jaccard distance: β = 29.52, SE = 10.82,
t = 2.73, p < .01) and for all three linguistic features on

2Nested model comparison revealed that the inclusion of the
residualized linguistic feature fixed effect was justified for all lin-
guistic features on both measures, with the exception of hedge pro-
portion when used to predict suspect guilt.
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the attributed suspect guilt measure (hedge proportion: β =
−115.82, SE = 58.46, t = −1.98, p < .05, story length:
β=−0.30, SE = .07, t =−4.38, p< .0001, Jaccard distance:
β = 33.43, SE = 11.80, t = 2.83, p < .01) .

To further understand these interactions, we conducted a
simple effects analysis. The analysis revealed that there was
no evidence of an effect of the linguistic metrics in the strong
evidence condition for either of the two guilt related mea-
sures. However, in the weak evidence condition, as can be
seen in Figure 4, increased number of words in a story was
associated with a decrease in both suspect guilt and attributed
suspect guilt. An increased proportion of hedges was also
associated with a decrease in attributed suspect guilt ratings.
Conversely, increased Jaccard distance was associated with
an increase in both guilt related measures. Inspecting the beta
coefficients suggests that these effects were always stronger
for attributed suspect guilt than for suspect guilt.

These results suggests that when evidence for suspects’
guilt was initially strong, that evidence was carried through
the stories despite changes in hedge proportion, story length
and increased dissimilarity between the retelling and respec-
tive seed story, and therefore did not change ratings of sus-
pect guilt and attributed suspect guilt. In contrast, when evi-
dence was weak, participants were more likely to believe that
suspects were guilty, even while recognizing that the author
was less likely to believe so. This discrepancy increased with
increased proportion of hedges, increased number of words,
and increased similarity to the original story3.

General discussion
In this work we investigated the effects of lossy transmission
on readers’ interpretation of crime stories under varying ini-
tial evidential conditions in an iterated narration paradigm.
First we constructed a corpus of 5 original seed stories in
2 conditions of evidential strength for a suspect’s guilt, and
250 reproductions thereof. This corpus replicates previously
found effects of a decrease in story length over generations
of reproductions (Bartlett, 1932). Furthermore, the stories
become less similar to the original seed story and the propor-
tional number of hedges decreases.

We here introduced a, to our knowledge, new experimental
extension of the transmission chain paradigm, where we sub-
jected the text reproductions from the first study to a second
empirical study focusing on the interpretative effect of the re-
productions on an independent set of readers. In this way,
we obtained ratings for each story on 5 guilt related measures
and 3 secondary measures regarding trust in the author, story
subjectivity, and the reader’s emotional engagement. Our re-
sults suggest that, for one, the subtle manipulation of vary-
ing evidential strength in the original seed stories did have
a lasting effect on reproductions and subsequent judgments
of guilt, lasting several generations. For another, manipula-

3These three linguistic features are highly correlated and future
research needs to investigate to what extent each of them contributes
to these differences in guilt ratings.

tion of evidence did not seem to have an effect on the read-
ers’ perception of the trustworthiness of the author, the sub-
jectivity of the story or the general engagement readers had
with the story. This is partially surprising because it seems
naı̈vely plausible that providing weaker evidence could lead
to less trustworthiness and more subjectivity. However, if re-
productions are convincing and weak evidence is presented
appropriately, there is no need to assume that the author is
not trustworthy or the text more subjective.

We also observed effects of generation on especially the
guilt related measures, which we found to be attributable to
the ways in which the reproduced stories changed across gen-
erations. We found that, contrary to pessimistic expectations,
it did not appear to be the case that repeated reproductions of
stories with nuanced degrees of evidential information would
have dropped these nuances, e.g., to arrive at a black-and-
white picture, which would have been reflected in floor and
ceiling slider ratings on the guilt related measures. Instead
of increasing ratings for strength of evidence in the weak ev-
idence conditions, we rather see a decline of perceived evi-
dential strength over generations in the strong evidence con-
dition. Reproducers seemed to have been rather careful in
their formulations, despite the observed decrease in the pro-
portion of hedges.

Most interesting is the relationship between readers’ belief
in the suspects’ guilt and the belief they attributed to the au-
thor of the story in this regard. When the presented evidence
was strong, these judgments aligned. However, when the ev-
idence was weak, they diverged. Crucially, participants be-
lieved that the suspect was more likely to be guilty compared
to the belief they attributed to the author. It is worth not-
ing that the stories did not contain any information about the
author and none of the reproductions contained first person
narrations. Therefore, readers did not receive direct evidence
to support the idea that the author’s beliefs should differ from
the presented view. The more dissimilar the reproductions
were from the original story, the more participants’ beliefs
aligned with the beliefs they attributed to the author. They
converged onto the highest guilt ratings in the weak condi-
tion. The difference between believed and attributed suspect
guilt was greatest for large proportions of hedges in the story
– this difference disappeared for small proportion of hedges.
This suggests that, surprisingly, rather than hedges affecting
readers’ beliefs about suspect guilt directly, they instead lead
only to readers attributing a weaker belief in suspect guilt to
the author. In essence, readers are less willing to commit to
beliefs that were communicated via hedging language.

We see the main achievements of this work in the contribu-
tion of an interestingly structured text corpus, with rich em-
pirically obtained information on readers’ assessments of the
individual texts. This dataset will enable more detailed lin-
guistic analyses in future work,4 which will look more closely

4The corpus will become publicly available by
January 2020 as part of a Github repository at
https://github.com/elisakreiss/iteratednarration.
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at the more specific contribution of different types of hedges
and other types of constructions that signal information about
graded evidence.
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Abstract

Animal behavior is not driven simply by its current observa-
tions, but is strongly influenced by internal states. Estimating
the structure of these internal states is crucial for understand-
ing the neural basis of behavior. In principle, internal states
can be estimated by inverting behavior models, as in inverse
model-based Reinforcement Learning. However, this requires
careful parameterization and risks model-mismatch to the ani-
mal. Here we take a data-driven approach to infer latent states
directly from observations of behavior, using a partially ob-
servable switching semi-Markov process. This process has two
elements critical for capturing animal behavior: it captures non-
exponential distribution of times between observations, and
transitions between latent states depend on the animal’s actions,
features that require more complex non-markovian models to
represent. To demonstrate the utility of our approach, we apply
it to the observations of a simulated optimal agent performing
a foraging task, and find that latent dynamics extracted by the
model has correspondences with the belief dynamics of the
agent. Finally, we apply our model to identify latent states in
the behaviors of monkey performing a foraging task, and find
clusters of latent states that identify periods of time consistent
with expectant waiting. This data-driven behavioral model will
be valuable for inferring latent cognitive states, and thereby for
measuring neural representations of those states.
Keywords: Belief dynamics; Foraging; Partially observable
switching semi-Markov process; Animal behavior

Introduction
An animal’s survival depends on effective planning for future
costs and rewards. One of the most fundamental purposes
of the brain is to create and execute such plans. However,
these plans cannot be directly observed from behavior. To
understand how the brain generates complex behaviors and
learn how an animal builds a representation of the surround-
ing environment, it is valuable to construct hypotheses about
the brain’s internal states that narrow the search space for
neural implementations of planning. These hypotheses of-
ten come from models of the task implemented as artificial
agents, whose internal state representations provided a latent
space. However, differences between the model task and agent
and the real task and animal create the potential for severe
model-mismatch, injecting unknown biases into scientific con-
clusions. Here we use a latent-variable model to impute latent
behavioral states based on observed behavior directly, using a
data-driven latent-variable analysis that is designed to match
the dependency structure of agent-based models without en-
forcing parametric structure.

To understand the mechanisms underlying behaviors, it is

Will food be available now?

Should I wait?

That side gives me food almost everytime!

Develop a continuous time model that learns latent states 
and infer animal's beliefs

Reward 
Source 2Reward 

Source 1

Agent Reward 
Source 3

Agent's 
internal model

Environment 
States, S

Actions
a

Reward
R

Observation
O

Figure 1: Overview: In complex natural tasks such as foraging,
an animal faces a continuous stream of choices. Some of
the choices pertain to hidden variables in the world, such as
food availability at a given location and time. These variables
determine time- and context-dependent rates for observation
events and rewards. To perform well at these tasks, animals
must learn these hidden rates and act upon what they have
learned. Our goal is to develop a data-driven, continuous-
time model for inferring an animal’s latent states and their
dynamics.

crucial to study hard tasks that involve inferring latent vari-
ables, since only then will an animal need to create a mental
model of the world; otherwise the animal could perform well
simply by responding to its immediate sensory input. Natu-
ralistic foraging is one such task where an agent has to make
decisions from many difficult choices in an uncertain environ-
ment. When foraging, an animal must take actions to procure
rewards, and these actions have costs. How the animal sched-
ules its actions determines the balance between total costs
and rewards, Charnov & Orians (2006). The animal’s goal in
foraging is to use its energy resources for short term and long
term sustenance. Decisions must be made continuously, and
therefore time is a key ingredient in foraging: An animal bene-
fits from tracking when reward is likely accessible at different
locations. A natural way to represent such temporal quantities
is in terms of dynamic event rates. For this reason, our work
highlights the continuous-time aspects of decision problems.

Fig 1 illustrates our motivation for the foraging problem. An
agent develops an internal model and takes an action, which
may result in a reward. As a result, the agent updates its inter-
nal model in an attempt to learn the environmental dynamics.
We explore the plausibility that an animal’s internal states in
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continuous time manifest as measurable consequences on its
behavior, using a switching hidden semi-Markov model, and
demonstrate the model’s applicability in inferring latent states
on a foraging task.

In the remainder of the document, we provide background,
discuss the presented model and procedure followed by the
experiments, results and discussion.

Background
Behavior identification using computational models has a rich
history, and clear value–the ability to learn rich representa-
tions of behavioral constituents provides important insights
into underlying neural processes which can also be incor-
porated into the development of artificial agents (Anderson
& Perona (2014)). Early behaviorists explored behavioral
sequences in an attempt to learn determining causal factors
underlying behavior, aiming to explain effects like when an
agent switches to an alternate choice. These approaches are
still common in animal ecology, where hidden Markov time
series models (HMMs) have been used to analyse animal’s
internal states Nathan et al. (2008); Langrock et al. (2012).
Macdonald & Raubenheimer (1995) proposed using HMMs to
capture causal structure in putative motivational states. How-
ever, they also observed that there are no one-to-one correspon-
dences between the learned states and behavior, and Zucchini
et al. (2008) found that behavior also influences internal states
through feedback, challenging the dependency structure as-
sumed by HMMs. To capture non-stationarity in behavior, Li
& Bolker (2017) use temporally varying transition probabil-
ities to model animal movement. However, behavior identi-
fication has struggled to produce more than a description of
the behavior, with unknown relationships between the elicited
latent states and the animal’s representations. These failures
are less surprising when it’s realized the behavior expressible
by HMMs is incompatible with key characteristics of observed
behavior.

In these works and others, an important question left unan-
swered is what kind of latent belief states could be inferred that
not only represent belief dynamics but also the choices that an
animal or an agent makes. We attempt to uncover latent state
beliefs in a continuous time model and apply it to a complex
ecological process, foraging, which has multiple underlying
sub-processes including satisfaction of needs, searching for
alternatives, motivation, decision making, and control. We
show that by generalizing allowing action-dependent transi-
tions and more complex temporal dynamics, we can capture
the expressivity of artificial agents designed for these domains,
and highly interprable representations from animal behavior.

Model
Ecological behavior in animals is often well characterized by
quick transitions between discrete behavioral modes. These
transitions are difficult to predict from external events, and
instead reflect a shift of the animal’s internal state based on
integrating events over a longer time scale. A process with

quick transitions separated by long inter-event intervals can
be approximated by a discrete-time hidden Markov process
involving transition probabilities, but many of the probabili-
ties (those for which the state is unchanged) will be close to
one, while the remaining probabilities will be very small and
decrease with the discrete time scale. Instead, we expect there
will be advantages in treating these latent dynamics in contin-
uous time, based on rates or time intervals between transitions
and events.

A natural model to account for these point-like transitions
in continuous time is the semi-Markov Jump Process, Rao
& Teh (2013). This process is a simple but powerful class
of continuous-time dynamics featuring discrete states that
transition according to a generator rate matrix, producing rich
and flexible timing that is potentially better matched to animal
behavior. In contrast, times of transitions between states in a
Markov process are exponentially distributed, which describe
animal behavior poorly.
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Figure 2: A discrete-state Hidden Markov Model. a: Discrete
state diagram shows latent states (blue circles) and their transi-
tions (blue lines), as well as the possible emissions from each
state (red circles) with their emission probability (red lines). b:
Directed probabilistic graphical model showing dependence
of state variable st+1 and observation ot on the previous state
st . c: We present a continuous-time extension for latent states
and discrete time observations using uniformization, Rao &
Teh (2013)

However, agents who control their environment affect tran-
sition rates through their actions, which means a single gen-
erator rate matrix is not sufficient to model behavior. An
important example are Belief MDPs, which is a representation
of a Partially Observable Markov Decision Process (POMDP,
Kaelbling et al. (1998)). POMDPs are a model for inference
and control when sensory measurements provide only partial
observations of the state of the world. Belief MDPs have dis-
tinct transition matrices that update beliefs differently for each
action. Action-dependent transitions imply that a standard
semi-Markov model with a single transition generator is not
expressive enough to match action-dependent belief dynamics.

To allow for action-dependent belief dynamics, we pro-
pose a switching semi-Markov (SMJP) model that matches an
agent’s belief dynamics by switching its generator depending
on the action a: As′|s,a. Let s ∈ S be a discrete latent state, and
As′|s be an N×N generator rate matrix that can be interpreted
as an instantaneous transition matrix Adt = P(s′(t +dt)|s(t)).
This generator defines a point process that jumps from state
s to s′ at time t according to the time-dependent matrix
Pt = exp(At). The process can be implemented by sequen-
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tially sampling a time ti(si) from the total rate leaving state
si, followed by sampling a new destination state s′ accord-
ing to the matrix Pti(si)(s

′|si) evaluated at this sample time
(Gillespie’s algorithm Gillespie (1977)). An analogous pro-
cess occurs for the generation of observable events o, through
the emission generator matrix Bo|s. The resulting process is
similar to a simple Markov process, except that the time be-
tween transitions is stochastic and depends on the starting
state (but not the end state), illustrated in Fig 3; the animal’s
behaviors and decision making are continuous, albeit partially
observable only at discrete recording times.

The Markov Jump Process extends discrete time Markov
processes in continuous time. Rao & Teh (2013) introduced
Markov chain sampling methods that simplify structures by
introducing auxiliary variables. We adapt jump structures to
provide a continuous-time representation for the free foraging
task and the trajectory is introduced using a generator matrix.
Let A ∈RN×N be the generator matrix, which is skew symmet-
ric and negative diagonal entries. We can represent Pt ∈RN×N

as continuous-time transition matrix given by Pt = exp(At),
Bt ∈RN×N as discrete time transition matrix that is induced by
uniformization, and Lt ∈RN×|O| as observation matrix P(O|s).

Uniformization instantiates the Markov Jump Process as a
sequence of discrete time transition matrices (Fig 2), by in-
troducing a latent sequence of random times that are adapted
to the process generator but occur at a rate Ω≥maxs As. For
each interval, a random discretization vector of sampled times
is W = [w1,w2, ...,wn], and we impute sampled times for a
trajectory. Using this notation, we sample both random times
as a Poisson process with intensity Ω and states using the
generator matrix. The hidden Markov model characterizes a
sample path of a piecewise constant stochastic process over
these sampled and event times as (s0,S,T ) where T is now
an ordered union of event times and randomly sampled dis-
cretized times. The chain can jump from a state to the same
state or any other state, while the emissions are observed only
at certain specified times. Since we sample intervals with
these virtual jump times, the constructed process represents
the same chain.

To learn the discrete time transition matrix B and emission
matrix L, we consider an ensemble of sample sequence of
observed emissions as generated from an HMM, and update
the matrices using an EM algorithm to best account for the
available observations. However, if we sample discrete times
once, the estimates would be biased, so we resample latent
trajectories repeatedly and randomly based on uniformization.
The learned B matrix is then used to update the generator
matrix using the relation Anew = (Bnew− I)Ωold while pre-
serving its structure, and the random times are resampled to
adapt to the modified Anew. The resulting algorithm exploits
uniformization to enable learning the generator via an EM-
algorithm, which is orders of magnitude more efficient than
Gibbs sampling.

Belief MDPs are a convenient representation for POMDPs
that treats current beliefs (posterior probabilities) over par-
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Figure 3: Comparison of graphical models of behavior. Left:
In Belief MDP, belief transitions depend on actions selected by
a policy. Center: Transitions in Semi-Markov Jump Process
are independent of actions. Right: The Switching SMJP allows
transition rates to depend on actions.

tially observable world states as fully observable. Agents
following a Belief MDP exhibit transitions between beliefs
bt+1 = f (bt ,at ,ot), take actions according to a policy π(at |bt),
and expect observations according to their beliefs via p(ot |bt)
(Fig 3). The proposed SMJP model matches the agent’s action-
dependent belief dynamics by switching its generator condi-
tional on the action a: As′|s,a. To infer the agent’s model from
experimental observations, we develop an EM algorithm to
infer it’s parameters. When applied to our switching model,
the forward α, backward β and update ξ equations of hidden
Markov model, Rabiner (1989), can be written as:

α
k′
t+1( j) =

[
N

∑
i=1

α
k
t (i)B

k
i j

]
L j(ot+1);

1≤ t ≤ T −1;1≤ j ≤ N;1≤ k,k′ ≤ K

(1)

β
k
t (i) =

N

∑
j=1

Bk
i jL j(ot+1)β

k′
t+1( j);

t = T −1,T −2, ...,1;1≤ i≤ N;1≤ k,k′ ≤ K

(2)

where k,k′ are the action switching indices at time t and t+1
respectively. We adjust the model parameters to maximize the
probability of the observation sequence given the model and
train using EM. Updates are made using the ξ variable, which
is the probability of being in state i at time t and state j at time
t +1, and is given as

ξ
k
t (i, j) =

αk
t (i)B

k
i jL j(ot+1)β

k′
t+1( j)

N
∑

i=1

N
∑
j=1

αk
t (i)Bk

i jL j(ot+1)β
k′
t+1( j)

;

1≤ t ≤ T −1;1≤ i, j ≤ N;1≤ k,k′ ≤ K;

(3)

The usual semi-Markov model is a special case of the
switching semi-Markov model where the generator remains
the same without action dependent switching. Our model is
a switching model that changes rate, transition and emission
matrices in accordance with the action taken by the agent. We
learn the model using an EM approach , updating model pa-
rameters given transition times sampled by the uniformization
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Algorithm 1 Switching semi-Markov jump model

Initialization
2: O f ← pre-processing . actions are observed with events

Otr, Ote ← train and validation sequences from O f
4: B′, L′ ← switchHMM(Otr, B, L, criteria)

compute A = GeneratorUpdate(B′, B), B = B′, L = L′

6: repeat
Training

8: O← TrajectorySampling(A, L, Otr)
B′, L′← switchHMM(O, B, L, criteria)

10: B = B′, L = L′

Validation
12: llte ← P(Ote|B,L)

recompute A = GeneratorUpdate(B′, B)
14: validate structure of A

. Make updates in the generator space
until llte stops changing or max iterations reached

Figure 4: Overview of the algorithm.

process, and resampling the transitions given the new model
parameters.

Procedure
We provide a brief description of the procedure, illustrated in
Fig 4, that consists of pre-processing, initialization, training
and validation steps. The overhead video, lever press and
reward time sequences were used to set up observations and
actions sequence required for training and validation. We
processed the video recording using blob tracking to estimate
position and velocity. Estimated positions and velocities were
then clustered using k-means to assess different locations. By
matching the time sequence of lever presses with the time
sequence of locations, we augmented the observation space
with locations. Therefore, the augmented observations for the
model were lever press, reward delivery, and location. The
actions were pressing either of the levers, stay at a location or
move. The lever pressing actions were directly available from
recording and we identified stay and move actions from the
video location tracking. We defined similar observation and
action spaces for simulations. To facilitate cross validation,
we used a fixed 5-fold split to form training and validation
sequences.

The proposed SMJP model has two main procedural compo-
nents. The trajectorySampling function samples time intervals
between consecutive observations using uniformization. It
gives us imputed time sequences with missing observations
within time intervals, allowing the model to transition between
its hidden states at missing observations and use observations
only at the end of the time interval. The switchHMM func-
tion implements EM approach using action switching and
imputed sequences. We instantiated the transition, emission
and rate matrices by training the model on observation and
action sequences without imputed trajectories. Upon learning
the emission and transition matrices for a sampled sequence,

we use scaling factor, see model description, and make gradi-
ent like updates to the rate matrix while preserving its structure
in the function GeneratorUpdate. The procedure of trajectory
sampling and training on re-sampled sequence is repeated un-
til the log-likelihood on held out data stops changing within
a small tolerance. Therefore, we learn transition, emission
probabilities and a rate matrix that capture the underlying
continuous time process.

Experiment
We perform three experiments. We use the simulated toy data
both to estimate a required training size and to ensure that
the switching model is able to learn latent states, establish
correspondence between partially observable Markov decision
process belief states with SMJP latent states using theoretical
optimal agent model and, then, apply our method to a real
agent in a free foraging task. The number of states were
selected by estimating the value at which the log-likelihood
on the validation set stops improving.

Simulated toy data
To create a toy test data generated by the assumed model, we
set up two transition matrices and one emission matrix with
5 states, 2 emissions and observation dependent actions. The
expected size of the output sequence is set to 5000. Initial
action is selected randomly and based on the action index,
a transition matrix is selected. Thus, the selected transition
matrix and emission matrix combination is used to estimate
state transition and generate an emission. The observations,
times and actions are added to the output sequence and the
observation dependent action value is updated to get new
observations. The simulated toy data sequence is used as
a basic check if the SMJP model can learn and explain the
observations. We fit SMJP model to the simulated data and
observe that the log-likelihood starts stabilizing as it reaches
the true number of states. It means that the model is able to
explain the test data with an equivalent number of latent states
(Fig 5). Therefore, we pursue a similar procedure to estimate
the required number of latent states for both the optimal agent
and the real agent.

Optimal agent
To test our SMJP model we fit it on an optimal agent per-
forming a foraging task. We model the beliefs of an ideal
observer in this task using a POMDP. There is a one-to-one
correspondence between a POMDP over partially observable
world states z and a fully observed Belief MDP in which the
‘state’ is the ‘belief’ b or posterior distribution bt = p(zt |o1:t)
over the world state z.We solve this optimal actor problem
using a Belief MDP on a discretized belief space. The agent
keeps track of its belief state about the world following transi-
tion dynamics p(b′|b,a), where b′ is the new belief state, b is
the current state, and a is an action. The agent’s sensory infor-
mation depends on the world state according to the probability
p(o|b,a). Upon taking action a, the agent receives immediate
reward R(b,b′,a). The goal of the agent is to maximize the
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Figure 5: The model is able to explain simulated test data and
the log-likelihood on held out data starts flattening out at the
true number of states.

long-term expected reward E[∑t=∞
t=0 γ tR(bt ,b′t ,at)]. Our model

agent achieves this goal using a policy that solves for its policy
Bellman (1957), by value iteration on the discretized belief
states.

The beliefs serve as latent states which control the agent’s
behaviors, and give its actions a non-exponential interval dis-
tribution, which is recapitulated by the fitted SMJP. We find
that the likelihood of the observed data is maximal for a num-
ber of states that is smaller than the true size of the underlying
POMDP belief space, indicating that the semi-Markov pro-
cess is able to compress the agent’s dynamics into a smaller
effective number of latent states. To validate the semi-Markov
model in our foraging task, we discover the latent states of
the artificial agent for whom we know the ground truth. We
model this agent as a near-optimal actor that maximizes re-
ward given partial observations of the true process. This agent
maintains beliefs about the availability of food at different
locations. Our agent is suboptimal because we do not store
the beliefs with arbitrary precision, but rather discretize the
beliefs to a finite resolution, and allow some diffusion between
those belief states.

Application to the free-foraging task
We apply the SMJP model to infer latent states of agents per-
forming a simple foraging task. We applied the model to both
theoretical agents with near-optimal behavior, and real agents
(macaques) whose behavior we measured experimentally. In
this task, two boxes contained rewards that became available
after random exponentially-distributed time intervals. If an
agent presses a lever on one box when the food is available,
that reward is released and that box timer is reset. The benefit
of the reward is offset by two action costs: pressing the lever,
and switching boxes. The state of the box is not observable,
so the agent must choose its action based on an internal belief
about the box, with the presumed goal of maximizing total
reward minus costs. This internal belief constitutes a latent
state that we infer using the semi-Markov process, both from
the artificial agent and behaving monkeys.

We applied the SMJP model to infer latent states of
macaques performing a simple two-box foraging task. The an-
imal freely moved between two feeding boxes with levers that
released food after an exponentially-distributed random time
interval (mean of 10 or 30 sec) had passed. The model observa-
tions were lever pressing, reward delivery, and location within
the box (Fig 7a). Actions were: stay, move, or press either
lever. The monkey’s movements were tracked using overhead
video, and quantized by k-means into different locations. The
number of latent states is estimated by the log-likelihood max-
imization (Fig 7b). The resultant process constructs the mon-
key’s latent states to explain the non-exponentially-distributed
intervals between lever presses (Fig 7).

Results and Discussion
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Figure 6: Latent states inferred by SMJP for an optimal agent
implementing a POMDP. (a) Log-likelihood on held out data
provides an estimate of the required number of latent states.
(b) Co-clustering of states in a POMDP and our SMJP, based
on the conditional probability of observing each POMDP state
Z from each SMJP state, P(Z|s,obs). The POMDP states Z
are depicted below the horizontal axis. Clustered structure in
the plot reveals that the SMJP states have information about
the agent’s belief dynamics.

We trained the SMJP on an observation sequence generated
by the optimal agent, and optimized the number of SMJP latent
states by maximizing the log-likelihood of held-out data (Fig
6a). While the Belief MDP agent’s relevant states Z (including
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location, reward, and beliefs b) should be implicitly embedded
in the SMJP latent states s, these two state representations are
not immediately comparable.

To establish a correspondence, we compute the joint
distribution over s and Z at any one time point using
the shared time series of observations: p(s,Z|obs) =
1
T ∑t p(st |o1:T )p(Zt |o1:T ). This joint distribution shows which
SMJP and POMDP states tend to occur at the same time. It
therefore provides a dictionary for translating the interpretable
POMDP Z states into our learned and unlabeled SMJP s states.

To increase interpretability, we cluster p(Z|s,o) using infor-
mation theoretic co-clustering, Dhillon et al. (2003), which
provides a principled coarse-graining of the states with im-
proved semantic interpretability. We determine the required
numbers of SMJP and POMDP co-clusters by finding mini-
mum information loss in information theoretic co-clustering.
Fig 6b shows that latent SMJP states are associated with dif-
ferent belief states. Co-clustering also reveals that the SMJP
latent states have dynamics that match the belief dynamics
(not shown). These results demonstrate that the switching
SMJP model can capture latent belief states and dynamics for
behavioral data.

Real agent
We trained the SMJP on an observation sequence generated
by the real agent (Fig 7a), and optimized the number of SMJP
latent states by maximizing the log-likelihood of held-out data
(Fig 7b). The SMJP model constructs latent states and dy-
namics using the real agent’s observations to predict choices
and timing, including the non-exponentially-distributed inter-
vals between lever presses. Fig 7c shows states extracted for
the action ’stay’. Beliefs precede an action and the extracted
states reflect beliefs for the next action. For example, being
in states 5,8 are rewarding to the monkey. States that can be
interpreted as ‘expectant waiting for reward’ are highlighted
(Fig 7c): these states form a self-exciting delay network that
is activated from other rewarded belief states. Moreover, the
lower entropy of latent states associated with lever 1 revealed
guarding behavior we identified from video. Overall, the
model network encodes a set of complex but interpretable dy-
namics of the animal’s beliefs and reward expectations which
emphasize the complex computations underlying the decision
making process.

Each transition matrix acts like an action operator and the
real agent performs operations in sequences. So, we examine
joint operators Tji = TiTj, where Ti and Tj are operators for
actions i and j respectively. We use an off-the-shelf package
using, Brandes et al. (2008) to extract subgraphs and then
persistent subspaces from all the six joint operators corre-
sponding to different action pairs. Fig 7d shows subgraphs for
two joint operators of interest (involving actions: lever press
and stay). The latent states (within subspaces p and q) appear-
ing in the same subgraphs of the joint operators illustrate the
real agent’s persistent reward belief states. The states outside
the subspaces p and q correspond to other beliefs, for example,
switching. These results demonstrate that the presented model

is able to extract subtleties, albeit complex, in the belief states
and their dynamics. The extracted latent states and dynamics
will be useful regressors for finding neural correlates of the
computations underlying the monkey’s behavioral dynamics.

Conclusion
We presented a continuous-time switching semi-Markov
model that learns the latent states dynamics in conformance
with the belief structure of a partially observable Markov
decision process. The revealed latent states are capable of
inferring complex animal behavior and its belief dynamics
in naturalistic tasks like foraging. Several aspects of the in-
ferred behaviors and belief dynamics were examined to reveal
that indeed, the internal latent structural representation match
the agent’s belief structure. The data-driven switching semi-
Markov model provides useful estimates of the structure of
the internal latent states for hard tasks. The latent states from
this behavioral model could potentially be used to understand
correspondences between neural activity and the latent belief
dynamics that govern how an animal selects actions.
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AI and Cognitive Testing: A New Conceptual Framework and Roadmap
Anonymous CogSci submission

Abstract

Understanding how a person thinks, i.e., measuring a single
individual’s cognitive characteristics, is challenging because
cognition is not directly observable. Practically speaking, stan-
dardized cognitive tests (tests of IQ, memory, attention, etc.),
with results interpreted by expert clinicians, represent the state
of the art in measuring a person’s cognition. Three areas of
AI show particular promise for improving the effectiveness of
this kind of cognitive testing: 1) behavioral sensing, to more
robustly quantify individual test-taker behaviors, 2) data min-
ing, to identify and extract meaningful patterns from behav-
ioral datasets; and 3) cognitive modeling, to help map ob-
served behaviors onto hypothesized cognitive strategies. We
bring these three areas of AI research together in a unified con-
ceptual framework and provide a sampling of recent work in
each area. Continued research at the nexus of AI and cogni-
tive testing has potentially far-reaching implications for soci-
ety in virtually every context in which measuring cognition is
important, including research across many disciplines of cog-
nitive science as well as applications in clinical, educational,
and workforce settings.

Keywords: artificial intelligence; behavioral sensing; cogni-
tive modeling; computational psychiatry; neuropsychology.

Introduction

The meat of the matter is often how a patient solves a problem
or approaches a task rather than what the score is.

(Lezak et al., 2012, Neuropsychological Assessment, p. 160)

Different people think in different ways. This seemingly ob-
vious statement masks many deep scientific mysteries about
the human mind and also has enormous implications for indi-
vidual and societal well-being.

How a person thinks is central to everything that they do:
it affects how they learn, work, communicate, set goals, make
decisions, etc. Thus, the scientific study of individual cogni-
tive variations is critical not just for (1) advancing our basic
understanding of human cognition and development across
the lifespan, including research on genes, brain, and behav-
ior, but also for (2) improving evidence-based practices in
education and special education, workforce training, clinical
diagnosis and treatment, rehabilitation, and more.

However, measuring cognition is uniquely challenging, as
cognitive entities and processes are not observable in the
same way that genetic, physiological, behavioral, and even
neural characteristics can be measured using physical sens-
ing technologies. We have no way (at least at present) of
directly measuring a person’s mental representations.

Even with advances in neuroimaging technologies that can
capture subtle characteristics of neural activity, measuring
such activity is only a rough proxy for actual cognitive ac-
tivity; the question remains of how to “allow the brain mea-
surements to make contact with putative cognitive processes”
(Forstmann & Wagenmakers, 2015, p.144).

Currently, the gold standard for individual cognitive evalu-
ations are those carried out by expert clinicians, usually psy-
chologists or neuropsychologists.1 These evaluations might
be done to diagnose learning or developmental disabilities in
children, detect signs of cognitive decline in elderly patients,
or identify cognitive deficits after stroke or other brain injury
(Lezak et al., 2012). Such evaluations combine two types of
information about an individual: (1) information about how
that individual is functioning outside the clinic, through self-
report measures, interviews or questionnaires given to par-
ents or caregivers, etc.; and (2) information about how that
individual is functioning inside the clinic, usually through the
administration of standardized cognitive tests, e.g., tests of
memory, IQ, visuospatial reasoning, language, etc.

It is the second item in this list—cognitive testing—that is
the focus of this paper. Distinct research paradigms within
artificial intelligence (AI) have the potential to advance cog-
nitive testing in (at least) three key ways:

1. Behavioral sensing: to more robustly quantify individual
test-taker behaviors.

2. Data mining: to identify and extract meaningful patterns
from behavioral datasets.

3. Cognitive modeling: to help map observed behaviors onto
hypothesized cognitive strategies.

Before getting into the details of these three areas, however,
it is important to first understand how conventional cogni-
tive testing works. This paper presents a new conceptual
framework that explains the strengths and limitations of
current methods for cognitive testing and highlights spe-
cific ways in which AI can help. We also provide a sampling
of recent AI research in each area.

1Cognitive evaluations also often occur in education and workforce
settings, though these are typically less detailed but more domain-
specific than clinical evaluations. In many human research studies
across all areas of science, cognitive evaluations are used for partic-
ipant inclusion/exclusion, group matching, and/or covariate analy-
ses. While this paper focuses primarily on the clinical setting, our
observations pertain to these other settings as well.
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How Cognitive Testing Works
The rationale behind cognitive tests is straightforward. A
given test poses problems for a test-taker to solve. Problems
are specifically designed to tap certain cognitive representa-
tions and processes, which we refer to as cognitive strategies.
Test designs are often validated (i.e. to “prove” that a test
indeed is tapping into the right cognitive strategies) through
converging evidence from many different sources, including
data from neuroimaging studies, patients with known cogni-
tive or neurological issues, and/or other cognitive tests. A
person’s test score thus provides an indirect measure of these
hypothesized cognitive strategies.

However, a well known issue with most cognitive tests is
ambiguity: while test scores do indicate how well a person
solves test problems, i.e., that person’s level of ability, they
do not indicate how a person solves test problems, i.e., their
actual cognitive strategy. In other words, two people can get
the same test score using very different cognitive strategies.
Moreover, this ambiguity can occur with low or high scores:

“’There are many reasons for failing and there are many
ways you can go about it. And if you don’t know in fact
which way the patient was going about it, failure doesn’t
tell you very much’ (Darby & Walsh, 2005). There can
also be more than one way to pass a test.” (Lezak et al.,
2012, p. 160)

Because of this ambiguity, expert clinicians often com-
bine scores with other observed behaviors, such as errors, eye
gaze, emotions, general demeanor, etc., in order to better in-
terpret a person’s test performance. This supports the ratio-
nale for why only “trained” clinicians should administer cog-
nitive tests, and also why clinicians develop such deep exper-
tise with their particular population and goal (e.g. screening
children for learning disabilities versus working with elderly
patients to detect memory issues).

In reality, as mentioned in the introduction, clinicians
likely never rely on results from a single cognitive test to
make judgments about a person’s cognition. They combine
results from many tests with additional information about a
person’s performance outside the clinic (e.g. school perfor-
mance, medical history, etc.). For the purposes of this paper,
however, we focus on thinking about just a single cognitive
test and what it can tell us.

Proposed framework
In this section, we propose a new formalism for describing
what is happening during a conventional cognitive test. For
added clarity, we also use the Raven’s Progressive Matrices
(RPM) intelligence test as a running example. The RPM is a
well studied standardized test that poses problems similar to
geometric analogies: a matrix of visual figures is presented
with one missing, and the missing figure must be chosen
from among a set of candidate answer figures (i.e., multiple
choice). The RPM is one of the best single-format measures
of intelligence among all cognitive tests (Snow, Kyllonen, &
Marshalek, 1984) and thus is very widely used.

Definition 1. Let the set Xhuman represent all possible
cognitive strategies that a person can use to attempt to
perform a given cognitive test, successful or not.

Definition 2. Let the set Y represent all possible scores
that can be earned on a given cognitive test.

Definition 3. Let the function F represent a mapping
from a person’s use of a particular cognitive strategy
onto the resulting test score:

F(xi ∈ Xhuman) = yi ∈ Y

We do not concern ourselves with how Xhuman might be
represented. The set is infinite, even if we exclude obviously
irrelevant strategies.2 An individual person probably can ac-
cess at least a few strategies from Xhuman, and certainly they
can also be taught to use particular strategies.

Though not, perhaps, designed this way on purpose, the
RPM is amenable to multiple distinct strategies. For example,
there is evidence that many neurotypical individuals often use
verbal, inner-speech-like strategies, whereas many individ-
uals on the autism spectrum use visually mediated, mental-
imagery-like strategies (Soulières et al., 2009). In fact, some
argue that the reason the RPM is such a good intelligence test
may be because it is actually testing metacognitive flexibility,
in terms of strategy selection/adaptation (Kirby & Lawson,
1983)...a point that we return to later on in this paper.

For simplicity, let us assume that a person uses a single
strategy xi ∈ Xhuman to solve a given cognitive test. Using this
strategy xi, they receive a score yi. In other words, the act of
taking the test is what “computes” the function F .

In the case of the RPM, the test is scored as number of cor-
rect answers, and so possible scores (for the standard version
of the test) range from 0 to 60. So, suppose someone uses a
verbally mediated strategy, and they get a score of 50/60.

Using these definitions, ambiguity exists because F is a
many-to-one function. There are many possible strategies in
Xhuman that may lead to a score of 50. As a result, the inverse
function F−1(yi) = xi ∈ Xhuman is ill-defined.

To help with this problem, we expand our definitions to
include additional test-taker behaviors, beyond just test score:

Definition 4. Let the vector Bhuman represent a sequence
of observable behaviors generated by a person taking a
cognitive test, including test score y as well as response
times, types of errors made, patterns of eye gaze, etc.

Definition 5. Let the function G represent a mapping
from a person’s use of a particular cognitive strategy
onto the sequence of resulting behaviors:

G(xi ∈ Xhuman)→ Bhuman

For example, for a person taking the RPM, one might in-
clude in Bhuman the time taken to complete each problem, the

2Making a peanut butter and jelly sandwich is one possible strategy
for solving RPM problems. It is, however, an exceedingly poor
strategy, and so let’s exclude it from Xhuman.
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answer choice that is selected, the pattern of eye gaze between
different visual elements, etc.

Now, while the function G is still a many-to-one function
(i.e., multiple strategies might still map onto the same se-
quence of behaviors), it is “less” many-to-one than our ear-
lier function F that mapped strategies onto scores. Each be-
havioral observation that is made places an additional con-
straint on the subset of strategies in Xhuman that could have
produced the full sequence of behaviors. Therefore, given a
sequence of observable behaviors Bhuman, the inverse func-
tion G−1(Bhuman) = xi ∈ Xhuman provides a better estimate of
a person’s cognitive strategy than does the inverse function
F−1 that relies on test score alone.

For example, research on geometric analogies has shown
that different patterns of eye gaze seem to be indicative of
different high-level problem-solving strategies (Bethell-Fox,
Lohman, & Snow, 1984). Some people look at the “problem”
part and come up with their own answer before looking at the
answer choices, while others look at the answer choices early
and use more of a trial-and-error approach, mentally plugging
in each answer choice to see which one looks best.

One problem remains: where does the sequence of behav-
iors Bhuman come from? For traditional cognitive tests, usu-
ally administered in a pencil-and-paper or objects-on-a-table
format, there is no perfect record of Bhuman. Clinicians ob-
serving a person taking a test use their own, expertly trained
powers of perception, memory, and note-taking to process
Bhuman in real time in order to extract meaningful patterns:

Definition 6. Let the function P represent a mapping
from a sequence of low-level behaviors Bhuman to a se-
lected set of patterns (i.e., a subset and/or transformed
view of individual observations in Bhuman).

We use Pexpert to denote the function that a clinician applies
to extract meaningful patterns from the raw behavioral se-
quence Bhuman. Thus, when a clinician observes a person’s
test performance to infer information about that person’s
cognition, they are implicitly computing the function:

G−1
expert(Pexpert(Bhuman)) = xi ∈ Xhuman (1)

Where do the functions G−1
expert and Pexpert come from? In

general, they are learned over years or decades of adminis-
tering cognitive tests to certain segments of the population.
For example, a clinician with expertise in learning disabili-
ties likely uses G−1 and P functions that are tuned to patterns
of behavior most relevant for diagnosing these conditions in
children. Another clinician who works mostly with brain in-
jury patients would likely use different G−1 and P functions,
even when administering similar tests.

The problem with implicit functions, and current,
non-AI-based solutions
The main problem with these learned G−1

expert and Pexpert func-
tions is that they are implicit in a clinician’s expertise. Not
only are they implicit, but they are also very difficult to make

explicit, even if a clinician tries to do so. This difficulty in
turn complicates efforts to measure the validity or reliability
of these functions, both for individual clinicians and for the
field of cognitive assessment as a whole.

The Boston Process Approach to neuropsychology was es-
sentially an attempt to “write down” these functions using a
combination of expert judgment and carefully designed re-
search studies, so that the resulting functions could be more
rigorously evaluated for validity and reliability, and also so
these functions could be explicitly taught as part of profes-
sional neuropsychology training. However, while the ideas
of the Boston Process Approach have been influential, the
complexity of its methods and the challenges of real-time
data collection during testing sessions limited its widespread
adoption (Milberg, Hebben, Kaplan, Grant, & Adams, 2009).

The advent of computer-based testing has provided new
methods for recording sequences of test-taker behaviors, such
as detailed reaction times, errors, etc. Some , like the Cali-
fornia Verbal Learning Test (Delis, Freeland, Kramer, & Ka-
plan, 1988), have been designed specifically to enable the use
of these additional behaviors to infer more and better infor-
mation about a person’s cognitive strategy than would be ob-
tainable from their score alone.

These and similar efforts from the neuropsychology re-
search community have been analyzed more recently un-
der the heading of the Quantified Process Approach (Poreh,
2012), which emphasizes the critical need to understand cog-
nitive strategies, i.e. “process,” using quantifiable measures,
in addition to the subjective and often qualitative judgments
of individual clinicians (what we describe here as the implicit
G−1

expert and Pexpert functions). The Quantified Process Ap-
proach outlines three categories of potential solutions: 1) us-
ing additional tests to essentially triangulate a person’s strat-
egy using multiple points of measurement; 2) using additional
measures of behavior from a single test to develop new in-
dices of interest; and 3) decompose scores into subscores that
might reflect different underlying factors. Of these three cat-
egories, the latter two would fall into our proposed frame-
work as efforts to come up with explicit G−1 and P functions,
depending on whether the behaviors Bhuman considered are
taken from behavioral dimensions above and beyond scores
(category 2) or from behavioral dimensions within scores that
pinpoint more detailed subscores (category 3).

However, these various pockets of research have yet to
transform the daily practice of cognitive testing. Problems
remain in how to quantify G−1 and P functions in a scalable
way that can be applied across many different cognitive tests
and many populations, while also ensuring that methods are
readily usable by practicing clinicians.

AI to the Rescue3

Using this framework, we now describe ways in which AI
can help solve some of these problems through 1) behavioral
sensing, 2) data mining, and 3) cognitive modeling.

3Possibly.... https://xkcd.com/1831/
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Behavioral sensing

The first, and perhaps most obvious, role for AI in cognitive
testing is in recording behavioral observations, i.e., in obtain-
ing the sequence of behaviors Bhuman from a test session.

Part of behavioral sensing involves advances in hardware,
such as the development of more advanced (and more af-
fordable) eye trackers. Computer-based testing platforms can
easily log many kinds of behaviors, including mouse move-
ments, key presses, etc. Tablet-based tests are being used to
capture more detailed manual behaviors such as velocity of
pen strokes (Davis, Libon, Au, Pitman, & Penney, 2014).

While behavioral sensing in computer-based environments
is currently more common, one of the most exciting new
areas for behavioral sensing involves sensing in real, 3D
environments, which often calls for a combination of ad-
vances in hardware and in signal processing algorithms. Eye
tracking technology is now getting to the point where head-
mounted eye trackers are relatively lightweight and afford-
able (Kassner, Patera, & Bulling, 2014), and computer vision
algorithms can be used to help analyze the video stream com-
ing from such eye trackers. These advances enable scalable
eye-tracking in 3D environments, which, in previous years,
would have been virtually unthinkable in the context of cogni-
tive testing from usability or scalability perspectives. Physio-
logical sensors are also now often incorporated into cognitive
assessments, e.g., using skin conductance sensors to obtain
measurements of heart rate, etc. as a proxy for measuring
cognitive stress or other affective variables during a testing
session (Fletcher et al., 2010).

In addition, even data recorded from regular sensors (cam-
eras, microphones, etc.) can now be analyzed automatically
using AI algorithms coming from computer vision, natural
language processing, etc. The term behavioral imaging has
been coined to describe this new subfield of AI directed at
producing robust and reliable measurements of human behav-
ior in 3D assessment settings (Rehg et al., 2014).

Behavioral sensing can thus be understood in terms of its
two components: sensors to record raw signals coming from
a testing session(e.g., pixels from a video camera), plus al-
gorithms to process those raw signals into measurements of
behavior (e.g., computer vision algorithm to detect, from a
raw video stream, when a person moves an object on a table).

Behavioral sensing can help in measuring many types of
behaviors. Some behaviors are already easily measured by
humans, but automated approaches may increase the scala-
bility or accuracy of such measurements (e.g., counting how
many errors a person makes while solving a table-top block
copying task). Other behaviors might be currently detectable
by human clinicians but only in qualitative ways. For exam-
ple, many social assessments for the diagnosis of autism use
“quality of eye contact” as a measurement of interest, which
is often recorded as a subjective overall impression by a hu-
man clinician, but could be broken down into quantified com-
ponents by an algorithm (Ye et al., 2015). Still other behav-
iors might not be detectable by human clinicians at all; for

example, being able to capture the exact velocities and pres-
sures manually applied by a person performing a tablet-based
drawing test (Davis et al., 2014).

Data mining
The next role for AI is in quantifying the function P that takes
in a sequence of behaviors Bhuman and extracts meaningful
patterns. Meaningful patterns can be created in many differ-
ent ways, including by identifying subsets of behaviors that
are particularly relevant, or by producing transformations of
low-level behaviors into higher-level constructs.

For example, there has been work that first uses a tablet-
based version of the clock drawing test to record low-level
manual drawing behaviors, and then applies machine learn-
ing classification algorithms to these data to help diagnose
Alzheimer’s, Parkinson’s, and other cognitive conditions
(Souillard-Mandar et al., 2016).

In another effort, eye tracking data from a visual recogni-
tion test (the Visual Paired Comparison test) have been used
to train classifiers to detect early signs of mild cognitive im-
pairment, which is often a precursor to Alzheimer’s (Lagun,
Manzanares, Zola, Buffalo, & Agichtein, 2011). A clever ex-
tension of this work aims to see if mouse movement data from
a non-eye-tracking variant of the task can support comparable
classification performance, which would greatly increase the
scalability of the test by removing the need for an eye tracker
(Agichtein et al., 2017).

In general, the broad umbrella of data mining approaches
for cognitive testing can include the use of: 1) new algorithms
applied to existing behavioral datasets; 2) conventional statis-
tical analyses applied to new behavioral datasets; and 3) new
algorithms applied to new datasets. All of these approaches
represent important routes for improving our understanding
of the low-level behaviors that come out of cognitive tests,
i.e., to identify which behaviors or combinations of behaviors
are most important for a given clinical goal.

Cognitive modeling
The third important role that AI can play in cognitive testing
is through cognitive modeling. What does a computational
cognitive model actually accomplish? To answer this ques-
tion, we begin by supposing that we have created a particular
type of AI system—a computational cognitive architecture—
that can employ different problem-solving strategies to solve
problems from a given cognitive test.

Critically, such an AI system is not just a mathemati-
cal model of relationships between hypothesized cognitive
entities involved in solving the test. It is a computational
model of the hypothesized entities themselves; it provides
a mechanism-level view of what might be going on. The
key difference between a mathematical model and a compu-
tational model is that a computational model bears an ana-
logical relationship with what it is trying to model; there is
some structural correspondence between the model and what
it represents (Hunt, Ropella, Park, & Engelberg, 2008).

2068



Definitions 7 through 12 (below) refer to concepts related
to this kind of computational model, which are also analo-
gous (but not identical) to the concepts given in Definitions 1
through 6 (above) for human test-takers.

Definition 7. Let XAI represent the set of problem-
solving strategies that an AI system can use to solve
a given cognitive test, including successful and unsuc-
cessful strategies.

Definition 8. Let yAI represent the score the AI system
receives on a given cognitive test.

Definition 9. Let the function F∗ represent a mapping
from an AI system’s use of a particular strategy onto the
resulting test score, i.e., F∗(xi ∈ XAI)→ yAI .

Definition 10. Let BAI represent the sequence of sim-
ulated observable behaviors bi generated by an AI sys-
tem taking a cognitive test. These behaviors can include
test scores yAI as well as response times, types of errors
made, patterns of eye gaze, etc.

Definition 11. Let the function G∗ represent a mapping
from an AI system’s use of a particular strategy onto
the resulting test score plus simulated behaviors, i.e.,
G∗(xi ∈ XAI)→ BAI .

Definition 12. Let the function P∗ represent a mapping
from a sequence of low-level behaviors BAI to higher-
level features.

To take our previous example of the Raven’s Progressive
Matrices test, many computational cognitive models of this
kind have been developed over the years (Carpenter, Just, &
Shell, 1990; Lovett, Tomai, Forbus, & Usher, 2009; Kunda,
McGreggor, & Goel, 2013; Strannegård, Cirillo, & Ström,
2013). There has also been much work in the cognitive ar-
chitectures community (e.g. using SOAR, ACT-R, etc.) to
develop richly detailed models of many different tasks.

Given such a computational cognitive model, we can run
experiments that have the model use a variety of different
strategies to solve a given cognitive test. We can measure
data from these experiments to obtain test scores and behav-
iors, just as we do for human test takers. The key differ-
ence here is that cognitive strategies in a cognitive model
are directly observable! We have the “ground truth” for our
model in a way that is (at least currently) impossible to obtain
for human test takers.

At minimum, we can study the function F∗ to understand
more about potential ambiguities on a particular cognitive
test, which would itself a valuable contribution to the field
of cognitive testing.

Also, such a cognitive model provides a systematic way
to obtain quantified functions for mapping from the space of
observed behaviors back onto cognitive strategies, i.e., the
function G−1. This is still not easy (though it is much eas-
ier when we have the ground truth for X!). There are proba-
bly many possible approaches for obtaining the G−1 function.

One might be to run a large set of computational experiments
to get two linked datasets XAI and BAI , and then use machine
learning and data mining algorithms to find relevant patterns
and predictors within these.

One important area for research using computational cog-
nitive models is to more effectively capture individual dif-
ferences. Much of the research on cognitive architectures,
for example, focuses on modeling generalized human perfor-
mance or broad group differences. As the quantity and qual-
ity of behavioral measurements increase, through behavioral
sensing and data mining, cognitive models should also be able
to take advantage of these datasets to create more precise ex-
planations of individual variations.

Another extremely interesting open question is: where do
the strategies in XAI come from? For now, XAI is defined by
the AI system’s designers, informed by research on human
cognition. An important AI frontier is to develop AI systems
that learn strategies through instruction, observation, and ex-
perience, as people do (Laird et al., 2017). This research
would not only expand the capabilities of our cognitive mod-
els, but results would also help us better understand human
cognitive strategies at the metacognitive level. As mentioned
earlier, for example, work on the Raven’s Progressive Matri-
ces test suggests that a person’s methods for strategy selection
are just as important for test performance as are the strategies
themselves (Kirby & Lawson, 1983).

A Call to Action
Similar observations have been compiled under the heading
of computational psychiatry (Montague, Dolan, Friston, &
Dayan, 2012; Huys, Maia, & Frank, 2016), though the spe-
cific formalism given here is (to our knowledge) new.

What our analysis suggests is that interdisciplinary collab-
oration is critical for advancing the science of cognitive test-
ing, not just between clinicians and AI researchers in gen-
eral, but between clinicians and AI researchers coming from
the distinct subfields of behavioral sensing, data mining, and
cognitive modeling.

In addition, one extremely promising horizon is to think
about the development of new cognitive tests that are enabled
by the types of technological advances described above. For
example, now that we can measure and understand very rich
sets of behavior, and also map these onto detailed hypothe-
ses about cognitive strategies, can we begin to measure com-
plex forms of cognition in more naturalistic tasks? So much
of current test design has been shaped by the limitations in
the scalability of these elements in previous decades. Pre-
viously, cognitive test designers had to construct very con-
strained tasks, that would only measure one or two cognitive
constructs at a time, and that would produce easily measur-
able scores. Now, for example, could we give people a real-
istic search task in a complex, 3D environment to test their
attention and/or memory? There is a great opportunity here
to begin coming up with much more creative and naturalistic
ways to tap into a person’s realistic cognitive processes.
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Strannegård, C., Cirillo, S., & Ström, V. (2013). An anthro-
pomorphic method for progressive matrix problems. Cog-
nitive Systems Research, 22, 35–46.

Ye, Z., Li, Y., Liu, Y., Bridges, C., Rozga, A., & Rehg, J. M.
(2015). Detecting bids for eye contact using a wearable
camera. In Automatic face and gesture recognition (fg),
2015 11th ieee international conference and workshops on
(Vol. 1, pp. 1–8).

2070



Sensitivity to Temporal Community Structure in the Language Domain 
 

Kendra V. Lange (kxl786@psu.edu) 
Department of Psychology, The Pennsylvania State University, 

Moore Building, University Park, PA 16802 USA 
 

Carol A. Miller (cam47@psu.edu) 
Department of Communication Sciences and Disorders, The Pennsylvania State University, 

Ford Building, University Park, PA 16802 USA 
 

Daniel J. Weiss (djw21@psu.edu) 
Department of Psychology, The Pennsylvania State University, 

Moore Building, University Park, PA 16802 USA 
 

Elisabeth A. Karuza (exk521@psu.edu) 
Department of Psychology, The Pennsylvania State University, 

Moore Building, University Park, PA 16802 USA 
 
 

Abstract 

The interrelatedness of lexical items, typically defined in terms 
of semantic or phonological overlap, has been shown to 
influence language learning. Given that language also contains 
sequential structure, we investigate here whether temporal 
overlap among words, formalized in graph theoretical terms as 
displaying the property of community structure, might also 
have consequences for learning. We create a graph organized 
into clusters of densely interconnected nodes with relatively 
sparse external connections. After assigning a novel 
pseudoword to each node in the graph, we generate a 
continuous sequence of visually-presented items by walking 
along its edges. Word-by-word reading times suggest that 
learners are indeed sensitive to temporal overlap. 
Compellingly, we also demonstrate that prior exposure to 
sequences organized into temporal communities influences 
performance on a subsequent word recognition task.   

Keywords: network science; statistical learning; language 
acquisition 

Introduction 
A foundational question in cognitive science asks how the 
human brain converts a vast amount of sensory input into 
usable knowledge. Fortunately for our brains, sensory input, 
though noisy, tends to be richly patterned. A means of 
characterizing broad-scale patterns, network science enables 
the mathematical description of systems as varied as social 
relationships (Scott, 2017) and neural connectivity (Bassett 
& Sporns, 2017). Of particular relevance to the present series 
of experiments, applications of network science to the 
domain of natural language have dramatically increased our 
understanding of the organization of phonological (Vitevitch, 
2008; Arbesman, Strogatz, & Vitevitch, 2018), syntactic 
(Ferrer i Cancho, Solé, & Köhler, 2004; Liu, 2008), and 
semantic systems (Collins & Loftus, 1975; Borge-Holthoefer 
& Arenas, 2010).  

A growing body of evidence suggests that humans use 
network-level properties when acquiring and accessing 

linguistic knowledge (for a review, see Karuza, Thompson-
Schill, & Bassett, 2016). For example, an index of the extent 
to which phonological neighbors of a word are themselves 
neighbors, clustering coefficient has been shown to predict 
acquisition of novel object labels designed to vary with 
respect to this property (Goldstein & Vitevitch, 2014). 
Learners also show sensitivity to lexical islands, or small 
groups of phonologically related words isolated from a 
network’s “giant component,” or the largest group of 
interrelated words. Siew & Vitevitch (2016) observed that 
words drawn from lexical islands are recognized and recalled 
more easily than those from a giant component. For semantic 
networks, in which nodes representing concepts are linked 
according to some similarity metric, evidence suggests that 
densely connected words are most likely to be acquired early 
in development (Steyvers & Tenenbaum, 2005). In sum, the 
structural properties of complex language networks may 
carry important implications for learning. 

Outside the language domain, a number of studies have 
also begun to probe human sensitivity to network topology, 
generally focusing on community structure in temporally-
defined graphs. In these studies, nodes correspond to fractals, 
glyphs, or button press combinations, and edges mark the 
transition between two images in a continuous sequence 
(Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick, 
2013; Karuza, Kahn, Thompson-Schill, & Bassett, 2017; 
Tompson, Kahn, Falk, Vettel, & Bassett, 2018; Kahn, 
Karuza, Vettel, & Bassett, 2018). Response times are 
typically recorded as participants view an uninterrupted 
stimulus stream created by “walking” along the edges of a 
graph comprised of sparsely connected clusters of densely 
interconnected nodes (i.e., that display the property of 
community structure; Figure 1). Results point to a signature 
response pattern associated with the transition between 
communities: a pronounced increase in learners’ processing 
times when measured against within-community transitions 
(Karuza et al., 2017).  
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Expanding on prior work, which has focused exclusively 
on non-linguistic visual stimuli, we investigate here whether 
learners display a comparable sensitivity to community 
structure when it dictates the order of visually-presented 
pseudoword sequences. One defining characteristic of 
linguistic signal is that it unfolds in time. In light of this, we 
examine whether the temporal overlap between words, not 
only their phonological and semantic interrelatedness, might 
steer the learning process. In adapting this paradigm to the 
language domain, our work makes two additional 
contributions: first we expand on the size of tested network 
structures, creating graphs of 40 nodes instead of the 10-15 
used in related prior work (Schapiro et al., 2013; Karuza et 
al., 2017; Tompson et al., 2018; Kahn et al., 2018). Second, 
we refine an offline measure that allows us to investigate the 
influence of community structure not only in moment-to-
moment processing of novel stimulus streams, but also in 
accessing previously acquired knowledge in future contexts. 

 
Study 1: Community Structure and Substring 

Familiarity 
We first examine whether learners exhibit cross-community 
reaction time (RT) increases as they process continuous 
sequences of unfamiliar linguistic stimuli. We also ask 
whether sensitivity to community structure will manifest in 
the expression of knowledge in offline familiarity 
judgements involving short sequences (substrings) extracted 
from the original exposure stream. Analyses test the 
hypothesis that learners prefer substrings drawn from within 
communities relative to those that span communities. 

Materials and Methods  
 
Participants 33 neurologically normal participants (5 male, 
28 female; 18-21 years old) participated in this study. They 
were recruited from the undergraduate psychology research 
pool at Pennsylvania State University and were granted 
course credit for their participation. All participants provided 
informed consent. Three participants were excluded for 
performance below a pre-determined threshold on an 
orthogonal cover task (<70% correct; Karuza et al., 2017).  

 
Stimuli  
Network properties. Exposure streams were generated via a 
random walk on a graph featuring five communities of eight 
nodes each (Figure 1). Each community was connected to 
two other communities through boundary nodes sharing a 
single edge with an adjacent community. With the exception 
of boundary nodes within the same community, which were 
unlinked, each other node was connected to every other node 
in their community. Thus, all nodes had equivalent degree, or 
number of incident edges. Because edges were undirected 
and unweighted, (1) they could be traversed in any direction 
and (2) transitions between any two nodes were equally 
probable. Nodes within the graph corresponded to a unique, 
pronounceable pseudoword, and edges represented the direct 
succession of two pseudowords within the stimulus stream. 
Pseudoword properties. Pseudowords were selected from the 
ARC non-word database (Rastle, Harrington, & Coltheart, 
2002). Forty orthotactically plausible, single-syllable words 
were chosen, 20 four-letter words and 20 five-letter words. 
All words had 5-30 orthographic neighbors and 5-30 
phonological neighbors. While metrics such as Coltheart’s N 

Figure 1. The network architecture used to generate stimulus streams in Studies 1 and 2. Each node represents a 
pseudoword, and edges represent the co-occurrence of two pseudowords in a continuous sequence 
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have been shown to have certain limitations (Yarkoni, Balota, 
& Yap, 2008), and indeed some pseudowords shared surface-
level similarities, we stress that any systematic phonological 
or orthographic overlap was minimized by our word-to-node 
randomization procedure. For the purposes of the cover task 
(described below), we created a scrambled, unpronounceable 
version of each pseudoword (e.g., clais and gilk became aislc 
and igkl).  
Test items. Eighteen short test sequences (length 5-7 
pseudowords) were spliced out of the continuous exposure 
stream. Half of these substrings consisted exclusively of 
nodes from within one community, while the other half 
included traversal of a community boundary.  Matched pairs 
of intra- and inter- community substrings were created by 
equating length (number of items in the string), number of 
node repetitions (if any), chunk strength (within one standard 
deviation of the mean; Meulemans & Van Der Linden, 1997), 
and general position in the exposure stream (first third, 
second third, etc.).  
 
Procedure The experiment was composed of four phases: 
familiarization, exposure, test and debriefing. Participants 
were randomly assigned to one of four conditions consisting 
of a unique random walk (i.e., ordering of nodes) in the 
exposure phase and a unique series of test items.  Independent 
of condition, node-to-pseudoword correspondence was 
randomized (i.e., “node 1” might correspond to clais in one 
participant and gilk in another).  
Familiarization phase. Participants were told that they 
would see a list of made up and scrambled words presented 
in alphabetical order. They then viewed the list of 
pseudowords and the scrambled words in a series of 1.5-
second trials. They were instructed to press [1] if the word on 
the screen followed the rules of English (these were the 
pseudowords) and [2] if the word did not follow the rules of 
English (these were the scrambled versions). To facilitate 
their understanding of the task, participants first saw two 
examples: the pseudoword was corb, and the scrambled word 
was brco.  
Exposure phase. Following the familiarization phase, 
participants viewed a 1000-trial continuous sequence of 
individually presented pseudowords. To obtain RT measures 
across the entirety of the exposure phase, we instructed 
participants to complete an orthogonal cover task.  At each 
trial, they were asked to press [1] if the pseudoword appeared 
in its “regular form” and [2] if the pseudoword appeared 
scrambled (12% of trials).  Each pseudoword was presented 
for 1.5s with no interstimulus interval. Total duration of the 
exposure phase was 25 minutes.  
Test phase. At the conclusion of the exposure phase, 
participants were presented with 18 pairs of substrings 
presented simultaneously on the screen, one above the other 
(position was randomly determined). They selected which of 
the two short sequences looked more familiar to them based 
on what they saw during the previous phase of the 
experiment. We adopted a familiarity-based approach to 
judging pairs to promote relatively implicit access of 

knowledge during the test phase. Unlike the exposure phase, 
the test phase was self-paced (i.e., both sequences stayed on 
screen until participants made their selection), with an 
interstimulus interval of 1.5 seconds.  
 
Analysis and Results 
 
Scrambled Word Detection Participants generally 
succeeded in distinguishing between pseudowords and their 
scrambled versions (95.8% accurate, SD = 2.4, excluding the 
three participants who scored below threshold).  
 
Data Exclusions In the exposure phase, data were prepared 
for analysis by first eliminating any implausible RTs (i.e., 
less than 100 ms), then by removing RTs that were greater 
than three standard deviations away from the mean (4.5% of 
total data). We also removed all scrambled word trials (12% 
of total data) and any incorrect responses (4.2% of total data). 
As we were particularly interested in the RT cost associated 
with crossing between communities, data were then subset to 
include only nodes corresponding to entry into a new 
community (transition nodes), as well as boundary nodes 
immediately prior to that transition (pre-transition nodes). 
 
Exposure Phase In a linear mixed effects model (library 
lme4 1.1-19 in R 3.5.1), RTs were regressed onto the main 
effects and interaction of Node Type (pre- vs. transition) and 
Trial (1-1000). All transitions were included in analysis. The 
model included the fullest random effects structure that 
allowed the model to converge: a random intercept for 
participant and a by-participant random slope for Node Type, 
Trial, and their interaction. 

We observed a significant main effect of Node Type (β = 
10.080, t = 2.310, p = 0.022), indicating a processing cost for 
transition nodes compared to pre-transition nodes. The main 
effect of Trial (β = -22.798, t = -3.191, p = 0.003) was also 
significant, an expected finding given that participants were 
likely to become faster overall at executing button presses. 
No interaction between Node Type and Trial was observed 
(β = -6.911, t = -1.477, p = 0.150).  
 
Test Phase Accuracy scores from the posttest did not differ 
significantly from chance (t(29) = 1.161, p = 0.255). When a 
post-hoc analysis (mixed logit model) was run to determine 
whether accuracy was affected by the length of sequences (5 
vs 6 word sequences: β = 0.103, z = 0.959, p = 0.341; 5,6 vs 
7 word sequences: β = 0.054, z = 0.860, p = 0.390), position 
on the screen (top or bottom) (β = -0.107, z = -1.208, p = 
0.227), or trial number (β = 0.027, z = 0.305, p = 0.761), we 
continued to observe no significant effects.  
 

Study 2: Community Structure and Word-
Level Recognition 

Study 1 offers evidence of a cross-community RT increase as 
learners viewed sequences of written pseudowords. Online 
measures, collected during the exposure phase, serve to 
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demonstrate learners’ expectation that words within a 
community should co-occur in time.  When that expectation 
was violated by entry into a new community, RTs reflected a 
processing penalty. Despite these promising results, we 
found no evidence that participants applied this knowledge 
offline as they made substring-level familiarity judgements. 
Successful language acquisition requires not only the 
accumulation of statistical regularities, but also accessing that 
accumulated knowledge in varied contexts. Therefore, the 
focus of Study 2 was on a post-exposure measure that would 
speak to the role of community structure in the latter process.  

Materials and Methods  
 
Participants 37 neurologically normal participants (9 male, 
28 female; ages 18-21) participated in this study. They were 
recruited from the undergraduate psychology research pool at 
Pennsylvania State University and were granted course credit 
for their participation. All participants provided informed 
consent. Four participants were excluded for cover task 
performance below the pre-determined threshold used in 
Study 1.  
 
Stimuli Pseudowords and the graph used to generate the 
exposure streams were identical to those used in Study 1. 
However, we increased the length of random walk by 40% in 
order to ensure participants were receiving sufficient 
exposure before completing a post-test. For the test phase, we 
developed a new approach to evaluating the influence of 
network architecture on retrieval of knowledge following 
initial learning.  
Test items. Our method represents an extension of a classic 
paradigm developed by Meyer & Schvaneveldt (1971). In 
that pioneering study, participants completed a lexical 
decision task on various pairs of words and pseudowords. 
Compellingly, RTs for pairs of semantically related words 
were significantly faster than RTs for pairs of semantically 
unrelated words. Instead of asking whether semantic 
similarity influences retrieval processes, we ask instead 
whether community structure, or temporal similarity, 
influences retrieval. Here, we test the hypothesis that 
participants will be faster to make old/new judgements on 
pairs of words drawn from the same community relative to 
those drawn from distant communities. 

We created 75 new pseudowords which were not seen in 
the exposure phase (“new words”). We then selected 15 non-
boundary pseudowords (“old words”) from the exposure 
phase (3 from each community). These old words were 
combined exhaustively to form 95 pairs in which items varied 
by community distance. Next, each old word was paired once 
with three new words (45 pairs). Finally, the 30 remaining 
old words were then paired with each other (15 pairs). In 
total, 165 pairs were created. 

For the purposes of analyses, distance between items in a  
pair was construed as follows: a community distance of 0 
meant the pair came from the same community (e.g. creer 
and toist in Figure 1). A community distance of 1 meant that 

the nodes were drawn from adjacent communities (e.g. creer 
and twing). A community distance of 2 meant that the nodes 
were two communities apart (e.g. creer and metch). There 
could be no measurement of community distance between old 
and new words, as the new words were not present in the 
exposure stream. 
 
Procedure With the exception of the test phase, described 
below, procedures for Study 2 mirrored that of Study 1. Due 
to the increased number of trials presented during the 
exposure phase, its duration was 35 minutes.  
Test phase. Participants were simultaneously presented with 
both items in a pair, one word above the other. Participants 
pressed [f] for “familiar” if both items had been seen in the 
exposure phase and [n] for “not familiar” if one or both of the 
items were new. All new words were only presented once to 
minimize confusion during the test phase.  Trials were self-
paced and separated by a 1.5 second blank screen.  The order 
of the pairs and the position (top or bottom) of all 
pseudowords was randomized across participants.  

Analysis and Results 
 
Scrambled Word Detection Participants generally 
succeeded in distinguishing between pseudowords and their 
scrambled versions (93.5% accurate on average, SD = 5.6, 
excluding the four participants below threshold). 
 
Data Exclusions For the exposure phase, data trimming 
techniques were identical to those described in Study 1 
(17.0% of total data removed). Similarly, we subset trials to 
include only transition and pre-transition nodes. 

For the test phase, we removed data corresponding to 
incorrect trials and any RTs greater than 3 standard deviations 
from the mean (total data loss = 11.3%).  

 
Figure 2.  Cross community RT increase for Studies 1 and 2. 
Values included in the boxplot were calculated by 
subtracting, for each participant, mean RTs for pre-transition 
nodes from mean RTs for transition nodes. 
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Exposure Phase Similar to the previous study, RTs were 
regressed onto the main effects and interaction of Node Type 
(pre- vs. transition) and Trial (1-1400). The model included 
the fullest random effects structure that allowed the model to 
converge: a random intercept for participant and a by-
participant random slope for Node Type, Trial, and their 
interaction. 
   Again, we observed a significant main effect of Node Type 
(β = 15.582, t = 3.782, p = 0.0002), indicating a processing 
cost for transition nodes compared to pre-transition nodes. 
The main effect of Trial (β = -18.251, t = -2.609, p = 0.014) 
was also significant. As in Study 1, no significant interaction 
between Node Type and Trial was observed (β = -0.924, t = 
-0.226, p = 0.821). Cross-community RT increases from both 
Study 1 and Study 2 are presented in Figure 2. 
Repetition priming. Prior work examining the influence of 
community structure on RT patterns has addressed the 
potential for perceptual priming effects (e.g., Karuza et al., 
2017; Kahn et al., 2018).  It is well known that humans are 
faster to process a stimulus that they have seen recently. 
Though we propose that priming can in fact be considered a 
form of learning (see e.g., Chang, Dell, Bock & Griffin, 
2000), we make contact with prior work by adding to both 
exposure phase models (Studies 1 and 2) the following 
measures of repetition priming: Lag10 and Recency. Lag10 
indexes the number of times a particular node has been seen 
in the last 10 trials. Recency indexes the number of trials that 
have elapsed since a given node was last seen in the exposure 
stream. When adding these new predictors to our models, the 
main effect of Node Type was no longer significant (Study 1: 
β  = 2.345, t = 0.441, p = 0.660; Study 2: β  = 5.906, t = 1.104, 
p = 0.273). 
 
Test Phase As in Meyer & Schvaneveldt (1971), our 
dependent measure of interest was RT for the old/new 
judgements. Given our lengthy exposure phase, and the fact 
we never repeated any of the “new words” during the test 
phase, participants attending to the test phase should have 
been able to easily and accurately make judgements about the 
novelty of items in the word pairs.  Accuracy scores, though 
high (88.0% correct overall, SD = 9.9), were not our measure 
of interest. Rather, we were interested in whether RTs would  
 
Table 1: Coefficients, t-values, and p-values for each 
predictor in a model examining the effect of Community 
Distance and Trial on participants’ RTs for old/ new 
judgments (Study 2). 

vary as a function of the distance between nodes in a pair, 
with the fastest RTs for nodes within the same community.  
Thus, we imposed a cut-off of 75% accuracy on the test phase 
to exclude participants who were not complying with this 
relatively simple task, resulting in the exclusion of three 
additional participants. We note that without the exclusion of 
these participants, the significant results reported below do 
not hold.  

Response times from the old/new judgments were 
regressed onto main effects of Community Distance (reverse-
Helmert coded to reflect an increase in processing cost as 
distance increased) and Trial (1-165; intended to capture 
general task adaptation). Results are summarized in Table 1. 
Participants were fastest to respond to pseudoword pairs 
drawn from the same community relative to pseudowords 
drawn from the two adjacent communities. Unsurprisingly, 
participants were faster when responding to pseudowords 
pairs when they had seen both pseudowords before, 
compared to pairs in which when one or both of those 
pseudowords was new (Figure 3).  
 

  
Figure 3. Boxplot of RTs for old/ new judgments on word 
pairs (Study 2). Values included in the boxplot were 
calculated by averaging, for each color-coded participant, 
mean RTs for nodes within a community (community 
distance = 0), from adjacent communities (= 1) and from non-
adjacent communities (= 2).  “NA” signifies that at least one 
word in the pair had not been seen by participants during 
exposure.  
 

 Discussion 
We present data from two related studies demonstrating that 
learners are attuned to the network architecture underpinning 
continuous streams of linguistic stimuli. Specifically, we 
show that participants exhibited an increase in processing 
times when transitioning from one community of words to 
the next, suggesting that their expectations about upcoming 
input were influenced by the presence of element clusters in 
the sequence. As previous investigations into learners’ 
sensitivity to network architectures have taken place 

Predictor Results 
Community 
Distance (1 vs. 0) 

β = 0.018, t = 2.062, p = 0.041 * 

Community 
Distance (2 vs. 0,1) 

β = 0.005, t = 1.040, p = 0.302 

Community 
Distance (new vs. 
0,1,2) 

β = 0.024, t = 4.480, p = 0.0001 
*** 

Trial  β = -0.018, t = -1.626, p = 0.115 
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exclusively in the visuomotor domain (Schapiro et al., 2013; 
Karuza et al., 2017; Kahn et al., 2018; Tompson et al., 2018), 
one notable contribution of the present work is that it speaks 
to the potential domain-generality of this learning 
mechanism.   
   Complex network analysis of natural language has 
consistently revealed that, among other properties, 
community structure may be essential to the organization of 
the mental lexicon. To varying degrees, real-world networks  
in which edges represent phonological overlap, semantic 
relatedness, and temporal co-occurrence, display this 
property (De Deyne, Verheyen, & Storms, 2016). The present 
experiments break new ground in that they demonstrate that 
community structure is not only an emergent property of 
language, but also a form of high-level regularity that can 
guide sequence-level learning. Perhaps of greatest interest, 
we show through a post-exposure measure in Study 2 that 
temporal overlap can be translated into an accessible 
representation, as evidenced by the influence of community 
distance as participants completed a subsequent word 
recognition task. 

At first blush, it is potentially surprising that we observe no 
significant interaction between Node Type and Trial. In other 
words, the magnitude of the cross-community RT increase 
did not change significantly over the course of exposure. 
However, these results align with previous findings 
suggesting that sensitivity to community structure may 
emerge very early in exposure (e.g., Karuza et al., 2017; 
Karuza, Kahn, & Bassett, 2019). To be clear, we do find a 
key point of divergence between the present findings and the 
existing literature on community structure in visuomotor 
sequences.   Specifically, the effect of traversing an inter-
community edge was substantially weakened by the inclusion 
of nuisance regressors intended to account for repetition 
priming. While there are several possible explanations for 
this pattern of results, we narrow in on two of them. First, we 
studied stimulus streams generated from a significantly larger 
graph than those used in related experiments (i.e., a total of 
40 nodes relative to 15).  Participants therefore observed far 
fewer unique edge traversals throughout the course of the 
experiment. Perceptual priming may have an inflated effect 
when learners are exposed to more varied stimulus streams in 
which nodes are repeated only a handful of times. Second, the 
choice to include pronounceable pseudowords with relatively 
few real-word orthographic and phonological neighbors 
meant that these features of our stimuli may have also exerted 
an undue influence on processing times (Vitevitch, Chan, & 
Roodenrys, 2012). This source of noise, coupled with some 
phonological overlap between the pseudowords themselves 
(e.g., wabe and woast), may have also contributed to null 
results obtained for the substring comparison post-test of 
Study 1. We reiterate that the randomization of word-to-node 
mapping should have minimized these effects. Nevertheless, 
evaluation of the full impact of phonological and 
orthographic neighborhood, defined in terms of the extent of 
overlap with existing English words as well as among 
stimulus items themselves, will be an important area of future 

study. It is possible, for example, that cross-community RT 
effects shift in magnitude in cases where pseudoword stimuli 
have an extremely high number of real-word neighbors.  
  Taken together, this set of results opens up a number of 
intriguing future directions not limited to investigations into 
learners’ sensitivity to multiple layers of structure (e.g., 
through the construction of multiplex networks that 
simultaneously take into account phonological and temporal 
overlap; Stella, Beckage & Brede, 2017). In a broader 
context, formalization of the relationship between linguistic 
network structure and learning could add substantially to 
discussions regarding how language networks change with 
development (Ke & Yao, 2008) or why they display certain 
characteristic properties in special populations (Beckage, 
Smith & Hills, 2011). On a final note, decreased sensitivity 
to statistical associations has been linked to disorders ranging 
from Broca’s aphasia (Goschke, Friederici, Kotz, & van 
Kampen, 2001) to dyslexia (Schmalz, Altoe, & Mulatti, 
2017) and developmental language disorder (Lammertink, 
Boersma, Wijnen, & Rispens, 2017). Extending these lines of 
inquiry to reveal potential impairments in the extraction of 
network-level patterns could have powerful consequences, 
not only in terms of informing rehabilitative practices but also 
in deepening our understanding of language acquisition more 
generally.  
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Abstract

The internal representations of three dimensional objects
within visual memory are only partially understood. Previous
research suggests that 3D object perception is viewpoint de-
pendent, and that the visual system stores viewpoint perspec-
tives in a biased manner. The aim of this project was to ob-
tain detailed estimates of the distributions of 3D object views
in shared human memory. We devised a novel experimental
paradigm based on transmission chains to investigate memory
biases for the 3D orientation of objects. We found that memory
tends to be biased towards orthogonal diagrammatic perspec-
tives aligned with the ends of the standard basis for a set of
common 3D objects, and that these biases are strongest for side
views as well as top or bottom views for a small set of bilater-
ally symmetric objects. Finally, we found that views sampled
from the modes were easier to categorize in a recognition task.
Keywords: Memory; 3D object perception; Serial reproduc-
tion; Iterated learning; Vision.

Introduction
Humans do not possess photographic memories of the things
they see. Instead, visual memory is known to be biased to-
wards systematic and simplified representations. The per-
ception of 3D objects is known to be viewpoint dependent,
but detailed estimates of the distributions of 3D object views
in shared human memory remain unknown. For a given ob-
ject, towards what views does visual memory tend to be bi-
ased? Are the number of views the same across different ob-
jects? How many views are there? Evidence from prior work
points to systematic viewpoint-specific biases in 3D object
perception such as so-called “canonical” views of common
everyday objects (Palmer & Rosch, 1981). Canonical views
are associated with improvements in categorization accuracy
and recognition (as measured using response-time latencies).
While the human visual system is largely robust to perspec-
tive transformations, this work provided early evidence for
viewpoint dependence in human object perception, a finding
that was corroborated in subsequent work (Bülthoff et al.,
1995). However, none of this work fully characterized the
object-specific distributions of views that bias visual memory,

and provided mostly indirect evidence for them. We therefore
attempt to provide a detailed picture of the structure of mem-
ory biases for the orientation of 3D objects.

We aimed to uncover the distributions of 3D object views
in shared human memory. Doing so is of particular inter-
est to disambiguate theoretical explanations for viewpoint de-
pendence in 3D object perception, and to determine if bi-
ases in remembered views of objects correspond to canoni-
cal views. Two theoretical explanations have been suggested
in order to explain canonical views: the “frequency hypothe-
sis” and the “maximal information hypothesis” (Mezuman &
Weiss, 2012). The “frequency hypothesis” states that privi-
leged views correspond to the views that are most commonly
taken when viewing or interacting with everyday objects,
while the “maximal information hypothesis” states that these
views change the least under small local perspective transfor-
mations. The “frequency hypothesis” is most consistent with
the notion of a statistical “prior” in Bayesian accounts of per-
ception and memory. However, it remains an open question
as to whether memory representations for 3D objects resem-
ble canonical views, and if these representations are shaped
by statistical priors.

To answer this question, we used transmission chains
adapted to a 3D orientation memory experiment. Under ex-
perimentally verifiable conditions, transmission chains are
known to approximate samples from shared priors (Xu &
Griffiths, 2010), and can be used to characterize shared biases
in reconstructive memory. In this paper, we start by outlining
past computational approaches and empirical findings regard-
ing 3D object representations, as well as theoretical proper-
ties of transmission chains. Next, we present our novel find-
ings revealing hitherto unknown distributions of 3D memory
biases for a range of everyday objects. We find that these
distributions are characterized by systematic patterns of bi-
ases towards diagrammatic orthogonal views that appear to
be aligned with the faces of the objects (strong side views,
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front and back views, top and bottom views). These views do
not appear to match known canonical views, which are typ-
ically semi-profile views, although they are consistent with
past findings that revealed similar biases in visual inspection
of novel objects in adults (Perrett et al., 1992), as well as in-
fants (Pereira et al., 2010). We also find that these views were
associated with improved categorization accuracy relative to
views sampled from areas far from the modes in these distri-
butions.

Background
Transmission chains and experimental methods Trans-
mission chains are analogous to the so-called “telephone
game.” In the most famous and early example, Bartlett had
a series of people reproduce a drawing of an owl hieroglyph,
and as the the reproductions of the image progressed through
the chain, what began as an imperfect but recognizable fac-
simile of the hieroglyph morphed into an image of a cat
(Bartlett, 1932), revealing that the participants shared a com-
mon bias to distort the unusual image into an image for which
they had a strong collective prior.

Transmission chains have since been adopted to study phe-
nomena in many fields, including evolutionary biology, cog-
nitive science, anthropology, vision science, and music cogni-
tion (Kirby et al., 2008; Jacoby & McDermott, 2017; Lew &
Vul, 2015). A recent analysis of reconstruction from memory
examined how information should change as it is transmitted
through a chain of rational agents (Xu & Griffiths, 2010). Un-
der the rational analysis, reconstruction from memory is de-
fined as the problem of inferring the most accurate state of the
world despite a noisy or imperfect sensory input (such as an
imperfect memory trace of a scene or an object in the world).
Using the framework of Bayesian statistics, this problem can
be captured as follows: Previous experience is characterized
by a prior distribution over possible world states (a hypothe-
sis space of all conceivable world states, such as all possible
3D orientations of an object). The posterior is computed by
integrating that prior with the likelihood, which in this case
simply describes the probability of observing a world state
(such as an object in a particular orientation), given a hypoth-
esis about the true state of the world. In this work, (Xu &
Griffiths, 2010) found that a transmission chain populated by
rational Bayesian agents defines a Markov chain with the fol-
lowing transition probabilities:

p(xn+1 | xn) =
∫

p(xn+1 | µ)p(µ | xn)dµ,

where x is a noisy stimulus (such as noisy recollection of the
orientation of a previously viewed object) and µ is the true
state of the world that generated that stimulus. This Markov
chain captures the probability of a new stimulus xn+1 being
created as a reconstruction of a previously seen stimulus xn
in each iteration in the transmission chain, and has a station-
ary distribution which defines the probability of observing a
stimulus x when µ is sampled from the prior:

p(x) =
∫

p(x | µ)p(µ)dµ.

This process approximates a Gibbs sampler for the joint dis-
tribution on x and µ defined by multiplying p(x | µ) and p(µ).
In other words, assuming that participants share common in-
ductive biases, the transmission chain will converge to a sam-
ple from their shared prior.

Computational theories of 3D representations To date,
a significant body of work has explored the nature of human
representations of 3D objects and a great deal of experimental
work has been done to elucidate the characteristics of human
perceptual representations of 3D objects and scenes. (Palmer
& Rosch, 1981) provided early evidence for the existence of
privileged “canonical” views that facilitate 3D object recog-
nition, in keeping with principles of categorization (Rosch,
1999) that introduced the notion of “prototype exemplars.”
Later work introduced the recognition-by-components (RBC)
theory of image understanding (Biederman, 1987). This work
proposed that representations of objects in memory are ac-
cessed when components (“geons”) derived from perceptual
mechanisms (Lowe, 2012; Rock, 1983) are combined, and
that these components form a perceptual basis for a “com-
ponential representation of real world objects in memory.” A
third computational theory argues that objects are represented
as lists of viewpoint-invariant properties (A piano has keys,
pedals, legs) (Bülthoff et al., 1995; B. Tversky & Hemen-
way, 1984; A. Tversky, 1977), or by points in abstract multi-
dimensional feature spaces (Carr et al., 2001; ?; Su et al.,
2015).

Theories based on list-based feature descriptors or
viewpoint-invariant parts have been difficult to reconcile with
experimental data showing systematic view-specific varia-
tions in human response-time latencies and recognition ac-
curacy (Bülthoff et al., 1995; Tarr et al., 1998). These results
have tended to favor theories that postulate viewpoint-specific
and largely 2D representations (Vetter et al., 1995; Bülthoff et
al., 1995) as forming the basis for human object representa-
tions. However, to our knowledge, little work has been done
to devise an experimental method for revealing the distribu-
tions of viewpoint-specific biases in memory representations.

Canonical perspectives were discovered for objects that
were bilaterally symmetric due to experimental constraints,
and although (Palmer & Rosch, 1981) confirmed the presence
of privileged views for each, it is possible that other canoni-
cal views, such as the mirror images of bilaterally symmetric
objects exist. In fact, work using online images returned by
search engines estimated the modes of the distribution of 3D
perspectives for a variety of objects, and found that canonical
views for bilaterally symmetric objects are typically bi-modal
(Mezuman & Weiss, 2012). In this paper we adapted trans-
mission chains to a memory paradigm in which we probed
collective biases in reconstructive memory for the 3D orien-
tation of a handful of everyday objects in order to uncover
any and all biases in 3D reconstructive memory.
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Methods
Participants
All participants were recruited online using Amazon Mechan-
ical Turk and gave informed consent. according to a protocol
was approved by The Committee for the Protection of Human
Subjects (CPHS) at the University of California, Berkeley.
Each experiment required approximately 100 participants.

Stimuli
The stimuli used in these experiments were 3D objects that
could be viewed from any angle by rotating a camera oriented
towards the origin of the object, and at a fixed distance (travel-
ling on the surface of a sphere around the object) and with the
camera tilted (in a direction tangent to the sphere). We started
with a detailed mesh model of a typical teapot, and shoe. In
addition, we used grayscale versions of the teapot and shoe,
as well as a grayscale 3D model of a car, alarm clock, arm-
chair, coffee maker, camera, and grand piano, see Figure 1A.
We selected objects matching the objects in (Palmer & Rosch,
1981) as closely as possible.

Procedure
For each object, we ran a serial reproduction experiment with
250 chains and 20 iterations (see Figure 1B). Participants
viewed timed displays of the 3D object. The chains were ini-
tialized as camera views over the surface of a unit sphere with
the object in the center. The camera frame orientation was al-
ways oriented towards the center of the object, but was tilted
at random angles orthogonal to the sphere (the “up” vector,
see Figure 1D). The position of the camera and the view were
sampled uniformly from the Haar measure on SO(3) (Perez-
Sala et al., 2013). Following the timed display, and 1000 ms
retention phase when the screen went blank, a probe screen
containing the object at a new random orientation was shown.

Participants were instructed to orient the object (which is
equivalent to rotating the camera view) so that it matched the
original orientation of the object that was shown during the
initial timed display. Participants were not given time con-
straints during the probe, and could change their responses as
many times as they needed. The object on the screen could
be rotated by means of the mouse, as well as a set of buttons
(see Figure 1C). Participants were given 10 practice trials dur-
ing which the initial display was shown for 4000 ms in order
to familiarize them with the nature of the task, and the user
interface. Only after they completed the practice trials was
the presentation time reduced to 1000 ms. In addition, they
were given trial-by-trial feedback based on their performance
(either a green message saying “Well done! Your response
was sufficiently accurate”, or a red message stating: “Your
response was insufficiently accurate”), see Figure 1C.

Results
By the final iteration of the transmission chain process, a clear
pattern emerges: 3D views are biased towards a small set of
orthogonal “diagramatic” views that are aligned with the top,

Figure 1: 3D objects, experiment structure, task and geome-
try. A. Textured and grayscale 3D objects used in the trans-
mission chain experiments. B. Transmission chain structure:
A 3D view of an object (teapot) is initialized somewhere at
random over a unit sphere. This view is presented as a stimu-
lus to a subject who then reconstructs this view from memory.
The subject’s response is then presented as the stimulus to a
second subject, who must reproduce this second view, and so
on. C. The experiment instructions and trial structure. Par-
ticipants could rotate the object with the mouse and a set of
buttons displayed over the image. They were instructed to
reproduce the view they saw as accurately as possible, and
were given feedback on their performance. D. Geometry of
3D object views adopted in the experiment. Views (cameras)
were always positioned on the surface of a sphere centered at
the object, and was always pointed towards the center of the
sphere (towards the object). The local frame of the camera
could vary according to the “up” vector, which controls the
tilt of the camera
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bottom, and side views of the objects. In some cases, the
views in the modes correspond to the front and back (for the
clock in particular), see Figure 2 for the results obtained with
the textured teapot and shoe. While all the starting views
of the chains are camera views sampled uniformally over
the sphere surrounding the objects, the distributions quickly
change and become clustered around four distinct modes as
the chains progress. Figure 2A shows the initial distribution,
the distribution at the 5th, 10th, 15th and 20th iteration of the
transmission chains for the teapot and shoe.

Figure 2B shows the distributions of all points across all
iterations for the shoe and teapot. In addition, the four modes
with respect to the camera directions are plotted in four colors
for both distributions. Next to each of these distributions, we
show the corresponding histograms of the angles of the “up”
vectors at the modes, where the direction most aligned with
the data is centered to 90 degrees for the first two modes of
the teapot and shoe. Surprisingly, while the “up” vectors in
modes I, II (side views) of the Teapot are centered mainly in
one direction, those in modes III and IV (the top and bottom
views) show a bimodal distribution (top and bottom views
are remembered with the handle and spout oriented vertically,
while the side views show them to be oriented horizontally,
orthogonal to the vertical orientations in the top and bottom
views). We don’t find this pattern in the case of the shoe,
where the distributions of “up” vector angles were unimodal
for all modes (I, II, III, and IV). This suggests that memory
representations contain interaction patterns where some ob-
jects are memorized with a specific location and orientation,
while memory for views of other objects are not necessarily
associated with particular angular orientations. The columns
on the far right of Figure 2B show spherical kernel density
estimates (KDEs) of the final iteration data oriented accord-
ing to the top four modes. Thumbnail insets to the right of the
KDE modes show the corresponding object views. For both
objects, the top two views are side views, while the remaining
two modes correspond to the top and bottom views.

In order to verify if our chains showed convergence, we
measured the mean copying error of the camera views for the
textured teapot and shoe objects (See Figure 2C). The copy-
ing error was computed separately for each iteration by av-
eraging the difference between the remembered camera view
responses and stimulus views. We found that the copying er-
ror tends to reduce over the course of the experiment. Indeed,
whereas the copying error for the first iterations was signif-
icantly smaller compared with the last iteration (t(364)=6.6,
p<0.001 and t(386)=5.6, p<0.001 for the teapot and shoe, re-
spectively), the difference between the copying error in the
last iteration was not significantly different from the preced-
ing four iterations (p > 0.1). For all cases this holds true even
with Bonferroni corrections for multiple comparisons). This
suggests that convergence occurs by the last five iterations of
the chains.

In order to control for effects of colors and texture on 3D
memory biases, as well as to control these factors for the

Figure 2: Transmission chain results for a teapot and shoe.
A. Scatter plots showing camera views and “up” vectors for
four chain iterations, and the initial uniform random seed lo-
cations. First row shows results for the teapot (initial seed,
5th, 10th, 15th, and 20th iteration distributions), and second
row shows results for the shoe. B. Modes in the 20th and final
distributions of views for the teapot and shoe. Four modes are
clearly discernible: the side views of the objects, and the top
and bottom views. Spherical subplots show a superposition
of camera views across all iterations, highlighted are the four
modes obtained by the 20th and final iteration of the chains.
These correspond to the side views as well as the top and
bottom views. The central subplots show histograms of the
“up” vector angles, which show the frequency of local cam-
era orientations at each of the modes. They reveal that per-
spectives in the first two modes (side views in both cases) are
biased towards views where the camera is oriented towards
a 90 degree angle, which yields views of the objects that are
upright. These views are visualized in the far right columns,
for each object, along with views of the modes in spherical
Kernel Density Estimates (KDEs) of the 20th iteration data.
C. Copying error across the chain iterations.
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recognition experiments that follow, we ran a set of grayscale
objects. Figure 3A the data for the novel objects. The results
for the teapot and shoe were largely consistent with the results
obtained with the textured versions of these objects, although
only three clear modes were observed for the grayscale shoe
(side views, and top view). Similarly, the modes for the car
reveal four orthogonal views: left and right sides, as well
as top, and bottom views. For the remaining objects, either
three or two modes were present. Only two primary modes
revealing frontal views, and back views were observed for
the clock. Finally, the results for the remaining objects reveal
primarily three orthogonal views. In sum, we find that 3D
object memory representations are not equivalent to canoni-
cal views, and are characterized by multi-modal biases that
may reflect the symmetry of the objects, a finding that cor-
roborates findings revealing the presence of bi-modal views
in distributions of online images (Mezuman & Weiss, 2012),
although those were not views aligned with the faces of the
objects, nor were they necessarily orthogonal. The memory
representations we uncovered replicate past findings showing
systematic biases towards the same views in a variety of vi-
sual inspection tasks in both infants and adults, suggesting
that memory biases may be influenced by encoding precision
and angular discrimination.

Figure 3 shows the results of a categorization experiment in
which we compared the categorization accuracy for the set of
eight grayscale objects when they were presented from views
sampled in the modes of our memory KDEs, or from views
far from the modes (sampling 4 nearest neighbors around the
points that were farthest from the modes on the sphere, in
the initial seed distributions of the chains). Figure 3B shows
example views, and the experimental task: subjects were pre-
sented with a view for 100 ms, and then asked to categorize
the object. The eight object labels were shown, as well as two
additional labels (“house”, “horse”). Figure 3B shows recog-
nition d’ results as a function of view type. We found that
views of the shoe, clock, car, teapot, and coffee machine were
recognized more accurately when they were sampled from the
modes in our KDEs (p < 0.001 in all cases, following a Bon-
ferroni correction for multiple comparisons). Overall, views
sampled from the modes were associated with improved clas-
sification accuracy (p < 0.0001).

Discussion

We found the use of transmission chains to be particularly
sensitive to characterizing shared 3D memory biases. The
biases we observed for a small set of bilaterally symmet-
ric everyday objects are highly systematic and not identical
to known canonical views. They are strongly diagrammatic
views of the sides, top and bottom, or front and back faces of
the objects. In this respect, they resemble the bimodal char-
acteristics of the distributions of online images estimated by
(Mezuman & Weiss, 2012), although the diagrammatic as-
pects of these views are more reminiscent of well-known bi-
ases in visual inspection of 3D objects Perrett et al. (1992);

Figure 3: Recognition experiments. A. Memory biases
for global camera views and local camera orientations for
grayscale objects. B. Recognition experiment task design and
view examples. For each object, participants were presented
with a view sampled either from one of the perspective modes
obtained from the final chain iteration, or from a point far-
thest from one of the final modes sampled from the uniform
seed distribution, for 100 ms. They were then asked to se-
lect the correct object name from a list of possibilities. C.
Recognition d′ results for each of the objects, and for all the
objects. Results show that in most cases, participants were
more likely to select the correct object label when the view
shown was sampled from one of the modal views sampled
form the final chain iteration. Error bars correspond to 1000
bootstrapped samples of the data, with replacement. We used
the Bonferroni correction for multiple comparisons.

2082



Pereira et al. (2010). However, we did observe differences
between objects, with some object representations containing
four distinct modes, and others containing fewer (the clock).
In addition to finding clear biases in camera locations, we also
observed that camera views tended to be consistently oriented
upright for the side views, but not for top or bottom views. Fi-
nally, we determined that categorization accuracy was higher
for views that were sampled from the modes of the distribu-
tions we estimated, when compared to views sampled from
regions that were farthest from the modes. This suggests that
2D memory representations of 3D objects are informative for
recognition.

Finally, using this tool to uncover memory priors for ob-
jects that are not bilaterally symmetric, and with different ge-
ometries could help determine what factors are responsible
for shaping biases in 3D memory representations. Our current
findings do not appear to be altogether consistent with statis-
tical priors (the “frequency hypothesis”), since diagrammatic
views (especially of the bottom of objects like cars, teapots,
and pianos) are not views of these objects that are typically
experienced. However, they may be due to variable angu-
lar discrimination accuracy, which may be increased for sides
that are aligned with the first principal component axes of the
objects, and decreased for the shorter sides. Our approach
provides a powerful tool for estimating detailed distributions
of biases in 3D memory, and can provide an empirical basis
for spurring novel theoretical insights on the nature of these
representations.
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Abstract

Words influence cognition well before infants know their specific meanings. For example, three-month-olds are more likely
to form visually-based categories when exemplars are paired with spoken words than with sine-wave tones. We tested
whether structure in infants environment can foster this effect. Caregivers often use exaggerated showing gestures when
labeling objects, presenting words in synchrony with object motion, and creating amodal temporal structure in auditory
and visual modalities. Because attention to amodal structure attenuates encoding information specific to just one modality,
we hypothesized that it can lead auditory signals to impact visually-based categorization. Indeed, when 3-month-olds are
familiarized to videos in which tones occur in synchrony with object motion, tones subsequently facilitate categorization,
just like words. Moreover, familiarizing infants to word-object synchrony enhances their subsequent categorization in the
presence of words. These results suggest that structure in infants environment may contribute to the special effects that
words have on categorization.
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Abstract 

We investigate whether children preferentially select 
informative actions and make accurate inferences from the 
outcome of their own interventions in a causal learning task. 
Four- to six-year-olds were presented with a novel system 
composed of two gears that could operate according to two 
possible causal structures (single or multiple cause). Given 
the choice between interventions (i.e., removing one of the 
gears to observe the remaining gear in isolation), children 
demonstrated a clear preference for the action that revealed 
the true causal structure, and made subsequent causal 
judgments that were consistent with the outcome observed. 
Experiment 2 addressed the possibility that performance was 
driven by children’s tendency to select an intervention that 
would produce a desirable effect (i.e., spinning gears), rather 
than to disambiguate the causal structure. The results replicate 
our initial findings in a context in which the informative 
action was less likely to produce a positive outcome than the 
uninformative one. We discuss these results in terms of their 
significance for understanding both the development of 
scientific reasoning and the role of self-directed actions in 
early learning. 

Keywords: cognitive development; causal learning; 
exploration; scientific reasoning; decision-making; 
experimentation 

Introduction 
The concept of the learner as an intuitive scientist—forming 
and evaluating hypotheses about the world—has provided 
an illuminating and productive model for understanding the 
mechanisms underlying cognitive development. In 
particular, ‘Theory Theorists’ have long advanced the 
analogy between the processes underlying knowledge 
acquisition and formal scientific theory change, in which 
children formulate, test, and rationally revise their intuitive 
theories in light of new evidence (Gopnik & Wellman, 
2012). Indeed, much of what we know about self-directed 
learning in early childhood (and beyond) appears to 
resemble the basic inductive processes of science. From 
infancy, learners are sensitive to statistical information in 
the data they observe (e.g., Saffran, Aslin, & Newport, 
1996; Xu & Garcia, 2008), and use these patterns to infer 
the abstract causal theories that allow for explanation, 
prediction, and action in the world (e.g., Carey, 1985; Keil, 
1989; Wellman & Gelman, 1992).  

However, the scientific process is not limited to passive 
observation and interpretation of statistical data. Instead, 
learning as an intuitive scientist also requires that children 
design, select, and execute informative interventions to 
evaluate the accuracy of their currently held beliefs and 
acquire new knowledge. The need for experimentation is 

especially apparent in the domain of causal learning, where 
observation alone is often insufficient. Instead, observations 
must typically be paired with appropriate and informative 
investigations in order to disambiguate between potential 
causes or causal structures (Pearl, 2000).  

To illustrate, suppose that you notice that the houseplant 
sitting in a sunny spot on the windowsill has wilted, and the 
soil in the pot is dry. Multiple causal structures are 
consistent with this pattern of observation (see Figure 1): It 
could be that the intense sunlight dried out the soil, and the 
plants wilted due to this lack of moisture (a causal chain: 
Figure 1b). Or perhaps this is a variety of plant that requires 
shade, regardless of moisture. In this case, the sunlight is a 
direct cause of both wilting and dry soil, independently of 
one another (a common cause: Figure 1a).  

While observation of the world alone cannot 
disambiguate between these two possibilities, taking 
specific actions on the world can. Due to the conditional 
relationship between patterns of intervention and causal 
structure, manipulating the variables in a system can reveal 
the causal relationships between them. That is, a learner 
who knows that variable X is the cause of variable Y also 
knows that intervening to change X will lead to a change in 
Y. Returning to our houseplant example, you could 
therefore discover the true casual structure by intervening to 
change the dryness of the soil—perhaps by watering more 
often—and then check to see if plants in that spot flourish 
(indicating a causal chain) or continue to wilt (indicating a 
common cause). 

This makes intervention a powerful tool for determining 
causal structure, but its usefulness critically requires that the 
learner recognize and carry out informative interventions. 
For example, while intervening on the sunlight (e.g., by 
shading the flower pot) will always lead to improving the 
health of the plant, this desirable outcome would not 
provide information about the true underlying causal 
structure (i.e., whether wilting was caused by dry soil or by 
excess sunlight).  

Whether young learners are able to engage in this type of 
systematic experimentation is a subject of substantial 
debate. On the one hand, research on exploratory play 
suggests that even preschool-aged children have an intuitive 
tendency to produce informative actions that facilitate their 
learning: Children preferentially explore where they have 
incomplete or inconsistent knowledge (e.g., Bonawitz, van 
Schijndel, Friel, & Schulz, 2012; Gweon & Schulz, 2008; 
Schulz & Bonawitz, 2007), and spontaneously select actions 
with the potential to  improve their epistemic status (Cook, 
Goodman, & Schulz, 2011). On the other hand, this work 
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contrasts with decades of research on the development of 
scientific reasoning, which overwhelmingly reports that 
even much older children do not follow the principles of 
informative scientific experimentation in their spontaneous 
actions (Zimmerman & Klahr, 2018): Children struggle with 
the control and isolation of variables, often designing 
confounded and confirmatory experiments rather than 
logically informative ones (e.g., Inhelder & Piaget, 1958; 
Klahr, Fay, & Dunbar, 1993; Siler & Klahr, 2012; 
Valanides, Papageorgiou, & Angeli, 2014). Critically, 
children also appear to select interventions based on their 
tangible outcomes, rather than their informativeness (e.g., 
Schauble, 1990; Tschirgi, 1980) (e.g., choosing to shade the 
plant in the above example).  

This apparent preoccupation with producing (or 
reproducing) effects, rather than testing causal hypotheses, 
has led some researchers to suggest that children initially do 
not understand of the goal of scientific experimentation 
(e.g., Carey, Evans, Honda, Jay, & Unger, 1989; Schauble, 
Klopfer, & Raghavan, 1991). Instead, Schauble and 
colleagues (1991) proposed that early experimentation is 
motivated by an ‘engineering’ goal, in which children 
engage in exploratory interventions in order to “make things 
happen,” rather than the ‘science’ goal of learning the 
underlying causal structure of the world. If true, this early 
inability or unwillingness to conduct informative 
experiments poses a major complication for the claim that 
children’s self-directed learning intuitively follows a 
scientific process.  

The current study, therefore, seeks to examine whether 
young children select and make inferences from their own 
actions in a way that supports their causal learning. While it 
is clear from past research that even infants successfully 
infer causality from observation of the outcomes of 
interventions that are chosen and performed by others (e.g. 
Meltzoff, Waismeyer, & Gopnik, 2012), it remains an open 
question whether the same is true for actions that children 
take themselves. Schulz, Gopnik, and Glymour (2007), for 
example, provide evidence that young learners understand 
and utilize the conditional relationship between causal 
structure and intervention. Specifically, 3- to 6-years-olds 
accurately identified the causal structure of a system after 
observing the outcomes of interventions on it and accurately 
predicted outcomes of interventions on a system when the 
causal structure was known.  

In contrast, more recent findings indicate that even older 
children (5 to 8 years) may struggle to apply this principle to 
their own actions. Two studies—McCormack, Bramley, 
Frosch, and Lagnado (2016) and Meng, Bramey, and Xu 
(2018) – have examined children’s causal interventions and 
inferences during exploration of a 3-node system. While 
some of the actions children produced in both studies were 
informative, neither team found evidence for a strong 
preference for informative actions. For example, according 
to McCormack and colleagues (2016), only 7- and 8-year-
olds consistently selected informative interventions 
significantly more often than chance, while 5- and 6-year-
old’s did not select informative interventions above chance. 
Similarly, Meng et al. (2018) found that 5- to 7-year-olds 
average selection of informative interventions was not 
distinguishable from chance levels.  

In fact, both studies found evidence that children select 
interventions in accordance with a positive testing strategy 
(PTS)—that is, taking actions that are expected to produce 
an effect if their current hypothesis is correct (Coenen, 
Rehder, & Gureckis, 2015; Klayman & Ha, 1987). In 
McCormack et al. (2015), the most popular intervention was 
turning on the hypothesized root node, which activated all 
other nodes in the system, regardless of the true causal 
structure. Meng et al. (2018) also provide evidence for 
children’s use of PTS: Although the model that best 
captured children’s intervention choices in their task relied 
on a combination of expected information gain and PTS, 
this mix was heavily skewed towards PTS. 

Importantly, however, evidence for PTS is not evidence 
against the ‘engineering goal’ account: While turning on the 
putative root node of a system positively tests the largest 
number of causal links with in it (see Coenen et al., 2015), 
this is also the action that ‘makes the most things happen’. 
Indeed, within the scientific reasoning literature, PTS 
behaviors are often treated as evidence that young learners 
are focused exclusively on the tangible outcomes of their 
interventions (Tschirgi, 1980; Zimmerman, 2007; 
Zimmerman & Glaser, 2001). These previous findings, 
therefore, cannot rule out the possibility that young children 
select primarily interventions according to ‘engineering,’ 
rather than ‘scientific’ goals. Thus, our first aim is to look 
directly at children’s intervention preferences. We ask 
whether young learners will privilege an informative option 
(one that has the potential to disambiguate between 
competing causal structures) over an uninformative one in a 
forced choice design. We then examine whether children 
maintain their preference when this uninformative 
alternative is guaranteed to produce a desirable effect. 

Our second aim is to examine whether children can utilize 
the outcomes of their own actions in later causal inference. 
Despite being older than the children tested by Schulz et al. 
(2007), participants in Meng et al. (2018) failed to identify 
the correct causal structure more often than chance, and the 
5- to 6-year-olds in McCormack et al. (2015) did so only for 
certain types of structures. It is unclear whether children’s 
failure to identify the correct causal structure was due to 
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Figure 1: Common cause (a) and causal chain (b) structures. 
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their inability to make inferences from self-generated 
evidence, or due to the challenges associated with these 
more complex causal structures. In fact, Frosch and 
colleagues (2012) find that children struggle to make correct 
inferences about a similar 3-node causal system even when 
an experimenter generated the necessary evidence for them. 
We therefore designed the current task as a modified version 
of Schulz et al.’s (2007) paradigm. This is a context in 
which we know that young learners are able to reason about 
the conditional relationship between intervention and causal 
structure. 

 The current study aims to clarify whether young children 
preferentially select and successfully learn from their own 
actions in a way that is sensitive to the informative value of 
causal intervention. Two experiments examined how 4- to 
6-year-olds responded to a forced choice between an 
informative and uninformative intervention in a causal 
learning task. Experiment 1 asks whether children will 
preferentially choose to take the informative intervention 
when selecting actions on a novel causal system. Then, in 
Experiment 2, the uninformative intervention is also 
guaranteed to produce a desirable effect. Choice behavior on 
this task will therefore distinguish whether children’s early 
interventions are primarily motivated by a ‘science’ or 
‘engineering’ goal. In addition to looking at which 
interventions young learners choose (and why), these 
experiments will also consider whether children are able to 
draw accurate inferences about a simple causal system from 
evidence they generate themselves.  

Experiment 1 
To investigate whether children preferentially choose 

interventions that support their causal learning, we used a 
task modeled on Schulz et al. (2007). Children were 
introduced to a gear toy featuring two interlocking gears and 
a switch. They learned that individual gears may be 
“working” (they spin when the toy is turned on) or “broken” 
(they are inert and prevent any interlocking gears from 
spinning). At test, children observed a pair of gears that 
failed to spin when the toy was turned on. They were told 
that this event could have resulted from two possible causal 
structures.1 Either both gears are broken (a ‘multiple causes’ 

                                                             
1 These structures were also based on Schulz et al (2007) and 

were originally referred to as ‘common cause’ and ‘causal chain.’ 
However, in the current experiment, it is more appropriate to refer 

structure), or one gear is broken, preventing the other from 
spinning (a ‘single cause’ structure) (see Figure 2). As in the 
previous houseplant example (Figure 1), it is impossible to 
determine which of these represents the true causal structure 
from observation alone. Instead, a specific informative 
action must be performed: removing the gear that is broken 
in both structures and observing the behavior of the 
remaining gear in isolation. In contrast, removing the gear 
that varies between the two structures and observing the 
remaining (broken) gear would provide no information 
about the underlying causal structure. Children were given a 
choice between isolating and observing only one of the two 
gears prior to their inference. If young learners indeed 
recognize and privilege actions that are most informative for 
causal learning, then they should prefer to observe the gear 
that will disambiguate between the two structures. 
Afterwards, children were given the opportunity to observe 
the outcome of their chosen action, and were asked to judge 
which of the two structures was correct. If children are able 
to infer causal structure from their own actions, those who 
select the informative action should make the accurate 
inference.  

Methods  
Participants Forty-eight children (M = 64.19 months, SD = 
9.46 months, range = 46-82 months) participated in 
Experiment 1. Children were recruited and tested 
individually at a local science museum in a primarily urban 
area. Seventeen additional children were run, but excluded 
due to experimental error (n = 11) or failing to complete the 
testing session (n = 6). 
 
Stimuli The task used a custom-built electronic gear-toy, 
colored plastic gears, and picture cards with colored 
illustrations representing the gears and causal structures.  

The toy, previously used in Schulz et al. (2007), consisted 
of a 12”x12” cube with two metal pegs on top. Each peg 
was designed to hold one 3” diameter gear, such that two 
gears would interlock when positioned on top of the toy. 
Sensors inside the cube detected the presence of a gear on 
the pegs, causing them to spin when a switch attached to the 
front of the toy was flipped to the ‘on’ position. A hidden 
control on the back of the toy allowed the experimenter to 

                                                                                                       
to them as ‘multiple cause’ and ‘single cause’ structures, 
respectively. 

Figure 2: (a) Images used to illustrate ‘working’ and ‘broken’ gears. (b) Schematic of the gear toy. (c) Images used to 
illustrate the multiple causes (left) and single cause (right) structures with the informative option indicated. 
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surreptitiously control the supply of power (which 
determined whether or not the switch caused the gears to 
spin).  

A total of six uniquely colored gears (blue, yellow, pink, 
green, red, orange) were used: four during the training trials 
and two during the test trial. Gear colors used for each part 
of the procedure were counterbalanced across participants. 
Note that in our description of the procedure, we refer to the 
gears using letters (A-F) in place of the color names that 
were actually used to identify each gear during the 
experiment. The picture cards (see Figure 2) each depicted a 
cartoon illustration of either a single gear (Figure 2a) or a 
gear pair (Figure 2c). These were used to illustrate the 
possible causal status (working or broken) and causal 
structures (single or multiple causes) during the task. The 
illustrated gears were color-matched to the physical gears 
used on the toy.   
 
Procedure Each testing session began with the toy on the 
table in its powered state, with the switch in the ‘off’ 
position, and two gears (A and B) in place on the pegs. The 
experimenter introduced the toy, indicating the switch on 
the front, and explained that it turned the toy on and off, 
allowing the child to try both actions. When the child turned 
the toy on, A and B would spin simultaneously, and when 
the child turned the toy off, both stopped spinning 
simultaneously. The experimenter then removed and 
replaced each gear in turn, explaining that, when turned off, 
gears can be taken on and off the toy. 

The experimenter then put A and B away, saying, 
“You’re going to get to see all the gears. But some of the 
gears are broken. When a gear is broken, it doesn’t spin 
even when the toy is on, and it gets in the way of other gears 
spinning too.” Children were then shown an example 
working gear (A) and a broken gear (C) in turn. The 
experimenter placed the gear on the right peg of the toy and 
the child observed it either spinning (A) or not spinning (C) 
when the toy was turned on. Each gear was paired with a 
matching picture card showing its casual status. Using the 
pictures, the experimenter explained, “Gears that aren’t 
broken can use their arms to spin themselves,” and, “Gears 
that are broken don’t have any arms, they cannot spin, and 
keep other gears from spinning too.” The experimenter then 
held up A and C in turn and asked the child to tell them, 
first, whether the gear was broken or working, and second, 
whether it would spin on the toy on its own. Children 
received feedback and, if necessary, correction on each 
response. As part of the feedback for the second question, 
the experimenter placed the gear on the left peg of the toy 
and flipped the switch. Thus, children observed that broken 
and working gears operate consistently regardless of which 
peg of the toy they are on. 

Each child then received training on the two causal 
structures, presented as different combinations of gears: a 
multiple cause (C and D) and a single cause (D and B) 
structure. The order in which the two structures were 
presented was counterbalanced, as was whether the broken 

gear (D) in the single cause structure was on the left or right 
peg of the toy. For each structure, the experimenter placed 
both gears on the toy and turned it on. The toy was always 
depowered, and the gears always remained inert. The 
experimenter said, “The gears aren’t spinning. Something is 
wrong.” She then brought out a picture card depicting one of 
the possible causal structures and described it to the child. 
For example, for the single cause structure, she said, “The 
picture shows us that just one of the gears is broken. The D 
gear is broken and doesn’t spin on the toy, and the B gear is 
not broken so it can spin on the toy. But when they’re 
together, the D gear gets in the way of the B gear, and 
nothing moves.” Each gear was placed on the toy 
individually, and children were asked to predict (with 
feedback and observation) whether it would spin when the 
toy was turned on. This procedure was then repeated for the 
other structure. 

During the test trial, the picture cards used during the 
training were left visible, one on either side of the toy. Gears 
E and F were placed on the toy and did not spin when the 
toy was turned on. This time, however, the experimenter 
said, “I don’t know what’s wrong here. I don’t know why 
these gears aren’t spinning. Will you help me figure it out?” 
The experimenter then produced two picture cards, identical 
to those seen during training, except that the depicted gears 
matched the colors of E and F. These cards were placed 
adjacent to the matching card from the training and each 
was described in the same terms. Children were told that 
they had to figure out which of the two pictures correctly 
showed why E and F weren’t spinning together. Children 
were also told that they would get a ‘clue’ to help them: 
they could choose to see how one of the two gears (either E 
or F) would behave when the other gear was removed and 
the toy was turned on.2  

After indicating their choice to the experimenter, children 
were allowed to remove the unselected gear, turn the toy on, 
and observe the outcome. If the informative gear was 
selected, the outcome (spin or inert) was counterbalanced, 
such that half of the children who selected the informative 
gear would observe evidence for the single cause structure, 
and the other half would observe evidence for the multiple 
causes structure. Regardless of choice or outcome, the 
experimenter would point to the gear when the toy was 
turned on and say, “Look!” before holding up the two 
picture cards depicting the possible structures, and asking 
children to pick the one that showed how the gears actually 
operated. 

Results and Discussion  
Children’s responses to all questions were recorded during 
the experimental session and videotaped. We recorded 

                                                             
2 As an attention and comprehension check, half of children (n = 

24) were prompted to report the possible states of each gear before 
making their choice. This had no effect on either the number of 
informative interventions (t(46) = -0.62, p = 0.538 [ns]) or number 
of correct causal inferences (t(32) = 1.37, p = 0.18 [ns]), so the two 
scripts were combined. 
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whether each child chose to observe the informative or 
uninformative gear, as well as their final judgment about the 
true causal structure of the gears. For the subset of children 
who selected the informative gear, judgments were further 
coded for whether or not they were consistent with the 
outcome observed.  

A significant majority (70.83%) chose the informative 
intervention, isolating and observing the gear that could 
disambiguate between the possible causal structures, (p = 
0.005, two-tailed binomial). Of the 39 children who 
observed this disambiguating evidence, all but two made the 
correct causal inference (94.12%, p < 0.0001, two-tailed 
binomial). Together, these results suggest that young 
learners are not only sensitive to the informative potential of 
their own causal interventions, but they are also able to use 
the outcomes of those interventions to accurately infer the 
causal structure of events in the world.  

Experiment 2 
The results reported above provide evidence that young 
children preferentially select and learn from their own 
informative interventions in the course of causal learning. 
This is consistent with previous research on children’s 
spontaneous exploration, while also extending this work to 
show that this preference for informative actions supports 
later inference. However, children’s choice behavior on this 
task is also amenable to the opposite interpretation. As 
discussed above, the scientific reasoning literature often 
characterizes early experimenters as ‘engineers’ (rather than 
‘scientists’) who incorrectly focus on generating effects 
(rather than information).  

The informative gear in Experiment 1 was also the gear 
that had the potential to spin when isolated by intervention. 
It is possible, therefore, that children did not select the 
informative action because it would provide disambiguating 
evidence, but because it was more likely to produce this 
entertaining and desirable effect. If so, preference for 
informative action in Experiment 1 would actually be 
evidence for the claim that young children’s interventions 
are motivated by producing effects, rather than learning 
about the world.  

We conducted a second experiment to test this alternative. 
In Experiment 2, we changed the operation of the gears to 
include generative causes (i.e., working gears cause broken 
gears to spin), rather than inhibitory causes (i.e., broken 
gears prevent working gears from spinning): see Figure 3. 
At test, children observed a pair of spinning (rather than 
inert) gears that could be explained by appeal to either 
multiple  (both gears spin) or a single cause (only one gear 
spins, causing the other to spin). Again, participants were 
given a forced choice between two interventions to 
determine the true causal structure.  

Critically, however, this presents a choice between an 
uninformative action (isolating the gear that works under 
both structures), that is guaranteed to produce a desirable 
effect, and an informative action, (isolating the gear that 
works under one structure and is broken under the other), 

that has equivalent odds of producing or failing to produce 
the effect. This means that children must forgo the 
opportunity to produce a desirable effect in order to acquire 
information about how the causal system works.  

If, as suggested by past work on exploratory play, 
children have an intuitive preference for informative 
actions, then we should continue to see a preference to 
isolate and observe the disambiguating gear. If, on the other 
hand, children show the opposite preference, choosing to 
select the uninformative gear, then this would suggest they 
are motivated by an ‘engineering goal’. 

Methods  
Participants Twenty-four children (M = 65.4 months, SD = 
9.59 months, range = 46-82 months) were included in 
Experiment 2. Recruitment procedures and demographics 
were identical to Experiment 1. Four additional children 
were tested, but excluded due to experimental error (n = 1) 
or for failing to complete the testing session (n = 3). 
 
Stimuli Materials were identical to those used in 
Experiment 1. However, new picture cards were created to 
depict the revised causal structures used in Experiment 2.  
 
Procedure Procedures were similar to those used in 
Experiment 1. The script and outcomes of actions were 
modified in accordance with the revised definitions of 
‘broken’ and ‘working’ gears. These changes are described 
below: 

Children were initially told, “Some of the gears are 
broken. When a gear is broken, it can’t spin on its own. It 
needs a gear that’s not broken to make it spin.” When 
shown the example gears and pictures (Figure 3), working 
gears were described as able to “use their little arms to spin 
themselves and to make other gears spin too!” Broken gears 
were described as unable to spin by themselves. Instead, 
broken gears “need a gear that’s not broken on the toy with 
them to make them spin.”  

In addition, the gear pairs were presented as operating 
according to one of two structures: Either both the gears (E 
and F) are working and can each spin on their own, or just 
one gear (E) is working, and “uses its little arms” to spin F, 
causing both to move. As in Experiment 1, whether the 
broken gear in the causal chain was the right or the left gear 
of the pair was counterbalanced across participants.  
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Figure 3: Illustration of the possible causal structures in 
Experiment 2. 
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Results and Discussion  
There were no age differences between the groups of 
children tested in Experiments 1 and 2, t(70) = 0.03, p = 
0.976 (ns). 

Children again selected the informative intervention 
significantly more often than expected by chance (79.17%, 
p = 0.006, two-tailed binomial). In fact, children’s tendency 
to make this choice was not significantly different from 
their choice behavior in Experiment 1, t(70) = 0.77 p = 
0.442 (ns). In other words, children continued to privilege 
the informative action even when it was pit against an 
opportunity to produce a desirable outcome.   

Performance on the final inference question also did not 
differ from Experiment 1. Of the 19 children who selected 
the informative gear, all but one of them used this 
information to infer the causal structure that was consistent 
with the observed outcomes of their interventions (94.74%, 
p < 0.0001, two-tailed binomial). These results provide 
evidence against the alternative, ‘engineering goal’ 
explanation for children’s success in Experiment 1. 

General Discussion  
The current research sought to address two outstanding 
questions about children’s intuitive experimentation: (1) Do 
children successfully identify and select informative 
interventions during exploration?, and (2) If so, can they 
draw appropriate causal inferences based on the outcomes 
they produce? These questions are critical, both for 
understanding the processes by which self-directed 
exploration contributes to early learning, and to address the 
disconnect between the claim that young learners are 
‘intuitive scientists,’ and the claim that children are 
unsuccessful scientific experimenters.  

First, our results demonstrate that 4- to 6-year-olds not 
only take informative interventions (Experiment 1), but that 
these actions are not driven by their potential to produce 
desirable outcomes (Experiment 2). These findings provide 
strong evidence against previous suggestions that children 
are initially concerned only with the practical (and not the 
informative) outcomes of their interventions. In particular, 
the ‘science vs. engineering’ account, employed by 
Schauble and others (e.g., Schauble et al., 1991; Siler & 
Klahr, 2012) to explain children’s choices in scientific 
reasoning tasks implies that the informative option should 
be less appealing than the uninformative, but productive 
one. The fact that the majority of children continued to 
select the informative action in Experiment 2 indicates 
instead that their choice of intervention was based on its 
potential to produce information and not positive outcomes. 
The apparent tendency to privilege producing effects seen in 
previous work may therefore be unrelated to children’s 
understanding of the goals of experimentation, and an 
inaccurate reflection of early ability to identify and select 
interventions that improve their causal knowledge. 

Second, these young children readily and accurately used 
the outcomes of their own actions when making judgments 
about the causal structure of a novel system. This goes 

beyond prior work showing that children make appropriate 
inferences after observing the outcomes of experimenter-
generated interventions (Schulz et al., 2007), and contrasts 
with findings suggesting children may be unable to draw 
causal inferences from their own interventions (McCormack 
et al., 2016; Meng et al., 2018). In addition, while research 
on exploratory learning (e.g., Cook et al., 2011; Schulz & 
Bonawitz, 2007) has previously shown a preference for 
informative actions in young children, the bulk of this work 
has not required children to make subsequent causal 
inferences from the outcomes of those actions, leaving it 
uncertain whether and how children utilize self-directed 
exploration to support their learning.  

Ongoing work aims to expand upon the current findings 
to investigate whether children are able to use the evidence 
generated by their own informative interventions to draw 
more sophisticated inferences. Specifically, we present 
children with cases in which the informative gear is paired 
with a novel gear after the intervention outcome is observed. 
Depending on the causal status (working or broken) of the 
informative gear, we can assess whether children will be 
able to use this information to update their existing causal 
representations, make predictions, and even draw inferences 
about the causal status of unknown gears.  

This study also goes beyond past research on children’s 
causal interventions (Meng et al., 2018; McCormack, et al., 
2015) by directly examining intervention preference, and 
determining whether it is primarily driven by an action’s 
informative potential or its tangible outcome. In contrast 
with previous work, the current results provide direct 
evidence against the claim that children select interventions 
in order to produce effects. Although our findings cannot 
explain children’s previously reported tendency to engage in 
PTS, we show that this behavior is not due to their failure to 
appreciate the information-seeking goal of intervention and 
experimentation.  

To summarize, the current results demonstrate that young 
children both preferentially select informative interventions, 
and make accurate inferences from the outcomes of those 
actions. These experiments fill a critical gap in the well-
worn proposal that early causal learning intuitively follows 
a process that is analogous to belief revision in science. In 
sum, our findings suggest that young learners’ causal 
interventions and inferences are sensitive to the principles of 
informative experimentation long before they are able 
execute and articulate those strategies in explicit scientific 
reasoning tasks.  
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Abstract 

Do language learners benefit from exposure to a more 
predictable input (with lower entropy)? Frequency is known 
to facilitate learning (more frequent words acquired earlier). 
However, frequency is only one measure of the distributional 
structure of the linguistic input. Here, we show that entropy 
also impacts language learning: adults show better word 
segmentation in an artificial language when the sequence has 
lower entropy (created by making one word more frequent). 
Segmentation improved both for the language as a whole, and 
for the less frequent words:  the infrequent words in the low 
entropy condition were learned better than the words in the 
high entropy condition, despite appearing half the number of 
times. This is the first demonstration, to our knowledge, of the 
facilitative effect of entropy reduction on language learning. 
We discuss implications for artificial language learning 
experiments (which often use uniform distributions) and for 
models of language learning more generally.  

Keywords: Statistical learning; Word segmentation; 
Language Learning; Information. 

Introduction 

Frequency effects are prevalent across many aspects of 

language learning and processing. More frequent sounds, 

words and constructions are acquired earlier (Diessel, 2007; 

Goodman, Dale, & Li, 2008), and more frequent words are 

easier to recognize and produce (Jescheniak & Levelt, 

1994). These effects are not restricted to single words: more 

frequent multiword phrases are also processed faster by 

adults (Arnon & Priva, 2013; Arnon & Snider, 2010), and 

produced more accurately by children (Bannard & 

Matthews, 2008). Frequency also impacts the structure of 

the lexicon: more frequent words tend to be phonologically 

shorter (Zipf, 1936).  

While frequency affects many domains in language, it 

captures only one aspect of the distributional structure of the 

linguistic environment. Frequency alone does not tell us 

about the co-occurrence patterns of words; the contexts in 

which words tend to appear; or how predictable the input is 

overall. In order to quantify such aspects of the linguistic 

input, other measures are required. Here, we focus on one 

such measure, Shannon's Entropy (Shannon, 1948). 

Shannon’s entropy quantifies how unpredictable a variable 

is, with higher entropy assigned to less predictable 

variables. For instance, a toss of a fair coin has higher 

entropy than a toss of an unfair coin. Entropy tells us 

something about the entire distribution of words, beyond the 

properties of each individual word.  

In the past decade, there has been growing interest in 

applying more complex measures like entropy to the study 

of language, and growing evidence for their impact on 

language structure and use. For example, information 

content is a better predictor of word length than frequency, 

with less predictable words tending to have longer lexical 

forms (Piantadosi, Tily, & Gibson, 2011). Similar effects 

are found in online processing where reading times are 

affected by entropy (Linzen & Jaeger, 2015), and speakers' 

production of less predictable words is slower (Cohen Priva, 

2017) and less contracted (Frank & Jaeger, 2008). Children 

are also sensitive to such measures: two-year-olds show 

better repetition of unfamiliar four-words sequences when 

the final word "slot" has higher entropy (Matthews & 

Bannard, 2010), and earlier acquisition of words that have 

greater contextual diversity (appearing with more unique 

words) (Hills, Maouene, Riordan, & Smith, 2010). 

However, very little work to date has looked at the impact 

of entropy on learning novel linguistic information: will 

entropy reduction lead to better learning? Here, we examine 

this question by looking at statistical learning, and in 

particular, at the classic word segmentation task of Saffran 

et al., (1996). Statistical learning (SL) has been studied 

extensively over the past 20 years, demonstrating human’s 

ability to use distributional information to learn about 

various aspects of language structure (Romberg & Saffran, 

2010). One of the first demonstrations of SL was in the 

domain of word segmentation, where infants were shown to  

use the lower transitional probabilities between words as a 

cue to word boundaries (Saffran, Aslin, & Newport, 1996). 

Research since has shown that humans can also make use of 

such distributional information to learn more complex 

relations such as non-adjacent dependencies (Gomez, 2002) 

or multimodal associations (Cunillera, Laine, Càmara, & 

Rodríguez-Fornells, 2010; Lavi-Rotbain & Arnon, 2017).  

Interestingly, even though SL of word segmentation has 

been studied extensively, almost all such studies present 

learners with a uniform distribution where all elements 

appear an equal number of times (e.g., each of the words in 

the Saffran segmentation task appear equally often). 

However, using a uniform distribution has two inherent 

drawbacks. First, such a uniform distribution deviates from 

2092



that of natural language where words follow a highly 

skewed Zipfian distribution (Zipf, 1936). A Zipfian 

distribution has a narrowed peak for the small number of 

words that are the most frequent, and a very long tail for the 

rest of the words that have low frequencies. Words show a 

Zipfian distribution across many languages, in both adult-to-

adult speech (Zipf, 1936; Piantadosi, 2014) and child 

directed speech (Lavi-Rotbain & Arnon, under review). 

That is, unlike word segmentation studies, words in natural 

language do not have a uniform distribution. 

Second, uniform distributions have low predictability. 

Elements that show a uniform distribution are harder to 

predict, since they are equally likely to appear: no guess is 

better than the other. Sewed distributions, such as a Zipfian 

distribution, are more predictable: when only a small 

number of words are highly frequent, they make a better 

guess than the rest. That is, the uniform distributions used in 

word segmentation experiments differ from those of natural 

language in ways that may impede learning. The difference 

in predictability between uniform and Zipfian distributions 

can be captured using entropy: the uniform distribution is 

the least predictable and therefore has maximal entropy, 

while a Zipfian distribution has lower entropy.  

Here we ask if entropy reduction can lead to better 

learning of word segmentation in the classic Saffran 

segmentation task. Such a finding would illustrate the 

sensitivity of learners to more complex distributional 

measures, and their potential impact on learning outcomes. 

Only one study, to our knowledge, used a non-uniform 

distribution in a word segmentation task. In that study, 

adults learned from either a "Zipfian" distribution or a 

uniform one. No difference in segmentation scores was 

found between the two, despite the reduced entropy of the 

latter (Kurumada, Meylan, & Frank, 2013). These findings 

seem to go against the idea that entropy reduction is 

facilitative. However, another possibility is that no 

facilitation was found because entropy was not reduced 

enough. In the "Zipfian" condition in Kurumada et al., the 

word's frequency was inversely proportional to its rank. 

However, the sharp contrast found in natural language 

between the narrowed peak and the long tail was not present 

in this condition. This sharp contrast (the existence of few 

very frequent words and many low frequency words) shifts 

the distribution further from being uniform, and reduces 

entropy to lower levels. We suggest that this contrast 

between frequencies is beneficial for learning. 

Here, we expand on the findings of Kurumada et al. 

(2013) in several ways to test the prediction that entropy 

reduction will facilitate learning. First, we compare 

performance in several levels of entropy: high, medium and 

low. Segmentation might be facilitated in the low entropy 

level, which was not tested in Kurumada (2013), and is 

more similar to natural language. Second, we compare 

learning of items with the same frequency, across several 

levels of entropy. We predict that reduced entropy can 

facilitate learning of low frequency items beyond what is 

expected from their frequency: words with lower frequency 

will be learned better when they appear in a more 

predictable environment (one with lower entropy), 

compared to in a uniform distribution.  

 The current study 

In the current study we ask if entropy reduction can be 

beneficial for words segmentation (1) in general, and (2) of 

infrequent words. We examine the first prediction by 

looking at adults' segmentation scores across several levels 

of entropy: high, medium and low, with the same exposure 

durations. Entropy was reduced by making one word more 

frequent than the rest. If language learners are mostly 

sensitive to frequency of novel words, performance on the 

segmentation test should be affected by word frequency 

rather than entropy level. However, if learners are sensitive 

to more than mere frequency, e.g. to the predictability of the 

input, than segmentation score in the low entropy condition 

should be better than in the high entropy condition.  

We examine the second prediction by comparing 

segmentation of items with the same low frequency, across 

different levels of entropy. We expect that low entropy will 

boost learning of low frequency items, such that low 

frequency words will be learned better when they appear in 

a more predictable sequence (with lower entropy), 

compared to when they appear in a uniform distribution 

(with high entropy). Previous work has shown that  

previously learned words can serve as anchors for word 

boundaries and facilitate segmentation (Cunillera, Càmara, 

Laine, & Rodríguez-Fornells, 2010). We hypothesize that a 

similar effect can happen when making one word more 

frequent. This word is now highly predictable, can be 

learned early on, and serve as an anchor for learning the 

segmentation of the infrequent words.  

Method 

Participants 

142 undergraduate students at the Hebrew University of 

Jerusalem participated in the study (108 females, 34 males, 

mean age 24;0). Participants were randomly assigned to one 

of the four experimental conditions. All of the participants 

were native Hebrew speakers without learning disabilities or 

attention deficits. Participants received 10 NIS or course 

credit in return for their participation.  

Materials  

Auditory stimuli 

The task was modelled on the audio-only condition from 

Lavi-Rotbain & Arnon (2017). Participants were exposed to 

a familiarization stream corresponding to the condition they 

were assigned to. All streams were composed of the same 

four unique tri-syllabic synthesized words: "dukame", 

"nalubi", "kibeto", and "genodi". The syllables making up 

the words were taken from Glicksohn & Cohen (2013). 

They were created using the PRAAT synthesizer (Boersma 
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& van Heuven, 2001) and were matched on pitch (~76 Hz), 

volume (~60 dB), and duration (250–350 ms).  

The four words were created by concatenating the 

syllables using MATLAB to ensure that there were no co-

articulation cues to word boundary. The words were 

matched for length (mean word length=860ms, range=845-

888ms). The words were then concatenated together using 

MATLAB in a semi-randomized order to create the auditory 

familiarization streams. Importantly, there were no breaks 

between words and no prosodic or co-articulation cues in 

the stream to indicate word boundaries. The only cue for 

word boundaries was transitional probabilities (TP's): TP's 

between words were lower compared to TP's within words.   

Experimental conditions 

We created auditory sequences with three levels of entropy: 

high, medium and low, but with the same number of tokens 

(128) and length (1:50 minutes), in order to see if reduced 

entropy can facilitate segmentation. In the high entropy 

level, words followed a uniform distribution with each word 

appearing 32 times in a semi-randomized order (no word 

appeared twice in a row). TP's within a word were 1, and 

TPs between words were 0.333. In the medium entropy 

level, words appeared with a skewed distribution: one word 

appeared 55% of the time (71 appearances) while each of 

the other three words appeared 15% of the time (19 

appearances for each word). In the low entropy level, words 

appeared with an even more skewed distribution: one word 

appeared 80% of the time (101 appearances) while each of 

the other three words appeared only 7% of the time (9 

appearances for each word). In both the low and medium 

entropy conditions, the identity of the frequent word was 

counterbalanced across subjects. In addition, in both 

conditions the TP's within a word were 1, but the TP's 

between words varied depending on the next word (since the 

frequent word in these conditions was more likely to occur). 

These conditions were used to examine the effect of entropy 

on the general segmentation score. 

In order to look at the segmentation of the low frequency 

items, we added a uniform condition with high entropy but 

with shorter length (uniform-short). In this condition, each 

word appeared 19 times (76 tokens, lasting 1:05 minutes). 

The frequency of each word in this condition was matched 

to that of the infrequent words from the medium entropy 

condition. By comparing the two we can examine the 

impact of entropy on words with the same low frequency. 

See Table 1 for full details of the experimental conditions. 

Segmentation test 

16 two alternative forced choice trials appeared in a random 

order, with the constraint that the same word/foil did not 

appear in two consecutive trials. Participants heard two 

words and were asked to decide which belonged to the 

language they heard. We used non-words as foils ("dunobi", 

"nabedi", "kilume", and "gekato", average length: 860ms; 

range 854-868ms), created by taking three syllables from 

three different words, while keeping their original position. 

Each of the four words appeared once with each of the four 

foils to create 16 trials. The order of words and foils was 

counter-balanced so that in half the trials, the real word 

appeared first and in the other half, the foil appeared first. 

Procedure  

Participants completed the experiment on a computer while 

seated in a quiet room. They were told that they are going to 

listen to an alien language and will then be asked about it. A 

check-board image was displayed while they listened to the 

familiarization stream. After the exposure phase, 

participants completed the segmentation test.  

Results 

Participants were divided as follows between the four 

conditions: uniform, N=31; uniform-short, N=30; medium 

entropy, N=41; low entropy, N=40. In the medium and low 

conditions, each of the four words was the frequent one for 

ten subjects. A one way ANOVA (on each entropy rate 

separately) revealed that segmentation did not differ due to 

which word was the frequent one (for the medium entropy 

condition: F(3)=0.72, p=0.55; for the low entropy condition: 

F(3)=1.7, p=0.18). Consequently, in all subsequent analyses 

we collapsed the data across the different frequent words, 

for each of these conditions. Participants showed learning 

(were above chance) in all four conditions (low entropy 

condition: t(39)=12.57, p<.001; medium entropy condition: 

t(40)=7.0, p<.001; uniform condition: t(30)=7.0, p<.001; 

uniform-short condition: t(29)=5.8, p<.001) (see Fig. 1). 

We used mixed-effect linear regression model to examine 

the effect of condition on performance. Following Barr et al. 

2013, the models had the maximal random effect structure 

justified by the data that would converge. Our dependent 

binominal variable was success on a single trial of the 

segmentation test. We had experimental condition (dummy 

coded, meaning that each condition is compared to the

Table 1: Different experimental conditions 

 Uniform- 

short 

Uniform  Medium 

entropy  

Low 

entropy  

Exposure length [minutes] 1:05 1:50 1:50 1:50 

Number of tokens 76 128 128 128 

Tokens per word 19 32 
Frequent: 71 

Infrequent: 19 

Frequent: 101 

Infrequent: 9 

Entropy [bits] 2 2 1.7 1.1 2094



 

uniform condition) as a fixed effect, as well as: log 

frequency of the word (centered); gender; trial number 

(centered); order of appearance in the test (word-first trials 

vs. foil-first trials). The model had random intercepts for 

participants and for items (Table 2). To examine the overall 

effect of experimental condition and word's frequency, we 

used two model comparisons. 

As predicted, experimental condition had a significant 

effect on performance (chi(3)=42.07, p<0.001). Participants 

showed better learning in the low entropy condition 

compared to the uniform condition (β=1.25, SE=0.22, 

p<0.001). However, performance in the medium entropy 

condition, and in the uniform-short condition, did not differ 

from the uniform condition (uniform-short: β=0.19, SE=0.2, 

p>0.1; medium entropy: β=0.19, SE=0.19, p>0.1). 

In addition to the entropy effect, frequency also had a 

significant effect on segmentation (chi(1)=18.9, p<0.001). 

Participants showed higher accuracy for more frequent 

words (β=0.4, SE=0.09, p<0.001). Trial number 

significantly affected performance: better accuracy in the 

beginning of the test (β= -0.03, SE=0.01, p<0.01). Order of 

appearance in the test significantly affected performance: 

better accuracy on trials where the word appeared before the 

foil (β=0.59, SE=0.1, p<0.001), as has been found in 

previous studies (Lavi-Rotbain & Arnon, 2017; Raviv & 

Arnon, 2017). Since the order of presentation of words and 

foils was counter-balanced this could not reflect a 

preference for pressing 1 or 2. Gender did not affect 

performance (β= -0.02, SE=0.16, p>0.1). 

 

 

Fig. 1:  Mean segmentation score by condition with 95% 

confidence intervals 

 

 

 

 

 

 

 

 

 

 

 

 

In order to examine the effect of entropy on low 

frequency words, we compared accuracy in learning: (1) the 

words in the uniform-short condition; (2) infrequent words 

from the medium entropy condition; and (3) infrequent 

words from the low entropy conditions. The first two sets of 

words appeared 19 times during exposure, while the third 

set appeared only nine times. We used all trials (16 per 

subject) from the uniform-short condition (since they all had 

the same frequency). However, for the medium and low 

entropy conditions, we included only trials in which the 

correct answer was one of the infrequent words (denoted as 

'infrequent trials'). In these conditions, there were 12 

infrequent trials for each subject. Participants showed 

learning of infrequent items (above chance) in all conditions 

(low entropy condition: t(39)=9.59, p<.001; medium 

entropy condition: t(40)=5.3, p<.001).  

We used a mixed-effect linear regression model to look at 

the effect of entropy level on learning infrequent words. Our 

dependent binominal variable was success on a single trial. 

We had experimental condition as a fixed effect (each 

condition was compared to the uniform-short condition) as 

well as: gender, trial number (centered); and order of 

appearance in the test. The model had random intercepts for 

participants and for items. To examine the overall effect of 

condition, we used model comparisons. 

As predicted, experimental condition had a significant 

effect on learning infrequent words (chi(2)=16.9, p<0.001). 

Low frequency words were learned better in the low entropy 

condition (M=78.8%) than in the uniform-short condition 

(M=65%) (β=0.78, SE=0.22, p<0.001). This effect is 

opposite to what would be expected based on mere 

frequency: these words appeared only nine times in the low 

entropy condition as opposed to 19 times in the uniform-

short condition. Performance on infrequent trials in the 

medium entropy condition (M=64.8%) did not differ from 

the uniform-short condition (β=0.0, SE=0.2, p>0.1). Trial 

number affected performance, with better accuracy in the 

beginning of the test (β= -0.03, SE=0.01, p<0.05). Order of 

appearance in the test also affected performance, with better 

accuracy on trials where the word appeared before the foil 

(β=0.53, SE=0.1, p<0.001). Gender did not affect 

performance (β=0.06, SE=0.2, p>0.1). 

 

Table 2: Mixed-effect regression model for all four conditions. Variables in bold were significant. 

Significance obtained using the lmerTest function in R. 

 
Estimate Std. Error z value p-value 

(Intercept) 0.27331     0.17793    1.536   >.1 

uniform-short condition 0.17777     0.20571    0.864   >.1 

Medium entropy condition 0.18484 0.18791    0.984   >.1 

Low entropy condition 1.25277     0.21789    5.750 <.001 *** 

Log frequency (centered) 0.40138     0.09691    4.142 <.001 *** 

Gender (male) -0.01982     0.16113   -0.123   >.1 

Trial number (centered) -0.03469     0.01061   -3.271   <.01 ** 

Order of appearance (word) 0.59277     0.09781    6.061 <.001 *** 
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Fig. 2:  Mean segmentation score by condition by trial 

type (frequent VS infrequent) with 95% confidence intervals 

How can we reconcile the general effect of frequency 

with the finding that words that appeared only nine times 

were learned better than those appearing 19 times? Our data 

suggests that what matters is not absolute frequency, but 

relative frequency: within each condition, the more frequent 

words were learned better. This is best illustrated in Fig. 2 in 

which we plotted segmentation means by condition 

(medium and low entropy) and by trial type (infrequent 

versus frequent trials). Frequency affect performance within 

conditions: frequent words are learned better in both entropy 

levels. However, this does not hold across conditions. For 

example, infrequent trials from the low entropy condition 

are numerically better than frequent trials from the medium 

entropy condition, despite of the sharp difference in 

frequency in the opposite direction: only nine appearances 

compared to 71. That is, only the relative frequency within 

each condition affected performance. 

One possible explanation for the entropy effect we found 

is that participants only learned the frequent word, and used 

it to rule out foils by elimination. If this is what they did, we 

should see a difference in segmentation scores across foils: 

foils that share a syllable with the frequent word should be 

easier to reject compared to foils that do not. For example, if 

the frequent word for a participant is 'nalubi', we should see 

better accuracy in rejecting 'nabedi' that shares the first 

syllable with 'nalubi', compared to rejecting 'gekato' that 

does not share a syllable with 'nalubi'. However, we see no 

such effects. A one-way ANOVA showed no difference 

between trials in the low entropy condition where the foil 

shared one syllable with the frequent word (M=79.2%) and 

trials where it didn’t (M=77.5%) (F(1)=1.2, p>0.1). No 

difference was found even when we compared performance 

between foils that share the first syllable with the frequent 

word separately from these who share the second, the third 

or none at all (F(3)=1.57, p>0.1). That is, the boost for the 

infrequent words in the low entropy condition seems to 

reflect the better learning of those words.  

Discussion 

We set to ask if reduced entropy can improve segmentation 

in a classic auditory SL task (1) in general, and (2) of 

infrequent words. In addition, we wanted to see if the lack 

of facilitation in previous findings  (Kurumada et al., 2013) 

was due to a not large enough decrease in entropy. To do so, 

we examined adults' word segmentation in an artificial 

language across three levels of entropy (high, medium and 

low). Entropy was reduced by making one word more 

frequent than the rest, so that it appeared 55% (medium 

entropy) or 80% (low entropy) of the time. As in the 

"Zipfian" condition in Kurumada (2013), reducing entropy 

to medium level did not facilitate segmentation. However, 

lower levels of entropy did facilitate learning compared to 

uniform conditions with the same length. This effect was 

not driven only by improved learning of the frequent words. 

The low frequency words also benefitted: they were learned 

better in the low entropy condition compared to medium and 

high levels, despite appearing half the number of times (nine 

vs. 19). Further analyses ruled out alternative explanations: 

the facilitation cannot be explained by ruling out foils that 

share syllables with the frequent word. In addition to the 

effect of entropy, our findings highlight the importance of 

relative, rather than absolute frequency on learning. 

Frequency effects were present only within conditions and 

not across conditions. For example, infrequent words from 

the low entropy condition, that appeared only nine times, 

were learned better than the infrequent words in the medium 

entropy condition (appearing 19 times). Moreover, they 

were learned numerically better (though this did not reach 

significance) than the frequent word in the medium entropy 

condition despite appearing much less (nine vs. 71 times).  

This is the first evidence, to our knowledge, that humans 

are sensitive to complex measures such as entropy in the 

process of language learning, and that a more predictable 

distribution, as the one found in natural language, can be 

beneficial for learning compared to a uniform one. In 

addition, we provide novel evidence showing that low 

frequency items can 'overcome’ their frequency when 

appearing with higher frequency items, in a more 

predictable distribution. These results have implications for 

artificial language experiments. The vast majority of 

artificial language experiments use a uniform distribution in 

which all items have equal frequency. It is already known 

that this uniform distribution is not ecological since the 

natural language we are exposed to shows a Zipfian 

distribution (Zipf, 1936; Piantadosi, 2014) even in speech 

directed to infants at their first stages (Lavi-Rotbain & 

Arnon, under review). Our results highlight an additional 

drawback of using uniform distributions in the lab: such 

distributions can impede performance compared to more 

skewed, low entropy distributions. That is, we may be 

significantly underestimating learners’ abilities when using 

uniform distributions. This is of particular importance when 

such tasks are used to determine what learners can (or 

cannot) learn. We are currently investigating the impact of 

entropy on learning in children, and for other kinds of SL 

tasks.  

Beyond artificial language experiments, these results have 

implications for our understanding of the factors that impact 

language learning. While frequency effects on language 
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learning have been studied extensively (Goodman et al., 

2008; Jescheniak & Levelt, 1994), the effect of more 

complex measures remain understudied. Our results 

highlight the role of entropy in learning and open up new 

research directions on the impact of entropy on real-life 

language learning. What is the informative structure of 

child-directed speech? Does variance in entropy predict the 

age of acquisition of words? Can we see similar effects of 

the environment words appear in on natural language 

learning?  We are currently engaged in a series of studies 

investigating these questions, which can further deepen our 

understanding of infants' first steps into language and the 

formation of their vocabulary.  
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Abstract 
Inductive reasoning is constrained by several principles that 

govern how we choose to generalize evidence to new cases. Here 

we focus on diversity principle of induction, which describes the 

tendency to favor inductive arguments that include a diverse 

sample of evidence over those that include a homogenous sample 
of evidence. Several studies reveal that adherence to the diversity 

principle is influenced by a range of conceptual processes, such 

as an individuals’ prior knowledge or expectations about the 
categories and properties represented in the evidence. In the two 

experiments reported here we examined a contextual factor of the 

available evidence – the spatial separation of evidence exemplars 
– that we expected would impact how people reason about 

diverse samples. We found that when the pictures (Experiment 1) 

or labels (Experiment 2) used to represent evidence exemplars 
were presented far apart (approximately 10 cm), participants 

showed a greater willingness to endorse arguments with diverse 

exemplars than those with homogenous sample, relative to when 
these exemplars were placed in close proximity (approximately 1 

cm apart). We discuss these results as they relate to existing 

models of induction. 
 

Keywords: Inductive reasoning; Generalization; Diversity 

principle; Situated cognition 

 

Introduction 
Inductive reasoning, the process by which we use 

specific facts to arrive at general conclusions, is critical 

to our cognitive lives. For example, learning that hawks 

have hollow bones serves as evidence to support the 

inductive inference that other birds are likely to have 

hollow bones. Given the powerful role of induction for a 

range of cognitive processes there has been considerable 

interest in determining the constraints that guide the 

inferences we make. For example, in their classic work, 

Osherson and colleagues (1990) outlined several 

inductive principles that systematically constrain how 

we use evidence to arrive at inductive decisions. The 

present study focused on one such principle – the 

diversity principle of induction. Consider the two 

arguments below in which the two statements above the 

lines represent evidence and the statement below the 

lines represents a conclusion: 

 

Hawks have hollow bones 

Penguins have hollow bones (1)  

Larks have hollow bones 

 

Hawks have hollow bones 

Eagles have hollow bones   (2) 

Larks have hollow bones 

 

When asked to judge which of these two represent 

stronger inductive arguments, participants tend to select 

those that include a diverse sample of exemplars (1) 

rather than those that include a homogenous sample of 

exemplars (2) (Heit, Hayes, & Feeney, 2005; Kim & 

Keil, 2003; Osherson, et al., 1990; also, Lopez, 1995).  

   Most explanations of diversity effects focus on the 

ways individuals represent the content (i.e., categories 

and to-be-generalized properties) of the available 

evidence. For example, Osherson et al. proposed the 

similarity-coverage model to account for diversity 

effects. This perspective posits that individuals first 

consider the overarching category about which the 

inductive judgment should be considered. In the two 

inductive arguments presented above the coverage 

category in bird. Participants then assess the extent to 

which the evidence in each set of arguments covers this 

overarching category. According to this model 

individuals rely on their calculation of the similarity 

between exemplars to assess the extent to which each 

sample covers the conclusion category. Greater 

dissimilarity between exemplars within the evidence 

sample reflects greater coverage of the category, and 

therefore facilitates diverse-based reasoning.  

   Diversity effects have also been explained as Bayesian 

inference. From this perspective individuals rely on their 

prior beliefs about categories and properties to test 

hypothesis about the scope of property projection (Heit, 

1998; Lo, Sides, Rozelle, & Osherson, 2002). Our prior 

experience may lead us to believe that some categories 

(e.g., hawks and eagles) share many features in common 

and others categories (e.g., hawks and penguins) share 

fewer features. Thus, we are not surprised to learn about 

a new property that happens to be shared by two 

categories we have heretofore expected share many 

properties. In contrast, we are surprised to learn about a 

property that is shared by two categories that we believed 

had very little in common. This surprising sample of 

evidence, coupled with our expectation that samples of 
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evidence tend to be selected purposefully (Lawson & 

Kalish, 2009), makes the diverse sample a better 

argument to support a conclusion about a superordinate 

category.  

   There are notable cases in which individuals fail to 

adhere to the diversity principle. For example, several 

studies have shown that individuals with rich domain 

knowledge are less likely to consider taxonomic 

diversity in lieu of other evidence (Lopez, Atran, Coley, 

Medin, & Smith, 1997; Proffitt, Coley, & Medin, 2000). 

Moreover, when experts do engage in diversity-based 

reasoning they rely on a range of strategies that appeal to 

their knowledge about the domain, such as the types of 

properties that are transmitted across categories, or the 

relative size of the category that is represented in the 

samples of evidence (Proffitt et al., 2000). Thus, experts 

will depart from using taxonomic diversity as a basis for 

induction under conditions in which their rich domain 

knowledge suggests an alternative inductive strategy is 

optimal.  

   In related work Medin and colleagues (2003) showed 

that non-experts (college students) prefer to generalize 

from a sample of evidence that highlights a relevant 

relation between two evidence exemplars rather than a 

sample that includes taxonomically diverse exemplars. 

For example, participants judged an argument in which 

fleas and butterflies were attributed the same property as 

better support to conclude that the property is true of 

sparrows, than an argument in which fleas and dogs were 

the same property. This latter sample signals a relevant 

causal relationship that draws attention away the greater 

taxonomic diversity of the two exemplars, thereby 

leading individuals to favor the inductive argument with 

less diverse exemplars.  

      These exceptions are notable for two reasons. First, 

they highlight the role of prior knowledge about 

categories and properties when reasoning about the 

content of an inductive problem. Second, they bring to 

light an important methodological point: specific task 

modifications, such as the type of property or the 

relationship between categories presented in the 

evidence, impact how people reason about diverse 

samples. In support of this point, Feeney and Heit (2011) 

showed that the content of the to-be-generalized property 

serves as a prime to either encourage or discourage 

diversity-based responses. In their study participants 

exhibited diversity effects when they were primed with 

a general property that can be construed as common 

across a wide range of category members (e.g., are 

warm-blooded), but did not show these effects when they 

were primed with an idiosyncratic property (e.g., lives in 

the water).  

   In the present studies we examined whether contextual 

factors, such as how evidence exemplars are presented, 

may impact the extent to which participants obey the 

diversity principle. We were particularly interested in the 

potential influence of the spatial location of exemplars 

for two related reasons. The first concerns findings from 

research demonstrating that taxonomic categories tend to 

be, in many ways, represented within a multidimensional 

space which can be described as reflecting psychological 

distance between exemplars (Collins & Quillian, 1969; 

Hutchinson & Lockhead, 1977; Rips, 1975; Schaeffer & 

Wallace, 1969). Among other things this psychological 

distance can be created by similarity relations; for 

example, relative to their membership within the bird 

category robins and sparrows can be considered close 

(they share many properties) whereas robins and 

ostriches are far apart (they share few properties).  From 

this perspective, diverse samples are likely to be those 

that represent items that have greater representational 

distance.  

   The second, related, idea comes from research on 

situated cognition and embodiment (Barsalou, 2006; 

Wilson, 2002), in which it has been argued that the way 

we think about and represent concepts is determined, at 

least in part, by the way we experience and engage with 

concepts. For example, in addition to activating semantic 

features, many of the concepts we reason about (e.g., 

dogs) activate motor and sensory features (e.g., throwing 

to-be-retrieved items, going for walks, tugging on a 

leash, etc.) that reflect simulations of how we might 

interact with concepts (Barsalou, 2006). At a broad level, 

the embodiment framework challenges cognitive models 

to consider the role of the environment for a cognitive 

system (e.g., Hutchins, 1995).  

   With theses issues in mind we examined whether 

creating greater physical distance between exemplars 

within a sample would impact diversity-based reasoning. 

In two experiments participants were given inductive 

problems in which three evidence exemplars were 

presented either in close proximity to each other (within 

1 cm), or far from each other (approximately 10 cm 

apart) (See Figure 1). Half the evidence samples 

included a diverse range of exemplars and the other half 

included a homogenous set of exemplars. Our main 

prediction was that the greater separation of items would 

encourage participants to consider the coverage, or 

range, of the exemplars and therefore would lead to 

higher ratings for inductive arguments that included 

diverse samples compared to conditions in which the 

items were spaced close together.  

   The experiments assessed two additional factors. The 

first concerns the contents of the evidence samples. In 

Experiment 1 the items were represented by pictures of 

animals used to represent the categories presented in the 

evidence, whereas in Experiment 2 the items were 

represented by category labels (see Figure 1). This 

manipulation allowed us to test whether any potential 

effects of evidence spacing were due to perceptual 

processed that governed the way participants compared 

the physical features of the exemplars (i.e., differences 
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Figure 1. Schematic representation of the design of Experiments 1 and 2. 

 

between the pictured items), rather than differences in 

how they represented the categories. 

   Finally, we asked participants to make inductive 

judgments about three different targets, each of which 

varied in similarity to/taxonomic distance from the 

category represented by the evidence exemplars. For 

example, for the item in which evidence exemplars were 

represented by birds, participants were asked to make a 

judgement about a new bird (e.g., sparrow), a bat, and a 

reptile (e.g., turtle). We expected that the spacing effects 

would be limited to the category that represents the 

lowest level of abstraction covered by the evidence and 

target exemplars (e.g., Osherson et al., 1990). However, 

if the spatial manipulation has a more general effect on 

how individuals compare stimuli, it is possible the 

spaced presentation could lead to an overall increase in 

one’s willingness to generalize from diverse samples to 

any targets. Thus, this manipulation allowed us 

determine the extent to which varying the spatial location 

of the evidence influenced participants’ adherence to the 

diversity principle, in particular.  

 

Experiment 1  
Participants. Fifty-three undergraduate students 

participated for extra credit in a college course. 

Participants were recruited from, and were 

representative of, a medium-sized Midwestern US city. 

 

Design. This experiment employed a 2 x 2 x 3 design 

with Spatial location of evidence exemplars (Close, Far) 

manipulated between subjects and Sample composition 

(Diverse, Non-diverse) and Conclusion target (Same 

basic-level, Similar superordinate, Dissimilar 

superordinate) manipulated within subjects. Participants 

were randomly assigned to either the Close condition or 

the Far condition such that there was an approximately 

equal number of participants in the two conditions: Close 

(N = 27), and Far (N = 26). 

 

Materials. Participants were presented 12 inductive 

reasoning problems each of which included a sample 

comprised of 3 evidence exemplars. Half of the samples 

included a diverse set of exemplars (e.g., eagles, 

penguins, ducks) and the other half included a 

homogenous set of exemplars (e.g., eagles, hawks, 

owls). A novel biological property (e.g., Enzyme A) was 

attributed to the exemplars within the sample. A different 

novel property for each of the twelve problems.  

   For each reasoning problem participants were asked to 

make judgements for 3 different conclusion targets each 

of which varied in relation (taxonomic and/or perceptual 

relatedness) to the category covered by the evidence 

exemplars (see Figure 1 for a sample item). One target 

was drawn from same basic-level category that was 

represented by the evidence exemplars (e.g., sparrows). 

The other two target categories were drawn from 

superordinate categories (e.g., bats and turtles). Each of 

the evidence exemplars and targets were represented by 

photographs of a single animal (2cm x 2cm). 

 

Procedure. The experiment was conducted on a desktop 

computer with a 24” screen. The spatial arrangement 

manipulation involved varying the location of the 

evidence exemplars as they appeared on the screen. In 

both conditions the exemplars were presented in row on 

the top of the screen. In the Far condition the exemplars 

were spaced so that there was an approximately 10 cm 

gap between each. In the Close condition the exemplars 

were bunched together so that there was an 

approximately 1 cm gap between each. For each item the 

three evidence exemplars were presented at the same 

time and were accompanied by a statement (appearing 

below three exemplars) that attributed a property to all 

the animals (e.g., “these animals have Enzyme A”).  

   After the evidence exemplars were presented 

participants were asked to make a judgment about each 

of the three conclusion targets. A photograph of an 
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animal used to represent the category was presented 

approximately 6 cm below the evidence exemplars and 

was accompanied by a prompt to judge the likelihood 

that the target category would have the property that was 

attributed to the evidence exemplars (e.g., “How likely 

is it that sparrows have Enzyme A?”). Participants were 

instructed to use a scale, ranging from 0 (“not at likely” 

to 100 (“very likely), to determine their likelihood 

judgment. The three target categories were presented in 

random order. 

   Note that because sample diversity was manipulated 

within subjects we counterbalanced across participants 

which category was represented by a diverse sample or 

homogenous sample of exemplars. Also the order of 

presentation of diverse and homogenous samples (within 

participants) was randomized.  

 

Results 

Average likelihood ratings were submitted to a mixed 

ANOVA with Spatial arrangement of evidence (Close, 

Far) as the between subjects variable and Sample 

composition (Diverse, Homogenous), and Conclusion 

target as the within subjects variables. The only 

significant main effect was Conclusion target, F(2, 

102)=374.93, p<.001, 2>.87, due to a stepwise decrease 

in likelihood ratings as a function of the decrease in 

similarity/increase in taxonomic distance from the 

evidence exemplars to the target categories, all ps<.001 

Tukey’s HSD. 

 

 

 
 

Figure 2. Mean likelihood judgements for 

basic-level targets for Diverse samples and 

Homogenous samples in both Spatial 

arrangement conditions in Experiment 1. 

Bars represent 1+/- SE from the mean.  

 

   The analysis also yielded several noteworthy 

interactions, all of which were captured by a 3-way 

interaction, F(2,102)=4.72, p<.02, 2=.09. Analyses of 

the effects of spatial location on the ratings for each 

target revealed different patterns of responses for only 

the Basic-level targets. Simple effects analyses indicated 

there was a sample location by sample diversity 

interaction for basic-level targets F(1,51)=8.49, p=.005, 

2=.17. As suggested by Figure 2, this interaction was 

due to differences in responses for Diverse samples of 

evidence, for which the ratings were significantly higher 

in the Far condition than the Close condition, p<.001.  

Additional comparisons indicated that were significant 

differences in ratings between diverse samples and 

homogenous samples in the Far condition F(1,25)=7.89, 

p=.01, 2=.12, but not in the Close condition (F<1.50). 

No other effects or interactions were significant (all 

Fs<1.60). 

 

Discussion 

These results indicate that the spatial location of 

evidence exemplars had a consistent and precise effect 

on judgments about diverse, but not homogenous, 

samples. Adults consistently gave higher likelihood 

ratings for diverse samples when the evidence exemplars 

were separated from each other than when they were 

presented in close proximity to each other. However, the 

effect of spatial location was only present for targets 

from the same, basic-level, conclusion category as the 

evidence exemplars. Thus, these results provide 

preliminary evidence in support of our prediction that 

contextual factors, such as the way evidence is presented, 

can facilitate diversity-based reasoning.   

 

Experiment 2 
This experiment was designed to address at least two 

concerns raised by Experiment 1. First, because the items 

were represented by a photograph of a single animal it 

remains unclear if participants interpreted the exemplars 

as representative of the categories they were intended to 

represent or if they interpreted the evidence as 

representative of single individual concepts. Second, 

because the materials included photographs it is possible 

the effects were due to differences in how participants 

compared the stimuli, rather than their assessment of the 

diversity represented by the categories in the evidence. 

We addressed both of these concerns in this experiment 

by replacing the photographs with category labels.  

 

Method  

 

Participants. Forty-nine undergraduate students 

participated for extra credit. Participants were recruited 

from, and representative of the population of, a medium-

sized Midwestern US city.  
 

Design, Materials, and Procedures. This experiment 

was identical to Experiment 1 in every respect except the 

stimuli. In this case, rather than presenting photographs 

to represent the evidence and target items, participants 

were presented category labels. Participants were 

randomly assigned to the Far (N=24) or Close (N=25) 
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conditions. See Figure 1 for a schematic of the study 

design. 

 

Results 

The analysis replicated the pattern of results that was 

found in Experiment 1. Again there was a three-way 

interaction between Spatial arrangement, Sample 

Composition, and Conclusion target, F(2, 92)=3.48, 

p=.02, 2=.078. Further analysis revealed a significant 

Sample composition by location effect interaction for 

Basic-level targets, F(1, 46) = 10.32, p=.002, n=.18. As 

suggested by Figure 3, the interaction was due to higher 

ratings for Basic-level targets for diverse samples than 

homogenous samples in the Far condition, F(1, 47) = 

12.12, p<.001, 2=.13, but not in the Close condition, 

F<1.00. Also, participants exhibited higher likelihood 

ratings for diverse samples in the Far condition than in 

the Close condition, F(1,97)=6.42, p=.03, 2.09 As was 

the case in Experiment 1, no other effects or interactions 

were significant. 

 

 
 

Figure 4. Mean likelihood judgements 

for basic-level targets for Diverse 

samples and Homogenous samples in 

both Spatial location conditions in 

Experiment 2. Bars represent 1+/- SE 

from the mean.  

 
Discussion 

These results replicated those found in Experiment 1. 

Participants rated arguments with diverse samples as 

providing better support for conclusions than arguments 

with homogenous samples when the exemplars were 

spatially distant from each other but not when these same 

evidence exemplars were in close proximity. Moreover, 

the diverse sample were given higher ratings when the 

evidence exemplars were more distant than when they 

were close. These results suggest that the findings from 

Experiment 1 were not due to participants’ interpretation 

of the evidence as applying to specific individuals, rather 

than categories, nor their reliance on perceptual features 

of the task.  

 

 

General Discussion 
Prior research indicates that diversity-based reasoning is 

dictated by our knowledge or expectations about the 

categories, or the to-be-generalized properties that are 

represented in the evidence (Feeney & Heit, 2011; Heit, 

1998; Osherson et al., 1990). Thus most existing models 

account for diversity effects by focusing on how people 

reason about the content of an inductive problem. In the 

two experiments reported here we demonstrated that 

certain contextual factors, such as the way exemplars are 

presented, also contribute to diversity-based reasoning. 

Specifically, participants showed a greater willingness to 

endorse arguments that included diverse samples when 

these samples were presented in such a way that there 

was a large spatial separation between each of the 

evidence exemplars relative to when the same exemplars 

were presented without a large separation between 

evidence exemplars. In other words, diversity effects 

were strongest when the evidence covered more physical 

space.   

   It is difficult to reconcile these results with current 

explanations for diversity effects. One could argue that 

the spacing effects in Experiment 1 are consistent with 

the feature-based induction model of induction (Sloman, 

1993) insofar as the presentation impacted the way 

participants compared stimuli, or identified overlapping 

or unique features, and thus impacted their calculation of 

diversity. However, this interpretation does not account 

for the observed effects in Experiment 2 in which the 

stimuli were represented by labels rather than images. 

The results are also inconsistent with the idea that a 

calculation of similarity between the evidence exemplars 

is sufficient to assess category coverage (Osherson et al., 

1990). The similarity coverage model does not account 

for the finding that participants gave higher ratings for 

diverse samples when the evidence exemplars were 

spread far apart compared to when they were positioned 

close together.  

   Those in favor of the Bayesian or Relevance accounts 

of induction might interpret the results as the outcome of 

pragmatic factors. It could be argued that participants 

assumed that the exemplars were purposefully placed in 

close proximity or far apart. According to the Relevance 

theory of induction (Medin et al., 2003), participants rely 

on standard rules of communication (e.g., Grice, 1975; 

Sperber & Wilson, 1995), such as the notion that people 

present information in such a way as to highlight a 

relevant piece of information. Thus, it could be argued 

that participants reasoned as-if the exemplars were 

deliberately placed apart to draw attention to the 

coverage of the exemplars (or placed together to 

highlight the similarities between them). Although these 

models can accommodate these effects of spatial 

location, they do not explain them. Assuming 

participants reasoned that exemplars were spread apart 

purposefully, why would they interpret this decision was 
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intended to highlight the coverage of evidence 

exemplars?  

   Our interpretation of these results is that they provide 

some support for the grounded, or situated, aspect of 

diversity-based reasoning. Most models of situated 

cognition tend to focus on the influence of different 

modalities (e.g., motor sequences) on conceptualization. 

Diversity refers to a feature of samples, not isolated 

concepts. Diverse samples are those that include 

exemplars that provide coverage of a category; diverse 

samples occupy greater psychological space. Here we 

showed that presented evidence in such a way that the 

sample occupied greater physical space facilitated 

diversity-based reasoning. That the spacing effects were 

not observed for homogenous samples, or for targets 

from more distant conclusion categories, suggests that 

spacing did not influence whether participants 

interpreted samples as diverse. Rather, the results 

indicate that the broad spacing of exemplars primed 

cognitive processes that can draw attention to sample 

diversity, and thereby strengthen diversity effects.  

   Clearly, more work is needed to better understand the 

scope of these effects. For example, to clarify the 

potential impact of participants’ pragmatic assumptions 

it will be important to determine whether we can 

replicate these effects in conditions in which participants 

are made to believe that the location of the exemplars 

was not chosen deliberately. Additionally, because 

participants did not show the diversity effect in the Close 

condition it will be important to replicate these findings 

with a different set of stimuli. Also, it will be important 

to explore other ways in which individuals might be 

primed to consider the breadth or scope of evidence. For 

example, we are currently exploring the impact of 

gestures on adults’ and children’s adherence to diversity 

and sample size principles of induction.  

   There are several notable limitations of these 

experiments. First, the methods were different from 

those typically used on the inductive reasoning literature. 

Participants are often given arguments and asked to 

determine the sample that provides the best support for a 

conclusion. Here the evidence exemplars were presented 

as single photographs or category labels, rather than 

premises in an inductive argument. The effect of spacing 

might have been pronounced because this method 

encouraged participants to compare the stimuli. Also, 

although the observed effects were consistent, they were 

rather small. It will be important to replicate these results 

with stimuli from different domains to be sure these 

effects are not exclusive to the set of items. 

   Despite these limitations, these results raise important 

questions about the impact of contextual factors on 

inductive reasoning. In particular we showed that 

presenting evidence in such a way that it covered a broad 

physical space provided greater support for diversity-

based reasoning than when the same evidence was 

presented in a narrow physical space. While we do not 

deny that there is still much to learn about the influence 

of category knowledge, and prior beliefs, on inductive 

reasoning, these experiments call for more work on 

understanding the impact of contextual features on 

induction. As much as inductive reasoning is influenced 

by what is presented in an inductive problem, it seems 

intuitive that it would be influenced, at least to a certain 

degree, by how evidence is presented.   
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Abstract
Function learning research has highlighted the importance of
human inductive biases that facilitate long-range extrapola-
tions. However, most previous research is focused on aggre-
gate errors or single-criterion extrapolations. Thus, little is
known about the underlying psychological space in which con-
tinuous relationships are represented. We ask whether people
can learn the distributional properties of new classes of rela-
tionships, using Markov Chain Monte Carlo with People, and
find that (1) people are able to track not just the expected pa-
rameters of a linear function, but information about the vari-
ability of functions in a specific context and (2) in many cases
these spaces over parameters exhibit multiple modes.
Keywords: generalization, function learning, representation

Inductive biases are at the heart of the human ability to gen-
eralize and extrapolate from sparse evidence. For instance,
when we infer labels and properties of new objects or enti-
ties, we rely not just on our experience of past examples, but
on our implicit and explicit expectations about the nature of
categories. Similarly, when we learn relationships between
quantities in function learning, inductive biases make it pos-
sible to distinguish between the boundless possible relation-
ships behind a set of observations (Lucas et al., 2012, 2015).

In order to characterize a person’s inductive biases, it can
be useful to first focus on spaces of possible mental repre-
sentations – sometimes called hypothesis spaces – and the
kinds of inferences they support or preclude. As with cate-
gorization, there have been many proposals about the men-
tal representations supporting function learning, including
exemplar-based approaches (McDaniel & Busemeyer, 2005),
rule-based approaches (Brehmer, 1974), and hybrids or gen-
eralizations of these (DeLosh et al., 1997; Lucas et al., 2015).
These models are typically evaluated by comparing their pre-
dictions to averaged human judgments, either via direct corre-
lations, error relative to the true underlying function, or quali-
tative features including multiple modes (Kalish et al., 2004),
or monotonicity (Bott & Heit, 2004; Kalish, 2013).

While this line of research has shed light on function learn-
ing and the representations and inductive biases that make
it possible, some fundamental questions remain. For exam-
ple, while models that take a distributional approach to func-
tion learning have successfully explained human behavior,
there is little direct evidence that people track distributional
information – uncertainty or variability – when faced with
function learning problems. This question has been unan-
swerable in previous work that relied on aggregated judg-
ments or assumed that individual inductive biases are broadly
similar (Kalish et al., 2007). Even the few studies that
have focused on inference patterns (Kalish, 2013; Wilson et
al., 2015; Schulz et al., 2017), including analyses of per-
participant extrapolations (León-Villagrá et al., 2018), still

neglected this question about the tacit beliefs behind partici-
pants’ judgments. Only recently, experiments have started to
explore the role of uncertainty in function learning. In Schulz
et al. (2015) participants judged functions to be more pre-
dictable when they were smooth or when they exhibited low
variance, much in accordance with the preferences of a prob-
abilistic model. Similarly, Stojic et al. (2018) showed that
participants’ predictive accuracy in a function learning task
correlated with their confidence ratings, again resembling the
uncertainty estimated by a probabilistic model.

Here we expand on this work and attempt to directly char-
acterize how people represent uncertainty when they learn
functions.

Markov Chain Monte Carlo with People
To uncover the psychological space that participants learn
when learning functions we apply Markov Chain Monte
Carlo with People (MCMCP; Sanborn et al., 2010). Sanborn
et al. showed that Markov Chain Monte Carlo can be used as
an experimental method to elicit posterior distributions from
people using a simple forced-choice task. Thus, MCMCP of-
fers a method to explore the psychological representational
space and has been successfully applied to elicit the rep-
resentations of complex stimuli, such as facial affect cate-
gories (Martin et al., 2012). Previously, MCMCP has been
used in a function learning setting1 to examine if partic-
ipants prefer compositional over non-compositional func-
tions (Schulz et al., 2017). Since Schulz et al. were interested
in preferences for types of functions (compositional vs. non-
compositional), the samples presented consisted of discrete
varieties of functions and did not explore the distribution of
function parameters.

In contrast, in this work, we directly explore the distribu-
tional space of the parameters governing the realizations of
linear functions. This allows us to uncover how learned func-
tions are represented, without constraining the participant’s
choices to pre-specified sets of materials.

Adopting MCMCP also allows us to explore novel ques-
tions – do participants represent variability in the training re-
lationships? Do they form a single, deterministic functional
relationship or do they form posterior distributions over pa-
rameters, reflective of the variability in the training? This
question about representation, in turn, can inform more gen-
eral future questions about extrapolation – are typical ex-
trapolation patterns maximum a posteriori judgments given a

1Function learning has been more extensively studied in a closely
related paradigm, iterated learning. Iterated learning experiments
can elicit participants’ shared expectations and have revealed strong
inductive biases for positive linear functions (Kalish et al., 2007).
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learned distribution over parameters? Or do they correspond
to samples from a range of probable parametrizations?

In this work we:

• Evaluate if MCMCP can be successfully adapted to a func-
tion learning paradigm.

• Contrast how functions are represented depending on the
variability of the example sets provided.

Experiment
In this experiment, we examine how participants represent
linear functions when presented with sets of training exam-
ples. We hypothesize that participants learn both the param-
eters generating the function, as well as the variability of the
relationship, i.e. they will learn both how much slopes and in-
tercepts vary, while also learning the specific modes of slopes
and intercepts. Therefore, we expect participants to form pos-
terior distributions over the training parameters, with the vari-
ance of that posterior reflective of the training.

We distinguish between training functions with positive
and negative slopes, since previous research has highlighted
strong inductive biases for these relationships. Similarly,
while it has been shown that people are biased to extrapo-
late in a linear fashion, especially preferring linear functions
where both stimulus and criterion are matched (DeLosh et
al., 1997), extrapolations appear to be influenced by their
proximity to the extrapolation boundaries. In areas of the ex-
trapolation range that are closer to zero, participants seem to
adjust the slope of their extrapolations towards this bound-
ary (Brown & Lacroix, 2017; Kwantes & Neal, 2006). To
test how different offsets and different degrees of steepness
are represented we contrast steep and shallow linear func-
tions. Finally, we expect that highly salient functional re-
lationships, like positive functions for which target and cri-
terion are matched, will be easier to learn and result in more
peaked posterior distributions if the training exhibits low vari-
ability. For high variability training, and especially if the
function is not favored as strongly (for instance a function
with a shallow negative slope) we expect broader, less peaked
posteriors. Finally, we hypothesize that especially in high
variability conditions, some participants will not exhibit uni-
modal posterior distributions and consider several potential
generating functions broadly consistent with the learned func-
tion.

Contrasting these functions resulted in a 2×2×2 between-
subjects design (direction of the function: positive or nega-
tive, steepness: shallow or steep, variability of the training
data: low or high).

Participants
The study was self-certified in accordance with the School
of Informatics Ethics Guidelines. We recruited 454 partic-
ipants (Mage = 33, SDage = 8.63, 91 female, 176 male, 1
other, 186 refused information on gender) on Amazon Me-
chanical Turk. Participants had to have more than 50 ap-
proved HITs and an approval rate of 95% or larger. They

received $1.33 for participation and took an average of 17
minutes (M = 17.25,SD = 8.59) to complete the experiment.
Participants were randomly assigned to one of the 8 condi-
tions.

Materials
The parameters generating the functions in the experimental
conditions differed in the sign of the slopes, as well as in their
steepness. In addition, parameters in the training set exhibited
either low or high variance for intercepts and slopes. For the
full set of experimental conditions, see Table 1.

Table 1: Parametrization for the generating linear functions.
Condition β0 SDβ0 β1 SDβ1

C.5,low 0.25 0.05 0.5 0.025
C1.0,low 0 0.05 1 0.025
C−.5,low 0.75 0.05 −0.5 0.025
C−1.0,low 1 0.05 −1 0.025
C.5,high 0.25 0.3 0.5 0.15
C1.0,high 0 0.3 1 0.15
C−.5,high 0.75 0.3 −0.5 0.15
C−1.0,high 1 0.3 −1 0.15

To create the 25 training sets, corresponding to iid real-
izations of β0,β1 ∼ N (µ,σ), with µ and σ matching the ex-
perimental condition, we systematically sampled 10,000 pairs
and selected the most normal and uncorrelated sets2. Then we
generated the corresponding linear function for a range of 15
points for x in 0–1 for all sets. One of those 15 values was
picked at random and constituted the interpolation target.

MCMCP Proposals were generated by two symmetric
Gaussian distributions, to allow both for local, as well as far-
off proposals, σβ0 ∈ [0.14,0.98], σβ1 ∈ [0.21,1.47]. At each
iteration these proposals had a probability of .8 and .2 to be
selected. Proposals were further restricted to be in bounds
β0 ∈ [−0.5,1.5], β1 ∈ [−1.5,1.5], and if less than 4 points
of the function realization were visible on screen, the pro-
posal was automatically rejected and a new proposal was re-
sampled. Participants traversed three different, interleaved
chains, since multiple chains allow a wider application of
convergence diagnostics and reduce the impact of the partic-
ular starting state. The starting values for these chains were
obtained by k-means clustering of pilot data (n = 8, one par-
ticipant per condition). This resulted in the following starting
values β0 = {0.12,0.1,0.58},β1 = {0.92,−0.94,−0.28}, for
chains 1 to 3.

Procedure
Participants were instructed that they would learn the rela-
tionship between two proteins, Zenopin and Mepradin. Par-
ticipants were told that the concentration of Zenopin was re-
lated to Mepradin, but that the extent of that relationship var-

2All Shapiro-Wilk tests yielded p > 0.99, and all correlation co-
efficients were in the range [−.01 .01].
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ied between humans. Participants were also instructed that
they would be presented with examples of the relationship as
observed in different people and that they would be asked to
interpolate the relationship. They were then instructed that
after the training phase they would be presented with pairs
of proposed relationships, all observed for a new person, and
would have to choose which of the two were more likely to
resemble the learned relationship. After reading the set of
instructions, the participants were tested on their comprehen-
sion. If participants did not respond correctly in the question-
naire they had to restart the instructions.

Training Phase In the training phase, participants were
presented with 25 interpolation tasks, presented as scatter
plots. In each task, they were instructed that the scatter plot
depicted the relationship between the two protein concentra-
tions for a new person. They then had to guess the concentra-
tion of the protein by selecting the height of the correspond-
ing value on the plot (on the y-axis). Participants were shown
the correct value as feedback for one second, and, if their
choice deviated by more than ±0.05 from the true value, had
to readjust their selection.

Test Phase The test phase consisted of 240 forced-choice
tasks, corresponding to 80 interleaved iterations of the three
Markov chains. On each trial, participants were presented
with two adjacent scatter plots, one corresponding to the cur-
rent state of the chain and the other reflecting the proposed
new state (in randomized order). Participants had to select
the plot they believed most likely to depict the relationship
in the training phase. After the test phase, participants com-
pleted a short survey, were debriefed, and compensated. See
Figure 1 for a depiction of both training and test phase.

Test PhaseTraining Phase

Figure 1: Participants had to complete a training and a test
phase. In the training phase they were asked to interpolate
the concentration of a fictitious protein for 25 different peo-
ple (with feedback). In the test phase, they were presented
with 240 forced-choice tasks, for which they had to choose
the scatter plot that most resembled the relationship in the
training phase. The choices were presented in random order
and corresponded to a Markov chain, in which the participant
implemented the acceptance function.

Results
We excluded participants from the analysis if their chains
did not converge to the stationary distribution. Many criteria
for convergence checks have been suggested in the literature,

here we applied one of the most commonly used evaluations,
R̂ (Gelman et al., 2013; Vehtari et al., 2019). R̂ estimates the
ratio between within-chain variances and between-chain vari-
ance and thus provides a measure of how (self-)similar chains
are. In general applications R̂ should not exceed a value of
1.1. However, such a strict application of this diagnostic is
not realistic in most MCMCP experiments, since human judg-
ments might exhibit more correlated choices and the number
of iterations in experiments is usually considerably lower than
in standard statistical applications. Therefore, we incremen-
tally calculated R̂ values for chains for each participant and
selected the lowest overall R̂, with the additional constraint
that the first 20 samples of the chain were always discarded
and the resulting chains had to be at least 20 iterations long.
We then used the maximum of the intercept and slope R̂ val-
ues to apply exclusion criteria and determine burn-in.

Similar to Ramlee et al. (2017), we excluded participants
who exhibited R̂≥ 2. Furthermore, we excluded participants
who required more than one correction in the interpolation
task. Given that the interpolation function was deterministic,
most participants did not require many corrections (Mdn =
0,Q1 = 0,Q3 = 1,max = 44).

In total, these methods led to the exclusion of 262 partici-
pants (convergence exclusions: 224, interpolation exclusions:
72). This high number of exclusions was to be expected given
the correlated, bi-variate parameter space and previous re-
sults (Sanborn et al., 2010). For group sizes after exclusion,
see Table 2. For an overview of how the forced-choice task
results in the posterior distribution, see Figure 2.

Determining Burn-in
To determine how many trials were required on average for
the Markov chains to converge, we used the iteration for
which R̂ was optimal for each participant. On average, chains
required 33 iterations to reach optimal burn-in and the result-
ing optimal R̂ values were well below 2, MR̂ = 1.4,SD = 0.2.
Conditions did not differ considerably in terms of the opti-
mal iterations or the resulting R̂ values. For the full list of
per-condition burn-in values, see Table 2. For all subsequent
analysis, we discarded all points of the chain before the per-
participant burn-in.

Table 2: Participants in each condition before (Ntotal) and after
exclusion (N). Mburn-in, SDburn-in, as well as mean acceptance
probabilities averaged over participants (Macc,SDacc).

Condition Ntotal N Mburn-in SDburn-in Macc SDacc
C.5,low 48 25 34.88 14.49 35 17
C1.0,low 63 21 31.37 12.01 42 10
C−.5,low 52 19 34.37 13.73 37 13
C−1.0,low 64 22 29.59 11.59 38 15
C.5,high 59 35 32.29 13.22 38 14
C1.0,high 57 26 32.08 12.24 45 9
C−.5,high 56 29 35.66 12.75 42 13
C−1.0,high 55 15 29.40 10.67 36 12
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Figure 2: The 240 choices submitted by the participants cor-
responded to three Markov chains. By accepting or reject-
ing proposed parametrizations for the functions, participants
traversed this representational space and eventually converge
to a region reflecting the posterior over parameters. For this
participant, the chains converge after 35 iterations for β0 and
after 15 iterations for β1. The corresponding distribution af-
ter this burn-in period closely matches the true relationship
learned in the training phase, both in terms of its mean and
variance (dashed line and grey range).

Acceptance Probabilities
Acceptance rates for MCMC samples should range between
20–40% (Roberts, Gelman, & Gilks, 1997). Mean acceptance
probability was in that range, M = 39%,SD = 13, indicating
that the proposals were wide enough to traverse the param-
eter space. Between conditions, the mean acceptance prob-
abilities for participants varied, ranging from 35 to 45%, for
all acceptance probabilities, see Table 2. For each condition,
acceptance probabilities for each chain did not vary substan-
tially and were similar to the general acceptance rates (not
shown).

Posterior Distributions
Slopes differed significantly between positive- and negative-
slope conditions, with participants trained on negative slopes
preferring negative slopes, Mβ1 = −0.16,SDβ1 = 0.53, and
participants trained on positive slopes preferring positive
slopes, Mβ1 = 0.19,SDβ1 = 0.45, t(165.33) = −4.74, p <

.00013.
For conditions with negative slopes in the training sets,

steep and shallow conditions exhibited significantly differ-
ent posterior slopes, with lower slopes for steep compared
to shallow conditions, M−.5 =−0.05,SD−.5 = 0.45,M−1.0 =
−0.29,SD−1.0 = 0.59, t(65.58) = 2.08, p = .041. For condi-
tions with positive slopes in the training sets there was also a
significant difference in posterior slopes. However, this dif-
ference was not in the predicted direction, as slopes in the
shallow condition were on average larger than in the steep
condition, M.5 = 0.29, SD.5 = 0.4, M1.0 = 0.05, SD1.0 = 0.47,
t(89.75) = −2.89, p = .005. Posterior intercepts in con-
ditions with negative training slopes did not differ signifi-
cantly between steep and shallow conditions, M−.5 = 0.52,

3All tests are unequal variance, two-sided t-tests.
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Figure 3: Posterior densities for intercepts and slopes and true
values and standard deviation (dashed lines) in the experi-
mental conditions. The posterior densities exhibited multiple
modes, some centered in close proximity of the true parame-
ters.

SD−.5 = 0.21, M−1.0 = 0.6, SD−1.0 = 0.3, t(62.84) = 1.38,
p = .174, nor for conditions with positive training slopes,
M.5 = 0.35, SD.5 = 0.2, M1.0 = 0.5, SD1.0 = 0.25, t(88.71) =
3.31, p = .001.

Equally, per-participant SD for slopes did not differ signifi-
cantly between high and low variability conditions, Mlow,β1 =
0.49, SDlow,β1 = 0.26, Mhigh,β1 = 0.55, SDlow,β1 = 0.25,
t(180.07) = −1.39, p = .166. However, for intercepts, per-
participant SD did differ significantly between high and low
variability conditions, with high variance conditions result-
ing in higher SD, Mlow,β0 = 0.26, SDlow,β0 = 0.11, Mhigh,β1 =
0.31, SDlow,β1 = 0.11, t(182.48) =−2.46, p = .015.

Visual inspection revealed that in all conditions posterior
distributions were multimodal and heavily skewed, which
complicated the analysis. In general, the posterior densities
suggested that the modes of the posterior distributions were
often close to the learned parameters, see Figure 3, for a se-
lection of posterior distributions for one participant in each
condition, see Figure 4.

Since the mean and standard deviations of multimodal,
heavily skewed distributions are not good representations of
the underlying data and we were interested in characteristic
modes of the distributions, we used mixture models to iden-
tify dominant modes of the posterior distributions.
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Figure 4: Posterior densities for one participant in each con-
dition. Lines represent the true values and standard deviations
(dashed lines) in the experimental conditions.

Table 3: Posterior means and variances per condition, for
function intercepts (β0) and slopes (β1).

Condition Mβ0 SDβ0 Mβ1 SDβ1

C.5,low 0.34 0.32 0.32 0.62
C1.0,low 0.52 0.40 0.00 0.78
C−.5,low 0.49 0.37 −0.02 0.73
C−1.0,low 0.65 0.40 −0.40 0.77
C.5,high 0.35 0.39 0.27 0.71
C1.0,high 0.47 0.40 0.07 0.81
C−.5,high 0.54 0.40 −0.07 0.77
C−1.0,high 0.52 0.44 −0.20 0.83

Estimating Posterior Density Clusters We estimated
Gaussian mixture models that best described the distributions
for each experimental condition. We incrementally increased
the number of components and selected the model with the
lowest BIC4. The clustering produced a moderate number of
clusters, reflecting the multimodal nature of the data. In gen-
eral, each condition was estimated to correspond to a mixture
of 1–8 clusters (M = 4.5,SD = 2.56), and the largest clus-
ters closely matched the different training conditions. For
KL-divergences between training distribution and the inferred
clusters, see Table 5, for the number of clusters, weights,
means and covariances for the largest clusters, see Table 4,

4Estimating the mixtures with a Bayesian Dirichlet process mix-
ture model yielded very similar results.

for plots of the clusters, see Figure 5.

Table 4: The total number of clusters (Nc) assigned was gen-
erally low and the weight of the largest clusters was relatively
large (16–100%).
Condition NC wc=1 µβ0,c=1 SDβ0,c=1 µβ1,c=1 SDβ1,c=1

C.5,low 8 0.2 0.15 0.02 0.69 0.14
C1.0,low 8 0.17 0.07 0.01 0.84 0.1
C−.5,low 1 1.0 0.49 0.14 -0.01 0.53
C−1.0,low 4 0.42 0.93 0.03 -0.98 0.04
C.5,high 2 0.81 0.24 0.10 0.54 0.21
C1.0,high 3 0.46 0.24 0.1 0.75 0.13
C−.5,high 5 0.31 0.93 0.09 -0.65 0.2
C−1.0,high 5 0.39 0.9 0.08 -0.95 0.07

Table 5: KL-divergence between the training distribution and
the three largest clusters. In general, one of the largest clus-
ters corresponded well to the training distribution.

Condition KLc=1 KLc=2 KLc=3
C.5,low 2.18 1.1 1.95
C1.0,low 1.74 42.1 5.85
C1.0,low 1.35 − −
C−1.0,low 0.31 1.76 24.16
C.5,high 0.83 10.37 −
C1.0,high 1.06 9.76 2.95
C−.5,high 1.49 2.66 4.25
C−1.0,high 1.02 59.27 11.09

Per-Participant Clusters To evaluate if the source of the
multimodality in our data was due to averaging over diverse
cohorts of participants, or if individual participants produced
multimodal posteriors, we performed the same clustering pro-
cedure on a per-participant basis. Participant posterior distri-
butions were characterized by 1–12 clusters (M = 3.11,SD =
1.96,Q1 = 1,Q2 = 3,Q3 = 4), suggesting that the poste-
rior distributions were composed of multimodal individual
distributions. Furthermore, some participants with optimal
R̂ (≤ 1.1) also exhibited multiple clusters, indicating that
the multimodality was not simply due to poor convergence
(M = 1.89,SD = 1.36,NR̂≤1.1 = 9).

The number of clusters did not differ significantly between
low- and high-variance conditions, Mlow = 2.98,SDlow =
1.94,Mhigh = 3.1,SDhigh = 1.57, t(164.24) = −0.49, p =
.312. Neither did the variance of the largest cluster for
slopes differ significantly, Mlow = 0.1,SDlow = 0.13,Mhigh =
0.1,SDhigh = 0.11, t(172.43) = 0.11, p = .545. However, for
intercepts the variance of the largest clusters was significantly
different, with smaller cluster variances for low-variance con-
ditions, Mlow = 0.04,SDlow = 0.03,Mhigh = 0.05,SDhigh =
0.04, t(189.85) =−2.09, p = .048.
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Figure 5: Clusters obtained by fitting a Gaussian mixture model (oval shapes). The top three clusters (colored shapes) accounted
for a large proportion of the data and in general matched the distribution learned in the training phase well (mean parameters of
the true distribution in yellow).

Discussion
We have found some evidence that participants represent the
functions learned in training as distributions over parameters.
Furthermore, the modes of these distributions were, in many
cases, aligned with the true parameters. In addition, for inter-
cepts, but not for slopes, these distributions were affected by
differences in the variability of training. Finally, our results
suggest that the learned distributional spaces over function
parameters can exhibit multiple modes.

The multimodality in the posterior distributions allows for
two interpretations. First, it is possible that participants truly
evaluated distinct candidate representations, and thus multi-
modal posterior distributions characterized their hypothesis
space. It is plausible that highly salient relationships, in ad-
dition to the implied parameters in the training, constitute the
psychological space when learning sets of varying functions.
However, the multimodality might also arise from our exper-
imental method. One issue could be the number of iterations.
Theoretically, MCMCP is well suited to discover complex,
multimodal distributions, but practically many more sam-
ples could be necessary to achieve convergence to the poste-
rior distribution. Since extremely large numbers of iterations
might not be feasible from an experimental perspective, one
practical test of our results could be starting the chains of later
participants at the endpoints of previous participants (Martin
et al., 2012).

Future research should clarify the source of multimodality,
for instance by comparing our results with results obtained
by multidimensional scaling (MDS). If such a comparison
corroborates our results, these insights into the structure of
psychological spaces could, in turn, provide invaluable guid-
ance for future generalization research. In addition, MDS
would also allow us to address two shortcomings of the cur-
rent study: its exclusive focus on linear functions, and the po-
tential influence of perceptual similarity of functions on par-
ticipants’ forced choices. First, similarity judgments obtained
via MDS could be used to determine if participants are well
described by linear models, or if non-linear representations
underlie their judgments. These results would allow us to de-
termine if the multimodal representations observed in our ex-
periment were the result of a lack of satisfactory choices or a
genuine characteristic of learning. Second, MDS would allow
us to chart sets of perceptually similar samples. It is plausible
that intercepts and slopes can affect notions of similarity of
linear functions differently. For example, if functions sharing
the same slope but very different intercepts are judged more
similar than functions with similar slopes and intercepts, such
non-linear interactions could explain the multimodality ob-
served in our experiment.

While more research is required, our results also highlight
the importance of a plurality of experimental approaches and
methods in the study of human generalization. Most of previ-
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ous research has focused on averaged errors or single extrap-
olations. Here, we suggest that to fully understand human
generalization, characteristic errors, in combination with ex-
trapolation patterns, and evaluation and exploration of the un-
derlying hypothesis spaces are required.
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Abstract

We propose that when humans learn sets of relationships they
are able to learn the abstract structure or type of a family of re-
lationships, and exploit that knowledge to improve their ability
to learn and generalize in the future, especially in the face of
sparse or ambiguous data. In two experiments we found that
participants choose patterns and extrapolate in ways consistent
with sets of previously learned relations, as measured by ex-
trapolation judgments and forced-choice tasks. We take these
results to suggest that humans can detect shared abstract re-
lations and apply this learned regularity to perform rapid and
flexible generalization.
Keywords: generalization, function learning, transfer

Introduction
Many everyday situations require us to generalize from past
experience, even if we are faced with a specific problem we
have never seen before. For example, in cooking, one reg-
ularly has to infer the relationship between ingredients, ra-
tios or quantities, like the amount of sweetener and resulting
pleasantness of a dessert, and generalize this relation to new
recipes or ingredients. Often, we learn a general relationship
that helps us understand related problems. If we learn that
as we increase the amount of sugar in a recipe, the sweetness
will not change immediately, then increases rapidly and then
saturates, one can use this knowledge to reason about similar
relationships, as when deciding how much xylitol to add to a
cake.

Our example requires two types of generalization. The
first, sometimes called transfer or transfer learning, involves
transferring information about a relationship between two
quantities to help us understand a new and different relation-
ship. The second, extrapolation, involves understanding a
single relationship and extrapolating to new instances or data
points within, e.g., to new amounts of xylitol. The latter de-
pends on the former – our past experiences shape the induc-
tive biases we bring to a new problem.

Transfer learning expands the task the human learner faces
and requires further-reaching and more abstract inferences.
Given a set of prediction tasks, how can we capitalize on sta-
tistical regularities to aid future prediction? If the tasks ex-
hibit some shared structure, learning a representation captur-
ing this latent structure of the environment (Gershman & Niv,
2010), or learning which aspects of a task change (R. C. Wil-
son & Niv, 2012) can enable the learner to perform wide-
ranging and data-efficient generalization.

The value of transferring knowledge across different tasks
is receiving growing attention in machine learning commu-
nities. For example, abstract learning and transfer have been
successfully applied to challenging control tasks (Hamrick et
al., 2017). From a cognitive science perspective, the study of
such general learning mechanisms has a long tradition, e.g.,

Harlow (1949). Research in this tradition has highlighted how
hierarchical representations can allow for the “blessing of ab-
straction” (Gershman, 2017), where abstract knowledge is ac-
quired faster than detailed information. In recent years sev-
eral proposals have been put forward on how hierarchical and
structured inductive biases can be acquired through develop-
ment and how they allow for rapid generalization (Goodman
et al., 2008; Tenenbaum et al., 2011).

The second type of generalization has been widely stud-
ied in psychology, most commonly in classification tasks in
which participants have to learn to predict class labels for
unknown objects or entities. Similarly, tasks in which the
target to be learned is a continuous quantity have been stud-
ied in the domain of function learning research. Research
in function learning has emphasized particular human in-
ductive biases. For example, humans learn functions more
quickly if the relationship is linear (Brehmer, 1976), and
struggle with cyclic functions (Bott & Heit, 2004; Kalish,
2013). More importantly, human extrapolations are strongly
biased towards linear relationships, in particular positive lin-
ear functions (Brehmer, 1976; DeLosh et al., 1997; Buse-
meyer et al., 1997; McDaniel & Busemeyer, 2005; Kalish
et al., 2004). While this line of research emphasizes simple
types of functions, results from experiments with less taxing
memory demands have shown that a wide variety of relation-
ships can be learned and inform extrapolation (Lucas et al.,
2015; A. G. Wilson et al., 2015; Schulz et al., 2017; León-
Villagrá et al., 2018).

In function learning, the hierarchical and abstract repre-
sentation of the learned relationships has traditionally been
reduced to mechanisms that allow generalizing a mapping
from criterion to targets. Multiple proposals have been put
forward for the nature of these mappings, ranging from
rule–like parametric forms (Carroll, 1963; Brehmer, 1976),
associative, neuronal network architectures, and hybrids
thereof (Busemeyer et al., 1997).

Here we will adopt a general perspective and express the
task as Gaussian process regression. A Gaussian process
specifies a distribution over functions f (x)∼GP(µ,k), where
µ(x) = E[ f (x)] and k is the covariance kernel. The kernel
specifies a similarity measure over x and allows us to express
abstract beliefs about the shape of the function, such as pe-
riodicity or smoothness. Gaussian processes have been suc-
cessful in accounting for both the flexibility in learning, as
well as long-range extrapolations (Lucas et al., 2015).

While Gaussian processes allow us to express inductive bi-
ases for functions in flexible, non-parametric fashion, only
recently more attention has been given to structural and hi-
erarchical aspects of function generalization. This work has
emphasized the importance of inductive biases over different
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function types (Lucas et al., 2015), the compositional struc-
ture of functions (Schulz et al., 2017), or the generalization of
functions into dimensions outside the learned space (Lucas et
al., 2012).

Here we expand on this line of research and propose that
when humans learn relationships they do not maintain sets
of data, parametrizations or fixed parametric forms, but that
they form flexible and abstract hypothesis spaces. Based on
this abstract encoding, we suggest, they are able to capital-
ize on statistical co-occurrences of abstract information about
the type of relationship learned. As a result, repeated expo-
sure to similar functions should result in learning about the
shared type of relationship, as well as its relevant features.
Such exposure should then facilitate extrapolation in sparse
contexts and allow far-ranging generalization. We hypothe-
size that this application of past knowledge does not simply
amount to remembering previous data, but extrapolation de-
pends on the induced function type and adapted to the context
at hand.

Experiment 1
In this first experiment, we examine if participants prefer
functions consistent with the previously learned function type
and its shared, defining, features. We train participants on
three sets of samples from the same type of function and
assess if they subsequently choose extrapolations in concor-
dance with this type and parameters.

Participants
The study was self-certified in accordance with the School of
Informatics Ethics Guidelines. We recruited 99 participants
(Mage = 32.1, SDage = 10.87, 34 female, 65 male) on Ama-
zon Mechanical Turk. Participants had to have more than 50
approved HITs and an approval rate of 95% or larger. They
received $0.55 for participation and took an average of 7 min-
utes (M = 6.46, SD = 5.19) to complete the experiment. Par-
ticipants were randomly assigned to one of the six conditions
(nCos1 = nLin2 = nOu1 = 17, nCos2 = nLin1 = nOu2 = 16).

Procedure
Participants were instructed that they would learn the rela-
tionship between two substances, substance x, and substance
y. They were told that they would be presented with three
sets of patterns, each depicting one realization of the same
relationship and that they would have to predict the relation-
ship for 10 new points. They also received a visual depiction
explaining how they would predict the points. They were in-
structed that they would see one more pattern from the same
relationship, consisting of three points. Then they were in-
structed to select the pattern from six options that most likely
depicted the learned relationship.

Training Phase Each training block took the form of an ex-
trapolation task, where participants saw scatterplots and had
to guess the value of the substance on the y-axis in an extrap-
olation range, by selecting the height of the corresponding

value on the plot. Participants were shown the correct value
as feedback for one second, and, if their choice deviated by
±0.025 or more of the true value, had to readjust their selec-
tion. Training blocks were presented in randomized order.
Choice Phase After the training blocks, there was a forced-
choice task where participants saw the three-point pattern and
read that this pattern belonged to the same relationship as the
training. Then they saw with six scatterplot patterns, corre-
sponding to one conditional sample for each of the six ker-
nels, in randomized order. Participants had to select the pat-
tern that they deemed the most likely extrapolation for the
learned relationship. After the choice tasks, participants com-
pleted a short demographic survey.

Materials

The functions in the six conditions corresponded to sam-
ples from Gaussian Processes (GPs), with three different
types of kernels and mean functions, each with two distinct
parametrizations, see Table 1. To allow for characteristic pe-
riodic samples, we elected a “pure” cosine kernel, cos with
k(r) = σ× cos(r), r(x,x′) = (x−x′)2

`2
q

, with an additional in-

tercept. We generated linear samples from a linear kernel
lin with explicit slope and intercept terms. Finally, we used
a Ornstein-Uhlenbeck kernel (OU) with an additional inter-
cept, to generate non-smooth samples. The noise variance
was fixed to 0.01 for all GPs.
Training Sets We generated the training data by sampling
three sets of 35 points each in the range 0.05–0.95 for each of
the six conditions. The first 25 points constituted the evidence
provided in each training set. Participants had to extrapolate
the target value for the last 10 points and received feedback
for their choices. To ensure that samples were clearly percep-
tible and the samples were distinct (within function type and
between function types) we generated a set of 20 candidate
patterns for the 18 sets. We then selected samples from these
candidates for which all points were in the presentation range
[0,1], that were ≥ 0.05 of the three transfer points, and re-
jected uncharacteristic samples1. For a full list of kernels and
kernel parametrizations, see Table 1, for the training data and
the conditional samples, see Figure 1.
Forced Choices In the transfer set three points, x =
{0.05,0.1,0.2}, y = {0.475,0.525,0.5} were. These points
were selected to be inconsistent with any of the training ma-
terials, in terms of specific point locations. We then gener-
ated three samples conditional on the transfer points for each
of the six functions. Participants received one of these three
samples at random for each of the six kernels in the forced
choice task.

1For example, OU samples that did not exhibit any discontinu-
ities and thus looked visually identical to linear relationships, or cos
samples that had very low amplitudes.
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Figure 1: Top row: Training data in the six conditions. For each condition, there were three data sets to be learned. Participants
received the first 25 points and had to extrapolate for the 10 remaining points, dashed is the cutoff between presented evidence
and training. Bottom row: Samples that constituted the forced-choice options in Experiment 1 & 2. Samples were generated
by the particular GP, conditional on the three points in the transfer set.

Table 1: Kernels and kernel parameters generating the train-
ing data. For all models we set σnoise = 0.01.

Kernel variance lengthscale β0 β1
Lin1 0.02 – 0.35 0.47
Lin2 0.02 – 0.7 -0.47
Cos1 0.05 0.1 0.5 –
Cos2 0.05 0.04 0.5 –
OU1 0.01 1 0.5 –
OU2 0.08 1 0.5 –

Results

Error Rates

The training functions differed considerably in their mean ab-
solute errors (MAEs)2, as well in the change of error over
blocks, see Table 2.

Only for conditions with linear functions did errors differ
significantly between the first and the last block, t(42.94) =
2.21, p = .0323. For OU conditions, errors were lower for
the last block, but did not differ significantly, t(62.21) =
0.95, p = 0.345. For periodic conditions, error was again
lower for the last block, but blocks did not differ significantly
t(57.17) = 0.66, p = .509. The two OU and periodic con-
ditions were highly heterogeneous. While errors for the low
variance condition Ou1 decreased over blocks, errors in Ou2
remained high. Equally, while errors in Cos1 decreased, er-
rors for Cos2 remained high throughout training. For error
rates for all conditions, see Figure 2.

2All MAEs were calculated on extrapolations before the partici-
pant had received feedback for that particular value.

3All tests are two-sided, unequal variance t-tests. For means and
SDs, see Table 2

Table 2: MAEs for functions and blocks in Experiment 1
MAEb1 SDb1 MAEb2 SDb2 MAEb3 SDb3

Lin .02 .01 .02 > 0.01 .02 > 0.01
OU .05 .02 .06 .03 .05 .03
Cos .06 .05 .06 .06 .05 .04

1 2 3
Block

0

0.1

0.2

M
A

E

Condition
Lin1
Lin2

Ou1
Ou2

Cos1
Cos2

Figure 2: MAEs and 95% confidence intervals for each con-
dition in Experiment 1.

Selecting an Extrapolation Pattern
About 35% of the participants selected the choice corre-
sponding to the correct function type and parametrization.
Both for positive and negative linear training conditions, the
proportion of chosen true functions was significantly larger
than chance (1/6), Lin1 = 44%, p = .01, Lin2 = 53%, p <
.0014. For periodic functions, Cos2 was selected significantly
above chance, Cos2= 50%, p = .002, but Cos1was not, Cos1
= 12%, p = .802. Instead, participants mostly selected the

4All tests are one-sided, exact Binomial tests.
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other periodic function. The proportion of generally periodic
functions over the alternatives for condition Cos1 was signif-
icantly above chance (1/3), Cos1 = 59%, p < .027.

For OU conditions, Ou1 was not selected significantly
above chance, Ou1 = 18%, p = .556, nor did participants pre-
fer OU functions in general, Ou1 = 47%, p = .172.

However, participants trained on Ou2 selected the true pat-
tern at rates significantly higher than chance Ou2 = 38%,
p = .05. For all participant choices, see Figure 5.
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Figure 3: Confusion matrix for choices in Experiment 1
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Figure 4: Confusion matrix for the generating functions and
the choices presented in Experiment 1.

We also calculated the confusion matrix resulting from the
likelihood assigned to each of the presented samples for each
of the functions generating the materials. We then converted
these likelihoods into proportions via the softmax function5.

5We also evaluated these proportions for a model with an addi-

While the model consistently favors the true generating func-
tion and does not produce preferences resembling the partici-
pants’ choices, some interesting parallels are apparent. First,
both kernels resulting in the strongest preference for the true
function (Cos2 and Lin2) also correspond to conditions with
fairly peaked human preferences. In contrast, kernels result-
ing in more dispersed likelihoods, and as a result, lower pref-
erence for the true function (Ou1, Ou2) resemble the sys-
tematic preferences for alternative functions by human par-
ticipants. For a confusion matrix displaying the asymmetric
choices of participants, see Figure 3, for model confusions,
see Figure 4.

Experiment 2
In Experiment 1, participants were able to select from a set
of candidates realizations corresponding to the learned type
of function and, in many cases, the specific features of the
set of training examples. In this control experiment, we con-
trasted participants’ choices in Experiment 1 with a condition
in which no training was provided.

Participants
We recruited 50 participants (Mage = 34.7, SDage = 10.53, 25
female, 24 male, 1 other) on Amazon Mechanical Turk. Par-
ticipants received $0.2 for participation and took an average
of 1.5 minutes, (M = 1.46, SD = 6.05) to complete the exper-
iment.

Procedure
Participants were instructed that they would be presented with
a relationship between two substances, consisting of three
pairs of values. Then they were instructed that they would
have to select a pattern from six options that most likely de-
picted the relationship. The choices were the same as in Ex-
periment 1.

Results
In the absence of training data participants preferred periodic
functions over OU and linear, Lin1 = 10%, Lin2 = 0%, Ou1 =
18%, Ou2 = 14%, Cos1 = 28%, Cos2 = 30%, see also Figure 1.
Given the low rates of choices of Lin1 and the high propor-
tion of chosen periodic functions, these results suggest that
participants interpreted the three points presented as gener-
ated from a deterministic, non-monotonic relationship, rather
than a low-noise linear or low-variance OU relationship.

These results suggest that the strong preference for peri-
odic samples in Experiment 1 did not solely result from the
training but were also reflective of a higher preference to as-
cribe periodicity to the test points.

Experiment 3
We have shown that participants can use the knowledge ac-
quired in the training sets, to inform their choices about which

tional temperature parameter T that we fitted to the human choices.
Unsurprisingly, this temperature parameter was estimated to be low,
T ≈ 10, and produce less peaked distributions.
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Figure 5: The selected choices (correct choice in orange) for Experiment 1 and Experiment 2 (Control). Participants generally
selected the function type and parametrization consistent with their training. When instead they preferred other options they
mostly selected samples from the same type of function. Without training, participants favored periodic and OU.

particular type of function generated the data. However, it
is possible that these choices do not reflect participant’s true
belief about the underlying functions, but are merely best
guesses given a set of unsatisfactory options. In this last ex-
periment, we will analyze if these choices correspond to ac-
tual extrapolation behavior.

Participants

We recruited 91 participants (Mage = 30.53, SDage = 6.941,
34 female, 57 male) on Amazon Mechanical Turk. Partic-
ipants received $0.65 for participation and took an average
of 10 minutes (M=10.29, SD=10.56) to complete the exper-
iment. Participants were randomly assigned to one of the 6
conditions (nCos1 = nCos2 = nLin1 = 15, nLin2 = nOU1 = 16,
nOU2 = 14).

Procedure & Materials

Instructions and training were identical to Experiment 1.
However, instead of the forced-choice task participants per-
formed an extrapolation task. In the extrapolation task, partic-
ipants received the same three points that generated the con-
ditional samples in experiment 1 and had to extrapolate for 30
values of x, without feedback, following the same procedure
as in the training sets. The 30 extrapolation criteria were the
same as the ones used to generate the forced-choice patterns
in Experiment 1.

Results
Error Rates

As in Experiment 1, conditions differed considerably in their
MAEs, as well in the decrease in error, depending on the par-
ticular function, see Table 3, for errors, see Figure 6. In con-
trast to Experiment 1, errors in conditions with linear func-
tions did not differ significantly between the first and the last
block t(56.04) = 0.81, p= .423. Neither did errors differ sig-
nificantly in OU conditions, t(50.13) = 0.37, p = .716. How-
ever, errors for periodic conditions differed significantly be-
tween the first and the last block, t(42.62) = 2.38, p = .022.
As in Experiment 1 most conditions exhibited very low er-
rors. In contrast Cos2 and Ou2 were characterized by large
MAEs. For error rates for all conditions, see Figure 6.

Table 3: MAEs in Experiment 3.
Function MAEb1 SDb1 MAEb2 SDb2 MAEb3 SDb3
Lin 0.03 0.02 0.02 0.02 0.02 0.02
OU 0.06 0.03 0.05 0.04 0.05 0.05
Cos 0.09 0.08 0.06 0.04 0.05 0.04

1 2 3
Block

0

0.1

0.2
M

A
E

Condition
Lin1
Lin2

Ou1
Ou2

Cos1
Cos2

Figure 6: MAEs and 95% confidence intervals for each con-
dition in Experiment 3.

Extrapolating

Visual inspection of the extrapolation strongly suggested that
variances between OU-, frequencies for periodic- and slopes
for linear conditions reflected training functions, see Figure 1.
To evaluate if these patterns were also well aligned with
the generating models, and if samples reflected the differ-
ences in function parametrization, we performed maximum-
likelihood estimation (MLE) for each individual participant
and each generating GP. We then used the type of the gener-
ating GP with the highest likelihood to predict which training
samples the participant had been assigned to. This approach
allowed us to evaluate if the experimental manipulation re-
sulted in extrapolation patterns consistent with the generat-
ing GPs. Our classification procedure classified 22 out of
30 participants in the OU conditions correctly, a proportion
that was significantly larger than expected by chance (1/3),
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Figure 7: Participant extrapolations in Experiment 3. Extrapolations closely matched the learned type of function and its
detailed parametrization, see Figure 1

pOU < .0016. In the periodic conditions, 17 out of 30 par-
ticipants were classified correctly, pCos = .007. However, for
linear samples, only 10 out of 31 participants were classified
correctly, pLin = .617. For the full confusion matrix, see Fig-
ure 8.
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Figure 8: Confusion matrix for the proportion of participants
assigned to each model. Our method was able to accurately
recover which type of function participants were trained on
for OU and periodic, but not linear conditions.

To compare the inferred parametrizations across training
conditions of one function type, we contrasted the parameters
obtained via MLE for the true model. For linear functions,
the MLE parameters for slopes differed significantly be-
tween conditions, MLin1 = 0.2, SDLin1 = 0.25, MLin2 =−0.1,
SDLin2 = 0.34, t(27.49) = 2.82, p = .0097, with the signs of
the inferred slopes matching the training. Neither intercept,
variance or noise estimates differed significantly between
conditions (all p > .1). The inferred parameters for variance
in the OU conditions did not differ significantly, but were re-
flective of differences in training, MOU1 = 0.002, SD= 0.002,
MOU2 = 0.007, SDOU2 = 0.008, t(15) = −1.95, p = .071.

6All tests are one-sided, exact Binomial tests.
7All tests in this section are unequal variance, two-sided t-tests.

The inferred length scale did not differ significantly between
conditions, but was slightly higher for OU1, MOU1 = 0.38,
SDOU1 = 0.39, MOU2 = 0.21, SDOU2 = 0.28, t(26.31)= 1.46,
p = .157. Both intercept and noise estimates did not differ
significantly between conditions (all p > .5). The inferred
parameters for periodic conditions did not differ significantly
for length scale, MCos1 = 0.08, SDCos1 = 0.06, MCos2 = 0.08,
SDCos2 = 0.1, t(22.47) = 0.27, p = .79. Instead, conditions
differed significantly for variance MCos1 = 0.02, SDCos1 =
0.02, MCos2 = 0.01, SDCos2 = 0.01, t(20.1) = 2.25, p = .036.
Estimates for intercepts and noise were not significantly dif-
ferent between conditions (all p > 0.1).

Discussion
We found evidence that participants choose patterns and ex-
trapolate in ways consistent with the learned function type.
Furthermore, contrasting the extrapolations in the transfer set
within function conditions, suggested that these patterns dif-
fered in ways consistent with our experimental manipulation.

While participants’ judgments generally reflected the func-
tions they learned during training, our results also highlight
characteristic human biases. In the Cos1 condition, partici-
pants preferred high-frequency periodic samples over the true
low-frequency samples. Similarly, participants in the Ou1
conditions, preferred the higher variance samples, or even pe-
riodic samples over the trained low-variance samples. One
explanation for this biases could be that people have a strong
preference for particular functions because these parametriza-
tions are well adapted to environmental regularities. As a re-
sult, these functions would be robust and applicable to a wide
range of task in the environment. This explanation would be
consistent with recent results in human exploration, where
participants exhibited a tendency to undergeneralize spatial
correlations, but this undergeneralization resulted in compa-
rable or even better performance than a ground-truth match-
ing model (Wu et al., 2018).

To better describe these characteristic human biases and
explore their potential rational grounding, future research
should more closely examine which statistical patterns can
be generalized and under which circumstances these general-
izations are performed. For example, while our experiment
imposed that all patterns followed the same relationship, in
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reality this information is rarely available. Thus, future re-
search should examine under which circumstances task reg-
ularities are inferred to be similar, and what kinds of notions
of similarity can guide these generalizations. One exciting
prospect is to link notions of hierarchical- and compositional
representations and function generalization. We are currently
exploring how such compositional regularities can aid trans-
fer and generalization in sparse domains.
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León-Villagrá, P., Preda, I., & Lucas, C. G. (2018). Data
availability and function extrapolation. In Proceedings of
the Annual Meeting of the Cognitive Science Society.

Lucas, C. G., Griffiths, T. L., Williams, J. J., & Kalish, M. L.
(2015). A rational model of function learning. Psychonomic
Bulletin & Review, 22(5), 1193–1215.

Lucas, C. G., Sterling, D., & Kemp, C. (2012). Superspace
extrapolation reveals inductive biases in function learning.
In Proceedings of the Annual Meeting of the Cognitive Sci-
ence Society (Vol. 34).

McDaniel, M. A., & Busemeyer, J. R. (2005). The conceptual
basis of function learning and extrapolation: Comparison
of rule-based and associative-based models. Psychonomic
Bulletin & Review, 12(1), 24–42.

Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speekenbrink,
M., & Gershman, S. J. (2017). Compositional inductive
biases in function learning. Cognitive Psychology, 99, 44–
79.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman,
N. D. (2011). How to grow a mind: Statistics, structure,
and abstraction. Science, 331(6022), 1279–1285.

Wilson, A. G., Dann, C., Lucas, C. G., & Xing, E. P. (2015).
The human kernel. In Advances in Neural Information Pro-
cessing Systems (pp. 2854–2862).

Wilson, R. C., & Niv, Y. (2012). Inferring relevance in a
changing world. Frontiers in human Neuroscience, 5, 189.

Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D., &
Meder, B. (2018). Generalization guides human exploration
in vast decision spaces. Nature Human Behaviour, 2(12),
915.

2118



When Sleep-Dependent Gist Extraction Goes Awry: False Composite Memories are 
Facilitated by Slow Wave Sleep 

Itamar Lerner (itamar.lerner@rutgers.edu) 
Tony P. Kerbaj (tonykerbaj@gmail.com) 

Mark A. Gluck (gluck@pavlov.rutgers.edu) 
 

Center for Molecular and Behavioral Neuroscience, Rutgers University – Newark 
Newark, New Jersey 07102 USA 

 
 
 

Abstract 

Contemporary evidence suggests that sleep contributes to the 
extraction of gist from previously encoded experiences, a 
process that relies on compressed memory replay. While the 
functional significance of the time compression is not fully 
understood, a recent ‘temporal scaffolding’ model suggested 
that compression allows associating encoded events that 
happened in disparate times, a critical feature when extracting 
gist of a temporal nature. We examined this hypothesis using 
a novel behavioral paradigm. Subjects were first presented 
with word pairs that could form a new composite word if 
combined (e.g., car, pet --> carpet), and then tested on 
whether they falsely recognize seeing the composite word. 
When subjects napped in between exposure and testing, false 
memories of composite words increased, with reaction times 
for false recognition correlating to time spent in slow wave 
sleep. These results confirm the functional role of time 
compression in memory replay, supporting the temporal 
scaffolding model. 

Keywords: Sleep; Memory Replay; Gist Extraction; False 
Memories; Temporal Scaffolding 

Introduction 
Numerous studies over the last two decades support the 
notion that sleep facilitates memory consolidation (Rasch & 
Born, 2013). There is now compelling evidence from human 
and rodent studies that during one particular sleep stage, 
Slow Wave Sleep (SWS), recently encoded memories are 
replayed in the hippocampus as part of a hippocampal-
cortical dialogue (Wilson & McNaughton, 1994; Diba & 
Buzsaki, 2007). Theoretical models suggest this replay may 
contribute to the strengthening of common features within 
those memories while eroding their idiosyncratic elements, 
effectively leading to the extraction of “gist” and their 
integration within general knowledge structure in the cortex 
(McCelland, McNaughton, & O’reilly, 1995; Lewis & 
Durrant, 2011). 

Perhaps the most striking example of gist extraction is 
exemplified by demonstrations that SWS can support 
insightful discovery of hidden rules. In these studies, 
subjects were presented with a sequence of stimuli and 
asked to respond to each stimulus as quickly and accurately 
as possible by following a simple rule (Fischer, 

Drosopoulos, Tsen, & Born, 2006; Wagner, Gais, Haider, 
Verleger, & Born, 2004). Unknown to subjects, a hidden 
temporal structure governed the series of presentations such 
that, if discovered, it could improve performance 
significantly. Following sleep, subjects were more likely to 
discover the hidden rule and improve performance 
compared to subjects that stayed awake, an effect that was 
correlated with the time spent in SWS (Wilhelm, Rose, 
Imhof, Rasch, Büchel, & Born, 2013; Yordanova, Kolev, 
Verleger, Bataghva, Born, & Wagner, 2012). While sleep-
dependent discovery of hidden rules fits the general theory 
of gist extraction during sleep, the particular mechanism, 
and its relation to SWS, remain unclear.  Recently, a 
‘temporal scaffolding’ model was proposed to account for 
the effects of sleep on insightful processes (Lerner 2017a, 
2017b; Lerner et al., 2019). The model suggests a key 
property of memory replay that allows for these effects to 
emerge: its time-compressed nature. In particular, 
hippocampal memory replay is known to occur in an 
accelerated form, up to twenty times the speed of the 
original experience (at least in rodents; Rasch & Born, 
2013). When encoded sequences of events are reactivated in 
this accelerated manner, Hebbian learning mechanisms can 
associate events that were otherwise too temporally distant 
from each other to fall within the typical neural learning 
timescale (50-200ms for Hebbian mechanisms; August & 
Levy, 1999). Consequently, discovery of hidden rules that 
relies on the detection of temporal structure within 
sequential stimuli should, according to the model, be 
particularly prone to facilitation by SWS. 

One surprising prediction of this model is that temporal 
associations resulting from time-compressed replay during 
sleep might also hurt memory, not just facilitate it. If two 
distinct events are replayed in a compressed timescale one 
after the other during SWS, this may lead to their 
assimilation into one single memory following the 
consolidation process, even if such assimilation is 
unwarranted. In particular, such phenomena might occur if 
the two events have a special meaning when compiled 
together, thus signaling to the cortex to maintain the 
combined meaning rather than the separated memories (a 
gist extraction of sorts, albeit one that occurs under the 
wrong circumstances). An example of this theoretical 
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process can be demonstrated by presenting a subject with 
two consecutive words, such as car and pet, which could be 
combined into a composite (or compound) word: carpet. 
Due to the temporal scaffolding mechanism, the proximal 
but distinct events of seeing car and pet might be integrated 
following sleep to become a false memory of seeing carpet. 

In the current study, we tested this hypothesis by 
exploring how an afternoon nap affects the probability of 
falsely recognizing composite words whose components 
were previously encountered, as if they were actual 
memories. Since memory replay during SWS is known to 
occur predominantly in a forward manner (i.e., replay of 
encoded events proceeds in the same order as the original 
experience, albeit in accelerated form; Diba & Buzsaki, 
2007), we predicted that sleep would facilitate false 
memories of composite words whose components were 
presented sequentially in the forward direction (e.g., car -> 
pet), but not of those presented backwards (pet->car), or 
when the components were presented in totally separate 
trials. Confirming that SWS facilitates the formation of such 
false memories substantially supports the idea that 
accelerated forward replay plays a part in gist extraction 

Methods 

Participants 
Forty young adults (ages 18-24, n=19 females) from 
Rutgers University and the New Jersey Institute of 
Technology participated in this study for monetary 
compensation. Subjects were recruited via protocol flyers, 
in-class announcements and on-campus active recruitment. 
All subjects were screened for exclusion criteria, which 
included personal or family history of sleep problems, 
neurological or psychiatric disorders, drug or alcohol abuse, 
and/or intake of medications that have any effect on sleep. 
Furthermore, all recruited subjects had normal or corrected 
vision/hearing and were fluent in English. Subjects were 
also asked not to increase daily caffeine and to abstain from 
caffeine and alcohol before testing. All participants 
provided informed consent in line with the procedures 
approved by the Institutional Review Board of Rutgers 
University. 

Sleep Monitoring 
We recorded sleep using the Zmachine ® Insight device 
(Model DT-200; General Sleep Corporation), a sleep 
monitoring apparatus designed for use in clinical and home 
environments, and has been shown to reliably detect sleep 
stages at a level comparable to Polysomnography (Wang et 
al., 2016). It consists of three self-applicable, single-use, 
disposable electroencephalography (EEG) sensors, two 
located on the mastoids (signal electrodes) and one on the 
back of the neck (ground electrode). The machine detects 
and records three sleep stages, in addition to wake stage: 
light sleep (combined Stages N1 and N2), SWS, and Rapid 
Eye Movement (REM) sleep for each 30-second epoch of 
sleep. Following the completion of each subject testing, the 

collected data was transferred from the device’s micro SD 
card to a secure desktop computer for further analysis. 

Behavioral Task 
Stimuli We compiled three groups of word pairs, 6 pairs per 
group, such that the words of each pair, if combined 
together, create a “composite” word (e.g., car, pet --> 
carpet; under, stand --> understand). Words of each pair 
were selected such that they were not semantically related to 
each other, nor were they related to the composite word they 
create together. In addition, we compiled a group of 32 non-
composite words. The average length and frequency of the 
composite words (i.e., the combination of the two 
components together) in each of the three groups, as well as 
each single word in the non-composite group, was roughly 
equal, with M=~7.5 letters and M=~18,000 occurrences for 
length and frequency, respectively (Frequency data was 
based on the database found in: https://corpus.byu,.du/coca/)  

Based on these four groups, two word-pair lists were 
created for the “exposure” phase of the experiment. The first 
exposure list was comprised of the following: (1) ‘Forward’ 
composite items: the word pairs of the first composite group 
appearing in the order that corresponds to the composite 
word (e.g., car, pet); (2) ‘Backward composite items: the 
word pairs of the second composite group appearing in the 
reverse order to the one corresponding to the composite 
word (e.g., stand, under); (3) ‘Separate composite items: 
each of the two words of the third composite group paired 
with random words from the non-composite group (e.g., 
honey, moon, forming the composite word honeymoon, were 
paired with pharmacy, sad, to create the pairs pharmacy, 
honey and moon, sad); (4) the remainder of the words from 
the non-composite group, randomly paired. The total 
number of items (pairs) in the list was 34, and their order 
within the list was pseudo-randomized with the restriction 
that items containing words that belonged to the same word-
pair of the Separate composite group would not appear 
sequentially. The second exposure list was identical to the 
first, except that the Forward and Backward composite 
items were switched such that the first group composed the 
backward items and the second group composed the forward 
items. The order of the items within the list was switched as 
well, such that the location of the forward and backward 
pairs was similar in the two lists. 

We next created two testing lists, matching the two 
exposure lists. The first testing list contained all 18 
composite words made of the Forward, Backward and 
Separate composite items, as well as 24 additional non-
composite words from the exposure list, and 6 totally new, 
non-composite words (48 items in total, half of which are 
old). The totally new words were chosen such that the 
average length and frequency of the new and old words 
across the testing list remained roughly equal. The order of 
these words within the list was chosen pseudo-randomly. 
The second testing list was identical to the first, except that 
the location of the forward and backward composite words 
was switched to match the first testing list. 
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Composite Word task The behavioral task included an 
exposure session and a testing session, separated by an 
intermission during which subjects were either allowed to 
sleep or remained awake (see Figure 1). The objective of the 
exposure session was to allow subjects to encode the 
components of the composite words consecutively, without 
driving their attention to their composite nature (by using a 
distracting task). The testing session included a surprise 
memory test, where subjects’ tendency to incorrectly 
recognize the composite words as words they have been 
exposed to earlier was examined. 

 

 
Figure 1: The behavioral task used in the study. During an 
exposure session, subjects saw two colored words in 
succession and were asked to indicate whether the words 
appeared in the same or different color. Unknown to 
subjects, some of those word pairs could be concatenated to 
create a third, unrelated word. Following an intermission 
during which some of the subjects took a 90 minute nap and 
some remained awake, they received a surprise memory test 
requiring to indicate whether a series of presented words are 
new or appeared in the earlier exposure session. Some of 
those words were the composite words whose components 
were previously displayed. 
 
Exposure Session In each trial of the exposure session, 
subjects were presented with two consecutive words. Each 
of the words appeared in one of 3 colors: red, green, or blue. 
Subjects were required to indicate whether the two words 
appeared in the same or different colors by pressing one of 
two buttons on the keyboard. The two words presented in 
each trial were taken from the items in the exposure list, 
with half of the subjects receiving the first list and the other 
half – the second list. To facilitate the probability that 
Forward and Backward composite items will be combined 
in memory during sleep, word pairs belonging to these two 
conditions were always presented in the same color. Other 
word pairs were presented in either the same or different 
colors, and the total number of ‘same’ and ‘different’ trials 
was counterbalanced across the session. Subjects were not 
informed that some of the word pairs could construct a 
composite word if combined.  
 
Testing Session During the testing session, subjects were 
presented with single words appearing on the screen one at a 
time. After each word presentation, subjects were required 
to indicate whether they recognize seeing this word in the 
first session or not, by pressing one of two buttons on the 
keyboard. These words could either be old words appearing 
in the first session, composite words whose components 

appeared as single words in the first session, or totally novel 
words. Subjects that received the 1st exposure list also 
received the 1st testing list, and subjects receiving the 2nd 
exposure list also received the 2nd testing list. Following the 
testing session, subjects were administered a post-
experimental questionnaire, designed to determine if they 
explicitly recognized the existence of composite words in 
either of the sessions. The questionnaire was designed as a 
series of questions of escalating details, which avoided 
revealing the hidden structure of the task unless subjects 
came up with it by themselves. Three subjects who 
explicitly recognized the presence of composite words 
during the exposure session were removed from the study. 
 
Procedure Subjects first arrived to the lab to collect the 
sleep-monitoring device and were given detailed 
instructions on how to use it. They then monitored their 
sleep at home for two nights to allow them to adapt to 
sleeping with the device on their scalp, and to allow the 
sleep stage detection algorithm of the device to 
accommodate to the subjects’ individual EEG patterns. 
After two nights, subjects returned to the lab at the 
afternoon to begin the experiment, which included the 2 
sessions of behavioral measurements, exposure and testing, 
separated by a 120-minute intermission. The experiment 
was ran in a quiet room using a MacBook Air (v.2014) 
laptop, with subjects situated in a convenient distance of 
30cm from the screen. Subjects first received detailed 
instructions on screen regarding the task. Each trial of the 
exposure session began with the presentation of small white 
fixation cue appearing on a black screen for 500ms. The 
screen then remained black for 1500ms until the 
presentation of the first word for 500ms. After an Inter 
Stimulus Interval of 100ms, the second word appeared for 
500ms, followed by a black screen that remained until the 
subject’s response. Following the response, the next trial 
initiated. Five practice trials preceded the exposure, using 
different word pairs. Practice trials were similar to the 
exposure trials, with the exception that subjects received 
feedback immediately after responding (a smiley face for a 
correct response and a sad face for an erroneous response), 
which replaced the fixation cue. Following the exposure 
session, subjects put on the sleep monitoring device and 
went into the intermission period during which they were 
allowed to take a nap for 90 minutes in a designated sleep 
testing room (Sleep group; N = 19) or watched a non-
stimulating movie in the same testing room (Wake group; N 
= 18). Following the intermission (which lasted 2 hours for 
both groups, to allow half an hour of wake time for the 
Sleep group to eliminate sleep inertia), subjects underwent 
the testing session. Subjects received instructions on screen 
regarding the memory recognition test before starting the 
task. Each testing trial consisted of a word appearing on the 
screen in white, until the subject’s response. After 
responding, the screen remained black for 1000ms, after 
which the next word appeared, and so on until the end of 
testing. 
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Data Analysis For each subject, we assessed the 
performance of each of the four critical experimental 
conditions (Forward composite items, Backward composite 
items, Separate composite items, Novel items) using two 
behavioral measures, Error Rate and Normalized Error 
Reaction Time (RT). Error rates were defined as the total 
number of erroneous responses in each condition, divided 
by the number of trials in that condition (an error was 
defined as responding “Old”). Normalized Error RTs were 
defined as the mean RTs for wrongly identified items 
divided by the total mean RT, for each condition (calculated 
after removal of outlier RTs, defined as values above or 
below 3 standard deviations from an individual’s mean, 
across conditions). We used the normalized RT measure 
rather than raw RTs because pilot data collected prior to the 
experiment suggested that between-subject individual 
differences in RTs were substantially higher than within-
subject differences in this task, potentially blurring the 
effects of interest. We expected that the more false 
memories an individual has, the higher will the error rate 
and the lower will the Normalized Error RT be (based on a 
common interpretation of RTs as indicating confidence in 
the responses; Wiedemann & Kahana, 2016). We compared 
these two measures between the Sleep and Wake groups, 
and within the groups themselves, using Bonferroni-
corrected independent and paired t-tests, respectively. In 
addition, for the Sleep group, we also correlated these 
measures across subjects with the individual time spent in 
sleep, and in each sleep stage, during the nap (as well as the 
percent of time spent in each sleep stage out of total sleep 
time). 

Results 
Mean error rate values for each condition and subject group 
are presented in Figure 2.  

Bonferroni-corrected t-tests showed that error rates in 
recognizing Forward composite items as “Old” were 
significantly higher for the Sleep group compared to the 
Wake group (t(35) = 2.61, p < 0.05). No other condition 
showed a difference between the groups. Within the Wake 
group, Bonferroni-corrected pairwise comparisons showed 
that error rates for the Backward composite items were 
significantly higher than those of the Separate composite 
items (t(17) = 4.19, p < 0.004), as well as higher, on a trend 
level, than those of the Forward composite and Novel items 
(t(17) = 2.91, p < 0.06, and t(17) = 2.87, p < 0.07. 
respectively). Within the Sleep group, in contrast, error rates 
for the Forward and Backward composite items were 
significantly higher than those of the Separate composite 
and Novel items (all ps < 0.03), but there was no difference 
between the Forward and Backward composite items (p = 
0.47). Repeating the same analysis with Normalized Error 
RTs, we found no significant effects between or within the 
groups.  

We also compared the error rates of the Sleep and Wake 
group in the Old words condition (i.e., non-composite words 

that appeared during the exposure session and for which the 
correct answer was “Old” and an error response was 
“New”). There was no difference between the groups in this 
condition (M = 50.9 and M = 54.2 for the sleep and Wake 
group, respectively; p = 0.526). 
 

 
Figure 2: Error rate by word condition for the sleep and 
wake groups. Subjects who slept exhibited more false 
memories (higher error rate) for composite words that were 
presented in the forward direction during training compared 
to the wake group. ** p<0.005;  * p<0.05; † p<0.07. Error 
bars represent standard error of the mean. 
 

We next examined whether the performance measures 
were influenced by any of the recorded sleep parameters for 
subjects in the sleep group (see sleep statistics in Table 1). 
First, we computed the Pearson correlations between the 
total time subjects spent in sleep and each of the two 
performance measures in each of the four experimental 
conditions (8 comparisons in total). We found a significant 
correlation of total sleep time with the Normalized Error RT 
of Forward composite items (r = -0.6717, p = 0.0023; p = 
0.018 after correcting for 8 multiple comparisons). No other 
correlation was significant. 

 
Table 1: Recorded sleep statistics.  TST = Total Sleep Time. 

Sleep Measure Mean (std) 
TST (minutes) 40.41 (22.3) 
N1/N2 (minutes) 23.97 (13.0) 
  % N1/N2 out of TST 66.46 (23.7) 
SWS (minutes) 11.32 (13.1) 
  % SWS out of TST 19.59 (21.6) 
REM (minutes) 5.10 (5.8) 
  % REM out of TST 13.92 (18.1) 

 
 Next, to investigate the contribution of particular sleep 

stages, a multiple regression analysis was carried out for 
each condition, with the performance measure of interest as 
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the dependent variable and time in each recorded sleep stage 
(N1/N2, SWS, REM) as predictors. A significant regression 
was found, once again, for Normalized Error RT of Forward 
composite items (F(3,14) = 8.11, p = 0.0022; p = 0.0178 
after correcting for 8 multiple comparisons) with R2 = 
0.6348. Normalized Error RTs were equal to 1.2208 – 
0.0068 (N1/N2) – 0.0095 (SWS) + 0.0093 (REM), with 
SWS contributing significantly to the model (p = 0.0078). 
The more SWS subjects had, the faster was their erroneous 
response in identifying Forward composite items as “Old” 
(Figure 3, inset).  This effect remained highly significant in 
a follow-up analysis, computing the Pearson correlation 
between Normalized Error RTs of Forward composite items 
and the percent of time spent in SWS out of total sleep time 
(r(17) = -0.647, p < 0.004; Figure 3, main). No other effects 
were significant in the multiple regression analyses. 

 

 
Figure 3: Normalized reaction times of error responses for 
Forward composite items as a function of minutes spent in 
slow wave sleep (inset) and percent of time spent in slow 
wave sleep out of total sleep time (main), for subjects in the 
sleep group. ** p<0.008. 
 

Discussion 
We found that subjects who take a nap following exposure 
to components of a composite word are more likely to 
falsely recognize being presented with that composite word 
compared to subjects who did not nap. Moreover, the more 
time subjects spent in SWS during the nap, the quicker it 
took them to make that error, likely indicating a higher 
confidence in their response (Wiedemann & Kahana, 2016). 
These effects, however, were apparent only if subjects were 
exposed to the component words one after the other, and 
only if they were presented in the order that matches their 
appearance in the composite word, but not if they were 
presented in the reverse order. 

Our findings are consistent with the prediction of a recent 
“temporal scaffolding” model of memory consolidation 
during SWS, which emphasizes the role of time 

compression in memory replay (Lerner et al., 2017a). 
Specifically, the model predicts that compressed replay of a 
recently encoded sequential experience may lead to 
elements within this experience to bind together and create a 
unified memory that no longer preserves the original 
sequential nature of the experience. Given that memory 
replay during SWS is predominantly in the forward 
direction (Diba & Buzsaki, 2007), the model predicts that 
such unified memories would be created if the sequence 
presentation order matches that of the unified memory, but 
not otherwise. Consistent with the model, we only found a 
difference between the Sleep and Wake groups in the 
Forward composite condition, but not when component 
words were presented in the backward direction. Moreover, 
consistent with the model’s emphasis on replay of stored 
sequences, there was no difference between the groups 
when the component words were separated to different trials 
during the exposure session, a condition that yielded only 
few false memories on average (Figure 2). Finally, and also 
consistent with the model, there was no difference between 
the groups in a baseline condition consisting of totally novel 
words, which, as expected, also yielded few false memories 
on average. 

One important contrast with the model’s predictions was 
the finding that, for Backward composite items, both the 
Sleep and the Wake group had increased levels of false 
memories (compared, for example, to the Novel words 
condition). This unexpected effect suggests that backward 
items tend to be combined together irrespective of sleep. 
This finding might be accounted for if taking under 
consideration the fact that memory replay could also occur 
during waking. Rodent studies suggest that compressed 
replay in the hippocampus is elicited at wake as well, often 
during resting periods following completion of a task, and, 
unlike sleep, it tends to include backward replay of recently 
encoded memory sequences and not just forward replay 
(Diba & Buzsaki, 2007). While the function of wake replay 
is still debated, some suggest it could contribute to memory 
consolidation in the same manner as sleep replay does 
(Rasch & Born, 2013). Since both Sleep and Wake subjects 
in our task had a period of rest following the completion of 
the task (before they went to bed or saw a movie, 
respectively), such backward replay could potentially have 
been elicited and contribute to the formation of false 
composite memories for the Backward items (i.e., replaying 
the sequence of events pet->car backwards could result in 
the activation of “carpet” in its regular order). Another 
possibility is that composite memories of both Forward and 
Backward items were already formed during the initial 
experience simply because of their close temporal proximity 
(and aided by the fact they were always presented in the 
same color), but sleep was essential in maintaining the 
Forward composite memories. Further research is needed to 
explore these possibilities. 

Several previous studies have suggested that false 
memories could arise following sleep. Specifically, using 
the Deese-Roediger-McDermott (DRM) paradigm (e.g., 
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Payne et al., 2009), it was shown that sleep following 
exposure to a group of words with a related theme (e.g., 
Pillow, Bed, Night) could lead to the formation of a false 
memory for the theme word (Sleep). However, these effects 
are not always found (e.g., Fenn, Gallo, Margoliash, 
Roediger, & Nusbaum, 2009) and they seem to decrease 
rather than increase with time spent in SWS (Pardilla-
Delgado & Payne, 2017; Payne et al., 2009). In other words, 
the mechanism contributing to the effect seen in the DRM 
paradigm is likely different than the one presented here, and 
relates to deep semantic processing of the stored stimuli 
rather than the time-compression property of replay during 
SWS (Pardilla-Delgado & Payne, 2017). A more related 
effect to the one presented here is the demonstration that 
sleep in humans preferentially facilitates memory of 
sequences when they are presented during test in the 
original forward direction compared to backwards, a finding 
that was interpreted as resulting from memory replay during 
sleep (Drosopoulos et al., 2007). Our findings add to that 
previous demonstration by introducing the element of time 
compression in the process, and by showing it specifically 
relates to SWS. 

Conclusion 
In the current study, we demonstrated that an afternoon nap 
could lead to the formation of false composite memories 
made of events that were previously presented sequentially. 
The importance of these results is twofold. First, our novel 
behavioral paradigm potentially allows for tapping replay 
compression mechanisms during sleep, opening the door for 
various future investigations of this phenomenon in humans. 
Second, our findings provide evidence for the functional 
role of time compression in memory replay, suggesting it 
contributes to the association of disparate yet proximal 
events and showing that in addition to the regular 
facilitation seen in the majority of studies, this mechanism 
could also lead to impairments in memory. 
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Abstract

We describe a cognitive mechanism of moral judgment, universalization, that has received little attention up to now. Under
universalization, an action’s moral permissibility is determined by calculating what the outcome would be if all people who
are similarly situated to the actor also acted in that way. This mechanism is particularly well-suited to capture our moral
judgments of free-rider cases, where one person doing the action increases utility but many people doing it decreases
utility. Universalization fits into an agreement-based (contractualist) theory of moral cognition, and explains properties of
our moral judgments that an outcome-based or rule-based approach cannot. We show patterns of universalization reasoning
in young children as well as adults.
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Abstract

When encountering unfamiliar physical objects, children and
adults often perform structured interrogatory actions such as
grasping and prodding, so revealing latent physical properties
such as masses and textures. However, the processes driving
and supporting these curious behaviors are still largely mys-
terious. In this paper, we develop and train an agent able to
actively uncover latent physical properties such as the mass
and force of objects in a simulated physical “micro-world’.
Concretely, we used a simulation-based-inference framework
to quantify the physical information produced by observation
and interaction with the evolving dynamic environment. We
used model-free reinforcement learning algorithm to train an
agent to implement general strategies for revealing latent phys-
ical properties. We compare the behaviors of this agent to the
human behaviors observed in a similar task.
Keywords: physical simulation; active learning; probabilistic
inference; reinforcement learning

Human adults have an intuitive understanding of the phys-
ical world that supports rapid and accurate predictions, judg-
ments and goal-directed actions. For example, we can quickly
estimate how heavy a door is by how it responds to a push,
judge whether a tower is stable with a glance, or predict where
to stand to catch a baseball by watching its trajectory. These
abilities are so ingrained in everyday life, we are rarely aware
of the complexity of identifying physical properties of objects
from brief experiences and interactions with their dynamics.

Bramley, Gerstenberg, Tenenbaum, and Gureckis (2018)
explored the strategies people use to actively infer masses and
forces of attraction and repulsion that relate objects in a sim-
ple simulated environment. Their learning environment con-
sisted of a bounded two-dimensional “hockey puck” world,
containing four circular objects of varying masses and re-
lated with pairwise attractive or repulsive magnet-like forces.
For subjects, the world was displayed on a computer screen
and updated in real time using a physics engine that approx-
imates Newton’s laws of motion (see Figure 1a). Subjects
could hold-click to “grab” onto any object then move their
cursor to “drag” that object around the scene, so altering how
the scene played out and often better revealing the physical
property they had been tasked with inferring. Bramley et
al. (2018) used a simulation-based inference model to assess
what information was generated by subjects, and contrasted
trials in which the subject’s goal was to identify the relative

B
A

C D

(a) (b)

Figure 1: Visualisation of task environment adapted from
Bramley et al. (2018). Gray circle overlay shows grid of tar-
get locations and dashed line give an example control trajec-
tory in which B is grabbed and moved toward A. (b) Sam-
ple of the interpolation functions used to create smooth con-
trol trajectories. The cubicEaseInOut in the red box and the
bounceEaseOut in the green box are most frequent interpo-
lations selected by force focused and mass focused agents,
respectively, as reported in Figure 4.

masses of two objects against trials in which their goal was to
identify the pairwise force between two objects. They found
that learners were able to gather information selectively rel-
evant to their learning goal, and exhibited markedly differ-
ent behaviours dependent on the goal that could be classi-
fied into a classes of frequent experimental strategies such as
staging collisions by throwing objects at one another, shak-
ing them back and forth, bringing pairs of objects close to-
gether (dubbed encroaching). However, they did not model
how such strategies were learned or generalised successfully
across learning instances

In the current work, we take a step toward understanding
this ability. We use reinforcement learning, to train an artifi-
cial agent to minimize its own uncertainty about these specific
physical parameters by composing action sequences from an
action space qualitatively similar to human subjects’ mouse
movements, training this ability across a diverse set of ground
truth and initial conditions. We are interested whether, with
sufficient training and subjective information as a reward sig-
nal, an agent can learn to produce robustly informative ac-
tion sequences, or strategies, for revealing particular physical
properties, and whether these will reflect the behaviors previ-
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ously seen in human subjects.

Related Work
Understanding what drives information-seeking behavior has
long been a goal in psychology (see Schulz & Gershman,
2019, for a recent review). Some approaches attempt to tie
information seeking directly (e.g., Guez, Silver, & Dayan,
2012) or incidentally (e.g., Thompson, 1933) to the familiar
goal of extrinsic reward maximisation. Explicit approaches
require intensive preposterior planning, that is averaging be-
havioral prescriptions over many potential future learning and
reward trajectories (Raiffa, 1974), so are infeasible for com-
plex problems. Incidental approaches are computationally
cheaper but fail to capture information seeking behaviours
that depart from noisy extrinsic goal seeking (cf., Schulz,
Klenske, Bramley, & Speekenbrink, 2017).

The idea that the brain seeks information as a form of in-
trinsic reward captures a middle ground idea that that for hu-
mans, discovery is an “end in itself” driven by something
we intuitively understand as “curiosity” (Gottlieb, Oudeyer,
Lopes, & Baranes, 2013; Schmidhuber, 2010).

While some learning problems only occur once in a life-
time (e.g., we only need to figure out the laws of physics
once), many others occur repeatedly (we encounter new ob-
jects daily and would like to be able to rapidly infer their
most important properties). For these problems, there is
space to learn to actively learn by training reusable active
learning strategies through repeated experience,making them
amenable to reinforcement learning (Kober & Peters, 2012).

The task we explore is challenging in part because of the
continuous and complex nature of physical dynamics. How-
ever, combined with adequate function approximators such
as a deep neural network, reinforcement learning has proven
successful for optimising control in rich state spaces (Mnih,
Heess, Graves, et al., 2014). For example, Bachman, Sordoni,
and Trischler (2016) developed agents that can solve a collec-
tion of tasks which require active information seeking using
deep neural networks and reinforcement learning, including
cluttered MNIST (Mnih et al., 2014), Blockworld, CelebA
(Liu, Luo, Wang, & Tang, 2015) and Hangman. Misha et al.
(2017) also proposed and trained a deep reinforcement learn-
ing agent that can make judgments about physical properties
in a simulated environment.

This project sets apart from prior work on intrinsic curios-
ity in that it focuses on interventional rather than observa-
tional information seeking. In our physics learning task, ac-
tions have extended complex and far reaching consequences,
compounding the complexity of inference, but better mimick-
ing the challenges of learning in the natural world.

The task
Our interactive physical environment adapts the two-
dimensional physics-based environment from Bramley et al.
(2018) and is implemented using the pybox2d library.1 The

1https://github.com/pybox2d/pybox2d

world is limited to a 6×4 meter bounded rectangle contain-
ing four circular objects, each with radius 0.25 meters. The
objects interact with one another and with the static walls
according to Newtonian physics and the latent properties of
mass and the pairwise forces. The complete fixed settings of
the simulator are detailed at https://bit.ly/2B4TOAf.

Possible settings and initial uncertainty

As with Bramley et al. (2018), we will contrast actions fo-
cused on identifying objects’ masses against actions focused
on identifying the forces relating each pair of objects. How-
ever, we explored a larger set of possible settings of these
values and correspondingly larger initial hypothesis space for
the agent than human participants. To ensure the agent had
equivalent initial uncertainty about both masses and forces,
we defined a discrete space of 25 mass combinations and 25

force combinations and initialised the agent with a uniform
prior across all 210 distinct mass-force combinations. The
space of mass combinations is a subset of R4, in which each
parameter represents the mass of an object and is in the range
of [1, 3]kg. Meanwhile, the space of force combinations is a
subset of R4×4, in which each force parameter takes a value
∈ (−3,0,3)m/s2, representing repulsive force, no interactive
force, and attractive force respectively for each pair of ob-
jects. Under the Newton’s second law of motion, different
mass-force combinations yield different accelerations, lead-
ing to distinct simulated trajectories, interactions and colli-
sions.

Like the human participants in Bramley et al. (2018), the
agent could “grab” one object at a time. The cursor would ex-
ert an elastic force (i.e., scaling continuously with the inverse
square of the distance between the object and the cursor) at-
tracting the controlled object to the cursor’s location until it
was released. All interactions and resulting trajectories were
simulated by the Box2D engine.

The Agent

Learning Framework

Reinforcement learning (RL) focuses on how agents learn
sequential control policies to maximize cumulative reward.
We assume (S,A,R,T ) defines a Markov Decision Processes
(MDP) with state space S, action space A, reward function R
and transition dynamics T. Modern RL can be divided into
model-based and model-free approaches, where the former
first learns a predictive world model then uses the model to
learn a policy, while the latter learns an optimal policy di-
rectly from experience. We position our learning agent some-
what like a developing child learning about the physical prop-
erties of the world through experience but without much a
priori knowledge. Thus, we do not assume the agent has a
complete internal physics engine from which to draw samples
(model-based learning) but instead is learning how best to re-
veal information in a model-free manner evaluated against its
own learning progress (Oudeyer, Kaplan, & Hafner, 2007).
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Action space
As mentioned above, human subjects exhibited rich and in-
formative behaviors when interacting with the objects in this
environment. However, many of the strategies identified in
Bramley et al. (2018) appeared to be composed of multiple
simpler movements. For instance, “shaking” involved grab-
bing then moving an object rapidly back and forth between
two locations while “throwing” involved grabbing an object
and releasing it at speed and in a direction such that it went
on to collide with another. To encode an action space ex-
pressive enough to incorporate these realistic and extended
human behaviors, we combined a a grid of target locations
(Figure 1a) with pool of easing (interpolation) functions (see
Figure 1b). Concretely for each action, the agent chose an ob-
ject to control (none, 1,2,3 or 4) and a cardinal direction (up,
down, left ,right), or a quadrant (up-right, up-left, down-left,
down-right) which determined a target location adjacent to its
current location. It then followed a path to that location deter-
mined by its selected interpolation function. Figure 1b shows
these functions in the first quadrant such that the path would
be appropriately mirrored in the other three quadrants.2 To-
gether with horizontal and vertical movements, and no move-
ment — i.e., the cursor pausing at its current position — our
action generator output a contiguous mouse trajectory, fol-
lowing the policy learned by our agent via the learning frame-
work demonstrated in the following section.

A complete learning episode consisted of a sequence of
these actions and would terminate when the agents’ uncer-
tainty about a target property of the environment reached a
threshold, or a timeout limit was reached. For simplicity we
assumed each action occurred across a fixed time window,
and to ensure continuity of mouse movement, the start point
of each action was the end position for the last action. This
resulted in a continuous action trajectory decomposed into a
sequence of discrete action choices.

State definition
We defined the motion of an object at every time step t with
scalars mt and φt , where mt represents the magnitude and φt
the direction of the object. Given a two-dimensional space,
mt =

√
v2

xt + v2
yt and φt = arctan vyt

vxt
, where vt = [vxt ,vyt ] is the

velocity vector of the object at time step t. Together with the
location tuple (xt ,yt), the object state st ∈ S is thereby a four-
dimensional vector [mt ,φt ,xt ,yt ].

Intrinsic Reward Signal
Our agents’ goal was to minimise its final uncertainty about
either mass or force. Thus its reward signal was based on
computing its reduction in entropy with respect to the target
property (Shannon, 1951). Following Bramley et al. (2018),
we assumed likelihoods were computed based on divergence
between mental simulations and the observed trajectories.

2All together there were (stay +→+ ↑+←+ ↓ + 31[functions]
× 4[quadrants]) × (4[objects] + no object)=645 possible actions.

Concretely, to infer how likely a mass-force combination,
w, is we assume actual observed dynamics are compared
against dynamics simulated assuming those properties. Let
w ∈W , where W is the space of all possible mass-force com-
binations. Before an episode starts, the agent has a uniform
prior over settings p(W ). After a period of action and obser-
vation d, we assess the likelihood of the observed trajectory
o under all possible w, and use this to update the prior distri-
bution p(W |d).

Following Vul, Frank, Alvarez, and Tenenbaum (2009), we
modelled the likelihood of observing the object trajectories o
given the potential property setting w and the mouse trajec-
tory a using a Gaussian error distribution:

p(o | w,a,β) =
T

∏
t=1

exp−
β

2Σ
(st−dt )

>(st−dt ), (1)

where dt is the observed [mt ,φt ] produced by the true envi-
ronment w′, and st is the velocity vector of the trajectory sim-

ulated under w. The covariance matrix was Σ =

[
σ2

m 0
0 σ2

φ

]
where σ2

m and σ2
φ

were set to the empirical standard deviations
of the disparities between simulations and the actual observa-
tions in Bramley et al. (2018). β was a scaling parameter
determining how confidently the agent could perceive diver-
gences between the objects’ true and simulated trajectories.3

According to Bayes’ rule, once we measure the likelihood
through Equation 1, we can calculate the posterior of the po-
tential latent physics properties w by:

p(w | o,a,β) = 1
Z

p(o | w,a,β)p(w), (2)

where p(w) is the prior and Z is a normalizing constant. Us-
ing Shannon entropy (1951) as a measurement of the amount
of remaining uncertainty about w′, we formulated the imme-
diate reward after action t as:

rt =−( ∑
w∈W

p(w) log p(w)− ∑
w∈W

p(w | o,a,β) log p(w | o,a,β)).

(3)
For particular parameters of interest (here masses of the four
objects), the posteriors and priors are marginalized over the
remaining parameters (in this case, the pairwise forces) when
estimating the parameter specific uncertainty reduction. The
resultant reward signal r embodies the amount of information
about the latent physics parameters (mass or force) a particu-
lar agent’s action has obtained.

Deep Q-Learning
Q-learning is a model-free learning algorithm that estimates
the expected cumulative discounted rewards of performing an

3Intuitively, β = 0 would result in no learning and β lim∞ would
lead to an implausibly powerful learner with infinite perceptual pre-
cision. In our experiment, we assumed a constant β of 1

50 . We also
held a fixed size of the time window T of 1

6 seconds, over which for-
ward simulations were compared against observations before being
corrected.
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Figure 2: Proposed (a) MLP and (b) RQN structures of our Q-learning framework. For every time period, the network takes a
sequence of object states and return the estimated Q-values. The control policy of the next time period, a sequence of mouse
trajectories, is determined by selecting the action corresponding with the largest Q-values over the action space.

action from a given state (Watkins & Dayan, 1992). These
estimated cumulative discounted rewards are often called re-
turns and represented as Q-values (state-action values). One
way to iteratively learn Q-values is by using a Temporal Dif-
ference (TD) algorithm (Sutton, 1988). TD updates Q-values
by:

Q̂(s,a) := (1−α)Q(s,a)+α(r+ γmax
a′

Q(s′,a′)), (4)

where (s,a) is the current state-action pair, (s′,a′) is the state-
action pair at the next time step, γ is the discounted factor, and
α is a learning rate.

A challenge for conventional Q-learning is to estimate Q-
values over continuous states and action spaces. For our task,
despite creating a discrete action space with interpolation
functions, the object’s locations and motion [m,φ] was con-
tinuous throughout the world. Computing separate Q-values
for every possible (s,a) pair at every time window is infeasi-
ble and naı̈ve given the smooth relationships between nearby
states. We hence adapted the deep Q-learning method, which
instead of updating Q-values of each discrete pair (s,a) in
tabular form, approximates q̂(s,a) with deep neural network.
Denoting the parameters of the network as θ, a mean squared
error loss of the Q-values approximator can be written as:

l(s,a | θ) = 1
2
(r+ γmax

a′
q̂(s′,a′ | θ)− q̂(s,a | θ))2, (5)

where r+ γmaxa′ q̂(s′,a′ | θ) is the target of our estimation.
Below, we present two neural network models, serving as the
function approximators q̂θ. Optimal control strategies can be
discovered following this general learning structure.

Multilayer Perceptron First, we used a Multi-Layer Per-
ceptron (MLP) with three layers to approximate Q-values
(Figure 2a). For every time period t, the simulator fed the
agent a sequence of object states st that spanned over T time-
steps and offered a reward rt to the MLP. The network outputs
a deterministic cursor trajectory that was the action at ∈ A
with largest Q-value at t. We used ε-greedy exploration and
optimized Equation 5 via stochastic semi-gradient descent
(Watkins & Dayan, 1992). Note that the same network q̂

producing the next state target Q-values was used for com-
puting the loss of the current predictions. Such optimization
can yield erratic gradients when the control policy oscillates.
To deal with this potential instability, we redefined the tar-
get as a target network. Instead of using the same network to
compute the next state target and the current state Q-values,
another network ˆqθ− , sharing the same structure as q̂θ, was
utilized to compute target Q-values during the update. The
loss function in Equation 5 was then modified as:

l(s,a | θ,θ−) = 1
2
[
r+ γmax

a′
q̂(s′,a′ | θ−)− q̂(s,a | θ)

]2
. (6)

Following the ‘hard-copy’ update proposed in Mnih et al.
(2015), we froze θ− and copied θ into θ− once after a few
episodes. Experiments demonstrated that the MLP with tar-
get network model produced convergent and stable policies
faster than the simple MLP model.

Recurrent Q-Network For every forward pass, the func-
tion approximator q̂θ should receive a sequence of object
states with length 16T (four objects, each carrying a four-
dimensional vector [m,φ,x,y] that depicts the object’s motion
per time step). An MLP approximator, as introduced in the
previous section, consists of multiple fully-connected layers,
where each layer contains multiple neurons that accept and
send information across the network. The input motion vec-
tors are stacked and reshaped into a 16T -dimensional vector,
and then fed into the first layer of the MLP. However, the state
vectors encode the objects’ movement information over a pe-
riod of time, and simply flattening them may fail to capture
some parts of the underlying dynamics or spatial correlations
among the objects. We thereby propose a second RNN-based
function approximator (Figure 2b).

Instead of treating all the motion vectors equally without
order, RNN chronologically receives the motion vectors and
updates its hidden cells accordingly. The output hidden vec-
tor at the last time step included not only the object state infor-
mation but also their latent interconnections with the environ-
ment. To alleviate the vanishing gradient issue, we adapted
the Long Short-Term Memory cell (Hochreiter & Schmidhu-
ber, 1997) as the recurrent unit. A linear mapping function
g : S → A mapped the state representation to actions. We
optimize this recurrent Q-network (RQN) by semi-gradient
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Figure 3: Reward and loss. (a) and (b) show total target and mismatched reward for each game, for the mass and force
exploration tasks respectively. (c) reports the training loss associated with all proposed models. For each test game, the
cumulative target rewards over actions are recorded and presented in (d).

descent using the target network method.

Experiments
In this section, we present some preliminary attempts at train-
ing these networks and comparing their behavior to that of
humans performing the same task. We compare the achieved
reward with respect to the agent’s goal against its reward for
the mismatched alternative goal to assess to what extent the
actions were selectively informative.

Training
For our physics simulator, 60 time-steps was equivalent to 1
second. We set the time-window T as 40 time-steps, implying
that each atomic action would take roughly 0.7 seconds. It is
nontrivial to determine when a simulated game should stop,
since uncertainty typically continues to diminish indefinitely,
approaching but never reaching zero. For our agent, the total
uncertainty of the latent physical parameter of interest could
be obtained by computing the Shannon entropy of the initial
prior distribution p(W )0, denoted H(p(W )0). We denoted a
reward threshold factor γr = 0.95. Then, every time the cu-
mulative reward reached γrH(p(W )0), the game would stop.
Otherwise, the agent would continue playing until the current
game approached a timeout limit.

The three-layer MLP had 150, 250, and 450 neurons per
layer. The input state st of MLP was in R640, while for RQN,
it was R16x40. The approximated Q-values q̂θ(s,a)∈R645. We
initialized the exploration rate ε as 0.5, discounted by a factor
of 0.95 every 20 games until ε reached 0.01. The discount
factor γ was 0.99, and the weights of target network were
cloned from q̂θ every 20 games.

A training set with 60 distinct ground truth w, initial ob-
ject locations, velocities, cursor positions, and initial veloci-
ties was created, and a holdout test set containing 20 different
configurations, are defined beforehand to ensure the robust-
ness of the models. For each proposed model, we trained the
agent for the mass exploration task and the force exploration
task separately with 1000 episodes, and the training errors
and rewards are illustrated in Figure 3(a)-(c). Within each
task, both the target reward and the mismatched reward (i.e.,
force in a mass exploration task) are recorded. For compar-

ison purposes, we also ran a baseline policy (randomly se-
lected actions) for each task. To better illustrate the moving
trends, we weighted the training rewards and the loss by ex-
ponentially weighted moving average (ewma) with span 10.

Compared with the MLP-based models, RQN converged
faster with small and stable loss, as shown in Figure 3(c).
Both models produced swinging errors in the training pro-
cess. The intuition is that ‘hard’ copying weights from θ into
θ− yielded a time interval when θ− was frozen and the pre-
dicted Q-values diverged from the target Q-values. Such os-
cillations would not distort the optimization of the objective
function, as the time interval was small and θ− was constantly
updated, ensuring steady amounts of information explored by
the agent. Given a flexible timeout limit, both methods were
able to uncover the uncertainty of the environment, and out-
performs the baseline policy with higher and more stable cu-
mulative rewards, as depicted in Figure 3(a) and (b). Mass
reward was more variable. This is in line with the Bram-
ley et al. (2018) finding that evidence about mass tends to
come in sporadic spikes when objects collide or are moved
rapidly, while force information typically accumulates more
smoothly whenever objects are in close proximity. Thus,
gathering mass information reliably have depended on more
specific and targeted actions while moving objects closer to-
gether may have been sufficient for force information. Over-
all, the RQN exhibited continuing amounts of achieved in-
formation on all latent physics parameters. We applied the
trained RQN agent on the test configuration set for mass and
force exploration separately, each with 20 games. As reported
in Figure 3(d), in most of the cases the agent could effectively
capture the underlying properties of the environment within
20 steps. Since explorations were excluded from the test-
ing, few ‘abnormal’ actions appeared. For those rare cases,
our agent quickly came back to the right track and could still
complete the learning task within the timeout limit.

Using the trained models we created a small dataset of
10 force-focused episodes and 10 mass-focused episodes us-
ing a holdout set of new worlds and starting locations. See
https://bit.ly/2FYTjvD for videos. Comparing these
episodes, we found that achieved information reward was
similar for mass or force focused trials 2.82± 0.54, 2.96±
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Figure 4: Distributions of emerged actions in 20 test games (10 for mass focused and 10 for force focused). (a) Sum of the
quadrant distribution of mass and force tasks. ‘0’ means the agent staying over at its position within the time-windows. (b)
Spline distribution of mass task (c) Spline distribution of force task

0.39, t(18) = .98, p= .32 but that significantly more informa-
tion was generated for the property matched with the agents’
goal than the alternative property (see also lower orange and
blue lines in Figure 3a and b). That is, the agent generated
more evidence and reward on average about the target prop-
erty 3.1± 0.35bits than the mismatched property 2.7± 0.52
bits t(18) = 2.4, p = 0.021 similarly to human subjects in
Bramley et al. (2018).

Trained agent behaviour
The agent frequently moved the controlled object closer to
the other objects, reducing the distance to the closest object
from 1.28± 0.24m to 1.01± 0.23m on average during each
control action t(38) = 3.6, p < .001. As we see in Figure 4a,
the agent learned that moving was normally more informative
than staying still. There were also hints of goal dependent
control strategies similar related to those identified in Bram-
ley et al. (2018). For example, the most frequently selected
interpolation by the mass focused agent was bounceEaseOut
(Figure 4b and green highlight in Figure 1b), a particularly
dynamic motion consistent with the rapid changes of direc-
tion associated with shaking or knocking observed frequently
in the human data on mass focused trials. The intuition both
there and here is that these actions strongly reveal objects
mass by causing rapid changes in objects’ directions. Mean-
while, the most frequent interpolation selected by force fo-
cused agent was cubicEaseInOut (Figure 4c and red highlight
Figure 1b), a smooth motion intuitively consistent with the
“encroaching” behavior observed frequently in force trials in
Bramley et al. (2018) and effective in providing strong evi-
dence about mass.

Discussion and Conclusions
Humans display sophisticated intervention strategies when
actively inferring the properties of physical objects. We used
model-free reinforcement learning, deep function approxima-
tion, and simulation based inference to build an agent able to
efficiently reveal the latent physical properties in human-like
ways without external input. Part of the insight gleaned from
this project comes from our solutions to the engineering chal-
lenges involved in creating a successful agent. To produce ex-
tended actions with richness and qualitative correspondence

with humans’, we found success with an action space that
combined a discrete set of target locations with a discrete set
of smoothing splines. We found that learning to associate ac-
tion sequences with successful resolution of uncertainty was
much more effective with a recurrent network architecture,
but that robust strategies could be learned through model-free
Q-learning. Following the predicted optimal control policies,
not only did the agent uncover the latent parameters of inter-
est, but there were also hints of behavioral correspondence
with human subjects in that our mass trained agent would se-
lect more jagged and dynamic trajectories aligned with the
strategies observed in Bramley et al. (2018).

While this study provides a valuable first step to under-
standing how humans learn and apply rich interrogatory be-
haviours when interacting with the natural world, it also has
its limitations. One of these is the use of the physics simu-
lator to calculate the reward signal. This is a rational ideal-
isation of physics inference, but embodies the overly strong
assumption that the agent is able to simulate the world ac-
curately and perform approximate Bayesian inference with
its own interaction data. A more plausible and practically
viable approach to rewarding informative control would be
to train a separate prediction network to anticipate upcoming
dynamics, and use some function of its loss over time as a re-
ward signal (cf. Oudeyer et al., 2007; Pathak, Agrawal, Efros,
& Darrell, 2017). A more integrated agent could also use
the predictor network approximation to plan actions that are
likely to be informative through preplay Chentanez, Barto,
and Singh (2005). Following Haber, Mrowca, Fei-Fei, and
Yamins (2018), a complex adversarial-based learning frame-
work may be helpful. In future work we plan to combine
more realistic intrinsic rewards, richer action space and model
based planning to better mimic the ability of humans to create
intuitive physical experiments.
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Abstract

Suspense is an affective state that contributes to our enjoy-
ment of experiences such as movies and sports. Ely, Frankel,
and Kamenica (2015) proposed a formal definition of suspense
which depends on the variance of subjective future beliefs
about an outcome of interest (e.g., winning a game). In order
to evaluate this theory, we designed a task based on the card
game Blackjack where a variety of suspense dynamics can be
experimentally induced. By presenting participants with iden-
tical sequences of information (i.e., card draws), but manip-
ulating contextual knowledge (i.e., their understanding of the
rules of the game) we were able to show that self-reported sus-
pense follows the predictions of the model. Follow-up model
comparison further showed an advantage for the “suspense as
variance of future beliefs” account over a number of alterna-
tive definitions of suspense, including some that depend only
on current uncertainty (not the future). This paper is an initial
attempt to link aspects of formal models of information and
uncertainty with affective cognitive states.
Keywords: suspense; affect; prediction; expectation; proba-
bilistic modelling

Introduction
Suspense refers to sensations of hopeful or anxious anticipa-
tion. These familiar affective states often precede the revela-
tion of important information—exam results, paternity tests,
election outcomes and so forth. However, we also feel sus-
pense in situations where there are no direct personal conse-
quences. For example, children enjoy listening to stories that
happen in imagined kingdoms, adults spend time watching
televised sports, and Hollywood movies are a multi-billion
dollar industry. A key feature of these experiences is that in-
formation is incrementally revealed over time to the observer,
often with the goal of building anticipation and suspense. The
goal of this paper is to empirically study the relation between
self-reported feelings of suspense and the dynamics of infor-
mation and uncertainty.

Suspense as the variance in future beliefs
A recent theory in the economics literature proposes that sus-
pense can be explained as an increasing function of the “vari-
ance of future beliefs” (Ely et al., 2015). Here the beliefs refer
to the probability of a significant outcome (e.g., which team
will win a game) that is updated in time with information as
an experience unfolds. People are assumed to also estimate
how their belief may change in the future. For example, if a
doctor arranges to call a patient at a particular time with test
results, in the period leading up to the phone call the patient
might expect that their belief about their health could soon

change (although they may not know what they will learn).
Conditioned on the information one expects to receive, if the
subsequent future beliefs would be very different from one
another they would be said to have high variance. For exam-
ple, if the test the doctor performed was routine, the patient
would not expect their future knowledge state to change much
after the call (low variance). As a result they would experi-
ence low levels of suspense. In contrast, if the test was a can-
cer screening, then the call might either alter the person’s life
or leave them reassured (high variance), and thus they would
experience high levels of suspense in that moment.

To formalize these intuitions, we assume belief change is
Markovian in that a viewer’s subjective belief µ about some
outcome evolves over a series of discrete time points t, such
as individual points in tennis, card draws in a game, or time
passing in a movie. At each time point, relevant informa-
tion may be encountered and people update their beliefs µt
(e.g., by Bayesian updating). In addition, viewers also an-
ticipate future information using their understanding of the
situation. For example, a viewer might anticipate that their
favorite team will score on the next play or that the opposing
team will score, each representing a state s. The state s has
a probability of being realized P(s) and will result in a fu-
ture belief µs

t+1. The variance among these beliefs indicates
how different the future might be, and therefore how much
suspense might be evoked.

Formally, Ely et al. defined the momentary suspense at
time t, St as:

St = Es[(µs
t+1−〈µt+1〉s)

2]

= Es[(µs
t+1−µt)

2]

= ∑
s

P(s)(µs
t+1−µt)

2
(1)

and we adopt the same notation throughout this paper.
Note that the term (µs

t+1−µt)
2 may be also interpreted as a

metric of variance of belief change or “surprise” that follows
learning a piece of information. As a result, the value, St
can be also be interpreted as the expected future surprise or
expected future belief change from the next time period.

Figure 1 gives a graphical overview of the model applied
to a hypothetical tennis game. Here µ is the probability of
winning the game (µ = 1 if team A wins and µ = 0 if they
lose), each point is one time step, and s is whoever wins the
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Figure 1: Demonstration of the belief trajectory during watch
tennis games and the related suspense predicted from our
model. Details see the main text.

next point. In the center of Figure 1 we show the unfolding
of belief about who will win for two different games (A and
B) with the x-axis representing time. The beginning of both
games is not very suspenseful, since whoever wins the first
few points has little impact on predictions about the final out-
come. However, the end of the game A is more suspenseful
since whoever wins a point will greatly swing the final out-
come, while game B is less suspenseful since one side has
already virtually secured victory.

An experimental test of the theory
Ely et al. (2015) articulated the basic outline of the theory de-
scribed above and explored a number theoretical analyses of
the optimal structure for games to maintain suspense. How-
ever, to our knowledge, this operational approach to suspense
has not yet been examined empirically. We propose that a
useful behavioral paradigm for testing this theory needs to
have at least two features:

1. The experiment context should be quantifiable in a proba-
bilistic model. This tends to exclude tasks like reading sto-
ries and watching movies because it is not trivial to convert
these complex situations into accurate probability models.

2. The experiment paradigm should allow the decoupling of
the external stimulus and internal belief. In most prior
work, changes in suspense are always confounded with in-
cidental features of the stimuli. To validate the belief-based
account of suspense, the ideal experiment would manipu-
late an observed internal belief through some prior knowl-
edge while holding other aspects of the stimulus and task
identical.

With these criteria in mind, we designed a card game re-
lated to the classic casino game Blackjack. Participants are
asked to draw cards from a small deck with a known distribu-
tion of cards and report their moment-by-moment suspense.
Intuitively, suspense builds in the task when the sum of the

drawn cards approaches a boundary value (21 in Blackjack).
If the sum exceeds or hits this value the game is lost. Be-
cause the distribution of cards and the probability of drawing
any card can be determined exactly, the game is an ideal test
bed for exploring information-theoretic models of suspense.
In addition, the game is relatively fun, intuitive, and easy to
explain to participants.

To address the second concern from above, participants
were given one of two different rules for how the game would
be scored. In one version, the game was lost anytime the sum
of the cards drawn so far met or exceeded the boundary value.
This is the traditional concept of “bust” from Blackjack. In a
second version, the game was lost only if the sum met or ex-
ceeded the boundary value on the final draw of the game. Due
to the presence of negatively valued cards, it was possible for
the sum to exceed and then return to safety. The differences
between these two rules allows us to compare identical se-
quences of cards, but to modulate if a given card draw was
more or less suspenseful about the game outcome according
the the Ely et al. theory. To optimize the power of our design,
we used a computer-aided method to search for best rules,
card decks, and card sequences that result in strong predicted
suspense differences under the two rules.

Methods
Participants 263 people (113 female), age 36.7±20.4
(mean±SD) were recruited from Amazon Mechanical Turk
using psiTurk (Gureckis et al., 2016) and paid 90 cents (60
cents of this was a bonus that in actuality was the same for all
participants). The task took 12±3 minutes to complete.

Procedure Participants were told that we were interested in
their feelings of suspense while playing a simple card game.
Each participant went through an extensive tutorial covering
the rules of the game, and could only continue if they cor-
rectly answered a series of comprehension questions. They
then played two rounds of training games which were identi-
cal to the real games except they were told there would be no
bonus. After completing these tasks, participants played a se-
quence of three games with a $0.60 bonus payment for each
game that was won (as describe below, all participants won
one game). Afterwards they answered a questionnaire about
their strategies and about their perception of the task.

Similar to Blackjack, in each round of a game, the player
draws cards from a deck of nine cards. To increase the trial-
by-trial suspense dynamics, we use a two-step process for
choosing each card: first, the participant sees the animation
of nine cards shuffling (Figure 2A); next, the first two cards
at the top of the deck were selected (Figure 2B); next, the par-
ticipant uses the keyboard to spin an animated wheel which
(depending where it lands) decides the identity of the final
card (Figure 2C). The wheel was programmed so that it spins
more when the participant presses the key longer but, un-
known to subjects, the spinner always ends up selecting a
predetermined card. The purpose of the spinner was to give
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Figure 2: The game interface. a) Card shuffle is an anima-
tion that the participant cannot control. b) Participants see
the selected card pair and are probed about their suspense on
a scale of 1-5. c) Participants press and hold a key to spin
the animated wheel. d) When the wheel stops one of the two
selected cards is chosen. The whole process repeats until the
game has ended.

participants a feeling of control and chance thus they do not
lose interest early, although in fact the sequence of cards to
be chosen was fixed for the purposes of experimental control.
After a card is selected the participant’s current card total (the
sum of the face value of all of the cards they have drawn so
far) was automatically updated in a graph at the top of the
screen (Figure 2D).

To measure suspense, after the two candidate cards are
shown and before spinning the wheel, we directly asked the
participant to rate their current suspense with the keyboard
from number 1 to 5 where 1 means no suspense and 5 means
very suspenseful. Previous studies on suspense have also
chosen a 7-point scale (Gerrig & Bernardo, 1994; Knobloch-
Westerwick, David, Eastin, Tamborini, & Greenwood, 2009)
and 11-point scale (Comisky & Bryant, 1982; Cupchtk, Oat-
leyb, & Vorderee, 1998), yet we are unaware of any sys-
tematic comparison of different response scales for suspense
measurement. No other instructions were given about the use

of the scale. However, we asked participants to report how
they personally defined suspense in the post-task question-
naire.

Implementing the belief updating model To calculate the
belief µ (probability of winning) at a given moment t, we
use an exact enumerative strategy. We first enumerate all the
possible future card draws remaining in the game according
to the known card distribution of the deck. Summing these
values, we get the predicted card sum probability. The win-
ning probability calculation is rule-dependent: if the game is
played according to the bust rule, we get the card sum dis-
tribution for one future step, keep the surviving card sums,
continue to the next step and so forth until the game end. If
the rule is no-bust (i.e. only the sum of cards at the end of the
game matters), we directly calculate the card sum distribution
at the end of the game and count the proportion of winning
relative to losing sums.

Since the suspense is reported after the pair of possible
cards are shown, we assume that suspense is the variance of
future probabilities of winning after spinning the wheel and
the card being finally drawn. Given that the wheel has equal
area for both options, the probability of both future states are
equal: p(s) = 0.5. The suspense prediction can then be cal-
culated utilizing the equation 1.

Design We will introduce the design of card sequences,
then the condition and counterbalance structure.
Belief manipulation: Model-based stimuli design. One key
aspect of the theory is that suspense is the result of an ac-
tive prediction about future stimuli and future beliefs, not
the mere reaction to current stimuli. To test this, we looked
for rule-dependent differences in suspense responses for the
identical card sequences. Given the inherently noisy nature
of self reports, we looked for sequences with large predicted
differences by maximising a score:

score(seq,deck, rulepair) = Srule1 +Srule2

−α · r(Srule1,Srule2)
(2)

where α is a positive weight constant and r(·) is Pearson’s
correlation coefficient. The first two terms ensure the average
suspense level is not too low while the third encourages anti-
correlation between the suspense trajectory under two rules.
We set α to a positive constant that makes the two terms have
similar magnitude.

We searched the space of rules by generating 5000 ran-
dom combinations of deck and card sequence valid under
both rules and scoring them, then filtered with restrictions
to ensure the game also feels like plausible random draws
from the deck (details on Github). The result of this search
was a set of 3 deck/card sequence combinations that evoke
strongly different suspense trajectories under two rules: Bust
with a bound of 7—i.e., the card sum should never exceed
7—and No-bust game with a bound of 3—i.e., the sum of
cards should not exceed 3 at the end. The full sequences are
shown in in Figure 3a.
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Participants were randomly assigned to one of the two rule
conditions. Two of the games were selected from high sus-
pense 1-3.

Besides sequences with interesting suspense dynamics, we
also designed two no suspense games where the card pairs
have similar or identical values, or values that are non-
consequential to the games outcome (Figure 3, ”no suspense”
1-2), thus should intuitively induce low suspense. According
to Ely et al. model, the predicted suspense at every point in
these games is zero.

Task duration and manipulation. Each participant was as-
signed to one rule condition (rule was a between subject ma-
nipulation) and played two rounds of training games (with no
bonus regarding the game consequence) then three rounds of
gambling games. This is to make the task short enough to
avoid boredom. Among the three rounds, two are of high
suspense and one was a no suspense game. The order of
games were all counterbalanced. The sign of cards and req-
uisite bound values were also counterbalanced (for example,
“cards sum must not exceed 3” was flipped to “card sums no
smaller than -3” for half of participants).

Results

Given that each subject may use the scale differently, we z-
scored the raw suspense ratings for each subject for all ana-
lyzes except the likelihood analysis. We also collapsed across
the counterbalanced conditions of positive and negative card
values. Figure 3 shows a detailed summary of the model
predictions and point-by-point empirical suspense ratings for
each of the games.

To first assess if the no suspense and high suspense game
type altered people’s ratings we ran a paired t-test for each
participant’s averaged suspense rating from the no suspense
vs high suspense games. The suspense level in the high sus-
pense games (0.1± 0.3, Mean ± SD) is significantly higher
than the no suspense games (−0.7±0.7): t(262)= 14.18, p<
.001, verifying the basic effectiveness of this very heavy-
handed manipulation. Visual inspection of Figure 3 confirms
this as well. Participants responded with the lowest increment
on the scale for 71.9% and 53.4% of the two no suspense
games.

To study the direction and magnitude of suspense differ-
ences for identical card sequences under different rules, we
computed the average z-scored rated response for each point
in each of the high suspense games and calculate the differ-
ence between in the two rules, comparing this empirical dif-
ference to the difference in suspense generated by the model.
In Figure 4 we see that most point differences are in the same
direction (quadrant 1 and 3). The self-reported suspense dif-
ference has an correlation coefficient of r = 0.80 (p = 0.01)
with the model with zero free parameters which is impressive
given the inherently noisy measurements of self-reported sus-
pense.

Alternative models
So far we have focused on the formulation of suspense pro-
posed by Ely et al. (2015). In this last section we explore
alternatives that may also capture the empirical patterns in
suspense.

Alternative probability distance metrics To measure the
expected belief change, Ely et al used a squared distance be-
tween probabilities while alternative metrics such as informa-
tion gain and absolute change are common in other contexts
(Nelson, 2005). It is unclear in the context of suspense judg-
ment which metrics will best describe people, thus we explore
these alternatives.

In the Ely et al model the suspense is defined with an L-2
norm distance for belief update:

SL2 = E[(pt+1,i− pt)
2] (3)

where i = 1,2 for each possible card to be drawn and E[·]
denotes the average over i.

We explore alternative metrics to quantify the belief update
with a KL norm:

SKL = E[KL(pt+1,i, pt)] (4)

an information gain norm:

SIG = E[IG(pt+1,i, pt)] (5)
= E[H(pt+1,i)−H(pt)], (6)

and an absolute error norm

SL1 = E[abs(pt+1,i− pt)] (7)

Uncertainty The second theoretical proposal is that people
may feel more suspense simply when they have high uncer-
tainty or the estimated chance of winning is close to 1/2. In
studies of drama, to keep the story captivating, it has been
proposed that “the protagonist and the obstacles he encoun-
ters must be fairly evenly matched” (Mabley, 1972). Also in
the realm of psychology, uncertainty has been found to sus-
tain attention since people demand the reduction of uncer-
tainty (Berlyne, 1960). By looking at our post-task question-
naire, we also found that around 10% of participants reported
they define suspense with uncertainty (although it is unclear
whether they use this term in the mathematical sense).

Uncertainty should be the highest when the probability of
winning is 0.5 and lowest when it is 0 or 1. To capture this
idea, we use the entropy of the belief distribution:

Suncertainty = H(pt) (8)

Suspense when close to losing The last alternative theory
is that people may feel more suspense if the negative outcome
is very likely to happen or the estimated chance of winning is
close to 0. Previous studies in film narratives (Comisky &
Bryant, 1982) and sports viewing (Knobloch-Westerwick et
al., 2009) both empirically found that when there is a bigger
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z-scored model predicted differences (y-axis). Reported sus-
pense differs in the direction the model predicted differences
for points in the 1st and 3rd quadrants.

chance for the unwanted outcome to happen, more suspense
is felt. In our data we also found this hint: for example, in
the two no Suspense games, people feel more suspense in no
Suspense 1 (−0.9±0.5), where the chance of losing is always
low than in no Suspense 2 (−0.5±0.7) where the card total is
always close to the bound and it indeed ends up losing. The
difference of average suspense between the two games being
significant (t(261) = −4.98, p < 0.01) indicates that people
may feel more suspense when there is a high chance of losing.

We introduce two models to estimate this “pessimistic” be-
lief about how close one is to losing the game. First, consider
a heuristic: how far is the largest of the two cards drawn from
the deck is from the boundary:

StoBound =

{
1−|〈V 〉t+1,i−bound|/M

0, if| 〈V 〉t+1,i−bound|> M (9)

Where | · | denotes absolute value, i = 1,2 representing the
card pair and M is the maximum card value (7 in the cur-
rent design). This piecewise definition assigns zero suspense
when the current card sum is too far away from the boundary.

The other model is belief-based which is how big is the
probability of losing:

SpLose =

{
1− pt , ifpt > 0

0, ifpt = 0 (10)

pt = 0 represents there is no hope of winning at all thus no
suspense.

Likelihood model for fitting discrete responses Fitting
the raw suspense scores requires an additional response
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Table 1: Model Fits
Aggregate Individual N best fit

L2 (Ely et al) 8.70 0.82 7
L1 10.06 1.00 131
KL 5.97 0.23 13
IG 8.62 0.83 14
toBound 6.65 0.03 40
pLose 8.36 0.20 6
uncertainty 7.47 0.55 52

Note: 1st column: Log likelihood improvement for each fit relative
to baseline for average subject judgments (rounded into an integer

response). 2nd column: Mean individual log likelihood
improvement under optimal shared parameterization. 3rd column:
Number of subjects best fit by each model under optimal shared

parameterization. Best fitting model indicated in bold

model to convert the continuous suspense predictions to a in-
teger output in the range of 1 to 5. We treat the response as a
multinomial sampling process, with the probability of choos-
ing each value related to a beta distribution:

pk =
∫ k/5

(k−1)/5
pbeta,k = 1,2, . . . ,5 (11)

whose beta parameters are defined such that the mean of
beta distribution is equal to the suspense prediction (scaled
to [0,1]):

pbeta(x) =
xa−1(1− x)b−1

B(a,b)
, (12)

where
a = A∗ S̃+1,b = A∗ (1− S̃)+1 (13)

A ∈ [0,∞), and S̃ is the suspense S rescaled to [0,1].
We define our baseline model where all pk are equal equiv-

alent to choosing each response randomly. All the model log
likelihood results in Table 1 are improvements from this base-
line.

For individual participant data we fit this model with A
determined by fminbound function of scipy package (A ∈
[0, . . . ,15]). We compare this maximum log likelihood to that
from baseline model and summarize over all subjects. The
result of all model comparison is in Table 1.

Our model fitting suggests there is considerable hetero-
geneity in what drives self-reported suspense in this task. The
belief based suspense model with linear belief update dis-
tance (L1 norm) fit best overall, suggesting that Ely et al’s
choice of predictive variance may not be the most natural way
of capturing human suspense. However all of the models we
considered received some support, with the L2 and informa-
tion gain models fitting almost identically. Consistent with
the self reports in which some participants reported suspense
in proportion to their current uncertainty, 20% of individual
subjects were best fit by the uncertainty model, while a fur-
ther and 15% best fitted by the heuristic “distance to bound-
ary” model, indicating another potential heuristic sub popu-
lation distribution.

General Discussion
In this study we designed a paradigm to manipulate the rev-
elation of information about if a player will win a game (and
thus earn a monetary bonus) in order to modulate participant’s
subjective feelings of suspense. We used the model and a
computer aided search to select game sequences and rules
with high predicted differences in suspense. To our knowl-
edge, this is the first such empirical evaluation of the Ely et
al. proposal.

By comparing a range of model variants, we found that
most participants were fit by a model that related the rating
of suspense to the anticipation of belief change, in line with
Ely et al. (2015). However, we also found that belief variabil-
ity predictions may be better explained by potential absolute
(L1) change rather than variance. Heuristic models such as
“probability to an unwanted outcome” also captured subsets
of the participants.

In sum, this study suggests that suspense is systematically
related to meta-cognitive predictions of future belief change.
Such preposterior planning (Raiffa, 1974) issues arise in ac-
tive learning and control contexts. For example, in order
to identify the most useful query, one should consider the
possible answers one might receive under different possible
queries, and how one’s beliefs would change as a result (Nel-
son, 2005). Suspense is thus a quantity that is tantalisingly
closely related to such prospective meta-cognition, yet also
distinctly low level in that it manifests as a reportable affec-
tive state.

Future iterations of our paradigm can be readily adapted
to test other interesting hypotheses about suspense, such as
the influence of (perceived) control, positive or negative re-
wards, or the role of suspense in driving attention or engage-
ment (Bezdek et al., 2015).

References
Berlyne, D. E. (1960). Conflict, arousal, and curiosity. New

York, NY, US: McGraw-Hill Book Company.
Bezdek, M. A., Gerrig, R. J., Wenzel, W. G., Shin, J., Revill,

K. P., & Schumacher, E. H. (2015). Neural evidence
that suspense narrows attentional focus. Neuroscience,
303, 338–345.

Comisky, P., & Bryant, J. (1982). Factors Involved in Gen-
erating Suspense. Human Communication Research,
9(1), 49–58.

Cupchtk, G. C., Oatleyb, K., & Vorderee, P. (1998). Emo-
tional effects of reading excerpts from short stories by
James Joyce. , 15.

Ely, J., Frankel, A., & Kamenica, E. (2015). Suspense and
surprise. Journal of Political Economy, 123(1), 215–
260.

Gerrig, R. J., & Bernardo, A. B. I. (1994, December). Read-
ers as problem-solvers in the experience of suspense.
Poetics, 22(6), 459–472.

Gureckis, T. M., Martin, J., McDonnell, J., Rich, A. S.,
Markant, D., Coenen, A., . . . Chan, P. (2016). psi-

2138



turk: An open-source framework for conducting repli-
cable behavioral experiments online. Behavior re-
search methods, 48(3), 829–842.

Knobloch-Westerwick, S., David, P., Eastin, M. S., Tam-
borini, R., & Greenwood, D. (2009). Sports Spectators’
Suspense: Affect and Uncertainty in Sports Entertain-
ment. Journal of Communication, 59(4), 750–767.

Mabley, E. (1972). Dramatic construction; an outline of
basic principles: followed by technical analyses of sig-
nificant plays by sophocles... and others. Chilton Book
Co.

Nelson, J. D. (2005). Finding useful questions: On
Bayesian diagnosticity, probability, impact, and infor-
mation gain. Psychological review, 112(4).

Raiffa, H. (1974). Applied statistical decision theory.

2139



Individual Differences, Expertise and Outcome Bias in Medical Decision Making 
 

Aron Liaw1, Matthew B. Welsh2, Hillary Copp1 & Benjamin Breyer3 
([aron.liaw; hillary.copp; benjamin.breyer] @ucsf.edu, matthew.welsh@adelaide.edu.au) 

1. Benioff Children’s Hospital, UC San Francisco, 1975 Fourth St. San Francisco, CA 94158 USA 
2. Australian School of Petroleum, University of Adelaide, North Terrace, Adelaide, SA 5005 Australia 

3. Zuckerberg San Francisco General and Trauma Center, 1001 Potrero Ave, San Francisco CA 94110 USA
 
 

Abstract 

Outcome bias describes the tendency of people to alter their 
rating of a decision’s quality according to whether the 
outcome is good or bad – despite equivalencies in available 
information and decision processes – which has the potential 
to undermine learning about causal structures and diagnostic 
information in many fields, including medicine. Herein, a 
sample of 181 doctors and medical students is shown to 
display outcome bias in medical and non-medical scenarios – 
with their susceptibility correlating across the domains, r = 
0.38. Analyses showed that rational and intuitive decision 
styles and a medical risk tolerance measure offered little 
predictive power. Instead, the strongest drivers of bias 
susceptibility were the Age and professional Level of 
participants, with more senior personnel showing less 
outcome bias. We argue that this could reflect improved 
learning across a doctor’s career or result from increasing 
confidence making them less likely to change their initial 
judgement of decision quality. 

Keywords: medical decision making; outcome bias; 
individual differences; expertise; decision style. 

Introduction 
Outcome bias (Baron & Hershey, 1988) describes people’s 
tendency to judge decision quality by outcome rather than 
the quality of the decision making process. Baron and 
Hershey demonstrated this across five studies, starting with 
an experiment where people judged the quality of pairs of 
decisions about medical treatment that differed only in 
terms of whether the treatment succeeded or failed. That is, 
the background information and the decision made remained 
the same but the outcome differed. The key finding was that 
almost half of participants rated the decision made in the 
good outcome scenario as superior to the same decision 
when a bad outcome occurred (with most of the remainder 
giving the same rating and a handful rating the good 
outcome decision as worse). This was despite a within-
subjects design, which maximises the chance of participants 
working out what an experiment is about and remembering 
their answers to previous scenarios. Participants’ own 
statements also indicated that the outcome should not affect 
ratings of decision quality. 

Outcome bias has since been demonstrated in different 
fields; for example, ethical decision making (Gino, Moore, 
& Bazerman, 2009), where people’s condemnation of ethic 
breaches is weighted according to the harm done rather than 
the nature of the ethical breach. 

It is distinguished from the similar hindsight bias 
(Fischhoff & Beyth, 1975) in that outcome bias affects 

judgements of how good the decision process was, while 
hindsight affects people’s ratings of how likely or 
predictable the outcome was. (That said, these processes can 
be linked in situations where, having seen the outcome, 
hindsight bias leads to the conclusion that the person 
making the decision should have been able to predict the 
outcome and thus that their decision making was flawed.) 

Of course, judging decisions by their outcomes is natural– 
particularly given that we often can not access other 
people’s decision-making processes, only the outcomes of 
their decisions. Thus, we need to infer their decision 
processes (Gino et al., 2009). The fact that people show 
outcome bias in circumstances when they are specifically 
made aware of others’ decision process and even for their 
own decisions, however, indicates a problem in decision 
making - specifically, the overuse of the generally 
applicable rule that outcomes are linked to decision quality. 

Outcome Bias in Medical Decisions 
As noted above, the original outcome bias paper used 
medical scenarios amongst its materials but was conducted 
on an undergraduate student population. Follow-up work, 
however, has looked directly at whether medical 
practitioners are affected by this bias. For example, Caplan, 
Posner and Cheney (1991) demonstrated anesthesiologists’ 
ratings of the appropriateness of care provided by other 
medical practitioners was affected by the outcome of that 
care not just the quality of the decision about treatments. 

Similarly, Sacchi and Cherubin (2004) found outcome 
bias affected doctors’ judgements regarding the quality of 
their own diagnostic decisions and pointed out the 
difficulties this causes for doctors trying to learn from their 
own experiences – as good outcomes can artificially inflate 
confidence while bad luck can deflate it. In either case, 
background knowledge can be updated incorrectly – 
inferring causal relationships from random effects.  

The problem of learning from experience in the face of 
outcome and hindsight biases has also been raised for nurses 
(Jones, 1995) and is key to answering the question of 
whether these biases can be overcome in order to improve 
medical decision making. 

Experience and Individual Differences 
A gap in the above research is in the examination of 
experience and other individual differences on doctors’ 
outcome bias susceptibility. As noted above, outcome and 
hindsight biases make learning from experience difficult and 
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it is, therefore, valuable to consider whether experience 
helps eliminate or exacerbates these biases. No previous 
studies, however, include doctors’ experience as a covariate. 

A related question is whether the level of outcome bias 
shown by doctors on medical and non-medical decisions is 
similar. If so, this would argue for a general propensity 
within an individual towards (or away from) outcome bias, 
which could be linked to personal traits. If not, however, it 
may be that outcome bias is domain specific – its strength 
determined by prior experience within a field. 

A second line of enquiry is whether there are traits that 
predict susceptibility to outcome bias. While range 
truncation in such a highly selected population is likely to 
prevent measures of intelligence from being useful 
predictors, it is possible that decision styles (a person's 
preference for how to make decisions; see, e.g., Hamilton, 
Shih, & Mohammed, 2016) could affect the level of 
outcome bias shown. Gino et al (2009) argue exactly this in 
the context of ethical decision making – that a rational 
mindset helped to overcome outcome bias. This makes 
sense particularly for a within-subjects design, where more 
rational participants could be more likely to notice the pairs 
of outcome bias scenarios and may feel a greater propensity 
for ensuring that they are consistent across scenarios. 

Another possible covariate is a doctor’s tolerance for risk 
(see, e.g., Grol, Whitfield, De Maeseneer, & Mokkink, 
1990). While this may not directly affect outcome bias, it 
could do so indirectly - by pushing a participant’s responses 
towards the floor or ceiling of a rating scale, thereby 
potentially preventing outcome bias. For example, if a 
doctor is particularly risk averse, they could judge a 
scenario as too risky and thus a bad decision even when it 
has a good outcome, leaving no space for them to judge it as 
worse when it occurs with a bad outcome. 

Aims and Objectives 
The aims of this study are, thus, to: compare doctors’ 
susceptibility to outcome bias on generic and medicine-
specific questions; explore whether and how this 
susceptibility is related to individual traits; and to establish 
whether outcome bias susceptibility varies across different 
groups of participants in a meaningful way. 

Methodology 

Participants 
Participants were medical students and practitioners, 
recruited via Facebook and direct emails to ACGME 
accredited departments of 100 institutions around the US 
(universities and large medical groups). In total, 181 
completed responses were obtained. Table 1 summarises the 
participant demographics. 

Materials 
An online survey was developed in UCSF’s Qualtrics, 
asking participants for demographics and measuring 
predictor variables and outcome bias as detailed below. 

 
Table 1. Participant demographics 

 
Gender 114 F, 60 M & 7 no-response 
Level 66 students, 22 residents, 12 fellows, 56 

attendings & 25 no-response 
Experience M = 9.1 years (SD = 13.2); 16.9 years (SD = 

13.8) excluding students 
Age 21 x ‘18-25’; 40x ‘26-35’; 27 x ‘36-45’; 33 x 

‘46-55’; 59 x ‘56+’; and 1 x no-response 
 

Demographics. Participants provided their gender, age 
range, level, years of experience and medical specialty. 

 
Predictor Variables. Two measures with the potential to 
predict bias susceptibility were included in the survey:  

Decision Styles Scale (Hamilton et al., 2016). The DSS is 
10-item questionnaire that measures people’s preferences as 
to how they make decisions on separate Rationality and 
Intuition subscales. Scores on each subscale can range from 
5-25 and, in both cases, higher scores reflect greater comfort 
with decisions being made in that style. 

Medical Risk Tolerance Scale (Grol et al., 1990). The 
MRTS is a 5-item response scale assessing medical 
practitioners’ tolerance for risk in medical decisions. Scores 
range from 5-25, with lower scores reflecting greater 
tolerance for risks. Herein, however, we have reversed the 
scoring such that high values reflect higher risk tolerance. 

 
Outcome Bias Questions. Nine decision scenarios were 
written for this experiment to enable testing for outcome 
bias – six describing simple, betting scenarios and three 
describing medical decisions. (While more scenarios could 
provide a finer measurement of an individual’s degree of 
outcome bias, this was weighed against limiting the length 
of the survey in order to maximise responses.) 

Betting Scenarios. The basic structure of the betting 
scenario questions was as follows, with participants 
responding on a 5-point, ‘Very bad’ to ‘Very good’ scale.  

 
Your friend is playing a simple game. He has the choice 

to not bet on a coin flip, and automatically win $10, or bet 
on the coin flip and win $15 if it comes up heads, but 
nothing for tails. He chooses to bet. The coin comes up 
heads and he wins, gaining $15. In your opinion, how good 
a decision was this? 

 
In all variant scenarios, the friend ignores the certain $10 

and bets on the coin toss. The pay-offs and whether the 
outcome was good or bad varied as shown in Table 2. 

This gives three pairs of questions with the same decision 
quality (good, neutral or bad, based on simple, economic 
calculation when compared to the certain, $10 option). 
Differences between responses to these pairs thus reflect the 
impact of the outcome of people’s responses (outcome bias). 

An individual’s level of outcome bias is measured as the 
sum of these differences - that is: (GDGO-GDBO) + 
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(NDGO-NDBO) + (BDGO-BDBO), yielding scores from -
12 to 12 with scores above zero reflecting outcome bias. 

 
Table 2. Decisions scenarios 

Code Outcomes of 
bet 

Decision Actual 
outcome 

GDGO $0 or $40 Good $40 
GDBO $0 or $35 Good $0 
NDGO $0 or $20 Neutral $20 
NDBO $0 or $20 Neutral $0 
BDGO $0 or $15 Bad $15 
BDBO $0 or $15 Bad $0 
Note: the codes are anagrams. E.g., GDGO = good decision, 
good outcome. The difference between payoffs in two good 
decision scenarios was an uncorrected error but analysis 
suggested it had little impact on results. 
 

Medical Scenarios. Three scenarios were written for this 
study. In each, a patient opts for a surgery rather than non-
surgical management of their condition. Given their length, 
they are summarized in Table 3 rather than described in full. 

 
Table 3. Medical Scenarios 

Patient Surgery Risk Outcome 
♀24yr Pacemaker Low Successful surgery 
♀42yr Panniculectomy Low Major  complications 
♂72yr Hip replacement High Successful surgery 

 
As these were written to be realistic for a sample of 

medical professionals, they are not as easily categorized as 
the simple, betting scenarios – with the riskiness (and thus 
the ‘goodness’ of the decision) depending not on simple 
probabilities but interpretations of patient history. However, 
the authors’ view (on writing them) was that they 
corresponded most closely with GDGO, GDBO and BDGO 
situations, which allows two comparisons:  (GDGO-GDBO) 
as per the above; and also (BDGO-GDBO), which 
represents the strongest test of outcome bias. As for the 
simple outcome bias, medical outcome bias was calculated 
from sum of these two scores, yielding a possible score  of -
8 to 8, with scores above zero reflecting outcome bias. 

Procedure 
The Facebook and email invitations included a direct link to 
the survey, allowing participants to take part without direct 
contact with the experimenters. The survey started with a 
standard consent request before proceeding to 
demographics, then the DSS and MRTS. Finally, the nine 
outcome bias questions were presented – intermixed to limit 
direct comparisons between the betting scenarios. 

Results 
Figure 1 shows participants’ mean ratings of decision 
quality on the Betting scenarios with 95% confidence 
intervals. This serves as an initial proof of concept – 
demonstrating that participants recognised differences 
between good, bad and neutral decisions but were also 

affected by outcome bias – as scenarios with good outcomes 
are consistently rated higher than their matched, bad-
outcome scenarios. (NB – the smaller number and greater 
difficulty in designating good versus bad in the medical 
scenarios meant that a similar figure would not be helpful.) 

 
Figure 1. Mean responses on Betting questions 

 

Descriptive Statistics 
Table 4 summarises descriptive statistics for the individual 
differences measures and the two measures of outcome bias. 

 
Table 4. Descriptive Statistics 

Measure Range Mean SD 
Rationality (DSS) 10-25 19.7 3.3 
Intuition (DSS) 5-24 11.3 3.4 
Risk Tolerance (MRTS) 5-25 12.7 3.7 
Outcome Bias (Betting) -8-11 1.2 2.2 
Outcome Bias (Medical) -4-8 0.8 2.2 
NB – the DDS and the MRTS are measured on 5-25 scales. 
The outcome bias measures are measured on -12 to 12 and -
8 to 8 scales for Betting and Medical respectively. 

 
Figure 2. Frequency counts of outcome bias scores 

 
 
Looking at the table, one can see that both outcome bias 

measures, although low, are positive – as expected after 
seeing Figure 1. This impression is strengthened on 
examination of Figure 2, depicting the distribution of 
individual’s scores. While a number of participants score 
around zero, there is a right skew, with more participants 
scoring above zero than below. Overall, 86 of the 181 
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participants have positive scores reflecting outcome bias for 
each of the Betting and Medical outcome bias measures 
(with 86 and 52 scores of zero and 9 and 43 scores below 
zero, respectively). These are similar proportions to those 
reported by Baron and Hershey (1988). 

Outcome Bias 
To test the significance of the above observations, single 
sample t-tests compared participant results to the expected 
score of zero if no outcome bias were present. These 
confirmed that outcome bias scores in both cases are 
significantly higher than zero, t(180) = 7.39 and 4.89, for 
the Betting and Medical questions respectively, p <.0001 in 
each case. A Pearson correlation was also calculated 
between the two outcome bias measures, indicating a 
moderate correlation, r(179) = 0.38, p <.0001, suggesting a 
stable tendency for people to show outcome bias (or not) 
regardless of the scenarios used. This suggests that, despite 
differences between scenarios, overall outcome bias 
susceptibility could be calculated in future work. 

Individual Differences 
Table 5 shows the Pearson correlations between the three 
individual difference measures and the Betting and Medical 
outcome bias scores. 

 
Table 5. Pearson correlations between predictor and 

outcome bias variables 
 1 2 3 4 5 
1. Rationality -  *   
2. Intuition -.02 - * *  
3. Risk Tolerance -.17 -.19 -  * 
4. Betting -.05 .16 -.09 - *** 
5. Medical -.10 .07 -.19 .38 - 
* - sig. at .05 level, 2-tailed; *** - sig. at .001 level, 2-tailed 

 
In Table 5, relationships between the predictor variables 

and the outcome bias measures are weak but a number are 
statistically significant. Specifically, Intuition correlates 
positively with people’s Betting outcome bias score, while 
Risk Tolerance correlates negatively with Medical outcome 
bias. That is, people with more belief in their own intuitions 
and less tolerance for risk (or a greater desire to consult with 
others) seem to have a weak tendency to show more 
outcome bias (in the Betting scenario).  

Overall, however, the results provide little hope for those 
seeking to use these individual differences to predict levels 
of outcome bias, with the strongest relationship explaining 
less than 4% of the variance in outcome bias scores.  

Finally, analyses looked at participants’ raw responses on 
the 1-5 ratings across both the Betting (M = 2.95, SD = 
0.65) and Medical (M = 3.63, SD = 0.58) questions. This 
established that participants tended to think the medical 
decisions were better overall but is reassuring in that the 
majority of results are clear of floor and ceiling in both 
cases. Comparison of participant’s mean ratings with their 
Risk Tolerance also found no correlation - r = .04, p>.05 in 

both cases - undermining the suggestion that risk tolerance 
might contribute to floor or ceiling effects. 

Group Differences 
Further analyses were undertaken to determine whether 
demographic differences between the participants predicted 
outcome bias or differences in the predictor variables. 
  
Gender 
Table 6 shows the data divided by gender. 
 

Table 6. Mean (and SD) of measures by gender 
 Female (n=114) Male (n=60)  
Rationality 20.0 (3.37) 18.6 (3.63) 
Intuition 10.8 (3.21) 10.9 (3.15) 
Risk Tolerance 12.3 (3.74) 13.7 (4.26) 
Betting 1.54 (2.39) 0.58 (1.62) 
Medical 1.08 (2.46) 0.35 (1.79) 
 

Looking at Table 3, males and females score similarly on 
the individual difference traits but show clear differences in 
terms of the extent to which they show outcome bias, with 
females showing the bias at higher rates in both the Betting 
and Medical conditions. Independent samples t-tests were 
used to assess the significance of these apparent trends. 
These confirmed that the differences between male and 
female scores on the DSS Rationality and Intuition 
measures were not significant. Differences in Risk 
Tolerance, however, were, t(172)= 2.3, p = .023 (two-
tailed), with males showing higher risk tolerance. 

Similarly, the differences in outcomes bias were 
significant for both the Betting and Medical questions, t 
(172) = 2.8 and 2.0, p = .006 and .044, respectively, with 
males showing less bias in both cases.  

 
Practitioner Level 
Table 7 shows the data divided according to the level of the 
participants (as medical practitioners). 

 
Table 7. Mean (and SD) of measures by practitioner level 

 Student Resident Fellow Attending 
Rationality 20.7 

(3.0) 
18.7 
(3.3) 

19.6 
(2.6) 

19.8 
(3.3) 

Intuition 11.6 
(3.4) 

11.6 
(2.9) 

11.6 
(5.1) 

10.0 
(2.6) 

Risk Tol. 11.3 
(2.9) 

13.8 
(3.9) 

12.2 
(4.4) 

14.2 
(3.9) 

Betting 1.8 
(3.0) 

1.1 
(1.8) 

1.1 
(1.1) 

0.6 
(1.6) 

Medical 1.2 
(2.2) 

0.1 
(2.7) 

1.4 
(2.4) 

0.3 
(2.0) 

Note: n = 66, 22, 12 and 56, respectively. 
 
The table shows noticeable differences between the 

groups on a number of measures. In particular, Attending 
physicians seem to show less trust in their Intuition, higher 
risk tolerance and less outcome bias, while Students tend to 
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lie at the opposite extremes on these measures. The Resident 
group also shows extremely low outcome bias on the 
Betting scenarios but, given the very small size of this 
group, the reliability of the result is questionable.  

One-Way ANOVAs were conducted in SPSS, comparing 
the groups’ mean performance across all five measures. 
These confirmed significant differences between groups for: 
Intuition; Risk Tolerance; and Betting;  F(3, 152) = 2.67, 
7.45 and  2.91, p = .050, <.001 and .036, respectively. The 
other ANOVAs just failed to reach significance F(3, 152) = 
2.58 and 2.55, p = .056 and .058, for Rationality and 
Medical outcome bias, respectively. Bonferroni post-hoc 
tests confirmed that significant results were driven by 
differences between the Attending and Student groups. 

Given the effect of practitioner level on results, a χ2 test 
was conducted to see whether a relationship between 
practitioner level and gender was driving the gender effect 
observed above. This revealed a significant relationship 
between gender and level, χ2(3) = 10.1, p = .014, with the 
sample containing more female Students and fewer female 
Attendings that would be expected based on the overall 
gender/level breakdown. Thus, multiple regressions 
(described below) were required to tease these effects apart. 

Medical Specialty 
Participants listed many specialties – making analysis 
difficult given space and power constraints. A result that 
stood out, however, was the difference between surgical and 
non-surgical specialties. Specifically, despite similar Risk 
Tolerance scores, surgical specialties (defined as those that 
make decisions in the operating room on a regular basis, 
including surgical specialties and anaesthesia) rated the 
decision to undergo the higher risk surgery (i.e., the bad 
decision, good outcome Medical scenario) as a worse 
decision than did non-surgical specialists, Mdiff = -0.42; 
confirmed as significant by an independent samples t-test, 
t(102) = 2.0, p = .048. As a result, the surgeons, overall, did 
not display outcome bias on this question. 

Predicting Outcome Bias 
In light of the multiple relationships shown above, linear 
regressions were run in SPSS using the Forward entry 
method (p = .05 inclusion criterion and p=0.1 removal 
criterion) using Age (converted to a 1-5 scale), Decision 
Making Training (0 or 1),  Experience, Gender (converted to 
a 0 or 1 scale), Level, Rationality, Intuition and Risk 
Tolerance on Betting and Medical outcome bias scores. 
Tables 8 and 9, below, show the models produced for the 
Betting and Medical outcome bias scores, respectively. 

Examination of these tables shows that both produced 
significant models (albeit with low proportions of variance 
explained at 7.9% and 11%) with the same predictors for the 
Betting and Medical versions of outcome bias - Age and 
Level. Participant’s Medical scores were also affected by 
their Risk Tolerance score. Specifically, the models suggest 
that participants at higher Levels tend to show less outcome 
bias despite a tendency for older people to show more. 

Greater medical Risk Tolerance also decreased outcome 
bias, but only for the Medical outcome bias questions. 

 
Table 8. Regression model for Betting scores 

Model 
Significant Predictors: Level and Age 
Formula: 
Betting = 1.74 – 0.96*Level + 0.77*Age 
F(2, 149) = 7.48, p <.0001; Adj R2 = .079  
Note: regression conducted using forward entry method. 
Standardised βs = -.297 (Level) and .204 (Age). 

 
Table 9. Regression model for Medical scores 

Model 
Significant Predictors: Risk Tolerance, Age and Level 
Formula:  
Medical = 1.59 – 0.11* Risk + 0.40*Age - 0.329*Level 
F(3, 148) = 7.23, p <.0001; Adj R2 = .110  
Note: regression conducted using forward entry method. 
Standardised βs = -.189 (Risk) .253 (Age) and -.198 (Level). 

 
Interestingly, once the effects of Age and Level are 

partialled out, the gender differences do not reach 
significance in either model. Neither is previous decision 
training or either of the DSS measures (Rationality and 
Intuition) having a significant effect. 

Discussion 
The results presented above reconfirm the existence of 
outcome bias in doctors and medical students and add to this 
knowledge in a variety of ways. 

Firstly, the stability of outcome bias across scenarios of 
different types was established, with participants’ outcome 
bias on Betting and Medical scenarios correlating 
significantly together. This supports the idea that there 
could be particular traits that predict the degree of outcome 
bias an individual will show.  

Our analyses, however, failed to support the finding from 
Gino et al (2009) that a rational mindset decreases outcome 
bias. This may, however, simply reflect a range truncation 
effect, with participants’ Rationality scores tending towards 
the higher end of the scale and none scoring below 10 on the 
5-25 range. This is, perhaps, unsurprising, given the need 
for medical students and practitioners to use rational 
decision making and reflects a common difficulty in finding 
predictors of biases in highly selected populations.  

The fact that Intuition emerged as a significant predictor 
in correlations with outcome bias does shine some light on 
the solution to this – the need to find traits that affect 
decision making but which are less strongly selected for 
through medical training. Intuition scores, while as low on 
average as Rationality scores were high may have been less 
truncated, spanning almost the scale’s full range – from 5 to 
24. The combination of range truncation and skew in these 
measures may also explain the somewhat surprising 
observation that Rationality and Intuition did not correlate 
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in our sample – unlike in the majority of data presented by 
Hamilton et al (2016) where a negative relationship is seen. 

Overall, amongst the potential covariates examined herein 
only a handful of weak relationships were shown. Overall, 
the decision styles and Risk Tolerance measures showed 
little predictive power for outcome bias and, what little they 
did, disappeared when demographic variables of participant 
Level and Age were included in regressions. This suggests 
that participant Level may be affecting both a person’s (trust 
in their own) Intuition and level of outcome bias rather than 
Intuition directly affecting outcome bias. 

Caveats and Future Research 
The fact that Level and Age proved the most consistent 
predictors of outcome bias, combined with the correlations 
involving Intuition and Risk Tolerance, could indicate that 
doctors, across the course of their careers, are learning in 
such a way as to help them overcome outcome bias. 
Alternately, however, it may suggest that a measure of 
confidence (see, e.g., Stankov, Kleitman, & Jackson, 2014) 
could be useful predictor in future work. The idea being that 
more senior doctors may be performing better because they 
are more confident and thus less swayed away from their 
initial rating as to whether something is a good or bad 
decision by outcomes. Of course, this might apply 
differentially in situations where they were rating their own 
decisions rather than those of others, which would need to 
be tested as well.  

This could be regarded as a Bayesian explanation of the 
expertise effects. Specifically, outcome bias among students 
could reflect weaker priors which are, therefore, more 
affected by the new evidence provided by the outcome. 
More experienced people, by comparison, could have 
stronger priors as a result of that experience. Such an effect 
could also shed light on the difference between results for 
the Betting and Medical scenarios. A possibility we did not 
consider, for example, is whether people assumed that the 
coin described in the betting scenarios was ‘fair’. We 
intende for them to do so but did not specifically state it and 
so participants could have, intuitively, been considering the 
possibility that the coin was not fair – with the result that 
their prior beliefs were weaker than in the medical 
scenarios. If true, an explicit statement or demonstration of 
the fairness of the coin should reduce outcome bias in these 
cases. 

Another potential trait that could be considered is Need 
for Cognitive Closure (Webster & Kruglanski, 1994), which 
measures person’s tolerance for ambiguity and/or their need 
to quickly resolve it – the expectation being that people high 
in NFCC might show less outcome bias as, having made a 
decision, they are less likely to revisit it once the outcome 
becomes known. In either case, however, whether medical 
personnel show a truncated range on such traits will also 
need to be tested. 

Another interesting possibility raised by the data is that 
surgical and non-surgical specialists interpret surgical risk 
differently. This could be directly examined in future work. 

A potential concern regarding the data is that the lack of 
control over online survey data may have resulted in errors 
or deliberate mistakes in personal data. In particular, it was 
noted that participant age data was strangely distributed – 
with more medical students selecting an age of 56+ than 
seems likely at first glance. This is likely to have eroded the 
predictive power of Age – by adding noise to the data. 
Given this, it may be that Age would be a stronger predictor 
in a future study with greater control over participant inputs. 
An alternative recruitment strategy could also aid in 
statistical analysis by ensuring equal numbers of 
participants in all groups. 

Additionally, while prior Decision Making training was 
not a significant predictor of performance in our data, future 
research could explore this further by requesting further 
details on the type of training received and when it was 
received – given work in other areas showing that the 
durability of such training can be low over the course of 
years (see, e.g., Welsh, Bratvold, & Begg, 2005). 

Finally, while the findings suggest that outcome bias is 
reduced by medical expertise, additional work is required to 
see whether these effects replicate when considering experts 
in other, non-medical fields. This could shed light on which 
of the possible explanations described above are most 
likely. 

Conclusions 
Doctors and medical students showed outcome bias in 
medical and non-medical decision scenarios, rating 
decisions with good outcomes significantly better than those 
with bad outcomes. The degree of outcome bias shown in 
these different sets of questions was similar and correlated, 
indicating a stable susceptibility to outcome bias. 

The individual differences traits tested herein showed 
little predictive power, possibly due to range truncation, but 
outcome bias decreased with the Age and employment 
Level of participants. This could represent learning across a 
doctor’s career but could also, we suggest, relate to their 
overall level of confidence, which is likely to inure them 
against changing their opinion on what the right decision is 
in light of new information like outcomes. 
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Abstract

The categorization literature often considers two types of cat-
egories as equivalent: (a) standard categories and (b) negation
categories. For example, category learning studies typically
conflate learning categories A and B with learning categories
A and NOT A. This study represents the first attempt at de-
lineating these two separate types of generated categories. We
specifically test for differences in the distributional structure of
generated categories, demonstrating that categories identified
as not what was known are larger and wider-spread compared
to categories that were identified with a specific label. We also
observe consistency in distributional structure across multiple
generated categories, replicating and extending previous find-
ings. These results are discussed in the context of providing a
foundation for future modeling work.

Keywords: categorization; category generation; contrast; cat-
egory learning;

Introduction
People are remarkable in their capacity to innovate new and
different ideas. Is creating a new idea the same as creating
a different idea? Consider a restaurant that serves one meal
per night. Their chef cooked red curry last night and wants
to create and cook a new dish tonight. Is that the same as
wanting to create and cook a new dish that is not red curry?
While the former is identified as its own category, the latter is
identified in relation to a known category.

While categorization researchers have primarily focused
their effort on classification (associating an exemplar with a
category given its features), and inference (predicting exem-
plar features given its category), work on category generation
– predicting all exemplar features for a novel category – is
relatively scarce. This is surprising because category genera-
tion is not an uncommon phenomenon – people are constantly
challenged to generate novel categories, such as a new meal
plan for the week, a new music playlist for an upcoming road
trip, or a new exercise regimen to stay healthy.

Recent category generation work has established a few key
findings. Earlier studies have shown that generated categories
tend to share distributional statistics with learned categories
(Jern & Kemp, 2013; Thomas, 1998; Ward, 1994). More re-
cently, Austerweil, Conaway, Liew, and Kurtz (in prepara-
tion) and Conaway and Austerweil (2017) have found that
category contrast is an important factor in category gener-
ation and learning – computational models sensitive to the
differences between categories were a better fit to generated

categories than models which did not take categories contrast
into account.

Although previous work has established a few key findings,
the basic phenomena and processes involved in category gen-
eration are still not well understood. In this article, we exam-
ine whether given a known category in a domain, generating
a new category is different from generating a category that
is not the learned category. If the only category is A, most
formal accounts of categorization would consider generating
a new category B as equivalent to generating not A. In order
to better understand the nature of generated categories, it is
necessary to distinguish between these two possible types of
generated categories: one driven by its own identity – an in-
dependently identified category, and another driven by a mo-
tivation to be not what is known – a category-by-negation.

Current models of category generation do not explicitly
make this distinction. One of the first computational models
of category generation, Jern and Kemp (2013)’s hierarchical
sampling model, is a Bayesian model that reproduces distri-
butionally similar categories by assuming that the covariance
matrix of features of exemplars from generated categories is
generated by the same prior that generated the covariance ma-
trix of the known categories. An alternative proposed model,
PACKER (Conaway & Austerweil, 2017), is an extension
of the classic Generalized Context Model (GCM; Nosofsky,
1984, 1986). It explicitly incorporates contrast into the simi-
larity function by including a penalty for being similar to ex-
emplars from a known category. A contrast parameter allows
candidate categories that are more different from the known
category to be weighted more heavily than candidate cate-
gories similar to the known category. Both models are flexible
enough to describe how generated categories can be distribu-
tionally similar (or different) from an experimenter-defined
category. However, they do not distinguish between generat-
ing an independently identified category and a category-by-
negation because there is no mechanism to account for these
different identities.

This issue also extends to the methodology applied in cat-
egory generation (as well as most categorization studies.) In
Ward (1994), participants were told to generate aliens that
belonged to a different species from a prior group of aliens,
without applying any specific label to this new group of
aliens. Similarly, Jern and Kemp (2013) instructed partici-
pants to generate a new, different type of crystal after having
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observed two different types of crystals. In contrast, Conaway
and Austerweil (2017) prompted participants to generate ex-
emplars from a novel “Beta” category, while avoiding an ex-
plicit instruction for participants to create something “differ-
ent”. In each of these studies there appears to be an implicit
assumption that generating an independently identified cate-
gory is equivalent to generating a category-by-negation.

In this paper, we challenge this null assumption by posit-
ing that the explicit association of categories-by-negation to
its known counterpart (i.e., the explicit identification of the
to-be-generated category as not a known category) should
result in the observer taking advantage of the entire area of
the feature space not occupied by the known category. In
contrast, observers generating independently identified cate-
gories should be less focused on the unoccupied feature space
and instead construct their categories based on the structure of
known categories. From this we can predict that categories-
by-negation should occupy larger areas of the feature space
compared to independently identified categories. In addi-
tion, the similarity in distributional statistics should extend
not only from the learned category to the first independently
identified category to be generated (as previous studies have
found), but also between subsequent independently identified
categories. We test these predictions by adapting and ex-
tending a category generation experiment by Conaway and
Austerweil (2017) and explore the implications of its results.

Experiment
Our current experiment closely mirrors the the experimen-
tal design of Conaway and Austerweil (2017), where partici-
pants are first trained on a category named ‘Alpha’ before be-
ing tasked to generate exemplars from a new category. While
Conaway and Austerweil (2017) were primarily interested in
the measuring the location of generated categories relative to
learned categories, our current investigation focuses on ana-
lyzing the differences in distributional statistics across differ-
ent generated categories. Consequently, in addition to vary-
ing the shape and location of the Alpha category (i.e., across
different Alpha conditions where the position of the Alpha
exemplars are systematically varied) in three distinct ways,
we include an additional independent variable comprising
three different generation conditions: a Not-Alpha condition,
where participants generate a new category that is not the
learned Alpha category; a Beta-Only condition, where par-
ticipants generate a new category named ‘Beta’; and a Beta-
and-Gamma condition, where participants generate a cate-
gory ‘Beta’ as well as a category ‘Gamma’. The resulting
3-by-3 design is applied in a between-subjects fashion – par-
ticipants can be in only one of the nine unique conditions.

The main advantage of adapting the experiment by
Conaway and Austerweil (2017) is that the simplicity of their
stimuli allow for a straightforward test of the distributional
similarities across known and generated categories. In addi-
tion, the variety of Alpha categories used (i.e., the different
shapes of the Alpha categories) also allows us to observe the

effect of generated category identity across multiple scenar-
ios.

In line with our earlier predictions, we expect that the
Not-Alpha conditions on average generate categories that are
larger in area and more widely dispersed than categories from
the Beta-Only as well as Beta-and-Gamma conditions. In
addition, we predict that within the Beta-and-Gamma con-
ditions, the generated Beta and generated Gamma categories
should be distributionally similar.

Method
Participants and materials We recruited 240 participants
through Amazon Mechanical Turk and randomly assigned
them to one of the nine unique conditions. Sample sizes of
each condition are presented in Table 1.

Stimuli were squares that varied along two dimensions:
color (grayscale 9.8% – 90.2%) and size (3.0 – 5.8cm on each
side). The assignment of perceptual features (color, size) to
axes of the domain space (x, y), as well as the direction of
variation along each axis (e.g., increasing or decreasing size)
was counterbalanced across participants. Feature values were
evenly-spaced on a 50-by-50 grid, giving a near-continuous
space from which exemplars can be generated. An example
of the feature space is presented in Figure 1a.

The three Alpha conditions are Cluster, Row, and Diag-
onal. In the Cluster condition, Alpha exemplars occupy a
small area towards one corner of the feature space. In the
Row condition, the exemplars are nearly equal along one fea-
ture, while equally spread out along the other feature. The Di-
agonal condition has Alpha exemplars equally spaced along
the diagonal of the feature space in a similar fashion to the
diagonal conditions of Jern and Kemp (2013). In order to
ensure that exemplars are not completely identical along any
one feature, exemplar feature values are slightly jittered. The
exact same amount of jitter is applied to all Alpha exemplars
within a given Alpha condition. The locations of these dif-
ferent Alpha categories in the feature space are presented in
Figures 1b to 1d.

Procedure In the first phase of the experiment (Figure 2),
participants learned the Alpha category exemplars by observ-
ing a unique exemplar on each trial. This was repeated over a
total of three blocks (four trials per block – one corresponding
to each unique exemplar,) with the order of exemplar presen-
tation randomized within each block. Prior to the presenta-
tion of each exemplar, a fixation cross was shown for 1000
ms. Participants were allowed to spend as much time as they
wanted on each trial and were also shown the full range of
possible feature values prior to training.

The next phase comprised a series of generation trials (Fig-
ure 3). Depending on their generation condition, participants
generated either eight exemplars from a category that was
‘Not-Alpha’ (Not-Alpha generation condition), eight exem-
plars from a category called ‘Beta’ (Beta-Only generation
condition), or four exemplars from a category ‘Beta’ and four
exemplars from a third category ‘Gamma’ (Beta-and-Gamma
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Figure 1: (a) Example of stimuli located at the corners of the
feature space. (b-d) Locations of Alpha category exemplars
for each Alpha condition.

generation condition). More specifically, participants in the
Not-Alpha generation condition were asked to produce “what
[they] think is likely to NOT be in the Alpha category”, while
participants in the other conditions were asked to produce
“what [they] think is likely to be in the Beta [or Gamma] cat-
egory”. Exemplars were generated on each trial using two
on-screen sliding scales, with each scale controlling the in-
dividual features (color and size) of the generated exemplar.
Feature values could take any one of 50 evenly-spaced val-
ues between the specified boundaries. Previously generated
exemplars were not allowed to be generated a second time.
Participants were shown an on-screen preview of their exem-
plar on each trial as they interacted with the sliders, but could
not see previously generated exemplars or exemplars from the
Alpha category.

Table 1: Sample sizes for each condition.

Generation Condition Cluster Row Diagonal
Not-Alpha 26 28 25
Only Beta 30 27 25
Beta-and-Gamma 26 27 26

Analyses We analyze our data in two stages. First, to pro-
vide a coarse overview of the distribution of different patterns
of generated categories, we classify the generated categories

into six different profiles: Positives, where the correlation be-
tween the dimensions is more than r; Negatives, where the
correlation between the dimensions is less than −r; Rows,
where the range of values across the x dimension is at least d
times more than the range across the y dimension; Columns,
where the range of y dimension values is at least d times more
than the range of x dimension values; Clusters, where the
ranges across both dimensions are less than a; and Dispersed,
where the ranges across both dimensions are more than a.
Next, we compare the generated categories on four key dis-
tributional measures: ranges of each feature, the feature cor-
relations, and the area enclosed by the generated exemplars in
the feature space (i.e., their convex hull). Differences along
each of these statistics are performed using Bayesian t-tests
(Rouder, Speckman, Sun, Morey, & Iverson, 2009), yielding
Bayes factors (BF01) which indicate evidence for the null hy-
pothesis when BF01 > 1, with larger values indicating greater
evidence for the null hypothesis. BF01 < 1 indicates evidence
for the alternative hypothesis. Interpretations of the sizes of
Bayes factors are guided by Jeffreys (1961).

Results

We took a subset of the data and tuned each of the profil-
ing parameters such that the profiles of this subset were ad-
equately captured. Subsequently, we applied this profiling
scheme to the entire dataset. Overall, we found that setting
r = .7, a = .25, and d = 5 was useful in capturing the differ-
ent profiles of generated categories. The results were robust
to moderate variations in the profiling parameters (e.g., set-
ting .5 < r < .9, .1 < a < .4, and d > 1 returned very similar
results.) A representative sample of each profile is shown in
Figure 4 and the frequency plot of the different profiles is pre-
sented in Figure 5.

The most striking patterns to note here are the high fre-
quencies of Row category profiles from participants in the
Row conditions, and the high frequencies of Dispersed cate-
gory profiles from participants in the Not-Alpha conditions.
The former indicates that the distributional similarities be-
tween learned and generated categories are especially strong
in the Row conditions, while the latter provides preliminary
evidence that generated categories from the Not-Alpha condi-
tions tends to be more widely dispersed. Also noteworthy are
the low counts of both Positive and Negative category pro-
files across the whole data set – in contrast to the Row condi-
tions, this indicates low similarity in distributional structure
between the learned and generated categories for the Diago-
nal condition.
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Figure 2: Instructions and trials observed by each participant during the category learning phase. The instructions screen is
shown once, followed by 12 presentations of Alpha exemplars (4 exemplars across 3 blocks.)

Figure 3: Instructions and trials during the generation phase, observed by a participant in the Not-Alpha condition. Participants
in the Beta-Only and Beta-Gamma conditions experienced similar trials, with the exception that those in the Beta-Gamma
condition were asked to generate 4 Beta exemplars then 4 Gamma exemplars.
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Figure 4: Representative samples of the six different category
generation profiles.

Focusing on the distributional statistics, when broken down
by the Alpha conditions (Figure 6), we found that the Cluster
conditions tended to have categories with a smaller range of
both features, and with correspondingly small sizes. The Row
conditions produced categories that are high on the x dimen-
sion but not the y dimension. These observations indicate that
the distributional statistics were carried over from the known
category to the generated category in these two Alpha con-
ditions. However, the Diagonal conditions did not have sim-
ilar distributional statistics observed – instead of a positive
correlation, the Diagonal conditions tended to produce large,
dispersed categories. Austerweil et al. (in preparation) also
observed a similar effect (although they found more evidence
for a negative correlation). Overall, in alignment with previ-
ous research, at least two out of the three Alpha conditions in
our experiment generated categories that share distributional
statistics as the known category.

More interestingly, when the data is broken down by the
generation conditions (Figure 7), we found that compared to
the Not-Alpha conditions, there is moderate evidence show-
ing Beta-Only conditions with a lower y dimension range
(t(162)= 3.00, BF01 = 0.16) and moderate to strong evidence
that their generated categories are smaller in area (t(162) =
3.16, BF01 = 0.10). There is moderate evidence that the Not-
Alpha and Beta conditions share equal range of x dimension
values (t(162) = 1.33, BF01 = 4.82). With Beta-and-Gamma
conditions, we find greater evidence for smaller and tighter
categories compared to the Not-Alpha conditions. Specifi-
cally, there is very strong evidence that both Beta and Gamma
categories from the Beta-and-Gamma condition are smaller in
both x (t(156) = 4.83, BF01 = 2.55× 10−4; t(156) = 4.21,
BF01 = 2.94 × 10−3, respectively) and y (t(156) = 4.57,
BF01 = 7.40× 10−4; t(156) = 7.56, BF01 = 4.30× 10−10,
respectively) ranges compared to the Not-Alpha conditions.
Similarly, there is very strong evidence that both categories in

the Beta-and-Gamma conditions are smaller in area than the
Not-Alpha conditions (t(156) = 5.70, BF01 = 5.41× 10−6;
t(156) = 7.69, BF01 = 2.07× 10−10, respectively). Overall,
when comparing the Not-Alpha conditions to categories from
other generation conditions, we consistently find moderate
to very strong evidence that Not-Alpha categories are more
widely dispersed (in their range values) and also larger (in
their area), with the only exception being the comparison of
x dimension ranges between the Not-Alpha and Beta-Only
conditions.

When comparing the distributions of the Beta and Gamma
categories generated within the Beta-and-Gamma conditions,
we find an overall weak-to-moderate evidence for equal dis-
tributional statistics. Specifically, there was moderate evi-
dence for equal x dimension ranges (t(150) = 0.56, BF01 =
9.47) and weak evidence for both feature correlations and
area size (t(150) = 1.85,BF01 = 2.10; t(150) = 1.77, BF01 =
2.40, respectively). When measured on their y dimen-
sion ranges, we found weak evidence for lower values from
Gamma categories compared to the Beta categories (t(150) =
2.47, BF01 = 0.59).

Discussion
At first glance, it seems reasonable to assume that generat-
ing a new category Y after learning category X is the same
as generating a new category Not-X. An independently iden-
tified category should already be a category-by-negation (in
that an independently identified category is not what was pre-
viously known.) Further, if the categories are already iden-
tified by arbitrary labels, then it may be easy to assume that
identifying the negation of a known category cannot add any
additional information in category generation.

Our results have indicated otherwise. Specifically, when
tasked to produce categories-by-negation, participants tended
to generate wider and larger new categories compared to
when tasked with producing independently identified cate-
gories. To our knowledge, this paper represents the first piece
of evidence distinguishing these separate types of categories.

Aside from demonstrating a new effect, this study has con-
tinued to show the robustness of the distributional similari-
ties between learned and generated categories. In this sense,
the results from the different Alpha conditions are similar to
those observed in Austerweil et al. (in preparation). The gen-
erated categories from the Cluster condition tend to possess
lower x and y ranges, with a correspondingly smaller area,
and the generated categories from the Row condition tend to
adopt Row-type profiles. There is also similar lack of cate-
gories with positively correlated features from the Diagonal
condition.

However, one notable difference is that while Austerweil
et al. (in preparation) found evidence of negatively-correlated
generated categories in their XOR condition, we found no
evidence of negatively-correlated generated categories in our
comparable Diagonal condition. Austerweil et al. (in prepa-
ration) explained that the presence of negatively-correlated
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Figure 5: Frequencies of category generation profiles broken down by Alpha condition (left plot) and generation condition
(right plot).
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Figure 6: Box-plots of the distributional statistics from the generated categories. Boxes depict the median and quartiles of each
Alpha condition, with whiskers placed at 1.5 inter-quartile range. All points outside this region are marked individually.
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Figure 7: Box-plots of the distributional statistics from the generated categories. Boxes depict the median and quartiles of each
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features in this condition was indicative of the effect of cat-
egory contrast – that is, categories with negatively correlated
features are generated because they are particularly different
to categories with positively correlated features. It is possible
that due to the reduced strength of the positive correlation in
our study compared to Austerweil et al. (in preparation) (be-
cause of the addition of noise to the feature values), partici-
pants were no longer as sensitive to the negative correlations
in the experimenter-defined category and therefore started to
produce uncorrelated but widely dispersed categories.

Beyond replicating previous studies, the current study has
demonstrated that the consistency in distributional statistics
can persist beyond the first generated category. However, evi-
dence showing this was ultimately weak. One possible reason
for this is the relatively small feature space employed in the
tasks. The generation of a second novel category is necessar-
ily more constrained in the feature space than the generation
of the first novel category, possibly contributing to differences
in distributional structure. By exploring stimuli features with
less defined boundaries (e.g., orientation), we may expect to
see greater consistency in distributional structure over multi-
ple generated categories.

Although we have observed participants generating mul-
tiple independently identified categories, we do not want to
imply that categories-by-negation can only happen once. It
would be worth investigating how participants might proceed
to generate additional categories-by-negation (e.g., by asking
observers to generate a category that is Not-Alpha and Not
Beta). Packing Theory (Hidaka & Smith, 2011) – a hypoth-
esis that suggests categories can be neatly ‘packed’ into the
feature space – may indicate that successive categories-by-
negation are generated in a fashion that preferentially occu-
pies spaces between observed categories. Further, although
none of the current models of category generation can di-
rectly account for the effects observed in this study, they may
be useful components in a larger category generation frame-
work. For instance, future work may consider implementing
the hierarchical sampling model from Jern and Kemp (2013)
in a framework of overhypotheses (Kemp, Perfors, & Tenen-
baum, 2007), where a prior can be placed over a category
identity space, allowing models to behave differently under
different regions of generated category identity.

Ultimately, the nature of newly generated categories ap-
pears to vary depending on the identity they were associated
with. The extent to which they may differ, and the mech-
anisms driving these differences represent fascinating areas
for future research.
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Abstract 

Mounting evidence suggests that human category learning is 
achieved by multiple qualitatively distinct biological and 
psychological systems. In an information-integration (II) 
categorization task, optimal performance requires switching 
away from rule and adopting a procedural response strategy. 
However, many participants perseverate with rules. This article 
attempts at understanding the difference between optimal and 
suboptimal participants in II categorization. To this end, we 
collected data in the Iowa Gambling Task (IGT) and an II 
categorization task. Performance in the IGT was used to 
estimate each participant’s sensitivity to reward, punishment, 
and propensity to explore. The results show that optimal 
participants in the II task explored more in the IGT than 
suboptimal participants. However, optimal participants in the 
II task did not show higher sensitivity to punishment or lower 
sensitivity to reward. We conclude by discussing the 
implications of these findings on system-switching and 
theoretical work on multiple-systems model of perceptual 
category learning. 

Keywords: perceptual categorization; decision-making; dual 
systems; exploration-exploitation 

Introduction 

Categorization is an important part of daily life. From 

categorizing objects as edible or not to categorizing people as 

friends or enemies, everyday life is filled with thousands of 

category decisions. Over the past 20 years, mounting 

evidence has been gathered that category learning is achieved 

using a number of different psychological and biological 

systems (e.g., Ashby et al., 1998; Ashby & Valentin, 2017; 

Erickson & Kruschke, 1998; Hélie et al., 2010; Nosofsky et 

al., 1994; Waldschmidt & Ashby, 2011). However, much less 

is known about the interactions between the multiple 

categorization systems (Hélie, 2017). For example, the 

COVIS theory of categorization (Ashby et al., 1998) assumes 

that participants begin by guessing or using simple rules 

generated by hypothesis testing. Only after these rules have 

failed will participants abandon rule-based strategies and 

proceed to using alternative, more intuitive and less verbal 

methods of categorization.  

One task where the primacy of rule-based strategy is often 

observed is the information-integration (II) categorization 

task. In II categorization tasks, participants need to integrate 

information from more than one dimensions at a pre-

decisional level in order to maximize accuracy. Example for 

the II category structures are shown in Figure 2B. In this 

figure, each symbol represents the coordinate of a stimulus in 

perceptual space and specify one specific rotation angle and 

frequency that allow for drawing a unique sine wave grating 

(see Figure 2A). In this example, participants need to learn to 

categorize the ‘o’ and ‘+’ in separate categories. This can be 

achieved by drawing a line in Figure 2B, but notice that the 

line would not correspond to a meaningful verbal description. 

The verbal description would be: ‘o’ are stimuli where the 

rotation angle is larger than the frequency, which is not 

meaningful given that rotation angle and frequency are not 

commensurable. 

In an II categorization task like the one presented in Figure 

2, the most accurate verbal rules can produce an accuracy of 

about 75%. In order to perform optimally, participants need 

to abandon rules and rely on a non-verbal procedural strategy. 

Decision bound models (DBM) (Hélie et al.,2017; Maddox 

& Ashby, 1993) can be used to identify the type of strategy 

that participants are using, and a consistent finding over the 

past 30 years is that a substantial number of participants 

perseverate with rule-based strategy in II category tasks and 

as a result perform suboptimally.  

Reward Processing 

The goal of this study is to understand why certain 

participants fail to abandon rule-based strategies and adopt 

non-verbal procedural strategies. To generate predictions, we 

first used the COVIS model of categorization (Ashby et al., 

1998; Hélie, Paul, & Ashby, 2012) to fit published II 

categorization data collected in our lab. The COVIS model 

implements a multiple-systems theory of category learning 

that includes an explicit hypothesis-testing system and an 

implicit procedural-learning system. The explicit system 

learns through declarative memory by choosing and testing 

simple verbally expressible rules, whereas the implicit 

system employs non-declarative memory whereby learning is 

mediated by reinforcement learning as the system gradually 

assigns motor responses to regions of perceptual space. On 

each trial, the model compares the confidence in both systems 

and produce one response, either from the explicit system or 

from the implicit system.  

The COVIS model was fit to data from Experiment 2 in  

Hélie & Cousineau (2015)  (Condition = 0.5) to understand 

the switching of learning system between explicit and 
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implicit system in a perceptual categorization task. Decision 

bound models were fit to the data from each participant to 

separate participants using an optimal strategy from 

participants using a suboptimal strategy. The COVIS model 

was then fit to each group separately in order to identify 

which model parameters differed between simulations 

matching optimal participants and simulations matching 

suboptimal participants. Two hundred simulations were run 

for each subgroup of participants and the results are shown in 

Figure 1. The fit was excellent, with a RMSD of 1.5%. The 

model was able to differentiate optimal from suboptimal 

participants by changing the parameters odelta_e and 

odelta_c, which are the magnitude of the effect of the 

(negative and positive, respectively) feedback to adjust 

confidence in the hypothesis-testing system (Hélie, Paul, & 

Ashby, 2012). The simulations for optimal participants had a 

higher odelta_e value and a lower odelta_c value compared 

to the simulations of suboptimal participants, indicating that 

optimal participants are more sensitive to negative feedback 

while suboptimal participants are more sensitive to positive 

feedback. As a result, we hypothesize that optimal 

participants in II categorization tasks are more sensitive to 

negative feedback than participants who perseverate with 

rule-based strategies. 

 

 
 

Figure 1: Average accuracy in Hélie & Cousineau (2015) and 

model results for each block of 100 trials. Black lines shows 

data for participants that use an optimal strategy, while grey 

lines indicate participants that use a suboptimal strategy. The 

participants’ accuracy collected from the experiment are 

shown as solid lines, while the data from simulation are 

shown as dashed lines.  

The Exploration-Exploitation Dilemma 

One useful way to think about strategy switching and 

selection is to consider them in the context of the exploration-

exploitation dilemma (Berger-Tal et al., 2014). Exploration 

and exploitation are seen as two opposing ways in the means 

of attention and resources allocation (Benner & Tushman, 

2003; Gupta, Smith, & Shalley, 2006). Exploration entails 

risk taking, flexibility, discovery, and disengaging from the 

current task to allow for more room for experimentation, 

which is frequently associated with innovation. In contrast, 

exploitation is described with high-level engagement, choice-

selection, efficiency and improvement (Laureiro-Martínez et 

al., 2015). The behavior of gathering information and 

exploiting are viewed as mutually exclusive events in many 

cases (Mettke-Hofmann, Winkler, & Leisler, 2002). When 

exploring, the agent seeks information about its environment 

as a way to improve performance, but in many situations it 

has to pay an opportunity cost (March, 1991). Agents that 

only exploit using current knowledge might be stuck in a 

suboptimal stable equilibrium, unable to adapt fully to the 

environment (March, 1991; Uotila et al., 2009). Thus, an 

optimal strategy in decision-making is to have balance 

between exploration and exploitation, allowing resource 

allocation between the two behaviors to yield the ‘best’ long-

term rewards (March, 1991).  

The exploration-exploitation dilemma to some extend 

resembles the results observed in the II categorization task. 

Assuming that participants begin by using a rule-based 

strategy, ‘exploiters’ may perseverate with a rule-based 

strategy since it allows for responding correctly in about 75% 

of the trials. Exploration is required to abandon rule-based 

strategies and try procedural strategies that are more optimal. 

As a result, we hypothesize that participants who explore 

more are more likely to perform optimally in an II 

categorization task. 

Methods 

To test for the hypotheses, we used the Iowa Gambling Task 

(IGT) (Bechara et al., 1994) to measure reward sensitivity 

and exploration tendencies. Each participant performed both 

an II categorization task and the IGT. Performance in the IGT 

was used to predict whether participants would use an 

optimal or suboptimal strategy in the II categorization task. 

Participants 

Fifty participants were recruited from the Purdue University 

undergraduate population. Each participant was given credit 

for participation as partial fulfillment of a course 

requirement. Participants gave written informed consent and 

all procedures were approved by the Purdue University 

Human Research Protection Program Institutional Review 

Board. 

Materials and Procedure 

Each participant did both the Iowa Gambling Task (IGT) and 

the perceptual categorization task (PCT) in random order of 

IGT-PCT (n = 27) and PCT-IGT (n = 23). The experiment 

was run on a Desktop PC equipped with a regular mouse and 

keyboard. Stimuli were displayed in a 21-inch monitor with 

1,920 × 1,080 resolution. The experiment was controlled by 

in-house programs written using PsychoPy.  

 

Iowa Gambling Task Participants were presented with four 

blue rectangles. The blue rectangles were labeled as “Deck 

A”, “Deck B”, “Deck C”, and “Deck D”. The task required 

participants to repeatedly draw ‘cards’ from the four decks, 

by clicking on the blue rectangle on the screen with a mouse. 

Participants were required to select a deck on each trial within 
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four seconds. If a participant failed to select a deck before the 

deadline, the program randomly selected a deck. The 

participant could only select one deck for each trial.  

The expected values of the decks differed so that two decks 

were associated with high immediate rewards but long-term 

overall loss (disadvantageous decks A and B), and two other 

decks yielded lower immediate rewards but long-term overall 

gains (advantageous decks C and D). The experiment was 

designed to record the participant’s affinity towards each 

deck given the rewards and penalties presented in each trial 

upon selection of a particular deck. The reward and penalty 

from the selected deck in the particular trial, as well as the 

total accumulated gain from the rewards and penalty gathered 

thus far was presented to the participant at the end of each 

trial. The rewards and penalties were generated to meet the 

requirements listed in Table 1. Each deck contained 10 

different cards and was re-shuffled after all 10 cards had been 

drawn. Each participant performed 120 trials grouped into six 

blocks of 20 trials each. Completing the IGT took about 10 

minutes.  

 

Perceptual Categorization Task (PCT) The stimuli used in 

the PCT were circular sine-wave gratings of fixed contrast 

and size, as shown in Figure 2. The stimuli differed in terms 

of bar width and orientation. The bar width was derived as 

the frequency of lines in a 2D space in cycles per degree, 

while the orientation is the counterclockwise rotation of the 

lines from horizontal in radian. The stimuli were categorized 

as A and B, with a diagonal line as a category bound as shown 

in Figure 2. Perfect accuracy was possible and optimal 

performance required responding to the A-B stimuli using a 

procedural strategy. 

 

    
 

Figure 2: (A) Example stimulus shown to the participants for 

PCT, (B) Category structures used in PCT. 

 

The participants were informed that they were taking part 

in a categorization experiment and that they needed to learn 

to categorize the stimuli presented into either category A or 

B with trial-and-error. In each trial of this task, a “crosshair” 

was presented on the screen for one second, followed by a 

single stimulus presented in the center of the screen. 

Participants were required to choose a category for the 

stimulus. Responses were given on a standard keyboard: “s” 

key for category A and “k” key for category B. After each 

trial, visual feedback showing “Correct”, “Incorrect”, or 

“Wrong Key” was given to the participant according to the 

response they pushed. The response for stimulus on each trial 

was recorded, as well as the response time. The participants 

did 600 trials grouped into six blocks of 100 trials each. The 

PCT took about 35 minutes to complete. 

Decision bound models 

The objective of the study was to explore the difference in 

sensitivity to reward and punishment between participants 

that used an optimal strategy and participants that did not use 

an optimal strategy. To allow for the classification of 

participants into optimal strategy users and suboptimal 

strategy users, Decision Bound Models (DBM) were applied 

to the perceptual categorization task to identify how 

participants learned to assign responses to regions of 

perceptual space. In DBM, it is assumed that participants 

determine the region of the percept and give the associated 

response. The decision bound is described as a partition 

segregating competing response regions. Three general 

classes of decision bound models were fit to response data of 

the PCT (Hélie et al., 2017; Maddox & Ashby, 1993): (1) 

guessing models, (2) explicit rule-reasoning models, and (3) 

procedural learning models.  

The guessing models assumes that participants do not use 

the information on the screen and randomly responded “A” 

or “B” in each trial. The explicit models set a boundary to 

segregate participant’s responses with a vertical line or 

horizontal line (or the combination of both vertical and 

horizontal lines). An adjusted diagonal line is used as the 

boundary instead in the procedural learning models. For each 

participant’s data set, the best model is selected using the 

Bayes information criterion (BIC). Participants whose data 

were best-fit by the optimal models, which is the procedural 

learning model in this case, are labelled as “optimal strategy” 

and all other participants are labelled as “suboptimal 

strategy”. 

Rescorla-Wagner Model 

The data recorded in the IGT were fitted with the Rescorla-

Wagner (1972) model (RW). The RW was used to calculate 

a value for each deck and estimate a participant’s sensitivity 

towards reward and punishment.  

Data for each participant was fed into the RW model. For 

each trial, t in a particular task block, the parameter for 

sensitivity to reward, brew was multiplied with the magnitude 

of reward, R received following the participant’s response in 

each trial, while the parameter for sensitivity to punishment, 

bpun was multiplied with the magnitude of punishment, P 

received following the participant’s response in each trial. 

 

Table 1: Deck properties (Bechara et al., 1994) 

 

Card Deck A Deck B Deck C Deck D 

P(penalty) 0.5 0.1 0.5 0.1 

Penalty 
-150 to   

-350 

-1250 -25 to   

-75 

-250 

Reward 100 100 50 50 

Expectation -250 -250 250 250 

 A               B 
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The key equations to update reward and punishment 

sensitivity were: 

 

𝐵𝑟𝑒𝑤 =  
𝑏𝑟𝑒𝑤 × (𝑅(𝑡) − 𝑃(𝑡))

max (𝑅)
 

𝐵𝑝𝑢𝑛 =  
𝑏𝑝𝑢𝑛 × (𝑃(𝑡) − 𝑅(𝑡))

max (𝑃)
 

 

(1) 

where, 𝐵𝑟𝑒𝑤  and 𝐵𝑝𝑢𝑛 are the sensitivity to reward and 

punishment, for the perceived net gain and loss in each trial. 

The key equations to update reward and punishment 

sensitivity were: 

 

Qdeck(t) = Qdeck(t –  1) +  α(𝐵𝑟𝑒𝑤 −  Qdeck(t − 1)) 

Qdeck(t) = Qdeck(t − 1) +  α(𝐵𝑝𝑢𝑛 −  Qdeck(t − 1)) 

(2) 

 

where, Qdeck is the Q-value for each deck and α  is the 

learning rate. The equation on top in Eq. 2 updates the deck 

value with 𝐵𝑟𝑒𝑤, while the equation below updates with 𝐵𝑝𝑢𝑛. 

In trials where an overall reward was received, the equation 

with 𝐵𝑟𝑒𝑤  was used to update the deck value; in trials where 

overall punishment was received, the equation with 𝐵𝑝𝑢𝑛 was 

applied to update the deck value. All parameters were 

estimated using Maximum A Posteriori (MAP). 

The sensitivity towards reward and punishment 𝑏𝑟𝑒𝑤 and 

𝑏𝑝𝑢𝑛 for each participant were then normalized. The 

weighted proportion of 𝑏𝑟𝑒𝑤 and 𝑏𝑝𝑢𝑛 with respect to the 

summation of 𝑏𝑟𝑒𝑤 and 𝑏𝑝𝑢𝑛 were computed with Equation 

3.  

 

𝑊𝑟𝑒𝑤 =
𝑏𝑟𝑒𝑤

𝑏𝑟𝑒𝑤 + 𝑏𝑝𝑢𝑛
 

𝑊𝑝𝑢𝑛 =
𝑏𝑝𝑢𝑛

𝑏𝑟𝑒𝑤 + 𝑏𝑝𝑢𝑛
 

(3) 

 

where, 𝑊𝑟𝑒𝑤 and 𝑊𝑝𝑢𝑛 are the weighted proportion of 𝑏𝑟𝑒𝑤 

and 𝑏𝑝𝑢𝑛, respectively. 

Results 

Effects of sensitivity to punishment and rewards 

Participants in the PCT were categorized into participants 

who found the optimal strategy and participants who did not 

using DBM. The sensitivity to punishment (bpun) and reward 

(brew) were computed with the RW. 𝑊𝑟𝑒𝑤 and 𝑊𝑝𝑢𝑛 were 

computed as the weighted proportion of sensitivity to reward 

and punishment, respectively, and the mean estimates of the 

proportion of 𝑊𝑟𝑒𝑤 and 𝑊𝑝𝑢𝑛 for participants that used an 

optimal strategy and a suboptimal strategy are shown in 

Figure 3. Confirming our hypothesis, 𝑊𝑟𝑒𝑤 [t(48) = 1.901,  p 

= 0.032] of participants that used an optimal strategy was 

lower than that of participants that used a suboptimal 

strategy, whereas 𝑊𝑝𝑢𝑛 [t(48) = -1.901,  p = 0.032] of 

participants that used an optimal strategy was higher than that 

of participants that used a suboptimal strategy. These results 

show that participants using an optimal strategy in the PCT 

have a greater sensitivity to punishment, while participants 

using a suboptimal strategy in the PCT have a higher 

sensitivity to reward. 

 

 
 

Figure 3: Estimated sensitivity to reward and punishment 

(IGT) for optimal and suboptimal participants (PCT). Error 

bars are standard error of the mean.  

Exploration affects category learning 

Exploration was quantified as the number of deck switches in 

the IGT and was compared between the two groups of 

participants. The number of deck switches was subjected to 

an independent samples t-test to test the effect of using 

optimal or suboptimal strategy in PCT. The average number 

of deck switches for the two groups is shown in Figure 4. The 

main effect of the strategy used [t(48) = 1.684,  p = 0.049] 

was significant. The number of deck switches for participants 

that used an optimal strategy in the PCT (mean = 71.91) was 

higher than the number of deck switches for participants that 

used a suboptimal strategy in the PCT (mean = 60.38). The 

results suggest that, as predicted, participants who conduct 

more exploration are more likely to perform optimally in an 

II categorization task. 

 

 
 

 

Figure 4: Average number deck switches in the IGT for 

optimal and suboptimal participants in the PCT. Error bars 

are standard error of the mean. 
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To further assess the role of exploration in strategy 

selection, we measured the entropy of choosing different 

decks: A, B, C and D. Entropy gives a sense of disorder and 

uncertainty. Hence higher entropy means that all decks were 

sampled equally often, whereas an entropy of 0 means that 

participants always selected the same deck. We first 

calculated the correlation between entropy and number of 

deck switches in the IGT (Figure 5A). This analysis informs 

whether participants always switch between a subset of the 

decks or if all decks are sampled. The correlation was 0.513, 

which is statistically significant [t(48) = 4.136, p < 0.001]. 

This result suggests that participants with more deck switches 

sample from all decks.  

Next, we computed the linear relationship between entropy 

and sensitivity to feedback in the IGT (bpun + brew). Here, bpun 

is negative, so a negative number means higher sensitivity to 

punishment while a positive number means a higher 

sensitivity to reward (0 means equally sensitive to both types 

of feedback). This analysis informs about the relationship 

between the breadth of exploration (sampling from some or 

all the decks) and feedback sensitivity in the IGT. The 

correlation was -0.665, which reached statistical significance 

[t(48) = -6.168, p < 0.001] (Figure 5B). This suggests that 

higher sensitivity to punishment leads to sampling from more 

decks, which is consistent with our hypothesis that greater 

sensitivity to punishment leads to more exploration.  

 

 
 

Figure 5: (A) Relationship between entropy and number of 

deck switches in the IGT. (B) Relationship between feedback 

sensitivity and entropy in the IGT. 

Discussion 

This article presents the results of an experiment aimed at 

understanding why some participants fail to select an optimal 

procedural strategy in II categorization and instead 

perseverate with using suboptimal rule-based strategies. By 

fitting the COVIS model to published II categorization data, 

we hypothesized that participants using an optimal strategy 

in II categorization would be more sensitive to punishment 

whereas participants using a suboptimal strategy would be 

more sensitive to reward. We further hypothesized that 

participants with a tendency to explore would be more likely 

to use an optimal strategy in the II task.  

We tested these predictions by running participants in an II 

categorization task and the IGT. Decision-bound models 

were fit to II categorization data to classify each participant 

as optimal or suboptimal. The RW model was fit to the IGT 

to estimate each participant’s sensitivity to reward and 

punishment. The number of deck switches and entropy of 

choice in the IGT were used to estimate the propensity of 

each participant to explore. The results partially supported 

our hypotheses. As predicted, exploration was related to the 

selection of an optimal strategy in II categorization. 

Sensitivity to punishment was also related to propensity to 

explore, but only in the IGT. The hypothesis that sensitivity 

to punishment would be related to the selection of an optimal 

strategy in II categorization was not supported in the 

experiment. 

System-Switching vs. Rule-switching 

Individuals vary considerably in terms of their sensitivity to 

reward and punishment. Sensitivity to reward can be 

described as how an individual’s behavior is driven by 

reward-related stimuli, while sensitivity to punishment is 

described as how an individual’s behavior is subdued by 

punishment-related stimuli. Studies suggest that individuals 

with greater sensitivity to reward are more reactive to 

rewarding outcomes but are less sensitive to monitoring loss, 

while greater sensitivity to punishment are linked to 

avoidance and giving up actions in absence of immediate 

reward (Kim et al., 2015). 

As predicted by COVIS, the selection of certain strategies 

and the abandonment of others depends on the evaluation of 

how rewarding the strategy is. The implementation of one 

system over the other depends on the confidence and trust in 

the system. The trust is a function of the effect of received 

feedback when using a particular system. Thus, the switching 

of strategies from a rule-based to aa procedural strategy 

depends on the feedback received when using the particular 

strategy, which can be explained in terms of the reward and 

punishment the system or strategy gets when providing a 

response. 

Our study confirms the finding that the selection of an 

optimal strategy in II categorization task is associated with 

greater sensitivity to punishment and perseveration with 

suboptimal strategies in II tasks is associated with greater 

sensitivity to reward. If the participant focuses more on the 

effect of punishment, losses in the task leads to giving up and 

avoidance of certain strategies, which leads to the possibility 

of adopting a strategy that leads to the optimal outcome. If 

the participant has greater sensitivity towards reward, s/he is 

less sensitive to immediate loss and tend to perseverate with 

strategies that bring a certain degree of rewards. In the II 

categorization task, participants tend to perseverate with a 

rule-base strategy since the strategy allows for a certain 

degree of accuracy (typically about 70%). However, 

additional research is required to determine how participants 

change from attending to specific stimulus dimension(s) to an 

integrated procedural-based strategy.  

Exploration in the IGT 

Deck switch is used as a measure of exploration. A larger 

number of deck switches indicates that participants were 

willing to disengage from the current strategy or deck, and 
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were willing to explore other possible options, despite the 

uncertainty and risk of getting punished. As seen in Figure 4, 

both optimal and suboptimal participants explored greatly in 

the IGT. The difference in exploration between optimal and 

suboptimal participants may have been caused by several 

factors, which includes willingness to take risk to maximize 

gain. The tendency for exploration appears to be robust and 

may be predictive of both rule-switching and system-

switching. This was shown by the number of switches being 

both related to entropy in the IGT and the selection of an 

optimal strategy in II categorization. COVIS does not 

explicitly model exploration but a tendency to explore would 

be characterize by noise in system selection. 

One observation is that many participants tend to choose 

Deck B in the IGT. With an expected value of a net loss of 

$250 and a relatively large loss of $1250 as compared to the 

other decks in the task, it would normally inhibit participants 

from selecting Deck B. The basic assumption is that the 

largest loss would trigger an alarming signal from the intact 

somatic system, thus inhibiting further selection of deck B as 

it guides the process of decision-making (Lin et al., 2007). 

However, Deck B has a low loss-frequency owing to a small 

number of trials with large losses (or can be seen as a high 

gain-frequency), which may explain why participants choose 

the deck despite great immediate loss when a penalty card is 

drawn from the deck. Most participants’ behavior are driven 

by the high gain-frequency, instead of inhibited by the great 

loss while choosing Deck B (Dunn et al., 2006; Lin et al., 

2007). 

Participants that used suboptimal strategies tend to fixate 

on specific deck(s) and were not willing to explore for more 

reward, which might cause them to be stuck in a local 

minimum, and lose the chance to seek out strategies that are 

more efficient. The fixation can be due to contentment, 

unwillingness to take risks, or pros-to-cons weighing. 

Additional research is needed to determine why certain 

participants are reluctant to explore. 

Future Work 

This experiment came with a few limitations. Some of the 

advantage and disadvantage decks used in the IGT were 

difficult to identify through limited interactions with the 

decks, which might misguide participants while performing 

the tasks. For example, exploiting Deck B in IGT results in 

an overall loss, the frequency of loss is small. Hence, 

participants may consider Deck B to be an advantageous deck 

and continue choosing the deck along with other advantage 

decks. Questionnaires could be given to participants to ask 

for the decks the participants believed to be advantageous. 

This would allow for better understanding whether 

participants considered each deck as “risky” or not and 

disentangle risk taking from bad estimation of deck 

expectation. 

Finally, a task needs to be designed that shares properties 

with the IGT but requires system-switching instead of rule-

switching (or deck switching). This new task would allow to 

more directly estimated sensitivity to reward and punishment 

between-system and would provide a more definitive test of 

the hypothesis that optimal participants, who switch system 

in an II categorization task, are more sensitive to punishment 

then suboptimal participants, who are more sensitive to 

reward. 
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Abstract 

Curiosity plays a critical role in our daily behaviors and 
interactions. Yet, very little is known about its psychological 
and neural underpinnings. By reframing curiosity as the 
motivation to obtain reward – where the reward is information 
–, and using frequency-based metrics of frontal brain 
lateralization, we aimed to investigate the neural correlates of 
curiosity in the frontal cortex and its effects on subsequent 
learning. Twenty-one undergraduate students participated in 
this two-day study by answering 35 general interest trivia 
questions, while EEG data was being recorded, also indicating 
their curiosity towards the question. One week later, 
participants were asked to write down the correct answers to 
each one of the questions. The results of this study suggested 
that frontal brain asymmetry (FBA) predicts memory recall, 
but is not directly correlated with self-reported curiosity. Study 
limitations and future directions are discussed. 

Keywords: curiosity; EEG; frontal brain asymmetry; learning; 
memory 

 

Introduction 

Curiosity plays a critical role in many of our daily pursuits, 

actions, and interactions. It drives learning and promotes 

discovery, increasing our understanding of the world. Albert 

Einstein once said, "I have no special talents. I am only 

passionately curious" (Hoffmann, 1972, p. 7). Yet for 

something that drives much of our daily behavior and 

knowledge, very little is known about its psychological and 

neural underpinnings. Lowenstein (1994) was the first one to 

propose an information gap theory, suggesting that curiosity 

arises from a perceived information gap, that is, the disparity 

between what one knows and what one wants to know. 

According to him, curiosity seeks a subjective value: 

information. 

Innovating from this theory, Marvin & Shohamy (2016) 

reframed curiosity as the motivation to obtain reward, where 

the reward is information. This information-as-reward 

framework was supported by the fact that curiosity shares 

behavioral and neurobiological properties with other reward-

motivated behaviors, as the same dopaminergic neurons that 

signal changes in the value of the reward also code changes 

in the value of information (Hare, O'Doherty, Camerer, 

Schultz, & Rangel, 2008; Kang et al., 2009). Furthermore, 

high-curiosity information is associated with activation in 

brain areas known to respond to reward, which includes the 

caudate and the nucleus accumbens (Gruber, Gelman, & 

Ranganath, 2014; Kang et al., 2009), and there is a strong link 

between how valuable information is and the likelihood of 

remembering it (Gruber et al., 2014; Kang et al., 2009; 

Mullaney, Carpenter, Grothehuis, & Burianek, 2014). 

Research has also found that learning is driven not only by 

the absolute value of given information but also by an 

information prediction error (IPE), which is the difference 

between the reward expected and the reward received (Daw 

& Doya, 2006; Schultz, 2006; Marvin & Shohamy, 2016). 

Although these studies demonstrate that curiosity conforms 

to basic characteristics of reward-motivated behavior, they 

leave open critical questions related to the extent to which 

this analogy is valid at a deeper level. The greatest problem 

is that almost all current studies that investigate curiosity rely 

primarily on self-reports as a way to measure it, which, 

despite being convenient and affordable, is knowingly not the 

most reliable technique currently available. This is due 

mainly to the lack of a well-known, comprehensive, and more 

credible method to investigate and measure curiosity. 

Over the last decades, however, neuroscience research has 

developed significantly, and analyses of EEG data have 

become much more advanced. One of the more sophisticated 

frequency-based metrics is frontal EEG asymmetry, or 

frontal brain asymmetry (FBA). This index is commonly 

used as a tool to measure engagement and motivation, 

typically using alpha power (8 – 13 Hz) in electrodes over 

frontal cortical regions (channels F3 and F4). Previous 

studies have consistently found that greater activity in the left 

(F3) versus the right (F4) frontal cortex indicates positive 

feelings, higher engagement, and motivation (Davidson, 

2004; Harmon-Jones & Gable, 2017). Evidence suggests that 

frontal lateralization can, in fact, be used to analyze people's 

engagement to media advertisements, market products, and 

services (Vecchiato et al., 2011; Yilmaz et al., 2014). 

Furthermore, research findings confirm the idea that frontal 

brain asymmetry modulates the probability to engage in 

reward-motivated behavior (Pizzagalli, Sherwood, 

Henriques, & Davison, 2005; Schmid, Hackel, Jasperse, & 

Amodio, 2017). 
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Therefore, our study aimed to expand from previous 

investigations on both curiosity and frontal brain asymmetry. 

By using the same information-as-reward approach, and 

reframing curiosity as the motivation to obtain reward – 

where reward is information –, we wanted to investigate if 

the same frameworks and methods currently used to study 

engagement and motivation can be used to measure curiosity 

in a more reliable way, serving as an alternative to the current 

self-reported measures. If this held true, we expected to see 

higher activation in the left frontal cortex – a greater frontal 

brain asymmetry – when people were exposed to high-

curiosity information. We would also be able to correlate 

higher FBA scores to a higher likelihood of remembering the 

information. Hence, we aimed to investigate if frontal EEG 

alpha left asymmetry is (1) in any way related to self-reported 

curiosity and (2) a stronger predictor of subsequent learning. 

Our study may provide an initial framework for future studies 

on curiosity, as well as help to shed light on the functional 

significance of frontal EEG asymmetry on curiosity, 

learning, and other reward-motivated behaviors. 

 

 

Methods 

Participants 

21 undergraduate students (mean age = 18.8 ± 1.1 year; 12 

female, 9 male) at a college of liberal arts in the greater New 

York City area participated in this two-day study for partial 

course credit. 

Materials & Equipment 

Brain electrical data from this experiment was collected using 

electroencephalography (EEG) equipment, iWorx IX EEG 

10-20 (iWorx Systems, Dover, NH) culled from two scalp 

sites (F3 and F4). The questions were presented on Apple 

Macintosh computers, using Qualtrics (2013) and the 

QuickTime Player (Cupertino, CA) to present stimuli and 

collect responses. The analysis of the EEG data was done on 

LabScribe Software, and all subsequent statistical analyses 

were done on R (R Core Team, 2013). 

Procedure 

The first session was about 45 minutes long, and the second 

one (a week later) was about 15 minutes long. On the first 

session, after providing written informed consent and 

answering a quick demographic questionnaire (which 

included age, gender, race and/or ethnicity, and handedness), 

participants were prepared for EEG recording. Before the 

primary task, two electrodes were placed on the participant’s 

scalp (regions F3 and F4, 10/20 System Positioning; see 

Figure 1), and two minutes of EEG baseline was recorded. 

The experiment was a within-subjects design, where all 

participants were presented with a set of 35 general interest 

trivia questions culled from Internet sources (e.g., “What is 

the capital of Brazil?). Each question was presented on the 

laptop screen for 14 seconds. Participants were instructed to, 

after reading each question, type the answer down, and 

indicate their curiosity about the correct answer and their 

confidence in their guess. Then the question was presented 

again, followed by the correct answer (Kang et al., 2009). The 

same procedure was repeated for each and all of the 35 trivia 

questions, and the order of the questions was the same for all 

participants. EEG data was recorded for the entirety of the 

experiment. All participants were expected to come for a 

follow-up session one week later, although they were not 

aware of the purpose of the second session. For this session, 

the same 35 questions from the first day were presented and 

participants were asked to write down the answer to each one 

of them. 

EEG Data Analysis 

Alpha frequency band power was calculated by extracting 

frequency domain features from both left and right raw EEG 

signals (channels F3 and F4, respectively; see Figure 1). 

Since each question was presented for 14 seconds, we 

extracted the first seven 2-second epochs from each segment, 

and averaged them. The frequency domain analysis was 

performed using the Fast Fourier Transform (FFT) algorithm 

(with a frequency resolution of 1 Hz). The power spectra 

were reduced to the alpha frequency band, defined as 

between 8–13 Hz. 

The frontal brain asymmetry index was calculated by 

dividing the alpha power values from the F4 (right) electrode 

by the values from the F3 (left) electrode. The results were 

computed using a natural log transformation to normalize the 

data as frequency power values tend to be severely skewed. 

This is illustrated by the following formula: 

Figure 1: Illustration of EEG data collection. Raw EEG data was 

extracted from regions F3 and F4 (10/20 System Positioning) 

during the 14-second period in which each question was 

presented. The Fast Fourier Transform algorithm (FFT) was 

used to calculate the alpha power from each raw signal. 
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Since alpha power is inversely related to brain activity, 

positive asymmetry scores represented relatively greater 

alpha (less activity) over right than left hemispheres (Coan & 

Allen, 2004). 

Data Preprocessing 

The quality of the signal received from each electrode was 

evaluated during the entire EEG recording in order to make 

them both comparable and to avoid the influence of artifacts 

on the analysis. Offline visual artifact rejection was used to 

remove eye blinks, head movements, muscle activity, and 

other noise from the data. A subsequent round of artifact 

rejection was also conducted in which single trials containing 

voltage deviations of over 50 μV from normal baseline were 

manually rejected. Therefore, only artifact-free data from 

electrodes F3 and F4 were extracted and used in the analysis. 

In addition to the EEG signal filtering, we also excluded 

trials based on whether or not the participant already knew 

the answers to the presented trivia, such that questions that 

were correctly answered by the participants during session 

one were not included in the EEG analysis. Therefore, our 

preprocessing filter yielded a total of 519 trials (332 correctly 

recalled, 187 not correctly recalled) across all 21 participants 

of this study. 

 

Results 

Self-Reported Curiosity and Frontal Brain 

Asymmetry 

A correlational approach was used to assess links between 

reported curiosity and frontal brain asymmetry. Pearson’s 

correlation coefficient indicated no statistically significant 

correlation between self-reported curiosity and FBA, neither 

for correctly remembered answers, r(N = 21) = -.008, p = 

.486, nor for incorrectly remembered answers, r(N = 21) = -

.290, p = .101. Therefore, reported curiosity values were not 

linked to higher asymmetry values, on average (see Figure 2). 
 

Frontal Brain Asymmetry and Learning 

Participants on average remembered 62.1% of the answers 

correctly (range: 30.2% – 82.7%). A paired-samples t-test 

was conducted to compare FBA index, self-reported 

curiosity, and confidence level for both correctly 

remembered and incorrectly remembered answers (see Table 

1). For confidence scores, there was a significant difference 

between incorrect (M = 2.14, SD = 1.05) and correct (M = 

2.69, SD = 1.17) answers; t(20) = 2.97, p = .008. For curiosity 

scores, on the other hand, there were no statistically 

significant differences between incorrect (M = 6.29, SD = 

1.83) and correct (M = 6.63, SD = 1.43) answers; t(20) = 1.17, 

p = .254. 

    For frontal brain asymmetry scores, the difference for 

incorrect (M = -0.24, SD = 0.30) and correct (M = 0.40, SD = 

0.17) answers was statistically significant; t(20) = 7.20, p < 

.001. Specifically, participants’ recall was better for trials in 

which they had higher asymmetry scores than those in which 

they had lower asymmetry scores (see Figure 3). These 

results suggest that FBA is linked to whether or not an 

individual remembered the information from the trivia 

questions correctly. 

 

Discussion 

This experiment investigated if frontal EEG alpha left 

asymmetry was (1) in any way related to self-reported 

curiosity and (2) a better predictor of subsequent learning. By 

using the information-as-reward approach, and after 

reframing curiosity as the motivation to obtain reward – 

where reward is information –, we investigated if the same 

methods currently used to study engagement and motivation 

can be used to measure curiosity in a more reliable way, 

serving as an alternative to the current self-reported 

measures. If asymmetry measurements in EEG recording 

were indeed a more reliable way to measure curiosity, we 

expected to see higher neural activity in the left frontal cortex 

– a greater frontal brain asymmetry – when people were 

exposed to high-curiosity information. This asymmetry 

index, then, would be a better predictor of whether or not the 

participant would remember the correct answer – if compared 

to the participant’s self-reported curiosity levels. 

     The data indeed showed that there was a relationship 

between frontal brain asymmetry and subsequent learning: 

Figure 2: Scatterplot of self-reported curiosity and FBA. Each 

participant is represented by two dots, one orange and one 

green. Pearson’s correlation coefficient indicated no 

statistically significant correlation between self-reported 

curiosity and FBA for neither correct nor incorrect answers 

(p=.486, p = .101). 
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participants were significantly more likely to remember the 

correct answers for trials in which they had higher FBA 

scores (see Figure 3). Self-reported curiosity, on the other 

hand, was not associated with subsequent learning. For the 

second half of our research question, we utilized a bivariate 

correlational analysis to investigate whether frontal brain 

asymmetry and reported curiosity were linked to each other. 

We found that self-reported curiosity and FBA were not 

statistically significantly correlated, meaning that higher 

values of left hemisphere activation were not linked to higher 

self-given scores of curiosity (see Figure 2). 

     Because our study did not find any link between self-

reported curiosity and frontal brain asymmetry, it is not 

possible to infer any relationship between these two 

variables. In other words, frontal brain asymmetry might not 

be a neural correlate of curiosity, as we had initially 

hypothesized. However, although our experimental study 

design avoids claiming causality, our results support the idea 

that frontal brain asymmetry might be a better predictor of 

subsequent learning and correct information recall than the 

curiosity scores reported by the participants. Differently from 

Marvin & Shohamy (2016), self-reported curiosity did not 

correlate with subsequent learning in our study. These data 

leave open critical questions related to the reliability of self-

reports measures on research investigating curiosity. Given 

that the current studies on the topic rely primarily on self-

reports as a way to measure curiosity due to its convenience 

and affordability, more research is needed in order to 

confidently state the effects of curiosity on memory and 

learning. 

     Moreover, the variable confidence level showed a 

significant effect on the correctness of the responses in the 

retest (p = .008). Subjects were more likely to provide a 

correct answer during the retest when the same question on 

the pretest was answered incorrectly but with a high level of 

confidence. These results are in accordance to previous 

studies on hypercorrection, which suggest that high-

confidence errors tend to be corrected at a higher rate on 

retests, when compared to low-confidence ones (Metcalfe & 

Finn, 2011; Metcalfe & Miele, 2014). 

Our study also found that there is a positive relationship 

between frontal brain asymmetry and subsequent learning 

(see Figure 3). More specifically, correct answers have a 

significantly higher FBA index than incorrect answers (p < 

.001). Future research is necessary, however, in order to 

investigate why this relationship exists. Previous studies have 

suggested that greater activity in the left versus the right 

frontal cortex indicates positive feelings, higher engagement, 

and motivation (Davidson, 2004; Harmon-Jones & Gable, 

2017). Although these correlates of FBA might play a role in 

whether a participant will remember the correct answer or 

not, only future studies might be able to indicate if this is true. 

The present study is not without limitations. The number 

of participants included in the final analysis was relatively 

Table 1: Descriptive statistics and paired t-test results for confidence, curiosity, and FBA index. There are 

statistically significant differences, at the .05 significance level, in the correctness scores for confidence and 

frontal brain asymmetry, but not for curiosity. Results show that both confidence levels and FBA scores were 

higher for correctly remembered answers than for incorrectly remembered answers. 

Figure 3: Plot of the mean differences in FBA between 

questions that were and were not remembered correctly (the 

black lines indicate the mean for each). Each participant is 

represented by two dots, one orange and one green. Participants’ 

recall was better for trials in which they had higher asymmetry 

scores than those in which they had lower asymmetry scores (p 

< .001). 
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small (N = 21). Future work should aim to collect and analyze 

data from a more extensive poll of participants in order to 

examine if findings will hold true with more data. 

Furthermore, the equipment used in this study was quite 

rudimentary if compared to more expensive and sophisticated 

EEG equipment and software used in first-class clinical 

settings and research labs. 

By any means our study intends to be a definitive verdict 

or conclusion for the topic. Instead, it aims to provide an 

initial – but valuable – framework, upon which future studies 

can be built. Additionally, our study may have implications 

in the field by providing a helpful framework for more 

advanced research on the functional significance of frontal 

EEG asymmetry on learning and other reward-motivated 

behaviors such as curiosity. More broadly, given the 

importance of curiosity in our daily decisions and behaviors, 

these works could have important implications for studies in 

several different academic areas, including psychology, 

neuroscience, medicine, marketing, and education, and may 

contribute to the development of new strategies for 

improving memory and learning in both school and 

therapeutic settings. 
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Abstract

One previously unexplained observation about numeral sys-
tems is the shared tendency in numeral expressions: Numer-
als greater than 20 often have the larger constituent number
expressed before the smaller constituent number (e.g., twenty-
four as opposed to four-twenty in English), and systems that
originally adopt the reverse order of expression (e.g., four-
and-twenty in Old English) tend to switch order over time. To
explore these phenomena, we propose the view of Rapid In-
formation Gain and contrast it with the established theory of
Uniform Information Density. We compare the two theories
in their ability to explain the shared tendency in the ordering
of numeral expressions around 20. We find that Rapid Infor-
mation Gain accounts for empirical patterns better than the al-
ternative theory, suggesting that there is an emphasis on infor-
mation front-loading as opposed to information smoothing in
the design of large compound numerals. Our work shows that
fine-grained generalizations about numeral systems can be un-
derstood in information-theoretic terms and offers an opportu-
nity to characterize the design principles of lexical compounds
through the lens of informative communication.
Keywords: language universals; numeral system; lexical com-
pound; information theory; informative communication

Number is a fundamental domain of human cogni-
tion (Spelke & Kinzler, 2007), but numeral systems vary sub-
stantially across cultures (Comrie, 2013). For instance, some
cultures in the Amazon lack exact numerals for expressing
numbers beyond 5 (Gordon, 2004; Pica, Lemer, Izard, & De-
haene, 2018). Some languages use body parts to describe
numbers (Comrie, 2013). However, the majority of languages
in the world define numbers precisely and over a large range
through recursive numeral systems (Comrie, 2013). Recent
work has suggested that the diversity of numeral systems is
constrained by the need for efficient communication (Xu &
Regier, 2014; Kemp, Xu, & Regier, 2017). By this account,
numeral systems are designed to facilitate highly informative
communication of numbers, despite their differences in com-
plexity.

The proposal of informative communication helps to ex-
plain why numeral systems vary the way they do, but it
does not directly account for fine-grained generalizations
about numeral expressions. In particular, many languages ex-
press compound numerals by specifying the larger constituent
number first (e.g., twenty-four in English or Mandarin), and
fewer languages express these in the reverse order (e.g., vier-
entwintig in Dutch, interpreted as “four twenty”). Moreover,
numeral systems that originally use the reverse order of ex-
pression (e.g., Old English expresses 24 as four-and-twenty)

tend to switch order over time (Berg & Neubauer, 2014). This
preference of having the larger constituent number expressed
before the smaller constituent number is prevalent in numer-
als for the range above 20 but less prominent for smaller num-
bers (Calude & Verkerk, 2016). Here we ask what principles
might account for this shared tendency in numeral ordering.

This problem has been discussed by Greenberg in his
cross-linguistic generalization about the design of recursive
numerals (Greenberg, 1978). Recursive numeral systems rep-
resent numbers based on the canonical expression x1nk+ ...+
xkn+ y. Here n is called the base and the values of xi’s and y
are in the range of 1 to the base (Comrie, 2013). For numbers
in the range 1− 100 in a base-10 system such as English or
Mandarin, xn will be considered the base term (i.e., 10, 20,
..., 90) and y (i.e., 1, 2, ..., 9) will be considered the atom
term. Greenberg observed that if a numeral system has both
atom-base (e.g., fifteen) and base-atom (e.g., twenty-four) or-
derings in its numeral expressions, the system will always
begin with atom-base, and then switch to base-atom at some
number on the number line (Greenberg, 1978). In English
and many other languages, this switch takes place at 20.

Independent work from Hurford has sought to address
this phenomenon in light of the “packing strategy” (Hurford,
2007). According to this proposal, numeral expressions
should allow one to go as far as possible along the number-
line with a given set of terms (Hurford, 2007). This would
imply that terms should be arranged in decreasing order, with
the larger constituents coming first, and it confirms that the
base-atom order should be preferred over the atom-base or-
der. Although this work provides an intuitive theory for the
ordering preference in large numerals, it leaves open two im-
portant questions: 1) why the base-atom order is preferred
across languages for numbers above 20, but this preference
is substantially less for smaller numerals (e.g., 11 to 19), and
similarly, 2) why ordering switch should typically take place
in numerals above 20 and in particular, why it occurs only
in one direction (atom-base→base-atom) but not in the other
(base-atom→atom-base).

We examine the problem of numeral ordering through the
lens of informative communication. Consistent with the
growing literature on this topic, we suggest that language
design is driven by the basic need for efficient communica-
tion (Gibson et al., 2013; Kemp et al., 2017). Extending this
line of research, we propose the view of Rapid Information
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Gain (RIG) that focuses on explaining the design of com-
pound numerals, particularly the ordering of constituent ex-
pressions in terms of the need to optimize information flow.
We hypothesize that lexical ordering of a compound numeral
expression should maximize information gain for the listener
in the process of reconstructing the speaker’s intended ref-
erent. We contrast this view with the established theory of
Uniform Information Density (UID) postulating that infor-
mation smoothing should be preferred (instead of information
front-loading) in word ordering in sentences, online (Levy &
Jaeger, 2007) or offline (Maurits, Navarro, & Perfors, 2010).
We show that RIG explains empirical patterns better than UID
in the domain of numerals, and we believe this work has the
potential for developing a domain-general account of the de-
sign principle of lexical compounds.

Two theories of informative communication
We present the numeral ordering problem in a simple commu-
nicative scenario, illustrated in Figure 1a. Here the speaker
has the target number 85 in mind and wishes to convey that
number to the listener. We consider two possibilities in the or-
dering of constituent expressions of that numeral, using En-
glish as an example: 1) “Eighty-five”, which is the attested
order or base-atom; 2) “Five-eighty”, which is the alternate
order, or atom-base in this case. The problem is to deter-
mine which order should be generally preferred in natural lan-
guages and in what range of the number line this preference
might be most prominent.

We postulate that the preferred numeral order should tend
to minimize the listener’s uncertainty in reconstructing the
target number as the speaker’s utterance is processed. We
consider how uncertainty arises over time in the listener’s
mind as the constituent expressions are uttered sequentially
by the speaker. Based on the ordering of “eighty-five”, upon
hearing the first constituent “eighty”, the listener would con-
sider numbers in the range 80-89 as possible candidates for
the target, because numerals for numbers within that range
all begin with the same constituent. In this case, uncertainty
depends on the probability ratio between the actual target and
the candidate set. Based on the ordering of “five-eighty”,
upon hearing the alternative first constituent “five”, the lis-
tener would instead consider numerals that begin with “five”
(e.g., 5, 15, ..., 85, 95) as the candidate set for the target. We
illustrate these alternative candidate sets in Figure 1a.

We consider two alternative theories that quantify uncer-
tainty given choices of numeral ordering based on Shannon’s
information theory (Shannon, 1948). The first view is based
on Uniform Information Density (Levy & Jaeger, 2007),
which predicts that uncertainty incurred should be as smooth
as possible. This view suggests that the listener would experi-
ence a uniform information flow as a compound expression is
uttered. We propose a second view, Rapid Information Gain,
that makes the alternative prediction. We hypothesize that the
preferred order in compound numerals should tend to front-
load information as opposed to smoothing information, such
that uncertainty in the listener can be reduced as quickly as

possible. We illustrate the predicted uncertainty profile from
each theory in Figure 1b. As we show later, the property of
information front-loading is more salient in the ordering of
larger numbers (>20) than in the case of smaller numbers,
which explains why the cross-linguistic preference and the or-
dering switch toward base-atom expressions are stronger for
larger numbers. We now describe the details of each theory.

(a)

Figure 1: Illustration of the numeral ordering problem and
the two theoretical proposals of informative communication.

Uniform Information Density (UID). Following Shannon
(1948), we define uncertainty by surprisal or negative log
probability−log2(p(·)) = log2(

1
p(·) ). We define the informa-

tion content of a compound linguistic expression by the sum
of surprisals from its sequential constituents, following the
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formulation of UID (Levy & Jaeger, 2007). The cumulative
information conveyed by an expression U with n constituents
w1...wn in reference to a target t is the following:

log2
1

p(U)
= log2

1
p(t)

+log2
1

p(t|w1)
+...+log2

1
p(t|w1...wn)

(1)
In the case of two-constituent numeral expressions such

as twenty-four (i.e., base constituent and atom constituent),
this formulation effectively captures the information flow of
a compound numeral as it is processed incrementally in terms
of its constituent expressions:

log2
1

p(t)
→ log2

1
p(t|w1)

→ log2
1

p(t|w1w2)
(2)

Cumulative surprisal defined in Equation 1 can thus be sim-
plified to

log2
1

p(U)
= log2

1
p(t)

+ log2
1

p(t|w1)
+ log2

1
p(t|w1w2)

(3)

As such, the cumulative surprisal of hearing “twenty-four”
would be log2

1
p(“twenty-four”) = log2

1
p(24) + log2

1
p(24|“twenty”) +

log2
1

p(24|“twenty-four”) .
Empirical studies of UID typically focus on speaker infor-

mation modulation given the predictability of different units.
This would involve measuring information-theoretic entropy
rather than surprisal formulated here. However, the UID prin-
ciple implies that the flow of information to follow a uniform
trajectory in cumulative surprisal, and we test the applicabil-
ity of this proposal in the case of numeral ordering.

More specifically, UID suggests an even distribution of in-
formation (in the design of compound numerals), such that
the amount of information conveyed in the sequence of con-
stituents should be identical. This predicts that if the speaker
has alternative ways of ordering a numeral expression, she
should choose the order in which information is distributed
more evenly. Here we are interested in the cost of a numeral
order versus its reverse order, and we quantify cost by mea-
suring how a numeral order deviates from the theoretical UID
information flow. Prior work has taken a similar approach to
examine whether UID predicts preferred word orders (e.g.,
subject-verb-object) across languages (Maurits et al., 2010).
In that work, deviation from UID is defined by the percentage
deviation from the theoretical UID information flow. Abbre-
viating the components of the information flow in Equation 2
by I0 = log2(

1
p(t) ), I1 = log2(

1
p(t|w1)

) ..., we measure the de-
viation from UID following Maurits et al. (2010):

d =
n

2(n−1)

n

∑
i=1
| Ii−1− Ii

I0
− 1

n
| (4)

Here n is the phrase length of an expression (Maurits et al.,
2010). In our work, we use the same formula to quantify how

the design of a numeral expression deviates from UID. Con-
cretely, we consider n = 2 because each compound numeral
expression that we use for analyses has two constituents. We
also know that I2 = 0 since full certainty is obtained after the
second (or last) constituent of a numeral is uttered. UID pre-
dicts a linear relationship between information content and
number of constituents. If UID explains the shared tendency
in numeral ordering across languages, we should expect the
attested numeral order to yield a smaller deviation from the
linear information profile than the alternate order, more so for
the numerical range above 20 than the range under 20.

Rapid Information Gain (RIG). We propose an alterna-
tive theory for numeral ordering based on rapid information
gain. We postulate that the ordering of numerals should facili-
tate quick delivery of information to the listener, such that the
constituent expression that contains more information should
be arranged prior to the constituent that contains less infor-
mation. This notion of rapid information gain is related to
work on optimal data selection. For instance, when perform-
ing a series of tasks, optimal data selection implies that peo-
ple should order the tasks so that they gain the most infor-
mation possible at each step (Oaksford & Chater, 2003). We
believe that similar principles apply to the design of numer-
als. Our proposal is not equivalent to the claim that the larger
numeral should always precede the smaller numeral in a com-
pound (Hurford, 2007; Berg & Neubauer, 2014). Instead, it
suggests that the ordering of constituent numerals depends on
the amount of information they convey, as opposed to their
magnitudes per se. We demonstrate later that our proposal
correctly predicts information front-loading to be more criti-
cal for high-order numbers than low-order numbers, an aspect
that could not be explained fully by a magnitude account that
always predicts the larger numeral to be expressed first in a
compound numeral.

We evaluate our proposal by measuring the cumulative sur-
prisal of a numeral expression over its constituents:

c =
n

∑
i=0

Ii (5)

This formulation is the same as Equation 3, and we con-
sider n = 2 and since I2 = 0, c = I0 + I1. The RIG theory pre-
dicts an elbow-like information profile which differs from the
linear profile predicted by UID (see illustrations of the two
theoretical information flows in Figure 1b). We expect that
a lower cumulative surprisal should generally be preferred as
a consequence of rapid information gain. More specifically,
the attested numeral order should yield a lower cumulative
surprisal than the alternate order when there is a strong prefer-
ence toward the attested order (e.g., for numbers >20), but the
two possible orders might yield similar cumulative surprisals
when there is greater flexibility in the ordering conventions
of numerals across languages (e.g., for numbers <20).
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Materials and methods
To facilitate the information analyses and evaluation of the
two theories, we collected numeral frequencies for estimating
surprisals along with cross-linguistic numeral data.

Numeral frequencies. We estimated probabilities of the
number terms for the range 1-100 (following Xu & Regier,
2014) in 8 different languages: English, French, German,
Hebrew, Italian, Mandarin, Russian, and Spanish. We
collected these frequency data from the Google Ngrams cor-
pora (Michel et al., 2011) by averaging numeral frequencies
from 1900 to 2000. We used part-of-speech tags for numerals
in the corpus if those were available for a given language.
For each language, we queried frequencies of numeral
terms from a standard set of numeral expressions (data from
www.sf.airnet.ne.jp/ts/language/number.html).
When multiple expressions were available for a numeral,
we took the most frequent expression. The frequencies of
the numerals for each of the languages were normalized to
probabilities so that they sum to 1.

Calculation of surprisals. To calculate surprisals, we
decomposed a numeral expression into two separate con-
stituents, atom and base, while ignoring connectives such as
hyphens, e.g., “twenty-one”→ [“twenty”, “one”]. Although
it is possible to split some terms into multiple constituents,
e.g. “quatre-vingts huit” (4x20+8=88)→ [“quatre”, “vingts”,
“huit”] ([4, 20, 8]), we chose to split only along additive terms
for consistency. We did not choose to treat suffixes as separate
constituents. We calculated the surprisal based on each con-
stituent expression, where surprisal is the negative log prob-
ability of the target number being correctly inferred from the
set of candidate targets. Finally, for each numeral expression
we computed the deviation from UID according to Equation
4 and the cumulative surprisal for RIG according to Equation
5.

Cross-linguistic numeral data. We tested the theories
against numeral data collected from 334 languages in 53
listed language families sampled from Numeral Systems of
the World’s Languages (Comrie & Chan, 2018). We sampled
languages evenly from each family whenever possible, taking
10 from each family, or if 10 were not available, taking the
maximum number possible. This was so that language fami-
lies with a large number of languages such as Indo-European
or Sino-Tibetian did not bias the sample. For each language,
we recorded the attested orders in the numeral expressions,
atom-base or base-atom, for the numerical ranges of 11-19
and 21-29 (chosen to be symmetric about 20 where order
switch most commonly takes place). If a language did not
have sufficient data for the numerical ranges, we would ex-
clude that language and sample other languages from the fam-
ily until 10 or the maximum possible number were collected.

Results
Empirical patterns in the ordering of numerals. We first
present cross-linguistic tendencies and switches in “atom-
base” and “base-atom” ordering of numeral expressions in the

sample of 334 languages that we considered. Table 1 summa-
rizes the cross-linguistic occurrences for these orders in the
numerical ranges 11-19 and 21-29. If the atom-base order-
ing was used for at least one term in 11-19 in a language,
we considered that language as having an atom-base ordering
in that range. We observed that the base-atom order is at-
tested in more than 96% of the languages for the range 21-29,
whereas this order is attested much less commonly in about
76% of the languages for the lower range 11-19. This find-
ing confirms descriptive generalizations from previous work
(e.g., Greenberg, 1978) and indicates an asymmetric prefer-
ence toward base-atom ordering in larger numerals, and more
flexibility in the ordering of smaller numerals.

Table 2 confirms that the same asymmetric preference ap-
plies to switches in the ordering of numerals. In particular,
out of all languages that were attested to have switched order
in numeral expressions, switch took place exclusively in the
direction atom-base→ base-atom but not in the opposite di-
rection. Moreover, out of the 63 languages that use the atom-
base order for expressing the numerical range 11-19, 52 (or
∼83%) switch the order to base-atom but only for numerals
expressing the range 21-29. Together, these empirical data
suggest that preference toward the base-atom order is more
prominent in larger but not smaller numerals.

Numeral frequencies across languages. Figure 2 sum-
marizes the meta-mean and language-specific probabilities
of numerals, estimated from the corpus-based frequencies
over the past 200 years. These probability profiles show
a consistent near-logarithmic decay that confirms previous
findings in cross-linguistic numeral and digit-based frequen-
cies (Greenberg, 1978; Calude & Verkerk, 2016): Numerals
in the lower numerical range tend to be referred to more fre-
quently than numerals in the higher range. We used these
probabilities for surprisal calculations for the two theories.

Table 1: Ordering conventions in numerals across languages.

Number of languages Range 11-19 Range 21-29
atom-base ordering 63 11
base-atom ordering 271 323

Table 2: Switch in numeral ordering conventions. For each
language, the original numeral order is the same as that in the
lower range 11-19, and ordering switch is attested in numerals
for the upper range 21-29.

Number of languages No switch Switched
atom-base→ base-atom 11 52
base-atom→ atom-base 271 0

Evaluation of the two theories. We evaluated UID and
RIG by first considering a “template” language that reflects
the cross-linguistic tendency in numeral ordering we and
other scholars have observed: Atom-base order in numerals
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Figure 2: Numeral frequencies across 8 languages.

for the range 11-19, and base-atom order in numerals for the
range above 20. An ideal theory should explain 1) why there
is a strong preference for the attested base-atom order over
the alternate atom-base order in the upper numerical range;
2) why this preference between the attested and alternate or-
ders is much weaker in the lower range. As such, we expected
a greater discrepancy in the attested and alternate orders for
the theoretically predicted information profile we described
(e.g., under UID or RIG), and a substantially smaller discrep-
ancy in these orders for the same measure of information. To
test these ideas, we calculated the information profile for each
of the numerals within the range 1-100 based on the mean
numeral probabilities we had obtained. We performed these
calculations for both the attested order and the alternate order,
resulting in two sets of measures for UID deviation and two
sets of measures for RIG cumulative surprisal.

Figure 3 (a) and (d) summarize the results. At the broad
level, both UID and RIG identify the attested order to be
closer to their theoretical information profiles than the alter-
nate order. However, a closer examination of these results
reveals variation in the precision of these theories. For the
numerical range beyond 20, UID shows an ambivalent pref-
erence toward the base-atom order over the atom-base order,
manifested in the noisy deviation scores between the two or-
derings. In contrast, RIG provides a clearer advantage of the
base-atom order over the atom-base order for numerals in the
same range, indicating that there is a dominance toward the
first order as predicted by this theory. Moreover, for numer-
als in the range 11-19, UID shows a strong support for the
base-atom order, but RIG shows that both orderings render
roughly equal cumulative surprisals—this suggests that infor-
mation front-loading is less relevant to ordering variation in
this lower numerical range.

To further examine the precision of the two theories, we ex-
amined their predictions for two sample languages, English
and Mandarin. For these cases, we used language-specific
numeral probabilities for calculations of UID deviation and

RIG cumulative surprisals. Figure 3 shows that the results for
these individual languages are consistent with our findings
with the template language, such that RIG provides a more
precise explanation for the asymmetric preference in ordering
of larger and smaller numerals. Figure 4 illustrates the infor-
mation profiles in the attested and alternate orders with two
example numerals, fifteen and twenty-four in English, along
with the theoretical predictions from UID. In both cases, the
attested order shows an elbow-like information profile that
deviates from the ideal linear profile of UID, providing evi-
dence against the idea that numerals are designed under the
criterion of information smoothing. Importantly, the informa-
tion profile under the alternate order for fifteen—a low-order
numeral—is almost identical to the elbow-like profile under
the attested order, reflecting the fact that information front-
loading is insensitive to ordering of numerals in this range. It
is worth noting that both alternate and attested profiles deviate
from the UID prediction. In addition, for twenty-four, the al-
ternate order produces an information profile that approaches
the UID prediction. This profile yields a cumulative surprisal
higher than the attested order, suggesting information front-
loading is desirable for larger numerals in English.

As a final analysis, we examined whether the preferred or-
dering switch from atom-base to base-atom can be explained
away by the theory of RIG. In particular, we performed a fo-
cused analysis that compares cumulative surprisal between
these two orders for the numerical ranges 11-19 and 21-29
respectively. We expected that the cumulative surprisal might
be comparable under the two orders for the smaller range, but
substantially discrepant for the larger range, which would ex-
plain why switching of order tends to occur beyond 20 and
only in the atom-base→ base-atom direction.

For each of the numerical range in question, we conducted
a permutation test that shuffles the numeral expressions be-
tween the base-atom and atom-base orders. We then repeated
the shuffle 100,000 times and for each repetition, calculated
the mean difference in cumulative surprisal between the two
orders. This effectively helped construct the null hypothesis
that there should be no between-order difference in cumula-
tive surprisal. We also calculated the same quantities for the
unshuffled data, and compared those against the null distribu-
tions for the two numerical ranges of interest. Figure 5 shows
that there is no statistical significance (p = 0.56) to reject the
null for the range 11-19, but there is high statistical signifi-
cance (p < 0.004) in rejecting the null for the range 21-29.
These results provide evidence for the idea that information
front-loading is equally prominent under atom-base or base-
atom orderings for smaller numerals, but it is more promi-
nently represented in the base-atom order as opposed to the
atom-base for larger numerals. Possibly due to this reason,
historical changes in ordering convention of numerals tend to
occur uni-directionally beyond but not below 20.

Discussion
We investigated two theories for explaining the shared ten-
dency in the ordering of numeral expressions. We found that
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Figure 3: UID deviation (top row) and cumulative surprisal (top row) for template language, English, and Mandarin.
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Figure 4: Information flows under alternative orders of ex-
pression for English numerals 15 and 24. The attested or-
der for 15 is atom-base (“fifteen”), and the alternate order is
base-atom (“teenfif”). The attested order for 24 is base-atom
(“twenty-four”), and the alternate order is atom-base (“four-
twenty”). “UID” refers to the UID theoretical prediction.

the proposal of rapid information gain provides a better ac-
count for the empirical data across languages than the ex-
isting theory of uniform information density. Our findings
suggest that the dominant preference toward the base-atom
ordering in larger numerals reflects the need for informa-
tion front-loading as opposed to information smoothing, and

Figure 5: Permuted surprisals with attested ones marked.

greater flexibility in the ordering of smaller numerals is ex-
plained partly by the fact that information flow is less affected
by ordering conventions in numerals for the lower range. Our
study differs from existing research in UID that focuses on
information processing at the sentence level. Our emphasis is
to characterize the design principles of complex lexical items,
particularly compounds. This difference in the level of anal-
ysis might provide one explanation as to why UID does not
predict as well in the current study. An alternative possibility
is that the domain of numerals has characteristics that make
a uniform information flow less desirable than information
front-loading. Future research should delineate when UID
might apply and when alternative principles such as RIG are
more appropriate. It is also worth exploring whether the RIG
principle can be applied to compounds in other domains.
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Abstract 

Verb learning is important for young children. While most 
previous research has focused on linguistic and conceptual 
challenges in early verb learning (e.g. Gentner, 1982, 2006), 
the present paper examined early verb learning at the 
attentional level and quantified the input for early verb learning 
by measuring verb-action co-occurrence statistics in parent-
child interaction from the learner’s perspective. To do so, we 
used head-mounted eye tracking to record fine-grained 
multimodal behaviors during parent-infant joint play, and 
analyzed parent speech, parent and infant action, and infant 
attention at the moments when parents produced verb labels. 
Our results show great variability across different action verbs, 
in terms of frequency of verb utterances, frequency of 
corresponding actions related to verb meanings, and infants’ 
attention to verbs and actions, which provide new insights on 
why some verbs are harder to learn than others.   
 

Keywords: verb learning, motion verb, attention, head-
mounted eye-tracking, infant-parent dyads 

Introduction 

Language learning depends on both the internal learning 

mechanisms and the data on which those mechanisms 

operate. Many experimental studies have focused on 

examining the internal learning mechanisms by using well-

controlled and well-balanced stimuli as the input. A recent 

trend in the field of language acquisition is to examine natural 

statistics in everyday learning contexts (e.g. Pereira, Smith, 

& Yu, 2014). For example, recent studies have shown that 

both the quantity and quality of parent language input are 

predictive of children’s later language development (Hart & 

Risley, 1995; Hoff, 2003; Weisleder & Fernald, 2013). In the 

present study, we used the same approach to examine the 

input for early word learning. One of the challenges in early 

word learning is to figure out the correct mapping between a 

word and a referent (Quine, 1960). Given many possible 

referents in the moment when a word is heard, young learners 

need to attend to the right referent at the right time in order to 

learn the meaning of a word. However, we do not yet know 

what input from the environment is available to the child and 

what input attended by the child is therefore processed by the 

internal learning mechanisms.  

A large proportion of early vocabulary is composed of 

concrete nouns and concrete verbs. Previous studies on 

learning concrete nouns found that children need to select and 

attend to the right object at the right time from an ambiguous 

learning environment when hearing its name (Golinkoff, 

Hirsh-Pasek, Bailey, & Wenger, 1992; Yurovsky, Smith, & 

Yu, 2013; Yu & Smith, 2007; Gleitman & Trueswell, 2018). 

In addition, Pereira, Smith and Yu (2014) found that when 

the named target is visually large and more centered in the 

child’s view and when these optimal visual properties last 

longer before and after parent’s naming, children are more 

likely to attend to the named object and learn its label.  Thus, 

learning object names with perceptually grounded meanings 

requires not only hearing the words from parent speech but 

also showing sustained attention to the intended referent.  

However, little is known about whether learning concrete 

verbs also requires young learners’ sustained attention when 

mapping verbs to visually grounded actions. Most 

experimental studies on verb learning have been focused on 

testing how well young children build verb-action mappings 

when presented with a verb and an action in well-controlled 

laboratory settings (Imai et al., 2008; Hirsh-Pasek & 

Golinkoff, 1996; Maguire et al., 2008; Golinkoff et al., 2002; 

Pulverman, Golinkoff, Hirsh-Pasek, & Buresh, 2008; 

Monaghan, Mattock, Davies, & Smith, 2015, Messenger, 

Yuan, & Fisher, 2015; Scott & Fisher, 2012). The learning 

tasks for young children in those experimental setups were 

well-controlled to minimize distraction, which is very 

different from learning verbs in the real world. Referential 

uncertainty created during naturalistic interactions may be 

different from that created for traditional lab tasks, thus it 

may influence how children process information differently.  

Imagine a naturalistic context for early verb learning such 

as toy play, when a parent names a verb (e.g. “Can you shake 

it?”) while demonstrating the shaking action. The meaning of 

“shake” is presented briefly as the parent is not likely to keep 

shaking the object. If the infant does not attend to the action 

when hearing the word “shake” and when the action is 

produced, it would be impossible for the infant to build the 

association between the word “shake” and the action “shake”. 

This example reflects the transient nature of the action 

referent and lead to important research questions related to 

early verb learning that have not been examined at the 
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perceptual and attention levels. For example, compared with 

object names, how frequently do parents mention action 

verbs in their speech in everyday learning contexts? When 

parents produce a verb in speech, how likely there is a 

corresponding action in the learning environment that reveals 

the meaning of the verb? If there is an action in accompany 

with parent speech, how likely do infants attend to the action 

to build a verb-action mapping?  

To answer these questions, we need to examine parents’ 

and children’s behaviors from natural learning environments. 

We used head-mounted eye-tracking techniques to record 

fine-grained multimodal behaviors during parent-infant joint 

play. We analyzed parent speech, parent and infant action, 

and infant attention at the moments when parents produced 

verb labels. By doing so, we will be able to provide new 

evidence on how easy or hard for young children to learn 

early verbs and discover new elements -- at the attentional 

level -- that matter to early verb learning. Our overarching 

goal was to quantify word-referent co-occurrence statistics in 

parent-child interaction from the learner’s perspective and 

examine what information infants select to attend when a 

verb is heard.   

Method 
Participants 
Thirty-three infant-parent dyads with infants (12 female) 

ranging from 15.2 to 25.3 months (M = 19.52, SD = 2.42) 

were included in the final sample.  

Stimuli and Experimental Setup 

Parents and their infants were invited to play with a set of 24 

toys in a playroom (Figure 1A). The toys were randomly 

spread out across the floor at the beginning of each play 

session. Parents and infants both sat on the floor and parents 

were told to sit in any orientation with their child but were 

instructed to try to keep their child sitting on the ground as 

much as possible during the play session. We observed that 

parents and infants naturally generated various types of 

manual actions during toy play. For example, they used a toy 

saw to pretend to cut other objects; they put a doll on a toy 

bed; they played with a car toy to generate actions like 

turning; and they stacked one toy on top of others, etc. While 

playing, parents also verbally described those manual actions 

generated by themselves or by infants. 

 

 
Figure 1A: Experimental setup  

    
 

Figure 1B: Examples from the infant egocentric view. The 

crosshair in each example indicates the infant’s gaze direction. 

Eye-tracker and Calibration 

Parents and infants wore head-mounted eye trackers (Positive 

Science LLC). The tracking system has been successfully 

used in both infant and adult experiments (Franchak & 

Adolph, 2010; Yu & Smith, 2017). The eye-tracking system 

includes an infrared camera mounted on the head and pointed 

to the right eye of the participant that records eye images and 

a scene camera that captures and records images from the 

participant’s perspective. The visual field of the scene camera 

is 108° (Figure 1B). Each tracking system – the infants’ and 

parents’ – recorded egocentric video and the x- and y-position 

of the right eye in the captured scene at a sampling rate of 

30Hz. For eye-tracker setup, one experimenter engaged with 

the infant with an enticing toy while the second experimenter 

affixed the eye-tracker on the parent. After the parent’s eye-

tracker was secure and the scene and eye cameras were 

properly adjusted and oriented, both experimenters and the 

parent worked together to place the headgear and eye-tracker 

on the infant. The parent and one of the experimenters played 

with the infant while the other experimenter placed the 

infant’s headgear (a small hat with Velcro stickers on the 

forehead) on the infant.  

Instructions and Procedure 

After the calibration phase, one of the experimenters 

distribute the set of toys on the floor and leave the parent and 

infant to play. The experimenters watch the interaction in an 

adjoining room and monitor the parent’s and infant’s eye and 

scene live streaming videos. If infants touch the camera or 

bumped the camera with a toy, the experimenter would go 

into the room, readjust the cameras, complete a new 

calibration phase, and leave the room so the parent and infant 

could complete the rest of the toy play session. Parents were 

asked to engage with their infants and toys as naturally as 

possible for ten minutes. 

Data Annotation  

Parent speech and infants’ egocentric video were used in data 

analysis. We first transcribed speech and then identified 

spoken utterances containing action verbs. For those 

utterances, we further coded subject, verb, and (direct and/or 

indirect) object for each verb utterance. Since the main 

interest of this paper is on early verb learning and most verbs 

learned early by young children are action verbs, we focused 

only on action verbs with concrete meanings that can be 

revealed by manual actions (e.g. stack and shake) instead of 

abstract verbs (e.g. think and imagine).  
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For each parent utterance containing an action verb, we 

defined a window ranging from 3 seconds before to 3 seconds 

after the verb was generated. Within this temporal window, 

we first coded whether an action event was accompanied by 

the action verb, using infants’ egocentric video. For example, 

in Figure 2, when a parent said, “shaking it”, whether the 

parent or the infant used an object to generate a “shaking” 

action at the same time.  If so, we next coded which target 

object was action-related for the action event. Figure 2 

showed three example verb utterances, two accompanied by 

an action, and the other without any action. For the two 

utterances with action (Figure 2B, Row 1), we also coded 

target objects at the moment (Figure 2B, Row 2).  Finally, an 

in-house coding program was used to code frame by frame 

which object infants attended moment by moment and gaze 

data were used to measure infants’ attention when hearing 

verb utterances (Figure 2B, Row 3).  

 
Figure 2: (A) Infants’ first-person view and point of gaze 

during verb utterances. Purple crosshair in the image 

indicates where the infant was attending in the first-person 

view. (B) Row 1: Speech transcription of parents’ verb 

utterances; Row 2: Coding of whether a verb utterance was 

accompanied by an action revealing the meaning of the verb. 

Colors indicate which object is carrying out the action; Row 

3: Gaze coding. Different colors in the infant gaze stream 

indicate different objects attended by the infant moment by 

moment. If an infant attended to the named object, the colors 

in Row 2 and 3 would match in time. 

Results 

Verb utterance in parent speech. Parent speech contains 

4406 utterances (1498 contain object names, 1381 contain 

action verbs). On average, parents generate roughly the same 

amount of nouns (5.09 nouns/min) and verbs (5.12 

verbs/min, t(32) = .72,  p =.47, ns). Among all the verbs, 705 

were action verbs and 268 were abstract verbs. Thus, action 

verbs took roughly 72.4% of the total of 973 verbs, 

suggesting that parents most often used concrete verbs in 

their speech when they played with their children. Among all 

the action verbs that were coded from parent speech, we 

selected the top 25 verbs with relatively high frequency 

(except “look” and “see” as these two verbs were mostly used 

for attention getting in free play) to form a list of target action 

verbs for further data analysis. Figure 3A shows a skewed 

frequency distribution of those top 25 action verbs with two 

statistical properties. First, even for those top 25 verbs, most 

of them were produced fewer than 30 times, suggesting that 

a large proportion of those action verbs were hardly repeated 

by parents in a play session. Second, the skew distribution 

also revealed that some verbs were mentioned in parent 

speech much less frequently than others. Both the frequency 

difference between action verbs and object nouns, and the 

variability within action verbs suggest that those quantitative 

discrepancies are one of the many reasons why (some) verbs 

might be harder to learn than nouns. 

 

 
Figure 3: (A) A skewed frequency distribution of the top 25 action 

verbs. (B) A distribution of the percentage of verb utterances that 

were accompanied by an action. 

 

Verb-Action co-occurrence. Learning the perceptually 

grounded meaning of an action verb requires not only hearing 

the verb but also perceiving the action.  One critical question 

is how often a verb and its corresponding action co-occur in 

the learning environment? We answered this question by 

directly measuring verb-action co-occurrence and counting 

how often an action revealing the meaning of a verb was 

generated – either by parents or infants – when parents 

produced a verb utterance. Figure 3B showed the percentage 

of verb utterances that were accompanied by the 

corresponding action. There are two noticeable patterns. First, 

there is variability in verb-action co-occurrence across action 

verbs as when some verbs (e.g. “drive”, “turn”, “cut”) were 

mentioned in parent speech, it was very likely that the 

corresponding actions were also generated at the same time; 

while for some other verbs (e.g. “knock”, “tumble”, “rake”), 

they were produced in parent speech most often without the 

corresponding actions. In those situations, either parents 

failed to demonstrate the corresponding action while a verb 

was generated, or parents failed to name the actions 
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conducted by infants. Second, there is no correlation between 

verb frequency and verb-action co-occurrence (r = -0.161, 

n.s.), suggesting that producing action verbs more frequently 

would not necessarily create more verb-action co-

occurrences, which are critical for building verb-action 

mappings than just hearing action verbs alone.   

 

Attention to verb-action co-occurrence. Infants’ visual 

attention in free play was dynamic as they sometimes 

followed parents’ attention and sometimes went with their 

own goals. Even with the presence of verb-action co-

occurrence in the learning environment, they may or may not 

attend to the action when hearing a verb label. Given that 

attending the corresponding action when hearing a label is 

critical for verb learning, we next measured the proportion of 

infant gaze attention on the corresponding action within a 

verb utterance. Prior research shows that infants’ learning of 

an object name depends on sustained visual attention to the 

object during a window that lasts from the onset of the 

utterance containing the name to several seconds after the 

offset of the utterance (Yu & Smith, 2012).  Therefore, we 

operationally defined a verb event starting at the onset of a 

parent verb utterance and lasting for 3 seconds – the temporal 

interval including both the utterance itself (on average 1.5 sec 

long) and roughly 1.5 seconds after the utterance. We 

quantified infants’ attention during and after hearing a verb 

utterance by defining three attentional states based on infant 

gaze: Full attention -- infants attended to the action 100% of 

time within a 3s window; Partial attention -- infants 

attended to the action sometimes but also to elsewhere when 

hearing a verb label. No attention -- infant did not attend to 

the action at all. Figure 4 showed the percentages of verb-

action co-occurrences that received full attention (4A), partial 

attention (4B) or no attention (4C) from infants. As observed 

in the distributions of verb utterance frequency and verb-

action co-occurrence, there is large variability among 

different action verbs. Infants seemed to attend to some 

actions (e.g. “turn” and “spin”) much more than others (e.g. 

“saw” and “rake”) when hearing verb labels.  Also, in most 

cases, they seemed to attend to the correspond action 

sometimes but not the whole time within a 3s window as the 

percentages in partial attention are much higher than the 

percentages in full attention and no attention.  

 

 

 

 
 

Figure 4: The distribution of infants’ attention on the target of the 

actions that matches with the verbs of the top 25 verbs. (A): Infants’ 

full attention on the targets; (B): Infants’ partial attention on the 

targets; (C): Infants’ no attention on the targets.  

 

If an action verb was mentioned more frequently in parent 

speech, would a higher frequency attract infant attention 

more on the corresponding action when it was available in 

the environment? To answer this question, we correlated both 

verb utterance and verb-action co-occurrence with the three 

attentional states. As shown in Table 1, we found no 

correlation between verb frequency and infant attention. 

Producing more verb utterances did not attract infant 

attention more toward actions when those verb utterances 

were accompanied by the corresponding actions. However, 

there is a significant correlation between verb-action co-

occurrence and full attention as shown in both Table 1 and 

Figure 5, suggesting that infants were more likely to attend to 

the action 100% of time when a verb and its corresponding 

action consistently co-occurred together.  The higher 

percentage that manual actions and verb labels co-occurred 

together; the more likely infants showed full attention to the 

action event when hearing its label. 

 

Table 1: The correlations between infants’ attention, and verb 

utterance and verb-action co-occurrence (*p<0.05) 
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Figure 5: A significant correlation between verb-action co-

occurrence and full attention. 

Discussion 

Recent studies show the overall speech input perceived by 

the young learner is predictive to later learning outcomes 

(Weisleder & Fernald, 2013). The input for learning concrete 

verbs includes not only spoken words but also their 

perceptually grounded meanings to build word-referent 

mappings. In light of this, the present study quantified both 

speech input and verb-action co-occurrences in the learning 

environment. Critically, the input to the language learning 

system is not the objective properties available in the learning 

environment but instead the information in the environment 

selected by the learner. Therefore, we measured the statistical 

regularities from the learner’s perspective by using the 

learner’s gaze data. Our result showed that the overall 

frequency distribution of verb generated by the parent during 

free play is right-skewed, which is similar to what has been 

observed in the recent studies of object names (Smith, 

Jayaraman, Clerkin, & Yu, 2018; Bambach, Crandall, Smith, 

& Yu, 2018). Moreover, the mere frequency of verb 

utterances was not related to how often the corresponding 

action was generated. It is not the case that more frequent 

verbs have more chances to be learned due to more frequent 

verb-action co-occurrences. In fact, some lower frequency 

verbs may have more chances to be learned as they co-

occurred more frequently with the corresponding action. 

Further, it is not the case that more verb-action co-

occurrences lead to more attention from the learner to the 

corresponding action.  

The infant’s attention adds a critical factor to variability of 

the learning input. We found that it is unlikely that young 

learners look at the target action during the entire time of a 

verb utterance. Instead, in most cases, they spent only some 

time looking at the corresponding action while hearing its 

label. It is also unlikely that they would completely miss the 

co-occurring action when a verb is heard. Although there 

isn’t a significant correlation between verb frequency and 

infant attention, verb-action co-occurrence is positively 

correlated with the infant’s full attention. For those verbs that 

co-occur more with the corresponding actions, infants are 

more likely to spend more time looking at the corresponding 

actions. The great variability within the concrete verbs 

examined here offers an explanation on why some concrete 

verbs are harder to learn than others.   

What exactly makes verb learning difficult? Based on our 

findings, we argue that actions to which verbs refer are 

usually transient in context. Unlike concrete nouns whose 

perceptual information is usually available to the child when 

the object label is uttered, the corresponding action of a verb 

is not very likely to be perceptually available for the child 

continuously before, during, and after the verb utterance. 

Given the verb’s transient nature and the infants’ developing 

attentional system, if infants failed to attend to the right action 

at the time a verb was generated, they would miss the target 

action and once they miss the action, it is impossible for them 

to recover from other perceptual inspection of the immediate 

visual context at the moment. Despite the fact that verb 

learning is challenging, it is also important to keep in mind 

that verb learning happens in rich naturalistic contexts. 

Besides solely observing the action accompanying the verb, 

children also receive other cues that could help them figure 

out the correct mapping. For example, parents often provide 

socio-attentional cues, such as pointing to guide the child’s 

attention (Goldin-Meadow, 2007). In addition, verbs are 

likely to co-occur with nouns and other parts of speech. 

Infants can also utilize the syntactic structure of the sentences 

to bootstrap the verb meaning (Naigles, 1996; Yuan, Fisher, 

& Snedeker, 2012). 

The present study is the first step towards understanding 

the input for early verb learning. There are several future 

directions to advance our understanding on this topic. First, 

the current study does not have an outcome measure of verb 

learning as a way to directly assess the infant’s knowledge of 

the heard verbs. Adding a verb learning test at the end of the 

play session would allow us to directly examine how the 

quantity and quality of co-occurrence statistics impact verb 

learning. Another way to link the input with learning 

outcomes is to collect and use the parent report of the child’s 

vocabulary (i.e. MCDI, the MacArthur-Bates 

Communicative Development Inventories). Many studies 

have showed that both the quality and quantity of parent 

object naming are correlated with the child’s MCDI results. 

However, little is known about how input quantity and 

quality impact early verb learning.  

Second, toy play is only one of the everyday contexts in 

which children learn words. It would be interesting to study 

other learning contexts, such as storybook reading. Talking 

about objects on a page during book reading and manually 

manipulating objects during toy play are two very different 

types of interactions. Therefore, parent and children tend to 

generate very different learning statistics. Given that word-

learning outcomes heavily depend on the structure of the 

input, it would be interesting to examine what types of input 

infants receive in those two contexts and compare how 

different types of input influence verb learning in those 

contexts. 
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Finally, another idea for follow-up studies is to compare 

the actions generated by infants versus by parents. There are 

studies showing that infants’ own egocentric views contain 

unique properties and distributions that are critical for 

successful learning (Yurovsky, Smith, & Yu, 2013; Bambach, 

Crandall, Smith, & Yu, 2018). Actions generated by the 

parent may contain different visual properties from actions 

generated by the child. We could further investigate how the 

infant’s body and associated visuomotor processes influence 

how the information is perceived and processed for learning 

verb-action mappings. 
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Abstract

The nature of morphological processing has remained a
controversial topic in psycholinguistic research. Some studies
(e.g., Rastle, Davis, & New, 2004) have argued that when
we read words like corner and talker, we automatically
decompose them into existing morphemes like talk, corn, and
-er, regardless of whether it is semantically plausible (e.g.,
talker) or not (e.g., corner). Recent studies, however, have
challenged this view, by showing early semantic effects of
the whole complex word (Järvikivi & Pyykkönen, 2011; Lõo
& Järvikivi, 2019; Milin, Feldman, Ramscar, Hendrix, &
Baayen, 2017). Using a masked priming paradigm, the present
study only found effects of morphological decomposition for
true morphological relations (e.g., talker) as well as effects
of frequency and affective properties of whole words, further
challenging automatic decomposition accounts. Finally, we
also report that individual differences such as participants’
self-reported scholarly reading and openness to new experi-
ence, affect processing.

Keywords: morphological processing; masked priming; af-
fective properties; individual differences

Introduction
A large body of psycholinguistic research has focused on the
question of how people read words like cats or puppy. More
precisely, the question is whether these words are understood
by accessing their morphemic components, for example cat,
-s, pup, and -y or whether they are processed as any simple
word, without recourse to internal structure.

From early on (Taft & Forster, 1975; Manelis & Tharp,
1977) both views have been represented in various forms. Re-
cently, a particularly prominent view has been a variant of the
former which states that all morphologically complex words
are automatically decomposed in lexical access (Beyersmann
et al., 2016; Lázaro, Illera, & Sainz, 2016; Longtin, Segui,
& Hallé, 2003; Marslen-Wilson, Bozic, & Randall, 2008;
Rastle, Davis, Marslen-Wilson, & Tyler, 2000; Rastle et al.,

2004; Rastle & Davis, 2008). Most strikingly, this view takes
the decomposition process to operate on the word form alone,
without access to any semantic aspects of the word, with the
prediction being that all word forms with apparent internal
structure should be processed alike.

This approach has found support from masked priming
studies (see e.g., Rastle et al., 2004) demonstrating that both
pseudo-complex words, where the potential morphemic parts
(e.g., corn and -er) do not make up the meaning of the
whole word (e.g., corner), as well as transparent complex
words with morphemic parts (e.g., talk and -er) that clearly
contribute to the meaning of the whole word (e.g., talker),
equally facilitate the recognition of their stems (corn and talk,
respectively). Not only that, this research has also shown that
words that are not exhaustively divisible into two morphemes,
like turnip (where -ip is not an English affix), do not behave
this way, suggesting that automatic decomposition is not only
agnostic to semantics but is also driven by online analysis of
linguistic structure.

However, not all recent research aligns with this view. Re-
cent studies considering semantic and whole-word proper-
ties of the words have started to question this rather sim-
plistic approach to language processing, especially in the
case of morphologically complex languages, such as Ser-
bian, Finnish and Estonian (Milin, Filipović Durdević, &
Moscoso del Prado Martı́n, 2009; Moscoso del Prado Martı́n,
Bertram, Häikiö, Schreuder, & Baayen, 2004; Lõo, Järvikivi,
& Baayen, 2018; Lõo, Järvikivi, Tomaschek, Tucker, &
Baayen, 2018), but also for English (Baayen, Wurm, & Ay-
cock, 2007; Schmidtke, Matsuki, & Kuperman, 2017). For
instance, these studies show whole-word frequency effects
(Baayen et al., 2007; Schmidtke, Matsuki, & Kuperman,
2017; Lõo et al., 2018), as well as paradigmatic effects (Milin
et al., 2009; Moscoso del Prado Martı́n et al., 2004; Lõo et
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al., 2018) in the processing of complex words, which does
not align well with the automatic decomposition approach.

In priming, Feldman and colleagues have shown for both
English (Feldman, O’Connor, & Moscoso del Prado Mar-
tin, 2009) and Serbian (Feldman, Kostić, Gvozdenović,
O’Connor, & del Prado Martı́n, 2012) that semantically
transparent pairs show stronger priming than opaque pairs.
Järvikivi and Pyykkönen (2011) reported that when morpho-
logical family size of the prime was accounted for, priming is
smaller for pseudo-complex forms compared to real inflected
forms in Finnish. Similarly, in a recent English masked prim-
ing study by Lõo and Järvikivi (2019) no priming was found
for pseudo-complex words when whole-word frequency of
the prime was taken into account in the analysis. Milin et
al. (2017) included learning-based measures (Baayen, Milin,
Filipovic Durdjevic, Hendrix, & Marelli, 2011) and found
comparable priming effects for pseudo-derived words (e.g.,
corner) and orthographic controls (e.g., brothel) with more
experienced readers showing priming to a lesser extent com-
pared to less experienced readers. Along these same lines,
Andrews and Lo (2013) reported that participants with rel-
atively high vocabulary scores showed effects of priming in
the transparent condition, but no priming in the opaque condi-
tion; whereas participants whose orthography knowledge was
better than their vocabulary knowledge also showed priming
in the opaque condition. Finally, Medeiros and Duñabeitia
(2016) conducted a masked priming lexical decision study
with Spanish suffixed words and found priming effects for
slow readers, but not for fast readers.

In summary, there is accumulating evidence suggesting
that both semantics of the complex words (Feldman et al.,
2009; Järvikivi & Pyykkönen, 2011; Lõo & Järvikivi, 2019;
Milin et al., 2017) and individual differences of the par-
ticipants affect morphological decomposition (Schmidtke,
Van Dyke, & Kuperman, 2017; Falkauskas & Kuperman,
2015; Medeiros & Duñabeitia, 2016; Andrews & Lo, 2013).

In the present study, we will focus on the affective proper-
ties (valence, arousal, danger and usefulness ratings) of com-
plex words. Like simplex words, complex words can also
be described along different affective dimensions, for exam-
ple, from very negative (e.g., murderer) to very positive (e.g.,
puppy); from very exciting (e.g., panics) to very calming
(e.g., sleeping); from extremely dangerous (e.g., lionness) to
not dangerous at all (e.g., echoing); and from extremely use-
ful to human survival (e.g., knives) to not useful at all (e.g.,
scorpions).

Previous research has shown that these affective properties
predict lexical processing costs. For instance, positive, calm-
ing, useful and dangerous words have been found to elicit the
fastest reaction times in word recognition tasks (Kuperman,
Estes, Brysbaert, & Warriner, 2014; Wurm, 2007). Kuperman
(2013) reported that compound words that had more positive
consituents and were also more positive as a whole were pro-
cessed faster than negative and neutral compounds.

Until now, affective properties of derived and inflected

words have not received much investigation, especially, in the
masked priming context (see Forster, 1998 for a discussion of
this method). According to the automatic morphemic decom-
position view, only affective properties of the stem (e.g, pup)
and not of the whole (inflected or derived) word (e.g., puppy)
should influence processing costs

The current study also investigates the effects of individ-
ual differences on morphological processing by looking at
several self-reported language background and personality
measures of participants. The personality component will
be more exploratory than the language background measures.
Lõo, Toth, Karaca, and Järvikivi (2018) found that personal-
ity influenced how participants rated different types of com-
plex words. The arousal scale of the complex words was most
prominent for participants who scored high on the neuroti-
cism scale of Big Five personality questionnaire (John & Sri-
vastava, 1999). The present study explores whether person-
ality effects also arise in response times of masked priming
lexical decision.

In summary, the goal of the current study is two-fold.
First, we will study whether automatic decomposition oc-
curs in a large within-item study design study design when
lexcal-distributional and affetive properties of the words are
included in the analysis. Second, we will examining indi-
vidual differences on morphological processing, by exploring
participants’ self-reported language background and person-
ality measures.

Visual Masked Priming Experiment
Participants
57 native speakers of English (43 female, mean age 21 years,
range 18-46) with normal or corrected-to-normal vision par-
ticipated in the experiment for partial course credit.

Materials
Ninety monomorphemic English words were selected as tar-
get stimuli from the Massive Auditory Lexical Database
(MALD, Tucker et al., 2018). Each target word (e.g., pup)
was primed within-item in six conditions. The conditions
were the following: identity (e.g., pup), inflected (e.g., pups),
derived (e.g., puppy), opaque (e.g., pupal), stem-embedded
(e.g., pupil), and unrelated baseline control condition (e.g.,
fencing).

Additionally, 90 nonwords and 90 real words were added
to the item set as fillers. Nonword targets (e.g., sutt) followed
the phonotactics of English and were also selected from the
MALD database. Primes for nonword and real word fillers
were always real English words, consisting of the same six
condition types with the same proportions as for the real word
targets.

Design and procedure
The prime-target pairs were counterbalanced across six lists.
Each list contained 360 items. 90 experimental prime-target
trials, 90 unrelated prime-target filler trials, and 180 word-
prime and nonword trials. In the filler trials, prime and target
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pairs mimicked the six conditions in experimental list. Fillers
and nonword trials were the same across lists.

The experiment was carried out using the E-Prime experi-
mental software (Psychology Software Tools Inc.) and a SR-
BOX response box. All stimuli were presented in black 32-
point font Courier New letters on light gray background at the
centre of the computer screen.

Each trial began with a fixation cross (+) appearing in the
centre of the screen for 1000 ms, immediately followed by
a forward mask (##########) for 500 ms. After that, the
prime word appeared in lower case letters in the same loca-
tion for 50ms. The target word appeared in the same location
in upper case letters, and remained on the screen until the par-
ticipant pressed the “yes” or “no” button on the response box.
The participants were instructed to decide as accurately and
as fast as possible whether the string of letters was an exist-
ing word in English or not. Ten practice trials preceded the
experimental trials.

Prior to the main task, participants were asked to fill out a
language background questionnaire, where they were asked
to reflect on their English language skills and reading habits.
For instance, they were asked how often they read scholarly
or fictional literature; how they estimate their English vocab-
ulary size, and how fast they consider themselves as readers.

They were also asked to fill out a 60-item HEXACO
personality inventory questionnaire (Ashton & Lee, 2009),
which provided for each participant a separate score on each
of the six personality scales: honesty, emotionality, extrover-
sion, agreeableness, conscientiousness, and openness to ex-
perience. The whole procedure (questionnaires and lexical
decision task) took approximately 60 minutes to complete.

Analysis and Results
Prior to the analysis, practice trials, nonword trials and fillers
were removed from the dataset. Trials with response times
more than 1600 ms (1.1% of the data) as well as trials with
incorrect responses (6.2% of the data) were removed.

Frequencies for the primes and targets were determined us-
ing the Corpus of Contemporary American English (COCA,
Davies, 2010). Whole-word frequency (i.e., the token fre-
quency of pups, pups or puppy) was used for the analysis.
Frequency was log-transformed prior the analysis to reduce
the skewness of the distribution.

Affective ratings of valence, arousal, danger and useful-
ness for each target and prime were collected during a sep-
arate rating experiment (see Lõo et al., 2018). In total, 181
native speakers of English rated the experimental items of
the current study on an nine-point Likert-scale either on va-
lence, arousal, usefulness or danger scale (1- sad/not excit-
ing/not useful/not dangerous; 9 - happy/exciting/extremely
useful/extremely dangerous). Participants in the rating exper-
iment were different from the participants in the current ex-
periment. A rating score for each target and prime word was
calculated by taking the average score for each word across
all participants.

The statistical analysis was conducted using General-
ized Additive Mixed Models (GAMM, Wood, 2006; the R-
package mgcv). For visualization, we made use of the R-
package itsadug (van Rij, Baayen, Wieling, & van Rijn,
2016). We opted for GAMM analysis, because it does not as-
sume linearity between the predictor and response variables.

The response variable of interest was the reaction time of
masked priming lexical decision in milliseconds. We opted
to use raw reaction times because they followed a normal dis-
tribution. However, an analysis with the log-transformed re-
action times produced the same results. The main predictors
were the condition (identity - M, inflected - I, derived - D,
pseudo-complex - PC, stem-embedded - SE, baseline - BL),
as well as the log-transformed frequency and affective ratings
(valence, arousal, danger and usefulness) of the prime and
target words. Additionally, we were interested in the effects
of individual differences measures, we investigated whether
self-reported language knowledge and reading habits, as well
as personality had an effect on reaction times.

The output of the final GAMM-model is presented in Ta-
ble 1. The parametric part shows that participants were sig-
nificantly faster in identity (t=-4.90, p<0.00001), inflected
(t=-4.10, p<0.00001) and derived (t=-3.43, p=0.006) condi-
tions, whereas the two other conditions (pseudo-complex and
stem-embedded condition) were not significant compared to
the baseline condition.

Further, participants’ openness to new experience and
scholarly reading frequency affected reaction times. Reac-
tion times decreased linearly for the participants who scored
higher on the openness to experience scale compared to
participants who scored lower on the same scale (t=-2.23,
p=0.003). In return, reaction times were slower for partici-
pants who read more scholarly articles compared to partic-
ipants who read fewer scholarly articles (t=3.48, p=0.015).
There was neither a significant interaction between the con-
dition and the openness score, nor between the condition and
the scholarly reading score. Other self-reported language and
personality scores were not significant in the final model.

The first three lines of the non-parametric part of the model
output show nonlinear interactions between the prime and the
target frequency, between the prime and target arousal score
as well as between the prime and target usefulness score.
These effects are visualized in Figure 1. The yellow color
at the bottom left corner of the left panel shows that the re-
action times were the slowest when both the prime and target
were low-frequency words. However, the interaction between
the target and prime frequency seems to disappear when tar-
get and prime frequencies increase. This is indicated by the
blue color and wider contour lines at the top right corner of
the left panel in Figure 1.

The nonlinear interaction between the prime and target
arousal score is represented in the middle panel of Figure 1.
Reaction times were the fastest when the target word scored
high on the arousal scale and the prime word scored low on
the arousal scale as indicated by the blue color at the bottom
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Figure 1: Tensor product smooth for the interaction of prime and target word frequency, arousal and usefulness. Color coding
is used to represent model predictions, with yellow indicating slower reaction times, and blue representing faster reaction times

right corner of Figure 1.
Finally, the interaction between the prime and target word

usefulness is presented in the right panel of Figure 1. The
reaction times were the slowest when the prime was rated as
very useful but the target was not, as indicated by the yellow
color at the top left corner. Neither the target nor the prime va-
lence and danger scores were significant. Frequency, arousal
and usefulness scores did not interact with the condition.

The non-parametric part of the model output also in-
cluded by-target random intercepts and by-participants ran-
dom smooths for trial to account for the random variability
between the items and participants.

In summary, the GAMM-analysis showed significant prim-
ing effects for the identity, derived and inflected conditions,
but no priming for the pseudo-complex or stem-embedded
conditions. There was a significant interaction between prime
and target frequency, arousal and usefulness scores, but this
did not interact with the condition. Finally, we found signif-
icant effects of participants’ openness and scholarly reading,
however, these effects did not interact with the condition.

Discussion and Conclusion
The goal of the current study was to investigate English mor-
phological processing using masked priming. Some studies
have reported that words like talker and corner are at least
initially processed similarly (Rastle et al., 2004), while oth-
ers claim that this is not the case, in particular, when var-
ious lexical-distributional properties are taken into account
(Järvikivi & Pyykkönen, 2011; Lõo & Järvikivi, 2019; Milin

et al., 2017), as well as individual differences between partici-
pants (Schmidtke, Van Dyke, & Kuperman, 2017; Falkauskas
& Kuperman, 2015; Medeiros & Duñabeitia, 2016; Andrews
& Lo, 2013).

In line with the latter view, the present study reports prim-
ing effects for words with an existing morphological rela-
tionship (e.g., cats, puppy), but no effects of priming for
pseudo-complex words (e.g., corner). In fact, the process-
ing of pseudo-complex words did not differ at all from ei-
ther the stem-embedded condition (e.g., turnip) or the unre-
lated baseline condition. This supports findings from another
recent English priming study by Lõo and Järvikivi (2019),
where there were also no priming effects for pseudo-complex
condition, using different materials. Additionally, we showed
that the semantics of the complex words plays an important
role early on. Like in Lõo and Järvikivi (2019), frequency of
the complex word predicted processing costs; however, there
were no significant differences between pseudo-complex and
truly morphologically complex words in this respect.

Further, we investigated how affective ratings of complex
words affect morphological processing. In line with the pre-
vious research on compound processing (Kuperman, 2013),
we found effects of affective ratings for inflected and derived
words. The prime-target ratio of affective ratings influenced
the response times in masked priming, further challenging the
blind decomposition approach, where the properties of the
prime should not have an effect.

Interestingly, out of the four ratings scales (valence,
arousal, usefulness and danger), only arousal and useful-

2182



Table 1: Summary of the partial effects in GAMM fitted to masked priming lexical decision reaction times in milliseconds.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 694.18 86.89 7.99 < 0.0001
conditionD -31.94 9.31 -3.43 0.0006
conditionI -35.09 8.56 -4.10 < 0.0001
conditionM -42.82 8.73 -4.90 < 0.0001
conditionPC -2.17 8.19 -0.27 0.79
conditionSE 6.25 8.10 0.77 0.44
open.hexaco -49.86 22.35 -2.23 0.03
Scholarly.Reading 32.81 13.90 2.36 0.02
B. smooth terms edf Ref.df F-value p-value
te(TARGET.logfreq,Prime.logfreq) 3.80 4.22 3.93 0.003
te(TARGET.Arousal,Prime.Arousal) 3.03 3.05 3.48 0.015
te(TARGET.Usefulness,Prime.Usefulness) 3.68 4.16 3.74 0.004
s(Subject,Trial) 184.49 494.00 4.29 < 0.0001
s(TARGET) 47.37 86.00 1.24 < 0.0001

ness target-prime ratios had an effect. Kuperman (2013) re-
ported valence but not arousal effects in compound process-
ing. However, their study used a standard lexical decision
task, whereas the current study used masked priming lexi-
cal decision, tapping into earlier processing than the standard
lexical decision. Arousal and usefulness ratings may be tap-
ping into the internal state of the individual, thus are more
subconscious; whereas, valence ratings may require a more
conscious thought, and thus get activated later in time than
can be captured by a masked priming study.

In general, the effects of affective properties were not that
strong in the current study, and there may be different reasons
for this. First, in the current study, the derived and inflected
primes (e.g., puppy, pups) have similar meanings to the tar-
get (e.g., pup), so the affective polarities may have been very
similar (for example, the word puppy was as happy, excit-
ing, useful and dangerous as the word pup). Second, as the
design of the current study did not explicitly control for the
emotional affectivess of the stimuli, most of the stimuli were
neither very positive nor very negative, neither very useful
nor very useless, so there may not have been enough varia-
tion between the stimuli.

Finally, the current study also focused on the effects of in-
dividual differences in morphological processing. Interest-
ingly, they were again the same for truly complex and pseudo-
complex words. From the five personality measures (hon-
esty, emotionality, extroversion, conscientiousness, openness
to experience), only participants’ openness to new experience
had an effect on reaction times. More open participants were
faster than less open participants. Participants who are more
open to experience in general might be also more open to
tasks such as a lexical decision task. From the language back-
ground measures (self-reported vocabulary knowledge, read-
ing speed, scholarly reading and fictional reading frequency),
only scholarly reading had an effect on reaction times. Par-
ticipants who read more scholarly literature were slower than

participants who read less scholarly literature. This is in line
with the research showing that more experience with lan-
guage slows one down in various language tasks (Ramscar,
Hendrix, Shaoul, Milin, & Baayen, 2014).

Also this is important to note, however, that both the topic
of affective properties and individual differences in morpho-
logical processing are relatively new and thus, our findings
require further research.

To conclude, the processing of complex words, even in lan-
guages with a relative simple morphology, such as English,
seems to be much more complex than just a matter of mor-
phemic decomposition. The current study complements this
idea by showing that pseudo-complex and morphologically
complex words are indeed processed differently. We also
showed that both affective properties and individual differ-
ences influence English morphological processing; however,
the precise nature of these effects requires further research.
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P. A., & del Prado Martı́n, F. M. (2012). Semantic simi-
larity influences early morphological priming in serbian: A
challenge to form-then-meaning accounts of word recogni-
tion. Psychonomic bulletin & review, 19(4), 668–676.

Feldman, L. B., O’Connor, P. A., & Moscoso del Prado Mar-
tin, F. (2009). Early morphological processing is morpho-
semantic and not simply morpho-orthographic: evidence
from the masked priming paradigm. Psychonomic Bulletin
& Review, 16(4), 684–691.

Forster, K. (1998). The pros and cons of masked priming.
Journal of Psycholinguistic Research, 27(2), 203–233.

Järvikivi, J., & Pyykkönen, P. (2011). Sub-and supralexical
information in early phases of lexical access. Frontiers in
Psychology, 2.

John, O. P., & Srivastava, S. (1999). The big five trait taxon-
omy: History, measurement, and theoretical perspectives.
Handbook of personality: Theory and research, 2(1999),
102–138.

Kuperman, V. (2013). Accentuate the positive: Semantic
access in english compounds. Frontiers in psychology, 4.

Kuperman, V., Estes, Z., Brysbaert, M., & Warriner, A. B.
(2014). Emotion and language: valence and arousal af-
fect word recognition. Journal of Experimental Psychol-
ogy: General, 143(3), 1065.

Lázaro, M., Illera, V., & Sainz, J. (2016). The suffix priming
effect: Further evidence for an early morpho-orthographic
segmentation process independent of its semantic content.
The Quarterly Journal of Experimental Psychology, 69(1),
197–208.

Longtin, C., Segui, J., & Hallé, P. (2003). Morphologi-
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Abstract

Infants learn language by exposure to streams of speech pro-
duced by their caregivers. Early on, they manage to segment
word forms out of this continuous input, which is either di-
rectly addressed to them, or directed to other adults, thus over-
heard. It has been suggested that infant-directed speech is sim-
plified and could facilitate language learning. This study aimed
to investigate whether features such as utterance length, seg-
mentation entropy and lexical diversity could account for an
advantage in segmentability of infant-directed speech. A large
set of word segmentation algorithms was used on an ecolog-
ically valid corpus, consisting of 18 sets of recordings gath-
ered from French-learning infants aged 3-48 months. A se-
ries of textual analyses confirmed several simplicity features
of infant-, compared to adult-directed speech. A small seg-
mentation advantage was also documented, which could not
be attributed to any of those corpus features. Some particular-
ities of the data invite further research on more corpora.

Keywords: language acquisition; infant-directed speech;
computational modeling; word segmentation; unsuper-
vised learning

Introduction
Infants acquire language early on, building a vocabulary of
several hundred word forms by 11 months of life (Ngon et
al., 2013). Since most word forms do not appear in isolation
(Brent & Siskind, 2001), much previous work studies how
infants segment (i.e., pull out) forms from their caregivers’
running input. A close look at this input shows that it is not
homogeneous, but instead contains some speech addressed
to the infants themselves (infant-directed speech or IDS) and
some speech overheard by infants which is addressed to oth-
ers, including adults (adult-directed speech or ADS). These
two speech registers differ along many dimensions, including
some that may impact word segmentation.

Broadly, IDS has been claimed to present properties
that would facilitate language acquisition, with IDS be-
ing phonologically, syntactically, and semantically simpli-
fied (Soderstrom, 2007). Other characteristics are more rel-
evant to word segmentation. First, IDS may have a higher
proportion of single-word phrases (Brent & Siskind, 2001),
and phrases might be shorter in length (Newport, Gleit-
man, & Gleitman, 1977) than in ADS. In shorter phrases,

more words would occur at phrase edges, which should im-
prove segmentation: Phrase edges, easily perceptible, are
word boundaries provided “for free”. Indeed, infants may
be more successful at recognizing and segmenting phrase-
final words (E. Johnson, Seidl, & Tyler, 2014). Additionally,
shorter phrases entail that the set of possible segmentations
for each phrase is smaller, lowering segmentation ambiguity.
For instance, Fourtassi, Börschinger, Johnson, and Dupoux
(2013) showed that ADS might be more ambiguous to seg-
ment, when comparing an ADS to an IDS corpus. Second,
words may be shorter (Ma, Golinkoff, Houston, & Hirsh-
Pasek, 2011), which should mean that word, morphemes, and
syllable boundaries coincide more often and there are fewer
places to posit or miss positing a boundary. Third, there may
be more repetitions, therefore fewer hapaxes (words uttered
only once), and overall less lexical diversity (Soderstrom,
2007). Low lexical diversity means fewer target words need
to be found. There might be more cues to help segment out
frequently repeated words, than words that appear rarely or
once. Indeed, one computational modeling study found that
artificially reducing phrase length and increasing word repe-
tition in a corpus improved word segmentation with one word
segmentation model (Batchelder, 1997). Based on these hy-
potheses and previous work, we predict that the task of recov-
ering wordforms is easier in IDS than ADS.

Naturally, IDS features may not be the same across in-
fant ages. IDS addressed to very young infants may dif-
fer from that addressed to older infants, possibly resembling
ADS more as infants get older. For example, IDS features
may become less accentuated as the infant grows up; repe-
titions might decrease, utterance length and lexical diversity
increase with age (Henning, Striano, & Lieven, 2005; Soder-
strom, 2007). According to the hypotheses explained above,
IDS addressed to younger infants should be “easier” to seg-
ment than IDS to older infants.

In this paper, we aim to address the question of whether
it is easier to segment wordforms from IDS than ADS, using
multiple word segmentation models, and taking into account
changes with infants’ age. In the next section, we review
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previous modeling work more thoroughly, before introducing
our own approach.

Previous studies
Some studies tested whether infants learn more from IDS
than ADS in an experimental situation. However, improve-
ments for IDS compared to ADS could be due to the fact
that infants pay more attention when they listen to IDS, and
thus learn more from it. This method cannot reveal whether,
above and beyond this attentional effect, there are intrinsic
in f ormational differences that affect segmentability. For-
tunately, there is a complementary method to approach this
question with a colder eye, which builds on computational
models of word segmentation. The input to such word seg-
mentation models is usually speech transcriptions, in order to
control for differences such as attention capture and acoustic
implementation. Segmentation models used for this method
are based on findings by experimental studies that infants
might make use of statistical cues. Computational models
of infant word segmentation can be grouped into two con-
ceptual classes: lexical and sublexical. Sublexical models
segment based on local cues, such as transitional probabili-
ties and phonotactics. Lexical models build a lexicon based
on recurrent chunks of speech identified with Bayesian prob-
abilities or by memorizing isolated words.

Little previous modeling work has specifically compared
IDS and ADS. Four representative studies are summarized in
Table 1. For these four studies, improved segmentation per-
formance was found for IDS than ADS: 15% for Batchelder
(2002), 5-8% for Fourtassi et al. (2013), 2-10% for Ludusan,
Mazuka, Bernard, Cristia, and Dupoux (2017) and 3-10% for
Daland and Pierrehumbert (2011). A recent paper critiqued
this previous work as follows (Cristia, Dupoux, Ratner, &
Soderstrom, 2018). IDS mainly involved caregivers address-
ing their infants during predefined tasks (e.g., a play session
in the laboratory) or in short visits to the child’s home. In the
former case, by constraining the context, the structure and
lexicon of caregivers might have been limited and adapted to
that task. And in both cases, being observed could affect care-
givers’ behavior, who might produce less spontaneous and
more formal speech. Moreover, ADS was mostly addressed
to an unfamiliar person (experimenter). These conversations
are likely more formal than ADS between caregivers in daily
life, and could increase the complexity of the speech. As
shown by E. Johnson, Lahey, Ernestus, and Cutler (2013),
IDS differs more from ADS to unfamiliar adults, than ADS
to familiar adults. This could result in increased qualitative
differences between registers and probably overestimated dif-
ferences in segmentability.

Indeed, Cristia et al. (2018) recently documented a consid-
erably smaller IDS advantage when modeling segmentation
on an ecological English IDS and ADS corpus. The corpus
consisted of transcriptions from excerpts of day-long record-
ings; thus infants’ linguistic environment was recorded while
they were going on with their daily lives, resulting in realistic
IDS and ADS. Across a wide range of lexical and sublexical

models, the IDS advantage ranged from -2% to 8%, with only
3 models providing evidence of an advantage greater than a
measure of error. Interestingly, the difference between regis-
ters was further reduced when IDS was matched to ADS in
corpus length.

The present study
We contribute to this literature in three main ways. First, we
specifically describe IDS-ADS differences using various cor-
pus description tools. We compare the registers in: phrase
length, word length, ratio of single word phrases, intrinsic
segmentation ambiguity (using segmentation entropy), lex-
ical diversity (using Moving Average Type-Token Ratio –
MATTR–, so as to control for corpus size), and ratio of ha-
paxes. Some, but not all of these features have been sepa-
rately looked at in previous studies (i.e. Fourtassi et al., 2013
measured segmentation ambiguity and Batchelder, 1997 mea-
sured word and phrase length, repetitiveness). This is the first
study to systematically investigate a plurality of language fea-
tures on the same IDS-ADS corpus. We test whether IDS
is simpler than ADS, as far as these features are concerned.
Moreover, following Batchelder (2002), we further investi-
gate whether variation in these features can actually account
for the segmentability of a register.

Second, IDS corpora coming from a wide infant age range
have been used by previous research, but IDS addressed to
infants of different ages were, most of the times, merged to-
gether. One exception is Batchelder (1997), who documented
that IDS to younger children (13-18 months) produced more
successful results than IDS to older children (22-25 months),
whereas ADS results from mothers of younger versus older
infants didn’t differ. In this paper, we specifically ask whether
some IDS features interact with infant age and whether seg-
mentability of IDS might actually be affected by age. For
that, we include IDS and ADS from a wide age range, and fur-
ther investigate possible correlations between features, seg-
mentation scores, and infant age.

Third, we follow Cristia et al. (2018) by analyzing a com-
pletely ecological child-centered corpus, based on excerpts
of day-long recordings, and which thus contains natural ADS
and IDS as the child hears over the course of the day. The
results of our study would provide more evidence to the ques-
tion whether differences in home-recorded IDS and ADS are
smaller than those between less controlled IDS-ADS con-
trasts (see Table 1).

In addition to these three main contributions, we extend the
range of languages studied to European French.

Methods
We segmented IDS and ADS of each infant separately.
Scripts used for corpus preprocessing, phonologization, and
segmentation as well as results and supplementary mate-
rial are available at https://osf.io/6vwse/?view only=
0bc4f6c0e23040cbbb92e26d414d4a7a. Statistical analyses
were carried out in R (R Core Team, 2013).
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Table 1: Summary of design in previous modeling studies comparing IDS and ADS segmentation. In Language(s), Eng stands
for English, Jap for Japanese, Span for Spanish. Under IDS and ADS, we describe the corpora. The specific corpora used
were: R= RIKEN; H= Hamasaki; C= Spontaneous Japanese; BR= Bernstein Ratner; B= Buckeye; D= Deuchar & Clark 1992,
Marrero; M= Miyata 1995; novel= Moon and the Sixpense; short stories were written by Alejandro Dolina (MacWhinney,
1996). Under model, we note the type of model used: lex for lexical and sublex for sublexical.

Study Language(s) Infant age(s) IDS ADS model
Batchelder (2002) Eng. 1;1-1;9 play session (BR) novel 1 lex
Batchelder (2002) Span. 1;8-8;0 CHILDES (D) short story 1 lex
Batchelder (2002) Jap. 1;3-3;1 home play session (M) science book 1 lex
Daland et al. (2011) Eng. various all CHILDES interview (B) 1 sublex
Fourtassi et al. (2013) Eng. 1;1-1;9 play session (BR) interview (B) 1 lex
Fourtassi et al. (2013) Jap. 2;2-3;7 play session (H) lecture (C) 1 lex
Ludusan et al. (2017) Jap. 1;6-2;0 play session (R) lecture (C) 1 lex, 3 sublex

Corpus
Sixteen typically developing native French-speaking infants
(eight girls, eight boys; ages 3-48 months, M=20, SD=13),
whose families were highly educated, were included. Two of
the infants were recorded at two different ages. Each child
was recorded 10-16 hours per day, three days a week, in their
natural environments. The original recordings are available
online (Canault, Le Normand, Foudil, Loundon, & Thai-Van,
2016a, 2016b; VanDam et al., 2016). Next, 18 10-min sam-
ples, totaling 3 hours per child (1 hour per day), were selected
for orthographic transcription by two native French speakers,
as detailed in Canault et al. (2016b). The main criteria for se-
lection reported was that a number of activities were sampled,
and that there be a high number of productions by the child
and the adult. For the present project, the transcriptions of
the first day for all infants were corrected by a native French
speaker, who made sure that the definition of utterance was
stable (and corrected any other errors, such as misattributions
or orthographic errors). The coder annotated whether an adult
caregiver’s utterance was directed to the target child, an adult,
or other, using content and context. Utterances addressed to
the target child constituted the IDS corpus and those directed
to an adult were the ADS corpus.

Pre-processing
Pre-processing was carried out using custom scripts
written mainly in bash and in python, available
from https://github.com/georgialoukatou/
French ADS IDS segmentation Lyon. All extraneous
codes (such as punctuation marks or “xxx”, the code indi-
cating that what was said could not be understood by the
transcriber) were removed, leaving only the orthographic
representation of the adults’ speech. The corpora were
phonologized with the French voice of the espeak TTS
system (Duddington, 2012), using the phonemizer wrapper
(Bernard, 2018), which further syllabifies according to the
Maximum Onset Principle.

Before segmentation, all spaces between words were re-
moved, leaving the input parsed into minimal units. The mini-

mal units were either phones or syllables. Both phonemes and
syllables were tested with all models. Utterance boundaries
were preserved as such, since they are supposedly salient
to infants (Shukla, White, & Aslin, 2011). This consti-
tutes the input to the model. After preprocessing, the 18
infant-directed corpora contained M=487 (SD 350) utter-
ances (range 84 to 1,172 utterances). The 18 adult-directed
corpora contained M=238 (SD 230) utterances (range 15 to
780 utterances).

For comparability with previous work, we evaluate the
models’ performance using lexical token F-scores, measured
by comparing the original version of the input (with spaces
between words) against the one returned by the model (with
spaces in the hypothesized breaks).

Segmentation
Both corpus description and segmentation were carried out
using the WordSeg package (Bernard et al., 2018), available
from https://github.com/bootphon/wordseg/. Due to
space limits, the algorithms are only briefly described here.
Full technical details can be found in https://wordseg
.readthedocs.io/. All algorithms are unsupervised, and
inspired in infant experimental work.

We used two representatives of the sublexical word seg-
mentation class contains, called DIBS and TP for short. The
Diphone Based Segmentation algorithm (DiBS; Daland &
Pierrehumbert, 2011) is based on the idea than a phoneme
sequence often spanning phrase boundaries would probably
span word breaks.

The Transitional Probabilities algorithm family (TP;
Saksida, Langus, & Nespor, 2017) is based on the concept
that syllable pairs with lower statistical coherence tend to
span word breaks. Forward TP (FTP) measures the fre-
quency of occurrence of the syllabic sequence AB given the
frequency of occurrence of the syllable A. Backward TP
(BTP) measures the frequency of occurrence of the syllabic
sequence AB given the frequency of occurrence of the syl-
lable B. The Relative versions (FTPr or BTPr) threshold TPs
against that of neighboring sequences. The Absolute versions
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Table 2: Paired t-tests measuring feature differences across
IDS and ADS. Word length is measured in phonemes. % 1-
w phrase stands for ratio of single word phrases. % hapaxes
stands for percent of hapaxes. IDS gives the mean values of
each feature on the IDS corpus, with standard deviation in
parentheses. ADS shows the mean values of each feature on
the ADS corpus with standard deviation in parentheses. The
window size for MATTR is 10 words. “p” gives the p-value
of the t-test.

Feature IDS ADS p
Word length 2.86 (.08) 2.80 (.11) .071
Phrase length 5.89 (.85) 6.73 (.86) *
% 1-w phrase .18 (.06) .13 (.05) **
Entropy .02 (.004) .03 (.01) .31
MATTR .89 (.03) .93 (.02) ***
% hapaxes .39 (.22) .48 (.27) ***

(FTPa or BTPa) instead threshold on the average of all TPs
over the sum of different syllable bigrams.

We used two representatives of the lexical class as well:
AG and PUDDLE. Adaptor Grammar (AG) uses the Pitman-
Yor process, a stochastic process of probability distribution
which prefers the reuse of frequently occurring rules versus
creating new ones to build a lexicon, then uses that lexicon to
parse the input (M. Johnson, Griffiths, & Goldwater, 2007).

Phonotactics from Utterances Determine Distributional
Lexical Elements (PUDDLE, Monaghan & Christiansen,
2010) treats each utterance as a lexical item, unless an al-
ready stored item is part of this utterance, and the remainders
are phonotactically legal. If so, it breaks up the utterance into
segments, and the segments would enter the lexicon as new
lexical items.

Finally, two baselines were included: Syll=Word treats
each syllable as a word and Utt=Word treats each utterance
as a word.

Results
We first investigated whether IDS is simpler than ADS in
terms of six corpus features that could affect word segmen-
tation, as described in the reasoning above. The results of
paired t-tests comparing the registers for each feature are in
Table 2, which shows that four out of six features fit our pre-
dictions.

We also noticed that IDS size corpus (M=487, SD=350 per
child) was significantly larger than the ADS one (M=238,
SD=230), based on a t-test with t(17)=2.63, p=0.02. This
may mean that these infants were exposed to more IDS than
ADS, similar to what Cristia et al. (2018) found for English.

The performance of all segmentation algorithms for both
registers is captured in Figure 1. IDS is easier to seg-
ment than ADS when points are above the dotted diago-
nal line. There was a small IDS advantage for most algo-
rithms, although some showed the opposite effect (DiBSs,

Figure 1: Token F-scores obtained by each algorithm for IDS
as function of that for ADS. The final “s” in the model’s name
means that the basic unit of the corpus was syllables (PUD-
DLWs, Utt=Words, Unit=Words, DiBSs, FTPas, FTPrs, BT-
Pas, BTPrs, AGs). The final “p” in the model’s name means
that the basic unit of the corpus was phones (PUDDLWp,
Utt=Wordp, Unit=Wordp, DiBSp, FTPap, FTPrp, BTPap,
BTPrp, AGp). Error bars show two standard deviations over
the 18 corpora.

Unit=Words, Unit=Wordp, FTPrp). We also observe that in
many cases the pseudo-confidence intervals cross the diag-
onal line, suggesting that performance difference is within
the range of error. Thus, only FTPrs, BTPrs, Utt=Wordp,
PUDDLEp and PUDDLEs showed a clear advantage of IDS.
We then tested for overall effects in a linear mixed effect re-
gression model (Bates, Mächler, Bolker, & Walker, 2015)
predicting token F-scores from register (IDS or ADS) as a
fixed effect, where subject and algorithm (AGs, AGp, DiBSs,
DiBSp...) were random effect variables. Register signifi-
cantly affected token F-scores (χ2(1)=50.87, p<.05, Type II
Anova), IDS having a performance advantage of .03 ± .004
(standard error).

Next, we tested whether this performance advantage was
due to one of the above-mentioned corpus properties. To see
whether performance differences were due to the artifactual
difference in corpus length, we also included the number of
utterances as a register feature. Thus, 7 new models, each in-
cluding one of the features as an additional fixed effect, were
fit. We then measured the significance of register and features
in the new models with a Type II Anova test (Fox & Weisberg,
2011).

If the advantage of IDS was entirely due to one feature,
then register would no longer be significant in these addi-
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Table 3: Corpus features predict segmentation scores, but do
not replace register. β feat stands for the estimated coefficient
of that feature; β rgstr for that of register in the new model
(which should be compared to 0.03 at the simple model). p
features shows whether feature was significant in new model.
p rgst shows whether register remained significant in the new
model. N. utts stands for number of utterances.

Feature Feature Register
Feature β p β p
Word length .02 .48 .03 ***
Phrase length .01 *** .04 ***
% 1-w phrase .06 .29 .03 ***
Entropy -1.58 *** .03 ***
MATTR .5 *** .05 ***
% hapaxes .03 .18 .03 ***
N. utts .00005 *** .02 ***

Table 4: Correlation tests (Spearman) of corpus features and
infant age for each register. “coef.” stands for correlation co-
efficient.% 1-w phrase stands for ratio of single word phrases.
% hapaxes is the ratio of hapaxes.

Feature IDS coef. ADS coef.
Word length .50* .06
Phrase length .34 -.56*
% 1-w phrase -.37 .12
Entropy -.50* .70**
TTR .44 -.37
% hapaxes .01 .30

tional analyses. Results (in Table 3) showed that phrase
length, segmentation entropy, MATTR, and corpus size ac-
counted for variance in the results, but no single feature ren-
dered register effects non-significant.

Next, we investigated whether IDS features change with
infant age, with IDS becoming more ADS like as infants age.
Spearman correlation tests between properties and infant age
for each register separately (Table 4) did not confirm our pre-
dictions: Only word length and entropy ( neither of which had
emerged as register properties on Table 2) correlated with age
in IDS; entropy and phrase length did so for ADS. We have
no plausible explanation for these effects.

Two infants were recorded twice at different ages, one at
31 and 38 months, the other at 32 and 40 months. Follow-
ing a recommendation from a reviewer, we inspected these
two infants as case studies. An inspection of IDS features
demonstrated that phrase length and % of 1-w phrases were
the only features having small changes with age, but only the
latter would change in the same direction for both infants, in-
creasing by 6% and 1% from the first to the second recording.
A few ADS features also changed slightly with age, such as
% of 1-w phrases, word length and entropy, but only phrase

length changed in the same direction for both infants, de-
creasing by 1.18 and 1.66 phonemes.

Finally, we created a new model predicting token F-scores
register (IDS or ADS) and infant age in months as fixed ef-
fects (and model and participant as random effects, as be-
fore), and their interaction. Both main effects and the in-
teraction were significant (Age χ2(1)=4.31, p<.05; Regis-
ter χ2(1)=53.14, p<.5; Age:register χ2(1)=28.81, p<.05). A
follow-up analysis separating the registers indicated that ADS
scores decreased by .002 ± .0005 (standard error) with age,
whereas there was no significant change with age for IDS.

Discussion
In this modeling study, we assessed whether there are in-
formational differences affecting word segmentation between
IDS and ADS drawn from the same ecological corpus. First,
we investigated whether this naturalistic corpus had IDS-
ADS differences in textual features that would make segmen-
tation easier in the former than the latter. We found most
features fit our predictions: Phrases were longer, there were
more single-word phrases, lexical diversity was lower, and
there were fewer hapaxes in IDS than ADS. No significant
effect was found for word length and ambiguity. This result
contributes to the growing literature documenting IDS fea-
tures, with the important advantage that current work draws
from fully ecological IDS and ADS.

Next, we investigated the segmentability of the corpora us-
ing a large set of both lexical and sublexical segmentation
models. Although scores varied a great deal across algo-
rithms and some algorithms showed the opposite effect, IDS
was overall slightly easier to segment than ADS. The mean
difference across registers (CDS minus ADS, in each algo-
rithm separately) was 3%, ranging from –4% to 10%. This
effect is smaller than that found in most previous studies, but
similar to the one reported by Cristia et al. (2018), who were
also drawing from a naturalistic IDS-ADS corpus. This is ev-
idence that previously documented IDS-ADS segmentability
differences (as in Table 1) are not representative of what in-
fants actually hear. It is important to note that corpus length
across registers was not matched in the present study for prac-
tical reasons, but, based on findings by Cristia et al. (2018),
we suspect that controling for corpus size would have reduced
the IDS advantage even further.

Next, we asked whether some of the above-mentioned tex-
tual features uniquely explained segmentability differences
across registers. Phrase length, segmentation entropy, and
repetitiveness explained significant variance in segmentation
scores, above and beyond the effects of register. However,
none of the features uniquely explained away the effect of the
register, which remained significant in all cases. This means
that register effects on segmentability cannot be reduced to
any one of these features. Since we only had 18 children’s
data, we could not fit a model with all 6 features at once for
fear of overfitting, but future work with higher power may be
able to assess whether these features jointly explain away reg-
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ister, or whether there are other textual features that we have
not yet considered.

Furthermore, Canault et al. (2016b)’s corpus allowed us to
address a question that has been seldom asked, namely IDS-
ADS differences across infant ages. Results of correlations
between textual features and age, and a regression model on
token F-scores did not support our prediction that IDS would
become more like ADS as children aged, and thus the IDS-
ADS segmentability gap would close. On the contrary, we
found that ADS scores dropped with child age. Although fur-
ther work is needed, we believe this mainly reflects the lower
availability of ADS in children’s environment as they age. In-
deed, replicating a pattern that had been documented in North
American English children (Bergelson et al., 2019), we found
the number of ADS utterances dropped for older, compared
to younger, children.

Before closing, we would like to acknowledge some lim-
itations of this work. Corpus size was overall small (which
may lead to inconsistencies in results; Bernard et al., 2018)
and, due to the work involved in collecting daylong record-
ings and annotating fully spontaneous speech, infant sample
size was 18 infants. Moreover, data scarcity was correlated
with registers and ages: While only 3 of the 18 IDS corpora
contained fewer than 100 utterances, 7 did for ADS, and 4
of those belonged to infants older than 31 months. A de-
crease of ADS quantities with infant age in such day-long
recordings has been documented in previous work on North
American English (Bergelson et al., 2019), so it may not be
an artifact of the current sample selection. Nonetheless, this
trend may entail that if we want to control corpus size, we
should over-sample ADS at later ages. However, that may
not be necessary for our data, where corpus size failed to ex-
plain away the register effect, even though it accounted for
some variance beyond registers.

Last, speech transcriptions were used for this study, in an
attempt to look for intrinsic informational differences across
registers. However, some of the most salient features of IDS
are speech-related, such as prosody or intonation and acous-
tic properties, which might also predict ease of segmenta-
tion. Although there is a small literature looking at word seg-
mentation from speech, including comparing IDS and ADS
(Ludusan, Seidl, Dupoux, & Cristia, 2015), this task remains
extremely challenging for computational modelers, with only
one open source model (instantiating a single segmentation
strategy) exists, which further limits the value of such a line
of research.

In sum, we identified several simplicity features more
prevalent in IDS than ADS drawn from an ecological French
corpus. We further found a small but significant IDS segmen-
tation advantage, contributing to a recurrent question on the
learnability properties of IDS. We showed that the IDS seg-
mentation advantage could not be explained away by any one
of those simplicity features, and its size changed with infant
age in unexpected directions.
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Abstract

Humans make plans with remarkable flexibility by leveraging symbolic representations. How are these representations
learned? We present a model that starts out with a language of low-level physical constraints and, by observing expert
demonstrations, builds up a library of high-level concepts that afford planning and action understanding. We demonstrate
its versatility through experiments inspired by developmental psychology literature.
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Abstract

We present a computational model of attentional capture in
humans. The model distinguishes between automatic mecha-
nisms that directly determine the focus of visual attention, and
deliberate mental actions an individual can perform to influ-
ence these mechanisms. The automatic mechanisms select an
object as the focus of attention and enhance its location and
features, so that nearby or similar objects are likely to be se-
lected in the future. The deliberate actions include engaging
with a selected object to further enhance its features, and re-
trieving a previously selected object from memory. By per-
forming these actions, the model is able to exert limited top-
down control over capture, increasing the probability that task-
relevant objects will be attended and irrelevant objects will be
ignored. To evaluate the model, we conduct a simulation of a
recent visual search study, demonstrating that the model can
account for three established factors that are known to influ-
ence capture.

Keywords: visual attention; visual search; computational
modeling

Introduction
What drives attentional capture? That is, when we view a
scene, why is our attention drawn to one object, and not to
another? This question is important because where we at-
tend determines what information we represent. Whether we
are reading a map, driving a car, or shopping at a store, we
can perform the task more efficiently if we attend to objects
that provide relevant information and ignore task-irrelevant
objects.

Much of the debate over attentional capture concerns the
role of top-down control (Folk, Remington, & Johnston,
1992; Müller, Reimann, & Krummenacher, 2003; Theeuwes,
Reimann, & Mortier, 2006). To what extent can humans de-
liberately manipulate our own mental states, such that task-
relevant objects are more likely to be attended? The evidence
suggests that in many cases, task-relevant objects draw atten-
tion not because of deliberate control, but because they are
similar to objects we have attended recently. For example, if
a task involves looking for red objects, the act of finding a
red object on previous trials will prime the viewer to find one
more easily on future trials (Maljkovic & Nakayama, 1994;
Theeuwes et al., 2006). However, in some cases participants
appear to be able to strategically tune their attentional systems
based on semantic information, such as a word describing the
color of the object they should find next (Leonard & Egeth,
2008; Belopolsky & Awh, 2016).

To better understand how top-down goals affect attentional
capture, it is helpful to model the specific mechanisms un-
derlying attention. We previously developed a model of
multiple-object tracking that relied on two attentional mech-
anisms: selection and enhancement (Lovett, Bridewell, &
Bello, 2017). Selection picks out an item for further pro-
cessing, and may be thought of as a generalized form of at-
tentional capture, whereas enhancement increases sensitivity
to stimuli at a particular location or with particular features.
These two mechanisms are closely interwoven: after an ob-
ject is selected, its location and features are enhanced, such
that objects at the same location or with similar visual fea-
tures are more likely to be selected in the future.

Here, we present a novel computational model that applies
the selection and enhancement mechanisms to a visual search
task, in which participants must find a blue or orange circle in
a field of distractor circles and judge the orientation of a line
inside it (Figure 1). Critically for the topic at hand, neither se-
lection nor enhancement is directly controlled in the model.
However, other deliberate actions can influence what gets en-
hanced, thereby biasing the model to select task-relevant ob-
jects. In particular, after an object is selected, if the object is
task-relevant then the model can engage with it. Engagement
is the act of maintaining focus on an object while reasoning
about its features, for example, judging the orientation of a
line inside an attended circle. Engagement leads to greater
enhancement of an object’s location and features, which sup-
ports sustained selection of that object but also causes objects
with similar features to be selected in the future.

In the model, engagement also causes the object’s repre-
sentation to be stored in long-term memory, from which it
can be retrieved at a later time. Thus, if the model later re-
ceives a cue, for example indicating that the next search target
will be orange, it can deliberately retrieve a representation
of a previously selected orange object from memory, allow-
ing that representation to be selected and engaged with, so
that orange objects are more likely to be selected.

In the following section, we describe three factors that af-
fect attentional capture, and we argue that our model, which
integrates selection and enhancement mechanisms with delib-
erate mental actions, can explain each factor. We then present
the model and describe an evaluation in which it simulates hu-
man performance on a search task. We close by considering
predictions of the model and directions for future research.
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Background
At least three factors govern which objects capture visual at-
tention when viewing a scene: physical salience, selection
history, and top-down goals (Awh, Belopolsky, & Theeuwes,
2012). Physical salience increases with the amount of con-
trast between an object and the rest of the scene, but de-
creases with the amount of contrast between the other objects
in a scene; for example, a red circle will be strongly salient
in a field of identical green squares (Duncan & Humphreys,
1989). Salience is determined by both local contrast (between
an object and its immediate surroundings) and global contrast
(between an object and the other objects throughout the visual
scene) (Nothdurft, 1993; Madison, Lleras, & Buetti, 2018).

Whereas salience is a property of the visual stimuli, selec-
tion history relates to the viewer’s mental state. An object
will tend to draw attention if it is visually similar to objects
that have been attended in the recent past. In search tasks,
this effect often manifests as intertrial priming, where a tar-
get is found more easily if its features remain constant from
one trial to the next (Maljkovic & Nakayama, 1994). Simi-
larly, a target is found more easily if it is in the same location
as a recently attended object (Folk et al., 1992).

Finally, top-down goals involve deliberate control over
what object captures attention. This effect is demonstrated
when viewers see a cue describing a target, rather than an
object similar to the target, and then are able to find the tar-
get more readily. A spatially descriptive cue might be an
arrow pointing to the region where the target will appear
(Posner, 1980), whereas a featurally descriptive cue might
be a word describing the target’s distinguishing feature (e.g.,
“red”) (Leonard & Egeth, 2008). The ability to use these cues
suggests the viewer is making an adjustment that causes ob-
jects that match the description to draw attention.

Recently, Belopolsky and Awh (2016) examined the com-
bined contributions of these three factors to attentional cap-
ture. They used a search task in which participants viewed
six colored circles, found a target circle that could be either
blue or orange, and reported whether the line inside the circle
was horizontal or vertical (Figure 1). To explore the effect
of salience, the colors of the distractor circles were varied:
on half the trials, all the distractors were green, resulting in a
salient target, whereas on the other half, the distractors were
all different colors, resulting in a nonsalient target. To ex-
plore the effect of top-down goals, each search trial was pre-
ceded by a verbal cue, either the word “blue” or “orange,”
that predicted the upcoming target’s color 80% of the time.
Finally, to explore the effect of selection history, performance
on repetition trials, where the target’s color was the same as
the color from the previous trial (e.g., the circle was orange
for two trials in a row), was contrasted with performance on
non-repetition trials.

Critically, in one study Belopolsky and Awh (2016) pre-
sented the search display for only 100 ms, after which the
lines within each circle were masked. This brief display time
has two major advantages: (1) there is no time to saccade to

Figure 1: Examples of visual search task with a nonsalient
target from Belopolsky and Awh (2016). The top row shows a
valid trial with an orange target (appears brownish), whereas
the bottom row shows an invalid trial with a blue target. The
blue circle is dotted for illustration purposes.

one of the circles, so eye movements cannot be a factor, and
(2) if the first circle attended by the participants is neither blue
nor orange, there is no time to look for another circle. Thus,
the authors were able to isolate attentional capture from the
separate task of assessing whether an attended object meets
the search criteria.

Figure 2 shows the experiment results. Accuracy increased
when the target was salient, when the cue was valid (e.g.,
the cue “orange” preceded an orange circle), or when a tar-
get color repeated, indicating that each of the three factors
contributed to attentional capture. In addition, there were nu-
merous interactions, notably, cue validity had a greater effect
when the target was nonsalient, target repetition had a greater
effect when the target was nonsalient, and there was a three-
way interaction among the factors. We propose that these
interactions are driven by a ceiling effect. As an example,
when a target is salient, there is a high likelihood of attending
to it during the critical 100 ms, and thus there is little room
for additional improvement if the cue is valid.
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Figure 2: Visual search results from Belopolsky and Awh
(2016). Error bars are ±1 SE.
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Selection and Enhancement
Both selection history and top-down goals may result from
an interaction between selection and enhancement. After an
object is selected, viewers show enhanced sensitivity to other
objects in the same location or with the same visual features
(Posner, 1980; Egly, Driver, & Rafal, 1994; Bichot, Rossi, &
Desimone, 2005). Enhancement manifests as both a greater
probability of selecting a stimulus among a field of distrac-
tors, and a shorter delay between stimulus onset and selection.
Neural evidence suggests enhancement is rooted in modula-
tion of the early visual cortex, for example, after a red object
is selected, neurons will respond more strongly to red stimuli
throughout the visual field (Somers, Dale, Seiffert, & Tootell,
1999; Saenz, Buracas, & Boynton, 2002).

Applying selection and enhancement to the Belopolsky and
Awh (2016) study (discussed previously), the effect of selec-
tion history can be readily explained: participants should se-
lect an orange circle more quickly if the previous target was
also orange because the recent selection would cause the or-
ange color to be enhanced. Explaining top-down goals re-
quires one further step—-after participants view a cue such
as the word “orange,” they must perform some mental action
that produces a representation of an orange object, so that the
representation can be selected and the color orange can be
enhanced. We propose that participants retrieve a previous
example of an orange object from memory. Such a retrieval
should be easy, as participants are regularly engaging with
orange circles throughout the experiment (note that one al-
ternate hypothesis might be that participants perform mental
imagery, imagining an orange circle).

In the next section, we describe a computational model
of human performance on the Belopolsky and Awh (2016)
search task.

Model
The model is based on three core claims about human atten-
tional processing.

1) Selection picks out a single focus of attention, such as
an object in the visual field. Objects are selected based on
their activation strength, which is a combination of physical
salience and spatial/featural enhancement. An object with a
higher activation strength is more likely to be selected from
among a field of other objects. In addition, an object with a
higher activation strength will be selected more quickly after
its onset.

2) Selecting an object enables constructing an object rep-
resentation that can be stored in visual short-term memory
(VSTM), which is a low-capacity store for representations of
recently selected objects (Treisman & Gelade, 1980; Vogel,
Woodman, & Luck, 2001). Once an object is represented in
VSTM, the viewer can decide to engage or disengage with
the object, depending on whether the object is task relevant.
Engagement makes an object’s features accessible for further
reasoning and supports storing the object’s representation in
long-term memory (LTM), where it will be available for re-

trieval at a later time. In addition, engagement causes an ob-
ject’s location and features to be enhanced, which helps to
maintain focus on the object, while also increasing the prob-
ability that nearby or similar objects will be selected. In con-
trast, disengaging from the object causes its location to be
suppressed, so that a different object can be selected.

3) A viewer can retrieve an object representation match-
ing a verbal cue (e.g., “orange”) from LTM. If this retrieved
object representation is selected, then it will be stored back in
VSTM, and its features can be enhanced.

Model Framework
The model is implemented in ARCADIA (Bridewell & Bello,
2016), a computational framework developed to explore the
relationships among attention, perception, cognition, and ac-
tion. ARCADIA models operate over a sequence of cycles.
On each cycle, a set of components work in parallel, pro-
cessing input and generating output. One output item is se-
lected as the focus of attention, and then the next cycle com-
mences, with components receiving as input the output from
other components on the previous cycle.

Models built in ARCADIA consist of (1) a set of compo-
nents; (2) an attentional strategy, which sets out the priorities
for which component’s output will be selected as the focus of
attention after each cycle, and (3) optionally, a set of stimulus-
response links, which indicate that once certain conditions are
met, an action should be taken.

Model Runthrough
Figure 3 presents the model’s components and illustrates the
flow of information. Thin arrows indicate information that
flows on every cycle, thick arrows indicate information that
flows only when it is selected as the focus of attention, and
arrows accompanied by words indicate information that flows
only when an action is taken. In the following sections, we
shall describe the components and the flow of information in
detail, using the search task in Figure 1 as a running example.
Note that the model is designed to run on stimuli identical
to those shown to humans, with one exception: because the
model lacks reading comprehension, the verbal cues “orange”
and “blue” are replaced with horizontal and vertical rectan-
gles, respectively. Thus, a horizontal rectangle indicates that
the next target will likely be orange.

Figure 3 also provides the model’s stimulus-response links,
which indicate the conditions under which the model should
engage with an object, retrieve an object representation
from memory, or respond by pressing a virtual button to
end a trial. Whereas many of the model’s components per-
form general-purpose visual processing and have been used
in other task models (Bridewell & Bello, 2016; Lovett et
al., 2017), the stimulus-response links encode task-specific
knowledge about when actions should be performed (e.g., a
horizontal rectangle indicates an orange object should be re-
trieved from memory). These actions provide a means for
the model to influence the selection and enhancement mech-
anisms, and thereby increase the likelihood of task-relevant
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Figure 3: Left: Flow of information between model components. Right: Stimulus-response links for the model.

objects being selected.
Returning to the model’s components, processing begins

with the Image Segmenter, which takes each frame from an
input video and segments it into regions representing possi-
ble objects. In the current example, each video begins with
a horizontal or vertical rectangle, so the component identifies
only one region of interest. Later, when there is a fixation cir-
cle surrounded by six larger circles, the component identifies
seven regions.

Regions of interest are quickly forgotten unless they are
selected as the focus of attention. To this end, components
known as highlighters suggest particular regions as candi-
dates for attention. In the present model, the Activation High-
lighter suggests a region if its combined salience and en-
hancement (discussed in greater detail later) exceeds a thresh-
old. In contrast, the Maintenance Highlighter suggests the re-
gion whose location matches the current focus of attention;
this component supports maintaining focus on an object over
time. Finally, the VSTM Highlighter suggests a region whose
location matches any object represented in VSTM; this com-
ponent supports returning focus to a recently selected object.
Note that the model’s attentional strategy gives the highest
priority to the Activation Highlighter and the lowest priority
to the VSTM Highlighter. This means the model will (1) fo-
cus on an object with a sufficiently high activation strength,
or if none have a sufficiently high strength, (2) maintain fo-
cus on the currently selected object, or if no current object is
selected, (3) return focus to a recently selected object.

In the visual search example, when only the fixation circle
is visible, it will be selected. When the six outer circles ap-
pear around the fixation circle, focus will be maintained on
the fixation circle until the activation strength of one of the
outer circles exceeds the threshold.

After a region is selected, the Object-File Binder constructs
an object representation describing what is found at that re-
gion, while at the same time the Object Locator records the
region’s location and begins tracking the object. The object
representation includes the object’s physical dimensions and
visual features (color, orientation, and brightness). In the cur-
rent example, the representation contains the necessary in-
formation for determining whether a rectangle is vertical or

horizontal, determining the color of a circle, or determining
whether the line inside a circle is horizontal or vertical.

After an object representation is constructed, the atten-
tional strategy prioritizes selecting it as the focus of attention,
so that it can be stored in VSTM (visual short-term memory)
which holds representations of the four most recently selected
objects. At this point, if the object is task-relevant (a blue
or orange target circle, or a vertical or horizontal rectangular
cue), the model’s stimulus-response links trigger an engage
action (Figure 3, right side). Engaging with an object causes
its representation to move into Working Memory, where it
is accessible to other components. In addition, engaging
causes the object’s location and features to be enhanced (in
the present model, the location is enhanced only when the
object is visible, and the only feature that can be enhanced is
color). For simplicity, if the model does not engage with an
object, then the model behaves as if it had disengaged with
the object: the object’s location is suppressed, which encour-
ages selection of other objects. Note that all enhancement and
suppression effects last only while the object is remembered
in VSTM.

In the model, Working Memory functions as a conduit be-
tween VSTM and LTM. After a representation is copied from
VSTM to Working Memory, it is stored in LTM, which has
a greater capacity than VSTM. Later, if the model performs
a retrieve action, an object representation is copied back
into Working Memory, where it can be selected and stored in
VSTM. The model’s stimulus-response links specify that it
should retrieve an orange object after engaging with a hori-
zontal rectangle, or retrieve a blue object after engaging with
a vertical rectangle.

In the visual search example, the interactions between
VSTM, Working Memory, and LTM give rise to effects of se-
lection history and top-down goals. Suppose two sequential
trials each involve an orange circle, and suppose the model
successfully selects the orange circle on the first trial. Begin-
ning with this first orange circle, the model will perform the
following sequence of selections:

1. Select the first orange circle and generate a response. This
ends the first trial.
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2. Select the rectangular cue at the beginning of the next trial.

3. Based on the cue, retrieve an object representation from
LTM and store it in Working Memory. Select this object
representation.

4. Select the fixation circle that precedes the critical 100 ms.

As each of these object or object representations is selected,
it will be stored in VSTM. Because VSTM has a capacity for
four objects representations, all four will remain in VSTM at
the beginning of the second trial’s critical 100 ms. Because
the circle from the previous trial is in VSTM, its color will be
enhanced, resulting in a selection history effect; and because
the circle retrieved from LTM is in VSTM, its color will be
enhanced, resulting in a top-down goal effect.

Finally, the Button Pusher is passed one of three responses:
“vertical” or “horizontal” if the model engages with a target
(blue or orange) circle and determines the orientation of its
inner line, or a “guess” response if the masks cover the circles
before the model engages with a target circle. The appearance
of the masks is detected by the Ensemble Change Detector,
which responds to large-scale changes to the image.

Overall, the model succeeds at the search task if it selects
and engages with the target circle during the 100 ms before
the masks appear, enabling it to generate the appropriate re-
sponse. It fails if either it selects the target circle after the
masks appear, in which case the response may be incorrect;
or it never selects the target circle, in which case it generates
a “guess” response.

Activation Highlighter
The Activation Highlighter integrates salience and enhance-
ment to determine each region’s activation strength. Salience
is computed via a novel algorithm based on Itti, Koch, and
Niebur’s (1998) classic computational approach. Operating
over the color, orientation, and brightness dimensions, the al-
gorithm computes local contrast throughout the image, and
then computes global contrast for each region of interest. A
region’s salience varies from 0 to 1, where 1 indicates the re-
gion strongly stands out on one dimension (e.g., its color is
unique, whereas the other regions all have similar colors), or
moderately stands out on multiple dimensions.

Spatial enhancement is computed based on whether the re-
gion overlaps the location of an object in VSTM. For simplic-
ity, we assign a score of 1 if it overlaps an enhanced object, -1
if it overlaps a suppressed object, and 0 if it does not overlap
an object.

Featural enhancement, currently computed only for color,
is based on the similarity between colors within a region and
colors of objects being enhanced. A region will receive a
score of 1 if it perfectly matches the colors of all enhanced
objects. Note that in some cases, two different colors may
be enhanced—for example, if the previous trial involved a
blue circle, but the model just retrieved an orange circle from
memory. In these cases, a region will receive a score based
on the average of its color match to the two enhanced objects.

To ensure some randomness, Gaussian noise is added to
the activation strength, according to the following formula:

Gaussian(gaussian-width)+weightsal ∗Salience +

(1−weightsal)∗0.5(Enhancementspace+Enhancement f eatures)

Finally, the Activation Highlighter computes the average
activation strength over the past five cycles and compares this
average to an activation-threshold to determine whether a re-
gion has a sufficiently high score to be selected. Averaging
over five cycles achieves the desired effect that objects with
more salience or enhancement will be selected more quickly,
as it will take fewer cycles after onset for the running average
to exceed activation-threshold.

Note that there are three free parameters: weightsal the
weight given to salience, relative to enhancement; gaussian-
width the width of the Gaussian noise; and activation-
threshold. For now, we set weightsal to 0.2 (meaning salience
receives one quarter the weight of enhancement), and we shall
use the simulation that follows to explore possible noise and
threshold values.

Evaluation
To simulate the Belopolsky and Awh (2016) search task, we
generated input videos that match the original study’s stim-
uli exactly, with two exceptions: (1) as discussed previously,
the verbal cues “orange” and “blue” were replaced with hori-
zontal and vertical rectangles; (2) some portions of each trial
were sped up to save processing time, but the critical 100 ms
display time went unchanged.

In the original experiment, 24 participants each viewed a
large number of practice trials, followed by 600 search tri-
als. For the simulation, five virtual participants each viewed
40 practice trials, followed by 600 search trials. Because the
virtual participants were all the same model, and they dif-
fered only in the particular trials they viewed, we combined
the 3000 (5× 600) results and analyzed by item. To reduce
variance, “guess” responses were treated as 0.5 correct.

We ran the simulation across a range of activation-
threshold and gaussian-width values. Figure 4 presents the
results with a low (0.04) or medium (0.11) threshold, and with
no or moderate (0.1) noise. Overall, it appears that a medium
threshold and some noise were needed to achieve human-like
performance; without these, the model performed at or near
ceiling for all salient targets. The rightmost graph in Fig-
ure 4 closely matches the human results (Figure 2, note that
the units are different), but a qualitative comparison suggests
that repetition provides a stronger benefit to the model than to
humans. In the model, repetition and valid cues provide sim-
ilar benefits, but perhaps the benefit from repetition should
be weaker because viewers stop engaging with a target circle
after a trial ends.

To examine the benefits of target salience, cue validity, and
repetition, we conducted an ANOVA for each simulation run.
These analyses confirmed that all three factors contributed
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Figure 4: Model simulation results. Error bars are ±1 SE.

significantly to accuracy (all ps < .05), and additionally found
that most interactions between factors were significant. As
we discussed when considering the human results, we be-
lieve these interactions are driven by a ceiling effect—note
that performance is at 100% for some conditions.

Conclusion
Our computational model is able to perform a visual search
task, while demonstrating how salience, selection history,
and top-down goals influence attentional capture. In par-
ticular, the acts of engaging with task-relevant objects and
retrieving previously selected objects influence which fea-
tures become enhanced, thereby causing relevant objects to
be selected more easily in the future.

Ultimately, the model suggests that humans possess only
limited top-down control over attentional capture. For ex-
ample, the model predicts that a verbal cue will be effective
only when viewers are able to act on it. Suppose that af-
ter many trials of the visual search experiment, viewers are
presented with a novel verbal cue, such as “red.” This cue
should provide little benefit because viewers have not been
engaging with red circles, and thus red circles are unavailable
for retrieval. In contrast, a novel visual cue, such as an image
of a red circle preceding the search trial, should provide an
immediate benefit because selecting the red circle causes its
features to be enhanced.

In developing this model, we drew inspiration from pre-
vious models of visual search and attentional capture. No-
tably, most models explain the influence of salience (Itti et
al., 1998), top-down goals (Wischnewski, Steil, Kehrer, &
Schneider, 2009), or both (Tsotsos, Kotseruba, & Wloka,
2016). We believe our model is unique in explaining the
influences of salience, top-down goals, and selection, while
making explicit claims about the limits of top-down control.

Moving forward, we plan to evaluate our model and the
parameters that have been calibrated on the present task by
simulating additional search tasks. These will include con-
junctive searches, in which there is benefit to enhancing mul-
tiple feature dimensions (color, orientation, curvature, etc)
in parallel (Wolfe, 2007). In addition, these will include
longer searches in which there is time to move the eyes. Eye
movement—which can be simulated in ARCADIA—is an-
other deliberate action that influences selection and enhance-
ment. Thus, viewers can optimize their search performance

through strategic control of their looking patterns (Pomplun,
Garaas, & Carrasco, 2013). By modeling the actions and
strategic decisions that affect attentional capture, we hope to
better understand how people can effectively extract impor-
tant, task-relevant information from the world around them.
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Abstract 

We report a first effort to model the solution of meaningful four-term 
visual analogies, by combining a machine-vision model (ResNet50-
A) that can classify pixel-level images into object categories, with a 
cognitive model (BART) that takes semantic representations of words 
as input and identifies semantic relations instantiated by a word pair. 
Each model achieves above-chance performance in selecting the best 
analogical option from a set of four. However, combining the visual 
and the semantic models increases analogical performance above the 
level achieved by either model alone. The contribution of vision to 
reasoning thus may extend beyond simply generating verbal 
representations from images. These findings provide a proof of 
concept that a comprehensive model can solve semantically-rich 
analogies from pixel-level inputs.  

Keywords: analogy; relations; learning; machine vision; word 
embeddings 

Introduction 
In everyday life, humans continually perceive the world and 
interpret it in terms of meaningful objects and events. The 
representations extracted by perception are elaborated into 
semantic representations that can be communicated by 
language and further transformed by reasoning processes. The 
“holy grail” of cognitive science is to develop integrated 
theories that link perception to language and higher cognition. 
A natural testbed for developing such integrated theories is the 
task of reasoning by analogy from meaningful visual inputs. 
Here we report a first effort to develop a comprehensive model 
of the solution of visual analogies, by combining a model that 
can translate pixel-level inputs into verbal captions with a 
model that can translate semantic vectors for words into 
coherent patterns of semantic relations. 
 Figure 1 depicts an example of the analogies on which we 
focus. This problem is one of a set of 18 developed by 
Krawzcyk et al. (2008), some of which were adapted from an 
earlier set created by Goranson (2002), hence dubbed the 
Goranson Analogy Test (GAT). The upper row presents a 
pictorial problem in the form A:B :: C:?. The task is to select 
the best analogical completion from among a set of four 

options shown in the bottom row. For this example, the 
analogical solution based on matching relations is to choose 
the pie (wine is made from grapes, as pie is made from 
pumpkin). The three distractors include one that is 
semantically related to the C term but fails to match the A:B 
relation (witch), one that is visually similar but also fails to 
match A:B (basketball), and one that is simply unrelated 
(books). Critically, the analogical solution cannot in any 
obvious way be derived from visual information alone, 
because the core relation is semantic/functional rather than 
visual. For example, the fact that wine is made from grapes is 
not depicted in the visual input; rather, it must be retrieved 
from semantic memory. Thus, vision is necessary but not 
sufficient to reliably solve such semantically-rich picture 
analogies. 
 The GAT was originally developed as a tool to evaluate the 
impact of neuropsychological disorders. Krawczyk et al. 
(2008) found that frontal and temporal patients were impaired 
to varying degrees, notably showing an elevated tendency to 
choose the semantic or perceptual distractors. Age-matched 
controls (approximately age 60) achieved about 98% accuracy 
even in the presence of similar distractors. 

Figure 1. Example of a 4-term pictorial analogy with four 

alternatives (from Krawzcyk et al., 2008).  
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 Here we focus on the most fundamental question: how can 
such pictorial analogy problems be solved at all? On the face 
of it, the process begins with the human visual system 
operating on pixel-level inputs of the images in the problem to 
extract a verbal description and/or semantic categorization of 
the objects. Reasoning processes must use these object 
descriptions to determine the relation(s) linking paired objects. 
Based on these relational representations, the reasoner must 
then assess the degree of relational match between A:B and the 
alternative completions for C, finally choosing the option that 
provides the best match.  
 Despite decades of progress in developing computational 
models of visual perception, language processing, and 
analogical reasoning, no model has tackled the full range of 
processing required to solve meaningful visual analogies such 
as the GAT problems. Recent advances in machine vision have 
led to very significant progress in the recognition of objects 
from pixel-level representations (Krizhevsky, Sutskever & 
Hinton, 2012; Semonvan & Zisserman, 2015), including the 
automatic generation of verbal captions (Farhadi et. al., 2010; 
Mao et. al., 2016; Krishna et. al., 2016). However, artificial-
intelligence (AI) models have been less successful in 
transforming visual inputs into semantic representations of 
relations between objects. AI models of visual analogy have 
generally focused on problems that can be solved on the basis 
of simple visual features, such as color and shape (Reed et. al., 
2015; Sadeghi, Zitnick & Farhadi, 2015). In cognitive science, 
most analogy models have simply assumed high-level 
representations of complex propositions (usually hand-coded), 
without dealing with the problem of how these representations 
could be generated by perceptual processes. Lovett and Forbus 
(2017) describe a model that applies analogical reasoning to 
solve Ravens Progressive Matrices problems, which are a form 
of visual analogies based on transformations of geometrical 
shapes. However, the inputs provided to the model are high-
level perceptual descriptions, rather than a matrix of pixels; 
and the Ravens test is entirely formal, devoid of any links to 
semantic knowledge. With important exceptions (e.g., 
Doumas, Hummel, & Sandhofer, 2008), analogy models have 
generally set aside the basic problem of how semantic relations 
could be learned from non-relational inputs. 
 Here we describe two computational models that together 
provide an approximate account of the entire process that may 
underlie solution of GAT problems. One model, ResNet50-A, 
aims to solve the picture analogies using purely visual 
information, while also generating verbal captions. The other, 
BART, aims to solve the same analogies based solely on 
verbal descriptions of the images. We further show that the 
analogy assessment derived by ResNet50-A using just visual 
information not only provides potential verbal inputs to 
BART, but also adds independent visual information that 
increases solution accuracy. We will first describe the 
operation of each of the two models, and then the results 
obtained by using them both separately and jointly. 
 
 
 

 
 
Figure 2. Example of a 4-term pictorial analogy with four 
alternatives, and corresponding descriptions verbally 
presented to patients (from Krawzcyk et al., 2008).  

GAT Dataset 

The GAT dataset includes 18 picture analogies, each consisted 
of 7 images: the three images in the question, A, B, and C, and 
the four images for alternative D terms. All images are line 
drawings or clip art images. Each image was captured in the 
size of 140x140 pixels. The GAT dataset included a total of 
126 images that fall into 118 distinct object categories. A 
verbal caption describing each image was used by Krawczyk 
et al. (2008) in their neuropsychological study; these captions 
were adopted as canonical verbal descriptions of each image 
for the semantic model, BART. Figure 2 shows a second 
example, along with approximations of the corresponding 
verbal descriptions used by Krawczyk et al. (2008). Note that 
in the neuropsychological study, the accompanying labels 
were presented orally by the experimenter, rather than in 
written form. 

ResNet: From Pixels to Object Classification 
Background 
Deep convolutional neural networks (Krizhevsky, Sutskever, 
& Hinton, 2012; Simonyan & Zisserman, 2015) have led to a 
series of breakthroughs for a broad range of computer vision 
tasks. The network depth is of crucial importance. Recent 
work with deeper networks has exposed a degradation 
problem: as network depth increases, accuracy reaches a 
plateau, and then degrades rapidly as network depth increases 
further. ResNet (He, Zhang, Ren, & Sun, 2016) addresses the 
degradation problem by introducing a framework termed deep 
residual learning. ResNet fits a residual mapping, realized by 
a feedforward neural network with identity shortcut 
connections. Using this method, ResNet can be efficiently 
trained with as many as 1000 layers. Because of its compelling 
performance levels, ResNet has quickly emerged as one of the 
leading architectures for a wide range of tasks in computer 
vision. Here we adopt ResNet50 (the basic architecture with 
50 layers) as a state-of-the-art approach to identifying and 
captioning the objects in GAT analogies. We then augment the 
model to create ResNet50-A (where the “A” stands for 
“Analogy”) by adding a decision procedure to generate 
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potential analogical solutions based solely on visual 
information in the images. 
 
Training Dataset 
The GAT images are line drawings (as are most images used 
in picture analogy tests that have been developed for 
psychological research or cognitive assessments). Machine 
vision models are typically trained on photo-realistic images, 
and require additional training with line drawings in order to 
classify them. In order to provide suitable training for 
ResNet50, we created a database of clip art images that were 
similar to GAT images, but not identical to them. This dataset, 
termed the ClipArt dataset, includes the 118 object categories 
used in the GAT visual analogy problems. To create the 
ClipArt dataset, we queried Google Image Search using the 
“Search by image” function, uploading the corresponding 
GAT image and entering a phrase formed by concatenating the 
category label and the words “clip art”. (For some categories, 
we visually checked the result and decided to replace “clip art” 
by “drawing”, “sketch”, or “cartoon”.) We downloaded 200 
images for each category and manually removed those that 
were duplicates or clearly wrong. Each category in the 
resulting ClipArt dataset was represented by 70-166 images. 
The images were then processed into gray scale and padded 
with zero on short edges to fit a 1:1 aspect ratio. 

For each category, we randomly selected 50 images for 
training, and held the rest images for test, resulting in a total 
of 5900 training images and 5501 test images. Figure 3 
juxtaposes a GAT image (left) with a ClipArt image (right) 
from the same category. To ensure that the model was able to 
generalize its visual recognition performance, the GAT dataset 
was only used to guide construction of the ClipArt dataset; the 
GAT images themselves were not used to train ResNet50. 
 
Training 
We implemented ResNet50 using Pytorch on a single TitanX 
GPU. The training task was image classification by 
minimizing the cross-entropy loss. The model was pretrained 
on the ImageNet dataset, and then fine-tuned on our ClipArt 
dataset for 200 epochs. Batch size was set equal to 120 and 
learning rate started at 0.01, followed by cosine annealing. For 
optimization, SGD optimizer was used with momentum = 0.9, 
weight decay = 0.0001. To prevent overfitting, small random 
image transformations (e.g., rotation, translation, scaling) 
were added to the input images. The model achieved a high 
performance level on the ClipArt test set, achieving 0.883 for 
top-1 accuracy (i.e., the correct object category label being 
identified as the first choice of the model), and 0.973 for top-
5 accuracy (i.e., the correct object category label being 
identified as one of the top five choices of the model). When 
tested on the GAT images for the visual analogy problems, the 
model achieved 0.833 for top-1 accuracy and 0.984 for top-5 
accuracy. 
 

 
Figure 3. Example images. In each row, the first image is from 
the GAT dataset, while the remaining images are from the 
ClipArt dataset. Top row: images with label “electric mixer”; 
bottom row: images with label “book”. 

Analogical Inference 
We extended ResNet50 to form ResNet50-A by adding a 
simple computation to derive analogy predictions from the 
model. We input each GAT image into the neural network and 
extracted the penultimate feature vector (the vector 
immediately prior to the output layer). This vector of length 
2048 was used as the representation of the image. 
Mathematically, this transformation can be written as: 𝒇 =
𝐹(𝑰; 𝜃), where 𝑰 is the input image, 𝐹 is the function specified 
by the neural network and parametrized by 𝜃, and 𝒇 ∈ 𝑅  
is the resulting feature vector. Thus, for each analogy question, 
we transfer images 𝑰 , 𝑰 , 𝑰 , 𝑰 , 𝑰 , 𝑰 , 𝑰  into feature 
vectors 𝒇 , 𝒇 , 𝒇 , 𝒇 , 𝒇 , 𝒇 , 𝒇 , respectively. 

A decision for an analogy problem in ResNet50-A is derived 
by selecting the best 𝐷 ∈  {𝐷 , 𝐷 , 𝐷 , 𝐷 }  such that the 
relation from A to B holds for C to D. To measure how similar 
the projection from 𝒇  to 𝒇  is to the projection from 𝒇  to 
𝒇 , we adopted a generic formulation based on cosine 
distances of the difference vectors. The same approach has 
been used in the Word2vec model (Zhila et al., 2013). The 
preferred answer 𝐷 is defined as the D image that generates 
minimum cosine distance between difference vectors: 

 
𝐷 = arg min

 ∈ { , , , }
cos (𝒇 − 𝒇 , 𝒇 − 𝒇 ) 

 
Note that this procedure for solving a visual analogy is more 

sophisticated than simply choosing the 𝐷 most similar to C, 
since the selection focuses on matching the visual relation 
between the A:B and C:D image pairs. 

For the GAT problems, this purely visual model achieved 
44% accuracy in selecting the correct D term. Its other choices 
were distributed across the three distractors (11%, 17% and 
28% probabilities of choosing semantic distractors, visual 
distractors, and unrelated distractors, respectively). Since 
chance accuracy would be 25%, the purely visual analogy 
model achieved analogical accuracy well above chance 
(although well short of the level achieved by neurotypical 
human adults). 
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BART: From Verbal Semantics to Relations 
The BART model (Bayesian Analogy with Relational 
Transformations) takes as inputs semantic vectors 
representing word meanings and uses supervised learning to 
acquire representations of semantic relations. The model was 
originally applied to learning comparatives (e.g., larger, 
smarter; Lu, Chen & Holyoak, 2012), but has recently been 
generalized to acquire an extremely wide range of semantic 
relations (e.g., synonym, antonym, cause-effect; Lu, Wu & 
Holyoak, 2019). For the present project, the inputs to the 
BART model were word embedding for individual words, 
each embedding consisting of 300-dimension vectors with 
continuous-valued features. The word embeddings were 
obtained by training a deep-learning model, Word2vec 
(Mikolov et al., 2013; Le & Mikolov, 2014) on a large text 
corpus (Google News). BART takes as inputs word pairs 
instantiating a relation, where each pair is represented by the 
concatenation of the Word2vec vector for each individual 
word. For example, a vector formed by concatenating the 
individual vectors for love and hate would constitute a positive 
example of the antonymy relation. The same word pair might 
also serve as a negative example of the category:instance 
relation.  
 
Training Dataset 
For the present project, we trained BART by combining two 
datasets of semantic relations. First, the SemEval-2012 Task 2 
dataset (Jurgens et al., 2012) was used to teach BART the 
representations for 79 abstract semantic relations. This dataset 
is based on a taxonomy of semantic relations and includes 10 
general types (e.g., class inclusion, similar, contrast, cause-
purpose). The dataset includes 3215 word pairs, with 35~48 
pairs for each of the 79 relations. The second dataset, 
developed by Popov, Hristova, and Royce (2017), includes 
some specific and concrete relations (e.g., the relation 
constitution with examples brick:house, thread:cloth; the 
relation cover with examples such as house:roof; and the 
relation boundary with examples such as wall:room). This 
dataset includes 58 specific relations drawn from ten general 
categories of relations. Two relations with inadequate numbers 
of examples were removed. The remaining 56 relations 
included 12~25 word pairs as examples for each relation. 
 
Training 
The BART model consists of a three-stage process to learn a 
broad range of semantic relations (Lu, Wu & Holyoak, 2019). 
In its first stage, BART exploits the heuristic that features 
playing similar functional roles will tend to occupy similar 
ranks in an ordering of differences between paired words. 
BART uses the difference ranking operations to generate 
augmented feature by partially align important features. In the 
second stage, BART selects a subset of important features. In 
the third stage, BART adopts Bayesian learning and uses the 
selected features of word pairs 𝐟 in training examples to 
estimate weights distributions 𝐰 for representing a particular 
relation 𝑅 by applying Bayes rule as: 

𝑃(𝐰|𝐟𝒔, 𝑅) ∝ 𝑃(𝑅|𝐟𝒔, 𝐰)𝑃(𝐰).             (1) 

 

Figure 4. Model predictions of human data for relation 
typicality in Popov et al. (2017) dataset: Correlations between 
human generation frequencies and model predictions for 10 
relation types for BART (after training with 10 positive 
examples of each relation) and for the baseline Word2vec 
model. 
 

After learning, BART calculates the probability of a word 
pair instantiating a relation. An important aspect of both the 
Jurgens et al. (2012) and the Popov et al. (2017) norms is that 
in each set, the word pairs instantiating each relation form a 
typicality ordering established by human judgments. As 
reported in Lu et. al. (2019), BART achieved high rank-order 
correlations between human typicality ratings and predicted 
probabilities derived from the model for the abstract relations 
in the Jurgens et al. dataset. Across all 79 individual relations, 
the model’s mean Spearman correlation with the human 
ordering was .81 (range from .65 to .91). The performance of 
BART considerably exceeded the mean correlation of .34 
achieved using Word2vec itself as a baseline. 

For the Popov et al. (2017) dataset, which includes more 
specific/concrete relations, BART was trained with just 10 
word pairs as positive examples of each relation. As shown in 
Figure 4, BART achieved higher correlations with human 
typicality as indexed by generation frequencies (mean r = .59) 
than did the Word2vec model (mean r = .19).   
 
Analogical Inference 
To solve 4-term verbal analogy problems, BART forms a 
distributed representation of the specific relation between each 
word pair in a problem. BART uses its pool of learned 
relations to create a more refined representation of the 
relation(s) between two paired words. The posterior 
probabilities calculated for all known relations form a relation 
vector, with each element indicating how likely a word pair 
instantiates a specific relation. Hence, the result of this 
operation is to create a distributed representation of the 
relation(s) between two words, with the original semantic 
features being projected into a transformed space that can be 
used to assess relation probabilities. 
 For analogical reasoning, BART had available 79 relations 
derived by training on the Jurgens et al. (2012) norms, plus 56 
relations derived by training on the Popov et al. (2017) norms.  
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Figure 5. Proportion of responses for GAT problems for which 
the model’s selection was the analogical option (correct), the 
semantic distractor, the visual distractor, and the unrelated 
option. Besides ResNet50-A and BART, we also report results 
obtained using Word2vec, and the integrated model (i.e., 
ResNet50-A combined with BART).  
 
Of the latter, six relations showed weak correlations with 
human typicality ratings, indicating BART had failed to learn 
them adequately from the small number of available examples.  
Further examinations of the training sets for these six relations 
revealed that a substantial number of word pairs either 
included ambiguities or were otherwise questionable as 
instances of the relation. Accordingly, these six relations were 
dropped, leaving 50 relations from the Popov et al. set to be 
included in the relational representations, for a total of 129 
learned relations. 

Because BART creates relations structured by distinct roles, 
the model can generate the converse of any learned relation in 
a rule-based fashion (without additional training). For 
example, having learned the relation category:instance, 
BART can directly generate the converse relation 
instance:category. By applying converse formation to all 
trained relations, BART doubled its pool of relations, so that a 
total set of 258 semantic relations were available to solve GAT 
analogy problems.  
 To apply the BART model to GAT problems, the input was 
the verbal captions for images provided in the study by 
Krawczyk et al. (2008). Considered as a comprehensive 
model, this makes the link between ResNet50 and BART only 
approximate: although ResNet50 achieves high accuracy in 
generating the target captions, its performance is still less than 
perfect. 
 We were also faced with the problem that for many GAT 
images the optimal caption is a multi-word phrase (e.g., gas 
pump, woman sewing). To obtain semantic vectors for phrases 
that were not included in the Word2vec dictionary, we 
sometimes substituted one-word near-synonyms for which a 
vector was available. When that was not feasible, we used a 
simple averaging method, forming a vector for a phrase by 
averaging the vectors for its content words (cf. Kintsch, 2001).  
 For any pair of semantic vectors, BART uses its learned 
weights to calculate the posterior probability that the pair 
instantiates each relation in the repertoire of the model. The 
vector of length 258 formed by these posterior probabilities 

provides a distributed representation of the specific relation 
between the two expressions in the pair. Similarly to the 
procedure we followed to enable ResNet50-A to solve visual 
analogies, BART’s preferred answer 𝐷  is that which 
minimizes the cosine distance between the A:B relation and 
the relation formed by C paired with each available option. 

For the GAT problems, the BART model achieved 67% 
accuracy in choosing the correct D term; other choice 
probabilities were 11%, 11% and 1% to choose semantic 
distractors, visual distractors, and unrelated distractors, 
respectively (see Figure 5). To provide a baseline semantic 
model, the performance of Word2vec (Mikolov et al., 2013), 
which does not learn specific semantic relations, can be 
compared with the performance of BART. The Word2Vec 
model achieved 50% accuracy in choosing the correct D term; 
other choice probabilities were 11%, 17% and 22% to choose 
semantic distractors, visual distractors, and unrelated 
distractors, respectively. 

Integration of Visual and Semantic Models 
Finally, we examined the performance of an integrated model 
of solving pictorial analogies, formed by combining the 
measure of relational similarity obtained from the vision 
model (ResNet50-A) with the comparable measure obtained 
from the semantic model (BART). Two free parameters were 
introduced to create the integrated model. 
 We first transformed the vectors used by each model to put 
them on a common scale. The relational similarity measure 
from the visual model is based on difference vectors of visual 
features derived from the penultimate layer of ResNet50-A. 
These difference vectors take values in the range of -8 to 8. In 
contrast, the BART model forms relation vectors using 
posterior probabilities within the range [0 1]. To place the two 
vectors on a similar scale, we introduced a nonlinear 
transformation with an exponential function for the visual 
difference features 𝑣 as exp (𝛼𝑣) with a scale parameter, set 
at 𝛼 = 2. Cosine distances based on these transformed visual 
difference vectors were used to compute relational distance 
using the visual module: 

𝐷 = cos (exp (𝜶(𝒇 − 𝒇 )), exp (𝜶(𝒇 − 𝒇 ))). 
The relational similarity measure derived from the semantic 

module, 𝐷 , was calculated by directly using BART as 
described in the preceding section. The final relational 
distance measure was a weighted average of the measures 
from the visual and semantic modules, 𝐷 =  𝜆𝐷 + (1 −
𝜆)𝐷 , with the weight set as 𝜆 =  .3.  
Figure 5 presents a summary of the results for solving GAT 
analogy problems based on the visual-only model (ResNet50-
A), two semantic models (Word2Vec and BART), and the 
integrated model based relational distance measures from both 
visual (ResNet50-A) and semantic (BART) models. The 
integrated model achieved the highest accuracy (78%) in 
solving GAT analogy problems; other choice probabilities 
were 6%, 11% and 6% to choose semantic distractors, visual 
distractors, and unrelated distractors, respectively. 

We explored the space of parameter values, and found that 
performance of the integrated model was quite robust. In 
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general, the basic results were the same for a broad range of 
parameter values for 𝛼, as long as the value of 𝜆 was less than 
.5, so that the final decision was primarily driven by the 
semantic module, based on BART.  

Discussion 
The present paper provides a proof-of-concept that vision, 
language, and reasoning can be integrated to create a 
comprehensive computational model of how humans or 
machines might solve meaningful visual analogies. Here our 
focus has been on a vision module (ResNet50-A) that can 
generate verbal captions for line drawings, combined with a 
semantic module (BART) that takes word embeddings based 
on verbal captions and generates representations of semantic 
relations. Each model includes a decision procedure for 
assessing the similarity of relations between objects/words and 
selecting the best analogical completion from among a set of 
alternatives. The vision module alone achieves above-chance 
analogical performance on the GAT problems (picture 
analogies in A:B :: C:? format); the semantic module alone is 
more successful; and an integration of the two modules (biased 
to emphasize semantics, but also influenced directly by vision) 
is yet more successful, achieving 78% accuracy. 
 Perhaps the most surprising finding from our computational 
experiments is that the vision module alone was able to 
achieve above-chance accuracy in selecting the analogical 
completion, even though the critical relation is 
semantic/functional. Despite some shortcomings of visual 
deep learning models (Baker, Lu, Erlikhman & Kellman, 
2018), the features in the later layers may capture parallels 
involving visual context (e.g., the fact that airplanes and eagles 
both cooccur with sky in many natural images, analogous to 
the fact that ships and fish both cooccur with water in natural 
images). Apparently, for some GAT problems, the similarity 
of the visual difference between the A:B pair to that between 
the C:D options is at least weakly correlated with the semantic 
relations that define the analogical answer. Moreover, the 
visual module continues to add useful information on top of 
that provided by the semantic module. Thus, vision may play 
two important functions in solving picture analogies: 
generating verbal captions that in turn feed the semantic 
module, and directly providing visual correlates of semantic 
relations. 

The present project is only a first step toward the “holy 
grail” of a unified model connecting perception to thinking. 
The performance of the integrative model falls short of the 
high accuracy level achieved by healthy human adults not 
under time pressure (Krawcyzk et al., 2008). A number of 
incremental improvements are worth pursuing. ResNet50 
might benefit from additional training on line drawings. Its 
accuracy in captioning might also be improved by making use 
of contextual information (e.g., the presence of a pumpkin as 
the C term in Figure 1 might aid in recognizing the pie). If the 
captioning accuracy of the visual module could be improved, 
its output could be directly passed to BART (rather than 
allowing BART direct access to optimal captions). 
Furthermore, future investigations need to explore how to 

combine visual and semantic knowledge to solve generative 
tasks in analogical reasoning (Chen, Lu & Holyoak, 2017).  

Deeper developments would include adopting more 
sophisticated techniques for translating multi-word captions 
into semantic vectors, and eventually dealing with structured 
text descriptions of analogical scenes (Richland, Morrison, & 
Holyoak, 2006). Perhaps most intriguing is the possibility of 
creating hybridized visuosemantic representations that would 
allow perception to meld with meaning. 
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Abstract 

Research has consistently demonstrated that people treat 

digital technology-based environments such as VR as if they 

were real. This is consistent with neural reuse and predictive 

processing theories. Neural circuits that have developed to 

perform real world actions are reused when performing tasks 

in computer mediated environments. The current research 

investigates some of the factors that could support users in 

leveraging their existing real world representations. A 

reasonable hypothesis is that users are more likely to emulate 

existing real world processing if technological artifacts are 

congruent with their experiential basis. This work investigates 

the perceived cues of task risks, movement realism and 

effector realism in performing actions. Effector design is 

manipulated (gesturing, wand, vs. knife), and participants cut 

a vegetable in a simulated environment. Participants evoked 

real world sensory motor contingency when technological 

artifacts are congruent with their experiential basis. 

Keywords: embodied cognition; risk perception; 

computer mediated learning; danger avoidance; 

effector; controller 

Introduction 

Increasingly technological systems have begun to develop 

new interactive styles that leverage the richness of humans’ 

real world interactions. For example, systems using low 

cost full body motion tracking, such as Kinect, have been 

made available. There is also a breakthrough in eye gaze 

based interactive system such as LC technologies’ eye gaze 

edge tracking. Because of this departure from WIMP 

interfaces, a significant question arises as to whether and 

how gestural interactions, or in some cases intention driven 

touchless interactions, can evoke representations that are 

similar enough to perceiving and enacting actions in the 

real world in order to train up responses and habits that 

would be able to later get deployed in real world practices. 

If not, what differences might there be? 

A myriad of theoretical approaches have been proposed to 

guide the design of systems that support users embodying 

themselves in the environment and participating in the 

interactions meaningfully. One of the central themes of this 

embodied interactive movement is to encourage the 

alignment between the representations being constructed for 

the digital world and the relevant experiential basis, making 

digital artifacts part of the background in the formation of 

representations instead of being in the foreground (Dourish, 

2001; Hornecker, 2011; Ishii, 2008; Jacob, et al., 2008; Lu, 

Harter, Kosito & Kotturu, 2014; Slater, 2009). By 

judiciously re-representing the key elements in physical 

reality, as well as tapping into visual-perceptual cues, such 

digital-physical systems create a new interface interaction 

paradigm that leverages existing embodied proprioceptive 

abilities and motor skills we all develop and employ in the 

real world. This movement is consistent with insights from 

embodied and grounded cognitive science (Kirsh & David, 

2013).  

Recent views of embodied cognition are exploring the high 

level neural mechanisms that may be critical to our 

embodied cognitive abilities.  For example, views of 

cognition as being hierarchical predictive machinery, where 

higher level layers predict activity of lower layers, and the 

lower layers send feedback in the form of error signals of 

the predictions have been proposed (Clark, 2013; Anderson, 

Richardson, & Chemero, 2012; Barrett & Simmons, 2015). 

These predicative theories suggest that more abstract 

concepts and higher level abilities, such as keeping track of 

goal states, are built up through the testing and refining of 

predictive mechanisms.  The predictions and error signals 

are fundamentally bidirectional, higher levels generate 

predictions of the neural patterns of activity of lower layers, 

and mismatches generate error signals that are propagated 

back up the hierarchy which can be used to refine the 

predictive machinery.   

This brain as active predictive machine view suggests that 

the sensory repertoire gathered from past experiences and 

the current sensory/perceptual inputs constrain the 

computation of probabilities that underlie neural 

representations.  Such predictive views of embodied 

cognition are especially relevant to understanding human 

performance in computer mediated environments. In a 

computer mediated environment, we use predictive 

machinery that is evolved and developed to work with other 

(usually real world) experiences in order to interact with the 

digital environment (Lu & Harter, 2016).   

The reuse and redeployment of neural circuits is expected 

(according to neural reuse theories) in order for perceptual 

predictions to be as efficient and accurate as possible in 

computer mediated environments (Anderson M. L., 2010).  

There are two mechanisms by which neural circuits are 

commonly reused, especially in the context of learning to 
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use a computer mediated environment for some task.  In 

one type of reuse, new types of higher-level prediction 

abstractions will be created to learn predictions of low-level 

circuitry that is essentially being used for the purpose it was 

originally developed for. For example, in order to interpret 

visual objects being depicted in a virtual reality, they are of 

course designed to be visually similar to their real world 

counterparts.  Another type of reuse is where low-level 

circuitry is put to a novel function by existing higher-level 

abstractions to cope with the differences in an unfamiliar 

computer mediated experience. For example, we may be 

experiencing a common task in a simulated environment, 

such as moving objects around to complete some goal, but 

our low-level motor actions needed in order to interact with 

the virtual world use some sort of input effector like a 

joystick rather than our own hands to perform the task. 

In cognition, this predictive machinery results in a tight 

coupling of what is available in the environment (such as 

the fidelity of the environment) and the sensory motor 

contingency that gets triggered in a user. Central to the 

argument in the current work is the bi-directionality of this 

coupling. For example, user’s movements can modify 

which aspects of the environment are attended to and 

reflexively tweak the run-time representations that are used 

for selecting the next action.  However, previous research 

has been inconclusive to this prediction and the existing 

research paradigms are not conducive to understanding 

these bi-directional interactions as they unfold.  In existing 

studies, researchers examined explicit game performance 

measures and player subjective reports including perceived 

mental workload, and did not look into real time processing 

measures (Freeman, et al., 2012; Reinhardt & Hurtienne, 

2018). In yet another study, video clips of transitive actions 

were examined and participants reported the habitual 

actions were perceived to be easier and more natural to 

understand (Grandhi, Joue, & Mittelberg, 2011).  

In recent work on immersive virtual reality, researchers 

have demonstrated the current state of the art in terms of 

providing tracking of handheld effectors in a typical head-

mounted display (HMD) virtual reality system (Pandey, 

Pidlypenskyi, Yang, & Kaeser-Chen, 2018). Tracking the 

position of the handheld effectors is of course important in 

theory in order to provide an immersive experience not only 

of seeing the environment, but of having your body (hands 

and arms) embodied and perceptible within the 

environment. This is relevant to our current study, as it 

shows what may be possible in virtual reality to enable 

embodying hand movements and interactions. For example, 

the reported image-based markerless 6 degrees of freedom 

tracking of handheld effectors demonstrated much more 

reliable tracking than current virtual reality systems can 

achieve without additional sensors embedded in the 

handheld effectors. In fact, though not discussed in this 

article, it would seem that this method could be applied 

equally well to tracking the user’s hands, even without 

holding a effector. In the research report, the authors 

showed that using machine learning and dual visual images, 

such a system can be trained to track and localize the 

handheld effectors with very good localization accuracy. 

To what extent can users perceive the avatars in extra 

personal space to be their own bodies?  This predictive 

machinery points to the importance of the visual motor 

correlations in embodying onto the avatar. For example, an 

illusory body ownership can be created over an invisible 

body via visual-motor synchronization (Kondo et al., 2018). 

While wearing a HMD, participants saw left and right white 

gloves and socks in front of them, at a distance of 2m, 

moved along in a virtual room.  The visual-motor 

synchronicity of hands and feet were adequate to create the 

illusion that the moving virtual gloves and socks were part 

of participant’s own body. This illustrates that humans are 

more fluid in integrating real and virtual environments than 

we thought previously. Are there some minimal or 

necessary conditions where users could blur the boundaries 

of real and virtual environments and perceive the actions of 

the avatar to be part of their extended personal space? For 

example, humans perceive their own mirror reflections to 

be part of their extra personal space. The question here is 

the extent to which the visual motor correlations impact 

users’ projecting themselves into the virtual environments 

and act as if they themselves would be impacted by the 

consequence of the actions. Given that users are shut off 

from the real world while using the HMD, there are a 

number of advantages in examining the integration of real 

and low-cost simulated environments. 

In this research, we look into real time processing measures 

as we manipulate an effector used by a participant in a 

simulated environment on a simulated task. We vary the 

effector to become more congruous with the real world tool 

they might use to do the same task.  In particular, we set up 

a simple task to cut objects with a knife, and test certain 

implicit task measures as users perform the task but with an 

empty hand,  vs. when holding a wand, vs. when holding a 

prop knife to interact with the simulated environment.  

Previous studies did not find realism in effectors resulted in 

significant differences in performance metrics, and 

occasionally reported some differences in subjective ratings 

(Freeman, et al., 2012; Reinhardt & Hurtienne, 2018). We 

think the explicit performance metrics and subjective 

evaluations of the user experiences could result from 

participants’ strategic decision making.  In the current 

study, we contrast the significant dimensional differences 

among effectors and make predictions as to whether there 

might be implicit differences in participants’ behavioral 

repertoire, which is less likely to be modulated explicitly. 

We will explore the following hypotheses. 

Physicality Hypothesis  
Given that the knife and the wand in our study are matched 

in terms of weight and length, the physical properties of 

device-based effector vs. open hand are significantly 

different. Thus the implicit task performance in terms of cut 
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location (i.e., the cut location index) will be expected to be 

different between device-based effector (knife or wand) vs. 

open hand gesturing. We do not make predictions in terms 

of total time on task. It is reasonable to think that it takes 

longer time to cut when holding an actual physical object. 

However, if holding a physical object primes an awareness 

of the risk, then it is possible that the total time on task will 

be longer.  

Risk Perception Hypothesis 
Given that the knife is the only effector that could trigger 

the perception of risk (Aneli, Borghi, & Nicoletti, 2012; 

Brogni, Caldwell, & Slater, 2011; Liu, Cao, Chen, & Wang, 

2017; Zhao, 2017), there would be significant differences in 

total time on task between the knife condition vs. the non-

knife conditions (wand, and open-hand). Also the 

trajectories people take in moving the effector may differ 

between these, for example by being less smooth.  

Method 
The low-cost desktop virtual environments we developed 

for the experiments reported here aim to emulate a 

stationary work area, where the avatar puppets the motions 

of the user’s arm in the real world, to allow the user to 

manipulate objects through the avatar’s actions. A typical 

example we have implemented is a kitchen food preparation 

area, where the user has control of one arm of the avatar in 

the virtual space to manipulate knives, bowls, food and 

other objects.  The user can have full control of the arm(s), 

and in more immersive versions can also control head gaze 

and direction.   

We use the hands-free capability of the Kinect to test 

different conditions of physical embodiment in a vegetable 

cutting task, where the user has a (prop) knife versus a 

wand or a tracked empty hand when controlling an avatar 

with a virtual knife in the virtual environment.  The Kinect 

device provides position information of the user’s hand in 

real space, which is transmitted to the running Blender 

program as a set of three position coordinates.  We have 

developed the framework to gather this positioning 

information reported by the Kinect, and then transmit them 

to a running Blender simulation.    We recorded the effector 

position in pixels every 10 ms.  

Participants  

There were 53 undergraduate students recruited from a 

State University in the United States (Mean age = 24 years), 

of which 57% were female and 43% were male. In the data 

reported below, 2 participants’ data were trimmed. 

Participants did not report previous exposure to such a task.  

Experimental Design  

We used an effector (knife condition, wand condition, vs. 

open hand condition) between subjects design. The weight 

and length of the wand were matched with those of the prop 

knife. Participants were randomly assigned to each of the 

experimental conditions.  

Procedure The height of the monitor was positioned such 

that the location of the eyes and head of the avatar in the 

environment was consistent with the location of the human 

participant’s eyes and head in the real world.  The food 

preparation station was positioned right above the waist of a 

user of average height. 

Once participants were successfully calibrated in Kinect, 

they went through a phase familiarizing themselves with 

Kinect. For the experimental trial, participants were given 

the following instructions: (1) they would see a cucumber 

being cut; (2) kitchen bell tone would signal their turn to 

make a cut; (3) make the cut where they desire.  

Participants saw the avatar cut the cucumber, however, they 

were not told where to cut exactly. As indicated in Figure 1, 

the length of the cucumber that remained to be cut was not 

significantly longer than the previous cuts made by the 

avatar. The idea is that how close the participant cut to the 

avatar’s left hand fingertip would provide an indication of 

the extent to which participant treated the action as real 

(i.e., the temporary blurring the boundary of the real and 

situated environments). In addition, an experimenter 

indicated the appropriate starting position to facilitate 

accurate Kinect tracking.  

 

Figure 1. The cut location index is measured in blender 

pixel units, the distance from the avatars left hand holding 

the vegetable in the current task, to where the actual cut 

occurs indicated by the subject’s actions in the experiment. 

Results 
We computed the following measures: (a) the cut location 

index, which is the distance in pixel coordinates from the 

participant cut locations to the finger tip of the avatar left 

hand in the computer mediated environment; and (b) the 

total task time, which was the total time from when the 

kitchen bell tone occurred indicating that it was the 

participant’s turn,  to when the participant moved the knife 

in the virtual environment in such a way that it indicated a 

cut should occur on the vegetable and the action to cut the 

vegetable was completed.  In Figure 1, we depict the cut 

location index measure (in blender virtual environment 

pixel units).  The measurement indicated in the figure was 

taken as the actual distance in 3 dimensions from the tip of 

the avatars fingertip, to the tip of the location where the 

cucumber cut location began on the vegetable being cut in 
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the experiment. The higher the value the cut location index 

is, the less risk there is to being injured.  

 

Figure 2. The cut location index scatter plot.  Distance (in 

blender units) of the cut from the avatars hand vs. total task 

time when cut was made, for the 3 experimental conditions. 

In Figure 2, we visualize the results of the cut location 

index measure together with the time to task measure.  In 

this figure, we indicate the 3 different conditions (open 

hand, holding a prop knife and wand).  Notice that for the 

knife condition especially subjects take the longest to 

complete the cut the closer the cut they are attempting to 

perform is to the avatar’s left hand (which might result in 

potential injury, at a distance of 0.0 or less from the hand).  

Interestingly as well, all subjects who actually caused an 

injury to the hand, i.e., cuts that actually went into the 

avatars finger, were in the most incongruous condition, 

where the user in reality had an empty hand, but were 

controlling an avatar wielding a knife in the virtual 

environment. In general cuts that were more accurate and 

closer to the hand (without actually injuring the hand) 

usually took the most amount of time to make. 

In Figure 3, we show the average cut location index for 

participants in each condition, along with 95% confidence 

intervals.  The planned contrast  showed that participants 

cut significantly closer to the fingertip when gesturing open 

hand than holding an effector, t (48) = 2.61, p = 0.012. This 

is consistent with the physicality hypothesis. Also of note, 

open hand performance on the cut location index showed 

the closest location index (e.g. cuts that were closest to the 

finger).   

In Figure 4 we summarize the total task time measure.  The 

planned contrast showed that participants used significantly 

longer time to cut with a knife than the other two non-knife 

forms, t (48) = 2.06, p = 0.045. This is consistent with the 

risk perception hypothesis.  So while time to perform the 

cutting task with knives was significantly slower than the 

non-knife conditions.  Users in the open hand condition 

might seem to be closest to the avatar’s left hand fingertip,  

but they were significantly more likely to actually cause 

injuries to the avatar hand in this condition. 

 

Figure 3. Summary of the cut location index measure.  

Mean cut locations are shown with whiskers indicating 95% 

confidence interval limits of the means. 

 

Figure 4. Summary of total task time measure.  Figure 

indicates mean total task time for the three experimental 

conditions, with 95% confidence interval shown. 

Conclusion 
The experiment showed that effector congruence in the 

simulated environment does have some significant effects 

on task performance.  Participants are more likely to treat 

the task as they would in the real world when the effector 

they use is the most realistic, and most in line with existing 

neural circuitry that would typically be employed to 

accomplish the task.  For example, users were much less 

likely to cause injury to the virtual hand, when they were 

holding an object in their hand.  We interpret this to mean 

that existing neural circuits and predictive machinery are 

more likely to be invoked in these more congruous 

conditions.  Thus caution and appropriate location of the 

virtual knife in space were more likely to be achieved in 

order not to injure the virtual avatar.  The most cautious 

behavior, in terms of time taken on the task, occurs when 
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holding a prop knife to manipulate the virtual environment.  

People using the knife took longer than people using a 

wand or not holding a prop. 

What constitutes better performance when performing 

common food preparation using a knife?  Speed and 

accuracy, as well as safety are all factors we would identify 

as important in separating novice level from expert level 

kitchen workers.  Professional chefs are probably able to 

exceed on all three metrics, cutting quickly and accurately, 

but rarely if ever causing injury to themselves when using 

their dangerous tools. 

We have done some analysis on the planning and execution 

of the task as indicated in the motor coordination measures 

of our participants in this simulated task.  For example, in 

Figure 5 we show an analysis of the smoothness (or its 

absence of jerkiness) of the actual trajectories of the avatars 

hands in the virtual environment being controlled by the 

subjects hand movements through the Kinect effector.  We 

have broken down the trajectories into 5 segments, and used 

the third time derivative (Hogan, 1984) to measure the 

smoothness of their trajectories.  The whiskers represent 

95% confidence intervals of the smoothness measure for 

each of the 5 trajectory segments.  Knife performance 

differed significantly on this smoothness measure, 

especially in the middle part of the motion of the virtual 

knife on the task.  These motion analysis measures show 

how different participants are treating the task when using 

the more congruent effector. 

 

Figure 5. Measure of smoothness of subject’s motion of the 

knife in the virtual environment, broken up into 5 equal 

length segments.  Whiskers indicate 95% confidence 

interval on the smoothness measure. 

Unlike the previous studies, the current results speak to the 

importance of looking into real time task planning and 

execution and showcase a paradigm in observing 

movements in developing embodied design (Fdili Alaoui, et 

al., 2015). The equivalence on the performance measures 

does not necessarily speak to the ongoing differences in the 

users’ minds. Let us draw an analogy. When people use a 

sharp vs a dull knife to prepare food, people would take 

more time and be more cautious with the sharp knife, but 

this does not mean people would slice into their finger tips 

or would not be able to use the full available length of the 

food being prepared.  A simpler view of the effector risk 

perception hypothesis is that users would produce different 

vegetable cuts while using different effectors. The 

implication of this simpler view is that slight differences in 

effector or other aspects of the environments would lead to 

significant differences in action outcome. Such a simplified 

view is in effect inconsistent with the functional 

redeployment theory of cognition. It is also inconsistent 

with the finding in virtual reality that people treat the virtual 

environment as if it were real even though they know it is 

not real (Bailenson, 2018).  

The paradigm developed in the current study shows 

potential to examine how the bi-directional interactions of 

changes in simulated environments influence subsequent 

user actions and vice versa as they unfold in real time 

(Dawley & Dede, 2014). Through systematic comparison, 

the current study give insight into what critical ingredients 

of intuitive touchless interactions should involve 

(Chattopadhyay & Debaleena, 2015; Gillies & Marco, 

2016). When the congruency between the effector in the 

virtual environments and the tool used in the real world 

tasks supports the low-level visual motor contingency, users 

are more likely to incorporate the extra personal space into 

their behavioral repertoire.   

Predictive views of embodied cognition that take into 

account how neural circuits are likely to be reused when 

experiencing a simulated environment are a rich conceptual 

framework to better understand how to improve immersion 

and learning outcomes when training in simulated 

environments. This theory could address a number of 

thorny issues. For example, why environments with 

minimal realism can still trigger the experience of 

immersion and why often environments with varying 

degrees of realism do not get rated differently when it 

comes to the subjective reports of user interaction 

experience.  A system that provides less support to align 

with real world sensory motor contingencies, the more 

perceptual prediction errors will be generated along the way 

and the more hierarchical adjustments will have to be made 

to compensate for errors. This would lead to the greater 

probability of errors on the task and less satisfaction as 

reflected in the subjective reports of user experience.  
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Abstract

We propose a cognitively plausible method for representing
and querying spatial relationships in a neural architecture. This
technique employs a fractional binding operator that captures
continuous spatial information in spatial semantic pointers
(SSPs). We propose a model that takes an image with several
objects, parses the image into an SSP memory representation,
and answers queries about the objects. We demonstrate that
our model allows us to not only store and extract objects and
their spatial information, but also perform queries based on lo-
cation and in relation to other objects. We show that we can
query images with 2, 3, and 4 objects with relative spatial lo-
cations. We also show that the model qualitatively reproduces
Kosslyn’s famous map experiment.

Keywords: Semantic Pointer Architecture; spatial represen-
tation; spatial memory; spatial relations; fractional binding;
continuous spaces; cognitively plausible representation

Introduction
Capturing spatial reasoning has been a long-standing and dif-
ficult challenge when using artificial neural network mod-
els (Haldekar et al., 2017). Nevertheless, spatial cognition
has long been studied in cognitive science (Kosslyn, 1980).
Often, such research has led to proposals in which mental rep-
resentations of space are continuous (Kosslyn, 1984). These
representations are thus manipulated like physical images:
shifting them, scanning over them, extracting spatial relations
from them – effectively treating mental representations of im-
ages somewhat like physical maps. While there have been
vigorous debates on the empirical adequacy of such propos-
als (Pylyshyn, 1973), here we explore the practicalities of im-
plementing mental manipulations of this variety in compact
and efficient representations that lend themselves to imple-
mentation in neural networks.

We approach this problem by using an architecture that de-
ploys fractional binding to construct spatial semantic point-
ers (SSPs). We demonstrate that our binding architecture al-
lows us to not only store and extract objects and their loca-
tions, but also perform mental queries to find objects based
on location and in relation to other objects. It is, in particu-
lar, the ability to query such representations regarding spatial
relations that we believe makes this a promising architecture
for capturing many human mental image manipulation behav-
iors. The ability to perform such queries relies on the fact that
these representations are continuous, as proposed by Koss-
lyn and others. The specific goal of this paper is to describe
and simulate a cognitively plausible architecture that captures
core qualitative features of spatial reasoning.

Sample MNIST Digits Image

Figure 1: MNIST digits placed randomly in a 120x120 space.
Given a query of: “8” and “up and right”, the correct response
is either: “3” or “4”.

We begin by specifying our experimental design, which fo-
cuses on asking relational questions about a represented im-
age. We then describe the spatial representation we use, dis-
cuss its properties, and note its natural affinity for implemen-
tation in spiking neural networks. After this we describe how
regions are represented to allow for spatial relation queries.
Then, we describe each of the elements of our architecture, as
well as how they are integrated in the final system. We sub-
sequently present results showing the accuracy of assessing
spatial relations in a spatial working memory task. We also
use this same representation to reproduce the main feature of
Kosslyn’s famous map experiment: reaction time scaling lin-
early with spatial distance. Finally, we discuss our findings
and identify future work.

Experimental design
Our first experiment adopts a task similar to that proposed by
Weiss et al. (2016). Specifically, we construct a set of ex-
ample images to perform queries on by selecting batches of
digits from the MNIST database and placing them at random
locations on a 120x120 image. We choose between 2 and 4
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digits to include in a given image. We then generate queries
automatically by randomly selecting a target digit and com-
puting its relative direction from another randomly selected
query digit. For this experiment, we limited the query direc-
tion to 4 possible quadrants: up and left, up and right, down
and left, down and right. Given the query digit and direction,
we expect the response to be one of the target digits (if there
are multiple such digits, then either one is marked correct).
For instance, in Figure 1 we show an example randomly gen-
erated image, for which we might query “What is up and to
the right of the 8?” A response of either “3” or “4” would be
marked correct.

For this experiment, we normalized the coordinates of the
digits in the 120×120 pixel image to a continuous 10x10
space, specifically the intervals x ∈ [−5,5] and y ∈ [−5,5],
before encoding them in a memory through our model vi-
sual system. Given our chosen representation, this range was
found to provide a good trade-off between accuracy and pre-
cision.

We also performed a second experiment, similar to the
visual-spatial map experiment by Kosslyn et al. (1978). Koss-
lyn’s map experiment recorded the time that it takes for a
subject to scan from one location to another in memory, and
demonstrated that closer objects are typically reached faster.
For our experiment, we used a memory of several digits
placed randomly, and scanned from a queried starting object
to the queried ending object.

Methods
Spatial representation
We employ the method for spatial representation proposed by
Komer et al. (2019). This method generalizes the notion of
binding that is employed by several vector symbolic archi-
tectures (VSAs) to continuous spaces. The method defines
a “spatial semantic pointer” (SSP) to be the result of a frac-
tional binding. The particular binding used is the circular con-
volution operator proposed by Plate (1995), which is essen-
tially element-wise multiplication of vectors in Fourier space.
The natural extension of this is then element-wise exponenti-
ation in Fourier space. Supposing B is a fixed d-dimensional
vector (i.e., semantic pointer), fractional binding is defined by
expressing the binding in the complex domain:

Bk = F −1
{

F {B}k
}

, k ∈ R, (1)

where F {·} is the Fourier transform, and F {B}k is
an element-wise exponentiation of a complex vector—
analogous to exponentiation using fractional powers
(e.g., b2.5)—permitting k to be real. This representation can
thus map from a continuous space, R, to a high-dimensional
vector space, Rd . Because the high-dimensional space of
semantic pointers can support construction of cognitive
structures, various kinds of syntactic inference, and so
on (Eliasmith, 2013), this proposed representation provides a
novel link between such cognitive operations and continuous
spaces.

To explore this link, in this work we use a generalization
of the representation to multiple dimensions (Komer et al.,
2019). We can represent points in Rn by repeating equa-
tion 1, n times, using a different semantic pointer for each
represented dimension (i.e., for each axis), and then binding
all of the resulting vectors together. For n = 2 (i.e., for a 2-D
spatial map), the SSP that represents the point (x,y) is defined
as the vector resulting from the function:

S(x,y) = Xx ~Y y, (2)

where X and Y are fixed semantic pointers, x and y are reals,
and we are using fractional binding as defined by equation 1.

In this work we explore querying spatial relations between
multiple objects in memory – for instance, asking “What is
below and left of the 3?” To specify the spatial query, we
represent the region of space being queried (e.g., below and
left) as another SSP. The SSP that represents a continuous
region (e.g., a solid rectangle), specified by some infinite set
of points R, is defined as:

S(R) =
∫
(x,y)∈R

Xx ~Y y dxdy. (3)

To move this region to be relative to a given starting point,
we exploit the shift property of SSPs. In particular,

Bk1 ~Bk2 = Bk1+k2 , k1,k2 ∈ R. (4)

This means that to shift any SSP, we only need to convolve
the spatial representation of a region or objects with the SSP
representing the coordinates of the shift direction. For exam-
ple, we can shift a region representing a direction, (e.g., “up
and right”) to the location of an object to generate a region
representing a query (e.g., the “8” in the previous example).

Conversely, we can also leverage this property to shift the
entire spatial memory relative to the origin. This gives rise
to a notion of movement through the space and an egocentric
interpretation of the space rather than the previous allocentric
interpretation. Thus this method of semantic pointer supports
both egocentric and allocentric coding of space.

To represent a single object occupying some location, we
bind its tag (OBJ) with the SSP from equation 2:

M = OBJ~S(x,y). (5)

In general, to represent a set of m labelled objects together in
the same memory, we can use superposition:

M =
m

∑
i=1

OBJi ~S(xi,yi), (6)

with a distinct semantic pointer OBJi tagging each object.
Furthermore, rather than placing objects at singular points

in memory, it may be more intuitive to bind objects to regions
in memory. This can be done similarly:

M =
m

∑
i=1

OBJi ~S(Ri), (7)
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Figure 2: Heatmap of the four locations from Figure 1, repre-
sented by a single spatial semantic pointer (equation 6).

with Ri representing the region that a particular object occu-
pies. This representation allows us to represent notions of
size and shape in memory as well.

Given a representation like that in equation 6 or 7, we can
query it in a number of ways. For example, to determine what
object(s) are within some region R, we can compute:

M~S(R)−1, (8)

where (·)−1 corresponds to the approximate inverse vector
used to unbind using circular convolution. By the properties
of binding and superposition, the resulting vector will have
the highest cosine similarity (i.e., dot product) with the ob-
ject(s) within R.

While only part of our architecture is currently imple-
mented in a neural network (see below), all of the opera-
tions, except fractional binding, needed for the architecture
have previously been implemented in spiking neural network
models (Eliasmith, 2013). The fractional binding itself is im-
plemented in spiking neurons by Komer et al. (2019). These
implementations use the methods of the Neural Engineering
Framework (Eliasmith & Anderson, 2003).

Using the spatial representation
In this section we briefly demonstrate the use of equations 3,
4, and 6. All of the SSP representations in the model are 512-
dimensional. We begin by encoding multiple objects into the
memory, as per equation 6, is demonstrated in Figure 2. Here
we can see an example of the four objects from Figure 1 being
encoded into the represented space. While we are showing
a decoding of this representation mapped into the continu-
ous space, the full representation is a single 512-dimensional
vector. The number of objects in memory does not change
the size of the representing vector, although there are effec-
tive limits on capacity (Komer et al., 2019). We also tested

a region based system by binding every digit to the square
region occupied by the digit rather than just a single point.

To query such a representation, we can construct a region
vector. A region vector, as defined by equation 3, is also a
512-dimensional SSP, but it represents an entire region in-
stead of a specific point. Region vectors can be used just like
a regular location vector. We can bind objects to it, add it to
a memory, and we can also use it to extract objects that are
located within a region. Furthermore, as regions are integrals
over pointers raised to coordinate exponents, binding a region
to a point vector shifts the exponents in the integral by the co-
ordinates of the point (see equation 4), which in turn shifts the
entire region represented by the integral (see Figure 3-Top) in
the direction of the point relative to the origin. In our experi-
ment, this allows us to pre-compute four regions at the origin
and then use binding to shift them to generate any specific
query vector (see Figure 3-Bottom). Notably, when region
vectors are used to query memories encoding objects at those
locations, there is no need to extract the coordinates of the
objects being searched over; all computations are performed
within the space of our SSPs, without multiple encoding and
decoding steps.

Model architecture
In this section we briefly describe each of the components
in our model that perform the tasks described in the exper-
imental design section. We also describe the integration of
the components and overall flow of information through the
model.

Image generation
The images processed by the system are generated by using
batches of 28x28 pixel images from the MNIST database and
placing them randomly on a 120x120 image (see Figure 1).
Because queries are limited to the 4 diagonal directions, we
ensured the digits are not too close in the vertical or horizontal
direction. We also ensured the digits do not overlap. We
generated sets of 5,000 samples for images containing each
of 2, 3, and 4 digits.

MNIST Network
In order to generate the SSP representation from the exper-
iment images, we use a straightforward convolutional deep
neural network as a perceptual module. It consists of two 3-
by-3 convolution layers with 32 and 64 filters respectively.
These were followed by a 128 unit fully connected dense
layer and a 10 unit fully-connected dense layer for classifica-
tion. This network was trained on the MNIST dataset achiev-
ing 99% validation accuracy.

Since our work focuses on representing spatial relation-
ships rather than classifying multi-digit MNIST images, we
use the actual coordinates of the digits to generate a saccade-
like cropping of the full image to 28x28 sub-images before
providing them to the convolutional network. The identified
images are then mapped to random 512-dimensional seman-
tic pointers, which are bound to SSP encoded locations, and
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Figure 3: Demonstration of shifting the region representa-
tion for a “down and right” query (top panel), to a point en-
coded as an SSP (middle panel), resulting in a region vector
for querying “down and right” with respect to the point (bot-
tom panel).

Figure 4: Flowchart of entire process

summed across all objects. This process results in a memory
representation in the 512-dimensional space, which is sub-
sequently queried using a region representation as described
above.

Cleanup memory
When using SSP representations, as with any compressed
VSA, the extracted location vector of an object includes
noise. When there are multiple objects in the memory, the
amount of noise grows. As a result, VSAs of this sort typi-
cally include a cleanup memory that maps a noisy vector onto
the nearest known vector in the space. In the case of a con-
tinuous space, to extract the (x,y) location of the query digit,
we generate the known vectors by sampling the continuous
space on a 100x100 grid. This grid covers the two [−5,5]
axes of the image. To implement the memory, we perform
a simple dot product similarity check between the extracted
noisy vector and the set of known vectors to find the closest
matching vector within the resolution of our grid. Dot prod-
ucts are easily computed in parallel, making this a quick and
effective way to reduce noise and improve performance. This
kind of memory can be efficiently implemented in spiking
neurons (Stewart et al., 2011).

Full system
Before running an experiment, we set up the model by ran-
domly selecting two 512-dimensional unitary semantic point-
ers to use as axis vectors (i.e., X and Y in 2). We also create
a vocabulary of ten 512-dimensional semantic pointers, one
for each digit. We then pre-compute 10x10 region vectors for
each query, as well as a 100x100 resolution cleanup memory.

We then feed an image into the model architecture, the full
pipeline of which is depicted in Figure 4. The image is clas-
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sifed by the MNIST network, and an object memory is cre-
ated by summing the SSP representations for each digit in the
image, as described above. Extraction of the location of the
query object (i.e., the object mentioned in the query) proceeds
by performing an inverse convolution on the memory with the
query object to find its location, and the cleanup memory is
used to reduce noise on the found location. Generating the
region to search is accomplished by convolving the identi-
fed location of the query object with the region vector corre-
sponding to the query direction to find the region where the
target object might be. Extracting objects in the region occurs
by performing an inverse convolution between the shifted re-
gion and the original memory. Finally, the similarity between
the results of this query and each object in the vocabulary is
calculated as a dot product. The object with the highest simi-
larity determines the model’s response to the query.

Scanning System
The scanning system involves similar steps. We reuse the axis
vectors as well as the pre-computed cleanup memory tables
from the previous system. The map image is converted to a
memory vector as above. Given a starting and ending object,
the locations are extracted by performing inverse convolution
with the objects in question on the memory. These locations
are cleaned with the cleanup memory and used to determine
the direction vector of the scanning using SSPs:

V = (Xx5 ~Y y5)~ (Xx2 ~Y y2)−1 (9)

where x5 is the x position of the “5”, and so on. We then
normalize this vector, shrinking it to a 0.05 unit step, and re-
peatedly apply it to the starting vector (Vt+1 = Vt ~V where
V0 = Xx5 ~Y y5 ).

To scan the memory, we started at the starting location
from above, and extracted the objects in that location with
inverse convolution. The scan location is then updated by
convolution with the step vector generated above, shifting the
location towards the target object, and the above steps are re-
peated. A dot product similarity comparison is used at each
step to determine what objects were extracted or “seen” by the
scan. A 0.8 similarity threshold is used to determine when the
target object has been reached.

Results
Relational Query Experiment
For the query experiment, we ran 5,000 randomly generated
experiments for each of 2, 3, and 4 digit images. For the
experiment, we tested the accuracy of the output by sim-
ply marking the response as correct if the model response
matched an object in the queried region.

Table 1 shows the results from the experiment involving
identifying a target digit given an image, a query object, and
a query. Correctness is calculated by comparing the output
to all digits in the correct direction. Baseline performance is
the probability of answering a query correctly by randomly
selecting one of the remaining digits in the image. This is

2 Digits 3 Digits 4 Digits
Point Representation
Accuracy 92.18 84.40 72.90

Region Representation
Accuracy 95.98 87.22 81.24

Baseline probability 100.00 71.76 62.60

Table 1: Experimental results for spatial relation queries.

calculated by dividing the average number of correct answers
in each image by one less than the total number of digits in
the image. Naturally for the 2 digit case, there is only one
possible answer other than the digit used to query so the prob-
ability would be 100%. The baseline probability is very high
due to the broadness of our query.

The results from the 2 object query indicate that using a
region vector decreases accuracy compared to a simple lo-
cation query. A location query with two objects in memory
(e.g., what is at location (x,y)) has 100% accuracy (results
not shown). In this experiment, the 2 digit case is similar to a
location query, but for a region. The drop in accuracy is likely
because as the region representation becomes larger, a single
vector is being used to represent the effective superposition
(integral) of many vectors (all those defining the region). This
result suggests that region size will determine decoding accu-
racy, a hypothesis to test in future work.

The 3 and 4 digit experiments showed that extracting ob-
ject information from an object-location memory improved
performance by about 13% and 10% for point based mem-
ory and 15% and 19% for region based memory compared to
the baseline guessing probability. Representing object loca-
tions as regions in memory rather than singular points pro-
vided dramatic improvements in accuracy, particularly in the
4 digit case. This is likely due to the fact that a query re-
gion is more similar to a square within the region than a sin-
gle point, leading to higher accuracy extractions with inverse
convolution. This suggests that more specific queries involv-
ing smaller or tighter regions would yield higher accuracy as
their shapes would more closely resemble the regions the ob-
jects are bound to compared to the large query regions used
in our experiment. Comparing the differences in accuracy for
queries of different shapes and sizes is a topic for future study.

The decrease in accuracy as number of digits in the im-
age increases is expected, as a higher number of digits adds
difficulty in selecting the correct output since the memory en-
codes all of the digits. It is a standard property of VSAs for
decodability to decrease as a function of the number of ob-
jects represented in a structure. While we have not deter-
mined the maximum capacity of the proposed representation,
being able to store and reasonably accurately recall the rela-
tions between four numbers is consistent with standard esti-
mates of working memory capacity at 4 items (Buschman et
al., 2011).
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Figure 6: Similarity outputs over time for scanning from the
“5” to “1” (top) or “5” to “2” (bottom).
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Figure 7: Plot of steps to reach target object vs the distance
between starting and target objects over 100 trials (Pearson’s
R > 0.99, p-value < 10−6).

Image Scanning
An image is generated with the same method as in the first
experiment to represent a map of objects, with each digit rep-
resenting an arbitrary object in the map (Figure 5). For the
experiment shown in Figure 6 we chose the object “5” as the
starting location and the two objects “1” and “2” to be the
near and far target objects respectively. From the two plots,
we can see a peak at the 0 mark for the starting object “5”
which falls away, and a peak at the target object, “1” and “2”,
when the scan reaches it.

This experiment was repeated 100 times, with the number
of steps required to reach a similarity threshold of at least 0.8
recorded for each trial (Figure 7).

Kosslyn et al. (1978) showed that human spatial memory
is represented in a metric space by demonstrating that further
objects take longer to scan to in memory, with time linearly
related to distance. This experiment shows that the qualitative
cognitive behaviour demonstrated by Kosslyn’s map scanning
experiment is naturally captured by our SSP memory repre-
sentation.

Discussion
Our proposed architecture is able to receive an image of mul-
tiple objects and generate an SSP representation. Subse-
quently given a spatial relation query the model can success-
fully answer with reasonably high accuracy. This provides
evidence that the SSP representation can be used to encode
continuous spaces in a kind of mental map using representa-
tions easily implementable in neural networks. In short, our
results show that such representations can be used to repro-
duce qualitative cognitive behavior relying on spatial manip-
ulation of information encoded in this manner.

A critical next step is to compare human performance on
this same task with the proposed model. Preliminary results
suggest that accuracy can be manipulated by appropriately
choosing the base vectors (i.e., X and Y ), and manipulating
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the dimensionality of the vector space being used. The range
of these parameters that match human performance remains
to be determined.

There are many possibilities for extending this model. Our
particular focus was on two kinds of spatial relation query.
However, the direction queries could be generalized to be in
any direction (e.g., specifying a vector direction and generat-
ing a cone region in that direction). As well, other manipula-
tions, such as spatial rotations, shifts, and so on, can be per-
formed without decoding the SSP. There are a wide variety of
psychological results that can provide points of comparison
for such manipulations.

Furthermore, the representation itself could be made more
complex. For instance, introducing the color of the object
(encodable as another 3D continuous space for RGB values),
or additional features is natural in this framework. We expect
additional information encoded in the memory will adversely
affect performance, as seen in human memory tasks.

Finally, the full model can be implemented in a spiking
neural network to determine if the proposed representations
are robust to biologically plausible implementation. While
we expect that this will be successful, given past work that
has implemented each of the components, it remains to be
seen what effect such implementation has on the accuracy of
responding to spatial queries.

Conclusions
We have demonstrated that spatial semantic pointers (SSPs)
using fractional binding provide a viable method of represent-
ing spatial relationships in a simple model supporting two
kinds of visual spatial reasoning. This method lends itself
well to implementation in neural networks, and is consistent
with cognitive work suggesting that internal representations
used in mental imagery represent continuous mental spaces.
We believe this is one of few available suggestions for how
complex object representations (i.e., high-dimensional fea-
ture vectors for digits) can be encoded in a continuous space,
and manipulated to answer questions about relations in that
space.
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Abstract 

The cognitive system readily learns when multiple cues 
jointly predict a specific outcome. What is less known is how 
the mind generates predictions when only a single cue is 
present. In four experiments, participants were first exposed 
to two objects followed by a circle with a specific size or a 
specific numeric value. Afterwards, participants viewed a 
single object and estimated the associated size or value. 
Finally, participants recalled the size or value that followed 
the initial two objects. We found that the estimated size 
associated with the single object was significantly smaller 
than 100% but significantly larger than 50% of the recalled 
size associated with the two objects. No participants were 
consciously aware of the associations. The results reveal a 
new consequence of statistical learning on automatic 
inferences: When multiple objects were previously associated 
with an outcome, the single object is implicitly expected to 
predict a subadditive outcome. 

Keywords: Implicit learning; support theory; subadditive 
inferences; regularities; predictions 

Introduction 

A remarkable capacity of the cognitive system is to extract 

the relationships among objects in the environment. 

Statistical learning is one mechanism that detects the 

statistical relationships between individual objects in terms 

of co-occurrences over space or time (Fiser & Aslin, 2001; 

Saffran, Aslin, & Newport, 1996). In contrast to other forms 

of associative learning, statistical learning occurs 

incidentally, without conscious intent or explicit awareness, 

and thus observers are often not explicitly aware of object 

co-occurrences (Turk Browne, Jungé, & Scholl, 2005; Turk-

Browne, Scholl, Chun & Johnson, 2009).  

The ability to extract statistical regularities from the 

environment has a series of cognitive consequences. For 

example, statistical learning encodes the co-occurring 

objects more efficiently in working memory (Brady, 

Konkle, & Alvarez, 2009; Zhao & Yu, 2016), draws 

attention spontaneously and persistently to the co-occurring 

objects (Yu & Zhao, 2015; Zhao, Al-Aidroos, & Turk-

Browne, 2013; Zhao & Luo, 2017), forms new transitive 

inferences based on prior associations (Luo & Zhao, 2018), 

enhances memory representation of individual objects (Kim, 

Lewis-Peacock, Norman, & Turk-Browne, 2014; Otsuka & 

Saiki, 2016), and induces false memories of co-occurring 

objects (Luo & Zhao, 2017). 

Past research on statistical learning has predominately 

focused on associations between individual objects that co-

occur in space or time (e.g., A appears next to or before B). 

Moreover, most studies in associative learning focused on 

how the relationship between the cue and the outcome is 

learned, how learning modulates subsequent processes, and 

how predictive cues are selectively prioritized (e.g., 

Mackintosh, 1975; Le Pelley et al., 2016). 

In the daily visual environment, multiple objects 

sometimes co-occur to jointly predict a specific outcome. 

For example, two co-authors often publish a paper together, 

or two co-founders start a company. What is less known is 

how the mind generates predictions when only a single cue 

is present, after learning that two cues were previously 

jointly associated with an outcome. For example, when 

author A and author B have been publishing high-quality 

papers together, what’s the automatic inference when you 

see a paper by only author A? 

Here we examine three possible hypotheses: (1) the 

complete inheritance hypothesis that suggests that the single 

cue predicts 100% of the outcome previously associated 

with the two cues, (2) the proportional inheritance 

hypothesis that suggests that the single cue predicts 50% of 

the outcome, and (3) the subadditive hypothesis that 

suggests that the single cue predicts more than 50% but less 

than 100% of the outcome previously associated with the 

two cues. The subadditive hypothesis is consistent with 

support theory (Tversky & Koehler, 1994), that suggests 

that when people unpack an event (e.g., the probability of 

death due to natural causes) into disjoint components (e.g., 

the probability of death due to heart attack, cancer, or other 

natural causes), they tend to increase the evidentiary support 

for the event. In other words, people tend to provide a 

higher probability of death due to natural causes when they 

are asked to estimate the probability of death due to each 

component of natural causes separately, compare to 

reporting the probability of death due to natural causes as 

one category. 

To test these hypotheses, we conducted a series of four 

experiments to examine how the mind makes predictions 

when a single cue is present after learning that multiple cues 

previously jointly predicted an outcome. 

Experiment 1 

In this experiment, participants were first exposed to two 

cues (e.g., red and blue squares) that were immediately 

followed by an outcome (e.g., a circle with a specific size). 

We examined how they generated predictions of the 

outcome when only a single cue was present (e.g., a red 

square). 
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Participants 

A total of 42 undergraduates (31 female; mean age=19.6 

years, SD=1.5) from University of British Columbia (UBC) 

participated in the experiment for course credit. Participants 

reported normal or corrected-to-normal visual acuity and 

provided informed consent. The protocol was approved by 

the UBC Behavioral Research Ethics Board. 

Stimuli 

The stimuli consisted of eight squares in eight distinct 

colors (color name = R/G/B values: red = 255/0/0; green = 

0/255/0; blue = 0/0/255; yellow = 255/255/0; magenta = 

255/0/255; cyan = 0/255/255; orange = 255/158/0; brown = 

103/29/0). Each square subtended 2.7° of visual angle. The 

colored squares were randomly assigned into four pairs for 

each participant and remained constant throughout the 

experiment. Each color pair was randomly associated with a 

gray circle (R/G/B = 128/128/128) with a specific diameter. 

The circle diameter subtended 3.0° (or 100 pixels), 6.0° (or 

200 pixels), 9.0° (or 300 pixels), or 12.0° (or 400 pixels) of 

visual angle (Fig.1a). Thus, each color pair was associated 

with a circle of a specific size. 

Apparatus 

Participants in all experiments were seated 50cm from a 

computer monitor (refresh rate = 60 Hz). Stimuli were 

presented using MATLAB and PsychophysicsToolbox 

(http://psychtoolbox.org). 

Procedure 

The experiment consisted of three phases: exposure phase, 

inference phase, and recall phase. During exposure, two 

colored squares (e.g., red and blue squares) appeared in a 

horizontal configuration at the center of the screen for 

500ms, followed by a 500ms inter-stimulus interval (ISI), 

and then the circle with a rotated T in the middle appeared 

at the center of the screen for 500ms in each trial (Fig.1b). 

Each color-size pair was repeated 80 times to form a single 

continuous temporal sequence of color-size pairs in a 

pseudorandom order with a constraint where no single 

color-size pair could repeat back-to-back. In total, there 

were 320 trials. Participants performed a cover task where 

they judged as quickly and accurately as possible whether 

the rotated T in the circle was pointing to the left or right 

(by pressing the “1” or “0” key for left or right, 

respectively). The cover task was irrelevant to learning the 

color-size pairs, in order to conceal the true purpose of the 

study. This also ensured that statistical learning of the color-

size pairs was incidental. Participants were not told anything 

about the color-size pairs. 

After exposure, participants performed an inference phase 

(Fig.1c). In each trial, participants viewed a single color 

square for 500ms followed by a 3000ms blank screen. 

Afterwards, a probe circle with a diameter subtending 0.6° 

(or 20 pixels) was presented on the screen. Participants were 

asked to estimate the size of the circle that was associated 

with the color square by adjusting the size of the probe 

circle using their mouse. The diameter of the adjustable 

circle was restricted to a range from 20 pixels to 420 pixels. 

The adjustable circle remained on the screen until the “a” 

key was pressed to register participant’s estimate. Each 

member of a color pair was tested four times, resulting in 32 

trials in total (the order of the trials was randomized). 

 
Figure 1. Experiment 1 paradigm. (a) Four color-size pairs were 

presented (e.g., red and blue squares followed by a circle with a 

diameter of 100 pixels). (b) Exposure phase using a cover task to 

expose the color-size pairs to participants. (c) Inference phase 

where participants estimated the size of the circle was associated 

with the color. (d) Recall phase where participants recalled the size 

of the circle that followed the two color squares. 

 

To examine whether participants had successfully learned 

the color-size pairs (i.e., the association between the two 

color squares and the size of the circle), participants 

completed a size recall task following the inference phase 

(Fig.1d). In each trial, participants viewed the original color 

pair (e.g., red and blue squares) that they viewed during 

exposure for 500ms followed by a 3000ms blank screen. 

Afterwards, a probe circle with a diameter subtending 0.6° 

(or 20 pixels) was presented on the screen. Participants were 

asked to recall the size of the circle that was associated with 

the original two colors during exposure by adjusting the size 

of the probe using their mouse. The diameter of the 
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adjustable circle was restricted to a range from 20 pixels to 

420 pixels. The adjustable circle remained on the screen 

until the “a” key was pressed to register participant’s 

estimate. Each color pair was tested four times, producing 

16 trials in total (the order of the trials was randomized). 

A debriefing session was conducted at the end of the 

experiment, where participants were asked if they had 

noticed any pairings of squares and circles that appeared one 

after another. For those who responded yes, we further 

asked them to write in sentences which type of circle 

followed which colors. 

Results and Discussion 

We first analyzed whether the inferred circle size 

associated with one single object in the pair (e.g., red 

square) was different from the inferred circle size associated 

with the other member of the pair (e.g., blue square) to rule 

out any spatial positioning bias. We found that the inferred 

circle size associated with one object was not different from 

the inferred circle size associated with the other member in 

the pair for all four types of circle diameter (p’s>.19). Thus, 

we combined the inferred size of either member in the pair. 

We also found that in the recall phase, participants 

overestimated the size of the small circle (mean recalled 

circle diameter of a circle diameter of 100 pixels was 176.1, 

SD=84.5), and they underestimated the size of the large 

circle (mean recalled circle diameter of a circle diameter of 

400 pixels was 225.8, SD=100.6). Given these recall biases, 

we compared the inferred size with the recalled size, not 

with the objective size in the following analyses. 

The purpose of this experiment was to examine how the 

mind predicts the outcome given a single predictor, after 

learning that two predictors were associated with a specific 

outcome. We compared the inferred size associated with the 

single object during inference phase to the recalled size 

associated with the two objects to test the complete 

inheritance hypothesis. We also compared the inferred size 

associated with the single object during inference phase to 

the 50% of the recalled size to test the proportional 

inheritance hypothesis (Fig.2a). 

 

 
Figure 2. Experiment 1 results. (a) The mean recalled size of the 

circle associated with two objects and the mean inferred size of the 

circle associated with a single object. (b) The recalled size of the 

circle associated with two objects and the inferred size of the circle 

associated with a single object for each color-size pairing (error 

bars reflect ±1 SEM; dashed line represents 50% of the recalled 

size). 

We found that the inferred size associated with the single 

object (mean inferred diameter=141.1, SD=63.6) was 

significantly smaller than the recalled size associated with 

the two objects (mean recalled diameter=198.6, SD=46.8) 

[t(41)=6.90, p<.001, d=1.03], but significantly larger than 

50% of the recalled size [t(41)=5.01, p<.001, d=0.87] 

(corrected for multiple comparisons). Additionally, the same 

results were consistently found for each color-size pairing 

(Fig.2b). The results support the subadditive hypothesis. 

During debriefing, three participants reported noticing the 

color-size pairs, but none could correctly report which circle 

size followed which specific color pair. This suggests that 

participants had no explicit awareness of the color-size 

pairs. 

These findings suggest that people implicitly predict a 

subadditive outcome from a single predictor after learning 

that two predictors previously jointly predicted a specific 

outcome. 

Experiment 2 

This experiment aimed to replicate and extend the findings 

in Experiment 1 by increasing the number of predictors 

from two to three. 

Participants 

A new group of 40 undergraduates (34 female, mean 

age=19.7 years, SD=2.2) from UBC participated in the 

experiment for course credit. 

Stimuli  

The stimuli were identical to those in Experiment 1, except 

that we added a black color (R/G/B=0/0/0) to the color set. 

There were nine color squares in total, randomly assigned 

into three triplets for each participant. Each triplet was 

randomly associated to a gray circle with a specific 

diameter. The circle diameter subtended 3.0° (or 100 

pixels), 7.5° (or 250 pixels), or 12.0° (or 400 pixels) of 

visual angle (Fig.3a). 

 

 
Figure 3. Experiment 2. (a) Three color-size pairs (e.g., red, blue, 

and green squares–circle with a diameter of 100 pixels). (b) The 

mean recalled size of the circle associated with three objects and 

the mean inferred size of the circle associated with a single object 

(error bars reflect ±1 SEM; dashed line represents 33% of the 

recalled size). 
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Procedure 

The procedure was identical to that in Experiment 1, except 

that the three color squares were followed by a circle of a 

given size in the exposure phase, and participants recalled 

the circle size associated with the three squares in the recall 

phase. 

Results and Discussion 

In a one-way repeated-measures ANOVA, we found no 

difference between the inferred circle size associated with 

each object in the triplet for all three types of circle size 

(p’s>.55). Thus, we combined the inferred size of each 

member in the triplet. We also found that participants 

overestimated the size of the small circle (mean recalled 

circle diameter of a circle diameter of 100 pixels was 188.4, 

SD=78.1) and underestimated the size of the larger circle 

(mean recalled circle diameter of a circle diameter of 400 

pixels was 197.3, SD=94.8). Given these biases, we 

compared the inferred size with the recalled size, not with 

the objective size in the following analyses. 

We found that the inferred size associated with the single 

object (mean diameter=124.2, SD=59.5) was significantly 

smaller than the recalled size associated with the three 

objects (mean diameter=198.3, SD=53.1) [t(41)=7.87, 

p<.001, d=1.31], but significantly larger than 33% of the 

recalled size [t(41)=6.90, p<.001, d=1.32] (corrected for 

multiple comparisons; Fig.3b). The results again support the 

subadditive hypothesis.  

During debriefing, two participants reported noticing the 

color-size pairs, but none could correctly report which circle 

size followed the specific color triplet. This suggests that 

participants had no explicit awareness of the color-size 

pairs. 

These findings successfully replicated the findings in 

Experiment 1, showing that people implicitly predict a 

subadditive outcome from a single predictor after learning 

that three predictors previously jointly predicted a specific 

outcome. 

Experiment 3 

Experiment 3 aimed to generalize the findings to other types 

of outcomes from circle sizes to numeric values. 

Specifically, after learning that two objects (e.g., red and 

blue squares) were associated with a specific numeric value, 

we examined how people made predictions of value from a 

single predictor (e.g., red square). 

Participants 

A new group of 45 undergraduates (41 female, mean 

age=20.38 years, SD=2.8) from UBC participated in the 

experiment for course credit. 

Stimuli 

The stimuli were identical to those in Experiment 1, except 

that each color pair was associated with a specific three-

digit number. There were four three-digit numbers: 150, 

400, 650, and 900. Each number was associated with a color 

pair (Fig.4a). 

Procedure 

As in Experiment 1, there were three phases (exposure, 

inference, and recognition). The exposure phase was 

identical to Experiment 1, except that in the cover task, 

participants viewed a three-digit number above the rotated T 

in the circle (Fig.4b). Since that a specific number may be 

easier to learn than the size of a circle, we reduced the 

number of repetitions for each color-number pair to 40 

times, resulting in 160 trials in total (the order of trials was 

randomized). 

 
Figure 4. Experiment 3 paradigm. (a) Four color-number pairs 

(e.g., red and blue squares-150). (b) Exposure phase using a cover 

task to expose the color-number pairs to participants. 

 

In the inference phase, participants viewed a single 

colored square and were asked to estimate the number that 

was associated with the color square by typing a number on 

the keyboard. The estimated number was restricted to a 

range from 0 to 1050. Participants had the option to delete 

and revise their estimated number until the “a” key was 

pressed to register their estimate. 

In the recognition phase, participants viewed a pair of 

color squares that was presented in exposure and were asked 

to recall the number that was associated with the color pair 

by typing the number on the keyboard. The recalled number 

was restricted to a range from 0 to 1050. Participants had 

the option to delete and revise their recalled number until 

the “a” key was pressed to register their estimate. A 

debriefing session was conducted at the end as before. 

Results and Discussion 

We found that the inferred number associated with a single 

object was not different from the inferred number associated 

with the other member in the pair (p’s>.32). Thus, we 

combined the inferred number of each member in the pair. 

We also found that participants overestimated the small 

number (mean recalled number of 150 was 489.7, 
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SD=227.3) and underestimated the large number (mean 

recalled number of 900 was 557.0, SD=251.7). Given these 

biases, we compared the inferred number with the recalled 

number, not with the objective number in the following 

analyses. 

We found that the inferred number associated with the 

single object (mean inferred number=476.5, SD=150.8) was 

marginally smaller than the recalled number associated with 

the two objects (mean recalled number=513.2, SD=97.3) 

[t(44)=1.79, p=.08, d=0.29], but significantly larger than 

50% of the recalled number [t(44)=10.86, p<.001, d=1.96] 

(corrected for multiple comparisons; Fig.5). The results 

again support the subadditive hypothesis. 

 
Figure 5. Experiment 3 results. The mean recalled number 

associated with two objects and the mean inferred number 

associated with a single object (error bars reflect ±1 SEM; dashed 

line represents 50% of the recalled number). 

 

During debriefing, two participants reported noticing the 

color-number pairs, but none could correctly report which 

number followed which specific colors. This suggests that 

participants had no explicit awareness of the color-number 

pairs. 

These findings again replicated the findings in 

Experiment 1, showing that people implicitly predict a 

subadditive outcome from a single predictor after learning 

that two predictors previously jointly predicted a specific 

outcome. 

Experiment 4 

This experiment aimed to extend the findings in Experiment 

3 by increasing the number of predictors from two to three. 

Participants 

A new group of 33 undergraduates (28 female, mean 

age=20.2 years, SD=1.7) from UBC participated in the 

experiment for course credit. 

Stimuli and Procedure 

The stimuli and the procedure were identical to Experiment 

3, except that there were three color triplets and each triplet 

was associated with 150, 525, or 900 (Fig.6a). 

Results and Discussion 

In a one-way repeated-measures ANOVA, we found no 

difference between the inferred number associated with each 

object in the triplet for all three types of numbers (p’s>.35). 

Thus, we combined the inferred number of each member in 

the triplet. We also found that participants overestimated the 

small number (mean recalled number of 150 was 485.7, 

SD=267.0) and underestimated the large number (mean 

recalled number of 900 was 592.7, SD=246.8). Given these 

biases, we compared the inferred number with the recalled 

number, not with the objective number in the following 

analyses. 

We found that the inferred number associated with the 

single object (mean inferred number=401.1, SD=180.3) was 

significantly smaller than the recalled number associated 

with the three objects (mean recalled number=501.3, 

SD=106.8), [t(32)=3.03, p=.005, d=0.68], but significantly 

larger than 33% of the recalled number [t(32)=7.61, p<.001, 

d=1.80] (corrected for multiple comparisons; Fig.6b). The 

results again support the subadditive hypothesis. 

 
Figure 6. Experiment 4. (a) Three color-number triplets (e.g., red, 

blue, and green squares-150). (b) The mean recalled number 

associated with three objects and the mean inferred number 

associated with a single object (error bars reflect ±1 SEM; dashed 

line represents 33% of the recalled number). 

 

During debriefing, one participant reported noticing the 

color-number pairs, but the participant could not correctly 

report which number followed which specific colors. This 

suggests that participants had no explicit awareness of the 

color-number pairs. 

These findings replicated the findings in Experiment 3, 

showing that people implicitly predict a subadditive 

outcome from a single predictor after learning that three 

predictors previously jointly predicted a specific outcome. 

General Discussion  

The goal of this study was to examine how the mind 

automatically generates prediction when only a single cue is 

present, after learning that multiple cues were previously 

jointly associated with an outcome. We found that after 

learning that two co-occurring objects (e.g., red and blue 

squares) predicted a specific circle size, participants inferred 

the circle size associated with a single color (e.g., red 
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square) to be smaller than the original circle size associated 

with the color pair, but larger than 50% of the circle size 

associated with the color pair (Experiment 1). We further 

extended the number of predictors from two to three. After 

learning that three co-occurring objects predicted a specific 

circle size, participants inferred the circle size associated 

with a single color to be smaller than the circle size 

associated with the color triplet, but larger than 33% of the 

circle size associated with the color triplet (Experiment 2). 

We further replicated and extended the experiment from 

circle sizes to numeric values as outcomes for two 

predictors (Experiment 3) and three predictors (Experiment 

4). Importantly, no participant was consciously aware of the 

association between the predictors and the outcome across 

all experiments, suggesting that the inference of the size or 

number associated with one single predictor was largely 

implicit. The current findings also suggest when people 

predict an outcome relying on a single cue from a set of 

cues, they do not inherently generate the prediction based on 

the outcome associated with the complete set of cues, nor do 

they proportionally inherit the outcome based on the number 

of cues. Instead, they make predictions in a subadditive 

manner, which is consistent with support theory (Tversky & 

Koehler, 1994). 

One rationale behind support theory is that unpacking an 

event to its individual component may evoke other relevant 

elements that might have been missed. When participants 

were asked to infer the size associated with each individual 

color in the pair or triplet, they might have to think more 

extensively for each color, compared to recalling the 

outcome associated with the color pair or triplet. A second 

rationale behind support theory is that explicitly referring to 

an individual component of an event would increase its 

salience. When participants were asked to infer the size 

associated with a single color, their attention was drawn to 

the single color which may increase the weight of the single 

color in their prediction of the outcome. 

Alternatively, previous studies have suggested that seeing 

one object in a pair may activate the unitized representation 

of the pair (e.g., Alvarez & Oliva, 2008). The co-occurring 

objects (e.g., red and blue squares) may be grouped in the 

mind during learning. When participants were asked to 

predict the outcome relying on a single object (e.g., a red 

square), the object may trigger the representation of the 

group but not fully activate the representation of the group. 

Therefore, participants may predict an outcome above 50% 

but less than 100% of the original outcome. 

Another possible explanation is that participants could 

add the size predicted by each colored square in a sublinear 

fashion, creating a subadditive sum. A new experiment is 

needed to test this hypothesis to tease apart whether the 

subadditivity is driven by the sublinear representation of 

each size or the sublinear summation of the two sizes. 

Specifically, participants are first exposed to one unique 

color predicting a unique size during the exposure phase 

(e.g., a red square predicting a circle with a certain diameter, 

and a blue square predicting a circle with a certain 

diameter). In the inference phase, participants see a red 

square with a blue square presented side by side 

simultaneously, and they will be asked to infer the circle 

size associated with the two squares. In the recall phase, 

participants simply recall the original size of the circle 

associated with the red square and the blue square. If the 

inferred size is equal to the sum of the two recalled sizes, 

then this would suggest that participants use an additive 

approach to predict the outcome. If the inferred size is 

smaller than the sum of the two recalled sizes but larger than 

each recalled size, then this would suggest that participants 

use a subadditive approach. 

In summary, we found a new consequence of statistical 

learning on automatic inferences: When multiple objects 

jointly predict a specific outcome, the presence of a single 

object implicitly triggers a subadditive prediction. 
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Abstract 

Sequential testimonies where more or less reliable sources 
argue about an issue are central to public debates. Often, the 
majority of sources may argue that a hypothesis is true while 
a minority dissenter may claim the opposite (e.g. scientists 
and lobbyists in the climate change debate).  

In this paper, we show that people are sensitive to source 
reliability as well as the structural relationship between the 
sources. Participants follow Bayesian predictions for revising 
belief in the hypothesis and the reliability of the competing 
sources given majority consent, minority dissent, and shared 
reliability between sources. Shared reliability and dissent is a 
key issue for public debate and belief revision. The paper 
provides novel insight into the workings of these aspects.   

Keywords: Source reliability; Shared reliability; Source 
dependency; Bayesian modelling; Belief revision 

Introduction 
Information is crucial to revising or maintaining beliefs, to 
making decisions in an uncertain world, and to compare and 
contrast support for competing hypotheses. While we can 
certainly acquire information through personal experience 
(e.g. witnessing congested traffic may change the route we 
travel to work, participating in a public demonstration may 
give an impression of the degree of support for a particular 
cause, etc.), most of the information we get in our everyday 
lives comes via other people. Meteorologists provide us 
with necessary weather information for planning the day, 
news readers give us an overview of relevant events that 
happen within our respective countries and abroad, and 
friends, family members, and co-workers provide invaluable 
information on a range of issues that help us appreciate their 
lives, consider information we have not been privy to before 
talking to that person, or information that is necessary for 
doing our respective jobs.  

Appeals to authority have traditionally been regarded as a 
reasoning fallacy – this is due to the fact that perceived 
authority should not add credence to the conditional link 
between the evidence and a hypothesis. That is, whether or 
not a piece of information increases the likelihood of a 

hypothesis is, in principle, independent from the source that 
conveys the piece of information. Classically, this has led 
some people to be sceptical of appeals to authority. 

The notion that appeals to authority should be distrusted 
in principle reverberates in theories of argumentation and 
reasoning. For example, two prominent models of 
persuasion, the Elaboration Likelihood-Model (Petty & 
Cacioppo, 1984) and the Heuristic-Systematic Model 
(Chaiken & Maheswaran, 1994), classify appeals to 
authority as a shallow and weak cue. In this view, people 
should disregard the characteristics of the source as they are 
given greater incentive to interrogate and elaborate on the 
evidence and its relation to the hypothesis. In other words, 
as the incentive to understand the link between evidence and 
claim increases, the nature of the source should matter less 
and less.  
 While it is it true in principle that the messenger neither 
adds nor subtracts to the link between evidence and claim, 
overlooking the epistemic impact of perceived source 
reliability neglects a crucial communicative and reasoning 
function. In a world where sources can lie and make up 
evidence, their reliability becomes crucially linked with the 
strength of the argument. Additionally, in a highly uncertain 
world, some information requires deep expertise to process 
(e.g. climate data may be accessible to a general population, 
but requires considerable expertise to adequately model and 
understand). Given the capacity to misinform and generate 
mistaken causal models due to a lack of expertise, the 
reliability of the speaker is an important element for people 
to update and revise their beliefs in the world.  

In line with this perspective, the impact of the perceived 
reliability of a source is shown to be crucial for reasoning 
and decision-making. Treating the reliability of a source as a 
shallow cue, the literature on persuasion has shown the 
impact of appeals to authority (Petty & Cacioppo, 1984; 
Tormala & Clarkson, 2007), the developmental literature 
suggests children seek out credible figures to guide their 
perception of the world (Harris & Corriveau, 2011), and 
appeals to authority have been shown to impact legal 
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reasoning (Lagnado et al., 2013). Further, it increases 
adherence with persuasion strategies (Cialdini, 2007), and 
perceived reliability is able to predict whether or not people 
believe an unknown policy is good, given recommendations 
from different political sources (Madsen, 2016).  

The paper explores three aspects of perceived reliability. 
First, it replicates a Bayesian model of the impact of 
sequential reports from more or less reliable sources. This 
replication shows people update their beliefs in a hypothesis 
given reports from sources as well as updating the perceived 
reliability of the sources themselves. Second, it replicates 
recent findings that shared reliability (e.g. sources sharing a 
common background) impacts the degree of belief in a 
hypothesis and the perceived reliability of sources, in line 
with Bayesian predictions. This explores aspects of source 
dependency. Finally, we extend this work by presenting 
novel findings on the impact of minority dissenters on belief 
in a hypothesis and the perception of reliability among 
sources, given the introduction of shared reliability. 
Minority dissent and shared reliability are crucial aspects of 
information transmission (see see Whalen et al., 2013 for 
dependency and Perfors et al., 2018 for minority dissent), as 
they appear a number of domains – indeed, most debates are 
characterised by sources that disagree. For example, in 
climate change both are apparent and important factors of 
public debate.  

A Bayesian approach to source reliability 
Whilst some have argued reliance on the reliability of others 
to revise subjective beliefs about the world is a shallow 
persuasive cue (Petty & Cacioppo, 1984; Chaiken & 
Maheswaran, 1994), others have argued reliance is 
rationally justified and a necessary component of belief 
revision (see Bovens & Hartmann, 2003; Hahn et al., 2009).  

The latter applies a Bayesian perspective to reliability. 
Bayesian reasoning uses subjective, probabilistic degrees of 
belief in propositions where Bayes’ theorem integrates prior 
beliefs with the likelihood ratio to estimate the posterior 
degree of belief (Howson & Urbach, 1996). Bayes is an 
alternative to logicist approaches to reasoning (Oaksford & 
Chater, 1991) and has been applied to argumentation theory 
(Hahn & Oaksford, 2006; 2007), which has found Bayesian 
reasoning can account human information integration in 
practical reasoning (see Oaksford & Chater, 2007). 

The Bayesian approach suggests that people’s subjective 
perceptions of the reliability of the speaker normatively 
should yield different information integration. For example, 
if the messenger has no expertise, the information may be 
regarded as pure noise (as it is equally likely to be true or 
false). In this case, the recipient should not revise her beliefs 
one way or another. Comparatively, if low trustworthiness 
entails simple misinformation, the recipient may increase 
her belief in the opposite direction given positive reports 
from a distrusted source. Due to the Bayesian nature of the 
above models, the reliability function of reports relies on 
conditional probabilities (see e.g. Madsen, 2016 where 
participants revise their beliefs negatively in a proposed 

policy given positive reports from subjectively distrusted 
politicians).  

More formally, the model integrates two components to 
account for overall reliability: perceived trustworthiness and 
perceived expertise (Hahn et al., 2009)1. In this framework, 
expertise refers to the capacity to provide accurate 
information about the topic in question. This is highly 
domain-dependent. For example, an astrophysicist may be 
able to calculate the mass of a distant celestial body, but 
may not be able to give a valid economic forecast. While 
expertise refers to capacity, trust refers to the intention of 
providing true and accurate information to the best of ones 
ability. For example, the astrophysicist may omit data points 
that contradict personally held theories or beliefs. The 
model components are orthogonal, as a person can be highly 
expert in some domain while at the same time be entirely 
untrustworthy – or vice versa. The orthogonal assumption is 
theoretically grounded (Bovens & Hartmann, 2003) and 
empirically supported (Harris et al., 2015) 

Formally, Bayes’ theorem is used to integrate reliability 
where the posterior degree of belief in the hypothesis (H) 
given the representation (Rep) yields: 

   2 
The formalisation predicts how people should integrate 

uncertain information from more or less reliable sources. 
Model predictions have enjoyed a good fit with behavioural 
data (Harris et al., 2015; Madsen, 2016). Overall, the 
findings suggest people are sensitive to the reliability of the 
individual speaker and integrate the information from the 
speaker in a normatively rational manner.  

Shared reliability: corroboration and negation 
The empirical work underpinning the Bayesian source 
reliability model suggests that people do modulate 
information integration given perceived speaker reliability. 
The influence of reliability on belief revision means that the 
perceived source reliability itself is important in the belief 
revision process.  

If the recipient believes the source is credible, she should 
revise her beliefs more positively if the source provides 
positive reports for a hypothesis. As a consequence, if the 
perceived source reliability changes, Bayesian (normative) 
models entail that the effect of this source should change for 
future reports and the impact of the already observed report. 
That is, if a speaker is revealed to be less than credible, 
audiences should be more likely to disregard any reports 
from that source in the future. Changes to the perceived 

                                                             
1 The operationalization of reliability as an amalgamation of 

perceived expertise and trustworthiness is remarkably close to 
findings in social psychology where reliability is defined as an 
amalgamation of traits related to warmth and competence (Fiske et 
al., 2007; Cuddy et al., 2011). 

2 P(Rep|H) = P(Rep|H, Exp, T) * P(Exp) * P(T) + P(Rep|H, 
¬Exp, T) * P(¬Exp) * P(T) + P(Rep|H, ¬Exp, ¬T) * P(¬Exp) * 
P(¬T) + P(Rep|H, Exp, ¬T) * P(Exp) * P(¬T); mutatis mutandis 
for P(Rep|¬H) 
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reliability of sources can conceivably happen for a number 
of reasons – for example if the source corroborates a highly 
unlikely hypothesis.  

Further, reports are seldom made in isolation. Frequently, 
people will see multiple reports for a given issue. These 
sources, perceived as more or less credible by the recipient 
in question, may argue for or against a hypothesis. For 
example, in climate change debates, pundits, experts, and 
members of the media frequently make predictions about a 
particular hypothesis or issue. Considering flood risks in 
coastal areas, many experts tend to warn that weather will 
become more extreme and floods more prominent (e.g. in 
Miami). However, minority dissenters may argue that floods 
will not change over time. Here, we have multiple sources 
(e.g. scientists) that corroborate and support a hypothesis 
(rising floods) and a dissenter (e.g. a senator) who negates 
the hypothesis.   

People’s prior belief in the hypothesis, their perceived 
reliability for each source, and their perception of the 
dependency of sources (e.g. shared reliability versus 
independent sources) should normatively influence their 
belief in the hypothesis and perceived reliability, given 
positive or negative reports from the sources. The paper 
explores whether this is the case empirically.  

In order to approach these questions, we use Bovens and 
Hartmann (2003) foundational and Bayesian perspective on 
modeling source reliability. Aside from suggesting people 
should revise their belief in the reliability of the source and 
in the hypothesis given sequential reports, their models 
show that the structure of the perceived relationship of 
sources influence the degree to which their reports should 
these beliefs given multiple testimonies.  

Figure 1a-b illustrates different structural relationships 
between independent sources with independently perceived 
reliability (Rel1-4) who provide a report (Rep1-4) concerning 
a hypothesis (H). ‘Independent sources’ refer to situations 
where the sources can be considered entirely independent of 
one another (Fig. 1a). For example, climate scientists may 
run studies independently of each other and report their 
findings with no knowledge of the findings of other 
scientists (here, the strength of the report will in part depend 
on each reports personal reliability).  

Comparatively, if sources share a common background 
(e.g. the scientists may have been trained at the same school 
to use a specific model to explore climate phenomena), they 
become partially dependent (Fig. 1b). In this case, the 
sources have shared reliability (SR).  

 
 
 
 
 
 
 
 
 
 

(1a)              (1b) 
Fig. 1a-b: independent sources and sources with shared 

reliability 
Shared reliability constrains the informativeness of a source, 
as their reliabilities are influenced by the common-cause 
(e.g. attending a good or bad school). That is, the common 
background can weaken the impact of the reports provided 
by these sources. More intuitively, in finding out that 
sources share a compromising background (e.g. have all 
attended a fraudulent school), then the individual 
reliabilities of those sources are compromised, and in turn 
the strength of their support. Bovens and Hartmann (2003) 
provide a formal way to calculate “…how the posterior 
probability of the reliability of the nth witness increases as 
more and more witness reports from in” (p. 79): 
 P*(n)(RELn)  = P(RELn|REP1, …, REPn) 

   =  

where u is the probability of the shared background being 
reliable, P(SR) – that is, how reliable the source is seen to 
be prior to any information about shared reliability, s is the 
conditional probability: 1 > P(Reli|SR) – that is, the 
likelihood that source i is reliable given the shared 
reliability. The conditional probability > P(Reli|SR) > 0 is 
represented by t, whilst a is a randomization parameter (that 
is, the degree of noise), and h is the prior probability of the 
hypothesis (that is, degree of belief in the hypothesis prior 
to any reports).3  

In sum, the equation shows that the posterior degree of 
reliability of the nth witness (or source) depends on the 
randomization parameter (a) and prior probability of the 
hypothesis (h). For example, if a = .9 and h = .3, initial 
witness reliability falls from .5 to .25 (see p. 80), but 
increases as additional positive reports confirm the initial 
report.4 

Recently, Madsen et al. (2018) tested this intuition. That 
is, whether people update their beliefs in the reliability of 
the source and the belief in the hypotheses when they 
experience sequential corroborative testimonies. In their 
study, all reports corroborated the hypotheses (that is, all 
sources provided positive reports for the hypothesis). 
However, as mentioned, many (if not most) debates are 
between sources that disagree about a particular issue. For 
this reason, it is imperative to understand the function of 
(minority) dissenters.  

Madsen et al. find support for the model of corroborating 
sources, as P(Rel) decreased given a corroborative report of 
an unlikely hypothesis, but subsequently increased as more 
corroborative reports were given. Further, when participants 
learned sources attended the same school, they adjusted 
their posterior degree of belief negatively for the hypothesis 
and source reliability. The effect was stronger if experts’ 

                                                             
3 C.3 (pp. 136-137) and C.4  (pp. 137-138) in Bovens and 

Hartmann (2003) provide the full derivation for P*(n-1) (RELn) = 
P(RELn|REL1, …, RELn-1)  and P*(n)(RELn) = P(RELn|REP1, …, 
REPn) respectively 

4 The current study does not elicit a randomization parameter  
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school was bad compared with sharing a school described as 
‘excellent’. Finally, their study suggests people revise 
posterior degree of belief in the reliability of sources 
retrospectively. That is, as sources2-3 provided reports, the 
reliability of source1 was adjusted to be in line with 
perceived reliability of the nth source.  

This paper extends this work by exploring three facets of 
source dependency and reliability. First, a source may 
corroborate or negate a report for a given hypothesis. We 
test how participants update their beliefs in the hypothesis 
and the reliability of each source given corroborative reports 
from sources1-2 and a negative report from source3 (denoted 
by ‘+’ and ‘-‘ respectively in the Fig. 2a and b).  

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
(2a)              (2b) 

Fig. 2a-b: Negation from independent sources and sources 
with shared reliability 

 
Second, we explore how dependency impacts perception of 
the hypothesis and reliability when the 3rd source dissents 
and negates the reports of sources1-2. Here, we use the same 
a shared reliability structure (Fig. 2b).  

We use the experimental design of Madsen et al. (2018), 
altering it to explore the following:  

Given reports from the 3rd dissenting source, we expect 
decreases in reliability for all sources and a decrease in 
belief in the hypothesis. This is due to the fact that dissent 
adds additional uncertainty to the hypothesis (the initial 
sources may be wrong) and onto the sources themselves 
(either the 3rd source or the initial sources may have been 
mistaken/providing bad information). For the likely scenario 
we expect a significant drop in reliability for the 3rd source 
in particular, as this source goes against a very likely 
hypothesis and two corroborating reports. In addition, in 
accordance with Madsen et al (2018), P(Rel) should 
decrease when source 1 reports an unlikely hypothesis, but 
subsequently recover, as source 2, still perceived to be 
independent, corroborates the unlikely prediction.  

Method 
Material and procedure: To replicate Madsen et al. (2018) 
and enable direct comparisons, we use their method and 
materials. To test model predictions, we use low and high 

probability scenarios. In the low probability scenario, 
participants were asked to evaluate the likelihood of a crash 
in the stock market with the following description:  

“Imagine you are watching a news programme about the 
economy. Specifically, the programme considers whether or not 
the UK stock market will crash (i.e. fall by more than 30%) 
within the next 6 months. Historically, the likelihood of a crash 
occurring within a 6-month window is 5%.  

In your opinion, how likely is the UK stock market to crash 
within the next 6 months?” 

Having read this, participants provided prior estimates for 
their beliefs in the hypothesis on a scale from 0-1 (0: I am 
completely certain the stock market will NOT crash within 
the next 6 months; 1: I am completely certain the stock 
market will crash within the next 6 months). To elicit the 
reliability of sources, we defined reliability:  

“Reliability can be defined as having access to relevant 
information about a topic, and a willingness to say what you 
believe to be the true state of the world.  

How reliable are economists in predicting the market 
crashes?” 

Having read this, participants provided their belief in the 
source reliability from 0-1 (0: economists are completely 
unreliable; 1: economists are completely reliable). Reports 
from sources were provided as interviews with experts on 
the subject. For example:  

“Now, imagine that an economist, Robert, is being interviewed 
about the economy. Robert states the following: “I am 
completely certain the stock market will crash within the next 6 
months.”     

Given Robert’s report, how likely is the UK stock market to 
crash within the next 6 months?” 

Participants then gave subjective estimates of their beliefs in 
the hypothesis and in each source hitherto presented. 
Sources were presented sequentially. To test the effect of 
negation, sources1-2 always corroborated the hypothesis and 
source3 always negated the hypothesis. This implemented a 
minority dissenter. The dissent only functions in light of the 
initial corroborations. As such, the dissenter had to be at the 
end of the scenario. Further, placing the dissenter towards 
the end allowed for replication of corroborative reports1-2, as 
participants had not yet been exposed to dissent.  
 Finally, having seen the three sequential reports, the 
participants were told the sources were partially dependent 
(i.e. shared a background), which was manipulated between-
subjects as either high or low quality (SR Condition). An 
example of the high quality SR Condition statement for the 
low likelihood scenario: 

“It turns out, all the interviewed economists studied at the same 
school and subscribe to the same economic theories. Their 
school has a very good reputation for excellent teaching and 
accurate approaches to economy.  

Given the fact that they all studied at the same school and 
follow the same economic theories, how likely is the UK stock 
market to crash within the next 6 months?” 

After each report and the SR condition, P(H) and P(Rel1-n) 
were measured. Participants read both scenarios in a 
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counterbalanced order, with the SR Condition manipulated 
independently for each scenario.5.  

Participants: 100 participants (71 female, µage = 34.51, σ 
= 11.49) were recruited from the online recruitment source 
Prolific Academic. All had to be aged 18+ and native 
English speakers from either the UK or the USA. All 
participants had to have a prior completion rate of 95%. 
Median completion time was 5.56 min (σ = 2.11) and 
participants were paid £0.8 (resulting in an effective fair 
hourly wage of £8.63/hour for participation). 

Results 
All inferential statistics reported below were Bayesian6, and 
were conducted used the JASP statistical software (JASP 
Team, 2018). The probability manipulations were successful 
in generating high and low estimates for the two scenarios: 
The market crash scenario was rated as unlikely (µ = .337, σ 
= .243) and the salmon growth scenario was rated as likely 
(µ = .806, σ = .116). In both scenarios, sources were rated 
higher (P(RelEconomist): µ = .638, σ = .156; P(RelBiologist): µ = 
.731, σ = .128). Importantly, though, both sources were 
rated positively, which allows for the testing of whether 
positive reports of unlikely hypotheses influence reliability 
estimates negatively. 

Following predictions from Bovens and Hartmann (2003), 
we expect positive reports of an unlikely hypothesis to lead 
to an initial decrease in estimates of reliability. To test this, 
we use repeated measures ANOVA (P(Rel) – P(Rel1|Rep1)). 
We observe a negative revision of reliability of source 1 
given a positive report of an unlikely hypothesis (N = 100), 
BF10 = 179636.1 (in the current design, the source predicts 
the stock market will crash within a 6-month period). 
However, as participants learn another source also provides 
a positive report (P(Rel1|Rep1) – P(Rel1|Rep2)), they revise 
their belief in the initial source and revise reliability in a 
positive direction (N = 100), BF10 = 798759.1.  

When a third source then contradicts (P(Rel1|Rep2) – 
P(Rel1|Rep3)), the reliability of the original reporter is then 
reduced once again (N = 100), BF10 = 352673.82 We further 
note strong evidence for a null difference in the estimated 
reliabilities across the three sources (N = 100), BF10 = 
0.127, despite the presence of a contradicting minority, 
suggesting that all sources are penalized given the dissent 
among them. 

In addition, participants increase their belief in the 
likelihood of the hypothesis, whilst they simultaneously 
decrease their belief in the reliability of the reporting source 
(P(H) to P(H|Rep1); N = 100), BF10 = 5.958 * 107. That is, 
the introduction of a dissenting minority source on belief in 
the likelihood of the hypothesis (P(H|Rep2) – P(H|Rep3)) 
leads to a significant decrease (N = 100), BF10 = 281255.7. 

We next turn the high likelihood scenario (biologists 
predicting salmon growth). To test whether participants 

                                                             
5 The high likelihood scenario was identical to the above, but 

considered predictions that the Norwegian salmon population 
would grow over the next 5-year period. 

6 All analyses assume an uninformed prior. 

neither increase or decrease the reliability of sources that 
provide positive statements for highly likely hypotheses 
(hypothesis 2), we conducted a repeated measures ANOVA 
(P(Rel) to P(Rel1|Rep1)), finding no significant change (N = 
100), BF10 = 0.401. We do however note the introduction of 
a contradicting source (P(Rel1|Rep2) – P(Rel1|Rep3)) leads to 
a significant decrease in reliability of the first source (N = 
100), BF10 = 12458.36. Critically, given this introduction, 
and separating these results from those of the unlikely 
scenario, there was a substantial difference in the estimated 
reliability of the dissenter (µ = .489, σ = .207), and the first 
two (corroborating) reporters (Source 1: µ = .707, σ = .16; 
Source 2: µ = .717, σ = .156; N = 100), BF10 > 1 * 1010. This 
suggests that - while introducing uncertainty to the 
reliability of the corroborating sources - providing 
dissenting reports about a hypothesis with a high prior belief 
and two corroborating reports can significantly damage 
perceived reliability. That is, if a minority dissents against 
prevailing wisdom and goes against other witnesses, she 
may suffer a loss of reliability.  

We further note that as in the unlikely scenario, the 
introduction of a report from dissenting minority source on 
belief in the likelihood of the hypothesis (P(H|Rep2) – 
P(H|Rep3)) leads to a significant decrease (N = 100), BF10 = 
5.561 * 106. The main results are shown in Fig. 3.  

 

 

 

 

 

 

 

Fig. 3: P(Rel) and P(H) given reports1-3 

Results of shared reliability 
To test whether the impact of introducing a shared 
reliability among sources (hypothesis 3), we compare 
posterior degrees of belief in the hypothesis and the 
reliability of the sources.  

A repeated measures ANOVA was conducted on belief in 
the hypothesis (P(H)) for the introduction of the shared 
reliability information (i.e. P(H|Rep3) to P(H|SR)), with the 
inclusion of the shared reliability condition (high/low-
quality) as a between-subjects condition. 

For the unlikely scenario, belief in the hypothesis 
(economic crash), was affected by the introduction of a 
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shared reliability (main effect of introduction), BFInclusion
7 = 

110.1, and if shared reliability was high or low quality (low 
< high), BFInclusion = 272.1, demonstrating a successful 
manipulation check. Importantly, the significant interaction 
of shared reliability condition, and its introduction, BFInclusion 
= 550.8, revealed belief in the hypothesis decreased when 
the shared reliability was low-quality but increased when 
the shared reliability was of high quality. Consequently, the 
model with all the above terms included was the best fit, 
BFM

8  = 550.81, and significant overall, BF10 = 486.26.  
We observe the same effects for revision of reliability 

estimates. The main effect of an introduction of a shared 
reliability, BFInclusion = 4.798 * 109, and main effect of 
shared reliability condition (low-quality < high-quality), 
BFInclusion = 1.583 * 108, are best described by the significant 
interaction of the two, BFInclusion = 4.421 * 108, where high 
quality shared reliability leads to a minor increase in 
estimated reliability, whilst low quality shared reliability 
leads to a substantial decrease. Once again, the model with 
all the above terms included was the best fit, BFM= 4.421 * 
108, and significant overall, BF10 = 1.552 * 1010. 

The above analyses were then repeated for the likely 
scenario, where, against predictions, the belief in the 
hypothesis (salmon growth) was found to be unaffected by 
the introduction of a shared reliability, BFInclusion = 1.227, or 
its quality, BFInclusion = 0.194. However, the introduction of 
shared reliability was found to decrease estimations of 
source reliability, BFInclusion = 1.116 * 1010, and whether a 
shared reliability was high or low-quality led to higher or 
lower reliability estimates (respectively), BFInclusion = 5.082 
* 107, once more passing the manipulation check. Critically, 
reductions in reliability (given the introduction of a shared 
reliability among sources), is found to be localized to when 
the introduced shared reliability is of low-quality (right-
hand facet, Fig. 4), BFInclusion = 8.252 * 107. Finally, the 
model with the above terms included was the best fit, BFM = 
8.252 * 107, and significant overall, BF10 = 6.162 * 1010. 
The main results are shown in Fig. 4.  

                                                             
7 BFInclusion shows the change in odds from the sum of the prior 

probabilities of models including the effect, to the sum of the 
posterior probabilities of models including the effect. 

8 BFM shows the change from prior to posterior odds, given the 
model. 

Fig. 4: P(Rel) and P(H) given shared reliability 

Discussion and concluding remarks 
Despite the prevalence of dissent in public debates, the role 
of minority dissenters has not been adequately explored or 
modelled. This is a crucial function if to understand the 
functional impact of dissent in debates such as climate 
change or political predictions.  

The paper tests how people revise beliefs in the reliability 
of sources and a hypothesis given sequential reports. The 
two initial reports support the hypothesis while the 3rd report 
rejects it. First, P(Rel) initially decreases when the source 
provides a positive report for an unlikely hypothesis, but 
rebounds when the 2nd source corroborates the initial report. 
Additionally, P(H) increases for the same reports while 
P(Rel) does not change for predicting the likely hypothesis 
while P(H) increases slightly. This replicates findings from 
Madsen et al (2018) and follows Bayesian predictions.  
 Second, the negation of the hypothesis yielded novel 
results. In both scenarios, negation decreased P(Rel) for all 
sources, presumably as it introduces noise and uncertainty. 
P(H) decreases when the 3rd source rejects the hypothesis 
for the unlikely scenario, but does not decrease for the likely 
scenario. This suggests that while participants revise their 
belief in an unlikely hypothesis (a market crash within six 
months), they decrease their belief in the hypothesis when 
dissent is voiced against this idea. Comparatively, P(H) does 
not decrease with dissent in the likely scenario. Rather, 
P(Rel) for source3 decreases significantly given rejection of 
the likely hypothesis. P(Rel) also decreases for sources1-2 
given dissent in the likely case, but not to the same extent as 
is suffered by the dissenter.   
 Finally, shared reliability appears to work asymmetrically 
for consenters and dissenters. If the school enjoys a good 
reputation, perceived reliability increases for consenters, but 
less so for dissenters. If the shared reliability is perceived as 
high quality, people’s degree of belief in the hypothesis 
additionally increases. However, for both perceived source 
reliability and the hypothesis, we see a decrease when the 
shared reliability is of poor quality.  
 In all, the study suggests people are sensitive to source 
reliability as well as the structural relationship between the 
sources. Belief revisions generally follow Hahn et al. (2009) 
such that positive reports from very credible sources lend 
credence to the hypothesis. Additionally, participants update 
perceived source reliability in accordance with predictions, 
as supporting unlikely hypotheses is initially detrimental, 
but sequentially rebounds given corroboration. Finally, 
perceived partial dependence is crucial, as shared reliability 
moderates perceptions of the hypothesis and the reliability 
of all sources involved. In all, the study provides additional 
support for a Bayesian approach to source reliability.  
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Abstract 

Misinformation, and its impact on society, has become an 
increasingly topical field of study of late. A body of literature 
exists that suggests misinformation can retain an influence 
over beliefs despite subsequent retraction, known as the 
Continued Influence Effect (CIE). Researchers have argued 
this to be irrational. However, we show using a Bayesian 
formalism why this argument is overly assumptive, pointing 
to (previously overlooked) considerations of reliability of, and 
dependence between, misinforming and retracting sources. 
We demonstrate that lay reasoners intuitively endorse 
assumptions that demarcate CIE as a rational process, based 
on the fact misinformation precedes its retraction. Moreover, 
despite using established CIE materials, we further upturn the 
applecart by finding participants show CIE, and appropriately 
penalize the reliabilities of contradicting sources. 
 

Keywords: Continued Influence Effect; Negation; 
Reliability; Dependency; Reasoning 

Introduction 
Misinformation can have a lasting effect on beliefs that 
people entertain and on the inferences they can make about 
events1. Poor information, whether spread deliberatively or 
mistakenly, can have serious and widespread repercussions 
for society. For example, despite being corrected repeatedly, 
some people belief that there is a causal link between the 
measles mumps and rubella (MMR) vaccination and autism. 

This belief persists in some communities despite scientific 
evidence refuting the myth (Horne et al., 2015). Decreased 
acceptance of the MMR vaccination has contributed to a 7% 

                                                
1 We define information as any piece of information or evidence 
that is initially thought to be true, but which later turns out to be 
erroneous, but which can be corrected. Going beyond the current 
study, the intention behind the dissemination of misinformation is 
crucial (e.g. the difference between an honest mistake and a 
malevolent lie – both of which may provide poor information).  

drop in vaccination rates in the UK and a 1.7-fold increase 
in refusal to vaccinate in the US (Smith et al., 2008), and 
consequently, an increase in a vaccine-preventable disease. 

The harmful effects of misinformation and ineffectiveness 
of attempts to correct mistaken beliefs have become a great 
concern for contemporary society (Gordon, Brooks, 
Quadflieg, Ecker, & Lewandowsky, 2017; Lewandowsky, 
Ecker, Seifert, Schwarz, & Cook, 2012), and has recently 
become a weighty issue for governments, media 
organizations, and citizens (see Lewandowsky et al., 2017). 
Problematically, though, studies show that belief in 
erroneous information can persist even after it has been 
unambiguously corrected (Lewandowsky et al., 2012) 
Regardless of how information is corrected, research shows 
that it often fails to abolish the effects of misinformation 
(see Lewandowsky et al., 2012 for review). The so-called 
Continued Influence Effect (CIE) of misinformation refers to 
the consistent finding that information initially presented as 
true continues to influence beliefs and reasoning despite 
clear and credible corrections (Ecker et al., 2011a, 2011b; 
Johnson & Seifert, 1994; Rich & Zaragoza, 2016). 

In the paper, we explore two aspects of CIE. First, no 
normative account of how people should “optimally” 
process corrections to misinformation has been provided to 
date. CIE studies typically report the observed phenomenon 
in a variety of contexts and settings. To explore the effect 
systematically, we provide a Bayesian Network model to 
test whether CIE is truly irrational or if the phenomenon can 
be explained rationally. Second, past research shows the 
importance of dependency (Madsen et al., 2018). That is, 
whether a source is truly independent from another source, 
or if they are somehow related. This influences the impact 
of the report on the hypothesis and perceived reliability. In 
accordance with these studies, we manipulate the source of 
debunking such that the initial source debunks its own 
statement or a different source debunks the statement.  
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Exploring CIE through a formal reasoning model yields 
interesting results. First, we find a rational explanation for 
CIE. We show that belief in the hypothesis remains above 
prior level, but instead the reliability (in the second reporter 
case) is penalized. Second, perceived dependence influences 
the effect. Given a Bayesian network, CIE is irrational only 
insofar that the sources are entirely independent of each 
other. Comparatively, when considering reports temporally 
and dependent, CIE is entirely rational. Correcting is often 
done by a source that is, in some way, linked with the initial 
source of misinformation (e.g. a reporter working at the 
same network). This highlights a significant conceptual 
limitation to the way in which CIE is framed classically.  
Finally, we can demonstrate irrationality in a manner that is 
backwards to what is typically reported in CIE studies. In 
CIE studies, people should not stick with original beliefs 
given correction, but do so any way. We show cases where 
there are reasonable grounds for why people should stick 
with their original beliefs, but do not.  

The continued influence effect 
Continued influence studies examine corrections to 
misinformation using variants of a laboratory paradigm first 
developed by Wilkes and Leatherbarrow (1988; but also see 
Johnson & Seifert, 1994). There are two leading cognitive 
explanations for CIE (Gordon et al., 2018; Lewandowsky et 
al., 2012):  

First, the selective retrieval account argues that CIE 
occurs when correct and incorrect information are stored in 
memory simultaneously, and misinformation is activated 
but inadequately blocked (Ecker et al., 2011a). Second, the 
model updating account argues that people continually 
construct a mental event model as new information becomes 
available. Correcting information without providing a 
credible alternative (e.g. a competing causal explanation) 
leaves people with a gap in their mental model. On this 
view, people prefer a coherent but incorrect model to a 
correct but incomplete one and thus maintain the invalidated 
information (Ecker et al. 2010; Johnson & Seifert, 1994).  

A typical CIE task involves a series of sequentially 
presented statements describing an unfolding event, similar 
to a breaking news report. Misinformation that allows 
inferences to be drawn about the outcome of the event is 
presented early in the sequence, but retracted later. 
Participants’ event comprehension is assessed, typically to 
show that misinformation continues to influence people’s 
inferential reasoning even though they clearly understand 
and remember that the information was corrected (Johnson 
& Seifert, 1994). The effect persists even when given prior 
warnings about the persistence of misinformation (Ecker et 
al., 2010). The fact that retractions are often ineffective at 
‘removing’ misinformation from people’s understanding of 
events emphasizes the need to identify and model factors 
that contribute to the Continued Influence Effect. 

Sustained reliance on misinformation given a retraction is 
often depicted as a bias – or systematic deviation from a 
normative standard – and therefore irrational (e.g. 

Lewandowsky et al., 2012). This perspective assumes two 
things; first, that the optimal solution is always to disregard 
initially prior information in favour of new information, and 
second that the ‘true’ value of the retraction is known.  

Source reliability 
Establishing a source’s reliability is critical when deciding 
whether to rely on the information conveyed to us by other 
people, and may drive the CIE. Reliability can be separated 
into issues of: i) observational sensitivity, ii) objectivity, and 
iii) veracity (Schum, 1994). For example, jurors must 
establish whether a witness’ testimony is truthful and 
accurate in order to reach a verdict, and voters must 
similarly place their confidence in the statements of 
politicians when deciding who to vote for.  

While appeals to authority and reliance on testimonies 
traditionally have been seen as fallacoius (ad verecundiam) 
or as a shallow cue, Bayesian models have integrated 
reliability within a normative theory of reasoning (Bovens 
& Hartmann, 2003; Hahn et al,. 2009; Harris et al., 2015). 

People use a range of cues to evaluate a source’s 
reliability. For example, in the legal domain witnesses may 
contradict themselves or be contradicted by others, which 
may reassess the credibility (see Connor Desai et al., 2016). 
Moderating perceived source reliability is an sensible act if 
new information, additional contradictory or corroborative 
reports, or insight into whether or not the sources are related 
to each other is made known. In addition to new 
infomraiton, source dependecy moderates perceived 
reliability (Bovens & Hartmann, 2003; Madsen et al., 2018).  

Contradiction is particularly relevant to CIE studies where 
the misinformation and its retraction are typically issued by 
the same source. A source who announces that they 
previously gave incorrect information may appear less 
reliable than one who does not. Consistent with this, one 
CIE study found that distrust in the source of the retraction 
was a primary reason for disbelieving the retraction 
(Guillory & Geraci, 2010; 2013). Indeed, Lewandowsky et 
al., (2012) argue that source reliability (high and low) may 
facilitate ‘tagging’ of correct and incorrect information and 
facilitate retrieval of information when this information is 
made salient.  

Thus, perceived reliability moderates the degree to which 
people are willing to integrate reports from more or less 
reliable sources. If a highly reliable source provides report 
about an issue, the recepient should normatively revise her 
belief in the suggested direction. Second, reports from 
independent sources are more diagnostic than reports that 
stem from sources who share a common background. In 
order to model reliability estimates, belief in the hypothess, 
and to develop a formal model of CIE, we adopt a Bayesian 
approach.  

A Bayesian approach to source reliability 
As mentioned, CIE studies do not provide a normative 
account of how people should process retractions to 
misinformation. The lack of formalism is crucial as there 
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may be situations where continued reliance on 
misinformation is rational given the lack of information and 
inherent uncertainty of the situation. In such situations, 
people may use cues like reliability to assess the validity of 
misinformation and its retraction, and decide how much to 
incorporate these pieces of information into their beliefs.  

Bayes’ theorem gives a normative belief revision model. 
It integrates people’s subjective prior degrees of belief with 
the likelihood ratio to estimate the posterior degree of belief. 
It has been applied to conditional reasoning (Oaksford & 
Chater, 2007), argumentation (Hahn & Oaksford, 2006; 
2007), and other areas of cognition (Chater et al., 2010). 

To explore CIE formally, we use a Bayesian Network 
(BN) framework (Pearl, 2000). BNs use graph structures to 
represent the probabilistic relationships between hypotheses 
and evidence (including reliability), using conditional 
probabilities to represent the strength of relations, and show 
what inferences are rationally permitted from a given model 
given available information. This is an ideal method for 
examining whether CIE is rational in some circumstances, 
as it provides the means to test causal models of scenarios – 
including their models of the reliability of the sources 
providing information – and compare inferences to a 
normative standard (Fenton et al, 2013).  

Congruency of information with the misinformation and 
the reliability of sources providing the misinformation or the 
retraction are potential moderators of the CIE. BNs provide 
a formal model to test responses against model predictions 
and test foundational assumptions of the CIE.  

Comparing judgments to Bayesian predictions test if there 
are situations in which retaining belief in misinformation 
after a retraction is rational. Formally modelling the causal 
relations between information included in a scenario would 
make it possible to test participants’ causal models of 
scenarios. This provides an understanding of the cognitive 
mechanisms involved in the CIE.  

Method 

Participants: 101 participants were recruited from Prolific 
Academic (71 females, age = 31.57±9.6). Participants were 
paid £1.50 (~$1.97) and took 14 minutes (on average) to 
complete the experiment.  

Stimuli, Design & Procedure: To replicate CIE studies, we 
used stimuli adapted from past research (Johnson & Seifert, 
1994; Gordon et al., 2017, see Table 1 for an example of 
stimulus material). 
Table 1: Example of news report and comprehension probes 

 
It was a between-subjects study with the effect of retracting 
information was assessed between groups (Control, 
Retraction – Same Source, Retraction – Different Source). 
Participants were randomly assigned to a condition.  
Sentence 2 differed between control and retraction 
conditions for each event. In retraction conditions, sentence 
2 contained (mis)information. In the control condition, it 
contained circumstantial information to provide a baseline 
for the comprehension test. The key sentence (sentence 5) 
was identical in all conditions. Given exposure to sentence 
2, sentence 5 did or did not correct previous information. 
For source conditions, the source of the (mis)information 
(sentence 2) and retraction (sentence 5) were either the same 
(same source) or different (different source).  

In all, we tested four scenarios. Presentation order of the 
scenarios was randomized across participants. The scenarios 
used were selected from a set of eight pilot reports (N = 70) 

Figure 1. Mean comprehension scores, 
split by scenario (line) and condition 

(horizontal axis). Error bars reflect 95% 
CI. 
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where scenarios with the largest ‘continued influence effect’ 
of misinformation were chosen for the actual study. 

Prior to reading any scenario, participants provided prior 
estimates for their beliefs in the reliability of the sources of 
misinformation that would appear in the subsequent reports 
and whether they would provide reliable reports. This was 
measured on a scale of 0 (Extremely unlikely) to 100 
(Extremely likely).  

Further, to parameterise the model, participants provided 
six conditional probability estimates per report (24 in total). 
They rated their belief that the source of report 1 would 
make an erroneous statement in reporting about an event, if 
they were or were not reliable on the same scale as used for 
prior beliefs. Questions about the second reporter differed 
between the same and different source conditions. Eliciting 
conditional probabilities allowed for parameter-free models. 

Continued reliance of misinformation was measured by a 
set of comprehension probes that followed each scenario 
(see Table 1). Participants rated each probe on a 7-point 
scale from ‘strongly disagree’ to ‘strongly agree’. In line 
with previous CIE methods, probes referred to the critical 
information (sentence 5). Higher endorsement of 
comprehension probes measured the degree to which the 
misinformation presented in sentence 2 had been 
incorporated into a participants’ understanding of the report. 

After rating the probes participants provided their belief 
posterior probability on a similar scale used for prior beliefs. 
For example, in the scenario in Table 1, participants were 
asked: 1) Given everything you know so far about the 
incident in question, how likely do you think it is that 
the accident occurred because the driver was 

intoxicated/travelling over the speed limit? 2) Given 
everything you know so far about the incident in question, 
how likely to do you think it is that the police officer is 
reliable in their reporting? Participants who received a 
retraction from a different source as the misinformation 
provided an additional estimate for the reliability of the 
second reporter. 

Results 
Bayesian analyses were done with JASP statistical software 
(JASP Team, 2018) and assumed an uninformed prior. 

Comprehension Scores  

A Bayesian repeated measures ANOVA was used to 
determine the effect of condition and scenario type on mean 
comprehension scores. Strong evidence was found for the 
main effect of condition, BFInclusion = 1.917 * 1012, and 
scenario, BFInclusion = 5.44 * 109, but no interaction, 
BFInclusion = 0.122. The model including just main effects 
was the strongest fit, BFM = 131.26, and significant overall, 
BF10 = 2.105 * 1022. As illustrated in Fig. 1 below, scenarios 
differed in comprehension scores from one another, and 
there was a differential influence of condition.  

Critically, the effect of condition indicated significantly 
higher endorsement of comprehension probes following the 
presentation and retraction of misinformation compared to 
when no misinformation was presented at all. This indicates 
that, a CIE was observed across all scenarios, such that a 
retraction was insufficient to bring endorsement ratings back 
to baseline. 

Figure 2a. Group BN model for the retraction 
different condition, police officer scenario. 1) 

Baseline (no observation) stage, 2) Single positive 
(first) report stage (i.e. control condition), and 3) 
Final (retraction) state given a second, separate 

reporter. 

Figure 2b. Group BN model for the retraction same 
condition, police officer scenario. 1) Baseline (no 
observation) stage, 2) Single positive (first) report 

stage (i.e. control condition), and 3) Final (retraction) 
state given a second, report from the same reporter. 
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Bayesian Model Fits 
Using the conditional probabilities and priors elicited from 
participants, group means on these estimates were used to 
parameterize 2 group-condition models for each scenario. 
Although the conditional probabilities and priors for each 
first reporter and reliability node were fitted based on all 
participants, two important exceptions are noted. First, 
conditional probabilities for the second reporter were based 
solely on estimates from the condition of relevance (i.e. only 
estimates from the retraction different condition were used 
to parameterize the entailed different second reporter in that 
condition). Secondly, prior probabilities for each hypothesis 
were reverse-engineered (via Bayes Theorem) using the 
posteriors provided by control condition. More precisely, 
taking the control condition BN model, the posterior for the 
hypothesis was fitted, given the single positive report. 
Retracting the observation could reveal the approximate 
prior (absent observations) for that hypothesis. This “prior” 
was fitted into the models for the two retraction conditions. 
Figs 2a and 2b show example condition models for the 
Police officer scenario, fitted from participant data 
according to the protocol outlined above. Several important 
trends are noticeable: 

Firstly, as expected, given a single positive reporter (stage 
2), belief in the hypothesis (H) increases, and the predicted 
likelihood of corroboration from the second report 
increases. However, when the second, contradicting report 
is observed (stage 3), the belief in the hypothesis (H) does 
not return to prior (stage 1) levels. Instead, the reliability of 
sources decreases given the contradiction, this decrease is 
strongest in the second reporter (different condition), but is 
also substantial when the same reporter contradicts 
themselves (Fig. 2b, stage 2 to stage 3). 

Critically, the reason for this effect (retention of belief in 
H, but reduction in perceived reliability) is due to the 
capturing of the temporal dependence from first to second 
report. Put another way, the models capture the intuition that 
a second report is aware of the first report (whether 
internally in the case of the same reporter condition, or via 
general narrative in the different reporter condition). The 
manner and strength of this influence is then captured by the 
elicited conditional probabilities from participants. 

 
Figure 4. Posterior estimates of belief in the hypothesis (H), 

given all reports, split by scenario (line) and condition 
(horizontal axis). Error bars reflect 95% CI 

Participant Estimates 
Returning to participant data, we again use Bayesian 
repeated measures ANOVA to examine whether probability 
estimates correspond to the BN model predictions (and thus 
map onto a continued influence effect), or corroborate the 
comprehension score measures (and indicate an absence of 
CIE – against fitted normative prescription). 
    Hypothesis. Turning first to posterior estimates of belief 
in the hypothesis, we find main effects of condition, 
BFInclusion = 3.328 * 109, and scenario, BFInclusion = 41812.52, 
but no interaction, BFInclusion = 0.467. The model consisting 
of the main effects along was the strongest fit, BFM = 34.27, 
and significant overall, BF10 = 2.247 * 1014. As Fig. 4 
illustrates, these effects corroborate comprehension scores, 
wherein the effect of condition is driven by a reduction in 
belief in the hypothesis from control to retraction 
conditions. Crucially, this shows that participants generally 
deviate from the prescribed CIE effect entailed by the BN 
models, decreasing belief in the hypothesis below the 
control condition (and prior), given the retraction.  
     Reliability. Turning next to estimates of reliability, we 
add to the repeated measures ANOVA analysis a within-
subject factor of prior to posterior. Here we find significant 
main effects of condition (control > retraction different and 
same), BFInclusion > 1.00 * 1020, scenario, BFInclusion = 124.44, 
and prior-posterior (posterior < prior), BFInclusion > 1.00 * 
1020. Figs 5a-5c illustrate the significant interaction of 
condition and prior-posterior, BFInclusion > 1.00 * 1020, 
wherein reliability estimates increased in the control 
condition (Fig. 5a; where no contradiction occurs, and in 
line with the increase observed in Fig. 3a and 3b, stage 2), 
but decreased in both retraction conditions (Fig. 5b and 5c; 
also in line with model predictions illustrated in Fig. 3a and 
3b, stage 3). Lastly, a significant interaction of scenario and 
prior-posterior was also observed, BFInclusion = 75.92, 
wherein the spokesperson scenario entailed smaller changes 
from prior to posterior than the 3 remaining scenarios. The 
model including the above significant terms yielded the 
strongest fit, BFM = 484.97, and was significant overall, 
BF10 = 1.559 * 1028. 
 

  
Figure 5a. Control condition reliability estimates for 

reporters from prior to posterior (reports observed), split by 
scenario (lines). Error bars reflect 95% CI. 
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Figure 5b. Retraction different condition reliability 

estimates for reporters from prior to posterior (reports 
observed), split by scenario (lines). Error bars reflect 95% 

CI. 

 
Figure 5c. Retraction same condition reliability estimates 

for reporters from prior to posterior (reports observed), split 
by scenario (lines). Error bars reflect 95% CI. 

Finally, we note that the retraction condition showed no 
significant difference in posterior reliability estimates 
between the two different (first and second) reporters, BF10 
= 0.135, contrary to model predictions (wherein the second 
reporter should be more substantially penalized). 

Discussion and concluding remarks 
Previous CIE studies have consistently found that 

misinformation continues to be influence beyond a clear and 
credible retraction (e.g. Ecker et al., 2010; 2011a; 2011b; 
Johnson & Seifert, 1994; Rich & Zaragoza, 2016). 
Continued reliance on misinformation after a retraction has 
been depicted as a bias and therefore irrational 
(Lewandowsky et al., 2012). However, there is an argument 
that people should exhibit CIE if source reliability 
judgments are incorporated into how beliefs about 
misinformation are updated following a retraction. 

This paper’s aim was to formally model CIE, using a 
Bayesian Network framework, to capture the temporal 
dependency between misinformation and its retraction, and 
the impact this may have on source reliability. We 
compared participants’ judgments to Bayesian predictions to 

establish whether retaining belief in misinformation 
(hypothesis) after a retraction is, in fact, sometimes rational.  

Participants rated their belief in the hypothesis, and the 
reliability of sources, when there was no retraction of 
misinformation, when the retraction was offered by the 
same source as the misinformation, or by a different source 
than the misinformation, for a series of news reports.  

Behavioural measures showed the standard CIE across all 
scenarios. Comprehension of the news reports was 
measured to establish whether misinformation had been 
incorporated into participant’s understanding of the report 
despite having been retracted. A classic CIE was observed 
whereby misinformation continued to influence news report 
comprehension despite being retracted. The effect was 
observed whether the retraction was offered by the same or 
a different source to the misinformation. 

We also find a rational explanation for CIE. Qualitatively 
we show that belief in the hypothesis remains above prior 
level, but instead the reliability of the second reporter (i.e. 
the retraction) is penalised. Participant’s posterior estimates 
also decreased below their priors, and against what their 
model predicts. This finding is contrary to the typical 
account of CIE that people continue to rely on retracted 
misinformation even though they should. Instead, 
suggesting that people should continue to rely on 
misinformation but do not!  

Focusing on the condition in which misinformation and 
retraction come from the same source, participants decrease 
their estimate for the reporter after they have contradicted 
themselves, in line with model predictions. In the different 
source condition, participants decrease their estimates in the 
reliability of the first reporter (which is incorrect according 
to the model), and increase reliability estimates of the 
second reporter (which is correct according to the model). 
Interestingly, the second reporter was considered more 
reliable than the first in the police officer and reviewer 
scenarios (against model predictions), but less reliable than 
the first in the journalist and spokesperson scenarios (in line 
with model predictions).  

Taking together, we show that participants should in fact 
exhibit a CIE effect (according to fitted Bayesian Network 
models), and although we find this effect in with standard 
behavioural measures, we do not observe this with novel 
probability estimate (P(H) measures. Yet, we do find 
appropriate penalization in reliability estimates given a 
contradiction among reports – something hitherto unnoticed 
in CIE studies, but predicted by our formalism. 

To conclude, this research provides a formal account of 
CIE using the BN framework, and shows that continued 
reliance on misinformation is in some circumstances 
rational. This approach captures the qualitative inferences 
participants make about the reliability of sources of who 
provide contradictory information. These findings also 
suggest that perceived reliability moderates the degree to 
which people are willing to integrate reports from more or 
less reliable sources.  
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Abstract

This study experimentally investigated the effect of sugges-
tions from a physically present robot on human creative gener-
ation. In the experiments, we used a creative task in which the
participants were required to draw creatures living on a planet
other than the Earth, and a physically present robot, which pro-
vided suggestions for creative drawing to the participants with
speech sounds and physical movements. First, the results of
the pilot experiment confirmed that drawing creativity was en-
hanced for the participants supported by a robot; however, they
were unlikely to refer to the suggestions. Based on the re-
sults, two hypotheses were developed: the suggestions from a
robot offered a variety of different perspectives and facilitated
metacognition (Hypothesis 1), and the suggestions worked as
distractions and suppressed fixated perspectives (Hypothesis
2). The experiment was conducted to investigate these hy-
potheses. As a result, Hypothesis 1 was supported. The results
were discussed based on previous studies.
Keywords: Robot; Human-robot interaction; Creativity; Cre-
ative generation; Metacognition; Collaboration.

Introduction
Creative generation and collaboration
Creative generation is performed in various situations, such
as engineers thinking of new information tools, novelists
thinking of new stories, and chefs thinking of new recipes.
Guilford (1979) showed that creative generation involved two
types of thinking processes: divergent and convergent think-
ing. Divergent thinking is the process of generating multiple
possible ideas. By contrast, convergent thinking is the pro-
cess of examining the generated ideas to determine the best.
The ideas would be refined by alternately repeating these two
thinking processes. Also, Finke, Ward, and Smith (1992) de-
veloped the geneplore model of creative generation in which
there are generative and exploratory phases. In the genera-
tive phase, abstract representations of ideas called preinven-
tive forms are created. Following the generative phase, in
the exploratory phase, the generated ideas are interpreted in
a meaningful ways for specific purposes. The ideas become
sophisticated as these two phases are repeated one after the
other.

The scope of creative generation can be limited because
people generate ideas based on existing representations of
prior knowledge (Ward, 1994). Therefore, representational
change, or re-representation, in divergent thinking or the gen-
erative phase is crucially important. It occurs when a repre-
sentation described from a certain perspective is reinterpreted
from a different perspective (Ward, Smith, & Finke, 1999).

In the field of cognitive science, many previous studies
have shown that collaborative activities provide opportunities

for people to develop new perspectives. For example, people
reinterpret and deepen their knowledge by providing expla-
nations about their knowledge and asking reflective questions
to each other (Miyake, 1986). Also, in a collaborative prob-
lem solving situation, people develop abstract representation
of the solution by alternately taking the roles of a task-doer,
who externalizes their own ideas, and a task-monitor, who ob-
jectively reflects the others’ ideas (Shirouzu, Miyake, & Ma-
sukawa, 2002). Moreover, people can acquire an integrated
perspective of multiple viewpoints by taking a perspective
from others that is incompatible with their own perspective
(Hayashi, 2018). These previous studies show that it is im-
portant to interact with others to facilitate metacognition and
form new perspectives that cannot be achieved alone.

Human-robot interaction
The development of technology has brought the prevalence
of robots that support human physical and cognitive activities
(e.g. Ros, Baroni, & Demiris, 2014; Saerbeck, Schut, Bart-
neck, & Janse, 2010). However, there are not many studies
that experimentally investigated how robotic support influ-
ences human cognitive activities during human-robot inter-
action.

Leyzberg, Spaulding, Toneva, and Scassellati (2012) ex-
perimentally investigated how advice from a robot influenced
human problem-solving performance with a nonogram puz-
zle. Their study compared the effects of advice from a phys-
ically present robot, a robot displayed on a screen, and only
auditory sound. As a result, the participants supported by the
physically present robot solved the puzzle faster than the par-
ticipants supported by the displayed robot and auditory sound
after receiving advice multiple times.

Moreover, a physically present robot gave better impres-
sions to people than a virtually displayed robot or animated
character. In particular, people felt the robot was more lik-
able, helpful, enjoyable, trustworthy, creditable, and infor-
mative (Kidd & Breazeal, 2004; Powers, Kiesler, Fussell, &
Torrey, 2007). Also, people became more compliant with a
physically present robot than to a robot displayed on a screen
(Bainbridge, Hart, Kim, & Scassellati, 2011). These effects
were considered to occur because of the robot’s physical pres-
ence (Powers et al., 2007). On the other hand, it was more
difficult for people to recall suggestions from a physically
present robot than suggestions from a robot displayed on a
screen. Since people tended to allocate their attention to the
presence of the robot, they were considered to allocate less
attention to the contents of the suggestions and had diffi-
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culty recalling the suggestions (Powers et al., 2007). These
previous studies showed that suggestions from a physically
present robot provided different effects on people from those
provided from a robot or animated character displayed on a
screen and those in text or auditory sound.

Purpose of this study
The number of studies related to human-robot interaction has
been increasing. However, there are still few studies that in-
vestigated human cognitive activities supported by a phys-
ically present robot. In particular, not much is known about
how a robot could support human creativity. The focus of this
study was on human creative generation and how suggestions
from a robot influenced creativity.

Pilot experiment
The pilot experiment was conducted to confirm the effect of
the suggestions from a physically present robot on creative
generation and develop experimental hypotheses about the
features of the suggestions.

Experimental task
The task used in the pilot experiment was a creative task used
by Ward (1994). The participants were required to draw crea-
tures living on a planet other than the Earth.

The participants draw creatures on a canvas displayed on a
computer screen (Figure 1a) with a digital pen. The canvas
was created with HTML5 Canvas and JavaScript. The par-
ticipants could choose one of two colors, black and white, to
draw a line by physically tapping one of the square boxes on
the display. Also, they could change the line width and the
level of the transparency by tapping and moving the slider
bars before drawing the line. The software provided a redo
button to redo drawing a line, a delete button to delete all
the drawn lines on the canvas, and a submit button to save a
drawn creature as a picture file and to delete the creature from
the canvas.

Method
Participants Thirty university students participated in the
pilot experiment as volunteers.

Experimental design The experiment had a one-factor be-
tween participants design. The factor was the type of sugges-
tions (no-, text-, and robot-suggestions).

In the robot-suggestion condition, the robot, Palmi by
DMM.com LLC, was used (Figure 1b). The robot gave sug-
gestions for creative drawing to the participants with speech
sounds and the physical movements of moving the arms,
legs, or head according to entered commands. Also, the no-
suggestion condition was set up as a control condition in
which the participants performed the task without sugges-
tions.

Moreover, the text-suggestion condition was set up in
which the participants were given the same suggestions as

in the robot-suggestion condition. However, the sugges-
tions were displayed in letters in the lower right corner of
the display. Because text information allows people to care-
fully consider the meaning compared to auditory information
(Blasio & Milani, 2008), the suggestions in text were pre-
sumed to be actively referenced and thus enhanced the cre-
ativity of the drawing.

Figure 1: (a) A canvas displayed on a computer screen and
(b) the robot used in the experiments.

Suggestions For the robot- and text-suggestion conditions,
20 suggestions were created to encourage the participants to
use metacognition and consider their ideas from a variety of
different perspectives in divergent thinking or the generative
phase. Some of the suggestions are shown in Table 1.

Procedure Ten participants were randomly assigned to
each condition. First, the experimental task was explained
to the participants. After the participants received the expla-
nation of the drawing operations, they practiced drawing pic-
tures for five minutes. Following the practice, in the robot-
suggestion condition, the participants were told that the robot
in front of them would give them suggestions for creative
drawings during the task. Also, in the text-suggestion con-
dition, the participants were told that the suggestions for cre-
ative drawings would be displayed on the screen during the
task. After the explanation and instructions, the participants
performed the task for 20 minutes. All participants were in-
structed to draw as many creative creatures as possible.

In the text- and robot-suggestion conditions, 10 sugges-
tions were randomly selected from the 20 suggestions for
each participant and given in randomized order every two
minutes from the beginning of the task. The participants in
these conditions were instructed to refer to the given sugges-
tions as necessary.

After the task was finished under the robot- and the text-
suggestion conditions, the participants rated to what degree
the suggestions were referred to in order to draw creative
creatures with a 5-point scale (1: not referred at all - 5: ex-
tremely referred).
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Results
First, the average number of drawn creatures in each condi-
tion was 2.40 for robot-suggestion, 2.60 for no-suggestion,
and 2.80 for text-suggestion conditions. A one-way analysis
of variance (ANOVA) showed no significant differences in
the number of drawn creatures between the three conditions
(F(2,27) = 0.53, p = .60). The result showed that the partic-
ipants drew creatures to the same extent in the three condi-
tions.

Second, the creativity of the creatures was rated on origi-
nality using a 10-point scale (1: not original at all - 10: ex-
tremely original). Three independent raters who knew noth-
ing about the experiment were trained and then rated the orig-
inality of all creatures in randomized order. The rated scores
between the three raters were judged consistent (α = .69).

Based on the originality scores for each drawn creature
in the three conditions, a one-way ANOVA was performed
(Figure 2). As a result, there was a significant main ef-
fect (F(2,27) = 14.50, p < .001). A multiple comparison
test with Ryan’s method revealed that the score was signif-
icantly higher in the robot- and text-suggestion conditions
than in the no-suggestion condition (t(48) = 3.68, p < .001;
t(52) = 3.46, p < .001). However, there was no significant
difference between the robot- and text-suggestion conditions
(t(50) = 0.36, p = .72).

Moreover, a t-test was performed to compare the refer-
ence ratings between the robot- and text-suggestion condi-
tions (Figure 3). As a result, the rating was significantly lower
in the robot-suggestion condition than in the text-suggestion
condition (t(18) = 3.82, p < .001).

Discussion
First, the results confirmed that the suggestions from a robot
enhanced the creativity of drawings. Second, the participants
referred to the suggestions less frequently when given from
the robot than when displayed in text. In addition, the sug-
gestions in text were actively referred to and enhanced the
creativity as predicted.

Although the participants were unlikely to refer to the sug-
gestions from the robot over all, only some of the suggestions
might be referred to and encouraged the participants to use
metacognition and generate ideas from a variety of different
perspectives. However, there is another possibility that the
suggestions from the robot enhanced the creativity of draw-
ings by causing irrelevant distractions.

Because the suggestions from the robot were less likely to
be referred to, the suggestions might have tended to distract
the participants from focusing on the task. In creative gener-
ation, irrelevant distractions can be beneficial in suppressing
fixated perspectives and focusing on irrelevant information
(Amer, Campbell, & Hasher, 2016; Dijksterhuis & Meurs,
2006). Therefore, the suggestions from the robot were as-
sumed to work as irrelevant distractions and supported the
participants in suppressing fixated perspectives and ideas. As
a result, they might generate ideas from new perspectives and

Figure 2: Average originality score in each condition in the
pilot experiment. The error bars indicate the standard error.

Figure 3: Average reference rating in each condition in the
pilot experiment. The error bars indicate the standard error.

enhance the creativity of drawings.
In the following experiment, we conducted an experiment

to investigate the features of the suggestions from a robot with
considerations of facilitating metacognition and causing dis-
tractions.

Experiment
Method
Participants Sixty-seven university students participated in
this experiment for course credit.

Experimental design The experiment had a one-factor be-
tween participants design. The factor was the frequency of
the suggestions (high and low). The frequency of the sugges-
tions was manipulated by the number of suggestions provided
during the task. In the high-frequency condition, 12 sugges-
tions were given every two minutes for 24 minutes. Con-
versely, in the low-frequency condition, six suggestions were
given every four minutes for 24 minutes.

Suggestions and distractions In this experiment, two dif-
ferent situations were set up: the no-distraction and distrac-
tion situations. In the no-distraction situation, all suggestions
provided during the task were related to drawing creative
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creatures (Table 1). They were selected from the suggestions
used in the pilot experiment. Contrarily, the distraction situ-
ation was set up to provide apparent distractions, suggestions
completely unrelated to drawing creative creatures, in order
to enhance the effect of distractions (Table 2). In the distrac-
tion situation, half of the suggestions were selected from the
list in Table 1, and the other half were selected from the list
in Table 2. If the suggestions had prevented the participants
from focusing on the task and enhanced creativity, the effect
of distractions would have appeared prominently in the dis-
traction situation.

Table 1: A list of suggestions
Suggestions related to drawing creative creatures

1 Let’s think about the shape of the creature.
2 Let’s think about what kind of features the creature would have.
3 What kind of environment does the creature live in?
4 Let’s think about what the creative creature would be.
5 Let’s think about the movement of the creature.
6 Let’s reconsider the idea.
7 Let’s think about incidents that occur outside of Earth.
8 Let’s think in a different way.
9 How about combining different ideas?

10 Let’s think in different perspectives.
11 Let’s think about something that could be referred to.
12 What kind of features would the creature have?

Table 2: A list of distractions
Distractions

1 Look up to the ceiling and count 10 seconds as accurately as possible.
2 Close your eyes and count 10 seconds as accurately as possible.
3 Raise your feet and count 10 seconds as accurately as possible.
4 Let’s do a mental calculation. What is eight plus six minus seven?

(Silence for 3 seconds) The answer is seven.
5 Let’s do a mental calculation. What is four plus nine minus five?

(Silence for 3 seconds) The answer is eight.
6 Let’s do a mental calculation. What is seven plus five minus nine?

(Silence for 3 seconds) The answer is three.

Procedure The participants were randomly assigned to
each condition in each situation. As a result, 16 participants
were assigned to the low-frequency condition in the distrac-
tion situation and 17 participants were assigned to the other
conditions. All the participants performed the task with the
robot.

The task and the procedure were the same as in the pilot
experiment. However, in this experiment, although the task
display was the same as in the pilot experiment, an iPad by
Apple Inc. was used to draw the creatures. Also, each task
took 24 minutes. The suggestions or distractions were ran-
domly chosen for each participant and given in randomized
order.

After the task was finished, in addition to the reference rat-
ing, the participants in the distraction situation rated to what
degree the suggestions and distractions were followed with a
5-point scale (1: not followed at all - 5: extremely followed).

Hypothesis
In this experiment, the following two hypotheses were exam-
ined in each of the no-distraction and distraction situations.

Hypothesis 1: The suggestions from a robot enhance creativ-
ity by facilitating metacognition.

Hypothesis 2: The suggestions from a robot enhance creativ-
ity by causing irrelevant distractions.

If Hypothesis 1 were confirmed, the participants would re-
fer to the suggestions and generate creative ideas from the
perspectives of the suggestions. There would be more op-
portunities for the participants to achieve helpful suggestions
in the high-frequency condition than in the low-frequency
condition. Therefore, in the both no-distraction and distrac-
tion situations, the participants in the high-frequency condi-
tion would refer to the suggestions more frequently and draw
more creative creatures than those in the low-frequency con-
dition.

Contrarily, if Hypothesis 2 were confirmed, the sugges-
tions would distract the participants and enhance creativ-
ity; therefore, the suggestions would be unlikely to be re-
ferred to in order to draw creative creatures. There would
be more opportunities for the participants to be distracted in
the high-frequency condition than in the low-frequency con-
dition. Thus, in the both no-distraction and distraction situa-
tions, the participants in the high-frequency condition would
draw more creative creatures than those in the low-frequency
condition; however, they would refer to the suggestions as
frequently as those in the low-frequency condition.

Results
The average number of drawn creatures in the no-distraction
situation was 9.29 for the high-frequency and 10.41 for the
low-frequency condition. Also, the average number in the
distraction situation was 6.94 for the high-frequency and 8.56
for the low-frequency condition. The results of t-tests showed
that there was neither significant difference in the number
of drawn creatures between the two conditions in the no-
distraction situation (t(32) = 0.98, p = .33) nor in the distrac-
tion situation (t(31) = 2.18, p = .05). These results showed
that the participants drew creatures to the same extent in the
two conditions in each situation.

Also, the result of a t-test showed that there was no signifi-
cant difference in the rating, what degree the suggestions and
distractions were followed, between the high-frequency (M =
4.05) and low-frequency (M = 3.88) conditions in the distrac-
tion situation (t(31) = 0.49, p = .63). The result showed that
the participants followed the suggestions and distractions to
the same extent in the two conditions in the distraction situa-
tion.

For the analysis of the hypotheses, first, the originality of
the creatures was rated in the same way as the pilot exper-
iment. Three independent raters different from those in the
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pilot experiment were trained and then rated all creatures in
randomized order. The rated scores between the three raters
were judged consistent (α = .72).

Next, the average originality score of each participant was
calculated in each condition, and a t-test was performed on
the score in each situation (Figure 4). The results revealed
that in the no-distraction situation, the score was significantly
higher in the high-frequency condition than those in the low-
frequency condition (t(32) = 3.62, p < .001). In contrast, in
the distraction situation, there was no significant difference
between the two conditions (t(31) = 0.07, p = .94).

Moreover, a t-test was performed to compare the reference
ratings between the two conditions in each situation (Figure
5). The results indicated that in the no-distraction situation,
the rating was significantly higher in the high-frequency con-
dition than in the low-frequency condition (t(32) = 2.51, p <
.05). On the other hand, in the distraction situation, there
was no significant difference between the two conditions
(t(31) = 0.09, p = .93).

The results in the no-distraction situation supported Hy-
pothesis 1. However, the results in the distraction situation
did not support neither Hypothesis 1 nor 2.

Figure 4: Average originality score of each condition in (a)
no-distraction and (b) distraction situations. The error bars
indicate the standard error.

Discussion
In the no-distraction situation, the participants in the high-
frequency condition referred to the suggestions more fre-
quently and created more original creatures than those in the
low-frequency condition. This result supported Hypothesis 1,
that is, the suggestions from the robot enhanced creativity by
offering a variety of different perspectives to generate ideas
and facilitate metacognition.

However, the effect of facilitating metacognition was not
found in the distraction situation. This might be because
the number of the suggestions related to drawing creative
creatures was too small in the high-frequency condition, and
therefore, there were not enough opportunities to facilitate
metacognition. Also, the effect of causing distractions was
not found in the distraction situation. Baird et al. (2012)

Figure 5: Average reference rating of each condition in (a)
no-distraction and (b) distraction situations. The error bars
indicate the standard error.

showed that distractions which require light cognitive load
enhance creative generation. In their experiment, the partici-
pants who performed the undemanding preceding task, which
required cognitive load light enough to elicit mind wandering,
enhanced creativity in the following creative task, the unusual
uses task, more than those who performed the demanding pre-
ceding task, which required more cognitive load. The distrac-
tions provided in this study might be too demanding for the
participants to enhance creativity.

General discussion
Robots have been developed for a variety of applications.
However, there have only been a few studies that investigated
how a physically present robot could support human cogni-
tive activities. This study focused on creative generation to
investigate how suggestions from a robot would influence hu-
man creative generation. The results of the experiment re-
vealed that the suggestions from a robot enhanced creative
generation by offering a variety of different perspectives.

In human-human collaboration, representational change
occurs when people reflect their own and the other’s ideas
or knowledge by asking, explaining, or externalizing (e.g.
Miyake, 1986). The robot used in this study was not inter-
active; however, representational change might be caused by
the suggestions in the same manner as in the previous studies
of human-human collaboration. In particular, the participants
were considered to refer to some of the suggestions from the
robot and reflect their own ideas according to the suggestions.

Moreover, Okada and Ishibashi (2017) showed that in a
creative drawing situation, new perspectives in drawing were
acquired by copying and viewing other’s unfamiliar artworks,
and the creativity of drawings increased. However, in their
experiment, a human verbal suggestion, which recommended
creating original and creative drawings in different styles, did
not enhance the creativity of drawings. In contrast to the pre-
vious study, in this study, the suggestions from a robot with
speech sounds enhanced the creativity of drawings. Since the
robot provided multiple different types of suggestions during
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the task, at least some of them were assumed to encourage the
participants to consider their ideas from the viewpoints of the
suggestions.

Furthermore, in the pilot experiment of this study, although
the suggestions from the robot enhanced creativity, they were
less referred to than suggestions in text form. In contrast,
Leyzberg et al. (2012) showed that the advice from a physi-
cally present robot enhanced human problem solving perfor-
mance and indicated a possibility that people might perceive
the authority or social standing of a physically present robot
and take their advice seriously.

This difference was assumed to happen because of the dif-
ference in the interactivity of the robots. In the previous study,
the robot provided the advice according to the time required
to solve the problem. On the other hand, in this study, the
robot provided the suggestions without consideration of the
participants. Thus, the participants in this study might not
have perceived the sociality or interactivity of the robot to
take the suggestions seriously as in the previous study. An-
other possibility related to the type of task was also consid-
ered. In the previous study, a well-defined problem, nono-
gram puzzle, was used as the task. Because there were clear
solving strategies, the relevant advice about the strategies
could be provided to participants. In contrast, in this study, an
ill-defined problem, creative drawing, was used as the task.
Since there were several possible and different perspectives
to take for the creative drawings, there was a possibility that
many of the suggestions from the robot did not match their
ideas and likely were ignored during the task.

Finally, in this study, the suggestions from a robot were
made to facilitate metacognition. However, the enhanced cre-
ativity observed in this study needs to be ensured as the result
of facilitated metacognition. The results in this study could
not deny the possibility that the suggestions facilitated other
types of cognitive processes involved in creative generation
and enhanced creativity. Therefore, in our future study, we
will investigate how each suggestion from a robot influences
cognitive process and creativity.
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Abstract 

Despite the lack of invariance problem (the many-to-many 
mapping between acoustics and percepts), we experience 
phonetic constancy and typically perceive what a speaker 
intends. Models of human speech recognition have side-
stepped this problem, working with abstract, idealized inputs 
and deferring the challenge of working with real speech. In 
contrast, automatic speech recognition powered by deep 
learning networks have allowed robust, real-world speech 
recognition. However, the complexities of deep learning 
architectures and training regimens make it difficult to use 
them to provide direct insights into mechanisms that may 
support human speech recognition. We developed a simple 
network that borrows one element from automatic speech 
recognition (long short-term memory nodes, which provide 
dynamic memory for short and long spans). This allows the 
network to learn to map real speech from multiple talkers to 
semantic targets with high accuracy. Internal representations 
emerge that resemble phonetically-organized responses in 
human superior temporal gyrus, suggesting that the model 
develops a distributed phonological code despite no explicit 
training on phonetic or phonemic targets. The ability to work 
with real speech is a major advance for cognitive models of 
human speech recognition. 
Keywords: spoken word recognition; computational models; 
neural networks; deep learning 

Introduction 
Human speech recognition (HSR) poses some of the greatest 
unsolved scientific challenges in the cognitive and neural 

sciences. Despite a many-to-many mapping between acoustic 
patterns and percepts (for now, let us assume percepts are 
phonemes, i.e., consonants and vowels), listeners experience 
phonetic constancy: we hear what the speaker intends even 
though the same acoustic pattern can cue different phonemes 
depending on context, and different patterns can cue the same 
phoneme. This challenge is the lack of invariance problem.  

Many factors complicate the acoustic-perceptual mapping: 
(a) coarticulation (temporal and articulatory overlap of 
phonemes in series; Liberman et al., 1967), (b) lack of robust 
boundaries between phonemes or words (Cole & Jakimik, 
1980), and (c) shifts in the mapping due to variation in 
speaking rate (Miller & Baer, 1983), talker characteristics 
(Joos, 1948; Peterson & Barney, 1952), phonetic context 
(Liberman et al., 1967), coarticulation (Liberman et al., 
1952), and novelty of message content (Fowler & Hosum, 
1987). Similar problems are found in other perceptual 
domains (e.g., visual objects must be recognized despite 
variation in size, rotation, and illumination; DiCarlo & Cox, 
2007). However, the temporal and transient nature of speech 
compounds the challenge. 
 
Deep vs. minimal networks for speech recognition  
One might suppose that the lack of invariance problem has 
been solved in contemporary automatic speech recognition 
(ASR) systems, such as those used daily by billions of 
smartphone users. The deep-learning neural network models 
underlying the best ASR (Hinton et al., 2012) provide robust 
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real-world application but little guidance for theories of HSR. 
Deep nets for ASR require many complex and richly 
connected layers, as well as complex, carefully engineered 
training regimens.  

That said, researchers interested in HSR have developed 
less complex deep networks with the aim of illuminating 
possible mechanisms supporting audition and HSR. 
Nagamine et al. (2015), for example, examined hidden units 
of a 5-layer network trained explicitly on phoneme 
recognition and observed responses strikingly similar to 
phonetically-structured responses in human superior 
temporal gyrus (Mesgarani et al., 2014). Kell et al. (2018) 
used a deep network to achieve human-like accuracy on two 
unusual tasks: (1) recognizing the word at the center of a two 
second sample of speech and (2) musical genre identification. 
Their network had many layers and required complex 
training. The first 7 layers were shared for speech and music, 
but then it branched into specialized speech and music 
pathways (with 5 additional layers). The model surpassed 
standard spectrotemporal filter models of auditory cortex in 
predicting human cortical responses to natural sounds 
(measured with fMRI. Kell et al. suggested that deep 
networks might provide the only computational approach 
able to achieve human-like performance for natural stimuli.  

We optimistically disagree. Our aim is to develop 
maximally simple (minimal) models of HSR. Theoretical 
progress will be difficult if our models approach the 
complexity of their biological target (the neural basis for 
HSR). At the same time, we aim to grapple with details that 
have been left out of deep learning models of auditory 
perception. First, several models have achieved high 
accuracy by side-stepping the temporal nature of speech (e.g., 
by treating an utterance or sound as a static image, with time 
as one axis) rather than as a time series. Furthermore, such 
models have not addressed the kinds of human data of 
greatest interest to psycholinguists who study human spoken 
word recognition, such as the time course of lexical activation 
and competition (Allopenna et al., 1998).  

Simpler shallow computational models have been applied 
to grappled with over-time inputs and time course of lexical 
competition, but with two different limitations: (1) they do 
not use real speech as input  (instead using, for example, 
|abstract distributed phonetic features over time (TRACE: 
McClelland & Elman, 1986) or human diphone confusion 
probabilities (Shortlist B: Norris & McQueen, 2008); (2) they 
tend not to address learning. Models developed since the mid 
1980s have either adopted these simplifications in order to 
address the time course of spoken word recognition with 
large vocabularies, or have strived for greater realism but in 
small-inventory models (e.g., Grossberg et al., 1997), or have 
attempted to incorporate ASR approaches into cognitive 
models of spoken word recognition (e.g., Scharenborg, 2010; 
Scharenborg et al., 2005). Such approaches have led to 
genuine insights, but the models tend to have low accuracy, 
limited empirical coverage, or both.  
 

Minimal models from long short-term memory nodes  
Our aim is to develop a minimal cognitive model of HSR that 

could learn to map over-time speech to semantics, without 
explicit phonetic training, that remains simple enough to 
generate hypotheses for mechanisms that could support HSR. 
However, current network-based cognitive models of HSR 
do not appear adequate for processing real speech. 

Thus, we examined a variety of network architectures and 
elements used in network models used for ASR. We found 
that a two-layer recurrent network provides the needed power 
for our goal domain if its hidden units are long short-term 
memory (LSTM) nodes (Hochreiter & Schmidhuber, 1997). 
LSTM nodes add 3 internal gates and a memory cell that 
allow nodes to develop sensitivity to information over long 
time scales, mitigating the vanishing gradient problem 
(Hochreiter et al., 2001). In the following sections, we 
describe a new neural network model of HSR, EARSHOT 
(Emulation of Auditory Recognition of Speech by Humans 
Over Time), that we believe approaches the minimal 
complexity required to map real speech to semantics. 

Methods 

Network structure and parameters 
The EARSHOT network is schematized in Fig. 1. Its 256 
input units are fully connected to 512 LSTM hidden units. 
The hidden layer is fully recurrent (i.e., every unit has a 
connection to every other unit). A tanh activation function is 
applied to hidden outputs. The hidden units are fully 
connected to 300 output units. High accuracy on our task 
(described below) required ~500 hidden units (performance 
is not improved by increasing to 750 or 1000 hidden nodes).  

Materials 
We pseudo-randomly selected 1000 words from a list of 
uninflected English words, with the constraints that (a) word 
length varied from 1-8 phonemes (mean = 5.5) and (b) every 
phoneme had to occur in at least 10 words. We created speech 
files for each of the 1000 words pronounced by 10 talkers in 
the Apple text-to-speech application, say (5 females [Agnes, 
Kathy, Princess, Vicki, Victoria] and 5 males [Alex, Bruce, 
Fred, Junior, Ralph]). Mean duration was 659 ms (range: 
289-1121 ms). We also created 360 consonant-vowel (CV) 
and VC syllables for testing purposes (using 15 vowels and 
24 consonants). Sound files were converted to spectrographic 
representations with 256 channels in 10 ms steps with 
sampling rate of 8000 hz.  

We created random sparse vectors for each word as a proxy 
for semantic representations. Vectors had 300 elements, with 
10 “on” (set to 1, others set to 0). This common simplification 
is considered acceptable given the largely arbitrary mapping 
from form to menaing (e.g., Lazlo & Plaut, 2012).   

Training method 
We trained 10 instantiations of EARSHOT. For each model, 
a different one of the 10 talkers was excluded from training 
(reserved to test generalization to a novel talker). We 
excluded 100 different randomly selected words from each 
trained-on talker (reserved to test generalization to unseen 
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items from trained-on talkers). So for each model, the training 
set was 8100 input-output patterns, with all 10,000 pairs 
included for testing.  

Each training epoch included one presentation of each of 
the 8100 training items in random order with no pause or 
other indication of word boundaries. The target pattern was 
the semantic vector for the current word, and it was compared 
to the output at each time step. To enhance learning, we used 
minibatch gradient descent, Noam decay, and Adam 
optimizing (Vaswani et al., 2017). Full details are available in 
a longer preprint (Magnuson et al., 2018). Connections were 
trained using backpropagation through time (Werbos, 1988). 
Training accuracy largely plateaued by 8000 epochs. We then 
resumed training with formerly excluded talkers included. 
The logic was that when humans encounter new talkers, we 
presumably learn to adapt to them by learning any 
idiosyncratic aspects of their acoustics-to-percepts mapping 
(e.g., by using lexical hypotheses to guide learning). In 
simple tests of generalization, the model cannot learn. We 
continued training for another 2000 epochs (8001-10,000). 
 

Testing method Every 1000 epochs, models were tested with 
all 10,000 words (including excluded words and talkers). 
Successful recognition was operationalized as the output 
vector’s cosine similarity to the target exceed any other 
item’s cosine similarity to the output by at least 0.05 for at 

least 100 ms, and subsequently, no item could exceed the 
target’s cosine similarity to the output before word offset. 
 

Replicability We trained all 10 models 3 times; only minor 
variations were observed between iterations. We present 
results from the first run of each model in this report.  
 

Hardware and software Simulations were conducted on a 
Windows 10 workstation with an i7-6700k CPU, 64-gb of 
RAM, and a Titan-X (12-gb) graphics card. Simulations were 
implemented using Python 3.6 and TensorFlow 1.7. Each 
model required approximately 10 hours for training.  
 

Alternative architectures In developing EARSHOT, we 
explored dozens of combinations of candidate architectures 
and model elements. We limited networks to 2 layers of 
forward connections (inputsàhiddenàoutputs). We varied 3 
aspects of models: number of hidden units (typically from 
100 to 1000 nodes before rejecting a model if accuracy 
plateaued below 90%), hidden unit type (standard integrative 
nodes vs. LSTMs), and degree of recurrence (full recurrence, 
as in the model reported here, vs. single-step recurrence, as 
in simple recurrent networks; Elman, 1990). For inputs, we 
explored spectrograms at various resolutions, Mel Frequency 
Cepstral Coefficients (MFCCs), and cochleagrams. Most 
combinations failed to achieve high accuracy. Aside from the 
model reported here, the only combinations that achieved 
greater than 90% accuracy was an MFCC-based model that 
failed to show human-like time course despite high accuracy. 
Note that this does not mean that only a single set of 
parameters worked; the model described above begins 
achieving high accuracy with more than 256 LSTM hidden 
units, and maximal accuracy with ~500 or more LSTM nodes. 

Results 
Accuracy and time course  
We present key model behavior results in Fig. 2. Mean 
accuracy on training items was quite high (88%) after 8000 
epochs. Accuracy was 67% for excluded words from trained-
on talkers but only 33% for excluded talkers, with a very wide 
range (4% to 78%). When training resumed with all talkers 
and items included, performance improved rapidly (to 89% 
and 86% for excluded words and talkers, respectively, 93% 
for previously trained-on items).  

 Next, we consider the challenge of simulating the time 
course of HSR (Allopenna et al., 1998). This is a central 
behavioral target in psycholinguistics but has not been 
addressed in deep learning models of speech (Kell et al., 
2018; Nagamine et al., 2015). Our minimal model exhibits 
the correct qualitative pattern for phonological competition 
(Fig. 2B) and makes predictions similar to the gold-standard 
of HSR, TRACE (Fig. 2C; McClelland & Elman, 1986). This 
similarity might suggest that any model that can map speech 
inputs to word-form outputs (as in TRACE) or semantic 
outputs (EARSHOT) would exhibit this human-like time 
course. However, this is not the case. As we noted above, an 
MFCC-based model was able to achieve high accuracy, but 
could not simulate the patterns seen in Figs. 2B and 2C.  

 
Figure 1. Model input and structure. (A) Audio files are 
converted to spectrograms (B), with 256 channels (rows) in 
10 ms steps (columns). Color indicates amplitude (blue-red 
indicates low-high). (C). The model is a standard recurrent 
network, except "long short-term memory" nodes are used in 
the hidden layer, allowing it to become sensitive to multiple 
temporal grains. 
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Unpacking the model 
How can we determine how the model works, and how can 
its mechanisms guide theories of HSR (both cognitive and 
neural)? To address this, we borrowed an approach that 
Mesgarani et al. (2014) developed for decoding human 
electrocorticography data. We presented the model with all 
possible CV and VC vowels, and examined the responses of 
every hidden unit over time. For every hidden unit paired 
with every phoneme, we calculated a Phonetic Sensitivity 
Index (PSI). For example, for unit 239, we would note its 
mean activation in response to /b/ from the onset of /b/ to 100 
ms later. We then subtract unit 239’s response to each other 
phoneme in turn from its response to /b/. When the difference 
is > 0.3, the PSI for {239, /b/} would be incremented. We 
repeat this for all 39 phonemes. The maximum PSI for a unit-
phoneme pair would be 38 (indicating a unit that responded 
more strongly to that phoneme than to any other).  

We calculated the PSI for all unit-phoneme pairs. Then, we 
subjected the resulting unit-by-phoneme matrix to 
hierarchical clustering (Fig. 3). This allows us to ask whether 
phonetic structure emerges as the model learns to map speech 
to semantics, even though no explicit information about 
phonetic features or phonemes is given in training. 

About 50% of hidden units exhibited structured responses 
in the SI time window (20% of electrodes examined by 
Mesgarani et al. [2014] met their inclusion criteria). The 
hierarchically clustered PSI solution bears remarkable 
resemblance to that derived from electrodes in human 
superior temporal gyrus, with selective responses for 

phonetically similar phonemes.  
The PSI analysis reveals an internal phonetic code that 

emerges over training. However, hidden units have more 
complex dynamics than are revealed by the PSIs. Profiles 
include strong responses at phoneme onset, but also delayed 
and sustained responses (see Magnuson et al., 2018). In 
future work, we will explore how the full combination of 
response profiles support EARSHOT’s robust performance. 
It is also possible that the variety of response profiles 
observed in the model could be the basis for hypotheses 
regarding candidate response profiles that might occur in 
human cortical recordings.  

Discussion 
Decades after the lack of invariance problem – the absence 
of invariant cues to speech sounds (e.g., Joos, 1948; 
Liberman et al., 1952; Peterson & Barney, 1952) – was first 
described, speech science offers limited explanations for 
human phonetic constancy. A significant obstacle is that 
computational models of HSR have side-stepped the problem 
of working directly on the speech signal. Instead, models 
have focused on the challenges inherent in spoken word 
recognition beyond initial encoding, using simplified inputs 
such as gradient phonetic features (McClelland & Elman, 
1986), phonemes (Hannagan et al., 2013; You & Magnuson, 
2018), or human phoneme confusion probabilities (Norris & 
McQueen, 2008) instead of real speech. Ironically, 
simplifying assumptions can complicate theoretical 
challenges (Magnuson, 2008) by masking constraints (in this 

 
Figure 2. Model performance. (A) Accuracy by epoch averaged over 10 models. When training resumed with all items included (epochs 
8001-10,000), high performance was achieved quickly for all talkers. (B) Competition time course (correct trials), for 2 criterial competitor 
types. For a target (e.g., CAT), “Cohort” represents mean cosine similarity for words overlapping in the first 2 phonemes (CAN, CASTLE). 
“Rhyme” words rhyme with the target (BAT, SAT). “Unrelated” is the average for all words phonologically dissimilar from the target. This 
pattern closely follows human performance (Allopenna et al., 1998). (C) For comparison, we conducted simulations with the TRACE model, 
with its standard 212-word lexicon, 14-phoneme inventory, and idealized “pseudo-spectral” inputs. Crucially, EARSHOT displays the same 
rank ordering and similar timing for competitor types as the gold-standard TRACE model. 
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case, e.g., prosodic cues to phoneme identity or word length).  
Simplifying assumptions about input were motivated by 

complexity concerns. As McClelland and Elman (1986) 
argued, models aimed at guiding psychological theory must 
prioritize psychological over computational adequacy, 
favoring simplicity and understandability over full, end-to-
end modeling. A comprehensive and robust model that is 
itself too complex to understand offers little guidance to HSR 
theories.  

In developing EARSHOT, our aim was to maximally 
conserve psychological adequacy (i.e., simplicity) in a model 
that takes real speech as input. Borrowing one tool from ASR 
– long short-term memory (LSTM) nodes (Hochreiter & 
Schmidhuber, 1997) – allowed a shallow recurrent network 
to learn to map from speech to pseudo-semantics while 
exhibiting human-like dynamics of lexical activation and 
competition (similar to TRACE; Fig. 2). Generalization (on 
items from trained-on talkers that were not included in 
training, as well as talkers wholly excluded from training) 
was fairly low and quite variable. On the one hand, this 
represents a major advance, since there simply are no other 
cognitive models of HSR that operate on real speech. This is 
the first time such a simple model has been applied to 
problems entailed by doing so (talker variability, etc.). On the 
other hand, relatively low and variable generalization may 

reflect the degree to which the model memorizes training 
patterns. In ongoing work, we are exploring the use of more 
variable inputs, but ultimately, we must move to using open-
ended training items produced by natural talkers. 

Another contrast with other models of HSR is that 
EARSHOT is a learning model. Although we have thus far 
used an unnatural training regimen, EARSHOT allows the 
exploration of more naturalistic learning.  

Admittedly, how the model succeeds in learning to map 
speech to semantics is not yet completely clear. By importing 
techniques from human electrocorticography (Mesgarani et 
al., 2014), we were able to track responses of hidden units to 
specific phonemes (Fig. 3) and observe the model’s emergent 
sensitivity to phonetic structure. It develops this sensitivity 
without any explicit training or information about phonetic 
features or phonemes. Deeper understanding will require 
more complex analyses of not just hidden units, but also 
output units and weight layers.  

However, the preliminary similarity of EARSHOT’s 
hidden unit responses to responses in human superior 
temporal cortex (Mesgarani et al., 2014) suggests that our 
approach has potential for new means of developing 
cognitive models that are potentially linkable to the neural 
substrates supporting HSR. Speculatively, we would propose 
that response profiles observed in hidden units in a model like 

 
Fig. 3. Phonetic sensitivity revealed by hierarchical clustering. Phonetic Sensitivity Index (PSI) based on hidden unit (x-axis) responses in 
the presence of specific phonemes. For every hidden unit-phoneme pair, PSI was incremented for every phoneme to which the hidden unit 
responded substantially more weakly (yellow indicates high selectivity, with maximum PSI of 38, given 39 phonemes). 246 HUs showing 
selective responses are included. We used hierarchical clustering to sort both axes, revealing substantial structure in hidden unit responses. 
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EARSHOT could provide hypotheses for human cortical 
responses. 

In conclusion, EARSHOT may provide a first step towards 
a comprehensive solution to the overarching challenge for 
theories and models of HSR – the lack-of-invariance 
problem. Simulations on previously out-of-reach topics 
(talker and rate variability, etc.) can be conducted with the 
same materials presented to human listeners. Our aim in this 
brief report is to provide a snapshot of the basic properties of 
EARSHOT. In a longer subsequent report, we will describe 
our ongoing work to more fully assess the capabilities of the 
model. 
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Abstract

Emergence of collective cooperation in an inherently selfish
society is a paradox that has preoccupied biologists, sociol-
ogists, and cognitive scientists alike for centuries. We pro-
pose a computational model and demonstrate through simula-
tions how collective cooperation can emerge from selfish inter-
ests: the goal of improving each individual’s own rewards. We
also demonstrate how the same selfish interests lead to the dy-
namic emergence of a network of interconnected agents. Our
model includes two simple mechanisms: Selfish-Trust (ST)
and Selfish-Connection (SC). ST involves the possibility of re-
lying on others in a society of agents when it is beneficial to
the individual, and SC involves the possibility of connecting to
other agents when those agents help improve the individual’s
own benefit. Our simulation results suggest that collective co-
operation can emerge from ST and a complex dynamic net-
work can emerge from ST and SC. The simulated data demon-
strate an important property of many living organisms: pat-
terns of temporal complexity, which are essential to transfer
information among agents of any society of living beings.
Keywords: Altruism Paradox, Emergence of Cooperation,
Selfishness, Trust, Networks, Artificial Intelligence

Introduction
For Charles Darwin (Darwin, 1871) altruism remained a para-
dox: the act of sacrificing an individual’s own benefit for
the benefit of the collective community of living organisms
was regarded as a contradiction to evolutionary theories. The
dilemma of emergence of cooperative behavior in situations
in which there is a large incentive to defect for the individual
benefit has been widely studied in sociology and cognitive
sciences. The Prisoner’s dilemma (PD) has been a leading
metaphor for the study of the evolution of cooperative behav-
ior in populations of selfish in which selfishness is more re-
warded in the short-term (M. Nowak & Sigmund, 1993; Gon-
zalez, Ben-Asher, Martin, & Dutt, 2015).

The PD, dates back to the early development of Game The-
ory (Rapoport & Chammah, 1965), and it is a common ab-
straction of the essential elements of many naturalistic situ-
ations involving cooperative behavior. It is generally repre-
sented with a payoff matrix that provides payoffs according
to the actions of two players (see Table 1). When both play-
ers cooperate, each of them gains the payoff ∏(t) = R, and
when both players defect, each of them gains ∏(t) = P. If
the player i defects and player j cooperates, player i gains the
payoff ∏(t) = T and player j gains the payoff ∏(t) = S and

Player j
C D

Player i C (R,R) (S,T )
D (T,S) (P,P)

Table 1: The general payoffs of PD game. The first value of
each pair is the payoff of agent i and the second value is the
payoff of the agent j.

vice versa. The constraints on the values of the payoffs in the
PD are T > R > P > S and S+ T < 2R. The temptation to
defect is established by setting the condition T > R.

The dilemma is that, while the longer-term best mutual ac-
tion is to cooperate, in the short-term each individual would
prefer to defect because it indicates a higher reward to the in-
dividual. Assuming that the other player also searches for its
own individual maximum reward, the pair will end up in a
D−D situation with the minimum payoff for the two players
2P.

How do individuals realize that cooperation is mutually
beneficial in the long-term? this question has been addressed
by many researchers, at various levels of inquiry, involving
pairs of agents (Gonzalez et al., 2015; Moisan, ten Brincke,
Murphy, & Gonzalez, 2018) as well as larger social networks
(M. Nowak & Sigmund, 1993). Research suggests that, at
the pair level, people dynamically adjust their actions accord-
ing to their observations of others’ actions and outcomes;
at the network level, research suggests that the emergence
of cooperation may be explained from network reciprocity,
where individuals play with those agents with whom they
are already connected in a network structure. The demon-
stration of how social networks and structured populations
with explicit connections foster cooperation was introduced
by Nowak and May (1992). Alternative models based on Net-
work reciprocity assume agents in a network play the PD with
the agents with whom they have specific interconnections.
Agents act by copying the strategy of the richest neighbor,
basing their decisions on the observation of the others’ pay-
offs. Thus, network reciprocity depends on the existence of
a network structure (an already predefined set of connections
among agents) and on the awareness of the behavior and pay-
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offs of interconnected agents. Network reciprocity assumes
that the evolution of cooperation is a function of the differ-
ence between the payoffs of the interacting agents.

Thus, past research assumes that the emergence of collec-
tive cooperation requires the observation of others’ actions
and/or outcomes and the existence of predefined connections
among agents. Indeed, empirical work suggests that the emer-
gence of cooperation depends on the level of information
available to each agent (Martin, Gonzalez, Juvina, & Lebiere,
2014); and the less information about other agents exist, the
more difficult, and perhaps the longer it takes, for cooperation
to emerge (Martin et al., 2014; Rapoport & Chammah, 1965).
However, other experiments suggest that humans do not con-
sider others’ payoffs when making their decisions, and that
a network structure does not influence the final cooperative
outcome (Fischbacher, Gächter, & Fehr, 2001). Indeed, in
many aspects of life, we influence others through our choices
and others’ choices affect us, but we are not necessarily aware
of the exact actions and rewards received by others affecting
us. For example, when a member of society avoids air travel
in order to reduce the individual’s carbon footprint, he or she
might not be able to observe whether others are reducing their
air travel too, yet rely on decisions others make, influencing
the community as a whole. It is thus, difficult to explain how
behaviors can be self-perpetuating even when the source of
influence is unknown (Martin et al., 2014).

In this research, we aim at advancing our understanding
of the emergence of collective cooperation in the absence of
explicit knowledge of others’ actions and outcomes, and in
the absence of an explicit predefined network structure that
connects agents in a society. We introduce an algorithm (Liv-
ing Thing, LT) to demonstrate that collective cooperation can
emerge and survive between agents, out of selfishness (i.e.,
the individual’s need to act on their own personal benefit),
and in the absence of others’ information (i.e., without a need
to any predefined network). We aim at developing hypothe-
ses that can help resolve social dilemmas that exist in the real
world. For example, if we understand how collective coop-
eration emerges only from the decisions of each individual,
we could propose solutions that reduce the dilemmas in so-
cial problems such as littering in public places or the lack of
contributions to a reduction of CO2 in the atmosphere (Martin
et al., 2014).

A LT agent will act according to the reinforcement of its
own past actions (Reinforcement Learning, RL), but it will
rely on two mechanisms that may overwrite the agent’s RL
actions: Selfish-Trust (ST) and Selfish-Connection (SC). ST
is a decision to follow or rely on other agent’s decision ex-
pecting that it will improve the own agent’s reward with re-
spect to the agent’s own previous payoff. ST is expected to
turn the initially defector agents to agents that cooperate most
of the time. SC is a mechanism that helps agents learn who to
play with: agents increase the propensity of playing with the
same other agent if the payoff received after playing with that
other agent is higher than the agent’s own previous payoff.

Past models of network formation rely on a concept of pref-
erential attachment (PA) (Barabási & Albert, 1999), which
uses rules according to which an agent would have a higher
chance of linking with other agents that already have many
links (i.e., high reputation nodes). In contrast, LT demon-
strates that such propensities to connect to other agents
emerge dynamically, according to the experienced benefits
that the other agent brings to the individual’s own benefit
(SC).

We carry an analysis of the emergence of cooperation from
these mechanisms. The simulation results hint at how to ex-
plain emergent collective cooperation from individual selfish
interests. An important hypothesis emerging from this work
is that cooperation can emerge and survive out of the selfish-
ness of agents even when there are no specific awareness of
outcomes of other agents, and that a network structure can
emerge dynamically from the connections guided by self in-
dividual interests.

Living Thing (LT) Algorithm
Figure 1 shows one-time cycle of the LT algorithm from the
perspective of one of the agents, agent i, but every step is
executed for agent j simultaneously. In Step 1, a pair of ran-
domly selected agents i and j ”agree” to play. Only one pair
of agents is selected at each time cycle. The following are
general notations in the algorithm: Vi is the decision of the
agent to Cooperate (C) or Defect (D); r represents a random
number in the interval [0 1] which should be generated when-
ever it is called in the algorithm; ∆ is a positive number that
represents an increase in three possible cumulative tenden-
cies: to play C or D, to trust the paired agent or not, or to
play again with a previous agent. These cumulative tenden-
cies increase by ∆ when the benefit of the agent i changes with
respect to its previous benefit and if there is no change then
we set ∆ = 0 which means no change happens in the system.
∆, in general, can be a function of the difference between two
past payoffs of the agent and it can be different for differ-
ent cumulative tendencies, but it does not change the general
results presented later (the form of sensitivity to payoffs is
important when two systems interact with each other which
is out of scope of this paper).

The following steps are executed in each time t of the al-
gorithm:

Pairing Agents (1)
Agent i and agent j get picked randomly. Agent i at time t has
the propensity Pi j(t) = Mi j(t)/∑k Mik(t) to play with agent
j. 0 < Pi j(t) < 1. Mi j(t) is cumulative tendency for agent i
to pick agent j to play at time t. This cumulative tendency
changes at step 7 according to the last two payoffs received
by agent i.

At the same time, agent j has a propensity Pji(t) =
M ji(t)/∑k M jk(t) to play with agent i. 0 < Pji(t) < 1. Two
agents i and j pair-up if two random numbers, 0 < r1 < 1 and
0 < r2 < 1, satisfy inequalities r1 < Pi j(t) and r2 < Pji(t).

2255



Figure 1: Flowchart of the LT algorithm. ”Y” and ”N” letters represent ”Yes” and ”No”, respectively.

Otherwise another two agents are randomly selected in each
time t.

Reinforcement Learning (RL) (2)
Agent i initially selects an action by reinforcement learn-
ing (RL): This agent has the propensity PRLCi j(t) =
RLCi j(t)/(RLCi j(t)+RLDi j(t)) to pick C and has the propen-
sity PRLDi j(t) = RLDi j(t)/(RLCi j(t)+RLDi j(t)) to pick D
as it’s next potential decision.

RLCi j(t) and RLDi j(t) are cumulative tendencies for agent
i playing with agent j, at time t, for choice C or D, respec-
tively. These cumulative tendencies change at step 6 based
on the last two payoffs of agent i.

To select the action, a random number r gets picked and if
r < PRLCi j(t) then it’s next decision will be C otherwise will
be D. The same process applies for agent j.

Selfish-Trust (ST) (3)
Instead of executing the decision determined by RL in Step
2, agent i has a chance to trust the decision made by agent j
made using RL in Step 2, and with whom agent i is paired
with. The propensity that agent i relies on the decision of
agent j is: PSTi j(t) = STi j(t)/(STi j(t)+RLi j(t)). STi j(t) and
RLi j(t) are cumulative tendencies for agent i to execute its

choice based on ST from agent j, at time t, or to execute its
choice based on RL respectively. These cumulative tenden-
cies update in step 5 based on the last two payoffs of agent
i. Again, if a random number r is less than PSTi j(t) then ST
happens.

Evaluating Own Payoffs (4)
At time t agent i after executing its C or D action while play-
ing the PD game with agent j, receives the payoff ∏i j(t).
The last two payoffs of the agent i are used to determine the
changes in its accumulative tendencies: δ∏i jk(t) = ∏i j(t)−
∏ik(t−1), where agent (k) is the agent that played with agent
i in trial t − 1. In the flowchart we showed this quantity as
δ∏.

Update of cumulative tendency of ST or RL (5)
If agent i used ST and after playing with agent j its payoff is
higher than its previous payoff, δ∏i jk(t) > 0, then the accu-
mulative tendencies STi j and RLi j , for the next time agent i
and j, change to STi j +∆ and RLi j−∆. The same happens for
agent j.

Similarly, if agent i used RL and after playing with agent
j its payoff is higher than its previous payoff, δ∏i jk(t) > 0,
then the accumulative tendencies RLi j and STi j, for the next
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Player j
C D

Player i C (1,1) (0,1.9)
D (1.9,0) (0,0)

Table 2: The payoffs of PD game used in the simulations. The
first value of each pair is the payoff of agent i and the second
value is the payoff of its pair, agent j.

time agent i and j pair up, change to RLi j +∆ and STi j−∆.
The same happens for agent j.

Update of cumulative tendency to choose C or D (6)
Step 6 is only active if the agent decided to use RL is step 3. If
agent i played with agent j and received a payoff higher than
its previous payoff, δ∏i jk(t)> 0, and this happened because
agent i played C, then the accumulative tendencies RLCi j and
RLDi j, for the next time agent i and j pair up, change to
RLCi j +∆ and RLDi j +∆. If the increase happened because
agent i played D, then the accumulative tendencies RLDi j and
RLCi j , for the next time agent i and j pair up, change to
RLDi j +∆ and RLCi j−∆. The same happens for agent j.

Selfish-Connection (SC) (7)
In this step the cumulative tendency to play with a spe-
cific agent changes. If agent i, after playing with agent j,
receives higher benefit with respect to its previous payoff,
δ∏i jk(t) > 0, then the cumulative tendency of pairing with
agent j, Mi j, increases to Mi j +∆ and for the rest of the cu-
mulative tendencies decreases to Mil −∆/(N − 1), l 6= j. If
δ∏i jk(t) < 0, then the cumulative tendency of pairing with
agent j, Mi j, decreases to Mi j−∆ and for the rest of the cu-
mulative tendencies increases to Mil +∆/(N−1), l 6= j. The
same happens for agent j.

Simulation Methods
We studied a system with N = 100 agents. Initially all the
agents are defectors, have payoff of zero, have more chance
to stay as defector; RLCi j(0) = 1, RLDi j(0) = 99, have more
chance to use RL over ST; STi j(0) = 1, RLi j(0) = 99, and
have equal chance to pair up with other agents; Mi j(0) = 100.
We set ∆ = 10. ∆ is the property of the system and shows the
sensitivity of the agent to the feedback from its two last pay-
offs. Smaller ∆ decreases the rate of reaching to cooperation
but doesn’t change the dynamical properties of the system.
The payoffs matrix used has the values shown in Table 2 as
suggested by Gintis (2009): R = 1, P = 0 and S = 0. So,
the maximal possible value of T is 2. We selected the value
T = 1.9, which gives a very strong incentive to defect.

Results
Emergence of Cooperation from ST
Here we show that simple mechanism of ST can lead agents
who play PD game (which has a high tendency to defect) to-
ward cooperation. Figure 2 shows the proportion of coopera-
tion in simulations that rely only on the RL mechanism (blue

curve) compared to the emergence of cooperation when the
simulations rely on the additional ST mechanism.

Figure 2: Top panel: the orange curve is the ratio of Cooper-
ators vs. time for N = 100 agents, randomly paired up to play
PD game and used ST (steps 7 in LT algorithm inactive) for
updates of the strategy and cumulative tendencies. The blue
curve is the ratio of cooperators for N = 100 agents, randomly
paired up to play PD game and just used RL for the decision
making process (steps 3 and 7 in LT algorithm inactive). Bot-
tom panel: emergence and evolution of the probability of trust
of unit 1 the other 9 agents in a system with 10 agents, used
ST to update their strategies and cumulative tendencies. The
thicker, black curve in this figure is the average of all the nine
probabilities of trust

The blue curve in the top panel of Figure 2 shows the time
evolution of the ratio of cooperators when RL is the only
mechanism that agents use to update their strategy (steps 3
and 7 are inactive).

The orange curve in the top panel of Figure 2 shows the
emergence of cooperation between agents when at any trial
two of them (out of 100) paired up randomly and used ST
(steps 7 in LT algorithm inactive) to update their strategy (C
or D) and their cumulative tendencies. The system reached its
dynamic equilibrium after about 2×106 and sustained around
the average ratio of cooperation of 0.9.

This shows the effect of ST on improving the level of coop-
eration compared to only RL. In the absence of ST the ratio of
cooperators fluctuates around 0.3 which means the majority
of agents are defectors.
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The nine curves in the bottom panel of Figure 2 are the
chances that one of the agents might trust others in a system
with 10 agents. The thicker, black curve is the average of the
STs between agent 1 and the other nine agents. The chances
of ST increased and sustained to about 0.9. This means that
the agent learns that ST has benefit for it (and for the whole
society). The payoff of the individual is not shown here be-
cause it is proportional to the level of cooperation: more co-
operation results in more payoff for individual agent and for
the emerged group. In conclusion, cooperation emerges and
survives because ST lets the strategies to spread between the
agents, if it benefits them individually.

Emergence of Complexity over time
The analysis of the fluctuations of a time series gives us a
measure for the complexity of the system. We define the
events in the time series as the times the time series crosses
its mean value. The distribution of the time intervals between
the two consecutive events is of interest (Figure 3).

Figure 3: Demonstration of defining events in a time series.
The blue curve is a zoomed in part of the Ratio of Coopera-
tors’ time series (as an example) and the horizontal red line
is its mean value. Whenever the time series crosses the mean
value is defined as an event. The distribution of the time in-
tervals between two consecutive events gives a measure for
the complexity of the system (complexity index µ).

We collect all the time intervals between two consecu-
tive events (τ’s) and evaluate the probability density function
(PDF) ψ(τ). If the resulting distribution is Poisson then the
dynamic of the system is random and obeys ordinary statis-
tics. But, if the PDF is a power law; ψ(τ) ∝ 1/τµ, then the
dynamics falls in the category of the complex systems, for
example, the dynamics of the brain. The parameter µ, the
slope of the Inverse power law in a log-log plot, is a mea-
sure for the complexity of the time series: when µ > 3 then
the system is ordinary while for 1 < µ < 3 there is Ergodicity
Breaking and the system does not obey ordinary statistics.

Temporal criticality is crucial for transfer of information
between two intelligence systems (Aquino, Bologna, West,
& Grigolini, 2011). To measure the complexity index µ of

the time series of the ratio of cooperators on the four cases
of emergence of cooperation (top panels in Figure 2 and Fig-
ure 6), we studied their fluctuations in the asymptotic regime
(t > 5×106) around their mean value.

Figure 4 shows that the time series of the ratio of cooper-
ators for both cases where agents used ST or just used RL,
time series of top panel in Figure 2, have inverse power law
PDF with the same complexity index of µ = 1.3 (which falls
in the interval 1 < µ < 3). The difference is that the linear
part of the distribution for the first case, where ST exists, is
extended toward larger τ’s which means the system is more
complex respect to the latter case.

Figure 4: The PDF of the time intervals between the two
consecutive events of the time series of Figure 2 (in log-log
scale).

Figure 5 shows the PDFs of the time series of the ratio of
cooperators for the cases where agents are using ST SC (LT)
or RL SC for their evolution, top panel in Figure 6. Both
cases have an inverse power law PDF. The PDF of the first
case where ST and SC are both active shows very extended
linear part with complexity index of µ = 1.73. This complex-
ity is similar to that of the time series of the living things
(Allegrini, Paradisi, Menicucci, & Gemignani, 2010).

On the other hand, the complexity of the second case is
similar to the system where agents were using just RL (blue
curve of Figure 5). This means that SC could increase the
complexity of the system where ST was already in action.

Emergence of connections with other agents

In this section we add another level of learning to ST by let-
ting the agent to find the agents which playing with them in-
creases its payoff respect to its previous payoff ( all sections
of the LT algorithm active). The aim is to show that a dy-
namic complex network emerges naturally and from the ST
and SC mechanisms of the LT model.

The blue curve in the top panel of Figure 6 is the ratio of
cooperators when SC is added to RL (section 3 of the LT
algorithm inactive). The blue curves in the top panels of Fig-
ure 2 and Figure 6 are very similar, which means that adding
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Figure 5: The PDF of the time intervals between the two
consecutive events of the time series of Figure 6 (in log-log
scale).

the ability to the agents to select their partner is not favor-
ing cooperation when ST is inactive. The reason is that only
when ST is active the level of cooperation between the agents
increases and because of mutual benefit, which is stable, an
agent can rank the links by changing the chance of playing
with other agents based on the increase on its last two pay-
offs.

To illustrate this, we plot the chances of an agent (called
agent 1) to trust the other 9 agents using LT algorithm in the
bottom panel of Figure 6. This figure shows that the agent
trusts some of the agents more than others, most of the time,
and only from time to time it trusts other agents. But later on,
the agent starts to trust some agents most of the time. The
thicker, black curve in this figure is the chance that the agent
( 1) connects to the agent corresponding to the purple curve.
The similarities between the red and purple curves show that
the agent 1 learns to connect with the agent which it is most
trusting, most of the time. The preferential connections here
are dynamic and are based on the perception of the benefit
that an agent receives from the other agents. This process
creates connections among agents that are dynamic. Some
connections become stronger and others become weaker ac-
cording to the SC mechanism.

Figure 7 demonstrates the chance of a random agent (repre-
sented by a dot in the center) pairing with the other 99 agents
at two different times: t = 102 (top panel) and 106 (bottom
panel). The thickness of the lines represents the chance of
the pairings. At t = 102, we observe an almost uniform dis-
tribution of the probability of the connections of an agent to
the others (top panel); but later, the agent learned to prefer to
connect to some partners more than to others (bottom panel).

Figure 8 shows the probability density function of the pair-
ings for all the agents in Figure 7 (bottom panel). This distri-
bution, plotted in a log-log scale, shows an inverse power law
∝ 1/Pβ with complexity index of β = 1.3, rather than having
a Poisson distribution, showing that the emerged network is

Figure 6: Top panel: orange curve: the ratio of Cooperators
vs. time for N = 100 agents which in addition to ST they
use SC to pick their partner to play PD game ( all sections
of the LT algorithm active). The Blue curve is the ratio of
cooperators, paired using SC, but updated their strategies only
with RL (section 3 of the LT algorithm inactive). Bottom
panel: emergence and evolution of trust of unit 1 the other 9
agents in a system with 10 agents using the LT algorithm (ST
SC) to update their strategies and cumulative tendencies. The
thicker, black curve in this figure is the chance of agent 1 to
play with the agent which is most trusting (the purple curve
close to 1).

complex.

Discussion and Implications of Results
The novelty of the LT algorithm is the demonstration of how
collective behavior can emerge from Selfish Trust and how a
network can emerge from Selfish connections; in the absence
of an explicit a-priory network structure, and in the absence
of explicit awareness of others’ outcomes. LT uses ST that
adapts to increase or decrease the chance that agent i will
trust the strategy of agent j, if that strategy is beneficial or
detrimental for agent i itself. LT also uses SC that adapts to
increase or decrease the chance of agent i to connect to agent
j, if agent j has contributed or not to the own benefit of agent
i. This means that selfishness of agent i is used as the main
learning incentive: If the payoff of the agent i increased with
respect to its previous payoff then it will increase the likeli-
hood of repeating its last action. This control of the dynamics
is internal and emergent according to the self-interest of the
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Figure 7: Each dot represents an agent. The dot in the center
shows the agent of interest and the other 99 dots are con-
nected to it with lines. The thickness of each line is propor-
tional to the chance of the corresponding agents to pair up at
time t = 102 (top figure) and t = 107 (bottom figure).

agents, leading the system to self-organization. The role of
ST is to spread the strategies between the agents, if it is in-
creasing the payoff of individuals with respect to their previ-
ous one. Adding SC to ST lets each agent learn which agents
to connect to, in order to increase its own payoff with respect
to its last one. SC can improve the complexity of the system
by forming a dynamic network of chances of pairings, which
results in an inverse power law PDF with complexity index of
β= 1.3. The self-organized system evolved by LT host events
with inverse power law PDF of the interval between the con-
secutive events with complexity index µ = 1.73 < 3. This is
the main property of dynamic complex systems which makes
them able to transfer information and match to another.
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Abstract

Convolutional neural networks (CNNs) were inspired by hu-
man vision and, in some settings, achieve a performance com-
parable to human object recognition. This has lead to the spec-
ulation that both systems use similar mechanisms to perform
recognition. In this study, we conducted a series of simulations
that indicate that there is a fundamental difference between hu-
man vision and vanilla CNNs: while object recognition in hu-
mans relies on analysing shape, these CNNs do not have such
a shape-bias. We teased apart the type of features selected
by the model by modifying the CIFAR-10 dataset so that, in
addition to containing objects with shape, the images concur-
rently contained non-shape features, such as a noise-like mask.
When trained on these modified set of images, the model did
not show any bias towards selecting shapes as features. In-
stead it relied on whichever feature allowed it to perform the
best prediction – even when this feature was a noise-like mask
or a single predictive pixel amongst 50176 pixels.

Introduction
Object recognition in humans is largely a function of analyz-
ing shape (Biederman, 1987; Hummel, 2013). A wealth of
data from psychological experiments show that shape plays a
privileged role in object recognition compared to other diag-
nostic features such as size, colour, luminance or texture. For
example, Biederman and Ju (1988) showed that error rates
and reaction times are virtually identical in a recognition task
when full coloured photographs of objects are replaced by
their line drawings even when colour was a diagnostic fea-
ture. This indicates that shape-based representations mediate
recognition. Similarly, Mapelli and Behrmann (1997) found
that, for patients with an object recognition deficit (visual ag-
nosia), surface colour played minimal role in aiding object
recognition unless the shape of the object was ambiguous,
indicating that shape is instrumental to recognition, whereas
surface characteristics such as colour and texture play only
a secondary role. More recently, Baker and Kellman (2018)
have shown that participants extract shape information auto-
matically from arrays of dot patterns within the first 100ms
of stimulus onset, even for tasks where extracting this infor-
mation may be detrimental to performance on a task. Exper-
iments from developmental psychology show that this privi-
leged status of shape starts early in life and becomes stronger
with age. For example, Landau, Smith, and Jones (1988)
found that 2-3-year-old children as well as adults weight
shape more heavily than size or texture when generalising the
name of a learnt object to novel instances. They also found

that the weight placed on shape increases in strength and gen-
erality from early childhood to adulthood.

By contrast, it is unclear whether shape plays a privileged
role in how convolutional neural networks (CNNs) categorise
objects. It is often claimed that CNNs learn representations
of objects that are similar to the representations that monkeys
and humans use when identifying objects (Rajalingham et al.,
2018), and that CNNs largely rely on learning shape represen-
tations in order to categorise objects (Kubilius, Bracci, & de
Beeck, 2016; Jozwik, Kriegeskorte, Storrs, & Mur, 2017).
On the other hand, there are a growing number of studies
that show that CNNs often categorise images on the basis
on non-shape attributes of images. This is demonstrated by
the existence of adversarial images that are confidently clas-
sified as a familiar category despite the lack of any shape in-
formation in the input (Nguyen, Yosinski, & Clune, 2015),
adversarial images that contain the correct shape but altered
colours that are confidently misclassified (e.g., categorizing
an image of an airplane as a dog when only the colour of
the plane has been manipulated), and large reductions in
performance when trained coloured images are converted to
greyscale (Geirhos et al., 2017) or the colours are inverted
(Hosseini, Xiao, Jaiswal, & Poovendran, 2017). In addition,
there are demonstrations that CNNs can easily learn to cate-
gorise random patterns of pixels that have no shape (Zhang,
Bengio, Hardt, Recht, & Vinyals, 2016). All of these findings
suggest that shape may not play a privileged role in how some
well-known and high-performance CNNs perform object cat-
egorisation.

However, some recent studies have argued that convolu-
tional neural networks can show a shape-bias. Ritter, Barrett,
Santoro, and Botvinick (2017) took an Inception model, a
high-performance CNN (Szegedy, Vanhoucke, Ioffe, Shlens,
& Wojna, 2016), and presented novel objects to the model
that had been pre-trained to recognise the categories from Im-
ageNet dataset. They found that the representations in hidden
layers were more similar for two (novel) objects that over-
lapped in shape than for two objects that overlapped in colour.
They interpret this proximity in hidden layer representations
between objects of same shape as a shape-bias. In another
study, Feinman and Lake (2018) trained a CNN on a con-
trolled dataset containing synthetic images that differed on
three dimensions: shape, colour and texture. They found that
when this dataset was constructed in such a manner that the
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(a) Salt-and-pepper noise (b) Additive noise (c) Single diagnostic pixel

Figure 1: Hidden in plane sight. Images taken from CIFAR-10 dataset and scaled up to 224x224 pixels. (a) Image is converted
to greyscale and we add a salt-and-pepper noise-like mask to each training image; (b) Image is converted to greyscale and we
add uniform additive noise mask to each training image; (c) A single diagnostic pixel is inserted in the image (dotted red circle
is inserted here to illustrate the location of the pixel).

category name correlated with shape more than colour or tex-
ture, the network had a higher propensity for classifying novel
objects based on shape rather than colour or texture. In other
words, the network learns to reflect the feature bias of the
training set; when the biased feature is a shape, the network
shows shape-bias.

Both these studies assume that shape-bias is a property of
the environment itself. Feinman and Lake (2018) explicitly
make shape more diagnostic than any other feature in the
dataset, while Ritter et al. (2017) assume that this is implicitly
the case. However, it is not not clear that shape is necessarily
the most diagnostic feature in the environment of biological
systems and it is also unclear whether deep neural networks
would develop an inductive bias for shape when this is not
the most diagnostic feature. Our goal in this study was to test
the stronger claim that CNNs show a shape-bias even when
there is no such bias in the dataset. Within the psychological
literature it is still unsettled whether our visual system iden-
tifies objects on the basis of shape because we learn through
experience that shape is the most reliable cue to object identi-
fication or because there are innate inductive biases that make
shape a privileged cue from the beginning (for discussion see
Elman, 2008; Xu, Dewar, & Perfors, 2009).

It is certainly possible that CNNs have an inductive bias
to rely on shape given that the depth of the architecture and
pooling operations enables them to combine features of the
stimuli in a hierarchical manner where lower layers represent
high-frequency features while higher layers represent more
abstract features, such as the shape, which are invariant to lo-
cal changes of input (Bengio, Courville, & Vincent, 2013).
If shape emerges due to this hierarchical composition of fea-
tures, it is possible that it is preferred to other features (such
as colour or texture) that do not lend themselves to such a
hierarchical composition. Henceforth we use the term shape-
bias to refer to the hypothesis that the visual system has an
innate inductive bias to rely on shape cues to identify objects
rather than the view that the visual system learns to identify

objects on the basis of whatever visual cues are most strongly
associated with object category.

Here we systematically explore the impact of non-shape
features in the categorisation performance of convolutional
neural networks on CIFAR-10 images. We introduced non-
shape features to images by adding informative noise-like
masks to the training set. We tried several types of masks
and an extreme version where the non-shape feature consisted
of just a single pixel with a location correlated to the image
category (see Figure 1). We show that vanilla CNNs, that per-
form object classification on CIFAR-10 to near human level,
nevertheless learn and depend on non-shape features that are
highly diagnostic of object categories and often fails to learn
anything about shape under these conditions. These results
did not depend on the type of network architecture used, the
learning algorithm or regularisation method indicating that
this was a property of a broad class of CNNs rather than
the particular setup chosen by us. This highlights that, even
though they mimic the hierarchical architectural and learning
processes of biological vision, the vanilla architectures and
algorithms for learning in CNNs simply pick up whatever sta-
tistical structure is most relevant to learning the training set,
with shape playing no special role. To dispel any confusions
at the outset, we would like to emphasise that this does not
imply that CNNs do not encode shape information under any
circumstance, but that shape does not seem to be weighted
more than other diagnostic features, even when these features
are noise-like masks or the luminance of a single pixel.

Experiments
We modified the CIFAR-10 dataset (which contains 10
classes with 6000 images per class, see https://www
.cs.toronto.edu/˜kriz/cifar.html) so that each image
contained not only features that pertain to the shape (e.g. ob-
ject outlines) but also features without any shape informa-
tion. As non-shape features we used noise-like masks that
were combined with the original image. Two different types

2262



of masks were used: the salt-and-pepper noise mask turned
a certain proportion of image pixels to either black or white,
while a additive uniform noise mask added a value sampled
from a uniform distribution to each pixel of an image. We
also tested an extreme form of the salt-and-pepper noise mask
where only one pixel was turned to a particular colour. In this
case the location and colour of the pixel were different for
different categories but correlated for images within a cate-
gory. Masks were independently sampled for each category
but were either fixed for all images in a category (in which
case the mask predicted the category) or sampled from a dis-
tribution with category-dependent parameters (in which case
these parameters predicted the category). So these modified
images concurrently contained features that were related to
shape and features without shape information.

We trained the model on these modified sets of images and
tested it under three conditions. During the ‘Same’ condi-
tion, the test set was modified in exactly the same manner –
i.e., either images in each category were generated by using
the same mask as that for the training images of that cate-
gory (when the mask was fixed) or they were generated by
using the same parameters as the parameters used to gener-
ate noise masks for training images of that category (when
the mask was variable). In contrast, during the ‘Diff’ con-
dition, the noise masks (or their parameters) for each cate-
gory were swapped with another category. So, for example,
a noise mask that was used in the ‘DOG’ category during
training was inserted into images in the ‘CAT’ category dur-
ing testing. The premise here was that if the model based
it’s decisions on shape-related features, then it would ignore
the noise mask and the performance during ‘Same’ and ‘Diff’
condition should be similar. On the other hand, if the model
relied on properties of the (non-shape) mask, then it’s perfor-
mance would be worse in the ‘Diff’ condition compared to
the ‘Same’ condition. Finally, we used a third, ‘NoPix’, con-
dition to estimate the extent to which the network relied on
features of the noise mask. In this condition, we presented
the network with a version of the image without any mask,
with the premise that the difference between the performance
in ‘Same’ and ‘NoPix’ condition should quantify the relative
extent to which the network relied on shape-based and non-
shape features. We ran all of the simulations using the well-
known VGG-16 network (Simonyan & Zisserman, 2014) and
checked that our main results replicate for a deeper network,
ResNet-101 (He, Zhang, Ren, & Sun, 2016). To give the
model the best chance to recognise shape-based features, all
simulations were carried out on CNNs that had previously
been trained on ImageNet categories and replaced only the
fully-connected layers to perform the new classification task.
We then turned the learning rate to a small value and trained
these networks on the new classification task.

Methods
We used a method similar to Geirhos et al. (2017) to trans-
form images from the CIFAR-10 dataset. All transformations
were performed using the Pillow fork of the Python Imag-

ing Library (https://pillow.readthedocs.io). Each
32x32 pixel image was rescaled to 224x224 pixels using the
PIL.Image.LANCZOS method. For the single-pixel mask, we
used 3-channel RGB images while for the salt-and-pepper
and additive noise mask, we transformed images to greyscale.
When images were transformed to greyscale, their contrast
was adjusted to 80% by scaling the value of each pixel using
the formula: 0.8× v+ 1−0.8

2 × 128, where v was the original
value of the pixel in the range [0,255].

The salt-and-pepper mask was created by taking the trans-
formed greyscale image and setting each pixel to either black
or white with a probability p. When the mask was fixed for
a category (Experiment 1–3 below), all images had the ex-
act same set of pixels that were turned either black or white
and the p was set to 0.05. When the mask varied from im-
age to image within a category (Experiment 4 below), the
pixels were sampled independently for each image and the
probability p was fixed for each category but varied between
categories in the range [0.03,0.06].

The additive uniform noise mask was created by taking
the transformed greyscale image and adding a value sampled
from the uniform distribution [−w,w] to this image, where
2w was the width of the uniform distribution and was set to
8. When the noise mask was fixed, this sampling was done
only once per category and the same mask was added to each
image. When the mask was variable, it was sampled indepen-
dently for each image from a distribution [µ−w,µ+w], where
µ was the mean that depended on the category and varied in
the range [−50,50].

The single pixel mask was created by choosing a random
location, (x,y), (sampled from a uniform distribution on the
interval [0,224]) on the image and changing the colour of the
pixel to a value c (sampled from a uniform distribution on the
interval [0,255]). When the mask was fixed for each category,
(x,y,c) remained constant for all images in a category, but
varied between categories. When the mask was variable, each
of x,y and c were sampled independently for each image from
a Gaussian distribution with a constant variance and a mean
that depended on the category of the image. If any value in a
sampled set of (x,y,c) values fell out of their respective range,
that value was re-sampled.

Simulations were carried out using either a 16-layer VGG
network (Simonyan & Zisserman, 2014) or 101-layer ResNet
network provided by the torchvision package of Pytorch.
These networks were either trained from the scratch on the
modified dataset or were first pre-trained on ImageNet and
then trained on the modified dataset. When the networks
were pre-trained, we replaced the fully-connected layers
of the VGG/Resnet pre-trained model with three/one fully-
connected layer(s) with 10 units (for 10 categories) on the
output layer. Since the results remain qualitatively the same,
we report the results for the networks pre-trained on Ima-
geNet. We tried a number of different optimization algo-
rithms, including RMSProp, SGD and Adam (Kingma & Ba,
2014). Results again remained qualitatively the same. We
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Figure 2: Accuracy on test images under the three types of noise-like masks shown in Figure 1. ‘Same’: the noise-like mask
has same properties for test and training images of each category; ‘Diff’: the properties of the mask during test are swapped
with another category from training; ‘NoPix’: No mask is inserted. The dashed (red) line indicates chance performance and
error bars show 95% confidence interval. Light and dark gray bars show accuracies on VGG-16 and ResNet-101.

started with a learning rate of 1e− 3 when training the net-
work from scratch and used a learning rate of 1e− 5 when
fine-tuning a pre-trained network. In all cases, we used cross-
entropy as the loss function. The input to both types of net-
works was a 3-channel RGB image. For greyscale images, all
three channels were set to the same value.

Experiment 1
In the first experiment, all images in a category had the exact
same noise mask. For salt-and-pepper mask, this meant that
noise masks were sampled independently for each category,
but the same set of pixels in each image were modified for all
images in a category. Similarly, for the additive uniform noise
mask, the same mask was added to each image in a category.
For the single pixel noise, the location and colour of the added
pixel were independently sampled for each category, but kept
constant for all images in a category.

The results of the first experiment are shown in Figure 2.
We obtain the same pattern of results for all three cases:
when noise mask in the test images matches the noise mask
in training images, the model classifies images nearly per-
fectly; when noise masks are swapped, the accuracy drops
to zero; when the mask is completely removed, the categori-
sation accuracy is at chance. Furthermore, we get the same
pattern of results on both VGG and ResNet networks and ir-
respective of the type of regularisation used (we tried several
well-known regularisation methods including Batch Normal-
ization, Weight Decay or Dropout). These results clearly in-
dicate that the model learns to completely rely on features of
the noise-like mask, rather than any shape-related informa-
tion present in the images. Even in the extreme case, where
only one pixel amongst 50176 was diagnostic of the category,
the model prefers to classify based on this feature over other
shape-related features present in each image.

Experiment 2 & 3
One possible reason why humans prefer to rely on shape-
related features to categorise objects while CNNs do not is
that humans are guided by past experience and bring this past

knowledge to new categorisation tasks. So when a human
sees an object with superimposed noise, they generalise from
past experience and look for shape-based information, paying
less attention to non-shape related features such as the noise-
like mask in above images. We conducted two further ex-
periments to test whether networks similarly generalise from
concurrent and past experience.

In Experiment 2, we divided the training set into two
subsets. The first subset (‘with pix’) contained three ran-
domly chosen categories from CIFAR-10 and, like above,
contained a category-correlated pixel in all images of these
categories. The second subset (‘unaltered’) contained the re-
maining seven categories from CIFAR-10 and was left unal-
tered – i.e. we did not add the category-correlated pixel to
images of this subset. We trained a VGG-16 network on all
ten categories at the same time. We were interested in finding
out whether the network generalised from one subset to an-
other and started using the features used to categorise images
in the ‘unaltered’ subset to images of the ‘with pix’ subset.
All other details of the experiment remain same as Experi-
ment 1.

The results from this experiment are shown in Figure 3a.
The model learnt to predict the images in the ‘unaltered’ sub-
set with nearly 90% accuracy. However the performance on
the ‘with pix’ subset still completely depended on the loca-
tion and colour of the added pixel: accuracy was nearly 100%
when test images contained the pixel in the same location, but
dropped below chance when this pixel was removed. Thus,
the network did not seem to generalise the features (concur-
rently) learnt in the ‘unaltered’ categories to the categories
containing the diagnostic pixel.

In Experiment 3 we tested what happens when the network
is first trained on images that did not contain such a pixel (a
‘before’ phase) followed by a second (‘after’) phase in which
such a pixel was inserted in the training set. In the first phase,
a we trained a VGG-16 network on an unaltered CIFAR-10
training set. Once the network had learnt this task, we trained
it on the modified set of images in a second phase, introduc-
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ing a predictive pixel in each category. So all that changes
between the ‘before’ and ‘after’ phases is the insertion of a
single category-correlated pixel to each image.
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Figure 3: Lack of generalisation. Accuracy under Same, Diff
and NoPix conditions for (a) two subsets: an ‘unaltered’ sub-
set where no noise-like mask was inserted in training images
and a ‘with pix’ subset where a single diagnostic pixel was
inserted, and (b) for two phases: a ‘before’ phase, where a
pre-trained VGG network was trained on images without any
noise masks and tested on the three conditions, and an ‘after’
phase, where the model from before phase was then trained
on images with a single diagnostic pixel.

We observed that (Figure 3b), instead of relying on past
experience with these images, the model learnt to completely
rely on the predictive pixel to perform categorisation – ac-
curacy dropped from nearly 100% to 0% between ‘Same’
and ‘Diff’ conditions. Crucially, the model completely forgot
about how to perform categorisation when the predictive pixel
was removed – accuracy was close to chance in the ‘NoPix’
condition during the ‘after’ phase. Thus learning about the
diagnostic feature seemed to be accompanied by unlearning
previously learnt representations. This, catastrophic forget-
ting, is a well-known problem in neural networks (McCloskey
& Cohen, 1989) and contrasts with how humans transfer their
knowledge from one task to another. Some recent solutions
to catastrophic learning in neural networks have been sug-
gested, such as Elastic Weight Consolidation (Kirkpatrick et
al., 2017) and it remains to be seen whether this can overcome
some of these problems.

Experiment 4
The non-shape features used in the experiments above have
all been completely invariant from one image to another
within a category. It can be argued that these features are se-
lected by the model over other shape-based features because
they provide a very strong predictive signal. It is possible that
if these features contained larger variance, the model would
be more likely to rely on shape-based features while perform-
ing categorisation. In the next experiment, we introduced
variability in the non-shape features by sampling the noise-
like mask independently from a distribution for each train-
ing and test image within a category. In order to make these
noise-like masks diagnostic of an image’s category, a param-
eter of this distribution correlated with an image’s category.
For the salt-and-pepper noise, this meant that the probabil-
ity, p, of changing a pixel to black or white was different for
each category. Thus, the parameter, p, became diagnostic of
the category. However, the masks now varied from image to
image and were independently sampled with the (category-
dependent) probability, p. Similarly, for the additive uniform
noise, masks could vary from one image to other within a
category but the mean of the distribution depended on each
category (see Methods above for details). For the single di-
agnostic pixel, the inserted pixel could vary in location and
colour from one image to the other, but were generated from
a Gaussian distribution with a mean determined by the cat-
egory of the image and a fixed standard deviation. We ran
these simulations on both VGG-16 and Resnet-101 and aside
from the way in which the dataset was generated, all other
details remain same as Experiment 1.

The results of introducing a variable noise mask are shown
in Figure 4. Introducing variability in the location and colour
of the single diagnostic pixel brought very little change to the
VGG model’s behaviour (compare Figure 4c with Figure 2c).
Performance in the NoPix condition was somewhat better for
ResNet, however the pattern of result remained the same –
performance dropped substantially from the Same to NoPix
condition. Similarly, introducing variability in the salt-and-
pepper masks lead to only a minor change in behaviour of the
model, with accuracy in ‘Diff’ condition dropping to chance,
rather than 0%. The most intriguing change in behaviour oc-
curred when variability was introduced to the additive uni-
form noise mask (Figure 4b). While the VGG and ResNet
networks differed quantitatively in these results, the pattern
of results remained the same: when the noise mask was
completely removed (NoPix condition) the model performed
worse than when the images contained a noise mask from a
different category (Diff condition). In other words, removing
the mask makes the image less informative for the model, not
only compared to images with the correct category-correlated
(Same) mask, but also compared to images with the incorrect
(Diff) mask – the model seems to rely on the presence of the
noise-like mask to make an inference.
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Figure 4: Accuracy on test images when the noise mask varies between images of a category. Training images contain (a)
salt-and-pepper noise, or (b) additive uniform noise, or (c) just one diagnostic pixel. The dashed (red) line indicates chance
performance. See Figure 2 for a description of the ‘Same’, ‘Diff’ and ‘NoPix’ conditions.

Related Work
Su, Vargas, and Kouichi (2017) demonstrated that CNNs
trained on CIFAR-10 and ImageNet can be fooled by intro-
ducing a single adversarial pixel, with error rates of 68%
and 41%, respectively. Unlike our approach the model was
trained with uncorrupted images and the authors systemati-
cally searched for an adversarial pixel that lead to any sort
of error (so-called non-targeted attack). So, in contrast to our
goal, the goal of their study was not to explore whether CNNs
systematically learn non-spatial information. However, the
findings are in line with ours – the CNNs trained by them do
not seem to be categorising based on shape. Rather, it must
be that there was, by chance, some pixel value that was highly
correlated with a given output category and the model picked
up on this idiosyncratic correspondence. As a consequence,
when this pixel was added to another category the model was
fooled.

Two recent studies – Geirhos et al. (2018) and Baker, Lu,
Erlikhman, and Kellman (2018) – manipulate the texture and
shape of images independently and show that CNNs trained
on ImageNet are biased towards picking up texture compared
to shape. These results are again in line with our results and
show that CNNs will make inferences on whichever feature
is most predictive in the training set. Indeed, when Geirhos
et al. (2018) make the texture less diagnostic of category, the
model seems to use non-texture features for performing clas-
sification. Our findings go beyond past work by highlighting
the extent to which CNNs categorize objects on the basis of
non-shape features even when it is given concurrent or prior
training without such non-shape features. Indeed, a single di-
agnostic pixel can override all the shape information present
in the training images.

Conclusions
In a series of simulations we found that some high-
performance convolutional networks trained to categorise
CIFAR-10 images that included noise-like masks diagnos-
tic of the output categories often learned to categorise on
the basis of these masks rather than features present within

the CIFAR-10 images themselves. Indeed, the models of-
ten entirely relied on the masks, and performed at floor when
the noise was removed from the images. This clearly high-
lights that, when a shape-bias is not present within the train-
ing dataset itself, these models do not show a shape-bias due
to their own architectural or algorithmic properties.

In our experiments, we specifically engineered our dataset
to contain invariant non-shape features. One might object
that large datasets like ImageNet and CIFAR-10 don’t con-
tain such features so that the models trained on these datasets
end up relying on shape to perform categorisation. But it is
well-known that popular datasets contain various biases due
to conditions under which the images were captured as well
as the different motivations for construction of the datasets
(Torralba & Efros, 2011). So biases like the one we engi-
neered may well be present in these datasets and networks
trained on these datasets may be picking on these features.
This, in turn, implies that these networks may be relying on
entirely different set of features and representations to per-
form classification than human beings or other animals.

If CNNs do indeed rely too heavily on non-shape features
present within datasets, it could also be the source of various
idiosyncratic behaviours such as being confounded by fool-
ing images (Nguyen et al., 2015) or being overly sensitive to
colour (Hosseini et al., 2017), noise (Geirhos et al., 2017) or
even single pixels in images (Su et al., 2017). The alternative
hypothesis that the human visual system learns to categorize
objects on whatever statistical regularities are strongest in the
input cannot be ruled out on the basis of our findings, but it
would predict that humans would show a similar pattern of
result to these models, such as picking up on single pixels or
noise-like masks to categorise stimuli. In addition, this view
also needs to explain why human beings are not susceptible
to adversarial attacks such as the non-shape fooling images in
the same manner as vanilla CNNs. We are currently carrying
modelling and behavioural work to provide further insights
into the computational benefits of inducing a shape-bias to
CNNs and how these modified CNNs relate to human vision.
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Abstract 

Previous research suggests that people’s folk conception of the 
mind is organized along a few fundamental dimensions; but 
studies disagree on the exact number of those dimensions. With 
an expanded item pool of mental capacities, variations of 
question probes, and numerous judged agents, four studies pro-
vide consistent evidence for three dimensions of perceived 
mind: Affect (A), Moral and Mental Regulation (M), and Real-
ity Interaction (R). The dimensions are not simply bundles of 
semantically related features but capture psychological func-
tions of the mind—to engage with its own processes, with other 
minds, and with the social and physical world. Under some 
conditions, two of the three dimensions further divide: A 
divides into negative and positive (social) affect, and M divides 
into moral cognition and social cognition. We offer a 20-item 
instrument to measure people’s 3- and 5-dimensional 
representations of human and other minds. 

Keywords: anthropomorphism; social cognition; theory of 
mind; morality; principal component analysis; robots. 

Introduction 
A significant question for cognitive science is how humans 
conceptualize agents and their minds. Research in cognitive 
development has taught us that features such as self-propelled 
motion, contingent response, and eyes convince infants that 
they are interacting with a special category of thing: what we 
call agents (Johnson, 2000; Premack, 1990). Once infants  
identify agents, they follow their gaze, imitate them, make 
inferences about their goals, and eventually ascribe complex 
mental states to them. Over the childhood years, children 
develop ever more differentiated conceptions of mental 
states, such that, for example, a goal concept divides into 
desires and intentions, emotion concepts of good and bad 
differentiate into a staggering number of different affective 
terms, and moral dispositions of mean and nice turn into 
sophisticated assessments of moral character. In short, we 
know that humans grow up to have deep-seated expectations 
about other humans’ mental, social, and moral capacities 
(Hamlin, 2013; Malle, 2005; Tomasello, 2003). But do 
people treat these capacities as just one long list? Or is there 
an underlying conceptual organization to uncover? Only 
empirical studies can answer this question.  

Dimensions of Mind 
Despite humans’ rich representations of mental capacities, 
previous work indeed suggests that there are fundamental 
dimensions by which humans organize these capacities. But 
research diverges on the number of those dimensions. 

D’Andrade (1987) considered six categories of mental 
states: perception, belief, emotions, desires, intentions, and 
self-control. Interviews suggested that people indeed make 

distinctions among these classes, but no methods were 
applied to assess whether the researcher-imposed category 
number actually captured people’s own conceptual structure. 
Haslam et al. (2008) rearranged d’Andrade’s categories, 
combining intentions and self-control but separating primary 
from secondary emotions. Through multi-dimensional 
scaling, they were able to reduce these categories into a two-
dimensional space: perception vs. all other categories; 
thoughts and intentions vs. desires and emotions.  

Gray, Gray, and Wegner (2007) offered the simple and 
elegant proposal that humans distinguish mental states along 
two dimensions: Experience and Agency. The empirical 
evidence for this two-dimensional structure was a principal 
component analysis (PCA) of 18 mental capacities, which 
people evaluated in 13 different agents. This proposal had 
seminal impact in research on dehumanization, moral 
judgment, objectification, and human-robot interaction.  

The interpretation of what makes up the two-dimensional 
space of Experience and Agency is, however, not entirely 
clear. Even though each dimension in Gray et al.’s study had 
several items that loaded high on its dimension and low on 
the other dimension, there were numerous items that loaded 
high on both dimensions, showing barely distinguishable 
loadings (see Table 1). Moreover, although the highest-
loading Experience items are quite coherent, incorporating 
physiology and affect, the highest-loading Agency items are 
more heterogeneous, including planning and self-control as 
agentic capacities but also emotion recognition, memory, and 
morality, which are less obviously agentic.  

Table 1: Loading matrix for PCA of 18 mental capacities by 
Gray, Gray, and Wegner (2007). 

 
Note: Clearly and highly loading items on each dimension are 
color-marked. Items in the middle show almost no difference in 
their loadings on the two dimensions.  
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Replications by Takahashi, Ban, and Asada (2016) and 
Weisman, Dweck, and Markman (2017) confirmed the 
Experience dimension with its familiar marker items but 
continued to find several middling items (in particular, 
personality, consciousness, pride, and embarrassment) as 
well as considerable heterogeneity on the Agency dimension.  

Other studies suggest that people may conceptualize the 
mind in three rather than two dimensions. Kozak, Marsh, & 
Wegner (2006) applied a PCA to 10 items similar to those in 
Gray et al. (2007) and identified three dimensions, labeled 
Emotion (feelings, pain, emotion, pleasure; hence similar to 
Experience), Intention (doing things on purpose, planning, 
goals; hence similar to Agency), and Cognition (conscious, 
memory, thought). Using a larger item pool of 40 mental 
capacities, Weisman et al. (2017) found three major 
dimensions, which they labeled Body (related to Experience), 
Heart (primarily covering emotions), and Mind (perceptions, 
cognition). Thus, Agency did not emerge in this structure.  

The Present Investigation 
How do people represent and conceptualize capacities of the 
mind, and what number of fundamental dimensions underlie 
this representation? To answer this question, we need a 
comprehensive item pool. As noted by several authors 
(Haslam et al., 2008; Weisman et al., 2017), the original 18 
capacities used by Gray et al. had limitations (e.g., perception 
items were missing, some categories were represented by 
single items). Only an expanded item pool and replications 
across different pools can reveal the dimensions of mind 
perception. Across four studies, we therefore analyzed varied 
item pools that represent capacities of perception, cognition, 
emotion, agentic control, learning, communication, and 
social-cognitive and social-moral capacities, all represented 
by multiple items. For consistency, one constraint was to 
include items about which one could explicitly ask, “Is the 
agent capable of X?” This question disfavors highly specific 
states (e.g., feeling disrespected) and abstract words such as 
“personality.” Across studies we experimented with different 
items and formulations in order to gain confidence in the 
clusters of capacities that best represent the dimensions of 
mind perception. In analogy to cognitive theories of concepts, 
we conceive of such dimensions as bundles of capacities 
typically represented together; if similar dimensions of mind 
reappear across variations in items and samples, we can be 
more confident in the underlying dimension in question. 

The conceptual structure of mental capacities is difficult to 
study when asking participants to indicate how much of each 
capacity human adults have, as the ratings will tend to be at 
ceiling. Following other authors, we increased judgment 
variance by including nonhuman agents, which arguably lack 
some of the capacities. Particularly useful targets are robot 
agents, as the reality of their minds is a wide open question. 
Robots are like a projection screen for people’s general 
conceptions of mind, so these conceptions may emerge 
particularly well when people judge robots’ minds. 

In the present project, we thus investigated how many 
dimensions may be fundamental in people’s representations 

of various agents’ minds. We report on a first study in detail 
to lay out our methodological approach and major results, 
then summarize the results of three additional studies that 
varied the pool of capacities and tested different question 
probes and judged agents. We then report on a final study that 
relied on an integrated item pool derived from multiple 
previous data sets so as to represent the full conceptual range 
of people’s perceptions of mind. Based on these results, we 
offer a parsimonious multi-dimensional measurement scale 
of mental capacities applicable to humans and other agents.   

For instructions, item formulations, and detailed results 
tables, please see the Supplementary Materials (SM), which 
can be found at http://bit.ly/SA_MindCapacities. 

Study 1 

Methods 
To generate a broad item pool we took Gray et al.’s item pool 
as a starting point and classified them into four rough groups: 
physiological (hunger, pain), affective (joy, pride, desire, 
pleasure, rage, fear, emotion recognition), cognitive 
(remember, planning, thinking), and agentic (self-control, 
communicate). Taking Sytsma and Machery (2010), Haslam 
et al., (2008), and d’Andrade (1987) as inspiration, we added 
two items to the agentic group (choosing freely, imitating 
others) and two to the physiological group (sleep, thirst) to 
make them four each. We retained six of the affective items 
(reformulating emotion recognition into empathy); 
decomposed “thinking” into more concrete cognitive 
capacities (believing, knowing, deliberating, reasoning) to 
make the total of cognitive items six as well. We added four 
perceptual items (perceive, see or hear, taste or smell, vividly 
imagine) and differentiated morality into four items (moral 
obligations, having values, deserving praise or blame, 
deserving punishment). We omitted the two most abstract 
items of personality and consciousness, as well as 
embarrassment, all of which were undifferentiated in Gray et 
al. (see Table 1).  

Participants were 160 undergraduate students from a 
private university in the Northeast United States; no 
demographic information was collected. In a one-page 
survey, each participant rated one of 16 agents (e.g., human 
adult, robot, rabbit, chimpanzee, similar to Gray et al.’s 
agents, but also group agents, such as a city council and a 
large company). Twelve participants were excluded, two how 
provided illegible ratings, ten who had a rating range of 0 or 
1 on the 8-point scale, leaving 148 participants for analysis. 
Fewer than 1% of individual item ratings were mising and 
were replaced by their respective sample means.   

On the top of the survey page, the agent was introduced, 
and each statement repeated the agent description (e.g., “The 
most advanced robot in 2050 can feel joy,” “…can have 
values,” “can perceive things.”) The 28 statements were 
listed in random order with rating scales next to each 
statement. The column header for the ratings contained the 
question, “Is this true?”, and the anchors for the ratings scales 
were “Definitely NOT true” (0) and “Definitely true” (7). 
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We used Principal Component Analysis (PCA) to analyze 
the correlation matrix resulting from the 148 (participants) Í 
28 (capacities) raw data, ignoring agent type, which served as 
a source of meaningful judgment variability. One challenge 
of PCA is that multiple criteria are available to decide how 
many components one should extract. Common heuristics 
include Kaiser’s (1960) rule (“K1”; retain components with 
eigenvalue l > 1) and Cattell’ (1966) scree test (on the scree 
plot, draw a linear fit line from the smallest components 
upward and retain those that lie above the line). However, 
with larger variable sets, K1 extracts too many factors, and 
the scree test can suffer from ambiguity. Zwick and Velicer 
(1986) compared these and more sophisticated criteria and 
concluded that Parallel Analysis (PA) represents the best 
approach. This procedure (Buja & Eyuboglu, 1992) 
recognizes that even for a population of perfectly 
uncorrelated variables, any sample from it will contain 
correlations among variables that a PCA would pick up and 
turn into spurious components with l > 1. By assessing 
hundreds of random permutations of the actual data matrix, 
PA estimates what number and size of spurious components 
one can expect if the original data were in reality uncorrelated 
(i.e., all ls = 1). The recommendation is then to retain those 
components from the actual PCA whose eigenvalues are at or 
above the corresponding spurious ones.  

Results 
The K1 and scree criteria suggested 4 components, but the 
fourth was very weak, l = 1.04. PA suggested 3 components. 
The three-component solution accounted for 67.3% of the 
total variance and was interpretable after rotation (see Table 
2). The first component had 25.1% explained variance (EV) 
and grouped 11 items with loadings l ≥ .60, both social-moral 
capacities (shame, values, obligations, praise) and cognitive 
control capacities (believing, deliberating, choosing). We 
label this component Moral and Mental Regulation (M). The 
second component (22.7% EV) grouped 8 physiological and 
affective items together (e.g., hunger, pain, taste, anger, joy); 
we label this component Affect (A). The third component 
(15.6% EV) grouped perceptual, cognitive, and some 
interaction items (perceive, remember, know, communicate), 
which we label Reality Interaction (R).   

To illustrate in a heuristic way how much a loading matrix 
approximates simple structure (D’Agostino & Russell, 2014) 
we counted items with “errand loadings”—defined as l > .316 
(i.e., > 10% of variance) on components that are not the 
item’s primary component (where it loads most highly). Of 
all possible 84 loadings, 15 (18%) were errand in this way. 
To examine the possibility of component correlations we 
applied oblique rotation to all 28 items, which reduced errand 
loadings to 11% (which is expected for oblique rotations). 
This solution showed small correlations between A and M (r 
= .21) and between A and R (r = .18) and a more notable one 
between M and R (r = .42). Thus, Agency from Gray et al.’s 
(2007) two-dimensional model broke into two dimensions 
that may, however, not be entirely independent. 

Discussion 
Study 1 recovered the Experience dimension from previous 
studies (here, labeled Affect), but by expanding the item pool 
to represent domains of perception, cognition, and morality 
we uncovered a third dimension of mind perception. 
Specifically, the Agency dimension (arguably multi-faceted 
to begin with) broke into two distinct dimensions. The 
original Gray et al. items of morality, empathy, and planning 
became part of a Moral and Mental Regulation dimension, 
whereas items of perception, cognition, and communication 
constituted a Reality Interaction dimension. These two 
dimensions can be treated as orthogonal, but in an oblique 
rotation they show a cleaner simple structure with a nontrivial 
correlation.  

Importantly, the items that define each dimension hang 
together not simply due to semantic similarity (e.g., moral 
and mental regulation are semantically distinct). The items 
constitute their components in psychologically meaningful 
ways. For example, R refers to a progression of information 
processing from perceiving to knowing to remembering to 
communicating. Likewise, M’s cognitive facet forms a 
sequential process: we believe things, then deliberate, then 
choose and plan; and M’s moral facet refers to empathy, 
obligations, and values as action regulation and also includes 
responses to one’s moral (or immoral) behavior in the form 
of pride or shame on the inside, praise or blame from the 
outside. Thus, moral and mental regulation occurs in a 
dynamic mental and social context and is the culmination of 
a complex and nuanced picture of the social-moral mind.  

Table 2. Loading matrix of PCA on 28 items in Study 1. 
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Study 2 
Encouraged by the effects of enlarging the item pool of 
mental capacities we further expanded the pool by rewriting 
several items for clarity and adding 30 new ones, for a total 
of 54, to represent (with several items each) physiology, 
affect, moral competence, social cognition, thinking and 
cognitive control, perception, learning, and communication. 
We thus allowed for the possibility of components from 
Study 1 breaking apart even further (thus pointing to more 
dimensions) or else clustering reliably around the same three 
dimensions, despite new item content.  

We probed mental capacity ascriptions to an average adult, 
a two-year-old child, a cat, and a home care robot. Any given 
participant made judgments for only one agent. Of 459 
participants recruited online via Amazon Mechanical Turk, 
17 provided fewer than a quarter of ratings and 27 had a rating 
range of 0 or 1 (on an 8-point scale), leaving 415 participants 
for analysis. Of these, 45.3% identified as female, 53.5% as 
male. They ranged in age from 18 to 74 (M = 35.5, SD = 
11.8), and 52% of them had completed a bachelor’s degree or 
higher. In the principal component analysis (PCA), the K1 
and scree criteria suggested five components, but PA 
suggested three. We considered a 4-component solution, but 
the fourth component accounted for less than 5% of the 
variance and had only three items with l > .50 and almost as 
high cross-loadings on other components. The 3-component 
solution (see Table SM3) explained 65.2% of the variance.  

Table 3. Loading matrix of Orthogonal PCA on  
38 selected items in Study 1 

 

The first component had 21 strongly loading items (l ≥ .60), 
dominated by affective states (pain, hunger, stress), emotions 
(angry, compassion, gratitude), and social relations (loving 
people, relationships). We see here again the Affect 
dimension from Study 1, supplemented by social facets. The 
second component had 17 strongly loading items, capturing 
moral capacities (e.g., upholding values, praising moral 
actions), social cognition (e.g., understanding others’ minds, 
their goals, and thinking), and cognitive control (e.g., setting 
goals, providing reasons for one’s actions). We see here the 
Moral and Mental Regulation dimension, with enhanced 
social-cognitive facets. The third component included 7 
strongly loading items, featuring seeing, learning, moving, 
and communicating, confirming the Reality Interaction 
dimensions of Study 1. The remaining items loaded more 
weakly or on multiple components, producing the bulk of the 
15% errand loadings. Removing weaker and cross-loading 
items led to a set of 38 items that had only 2% errand 
loadings, yielding a clean three-dimensional structure (see 
Table 3). Oblique rotation on all items also reduced errand 
loadings (12%) and showed modest correlations (the highest 
between M and R at .30). Removing 12 weak items reduced 
errand loadings to 6% and the M*R correlation to .26 (see 
Table SM4). 

In sum, we replicated a three-dimensional structure of 
mind perception. The previously labeled Experience factor is 
well represented by the Affect dimension, which includes 
social emotions and relations. The previously labeled Agency 
dimension again separated into one of Social-Moral and 
Mental Regulation and the dynamic dimension of Reality 
Interaction (perception, learning, to action). 

Studies 3a and 3b 
Now we report on two samples that we collected in 
continuation of a related project in which we focused on 
mental capacities people would like to see in robots, thus a 
slightly different question from the one in Studies 1 and 2. 
However, these studies had a considerable impact on our last 
stage of item selection and so we describe them briefly. 

Though the rating means may differ between inferred 
capacities of various agents and desired capacities of robots 
in particular, the dimensional structure should still be similar. 
We presented participants in Study 3a (N = 100) with 60 
mental capacity items largely the same as in Study 2, and 
participants in Study 3b (N = 99) with a selection of 41 items. 
The two samples were recruited online from Amazon 
Mechanical Turk and had highly similar demographics as 
those in Study 2.  We invited people to indicate which 
capacities they would want or not want in “the most advanced 
home robot” they could imagine, defined as an autonomous 
robot that takes care of older adults or children and does 
household chores.  

In Study 3a, K1 and scree criteria suggested 6 to 13 
components, but PA suggested 3 to 4, so we examined both 
solutions. Each one yielded R (perception, cognition, 
learning) and A (but solely negative affective states). In the 
4-component solution, the third and fourth component both 
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contained social emotions, relations, and hints of morality, 
and it was difficult to find a distinction between the two 
components. Indeed, in the 3-component solution the two 
combined into a dimension similar to M (but populated more 
with positive social emotions and relations than we saw in 
Studies 1 and 2), and errand loadings decreased from 14% to 
11%. Oblique rotation reduced errand loadings to 6%, with 
the highest correlation between M and R at r = .39. Overall, 
the three-dimensional structure from Studies 1 and 2 was 
replicated even when probing people’s desired capacities for 
robots. However, A became negative and M took on positive 
social emotions that had loaded on A in Studies 1 and 2. We 
will return to this trend in Study 4.  

For Study 3b, we reduced the number of items to 41, 
omitting eight items with very low loadings in Study 3a, five 
that were semantically redundant with other items in the set, 
and two that plainly do not apply to robots (physiology, 
hunger). Four items were omitted due to a clerical error. K1 
and scree criteria suggested 5 to 8 components, but PA 
suggested only 2 to 3. The 2-component solution dispersed  
familiar M items across both other item sets, making the 
solution difficult to interpret, even from an Experience-
Agency perspective (see Table SM6). The 3-component 
solution showed three strong components after rotation 
(15.3% to 23.1% EV), replicating A (solely negative affective 
states), M (social emotions, relations, and moral capacities), 
R (perception, decision making, communication, and some 
stray social cognition), with 20% errand loadings. Oblique 
rotation improved the errand rate to 10%, with M and R 
correlating at .48, and at .40 after removal of very weak items.   

Taken together, the two studies on desired mental 
capacities of robots largely supported a three-dimensional 
structure of mind perception. However, Study 3a raised the 
possibility of a split of Affect into a positive and negative 
facet, which we decided to explore further in Study 4. 
However, the primary purpose of Study 4 is explained next.  

Integrative Item Selection 
After we completed this first set of studies, Weisman et al. 
(2017) published a series of studies that suggested three 
dimensions of mind comparable to our three, thus providing 
further confidence in a three-dimensional model of mind 
perception. However, their components (to which we will 
refer as W1 to W3) differed somewhat from ours in item 
composition and in the authors’ interpretation. W1 was 
labeled “Body,” highlighting its physiological items, but 
almost half of its high-loading items refer to basic emotions 
(calm, angry, fear, safe). W2 was labeled “Heart,” also 
highlighting emotion items (embarrassed, pride, love), but 
these emotions are social, and other items in this component 
also hinted at moral capacities (telling right from wrong, 
guilt) and cognitive control (thoughts, intentions, self-
restraint), casting doubt on the labeling of “Heart.” W3 was 
nonspecifically labeled “Mind,” but it encompassed 
perception, memory, reason, and communication.  

Aside from interpretational ambiguities, some of the 
discrepancies between Weisman et al.’s and our three-

dimensional model can be explained by item selection, so to 
address this possibility, we collated the 62 items used at least 
twice across Gray et al., Weisman et al., Malle and Thapa 
Magar (2017), and our data reported so far. We tracked each 
item’s loadings within the corresponding components across 
data sets. This correspondence was straightforward for our 
three components and Weisman et al.’s. (A ~ W1, M ~ W2, R 
~ W3). Gray et al.’s first component clearly corresponds to A 
and all but one of the other reused items fit under M. We 
reanalyzed the data from Malle and Thapa Magar (2017) with 
the same criteria as we had applied in the present studies and 
found better support for a three-dimensional structure (rather 
than the originally reported four-dimensional structure), and 
the three dimensions were very similar to the present A-M-R 
structure. (See the resulting compilation matrix in Table 
SM8.)  

We identified candidate items by using two inclusion 
heuristics: (a) A differential loading index was the averaged 
loading in a given component minus the averaged loadings 
on the other two components; we aimed for this difference to 
be at least .30. (b) An item’s number of replications on the 
same component with a loading l > .50; we aimed for two or 
more such replications. We also used two exclusion 
heuristics: (c) content was already covered by another item; 
(d) item had substantial loadings on two components. We 
made specific attempts to retain enough items in the content 
domains of agency, perception, social emotions, and social 
cognition. The resulting item pool included 12 items 
targeting A (physiology, basic emotions and motivation), 20 
targeting M (perhaps the most diverse dimension with social 
emotions, moral competence, social cognition, and cognitive 
control), and 10 targeting R (perception, learning, 
communication, action).  

Study 4 
In light of possible differences between the dimensional 
structure of inferred and desired capacities, which had arisen 
in Studies 3a and 3b, we asked one group of participants to 
infer the capacities of either an average adult, a two-year-old 
child, or one of two kinds of robots—a home robot or a 
military robot; and we asked a second group to indicate the 
capacities they would like a home or military robot to have. 
Of 495 participants recruited from Amazon Mechanical Turk, 
11 entered no ratings, 2 entered fewer than half, and 19 had a 
rating range of 1 or 0 on an 8-point scale, leaving an N of 463, 
again with very similar demographics as those in Study 2. 

We applied PCA to each question condition separately. In 
the inferred capacity group (N = 304), K1 and scree suggested 
three to four components, while parallel analysis suggested 
three, which were easily interpretable as the A-M-R structure 
(71.1% EV, 19% errand loadings). After removing only four 
items with l < .60, errand loadings decreased to 10% (73.1% 
EV). An oblique rotation yielded virtually not change, with 
M and R showing a small correlation of .32.  

In the desired-capacity condition (N = 159), K1 suggested 
eight components, the scree plot suggested six and especially 
showed a fourth and fifth component distinctly separating 
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from the lower ones. Parallel analysis suggested three, but 
this solution (EV = 51.7%) was not interpretable as it 
intermixed items that in other studies consistently loaded in 
the familiar A, M, and R dimensions. When allowing a fourth 
component, the Affect items split into a negative set (e.g., 
anger, stress, pain) and a positive set (e.g., happy, gratitude, 
friendships), the moral items formed their own component, 
but M and R items remained intermixed. When allowing a 
fifth component, finally, rotation produced five evenly strong 
components (EVs = 10.6% to 13.2%), with M and R cleanly 
separating and errand loadings down to 11% (Table SM10). 
Under oblique rotation, correlations were moderate, with the 
highest between the social and moral component at .37.  

Instrument development 
The final step was to create a measurement instrument of 
people’s perceptions of mind that accommodates both 
inferred and desired capacities and is also suitable for other 
applications. We aimed for five subscales representing the 
components of the desired-capacity set whereby the items of 
the negative and positive-social affect subscales would 
combine into an overall Affect scale and the items of the 
moral and social-cognitive subscales would combine into an 
overall Social-Moral scale, thus representing the three-
dimensional structure of inferred capacities. Of the 42 items 
in the two analyses (inferred, desired) of Study 4, we 
removed 10 that had l < .50 or strong cross-loadings in at least 
one analysis, and 2 items that fell under distinct components 
in the two analyses. Then we selected the four highest-
loading items in each of the five components, yielding a 20-
item measure with sufficient internal consistency on each of 
the five subscales (see Fig. 1), and errand loadings of 5-7%. 
With only two items more than Gray et al. used, we can now 
measure three to five dimensions of mind perception.  

 

 
 

Figure 1: Individual item loadings from PCAs on desired 
mental capacities of robots (5 components, left) and inferred 

capacities of humans or robots (3 components, right).   

General Discussion 
What are the dimensions of mind? Our results suggest that 
people’s ascriptions of mental capacities follow at least three 
major axes. A three-dimensional structure is consistent with 
previous work (Kozak et al., 2006; Weisman et al., 2017), but 
the specific dimensions we identified, and successfully 
replicated over five different samples, offer new insights into 
their psychological meaning and interrelationships.  

First, each dimension shows multiple facets that previously 
have been overlooked. Dimension A unites aspects of 
physiological and positive as well as negative emotional 
capacities that are largely unintentional. M encompasses 
aspects of both moral cognition and social cognition, which 
itself includes the simulation of one’s own mind (e.g., 
planning) and others’ minds (e.g., inferring their thoughts); 
its appropriate label may thus be Moral & Social Cognition. 
These processes are largely under the agent’s intentional 
control and enable understanding and regulation of one’s own 
and others’ behavior, thus carving out a specific meaning of 
agency. R illustrates the dynamic transition from perception 
and cognition through learning to communication and 
action—a second more specific meaning of agency.  

It is noteworthy that none of the dimensions are made up 
simply of bundles of semantically related words. The use of 
PCA in personality psychology has sometimes been 
criticized as merely recovering dictionary relations between 
trait adjectives (e.g., Extraversion = outgoing, sociable, 
gregarious, friendly, etc; cf. D’Andrade, 2017). The items 
that are clustering together in the A-M-R structure are only 
midly semantically related, but more so they point to 
fundamental psychological functions of the mind—to engage 
with its own processes, with other minds, and with the social 
and physical environment.  

We also found that, under some conditions, two of the three 
dimensions bifurcate: A divides into negative and positive-
social affect; M divides into moral cognition and social 
cognition.  We have so far identified only instance in which 
a full five-dimensional structure emerges: when people 
consider the desired capacities of a robot. Other instances 
may emerge as a function of one’s attitude toward the agent 
(e.g., friend or foe), or the functional role of the capacity 
ascriptions (e.g., for interaction vs. evaluation).  

Finally, we have offered a short, reliable measure of the 
three- to five-dimensional structure of mind perception, thus 
opening the door to many new investigations. These include 
developmental and cross-cultural studies of mind perception, 
as well as studies into how mind perceptions change over 
time—such as when interacting with a robot. The scale also 
invites a more refined assessment of anthropomorphism, 
sometimes cast as a relatively indiscriminate human tendency 
that may, in reality, be more selective. Finally, questions of 
dehumanization can be posed anew, as denying “mind” is 
unlikely to occur in a simple on/off way (Rai, Valdesolo, & 
Graham, 2017); rather, its impact on social and moral 
behavior may be differentiated depending on what aspect of 
mind—out of three to five—is denied.   
  

2273



References 
Buja, A., & Eyuboglu, N. (1992). Remarks on parallel 

analysis. Multivariate Behavioral Research, 27(4), 509–
540. https://doi.org/10.1207/s15327906mbr2704_2 

Cattell, R. B. (1966). The scree test for the number of factors. 
Multivariate Behavioral Research, 1(2), 245–276. 
https://doi.org/10.1207/s15327906mbr0102_10 

D’Agostino, R. B., & Russell, H. K. (2014). Simple 
Structure. In Wiley StatsRef: Statistics Reference Online. 
https://doi.org/10.1002/9781118445112.stat05607 

D’Andrade, R. G. (1987). A folk model of the mind. In D. 
Holland & N. Quinn (Eds.), Cultural models in language 
and thought (pp. 112–148). New York, NY: Cambridge 
University Press. 

D’Andrade, R. G. (2017). Memory and the assessment of 
behavior. In H. M. Blalock (Ed.), Measurement in the 
Social Sciences. https://doi.org/10.4324/9781351329088-6 

Gray, H. M., Gray, K., & Wegner, D. M. (2007). Dimensions 
of mind perception. Science, 315(5812), 619–619. 
https://doi.org/10.1126/science.1134475 

Hamlin, J. K. (2013). Moral judgment and action in preverbal 
infants and toddlers: Evidence for an innate moral core. 
Current Directions in Psychological Science, 22(3), 186–
193. https://doi.org/10.1177/0963721412470687 

Haslam, N., Kashima, Y., Loughnan, S., Shi, J., & Suitner, 
C. (2008). Subhuman, inhuman, and superhuman: 
Contrasting humans with nonhumans in three cultures. 
Social Cognition, 26(2), 248–258. 

Johnson, S. C. (2000). The recognition of mentalistic agents 
in infancy. Trends in Cognitive Sciences, 4(1), 22–28. 
https://doi.org/10.1016/S1364-6613(99)01414-X 

Kaiser, H. F. (1960). The application of electronic computers 
to factor analysis. Educational and Psychological 
Measurement, 20(1), 141–151.  
https://doi.org/10.1177/001316446002000116 

Kozak, M. N., Marsh, A. A., & Wegner, D. M. (2006). What 
do I think you’re doing? Action identification and mind 
attribution. Journal of Personality and Social Psychology, 
90(4), 543–555. https://doi.org/10.1037/0022-
3514.90.4.543 

 
Malle, B. F. (2005). Folk theory of mind: Conceptual 

foundations of human social cognition. In R. R. Hassin, J. 
S. Uleman, & J. A. Bargh (Eds.), The new unconscious (pp. 
225–255). New York, NY: Oxford University Press. 

Malle, B. F., & Thapa Magar, S. (2017). What kind of mind 
do I want in my robot? Developing a measure of desired 
mental capacities in social robots. Proceedings of the 
Companion of the 2017 ACM/IEEE International 
Conference on Human-Robot Interaction, 195–196. 
https://doi.org/10.1145/3029798.3038378 

Premack, D. (1990). The infant’s theory of self-propelled 
objects. Cognition, 36(1), 1–16.  
https://doi.org/10.1016/0010-0277(90)90051-K 

Rai, T. S., Valdesolo, P., & Graham, J. (2017). 
Dehumanization increases instrumental violence, but not 
moral violence. Proceedings of the National Academy of 
Sciences, 114(32), 8511–8516.  
https://doi.org/10.1073/pnas.1705238114 

Sytsma, J., & Machery, E. (2010). Two conceptions of 
subjective experience. Philosophical Studies, 151(2), 299–
327. https://doi.org/10.1007/s11098-009-9439-x 

Takahashi, H., Ban, M., & Asada, M. (2016). Semantic 
differential scale method can reveal multi-dimensional 
aspects of mind perception. Frontiers in Psychology, 7, 
1717. https://doi.org/10.3389/fpsyg.2016.01717 

Tomasello, M. (2003). The key is social cognition. In D. 
Gentner & S. Goldin-Meadow (Eds.), Language in mind: 
Advances in the study of language and thought (pp. 47–57). 
Cambridge, MA: MIT Press. 

Weisman, K., Dweck, C. S., & Markman, E. M. (2017). 
Rethinking people’s conceptions of mental life. 
Proceedings of the National Academy of Sciences of the 
United States of America, 114(43), 11374–11379. 
https://doi.org/10.1073/pnas.1704347114 

Zwick, W. R., & Velicer, W. F. (1986). Comparison of five 
rules for determining the number of components to retain. 
Psychological Bulletin, 99(3), 432–442.  
https://doi.org/10.1037/0033-2909.99.3.432 

 

2274



Effects of Blindfolding on Verbal and Gestural Expression of Path in Auditory 

Motion Events 

 
Ezgi Mamus (ezgi.mamus@mpi.nl) 

Center for Language Studies, Radboud University, Nijmegen, The Netherlands 

Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands 

 

Lilia Rissman (l.rissman@let.ru.nl) 
Center for Language Studies, Radboud University, Nijmegen, The Netherlands 

Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands 

 

Asifa Majid (asifa.majid@york.ac.uk) 
Department of Psychology, University of York, York, UK 

 

Aslı Özyürek (asli.ozyurek@mpi.nl)  
Center for Language Studies & Donders Center for Cognition, Radboud University, Nijmegen, The Netherlands  

Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands 

 

 

Abstract 

Studies have claimed that blind people’s spatial representations 
are different from sighted people, and blind people display 
superior auditory processing. Due to the nature of auditory and 
haptic information, it has been proposed that blind people have 
spatial representations that are more sequential than sighted 
people. Even the temporary loss of sight—such as through 
blindfolding—can affect spatial representations, but not much 
research has been done on this topic. We compared blindfolded 
and sighted people’s linguistic spatial expressions and non-
linguistic localization accuracy to test how blindfolding affects 
the representation of path in auditory motion events. We found 
that blindfolded people were as good as sighted people when 
localizing simple sounds, but they outperformed sighted people 
when localizing auditory motion events. Blindfolded people’s 
path related speech also included more sequential, and less 
holistic elements. Our results indicate that even temporary loss 
of sight influences spatial representations of auditory motion 
events. 

Keywords: blindfolding; localization; pointing; auditory 
motion events; spatial language 

Introduction 

Information provided by visual, auditory, and haptic systems 

work together to enhance detection, localization, and 

identification of objects and events in the world. Compared 

to auditory and haptic input, vision has the advantage of 

providing simultaneous, precise, and detailed information 
about features of objects and events that take place in close 

and distant space (e.g., Eimer, 2004; Thinus-Blanc & Gaunet, 

1997).  

Considering the qualitative differences between inputs 

from sensory modalities, it is interesting to ask how blindness 

influences conceptualization of space, and how this is 

reflected in the spatial language of blind individuals. 

Numerous studies have reported enhanced auditory spatial 

skills in blindness (e.g., Lessard, Paré, Lepore & Lassonde, 

1998; Röder et al., 1999; Voss et al., 2004), and the spatial 

language of blind individuals has been shown to be 

conceptually different when it is based on haptic input 

(Iverson, 1999; Iverson & Goldin-Meadow, 1997). The 

present study is the first to focus on how information acquired 

from the auditory modality alone affects spatial event 

conceptualization as expressed in both language and pointing 
gestures in blindfolded and sighted people.  

It is claimed that blind individuals can compensate for their 

lack of vision through better auditory processing. Consistent 

with this, some studies suggest the blind even outperform 

their blindfolded counterparts in low-level auditory spatial 

tasks, such as estimating distance based on echo cues and 

localizing direction of a sound in the horizontal plane (e.g., 

Després, Candas & Dufour, 2005; Dufour, Després & 

Candas, 2005; Lessard et al., 1998; Röder et al., 1999; Voss 

et al., 2004). It is possible that blindfolding creates a 

temporary disadvantage for sighted individuals’ spatial 

mapping of sounds. Only a single study compared sound 
localization skills of blindfolded and sighted individuals 

(Tabry, Zatorre, & Voss, 2013). Tabry et al. presented simple 

sounds on the horizontal and vertical planes and measured 

accuracy of pointing by hand or head laser pointer. Tabry et 

al. found that the absence of visual feedback decreases 

localization accuracy mostly for head-pointing and sounds on 

the vertical plane.     

Other studies measuring navigation and spatial updating 

skills have claimed that blind individuals have impaired 

performance when required to process multiple pieces of 

information or simultaneous information, such as creating 
representations of large-scale environments, or inferring new 

spatial relations that are not directly experienced (finding the 

shortest way from A to B, when only experiencing A to C and 

B to C) (e.g., Coluccia, Mammarella & Cornoldi, 2009; 

Pasqualotto & Newell, 2007, Rieser, Guth & Hill, 1982; 

Thinus-Blanc & Gaunet, 1997). This may be because blind 

individuals have to rely on sensory information that is 

perceptually represented sequentially, thereby making it 
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more difficult to build holistic spatial representations of path 

information.  

Language studies investigating speech and gesture in route 

description tasks have also found evidence that blind peoples’ 

conceptualization of space has an underlying sequential 

representation of path for large-scale layouts; but that they 
can build holistic representations for small-scale layouts 

(Iverson, 1999; Iverson & Goldin-Meadow, 1997). Iverson 

and Goldin-Meadow (1997) examined sighted, blindfolded, 

and blind children’s speech and co-speech gesture production 

in a task where participants had to give directions for familiar 

locations in their school. The results showed that blind 

children’s speech was more segmented, with several 

landmark points on the path described, whereas sighted and 

blindfolded children linguistically represented the area in a 

global manner. Iverson and Goldin-Meadow did not report 

any difference between sighted and blindfolded children’s 

speech but this is not surprising given the fact that 
blindfolded children also initially saw the scene before the 

description task and so, their initial encoding of the school 

space was based on visual input.  

As a follow-up Iverson (1999) examined sighted, 

blindfolded, and blind children’s route descriptions for small-

scale scenes constructed from Lego blocks. Even though both 

blind and blindfolded children explored the Lego scenes 

haptically, while sighted children explored the Lego scenes 

visually, all children gave similar path expressions (in terms 

of landmark use). Iverson claimed that the Lego scenes could 

be encoded similarly by touching and seeing because the 
amount of available spatial information was equivalent for 

both modalities, which allowed blind children to build more 

holistic representations for small-scale scenes. 

The Present Study 

We investigated the effect of blindfolding on localization and 

verbal descriptions of auditory motion events. Having both 

linguistic and non-linguistic tasks performed by the same 

participants helps us understand whether possible differences 

between groups come from the processes required for 
linguistic packaging, or are grounded in more fundamental 

spatial representations, independent of the demands of speech 

production.  

As shown by Tabry et al. (2013), blindfolding can 

influence sighted people’s spatial mapping of sounds. To 

investigate this possibility further, we measured localization 

ability in two non-linguistic tasks for simple beep sounds and 

also for the first time in more complex auditory motion 

events. In both tasks, participants were asked to trace the path 

of the movement as accurately as they could by tracing a line 

with their finger or hand. Tabry et al. (2013) used simple 
sounds similar to our beep sounds, and only one condition in 

their study—hand pointing on the horizontal plane—was 

relevant to the task in the current study. In this condition, 

Tabry et al. did not report a difference between the 

blindfolded and the sighted group in the degrees of deviation 

from target location. Based on Tabry et al.’s findings, we 

expected no difference between blindfolded and sighted 

participants in the localization task with beep sounds. We 

also examined whether these findings for simple beep sounds 

generalize to localization of complex auditory events. It may 

be the case that as the stimulus becomes more complex, there 

is more opportunity to see differences between sighted and 

blindfolded individuals. 
In speech we aimed to explore path representations by 

measuring different manners of encoding. As we know from 

the blindness literature (e.g., Iverson & Goldin-Meadow, 

1997; Thinus-Blanc & Gaunet, 1997), sequential 

representations typically encode consecutive landmarks in 

relation to path, but spatial relations between distant objects 

are not encoded explicitly. To address the distinction between 

sequential and holistic path representations, we coded 

whether speech included information about source, goal, 

orientation, and path verbs. Source and goal elements in 

speech represent sequential information because those 

encode discrete units of information—such as which 
landmark is a starting point of movement—without explicitly 

encoding its spatial relation to other elements. We take 

orientation and path verbs in speech to represent spatial 

relations because these encode information about direction 

(e.g., from left to right) and trajectory of movement (e.g., 

approaching). Thus, it can be argued that mentions of 

orientation and path verb show more holistic representation 

of the space. We conducted the current study in Turkish as 

source and goal elements are optional when describing a 

motion event. Therefore, Turkish enables us to compare 

differences in the event descriptions. 
If having visual cues at encoding—such as seeing the 

source of a sound—enables people to build a more holistic 

representations of space, even temporary absence of sight 

may affect spatial representations and make them more akin 

to the representations created by the blind, i.e., make them 

more sequential. As such, it may be expected that, compared 

to sighted people, blindfolded people’s event descriptions 

would include more sequential path information, such as 

more mentions of the source, but less holistic path 

information that encodes trajectory of motion and the relation 

between two different locations—such as figure and source.  

Method 

Participants 

Twelve sighted (M = 22.27 years, SD = 2.10, 7 female) and 
12 blindfolded (M = 21.83 years, SD = 2.21, 7 female) 

Turkish adult speakers participated in the experiment in 

exchange for extra credit in an introductory psychology 

course. The sample size was based on previous studies 

comparing sighted and blindfolded participants (Iverson 

1999; Iverson & Goldin-Meadow, 1997; Tabry et al., 2013). 

Participants all had normal or corrected-to-normal vision and 

provided written informed consent. 
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Auditory Stimuli 

We filmed and simultaneously recorded the sound of 

locomotion and non-locomotion events. Locomotion events 

served as the critical experimental items in the study, whereas 

non-locomotion events served as filler items. For the 

locomotion events, an actress moved in distinct manners 

(walk, run, and limp) with respect to a landmark object (door 

or elevator) along a specific path (to, from, into, and out of). 

Each manner was combined with each path, creating 12 

different items. The sound recorder was placed next to the 
landmark objects, so the path direction in the events was 

either approaching (for to and into paths) or away from (for 

from and out of paths) listeners. In addition, the path azimuth 

was edited using Soundtrack Pro audio editing software to 

increase the variety of possible path motion. Five movement 

angles were created in a semicircular space ranging from 90° 

left to 90° right with 45° intervals, thus from the right to the 

left these are: 0° (right), 45° (right-sided), 90° (front), 135° 

(left-sided), and 180° (left) motions (see Figure 1). We 

created all 12 events with the 5 movement angles, resulting 

in 60 events in total. All locomotion events were exported as 
5.1 surround sound. 

For the non-locomotion events, the same actress performed 

different actions with objects (e.g., drinking water, eating 

chips), and the video and sound were recorded across from 

her. We did not examine these items further. There were 77 

experimental trials in total, including 60 locomotion events 

and 17 non-locomotion events. Locomotion events lasted 9s 

(SD: 1.9) and non-locomotion events 8s (SD: 2.2) on average. 

 

 
 

Figure 1: Path direction and angles for “from” and “out 
of” events (left) and “to” and “into” events (right). 

 

In addition to the locomotion and non-locomotion events, 

we prepared 60 audio-clips consisting of beeps. These sounds 

were intended to assess people’s accuracy in localizing 

simple dynamic stimuli, in contrast to the more complex, 

naturalistic locomotion events. To make a beep clip, a 1s beep 

sound was compounded with a 1s silence lasting 9s in total. 

The direction of sound movement in each clip was 

manipulated as described for the locomotion events (see 

Figure 1).  

Procedure 

Each participant was tested in a quiet room on Bogazici 

University campus in Istanbul, Turkey. The procedure of the 

experiment was the same for both groups, except that 

blindfolded participants’ eyes were covered before they 

entered the room, and the experimenter helped them to be 

seated. In the room, five speakers were placed 1.34 m far 

from the participant’s head and approximately 95 cm high 

from the ground in a 5+1 surround system configuration. 

Front left and right speakers were placed 30° off center, and 

rear left and right speakers were 110° off center. Participants 

sat in the middle of the speakers. The experimenter stayed in 
the room during the experiment to initiate the tasks and 

advance the trials on a laptop using Presentation Software. 

There were two sorts of tasks: 

 

(1) Event Description Task Participants listened to audio- 

clips of the events. Before the experiment started, there were 

2 practice trials consisting of one locomotion and one non-

locomotion event. In each trial, an event was presented 

aurally and participants were asked to describe what 

happened. They were told that another participant would 

watch their descriptions and listen to the same sounds to try 

and match the sound clips. 
 

(2) Localization Task with Events vs. Beeps Participants 

listened to the audio-clips of 60 locomotion events and 60 

audio-clips consisting of beep sounds in two separate tasks 

for each stimulus type. There were 4 practice trials in each 

task. After each audio-clip, they were asked to trace the path 

of the movement in the semicircular frontal space as 

accurately as they could by tracing a line with their finger or 

hand. They were instructed not to describe the audio stimuli, 

but only trace the paths. 

 
Participants first performed the event description task. 

During this task, participants’ speech was recorded with two 

video cameras. One camera was placed across from the 

participant and the other recorded the top view of the 

participants’ frontal space so as to capture arm and hand 

movements. Following the event description task, 

participants performed either the localization task with audio 

events or the localization task with beeps. The order of these 

two tasks was counterbalanced across participants. Finally, 

participants were asked to fill out a demographic 

questionnaire on a laptop. The total duration of the 

experiment was around 75 minutes. 

Coding 

Descriptions for the motion events were transcribed and 

coded by a native Turkish speaker. First, the event 

descriptions were split into clauses. Clauses were coded as 

relevant or irrelevant to the target events. Second, each 

relevant clause for each event was coded, according to the 

type of information it contained: (1) the use of sequential 

elements—(a) source (starting point of movement), and (b) 

goal (the end point of the movement); and (2) holistic 

elements—(a) orientation (direction), and (2) path verb 

(trajectory of motion). An example description below 
encodes information about the source, the orientation, and the 

path verb of the movement as: 
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(1)  

 

Asansör-den     sağ-a           doğru     uzak-laş-(ı)yor. 

elevator-ABL   right-DAT   towards   away-VERB-PRS.3SG 

(source)           (orientation)                (path verb) 

 
‘(someone) moves away from the elevator towards the right.’ 

(VERB = verbal suffix) 

 

For the localization tasks, direction and angle localization 

were coded by an assistant. There were 2 possible directions 

(approaching or going away) and 5 possible angles (from 90° 

left to 90° right with 45° intervals). Twenty percent of the 

coding was checked by the first author of the study. Interrater 

agreement was at least 0.80 (95% CI: 0.69, 0.91) using Kappa 

for both tasks.  

Results 

For all analyses reported in the paper, we used mixed effects 

regression models. All models were generated using the lme4 

package (Bates, Mächler, Bolker, & Walker, 2015) in R (R 

Core Team, 2018). We begin by presenting the data for the 

simplest task—the localization task with beeps—before 

moving to the data of the localization task with events and the 

event description task. 

Localization Task with Events vs. Beeps 

First we investigated whether sighted and blindfolded 
participants differed in how they localized motion using 

simple beep sounds. We ran two separate glmer models to 

test the effects of blindfolding on binary values (correct, 

incorrect) for: (1) angle and (2) direction accuracy. Since 

localization of direction and angle was simultaneously 

performed by participants, we also included the accuracy of 

the other variable as a predictor in the models. That is, the 

model for direction accuracy included angle accuracy as a 

predictor in addition to the group factor (sighted or 

blindfolded). The optimal random effects structure included 

random intercepts of participant and item. Model 1 for angle 
accuracy showed that blindfolded participants did not differ 

in localizing the angle of beep sounds from sighted 

participants, and that participants became significantly more 

successful as direction accuracy increased (see Table 1 and 

Figure 2). Similarly, Model 2 for direction accuracy showed 

that blindfolded participants did not differ in localizing 

direction of beep sounds from sighted participants, and that 

participants became significantly more successful as angle 

accuracy increased (see Table 1 and Figure 2).  These results 

showed that blindfolding did not affect localization ability 

when the sounds were simple, dynamic beeps, and all 

participants succeeded in localizing the direction of beep 
sounds—in fact, they were at ceiling levels. 

 

 

 

 

 

Table 1: Accuracy models for angle and direction 

localization of the beep sounds. 

 

 Estimate Std.Error z-value p-value 

Model 1 for Angle    

(Intercept) -0.5671 0.5265 -1.077 0.2814 

Group -0.0545 0.2937 -0.186 0.8527 

Dir. Acc. 1.6281 0.4317 3.771 <0.001*** 

Model 2 for Direction    

(Intercept) 4.2448 0.6493 6.537 <0.001*** 

Group -0.8279 0.6735 -1.229 0.2190 
Ang. Acc. 1.4246 0.4509 3.160 0.0016** 

 

 
 

Figure 2: Localization accuracy for beep sounds. 
 

For the locomotion events, we again ran two separate glmer 

models to test the effects of blindfolding on binary values for 

(1) angle and (2) direction accuracy. Model 3 for angle 

accuracy showed that blindfolded participants performed 

better in localizing angle of locomotion events than sighted 

participants, and that participants became significantly more 

successful as direction accuracy increased (see Table 2 and 

Figure 3). Similarly, Model 4 for direction accuracy showed 

that blindfolded participants performed better in localizing 

direction of locomotion events than sighted participants, and 
that participants became significantly more successful as 

angle accuracy increased (see Table 2 and Figure 3). As with 

the beep sounds, all participants were almost at ceiling for 

identifying the direction of motion. Unlike for beeps, 

blindfolded participants were better able to identify the angle 

and direction of auditory events when sounds were 

meaningful, locomotion events.  
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Table 2: Accuracy models for angle and direction 

localization of the locomotion events. 

 

 Estimate Std.Error z-value p-value 

Model 3 for Angle    

(Intercept) -0.1714 0.3603 -0.476 0.6344 

Group 0.5814 0.3047 1.908 0.0564 . 

Dir. Acc. 0.5998 0.3030 1.979 0.0478* 

Model 4 for Direction    

(Intercept) 3.4917 0.4890 7.140 <0.001*** 

Group 1.5285 0.5390 2.836 0.0046** 
Ang. Acc. 0.7153 0.3261 2.194 0.0283* 

 

 
 

Figure 3: Localization accuracy for locomotion events. 

Event Description Task 

Finally, to investigate whether sighted and blindfolded 

participants differed in how they described the path of events, 

we calculated the ratio of sequential (source and goal) and 

holistic path descriptions (orientation and path verb) per 

relevant clause. To do this, total counts of sequential and 

holistic path descriptions were divided by the number of 

relevant clauses for each trial. So, we had a 2-level variable 

for the type of linguistic expression (sequential vs. holistic) 

and a 2-level variable for the group (blindfolded vs. sighted) 

as predictors. 
We ran an lmer model to test the effects of blindfolding and 

type of linguistic expression using ratio of mention per clause 

as input. The optimal random effects structure included 

random intercepts of participant and event. The results 

showed that there was a significant effect of type of linguistic 

expression, with all participants mentioning more holistic 

than sequential descriptions (p < .001). This difference was 

not surprising because of the fact that one of the holistic 

elements included verbs. Due to its typology, Turkish usually 

expresses path of motion in the verb (Talmy, 1985). There 

was no effect of blindfolding in how often participants 
mentioned all path elements in their descriptions (p = .272). 

Crucially, the interaction between group and type of 

linguistic expression was significant (p <.001; see Table 3 for 

model summary and Figure 4). Blindfolded participants gave 

more sequential but less holistic descriptions in their speech 

compared to sighted participants. 

 

Table 3: Models for ratio of sequential and holistic path 

descriptions in the events. 
 

 Estimate Std.Error t-value p-value 

(Intercept) 0.3187 0.0854 3.730 <0.001*** 

Exp.Type 0.7387 0.0333 22.208 <0.001*** 

Group 0.1319 0.1175 1.123 0.272 

E.Type:Gr -0.2038 0.0471 -4.307 <0.001*** 

 

 
 

Figure 4: Ratio of sequential and holistic path descriptions 

per relevant clauses in the events. 

Discussion 

In the present study, we examined the effect of blindfolding 
on localization and verbal descriptions of auditory motion 

events. In the localization task with beeps, we showed that 

blindfolded participants performed as well as sighted 

participants when localizing simple sounds. Our results are in 

line with Tabry et al. (2013). Similar to our localization task 

with beeps, Tabry et al. tested hand-pointing accuracy for 

simple sounds on the horizontal plane, and reported no effect 

of blindfolding in the deviation from target. This does not 

necessarily imply there are never differences in localization 

in response to blindfolding. Tabry et al. (2013) did find 

differences in other paradigms, such as head-pointing and 

localizing simple sounds on the vertical plane. Based on the 
results of our localization task, and Tabry et al.’s similar 

paradigm, we can conclude that blindfolded and sighted 

people behave similarly in the spatial mapping of simple 

sounds when orienting their hands toward a specific location 

on the horizontal plane.  

In contrast to the simple auditory tones, blindfolded 

participants outperformed sighted participants when 

localizing more complex auditory locomotion events. Earlier 

studies investigating sound localization abilities in blindness 

have only ever used simple sounds as stimuli. Our result 
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suggests that having no visual feedback creates an advantage 

in localization when mapping complex sounds onto an event 

space. One possible explanation for this advantage could be 

that closing the eyes increases auditory attention and thereby 

leads to better performance when localizing complex sounds. 

Since participants are already near ceiling for simple sounds, 
there is no room to see this improvement in that condition. A 

recent study by Wöstmann, Schmitt, and Obleser (2019) 

found that while attending to one of two spoken streams, even 

in a darkened room, closing eyes modulated attention, and 

increased alpha power for the attended stream. Wöstmann et 

al. suggested that closing eyes might decrease the dominance 

of vision, and thus enhance attention to nonvisual input. 

Although they did not report behavioral enhancement with 

closed eyes, their participants performed the tasks in a 

darkened room where there was no distracting visual input. 

In our study, to the contrary, sighted participants could see 

the location of the audio-speakers, which could possibly 
distract them while listening to sounds and/or localizing them 

in space. Thus, it is possible that our paradigm is more 

suitable to detect a possible beneficial behavioral effect of 

closing eyes. Furthermore, one could hypothesize that blind 

people might perform even better due to their better ability to 

process auditory information than both blindfolded and 

sighted people. Future studies could examine this possibility. 

We did not find an effect of blindfolding on how often 

participants mentioned path in their descriptions regardless of 

the type of linguistic expression. However, we did find that 

blindfolded participants gave more sequential, and less 
holistic descriptions for the path of auditory motion events, 

compared to sighted participants. This is in line with the 

claim that blindness leads to sequential representations and 

segmented speech due to the more sequential nature of the 

sensory information that the resulting spatial representations 

depend on (e.g., Iverson & Goldin-Meadow, 1997). Iverson 

(1999) and Iverson and Goldin-Meadow (1997) showed that 

landmarks on a described route were used to segment the path 

into several pieces. We also found that blindfolded 

participants in our data used more landmark information 

encoded as source and goal in their descriptions. Thus, our 

results suggest that even temporary loss of sight changes how 
people talk about events by possibly hindering the building 

of a holistic representation of space. 

Conclusion 

We are the first to investigate the effect of the temporary loss 

of sight on localization and verbal descriptions of auditory 

motion events. We showed that temporary loss of sight leads 

to more sequential and less holistic path descriptions, and 

better localization of auditory events as measured by 

pointing. These effects suggest that even the temporary loss 

of sight might change the sort of spatial representations 
people build in response to complex auditory events. 
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Abstract 

Predictive neural networks, such as word2vec, have seen 
impressive recent popularity as an architecture to learn 
distributional semantics in the fields of machine learning and 
cognitive science. They are particularly popular because they 
learn continuously, making them more space efficient and 
cognitively plausible than classic models of semantic memory. 
However, a major weakness of this architecture is catastrophic 
interference (CI): The sudden and complete loss of previously 
learned associations when encoding new ones. CI is an issue 
with backpropagation; when learning sequential data, the error 
signal dramatically modifies the connection weights between 
nodes—causing rapid forgetting of previously learned 
information. CI is a huge problem for predictive semantic 
models of word meaning, because multiple word senses 
interfere with each other. Here, we evaluate a recently 
proposed solution to CI from neuroscience, elastic weight 
consolidation, as well as a Hebbian learning architecture from 
the memory literature that does not produce an error signal. 
Both solutions are evaluated on an artificial and natural 
language task in their ability to insulate a previously learned 
sense of a word when learning a new one. 

Keywords: distributional semantic models; catastrophic 
interference; word2vec; random vector accumulation; elastic 
weight consolidation 

Introduction 
Distributional models of semantic memory (DSMs; e.g., 
Landauer & Dumais, 1997) attempt to explain how humans 
learn the meaning of words through statistical inference. All 
DSMs are based on the distributional hypothesis of language 
(Harris, 1970), often summarized as learning a word’s 
meaning “by the company it keeps” (Firth, 1957). Classic 
DSMs use counts of co-occurrence between words in a 
corpus to construct semantic representations. Recently, with 
the development of predictive DSMs and improvements in 
overall computing power, the fields of cognitive science and 
machine learning have seen an increase in popularity of error-
driven DSMs within connectionist architectures. Predictive 
DSMs use the backpropagation of an error signal through the 
network to predict context and are particularly popular 
because they learn continuously—making them more space 
efficient and more cognitively plausible than earlier DSMs.  
    However, a major weakness of predictive DSMs is 
catastrophic interference (CI): The sudden and complete loss 
of previously learned associations when encoding new ones 
(French, 1999). When a predictive neural network is exposed 
to sequential data, the introduction of completely new 
information causes the error signal to be very large, 
effectively “shocking” the model and causing it to 
overcorrect the weights to accommodate the new 

information. The problem of CI is a major issue not only for 
functional reasons but for implications of cognitive 
plausibility as well. 

The standard predictive network currently discussed in the 
literature is Mikolov et al.’s (2013) word2vec model. 
Word2vec is a feedforward neural network with input and 
output layers that contain one node per word in the 
vocabulary, and a hidden layer of approximately 300 nodes.  
The word2vec architecture has two possible model 
directions. The context may be used to predict the word—
which is referred to as the Continuous Bag of Words 
(CBOW) model—or, the word may be used to predict the 
context—which is referred to as the skipgram model. We will 
use skipgram in this paper because it maps conceptually onto 
most connectionist models and has been shown to perform 
better with smaller training corpora than the CBOW model.  

Dachapally and Jones (2018) recently investigated the 
impact of CI on the internal representations produced by 
predictive DSMs when applied to sequentially learned word 
senses. Because of its current popularity, they used Mikolov 
et al.’s (2013) word2vec model to evaluate the effects of CI 
on the model’s final semantic representations.  In their study, 
Dachapally and Jones used homonyms to measure the effects 
of CI. Take for example a homonym like bank, with its two 
distinct meanings: river-bank and financial-bank. The word 
bank should have its final representation positioned 
equidistant to its two meanings in semantic space. Because of 
CI, however, if the financial sense was learned first, followed 
by the river sense, the final representation of bank would be 
positioned proximal to river-bank words, and the financial 
sense would be forgotten.  This study was the first evaluation 
of CI in a predictive semantic model. Now that we know CI 
affects semantic representations produced by predictive 
DSMs, we can begin to propose and evaluate possible 
solutions for CI. 

The goal of the current paper is to expand on Dachapally 
and Jones’ (2018) work by implementing and comparing two 
possible solutions to CI from the cognitive and neural 
sciences. The first candidate solution is elastic weight 
consolidation (Kirkpatrick et al., 2017) which has been 
impressively successful on machine learning tasks and can be 
considered a “vaccination” for predictive DSMs that would 
prevent the effects of CI. The second candidate solution is a 
different architecture, random vector accumulation (Jones, 
Willits, & Dennis, 2015), which can be considered naturally 
“immune” to the effects of CI by way of its learning 
mechanism. 

The goal of elastic weight consolidation (EWC) is to allow 
a predictive neural network to learn two sequential tasks, 
Task A and then Task B, without incurring CI. To do this, 
Kirkpatrick et al. (2017) introduced a method to constrain the 
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parameters of a neural network after learning Task A so that 
the network can subsequently learn Task B without forgetting 
Task A. The new loss function they introduce is a quadratic 
penalty that differentially constrains parameters in the neural 
network depending on how important each parameter is to 
completing Task A. To determine which weights in the 
network are important for Task A they calculate the Fisher 
Information for each parameter—a mathematical method to 
measure the amount of information a variable carries about a 
parameter. The resulting loss function that gets minimized in 
elastic weight consolidation is:  

 
ℒ(𝜃) = 	ℒℬ(𝜃) + ∑

*
+
𝐹-.𝜃- − 𝜃0,-∗ 3

+
-            (1) 

 
where  ℒℬ(𝜃) is the loss for Task B, l controls how important 
Task B is compared to Task A, F is the Fisher Information 
calculated for each parameter, and q represents the 
parameters in the network. Kirkpatrick et al. (2017) showed 
that EWC was able to insulate against CI when training a 
predictive neural network on the MNIST (LeCun et al., 1998) 
data set, a free data set of handwritten images. While EWC 
has been tested several times on categorization tasks, this 
paper will present the first implementation for use with 
distributional semantic models.  

EWC has potential as a “vaccine” for predictive DSMs, 
that is, networks may be insulated from CI without having to 
implement new architectures. There is reason to suspect that 
EWC may have limited effectiveness when translated to the 
field of semantic modeling. EWC calculates the relevance of 
each model parameter to Task A based on the actual class of 
the training data. However, in the case of semantic modeling, 
we are not necessarily interested in the final predicted class 
of the training data but in the internal representations created 
by models as they learn. It is one goal of this paper to 
determine how EWC affects the internal representations of 
predictive DSMs. 

The second candidate solution to CI that we evaluate is a 
different architecture: random vector accumulation (RVA; 
Jones et al., 2015). RVA is an alternate architecture that 
should theoretically be “immune” to CI by nature of the 
learning mechanism. RVA is the theoretical mechanism that 
is core to semantic models such as BEAGLE (Jones & 
Mewhort, 2007). Unlike predictive DSMs, which are affected 
by CI due to the error signal produced during learning, RVA 
models should be immune to CI because they utilize 
principles of associative learning and do not rely on an error 
signal to learn. These models learn via a simple Hebbian co-
occurrence learning mechanism.  The most basic RVAs first 
begin by initializing two random vectors from an arbitrary 
distribution and of arbitrary dimensionality for each word 
encountered in a corpus. One vector is unique to each word 
in the vocabulary, the environment vector, and the other is a 
summation of all context words, the memory vector. The 
update function for the memory vector of each word in the 
vocabulary is described in Equation 2: 

 
									𝑚- = 	 𝑒-67 +	𝑒-87                         (2) 
  

where mi  is the memory vector for an arbitrary word in a 
corpus, ei-1 is the unique environment vector for the context 
word before i, and ei+1 is the unique environment vector for 
the context vector after i. So, the memory vector for word i 
stores the context vectors for every other word that appears 
in context with word i.  

Similar to Dachapally and Jones’ (2018) study, this paper 
will use homonyms to measure the bias in semantic space 
created by CI. For each model, EWC and RVA, two 
conditions will be tested and compared to the performance of 
the original word2vec model in both an artificial and natural 
language. In the first condition, a target homonym will have 
two equally frequent senses with distinct meanings. Ideally, 
the target homonym should be equidistant from both of its 
two senses in semantic space. In the second condition, a 
target homonym will have two senses, one which is dominant 
(occurs more frequently) and one which is subordinate. In 
this case, the target homonym should be closer in semantic 
space to the dominant sense. Dachapally and Jones (2018) 
found that in both the artificial and natural language when 
word2vec was trained sequentially on equally balanced word 
senses, the target word was closer in semantic space to 
whichever sense had been trained most recently—forgetting 
the first sense of the word. The same effect was found when 
a target homonym had a dominant and subordinate sense; CI 
caused the target word to be more similar to the subordinate 
sense if the subordinate sense was trained most recently. 
Importantly, recency overpowered frequency, and the 
subordinate sense of the word became dominant if it was the 
most recently learned. To determine the effects of CI on a 
neural network equipped with EWC and on RVAs, a similar 
experimental structure will be used. 

 
Experiment 1: Effects of CI on EWC and 

RVAs in an Artificial Language  
Dachapally and Jones (2018) used a simple artificial 
language in which there is a single homonym, bass, that has 
two distinct meanings—bass[fish] and bass[guitar]. A corpus 
was created from this simple language by sampling word 
pairs from the following Markov grammar: 

 

In the first condition, a corpus of 8,000 sentences was 
generated from this grammar (“man catch bass”, “woman 
play bass”). Each sense of the word bass was equally 

Figure 1. The artificial language used to test. Bass is the 
target homonym, and its position in semantic space 
relative to the two sense-pure synonyms (acoustic/bass) 
is evaluated. 
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frequent; the fish-sense made up half of the total sentences 
and the guitar-sense made up the other half. To measure the 
similarity of bass to its fish-sense and bass to its guitar-sense, 
the cosine similarity between the vector representation for 
bass and its two sense-pure synonyms trout and acoustic 
were calculated, respectively.  

In the second condition, a corpus of 5,332 sentences was 
generated from the grammar—one sense of bass was 
dominant and the other subordinate. The dominant sense 
made up 4,000 of the total sentences and the subordinate 
sense made up 1,332. Thus, the subordinate sense was 1/3 as 
frequent as the dominant sense. Similar to the first condition, 
to determine the bias created in semantic space by CI, the 
similarity of bass to the dominant sense and bass to the 
subordinate sense was measured using the cosine similarity 
of the vector representations produced by each model.  

The word2vec models used in this paper are both 
implemented using TensorFlow. Additionally, it is important 
to note that the implementation of the word2vec model in this 
experiment is different than both Mikolov et al.’s (2013) 
model and the model that was originally used in Dachapally 
& Jones’ (2018) experiment. The full word2vec model as 
implemented by Mikolov et al. necessarily includes negative 
sampling and subsampling of the training data. Negative 
sampling is the practice of including negative information in 
the training data and subsampling is a method that results in 
less frequent words being sampled more often than frequent 
words. The model used by Dachapally & Jones used a 
different loss function called noise contrastive estimation 
which is common in the language modeling community 
because it is able to handle large input sizes. The model used 
in this experiment was purposely changed in order to be the 
most similar to the models previously used to implement 
EWC. This model uses cross entropy loss and does not use 

negative sampling or subsampling which may be responsible 
for the differences seen in the results of this paper.  

 
Results 

Figure 2 shows the cosine similarity of the vectors 
produced by word2vec, EWC, and the RVA in the case where 
sense 1 and sense 2 of bass are equally frequent. The pattern 
produced by word2vec is consistent with the findings in 
Dachapally and Jones’ (2018) original experiment. When the 
model was trained in random order, the bass-sense1 and bass-
sense2 similarities produced were approximately equal. 
When trained in sequential order, the sense which was 
sampled most recently ended up having a higher similarity to 
bass. The same procedure was repeated using EWC and the 
RVA. After exploring various parameter settings of both, we 
found that implementing EWC had virtually no effect on the 
results of the first experiment and that vector similarities 
produced by the RVA model were unaffected by CI.  

Figure 3 shows the cosine similarity of the vectors 
produced by word2vec, EWC, and the RVA in the case where 
one sense is dominant and the other is subordinate. The 
pattern produced by word2vec is once again consistent with 
Dachapally and Jones’ (2018) findings. When trained in 
random order, the dominant sense is more similar to bass than 
the subordinate sense. When trained in sequential order, the 
effects of CI reverse the frequency effects; when the 
subordinate sense of bass is trained last it becomes more 
similar to bass than the dominant sense. When the same 
procedure was performed using EWC and the RVA, we saw 
similar results to the first condition. The addition of EWC did 
not change the performance of word2vec and the RVA model 
was once again unaffected by CI.  

EWC adds one additional parameter to the word2vec 
model, l, which controls the importance of Task A compared 

Figure 2. The y-axis represents the cosine similarity of vectors produced by word2vec, EWC, and the RVA. The x-axis 
represents one of three training orders: random order, sequential order with sense 1 first then sense2, and sequential order 
with sense 2 first then sense 1. Sense 1 and sense 2 are equally frequent in this case. CI is present in both word2vec and EWC 
while the RVA is unaffected by CI. 
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to Task B. For both conditions in the first experiment, the 
value of l had little to no effect on the final semantic 
representations. The results shown in both Figure 2 and 
Figure 3 are representative of the results obtained by any 
value of l. 

 
Experiment 2: Effects of CI on EWC and RVA 

in Natural Language   
The texts used in this experiment are sourced from the TASA 
corpus (Landauer & Dumais, 1997). TASA contains 
language from textbooks with metadata tags which allowed 
us to train the models on distinct senses of a homonym 
without overlap. The same set of homonyms used in 
Dachapally and Jones (2018) was used for this experiment. 
They identified a sample of 14 homonyms that exist in the 
TASA corpus using the homonym norms from Armstrong, 
Tokowicz, and Plaut (2012) which determined homonyms 
with distinct meanings as rated by human participants. 

The 14 homonyms were divided into two groups: sense-
balanced and sense-imbalanced. We classified the two senses 
of a homonym as sense-imbalanced if one sense was at least 
twice as frequent in the TASA corpus, otherwise the two 
senses of a homonym were classified as sense-balanced. An 
example of a sense-imbalanced homonym is the word slip—
the “fallen out of place” sense occurred across science 
contexts an equal number of times as the “shopping receipt” 
sense occurred across business contexts. An example of a 
sense-imbalanced homonym is the word gum—the “chewing 
candy” sense occurs approximately 5 times as often in 
language arts contexts than the “tissue surrounding teeth” 
sense occurs in health contexts.  The sense-balanced 
homonyms are the counterpart to the first condition in the 
first experiment where the two senses of bass are equally 
frequent. The sense-imbalanced homonyms are the 
counterpart to the second condition in the first experiment 

where one sense of the word bass was dominant over the 
other. We then trained the word2vec model, the EWC model, 
and the RVA model on the entire corpus under three different 
order conditions. The first condition randomized the training 
order, the second condition was sense1 first then sense2 
order, and the third condition was sense2 first then sense1 
order.  Cosine similarities between the target word vector and 
the two sense vectors were then calculated for each homonym 
set. 

 
Results 
The most common version of word2vec used for non-

trivial training data is the model implemented within the 
Gensim Python library (Rehurek & Sojka, 2010). This model 
is optimized using C and is consequently very fast and 
effective. This is the model used by Dachapally & Jones in 
their second experiment to test for CI in natural language 
corpora. That model, however, is not directly compatible with 
the EWC implementation from our first experiment. For this 
reason, we did not use the Gensim model. Instead, we 
implemented a model in TensorFlow which is more similar 
to the model used in our first experiment and is compatible 
with EWC. However, there are some additional differences 
between the base models in our first experiment and the 
current experiment. In order to scale up to natural language, 
we had to include negative sampling and change the loss 
function to noise contrastive estimation. The model used in 
the previous experiment did not use negative sampling, but 
the model was unable to learn well from the natural language 
otherwise, so it was added. Additionally, while our first 
implementation of word2vec used a SoftMax layer to learn 
with a cross entropy loss function, the implementation in this 
experiment used noise contrastive estimation because the 
SoftMax method simply does not scale up well. The RVA 
model used in this experiment is the same model we used in 
the first experiment. 

Figure 3. The y-axis represents the cosine similarity of vectors produced by word2vec, EWC, and the RVA. The x-axis 
represents one of three training orders: random order, sequential order with the dominant first then the subordinate sense, 
and sequential order with the subordinate sense first then the dominant sense. CI is present in both word2vec and EWC while 
the RVA is unaffected by CI. 
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Figure 4 shows the results of training word2vec, EWC,  and 
the RVA on the sense-balanced homonyms from TASA. The 
pattern of cosine similarities produced by word2vec and 
EWC are consistent with the results from the artificial 
language. When trained in random order the target words 
have approximately equal similarities to both of its senses. 
When trained sequentially, we see the same issue that 
occurred in the first experiment—the sense that was trained 
last becomes more similar to the target word. The RVA 
model shows the same pattern exhibited in Experiment 1—

the similarity between the target and its two senses remain 
consistent no matter the training order.  

Figure 5 shows the results of training word2vec, EWC, 
and the RVA on the sense-imbalanced homonyms from 
TASA. The cosine similarities produced from word2vec and 
EWC are consistent again with the results from the artificial 
language. Similarly, the cosine similarities produced by the 
RVA are consistent with the results from the artificial 
language and do not appear to be dependent on training 
order. 

Figure 4. The y-axis represents the cosine similarity of vectors produced by word2vec, EWC, and the RVA when trained on 
sense-balanced homonyms from the TASA corpus. The x-axis represents one of three training orders: random order, sequential 
order with sense 1 first then sense2, and sequential order with sense 2 first then sense 1. CI is present in word2vec and EWC 
while the RVA is unaffected by CI. 

Figure 5. The y-axis represents the cosine similarity of vectors produced by word2vec and the RVA when trained on sense-
imbalanced homonyms from the TASA corpus. The x-axis represents one of three training orders: random order, sequential order 
with the dominant first then the subordinate sense, and sequential order with the subordinate sense first then the dominant sense. 
CI is present in word2vec and EWC while the RVA is unaffected by CI. 
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Discussion 
The results of this study suggest that efforts to mitigate the 
effects of CI need to be interdisciplinary. Within the 
machine learning community, insulating, or “fixing”, 
predictive DSMs from CI is an emerging area that has seen 
some innovation in recent years. However, suggested 
solutions so far only consider the problem as it relates to 
strictly machine learning tasks such as categorization or 
image classification tasks. This study has shown that 
solutions from the machine learning community are not 
guaranteed to work when applied to tasks from different 
fields.  

While Kirkpatrick et al. (2017) were able to show 
promising results from EWC on categorization tasks, the 
method was unable to prevent CI when applied to semantic 
modeling. This may be because the goal of EWC is to prevent 
the weights of a predictive neural network from changing 
based on how much information each weight carries about 
the true class of each training item. The connection between 
training items and their class is very straightforward in 
categorization tasks but is not as clear in semantic modeling 
tasks. When a predictive neural network learns a word 
representation, it is not explicitly predicting the class of a 
word but is attempting to predict which words belong or don’t 
belong in context with a target word. Additionally, the 
window size is a variable parameter in these models which 
can be greater than 2, implying that a target word could have 
multiple “true classes” if we consider context words the class 
of the target word.  

Additionally, EWC as it is now is not theoretically 
plausible for any task which requires unsupervised learning 
because the new loss function must be “turned on” when the 
network is learning a second task. This is especially 
cumbersome in NLP where it is impossible to supervise 
learning to the extent which EWC requires. Furthermore, 
EWC is unable to scale up well with its current 
implementation. Because it was designed to prevent CI in 
categorization tasks, it requires each training item to have a 
true class. This requirement prevents more efficient sampling 
methods which have been standardized in the DSM literature, 
such as noise contrastive estimation, from being used in 
conjunction with EWC. Similarly, calculating the Fisher 
Information for each node in a network becomes 
computationally expensive when the vocabulary and network 
gets large.  

Introducing the RVA model as a possible solution to CI is 
a preliminary attempt to approach the problem of CI from the 
perspective of cognitive science. Within the cognitive science 
community, many researchers assume that the brain is 
primarily a predictive learner, when in reality it learns using 
both prediction and co-occurrence methods. Because of the 
tendency to favor predictive explanations of learning, 
predictive DSMs are still the most popular learning models 
in the field even though the existence of CI implies 
biologically implausibility. This has been documented by 
Ratcliff (1990) and McCloskey & Cohen (1989) who both 
use CI to discredit the biological plausibility of predictive 
DSMs. While RVAs are not a brand-new idea, they have not 
become as popular within the machine learning or cognitive 

science communities as predictive DSMs. However, they are 
continuous learners, can learn sequentially without incurring 
CI, and are computationally efficient making them a viable 
alternative to predictive DSMs in both the fields of cognitive 
science and machine learning.  

While RVAs are promising, they have faced some criticism 
in the past.  RVAs are known to have problems with metric 
space compression—causing most word similarities to be 
compressed between 0 and 1—which limits the ability of the 
model to discriminate between related and unrelated words 
(Asr & Jones, 2017). It was initially believed that predictive 
DSMs were able to more accurately discriminate between 
words because of back-propagation or the connectionist 
architectures they commonly use. However, recently the role 
of negative sampling in DSMs has been explored in more 
depth by Johns, Jones, & Mewhort (2019) who find that the 
success predictive DSMs have at discriminating between 
words is due to the inclusion of negative information in the 
training data—not the use of connectionist architecture or 
predictive learning method. In fact, when negative sampling 
information is included in the training data for other DSMs, 
including RVAs, their ability to discriminate words is on par 
with predictive DSMs.  

Though this paper focused on comparing RVAs to 
predictive DSMs, RVAs aren’t the only possible alternative 
architecture that could present a solution to CI. Architectures 
like holographic neural networks and exemplar-based models 
should also theoretically be immune to CI and incorporate 
different theoretical frameworks of learning. Holographic 
neural networks use convolution as an association 
mechanism to learn words rather than backpropagation and 
are able to learn complex non-linear patterns with a single 
layer which makes them more space efficient than predictive 
DSMs. Exemplar-based models, unlike other DSM models 
which store a semantic representation, store only episodic 
context. These models construct semantic meaning from the 
aggregation of episodic context when presented with a 
memory cue (Jamieson et al., 2018). Both of these models 
should be evaluated to determine the effect CI has on their 
internal semantic representations. 

Up until now, the fields of machine learning and cognitive 
science have both been facing similar problems with 
predictive DSMs. Unfortunately, there has been little to no 
interdisciplinary communication to propose solutions. When 
we consider CI from a cognitive science perspective, we find 
that there are several possible solutions which haven’t been 
considered yet. These solutions, which are arguably more 
elegant than continuously trying to “vaccinate” predictive 
DSMs, have the potential to introduce new mechanisms for 
artificial learning, assisting with new technological advances 
that require sequential learning and providing a framework 
for learning that does not exhibit the downfalls brought on by 
predictive DSMs.  
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Abstract 
What do people learn from experience with repeated decisions? 
Is it merely implicit behavioral tendencies? If so, would 
articulating or summarizing what is learned change behavior? 
Online participants (N=126) experienced 100 trials of a 
decisions-from-experience problem with outcome feedback. 
Some participants then verbally summarized what they had 
learned and estimated the probability of the risky gain either 
for themselves (Self condition) or for another hypothetical 
player (Other condition); others did not summarize (Control 
condition). Finally, they faced 20 more decision trials. 
Verbalizing a social message to another person significantly 
increased sure choices (that is, decreased risk-taking) in 
subsequent decision making. In general, participants 
underestimated the probabilities of both certain and risky 
prospects, and articulating a summary message (Self or Other) 
seemed to increase this conservatism. 

Keywords: decisions from experience; explicit learning; 
verbalization; dual process theory  

Introduction 
In recent decades, research on decisions under risk has 
focused on two major paradigms, decisions from description 
and decisions from experience. In the descriptive paradigm, 
participants receive complete and unambiguous descriptions 
of available options, potential outcomes of their choices, and 
the associated probabilities. In the experiential paradigm, 
participants rely on their personal experience of observing 
samples of outcome feedbacks repeatedly over time (e.g., 
Hertwig et al., 2004). In recent years, decisions from 
experience (DFE) have been found to systematically differ 
from description-based decisions (DBD). These differences 
have been termed the “description–experience gap” (Hertwig 
& Erev, 2009).  

There has been growing interest in the field to explore the 
learning mechanisms behind decisions from experience to 
help explain the description-experience gap (for a meta-
analytic review, see Wulff et al., 2018). One such issue is 
what types of learning are generated from experience and 
how such learning affects subsequent choices. Some 
empirical evidence suggests that experience of outcome 
feedback can modify choices towards maximization of 
expected value (EV) (Yechiam et al., 2005). Possible 
mechanisms that might explain this finding include the 

implicit learning of more linear decision weights (e.g. Jessup 
et al., 2008), or the explicit learning of EV-maximizing 
strategies (e.g.  Erev & Barron, 2005; Erev et al., 2017), 
among others.  Chen and Corter (2014) argued that dual-
systems account of cognition (e.g., James, 1950; Sloman, 
1996; Kahneman, 2003), might be needed to explain the full 
range of findings.  

In the broader research literature on learning and cognitive 
science, implicit learning is sometimes termed “System 1” 
thinking, in which individuals learn complex information in 
an incidental manner, without awareness of what has been 
learned.  In contrast, explicit learning is termed “System 2” 
thinking, which permits abstract reasoning and hypothetical 
thinking constrained by working memory capacity, and 
results in explicit knowledge in the form of verbatim or 
aggregate representations (Seger, 1994; Evans, 2003).  

In particular, two major forms of explicit learning have 
been well studied. Self-explanation during problem solving 
has proven to be an effective instructional strategy across 
many domains (Chi et al., 1989; VanLehn et al., 1992; 
Bielaczyc et al., 1995). When prompted to explain to 
themselves, participants were more likely to make 
comparisons and notice subtle distinctions, which then led to 
the discovery of general rules (Edwards et al., 2014). 
Meanwhile, social dialogue has also been found to promote 
abstract reasoning and rule formation / use in a category 
learning task (Voiklis & Corter, 2012), as well as when 
learning complex systems such as moving gears, biological 
transmissions, and organisms’ living requirements (Schwartz, 
1995). In these learning domains, it is argued that social 
pragmatic constraints of communications compel 
participants in dialogue to negotiate multiple perspectives to 
find a shareable representation of the problem, which tended 
to be abstractions of the deep structure rather than surface 
features. Such dialogic effects might even underlie well-
documented examples of “process gain” in group forecasting 
and decision making (Kerr & Tindale, 2004) – the so-called 
“wisdom of crowds”. 

For these reasons, we hypothesize that explicit 
verbalizations, especially verbalizations aimed at others, 
might promote abstraction and enable rule-based or formal 
reasoning about the decision problem, and thus might yield 
faster learning towards EV-maximization.  To our knowledge 
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no prior study has examined whether verbalization might 
help in promoting explicit learning in the context of decisions 
from experience.   

In the present study, we consider how self-verbalizations 
summarizing experience with outcome feedback (which 
make the implicit explicit) might affect subsequent risky 
decision making. Specifically, we examine the effects of 
verbal summaries generated for others or generated for 
oneself on learning in the decisions from experience context. 
Finally, we report some content analyses of the types of 
verbalizations generated by participants.  

Methods 

Design 
Participants made repeated decisions for a single risky 
decision problem while experiencing outcome feedback 
(with no provided description of outcome payoffs and 
probabilities). Following the verbalization manipulation 
(described below), they made 20 additional decisions with the 
same problem. 

Overall the experiment had a 3×2 between-subjects design: 
three types of verbalization conditions and two risky-choice 
decision problems. Each participant was presented with only 
one verbalization condition and only one problem. 

Participants 
126 people, 76 of them male, participated through Amazon’s 
Mechanical Turk website. Participation was restricted to 
individuals whose location was defined as in the United 
States. Their ages ranged from 23 to 71, with a mean of 39. 
All of them were native English speakers and 27% of them 
had studied statistics or decision-making at some point.  

Materials 
Two simple decision problems in the gain domain were used: 
for the risky option, one problem has a high probability of 
payoff and the other has a low probability of payoff. They 
were: Problem 1 = ($3, 100%; $7, 60%), Problem 2 = ($3, 
100%; $28, 15%). So, for example, Problem 1 offered a 
choice between receiving $3 with certainty and a 60% chance 
of receiving $7 (and no reward otherwise).  

We used the “minimal information” paradigm from Erev 
and Barron (2005) – also termed the “partial feedback” 
paradigm by Camilleri and Newell (2011). Decision 
problems were shown on the computer screen (Figure 1), 
with two option buttons side by side, labeled only as “P” and 
“Q”. One button provided the participant with the sure 
outcome of $3 100% of the time, and the other button was a 
risky gamble which gave participants either $7 60% of the 
time or $28 15% of the time, depending on the experimental 
condition, and $0 otherwise. Sure and risky button positions 
were left-right counterbalanced between participants. 

Procedure 
Participants went through a training session of 100 trials and 
a testing session of 20 trials of the same decision problem, 
either the high probability problem or the low probability 
problem.   

 
Figure 1: Interface for the training session (first 100 trials): 
post-trial feedback 
 

In between training and testing blocks, they experienced 
one of the three verbalization conditions (Other, Self, or 
Control). In the Self condition, participants summarized for 
themselves what they had learned (by answering “What have 
you learned from experience with the 100 trials? What 
strategy should be used or what choices should be followed 
in order to maximize total payoff?”) and estimated the 
probabilities of both option payoffs. In the Other condition, 
participants summarized to another hypothetical player (by 
answering “Imagine that you have a partner who is about to 
play this game for 100 trials. What would you advise them in 
terms of the strategy they should use or the choices they 
should make, in order to maximize their total payoff?”) and 
estimated probabilities as well. In the Control condition, 
participants simply answered some demographic questions at 
this time point, without any requested verbalizations of 
problem information.  

At each trial, once they made a choice using the mouse, the 
payoff for that selected option was shown. Actual payment 
for participants varied depending on the outcomes of their 
decisions. A base payment of $1.50 was adjusted by 0.5% of 
the participant’s total amount of winnings for the total 120 
decision trials. Average bonus paid for each participant was 
US $1.92 (SD = US $0.17). 

Results 
In this study, we hypothesized that explicit verbalizations of 
strategies would lead to more accurate probability estimates 
of option payoffs and a decrease in subsequent sure choices 
(consistent with EV-maximization), especially when 
participants were verbalizing to someone else. Thus, the main 
dependent variables were 1) the proportion of sure choices, 
calculated as the average proportion of times that participants 
selected the sure option in the testing session (last 20 trials) 
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(see b11 and b12 in Figure 2); and 2) participants’ estimated 
payoff probabilities for the sure and the risky options.  

 
Figure 2: Sure choice proportions over the total 120 trials. 
Error bars: ± 2 standard errors. 

Behavioral Effects: testing session (last 20 trials) 
Analysis of covariance (ANCOVA) was conducted to 
evaluate the effects of verbalization conditions while 
controlling for the variations among participants’ learning 
experience in the training session. The proportion of sure 
choices for last 50 trials of training, before the verbalization 
manipulation, was used as the covariate.  
   Results showed significant effects of the explicit 
verbalization manipulation on the proportion of sure-thing 
choices in the last two blocks (Figure 3), F(2,119) = 3.80, 
p=.025. However, the effects were not consistent with our 
hypothesis of increased maximization in the two 
verbalization conditions. Rather, in the Control and Self-
Verbalization conditions a transient increase in risk-seeking 
(alternatively, in maximization) was observed (apparent in 
Figure 2), indicated by a sudden drop in sure choices after the 
pause between training and testing blocks, mean P(sure) 
= .641 and .623, respectively. This may indicate a transient 
increase in exploratory behavior. Participants in the Other-
Verbalization condition maintained a relatively consistent 
high level of sure-alternative choices, P(sure) = .744. Planned 
contrasts showed that the proportion of sure choices in the 
last 20 trials after verbalization were significantly higher in 
the Other-Verbalization condition compared to that in the 
Control and Self-Verbalization conditions, t(80)=2.23, 
p=.027; t(82)=2.53, p=0.013, respectively.  

Subjective Estimates 
Participants were quite conservative in their probability 
estimates, underestimating probabilities of both the sure 
option (Figure 4) and the risky options (Figure 5). Such 
probability underestimation is particularly surprising for the 
sure events, because any sample of a sure option must consist 
of 100% payoff outcomes. One way to explain this is to note 
that in this partial-feedback paradigm, when a participant 
chooses the risky option, the outcome for the button 
associated with the sure-thing distribution is not revealed. 
Thus, the participant may believe that some non-payoff 

outcomes could be occurring for what we know to be the 
sure-thing option on these “blind” trials. And in any small 
sample of trials, it is difficult to distinguish a sure-thing from 
a high-probability event, just as it is known that in decisions 
from experience people frequently fail to distinguish between 
low-probability and zero-probability events (see, for example, 
Kunreuther et al., 2001; Hertwig et al., 2004).  
 

 
 
Figure 3: Sure choice proportions across three verbalization 
conditions in the testing session (last 20 trials). Error bars: ± 
2 standard errors.  

 
Furthermore, articulating a summary message (to Self or 

Other) significantly increased this underestimation of the 100% 
probability of the sure option, F(2,123)=10.270, p=.012, 
again contrary to our hypothesis that verbalization would 
increase accuracy. However, when participants estimated the 
probability of payoff for the risky option, this drop in the 
subjective estimate (an increase in conservatism, again 
resulting in lower accuracy) due to verbalization was only 
marginally significant for the high-probability problem 
F(2,59)=2.943, p=.061, and was not significant for the low-
probability problem, F(2,59) = 2.222, p=.117, perhaps due to 
a floor effect, or because conservatism in this case would 
mean estimating the probability as less extreme (i.e. farther 
from 0). 

Verbalization Content 
The above results demonstrate that the explicit verbalization 
manipulation has an effect on subsequent decision choices as 
well as on subjective estimates. However, the verbalization 
manipulations did not increase the accuracy of the subjective 
estimates as we expected, and even decreased it in some cases. 
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To explore why, we conducted a content analysis of the 
strategies reported by participants in the two verbalization 
conditions (40 statements in the Other condition, 44 
statements in the Self condition). Specifically, we were 
interested in examining the detailed content, both as a 
manipulation check and to explore the major concepts and 
terms used by participants in communicating the problem 
information. We used two raters to categorize the 
verbalizations (initial κ=0.66), who discussed the 
disagreements until they reached full agreement, κ ≥ .99.  
 

 
 
Figure 4: Estimated payoff percent for the sure option 
(objectively = 100% in both high- and low- probability 
problems). Error bars: ± 2 standard errors.  

 
 
Figure 5: Estimated payoff percent for the risky option 
(objectively = 60% in the high-probability problem, = 15% 

in the low-probability problem). Error bars: ± 2 standard 
errors. 

We divided the analysis into two phases. An initial 
classification suggested ten categories of utterances (which 
we will refer to as “strategies”, for convenience): no 
strategy/intuition/luck, payoff value, payoff frequency, 
temporary switch, sequence, risk-reward tradeoff, 
probability and EV estimate, recommend the sure option, 
recommend the risky option, and recommend mixed options. 
Next, we tested the association of specific strategies with 
subsequent decision making (specifically, with the 
proportion of sure option choices after the verbalization 
manipulation), using one-way analysis of variance.  

In general, participants verbalized a wide range of 
strategies, ranging from 1 to 5 when verbalizing to Others and 
from 1 to 6 when verbalizing to Self. And a majority of 
participants in each condition verbalized at least 2 strategies. 
The two verbalization conditions seemed to have very 
different profiles of strategy use (Figure 6). Participant who 
verbalized to themselves were significantly more likely to 
describe payoff frequency (75%), compared to those 
verbalized a social message (48%), χ2(1; N=52) = 6.719, 
p= .01 < .05. Participants tended to simply recommend the 
sure option more often when they were writing a social 
message (55%) compared to verbalizing to themselves (43%), 
however this difference did not reach significance. In both 
conditions, only a few participants mentioned calculating 
probability or expected value (5% in Other-Verbalization and 
14% in Self-Verbalization), although more mentioned 
reasoning about tradeoffs between risk and reward.     

Consistent with previous findings, mentions of switching 
between options to learn about payoff patterns or follow a 
sequential pattern were observed. Examples include: “the 
first option had a pattern between getting 0 and 7 dollars 
while the other was 3 every time. I thought I could discern the 
pattern and only hit the first option when I thought the 7 
would be there.” “Keep pressing the left button until you get 
more than 2 zeros in a row. Then press the right button about 
2 or 3 times, then go back to pressing the left button.”). In the 
Other-verbalization condition, 15% of participants 
mentioned switching or sequential dependencies in outcomes, 
compared to 9% in the Self-Verbalization condition.  Some 
of these utterances may be taken as indicating that a 
participant exhibits some form of the gambler’s fallacy, in 
which they believe a run of wins will tend to end, or the hot 
hand fallacy, where they believe such runs tend to continue 
(Bar-Hillel & Wagenaar, 1991). A number of participants 
also recommended mixed options as a better strategy than 
sticking to one option (cf. Chen & Corter, 2006).  

Overall, more (85%) Social messages (compared to Self 
messages) tended to prescribe an action to be taken (example: 
“Go with the three dollars most of the time, but occasionally 
try your luck to get the 7 dollars, since it has fairly good 
odds.”), χ2(1; N=44) = 32.574, p < .001; while Self messages 
were more likely (75%) to simply describe the past 
experience (example: “Second option had consistent payoff. 
I am risk averse so I only tried the other a couple of times and 
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hit zero so I stayed with the sure thing.”), χ2(1; N=45) = 
17.058, p < .001 ( following “prescriptive rule” vs 
“descriptive rule“, Bell et al., 1988). 

 In a one-way ANOVA testing if participants’ choice 
behavior differed on the basis of their verbalized content 
(Figure 7), we found that the proportion of sure choices  were 
significantly higher if participants recommended the sure 
option, F(1, 82)=7.063, p=.009 < .05; while significantly 
lower if they depended on no strategy or pure intuition and 
luck, F(1, 82)=4.032, p=.048 < .05, mentioned a temporary 
switch, F(1, 82)=4.601, p=.035 < .05, or recommended the 
risky option, F(1, 82)=5.296, p=.024 < .05. 

   

 
 
Figure 6: Verbalized content profiles by participants’ 
verbalization condition 

 

  
 
Figure 7: Sure choice proportions in the testing session (last 
20 trials) by type of participants’ verbalization. Error bars: ± 
2 standard errors. 

Discussion 
In this study, we asked participants to articulate what was 
learned from experience, either to themselves or to others. 
We did not find evidence to support the original hypothesis 

that explicit verbalization, especially verbalizing to someone 
else, promotes abstract rule reasoning and thus yields better 
learning towards EV-maximization. Indeed, the data revealed 
a very different pattern. Delivering a social message tended 
to increase the underestimation of the subjective probability 
estimates (a form of conservatism), and subsequently led to 
less EV-consistent decision making, compared to the purely 
implicit learning condition in which no verbalization was 
prompted.  

We also had hypothesized that the verbalization 
manipulation may tend to shift people from implicitly 
motivated behavior to the use of explicit strategies. These 
strategies can be either rational and effective, such as drawing 
on memory for outcome feedback and reasoning about 
tradeoffs, or heuristic in nature, such as choosing a simple 
strategy or prescribing the same. However, very few 
participants in either verbalization condition reported 
calculating probability or expected value. Instead, in Self 
summaries they tended to simply describe past learning 
experience, especially summarizing frequency information; 
while in summaries for Others, they often simply prescribed 
strategies (positive or avoidance) to others.  

One potential reason for this lack of benefit from explicit 
verbalizations is that prior studies showing learning benefits 
from social dialogue (e.g., Schwartz, 1995; Voiklis & Corter, 
2012) examined situations where participants took many 
rounds to negotiate multiple perspectives and generate 
abstractions and rules.  In contrast, the one-way, single-round 
verbalizations in this study may induce considering another’s 
perspective to some degree, but perhaps not enough to spur 
abstraction and use of explicit or formal strategies. This is 
consistent with the finding from research on collective 
intelligence that the equality in distribution of conversational 
turn-taking is correlated with a higher collective intelligence 
factor (Woolley et al., 2010). Moreover, relatively naïve 
participants may lack expert knowledge or language to 
convey sophisticated strategies like expected value in the 
risky decision domain. 

We found that verbalizations, especially in the form of a 
social summary message to another person, led to a higher 
level of sure choices in subsequent decisions, perhaps by 
“freezing” the recommender’s strategy and inhibiting further 
exploration of decision options (see discussion below). Also, 
verbalization seemed to increase underestimation of 
probabilities (for both certain and risky events), perhaps 
indicating a form of “social conservatism”, as if the 
participants were cautious about their limited information 
acquired from experience and discounted their judgments to 
communicate a “safer” message socially. This is consistent 
with Benjamin and Budescu’s (2015) findings about advice 
giving, in which an implicit learning mode (decisions from 
experience) resulted in more risk aversion and 
acknowledgement of information uncertainty. 

Moreover, some previous studies using the repeated 
decisions with description paradigm seem to show that choice 
behaviors are mainly affected by experience while explicit 
descriptions are considered only when they carry novel or 
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inconsistent information that cannot be inferred from the 
feedback (Barron et al., 2008; Weiss-Cohen, et al., 2016); 
more often the descriptions seem to be neglected (Jessup et 
al., 2008; Lejarraga & Gonzales, 2011). When participants 
were writing a social message to others, they might be more 
conscious of the utility of information, assuming that their 
verbalizations would be taken into consideration.  It may be 
that in this situation, underestimation of payoff probabilities 
(a “sin” of omission, in a sense) is seen as less undesirable 
than overestimation of payoff probabilities (a “sin” of 
commission).  

As noted, in the Control and Self-Verbalization conditions, 
the final 20 test trials elicited a period of exploratory behavior, 
but not in the Other-Verbalization condition. Furthermore, 
participants in the Self condition tended to describe their past 
experience with the 100 trials (i.e. payoff frequency and value) 
while those in the Other condition tended to prescribe a future 
action (i.e. recommend one option or mixed options). This 
may indicate a social motive to seem consistent when giving 
advice, in line with the behavior consistency principle 
(Cialdini, Trost, & Newsom, 1995), well established by 
dissonance and balance theories, (Festinger 1957; Heider 
1958) and the “foot-in-the-door” effect (Freedman & Fraser 
1966). According to Group-Centrism (Kruglanski et al., 
2006), the need for cognitive closure within the group 
induces pressures to opinion uniformity, rejection of deviates, 
resistance to change, conservatism and the perpetuation of 
group norms, and results in reduced information exchange 
and “premature consensus” or “early closure” (Kruglanski & 
Webster, 1996), and process losses that leads to less optimal 
group performance (Steiner, 1972). Furthermore, the bias 
towards shared information, once explicitly formed, can also 
lead to misinterpretation of new information that is 
inconsistent with already formed bias (Kerr & Tindale, 2004). 
Social context, here in the form of a social probe to verbalize 
strategies explicitly, might also exacerbate individuals’ 
desire to be consistent in their explicit strategy verbalizations, 
probability estimates, and subsequent behaviors. 

In conclusion, our results do show verbalization effects on 
implicit learning in decisions from experience.  This evidence 
can be seen as supporting accounts that recognize an explicit 
learning aspect in decisions from experience as well as the 
importance of social contexts, and also as supporting dual-
process accounts of repeated decisions with outcome 
feedback. Further exploration of the verbalization effect and 
of the interplay between experience and abstractions of 
experience might consider a broader range of factors that 
contribute to rule abstraction, to better understand how 
people can make informed decisions that combine explicit 
reasoning and implicit experience. This future research might 
find a way to integrate research on mental representations in 
decisions from experience (Camilleri & Newell, 2009), 
advice giving in decision making (Benjamin & Budescu, 
2015) and information shareability in the general learning 
domain (Freyd, 1983). 
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Abstract

A long-standing assumption in cognitive science has been that
concepts are shared among individuals for common words.
However, given that concepts are formed by the data we ob-
serve, and observations vary wildly across individual experi-
ences, our concepts are not likely identical. Here, we present
data in which 104 participants answer questions regarding their
beliefs about the definitions of common everyday words, and
the degree to which they think others agree. Our results sug-
gest that even for common words, there exist many distinct
extensions of ordinary and political concepts across individu-
als. There is also a pervasive bias which leads individuals to
overestimate the degree to which others agree, which may ex-
plain why “talking past each other” is an anecdotally common
experience when discussing important topics.
Keywords: Concepts; Metacognition; Individual Differences;
Miscommunication

Introduction
In 1964, the United States Supreme Court heard Jacobellis v.
Ohio, a case in which theater owner Nico Jacobellis was fined
for exhibiting a dramatic French film about adultery that con-
tained material which the state considered obscene. Justice
Potter Stewart, in explaining why he believed the film did not
violate the state’s obscenity laws, stated that he was unable to
define pornography but also said “I know it when I see it”. In
this instance, the highest authority in the country was tasked
with categorizing an edge-case which would affect the lives
of millions and he admitted that his criteria for categorization
was difficult to articulate.

Even words with seemingly precise meanings can be de-
ceptively ambiguous. Especially if neither party anticipates
a problem because of the word’s commonality. These non-
obvious misalignments can have serious consequences. For
example, toxicologists and non-toxicologists likely have dif-
ferent concepts for the word “hazard”. Toxicologists define
the word as referring to anything that could potentially cause
harm—even if unlikely. For example, a toxicologist would
categorize water as a hazard because it is possible to over-
dose if excessive quantities are consumed. However, for
non-toxicologists, the word “hazard” refers to things which
are dangerous—likely to cause harm, not simply capable of

causing harm under specific or unlikely circumstances. This
misalignment caused problems when toxicologists with the
World Cancer Association labelled coffee as a known haz-
ard for developing cancer in mice and cell cultures. A Cali-
fornia judge, who likely possessed the concept synonymous
with “dangerous”, interpreted the report as meaning coffee
was dangerous for consumers and ruled that California had to
warn consumers.

These examples illustrate that not only can words be hard
to define, but we sometimes have very different ideas about
what they mean. When two people use the same word, they
may assume that they are each referring to the same (or at
least a similar) concept. But how often is this assumption
correct? Communication requires involved parties to under-
stand each other correctly. A necessary component of this
during language use is that words map onto the same mean-
ings for all conversation partners, or, alternatively, that they
are at least aware of the possibility for misalignment. If this
is not in fact occurring, it could provide new insights into
why and how people disagree and misunderstand one another.
Understanding these dynamics could, likewise, be used to fa-
cilitate better communication in general. Thus, conceptual
misalignment has important implications in a wide range of
domains, including public policy, diplomacy, education, and
politics.

All theories of concepts involve learning via interaction
with and data accumulation from the world. These experi-
ences vary (often wildly) across individuals. If individuals
are using the same word to refer to two different concepts,
confusion and miscommunication may occur. There is some
empirical evidence that at least some of people’s concepts
do in fact vary across individuals (McCloskey & Glucksberg,
1978). Labov (1973) asked participants to categorize objects
as either a “cup” or a “bowl” as he varied the heights and
widths of the objects. For extreme values of either height or
width, there was widespread agreement on the classification.
However, as the values became more moderate, the classifi-
cations became more subjective. This demonstrates that peo-
ple’s concepts are fuzzy along the edges, even with everyday
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Figure 1: Participants saw 200 randomized trials as above.

objects.

If people do not agree even on category boundaries for
concrete objects, how much misalignment might exist among
more abstract concepts? And are people aware of the fact that
concepts vary across individuals? To date, there has been no
work exploring these questions.

Our first goal is to quantify individual differences in con-
ceptual representations. By utilizing an approach which tar-
geted edge-cases, we optimized our chances of detecting dif-
ferences in definitional boundaries. Edge-cases are both theo-
retically and functionally important. They are crucial to con-
ceptual definitions, and are arguably where the highest utility
can be found due to the possible illusion of confidence people
have about others’ definitions. For example, common debates
about abortion, gun-control, and welfare hinge on edge-cases.

We did this by collecting peoples assessments of whether
particular scenarios applied to specific concepts. We then ap-
plied a clustering algorithm to group participants by similar-
ity of their conceptual representations. We borrowed tech-
niques from machine learning that have previously been ap-
plied in biology and ecology in order to estimate the total
number of distinct representations on a population level. Our
second goal is to quantify peoples metacognitive awareness
of differences in each others conceptual structures. If peo-
ple are unaware of the variability in others classifications of
everyday concepts, it would make communication more dif-
ficult. In this paper, we will probe the variability of people’s
concepts and measure their awareness of any differences.

Methods

We recruited 104 participants on Amazon Mechanical Turk
and queried them regarding their beliefs about whether a par-
ticular word applied to a given phrase or sentence. For each of
200 trials (see Figure 1) a phrase or sentence was displayed.
The participant was then presented with two opposites and
asked to classify the phrase or sentence. For example, after
reading the sentence “A murderer is killed”, participants an-
swered whether they thought it was justice or injustice. They
also answered how many people out of 100 would agree with
them.

Word Sentence Reliability Pair
justice/injustice A guilty man

is executed
A man who is guilty is
put to death

adult/child A 17-year-old An individual who is al-
most 18

Table 1: Sample reliability sentences

Word Phrase/Sentence
equality/inequality Taking wealth from the rich and giv-

ing it to the poor
fairness/unfairness Paying none of your workers because

you don’t have the money for every-
one

justice/injustice A thief’s stolen property is stolen
peace/conflict A field filled with corpses after a war

is over
honesty/dishonesty Making true but misleading state-

ments
safety/danger Preventing you from drinking soda
freedom/prohibition Making murder illegal
transparent/secretive Releasing your taxes behind a pay-

wall
education/ignorance Home schooling in the US
healthcare/illness Insurance not paying for your medi-

cal bills despite you paying your pre-
miums

day/night Dusk
hot/cold A temperate day
light/dark Classical music
friend/enemy A close acquaintance who insults you

all the time
boy/girl A transgender woman
love/hate Spanking a child so that they will not

become spoiled
adult/child A 17-year-old
good/bad An entire building full of murderers

was destroyed
sun/moon A star that orbits a planet
ceiling/floor The top surface in an upside-down

house

Table 2: Sample stimuli presented to subjects in the experi-
ment.

Word Choices
Stimuli were divided into ten political words and ten fre-
quently used nouns. Half of all participants answered ques-
tions regarding political words while the other half answered
questions about the nouns. Political concepts were chosen by
asking 130 mTurkers to list the top ten words they felt were
most relevant to politics. The top ten most frequent words
were then chosen as our political concepts. The ten nouns
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were chosen by querying the MRC Psycholinguistic Database
for the ten most frequent nouns and omitting words which
were close semantic duplicates (e.g. boy vs. man). This was
done in order to maximize semantic variability in our word
pairs as much as possible.

Sentence Construction
The specific sentences participants are responding to for each
word are of crucial importance. One might imagine a set of
sentences could be chosen for the word “boy” which would
result in near universal agreement among participants. On the
other hand, sentences could be constructed in such a way as
to maximize disagreement (a 50/50 split for each binary re-
sponse). If our goal is to discover whether people possess
different concepts, the latter approach is appropriate. Specifi-
cally, since edge cases are often where the greatest variability
lies, we will probe people’s classifications of edge cases. This
approach allows us to get a rough estimate of the maximum
conceptual variability for each word (see Table 2 for a sample
of phrases/sentences).

Reliability
Each trial had an associated reliability trial which presented
the same phrase or sentence except for a minor modification
which did not change the meaning. These were added in order
to assess subject attention and reliability. (see Table 1 for a
sample of phrases/sentences)

Analysis
Ascertaining whether participants possess different concep-
tual representations for a given word is a non-trivial problem.
We first run into the problem of how to quantify differences
between conceptual representations. What does it mean for
person A’s concept of “justice” to be twice as far from person
B’s as person C’s is? We address this by representing each
person’s concept using a binary response vector. Next, we
run into the issue of measurement noise and participant re-
liability. If person A answers that “A clear night with a full
moon” is “light” but also answers that “A cloudless night with
a full moon” is “dark”, it would be reasonable to label these
responses as unreliable noise. The “reliability” sentences pro-
vide semantic duplicates for each sentence, allowing us to
quantify the reliability of participants in the task.

Once we have quantified participants’ reliability and con-
cepts, our last major issue is deciding how much of a differ-
ence between two concepts is sufficient to call them distinct.
For the concept blue, one individual might be centered on
the 470 nanometer wavelength while another might be cen-
tered on 480 nanometers. What would not be clear, however,
is whether that disparity is sufficiently different so as to rea-
sonably characterize the individuals as having separate con-
cepts for blue. We approach this challenge by clustering our
participants such that people with similar concepts will be
grouped in the same cluster. We do this by adopting Bayesian
approaches that find the optimal partition of participant re-
sponses using a trade-off between data-fit and simplicity. If

the responses of one participant are very similar to those of
another participant, they will likely be placed in the same
cluster. On the other hand, if two participants have very dif-
ferent responses, they will likely be placed in different clus-
ters, despite the process’s overall conservative preference for
fewer total clusters (Anderson, 1991). More specifically, we
will use a Chinese Restaurant Process prior. If [x1,x2, . . . ,xk]
is a vector denoting how many of the n subjects have each
concept (for a given word), then the CRP prior is

P([x1,x2, . . . ,xk]) =
1
n! ∏

i
(xi−1) (1)

Within each “table” of the CRP, we use a Beta-Bernoulli
likelihood, meaning that subjects assigned the same cluster
are assumed to generate the same latent vector of binary an-
swers. This vector is then measured with noise (α), and the
latent probabilities are integrated out. Thus, if y j and n j are
the number of “yes” and “no” responses in a given cluster
assignment to the j’th item of a given concept, then the like-
lihood is,

∏
j

Γ(2α) ·Γ(y j +α) ·Γ(n j +α)

Γ(y j +n j +2α) ·Γ(α)2 · y j! ·n j!
(2)

With this setup, we used a Gibbs sampler to sample from
the posterior on clusters given the responses for each concept.
This analysis provides us with the number of distinct concep-
tual representations possessed by our participants. While this
is useful information, what we are actually interested in is the
total number of conceptual representations which exist on the
planet. Ecologists have faced a very similar problem in esti-
mating the number of species which exist. Often, they pos-
sess observed counts of individuals and of species in a given
area (the Amazon rainforest for example) and would like to
estimate the true number of species for that area (Bunge &
Fitzpatrick, 1993). Here, we use the number of sampled con-
cepts across the number of sampled individuals to estimate
the total number of concepts which exist across the popula-
tion of Earth for each of our words. Given that our clustering
algorithm has a conservative preference for fewer clusters,
this preference will extend to our global estimate.

Results
We excluded participants who did not have a reliability
greater than 70% (9 out of 104 participants). We also
excluded participants who gave the same answer to all
agreement-prediction questions (2 out of 95 participants). We
did not require participants to perform flawlessly, however,
as this would be an unrealistically high bar for humans com-
pleting so many trials. Of the remaining participants, their
probability of giving the same answer to both questions in
the reliability pair was a respectable 86%.

There are about five distinct concepts per word
Figure 2 shows the estimated true number of concepts (y-
axis) across 4,000 iterations of our clustering algorithm (us-
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Figure 2: Estimated true number of concepts for 4,000 itera-
tions of our clustering algorithm using a simplicity prior after
a 1,000 iteration burn-in. Median estimates are roughly the
same regardless of the type of word (about 5).

ing a simplicity prior) after 1,000 iterations of burn-in for
each word (x-axis). Across the 4,000 samples from each
word, the median estimates are always about the same re-
gardless of word type: roughly five concepts. We also ran
our clustering algorithm using a uniform prior which resulted
in the same pattern of estimates except increased by two. In
comparison to a simplicity prior, a uniform prior will prefer
a larger estimate of concepts. That a uniform prior resulted
in seven concepts, not 7,000, strongly suggests that the true
number of concepts for our chosen words is close to our esti-
mates.

Additional participants are unlikely to significantly
increase our estimates

Additionally, we can run our algorithm with varying amounts
of data in order to confirm our results. As the number of par-
ticipants we sample increases, we should expect the distance
between our sample estimate and global estimate to narrow
and eventually converge. Figure 3 shows the number of con-
cepts (y-axis) by the number of people sampled (x-axis). For
most words, as the number of people sampled increases, the
true number of concepts (in blue) also increases. This sug-
gests that our estimates for these concepts are relatively con-
servative, as it is unlikely we have sampled enough to cause
this process to plateau. This, in addition to the inherent con-
servatism in our clustering algorithm (the simplicity prior),
suggests these are lower bound estimates for our tested con-
cepts. However, given the slow rate of increase between sam-
ple sizes, it is unlikely our estimates would ever grow signif-
icantly, even with many more participants.
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Figure 3: Number of concepts (y-axis) depending on the
number of people sampled (x-axis) using a simplicity prior.
Box-plots represent 25% to 75% quantiles of the number of
concepts in our sample. Blue dots represent the estimated
number of unique concepts on Earth based on our sample
estimates. As the number of people sampled increases, the
number of estimated concepts tends to increase by a slowing
amount. This suggests that although our current estimates are
conservative, the true number is not much higher.
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Figure 4: Number of concepts (y-axis) depending on the
number of sentences sampled (x-axis) using a simplicity
prior. Box-plots represent 25% to 75% quantiles of the num-
ber of concepts in our sample. Blue dots represent the es-
timated number of unique concepts on Earth based on our
sample estimates. As the number of sentences sampled in-
creases, the number of estimated concepts tends to stay the
same. This suggests that our sentence choices are sufficiently
varied enough to capture concept diversity.
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Figure 5: Raw counts (y-axis) of participant answers to the
question “How many other people out of 100 would agree
with you?” (x-axis). People overwhelmingly think the major-
ity of other people will agree with their assessment.

Additional sentences are unlikely to significantly
increase our estimates
Figure 4 shows the number of concepts (y-axis) by the num-
ber of sentences sampled (x-axis). If concepts were unique
for each individual, one would expect the number of esti-
mated concepts to steadily increase as the number of sen-
tences increased. Instead, we see our estimate as relatively
stable, even sometimes decreasing as more sentences are
sampled. This also suggests that our sentence choices were
sufficiently varied to capture concept diversity.

Most individuals underestimate conceptual
variability
We then examined people’s guesses about how often others’
agreed with them. Figure 5 shows raw counts (y-axis) of par-
ticipant responses (x-axis). The figure illustrates a very strong
“like me” bias where the overwhelming number of responses
indicate a belief that most others’ will agree with their cate-
gorization. The second most common response was that all
others will agree with their assessment.

We then assessed the relationship between people’s cate-
gorizations to their guesses about the answers of others. Fig-
ure 6 presents people’s predicted answers (y-axis) and their
actual answers (x-axis). As the figure shows, a sizeable num-
ber of trials are not well predicted by participants. A perfect
prediction rate would result in all trials landing on the y =
x line. Although there are many trials which fall on or near
this line, there also seems to be a consistent trend of partic-
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Figure 6: Participants’ actual responses vs. the responses they
expected others’ to give. Each data point represents the mean
response for a trial/choice pair. Most data points are above
the y = x line, illustrating that people largely overestimate to
which others’ agree with their assessments.

ipants overestimating the number of people who agree with
them as the number of points above the y = x line shows. In
fact, very few trials are underestimated and those which are,
are only barely underestimated. In contrast, many trial pre-
dictions wildly overestimate people’s actual responses. Ex-
amining the data by word (see Figure 7) shows these trends
are not confined to a small subset of words but rather, are
widespread.

Conclusions and Discussion
The degree to which conceptual representations are shared
and the degree to which people are aware of any differences
are also fundamentally important aspects of any theory of
conceptual structure, but both have been largely neglected.

These results, along with prior literature, provide strong
evidence that the diversity in conceptual representations has
been underestimated. As Figure 2 shows, concepts have
roughly five to seven different representations, even for basic
words such as “day” or “night”. This is a surprising finding
from multiple points of view. If you believe everyone holds
the same concept for the same word, anything greater than
one will be unexpected. On the other hand, if you believe
concepts are infinitely distinct across individuals and across
time, our estimate will also be unexpected.

Furthermore, individuals seem to be unaware of these dif-
ferences. Figure 6 illustrates the poor relationship between
people’s actual answers and people’s guesses about the an-
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Figure 7: Participants’ actual responses vs. the responses they
expected others’ to give, binned by word. Each data point
represents the mean response for a trial/choice pair. People
largely overestimate the degree to which others’ agree with
their assessments, regardless of the concept being assessed.

swers of others. Taken together, these findings have strong
implications for the way humans communicate. Misunder-
standings are likely to occur if two individuals are operating
with different representations of the same word.

Limitations

It is possible that participants may have interpreted some sen-
tences differently. If two participants have completely dif-
ferent interpretations of the same sentence, they may in real-
ity possess the same concept, but appear to possess different
concepts. We do not believe that this possibility could have
driven our reported effects, however, because sentences were
constructed in order to reduce ambiguity (though, of course,
eliminating all ambiguity is impossible).

Summary

There is measurable variability in the conceptual representa-
tions attached to particular words (greater than zero but less
than infinity); importantly, this variability applies to both con-
crete words (e.g., “sun”) and abstract ones (e.g., “freedom”).
More importantly, our data shows that individuals are poorly
calibrated to this variability and generally underestimate it.
This is important, because communication requires that in-
terlocutors understand one another. These results could help
explain a previously unappreciated source of miscommunica-
tion and misunderstanding between people.
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Abstract

Previous research has argued that learners infer word order pat-
terns when learning a new language based on knowledge about
underlying structure, rather than linear order (Culbertson &
Adger, 2014). Specifically, learners prefer typologically com-
mon noun phrase word order patterns that transparently reflect
how elements like nouns, adjectives, numerals, and demon-
stratives combine hierarchically. We test whether this result
still holds after removing a potentially confounding strategy
present in the original study design. We find that when learn-
ers are taught a naturalistic “foreign” language, a clear prefer-
ence for noun phrase word order is replicated but for a subset
of modifier types originally tested. Specifically, participants
preferred noun phrases with the order N-Adj-Dem (as in “mug
red this”) over the order N-Dem-Adj (as in “mug this red”).
However, they showed no preference between orders N-Adj-
Num (as in “mugs red two”) and N-Num-Adj (as in “mugs
two red”). We interpret this sensitivity as potentially reflecting
an asymmetry among modifier types in the underlying hierar-
chical structure.

Keywords: language; learning; syntax; typology

Introduction
A large body of work has claimed that sensitivity to abstract
hierarchical structure drives the acquisition of syntax (e.g.,
Chomsky, 1965). At the same time, there is evidence to sug-
gest that language learners track surface-level statistics, in-
cluding co-occurrence patterns among words (e.g., Saffran,
Aslin, & Newport, 1996). In a recent paper, Culbertson and
Adger (2014) used a pseudo-artificial language learning task
to argue that learners privilege abstract structural relations
among words to linear order when they learn syntactic fea-
tures of a new language. Moreover, they suggest that sensi-
tivity to these structural relations—which in their case pertain
to noun phrase word order—can explain a well-studied ty-
pological generalisation, known to linguists as Universal 20
(Greenberg, 1963). In the current paper, we highlight some
potential methodological issues with the paradigm used by
Culbertson and Adger (2014), and test whether their finding
is replicated once the paradigm is improved.

Research in generative syntax posits an underlying hierar-

chical structure for the noun phrase: [Dem [Num [Adj [N]]1

(Adger, 2003; Cinque, 2005; Abels & Neeleman, 2012). In
this hierarchy, which can be interpreted as reflecting seman-
tic or conceptual structure, the adjective forms a constituent
with the noun to the exclusion of the numeral and demon-
strative; that sub-constituent combines with a numeral, and
the resulting unit combines with a demonstrative to make a
larger constituent. The structure provides a straightforward
explanation for why, in most languages, adjectives are placed
linearly closest to the noun, while demonstratives are furthest
away (e.g., Dryer, 2018). For example, in English these two
red cars, in Thai (the equivalent of) cars red two these. Both
these orders can be read directly off the underlying structure,
while others, like N-Dem-Num-Adj cannot. While such or-
ders can in principle be derived by movement, they are rarely
found. Culbertson and Adger (2014) refer to orders like Dem-
Num-Adj-N and N-Adj-Num-Dem (as well as any other or-
der that can be read directly off of the structure [Dem [Num
[Adj [N]]) as isomorphic—they preserve an isomorphic rela-
tion between the proposed underlying hierarchical structure
and the surface linearisation.

Culbertson and Adger (2014) sought to provide evidence
that learners are sensitive to this underlying structure, and use
it to infer word order, rather than simply copying the linear or-
der in their native language. To show this, they taught English
speakers simple noun phrases in a pseudo-artificial language,
with English words, but non-native-like word order. Partic-
ipants saw an English phrase like red shoe, and were taught
it would be shoe red in the new “language”; similarly this
car would be car this. Participants were subsequently shown
phrases with multiple modifiers, like this red car, and asked
to guess the relative order of post-nominal modifiers in the
language. The authors reason that if learners’ inferences are
guided by their knowledge of surface-level features of En-
glish, they should guess the non-isomorphic order (i.e., car

1Abbreviations: N(oun) (e.g., car), Adj(ective) (e.g., red),
(Num)eral (e.g., two), Dem(onstrative) (e.g., this).
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this red), which has its modifiers in English order. By con-
trast, if their inferences are guided instead by knowledge of
the abstract structure described above, then they should in-
fer the isomorphic order (i.e., car red this). Participants in
their experiment overwhelmingly inferred isomorphic orders,
suggesting sensitivity to the hypothesised universal structure
rather than surface statistics of English.

While this result is intriguing, the paradigm used by
Culbertson and Adger (2014) is unusual in several respects.
First, even relative to other work using artificial language
learning paradigms, this task is very non-naturalistic. Sec-
ond, the task may encourage a particular strategy. Specifi-
cally, English phrases along with their “translations” in the
language–also English words–were presented visually. Par-
ticipants may have adopted an explicit strategy of reversing
or “flipping” the English words to determine their responses.
For example, during training participants could relate a trans-
lation like shoe red to the English phrase red shoe shown on-
screen by reversing the words. Using the same strategy to
guess the correct two-modifier phrase translation would then
mean flipping the English this red shoe to shoe red this. Here,
we aim to determine whether the apparent bias for isomorphic
orders reported by Culbertson and Adger (2014) is replicated
using a standard artificial language learning task, with a more
naturalistic, completely novel language.

Experiment 1
The experiments we report on in the present paper are part
of a larger cross-linguistic comparison project. We followed
the methodology reported by White et al. (2018) and de-
signed artificial languages using only sounds contained in
all of the languages we plan to test. The phonological in-
ventory of our artificial languages was thus reduced to five
vowels, and a small set of voiceless (non-aspirated) stops,
nasals, and the voiceless glottal fricative, all shared by the
languages we plan to test in.2 The languages all have lexi-
cal tone (for planned experiments with speakers of tonal lan-
guages), though the tones do not serve to contrast words from
one another (thus the English-speaking participants can sim-
ply ignore them). As in Culbertson and Adger (2014), we
taught participants phrases with a noun and a single modi-
fier (either and adjective and a demonstrative, or an adjective
and a numeral), and then asked them to guess the relative
order of modifiers when both were present. Crucially, in con-
trast with Culbertson and Adger (2014), we used completely
novel stimuli and did not present written L1 equivalents of the
phrases participants were learning. This was done to reduce
the possibility, present in Culbertson and Adger (2014), that
participants would simply “flip” L1 word orders to translate
into the artificial language they were learning.

Methods
Stimuli The artificial language had five lexical items. There
was a single noun meaning feather, represented by the label

2Experiment 3 contains some additional fricatives that will not
be used with non-English-speaking populations.

/jè/. There were two adjectives (meaning red and black),
and two items that served as either demonstratives (this and
that) or numerals (two and three) depending on the condi-
tion the participant was assigned to. Labels for these modi-
fier classes were created in pairs:/púkù/, /tàká/ and /h̀ımı́/,
/hónò/. The two pairs of stimuli were randomly assigned
to be either adjectives or demonstratives/numerals. We privi-
leged within-pair similarity (so /púkù/ and /tàká/ both con-
tain only voiceless stops for example) to facilitate the learn-
ing process.3 Stimuli were produced by a trained phonetician.
All stops were produced with near zero VOT and each sylla-
ble was produced with either a high or a low tone.

Visual stimuli were pictures of simple cartoon scenes. Ob-
jects (always feathers) were depicted on a table behind which
stood a cartoon girl. In trials featuring the noun alone, or the
noun with an adjective and/or numeral, the girl was simply
shown behind the table. In trials featuring a demonstrative,
the girl was shown pointing to an object or objects (either
near to her, or on the other side of the table from her). The
presence of the girl and table on all trials was meant to keep
demonstrative trials from being more visually salient (or com-
plex). When no adjectival meaning was expressed, feathers
were drawn in light grey; feathers were only coloured in (in
red or black) on trials involving adjectives. Examples of the
visual stimuli for single modifier trials are shown in fig. 1.

Procedure Participants were instructed that they would be
learning part of a new language called Nápı́jò, spoken by
around 10,000 people in a rural region of Southeast Asia.
All words and phrases were presented both auditorily and
orthographically. The experimental session lasted about 15
minutes, and was divided into (1) noun training, (2) noun-
modifier training, (3) noun-modifier testing, and finally, (4)
extrapolation to two modifiers. Participants were first trained
on the (single) noun in the language. On each trial, partici-
pants saw the object and were given its label in Nápı́jò. They
were instructed to click on the image to move on to the next
trial. There were five such trials. They were then trained
on noun-modifier combinations. Each trial had two parts.
First, two images appeared, each illustrating one of the two
modifiers for a given modifier type (e.g., “black” and “red”,
or “this” and “that”). A description of the first picture was
provided, while the second picture was greyed out. Then,
a description of the second picture was provided while the
first was greyed out. Recall was tested immediately follow-
ing this: The two pictures appeared again (in random order),
and the description for one was given. Participants were in-
structed to click the picture matching the description. The
first eight such trials were blocked by modifier type, with
random choice of which modifier type was introduced first
(two trials per modifier), followed by a further 16 trials with

3We designed the language to encourage participants to perceive
it as a real “foreign” language. Therefore, while the words do not
overtly contradict English phonotactics, they are not particularly
English-like. This makes them difficult to learn. Piloting suggested
that keeping the vocabulary relatively small would be necessary.
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Figure 1: Single modifier trial visual stimuli examples. On the left, an example of an adjective trial, meaning “red feather”, and
on the right an example of a demonstrative trial, meaning “that feather”.

both types intermixed. Feedback was given after each trial
(image background turned green or red, plus a beep sound if
incorrect). Participants were then tested on their knowledge
of the noun-modifier combinations. On each trial, a picture
appeared, with two potential descriptions below it. Partici-
pants were told to click on the matching description (16 trials
total, four for each modifier, random order). The foil descrip-
tion always included a modifier of the same type. Feedback
was given on each trial (button colour turned green or red, the
correct description played, regardless of response).

In the critical testing phase, participants were tested (with-
out training) on phrases with a noun and two modifiers. On
each trial a picture appeared, with two potential descriptions
below it. Participants were told to click on the matching de-
scription (16 trials total, four for each modifier, random or-
der). The two descriptions always included the correct lexical
items, in post-nominal order. They differed only in whether
the order was isomorphic (e.g., N-Adj-Dem) or not (e.g., N-
Dem-Adj). No feedback was given.

Participants All participants were recruited through Ama-
zon’s Mechanical Turk online recruiting platform and re-
ceived 3.50 USD as compensation. We recruited a total of
70 participants who were randomly assigned to either the
Demonstratives or Numerals condition. A total of eight par-
ticipants were excluded (four in each condition) because they
failed to reach at least 85% accuracy in the single modifier
test trials (this is the same exclusion criterion reported by
Culbertson and Adger (2014)). We thus analysed data from
35 participants in the Demonstratives condition and 27 in the
Numerals condition.

Results
Following the analyses reported in Culbertson and Adger
(2014), we analysed, for each condition, whether participants
demonstrated an average preference for isomorphic orders
on two modifier trials. Results from Experiment 1 are pre-

sented on the lefthand side of fig. 2. All analyses were per-
formed by implementing logistical mixed-effects models in
the lme4 package in R (Bates, 2014). We designed full mod-
els with the binary dependent variable Isomorphic along with
by-participant random effects. We used likelihood ratio tests
to compare these models to null models with no intercept
term to see if on average participants chose isomorphic or-
ders above chance level. We found no isomorphic preference
in either the Demonstratives (χ2(1)< 1) or the Numerals con-
ditions (χ2(1)< 1).

Discussion
Contrary to Culbertson and Adger (2014), we did not observe
any preference for isomorphic order in our artificial language
learning task. However, given that our methodology differed
in a number or respects from the original studies (and repli-
cations), we considered possible explanations for our null re-
sult. First, Culbertson and Adger (2014) used English words
in their experiment, whereas we used nonce words. It is there-
fore worth verifying that participants in our experiment inter-
preted the words as intended. In a debrief questionnaire, par-
ticipants were asked to report the meanings of the words they
had learned. Participants invariably reported correct transla-
tions for adjectives (colour words) and numerals. However,
meanings given for demonstratives and nouns varied to some
degree. For demonstratives, most participants reported trans-
lations such as this and that, or here and there. Both these
translations are consistent with a demonstrative interpreta-
tion: although here and there are sometimes called adverbs,
their meaning and syntax are similar to this and that, and
indeed they are the demonstrative words in many languages
(Diessel, 2006). However, some participants gave responses
such as left and right (indeed, the absolute and relative posi-
tions were confounded in our stimuli). The variation in inter-
pretation of the demonstrative may have weakened the results
to some degree. However, the interpretation of the noun sug-
gests a more obvious issue.
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Figure 2: Proportion isomorphic preference in each experiment by condition. Each point represents an individual participant
and error bars represent 95% confidence intervals.

While some participants correctly reported the English
word feather for the word /jè/. Some, did not report a trans-
lation at all, suggesting they may not have understood its
meaning. Others reported incorrect meanings, giving func-
tion words like the as translations. Note that the set size of
the nouns differs dramatically from Culbertson and Adger
(2014), where 20 nouns were used: we used a single noun in
Experiment 1. Given that every trial always consisted of /jè/
+ x, it was therefore possible for participants to completely
discount that word (or indeed treat it as a determiner). This
suggests the possibility that participants may not have been
treating our stimuli as noun phrases (i.e., not attending to the
noun head), but simply as strings of modifiers. If so, partic-
ipants may have adopted any number of response strategies.
For example, they could have interpreted the strings as copu-
lative sentences (e.g., “this (one) (is) red”), or simply strings
of modifiers. In either case, they would not have learned the
intended Noun-modifier structure of the language. In Exper-
iment 2, we therefore expanded the set of nouns in the arti-
ficial lexicon. We hypothesised that variability in the noun
would cause participants to treat our stimuli as noun phrases,
resulting in a preference for isomorphic orders.

Experiment 2
Methods
Stimuli The stimuli for Experiment 2 were similar to those
in Experiment 1; only the nouns differed. We created audio
and visual stimuli for three objects (feather, ball, mug) which
were assigned the names /éjè/, /úhù/, and /́ıt̀ı/, respectively.
All modifier stimuli were identical to Experiment 1.

Procedure The procedure was identical to Experiment 1
except the initial training and testing phases were slightly
lengthened. Noun training was composed of 15 trials (five
trials for each of the three nouns). This was immediately fol-
lowed by 15 trials of noun testing in which a picture appeared
with two labels beneath it. Participants were instructed to

click the matching label. Feedback was given (button colour
turned green or red, the correct description played regardless
of response). Noun-modifier exposure was composed of 12
trials blocked by modifier type (six trials per block, two for
each noun-modifier combination), followed by an additional
intermixed block of 12 trials (one trial for each noun-modifier
combination). Noun-modifier testing was composed of 24 tri-
als (two trials for each noun-modifier combination). The foil
labels for each picture were either an incorrect noun or an
incorrect modifier of the same type. Finally, for the critical
test phase, a random set of 16 trials was constructed for each
participant.

Participants As in Experiment 1, all participants were re-
cruited through Amazon’s Mechanical Turk online recruiting
platform and received 3.50 USD as compensation. We re-
cruited a total of 71 participants who had not participated in
Experiment 1. Participants were randomly assigned to either
the Demonstratives or Numerals condition. A total of 11 par-
ticipants were excluded (seven in the Demonstratives condi-
tion and four in the Numerals condition) because they failed
to reach at least 85% accuracy in the single modifier test trials.
We thus analysed data from 26 participants in the Demonstra-
tives condition and 34 in the Numerals condition.

Results
Results from Experiment 2 are presented in the middle of
fig. 2. The analysis of Experiment 2 was identical to that
of Experiment 1. We found an isomorphic preference in
the Demonstratives condition (β = 2.25, SE = 0.60, χ2(1) =
11.35, p < 0.001) but not in the Numerals condition (χ2(1)<
1).

Discussion
The results of Experiment 2 revealed a preference for iso-
morphic word orders, but only if the set of modifiers learned
was adjectives and demonstratives. That is, participants pre-
ferred noun phrases with the order N-Adj-Dem (as in “mug
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red this”) over the order N-Dem-Adj (as in “mug this red”).
However, they showed no preference between orders N-Adj-
Num (as in “mugs red two”) and N-Num-Adj (as in “mugs
two red”). Interestingly, this asymmetry has been reported
numerically in all previous experiments on isomorphism. As
discussed above, Culbertson and Adger (2014) found statis-
tically significant isomorphism preferences for all pairs of
modifiers (adjective, numeral and demonstrative), and when
all three modifiers were present (not tested here). However,
they report a numerical difference among the groups such that
the isomorphism preference is strongest with adjective and
demonstrative. Indeed, they cite this as further evidence that
English speakers are sensitive to the underlying hierarchi-
cal structure, since adjectives and demonstratives are struc-
turally more distant than adjectives and numerals (or numer-
als and demonstratives). In a lab replication of the original
study (which was conducted on Mechanical Turk), A. Martin,
Ratitamkul, Abels, Adger, and Culbertson (in press) repli-
cated both the general isomorphism preference and the dif-
ference among modifier pairs. They also report a replica-
tion with Thai speakers, whose L1 order is N-Adj-Num-Dem.
These speakers were trained on an artificial language with
prenominal modifiers, and they then inferred prenominal iso-
morphic orders like Dem-Adj-N in the criticial two-modifier
test phrase. There again the same difference among modi-
fier pairs was present. These studies report only numerical
differences. Our findings therefore present the clearest evi-
dence yet that the isomorphism preference may be sensitive
to modifier type.

Nevertheless, we did not replicate an isomorphism prefer-
ence for the Numerals condition. Additionally, the isomor-
phism preference found for the Demonstratives condition is
(numerically) weaker than reported in these previous stud-
ies. By design, we have reduced the likelihood that partic-
ipants are relying on an explicit “flipping” strategy, and we
have made the language itself more naturalistic. Thus, one
possibility is that our results are a better representation of En-
glish speakers’ underlying bias for isomorphism: it is present,
but not categorical for adjectives and demonstratives, and not
present for adjectives and numerals. We return to this in the
general discussion. There is, however, one other major dif-
ference between our experiment and previous experiments
which could plausibly weaken or mask an isomorphism pref-
erence, namely the relative size of the modifier categories. In
both Culbertson and Adger (2014) and A. Martin et al. (in
press), the relative class sizes approximately match what one
would typically find in a natural language: largest set size for
adjectives, then numerals, and a small set of demonstratives.4

In our experiments, all modifier classes contained two ele-
ments. In Experiment 3, we test the possibility that using a
more naturalistic relative size for the modifier classes might
amplify the isomorphism preference, perhaps revealing the

4For example, 694 adjective vs. 172 numeral, 5 demonstrative
types among all noun phrases in the English Universal Dependencies
Treebank (Nivre et al., 2017).

isomorphism preference between numerals and adjectives re-
ported in previous work.

Experiment 3
Methods
Stimuli The stimuli for Experiment 3 were similar to those
for Experiments 1 and 2. The only difference was in the num-
ber of adjectives. Specifically, four adjectives were created
(/tàkás/, /pùkúf/, /kàpáT/, and /kùtúS/) and mapped to four
colour meanings (“black”, “red”, “blue”, and “green”, respec-
tively). Visual stimuli similar to those in Experiments 1 and
2 were also created.

Procedure The procedure was identical to Experiment 2
except for the following: Noun-modifier training was all
blocked (in order to balance frequency of exposure to each
combination without increasing the number of trials too
much). Each block was composed of 12 trials. In the adjec-
tive block, each adjective was shown once with each noun. In
the numeral or demonstrative block, each modifier was shown
twice with each noun. The noun-modifier testing block was
slightly longer than in Experiment 2, with 36 trials total (2
trials for each noun-modifier combination). No changes were
made to the critical two modifier testing phase (again, 16 tri-
als total, randomly constructed). Note that the frequency of
exposure to each modifier class was the same, only the num-
ber of elements in each class differed.

Participants As in Experiments 1 and 2, all participants
were recruited through Amazon’s Mechanical Turk online re-
cruiting platform and received 3.50 USD as compensation.
We recruited a total of 76 participants who had not partic-
ipated in Experiment 1 or Experiment 2. Participants were
randomly assigned to either the Demonstratives or Numerals
condition. A total of 13 participants were excluded (nine in
the Demonstratives condition and four in the Numerals con-
dition) because they failed to reach at least 85% accuracy in
the single modifier test trials. We thus analysed data from
29 participants in the Demonstratives condition and 34 in the
Numerals condition.

Results
Results from Experiment 3 are presented on the right-hand
side of fig. 2. The analysis of Experiment 3 was identical
to that of Experiments 1 and 2. As in Experiment 2, we
found an isomorphic preference in the Demonstratives con-
dition (β = 1.24, SE = 0.36, χ2(1) = 10.37, p < 0.01) but
not in the Numerals condition (χ2(1)< 1).

Discussion
In Experiment 3, we tested whether the isomorphism pref-
erence found in Experiment 2 would be amplified, and ex-
tended to the Numerals condition if the relative sizes of the
modifier classes were more naturalistic. This was not borne
out; rather we replicated the findings of Experiment 2: an iso-
morphism preference for noun phrases with a demonstrative
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and an adjective, but not for noun phrases with a numeral and
an adjective. This finding therefore reinforces the asymmetry
reported in Experiment 2, and the numerical patterns reported
in both Culbertson and Adger (2014) and A. Martin et al. (in
press). In the next section, we investigate statistically the gen-
eral pattern of results across experiments described here.

Comparison across experiments
Two manipulations distinguished Experiments 1, 2, and 3.
First, the size of the noun class. In Experiment 1, partici-
pants learned only one noun, while in Experiments 2 and 3
they learned three. Second, the size of the adjective class. In
Experiments 1 and 2, participants learned only two adjectives,
while in Experiment 3 they learned four. We thus performed
an analysis considering these two binary variables, included
in our models using contrast coding. This allowed us to ex-
plore the interaction between these two factors and the factor
Condition in one single statistical model. The model pre-
dicted Isomorphic order choice from three fixed binary fac-
tors: Condition (Demonstratives or Numerals), Noun Class
Size (one noun or three), and Adjective Class Size (two ad-
jectives or four). We also included interactions between Con-
dition and Noun Class Size and between Condition and Ad-
jective Class Size as well as by-participant random intercepts.
We then designed reduced models each excluding one factor
or interaction, and compared them to the full model (again
using likelihood ratio tests).

We found that removing Noun Class Size significantly
worsened the model fit (β = 1.08, SE = 0.49, χ2(1) = 4.70,
p < 0.05). This indicates that participants who learned an
artificial language with three nouns showed a stronger iso-
morphism preference than those who learned an artificial lan-
guage with only one noun. We also found that removing
the interaction between Condition and Noun Class Size sig-
nificantly worsened the model fit (β = −2.65, SE = 0.98,
χ2(1) = 7.10, p < 0.01). This confirms our observation that
amongst the participants who learned artificial languages with
three nouns, those in the Demonstratives conditions showed
an isomorphism preference while those in the Numerals con-
ditions did not. Removing the factors Adjective Class Size
(χ2 < 1) and Condition (χ2 = 1.46, p = 0.23) did not worsen
the model fit, nor did removing the interaction between Con-
dition and Adjective Class Size (χ2 = 1.40, p = 0.24).

General discussion
This paper aimed to test the preferences of English speak-
ers learning about the noun phrase word order of a new lan-
guage. Previous research using a pseudo-artificial language
learning paradigm reported a strong preference for so-called
isomorphic noun phrase orders, like N-Adj-Dem or N-Adj-
Num, which transparently reflect the hypothesised hierarchi-
cal structure of the noun phrase: [Dem [Num [Adj [N]]]]
(Culbertson & Adger, 2014; A. Martin et al., in press). This
has been claimed to show that speakers’ inferences about a
new language are not based on the surface linear order of their
native language, but on a (potentially universal) underlying

hierarchical structure. Moreover, the results suggest the pos-
sibility that a preference for orders which are isomorphic to
this structure might explain why these orders overwhelmingly
outnumber non-isomorphic orders in the typology (Cinque,
2005; Abels & Neeleman, 2012; Dryer, 2018).

We sought to replicate these findings using an improved
methodology, designed to address the possibility that the orig-
inal results reflected the availability of an explicit strategy
which may have encouraged participants to choose isomor-
phic orders by visually flipping the English words. We used
a standard artificial language learning paradigm, with a rela-
tively more naturalistic language. In Experiment 1, we used
a minimal vocabulary, with only a single noun, and found
no isomorphism preference. In Experiment 2, we added ad-
ditional nouns to encourage participants to treat stimuli as
noun phrases. Here, we found an isomorphism preference for
phrases including a demonstrative and an adjective, but not
for phrases including a numeral and an adjective, an asym-
metry which mirrors numerical differences reported in earlier
studies. In Experiment 3, we attempted to strengthen the iso-
morphism preference by making the number of words in each
modifier category more naturalistic (in terms of relative size).
This did not change the results, but rather again revealed that
learners’ isomorphism preference was sensitive to the modi-
fier categories involved.

Importantly, our results show that in a more naturalistic ar-
tificial language learning task, where participants are unlikely
to use an explicit strategy of flipping English words to deter-
mine order in the new language, an isomorphism preference is
still found. Some confirmation that participants are not using
a simple flipping strategy in our experiments comes from self-
reports given at the end of the task. Of the 185 participants
that were retained for data analysis in our three experiments,
only one referred to a flipping strategy in the debriefing ques-
tionnaire. Instead, common strategies included “no strategy”,
“I just went with my gut feeling” (67 such reports), or sim-
ple descriptions of their order choices like “I placed colour
words closer to the object name, then numbers” (50 such re-
ports). This contrasts starkly with the strategies reported by
participants in Culbertson and Adger (2014)’s study. We re-
covered the data from that study and analysed the 89 partic-
ipant strategy reports from their Experiment 1: 47 of them
reported some kind of explicit flipping-based strategy (com-
pared to only 11 “no strategy”). Our replication of their effect
with a more naturalistic artificial language is thus an impor-
tant contribution to this line of research.

Our results also highlight the persistent difference between
modifier types, found numerically in earlier experiments, and
confirmed statistically here. While it is possible that some-
thing about our task is still masking a (weaker but present)
isomorphism preference for numerals and adjectives, there is
some reason to suspect that the asymmetry at least is real.
In fact, using the data collated by Dryer (2018), we can
observe that non-isomorphism between numerals and adjec-
tives, or numerals and demonstratives is more common cross-
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linguistically (35 and 64 languages respectively) than non-
isomorphism between adjectives and demonstratives (27 lan-
guages). This may reflect the fact that adjectives and demon-
stratives are more distant from one another in terms of under-
lying hierarchical structure.

As mentioned in the introduction, this hierarchy can be
conceived of as reflecting semantic composition, or concep-
tual structure. Indeed linear order patterns more generally
have been argued to reflect both (Rijkhoff, 1990; Baker, 1985;
Bybee, 1985; Rice, 2000). One possibility is that the underly-
ing hierarchy of nominal modifiers reflects differences in con-
ceptual closeness (or inherentness) between particular modi-
fier types and nouns (Kirby, Culbertson, & Schouwstra, 2018;
Culbertson, Schouwstra, & Kirby, under revision). Under this
account, adjectives are conceptually closest to nouns because
they are more likely to reflect inherent properties of individual
nouns (e.g., colour, size, texture, etc). Numerals are typically
less closely linked with particular nouns (though some clearly
are, e.g., four seasons, seven days of the week). Demonstra-
tives, being deictic elements, are by their nature not asso-
ciated with particular nouns. If the underlying hierarchical
structure reflects these different conceptual relations between
elements, then a preference for isomorphism is a preference
to hierarchically cluster elements that are more closely re-
lated conceptually. Perturbing this preference would then be
less costly when it involves elements that differ less in their
conceptual closeness to the noun (e.g., Adj and Num), com-
pared to elements that differ quite a lot (e.g., Adj and Dem)
(for similar arguments about the relative order of adjectives,
see J. E. Martin, 1969; Bouchard, 2002).

To summarise, the experiments reported here aimed to
replicate the preference for isomorphic ordering in the noun
phrase, first reported in Culbertson and Adger (2014). Us-
ing a more naturalistic artificial language learning task, we
find that English speakers infer isomorphic orders of demon-
strative and adjective. However, we found no evidence of an
isomorphism preference for numerals and adjectives. Above
we suggest one possible explanation for the difference be-
tween these two conditions: assuming that English speakers
can either use an isomorphic order, or an order that reflects the
surface linear order of their language, they are more likely to
go with the latter when this would involve two modifiers that
are more similar to each other, either in terms of structural
distance, or in terms of conceptual closeness with the noun.
That said, learners’ sensitivity to the distribution features of
the language (e.g., in Experiment 1) leave open the possibil-
ity that future experiments will reveal this bias as weaker but
still present.
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Abstract 
The acquisition of the grammar of a second language requires 
a variety of cognitive mechanisms, including inductive 
reasoning. In the current study, we examine the cognitive 
underpinnings of grammar learning with an explicit-inductive 
(rule search) learning task, designed to capture more of the 
complexity associated with grammar learning than purely 
deductive tasks. Research in language aptitude has shown that 
working memory capacity (WMC) is a key predictor of 
grammar learning outcomes. Inductive reasoning and 
grammatical sensitivity are other established aptitude factors. 
The goal of the present study was to determine the degree to 
which relevant variables predict learning on an explicit-
inductive grammar learning task. Our results indicate that both 
WMC and inductive reasoning ability predict learning over 
three days of grammar training.  

Keywords: L2 learning; L2 aptitude; working memory 
capacity; inductive reasoning; individual differences 

Introduction 
The acquisition of second language (L2) grammar is 
extremely challenging for adult learners. One of the reasons 
for this difficulty is the heavy and diverse processing 
demands associated with learning grammatical rules as well 
as applying them during comprehension and production of L2 
utterances (Doughty & Long, 2003). Insights into the precise 
cognitive underpinnings of grammar learning come from the 
field of language aptitude. Importantly, working memory 
capacity (WMC) has emerged as a key predictor of L2 
grammar learning ability (Linck, Osthus, Koeth & Bunting, 
2014; Miyake & Friedman, 1998). WMC is defined as the 
ability to maintain attention on a limited amount of 
information, even in the face of interference (Engle, 2002, 
2018), and underpins many aspects of higher cognition and 
goal-directed behavior. Another predictor is inductive 
reasoning ability, the ability to extrapolate rules and patterns 
from specific examples. While both WMC and inductive 
reasoning are predictors of grammar learning outcomes, there 
is a lack of research examining whether the two account for 
independent portions of variance in learning. In the current 
study, we examined the cognitive underpinnings of grammar 
learning using an explicit-inductive learning task. In this task, 
participants were presented with L2 phrases and asked to 
figure out the grammatical rules, and then tested on those 

rules. The goal was to examine the degree to which relevant 
variables predict grammar learning.  

Explicit-Inductive Grammar Learning 
In explicit-inductive (or “rule-search”) grammar learning 
tasks, learners are presented with a number of L2 examples 
(sentences or phrases) exhibiting target grammatical 
structures in both a foreign language and the individuals’ 
native language and are asked to figure out the rule(s) for 
subsequent testing. These tasks differ from deductive tasks in 
which rules are explicitly taught (DeKeyser, 2003). They also 
differ from artificial grammar learning tasks (also referred to 
as statistical learning tasks) in that, in artificial grammar 
learning tasks, rules are acquired without conscious 
awareness (i.e., implicitly) and there is no meaning ascribed 
to the material under study (Misyak & Christiansen, 2012). 
Though, it is very likely that in providing numerous 
exemplars in explicit-inductive grammar learning tasks, 
individuals not only infer rules but likely implicitly acquire 
statistical regularities as well. Thus, explicit-inductive 
grammar learning tasks likely involve both explicit and 
implicit learning processes (DeKeyser, 1995). Given that 
both types of learning are known to be involved in grammar 
acquisition (DeKeyser, 2003), these tasks may better capture 
the cognitive complexity of grammar learning.  

Working Memory Capacity 
Individual differences in WMC are strongly predictive of 
performance on a range of tasks assessing cognitive abilities 
and processes (Engle, Tuholski, Laughlin, & Conway, 1999; 
Kyllonen & Christal, 1990) including L1 processing 
(Daneman & Merikle, 1996) and L2 learning (Linck et al., 
2014). Indeed, in a meta-analysis synthesizing the results of 
79 studies with a combined sample size of over 3,000 
participants, Linck et al. (2014) found that WMC tasks are 
positively associated with L2 outcomes. Moreover, Tagarelli, 
Borges-Mota and Rebuschat (2011) found that WMC 
predicted performance on an explicit-inductive grammar 
learning task. 

Relations observed between WMC and other cognitive 
tasks are typically explained as owing to the fact that complex 
cognition requires sustained attention on the task at hand, 
often while performing various operations, which themselves 
produce interference (Daneman & Carpenter, 1980; 
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Daneman & Merikle, 1996). This emphasis on controlled 
attention has led some to theorize that WMC plays a greater 
role in L2 learning under explicit, rather than implicit, 
learning conditions (e.g., Tagarelli, Mota, & Rebuschat, 
2011). Indeed, Tagarelli, Mota, and Rebuschat (2011) found 
that WMC was predictive of learning under explicit, but not 
implicit, learning conditions.  

Inductive Reasoning 
Another predictor of L2 learning that figures prominently is 
inductive reasoning (Gardner & Lambert, 1965; Sparks, 
Humbach, Patton, & Ganschow, 2011). In inductive 
reasoning, one infers general principles from specific 
observations. For example, an adult interested in learning 
another language for use during a trip may begin by learning 
“survival phrases” such as “I am American” and “I am sorry.” 
In doing so, one may infer grammatical rules and the meaning 
of certain words in the L2, which can then be used to 
construct new words and sentences (though of course the 
accuracy of the constructions will be dependent on the 
premises, e.g., not all verbs in English can be changed from 
present to past tense by affixing an -ed). Like WMC, 
inductive reasoning ability has been found to predict 
grammar learning under explicit, but not, implicit conditions 
(Gebauer & Mackintosh, 2007). 

Relationship between WMC and Inductive 
Reasoning 
An issue arises, however, when one notes that WMC is highly 
correlated with inductive reasoning ability (Engle et al., 
1999; Kyllonen & Christal, 1990). In the individual 
differences literature, inductive reasoning tasks are often 
used as indicators of fluid intelligence (Marshalek, Lohman, 
& Snow, 1983; Wilhelm, 2005). According to a recently 
proposed theory (see Shipstead, Harrison, & Engle, 2016), 
WMC and fluid intelligence/inductive reasoning are highly 
correlated because both rely on attention control; however, 
while WMC tasks primarily assess the ability to maintain 
attention, fluid intelligence/inductive reasoning tasks 
additionally assess the ability to disengage attention. 
Consider that in WMC tasks, the goal is to maintain to-be-
remembered information (e.g., sets of letters) in mind exactly 
as they were presented; in inferential tasks, however, the goal 
is to produce a novel solution, entailing some kind of 
transformation or restructuring of inputs as multiple solutions 
or hypotheses are investigated (Oberauer, Süß, Wilhelm, & 
Sander, 2007). During the reasoning process, one has to 
maintain relevant pieces of information in mind, implicating 
WMC, but at other times, one has to abandon an incorrect 
solution and begin anew, requiring one to disengage attention 
from one problem representation for another.  

The issue is that there is little research investigating 
whether WMC and inductive reasoning ability independently 
account for variance in L2 learning. To investigate this issue, 
we included a measure of inductive reasoning and a measure 
of WMC as predictors in the present study. Given that the 
outcome variable is an explicit-inductive grammar learning 

task, we expect inductive reasoning to be predictive of 
learning, however, a WMC task should account for variance 
over and above an inductive task, as WMC is a well-
established predictor of language learning (Linck, Osthus, 
Koeth & Bunting, 2014; Miyake & Friedman, 1998).  

Grammatical Sensitivity 
In addition to WMC and inductive reasoning, a measure of 
grammatical sensitivity was also included in this study—the 
Words in Sentences (WIS) subtest from the Modern 
Language Aptitude Test (MLAT), developed by Carroll and 
Sapon (1959). According to Carroll (1964), grammatical 
sensitivity is the “ability to recognize the grammatical 
functions of words in sentences (p. 95)”. Studies have shown 
the WIS to be a predictor of L2 learning (Li, 2015), 
particularly under explicit learning conditions (Li, 2014); 
however, there is also research and theorizing that 
grammatical sensitivity depends on inductive reasoning (Li, 
2015; Sasaki, 1993). Thus, including this measure as a 
predictor allows us to investigate whether grammatical 
sensitivity influences novel grammar learning over and above 
inductive reasoning and working memory.  

The Present Study  
With the above in mind, this study was undertaken to assess 
the relative contributions of WMC, inductive reasoning, and 
grammatical sensitivity on one aspect of L2 learning, 
grammar learning. For this study, we developed an explicit-
inductive (i.e., rule-search) grammar learning task in which 
individuals were tasked with learning syntactic rules in an L2. 
During learning, participants were exposed to a number of L2 
phrases and their English translations and attempted to infer 
rules for arranging words in the L2. Superficially, the task is 
similar to what was described earlier when one learns 
“survival” phrases and induces rules, however, (and as will 
be clarified below) this task obviates the need to memorize 
phrases and thus should be a relatively pure measure of 
grammatical (rule) induction.  

Method 

Participants 
A total of 34 individuals participated in the study; however, 
three did not complete the entire study, leaving 31 with 
complete data. All participants were recruited from the 
university and surrounding community and were 
compensated for their time. No participant reported 
experience with Indonesian or related languages.  

Procedure 
All participants completed a total of three sessions in a 

room with up to six other participants. Each session contained 
a grammar learning task. In addition to the grammar learning 
task, in Session 1 participants also completed a demographics 
and language history questionnaire, administered before the 
grammar learning task; in Session 2 participants completed 
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Letter Sets, an Antisaccade task, and a Speeded Lexical 
Decision task, administered, in that order, after the grammar 
learning task; and in Session 3 participants completed the 
Remember and Count task, another Speeded Lexical 
Decision task, and the Words in Sentences, administered, in 
that order, after the grammar learning task. Each session took 
approximately 60 minutes to complete. All tasks were 
completed on desktop computers. Below, we offer 
descriptions of the tasks included in this study. 
 

Instruments 
 
Explicit-Inductive Grammar Learning Task We chose an 
explicit-inductive task as our criterion measure because 
research indicates that during the early stages of L2 learning, 
adults tend to engage control processes to learn grammatical 
rules, while at later stages, they tend to rely on implicit 
learning processes (Hamrick, Lum, & Ullman, 2018). Thus 
an explicit-inductive task likely captures processes similar to 
those engaged throughout the learning process.  

The grammar learning task consisted of three phases: 
learning, recall, and recognition. During the learning phase, 
participants were presented with example Indonesian phrases 
and their English translations, ordered from short/simple 
phrases to long/complex phrases. Participants therefore had 
to infer the “simple” rules and then take mental note of how 
these “simple” rules combined to construct complex phrases.  
Because participants did not know Indonesian, the 
Indonesian words and their English translations were color-
coded, such that translation equivalents were the same color; 
Indonesian words without direct translations (e.g., classifiers) 

were presented in black font with no background color. See 
Figure 1. 

 
 

Figure 1. Three example grammar learning items.  
 

During the recall phase, participants were asked to translate 
English phrases into Indonesian by selecting words from a 
word bank and placing them in the correct sequence. The 
word bank included the words needed for the translation as 
well as all function words. Where possible, English 
translations were provided (see Figure 2). During the 
recognition phase, participants saw Indonesian noun phrases 
and indicated whether they were grammatical or not (see 
Figure 3).  

Participants were never given feedback in either the recall 
or recognition phases, but were given a score of their overall 
recognition phase performance at the end of the day. 
 

   
 

Table 1. Syntactic Structures in the Grammar Learning Task. 
   
 Structure Example English Phrase 
1 Demonstrative noun that uncle 
2 Number w/classifier two apes 
3 Single adjective moody zebra 
4 Demonstrative + single adjective that bold scientist 
5 Double adjective new, red school 
6 Possessive my rabbit 
7 Possessive + single adjective my hungry uncle 
8 Number/classifier + single adjective two small warehouses 
9 Number/classifier + single adjective + possessive my two friendly fish 
10 Number/classifier + double adjective + possessive my two new, crowded stores 
11 Triple adjective fancy, young, skilled lawyer 
12 Noun + single adjective + pre-intensifier very crowded arena 
13 Noun + single adjective + post-intensifier very skilled teacher 
14 Noun + number/classifier + single adjective + pre-intensifier two very clever bears 
15 Noun + number/classifier + single adjective + post-intensifier two very chilly cinemas 
16 Noun + possessive + number/classifier + single adjective + pre-intensifier my two very expensive palaces 
17 Noun + possessive + number/classifier + single adjective + post-intensifier my two very tired bears 
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Figure 2. Example grammar recall item. 
 

 
 

Figure 3. Example grammar recognition item. The correct 
answer is “M”, correct.  

 
Across sessions, the same 111 noun phrases were used in 

the learning phase. However, because our interest was in 
grammar learning, noun phrases used in the recall and 
recognition phases were never repeated across sessions, 
resulting in 123 noun phrases for the recall phase (41/session) 
and 312 noun phrases for the recognition phase (104/session).  
 
Words in Sentences (WIS) In the WIS, each item consisted 
of two or more English sentences. One word in the first 
sentence was printed in uppercase letters. Four or five words 
in the remaining sentences were underlined and were labeled 
with corresponding letter answer options (Figure 3). 
Participants indicated which of these underlined words 
served the same grammatical function as the word in 
uppercase letters in the first sentence. 
 

 
 

Figure 3. A sample item from the words in sentences test 
modified from https://lltf.net/mlat-sample-items/mlat-part-

iv/. The correct answer is C. 
  

Remember and Count (RAC) WMC was assessed by the 
RAC task (Hughes et al., 2016; O’Rourke et al., 2017), a 
visuospatial complex span task. In the RAC task, participants 
first see a sequence of triangles of different colors presented 

in a sequence in different quadrants. Next, they see an image 
of dark and light blue circles and squares; participants are to 
count and report the number of dark blue circles in the image. 
Finally, in the critical portion of the task, they must recall the 
sequence of triangles by indicating the color, the location, and 
the order of each triangle in the sequence. The number of 
triangles in a sequence varied between three and five, with 
four trials of set size 3, nine trials at set size 4, and eight trials 
at set size 5, for a total of 21 trials. Each trial was scored as a 
proportion of correctly recalled triangles; thus, participants 
could achieve a maximum of 1 point per trial.  

 
Letter Sets (LSET) Inductive reasoning was assessed by the 
LSET task (Doughty, Campbell, Bunting, Bowles, & 
Haarmann, 2007). In each item, participants are presented 
with five sets of four letters. Four of the sets are arranged such 
that they follow the same rule while one does not; participants 
are to determine which set of letters does not follow the same 
rule as the others. There were a total of 15 items.  

Results 
Correlations amongst the predictors and descriptive statistics 
are provided in Table 2. Figure 4 depicts average learning 
curves for both the recall and recognition grammar measures.  

 
Table 2. Predictor Correlations and Descriptive Statistics 

 
 WIS LSET RAC 
WIS    
LSET 0.20   
RAC 0.48* 0.48*  
𝑋𝑋� .42 .76 .53 
SD .13 .13 .18 
Skew -.02 -.10 -.91 
Kurtosis -.54 .16 .19 

Note: * p <.05; LSET = letter sets; RAC = remember and 
count; WIS = words in sentences. 
 

 
 

Figure 4. Average Learning Curves. Error bars: ± 1 SE.  
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Next, the recall and recognition data were each submitted 
to mixed-effects logistic regression modeling using a 
forward-testing procedure for random slopes and a backward 
elimination procedure for fixed effects to arrive at the model 
of best fit using likelihood ratio tests. This procedure allows 
us to find the most maximal model supported by the data, 
balancing Type I error and power (Matuschek et al., 2015). 
For each analysis, the first model included items and 
participants as random intercepts, session as a fixed effect, 
WIS, LSET, and RAC as covariates, and each Session x 
Covariate interaction. In each model, covariate tasks were 
mean centered.  

Table 3 displays the final recall model. There was a 
significant effect of session, indicating that performance 
significantly improved across sessions (b = 1.67, SE = .25, z 
= 7.97, p < .001). There was also a significant effect of 
Session x RAC (b = .58, SE = .21, z = 2.74, p = .006), 
indicating that participants with higher RAC scores showed 
greater gains in recall accuracy over sessions. No other 
covariates or interactions were significant.  

 
Table 3. Final Recall Model  

 
Fixed Effects b Odds SE p 
     
Intercept -3.15 0.04 0.33 <.001* 
Session 1.67 5.31 0.25 <.001* 
RAC 0.06 1.06 0.16 .825 
Session x RAC 0.58 1.79 0.21 .006* 
     
Random Effects Var SD  Corr  
     
Intercept | Item 1.90 1.38   
Intercept | Part. 1.26 1.12   
Session | Part. 1.14 1.07 -.45  
 

 
Table 4. Final Recognition Model 

 
Fixed Effects b Odds SE p 
     
Intercept 0.24 1.27 0.15 .116 
Session 0.89 2.43 0.10 <.001* 
WIS 0.10 1.11 0.14 .472 
LSET -0.14 0.87 0.14 .304 
RAC 0.05 1.05 0.16 .744 
Session x LSET 0.23 1.26 0.10 .027* 
Session x RAC 0.27 1.31 0.11 .014* 
     
Random Effects Var SD Corr   
  

 
 

 
 
 

 
 
 

  
Intercept | Item .77 .88    
Session | Item .07 .27 -.26   
LSET | Item .04 .21 .00 .68  
WIS | Item .09 .30 .45 -.93 -.81 
Intercept | Part. .27 .52    
Session | Part. .20 .44 .12   
 

Table 4 displays the final model for the recognition 
analysis. Session was once again significant (b = .89, SE = 
.10, z = 8.83, p < .001), as was Session x LSET (b = .23, SE 
= .10, z = 2.21, p = .027) and Session x RAC (b = .27, SE = 
.11, z = 2.46, p = .014), indicating that as performance on 
these measures increased, individuals showed greater gains 
in accuracy over sessions. No other covariate or interaction 
was predictive.  

Discussion 
The primary aim of the study was to investigate the 

cognitive underpinnings of explicit-inductive grammar 
learning. In our grammar learning task, participants 
attempted to learn a subset of Indonesian syntax by inferring 
the rules of the language from a number of exemplars. Based 
on prior studies and theory, we chose indicators of 
grammatical sensitivity, WMC, and inductive reasoning as 
our predictors. Aware of significant relationships amongst 
the predictors, we were also interested in investigating 
whether the predictors uniquely accounted for variance in 
grammar learning and if so, to what degree. Our analyses 
indicated that the WMC measure, RAC, and the inductive 
reasoning measure, LSET, were significantly related to 
grammar learning, however the grammatical sensitivity 
measure, the WIS, was not. Moreover, logistic mixed-effects 
modeling indicated that for our recall measure, performance 
on our WMC measure interacted with session, such that 
individuals who performed better on RAC showed greater 
gains in accuracy over sessions. A similar result was obtained 
for the recognition measure; however, additional variance in 
learning performance was accounted for by an interaction 
between the inductive reasoning measure, LSET, and session.  

Overall, the results of the study suggest that WMC and 
inductive reasoning facilitate grammar learning. The fact the 
predictors interacted with learning session is likely due to the 
fact that grammatical learning builds on previous learning. 
For example, in English, it would be difficult for one to 
generate, “my two very fancy goats” without also being able 
to correctly generate “my two goats” or “my fancy goat.” 
Individuals with greater WMC and inductive reasoning 
ability were likely more able to learn rules, build upon them, 
and reinforce their own learning as they learned more 
complex rules, increasing their learning rate. Individuals with 
lower abilities, however, may have found it difficult to learn 
even the simpler rules and therefore struggled to see recurring 
patterns in more complex sentences, possibly interfering with 
(rather than reinforcing) learning; thus, their learning rate was 
slower compared to higher-ability individuals. 

While the Session x RAC interaction was a significant 
predictor of both the recall and recognition measures, it is 
important to note that the Session x LSET interaction only 
accounted for a significant proportion of variance in 
recognition performance. This pattern of results confirms that 
WMC was generally involved in learning, however, the role 
of inductive reasoning is somewhat ambiguous. One 
possibility is that individuals with greater inductive reasoning 
ability were able to infer more rules but not necessarily retain 

2314



accurate representations in long-term memory (a function 
supported by WMC; Unsworth & Engle, 2007) and thus they 
were unable to accurately retrieve rules during the recall test.  
When tested using a recognition paradigm, however, high 
ability individuals were able to use cues to “fill in” or 
redintegrate their partial representations, and thus were more 
likely to correctly choose the grammatical phrase. Future 
research should continue investigating the role of inductive 
intelligence in explicit-inductive grammar learning.  

Despite the fact that the grammatical sensitivity measure, 
WIS, did not account for variance in the learning tasks above 
and beyond the other predictors, the results of this study 
should not be interpreted as suggesting that grammatical 
sensitivity does not play a role in L2 learning. As noted 
above, prior research indicates that grammatical sensitivity is 
related to L2 learning and, in fact, the coefficients observed 
between the WIS and the grammar learning measures are 
similar to what have been found in the literature (Li, 2015). 
The null result observed here may have been due to sample 
size or characteristics (e.g., a restricted range in 
performance). Still, to the extent that the estimates are 
accurate, it is interesting to note that the role of grammatical 
sensitivity in grammar learning appears to be smaller than 
that of WMC and inductive reasoning. This may be because 
grammatical sensitivity is more a measure of English 
grammatical knowledge than learning (Carroll, 1993). 

With the above limitations in mind, this study corroborates 
prior research indicating that WMC is a robust predictor of 
L2 learning and, more specifically, L2 grammar learning 
(Linck, Osthus, Koeth & Bunting, 2014; Miyake & 
Friedman, 1998). Moreover, while it may be somewhat 
intuitive that inductive reasoning is predictive of explicit-
inductive grammar learning, we found that inductive 
reasoning accounts for at least one measure of grammar 
learning above and beyond WMC. Considering the large 
number of individuals that engage in L2 learning and the 
significance of knowing an L2, researchers should continue 
investigating the cognitive components of L2 learning. 
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Relationship Between Creative Experience, Recognition of Creative Process and
Aesthetic Impression in Art-Viewing

Kazuki Matsumoto
University of Tokyo, Tokyo, Japan

Takeshi Okada
The University of Tokyo, Tokyo, Japan

Abstract

This study examined the roles recognition of the creative process behind artworks plays in cognitive processes of art-
viewing. To this end, we conducted an experiment (N = 45) in which prior experience of participants was manipulated
and investigated whether and how creative experience influences subsequent cognitive processes while viewing artworks.
We revealed that having creative experience before art viewing changes viewers recognition of the creative process behind
artworks and causes them to have a more positive impression of the artworks. It was also revealed that these two changes
are correlated. In particular, the emotion of admiration, which is considered a kind of social emotion, was found to be
highly correlated with the recognition of assessed difficulty of the creative process. These results suggest the importance of
recognition of the creative process behind artworks and contribute to understanding the cognitive process of art-viewing.
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Abstract

The mental model of one’s body plays an important role in de-
termining subsequent actions. We changed the mental model
using visual information and observed the effects of such
change on pain perception. These effects were compared to
the effects of changes in the sense of body ownership, which is
the sensation that something is a part of one’s own body. Some
researchers have shown that the sense of ownership is a factor
modulating pain perception. In our experiments, we manipu-
lated the visibility of participants’ limbs using Mixed Reality
(MR) techniques and measured their perceived pain and feel-
ings while observing their limbs. Results showed the sensation
that nothing can touch one’s limbs decreased the strength of
perceived pain.
Keywords: Sense of ownership, body representation, pain per-
ception, multimodality, mixed reality

Introduction
We determine our next actions based on our own body rep-
resentation or mental model of our bodies (Barsalou, 2008;
Warren, 1984). Some features, such as posture, muscular
strength, and size, change every moment or as we grow. Other
basic features, such as bone structure, nerve mechanisms, and
material properties, remain almost constant through life. If
we can modulate such basic features in our mental model,
can our perceptions be changed by the model? In this study,
we investigate the relationship between the mental model of
one’s own body and perception, focusing on pain perception.

Sense of Ownership
One of the important sensations affecting the perception of
pain is the sense of ownership or physical possession of one’s
body parts, such as hands and legs. The perception of own-
ership can be easily extended to non-body parts. The most
famous example is the rubber hand illusion (Botvinick & Co-
hen, 1998): When a rubber hand and a participant’s hand
are repeatedly touched simultaneously while the participant
is watching the rubber hand, he/she feels as if the rubber hand
were his/her own.

Obviously, we cannot feel pain if something other than
one’s own body is attacked. Consistent with this idea, some
researchers have shown that the pain threshold increases as
the sense of ownership decreases (Martini, Kilteni, Maselli,
& Sanchez-Vives, 2015; Martini, Pérez-Marcos, & Sanchez-
Vives, 2014; Pamment & Aspell, 2017; Zanini, Montalti,
Caola, Leadbetter, & Martini, 2017). However, some have
argued that the sense of ownership has no effect on pain per-
ception (Mohan et al., 2012).

Mental Model of Own Body
We propose that another important factor affecting the per-
ception of pain is the material property of skin in a mental
model of own body. If you imagine your skin is made with
iron, for instance, you may not feel pain if someone hit you.
Senna, Maravita, Bolognini, and Parise (2014) introduced
the marble hand illusion: Participants in their study heard
the sound of marble being struck when a hammer touched
their hand. After five minutes, they felt their hands becoming
stiffer, heavier, harder, less sensitive, and unnatural. How-
ever, Senna et al. (2014) did not investigate whether the ma-
nipulation affected the level of pain perception.

Another study showed that just changing the color of the
skin was enough to change the threshold for heat pain; how-
ever, the effect of the manipulation on the mental model was
not investigated (Martini, Pérez-Marcos, & Sanchez-Vives,
2013). These studies suggest the possibility that the mental
model of one’s body can be modulated to affect pain percep-
tion.

Aim of This Study
As previously noted, many previous studies have suggested
that a sense of ownership was an important factor in pain per-
ception. However, there is a possibility that the mental model
of one’s body is also modulated by manipulating ownership.
Therefore, it is not clear whether pain perception is really re-
lated to the sense of ownership. To clarify the top-down effect
on pain perception, we need to identify which of the mental
model of the body or the sense of ownership has a stronger
effect.

Mixed Reality
In previous studies, most researchers used a rubber hand or
virtual body to manipulate participants’ ownership or men-
tal model of the body. Before introducing these manipula-
tions, researchers had to increase participants’ perception of
ownership of these materials. For example, in Martini et al.
(2015)’s experiment, participants viewed a virtual environ-
ment and virtual body from a first-person perspective for one
minute. Afterward, the transparency of the virtual body was
increased to decrease the sense of ownership. They showed
that a low sense of ownership decreased pain sensitivity.

To be accurate, what the participants observed was not
their actual body part but a rubber or virtual hand. Even if
researchers made a realistic-looking hand, it would not be
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(a) Experimental set-up

(b) View from the
camera

(c) Hand and virtual
background

(d) Opacity 50%

Figure 1: Experimental environment and the manipulation of
the limb.

a real hand; discrepancies between it and their body might
give the participants an uncomfortable feeling. We would not
be able to determine whether participants’ mental models of
their bodies changed or if they constructed new mental mod-
els for the fake hand. Additionally, while the manipulations
were performed on the fake hand, stimuli were administered
to the real hand.

To overcome the limitations of the fake hand, we introduce
a Mixed Reality (MR) technique, which allowed us to change
the properties of objects in the real environment or add virtual
objects to the real environment (Kannape, Smith, Moseley,
Roy, & Lenggenhager, 2019). With this technique, we made
participants’ own limbs appear transparent and observed the
change in their perceptions of ownership, mental models of
their bodies, and pain perception.

Apparatus

MR Environment

Figure 1 shows the experimental environment. We adopted a
video see-through-type HMD (Canon, HM-A1) and MR plat-
form system (Canon, MP-110). We acquired the participant’s
perspective from the camera on the HMD and manipulated
the alpha value for the area of the participant’s hand as shown
in Figure 1. Five levels of the alpha value were used: 100%
(fully visible), 75% visibility, 50% visibility, 25% visibility,
and 1% visibility (almost invisible). A background image un-
der the participant’s hand had a black-and-white stripe to fa-
cilitate the perception of transparency.

Electric Stimulus

The pain presentation device was a boosted current using
a Cockcroft-Walton circuit as an electric stimulus genera-
tion apparatus through an input/output board (Kyohritsu Elec-
tronic Industry Co., Ltd., RBIO - 2 U). A conductor (diam-
eter: 0.12 mm, 10 cores) was fixed to a 1 mm-thick rubber
sheet. We presented the pain sensation by applying a current
to this conductor. The intensity of electrical stimulation was
320 V at a current of 1.8 mA, and the pulse width was 0.15 s.

Experiment 1
The level of ownership and mental model of their limbs were
recorded at each level of opacity from 100% (fully visible) to
1% (almost invisible). We added a blackout (BO) condition
in which no visual stimulus was presented.

Method

Participants Fourteen students participated in Experiment 1.

Measurement The participants assessed their levels of pain
using a visual analog scale (VAS). We prepared a 100-mm
line whose left end indicated “no pain” and whose right side
indicated “worst possible pain.” The participants were asked
to draw a cross on the point reflecting the level of pain they
perceived.

We developed a questionnaire to assess the mental model.
It consisted of 20 items including feelings thought to be im-
portant for pain perception. The order of the items was ran-
domized.

Procedure The experiment consisted of two successive
blocks: the questionnaire and a pain perception block. All
participants started with the questionnaire and then continued
to the pain perception block. Before starting the experiment,
the participants were asked to read and sign a consent form.

Questionnaire Block After receiving brief instructions,
the participants sat at a desk and rested an arm on the desk
as illustrated in Figure 1(a). They donned the HMD and saw
their non-manipulated limb through a camera (Figure 1(c))
before watching their limb becoming transparent. At the end
of the transformation, they watched their transformed limb
(e.g., Figure 1(d)) for 10 seconds. Next, they removed the
HMD and completed the questionnaire, which employed a 7-
point Likert scale. All participants completed each opacity
condition in random order except for the BO condition, in
which their limb was completely invisible.

Pain Perception Block The procedure was identical to the
questionnaire block until the participant observed their trans-
formed limb. In the pain perception block, they were given an
electric stimulus following a cue from the experimenter while
they were watching their transformed limb. After the stimulus
was given, they removed the HMD and assessed the strength
of the pain they perceived. The opacity conditions were pre-
sented to participants in random order. In both blocks, two
minutes rest was provided between each condition.
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Table 1: Result of factorial analysis.

Item Factor loading
Ownership1 Transparency Intangibility Anxiety2 Weakness

I feel as if the observed arm is my own arm -0.932 -0.167 -0.061 0.166 0.033
The observed arm doesn’t look mine 0.80 0.202 -0.057 -0.132 -0.129
I feel as if the observed arm is not my own arm 0.736 -0.020 0.422 -0.115 -0.009
My arm seems to be not present in the environment 0.733 0.220 0.323 -0.172 -0.049
I feel the observed arm is a real one -0.723 -0.310 -0.130 0.204 -0.093
I feel as if my arm is transparent 0.244 0.932 0.237 -0.072 0.067
The arm is transparent 0.174 0.861 0.226 -0.094 0.105
My arm feels sparse 0.338 0.739 0.339 -0.008 0.112
I feel as if something can pass through my arm 0.090 0.436 0.834 -0.025 -0.055
I feel as if my arm is empty 0.137 0.304 0.832 0.008 -0.032
I feel as if I am a ghost 0.220 0.188 0.610 -0.137 -0.278
My arm feels numb 0.322 0.045 0.517 -0.434 -0.272
I don’t feel fear by observing the arm -0.069 -0.164 -0.086 0.883 0.161
I feel ill by observing the arm 0.122 0.021 0.087 -0.804 -0.118
I feel relieved by observing the arm -0.250 -0.169 -0.249 0.735 0.234
I feel calm by observing the arm -0.185 0.122 0.189 0.390 -0.054
My arm feels softer 0.062 0.056 -0.095 0.064 0.900
My arm feels weakened 0.126 0.115 -0.110 0.055 0.800
My arm feels lighter -0.209 -0.023 0.053 0.093 0.509
My arm feels insensitive -0.058 0.102 -0.264 0.232 0.480
1 These loadings mean the contribution to “less ownership.” Score of this factor was reversed to make easy to understand the results.
2 These loadings mean the contribution to “less anxiety.” Score of this factor was reversed to make easy to understand the results.

Figure 2: Means of pain assessment in Experiment 1.

Results and Discussion
Pain Perception We measured the distance from the left-
most point to the marked point on the pain scale. The length
in the 100% condition was the criterion value, and the length
in each condition was converted to its ratio to the criterion
value (Figure 2). One participant whose ratio deviated over 3
SD from the average was excluded from the following analy-
ses. A repeated ANOVA showed the effect of opacity was sig-
nificant (F(5,60) = 2.467, p = .042). In the 25% condition,
the perceived strength of pain was lower than in the fully visi-
ble (100%) condition (p= .036). Perceived pain was stronger
in the 1% and BO conditions than in the 50% and 25% con-
ditions (ps < .050).

These findings and the tendencies in Figure 2 show that

as the limb became more transparent, the level of perceived
pain became weaker. However, when the limb was nearly
or completely invisible, the strength of pain rose to near the
value of the fully visible condition.

Questionnaire and Pain Perception We conducted a fac-
torial analysis using the ratings of the questionnaire. We
found five factors shown in Table 1: ownership, transparency,
intangibility (i.e., nothing can touch their limb), anxiety, and
weakness. The bigger value means the strong feeling for the
factor.

A repeated ANOVA for each factor score (Figure 3)
shows opacity value has a significant effect on all factors
other than weakness (ownership F(12,48) = 23.182, p <
.001; transparency F(12,48) = 64.927, p < .001; Intan-
gibility F(12,48) = 25.86, p < .001; anxiety F(12,48) =
6.716, p < .001). For the ownership score, there was a signif-
icant difference in all pairs other than the pair of 1% and 25%
and the pair of 50% and 75% (ps < .05). For the transparency
score, the score in the 100% condition was higher than for
any other conditions (ps < .001). For the intangibility score,
the differences in scores between the 100% condition and all
other conditions and between the 25% and 75% conditions
were significant (ps < .005). For the anxiety score, the score
in the 100% was bigger than that in all other conditions except
for the 75% condition (ps < .01).

Table 2 shows the correlation coefficient values for the
scores of all pairs among five factors and pain perception.
We excluded the 1% condition from this analysis because
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Table 2: Coefficient values in Experiment 1.
Ownership Transparency Intangibility Anxiety Weakness

Ownership
Transparency -0.528 ****
Intangibility -0.467 **** 0.634 ****
Anxiety -0.471 **** 0.166 0.377 **
Weakness 0.090 0.124 -0.295 * -0.274 *
Pain 0.195 -0.357 ** -0.305 * -0.183 0.072

+p < .01, * p < .05, ** p < .01, *** p < .005, **** p < .001

Figure 3: Mean scores for each factor in each condition.

some participants shared that they could not see their limbs
in this condition, which had a different effect on pain percep-
tion than seeing the transparent limb.

The results of correlation analysis show a negative correla-
tion between the level of pain and the scores of transparency
and intangibility. Sense of ownership did not correlate to the
strength of pain, contrary to the results of the previous stud-
ies. In Experiment 2, to identify the most crucial factor for
pain perception, we added manipulations changing the per-
ceptions of ownership and intangibility.

Experiment 2
Two manipulations were introduced in Experiment 2. One
was “passing through (PT),” in which we passed a virtual
stick through the participant’s limb as shown in Figure 4. The
PT manipulation would increase the sensation of intangibil-
ity. Another was “spontaneous movement (SM),” in which
the participant moved his/her finger. Many studies showed
that observing the body moving in the way as they wanted
to increase the sense of ownership. The experiment was
a 2 (opacity: 25% and 100%) × 2 (PT manipulation: PT
and no-PT) × 2 (SM manipulation: SM and no-SM) within-
participants design.

Method
Participants Eleven students participated in Experiment 2.

Procedure The procedure was identical to that used in Ex-
periment 1, except that we added the PT and SM manipula-
tions in some conditions. In the PT condition, we moved the
virtual stick 10 times as it passed through the participant’s
limb (Figure 4). In the no-PT condition, we added no ma-

Figure 4: Manipulation in the PT condition: The virtual stick
passing through the limb.

nipulation, changing the feeling of intangibility. For the SM
manipulation, the participant bent his/her finger as instructed
by the experimenter. In the no-SM condition, the participant
was told nothing and did not move his/her finger or limb. The
manipulation(s) were added before the participant answered
the questionnaire and before the electric stimuli were given.
The PT manipulation was always conducted before the SM
manipulation.

Results and Discussion

Manipulation Check One participant who hardly felt pain
in any condition was excluded from the following analyses.
At first, we calculated the scores for the five factors found in
Experiment 1 to confirm the effects of the manipulations. We
conducted a 2 (opacity: 25% and 100%) × 2 (PT manipula-
tion: PT and no-PT) × 2 (SM manipulation: SM and no-SM)
ANOVA on the scores for ownership and intangibility feel-
ings. The ANOVA for ownership feelings showed that SM
manipulation had no effect. The only significant effects were
the main effect of the opacity factor (F(1,9) = 26.396, p <
.001) and the interaction between the opacity and PT manip-
ulation factors (F(1,9) = 11.505, p = .008). The score for
ownership feeling was generally higher when the limb was
fully visible. The PT manipulation decreased the ownership
in the 100% condition (F(1,18) = 9.172, p = .007). The SM
manipulation had no effect on the score of ownership feeling.

On the other hand, PT manipulation efficiently increased
the sensation of intangibility. The main effects of the opac-
ity factor (F(1,9) = 40.490, p < .001) and the PT manip-
ulation factor (F(1,9) = 23.802, p < .001) were significant
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Table 3: Coefficient values in Experiment 2.
Ownership Transparency Intangibility Anxiety Weakness

Ownership
Transparency -0.702 ****
Intangibility -0.533 **** 0.670 ****
Anxiety -0.540 **** 0.285 * 0.587 ****
Weakness 0.039 0.140 -0.226 * -0.394 ****
Pain 0.218 + -0.363 **** -0.405 **** -0.325 *** 0.167

+p < .01, * p < .05, ** p < .01, *** p < .005, **** p < .001

Figure 5: Means of pain assessment in Experiment 2.

for the intangibility score. The interaction between the
opacity and PT manipulation factors was also significant
(F(1,9) = 12.091, p = .007). The effect of PT manipulation
was (marginally) significant in both the 25% and 100% con-
ditions (25% F(1,18) = 4.069, p = .059; 100% F(1,18) =
35.888, p < .001). Although the effect was weak in the 25%
condition, the PT manipulation was successful overall.

Pain Perception The VAS rating was converted into the ra-
tio to the length in the 100% condition without either ma-
nipulation. Figure 5 shows the mean ratio in each condi-
tion. A 2 (opacity: 25% and 100%) × 2 (PT manipula-
tion: PT and no-PT) × 2 (SM manipulation: SM and no-SM)
ANOVA revealed a significant main effect of the opacity fac-
tor (F(1,9) = 15.244, p = .004). The interaction between the
opacity and SM manipulation factors was marginally signifi-
cant (F(1,9) = 3.391, p = .099). Consistent with the results
of Experiment 1, the strength of perceived pain decreased
when the participant’s limb was transparent. However, the
MT manipulation, whose effect was confirmed, had no effect
on pain perception.

The Five Factors and Pain Perception The correlation co-
efficient values among the five factors and pain perception
are shown in Table 3. Four factors (ownership, transparency,
intangibility, and anxiety) had a (marginally) significant cor-
relation with pain perception, while only ownership and in-
tangibility were related to pain perception in Experiment 1.
Many pairs of the scores among the five factors have a strong
correlation. Thus, those strong correlations may have caused
some spurious correlations.

Table 4: Explanatory powers of factors.
Explanatory Coefficient t value r2

Ownership 0.040 1.969+ 0.047
Transparency -0.042 3.444**** 0.132

Single Intangibility -0.072 3.908**** 0.164
Anxiety -0.096 3.034*** 0.094
Weakness 0.040 1.491 0.015
Ownership -0.013 0.494 0.135Transparency -0.048 2.789**
Ownership < 0.001 0.021 0.164Intangibility -0.071 3.274**
Ownership 0.011 0.469 0.108Anxiety -0.087 2.290*

Multiple Transparency -0.019 1.203 0.179Intangibility -0.052 2.104*
Transparency -0.034 2.747** 0.185Anxiety -0.072 2.247*
Intangibility -0.058 2.554* 0.175Anxiety -0.040 1.043

+p < .01, * p < .05, ** p < .01, *** p < .005, **** p < .001

We tried to identify the crucial factor for pain perception
using regression analysis. The results of all analyses are sum-
marized in Table 4. From the results of simple linear regres-
sion analyses, four factors (ownership, transparency, intangi-
bility, and anxiety) could explain the strength of perceived
pain. We then conducted multiple regression analyses in
which each pair of these four factors was chosen as an ex-
planatory variable, and the strength of perceived pain was a
dependent variable. When the intangibility score was paired
with other factors’ score, intangibility was always the only
factor with significant explanatory power, and the paired vari-
ables’ power was not significant. These results suggest that
the sensation of intangibility was the crucial factor directly
affecting pain perception.

However, the relationship between other factors and the
intangibility feeling cannot be determined from this experi-
ment. Further studies are needed to identify whether the other
factors explain the intangibility score or whether the intangi-
bility score explains the scores of other factors. Additionally,
the r2 values in our regression analyze were not sufficiently
high. Collecting more data will confirm the results of this
study.
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General Discussion
We investigated the relationships among the mental model
of one’s own body and pain perception. The crucial factor
affecting pain perception was the sensation that nothing can
touch one’s limbs (intangibility); as this sensation increased,
the perceived level of pain decreased. The sense of ownership
could not account for the level of perceived pain.

The properties of the mental model of one’s body were
easily modulated by visual information. A decrease in the
perceived opacity of one’s body parts decreased feelings of
ownership and increased feelings of transparency, intangibil-
ity, and anxiety. The passing through manipulation success-
fully increased the feeling of intangibility. However, observ-
ing spontaneous actions did not increase ownership, contrary
to findings in previous studies.

Sense of Ownership
We introduced a novel technique, MR, to manipulate body
properties. The MR technique can change participant percep-
tions of the properties of their own limbs. The observed limb
had features identical to their own limb and perfectly mim-
icked its movement. The participants were able to see every
movement of their whole limb even if it was a very small
movement such as breathing. This phenomenon had already
been used to evaluate the sense of ownership; therefore, the
additional spontaneous movement had no effect on the feel-
ing of ownership. In future research, we will be able to use
other kinds of manipulation, such as a delayed presentation of
action, which was found by Kannape et al. (2019) to decrease
the feeling of ownership.

In previous studies, the presented rubber or virtual limb
was not the participants’ own limb. Therefore, the partici-
pants created a new mental model of the presented limb and
provided the body ownership to it. Changes to the presented
limb took the ownership away from it. In short, the partici-
pants did not perceive the presented artificial limb to be their
own anymore. For this reason, the feeling of ownership had a
strong effect on pain perception (e.g., Martini et al., 2014;
Pamment & Aspell, 2017); the participants who left more
ownership on the presented body felt strong pain.

On the other hand, the MR technique decreased the inher-
ent ownership of the body leading to the sensation that one’s
own limbs are not part of one’s body. The sensation of intan-
gibility had more of an impact because the participants still
believed that the presented limb was their own, even if the
sensation of ownership had decreased. We should carefully
consider which type of ownership we manipulate, the elicited
ownership such as in previous studies or the inherent own-
ership such as in this study (cf. Kannape et al., 2019); the
manipulation may have different effects.

The Mental Model of One’s Body
We could change pain perception by changing the properties
of the mental model of the body. The results of this study can
be explained as a top-down effect on perception (Gregory,
1997; Martini et al., 2013; Senna et al., 2014). The feeling of

intangibility in this study meant the sensation that one’s body
had become something cannot be touched, like that of a ghost.
Such creatures are believed to be unable to feel pain. The
illusion of transparency triggered this perception, resulting in
decreased pain.

Changes in other properties, such as an iron skin, might
have the same effect as transparency. This top-down effect
could also have an opposite effect: For example, if the ma-
terial of body is changed to something fragile, such as glass,
and the body is hit by a hammer, participants may perceive
more pain that with their normal bodies. In addition, some
changes have the potential to change task performance.
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Abstract

Recent studies demonstrate strong, concurrent relationships between language and EF, particularly during early childhood.
However, the literature remains controversial with respect to this relationship. Whereas some studies cite a bidirectional
relationship, others suggest that EF is predictive of language gains, while others suggest that it is language which affects
EF through conversational practice. Further controversy remains in the literature regarding which components of EF are
engaged in the processes. The bidirectionality of current research in this area suggests that perhaps EF and language
are best fitted by a curvilinear relationship. This is compounded by the fact that a large number of these studies have
employed linear statistical analyses to examine the relationship of the two constructs. Thus, in order to further specify
the relationship between EF and language development, we examined monolingual and bilingual infants and toddlers to
determine the utility of a curvilinear model to assess the EF and language relationship, what aspect of language inhibitory
control most correlates to EF, and whether there is a monolingual/bilingual difference. Results indicate that the EF and
language early childhood relationship is best fitted by a curvilinear model.
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Abstract

The initial phase of linguistic production by children is char-
acterized by rote-learned, lexically restricted forms and con-
structions. Only during later phases of language acquisition
do they develop flexibility across a paradigm and mix lexical
and grammatical material more freely. In the development of
verb morphology, a correlation between the use of tense and
aspect has been observed in many languages. It has been sug-
gested that this leads to an intermediary state of paradigm cat-
egorization based on temporal categories. So far the flexibility
of individual verbs occurring in different tense-aspect combi-
nations has not been examined in detail. Here we evaluate the
flexibility of verb use in a large longitudinal corpus of 4 Rus-
sian children. We compute the Shannon entropy of verb stems
distributed over individual grammatical forms. Results show
that children do not pass through a stage of paradigm cate-
gorization based on aspecto-temporal categories. After a brief
item-specific phase of rote learned forms, they quickly become
flexible users of verbs in both aspects.
Keywords: language acquisition; corpus study; item-
specificity; verb morphology; aspect; Russian

Introduction
Usage-based approaches to language acquisition propose an
early phase during which children use a small number of
lexically specific constructions which are presumably rote-
learned (Lieven, Pine, & Baldwin, 1997; Pine & Lieven,
1997; Tomasello, 2000, 2003). During this short phase of lex-
ical specificity, flexibility of word form use is very low, but
soon after using the first rote-learned constructions, children
start to produce new forms and apply them to new contexts.
So far, relatively little is known about this generalization pro-
cess from lexically specific constructions to full productivity.

In this study, we focus on the acquisition of Russian verb
morphology and the role of aspect. Grammatical aspect is the
expression of the viewpoint on the temporal structure of an
event. Perfective aspect describes an external and temporally
bounded view of a completed event, while imperfective as-
pect focuses on the internal stages or temporal extension of
an event (Comrie, 1976).

Languages differ vastly in how (and if) they mark gram-
matical aspect but independent of the realizations, aspect
has been found to play a pivotal role in the acquisition of
the verbal system in relation with tense (Shirai & Ander-
son, 1995; Shirai, Slobin, & Weist, 1998). Correlations be-
tween verbs with a defined end-point (telic verbs) and per-
fective past marking as well as verbs without a defined end-
point (atelic) and non-past imperfective marking have been

found in early acquisition of a number of different languages
(cf. Bloom, Lifter, and Hafitz (1980); Harner (1981); Shi-
rai and Anderson (1995); Clark (1996); Johnson and Fey
(2006) for English, Bronckart and Sinclair (1973) for French,
Antinucci and Miller (1976) for Italian, Li and Bowerman
(1998); Shirai and Anderson (1995); Shirai et al. (1998); Li
and Shirai (2000) for Japanese; Stoll (1998, 2005); Stoll and
Gries (2009); Gagarina (2000); Bar-Shalom (2002) for Rus-
sian; Li (1990); Li and Shirai (2000) for Mandarin; Aksu-
Koç (1998) for Turkish; Stephany (1985) for Greek; Weist,
Wysocka, Witkowska-Stadnik, Buczowska, and Konieczna
(1984); Weist and Konieczna (1985) for Polish; as well as
self-organizing feature map models (cf. Li (2000); Li and
Shirai (2000)).

It has been suggested that due to the presence of this cor-
relation, after the lexically-specific phase, the development
of productivity passes through an intermediary stage, dur-
ing which children are more productive in their use of ver-
bal morphology with the appropriate prototypes of a category
(also known as the Aspect Hypothesis see Shirai and Ander-
son (1995)). These correlations are also present in the speech
of adults, albeit to a lesser degree. However, to date, only a
few studies have systematically compared these correlations
in child and child-surrounding speech. For Russian children,
Stoll and Gries (2009) have found a gradual decrease of this
association in children over the course of development.

The goal of this study is to examine the development of
flexibility of verb form use in Russian children. We test
whether there is indeed a transition phase based on the tense-
aspect correlation during which children are more productive
within sub-categories of the verb paradigm before becoming
fully productive verb users.

We first establish phases in production based on verb form
inventory size. We then compare both type and token distri-
butions in children’s use during these phases to that of adults.
We show that in token use, both adults and children display
distributional bias of tense-aspect correlations. The bias is
stronger in children in the first phase of production and ap-
proaches adult levels in the second phase. We evaluate the
flexibility of use over time by measuring the entropy of lem-
mas used with individual grammatical forms. We show that,
as item-specificity decreases, a great variety of forms is intro-
duced early on and quickly generalized so that both past and
non-past marking is used with verbs of both aspects.
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Verb morphology in Russian

Russian has relatively complex verbal morphology center-
ing on a semantically and morphologically complex cat-
egory of grammatical aspect which interacts with tense.
Grammatical aspect in Russian is characterized by a perfec-
tive/imperfective distinction and each verb is either perfective
or imperfective. In contrast to English which has one single
aspectual marker (-ing), Russian has many different markers
for the perfective aspect (mainly prefixes and one suffix) and
one suffix (with various allomorphs) for the imperfective as-
pect or zero marking.

On the functional level, several temporal and contextual
features influence the use of the two aspects. Russian im-
perfective verbs are used when the duration of an action is
relevant (e.g. ona čitaet ves’ den’ ’she reads all day’) and if
the action is presented as a completed event (e.g. ona včera
čitala ves’ den’, ’she spent all day reading yesterday’). Per-
fective verbs are used when the focus of the utterance is a
boundary of the action; this can be either the beginning of
an action, the end/result or both (e.g. ona dočitala knigu,
’she finished reading the book’). Morphologically, perfec-
tives are typically derived from imperfectives by prefixation.
To complicate things, however, the meaning cannot be de-
rived via simple rules (Timberlake, 2004) and always involves
some degree of rote-learning. There is no one-to-one rela-
tionship between prefixes and the resulting meaning change
in the verb they are attached to. Further, most verbs can com-
bine with multiple prefixes, while others are restricted in their
combinability.

Verbs of both aspects express other verb categories (per-
son, number, tense, voice, and mood) with the same mor-
phemes. There are, however, some differences in meaning.
Non-past morphology denotes present tense when it appears
with imperfectives, but expresses the future in combination
with perfectives. To express imperfective future, an analytic
form is used (consisting of a finite ’to be’ auxiliary and the
infinitive of the main verb). In this paper, we focus on the
acquisition of synthetic morphology and, therefore, exclude
the analytic future. Past morphology can be used with both
aspects equally.

The broad generalization found in the works cited in Shirai
et al. (1998) states that children begin their acquisition of verb
forms by using past morphology with achievement verbs and
progressive morphology with activity verbs and only later ex-
tend it to the other group. Since lexical aspect is not anno-
tated in the corpus we use, we focus on correlations between
grammatical aspect and tense. However, this still allows us
to assess this hypothesis, since achievements are necessar-
ily perfectives and activities are necessarily imperfectives in
Russian. We will, therefore, focus on whether Russian chil-
dren display correlations between perfective aspect and past
tense (e.g. On doel sup, ’he ate the soup’ (meaning: he fin-
ished the bowl)) and imperfective aspect and non-past mark-
ing (On smotrit televizor, ’he is watching TV’).

Methods
Data
The data is extracted from an audio-visual longitudinal
corpus of Russian language acquisition (Stoll & Meyer,
2008) comprising data of six monolingual children living in
St.Petersburg, Russia. All recordings were done in naturalis-
tic settings at the home of the children and include the focal
child and a varying number of surrounding speakers includ-
ing siblings (excluded here) and adults. The children were
recorded for one hour each week. We focus on 4 children,
whose recordings started before the age of three. The en-
tire corpus is transcribed and words are annotated for part of
speech and morphology. Table 1 summarizes the number of
utterances, words, and verbs uttered by each focal child as
well as the age range of recording.

Table 1: Age spans of the focal children and number of words
produced by the children and surrounding adults

Focal Age Number of N(tokens)
Child span recordings Child Adults

words verbs words verbs
1 1;8.10 - 4;8.21 130 241,948 38,843 301,418 60,987
2 1;4.23 - 4;1.24 109 57,929 5,411 354,034 65,173
3 1;3.24 - 4;9.29 123 74,926 10,733 423,078 84,659
5 1;11.28 - 4;3.12 67 97,397 16,585 223,289 43,149

Finding phases in acquisition
First, we establish whether there are phases in verb form ac-
quisition. The phases were derived directly from the target
children’s verb form production. We computed the additive
growth in full verb forms (stem+grammatical markers) over
time. The growth curves show a slow rate of increase in the
earlier sessions followed by a sudden increase in the rate of
newly observed forms 1. To estimate the age at which this
change in rate of acquisition occurs, we conducted a seg-
mented regression on the growth curve of each child. The
break points at which the regression created a new segment
are summarized in Table 2. We use these points as the esti-
mated end of the first phase of production for the next analy-
sis.

Table 2: Break points in growth curve as identified by seg-
mented regression.

Child Break-point
Child 1 2;2
Child 2 3;3
Child 3 2;3
Child 5 before recordings started

1This was the case for all but Child 5 who already had highly
developed speech at the onset of the recordings. Child 5, therefore,
did not exhibit this change in rate of newly observed forms.
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Entropy of verb form use
To asses the development of flexibility of form use in the
observed production, we used Shannon Entropy (Shannon,
1948), the rate at which a process produces information by
characterizing the balance of frequency distributions over a
set of elements. If the probability of produced elements is
distributed equally among them, the output is less predictable.
Early child language is usually characterized by the repeated
use of a few forms, while other forms might appear only once.
This would result in a highly predictable output and low en-
tropy. The formula for Shannon entropy is given in Eq. 1

H(X) =−
N

∑
i=1

p(xi) log p(xi) (1)

where N is the number of distinct forms and p(x) is the prob-
ability of occurrence of a specific form 2.

Analysis 1: Distribution of forms in the first and second
phase To gain a better understanding of verb form produc-
tion during the first and the second phase of development, we
extracted the verb lemmas (lexical elements) used before the
break point in development. To obtain a sample comparable
in size and lexical coverage, we extracted the same lemmas
from the adults’ production during this phase and sampled
the same number of tokens as produced by the focus child.
Finally, we conducted the same procedure for both focus
child and surrounding adults for the second phase. To gain
a first insight into the form use and asses the level of item-
specificity, we visualised the data in mosaic plots showing
both type and token use of children and adults in both phases.
To characterize the difference between the distributions, we
computed the Jensen-Shannon divergence (Lin, 1991) be-
tween each child and their surrounding adults, and between
the child’s own first and second phases. Jensen-Shannon di-
vergence (JSD) measures the distance between two probabil-
ity distributions over the same elements (i.e. verb lemmas in
this case). The formula for JSD for two distributions P and Q
with equal weight (0.5) is given in Eq. 2.

JSD(P‖Q) =
1
2

D(P‖M)+
1
2

D(Q‖M) (2)

M represents the average distribution M = 1
2 (P + Q); and

D stands for Kullback-Leibler divergence (KLD, sometimes
also called relative entropy), given in 3.

KLD(P‖Q) =−∑
x∈X

P(x)log
Q(x)
P(x)

(3)

JSD is based on KLD, but it is symmetric and its value is
always finite and non-negative. When P = Q, JSD = 0 (i.e.
the two distributions are equal). To evaluate the development

2For the computation of entropy used over time, where we
looked at each session individually, we did not treat the system as
a complete survey of the forms that have been acquired by that point
in time.

of forms use across verbs from the two aspects and differ-
ent grammatical categories, we computed the distribution of
grammatical markers over the lexical elements extracted from
the first and second phase of each child and the surrounding
adults. First, we compare the probability distributions of the
child and the adults during phase 1 and phase 2; then, we also
compare the distribution of the child in phase 1 and the same
child during phase 2. We do this both for types and tokens of
verb forms.

Analysis 2: Flexibility of form use over time While JSD
is useful when we can compare the probability distributions
for a set of identical items, it is impossible to assess the
week-to-week development in this way, since we have no way
of controlling the context and lexical content of individual
recording session. Cutting the production down to forms that
appear in both adults’ and children’s production would also
result in a severe underestimation of the development and a
distortion of the actual production. Therefore, we compute
the entropy of all elements occurring in an individual record-
ing session. To assess whether certain tense-aspect combina-
tions indeed aid in acquisition, we divide the data into past
and non-past marked verbs and compute the entropy of per-
fective and imperfective verb lemmas used with past and non-
past marking. As the children develop away from the item-
specific phase, we expect their use of individual grammatical
markers to become more flexible, i.e. they learn to combine a
variety of verb lemmas with individual forms.

To estimate the time at which children start approaching
adult levels of flexibility in their verb form use, we use the
entropy computations of adults as a comparison within each
session. The children’s entropy is divided by the correspond-
ing surrounding adults’ entropy within each session. A value
below 1 signifies that the child is below the adult level of en-
tropy, values above 1 mean that the child’s verb production
has a higher entropy than that of surrounding adults. To con-
trol for contextual influence and other effects that might lead
to particularly high or low entropies, we bootstrapped the data
in each recording session for 100 iterations.3

Since the corpus consists of naturalistic data, it is difficult
to normalize the production for comparative reasons. Sam-
pling a fixed number of tokens from children and adults in
each session would distort the data in a number of ways: i) if
a fixed number of tokens is sampled across the recording span
(e.g. 500 tokens from children and adults), the children’s ini-
tial production is inflated, while adults and children’s later
production are underestimated; ii) if the number of tokens
is determined by the number produced by the target child in
each recording, this – again – severely underestimates the
adults’ production in the early recordings and does not rep-
resent a realistic measure for comparison. Same goes for a
restriction of lexical elements used for the computation of en-
tropy, since the fact that children’s vocabulary size is growing
is also an important factor and should not be ignored. This is

3The relatively low count of bootstraps was chosen for reasons
of graphic clarity.
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especially important for Russian, where aspect is encoded as
part of the lemma.

To evaluate whether the age at which significant changes in
the entropy of lemma use with individual forms happen, we
fitted a generalized additive model to the data and estimated
the change points of the regression to find the age at which
diversification starts and when it levels off.

Results
Analysis 1: Distribution of forms in the first and
second phase
Looking at the sample of matched verb lemmas and num-
ber of tokens in the two phases of each child and their sur-
rounding adults, we see that the type distribution is slightly
more diversified than the distribution of tokens. While there
are tendencies to use more non-past forms with imperfective
verbs and more past forms with perfectives, even during the
earliest phase this tendency is not absolute and both past and
non-past forms appear with verbs of both aspects early on.
While types are distributed fairly equally, the token distribu-
tion is less even during both phases. This holds for both adults
and children.

Table 3 shows the JSD computed for each child’s early pro-
duction compared to that of surrounding adults and the child’s
own production during the later phase. In the case of child 5,
it was not possible to establish an early phase similar to that
of the other children. Additionally, Child 5’s earliest recorded
production is so varied that it was impossible to obtain a sam-
ple of the same lexical items within the same time window
from the surrounding adults. Therefore, the results shown for
Child 5 represent a comparison of Child 5’s production dur-
ing the first 5 recordings sessions compared to a lexically and
size-matched sample from his surrounding adults across the
entire corpus.

Table 3: Jensen-Shannon divergence per child.

Phase1 Phase2 Child
Child-to-Adults Child-to-Adults Phase1-to-Phase2

Types Tokens Types Tokens Types Tokens

Child 1 0.124 0.501 0.020 0.056 0.122 0.421
Child 2 0.143 0.505 0.032 0.135 0.115 0.508
Child 3 0.121 0.647 0.074 0.107 0.112 0.609
Child 5 n/a n/a 0.097 0.327 n/a n/a

In all samples, the difference between the distributions of
tokens is more pronounced than that of types, and shows less
of a decrease between the two phases. However, the differ-
ence between each child’s first phase and second phase sam-
ple is comparable to the difference between the child’s pro-
duction and that of adults in phase 1. This suggests that their
development approaches a stage where their use of verb forms
in spontaneous home interactions is very similar to that of the
adults.

Figure 1: (a) Distribution of full form verb types in the pro-
duction of Child 1 during phase 1; (b) Distribution of types
in a sample of same lemmas and same number of tokens in
Child 1’s production during phase 2; (c) Distribution of types
in a sample of same lemmas and same number of tokens in
adults’ production during phase 1.

To gain insight into the actual combinations of lemmas and
forms used in each phase, Figures 1 a–c and 2 a–c exemplify
the visualization of the type and token use within the sample
of Child 1 and surrounding adults (we are not able to show the
corresponding visualizations of the other children for space
reasons). The thickness of the bars corresponds to the dis-
tribution of forms across the verb lemmas, while the colors
stand for grammatical categories to which the forms belong.
For types, only the plot for the child’s first phase distribution
was split by aspect, because phase 2 did not show the dif-
ference as strongly. For the token use, however, all plots are
split by aspect, since the token distribution of both children
and adults shows more differences between the use of gram-
matical markers with verbs in the two aspects.

Analysis 2: Flexibility of form use over time
Entropy ratios (child/adults) of the use of lemmas with in-
dividual grammatical markers from the sub-sets of non-past
and past morphology and the segmented regression reveal
that difference in the onset of diversification is not large.
For past morphology, perfective lemmas show an earlier in-
crease of entropy, but imperfective lemmas follow suit only
a few weeks later and vice versa. The onset of use starts
with imperfective+non-past and perfective+past for all chil-
dren except Child 5, whose production is already diversified
at the start of recordings. Only Child 3 shows a lag of more
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Figure 2: (a) Distribution of verb tokens in the production of
Child 1 during phase 1; (b) Distribution of tokens in a sample
of the same lemmas and the same number of tokens in Child
1’s production during phase 2; (c) Distribution of tokens in a
sample of the same lemmas and the same number of tokens
in adults’ production during phase 1.

than a month between the beginning of increased flexibility
of perfectives+past and imperfectives+past.

Figures 3 and 4 show the increase of entropy ratios over
time as well as the break points of the segmented regression.
The break points are indicated by vertical lines: the dotted
line represents the point at which the use of lemmas starts
to become more diversified and the dashed line indicates the
point at which the increase in diversification levels off.

Discussion
The children in our sample started out using verb forms in an
item-specific manner during the first phase of verb produc-
tion. Few verb lemmas appeared with more than one gram-
matical marker. However, while we did observe some tenden-
cies that are in agreement with the Aspect Hypothesis, there
is very little evidence that would make it a compelling argu-
ment by itself. Even during the early verb use we encounter
past forms used with imperfective verbs. Child 1, for exam-
ple, uses verbs such as drive and do with past marking early
on; they are semantically activities without an endpoint and
not expected to occur with past marking in the earliest phase
of verb production. A plausible explanation in this case is the
fact that Russian past forms are both quite transparent and ap-
pear in a narrower array of contexts, which eases acquisition
and generalization.

The onset of the increase in flexibility of use of lemmas
with individual grammatical forms is temporally close for
verbs of both aspects. This suggests that, rather than passing

Figure 3: Entropy ratio (children/adults) of lemmas used with
non-past marking on perfective and imperfective verbs, com-
puted on bootstrapped data (100 iterations per session). Blue
lines indicate changes in entropy increase for perfectives, red
lines for the imperfectives.

Figure 4: Entropy ratio (children/adults) of lemmas used with
past marking on perfective and imperfective verbs, computed
on bootstrapped data (100 iterations per session). Blue lines
indicate changes in entropy increase for perfectives, red lines
for the imperfectives.
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through an intermediary phase during which the generaliza-
tion first occurs within subdivisions of the verb paradigm (for
perfective verbs with past marking, for imperfective verbs
with non-past), the generalization starts early across the en-
tire paradigm. Soon after item-specificity starts decreasing,
children begin applying forms of a grammatical category to
verbs of both aspects. This is strengthened by the observa-
tion that verb use in the first phase of production shows a
stronger distributional bias in the distribution of tokens than
in that of types. Coupled with the observation that the same
holds for adult production — albeit in a weaker form — this
finding suggests that the patterns of aspect-tense combina-
tions found in the literature might be a mirroring of adult
distributional patterns. Supporting this view is the fact that
hardly any of these studies took the diversity of forms into
account and thus have mostly confirmed the Aspect Hypoth-
esis for the preferred use of forms, while making a less firm
statement about availability of different forms at any stage of
development. Given that distributional bias also factors into
adult speech, it is important not to overstate the effect of pre-
ferred aspect-tense combinations on learnability of forms in
the paradigm. Since children are able to pick up on distri-
butional cues, their initial use of forms might simply be a re-
flection of the distributions found in adults as well as personal
needs (cf. Figure 2b and the large proportion of the impera-
tive form of give). A similar observation was already made
by one of the authors of the Aspect Hypothesis Shirai (1998),
who found that Japanese children do not follow the predic-
tions of the Aspect Hypothesis and, therefore, suggested that
multiple factors should be taken into account when examin-
ing early acquisition of tense-aspect morphology.

By looking at the use of different lemmas with the indi-
vidual grammatical forms and thus measuring how flexibly a
form is used, we were able to show that the development of
form use might be more advanced than indicated by prefer-
ential use of certain tokens which skew the distributions. Go-
ing forward, it is important to disentangle the issue of tense-
aspect marking further and take into account the differences
between token and type distributions as well as further fac-
tors, such as lexical development and underlying distributions
of grammatical markers in individual languages.
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Abstract 
 
Previous research by Kaniel & Lubow in 1986 found that young 

children (aged 4-5 years) exhibited poorer learning (latent 
inhibition) to pre-exposed stimuli than older children (aged 7-10 
years). The aim of our research was to develop a computer-based, 
child-friendly study that would replicate the work of Kaniel & 
Lubow. Sixty-three children took part in our experiment. This 
consisted of a pre-exposure/study phase in which participants were 
asked to press computer keys in response to clipart pictures of 
animals and dinosaurs.  Each animal or dinosaur picture was 
preceded by one of two “warning signals” which acted as the pre-
exposed stimuli (to which no response was required).  In the test 
phase that followed, the participants had to either press the 
spacebar or withhold their response to each pre-exposed stimulus 
and two novel stimuli.  They learnt which response was correct by 
trial and error using the feedback provided.  The accuracy and 
reaction time of the responses during the test phase were analysed 
and indicated that the youngest children showed significantly 
lower mean accuracy and longer mean response times to the pre-
exposed stimuli than to stimuli they had not been pre-exposed to.  
In contrast, the older children showed no significant differences in 
their responses to pre-exposed and novel stimuli.  These results are 
consistent with those found by Kaniel & Lubow and could be taken 
as evidence for latent inhibition in young children.  Further studies 
are proposed in which variations in pre-exposure procedure are 
used to rule out explanations based on response inhibition or 
negative priming. 

 

Introduction 
Learning from experience takes place when connections or 

associations are formed between stimuli and outcomes, e.g. 
pricking a finger on a needle results in one learning that 
needles are sharp, so care is needed when handling them.  
Latent inhibition (LI) occurs as a result of being exposed to 
a stimulus without a noticeable outcome.  For instance, in 
the laboratory, latent inhibition is observed when rats that 
have been pre-exposed to a tone are slower to learn that the 
tone will subsequently indicate a reward (such as food), than 
rats that had not previously been exposed to the tone, 
(Lubow and Moore, 1959; for an example with rats see 
McLaren et al, 1994).  LI is relatively easy to find in 
animals but it is, by comparison, difficult to find evidence 
for this effect in humans. 

 
In their review of human LI experiments, Byrom et al 

(2018), suggest that none of them provide sufficient 
evidence to conclude that pre-exposure to a stimulus is the 
sole reason for the retarded responding observed.  Other 
factors, such as negative priming (see Tipper, 1985 and 
Graham and McLaren, 1998), learned irrelevance or relative 
novelty could also be responsible for their findings.  In order 
to provide a true test of LI, it is necessary to develop human 
experiments that are able to rule out these potentially 
confounding factors. 

 
One study that appears to provide evidence for LI in 

humans is that by Kaniel & Lubow (1986).  In their study, 
there was a simple Study Phase task in which children had 

to press buttons in response to pictures of plants and animals 
presented on metal cards in a box divided into three 
compartments.  The cards were presented in sets of three, 
with one animal card and one plant card on each side of a 
third card (depicting two different sized black or white 
squares).  During each trial the cards on either side of the 
middle card were changed and the child had to press a 
button corresponding to the side on which, for instance, the 
plant was present. In the following Test Phase, the children 
were presented with sets of cards showing black or white 
squares.  This time they had to learn to press a button on the 
side corresponding to the card depicting the square that they 
had previously been exposed to in the study phase. They 
found that children aged 4-5 years exhibited poorer learning 
in this test than older children (7-10 year olds).   

 
Can we take this as evidence of latent inhibition in young 

children? In one sense, the procedure used in Kaniel and 
Lubow's experiment is an example of simple exposure to the 
square stimuli, as they are presented at central fixation. If 
we accept this, then this may indeed be an example of latent 
inhibition in young children. On the other hand, the 
requirement for the children to respond to the pictures of 
plants or animals could have acted as a masking task during 
the study phase and diverted their attention from the pre-
exposed black or white square stimuli. If this is the case, 
then an explanation in terms of conditioned inattention to 
the stimuli (i.e. negative priming, see Graham and McLaren, 
1998) would be preferred. One argument against the latter 
explanation, however, is that the effect is confined to just 
the youngest group of children. Given that masking task 
procedures can successfully produce retarded learning in 
adults (see Ginton, Urca and Lubow, 1975 for an early 
demonstration of this in the auditory modality as well as 
Graham and McLaren, 1998 for an example using visual 
stimuli), why would only the 5 year old children show the 
effect in this case? For these reasons, this Kaniel and 
Lubow’s results are some of the most interesting and 
potentially consequential for theories of learning that we are 
aware of. 

 
This study has, to our knowledge, never been successfully 

replicated. Our aim was to design an updated and improved 
version of the Kaniel & Lubow study to see if we could 
replicate its findings, but without there even being a hint of 
a masking task involved.  Our study uses clipart pictures of 
animals and dinosaurs for the children to respond to, one 
computer key for each.  Instead of the pictures of different 
sized squares, we use four simple patterns as our pre-
exposed stimuli.  Two of the patterns are presented in the 
study phase as “warning signals” prior to an animal or 
dinosaur appearing.  In the test phase, all four patterns are 
presented and the participants have to learn to either respond 
or withhold their response to each pattern. This design 
brings with it a number of advantages over Kaniel and 
Lubow's original. Because the stimuli being pre-exposed are 

2332



	

	

used as warning signals and are not present at the same time 
as the choice stimuli during the pre-exposure phase, 
participants do not have to ignore them and focus on the 
relevant stimuli. And, because we use both pre-exposed and 
non-pre-exposed stimuli in both conditions (respond and 
withhold response) in our test, we can see whether any 
learning deficit depends on whether people have to learn to 
respond to that stimulus or not. 

 
 
 

Experiment  
 

Method 
Participants 

 

Sixty-three primary school children took part in the 
experiment. The number of participants in each age group 
was as follows: 4-5 year olds (13), 6-9 year olds (40), 10-11 
year olds (10).  The children were all from a primary school 
a few miles outside Exeter, Devon.   

 

Materials and Design 
 

The experiment consisted of a pre-exposure/study phase 
of 120 trials (in random order) in which the participant had 
to respond to clipart pictures of dinosaurs and animals 
(examples in Fig. 1), each preceded by a “warning signal” 
(Fig. 2).  

 

Figure 1.  Examples of clipart images (300 x 300 pixels) of 
animals and dinosaurs presented during the pre-exposure/study 
phase of the experiment. 

 

 
Figure 2. “Warning signal” stimuli (128 x 128 pixels).  Two 

stimuli appeared during the pre-exposure/study phase; all four 
appeared during the test phase.   

 
During the study phase, two of the stimuli shown in Fig. 2 

were presented one at a time to provide a warning that the 
next animal or dinosaur stimulus was about to be displayed.  
Each warning stimulus appeared equally often preceding 
each choice stimulus.   

 
The study phase was followed by a test phase of 32 trials 

in which the participant had to learn to either press the 
spacebar or withhold their response to each of four stimuli, 
two of which had been pre-exposed during the study phase. 
The two stimuli for which a spacebar response was required 
included one of the pre-exposed stimuli and one of the novel 
controls, and likewise for the stimuli for which the response 
had to be withheld.  Stimuli were counterbalanced across 
conditions and subjects by creating four versions of the 
study (see Table 1). 
 

Table 1. Counterbalance for stimuli pre-exposed during the study 
phase and responses required in the test phase of each version of 
the experiment (+ = press spacebar, - = withhold response). 
Counterbalance  Study phase stimuli Test phase response 

1 A and C A+, B-, C-, D+ 
2 A and C A-, B+, C+, D- 
3 B and D A+, B-, C-, D+ 
4 B and D A-, B+, C+, D- 

 
The experiment was developed using SuperLab 4 software 

(version 4.0.7b) and was presented on a Macintosh laptop 
computer. 

 
Procedure 

 

Written consent was obtained from the parents/guardians 
of the children before they took part in the experiment.  The 
consent form included information on the procedure of the 
experiment and the participants’ right to withdraw at any 
time.  
 

The experimenter worked with one participant at a time.  
At the start of the experiment the computer screen showed a 
picture of an imaginary island with a cartoon child 
“explorer”.  Overlaying the picture were written 
instructions.  For each participant, the experimenter read the 
onscreen instructions out loud, as follows: 
 
Welcome to our study. 
Imagine you have just arrived on an island that has never 
been explored before.   
Your job is to look for animals.   
You soon find out that some animals look just like 
dinosaurs.  Could this be possible?   
Have dinosaurs somehow managed to survive on this remote 
island?   
You need to quickly and accurately record every dinosaur 
and animal you see.   
Press the 'x' key if you see a dinosaur. 
Press the '.' key if you see an animal that isn't a dinosaur. 
The computer will say 'yiha' if you get it right or 'oops' if 
you get it wrong. 
Try to get as many correct responses as you can. 
Please press the 'B' key to see some more instructions. 
 
Before you see them there will be a signal to warn you that 
the animal or dinosaur is coming! 
Remember:  
             - as soon as you see a dinosaur, press the 'x' key. 
            - as soon as you see an animal that isn't a dinosaur, 
press the '.' key. 
When you're ready, press the 'B' key 
 
Pre-exposure/study phase: There were 120 trials in two 
blocks of 60 with a participant break (self-timed) at the end 
of the first block. 
 

Each trial consisted of a fixation cross (500ms) followed 
by a warning signal (1500ms) followed by a 
dinosaur/animal image (up to “x” or “.” response, or 
2000ms if no response).  Feedback was given in the form of 
a “yiha” sound (correct response) or “oops” sound (incorrect 
response).  If there was no response within the time-limit of 
2000ms the feedback (presented on screen) was ‘Oops – you 
took too long!’.  Figure 3 shows an example of a trial 

A C B D 
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sequence during the pre-exposure/study phase.   
 
 
 

 
      

 

 
 
 
 

 
 
 
Figure 3. Example of a trial sequence during the pre-
exposure/study phase. 
 

During this phase, each of the two warning signals (pre-
exposed stimuli) was presented 60 times in random order 
(equally preceding the animal or dinosaur stimuli).  
Participants were not required to respond to the pre-exposed 
stimuli.  

 
At the end of this phase, the following instruction screen 

was presented.  Again, the experimenter read these 
instructions out loud when working with children. 

 
Thank you.  You have recorded all the dinosaurs and 
animals on the island. 
Now the computer is going to show you some patterns. 
These patterns were used to label the island by people who 
used to live there a long time ago. 
Some parts of the island are safe to enter but others may be 
dangerous! 
You need to mark which parts are safe – you do this by 
pressing the “spacebar” 
And which ones aren’t safe – for these don’t press the 
“spacebar”. 
You will just be guessing to start with.  Try pressing and not 
pressing the “spacebar” when you see a pattern and see 
what happens. 
The computer will say “yiha” if you get it right or “oops” if 
you get it wrong. 
Please press the ‘B’ key to begin. 
 
Test phase: There were 32 trials in two blocks, with a 
participant break (self-paced) after the first 16 trials.  
Accuracy and reaction time were recorded for each trial 
during the test phase. 
 

During this phase, each trial consisted of a fixation cross 
(500 ms) followed by one of the four stimuli (shown in Fig. 
2), presented in a random order.  These stimuli remained on 
screen up to the spacebar response or until 2000ms had 
elapsed if no response was made.  If the spacebar was 
pressed, feedback (“yiha” or the “oops” sound) was 
provided immediately.  If no response was made, feedback 
(“yiha” or “oops” sound) was provided after 2000ms.  This 
enabled participants to learn, by trial and error, which type 

of response was required for each stimulus. Figure 4 shows 
examples of two trials (one requiring the “spacebar” 
response, and the other requiring no response) during the 
test phase. Each stimulus (two pre-exposed during the study 
phase and two novel stimuli) appeared 8 times.  Two of the 
stimuli (one pre-exposed and one novel) required the 
“spacebar” response.  Two stimuli (one pre-exposed and one 
novel) required the response to be withheld (i.e. no 
response). 

 
A) Response = “spacebar” press 
 

 
 
 
 
 
 

 
B) Response = withhold response 
 

 
 
 

 
 

 
Figure 4.  Examples of two Test phase trials in which the 
“spacebar” was pressed: Trial A required the “spacebar” response 
so feedback is “yiha”. Trial B required the response to be withheld 
but a spacebar press was made so feedback is “oops”. 

 
 

Results 
 

The accuracy and reaction time data collected during the 
first block of the test phase were analysed using t-tests to 
establish whether there was a significant difference between 
responses to the stimuli that had been pre-exposed during 
the study phase compared to the novel stimuli, and whether 
this was dependent on the age of participants.  A 
significance level of p = .05 was used for all statistical tests, 
which were two-tailed unless otherwise specified.   Only 
data from the first block of the test phase were analysed as, 
by the second block, most children had reached 100% 
accuracy. 

 
 

500ms 
Up	to	
2000ms 

	
	+ 

“yiha” 

	

	
	+ 

500ms Up	to	
2000ms 

“oops” 

	

	

500ms 
1500ms 

Up	to	
2000ms 

	+ 
	

“yiha” 
	

“Warning	
signal”	

Dinosaur	or	
animal	
image	

Feedback	

2334



	

	

The 4-5 year-old children were the only age group to 
exhibit significantly lower overall accuracy of responding 
(averaged over go = spacebar press and nogo = withheld 
response) to the pre-exposed stimuli than to the novel 
stimuli, t(12) = 3.57, p = .004 (see Figure 5). This finding is 
consistent with a latent inhibition effect in the youngest 
children, and consistent with Kaniel and Lubow's (1986) 
findings. The size of the effect was significantly greater than 
that observed in the oldest children, t(21) = 2.25, p = .035; 
and this difference also approached significance when the 
youngest and the middle age groups were compared, t(51) = 
1.93, p = .059. This also replicates Kaniel and Lubow's 
(1986) findings. 

  
As would be expected, mean response accuracy tended to 

increase with the children’s age.  The mean response 
accuracy of the oldest children (10-11 year olds) was 
significantly greater for both the pre-exposed t(21) = 4.51, p 
< 0.001, and novel t(21) = 3.18, p = 0.005, stimuli when 
compared with the youngest children.  Only the difference 
for the pre-exposed stimuli is significant when comparing 
the middle group to the youngest, t(51) = 2.34, p = 0.023. 

 
 

Figure 5. Mean percentage response accuracy (averaged over go 
and nogo stimuli) for the pre-exposed and novel stimuli for each 
age group during the test phase. Error bars show SE of the mean. 

 
Figure 6 focuses on the response accuracy for those 

stimuli requiring a spacebar press (Pre-exposed + and Novel 
+).  In this case, the 4-5 year old and 6-9 year old children 
both show a significant difference in their response accuracy 
(t(12) = 5.50, p <0.001 and t(39) = 2.40, p = 0.021 
respectively) with a tendency to respond less accurately to 
the pre-exposed stimuli.  In contrast, the older children show 
no reliable difference in their spacebar response accuracy to 
the pre-exposed and novel stimuli.  

 
Once again we can look at the differences between groups 

on this measure. There isn't a significant difference when 
comparing the oldest to the youngest children (even though 
numerically the difference is large, this is probably a matter 
of power), but there is a trend towards significance for the 
comparison between the middle group and the youngest 
children, t(51) = 1.73, p = 0.09, a result that would be 
significant on a 1-tailed test. There is some evidence, then, 
that the poorer learning exhibited is in part, at least, due to 
difficulty in learning to respond to the pre-exposed stimulus 

that requires a response. There was no sign of such an effect 
for the pre-exposed stimulus that did not require a response. 

 
	

 
Figure 6.  Mean percentage response accuracy for the stimuli 

requiring a spacebar press for each age group during the test phase. 
Error bars show SE of the mean. 

 
The mean response times for stimuli requiring a spacebar 

press (Fig. 7) were significantly longer for the pre-exposed 
stimuli than the novel stimuli for both the 4-5 year old 
children (t(12) = 2.51, p = 0.027) and the 6-9 year old 
children (t(39) = 2.21, p = 0.033) but not in the oldest age 
group. But this difference did not itself differ significantly 
across groups, despite the extra time taken to pre-exposed 
stimuli being considerably greater numerically in the 
youngest children than in the other two groups. As would be 
expected, the youngest children generally exhibited longer 
response times for both types of stimulus than the oldest 
children.   

 

 
Figure 7. Mean response times (msec) for the pre-exposed and 
novel stimuli for each age group during the test phase. Error bars 
show SE of the mean. 
 

 
 
 

General Discussion 
 

The aim of this study was to replicate Kaniel and Lubow’s 
(1986) findings using an updated method that avoided the 
need to ignore the pre-exposed stimuli while performing the 
initial task. In this we succeeded. There is really quite strong 
evidence in our data for retarded learning as a consequence 
of pre-exposure in our youngest group of children, and this 
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is the same age group that Kaniel and Lubow obtained their 
effect with. We have also failed to find a similar effect in 
older children, again mirroring Kaniel and Lubow's results, 
and all this with a pre-exposure procedure that uses the 
target stimuli as warning signals for an upcoming trial, so 
that there is no obvious need to ignore them. But can we be 
sure that this is latent inhibition in humans?  

The answer to this question has, for the present, to be no. 
We cannot be sure that this is latent inhibition, but we can, 
perhaps, rule out some of the other possibilities. As we have 
argued, there is no particular reason to learn to ignore the 
pre-exposed stimuli during the initial phase of the 
experiment, because they actually serve a useful function, 
warning of the next stimulus to which a decision has to be 
made. One could always argue that the 4-5 year old children 
do learn to ignore these stimuli nevertheless, but that would 
seem a rather ad-hoc explanation of our results. And we 
would still be left with the conundrum of explaining why 
older children do not learn to ignore the pre-exposed stimuli. 
 
But in adapting our design to control for possible artifacts in 
Kaniel and Lubow’s study, we may have introduced new 
ones into our experiment. One plausible explanation for 
these results takes note of the fact that the larger effect on 
learning seems to be on the pre-exposed stimulus to which a 
response was required during the final, test phase. The 
young children were particularly bad at learning to press the 
spacebar in the case of the pre-exposed S+, and the middle 
age group also showed an impairment in learning. Perhaps 
encountering the stimuli during the initial pre-exposure 
phase when responses were required to the animal/dinosaur 
pictures and not having to make a response to the pre-
exposed stimuli (because they were used as warning stimuli) 
has somehow caused this effect? 
 
We can imagine at least two versions of this account. One 
would have it that being presented with the stimulus, 
followed by no outcome led to a type of CS->NoUS 
learning that has been suggested as producing the basic 
latent inhibition effect in other animals. Learning that this 
stimulus signals no outcome makes it harder to learn that an 
outcome does follow later. If this is the mechanism, then it 
would support the contention that the 4-5 year old children 
are displaying latent inhibition, as well as providing 
evidence for a particular theoretical explanation of latent 
inhibition. 
 
A somewhat more concrete and specific version of this 
account would appeal to response inhibition developing 
rather than learning some general CS->NoUS association 
during pre-exposure. In a context where responses have to 
be made (press one of two keys), when the warning signal is 
shown no response is required and so general response 
inhibition accrues and is associated with the stimuli present 
at the time. As a consequence, when a response is required 
to these pre-exposed stimuli, it is harder to learn and 
perform.  This explanation can be distinguished from our 
earlier one by noting that the result for latent inhibition is 
that learning of both an excitatory association and of an 
inhibitory association between CS and US is retarded for a 
CS that has undergone latent inhibition. But the response 
inhibition account would predict that learning to withhold a 
response to a CS would actually be facilitated.  The 
question, then, is how learning to respond to the pre-

exposed S- progresses in the last, test phase. The answer in 
our data is that there is no evidence of a facilitatory effect in 
the youngest or oldest children, and there is only a hint of 
one in the middle group (t(39) = 1.69, p = .099. Given this, a 
response inhibition account of the poorer learning seen in 
the youngest children seems unlikely. The fact that we have 
an effect in our youngest age group for overall performance 
is also indicative of an effect that is not based on response 
inhibition.  
 
Perhaps the most important argument for this being a 
demonstration of latent inhibition in young children, 
however, is generated by considering the two experiments, 
Kaniel and Lubow’s and ours, in combination. A response 
inhibition explanation will not obviously apply to Kaniel 
and Lubow’s design, as a response is made while the pre-
exposed stimuli are on screen. A learned inattention or 
negative priming explanation cannot easily be applied to our 
results because there is no reason to ignore the pre-exposed 
stimuli. But both experiments give very similar results, 
which suggests a common explanation for those results, and 
the only one that seems to fit is latent inhibition. 
 
Which brings us to what may be the most intriguing feature 
of these results. The younger children, 4-5 years old, are the 
ones that show the effect. The older children either do not 
show any significant effect, or display a significantly 
weaker version of it. This is also something our study shares 
in common with Kaniel and Lubow’s original work and 
needs some explanation. The explanation given in Lubow’s 
1989 book “Latent Inhibition and Conditioned Attention 
Theory” is that this “raw” latent inhibition found in young 
children is actually present in older children and adults, but 
that they have compensatory attentional processes that 
obscure this effect in studies of this type. In essence, latent 
inhibition reduces learning, but then attention is deployed to 
take it back up to its original level, hence no difference is 
observed between pre-exposed and non-pre-exposed 
conditions.  
 
There is much to commend in this explanation, and one of 
us has offered something that at first sight is similar in 
McLaren, Wills and Graham (2010). But there are real 
differences, stemming from the fact that our account of 
latent inhibition (which can be found in its earliest form in 
McLaren, Kaye and Mackintosh [MKM], 1989, and has 
been updated in McLaren and Mackintosh, 2000, and 
McLaren, Forrest and McLaren, 2012) differs from that 
offered by Lubow. In Lubow’s account, latent inhibition is 
due to conditioned inattention, but in ours it is due to a 
reduction in salience due to the features of the pre-exposed 
stimuli becoming predicted either by other stimuli present, 
or by one another. This leads to a reduction in salience 
(learning rate) for these pre-exposed features, hence latent 
inhibition. Instead, we use conditioned attention to explain 
why simple pre-exposure does not lead to observable latent 
inhibition in older children and adults. We argue that people 
attend to stimuli that are placed in front of them, and that 
this attentional response then becomes linked to those 
stimuli, compensating for any effect of latent inhibition. 
This attentional response is absent in younger children, 
which produces our and Kaniel and Lubow’s results. 
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Why should we prefer this explanation to Lubow’s? Both 
explanations are viable for the results obtained here and in 
Kaniel and Lubow's original study. But our explanation has 
the advantage of being able to explain Graham and 
McLaren's (1998) results as well as other demonstrations of 
retardations in learning in adults using a "masking" task 
(e.g. Ginton, Urca and Lubow, 1975). We argue that these 
results are indeed due to conditioned inattention, just as 
Lubow would have it, but disagree that this is the basis for 
latent inhibition. The test that Graham and McLaren use is 
to create two distortions of a pre-exposed stimulus and then 
train a discrimination between them. In their 1998 paper, 
they find that this results in slow learning of the 
discrimination when it is compared to a similar 
discrimination based on distortions of a novel stimulus. This 
is the opposite result to that found in animals (see Aitken, 
Bennet, McLaren and Mackintosh, 1996 for direct evidence 
on this point), and so suggests that the retardation in 
learning observed when the pre-exposed stimulus is trained 
directly is not actually latent inhibition but instead is due to 
negative priming. In future, we intend to apply this test to 
our finding. If we are able to demonstrate an enhancement 
of learning between two distorted versions of the pre-
exposed stimulus (i.e. perceptual learning) using this 
technique then this will be excellent evidence that the effect 
is the same as that seen with simple pre-exposure in other 
animals, and confirm that it is latent inhibition and not 
negative priming. 
 
 
 

 
 

Conclusions 
 

In conclusion, this study has provided strong evidence for 
a retardation in learning to a stimulus following pre-
exposure to that stimulus in young (4-5 year old) children. 
This effect was not found in older children. It is possible 
that what we have here is latent inhibition of the type 
obtained with simple pre-exposure in animals such as the 
rat, but more work will be needed to establish whether this 
is, in fact, the case. Possible alternative explanations are 
conditioned inattention / negative priming, and generalised 
response inhibition, but neither receive a great deal of 
support from the data we have obtained. Further research 
should focus on either definitively ruling these alternatives 
out, or providing solid evidence for them. 

 
If we have demonstrated latent inhibition in young 

children, then this has important implications for theories of 
learning, particularly in humans. It would confirm that we 
carry with us the same basic processes affecting learning as 
other animals, and would also go some way to confirming 
the MKM model of perceptual learning. More than that, it 
would also raise the question of why latent inhibition "goes 
away" in older children. We have given one possible reason 
here, which offers us one perspective on the development of 
learning and cognition in children. If it turns out not to be 
the case, and our results can be explained by some other 
mechanism, then this problem will still remain. Why do 
young (4-5 years old) children show this effect and older 
children do not? Solving this developmental puzzle will add 
to our understanding of human mental life. 
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Abstract

Intervention selection is at once crucial in causal learning and
challenging for causal learners. While the optimal strategy is
maximizing the expected information gain (EIG), both chil-
dren and adults often combine it with suboptimal ones such
as the positive test strategy (PTS). In the current study, we
sought to facilitate causal learning from intervention by asking
5- to 7-year-olds to explain why they chose a certain interven-
tion to identify the true structure of a three-node causal sys-
tem that might work in one of two ways. Our findings suggest
that while engaging in self-explaining did not help children se-
lect more informative interventions, asking them to think about
their intervention choices (explaining or reporting) might help
them better utilize interventional data to infer causal structures.
Keywords: causal learning; intervention; explanation; learn-
ing by thinking

Once upon a time in China, two men were accused of a
murder yet no evidence could be found. The judge gave each
of them a “magical” straw that was said to grow longer in the
hands of the guilty. As the story goes, the man showing up
with a shorter straw next day was put in jail. As you might
have guessed, straws don’t grow; the real magic is that the
judge chose the most informative intervention centuries be-
fore informative theory came into being. He could not foresee
which man would cut his straw in fear but whoever did it must
be the murderer. This strategy allowed him to maximally re-
duce his uncertainty averaged across potential outcomes, or in
other words, maximize his expected information gain (EIG)

EIG is widely regarded as a normative model for inquiry
selection (Coenen, Nelson, & Gureckis, 2018; Nelson, 2005)
but it only partially captures people’s actual interventions.
Both adults (Bramley, Lagnado, & Speekenbrink, 2014) and
children (McCormack, Bramley, Frosch, Patrick, & Lagnado,
2016) outperform models that intervene randomly but fall
short of pure EIG maximization. On the computational level,
a possible explanation is that adults (Coenen, Rehder, &
Gureckis, 2015) and children (Meng, Bramley, & Xu, 2018)
combine EIG maximization with a suboptimal strategy akin
to the positive test strategy (PTS) in the rule learning litera-
ture (Klayman & Ha, 1989; Wason, 1960). In causal learning,
Coenen et al. (2015) defined PTS as a tendency to generate
the most expected effects under your current causal hypothe-
sis. A minimal example of PTS is intervening on X when you
try to discriminate between your hypothesis, X→Y → Z, and
an alternative one, Y ← X → Z. If the outcome (e.g., only X
and Y are activated) happens to falsify your hypothesis, you
get to rule it out; otherwise, both could still be true so you
remain uncertain. By contrast, a high-EIG intervention (Y )
reduces your hypothesis space (in this case, to 1) regardless
of the outcome (all variables are activated or only Y and Z).

To ensure successful causal learning from intervention,
learners should use an optimal strategy (e.g., EIG) to select
interventions and make accurate inferences from interven-
tional data. In the current study, we sought to facilitate both
the intervention selection and the belief updating processes
by prompting learners to explain why they choose a certain
intervention to learn about an unknown causal system.

Explanation and intervention
Explaining requires no extra data or instructions; yet, it has
profound downstream consequences for learning and infer-
ence in various domains (see Fonseca & Chi, 2011; Lom-
brozo, 2016, for reviews). Typically, learners achieve better
learning outcomes simply by engaging in explanation (e.g.,
how a system works, why an effect occurred, etc.) even with-
out feedback or generating accurate explanations (e.g., Chi,
Bassok, Lewis, Reimann, & Glaser, 1989; Chi, De Leeuw,
Chiu, & LaVancher, 1994; Walker, Lombrozo, Legare, &
Gopnik, 2014; Walker, Lombrozo, Williams, Rafferty, &
Gopnik, 2017). Many theories are proposed to explain why
explaining facilitates learning, such as that it helps learners
fill gaps in their knowledge, repair erroneous mental models,
recruit criteria for “good” explanations (simplicity, breadth,
or other “explanatory virtues”) to constrain reasoning, etc..

How do you explain an intervention? From an EIG per-
spective, to explain intervention selection, you must consider
belief updating (Coenen & Gureckis, 2015): You choose an
intervention because on average, it reduces the most uncer-
tainty. Engaging in explanation may benefit both processes.

Explaining may facilitate intervention selection by promot-
ing comparison and abstraction. A recent study (Edwards,
Williams, Gentner, & Lombrozo, 2019) suggested that ask-
ing learners to explain exemplars’ category membership (e.g.,
“Why is this robot a Glorp/Drent?”) increased their compar-
ison within and between categories. Should explainers com-
pare more across different interventions and the outcomes of
each intervention, they might be in a better place to select
high-EIG interventions. Moreover, effective learners may re-
alize that on an abstract level, informative interventions are
ones that yield distinct outcomes under different hypotheses.
Walker and Lombrozo (2017) found that explaining the out-
come of a story (e.g., why a character is sad) helped chil-
dren extract its underlying moral and go beyond the specifics.
Should explaining help causal learners achieve such abstrac-
tion, it could largely reduce the cost of intervention selection.

Explaining may also facilitate belief updating by encourag-
ing learners to apply their prior knowledge when interpreting
interventional data (Williams & Lombrozo, 2013).
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(a) Puzzle 1 (b) Puzzle 2 (c) Puzzle 3

(d) Puzzle 4 (e) Puzzle 5 (f) Puzzle 6

Figure 1: Light bulb puzzles used in the experiment.

Current study
In the current study, we investigated whether self-explaining
could facilitate causal learning from intervention. We chose
to test 5- to 7-year-olds because previous studies (McCor-
mack et al., 2016; Meng et al., 2018) suggested that they were
not yet able to reliably select informative interventions, leav-
ing substantial room for improvement. This also allows us to
compare our results directly to that in Meng et al. (2018).

Overview of experiments Our causal learning task was
adapted from Meng et al. (2018). Children were tested on six
unknown causal systems consisted of three light bulbs, some
of which could turn on others if activated. Each system could
work in one of two ways and children were allowed to turn
on one light bulb to identify its correct structure. All causal
connections were deterministic with no background noise.

In the first experiment (Experiment 1A), children were
asked to explain their intervention choice (“Why did you turn
on that light bulb?”) after carrying it out. However, since
those children observed the outcome before explaining, their
explanation might be a post hoc justification of their choice
(“Because it helped me solve the puzzle.”) rather than the ac-
tual reason. To address this concern, we conducted a second
experiment (Experiment 1B) where children pointed to the in-
tervention they wanted to perform and were asked to explain
their choice (“Why do you want to turn on that light bulb?”)
before carrying it out. In the respective control conditions,
children were asked to report which intervention they carried
out (Experiment 1A) or planned to choose (Experiment 1B).

Modeling intervention strategies To compare intervention
strategies across conditions, we took a hierarchical Bayesian
approach used by Coenen et al. (2015) and Meng et al. (2018).
We compared models of three single strategies (EIG, PTS,
and random selection) and a linear combination of EIG and
PTS. Below is an overview of the four models.

Learners all begin with a set of causal hypotheses, each of
which can be represented as a directed acyclic graph g∈G (G
is the space of possible graphs), or a causal Bayesian network
(Pearl, 2000). In each graph, causal variables are presented as
nodes and causal relationships as edges.

1. Expected information gain (EIG)

The information gain (IG) after intervening on the node
n ∈ N is the difference between the initial entropy, H(G),
and the entropy conditioned on the outcome o, H(G|n,o):

IG(n,o) = H(G)−H(G|n,o). (1)

Since o is unknown, the expected information gain (EIG)
over all possible outcomes O is used to estimate IG:

EIG(n) = H(G)− ∑
o∈O

P(o|n)H(G|n,o). (2)

Applying Shannon’s entropy equation, we have

H(G) =−∑
g∈G

P(g)log2P(g), (3)

and

H(G|n,o) =−∑
g∈G

P(g|n,o)log2P(g|n,o). (4)

The prior probability P(g) of each graph g is assumed to
be equal and the posterior probability P(g|n,o) is given by
Bayes’ rule, P(o|g,n)P(g)

∑P(o|g,n)P(g) . P(o|g,n) is the likelihood of an
outcome o given a hypothesis g and an intervention n.

2. Positive test strategy (PTS)

PTS manifests as the tendency to intervene the node n ∈ N
with the most of direct or indirect descendant links (nor-
malize by the total number of links in each graph g ∈ G):

PT S(n) = max
g

[
DescendantLinksn,g

TotalLinksg
]. (5)

3. Random selection

Random selection is equivalent to indiscriminately assign-
ing the same value (e.g., 1) to all possible interventions.

4. Linear combination of EIG and PTS

Rather than sticking to one strategy, learners may use mul-
tiple strategies such as EIG and PTS to select interventions.
The value of each possible intervention is a linear combi-
nation of its EIG and PTS values (the weight of EIG is θ).

Under one strategy or another, each possible intervention is
assigned a value V (n). An ideal learner should always select
the intervention with the highest value but due to noise τ in the
decision process, an actual learner often does so probabilisti-
cally. According to the softmax choice rule (Luce, 1959), the
probability that an intervention gets chosen, P(n), is a func-
tion of its value V (n) and the learner’s decision noise τ:

P(n) =
exp(V (n)/τ)

∑
n∈N

exp(V (n)/τ)
. (6)
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When τ is 0, the learner selects interventions with the high-
est values; when τ approaches +∞, they select randomly.

Experiments
Participants
Seventy-four 6- to 7-year-olds participated in Experiment 1A,
37 of whom were assigned to the Explanation condition (M =
85 months, range = 74–101 months, SD = 9 months) and 37 to
the Report condition (M = 84 months, range = 64–96 months,
SD = 8 months). Another forty-three 5- to 7-year-olds par-
ticipated in Experiment 1B, 22 of whom were assigned to
the Explanation condition (M = 77 months, range = 62–90
months, SD = 8 months) and 21 to the Report condition (M =
75 months, range = 50–101 months, SD = 14 months).

Equipment
Three light bulbs (yellow, green, and red) were presented
on a laptop screen and controlled by three buttons of corre-
sponding colors located on a response board. During practice,
red arrows indicated the causal relationships among the light
bulbs. During the test, the arrows were hidden but two possi-
ble structures were shown on two cards placed side by side.

Procedure
Both experiments included a familiarization phase, a prac-
tice phase, and a test phase. During familiarization, children
were taught to use buttons on a response board to control
light bulbs of corresponding colors on the computer. Dur-
ing practice, they saw four basic types of structures: Common
Cause (Yellow←Green→ Red), Common Effect (Yellow→
Red← Green), Causal Chain (Green→ Red→ Yellow), and
One Link (Yellow→ Red). In Experiment 1A, the presenta-
tion order was randomized. For each structure, children de-
cided when to turn on which light bulb and were asked to
describe the outcome of each action. In Experiment 1B, each
structure was one change apart from the previous one. The
simplest structure, One Link, was presented first, which was
followed by Causal Chain, Common Cause, and Common Ef-
fect. For each structure, children turned on the light bulbs in
a designated order (Yellow–Red–Green in the first two trials
and Green–Red–Yellow in the last two) and were asked to
predict and then describe each action’s outcome.

On each of the six test trials, children were shown two ways
in which the three light bulbs might work and were told that
they could only turn on one light bulb to find out the true
structure. In Experiment 1A, children were asked to explain
(“Why did you turn on that light bulb?”) or report (“Which
light bulb did you turn on?”) the intervention that they had
just carried out. In Experiment 1B, children were asked to
first point to the light bulb they planned to turn on, then ex-
plain (“Why do you want to turn on that light bulb?”) or
report (“Which light bulb do you want to turn on?”) their
choice, and finally perform the intervention1. At the end of

1In the rare event that children’s actual intervention differed from
what they planned, we used the former for all our analyses.
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Figure 2: The proportion of causal structures that children
correctly identified in each condition.

both experiments, children were asked to put a smiley face
sticker on the correct causal structure. In order to avoid poten-
tial discouragement that we observed during piloting, feed-
back was only provided after the entire experiment.

Results
Our initial analysis revealed no differences between the re-
sults of Experiments 1A and 2B, so data from these two ex-
periments were pooled together in all subsequent analyses.
To test whether explaining and reporting one’s intervention
choices could both influence causal learning, we used chil-
dren in Meng et al. (2018) as our baseline. Apart from the ad-
ditional explanation/report prompts, our procedure, stimuli,
and population were identical to those in the previous study.

Inference accuracy To begin, we first looked at whether
children were able to identify the correct causal structures in
the end. As shown in Figure 2, those in the Baseline condi-
tion chose the correct structures 54% (SD = 22%) of the time,
which was not distinguishable from chance (50%), t(38) =
1.02, p = .31, Cohen’s d = .16. However, children performed
above chance in both the Explanation (M = 67%, SD = 25%)
and the Report (M = 61%, SD = 23%) conditions, t(58) =
5.13, p < .001, Cohen’s d = .67 and t(57) = 3.77, p < .001,
Cohen’s d = .50, respectively. The only significant difference
between conditions was that explainers were more accurate
than the baseline, t(88.53) = 2.73, p = .007, Cohen’s d = .55.

Intervention choices Before fitting models of intervention
strategies, we examined children’s interventions choices to
see if they were random or biased towards EIG or PTS.

We compared the mean EIG and the mean PTS value of
children’s chosen interventions against the respective chance
levels (.33 for EIG2 and .55 for PTS3) of the two metrics. In
the Baseline condition, only the mean PTS value (M = .74,
SD = .22) was above chance, t(38) = 5.37, p < .001, Cohen’s
d = .86, but not the mean EIG value (M = .39, SD = .28),
t(38) = 1.23, p = .23, Cohen’s d = .20. Similarly in the Report
condition, the mean PTS value (M = .74, SD = .20) was above

2Among all three possible interventions in each puzzle, only one
was informative, i.e., having an EIG value of 1.

3This was the average PTS value across all interventions.
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(a) Causal Chain vs. Common Cause
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(b) Causal Chain vs. One Link
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(c) Common Effect vs. One Link

Figure 3: Figures on the left show the proportion of children intervening on each node (n1, n2, and n3) in each type of puzzles:
(a) Causal Chain vs. Common Cause, (b) Causal Chain vs. One Link, and (c) Common Effect vs. One Link. Figures on the
right show the probability of children intervening on each node in each type of puzzles predicted by EIG and PTS.

Figure 4: Hierarchical Bayesian models of single (left) and combined (right) strategies. In each puzzle j, each participant i
chooses one node ni j to intervene on. Vj, EIG j, and PT S j store the values of three possible interventions in each puzzle. pi j
stores probabilities of each participant choosing each intervention in each puzzle. τi and θi capture each participant’s decision
noise and weight of EIG. α and β are population-level hyper-parameters that generate τi; µ and κ generate θi.

chance, t(57) =7.17, p < .001, Cohen’s d = .94, but not the
mean EIG value (M = .39, SD = .25), t(57) = 1.63, p = .11,
Cohen’s d = .21. In the Explanation condition, however, both
the mean EIG (M = .44, SD = .32) and the mean PTS (M =
.75, SD = .18) value were above chance , t(58) = 2.52, p =
.014, Cohen’s d = .33 and t(58) = 8.4, p < .001, Cohen’s d
= 1.09, respectively. Neither the mean EIG or the mean PTS
value differed significantly across conditions.

We also compared the proportion of children intervening
on each node in each puzzle against what EIG and PT would
predict. Since the mapping between node positions and light
bulb colors is arbitrary, we re-coded Puzzles 1 and 2 as
n1 → n2 → n3 (Chain) vs. n2 ← n1 → n3 (Common Cause),
Puzzles 3 and 4 as n1 → n2 → n3 (Chain) vs. n2 → n3 (One
Link), and Puzzles 5 and 6 as n2 → n1 ← n3 (Common Ef-
fect) vs. n3 → n1 (One Link). As Figure 3 shows, children
deviated the most from EIG predictions in “Chain vs. Com-
mon Cause”. In the other two types of puzzles, children’s
choices were split between EIG and PTS predictions. A small
but non-negligible proportion of interventions were on nodes

whose EIG and PTS values were both 0, suggesting that chil-
dren occasionally chose interventions randomly.

Intervention strategies We used two hierarchical Bayesian
models to capture children’s intervention strategies (Figure
4). The single-strategy model draws from a single source to
evaluate interventions—be it EIG, PTS, or always “1” in the
case of random selection. The combined-strategy model as-
signs a weighted mean of EIG and PTS (the weight of EIG is
θ) to each intervention. In both models, each child’s decision
noise τi is sampled from a population-level gamma distribu-
tion with two hyper-parameters α (shape) and β (rate). In
the combined-strategy model, each child’s weight of EIG θi
is sampled from a population-level beta distribution with two
hyper-parameters µ (mean) and κ (standard deviation. Un-
informative priors are chosen for all hyper-parameters: α =
.001, β = .001, µ∼ Beta(.5, .5), κ∼ Gamma(.001, .001). The
probability of selecting a given intervention is a function of
its value V (n) as well as the child’s decision noise τ. Actual
interventions are sampled from a categorical distribution of
these probabilities. Parameter values were estimated using
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Table 1: The deviance information criteria (DIC) of each
model and the weight of EIG θ in three conditions.

Baseline Explanation Report

Model DIC θ DIC θ DIC θ

Random 514.15 – 777.82 – 764.64 –
EIG 481.98 – 727.00 – 769.45 –
PTS 469.62 – 706.87 – 706.93 –
EIG + PTS 454.95 .24 634.43 .31 746.25 .19
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Figure 5: The distributions of the group-level hyper-
parameter µ (the mean of θ) under the three conditions.

Markov chain Monte Carlo (MCMC) samples generated by
the JAGS program4 (Plummer, 2003). The deviance informa-
tion criterion (DIC, Spiegelhalter et al., 2002) was used for
model comparison. Models that fit data better (smaller poste-
rior mean of the deviance D̄) or are simpler (smaller effective
number of parameters pD) have lower DIC (= D̄ + pD). As a
common practice, a difference over 10 is substantial.

As shown in Table 1, the combined-strategy model (EIG +
PTS) best captured children’s intervention strategy in both the
Baseline and the Explanation conditions. However, the PTS-
only model turned out to be the best fit in the Report condi-
tion. Children in all three conditions relied more on PTS than
EIG, with the mean weight of EIG being .24, .31, and .19,
respectively. Figure 5 illustrates the distributions of µ—the
population-level hyper-parameter that captures the mean of
θ—in all three conditions. To see whether µ differed across
conditions, we sampled 10,000 estimates of µ in each condi-
tion. For each contrast between conditions (Explanation vs.
Report, Explanation vs. Baseline, Report vs. Baseline), we
paired the estimates randomly and calculated the differences.
Since the 95% Highest Density Interval (HDI) of all three
difference distributions contained 0, we couldn’t claim with
confidence that µ differed across three conditions.

4In keeping with Meng et al. (2018), we ran MCMC for 100,000
iterations, discarding the first 1,000 samples and drawing one sample
every 10 iterations. To ensure that samples were from a stationary
distribution, we repeated this process 30 times with different ini-
tial parameter values and results from each sequence of samples (or
chain) successfully converged since Gelman and Rubin’s diagnostic
R̂ (Gelman & Rubin, 1992) of all parameters was smaller than 1.05.

Intervention and inference Lastly, we looked at whether
children’s intervention choices and strategies predicted if they
could accurately identify the true causal structures.

First, for each puzzle, we performed a logistic regression
using the EIG value (0 or 1) of children’s chosen intervention
to predict whether they identified the correct structure later. In
the Baseline condition, EIG values did not predict inference
accuracy in any puzzles. However, in the Explanation condi-
tion, high-EIG interventions strongly predicted successes at
identifying the correct structures in all six puzzles. In the
Report condition, EIG values predicted inference accuracy in
four of the six puzzles (except Puzzles 2 and 6).

We examined the correlation between the weight of EIG θ

and children’s average accuracy across all puzzles. θ and av-
erage accuracy were uncorrelated in the Baseline condition,
F(1,37) = 1.14, p = .29, R̄2 = .0038, but positively corre-
lated in the Explanation and the Report conditions, F(1,57)
= 30.73, p < .001, R̄2 = .34 and F(1,56) = 25.27, p < .001,
R̄2 = .30, respectively. Correlations in the Explanation and the
Report conditions were both stronger than that in the Baseline
condition, z = 2.31, p = .02 and z = 2.08, p = .04, respectively.

Discussion
In the current study, we investigated whether asking children
to explain their intervention choices facilitated causal learn-
ing from intervention. Specifically, we looked at 1) whether
explainers were better able to select informative interventions
and 2) make accurate inferences based on interventional data.

Our first hypothesis was not supported by the results. Nei-
ther children’s weight of EIG θ nor the group-level hyper-
parameter µ that captures the mean of θ differed significantly
across the Baseline, the Explanation, and the Report condi-
tions; this suggests that children used similar strategies to
select interventions across three conditions. Curiously, ask-
ing children to report their intervention choices might have
slightly “backfired”: While a linear combination of EIG
and PTS best captured children’s intervention strategy in the
Baseline and the Explanation conditions, the PTS-only model
turned out to best characterize the strategy used in the Report
condition. Moreover, unlike in the other two conditions, the
distribution of µ was right skewed in the Report condition, in-
dicating heavier reliance on PTS. However, since differences
in µ were not statistically significant, further investigation is
needed to examine whether this finding was due to random
noise or potential drawbacks of the report prompts.

Compared to the chance performance in the Baseline con-
dition, children in both the Explanation and the Report con-
ditions were more accurate at identifying the correct causal
structures after performing interventions. Since children in
the latter two conditions did not choose more informative
interventions, a possible explanation is that when prompted
to think about their intervention choices, children were bet-
ter able to utilize interventional data that were already avail-
able. This explanation was supported by our findings: In the
Explanation and the Report conditions, children’s interven-
tion choices (EIG value = 0 or 1) and interventions strategies
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(weight of EIG θ) predicted their inference accuracy, which
was not the case in the Baseline condition.

General Discussion
In the current study, we looked at whether asking children
to think about their intervention choices might facilitate their
causal learning from intervention. In Experiments 1A and
1B, 117 5- to 7-year-olds solved six puzzles where they per-
formed one intervention to identify the true structure of three
light bulbs that might be connected in one of two ways. Those
in the Explanation condition were asked to explain why they
chose certain interventions whereas those in the Report con-
dition were simply asked to report their choices. Meng et al.’s
(2018) previous study served as our Baseline condition where
children solved the same puzzles without being prompted.
Using hierarchical Bayesian models developed by Coenen
et al. (2015), we captured children’s intervention strategy
mainly in terms of how much they relied on the normative
strategy, which is maximizing the expected information gain
(EIG) of their chosen interventions, and the suboptimal posi-
tive test strategy (PTS). Children in all conditions relied more
on PTS than EIG; there was no difference across conditions.
However, compared to those in the Baseline condition who
performed at chance, children in both the Explanation and the
Report conditions were more accurate at identifying the cor-
rect structures after interventions. Crucially, children’s inter-
vention choices and strategies only predicted their accuracy
at inferring the true causal structures in the Explanation and
the Report conditions but not in the Baseline condition.

Taken together, our findings suggest that while engaging in
self-explaining did not help children select more informative
interventions, asking them to think about their intervention
choices (explaining or reporting) might help them better uti-
lize interventional data that were already generated.

Revisiting the self-explaining effect
The major motivation behind this study was the plethora of
self-explaining effects in education (Fonseca & Chi, 2011)
and cognitive development (Lombrozo, 2016). Given what
we found, two questions stood out: Why did self-explaining
have no effect on intervention selection? Why was the im-
provement on causal inferences not unique in explainers?

Further investigation is needed to provide precise answers.
Here we offer some speculations. Explaining an intervention
is not an easy feat: Not only do you need to contrast the value
of your intervention with that of other interventions, but more
fundamentally, you need to contrast your strategy of evalu-
ating interventions with other strategies. The cognitive pro-
cess of generating a good explanation may be too challenging
for 5- to 7-year-olds given their limited working memory ca-
pacity, knowledge about causal systems and experiments, and
metacognitive skills (Horne, Muradoglu, & Cimpian, 2019).
A recent study (Ruggeri, Xu, & Lombrozo, in press) sug-
gested that the quality of explanations might matter after all.
In their study, 4- to 7-year-olds were asked to explain phe-
nomena in a domain before playing Twenty Questions in that

domain; the accuracy of explanations was correlated with the
efficiency of question-asking. Since reasonable explanations
may be more difficult to generate in our study than in past
studies (Walker et al., 2014, 2017), it might limit the benefit
children can reap from self-explaining. Regarding the second
question, it might be that when asked to reflect on (i.e., ex-
plaining or reporting) their intervention choices, children be-
came aware that their interventions played an important role
for solving puzzles later and therefore paid closer attention to
the intervention outcomes when making causal inferences.

Future directions
Given the importance of intervention selection in causal
learning, we seek to explore more effective scaffolding meth-
ods in the future. To begin, we can provide feedback after
each intervention. A recent study (Liquin & Lombrozo, 2017)
found that explaining had greater effects when evidence con-
tradicted what learners’ beliefs. Another way to strengthen
the scaffolding may be asking children to explain why each
possible intervention may or may not be useful, rather than
just their chosen intervention. Since belief updating is inher-
ently linked to intervention selection (Coenen & Gureckis,
2015), we may help children choose more informative inter-
ventions by correcting errors in their belief updating process.

Conclusion
Rather than passively absorbing correlations and crunching
numbers, active learners generate explanations and design
interventions to learn about causality. Our study is among
the first to bridge “thinking” and “doing” in causal learn-
ing. While self-explaining did not show benefits of improving
children’s intervention strategy, prompting children to think
about their intervention choices in some way (explaining or
reporting) may help them better utilize interventional data
generated by themselves to infer unknown causal structures.
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Abstract

An agent decides against her preferences, if she considers
an option x better than another option y but neverthe-
less decides to do y. A central tenet of rational choi-
ce theory states that individuals do not decide against
their preferences, whereby we find two kinds of potential
counterexamples in the literature: akrasia, also known as
weak-willed decisions, and decisions based on so-called
deontic constraints such as obligations or commitments.
While there is some empirical evidence that weak-willed
choices are a real phenomenon, leading scholars in phi-
losophy of economics debate whether choices based on
commitments can be counter-preferential. As far as we
know, however, nobody so far has tried to settle this de-
bate empirically. This paper contributes to both debates
since we present some empirical evidence that (i) akrasia
can also be strong-willed and (ii) choices made on the ba-
sis of commitments can indeed be counter-preferential.
We will conclude that people can decide against their
preferences without being unreasonable.
Keywords: Counter-Preferential Choice; Rational
Choice Theory; Akrasia; Commitments; Empirical Stu-
dies.

The Putative Irrationality of
Deciding against Preferences

A fundamental assumption of most theories of rational
choice is that an agent always chooses the option she con-
siders best.1 Violating this assumption is deemed irratio-
nal (Hausman 2012a). This basic tenet applies to both
maximizing and optimizing concepts of rational choice,
e.g., if one is a maximizer, one chooses the option that
one believes maximizes one’s utility. The option that is
considered best (or at least not worse than any other) is
the one the agent prefers.

What does it mean to prefer an option? Savage (1954)
takes the notion of preference “in an ordinary mathema-
tical usage by saying that the relation is a simple orde-
ring among acts” (Savage 1954, p. 18). In contrast, phi-
losophers often understand preferences as mental states,
e.g., Hausman states “to say that Jill prefers x to y is to
say that when Jill has thought about everything she ta-
kes to bear on how much she values x and y, Jill ranks x
above y” (Hausman 2012b, p. 34). Of course, Hausman’s
1 Some advocates of satisficing concepts of rational choice

would disagree. If one is a satisficer, one settles for any
alternative one considers satisfactory (Simon 1953; Slote
2004).

notion of preference as total subjective comparative eva-
luation is controversial. Angner (2018), for instance, ar-
gues that economists neither do use nor should use such
a conception of preference. However, note that Angner
himself accepts that Hausman develops a useful model
of preferences. For the purposes of our paper, Hausman’s
conception is specifically effective because it illustrates
why choosing a worse option doesn’t seem to make sen-
se. According to such an understanding, an agent follows
her preference ordering because she will then do what she
values the most, or in other words, what she believes is
best for her.

Saying that the agent chooses what she prefers to do
is not to say that the agent chooses what is always best
for her. In cases of uncertainty, an agent might choose
an option that does not maximize her utility since un-
expected states of the world might materialize. Agents
might also base their preference ranking on false beliefs.2
They might be mistaken about their preferences, or are
simply not able to form a preference ordering (Messer-
li & Reuter 2017). It seems also false to postulate that
agents always take into account all the available informa-
tion like utilities and probabilities of options (Kahneman
& Tversky 2000). Some of these aspects have been used
to criticize models of rational choice theory. Nonetheless,
these points of criticism do not apply to the fundamental
tenet that agents choose what they consider best.

So, are advocates of rational choice theory right that
counter-preferential choices do not exist? Or do agents
sometimes choose options they consider worse than ano-
ther, and hence violate this basic assumption of rational
choice theory?3

2 Paul (2014), for instance, argues that agents who con-
template so-called transformative choices cannot form
reasonable beliefs about the content of their experiences,
and, thus, cannot make a rational choice. For a critical
reply, see, e.g., Reuter & Messerli (2018).

3 One might object that the assumption that agents choo-
se what they consider best cannot be falsified. Revealed
preference theorists, for example, assume that decisions
reflect preferences. Consequently, there is no conceptual
gap between a person’s preferences and the actions she
decides to perform. However, on most philosophers’ in-
terpretation, expected utility represents the strength of
an agent’s preference for the outcome, where preferences
are understood as psychological states. Given this inter-
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As far as we know, there are at least two kinds of
potential counterexamples challenging this assumption.
First, decisions can be deontically constrained, a tech-
nical term used to refer to constraints that arise when
morality requires us to act in ways that are contrary
to self-interest (see, e.g., Heath 2008). Put differently, a
deontic constraint can be understood as a form of du-
ty or rule that makes people refrain from the pursuit of
individual advantage. That may sound fairly abstract,
but we all are familiar with situations in which we act
because we have given a promise, not because we ac-
tually prefer to act that way. We will come back to this
issue in the General Discussion when discussing whether
commitments can be counter-preferential.

Second, weak-willed decisions (or akratic decisions)
are also potential counterexamples violating the assump-
tion that agents choose what they consider best. To il-
lustrate akratic decisions, take the case of Lewd Larry:
Larry believes that staying in his room and staying faith-
ful to his girlfriend is better than having an affair with
his flatmate Jackie, but then finds himself trying to se-
duce her. Davidson (1970) defines weak-willed actions as
follows:4 In doing y an agent acts weak-willed if and only
if: (i) the agent does y intentionally; (ii) the agent belie-
ves there is an alternative action x open to him; (iii) the
agent judges that, all-things considered, it would be bet-
ter to do x than to do y. Lewd Larry seems to fulfill all
the requirements for being weak-willed. Weak-willed de-
cisions not only seem to violate a fundamental assumpti-
on of rational choice theory, the intuitive plausibility of
Lewd Larry demonstrates that weak-willed actions are
real. However, most scholars at least agree with advo-
cates of rational choice theory that such a decision is
irrational: he should not have decided to seduce Jackie,
given his belief it is not his best option.

In the rest of this paper, we do three things: First, we
describe a case illustrating a violation of the aforemen-
tioned fundamental assumption of rational choice theory,
which is not (at least not intuitively) an akratic decision,
and, we present a first experiment showing that these ca-
ses are real. Second, we discuss an objection against our
study and results, and we counter this objection using
a second study. Third, taking ideas from Amartya Sen,
we argue that we have good reasons to believe that such
decisions are reasonable choices. In other words, such
choices can be understood as acting out of commitment,
whereby the commitment is counter-preferential.

pretation of rational choice theory, the assumption that
agents actually choose options they consider worse than
another is empirically testable.

4 For discussions on the concept of akrasia as well as cri-
ticisms on Davidson’s definition, see, e.g., Mele (1991),
Holton (1999), and May & Holton (2012).

Experimental Study 1
Examples in which an agent decides against her prefe-
rences almost always seem to have the following pattern.
The agent values x more than y, and hence prefers x to
y, but “lower” desires triggered by lust or sloth, move the
agent to do y. It need not be the case, however, that an
agent decides against her preferences only if she is weak-
willed. An agent might value x more than y, and hence
prefers x to y, but is moved by his “higher” commitments
or obligations to do y. To illustrate such a case, take the
following example. Today, a colleague of yours has asked
you whether you would help him move some furniture,
and you agreed to be at his place the next morning. The
next morning, however, friends of yours ask you whether
you would like to join them for a beautiful day at the
lake. It seems at least possible that in such a situati-
on, you value going to the lake more than helping your
colleague move furniture. Nonetheless, you decide to be
at your colleague’s place and help him move furniture.
Note that similar to typical weak-willed decisions, you
might loathe the fact that you have acted contrary to
what you considered the best option. While such acti-
ons satisfy Davidson’s definition of being weak-willed, it
seems highly odd to call them weak-willed.5
The decision we described above violates the basic te-

net of rational choice theory just as much as weak-willed
decisions. The agent does not maximize her utility by
choosing an option she considers worse than an availa-
ble alternative. But are these decisions actually real? Or
are they mere figments of philosophers’ imaginations?
The following experiment strongly suggests that these
decisions are part of many people’s reality.

Methods
120 participants were recruited on Amazon Mechanical
Turk and paid a small fee for their participation. 5 parti-
cipants were excluded for not having completed the sur-
vey. The remaining 115 participants (51 women, Mage

= 39.09, SD = 15.69) all indicated that they were native
English speakers. All participants were randomly assi-
gned to one of three conditions, two test conditions (Ac-
quaintance, Colleague) and one control condition. The
5 Davidson discusses similar, so-called incontinent cases,

in which a person follows a duty or principle when doing
y intentionally (e.g., getting up and brushing her teeth),
although all-things considered, she judges x to be better
than y, e.g., it is more pleasurable to stay in bed. Howe-
ver, there is an important difference between our cases
and Davidson’s incontinent cases. In Davidson’s examp-
les, the agent does not believe she has very good reasons
to follow a certain duty or principle, e.g., the agent re-
asons that her teeth are very strong anyway. In our ex-
amples, the agent is likely to believe that she has good
reasons to keep a promise. In other words, the agent be-
lieves that helping a colleague move is the right thing to
do. This contrast explains why Davidson believes that in
incontinent cases an agent cannot understand herself and
that she recognizes something absurd in her intentional
behavior, while this would not be true in our case.
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vignettes of the two test conditions read as follows:

Test condition Imagine that an acquaintance (a col-
league) of yours asks you whether you would help him
move some furniture and household appliances into his
new apartment. You agree to be at his place at 10am
the next day. The next morning, it is a beautiful warm
summer day. At 8am you get a call from friends who ask
you whether you would like to join them for a nice day
at a lake. All things considered and independent of how
you decide in the end, how do you value each of the two
options:

• Spending the day at the lake and tell my acquaintance
(colleague) that I cannot come.

• Moving furniture and household appliances and tell my
friends that I cannot join them.6

The vignette for the control condition read:

Control condition Imagine that you plan your year-
ly holidays. On the one hand, you could go to the sea-
side and spend a week relaxing at the beach. On the
other hand, you could book a trip to a city you have not
seen before and experience some cultural highlights. All
things considered and independent of how you decide in
the end, how do you value each of the two options:

• Spending the holidays on the beach and not going to a city.

• Spending the holidays in a city and not going to the beach.

After the participants rated both options, they were
then directed to the second question reading:

Decision Question You have just valued each of the
two options. But how do you decide in the end? Please
tell us what you will do:

For the two test conditions, the participants were pre-
sented with two options: (1) I choose to go to the lake
and tell my acquaintance (colleague) I cannot come. (2)
I choose to move furniture and household appliances and

6 Both options were presented in randomized order and
participants were asked to rate the value of each option
on an 11-point Likert scale anchored at 0 meaning “Not
at all valuable” and 10 meaning “Extremely valuable”.
Which concept of utility is relevant here? Importantly,
we do not understand utility as a more precise ranking
than an ordinal one (e.g. cardinal measure or ratio scale).
The strength of a value judgement can be understood
in purely ordinal terms, respectively, the experiment is
perfectly consistent with an ordinal interpretation. If a
participant evaluates two options within this scale, e.g.
a = 9 and b = 3, this simply means that he or she ranks
a above b. In other words, the only information these
numbers provide is that an agent prefers a to b without
saying how much he or she values a more than b.

Figure 1 Responses in % to the two test conditions and the control
condition. Dark grey depicts the percentage of participants who
would decide in line with their preferences. Light grey represents the
percentage of participants who would decide against their preferences.
A few participants (medium grey) indicated an equal preference for
both options.

tell my friends I cannot join them. In the control condi-
tion, the options were: (1) I choose to go to the seaside
and spend a week relaxing at the beach. (2) I choose
to go to a city and experience some cultural highlights.
Participants had to choose which decision they would
take.

Results

The results of people’s responses are summarized in Fi-
gure 1 above. In both the Acquaintance as well as the
Colleague condition, around 31% of the participants who
decided in favor of helping to move furniture, considered
going to the lake more valuable. The response profiles
were significantly different between the test condition
Acquaintance and control, χ2 = 8.70,p = 0.013, as well
as Colleague and control, χ2 = 8.64,p= 0.013.

Discussion

The results indicate that a substantial portion of the
participants would decide in favor of a less valuable op-
tion when they consider the scenario we presented them
with. Simply put, the results suggest that there are situa-
tions in which many people will decide against their own
preferences. The study was not designed to investigate
which percentage of people are likely to make a decision
against their preferences. Obviously, the scenarios were
quite specific and for many the situation did not even
present them with a “difficult” choice. Thus, it is likely
that for many more people than just the recorded 31%,
there exist choices in which option x is preferred but they
still decide in favor of option y. Of course, for most de-
cisions, people’s choices will nicely align with their pre-
ferences. In fact, the control condition was specifically
designed as a base rate for decisions in which preferences
are the sole determiner of the decision in question. The
significant differences between the test condition and the
control demonstrates, however, that not all decisions are
like that. Other factors may determine which option we
are going to choose.

Before we discuss a possible explanation for the recor-
ded data, let us first address the most obvious objection
against our study. In order to counter this objection, we
then briefly present the results of a second study.
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Objection
The experiment reveals a potential decision against one’s
preferences, only if people gave all-things-considered va-
lue ratings when considering their options. It is indeed
possible that some people merely considered the positive
value of spending a day on the lake without considering
the negative value of telling one’s acquaintance or col-
league that one is not available for moving after all. If
that were the case, then it would not surprise to see de-
cisions made against one’s rated preferences.

We do not believe, however, that this is a likely possi-
bility. When we asked the participants to rate the value
of the options, we specifically named the positive as well
as the negative aspect of the choice, e.g., one of the op-
tions read: “Spending the day at the lake and tell my
colleague that I cannot come.” Moreover, the number of
participants who would decide against their own value
judgements might even be greater, because some par-
ticipants might have self-censored themselves so as to
appear to be consistent when making a decision.

However, one might insist on the ambiguity of the term
“value”, respectively, that we and the participants do not
refer to the same concept here. It is our understanding
that the concept of value can be understood in terms
of the agent’s ends and desires. “I judge that a is mo-
re valuable than b” means that I believe that a is more
valuable than b in terms of my ends and desires.7 Now
the objection that arises is that participants must have
some different concept of value in mind, because there is
not only the end of enjoying a great day at the lake but
also the end of helping other people, which is obviously
more important to them. If the objection stands, parti-
cipants do in fact decide in line with their values and do
not decide counter-preferentially. 8

The objection we raised should be taken seriously. We
7 In accordance with rational choice theory, we do not ma-

ke any proposal concerning the content of these ends.
This means that we recognize no distinction between
goals such as making a million dollar, helping other peo-
ple and being a sadist. Also note that there are no impli-
cations regarding risk-taking. The value judgement that
a is more valuable than b might be risk-neutral such as
in standard approaches or risk-averse such as in prospect
theory.

8 One way of testing the objection would be to further spe-
cify the alternatives, e.g., instead of stating one of the
options as “Spending the day at the lake and tell my
colleague that I cannot come,” we could state “Spending
the day at the lake and break my promise to my col-
league”. The reason why we opted for a different way
to tackle the objection is that “breaking a promise” or
“breaking a commitment” (we will come back to the ro-
le of commitments in the General Discussion) is a very
negative trigger. The wording “tell my colleague that I
cannot come” is relatively neutral in this regard. Howe-
ver, we agree that the empirical evidence for decisions
against preferences would be even greater if the negative
aspects of a decision would be highlighted even further.
In a follow-up study, we plan not only to investigate a
larger variety of experimental stimuli but also the impact
of the exact wording on the empirical effect.

have, therefore, conducted a second experiment where
we first explained to participants which concept of value
is involved. We will see that our results are robust, even
if we change the experimental setting in this way.

Experimental Study 2
In order to address the objection stated above, we de-
cided to rerun both test conditions (Acquaintance, Col-
league) to see whether the results would change or re-
main robust. If the objection is correct, then we should
see a substantial drop in the percentages of people who
indicate decisions that go against their preferences.

Methods
100 participants were recruited on Amazon Mechanical
Turk and paid a small fee for their participation. 2 par-
ticipants were excluded for not having completed the
survey. The remaining 98 participants (48 women, Mage

= 36.92, SD = 12.38) all indicated that they were native
English speakers. All participants were randomly assi-
gned to one of two conditions (Acquaintance, Colleague).
The vignettes of the two conditions were exactly the sa-
me as the vignettes of the test conditions in Experiment
1 with one exception: after participants had given their
consent to this study, they were informed about the task
ahead in the following manner.

Instructions On the next screen we will ask you to
value certain events. Before you do so, please consider
the following example: Imagine you have to value a one
week trip to Europe. On the positive side there might be
aspects like relaxing, eating new and exciting food, being
able to tell your friends of an amazing trip when you are
back, etc. On the negative side there might be aspects
like being jetlagged, longing for your loved ones at home,
missing an important meeting at work, etc. Thus, if you
value an option or an event, you take into account all its
positive and negative aspects and then make an overall
judgement.

After these instructions, participants rated both op-
tions (see Experiment 1 above), and then answered the
decision question (see also Experiment 1 above).

Results
In the Acquaintance condition, 36.6% of the participants
who decided in favor of helping to move furniture consi-
dered going to the lake more valuable. In the Colleague
condition, 26.3% of the participants who decided in fa-
vor of helping to move furniture considered going to the
lake more valuable. The results of people’s responses are
summarized in Figure 2 below.

Discussion
The data we received in Experiment 2 are highly similar
to those we collected in Experiment 1. While the percen-
tage of people who decided against their preference in the
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Figure 2 Responses in % to the two conditions. Dark grey depicts
the percentage of participants who would decide in line with their
preferences. Light grey represents the percentage of participants who
would decide against their preferences. A few participants (medium
grey) indicated an equal preference for both options.

Acquaintance condition rose from 31.4% to 36.6%, the
percentages in the Colleague condition decreased from
31.3% to 26.3%. Thus, overall the results of Experiment
1 were very robust. It seems therefore very likely, that
the participants in Experiment 1 entertained a notion of
value not only similar to the one in Experiment 2, but
also of the right kind.

General Discussion
The studies suggest that people often make decisions
in favor of options they consider less valuable.9 If our
results are correct, there are crucial implications for
both the discussion on akrasia and the debate on ratio-
nal choice, respectively, the connection between rational
choice and deontic constraints.
First, let us briefly mention the implication for akrasia.

Importantly, some philosophers mention that akrasia can
also be strong-willed (e.g., see Holton 1999; Yao 2017).
However, as far as we know, (i) nobody thus far has in-
terpreted such cases as actions out of commitment, (ii)
there is currently no empirical evidence for such cases,
and, (iii) other cases of strong-willed akrasia are rela-
ted to violations of resolutions and preference change. In
contrast, our example illustrates a case in which no such
additional machinery is necessary.

Second, our results are crucial for rational choice and
the debate on commitments. Most rational choice theo-
rists are likely to consider counter-preferential decisions
as unreasonable or irrational, similar to typical weak-
willed decisions. However, while people in weak-willed
decisions usually act out of lower desires, we have des-

9 One might object that there is a gap between the parti-
cipants rated preferences and their real decisions or real
behavior. Put differently, participants are not actually
making a decision but provide inconsequential respon-
ses after reading abstract descriptions of some options.
However, while some studies have shown an inconsisten-
cy between people’s rated preferences and real behavi-
or, a variety of empirical studies have also shown high
consistency between people’s ratings and their behavior.
Importantly, we are not aware of any empirical or theo-
retical arguments why people systematically deviate in
our respective context.

cribed a case in which people seem to be rather strong-
willed when acting against their most valued option.
Does this difference allow us to frame such decisions
as reasonable? This largely depends on what ultimately
motivates people to decide against preferences in strong-
willed decisions. A possible explanation of such decisions
takes into account the importance of commitments. Af-
ter all, many people are likely to decide to help their
acquaintance or colleague move furniture because they
have committed themselves to do so, not because they
like moving furniture. However, shouldn’t these commit-
ments be reflected in peoples’ evaluations of the two al-
ternatives? According to Sen (1977) this need not be the
case.

Sen distinguishes three kinds of motivations: narrow
self-interest, sympathy, and commitment. Both, narrow
self-interest as well as sympathy, directly affect a per-
son’s own welfare and should be reflected in people’s va-
lue judgements. In contrast, Sen (1977, p. 326) characte-
rizes commitments as altruistic attitudes towards others.
Accordingly, a person who acts out of commitment choo-
ses an option that she considers the right thing to do,
even if that option is less preferable than an alternative.
Sen admits that within the framework of rational choice
theory, there is no place for a notion like commitment
because it does not lead to any difference in terms of
one’s expected advantage.10 Speaking purely in terms of
rational choice theory, decisions against preferences, are
therefore irrational. That said, Sen’s theoretical work on
commitments has caused a lot of attention, because it
seems that people who act out of commitment, are irra-
tional only in the skewed notion of rational choice theory.
At least, intuitively, it seems that people who act against
their preferences but in favor of an option they consider
the right thing to do, are reasonable agents.

Given the importance of Sen’s contribution, some phi-
losophers have started to question Sen’s depiction of
commitments as factors that may have a motivating
force beyond expected advantage. Contra Sen, Haus-
man (2007) agues that we need to distinguish among
the variety of factors responsible for agents’ preferences,
rather than distinguish between preferences and com-
mitments. According to his view, commitments are not
counter-preferential but rather influence all-things con-
sidered judgements. Thus, while Sen believes commit-
ments can directly determine our choices, Hausman ar-
gues that they do so only via preferences. As far as we
know, the role of commitments in the decision making
process has not yet been empirically investigated.11 And

10 It is important to keep in mind here that Sen distin-
guishes different notions of preferences. The two most
important ones are (i) preference as (revealed) choice
ranking and (ii) preference as expected advantage ran-
king.

11 Note that we do not claim that there’s no empirical re-
search on commitments. See, e.g., Székely & Michael
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therefore, we do not yet know whether Sen or Hausman
are right. However, our experiment may provide a first
step to settle this debate. According to our results, it
seems that commitments may sometimes influence our
choices directly and not via preferences. At a minimum,
opponents of Sen would need to explain why some peo-
ple decide to move furniture, even if the other option is
considered better, all-things-considered.

Before we conclude, let us briefly mention one other
account that could be drawn upon to explain our data.
Heath (2008) argues that theories of rational choice can
be modified in order to incorporate rule following be-
havior. His model distinguishes between one’s desire for
an outcome (its expected utility) and how appropriate
the outcome is (the normative appropriateness of that
outcome). The basic idea is that an agent’s utility func-
tion combines two things: Getting the best outcome and
doing the right thing. According to Heath’s approach,
participants would distinguish two stages. First, they
would rank permissible actions as more or less appro-
priate. Second, they would add these values to the ex-
pected utilities. It would take more experiments to find
out whether participants indeed proceed in the way sug-
gested by Heath. In any case, Sen’s account provides a
straightforward explanation of our data.

Conclusion
In closing, let us summarize what we have done. Adhe-
rents of rational choice theory assume that agents choo-
se the option they consider best. In this paper, we ha-
ve discussed a case that violates this basic assumption.
Crucially, we have not merely relied on our own intui-
tions of whether such a case is real, but conducted two
studies, the results of which strongly suggest that ma-
ny people make decisions against their preferences. Some
might argue that this case is just one out of many sho-
wing rational choice theory to be mistaken. In particular,
weak-willed decisions have been largely accepted to be
real-world cases in which agents act contrary to their
best judgements. However, weak-willed decisions can be
distinguished from our case study in two important re-
spects: First, while in weak-willed decisions, people act
out of their lower desires, our case shows that people can
decide against their preferences by being strong-willed.
Second, at least according to Sen’s account, there are
good reasons to believe, agents may act against their pre-
ferences but at the same time make a reasonable choice.
Our results provide evidence that Sen is right, respec-
tively, that commitments can be counter-preferential.
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Abstract 

Adaptive learning systems that generate spacing intervals       
based on learner performance enhance learning efficiency and        
retention (Mettler, Massey & Kellman, 2016). Recent       
research in factual learning suggests that initial blocks of         
passive trials, where learners observe correct answers without        
overtly responding, produce greater learning than passive or        
active trials alone (Mettler, Massey, Burke, Garrigan &        
Kellman, 2018). Here we tested whether this passive + active          
advantage generalizes beyond factual learning to perceptual       
learning. Participants studied and classified images of       
butterfly genera using either: 1) Passive Only presentations,        
2) Passive Initial Blocks followed by active, adaptive        
scheduling, 3) Passive Initial Category Exemplar followed by        
active, adaptive scheduling, or 4) Active Only learning. We         
found an advantage for combinations of active and passive         
presentations over Passive Only or Active Only presentations.        
Passive trials presented in initial blocks showed the best         
performance, paralleling earlier findings in factual learning.       
Combining active and passive learning produces greater       
learning gains than either alone, and these effects occur for          
diverse forms of learning, including perceptual learning. 

Keywords: adaptive learning; perceptual learning; spacing      
effect; memory; active learning; passive learning 
 

Introduction 
The well-known spacing effect is a boost in long-term         
retention that results when recurrent learning episodes are        
spaced across gaps in time (Carpenter, 2017; Cepeda,        
Pashler, Vul, Wixted & Rohrer, 2006; Delaney, Verkoeijen        
& Spirgel, 2010). Spacing effects apply to a wide variety of           
learning domains and learners, and also influence diverse        
learning modes such as perceptual learning (Mettler &        
Kellman, 2014).  

Recent research has shown that spacing effects can be         
enhanced by dynamically adjusting the size of spacing        
intervals during a learning session using an adaptive        
algorithm, Adaptive Response-Time-based Scheduling    
(ARTS; Mettler, Massey & Kellman, 2011; Mettler, Massey        
& Kellman, 2016). In ARTS, spacing delays are updated to          
match changes in learning strength as learning progresses        
for individual learners and items. Learning strength can be         

reliably estimated from response time (RT), with slower        
response times indicating retrieval difficulty and      
correspondingly lower learning strengths (Pyc & Rawson,       
2009; Benjamin & Bjork, 1996; Karpicke & Bauernschmidt,        
2011). ARTS updates the spacing among items in real time,          
by tracking the underlying learning strengths using an        
individual’s accuracy and RT for learning items or for         
categories, producing highly efficient learning (Mettler,      
Massey & Kellman, 2011, 2016). In perceptual learning        
and other category learning domains, the same adaptive        
learning approach is applied to categories, such that learning         
strength for each category influences the priority of a         
learning trial involving a new exemplar of that category.         
Such adaptive spacing, and the interleaving of exemplars of         
different categories, also produces strong learning benefits       
relative to other arrangements (Mettler & Kellman, 2014).  

Achieving the benefits of adaptive spacing requires       
interactive learning trials from which performance data are        
obtained. Recent work, however, suggests that the benefits        
of adaptive spacing may be further enhanced by combining         
active trials with passive presentations during learning. In a         
study investigating the learning of geography facts, Mettler,        
Massey, Burke, Garrigan & Kellman (2018) compared       
delayed retention rates following passive learning, active       
learning, and combinations of passive and active learning.        
Combinations of passive and active learning resulted in        
better performance than active learning alone. Passive       
presentations alone fared worst. In addition, the specific        
manner of combining passive and active modes mattered:        
learning which began with multiple blocks of passive trials         
followed by active, adaptive learning resulted in the best         
performance.  

In the current study, we investigated whether the same         
learning advantages for passive combined with active       
learning might exist for perceptual learning (PL), which        
presumably rests on different mechanisms (changes in       
information selection and encoding vs. explicit storage of        
memory items). For factual information, spacing was       
manipulated among individual factual items. Here spacing       
was manipulated among categories of perceptual stimuli,       
but with each re-presentation of a category, a new exemplar          
was shown. Some earlier work suggested that combining        
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passive and active modes might benefit PL (Thai, Krasne &          
Kellman, 2015); however, no work has explored different        
modes of combining active and passive trials. 

Why might including some passive learning trials among        
active learning trials result in better PL than active trials          
alone? One benefit of passive trials may be to prevent the           
negative cognitive and motivational consequences of asking       
learners to generate answers in initial interactive learning        
trials - similar to the hypothesized benefits of initial passive          
trials in factual learning. Specific to PL, passive trials might          
focus attention on some characteristics of categories, and        
active trials might complement this learning by targeting        
other characteristics. For example, Carvalho & Goldstone       
(2015) suggested that passive trials can increase attention to         
commonalities between members of the same category       
when certain between-category and within-category     
similarity relations hold, but that active trials provide greater         
benefits to learning when the inverse similarity relations        
hold. Combining passive and active trials could be a         
strategy then to increase overall learning due to the         
complementary strengths of active and passive presentations       
in the learning of categories that possess a variety of internal           
structures. In the current study, we systematically compared        
learning schedules that included passive and active trials        
alone, and two different combinations of passive and active         
trials. We analyzed subsequent retention of perceptual       
classification after a delay, and we examined whether        
passive and active training was affected by internal category         
structures such as between and within-category similarity. 

We compared four conditions: a) Passive Only       
presentations of learning items, b) Passive Initial Blocks        
followed by active, adaptive scheduling, c) Passive Initial        
Category Exemplar followed by active, adaptive scheduling       
for each category introduced, and d) Active Only learning         
with no passive presentations. We hypothesized that       
introductory presentations of passive trials, followed by       
active learning would fare the best, however, the effect of          
passive learning might be better if passive trials were         
limited to single presentations rather than blocks. 

Method 
Participants One hundred twenty undergraduate     
psychology students participated to partially fulfill course       
requirements. 
 
Materials 12 categories (genera) of butterflies (lepidoptera)       
were used, where each genus contained images of 9         
exemplars. On each learning trial, an image of one category          
exemplar was presented on the left side of the screen. In           
Active trials, the 12 possible category name responses were         
shown in a two-column list organized alphabetically on the         
right side of the screen. In Passive trials, only the correct           
category label was shown and the alternate category names         
were omitted. 
 
 

 
Figure 1: Images of 2 butterfly genera with 3 exemplars          
from each genus.  Danaus (top) and Neptis (bottom). 
 
Design A 4x3x2x2 mixed factorial design was used. There         
were four between-subject passive/active conditions     
(Passive Only, Passive Initial Block, Passive Initial       
Category Exemplar, and Active Only). A pretest/posttest       
design consisted of three test phases (Pretest, Immediate        
posttest, and 1 week delayed posttest). In addition there was          
a within-subject factor of Familiarity (Familiar vs       
Unfamiliar); that is, at each test, each category was tested          
twice with both new and previously seen exemplars. Finally,         
there was a between-subject factor of Assessment List, such         
that the familiar and unfamiliar exemplars for each category         
were randomly selected differently for each of the two lists. 
 
Procedure Participants completed two sessions separated      
by one week. The initial session consisted of a pretest,          
training phase and immediate posttest. The second session        
consisted of a delayed posttest only. In all tests and          
training, participants were shown a genus exemplar and        
were asked to identify the matching genus name from a list           
of all 12 category names. No feedback was provided. Tests          
consisted of two presentations of each genus: one        
presentation was a ‘familiar’ exemplar shown during       
training, and the other exemplar was an ‘unfamiliar’        
exemplar withheld from training. There were two       
assessment lists and each participant was randomly assigned        
one of the versions. Each participant saw the same test          
version, and thus the same familiar and unfamiliar        
exemplars for each category, across pre, post and delayed         
tests. 

In the Passive Only condition, butterflies were presented in          
12 blocks of 12 passive trials. Each category appeared once          
per block, in random order, and a random exemplar from the           
category was chosen for each presentation. In the Passive         
Initial Blocks condition, participants first completed 2       
blocks of passive trials, with blocks having the same         
structure as the Passive Only condition, followed by        
adaptive scheduling. In the Passive Initial Category       
Exemplar condition, the first presentation of each category        
was a passive trial followed by a fixed spacing interval of           
two intervening trials, so that the correct response was not          
still in working memory. All trials in this condition that did           
not involve the first presentation of a category were         
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adaptively scheduled. In the Active Only condition, all trials         
were adaptively scheduled. 

The ARTS algorithm determined the adaptive scheduling        
for active trials. After every response, ARTS calculates a         
priority score for each learning item and compares scores         
across items to determine which item will be presented next.          
Equation 1 shows the priority score calculation.  

     Pi  = a( Ni  - D)[b(1 - αi ) Log(RTi  ⁄ r) + αi W] (1)  

Detailed description of the ARTS algorithm can be found          
in Mettler, Massey & Kellman (2011, 2016). ARTS        
parameters were the following: the enforced delay D was set          
to 2 trials, the incorrect penalty W was set to 20, parameters            
a, b, r were set to 0.1, 1.1, and 1.7 respectively, and the             
timeout was 30 seconds.  

Learning for each category continued until 5 out of the last            
6 presentations were correctly answered with all correct        
response times less than 7 seconds. Learning criteria,        
adopted from previous studies, included both speed and        
accuracy, where speedy responses also ensured that final        
presentations were widely spaced. 

Participants were assigned to Condition using a pretest         
balancing algorithm (similar to a procedure called       
Minimization; Pocock & Simon, 1975; Mettler et al., 2018).         
The condition balancing algorithm was constrained so that,        
across conditions, the largest difference in number of        
assigned participants never exceeded one. There were       
exactly 30 participants in each of the 4 conditions. 
 
 

 
 

Figure 2:  Learning Efficiency in Immediate and Delayed 
Posttest by Test Item Familiarity. (Violin plot shows mean, 

+/- 1 standard error of the mean, density estimate  
and individual data points). 

 

Dependent Measures and Data Analysis 
Because all adaptive conditions used learning to criterion,         

our primary measure was learning efficiency, defined as        
accuracy gain from pretest to posttest divided by the number          
of trials invested in learning. Efficiency gives a way of          
measuring learning that incorporates both variations in       
posttest performance, and variations in the number of        
learning trials required to reach the learning criteria. It may          
be thought of as a rate measure, indicating performance         
improvement per trial. The number of passive trials was         
determined based on pilot work to be roughly equal to the           
number of trials needed to reach mastery in active         
conditions. In the two conditions combining passive and        
active trials, all trials were included in trial and efficiency          
calculations.  

In addition to efficiency we measured change in accuracy          
and reaction time. All measures were assessed using        
standard parametric statistics, such as ANOVA. Because we        
sought to compare differences across learning conditions,       
we conducted planned comparisons between pairs of       
conditions. All statistical tests were two-tailed, with a 95%         
confidence level, all effect sizes d are Cohen’s d, and all           
error bars in graphs show +/- 1 standard error of the mean. 

 

Results 
 
Pretests A 4x2x2 ANOVA on Condition, Assessment List        
and Familiarity showed no significant main effect of        
Condition (F(3,112)=0.213, p=.887, ηp2=.006), Assessment     
List (F(1,112)=0.457, p=.500, ηp2=.004) or Familiarity      
(F(1,112)=2.395, p=.125, ηp2=.021). 
  
Efficiency Efficiency, defined as posttest accuracy gain       
from pretest divided by learning trials to criterion, is shown          
in Figure 2 for each of the posttests, the 4 learning           
conditions and for familiar vs. unfamiliar test items. The         
Passive Initial Blocks condition appeared to have higher        
efficiency at immediate posttest and highest numerical       
efficiency at delayed posttest. A 4x2x2x2 mixed factorial        
ANOVA on Passive/Active Scheduling Condition, Test      
Phase (Immediate vs. Delayed Posttest), Item Familiarity       
(Test exemplar seen vs. withheld in training) and        
Assessment List (1 vs 2) showed a significant main effect of           
Condition (F(3,112)=2.921, p=.037, ηp2=.073) a significant      
main effect of Test Phase (F(1,112)=277.127, p<.001,       
ηp2=.712), a significant main effect of Familiarity       
(F(1,112)=17.832, p<.001, ηp2=.137), and no significant      
main effect of Assessment List (F(1,112)=0.018, p=.893,       
ηp2<.001). Interactions were not significant (ps>.127) but       
there was a marginally significant interaction between       
Condition and Phase (F(3,112)=2.197, p=.092, ηp2=.056)      
and Assessment List and Familiarity (F(1,112)=3.391,      
p=.068, ηp2=.029). 

The marginally significant interaction between Condition      
and Test appears to be driven by the clear superiority of           
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Passive Initial Blocks at immediate test that is less         
pronounced at delayed test. Paired comparisons revealed       
significant differences between conditions at immediate test       
(Passive Only vs. Passive Initial Block, t(58)=3.12, p=.003,        
d=0.84; Passive Initial Blocks vs. Active Only , t(58)=2.53,         
p=.014, d=0.65), and a marginally significant difference       
between Passive Initial Blocks vs. Passive Initial Category        
(t(58)=1.868, p=.067, d=0.48). Other comparisons did not       
reach significance (ps >.51). Paired comparisons at delayed        
posttest showed significant differences between Passive      
Initial Blocks and Active Only (t(58)=2.514, p=.015,       
d=0.65). There was a marginally significant difference       
between Passive Initial Category and Active Only       
(t(58)=1.74, p=.088, d=0.45). The remaining comparisons      
did not reach significance (ps > .105). Between immediate         
and delayed posttests, all pairwise comparisons were       
significant (p<.05) except for between Active Only at        
immediate test and Passive Initial Blocks at delayed posttest         
(t(58)=1.47, p=.147, d=0.38). 

 
Trials in training Mean trials to reach learning criteria or          
the end of the session are shown in Figure 3. A 3x2 mixed             
factorial ANOVA was conducted on Condition and       
Assessment List. The Passive Only condition was removed        
from the ANOVA and paired comparisons due to its fixed          
(preset) number of trials. There was a significant effect of          
condition (F(2,84)=3.448, p=.036, ηp2=.076). Paired     
comparisons showed significant differences between     
Passive Initial Blocks and Passive Initial Category       
(t(58)=2.068, p=.043, d=0.554) and between Passive Initial       
Blocks and Active Only (t(58)=2.707, p=.009, d=0.732), but        
not between Passive Initial Category and Active Only        
(t(58)=0.623, p=.536, d=0.161). One sample t-tests were       
used to compare each Active condition against the Passive         
Only condition mean of 144 trials. There was a significant          
difference for Active Only (t(29)=2.69, p=.012) and a  
 

 
Figure 3: Trials in training session by 4 scheduling 

conditions. 
 

marginally significant difference for Passive Initial      
Category (t(29)=1.97, p=.057), but no significant difference       
for Passive Initial Blocks (t(29)=0.70, p=.49). 

Learning Analytics 
In order to explore the reasons why performance was         
highest for Passive Initial Blocks conditions and lower for         
Active Only, we explored trial-by-trial data during learning.        
In prior work with learning of factual items we determined          
that initial blocks of passive items significantly reduced the         
severity of certain deleterious trial sequences. Specifically,       
the incidence of errors followed by correct responses        
(dubbed 0,1 sequences) across conditions, and these       
sequences followed by another error (0,1,0 sequences), were        
reduced in conditions that included initial passive blocks,        
relative to the other active conditions.  

We examined 0,1 trial sequences during learning across         
the three adaptive scheduling conditions. First, the incidence        
of 0,1 sequences was highest in the Active Only condition          
and lowest in the Passive Initial Blocks condition, even         
when adjusting for the first few trials where there are          
necessarily errors in the Active Only condition due to initial          
guessing. The frequency of 0,1 instances across the three         
conditions and for groups of initial trials are shown in          
Figure 4. Trials 4+ are most instructive, showing that         
Passive Initial Blocks had the fewest occurrences of 0,1         
among the three conditions. A 3 way ANOVA run on          
Condition for Trials 4+, found a significant effect of         
condition (F(2,87)=5.23, p=.007, ηp2=.107) and paired      
comparisons showed significant differences between     
Passive Initial Blocks and Passive Initial Category       
(t(58)=2.52, p=.014, d=0.66), Passive Initial Blocks and       
Active Only (t(58)=3.15, p=.003, d=0.82), but not between        
Passive Initial Category and Active Only (t(58)=0.65,       
p=.519, d=0.17). 

We also examined accuracy following 0,1 sequences.       
Again, the first 3 trials were removed to equate conditions          
with respect to number of prior presentations. Figure 5  

 

 
Figure 4: Frequency of 0,1 sequences by condition and by 

trial in learning session. 
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Figure 5:  Success rate after 0,1 sequences, corrected for 
initial guessing (beginning at trial 3 for all conditions). 

 
shows accuracy following 0,1 sequences. A 3 way ANOVA         
on success rate after 0,1 sequences found a significant effect          
of Condition (F(2,87)=4.34, p=.016, ηp2=.091). Paired      
comparisons showed significant differences between     
Passive Initial Blocks and Passive Initial Category       
(t(58)=2.71, p=.009, d=0.7), Passive Initial Blocks and       
Active Only (t(58)=2.22, p=.030, d=0.57), but not between        
Passive Initial Category and Active Only (t(58)=0.62,       
p=.539, d=0.16). 

 
Within-category and between-category similarity    
relations Since prior research indicates the importance of        
within and between category similarity for benefits from        
passive or active trial scheduling, we examined passive        
only and active only learning efficiency as a function of          
between and within-category similarity. Similarity relations      
were determined by subject ratings of each category, first         
for between-category relations and then again, separately for        
within-category relations. All 12 categories were rated on a         
3 point similarity scale for between-category similarity with        
3 being highest and 1 lowest. Subject ratings were averaged          
for each category and categories were divided into 1 of 3           
between-category similarity groups based on the tertile of        
their averaged rating. The same procedure was repeated for         
within-category ratings. Thus, within and between-category      
similarities were estimated independently. Posttest     
efficiencies were compared for two scheduling conditions,       
Passive Only and Active Only, across the three levels of          
within and between-category similarity. 

Average efficiency differences, plotted separately for each       
within and between-category similarity group are shown in        
Figure 6. Two 2x2x3 ANOVAs were conducted, each with         
training schedule (Passive Only, Active Only), and Test        
phases (Immediate vs. Delayed posttest) as factors. One        
ANOVA also included within-category similarity as a       
factor, and the other also included between-category       
similarity as a factor. The ANOVA with within-category        
similarity as a factor showed no significant effect of         
Condition (F(1,176)=1.63, p=.204, ηp2=.009), a significant  

 
 

Figure 6:  Efficiency for between-category similarity 
groups (top) and within-category similarity groups (bottom) 
for low, medium and high similarity, by Passive Only and 
Active Only conditions at immediate and delayed posttests.  

 
effect of within-category similarity (F(1,176)=15.92,     
p<.001, ηp2=.083) and an effect of Test phase        
(F(1,176)=223.67, p<.001, ηp2=.56). There were two      
significant interactions, Condition with Similarity group      
(F(1,176)=3.92, p=.049, ηp2=.022) and Condition with Test       
phase (F(1,176)=6.04, p=.015, ηp2=.033).  

The most instructive interaction, Condition x Similarity       
group, indicated that similarity relations modulated the       
effect of Condition. Paired comparisons indicated that       
differences in efficiency varied more across levels of        
similarity in the Active condition than in the Passive         
condition. Specifically, the greater the within group       
similarity, the greater the efficiency in the Active Only         
condition. In the Active Only condition, there were        
significant differences in learning efficiency between low       
within similarity and high within similarity (t(238)=4.96,       
p<.001, d=0.64), between medium within similarity and low        
within similarity (t(238)=2.7, p=.007, d=0.35), and between       
high within similarity and medium within similarity       
(t(238)=2.13, p=.034, d=0.28). In the Passive Only       
condition, the difference between low within similarity and        
medium within similarity was significant (t(238)=2.226,      
p=.027, d=0.287) and the difference between low within        
similarity and high within similarity was significant       
(t(238)=2.388, p=.018, d=0.308), but the difference between       
medium within similarity and high within similarity was not         
significant (t(238)=0.136, p=.892, d=0.018). 

The ANOVA with between-category similarity included      
as a factor showed no significant effect of condition         
(F(1,176)=1.73, p=.190, ηp2=.01), a significant effect of       
between-category similarity (F(1,176)=12.34, p<.001,    
ηp2=0.066), and a significant effect of Test phase        
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(F(1,176)=236.08, p<.001, ηp2=0.573). There was one      
significant interaction, between Condition and Test phase       
(F(1,176)=6.38, p=.012, ηp2=.035), and a marginally      
significant interaction of Condition x Similarity group       
(F(1,176)=3.79, p=.053, ηp2=0.021). As with     
within-category relations, paired comparisons showed that      
between-category similarity modulated the effects of      
Condition. In the Active Only condition, there were        
significant differences in efficiency between high      
between-category similarity and low between-category     
similarity (t(238)=4.26, p<.001, d=0.55), between medium      
and low similarity (t(238)=2.36, p=.019, d=0.31), and a        
marginally significant difference between high similarity      
and medium similarity (t(238)=1.94, p=.054, d=0.25). In       
the Passive Only condition, there was one significant        
difference between the medium and low similarity       
conditions (t(238)=2.43, p=.016, d=0.31) and a marginally       
significant difference between high and low similarity       
conditions (t(238)=1.76, p=.080, d=0.23). 

Discussion 
The synergy of passive and active presentations in        

perceptual learning was remarkably similar to that found        
previously in factual learning (Mettler et al., 2018). In both          
studies the following conditions were compared: 1) passive        
presentations alone, 2) initial blocks of passive presentations        
followed by active, adaptive learning, 3) initial passive        
presentations for each category that unlocked later adaptive        
learning, or 4) active, adaptive learning alone with no         
passive presentations. In this experiment the learning       
consisted of perceptual learning across multiple categories       
(butterfly genera). We found an advantage for combining        
passive with active presentations such that initial passive        
presentations, especially when grouped into initial blocks of        
passive trials in which all learning categories were        
interleaved, resulted in the greatest efficiency of category        
classification at posttest. Learning persisted across time as        
measured by a 1-week delayed test. In addition, the benefits          
of passive and active combined schedules generalized to        
unfamiliar category exemplars that had not been shown        
during the learning phase. Unsurprisingly, combinations of       
passive and active presentations were better than passive        
presentations alone. More important, combinations of      
passive and active trials were much more effective than         
active, adaptive presentations alone: a few initial       
presentations (1 or 2 presentations for each category) was         
enough to generate learning gains beyond those found with         
purely active, adaptive schedules. Passive block and       
adaptive trial synergy was so strong that the Passive Initial          
Blocks condition at delayed test was not statistically        
different from the Active Only condition performance at        
immediate test. Further analysis of trial-by-trial learning       
data including sequences of correctness supported the idea        
that the benefits of a Passive Initial Blocks condition         
extended well into the active, adaptive learning component. 

In addition to these results, we investigated the effect of          
category similarity on passive + active synergies. The        
overall apparent lower performance in the Active Only        
condition compared to the Passive Only condition appears        
to hold only when similarity between categories is high or          
when within-category similarity is low. For lower levels of         
between-category similarity and for greater levels of       
within-category similarity, Active Only conditions fared      
better than passive presentations. These effects of category        
similarity are somewhat different than results by Carvalho        
& Goldstone (2015) who showed that passive presentations        
result in slightly worse performance when categories have        
relatively low within-category similarity. Unlike Carvalho      1

& Goldstone, we found that active presentations had the         
greatest benefit when between-category similarity was      
lowest and when within-category similarity was highest. By        
one interpretation, high similarity between categories      
implies greater difficulty of making category      
discriminations. Thus active presentations are best when       
categories are more discriminable from each other. A        
natural interpretation of the effects in adaptive category        
sequencing is that with low within-category similarity (and        
potentially with high between-category similarity)     
assessments of category learning strength gotten from each        
active trial by the adaptive algorithm are less reliable when          
category instances are more diverse, making learning less        
efficient. 

To conclude, we investigated the contribution of       
including passive presentations with interactive, adaptive      
learning. We found that combining passive with active        
presentations such that an initial passive phase (passive        
blocks) in which passive presentations were given for all         
learning categories resulted in the greatest retention       
performance at posttest. In perceptual learning, the effects        
of passive presentations appear to temper differences in        
category structure across variable within and      
between-category relations, and to enhance active, adaptive       
learning with fewer errors throughout the learning session. 

Adaptive learning frameworks that leverage learner      
performance data to arrange spacing and sequencing in        
learning substantially improve learning across diverse types       
of learning, including perceptual learning. These benefits       
are further enhanced by combining active responding with        
passive modes of learning at the start of learning. The          
present results may help lead to a theoretical understanding         
of the mechanisms that enable passive + active synergies         
across different types of learning, and they contribute to a          
practical understanding of how to optimize these effects in         
instructional technology. 

 

1 It should be noted that blocking in Carvalho and Goldstone 
referred to massing exemplars from the same category, whereas in 
our Passive Initial Blocks condition all of the passive trials were 
presented as a block, but we interleaved exemplars from every 
category consistently in all conditions. 

2356



Acknowledgements 
We gratefully acknowledge support for this work from the         
National Science Foundation under Grant No.      
DRL-1644916. Any opinions, findings, and conclusions or       
recommendations expressed in this material are those of the         
authors and do not necessarily reflect the views of the NSF.  
 

References  
Benjamin, A. S., & Bjork, R. A. (1996). Retrieval fluency as           

a metacognitive index. In L. Reder (Ed.), Implicit memory         
and metacognition (pp. 309–338). Hillsdale, NJ: Erlbaum. 

Carpenter, S. K. (2017). Spacing effects on learning and         
memory, in: J.T. Wixted (Ed.), Cognitive Psychology of        
Memory. Academic Press, Oxford. 

Carvalho, P. F., & Goldstone, R. L. (2015). The benefits of           
interleaved and blocked study: Different tasks benefit       
from different schedules of study. Psychonomic Bulletin       
& Review, 22, 281–288.  

Cepeda, N.J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer,           
D. (2006). Distributed practice in verbal recall tasks: A         
review and quantitative synthesis. Psychological Bulletin,      
132, 354–380. 

Delaney, P. F., Verkoeijen, P. P., & Spirgel, A. (2010).          
Spacing and testing effects: a deeply critical, lengthy, and         
at times discursive review of the literature. Psychology of         
Learning and Motivation, 53, 63–147. 

Karpicke, J. D., & Bauernschmidt, A. (2011). Spaced        
retrieval: Absolute spacing enhances learning regardless      
of relative spacing. Journal of Experimental Psychology:       
Learning, Memory, and Cognition, 37, 1250-1257.  

Mettler, E., & Kellman, P. J. (2014). Adaptive        
response-time-based category sequencing in perceptual     
learning. Vision Research, 99, 111–123.  

Mettler, E., Massey, C. M., Burke, T., Garrigan, P. &          
Kellman, P. J. (2018). Enhancing adaptive learning       
through strategic scheduling of passive and active       
learning modes. In T. T. Rogers, M. Rau, X. Zhu, & C.            
W. Kalish (Eds.), Proceedings of the 40th Annual        
Conference of the Cognitive Science Society (pp.       
768-773). Austin, TX: Cognitive Science Society. 

Mettler, E., Massey, C. M., & Kellman, P. J. (2011).          
Improving adaptive learning technology through the use       
of response times. In L. Carlson, C. Hölscher, & T.          
Shipley (Eds.), In Proceedings of the 33rd Annual        
Conference of the Cognitive Science Society (pp.       
2532-2537). Austin, TX: Cognitive Science Society. 

Mettler, E., Massey, C. M. & Kellman, P. J. (2016). A           
comparison of adaptive and fixed schedules of practice.        
Journal of Experimental Psychology: General , 145(7):      
897- 917. 

Pyc, M. A., & Rawson, K. A. (2009). Testing the retrieval           
effort hypothesis: Does greater difficulty correctly      
recalling information lead to higher levels of memory?        
Journal of Memory and Language, 60, 437–447. 

Thai, K. P., Krasne, S., & Kellman, P. J. (2015). Adaptive           
perceptual learning in electrocardiography: The synergy      
of passive and active classification. In D. C. Noell, R.          
Dole, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D.          
Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th          
Annual Meeting of the Cognitive Science Society (pp.        
2350-2355). Austin, TX: Cognitive Science Society. 

 

2357



Comparing unsupervised speech learning directly to human performance in
speech perception

Juliette Millet (juliette.millet@cri-paris.org)

Nika Jurov (nika.jurov@gmail.com)

Ewan Dunbar (ewan.dunbar@univ-paris-diderot.fr)

Laboratoire de Linguistique Formelle (CNRS – Université Paris Diderot – Sorbonne Paris Cité)
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Abstract

We compare the performance of humans (English and French
listeners) versus an unsupervised speech model in a perception
experiment (ABX discrimination task). Although the ABX
task has been used for acoustic model evaluation in previous
research, the results have not, until now, been compared di-
rectly with human behaviour in an experiment. We show that a
standard, well-performing model (DPGMM) has better accu-
racy at predicting human responses than the acoustic baseline.
The model also shows a native language effect, better resem-
bling native listeners of the language on which it was trained.
However, the native language effect shown by the models is
different than the one shown by the human listeners, and, no-
tably, the models do not show the same overall patterns of
vowel confusions.
Keywords: linguistics; language acquisition; machine learn-
ing; speech recognition

Introduction
Comparing cognitive models with human behaviour often
involves some idealization. The ideal comparison between
a model and a human behavioural experiment would sim-
ply have the model “participate” in the experiment, ex-
posed to the same stimulus files as are presented to the hu-
mans, responding as if it were just another human subject.
Its responses would be compared to human subjects’ on a
stimulus-by-stimulus level. This ideal is reached only rarely
(for example, Riochet et al., 2018). Most settings either
simplify the stimuli given to models (for example, showing
images of objects to human participants, but providing the
model instead with a discrete input indicating whether the ob-
ject was a dog or a cat, as in Xu & Tenenbaum, 2007), or com-
pare highly aggregated results rather than predictions on in-
dividual stimuli (for example, Gulordava et al., 2018). These
simplifications, while often essential, may mask aspects of
the real task which have a major impact on the results.

Meanwhile, a large body of recent research has proposed
to evaluate acoustic models trained on speech databases, par-
ticularly those trained in an unsupervised way, using an ABX
phone discrimination task (Schatz et al., 2013). This eval-
uation considers pairs of speech stimulus items (A and B)
coming from two different phonemic categories, assessing
whether the model’s representation of a third stimulus (X) is
more similar to its representation of A or of B.

While this task is analogous to the standard human ABX
perception task, a direct comparison of the two to evaluate

models or better understand human behaviour has not yet
been done. We propose a direct, stimulus-by-stimulus com-
parison of an acoustic model with human perception in an
ABX perception task. Additionally, the stimuli for our task
come from two different languages. We examine the be-
haviour of human subjects, and trained models, for whom one
of the languages is a second language (L2). Previously, un-
supervised acoustic models have typically been evaluated by
assessing how well they discriminate phonemes of the lan-
guage on which they are trained (L1), their objective being to
reach perfect discrimination of all pairs of phonemes in the
L1 (Schatz et al., 2013; Versteegh et al., 2015). A few stud-
ies have investigated patterns of L2 discrimination in acoustic
models, looking at overall accuracy on phonemic contrasts
from languages other than the training language. But their
conclusions have been based on qualitative summaries of the
behaviour of the models, with no human reference data on the
same stimuli (Schatz et al., 2017; Schatz & Feldman, 2018).

A stimulus-by-stimulus comparison of an acoustic model
with human performance on a speech perception task might
reveal major differences between the two. If a trained acous-
tic model is seen as an acoustic baseline, the comparison will
highlight aspects of human speech perception which are sur-
prising given properties of the signal alone. On the other
hand, if the goal of the acoustic model is to be human-like,
such a comparison shows us where the model falls short.

We train an unsupervised acoustic model which is known
to perform globally well on corpus-based ABX evaluations
(Chen et al., 2015). We train the model on English and
French corpora. We expose both the English-trained model
and the French-trained model to novel, experimental stimuli.
We evaluate the models’ ABX discrimination accuracy. We
give English and French human native listeners the same task.

Our results show that the model is globally more predictive
of the human results than a baseline based on low-level acous-
tic features. The model also shows a native language effect:
when trained on French, its error pattern is more like French
native speakers’, and similarly for English. However, we an-
alyze these error patterns, and show that the native language
effects shown by the models, while globally predictive, differ
importantly from those shown by the human participants.1

1All modelling code, analysis code, stimuli, and anonymized
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Methodology: Human ABX evaluation
In an ABX paradigm, participants hear three sounds in se-
quence, and indicate which of the first two sounds (A or B)
is more similar to the last (X), a sound always drawn from
the same category (for example, phoneme) as either A or B.
The task is intended to tap the perceptual similarity between
A and X, on the one hand, and B and X, on the other, to assess
the overall distinctness of the categories A and B belong to.

We develop stimuli to test cross-linguistic (En-
glish/French) perception of vowels in an ABX discrimination
paradigm. Within each stimulus triplet, A and B always
consist of CVC non-words contrasting one English vowel
with one French vowel, with the flanking consonants held
constant. We use the American English vowels [I], [2],
[U], and [æ], and the Hexagonal French vowels [a], [O], [E],
[i], [u], [y], and [œ].2 Only consonants appearing in both
languages are used: [v], [z], [s], [S], [f], in both consonant
positions, and, additionally, [p], [b], [g], and [k] in coda.3

While the stimuli are designed to differ only in the vowel,
there are inevitable phonetic differences in the realization
of these consonants across the two languages, which may
provide additional cues to the correct answer. Real words
in either language are excluded. For details of stimulus
construction, see Experiments: Humans below.

We expect that human listeners will vary in their discrimi-
nation ability, with triplets like [vip]–[væp]–[vip] being gen-
erally more difficult than more acoustically similar triplets
such as [v2p]–[vOp]–[v2p]. We also expect cross-linguistic
differences, with English listeners doing better than French
listeners on acoustically similar contrasts which do not exist
in French, such as [i]–[I]. We examine the patterns of confu-
sions shown by both listener groups, and present the same
experimental stimuli to models trained on English and on
French, to evaluate the models’ internal representations.

Methodology: Model ABX evaluation
Unsupervised acoustic models are models that learn represen-
tations of speech by exposure to speech without associated
phonemic category labels. They can be seen as learning the
organization of a perceptual space for speech.

We train a Dirichlet Process Gaussian Mixture Model
(DPGMM) as an acoustic model. It is a non-parametric
Bayesian clustering model. It finds, in an unsupervised way,
a set of multi-dimensional Gaussian distributions appropriate
to cluster the observations (here acoustic features). It adapts
its number of Gaussian distributions automatically depend-
ing on the training data. The computations needed by the

data for this paper are available in the following online repository:
https://github.com/geomphon/CogSci-2019-Unsupervised
-speech-and-human-perception.git.

2This reduced set of vowels is constructed with special attention
to French native listeners’ perception of the English vowel [2]. Pre-
vious research shows (Peperkamp, 2015) that French native listeners
identify this vowel with a number of different French vowels, sug-
gesting that a fair number of pairs will be difficult for subjects.

3Stops are excluded in onset position because of the marked dif-
ferences between English and French VOT.

model training can be parallelized (Chang & Fisher III, 2013),
making training on a reasonable amount of speech data pos-
sible. The resulting trained model (learned set of Gaussian
distributions) can then be applied to any new speech exam-
ple, yielding a sequence of probability vectors that can be
seen as the model’s perceptual representation of the exam-
ple. In this way, the model can be seen as learning the or-
ganization of a perceptual space. Chen et al. (2015) applied
parallel DPGMM training and achieved the best performance
in the 2015 ZeroSpeech Challenge, a machine learning chal-
lenge seeking state-of-the-art unsupervised acoustic models
(Versteegh, Anguera, Jansen, & Dupoux, 2016).

The representations we extract from the DPGMM model
are posteriorgrams. A speech signal consists of a sequence of
audio frames: for a sequence of k audio frames, a posterior-
gram is a sequence of k vectors. The vector xi = (x1,x2, ...xN)
gives the probabilities of the ith frame having been generated
by each of the model’s N learned Gaussian distributions.

Performing ABX evaluation of an encoding learned by
an acoustic model relies on extracting the representations of
triplets of stimuli (A, B, and X), and computing the distance
d(A,X), between A and X, and d(B,X), between B and X.
X is of the same category as either A or B. Taking A to be
the correct answer, we compute δ = d(B,X)− d(A,X). If
δ > 0, we can consider the model to have chosen A; if δ < 0,
we consider it to have chosen B. In previous work evaluat-
ing acoustic models with this method (Versteegh et al., 2015;
Dunbar et al., 2017), the percentage of correct responses for
each pair of categories is tabulated, and these averages are
combined into a global ABX discriminability score.

Because it relies only on computing distances, the model
ABX evaluation is applicable to a broad variety of learned
representations. It can be applied to posteriorgrams, but also
to Mel-frequency cepstral coefficients (MFCCs), a compact
representation of acoustic cues derived from the spectrum,
commonly used to train ASR models. We train our models
here on MFCC inputs, and MFCCs also serve as our low-
level acoustic baseline (each audio frame is a MFCC vector).

The distance function most appropriate for the comparison
may vary as a function of the type of representation. Because
the representations we evaluate contain one vector per audio
frame, differing-length stimuli will have different-length rep-
resentations. To deal with those differences, we follow pre-
vious literature in the domain and use dynamic time warping
(DTW) to align the sequences (see Senin, 2008 for a review).
This algorithm computes an optimal match between two se-
quences based on a secondary distance function used for com-
paring individual elements across the two sequences (individ-
ual vectors in the speech representations). Every frame in
each of the two representations is matched with at least one
frame in the other representation, following the order of each
sequence. The final distance between the two sequences is
the mean of the distance between the matched frames.

As secondary distance functions, we use the same frame-
level distances as in previous evaluations of DPGMM acous-
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tic models. For MFCC representations, we use the cosine
distance. For N-dimensional vectors x and y, it is defined as:

Dcos(x,y) =
1
π

arccos

 ∑
N
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∑
N
i=1 x2

i

√
∑

N
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i


For comparing the posteriorgrams of our trained models,

we use the symmetrized Kullback–Leibler (KL) divergence.
For positive4 N-dimensional vectors x and y, the symmetrized
KL-divergence between x and y is:

DKL(x,y) =
1
2

[
N

∑
i=1

xi log(
xi

yi
)+

N
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yi log(
yi

xi
)

]

Although this model ABX task is inspired by a speech per-
ception task, the test is different from a typical speech dis-
crimination experiment in an important way. By tabulating
the proportion of triplets with δ > 0 (correct), gradient infor-
mation about individual stimuli triplets is lost. Such a test
cannot measure how well separated or “discriminable” indi-
vidual speech stimuli are, but only the separation of a pair
of categories A and B. Rather than directly using model ABX
discriminability scores, we relate human discrimination of in-
dividual stimuli to δ; see below, and see also Schatz, 2016.

Experiments: Humans
The stimuli were recorded in a carrier phrase. Six speakers
read the stimuli in an anechoic chamber. Two were early
bilinguals of American English and Hexagonal French, both
female, and read both the English and the French vowel stim-
uli. Both had extensive exposure to both languages through-
out most of their early and adult lives, and regularly used
both languages. These stimuli were used for A and B. The
other four speakers were male: two North American En-
glish natives, who read the English stimuli, and two Hexag-
onal French natives, who read the French stimuli. Their pro-
ductions were used as X. Phonetically trained listeners (one
French and one English native), listened to the stimuli in iso-
lation and verified that they were native-like in the target lan-
guage and corresponded to the intended vowel.

All A and B pairs were cross-language comparisons. If A
was a French stimulus, B was English, and vice versa. The A
and B speakers always differed. The experiment used 500 ms
silence for both the A–B and B–X intervals.

The final set of stimuli consisted of 112 triplets, matched to
the same intensity, downsampled to 16000 Hz. The list was
a subset of the complete set of possible triplets, optimized
to balance combinations of speaker, vowel pair, consonantal
context, and whether A or B was the correct answer. Each
vowel pair appeared four times, factorially combining which

4We replace zero elements with a very small constant to avoid
division by zero.

of the two vowels was the correct answer, and whether the
correct answer was presented first (A) or second (B).

The task was performed on Amazon Mechanical Turk
with the LMEDS software (Mahrt, 2016), with participants
from the United States and France. Listeners were paid
for participation. Previous research shows that Mechanical
Turk can successfully be used for speech perception tasks,
and that results are comparable to a lab setup (for example,
Kleinschmidt & Jaeger, 2015). We asked the participants to
use headphones, to do the task in a quiet environment, and to
check the sound volume before the experiment began.

A total of 144 participants were tested, 72 in France and 72
in the United States. We filter out those who did not finish the
task, did not report English or French as their first language,
had previously taken a linguistics class, failed two out of three
catch trials5 or reported hearing or vision problems. In the
end, there were 63 English and 55 French participants.6

Experiments: Models
To build the models for comparison with the human experi-
ment, we train the DPGMM on the same LibriVox audio book
source corpora used to construct the English and French data
sets in the 2017 ZeroSpeech Challenge (Dunbar et al., 2017).
We use a different subset of the corpora than the one used pre-
viously, to construct two data sets of comparable size. Our
English data set is made of 34 hours and 8 minutes of read
speech, and our French dataset contains 33 hours and 42 min-
utes of read speech. Recordings were sampled at 16000Hz.

We use Kaldi (Povey et al., 2011) to pre-process the data:
we extract 13-dimensional MFCCs (25 ms analysis window,
10 ms window shift), to which we apply a vocal tract length
normalization (VTLN). We add the ∆ and ∆∆ for a total of 39
dimensions, and apply centered windowed mean normaliza-
tion (with a window size of 300 frames).

For each corpus, we use 90% of the data for training and
10% as a validation set. We obtain two models, one for each
dataset (English-DP, French-DP). Model training is stopped
after 1500 iterations, as in Chen et al., 2015. We obtain 611
clusters for English-DP, and 1565 for French-DP.

The English-DP and French-DP models are applied to
the one-second and ten-second test stimuli from the across-
speaker condition of the 2017 ZeroSpeech Challenge (also
drawn from the LibriVox corpora) and subjected to the corre-
sponding ABX evaluation. We test the French model on the
French stimuli and the English model on the English stimuli.
The ABX triplets are each made up of a sequence of three ex-
tracts of speech from the stimuli, where each extract consists
of a sequence of three phones, and A and B differ only in the

5Catch trials played a tone and gave an audio instruction as to
which response to give.

6Not all participants used headphones, in spite of our instruc-
tions, and a few reported distractions; here we do not exclude these
participants. Following a reviewer suggestion, we examined the re-
sults of such an exclusion, which leaves 50 English and 26 French
participants. All qualitative results remain as reported. The results
of this alternate analysis can be found in the online repository.
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centre phone, while the context phones are held constant. All
triplets constructible from the test stimuli are tested. This test
serves to ensure that the models are performing as expected.

We apply each of the two models, separately, to the ex-
perimental stimuli (see Methodology: Human ABX evalu-
ation), to simulate English and French native listeners. We
apply the same pre-processing steps as were applied to the
training corpora, transform the files into DPGMM posterior-
grams from the trained models, and obtain only the frames
corresponding to the stimuli.7 We calculate δ for each triplet,
for each of the models, and for the MFCC representations.

Results: Humans
The overall ABX discrimination accuracy across all stimuli,
across all participants, is 72%. The English listeners obtain a
score of 69%, and the French listeners 75%. Figure 1 shows
the average accuracy across vowel pairs.8

Figure 1: Human accuracy (English and French listeners) av-
eraged by vowel pair. Lighter indicates higher accuracy.

Before comparing the accuracies across native language
group, we apply a correction to make the groups’ scores com-
parable. We numerically remove effects of response bias, po-
tential bias to respond A or B, and overall group-level base-
line accuracy. We quantify these nuisance effects using a gen-
eralized linear model. We fit a probit regression because of its
interpretation as a d-prime analysis (DeCarlo, 1998; Macmil-
lan & Creelman, 2004) using the lme4 package for R (Bates

7This was done on the longer source files, rather than directly
using the short audio files used in the experiment to avoid window
problems, since frames at the beginning and end of files are dropped
during preprocessing. Processing the longer source files also gives
the vocal-tract length normalization transformation an advantage,
leading to an improvement in speaker normalization.

8This was a repeated average, similar to that done for the model
ABX scores below: first, the accuracy across subjects for a given
stimulus was calculated; then, these scores were averaged across
contexts; then, across speakers. This was done for consistency with
the ABX model evaluation literature (Versteegh et al., 2016; Dunbar
et al., 2017).

et al., 2015). We code responses as 1 (accurate) or 0 (inaccu-
rate). The model contains an intercept and a random intercept
by subject, modelling response bias; a main effect of subject
group (English: −1, French: 1), modelling group-level dif-
ferences; an effect of A/B presentation order (A correct: −1,
B correct: 1), modelling tendencies to respond A or B; and an
interaction of these last two. We correct each observation by
subtracting the predicted probability of correct response. We
average the corrected responses within each stimulus triplet,
and average these corrected accuracies down to the vowel pair
level as before, obtaining corrected accuracies by vowel pair.
Correlation between the two groups’ corrected accuracy at
the stimulus triplet level is 0.63. After averaging to the vowel
pair level, the correlation is higher, at 0.79, indicating that
many group differences are due to effects of individual stim-
uli, rather than the vowel contrasts we intended to test. The
vowel pairs are compared in Figure 2.

Figure 2: Discriminability of vowel pairs compared between
the two language groups. The dotted line is y = x; pairs above
the line are better discriminated by French listeners, while
pairs below show better discrimination for English speakers.

Figure 2 shows that most vowel pairs were relatively well
discriminated (upper right), but some were poorly discrimi-
nated by both groups (lower left). [2]–[a], [2]–[O], and [I]–[E],
are all perceived better by English listeners. This is consistent
with Peperkamp (2015), who reports tests of French listeners
on identification of English vowels, similarly indicating that,
for example, [2] was identified as [a], [œ], or [O].

Results: Models
The scores that English-DP and French-DP obtain on the
ZeroSpeech 2017 stimuli are presented in Table 1. Re-
peated averaging is done as for the human data, across con-
text (flanking phones), across speakers, and then across all
centre phones, to obtain a single score. We observe that the
DPGMM model obtains better scores than the MFCCs, con-
sistent with previous results. Results are reported as accura-
cies. English-DP shows 88.4% ABX accuracy on the experi-
mental stimuli we design, and French-DP 86.6%, both better
than MFCC (81.2%). Thus, the models continue to do better,
globally, at discriminating speech contrasts, than the acoustic
baseline, on novel recordings, from novel speakers.
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French English
Model 1s 10s 1s 10s
MFCC 74.8% 74.5% 76.6% 76.6%

French-DP 83.7 % 84.4 % – –
English-DP – – 88.8% 89.3%

Table 1: ABX accuracy for the trained models and low-level
acoustic baseline on the 2017 ZeroSpeech benchmark.

Results: Model–human comparison
To compare the models as models of human perception, we
ask how well the continuous machine discriminability score δ

for each of the models (distance to incorrect minus distance to
correct answer: see Methodology: Model ABX evaluation)
predicts the human results. As each stimulus is associated
with a δ value for a given model, good models are those for
which the probability that human subjects respond correctly
increases monotonically in the δ value. We compare the three
δ values: English-DP, French-DP, and MFCC.

We begin by pooling English and French participants, to
assess whether either or both DPGMM models are globally
more human-like than the low-level acoustic baseline. We
again use probit regression including δ as a predictor. The
dependent variable is whether the subject responded correctly
(1: accurate, 0: inaccurate). We fit three separate probit re-
gressions, one per δ. Since the model includes a coefficient
for δ, this can be seen as taking δ to quantify the subjects’
perceived degree of distinctness for a given triplet, up to some
scaling factor. We rescale the δ scores for numerical stabil-
ity and for cross-model interpretability by dividing by the
root mean square.9 We again include both an overall and a
(random) by-subject intercept to account for response bias, a
coefficient for whether the correct answer was A or B, na-
tive language of the participants, and an interaction between
these last two, plus a random intercept for individual stimulus
triplet (experimental item).10 We do not include an interac-
tion between subject language and δ: we test for a native lan-
guage effect separately below. We compare the three models
using AIC (Akaike, 1974). Results are in Table 2 (smaller
AIC is better). Both DPGMM models predict the human re-
sponses better than the MFCC baseline.

If the DPGMM model is really capturing adult perception,
we should also expect a “native language effect”: the English-

9We keep zero in place for interpretability, as it is the decision
threshold for the model ABX. Note, however, that zero is not guar-
anteed to be the optimal decision threshhold, either for predicting
the correct answer in the task, or for predicting human behaviour.
The inclusion of an overall intercept allows for the model to adjust
to the best decision threshhold for predicting human responses.

10We include a stimulus-triplet level random intercept here, but
not for the purpose of removing extraneous variability from the ac-
curacy scores in generating Figure 2 above, or Figure 3 below. Those
graphs are comparisons of behaviour on different items, and so item-
level variability is not a nuisance factor. In contrast, here we are try-
ing to explain away item-level variability, using δ as a predictor. It
does not diminish the value of this model comparison to include a
predictor capturing additional item-level variability.

Models French-DP English-DP MFCC
Coefficient for δ 0.2682 0.2790 0.1804

AIC 12675.83 12672.91 12684.15

Table 2: Regressions of human responses against machine
representations, compared over the whole experiment (coef-
ficient of δ and AIC). Lower AIC indicates better fit.

Predictor Native δ Non-native δ

Coefficient for δ 0.2693 0.1452
AIC 12667.98 12689.1

Table 3: Regressions of human responses against native
(French-DP for French listeners, English-DP for English lis-
teners) versus non-native (switched) trained DPGMM models
(coefficient of δ and AIC). Lower AIC indicates better fit.

trained DPGMM should show results which more closely
resemble those of the English listeners than the French lis-
teners, and the French-trained DPGMM should show results
which more closely resemble those of the French listeners
than the English listeners (see Results: Humans). We assess
this as follows: we associate each human observation with
the appropriate “native language” δ (English-DP for trials
by English listeners, French-DP for French listeners), and
with the “non-native language” δ (French-DP for English
listeners, English-DP for French listeners). We construct
two alternative probit regression models with the same nui-
sance predictors as above. In one, the independent variable
of interest is the native δ score; in the alternative, the non-
native δ. If the representations are equally good at predicting
both groups, neither of these models should be better than the
other. Results (Table 3) indicate a better fit in AIC for the
native-language δ predictor (−21.12 in favour).

To verify that −21.12 is a reasonable model comparison
criterion, we examine 9999 instances of the same model com-
parison over a randomized baseline. Each sample modifies
the original data only in that the δ value considered “native”
or “non-native” (English-DP/French-DP) is determined by
a random permutation of the original native language indica-
tor.11 The random baseline does not yield similar improve-
ments in AIC scores: in the baseline sample, the add-one
smoothed left tail probability of −21.12 is 0.0089.

Discussion
Overall, the DPGMM shows itself to be a passably human-
like acoustic model. Furthermore, when it is trained on sub-
jects’ native language, it predicts their responses better.

To better understand this effect, we calculate a “degree of
native language effect” score for each stimulus triplet in the

11By permuting across the data set, we keep the unbalanced pro-
portions of French- and English-native responses. The coefficients
for subject language are still fit to the true native language of the
subjects.
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Figure 3: (a) Native language effect (French minus English), plotted for human accuracy against probabilities predicted from
δ. Each point is one stimulus triplet. (b) The same points, averaged by vowel pair. (c) The same points, averaged by flanking
consonant context. Dotted lines are linear regressions. Graphics do not show the same part of the plane, but all are on the same
aspect ratio (13:7), meaning that slopes are visually comparable.

experiment, as the difference between French and English lis-
teners’ mean corrected percent accuracy (see Methodology:
Humans). We calculate an equivalent score for the models, a
predicted correct-response probability. Because the mapping
between the δ values and response probabilities is indetermi-
nate, we select an optimal mapping: we use a probit regres-
sion fit to the human data including the native-language δ as a
predictor, and extract the predicted probability for each obser-
vation.12 To isolate the part of the resulting score due to the
DPGMM model itself, we subtract from each predicted prob-
ability the probability predicted by the regression if δ were
zero for the given observation, obtaining a corrected proba-
bility analogous to the corrected accuracies derived for the
humans above. For each stimulus triplet, we take the aver-
age corrected probability across all observations. The native
language effect for the DPGMM model, for a given stimulus
triplet, is the subtraction of the French and the English mod-
els’ average corrected probabilities on this triplet.

These quantities are plotted against each other in Figure
3a. The slight trend towards a positive relation is consis-
tent with the results of the model comparison, although most
of the variance is unexplained. However, when averaged by
vowel contrast, as in Figure 3b, it becomes clear that the na-
tive language effect in vowel confusions is not human-like:
the trend in the graph is toward a negative relation. Inter-
estingly, in Figure 3c, in which items are instead grouped
by consonant frame, shows a slight positive trend, indicat-
ing human-like behaviour. But the behaviour the model cap-
tures is the fact that the impact of the flanking consonants on
performance differs across listener groups. This is clearly not
the behaviour we expected it it to capture: the flanking conso-

12We use a modified version of the “native language” regression
model described in Results: Model–human comparison, with all
nuisance predictors included, except the random effect of stimulus
triplet. We exclude this for reasons discussed already: we are seek-
ing here to examine residual differences between items.

nants were not intended to have an impact on performance at
all. The fact that they contain information that facilitates the
task is an artefact of the imperfectly controlled stimuli. It is
also not this behaviour that makes the biggest contribution to
the native language effect in humans: Figure 3 shows greater
variance across vowel pairs than across consonant frames.

This unexpected effect may be due to the nature of the
DPGMM model. The large number of categories it learns
likely discriminate contextual variants and temporal sub-
components of individual phonemes. The participants in our
experiment presumably detect coarser distinctions, beyond
this sub-phonemic variability. Vowels, in particular, consist
of a long steady state. The DPGMM’s representation may
fluctuate too much to maintain coarser-grained information.
Whatever the explanation, the trained DPGMM models do
not match the stimulus-by-stimulus profile of human subjects.

Conclusion
We tested human listeners, English and French native speak-
ers, and an unsupervised acoustic model (trained once on En-
glish, once on French) on the same cross-linguistic ABX dis-
crimination task, comparing the model with human perfor-
mance on a stimulus-by-stimulus level. Our results show that
the acoustic model predicts human results better than a low-
level acoustic baseline, and predicts certain effects of native
language on perception, while missing critical features.

We take this detailed and direct comparison to be an impor-
tant step in improving the evaluation of quantitative models of
human speech perception. Given that the DPGMM shows a
limited, but incomplete, correlation with human speech per-
ception, it may also prove useful as a measure of acoustic dis-
tance which is adapted to a particular language. Our approach
permits detailed investigation of the differences between hu-
mans and computational models on speech perception tasks,
which will be essential to using these models to gain insight
into the underlying cognitive processes.
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Abstract

Conspiracy theories are “alternative” explanations of
well-understood events or phenomena. What makes them
attractive explanations to so many people? We investigate
whether people ascribe characteristics typical of good
explanations to conspiracy theories and whether they are
perceived as more appealing explanations when they are
articulated as a refutation of the official version of events. In
two experiments, participants read explanations of four
conspiracy theories and rated them along six dimensions of
explanatory quality. We find that some explanatory virtues are
ascribed to conspiracy theories even by people who do not
believe the conspiracy. Contrary to our predictions, we also
find that framing a conspiracy as a refutation did not generally
elicit higher ascriptions of explanatory virtues. These results
suggest that explanatory considerations may play a more
central role in conspiracist beliefs than was previously thought.
Keywords: Explanation; conspiracy theories; open science

Introduction
People who believe in conspiracy theories should be
characterized, or so the thinking goes, by their inability or
unwillingness to identify these theories as being not only false
but also as exhibiting clear epistemological flaws (e.g.,
Hofstadter, 1965; Robins & Post, 1997). However, this
characterization obscures the possibility that people subscribe
to conspiracy theories not because they are foolish but
because they think that they qualify as justified beliefs
(Sunstein & Vermeule, 2009), and in particular, that these
theories might exhibit explanatory virtues.

The study of conspiratorial thinking is not merely an
academic issue: conspiratorial thinking has real-world social
and political consequences. Conspiracy theories incite acts of
violence (Knopf, 2017), allow fear-mongering politicians to
exert undue influence on the outcome of democratic votes
(Kuzio, 2011; Nefes, 2013), scare off individuals from
accessing life-preserving health care (Jolley & Douglas,
2014), and interfere with the dissemination of scientific
knowledge (Goertzel, 2010).

Conspiracy theories can have lasting societal and
psychological repercussions. Consequently, psychologists
have begun examining the factors that are predictive of
conspiratorial thinking with the hope that studying them
inspires corrective interventions (Sunstein & Vermeule, 2009).
Most people do not believe in conspiracy theories, but there
are also individual differences in their adoption, prompting
researchers to investigate what personality factors lead some
people to believe in conspiracy theories (Freeman & Bentall,

2017). In the last three decades, psychologists have primarily
focused on examining individual psychological differences of
people who engage in so-called “conspiratorial ideation” (e.g.,
Swami et al., 2011; Brotherton & French, 2014). For instance,
this research has examined how paranoia (Wulff, 1987),
believing in the existence of paranormal phenomena, mental
health disorders (Darwin, Neave, & Holmes, 2011), low
levels of interpersonal and governmental trust, and political
orientation predict believing in conspiracy theories (Miller,
Saunders, & Farhart, 2016). This line of research is based on
the observation that individuals who endorse a given
conspiracy theory are more prone to endorse further
(Goertzel, 1994), even contradictory (Wood, Douglas, &
Sutton, 2012) or fictitious, conspiracy theories.

Philosophers have also taken an interest in understanding
conspiratorial thinking, but rather than focusing on the types
of people who believe in conspiracy theories, they have
examined the epistemology of believing in conspiracy
theories (Sunstein & Vermeule, 2009; Coady, 2006; Räikkä,
2009). This research has suggested that conspiracy theories
owe their popularity to the fact that they display certain
qualities (e.g., apparent simplicity, ability to produce a feeling
of understanding) that are normally the hallmark of good
explanations (Keeley, 1999). In particular, Keeley (1999) has
suggested that conspiracy theories are often presented by their
advocates as being broader than the official theory, as being
able to include more phenomena in their explanation for a
given phenomenon. Despite the suggestion that conspiracy
theories might have a special type of explanatory appeal,
there has been comparatively little research on the features of
conspiracy theories that may make them attractive to believe
(but see Wagner-Egger, Delouvé, Gauvrit, & Dieguez, 2018).

If conspiracy theories have a distinctive ability to pass for
good explanations, they might draw some of their influence
from their ability to satisfy what philosophers and cognitive
scientists have called the human “obsession with the search
for explanations” (Lipton, 2003). This would also explain
why conspiracy theories tend to give rise to strong feelings of
attachment in those who believe in them (Sunstein &
Vermeule, 2009) and why they are often used successfully as
tools of psychological manipulation by individuals (so-called
“conspiracy entrepreneurs,” Sunstein & Vermeule, 2009) who
seek to increase their political power. An empirical
investigation of the explanatory virtues of conspiracies might
therefore shed light on why a substantial portion of
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people—at least more than one would hope—believe in at
least one conspiracy theory (Lewandowsky, Oberauer, &
Gignac, 2013).

Explanatory virtues and belief
If the way conspiracy theories explain events is what makes
them appealing, we may expect some of this appeal to stem
from their ability to display explanatory virtues typical of good
explanations. We may also expect that people who believe
in conspiracy theories will be particularly sensitive to these
virtues in their favored conspiracies. What virtues characterize
good explanations?

Recent research has investigated the determinants of
people’s explanatory preferences by examining how people
assess the quality of explanations they generate or consider.
Some of these studies have shown a correspondence between
people’s preferences and the explanatory virtues identified by
normative work on the epistemology of explanations
(Thagard, 1978). For instance, people appear to favor
qualities such as simplicity (Pacer & Lombrozo, 2017), and
breadth or coherence. Other studies have revealed certain
cognitive biases, i.e. preferences that do not necessarily track
the goodness of an explanation, for instance the preference for
explanations referring to inherent characteristics of the
explanandum (e.g., Horne, Muradoglu, & Cimpian, 2019).
Finally, some researchers have identified so-called
“explanatory vices” (Lombrozo, 2016): these are explanatory
characteristics that are mistaken for virtues and that allow
flawed explanations to pass as good ones. For instance, using
technical jargon can improve the apparent quality of an
explanation, but it is not a reliable characteristic because it
can also be used to mask the poor quality of an explanation to
non-experts.

The inquiry into the nature of good explanations also bears
on understanding how people reason. Given that a search for
knowledge often involves the search for true explanations,
what guiding principles should people trust when they reason
about explanations? The theory of Inference to the Best
Explanation (known as IBE, Lipton, 2003) offers such a
principle: if an explanation is good enough (Lipton, 2003)
and if it is better than all other rival explanations, then we are
warranted to infer that that explanation is correct.
Experimental work has also shown that people’s beliefs can
be modeled as conforming to such an inference rule. For
instance, in a recent study by Douven and Mirabile (2018),
subjects were asked to decide between two competing
explanations for six everyday scenarios. They also rated the
explanatory quality of both explanations. Two important
trends were apparent in the responses: First, subjects tended
to choose those explanations they judged as better
explanations. Second, the quality of the competing
explanation also affected the subjects’ decisions: when the
rival explanation was too close in goodness to the best
explanation, the choice of the best explanation decreased.
This latter result suggests that if a rival—but not as

good—explanation is able to cast doubt on the superiority in
quality of the better explanation, then it could also undermine
the acceptance rates of that explanation.

Conspiracy theories are attempts to provide an explanation
for events. Consequently, we might expect them to behave
similarly to other cases of explanatory reasoning, that is,
situations where it is reasonable to infer to an explanation if it
is better than all available competitors. Following the results
from Douven and Mirabile (2018), we predict that people will
think that a conspiracy theory is a true explanation when it
appears to them as being the best explanation of an event,
with the official version of events as a prominent competitor.

One implication of this hypothesis is that conspiracy
theories should be regarded as explanations and display
characteristics typical of explanations: they should be seen as
good explanations by some people, otherwise they will not be
considered as the best explanations by anyone. A second
implication is that a conspiracy theory might also be able
appear as the best explanation because it casts doubt on the
explanatory abilities of its competitors, and in particular of
the official version of events.

How could this be? First, a conspiracy theory may appear
to offer a simple, broad or coherent explanation of an event,
or elicit a feeling of understanding. We call these
characteristics “explanatory virtues” because they are
generally expected of good explanations, not because they
track the objective quality of actually virtuous explanations.
Second, a conspiracy theory might highlight the flaws of rival
explanations (a common strategy for conspiracy theorists,
Keeley, 1999), and in particular cast doubt on the superiority
of the official theory. A conspiracy theory that successfully
undermines its rivals might be able to enhance the appearance
of displaying explanatory virtues, and thus appear as the best
explanation.

The present experiments sought to explore whether some
of the properties of conspiracy theories may induce people to
believe in them. In particular, we investigate the hypothesis
that conspiracy theories have explanatory virtues, such that
people believe in them when they perceive them as being the
best explanations available. We seek to test two questions.
First, what explanatory virtues, if any, do people ascribe to
conspiracy theories and how does their ascriptions relate to
their belief in the conspiracy itself? Second, can the appeal
of conspiracy theories in part be explained by their ability
to produce the illusion of discrediting the official version of
events? We examined these questions in two experiments.

Experiment 1
Methods
Preregistration The projected sample size, predictions, and
priors used in the data analysis both for Experiment 1 and for
Experiment 2 were preregistered through the Open Science
Framework. Materials, experimental scripts, analyses, and
data are available at https://osf.io/wh78v/.
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Participants A power analysis determined that, after
accounting for an expected rate of participant drop-out of 50
subjects, 375 participants would be needed in order to detect a
within-subjects condition effect of Cohen’s d = 0.16 (the
modal effect size in social psychology) with 80% power.
Therefore, we recruited 375 participants (51% women, Mage
= 37 years old) through Amazon Mechanical Turk. After
excluding participants who missed questions checking their
attention, 301 participants remained in our sample. Our
exclusion criteria were determined a priori and were in
accordance with our experiment’s preregistration.

Procedure Experiment 1 examined the relationship
between belief in a given conspiracy theory and the
perception of explanatory virtues in that conspiracy theory,
which was framed in one of two ways (either as a direct
explanation of the theory or as a refutation of the official
explanation) in a within-subjects design. We selected four
familiar conspiracy theories to examine how framing affected
the perceived explanatory virtues in a conspiracy theory:
1) The terrorist attacks on the World Trade Center on
9/11/2001 were orchestrated by the American government,
2) Condensation trails left by airplanes contain toxic
chemicals and are actually part of a weather engineering
program, 3) Free and environment-friendly energy generation
devices are being suppressed by oil companies, 4) Fluoride,
which is added to tap water in the US, is actually an unsafe
toxin.

Experiment 1 consisted of three parts: a pretest
questionnaire, an explanation of a given conspiracy, and a
questionnaire about the explanatory virtues of each
conspiracy. After completing this portion of the experiment,
participants completed demographic questions. We describe
each component below.

Pretest Questionnaire We first measured how strongly
participants believed in each conspiracy theory based on their
prior knowledge. For instance, participants were told that the
following theory has been suggested as an explanation for
why the 9/11 attacks on the World Trade center occurred:
“9/11 occurred because the government wanted to gain
support for wars in the Middle East.” Participants read this
statement and indicated their agreement with it on a
seven-point Likert scale. There were four such items in total
(one per conspiracy theory), which were presented in a
randomized order (see Table S1 of the SOM).

Conditions Experiment 1 had two conditions, which were
manipulated within-subjects: the direct explanation condition,
where the main arguments in favor of the conspiracy theory
were explained and the refutation condition, which
highlighted the shortcomings of the official version of events
as an indirect way to provide evidence for the conspiracy
theory (see Table S2 of the SOM). Participants only received
one version (i.e., direct explanation or refutation) for each
conspiracy theory, which was counterbalanced and
randomized. Thus, participants received two direct

explanations and two refutations of the official view. We
created the materials for each condition by searching websites
that contained explanations written by people who endorse
the selected conspiracy theories. Based on these explanations,
we constructed two (edited) short passages per conspiracy
theory, one for each condition. The two passages for each
conspiracy theory were approximately matched for word
count (± 15 words).

Explanatory Virtues Questionnaire After reading a given
conspiracy theory, participants assessed the explanatory
virtues of each of the four conspiracy theories. As noted, two
of the conspiracy theories were presented in the direct
explanation condition, and the two others were presented in
the refutation condition. In both conditions, participants first
read a short passage which explained the main theses of the
conspiracy theory. Then, they rated their agreement with
twelve statements about the explanatory virtues of that
conspiracy on a seven-point Likert scale (see Table S3 of the
SOM). We measured participants’ judgments about six
virtues, using two statements per virtue: simplicity, coherence,
breadth, description of a mechanism, use of technical
sounding language (denoted expertise in the figures below)
and ability to induce a feeling of understanding.

Participants were instructed to assess these explanatory
virtues in light of the passage they had just read rather than
their personal beliefs about the conspiracy under
consideration (though we nonetheless expected people’s
pretest beliefs to be related to their virtue ratings). For
instance, after reading a passage about the chemtrails
conspiracy, participants rated how strongly they agreed with
statements such as “this theory is a clear and easy to
understand explanation for [phenomenon]” (virtue = feeling
of understanding) or “this theory provides a complete
explanation for [phenomenon]” (virtue = breadth). The order
of presentation of these twelve statements was randomized.
After reading the passage that described a given conspiracy
and providing their ratings, participants advanced to the next
conspiracy theory and completed the questionnaire again.

Predictions In Experiment 1, we sought to answer three
questions. First, will participants in the refutation condition
be more likely to judge that it has explanatory virtues than
participants in the direct explanation condition (main effect
of condition)? Second, to what extent, if any, would this
tendency depend on the virtue in question (Condition× Virtue
interaction)? Third, even if a participant does not believe in
a given conspiracy, what virtues if any would they think the
conspiracy nonetheless has?

Results and Discussion
We tested our predictions by fitting two Bayesian ordinal
mixed-effects using the R package brms (Bürkner, 2017).
Both models estimated explanatory virtue ascriptions, treated
pretest belief predictor as a monotonic effect and included
group-level effects which we detail below. Because of the
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exploratory nature of our analyses, we confirmed the
improvement in a given model’s fit using an approximation of
Leave-One-Out cross-validation.

First, we tested whether conspiracy theories were more
likely to be perceived as having explanatory virtues when they
were framed as attempts to refute the official version of events,
which was interacted with the virtue under consideration—
Model 1:

Model 1 <- Virtue Rating ∼
Virtue*Condition + mo(Pretest) +
(1 + Virtue*Condition|Subject)

To model the joint probability distribution of responses, we
specify regularizing priors over the possible effects each
parameter could have on the response variable. Model 1
priors are shown below:

βIntercept[1] ∼ N (0.84,1)
βIntercept[2] ∼ N (2.19,1)
βIntercept[3] ∼ N (2.44,1)
βIntercept[4] ∼ N (2.75,1)
βIntercept[5] ∼ N (3.18,1)
βIntercept[6] ∼ N (3.89,1)
βPretest ∼ N (3,2)
βCondition ∼ N (0, .5)
β∀Virtues ∼ N (0,1)
β∀Virtue × Condition Interactions ∼ N (0, .5)
Ωk ∼ LKJ(1)
Group-level parameters ∼ N (1,3)
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Figure 1: A marginal effects plot of ascriptions of explanatory
virtues by condition (direct explanation vs. refutation). Error
bars represent 95% CIs.

This analysis indicated an interaction between virtue and
condition: the perceived expertise virtue received higher
ratings in the refutation condition and all other virtues

received higher ratings in the direct explanation condition
(see Figure 1). These results contradicted our predictions: in
general, participants rated conspiracy theories as presenting
explanatory virtues more when they read a passage in the
direct explanation condition but this effect did depend on the
virtue in question. pretest belief in each condition.
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Figure 2: A marginal effects plot of ascriptions of explanatory
virtues depending on pretest belief in conspiracy theory in
the direct explanation and refutation conditions. Error bars
display 50% CIs for legibility.

Next, we fit a model to assess whether, regardless of pretest
belief in a conspiracy theory, people were more likely to think
conspiracy theories had some explanatory virtues but not
others, and whether this varied depending on whether the
conspiracy was framed as a direct explanation or as a
refutation. Model 2 regressed explanatory virtue ascriptions
on the three two-way interactions between condition,
explanatory virtue and pretest belief in each condition.

Model 2 <- Virtue Rating ∼
Virtue*Condition + Virtue*mo(Pretest) +
Condition*mo(Pretest) +
(1 + Virtue*Condition|Subject)
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Experiment 1 - Model 2 Priors:
βIntercept[1] ∼ N (0.84,1)
βIntercept[2] ∼ N (2.19,1)
βIntercept[3] ∼ N (2.44,1)
βIntercept[4] ∼ N (2.75,1)
βIntercept[5] ∼ N (3.18,1)
βIntercept[6] ∼ N (3.89,1)
βPretest ∼ N (2,2)
βCondition ∼ N (0, .5)
β∀Virtues ∼ N (0,1)
β∀Virtue × Condition Interactions ∼ N (0, .5)
β∀Virtue × Pretest Interactions ∼ N (0, .5)
Ωk ∼ LKJ(1)
Group-level parameters ∼ N (1,3)

This analysis revealed that ascriptions of explanatory virtues
were higher in the direct explanation condition and were
predicted more strongly by pretest belief than in the refutation
condition (see Figure 2). Furthermore, Model 2 revealed that
the virtue Understanding, for example, was more likely to be
attributed even at lower-levels of pretest in both conditions
relative to other virtues. Most striking, even people who did
not believe in conspiracies were nearly as likely to ascribe
expertise in the refutation condition as those who believed in
the conspiracy theory.

Altogether, these findings suggest that stronger beliefs in a
conspiracy theory are associated with higher ascriptions of
explanatory virtues. However, these ascriptions did not
interact with the way a conspiracy theory was framed in the
way we predicted: direct explanations of the theory received
higher ratings of quality than refutations of the official theory,
with the exception of perceived expertise. This might be due
to the fact that the passages in the refutation condition often
needed to explain details of the official version in order to
then refute them, leading participants to be more likely to
ascribe expertise in this condition. However, one limitation of
Experiment 1 is that participants’ responses to the explanatory
questionnaire hovered around the midpoint of the scale,
suggesting that participants might not have had fine-grained
opinions (or any opinion at all) about the virtues of a
conspiracy. Therefore, in Experiment 2 we simplified the
response scale to be dichotomous to confirm that our results
were not simply due to unknown and problematic
psychometric properties of the explanatory virtues scale used
in Experiment 1.

Experiment 2
Methods
Participants Based on a power analysis and exclusion
criteria identical to those from Experiment 1, we recruited
376 participants (50% women, Mage = 38 years old) through
Amazon Mechanical Turk. After excluding participants who
failed questions checking their attention, 335 participants
remained in our sample.

Procedure The procedure and analytic approach were a
replication of those from Experiment 1, with one key
difference. In the Explanatory Virtues Questionnaire,
participants were asked about each conspiracy theory: “Do
you agree or disagree with the following statements
describing that theory?” and responded on a dichotomous
scale with “Agree” and “Disagree” as available options.

Results
We first performed logistic regression predicting virtue ratings
on the basis of the interaction between Virtue and Condition
controlling for pretest belief in a given conspiracy (see Model
1 formula in Experiment 1). We based our priors on the
Experiment 1 - Model 1 posteriors:

β0 ∼ N (−0.85, .65)
βPretest ∼ N (1.30,2)
βCondition ∼ N (0, .5)
β∀Virtues ∼ N (0,1)
β∀Virtue × Condition Interactions ∼ N (0, .5)
Ωk ∼ LKJ(1)
Group-level parameters ∼ N (1,3)

Experiment 2 replicated the effects we observed in Experiment
1 (see Figure 3).
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Figure 3: A marginal effects plot of ascriptions of explanatory
virtues by condition (direct explanation vs. refutation). Error
bars display 95% CIs.

We then tested whether pretest beliefs, virtue, and
condition exhibited the three two-way interactions we
observed in Experiment 1 (see Model 2 formula in
Experiment 2). Priors were specified as follows:

β0 ∼ N (−.85, .65)
βPretest ∼ N (1.30,2)
βCondition ∼ N (0, .5)
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β∀Virtues ∼ N (0,1)
β∀Virtue × Condition Interactions ∼ N (0, .5)
β∀Virtue × Pretest Interactions ∼ N (0, .5)
Ωk ∼ LKJ(1)
Group-level parameters ∼ N (1,3)

This analysis revealed that ascriptions of explanatory virtues
in the direct explanation condition were predicted more
strongly by pretest beliefs than in the refutation condition. In
the refutation condition, perceived expertise was most likely
to be ascribed regardless of pretest belief in a conspiracy and
people who did not believe in a conspiracy were nearly as
likely to ascribe it the virtue of simplicity as people who
believed in the conspiracy theory. Together, these results
replicate the findings from Experiment 1.
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Figure 4: A marginal effects plot of ascriptions of explanatory
virtues depending on pretest belief in conspiracy theory in
the direct explanation and refutation conditions. Error bars
represent 50% CIs.

General Discussion
Conspiracy theories are no-longer fringe beliefs (Barkun,
2016) and perhaps they never were (Goldberg, 2008).
One-third of adults believe in at least one conspiracy theory
(Lewandowsky et al., 2013). Here, we sought to understand

the properties these theories have that may lead people to
believe in them. Specifically, we investigated whether people
believe conspiracy theories have explanatory virtues and
whether ascription of virtues depends on how they are framed.
We hoped to answer two questions: First, what explanatory
virtues do people ascribe to conspiracy theories and how do
they relate to belief in a given conspiracy theory? Second, can
the appeal of conspiracy theories in part be explained by their
ability to produce the illusion of discrediting the official
version of events?

Experiments 1 and 2 indicate that people do in fact ascribe
certain explanatory virtues to conspiracy theories. Although
this effect is stronger for those who believe these theories, it is
of note that even among participants who do not endorse a
given conspiracy theory, nearly one-third of participants
reliably attribute an explanatory virtue to that conspiracy
theory, an effect that is more or less pronounced depending on
the virtue in question and its framing.

Second, and contrary to our predictions, we found that
conspiracy theories framed as refutations of the official version
of events were less likely to be ascribed explanatory virtues.
Only in the case of perceived expertise were refutations more
likely to be ascribed an explanatory virtue. One possible
explanation for this finding is that in order to refute the official
version of events, the conspiracist also needs to provide details
about the accepted theory – this often means that they need
to reuse the technical language employed by the experts they
criticize, which would account for the higher ascriptions of
perceived expertise. Ironically, the conspiracy theory itself
might have then suffered from the comparison to the accepted
explanation.

What are the implications of this ascription of explanatory
virtues to conspiracy theories? For everyday explanations,
people are more prone to believe a hypothesis if they think it
explains the available evidence well (Douven & Mirabile,
2018). Moreover, researchers have identified some
explanatory qualities that are typical of preferred explanations
(Lombrozo, 2016). However, in the case of conspiracy
theories, psychologists have focused the irrational dimension
of belief in conspiracy theories, suggesting that it points to
pathological tendencies (Wulff, 1987) and constitutes a
violation of epistemological or simply logical norms
(Brotherton & French, 2014). Integrating our results with
these analyses, the positive relationship between ascription of
explanatory virtues and belief might indicate an incorrect
application of inference to the best explanation: people might
be led astray by the impression that a conspiracy theory has
qualities typical of good explanations and thus are led to
believe the conspiracy theory. Indeed, we found that
participants who did not believe in a conspiracy theory still
ascribed it certain explanatory virtues. For example,
perceived expertise was attributed nearly 50% of the time in
the refutation condition and varied little as a function of
pretest belief in the conspiracy theory. Altogether, these
results suggest that conspiracy theories are not perceived as
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unequivocally bad explanations of events. Rather, along some
explanatory dimensions they are perceived as having the same
attributes as good explanations more often than we would
hope, leading some people to prefer them to the official,
scientifically-supported, explanations.

One limitation of these findings is that they do not allow for
a comparison between the explanatory virtues of conspiracy
theories and those of official explanations of events. Further
research could therefore collect explanatory virtue ascriptions
for conspiratorial and non-conspiratorial explanations of the
same events and investigate whether they predict belief in a
conspiracy theory. Identifying the explanatory virtues that
make conspiracy theories more appealing than their official
counterparts would be an important step for assisting
scientists and governmental agencies interested in debunking
misinformation.
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Abstract

Most statistical learning studies focus on the learning of
transitional probabilities between adjacent elements in a
sequence, however, other statistical regularities may un-
derpin different aspects of processing language and regu-
larities in other domains. Here, we investigate how con-
junctive statistical regularities (of the form A and B to-
gether predict C) can be learned, and how this learning
is impacted by similarity in representations analogous
to that in unambiguous words, homonyms with mul-
tiple unrelated meanings, and polysemes with multiple
related meanings. We observed that provided the stimu-
lus structure is relatively simple, participants are readily
able to learn conjunctive probabilities and display sen-
sitivity to relatedness among representations. These re-
sults open new theoretical possibilities for exploring the
domain-generality of how the learning and processing
systems merge conjunctive information in simple labo-
ratory tasks and in natural language.

Keywords: Statistical Learning; Lexical Ambiguity;
Transitional Probability; Conjunctive Probability

Introduction
Statistical learning has been proposed as a powerful
mechanism for how individuals learn regularities across
time and space. Foundational work by Saffran, New-
port, and Aslin (1996) first established human sensitiv-
ity to transitional probabilities (TPs) in identifying word
boundaries in streams of auditory syllables. Most re-
search on this subject to date has focused on variations
of TPs such as non-adjacent dependencies (Gómez, 2002)
and visual co-occurrences across scenes (Fiser & Aslin,
2001), illustrating a range of applications for statisti-
cal learning. While fundamental, the various forms of
TPs do not account for all types of statistical regularities
that must be learnt to explain other types of behaviours.
For example, learning something akin to a conjunctive
probability (CP) may be important in explaining how
individuals learn to disambiguate the meanings of se-
mantically ambiguous words in natural language. To
illustrate, the word BAT can refer to either an animal or
to sporting equipment, and the correct meaning of this
word is extracted by integrating the constraints on over-
all meaning offered by BAT with the broader context
(e.g., a discussion about baseball).

The present work sought to investigate several major
issues that relate to learning CPs, as they might relate
to natural language statistics such as those relevant to

word meaning disambiguation. The first was how dif-
ferent elements in a stream could be more or less con-
straining on the expected outcome of a conjunction. For
example, in natural language, knowing that the topic
of conversation is “SPORTS” provides only vague con-
straint on what particular meaning should be evoked in
a sentence. This knowledge therefore provides only low
constraint (high entropy) in determining which particu-
lar meaning should be evoked (e.g., the discussion could
relate to hockey, baseball, etc.). In contrast, the word
“BAT” provides relatively high constraint (low entropy)
on what meaning should be evoked (it should relate ei-
ther to “baseball” or to “flying mammal”). Furthermore,
critical to present purposes, only by combining both of
these elements can a context-specific interpretation of a
word be evoked. Using this analogy to words (which
are low entropy), contexts (which are high entropy), and
context-specific meanings (which are fully determined by
the combination of the previous two elements) we exam-
ined how low- and high-entropy items combined to pre-
dict an upcoming element. In a related vein, we also ex-
amined how the order in which low- versus high-entropy
information is presented shaped performance. How is
the process of computing CPs impacted by having more
versus less constraint early in processing?

Additionally, unlike typical statistical learning re-
search which employs highly and equally distinct ele-
ments during learning, we also explored how representa-
tional similarity could shape performance in computing a
CP and relate to word disambiguation processes. In the
case of natural language, the semantic ambiguity contin-
uum can be broken down into three main subdivisions:
(1) unambiguous words like CHALK which evoke effec-
tively the same meaning in different contexts. That is,
the word itself predicts the meaning with 100% accuracy,
the context does not provide any additional unique infor-
mation. (2) homonyms such as BANK which evoke com-
pletely distinct meanings in different contexts. That is,
the word narrows the meaning down to two completely
distinct interpretations, but context is necessary to se-
lect among those representations. (3) polysemes such as
CHICKEN, which evoke related representations (in this
example, the animal or its meat) in distinct contexts.
That is, the word alone may predict the majority of the
evoked representation, but context is needed to select
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exactly the right interpretation.
With these aims in mind, we developed a variant of

a standard self-paced statistical learning paradigm that
allowed us to contrast standard TP learning with the
learning of CPs between low-entropy items (analogous to
words) and high-entropy items (analogous to contexts)
in predicting a third item (analogous to context-sensitive
meaning). We also employed representations that varied
in their similarity to one another to assess the impact of
meaning relatedness on learning. Performance was as-
sessed using a combination of online and offline measures
of learning. In so doing, we aimed to contribute to knowl-
edge of how a broader range of statistics such as conjunc-
tive probabilities can be incorporated into general theo-
ries of statistical learning. We also aimed to connect this
work with important statistical properties that are at the
heart of other areas of cognition such as semantic ambi-
guity resolution. If successful, this work could open new
possibilities for how artificial language learning experi-
ments using statistical learning paradigms could comple-
ment existing studies of semantic ambiguity in natural
language, for example, by allowing the development of
well controlled artificial languages that avoid the com-
plex confounds in natural language stimuli used to study
semantic ambiguity (Armstrong & Plaut, 2016).

Experiment 1
The first experiment served as a baseline for evaluat-
ing how the learning of standard triplet structures with
perfect predictability (TPs of 1) across successive items
takes place using our specific experimental procedure.
We then use these results as a platform for understand-
ing the impact of ambiguity on processing in subsequent
experiments using variations of the same basic design but
changing the probability structure between elements.

Methods

Participants A total of 60 participants (16 male;
mean age=20) completed the experiment. All partici-
pants were undergraduate students from the University
of Toronto participant pool and were compensated with
course credit. All completed an informed consent and
debriefing procedure.

Materials A total of 48 images of unusual objects
(hereafter, symbols) were the targets for learning in the
experiment. These symbols were selected so as to not
have clear verbalisable labels, and therefore encourage
learning of the statistics between the visual representa-
tions of each element. These symbols were used to create
sequences containing two single-symbol elements and one
four-symbol complex element. Eight such simple-simple-
complex sequences with unique elements were randomly
generated for each participant. The use of varying com-
plexity across visual elements (one symbol vs. four sym-
bols) allows us to assess the impact of visual complexity

per se, and also enables rich variation in the statistical
structure of the relationship between elements and sym-
bols in the subsequent experiments.

Procedure The experiment was administered on
desktop computers using PsychoPy (v1.85.4).

Figure 1: Familiarisation

Familiarisation/On-line Learning Participants were
exposed to 30 randomised sweeps through the eight se-
quences and were instructed to pay attention to the order
of the elements. A fixation cross was presented between
sequences to focus learning on the relationships between
elements (see Figure 1). The task was self-paced and par-
ticipants advanced through the elements by pressing the
space key. The time spent on each element was recorded.
On average, the familiarisation task took approximately
20 minutes to complete.

Off-line Tests Two offline tasks were used to assess
learning. The first was a sequence completion task, in
which participants had to complete a missing element
in a sequence. Participants selected from among four
choices for completing the first and last element, and two
choices for completing the middle element. This corre-
sponded to later experiments where one of the first two
elements had only two valid possibilities. The presented
choices all came from the same position in a sequence,
sampled from among the different sequences (e.g., the
choices were always taken from position 1 when com-
pleting a missing element from position 1). Eight ques-
tions each were asked about the first two elements and 12
questions were asked about the third element. The four
extra questions about the third element in this experi-
ment were only included in order to match the number
of questions used in subsequent experiments regarding
CPs (as described later). Test questions were blocked
by order of position in the sequence.

The second task had participants choose from among
four sequences which was the most familiar. One of
these sequences was actually seen during familiarisation,
the others were made-up sequences that mixed elements
from different sequences while preserving position in a se-
quence (e.g., a sequence would be made up of an element
selected at random from all elements in position 1 across
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sequences, an element selected at random from posi-
tion 2 across sequences, etc.). Sequences were presented
one element at a time at a fixed rate of one element
per second. Six questions were asked: two for coarse-
grained distinction, where all non-target sequences com-
prised entirely unfamiliar combinations of elements; four
for fine-grained distinction, which included a distractor
item containing two elements from one sequence com-
bined with one element from another sequence. Again,
number of questions were matched to those of subsequent
experiments on conjunctive probability. While only one
element is needed to predict a sequence in TP, subse-
quent conjunctive probability experiments will require
looking at two elements together to predict the third.

Results

Due to space constraints, we report only the differences
that were significant at p¡0.05. Error bars in graphs de-
note standard error. For this experiment, it is expected
that there is a speed up between Elements 1 and 2 as the
first element is unpredictable while the second element
is perfectly predictable from the first element. It is also
expected that the last element requires more processing
effort due to higher visual complexity.

Figure 2: Element 0=fixation; 1-3=sequence

Familiarisation The average reaction time (RT) dur-
ing online familiarization to the sequences is presented
in Figure 2. We used mixed-effect linear models with
random intercepts for participants to test for differences
in RT across sequence elements (positions) 1-3. Partic-
ipants sped up between Elements 1 and 2 but slowed
down between Elements 2 and 3 such that Element 3
took significantly longer time to process than Element
1.

Offline Test One sample t-tests showed participants
had learnt all three elements in the sequence above
chance performance in the sequence completion task, as
reflected in their accuracy in questions regarding each
element. Note that due to the aforementioned differ-
ence in number of options at test (but not in training),
chance is 0.25 for Elements 1 and 3 and 0.5 for Element
2 (Figure 3). To compare relative learning across the
sequence, accuracy was modeled with items and partic-
ipants as random intercept. Significant differences were
found among all three elements, with the highest ac-

Figure 3: Solid lines mark chance performance.

curacy at Element 2 and lowest accuracy at Element 3.
However, due to difference in chance level, only Elements
2 and 3 can be directly compared. Above-chance perfor-
mance was also found for all elements in sequence selec-
tion for familiarity. There were no significant differences
between coarse-grained and fine-grained test items.

Discussion

Experiment 1 showed that participants were sensitive to
the statistical properties associated with each sequence
element in the online learning measure. Participants dis-
played good performance (7̃5% correct) on all the ele-
ments in the offline test. Both of these results are consis-
tent with a similar prior study by (Siegelman, Bogaerts,
Kronenfeld, & Frost, 2018). In contrast to that experi-
ment, however, participants exhibited overall slower re-
sponses for the final element in the sequence, which we
attribute to the increased visual complexity of that item.
These results provide an important measure of baseline
performance in the task to evaluate the impact of CP
learning in the following experiments.

Experiment 2
Experiment 2 used the same overall procedure but dif-
ferent statistical relationships between elements to probe
how CPs, as well as different levels of ambiguity, in-
fluence behaviour. As in the case of natural language,
disambiguating information can be precede or follow an
ambiguous word. Hence, two sub-experiments were run,
in which the order of the first two elements were inter-
changed so that the first element either provided high
constraint (low entropy, Expt 2a) or low constraint (high
entropy, Expt 2b) for predicting the final element, which
was the same in both experiments. The experiments thus
evaluated the impact of conjunctive probability learning
and on the order of the more constraining versus less
constraining elements on learning. If people integrate in-
formation in a manner analogous to CPs, it is expected
that they would show slowdown according to ambigu-
ity type, as illustrated by overlaps in sequence elements,
over and beyond slowdown caused by visual complexity.
We also expect differences as a result of informativeness
of different elements. However, whether more informa-
tive elements will be faster to process due to the time to
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hone in on a specific interpretation or slower due to the
number of competing predictions is not clear.

Methods

Participants. A separate sample of 60 undergraduate
participants who have not participated in other experi-
ments were recruited for each of the experiments (2a: 15
male; mean age=19; 2b: 22 male; mean age=19).

Figure 4: Example sequences depicting ambiguity types.

Materials. The same elements used in Experiment 1
were re-arranged to reflect different statistical relation-
ships between the items, both in terms of how well
each of the first two elements predicted the last ele-
ment, and in terms of how distinct the last element is
relative to its counterpart. These sequences were struc-
tured to represent three levels of ambiguity in how the
low-entropy (word) representation merged with the high-
entropy (context) representation. Across two contexts,
Element 3 in an unambiguous sequence was identical,
Element 3 in a polyseme sequence overlapped by 25%

(one symbol), and Element 3 in a homonym sequence
was distinct (see Figure 4). Single-symbol elements were
used for the low- and high-entropy elements (words and
contexts), whereas four-symbol elements were used to
denote ”meanings”, so as to enable studying the effects
of representational overlap. Symbols forming each ele-
ment were randomized across participants.

Procedure The procedure was identical to that in Ex-
periment 1, except the items were re-arranged to have
the conjunctive probability structure outlined above and
illustrated in Figure 4 for Experiment 2a (in Expt 2b, the
position of the low-entropy and high-entropy items were
swapped). The sequence completion task now contained
eight coarse-grain and four fine-grain questions regard-
ing Element 3 (meaning) instead of 12 questions of equal
difficulty. In this experiment, fine-grained questions for
both off-line tests refer to items where the choices given
contain both options corresponding to the two possibly
correct third elements, depending on context. Because
the unambiguous sequences evoke the same meaning (El-
ement 3) regardless of context (Expt 2a: Element 2;
Expt 2b: Element 1), tests relating to the second item
(first item in Expt 2b) were omitted since both context
items were valid responses. This left six sequence famil-
iarity items. Having more trials for one offline task type
was due to our aims of efficiently extracting the learning
of coarse- and fine-grained information.

Results

The analytical procedures were the mostly the same as
Experiment 1, only now we collapsed across performance
of the same ambiguity type and applied the linear model
within each type.

Figure 5: Experiment 2a. Element 0=Fixation; 1=Low En-
tropy; 2=High Entropy; 3=Meaning (left)
Experiment 2b. Element 0=Fixation; 1=High Entropy;
2=Low Entropy; 3=Meaning (right)
U = Unambiguous; P = Polyseme; H = Homonym

Familiarisation Experiment 2a. Figure 5 plots the
results from familiarization for Experiment 2 and 2b.
In Experiment 2a, RT for homonym sequences showed
increase across all consecutive elements while polyseme
sequences and unambiguous sequences showed slowdown
only from Element 2 to Element 3. At the second po-
sition (high-entropy), the linear model for RT against
ambiguity type showed homonym sequences to be sig-
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Figure 6: Experiment 2a (top) and 2b (bottom) offline tests.
Horizontal lines denote chance.

nificantly different from unambiguous and polyseme se-
quences, which were comparable to each other. All three
conditions were significantly different at meaning output
(Element 3), with fastest performance for unambiguous
items and slowest performance for homonym items.

Experiment 2b. In every ambiguity type, RT increased
between consecutive elements. Similar to experiment
2a, there was no difference between ambiguity types in
the first position, but at the second position (now low-
entropy), divergence began where homonym sequences
showed significant difference from unambiguous and pol-
yseme sequences and by the third position (meaning out-
put) all three ambiguity types were significantly different
from each other.

Offline Test Experiment 2a. Figure 6 shows the off-
line task accuracy for experiment 2a and 2b. One
sample t-test showed above-chance performance for all
questions, indicating learning. A linear mixed effect
model showed higher performance for polysemes than
homonyms in the second position (low entropy) but no
other differences between ambiguity types. Participants
also performed above chance for the selection of familiar
sequence. Performance did not differ by ambiguity.

Experiment 2b. All question types had above-
chance accuracy. Fine-grained meaning (Element 3)
in homonym was significantly more accurate than pol-
yseme. There was comparable performance between am-
biguity types for other elements. In the sequence selec-
tion task, performance were significantly above chance
for all ambiguity types. Linear mixed model showed
significant differences between polyseme and homonym

sequences. Furthermore polyseme sequences were sig-
nificantly more affected by the presence of context-
inappropriate foils than homonym sequences.

Discussion

Experiment 2 showed an increased slowdown starting at
the integration of contextual element according to the
increased overlap in interpretations across contexts. In
contrast to the unambiguous items and to the results
obtained in Experiment 1, participants were slower to
respond in the online task when learning CPs in am-
biguous sequences. The amount of slowdown in the on-
line task showed that these effects were modulated both
by the amount of overlap in the meaning representations,
and whether the more informative (lower entropy) item
was presented earlier or later in the sequence. The lack
of differentiation at Element 1 suggested that only with
two elements was there enough information to integrate
in order to predict the third element based on CPs. This
is different from words in context-free tasks (Armstrong
& Plaut, 2016) and tasks with contextual constraints for
natural language (Klein & Murphy, 2001), where we see
ambiguity effects for the ambiguous words themselves.
This might be because participants are trying to inte-
grate words both within and across trials in linguistic
tasks, which would lead to task performance more sim-
ilar to that observed for Elements 2 and 3 here (Klein
& Murphy, 2001). Another possibility is that natural
language tasks, as opposed to current artificial stimuli,
engage in consistent, rapid, and automatic processing
which results in detectable effects for the first element,
whereas the slower and less natural processing of artifi-
cial stimuli do not elicit those effects.

We also investigated whether the slowdown for Ele-
ment 3 was due to information integration per se, or
was due to visual complexity. In a separate experiment
not reported here due to space constraints, Experiment
2a was modified to have four symbols for all three se-
quence elements. We nevertheless still found significant
slowdown between Elements 2 and 3 in polyseme and
homonym sequences. This indicates that the slowdown
observed in Experiment 2 was not solely attributable to
differences in visual complexity for Element 3.

In contrast, the offline tests pointed to broadly simi-
lar performance regardless of the order in which the first
two elements in the sequence were presented, with some
detailed differences (e.g., changes in polyseme accuracy
across Experiments 2a and 2b in sequence selection).
This in turn suggests that the exact time-course of pro-
cessing varies based on whether the more or less infor-
mative element is presented first, but the end result of
processing is a relatively similar (although not identical)
order-independent final representation.
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Overall Comparisons
A striking difference between transitional probability
and conjunctive probability sequences is in the long RT
for Element 1. This may be explained by the ability of
the first element to predict the following two elements in
TP whereas both the first two elements need to be con-
sidered to predict the third in conjunctive probability.

In offline sequence completion, performance of high-
entropy and low-entropy elements were similar for Ex-
periments 2a and 2b in spite of their reversal in position
within the sequence, supporting the hypothesis that per-
formance on an element-level is tied to informativeness
of the element. Generally, performances for offline tasks
showed similar levels of accuracy across all experiments,
suggesting that CPs do not pose much extra challenge
in learning as compared to TPs.

General Discussion
Statistical learning is theorised to be a domain-general
ability for detecting regularities across time and space,
yet the bulk of extant research has focused on learning
TPs between elements. This type of statistic, although
clearly very useful for enabling some abilities like speech
segmentation, is insufficient to understand other abili-
ties, such as how words and contexts conjoin to evoke
context-specific meanings in specific contexts (Swaab,
Brown, & Hagoort, 2003). CPs, although certainly not
capable of fully explain such behaviors, may be an alter-
native form of statistical computation that are critical
for such information processing.

The present research merged a recent statistical learn-
ing paradigm, a self-paced learning task, with new statis-
tical relationships among items that relate to CPs. Our
results showed that CPs, like TPs, are learnable. By
varying the amount of information content (entropy) in
each position in the sequence, we were also able to as-
certain that the order in which high- and low-entropy
elements were presented in a sequence modulated online
learning, but nevertheless resulted in similar patterns of
performance in the offline test. Thus, the time-course of
processing may differ based on the order in which infor-
mation is presented (e.g., whether an ambiguous word
like BAT precedes or follows a disambiguating context
such as a discussion of SPORTS), but the end result of
this processing is similar. Similarly, our manipulation of
the relatedness between the “meaning” elements mod-
ulated performance in both the online and offline task,
suggesting that the microstructure of each element can
interact with the overall statistical regularities in the se-
quence. This suggests that multiple types of statistics
among the individual elements of each sequence interact
to determine overall performance.

This research represents an important proof of con-
cept for how an alternative statistic than TPs can be
learnt, and how such a structure could potentially in-

teract with relatedness of interpretation to shape overall
performance. In so doing, it opens up new possibili-
ties for studying how simple statistical learning princi-
ples could interact with the rich structure of linguistic
domains to explain at least some aspects of complex lan-
guage behaviors such as context-sensitive meaning pro-
cessing. As current models of statistical learning do not
look at the problem of integrating constraints across ele-
ments, the current experiments can serve as a motivation
to look at how this type of probability can be incorpo-
rated into such models. The ability to test even the
domain-generality of some new language processes in a
simple form is therefore very valuable. It also repre-
sents an important complement to existing methods us-
ing natural language, which have their own complexities
in terms of controlling for confounding psycholinguistic
properties. Having a new approach for developing con-
vergent insights into statistical learning of CPs and other
language abilities is therefore likely to be a powerful tool
for advancing theory in related domains.
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Abstract

Although process data indicate that people often rely on sim-
plifying processes when choosing between risky options, cur-
rent models of heuristics cannot predict people’s choices very
accurately. To address this apparent paradox, it has been pro-
posed that people might adaptively choose from a toolbox
of simple strategies. But which strategies are contained in
this toolbox? And how do people decide when to use which
decision strategy? Here, we develop a model according to
which the decision maker selects a decision strategy for a given
choice problem rationally from a toolbox of strategies; the con-
tent of the toolbox is estimated for each individual decision
maker. Using cross-validation on an empirical data set, we find
that this model of strategy selection from a personal adaptive
toolbox predicts people’s choices better than any single strat-
egy (even when it is allowed to vary across participants) and
better than previously proposed toolbox models. Our model
comparisons show that both inferring the content of the tool-
box and rational strategy selection are critical for accurately
predicting people’s risky choices. Furthermore, our analysis
reveals considerable individual differences in the set of strate-
gies people are equipped with and how they choose among
them; these individual differences could partly explain why
some people make better choices than others. These findings
represent an important step towards a complete formalization
of the notion that people select their cognitive strategies from
a personal adaptive toolbox.
Keywords: decision making; bounded rationality; strategy se-
lection; heuristics; computational modeling

Introduction
How do people make decisions under risk? This question
is commonly studied by asking people to choose between
gambles as in “Would you prefer a 20% chance of winning
$1000 (Gamble A) or a 95% chance of of winning $200
(Gamble B)?” According to expected utility (EU) theory (von
Neumann & Morgenstern, 1944), people should evaluate all
possible outcomes that each available action might have and
weight them by their respective probabilities. Empirical re-
search, however, has demonstrated that human decision mak-
ing systematically deviates from EU theory (e.g., Kahneman
& Tversky, 1979). These deviations are commonly inter-
preted as an indication of human irrationality. Recent work,
however, suggests that they could also reflect people’s ratio-
nal use of limited cognitive resources (Lieder & Griffiths,
2019; Griffiths, Lieder, & Goodman, 2015).

To date, the most prominent descriptive theory of risky
choice is cumulative prospect theory (CPT; Tversky & Kah-
neman, 1992). CPT accounts for many violations of EU the-
ory by postulating that people’s decision mechanisms sys-
tematically distort the stated probabilities (i.e., overweighting
rare and underweighting common events) and payoffs (di-
minishing sensitivity to additional increases in the outcome
as the outcome gets larger, and an amplification of losses
relative to gains). Interpreted as a cognitive process model,
CPT predicts that information is processed exclusively within
each option and that the information processing is identical
across all problems. Process-tracing studies, however, show
that people often compare options along individual attributes
and that the processing varies across problems. These process
data are instead consistent with processing policies of sim-
ple heuristics (Payne & Braunstein, 1978; Pachur, Hertwig,
Gigerenzer, & Brandstätter, 2013) such as the lexicographic
heuristic, that usually only looks at each gamble’s most prob-
able outcome while ignoring all other possible outcomes. Yet,
model comparisons have found that assuming that people use
a single heuristic across all problems, no single heuristic pre-
dicts risky choices nearly as well as CPT (Glöckner & Pachur,
2012).

One way to resolve this apparent paradox is to postulate
that people are equipped with a toolbox of several, often
heuristic, strategies and that they use different strategies on
different trials. This raises the question of which strategies
their toolbox is equipped with and how people select be-
tween them. Previous work on strategy selection has found
that people adapt their strategy use to the structure of individ-
ual choice problem and the situation’s requirements for speed
versus accuracy (Payne, Bettman, & Johnson, 1988). The ra-
tional strategy-selection model by Lieder and Griffiths (2017)
captures this adaptive flexibility as well as the variability and
the learning-induced changes in people’s strategy selection.
It does not, however, specify the set of strategies from which
people select among. To address this question, Scheibehenne,
Rieskamp, and Wagenmakers (2013) developed a hierarchical
Bayesian measurement model for inferring the contents of the
cognitive toolbox. This model, however, assumes that peo-
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ple’s tendency to select a given strategy is not systematically
related to the choice problem at hand and the requirements of
the current situation. Strategy selection, however, has been
shown to be sensitive to problem-specific features (Payne et
al., 1988).

Here we develop an integrative model of risky choice with
a personal adaptive toolbox. Our approach combines infer-
ring the content of a person’s cognitive toolbox with a ratio-
nal model of strategy selection (Lieder & Griffiths, 2017). We
validate this approach using a large empirical data set of risky
choice data collected by Glöckner and Pachur (2012), test-
ing it against single strategies, non-adaptive toolbox models,
and CPT. Our model constitutes the first complete formaliza-
tion of the notion that strategies are selected from a personal
adaptive toolbox. It thereby enables more accurate inferences
on people’s cognitive toolbox than was previously possible,
and we find that it predicts people’s choices better than single
strategies as well as other existing toolbox models.

The outline of this paper is as follows: We start by describ-
ing 11 extant (heuristic) strategies for risky choice, which
might be contained in people’s toolbox of decision strate-
gies. We then introduce our computational model of the adap-
tive toolbox theory as well as several competitors. Next,
we present a cross-validation method for inferring the set
of strategies considered by an individual decision maker.
We then evaluate our adaptive toolbox model against sin-
gle strategies, non-adaptive toolbox models, and CPT. Fi-
nally, we apply our model to estimate the content of people’s
toolboxes—thereby elucidating why some people make better
decisions than others. In closing, we discus the implications
of our findings for the debate on human rationality as well as
directions for future work.

Heuristics as Models of Risky Choice
A number of different strategies have been proposed as mod-
els of how people make decisions under risk. Following
Glöckner and Pachur (2012), we consider the following ten
heuristic strategies: the priority heuristic (PH), better-than-
average (BTA), tallying (TALLY), probable (PROB), mini-
max (MINI), maximax (MAXI), lexicographic (LEX), equal-
weight (EQW), least-likely (LL), and most-likely (ML).
These heuristics cover a wide range of processing assump-
tions that differ in important aspects, such as whether they
focus exclusively on the payoffs (BTA, TALLY, EQW, MINI,
MAXI) or process both outcomes and probabilities (PH,
PROB, LEX, LL, ML). For example, the minimax heuris-
tic chooses the gamble with the highest minimum outcome
and the least-likely heuristic identifies each gamble’s worst
outcome and then chooses the gamble with the lowest prob-
ability of the worst outcome.1 Additionally, we include the
weighted-additive strategy (WADD), which chooses the gam-
ble with the highest expected payoff. Each of these strategies
breaks ties between gambles by choosing randomly. We con-

1The equiprobable heuristic was not considered as it makes the
same choice predictions as the equal-weight heuristic

sider eleven simple models of risky choice according to which
all people use one single strategy (either PH, BTA, TALLY,
PROB, MINI, MAXI, LEX, EQW, LL, ML, or WADD) to
make all their risky choices. Relaxing the assumption that
all decision makers use the same strategy, we also tested a
more flexible model (BEST), according to which each person
might use a different strategy. That is, the BEST model has
one parameter per person that encodes their strategy and has
to be fitted to their choices.

Toolbox Models of Decision Making
According to the notion of an adaptive toolbox, each person
is equipped with multiple strategies and employs them adap-
tively. In this section, we present three types of toolbox mod-
els that differ in whether the contents of the toolbox are in-
ferred or assumed to be known and in their assumptions about
how strategies are selected.

Strategy Selection Based on a Rational Cost-Benefit
Analysis (RCBA)
Simulation studies by Payne et al. (1988) have shown that
adaptively choosing between simple strategies can allow peo-
ple to make many good decisions even when only little time
is available. Assuming that decision makers are aware of the
relevant properties of the choice problem (e.g., the magni-
tude of the possible outcomes), contextual factors (e.g., time
pressure), and the speed and accuracy characteristics of the
strategies in their toolbox, the adaptive decision maker (Payne
et al., 1988) should choose strategies according to a rational
cost-benefit analysis.

Building on the theory of rational metareasoning (Russell
et al., 1991), the rational cost-benefit analysis (RCBA) model
assumes that the expected payoff of making decision i us-
ing strategy h is integrated with the expected cost of the time
T (h, i) that it would take to do so. Together, they yield an
estimate of the Value of Computation (VOC), defined as

VOC(h, i) = E [R(i,h(i))]−δ ·T (h, i), (1)

where R(i,h(i)) is the payoff of decision h(i) that strategy
h would make in situation i, and T (h, i) is the time it takes
strategy h to make that decision. The balance between these
two factors is determined by the relative opportunity cost δ.
To model how long it takes to execute each strategy (i.e., the
cost), we decompose the strategy into elementary informa-
tion processes (EIPs) as introduced by Johnson and Payne
(1985). Specifically, when a strategy is used to make a deci-
sion in a given choice problem, the number of EIPs required
is recorded as T (h, i). The RCBA model has two free param-
eters that can be estimated to accommodate individual differ-
ences: the set of available strategies H in the toolbox and the
relative opportunity cost δ. For a given choice problem the
strategy with the highest VOC in the toolbox is selected to
make the choice.
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Rational Strategy Selection Learning (RSSL)
The assumption of a full cost-benefit analysis for each strat-
egy, as assumed by the RCBA, may be unfeasible for a bound-
edly rational mind. However, it might be possible to approx-
imate the VOC. As one possible approach to do such an ap-
proximation, the rational strategy selection learning (RSSL)
model assumes that the mind learns to predict each strategy’s
VOC based on the features of the choice problem at hand
(Lieder & Griffiths, 2017). Specifically, the RSSL model as-
sumes that people predict both the expected payoff and the
expected time cost for each strategy (which are important
for then determining the strategy’s VOC) at a given prob-
lem based on a weighted sum of the features of the choice
problem, such as the maximum probability or the range of
outcomes; the weights for the estimation, in turn, are learned
from the payoffs and decision times of past choices (with the
latter is determined based on the number of EIPs the chosen
strategy performed). The learning process is simulated us-
ing Bayesian linear regression and stochastic predictions are
made by sampling from the posterior distribution.

The free parameters of the RSSL model are the number of
samples drawn to predict the performance of each strategy, ζ,
the set of strategies H, the opportunity cost δ and the amount
of prior experience Λ (i.e., on how many choice problems the
predictive models were trained on). For the latter parameter
we assume that participants are equipped with some amount
of prior experience in making choices using their strategies;
hence we let the RSSL model learn from Λ randomly gener-
ated pairs of gambles prior to applying it to our participants’
choices.

Toolbox Models Without Adaptive Strategy
Selection
To assess how the assumption of rational strategy selection
contributes to the predictive accuracy of the adaptive toolbox
models introduced above, we evaluate them against simpler
toolbox models that chooses strategies randomly for a given
choice problem (rather than adaptively based on characteris-
tics of the problems). In our first null model (NULL-TB1),
every time a decision is made a strategy is selected from
the set of 11 strategies introduced above. Our second null
model (NULL-TB2) is like the first one except that the set
of strategies it selects from is estimated on a participant-by-
participant basis. Our third null model (NULL-TB3) extends
the second one by allowing some strategies to be chosen more
frequently than others. Specifically, following Scheibehenne
et al. (2013), each strategy h is selected with probability θh,
which is estimated from the participant’s choices.

Cumulative Prospect Theory
According to CPT, the outcomes xi of a gamble are trans-
formed into subjective values according to the value function

v(xi) = xα
i if xi ≥ 0 (2)

v(xi) =−λ · xα
i if xi < 0, (3)

with an outcome sensitivity parameter α ∈ [0,2] that mod-
ulates the curvature of the value function and captures that
people’s sensitivity to changes in a payoff depend on its mag-
nitude. Values of α < 1 entails a concave value function with
diminishing sensitivity to larger outcomes.

The probabilities p of the cumulative probability distri-
bution function are transformed according to the probability
weighting function

w(p) =
pγ

(pγ +[1− pγ])1/γ
, (4)

whose shape is determined by the parameter γ ∈ [0,2], which
is defined separately for gains and losses. The shape of the
probability weighting function reflects the degree of nonlin-
ear distortion when the probabilities are mapped onto deci-
sion weights. Values of γ< 1 entail an inverse S-shaped prob-
ability weighting function, indicating a reduced sensitivity to
probabilities in the middle range and a relative amplification
of the sensitivity to differences among extreme probabilities.
The overall valuation of a gamble is determined by multiply-
ing each of the subjective values of the gamble’s outcomes xi
by a decision weight πi that follows from the weighted cumu-
lative probabilities of obtaining an outcome at least as good
as xi if the outcome is positive, and at least as bad as xi if the
outcome is negative (for details see Tversky & Kahneman,
1992), and then summing the products:

V = ∑
i

πi · v(xi). (5)

To derive the probability that gamble A is chosen over gamble
B we apply the softmax choice rule to the gambles’ subjec-
tive values V ; this choice rule which has a choice sensitivity
parameter φ (for details see Glöckner & Pachur, 2012).

Next, we describe the data set and our approach to evaluate
the models introduced in the previous sections.

Data
We evaluated our models using data collected by Glöckner
and Pachur (2012), who presented 64 participants with a set
of 276 two-outcome gamble problems. The payoffs of the
gambles ranged from −1000 to 1200 and the set of gam-
bles consisted of pure gain (all payoffs> 0), pure loss (all
payoffs < 0), and mixed (both positive and negative payoffs)
gambles. The presentation of the gamble problems was dis-
tributed over two sessions that were one week apart (i.e., there
are 138 choices from each session). For more information,
see Glöckner and Pachur (2012).

Model Evaluation
We evaluated the predictive accuracy of each of the models
using a simplified cross-validation method (Friedman, Hastie,
& Tibshirani, 2001). Specifically, for each model a score was
calculated indicating how often it correctly predicted the par-
ticipants’ choices on a held-out test set, that was not used to fit
the model’s parameters. The predictive accuracy for a given
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participant was computed by averaging the model’s perfor-
mance in forward prediction (i.e., fitting the model on choice
data from Session 1 (t1) and testing it on data from Session 2
(t2)) and backward prediction (i.e., fitting choices from t2 and
testing on data from t1). To perform forward-prediction and
backward-prediction, the data set was split into three subsets:
a training set, a validation set, and a test set. The training set
was used to fit the parameters (e.g., the subjective time cost
δ) of a given sub-model (e.g., a strategy selection model with
a particular set of strategies). The validation set was used
to select among sub-models based on unbiased estimates of
their generalization errors (e.g., to select the model’s tool-
box). The test set was used to obtain an unbiased estimate
of the selected sub-model’s generalization error that could be
compared to the performance of the other models.

Model Fitting and Prediction
Given a set of choice problems and the corresponding choices
made by an individual, we fitted each model’s parameters by
maximizing the proportion of gambles from the training set
for which the model’s predicted choice agreed with the par-
ticipant’s choice. The model parameters were estimated using
participants’ choices from t1 and then used to predict choices
from t2—and vice versa. For forward-prediction, we used the
138 gamble problems and choices from t1 (training set) and
split the gamble problems and choices from t2 into a valida-
tion set comprising 103 problems and a test set comprising 35
problems. Backward prediction was performed in the same
way as forward prediction except with t1 and t2 reversed.

BEST model For the BEST model, according to which
each participant uses a single strategy across all choice
problems, we determined for each participant the strategy
that achieved the highest accuracy (in terms of overlapping
choices) on the training set choices and the validation set.

RCBA We estimated each participant’s set of strategies H
along with their subjective time cost δ using the following
procedure: In the first step, H included only the strategy h1
with the highest accuracy on the validation set. Next, we de-
termined which strategy h2, if added, would result in the set
of two strategies with the highest predictive accuracy on the
validation set. In doing so, we estimate δ by optimizing the
accuracy of each candidate sub-model on the training set us-
ing Bayesian adaptive directed search (BADS) (Acerbi & Ma,
2017). We then proceeded to evaluate toolboxes that added
a third strategy to the toolbox and re-estimated δ until tool-
boxes containing up to 11 strategies had been evaluated. That
is, we estimated a set Hk of k strategies for each 1 ≤ k ≤ 11
and estimated each participant’s toolbox by the set Hkmax for
which our model achieved the highest predictive accuracy on
the validation set.

RSSL As described above, to define a toolbox of strate-
gies, the RSSL model estimates each strategy’s VOC based

on previous experience with gamble problems. To simulate
this experience, we first randomly generated pairs of two-
outcome gambles; their payoffs and probabilities were sam-
ples from the uniform distributions Unif([−1000,1200]) and
Unif([0,1]) respectively. The amount of prior experience (Λ)
was set to 20000 gamble problems. Each choice problem
was represented by a feature vector comprising the maxi-
mum probability of each gamble, the payoffs associated with
the maximum probability (i.e., the most likely outcome), the
ranges of payoffs within each gamble, and the range of pay-
offs across both gambles. These features were then used to
predict the strategy’s accuracy and effort for the problem at
hand. The number of predictions ζ sampled from the poste-
rior was set to 3. The parameters H and δ for the rational
cost-benefit analyses model (which the RSSL shares with the
RCBA model) were estimated following the same iterative
procedure as described for the RCBA model.

Null models The Null-TB1 model has no free parameters.
For the models NULL-TB2 and NULL-TB3 we estimated the
set of strategies H using the same procedure as for the RCBA
model. For NULL-TB3, we estimated the proportion param-
eters θ1...θ|H| for a toolbox H by solving the constrained opti-
mization problem to maximize the expected accuracy of par-
ticipants’ choices.

Cumulative prospect theory CPT’s parameters were fitted
to minimize G2 based on the observed choices in the respec-
tive session. To reduce the risk of being stuck in local min-
ima, we first conducted a grid search to identify the 20 best-
fitting combinations of parameter values; these combinations
were then used as starting values for subsequent optimization
using the simplex method. For prediction, we derived deter-
ministic choice predictions from CPT.

Results
Predictive Accuracy
Figure 1 shows how accurately single strategies, simple tool-
box models, adaptive toolbox models, and CPT predicted
the risky choices in the test set. Out of the eleven single
strategies, WADD and minimax predicted people’s choices
best, with 65.8% and 61.3% accuracy, respectively. Relax-
ing the assumption that all participants use the same strat-
egy and instead inferring a potentially different strategy for
each participant (i.e., the BEST model) increased predictive
accuracy to 69.4%, which is significantly higher than that
of the best-performing single strategy WADD (t(34) = 2.90,
p = .004). The simplest toolbox model Null-TB, which
chooses randomly among all the strategies, was less predic-
tive of people’s choices than the BEST model (57.5% vs.
69.4%, t(34) = −8.79, p < .001). Its predictive accuracy
increased, however, when we allowed the content of the tool-
box to be estimated for each participant separately (65.7%
vs. 57.5%, t(34) = 6.66, p < .001). Additionally estimating
the relative frequency with which each strategy is selected
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Figure 1: Comparison of how accurately each model predicted people’s choices in the validation set. The single-strategy models
are shown in blue, toolbox models in orange, and CPT in green.

independently of the problem (Null-TB3) further improved
the toolbox model’s predictive accuracy to 66.2% vs. 65.7%
(t(34) = 0.46, p = .64). While the benefit of this choice
problem-unspecific strategy-selection mechanism was rather
small; adding an adaptive, problems-specific selection mech-
anism to the RCBA model drastically improved the accuracy
of the toolbox approach to 73.3% vs. 65.7% (t(34) = 6.50,
p< .001). The RSSL model, which approximates the rational
cost-benefit analysis of strategy selection using the features
of the choice problems as predictive cues, did not perform as
well as the RCBA model (68.6%).

Critically, the RCBA model predicted people’s choices bet-
ter than the best-performing single strategy WADD (t(34) =
8.80, p < .001) and the BEST model (t(69) = 3.02, p =
.003). This suggests that decision makers indeed adaptively
choose from a personal toolbox of strategies when solving a
sequence of different choice problems.

The RCBA model also achieved higher predictive accu-
racy than all null models, NULL-TB (t(34) = 15.51, p <
.001), NULL-TB2 (t(34) = 6.51, p < .001) and NULL-TB3
(t(34) = 7.56, p < .001). These results corroborate the use-
fulness of combining inference about the content of the tool-
boxes with a model of how people’s strategy choices are in-
formed by the specific requirements of each individual deci-
sion. This finding strongly supports adaptive toolbox theo-
ries of human decision-making (Gigerenzer & Selten, 2002)
in general and the idea of an adaptive personal toolbox in
particular. Despite the substantial improvement in predictive
accuracy we achieved by combining inference on the toolbox
with adaptive strategy selection, the resulting RCBA model
predicted people’s choices not as well as CPT (73.3% vs.
76.9%, t(34) = 3.03, p = .003). While the RCBA model may
thus not capture all aspects of how people make decisions, it
being a process model still affords many practical advantages
for understanding people’s choices that cannot be obtained
by modeling the choices with CPT (but see Pachur, Suter,

& Hertwig, 2017). For example, the estimated contents of
the toolbox and estimated parameters of the strategy selection
mechanism provide a window onto the cognitive mechanisms
underlying risky choice and how they vary across individuals.

Comparing Predicted and Actual Performance
Next, we compared the models and people in terms of their
performance of their risky choices. Performance here is mea-
sured as the average expected value (EV) of the chosen gam-
bles. WADD achieved an EV of 149.02, which therefore rep-
resents the upper bound on how well one could perform in
this task. The RCBA model predicted a higher performance
than what was actually observed for people’s choices (143.41
vs. 130.83, t(69) = 5.57, p < .001). CPT, on the other hand,
predicted a lower performance than people actually achieved
(113.1 vs. 130.8, t(69) = 5.68, p < .001). The performance
of the RSSL model and the toolbox model Null-TB3 fell in
between, with 124.83 EV and 126.81 EV, respectively, and
were closer to people’s actual performance. These findings
suggest that while people may not choose strategies opti-
mally, they may still be substantially more resource-rational
than CPT would make us believe.

Which Strategies Are In The Adaptive Toolbox?
Given our finding that the best-suited model to predict peo-
ple’s choices is the RCBA model, we next analyze its es-
timated parameters H and δ. Figure 3 shows how many
strategies were in the estimated toolboxes of all participants.
28.91% of all toolboxes included 4 strategies, and 60.15% of
all toolboxes included between 3 and 5 strategies. The aver-
age toolbox size was 4.3.

Next, we counted how often each of the eleven strategies
was included in the estimated toolboxes (see Figure 2). In-
terestingly, with 79.68% and 71.09% WADD and minimax
are the most frequently included strategies in the toolboxes.
These two strategies also predicted people’s choices most ac-
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curately (see Figure 1).
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Figure 2: Percentage of cases each strategy was included in
the toolboxes estimated by the RCBA model.

Minimax is especially useful as a risk-minimizing strategy
when the probabilities of the possible outcomes are similar.
The high inclusion rate of WADD suggests that at least when
there are only two choices with only two possible outcomes,
maximizing expected value is a viable and cognitively feasi-
ble strategy.

Furthermore, our results suggest that individual differences
in decision quality might be due to the fact that different peo-
ple are equipped with different toolboxes. For example, par-
ticipants whose inferred toolbox included WADD performed
better (144.59 EV) than participants whose inferred toolboxes
did not include WADD (140.52 EV). Conversely, participants
whose toolboxes were estimated to contain minimax achieved
a lower performance than participants who did not use mini-
max (140.99 EV vs. 152.91 EV). These observations suggest
that inferences obtained with the RCBA model can shed light
on why and how people make the choices that they make. Ad-
ditionally, our analysis identified another source of individual
differences in decision performance: people’s subjective cost
of their time and effort. Specifically, our parameter estimates
revealed a negative rank correlation between performance (in
terms of EV) and the subjective opportunity cost δ (Spear-
man’s ρ(62) = −0.58, p < .001), reflecting that higher op-
portunity costs favour less resource-intensive strategies even
when they lead to less accurate decisions.

Finally, we found that the estimated size and content of the
toolbox and the objective opportunity cost together explained
27% of the variance in individual differences in performance
(R2 = 0.27, F(21,106) = 2.25, p < .001).
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Figure 3: Toolbox sizes estimated by the RCBA model.

Discussion
We presented a model that represents the first complete for-
malization of the adaptive toolbox metaphor of human judg-

ment and decision making (Gigerenzer & Selten, 2002). Our
personal adaptive toolbox model predicted people’s risky
choices better than single strategies, non-adaptive toolbox
models, or adaptive toolbox models that assume that all de-
cision makers have the same strategies in their toolbox. Fur-
thermore, the mechanistic nature of our model makes it pos-
sible to draw inferences about the cognitive architecture and
processes underlying people’s decisions. Furthermore, unlike
CPT, our rational model of strategy selection can be applied
to a wider range of domains, including inferential problems,
such as those used by Gigerenzer and Goldstein (1996), by
adapting the set of strategies (which can be deterministic or
stochastic) and the reward function.

The success of the model that chooses strategies accord-
ing to a rational cost-benefit analysis provides additional sup-
port for the view that people make rational use of their lim-
ited cognitive resources (Griffiths et al., 2015; Lieder & Grif-
fiths, 2019). Our model is an important step towards reverse-
engineering the mechanisms underlying the adaptive flexibil-
ity of human decision-making and individual differences in
risky choice. But the mechanisms by which people efficiently
approximate its rational cost-benefit analysis and the resulting
suboptimalities need be investigated further before any defi-
nite conclusions can be drawn.

Future work will revisit the comparison with CPT using
more complex decision problems, including problems with
many alternatives and many possible payoffs (Payne et al.,
1988), where people’s selective processing of only a small
subset of the available information might have a notable im-
pact on their choices. We will also compare our models to
other psychologically plausible models of risky choice in-
cluding the utility-weighted sampling model (Lieder, Grif-
fiths, & Hsu, 2018) and decision-field theory (Busemeyer &
Townsend, 1993; Rieskamp, 2008; Bhatia, 2014) and apply
likelihood-based model selection methods.

Future work will refine the strategy selection learning
model with more realistic assumptions about decision mak-
ers’ prior experience and the features they use to predict the
performance of their strategies. In particular, future refine-
ments of this model might take into account that people’s
strategy choices are informed by them learning from how well
each strategy worked when they previously used it in the real
world. This prior experience could be simulated by training
the RSSL model on choice problems that are more like those
that people encounter in everyday life (e.g., in having more
possible outcomes and larger differences between the alterna-
tives’ expected values). The eleven strategies considered here
are unlikely to cover all the decision mechanisms people use.
Hence, we will consider additional strategies derived from
resource-rational analysis (Lieder & Griffiths, 2019; Lieder,
Krueger, & Griffiths, 2017; Gul, Krueger, Callaway, Griffiths,
& Lieder, 2018) and process tracing.

2383



References
Acerbi, L., & Ma, W. (2017). Practical Bayesian Opti-

mization for model fitting with Bayesian adaptive direct
search. In I. Guyon et al. (Eds.), Advances in neural in-
formation processing systems 30 (pp. 1836–1846). Curran
Associates, Inc.

Bhatia, S. (2014). Sequential sampling and paradoxes of risky
choice. Psychonomic Bulletin & Review, 21(5), 1095–
1111.

Busemeyer, J. R., & Townsend, J. T. (1993). Decision field
theory: a dynamic-cognitive approach to decision making
in an uncertain environment. Psychological review, 100(3),
432.

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The el-
ements of statistical learning (Vol. 1) (No. 10). Springer
series in statistics New York, NY, USA:.

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the
fast and frugal way: models of bounded rationality. Psy-
chological review, 103(4), 650.

Gigerenzer, G., & Selten, R. (2002). Bounded rationality:
The adaptive toolbox. Cambridge, MA: MIT Press.
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Abstract

People are often faced with choices where there is a conflict
between seeking reward and gathering information. In many
of these cases there exists a functional relationship between
the features associated with actions and their corresponding
rewards. Accounts of how people make decisions in these
circumstances have not considered how peoples’ strategies
depend on the complexity of this function, as well as the
person’s goal. In a sequential decision making task we found
that people chose between a number of different exploration
strategies, but that strategy selection did not necessarily align
with goal or account for function complexity.
Keywords: Decision Making; Exploration-Exploitation;
Contextual Multi-Armed Bandits

Introduction
In many of the decisions that people make in life there is a
conflict between choices that are likely to have good results
and choices where the result is more uncertain, but could
possibly lead to a better outcome than the known option. For
example, one might choose to eat at a familiar restaurant that
is known to be good, or a new restaurant where the quality
could be either better or worse. This trade-off is known as
the explore-exploit dilemma. A structurally similar problem,
with a slightly different goal is identifying the best candidate
from a set of possible choices within a fixed time frame. For
example, someone planning a party might wish to sample
several possible caterers in order to find who will provide the
best meal. Unlike the dilemma of choosing a restaurant for
dinner, it is only important that the best option is found; the
quality of any single meal is unimportant.

A common task for studying how people navigate
explore-exploit dilemmas is the multi-armed bandit (MAB)
task (Steyvers & Wagenmakers, 2009; Lee, Zhang, Munro,
& Steyvers, 2011), where a decision-maker chooses between
discrete actions, each with an unknown reward distribution,
in order to maximize total reward over the course of several
trials. While these tasks provide a simple environment for
studying decision-making, real world tasks often contain
additional contextual information about how rewarding an
option might be. For example, we might have the option
between two new restaurants, where the first has a menu
with similar items to a past favorite, and the second has a
menu that is full of new options. If we want to maximize
the chance we will be satisfied, it would be prudent to pick
the first. If we want to learn something new, we should

choose the second. More formally, we can describe each
option, ai with the set of features si, with ai yielding the
reward ri = f (ai,si), where f is a reward function mapping
actions and features (or contexts) to rewards. We can call
this a contextual multi-armed bandit (CMAB) (Li, Chu,
Langford, & Schapire, 2010). In this setting, successful
learners must make inferences about what this function might
be – especially if there are many actions to choose from.

How people learn mappings between inputs and outputs,
or function learning, has been widely studied (DeLosh,
Busemeyer, & McDaniel, 1997). Recently, Gaussian process
regression (GPR) has been presented as a model of function
learning (Lucas, Griffiths, Williams, & Kalish, 2015). In
addition to being a flexible non-parametric model capable of
representing a wide range of functions, GPR is distinct from
other accounts in that it directly allows for the representation
of uncertainty in outputs. For CMAB tasks, this lays
bare the trade-off between exploration and exploitation:
An exploration-oriented agent can target options where
uncertainty is greatest, an exploitation-oriented agent can
target options with the highest expected reward, and it
is possible to strike a balance between the two extremes.
Bayesian optimization (Snoek, Larochelle, & Adams, 2012)
is a flexible framework for transforming predictions from
GPR models into actions. Several algorithms have been
proposed for handling these tasks (Snoek et al., 2012) and
have shown to both perform well (Srinivas, Krause, Kakade,
& Seeger, 2010) and describe human behavior (Schulz,
Konstantinidis, & Speekenbrink, 2018) in CMAB tasks.
However, these accounts do not consider how one’s strategy
might be contingent on their ability to learn the reward
function. This ignores a prominent result from the function
learning literature: that some families of functions (e.g.
linear) are easier to learn than others (e.g. periodic) (Kalish,
Lewandowsky, & Kruschke, 2004).

While most work on MABs and CMABs study tasks
where the goal is to maximize cumulative reward, there
are circumstances where a decision-maker might instead be
interested in finding the best action (Audibert & Bubeck,
2010). In the case of CMABs, this can be understood in terms
of optimization, where the goal is to find some configuration
of features (contexts) that maximize an objective function
(reward). Bayesian optimization has shown to be of great
practical use in these cases, in particular when the objective
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function is expensive to evaluate as in the optimization
of machine learning algorithm hyperparameters (Snoek et
al., 2012). Bayesian optimization typically selects actions
that have both a high expected reward and are highly
uncertain, as in upper confidence bound (Auer, Cesa-Bianchi,
& Fischer, 2002) and expected improvement (Mockus, 1974)
algorithms. While these are reasonable strategies when
the goal is to earn large rewards on each trial while still
exploring new actions, they are ill-suited for optimization,
where rewards on each trial are not important. Algorithms
based instead on reducing uncertainty about the maximum of
the reward function have been recently introduced (Hennig
& Schuler, 2012; Wang & Jegelka, 2017) and appear better
suited to this goal. Other recent work has examined the
idea that people adapt their strategies to the tasks they face,
accounting for both the expected performance of a strategy
and the cost (e.g., in time) of executing it (Lieder, Helen,
& Griffiths, 2017). If one hypothesis is that people adapt
their strategies to the task at hand, and distinguish between
optimization problems and ongoing trade-offs between
exploration and exploitation, another is that people use a
“one size fits all” strategy that supports multiple goal types
reasonably well, as suggested by some past results, e.g.,
(Borji & Itti, 2013; Wu, Schulz, Speekenbrink, Nelson, &
Meder, 2018).

For both reward maximization and optimization problems,
good strategies must seek out information or reduce
uncertainty. They can do this in an explicit or directed
way, or achieve it implicitly by adopting a stochastic policy.
In directed exploration one seeks actions that are most
informative about the underlying reward distributions. One
popular class of algorithms choose actions with high upper
confidence bounds (UCB) (Auer et al., 2002), which typically
include a free parameter β that controls the width of the
confidence bound, directly controlling the preference for
exploration over exploitation. In the case of UCB, exploration
is directed by uncertainty about individual actions, where
those with high uncertainty about their reward are more
appealing than those with low uncertainty. In contrast,
entropy-based strategies (Hennig & Schuler, 2012; Wang
& Jegelka, 2017) are directed by uncertainty about global
properties of the function – in particular uncertainty about
the function maximum. In stochastic exploration, one
seeks to explore the space of actions by applying some
level of randomness to one’s actions. While these methods
are implicitly sensitive to reward uncertainty, they do not
explicitly minimize it. Thompson sampling (Thompson,
1933) applies randomness to actions by first sampling
a reward structure given previous observations, and then
choosing the best action given the sampled rewards. Another
method of random exploration is to choose actions with
probabilities based on the softmax function

p(at = k) =
exp[mt(k)/τ]

∑k′∈A exp[mt(k′)/τ]

where mt(k) is the expected reward of arm k on trial t, and τ

controls the level of randomness of actions, with all actions
being equally likely as τ → ∞ and one deterministically
choosing the action with the highest expected reward as
τ → 0. While evidence for both directed and random
exploration has been found in human behavior (Gershman,
2018), it has yet to be determined whether the criteria for
directed exploration is dependent on the goal of the task or
is exclusively based on uncertainty about individual actions,
and under what conditions random exploration might be
preferred over directed exploration.

Many of the real world explore-exploit dilemmas faced
by people require learning a mapping between contexts
and rewards, making CMABs an attractive environment for
studying this phenomenon. While Bayesian optimization and
other GPR-based approaches have been widely demonstrated
to be a good model of human behavior in these tasks, there
has been little research investigating how these frameworks
capture different behaviors across distinct environments.
While there has been work demonstrating that people are
capable of learning functions and applying that representation
to their decisions (Schulz et al., 2018), it is unclear how
people’s strategies might change when faced with functions
of varying complexities, though some have varied function
complexity by comparing smooth and rough non-parametric
functions (Wu et al., 2018), and compared linear to quadratic
reward functions (Stojic, 2016). While Bayesian optimization
has been shown to describe human behavior well both when
the goal is to maximize cumulative reward and when the
goal is to find the best arm, it is unclear whether people
choose a strategy to match their goal or use a more general
strategy regardless of goal. Our contribution is to demonstrate
how these factors influence people’s strategies. We introduce
a model based on Bayesian optimization that is capable
of representing a rich set of behaviors revealed in prior
work, and how different reward function complexities and
goals might result in different parameterizations describing
behavior.

Methods

Experiment. We designed a CMAB task in which
participants were allowed to click one of several “actions”
represented by a set of vertical bars situated along the x-axis
of a plot. Upon clicking a bar, the reward of the associated
action was revealed to the participant by displaying the height
of the bar. Actions (bars) were related to rewards by their
position on the x-axis: the ith bar from left to right, ai,
was associated to the reward ri by the function ri = f (ai, i).
We tested behavior on CMABs with three different reward
functions of varying complexity:

flinear(ai, i) = i

fquadratic(ai, i) =−(i−55)2

fsinc(ai, i) =
sin(i/2−30.000001)

i/2−30.000001
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Reward functions were scaled to fall within minimum and
maximums drawn from uniform distributions, U(0,100) and
U(400,500) respectively. Participants were shown 10 reward
sample functions before they began the task. The quadratic
and sinc samples were generated by uniformly sampling
the location of the maximum, the function minimum, and
function maximum (U(1,80), U(0,100), and U(400,500)
respectively). Linear functions were generated by samples
of the intercept and slope drawn from uniform distributions
U(0,250) and U(0,6.25).

Participants were given one of two possible goals: In
the maximum-finding condition, participants were asked
to find the bar associated with the maximum possible
reward. Participants final score in this condition was equal
to the maximum reward uncovered across all trials. In
the score-maximization condition, participants were asked to
maximize their cumulative scores across all trials.

Procedure and participants. Participants (n=69, mean
age=33.0 years) were recruited using Amazon’s Mechanical
Turk service. They were randomly assigned one of 6 (3
reward functions × 2 goals) conditions. They were first
shown 10 different sets of 80 bars with their heights already
revealed. Depending on a participant’s function condition,
the heights of the bars in each set was determined by either
linear, quadratic, or sinc functions. Participants were then
shown a new set of 80 bars, each 500 pixels tall and gray
in color, and instructed to either find the bar with the largest
height (find-max) or to maximize the cumulative heights of
bars clicked across all trials (max-score) for a new set of
bars. Participants were invited to click on any of the 80
bars over 25 trials. When a gray bar was clicked its color
changed to black and its height was adjusted to match its
corresponding reward (between 0 and 500 pixels). After
each trial the reward associated with the chosen bar was
used to update the participants goal-specic reward, displayed
on the screen alongside the bars. On each trial, any bars
that were clicked on previous trials remain black and the
height in pixels of their associated rewards. To incentivize
performance participants were given a bonus up to $0.75
proportional to the total number of points they earned.

Model

Our goal was to uncover strategies used in an CMAB task
with different reward function complexities and goals. We
take inspiration from Bayesian optimization, taking action
probabilities to be a function of a GPR predictions of the
reward function. Like previous accounts, we characterize
exploration as a mixture of directed and random behavior.
However, While previous accounts have assumed that
directed exploration only uses uncertainty about each action,
we extend this framework to include uncertainty about the
function maximum.

In GPR a kernel function is used to encode prior beliefs
about a function. We use the radial basis function (RBF)

kernel:

k(x,x′) = σ
2
var exp(− (x− x′)2

2l2 )

where l determines the smoothness of the function, or how
quickly the similarity of two points falls off as they become
more distant, and σ2

var determines the average distance of
the function from its mean. This kernel function is well
suited to flexibly modelling function learning, as it is capable
of learning any smooth function. For each reward function
condition a set of 10 functions from the same family that were
shown to participants prior to the CMAB task were used to fit
the hyperparameters of the kernel function by maximizing the
log marginal likelihood of the sample functions (Rasmussen
& Williams, 2005). Fitting kernel hyperparameters in this
way for each function allows us to model participants’
expectations about the smoothness of the reward function,
given the observed set of sample functions.

To estimate each participant’s trial-by-trial predictions we
compute the posterior mean and variance of the reward
function at each action:

mt(a) = kt(a)>(Kt +σ
2
noiseI)−1rt

vt(a) = k(a,a)−kt(a)>(Kt +σ
2
noiseI)−1kt(a)

where k(a,a′) is the covariance of two actions given
the hyperparameters learned from a participant’s training
functions, kt(a) is a vector of covariances for the action a
and all previous observed actions, and Kt is the covariance
matrix of all previously observed actions. σ2

noise is the
noise observed in the data. The reward functions in our
task are deterministic, so we set this to a very small but
non-zero number 10−4 to avoid numerical instability. We
encode exploration directed by uncertainty about the function
maximum by approximating the mutual information between
the reward r revealed by action a and the highest possible
reward r∗, I({a,r};r∗), the approximation used in max-value
entropy search (Wang & Jegelka, 2017). We define the utility
of each action on trial t to be

u(a,β,λ) = mt(a)+βvt(a)+λI({a,r};r∗)

and the probability of each action was defined using the
softmax function

p(a|β,λ,τ) = exp[u(a,β,λ)/τ]

∑a′∈A exp[u(a′,β,λ)/τ]

We use an infinite groups model (Navarro, Griffiths,
Steyvers, & Lee, 2006) to uncover common strategies across
participants. Using the probability of actions, if the ith

participant belongs to group z,

p(ai
T |gi = z) =

T−1

∏
t

p(ai
t+1|ai

t ,r
i
t ,βz,λz,τz)

where ai
T is the set of all actions performed by the ith

participant. Groups were assigned priors according to a
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stick-breaking procedure (Ishwaran & James, 2001). Under
this prior we imagine a stick of length 1 that we break in two,
keeping the length of the first stick to be the prior probability
of our first group. We can then break the remaining piece
in two again, with one of its pieces representing the prior
probability of our second group. This process can be
extended to represent a countably infinite number of groups,
with the sum of their prior probabilities guaranteed to sum
to 1. The stick-breaking prior has one parameter, α, that
determines the dispersion among groups, with a higher α

resulting in likelihoods being spread across a greater number
of groups. We place a Gamma(a,b) prior over α, setting
a = b = 10−10 to represent our ignorance of the true number
of groups in the data. We set Gamma priors with a = b = 0.1
over β, λ, and τ to represent equal preferences for each type
of exploration.

Results
We used the python package PyMC3 (Salvatier, Wiecki, &
Fonnesbeck, 2016) to perform inference. MCMC sampling
was performed using the NUTS sampler, with 4 chains of
1000 samples each.

To inspect the range of strategies used by participants
we assigned each participant to their most likely group,
maximizing p(g|ai

T ) for the i-th participant. Nine groups
were assigned at least one participant. We summarize the
behavior of each of these groups by their parameter means
in Table 1. The largest four groups were assigned 48 out
of 69 participants. The largest group has a much larger
average τ than other groups, indicating that participants in
this group heavily utilized random exploration. The second
largest group had a larger average β and λ and smaller average
τ, indicating that participants in this group utilize directed
in addition to random exploration, using both uncertainty
about each action and uncertainty about the reward function
maximum. The third largest group also had a relatively large
average β and λ, but a smaller average τ than the previous
group. This indicates that participants in this group also used
both forms of directed exploration, but relied much less on
random exploration. The fourth largest group had relatively
low average values for all three parameters, indicating that
participants in this group did comparatively little exploring,
instead choosing actions based on their expected reward.
We refer to these groups as stochastic, mixed, directed, and
greedy respectively.

To better understand how behaviors differed between
groups, we measure the distance between participants’
actions and both their previous action and their reward
function maximum across trials (Figure 1). First, we plot
the distribution of the distances between a participant’s action
and their previous action. Participants across all four of
the top groups made a large proportion of their actions in
close proximity to their previous action. This proportion was
largest for the random group, followed by mixed, directed,
and greedy. As we might expect, participants in the random

group demonstrated more aggressive exploration with respect
to their previous action, while those in the mixed and directed
groups were more reserved. In contrast, participants in the
greedy group rarely deviated far from their previous action.
Next, we plot the median distance from the reward function
maximum by trial for each group. For the random and
mixed groups, the median distance from the reward function
maximum stays level across trials, indicating that participants
in these groups favor exploration over converging on the
best action. For the directed and greedy groups, the median
distance decreases towards zero with the number of trials.
While the distance continues to decrease and eventually
flattens out for those in the greedy group, the distance for
those in the directed group increases after a number of
trials, indicating that participants were willing to continue
exploring even after the region containing the reward function
maximum was located.

If participants were selecting there strategy based on
their goal, we would expect the actions of participants in
the max-score condition to be best predicted by a strategy
that minimizes balances exploration and exploitation, and
those of participants in the find-max condition to be best
predicted by a strategy that minimizes uncertainty about
the reward function maximum. While none of the groups
show a preference for the source of uncertainty used
to direct exploration (either about rewards of individual
actions or the function maximum), these groups do differ
in their preference for random and directed exploration.
To investigate how reward function complexity and goal
determine how people choose between these strategies we
compare how well each strategy predicts the actions of
participants grouped by experimental condition (Table 2).
Participants selecting a strategy in the max-score goal
condition are expected to choose a strategy that favors
actions with high rewards, while those in the find-max
condition are expected to choose a strategy that puts more
of an emphasis on exploration. Our results contradict this
assumption, with those in the max-score condition best
described by the directed strategy and actions of those in
the find-max condition best described by the greedy strategy.
With function learning being increasingly difficult as function
complexity increases, participants in less complex reward
function conditions are expected to use this learning to
engage in more directed exploration, while those in the
more complex reward function conditions are expected to
rely more heavily on random exploration. Our results show
some evidence for this, as actions of participants in the linear
condition were best explained by the directed strategy, while
those in the quadratic condition were best explained by the
mixed strategy. However, our results also show that the
actions of those in the sinc condition were also best described
by the directed strategy rather than the mixed or random
strategy as we might expect.
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β λ τ N Participants

Stochastic 0.29 ± 0.17 6.01 ± 8.87 5.23 ± 3.57 15
Mixed 1.58 ± 1.15 8.56 ± 8.32 1.77 ± 2.43 14
Directed 1.4 ± 1.29 11.19 ± 9.21 0.24 ± 0.22 11
Greedy 0.77 ± 0.44 0.61 ± 0.84 0.14 ± 0.19 8

0.53 ± 0.27 4.06 ± 5.35 1.3 ± 1.14 7
1.21 ± 0.55 6.38 ± 9.77 1.32 ± 0.61 6
0.87 ± 0.33 8.77 ± 9.51 0.22 ± 0.24 4
3.12 ± 2.33 0.99 ± 0.48 1.82 ± 1.14 2
1.12 ± 0.39 6.98 ± 6.09 0.89 ± 0.63 2

Table 1: Mean parameters for each group

Figure 1: Distance of each action from the previous actions (top) and the reward function maximum (bottom) for the top four
groups compared to a random baseline (dashed lines) reflecting uniform random action selection averaged over all conditions.
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Discussion
In this study we compared behavior in an explore-exploit
task across different reward function complexities and goals.
While previous studies have characterized behavior in these
tasks as some combination of exploitation and directed and
random exploration, it was uncertain how these components
might vary with different environments. Additionally, while
previous studies only considered uncertainty about individual
actions in directed exploration, it had yet to be established
how measures of global uncertainty, such as uncertainty about
the function maximum, might also be used by people to guide
exploration.

Participants in this study each completed a CMAB task
where the underlying reward function was either linear,
quadratic, or sinusoidal, and their goal was to either maximize
their score across all trials (max-score) or to find the best
action (find-max). We found that behavior could be described
by a relatively small set of strategies, characterized by
varying exploration parameters. We found some evidence
that strategy was impacted by reward function complexity,
as participants in the linear condition were better described
by a directed exploration strategy while those in the quadratic
condition were better described by a mixed strategy utilizing
both stochastic and directed exploration. However, those in
the sinc condition were also best explained by a directed
strategy, suggesting that these participants relied less on
stochastic exploration than those in the quadratic condition
despite their relatively complex reward function. Finally, we
found that global uncertainty was indeed a measure used in
directed exploration alongside uncertainty about individual
actions, though we did not find evidence that preference for
one form of uncertainty over the other was determined by
goal. However, this could have been due to participants
underestimating the complexity of the sinc reward function
by only exploring around local maxima. Accounts of
how reward function complexity influences strategy selection
should also consider perceived complexity.

While we were able to describe a wide range of exploration
behaviors, it is likely that alternative strategies exist.
For example, some have suggested that people approach
explore-exploit tasks in two qualitatively different phases,
starting with a “pure exploration” phase, designed to reveal
what options are most rewarding, and switching to a “pure
exploitation” phase focusing on the most rewarding options
(Steyvers & Wagenmakers, 2009). Another possibility is
that some people do not utilize information about the reward
function at all, instead exploring locally as often observed
in ecological search strategies (Hills, 2006). A complete
account of the types of strategies that people utilize under
different circumstances should include a wider array of
possible sources for guiding exploration.
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Abstract

Ingroup favoritism, the tendency to favor ingroup over out-
group, is often explained as a product of intergroup conflict, or
correlations between group tags and behavior. Such accounts
assume that group membership is meaningful, whereas human
data show that ingroup favoritism occurs even when it confers
no advantage and groups are transparently arbitrary. Another
possibility is that ingroup favoritism arises due to perceptual
biases like outgroup homogeneity, the tendency for humans to
have greater difficulty distinguishing outgroup members than
ingroup ones. We present a prisoner’s dilemma model, where
individuals use Bayesian inference to learn how likely oth-
ers are to cooperate, and then act rationally to maximize ex-
pected utility. We show that, when such individuals exhibit
outgroup homogeneity bias, ingroup favoritism between arbi-
trary groups arises through direct reciprocity. However, this
outcome may be mitigated by: (1) raising the benefits of coop-
eration, (2) increasing population diversity, and (3) imposing a
more restrictive social structure.

Keywords: ingroup favoritism; outgroup homogeneity; direct
reciprocity; Bayesian learning; conditional expected utility

Introduction
Ingroup favoritism is the tendency for people to favor
members of their own group over members of other
groups. It manifests as a bias in how people evaluate oth-
ers (Brewer, 1979; Galinsky & Moskowitz, 2000), distribute
rewards (Tajfel, Billig, Bundy, & Flament, 1971), mete out
punishments (Bernhard, Fischbacher, & Fehr, 2006), and de-
cide whether or not to cooperate (Dorrough, Glöckner, Hell-
mann, & Ebert, 2015). Though readily elicited in both natu-
ral (Rand et al., 2009) and arbitrary groups (Efferson, Lalive,
& Fehr, 2008; Galinsky & Moskowitz, 2000), the existence
of ingroup favoritism is puzzling. It often neither improves
the population’s average outcome, nor maximizes that of the
individual (Nakamura & Masuda, 2012). Disagreement even
exists as to whether ingroup favoritism is better understood as
a preference for improving the welfare of ingroup over out-
group, or as a product of divergent beliefs about how these
groups behave (Everett, Faber, & Crockett, 2015). However,
empirical work suggests that people generally expect ingroup
members to act in a cooperative manner (Brewer, 2008; Ya-
magishi, Jin, & Kiyonari, 1999), and meta-analysis confirms
that this expectation is indeed stronger toward ingroup than
outgroup (Balliet, Wu, & De Dreu, 2014). A promising av-
enue for explaining ingroup favoritism therefore seems to be
understanding how people arrive at these beliefs. In short,

why are ingroup members seen as more cooperative than out-
group ones?

Many theoretical models have addressed this question.
One common approach is to assign phenotypic tags to indi-
viduals, and then see what is required to elicit ingroup fa-
voritism. Such models have shown that ingroup favoritism
may be selected for when tags are not arbitrary, but rather cor-
relate with behavioral traits (Jansen & van Baalen, 2006; Ma-
suda & Ohtsuki, 2007; Traulsen, 2008). These traits typically
include willingness to cooperate, or suitability as a cooper-
ative partner. Ingroup favoritism may thus occur when tags
convey information useful in guiding the individual’s own
actions. Other models explain ingroup favoritism as a prod-
uct of intergroup conflict (Choi & Bowles, 2007; Garcı́a &
van den Bergh, 2011; Konrad & Morath, 2012), where group
membership may be arbitrarily decided, but remains relevant
from a competitive point of view. However, a classic em-
pirical finding is that humans show ingroup favoritism even
when groups are both explicitly arbitrary and functionally ir-
relevant (Billig & Tajfel, 1973; Locksley, Ortiz, & Hepburn,
1980). So why should ingroup favoritism occur even when
group membership is meaningless, and such outcomes are
maladaptive?

One explanation is that ingroup favoritism may arise
through cognitive or perceptual limitations (Masuda, 2012).
For instance, humans are known to perceive outgroup mem-
bers as more similar to one another than ingroup members, a
bias known as outgroup homogeneity (Judd & Park, 1988).
By approximating individuals’ characteristics through a sin-
gle group stereotype, this may serve to reduce cognitive bur-
den (Masuda, 2012). Masuda (2012) studied the implications
of such a bias on indirect reciprocity, where cooperation is
conditioned on whether or not partners maintain a good repu-
tation. In the simplest such scheme, an individual’s reputation
improves when it is observed to cooperate, and suffers when
it is observed to defect; in more complicated schemes, reputa-
tion may, for example, also be gained by being observed pun-
ishing a defector, or lost by being observed cooperating with
one. To simulate outgroup homogeneity, individuals were al-
lowed to observe accurate reputation information about in-
group members, but only group-level information about out-
group members. Ingroup favoritism occurred, but only when
additional assumptions were invoked, such as individuals us-
ing a different rule for attributing reputation to ingroup than
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to outgroup members. A follow-up model by Nakamura and
Masuda (2012) eliminated the need for such double stan-
dards, and also produced ingroup favoritism through indirect
reciprocity. However, this time the result was contingent on
reputation information being only shareable within groups,
but not between them.

Here, we show that complex rules for assigning and shar-
ing reputation are not needed to explain ingroup favoritism
between arbitrary groups. Rather, outgroup homogeneity
bias may drive ingroup favoritism through a much simpler
mechanism: direct reciprocity (learning through personal ex-
perience). We create an agent-based computational model,
where individuals are assigned arbitrary group tags, and then
play a prisoner’s dilemma (PD) game. These individuals use
Bayesian inference to learn how likely others are to cooper-
ate or defect, and then act rationally by maximizing their con-
ditional expected utility. We show that introducing outgroup
homogeneity bias into this minimal setting is sufficient to pro-
duce strong ingroup favoritism, and propose several ways of
mitigating this outcome.

Model
Prisoner’s Dilemma
We consider a PD game where pairs of neighboring individ-
uals interact by either cooperating (C) or defecting (D). The
game is parameterized by two values: the benefit of receiving
cooperation, b, and the cost of cooperating, c. When both in-
dividuals cooperate, both receive the benefit of cooperation,
but pay the cost of cooperating, b− c. If one individual de-
fects while the other cooperates, then the cooperator pays the
cost while receiving no benefit, −c, while the defector pays
no cost but receives the full benefit, b. When both individu-
als defect, neither receives the benefit nor pays the cost. The
following table summarizes the row player’s payoffs:

C D
C b− c −c
D b 0

As long as b > c > 0, each player’s payoff is always im-
proved by defecting, no matter what the other player does.
This makes the game a dilemma, because although the best
individual outcome is unilateral defection, the best average
outcome is mutual cooperation.

Social Structure
In PD, ingroup favoritism is operationalized as a higher
rate of cooperation toward ingroup partners than outgroup
ones (Dorrough et al., 2015; Fu et al., 2012; Gray et al., 2014;
Masuda, 2012). For ingroup favoritism to be possible, coop-
eration must also be possible. By constraining which individ-
uals interact, we promote repeat interactions, which in turn
promotes cooperation (Szabó & Fáth, 2007). For each run,
we generate a random r-regular graph (Bollobás, 2001) with
1000 vertices, using Steger and Wormald’s (1999) algorithm.
Each vertex represents an individual, and each edge repre-
sents a connection between neighbors. This graph governs

interactions by limiting individuals to playing PD exclusively
with their neighbors.

Group Tags
Individuals are divided into m groups, where group member-
ship is represented by a tag visible to all other individuals.
By default, m = 2, though it may take other values, as long as
m > 1. Otherwise, tags cease to represent group membership,
and instead become a universally shared characteristic. Each
individual is randomly assigned a tag, such that each group
has the same initial number of members. When replacement
occurs, newcomers are assigned a tag uniformly at random.

Rational Bayesian Learning
Learning involves estimating a pair of parameters for each
partner i that the individual interacts with. The first parameter
pi represents the estimated probability that partner i will co-
operate with the individual, given that the individual cooper-
ates with that partner, Pr(Ci|C). The second parameter qi es-
timates the probability that partner i will cooperate, given that
the individual defects against that partner, Pr(Ci|D). Because
the game is simultaneous, actions cannot be conditioned on
those of the partner. However, there is no a priori reason
for individuals to know this, and indeed repeated interactions
cause pi and qi to diverge, as individuals change their be-
havior in response to that of their partner. Individuals use
Bayesian inference to arrive at point estimates for pi and qi.
Here, the posterior predictive distribution corresponds to the
posterior mean (Griffiths, Kalish, & Lewandowsky, 2008),

pi :=
nCC +α+1

nCC +nCD +α+β+2
qi :=

nDC +α+1
nDC +nDD +α+β+2

,

(1)
where nAB counts the number of times the individual took ac-
tion A when partner i took action B. Similarly, α and β are
pseudocounts (Griffiths et al., 2008) that encode prior knowl-
edge or expectations about the frequency of cooperation and
defection, respectively. These take the value α = β = 0,
which represents a neutral prior (uniform distribution), where
neither cooperation nor defection is seen as inherently more
likely.

By default, individuals maintain a pair of p and q values
for each partner i. However, individuals exhibiting outgroup
homogeneity bias do not distinguish between outgroup mem-
bers, so they instead track a single pair of values, p j and q j,
for each outgroup j. Outgroup homogeneity thus causes indi-
viduals to treat outgroups as if they were a single individual.

Individuals act rationally on their Bayesian estimates, so as
to maximize their conditional expected utility (Jeffrey, 1990).
More formally, an individual cooperates if

pb− c > qb, (2)

and defects otherwise. To give individuals a chance to sam-
ple both actions, we implement a small trembling-hand pa-
rameter (Selten, 1975). When an individual selects an action,
with a small probability ε = 0.01, it takes the opposite action
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Figure 1: Ingroup and outgroup cooperation rates over time,
in the absence of outgroup homogeneity bias. Cooperation
rates climb rapidly as individuals learn that defection is met
with defection. Ingroup cooperation rates mirror outgroup
cooperation rates, because group membership is irrelevant.

instead. Removing this parameter (setting ε = 0) does not
qualitatively alter our results.

Simulation
At each time step, individuals interact with their neighbors
in random order. Interactions involve selecting an action (C
or D), and then playing PD. After each interaction, individu-
als note the outcome of the game, and then update their es-
timates p and q. Once everyone has finished playing, indi-
viduals are subjected to a 0.01 probability of being replaced.
Newcomers are assigned a group tag uniformly at random,
and have no knowledge of their predecessor’s p and q val-
ues. Because there is no selection over genotypes, ingroup
favoritism cannot evolve, but arises through phenotypic plas-
ticity (i.e. learning) instead. We run simulations for 1000
time steps, by which time cooperation rates have long stabi-
lized. All results are averaged across 20 independent runs,
and stabilized cooperation rates are further averaged over the
last 100 time steps. In all figures, line width represents 95%
confidence intervals.

Results
We first consider unbiased individuals, connected to r = 10
random neighbors, where the benefit of receiving coopera-
tion (b = 3) moderately exceeds the cost of giving it (c = 1).
In the first few time steps, cooperation rates are near-zero
(Figure 1). Recall that naı̈ve agents have a uniform prior,
meaning that cooperation and defection are seen as equally
likely. However, the expected utility of unilateral defection
is higher than that of mutual cooperation (Inequality 2), and
so virtually everyone defects, hoping to take advantage of a
cooperating partner. Individuals quickly learn that defection

Figure 2: Ingroup and outgroup cooperation rates over time,
with outgroup homogeneity bias. Here, individuals track out-
group members’ behavior at a group rather than individual
level. Breakdowns in cooperation result in cascades of de-
fection involving entire groups, rather than just the offending
individual, resulting in strong ingroup favoritism.

is met with defection, which lowers their estimate of q. With
unilateral cooperation seeming increasingly unlikely, qb falls
below pb− c, and individuals seek out mutual cooperation
instead. As cooperation is met with cooperation, estimates of
p increase, and high rates of cooperation (∼ 84%) are estab-
lished. Although individuals are assigned to m = 2 random
groups, group membership is irrelevant, and so ingroup and
outgroup cooperation rates do not differ.

When outgroup homogeneity bias is introduced, outgroup
members cease being treated as individuals, but as representa-
tives of their group. By generalizing the outcome of each in-
teraction to other members of the outgroup, individuals learn
that defection does not yield cooperation even more rapidly
than when playing against ingroup members. This causes an
initial spike in outgroup cooperation (Figure 2). However,
although ingroup cooperation is a bit slower to get going, it
alone persists. To understand why, consider what happens
when an individual cooperates, but its partner defects. If part-
ner i is an ingroup member, then the individual revises its
beliefs about that partner’s willingness to cooperate, and pi
declines. Soon, pb− c drops below qb, and the individual
ceases to cooperate. Once partner i learns that defection does
not evoke cooperation, its q falls low enough for it to also
seek mutual cooperation. Any successful instance of mutual
cooperation promotes further cooperation, causing p values
to increase, entrenching that behavior. However, if partner i is
an outgroup member, then the individual does not know who
to blame for the partner’s unilateral defection. The individual
thus revises its beliefs about the entire group’s willingness to
cooperate, and p j declines. This causes the individual to pun-
ish not just the defecting partner, but also any others from that
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Figure 3: Stabilized ingroup and outgroup cooperation rates
for various benefit-to-cost (b/c) ratios. Increasing the b/c ra-
tio favors cooperation more broadly by making the temptation
to defect less appealing, thus reducing ingroup favoritism.

group. Those neighbors then punish the focal individual, as
well as members of its group, for this seemingly unprovoked
hostility. Intergroup defections thus bring about not just pun-
ishment of the offending individual, but also a cascade of re-
tributive defections. Outgroup cooperation is prohibitively
difficult to establish and maintain under such conditions, re-
sulting in strong ingroup favoritism.

We next consider various parameters that may mitigate this
outcome. For example, increasing the trembling-hand param-
eter ε reduces ingroup favoritism, albeit in a somewhat trivial
manner. The more errors individuals commit in taking their
desired action, the more this increases (unwanted) outgroup
cooperation and decreases (desirable) ingroup cooperation.
Such effects offer relatively little additional insight, however,
because ingroup favoritism is merely harder to enact, rather
than less sought after.

Of greater theoretical interest is the effect of increasing the
benefit-to-cost ratio of cooperation. Doing so raises both in-
group and outgroup cooperation, which in turn reduces in-
group favoritism (Figure 3). Higher b/c ratios represent more
cooperative games, where mutual cooperation is more re-
warding, and the temptation to defect is reduced (i.e. Inequal-
ity 2 becomes primarily driven by p and q values, rather than
c). Whereas the ingroup cooperation rate rapidly approaches
a ceiling, the outgroup cooperation rate has more room to
grow.

Another parameter of interest is the number of groups, m.
This may be regarded as a measure of the population’s diver-
sity. Increasing the number of groups does not affect ingroup
cooperation, but increases outgroup cooperation, thus reduc-
ing ingroup favoritism (Figure 4). Intuitively, if an individ-
ual’s neighbors all belong to different groups, then tracking
these groups’ aggregate behavior is equivalent to tracking in-

Figure 4: Stabilized ingroup and outgroup cooperation rates
for various numbers of groups (m). Increasing population di-
versity reduces ingroup favoritism, because fewer neighbors
share the same outgroup. This limits the scope of breakdowns
in cooperation caused by outgroup homogeneity bias.

dividual behavior. The more diverse the population, the less
meaningful outgroup homogeneity is as an approximation.
More practically, when fewer neighbors share group member-
ship, breakdowns in cooperation result in smaller cascades of
retributive defections.

Finally, the number of neighbors that individuals interact
with, r, is also relevant. If there are relatively many groups
in the population (e.g. m = 20), then reducing the number
of neighbors alleviates cascading breakdowns in cooperation,
because fewer neighbors belong to the same group. This pro-
motes higher rates of outgroup cooperation, which in turn re-
duces ingroup favoritism (Figure 5). However, if there are
few groups (e.g. m = 2), outgroup cooperation remains un-
sustainable, even if the number of neighbors is drastically re-
duced (e.g. to r = 3), and ingroup favoritism remains high.

Discussion
We have presented an agent-based computational model of a
PD game, where outgroup homogeneity causes ingroup fa-
voritism between arbitrary groups. Previous models have re-
lied on indirect reciprocity (observing others’ interactions) to
produce such an outcome. However, these only produced
ingroup favoritism if they invoked additional factors. For
instance, Masuda (2012) found that reputation assignment
rules had to differ for ingroup and outgroup members, while
Nakamura and Masuda (2012) found that the flow of rep-
utation information had to be severed between groups. By
contrast, our model’s results are driven by direct reciprocity
(learning from personal experience), which obviates the need
for additional assumptions about how others’ interactions are
evaluated, or how that information is shared. The individu-
als we model leverage a minimal set of cognitive capacities.
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Figure 5: Stabilized ingroup and outgroup cooperation rates
for various neighborhood sizes (r). If there are many groups
in the population (here m = 20), reducing the number of
neighbors reduces ingroup favoritism, by limiting the scope
of defection cascades.

Namely, they learn from past experience through Bayesian
inference, and make rational decisions by maximizing ex-
pected utility. In fact, they operate under similar assumptions
to those found in game theoretical “fictitious play” (Berger,
2007): They estimate others’ probability of cooperating as a
stationary strategy, and then select the best response to ob-
served behavior.

In our model, outgroup homogeneity causes ingroup fa-
voritism, because outgroup defections lower an entire group’s
perceived cooperativeness, rather than just the individual’s.
Outgroup cooperation is difficult to establish and maintain
not only because punishing a defector involves punishing
its entire group, but also because it triggers a cascade of
retributive action from those caught in the crossfire. Our
findings shed light on several empirical observations about
ingroup favoritism. For instance, ingroup favoritism is in-
famously easy to evoke even when it confers no advan-
tage, and group membership is transparently arbitrary (Billig
& Tajfel, 1973; Locksley et al., 1980). Moreover, meta-
analysis suggests that ingroup favoritism between transient,
experimentally-induced groups is often as strong as between
natural ones (Balliet et al., 2014). The fact that this is often
maladaptive from both the group and the individual’s point
of view makes it challenging to explain as a product of se-
lection (Nakamura & Masuda, 2012). In our model, indi-
viduals all share the same learning and decision rules, and
are assigned groups at random. There is no selection over
genotypes. Rather, strong ingroup favoritism arises rapidly
as a phenotypic consequence of Bayesian learning, rational
decision-making, and a well-established perceptual bias: out-
group homogeneity.

One implication is that reducing or eliminating outgroup

homogeneity bias may erode ingroup favoritism. In reality,
ingroup favoritism can be mitigated by taking the perspective
of outgroup members (Galinsky & Moskowitz, 2000). The
apparent mechanism behind this result is that perspective-
taking reduces reliance on group stereotypes (Brewer, 1996),
causing outgroup members to be perceived as individuals.
Greater intergroup contact may also reduce intergroup bias,
both against that outgroup (Pettigrew & Tropp, 2006), as well
as against uninvolved others (Pettigrew, 2009). In line with
with our model’s predictions, this too appears to be driven by
reduced reliance on group stereotypes (Tadmor, Hong, Chao,
Wiruchnipawan, & Wang, 2012).

Similarly, ever since Sherif’s (1954) original Robbers Cave
experiment, ingroup favoritism has often been both evoked
and understood through the lens of competition (Sherif et
al., 1961). In the experiment’s final phase, intergroup ten-
sions were deliberately reduced by encouraging cooperation.
Consistent with this view, our model predicts that incentiviz-
ing cooperation alleviates ingroup favoritism. PD is a social
dilemma precisely because it rewards both competition and
cooperation. Increasing the b/c ratio thus minimizes these
competitive aspects, and emphasizes the cooperative ones in-
stead. Reducing the temptation to defect, relative to the ben-
efits of mutual cooperation, causes individuals to take more
risks to establish mutual cooperation, and to recover it more
readily when it breaks down.

Finally, our model also predicts that ingroup favoritism
may be reduced by increasing population diversity. When
fewer neighbors belong to the same group, this limits the
cascades of defection caused by outgroup homogeneity bias.
This is also why lowering the number of neighbors can be
effective. In both cases, the chances of being punished for
an ingroup member’s actions are reduced. However, this rea-
soning only applies if group membership is indeed arbitrary.
The role of diversity in ingroup favoritism is typically studied
through the lens of group differences, which add considerable
complexity (Everett et al., 2015). Similarly, if conflicts exist
along group lines, increased diversity may not necessarily re-
duce ingroup favoritism (Hewstone et al., 2014). No doubt,
a great deal of real-world ingroup favoritism is intertwined
with such pragmatic concerns. However, because ingroup fa-
voritism occurs even when such concerns are irrelevant, un-
derstanding such social factors could offer promising ways of
addressing it.
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Abstract

Children do not learn language from passive observation of
the world, but from interaction with caregivers who want to
communicate with them. These communicative exchanges are
structured at multiple levels in ways that support support lan-
guage learning. We argue this pedagogically supportive struc-
ture can result from pressure to communicate successfully with
a linguistically immature partner. We first characterize one
kind of pedagogically supportive structure in a corpus analy-
sis: caregivers provide more information-rich referential com-
munication, using both gesture and speech to refer to a single
object, when that object is rare and when their child is young.
Then, in an iterated reference game experiment on Mechanical
Turk (n = 480), we show how this behavior can arise from pres-
sure to communicate successfully with a less knowledgeable
partner. Lastly, we show that speaker behavior in our experi-
ment can be explained by a rational planning model, without
any explicit teaching goal. We suggest that caregivers’ desire
to communicate successfully may play a powerful role in struc-
turing children’s input in order to support language learning.
Keywords: language learning; communication; computa-
tional modeling.

Introduction
One of the most striking aspects of children’s language learn-
ing is just how quickly they master the complex system of
their natural language (Bloom, 2000). In just a few short
years, children go from complete ignorance to conversational
fluency in a way that is the envy of second-language learners
attempting the same feat later in life (Newport, 1990). What
accounts for this remarkable transition?

Distributional learning presents a unifying account of early
language learning: where infants come to language acquisi-
tion with a powerful ability to learn the latent structure of
language from the statistical properties of speech in their am-
bient environment (Saffran, 2003). A number of experiments
clearly demonstrate the early availability of such mechanisms
and their utility across a range of language phenomena (Saf-
fran, 2003; Smith & Yu, 2008). However, there is reason to
be suspicious about just how precocious young learners are
early in development. For example, infants’ ability to track
the co-occurrence information connecting words to their ref-
erents appears to be highly constrained by their developing
memory and attention systems (Smith & Yu, 2013; Vlach
& Johnson, 2013). Further, computational models of these
processes show that the rate of acquisition is highly sensi-
tive to variation in environmental statistics (e.g., Vogt, 2012).
Thus, precocious unsupervised statistical learning appears to

fall short of a complete explanation for rapid early language
learning.

Even relatively constrained statistical learning could be
rescued, however, if caregivers structured their language in
a way that simplified the learning problem. Indeed, evi-
dence at a variety of levels– from speech segmentation to
word learning– suggests that caregivers’ naturalistic com-
munication provides exactly this kind of supportive struc-
ture (Gogate, Bahrick, & Watson, 2000; Thiessen, Hill, &
Saffran, 2005; Tomasello & Farrar, 1986). Under distribu-
tional learning accounts, the existence of this kind of struc-
ture is a theory-external feature of the world that does not
have an independently motivated explanation. Indeed, be-
cause of widespread agreement that parental speech is not
usually motivated by explicit pedagogical goals, the calibra-
tion of speech to learning mechanisms seems a happy acci-
dent; parental speech just happens to be calibrated to chil-
dren’s learning needs. In this work, we take the first steps
toward a unifying account of both the child’s learning and the
parents’ production: Both are driven by a pressure to commu-
nicate successfully (Brown, 1977).

Early, influential functionalist accounts of language learn-
ing focused on the importance of communicative goals (e.g.,
Brown, 1977). Our goal in this work is to formalize the intu-
itions in these accounts in a computational model, and to test
this model against experimental data. We take as the care-
giver’s goal the desire to communicate with the child, not
about language itself, but instead about the world in front of
them. To succeed, the caregiver must produce the kinds of
communicative signals that the child can understand and re-
spond contingently, potentially leading caregivers to tune the
complexity of their speech as a byproduct of in-the-moment
pressure to communicate successfully (Yurovsky, 2017).

To examine this hypothesis, we first analyze parent com-
municative behavior in a longitudinal corpus of parent-child
interaction in the home (Goldin-Meadow et al., 2014). We
investigate the extent to which parents tune their communica-
tive behavior (focusing on modality– i.e. gesture vs. speech)
across their child’s development to align to their child’s de-
veloping linguistic knowledge (Yurovsky, Doyle, & Frank,
2016). We take this phenomenon to be a case study of peda-
gogically supportive structure in the language environment.

We then experimentally induce this form of structured lan-
guage input in a simple model system: an iterated reference
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game in which two players earn points for communicating
successfully with each other. Modeled after our corpus data,
participants are asked to make choices about which commu-
nicative strategy to use (akin to modality choice). In an ex-
periment on Mechanical Turk using this model system, we
show that tuned, structured language input can arise from a
pressure to communicate. We then show that participant be-
havior in our game can be explained by a rational planning
model that seeks to optimize its total expected utility over the
course of the game.

Corpus Analysis
We first investigate parent referential communication in a lon-
gitudinal corpus of parent-child interaction. We analyze the
production of multi-modal cues (i.e. using both gesture and
speech) to refer to the same object, in the same instance–
an information-rich cue that we take as one instance of ped-
agogically supportive language input. While many aspects
of CDS support learning, multi-modal cues (e.g., speaking
while pointing or looking) are uniquely powerful sources of
data for young children (e.g., Baldwin, 2000). Multi-modal
reference may be especially pedagogically supportive if us-
age patterns reflect adaptive linguistic tuning, with caregivers
using this information-rich cue more for young children and
infrequent objects. The amount of multi-modal reference
should be sensitive to the child’s age, such that caregivers will
be more likely to provide richer communicative information
when their child is younger (and has less linguistic knowl-
edge) than as she gets older (Yurovsky et al., 2016).

Methods
We used data from the Language Development Project– a
large-scale, longitudinal corpus of parent child-interaction in
the home with families who are representative of the Chicago
community in socio-economic and racial diversity (Goldin-
Meadow et al., 2014). These data are drawn from a subsam-
ple of 10 families from the larger corpus. Recordings were
taken in the home every 4-months from when the child was
14-months-old until they were 34-months-old, resulting in 6
timepoints (missing one family at the 30-month timepoint).
Recordings were 90 minute sessions, and participants were
given no instructions.

The Language Development Project corpus contains tran-
scription of all speech and communicative gestures produced
by children and their caregivers over the course of the 90-
minute home recordings. An independent coder analyzed
each of these communicative instances and identified each
time a concrete noun was referenced using speech (in spe-
cific noun form), gesture (only deictic gestures were coded
for ease of coding and interpretation– e.g., pointing) or both
simultaneously.

Results
These corpus data were analyzed using a mixed effects re-
gression to predict parent use of multi-modal reference for a
given referent. Random effects of subject and referent were
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Figure 1: Proportion of parent multi-modal referential talk
across development. The log of a referent’s frequency is
given on the x-axis, with less frequent items closer to zero.

included in the model. Our key predictors were child age and
logged referent frequency (i.e. how often a given object was
referred to overall across our data).

We find a significant negative effect of child age (in
months) on multi-modal reference, such that parents are sig-
nificantly less likely to produce the multi-modal cue as their
child gets older (B < -0.04, p < 0.0001). We also find
a significant negative effect of referent frequency on multi-
modal reference as well, such that parents are significantly
less likely to provide the multi-modal cue for frequent ref-
erents than infrequent ones (B < -0.13, p < 0.0001). Thus,
in these data, we see early evidence that parents are provid-
ing richer, structured input about rarer things in the world for
their younger children.

Discussion
Caregivers are not indiscriminate in their use of multi-modal
reference; in these data, they provided more of this support
when their child was younger and when discussing less famil-
iar objects. These longitudinal corpus findings are consistent
with an account of parental alignment: parents are sensitive
to their child’s linguistic knowledge and adjust their commu-
nication accordingly (Yurovsky et al., 2016). Ostensive label-
ing is perhaps the most explicit form of pedagogical support,
so we chose to focus on it for our first case study. We argue
that these data could be explained by a simple, potentially-
selfish pressure: to communicate successfully. The influence
of communicative pressure is difficult to draw in naturalistic
data, so we developed a paradigm to try to experimentally in-
duce richly-structured, aligned input from a pressure to com-
municate in the moment.

Experimental Framework
We developed a simple reference game in which participants
would be motivated to communicate successfully on a trial-
by-trial basis. In all conditions, participants were placed in
the role of speaker and asked to communicate with a com-
puterized listener whose responses were programmed to be
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Figure 2: Screenshot of speaker view during gameplay.

contingent on speaker behavior. We manipulated the rela-
tive costs of the communicative methods (gesture and speech)
across conditions, as we did not have a direct way of assess-
ing these costs in our naturalistic data, and they may vary
across communicative contexts. In all cases, we assumed that
gesture was more costly than speech. Though this need not
be the case for all gestures and contexts, our framework com-
pares simple lexical labeling and unambiguous deictic ges-
tures, which likely are more costly and slower to produce (see
Yurovsky, Meyers, Burke, & Goldin-Meadow, 2018). We
also established knowledge asymmetries by pre-training par-
ticipants and manipulating how much training they thought
their partner received. Using these manipulations, we aimed
to experimentally determine the circumstances under which
richly-structured input emerges, without an explicit pedagog-
ical goal.

Method

Participants 480 participants were recruited though Ama-
zon Mechanical Turk and received $1 for their participation.
Data from 51 participants were excluded from subsequent
analysis for failing the critical manipulation check and a fur-
ther 28 for producing pseudo-English labels (e.g., ‘pricklyy-
one’). The analyses reported exclude the data from those par-
ticipants, but all analyses were also conducted without ex-
cluding any participants and all patterns hold (ps < 0.05).

Design and Procedure Participants were exposed to nine
novel objects, each with a randomly assigned pseudo-word
label. We manipulated the exposure rate within-subjects: dur-
ing training participants saw three of the nine object-label
mappings four times, two times, or one time. Participants
were then given a recall task to establish their knowledge of
the novel lexicon (pretest).

Prior to beginning the game, participants are told how
much exposure their partner has had to the lexicon and also
that they will be asked to discuss each object three times. As
a manipulation check, participants are then asked to report
their partner’s level of exposure, and are corrected if they an-
swer wrongly. Then during gameplay, speakers saw a target
object in addition to an array of all nine objects (see Figure
2 for the speaker’s perspective). Speakers had the option of
either directly click on the target object in the array (gesture)-

a higher cost cue but without ambiguity- or typing a label for
the object (speech)- a lower cost cue but contingent on the lis-
tener’s shared linguistic knowledge. After sending the mes-
sage, speakers are shown which object the listener selected.

Speakers could win up to 100 points per trial if the lis-
tener correctly selected the target referent. We manipulated
the relative utility of the speech cue between-subjects across
two conditions: low relative cost for speech (‘Low Relative
Cost’) and higher relative cost for speech (‘Higher Relative
Cost’). In the ‘Low Relative Cost’ condition, speakers were
charged 70 points for gesturing and 0 points for labeling,
yielding 30 points and 100 points respectively if the listener
selected the target object. In the ‘Higher Relative Cost’ con-
dition, speakers were charged 50 points for gesturing and 20
points for labeling, yielding up to 50 points and 80 points re-
spectively. If the listener failed to identify the target object,
the speaker nevertheless paid the relevant cost for that mes-
sage in that condition. As a result of this manipulation, there
was a higher relative expected utility for labeling in the ‘Low
Relative Cost’ condition than the ‘Higher Relative Cost’ con-
dition.

Critically, participants were told about a third type of pos-
sible message using both gesture and speech within a single
trial to effectively teach the listener an object-label mapping.
This action directly mirrors the multi-modal reference be-
havior from our corpus data– it presents the listener with an
information-rich, potentially pedagogical learning moment.
In order to produce this teaching behavior, speakers had to
pay the cost of producing both cues (i.e. both gesture and
speech). Note that, in all utility conditions, teaching yielded
participants 30 points (compared with the much more ben-
eficial strategy of speaking which yielded 100 points or 80
points across our two utility manipulations).

To explore the role of listener knowledge, we also manip-
ulated participants’ expectations about their partner’s knowl-
edge across 3 conditions. Participants were told that their
partner had either no experience with the lexicon, had the
same experience as the speaker, or had twice the experience
of the speaker.

Listeners were programmed with starting knowledge states
initialized accordingly. Listeners with no exposure began the
game with knowledge of 0 object-label pairs. Listeners with
the same exposure of the speaker began with knowledge of
five object-label pairs (3 high frequency, 1 mid frequency, 1
low frequency), based the average retention rates found previ-
ously. Lastly, the listener with twice as much exposure as the
speaker began with knowledge of all nine object-label pairs.
If the speaker produced a label, the listener was programmed
to consult their own knowledge of the lexicon and check for
similar labels (selecting a known label with a Levenshtein edit
distance of two or fewer from the speaker’s production), or
select among unknown objects if no similar labels are found.
Listeners could integrate new words into their knowledge of
the lexicon if taught.

Crossing our 2 between-subjects manipulations yielded 6
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conditions (2 utility manipulations: ‘Low Relative Cost’ and
‘Higher Relative Cost’; and 3 levels of partner’s exposure:
None, Same, Double), with 80 participants in each condition.
We expected to find results that mirrored our corpus find-
ings such that rates of teaching would be higher when there
was an asymmetry in knowledge where the speaker knew
more (None manipulation) compared with when there was
equal knowledge (Same manipulation) or when the listener
was more familiar with the language (Double manipulation).
We expected that participants would also be sensitive to our
utility manipulation, such that rates of labeling and teaching
would be higher in the ‘Low Relative Cost’ conditions than
the other conditions.

Results

As an initial check of our exposure manipulation, a logistic
regression showed that participants were significantly more
likely to recall the label for objects with two exposures (B
= 1.66, p < 0.0001) or with four exposures (B = 3.07, p <
0.0001), compared with objects they saw only once. On aver-
age, participants knew at least 6 of the 9 words in the lexicon
(mean = 6.28, sd = 2.26).

Gesture-Speech Tradeoff. To determine how gesture and
speech are trading off across conditions, we looked at a mixed
effects logistic regression to predict whether speakers chose
to produce a label during a given trial as a function of the
exposure rate, object instance in the game (first, second, or
third), utility manipulation, and partner manipulation. A ran-
dom subjects effects term was included in the model. There
was a significant effect of exposure rate such that there was
more labeling for objects with two exposures (B = 0.91, p
< 0.0001) or with four exposures (B = 1.83, p < 0.0001),
compared with objects seen only once at training. Compared
with the first instance of an object, speakers were significantly
more likely to produce a label on the second appearance (B =
0.2, p < 0.01) or third instance of a given object (B = 0.46,
p < 0.0001). Participants also modulated their communica-
tive behavior on the basis of the utility manipulation and our
partner exposure manipulation. Speakers in the Low Relative
Cost condition produced significantly more labels than partic-
ipants in the Higher Relative Cost condition (B = -0.84, p <
0.001). Speakers did more labeling with more knowledgeable
partners; compared with the listener with no exposure, there
were significantly higher rates of labeling in the same expo-
sure (B = 1.74, p < 0.0001) and double exposure conditions
(B = 3.14, p < 0.001).

Figure 3 illustrates the gesture-speech tradeoff pattern
in the Double Exposure condition (as there was minimal
teaching in that condition, so the speech-gesture trade-off
is most interpretable). The effects on gesture mirror those
found for labeling and are thus not included for brevity
(ps < 0.01). Note that these effects cannot be explained
by participant knowledge; all patterns above hold when
looking only at words known by the speaker at pretest (ps
< 0.01). Further, these patterns directly mirror previous
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Figure 3: Speaker communicative method choice as a func-
tion of exposure and the utility manipulation. Data are taken
from the Double Exposure manipulation. Rates of teaching
were minimal and are not shown.

corpus analyses demonstrating the gesture-speech tradeoff in
naturalistic parental communicative behaviors, where lexical
knowledge is likely for even the least frequent referent (see
Yurovsky et al., 2018).

Emergence of Teaching. In line with our hypotheses, a
mixed effects logistic regression predicting whether or not
teaching occurred on a given trial revealed that teaching rates
across conditions depend on all of the same factors that pre-
dict speech and gesture (see Figure 4). There was a signifi-
cant positive effect of initial training on the rates of teaching,
such that participants were more likely to teach words with
two exposures (B = 0.26, p < 0.05) and four exposures (B
= 0.25, p < 0.05), compared with words seen only once at
training. There was also a significant effect of the utility ma-
nipulation such that being in the Low Relative Cost condition
predicted higher rates of teaching than being in the Higher
Relative Cost condition (B = -0.96, p < 0.001), a rational re-
sponse considering teaching allows one to use a less costly
strategy in the future and that strategy is especially superior
in the Low Relative Cost condition.

We found an effect of partner exposure on rates of teaching
as well: participants were significantly more likely to teach a
partner with no prior exposure to the language than a part-
ner with the same amount of exposure as the speaker (B =
-1.63, p < 0.0001) or double their exposure (B = -3.51, p
< 0.0001). The planned utility of teaching comes from us-
ing another, cheaper strategy (speech) on later trials, thus the
expected utility of teaching should decrease when there are
fewer subsequent trials for that object, predicting that teach-
ing rates should drop dramatically across trials for a given
object. Compared with the first trial for an object, speakers
were significantly less likely to teach on the second trial (B =
-0.84, p < 0.0001) or third trial (B = -1.67, p < 0.0001).
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Figure 4: Rates of teaching across the 6 conditions, where the
x-axis how many times an object had been the target object.

Discussion
As predicted, the data from our paradigm corroborate our
findings from the corpus analysis, demonstrating that peda-
gogically supportive behavior emerges despite the initial cost
when there is an asymmetry in knowledge and when speech
is less costly than other modes of communication. While
this paradigm has stripped away much of the interactive envi-
ronment of the naturalistic corpus data, it provides important
proof of concept that the structured and tuned language input
we see in those data could arise from a pressure to communi-
cate. The paradigm’s clear, quantitative predictions also allow
us to build a formal model to predict our empirical results.

Model: Communication as planning
The results from this experiment are qualitatively consistent
with a model in which participants make their communicative
choices to maximize their expected utility from the reference
game. We next formalize this model to determine if these
results are predicted quantitatively as well.

We take as inspiration the idea that communication is a
kind of action–e.g. talking is a speech act (Austin, 1975).
Consequently, we can understand the choice of which com-
municative act a speaker should take as a question of which
act would maximize their utility: achieving successful com-
munication while minimizing their cost (Frank & Goodman,
2012). In this game, speakers can take three actions: talking,
pointing, or teaching. In this reference game, these Utilities
(U) are given directly by the rules. Because communication
is a repeated game, people should take actions that maximize
their Expected Utility (EU) over the course of not just this
act, but all future communicative acts with the same conver-
sational partner. We can think of communication, then as a
case of recursive planning. However, people do not have per-
fect knowledge of each-other’s vocabularies (v). Instead, they
only have uncertain beliefs (b) about these vocabularies that
combine their expectations about what kinds of words people
with as much linguistic experience as their partner are likely
to know with their observations of their partner’s behavior in

past communicative interactions. This makes communication
a kind of planning under uncertainty well modeled as a Par-
tially Observable Markov Decision Process (POMDP, Kael-
bling, Littman, & Cassandra, 1998).

Optimal planning in a POMDP involves a cycle of four
phases: (1) Plan, (2) Act, (3) Observe, (4) Update beliefs.
When people plan, they compute the Expected Utility of each
possible action (a) by combining the Expected Utility of that
action now with the Discounted Expected Utility they will get
in all future actions. The amount of discounting (γ) reflects
how people care about success now compared to success in
the future. In our simulations, we set γ = .5 in line with
prior work. Because Utilities depend on the communicative
partner’s vocabulary, people should integrate over all possible
vocabularies in proportion to the probability that their belief
assigns to that (Ev∼b).

EU [a|b] = Ev∼b
(
U(a|v)+ γEv′,o′,a′

(
EU
[
a′|b′

]))
Next, people take an action as a function of its Expected
Utility. Following other models in the Rational Speech Act
framework, we use the Luce Choice Axiom, in which each
choice is taken in probability proportional to its exponenti-
ated utility (Frank & Goodman, 2012; Luce, 1959). This
choice rule has a single parameter α that controls the noise
in this choice–as α approaches 0, choice is random and as α

approaches infinity choice is optimal. For the results reported
here, we set α = 2 based on hand-tuning, but other values
produce similar results.

P(a|b) ∝ αeEU [a|b]

After taking an action, people observe (o) their partner’s
choice–sometimes they pick the intended object, and some-
times they don’t. They then update their beliefs about the
partner’s vocabulary based on this observation. For simplic-
ity, we assume that people think their partner should always
select the correct target if they point to it, or if they teach,
and similarly should always select the correct target if they
produce its label and the label is in their partner’s vocabu-
lary. Otherwise, they assume that their partner will select the
wrong object. People could of course have more complex in-
ferential rules, e.g. assuming that if their partner does know a
word they will choose among the set of objects whose labels
they do not know (mutual exclusivity, Markman & Wachtel,
1988). Empirically, however, our simple model appears to
accord well with people’s behavior.

b′(v′) ∝ P
(
o|v′,a

)
∑
v∈V

P
(
v′|v,a

)
b(v)

The critical feature of a repeated communication game is
that people can change their partner’s vocabulary. In teach-
ing, people pay the cost of both talking and pointing together,
but can leverage their partner’s new knowledge on future tri-
als. Note here that teaching has an upfront cost and the only
benefit to be gained comes from using less costly communi-
cation modes later. There is no pedagogical goal– the model
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treats speakers as selfish agents aiming to maximize their own
utilities by communicating successfully. We assume for sim-
plicity that learning is approximated by a simple Binomial
learning model. If someone encounters a word w in an un-
ambiguous context (e.g. teaching), they add it to their vocab-
ulary with probability p. We also assume that over the course
of this short game that people do not forget–words that enter
the vocabulary never leave, and that no learning happens by
inference from mutual exclusivity.

P
(
v′|v,a

)
=


1 if vw ∈ v&v′

p if vw /∈ v&a = point+talk
0 otherwise

The final detail is to specify how people estimate their part-
ner’s learning rate (p) and initial vocabulary (v). We propose
that people begin by estimating their own learning rate by rea-
soning about the words they learned at the start of the task:
Their p is the rate that maximizes the probability of them
having learned their initial vocabularies from the trials they
observed. People can then expect their partner to have a sim-
ilar p (per the “like me” hypothesis, Meltzoff, 2005). Having
an estimate of their partner’s p, they can estimate their vocab-
ulary by simulating their learning from the amount of training
we told them their partner had before the start of the game.

Model Results
The fit between our model’s predictions and our empirical
data from our reference game study on Amazon Turk can be
seen in Figure 5. The model outputs trial-level action predic-
tions (e.g., “speak”) for every speaker in our empirical data.
These model outputs were aggregated across the same factors
as the empirical data: modality, appearance, partner’s expo-
sure, and utility condition. We see a significant correlation
of our model predictions and our empirical data (r = 0.94,
p<0.0001). Our model provides a strong fit for these data,
supporting our conclusion that richly-structured language in-
put could emerge from in-the-moment pressure to communi-
cate, without a goal to teach.
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Figure 5: Fit between model predictions and empirical data.

General Discussion
We showed that people tune their communicative choices
to varying cost and reward structures, and also critically
to their partner’s linguistic knowledge–providing richer cues
when partners are unlikely to know language and many more
rounds remain. These data are consistent with the patterns
shown in our corpus analysis of parent referential commu-
nication and demonstrate that such pedagogically supportive
input could arise from a motivation to maximize communica-
tive success while minimizing communicative cost– no addi-
tional motivation to teach is necessary. Our account is not
specific to any particular language phenomenon, though we
have focused on multi-modal reference here. Given the right
data or paradigm, our account should hold equally well when
explaining how other information-rich language input could
arise.

Of course, many aspects of language do not differ in speech
to children (e.g., syntax, see Newport, Gleitman, & Gleitman,
1977). On our account, not all aspects of language should be
calibrated to child’s language development–only those that
support communication. A full account that explains vari-
ability in modification across aspects of language will rely on
a fully specified model of optimal communication. Such a
model will allow us to determine both which structures are
predictably unmodified, and which structures must be modi-
fied for other reasons. Nonetheless, this work is an important
first step in validating the hypothesis that language input that
is structured to support language learning could arise from a
single unifying goal: The desire to communicate effectively.

The Mechanical Turk experiment was preregistered
on Open Science Framework at https://osf.io/tjn7k

All data and code for analyses are available at
https://github.com/benjamincmorris/reference-game
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Abstract

Both examples and verbal explanations play an important role
in learning new concepts and categories. At the same time,
learning from verbal explanations is not accounted for in most
category learning models, and is not studied in the traditional
category learning paradigm. We propose a rational category
communication model that formally describes the process of
communicating a category structure using both verbal expla-
nations and visual examples in a pedagogical setting. We build
our model based on the assumption that verbal instructions are
best suited for communication of crude constraints on a cat-
egory structure, while exemplars complement it by providing
means for finer adjustments. Our empirical study demonstrates
that verbal communication is indeed more robust to changes
in stimuli dimensionality, but that its efficiency is adversely
affected when distinguishing between categories requires per-
ceptual precision. Communicating through examples has a re-
versed pattern. We hope that both the proposed experimental
paradigm and the computational model would facilitate further
research into the relative roles of verbal and exemplar commu-
nication in category learning.
Keywords: categorization; category learning; computational
modelling; communication efficiency; communication chan-
nels

Introduction
Humans have a variety of information sources available to
enrich or expand their knowledge. Imagine a person encoun-
tering an unfamiliar word or concept. She may infer its mean-
ing from examples of how it is used, consult a dictionary, or
use a combination of examples and definitions to understand
a word or concept. In many cases, any of these sources alone
is not sufficient (Fischer, 1994; Nagy, Herman, & Anderson,
1985).

Similarly, multiple sources of information are also often
used to communicate a category or a concept. Imagine a
family forest trip where a parent wants to teach their child
about poisonous mushrooms. It is easy to envision a parent
instructing their child through definitions, e.g., not to collect
pale, thin-legged mushrooms with a flat cap since they are
usually poisonous. Is also easy to imagine this parent giv-
ing examples, e.g. “look: this is one of the poisonous mush-
rooms I told you about”. A key difference is that the former
involves a verbal explanation of a rule, while the latter re-
lies on non-verbal ways of concept communication (relevant

examples only need to be pointed at). Contrary to the situa-
tion with word learning, however, in the context of perceptual
categories, the relative contributions of verbal- and example-
based communication are not well understood.

We know, however, that example- and verbal-based com-
munication are not redundant: different aspects of category
and concept knowledge may require different means of com-
munication. Verbal instructions are well suited for commu-
nication of abstract rules, but give little information about
specific stimuli characteristics (Longman, Milton, Wills, &
Verbruggen, 2018). Examples, in turn, provide contextual in-
formation and help to understand how to apply knowledge to
a particular problem (Reed & Bolstad, 1991; Fischer, 1994).
Thus both example- and verbal-based communication play
a significant role in shaping human learning. As such, they
should be incorporated into contemporary theories and com-
putational models of category acquisition.

In this work, we focus on the question of what are the fun-
damental differences between the verbal and exemplar chan-
nels of communication. We formalize the aforementioned
intuitions about these differences and propose a computa-
tional model of the process. We also run an empirical study
that investigates how people communicate perceptual cate-
gories using different combinations of communication chan-
nels. In particular, we investigate how different characteris-
tics of a category structure affect the efficiency of verbal- and
exemplar- based category communication.

Related work
The problem of communicating knowledge spans a broad
range of disciplines, including educational and cognitive psy-
chology, logic, linguistics, mathematics, and philosophy.

In the area of machine learning, there is a range of works
on the problem of knowledge communication (e.g., (Winston,
Binford, Katz, & Lowry, 1983)). In particular, there is a
growing interest in the problems of few- and zero- shot learn-
ing techniques that focuses on learning through language
without ever seeing an example (DeJong & Mooney, 1986).
Notably, Mitchell (Mitchell, Keller, & Kedar-Cabelli, 1986)
looked specifically into the ways of learning artificial cate-
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gories from verbal explanations. In most cases, these attempts
are, however, centered on applications in their respective do-
mains and do not aim understand or model the fundamental
roles that different communication systems play in human in-
teraction and learning.

Surprisingly, verbal communication has not received much
attention in empirical studies of category learning and has
been largely ignored in corresponding computational mod-
els. Well-established paradigms for category learning focus
on the communication and acquisition of categories through
examples only and miss one of the critical sources of infor-
mation used in real-world situations. Considering the over-
whelmingly important role of verbal communication in edu-
cation and the impact of internal verbalization on the learn-
ing outcomes (Vinner, 2002; Lombrozo, 2012; Williams &
Lombrozo, 2010, 2013), this omission makes the well known
ironic definition of category learning as the “class of behav-
ioral data generated by experiments that ostensibly study cat-
egorization” (Kruschke, 2008) exceedingly appropriate.

We see two related reasons for this apparent oversight.
First, the fact that people use definitions to acquire knowledge
is so apparent, and, at the same time, so difficult to model rig-
orously, that it is very tempting to ignore either as “boring”
or “impractical” to study. It is sometimes seen as an unstated
assumption that verbal communication would allow to simply
transfer the category knowledge.

Second, learning from definitions is inherently pedagogi-
cal, and, until recently, we lacked the tools to model such sit-
uations. Historically, category learning literature focused on
extracting knowledge from a neutral environment (although
there are notable exceptions: (Avrahami et al., 1997)), and the
formal apparatus for modeling pedagogical reasoning in cat-
egory learning was developed only recently (Shafto, Good-
man, & Griffiths, 2014; Aboody, Velez-Ginorio, Laurie, San-
tos, & Jara-Ettinger, 2018; Frank & Goodman, 2012).

Even though recent years have witnessed a revived inter-
est in empirical studies of these distinct ways of learning
(Liefooghe, Braem, & Meiran, 2018; Longman et al., 2018),
the modeling aspect is critically lacking.

Overall, we believe that now, when we have the tools to
model pedagogical reasoning in category learning setting, it
is a good time to make a step towards a formal model of both
explanation- and example-based category learning.

Relation to categorization models
While the attempts to introduce learning based on verbal ex-
planations into category learning models are scarce, many of
the prominent categorization models could be naturally ex-
tended to partially account for verbal communication. For
example, in the ALCOVE model (Kruschke, 1992), verbal
communication could be introduced as transferring attention
weights, thus speeding up subsequent example-based learn-
ing. On the other hand, there is no clear way to introduce
purely verbal communication into this or most of the other
exemplar models.

In the case of RulEx (rules with exceptions) model
(Nosofsky, Palmeri, & McKinley, 1994), verbal communica-
tion could be introduced as a direct rule transfer, while ex-
amples may serve as illustrating exceptions, or as a way of
adjusting rule boundaries.

Another prominent categorization model, COVIS (Ashby,
Paul, & Maddox, 2011), includes the verbal (rule-based)
and procedural (information-integration) components. These
names partially acknowledge the potential importance of ver-
bal reasoning, and difference in learning dynamics for “ver-
balizable” and “non-verbalazable” categories were exten-
sively studied by G. Ashby (Ashby et al., 2011). At the same
time, the verbal system is mostly seen as a component of in-
ternal learning dynamics, and its relation to knowledge com-
munication is not usually studied.

Overall, there are many potential ways to introduce verbal
communication into existing categorization models. At the
same time, learning from verbal explanations is inherently
pedagogical (somebody has to produce the explanations for
a student). Therefore, we find it most promising to approach
the problem from the rational analysis perspective which al-
ready offers an elegant account of pedagogical reasoning in
category learning. In the next sections, we describe our ap-
proach.

Computational Model
We build upon the rational account of pedagogical reasoning,
introduced in (Shafto et al., 2014). That work provided an
answer to the question of how a rational teacher should se-
lect the most useful example to help a rational student learn a
specific category.

In their approach, a rational teacher aims to choose an ex-
ample that would maximize the student’s learning outcome
(probability of selecting a correct hypothesis). Thus, the
teacher needs a model of the student. A rational student will
also try to understand why their teacher selected a specific
example which means that a student has to model the teacher.
The authors formalize it as a pair of equations:

Pteacher(d|h) ∝ (Plearner(h|d))α (1)

and

Plearner(h|d) =
Pteacher(d|h)P(h)

∑h′ Pteacher(d|h′)P(h′)
(2)

Where h stands for the hypothesis and d stands for the data.
Equation 1 states that the teacher should select data points

proportionally to the posterior probability of the correct hy-
pothesis that a learner would infer after seeing these exam-
ples. Parameter α reflects how much is the teacher inclined
to sample the most informative example. Thus α = 1 corre-
sponds to probability matching, while α = ∞ corresponds to
a deterministic selection of the best example. In the original
model, an α of 1 was used in all experiments (Shafto et al.,
2014).
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(a) The curves converge early. (b) The curves only converge near their asymptote.

(c) (d)

Figure 1: Simulation results of the effect of stimuli dimensionality and perceptual confusability on expected accuracy. In par-
ticular, the efficiency of exemplar channel of communication is not affected by perceptual confusability, while the number of
dimensions has a noticeable impact on it. Additionally, verbal communication curves quickly converge for different stimuli di-
mensionality. Thus, the number of dimensions matters for low-quality verbal explanations, but their impact fades as the quality
of explanations increases. On the other hand, perceptual confusability continues to matter even for high-quality explanations,
highlighting the intuition that small perceptual differences may be very difficult to verbalize.

Equation 2 states that the learner should select hypotheses
proportionally to how likely a rational teacher is to generate
the available data under these hypotheses. A solution could
be obtained by substituting one into another and iteratively
updating some initial estimate until convergence.

In order to incorporate verbal communication into this
model, as well as to make the model more broadly applicable,
we need to make a number of changes. In the next sections
we will first describe them conceptually, and then write down
the resulting equations.

Sequential sampling
In (Shafto et al., 2014), authors exhaustively enumerated all
possible datasets that could be communicated. Thus, if a
teacher wants to show a student three examples, choosing
among N possible examples every time, the space of possi-
ble datapoints is going to be N3. This exponential data space
is very limiting even for simple category learning tasks if a

training session consists of more than just a few examples.

We assumed that the data is selected sequentially, in a
greedy fashion. Thus, if a teacher had to select three exam-
ples, she would first select a single example that maximizes
the probability of the correct category, then selects the second
example conditional on the event that the student already saw
the first one, and so on.

This does not guarantee an optimal sample in general, but it
makes the model applicable in realistic conditions. For exam-
ple, in traditional category learning experiments, which often
include a large number of trials and high-dimensional stimuli
as well as sequential, interactive teaching. In principle, it is
also possible to combine sequential sampling with exhaustive
enumeration, by adding a tractable number of examples on
each step.

Formally, we rewrite Equations 1 and 2 introduce sequen-
tial dependencies (an addition to recursive teacher-student de-
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pendencies already present).

Pteacher(di|di−1, ...,d1,h) ∝ (Plearner(h|di,di−1, ...,d1,h))α

(3)

Plearner(h|di...d1,h) =

=
Pteacher(di|di−1, ...,d1,h)Plearner(h|di−1, ...,d1)

∑
h′

Pteacher(di|di−1, ...,d1,h′)Plearner(h′|di−1, ...,d1)
(4)

Where di is a data point selected by a teacher on step i.
This completes the formal description of the model for the
case when all di are examples.

Verbal communication
The key problem we have to solve is incorporating verbal
communication into the model, i.e., handling the case when
di is a verbal explanation.

Explicitly mapping language to category structures that are
communicated is an extremely difficult task. We sidestep the
issue by modeling the process at a higher level: we simply as-
sume that verbal communication channel allows us to trans-
fer the information about which hypothesis is correct. If we
view the problem this way, the problem of selecting which
category structure to communicate is not relevant: we could
assume that the teacher always intends to communicate the
correct hypothesis.

This channel of communication has its limitations, which
may depend on the category structure. For example, some
hypotheses could be difficult or impossible to formulate ver-
bally (Ashby et al., 2011), and some information could be lost
due to miscommunication or misunderstanding.

To account for these phenomena, we assume that the chan-
nel is noisy. That is, even though the teacher always intends
to communicate the correct hypothesis and “sends” it through
the verbal channel, due to noise, instead of receiving an un-
ambiguously decoded hypothesis, a student only receives a
sample from a distribution over all possible hypotheses. The
shape of this distribution depends on the hypothesis being
sent and is determined by the noise model.

Noise model
It is reasonable to assume that the noise corruption is more
likely to turn a hypothesis into a similar hypothesis, as op-
posed to turning it into something entirely unrelated. There
are, however, different ways to define this similarity metric
for the corruption model.

One approach is to restrict oneself to a certain class of rules
and then define similarity in some intuitive way. One option
would be to rely on syntactic similarity between formal ex-
pressions defining a concept (this would be similar in spirit
to (Goodman, Tenenbaum, Feldman, & Griffiths, 2008)), or
in some other way manually define the distance function be-
tween any two hypotheses.

We want our model to be applicable in a wide range of cate-
gorization experiments, and thus we chose not to rely on any

specific choice of the hypothesis space. Instead, we model
similarity between two categories simply as the similarity in
the pattern of their predictions. Thus, two categories (hy-
potheses) are the maximally similar if they predict the same
answer for all examples, and they are maximally dissimilar if
they always predict different answers. We find this definition
highly neutral as it builds upon the most basic definition of
equality of categories: the categories are the same if the sets
of things that belong to these categories are equal.

Apart from being flexible and unopinionated, our noise
model captures some fundamental and intuitive properties of
language: its ability to transfer the gist of the situation in
broad-brush terms, and its difficulty in exactly communicat-
ing perceptual experiences. Instead of being hard-coded into
the model, these properties naturally emerge from the concept
similarity definition that we employed.

For example, when two rule-based categories differ only
slightly in the thresholds that define them, or if two prototype-
based categories differ slightly in prototype means, there
would likely only be a few examples that would be misclassi-
fied if we confuse two such concepts. Thus, these categories
would be similar according to our definition, and it would be
difficult to discriminate between them using the verbal chan-
nel of communication.

At the same time, if two rules differ in the dimensions that
are considered relevant for it, or if some dimension is “re-
versed” - the ramifications of confusion between such two
rules would be dramatic. Such rules would be very dissimilar
according to our definition, and it would be easy to distin-
guish between them using the verbal channel of communica-
tion.

Verbal effort
There are good explanations and there are bad ones. The
same concept could be explained clearly, leaving little or no
uncertainty on the student’s side, or it could leave the student
confused, knowing little more than before.

In order to capture this intuition, we introduce a concept of
verbal effort. The more verbal effort a teacher puts into her
explanation the less uncertainty there is about what was the
communicated category.

Putting it together
In order to fully specify the model, we start with the Equa-
tions 3 and 4, and complement them with the case when di is
a verbal message via the Equation 5.

P(h|di, ...,d1) ∝ P(di|di−1, ...,d1,h)P(h|di−1, ...,d1) =

=

∑
dsent

i

P(di|dsent
i )P(dsent

i |h)

P(h|di−1, ...,d1) =

= P(di|dsent
h )P(h|di−1, ...,d1) (5)

Where dsent
h is the index of the correct hypothesis. The last

equality holds since the teacher always (i.e. with probability
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1) attempts to verbally communicate the true hypothesis.
Lastly, we define

P(di|dsent
i ) ∝ exp{σdi,dsent

i
·η} (6)

Where σdi,dsent
i

is the correlation in predictions between the
communicated hypothesis index dsent

i and di, the (potentially
noise corrupted) index of the received hypothesis. The soft-
max scale parameter η ∈ [0,∞) is the verbal effort. A verbal
effort of zero corresponds to complete randomness: nothing
useful was transmitted verbally. A verbal effort of infinity, in
contrast, allows one to exactly identify the correct hypothesis.
Currently, we fixed the steps on which the verbal communi-
cation occurs, but this restriction could be relaxed.

Overall, Equations 3, 4, 5, and 6 provide a formal defini-
tion of our model. See supplementary materials for the model
implementation.

Evaluation
In the next sections we describe the experimental setting on
which we collected both empirical and simulation data to test
test the viability of our model.

Experiment
Method
Participants We recruited 357 participants (169 as teach-
ers and 188 as students) through Amazon Mechanical Turk.
They were native English speakers from the US. We excluded
from the analysis teachers who did not reach predefined 85%
accuracy threshold (n = 40) or failed to follow the instruc-
tions (n = 28), resulting in a final sample of 101 teachers.

Materials Schematic representations of fish (Rosedahl &
Ashby, 2018) with possible variations in up to five visual fea-
tures (fin, tail, belly color, etc.) were used as stimuli. We
varied three independent variables between the participants:
1) stimuli dimensionality (two, three, or four dimensions) –
the number of visual features varying in the presented stimuli,
2) perceptual confusability (low/high) – the visual similarity
between stimuli of two categories, and 3) rule type (one- or
two-dimensional). Exact visual features related to the rule
dimensions were selected randomly.

Procedure Teachers learned the categorization rule by ob-
serving two sets of 15 stimuli labeled Examples of type A and
Examples of type B (see Figure 2). Stimuli were presented
simultaneously. Teachers had no time constraints and were
able to explore each stimulus in more details by enlarging it.
In the test phase, teachers had to categorize 30 stimuli pre-
sented sequentially (15 stimuli of each category including at
least eight stimuli that were not presented before). Teach-
ers who achieved the accuracy threshold of 85% in the test
phase were asked to generate three training sets to teach other
participants. There were three teaching formats (the order
was counter-balanced across the teachers): verbal, examples,
and mixed. In the verbal format teachers had to provide in-
structions that allow categorizing the stimuli. In the exam-

ples format they had to generate new stimuli of two different
categories without any verbal explanations (category labels
were provided). In the mixed format teachers were allowed
to use both verbal instructions and visual examples (see Fig-
ure 2). Teachers could use as many words or visual examples
as needed to explain the categorization rule, but they were in-
structed to be concise in their explanations and use only the
minimum required amount of examples.

Students were randomly assigned to one of three learning
conditions (verbal explanations, visual examples, or mixed),
and received corresponding training materials prepared by
one of the teachers. There were no time limits for the learning
phase. The test phase was similar to the teachers’ group.

Results

Students’ performance More than 67 percent of students
achieved 75% threshold criterion with median accuracy of
93 percent. Unfortunately, it results in overly low variabil-
ity in the student accuracy variable. Some clear patterns were
still present: one-dimensional rules result in higher perfor-
mance (.85) than two-dimensional (.72), p < .001 . As well
as higher perceptual confusability decreased students’ accu-
racy from .84 to .76 (p < .001). However, it would be impos-
sible to capture the more subtle interaction effects that are rel-
evant to our study. Initially, we planned to investigate the ef-
fects of text length and explanation numbers on the students’
accuracies, but students’ surprisingly good performance ren-
dered this approach impractical. Thankfully, we could switch
to another interpretation to still gain insight into the prob-
lem. Since the teachers were able to create learning materials
that in most cases allowed students to master the concept, we
could focus on the study materials themselves: did the teach-
ers adjust their teaching strategies to the situation? We used
a Poisson regression and Generalized Estimating Equations
approach to account for the teacher-to-teacher individual dif-
ferences. We applied robust variance estimation techniques
to compensate for potential model misspecifications.

Words per picture The average number of the visual ex-
amples provided by teachers was 4.28 in the mixed condition
and 4.86 in the examples condition. The average length of the
explanations increased from 28.37 in the mixed condition to
34.86 in the verbal condition because of the absence of visual
examples. That is, to achieve comparable performance, the
teachers needed to write approximately 34.86÷ 4.86 = 7.17
words per example. These values could be used to map the
verbal effort variable used in the computational model to the
number of words in the explanation and thus put it on a more
intuitive scale.

Predictors of text length and number of examples We
found statistically significant effects of the rule type (β =
.58, p < .001), the perceptual confusability (β = .22, p =
.044), and the presence of visual examples (β = −.19, p =
.004) on the length of verbal explanations (in symbols). The
effects of stimuli dimensionality were not statistically signifi-
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(a) Teachers (b) Students

Figure 2: Experimental procedure illustration

cant (β=−.03, p< .655). However, the number of visual ex-
amples was predicted only by the stimuli dimensionality (β=
.18, p = .012) and the rule type (β = .46, p = .025). There
were also marginally significant effects of the presence of ver-
bal explanations (β = −.12, p = .052) and the interaction of
the perceptual confusability and the stimuli dimensionality
(β = .15, p = .089). The effects of perceptual confusability
were not statistically significant (β =−.29, p = .149).

Simulation results
We used identical experimental settings to test the perfor-
mance of our computational model. We obtained initial es-
timates of P(di|h) using a strong sampling assumption, and
then iteratively updated them until convergence.

As shown in Figure 1, the simulation results closely cor-
respond to the patterns we observed in the experiment. It is
important to mention, however, that the behaviour depicted
on Figure 1d depends on the choice of the parameter α. We
used α = 1.1 in our experiments.

Apart from capturing the key dynamics present in our data,
the model also makes a range of important predictions and
provides rich opportunities for further experimentation. For
example, it is able to capture the mutually enriching nature
of verbal and exemplar communication channels. Thus, it is
possible to model situations in which using verbal explana-
tions and exemplars together leads to dramatic leaps in per-
formance, allowing to reach maximum accuracy, while in-
dividual channel performance is mediocre at best (0.76 for
exemplars, 0.53 for verbal communication).

Discussion and conclusion
We see the main impact of our paper in identifying a funda-
mental limitation characteristic of most existing human cate-
gory learning models (little to no account for the verbal com-

munication) and proposing a principled and broadly applica-
ble model to account for these phenomena.

Almost as important is the empirical demonstration of the
qualitative and quantitative differences between the verbal
and exemplar channels of communication. We observed that
the exemplar channel is more robust to perceptual confusabil-
ity of the category structures, i.e., it is more efficient in com-
municating categories that require higher precision in percep-
tual decisions. At the same time, the verbal channel is more
robust to increases in the dimensionality of the stimuli.

Our simulations show that the proposed rational category
communication model can capture the main qualitative prop-
erties of the empirical data. Additionally, the number of ex-
emplars it chooses to ensure that a student learns a category
is in close alignment with empirical data. Most importantly,
it captures the difficulties of verbally explaining categories
that require high perceptual precision and the robustness of
exemplar communication channel to such changes.

Overall, the verbal and exemplar channels of communica-
tion have their unique strengths and weaknesses, and their
relative efficiency largely depends on the structure of the hy-
pothesis space.

While many of the reported results are preliminary, we
hope that both the proposed experimental paradigm and the
computational model would facilitate further research into the
relative roles of verbal and exemplar information in commu-
nicating category structure. To further aid this goal, we make
the model implementation openly available.

Lastly, we find that under our experimental settings, the an-
swer to the question of “how many words is a picture worth?”
is approximately 7.17.
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Figure 1: Objects used in communication game with example drawings below, where stroke color indicates different parts.

Abstract

We effortlessly grasp the correspondence between a drawing
of an object and that physical object in the world, even when
the drawing is far from realistic. How are visual object
concepts organized such that we can both recognize these
abstract correspondences and also flexibly exploit them when
communicating them to others in a drawing? Here we consider
the notion that the compositional nature of object concepts
enables us to readily decompose both objects and drawings of
objects into a common set of semantically meaningful parts.
To investigate this, we collected data on the part information
expressed in drawings by having participants densely annotate
drawings of real-world objects. Our dataset contained both
detailed and sparser drawings produced in different commu-
nicative contexts. We found that: (1) people are consistent
in what they interpret individual strokes to represent; (2)
single strokes tend to correspond to single parts, with strokes
representing the same part often being clustered in time; and
(3) both sparse and detailed drawings of the same object em-
phasize similar part information, although detailed drawings
of different objects are more distinct from one another than
sparse drawings. Taken together, our results support the notion
that people flexibly deploy their abstract understanding of
the compositional part structure of objects to communicate
relevant information about them in context. More broadly,
they highlight the importance of structured knowledge for
understanding how pictorial representations convey meaning.
Keywords: compositionality; objects and categories; percep-
tual organization; sketch understanding; visual communication

Introduction
When we open our eyes, we do not experience a meaningless
array of photons — instead, we parse the world into people,
objects, and their relationships. The ability to represent
semantically meaningful structure in our environment is a
core aspect of human visual perception and cognition (Navon,
1977). As a testament to this ability, we effortlessly grasp
the correspondence between a physical object in the world
and a simple line drawing of it, even though such drawings
lack much of the rich visual information present in real-world
objects, including color and texture. How are visual object
concepts organized such that they can robustly encode such
abstract correspondences? Here we explore the notion that

perceiving these correspondences is supported by our ability
to decompose both objects and drawings into a common set
of semantically meaningful parts (Biederman & Ju, 1988).

Recent advances in computational neuroscience have pro-
vided an unprecedentedly clear view into the algorithms used
by the brain to extract semantic information from raw visual
inputs, including drawings, exemplified by modern deep
learning approaches (Fan, Yamins, & Turk-Browne, 2018;
Yamins et al., 2014). Nevertheless, a major gap remains in
adapting such deep learning models to emulate the structure
and flexibility of human semantic knowledge (Lake, Ullman,
Tenenbaum, & Gershman, 2017). A promising approach
to closing this gap may be to exploit the parsimony and
interpretability of structured representations that reflect how
visual concepts are organized in the mind (Battaglia et al.,
2018).

However, pursuit of this strategy relies upon a thorough
empirical understanding of this conceptual organization and
how people express this knowledge in natural behavior.
We aim to contribute to this understanding by probing the
expression of visual semantic knowledge in a naturalistic
setting that exposes both its structure and flexibility: visual
communication via drawing. This approach departs from
the conventional strategy for inferring the organization of
visual object concepts, which entails eliciting judgments with
respect to a small number of experimenter-defined dimen-
sions. Instead, drawing tasks permit participants to include
any elements they consider relevant and combine these el-
ements freely, yielding high-dimensional information about
how people organize and deploy visual semantic knowledge
under a naturalistic task objective.

Recent computational work using drawing tasks to probe
visual concepts have focused on either recognition (Eitz,
Hays, & Alexa, 2012; Yu et al., 2017) or generation (Ha &
Eck, 2017; M. Li, Lin, Mech, Yumer, & Ramanan, 2019)
of entire drawings. However, the question of how semantic
information within drawings is organized has not been inves-

2413



tigated as thoroughly (cf. L. Li, Fu, & Tai, 2018; Schneider
& Tuytelaars, 2016). The goal of this paper is to present
a systematic approach to analyzing the correspondence be-
tween semantic knowledge about the internal part structure of
objects and the procedure by which people robustly convey
this knowledge in their drawings. Specifically, this paper
advances recent work investigating how drawings convey
semantic information in three ways: first, we collect dense
part annotations on freehand drawings of real-world objects,
allowing an explicit focus on compositional part structure,
second, we explore the link between this semantic structure
and the dynamics of drawing production, and third, we
examine differences in how visual semantic knowledge is
expressed between contexts.

Methods
We developed a web-based crowdsourcing tool, built with
jsPsych.js (de Leeuw, 2015), to collect dense semantic
annotations of the stroke elements in drawings of real-world
objects (Fig. 1).

Communicative drawing dataset
We first obtained 1195 drawings of 32 real-world objects
from a previously collected experimental dataset in which
pairs of participants played a drawing-based reference game
(Fan, Hawkins, Wu, & Goodman, 2019).1 Object stimuli
were photorealistic 3D renderings belonging to one of four
basic-level categories (i.e., bird, car, chair, dog), each of
which contained eight exemplars. On each trial of the
experiment, participants were presented with a shared con-
text containing four of these objects. One participant (the
sketcher) was privately cued to draw a target object so that
the other participant (the viewer) could pick it out from
the set of distractors. Across trials, the similarity of the
distractors to the target was manipulated, yielding two types
of communicative contexts: close contexts, in which all
four objects belonged to the same basic-level category, and
far contexts, in which objects belonged to different basic-
level categories. This context manipulation led sketchers to
produce relatively simpler drawings containing fewer strokes
and less ink on far trials than on close trials, while still
achieving high recognition accuracy in both contexts.

Prior works analyzing the semantic properties of drawing
data have used a raster image representation (e.g., *.png), an
expedient format for applying modern convolutional neural
network architectures (Fan et al., 2018; Sangkloy et al., 2016;
Yu et al., 2017). However, to investigate how semantic
structure manifests during drawing production, it was critical
to encode each drawing using a vector image format that
preserves the inherently sequential and contour-based nature
of drawing production (e.g., *.svg). Thus, each drawing in
our dataset is represented as a sequence of individual strokes.
A stroke is defined as the mark left by a virtual pen on

1All materials and data are available at https://github.com/
cogtoolslab/semantic parts.

next sketch

bird

Figure 2: Annotation interface. Participants selected sub-stroke
elements (splines) and tagged them with part labels.

a digital drawing canvas between being ‘placed onto’ the
canvas and being ‘lifted up’. We parameterized each stroke
by a sequence of cubic Bézier curves, called splines. This
format provides a compact representation of drawing data,
which also preserves the sequence in which each element was
produced.

Semantic part annotation

We crowdsourced dense semantic annotations for every
spline in every stroke of the drawings from this dataset. We
refer to our annotation data as dense because labels were
provided for splines, which are at a finer level of granularity
than strokes.
Participants 326 participants were recruited via Amazon
Mechanical Turk (AMT) and provided informed consent in
accordance with the Stanford IRB. Participants were given
a base compensation of $0.35, plus $0.002 for every spline
they annotated and $0.02 for every drawing they annotated
completely.
Task procedure Each participant was presented with a
sequence of 10 drawings that were randomly sampled from
the communicative drawing dataset (Fig. 2). Their goal was
to tag each spline with a label corresponding to the part it
represented (e.g., seat, leg, back for a chair). To facilitate
consistent tagging, participants were provided with a menu
of common part labels that were associated with each basic-
level category (Table 1). Participants could also generate their
own part label if they believed none of the common labels
applied. If any spline was too short for annotators to feasibly
annotate it with their mouse cursor, it was concatenated with
its neighboring splines until the resulting spline was long
enough to easily select. To give participants full information
about the original communicative context, we showed the
drawing with the same array of four objects that the original
sketcher had viewed, with the target object highlighted in red.
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Data preprocessing We first standardized all 304 distinct
labels provided by participants, mapping them to a common
set of 24 part labels that applied to all objects in the dataset.
This common set was defined as the superset of all labels that
appeared in the part menu in the annotation task. Although
most labels provided already exactly matched one in the
common set (i.e., 90.1%), participants were permitted to
assign their own custom label, resulting in additional lexical
variation that we collapse over in the current analysis. For
example, some custom labels were either synonymous with
or more specific than one of the common labels (e.g., ‘leg
support’, ‘foot’, or ‘strut’ for ‘leg’). We manually constructed
a part dictionary to map such custom labels to one of the
common ones, ensuring a consistent level of granularity for
all spline labels. We only examined drawings that were
annotated by at least three distinct participants, providing
a consistent way to evaluate annotation consistency across
splines. To reduce bias due to missing data, we also restricted
our analyses to annotation trials in which the drawing was
completely annotated (i.e., all splines were tagged). After
applying all preprocessing, our resulting dataset consisted of
864 drawings that had been completely annotated 3 times.

Results
How well do viewers agree on what strokes mean?
Before proceeding to use these annotations to examine how
semantic information is conveyed during drawing production,
we conducted a basic check of inter-annotator consistency.
Specifically, we examined how often different annotators
agreed on what each spline in a drawing represented. We
found that 95.6% of all splines received the same label
by at least two of the three annotators, and 67.8% of all
splines received the same label by all three annotators. This
shows that the way viewers interpret which part each stroke
represents is systematic, validating our general approach.
Further, it suggests that sketchers may exploit this system-
aticity to produce strokes that they expect viewers to interpret
consistently. In subsequent analyses, we collapsed over inter-
annotator variation: we assigned the modal label to splines to
which at least two annotators had given the same label; for
the remaining 4.4% of splines, we sampled one of the three
labels provided.

How do strokes correspond to parts of objects?
When composing a recognizable drawing of a real-world ob-
ject, how do people decide what information to convey with

category part labels
bird eye, beak, head, body, wing, leg, feet, tail

car
bumper, headlight, hood, windshield,
window, body, door, trunk, wheel

chair backrest, armrest, seat, leg
dog eye, mouth, ear, head, neck, body, leg, paw, tail

Table 1: Part labels provided to annotators.

how many distinct  
parts in a stroke?

how many strokes does it take to draw a part?

# distinct 
parts in a 

stroke

proportion of  strokes

proportion of  parts

1 2 3+

# strokes 
to draw a 

part
1 2 3+

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
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C

Figure 3: (A) Analyzing the correspondence between strokes and
part labels: number of unique part labels assigned to different splines
within the same stroke and number of different strokes used to draw
each part. (B) Distribution over number of part labels within a
stroke. (C) Distribution over number of strokes used to draw a part.

each stroke? A natural possibility is that their actions closely
correspond to the part structure of that object. Concretely,
we hypothesized that most strokes in our dataset would not
cross part boundaries: that all splines within a given stroke
would be assigned the same part label. Conversely, because
depictions of parts can be arbitrarily detailed, and some parts
re-occur throughout an object (e.g., multiple legs on a bird,
chair, or dog), we hypothesized that there would often be
more than one stroke per part (Fig. 3A).

To evaluate the first hypothesis, we computed the number
of unique part labels across all splines within each stroke.
We found that for 81.6% of the strokes in our dataset there
was only one part label; the remaining 18.4% of strokes
were associated with two or more labels (Fig. 3B). In other
words, most strokes represented exactly one part, but in a
minority of cases they spanned multiple parts (e.g., a single
stroke connecting the head and body of a bird, or an armrest
and leg of a chair). We were concerned, however, that
these proportions were inflated by strokes with very few
splines.2 To address this concern, we constructed a null
model controlling for the number of splines. Part labels were
randomly sampled from the full list of parts in the drawing
such that each spline was equally likely to represent any part
regardless of the stroke it belonged to. In simulations from
this null model, only 55% of strokes corresponded to a unique
part while 45% of strokes spanned multiple parts. Thus,
individual strokes in our dataset were much more likely to
correspond to a single part (i.e., not cross part boundaries)

2The modal number of splines per stroke (20% of cases) was 1,
but there was a long tail; the mean number was 2.6.
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than would be expected under random assignment of part
labels to splines.

To evaluate the second hypothesis, we computed the num-
ber of strokes that were used to represent each part of an
object (Fig. 3C). We found that 46.1% of parts were depicted
using exactly one stroke, 26.0% using exactly two strokes,
11.3% using exactly three strokes, and 16.6% using four or
more strokes. Thus, nearly half the time, a single action
was sufficient to depict an entire object part. However, the
remaining 53.9% of the time, more than one stroke was
required to depict an entire part, which would be expected for
those parts that consisted of multiple disconnected subparts
within an object (e.g., wheels of a car, paws of a dog).

The findings so far show that the information people con-
vey with each stroke systematically corresponds to the parts
that objects contain. We next sought to understand how these
properties may vary between drawings generated in different
communicative contexts. Indeed, strokes spanning multiple
parts were slightly more common in drawings produced in
far contexts (19.4%, CI: [17.9%, 20.9%]) than close contexts
(17.6%, CI: [16.1%, 18.8%]3, p= 0.07), suggesting that
sketchers were somewhat more likely to use a single stroke
to represent multiple contiguous parts in a context where
a sparser drawing would be sufficient. And the proportion
of parts requiring more than one stroke was slightly higher
for close drawings (55.8%, CI: [53.7%, 58.6%]) than far
drawings (52.0%, CI: [49.9%, 54.6%],p = 0.02), suggesting
that sketchers may have included more detail per part in
close drawings to distinguish the target object from similar
distractors.

Do strokes representing the same part tend to be
produced in succession?
In the previous section we discovered that slightly more than
half of the parts in our dataset were depicted using multiple
strokes. This result raised the question: to what extent
are strokes depicting the same part drawn in succession, or
interleaved among strokes depicting other parts?

To investigate this question, we estimated the mean length
of ‘streaks’ containing strokes depicting the same part. First,
we collapsed across the spline annotations examined in the
previous section and represented each stroke by the modal
part label assigned to its splines. We represented each
drawing as the sequence of these part labels, and defined
part streak length to be the number of consecutive strokes
annotated with the same part label.4 For example, in the
drawing shown in Fig. 4A, two ‘leg’ strokes were placed
before moving on to the ‘foot’, giving a streak of length 2.
Finally, we averaged these streak length values over every

395% confidence intervals were estimated via stratified bootstrap
resampling (N=1000 iterations) of drawings within each context
condition.

4We excluded 78 out of the 864 drawings where this measure
was not well-defined, i.e. sketches containing only one stroke or
part label, or containing fewer than two strokes sharing the same
part label.
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Figure 4: (A) Analysis of sequence in which strokes depicting
each part were drawn. (B) Comparison of mean length of streaks
consisting of strokes that depict the same part with null distribution
of permuted stroke sequences.

drawing in the dataset to obtain our statistic.
To evaluate whether the empirical part sequences were

more structured than expected if parts were drawn at random,
we constructed a null model to serve as a baseline. For
this null model, we permuted the part sequence such that
the number of instances of each part was preserved, but the
temporal structure was disrupted (Fig. 4A). We generated a
null distribution of streak lengths for each drawing by re-
peating this permutation procedure 1000 times and measuring
the mean streak length for each permutation. Finally, we
obtained a z-score for each drawing by computing where
the empirical streak length fell in the permuted streak length
distribution. A drawing with a z-score near 0 had a streak
length that was commonly obtained by placing strokes in a
random order, while a drawing with a higher z-score is more
structured than expected under the null.

We found that the empirical streak length was reliably
higher for all objects than that of the permuted sequences
(mean z-score across drawings: 2.07, CI: [1.90, 2.23];
Fig. 4B), and higher for the close drawings (mean z-score:
2.58; CI: [2.26, 2.90]) than far drawings (mean z-score: 1.56;
CI: [1.38, 1.74]). The lower streak length for far drawings is
consistent with their lower stroke count overall—when only
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one or two strokes are used per part, there is a ceiling on the
mean streak length. However, when sketchers do use multiple
strokes to convey a single part (i.e., because there are multiple
subparts, or to add more detail), they tend to draw these in
succession before moving on to a different part. These results
suggest more broadly that the procedure by which people
convey semantic information in drawings is organized by the
part structure within objects.

How is part information emphasized in different
communicative contexts?
Our findings so far bear on how the way people compose
communicative drawings of objects reflects their semantic
knowledge of the parts those objects are composed of. A key
consequence of such semantically organized part knowledge
is that it naturally supports flexible expression across different
communicative contexts. For example, when communicating
about a chair in a far context containing objects from other
basic-level categories, sketchers may include only the essen-
tial information to indicate the presence of certain parts (e.g.,
armrests) that distinguish it at the category level. On the
other hand, when communicating about that same chair in
a close context containing other, perceptually similar, chairs
sketchers may emphasize aspects of parts that distinguish it
at the object level (e.g., the curvature of the armrests), by
applying more strokes and/or more ink in each stroke.

We hypothesized that sketchers emphasize part informa-
tion to preserve relevant distinctions in context. To explore
this possibility, we asked the following questions: (1) How
similarly is object-specific part information emphasized in
both close and far contexts? (2) How do differences in how
part information is emphasized between contexts affect how
discriminable those drawings are?

To investigate these questions, we represented each draw-
ing by a 48-dimensional part-feature vector that contained
information about: (a) how many strokes and (b) how much
total ink was allocated to each of the 24 unique part labels
in our dataset. Specifically, the first 24 elements of each
part-feature vector contained the number of strokes allocated
to each part, and the remaining 24 contained the total arc
length of all strokes allocated to each part. Because our
primary goal was to understand relative differences in how
much emphasis was placed on each part across drawings in
our dataset, we first z-scored the raw stroke-count and arc-
length measurements within each feature dimension, thereby
mapping all features to the same unit-variance scale. We
then collapsed across drawings within each object-context
combination, yielding 64 average part-feature vectors (i.e., 32
objects x 2 context conditions).

Similar part information emphasized across different
communicative contexts In order to investigate to what ex-
tent similar object-specific part information is emphasized in
different communicative contexts, we computed the matrix of
Pearson correlations between part-feature vectors. Formally,
this entailed computing: Ri j = cov(~ri,~r j)/

√
var(~ri)·var(~r j), where

first principal component

se
co

nd
 p

ri
nc

ip
al

 c
om

po
ne

nt

B C

A

co
rr

el
at

io
n

co
rr

el
at

io
n

within
object

between
objects

close far

Figure 5: (A) Layout of mean part-feature vectors for each object-
context combination, projected onto top two principal components.
(B) Comparison of feature similarity between close and far drawings
of the same object, relative to close and far drawings of different
objects within a category. (C) Comparison of feature similarity
between far drawings of objects within a category, relative to close
drawings. Error bars reflect 95% CIs.

~ri and~r j are the mean part-feature vectors for the ith and jth
object-context combinations, respectively.

While close and far drawings of an object differed in their
overall amount of detail, we hypothesized that they would
still emphasize part information in similar ways. Specifi-
cally, insofar as similar object-specific part information is
emphasized in both close and far drawings of the same object,
we predicted higher correlations between close and far part-
feature vectors for the same object than for close and far
part-feature vectors of different objects. Consistent with this,
we found strong correlations between the feature vectors for
close and far drawings of the same object (r = 0.73, CI: [0.68,
0.77]5), which were significantly stronger than close and far
drawings of different objects (r = 0.64, CI: [0.60, 0.68]; same
objects vs. different objects: p< 0.001). These results show
that close and far drawings of the same object exhibit similar

595% confidence intervals were estimated via stratified bootstrap
resampling (N=10000 iterations) of drawings within each object-
context combination.
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patterns of emphasis across different parts, and this similarity
exceeded that expected due to merely being members of the
same basic-level category (Fig. 5B).

Detailed drawings are more distinct from each other than
sparser drawings While the above findings showed that
close and far drawings of the same object exhibit similar
patterns of emphasis on different parts, close drawings con-
tain greater emphasis on these parts overall than far drawings
(i.e., contained more and longer strokes). How were these
additional strokes being spent?

We hypothesized that the additional part information pro-
vided in close drawings was being distributed across parts
in different ways for different objects, thereby making them
more distinguishable from one another in feature space. To
evaluate this possibility, we computed the mean correlation
between the part-feature vectors of close drawings of objects
in a given category and compared this value with the mean
correlation between far drawings of exactly the same objects.
We found that close drawings were less similar to one another
than far drawings were (close similarity: r = 0.65, CI: [0.60,
0.69]; far similarity: r = 0.73, CI: [0.67, 0.77]; close vs.
far: p = 0.007), suggesting that sketchers discern which parts
are most diagnostic of the target object among highly similar
distractors and emphasize these parts accordingly (Fig. 5C).
This was particularly apparent when we visualized the spatial
layout of part-feature vectors: whereas far drawings were
clustered closer together and near the origin, close drawings
were spread further apart from other members of the same
category and further from the origin (Fig. 5A). Observing
these contextual differences is all the more remarkable given
that this feature representation captures only the amount of
emphasis allocated to each part during drawing production,
setting aside their visual properties.

Discussion
In this paper, we explored how the way people compose
communicative drawings of objects reflects their semantic
knowledge about what objects are composed of. To ac-
complish this, we first collected dense semantic annotations
of sub-stroke elements in communicative drawings of real-
world objects that were produced in different contexts. This
allowed us to interrogate the internal semantic structure
within drawings, and relate this structure to the dynamics
of drawing production in a naturalistic visual communication
task. Overall, we found that: (1) people are highly consistent
in how they interpret what individual strokes represent; (2)
single strokes tend to correspond to single parts, with strokes
representing the same part tending to be clustered in time;
and (3) both detailed and sparse drawings of the same object
emphasized similar part information, with detailed drawings
of different objects tending to be more distinct from one
another than simpler ones. Taken together, our results support
the notion that people deploy their abstract understanding of
the compositional part structure of objects in order to select
actions to communicate relevant information about them in

context.
These findings are resonant with classic and recent work

that has argued for the importance of compositionality in hu-
man perception and cognition in general (Biederman, 1987;
Battaglia et al., 2018; Lake et al., 2017), and for visual
production in particular (Lake, Salakhutdinov, & Tenenbaum,
2015). However, unlike prior work which focused on the pro-
duction of abstract symbols (Lake et al., 2015), we consider
the challenge of how people transform perceptually grounded
representations of real-world objects into procedures for pro-
ducing figurative drawings that communicate not only what
they see and know about them, but also what is relevant in
context.

Our work is also related to recent progress in the de-
velopment of computational models of drawing production
(Ha & Eck, 2017; M. Li et al., 2019). While results
from these efforts have been galvanizing, the development
of principled metrics by which to rigorously evaluate how
well they emulate human drawing behavior has not kept
pace. By interrogating in detail how humans encode semantic
information into their drawings, and flexibly adjust their
production behavior in different contexts, this paper presents
a first step towards such a set of behavioral metrics. Having
such metrics is important because they would enhance our
ability to distinguish between generative models, and thereby
help advance further model development. It would thus be
valuable to apply up our analytical approach to the large
drawing datasets (Eitz et al., 2012; Sangkloy et al., 2016;
Jongejan, Rowley, Kawashima, Kim, & Fox-Gieg, 2017) that
have provided the basis for these modeling approaches.

In ongoing work, we are extending our analysis of how
different part information is expressed in drawings beyond
simple effort cost measures (i.e., number of strokes, amount
of ink) to encompass content and style information (e.g., the
shape of a bird’s wing, caricaturization of a chair’s armrest).
We expect that augmenting current vision models with a
combination of the requisite semantic part knowledge and the
ability to discern perceptual properties of these parts, such
as style, will enable us to build models that parse drawings
in a more human-like way. More broadly, achieving this
synthesis will lead to both more robust artificial intelligence
and a deeper understanding of human cognition and behavior.
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Abstract

Constraints on control-dependent processing have become a
fundamental concept in general theories of cognition that ex-
plain human behavior in terms of rational adaptations to these
constraints. However, theories miss a rationale for why such
constraints would exist in the first place. Recent work suggests
that constraints on the allocation of control facilitate flexible
task switching at the expense of the stability needed to support
goal-directed behavior in face of distraction. Here, we formu-
late this problem in a dynamical system, in which control sig-
nals are represented as attractors and in which constraints on
control allocation limit the depth of these attractors. We derive
formal expressions of the stability-flexibility tradeoff, showing
that constraints on control allocation improve cognitive flexi-
bility but impair cognitive stability. Finally, we provide evi-
dence that human participants adapt higher constraints on the
allocation of control as the demand for flexibility increases but
that participants deviate from optimal constraints.

Keywords: cognitive control; task switching; stability-
flexibility tradeoff; bounded rationality; capacity constraints

Introduction
Numerous theories of cognition are grounded in the assump-
tion that there are fundamental constraints on the allocation
of cognitive control (Anderson, 2013; Kurzban, Duckworth,
Kable, & Myers, 2013; Shenhav, Botvinick, & Cohen, 2013).
Theories that assume such limitations have been successful in
explaining how humans rationally allocate control under such
constraints (Lieder, Shenhav, Musslick, & Griffiths, 2018;
Musslick, Shenhav, Botvinick, & Cohen, 2015; Shenhav et
al., 2013). However, they do not provide a rationale for why
such limitations would exist in the first place.

A recent line of work attempts to explain the limita-
tions of control allocation in terms of fundamental compu-
tational dilemmas in neural processing systems. For instance,
Musslick et al. (2017) suggest that neural architectures are
subject to a tradeoff between learning efficiency that is pro-
moted through the use of shared task representations (Bengio,
Courville, & Vincent, 2013; Caruana, 1997), on the one hand,
and multitasking capability that is achieved through the sep-
aration of task representations, on the other hand (Allport,
1980; Musslick et al., 2016; Meyer & Kieras, 1997; Navon
& Gopher, 1979; Salvucci & Taatgen, 2008; Feng, Schwem-
mer, Gershman, & Cohen, 2014). From this perspective, lim-
itations in multitasking may reflect a preference of the neural
system to learn tasks more quickly (Musslick et al., 2017; Sa-
giv, Musslick, Niv, & Cohen, 2018).

One way to circumvent limitations in concurrent multi-
tasking is to execute multiple tasks in series, through flexible
switching between tasks (Salvucci, Taatgen, & Borst, 2009;
Fischer & Plessow, 2015). The serial execution of tasks,
however, gives rise to another tradeoff known as the stability-
flexibility dilemma: allocating more control to a task results
in greater activation of its neural representation but also in
greater persistence of this activity upon switching to a new
task, yielding switch costs (Ueltzhöffer, Armbruster-Genç, &
Fiebach, 2015; Goschke, 2000). By considering the prob-
lem in terms of the parameterization of a nonlinear dynami-
cal system, in which control signals are represented as attrac-
tors, Musslick, Jang Jun, Shvartsman, Shenhav, and Cohen
(2018) showed that constraints on control allocation can pro-
mote cognitive flexibility at the expense of cognitive stability.
Their simulations suggest that higher constraints on control
allocation are optimal in environments with higher demand
for task switches. While the simulations provide a compu-
tational rationale for constraints on control, a formal analysis
of the problem is lacking. It also remains to be tested whether
humans adapt their constraints on control in response to de-
mands for flexibility.

In this work, we analyze the model by Musslick et al.
(2018) from a dynamical system perspective and derive for-
mal definitions for cognitive stability and cognitive flexibil-
ity. We then prove that higher gains of a network’s activation
function (equivalent to inverse temperature, and thought to
reflect the effects of neuromodulatory neurotransmitters such
as dopamine and norepinephrine; Servan-Schreiber, Printz,
& Cohen, 1990; Liljenström, 2003; Cools, 2015) can bal-
ance this tradeoff towards cognitive stability at the cost of
cognitive flexibility. To assess whether human participants
adjust their constraints on control as a function of flexibility
demands, we fit the model to participants who performed a
task switching experiment with different rates of switching.
We specifically test the hypothesis that the behavior of partic-
ipants in highly flexible environments can be best described
by a lower gain, reflecting higher constraints on control al-
location. Finally, we use computational simulations to in-
vestigate whether participants adapt to the stability-flexibility
dilemma in a rational manner, by comparing fitted constraints
on control against optimal constraints on control.
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Recurrent Neural Network Model
We analyze the stability-flexbility tradeoff in a recurrent neu-
ral network model described by Musslick et al. (2018). The
model consists of a control module that simulates control con-
figurations as activities of processing units. The pattern of
activity associated with each control configuration evolves in
an attractor landscape over the course of trials. Within each
trial, the processing units bias an evidence accumulation pro-
cess in the decision module that integrates information about
the stimulus and generates a response.

Control Module
We simulate the amount of control allocated to a task as the
activity of a corresponding processing unit in a recurrent neu-
ral network. Here, we consider environments with two tasks,
and therefore two processing units, indexed by i, j ∈ {1,2}.
The activity of each unit is determined by its net input

neti(t) = wi,iacti(t)+wi, jact j(t)+ Ii (1)

which is a linear combination of the unit’s own activity
acti(t) multiplied by the self-recurrent weight wi,i, the activ-
ity act j(t) of the other unit j ∈ 1,2, j 6= i, multiplied by an
inhibitory weight wi, j, and an external input Ii (i.e., an ”in-
struction”) provided to the unit (see Figure 1A). The activities
for both processing units evolve across trials according to

dacti(t)
dt

=−acti(t)+
1

1+ e−g·neti(t)
(2)

where the g is the slope of a sigmoid activation function1.
The sigmoid activation function constrains the activity of
both units to lie between 0 and 1. The gain of the activa-
tion function g regulates the distance between the two control
attractors, with lower gain leading to a lower activation of
the currently relevant control unit and slightly higher activa-
tion of its competitor (see Figure 1B-C). From this perspec-
tive, lower gains impose higher constraints on the amount of
control that can be allocated to a task but facilitate switches
between tasks. Below, we provide a formal analysis of the
stability-flexibility dilemma as a function of gain.

Decision Module
We simulate the decision process using the drift diffusion
model (DDM, Ratcliff, 1978). On each trial, the decision
module integrates information along two stimulus dimen-
sions S1 and S2 of a single stimulus to determine a response.
Each dimension (e.g., color or motion of a moving dot stim-
ulus) can take one of two values (e.g., red or blue; up or
down), each of which is associated with one of two responses
(e.g. pressing left or right button). Each of the two tasks
requires mapping the current value of one of the two stim-
ulus dimensions to its corresponding response, while ignor-
ing the other dimension. Since both tasks involve the same

1The non-linear dynamical system presented in this work is for-
mally equivalent to the discrete time model by Musslick et al. (2018)
for a rate constant of 1.
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Figure 1: Model architecture. (A) The dynamics of the con-
trol module (blue) unfold over the course of trials and are
determined by external input signals I1, I2, recurrent connec-
tivity w1,1,w2,2 for each unit, as well as mutual inhibition
w1,2,w2,1 between units. The activity of each control unit bi-
ases the processing of a corresponding stimulus dimension
on a given trial. On each trial, the decision module accumu-
lates evidence for both stimulus dimensions towards one of
two responses until a threshold is reached. (B-C) Activation
trajectories for models with a (B) low and (C) high gain are
shown as a series of connected black dots, evolving from the
control attractor for task 1 (green) to the control attractor for
task 2 (blue). Contour lines and arrows indicate the energy
and shape of the attractor landscape after a task switch from
task 1 to task 2. Attractors for both tasks lie approximately
on the antidiagonal of the state space ( actdi f ) shown in red.

pair of responses, stimuli can be congruent (stimulus values
in both dimensions associated with the same response) or in-
congruent (associated with different responses). The drift of
the DDM integration process is determined by the combined
stimulus information from each dimension, weighted by in-
put received from the control module (as described below),
and evidence is accumulated over time until one of two re-
sponse thresholds is reached. The drift rate is decomposed
into an automatic and controlled component:

dri f t = wa(S1 +S2)︸ ︷︷ ︸
automatic

+act1S1 +act2S2︸ ︷︷ ︸
controlled

(3)

where the automatic component is weighted by wa and re-
flects automatic processing of each stimulus dimension that
is unaffected by control. The absolute magnitude of S1,S2
depends on the strength of the association of each stimulus
with a given response and its sign depends on the response
(e.g. S1 < 0 if the associated response is to press the left
button, S1 > 0 if the associated response is to press the right
button). Thus, for congruent trials S1 and S2 have the same
sign, and the opposite sign for incongruent (conflict) trials.
The controlled component of the drift rate is the sum of the
two stimulus values, each weighted by the activation of the
corresponding control unit. Thus, each unit in the control
module biases processing towards one of the stimulus dimen-
sions. As a result, progressively greater activation of a control
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Figure 2: Difference in the activation of the two processing
units (actdi f ) for various magnitudes of I1 in steady-state solu-
tions to Equation (2), with I2 = 0. Solid lines are stable attrac-
tors and dashed lines are unstable solutions. The black curve
is the symmetric no-input system of Equation (6), for which
with low values of gain the only attractor is the neutral state
actdi f = 0. For values of gain greater than 2, two nonzero
attractors emerge in a pitchfork bifurcation. Nonzero input
to one of the processing units breaks the symmetry, splitting
up the symmetric pitchfork into a continuous branch for the
corresponding task and a cusp. The breakup is referred to as
imperfect bifurcation (Golubitsky & Schaeffer, 1985).

unit improves performance – speeds responses and improves
accuracy – for the corresponding task. Distributions of reac-
tion times (RTs) and error rates for a given parameterization
of drift rate at a given trial are derived from an analytical so-
lution to the DDM (Navarro & Fuss, 2009).

Formal Analysis

Previous simulation work suggests that lower values of gain
facilitate switches between tasks but limit how much control
can be allocated to any given task (Musslick et al., 2018).
Building on work by Franci, Srivastava, and Leonard (2015);
Gray, Franci, Srivastava, and Leonard (2018), we derive a for-
mal analysis of this tradeoff as a function of gain.

For unit weights w1,2 = w2,1 =−1 and w1,1 = w2,2 = 1, the
attractors for both tasks are observed to lie near the antidi-
agonal in the activation space (see red dashed line in Figure
1B-C). We examine the dynamics of the system in a rotated
frame of reference such that the attractors lie near the vertical
axis. We introduce translated and rotated variables(

actavg
actdi f

)
=

1
2

(
1 1
1 −1

)(
act1−1/2
act2−1/2

)
(4)

where actavg corresponds to the average of the two (shifted)
activity states of the processing units, and actdi f is the average
difference between the two activity states. Here, actdi f can be
considered a proxy for cognitive stability, indexing how much
control is allocated to one task versus the other. We can get an
intuition for the dynamics of the system by first considering
the symmetric case, in which the control module receives no
input to either task processing unit I1 = I2 = 0.

The dynamical equations (2) with zero input decouple in

A

B

Task
Switch

Figure 3: Relationship between actdi f , convergence time and
gain. (A) Configuration of the system before and after a task
switch. (B) Convergence time as a function of gain. Verti-
cal lines mark examples for gain parameters that were fitted
to participants’ performance in environments with low (blue)
and high (orange) rates of task switches.

the new variables:

d
dt

actavg =−actavg (5)

d
dt

actdi f =−actdi f +
1
2

tanh(g ·actdi f ) (6)

The attractors of the system are the stable steady-state solu-
tions of (5), (6). Note that actavg decays to zero and the no-
input system always settles on the antidiagonal act1 +act2 =
1. According to the dynamics of actdi f , the available attrac-
tors vary with the value of the gain parameter (Figure 2).

With nonzero input, the dynamics on the diagonal and an-
tidiagonal directions do not completely decouple. The con-
tribution in the actavg direction results in the system settling
near the antidiagonal with a small offset rather than directly
on the antidiagonal (Figure 1B-C). However, analogously to
the symmetric no-input case, the dominant dynamical behav-
ior is in the actdi f direction, shown in Figure 2. From this we
can recover intuition for the tradeoff between cognitive sta-
bility and flexibility. The relationship between network gain
g on the relevant domain (0 < actdi f < 0.5 when I1 6= 0 or
−0.5 < actdi f < 0 when I2 6= 0) and actdi f is defined by

g = f (actdi f ) =
tanh−1(2actdi f )

actdi f
+E(|actdi f |, I) (7)

where the first term is the explicit solution for steady state
gain of the no-input system (6) and E(actdi f ) is the deviation
from the symmetric case, which is a monotonically decaying
function of the magnitude of actdi f . We can approximate this
deviation with a decaying exponential fit

E(|actdi f |, I)≈ 1.4e−5I−1.1·|actdi f |+0.6 (8)

where I is the magnitude of input. Since (7) is locally invert-
ible on the given domain, we can express cognitive stability
as a function of the network gain, actdi f (g) = f−1(actdi f ).
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Further, we can express cognitive flexibility in terms of
the time it takes to switch from one task to another, that is,
the time it takes for actdi f to pass through zero and switch
sign. From simulation we observe that the transition time is
a monotonically increasing function of the network gain (see
Figure 3). For an input I j = 0.8 we approximate the transi-
tion time with a linear fit T (g)≈ 0.8g+0.6. Substituting (7)
with I = 0.8 for g, we obtain an expression for the stability-
flexibility tradeoff

T (actdi f )≈ 0.8
tanh−1(2actdi f )

actdi f
+1.1e−6.4|actdi f |+1.1 (9)

by relating convergence time and actdi f . This analysis sup-
ports intuitions from prior computational work, showing that
a higher network gain promotes cognitive stability at the ex-
pense of cognitive flexibility (Musslick et al., 2018). More-
over, the formal results described in this section offer a quan-
titative interpretation of network gain in terms of both actdi f ,
as well as T , when fitting the model to human behavior.

Experiment
Our analysis results suggest that a system should adapt higher
constraints on control (lower gains) if the demand for cogni-
tive flexibility increases. To examine whether human partici-
pants rationally adapt constraints on control to the flexibility
demands of their environment, we conducted a task switch-
ing experiment in which the rate of task switches was varied
across participants. We then fit the network model to each
participant and evaluated the fitted gain against the gain that
optimizes the stability-flexibility tradeoff for each participant.

Method
Participants. We recruited 67 participants from Amazon
Turk. All participants signed a consent form prior to par-
ticipation and received $6 US for participation. The study
was approved by the Institutional Review Board of Princeton
University. We only included participants with an accuracy
above 65% into our analysis, yielding a total of 31 partici-
pants in the low switch rate group and 27 participants in the
high switch rate group.

Apparatus and Stimuli. Stimuli consisted of a web-based
random-dot kinematogram (RDK) that we adapted from
Rajananda, Lau, and Odegaard (2018). The RDK contained
blue and red moving dots, some of which consistently moved
in either an upward or a downward direction, and some of
which moved in a random direction.

Task and Procedure. Participants switched between a color
task, in which they had to indicate the color of the majority of
the presented dots (red or blue), using the response buttons ‘A’
and ‘L’, respectively, and a motion task in which they had to
indicate the direction of coherent motion (up or down), using
the same response buttons ‘A’ and ‘L’, respectively. Partici-
pants performed each task over a mini-block of four to six tri-
als. Each mini-block was preceded by a task cue (one of two
cues for each task to control for cue repetition effects) that

instructed participants which tasks to perform. In some mini-
blocks, participants had to repeat the task that they performed
in the previous mini-block (task repetition), whereas in other
mini-blocks, they had to switch to the other task (task switch).
The cue was displayed for 700ms and disappeared for an-
other 600ms. On each trial of a miniblock, the RDK stimulus
was shown for 1500ms, followed by an inter-trial interval of
700ms. Participants were asked to indicate the task-relevant
response while the stimulus was on the screen. In the begin-
ning of the experiment, we used a staircasing procedure to
identify coherence levels (i.e. the percent of dots having the
same motion or color) for each participant that standardized
performance at around 85% accuracy for both tasks. After
training participants to associate the task cues with each task,
participants switched between tasks over a sequence of two
larger blocks of 66 miniblocks each.

Design. Participants were divided into two experimental
groups, one that switched tasks between mini-blocks 25% of
the time (low switch rate) and one that switched tasks 75% of
the time (high switch rate). For each task switching sequence,
we counterbalanced seven factors with respect to the first trial
of each mini-block: task (color or motion task), task tran-
sition (task switch or task repetition), task cue (first or sec-
ond cue associated with a task), congruency (congruent or in-
congruent), dot motion (upward or downward), color (mostly
blue or red) and correct response (‘A’ or ‘L’ key).

Data Analysis. We focused our analysis on the second
block of the experiment, assuming that subjects take the first
block to adjust to the frequency manipulation of the exper-
iment. We were specifically interested in the performance
costs associated with task switches. Prior work suggests
that switch costs diminish after the first trial of a mini-block
(Rogers & Monsell, 1995). We therefore analyzed reaction
times (RTs) and error rates associated with the first trial of a
miniblock. Furthermore, RT data was limited to correct tri-
als that were preceded by at least one correct trial. For each
group of participants, we computed switch costs as the dif-
ference in performance between switch trials and repetition
trials for both RTs and error rates. We also computed incon-
gruency costs on task repetitions2 as the difference in perfor-
mance between congruent and incongruent trials. Finally, we
conducted two-tailed t-tests to assess whether participants in
the low switch rate group exhibited different switch costs and
different incongruency costs compared to the high switch rate
group.

Model Fitting Procedure. Before fitting parameters of the
model to behavior of human participants, we evaluated how
well we can recover these parameters from simulated behav-
ior generated by the model. Motivated by the formal analysis
described above, we parameterized the control module with
balanced recurrent and inhibitory weights, wi,i = 1,wi, j =−1,

2Incongruency costs have been shown to interact with task tran-
sition (Rogers & Monsell, 1995; Goschke, 2000; Wendt & Kiesel,
2008). To avoid confounding effects of congruency with the fre-
quency of task switches we conditioned incongruency costs on task
repetition trials.
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Table 1: Fitted model parameters with prior distributions.

Parameter Prior Distribution Lower Bound Upper Bound
g Gamma(2.5,0.75) 0 4
z Gamma(3,0.02) 0.01 0.25
c Gamma(3,0.75) 0.015 0.25
h Beta(1.2,1.2) 0 1
wa Gamma(16,0.05) 0.1 0.5

and computed the activities of both processing units trial-by-
trial, by numerically integrating Equation (2) with step size h.
We set the input for the currently relevant task unit to Ii = 0.8
and the input for the task-irrelevant unit to I j 6=i = 0. The stim-
ulus dimension encoding the color feature was set to S1 = 0.1
if the majority of the dots was red and set to S1 = −0.1 if
the majority of the dots was blue. Similarly, the stimulus di-
mension encoding the motion feature was set to S2 = 0.1 if
the dots were moving upward and set to S2 = −0.1 if dots
were moving downward. We fixed the non-decision time of
the DDM to T0 = 0.2 and fit five free parameters with priors
shown in Table 1: network gain g, DDM response threshold z,
DDM noise c, integration constant h and automaticity weight
wa. The number of free parameters was determined based
on prior analyses of parameter identifiability, indicating that
larger or different sets of free parameters may not be reliably
recovered. To assess how well the five parameters can be re-
covered from the simulated behavior of the model, we first
sampled 10 parameter configurations uniformly from the in-
tervals shown in Table 1. We then generated distributions of
response times for each trial of the second experiment block
and identified parameters that maximized the likelihood of
the model’s responses given the data. The identifiability of
each parameter was quantified by regressing the true param-
eter against the fitted parameter across all sampled parameter
configurations. We used the same procedure to fit the model
to each participant. Finally, we conducted a one-tailed t-test
to assess whether fitted gain parameters of the participants in
the low switch rate group were higher relative to fitted gain
parameters in the high switch rate group.

Optimality Analysis. To evaluate whether participants
adapt rationally to the stability-flexibility dilemma, we iden-
tified the optimal gain that maximizes accuracy across all tri-
als in the experiment, given all other fitted parameters for a
given participant3. For each participant group, we computed
the difference between fitted gains and optimal gains, and per-
formed a two-sided t-test to evaluate whether fitted gain pa-
rameters systematically deviate from their optimal gain.

Results
We found that participants who switched tasks less frequently
took more time to switch tasks, t(56) = 2.04, p < 0.05,
but found no significant differences in terms of error rates,
t(56) = 0.20, p = 0.84. Participants showed no significant
differences in incongruency costs between the two experi-

3We chose to maximize accuracy over maximizing reward rate as
the duration of each trial was independent of response time. How-
ever, we obtained identical results when optimizing for reward rate.

mental groups in terms of both RTs, t(56) = 0.93, p = 0.35
and error rates, t(56) = 1.30, p = 0.20.
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Figure 4: Examples of participant RTs and RTs generated by
the fitted model. RTs are shown as a function of task transi-
tion (repetition, switch) and response congruency (congruent,
incongruent) for the first (A, B) and second (C, D) trial of a
mini-block. Data is shown for one participant from the low
switch rate group (A, C) and one participant from the high
switch rate group (B, D). Dark bars indicate average RTs gen-
erated by the fitted model. Error bars indicate the standard
error of the mean across trials.

Overall, we were able to recover parameters from behavior
generated by the model. The true parameter value signifi-
cantly predicted the value estimated by the fitting procedure
for network gain, b = 0.97, t(9) = 4.44, p < 0.01, DDM re-
sponse threshold z, b = 1.09, t(9) = 14.06, p < 0.001, DDM
noise c, b = 0.69, t(9) = 9.03, p < 0.001, integration con-
stant h, b = 0.87, t(9) = 5.02, p < 0.01, and automaticity
weight wa, b = 0.64, t(9) = 3.06, p < 0.05. Figure 4 shows
the behavior of two participants along with the behavior gen-
erated by the fitted model. In line with the prediction made
by the model, we observed that the fitted gain parameters
to behavior of human participants were significantly higher
in the low switch rate group relative to the high switch rate
group, t(56) = 3.61, p < 0.001 (Figure 5A). Note that Fig-
ure 3 depicts formal expressions of cognitive stability (Figure
3A) and cognitive flexbibility (Figure 3B) as a function of the
average fitted gains for both groups. Interestingly, the fitted
gains were significantly lower than the optimal gains, for both
groups: low switch rates, t(30) = 7.40, p < 0.001, and high
switch rates, t(26) = 4.24, p < 0.001, suggesting that, while
participants adapt gain in the predicted way, overall they exert
more constraint on control allocation (lower gain) than was
predicted to be optimal.

General Discussion and Conclusion
A fundamental characteristic of control-dependent process-
ing are constraints on the allocation of control (Shiffrin &
Schneider, 1977; Posner & Snyder, 1975). Recent work sug-
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Figure 5: Model fitting results. (A) Fitted gains are shown
for participants with a low (blue) and high (orange) switch
rates. Each circle corresponds to the fitted gain of a partic-
ipant. Vertical lines indicate the standard error of the mean
fitted gain, centered around the mean. Mean gains for each
group are also shown in Figure 3. (B) Fitted gain for each
participant is plotted against the optimal gain that maximizes
the overall accuracy of the model for a given participant.

gests that these limitations may origin from shared represen-
tations (Feng et al., 2014; Musslick et al., 2016; Salvucci &
Taatgen, 2008), as well as persistence characteristics in neu-
ral systems (Musslick et al., 2018), and the resulting need to
trade off the amount of control that can be allocated to a sin-
gle task against the time required to switch from one task to
another. In this work, we introduced a formal analysis of the
latter — that is, the tradeoff between cognitive stability and
cognitive flexibility.

Applying perturbation theory to the network model de-
scribed by Musslick et al. (2018), we formally defined cog-
nitive stability in terms of the distance between attractors for
competing control states, and defined cognitive flexibility in
terms of the time to converge from one control attractor to
the other. We showed that the two measures trade off against
each other, and that the balance of this tradeoff is determined
by the gain of the network’s activation function. We then ex-
amined whether human participants balance this tradeoff in a
similar manner as a function of the demand for flexibility, by
fitting the model to participants who were required to switch
tasks at either a low or high frequency. We observed that par-
ticipants who switched more frequently showed lower switch
costs, suggesting that they became more cognitively flexible.
Moreover, model fits showed that this could be explained by
lower gain, and with it, higher constraints on control. In-
terestingly, fitted gains for all participants were lower com-
pared to the gains that optimized accuracy in the face of the
stability-flexibility tradeoff. This suggests that there may be
other factors that limit control allocation.

Altogether, our analytic and empirical results provide a
rationale for how participants should adapt to different de-
mands for flexibility given a mechanistic model for how con-
trol is represented and allocated in a recurrent neural network
model. A formal relationship between cognitive stability and
cognitive flexibility may not only help interpret human be-
havior in terms of model fits but may also help identify neural
correlates for both measures. For instance, the dynamics of
steady-state visually evoked potentials (SSVEP) — used to
index feature-specific attention (Müller et al., 2006) — may
be characterized in terms of the evolving distance between

attractors of competing attentional states. Finally, the behav-
ioral results replicate earlier work, showing that participants’
switch costs decrease as task switches become more frequent
(Mayr, 2006; Monsell & Mizon, 2006). Furthermore, prior
work suggests that participants trade off cognitive flexibility
against higher incongruency costs in voluntary task switch-
ing scenarios when task switches are associated with a higher
reward than task repetitions (Braem, 2017).

One interesting puzzle concerns the learning mechanisms
that underlie rational adaptations to changing demands in
cognitive flexibility. A computationally cheap, but inflexible
approach is to learn the amount of control that should be ex-
erted through model-free reinforcement (Lieder et al., 2018).
Alternatively, humans may approximate the optimal tradeoff,
by attaching a cost to the amount of control that can be allo-
cated. From this perspective, the stability-flexibility tradeoff
may provide a normative rationale for parameterizing the cost
of cognitive control that is integral to recent theories of con-
trol allocation (Shenhav et al., 2013, 2017).
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Abstract

Researchers have long been interested in using laboratory mea-
sures of cognitive control to predict a person’s cognitive con-
trol/self control success outside the lab. We used a computa-
tional approach to identify which lab-based performance mea-
sures provide the most valid individual difference measures
of one’s ability and/or motivation to exert cognitive control.
We simulated performance across an array of cognitive control
tasks, and estimated the degree to which different performance
metrics (e.g., congruency effects, conflict adaptation, and de-
mand avoidance) could theoretically provide valid estimates
of processes underlying control allocation. By performing di-
mension reduction on these performance metrics, we further
revealed latent dimensions that can index separate mechanisms
of control-demanding behavior. Our results suggest that indi-
vidual differences in measures of cognitive control can orig-
inate from multiple factors, several of which are unrelated to
capacity for cognitive control. We conclude by discussing im-
plications of these analyses for assessing individual differences
in cognitive control phenomena.

Keywords: individual differences; cognitive control; motiva-
tion; self-control

Introduction
Cognitive control refers to our ability to adapt mental pro-
cesses to current task goals. Researchers have developed
a variety of measures to index a given person’s capacity to
exert cognitive control, such as conflict-related interference,
conflict adaption, and performance costs associated with task
switching. It has often been assumed that individual differ-
ences in capacity and/or motivation for control should pre-
dict one’s self-control success in the real world, and that per-
formance on one cognitive control task should therefore cor-
relate with indices of self-control. Unfortunately, however,
such correlations have been inconsistent across the literature.
For instance, whereas some individual studies find correla-
tions between Stroop conflict-related interference (congru-
ency costs) and real-world self-control outcomes (e.g., addic-
tion treatment compliance, healthy diets; Streeter et al., 2008;
Allan, Johnston, & Campbell, 2010), a large study (N=2,641)
recently found no correlation between congruency costs and
a well-validated index of real-world self-control (Saunders,
Milyavskaya, Etz, Randles, & Inzlicht, 2017). The inconsis-
tency in these findings has been taken to suggest that con-
trol mechanisms are highly context-specific and/or that self-
control may not actually require cognitive control (Berkman,
Hutcherson, Livingston, Kahn, & Inzlicht, 2017). Here we

explore an alternative interpretation, that commonly used
measures of control allocation may be ill-suited to indexing
the control required of those tasks.

Converging evidence suggests that performance on cog-
nitively demanding tasks reflects a combination of bottom-
up stimulus processing and one’s capacity and motivation to
exert top-down control over such processing (Cohen, Dun-
bar, & McClelland, 1990; Shenhav, Botvinick, & Cohen,
2013; Shenhav et al., 2017). These insights have been in-
tegrated into a recent computational model of control allo-
cation, which simulates an agent’s performance on a cog-
nitive task based on the parameters of that task (e.g., stim-
ulus salience) and the incentives on offer (e.g., reward for
correct response; Musslick, Shenhav, Botvinick, & Cohen,
2015). Control allocation is determined by comparing the
expected reward (based on the incentives and the degree to
which control increases the likelihood of a correct response)
with an intrinsic cost of control, to determine the overall Ex-
pected Value of Control (EVC). The parameters of these sim-
ulated agents can be adjusted to vary how they process stim-
uli and incentives (e.g., their sensitivity to rewards), resulting
in attendant changes to task performance. Theoretical anal-
yses suggest that between-subject variability in some moti-
vational parameters, such as reward sensitivity, can gener-
ally limit the ability to recover other motivational parameters,
such as the cost of cognitive control, from task performance
(Musslick, Cohen, & Shenhav, 2018; Caplin, Csaba, Leahy,
& Nov, 2018). An important question that remains unad-
dressed, however, is whether individual differences in cog-
nitive control phenomena provide a reliable index for one’s
capacity to exert cognitive control.

Here, we use the EVC model to simulate various phenom-
ena that have been used to index one’s capacity to exert cog-
nitive control, including within-trial interference and cross-
trial adaptation to response conflict; task-switching costs; and
cognitive effort discounting. We then demonstrate that indi-
vidual differences in these phenomena are influenced by pa-
rameters of the task and the agent, including variables related
to bottom-up stimulus processing, the ability to exert control,
and the motivation for doing so. Finally, we identify latent di-
mensions that explain individual differences across these sim-
ulated phenomena, and discuss implications of this work for
the assessment of individual differences in cognitive control
within and outside of the lab.

2427



Expected Value of Control Model
The EVC theory is based on the premise that control alloca-
tion involves specifying the identity of candidate control sig-
nals, as well as the intensity of each (Shenhav et al., 2013).
Increases in control signal intensity lead to improvements in
performance on the corresponding task. However, it is also
assumed that exercising cognitive control is costly and this
cost increases monotonically with the intensity of the con-
trol signal. According to the EVC theory, the control sys-
tem chooses to implement the configuration of control sig-
nals that yields the highest expected value of control, that is,
the expected utility of implementing a configuration of con-
trol signals with specified intensities minus their associated
costs. Critically, the expected value for each candidate con-
trol signal configuration is contingent on an internal model of
the task environment that is updated based on experience.

The present implementation of the EVC model describes
performance in the Stroop task (e.g., responding to the ink
color of a color word, Stroop, 1935), in terms of an interaction
between the control system and the task environment. The
control signal is chosen optimally based on an internal model
of the next trial which produces an estimate of the next trial
(inferred state Ŝ). This signal is then used to interact with the
environment (actual state S), for example to commit one of
the two possible responses1 in the task. After each trial, the
agent updates the internal model based on an observation of
that trial following the response.

In order to generate reaction times (RTs) and responses on
each trial, we use the drift diffusion model (DDM Ratcliff,
1978). Within the DDM framework, a response on the task
can be conceptualized as a result of the noisy accumulation of
evidence toward one of the two possible responses (e.g. one
response indicating the color green and the other response
indicating the color red; Musslick et al., 2015). Here, we as-
sume that the rate of evidence accumulation toward one of the
two responses is governed by a controlled and an automatic
component

dri f t = ε ·dri f tcontrol +dri f tautomatic (1)

where ε is a capacity parameter that scales the amount of con-
trol allocated. The automatic component reflects automatic
processing of the color feature and word feature of the stimu-
lus that is unaffected by control,

dri f tautomatic = acolor +aword. (2)

The absolute magnitude of the color-response association
acolor, as well as the magnitude of the word-response associ-
ation aword depends on the strength of the association of each
stimulus feature with a given response, and its sign depends
on the response (e.g. acolor < 0 if the response is associated
with the left button, acolor > 0 if response is associated with

1A restriction to two response alternatives limits the scope of the
model to paradigms with two-alternative forced choice but makes it
amenable to tractable computation of mean reaction times and error
rates.

the right button). Thus, for congruent trials acolor, and aword
have the same sign, whereas the opposite sign for incongru-
ent trials. The controlled component of the drift rate is the
sum of the two stimulus values, as well as the intensity of
the corresponding control signal, one for processing the color
dimension of the stimulus ucolor and one for processing the
word dimension of the stimulus uword:

dri f tcontrol = ucolor ·acolor +uword ·aword (3)

Thus, each control signal biases processing towards one of
the two stimulus dimensions, both of which characterize the
actual state on a given trial, S = {acolor,aword}. As a result,
higher control signal intensity for processing the color dimen-
sion improves performance — speeds responses and lowers
error rates — in a trial of the Stroop task. Mean RTs and re-
sponse probabilities for a given parameterization of drift rate
on trial t are derived from an analytical solution to the DDM
(Navarro & Fuss, 2009).

In order to specify the optimal set of control signals
U = {ucolor,uword} on a given trial t, the model estimates
the expected value for each configuration of control sig-
nal intensities based on its internal model of the next trial
Ŝ = {âcolor, âword}. This is done by weighting the expected
reward for an outcome against the cost associated with the
chosen control signal configuration:

EVC(U, Ŝ) = P(correct|U, Ŝ)V (R)−Cost(U) (4)

where P(correct|U, Ŝ) corresponds to the probability of
reaching the decision threshold for the correct response and
V (R) corresponds to the subjective value of responding cor-
rectly. Here, the subjective value V (R) = vR corresponds
to the amount of reward offered for a correct response R
weighted by the model’s sensitivity to the reward v. The cost
Cost(U) =Costimpl(U)+Costreconf(U) is composed of an im-
plementation cost that increases with the amount of control
being allocated (Shenhav et al., 2013; Manohar et al., 2015;
Lieder, Shenhav, Musslick, & Griffiths, 2018),

Costimpl(U) = ecI·ucolor + ecI·uword (5)

as well as a reconfiguration cost that scales with the degree
to which control signals need to be changed relative to their
previous state (Meiran, 1996; Rogers & Monsell, 1995)

Costreconf(U) = ecR
√

(ucolor,t−ucolor,t−1)2+(uword,t−uword,t−1)2 (6)

where the implementation cost is scaled by parameter cI and
the reconfiguration cost is scaled by parameter cR. The model
selects the control signal configuration with the maximum
EVC within the inferred next trial Ŝ, out of all the configu-
rations under consideration:

U∗ = argmax
U

EVC(U, Ŝ) (7)

Performance in the actual state S is determined by the in-
fluence of the chosen control signals on the true parameters

2428



acolor and aword. After observing the actual state, the agent
updates its inferred state Ŝ = {âcolor, âword}:

âcolor, new = âcolor, old +α(âcolor, old−acolor) (8)

âword, new = âword, old +α(âword, old−aword) (9)

where α is the learning rate. Finally, the agent re-evaluates
the optimal control policy for the next trial based on its re-
vised model of the task environment.

Task Environments and
Parameterization

We simulate behavior of the EVC agent across three different
experimental paradigms that have been repeatedly used to in-
dex individual differences in cognitive control. Here, we de-
scribe each paradigm, the associated behavioral phenomena,
as well as the corresponding parameterization2 of the EVC
model.

Stroop Task
In the Stroop paradigm, the agent is presented with a
two-dimensional stimulus, one dimension representing an
ink color and another dimension representing a color word
(Stroop, 1935). On each trial, the EVC model is required to
indicate the response associated with the ink color. In con-
gruent trials, the word feature of the stimulus is associated
with the same response as the ink color whereas in incon-
gruent trials, the color and word features are associated with
different responses. The experiment sequence encompassed
101 trials, and was fully balanced (excluding the first trial)
with respect to congruent and incongruent stimuli, as well as
with respect to all four transitions between the two trial types
(congruent-congruent, congruent-incongruent, incongruent-
congruent, incongruent-incongruent). As described below,
we sampled acolor uniformly from U(0.3,0.4). To simulate
congruent trials, we set aword = 0.4 such that both stimuli di-
mensions promote the same response. On incongruent trials,
we set aword = −0.4 such that the word dimension is associ-
ated with a different response than the color dimension. Note
that the absolute magnitude of aword is higher than acolor, re-
flecting the assumption that word reading is a more automatic
process than color naming (Cohen et al., 1990). We varied the
range of control signal intensities from 0 to 10 in steps of 0.2
for the two control signals ucolor, uword and set the reward re-
ceived for a correct response to R = 100. DDM parameters
were set as follows: starting point = 0.0, noise coefficient =
0.7, non-decision time = 0.2s and threshold = 0.4.

We used this paradigm to simulate three different behav-
ioral phenomena. One of the most reliable observations is that
participants take more time and commit more errors when
responding to incongruent stimuli as opposed to congruent
stimuli (Stroop, 1935). Here, we assessed effects of stimulus
congruency as the difference in RTs and error rates between

2Note that fixed parameters for each paradigm were chosen such
that the model performed with at least 55% accuracy for all combi-
nations of individual difference parameters.

incongruent and congruent trials. Another common observa-
tion is that participants exhibit a smaller performance cost for
incongruent stimuli when the current stimulus was preceded
by an incongruent stimulus as opposed to a congruent stim-
ulus (Gratton, Coles, & Donchin, 1992; Egner, 2007). We
assessed the congruency sequence effect as an interactive ef-
fect between the congruency of the current trial and the con-
gruency of the previous trial on performance. Finally, par-
ticipants tend to exert smaller congruency effects when the
proportion of congruent stimuli is decreased (proportion con-
gruency effect, Logan & Zbrodoff, 1979). We assessed this
phenomenon by comparing the congruency effect in two dif-
ferent experiment sequences, one that contained 20% congru-
ent trials, and one that contained 80% congruent trials.

Task Switching
The performance costs associated with switching from one
task to another are often used to index cognitive flexibility
(Koch, Poljac, Müller, & Kiesel, 2018; Rogers & Monsell,
1995). Here, we examined this effect in a cued task switch-
ing paradigm in which the model had to switch between cat-
egorizing the color of a stimulus (color naming) and catego-
rizing its shape (shape naming). Similar to the Stroop task,
stimuli were either congruent, acolor = ashape, or incongruent,
acolor = −ashape. The trial sequence encompassed 100 trials
that were randomly sampled with respect to stimulus con-
gruency (congruent, incongruent), the currently relevant task
(color naming, shape naming) and the task transition with re-
spect to the previous trial (task switch, task repetition). On
each trial, the model allocated control between the two con-
trol signals ucolor, ushape, using the same range of control in-
tensities as described in the Stroop task. The model was cued
with a baseline reward of R = 100, providing information
about which feature is relevant for the task it has to perform
on the current trial. DDM parameters were set as follows:
starting point = 0.0, noise coefficient = 0.3, non-decision time
= 0.2s and threshold = 0.15.

We assessed switch costs in terms of the difference in RTs
and error rates between task switch trials and task repetition
trials. Rogers and Monsell (1995) also demonstrated that con-
gruency costs are higher on task switch trials compared to
task repetition trials. To capture this effect, we also assessed
the interaction between stimulus congruency and task transi-
tion.

Cognitive Effort Discounting
When given a choice between performing a task with low
cognitive effort and a task with high cognitive effort, partic-
ipants tend to select the former, even if it means to forgo a
reward (Westbrook & Braver, 2015). Here, we simulated de-
mand avoidance in the cognitive effort discounting (COGED)
experiment described by Westbrook and Braver (2015). In
this paradigm, subjects can choose on each trial whether they
want to perform a baseline low-demand task for a low reward
or a higher-demand alternative task for a higher reward. The
amount of reward offered for the baseline task is adjusted to
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identify the point of indifference, that is, the reward at which
subjects are indifferent between performing the low-demand
baseline task and performing the high-demand task. To sim-
ulate this paradigm, we modeled both tasks as different types
of trials that the model can choose between. Each trial en-
compassed a stimulus with a color dimension that mapped to
one of two responses with acolor > 0. However, unlike in the
Stroop task there was no word dimension, aword = 0. The dif-
ficulty of the high-demand task was manipulated across ex-
periment blocks, by varying the color-response association
acolor from 1.0 to 0.2 in steps of 0.2, and the difficulty of the
baseline task was fixed to acolor = 1 (higher color-response
associations may reflect higher saturation values for a color
patch). For each set of simulations, we fixed the reward for
the high-demand task to R= 200 while steadily increasing the
amount of reward offered for the low-demand task in steps of
1, beginning from an initial reward value of R = 1. On each
trial, the EVC agent determined the highest EVC separately
for each task and chose the task with the highest predicted
EVC. We then assessed the amount of reward offered for the
low-demand task for which the model would be indifferent
between performing the low-demand task and the (more re-
warding) high-demand task, and normalized this value by the
amount of reward offered for the high-demand task. Follow-
ing the notation by Westbrook and Braver (2015), we refer
to this normalized value as the subjective value of complet-
ing the high-demand task. For instance, if the model would
switch to performing the low-demand task at an offered re-
ward of 120 then the (discounted) subjective value of the
high-demand task would be 120/200. The range of control
signal intensities was varied from 0 to 10 in steps of 0.2 and
DDM parameters were set as follows: starting point = 0.0,
noise coefficient = 1.5, non-decision time = 0.2s and thresh-
old = 1. We assessed subjective value the high-demand task
as a function of its difficulty, 1−acolor.

Simulation Procedure
We simulated behavior of 100 EVC agents in the three
paradigms described above. For each agent, we uniformly
sampled its control capacity ε ∼ U(0.5,1.5), implementa-
tion cost cI ∼U(0.5,1.5), reconfiguration cost cR ∼U(0,3),
reward sensitivity v ∼ U(0.5,1), the stimulus-response as-
sociation of the relevant task (acolor ∼ U(0.3,0.4) in all
paradigms3, as well as ashape in the task switching paradigm)
and learning rate α ∼ U(0,0.5). Ranges for these parame-
ters were chosen to warrant an accuracy above 55% across
all simulated paradigms. Note that agents with a higher con-
trol capacity would effectively implement a higher amount of
control. Therefore, control capacity can be taken as a proxy
for the amount of control an agent exerts on average. The
stimulus-response association determines the degree of task
automaticity: The higher the stimulus-response association of
a task-relevant feature, the easier the task, that is, the less cog-

3In the COGED task, we scaled the tested range of acolor by this
value.

nitive control is needed to reach the correct outcome. Here,
we assume that the stimulus-response association of a task
feature reflects the task proficiency of an agent.

We first assessed average behavior across all agents with
respect to seven dependent variables. In the Stroop task, we
measured error rate effects of stimulus congruency, the con-
gruency sequence effect, the proportion congruency effect, as
well as overall error rate on the task. In the task switching
paradigm, we assessed switch costs in error rates, as well as
the congruency costs in error rates as a function of task tran-
sition. We also measured the subjective value of levels of task
difficulty as determined by the COGED paradigm.

We restricted our analysis of individual differences to over-
all error rate in the Stroop task, congruency effects, congru-
ency sequence effects, proportion congruency effects, switch
costs, as well as the subjective value assigned to a task pa-
rameterized with acolor (effort discounting). We then took
two different approaches to analyze individual differences in
these measures. First, we used a multiple linear regression
to assess the degree to which each of the six EVC param-
eters can explain each behavioral phenomenon. However,
we did not include learning rate as a regressor in the task
switching and COGED paradigms as the agent is provided
full information about each trial. Second, we used princi-
pal component analysis (PCA) to explore whether individual
differences can be explained by more complex latent factors.
That is, we identified principal components that account for
variance between agents (observations) across all dependent
variables (dimensions), including overall error rate, congru-
ency effect, congruency sequence effect, proportion congru-
ency effect, switch cost and effort discounting. We then as-
signed a score to each agent that identifies its position on the
axes spanned by either the first or the second principal com-
ponent. These two components explain most of the variance
in the space of behavioral phenomena, and can be best inter-
preted in terms of the behavioral effects that vary most along
a given component. In addition, we sought to interpret each
component in terms of individual difference parameters of the
EVC model. That is, we identified the individual difference
parameters that best explain each principal component, by re-
gressing the component scores of all agents against their EVC
parameters. Finally, we assessed which of the behavioral phe-
nomena were most indicative of the amount of exerted con-
trol, by computing the Pearson correlation between each de-
pendent variable (e.g. congruency effect) and the average in-
tensity of control u that an agent exerts, across all agents.

Results
Behavioral Phenomena. The EVC model captured all of the
cognitive control phenomena of interest4 (Figure 1): 1) Re-
sponses were slower and more error-prone on incongruent
versus congruent trials of a Stroop-like task (congruency ef-
fect), F(1,99) = 17.80, p < 0.001. 2) When the stimuli on

4We focused our analyses on error rates due to space constraints.
However, we observed similar effects for RTs.
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Table 1: Regression of behavioral phenomena against indi-
vidual differences in EVC parameters. Significant regressors
are ordered by standarized regression weight.

Model Parameter β t p
Overall Error Rate, d f = 93
Task Automaticity -0.631 -5.48 < 0.001
Control Capacity -0.127 -11.77 < 0.001
Implementation Cost 0.126 11.32 < 0.001
Learning Rate -0.114 -5.05 < 0.001
Reward Sensitivity -0.076 -3.63 < 0.001
Congruency Effect, d f = 93
Task Automaticity -0.710 -3.50 < 0.001
Learning Rate -0.219 -5.50 < 0.001
Implementation Cost 0.114 5.82 < 0.001
Control Capacity -0.089 -4.69 < 0.001
Congr. Sequence Effect, d f = 93
Learning Rate 0.145 6.29 < 0.001
Reward Sensitivity 0.055 2.53 < 0.05
Control Capacity 0.053 4.78 < 0.001
Implementation Cost -0.031 -2.71 < 0.01
Reconfiguration Cost -0.031 -7.70 < 0.001
Proportion Congr. Effect, d f = 93
Task Automaticity -0.471 -2.19 < 0.05
Learning Rate -0.199 -4.72 < 0.001
Reward Sensitivity 0.160 4.08 < 0.001
Control Capacity 0.112 5.56 < 0.001
Implementation Cost -0.103 -4.92 < 0.001
Reconfiguration Cost -0.044 -6.04 < 0.001
Switch Cost, d f = 94
Implementation Cost -0.069 -4.42 < 0.001
Reward Sensitivity 0.059 2.00 < 0.05
Control Capacity 0.038 2.49 < 0.05
Reconfiguration Cost 0.015 2.77 < 0.01
Effort Discounting, d f = 88
Task Automaticity -0.603 -7.77 < 0.001
Implementation Cost 0.139 17.44 < 0.001
Control Capacity -0.051 -6.86 < 0.001
Reconfiguration Cost -0.047 -17.48 < 0.001

the previous trial were incongruent, congruency effects were
smaller on the current trial, relative to when the previous trial
was congruent (congruency sequence effect or conflict adap-
tation), t(99) = 4.22, p < 0.001. 3) Congruency effects were
higher when the trial sequence contained a high proportion of
congruent trials versus a high proportion of incongruent trials
(proportion congruency effect), t(99) = 17.86, p < 0.001. 4)
Responses were less accurate when switching to a new task
rather than repeating the same task (switch costs, Rogers &
Monsell, 1995), F(1,99) = 337.30, p < 0.001. These switch
costs were greater when transitioning to an incongruent trial
(Rogers & Monsell, 1995), F(1,99) = 214.96, p < 0.001. 5)
All else being equal, simulated agents assign less value to
(and would therefore be less likely to engage with) tasks that
are more rather than less difficult (cognitive effort discount-
ing, see Figure 1D).

Individual Differences. We tested the degree to which
each of the measures above were influenced by individ-
ual differences in factors related to bottom-up stimulus pro-
cessing (task automaticity), cognitive control ability (con-
trol capacity), and motivational factors (e.g., reward sensi-
tivity and control costs). Agents with a higher control capac-
ity and lower implementation costs made fewer errors, had
lower congruency effects, higher congruency sequence ef-

fects, adapted more to the proportion of congruent trials, had
higher switch costs and discounted cognitive effort less (Ta-
ble 1). Agents with higher reconfiguration costs and a lower
sensitivity to reward adapted less to congruency of the previ-
ous stimulus or to the proportion of congruent trials. Both,
a higher reconfiguration cost and a higher reward sensitivity
were associated with higher switch costs. A higher reward
sensitivity also yielded overall fewer errors while higher re-
configuration costs predicted less effort discounting. Agents
with a higher learning rate and task automaticity performed
overall better in the Stroop task, showing smaller congruency
effects and smaller proportion congruency effects. Unsurpris-
ingly, agents with a higher learning rate show greater sequen-
tial adaptations to response congruency whereas agents with
a higher task automaticity discounted effort less.

A B C D

Figure 1: Average effects of simulated agents. (A) Error rates
are shown as a function of congruency of the previous and the
current trial. (B) Congruency effects (difference in error rates
on incongruent and congruent trials) are shown for a sequence
with a low (80%) and high (20%) proportion of congruent
trials. (C) Error rates are shown as a function of congruency
of the previous trial and task transition. (D) Subjective value
of a task as a function of its difficulty. Error bars indicate the
standard error of the mean across simulated agents.

Principal Components Analysis. After performing a PCA
across our behavioral effects of interest, we found that
individual differences across these are well captured by
two orthogonal dimensions that explained more than 75%
of between-agent variance (Figure 2). Regressing these
phenomenon-driven components on the model parameters
that we varied, we find that a high score on Component 1
is associated with higher task automaticity, lower implemen-
tation costs, higher control capacity and higher sensitivity to
reward. Agents with a higher value for any of these parame-
ters are expected to perform better on a task (Table 3). Com-
ponent 2 appears to most reliably capture differences in re-
configuration costs, and to a lesser degree differences in task
automaticity, reward sensitivity and implementation costs.

Correlation with control intensity. We found that each
behavioral effect significantly correlated with the average
amount of control exerted by an agent (Table 2). Interest-
ingly, overall error rate in the Stroop task was most indicative
of exerted control intensity, followed by incongruency costs.

General Discussion and Conclusion
People have varying degrees of success at adapting their
thoughts and behaviors to meet their current goals. Failing
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Table 2: Correlations between dependent behavioral mea-
sures and exerted control intensity across simulated agents
(d f = 98).

Dependent Measure r p
Overall Error Rate -0.76 < 0.001
Congruency Effect -0.67 < 0.001
Proportion Congruency Effect 0.58 < 0.001
Effort Discounting 0.46 < 0.001
Congruency. Sequence Effect 0.31 < 0.01
Switch Cost 0.20 < 0.05

Figure 2: Principal Components Analysis. Each red dot sum-
marizes the behavior of an agent in the space of the first and
second principal component. The direction and length of the
blue vectors indicates the score of each behavioral effect in
terms of the two components. For instance, subjects with low
scores on the first component appear to commit more errors
but show lower costs of switching tasks.

to exert the appropriate level of control can have very nega-
tive consequences for one’s health, career, and social status.
It is therefore important to understand whether and how such
real-world self-control can be predicted from lab-based mea-
sures of cognitive control. We used a computational model
of control allocation to examine the degree to which different
performance metrics from such tasks can theoretically index
individual differences in processes related to stimulus pro-
cessing, strength of control, and motivation for control.

We showed that the EVC model can account for a wide ar-
ray of effects used to index cognitive control, including re-
sponse interference, sequential adaptation to stimulus con-
gruency, adaptation to the proportion of congruent stimuli,
performance costs associated with task switching, and de-
mand avoidance. Critically, we showed that individual dif-
ferences in each of these measures can be accounted for by
a multitude of factors, including motivational variables (e.g.,

Table 3: Regression of principal components (PC) against in-
dividual differences in EVC parameters.

Model Parameter β t p
First PC, d f = 88
Task Automaticity 0.7867 3.58 < 0.001
Implementation Cost -0.2582 -11.43 < 0.001
Control Capacity 0.2289 10.84 < 0.001
Reward Sensitivity 0.1870 4.53 < 0.001
Reconfiguration Cost -0.0122 -1.61 0.111
Second PC, d f = 88
Task Automaticity -0.8127 -4.10 < 0.001
Reward Sensitivity 0.0882 2.37 < 0.05
Reconfiguration Cost -0.0586 -8.59 < 0.001
Implementation Cost 0.0435 2.14 < 0.05
Control Capacity 0.0033 0.17 0.862

reward sensitivity) and bottom-up stimulus processing (task
automaticity), rather than only by one’s ability to exert cogni-
tive control (indexed by control capacity). This suggests that
individual differences in cognitive control phenomena may
not not be a reliable indicator of one’s ability to exert control
but may instead reflect individual differences in other vari-
ables. A PCA revealed a broad distinction between effects
that vary as a function of how much control an agent is capa-
ble of allocating (overall performance, congruency costs, ef-
fort discounting) and effects that index how flexibly an agent
can adapt to changing demands of the environment (switch
costs, congruency sequence effects and proportion congru-
ency effects). Finally, our analyses suggest that overall error
rate and incongruency costs in the Stroop task best indexed
the actual amount of control exerted by an agent whereas con-
gruency sequence effect and switch costs were found to be
least diagnostic.

Interestingly, we found that higher costs of implementing
control were associated with lower costs of switching tasks.
This finding is consistent with previously observed tradeoffs
between cognitive stability and cognitive flexibility: higher
amounts of control can reduce distractor interference but re-
quire larger reconfiguration of control signals when switching
between tasks (Goschke, 2000; Musslick, Jang Jun, Shvarts-
man, Shenhav, & Cohen, 2018). Perhaps more surprisingly,
we also found that participants with higher reconfiguration
costs discounted cognitive effort less (i.e., were more will-
ing to engage in demanding tasks). This finding reflects an
approach-avoidance conflict inherent to demand avoidance
paradigms: The more a person is engaged with a cognitively
demanding task, the less they are willing to switch to an easier
task (Kool, McGuire, Rosen, & Botvinick, 2010).

One limitation of the current implementation of the EVC
model is its focus on 2-alternative forced choice tasks. We
chose to focus on these tasks because they are amenable
to analysis with the well-studied DDM (Bogacz, Brown,
Moehlis, Holmes, & Cohen, 2006; Ratcliff, 1978). How-
ever, the DDM may be an over-simplified model for cognitive
control tasks given that such tasks can involve a variety of
response alternatives, as in traditional variants of the Stroop
task (Stroop, 1935).

The set of relevant individual difference parameters heav-
ily depends on the requirements of the task for cognitive con-
trol. For instance, the n-back task requires subjects to decide
whether a stimulus matches the stimulus that was presented
n steps before in a sequence, and has been hypothesized to
involve processes of working memory updating, interference
between representations held in working memory, and famil-
iarity judgment (Chatham et al., 2011; Juvina & Taatgen,
2007). The study of individual differences in more complex
tasks will require implementing more realistic process mod-
els of those tasks, such as a working memory gating model in
the case of the n-back task (Chatham et al., 2011).

Altogether, these analyses suggest that individual differ-
ences in cognitive control phenomena do not necessarily re-
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flect differences in someone’s capacity to exert cognitive con-
trol but may as well reflect differences in task automaticity
or sensitivity to reward. Accounting for differences in these
variables is therefore crucial when indexing cognitive control
through behavioral phenomena. However, the collinearity be-
tween simulation parameters in this analysis prevents us from
teasing apart the effects of each parameter. More elaborate
parameter sensitivity studies are necessary to provide more
fine grained insights into the source of individual differences
in cognitive control phenomena.
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The Modularity of the Motor System
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Abstract

The extent to which the mind is modular is a foundational concern in cognitive science. Much of this debate has centered
on the question of the degree to which input systems, i.e., sensory systems such as vision, are modular (see, e.g., Fodor
1983; Pylyshyn 1999; MacPherson 2012; Firestone & Scholl 201; Burnston 2017; Mandelbaum 2017). By contrast,
researchers have paid far less attention to the question of the extent to which our main output system, i.e., the motor
system, qualifies as such. I will argue that the motor system should be construed as quasi-modular, at best, in that it is
informationally encapsulated only to a certain degree, and in a way that can be strategically modulated by the agent. I will
explore the implications of this result for nearby philosophical puzzles relating to different aspects of action control.
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Abstract 

The round number effect  refers to discontinuity around round 
numbers (“0.300”, “4 hours”) in frequency distribution, 
indicating that people consider the round numbers as goals or 
reference points for their performances. This study aimed to 
examine the round number effect by exploring the following 
two issues: (1) examination of Japanese baseball data, and (2) 
comparison between batters who exceeded the regulation 
number of at-bat of season and those who did not. Results 
indicate the following three points; (1) the round number 
effect was found in Japanese baseball data, (2) but it was 
found only for the batters who exceeded provision bat number 
of season, and (3) magnitude of the effect was stronger in 
Japanese than Major League Baseball data. General 
discussion argued these results in terms of players’ motivation 
and disposition.  
 

Keywords: reference dependence, round number effect, 
discontinuity  

Introduction 
How people perceive values of objects depends not 

only on nature of the objects themselves but also the degree 
the objects are judged compared using a criterion. This 
tendency is known as reference dependency (Kahneman & 
Tversky, 1979; Rosch, 1978), and has been demonstrated 
through exploration for anomalies in human decision-
making including studies on framing effect (Tversky & 
Kahneman, 1981) or anchoring effect (Tversky & 
Kahneman, 1974). According to these studies, people’s 
judgments are affected by arbitrarily presented numbers 
(Tversky & Kahneman, 1973) or wordings of decision 
problems (Tversky & Kahneman, 1981) that are not 
themselves irrelevant to answers for the decision tasks, 
indicating that people make judgments according to the 
reference points that are considered as goals for their 
behavior rather than relying on their own beliefs or 
preferences.  

The round number effect (Allen et al, 2016; Pope & 
Simonsohn, 2009) is a new example of reference 
dependency that refers to a discontinuity of distribution for 
continuous variables around the round numbers that can be 
considered goals for performance. When students take the 
SAT, they may say that they want to acquire 1100 points, 
but never 1098 or 1103 points. Marathon runners may try to 
finish the race within 4 hours, but never within 3 hours and 
56 minutes. As these examples indicate, round numbers are 
often employed as goals for performances. As a result, 
people’s behavior would change depending on whether they 
can perform just short of the round number or not, and 

density of the distribution for the performance would 
fluctuate around the round number (also see Heath et al., 
1999; Kahneman & Miller, 1986; Medvec & Savitsky, 
1997 ).  

Pope and Simonsohn (2011) reported the round 
number effect in Major League Baseball (MLB) data. In 
their study, they analyzed data about batting averages of 
MLB players who had scored at least 200 at bats during the 
season from 1975 to 2007, and found that the relative 
frequency of baseball players whose batting averages at the 
end of the seasons were 0.300 was higher than those whose 
batting averages were 0.299. In addition to the discontinuity 
of frequency around 0.300, Pope and Simonsohn (2011) 
also found that performance or strategy of the batters who 
could achieve “0.300” by hit on their final bat differed from 
those of the batters who could not or already achieved 
“0.300”: their probabilities for hitting at the final bat were 
higher than, and probabilities to choose the walks at the 
final bat were lower –in fact, 0- than the other batters. These 
results indicate that the batters used “0.300” as their goal for 
their batting performance, and tried to achieve this goal by 
any means, resulting in discontinuity around the round 
number. Beside the example of batting average data, the 
round number effect was reported in various domains 
including SAT score (Pope & Simonsohn, 2011) or 
marathon running time (Allen et al, 2011; also see Pope & 
Simonsohn, 2011 for an example of fictitious scenario).  

Studies on round number effect suggest that people in 
some sense can do nothing without a concrete goal In other 
words, rather than trying as much as they can, people aim to 
exceed their criteria that are arbitrarily determined, and 
round numbers are often chosen as simple and definite goals. 
This study aimed to deepen the understanding of how round 
numbers become reference points by analyzing records of 
batting average data in the same way as Pope and 
Simonsohn (2011). However, this study explored the 
following two points that have not been examined in the 
previous studies.  

One purpose of this study was to test the round number 
effect in Japanese baseball data. Although Pope and 
Simonson (2009) demonstrated the round number effect in 
MLB data, its replicability in other leagues is still 
unexplored. In Japan, baseball is the one of the most popular 
and major professional sports, and abundant data for batting 
records are available for this examination. Additionally, the 
round number “0.300” is often referred to the cutoff for top-
ranking batters in Japanese baseball. Thus, Japanese 
professional baseball (Nippon Professional Baseball: NPB) 
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data is adequate to test whether the round number effect can 
be replicated in the same way as in MLB.  

The other purpose of this study as to explore individual 
differences in the round number effect of “0.300.” Although 
this study referred to the number “0.300” as cutoff for the 
top-ranking batters in professional baseball, it also 
recognizes that this number does not always become goals 
for all the players. In professional baseball, batting average 
itself cannot be proof of the top-ranking batters because 
values of the batting averages depend on number of plate 
appearance. For example, although batting averages of the 
batters who got three hits at ten bats or one hundred and 
fifty hits at five hundred bats are both the same at “0.300,” 
meanings of “0.300” might be different between the batters. 
Though the former average might be considered as a result 
of chance, the latter average would be thought as reflecting 
real ability. In fact, both MLB and NPB determined the  
regulation number of at-bat, and averages cannot be 
recognized as formal records without achieving the 
regulation number. Thus, it is probable that whether batters 
consider “0.300” as reference points depend on their 
numbers of battings: while the batters who cannot achieve 
number of regulations at battings do not consider “0.300” as 
their goal, for ones who can achieve the number, it might be 
valuable goal. The second purpose of this study was to test 
this possibility.  

To accomplish the above purposes, this study gathered 
data for batting averages both in MLB and NPB, and tested 
the round number effect by examining whether relative 
frequencies of the batters whose batting averages were 
“0.300” stick out in the frequency distribution. In doing so, 
this study employed statistical test used in Chetty, Friedman, 
Olsen, and Pistaferri (2011) that utilize a broader range of 
data than Pope and Simonsohn (2011). With this method, 
this study also analyzed data that were divided by the 
number of plate appearance and examined whether the 
round number effect depends on whether the batter achieved 
the number of regulations at bats or not. The theoretical 
meanings and scope of the round number effect were 
discussed as well..  
 

Method 
This study obtained batting average data of Japanese 

baseball from Nippon Professional Baseball Organization 
(http://npb.jp/). This website contains results for all players 
of Japanese professional baseball from 2005 to 2018. 
Similar to Pope and Simonsohn (2011), this paper restricted 
its sample to players who had at least 200 at bats during the 
season. As a result, data of 1436 players were analyzed.  

This paper also obtained MLB data in the same time as 
NPB data from Retrosheet.com. This website has data that 
was used by Pope and Simonsohn (2011), and contains data 
of all players in MLB for the same periods as Japanese data. 
This paper collected data of MLB using the same criteria as 
Japanese data, resulting in analysis of data of 4630 players.  

This study aimed to investigate whether the round 
number effect would vary according to the number of 
appearances at bats. To accomplish this, the study divided 
the data into two groups by whether the number of 
appearances at bats exceeded the regulation numbers at bats 
or not both in NPB and MLB data. In NPB data, the 
regulation numbers at bats differed depending on year and 
league. In 2005 and 2006 the regulation numbers were 452 
at Central League and 426 at Pacific League, and during 
2007 and 2014, the number in both leagues was 446, and 
after 2015, it was 443. As a result, this study considered 743 
batters as exceeding the regulation number at bats and 818 
batters as not exceeding the regulation number.  

In MLB, the regulation number at bats was settled as 
400 since 1957. Thus, this study considered 2561 batters as 
exceeding the regulation number at bats and 2081 batters as 
not exceeding the regulation number in MLB data. 

  

Results and discussion  
Analyses of fundamental statistics of the round number 
effect 

Figure 1 shows distribution of relative frequencies of 
batting averages at the ends of season both for players who 
had at least 200 at bats in both NPB and MLB. Visual 
inspections to these distributions suggest the following three 
points. First, with regard to the players who had at least 200 
at bats, relative frequency of the average “0.300” is higher 
than any other values of batting averages of NPB and MLB 
players. In fact, similar to Pope and Simonsohn (2011), the 
proportion of players ending the season with a 0.298 or 
0.299 was lower than that with a 0.300 or 0.301 (z=4.84 and 
3.99 for MLB and NPB, respectively) in both the leagues, 
indicating that this study replicated the round number effect 
with a dataset different from that of Pope and Simonsohn 
(2011).  

However, trends of the frequency around 0.300 appear 
to be different between the batters who exceeded the 
regulation number of at-bat of season and those who did 
not: the density of frequency around 0.300 that occurred for 
the batters who exceeded the number disappeared for the 
batters who did not. The Z tests demonstrated a significant 
difference in the proportion between 0.298 or 0.299 and 
0.300 or 0.301 (z=4.87 and 4.05 for MLB and NPB, 
respectively) for the batters who exceeded numbers of 
regulation at bat in season, but did not demonstrate 
significant differences for the batters who did not exceed the 
number (z=1.48 and 1.50 for MLB and NPB, respectively). 
These results indicate that the round number effect would 
vary according to the number of at bat.  

Third, increases in the frequency around 0.300 were 
higher for the NPB than MLB players. With regard to the 
total data, though the ratio of the frequency between 0.300 
and 0.299 was more than 9 (3 for 0.299, and 28 for 0.300) in 
NPB data, that in MLB data was less than 3 (22 for 0.299,  
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and 57 for 0.300). When data were limited only to the 
batters who achieved the provision bat number in the season, 
differences in the ratio became more salient (2 for 0.299 and  
23 for 0.300 in NPB data, and 13 for 0.299 and 48 for 0.300 
in MLB data). These results suggest that the round number 
effect would occur more strongly in NPB than MLB.  
 
 
 

 
 
 
 
 
Quantitative estimation of the round number effect 
One concern of the above discussion is that they solely 
consider data around the round number. However, as shapes 
of the distributions indicate, rise and drop around the round 
number in frequencies might be within probabilistic 
fluctuation. Thus, to explore this possibility, this study 
adapted a methodology proposed in Chetty et al. (2011) to 
quantify the extent of excess mass in an interval around a 
round number. This methodology enables examining 
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Figure 1 Distributions for batting averages of batters in NPB and MLB: Left and right column demonstrate distributions for 
NPB batters and MLB batters, respectively. Figures in the top, middle, and bottom row demonstrate distributions of the all 
batters, the batters who exceeded the number of regulation at bats, and batters who did not exceed the number of regulation 
at bat, respectively.  
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Figure 2 Result of Chetty’s test: Left and right columns demonstrate distributions for NPB batters and MLB batters, 
respectively. Figures in the top, middle, and bottom row demonstrate distributions of the all batters, the batters who 
exceeded the number of regulation at bats, and batters who did not exceed the number of regulation at bat, respectively. 
Dotted lines in the graphs indicate regression line (bold) and 95% predictive intervals (thin). Red points indicate data of 
0.300, and black points indicate data of 0.299. 

NPB data MLB data 
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whether discontinuity in distribution would occur around 
the reference point. The following section explains this 
methodology referring to the case of the round number 
effect in the batting average data.  

This study aimed to examine whether discontinuity 
occurs between 0.299 and 0.300 because for the batters, 
“0.300” serves as reference point to be achieved. To address 
this issue, this study considered what would happen if 
“0.300” was not the reference point and the bunch around 
this number occurred in fact by chance. If so, frequencies of 
the batters around these values would follow trends that can 
be predicted through data from other domains. To test this 
consideration, this study first analyzed batting average data 
excluding frequencies of the batters whose averages were 
0.299 and 0.300 with polynomial regression analysis where 
the batting average was the independent variable and the 
frequency of the batters was the dependent variable. Then, 
based on the results of this analysis, this study predicted 
frequencies of the batters whose averages were 0.299 and 
0.300, and compared these predictions with the data. In sum, 
Chetty et al.’s (2011) method constructed “counterfactual” 
prediction from the data excluding values around the round 
numbers and examined the degree of deviation of the data 
from the counterfactual prediction by estimating prediction 
intervals of the polynomial regression models.  

Using this methodology requires several inspections. 
First, the range of data used for this methodology must be 
selected in terms of research. For example, Allen et al. 
(2013) decided the range of data to be analyzed using 
Chetty et al.’s (2011) methodology through “visual 
inspection” of the data. Following Allen et al. (2013), this 
study also decided the range of data through visual 
inspection of the distribution. Thus, frequencies of the 
batters between 0.270 and 0.330 were used for the analysis. 
Second, the number of independent variables must be 
selected from results of polynomial regression analyses. 
This study adopted single regression model to approximate 
the data because only the effect of first order term in this 
model was significant throughout the six distributions. 

Results of the analyses are shown in Figure 2. As the 
graphs shown in Figure 2 demonstrate, the frequencies of 
the batters whose averages were 0.300 were beyond 95% 
predictive intervals of the regression model both for NPB 
and MLB data. However, the frequencies of the batters who 
did not achieve the number of regulations at bat were within 
the 95% predictive interval from the regression models. 
Additionally, values of t-statistics for frequencies of the 
batters at 0.300 were larger in NPB than MLB, indicating 
that deviation from the predictions from the regression are 
more extreme in NPB than in MLB. In sum, these results 
support the findings in the previous section: the round 
number effect was replicated in NPB data, and depends on 
the number of plate appearance. Moreover, magnitude of the 
round number effect is more prominent in NPB than MLB. 

 

Conclusion 
Findings from the above analyses can be summarized as 

follows. First, this study demonstrated the round number 
effect using dataset other than that of Pope and Simonsohn 
(2011). The results indicate that the round number effect 
occurred in NPB data, and in doing so, this study analyzed 
MLB data collected using criteria different from those of 
Pope and Simonsohn (2011). This finding is also important 
in showing replicability of the round number effect in real 
situations with more strict methodology (Chetty et al., 2011) 
that was not adopted in the previous study (Pope & 
Simonsohn, 2011).  

Second, this study found that the round number effect 
depends on people’s incentives or motivation. Analyses of 
the data of the batters who did not exceed the number of 
regulations at bat indicated that increase in the frequencies 
of batters whose averages were 0.300 did not occur, 
indicating that 0.300 was not the reference point for 
performance for these batters. This finding indicates scpoe 
of the round number effect, which had not been explored in 
the existing studies (Allen et al., 2016; Pope & Simonsohn, 
2011). Specifically, this finding is important in that the 
round number effect does not solely depend on people’s 
preference for the round number.  

In this vein, it is interesting that this study found 
difference in the round number effect between NPB and 
MLB data. Although NPB and MLB data are different in 
their sample size, discontinuities in the distributions around 
0.300 in NPB data are more prominent than those in the 
MLB data, indicating that Japanese batters attach more 
weight to average 0.300 than Major League batters. This 
difference might be based on some cultural difference in 
professional baseball, suggesting that situational factor also 
affect the round number effect. In other words, Japanese 
baseball culture might attach greater importance on batting 
average to evaluate abilities of batters than in MLB. More 
precise analyses should be conducted to understand this 
difference in future research more profoundly.  

According to Pope and Simonsohn (2011), the round 
number can serve as cognitive reference point in numerical 
scale in the same way as goals (Heath, Larrick, & Wu, 
1999; Larrick, Heath, & Wu, 2009), expectations (Feather, 
1969; Mellers, Schwartz, Ho, & Ritov, 1997), and 
counterfactual (Kahneman & Miller, 1986; Medvec, 
Gilovich, & Madey, 1995; Medvec & Savitsky, 1997). In 
contrast to this interpretation, this study revealed 
motivational and situational aspect of the round number 
effect. In other words, this study suggests that the round 
number cannot become reference point for performance 
solely by itself. Although for batters who exceed the number 
of regulations at bat the average of 0.300 can serve as proof 
for the top rank batter, for the batters who do not exceed the 
number, 0.300 itself might not be an important number. 
That is, for these batters, before achieving the average 0.300, 
it is important to exceed the number of regulation at bat. In 
addition, situational or cultural factor may also enhance the 
round number effect. This implication of the round number 
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suggests that meaning of the number depends on individual 
disposition. Thus, exploring conditions that enhance or 
inhibit the round number effect is an important future 
research question. 

One methodological concern for this study was the 
arbitrariness of assumptions in analysis. This study 
performed the Chetty test (Chetty et al., 2011) using data 
from 0.270 to 0.330 through visual inspection of the 
distributions. However, it is possible to consider other 
criteria for data selection from the distribution to analyze the 
round number effect. Sophistication of methodology to test 
the round number effect is also necessary for future research.  

 

References  
Allen, E. J., Dechow, P. J., Pope, D., & Wu, G. (2016). 

Reference-dependent preferences: Evidence from 
marathon runners. Management Science, 63, 1657-1672. 

Chetty, R., Friedman, J. N., Olsen, T., & Pistaferri, L. 
(2011). Adjustment costs, firm responses, and micro vs. 
macro labor supply elasticities: Evidence from Danish 
tax records. Quarterly Journal of Economics, 126, 749–
804. 

Feather, N.T. (1969). Attribution of responsibility and 
valence of success and failure in relation to initial 
confidence and task performance. Journal of Personality 
and Social Psychology, 13, 129–144.  

Heath, C., Larrick, R.P., & Wu, G. (1999). Goals as 
reference points. Cognitive Psychology, 38, 79–109. 

Kahneman, D., & Miller, D. T. (1986). Norm theory: 
Comparing reality to its alternatives. Psychological 
Review, 93, 136–153. 

Larrick, R. P., Heath, C., & Wu, G. (2009). Goal-induced 
risk taking in negotiation and decision making. Social 
Cognition, 27, 342–364. 

Medvec, V. H., Gilovich, T., & Madey, S. F. (1995). When 
less is more: Counterfactual thinking and satisfaction 
among Olympic medalists. Journal of Personality and 
Social Psychology, 69, 603–610.  

Medvec, V. H., & Savitsky, K. (1997). When doing better 
means feeling worse: The effects of categorical cutoff 
points on counterfactual thinking and satisfaction. 
Journal of Personality and Social Psychology, 72, 1284–
1296.  

Mellers, B. A., Schwartz, A., Ho, K., & Ritov, I. (1997). 
Decision-affect theory: Emotional reactions to the 
outcomes of risky options. Psychological Science, 8, 
423–429. 

Pope, D., & Simonsohn, U. (2011). Round numbers as 
goals: evidence from baseball, SAT takers, and the lab. 
Psychological Science, 22, 71–79. 

Kahneman, D., & Tversky, A. (1979). Prospect theory: an 
analysis of decision under risk. Econometrica, 47, 263-
291. 

Rosch, E. (1975). Cognitive reference points. Cognitive 
Psychology, 7, 532–547. 

Tversky, A., & Kahneman, D. (1974). Judgment under 
uncertainty: heuristics and biases. Science, 185, 1124–
1131 

Tversky, A., & Kahneman, D. (1981). The framing of 
decisions and the psychology of choice. Science, 211, 
453–458. 

 
 

2440



 

Cultural Affordances in AI Perception 
 

Zachariah A. Neemeh (zaneemeh@memphis.edu) 
Department of Philosophy, University of Memphis, Memphis, TN 38152 

 

 

 

 

 

Abstract 

Affordances offer AI research an alternative from 
representations for linking perception to action in autonomous 
systems. Affordances are based in the informational structure 
of the environment and the somatic capacities of the agent 
and arise in their interaction. AI implementations of 
affordance perception typically utilize relatively basic, natural 
affordances such as the graspability of a handle. Culturally-
scaffolded affordances, such as the letter-mailing capacity of 
a postbox, pose a more intractable problem for affordance-
based robotics. This class of affordances requires 
acculturation and is highly culture-specific. AI 
implementations of affordance perception typically bypass 
this difficulty by making recourse to representations. I begin 
by reviewing affordance perception and the difference 
between natural and cultural affordances. I then critically 
discuss implementations of cultural affordance perception in 
autonomous agents. Finally, I argue that AI affordance 
perception does not require a robust representationalism in 
order to implement cultural affordances. 

Keywords: affordances; AI perception; embodied cognition; 
philosophy of AI; representations 

Introduction 

The perpetually shifting nature of the environment poses a 

significant challenge to robotics research. Autonomous 

agents must negotiate and adapt to dynamically changing 

environments. Representational architectures limit 

autonomous agents’ capacity to do so, however (Raubal & 

Moritz, 2008). Problems arise with the bandwidth, 

processing power, computational time, and programming 

time required to represent shifting environments (Rome et 

al., 2006). Nonrepresentational and affordance-based 

architectures have been proposed to overcome these 

difficulties (Braitenberg, 1984; Brooks, 1990, 1991; Horton, 

Chakraborty, & St. Amant, 2012). These architectures do 

not rely on separate layers for perception, action, and 

planning or reasoning. Instead, they offload part of the 

computational process onto the environment. As Rodney 

Brooks, the pioneer of embodied robotics and the inventor 

of the Roomba, said, “the world is its own best model” 

(1990, p. 4). 

Many nonrepresentational architectures utilize 

affordances to replace otherwise separate perceptual and 

actional layers. Natural affordances, like the graspability of 

a handle, are embedded in the basic informational structure 

of the immediate environment (Gibson, 1979/2015). The 

agent picks up on information available in the environment, 

such as the light waves and pressure feedback of the handle. 

The affordance arises as the agent interacts with the object 

and is an opportunity for action that is highly constrained by 

the agent’s form of embodiment.  

Implementations of affordance perception are beset by a 

difficulty, however, once they encounter cultural 

affordances, or affordances that implicate background 

knowledge that is culturally mediated. Few AI 

implementations of affordance perception have attempted to 

incorporate such higher-order affordances (see Awaad, 

Kraetzschmar, and Hertzberg, 2015; Chu, Fitzgerald, and 

Thomaz, 2016; Raubal & Moritz, 2008). While the 

graspability of a handle can be modeled as an online, 

dynamical interaction unfolding between the agent’s 

sensorimotor processes and the object’s properties, the mail-

ability of a letter implicates a vast background knowledge of 

letters, the postal service, postboxes, writing, and 

interpersonal communication. This background knowledge 

poses a significant problem. If all the rules and background 

knowledge pertinent to the mail-ability affordance must be 

represented, then affordance-based robotics offers little 

advantage over traditional architectures.  

In this paper, I critically review extant AI 

implementations of cultural affordance perception and 

sketch a framework for perceiving cultural affordances with 

minimal recourse to representations. My aim is to show that 

a robust representationalism is not conceptually necessary 

for cultural affordance perception. 

Affordance Perception 

In classical computational models, the perception of the 

environment involves the creation of an inner, 

representational model (Fodor, 1985; Marr, 1982/2010).1 

The agent is decoupled from its environment and interacts 

with it through the medium of representations, which are 

processed computationally. The term ‘representation’ is 

used in a wide variety of senses, from a minimal sense of a 

covariation between an internal and external state, to a more 

robust internal mapping of an external state. To avoid the 

deep complexities involved in this term, I here use it to pick 

out any internal state that tracks an external state in the 

world, when that state is decoupled from perception and 

action. In autonomous agents, typically representations are 

instantiated in a planning or reasoning layer mediating 

between perceptual and actional layers. Processing can be 

                                                           
1 While computationalism and representationalism do not 

necessarily entail one another (see Dennett, 1969), in practice they 

usually work in tandem. 
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through classical, serial processing architectures (as in 

Turing machines), or they can be massively parallel (as in 

connectionist, neural network, and similar architectures).  

Autonomous agents in the real world encounter a wide 

variety of environments, no two of which will exactly be the 

same. Even the same environment often shifts in content 

through time. This creates a significant computational 

challenge, in addition to being resource- and energy-

intensive. The existence of an inner representational layer 

places all the computational burden on the agent itself. 

Affordances, however, arise in the agent-environment 

interaction, offloading part of the processing burden onto 

the environment. Introducing affordance perception into 

autonomous agents enables them to continuously and 

dynamically adapt to shifting and changing environments. 

Traditional autonomous agents separated sensing, 

planning/reasoning, and acting into different processes that 

would only link up at a later stage (Gat, 1998; Maes, 1991). 

The perceptual process sends information to the planning 

process, which in turn sends instructions for action (Horton, 

Chakraborty, & Amant, 2012). However, “[e]ven if an agent 

has perfect segmentation and feature recognition 

capabilities, this new form of information may be hard to 

translate into appropriate actions” (Nye & Silverman, 2012, 

p. 184). Affordance perception dispenses with the 

intermediary planning layer, instead generating affordances 

within a tight perception-action loop. What planning there 

may be is performed online through the perception-action 

loop, instead of offline between perception and action. This 

does not mean that the agent does no planning whatsoever; 

rather, it means there is often no representational layer 

mediating between perceptual and actional processes—at 

least, not at the level of basic perceptual processes (see 

Şahin et al., 2007). What planning there may be is 

performed online through the perception-action loop, 

instead of offline between perception and action. 

Furthermore, machine learning alone is insufficient; a 

robotic body is required for an affordance to be perceived. 

This is because affordances are not merely perceptual 

processes—they are perception-action processes and require 

dynamic engagement with the environment. 

Natural and Cultural Affordances 

Affordance perception in AI is complicated by the fact there 

are two very different types of affordances: natural and 

cultural. Natural affordances involve very basic cognitive 

processes. Cultural affordances are comparatively richer and 

involve culturally- and intersubjectively-mediated processes 

in order to be perceived and acted upon.2 Cultural 

affordances, however, pose a particularly intractable 

problem. While natural affordances arise from the 

informational structure of the environment, cultural 

                                                           
2 Although affordances may differ regarding their basicness or 

their cultural scaffolding, in practice it is difficult to disentangle 

these two (see Wagman, Caputo, & Stoffregen, 2016). Indeed, for 

human agents, even basic perception-action processes like picking 

up an apple are culturally mediated. 

affordances require that the percipient be acculturated. 

There seems, prima facie, to be a level of decoupled, even 

representational, processing required to perceive a cultural 

affordance (Ramstead, Veissière, & Kirmayer, 2016). 

Natural affordances are possibilities in the environment 

available for action (Dotov, Nie, & de Wit, 2012). Different 

agents can perceive different affordances based on their 

embodied capacities and species-typical behaviors. For 

example, a twig affords different actions to a cat, a finch, 

and a human. To the cat, the twig affords bite-ability and 

play-ability. To the finch, it affords graspability by the beak 

and build-ability for a nest. Finally, to the human, it affords 

manual manipulation. In each case, the embodied capacities 

and species-typical behaviors of the agent shape what kind 

of action the twig affords. 

Affordances are based on the real information (light, 

pressure, scent) available in the environment. However, they 

do not themselves exist in the environment. They are 

generated in the agent-environment interaction. Affordance-

perception occurs because the agent and environment form a 

complex, emergent system (Favela & Chemero, 2016; 

Thompson, Varela, & Rosch, 1991/2016; Gallagher, 2017; 

Thompson, 2007). That is, the agent is dynamically coupled 

with the environment. This coupling is modeled in 

ecological psychology and embodied cognition research 

using dynamical systems theory (Beer, 2014; Chemero, 

2009; Turvey, 2019). 

Several formalizations of affordances have been proposed 

(see Chemero, 2003; Stoffregen, 2003; Turvey, 1992). 

Stoffregen’s (2003) formalization, which has been 

successfully utilized in AI affordance perception research 

(Nye & Silverman, 2012), is:  

“Let Wpq (e.g., a person-climbing-stairs system) = (Xp, Zq) 

be composed of different things Z (e.g., person) and X 

(e.g., stairs). Let p be a property of X and q be a property 

of Z. The relation between p and q, p/q, defines a higher 

order property (i.e., a property of the animal−environment 

system), h. Then h is said to be an affordance of Wpq if 

and only if 

• Wpq = (Xp, Zq) possesses h. 

• Neither Z nor X possesses h” (Stoffregen, 2003, p.         

123). 

Cultural affordances require the agent to utilize “explicit 

or implicit expectations, norms, conventions, and 

cooperative social practices” (Ramstead, Veissière, & 

Kirmayer, 2016, p. 3). It is precisely these elements that 

seem, prima facie, to require a representational layer 

decoupled from perception-action processes. For example, 

Gibson (1979/2015) remarks that a buyer and a seller each 

afford one another opportunities for action (viz., buying and 

selling). However, he goes on to say, 

“The perceiving of these mutual affordances is 

enormously complex, but it is nonetheless lawful, and it is 

based on the pickup of the information in touch, sound, 

odor, taste, and ambient light” (p. 127).  

The information, in this case, is directly out there in the 

environment, and the agent perceives it. The affordances for 
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action, however, arise in the interaction of the agent with its 

environment. It is the information, not the affordance, that is 

objectively embedded in the immediate environment. 

However, how could a buyer be perceived as such merely 

based on light waves, sound pressure waves, and other 

ecological information?  

Gibson also claims that “the real postbox…affords letter-

mailing to a letter-writing human in a community with a 

postal system” (1979/2015, p. 130). In this example, we 

have a culturally-scaffolded process of perception and 

action that functions only within a highly-specific cultural 

framework. It is not clear, however, how these culturally-

scaffolded processes could be “directly” perceived based on 

the immediate information available in the environment. 

Memory and background knowledge are required for the 

postbox to be perceived with a letter-mailing affordance. 

However, there is little in the postbox’s shape, color, and 

size that informs the agent of the postal system, letter-

writing culture, and letter-reading agents enabling it to have 

mail-ability. Either cultural affordances are representational 

(see Ramstead, Veissière, & Kirmayer, 2016), or they must 

somehow be generated in a cultural milieu and for an 

acculturated agent by utilizing nonrepresentational, 

memory-based processes (see Rietveld & Kiverstein, 2014). 

AI Cultural Affordance Perception 

Most AI implementations of affordance perception have 

focused on natural affordances. These are, no doubt, 

relatively easier to implement because they do not require 

background knowledge of culture or a process of 

enculturation in order to perceive and act upon them. They 

are based only on the informational structure of the 

immediate environment. The true challenge for AI 

affordance perception is to achieve the perception of 

cultural affordances. If, however, cultural affordance 

perception turns out to require a robust representationalism, 

it is not clear that it has any advantage over non-affordance-

based AI. 

Raubal and Moratz (2008) provide an AI implementation 

of cultural affordance perception whereby cultural 

affordances are scaffolded onto natural affordances by 

representations of cultural knowledge. Their target agent is 

the Bremen Autonomous Wheelchair Rolland, which 

interprets linguistic commands by its human occupant and 

navigates across the environment. The need for cultural 

affordance perception arises because the wheelchair does 

not blindly perform actions commanded by their users. For 

example, the user may request to visit a center outside of 

operational hours. In this case, the AI utilizes cultural 

affordances integrating knowledge of the institution and its 

operating hours when selecting for action outputs. 

Cultural affordances arise in their system by a system of 

constraints upon natural affordances. A natural affordance is 

constrained within a given social and institutional context. 

For example, the mailbox affords a multiplicity of actions, 

including smashing, opening, inserting objects, and 

touching. In their model, it is the social and institutional 

context of the postal system, letter-readers, and letter-

writing that constrain the possible natural affordances into a 

smaller subset of cultural affordances. The agent then 

performs internal actions on these cultural affordances—

essentially, planning or reasoning processes—in order to act 

upon the more basic natural affordance of opening and 

inserting.  

The cultural affordances utilized by Raubal and Moratz’ 

(2008) agent are representational. A separate planning layer 

is retained by their AI wheelchair. Their conception of 

cultural affordances is simply a subset of natural 

affordances that are given social and institutional 

constraints. Knowledge such as closing and opening hours 

is certainly representational and linguistically-based. The 

problem with their implementation of cultural affordances is 

that there is little that distinguishes them from classical 

representations. The construct of ‘cultural affordance’ is not 

doing any work that the construct of ‘representation’ does 

not already do. Their agent is essentially a hybrid system 

incorporating affordance perception for low-level navigation 

and symbolic representations for higher-level constraints 

upon that navigation. 

Furthermore, some forms of social and institutional 

knowledge that Raubal and Moratz (2008) discuss, such as 

navigating across a city, are not necessarily fully 

representational processes. Unwritten norms such as 

walking on the right side of the sidewalk in many Western 

countries could be conceived of as representational rules. 

However, spontaneous pedestrian patterns can emerge 

without any specific intention (Moussaid et al., 2009).  

Socialization and Supervised Learning 

Awaad, Kraetzschmar, and Hertzberg (2015) provide an 

affordance-based model for AI agents that can “socialize” 

by learning expected uses of objects. The practical 

applications of this are in producing service robots that 

perform actions commanded by humans without being 

“robotic.” When humans perform service tasks, an entire 

body of knowledge is brought to bear. Take the example of 

sweeping the floor. The human agent needs to know how to 

use a broom. However, the possibility space for utilizing a 

broom to sweep in deviant ways is quite large: one could 

sweep under the feet of others, sweep at the wrong times 

(e.g., while others are cooking), or sweep with furious 

movements and kick up dust. All these behaviors 

accomplish the task of sweeping but are social nuisances 

and perhaps even physically dangerous. There is an entire 

network of social expectations and etiquette surrounding the 

tool use in question. There is, in short, a “right way to do 

things.” Furthermore, humans 

“effortlessly adapt our actions to unexpected situations, 

especially given the dynamic nature of our environment 

and the amount of uncertainty about it” (p. 422). 

While moving a broom back and forth can be largely 

explained with natural affordances, these cultural constraints 

cannot. The broom affords more actions than are socially 

acceptable or considered appropriate to the task. Awaad, 
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Kraetzschmar, and Hertzberg (2015) attempt to integrate 

them within an affordance-perception paradigm, however. 

They note that programming procedural knowledge is 

insufficient to cover these cases of “the right way to do 

things” because the agent will always encounter novel 

situations. They implement Hierarchical Task Network to 

decompose tasks into a set of individual tasks in order to 

accomplish a goal.  

In order to reduce the possibility space for action to one 

for socially-appropriate action, Awaad, Kraetzschmar, and 

Hertzberg (2015) store information about the object, the 

commanding agent, and the intended uses of the object. 

These constraints are scaffolded on the natural affordance of 

the object. The broom, for example, is defined by its 

socially-intended purpose of cleaning. The commanding 

agent, the human who demands cleaning, would have a set 

of preferences and expectations as to how that task is 

accomplished. The authors implement this cultural 

scaffolding through coded representations. Like Raubal and 

Moratz (2008), they conceive of cultural affordances simply 

as subsets of natural affordances that arise through 

representational cultural constraints. 

Although the authors use representations to implement the 

socially-scaffolded constraints on the object’s affordances, 

their broader proposal shows how a nonrepresentational 

framework could be used to do the same work. While they 

programmed the constraint knowledge into their agents, 

they suggest that this would be better done by supervised 

learning, particularly learning by demonstration. In the 

following section, I argue such supervised learning by 

demonstration of affordances does not require a strong 

concept of representations for its implementation. 

Joint Interaction and Cultural Affordances: 

Unsupervised and Supervised Learning 

Chu, Fitzgerald, and Thomaz (2016) develop autonomous 

agents that learn to perceive and use affordances through a 

combination of unsupervised and supervised learning 

through interaction with a human. A human teacher 

physically guides the robot to certain affordances. For 

example, a robot is taught that drawers have an openable 

affordance by guiding its hand. The robot learns to mimic 

this movement and perceive the openability affordance of 

the drawer’s handle. 

While the openability of the drawer prima facie appears 

to be a natural affordance provided by the structure of the 

robot’s hand and the drawer’s handle, there is a large 

possibility space for socially-deviant drawer-opening 

behavior. Although Chu, Fitzgerald, and Thomaz (2016) do 

not note this, the human teacher is not merely teaching the 

autonomous agent how to perceive and act upon the 

openability affordance of the drawer. They are 

simultaneously teaching the AI agent the acceptable way to 

perform this action. The drawer is not to be forcefully 

opened or rapidly opened and closed in succession (as a 

small child may annoyingly do), for example. The process 

of supervised learning allows the AI agent to learn the 

socially-acceptable affordances. This makes the drawer’s 

openability affordance not simply natural, but also 

culturally-scaffolded. 

Ramstead, Veissière, and Kirmayer (2016) invoke 

Gricean norms to understand these contexts. Grice (1975) 

articulated a set of rules governing conversation. These rules 

are ancillary to the communicative and phatic functions of 

language and facilitate nondeviant interactions. For 

example, one ought to convey as much detail as the topic 

requires without divulging too much detail. If one fails to do 

the former, one is perceived as terse, reticent, or 

uncommunicative. If one fails to do the latter, one is 

perceived as a windbag. In either case, deviation from the 

unwritten norm has the effect of interrupting the 

communicative act itself. Likewise, mundane actions have 

ancillary but unwritten norms guiding how they ought to be 

performed. These norms can only be learned by actual 

practice and observation of these actions in a social context. 

They are not symbolic rules because there may be no 

explicit representation of their content. They are merely 

habitual patterns of behavior used to accomplish certain 

tasks—e.g., opening a drawer slowly rather than forcefully. 

While the robot may not develop shared intentions with 

the human teacher, in this case, it is significant that the 

robot only learns to perceive and act upon affordances 

through a process of interaction with a human (who is a 

“native” affordance perceiver-actor). In this case, 

representations are not necessary to explain how the AI 

agent learns to perceive and act upon the drawer’s 

openability affordance in a socially-nondeviant way. While 

Awaad, Kraetzschmar, and Hertzberg (2015) programmed 

in cultural knowledge through representations, this 

supervised learning process does not specifically require the 

agent to store representations of cultural constraints, 

expectations, and other social rules. Rather than storing 

social rules and using them to constrain the agent’s 

affordance perception and action, supervised learning allows 

the agent to learn to perceive and act upon the affordance in 

certain typical ways. Instead of inducing a rule based on the 

multiple supervised learning instances of opening the 

drawer—e.g., if drawer, then constraint x, y, z—the agent 

can simply follow the typical range of paths that have been 

learned. 

One objection is that human agents are conscious of not 

deviating from socially-accepted norms of tool usage. These 

norms may be at a higher level than “not kicking up dust.” 

One may be aware that one ought not to bother or annoy 

anyone. Nonetheless, even that does not require a specific 

rule. Even if the human agent has such a rule in mind, it is 

generally not the cause of their socially-nondeviant 

behavior. We do not walk around constantly thinking “I 

ought not to annoy x.” If we can formulate such a rule, and 

even implement it in some cases, it is the exception (perhaps 

applying to a highly novel situation) rather than the norm. 

There is nothing here that cannot also be explained through 

processes of social learning, acculturation, and operant 

conditioning. These parallel the supervised learning trials in 
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AI affordance perception (Awaad, Kraetzschmar, & 

Hertzberg, 2015; Chu, Fitzgerald, & Thomaz, 2016).  

AI Perception of Cultural Affordances without 

Representations: Learning and Habit 

Representations such as rules can be used to constrain 

behavior in highly novel situations. Indeed, these kinds of 

rules may be part of the learning process itself. However, 

programming a database of representational cultural 

constraints for autonomous agents is a task just as 

formidable as that of traditional, non-affordance-based AI 

and computer vision. It is not clear that utilizing affordances 

in AI perception gains us anything. The problem, however, 

is that implementations of cultural affordance perception 

have generally been representational. The supervised 

learning in Chu, Fitzgerald, and Thomaz (2016) provides a 

way of thinking about what partially-nonrepresentational 

cultural affordances may look like in autonomous agents. 

Their autonomous agent learned how to open cabinet 

drawers in nondeviant and socially-acceptable ways. The 

drawer’s handle information could afford multiple 

possibilities for action that are deviant, such as forcefully 

opening or rapidly opening and closing. During its 

supervised learning trials, the autonomous agent only learns 

the socially-acceptable way of opening the drawer. The 

agent does not perceive a natural affordance of open-ability. 

It perceives a cultural affordance of gentle-open-ability, one 

that is only salient within a given social structure and 

context.  

Their autonomous agent does not have to learn or be 

preprogrammed with a rule about acceptable ways to open 

drawers. It is through multiple supervised learning trials that 

the cultural affordance begins to emerge—it is, in short, a 

habit. By habit, I mean a pattern of behavior that develops 

through supervised and unsupervised learning. The agent’s 

habitual patterns of behavior are not representational in the 

sense that they are not primarily guided by symbolic rules, 

although the latter may constrain habits in actual behavior. 

Habit emerges from a set of previous behaviors and 

continues to guide future ones without necessarily having 

any explicit formulation. Surely some affordances must be 

constrained by symbolic representations. The closing time 

of a building or institution is something that could be 

learned by habit. The agent could develop a sense of when it 

closes by a long process of trial and error. However, that 

would be far less efficient than simply having a rule 

representing its closing time. In many cases, though, the 

work being done by representations can just as well be done 

by supervised and unsupervised learning or habit. 

Returning to the example of sweeping, when the AI agent 

learns how to sweep from a human teacher, the latter will 

only teach the socially-accepted ways to sweep. The teacher 

will not teach how to sweep under people’s feet, around 

them while walking, vigorously so as to kick up dust, or any 

other socially-deviant manner. The agent would learn these 

patterns of use of the object. Inducting a specific 

representational rule to cover these cases is supernumerary 

and fails to add explanatory value. The agent does not need 

a representational rule (“do not kick up dust”), because they 

have been taught to use the broom in a set of patterns that 

do not include kicking up dust. Following Ockham’s razor, 

if the explanation can be had without representations, then 

we ought to dispense with them as an explanans in those 

cases.  

One of the challenges for robustly-representationalist 

implementations of cultural affordance perception is that 

they require just as thorough programming with rules as 

traditional representational architectures. Habit, however, 

could greatly reduce the set of background knowledge that 

needs to be programmed. This is also a primary way that 

human agents develop habits during development. Children 

do not learn about their culture’s interpersonal distance—

the typical distance people stand from one another during 

communication—by learning a rule about how many 

centimeters away from another person to stand. They merely 

develop a habit of standing a certain distance away from 

another person. This habit is reinforced by observation of 

others and by violations of the norm (e.g., standing too close 

to someone can be perceived as aggressive). They may not 

even be aware that there is such a social norm guiding their 

behavior. If a representational rule happens to be extracted 

by a reflecting agent, it is still habit and not that rule that 

continues to guide its behavior. A humanoid autonomous 

agent could likewise learn to communicate using nondeviant 

interpersonal distance without any representational rules 

dictating how many centimeters away to stand by recourse 

to supervised learning (observation and mimicry) and 

unsupervised learning (violations).  

Conclusion 

Affordance perception offers a new paradigm for perception 

and action in autonomous agents. While traditional three-

level systems dissociate perception, planning or reason, and 

action into separate layers, nonrepresentational affordances 

involve a dynamic and bidirectional perception-action loop 

with online planning. Many implementations of affordance 

perception in AI research have retained the 

representationalist paradigm even as they seek to integrate 

affordances. While this is certainly feasible from a technical 

standpoint, the construct of ‘affordance’ loses much of its 

power. An affordance-based robotics that remains largely 

representationalist has no clear advantage over traditional 

architectures.  

Examining several implementations of cultural affordance 

perception in AI research, I argue that representations are 

not necessary for cultural affordances. I sketched a possible 

way for autonomous agents to implement cultural 

affordance perception by habit gained through supervised 

and unsupervised learning. AI implementations of 

affordance perception do not conceptually require a robust 

representationalism. If affordance-based robotics is to have 

any advantage over traditional architectures, it may need to 

reconsider the role of representations in cultural affordance 

perception. 
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Abstract 
A mainstay of models that account for the access of lexical 
knowledge is that auditory words compete for selection based 
on form similarity, commonly seen in an inhibitory effect to 
greater phonological neighborhood density (PND). PND is a 
metric that states that two words are neighbors if they differ by 
the addition, deletion or substitution of a single phoneme. A 
drawback to this account is that there is competing evidence 
even among the European languages investigated thus far. We 
sought to verify whether the inhibitory effect of greater PND 
would hold for Mandarin Chinese in two auditory word 
repetition tasks with monosyllabic and disyllabic Mandarin 
words. Results of Experiment 1 showed a facilitative effect to 
greater PND. Experiment 2 added a non-verbal distractor task 
to lessen the putative effect of working memory load during the 
task. The facilitative effect to greater PND was confirmed 
along with a significant post-hoc interaction with memory 
decay, operationalized as the duration spent on the distractor 
tasks. The facilitative effects extend previous reports of 
differential behavior due to linguistic typology.  
Keywords: Lexical access; phonological neighborhood 
density; memory decay; Mandarin Chinese 

Introduction 
Essential to the current models of lexical processing is that 
target words interact during selection with items in long-term 
memory based on their shared semantic, orthographic, and 
phonological similarity. Both orthographic and phonological 
similarity are most commonly calculated through the 
addition, deletion or substitution of a single letter or phoneme 
(Landauer & Streeter, 1973). According to this metric, known 
as neighborhood density, a target stimulus with many similar 
words in the lexicon, i.e., neighbors, resides in a dense 
neighborhood, while a word with few similar words in the 
lexicon resides in a sparse neighborhood. The contrasting of 
dense and sparse words has been used to model the structural 
organization of lexical knowledge. For example, in the 
recognition of orthography, according to both the 
orthographic and phonological metrics, words from dense 
neighborhoods have been shown to facilitate recognition 
(Orthographic; e.g., Coltheart, Davelaar, Jonasson, & Besnar, 
1977; Phonological: e.g., Yates, Locker, & Simpson, 2004). 
This facilitation has motivated the claim that greater density 

results in greater overall activation, a defining feature that 
was later implemented in several computational models 
(Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; 
Grainger & Jacobs, 1996; Wagenmakers et al., 2004). 
However, when tasks are performed in the auditory modality, 
greater density has been reported to inhibit recognition (e.g., 
Luce & Pisoni, 1998; Vitevitch & Luce, 1998; Ziegler et al., 
2003), motivating the construction of modality specific 
models of speech processing (Luce, Goldinger, Auer, & 
Vitevitch, 2000; McClelland & Elman, 1986; Norris, 1994). 
In response, Chen & Mirman (2012) constructed a 
connectionist model in an attempt to give a unified account 
of both facilitative and inhibitory neighborhood effects 
across both visual and auditory modalities, perception and 
production tasks, and orthographic, phonological and 
semantic neighborhood interactions. Their innovative 
approach, unfortunately, rests on the false assumption that 
there is a consensus in the literature for modality and task 
specific neighborhood effects. 

To limit the discussion, we will consider only the effects 
known for phonological neighborhood density (PND). Two 
hypotheses of note have been advanced concerning 
differences in polarity from the body of behavioral evidence: 
psychotypology, and methodology. 

The psychotypological argument holds that cognitive 
processes differ due to the linguistic differences between the 
languages being tested. The case, as it regards lexical access 
(Vitevitch & Rodríguez, 2004; Vitevitch & Stamer, 2006, 
2009), was made based on evidence from both auditory 
recognition, and speech production. Dense phonological 
neighborhoods were inhibitory to speech recognition for 
English speakers (e.g., Luce & Pisoni, 1998), yet were 
facilitative for Spanish speakers (Vitevitch & Rodríguez, 
2004), whereas, dense words were facilitative for English 
speakers in picture naming (Vitevitch, 2002), yet inhibitory 
for Spanish speakers (Vitevitch & Stamer, 2006, 2009). 
Vitevitch and colleagues speculated that the differences 
between the English and Spanish lexicons led to differences 
in polarity. Whereas English words have on average a greater 
number of shorter words with more phonological neighbors, 
the sparser Spanish vocabulary features words that are 
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neighbors both phonologically and semantically, e.g., 
niño/niña (boy/girl).  

The methodological argument to account for differences in 
polarity points towards the design and methods employed in 
PND related studies. Sadat, Martin, Costa, and Alario, (2014) 
posited that the contradictory findings could be amended 
through testing with larger stimulus sets and the use of mixed 
effects models. The re-analyses of PND studies done by 
Sadat and colleagues clarified important differences between 
F tests and mixed effects models in the analysis of a variable 
that is continuous in nature and thus best fit for regression 
rather than factorial designs.  

A third possibility to account for the differences in polarity 
in PND studies is to investigate working memory, 
specifically as it concerns the size of the stimuli sets used. As 
a participant recognizes or names a word, that lexical item is 
temporarily stored in working memory. If participants are 
exposed to multiple words, memory load increases and with 
it reaction times (Cohen et al., 1997; Jha & McCarthy, 2000). 
If the participant sustains attention on one task then memory 
decay does not happen at the same rate compared to if they 
were given a pause or a distractor task that does not interfere 
with the domain or modality of the main task (Rae & Perfect, 
2014). In the case of phonological information, Baddeley 
(1986) found that phonological memory decayed within 
roughly 2 seconds. This does not differ greatly from the recall 
of orthographic letters after doing simple math problems 
(Brown, 1958; Peterson & Peterson, 1959). Given that during 
PND related tasks the inter-stimulus pause tends to be 
between 500-1500ms, i.e., under the rate of decay known to 
exist for phonological information, it is feasible that words 
are subject to cumulative activation, i.e., that activations of 
multiple word representations overlap and contribute to 
participant performance. 

The studies that have investigated neighborhood effects 
amongst adults have utilized a large range of different sized 
stimulus sets. In studies implementing auditory word 
repetition tasks the story is quite straightforward, wherein 
large stimulus sets (Luce & Pisoni, 1998: 400 words; 
Vitevitch & Luce, 1998: 240 words) led to an inhibitory PND 
effect. In lexical decision tasks, two experiments using large 
stimulus sets showed inhibitory PND effects (Luce & Pisoni, 
1998: 610 words; Vitevitch, Stamer, & Sereno, 2008: 112 
words) while one with a small set of stimuli showed a 
facilitative PND effect (Vitevitch & Rodríguez, 2004: 80 
words). The picture naming literature is where we see 
inhibitory results with large and small stimulus sets (e.g., 
Sadat, et al., 2014: 533 pictures; Vitevitch & Stamer, 2006: 
48 pictures), facilitative results with small stimulus sets 
(Baus, Costa, & Carreiras, 2008: 48 pictures; Marian, 
Blumenfeld, & Boukrina, 2008: 57 pictures; Pérez, 2007: 89 
pictures; Vitevitch, 2002: 48 pictures; Vitevitch & Stamer, 
2009: 48 pictures), and non-significant PND effects 
(Jescheniak & Levelt, 1994: 96 pictures repeated 3 times; 
Vitevitch et al., 2004: 44 pictures). Note that non-significant 
results might also have been due to issues unrelated to stimuli 
number, such as mixing photographic and hand-drawn 

stimuli or due to naming pictures that represent conceptual 
processes such as verbs (Newman & Bernstein Ratner, 2007; 
Tabak, Schreuder, & Baayen, 2010).  

The role of PND in working memory has not been fully 
explored. The only studies to test their interaction found a 
facilitation of greater density in serial recall tasks with 
English speakers (Oberauer, 2009; Roodenrys, Hulme, 
Lethbridge, Hinton, & Nimmo, 2002). The facilitative effect 
was said to be due to redintegration, which can be described 
as the restoration of short-term memory traces due to long-
term memory representations. In order to test cumulative 
activation, however, it is necessary to account for overall 
memory load rather than that of isolated words.  

To test the possibility that cumulative working memory 
influences the directional effect of PND, we performed two 
experiments with a large number of stimuli. In Experiment 1 
we presented the full stimuli set to our participants without 
sufficient time for decay in memory load. In Experiment 2 we 
inserted three nonverbal distractor tasks in order to introduce 
memory decay. In both experiments we implemented the 
auditory word repetition task due to it being the only task thus 
far without contradictory findings. The cumulative memory 
hypotheses, allows for the prediction of an inhibitory effect 
to greater PND in Experiment 1 and a facilitative or null 
effect in Experiment 2. 

In the current study we also incorporate concerns brought 
by both previous hypotheses concerning methodology and 
psychotypology on differing PND effects. Through the use of 
a large stimuli set and mixed effects models we treated PND 
as a continuous variable. Meanwhile, our target language, 
Mandarin Chinese, was chosen due to its typological 
distinctness to either English or Spanish, allowing for a 
unique view on how the dimensions of the lexicon affects 
lexical access.  

The Mandarin vocabulary differs from both English and 
Spanish in critical ways. Its syllable inventory, when 
including lexical tone, has roughly 1,300 items, which is a 
number far less than the 10,000+ English syllables. Unlike 
Spanish that boasts of a large proportion of multisyllabic 
words rich in morphological variation (Arbesman, Strogatz, 
& Vitevitch, 2010), roughly 72% of Mandarin’s phonological 
words (i.e., in which all homophones are collapsed to one 
item) are disyllabic, and only 3.8% monosyllabic (Neergaard 
& Huang, 2019). Meanwhile, Mandarin words have little to 
no morphology. For instance, unlike Spanish, Mandarin 
verbs do not conjugate, and nouns do not note gender nor 
number.  

To date, no results have been reported in the auditory word 
repetition task with Mandarin speakers. Despite this lack of 
prior evidence, the psychotypology account allows for certain 
predictions. Given the greater distance lexically from 
Spanish, particularly in relation to its on average longer word 
length and inflectional morphology, Mandarin shares greater 
similarity with English. English has shown inhibitory PND 
effects in both auditory lexical decision and word repetition, 
making it likely that lexical competition best accounts for the 
selection of dense phonological words in Mandarin. 
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Experiment 1 

Methods 
Participants Thirty-three native-Mandarin speakers 

participated in this experiment (Female: 21; Ages 18-35, M: 
12, SD: 3.64). None of the participants reported speech, 
hearing, or visual disorders. All participants reported native-
level proficiency in Mandarin.  

The current study design was approved by The Hong Kong 
Polytechnic University’s Human Subjects Ethics Sub-
committee (reference number: HSEARS20140908002). The 
participants gave their informed consent and were 
compensated with 50HKD for their participation. 
Stimuli The auditory stimuli for this experiment consisted of 
154 Mandarin words (10 practice; 144 test). A female native-
speaker of Mandarin from Fujian province produced all of the 
stimuli by speaking at a normal speaking rate into a high-
quality microphone. Stimuli fell into 4 categories according 
to their syllable or segment length: 36 3-segment 
monosyllables with a CVN syllable structure (e.g., san1); 36 
4-segment monosyllables with a CGVN syllable structure 
(e.g., bian3); 36 3-segment disyllables with a CV V syllable 
structure (e.g., da4 yi1); 36 4-segment disyllables with a CV 
CV syllable structure (e.g., li4 shi3). The 144 test stimuli 
were made from 20 syllable onsets, whose distributions were 
not significantly different in syllable length (p=1) or segment 
length (p=1). Eleven stimuli sets were constructed, each 
where stimuli were pseudo-randomized such that there were 
no consecutive presentations of items with the same onset or 
lexical tone (first syllables for disyllabic words). The stimuli 
list can be seen in Appendix 1.  

Because the current stimuli consist of monosyllables and 
disyllables of both 3 and 4 segments in length, it was not 
possible to control for their durations along all 4 dimensions. 
Instead, stimuli were chosen in order to minimize durational 
differences between 3-Segment words (CV V, M: 609.25; 
SD: 11.59; CVN, M: 609.00; SD: 11.01) and between 4-
Segment words (CVCV, M: 784.67; SD: 9.25; CVVN, M: 
784.17; SD: 11.02). Stimuli did not differ within their 
respective segment length groups, but were significantly 
different across segment lengths (F=9433, p<0.001). Thus, 
while a significant difference in reaction times is expected 
between 3- and 4-Segment words, the same cannot be said 
between monosyllable and disyllables belonging to their 
respective segment lengths, which is critical in identifying 
whether monosyllables and disyllables are processed in an 
equivalent manner. 

Lexical statistics for the stimuli were taken from the 
Database of Mandarin Neighborhood Statistics (Neergaard, 
Xu, & Huang, 2016), in which lexical frequency is derived 
from the wordlist of Subtlex-CH (Cai & Brysbaert, 2010) 
according to the summed subtitle frequency for each 
phonological word. All relevant statistics were calculated 
from 30,000 phonological words. In order to test the 
hypothesis that words of varying unit sizes are subject to the 
effect of phonological similarity during speech processing, it 
was necessary to use the fully segmented Mandarin syllable 

schema (C_G_V_X_T) because it allowed us to control for 
both segment and syllable length while distinguishing 
between words according to lexical tone. Stimuli did not 
differ in log10 lexical frequency for either 3-segment words 
(CVN, M: 3.08, SD: 0.40; CV V, M: 2.75, SD: 0.46) or 4-
segment words (CGVN, M: 2.98, SD: 0.49; CV CV, M: 3.33; 
SD: 0.21) according to both segment length (p=0.869) and 
syllable length (p=0.981). 

The remaining variables are of the density variety and 
include PND, log10 neighborhood frequency (NF, M: 3.11; 
SD: 1.06), and homophone density (HD, M: 1.67; SD: 1.26).  

The goal in choosing stimuli according to PND, knowing 
that greater length negatively correlates with higher density, 
was to assure that there was sufficient spread for each group. 
For the syllable length group, disyllabic words had a spread 
of 0-11 neighbors (M: 3.71, SD: 2.45), while monosyllabic 
words had a spread of 4-25 neighbors (M: 13.29, SD: 5.05). 
For the segment length group, 3-segment words had a spread 
of 0-25 neighbors (M: 10.10, SD: 7.03), while 4-segment 
words had a spread of 0-17 neighbors (M: 6.90, SD: 4.85).  
Procedure Participants sat in a quiet room in front of a 
computer running E-Prime 2.0 (Psychology Software Tools, 
2012). They were instructed to repeat the words they heard 
over headphones into an attached microphone as fast as 
possible. Each trial began with a cross ‘+’, in the center of the 
screen for 1000ms. Next, the onset of the target audio was 
presented concurrent with the exposure of a blank screen. A 
PST Serial Response Box was activated by the participants’ 
voice, dependent on their response, which then led to a pause 
of 1000ms and the end of a trial. Stimuli were pseudo-
randomized such that no two items were presented 
sequentially with the same onset or lexical tone. The entire 
experiment lasted roughly 10 minutes. Participants were 
given a practice set of 10 words prior to beginning the 
experiment.  

Results and discussion 
Reaction times were measured offline using SayWhen 
(Jansen & Watter, 2008). No participants were excluded due 
to excessive error rates, or deviant reaction times. Three 
stimuli were removed for error rates higher than 25% 
(guang4, qing3, san4). From the new total of 4,653 trials, 102 
were removed due to production errors, accounting for 
2.19%. A further 238 trials (5.23%) were removed for values 
below the duration of our shortest stimuli (577ms), and for 
values 2.5 standard deviations above the group mean. The 
final number of trials to be analyzed were 4,313 (M: 917ms; 
SD: 144ms). 

As can be seen in Table 1, Subject and Item were placed in 
the random effects, while each of the density variables (PND, 
HD, and NF) were analyzed according to the two levels of 
segment length (SegLen: 3-seg, 4-seg). We also place 
syllable length (SyLen) into the fixed effects structure to 
evaluate whether there was a processing cost despite stimulus 
durations not being different between monosyllables and 
disyllables in each segment group. 
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Table 1. Model estimates for Experiment 1 
Random effects Var. SD    

Subject 0.003 0.057    
Item 0.012 0.111    
Residual 0.007 0.086    

Fixed effects β SE df t p 
Intercept 9.4e-1 2.2e-2 54 42.21  < 0.001 
SyLen (di) -5.2e-2 1.9e-2 132 -2.73 0.007 
3-seg:PND -3.3e-2 9.4e-3 132 -3.48 < 0.001 
4-seg:PND -5.2e-2 1.4e-2 132 -3.63 < 0.001 
3-seg:HD 6.5e-3 6.1e-3 132 1.07 0.287 
4-seg:HD 7.0e-4 1.1e-2 132 0.06 0.950 
3-seg:NF -1.6e-2 1.1e-2 132 -1.51 0.133 
4-seg:NF -7.8e-3 1.1e-2 132 -0.70 0.483 
 
Results revealed that monosyllables (M: 903ms; SD: 

15ms) were produced significantly faster than disyllables (M: 
928ms; SD: 14ms). Greater PND was facilitative for both 3-
segment (M: 867ms; SD: 138ms) and 4-segment (M: 965ms; 
SD: 137ms) items. No effects were found for either 
SegLen:HD or SegLen:NF. An estimate of r2, using the 
‘r2glmm’ package in R (Jaeger, Edwards, Das, & Sen, 2016), 
revealed that the model had a marginal r2 of 0.224, and semi-
partial r2 of 0.145 for SegLen:PND, and 0.053 for SyLen. 

The facilitative effect to greater PND for both 
monosyllabic and disyllabic words, rather than supporting a 
cumulative memory account, is suggestive that typological 
differences between English (majority inhibitory findings to 
greater PND) and Mandarin led to the differential 
performance. 

Experiment 2 
The premise of the cumulative memory account is that 

shorter stimulus sets in a naming task result in facilitative 
PND effects due to there being fewer lexical items stored in 
working memory when compared to a task with a large 
stimulus set. It is possible that working memory builds 
cumulatively leading to increased activation, but that due to 
the particular psychotypological features of Mandarin, a 
facilitative effect to greater PND is the outcome. The only 
way to verify the status of a facilitative effect, while also 
nullifying the cumulative account, is to provide participants 
with sufficient time for memory decay during naming.  

Methods 
Participants Forty-seven native-Mandarin speakers 
participated in this experiment (Female: 29; Ages 19-38, M: 
24, SD: 4). None of the participants reported speech, hearing, 
or visual disorders.  
Stimuli The same auditory stimuli from Experiment 1 were 
used in this experiment. 
Procedure The current design differed from Experiment 1 in 
that the experiment was partitioned into 4 blocks of 36 trials 
each with three interleaved distractor tasks. Each distractor 
task included four basic math questions: e.g., “20*2=__”. The 
distractor task was self-paced. Participants had to press a 

button to return to the following test block. The entire 
experiment took less than 15 minutes.  

Results and discussion 
Reaction times were again measured offline using 

SayWhen (Jansen & Watter, 2008). Three participants were 
excluded from the analysis; two for reaction times 2.5 
standard deviations above the group mean, and one due to 
experimenter error in data acquisition. No participants were 
excluded due to excessive error rates; however, three stimuli 
were removed for error rates higher than 25% (qing3, san4, 
sang1). From the new total of 6,203 trials, 142 were removed 
due to production errors, accounting for 2.24%. A further 103 
trials (1.66%) were removed for values below 577ms and 
above 1446ms, leaving our final number of trials to be 
analyzed at 6,100 (M: 1010ms; SD: 148ms). 

The same model configuration from Experiment 1, as 
shown in Table 2, again found a significant SyLen effect 
between monosyllables (M: 995ms; SD: 148ms) and 
disyllables (M: 1027ms; SD: 148ms), and a significant 
facilitative effect to greater PND for both 3-segment (M: 
951ms; SD: 139ms) and 4-segment (M: 1069ms; SD: 134ms) 
items, with no significant effects for SegLen:HD or 
SegLen:NF. The model’s marginal r2 was 0.202, with a semi-
partial r2 of 0.121 for SegLen:PND, and 0.042 for SyLen. 

 
Table 2. Model estimates for Experiment 2 
Random effects Var. SD    

Subject 0.004 0.065    
Item 0.009 0.094    
Residual 0.008 0.091    

Fixed effects β SE df t p 
Intercept 1.04 1.9e-2 115 55.22 < 0.001 
SyLen (di) -5.1e-2 2.1e-2 133 -2.41 0.017 
3-seg:PND -3.4e-2 1.1e-2 133 -3.19 0.002 
4-seg:PND -5.2e-2 1.6e-2 133 -3.25 0.001 
3-seg:HD 6.1e-4 7.0e-3 133 0.09 0.931 
4-seg:HD -5.8e-3 1.2e-2 133 -0.46 0.643 
3-seg:NF -1.9e-2 1.2e-2 133 -1.57 0.118 
4-seg:NF -5.4e-3 1.3e-2 133 -0.43 0.667 
 
In this experiment we confirmed the facilitative effect to 

greater PND for Mandarin. We have also shown that stimulus 
set sizes are not the likely candidates in the variability found 
in PND studies. We did not however account for how PND 
and working memory interact. 

To investigate whether decay modulates the effect of PND, 
in a post-hoc analysis we operationalized memory decay as 
the time spent on the three interleaved distractor tasks. While 
each participant received the same basic math questions, they 
were given as much time as they saw fit to complete each task 
before returning to the repetition task. For the following 
analysis, it was necessary to exclude the trials belonging to 
the experiment’s first block. In this way, each block under 
examination entailed auditory lexical processing after having 
received a limited time for memory decay from a previous 
session of auditory lexical processing.  
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The values for Decay ranged from as short as 3 seconds 
(3100ms) to as long as 41 seconds (41373ms). Visual 
inspection of Decay’s token values revealed that it was not 
linearly distributed. We rescaled the variable using a Box 
Cox transformation (Tukey, 1977) to evenly distribute 
duration length of non-lexical processing during the 
distractor task.  

Using the ‘mcgv’ package in R (Wood, Scheipl, & 
Faraway, 2013), a generalized additive model using tensor 
product smooths was constructed (with Subject and Item as 
random effects) in which Decay was added as an interaction 
to each level of PND, SegLen, and SyLen. With an adjusted 
r2 of 0.651, Decay interacted significantly with PND 
(F=23.94; p<0.001); 3-segment (F=28.75; p<0.001) and 4- 
segment items (F=15.62; p<0.001); and both monosyllables 
(F=6.32; p<0.001) and disyllables (F=8.28; p<0.001). As can 
be seen in Figure 1, when Decay was shortest, the effect of 
PND was strongest, providing clear evidence that working 
memory is a determining factor of phonological 
neighborhood effects.  

 

 
Figure 1: Interaction effect of phonological neighborhood 

density (PND) and time spent on the distractor task (Decay) 
 

General Discussion 
The purpose of the current study was to examine multiple 
hypotheses on the directional effect of PND through 
Mandarin Chinese, a language typologically distinct from the 
languages tested to date. We incorporated the methodological 
concerns brought by Sadat et al. (2014), through the testing 
of a large number of stimuli with mixed effects models 
wherein PND was treated as a continuous variable. We 
performed two auditory word repetition tasks, the only task 
to date that has not shown contradictory PND effects, in 
which our participants’ rate of memory decay was 
manipulated to test whether differences in PND polarity have 
been due to cumulative memory. Finally, the testing of 
Mandarin participants allowed us to join the debate on 
psychotypology, i.e., whether the dimensions of a speaker’s 
lexicon can result in differential behavioral outcomes. 

In Experiment 1 we exposed our participants to the full 
stimuli set under the assumption that by not allowing for 
memory decay to occur our participants would produce an 
inhibitory effect to greater PND. Opposite our expectations, 

and in contrast to the previous English results, we found a 
facilitative effect to PND. In Experiment 2 we manipulated 
the task through the introduction of interleaved nonverbal 
distractor tasks. Changes in modality through distractor tasks 
have been shown to increase memory decay of the main task 
material (Rae & Perfect, 2014). The facilitative effect to 
greater PND was confirmed despite providing our 
participants with time for memory decay. A further post-hoc 
analysis illustrated that while working memory indeed 
modulates the phonological neighborhood effect, it can do so 
without lexical competition. 

Under the assumptions of the psychotypology account of 
PND (Vitevitch & Rodríguez, 2004; Vitevitch & Stamer, 
2006, 2009), we predicted that our Mandarin participants 
would experience lexical competition due to greater PND, in 
line with previous English results and contrary to previous 
Spanish results. This assumption was built on the greater 
difference between the Spanish and Mandarin vocabularies 
compared to the differences between the English and 
Mandarin lexicons. While Spanish is rich in morphology and 
on average has longer words, Mandarin has on average 
shorter words and no inflectional morphology. Contrary to 
our prediction, our Mandarin speakers were facilitated by 
greater PND, revealing that word length and inflectional 
morphology are likely not a reason for why Spanish speakers 
also experienced facilitation by words from dense 
phonological neighborhoods.  

Given our current negation of the cumulative memory 
account, further work would benefit from delving deeper into 
the psychotypology of lexical access. Evidence has been 
mounting for differences in brain areas during language 
process between English and Mandarin speakers, at the level 
of whole-brain maps (Wu et al., 2015), and targeting 
language processing areas during tasks such as rhyming 
judgments (Brennan, Cao, Pedroarena-Leal, McNorgan, & 
Booth, 2013). A comparison of the Spanish and Mandarin 
lexicons might reveal how similarities between typologically 
distinct languages can lead to outcomes that defy the current 
models of speech production and perception.  

It is also possible that an influence other than phonological 
neighborhoods is responsible for the facilitative effects in 
Spanish and Mandarin. The work of Vitevitch and colleagues 
pointed to a possible candidate other than word length and 
inflectional morphology, namely, neighbors of target words 
that are of both phonological and semantic relations (i.e., 
‘boy/girl, niño/niña). Our search of the literature found 
evidence concerning possible effects of semantic neighbors 
during auditory lexical decision, but only for English (Goh, 
Yap, Lau, Ng, & Tan, 2016; Tucker et al., 2018). In line with 
the current predictions, semantic neighbors did not 
significantly predict reaction times. In contrast to English, it 
is possible that both Spanish and Mandarin feature a 
sufficient number of phono/semantic neighbors to lead to 
facilitation during an auditory task. While Mandarin does 
feature phono/semantic word pairs such as bian1 (‘side’ 边) 
/ pian1 (‘one-sided’ 偏), it also entertains a uniquely high 
level of homophony (bian1 = 9 homophones; pian1 = 3 
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homophones), making future comparisons between the two 
languages challenging. 
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Abstract

The purpose of this paper is to determine whether a par-
ticular context factor among the variables that a researcher
is interested in causally affects the route-choice behavior of
drivers. To our knowledge, there is limited literature that con-
sider the effects of various factors on route choice based on
causal inference.Yet, collecting data sets that are sensitive to
the aforementioned factors are challenging and the existing
approaches usually take into account only the general factors
motivating drivers route choice behavior. To fill these gaps,
we carried out a study using Immersive Virtual Environment
(IVE) tools to elicit drivers route choice behavioral data, cov-
ering drivers’ network familiarity, education level, financial-
concern, etc, apart from conventional measurement variables.
Having context-aware, high-fidelity properties, IVE data af-
fords the opportunity to incorporate the impacts of human-
related factors into the route choice causal analysis and ad-
vance a more customizable research tool for investigating
causal factors on path selection in network routing. This causal
analysis provides quantitative evidence to support drivers di-
version decision. The study also provides academic sugges-
tion and reference for investing in public infrastructure and
developing efficient strategies and policies to mitigate traffic
congestion.
Keywords: Causal and Counterfactual Explanation

Introduction
Route choice refers to the choices of roads among a set of
possible alternatives made by human drivers while navigat-
ing through an urban area. Route Choice Models estimate the
route choices of drivers in an urban setting. Most route choice
models connect characteristics of alternate routes to those se-
lected by the drivers. These models help in estimating traffic
levels on different routes and thus enable development of ef-
fective traffic management strategies that can reduce traffic
delays and allow maximum utilization of transportation sys-
tems. Existing route choice models use revealed preference
behavior to model route choice. The use of revealed choice
data limits the accuracy of the prediction as it fails to cap-
ture subjective context factors of drivers at individual level.
Therefore, it is essential to use a data collection methodology
that incorporates the importance of contextual factors in route
choice.

As commuters we all make choices on which route to use
when traveling to work, school, or shopping mall. Most of
the times we pick a route that is familiar and also minimizes
travel time. However, there is plenty of evidence that as
commuters we take routes that do not minimize travel time
(Ben-Akiva, Ramming, & Bekhor, 2004). In order to try and

explain this route choice behavior, transportation engineers
have been studying the route choice behavior of drivers for
the past three decades to try and explain it. Transportation
researchers have adopted econometric based approaches and
used two types of data to mathematically model and rational-
ize the route choice behavior (Prato, 2009).

The data used in modeling route choices is collected by us-
ing two approaches. The first approach is based on actual ob-
served route choice behavior that is often labeled as Revealed
Preference data. The second approach is based on collecting
data from hypothetical choice experiments that is often called
as State Choice data (Ben-Elia & Shiftan, 2010). There are
times when both types of data are combined to model and
explain route choice behavior. However, the combination of
econometric approaches and different data collection meth-
ods have yielded mixed results in explaining route choice be-
havior.

Based on the literature reviewed we believe that there is
not much research that have tried to apply causal analysis
methods to explain route choice behavior. We believe that
by applying causal analysis techniques we can identify root
causes that influence route choice and will subsequently al-
low us to enhance Route Choice models that will better fore-
cast traffic levels on transportation networks and also to better
comprehend drivers response to route guidance and dynamic
message signs.

The main objective of this paper is to conduct causal anal-
ysis of route choice behavior using data collected from a
Stated Choice Experiment in an Immersive Virtual Environ-
ment (IVE). We carried out a study using IVE tools to elicit
drivers route choice behavioral data, covering drivers network
familiarity, education level, financial- concern, etc, other than
conventional measurement variables. Having context-aware,
high-fidelity properties, IVE data affords the opportunity to
incorporate the impacts of human-related factors into the
route choice causal analysis and advance a more customizable
research tool for investigating causal factors on path selection
in network routing. This causal analysis provides quantitative
evidence to support drivers diversion decision. The study also
provides academic suggestion and reference for investing in
public infrastructure and developing efficient strategies and
policies to mitigate traffic congestion.

This paper makes the following contribution:
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• To the best of our knowledge, the paper presents the first
causal analysis of route choice behavior of drivers using
data collected from a Stated Choice Experiment in an Im-
mersive Virtual Environment (IVE).

Related Work
Transportation engineers have been studying commuter route
choice behavior for four decades now. Engineers developing
route choice models theorized that travel time plays a cru-
cial and important role in the selection of a route. Route
choice behavior theories began to evolve in the late eight-
ies and early nineties as engineers’ understanding of route
choice behavior improved by studying data about empirical
route choice behavior. Pursula and Talvite (Pursula & Talvi-
tie, 1993) developed a mathematical route model by postu-
lating that drivers do consider other factors apart from travel
time in making a route choice. In (Khattak, Schofer, & Kop-
pelman, 1993), the authors discovered that commuters pre-
fer to use habitual routes when traveling in familiar areas as
opposed to choosing a route that provides them with maxi-
mum utility. Other researchers such as Doherty and Miller
(Doherty & Miller, 2000) investigating route choice found
that apart from travel time, factors such as residential loca-
tion, familiarity with the route, and employment locations are
significant in the route choice process. Deep learning tech-
niques (Basu et al., 2018, 2015; LeCun, Bengio, & Hinton,
2015; Liu et al., 2019; Lv, Duan, Kang, Li, & Wang, 2015;
Song, Kanasugi, & Shibasaki, 2016) can be used to predict
traffic congestion and route choice. However, deep learn-
ing models, being opaque, cannot be used to causally explain
drivers’ route choice.

In reviewing the existing research it can be gleaned that
transportation researchers have employed two different types
of empirical data collection in studying route choice behav-
ior. First, collecting route choice data using observed actual
choices and second, collecting route choice data in hypothet-
ical experiments. Researchers have for the majority of cases
used utility maximizing theory to explain route choice be-
havior that is rooted in econometrics (Ben-Akiva, Lerman, &
Lerman, 1985).

Constructing Graphical Causal Models
In causal inference, we need a way of formally represent-
ing our assumptions about causal relationship within data.
Graphical models comes in handy for this purpose. There are
a variety of ways to depict causal relationship using graphi-
cal causal models (Spiegelhalter, Dawid, Lauritzen, & Cow-
ell, 1993; Glymour & Cooper, 1999; Neapolitan et al., 2004;
Pearl, 2009). A graphical model provides a clear way to rep-
resent and better understand the causal relationships within a
data set (Pearl, 2014; Pearl & Mackenzie, 2018). A Causal
graph is useful in determining the cause-effects from data
by identifying confounding and endogenous selection bias.
We also can derive a testable implications from the graph to
test our assumptions (Elwert, 2013). To construct a graphi-

cal model requires subject-matter understanding (Hernan &
Robins, 2018).

In our study, to model causal assumptions we carried out
an iterative procedure following three steps. We identified
the related variables and constructed our pilot causal graph
via one-to-one discussions with experts in the field of trans-
portation. In the second step, since a casual graph reveals
testable implications, we tested our assumption to some ex-
tent using graphical criteria. In the final step, we evaluated
the pilot model discussing with experts again. We modified
our graph according to the discussion with experts and results
obtained by testing the model against data. After proper ad-
justments, we finalized the causal model for further causal
inference procedure.

Data Collection
Route choice can be influenced by factors, such as, road
condition and human-related factors (i.e., driving experience,
driver’s socio-economic characteristics, and driving behavior
and attitudes (de Oa, de Oa, Eboli, Forciniti, & Mazzulla,
2014)). The current route choice models are calibrated us-
ing static contextual conditions and are not generally able to
account for accessibility to the nearest freeway, traffic inci-
dents, and road closures due to emergency. Collecting dataset
including dynamic contextual factors are challenging and the
existing approaches usually take into account the general fac-
tors motivating drivers route choice behavior. In causal in-
ference of route choice, it is preferable to have as much as
data related to contextual factors which have potential influ-
ence on drivers’ route choice decision. This study conducts
experimental scenarios in which specific contextual factors
are added in the testing design, using Virtual Reality (VR)
platform and a driving simulator.The study, in particular, ex-
amines individuals diversion tendency onto alternate routes
that are induced by traffic condition, journey type, and the
impact of social influence while driving in the Interstate 10 (I-
10) freeway in Baton Rouge, between the Mississippi River
Bridge and College Drive exit. Collecting route choice data
in hypothetical experiments facilitated our study by providing
various factors information for causal analysis.

IVE Experimental Setting In this study, we used a driv-
ing environment that is designed based on the I-10, starting
off the Mississippi River bridge all the way to the College
Dr. Along the way, five alternate routes were introduced to
the participants Exits A, B, C, D, and E, the latter of which
would be College Drive. Ten experimental scenarios were
conducted to produce initial data about drivers dynamic route
choice behavior, given emerging contextual factors. See Ta-
ble 1.

Forty-one individuals (20 male and 21 females; age:
31.44± 7.97) volunteered to participate in the experiment.
Prior to the experiment, participants were presented with a
questionnaire asking the following items: 1) demographic
characteristics (age, gender, race, education, employment sta-
tus); 2) top concerns while they stuck in the traffic conges-
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Table 1: Contextual Factors Description

Contextual Factors Scale

Traffic Condition
Normal
Medium
Heavy

Journey Type Urgent
Non-Urgent

Social Impact Yes
No

tion. Their choices included hours of extra travel time, speed
reduction, monetized value of delay; 3) familiarity with the
area; 4) socio-economic status (having concerns about spend-
ing less money on your gas). After answering the question-
naires, participants were asked to sit on a stationary chair at
a desk with a driving wheel which was placed in front of a
flat screen monitor where the driving simulation would run.
Next, they were invited to practice for a few minutes to get ac-
quainted with driving the simulator. After enough practicing
with the driving simulator and becoming comfortable with its
environment the research team would assign the participant
to the scenarios. See Table 2.

Table 2: Experimental Scenarios of the Study

Traffic Condition Journey Type Social Impact
Normal Urgent No
Medium Urgent No
Heavy Urgent No

Medium Urgent Yes
Heavy Urgent Yes
Normal Non-Urgent No
Medium Non-Urgent No
Heavy Non-Urgent No

Medium Non-Urgent Yes
Heavy Non-Urgent Yes

The origin and the destination in all the scenarios were
same and each scenario took about two minutes to finish.
In each scenario different contextual factor(s) were presented
and participants were required to choose their preferred route.

Each participant was exposed to all the driving scenarios
including a baseline scenario. The baseline scenario would
collect information about participants route choice pattern in
a normal traffic and non-urgent bound condition. Each sce-
nario contained 1, 2, or 3 contextual factors. The first con-
textual factor was the traffic flow which was varied over three
levels, i.e., normal, medium, and heavy density. The next fac-
tor was the purpose of the trip (journey type) which consisted
of a work-bound and home-bound trips; on the work-bound
trip, participants were told to consider how important was it to
meet the time of arrival commitment, while the home-bound

posed no rush to reach the destination. The third factor con-
sidered is the impact of other drivers route choice, exploring
the idea of social influence, that is whether the driver would
be influenced by watching other drivers take an exit.

Dynamic route guidance was presented to the participants
where a driver is guided on to routes that will minimize travel
time for the overall road network. The scenarios were coun-
terbalanced and played out in a random fashion to avoid be-
havioral biases due to order effect.

DAGs, D-Separation, Testable Implication
DAGs Directed Acyclic Graphs (DAGs) can represent proba-
bility distributions of the data and can be considered as causal
graphical models under three important assumptions (Hernan
& Robins, 2018). First, we assume that direct causal effect
exists between pairs of variables connected by directed edges.
Second, we assume that DAGs satisfy the Causal Markov
condition (Hernan & Robins, 2018). The Causal Markov con-
dition states that a variable is independent of every other vari-
able except its effects conditioned on all of its direct causes
(Hernan & Robins, 2018; Anderson & Lenz, 2001). Mathe-
matically, this is expressed as:

f (V ) =
n

∏
i=1

f (xi|pai)) (1)

where f (V ) denotes joint probability mass function over the
set of nodes V . The variables pai denote the values of the
direct causes of variables xi, and i takes values from 1 to n.

The third condition is Faithfulness. By assuming that a
causal graph satisfies Causal Markov condition, we assume
that any population produced by this causal graph has the
conditional independence relations obtained by applying d-
separation. (Scheines, 1997).

We can test the assumption (the pilot causal model) by ap-
plying d-separation (Pearl, 2014). This allows us to verify if
the model fits the data. If the conditional independence test
based on data violates the d-separation rule, we can modify
original model. Fortunately, d-separation rules spot the flaws
locally so we can fix the problems without much effort. We
don’t need to throw away the model and start the whole pro-
cess from scratch.
D-SEPARATION: It is a criterion for identifying, from a
given causal graph, which variables in the graph must be in-
dependent conditional on which other variables. D-separation
rule needs to consider three basic causal structures in a DAG
(Pearl, Glymour, & Jewell, 2016; Pearl, 2014). These struc-
tures correspond to causation, endogenous selection (Elwert
& Winship, 2014; Pearl & Mackenzie, 2018), and confound-
ing. We shall use a shorthand notation for conditional in-
dependence (Dawid, 1979). These structures are chains (i.e,
e→ d→ f , the path is d-separated when e⊥⊥ f |d), forks (i.e,
e← d → f , the path is d-separated when e⊥⊥ f |d), and in-
verted forks (i.e, e→ d ← f the path is d-connected when
e 6⊥⊥ f |d, so to be d-separated we can not condition on d
which is a collider).
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We identified the D-separation conditions implied by the
causal model and tested the implications to some extent using
the dataset. The results are shown in Table 3.

In the conditional independence test, our null hypothesis
states that two variables are independent conditional on the
other variable. So, if the p-value is greater than the signifi-
cance level α = 0.01, we will accept our null hypothesis; oth-
erwise we will reject it. After the test, it showed that some of
the conditional independences implied by causal model were
not consistent with the probability distribution underlying the
dataset. For example, the result of conditional independence
test against the dataset suggests that the variable of 1st con-
cern while stuck in the traffic and the variable of route choice
are independent conditioned on the variable of traffic. How-
ever, in the DAG, there is a direct edge between the variable
of 1st concern while stuck in the traffic and the variable of
route choice which is an indication of dependency. So we
will eliminate this edge to make D-separation condition in
the model match the conditional independence in the data.

Table 3: Some of the Conditional Independence Test

Conditional Independence P-value (α=0.01)
1stConcernWhileStuckInTraffic
and RouteChoice given Traffic p=0.037
RouteChoice and 1stConcern-

WhileStuckInTraffic given Age p=0.043
1stConcernWhileStuckInTraffic

and Education given Race p=3.57E-10
Education and 1stConcernWhile-

StuckInTraffic given Gender p<2.2E-16
1stConcernWhileStuckInTraffic

and RouteChoice given SocialImpact p=0.504
RouteChoice and Traffic given

SocialImpact p<2.2E-16
1stConcernWhileStuckInTraffic
and RouteChoice given Urgency p=0.481

Traffic and 1stConcernWhile-
StuckInTraffic given Urgency p=1

Education and EmploymentStatus
given Gender p<2.2E-16

Education and EmploymentStatus
given Age p<2.2E-16

Education and EmploymentStatus
given Race p<2.2E-16

FinancialConcern and Employment-
Status given Age p<2.2E-16

We concluded that the pilot model is not a good fit for the
data set. To modify the pilot model, we could introduce new
variables, remove redundant variables, or modify the relation-
ship between variables by adding or eliminating nodes and
edges. Based on the test results, we modified the pilot model
by merely eliminating edges from the node of Traffic to the

node of 1st concern while stuck in the traffic, and from the
node of 1st concern while stuck in the traffic to the node of
Route Choice. In the pilot DAG, there were 12 nodes (vari-
ables) and 26 directed edges. In the final causal DAG, the
number of nodes remain the same as in the pilot model, but
24 directed edges remain. The pilot and final casual models
are shown in Figure 1.

Causal effect estimation

The causal graph shows that between treatment-outcome
pairs there is a direct path and an indirect (back-door) path
(i.e, traffic→ route choice is direct path; traffic← social im-
pact→ route choice is an indirect path). The back-door path
is confounding. When trying to estimate causal effect, we
want to block any back-door paths by conditioning on some
variables, because such paths are not transmitting causal in-
fluences, and if we don’t block the back-door path, it con-
founds the effect that a node has on another node. For in-
stance, as shown in Figure 2 (we boxed the collider with the
dashed line and similarly presented the confounder’s arrows
with dashed line), when trying to calculate the causal effect
of employment status on route choice, there exists back-door
paths: 1) employment status← education← gender→ route
choice; the blockage of this path can be ensured by condition-
ing on gender which is a confounder; 2) employment status
← age→ route choice; the blockage of this path can be en-
sured by conditioning on the confounder age; 3) employment
status← race→ 1st concern while stuck in the traffic← so-
cial impact→ route choice; within the path there is a collider
which is the variable of 1st concern while stuck in the traf-
fic. So the back-door path is already blocked without condi-
tioning on any variables. However, if we try to condition on
the collider we make the path open instead. There are other
back-door paths: we haven’t listed all of them. After identi-
fying every back-door path between these two variables, we
selected age and gender thereby blocking the back-door paths
between employment status and route choice.

To select the variables that entail blockage of the the back-
door paths, we carried out graph-surgery as described above.
Then, we adjusted these variables to calculate the pure causal
effect. We paired every treatment with the outcome vari-
able, identified back-door paths between them, and selected
the confounding variables using the Back-door criterion. Be-
tween the variables of Urgency, Gender, Race, Age, So-
cialImpact, FamiliarityWiththeEnvironment, and the Route-
Choice there doesn’t exist any back-door path. In addi-
tion to that, from the variables of 1stConcernWhileStuck-
InTheTraffic, and FinancialConcern, there doesn’t exist any
direct causal path to the variable of RouteChoice. So, there
is no casual effect of these two variables on the variable of
RouteChoice. The relationship between them can be inter-
preted as association instead of causation. Hence, there is no
need to estimate the causal effect of these two variables. We
listed the confounders in the the back-door paths between the
variables of Traffic, Urgency, Education, EmploymentStatus
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Figure 1: Casual Models

and RouteChoice (Shown in Table 4). Normally, the strategy
of putting in all possible confounders is usually used. How-
ever, this strategy may end up adjusting for colliders and me-
diators that can introduce bias. For example, employment
status→ urgency→ route choice. In this direct path, urgency
is mediator. if we condition on the mediator, we will bias our
estimate.

Table 4: Confounder in Backdoor Paths

Variables Confounder
Traffic Urgency, SocialImpact

Urgency Gender, Age
Education Race, Gender, Age

EmploymentStatus Gender, Age

We applied Inverse Probability(IP) weighting method to
adjust the variables Z, which are the confounders. The pur-
pose of using IP weighting is to break the association between
the covariates Z and treatment X to estimate true causal ef-
fect on outcome variable y (Hernán & Robins, 2006; Robins,
Rotnitzky, & Zhao, 1994). By predicting Z based on X ,
we can estimate the propensity score Pr(X = x|Z). We can
get a propensity score using non-parametric (i.e, probabil-
ity) or parametric methods (i.e, regression model). If the
data is high-dimensional with many covariates and some of
them with multiple levels, it is desirable to use a parametric
method. In our study, we have 12 variables and some vari-
ables have more than two levels. To find propensity score,
we applied logistic regression model. The equation is given
below:

Pr(Xi = x|Zi) =
1

1+ e−(α+βZi)
(2)

After getting propensity scores, we used them to obtain
the weights W to create a pseudo-sample in which there is
no association between the covariates and treatment. The IP

weighting formula is given below:

Wi =
Xi

Pr(X |Zi)
+

1−Xi

1−Pr(X |Zi)
(3)

where Xi indicates if the ith subject was treated.
We started our approach of calculating the causal effect

by training a model with covariates Z to predict X . Our
treatments X are categorical variables, so we calculated the
propensity scores Pr(X |Z) by applying equation 2.

After estimating the propensity scores, we applied equation
3 to obtain the IP weight. We used stabilizing factor Pr(X)
in the numerator to narrow the range of the Pr(X)/W . Af-
ter we obtained stabilized IP weights as SW = Pr(x)/W , we
trained new model with treatment variables X as features and
outcome Y by using SWi as sample weight for the ith obser-
vation. Then, we used this model to predict the causal effect.
In this study, outcome variable is categorical data, so we used
logistic regression again to obtain the casual odds ratio as a
casual effect measure.

Based on our determination of average causal effect
(shown in Table 5), the result suggests that when heavy and
medium traffic conditions are compared with the normal con-
dition separately, their effects have significant magnitude. It
implies that changes in traffic conditions impact drivers route
choice. More specifically, when the traffic is heavy, propor-
tion of drivers who choose the nearest exit is about 6 times
greater than that when traffic is normal. However, when the
traffic is medium, proportion of drivers who choose the near-
est exit is about 3 times greater than that when traffic is nor-
mal. So, we can conclude that when the traffic is normal, the
drivers are more likely to stay on the high way. Consider-
ing social impact, a driver would be influenced by watching
other drivers take the exit. The proportion of drivers who
choose the nearest exit is about 5 times greater when they get
influenced than they don’t. Considering familiarity with envi-
ronment, proportion of drivers, who are not familiar with the
road, choosing the nearest exit is about 3 times greater than
those who are familiar with the road. Considering race, white
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Figure 2: Blocking Backdoor

Figure 3: Average Causal Effects Of Variables Computed by
Adjusted and Un-Adjusted Regression Model

Table 5: Average Casual Estimation Result

Variables ATE 95%Conf.Interval
SocialImpact

yes vs no 4.945 3.966 – 5.919
Urgency

Urgent vs Unurgent 1.193 0.773 – 1.612
Age

Middle vs Young 1.081 0.179 – 1.982
Old vs Young 0.461 -3.274 – 4.196

Gender
Male vs Female 0.976 0.135–1.816

Race
Middle Eastern vs White 5.760 4.587 – 6.932

Other vs White 3.966 2.750 – 5.181
EmploymentStatus

PartTime vs Unemployed 0.007 -6.049 – 7.651
FullTime vs Unemployed 0.015 -4.140 – 4.213
Student vs Unemployed 0.010 -4.471 – 4.582

Education
HighSchool vs PostGraduate 0.054 -2.431 – 2.539

College vs PostGraduate 1.231 0.825 – 1.636
Traffic

Medium vs Normal 3.663 1.953 – 5.372
Heavy vs Normal 6.562 4.817 – 8.306

FamilarityWithEnvironment
OnceAMonth vs OnceAWeek 2.795 0.938 – 4.651
OnceAYear vs OnceAWeek 2.778 1.374 – 4.181

people are more likely to stay on the highway than middle
eastern people or others. Age and Urgency also have sig-
nificant effect on drivers route choice. We also conducted
another experiment in which we built an estimator for route
choice without adjusting for confounding factors, and com-
pared the results with the one of causal inference (shown in
Figure 3). The results suggest that on the un-adjusted esti-
mator, the effect of age and employment status are overesti-
mated, race, social impact, and familiarity with the environ-
ment are under estimated. This is because there are confound-
ing and collider sources between the path of these variables
and the outcome. Based on causal inference, the effect of traf-
fic, race, social impact, and familiarity with the environment
are more significant than others.

Conclusions

This paper described a causal analysis of route choice behav-
ior of drivers using data collected from a Stated Choice Ex-
periment in an Immersive Virtual Environment (IVE). This
work will not only fill in the lack of causality based ap-
proaches in the transportation field, but it also showed that
without adjustment on treatment, causal effect results will be
affected by spurious correlation as well.
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Abstract 

The intrinsic integration hypothesis proposes that using core 
game mechanisms to teach learning material makes 
educational games more fun to play and better for learning. 
Our study tests the intrinsic integration hypothesis with two 
educational versions of Battleship that were designed for this 
experiment, in the domain of complex numbers. We examine 
the learning gains and motivation of 58 participants who 
interacted with either the intrinsically-integrated or 
extrinsically-integrated version of the game. Our results 
contradict previous findings supporting the intrinsic 
integration hypothesis: participants reported similar levels of 
motivation from both versions of the game and participants 
who interacted with the extrinsically-integrated version 
learned significantly more as measured by pretest to posttest 
gains. This work contributes empirical data to the debate 
concerning intrinsic integration, and it highlights the need for 
additional studies exploring the integration of learning 
material into educational games. 

Keywords: Intrinsic integration; games; student learning 

Games and Student Learning 
Educational games aim to make learning fun by 
incorporating game elements, such as fantasy, challenge, 
and competition, into instructional activities (Malone & 
Lepper, 1987). Three recent meta-analyses found that 
overall, students learn more from educational games than 
from traditional activities like standard classroom 
instruction (Sitzmann, 2011; Wouters, van Nimwegen, van 
Oostendorp, & van der Spek, 2013; Clark, Tanner-Smith, & 
Killingsworth, 2016). While this result is encouraging, there 
are two caveats: (1) not all studies found a positive effect of 
games, and (2) comparing games to other activities does not 
inform on how to best design games to maximize learning 
and engagement from them. Thus, there have been calls to 
test the effect of various design factors on student outcomes, 
referred to as the value-added approach to educational game 
research (Mayer, 2011). This approach involves comparing 
student learning and/or motivation with a basic version of a 
game to the outcome of one that includes an additional 
design feature. 

As an example of the value-added approach, studies 
have examined the effects of cooperation and competition in 
educational games (Ke & Grabowski, 2007; Plass et al., 
2013). Ke and Grabowski (2007) compared the impact of 
games involving cooperative competition, individual 
competition, and a non-game control condition on math 
learning and attitudes among fifth-grade students. 
Participants in both game conditions learned more than 
those in the non-game control condition. Moreover, attitudes 
regarding math were significantly better in the cooperative 
game condition than in the other two conditions. Plass et al. 
(2013) also examined the effects of cooperation and 
competition on learning outcomes. Learning, assessed by 
pretest and posttest scores, was only significantly higher in 
the competitive condition compared to the control condition 
that did not include competition or cooperation. While the 
collaborative condition had the lowest in-game performance 
of all three conditions, it produced the most positive affect 
as measured by intention to play the game again and to 
recommend it to others. 

As another example of the value-added approach, Conati 
and Manske (2009) assessed the value of adding an agent 
delivering adaptive hints in an educational game. The hints 
were generated based on a user model of student 
knowledge. No difference was found between the agent 
version of the game and a control version without the agent. 
Conati and Manske (2009) speculated that the reason for the 
lack of an effect may have been due to an inaccurate user 
model, the challenge of fostering learning in the target 
domain, and/or the hints interrupting the flow of the game. 

An area within the value-added approach that has not 
received much attention is the integration of a game’s 
motivating elements with the learning material. A recent 
meta-analysis by Clark et al. (2016) found only one 
experiment that investigated this factor, involving a game 
that completely separated the learning mechanisms from 
those designed for engagement with the game – this 
experiment will be described in the next section. 
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Extrinsic and Intrinsic Integration  
How should game elements be integrated with the learning 
elements? Kafai (1996) anecdotally observed that students 
tasked with designing educational games took one of two 
distinct approaches. He called this dichotomy extrinsic vs. 
intrinsic integration. The extrinsic approach used the game 
as a form of ‘sugar-coating:’ players in the game were 
rewarded for answering questions on the learning material 
with the opportunity to continue playing the game. Thus, the 
game play was clearly separated from the instructional 
activities. The alternative to this approach is the intrinsic 
approach, which involves using the game’s core 
mechanisms to present the learning material, thereby 
integrating the learning activities with game play. Thus, in 
contrast to the extrinsic approach, with the intrinsic 
approach there is no distinct separation between game 
activities and learning activities. 

Habgood and Ainsworth (2011) proposed that students 
would learn more from intrinsically-integrated games than 
extrinsically-integrated games (referred to as the intrinsic 
integration hypothesis). Their experiment compared two 
versions of an educational game called Zombie Division, 
designed for middle-school children. In the intrinsically-
integrated version, players navigated their character around 
a dungeon and used division to defeat computer-controlled 
opponents represented by skeletons. Importantly, while this 
version required students to practice division, doing so was 
the primary way to progress through the game. In contrast, 
in the extrinsic version the learning material was removed 
from the game portion and isolated to quizzes presented 
between game sessions. Results indicated that students who 
played the intrinsically-integrated version improved 
significantly more from pretest to posttest and reported 
higher engagement. 

While the Habgood and Ainsworth (2011) results are 
encouraging, they warrant replication. Because the math 
activities were moved to quizzes in the extrinsic version of 
the game, the gameplay in that version became less 
challenging, as acknowledged by the authors and reported 
by the students who played the game. Lack of challenge 
may have diminished learning outcomes from this version. 
Additionally, interleaving the questions with gameplay 
sessions changed the instructional sequence of the extrinsic 
condition. Thus, the decreased challenge and different 
instructional sequence could have biased the results. 

While intrinsic integration does have the benefit of not 
interrupting players during game play to have them 
complete educational tasks, it also has potential downsides. 
One is related to transfer. The learning material in an 
intrinsically-integrated game is often presented in a context 
different from the one in which it will later be applied and 
tested. Students find it difficult to transfer knowledge 
learned in one context to a different one even when the 
fundamental concepts are the same (Kaminski, Sloutsky, & 
Heckler 2009). Intrinsic integration could also be 
disadvantageous because it requires the player to 
simultaneously cope with two competing sets of demands, 

stemming from the educational and game elements, which 
could increase extraneous cognitive load.  

Given the above considerations, the goal of the present 
work was to test the intrinsic integration hypothesis through 
an empirical study.   

The Present Study 
To test the intrinsic integration hypothesis, we created a 
paper-and-pencil educational game designed to help 
students practice concepts in our target domain of complex 
numbers. The game was based on Battleship. To play 
Battleship, each player secretly plots their ships onto a two-
dimensional plane and then fires upon their opponent’s 
ships. The first player to correctly guess every coordinate 
containing a ship wins the game. While the original 
Battleship was not explicitly educational, the two-
dimensional nature of complex numbers makes them 
particularly suited for intrinsic integration into Battleship, as 
the coordinates on the two-dimensional board can be 
substituted with complex numbers.  

Participants 
The participants (N = 66, 35 females) were undergraduate 
students at a Canadian University recruited via Sona and 
posters displayed around campus. As the game in our study 
was played in pairs, participants were asked to come to the 
study with a friend or classmate, instead of being paired 
with a stranger. This was done to facilitate interaction 
during gameplay, as both participants would already know 
each other. Each participant was compensated with their 
choice of either course credit or $20. 

Materials 
Intrinsic and Extrinsic Versions of Battleship We created 
two versions of Battleship; both were played with pencil 
and paper materials. In each version, participants had two 
game boards, printed on paper, also referred to here as 
“planes”. One game plane was private as it was positioned 
behind a screen and players were instructed to keep it 
hidden from their opponent. They were asked to draw their 
ships on this private plane at the start of the game. The 
second plane was public and was used during the game to 
indicate players’ shots on their opponents’ ships (done by 
drawing the shot on the public game plane). Because our 
goal was to only vary the intrinsic/extrinsic dimension while 
keeping other aspects of the two game versions as similar as 
possible, the game play was almost identical in both 
versions. 

In the intrinsic version, the game board corresponded to a 
complex plane (see Figure 1, left). A turn began with each 
of the two players selecting where they would place their 
next shot on the public plane. To do so, they indicated the 
chosen location by writing down the rectangular form of a 
complex number corresponding to that location on the ‘shot 
list,’ which was a second piece of paper labeled with turns 
(see Figure 1, right). For example, if a participant thought 
their opponent’s ship was in the top-left of the plane, then 

2462



they would write ( -4 + 4i ). When both shots were written 
down, the players checked each other’s entries for the 
correct format. The participants could not continue playing 
until the correctness of their entry was confirmed by their 
opponent. However, the experimenter did not verify the 
answers and, if asked, referred participants to the examples 
provided by the game material (the screen hiding the private 
game planes had a recap of the instructional material and 
another sheet provided examples of complex number 
problems). Thus, the responsibility was on the participants 
to verify their entries, and they had resources to help them 
do so. This did not take away from the competitive aspect of 
the game as the competition came from locating the 
opponent’s ships, like in the original Battleship. Once both 
players were satisfied their opponents had written a complex 
number in the correct format, they checked if their 
opponent’s shot struck one of their ships, and they indicated 
the result on their public game board.  Note that “a shot” 
corresponded to the complex number that they had written 
down. Thus, the learning material was intrinsically 
integrated with the game mechanisms: to play the game, 
participants had to apply complex number knowledge.  

The extrinsic version was identical except for two key 
differences. First, the game board was based on the standard 
Battleship game and so corresponded to a coordinate plane 
where the axes were labeled with letters in the left margin 
and numbers on the top margin (see Figure 1, center). 
Second, at the start of a turn, participants first randomly 
chose a coordinate on the complex plane from a deck of 
cards. Thus, in this version, the coordinate did not represent 
a shot on the opponent. Like in the intrinsic version, the 
players translated that coordinate to a complex number and 
had their opponent check it. In contrast to the intrinsic 
version, however, they then specified the shot on their 
opponent using a letter-number pair corresponding to the 
axes’ labels on their planes (e.g., A-2). This was done to 
create a divide between the learning material and the game 
material, thereby making the game extrinsically integrated.  

After every five shots participants in both game versions 
were asked to multiply the previous complex number by the 
imaginary unit, writing their answer on the shot list. This 
was considered a bonus question and a correct answer was 
rewarded with an extra shot.  

The game and study materials were refined via pilots. 
 
Complex numbers lesson To provide the domain 
background needed to play the educational game, 
participants were given a paper-based lesson we developed 
on the complex number system. The lesson consisted of a 
two-page description with accompanying illustrations. 
 
Test Materials A pretest and posttest were used to measure 
participants’ complex numbers knowledge before and after 
they played the game. Each test consisted of twenty 
questions. 
 
Instruments An online survey was used to collect 
motivational and affective data, in addition to basic 
demographics. The motivational and affective survey used a 
Likert scale and included: (1) the Intrinsic Motivation 
Inventory (Deci & Ryan, 2003) based on four sub-
constructs, including interest, competency, choice, and 
pressure; (2) some custom questions measuring participants’ 
willingness to re-engage with the instructional material in 
the future (e.g., “I would use the game to teach complex 
numbers”). Several other instruments were used to measure 
mindset and math attitudes but results from their analysis 
are not included here, so they are not described. 

Design 
We used a two-factor (2 x 2) mixed design. The first factor, 
condition, was a between-groups variable with two levels 
(intrinsic and extrinsic, corresponding to intrinsically-
integrated and extrinsically-integrated game versions, 
respectively). The second factor, time, was a within-groups 
variable with two levels (pre and post, referring to pre-game 

  

 

 
 

Figure 1: The complex plane used in the intrinsic condition (left), marked with a participant’s game moves, the 
plane used in the extrinsic condition (centre), shown without any entries, and the response sheet used in both 

conditions (right), shown with a player’s entries.  
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play and post-game play, respectively). Participants were 
assigned to a given condition in a round-robin fashion. 

Procedure 
Each session was conducted individually and included a pair 
of participants. Each dyad spent approximately 90 minutes 
in the study, with the exact duration varying based upon the 
amount of time participants spent on the instructional 
material as well as the pretest and posttest. The procedure 
for the two conditions was the same. After providing 
consent, participants were seated back to back and (1) read 
the complex numbers lesson, and (2) filled in the complex 
numbers pretest. Once both participants had finished the 
pretest, they were asked to move to the game table 
positioned in the centre of the room where they sat across 
from each other, and the gameplay phase began.  

Participants were provided with all the game materials 
and instructions on how to how to play the game (for 
details, see Nidd, 2018). After both participants had plotted 
their ships according to the game rules, they were given 35 
minutes to play the game. Any questions relating to 
complex numbers were answered by referring the 
participants to the examples in the instructional materials 
that were provided as well as the recap of the lesson on each 
of their game screens. When the time was up, participants 
were given the choice to play for another five minutes if 
they wanted. This was done as an additional measure of 
motivation.  

Directly after the game phase, participants were moved 
back to their initial seats where they were seated back-to-
back and completed the (1) posttest and (2) the study 
questionnaires. 

Results 
The analysis is based on 58 participants (eight participants 
were not included either because they were at ceiling on 
pretest, i.e., 90% or higher or because their performance 
decreased from pretest to posttest). The analyses, which 
were conducted with the statistical software R, used 
inferential statistics that assume independence between 
participants. Since participants worked together during the 
game, there was a potential concern that their learning-
related data might be dependent. To check for this, a 
correlation between pretest to posttest difference scores of 
both individuals in a pair was conducted. The correlation 
between the learning outcomes of paired participants was 
not significant and corresponded to a very small effect, 
r(31) = .05, p = 0.78, suggesting that the independence 
assumption was not violated. Thus, we continued with our 
analysis testing the conditional effect on (1) learning 
outcomes and (2) motivation.  

Are Intrinsically-integrated Games Better for 
Learning? 
To check for equivalence between the two conditions on a 
priori knowledge, participants’ pretest scores were 
compared. The scores were distributed fairly evenly 

between the two conditions and while they were slightly 
positively skewed (skewness of 0.90 and 0.60 respectively), 
this was within the bounds of normality. As shown in Table 
1, the mean pretest scores were similar between the two 
conditions, with no significant difference between them as 
indicated by an independent samples t-test, t(54.05) = 0.11, 
p = .91.  

 As is standard, learning was measured by the difference 
between a participant’s performance on the pretest, 
completed after they read the instructional material but 
before they played the educational game, and their 
performance on the posttest. The descriptive statistics are 
shown in Table 1. The higher mean difference in the 
extrinsic condition suggests that participants who played the 
extrinsic version of the game learned more, because they 
improved more from pretest to posttest. 

 To analyze the impact of the extrinsically- and 
intrinsically-integrated versions of the game on learning, a 
two-way mixed ANOVA was conducted with test scores as 
the dependent variables, condition (extrinsic vs. intrinsic) as 
the between-subjects independent variable, and time (before 
and after the experimental intervention, i.e. game play) as 
the within-subjects independent variable. 

 In general, collapsed across conditions, participants 
improved from the pretest to posttest as indicated by the 

Table 1: Descriptive statistics for the test scores. 
 

 Extrinsic Intrinsic 

 M SD M SD 

Pretest (/20) 4.93 2.85 4.83 3.71 

Posttest (/20) 10.39 3.79 8.73 4.38 

Difference 
(post - pre) 

5.46 2.43 3.90 2.64 

  
 
 

 
 
Figure 2: Interaction between time and test score, indicating 
higher pre to posttest learning in the extrinsic condition. 
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significant main effect of time on participants’ test scores, 
F(1, 56) = 194.62, p < .001, ηp

2 = .78. While this 
demonstrates that the instructional material improved 
learning overall (collapsed across the two conditions), of 
primary interest is the time by condition interaction, which 
examines the effect of condition on learning (i.e., pretest to 
posttest differences). This interaction was significant, F(1, 
56) = 5.49, p = .02, ηp

2 = .09. As shown in Figure 2 this 
interaction indicates that participants who played the 
extrinsic version of the game learned significantly more 
than those who played the intrinsically-integrated game. 

Are Intrinsically-integrated Games More 
Motivating? 
The effect of game version on participants’ motivation was 
measured by (1) Intrinsic Motivation Inventory (Deci & 
Ryan, 2003), (2) the custom questionnaire measuring self-
reported re-engagement, and (3) the behavioral data on 
whether participants chose to continue playing the game for 
an additional five minutes after they were told they could 
stop. Like the Intrinsic Motivation Inventory, this additional 
measure was derived by averaging a participant’s answers to 
the custom set of questions that asked them to report their 
willingness to re-engage with the instructional material 
using a 7-point Likert scale. 

Descriptive statistics for this analysis are in Table 2. 
There was little difference between the two conditions in 
terms of the motivational variables. This was confirmed by 
a series of independent-samples t-tests comparing the five 
measures of participants’ motivation in the two conditions. 
As shown in Table 3, none of the analyses were significant 
(while this analysis did not control for familywise error rate, 
doing so would not have changed the results, as none of the 
findings were significant). A chi-squared test of 
independence was performed to examine the relationship 
between the game version and participants’ decision to 
continue playing for an additional five minutes. Like the 
other measures of motivation, the difference between the 
two conditions was not significant, X2(1, 29) = 0.016, p = 
.90.  

In summary, there was no evidence that the version of 
the game, intrinsic versus extrinsic, impacted participants’ 
motivation. However, collapsed across condition, 
participants had fun playing the game. Participants reported 
that they were interested in the instructional material as 
indicated by high scores on the motivational questionnaire, 
and a third of them chose to stay longer than they needed to. 
Anecdotally, these measures are further supported by the 
verbal reactions of participants. One person remarked that 
the experiment was “really fun actually. If math was like 
this, I’d enjoy it a lot more.” Another exclaimed upon 
receiving the post-test, “Battleship actually helped with 
this!” When the same participant – who was vocally anxious 
about math – forgot to take their shot upon the opponent’s 
ships and immediately drew another complex number 
question, they joked: “Sorry, I just love math.” Additionally, 
some participants asked if they could keep their game sheets 

to finish the game at home, and one participant even asked 
if they could buy the extrinsic version as they thought it was 
an improvement on the original Battleship. These measures 
and anecdotal reactions suggest that the educational game 
was motivating for participants. 

Discussion 
Our results do not support the intrinsic integration 
hypothesis, as participants who played the intrinsically-
integrated version of the game were not more motivated and 
did not learn more than those who played the extrinsic 
version. On the contrary, those who played the extrinsically-
integrated version of the game learned significantly more.  

Why did extrinsic integration result in more learning than 
intrinsic integration? As we already noted, one of the 
potential disadvantages of intrinsic integration is the need 
for transfer. In the intrinsic game version, the complex 
numbers corresponded to the coordinates of players’ ships. 
Consequently, the numbers represented two constructs: they 
were concrete representations of a location on the game 
board, and they were the abstract representations that would 
later be tested. By having participants play and interact with 
these representations, intrinsic integration potentially made 
it more difficult for participants to see the complex numbers 
they were using as being important in themselves (Brown, 
McNeil, & Glenberg, 2009; Uttal, O’Doherty, Newland, 

Table 2: Descriptives for the five motivation subscales in 
each condition. 

 
 Extrinsic Intrinsic 

Subscale M SD M SD 

Interest 5.00 1.64 5.01 1.48 

Competency 4.27 1.41 4.62 1.44 

Choice 5.03 1.42 5.13 1.40 

Pressure 2.66 1.37 2.99 1.22 

Re-
engagement 

4.17 1.27 3.95 1.44 

Note. The maximum score for each subscale is 7 
 

 
Table 3: Results for the conditional effect on each subscale 

of the motivational questionnaire.  
 

Subscale df t p d 

Interest 54.35 0.03 .98 .01 

Competency 55.89 0.94 .35 .25 

Choice 55.57 0.28 .78 .07 

Pressure 54.20 0.96 .34 .25 

Re-engagement 55.82 0.61 .54 .16 
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Hand, & DeLoache, 2009). Importantly, this potential 
disadvantage of intrinsic integration is not an artifact of our 
game design but rather a requirement of intrinsically 
integrated games.  In contrast, the extrinsic version may 
have made it easier for participants to focus on and learn the 
mathematical principles by separating the abstract target 
knowledge from the more concrete interactions between the 
player and the game state (Uttal et al., 2009).  

A second potential explanation for our findings pertains to 
cognitive load. The intrinsically-integrated game may have 
increased participants’ extraneous cognitive load, as the 
tasks related to game play and complex numbers were 
integrated. In other words, the intrinsic version had players 
pick a shot, practice the learning material, and then resolve 
the shot. In contrast, the extrinsic version separated these 
tasks. These competing demands imposed by the intrinsic 
game and the domain questions may have diminished 
players’ learning by increasing the load on their working 
memory (Clark, Nguyen, Sweller, & Baddeley, 2006). 
Similarly, the extrinsic version could have made working 
memory available for the mental processing that is required 
for learning. Since we did not measure cognitive load, this 
conjecture awaits future research.  

Our results are not aligned with those from Habgood and 
Ainsworth’s (2011) experiment. A potential explanation for 
these differences relates to control of the instructional 
sequence and challenge levels in the two versions of the 
game. Our experiment maintained similar instructional 
sequences between conditions by incorporating the extrinsic 
learning material throughout gameplay. In contrast, the prior 
study divided the learning material and game into lengthy 
blocks that may have disrupted user engagement more than 
is necessitated by extrinsic game design. This separation in 
the prior study also reduced challenge, a factor known to 
impact engagement with games (Garris, Ahlers, & Driskell, 
2002). By removing the learning material from the game 
mechanism, players no longer had to solve a problem to 
progress through the game. This was reported by 
participants as they remarked, “it just tells you what to use” 
and “it’s not a challenge” (Habgood & Ainsworth, 2011, p. 
28). This difference was not present in the two game 
versions used in our experiment. 

Another potential reason that our results do not support 
the intrinsic integration hypothesis relates to an interaction 
between the type of integration and cooperation/ 
competition. Specifically, adding a second player may have 
‘gamified’ the non-game elements. For instance, 
participants answering the non-game domain questions in 
the extrinsic version of Battleship were still competing 
against their opponent to get the right answer. This aspect of 
the extrinsic game is comparable to a trivia game, as a 
correct answer was required to take a shot in the game of 
Battleship. Indeed, an educational game could consist of just 
this competitive quiz aspect (as in Ke & Grabowski). In 
Habgood and Ainsworth’s (2011) game, completing the 
domain questions in the extrinsic version was likewise 
necessary to play the game, as participants needed to repeat 

the quiz if they did not get a passing score; however, this 
requirement could seem like a prerequisite in a single-player 
game, whereas it could seem like an element of the game 
when another player is involved. 

There are also several methodological differences worth 
noting between our experiment and the previous work that 
did support of the intrinsic integration hypothesis (Habgood 
& Ainsworth, 2011). Our experiment used undergraduate 
students as opposed to primary school students between the 
ages of 7 and 9. Additionally, we recruited these participants 
in pairs instead of recruiting entire classes. Although similar 
domains were used, the target knowledge was more 
advanced in our experiment to match the participants’ 
education level. The games in the two experiments differed 
in fundamental ways: our game was implemented as a board 
game rather than a video game, another human player was 
involved in our game, and the narrative elements were more 
pronounced in Habgood and Ainsworth’s game. The 
measure of motivation also differed as Habgood and 
Ainsworth used qualitative interview data paired with a 
second experiment that measured the amount of time spent 
in the intrinsic and extrinsic versions when given a choice. 
In lieu of this, our experiment used the established Intrinsic 
Motivation Inventory to measure participants motivation to 
engage with the educational game. 

In conclusion, our experiment contributes empirical data 
to the debate concerning intrinsic integration and 
educational game design. Our findings indicate that 
extrinsically-integrated games are better for learning and 
similarly motivating as intrinsically-integrated games. 
Ultimately, given the relatively few studies in this area and 
the lack of agreement between findings from the ones that 
do exist, our work highlights the need to further explore 
factors related to educational game design and their impact 
on student learning and motivation. 
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Abstract 

Negation is a complex, abstract concept, despite the ubiquity 
of words like “no” and “not” in even young children’s speech. 
One challenging aspect to words like “no” and “not” is that 
these words can serve many functions in speech, giving us 
tools to express an array of concepts such as denial, refusal, 
and nonexistence. Is there a single concept of “negation” that 
unites these separate negative functions – and if so, does 
understanding this concept require the structure of human 
language? In this paper we present a study demonstrating that 
adults spontaneously identify a concept of negation in the 
absence of explicit verbal instructions, even when the 
exemplars of negation are perceptually varied and represent 
many different functions of negation. Furthermore, tying up 
participants’ language ability using verbal shadowing impairs 
participants’ ability to identify a concept of negation, but does 
not impair participants’ ability to identify an equally complex 
control concept (natural kinds). We discuss our findings in 
light of theories regarding the representation of negation and 
the relationship between language and thought.  
 

Keywords: negation; philosophy of language; language and 
thought 

Introduction 
Due to the early emergence of words such as “no” and “not” 
in children, and their frequent use in human discourse, it is 
tempting to dismiss negation as a simple concept. However, 
the concept of negation has long been a puzzle to 
philosophers, psychologists, and cognitive scientists. In 
order to understand the complexity of this phenomenon, 
consider the following thought experiment: 

Consider, for example, negation. It’s easy to tell 
somebody that it’s not going to rain. Try drawing 
them a picture of it’s not going to rain…Think 
about trying to draw a picture of “there’s not a 
giraffe standing beside me” (Fodor, 1994).  

The inherent difficulty in finding a way to depict negation 
raises questions about the nature of the representation of 
negation. Is language necessary to understand an abstract 
concept of negation?  

One challenging aspect of negation is that the words 
``no’’ and ``not’’ play many different functions in human 
speech (see Bloom, 1970; Pea, 1980; Choi, 1988 for 
discussions of several taxonomies of negation and their 
trajectory in children’s language acquisition). For example, 
you can use negation to express the nonexistence of an 

object, e.g., “There is no food in the dog’s bowl.” You can 
also use negation to express refusal, e.g., “No, I don’t want 
to read.” And you can express denial or truth-functional 
negation by making statements about falsehoods, e.g. “The 
light is not on” [i.e., it is not true that the light is on]. It is 
possible to imagine ways to represent each of these 
statements perceptually or through simple positive concepts, 
e.g., an empty bowl, a girl looking away from a book on a 
table, a lamp that is off. Without the language of negation, 
however, there is nothing perceptually or conceptually 
similar about these concepts. One important goal of this 
study is to examine whether adults can spontaneously 
identify the similarity of these events (i.e., a unified concept 
of negation) in the absence of explicit language explaining 
the similarity between the events.  

Under a propositional account of the representation of 
negation, negative sentences are represented as a negative 
operator acting over a proposition (Clark & Chase, 1972; 
Carpenter & Just, 1975; Just & Carpenter, 1971, 1976). That 
is, all of the sentences in the previous example are “unified” 
by the presence of a negative operator in their 
representations. Where, then, does this negative operator 
come from – or any of the structures that underlie human 
thought? Fodor (1975, 2008) proposed that there must be a 
“language of thought”, which is language-like in the sense 
that it must contain an innate “lexicon” of concepts, as well 
as a syntax to organize those concepts. According to Fodor, 
concepts are learned through a process of linking one’s 
experiences in the world with innate concepts. Without such 
an underlying system, Fodor argues, concept learning (and 
ultimately word learning) would not be possible. Under this 
hypothesis, the negative operator that creates a unified 
concept of negation exists in the lexicon of the language of 
thought.  

Another possibility is that natural language itself is the 
vehicle for representing and structuring thought. According 
to Hinzen (2007), there is a conceptual framework that 
underlies human thought, and language is necessary to 
organize these concepts into complex propositions. If 
natural language can provide the same kind of structure that 
Fodor (1975) argues is necessary for complex thoughts to 
arise, then the existence of a separate Language of Thought 
becomes redundant (deVilliers, 2010; Collins, 2000). Under 
this hypothesis, the development of human language is 
required to understand a unified concept of negation.  
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The purpose of the present study is to examine, first, 
whether people have a general concept of negation – that is, 
a concept of negation that unifies a variety of negated 
events, actions, objects, and states of being, despite these all 
having very different perceptual features. That is, do adults 
recognize the similarity between an empty food bowl, a 
person refusing to read, and a lamp that is off, without 
someone explicitly describing these scenes using negation? 
Second, the study will examine the role that language plays 
in forming and understanding this concept. If negations are 
represented as propositions, in an organized and structured 
way, there must be some mechanism for representing them 
as such. We propose that natural language can provide an 
individual with the necessary structures to represent 
thoughts propositionally, and that natural language might be 
required to hold a generalized concept of negation.  

Method 
To test our first question of whether people can identify an 
abstract concept of negation in the absence of verbal 
descriptions, we created a non-verbal anticipatory looking 
task. Participants viewed pairs of photographs in which one 
image represented an affirmative event and the other image 
represented the negated version of that event; after several 
seconds, an animation occurred around the negative event. 
These stimuli were designed to create a “context of 
plausible denial” – that is, a context in which the formation 
of a negative proposition would be a likely response 
(Wason, 1965). This allowed us to test whether participants 
would spontaneously identify an abstract concept of 
negation when looking at pictures without hearing language, 
allowing the role of language to be manipulated and 
evaluated separately.  

To manipulate participants’ ability to use language during 
this task, half of our participants engaged in a language 

interference/verbal shadowing task, in which participants 
listened to a story through headphones and repeated what 
they heard out loud simultaneously. This task has been 
shown to interfere with adults’ ability to utilize language in 
abstract cognitive tasks (Hermer-Vazquez, Spelke, & 
Katsnelson, 1999, Newton & de Villiers, 2007). We 
hypothesized that participants would be able to identify the 
negative event in the absence of verbal interference, but 
would perform at chance when shadowing language.  

To test whether the effects of verbal interference are 
specific to an abstract concept like negation, as opposed to 
simply distracting participants from the task, we developed 
a control task to test participants’ ability to form a different 
concept – one that was equally varied but that potentially 
would not require language to understand. We selected 
“natural kind objects” as a control concept because it is a 
broad, complex concept, which cannot be organized around 
single perceptual cues alone, but which we believed would 
not require language. For example, young children (Gelman, 
1988; Gelman & O’Reilly, 1988) and pre-verbal infants 
(Booth & Waxman, 2002; Shutts, Markson, & Spelke, 
2009) appear to be sensitive to the distinction between 
natural kinds vs. artifacts. This work suggests that it may be 
possible to represent the natural kind concept without 
requiring propositions with a language-like structure.  

Participants 
Participants were recruited through two psychology courses. 
The participants were all undergraduate students and all but 
one of the participants were female (due to the nature of the 
institution’s population). Participants received credit 
towards their final grades for participation. After excluding 
participants for lack of attention to the task (see “Data 
Processing”), our final sample included 84 participants 
(negation, no shadowing: n=18; negation, shadowing: n=17; 

Figure 1: Examples of Negation stimuli (left) and Natural Kind stimuli (right). 
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natural kind, no shadowing: n=27; natural kind, shadowing: 
20).  

Stimuli 
Stimuli consisted of pairs of photographs that portrayed 
either an affirmative or negated event (in the experimental 
condition) or a natural kind or an artifact object (in the 
control condition). To ensure that the photographs in each 
pair were equally salient, we conducted a pilot test in which 
adults (N = 12) viewed a total of 72 pairs of photographs for 
three seconds. Paired-samples t-tests were conducted to 
determine if the total looking time was greater for one 
picture more than the other in each pair using a conservative 
alpha level of .1. This resulted in the removal of 9 pairs 
from the negation condition and 8 pairs from the natural 
kind condition. One additional pair was randomly selected 
to be removed from the natural kind group, in order to have 
an equal number of pairs in each group. This left 22 pairs of 
photographs in each group for the final study. Figure 1 
shows examples of the stimuli used in each task. 

One of our primary hypotheses for the study was to 
examine whether participants would be able to identify a 
unified concept of negation from perceptually varied 
stimuli, without explicit verbal descriptions. To do this, we 
needed to be sure that the negative stimuli were sufficiently 
varied (i.e. drawing from many different types/functions of 
negation) and could not be united by some other concept. To 
do this, we created four different categories of negation: 
non-functional (4 exemplars, e.g., affirmative = a digital 
alarm clock that is showing the time, and negative = a 
digital alarm clock that is not showing the time), 
nonexistence (5 exemplars, e.g., affirmative = a dog with 
food in its bowl, and negative = a dog with an empty food 
bowl), unexpected state (6 exemplars, e.g., affirmative = a 
lamp that is on, and negative = a lamp that is off), and 
refusal (7 exemplars, e.g., affirmative = a girl who is 
reading, and negative = a girl sitting next to but looking 
away from an open book).  

During the experiment, the pairs of photographs were 
animated so that each pair of photographs would be 
presented as still photographs for three seconds, after which 
the target photo (the negated photograph in the experimental 
condition, and the natural kind photograph in the control 
condition) would animate. The animation consisted of a 
cartoon foot emerging and moving down to squish the target 
photo to 20% of its original height. The foot then moved 
back up and the photograph returned to its original height as 
the foot receded. The animation, from the emergence of the 
foot to its disappearance, took a total of three seconds. Thus, 
each pair of photographs was on the screen for a total of six 
seconds, half of which consisted of the animation phase. 
Five seconds of black screen separated each animation. 
The experiment was constructed in Tobii Studio. Two 
pseudo-random lists were created, specifying the order in 
which the participants would see the stimuli, and 
participants in all of the conditions were randomly assigned 
to one of the two lists. In both conditions, four photographs 

were selected as “example photographs”. In the negation 
task, the four example photos included one from each 
negation type. Participants were not told that these were 
example photographs, but the examples differed in that each 
was displayed twice, once with the target picture on the left 
and once with the target picture on the right. This was done 
to draw participants’ attention to the content of the 
photographs themselves (as opposed to simply the position 
on the screen), and to familiarize them to the kinds of 
stimuli and animation that they would be seeing. 

Procedure 
This experiment used a 2x2 between-subjects design. Half 
of the adults were tested on the negation task, and half were 
tested on the natural kind task. Within each of these 
conditions, half of the participants were tested with verbal 
shadowing and half were tested without verbal shadowing.  

The experiment was run on a Tobii 1750 eye tracker. 
Participants were told that they would see pairs of photos on 
the screen in front of them, and that their job was to watch 
the pictures and pay attention to what they saw on the 
screen. Participants in the verbal shadowing condition were 
told that they would listen to an audio book through a pair 
of headphones (a passage from 1984 by George Orwell), 
and would have to repeat what they heard out loud as they 
listened. Participants were told to speak as simultaneously 
as possible with the speech they heard, and to be as accurate 
as possible, but to continue speaking if they made any 
mistakes, as the most important thing was that they spoke as 
continuously and fluidly as possible. Participants were then 
reminded that as they listened and spoke, they would have 
to keep their attention on the pictures they saw on the screen 
in front of them.  

After the tasks were explained, the experimenter asked 
the participants in the shadowing condition to practice the 
verbal shadowing for 30 seconds. Participants in the verbal 
shadowing condition were videotaped throughout the 
duration of the experiment so that their performance on the 
shadowing task could be evaluated at a later point. After 30 
seconds of practice, the experimenter started the 
videocamera and began the experiment. Participants who 
were not in the shadowing condition were not videotaped, 
and the experiment was started immediately after explaining 
the eyetracking task. In both conditions, the experimenter 
stepped out of the room as soon as the experiment began.  

Data Processing 
Areas of Interest (AOIs) were created around each 
photograph in each pair, with the negated event or the 
natural kind image designated the “target” photograph. The 
Total Fixation Duration (a measure of the durations of all 
fixations within an AOI in seconds) within each AOI was 
collected for the three seconds prior to the start of the 
animation began. The AOIs were constructed so that the 
computer would only record a fixation if a person’s gaze 
fixated within the boundaries of the photograph. Thus, 
although the combined total fixation time possible between 
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the target and non-target AOI was 3 seconds, it is possible 
that the combined total fixation time would be less than that 
if participants were fixating their gaze anywhere on the 
black screen outside of the pictures. The percentage of time 
that a person’s gaze was anywhere on the screen throughout 
the experiment was also noted, and participants whose total 
gaze dropped below 60% were excluded from the analysis. 
This resulted in the exclusion of 18 participants from 
analysis.   

The videotapes of the participants in the shadowing 
condition were analyzed to determine that the participants 
had continued speaking throughout the duration of the 
experiment. Any participant who stopped shadowing for 
more than 2 seconds was excluded from the analysis. This 
analysis resulted in the exclusion of three participants, two 
from the negation group and one from the natural kind 
group.  

Results 

Can participants spontaneously identify a unified 
concept of negation?  
First, we asked whether adults would be capable of 
spontaneously identifying the negative concept in the 
negation task. To do this, we looked only at the negation/no 

interference condition to determine if participants looked 
more to the target picture compared to the non-target picture 
when they were not subject to verbal interference.  

Mean looking times to the target and non-target picture 
for all conditions are shown in Figure 2. In the negation/no 
shadowing condition (left-most bars of Figure 2), mean 
looking time towards the target picture was greater than the 
mean looking time to the non-target picture (Mtarget = 1.53 s, 
Mnon-target = 1.14 s). A paired-sample t-test showed that this 
difference was significant, t(17) = -3.82, p<.01, suggesting 
that participants were able to spontaneously identify the 
negative concept and look to the correct picture in 
anticipation of the animation. 

To make sure that participants were truly responding to 
the general concept of negation, and not a simpler sub-
concept such as “refusal” or “failure”, we examined each of 
the four subtypes of negation separately. Participants looked 
more to the target image compared to the non-target image 
in the non-functional subtype (t(17) = -2.20, p <.05), the 
nonexistence subtype (t(17) = -3.23, p < .01), and the refusal 
subtype (t(17) = -4.47, p<.001), but not the unexpected state 
subtype (t(17) = -1.47, p = .16). The fact that participants 
spontaneously looked towards the target picture for a wide 
range of subtypes (i.e., many perceptually different types of 
images and events) suggests that participants were 
identifying and responding to a general concept of negation.  

Does verbal interference impair participants’ 
ability to identify a concept of negation?  
The previous analysis indicated that participants were able 
to spontaneously identify the negative concept, looking 
significantly more to the target (negative event) picture 
compared to the non-target (affirmative event) picture prior 
to the animation (t(17) = -3.82, p<.01). In the 
negation/verbal shadowing condition, however, mean 
looking time was nearly identical between the target and 
non-target images (Mtarget = 1.239 s, Mnon-target = 1.243 s, 
t(16) = 0.04, p = .97), suggesting that participants’ ability to 
identify the negative concept was impaired under verbal 
interference. In the natural kind task, mean looking time to 
the target picture was greater than the mean looking time to 
the non-target picture in both the no shadowing condition 
(Mtarget = 1.53, Mnon-target = 1.08 s, t(26) = -3.66 s, p < .01) 
and the shadowing condition (Mtarget = 1.38 s, Mnon-target = 
1.13 s, t(19) = -2.22, p < .05).  

To examine the effect of the interference condition on 
whether participants looked more to the target or the non-
target photograph, separate two-way ANOVAs were 
conducted for the negation condition and the natural kind 
condition. In the negation condition, there was a significant 
interaction between the target image and verbal interference 
(F(1,66) = 9.39, p<.01), suggesting that participants’ ability 
to spontaneously identify the negative concept was 
significantly impaired by verbal interference. In the natural 
kind condition, there was a significant effect of target image 
(F(1, 90) = 26.12, p < .001) but no effect of verbal 
interference (F(1, 90) = 0.56, p = .46) and no interaction 
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Figure 2: Mean Total Fixation Duration for each 
condition. Mean looks to the target image (negative 
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the non-target image (affirmative event, artifact) are 
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between target image and verbal interference (F(1.90) = 
2.09, p = 0.15), suggesting that participants’ ability to 
spontaneously recognize the natural kind concept was not 
impaired under verbal interference.  

To examine the interaction between task (negation vs. 
natural kind) and verbal interference (shadowing vs. no 
shadowing), we fit a linear mixed effects model1. For this 
analysis we calculated Differential Looking Scores (DLS) 
for each trial by dividing the difference between target and 
nontarget fixation duration by the total fixation duration to 
either picture, giving us a measure of the proportion of looks 
to target relative to the overall looking time for a given 
participant on a given trial. However, this model did not 
produce any significant effects (main effect of task: β = -
0.016, p = .81; main effect of verbal interference: β = -
0.078, p = .19; interaction between task and verbal 
interference: β = -0.084, p = .35). Because the two tasks 
used an entirely different set of stimuli, it is possible the 
variability in items makes it difficult to compare the two 
tasks in this way. In the General Discussion we discuss 
alternative possibilities for control tasks to test whether the 
effect of verbal interference is specific to negation.  

General Discussion 
We hypothesized that language is necessary for adults to 

implicitly recognize a unified concept of negation. We 
expected participants in the non-interference negation 
condition would implicitly learn to look towards the target 
picture in the seconds before it animated; that is, with 
implicit language abilities intact the resemblance across the 
items as negatives would be evident. Under conditions of 
verbal interference, where participants cannot implicitly use 
language to understand the concept, we predicted that 
participants would be unable to identify the resemblance 
across the diverse instances of negation. Conversely, we 
predicted that participants in the natural kind condition (a 
concept that would not necessarily require propositional 
structure) would look to the target picture regardless of 
verbal interference.  

These results offer support for our hypotheses. First, 
participants in the negation condition without verbal 
interference were able to spontaneously identify exemplars 
of the negative concept despite a lack of verbal instructions 
telling them what concept to look for. The fact that 
participants, who were not told anything about the images 
they would see and were simply told to look at the pictures, 
were able to look at the negative event in anticipation of the 
animation suggests that there is some concept of negation 
that unites these very different exemplars.  

Second, participants’ ability to identify the tested concept 
was impaired by verbal interference in the negation 
condition, but not the natural kind condition. Non-
shadowing participants in the negation group looked 
significantly more to the negation picture than the 

                                                             
1 Model specification: DLS ~ task x interference + 

(1 | subject) + (interference | item) 

affirmative picture, while shadowing participants did not 
look significantly more to one photograph more than the 
other. In the natural kind group, participants looked more to 
the natural kind photograph than the artifact photograph, 
and, critically, this difference was not affected at all in the 
shadowing condition. This provides support for the 
hypothesis that language is required to understand a concept 
of negation, but not to understand other concepts, such as 
natural kinds.  

One possible limitation of this study is that participants 
may have “passed” the negation task by identifying a 
simpler concept, rather than truly identifying a general 
concept of negation. We attempted to address this in our 
design by creating stimuli that represented a wide range of 
types of negation. In our analysis of the data, we found that 
participants were significantly more likely to look to the 
target picture in three of the four subtypes of negation that 
we included in our stimuli, suggesting that participants were 
responding to a general concept of negation rather than 
succeeding on only a small subset of trials.  

Another possible limitation of this study is that the control 
task (natural kinds) may have simply been easier than the 
negation task. Although we do not think this is the case 
(overall looking time to the target picture in the no 
interference condition was identical across the two 
conditions, M = 1.53 seconds), this could be addressed in 
future work by using additional control tasks. One 
possibility would be to use the negation task stimuli with 
affirmative pictures as the target image, with the prediction 
that verbal interference should not affect looks to the 
affirmative picture. A downside to this option is that it isn’t 
clear whether there is an underlying unifying concept of 
affirmation that would be spontaneously identified by 
participants – that is, participants might find the affirmation 
condition challenging even in the absence of verbal 
interference. Other possible control conditions could include 
a wider range of control concepts thought to not require 
propositional structure, or using an attentional control task 
such as rhythmic tapping, which has been used in past 
verbal shadowing studies (Hermer-Vazquez, Spelke, & 
Katsnelson, 1999, Newton & de Villiers, 2007).  

Our results suggest that some kind of linguistic structure 
is necessary to understand a general concept of negation. 
The language-like structure that is required to support 
propositional thinking could come from a “language of 
thought” (e.g. Fodor, 1975), or it could come from the 
structure of natural language (e.g., Hinzen, 2007). One way 
to tease apart these possibilities would be to examine 
whether pre-verbal children or non-verbal animals can 
understand a general concept of negation. Many “language 
of thought” hypotheses propose that the LOT exists 
preverbally in children (and facilitate the development of 
natural language), and perhaps to some extent in non-verbal 
animals as well (Fodor, 1975, 2008). In the domain of 
animal research, Premack (1980) attempted to teach three 
chimpanzees a symbolic system based on plastic tokens that 
included a token for the word “not.” The attempt was only 
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partially successful for one chimp, and unsuccessful for the 
other two. This would suggest that chimpanzees, at least, are 
unlikely to be able to represent an abstract concept of 
negation.  

Research on children’s acquisition of negation suggests 
that children begin producing the word “no” to express 
refusal as early as 12 months (Pea, 1980), and that children 
as young as 26 months understand denial negation (Austin, 
Theakston, Lieven, & Tomasello, 2014; Feiman, Mody, 
Sanborn, & Carey, 2017), though this may be task or 
context-dependent (Nordmeyer & Frank, 2014; 2018; 
Reuter, Feiman, & Snedeker, 2017). Under a “language of 
thought” hypothesis, children should be able to identify and 
understand a general, non-verbal concept of negation even if 
they cannot yet articulate this concept in natural language, 
and therefore children would perhaps be capable of passing 
a task similar to ours. If natural language is providing the 
structure to represent propositional negation, however, we 
would expect to see developmental changes in whether 
children are capable of understanding a general concept of 
negation, with pre-verbal (or pre-negation) children failing 
and older children succeeding.  

Future work could examine the role of language in 
understanding other logical operators, such as “and” and 
“or”, or quantifiers such as “some” and “all”. Many 
philosophers of language have suggested that an important 
role of language is linking and connecting simple concepts 
into an infinite number of thoughts and combinatorial, 
complex concepts (Fodor, 1975, 2008; Carruthers, 2002; 
Hinzen, 2007). If this is true, words such as “and” and “or” 
would be vital to a system of thought, and conversely, it is 
possible that language is again necessary to form thoughts 
that require these logical connectives. These logical 
connectives and quantifiers are necessary aspects of human 
reasoning, and studying the role that language plays in 
understanding them could push our understanding beyond 
simply how we perceive the world, providing insight as well 
into how we reason about the world around us.  
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Abstract 

We assessed the neural substrates mediating a recently 
demonstrated preference for environments with high levels of 
instrumental divergence – a formal index of flexible operant 
control.  Across choice scenarios, participants chose between 
gambling environments that differed in terms of both 
instrumental divergence and expected monetary pay-offs. 
Using model-based fMRI, we found that activity in the 
ventromedial prefrontal cortex scaled with a divergence-
based measure of expected utility that reflected the value of 
both divergence and monetary reward. Implications for a 
neural common currency for information theoretic and 
economic variables are discussed.  

Keywords: instrumental divergence; flexible control; utility; 
model-based fMRI 

Introduction 
A series of recent studies (Mistry & Liljeholm, 2016; 

Liljeholm et al., 2018) have demonstrated that individuals 
strongly prefer environments in which instrumental 
divergence – the degree to which alternative actions differ 
with respect to their outcome probability distributions – is 
relatively high. A high level of instrumental divergence is a 
necessary feature of flexible control: If all available action 
alternatives have identical, or very similar, outcome 
distributions, such that selecting one action over another 
does not significantly alter the probability of any given 
outcome state, an agent’s ability to exert flexible control 
over its environment is considerably impaired.  Conversely, 
when available action alternatives produce distinct 
outcomes, discrimination and selection between actions 
allow an agent to flexibly obtain the currently most desired 
outcome.  Since subjective outcome utilities often change 
from one moment to the next, flexible instrumental control 
is essential for reward maximization and, as such, may have 
intrinsic value, serving to reinforce and motivate decisions 
that guide the organism towards high-agency environments 
(Liljeholm, 2018).  In the current study, we investigate the 
neural substrates mediating the apparent preference for high 
instrumental divergence.    

Previous work suggests that the ventromedial prefrontal 
cortex (vmPFC) retrieves and ranks the values of decision 
outcomes, and that these value signals are subsequently used 
to compute decision values (see O’doherty, 2011 for 

review). Intriguingly, activity in the vmPFC scales with the 
values of a wide variety of goods, including food, money, 
books DVDs, and clothes, suggesting a common neural 
value-scale for distinct stimulus categories (Chib et al., 
2009; McNamee et al., 2013).  It is unknown, however, 
whether this common value-scale might also extend to more 
abstract, cognitive, commodities, such as instrumental 
divergence.  Here, using a task in which participants choose 
between gambling environments based on differences in 
both instrumental divergence and monetary pay-offs, we 
combine computational cognitive modeling with functional 
MRI to investigate neural representations of the utility of 
instrumental divergence. 

Method 
Participants  
Twenty undergraduates at the University of California, 
Irvine (11 females; mean age = 21.2 ± 4.65) participated in 
the study for monetary compensation. The sample size was 
determined based on an a priori power analysis of data from 
a previously published study (Mistry & Liljeholm, 2016), 
indicating that 18 subjects were required to demonstrate a 
clear behavioral preference for high instrumental divergence 
at a power of 90% given a 0.05 threshold for statistical 
significance.  All participants gave informed consent and the 
Institutional Review Board of the University of California, 
Irvine, approved the study.  

Task & Procedure  
The task is illustrated in Figure 1.  At the start of the 
experiment, participants were instructed that they would 
assume the role of a gambler in a casino, playing a set of 
four slot machines (i.e., actions, respectively labeled A1, 
A2, A3, and A4) that yielded three different colored tokens 
(blue, green and red), each worth a particular amount of 
money, with different probabilities.  They were further told 
that, in each of several blocks, they would be required to 
first select a room in which only two slot-machines were 
available, and that they could only choose between the two 
machines in the selected room on subsequent trials in that 
block.  Finally, participants were instructed that, while the 
outcome probabilities would remain constant throughout the 
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study, the values of the tokens would change at various 
times, and these changes might occur after the participant 
had already committed to a particular pair of machines in a 
given block.  Consequently, although changes in value were 
explicitly announced, and the current values of tokens were 
always printed on their surface, a participant might find 
themselves in a room in which the values of the two 
available actions had suddenly been altered.    

 

 
Figure 1: Task illustration showing the room-
choice screen at the beginning of a block (top), and 
the choice (middle) and feedback (bottom) screens 
on a trial in the selected room.   

 
Two distinct probability distributions over the three 

possible token outcomes were used and the assignment of 
outcome distributions to slot machines was such that two of 
the machines (either A1 and A2 or A1 and A3, 
counterbalanced across subjects) always shared one 
distribution, while the other two machines shared the other 
distribution.  This yielded a low (zero) divergence for rooms 
in which the two available slot machines shared the same 
probability distribution, and a relatively high divergence for 
rooms in which slot machines had different outcome 
probability distribution. The unpredictability (i.e., Shannon 
entropy) of outcomes given a particular machine was held 
constant for all machines. Three token-reward distributions 
were used, changing intermittently across blocks, such that 
expected monetary pay-offs were either the same across 
rooms, or differed across rooms in either the same or 
opposite direction of instrumental divergence.  In addition to 
mimicking dynamic changes in the utilities of natural 
rewards, the sporadic changes in token reward values across 
blocks allowed us to pit the value of instrumental 
divergence against that of monetary reward. 

Given a constant outcome entropy level, increases in 
instrumental divergence are accompanied by increases in the 

perceptual diversity of obtainable outcomes – a variable 
previously shown to elicit preferences in economic tasks 
(Ayal & Zakay, 2009).  To rule out perceptual diversity as 
an explanation for any effects of instrumental divergence, 
gambling rooms differed in terms of whether the participant 
was allowed to chose freely between slot machines in the 
room (self-play) or a computer algorithm alternated between 
machines across trials in that room (auto-play).  In auto-play 
rooms, participants were still required to press a key 
corresponding to the slot machine indicated by the 
computer, to control for movement execution. Critically, in 
the absence of voluntary choice, high-divergence no longer 
yields flexible instrumental control. However, the 
alternating computer algorithm still yields greater perceptual 
diversity in high- than in low-divergence rooms.  
Consequently, if choices were driven by a desire to 
maximize perceptual diversity, rather than instrumental 
divergence, they should not differ depending on whether the 
participant or an alternating computer algorithm choose 
between the slot machines in a room.  In addition to 
controlling for perceptual diversity, this self- vs. auto-play 
manipulation relates the preference for instrumental 
divergence to a well-established preference for free over 
forced choice (e.g., Leotti & Delgado, 2011).  

There were a total of 44 blocks, with participants 
choosing between two gambling rooms at the start of each 
block (the decision of interest), followed by 3-5 gambling 
trials within the selected room. The order different reward 
distributions, and of room choice scenarios, was 
counterbalanced across subjects. Before starting the 
gambling task participants were given a practice session in 
order to learn the probabilities with which each slot machine 
produced the different colored tokens. If a participants’ 
estimate of any given probability deviated by more than 0.2 
from the programmed probability, they were returned to the 
beginning of the practice phase, and this continued until all 
rated probabilities were within 0.2 points of programmed 
probabilities.  At the end of the study, participants again 
provided estimates of the action-token probabilities.  

Computational Models  
Instrumental divergence is formalized as the Jensen-
Shannon divergence of instrumental sensory-specific 
outcome probability distributions (Liljeholm et al., 2013).  
Let P1 and P2 be the respective outcome probability 
distributions for two available actions, let O be the set of 
possible outcomes, and P(o) the probability of a particular 
outcome, o.  The instrumental divergence (ID) is:  

ID =
1
2

log P1(o)
P*(o)
⎛

⎝
⎜

⎞

⎠
⎟

o∈O
∑ P1(o)+ 1

2
log P2 (o)

P*(o)
⎛

⎝
⎜

⎞

⎠
⎟

o∈O
∑ P2 (o),  
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1
2

P1 +P2( )  

We defined the expected value (EV) of each slot machine 
as the sum over the products of its transition probabilities 
and token utilities.  In turn, the expected monetary value of 
a gambling room is simply the mean of the EVs of slot 
machines in that room.  To model the utility of instrumental 
divergence, a second variant of EV was specified by adding 
the term w*ID to the expected monetary value of a room, 
where the free parameter w represents the subjective utility 
of instrumental divergence and ID is the divergence of the 
particular room.  Thus, in this variant, the EV of a room 
reflects both the monetary pay-off and the instrumental 
divergence associated with that room.  For both models, a 
softmax distribution with a noise parameter, τ, was used to 
translate expected room values into choice probabilities, and 
free parameters were fit to behavioral data by minimizing 
the negative log likelihood of observed choices.  Choice 
scenarios in which at least one room option was both high 
divergence and self-play (HDSP), yielding high 
instrumental divergence, and those in which the high-
divergence room option was auto-play, or both rooms had 
zero divergence  (HDAP), were modeled separately.  The 
corrected Akaike Information Criterion (AICc) was used for 
behavioral model comparisons.   

Neuroimaging Acquisition & Analyses 
All MR images were obtained in a 3T Siemens Prisma 
Scanner, fitted with a 32-channel RF receiver head coil, 
padded to minimize head motion, at the facility for imaging 
and brain research (FIBRE) at the University of California, 
Irvine. Functional images covered the whole brain with 48 
continuous 3-mm thick axial slices with T2*-weighted 
gradient echoplanar imaging (TR=2.65s, TE=28ms, 3-mm2 
in-plane voxel size, 64 x 64 matrix). All participants had a 
high-resolution structural image taken before functional 
scanning commenced (T1-weighted FSPGR sequence: 208 
continuous 0.8-mm axial slices 0.4-mm2 in-plane voxel size; 
640 x 640 matrix).  All stimulus materials were presented, 
and all responses recorded, using MATLAB.  All imaging 
data was preprocessed with MATLAB and SPM12.  
Functional images were preprocessed with standard 
parameters, including slice timing correction, spatial 
realignment, coregistration of the high-resolution structural 
image to functional images, segmentation of the structural 
image into tissue types, spatial normalization of functional 
images into MNI space, and spatial smoothing with an 8mm 
FWHM kernel. 

All imaging data was analyzed using MATLAB and 
SPM12. At the first level, two general linear models 
(GLMs) were specified for each participant.  In both GLMs, 
two regressors respectively specified the onsets of room 
choice screens for HDSP and HDAP choice scenarios.  In 
the first GLM, these onsets were parametrically modulated 

by the absolute difference between rooms in their expected 
monetary pay-offs; in the second GLM these onsets were 
parametrically modulated by the absolute difference 
between rooms in their divergence-based utility, which 
reflected both the monetary pay-off and the level of 
divergence associated with each room.  In addition, in both 
GLMs, two regressors indicated the onsets of choice screens 
on each trial within a selected room, for self-play and auto-
play rooms respectively, and each of these were 
parametrically modulated by the expected monetary value of 
the chosen slot machine.  Finally, both GLMs included a 
single regressor indicating the onsets of trial feedback 
screens, modulated by the monetary reward obtained on 
each trial, as well as regressors indicating separate scanning 
runs and accounting for the residual effects of head motion.  

Fixed effects models were estimated using restricted 
maximum likelihood and an AR(1) model for temporal 
autocorrelation. Group-level statistics were generated by 
entering contrasts of first level parameter estimates into 
between-subject analyses.  All effects are reported at a 
whole brain corrected p < 0.05 level, using cluster size 
thresholding (CST) to adjust for multiple comparisons.  
AlphaSim, a Monte Carlo simulation, was used to determine 
cluster size and significance. For an individual voxel 
probability threshold of p=0.005, a minimum cluster size of 
148 MNI transformed voxels resulted in an overall 
significance of p < 0.05.    

 
Results 
Behavioral Results 
Participants required on average 2.1 (SD=0.3) cycles of 
practice on the action-token probabilities.  Mean probability 
ratings, obtained right before and right after the gambling 
phase, are shown in Table 1.   
 

Table 1: Mean probability ratings with standard 
deviations. Programmed probabilities are shown in 
the top row. Mean ratings, obtained before and 
after the gambling task, are averaged across 
identical objective probabilities, yielding three 
unique values. 

 
The decision of interest was that at the beginning of each 

block, when participants choose between rooms that 
differed in terms of their divergence, expected monetary 
pay-offs and self- vs. auto-play.  Model-derived choice 
probabilities and AICc scores for these decisions are listed 
in Table 2.  

 

	
 0.7 0.0 0.3 

Before 0.69 ± 0.06 0.00 ± 0.00 0.31 ± 0.05 

After 0.67 ± 0.10 0.00 ± 0.00 0.32 ± 0.05 
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Table 2: Mean room-choice probabilities derived 
using the divergence-based and conventional 
models of expected value (EV), and associated 
AICc scores, for HDSP and HDAP choice 
scenarios, with standard deviations.  

 
A repeated measures analysis of variance (ANOVA) 

revealed that the model-derived probabilities of observed 
behavioral choice preferences were significantly greater for 
the divergence-based utility algorithm than for the 
conventional utility model, and this difference was 
significantly greater for HDSP choice scenarios than for 
HDAP choice scenarios, yielding a significant main effect 
of EV model, F(1,19)=12.40, p<0.005, as well as a model 
by choice scenario interaction, F(1,19)=9.52, p<0.01. 
Accordingly, there was also a significant interaction for the 
AICc scores, F(1,19)=7.71, p<0.05, such that scores were 
significantly lower, indicating a better fit, for the 
conventional than for the divergence-based utility model in 
HDAP blocks (t(19)=5.2, p<0.001) while being lower for 
the divergence-based utility model, albeit with only 
marginal significance (p=0.14) in HDSP blocks.  

Neuroimaging Results 
As with the behavioral data, the period of interest was the 

choice made at the beginning of each block, between two 
gambling rooms that differed in terms of divergence, 
monetary pay-offs and free choice. As illustrated in Figure 
2, neural activity in the ventromedial prefrontal cortex 
(vmPFC) was parametrically modulated by the absolute 
difference in divergence-based EV between rooms, when at 
least one room option was both high-divergence and self-
play (HDSP) but not when the high divergence room was 
auto-play, or both room options had zero divergence 
(HDAP). No significant effects of the difference between 
room options in expected monetary pay-offs emerged in this 
region.  A similar pattern of results, with activity scaling 
selectively with the absolute difference in divergence-based 
EV between rooms options in HDSP choice scenarios, was 
found in the middle frontal gyrus, as well as the premotor 
cortex.  Once a room had been selected, activity in a more 
dorsal aspect of the vmPFC, extending into the dorsal 
medial prefrontal cortex scaled with the expected monetary 
pay-off of the chosen slot machine, in self-play but not in 
auto-play rooms, as did activity in the lateral orbitofrontal 
cortex, posterior right middle temporal gyrus and right 
dorsolateral prefrontal cortex.  
 

 

 
Figure 3: Map of the t-statistics for a test of 
differential parametric modulation by the 
difference across rooms in divergence-based 
expected value (divEV) for choice scenarios in 
which at least one high-divergence room option 
was self-play (HDSP) versus those in which the 
high-divergence room option was auto-play, or 
both options had zero-divergence (HDAP), 
showing significant effects in the vmPFC.  Bar 
plots show effect sizes (y-axis) extracted from 4 
mm spheres centered on the peak coordinate (x, y, 
z = -4, 34, -4), for small and large differences in 
divEV and monetary expected values ($EV), in 
HDSP and HDAP choice scenarios.  Error 
bars=SEM. 

Discussion 

Countless studies on motivated behavior have investigated 
the neural representation of primary and monetary rewards 
(Abe & Lee, 2011; Abler et al., 2009; Belova et al., 2007; 
Cador e al., 1989).  Here, having previously demonstrated a 
behavioral preference for instrumental divergence – a 
formal index of flexible operant control – we explored 
neural substrates mediating the influence of this information 
theoretic variable on economic choice.  Specifically, 
participants were scanned with fMRI as they chose between 
gambling rooms that differed with respect to both 
instrumental divergence and expected monetary pay-offs. 
Using a model-based analysis, we found that activity in the 
ventromedial prefrontal cortex (vmPFC) scaled with a 
divergence-based measure of expected utility that reflected 
both instrumental divergence and monetary pay-offs.		 

Considerable evidence from neurophysiological and 
neuroimaging studies suggest that the vmPFC encodes the 
subjective values of primary rewards, such as tastes and 
odors (Rolls et al., 2003; Anderson et al., 2003; Small et al., 
2003), as well as visual stimuli, including the attractiveness 
of faces or pictorial scenes (O’Doherty et al., 2003; Kirk et 
al., 2009), and more abstract goods, like social praise (Elliot 
et al., 1997) and monetary gain (O’Doherty et al., 2001).  

	
 Choice Probabilities AICc Scores 

 HDSP HDAP HDSP  HDAP 

Divergence EV 0.65 ± 0.13 0.58 ± 0.07 19.5 ± 2.7 38.3 ± 7.4 

Conventional EV 0.55 ± 0.05 0.57 ± 0.07 21.6 ± 5.6 36.8 ± 7.5 
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Two notable features of the vmPFC shed important light on 
the current results: First, value encoding in the vmPFC 
appears to be relative, such that the value signal for a 
particular stimulus depends on the values of other, proximal, 
stimuli (O’Doherty, 2011). One might expect, thus, that the 
vmPFC signal would respond most clearly to a difference in 
value between concurrently available stimuli. Second, 
recent findings suggest that the vmPFC encodes stimulus 
values that are independent of the particular stimulus 
category, essentially implementing a common neural value 
scale for different types of goods (Chib et al., 2009; 
McNamee et al., 2013). The currently demonstrated value 
signal in the vmPFC, corresponding to a difference between 
options in divergence-based utility, suggest that this 
common value scale can be extended to a relative analysis 
of exceedingly abstract concepts.   

Our previous work has implicated the right supramarginal 
gyrus (rSMG) of the inferior parietal lobule in encoding 
instrumental divergence. Specifically, using a simple value-
based decision-making task, Liljeholm et al. (2013) found 
that activity in the rSMG scaled parametrically with trial-
by-trial estimates of instrumental divergence, and that this 
signal was dissociable from other information theoretic and 
motivational variables, including outcome entropy and 
expected utility.  In a subsequent task, aimed at assessing 
neural substrates mediating the acquisition of goal-directed 
vs. habitual instrumental behavior, Liljeholm et al., (2015) 
found that activity in the rSMG increased across blocks of 
instrumental acquisition in a high-divergence, but not in a 
zero-divergence, condition.  In contrast, we did not find any 
effects of instrumental divergence in the rSMG in the 
current study.  There are several possible reasons for this 
discrepancy: First, none of the previous studies assessed the 
motivational significance of instrumental divergence, in 
terms of a behavioral preference for environments with 
relatively high divergence.  Second, in the current study, 
outcome probability distributions were trained to criterion 
prior to scanning (eliminating acquisition effects), and 
instrumental divergence remained constant within a room 
(eliminating responses to trial-by-trial fluctuations in 
divergence).  Further work is needed to determine how these 
differences may account for a differential engagement of the 
rSMG.  

A fundamental property of stimuli that possess intrinsic 
value is their ability to transfer that valence to neutral 
stimuli with which they are paired – a phenomenon termed 
conditioned reinforcement, that has been studied extensively 
using a wide range of stimuli, species and procedures (e.g., 
Arroyo et al., 1998; Williams, 1994).  This large body of 
research has demonstrated that conditioned reinforcers are 
powerful behavioral determinants, maintaining instrumental 
responding in the absence of primary rewards, such as food 
and sex, and even serving as goals in themselves.  
Moreover, once established, previously neutral conditioned 
reinforcers can pass on their motivational significance to 

other neutral stimuli; For example, casino chips maintain 
gambling based on their association with monetary reward, 
which in turn obtains valence from its usefulness in 
acquiring primary rewards.   One might expect, therefore, 
that any sufficiently valuable stimulus, no matter how 
abstract, should be able to induce conditioned reinforcement 
in associated arbitrary, and initially neutral, stimuli. Another 
important question, thus, is whether the affective properties 
of instrumental divergence may transfer to concomitant 
stimuli, and what brain regions might mediate such a 
processes.   

Formal theories of goal-directed decisions postulate that 
the agent generates a “cognitive map” of stochastic 
relationships between actions and states such that, for each 
action in a given state, a probability distribution is specified 
over possible outcome states.  These transition probabilities 
are then combined with current estimates of outcome 
utilities in order to generate action values – the basis of 
goal-directed choice (Doya et al., 2002).  Although 
computationally expensive (Otto et al., 2013), the dynamic 
binding of outcome probabilities with utilities offers 
adaptive advantage over more automatic action selection, 
which uses cached values based on reinforcement history.  
However, when instrumental divergence is zero, or very 
low, the processing cost of goal-directed computations does 
not yield the return of flexible control, suggesting that a less 
resource-intense automatic decision strategy might be 
optimal. As noted, in a previous study we found evidence 
implicating instrumental divergence in the deployment of 
goal-directed and habitual behavior, and this is an important 
avenue for future work.  

In summary, we have used model-based fMRI to 
investigate the neural computations mediating a behavioral 
preference for instrumental divergence.  We found that 
activity in the vmPFC was significantly modulated by a 
variant of expected value that reflected both instrumental 
divergence an monetary pay-offs, but not by a conventional 
model of expected value, based solely on monetary gain. 
Our results complement previous work on the role of the 
vmPFC in value-based choice.  
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Abstract

Intervening on causal systems can illuminate their underlying
structures. Past work has shown that, relative to adults, young
children often make intervention decisions that confirm sin-
gle hypotheses rather than those that discriminate alternative
hypotheses. Here, we investigated how the ability to make in-
formative intervention decisions changes across development.
Ninety participants between the ages of 7 and 25 completed
40 different puzzles in which they had to intervene on vari-
ous causal systems to determine their underlying structures.
We found that the use of discriminatory strategies increased
through adolescence and plateaued into adulthood. Our results
identify a clear developmental trend in causal reasoning, and
highlight the need to expand research on causal learning mech-
anisms in adolescence.
Keywords: cognitive development; information-seeking; hy-
pothesis testing; causal learning

Introduction
We frequently take actions to manipulate the causal systems
that make up our environments. Critically, these causal inter-
ventions often vary in the information they reveal (Bramley,
Lagnado, & Speekenbrink, 2014; Tong & Koller, 2001; Co-
enen, Rehder, & Gureckis, 2015).

Imagine, for example, a child tending to a plant. She might
believe that the plant requires sunlight, water, and fertilizer
to grow. The child might intervene to confirm this hypothe-
sis by placing her plant on a sunny window sill, watering it
daily, and fertilizing it. If the plant blooms, she will take this
as evidence confirming her initial hypothesis. However, if
she were to consider a competing hypothesis – that the plant
needs only water and sun but not fertilizer to flourish – she
could instead provide the plant with water and sunlight, and
critically, withhold fertilizer. If the plant were to wither, she
would gain evidence in favor of her first hypothesis, but if it
were to grow, she would gain evidence in favor of the sec-
ond. In this way, different intervention decisions bring about
different sets of evidence that help to discriminate competing
ideas.

Consistent with this example, previous research has iden-
tified two broad classes of decision strategies for making in-
terventions: Confirmatory interventions seek evidence con-
sistent with a particular hypothesis, while discriminatory in-
terventions seek information that can disambiguate compet-
ing alternatives (Coenen et al., 2015). It is unclear, however,
how causal intervention strategies change with age. Previ-
ous work suggests that children as young as 2 years old can
derive sophisticated causal knowledge about the structure of
their environment by updating their prior assumptions about
cause and effect as they encounter new evidence (Gopnik et
al., 2004). This evidence is often self-generated – children

perform their own ”experiments” during play by intervening
on causal systems to resolve their uncertainty about how they
work (Gopnik, 2012).

Though children are capable of making informative inter-
ventions to drive their own learning (Bonawitz, van Schijn-
del, Friel, & Schulz, 2012; Schulz & Bonawitz, 2007; So-
bel & Sommerville, 2010), their information gathering strate-
gies may be sub-optimal. For example, early work in chil-
dren’s hypothesis testing suggests that the ability to system-
atically test competing alternatives improved from age 5 to
age 11, but that even 11-year-olds often failed to make inter-
ventions that would enable them to learn underlying causal
rules (Rieber, 1969). In a different experiment, when 9- to 11-
year-olds were tasked with determining the cause of a specific
chemical reaction, the majority of children failed to design
systematic experiments that would enable them to efficiently
isolate the causal agent (Kuhn & Phelps, 1982).

Characterizing developmental change in causal
reasoning
While this work hints that there may be changes in causal
intervention strategy across development, no prior work has
systematically characterized these changes from childhood
to adulthood, perhaps due to the inherent difficulty in mea-
suring developmental change in this complex ability. Multi-
ple strategies can promote effective inference, so studies that
have examined only the accuracy of causal judgments, or that
have allowed children to freely manipulate causal systems by
performing many different actions, may not effectively cap-
ture subtle changes in strategy use across development.

A recent study of adults (Coenen et al., 2015) developed
a Bayesian measurement model for determining the extent to
which confirmatory vs. discriminatory intervention strategies
are invoked during decision-making. In this study, adults’
intervention decisions were best characterized by a model
that combined the discriminatory Expected Information Gain
(EIG) strategy with a Positive Testing Strategy (PTS) that as-
signed “value” to intervention decisions based on the propor-
tion of causal links they would activate. This intervention
strategy is generally less cognitively effortful than more dis-
criminatory strategies and can yield informative outcomes in
some contexts (Austerweil & Griffiths, 2011), but can also
hinder learning by failing to rule out alternative causal mod-
els (Nickerson, 1998). Further, adults increased their use of a
discriminatory strategy after attempting to solve problems in
which confirmatory interventions were systematically less ef-
fective, but decreased their discriminatory strategy use under
time pressure (Coenen et al., 2015).
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The task and modeling approach used by Coenen et al.
(2015) has several key properties that make them particu-
larly well-suited to characterize changes in causal interven-
tion strategy across development. First, the task itself is easy
to understand but challenging to perform optimally, such that
it can be understood by young children while remaining sen-
sitive to changes in causal learning that may occur throughout
late childhood, adolescence, and early adulthood. Second, the
modeling approach can effectively capture both discrimina-
tory intervention decisions, but also the more cognitively sim-
ple, confirmatory strategy that may be adopted by resource-
constrained learners. Finally, the model enables estimation
of continuous strategy mixture weights for each participant,
which can characterize the extent to which their choices re-
flect confirmatory or discriminatory strategies. By leveraging
this measure, we can both account for heterogeneity in strat-
egy use across individuals and examine how strategy use may
change across development.

Two previous studies have taken a similar approach but
have only examined the choices made by young children, be-
tween the ages of 5 and 8 (McCormack, Bramley, Frosch,
Patrick, & Lagnado, 2016; Meng, Bramley, & Xu, 2018).
In both these studies, rather than selecting interventions that
maximized their ability to disambiguate multiple compet-
ing possibilities, children often made choices that maximized
positive evidence in favor of a single hypothesis. However,
these studies used only a small number of trials, potentially
leading to unreliable estimates of strategy use and preventing
the examination of learning over time.

Further, selecting interventions that maximize informa-
tion gain may require multiple cognitive mechanisms that
continue to develop throughout late childhood and adoles-
cence. When faced with intervention decisions, individuals
must prospectively imagine the outcomes that different ac-
tions are likely to bring about (Sloman & Lagnado, 2015).
Then, they must evaluate whether these outcomes provide ev-
idence for one causal hypothesis over another to ultimately
choose which action to take (Coenen & Gureckis, 2015). Fi-
nally, individuals need to recognize that this cognitive process
is “worth it” – that considering possible outcomes of differ-
ent interventions promotes more accurate hypothesis evalua-
tion relative to other less effortful cognitive strategies. Each
of these component mechanisms undergoes marked change
throughout development. The ability to use mental models of
the environment to prospectively compare decisions (Decker,
Otto, Daw, & Hartley, 2016), the ability to infer causal rela-
tions based on observed outcomes (Gopnik et al., 2017), and
metacognitive sensitivity to the efficacy of different cogni-
tive strategies (Weil et al., 2013) all improve not just in early
childhood – a focal point of many studies of causal learning
– but continuously across late childhood, adolescence, and
early adulthood.

Here, we leveraged the approach introduced by Coenen et
al. (2015) – and its key measurement characteristics – to
determine the developmental trajectories of causal learning

strategies across late childhood, adolescence and early adult-
hood. Though these developmental periods have been largely
neglected in the causal intervention literature, research fo-
cused on related cognitive mechanisms suggest these peri-
ods may be characterized by robust change in learning and
decision-making strategies. Beyond characterizing the gen-
eral trajectory of change in the use of different intervention
strategies, we sought to illuminate interactions between dif-
ferent cognitive mechanisms that may support the emergence
of discriminatory hypothesis testing.

Methods
Participants
Ninety 7-to-25-year-olds (Mage = 15.87 years, SDage = 5.26
years, range = 7.04 - 25.74 years, 46 females) participated
in the study. All participants completed the matrix-reasoning
and vocabulary section of the Wechsler Abbreviated Scale of
Intelligence, from which age-normed IQ scores were derived.
There was not a significant relation between age and IQ in
our sample, F(1,88)< .001, p > .99,ηp < .001.

Task
Participants completed a computerized task in which they
were told they were employees at a computer chip factory,
whose job was to sort 3- and 4-node computer chips based
on the configuration of their hidden wires. On each trial, par-
ticipants first viewed two causal graphs for 2 seconds, each
of which displayed a different possible configuration of the
chip’s hidden wires (Figure 1). Then, a computer chip ap-
peared, with all of its nodes turned ”off.” Participants had as
much time as they wanted to make one intervention decision
– that is, to click on one node. The node that was clicked al-
ways turned on. After a brief delay (200 ms) during which the
chip turned grey and beeped, the chip reached its final state,
indicating outcome of the intervention. The activation of a
parent node turned on its direct descendants with a probabil-
ity of .8. There were no background causes - nodes could only
turn on if they were directly clicked or activated by a parent
node. After viewing the outcome of their intervention, par-
ticipants had unlimited time to click on whichever of the two
causal graphs they believed indicated the true configuration of
the chip’s hidden wires. Participants then used a continuous
slider to rate their confidence that they selected the correct
configuration. Participants were told that they would be paid
a bonus based on how many chips they sorted correctly.

Prior to beginning the experimental trials, all participants
completed an extensive tutorial in which they were trained on
the probabilistic nature of the wires, the directionality of the
wires, the correspondence between the causal graph diagrams
and the actual chip on which they intervened, and the overall
trial procedure.

Participants completed 40 experimental trials. Trial order
was pseudo-randomized such that in each block of 10 trials,
participants always completed five 3-node puzzles and five 4-
node puzzles. The specific puzzles were selected such that the
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Figure 1: Participants completed 40 intervention trials, in which they had to select a node to determine the configuration of a
computer chip’s hidden wires.

discriminatory and confirmatory strategy we modeled (more
details below) made divergent predictions about the proba-
bility of selecting different nodes. The side of the screen on
which each graph appeared was randomized. On each trial for
each participant, one graph was randomly selected to be the
chip’s “true” underlying structure. Participants only learned
how many chips they sorted correctly at the end of the task;
they did not receive trial-by-trial feedback.

Strategies
To model participant intervention choices, we focused on one
specific discriminatory intervention strategy - Expected Infor-
mation Gain - and one specific confirmatory strategy - Posi-
tive Testing Strategy. The models differ in how they assign
value to possible interventions.

Expected Information Gain (EIG) EIG assumes that in-
dividuals have a set of hypotheses about the structure of a
particular causal system, with each system represented as a
causal Bayesian graph. A learner’s uncertainty about which
graph (g) is most likely the source of their current observa-
tions is represented as the Shannon entropy over the graphs
within their hypothesis set (G):

H(G) = ∑
g∈G

P(g)log2
1

P(g)

Learners maximizing information gain should select the in-
formation that will cause the largest reduction in their uncer-
tainty. This can be computed by considering the amount of
information gained by each possible outcome (o) of each ac-
tion (a), weighted by their probability:

EIG(a) = H(G)− ∑
o∈O

P(o|a)H(G|a,o)

where H(G|a,o) is the new uncertainty after an intervention:

H(G|a,o) = ∑
g∈G

P(g|a,o)log2
1

P(g|a,o)

Positive Testing Strategy (PTS) PTS assumes that partic-
ipants seek positive evidence to confirm a single hypothesis.
We use the formalization introduced in Coenen et al. (2015)
which assumes that participants consider each graph in turn,
and choose the intervention that will activate the largest pro-
portion of nodes within a single causal graph:

PT S(a) = max
g

(
DescendantLinksn,g

TotalLinksg
)

Results
Age-related change in strategy use
To characterize participants’ intervention choices, we fit a
single Bayesian model in which we assumed participants
were linearly combining EIG and PTS with weight θ, where
θ = 0 indicates a pure PTS strategy and θ = 1 indicates a pure
EIG strategy. We further assumed that participants’ choices
were noisy, such that the expected value of each choice proba-
bilistically influenced intervention decisions. We used a soft-
max choice function to represent this process, with a free pa-
rameter, τ, to capture each participant’s decision noise.

The two previous studies using this modeling approach
employed a hierarchical model in which group-level hyper-
parameters were also estimated (Coenen et al., 2015; Meng et
al., 2018), but given our broad age range, we did not want to
assume that the participants in our sample comprised a single
group. Rather than estimating group-level hyper-parameters,
we estimated the model separately for each participant.

We estimated posterior distributions over the parameters
using Markov chain Monte Carlo (MCMC) sampling via the
NUTS algorithm implemented in STAN (4 chains of 2000
iterations, 1000 per chain discarded as warmup; 4000 total
samples per parameter) (Stan Development Team, n.d.; Team,
2013). We used uniform priors over the parameter space
(τ ∼ U(0,∞);θ ∼ U(0,1)). Rhat values for all parameter
estimates were less than 1.1, indicating convergence across
chains (Brooks & Gelman, 1998).

To characterize how strategy use changed with age, we
extracted the posterior mean estimates of strategy mixture
weights (θ) and examined their relation with age. We tested
two linear regression models to examine linear and nonlin-
ear trajectories of developmental change: One included lin-
ear z-scored age as a predictor, and one included both lin-
ear z-scored age and quadratic z-scored age as predictors
(Somerville et al., 2012). We followed this approach for all
subsequent models described in the paper.

The model with the quadratic age term provided a signifi-
cantly better fit to the data, F(1,87) = 9.95, p = .002. Both
age (β = .12, p < .001) and age2 (β = −.06, p = .002) sig-
nificantly predicted strategy mixture weight (Figure 3), sug-
gesting that through early adolescence, participants decreased
their use of PTS in favor of EIG. Even within age groups,
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Figure 2: Intervention choices for the 20 three-node puzzles presented in the experiment. The corners of each simplex represent
nodes on which participants intervened. The circles represent the average choice for each age group (Children: 7 - 12 years old,
Adolescents: 13 - 17, Adults: 18 - 25), while the diamonds represent the “value” of each node as determined by EIG and PTS.

strategy use varied across problems (Figure 2); adolescent
choices, for example, sometimes resembled those of adults
(16) and sometimes were more like those of children (10).

We also examined how decision noise (τ) changed with
age. Decision noise decreased linearly with age (β =
−.576, p = .048), indicating that the choices of older rel-
ative to younger participants were more fully captured by
the predictions of the two intervention strategies (Figure 3).
There was not, however, a significant relation between θ and
τ (p = .271), suggesting that age-related change in strategy
mixture weight can not be attributed to age-related differ-
ences in decision noise.

Figure 3: Model-derived estimates of participants’ strategy
mixture weights (θ) show that participants became more dis-
criminatory with increasing age through late adolescence.
Decision noise estimates (τ) show that intervention decisions
became more value-based with increasing age. Best-fitting
regression lines illustrating the effects of age and age2 on θ

and age on τ are plotted.

In line with previous findings (Meng et al., 2018; Coenen
et al., 2015), our modeling results suggest that children and
adults use a combination of confirmatory and discriminatory
strategies to test causal hypotheses. Further, they demonstrate
that this combination systematically differs across children,
adolescents, and adults.

Inference-intervention interactions
Why did the use of a discriminatory intervention strategy in-
crease across development? One possibility is that when pre-
sented with the novel task, participants explored different in-
tervention strategies until finding one they believed was most
effective. Older participants may have been more sensitive to
the relative efficacy of different intervention strategies. For
EIG to be a useful strategy, however, individuals needed to
be able to make accurate causal inferences based on the out-
comes of their interventions. Gaining information to disam-
biguate competing hypotheses was only useful if individuals
could correctly updated their beliefs based on that new evi-
dence (Coenen & Gureckis, 2015).

To examine whether causal inference changed with age,
we computed the posterior probabilities of each of the two
possible causal graphs based on the selected node and the fi-
nal states of the other nodes on each trial. We then ran a
linear mixed-effects model to determine whether there was
a relation between age and the posterior probability of the
structure selected. Older participants selected more probable
causal structures, F(1,88) = 10.44, p = .002. This suggests
that with increasing age, individuals became better at eval-
uating the outcomes of their interventions to disambiguate
competing hypotheses. However, this metric is inherently
confounded with intervention decisions – by definition, inter-
ventions with higher EIG scores were more likely to lead to
greater increases in the posterior probability of one structure
over another. Thus, it is difficult to determine the direction of
the relationship between causal intervention and inference –
were older participants selecting more informative interven-
tions because they could more effectively prospectively eval-
uate how that information would enable them to update their
beliefs? Or were they updating their beliefs more effectively
because they chose interventions that provided stronger evi-
dence in favor of one hypothesis over another?

Participant confidence in the structure they selected can
provide insight into developmental change in causal infer-
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ence – and metacognitive sensitivity to causal evidence –
without being confounded by intervention choice. If par-
ticipants were sensitive to the extent to which the informa-
tion they gained allowed resolution of competing hypothe-
ses, then their confidence in the structures they selected
should track their posterior probabilities. To determine how
these posterior probabilities and age influenced confidence
ratings, we ran a linear mixed-effects model. Our best-
fitting model included both a linear and quadratic effect of
age. Participants were more confident in their selection when
the posterior probability of the structure they selected was
higher, F(1,3535.17) = 353.69, p < .001 However, this ef-
fect was qualified by an age x posterior probability interac-
tion (F(1,3529.67) = 21.75, p< .001) as well as by an age2 x
posterior probability interaction (F(1,3529.76) = 12.83, p <
.001), such that the influence of posterior probabilities on
confidence ratings increased throughout childhood and early
adolescence. These results indicate that the ability to evalu-
ate the extent to which new information supported causal hy-
potheses improved non-linearly across development. Impor-
tantly, they suggest developmental improvements in causal
inference that are separable from improvements in interven-
tion strategy.

We next examined whether developmental change in
causal inference influenced intervention strategy. Specif-
ically, we computed the correlation between the posterior
probability of the structure selected and confidence ratings
for each participant and ran a linear regression to determine
whether these values, which we will refer to as “evidence sen-
sitivity,” predicted strategy mixture weight (θ). We found
a positive relationship between evidence sensitivity and θ

(β = .09, p < .001), even when controlling for age and age2.
In other words, participants with stronger sensitivity to the
strength of the evidence on which to base their inferences also
demonstrated greater use of EIG.

Within-task learning effects
Beyond examining how causal intervention strategy changed
with age, our use of 40 trials enabled us to examine learn-
ing over the course of the task. We hypothesized that older
participants’ greater use of a discriminatory strategy might in
part be driven by faster learning, such that age would more
strongly influence estimated values of θ in the second half of
the experiment, after participants had the opportunity to learn
to adjust their strategy based on their evaluations of their ear-
lier decisions.

To examine whether participants used a different mixture
of strategies throughout the course of the task, we fit our
Bayesian model separately to the first and second half of trial
data for each participant. We then ran a linear mixed-effects
model to determine how experiment half and age influenced
strategy mixture weight. As before, both linear and quadratic
age predicted strategy mixture weight (ps < .02). Further-
more, strategy mixture weight increased from the first half to
the second half of the experiment, F(1,87) = 11.4, p < .001
(Figure 4), indicating that participants may have learned to

use a more discriminatory strategy over the course of the task.
Contrary to our prediction, however, experiment half did not
interact with age or age2 (ps > .20).

Decision noise also decreased over the course of the exper-
iment, F(1,88) = 5.18, p = .03. This effect was qualified by
an age x experiment half interaction, such that younger partic-
ipants demonstrated a greater decrease in decision noise from
the first to the second half of trials, F(1,88) = 4.72, p = .03
(Figure 4). This suggests that younger participants may have
learned to use their estimates of the value of each intervention
to more strongly guide their decisions over the course of the
task. While the change in their strategy mixture weight did
not statistically differ from that of older participants, younger
participants may have learned that both strategies were more
effective than randomly selecting nodes.

Figure 4: In the second half of the experiment, participants
relied more on EIG over PTS, and their choices were less
noisy.

Finally, we examined whether evidence sensitivity related
to participants’ change in strategy use over the course of the
task. We computed ∆θ for each participant by subtracting
their estimated θ value over the first half of the experiment
from their estimated θ value over the second half of the ex-
periment. We then ran a regression examining the effects of
age and evidence sensitivity on ∆θ. We found a significant
effect of evidence sensitivity on ∆θ, β = .049, p = .019, such
that participants who were most sensitive to their ability to
correctly identify underlying causal structures demonstrated
increased use of EIG over the course of the experiment. Mir-
roring our previously reported results, there was not a signif-
icant effect of age on ∆θ, nor was there an age x evidence
sensitivity interaction effect (ps > .61).

Discussion
Our results and modeling analyses demonstrate robust
changes in causal intervention strategy from middle child-
hood to adulthood. In sum, interventions become more dis-
criminatory with increasing age until reaching a plateau in
late adolescence. What causes this developmental shift?

One possibility is that improvements in intervention strat-
egy are due to increased exposure to scientific reasoning
strategies through formal schooling. Future work could test
participants at multiple time-points and examine the extent
to which increases in EIG use align with exposure to curric-
ular units focused on concepts like controlling variables to
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effectively discriminate hypotheses (Kuhn, Arvidsson, Les-
perance, & Corprew, 2017).

However, several aspects of our data suggest that for-
mal schooling can not account for all age-related change in
strategy use that we observed. First, almost all participants
demonstrated a mixture of strategies throughout the experi-
ment, and this mixture appears to change gradually with in-
creasing age (as opposed to a sharp shift corresponding to the
introduction of specific concepts during formal schooling).
We also found that individual and developmental differences
in more basic learning mechanisms, like sensitivity to the
informativeness of intervention outcomes, predicted strategy
use. Additionally, individuals across our age range increased
their use of a discriminatory strategy throughout the course
of the task, without any explicit instruction or feedback.

It may also be the case that with increasing age, individu-
als become better at prospectively planning their intervention
decisions. Though evidence sensitivity correlated with strat-
egy mixture weight in our data, it did not fully account for
developmental change in strategy use. Importantly, we hy-
pothesized that the ability to make accurate causal judgments
may enable individuals to select the best intervention only if
they prospectively simulate and sample the outcomes of po-
tential choices in the first place (Bonawitz, Denison, Grif-
fiths, & Gopnik, 2014). On some trials, participants may
not have attempted to think through the possible outcomes
of their decisions, in which case the ability to evaluate those
outcomes would not affect the intervention choice. Future
studies should probe the role of other cognitive mechanisms
in supporting the use of EIG, like model-based decision-
making, which may support or similarly rely on simulating
probabilistic outcomes of multi-stage decisions (Decker et al.,
2016; Doll, Duncan, Simon, Shohamy, & Daw, 2015).

Another possibility is that younger people are equally ca-
pable of implementing a more discriminatory intervention
strategy, but perform a different cost-benefit analysis when
determining which strategy to use. As mentioned previously,
the confirmatory PTS strategy often reveals diagnostic infor-
mation in environments in which causal links are sparse or
deterministic (Austerweil & Griffiths, 2011). Additionally,
confirmatory hypothesis testing may be adaptive when indi-
viduals have the opportunity to make multiple interventions
at low cost. It may be the case that rather than spending time
and cognitive effort to make the single best intervention, chil-
dren prefer to make multiple, easier, intervention decisions,
which together provide the information they need. Future
studies could isolate changes in ability from changes in ef-
fort allocation, by raising the cost of making an uninforma-
tive intervention or forcing all participants to spend a long
time deliberating prior to allowing them to perform their in-
tervention.

Finally, though few studies have examined causal learn-
ing in adolescence, our results demonstrate that causal learn-
ing and decision-making continue to change during this pe-
riod. Future work probing the cognitive mechanisms that

drive these changes will inform how to best support adoles-
cents as they interact with their environments with increasing
independence and shape their own learning opportunities.
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Abstract 
Children often fail to control variables when conducting tests 
of hypotheses, yielding confounded evidence. We propose that 
getting children to think of alternative possibilities through 
counterfactual prompts may scaffold their ability to control 
variables, by engaging them in an imagined intervention that is 
structurally similar to controlled actions in scientific 
experiments. Findings provide preliminary support for this 
hypothesis. Seven- to 10-year-olds who were prompted to think 
counterfactually showed better performance on post-test 
control of variables tasks than children who were given control 
prompts. These results inform debates about the contribution 
of counterfactual reasoning to scientific reasoning, and suggest 
that counterfactual prompts may be useful in science learning 
contexts.  

Keywords: cognitive development; scientific reasoning; 
counterfactual reasoning; causal learning; science education 

Scientific Reasoning in Development 
Equipping children with scientific inquiry skills is a core 
objective of elementary science education, allowing children 
to collect evidence and draw inferences about the world 
around them. However, extensive research has found that 
children are relatively unequipped to engage in many aspects 
of scientific inquiry in the absence of direct instruction and 
frequent scaffolding (Klahr, Fay, & Dunbar, 1993; Klahr & 
Nigam, 2004; Kuhn & Franklin, 2006; Schauble, 1996). In 
the present study, drawing from research and theory in 
cognitive development, science education, and philosophy, 
we investigate the use of a novel pedagogical tool – 
counterfactual reasoning prompts – to scaffold children’s 
scientific reasoning skills.  

An important sub-skill of scientific inquiry is the ability to 
control variables. This skill, termed the control-of-variables 
strategy (CVS) has received a great deal of attention in 
research on scientific reasoning over the past four decades 
(for a review, see Zimmerman, 2007). To properly execute 

this skill, the learner should isolate a single variable at a time, 
while holding all else constant.  

Consider a common task used in studies investigating CVS 
(e.g., Chen & Klahr, 1999; Klahr & Nigam, 2004). Children 
are presented with a set of ramps that can be varied along a 
number of dimensions (e.g., ramp height, surface, run length, 
ball size) and their task is to manipulate the ramps to 
determine the effect of different variables on where a ball 
stops after rolling down the ramp. To make warranted 
inferences about individual variables, the learner should 
change the values of a single variable (e.g., compare a high 
ramp to a low ramp), keeping all other variables constant 
(e.g., smooth surface, same-size balls).  

Although children are able to recognize a conclusive test 
of a hypothesis as young as age 6 (Sodian, Zaitchik, & Carey, 
1991), they typically fail to produce one themselves in the 
absence of scaffolding through middle childhood (Klahr, 
Zimmerman, & Jirout, 2011; Zimmerman, 2007). However, 
with direct instruction, children often show improvement in 
their ability to design controlled experiments (Chen & Klahr, 
1999; Klahr & Nigam, 2004; for a meta-analysis, see 
Schwichow, Croker, Zimmerman, Hoffler, & Hartig, 2016). 
For instance, Chen and Klahr (1999) found that 7- to 10-
years-old who were given explicit instruction on CVS were 
better able to transfer this strategy to both similar and 
dissimilar problems than those who engaged in self-guided 
inquiry. Younger children frequently failed to design 
unconfounded tests.  

Although past studies have found that children are able to 
learn the control of variables strategy through direct 
instruction or demonstrations, science curricula and 
educational guidelines often recommend teaching scientific 
inquiry skills through inquiry-based learning instead (e.g., 
US National Research Council, 2000). That is, children’s 
scientific inquiry skills are thought to be best supported by 
having children explore science concepts based on their own 
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observations and experiences with phenomena of interest, 
with little explicit instruction from educators. Thus, there is 
significant educational value to identifying methods for 
scaffolding children’s hypothesis testing abilities that not 
only fit within these curricular guidelines, but also harness 
children’s intuitive reasoning skills.  

Causal and Counterfactual Reasoning 
Whereas the work reviewed above suggests that older 
children are poor at testing and revising hypotheses, another 
body of research shows that children are adept at parallel 
skills when engaging in causal learning tasks.   

 From a young age, children form, test, and revise 
hypotheses in building informal theories in various domains 
(Carey, 1985; Gopnik, Meltzoff, & Bryant, 1997; Keil, 
1992;). For instance, toddlers are able to infer higher-order 
relational causes (Walker & Gopnik, 2014). Preschoolers are 
able to draw appropriate causal inferences from patterns of 
dependence, even when evidence conflicts with their prior 
knowledge (Schulz & Gopnik, 2004), and use evidence from 
interventions to make inferences about causal structure 
(Schulz, Glymour, & Gopnik, 2007). 

Why do older children (and even adults) fail when applying 
this skill-set in scientific reasoning contexts? We suggest a 
few possible explanations for this discrepancy. First, studies 
of intuitive causal reasoning with toddlers and preschoolers 
use tasks that are typically decontextualized, placing 
relatively few demands on children's prior knowledge. Many 
of these studies rely on a “blicket detector” paradigm, in 
which children are familiarized with a novel machine, and 
their task is to determine what makes it switch on (Gopnik & 
Sobel, 2000). In contrast, scientific reasoning tasks given to 
older children typically use knowledge-laden tasks that rely 
heavily on children’s existing (and often incorrect) 
knowledge and theories (e.g., Chen & Klahr, 1999). Second, 
causal reasoning tasks typically measure children’s abilities 
implicitly, whereas scientific reasoning tasks ask children to 
explicitly plan and often verbally demonstrate their abilities. 
Despite these differences, both classes of studies rely on a 
common set of domain-general inferential skills, including 
the ability to form and revise hypotheses on the basis of 
available evidence.  

How do we connect the parallel mechanisms children 
successfully apply in causal reasoning tasks to scientific 
reasoning contexts? In the current study, we explore the claim 
that counterfactual reasoning is fundamental to causal and 
scientific reasoning, and suggest that counterfactual prompts 
may help to connect these abilities. When we think 
counterfactually, we compare the way things are to the way 
things could have been. Counterfactual reasoning therefore 
necessarily involves thinking about causes: As one considers 
how an event could have turned out differently, one reasons 
about the causal relationship between an antecedent and 
outcome. If the event X had not happened, would event Y still 
have happened? If the answer to this is “no”, one can 
conclude that event X is a cause of event Y (Lewis, 1986).  

However, the utility of counterfactual reasoning may not 
be limited to drawing specific causal inferences. Several 
researchers have drawn theoretical parallels between the 
mechanisms underlying counterfactual reasoning and 
scientific reasoning (e.g., Buchsbaum, Bridgers, Weisberg, & 
Gopnik, 2012; Erb & Sobel, 2014; Gopnik & Walker, 2013; 
Sloman, 2005; Rafetseder & Perner, 2014; Walker & Gopnik, 
2013). If a learner believes that X caused Y, they can 
mentally intervene on X by imagining that it did not occur, 
follow the causal implications of this change, and then reason 
about whether it would have led to a change in Y (Gopnik & 
Walker, 2013; Walker & Gopnik, 2013). We follow an 
identical process in scientific reasoning. We hypothesize that 
X causes Y, and then make plans to systematically 
manipulate X in order to investigate its impact on Y. In both 
counterfactual and scientific reasoning, the learner adjusts a 
causal system by (mentally or physically) intervening on one 
event and considering the effects of this change.  

Despite the proposed contribution of counterfactual 
reasoning to science learning, there is relatively little research 
connecting the two (Engle & Walker, 2018; Frosch, 
McCormack, Lagnado, & Burns, 2012; Schulz, et al., 2007) 
and no work linking these capacities to hypothesis testing in 
children. Only two previous studies to our knowledge have 
investigated the relationship between counterfactual 
reasoning and scientific inquiry. Adults primed with 
counterfactuals were better able to conduct a disconfirming 
test of a hypothesis than those given neutral primes (Galinsky 
& Moskowitz, 2000). In another study, counterfactual 
prompts scaffolded children’s ability to detect anomalies to 
an existing hypothesis in a causal learning task (Engle and 
Walker, 2018). 

Given that counterfactual and scientific reasoning both 
involve intervening on a single variable to investigate its 
causal role in an outcome of interest, we propose that 
engaging children in counterfactual reasoning during a 
control-of-variables task will scaffold their ability to conduct 
a controlled test of a hypothesis by activating a parallel 
underlying cognitive mechanism.  

That said, it is worth first considering whether children of 
the age we tested in the current study (7 to 10 years) are 
capable of counterfactual reasoning, given the lively debate 
about its developmental trajectory. Previous research has 
been mixed, with some findings indicating that children can 
reason counterfactually as young as 3-½ years (Harris, 
German, & Mills, 1996), and other work suggesting that this 
ability does not reach maturity until adolescence (e.g., 
Rafetseder, Schwitalla, & Perner, 2013). However, more 
recent work suggests that studies showing counterfactual 
reasoning to be late-developing may have underestimated 
children’s ability by presenting opaque causal structures and 
by placing large demands on children’s memory 
(McCormack, Ho, Gribben, O’Connor, & Hoerl (2018; 
Nyhout, Henke, & Ganea, 2019). A recent set of studies 
demonstrates that children reason counterfactually by age 4 
when given a clear and novel causal structure that does not 
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rely on their background knowledge (Nyhout & Ganea, 
2019). Thus, we conclude from these findings that children 
have the requisite abilities to engage in counterfactual 
reasoning well before the age of those in the current study.  

Current Study 
In contrast to previous research (Chen & Klahr, 1999; Klahr 
& Nigam, 2004), we investigated whether children’s ability 
to control variables could be scaffolded in non-school 
settings. We also reduced task demands by including a 
smaller number of variables (2 variables, rather than 4).  

Children in the present study were assigned to either a 
counterfactual or control condition. After watching a video of 
an actor conducting a controlled test of a hypothesis, children 
were given either a counterfactual prompt, asking them to 
consider what would happen if the actor had conducted her 
test differently, or a control prompt, in which children were 
asked to recall what had happened. We predicted that 
children given counterfactual prompts would be more likely 
to improve from pre-test to post-test than children given 
control prompts. We tested a range of ages typically used in 
CVS research (7 to 10 years), but did not have prior 
predictions about age-related differences in performance.  

Method 

Participants 
Participants aged 7 to 10 years of age were recruited and 
tested at a museum in a large urban area. The final sample 
included 88 children (M = 8.91, SD = 1.13, range = 7.00 to 
10.97, 45 girls) whose data are reported below. Participants 
were placed in two categories, based on their age. The 
younger age category included children between the ages of 
7.00 and 8.99 (n = 46, M = 8.00, SD = 0.63) and the older age 
category included children between the ages of 9.00 to 10.99 
(n = 42, M = 9.90, SD = 0.59), with categories selected on the 
basis of similar previous studies (e.g., Chen & Klahr, 1999; 
Klahr & Nigam, 2004). Participants who passed the pre-test 
phase (n = 24) were excluded as they were determined to be 
already competent with CVS. Three additional participants 
were excluded due to experimenter error (n = 2) or language 
barriers (n = 1).  

Materials 
For the pre- and post-test phases described below, 
participants were given two identical ramps with both a 
down- and up-ramp side. The ramps were ridged on the up-
ramp where the ball could stop (Figure 1). Each ridge was 
painted a different color to allow for unambiguous reference 
and measurement. There were four binary variables, but 
participants received only two of the four variables at a time, 
and the remaining two variables were “fixed”. The variables 
were paired as follows: (1) height (high or low) and ball size 
(large or small), or (2) starting place (top or middle), and 
surface (rough or smooth). For instance, at one time-point, 
participants were given a large and small ball for each ramp, 
and pieces to adjust the steepness of each ramp (“high” or  

 
Figure 1: One of two identical ramps used in the 
study. A ball is launched from the down-ramp (left) 
and stops on one of the coloured ridges on the up-
ramp (right). The apparatus can be adjusted for 
height, surface type, where the ball starts on the 
down-ramp, and ball size.  

 
“low”). At the other time-point, participants were given a 
rough surface and smooth surface for each ramp, and a piece 
of cardboard to adjust where the ball started for each.  

The same set of ramps were used in a video in the 
scaffolding phase, displayed for participants on a laptop.  

Procedure 
The study included a warm-up activity (uncertainty training) 
followed by pre-test, scaffolding, and two post-test phases. 
Participants were assigned to one of two conditions for the 
scaffolding phase: counterfactual (n = 45, M age = 8.47, 23 
girls) or control (n = 43, M age = 8.44, 22 female girls). The 
order of all variables and variable sets were counterbalanced 
between participants.  
 
Uncertainty Training. Given that some of the prompts in the 
intervention phase required children to acknowledge their 
uncertainty about an outcome, we included an uncertainty 
training phase to ensure children were able to recognize and 
acknowledge their uncertainty. All children, regardless of 
condition, received the same uncertainty training. Using 
cards with various colors and suits, the experimenter placed 
a pair of cards face down, and turned over one card. Before 
revealing the second card, she asked the participant if they 
could be “sure or not sure” if the face-down card was the 
same or different as the face-up card. Regardless of the 
participant’s response, the experimenter instructed children 
that they cannot be sure if the two cards are the same, and that 
it is okay to answer the question in this way. The process 
repeated until the participants answered that they could not 
be sure three times. 
  
Pre-test. The experimenter placed the two ramps next to each 
other, directly in front of the participant, and explained that 
the two ramps were similar and worked the same way. She 
then showed participants how to operate and adjust the ramps 
along two of the variables (e.g. height of ramp and size of 
ball). The other two variables (e.g. ramp surface and run 
length) were fixed and not introduced until the post-test 
transfer phase. Participants were asked to demonstrate how 
to manipulate the ramps. If they did not set up the ramp 
correctly, the experimenter showed them again. All 
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demonstrations were performed with one ramp, and 
participants were reminded that the ramps were the same.  

To measure children’s ability to execute CVS, the 
experimenter asked them to show how they would find out if 
one variable plays a role in how far the ball travels down the 
ramp (e.g., “Can you show me how you would find out if the 
size of ball matters for how far the ball goes down the 
ramp?”). She told participants they had one chance to set up 
both ramps at the same time, and then repeated the question 
a second time. Participants were required to set up both ramps 
before launching the balls down each ramp one at a time. 
After each ball was launched, the experimenter labeled the 
outcome (e.g., “Look! The ball stopped on the yellow line.”) 
but did not compare between the two ramps.  

Using the same procedure, the experimenter then asked 
participants to determine if a second variable mattered for 
how far the ball would travel down a ramp (e.g., “Can you 
show me how you would find out if the height of the ramp 
matters for how far the ball goes down the ramp?”).  

Participants who controlled the correct variable received 1 
point for each question for a maximum score of 2. 
Participants who received a score of 2/2 at pre-test were 
excluded from the study (and the study was terminated at this 
point), because they already possessed an understanding of 
CVS (n = 24). Participants who received scores of 0 or 1 went 
on to the scaffolding phase.   

 
Scaffolding. Participants in this phase watched two videos of 
an actor exploring the ramps and were told that they would 
be asked about what they saw after each video. The actor in 
the videos manipulated the same two variables that 
participants were asked to isolate during the pre-test, using 
the same ramps. The video started with the actor stating that 
she was going to find out if a variable (e.g., height of the 
ramp) played a role in how far the ball travelled down the 
ramps. The actor then proceeded to set-up the ramps and 
labelled the set-up as she went along (e.g., “I'm going to set 
Ramp 1 to high”). After she set-up both ramps, she launched 
the balls one at a time and labeled the outcome by stating the 
color the ball landed on. At the end of the video she stated 
which ball (on Ramp 1 or Ramp 2) travelled farther. The 
experimenter then paused the video so that the participants 
could see the outcome of both ramps at the same time. The 
videos were identical across conditions; the only difference 
was in the question prompts children were asked after. 

In the counterfactual condition, participants were asked to 
imagine a change to the value of a variable (e.g., "Let’s 
imagine that she set Ramp 1 to low. Would the ball have 
travelled down the ramp farther on Ramp 1, farther on Ramp 
2, or you can't be sure?"). This imagined change would create 
a confounded (or uncontrolled) test. In the control condition, 
participants were asked to recall what had happened (e.g., 
"Let’s imagine again what happened to the ball on Ramp 1? 
Did the ball travel farther on Ramp 1, farther on Ramp 2, or 
you can't be sure?"). Children did not receive feedback on 
their responses during the scaffolding phase in either 
condition.  

In both conditions, a second video was shown highlighting 
the other variable (e.g., size of ball). In the counterfactual 
condition, the experimenter asked the participants to imagine 
a change to the value of this new variable (e.g., size of ball), 
creating another confounded test. In the control condition, the 
experimenter asked the participants the same question as 
before, but highlighted the other ramp (e.g., Ramp 2).  

 
Post-Test Same. The experimenter removed the laptop and 
placed the ramps side-by-side in front of the participant. This 
phase was identical to the pre-test, except participants were 
not asked to demonstrate how the ramps worked. Responses 
were coded in the same way, with participants receiving a 
maximum score of 2.  
 
Post-Test Transfer. The experimenter then told participants 
that the ramps can work in a different way. The two original 
variables were fixed (e.g., ramps could only be set to high, 
and only the big balls could be used) and two new variables 
were introduced (e.g., surface of the ramp and starting 
position for the ball). As in the pre-test, the experimenter 
showed participants how the new variables worked on the 
ramps and asked participants to demonstrate how to 
manipulate each new variable.  

The procedure was the same as the pre-test and post-test 
same phases except participants were asked two new 
questions about each of the new variables (e.g. “Can you 
show me how you would find out if the surface of the 
ramp/where the ball starts on the ramp matters for how far 
the ball goes down the ramp?”). Again, participants could 
receive a score up to 2 across the two test questions.  

In sum, participants were asked two questions each at pre-
test, post-test same, and post-test transfer, and received a 
score between 0 and 2 for the number of controlled tests they 
conducted in each phase. In each counterbalancing order, the 
pre-test and post-test same phases were identical, whereas the 
post-test transfer phase used two previously unencountered 
variables. The experimenter live-recorded with paper-and-
pencil, and later checked videos for accuracy. A second 
researcher coded 34% of videos, and inter-rater reliability 
was excellent (96.6% agreement, Fleiss’ k = 0.93, p < .001).  

Results 
We first tested whether there were differences between the 
two conditions at pre-test using a Chi-Square test of 
independence, and found no significant differences across 
conditions in pre-test score, p = .206. We also found no 
significant differences between genders (U = 926, p = .687) 
or the variable set participants received at pre-test (U = 902, 
p = .522), thus we do not consider these variables further. 

To investigate the change in children’s score (CVS score 
out of 2) from pre-test to (1) post-test same and (2) post-test 
transfer, we conducted two generalized estimating equation 
(GEE) analyses with multinomial distributions and 
cumulative logit-log link functions with condition 
(counterfactual or control) and age group (younger or older) 
as predictor variables.  
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For the GEE of pre-test vs. post-test same performance, 
there was a main effect of test, B = -2.56, SE = 0.56, Wald 
χ2(1) = 20.84, p < .001, such that children were 12.82 times 
more likely to receive a higher score at post-test same than at 
pre-test, Exp(B) = 0.78, 95% CI = [0.03, 0.23]. There was 
also a main effect of age, B = -1.66, SE = 0.76, Wald χ2(1) = 
4.78., p = .029, such that older children were 5.26 times more 
likely to receive a higher score than younger children, Exp(B) 
= 0.19 95% CI = [0.04, 0.84]. The main effect of condition 
was not significant, p = .436. The test phase by age category 
interaction was significant, B = 1.59, SE = 0.72, Wald χ2(1) 
= 4.85., p = .028, such that older children in the post-test same 
phase were 4.90 times more likely to receive a higher score 
than younger children in the post-test same phase, Exp(B) = 
4.90, 95% CI = 1.19, 20.13] All other interactions were non-
significant.  

For the GEE of pre-test vs. post-test transfer, there was 
again a main effect of test, B = -1.59, SE = 0.51, Wald χ2(1) 
= 9.70, p = .002, such that children were 4.90 times more 
likely to receive a higher score on the post-test transfer phase 
than the pre-test phase, Exp(B) = .204, 95% CI [0.08, 0.55]. 
There was also a main effect of age, B= -1.35, SE = 0.68, 
Wald χ2(1) = 3.92, p = .048, such that older children were 
3.85 times more likely to receive a higher score than younger 
children, Exp(B) = 0.26, 95% CI = [0.069, 0.987]. The main 
effect of condition was marginally significant, B = 1.31, SE 
= 0.67, Wald χ2(1) = 3.819, p = .051. Children in the 
counterfactual condition were 3.71 times more likely to 
receive a higher score than those in the control condition, 
Exp(B) = 3.71, 95% CI = [1.00, 13.78]. All interactions were 
non-significant.  

We conducted planned post-hoc comparisons to further 
investigate performance between groups at each test-phase 
using Chi-square tests of independence. Performance 
differed significantly between children in the counterfactual 
and control conditions at both post-test same 𝟀2(2) = 7.28, p 
= .026 and post-test transfer 𝟀2(2) = 6.04, p = .049. Table 1 
presents the relevant proportions of children who conducted 
0, 1, and 2 controlled tests in each test phase entered into the 
Chi-square analyses.   

 
Table 1: Proportion of children who conducted 0, 1, or 2 
controlled tests in each post-test phase (CVS Score). 

 
  CVS Score (/2) 
Post-test  Condition 0 1 2 
Same Counterfactual 11.1 33.3 55.6 
 Control 34.9 20.9 44.2 
Transfer Counterfactual 24.4 22.2 53.3 
 Control 41.9 30.2 27.9 

Finally, we considered the relation between children’s 
responses to counterfactual prompts in the scaffolding phase 
and their CVS scores, although we did not make predictions 
about any such relation. Recall that the correct answer to the 
counterfactual prompts was “can’t be sure”, because the 
counterfactual intervention created a confounded test. Of the 

45 children in the counterfactual condition, 13 (29%) 
answered “can’t be sure” to both prompts, 19 (42%) 
answered “can’t be sure” to 1/2, and 13 (29%) did not answer 
“can’t be sure” to either prompt. Children’s “can’t be sure” 
responses did not significantly correlate with their 
performance on any of the CVS tests, Spearman’s rho = -.121 
to -.231, p = .127 to .430. 

Discussion 
We proposed that prompting children to think 
counterfactually during a control-of-variables task would 
scaffold their performance by capitalizing on their underlying 
causal reasoning skills. The results of this study provide 
initial support for this proposal. Children given 
counterfactual prompts showed better performance on the 
post-test phases than those given control prompts, though 
these differences were non-significant on post-test same and 
marginally significant on post-test transfer in the omnibus 
analyses. Critically, when considering condition differences 
alone, children in the counterfactual condition performed 
significantly better than those in the control condition at both 
post-tests. The largest proportion of control group children 
scored 0/2 on both post-tests, whereas the largest proportion 
of counterfactual group children scored 2/2, as displayed in 
Table 1. 

Along with these condition differences, there was also an 
indication that the video demonstration alone improved 
children’s ability to control variables, given that we found 
significant main effects of test phase, but no condition by test-
phase interaction. The actor did not explicitly comment on 
the strategies she was using, and the demonstration was 
devoid of ostensive pedagogical signals (Csibra & Gergely, 
2009) that were present in many previous CVS studies 
(Schwichow et al., 2016). Future work may consider the role 
of similar demonstrations and counterfactual prompts 
separately to identify the extent to which they may yield 
different benefits.  

Our findings are surprising in light of previous studies, 
which found that children required more intensive instruction 
and scaffolding in order to improve, with some of these 
interventions even taking place over the course of several 
sessions (e.g., Schauble, 1996). Even with a subtle 
manipulation in the form of two counterfactual questions 
following a demonstration, children showed improvement in 
their ability to conduct a controlled test of a hypothesis. 

Children in the counterfactual condition were able to 
conduct a controlled test both on the variables they had 
already encountered and on two new variables, with more 
than half of children in the counterfactual condition scoring 
2/2 on both post-tests. In contrast, children in the control 
condition showed less evidence of transfer, with a minority 
of children scoring 2/2 in the post-test transfer phase.  

These findings provide preliminary evidence that 
counterfactual prompts may be a promising pedagogical tool 
for supporting CVS. However, these results do not allow us 
to pinpoint the precise mechanism by which counterfactuals 
may confer this benefit. We have suggested that 
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counterfactuals may serve as imagined interventions, helping 
learners to connect their intuitive causal reasoning abilities to 
the current task. This suggestion is in line with previous work 
emphasizing the relation between causal and counterfactual 
reasoning (e.g., Gopnik & Schulz, 2007; Sloman 2005; 
Gopnik & Walker, 2013).  

However, other work suggests that counterfactuals may 
have a general effect on reasoning by activating a “mindset” 
that is open to alternatives. Previous research shows that 
prompts to consider alternatives in the form of 
counterfactuals (Galinsky & Moskowitz, 2000) or multiple 
explanations (Hirt & Markman, 1995) have wide-reaching 
effects, with individuals showing generally debiased 
reasoning across a range of settings. Researchers studying 
these effects have suggested that counterfactuals activate a 
mental simulation mindset that breaks the reasoner free of a 
singular viewpoint or hypothesis and incites consideration of 
alternative, and potentially contrasting possibilities. In 
ongoing research, we are currently investigating whether 
children prompted with counterfactuals on one task (e.g., 
ramps) show improvement on a far-transfer task (e.g., 
pendulums) to better understand the potential mechanisms by 
which counterfactual prompts may support performance. In 
the present study, our counterfactual questions were about the 
experimental design and specifically pertained to the control-
of-variables process. It is an open question whether 
counterfactual questions about a peripheral or irrelevant 
feature of the task (e.g., the color of the ball) would scaffold 
performance. An alternative “mindset” account would 
predict that counterfactuals should be beneficial regardless of 
their focus. 

Our counterfactual prompts not only focused on the control 
of variables process, but also specifically invited children to 
imagine a confounded test. An alternate explanation for 
children’s success in the counterfactual condition may 
therefore be that by engaging children in imagining a 
confounded test, our prompts led them to recognize that such 
tests were inconclusive and that they should avoid producing 
such tests themselves. However, the lack of a relation 
between children’s “can’t be sure” responses and their ability 
to control variables suggests that children did not need to 
explicitly recognize the inconclusiveness of a confounded 
test in order to benefit from the process of thinking 
counterfactually. In other words, the effect of the 
counterfactual prompts appears to be distinct from the 
specific response they elicit. This finding aligns with research 
on children’s self-explanation showing that the process of 
generating explanations benefits children’s causal reasoning, 
regardless of the specific explanations they produce (e.g., 
Walker, Lombrozo, Legare, & Gopnik, 2014).  

Another possibility is that our counterfactual prompts drew 
children’s attention to both values of the variable that was 
held constant (e.g., "Let’s imagine that she set Ramp 1 to 
low” when she had set both ramps to high), whereas the 
control prompts did not (e.g., "Let’s imagine again what 
happened to the ball on Ramp 1”). This may have made 
children more likely to consider and control the alternate 

variable. In a follow-up study, we have adapted our control 
prompt to highlight both levels of the alternate variable to 
investigate whether this accounts for children’s better 
performance in the counterfactual condition.  

Although we are not yet able to identify the precise 
mechanism by which counterfactuals confer the benefits 
observed, these findings connect to a wider body of results 
that suggest that drawing children’s attention to alternatives 
benefits their scientific inquiry (e.g., Sodian et al, 1991; 
Engle & Walker, 2018). For instance, children in Sodian et 
al. (1991) were able to recognize a conclusive test of a 
hypothesis when presented with two contrasting hypotheses, 
and, as mentioned above, Engle and Walker (2018) found that 
counterfactual prompts scaffolded children’s ability to detect 
anomalies during causal learning. These results suggest that 
thinking of counterfactuals and alternatives may benefit a 
range of scientific inquiry skills. 

Conclusion 
Children prompted to think counterfactually showed 
improvements in their ability to conduct controlled tests of a 
hypothesis – an ability previous studies have suggested 
requires direct instruction or intensive scaffolding. These 
results support theoretical proposals about the role of 
counterfactuals in scientific reasoning, and suggest that 
counterfactuals may have educational utility. The prompts 
used in the current study are short and simple, and could 
easily be implemented in a range of formal and informal 
learning contexts.  
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Abstract 

This study investigated direct and indirect effects of executive 
functions (EF) on reading comprehension in 87 adolescents 
(mean age = 14.0 years, SD = 1.5). The operation span task 
was used to measure the updating aspect of working memory, 
the plus-minus task to measure task-switching, and the 
numerical Stroop task to measure inhibitory control. Literacy 
skills tasks assessed nonword decoding, text recall/inference, 
and passage comprehension. Regression models indicated that 
EF measures accounted for significant variance in literacy 
skills after controlling for age and fluid intelligence. Working 
memory was associated with passage comprehension, task-
switching with nonword decoding, and inhibitory control with 
nonword decoding as well as text recall/inference. Parallel 
mediation models tested for indirect effects of EF constructs 
via decoding and text recall/inference. Working memory 
showed direct and indirect effects on passage comprehension, 
the latter mediated by text recall/inference. Task-switching 
was associated with decoding, but its relation to passage 
comprehension was not significant. Inhibitory control showed 
indirect effects on passage comprehension via decoding and 
text recall/inference. Results indicate overlapping but distinct 
contributions of EF to literacy skills. 

Keywords: reading comprehension, literacy skills, decoding, 
text recall/inference, executive functions, working memory, 
task-switching, inhibitory control 

Introduction 
Reading comprehension is an active process that involves 

weaving together information contained within a text to 
construct a coherent, accurate representation of its meaning 
(Kintsch, 1994). Various theoretical models have proposed 
that reading comprehension relies on the interplay of literacy 
subskills, including decoding (i.e., mapping orthographic 
units onto phonological units), recall (i.e., activation of 
previously encountered information), and inference (i.e., 
drawing conclusions to make sense of information). These 
subskills, in turn, rely on sustained attention and other 
manifestations of executive functions (EF). The goal of the 
current study was to explore direct and indirect associations 
between EF, literacy subskills, and reading comprehension. 
Our purpose was to shed light on sources of individual 
differences in reading ability, which in turn inform theoretical 
models of reading.  

The simple view of reading identifies decoding and 
linguistic comprehension as two critical skills supporting 
readers in constructing meaning from text (Gough & Tunmer, 

1986; Hoover & Gough, 1990). Decoding involves the 
utilization of spelling-to-sound (grapheme-to-phoneme) rules 
to translate printed text into spoken language. Through 
decoding, readers are able to sound out words quickly and 
accurately, and thus gain fluency in recognizing letters in 
words and words in text.  

The dual route model (Coltheart, 2006) further 
distinguishes the processes involved in decoding words. 
According to this model, word reading occurs either through 
a lexical route, which involves accessing lexical 
representations through familiar spelling patterns, or through 
a non-lexical (phonological) route, which utilizes knowledge 
of letter-sound associations (i.e., phoneme-to-grapheme 
correspondence rules) to sound out words. Although the two 
routes are thought to be separable, readers utilize both routes 
in parallel, which may place considerable demands on EF.  

In addition to decoding, models of the development of 
reading emphasize the importance of text recall and inference 
skills (Cain, Oakhill, & Lemmon, 2004; García & Cain, 
2014). The construction-integration model outlines the 
process by which readers construct meaning from text 
(Kintsch & Mangalath, 2011): Readers achieve coherence by 
organizing information across sentences and linking it with 
broader contextual and background knowledge (Graesser, 
Singer, & Trabasso, 1994; Kintsch & Mangalath, 2011). Text 
representations may encode information verbatim or may 
encode the gist (Reyna, Corbin, Weldon, & Brainerd, 2016). 
In constructing such representations, readers rely on recall 
and inferential processes that bridge information (e.g., to 
resolve ambiguities, identify pronominal referents, establish 
causal relations), bring together verbatim and gist 
representations, and subsequently validate inferences against 
general knowledge (Singer, Harkness, & Stewart, 1997). 
Such operations are demanding of cognitive resources, 
especially working memory (Peng et al., 2018).  

EF and the Development of Literacy Skills 
EF broadly refers to a constellation of cognitive skills 

thought to be essential in the planning, monitoring, and 
control of cognitive processes. According to the unity and 
diversity framework, EF has three main components: 
working memory (also referred to as updating), task-
switching, and inhibitory control (Miyake et al., 2000). The 
current study focused on individual differences in these three 
EF components and how they each influence decoding, text 
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recall/inference, and reading comprehension in adolescents. 
As children become more fluent readers capable of 
recognizing familiar words with automaticity, less cognitive 
effort needs to be exerted to decode text, thus freeing up 
cognitive resources to better comprehend and critically 
understand the meaning behind the text (Kuhn et al., 2010; 
LaBerge & Samuels, 1974).  

Working memory involves maintaining and/or updating 
information in response to task demands (Baddeley, 2012). 
As shown in a recent meta-analysis (Follmer, 2018), working 
memory appears to have a moderate positive association with 
reading comprehension (r = .38, 95% CI [.34 : .43]). It is less 
clear whether working memory bears an equally strong 
relation to decoding skill. In a study with 7- to 8-year-olds, 
Oakhill, Cain, and Bryant (2003) found that measures of 
working memory, text integration, and metacognitive 
monitoring accounted for individual differences in reading 
comprehension, whereas performance on phoneme deletion, 
a phonological awareness task,  explained variance in word 
reading. Their findings suggest that working memory may 
have a limited association with decoding, and a more direct 
association with reading comprehension. 

Task-switching, or the ability to shift between different 
conceptual representations and rule sets, supports a wide 
variety of academic tasks including reading (Best, Miller, & 
Jones, 2009). Meta-analyses have reported a significant, 
albeit weak, association (r = .21, 95% CI [.11 : .31]) between 
task-switching and reading achievement in children (Yeniad, 
Malda, Mesman, van Ijzendoorn, & Pieper, 2013) and a 
moderate correlation (r = .39, 95% CI [.20 : .56]) between 
task-switching and reading comprehension in participants 
ranging from age 6 years to adults (Follmer, 2018). In a study 
involving 1st and 2nd graders, Cartwright et al. (2017) found 
that variation in reading comprehension was associated with 
performance on a color-shape cognitive flexibility task (a 
measure of task-switching), even after accounting for 
decoding ability. To date, few studies have examined direct 
associations between decoding and task-switching, though 
there is some evidence of a significant, albeit weak, 
association (Kieffer, Vukovic, & Berry, 2013). 

To construct accurate text representations, readers also 
need to suppress competing sources of information and 
interpretations that may be concurrently activated 
(Gernsbacher & Faust, 1991). The mechanism of suppression 
is thought to stem from inhibitory control processes. An 
association between reading comprehension and inhibitory 
control has been reported in various studies with children 
(e.g., Kieffer et al., 2013), although a recent meta-analysis 
(Follmer, 2018), spanning ages from 6 years to adults, 
reported that the association between reading comprehension 
and inhibitory control was relatively weak (r = .21, 95% CI 
[.13 : .30]). The strength of this association in decoding is not 
well established. 

Control Variables: Fluid Intelligence and Age 
Over childhood and adolescence, reading ability typically 

improves. This age-related trend likely stems from 

accumulated experience with oral and written language in the 
context of formal education (Stanovich, 1986), as well as 
maturation of linguistic and cognitive abilities, such as 
improved lexical access (Logan, Schatschneider, & Wagner, 
2011) and EF (Christopher et al., 2012). Prior research also 
suggests that fluid intelligence, i.e., the ability to solve novel 
reasoning problems, may correlate with specific EF 
components (Brydges, Reid, Fox, & Anderson, 2012), as well 
as early literacy skills (Blair & Razza, 2007). However, other 
studies suggest that individual differences in EF, most 
notably in working memory, largely account for the 
contribution of fluid intelligence to literacy skills in children 
and adolescents (Alloway & Alloway, 2010). In addition, not 
all EF components appear to be equally correlated with 
measures of fluid intelligence. Some prior research has 
reported a strong association between fluid intelligence and 
working memory (Unsworth, Fukuda, Awh, & Vogel, 2014), 
but not between fluid intelligence and task-switching or 
inhibitory control (Friedman et al., 2006). Taken together, 
previous research suggests the need to control for age and 
fluid intelligence in efforts to elucidate the unique 
contribution of EF components to reading skills, including 
decoding, text recall/inference, and reading comprehension. 

Research Objectives 
The current study used a battery of assessments to explore 

relations between components of EF (working memory, task-
switching, inhibitory control) and literacy skills (decoding, 
text recall/inference, and passage comprehension). First, we 
sought to determine the extent to which the three components 
of EF were uniquely and directly associated with each 
literacy skill after controlling for other factors known to be 
related to reading ability (i.e., fluid intelligence and age). 
Second, we examined indirect associations between each EF 
component in relation to passage comprehension as mediated 
by nonword decoding and text recall/inference. We 
hypothesized that: (1) some aspects of EF would account for 
variation in the reading subskills of nonword decoding and 
text recall/inference; (2) some aspects of EF would account 
for variance in reading comprehension; and that (3) indirect 
associations between aspects of EF and reading 
comprehension would emerge by way of the reading subskills 
of nonword decoding and text recall/inference. 

Method 

Participants 
Teachers from partnering schools (two middle schools and 

two high schools in New York City) brought their classes to 
a university research lab where their students were invited to 
participate in various computer-based studies including the 
current study. Only students whose parents had provided 
written consent were eligible to participate. The sample 
comprised of 87 students in grades 6 to 12 (49 females, 35 
males, and 3 who did not disclose gender), ranging in age 
from 12 to 17 years (mean = 14.0, SD = 1.5).  
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Tasks and Measures 
Working Memory. The operation span task, a complex 

span measure shown to correlate with moderately 
challenging to difficult arithmetic and reading tasks 
(Unsworth, Heitz, Schrock, & Engle, 2005), was used to 
assess working memory. Reliability on operation span tasks 
has been found to range between .70 to .80, depending on 
scoring methods (Conway et al., 2005), or approximately .77 
using split-half reliability coefficient alphas (Kane et al., 
2004). In the task used here, participants were instructed to 
perform simple arithmetic operations (e.g., (3 x 4) + 11 = ?) 
and indicate whether an answer was correct or incorrect. 
Between each arithmetic problem, participants were shown a 
letter to remember. The task presented three blocks of trials, 
with each trial consisting of an arithmetic problem followed 
by a letter. At the end of each block, the participant was asked 
to recall the letters in that block in the order presented. As an 
index of working memory, we calculated the proportion of 
correctly ordered letters across the three blocks of trials.  

Task-switching. The plus-minus task was given as a 
measure of task-switching (Miyake et al., 2000); reliability of 
scores on this task has been estimated as approximately .60 
using split-half reliability (Del Missier, Mäntylä, & Bruine de 
Bruin, 2010). In our version of the task, participants were 
shown three lists of 30 two-digit numbers and asked to 
perform numerical computations as quickly as possible on 
each number in the list. For List 1, participants were 
instructed to add 3 to each two-digit number; for List 2, they 
were instructed to subtract 3 from each number; for List 3, 
they were instructed to alternate between adding or 
subtracting 3 from each number. Standardized mix cost 
scores (z-scores) were used as an index of task-switching, 
based on prior studies (e.g., Miyake et al., 2000).  

Inhibitory Control. We administered a shortened version 
of the numerical Stroop task (McVay & Kane, 2012) as a 
measure of inhibitory control. Reliability estimates of the 
numerical Stroop task indicate sufficient reliability 
(Cronbach α = .71; McVay & Kane, 2012). Our numerical 
Stroop task presented three blocks of trials in which 
participants were asked to identify the number of figures 
shown in an image on the computer screen. In Block 1 (five 
trials), the participant was shown a series of Xs (ranging from 
1 to 9) and instructed to indicate the number of Xs presented 
(e.g., 5 in response to X X X X X). In Block 2 (five trials), 
they were shown a series consisting of a repeated digit 
(ranging from 1 to 9), with the length of the series also 
varying between 1 and 9 and consistent with the number of 
digits present (e.g., 4 4 4 4). In Block 3 (five trials), the digit 
and the number of digits in the series was never the same 
(e.g., 5 5 5) with the participant instructed to indicate the 
number of digits while ignoring the digit value. We 
calculated the number of correct responses in Block 3 as an 
index of inhibitory control.  

Decoding Ability. We used a nonword decoding task to 
assess participants’ ability to apply knowledge of grapheme-
phoneme correspondences to pronounce letter strings. The 
nonword decoding task was based on an orally administered 

task, previously developed for research purposes (Hogan, 
Catts, & Little, 2005). It used five nonwords that followed 
phonotactic constraints of standard American English: bos, 
bune, cim, gep, phoncher. Participants were shown each 
nonword along with five options for a phonetically equivalent 
alternate spelling, with instructions stating, “Select the 
spelling that most closely matches the pronunciation of the 
word provided.” For the item where the target nonword was 
bos, options included bose, boz, doz, pose, and doze (correct 
response is boz). Scores were calculated as the proportion of 
items answered correctly.  

Text Recall and Inference. The component reading 
processes task is a multicomponent assessment of the ability 
to integrate knowledge while comprehending text (Hannon & 
Daneman, 2001). We used a modified computerized version 
that assessed participants’ ability to recall information and 
make inferences across statements. Participants were given 
two three-sentence paragraphs describing relations between 
three nonwords (nouns), with each sentence relating a pair of 
nonwords (e.g., A RILI resembles a DARF but is slower and 
larger.) and appearing on a separate line. Participants read 
the first paragraph and answered four questions, then read the 
second paragraph and answered four additional questions. 
Participants were given up to 40 seconds to read each 
paragraph before being prompted with a set of questions that 
were presented without the paragraph in view.  

Subscores (proportions of correct responses) calculated for 
each question type (i.e., recall and inference) were highly 
correlated, rp(85) = .49 , p < .001, after controlling for age. 
Subsequently, scores for text recall/inference were computed 
as the average between the two subscores.  

Passage Comprehension. We administered a practice test 
from the New York State 12th grade English Language Arts 
Regents Exam (NYSED, 2012). The test presented two 
passages (one expository, one narrative) of equivalent  length 
(i.e., 38 and 41 sentences; 551 and 559 words). Each passage 
had an accompanying 7-item multiple-choice test, with four 
response options per item. Accuracy (percentage correct) was 
used as the measure of reading passage comprehension.  

Fluid Intelligence. A set of Raven’s progressive matrices 
(Raven, 2000) was used to assess nonverbal fluid 
intelligence. The task consisted of five incomplete visual 
matrices, each with 5 to 8 possible options from which to 
choose a pattern to complete the matrix. The task has been 
shown to have robust indicators of reliability, with a test-
retest Pearson correlation coefficient of .93 (Burke, 1972). 
Scores were computed as the proportion of correct responses. 

Background Variables. A demographics questionnaire 
was administered following the research tasks. It included 
questions about the participant’s gender, age, and first 
language learned (coded as English or not English). These 
variables were included as possible control variables in 
preliminary regression models predicting literacy skills. 

Procedure 
Upon arrival to the lab, students were provided with 

information about the study. After assenting to participate 
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they were seated at computer stations to complete the 
computer-based tasks, administered via Qualtrics software. 
Students completed the reading passage comprehension test 
either before or after the computer-based tasks; this was 
randomized across participants. 

Results 
Table 1 presents descriptive statistics for the assessments 

of literacy skills and EF tasks.  
 

Table 1. Descriptive statistics (N=87). 
Measure M (SD) 
Raven’s Progressive Matrices 61.6% (18.1%) 
Executive Functions  
  Operation Span Average 47.4% (28.4%) 
  Plus-Minus Mix Cost (z) 0.00 (1.00) 
  Numerical Stroop 48.5% (38.7%) 
Literacy Skills  
  Nonword Decoding 52.4% (28.4%) 
  Text Recall/Inference 52.7% (22.6%) 
  Reading Passage Comprehension 68.4 % (20.9%) 

Preliminary Correlational Analyses 
We examined partial correlations (controlling for age) 

across measures of literacy skills. After adjustment for 
multiple comparisons (Bonferroni-controlled α = .0167), 
significant correlations were observed between the scores on 
the passage comprehension test and both nonword decoding, 
rp(85) = .37, p < .001, and text recall/inference, rp(85) = .44, 
p < .001. Nonword decoding and recall/inference were not 
significantly associated, rp(85) = .19, p = .084. 

We also examined partial correlations (controlling for age) 
between measures of EF (operation span for working 
memory, mix costs on the plus-minus task for task-switching, 
and numerical Stroop for inhibitory control) and fluid 
intelligence (Raven’s progressive matrices). After adjustment 
for multiple comparisons (Bonferroni-corrected α = .0083), 
none of the partial correlations were statistically significant, 
see Table 2. There was a trend towards an association 
between fluid intelligence and working memory, rp(85) = .27, 
p = .012. 

 
Table 2. Descriptive Statistics and Age-controlled  

Partial Correlations for EF Variables (N=87) 
 WM TS IC 

  Working Memory       
  Task-switching –.03    
  Inhibitory Control –.02 .07   
  Fluid Intelligence .27 –.12 .18 

WM: Operation Span, TS: Plus-Minus Mix Cost (z-score), 
IC: Numerical Stroop 

Regression Analyses of Reading Subskills 
Regression models were used to assess whether EF 

components accounted for variation in literacy skills.  

Nonword Decoding. The overall model was significant, 
F(6, 80) = 6.59, p < .001, R2 = 33. Task-switching and 
inhibitory control were significantly associated with nonword 
decoding, see Table 3.  

 
Table 3. Multiple regression with nonword decoding 

 as the outcome measure (N=87). 
Variable  β SE t p 
  Age   .18 .02 †1.68 .098 
  Fluid Intelligence   .19 .16 †1.81 .074 
  Recall-Inference   .00 .15 –.03 .974 
  Working Memory   .08 .11 .73 .468 
  Task-switching   .27 .03 **2.87 .005 
  Inhibitory Control   .31 .08 **3.06 .003 

***p < .001, **p < .01, *p < .05, †p < .10 
 
Component Reading Processes: Recall/Inference. The 

overall model was significant, F(6, 80) = 8.81, p < .001, R2 = 
.40. Age, working memory, and inhibitory were significantly 
associated with text recall/inference, see Table 4. 

 
Table 4. Multiple regression with text recall/inference  

as the outcome measure (N=87). 
Variable β SE t p 
  Age .32 .01 **3.22 .002 
  Fluid Intelligence .13 .12 1.32 .190 
  Nonword Decoding .00 .08 –.03 .974 
  Working Memory .21 .08 *2.14 .035 
  Task-switching .07 .02 .70 .483 
  Inhibitory Control .27 .06 **2.78 .007 
***p < .001, **p < .01, *p < .05 

 
Reading Passage Comprehension. The overall model 

was significant, F(7, 79) = 10.34, p < .001, R2 = .48. Fluid 
intelligence, nonword decoding, text recall/inference, and 
working memory were significantly associated with scores 
on the reading passage comprehension test, see Table 5.  

 
Table 5. Multiple regression with reading passage 
comprehension as the outcome measure (N=87). 

Variable β SE t p 
  Age –.03 .01 –.29 .776 
  Fluid Intelligence .21 .11 *2.25 .027 
  Nonword Decoding .21 .07 *2.11 .038 
  Recall-Inference .29 .10 **2.77 .007 
  Working Memory .28 .07 **3.01 .004 
  Task-switching .08 .02 .98 .332 
  Inhibitory Control –.00 .05 –.02 .987 
***p < .001, **p < .01, *p < .05 

Mediation Analyses 
Mediation analyses were run to test whether EF 

components had indirect associations with reading  passage 
comprehension via nonword or text recall/inference skills. 
Constraints due to the number of observations and free 
parameters prevented a single model from being analyzed lest 
it be under-identified (Kline, 2015). Thus, three separate 
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parallel mediation models tested for direct and indirect 
effects of EF measures on reading passage comprehension; 
see Figure 1 for the analytic model. Note that in the models 
for each EF construct, age and fluid intelligence were added 
as covariates associated with passage comprehension.  

 
Figure 1. Parallel mediation model showing a direct path 
from EF skill to reading passage comprehension, and indirect 
paths through nonword decoding and text recall/inference. 
Each EF skill was entered as a predictor into one of three 
separate models with this form. 

 
Indirect Effects of Working Memory. The first 

mediation analysis confirmed a statistically significant 
association between working memory and reading passage 
comprehension, total effect: β = .46, 95% CI [.45, .48], SE = 
.07, z = 4.71, p < .001; direct effect: β = .29, 95% CI [.28, 
.31], SE = .07, z = 2.97, p = .003. Tests of indirect effects 
indicated significant mediation via text recall/inference, β = 
.12, 95% CI [.11, .13], SE = .03, z = 2.62, p = .009. The 
indirect effect by way of nonword decoding was not 
significant, β = .05, 95% CI [.05, .06], SE = .02, z = 1.72, p = 
.087. These results suggest the association between working 
memory and passage comprehension is direct; however, text 
recall/inference partially mediates the association. 

Indirect Effects of Task-switching. The mediation 
analysis failed to provide evidence that task-switching ability 
was associated with passage comprehension, total effect: β = 
.16, 95% CI [.15, .16], SE = .02, z = 1.56, p = .12, direct 
effect: β = .09, 95% CI [.08, .09], SE = .02, z < .01, p = .36.  

Indirect Effects of Inhibitory Control. The mediation 
analysis indicated that inhibitory control was associated with 
reading passage comprehension, but the effect was indirect; 
for the total effect: β = .22, 95% CI [.21, .23], SE = .05, z = 
2.14, p =.032; for the direct effect: β = –.06, 95% CI [–.07, –
.04], SE = .06, z = –.39, p = .60. Tests of mediation indicated 
a significant indirect effect of inhibitory control on passage 
comprehension via nonword decoding, β = .12, 95% CI [.11, 
.12], SE = .03, z =2.41, p = .016, and a significant indirect 
effect of inhibitory control on passage comprehension via 
text recall/inference, β = .16, 95% CI [.15, .17], SE = .03, z = 
2.93, p = .003. These results suggest that inhibitory control 
influences passage comprehension through its associations 
with both decoding and text recall/inference abilities. 

Discussion 
The current study aimed to identify relations between 

specific EF components (working memory, task-switching, 
inhibitory control) and literacy skills (nonword decoding, text 
recall/inference, and reading passage comprehension) in 
adolescents. Understanding sources of individual differences 
in literacy skills has implications for developing 
interventions and refining theoretical models of reading. 
Such research is urgent given estimates that 1 out of every 10 
children in the United States experiences reading difficulties, 
even among children with average or above average levels of 
intelligence (National Institutes of Health, 2010). 

As a preliminary step in modeling effects of EF on literacy 
skills, we ran correlational analyses. These indicated a lack 
of unity across EF measures; hence the EF constructs were 
treated as separable in subsequent models. After accounting 
for influences of age and fluid intelligence, regression 
analyses identified a direct relation between working 
memory and reading passage comprehension. This result 
implicating working memory in performance of a complex 
and integrative reading comprehension task is in line with 
previous literature (Peng et al., 2018). Working memory also 
exhibited an indirect association with reading passage 
comprehension by way of text recall/inference, such that the 
higher one’s operation span, the better one is able to read text 
fluently and make inferences based on its meaning, and 
subsequently construct accurate text representations.  

Part of the novelty of our findings is in showing that 
working memory may play a lesser role in lower-level 
literacy skills, such as nonword decoding, than in higher-
level skills, such as text recall/inference processes and 
reading passage comprehension. Our results corroborate 
Oakhill et al. (2003) in finding a significant direct association 
between measures of working memory and reading 
comprehension, but not between working memory and 
decoding. However, such an association has been reported by 
others (Christopher et al., 2012; Kieffer et al., 2013). In light 
of these mixed findings, a meta-analysis may be warranted to 
ascertain the relation of working memory to decoding.  

Unlike working memory, task-switching was significantly 
associated only with nonword decoding. This is consistent 
with prior work that found an association between task-
switching and word reading (e.g., Cartwright, 2012), and 
suggests that the ability to shift attention is instrumental for 
retrieving and applying letter-sound associations. Although 
the current study focused only on nonword decoding, we 
expect task-switching to impact decoding more generally. In 
relation to the dual-route model (Coltheart, 2006), readers 
must flexibly alternate between reliance on the lexical and 
nonlexical routes as they encounter both familiar and 
unfamiliar words. Within the more transparent French 
orthography, task-switching has been found to correlate with 
decoding (Colé, Duncan, & Blaye, 2014), suggesting an 
association independent of orthographic depth. 

Inhibitory control was associated with nonword decoding 
and with text recall/inference abilities. In contrast to working 
memory, inhibitory control did not show a direct relation to 
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passage comprehension. These findings are consistent with a 
previous large-scale study of adolescents that also found 
inhibitory control to be associated with decoding ability, but 
not with reading comprehension (Arrington, Kulesz, Francis, 
Fletcher, & Barnes, 2014). Thus, as in the current study, the 
effect of inhibitory control on reading comprehension 
appeared to be indirect and mediated by decoding ability.  

Limitations 
The simple view distinguishes decoding ability and 

linguistic comprehension as factors underlying reading 
comprehension. However, as we did not assess linguistic 
comprehension (e.g., receptive vocabulary and grammar) 
independently of text, it is difficult to apply the current 
findings to this framework. We also recognize that some 
cognitive assessments may be poorly suited for individual 
differences research (Hedge, Powell, & Sumner, 2017); 
hence future work should not rely on single measures to 
assess underlying EF constructs (see Denckla, 1994).  

Conclusions 
Our findings indicate that different components of EF have 

distinct relations with literacy skills in adolescents, which 
were evident after accounting for a number of control 
variables previously shown to influence reading abilities. We 
did not find evidence in support of unity across EF constructs. 
Given the complexity inherent to both reading and EF, it is 
perhaps not surprising that the relation between these 
cognitive processes is multifaceted. Our findings suggest that 
problems with a number of different EF skills may underlie 
reading difficulties in adolescents. Prior research has found a 
paucity of evidence that EF may be targeted to improve 
overall academic skills such as reading (Jacob, & Parkinson, 
2015), and that it has limited potential in identifying 
responsiveness to targeted academic skills interventions 
(Miciak, Cirino, Ahmed, Reid, & Vaughn, 2019). 
Nevertheless, as the current study indicates, there is evidence 
of associations between EF and reading skills. Translating 
these findings into interventions to support reading 
comprehension will require further work. 
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Abstract 
We examined whether probability weighting in decisions made 
under risk changed depending on the difference in evaluation 
methods. In particular, we focused on two methods, joint eval-
uation (JE) and separate evaluation (SE). We conducted a be-
havioral experiment and found that participants put more prob-
ability weight on small probability when using the SE method 
than when using JE, and that for large probabilities, the inverse 
was observed (i.e., participants put more weight in JE). We an-
alyzed these results using a cognitive model and found that par-
ticipants’ subjective value of money does not change owing to 
differences in evaluation methods. However, beliefs concern-
ing uncertain events shifted depending on evaluation methods, 
which led to the differences in probability weight. In this paper, 
we also discuss psychological mechanisms that produce differ-
ent judgments or evaluations between SE and JE. 

Keywords: probability weight; separate evaluation; joint eval-
uation; computer simulation; cognitive model of decision mak-
ing 

Introduction 
It is well known that judgments change greatly depending on 
the difference in the evaluation methods. In the present study, 
we focused on one of the most studied topics, the difference 
between separate evaluation (hereafter, SE) and joint evalua-
tion (hereafter, JE; Hsee, 1996; Hsee, Loewenstein, Blount, 
& Bazerman, 1999). Hsee (1996) showed that preference re-
versals by SE and JE occur in several contexts. Imagine peo-
ple evaluating the worth of the following two dictionaries: 
 
Dictionary A: Number of entries, 10,000 
Dictionary B: Number of entries, 20,000 (cover is broken) 
 
When they evaluate dictionaries A and B at the same time 
(i.e., JE), they may easily spot that there is a difference in the 
number of entries, and they may be attracted by the number 

of entries in Dictionary B. Thus, they may evaluate Diction-
ary B as having a higher price than Dictionary A. However, 
if people evaluate these dictionaries separately (i.e., SE), they 
may not notice the difference in the total number of entries 
(they may feel that either is enough), but they may mind the 
broken cover of Dictionary B. Thus, they may value Diction-
ary A as having a higher price than Dictionary B. 

We predicted that shifts in evaluations by JE and SE 
might occur in the evaluation of probabilistic information. 
Previous studies on decisions under risk have shown that peo-
ple put unique weights (i.e., non-linear weight) on probabil-
istic information in making decisions (Kahneman & Tversky, 
1979; Tversky & Kahneman, 1992). For example, in deci-
sions under risk, although people tend to be highly sensitive 
to differences in the end point (e.g., the difference between 
0% and 10%, or differences between 90% and 100%), they 
tend to be less sensitive to differences in the middle degree 
(e.g., the difference between 30% and 40%). This finding 
suggests that sensitivity to differences is not constant. Recent 
studies have also showed that probability weighting is con-
structed through experimental procedures. In particular, dif-
ferent sets of probabilistic values presented in experimental 
tasks induce different probability weighting (e.g., Stewart, 
Reimers, & Harris, 2014; Walasek & Stewart, 2015). 

Based on these previous findings, we predicted that 
differences in evaluation between JE and SE would change 
the probability weighting. If so, then what differences will be 
generated between JE and SE? In evaluating a certain proba-
bility value, people may refer to their probabilistic beliefs. 
For example, in evaluating 30% in a probabilistic event, peo-
ple may refer to their probabilistic beliefs (i.e., how likely is 
the event to occur) and compare 30% with that belief. If they 
believe that the event usually occurs with high probability, 
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they may judge 30% as “not enough.” In contrast, if they be-
lieve that the event usually occurs with low probability, they 
may judge 30% as “enough.” Then, what is the nature of peo-
ple’s belief about probabilistic events? Stewart, Chater, and 
Brown (2006) showed that when people communicate prob-
abilistic information using verbal expressions such as “likely” 
or “impossible,” they tend to use highly extreme expressions 
such as “never” (representing 0%) or “always” (representing 
100%). This finding suggests that people tend to easily imag-
ine event occurrences or non-occurrences. In other words, 
people may refer to “black and white” probabilistic beliefs 
when evaluating probability. 

We predicted that this would be true in evaluations 
using the SE method, but that it may not be true in evaluations 
using the JE method. In JE, people are presented with some 
probabilistic values at the same time, and they can compare 
these values. Thus, people may refer to probabilistic infor-
mation in a continuous way. To the best of our knowledge, 
no previous studies have examined the above issue. In the 
present study, using a behavioral experiment and cognitive 
modeling, we examined whether probability weighting 
would shift depending on differences in the evaluation 
method between SE and JE. In the following section, we re-
port the results of our behavioral experiment. We then report 
our analyses based on cognitive modeling. 

Behavioral experiment 
We examined whether probability weighting would shift due 
to using different evaluation methods—specifically, JE or 
SE—in a gambling task. 

Method 
Participants. We recruited 682 students as participants. 
Task, stimulus, and procedure. We followed the method in 
Gonzalez and Wu (1999) to conduct the following task: Par-
ticipants were asked to make a choice between a gamble that 

gets 10,000 yen (around $100) with certain probability p or 
sure gain. Figure 1 shows an example of the task. For exam-
ple, participants choose one of two options: 100% chance of 
winning 5,000yen or a 30% chance of winning 10,000 yen. 
When they choose to a sure option, the monetary value of the 
option decreased: “you can get 4,500 yen.” Amounts of sure 
gain ranged from 9,500 yen to 500 yen. As seen in Figure 1, 
the choice should change from a sure option to a gamble, and 
in the change point, we can assume that there is an amount of 
money to which a person is indifferent about getting a sure 
gain or playing the gamble (i.e., certainty equivalent, hereaf-
ter, CE). We assumed that CE was the median of the change 
point (in Figure 1, CE was assumed to be 1,750 yen). For the 
probability of the gambles, we set 11 values: 1%, 10%, 20%, 
30%, 40%, 50%, 60%, 70%, 80%, 90%, and 99%. 

In the JE group (n = 47), participants were asked to 
answer the choices for the 11 probabilities. At first, they were 
instructed to answer the choices for 11 probabilities and then 
check their choices for each while answering the questions. 
In the SE group (n = 635), they were presented with one of 

 
Figure 1. A stimulus for measuring CE. The checks 
indicate the participant’s selection. 

 

Figure 2.  Mean CEs for 11 probabilities in the two groups. 
Error bars show standard deviation. 

Table 1. Results of statistical analyses about the difference 
in CE between the two groups.  

Probability t-test Effect size 
(d) 

1 t (99) = 4.00 p = .001 0.80 
10 t (106) = 4.23 p < .001 0.82 
20 t (109) = 2.45 p = .174 0.47 
30 t (118) = 0.68 p = .999 0.13 
40 t (95) = 0.01 p = .999 0.00 
50 t (93) = 2.58 p = .125 0.53 
60 t (111) = 0.80 p = .999 0.15 
70 t (101) = 0.19 p = .999 0.04 
80 t (98) = 1.28 p = .999 0.26 
90 t (99) = 2.13 p = .392 0.42 
99 t (101) = 3.99 p = .001 0.79 

Note. p-value was adjusted with Bonferroni’s method. 
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the 11 probability gambles and answered the choices for the 
probability. 

Results 
Figure 2 shows mean CEs for 11 probabilities in the two 
groups. We found that the CEs differed between the two 
groups. In particular, in the low-probability range (1–20), the 
CE was higher for the SE group than in the JE group, sug-
gesting that participants in the SE group applied more proba-
bility weight than those in the JE group. However, this trend 
reversed in the high-probability range (80–99), suggesting 
that participants in the JE group applied more probability 
weight than those in the SE group (as to the statistical anal-
yses of CEs, see Table 1). 
 Taken together, the difference in evaluations be-
tween the JE and SE groups induced different probability 
weighting. In the following sections, we report the analyses 
of cognitive processes using a cognitive model. 
 

Analyses of cognitive processes based on the  
cognitive model 

Cognitive model of decision making: Decision by 
Belief Sampling (DbBS) 
In this section, we introduce the decision model, called the 
decision by belief-sampling model (hereafter, DbBS; Honda, 
Matsuka, & Ueda, 2017). This model was proposed based on 
the decision by sampling model (DbS; Stewart, Chater, & 
Brown, 2006; Stewart, 2009). In the DbS model, subjective 
attribute values are constructed by a series of binary, ordinal 
comparisons to a sample of attribute values that reflect the 

immediate decision context and real-world distribution. The 
subjective value for a target is calculated as follows: 

𝑟 = 	
𝑅 − 1
𝑁 − 1 
 

(1) 

where r (0 ≤ r ≤ 1) denotes the subjective value for a target, 
and R denotes the rank of the target within the decision sam-
ple of N items. In this model, if the decision sample differs, r 
varies in the relationship between R and the decision sample. 
For example, imagine the subjective value for 60%. When 
decision samples are 10%, 20%, 30%, 30%, and 70%, the 
subjective value is r = (5-1)/(6-1) = 0.8. In contrast, in deci-
sion samples of 20%, 30%, 70%, 80%, and 90%, the subjec-
tive value is r = (3-1)/(6-1) = 0.4. That is, even when the tar-
get has the same attribute value, the subjective value varies 
depending on the decision samples. Previous studies have 
shown that this model can explain evaluations that vary de-
pending on the samples (e.g., Stewart, Chater, Stott, & 
Reimers, 2003; Stewart, Reimers, & Harris, 2014). 

DbBS is a model representing the subjective evalu-
ation of probability. DbBS has two assumptions. First, the de-
cision maker (DM) refers to the probabilistic belief samples 
in making decisions, and these samples represent the DM’s 
probabilistic belief of an event’s occurrence. For example, 
imagine the probable success rates of medical procedures for 
a serious disease and for appendicitis, respectively. Generally, 
people believe that the probability of success in treating a se-
rious disease is low compared to the probable success of 
treating something simple, like appendicitis (Honda & 
Matsuka, 2014). We assume that the DMs refer to belief sam-
ples according to their probabilistic beliefs. We represent 
these beliefs using beta distributions (see the four examples 

 

Figure 3.  Summaries of DbBS. (a) Probabilistic belief regarding an uncertain event. (b) Subjective value in DbBS. This is 
represented with the cumulative distribution function (CDF) of the beta distribution. 
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of DMs’ subjective beliefs in Figure 3[a]). Example 1 repre-
sents the belief such that an event will occur or not (people 
refer to event occurrence and nonoccurrence). Likewise, in 
Examples 2 and 4, the DMs have the belief such that the event 
will happen with a low or high probability. Example 3 repre-
sents the belief that an event has a 50% chance of occurring. 
Thus, beta distributions can represent extensive kinds of be-
liefs about uncertain events. As a second assumption, a sub-
jective value for a target is constructed by the comparison be-
tween the target value and the belief samples. Figure 3(b) 
shows subjective values calculated by the DbBS model. 
Given that beta distributions represent beliefs about uncertain 
events, subjective values correspond to values in the cumula-
tive distribution functions (CDF) of beta distributions. 
 Using DbBS, we estimated the beliefs participants 
had in answering the gambling task in the behavioral experi-
ment. In particular, we focused on the difference in beliefs 
produced between participants in the JE and SE groups. 

Parameter estimation 
In the gambling task of the behavioral experiment, when CE 
is y yen for the gamble that can win 10,000 yen with proba-
bility p, we assumed that the following relation: 

𝑣(𝑦) = 	𝑣(10000)𝑤(𝑝) 
 

(2) 
where v is a value function, represented with v(x) = xα, and 
w(p) is a subjective weight for probability p. In this study, 
w(p) is represented by subjective value according to DbBS. 
 With the above assumptions, we estimated parame-
ters for value function (i.e., α) and two parameters of the beta 
distribution whose CDF best explains the choice patterns in 
gambling task. 

In the JE group, we estimated the best parameters 
based on the choice patterns for the 11 probabilities. In this 
estimation, we conducted a grid search; for α, from 0.04 to 1 
with increments of 0.04 (i.e., 25 values); and for each of the 
two parameters of beta distributions, from 0.01 to 1 with in-
crements of 0.01 (i.e., 100 values). Thus, in total, from 
250,000 combinations of parameters, we searched the com-
binations of parameters, which explained the observed choice 
pattern best for every participant in the JE group. 

For participants in the SE group, it was impossible 
to estimate their beliefs on uncertainty because they answered 
choices only for one gamble. Thus, we constructed a hypo-
thetical participant who responded to 11 gambles (i.e., gam-
bles for 11 probabilities), by the “SE” method with the fol-
lowing procedure. CEs for the 11 probabilities were con-
structed based on the data of the behavioral experiment. In 
particular, the CE at one probability was randomly sampled 
from normal distribution. Here, mean and standard deviation 
were determined by the data of the behavioral experiment 
(i.e., the data demonstrated in Figure 2). In these random 
samplings for 11 probabilities, we assumed that the hypothet-
ical participant showed consistent choice patterns such that 
when p1 < p2, CE for p1 (CE1) and p2 (CE2) always satisfied 
CEp1 ≦ CEp2. Thus, we estimated the response for 11 gam-
bles using the SE method by the “identical person.” With 

these procedures, we constructed 1,000 hypothetical partici-
pants. For the data of the hypothetical participants, we esti-
mate the best parameters for value function and beta distribu-
tion using a grid search as we did for the JE group. 

In our parameter estimation, we evaluated the model 
fit using R2. In the following analyses, we used the data 
wherein the model showed a good fit. Here, we set the crite-
rion of “goodness” as R2 > 0.5 (44 out of 47 data in the JE 
group and 787 out of 1000 data in the SE group satisfied this 
criterion). 

Results of parameter estimations 

Value function 
Figure 4 shows the distribution of the estimated parameter of 
α for the JE and SE groups. As shown in the figure, the dis-
tributions were similar between the two group, and there was 
no significant difference (w = 16328, p =.516, Wilcoxon rank 
sum test). Thus, this result suggests that the different evalua-
tions did not affect valuation of money. 

 
Figure 4. Distribution of estimated parameter for value 
function (α) 
 

 
Figure 5. Results of clustering analysis. (a) Scree plot for 
within-cluster sum of squares (WSS) in K-means cluster-
ing. (b) Relationship between reduction of WSS (differ-
ence) and that in proportion. The number in the circle (e.g., 
n) indicates the reductions in WSS when the number of 
clusters increased from (n-1) to n. 
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Beliefs on uncertainty 
Next, we examined participants’ beliefs (i.e., estimated beta 
distribution) in detail with the following procedure. First, we 
clustered beliefs (i.e., shape of beta distribution) using prob-
ability densities. For the 831 data sets, the patterns of proba-
bility densities for 99 probabilities (1%, 2%, 3%,..., 97%, 
98%, 99%) were clustered using the K-means method. We 
determined the number of clusters by considering the tradeoff 
between parsimony (i.e., as least clusters possible) and in-
formativeness (i.e., as many clusters as required). Here, we 
calculated the within-cluster sum of squares (WSS) for each 
cluster and examined reductions in the WSS in terms of the 
difference and proportion of increasing numbers of clusters. 
Figure 5 shows the scree plot (a) and the relationship between 
the reduction in WSS in difference and proportion (b). We 
adopted four clusters based on their parsimony and informa-
tiveness. 
 We examined features of each cluster: median 
strengths of belief and median subjective values for 99 prob-
abilities for each cluster. Figure 6 shows these results. The 
four clusters can be summarized as follows: For the clusters 
1, 2, and 3, the probabilistic belief is “black and white” (i.e., 
deterministic). That suggests that a person refers to “winning” 
and “losing” gambles. The differences among the three clus-
ters lie in whether a person is more optimistic (i.e., the belief 
in “winning” is stronger than that for “losing,” Cluster 1), 
more pessimistic (i.e., the belief in “losing” is stronger than 
that for “winning,” Cluster 2), or neutral (i.e., the belief in 
“losing” is as strong as that for “winning,” Cluster 3). Cluster 

4 has a different feature: the strength of belief is almost con-
stant, suggesting that a person believes that the probability of 
winning gamble takes any probability (i.e., referring wide 
range of probability). 
 Then, we examined the proportions of data catego-
rized into the four clusters for the two evaluation methods. 
Table 1 shows those results. Most data were categorized into 
Clusters 1, 2, or 3, which represented “black and white” be-
lief. Those findings were generally consistent with the previ-
ous findings in Stewart et al. (2006) showing that people tend 
to often use extreme probabilistic expressions representing 
0% and 100%. However, the most notable point was the pro-
portion that was categorized into Cluster 4: more data from 
the JE group were categorized into Cluster 4 than from the 
SE group (p <.001, Fisher’s exact test), suggesting that the 
participants (though “hypothetical participants”) in SE re-
ferred to probabilistic information in a continuous way. These 
findings corroborated our prediction. 

Discussion 
In this study, we examined whether probability weighting 
shifts according to which evaluation method, JE or SE, was 
used in a gambling task. We found that the different evalua-
tion methods induced different weighting. Furthermore, we 
analyzed our results using a cognitive model. The analyses 
indicated that differences in probability weighting for JE and 
SE were derived from a difference in probabilistic beliefs that 
people refer to in making decisions. 

Previous studies have discussed changed prefer-
ences based on evaluation methods (JE, SE) but there has 
been little discussion about the process of making decisions 
under risk. One reason may be the difficulty of examining 
decision processes since researchers can obtain only one da-
tum for each participant in an SE group, making model-based 
analysis highly difficult. In the present study, we proposed a 
new method to overcome such difficulties by constructing 
hypothetical participants using behavioral data. We believe 
that the proposed method makes a substantial contribution 

 
Figure 6. Median of strength of probabilistic belief (A) and subjective value (B) for the four clusters. 

Table 2. Proportion of data categorized into the four clus-
ters. 

Group Cluster 1 Cluster 2 Cluster 3 Cluster 4 
JE 0.295 0.364 0.068 0.273 
SE 0.287 0.159 0.475 0.079 
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that helps clarify the difference in cognitive processes be-
tween JE and SE methods. 
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Abstract
We describe a system that can associate images with English
proverbs. We start from a corpus of proverbs, harvest related
images from the web and use this data to train two variants of
a convolutional neural network. We then collect a small set of
annotations, and use these to combine the outputs of the two
networks into a single prediction for each input image. We
carry out feature selection experiments on a set of features de-
rived from the images and from the predicted proverbs, and
demonstrate that the metaphoricity of the proverbs plays a sig-
nificant role in classification accuracy. An empirical evalua-
tion with human raters confirms the system’s ability to abstract
from the raw bits in the images and to learn meaningful, non-
trivial associations.

Introduction
Meaningful associations between visual information and
short texts are a staple of effective and powerful commu-
nication. Instances of this form of communication can be
found almost anywhere: on t-shirts, covers of books, records
and magazines, social media posts, and ad campaigns, just to
name a few. The empirical evidence, in agreement with our
common sense and everyday experience, shows that mean-
ingful image-text associations are very good predictors of the
success of an online post (Hessel et al., 2017). To add to the
value of an image, the caption must convey some information
that is not already obvious. For example, consider two possi-
ble captions for the image in Figure 1. A purely descriptive
caption like (a) is very accurate, but it does not add value to
the image. By associating it with a proverb, a caption like
(b) radically changes our perception of the image, from a col-
lection of visual elements to an abstract representation of a
familiar feeling (i.e., envy).

Recent advances in neural networks and computer vision
have made it possible to generate high-quality descriptive
captions such as (a) in Figure 1 automatically (Vinyals et al.,
2017). Such captions are certainly remarkable from an artifi-
cial vision stand point, and very useful when it comes to or-
ganizing and accessing large databases of images. However,
they do not make an image more memorable or compelling.

In this paper, we focus on the task of producing captions
like (b), in which an image is associated with a memorable
expression that emphasizes non trivial, suggestive aspects of
the image. In particular, we leverage an existing corpus of
English proverbs (Özbal et al., 2016) to learn a model that
can associate any image to the most appropriate proverb in
the repository. The resulting system can have many poten-
tial applications, e.g.: suggesting evocative and compelling

Figure 1: Different captions affect our perception of the same
image: (a) “A half-barren, half-green field.” (b) “The grass is
always greener on the other side.”

taglines when posting an image on social media; proposing
headlines for news, based on photos of an event; selecting the
visual content of ad campaigns so as to evoke specific moods.

To the best of our knowledge, this is the first attempt to
prove that existing models for object recognition can be suc-
cessfully adapted to associate images to linguistically com-
plex and semantically rich data such as proverbs. We demon-
strate that the existing networks have enough capacity to ab-
stract away from the mere graphical content of an image and
learn original and surprising associations.

Note that we do not claim that our model can understand
the language used in the proverbs. This is a complex problem
per se, given the non-literal nature of most proverbs. In ad-
dition, from the point of view of our model a proverb is just
a class label. Instead, we observe that by using the proverbs
to retrieve related images allows the model to learn that some
combinations of objects appearing in the pictures are rele-
vant with respect to the meanings commonly attached to the
proverbs, also when their meaning is far from literal.

The approach that we propose is simple and scalable, it
relies on the availability of large amounts of noisy data and
can be tuned using minimal supervision.

Related work
A growing body of literature, including Yamaguchi et al.
(2014) and Gelli et al. (2015), has shown that image features
do not contribute as much as textual features to the social
popularity of multimedia content. In particular, Hessel et al.
(2017) study the effect of visual and textual features on the
popularity of Internet posts, and conclude that the right com-
bination of visual and textual features plays a very important
role. They also note that the cleverness of the accompanying
captions can result in a very different response to pictures of
very similar subjects, and make a less attractive subject more
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popular than a better subject with a less remarkable caption.
Concerning the automatic captioning of images, Hall et

al. (2015) propose to automatically generate natural lan-
guage captions that describe the geographical context of geo-
referenced photos, such as “Rijksmuseum photographed at
2.15 pm at the corner of Stadhouderskade and Museumstraat
near Spiegelgracht in Amsterdam, Netherlands.”. Chen et al.
(2015) present a large dataset consisting of groups of images
observed with the same caption. The associative structure of
the data is exploited to retrieve captions for query images.
The retrieved captions can be further classified to select the
more creative ones. Vinyals et al. (2017) present a generative
model based on a deep recurrent architecture that can gener-
ate natural sentences describing an image. The model builds
on recent advances in machine translation and computer vi-
sion. Szegedy et al. (2016) describe Inception-V3, a convo-
lutional neural network that can be used to detect the main
objects that appear in an image with very high accuracy.

Pertaining to the association of content with familiar ex-
pressions, (Tan et al., 2016) use neural networks to recom-
mend quotes in writing and to make statements more com-
pelling. They point out how computational methods can help
writers select the most appropriate quote for a given context
from a large repository of alternatives.

Regarding the appropriateness of proverbs as image cap-
tions, B. Mieder and Mieder (1977) analyze the reasons
behind the common usage of proverbs in advertisement.
Proverbs have a “familiar ring” that adds reliability, trust-
worthyness and a sense of timelessness to a brand or prod-
uct. More recently, Qing-fang (2004) observes that proverbs
are especially suitable for advertisement as they are short and
concise, and they are associated with wisdom and moral guid-
ance. To say it in the words of the author, “one proverb may
say more than a thousand words”.

Associating proverbs to images
In this section, we describe the architecture of a system that,
given an image and a set of proverbs, decides whether the
image is evocative of one of the proverbs. In particular, we
use PROMETHEUS (Özbal et al., 2016) as a proverb repos-
itory, but a different set of proverbs or other types of mem-
orable expressions (such as slogans or quotations) could be
used in alternative. The resource consists of 1,054 proverbs,
grouped into categories (such as “love and hate” or “fate”)
and annotated with metaphors at the word and sentence level.
More than in other genres, such as news, fiction and essays,
in proverbs metaphors can resolve a significant amount of the
figurative meaning (Faycel, 2012). The richness of proverbs
in terms of metaphors and their pervasiveness in all cultures
makes them especially suitable for being used as evocative
captions (W. Mieder, 1978).

We first use the proverbs to retrieve a large set of noisy
data from the web. Then, we use this data to train two convo-
lutional neural networks to associate proverbs to images. The
two classifiers use the same architecture, but one is trained to
directly associate images to proverbs, while the other builds

associations between the objects that it recognizes in the im-
ages and the proverbs. Then, we use a small sample of the
predictions of the two models to crowd source golden image-
proverb associations. Finally, we use the noisy data and the
golden labels to combine the output of the two classifiers
into a unified model that decides whether it should select the
proverb suggested by any of the two classifiers.

Noisy data collection
For each proverb in PROMETHEUS, we used the Flickr API
to retrieve a set of candidate images. We included the full text
of the proverb as part of the query string, forcing the API to
only return images that mention the complete proverb in their
title, description or tags. In our experiments we focus on the
98 proverbs for which we could retrieve at least 500 images.

To keep the data set reasonably balanced, we also limit
the maximum number of images retrieved for each proverb
to 1,000. The resulting data set consists of 83,895 images,
each of which is associated with exactly one of 98 distinct
proverbs. We then randomly split the data into a training
(80,000 images) and a development (3,895 images) set. For
the purpose of training and testing the classifiers, we used
Flickr API to download 150×150 pixel versions of the im-
ages. These are obtained by cropping to a square around the
main subject and then scaling to the final size, thus preventing
warping or distortions of the elements of the images. As we
reckon that color plays an important role with respect to the
mood and perceived message of a picture, we did not convert
the images to black and white.

Image classification
In this section, we describe the training of two classifiers that,
given an image, predict the most likely proverb association.
Both classifiers are based on Inception-V3, a convolutional
neural network which has been shown to be very accurate
in image classification tasks with a large number (1,000) of
output classes (Szegedy et al., 2016). For each input image,
the model outputs a probability distribution over all the output
classes. The predicted label is the class with the highest prob-
ability density. For all our experiments, we use the Inception-
V3 implementation included in the TensorFlow-Slim image
classification model library1.

Inception from scratch (I-FS) The first model is trained to
establish a direct association between the visual clues present
in the image and the output proverbs. It is an Inception-V3
network trained from scratch (I-FS) on the available training
data. We use all the default settings of Slim’s Inception imple-
mentation and we select the model after 669,923 iterations.

Inception fine-tuned (I-FT) We fine-tune the model start-
ing from the Inception-V3 model2 trained by Szegedy et al.
(2016). This model was trained from the 1.2 million im-
ages of the 2012 ImageNet Large Scale Visual Recognition

1https://goo.gl/W5ZdQ4
2https://goo.gl/nrsdGG
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(a) (b)

Figure 2: Examples of reasonable predictions that differ from
the noisy label. (a) Label: “Look before you leap”. I-FS:
“Rules are made to be broken.”. (b) Label: “Beggars can’t be
choosers.”. I-FS and I-FT: “Time and tide wait for no man”.

Challenge (ILSVRC-12) (Russakovsky et al., 2015). We re-
fer to the resulting proverb classifier as I-FT, for Inception
fine-tuned. As the proverb classification task has a different
number of output classes from ImageNet (i.e., 98 vs. 1,000),
we do not restore the weights of the final layer of the net-
work3. In addition, we only allow the weights of the classi-
fication layer to be updated during fine-tuning. In doing so,
we expect the classifier to retain the object recognition capa-
bilities of the internal layers of the pre-trained model and to
establish meaningful association between the target proverb
and the dominant objects in an image. Concerning I-FT, we
select the model after 1,955,892 iterations4.

Evaluation of I-FS and I-FT We measured the perfor-
mance of the two classifiers on the 3,895 images in the de-
velopment split of the noisy data. I-FT’s recall is consistently
higher than I-FS’s (Recall@1: 0.20 vs. 0.15; Recall@5: 0.39
vs. 0.28). This is an expected result, as the inner layers
of I-FT encode classification clues learned from a very large
data set. While recall is relatively low for both classifiers, we
should consider that each image can possibly evoke more than
one proverb, whereas in our data set we only have one label
for each image. Therefore, we regard these figures as very
conservative lower bounds. For example, Figure 2 shows two
images for which the decisions of the classifiers are quite rea-
sonable, yet they do not agree with the noisy label.

It is also important to observe that the two classifiers learn
very different models, as exemplified in Table 1. I-FS ans I-
FT output a different label in the large majority of the cases
(85%), and 27% of the times at least one of the two classifiers
can reconstruct the correct association according to the noisy
labels. In the next sections, we will explain how we leverage
the different “personalities” of the two classifiers and com-
bine them into a unified model that can predict a golden (i.e.,
human validated) proverb with an accuracy of 74.59%.

3https://goo.gl/tfHxzs
4We let both I-FS and I-FT learn for ≈1 week. Then, among the

last 5 checkpoints, we selected the one having the smallest loss on
the training data. Since there is no previous work to compare against,
we are not trying to maximize accuracy at all costs. Instead, we aim
to demonstrate that our pipeline produces results that are adequate
for a range of user facing applications, as those mentioned in the
introduction.

Statistics on development data Count %

Same prediction 579 14.87
Same prediction, both incorrect 226 5.80
Same predictions, both correct 353 9.06

Different predictions 3,316 85.13
Different predictions, both incorrect 2,604 66.85
I-FS correct, I-FT not correct 276 7.09
I-FT correct, I-FS not correct 436 11.19

I-FT or I-FS prediction correct 1,065 27.34

Table 1: Comparison of I-FS and I-FT. Correct and incorrect
counts refer to the noisy development labels.

Gold standard collection
In the previous section, we observed that there is a number
of cases in which the output of I-FS or I-FT are more suitable
captions for a given image than its noisy label. To quantify
this phenomenon, we set-up a crowd-sourced annotation in
which we showed the raters an image and four proverbs, and
asked the raters to select the most appropriate caption. To
maximize the utility of the annotation, we included only the
cases in which both models disagree with the noisy label. We
decided to crowd-source the annotation of 500 images on the
Figure-Eight platform5.

We first included all the 226 development examples for
which the two models predict the same label and the pre-
diction is incorrect (2nd row in Table 1). We refer to these
as Type1 examples. We regard these examples as especially
relevant, as we have seen before that the two models do not
agree very often. Our hypothesis is that, in many such cases,
the models are actually converging to a meaningful interpre-
tation. Then, we added 274 randomly sampled images for
which the predictions of the two models differ, and both pre-
dictions differ from the noisy label (Type2).

For Type1 examples, the raters could choose among: (1)
the noisy label, (2) the proverb selected by I-FS and I-FT,
and (3 and 4) two random proverbs. For Type2 examples,
the raters could choose among: (1) the noisy label, (2) I-FS
prediction, (3) I-FT prediction, and (4) a random proverb. In
both cases, the random proverbs were selected among the 98
proverbs used to train the models. The raters were instructed
to select all the relevant associations, and they also had the
option to mark none of the proposed alternatives as relevant.

Due to the inherent subjectivity of the task, we decided to
elicit 10 judgments for each image, for a total of 5,000 rat-
ings. The agreement on the ratings, as reported by Figure-
Eight, is 64.47%. The aggregated results of the annotation
based on majority voting6 are shown in Table 2. We can
see that, overall, raters tend to prefer the decisions of I-FT
over the noisy label (27.21% vs. 24.87%), and the noisy la-
bel over I-FS (20.70%). It is quite remarkable that I-FT’s
predictions are rated to be more accurate than the data on

5https://www.figure-eight.com/
6Even though raters could select multiple options, the majority

decision has never included more than one.

2517



Times selected (%)

Selected label Overall Type1 Type2

Noisy label 24.87 17.85 33.21
Random 3.84 3.69 4.01
None 23.37 17.54 30.29
I-FS 20.70 30.46 9.12
I-FT 27.21 30.46 23.36

I-FS or I-FT 31.39 30.46 32.48

Table 2: Results of the crowd-sourced annotation.

Label Annotated data Noisy data Total

Either 99 353 452
None 312 - 312
I-FS 25 276 301
I-FT 64 436 500

Total 500 1,065 1,565

Table 3: Data distribution of the combined classifier. Note
that we only annotated 500 examples out of 2,830 for which
both I-FS and I-FT fail to predict the noisy label. As a conse-
quence, 2,330 development examples are not included in this
experiment.

which the model has been trained. When the two classifiers
make the same decision (Type1), there is a marked prefer-
ence of the raters for the predicted proverb over the noisy
label (30.46% vs. 17.85%), whereas when the two classifiers
do not agree (Type2) the raters generally find the noisy label
preferable, even though the cases in which either I-FS or I-FT
are chosen are almost the same with the noisy label (32.48%
vs. 33.21%). Even though I-FS is not as accurate as I-FT to
predict the noisy labels, there is a non negligible number of
cases in which its decision is considered to be appropriate by
the raters, and when the decisions of the two classifiers dif-
fer (Type2), I-FS selects a good option in 9.12% of the cases.
There are very few cases (3.84% overall) in which a random
proverb is preferred to any of the more principled alternatives,
whereas there is a very significant number of cases (23.37%
overall) in which none of the proposed alternatives, including
the noisy label, is considered to be good.

Model combination
In this section, we describe a classifier that, given an image
and the output of I-FS and I-FT, classifies the image into one
of the following four classes: (a) I-FS, if the prediction of I-
FS should be selected; (b) I-FT, if I-FT should be preferred
instead; (c) None, for the cases in which neither of the two
classifiers predicted an appropriate class; and (d) Either, if
both the predictions of I-FS and I-FT are appropriate. We in-
troduce the last class Either specifically to model the cases in
which I-FS and I-FT output the same prediction.

Data set All the annotated examples for which the raters
did not select either I-FS or I-FT predictions were mapped to
the None class. These are all the images annotated as “Noisy
label”, “None” or “Random”. Type1 examples where the pre-

diction of the models was preferred by the raters were mapped
to Either, whereas Type2 examples where I-FS or I-FT were
preferred were mapped to the corresponding label. The dis-
tribution of the labels of the annotated data is summarized
on the left side of Table 3. By construction, the annotated
data contains only cases in which I-FS’s and I-FT’s predic-
tions differ from the noisy label, and the None label is sig-
nificantly over-represented. In order to come up with a more
balanced data set, we also include the non-annotated exam-
ples in which either classifier agreed with the noisy label. If
both classifiers agree with the noisy label, then we map the
example to the Either label. If only I-FS (or I-FT) agrees,
then we map the example to the I-FS (or I-FT) class. The col-
umn labeled “Noisy data” in Table 3 shows the distribution of
the data added in this fashion. We regard these examples as
highly accurate, given the low chance of random agreement
between the noisy label and the classifiers (the output space
of I-FS and I-FT consists of 98 proverbs).

Features From each example we extract 12 simple fea-
tures,which we group into six sets to simplify the feature
selection experiments. The set labeled “Base” (b) only ac-
counts for the decisions of I-FT and I-FS. To avoid over-
fitting, we only include the prediction scores, and not the
actual predicted classes. The set labeled “Metaphoricity”
(m) makes use of the proverb-level metaphoricity annota-
tions in PROMETHEUS. The metaphoricity can have one of
three values: 0 (literal); 1 (slightly metaphorical); 2 (highly
metaphorical). We expect proverbs which are metaphorical
to be a good fit for a broader set of images. The feature
set “Inception” (i) encodes the highest prediction score of the
Inception-V3 model for the image. The intuition here is that
a high prediction score, regardless of the class, means that
the Inception-V3 model is confident that it can recognize a
known object in the image. We use this measure as a proxy
for the “concreteness” of the image, as a counterpart for the
data encoded by m. The set “Category similarity” (cs) at-
tempts to measure the compatibility between the category of
the proverb (e.g., “love and hate” or “fate”) and the object rec-
ognized in the picture by the Inception-V3 model. We use the
DISCO (Kolb, 2009) library together with the provided En-
glish word space7 and encode as feature the maximum cosine
similarity between any synonym in the synset predicted by
Inception-V3 and any content word in the predicted proverb
categories. The feature set “Proverb similarity” (ps) is con-
ceptually very similar, but we use the lemmas in the predicted
proverb instead of its category. Finally the feature set “Dif-
ference” (d) encodes the difference in magnitude between the
values of the feature in b and m computed for I-FS and I-FT.
These features are meant to help the classifier reason more
comparatively about I-FS and I-FT predictions.

Set-up To make the most of the available training data, we
evaluate the combination of the two models in a leave-one-out
setting, i.e., a cross-fold where the number of folds equals

7https://goo.gl/Rc45PW
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b+ b,m+
F1 b m†‡ d† ps i cs d†‡ i ps cs

Macro 53.81 59.90 54.40 54.24 54.06 53.99 60.25 58.00 56.69 56.11
Micro 66.52 68.56 67.09 66.90 66.84 66.77 68.88 67.92 67.22 67.03

Table 4: Feature ablation results for the best learning algorithm. †: Significantly better than b. ‡: Significantly better than b,d.
The difference between b,m,d and b,m is not significant.

the number of test examples. Please note that none of the
images in the test set of the combined classifier is included in
the traning of I-FS or I-FT. We compare different groupings
of feature sets (always including b). As a learning algorithm,
we use an SVM with a polynomial kernel of degree 2. We use
the implementations provided by SciKit-Learn (Pedregosa et
al., 2011). To compare the different feature combinations,
we use McNemar’s significance test (McNemar, 1947) with a
95% confidence interval (p < 0.05).

Results In Table 4 we report the detailed results of the fea-
ture inclusion experiments. The set of base features b alone
achieves a micro F1 measure of 66.52. If we try to add an-
other set of features on top of b, only b,m and b,d achieve a
significant improvement, with b,m being significantly more
accurate than b,d (68.56 vs. 67.09). If we try to add another
feature set on top of b,m, we observe that only b,m,d achieves
a higher accuracy (i.e., 68.88 vs. 68.56), even though the im-
provement is not significant. Adding any other feature set
yields a negative contribution (micro F1 < 68).

As a further comparison between b,m and b,d,m, Table 5
shows the difference between the confusion matrices of the
two configurations. We can observe that the error distribu-
tion of the two models is very similar, with the former being
slightly more accurate on the examples labeled I-FS and Ei-
ther, and the latter on None and I-FT. Interestingly, both mod-
els make very few mistakes on examples labeled Either, con-
firming that the convergence of I-FS and I-FT predictions is
a strong signal of the accuracy of the predicted proverb. The
error distribution also reflects the fact that I-FT, being a more
accurate predictor than I-FS, is more represented in the train-
ing data. In fact, there are many more examples labeled I-FS
which are predicted as I-FT than the other way round. For the
same reason, the model also tends to predict I-FT when the
actual label is None. All in all, this error analysis suggests
that the best way to improve the classifier might be to intro-
duce more data points for the classes None and I-FS, which
are under-represented in the data (see Table 3).

From all the evidence above, we can conclude that
the information about the metaphoricity of the predicted
proverb provides very useful clues to the learning algo-
rithm.8Contrary to our expectations, the features that account
for the similarity between the objects in the pictures and the
predicted proverbs (i, ps and cs) do not improve the classifi-

8We have observed the same pattern also using different learning
algorithms (RBF, LR), but here we omit these results due to space
limitations.

Predicted label

Label None I-FS I-FT Either

None 38 (41) 33 (37) 151 (148) 90 (86)
I-FS 0 (0) 167 (161) 134 (140) 0 (0)
I-FT 3 (1) 69 (61) 428 (438) 0 (0)
Either 12 (14) 0 (0) 0 (0) 440 (438)

Table 5: Confusion matrices for the combined model with
feature groups b,m and b,m.d (in parentheses).

cation accuracy.
Finally, in Figure 3 we show 10 examples of system outputs

(for the configuration using feature sets b,m,d), which we be-
lieve are quite representative of what the model has learned.
Not all outputs are correct according to the golden labels, and
we invite the readers to figure out which examples are correct
and which are not before continuing reading (the answer is
at the end of the paragraph). Looking at the outputs, we can
see that in some cases (e.g., (d) and (i)) the associations are
quite literal (hay, detergents). In other cases, the association
is less obvious. These are the most interesting cases, in which
the predictions showcase the ability of the model to abstract
away from concrete objects, or to reproduce the cultural bi-
ases observed in the training data . In (a) there is a sense of
frugality that is resolved to “every little helps”. Concerning
(b), in the training data “slow but sure” is very often asso-
ciated with religious symbols, churches in particular. In (f),
the model associates the flooded land with “storm” and the
ships with “port”. In (g), the model recognized the quietness
of situation and the golden tones of the scenes. Concerning
(h), a crowded school of fish evokes the association with “first
come, first served”. According to the golden labels, examples
(a) to (e) are classified correctly, whereas the ones from (f) to
(j) are incorrect. Nevertheless, for the applications that we
have in mind all examples seem appropriate. This fact can be
confirmed by restricting the evaluation to the examples an-
notated by the raters and by considering all the proverbs that
have been selected by at least one human rater as good pre-
dictions. Under these conditions, the model selects an appro-
priate proverb in 74.59% of the cases.

Copyright and credits
We are extremely grateful to the authors of the images in-
cluded in the paper for releasing their images under a permis-
sive licensing scheme or for explicitly allowing us to use their
pictures. This section lists all the images used in the paper,
including their author, licensing scheme and Flickr URL. All
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(a) Every little helps. (b) Slow but sure.

(c) Two heads are better
than one.

(d) Make hay while the sun
shines.

(e) Like father, like son. (f) Any port in a storm.

(g) Silence is golden. (h) First come, first served.

(i) Cleanliness is next to
godliness.

(j) Seeing is believing.

Figure 3: Example outputs of the combined model. Five out-
puts differ from the corresponding noisy label. Can you tell
which ones?

the listed URLs were active at the time of submission.

Figure 1. Author: Flickr user “Dano”. License: CC BY 2.09.
Source:
https://www.flickr.com/photos/mukluk/249464230.
Figure 2(a). Author: Flickr user “Gavin Clarke”. License:
CC BY-NC 2.010. Source:
https://flickr.com/photos/70824176@N00/4460439903.
Figure 2(b). Author: Jason Swain. All rights reserved. Used
under permission by the author. Source:
https://flickr.com/photos/24424426@N00/13058126593.
Figure 3(a). Author: Flickr User “Neil Moralee”. License:
CC BY-NC-ND 2.0 11. Source:
https://flickr.com/photos/62586117@N05/21178964709.
Figure 3(b). Author: Flickr User “Cathedrals and Churches”.
License: CC BY 2.09. Source:
https://www.flickr.com/photos/eltb/7246837670/.
Figure 3(c). Author: Flickr User “Peter Trimming”. License:
CC BY 2.09. Source:
https://www.flickr.com/photos/55426027@N03/8730055756.
Figure 3(d). Author: Flickr User “Raymond Barlow”. Li-
cense: CC BY-NC-SA 2.0 12. Source:
https://flickr.com/photos/62673829@N00/2631618525.
Figure 3(e). c© Jay Heymans. All rights reserved.
Used under permission by the author. Source:
https://www.flickr.com/photos/7830239@N06/12234997804.
Figure 3(f). c© Ian Huges. All rights reserved. Used under
permission by the author. Source:
https://flickr.com/photos/36463157@N08/3818175700.
Figure 3(g). Author: Flickr User “Geraint Rowland”. Li-
cense: CC BY-NC 2.010. Source:
https://flickr.com/photos/33909206@N04/23407737789.
Figure 3(h). Author: Flickr user “Steven Harris”. License:
CC BY-NC 2.010. Source:
https://flickr.com/photos/90288178@N00/4060998399.
Figure 3(i). c©Melissa Jones. All rights reserved. Used un-
der permission by the author. Source:
https://www.flickr.com/photos/msjones166/5511643604.
Figure 3(j). Author: Flickr user “TheoJunior”. License: CC
BY-NC-SA 2.012. Source:
https://flickr.com/photos/88013568@N00/3252673888.

Conclusion and future work
In this paper, we presented a model that can associate images
to proverbs. It combines two variants of a high-performance
convolutional neural network in a simple voting scheme, it is
easily scalable and it requires very minimal supervision. By
leveraging high volumes of noisy training data, the model can
learn compelling associations at surprising levels of abstrac-
tion, such as “Misery loves company.” for a sweaty bunch
of skaters. To our best knowledge, we are the first ones to

9https://creativecommons.org/licenses/by/2.0/
10https://creativecommons.org/licenses/by-nc/2.0/
11https://creativecommons.org/licenses/by-nc-nd/2.0/
12https://creativecommons.org/licenses/by-nc-sa/2.0/
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use existing object recognition models to associate images to
semantically rich, non-descriptive captions such as proverbs.

Our approach can easily be extended to cover more
proverbs as well as other kinds of memorable and familiar ex-
pressions, such as slogans, citations or titles of famous works
of art that have already been the focus of previous work on
creative language generation (Gatti, Özbal, Guerini, Stock,
& Strapparava, 2015; Özbal, Pighin, & Strapparava, 2013;
Stock, Strapparava, & Valitutti, 2007). We have shown that
knowledge about the metaphoricity degree of proverbs plays
a significant role with respect to the classification accuracy.
While PROMETHEUS already provides this information, this
might not be the case for other sources of familiar expres-
sions. On the other hand, it should be possible to automati-
cally assess metaphoricity by leveraging recent state-of-the-
art advancements in the field of metaphor detection (Özbal,
Strapparava, Tekiroglu, & Pighin, 2016; Veale, Shutova, &
Klebanov, 2016). In addition, we would like to generate more
captivating captions, by injecting humor into the predicted
proverbs through incongruity (Raskin, 1979) or other rhetor-
ical devices. As Veale (2012) suggests, linguistic creativity
can be utilized to “re-invent and re-imagine the familiar, so
that everything old can be made new again”.
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image-captions: A corpus of expressive descriptions in
repetition. In Proceedings of NAACL-HLT’15.

Faycel, D. (2012). Food Metaphors in Tunisian Arabic
Proverbs. Rice Working Papers in Linguistics, 3.
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Abstract

Exploration and Exploitation represent two mutually exclusive goals associated with choices within an environment:
search too little and the lack of information will make it difficult to distinguish good options penalizing the agent in
the long run (exploiting) or search too much and suffer sub-optimal performance in the short term (exploring). Striking a
balance between exploiting and exploring requires the learner to behave optimally in different environments. Managing
this trade-off is an important process of our lives but isnt completely understood from a cognitive science perspective. To
this end we present the findings from an experiment where the main objective was to examine how much the presence of
competition and threats affects both behaviors: the presence of competition directs greater exploration and the presence
of threats reduces this behavior, suggesting that learners prioritize their learning behavior in response to the presence of
different types of agents in the environment.
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Abstract 
Many studies on memory retrieval in language processing have 
identified similarity-based interference as a key determinant of 
comprehension. The broad consensus is that similarity-based 
interference reflects erroneous retrieval of a non-target item 
that matches some of the retrieval cues. However, the 
mechanisms responsible for such effects remain debated. 
Activation-based models of retrieval (e.g., Lewis & Vasishth, 
2005) claim that any differences in processing difficulty due to 
interference in standard RT measures and judgments reflect 
differences in the speed of retrieval (i.e., the amount of time it 
takes to retrieve a memory item). But this claim is inconsistent 
with empirical data showing that retrieval time is constant due 
to the use of a direct-access procedure (e.g., McElree, 2000, 
2006). According to direct-access accounts, differences in 
judgments or RTs due to interference arise from differences in 
the quality or availability of the candidate memory 
representations, rather than differences in retrieval speed. To 
adjudicate between these accounts, we employed a novel 
methodology that combined a high-powered (N = 200) two-
alternative forced-choice study on interference effects with 
drift diffusion modeling to disassociate the effects of retrieval 
speed and representation quality. Results showed that the 
presence of a distractor that matched some of the retrieval cues 
lowered asymptotic accuracy, reflecting an effect of 
representation quality, but did not affect retrieval speed, 
consistent with a direct-access procedure. These results suggest 
that the differences observed in RTs and judgment studies 
reflect differences in the ease of integrating the retrieved item 
back into the current processing stream, rather than differences 
in retrieval speed. 

Keywords: language processing; working memory; 
interference; two-alternative forced-choice task; drift diffusion 
modeling 

Introduction 
Successful language comprehension requires the ability to 
encode complex linguistic representations in memory and 
accurately access specific pieces of information in those 
representations to guide further elaboration of the discourse. 
For example, to relate the verb play in (1) with its subject for 
number agreement and thematic binding, memory retrieval 
mechanisms must access the encoding of the plural target 
subject kids and ignore featurally-similar items in non-target 
positions, such as the embedded plural noun teachers. 
 
(1) The kidspl [that the teacherspl watched closely] played 

on the slide.  

 
However, many studies have shown that featurally-similar 

items in non-target positions can interfere with retrieval of 
the target, impacting judgments of acceptability and reading 
times (for a review, see Parker, Shvartsman, & Van Dyke, 
2017). Such effects are commonly called “similarity-based 
interference” (Gordon, Hendrick, & Johnson, 2001; Lewis & 
Vasishth, 2005; Lewis, Vasishth, & Van Dyke, 2006; Van 
Dyke, 2007; Van Dyke & Johns, 2012; Van Dyke & McElree, 
2006, 2011). The goal of the current study is to help identify 
the source of such effects in language comprehension. 

Often, interference from non-target items during retrieval 
for linguistic dependency formation slows reading times and 
lowers acceptability. This type of interference is called 
“inhibitory” interference (see Jäger, Engelmann, & Vasishth, 
2017, for a review) and occurs in multiple match 
configurations where the target and a distractor overlap in 
some features that are relevant for retrieval, as in (1).  

It has also been shown that interference can sometimes 
speed up processing and boost acceptability, resulting in an 
effect known as “facilitatory interference” or more 
commonly, “attraction” (Jäger et al., 2017). Attraction arises 
when the target and distractor are distinct in feature content, 
but neither is a perfect match to the retrieval cues. Such 
effects are commonly observed in the processing of subject-
verb number agreement. For instance, Wagers and colleagues 
(2009) examined the comprehension of subject-verb 
agreement in sentences like (2) using self-paced reading and 
speeded acceptability judgments. The sentences in (2c-d) are 
ungrammatical because the plural verb were does not agree 
in number with the head of its subject noun phrase (NP) key.  
 

(2) a. The key to the cabinets certainly was rusty … 
  b. The key to the cabinet certainly was rusty … 
  c. *The key to the cabinets certainly were rusty … 
  d. *The key to the cabinet certainly were rusty … 
 
Wagers and colleagues found that in grammatical 

sentences like (2b), the number marking on the plural 
attractor cabinet(s) did not impact acceptability or RTs after 
the verb. However, in ungrammatical sentences like (2c), the 
plural distractor cabinets (the “attractor”), which matched the 
number of the verb were, boosted acceptability and facilitated 
RTs after the verb, relative to the ungrammatical condition 
with the singular noun cabinet (2d). Wagers and colleagues 
argued that the effects of facilitation and boosted 
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acceptability of sentences like (2c) were due to erroneous 
retrieval of the plural attractor. According to their account, 
retrieval functions as an error-driven repair mechanism that 
is triggered by the detection of an agreement violation. In (2), 
the subject NP predicts the number of the verb. When the 
verb form violates this prediction, as in (2c-d), the parser 
engages a cue-based retrieval at the verb to recover a number 
matching noun to license agreement. The attractor cabinets 
in (2c) will sometimes be incorrectly retrieved because it 
matches the verb in number, easing processing in a way that 
facilitates reading and boosts overall acceptability. In the 
grammatical conditions (2a-b), the verb fulfills the number 
prediction made by the subject NP, and therefore retrieval is 
not engaged, reducing the likelihood of attraction.  

Alternative accounts exist, but many researchers concur 
that agreement attraction arises due to incorrect memory 
retrieval (e.g., Dillon, Mishler, Sloggett, & Phillips, 2013; 
Lago, Shalom, Sigman, Lau, & Phillips, 2015; Phillips, 
Wagers, & Lau, 2011; Schlueter, Williams, & Lau, 2018; 
Tanner, Nicol, & Brehm, 2014; Tucker & Almeida, 2017; 
Tucker, Idrissi, & Almeida, 2015). However, the reason for 
why incorrect retrieval facilitates RTs is debated and the 
relationship between RTs and retrieval accuracy remains 
underspecified. 

For example, the prominent activation-based model of 
memory retrieval (ACT-R) developed by Lewis and Vasishth 
(Lewis & Vasishth, 2005) claims that the differences in RTs 
due to facilitatory interference (e.g., 2c vs. 2d) reflect 
differences in the speed of retrieval (i.e., the amount of time 
it takes to retrieve a memory item). In their model, the 
strength of an item’s activation at the moment of retrieval 
determines the item’s retrieval accuracy and its retrieval 
speed, such that items with higher activation are more likely 
to be retrieved and will be retrieved more quickly than items 
with a lower activation. In sentences that show attraction, like 
(2c), the plural attractor will have a higher activation than the 
singular attractor in (2d) because it provides a better match to 
the cues of the verb, and therefore will have a faster retrieval 
latency, resulting in faster RTs and boosted acceptability. 

The activation-based model has been shown to provide a 
good fit to a wide range of behavioral data (Parker et al., 
2017), but it is inconsistent with empirical evidence showing 
that retrieval speed is constant (i.e., time invariant) due to the 
use of a direct-access procedure (Martin & McElree, 2008, 
2009, 2011; McElree, 2000; McElree & Dosher, 1989; 
McElree, Foraker, & Dyer, 2003; Van Dyke & McElree, 
2011). According to direct-access accounts, the cues at 
retrieval make direct contact with the items in memory based 
on their content, rather than their location, which allows items 
to be retrieved at a constant speed, regardless of their position 
or dependency length. Items are differentially activated based 
on their (partial) match to the cues and the item that is most 
strongly activated is retrieved for dependency formation. On 
this view, the differences in RTs in (2c) vs. (2d) reflect 
differences in the quality (activation strength or availability) 
of the candidate memory representations, rather than 
differences in retrieval speed. For instance, the attractors in 

(2c) and (2d) will be retrieved in equal time, but the plural 
attractor in (2c) will be integrated into the processing stream 
more quickly because it provides a better match to the cues, 
resulting in faster RTs and boosted acceptability. 

At present, it is difficult to distinguish between these 
accounts because the typical measures used to investigate 
attraction (e.g., reading times and judgments) do not 
discriminate between effects that arise from differences in 
retrieval speed and differences in representation quality. 
Furthermore, the argument for direct-access is based entirely 
on studies of inhibitory interference where distractors slow 
RTs (see Parker et al., 2017, for a review) and it remains 
unclear whether facilitatory interference effects like 
attraction show the same retrieval dynamics as inhibitory 
interference. These issues are addressed in the present study.  

The Present Study 
The goal of the present study is to tease apart existing 
predictions about retrieval speed and representation quality 
to better understand the source of facilitatory interference 
effects in language processing. Previously, research on 
retrieval in sentence processing has relied on the speed-
accuracy trade-off (SAT) procedure (Dosher, 1979; Reed, 
1973; Wickelgren, 1977) to examine the effects of retrieval 
speed orthogonally from effects of representation quality. In 
an SAT task, participants read sentences presented via rapid 
serial visual presentation (RSVP) and make binary judgments 
about sentence acceptability at cued intervals, ranging from 
before the tail of the critical dependency to 3-6 seconds after 
the dependent constituent is presented. Participants’ average 
performance at these cue times is interpolated into an 
exponential curve that summarizes the speed-accuracy 
tradeoff function revealing the time course of retrieval. 
Importantly, by sampling a range of intervals, independent 
estimates of retrieval speed and accuracy become available. 
This method provides a profile of memory retrieval processes 
that is characterized by three parameters: (i) the asymptote, 
which reflects retrieval accuracy, (ii) the intercept, which 
reflects the time to retrieve an item from memory, and (iii) 
rate, which reflects the speed at which accuracy grows from 
the intercept to the asymptote. Differences in either the 
intercept or rate are presented as evidence for differences in 
retrieval speed, and differences in asymptote are taken to 
reflect differences in representation quality. 

The SAT methodology has been pivotal in arguing that 
retrieval for sentence processing employs a time-invariant 
direct-access procedure (e.g., Martin & McElree, 2008, 2009, 
2011; McElree, 2000; McElree et al., 2003). For instance, 
Van Dyke and McElree (2011) found that interference 
impacts asymptotic accuracy, but not processing speed (SAT 
intercept and rate parameters). But as noted, existing studies 
that have used SAT to investigate interference effects have 
been limited to tests of inhibitory interference. Furthermore, 
the SAT methodology is time-consuming and resource-
intensive (see Chen & Husband, 2018, for discussion).  

The current study employed a more efficient alternative 
methodology, Drift Diffusion Modeling (DDM), which has 
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also been used to jointly analyze the effects of accuracy and 
processing speed and model the timing of retrieval (Chen & 
Husband, 2018; McElree & Dosher, 1989; Ratcliff, 1978; 
Ratcliff, Smith, Brown, & McKoon, 2016). Importantly, 
recent research on memory retrieval in sentence processing 
has shown that DDM yields results that are comparable to the 
more costly SAT methodology (Chen & Husband, 2018). 
Based on these results, we extended the DDM methodology 
to test existing predictions about retrieval speed and 
representation quality regarding facilitatory interference 
effects (i.e., activation-based vs. direct-access models of 
retrieval). 

DDM uses data from two-alternative forced choice (2AFC) 
tasks to generate a conditional cumulative distribution 
function (CDF) that relates a time T to the probability that a 
correct response is faster than or equal to T. Crucially, it relies 
on four parameters that have been argued to reflect distinct 
underlying memory retrieval processes in sentence 
processing (Chen & Husband, 2018):  

 
(i) 𝜏	 non-decision time: encoding and motor response 

time, including the time to extract the relevant 
information from memory to make a decision  

(ii) α boundary separation: the amount of evidence 
needed to make a decision 

(iii) δ	drift rate: rate of evidence accumulation 
(iv) β	response bias: the bias to respond to a particular 

alternative 
 
In the current study, we tested a standard agreement 

attraction paradigm like that in (2) as a hallmark of 
facilitatory interference in a high-powered (N=200) 2AFC 
experiment and modeled the data using drift diffusion 
modeling to distinguish between effects arising from 
differences in retrieval speed vs. differences in representation 
quality. Recent research has used DDM to investigate how 
response biases  impact the amount of attraction in sentences 
like (2c), as measured with the β	 response bias parameter 
(Hammerly, Staub, & Dillon, unpublished ms.). However, 
this work did not test the current predictions about retrieval 
speed, nor did it explicitly address the question of retrieval 
time. The present study applies the same methodology, but 
focuses on the issue of processing dynamics to better 
understand why interference eases processing in sentences 
like (2c). 

Under both the activation-based and direct-access 
accounts, facilitatory interference should negatively impact 
asymptotic accuracy (DDM δ	 drift rate), such that the 
sentences that give rise to attraction (2c) should have an 
overall lower accuracy relative to the other conditions (2a, b, 
d). Where the accounts differ, however, is in their predictions 
for processing dynamics. If facilitatory interference arises 
due to faster memory access, as claimed by activation-based 
accounts, then we should see a faster intercept (𝜏	 non-
decision time) for sentences that show attraction (2c). By 
contrast, if retrieval occurs via direct access, then the 
intercept parameters should be comparable across conditions. 

Method 

Participants 
Participants were 200 college-age native speakers of English. 
The large sample size was chosen to ensure high statistical 
power (i.e., reduce Type II error) and accurate estimation of 
the DDM parameters. All participants provided informed 
consent and received credit in an introductory psychology or 
linguistics course. All participants were naïve to the purpose 
of the experiment. The experiment lasted approximately 20 
mins.  

Materials 
Experimental materials consisted of 64 sets of 4 items like 
those shown in Table 1. The high number of item sets was 
chosen to ensure a stable estimation of the DDM parameters. 
Experimental conditions consisted of a 2 × 2 factorial design 
that crossed grammaticality (grammatical/ungrammatical) 
and attractor number (singular/plural). In all conditions, the 
subject head noun was modified by a prepositional phrase 
that contained the attractor. The critical verb was always a 
full lexical verb in sentence-final position. An adverb created 
a buffer between the subject and the critical verb to control 
for processing effects associated with plural nouns (see 
Wagers et al, 2009). Grammaticality was manipulated by 
varying the verb number such that it either matched or 
mismatched the number of the subject head noun. Attractor 
number was manipulated by varying the number of the 
attractor such that it either matched or mismatched the verb 
number. 

The 64 target items were distributed across 4 lists in a Latin 
square design and combined with 66 fillers. Half of the fillers 
were ungrammatical, yielding an overall grammatical-to-
ungrammatical ratio of 1:1. Approximately half of the 
grammatical fillers involved sentence-final plural verbs in 
structures similar to the target items and approximately half 
of the ungrammatical fillers involved sentence-final singular 
verbs to unconfound grammaticality with verb number in the 
target items. The remaining fillers involved relative clause 
structures from an unrelated experiment.  
 

Table 1: Sample set of experimental materials. PL = 
plural. SG = Singular 

 
Condition Sentence 

Grammatical  
PL attractor The tutor for the students often rambles. 

Grammatical 
SG attractor The tutor for the student often rambles. 

Ungrammatical 
PL attractor The tutor for the students often ramble. 

Ungrammatical 
SG attractor The tutor for the student often ramble. 
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Procedure 
Sentences were presented using Ibex (Drummond) one word 
at a time in the center of the screen in RSVP mode with a 
stimulus onset asynchrony (SOA) of 300 ms per word and an 
interstimulus interval (ISI) of 100 ms. Participants were 
instructed to read each sentence carefully and judge whether 
each sentence was an acceptable sentence of English. A 
response screen appeared for 3 s at the end of each sentence 
during which participants made a ‘yes/no’ response by button 
press. If participants waited longer than 3 s to respond, they 
were given feedback that their response was too slow. The 
order of presentation was randomized for each participant. 

Data Analysis 
All data were included in the analyses. A logistic mixed-
effects model was fit to the judgment accuracy data and a 
linear model was fit to the raw response latencies using the 
lmerTest package (Kuznetsova, Brockhoff, & Christensen, 
2014) in the R software environment (R Development Core 
Team, 2018), with fixed factors for the experimental 
manipulations (i.e., grammaticality and attractor number) and 
their interaction. All models were fit with the maximal 
random effects structure supported by the data (Barr, Levy, 
Scheepers, & Tily, 2013). An effect was considered 
significant if |t/z| > 2. 

For the DDM analysis, the RWeiner package (Wabersich 
& Vandekerckhove, 2014) was used to fit a Weiner drift 
diffusion model to each condition for each participant. 
Parameter values that did not converge were excluded, 
following Chen and Husband (2018). A linear model was fit 
to the by-participant parameter fits following the same 
procedure used in the analysis of the response latencies. All 
data and code are available via Open Science Framework: 
https://osf.io/bu2kh/. 

Results 

Judgments and Response Latencies 
Figure 1 shows the percentage of ‘yes’ responses and 
latencies (in ms) for the four experimental conditions. Main 
effects of grammaticality and attractor were observed in the 
judgments and latencies (z > |3| in all cases). Grammatical 
sentences were more likely to be accepted and had faster 
latencies than ungrammatical sentences, and sentences with a 
plural attractor were more likely to be accepted and had 
longer latencies than sentences with a singular attractor. 
Crucially, judgments also showed a significant interaction of 
grammaticality with attractor number (z = -12.48). Planned 
pairwise comparisons revealed that this interaction was 
carried by the ungrammatical conditions: participants were 
more likely to accept an ungrammatical sentence when a 
plural attractor was present (z = 12.11). No such effect was 
observed in the grammatical conditions (z = -1.13). This 
profile reflects the behavioral signature of agreement 
attraction (Phillips et al., 2011) and provides an appropriate 

basis to examine the relationship between retrieval accuracy 
and retrieval speed using the DDM methodology. 

Drift Diffusion Model (DDM) 
 Average DDM parameters by condition are shown in Table 
2, and the t-values for model estimates of effects on DDM 
parameters are shown in Table 3. Figure 2 shows the 
cumulative density of accurate responses as a function of 
response time by condition. DDM revealed an effect of 
attraction on δ drift rate (asymptotic accuracy), qualified by 
an interaction between grammaticality and attractor number, 
such that participants were less accurate in ungrammatical 
sentences with a plural attractor than in those with a singular 
attractor. This effect is predicted by both accounts. 

With respect to processing dynamics, which is where the 
accounts diverge, DDM revealed no significant effect of 
attraction on the processing dynamics reflected in 𝜏	 non-
decision time (intercept). These results suggest that 
agreement attraction impacts retrieval accuracy but not 
retrieval speed, consistent with a direct-access model of 
memory retrieval.  

Results also showed a main effect of grammaticality on 𝜏	
non-decision time (intercept), as grammatical sentences 
showed faster response latencies than ungrammatical 
sentences. This effect is unrelated to interference and likely 
reflects facilitation due to predictive processing in the 
grammatical conditions (Wagers et al., 2009).  
 
 
 

Figure 1: Mean percentage of ‘yes’ responses and 
response latencies in (ms) in parentheses by condition. 

Error bars indicate standard error of the mean. PL = 
plural, SG = singular. 
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Table 2: DDM parameters by condition. 
 

 𝜏 α δ β 

Grammatical  
PL attractor 0.26 2.03 0.90 0.60 

Grammatical 
SG attractor 0.23 2.18 1.12 0.62 

Ungrammatical 
PL attractor 0.30 1.99 -0.24 0.47 

Ungrammatical 
SG attractor 0.29 2.39 -1.05 0.41 

 

Discussion 
The goal of the present study was to distinguish between 
existing predictions about retrieval speed and retrieval 
accuracy to better understand the source of interference 
effects in language processing. On the one hand, activation-
based models of retrieval (e.g., Lewis & Vasishth, 2005) 
claim that differences in processing difficulty due to 
interference in standard RT measures and judgments reflect  

differences in the speed of retrieval. On the other hand, 
direct-access accounts claim that differences in judgments or 
RTs due to interference arise from differences in the quality 
of the candidate memory representations, rather than 
differences in retrieval speed, based on behavioral data 
showing that retrieval time is constant. To adjudicate between 
these accounts, we tested for facilitatory interference 
paradigm in a high-powered 2AFC experiment and modeled 
the results using DDM to disassociate the effects retrieval 
speed and representational quality. 

Results of the 2AFC task replicated the classic attraction 
profile, such that ungrammatical sentences with a plural 
attractor that matched the number of the verb showed boosted 
acceptability relative to ungrammatical sentences with a 
singular attractor. Results of the DDM analysis revealed that 
in the ungrammatical conditions, the presence of a number-
matching plural attractor lowered overall asymptotic 
accuracy, but did not affect retrieval speed. 

The lack of an effect on non-decision time is consistent 
with the predictions of a direct-access procedure. These 
results suggest that the differences in judgments and RTs 
observed in agreement attraction studies reflect differences 
in the ease of integrating the retrieved item back into the 
current processing stream, rather than differences in 
retrieval speed.  

More specifically, we argue that the quality of the memory 
representation (described in terms of activation strength) 
impacts the post-access stage of “binding”, rather than the 
speed of access. In the memory literature, binding refers to 
the mechanisms by which information in memory is 
integrated together (Cohen & Eichenbaum, 1993; Hagoort, 
2003; van der Velde & de Kamps, 2006), and it has been 
suggested that the effort required for integration is governed, 
in part, by the item’s representation quality (Budiu & 
Anderson, 2004). On this view, retrieval of an item that 
satisfies at least some of the search criteria, such as the 

number matching attractor in sentences like (2c), will make 
post-retrieval integration faster compared to integration of an 
item that does not satisfy the search requirements, such as in 
(2d), giving rise to facilitatory interference.  

More broadly, the current results are consistent with the 
recent claim that differences in the quality or availability of 
the information in memory leads to differences in accuracy 
and that those differences underlie the differences in reaction 
time studies (Martin & McElree, 2018). The current study 
extends this conclusion to facilitatory interference, 
motivating a unified analysis of inhibitory and facilitatory 
interference as the signature of direct-access retrieval. 

 𝜏	 α δ β	
Grammaticality -4.85 [-0.08, 0.31] -1.77 [-0.45, 0.02] 21.92 [1.98, 2.37] 11.85 [0.17, 0.24] 

Attractor number 1.17 [-0.00,  0.03] -3.64 [-0.62,- 0.18] 11.71 [0.67, 0.94] 2.55 [0.03, 0.09] 

Interaction 1.04 [-0.01,0.04] 1.88 [-0.01, 0.53] -11.47 [-1.20, -0.85] -4.28 [-0.12, -0.04] 

Figure 2: DDM estimations of the cumulative density 
of  “yes” (1) and “no” (0) responsesas a function of 

response time by condition. PL = plural, SG = singular. 
 

Table 3: t-values for linear mixed effects model estimates on DDM parameters with 95% Cis in brackets. 
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Abstract 

Natural language is replete with figurative expressions like 
my lawyer is a shark, and listeners are expected to intuitively 
understand the intended, rather than the literal, meaning of 
such expressions. But what cognitive resources are involved 
in attaining meaning for such sentences? Most research into 
metaphor comprehension has employed offline reading tasks 
that provide no insight into the time-course of metaphor 
processing. In order to investigate the moment-by-moment 
on-line processes involved in metaphor comprehension, the 
present study used a naturalistic cross-modal lexical decision 
paradigm (Swinney, 1979) with novel brief masked target 
presentations during and after the vehicle word (shark). 
Results obtained from a preliminary sample demonstrated 
priming of related target words across conditions, but no 
significant differences between conditions. These results may 
best be interpreted as supporting an exhaustive-access account 
of metaphor interpretation, which suggests that literal and 
metaphorical interpretations are simultaneously accessed 
during the early stages of metaphor/simile interpretation.   

Keywords: metaphors; similes; language comprehension; 
psycholinguistics; cross-modal lexical decision task; 
pragmatics 

Introduction 

How are metaphors interpreted in real time? This question is 

central to cognitive science because metaphors involve 

blatantly false statements that are nonetheless easily 

understood as conveying an ulterior, non-expressed 

meaning. For instance, upon hearing my lawyer is a shark, 

the listener does not call out the absurdity of the speaker’s 

statement, rather assigning to it an interpretation that 

supposedly captures the speaker’s intended meaning.  

 Various theories have been proposed to account for how 

listeners attain meaning for nominal metaphors in the form 

X is Y. Pragmatic theories take metaphors to convey initially 

a literal meaning which works as an invitation for the 

reader/listener to an interpretation based on the speaker’s 

intended meaning (Davidson, 1978; Grice, 1975; Searle, 

1979).  While these authors differ in their approach to how 

metaphor is ultimately understood, they all suggest that the 

intended meaning can only be understood after an initial 

rejection of the literal, propositional meaning. In 

psycholinguistic circles this has been known as the 

pragmatic model, on the assumption that comprehension 

involves a three-stage process, beginning with the literal 

interpretation, followed by a rejection of the literal, and a 

search for the metaphorical meaning.  

By contrast, the direct-access model suggests that 

metaphors are immediately comprehensible by the linguistic 

system and do not involve additional cognitive resources 

(e.g. Glucksberg & Keysar, 1990; Gibbs, 1994; Wolff & 

Gentner, 2000). Direct access is obtained either via a 

mechanism where metaphors are taken as comparisons 

between categories (e.g. Glucksberg & Keysar, 1990; 

Glucksberg, 2003), or via mapping of constituent features 

(say, features of lawyers and sharks), which are stored in the 

linguistic system as lexical properties of individual words 

(Wolff & Gentner, 2000).  1 

Although metaphors are pervasive in natural language and 

cognitive scientists have long debated the nature of their 

interpretation, to date few empirical studies have 

investigated the moment-by-moment process of metaphor 

comprehension using online experimental methods such as 

cross-modal priming with lexical decision (CMLD; e.g., 

Blasko & Connine, 1993); self-paced reading (e.g., Janus & 

Bever, 1985); ERP (Pynte, Besson, Robichon & Poli, 1996), 

and eye-tracking (Ashby, Roncero, de Almeida, & Agauas, 

2018).  However, support for the direct-access view is based 

primarily on studies involving offline tasks, i.e., tasks that 

require conscious judgment, and are thus not informative 

regarding what happens as sentences containing metaphors 

unfold in real time.  

For instance, Glucksberg, Gildea, and Bookin (1982) 

asked participants to read literal and metaphorical sentences 

and to judge whether they were literally true or literally 

false. Based on a finding that it took longer for participants 

to judge statements as false if they had a common 

metaphorical interpretation (e.g. jobs are jails), the authors 

concluded that a metaphorical meaning is immediately 

available along with a literal meaning and thus interfered 

with subjects' classification of metaphorical sentences as 

                                                           
1   The theories briefly mentioned here certainly 

do not exhaust the spectrum of metaphor theories. However, we 

restricted our review to theories concerned with the process of 

incremental interpretation, while leaving aside theories about the 

thinking processes that are triggered by or underlie metaphor 

production and comprehension (e.g., Lakoff & Johnson, 1978). 
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literally false (Glucksberg et al., 1982). The results obtained 

by offline studies such as Glucksberg and colleagues' (1982) 

could be equally compatible with the hypothesis that 

pragmatic processes interfere with literality judgments after 

the sentence has been fully processed, but before 

participants register a response. 

Studies investigating on-line metaphor processing by 

measuring event-related potentials (ERP) have demonstrated 

that figurative targets elicited larger N400 amplitudes than 

literal targets (e.g. Pynte et al., 1996; Lai, Curran, & Menn, 

2009), which suggests that figurative expressions are more 

difficult to process. This could be due to the detection of an 

incongruence between literal and intended speaker meaning. 

Crucially, these studies have not investigated what is 

accessed at the point at which a figurative expression is first 

processed. 

The purpose of the present study was to investigate the 

nature of the representations computed during the real-time 

processing of metaphors and similes containing the same 

constituents, using an online cross-modal priming task.  

Specifically, we aimed to compare these two types of 

expressions in real time to elucidate differences in 

processing that might occur due to their fundamentally 

metaphorical and literal nature, respectively, and by doing 

so to shed light on the cognitive mechanisms involved in 

reaching an understanding of the meaning of such 

constructions. Our study is unique in that we aimed to study 

the very earliest moments of metaphor processing—the 

moment of lexical access—rather than later interpretation 

processes, and aimed to develop a new, more time-sensitive 

measure than in previous studies (e.g. Blasko & Connine, 

1993).  

We sought to compare the moment-by-moment 

comprehension of nominal metaphors in the form X is Y and 

similes in the form X is like Y using a cross-modal lexical 

decision task (CMLD; Swinney, 1979), and thus limited our 

study to nominal metaphors which could be compared to 

similes directly. Though they are traditionally thought to be 

an alternate form of the simile – a view dating back to 

Aristotle (trans. 1926) – the key difference between these 

two forms of expression is the word like in a simile, which 

renders it literally comprehensible. There is evidence that 

metaphors and similes are produced and understood 

differently (Ashby et al., 2018; Roncero, de Almeida, 

Martin, & de Caro, 2016; Roncero, Kennedy & Smyth, 

2006) and yield different properties in offline studies 

(Roncero & de Almeida, 2015). Thus, we chose to use 

simile sentences as a literal control condition for nominal 

metaphor sentences due to their nearly identical constituent 

structure. 

In the CMLD task, participants listen to aurally presented 

sentences for comprehension and are simultaneously 

presented with a visual target to perform a lexical decision 

task (i.e., pressing “yes” if the target is a word, “no” 

otherwise) in which response times (RTs) are collected. The 

main assumption behind the technique is that RTs to targets 

reflect the relation between a visual target and a prime word 

in the sentence (here, the vehicle Y). Specifically, 

recognition of the target word should be facilitated by 

hearing a related prime word, and thus yield a faster reaction 

time compared to a target that is semantically unrelated.  

This method has two main advantages over other online 

techniques such as ERPs and offline tasks such as sentence 

judgments. First, listening to spoken metaphors during an 

online lexical decision task allows for an analysis of 

metaphor interpretation that is both highly time-sensitive 

and naturalistic. Using a simple lexical decision task rather 

than an offline judgment task means that participants do not 

base their responses on a conscious assessment of sentence 

meaning – indeed, they are not aware that this task is meant 

to test their comprehension of metaphors at all. Instead, 

priming for each target should reflect the interpretation of a 

sentence that is available at the moment visual targets are 

presented. Second, using similes as literal controls allows 

for all constituent words besides like (including target and 

vehicle) to remain identical, thus allowing for direct 

comparisons between literal and figurative interpretations of 

each topic-vehicle pair.  

To our knowledge, the only other metaphor processing 

study to employ CMLD was that of Blasko and Connine 

(1993), which employed a substantially different method. In 

their study participants listened to metaphors and responded 

to targets presented at the offset of the vehicle. These targets 

were either (a) metaphor-related, (b) literal-related, or (c) 

control (unrelated to either the metaphor or the literal 

interpretation). In the present study, in addition to 

comparing metaphor to simile, we traced the time-course of 

interpretation by employing two target presentation points, 

thus probing for the potential access to literal or 

metaphorical interpretations over time. In addition, our first 

probe point was before the offset of the vehicle, during its 

recognition point, to test for the earliest possible position in 

which a literal or metaphorical interpretation could be 

obtained. Moreover, unlike Blasko and Connine (1993), our 

targets were forward- and backward-masked with a series of 

crosshatches, and presented at a fast rate (80ms) in an 

attempt to circumvent subjects’ potential detection of a 

relation between prime and target. 

 

Method 
Participants 

Participants were 37 native English speakers between the 

ages of 19 and 59 (M = 26.32, SD = 8.07; 26F) with normal 

or corrected-to-normal vision and hearing who met the 

following inclusion criteria: (1) They learned English before 

the age of 5 (M = 1.19, SD = 1.47) and identified it as their 

native and dominant language; (2) they rated themselves as 

fluent in speaking, listening, and reading English; (3) they 

reported no history of hearing or reading disability. 

Participants who were recruited via Concordia University’s 

online participant pool were compensated with course credit 

while all other participants were compensated with $10 for 

one hour of participation. Participants for two pretests are 

described along with the pretests below.  
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Materials Experimental materials consisted of 32 

sentences containing metaphors/similes in the form X is 

(like) Y and 160 filler sentences. Metaphor/simile sentences 

were selected from Roncero and de Almeida (2015), which 

consists of a set of metaphor/simile sentences with 

accompanying norms. The sentences were chosen on the 

basis of their high aptness ratings (rated above 6 on a scale 

of 1 to 10, with 10 being the most apt), but had a broad 

range of familiarity ratings. The Roncero and de Almeida 

(2015) norming study asked participants to generate 

associates/explanatory words for both the simile and 

metaphor versions of each sentence and for the topic and 

vehicle words in isolation. For use as our figuratively 

related targets, we selected explanatory words generated for 

each metaphor by the highest possible number of 

participants, which did not appear as associates for the 

vehicle word in isolation. For our literally related targets, we 

selected words which were generated as associates of the 

vehicle word by the highest possible number of participants 

and which did not appear as explanatory words for the 

metaphor on the whole.  

 

Exclusion of Automatic Associates To ensure that any 

potential priming effects were not derived from an 

'automatic' association between the vehicle and target words 

(i.e., due to being frequently paired in speech, like salt and 

pepper), we conducted a norming experiment where each 

vehicle word was read aloud to 12 native speakers of 

English, who were asked to say out loud the first word that 

came to mind. Their responses were collected and any word 

which was named more than twice was excluded from 

selection as a target for that vehicle word.  

The unrelated control words selected to calculate priming 

effects were chosen according to the following criteria: For 

each related target word, written frequency was calculated 

from the Corpus of Contemporary American English 

(COCA; Davies, 2008), a database of American English 

texts collected from 1990-2017 including fiction, non-

fiction and academic texts. Matched (unrelated) control 

words were selected to have the same number of letters, 

same number of syllables, same morphological structure and 

similar frequency in the COCA database.  

 

Sentence Recording and Target Selection 

Metaphors/similes were embedded in longer sentences with 

explanatory contexts which we generated, with the word 

because following each vehicle word to control for 

interference from explanatory contexts; these sentences also 

began with generic proposition-attitude statements (e.g., It 

is hardly a secret that lawyers are sharks, because with few 

exceptions, lawyers are bloodthirsty and ruthless). Filler 

sentences did not repeat the topic or vehicle words of any 

experimental sentences. Of these, 32 followed a similar 

sentence structure as experimental sentences, while 128 

filler sentences did not syntactically resemble experimental 

sentences. Visual targets for filler sentences were 64 real 

English words and 96 ‘nonsense’ strings of letters that did 

not resemble English words, of varied lengths to reflect the 

varied lengths of experimental targets. All sentences were 

read by a female native English speaker and recorded for 

aural presentation, with natural prosody and reading speed. 

Special attention was given to matching the prosody and 

timing of metaphor and simile pairs, to make them nearly 

identical except for the word like.  

 

Recognition Times We employed a gating paradigm to 

determine the recognition point of each vehicle word, 

following the procedure developed by Zwitserlood (1989). 

Recordings of each vehicle word were cut into slices 

increasing by 50ms each. These were played consecutively 

to 10 native speakers of English over noise cancelling 

headphones. Participants were asked to write down what 

word they thought they were hearing after each slice was 

presented. Their responses were collected and recognition 

times for each word were defined as the moment when 80 

percent of participants correctly identified the word (with or 

without pluralization). During the lexical decision task, the 

early time point was defined as 40ms prior to recognition 

time, to account for screen refresh rate and the fact that the 

word could have become recognizable anytime within the 

50ms slice participants heard during the gating task. Late 

time points were defined as 500ms following recognition 

time to avoid interference from words later in the sentence.  

Experimental Design 

A total of 16 counterbalanced lists were created following a 

2 x 2 x 2 x 2 design. Each topic/vehicle pair was presented 

in either a metaphor- or simile-containing sentence, along 

with a figuratively related target, literal target or matched 

control target, at an early (recognition) or late time point. 

Each block contained two experimental sentences in each 

condition along with all 160 filler sentences, 20 of which 

were followed by comprehension questions to ensure 

participants were attending to aural stimuli. Each participant 

completed two blocks containing one list each – i.e., each 

participant heard both the simile and metaphor version of 

each sentence once in total. The sentences were randomized 

in order within each block of trials and participants were 

randomly assigned to each set of lists.   

Procedure 

Participants were tested on an iMac computer using 

Psyscope X B57 (Cohen, MacWhinney, Flatt, & Provost, 

1993) using a button box. After voluntary consent was 

obtained, each participant was seated in front of the screen 

in a dark room, equipped with noise-cancelling headphones, 

and instructed to attend to both the aurally presented 

sentences and visual stimuli on the screen. Participants were 

instructed that their primary task was to identify whether the 

letters they saw on the screen constituted an English word 

and to press a button to indicate YES or NO as quickly and 

accurately as possible, while their secondary task was to 

answer comprehension questions about the sentences they 

heard over the headphones.  
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Each trial consisted of a prompt asking participants to 

press a button when they were ready for the next trial, 

followed by an aural presentation of each sentence. Target 

words appeared in white 20-point Arial font text in capital 

letters on a black screen for 80ms each, preceded and 

followed by masks which appeared for 100ms. This brief 

masked priming procedure was meant to reflect faster and 

more automatic processes of recognition rather than slower 

processes of judgment. Masked priming (see Forster, 1999) 

reflects early processes of lexical recognition which should 

be uncontaminated by other semantic factors. Each 

participant was given five randomized practice trials, during 

which the experimenter answered questions and corrected 

mistakes.  

Data Analysis 

Analysis of reaction times (RTs) was restricted to correct 

trials (i.e., those where participants correctly identified the 

target as an English word) while incorrect trials were 

omitted (13% of all data points). As is standard in lexical 

decision paradigms (Friedmann, Taranto, Shapiro & 

Swinney, 2008), all reaction times above 2 seconds were 

discarded prior to data analysis (2% of all data points). 

Based on a priori decisions, we discarded blocks of trials 

where participants answered fewer than 70% of 

comprehension questions correctly. 

Results 

We performed a linear mixed-effects model regression 

analysis with subjects and items (vehicles) entered as 

random effects with random intercepts. Raw RTs were 

regressed on priming (control/experimental targets), 

sentence literality (metaphor/simile conditions), target type 

(figurative/literal) and time-point (early/late), as well as all 

first order interaction terms. For ease of interpretation, 

priming effects (RT to control – RT to target) are presented 

in Figure 1. The full RT model was compared to a null 

model including only random effects (subject and item), 

using the Likelihood Ratio Test to determine significance. 

Our model provided a better fit to the data than the null 

model (χ2(10) = 25.70, p = 0.004). We derived p-values for 

all main effects and interactions using the Likelihood Ratio 

Test to compare the full model to a model excluding the 

relevant term (see Table 1) and found only one significant 

main effect of priming.  

  As predicted, participants took significantly longer to 

respond to unrelated targets than to related targets (χ2(4) = 

22.38, p < 0.001) – overall, RTs to related targets were 

40ms faster (SEM=23.88). While no other main terms or 

interaction terms reached significance, the respective means 

of each condition seemed to show trends which may be 

worth investigating with a larger sample. Specifically, in the 

metaphor condition, early priming values were lower for the 

figurative condition than for the literal condition, but 

priming for the figurative condition was higher at the later 

time point. In the simile condition, the reverse was true, 

with higher priming for literal targets at the late time point. 

Unexpectedly, the largest priming effect was observed for 

figuratively related targets at the early time point of the 

simile condition. 

 

 

Table 1: Mixed-effects linear model of response times. 

 

Predictor Estimate SE t 95% CI Null Comparison 

Constant 718.19 23.88 30.08 [671.39, 765.00]  

Priming -39.51 16.10 -2.45 [-71.06, -7.95] χ 2(4)=22.38, p<.001 

Time-point -1.84 16.05 -0.11 [-33.29, 29.61] χ 2(4)=1.67, p=.80 

Target type -16.44 16.15 -1.02 [-48.10, 15.22] χ 2(4)=1.27, p=.87 

Sentence literality -18.04 16.02 -1.13 [-49.44, 13.37] χ 2(4)=2.31, p=.68 

Priming x Time-point 1.43 15.81 0.09 [-29.55, 32.40] χ 2(1)=0.0083, p=.93 

Priming x Target type 8.09 15.87 0.51 [-23.02, 39.19] χ 2(1)=0.26, p=.61 

Priming x Sentence literality -4.50 15.83 -0.28 [-35.52, 26.52] χ 2(1)=0.08, p=.78 

Time-point x Target type 2.01 15.78 0.13 [-28.93, 32.94] χ 2(1)=0.02, p=.90 

Time-point x Sentence literality 14.28 15.77 0.91 [-16.64, 45.19] χ 2(1)=0.82, p=.36 

Target type x Sentence literality 10.39 15.88 0.65 [-20.74, 41.52] χ 2(1)=0.43, p=.51 
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Figure 1: Mean priming effects between unmatched control words and related target words in Metaphor and Simile 

conditions as a function of time point and literality. Error bars represent SEM

.

Discussion 
We used a novel, masked rapid-presentation CMLD task to 

gain insight into the moment-by-moment processing of 

metaphors and similes of the form X is/is like Y. The results 

obtained showed significant priming in all conditions and at 

all time points; and, contrary to our predictions (and those of 

the pragmatic model) no statistically significant differences 

in priming between conditions were obtained.  

These results can be partially accounted for by different 

models of metaphor interpretation, in particular models that 

assume some form of exhaustive access. This is so because, 

contrary to what both pragmatic and direct-access models 

would predict, literally related target words were still 

primed as much at the later time point (b) as at point (a), 

suggesting that even after a sentence has been fully 

processed (and, presumably, understood to have a non-

literal intended meaning), literal representations of the 

vehicle word linger. 

We take these results to suggest that metaphor/simile 

interpretation trigger an exhaustive access, an effect also 

found in some lexical ambiguity resolution studies (e.g., 

Swinney, 1979). Exhaustive access, in the context of 

metaphor processing, entails the access to both the literal 

meaning and a meaning commonly associated to the 

metaphorical use of the same word. According to Carston 

(2010), two simultaneous processes contribute to the 

understanding of metaphorical language—a fast, online 

formation of ad hoc concepts linked to the metaphorical 

vehicle (for example, while the lexical item shark may 

conceptually represent the large predatory fish, it may also 

represent a concept like aggressive or mean, especially for 

highly apt/conventional metaphors such as many of those 

used in our experiment), and a more nuanced, offline 

process of interpreting the meaning of a metaphorical 

passage that relies on its literal meaning and the “images” 

the literal meaning evokes. Thus, according to Carston's 

(2010) model, the early priming of figuratively related 

targets presented at recognition point (a) could be a result of 

ad hoc concept formation relating the vehicle word to 

figurative concepts, while the persistence of priming for 

literally related targets at point (b) could be explained by the 

persistent, simultaneous activation of literal (or imagistic) 

representations. However, it is not clear whether these ad 

hoc concepts—which are obtained from contextually-driven 

inferences—are in fact accessed within the 80 ms window 

of target processing. In Carston’s relevance-theoretical 

approach, these ad hoc concepts would have to be 

constrained by context. But this would imply a sentence 

type x target type interaction, which we did not obtain. 

Alternatively, these ad hoc concepts are already associated 

with the vehicles, such that a rapid shark➝MEAN access 

could be obtained similarly to the literally related 

shark➝BLOOD.  

Our results are also partially compatible with Giora’s 

(2003) graded salience hypothesis and in particular its 

ancillary hypothesis, retention. These hypotheses can be 

summarized as follows. Effects such as frequency or 

familiarity lead to a graded representation for meanings or 

senses of a word. These factors determine a form of 

exhaustive, but ordered access to meanings in the course of 

interpretation. For metaphors, this means that the most 

salient meaning—metaphorical or not—will always be 

accessed first, or activated more strongly. This theory is, in 
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large part, context-insensitive; that is, it takes the order of 

access to be determined by lexical-semantic encoding 

factors, not determined by context. We only say that our 

results are partially compatible with this theory because we 

have not tested specifically for the salience of particular 

senses.  

A third compatible view takes relations between lexical 

concepts to be established in terms of meaning postulates 

(see, e.g., de Almeida, 1999; Partee, 1995; and Fodor, 

1998). An application of this view to the interpretation of 

the present results would take vehicle meanings to quickly 

trigger their related postulates, whether they are related to 

literal or to figurative meanings. Thus, for example, a 

meaning postulate would constitute a relation between the 

meaning of the prime (shark) and the meanings of the 

targets, via postulates with the form such as (∀x[P(x)] ➝ 

[Q(x)])n. This view requires both ∀x[SHARK(x)] ➝ 

[MEAN(x)] and ∀x[SHARK(x)] ➝ [BLOOD(x)] to be 

postulates related to the meaning of shark, with both being 

equally primed, independent of context, and as a function of 

lexical-conceptual relations established not by necessity 

(i.e., analytic) but as a function of use (i.e., synthetic).2  

Our results cannot currently set these theories apart, nor 

was this experiment conceived to contrast them directly. 

Moreover, despite our exhaustive-access effects, tendencies 

observed in the group means for each condition suggest that 

there may be differences in priming between conditions. In 

the metaphor condition, mean priming for figurative targets 

was higher at time point (b) than at time point (a), and 

priming for literal targets was higher at time point (a) than 

(b), although none of these differences reached a threshold 

of significance, which may suggest that figurative 

associations of the vehicle word are accessed more easily 

after pragmatic processes have been implemented. 

Additionally, priming for figurative targets at time point (b) 

was higher than for literal targets, which may suggest that 

literal associations with the target word are inhibited once 

the metaphor has been fully processed and understood.  

Conversely, in the simile condition, group means 

indicated that priming was higher for literal targets at time 

point (b) than at time point (a); priming for literal targets at 

time point (b) was also higher than for figurative targets at 

the same point (b). These results suggest that similes are 

interpreted as literally true sentences and tend to activate 

literal meanings once fully processed, as the pragmatic 

model suggests. One unexpected tendency observed in the 

group means was that figurative targets were primed more at 

recognition point (a) than literal targets, and primed more at 

point (a) in the simile condition than the metaphor 

condition. A possible explanation for this result is that the 

word like in similes could lead participants to anticipate an 

upcoming vehicle word that is not typically literally related 

to the topic of the sentence. 

                                                           
2  For ease of exposition, we are simplifying the 

presentation of these meanings postulates, which might involve 

other predicate-argument relations. 

The gating paradigm used to determine recognition points 

tested the moment at which each word is recognized in 

isolation, but context could bias listeners to correctly 

identify the word earlier when presented within a sentence. 

In the context of highly familiar similes such as time is like 

money, the word like could in fact trigger an assumption in 

the listener that the word money will follow, due to the 

frequency with which the simile is used in common 

language use—and cause the recognition point of the 

vehicle word to occur earlier than anticipated. In order to 

test this possibility, additional experiments are being 

conducted relating the strength of the early figurative 

priming effect to the familiarity rating of each simile.  

A major methodological difference between our study and 

other psycholinguistic experiments employing cross-modal 

lexical priming (e.g., Swinney, 1979; Friedmann et al., 

2008) was our use of briefly presented masked visual 

targets. Typically, cross-modal lexical decision tasks 

employ an unmasked visual target presentation lasting at 

least 500ms (e.g. Friedmann et al., 2008), which allows for 

much higher response accuracy. Forster (1999) explained 

that the use of very rapid masked primes should circumvent 

conscious thought processes about prime and target words 

and, instead, reflect unconscious processes of word 

association. Our use of masked visual targets presented for 

80ms combined with presentation times at the recognition 

point of aurally presented vehicle words followed the 

rationale that in order to observe unconscious on-line access 

to semantically related concepts during metaphor 

processing, participants should not be allowed time to 

consciously consider either visual target or aurally presented 

vehicle. This created a speed-accuracy trade-off that 

resulted in a loss of data; however, the data obtained should 

be reflective of unconscious (online) facilitation processes. 

Experiments with greater statistical power might resolve 

whether tendencies observed in support of the pragmatic 

model reflect real differences in priming between 

conditions. Alternatively, we have also considered three 

views that seem compatible with an exhaustive access of 

both metaphorical and literal representations. What our 

present results seem to indicate is that there is no direct 

access to the contextually-determined, conventional 

metaphorical interpretation (e.g., Gibbs, 1994) without 

access to the literal meaning. 

In conclusion, we found priming to targets related to both 

figurative and literal interpretations of metaphor and simile 

vehicles. The effect was found at both the recognition point 

(i.e., before the offset of the vehicle), and 500ms later. What 

is surprising is that we obtained priming effects at a fast 

target presentation time (80ms) under masking conditions, 

suggesting exhaustive access to literal and nonliteral-related 

targets before conscious judgments of metaphoricity could 

be made. 
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Abstract 

A plurality of the categories we hold exhibit family 
resemblance (FR; i.e., many characteristic but few defining 
features), suggesting FR may occupy a central role in human 
category formation. However, research in unsupervised 
learning has shown that when people are asked to sort an 
array of novel items into categories, they ubiquitously use a 
unidimensional (UNI) rule – despite the availability of a FR 
solution. This work suggests that, perhaps, FR similarity is 
not a core tendency in category formation. Here, we question 
whether the UNI bias is a result of the sorting paradigm. 
Specifically, we speculate the paradigm conflates two 
components vital for category formation: production and 
evaluation. Across three experiments we show that when 
evaluation is separated from generation – by using a novel 
forced-choice task that pits different category organizational 
schemes against one another – people exhibit a FR over UNI 
preference. The implications of these results are discussed. 
 

Keywords: unsupervised categorization; similarity; family 
resemblance; unidimensional bias; category construction 

Introduction 

Understanding the cognitive basis on which we create novel 

categories in the absence of feedback is foundational to 

understanding human category learning more broadly. One 

way to address this question is simply by studying the 

categories we already hold. Theoretical and behavioral work 

has shown that the natural categories are described by a 

family resemblance (FR), or overall similarity, structure 

wherein members of a category share many characteristic 

features but share few or no defining features (Rosch & 

Mervis, 1975, Wittgenstein, 1953). Given the prevalence of 

FR among natural categories, an intuitive hypothesis is that 

overall similarity is the preferred or default basis on which 

we form novel categories.  

Under this hypothesis, Medin, Wattenmaker, and 

Hampson (1987) sought to investigate unsupervised 

category formation more directly by using a sorting 

paradigm in which the participant was given an array of 

novel, multi-dimensional stimuli and asked to sort them into 

two equal-size categories. Critically, the examples could be 

sorted based on FR or, alternatively, based on a 

unidimensional (UNI) rule (e.g., ‘red things in one category, 

blue things in another’). Contrary to their expectations, 

Medin et al. (1987) demonstrated across several 

experiments that people overwhelmingly preferred to 

construct categories described by a UNI rule; they very 

seldom created categories adherent to FR, despite UNI 

solutions having less within-category, and more between-

category, similarities than those based on FR (Medin et al., 

1987). Much work has subsequently replicated the strong 

UNI bias under the full-array sorting task (e.g., Ahn & 

Medin, 1992; Lassaline & Murphy, 1999; Regehr & Brooks, 

1995; Wattenmaker, 1992).  

The inconsistency between the UNI bias in the full-array 

sorting task and the tendency for natural categories to be 

described by FR has puzzled the field, and much research 

has been devoted to understanding why such an 

inconsistency exists. Coarsely, this work has two central 

themes: feature and task effects. Research on feature effects 

has shown that, generally speaking, changing the quality or 

the number of features is ineffective at reversing the UNI 

bias – and in some cases can exacerbate it (Regehr & 

Brooks, 1995). This of course comes with one notable 

exception: prior knowledge. People produce more FR 

sorting when the features of the FR categories map onto 

known concepts (e.g., the features of extro- vs. 

introversion), or novel concepts taught to participants, that 

explain and relate the features to one another (e.g., Ahn, 

1999; Medin et al., 1987). This work is important for 

understanding category formation; however, we consider it 

to address a fundamentally different question. Instead of 

asking, “what is the organizational basis used when forming 

a completely novel/artificial category,” it asks, “given a 

latent or manifest conceptual/causal basis in the features, do 

people construct categories by it?” 

Research on task effects has shown two critical findings. 

First, Lassaline and Murphy (1996) showed that an 

inference task (e.g., ‘if it has feature A on dimension 1, what 

feature is it likely to have on dimension 2’) prior to the 

sorting task increased FR responding. This experiment 

shows that encoding feature co-prediction is vital for 

generating FR. However, it leaves open the question of 

whether people do this kind of feature encoding 

spontaneously during category formation.  

Second, Regehr and Brooks (1995) used a novel Match-

to-Standards (MTS) task in which participants sorted each 

item, one at a time, by matching them to one example item 

from each FR category; each sorted example covered up the 

previous example that was sorted into that category and the 

standards remained visible throughout the task. The MTS 

task led to much greater FR responding, relative to the full-

array sorting task. This is suggestive that FR structure in 
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natural categories might be an emergent property of many 

item-item matches, though this connection has never been 

empirically drawn. Several subsequent studies have 

followed up on this approach to studying unsupervised 

categorization, examining factors such as feature 

separability, time pressure, and working memory load 

(Milton, Longmore, & Wills, 2008; Milton & Wills, 2004; 

Wills, Milton, Longmore, Hester, & Robinson, 2013).  

However, we have two concerns with the MTS task, as 

the data currently stand. One, it is based on local item-to-

item matching in which only the most recent item sorted 

into each category is visible (along with the standards); thus, 

while people produced more FR responding, it is unclear if 

that responding is attributable to the participant’s 

appreciation of similarity structure generated across 

examples in each category or if instead FR responding was 

simply a product of making local matches (without 

appreciating category-level structure). Two, the task does 

not measure unsupervised category formation. Given the 

supervision, in the form of standards from each category, 

the task is instead a measure of semi-supervised category 

formation (Patterson & Kurtz, 2018; Vong, Navarro, & 

Perfors, 2016). 

The goal of the current work was to investigate task 

effects in unsupervised category formation from a novel 

perspective that aims to address some of the limitations of 

previous research on task effects. We ask whether UNI 

similarity is indeed a deep organizational preference in 

category formation or if, instead, it is a direct product of the 

standard full-array sorting paradigm (e.g., Medin et al., 

1987). We identify three aspects of the sorting task that 

independently or in conjunction could encourage UNI 

solutions. First, the task presents a whole array of multi-

dimensional stimuli to the participant simultaneously. 

Intuitively, complexity in both the number of items and 

number of features might encourage problem simplification 

in the form of sample or dimensionality reduction. As 

sample reduction is not an option (participants must include 

all items in the solution), dimensionality reduction may be 

utilized.  

Second, the goal of the sorting task is to produce two 

categories; this goal is decidedly intentional and 

discriminative – i.e., goal is to predict/separate class. 

Research has shown that intentional and discriminative 

learning leads to greater rule focus relative to either 

incidental learning or learning where class-prediction is 

softened (Levering & Kurtz, 2015; Love, 2002). Third, and 

critically, the standard sorting task conflates two intuitively 

essential components for category formation: the generation 

of a candidate category structure and the evaluation of that 

structure relative to possible alternatives. Given the goal of 

the task is to generate one candidate structure, the 

evaluation of this structure is likely to be inadequate due to 

insufficient alternative structures with which to compare it 

to. Furthermore, we expect candidate structures in 

naturalistic settings are generated not cold (as in the 

standard paradigm), and not necessarily with prior top-down 

knowledge, but through feature statistics that accrue with 

incidental experience (Lassaline & Murphy, 1996; Love, 

2002). As such, we expect the structure hypotheses 

generated by participants in the sorting paradigm to be 

immature. 

In the experiments that follow, we introduce a novel 

Structure Choice Task (SCT) in which two candidate 

structures are presented side-by-side and the participant 

chooses which they prefer. The task thus obviates the need 

to generate structure hypotheses (which we believe are 

undermined in the standard sorting paradigm) and isolates 

structure evaluation. If FR is a preferred organizational 

principle in category formation (and if the UNI bias is a 

product of the standard sorting paradigm), we should expect 

people to choose the FR structure more frequently than the 

UNI one.  

We point out that the SCT resolves limitations from 

previous task effects research in two ways. First, the task 

does not rely on any pre-task encoding manipulations; 

participants encode the items/structures however they wish 

and make a judgment. As such, the preferences produced are 

spontaneous. Second, the task does not restrict the number 

of stimuli that are under consideration, as in the MTS task. 

Because the SCT presents whole categories, organized in 

two different ways, it should reflect the participant’s 

category-level similarity preference (rather than local 

matching). 

In Experiment 1A, we pit FR against UNI in the SCT and 

provide first-ever evidence of a spontaneous FR preference 

in a category-level task that uses knowledge-poor features. 

In Experiment 1B, we replicate E1A and extend it by 

comparing SCT results to full-array sorts completed either 

before or after the SCT; despite replicating the FR 

preference in the SCT, effectively nobody produced FR 

sorts – suggesting the standard sorting paradigm encourages 

UNI solutions. In Experiment 2, we address potential 

critiques to FR supremacy in the SCT. 

Experiment 1A 

In a within-subjects design, FR and UNI organizations of 

the same items were pitted against one another in the SCT. 

Without having to generate hypotheses, we predicted 

participants would prefer FR organizations. 

Method 

Participants 108 undergraduate students at Binghamton 

University participated. 

 

Materials and Design The stimuli were based on a five-

dimensional variant of the abstract FR category structure 

from Medin et al. (1987); each binary dimension is 

represented as a pair features (see Figure 1). Each category 

consisted of a prototype – containing all five characteristic 

features of the category – and five ‘one-off’ items that 

differed from the prototype by a feature that was consistent 

with the opposite prototype. Five 12-item stimulus sets, 

from distinct domains (see Figure 1 for prototypes), were 
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created from this abstract structure.  

 
Figure 1: (A) The abstract FR structure [prototypes: row 1]; 

(B-F) Prototypes from all five stimulus sets: and prototypes 

of each category structure for all five stimulus sets, 

respectively: Card, House, Lamp, Pinwheel, Robot. 

 

On each trial of the SCT, two completed sorts from the 

same stimulus set were presented side-by-side on the 

computer screen, one a FR solution and the other a UNI 

solution (see Figure 2 for an example trial). The UNI 

solution was generated on each trial of the experiment by 

swapping one-offs of a randomly selected row in the 

abstract structure, between category. Stimulus sets were 

presented in a randomized order. The order of items in each 

category of each completed sort, as well as the side on 

which FR was shown (left vs. right), were also randomized. 

 

 
Figure 2. The left panel contains an example trial of the 

SCT containing a FR (right) and UNI organization (left; 

base color). The right panel contains an in-progress example 

of the sort task. 

 

Procedure The SCT was programmed and administered via 

computer. Immediately prior to the task, participants were 

given instructions: “In this study you will be presented with 

a single set of items that is organized in two different ways. 

An example trial is pictured below. On each trial, carefully 

look at both organizations and select whichever one seems 

the most natural to you.” The example trial shown with the 

instructions was identical to Figure 2, except the lamps were 

replaced with naturalistic ducks and bats – one organization 

had ducks and bats separated as categories A and B, while 

the other had them intermixed between categories. After the 

instructions, participants sequentially performed the SCT on 

each of the five domains. Participants selected their 

preference by clicking a button located below the 

organizations with the mouse. After responding, participants 

proceeded to the next trial/stimulus set. 

 

 Results & Discussion 
We obtained a difference score for each participant that 

reflected their net preference (total FR selections minus total 

UNI selections). As there were five trials, difference scores 

could range from -5 (all UNI selections) to 5 (all FR 

selections). The analysis showed that FR organizations were 

selected reliably more frequently than UNI ones (the 

ordinal, non-normal data were subjected to a Wilcoxon 

signed-rank test: Mdn = 1, Z = 3.787, p <.001; see Figure 3). 

Supplemental analyses1 provide a histogram of difference 

scores (pp. 1) and an analysis of preference by stimulus 

domain (pp. 2-3). 

These results show clearly that when people’s structural 

preferences are assayed – in the absence of being asked to 

produce candidate structures – they prefer FR. This provides 

inaugural evidence that FR may be a deep organizational 

basis that is sought in naïve, unsupervised category 

formation. Compared to the UNI bias typically seen in the 

full-array sorting paradigm, these findings represent a 

massive divergence – suggesting the affinity for UNI 

organizations in the sorting task is related to shortcomings 

in the generation of candidate structures. However, these 

stimuli have never been subjected to a direct comparison 

between the SCT and the full-array sorting task. It is 

possible that the stimuli we used are somehow generally 

more prone to be categorized by FR. This potential critique 

is addressed in Experiment 1B. 

Experiment 1B 

In this experiment, we sought to replicate the FR advantage 

and relate the outcomes of the SCT and the full-array 

sorting task using the same stimulus sets. To this end, each 

participant completed both the SCT and the full-array 

sorting task for all the stimulus sets in a task-blocked format 

(e.g., SCT for all sets, then sorting task for all sets). The 

order of the tasks was balanced across participants. We 

predicted participants would display a profound UNI bias in 

the sorting task, but that people would readily choose FR in 

the SCT. 

Method 

Participants 140 undergraduate students at Binghamton 

University participated. Participants were randomly 

assigned to the SCT first (SCT-SORT; N = 71) or the sort 

first (SORT-SCT; N = 69) condition.  

 

Materials and Design The materials were identical to 

Experiment 1A. The same stimuli were used in both the 

SCT and sort task. 

 

Procedure Both tasks were administered through a 

computer program. The SCT procedure was identical to that 

of E1A. In the SORT task, participants were instructed that 

there were many ways to create two equal-size categories, 

but their goal was to sort them in a way they thought most 

natural; an example sort, using the same demo images used 

                                                           
1 The supplemental analyses can be viewed at this link: 

https://osf.io/jr2wu/?view_only=de559c73f1ef4b4da3781f4ef680f

74f 
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for the SCT demo, was provided with the instructions. After 

instructions, participants then sorted each stimulus set in 

random order. For each stimulus set, the stimuli initialized 

to a row in the middle of the screen in a random order. 

Above and below that row were the two category bins. 

Participants used the mouse to drag and drop items into 

either category bin, and were able to reclassify the items 

freely. When finished, participants hit the enter key to 

submit. Sorts were coded as FR, UNI, or OTHER. OTHER 

sorts reflect any type of category produced by participants 

that is not FR or UNI; these sorts lack any interpretable 

structure. In the SORT-SCT group, participants sorted each 

of the randomly ordered stimulus sets before then 

completing the SCT for each set. The SCT-SORT group 

was the same, but the order of the two tasks was swapped. 

Results & Discussion 

The primary goal of the experiment was to replicate the FR 

advantage in the SCT; we use the same SCT analysis as in 

E1A. The SCT difference scores did not differ as a function 

of condition (SORT-SCT: Mdn = 1; SCT-SORT: Mdn = 1; 

Z = -0.41, p = .682).  As such, SCT data from the two 

conditions were combined. Our analysis using the 

magnitude of the difference scores showed that participants 

selected the FR structure reliably more frequently than the 

UNI one (Wilcoxon signed-rank: Mdn = 1, Z = 2.98, p = 

.003; see Figure 3). Thus, we replicated the effect found in 

E1A and illustrate that when the task is constrained to the 

evaluation of candidate structures, FR is preferred over UNI 

solutions (see supplemental analyses pp. 2-3 for an analysis 

of preference by stimulus domain). 

 

 
Figure 3. SCT preferences in Experiments 1A (left) and 1B 

(right three). COLLAPSED reflects an aggregation of both 

SCT-SORT and SORT-SCT conditions. Green dots reflect 

participant difference scores. Diamonds show means. 

Dashed line shows a difference score of 0 (FR = UNI). 

 

The second goal of Experiment 1B was to compare the 

SCT to the standard full-array sorting paradigm, using the 

same stimuli as in the SCT. A potential concern from E1A 

is that the preponderance of FR responding in the SCT is a 

result of the stimuli, rather than a result of separating 

evaluation from production. As with the SCT data, we 

collapsed sort task data across conditions; the conditions did 

not reliably differ in the number of UNI solutions provided 

(SORT-SCT: 99%, SCT-SORT: 97%; χ2(1, N = 593) = 

0.002, p = .967), and there were too few alternative 

solutions generated (FR/OTHER) to compare across order 

conditions. For the collapsed data, we replicated the 

prevalent UNI bias; participants produced significantly 

more UNI sorts (98%) than FR (0.2%) and OTHER sorts 

(1.8%) [UNI vs. FR: χ2(1, N = 594) = 590.1, p < .001; UNI 

vs. OTHER: χ2(1, N = 604) = 560.8, p < .001]. Moreover, 

more OTHER sorts were produced than FR sorts, reflecting 

the rarity of FR solutions produced in the sorting paradigm 

[χ2(1, N = 12) = 8.333, p = .004].  

Overall, these findings show a successful replication of 

the FR preference under the SCT. By contrast – and 

consistent with previous research using the array sorting 

task – the sorting task led to an overwhelming number of 

UNI sorts. This highlights two points. First, there were only 

12 non-UNI sorts produced; this means the very same 

people who produced consistent UNI sorts found FR to be 

more compelling than UNI in the SCT, under the same 

stimuli. This strongly suggests that the UNI bias in the 

sorting task arises not because participants evaluate UNI as 

a superior organizational principle (which the SCT data 

shows), but instead because some element(s) of the sorting 

task encourages it. Second, regarding the concern that our 

stimuli might generally be more prone to FR preference, the 

strong UNI bias in the full-array sorting task indicates that is 

not the case. 

Experiment 2 

The purpose of this experiment is to address an alternative 

account of the FR advantage observed and replicated in E1. 

Specifically, we were concerned that participants might 

have failed to notice the UNI rule and, in the (perceived) 

absence of a UNI rule, chose FR as a best of bad options 

(perhaps without appreciating the FR similarity).  

In this experiment, we use a three-condition (within-

subjects) version of the SCT. The first condition is the same 

FR vs. UNI choice task as in the previous experiments. 

However, we introduce two new conditions: UNI vs. 

OTHER and FR vs. OTHER. Note that the UNI vs. OTHER 

condition should make UNI a compelling option – provided 

people do notice the UNI rule in the SCT; a UNI over 

OTHER preference would thus suggest participants in the 

previous experiments did notice the UNI rule, but preferred 

FR. A potential concern about this design is that, by 

elevating UNI to an ‘optimal’ choice on those trials, it might 

invite a demand characteristic (e.g., ‘UNI is better option 

here, maybe they want me to find/select the UNI option 

elsewhere’) or make UNI organizations more appealing than 

they might otherwise be. The FR vs. OTHER condition was 

included to minimize these effects, as it serves to balance 

the number of times FR and UNI were ‘optimal’ vs. 
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OTHER groupings. In addition, it allows us to examine if 

FR is preferred over OTHER organizations and affords us a 

global measure of preference by making each response type 

equally probable due to chance (total FR vs. UNI, across all 

trial types). 

Method 

Participants 363 undergraduate students from Binghamton 

University participated. 

 

Materials and Design The materials were the same as in 

Experiment 1. The design was like E1A, but expanded to 

include UNI vs. OTHER and FR vs. OTHER trial types, all 

within-subjects. OTHER organizations were created by 

taking a FR organization and swapping three randomly-

chosen, non-prototype items from one category with three 

items occupying the same rows in the opposite category, 

according to the abstract structure shown in Figure 1; these 

arrangements had no discernible structure. In sum, there 

were three trial types: 1) FR–UNI, 2) FR–OTHER, and 3) 

UNI–OTHER. The particular OTHER and UNI groupings 

that were created for each subject were held constant across 

trial types within a domain (e.g., if the UNI rule was on the 

base color for the Lamp set [see Figure 2] in the FR-UNI 

trial, base color would also be used to form the UNI rule in 

the UNI-OTHER trial for Lamps). This was done to ensure 

a consistent comparison across trial types in a stimulus set.   

 

Procedure The procedure was like Experiment 1A. 

Participants were presented with each stimulus set 

sequentially, in a random order. For each stimulus set, the 

participant was presented with each trial type sequentially, 

in a random order. In each trial type, the participant selected 

which of the two organizations they preferred. Unlike in the 

previous experiments, the participants were elicited for an 

explanation of their choice for each trial type in the first and 

last stimulus sets. 

Results & Discussion 

Separate difference scores were calculated for each trial 

type: UNI minus OTHER, FR minus OTHER, and FR 

minus UNI. Wilcoxon signed-rank tests were conducted on 

the magnitudes of the difference scores. Supplemental 

analyses include a histogram of difference scores (pp. 4) an 

analysis of preference by stimulus domain (pp. 5-6) and an 

analysis of FR-UNI trials based on the previous trial (pp. 7). 

Our primary concern in this experiment was to determine 

whether people do in fact detect UNI rules in the SCT. The 

critical trial type for assessing this was UNI-OTHER; a UNI 

preference would suggest participants do detect the UNI 

rule. The analysis of the UNI-OTHER condition yielded a 

reliable UNI over OTHER preference (Wilcoxon signed-

rank: Mdn = 3, Z = 12.487, p < .001). Importantly, the UNI 

preference provides strong evidence that people do in fact 

notice UNI rule embedded in UNI organizations and   

suggests that the FR over UNI preferences observed in E1A 

and E1B are not derived from participants simply failing to 

notice the rule.   

The same pattern was observed in the FR-OTHER 

condition; participants selected significantly more FR 

organizations than OTHER organizations (Wilcoxon signed-

rank: Mdn = 3, Z = 13.195, p < .001). As a complement to 

the UNI-OTHER analysis, this finding shows that people 

are sensitive to FR as a coherent organizational basis and 

find it compelling relative to less coherent options. 

 
Figure 4. SCT preferences by trial type in Experiment 2. 

Green dots show each participant’s difference score. 

Diamonds show means. Dashed line shows a difference 

score of 0. Positive scores in the FR-OTHER and FR-UNI 

trials reflect a FR preference; positive scores reflect a UNI 

preference in the UNI-OTHER trials. 

   

Looking to the FR-UNI condition – a replication plus 

extension (given the novel trial types) – we failed to find the 

FR preference observed in E1A and E1B. The difference 

score magnitude did not differ from zero (Wilcoxon signed-

rank: Mdn = 1, Z = 0.851, p = .395; see Figure 4). The 

failure to replicate is curious. One possibility is that the FR 

preference observed across E1A and E1B is a Type 1 error. 

However, both of those experiments were well-powered and 

the effect was replicated. Another possibility is that by 

introducing: (1) the new trial types; and/or, (2) the verbal 

explanations for preferences on the first (and last) stimulus 

set altered participants’ behavior in the task. The use of 

OTHER organizations as a comparator effectively set up 

both UNI and FR organizations as ‘correct’ answers to the 

task. Then, on FR-UNI trials, the participant must decide 

which ‘correct’ answer is ‘more correct’. Given UNI rules 

lend themselves more easily to verbal description (e.g., 

Zeithamova & Maddox, 2006), and given we asked 

participants for verbal descriptions, participants may have 

surmised that UNI was the ‘more correct’ choice and chose 

it more frequently than in the previous experiments. 

Upcoming studies will seek to disentangle these 

possibilities. 

Lastly, we consider the global preference measure (all FR 

minus all UNI, across all trial types within subject). 

Consistent with the FR preference observed in the previous 
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two experiments, we found that people chose FR reliably 

more frequently than UNI organizations (Wilcoxon signed-

rank: Mdn = 1, Z = 2.543, p = .011). This suggests that, 

despite not showing a preference for FR over UNI 

organizations on FR-UNI trials, participants did 

demonstrate an overall preference for FR when collapsing 

across all trial types. 

In sum, we provided evidence that the FR over UNI 

preference observed across E1A and E1B is not attributable 

to people failing to notice the rule. Moreover, we provided 

additional evidence that people are sensitive to FR. 

Although the FR over UNI advantage did not replicate 

(potentially due to manipulations introduced in the current 

experiment), the FR over OTHER advantage indicates that 

people view FR as a meaningful organizing principle for 

categories. 

General Discussion 

The widespread UNI bias in unsupervised category 

formation – and its inconsistency with the FR structure of 

natural categories – has remained a question mark in the 

field for decades. In the experiments above, we approach the 

question from the perspective that the standard sorting 

paradigm encourages UNI responding by virtue of being an 

intentional, production-focused task that does not afford the 

requisite incidental exposure for learners to generate 

candidate structures as they might otherwise in naturalistic 

settings. To circumvent these issues, we introduced the SCT 

– a task that requires only the evaluation of provided 

candidate structures rather than both generation and 

evaluation.  

Across two high-powered experiments, we observed a FR 

over UNI preference in the SCT – contesting the prevalent 

UNI bias under the sorting paradigm. This preference 

emerged even despite the use of knowledge-poor features 

(Medin et al., 1987), a full-array format (Regehr & Brooks, 

1995), and despite the omission of a pre-task encoding 

phase (Lassaline & Murphy, 1996). Experiment 1B showed 

that the FR preference observed in the SCT is not due to the 

stimuli being generally FR-prone, as evidenced by the 

sorting task, and showed that people sort according to UNI 

rules, regardless of their SCT preference. In an extended 

form of the SCT, we showed in Experiment 2 that the FR 

preferences observed in the preceding experiments did not 

arise from a failure to identify the UNI rule in UNI 

organizations and provided further evidence that people 

view FR as a meaningful way of organizing categories.  

These results are compelling for a number of reasons. 

First, they suggest that, at one extreme, people prefer FR 

over UNI structures in category formation (E1A & E1B). At 

the other extreme, they suggest that people do not have a 

preference between UNI and FR structures (E2). Regardless 

of which is true, the data show that people are sensitive to 

and appreciative of both types of category-level similarity, 

and this represents a massive departure from the strict UNI 

bias observed in – to our awareness – every unsupervised 

category learning study with domain-naïve participants and 

no additional encoding tasks (though see Pothos & Close, 

2008; Pothos et al., 2011 which address multidimensional 

vs. UNI sorting – though not the specific tension between 

FR and UNI). As such, these findings present a potential 

alignment with the basis of similarity that apparently 

underlies natural categories (Rosch & Mervis, 1975).  

Second, these results highlight the importance of task in 

the behaviors that are produced, afforded, and encouraged. 

Although we found evidence that people appreciate FR, in 

E1B we showed that people – many of which displayed a 

FR preference in the SCT – uniformly produced UNI sort 

solutions. Thus, by isolating a sub-component of the overall 

formation task, we found radically different outcomes. This 

suggests the discrepancy between natural and sort-task 

categories is tied to the generation of candidate structures 

and reinforces a need for researchers to examine phenomena 

with an array of task formats.  

We note a few limitations of the present work that 

motivate future studies. First, though we found and 

replicated the FR over UNI advantage, this advantage failed 

to replicate in E2. In future work, we aim to disentangle if 

and how the additional manipulations are attributable. 

Second, while our data show that people prefer FR when 

given candidate structures, our study does not speak to how 

people might initially generate FR as a candidate structure 

in the first place. We speculate this might occur through 

incidental experience (without class prediction) that leads to 

knowledge of feature statistics, as is hinted at by previous 

work (Lassaline & Murphy, 1996; Love, 2002). In future 

work, we intend to assess if a novel, repeated, item-

matching task (like MTS, but without supervision) leads to 

such knowledge that transfers to the sorting task. Finally, 

the SCT involves an absolute, forced judgment between 

candidate structures. In future work, we plan to: (1) assess 

the degree to which people prefer one structure over another 

using a rating scale to determine if FR is viewed as a 

compelling way to structure categories as opposed to the 

better of two poor options; and, (2) afford the option of ‘no 

judgment’ to gain greater fidelity in our results. 
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Abstract 
Rock, Paper, Scissors (RPS) is a competitive game. There are 
three actions: rock, paper, and scissors. The game’s rules are 
simple: scissors beats paper, rock beats scissors and paper beats 
rock (all signs stalemate against themselves). Over multiple 
games with the same opponent, optimal play according to a 
Nash Equilibrium requires subjects to play with genuine 
randomness.  To examine randomness judgments in the context 
of competition, we tested subjects with identical sequences in 
two conditions: one produced from a dice roll, one from 
someone playing rock, paper, scissors. We compared these 
findings to models of subjective randomness from Falk and 
Konold (1997) and from Griffiths and Tenenbaum (2001), 
which explain assessments of randomness as a function of 
algorithmic complexity and statistical inference, respectively. 
In both conditions the models fail to adequately describe 
subjective randomness judgements of ternary outcomes. We 
also observe that context influences perceptions of randomness 
such that some isomorphic sequences produced from 
intentional play are perceived as less random than dice rolls. 
We discuss this finding in terms of the relation between 
patterns and opponent modeling.  

Keywords: Randomness, pattern recognition, opponent 
modeling 

Introduction 
Humans often detect patterns in everyday life—so much so 
that they often attribute spurious patterns (generated by a 
random mechanism) to intentional actions. For example, in 
the gambler’s fallacy (Kahneman & Tverksy, 1972), people 
believe that “a Red is due” after observing several Black rolls 
from a roulette wheel, despite the rolls being independent 
from one another. Conversely, according to the hot hand 
effect, if a player has scored several free throws in a row in 
basketball practice, people believe that player is more likely 
to score again, despite this not being true empirically 
(Gilovich, Vallone, & Tversky, 1985). Why are the patterns 
that people detect sensitive to their context?  

Psychologists have approached these phenomena in terms 
of subjective randomness, or the perceived randomness of 
observations. Previous literature has shown that in some 
circumstances, people tend to judge sequences as random 
even when the underlying pattern is systematic. In a classic 
example, people tend to believe that a sequence of coin flips 
will have more alternations (e.g., heads followed by tails) and 
fewer streaks (e.g., several heads in a row) than is likely to 
occur in a sequence produced by flipping an unbiased coin 
repeatedly (Falk & Konold, 1997). To date, much of the 
literature on subjective randomness has focused on binary 

sequences or grids generated from a truly random 
mechanism, such as a coin flip, an animate mechanism 
(Ayton & Fischer, 2004), or a human or other intentional 
agent (Burns & Corpus, 2004; Caruso, Waytz, & Eply, 2010).  

In this article, we compare the subjective randomness of 
sequences generated from a die roll to comparable sequences 
generated by a player who is in direct competition with 
another player in a non-cooperative game: Rock, Paper, 
Scissors (RPS; also called RoShamBo). We had two 
hypotheses: (1) sequences generated from a random 
mechanism (a die roll) would be judged as more random than 
equivalent sequences generated from a human playing RPS, 
and (2) “complex” sequences generated from a human 
playing RPS would be perceived even less random due to 
opponent modeling in a competitive context. 

The rules of RPS are straightforward. Two players 
simultaneously present one of three hand signs, “rock”, 
“paper”, or “scissors”. The scoring of the game is also simple: 
scissors beats paper, rock beats scissors, and paper beats rock 
(all signs stalemate against themselves). From a game-
theoretic perspective, the Nash equilibrium (Nash, 1950) is 
generating signs uniformly at random. Thus, if people played 
according to the Nash equilibrium, they would be required to 
produce truly random sequences. This strategy would prevent 
any player from gaining advantage over another after playing 
repeated games over time. However, this is unlikely as people 
are poor at producing random sequences (Baddeley, 1966, 
Towse, 1998). 

Although RPS may appear to be a simple game, it is 
actually much more complex than one might first think. For 
instance, while one might expect that the winners of RPS are 
determined by luck or chance, there are genuine RPS masters. 
RPS tournaments have been held throughout the world where 
experienced RPS players will consistently outplace novices 
(Hegen, 2004). One might at first think that this is simply due 
to extraneous factors. For example, perhaps one player 
produces their sign slightly before the other and the other 
player uses that information to change their play (note that 
this is illegal in tournament play). However, it is reported that 
a player in 2001 was allowed to bring a random number 
generator to inform his sequence generation. He failed to 
even make the qualifying rounds in the regional tournament 
(Hegan, 2004). 

Further, there have also been machine RPS competitions 
(Billings, 1999), where researchers submitted automated RPS 
agents or “bots” to play against each other. Even when only 
bots compete against each other (no human players), certain 
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strategies are far more advantageous than others (Billings, 
2000). In fact, a bot playing the Nash equilibrium using a 
random number generator tends to score poorly in these 
competitions. The results of human and machine tournaments 
naturally lead to the question of how opponent modeling of 
intentionally produced sequences might affect subjective 
judgments of randomness.  

In a recent study of multiple repeated games of RPS 
between human players, Wang (2014) round that a Nash 
Equilibrium was never obtained by any subset of the 
population of participants. Rather, successful players often 
employ a ‘win-stay, lose switch’ strategy which is beneficial 
in identifying patterns in another’s strategy, exploiting them 
and also retaining a fail-safe strategy which prevents repeated 
loses. This is notable as win-stay lose-switch has also been 
proposed as an explanation of human category learning 
(Restle, 1962), and recently has been shown to approximate 
Bayesian inference in some cases (Bonawitz Denison, 
Gopnik, & Griffiths, 2014). 

Below we outline two cognitive models of subjective 
randomness and introduce an experiment to test their 
robustness in explaining ternary sequences in competitive 
and non-competitive environments. We close by discussing 
the implications and limitations of the experiment in 
furthering our understanding of subjective randomness. 

Models of Subjective Randomness 
People’s judgments of randomness notoriously deviate 

from the prescriptions of formal probability theory in 
systematic ways. In experimental settings, subjects are less 
likely to agree that a set of coin flips that come up 
HHHHHHHHH are random when compared to a set of flips 
that came up HTTTHTHHT. Yet, both sets of results are 
exactly as likely as the other given a fair coin.  Even after 
learning probability theory, it is hard for people to escape the 
intuition that the latter feels more random than the former. 
How do we explain this intuition? 

One popular way to model human deviations from a 
straightforward probabilistic account is to assume 
randomness judgments are a function of how difficult it is to 
encode a sequence or its “complexity”. In these models, 
psychologists try to identify an encoding process or measure 
of sequence complexity by specifying a theoretically 
motivated model that is correlated with subjective ratings. 
Below, we discuss two prominent models from the literature. 
 
Falk and Konold (1997). Building on an intuition from 
Kahenman and Tversky (1972), Falk and Konold (1997) 
proposed that people ‘chunk’ a sequence into smaller 
subsequences which are easier to encode and remember. The 
perceived randomness of the sequence is inversely related to 
the ease with which humans can divide sequences into fewer, 
more manageable subsequences. To quantify this process, 
Falk and Konold (1997) developed their model, the Difficulty 
Predictor (DP), to define the complexity of a sequence to be 
a function of the number of runs (subsequences with the same 
outcome) and alternations (subsequences which switch 

between two outcomes repeatedly). For example, the 
sequence “XXOXOX” can be described as “X twice, OX 
twice.” Each sequence can be encoded in terms of runs and 
alternations. The DP of a sequence is the sum of the number 
of runs and two times the number of alternations. For 
example, the above sequence would assign one point for a 
sequence length of one for the first subsequence (“X”) and a 
score of two for a sequence length of two in the second 
subsequence (“OX”). The DP for this sequence is three. 

Only the smallest repeating unit is needed to calculate the 
score for a subsequence. As such “OXOX” and 
“OXOXOXOX” are both given a score of two points. Any 
given sequence can be apportioned many different ways: for 
example, the sequence “XOXOO” can be described a “XO 
twice, O once” (DP of 3) or “XOX once, O twice” (DP of 4). 
DP is the minimal score over possible encodings of a 
sequence. 

This formalization of subjective randomness instantiates 
the concept of Kolmogorov complexity (Kolmogorov, 1965), 
which states that the complexity of an object is the length of 
the shortest program that can be used to generate that object. 
Previous work in psychology suggests that humans are adept 
at finding patterns in data and encoding them in a way 
consistent with Kolmogorov complexity (Chater, 1996, 
1999). In fact, Griffiths et al. (2018) showed that DP is a 
special case of the complexity producing the sequence on a 
finite state machine with four motifs: all Hs, all Ts, 
alternating HTs, and alternating THs. The machine is biased 
to stay in its current motif. 
 
Griffiths and Tenenbaum (2001) Griffiths and Tenenbaum 
(2001) propose an alternative model of subjective 
randomness by realizing that randomness judgments are not 
made in a vacuum: The randomness of a sequence is its 
relative likelihood of having been generated from a random 
rather than a regular process. Thus,  
 

random(𝑥) = 	
𝑃(random|𝑥)
𝑃(regular|𝑥) =

𝑃(𝑥|random)
𝑃(𝑥|regular)

𝑃(random)
𝑃(regular)  

 
Their Bayesian model then differs from the standard 

normative account, which only considers the likelihood of the 
sequence assuming a random generating process, or 
random(x) = P(x|random). They implement a Bayesian 
model that captures the likelihood of a sequence being 
generated by a random process compared to a regular (non-
random) process. Here, we generalize their model from 
binary sequences to the ternary sequences that we use in our 
experiment. 

The probability of a ternary sequence x of length N being 
generated by a random process is: 

 
𝑃(𝑥|random) = (1/3)5 

 
In contrast to a random sequence, we define a regular 

sequence as one that is generated by a systematic process in 
which each token in a sequence is generated by a multinomial 
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process with parameter vector �⃗�. �⃗� gives the probability of 
each type, and so 𝜃8 would be the probability of the first type. 
Because the multinomial parameters are unknown for 
“regular processes”, an ideal observer should consider all 
possible parameter combinations: 

 

𝑃(𝑥|regular, α;;⃗ ) = 	<𝑃=𝑥>𝜃?𝑃(�⃗�|�⃗�)𝑑�⃗� 

where �⃗� represents the parameters for the prior distribution. 
We use the Dirichlet distribution due to its conjugacy with 
the Multinomial distribution. Integrating over all possible 
values for �⃗�, we find: 

 

𝑃(𝑥|regular, �⃗�) = 	
Γ(𝐴)

Γ(N + A)G
Γ(𝑛I + 𝛼I)
Γ(𝛼I)

J

IK8

 

 
where Γ(𝑥) is the Gamma function evaluated at x, 𝑛I denotes 
the number of tokens of type k in a sequence and 𝐴 =	∑𝛼I. 
Assuming equal prior odds, P(x|random) = P(x|regular), the 
complexity of a sequence can then be defined as the log-
likelihood that it was generated by a random process, as 
opposed to a regular process: 

 

LR = log
𝑃(𝑥|random)
𝑃(𝑥|regular, α;;⃗ ) 

 
Sequences with a LR greater than zero are more likely to 

have been generated by a random process, whereas sequences 
with a LR less than zero are more likely to have been 
generated by a regular process than a random process. Prior 
odds can be included in the model to shift the boundary 
between regular and random to a value other than zero. See 
Williams and Griffiths (2013) for additional empirical 
support of this model in capturing human randomness 
judgments for binary sequences. 

 
Experiment 
In previous work and both models, randomness judgments 

are not made in the context of two intentional human agents 
directly competing where the result of their competition is 
based on their joint decisions. Motivated by these 
considerations, we ask: how does a sequence being generated 
within a competitive context affect its perceived 
randomness? 

In the present study we examine how well these models 
explain ternary sequences, rather than binary ones. We also 
manipulate conditions of how the sequence is assumed to be 
generated: either by a person playing RPS (competitive) or 
by the roll of a die (neutral).  

Materials and Methods 
We collected data from 148 subjects on Amazon 

Mechanical Turk. We excluded 42 subjects (28%) who had a 
mean response time of less than 800ms in either condition. 
This minimum average response time was based on an 
estimate of how long a subject would need to view the 

sequence, encode any perceived patterns and make a motor 
response. The data presented here reflect the remaining 106 
subjects (mean age 37.3, 53 male, 52 female, 1 unknown). 
Each subject saw 100 sequences (sequentially) in each of the 
two conditions: die (neutral context) and RPS (competitive 
context). 
    In the die condition, subjects were told that a friend was 
playing a board game with a six-sided die that had two blue 
faces, two yellow faces, and two red faces. On each trial, the 
subject observed a sequence of seven rolls from that die.  

In the RPS condition, subjects were told that they were 
watching two friends play a game of rock, paper, scissors. On 
each trial, the subject observed a sequence of seven hand 
gestures from the game. (See Figure 1.) 

 
Figure 1. (A) An example sequence from the die condition. 
(B) An example sequence from the RPS condition that is 
conceptually identical to the die sequence. 

There are 2,187 possible ternary sequences of length seven. 
We assumed that the perceived randomness of individual 
classes was irrelevant. e.g.  that a die sequence BLUE 
YELLOW YELLOW is perceived as equally random as 
YELLOW BLUE BLUE. This reduces the pool of sequences 
to 729. For each subject, sequences were randomly selected 
without replacement from the 729 possible sequences. 
Images were assigned randomly to the three types so that all 
2,187 sequences were observed. 

 The two conditions were blocked so that subjects saw 100 
trials from one condition, followed by 100 trials from the 
other condition. The starting condition (RPS or die) was 
counterbalanced between subjects.  The order of trials within 
a condition was random, but identical for both conditions for 
each subject (e.g., if a subject saw sequence A from Figure 1 
as trial 1, they might see the isomorphic sequence B from 
Figure 1 as trial 101). 

Subjects rated each sequence on a Likert scale from 1 (“Not 
random at all”) to 10 (“Very random”), with midpoint label 
of “Somewhat random.” Following the experiment, subjects 
completed a brief demographic survey that also included 
questions about their level of education, experience playing 
rock paper scissors, and whether they had taken a statistics or 
probability course. 

Results 
     We began with two hypotheses: (1) sequences generated 
from a random mechanism (a die roll) would be judged as 
more random than equivalent sequences generated from a 
human playing RPS, and (2) high alternation sequences 
generated by an intentional agent in the context of a game 
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would be perceived even less random due to opponent 
modeling in a competitive context. 
    To test the effect of sequence production on a subject’s 
randomness judgments, we first compared the scores of 
reported randomness between conditions. We found a 
significant effect, with sequences produced from a die being 
considered more random than sequences produced by games 
of rock, paper, scissors, Mdie = 5.78, MRPS = 5.47, t(105) = 
2.93, p = .004. This confirms our first hypothesis that 
participants perceive outcomes produced by people to be 
more random than those produced by a die. 

Though individual subjects varied greatly in their mean 
scores of subjective randomness, there is a clear trend 
towards evaluating sequences from the RPS condition as 
more random than the sequences produced from the dice 
condition. See Figure 2.  

We expanded this analysis further by examining whether 
randomness judgments are partially explained by the 
difficulty of encoding a sequence to memory (as they were in 
Falk and Konold, 1997). Using response time as a proxy for 
encoding difficulty, we found that there was a significant 
effect for reaction time between conditions, Mdie = 2372ms, 
MRPS = 3091ms, t (105) = 4.45, p < .001. This means subjects 
took longer to respond to randomness judgements in the RPS 
condition compared to the dice condition. 
 

 

Figure 2. Each point denotes an individual subject’s mean 
randomness judgment for the die condition (x-axis) and RPS 
condition (y-axis). The identity line is shown for comparison. 

We calculated the complexity of each sequence according 
to three measures: Falk and Konold (1997)’s difficulty 
predictor (DP), Griffiths and Tenenbaum (2001)’s 
Likelihood Ratio (LR), and the probability of alternation. 
Overall, all three measures were highly correlated with 
subjective randomness judgments (see Figure 3). We found a 

difference in subjective randomness judgments by condition 
that was moderated by the complexity of the sequence. 
Sequences of low complexity (as judged by either DP, LR, or 
probability of alternation) were judged to be equally non-
random regardless of whether the sequence was in the die or 
RPS condition. However sequences of high complexity were 
judged to be more random in the die condition compared to 
the RPS condition. We discuss this further later in the article. 

 
Discussion 

 
Classic studies on subjective randomness have had subjects 

judge binary (e.g., heads and tails,  black and white tiles), or 
digit sequences. The pattern of performance described by 
Falk and Konold (1997) is that subjects will overestimate the 
number of alternations that would need to be present in a truly 
random sequence. In a sequence of tosses from a fair coin, we 
expect that a genuinely random sequence has a probability of 
alternation of 0.5. While subjects studying coin flips might 
overestimate the number of alterations in a given sequence, a 
fully alternating sequence would not be seen as random but 
following a predictable alternating pattern. 

This contrasts sharply with the current findings, where a 
truly random sequence would have a probability of 0.67. 
Subjects continue to overestimate the number of alterations 
within a random sequence, but they do so without showing a 
decline towards less randomness at higher alteration values. 
This is because using the probability of alternation is not as 
useful as a measure in the case of ternary sequences. For 
example, the sequence RPRPRP has the same probability of 
alternation as the sequence RPSPSR, though the latter 
appears more random. In a binary sequence, an “alternation” 
implies what the next item in the sequence will be, but this is 
not true for ternary sequences. This highlights a limitation of 
using probability of alternation as a proxy for subjective 
randomness judgments. 

We found that on average, a sequence of die rolls was 
judged to be more random than an equivalent sequence of 
rock paper scissors throws. This effect seems to be driven by 
higher judgments of randomness for high-complexity 
sequences in the die condition compared to the RPS 
condition. Currently, no model adequately describes why this 
difference between conditions might occur, or why the 
differences between conditions should be primarily observed 
in high complexity sequences. 

There are several potential explanations for these trends. 
One possibility is that that randomness judgments are 
primarily influenced by the mechanism that generates that 
sequence, rather than the sequence itself.  

The fact that RPS throws are the product of intentional 
action, while die outcomes are generated by chance is a 
promising hypothesis. Caruso, Waytz, and Epley (2010) 
explored this type of intentional action as a possible 
explanation for differences between the hot hand effect and 
the gambler’s fallacy. They found that participants who were 
told to focus on the intentions of a coin tosser were more 
likely to expect a coin toss streak to continue compared to 
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participants who were told to focus on the motor actions of 
the tosser. However participants were never asked explicitly 
to judge the randomness of sequences and it was not a directly 
competitive context.  Similarly, Ayton and Fischer (2004) 
tested whether differences in gambler’s fallacy and hot hand 
might be accounted for by animacy in the generation process. 
Neither of these mechanisms alone explain the results 
observed in our study where only high complexity sequences 
appear to show differences in randomness ratings.  

A related explanation is that subjects may be reluctant to 
use the upper end of the randomness scale in the RPS 
condition because they are explicitly told that the sequences 
were generated by a human, and their belief that humans 
cannot (or do not) produce truly random sequences. This 
interpretation is anticipated by Burns and Corpus (2004) who 
found that subjects expect streaks to continue if they are 
generated by a non-random process ie: a human player. 
Therefore subjects might perceive sequences with high rates 
of alternation as less likely. 

There is some counterevidence to this hypothesis in our 
results: z-scoring each participants’ ratings does not 
eliminate the lower randomness ratings specific to more 
complex sequences.. 

A second hypothesis is that in the context of playing a game 
of RPS, subjects expect to see more complex sequences.  A 
competent rock, paper, scissors player should try to make 
each throw as unpredictable as possible in order to beat his or 
her opponent. Therefore, we should expect a player to 
generate complex sequences intentionally. Subjects may 
have judged highly complex sequence as less random in the 
RPS condition because they believe a player planned that 
sequence in order to fool their opponent. Somewhat 
paradoxically, this means that sequences that are 
descriptively more random are seen as less random, due to 
the fact that they are unsurprising in the context of the game. 
This distinction between descriptive complexity and 
observed complexity has been used to explain, for instance, 
why descriptively simple lottery results (such as 1-2-3-4-5) 
are seen as more surprising (Dessalles, 2017). 

Thirdly, RPS presents a sequence in a two-player game. 
This may lead subjects to underestimate randomness by 
urging them to look more closely for possible subtle patterns 
in the sequences generated by opponent modeling. In the die 
condition, each roll is assumed to be independent of the 
previous roll. But in the RPS condition, each throw may be 
conditionally dependent not only on the player’s previous 
throw, but also the opponent’s previous throw. This naturally 
leads to a larger hypothesis space from which subjects may 
be inferring potential patterns. This expansion of the 
hypothesis space could disproportionately affect more 
complex sequences and therefore explain the observed 
differences between low and high complexity sequences. 

Hypotheses 2 and 3 operate under the assumption that 
expectations based on both context and generation method 
contribute to perceptions of randomness. While previous 
studies have shown that generation method plays a role, they 
do not explicitly contrast between a sequence produced in a 
directly competitive vs. non-competitive contexts. An aim of 
future research will be to understand how generation process, 
context and the complexity of a sequence may interact in 
order to explain the current results. 

One limitation of the current study is that subjects may 
have a biased prior belief that die rolls are more random than 
RPS sequences, independently of the likelihood of a given 
sequence. Future studies may explicitly equate these priors. 
For instance, subjects could be shown two sequences of die 
rolls and informed that one sequence was generated by a fair 
die (random) and the other by a weighted die. Identifying the 
“cheater” in this case depends only on the likelihood, as the 
experiment can be designed so that the prior probability of 
each die is equal (0.5).  

Another limitation is that our stimuli consist only of 
sequences of length 7, and each unit in the sequence can only 
be one of three possible types. It is not clear whether our 
results extend to longer sequences, and to multinomial 
sequences beyond three types. We also do not account for 
perceptual similarity in our stimuli: the die images in our 
experiment are similar to each other (except for color), and 
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participants may be sensitive to perceptual similarity when 
assessing sequences. 

Humans are notoriously poor at inferring randomness from 
sequences. This cognitive error seems to be exacerbated in 
competitive contexts. However, this might just as easily be 
reframed in a different light: People are more attuned to 
possible patterns of behavior when they are inspecting it 
within a competitive context. This may lead them to be less 
likely to write off certain patterns as ‘mere luck’ when they 
might carry valuable adaptive information for future planning 
and strategizing. 
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Abstract

I present a novel approach to modelling spatial mental im-
agery within the ACT-R cognitive architecture. The proposed
method augments ACT-R’s representation of visual objects to
enable the processing of spatial extent and incorporates a set of
linear and affine transformation functions to allow the manip-
ulation of internal spatial representations. The assumptions of
the modified architecture are then tested by using it to develop
models of two classic mental imagery phenomena: the mental
scanning study of Kosslyn, Ball, and Reiser (1978) and mental
rotation (Shepard & Metzler, 1971). Both models provide very
close fits to human response time data.

Keywords: Mental imagery; Mental rotation; Image scanning;
ACT-R; Cognitive architectures.

Introduction
Mental imagery plays a crucial role in many aspects of cog-
nition, from problem solving, creativity and scientific discov-
ery to psychological disorders such as post-traumatic stress
disorder, social phobia and depression (Kosslyn, Thompson,
& Ganis, 2006; Pearson, Deeprose, Wallace-Hadrill, Burnett
Heyes, & Holmes, 2013). Mental imagery has also been the
subject of one of the longest running and fiercest debates in
cognitive science (Kosslyn & Pomerantz, 1977; Pylyshyn,
1973; Anderson, 1978; Tye, 2000) and the nature of the men-
tal representations and processes underlying mental imagery
is still a subject of contention.

Two related issues concern the degree to which mental
representations bear some structural correspondence to what
they represent and whether mental imagery is supported by
abstract, amodal propositional representations or depictive
representations grounded in perception. In contrast to ab-
stract propositional representations, imagistic visual repre-
sentations depict rather than describe what they represent and
retain the spatial relationships of their referents by having el-
ements with geometric properties organised topographically
(Reisberg, 2013).

This debate has been—and continues to be—driven and
informed by the various attempts to provide formal compu-
tational accounts of mental imagery phenomena (e.g., Glas-
gow & Papadias, 1992; Kunda, McGreggor, & Goel, 2013;
Tabachneck-Schijf, Leonardo, & Simon, 1997; Just & Car-
penter, 1985) and the issue of whether imagery requires some
form of array based representation or can be accomplished by
more abstract, amodal representations and processes.

An early and influential cognitive model that combined
pixel array based representations and more abstract represen-
tations is the CaMeRa model of expert problem solving with
multiple representations (Tabachneck-Schijf et al., 1997). A
more recent example is a model of problem solving on the

Raven’s Progressive Matrices test by Kunda et al. (2013) us-
ing 2D arrays of grayscale pixels and associated transforma-
tion operations. Using only these representations and pro-
cesses, the model is able solve between 55% and 63% of
Standard Progressive Matrices problems.

Figure 1: Stimulus used by Kosslyn et al. (1978).

Mental imagery in cognitive architectures
In recent years there have been a number of attempts to de-
velop computational accounts of mental imagery from within
the assumptions and constraints of cognitive architectures
(e.g., Rosenbloom, 2012; Wintermute, 2012). Cognitive ar-
chitectures are theories of the core memory and control struc-
tures, learning mechanisms, and perception-action processes
required for general intelligence and how they are integrated
into a “system of systems” to enable human cognition and
autonomous, human-level artificial cognitive agents.

The cognitive architecture with one of the most well de-
veloped and comprehensive set of representations for spatial
reasoning and visual imagery is Soar (Laird, 2012) and its
Spatial/Visual System (SVS) (Lathrop, Wintermute, & Laird,
2011; Wintermute, 2012). The SVS system contains two lay-
ers of representation: a visual depictive layer (a bitmap ar-
ray representation of space and the topological structure of
objects), and a quantitative spatial layer (an amodal sym-
bolic/numerical representation of objects and their spatial co-
ordinates, location, rotation and scaling)1.

SVS also contains operations to transform the continuous
information in the quantitative spatial layer into symbolic in-
formation that can be used by Soar for reasoning. These pro-

1In the current (9.6.0) version of Soar, the visual depictive level
has been omitted from SVS.
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cesses allow Soar agents to perform mental imagery opera-
tions that can manipulate the representations and then extract
spatial relationships from the modified states.

Several proposals have been put forward to endow the
ACT-R cognitive architecture (Anderson, 2007) with spatial
abilities. For example Gunzelmann and Lyon (2007) outlined
an extensive proposal for modelling a range of spatial be-
haviour (including imagery) by augmenting the architecture
with a spatial module and several additional buffers and pro-
cesses for transforming spatial information. These proposals
have, as yet, not been implemented however and so it remains
to be seen whether the suggested changes would be able to
account for human spatial competence.

An alternative approach to providing ACT-R with spatial
capacities is the ACT-R/E project to embody ACT-R in robots
(Trafton et al., 2013). ACT-R/E incorporates the Special-
ized Egocentrically Coordinated Spaces (SECS) framework
(Trafton & Harrison, 2011; Harrison & Schunn, 2002) which
adds modules for three aspects of spatial processing: 2D-
retinotopic space, configural space for navigation and local-
isation, and manipulative space for the region that can be
grasped by the robot.

Both of these approaches are broad in the sense that they
propose extensive changes to the architecture (i.e., new mod-
ules and buffers) and seek to endow ACT-R with a wide range
of spatial capabilities related to different spaces (Montello,
1993). Neither approach has modelled spatial imagery how-
ever. The aim of the study reported here is to fill this gap
by developing ACT-R models of human spatial imagery be-
haviour. The approach adopted here is more limited and fo-
cussed than those discussed above in that it does not pro-
pose new modules or buffers but seeks to determine whether
the phenomena can be accounted for with only minor adjust-
ments to the existing structures and assumptions of ACT-R.

In the following sections I describe the relevant structures
and assumptions of ACT-R and the adaptations required to al-
low the architecture to model spatial imagery. I then test the
approach by using it to develop two models of well known
mental imagery phenomena: mental scanning and mental ro-
tation. Finally I discuss the implications, strengths and weak-
ness of the approach and consider further applications.

An ACT-R approach to mental imagery
A full description of ACT-R is beyond the scope of this paper
and so this description will be limited to the two components
most relevant to this work: the vision module which allows
ACT-R to perceive objects in external task environments and
the imaginal module, located at the intraparietal sulcus (Borst
& Anderson, 2013; Borst, Nijboer, Taatgen, van Rijn, & An-
derson, 2015) and which functions as ACT-R’s limited ca-
pacity working memory store in which information is repre-
sented and manipulated during problem solving.

ACT-R’s perceptual and motor systems were designed to
support interaction with computer interfaces to simulate hu-
man participants in psychology experiments and therefore

typically works within a screen-based 2D coordinate space.
ACT-R’s visual module doesn’t interact with the computer
interface directly but via a visual icon, an intermediate sym-
bolic representation of the objects in the visual environment.

When ACT-R’s visual attention is directed towards an ob-
ject in the visual icon, information about the object enters two
buffers: a visual buffer containing information about the ob-
ject’s features (type, shape, colour etc.), and a visual-location
buffer representing the object’s coordinate location. These
two distinct buffers correspond to the dorsal what and ven-
tral where pathways in human visual processing respectively
(Ungerleider & Mishkin, 1982; Milner & Goodale, 1993).

Once information has entered the buffers, it is available
for further processing, for example as a cue to retrieve fur-
ther information from ACT-R’s declarative memory module
or to create a new problem state representation in the imagi-
nal module. Compared to other modules, the imaginal mod-
ule has a greater degree of flexibility in that, in addition hav-
ing standard buffer for creating and holding information, it
also has an imaginal-action buffer to allow the module to be
extended with novel capabilities by enabling arbitrary actions
to be performed on information in the imaginal buffer. This
feature will be crucial for modelling mental imagery.

Figure 2: Stimuli used by Shepard and Metzler (1971).

Modifications required to model imagery
Many spatial imagery phenomena involve mental represen-
tations of the shape, location, orientation and spatial extent
of the imagined objects and a set of processes that are able
to transform and compare objects according to these charac-
teristics. While the representational and processing assump-
tions of ACT-R outlined above impose strict but valuable con-
straints on methods for modelling mental imagery, in this re-
gard, the discrete symbolic representations of ACT-R’s visual
module (e.g., shape = ‘square’) with only one x-y coordinate
location for each object are currently inadequate.

In light of this, the approach I adopt augments ACT-R with
the addition of a new feature slot in the visual object chunk
and a number of functions for spatial processing. The first
modification provides ACT-R with additional information re-
garding the outline shape of environmental objects (in the
form of a list of x-y coordinate points). The second provides
ACT-R with the ability to perform various imagery operations
(e.g., translation, scanning, scaling, zooming, reflection, ro-
tation and composition functions such as intersection, union
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and subtraction) using a set of linear and affine transformation
functions which act upon the new x-y outline coordinates in
the imaginal module via the imaginal-action buffer.

Start

Attend to starting
image and listen
for destination

Store starting
image and request
destination location

Location
retrieved?

Location retrieved;
visualise distance;

start move

Target
reached?

Location not
retrieved; respond

Target reached;
respond

yes

yes

no

Stop

Target not
reached; move

no

Figure 3: Control structure of the ACT-R model for a trial of
the mental scanning experiment. Each rectangle corresponds
to one production rule in the model.

Testing the approach
In the remaining sections, the assumptions set out above are
tested by using the augmented ACT-R to develop models of
two well known mental imagery phenomena: mental scan-
ning and mental rotation2. The strategy adopted is one em-
ployed by Just and Carpenter (1985) in their model of mental
rotation and is similar for both tasks in that the process con-
sists of a series of discrete steps in which the mental image is
repeatedly manipulated and then compared to the target im-
age to determine whether they are sufficiently close to stop.

Mental scanning
The first test of the approach is the classic study of mental
scanning by Kosslyn et al. (1978) in which people were re-
quired to memorise the locations of landmarks on a fictitious
map and then imagine travelling between them (see Figure 1).

2Both ACT-R models are available to download from GitHub:
https://github.com/djpeebles/act-r-imagery-models

On each trial of their experiment participants were asked first
to focus on one of the landmarks and then were presented
(aurally) with a destination word, which may or may not be
a landmark. If the given word did name a landmark, par-
ticipants were required to scan to it and press a button upon
reaching it, but if the word was not a landmark, participants
simply pressed a second button.

Scanning was performed by imagining a small black speck
moving along the shortest straight line from initial to desti-
nation landmarks as quickly as possible while still remaining
visible. Participants were timed while carrying out the task
and analysis of the response times (RTs) revealed a linear re-
lationship between the distance travelled and the time taken
to reach the destination.

Modelling the mental scanning task An ACT-R model of
the mental scanning task was created consisting of six pro-
duction rules. The control structure of the model is shown
in Figure 3. According to this model, when people hear a
destination landmark, they retrieve its location from mem-
ory, visualise the distance to be travelled, and then execute
a process which incrementally shifts a point from the initial
location to the destination by a constant amount. After each
movement step, the distance between current and target loca-
tions is reviewed to determine whether it is sufficiently short
for the process to stop.

The key step involving the new representation and pro-
cess is represented by a production rule (“Target not reached;
move” in Figure 3) which evaluates the distance between the
current and target locations and if it is greater than a stop-
ping threshold, uses a translation function to move the current
point closer by a fixed amount.

The model assumes that the process of imagining the ac-
tual inter-point distance, da, is subject to a degree of percep-
tual error which is a function of da, so that visualising greater
distances is more errorful. This error, k, is represented by a
random value sampled from a logistic distribution with mean
0 and variance ln(da) so that the imagined distance, di, is

di = da + bk (1)

where b is a scaling parameter.
The key determinant of the time taken to traverse the imag-

ined distance is the size of the movement, m, taken at each
step and it is assumed that this is related to di so that the step
size increases with the imagined distance according to

m = c ln(di) (2)

where c is a scaling parameter.
Finally, it is assumed that the decision to stop is related

to the distance to the destination and that this may differ
between individuals due to their degree of accuracy or dili-
gence. This distance is represented in the model by a proxim-
ity threshold parameter, p.

In addition to the three task specific parameters, two ACT-
R parameters were also allowed to vary: the imaginal delay
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Figure 4: Mean scan time for different distances.

time, t which determines the time cost associated with trans-
forming information in ACT-R’s imaginal buffer, and the la-
tency factor parameter, F , which modulates the retrieval time
for declarative chunks.

To test the model, it was run 50 times (to simulate 50 par-
ticipants) for all of the 21 distances in the original Kosslyn
et al. (1978) study and the mean scan time for each distance
computed. Figure 4b shows that the model (with parameters
b = 3, c = 18, p = 10, t = 0.1 and F = .75) provided a close
fit to the human data (R2 = .97, RMSD = 0.07).

Mental rotation

The second application of the approach is to a mental rota-
tion task, first devised by Shepard and Metzler (1971). In its
original form, participants are presented with pairs of simi-
lar images, one of which has been rotated around its centre,
and then required to decide whether the images are identi-
cal or not (see Figure 2). As with the mental scanning task,
RT in the mental rotation task increases monotonically with
distance—in this case the degree of angular rotation between
the images—at approximately 1 second per 60�.

Mental rotation has been studied extensively in a wide va-
riety of different forms and a number of different strategies
have been identified (e.g., Khooshabeh, Hegarty, & Ship-
ley, 2013). For this study I model a holistic rotation strat-
egy by which mental images (in this case random 2D shapes
(Cooper, 1975)) are rotated as single, whole units. This con-
trasts with a piecemeal strategy which subdivides the image
and rotates the component pieces separately.

Modelling the mental rotation task An ACT-R model of
the mental rotation task was created consisting of five pro-
duction rules. The control structure of the model is shown
in Figure 5. The mental rotation model employs a very sim-
ilar strategy to the image scanning model in that it performs
the task by transforming a current set of coordinate points
(in this case by rotation rather than translation) incrementally
towards the target, at each step evaluating the remaining dis-
tance (i.e., angular displacement) to determine whether or not
to stop. As with the scanning model, the key step involving
the new representation and process is carried out by a pro-
duction rule (“Stimuli not aligned; rotate” in Figure 5) which
gauges the distance between the current and target images
and if it is greater than a stopping threshold, uses a counter-
clockwise rotation function to move the current image closer
by a fixed amount.

To test the model, it was compared to data from a standard
rotation task conducted in Experiment 1 of a recent study con-
ducted by Larsen (2014). The data are taken from a condition
in which the target image and a rotated version of the image
were presented side by side on a computer screen (the most
common form of the task). Ten degrees of rotation were used,
from 0 to 180 degrees in increments of 20.

According to the model, when performing the mental rota-
tion task using a holistic strategy, people encode the rotated
image, store it in working memory, and then encode the tar-
get image. Then, while maintaining visual attention on the
target image, people execute a process which incrementally
rotates the image counter-clockwise towards the target image
by a constant amount (subject to a degree of perceptual er-
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Figure 5: Control structure of the ACT-R model for a trial of
the mental rotation experiment. Each rectangle corresponds
to one production rule in the model.

ror, represented by a random value sampled from a logistic
distribution with mean 0 and variance k).

After each rotation step, the angular disparity between cur-
rent and target coordinate points is reviewed to determine
whether they are sufficiently close for the process to stop.
This test is a measure of image similarity in that if the points
do not coincide then the rotation process will not stop.

The rotation model shares a number of the same free pa-
rameters as the scanning model. As with the scanning model,
the rotation model assumes that RT is determined by the size
of the rotation increment, m, taken at each step and the prox-
imity threshold, p regulating the stop decision. In the rotation
model, the ACT-R imaginal delay time parameter, t, was also
set to the value of .1s in line with the scanning model.

To test the model, it was run 50 times (to simulate 50
participants) for all of the 10 rotation angles in the origi-
nal Larsen (2014) study and the mean RT for each distance
computed. Figure 6b shows that the model (with parameters
k = 2, m = 18, p = 10 and t = 0.1) provided a close fit to the
human data (R2 = .983, RMSD = 0.185).

Discussion
The work described above demonstrates that with only rel-
atively minor modifications and a small number of reason-
able assumptions, ACT-R can be applied to develop models of
mental imagery phenomena that match human RT data very
closely. Crucially, the modifications are restricted to enabling

the representation and transformation of shape information
but the new representation and processes integrate with the
existing control structures of ACT-R so that the behaviour
of the model is primarily a result of the strategy encoded in
the production rules (which is essentially the same for both
tasks) and the information processing assumptions built into
the ACT-R’s imaginal module.

The architectural parameters used to fit the models are few
in number and within acceptable limits. The imaginal delay
time parameter was set to the same value of .1s for both mod-
els but this is shorter than the typical value of this parameter
(.2s). The justification for this reduced time is that compared
to other tasks that have been used to set this parameter (e.g.,
algebraic manipulation) the process being carried out in each
model (incremental translation or rotation of a representation
already in the buffer) is relatively simple and brief.

The representation of object spatial extent is not at the level
of pixel arrays nor at the level of discrete symbols, but at
an intermediate numerical level that abstracts from the pixel
level. Similarly, The transformation processes incorporated
into the architecture are quantitative in nature and are as-
sumed to belong to the wider set of subsymbolic functions
that act upon quantitative information in ACT-R at a level
closer to the visual system than the qualitative reasoning pro-
cesses over symbolic representations.

In this regard, the current work represents a modest step
towards answering the question concerning the nature of the
representations required to support mental imagery discussed
in the introduction. Like many other cognitive architectures,
ACT-R is rooted in the classical tradition of cognitive science
and the physical symbol system hypothesis (Newell & Simon,
1976) and relies predominantly on amodal symbolic repre-
sentations and their associated quantitative metadata (Laird,
Lebiere, & Rosenbloom, 2017).

As cognitive architectures evolve to capture ever more
complex and varied behaviour however, the demand to rep-
resent more diverse information formats and computational
processes will continue to grow. As this occurs, it will be
crucial to investigate the computational capabilities and func-
tional adequacy of alternative representations and processes
by modelling tasks that require multiple internal and exter-
nal representations to provide behavioural evidence for which
representations are being used.

There is currently a range of proposals for such represen-
tations and processes, several of which were discussed in the
introduction. Some advocate some form of bitmap represen-
tation to depict the topological structure of objects, while oth-
ers argue for more abstract representations (or a combination
of both). The demands of applying cognitive architectures to
more complex, embodied, real world and real time tasks will
provide a strong impetus to addressing these questions.

The two behavioural studies modelled here are classics in
the literature that have been investigated extensively, and as
such they provide a useful initial test of the assumptions.
They are relatively simple in nature however (as revealed by
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(b) Data from the ACT-R model

Figure 6: Mean response time for different degrees of rotation.

the fact that they can both be modelled by a small number of
production rules). A more stringent test of the assumptions
is necessary therefore and this will come either from mod-
elling different strategies in the mental rotation task or from
different, more challenging tasks, for example the Raven’s
Progressive Matrices (c.f. Kunda et al., 2013), the pedestal
blocks world or the nonholonomic car motion planning task
(Wintermute, 2012) as these require more complex strategies
involving a wider range of spatial transformations and will
provide richer behavioural data. This is the plan for the next
stage of this project.
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Abstract 

We see the world as continuous with smooth movements of 
objects and people, even though visual inputs can consist of 
stationary frames. The perceptual construction of smooth 
movements depends not only on low-level spatiotemporal 
features but also high-level knowledge. Here, we examined the 
role of causality in guiding perceptual interpolation of motion in 
the observation of human actions. We recorded videos of natural 
human-object interactions. Frame rate was manipulated to yield 
short and long stimulus-onset-asynchrony (SOA) displays for a 
short clip in which a catcher prepared to receive a ball. The 
facing direction of the catcher was either maintained intact to 
generate a meaningful interaction consistent with causality, or 
was transformed by a mirror reflection to create a non-causal 
situation lacking a meaningful interaction. Across three 
experiments, participants were asked to judge whether the 
catcher’s action showed smooth movements or sudden changes. 
Participants were more likely to judge the catcher’s actions to be 
continuous in the causal condition than in the non-causal 
condition, even with long SOA displays. This causal 
interpolation effect was robust to manipulations of body 
orientation (i.e. upright versus inverted). These findings indicate 
that causality in human actions guides interpolation of body 
movements, thereby completing the history of an observed 
action despite gaps in the sensory information. Hence, causal 
knowledge not only makes us see the future, but also fills in 
information about recent history. 

Keywords: causality; causal action; motion interpolation; 
human action; human interaction 

Introduction 

In our daily life, we are constantly incorporating new visual 

information to form a continuous impression of the dynamic 

world. However, the perceptual construction of smooth 

movements is not a trivial task, since visual inputs are actually 

discrete frames or disjointed clips separated by constant eye 

movements. Flipbooks, for example, exploit our susceptibility 

to apparent motion (Wertheimer, 1912), where our visual 

system induces the perception of dynamic scenes from the 

presentation of static images in rapid succession. Apparent 

motion offers an illustrative case of the human visual system’s 

tendency to interpolate the paths of perceptual objects over 

time, and to produce the perception of smooth motion across 

discrete samples of visual stimuli at different time points. It is 

well-known that the appearance of smooth motion is 

determined not only by low-level visual features, such as inter-

frame spatial displacement and temporal sampling rate 

(Braddick, 1974; Burr, Ross & Morrone, 1986), but also by 

high-level visual knowledge about shapes, objects and events 

involved in the stimuli (Sigman & Rock, 1974; Braddick, 

1980; Shiffrar  & Freyd, 1990; 1993; Chen & Scholl, 2016). 

In the present paper, we examine whether causal knowledge 

inherent in human actions influences the extent to which the 

visual system interpolates body motion. The sense of cause-

effect relation can emerge from the irresistible perception of 

events involving causation, demonstrated by the well-known 

launching effect between two colliding objects (Michotte, 

1946). However, such automatic perception arises not just for 

physical causation, but also for intentional causation in the 

social environment. Even as young as 9-month-old, infants 

perceive objects as “intentional agents” whose states can cause 

behavioral activities (Crisbra et. al., 1999). Both physical and 

social causal perceptions are susceptible to the change of 

spatiotemporal features in dynamic scenes. For example, the 

perceived causation in the launching event depends on relative 

speeds of objects in the scene, spatial gaps between those 

objects, temporal gaps between objects’ motions, objects’ path 

lengths (Scholl & Tremoulet, 2000). On the other hand, causal 

perception can also influence perceptual judgments and 

memory about spatiotemporal properties in dynamic events. 

Previous research has shown that humans rely on their prior 

knowledge about the causal relation between limb movements 

and body motions in perceiving human actions (Peng, 

Thurman, & Lu, 2017), as actions are perceived more natural 

if visual stimuli are in accordance with causal expectation for 

human body movements. Causal knowledge has also been 

shown to elicit false memories of body movements. Strickland 

and Keil (2011) found that implicit causal connections 

between agents and objects led to false memories of action 

frames that were never presented. For example, adults watched 

videos in which an actor kicked a ball, but the videos omitted 

the moment in which the actor actually contacted the ball. In a 

later recall task, participants falsely reported seeing the 

physical contact when the subsequent footage implied a causal 

relation between the actor’s movements and the motion of the 

ball. Similarly, Bechlivanidis and Lagnado (2013, 2016) 

demonstrated that causal knowledge can induce false 

memories about the temporal order of events. Having a belief 

that event type A causes event type B made participants more 

likely to misremember sequences of observed events that 

violated those causal beliefs (i.e., when an event of type B 
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temporally preceded an event of type A) than sequences that 

coincided with their causal belief. 

These findings present compelling cases in which causal 

knowledge plays an influential role in consolidating memories 

about actions and events. In addition, work on causal binding 

has shown that causal knowledge biases the perception of time 

and space (Humphreys & Buehner, 2009, 2010; Buehner, 

2012). For example, Buehner and Humphreys (2009) 

demonstrated that when one event is represented as causing 

another, the perceived time lapse between the two events 

appears shorter than when the two events are not causally 

related. This finding indicates that two causally related events 

are more likely to trigger the perception of spatiotemporal 

contiguity.  

In the present paper, we test the hypothesis that the 

perceptual system uses prior knowledge about causal relations 

in actions to fill in missing information between static frames, 

yielding the subjective experience of smooth motion in human 

actions. We recorded videos of human-object interactions in a 

natural environment (a thrower directing a ball to a catcher). 

For short clips in which the catcher prepared to receive the 

ball, the frame rate was manipulated to introduce short and 

long inter-frame durations, defined as stimulus-onset-

asynchrony (SOA). The duration of short SOAs was 33.3 

ms/frame; that of long SOAs was 100 ms/frame. For causal 

actions, the facing direction of the catcher was maintained to 

generate a meaningful interaction consistent with a causal 

interpretation. For non-causal actions, the facing direction of 

the catcher was inverted to disrupt any meaningful interaction 

and generate an action sequence inconsistent with a causal 

interpretation. Participants were asked to judge whether the 

catcher’s action showed smooth body movements or sudden 

changes. If causal knowledge in actions creates a top-down 

influence on interpolation of discrete pieces of motion 

information, observers will be more likely to perceive smooth 

actions when observing causal than non-causal actions. In 

addition, the predicted effect is expected to be stronger for 

long-SOA displays in which the visual inputs are sparse, with 

fewer image frames. 

Experiment 1 

Experiment 1 was designed to assess how a causal action 

between an agent and a physical object influences 

interpolation in the perception of smooth human actions. 

Causal actions were generated with an agent interacting with 

a moving object. Non-causal actions were generated with the 

same agent facing away from the moving object. We 

hypothesized that in the causal action condition, discretized 

human actions would be more likely to be perceived as smooth 

motion sequences. 

Method 

Participants  
Fifty undergraduate students at UCLA (mean age = 21.1; 40 

female) participated in the experiment for course credit. All 

experimental procedures were approved by the UCLA Office 

for Protection of Human Subjects. All participants had normal 

or corrected-to-normal vision. 

 

Stimuli 

Action videos were filmed in a gym using a camera with a 

temporal resolution of 30 frames/s. Two pairs of actors (one 

male pair and one female pair) were filmed. Each pair 

performed three throwing-catching actions (bounce pass, 

overhead pass, and chest pass), with each actor being the 

thrower once and catcher once. Seven video clips were 

selected as experimental stimuli. Sample video stimuli can be 

viewed at https://yujiapeng.com/causal-illusion-real.  

In Experiment 1, only the catcher and the ball appeared in 

the video; the thrower was not shown. For each video, a short 

critical period was selected during which the catcher’s arms 

showed the largest rising momentum during preparation to 

catch the ball. Each video lasted for 567 ms. There were 10 

frames before the critical period, and 1 frame after the critical 

period. The critical period began when the catcher's arms 

started to rise, and it ended right before the actor’s hands 

touched the ball. The duration of the critical period was 200 

ms. In the long-SOA condition, only the first and the last frame 

of the catcher’s body movements were presented, all the 

middle frames were omitted. The presentation duration of the 

first and the last frames were lengthened to cover half of the 

critical period at 100 ms per frame. In the short-SOA 

condition, all six frames showing body movements of the 

catcher were displayed, with the frame duration at 33.3 

ms/frame. Note that the duration of the critical period was the 

same (200 ms) for both long-SOA and short-SOA displays. 

The movements of the ball were also the same and were kept 

intact in both long-SOA and short-SOA displays (Figure 1). 

 

 
Figure 1. Illustrations of the critical clip in the long-SOA 

display with two frames (100 ms/frame) with a sudden 

posture change, and in the short-SOA display with six frames 

(33 ms/frame).  
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 As shown in Figure 2, the causal condition showed the 

catcher facing toward the ball as the ball movement causes the 

catcher to move his or her body in preparation. To generate 

non-causal actions, image frames were processed using 

Matlab and Adobe Photoshop to horizontally reverse the 

facing direction of the catcher. The catcher was flipped 

horizontally to face away from the ball in the entire video, 

while keeping the background and the ball movement intact.  

 
Figure 2. Sample frames of a causal action with the catcher 

facing towards the ball, and a non-causal action with the 

catcher facing away from the ball.  

 

Procedure 

Participants were seated 35 cm in front of a monitor with a 

1024×768 resolution and 60 Hz refresh rate. All the stimuli 

were generated by MATLAB Psychtoolbox (Brainard, 1997). 

Participants were instructed, “You will view an actor playing 

sports (such as passing a basketball) with someone else who is 

occluded by a whiteboard. The task is to judge whether the 

catcher actor shows a smooth action or a non-smooth sudden 

posture change. For a smooth action, the actor smoothly moves 

from one posture to another. For a non-smooth action, the 

actor suddenly moves from one posture to another.”  

On each trial, a white fixation cross was presented at the 

center of the screen. Participants were asked to focus on the 

fixation cross throughout the experiment and to use their 

peripheral vision to see the video without making saccades. 

The center of the video was presented 13.7 degrees to the left 

or to the right of the fixation point with a height of 18 degrees. 

Showing the video in peripheral vision reduced the possibility 

that observers would track movements of the catcher without 

paying attention to other parts of the display. Half of the trials 

presented the video on the left of the fixation and the other half 

on the right. The catcher actor was always presented on the 

side relatively farther away from the fixation point. For 

example, if the video was presented on the right side, the ball 

flew from left to right and the catcher was located on the right 

side of the ball. After the video display, participants were 

asked to press one of two buttons to judge whether the video 

demonstrated actions with smooth body movements or sudden 

posture changes. 

Participants were first presented with two blocks of practice 

trials to familiarize them with the task. In the practice blocks, 

participants saw “correct” on the screen plus a beep after each 

correct response, and saw “incorrect” without a beep after each 

incorrect response. Each practice block consisted of eight 

trials. A separate video was used as the stimulus for the 

practice block; this video was not presented in the test. In the 

first block of practice, videos were slowed down to show the 

entire video with the frame rate of 66.6 ms/frame and to 

display the critical period for 666 ms. This manipulation was 

intended to allow participants to become familiar with the 

experimental setting and to understand the difference between 

smooth motion and sudden posture changes in body 

movements. In the second block of practice trials, videos were 

presented at a frame rate of 33.3 ms/frames, and the duration 

of the critical period was 200 ms, as in the test session.  

The test session followed the practice blocks. Test trials 

were identical to those in the second practice block with two 

exceptions: participants received no feedback on test trials, 

and test trials employed six new videos that were not used in 

practice blocks. A total of five test blocks were administered, 

each with 24 trials (causal/non-causal x long-/short SOA x 6 

actions). In each block, the presentation order of videos was 

randomly shuffled. Proportions of responses in judging actions 

as smooth motion were recorded for each condition. 

Results 

We first examined the data in Block 1, as performance on 

subsequent blocks was likely to be affected by increased 

familiarity with the six videos used in the experiment. We 

conducted a 2 (SOA: short- vs. long-SOA) by 2 (causality: 

causal action vs. non-causal action) repeated-measures 

ANOVA on the proportion of responses judging the catcher’s 

action as smooth motion. As shown in Figure 3a, results 

revealed a significant main effect of causal action, F(1,49) = 

4.742, p = .034. Specifically, the proportion of "smooth" 

responses was significantly higher in the causal action 

condition in the long-SOA condition, in which the catcher 

faced towards the flying ball than in the non-causal action 

condition in which the catcher faced away from the ball (t(49) 

= 2.243, p = .029). This contrast was not significant in the 

short-SOA condition (t(49) = 1.193, p = .239), probably due 

to much less room of interpolation given the nature of 

smoothness of short-SOA videos. Note that the smooth motion 

signal was much weaker in the long-SOA display, since the 

stimulus included only two static postures with the largest 

spatial displacements. However, the causal relation between 

the ball and the body movements of the catcher enhanced 

interpolation between the two distinct postures, resulting in 

more misperception of sudden posture changes as smooth 

body movements. These results indicate that the effect of 

causality on motion interpolation emerged at the very 

beginning of the experiment. Not surprisingly, the main effect 

of the SOA was significant, F(1,49) = 124.803, p < .001, as 

short-SOA displays provided stronger motion signals with 

short inter-frame spatial displacements than did long-SOA 
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displays. The two-way interaction effect between causality 

and SOA was not significant, F(1,49) = .662, p = .42.  

 

(a) 

 
(b)

 
 

Figure 3. Results of Experiment 1. (a) Proportions of 

responses in block 1 judging the catcher’s action as smooth 

motion. Asterisks indicate statistically significant differences 

between conditions (* p < .05, ** p < .01). (b) The difference 

between proportions of responses to causal and non-causal 

actions across 5 blocks in long- or short-SOA displays. 

 

Results of the causal interpolation effect across 5 blocks 

were presented in Figure 3b. To investigate whether the impact 

of causal actions on motion interpolation was maintained 

across blocks despite increased familiarity with the six videos, 

we conducted a three-way repeated measures ANOVA with 

blocks as the third factor. We found a significant main effect 

of causal actions (F(1,49) = 12.419, p = .001), reflecting a 

larger proportion of "smooth" responses in the causal 

condition than non-causal condition. This result suggests that 

the facilitatory influence of causality on the perception of 

smooth movements was maintained, even with increased 

familiarity with the videos. However, this main effect was 

qualified by a significant three-way interaction (F(4,196) = 

2.815, p = .027), reflecting a complex relation between 

familiarity and the influence of causal knowledge on the 

perceptual task. The block variable had a strong impact on 

responses in the long-SOA displays (F(4,196) = 4.572, p = 

.001), but a relatively weaker impact on short-SOA displays, 

for which the simple main effect of block was not reliable 

(F(4,196) = 1.722, p = .15). This pattern was likely the result 

of close-to-ceiling performance in perceiving smooth motion 

in the short-SOA displays.   

Experiment 2 

In Experiment 1, we found evidence that causal interactions 

between a catcher and the ball facilitated the perception of 

smooth movements. In Experiment 2, we investigated whether 

the effect could be generalized from human-object interactions 

to human-human interactivity. We predict that when the two 

agents show a causal relation connecting their movements (i.e. 

one agent throwing and one agent catching), observers will 

also be more likely to perceive smooth body movements. 

Method 

Participants  
Forty-eight new UCLA students (mean age = 20.48; 33 

female) participated in the experiment for course credit. All 

participants had normal or corrected-to-normal vision.  

 

Stimuli and Procedure 

The experiment employed the same basic videos as in 

Experiment 1, showing two actors pass balls. The stimuli 

included the body movements of the thrower and the catcher 

(Figure 4). A white occluder was presented at the center of the 

video to cover the movements of the ball. Depending on the 

actual duration of action sequences, the stimuli ranged from 

633 ms to 1233 ms. There were 10 frames before the critical 

period, and 1 frame after the critical period. The duration of 

the critical period was 200 ms. In the instructions, participants 

were asked to respond to the movements of the catcher while 

paying attention to the entire video. The causal manipulation 

in Experiment 2 was the same as Experiment 1: the facing 

direction of the catcher was horizontally reversed to generate 

the non-causal condition. The procedure for Experiment 2 was 

the same as that for Experiment 1. 

 

 
Figure 4. Sample frames of a causal action with the catcher 

facing towards the thrower, and a non-causal action with the 

catcher facing away from the thrower. 

Results 

As shown in Figure 5a, the proportion of smooth responses in 

Block 1 again revealed a significant main effect of causality 

(F(1,47) = 9.874, p = .003). Despite a longer temporal delay 

between the two actors’ actions, the causal relation between 

the two actors’ body movements impacted the visual 
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experience of the catcher, as perceiving the catcher’s 

movements elicited perception of more smooth and coherent 

motion. The proportion of smooth responses was significantly 

greater in the causal action condition compared to the non-

causal action condition for the long-SOA condition (t(47) = 

2.887, p = .006), but not for the short-SOA condition (t(47) = 

1.681, p = .099). No interaction effect was found, F(1,47) = 

0.407, p = .527. These results extended the pattern of causal 

effects observed in Experiment 1.  

Results of the causal interpolation effect across 5 blocks 

were presented in Figure 5b. A three-way repeated measures 

ANOVA with blocks as the third factor showed a significant 

main effect of causal actions (F(1,47) = 6.508, p = .014), with 

a greater proportion of "smooth" responses in the causal 

condition than the non-causal condition. There was also a 

significant main effect of block (F(4,188) = 5.904, p < .001). 

Neither the two-way interactions nor the three-way interaction 

was reliable. In summary, the converging results from the two 

experiments indicate that the influence of causal action on 

motion interpolation persisted even with increased familiarity 

with the videos.  

 

(a) 

 
(b)

 
Figure 5. Results of Experiment 2. (a) Proportions of 

responses in block 1 judging the catcher’s action as smooth 

motion (* p < .05, ** p < .01). (b) The difference between 

proportions of responses to causal and non-causal actions 

across 5 blocks in long- or short-SOA displays. 

Experiment 3 

Experiment 3 aimed to investigate whether the influence of 

causal actions on motion interpolation depends on other visual 

cues. Body orientation is a well-known cue for action 

recognition (Pavlova & Sokolov, 2000), as observers show 

worse recognition performance when actions are presented 

upside-down. If the interpolation effect revealed in the 

previous two experiments was induced by high-level causal 

knowledge, then inverting the video would not yield a 

significant difference between upright versus upside-down 

actions, since both cases preserve the temporal contingency 

and the causal relation between humans and objects. 

Methods 

Participants  
Fifty-two new UCLA undergraduate students (mean age = 

20.0; 43 female) participated in the experiment for course 

credit. All participants had a normal or corrected-to-normal 

vision. 

 

Stimuli and Procedure 

Experiment 3 used the same stimuli as the causal condition in 

Experiment 1. On half of the trials, the stimuli used inverted 

videos, and the other half used intact videos (Figure 6). The 

task and procedure of Experiment 3 were otherwise the same 

as in Experiment 1. 

 

 
Figure 6. An illustration showing sample frames of an 

upright and an inverted action in Experiment 3.  

Results 

We first conducted a 2 (SOA: short- vs. long-SOA) by 2 

(orientation: upright vs. inverted) repeated-measures ANOVA 

on the proportion of responses in Block 1 judging the catcher’s 

action to be smooth motion. As shown in Figure 7a, the main 

effect of orientation was not significant (F(1,51) = 2.509, p = 

.119). The interaction between body orientation and SOA was 

also not significant (F(1,51) = 1.525, p = .222). The results 

from Block 1 suggest that as long as the causal relation is 

maintained in observed activities, body orientation does not 

affect the misperception of seeing smooth movements, even 

when the motion signals were weak (in the long-SOA 

displays).  

Results of the causal interpolation effect across 5 blocks 

were presented in Figure 7b. To investigate whether the impact 

of body orientation on motion interpolation changed across 

blocks with increased familiarity with the six videos, we 

further conducted a three-way repeated measures ANOVA 

with blocks as the third factor. This analysis revealed a 

significant main effect of orientation (F(1,51) = 5.554, p = 
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.022). This main effect was largely driven by a significant 

difference between the upright and inverted conditions in later 

blocks. For example, in the final block (Block 5), a greater 

proportion of "smooth" responses was made in the upright 

conditions than the inverted conditions for the long-SOA 

condition (t(51) = 2.139, p = .037). This pattern suggests that 

the impact of body orientation on visual analysis of actions 

increased with familiarity of the stimuli.  

 

(a) 

 
(b) 

 
Figure 7: Results of Experiment 3. (a) Proportions of videos in 

block 1 judged as smooth actions (* p < .05, ** p < .01). (b) 

The difference between proportions of responses to causal and 

non-causal actions across 5 blocks in long- or short-SOA 

displays. 

General Discussion 

Apparent motion perception makes it possible to record 

movements of objects and humans by sampling the motion and 

displaying the samples as stationary pictures in sequence (e.g., 

videos, cinema). This study showed that a causal interaction 

between an agent and a physical object increased the 

likelihood that people would perceive smooth actions even 

when the stimuli showed a sudden change in long-SOA 

displays. This result suggests that causality acts as a temporal 

“glue” to fill in observers’ visual experience by interpolating 

discrete image frames to produce the perception of smooth, 

continuous motion. These results extended previous evidence 

that perception in physical causation helps to fill in important 

visual information left out from a sequence of events to social 

causal perception. The representation of an object’s implicit 

causal history has been shown to induce a transformational 

apparent motion (Tse, Cavanagh, & Nakayama, 1998) of 

simple objects (Chen & Scholl, 2016), akin to the “causal 

filling in” effect reported by Strickland and Keil (2011). A 

“causal filling in” mechanism could have benefitted from 

evolutionary selection pressure by aiding the continuous 

perception of animal motions despite occlusion by trees or 

other obstacles. 

Causal knowledge about human body movements may not 

only help to connect discrete events in the perceptual process, 

but also may facilitate the process of making inferences and 

predictions about actions. A causal framework may help the 

visual system to infer the past. For example, human observers 

get a vivid feeling of seeing the immediate past of objects or 

human postures presented in static frames (Kourtzi, 2004). 

This phenomenon suggests that causal knowledge aids the 

visual system in inferring and reconstructing the causal history 

of objects and human actions. On the other hand, as earlier 

research on motion perception has suggested that the visual 

system anticipates the positions of simple objects based on 

their apparent motion trajectory (Freyd & Finke, 1984), more 

recent research has suggested that similar anticipatory visual 

processing is also affected by comparatively complex causal 

knowledge of human actions. For example, Su and Lu (2017) 

used skeletal biological motion displays and found a flash-lag 

effect, such that when a briefly-flashed dot was presented 

physically in perfect alignment with a continuously-moving 

limb, the flashed dot was perceived to lag behind the position 

of the moving joint. This finding suggests that the 

representation of human actions is anticipatory, due to a 

potential top-down action prediction mechanism. It has also 

been found that infants as young as five months are able to 

gaze toward the future direction implied by the static posture 

of a runner (Shirai & Imura, 2014, 2016), suggesting the early 

emergence in infancy of an ability to predict dynamic human 

actions from still pictures.  

The present results demonstrated rapid effects of learning 

across blocks. Experiment 1 showed a significant three-way 

interaction between block, causality and SOA, suggesting an 

interaction between the top-down influence of causality and 

bottom-up perceptual processing of motion stimuli. The top-

down influence of causality may be stronger in situations in 

which uncertainty about the visual input is high, such as when 

dynamic stimuli are presented in peripheral vision or 

embedded in noise. The effect may be weakened after 

repetitive exposures to the stimuli, as perceptual learning may 

enhance performance for visual tasks. These results are 

consistent with previous findings that causal perception can 

change upon repeated exposure of the same stimuli (Rolfs, 

Dambacher & Cavanagh, 2013).  

In conclusion, the current study provides evidence of the 

important role played by causal knowledge in the perception 

of smooth motion. Causal relations involving human actions, 

and their interactions with objects and other agents, have a 

strong influence on motion perception for body movements. 

The causal relations involved in actions facilitate visual 

interpolation of discrete dynamic events to provide a 

continuous perception of human-involved activities. The top-

down influence of knowledge about human actions interacts 

with bottom-up perceptual processes to enhance the robustness 

and efficiency in action perception (Lu, Tjan & Liu, 2006; 

Thurman & Lu, 2014) and intention inference (Shu et. al., 
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2018). Causal knowledge not only makes us see the future, but 

also fills in information about recent history.  
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Abstract

Previous research evaluating the influence of category knowl-
edge on memory found that children, like adults, rely on cat-
egory information to facilitate recall (Duffy, Huttenlocher, &
Crawford, 2006). A model that combines category and target
information (Integrative) provides a superior fit to preschoolers
recall data compared to a category only (Prototype) and target
only (Target) model (Macias, Persaud, Hemmer, & Bonawitz,
in revision). Utilizing data and computational approaches from
Macias et al., (in revision), we explore whether individual and
age-related differences persist in the model fits. Results re-
vealed that a greater proportion of preschoolers recall was best
fit by the Prototype model and trials where children displayed
individuating behaviors, such as spontaneously labeling, were
also best fit by the Prototype model. Furthermore, the best fit-
ting model varied by age. This work demonstrates a rich com-
plexity and variation in recall between developmental groups
that can be illuminated by computationally evaluating individ-
ual differences.

Keywords: Episodic Memory; Children; Computational
Models; Category Knowledge; Color

Introduction
Reconstructing events from memory is an important facet
of cognition, given that it informs how we perceive, inter-
act with, and reason about the world around us. As with all
computational processes, human memory is limited in its ca-
pacity and resolution, raising questions of how the mind han-
dles the reconstruction of events from memory. That is, how
do we strategically encode information that supports later
use, while minimizing effort, error, and large demands on
storage? This question is doubly interesting for young chil-
dren whose memory systems are still developing. Relative
to adults, children have comparatively limited cognitive re-
sources (Davinson, Amso, Anderson, & Diamond, 2006; Di-
amond, 2006; Keresztes, Ngo, Lindenberger, & Newcombe,
2018), and their ability to maintain information in memory
becomes compromised when faced with increased cognitive
load (e.g., increased inhibition demands). Thus, an important
question of development is what cognitive strategies might
young learners employ to reduce uncertainty (i.e., noise or
error) when retrieving information from memory?

To tackle strategic reconstruction of episodic events, re-
search in adult cognition suggests that adults use prior knowl-
edge and expectations to facilitate retrieval of information

from memory. Adults develop prior knowledge and expec-
tations that are well-calibrated to the statistical regularities of
the environment (e.g., Griffiths & Tenenbaum, 2006), and use
this knowledge to optimally perform on a broad range of cog-
nitive tasks including: categorization (Huttenlocher, Hedges,
& Vevea, 2000), reasoning (Oaksford & Chater, 1994), and
generalization (Tenenbaum & Griffiths, 2001). In memory,
well-calibrated knowledge and expectations for a stimulus
category can improve average recall (Huttenlocher, Hedges,
& Duncan, 1991; Huttenlocher et al., 2000). For exam-
ple, Huttenlocher et al. (2000) found that people quickly de-
velop expectations for the underlying categorical distribution
of stimulus features, and use this knowledge to fill in noisy
and incomplete memories. They demonstrated that responses
regressed toward the mean of the overall category, thereby
improving average recall.

This relationship between prior knowledge and episodic
memory can be captured within a simple Bayesian framework
which assumes that prior knowledge and expectations for
the environment are optimally combined with noisy episodic
content to produce recall of episodic experiences (Hemmer &
Steyvers, 2009; Huttenlocher et al., 2000; Persaud & Hem-
mer, 2014; Steyvers & Dennis, 2006). Bayes rule provides
a principled account of how to combine noisy memory rep-
resentations with prior expectations to calculate the posterior
probability for recall.

p(θ|y) ∝ p(y|θ)p(θ)

The posterior probability p(θ|y) describes how likely a re-
called feature θ is, given prior expectations for the recalled
feature p(θ) and noisy memory traces y. In this way, the
Bayesian framework makes specific predictions about pat-
terns that are explicitly borne out of the data, namely a re-
gression to the category mean effect. It predicts that recall of
stimulus features (e.g., different shades of red) is either over
or under-estimated toward the mean of the category.

Recent evidence suggests that children, like adults, adopt a
similar process of integrating prior category knowledge with
episodic traces to reconstruct events in memory. For example,
Duffy et al. (2006) used assumptions of the Category Ad-
justment model (CAM) (Huttenlocher et al., 1991, 2000) to
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evaluate the contribution of category knowledge to memory
for object sizes in children. CAM assumes that if category
knowledge is integrated in memory, recall would exhibit re-
gression to the mean effects. The model also assumes that the
more noisy the episodic information, like memories in chil-
dren, the stronger recall will regress to the mean. Duffy et al.
(2006) found that like adults, children’s recall regressed to-
ward the mean of the underlying category distribution. This
suggests that on an individual trial, a child might not have
remembered the exact studied size, so they might use their
learned category knowledge of the most frequently studied
object sizes to help reconstruct the true size. They concluded
that children use category knowledge to estimate stimulus
features from memory.

Similarly, Macias and colleagues (in revision) used a sim-
ple episodic memory task, where children were shown shapes
paired with different colors and were asked to recall the color-
shape pairings. They found that children’s recall regressed to-
ward the mean of the seven color categories that were studied,
indicating an influence of category knowledge on memory.
To further assess episodic memory, they then evaluated the
fits of three computational models of memory to explain the
data: a Noisy Target model that assumes recall solely mirrors
episodic information (i.e., the target color values plus ran-
dom noise), a Noisy Prototype model that assumes that recall
solely mirrors category information (plus noise), and an In-
tegrative model that assumes that recall is an integration of
episodic and category information. Quantitative model fits to
the aggregate data favored the Integrative model.

These studies of memory in children, taken together, high-
light an important role that category knowledge plays in
episodic memory at early development (i.e., preschool age)
and provide a watershed moment to explore the reconstruc-
tive nature of episodic memory at earlier stages. More specif-
ically, this work facilitates the opportunity to perform a crit-
ical in-depth analysis of children’s recall data to tease apart
underlying individual and group-related differences in the re-
constructive process. Exploring individual and age related
differences is motivated by the Duffy et al. (2006) finding
that not only do children rely on category knowledge, but also
that memory in younger children exhibited steeper regression
to the mean patterns, relative to older children. Recall based
solely on category information could also result in steeper re-
gression to the mean, and in turn, might be better fit by the
Macias et al., Noisy Prototype (’category only’) model. In
other words, it could be the case that at the individual subject
level, children might differ in the best fitting model, such that
those with steeper regression might be better fit by the Noisy
Prototype model, while less steep regression might be better
captured by an Integrative model.

Furthermore, recall performance in children might not only
differ at the individual subject level, but also at the individual
trial level, especially if contextual strategies, such as spon-
taneously labeling study features, are employed to facilitate
recall performance. For example, while running their study,

Macias et al., observed that participants spontaneously la-
beled the colors, as they studied them and/or as they recalled
them. For example, one older learner (age = 4.64years),
stated, “Purple, purple, purple. I got this.”, while studying
a purple hue value. Counterintuitively, while labeling may
boost the learner’s ability to remember that an item was ob-
served from a particular category, it may also lead to noisier
storage of specific stimuli that deviate from category means,
because the label provides a cheaper (albeit potentially less
accurate) compression option than storing the details of the
original. In this way, this individuating behavior of labeling
might impact the reconstruction of events in memory at either
the individual subject or trial level. Recent research suggests
that labeling can influence recall of continuous color values,
such that labeling results in information being lost gradu-
ally as opposed to suddenly (see, Donkin, Nosofsky, Gold,
& Shiffrin, 2014 for discussion on the role of labeling, sud-
den death, and gradual decay in memory). To this end, there
might be a difference in the best fitting models for children
who spontaneously label colors or for specific trials where
colors are labeled.

Therefore, the goal of this paper is to assess individual and
age related differences in the reconstruction of events from
memory in early development. More specifically, we sought
to evaluate whether younger and older children employ dif-
ferent strategies to recall episodic events and whether the be-
havior of spontaneously labeling was better fit by a particular
model. We hypothesized that young and older children would
differ in their reconstructive processes, such that a different
proportion of children from each group would be better fit
by the three models. We expected that older children would
be better explained by an Integrative model (i.e., combining
noisy episodic traces with category knowledge), mirroring the
behavior of adults, and younger children would be better ex-
plained by a Noisy Prototype model, given the degree of in-
exactness in their memory traces.

We also hypothesized that the individuating behavior of
spontaneous labeling would impact memory reconstruction
such that trials where labels were spontaneously provided
would be better captured by the Noisy Prototype model. To
test our hypotheses, we fit the Noisy Target, Noisy Prototype,
and Integrative models to the experimental data from Macias
et al., (in revision) at the individual subject level.

We then evaluated the log likelihood scores of the model
fits to determine which account most often explained memory
performance in younger and older children. In other words,
we looked to see which model explained behavior for the
greater proportion of children. After, we explored best fit-
ting parameter values that would capture the amount of noise
in the recall data for young and older children. A difference
in the amount of noise in the data is one potential explanation
for age related differences in the best fitting model. Finally
we assessed whether labeling behavior affected the propor-
tion of children fit by each of the models.
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Three Models of Memory

Noisy Target Model The Noisy Target model assumes that
information is stored in episodic memory as noisy traces of
studied values (e.g., specific color values). In this way, recon-
structed events are just inexact representations of true studied
values (and not altered by category knowledge). If children
are using the Noisy Target model, we should expect the noise
(or error) in recall to be normally distributed around the true
studied feature values, with no apparent bias toward a partic-
ular recall value. To evaluate this model relative to the data,
we calculated the probability of responses given a Gaussian
distribution centered on the target value, with noise in mem-
ory (we assume the same memory noise value learned from
Macias et al.).
Noisy Prototype Model The Noisy Prototype model as-
sumes that information is stored in episodic memory as cate-
gorical representations of studied features (e.g., the mean of
the category to which the studied value belongs). In other
words, under this model, the initial encoding of the represen-
tation is simply a pointer to the participant’s prototype in that
category. Other information about the studied value is not
stored. Memory is simply a recall of the prototype – which
we define as a sample drawn from this category, assuming a
particular distribution, mean, and variance associated with it.
To evaluate this model relative to the data, we calculated the
probability of responses given a Gaussian distribution cen-
tered on the category prototype (i.e., mean) value given by
participant ratings in Macias et al., (in revision), with noise
on the category also calculated from noise given in a separate
study 1.
Integrative Model The Integrative model amalgamates the
assumptions of both the Noisy Target and Noisy Prototype
models and assumes that recall is an integration of noisy
episodic content and prior category knowledge. Under this
model, prior category knowledge is used to fill in the gaps
when episodic traces are noisy or incomplete. When the cat-
egory representation is strong, and the memory trace is noisy,
recall will resemble the category representation. The proba-
bility of responses under the Integrative model are relatively
straightforward to calculate, because both the prior and like-
lihood distributions are Gaussian (which are self-conjugate).
Furthermore, there are not specific weights assigned to the
contributions of each model – this falls out naturally based on
the degree of variance of each target and prototype models.
We evaluate this model relative to the data, by calculating the
probability of responses given the Gaussian that results from
integrating these two Gaussian. Specifically, for the Integra-
tive model, which integrates the Noisy Target and Prototype
distributions, the standard solution for the mean and variance

1We also assessed a model in which we sample over variance,
but best fit variance matched participant responses on Macias et al.’s
prior knowledge task.

Table 1: Frequency of Children Best Fit to Each Model

Model Count(%)
Integrative 11 (33.33%)

Noisy Target 7 (21.21%)
Noisy Prototype 15 ( 45.45%)
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where σt refers to the memory noise on the target distribution,
σp refers to the noise on the prototype distribution, t refers to
the studied target value, µp refers to the mean of the prototype
distribution to which the target value belong, and n=1.

In what follows, we first briefly explain the experimental
methods employed by Macias et al., (in revision), to assess
the role of category knowledge in episodic memory in chil-
dren. We then discuss the results of the model fitting at the in-
dividual subject level in general, and age related differences,
more specifically.

Experimental Methods and Results
Macias et al., (in revision) conducted two developmental
experiments where they examined the relationship between
prior color category knowledge and episodic memory in
preschoolers (mean age: 54 mos.; range: 43 mos.-73 mos.).
In the prior knowledge assessment, participants were pre-
sented with 9 color category labels (red, orange, yellow,
green, blue, light blue, dark blue, purple, and pink) one at
a time on a computer screen, along with a color wheel. The
color wheel varied in hue only while luminance and satura-
tion were held constant at 50 and 100 units respectively. Chil-
dren were asked to point to a location on a color wheel to
indicate the color that best represented the label.

In the episodic memory task, 33 participants studied 15
shapes uniquely paired with 152 colors, one at a time on a
computer screen. At test, participants were presented with a
studied shape (filled in white with a black border), along with
the color wheel used in the prior knowledge assessment. The
task for the participants was to choose along the color wheel
to indicate the color they recalled being paired with the pre-
sented shape. For complete experimental methodology, refer
to the source publication (Macias, et al., in revision).

The results of the memory task revealed a regression to the
category mean effect in a majority of the studied color cate-
gories such that studied hue values that were greater than the
mean of the category were underestimated and studied hue
values less than the mean of the category were overestimated.
This regression to the mean effect is taken as evidence of an

2One of the study trials was treated as a filler in order to counter-
balance presentation order and was therefore removed from the data
set prior to running any analyses.
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Figure 1: Ternary plot of the proportion of Log probabilities
of the Integrative, Noisy Target, and Noisy Prototype models
fit to each participant’s data. Data points fall within the region
of the model where it is best fit. Note that the figure has been
zoomed in to the approximate center of the Ternary plot for
better visualization of the data.

influence of category knowledge in episodic memory. Macias
et al., (in revision) implemented three models and determined
that the Integrative model provided the superior fit to the child
data on aggregate. Here we fit the three models to individual
subject data to assess for age related differences in the best
fitting model.

Model Results
We sought to evaluate age and performance related differ-
ences between individual subjects and the fits of each model.
Here we report the results of the model fits to children overall
and then we evaluate the role of age.

Data Preparation for Evaluating Individual
Differences
The data were prepared to perform four specific analyses: to
evaluate individual differences in the best fitting model across
the entire sample of children, to assess age related differ-
ences in the proportion of participants best described by each
model, to assess additional group differences in the model
fitting (e.g., the role of spontaneous labeling), and to eval-
uate age differences in best fitting model parameter values.
We first fit the three models to each subjects’ data. As with
Macias et al., (in revision), the best fitting model was deter-
mined by the model with the largest log-likelihood value. To
evaluate group differences, we performed a median split to
classify children as younger and older learners (Table 2) and
then compared the proportion of younger and older children
described by each model. Of the 33 participants in the study,
16 were classified as young and 17 were classified as older.
The median age of the total sample was 53 mos. (sd=6 mos.).

Table 2: Frequency of Model Fits by Age

Model Count(%)
Young Older

Integrative 6 (37.50% ) 5 (29.41%)
Noisy Target 6 (37.50% ) 1 (5.88%)

Noisy Prototype 4 ( 25.00%) 11 (64.71%)

The median ages for younger and older children were 49 mos.
(sd=2 mos.) and 56 mos. (sd=5 mos.), respectively.

We also sought to evaluate group differences due to spon-
taneous labeling that was borne out of the experimental task.
Of the 16 children classified as younger, 7 produced as least
one label and of the 17 older children, 12 produced at least
one label. This further suggests that labeling was a consistent
strategy employed by children in this task. To evaluate best
fitting models based on labeling, we first classified children
into two groups: labelers and non-labelers. Labelers referred
to learners who provided labels (at either study, test, or both)
on more than 50% of trials (n=10/33) and non-labelers were
all other children tested (n=23/33). We chose to use this clas-
sification because spontaneously labeling on more than 50%
of trials suggests a consistent strategy of the individual to as-
sist in recall.

To evaluate age related differences in the best fitting noise
value, we implemented the Integrative model and for each
participant, we searched over the space of possible noise val-
ues for the value that maximized the likelihood for each par-
ticipant’s data.

Model Fitting Results
Although the Integrative model is the best fitting model at the
aggregate data level, it appears that at the individual level a
greater proportion of children are better fit by the Noisy Pro-
totype model (n=15/33), followed by the Integrative model
(n=11/33), and then the Noisy Target model (n=7/33) (see
Table 1). However, as can be seen in Figure 1, although a
larger proportion of data points (each representing an individ-
ual child) fall towards the prototype apex, these points cluster
towards the center (with near equal weight for the Target and
Integrative models), suggesting that children who are classi-
fied as Prototype fits are nearly equally well fit by the other
models. In contrast, for participants that are not best fit by the
Prototype model, results skew significantly farther away from
the center, suggesting that children who are better fit by other
models are much more poorly fit by the Prototype. In light of
this result, we next evaluated whether age plays a role in the
proportion of children best fit by the models.

Age and Best Fitting Model To evaluate whether the pro-
portion of children best fit by each of the three models was
dependent upon age, we used the Freeman-Halton extension
of the Fisher’s Exact test to compute the (two-tailed) prob-
ability of obtaining a distribution of values in a 2(young
vs older)x3(Integrative vs Noisy Target vs Noisy Prototype)
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contingency table, given the number of observations in each
cell. The results revealed that the observed proportion of
best fitting models was dependent on age (p=.031). In other
words, there was a significant difference in the distribution
of best fitting models between the age groups. Young chil-
dren were evenly split in the number fit by the Integrative
(n=6) and Noisy Target (n=6) models, followed closely by the
Noisy Prototype model (n=4). Interestingly, however, older
children had a different composition. An much larger propor-
tion of older children were better fit by the Noisy Prototype
model (n=11), followed by the Integrative model (n=5), and
almost not at all described by the Noisy Target model (n=1)
(see Table 2).

Age and Best Fitting Noise Parameter Macias et al., (in
revision), demonstrated that for aggregated child data, the
best fitting model was the Integrative model. To evaluate
the fit of the Integrative model to young learners’ data, they
searched for the best fitting noise parameter value. Compar-
ing this parameter to the best fit for adults revealed a signifi-
cantly larger noise parameter for the children, suggesting that
as children develop the fidelity of their memory gets sharper.
Here we searched for the best fitting noise value at the indi-
vidual subject level to test for age related differences within
the preschool population. The goal was to assess whether a
difference in the amount of noise between age groups could
explain why young and older children were better fit by differ-
ent models. In conflict with our prediction, there was a weak
non-significant negative correlation between age and best fit-
ting noise value (r-= -0.17, p=.35). This suggests that a dif-
ference in the best fitting model between age group was not a
result of a difference in the amount of noise in the data3. We
return to this point later.

Additional Group Differences and Best Fitting Model
Similar to the evaluation of age, we then employed a Fisher’s
Exact test to evaluate whether the proportion of children best
fit by the three models differed between labelers and non-
labelers. To reiterate, we classified labelers as children who
spontaneously provided a color label on more than 50% of
trials. Figure 2 shows the composition of labelers and non-
labelers fit by each model. A Fisher’s Exact test yielded,
p=.50 , suggesting no difference in the proportion of label-
ers and non-labelers best fit by the three models.

Although the difference between the proportion fits was not
significant, there appeared to be a trend in which most la-
belers were described by the Noisy Prototype model (60%),
while non-labelers were more diffused across the three mod-
els. Thus, to further evaluate the role of labeling, we sep-
arated participants’ label trials from the non-labeled trials,
creating two new datasets. We fit the three models to the

3An alternative explanation is that the sample sizes for young and
older children split between each model was insufficient to detect a
significant difference. However, the trending direction of the data
ran counter to our developmental prediction, suggesting that even if
greater power revealed differences, they would be in the unpredicted
direction

Figure 2: Proportion of Labelers and Non-labelers best fit by
each model. Labelers were more likely to be best fit by the
Noisy Prototype.

Table 3: Frequency of Model Fits based on Labeled and Non-
Labeled Trials

Model Count(%)
Label Non-label

Integrative 3 (0.10% ) 9 (27.27%)
Noisy Target 4 (0.12% ) 7 (21.21%)

Noisy Prototype 26 ( 78.78%) 17 (51.51%)

aggregated label data and the aggregated non-label data. Un-
surprisingly, the Integrative model provided the superior fit
to both datasets, presumably because the model pays a lower
cost for responses that, over the aggregate span between the
observed target and category mean. Thus, to better under-
stand the effects of labeling at the trial level, we then fit the
three models at the individual subject level, again separating
labelled trials from non-labelled trials. For the labelled trials,
we found that 3 participants were best fit by the Integrative
model, 4 by the Noisy Target model, but the majority of tri-
als (26) were best fit by the Noisy Prototype model. In con-
trast, for the non-label trials, the distribution was less skewed,
with 9 participants were best fit by the Integrative model, 7
by the Noisy Target model, and 17 by the Noisy Prototype
model. A Fisher’s Exact test revealed a marginally significant
difference (p=.054) in the distribution of best fitting models
between the labelled trials and non-labelled trials, such that
most participants’ label trials were best described by the Pro-
totype model, while the non-label trials were slightly more
dispersed.

Based on the finding of a difference in model fits between
labeled and non-labeled trials, we re-examined the role of la-
beling on age. We had originally classified whole individ-
uals as either labelers or non-labelers, and found no signifi-
cant difference by age. Instead, we calculated the proportion
of labeled trials provided by younger and older children, to
test whether as a group, older children were more likely to
provide labels during testing. A Fisher’s Exact Probability
Test revealed a significant difference in the proportions of la-
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beled and non-labeled trials contributed by each age group
(p=.002). A larger proportion of labeled trials were generated
by older (66%) compared to younger children (34%).

Discussion
Our goal was to evaluate whether age-related differences per-
sist in the strategies young learners use to reconstruct events
from memory. Recent work has found that young learners,
like adults, adopt the strategy of integrating prior category
expectations with noisy episodic traces to reconstruct events
from memory (Macias, et al., in revision). This was evi-
denced by a model that assumes an integration of target and
category information (i.e., Integrative model) providing a su-
perior fit to the preschool data. Here we evaluate individual
differences in the best fitting strategies. We first fit three mod-
els at the individual subject level and found that the larger
proportion of children were better fit by the Noisy Prototype
model compared to the other models.

In addition, there were marked differences in the propor-
tion of young and older children best fit by each model. While
young children were almost evenly split in fit across the three
models, surprisingly, older children were most frequently fit
by the Prototype model. This result might have been bol-
stered by the number of trials where older children sponta-
neously labeled. Recall that a significantly large proportion
of labeled trials belonged to older children. In this way, spon-
taneously labeling during study and test might have induced
older children to encode and/or retrieve the prototype of the
category they verbally labeled. Thus, older children may have
been more likely to adopt a general strategy (labeling) that
instead led to less accurate recall of the specific observation.
Future work might further explore the role of spontaneous la-
beling on children’s recall performance. For example, it is
unclear whether children were still using a labeling strategy
on trials where they did not spontaneously label aloud. It is
possible that they were silently labeling during the task. It is
unlikely that this is the case, given that we found a significant
difference in performance between labeled and non-labelled
trials in terms of the model fitting. However, this is an empir-
ical for future investigation. For instance, follow up studies
could use verbal interference tasks to manipulate children’s
ability to provide verbal labels during encoding and retrieval
to evaluate whether labeling alone encourages the use of the
category prototype.

What might explain the finding that the Noisy Prototype
model slightly outperformed the Integrative model in terms
of best fit at the individual level? First, early memory devel-
opment is marked by an up-prioritization of category infor-
mation over nuanced episodic information (Keresztes et al.,
2018). Such behavior would equate to encoding a red color
value as a prototypical shade of red (e.g., the color of a red ap-
ple) as opposed to encoding the specific shade of red studied.
Thus, during study, a majority of children may have encoded
target information as a pointer to the category from which
the target belongs, such as a category representative (i.e., the

category mean) as opposed to encoding the exact color value
studied.

Alternatively, it could be the case that the use of category
knowledge happens at retrieval. After the initial testing phase,
the original studied information could have degraded over
time and instead of reproducing the degraded information,
children reproduced a value closer to the category represen-
tative to reduce error or uncertainty. Whether the influence of
category knowledge occurs at encoding, retrieval, or both is a
question for future research.

A third potential explanation for why a slightly great por-
tion of children were best fit by the Noisy Prototype model
might be due to the particular information studied. It should
be noted that the study values for each category were selected
such that they fell one standard deviation above and below the
mean of the category (mean and standard deviations learned
from the prior knowledge task). Given that children only
studied colors that fell in close proximity of the prototypes,
this might have propelled learners to rely on their category
expectations, that is, adopting the Prototype strategy. Thus,
the finding of a large portion of older children who are better
fit by the Noisy Prototype model might be a consequence of
the study values falling relatively close to the prototype. Fu-
ture work might explore whether the model fitting results vary
when children are presented with colors that substantially de-
viate from the prototype (i.e., more than 1 sd).

There were a number of limitations in this study that war-
rant caution in the interpretation of the results. First, the ini-
tial goal of Macias et al., (in revision), was to compare chil-
dren’s episodic memory performance to adults. For this pur-
pose, a sample of 33 child participants was sufficient. How-
ever, to evaluate individual and age-related differences, a sig-
nificantly larger sample of participants is needed to achieve
strong statistical power for analysis. Second, the goal of
this paper was to assess age related differences. Although
a median split of children revealed some clear trends in a dif-
ference in model fitting by age, a more diverse age sample
of children could provide further insight into differences in
memory strategy by age. For instance, we anticipated that
older children might rely less on the prototype to facilitate re-
call (although this might interact with the contrary strategy to
label as children get older), but it is possible that the sample
of children used here did not contain a wide enough age-range
to observe this pattern. To this end, a natural future direction
would be to collect more data for the purposes of evaluating
age differences.

Despite these limitations, this paper demonstrates clear
trends in age related differences in model fitting. Further-
more, we hope to have demonstrated that an approach that
applies model fits at the individual level can provide insight
into how different cognitive strategies (such as labeling) may
color recall.
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Abstract 

When reasoning about evidence, we must carefully consider 
the impact of different structures. For instance, if in the 
process of evaluating multiple reports, we find they rely on 
the same, shared evidence, then the support proffered by 
those reports is dependent on that evidence. Critically, 
normative accounts suggest that such a dependency results in 
redundant information across reports (reducing evidential 
support), relative to reports based on distinct items of 
evidence. In the present work we disentangle the structural 
and observation-based indicators of this form of dependency. 
In so doing, we present novel findings that lay reasoners are 
not only insensitive to shared evidence structures when 
updating their beliefs, but also that reasoners do not 
necessarily prefer more diverse sources of evidence. Finally, 
we replicate prior effects in reasoning under uncertainty, 
including conservative sequential updating, and difficulty in 
integrating contradictory reports. 

Keywords: evidential reasoning; probabilistic reasoning; 
dependence; Bayesian Networks; belief updating 

Introduction 

Over the course of an investigation, you are faced with the 

weighing up of contradicting reports. Two of your 

investigators confirm the hypothesis, whilst two disconfirm 

it. How do you discern which pair may carry more 

(evidential) weight? One important aspect is what evidence 

those investigators are relying upon. For instance, if your 

two confirming investigators are relying on the same piece 

of evidence to inform their reports, whilst the two 

disconfirming investigators are relying on separate, 

independent pieces of evidence, then, ceterus paribus, the 

standard intuition is to side with the disconfimers. 

This example highlights the traditional understanding of 

one form of dependency in evidential reasoning. 

Specifically, the notion of “shared” evidence (Schum & 

Martin, 1982; Schum, 1994), which is considered to be 

inferior to reports based on distinct (separate) evidence, i.e. 

dependence as a form of redundancy (Hogarth, 1989; 

Schum & Martin, 1982; Soll, 1999). 

How such information should be integrated is important 

to a number of areas, from everyday reasoning to 

investigative domains such as medicine (Eddy, 1982), law 

(Faigman & Baglioni Jr, 1988; Fenton & Neil, 2012, 

Fenton, Neil & Lagnado, 2013, Harris & Hahn, 2009; 

Lagnado, 2011; Pennington & Hastie, 1986; Schum, 1994), 

risk analysis (Fenton & Neil, 2012), and to the intelligence 

community (Heuer, 1999). Consequently, failures to account 

for such dependencies between evidence items – although 

easing computation (Pearl, 1988; Schum, 1994) – can lead 

to deleterious overweighting of the support provided by 

such evidence (e.g., naïve Bayes in medicine – where 

evidence is assumed to always be independent; Koller & 

Friedman, 2009; Kononenko, 1993). 

The notion of shared-evidence as a form of dependence 

fits with the correlation-based conceptualisation of 

dependencies as a form of redundancy in prediction errors 

(e.g. Soll, 1999). More precisely, when two sources are 

using the same evidence to inform their reports, vs the same 

two sources using two different items of evidence, the 

former case results in an “overlap” of information provided 

(Schum, 1994). It thus becomes more likely that reports in 

the former case rely on the same information, and the pair of 

reports therefore carry some redundant information. As a 

consequence, such correlated reports provide a lesser degree 

of support for the hypothesis being informed upon.  

In the present work, we seek to provide an empirical 

baseline for lay reasoners judgments regarding this form of 

dependence. We not only investigate whether belief-

updating is in line with the shared-evidence-as-inferior 

hypothesis proposed in formal work, but whether lay 

reasoners seek more diverse evidence in their search 

preferences. 

Formalising reasoning about shared evidence 

To illustrate what is meant by shared evidence, Fig. 1 below 

presents a directed acyclic graph (DAG) of an example case. 

Here there is a hypothesis under investigation (H), three 

pieces of evidence that inform that hypothesis (E1-3), and 

four sources (or witnesses) who in turn report on said 

evidence (R1-4). Crucially, the evidence itself remains 

unobserved, so we are instead trying to infer diagnostically 

about H (via E1-3) from the reports provided by R1-4, and 

notably how to judge R1 and R2 (who rely on the same 

evidence, E1), versus R3 and R4 (who rely on separate 

evidence, E2 and E3 respectively). 

 

 
Figure 1. Graphical representation of a hypothesis (H), 

evidence items that inform upon it (E1-E3), and sources 

informing their reports upon said evidence (R1-R4).  
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To understand how reasoners should update their beliefs 

given these observed reports, we use a Bayesian Network 

(BN) formalism, wherein a DAG is supplemented by 

conditional probabilities and the use of Bayes theorem, so as 

to make optimal (i.e. inaccuracy minimization) inferences 

(Pearl, 1988; 2009). This computational framework for 

reasoning under uncertainty has been used effectively to 

model (and shed light on human inferences by comparison) 

direct dependencies between sources (Pilditch, Hahn & 

Lagnado, 2018), and dependencies as shared-backgrounds 

among sources (Madsen, Hahn & Pilditch, 2018), and 

integration across sources of differing reliabilities (Phillips, 

Hahn, & Pilditch, 2018). 

If we assume, in the above example, that all evidence 

items are equally diagnostic1, and all sources are equally 

reliable2, then the sole difference-maker between sources is 

the structural difference entailed by the shared evidence 

(E1). To best illustrate the impact of shared evidence, we 

first consider the point at which we have only observed a 

confirmatory report from R1. Via conditionalization, E1 is 

now already more likely to be confirmatory than E2 and E3. 

Given this, if we are to decide whether we want to see a 

report from R2 (who also relies on E1), or a report from R3, 

a confirming report from the latter provides more potential 

information regarding H, given that P(E1) – which is 

already more probable, given the report from R1 – increases 

less given R2 than P(E2) does, given R3. 

 

Present research We seek to empirically test the degree to 

which lay reasoners are sensitive to the impact of shared 

evidence structures on belief updating. More precisely, we 

use the above formalism to provide an empirical baseline for 

lay reasoning regarding such dependencies, and notably 

whether participant probability estimates fit with normative 

predictions of dependence inferiority. Additionally, we 

explore two research questions that the formalism allows us 

to investigate, via the separation of structural dependencies 

from dependencies inferred from (correlated) observations: 

First, how do reasoners deal with contradiction across a 

shared evidence item (as opposed to contradiction across 

different evidence items)? Recent research that exploits the 

capacity to tease apart the structural form of a dependency 

from the dependency inferred from (correlated) observation 

– as possible in the present work – exposes lay reasoner 

difficulties in accurately updating (both qualitatively and 

quantitatively) when an observed contradiction occurs 

across a structural dependency (i.e. information is directly 

shared from one source to another equally reliable source, 

yet those sources then disagree; Pilditch, Hahn, & Lagnado, 

2018). We predict the same difficulty here. 

Second, the present work allows for the investigation into 

evidence diversity preferences. The computational 

framework underpinning this work allows for the 

                                                         
1 I.e. P(E1|H) = P(E2|H) = P(E3|H), and P(E1|¬H) = P(E2|¬H) = 

P(E3|¬H).  
2 I.e. P(R1|E1) = P(R2|E1) = P(R3|E2) = P(R4|E3), and 

P(R1|¬E1) = P(R2|¬E1) = P(R3|¬E2) = P(R4|¬E3). 

calculation of the predicted informative value of evidence 

items, for which we calculate the Kullback-Liebler 

Divergence (KL-D; a measure of entropy reduction; 

Kullback & Liebler, 1951)3.  

  

𝐾𝐿(𝐸𝑗) =  ∑ 𝑃(ℎ𝑖|𝑒𝑗) ∗ log (
𝑃(ℎ𝑖|𝑒𝑗)

𝑃(ℎ𝑖)
) 

 

where Ej is a set of items of evidence {E1, E2…Ej}, ei the set 

of possible states of the evidence, {e1, e2, ei}, and hi is a set 

of hypotheses, {h1, h2…hi}. In the present case, we compute 

the information provided by R2 in reference to the 

hypothesis (H; given we have already observed R1) when a) 

R2 also relies on E1, vs b) R2 relies on E2, taking a 

difference measure between these two values. 

As such, in asking lay reasoners for their preference for a 

forthcoming report to be based on shared evidence (i.e. 

based on an item of evidence already informed by one 

report) or new evidence, we may observe whether lay 

reasoning (if in line with normative expectations) predicates 

an evidence selection preference for more diverse items. 

 

In sum, the present work uses a BN formalism to 

disentangle the structural vs observation-based forms of 

shared evidence dependencies. In so doing we are able to 

not only establish an empirical baseline of when the two 

forms agree (and thus whether reasoners fit with standard 

normative expectations), but also examine how reasoners 

deal with cases of disagreement (where observations appear 

uncorrelated, but a structural dependence remains), and use 

structural relations to determine (diversity-based) evidence 

preferences. 

Method 

Participants 200 US participants were recruited and 

participated online through Amazon Mechanical Turk. 

Three participants were removed for incomplete data, and 1 

for not being a native English speaker. Of the 196 remaining 

participants, 84 identified as female, and the median age 

was 34 (SD = 9.8). All participants gave informed consent, 

and were paid for their time (Mdn = 8.74 minutes, SD = 

6.63). 

Procedure & Design Participants were presented with a 

scenario in which a patient, “RN”, may have a disease 

“MTL” (“H” in Fig. 1). The participant is placed in the role 

of a diagnostician, attempting to confirm the above 

diagnosis. They are informed that the patient has had a 

number of cell samples taken (these can be considered E1-3 

in Fig. 1), both independently, and of equal diagnosticity. 

More precisely, that each cell sample may contain a 

biomarker, which has a 90% chance of being due to MTL 

                                                         
3 Other information measures exist, such as impact (see Nelson, 

2005), information gain (Lindley, 1956), and Bayesian 

diagnosticity (Good, 1950), though empirical work suggests such 
measures are highly correlated (Nelson, 2005), and are thus 

considered interchangeable for the present work.  
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(hit rate), but also a 10% probability of being a false 

positive. 

Participants are then informed that they are unable to 

examine the cell samples themselves, but must rely on lab 

technicians (R1-4 in Fig. 1), who will independently 

examine the cell samples and provide a report of whether 

biomarkers are present or absent. Crucially, all the lab 

technicians are indicated as equally reliable, in that they 

have an 80% chance of detecting and reporting a biomarker 

(irrespective of whether it is due to MTL), when a 

biomarker is present (hit rate), and a 20% chance of a false 

positive. 

Lastly, participants were informed that prior to receiving 

any reports from their lab technicians, given the facts of the 

case so far, they should assume a prior probability of patient 

RN having MTL of 50% (“Finally, prior to getting the 

reports, you can assume an initial probability of 50% that 

patient RN has MTL, based on the facts of the diagnostic 

process so far… Before you start finding out reports, please 

answer the following question … What is the probability 

that patient RN has MTL?”). This prior probability was 

then immediately elicited from participants, for use in 

individual model fitting (see results section below). 

Elicitation Stages Participants then received reports from 

each of 4 lab technicians in turn (resulting in a total of 4 

elicitation stages). Following each new report, participants 

were asked to provide a new probability estimate of patient 

RN having MTL – given everything they now know (i.e. 

background + gradually accumulating reports). These 

probability estimates were the main dependent variable. 

Each report statement took the form “Based on their 

assessment of cell sample [1/2/3], lab tech [1/2/3/4] reports 

that the biomarker is [present/absent].” 

Crucially, there were two independent, between-subject 

variables employed, making a 2x2 design. The first of these 

was the evidence used by the second lab technician 

(“R2Evidence”). Whilst the first lab technician always used 

cell sample 1, the third cell sample 2, and the fourth cell 

sample 3, the second lab technician used cell sample 1 in 

one condition (R2E1), and cell sample 2 in the other 

(R2E2). This allowed for a) the between-subject comparison 

of 2 reporters using independent (R2E2) vs shared evidence 

(R2E1), and b) allowed for the disentanglement of structure 

(i.e. dependency relations) from order of observations (i.e. 

is over/under updating due to the second report relying on 

shared evidence, or simply because it is the second report). 

The second between subject factor was the order of 

positive (biomarker present) and negative (biomarker 

absent) reports (“RepOrder”). More precisely, either the first 

lab technicians 1 and 2 gave positive reports (and 3 & 4 

gave negative reports; “PosFirst”), or the reverse 

(“NegFirst”). This general structuring, when taken in 

conjunction with the R2Evidence factor, allowed for the 

assessment of the influence of shared evidence when 

reporters agree about the same evidence (R2E1) or disagree 

(R2E2 – as lab technicians 2 & 3 will always disagree, yet 

will share cell sample 2). Additionally, this allows for the 

further disentanglement of observation type from shared 

evidence (structural) influences. For instance, in R2E1 

conditions, the reports from shared evidence (lab 

technicians 1 & 2) will half the time be positive, and the 

reports from independent evidence (lab technicians 3 & 4) 

will half the time be negative, and vice versa. Thus, one 

may discern the influence of (dis)confirming observations 

vs structural differences. 

Dependent variables Along with the probability estimates 

elicited at each elicitation stage (0-100% slider, no default)4, 

one further qualitative question was asked after the first lab 

technician provided a report (i.e. elicitation stage 1): 

“Given the choice, would you rather Lab Tech 2 also 

independently investigated cell sample 1 for a 

biomarker, or investigated a different cell sample (cell 

sample 2)?” [“Same cell sample (cell sample 1)” / 

“Different cell sample (cell sample 2)” / “There is no 

difference.”] Forced choice, randomized order of 

presentation. 

The purpose of this question was to assess participant 

preferences for diversity (independence in this case) in their 

observations. 

Taken together, the probability estimates and evidence 

preference judgment allow for the assessment of the impact 

of shared evidence, both in terms of predicted support, and 

consequent reasoning (and belief-updating), whilst taking 

into account the influence of observation types and orders. 

To concretize the research questions into hypotheses, we 

predict: 

H1. Shared Evidence Structure - Shared evidence will 

result in estimates of reduced impact of affected reports, in 

comparison to reports from distinct items of evidence, 

ceterus paribus. Tested via the between subject comparison 

of the impact of lab technician 2 at the second elicitation 

stage when lab technician 2 does/does not share cell sample 

1 with lab technician 1 (i.e. R2E1 vs R2E2 conditions). 

H2. Contradictions and Dependence – Reasoners will 

find the integration of two contradicting reporters using the 

same evidence (i.e. within a shared evidence item) more 

difficult than when contradictions are based on separate 

evidence items. Tested via the comparison to normative 

expectation at third elicitation stage (when lab technician 1, 

lab technician 2, and lab technician 3 have reported) in 

R2E2 condition in comparison to R2E1 condition, where 

contradiction cuts across (rather than within) evidence 

items. Such a prediction is informed by previous work that 

has found lay reasoners struggle with inferences from 

contradicting reports across a dependency (Pilditch, Hahn, 

& Lagnado, 2018). 

H3. Diversity Preference - Participants (correctly) prefer 

more diverse evidence (prefer lab technician 2 to use 

evidence cell sample 2. 

i. An additional question of interest is whether 

diversity preferences will be lower when lab 

                                                         
4 Open text reasoning responses were also collected at the end of 

each elicitation stage, but for the sake of brevity are not reported 

here. 
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technician 1 provides negative evidence (NegFirst 

condition), than when lab technician 1 provides 

positive evidence (PosFirst)? 

Fig. 2 below shows the different structural and report order 

comparisons for the 2x2 design (each cell is a between 

subject condition), with T1 to T4 within each cell as the 

within-subject order of evidence. Thus, H1 is investigated 

by comparing T2 in the top row (when R2 is reliant on the 

same evidence as R1) with T2 on the bottom row (when R2 

is using different evidence). We can then assess H2 by 

comparing T2 to T3 in the top row (contradiction based on 

separate items) to the bottom row (contradiction based on 

shared evidence. H3 is assessed having seen the report at T1 

(and is asked prospectively about T2), and H3i. is based on 

the comparison of responses to the H3 question in left 

versus right columns of Fig. 2. 

 

 
Figure 2. Underlying networks, split by R2Evidence 

(rows) and RepOrder (columns) conditions. T1 to T4 reflect 

sequence of reports (within-subjects). 

Results 

Bayesian statistics were employed throughout5 using the 

JASP statistical software (JASP Team, 2018). Using the 

gRain package in R (Højsgaard, 2012), the elicited priors 

from each participant were used to individually fit BNs for 

each participant. Remaining parameters were as specified in 

the background information presented to participants. The 

posterior probabilities at each elicitation stage generated 

from each BIBN model (representing each participant) were 

used in subsequent comparison analyses. 

Probability Estimates 

The hypothesis-directed analyses used to unpack a) the 

influence of when shared evidence is introduced (H1), and 

b) the influence of contradiction within/outside a 

                                                         
5 For all analyses, an uninformed prior was used. Wherever 

possible, sample sizes for a given analysis (N), and Bayesian 

Credibility Intervals (95% CI) are indicated. 

dependency (H2), first employed an RM-ANOVA on 

participant estimates alone (including between subject 

factors), so as to determine participant behavior, followed 

by a further analysis that compared these estimates to BIBN 

predictions, to determine the “correctness” of this 

behaviour.   

H1. Firstly, to assess H1, an RM-ANOVA on participant 

estimates from T1 to T2, found participants were insensitive 

to R2Evidence condition overall, BFInclusion = 0.102, or in 

interaction with elicitation stage, BFInclusion = 0.105. This 

was despite participants updating in light of new evidence in 

general, BFInclusion > 10000, and whether that evidence was 

positive or negative, BFInclusion > 10000. This was further 

evidenced by the interaction of elicitation stage and 

RepOrder (participants decreased estimates as negative 

reports came in, and increased as positive reports came in), 

BFInclusion > 10000. Consequently, the model of participant 

estimates without R2Evidence yielded the strongest fit, BFM 

= 63.2, and was decisive overall, BF10 > 10000. 

Consequently, by subsequent inclusion of the BIBN 

predictions for each participant (the Observed vs Predicted 

factor), this insensitivity to shared evidence (i.e. the 

influence of R2Evidence, was shown to be insufficient 

relative to (fitted) normative expectation. This was 

evidenced by a main effect of Observed vs Predicted, 

BFInclusion = 5479.38, and critically, strong evidence for the 

interaction of R2Evidience and Observed vs Predicted 

(BIBN predictions changed with R2Evidence, whilst 

participant estimates do not), BFInclusion = 11.72. 

 In sum, these analyses revealed participants were 

insensitive to impact of shared evidence structures, as 

compared to their fitted Bayesian predictions (H1). 

 
Figure 3. Probability estimates across elicitation stages, 

split by condition. Error bars reflect standard error. 

 

H2. Secondly, to assess H2, the same analytical protocol 

was used on elicitation stages T2 to T3. This corroborated 

H1 findings, in that the insensitivity to the influence of 
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R2Evidence (this time via the presence of shared evidence 

in concert with contradicting reports either outside, R2E1, 

or within, R2E2, the same shared evidence) persisted both 

overall, BFInclusion = 0.315, and in interaction with elicitation 

stage, BFInclusion = 0.321. However, once again participants 

were sensitive to the introduction of new evidence in 

general, BFInclusion > 10000, its valence, BFInclusion > 10000, 

and the interaction of these factors (newly introduced 

positive reports lead to increased estimates, whilst newly 

introduced negative reports lead to decreased estimates), 

BFInclusion > 10000. As with the H1 analysis, the model of 

participant estimates without R2Evidence yielded the 

strongest fit, BFM = 20.425, and was decisive overall, BF10 

> 10000. 

To again determine whether this insensitivity was 

erroneous, BIBN predictions for each participant were 

included as another within subject factor (Observed vs 

Predicted). Again, participant estimates were shown to not 

only be generally insufficient in comparison to BIBN 

predictions, BFInclusion > 10000, but that this insensitivity 

extended to shared evidence (R2Evidence x Observed vs 

Predicted; BIBN estimates change with condition, 

participant estimates do not), BFInclusion > 10000. 

In conclusion, the above analyses corroborate the 

insensitivity findings of H1, extending them to the issue of  

contradiction (of reports) being based on the same or 

different evidence items (H2). 

 

Taken together, H1 and H2 findings suggest participants 

were insensitive to the impact of shared evidence, both 

when reporters are corroborating with, and contradicting 

each other. 

Evidence Preference 

The BIBN models for each participant, having taken into 

account the elicited prior for the hypothesis, generated the 

expected information gained in KL-D, having observed the 

positive/negative report from the first lab technician, for two 

models; one in which the second lab technician used the 

same evidence as the first (E1), and one where the second 

lab technician used different evidence (E2). The difference 

in expected information gain between these two models was 

used to generate a normative preference (based on 

maximum expected information) for the second lab 

technician using E1, E2, or them being equivalent 

(“NoPref”). 

To assess the observed evidence preferences, a Bayesian 

binomial test was conducted on observed preferences (dark 

grey bars of Fig. 4), comparing them to chance responding 

(0.33). Preferences for the second lab technician to use the 

same evidence as the first lab technician (E1) were found to 

be at chance level (0.36, 95% CI: [0.293, 0.426]; N = 196), 

BF10 = 0.118, whilst diversity preferences (second lab 

technician to use E2) were found to occur decisively above 

chance (0.51, 95% CI: [0.441, 0.579]; N = 196), BF10 > 

10000, lending some support to the diversity preference 

predicted (H3). The frequency of participants opting for “no 

preference” was decisively below that expected by chance, 

(0.13, 95% CI: [0.092, 0.187]; N = 196), BF10 > 10000. A 

Bayesian contingency table revealed these frequencies to 

not be influenced by whether the first lab technician had 

made a positive (right-hand facet of Fig. 4) or negative (left-

hand facet of Fig. 4) report (N = 196), BF10 = 0.045, 

speaking against hypothesis H3i.  

Crucially, participant preferences for the second lab 

technician to use the same evidence as the first lab 

technician are substantially higher than that predicted by 

BIBN models (i.e. 0; see light grey bars of Fig. 4). This is 

corroborated by the decisive deviation in frequencies 

between observed and predicted preferences (N = 392), BF10 

> 10000. Put another way, and contrary to predictions of 

H3, approximately 1/3rd of participants retain an explicit 

preference for the information-poorer reports that “confirm” 

(i.e. are based on evidence that has already formed the basis 

of an observed report), rather than a diversity preference or 

lack of preference.  

 

 
Figure 4. Evidence Preferences, split by condition. 

Dashed line represents chance level (33%). 

 

Conclusions 

When reasoning under uncertainty, an important 

consideration is the impact of dependencies among evidence 

items. More precisely, seemingly separate reports, which in 

fact stem from the same source (or evidence basis), carry 

redundant information, relative to truly separate reports 

(based on distinct information). To mistake the former for 

the latter can lead to overweighting support for a given 

hypothesis, to deleterious consequences (Dror et al., 2006; 

Koller & Friedman, 2009). 

Here, we show that lay reasoners seem rather insensitive 

to the impact of this form of dependency and consider the 

two cases equivalent when estimating degrees of support for 

a hypothesis. At the same time, our findings corroborate 

prior research in terms of both a) the consistent under-

weighting of introduced evidence (see e.g. Faigman & 
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Baglioni, 1988; Nance & Morris, 2005), and b) more 

substantial deviations when having to deal with 

contradictory reports (Pilditch et al., 2018). 

Finally, we present a second novel finding in lay 

reasoners preferences for further reports based on shared 

(i.e. previously informed upon) evidence (a “confirmatory” 

preference) or separate (unseen) evidence (a “diversity” 

preference). Though the majority of participants conform to 

a diversity preference in line with maximising expected 

information, approximately 1/3rd of lay reasoners have a 

confirmatory preference. While failures to appreciate 

diversity have been reported before (e.g., Soll, 1999), there 

are clear preferences for diversity in other inferential 

contexts (e.g., Rips, 1979; Osherson et al., 1990), even in 

children (Heit & Hahn, 2001). Hence further work will be 

required to pinpoint exactly for when, where and why 

diversity is appreciated and when it is not. It is worth note in 

this context that where the reliability of the reporting 

sources is not exactly known (unlike the lab technicians in 

the present study), diverse evidence is arguably not always 

normatively superior (see Bovens & Hartmann, 2003). 

Whether lay reasoners have any understanding of the 

different circumstances where a diversity advantage does 

and does not obtain remains to be seen.  
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Abstract

Wells (1992) found that jurors are more likely to find a
defendant guilty when the evidence against them is 'specific'
(that is, when the evidence provides a causal mechanism for
how an event occurred) as opposed to being based on
base-rate information, or what Wells calls 'general' evidence.
Enoch, Spectre, and Fisher (2012) propose that this epistemic
difference can be explained by the “sensitivity” of beliefs
formed on the basis of these two types of evidence where
sensitivity is understood as a counterfactual condition on
knowledge judgments. They argue that beliefs are sensitive
when formed on the basis of specific evidence, but not when
they are formed on the basis of general evidence. In two
preregistered experiments, we tested this hypothesis. We
replicated an earlier finding that specific, as opposed to
general evidence, is more likely to lead to knowledge
judgments. Consistent with the hypothesis of Enoch and
colleagues, we also found that sensitivity partially mediates
the relationship between evidence type and knowledge
attributions.
Keywords: Wells effect; counterfactual reasoning; knowledge
sensitivity; open science

Introduction
Imagine that you are a juror deliberating on a civil suit
against the Blue bus company which is being accused of
running over a dog during one of its routes. The only
evidence that is presented to you is that a commercial bus
killed a dog and that 80% of the commercial buses in the
area are run by the Blue bus company. Is the Blue bus
company guilty of killing the dog? According to Wells
(1992), most people do not think you should convict on this
evidence. Now suppose instead that the only evidence
presented to you is that a witness reports seeing a Blue bus
run over the dog and that this witness is 80% reliable. In this
case, is the evidence sufficient for finding the Blue bus
company guilty of killing the dog? According to Wells
(1992), people are more likely to find a defendant guilty
when the second kind of evidence, termed specific evidence,
is given than when the first kind of evidence is given (termed
“general” evidence). Strikingly, people exhibit this pattern of
judgments even though they also perceive the probability of
guilt as being the same in both cases. The tendency to trust
specific more than general evidence is also reflected in the
law. As Enoch and Fisher (2015) report, “Courts and legal

scholars often view [general evidence] with suspicion,
treating it as inadmissible even when it is probabilistically
equivalent to individualized [specific] evidence.” The
explanation of the Wells effect is therefore not only
important to understanding how people reason about
evidence but is also pertinent to the law.

What explains the Wells effect? One possibility is that in
the first case, the evidence is purely general in the sense that
it is not causally connected to the actual killing of the dog:
the fact that 80% of the buses are operated by the Blue bus
company is, in a sense, independent of the actual killing of
the dog. In contrast, the evidence in the second case is
specific to the case; there is a causal connection between a
witness reporting the Blue Bus company killed the dog and
the dog being killed. Consistent with this possible
explanation, empirical accounts on the Wells Effect often
focus on counterfactual thinking—the ability to consider
what could have happened but did not happen. For example,
Niedermeier, Horowitz, & Kerr (1999) and Sykes and
Johnson (1999) account for the reluctance to find the
defendant guilty in general cases by appealing to the ease in
which the possibility that the defendant is innocent comes to
mind. Along these lines, Enoch et al. (2012) proposed that
general evidence is considered weaker than specific evidence
because beliefs formed on the basis of the former, but not the
latter, are sensitive (a term which we explain below). The
main goal of this paper is to test this hypothesis.

Many philosophers think that the notion of sensitive belief
can explain a wide range of judgments similar to the Wells
Effect (Black & Murphy, 2007; DeRose, 1999; Dretske,
1981; Ichikawa, 2011; Nozick, 1981; Roush, 2005).
Philosophers typically define a 'sensitive belief' as follows:

An agent’s belief that P is 'sensitive' just in case If P
were false, then the agent would no longer believe P.

For example, your belief that you are reading a paper right
now is sensitive. This is because if you weren’t reading a
paper, you would be making coffee, let us suppose, and so
would no longer believe you were reading a paper. Sensitive
beliefs are counterfactually robust in the sense that they
“track” the facts in possible circumstances. This is why
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some philosophers have held that if an agent knows P, then
her belief that P has to be sensitive. Let’s call this thesis
itself 'sensitivity'. Sensitivity is a type of counterfactual
condition on knowledge.

Take another example: Consider a person who believes that
his beloved pet is healthy, not through good evidence, but
because of wishful thinking. We can suppose further that his
pet is in fact healthy. Our intuitive reaction is that this agent
does not really know his pet is healthy. But why doesn’t the
agent know this? According to the sensitivity account, the
reason is that this agent’s belief is not sensitive. For example,
although his pet is actually healthy, if the pet were sick, the
wishful-thinking agent would continue to think that the pet
was healthy. Because his belief is not properly tracking the
facts in the world, he doesn’t really know his pet is healthy.
In contrast, suppose the agent believes his pet is healthy, not
through wishful thinking, but because he got a good report
from a reliable vet. In this case, his belief is more likely to
be sensitive (and hence truth tracking) because if his pet were
sick, he would believe that his pet was sick. This is because
if his pet were sick, the reliable vet would have told him so.

These two examples demonstrate how the sensitivity
hypothesis is supposed to account for our epistemic
intuitions. For our purposes, what is important is that
sensitivity gives us a counterfactual condition on the
perceived strength of one’s evidence. We know that
counterfactual reasoning also plays a role in a number of
other cognitive phenomena. It has been implicated in
planning and prediction (Barbey & Sloman, 2007; Epstude
& Roese, 2008; Markman, McMullen, & Elizaga, 2008;
Roese, 1999; Smallman & Roese, 2009; Tobia, Guo,
Schwarze, Boehmer, Gläsher, Finckh, & Sommer, 2014),
generating emotions (Alicke, Buckingham, Zell, & Davis,
2008; Brassen, Gamer, Peters, Gluth, & Buchel, 2012;
Coricelli & Rustichini, 2010; Davis, Lehman, Wortman,
Silver, & Thompson, 1995; Miller, Markman, Wagner, &
Hunt, 2013; Pieters & Zeelenberg, 2005; Roese & Olson,
1997, 2007), learning (Byrne, 1997; Epstude & Roese, 2008;
Smallman & McCulloch, 2012), as well as in moral and
causal reasoning (Halpern & Hitchcock, 2015; Malle,
Guglielmo, & Monroe, 2014). Although counterfactual
reasoning has been found to play a large role in thinking
across many psychological domains, we are not aware of any
experimental work directly examining how counterfactual
judgments, such as those involved in the definition of
sensitivity, relate to attributions of knowledge. This is
notable because, as discussed, counterfactual reasoning is
prominently featured in theories of knowledge attributions in
the philosophical literature.

In the present studies, we investigated whether people’s
judgments about knowledge can be explained by the
sensitivity hypothesis. Specifically, we sought to test this
sensitivity account as an explanation for the Wells effect, and
related effects central to ongoing debates in epistemology
(Friedman & Turri, 2014). The original Wells effect

concerned judgments about whether a defendant should be
found guilty. Following Wells and our discussion so far, our
approach is to investigate not determinations of guilt, but
attributions of knowledge. We predicted that people
differentiate general and specific evidence because of their
differential sensitivity—beliefs formed on general evidence
are less sensitive than beliefs formed on specific evidence.

General Methods
Analytic Approach To test our hypotheses, we performed
Bayesian mixed-effects modeling using the R package brms
(Bürkner, 2018). We set regularizing priors for all
population-level effects in our models, which we detail
below. These priors are recommended because they provide
conservative effect size estimates and reduce the likelihood
of overfitting (Gelman, Lee, & Guo, 2015; McElreath,
2016). Following the recommendations of Liddell &
Kruschke (2018), Likert data were modeled with a
cumulative probability distribution. The cumulative
distribution is recommended for Likert scale data because it
assumes that ordered responses represent a continuous latent
construct (in this case, the tendency to attribute knowledge
to an agent).

Preregistration We preregistered the data collection plan,
analyses, and predictions for both experiments.
Experimental scripts, analyses, and supplementary online
materials are available on the Open Science Framework at
https://osf.io/pw7s8/.

Experiment 1
Participants We powered our study to detect a Cohen’s d
of .2 for a two-condition within-subjects design with 80%
power. To this end, 201 participants were recruited through
Amazon’s Mechanical Turk (43% women, Mage = 36 years
old). Participants were paid $0.50 for participating in the
study. Participants were excluded for missing questions
checking their attention (e.g., “Select perhaps knows from
the options below”). Our exclusion criteria were determined
a priori and were in accordance with our study
preregistration. After excluding participants who missed
questions checking their attention, 170 participants remained
in our sample.

Procedure In Experiment 1, we examined whether the
Wells effect can be explained by the sensitivity hypothesis.
To test this, we randomly presented participants with six
scenarios in a within-subjects design (three topics × two
conditions = six vignettes) adapted from Friedman and Turri
(2014). In these scenarios, a protagonist is described as
researching a question in which they rely on either general,
base-rate information or specific, mechanistic information to
draw their conclusion. For example, participants considered
the following scenarios:

General: Bob wonders if his spider plant contains the
chemical aracnium. He consults a very reliable book on
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spider plants. The book says that [98 or 99% randomly
presented] of spider plants contain aracnium. So Bob
concludes that his spider plant contains aracnium. And
he is right: it contains aracnium.

Specific: Joseph wonders if his stinkwood flower will
grow yellow stalks. He conducts a very reliable DNA
test on the flower. The test shows that it is [98 or 99%
randomly presented] likely that the stinkwood flower
will grow yellow stalks. So Joseph concludes that his
stinkwood flower will grow yellow stalks. And he is
right: the flower grows yellow stalks

After reading each scenario, participants were asked on a
four-point Likert scale whether, for example, “Bob knows
his spider plant contains aracnium” (1 = Definitely does not
[know], 4 = Definitely does [know]). After answering this
question, participants then answered a question aimed at
assessing the sensitivity of the protagonist’s belief:

“If Bob’s spider plant hadn’t contained the chemical
aracnium, what would Bob have thought after
checking with the book on spider plants?”

Participants then judged whether “Bob would [would not]
have thought that his plant contains the chemical aracnium.”
If participants agreed that Bob would have thought his plant
contains aranium regardless, this would mean participants
thought that Bob’s belief was not sensitive. If they thought
that Bob would not have thought that, then this would
indicate participants thought that Bob’s belief was sensitive.

Predictions We predicted that knowledge judgments
would vary based on the condition participants read.
Namely, we predicted that participants would be more likely
to attribute knowledge to protagonists that formed their
belief on the basis of specific rather than general
information. In addition, we predicted that participants
would think that a protagonist’s belief in the General
condition is not sensitive (relative to the Specific condition)
and this would in turn lead to reduced knowledge
attributions.

Results and Discussion
To test our first hypothesis, we performed ordinal
mixed-effects modeling. This model regressed knowledge
judgments on condition (Reference = General condition) and
included two group-level effects: (1) A group-level effect on
vignette that allowed for heterogeneity in vignette intercept,
(2) a group-level effect on Subject, which allowed for
heterogeneity in both the slope and intercept of the condition
effect on knowledge judgments. The model is specified
below in brms syntax:

Model 1 <- Knowledge Response ∼
Condition + (1|Item) + (1 +
Condition|Subject)

Bayesian analyses formulate model parameters as
probability distributions wherein the posterior distribution
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Figure 1: A histogram of the proportion of responses at a
given Likert scale point (e.g., 1 = Definitely does not know; 4
= Definitely knows) in the General and Specific conditions in
Experiment 1. The figure indicates that participants were less
likely to attribute knowledge in the General condition than
the Specific condition.

for a parameter θ is computed via the prior and the
likelihood of θ. To model the joint probability distribution of
participants’ knowledge responses, we specified the
following priors over the possible effects each parameter
could have on the response variable:

Experiment 1 - Model 1 Priors:

βIntercept[1] ∼ N (−1.73,1)
βIntercept[2] ∼ N (−.61,1)
βIntercept[3] ∼ N (.84,1)
βCondition ∼ N (0, .5)
Ωk ∼ LKJ(1) where Ωk is a correlation matrix of
group-level parameters
Group-level parameters were distributed as N (1,1)

We predicted that participants would be more likely to
attribute knowledge in the Specific condition than the
General condition. This is what we observed, b = 0.72, 95%
CI [0.38, 1.05]. Figure 1 indicates that in the General
condition, the third Likert scale point [Perhaps knows] was
the most probable response. In contrast, in the Specific
condition both 3 [Perhaps knows] and 4 [Definitely knows]
were probable responses, indicating that participants were
more likely to attribute knowledge to a protagonist when the
means by which the protagonist formed their belief was
specific rather than general, as had been previously found
(Friedman & Turri, 2014).

What explains people’s tendency to differentially ascribe
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knowledge when the probabilities in both situations are
perceived as being similar? Our hypothesis is that this effect
may be at least partially explained by sensitivity. That is, we
predicted that people would think that an agent’s beliefs in
the Specific condition would be more sensitive than in the
General condition. To test this prediction, we first performed
logistic mixed-effects modeling. This model regressed
participants’ judgments of belief sensitivity (i.e., 1 =
Protagonist would still believe, 0 = Protagonist would not
still believe) on condition.
Model 2 <- Counterfactual Response ∼ 0 +
intercept + Condition + (1|Item) +
(1 + Condition|Subject)

Experiment 1 - Model 2 Priors:
β0 ∼ N (.75, .25)
βCondition ∼ N (0, .5)
Ωk ∼ LKJ(1)
Group-level parameters were distributed asN (1,1)

Here too, we observed the predicted effect of condition on
participants assessments of belief sensitivity, b = −0.60, 95%
CI [−0.94, −0.25] (see Figure 2).
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Figure 2: A marginal effects plot of belief sensitivity in the
General and Specific conditions in Experiment 1. Error bars
represent 95% Credible Intervals (see Cummings, 2005 for
interpreting within-subjects 95% CIs).

Our hypothesis was that people tend to differentially
attribute knowledge in General and Specific conditions
because of the sensitivity of the protagonists’ beliefs in these
two situations. We observed this effect. We followed up on
this observation by performing mixed-effects mediation
modeling to test whether sensitivity mediated the

relationship between condition and knowledge attributions,
as suggested by the partial correlations.

Knowledge Model =
bf(Knowledge ∼ Condition +
Counterfactual +
(1 + Condition|Subject))

Counterfactual Model =
bf(Counterfactual ∼ Condition +
(1 + Condition|Subject))

Mediation Model =
brm(Knowledge Model +
Counterfactual Model)

Mediation Model Priors:

All β ∼ N (0, .5)
Ωk ∼ LKJ(1)
Intercept and group-level parameters were
distributed as t(3,0,10)

Consistent with our hypothesis, we observed the predicted
mediation, ab path = .37, 95% CI [.08, .81].

Experiment 2
Experiment 1 provides preliminary evidence for the
hypothesis that sensitivity can account for people being less
likely to attribute knowledge in general versus specific cases.
However, one possibility is that people think the agents in
these two situations are not equally justified in drawing their
conclusions and, further, that belief sensitivity is correlated
with attributions of justification. Although it is often
assumed that people are equally justified in believing that P
in both general and specific cases, this assumption has not
been empirically tested. Consequently, we sought to rule out
this alternative explanation of the results of Experiment 1
because justification is likely one of the most strongly
predictive factors of knowledge attributions. To address this
possibility, Experiment 2 directly replicated Experiment 1
but also included a measure of justification.

Participants We powered our study to detect a Cohen’s d
of .15 for a two-condition within-subjects design with 80%
power. We anticipated the effect of counterfactual responses
on knowledge attributions would be smaller after accounting
for differences in justification between general and specific
cases. A total of 344 participants were recruited through
Amazon’s Mechanical Turk (46% women, Mage = 36 years
old). Participants were paid $0.50 for participating in the
study. After excluding participants who missed questions
checking their attention, 288 participants remained in our
sample. Our sample size and exclusion criteria were
determined a priori and were in accordance with our study
preregistration.

Procedure and Predictions The procedure of Experiment
2 was identical to that of Experiment 1. However, in
Experiment 2, participants answered additional questions
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testing whether they thought the protagonist’s beliefs were
justified. For example, after reading each vignette
participants also judged whether Bob was justified in
concluding that his plant contains aracnium. Complete
materials can be found in Table S4 in the SOM.

As in Experiment 1, we predicted that knowledge and
sensitivity judgments would differ in the General and
Specific conditions, and that sensitivity would mediate the
relationship between condition and knowledge attributions.
However, Experiment 2 also allowed us to test whether
participants thought that (1) the protagonists in the Specific
condition were more justified in drawing their conclusions
and (2) rule out the possibility that justification alone rather
than belief sensitivity accounts for the differential attribution
of knowledge attributions in the General and Specific
conditions.

Results and Discussion
As in Experiment 1, we first examined how condition
(General vs Specific) affected knowledge and sensitivity
judgments. We performed the same analytic procedure as in
Experiment 1. These analyses again revealed that both
knowledge and sensitivity were predicted by whether the
case participants were reading was general or specific,
Knowledge: b = 1.10, 95% CI [0.81, 1.41) and
Counterfactual: b = −.52, 95% CI [−0.86,−.18) (see Figures
3 and 4), along with the mediation of knowledge judgments
by sensitivity ab path = .27, 95% CI [.05, .60). We then
tested whether participants differentially attributed
justification to the protagonists in the General and Specific
conditions. We found that, indeed, participants judged that
the protagonist in the Specific condition was more justified
in drawing their conclusion than in the General condition, b
= .86, 95% CI [0.51, 1.20]. Does justification, rather than
sensitivity, account for the difference in knowledge
attributions in general and specific cases? To examine this
possibility, we performed ordinal mixed-effects modeling
regressing knowledge attributions on justification and
counterfactual judgments. Justification responses were
treated as monotonic effects, following the recommendations
of Bürkner and Charpentier (2018):

Model 3 <- Knowledge Response ∼
Counterfactual + mo(Justification) +
(1|Item) + (1|Subject)

Experiment 2 - Model 3 Priors

βIntercept[1] ∼ N (−2,1)
βIntercept[2] ∼ N (−1.5,1)
βIntercept[3] ∼ N (4,1)
βCounter f actual ∼ N (0, .5)
βJusti f ication ∼ N (2,4)
Group-level parameters were distributed asN (1,1)

This analysis revealed that sensitivity accounted for unique
variance in knowledge attributions over and above
attributions of justification, b = −0.51, 95% CI [−0.83,
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Figure 3: A histogram of the proportion of responses at a
given Likert scale point (e.g., 1 = Definitely does not know; 4
= Definitely knows) in the General and Specific conditions in
Experiment 2. The figure indicates that participants were less
likely to attribute knowledge in the General condition.
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Figure 4: A marginal effects plot of belief sensitivity in the
General and Specific conditions in Experiment 2. Error bars
represent 95% Credible Intervals.

−0.19]. Thus, Experiment 2 provides evidence for two
further conclusions: First, knowledge attributions likely
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differ in general and specific cases because of a difference in
the perceived justification of agents in these situations.
Second, and consistent with our prediction, people judge that
beliefs formed on the basis of general evidence are
insensitive (relatively) compared to beliefs formed on the
basis of specific evidence, an effect that holds over and
above the effect of justification.

Discussion
In psychology and the law, researchers have observed that
jurors are less likely to trust general as opposed to specific
evidence (Wells, 1992). However, this effect appears to
extend beyond the courtroom: We found that knowledge
attributions were similarly affected by manipulating whether
evidence was general or specific, replicating earlier work
that third-person knowledge attributions increase when the
evidence available to the protagonist is specific as opposed
to general. It is notable that this effect was found in cases
that have little to do with the law or with witnesses, thus
suggesting that the Wells effect is an instance of a more
general phenomenon that goes beyond cases of witnesses or
eyewitness memory specifically.

What explains people’s tendency to distinguish general
and specific evidence, given that the probabilities are fixed?
We explored the hypothesis that general and specific
evidence differ along more lines than their probabilities:
namely, we examined whether sensitivity (a counterfactual
condition) can account for the tendency to attribute
knowledge in specific compared to general cases.
Experiment 1 provided evidence that what explains the
difference in knowledge judgments (across general and
specific cases) is the perceived sensitivity of the belief at
issue. In Experiment 2, we considered the alternative
hypothesis that justification rather than sensitivity accounts
for the difference in people’s knowledge attributions in
general and specific cases. We found that assessments of
sensitivity account for variance in knowledge attributions
over and above justification, although justification also
differed by condition.

These experiments constitute the first empirical
investigation demonstrating a link between knowledge
attributions and sensitivity among non-philosophers.
Further, this is the first piece of experimental evidence which
suggests that a well-known effect in legal decision
making—the Wells effect—can be understood in terms of
epistemic theories that highlight the link between knowledge
attributions and counterfactuals. Still, questions remain
about the ability of the sensitivity hypothesis to account for
other core epistemic phenomena. Indeed, a number of
philosophers, for example, Williamson (2000),
Blome-Tillmann (2015), and Hawthorne (2003), have
pointed out that the sensitivity hypothesis cannot fully
explain a range of intuitions regarding knowledge
attributions. Consequently, subsequent experimental work
should investigate these proposals to establish the scope and

limits of the sensitivity hypothesis.
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Abstract

Humans develop an ability for Theory of Mind (ToM) by the
age of six, which enables them to infer another agent’s men-
tal state and to differentiate it from one’s own. Much evi-
dence suggests that humans can do this in a presumably op-
timal way and, correspondingly, a Bayesian Theory of Mind
(BToM) framework has been shown to match human infer-
ences and attributions. Mostly, this has been investigated with
specific, explicit mentalizing tasks. However, other research
has shown that humans often deviate from optimal reasoning
in various ways. We investigate whether typical BToM models
really capture human ToM reasoning in tasks that solicit more
intuitive reasoning. We present results of an empirical study
where humans deviate from Bayesian optimal reasoning in a
ToM task but instead exhibit egocentric tendencies. We also
discuss how computational models can better account for such
sub-optimal processing.
Keywords: Theory of Mind; Bayesian Modeling; Egocentric
Tendencies; Bounded rationality

Introduction
An important ability of humans is to infer and reason about
ones own as well as other’s mental states such as inten-
tions, (potentially false) beliefs, or emotions (Wellman & Liu,
2004). While the exact development of this so-called Theory
of Mind (ToM) (Premack & Woodruff, 1978) is still not clear,
there is a consensus that we acquire full ToM abilities around
the age of six (Wellman & Liu, 2004). This allows us to make
sense of our social environment, to learn more from the ac-
tions around us (Jara-Ettinger, Baker, & Tenenbaum, 2012)
and to better understand or even manipulate others in cooper-
ative or competitive interactions (Heyes & Frith, 2014).

Because of its importance for social interaction, there is a
great interest in endowing artificial systems with similar capa-
bilities. Recently, the most prominent approach has been the
Bayesian Theory of Mind (BToM) framework (Baker, Saxe,
& Tenenbaum, 2009). Building upon the rational agent as-
sumption (Dennett, 1989) and inverse planning, the BToM
framework constructs probabilistic generative models that re-
late hidden mental states to observable actions. These mod-
els can then be inverted to infer mental states from behavior,
while accounting for inherent uncertainty. This framework
has been shown to make inferences that correlate well with
those made by humans in a wide range of different tasks, such
as the inference of desires and beliefs (Baker, Jara-Ettinger,
Saxe, & Tenenbaum, 2017) or preferences (Jern, Lucas, &
Kemp, 2017). It is also in line with the Bayesian Brain hy-
pothesis positing that humans incorporate information similar
to optimal observers (Knill & Pouget, 2004).

At the same time, humans do not always behave like op-
timal observers or reasoners. Instead, they exhibit a range

of fallacies leading to systematic errors in different types
of inference (Haselton, Nettle, & Murray, 2015). This has
also been argued to hold for social interaction. For exam-
ple, Keysar (2007) showed that adults fail to adjust correctly
for different perspectives in communication tasks. This trait
is often referred to as egocentric tendency and refers to the
tendency to impute one’s own mental perspective on others
(Nickerson, 1999). Keysar, Lin, and Barr (2003) present an
experiment in which even adults fail a false-belief test, show-
ing that an egocentric tendency is not always effectively sup-
pressed. In other words, we do not appear to always use our
ToM capabilities to the fullest extent (cf. (De Weerd, Ver-
brugge, & Verheij, 2013)). This is often attributed to limited
mental resources, such as working memory and processing
time. Vul, Goodman, Griffiths, and Tenenbaum (2014) argue
that many biases are actually optimal when seen as the result
of the number of samples for inference being limited.

It is unclear how those limitations affect ToM reasoning in
humans. While the BToM framework has been shown to cor-
relate well with humans’ explicit ToM reasoning, it has not
been evaluated with regard to humans’ intuitive or implicit in-
ferences, i.e. when sophisticated ToM reasoning is not explic-
itly evoked. Recently, Nakahashi and Yamada (2018) showed
that a full inverse planning approach based on the BToM
framework overestimates the rationality of humans and that
modified inference achieves better correlations with human
judgments. We are interested in whether, in an intuitive set-
ting, humans employ different kinds of ToM models as a
function of, e.g., computational costs, available resources, or
current task demands. We have argued elsewhere that em-
ploying different kinds of ToM models for “satisficing men-
talizing” can be beneficial for artificial systems, where full
Bayesian models often suffer from intractabilities (Pöppel &
Kopp, 2018). Here, we study whether humans may also em-
ploy different simpler, non-optimal models depending on the
given circumstances and, specifically, whether they may fail
to realize or account for differences between one’s own and
another one’s mental states. We thus focus on the extent to
which humans employ mentalizing in a settings that is more
implicit than those used in previous BToM research.

In the remainder of this paper, we present empirical ev-
idence suggesting that humans exhibit different degrees of
egocentric tendencies in a simple ToM reasoning task, thus
deviating from rational optimal observers usually assumed in
previous BToM models. The next section first describes the
scenario we are looking at. Then, we present an empirical
study we have carried out in this scenario to investigate in-
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tuitive human ToM reasoning. After this, we present differ-
ent computational ToM models, partially based on the BToM
framework, and report their correlations with our data.

Scenario
The scenario we chose for our empirical study is the infer-
ence of an agent’s desire in a navigation task within a 2D
maze. The maze has four exits, each of which leading to a dis-
tinct destination (denoted Red, Yellow, Blue or Orange). The
agent has to find the exit that leads to one specific destina-
tion, which we consider to be the agent’s desire. In previous
work we already gathered behavioral data in the form of tra-
jectories of human participants solving this navigation task in
different mazes with differing amounts of information avail-
able (Pöppel & Kopp, 2018). Here, we consider the task of
an additional observer, who watches the agent move around
in the maze and has to infer the agent’s desire – a perceptual
and cognitive task humans solve frequently in everyday life.
According to the ToM scale by Wellman and Liu (2004), this
kind of inference is also among the first ones to be mastered
by children.

In order to create a need for differentiating between the
mental perspectives of the agent and the observer, we employ
two conditions: in the first condition, participants acting as
agents had full knowledge of the maze, the locations of all ex-
its, and the destinations behind them. That is, they could take
an optimal path in order to reach their desired destination. In
the second condition, the acting participants knew about the
locations of the exits in the maze, but had to discover the cor-
responding destinations themselves by establishing a line of
sight with the exit. Thus participants had to search for the
specific exit (one out of four) that leads to their desired des-
tination, resulting in an exploration behavior. This scenario
is similar to earlier work on BToM, e.g. (Baker et al., 2017),
in that it involves navigating a simple grid-world to achieve
a desired outcome with potential uncertainty about the true
location of that outcome.

Figure 1 shows an example of the different stimuli that the
acting participants received in the two conditions. In the bot-
tom example belonging to the second condition, the exits are
marked but covered. Note that in this situation the agent has
moved to a position, where it could see the exit thus reveal-
ing its corresponding destination (Blue). In the present study,
we use recordings of the online navigation behavior in these
two conditions and let human participants play the role of the
observer. In particular, their task is to identify the desired
destination of the observed agent at different points on the
recorded trajectory.

Empirical Study: ToM Reasoning in Humans
Humans employ their ToM capabilities rarely to their fullest
extent. However, it is still unclear what factors, apart from
cognitive load, may influence the extent to which a person
employs her ToM capabilities. Previous research has shown
that explicit asking for likelihood ratings of all alternatives

Figure 1: View of the navigating agents. Top: full knowledge
about exits and destinations; Bottom: exits only reveal their
destination once a line of sight is established.

yields responses predicted by the BToM framework. How-
ever, we conjecture that this experimental design inherently
evokes explicit reasoning about mental states in the partici-
pants, including the full consideration and comparison of all
alternatives. This evocation may be part of the reason for the
discrepancy between very good fittings in BToM research and
findings of suboptimal behavior in other research. In contrast
to previous research, we therefore deliberately chose not to
ask for likelihood ratings for all possible desires, but instead
ask for soft forced-choice responses in order to test for a more
intuitive and natural ToM reasoning. We call it soft because
we gave participants the additional option “I do not know”.

We also included a second group of participants who were
additionally prompted to self-assess their belief about the ob-
served agent’s knowledge. We included this group to test the
effect of putting an agent’s belief into focus of (more explicit)
ToM reasoning, thus testing if different task demands influ-
ence the employed ToM models.

Participants We recruited two distinct groups of partici-
pants (first group 120; second group 65) each via an online
platform called ”figure-eight” (formerly crowdflower). All
participants had a “contributor level three”, which is adver-
tised as “Highest Quality: Smallest group of most experi-
enced, highest accuracy contributors”. After completion of
the study, participants were reimbursed with $0.20 via the
figure-eight system.

Stimuli For each of the two conditions mentioned above,
we chose two typical trajectory recordings in two different
mazes. The four trajectories are shown in figure 2. Partic-
ipants could see the maze and, importantly, all destinations
behind the different exits. That is, they always had full knowl-
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Figure 2: The recordings 1 through 4 used as stimuli, one from each condition (destinations known/unknown to the agent) in
two different mazes. Numbers indicate the location of query points at which participants had to give their responses. Small
arrows indicate the agent’s next action after the query point when ambiguous.

edge about the destinations, while the agents they observed
might or might not have had the same knowledge. Partici-
pants would see the agent navigating the maze according to
the recordings, leaving behind a red trail as in figure 2, so that
participants always knew where the agent moved. We chose
to replay these recordings with fixed time intervals between
two steps in order to remove potential noise within the tra-
jectories (while also eliminating information about speed or
possible hesitations of the agents).

Procedure All participants received the same initial in-
struction that they were going to watch the recordings of four
different human players navigating a maze. They were in-
formed that the maze had four exits, each leading to a dif-
ferent destination, and that each player had her own specific
destination she had to reach as quickly as possible. We fur-
ther explained that the four players were part of two different
conditions. In one condition, they had full knowledge about
the destinations behind the exits, while in the other they had
to first discover which exit led to which destination. In order
to make this clear, we provided participants with the images
in figure 1 alongside the instructions. The instructions read:
“Now you will watch the agents follow their trajectories while
you will be able to see which exit corresponds to which des-
tination. At certain points in time you will be asked to tell
the agent’s desired destination (R,B,Y,O). You may also say
that you do not know.” The query points are those shown in
figure 2. We deliberately asked for the agent’s desired desti-
nation instead of an exit to focus on the agent’s desire instead
of the exit locations close to the agent. The second group of
participants were further instructed about the additional ques-
tion regarding the agent’s knowledge, which read “Addition-
ally, you will be asked to specify if you think the agent knows
which exit leads to which destination.”.

Upon confirming these instructions, participants got to see
the first maze as in figure 2 (without the query point num-
bers) with the agent at the beginning of its trajectory. After
hitting a Start button the agent started to move leaving be-
hind the red trail. The playback stopped at each QP and par-
ticipants were asked to choose one out of the four possible
goal destinations, or to signal that they cannot tell otherwise,
which we will refer to as Uncertain (U) from here on. In

order to avoid misinterpretations (such as having asked for
current target location only), we instructed participants with:
“Please specify which destination you think the agent wants
to reach after leaving the maze.” The second group of partic-
ipants received an additional question before identifying the
agent’s destination: “Do you think the agent you are watch-
ing currently knows which exit leads to which destination?”
Participants could respond with either “Yes” or “No”. Once
the agent reached its destination, participants could proceed
to the next recording. In total, each of the 185 participant had
to make 22 judgements (taking less than 400s on average for
the first group and less than 485s for the second group).

For the first group, we counter-balanced the order in which
participants saw the different recordings/mazes. We used a
Fisher’s exact test on the response frequencies in order to test
whether or not the order in which the stimuli was presented
had any effect on participants’ responses. The test revealed
no significant effects of the stimuli ordering for all but one
responses (recording 1, QP 6). We thus concluded that the
order of presentation of recorded trajectories/mazes did not
influence participant’s responses. We thus collapse the re-
sults of participants in the first group for the analyses in the
remainder of this paper. Furthermore, we decided to use only
one ordering for the second group in order to simplify the
design.

For analyses, we excluded all participant’s responses for a
particular recording if participants always picked the same
destination and if this destination was not the correct one
within one recording. We further excluded responses if par-
ticipants chose to predict a destination after the agent already
turned away from it in recordings 2 and 4. We assume that
these participants did not really pay attention to the actual
trajectories as these are obvious errors. After excluding such
participants, we had 110 participants in group 1 and 57 par-
ticipants in group 2 remaining.

Results Figures 3 and 4 show normalized response frequen-
cies for several interesting query points in the two groups.
Note, however, that the reported tendencies also hold for the
other recordings and query points.

For the first group of participants who only had to iden-
tify the likely destination of the agent, we find a strong bias
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Figure 3: Relative response frequencies by the participants
in both groups for Recording 1, query points 3 and 5 and
the corresponding predictions made by the models using the
likelihood modification

towards assuming that the agent is seeking the destination be-
hind the closest exit. This also holds true for points at which
an agent’s behavior was optimally directed to multiple exits
(cf. Yellow responses for QP 3 in figures 3). We also find that
participants ignore that the agent may have a knowledge state
different from their own. For example, in the Red responses
at QPs 4 and 5 in figure 4, they had already seen the agent
turning away from two exits. Thus they should assume that
the agent does not know which exit leads to which destina-
tion, even if they see the agent moving towards Red. They
thus show an egocentric tendency in their reasoning.

When looking at the second group, i.e. participants that
were first asked about the knowledge state of the agent be-
fore trying to identify the agent’s desire, we find significantly
different desire response distributions for 12 of the 22 QPs

Recording 4 and its query points
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Figure 4: Relative response frequencies by the participants
in both groups for Recording 4, query points 4 and 5 and
the corresponding predictions made by the models using the
likelihood modification.

(p� 0.05 according to Fisher’s exact test). These differences
manifest themselves primarily in a difference of the percent-
age of Uncertain responses, which is significantly higher for
the second group (14.9% vs 4.7%, t = 3.86 p < 0.001), also
visible at QP 3 in figure 3 and QP 4 in figure 4. We further
find interesting results regarding the preceding question about
their belief of the agent’s knowledge state: “No” responses
(i.e. they believe the agent does not know) increase after an
agent turned away from an exit it saw, as expected (e.g. in
recording 4 “No” responses are only around 20% at QP 2, but
increase to around 45% at QP 3). However, the percentage
for “No” never exceeds 55% and quickly decreases again as
the agent moves towards any particular exit, as seen for QP 5
in figure 4.
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Computational Modeling
These results indicate that our participants in groups 1 and 2
performed their ToM reasoning differently, but neither group
appears to make use of their ToM capabilities to their fullest
extend. In fact, participants may even employ different strate-
gies at different parts of the recordings. In this section we
explore different models for the desire ToM task and present
how they correlate with our empirical data.

BToM models The first two models we are considering,
which are taken from previous work (Pöppel & Kopp, 2018),
follow the general BToM framework and were designed to
correspond to the mental states induced by the two conditions
described above.

The True Belief model assumes that the agent has full
knowledge regarding which exit leads to which destination:

P(at+1|aaat) = ∑
d∈D

P(at+1|d,b∗d)P(d|aaat) (1)

The Unknown model assumes that the agent does not ini-
tially know which exit leads to which destination, which is
why it needs to consider all possible combinations:

P(at+1|aaat) = ∑
d∈D

bd∈Bd

P(at+1|d,bd)P(bd |aaat)P(d|aaat) (2)

With D being the set of desirable destinations and Bd the set
of beliefs about which exit leads to which destination. b∗d
is the true belief, i.e. it maps exits to destinations correctly.
aaat = a1, ..,at is the sequence of past actions, observed up to
this point t.

The likelihood P(at+1|d,bd) is modeled following the
commonly used Boltzmann noisy rationality:

P(at+1|d,bd) =
exp(βU(at+1,bd ,d))

∑ai∈A exp(βU(ai,bd ,d))
(3)

with β specifying the degree of rationality. Low values of
β will allow more sub-optimal actions, while a larger β will
result in the probability mass to be concentrated on the ac-
tion with the highest utility U(at+1,bd ,d) which in this sim-
ple scenario can be equated to the remaining distance to the
exit leading to d according to belief bd after executing the ac-
tion at+1. The belief bd is updated when the agent actually
sees one of the exits by dismissing any beliefs which do not
conform to the evidence.

Simple sampling model As a third model we introduce a
model correlating to shallow processing with egocentric ten-
dencies by implementing a very naive sampling approach: At
the start of the recording, the model samples one destination
from the prior P(D). After observing each action, its likeli-
hood P(a|d,b∗d) is computed using eq. 3. We keep this sample
with the probability of the likelihood. Conversely, we draw
a new sample with probability 1−P(a|d,b∗d) again from the

prior P(D), while ensuring not to pick a previously discarded
destination. This way, the worse a sample can predict the ob-
served actions the more likely it is to be replaced. Once all
destinations have been discarded, we are considering all of
them again, as we must have discarded the correct one along
the way. The prior P(G) is computed every time we need
to draw a sample and depends on the remaining distance be-
tween the agent’s current position p and the destination:

P(d) ∝ exp(−βdist(p,d)) (4)

For our results presented below, we fit β in the range of 0.1
to 3 at 0.1 intervals via a grid search to maximize correlations
for each model separately.

Modifications As we are interested in what kind of mod-
els are required to model different ToM reasoning strategies
employed by humans, we further tested the following modifi-
cation to the likelihood function (eq. 3) in order to be able to
better reflect the biases found in our data. While these mod-
ifications may improve the correlations in this case, we note
that they may actually decrease correlation with human judg-
ments that employ more thorough ToM reasoning.

To better reflect the bias for the closest exit found in the
data, we changed the rationality constant β to a dynamic vari-
able, which decreases with the distance to the exit, effectively
dampening the likelihoods for exits that are further away and
boosting optimal actions towards closer exits.

β ∝ αexp(−γdistm(p,d)) (5)

where distm is the current Manhattan distance between the
agent’s position p and the considered destination d. In this
case α and γ are meta parameters that were fit to maximize
correlation with a grid search between 2 and 4 at 0.1 intervals
for α and between 0.025 and 0.75 at 0.05 intervals for γ for
the results.

Model evaluation We compare our models with our par-
ticipants’ responses both on each recording separately, as
well as over all responses. As has been done in previous
BToM research (e.g. (Baker et al., 2017)) we considered the
correlations between participants’ average responses and the
models’ predicted distributions at each of the different query
points. For this we stack the relative response frequencies
for the four possible destinations for all QPs within a single
recording, resulting in a vector of 4×6 = 24 elements (16 for
recording 3 as there were only 4 QPs). Likewise we stack the
destination distributions predicted by our models before com-
puting the Pearson’s r correlation. For the sampling model,
we generated 100 independent responses and used the result-
ing normalized frequencies as the model’s distribution. We
then further stack the vectors for all recordings for the over-
all comparison, yielding a vector with 88 elements. We are
deliberately evaluating in favor of our models in order to con-
sider a best case scenario: All meta-parameters (β,α and γ)
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have been fit to maximize the resulting correlation across all
recordings. Furthermore, we spread all Uncertain responses
across the other alternatives proportional to the model’s dis-
tribution.

In order to test how well the models match the participants
individually, we further had the models create actual predic-
tions and compared these to the responses of each participant.
We sampled 100 discrete responses from our models’ predic-
tions and computed how often these responses match the par-
ticipants’ responses at each of the different query points. We
then averaged these number of matches over all query points
for each recording and over all participants to get the aver-
age matching performance of our models. Again, in order to
evaluate in favor of the different models, we count Uncertain
responses as matches.

Tables 1 and 2 summarize the resulting correlations as
well as the average number of matching responses (values
in brackets) between our models and their modifications with
the human responses of the first and second group respec-
tively. Missing correlation values (–) are due zero variance in
predictions of the Unknown model in those recordings. Note
that Recording 3 contained only 4, instead of 6 query points.

Exemplary model outputs can also be found in figures 3
and 4, which shows the response distributions of the different
(modified) models for the same QPs as the human responses.

The first thing to note is that the Unknown model, being
the most rational with the least amount of biased assump-
tions, performs significantly worse than all others. This holds
true for both the average correlation, as well as the number
of matches. In Recordings 1 and 3 where we cannot compute
the correlation due to zero variance, the Unknown model fails
to make any predictions, always yielding a uniform distribu-
tion, which turns the Unknown model into a random model
when comparing response matches. The slightly higher than
chance performance of the Unknown model can mostly be
attributed to the U responses. Furthermore, we find that the
Sampling model correlates best with our human data, with a
significant difference to the True Belief model. These results
are also reflected by the average number of response matches.
All models without the modification, except for the Unknown
model correlated significantly more with participants in group
2 than in group 1. With regard to the modifications introduced
by eq. 5: The True Belief model can improve its correlation
significantly for both groups, while the Sampling model only
improves significantly for the first group. Finally, it is note-
worthy that the best meta-parameters for the Sampling model
differ quite strongly between the two groups. (All signifi-
cance claims achieved p < 0.05 on a t-test using the correla-
tion coefficients after employing a Fisher transformation.)

Discussion and Conclusion
The results reported here suggest that humans can deviate
quite strongly from optimal ToM reasoning. The rare use of
the U(ncertain) response overall indicates that participants do
not always consider the likelihood of all valid alternatives, but

rather focus on single alternatives. In particular, they often
fail to give U responses even after it became apparent that the
agent is not aware of the location of the desired destination.
In contrast, optimal reasoning would dictate the use of U re-
sponses whenever more than one destination is the most prob-
able, or whenever multiple alternatives have a non-zero prob-
ability. Instead, participants show egocentric tendencies by
ascribing their own map knowledge to the agent, and more-
over a strong bias towards the closest exit as destination. This
is also reflected in the decrease of “No” responses in the sec-
ond group as soon as the agent moves towards any exit: even
participants that briefly suppressed this tendency after hav-
ing observed the agent moving away form a seen exit, tend
to discard this evidence again at the next QPs. The results
of the second group indicate that posing a question about the
mental state of the agent before requesting the desire infer-
ence, increases the number of considered ToM alternatives
slightly. Still, even participants of the second group that cor-
rectly realised that the agent’s knowledge state differed from
their own, often did not account for it properly when rea-
soning about the desire of uncertain agents. These findings
support the hypothesis that humans may perform ToM rea-
soning differently. The task to give likelihood ratings for all
alternatives (as e.g. in (Baker et al., 2017; Jern et al., 2017))
might evoke more controlled and complex ToM reasoning,
suppressing cognitive biases and resulting in good correla-
tions with optimal Bayesian models.

One might object that the observed bias towards the closest
exit may stem from interpreting the instructions as “where do
you think the agent is currently going?”. However, the actual
instruction was deliberately chosen to prevent this interpreta-
tion by stating “Please specify which destination you think the
agent wants to reach after leaving the maze.” While we can-
not be certain about the actual interpretation by participants
in the online study, we do believe that the biases are more
likely to originate from inherent tendencies to use simpler,
less demanding mentalizing strategies.

Looking at the correlations with different computational
models, we find only comparatively weak correlations of the
Unknown model with the empirical data, indicating that par-
ticipants’ responses are quite different from optimal Bayesian
reasoning. Instead, the exhibited egocentric tendencies and
biases are matched better by the True Belief and Sampling
models. The better correlations of the Sampling model com-
pared to the True Belief model can be attributed to the fact
that the True Belief model compares all alternative destina-
tions equally, while the Sampling model sticks with the first
best guess, which conforms to a closeness bias, as long as it
is not invalidated. When introducing likelihood modifications
that shift the focus to the closer exits, the True Belief model
starts to behave similarly. The lower difference between the
correlations with the True Belief models and the Sampling
models in Group 2, as compared to in Group 1, also indicates
that priming participants with an explicit ToM-related ques-
tion reduced these biases.
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Table 1: Average correlations and number of response matches (in brackets) of models with ratings of Group 1.

Model Recording 1 Recording 2 Recording 3 Recording 4 Overall

True Belief (β = 0.3) 0.85 (4.73) 0.95 (2.43) 0.68 (3.84) 0.85 (5.24) 0.85 (4.06)
True Belief Mod (α = 2.5,γ = 0.125) 0.98 (4.81) 0.99 (2.82) 0.89 (4.02) 0.87 (5.23) 0.93 (4.22)

Unknown (β = 1.9) – (4.52) 0.30 (2.12) – (3.41) 0.62 (4.40) 0.40 (3.61)
Unkown Mod (α = 2.5,γ = 0.025) – (4.87) 0.30 (3.03) – (4.22) 0.62 (4.95) 0.40 (4.27)

Sampling (β = 1.9) 0.94 (1.89) 0.96 (1.18) 0.82 (1.85) 0.99 (3.03) 0.94 (1.99)
Sampling Mod (α = 3.7,γ = 0.125) 0.98 (1.94) 0.98 (1.18) 0.96 (1.73) 0.98 (2.95) 0.98 (1.95)

Table 2: Average correlations and number of response matches (in brackets) of models with ratings of Group 2.

Model Recording 1 Recording 2 Recording 3 Recording 4 Overall

True Belief (β = 0.3) 0.95 (5.09) 0.96 (4.75) 0.76 (2.75) 0.93 (3.99) 0.91 (4.15)
True Belief Mod (α = 2.5,γ = 0.125) 0.98 (4.95) 0.98 (4.73) 0.94 (2.84) 0.94 (4.21) 0.96 (4.18)

Unknown (β = 1.7) – (4.57) 0.34 (4.50) – (2.42) 0.72 (3.82) 0.45 (3.83)
Unkown Mod (α = 2.5,γ = 0.075) – (4.98) 0.34 (4.82) – (3.14) 0.72 (4.41) 0.45 (4.34)

Sampling (β = 0.7) 0.97 (3.36) 0.97 (2.40) 0.89 (1.33) 0.98 (2.19) 0.96 (2.32)
Sampling Mod (α = 2.7,γ = 0.075) 0.98 (3.23) 0.97 (2.44) 0.99 (1.28) 0.97 (2.32) 0.97 (2.32)

Overall, the actual ToM reasoning of humans appears to
be more differentiated than assumed in the BToM literature.
Mental reasoning is computationally expensive, especially
when considering mental states of others. Unless explicitly
triggered, humans appear not to perform a full-blown ToM
reasoning but to resort to simpler heuristics instead. Artificial
social systems can make use of these findings by adapting to
different ToM models employed by their users and assisting
when they might overlook important information.
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Abstract

Mind wandering involves internally focused attention and is
often conceptualized as the opposite of external attention that
is oriented towards the task at hand. Individuals vary ac-
cording to the amount they mind wander as well as with re-
gards to the pattern of oscillations between mind wandering
thoughts and externally directed, focused thought. Assuming
that mind wandering is influenced by episodic contents, we ex-
plore the proposition that mind wandering frequency is related
to the manner in which individuals deal with the contents of
episodic memory, as reflected by a maximizing decision mak-
ing style. Based on previous studies measuring cognitive pro-
cesses, we assume that mouse trajectories towards a particu-
lar response on the screen are continuously updated by time-
dependent and temporally-dynamic cognitive processes. As
a behavioral methodology, mouse tracking provides potential
cues to help predict mind wandering. In our experiment, a to-
tal of 274 students completed a decision making questionnaire,
episodic and associative memory tests (during which mouse
movements were recorded) and a working memory task, dur-
ing which mind wandering thoughts were assessed. We found
certain mouse movement characteristics to be significantly pre-
dictive of mind wandering. Also, a maximizing decision mak-
ing style appeared to be related to a particular type of mind
wandering, namely, task-related interference.
Keywords:
mind wandering; episodic memory; mouse-tracking; decision
making; maximizing

Introduction
Conscious experience is fluid and dynamic. Mind wandering
(MW) involves a flow of thoughts, often from one topic to
another, back and forth between the outside external world
and internal thoughts and feelings. Where do these thoughts
come from? Why do our thoughts wander elsewhere when
we are trying to focus on a task? Can we detect whenever a
person is mind wandering from their behavior? Over the last
two decades, researchers have been investigating these ques-
tions empirically in hopes of understanding how we navigate
our stream of consciousness and the world around us. In this
paper, we aim to shed additional light upon these questions
by focusing on behavioral cues to MW and the link between
MW and different decision making styles.

Factors influencing MW
During MW, thoughts frequently focus on events that occur in
distinct periods in time, either in the past or future, which sug-
gests self-generated mental content to be largely a product of
the episodic memory system (Smallwood & Schooler, 2015).
Neural accounts of MW demonstrate increased activation in

the medial temporal lobe subsystem (Andrews-Hanna, Rei-
dler, Huang, & Buckner, 2010; Ellamil, Dobson, Beeman, &
Christoff, 2012), which is associated with episodic retrieval
(Klinger, 2013; Mittner, Hawkins, Boekel, & Forstmann,
2016). In addition to being a part of veridical episodic events,
details from past experiences can also be recombined in or-
der to construe episodic mental simulations and other men-
tal states that become part of the stream of thought. During
MW there is also increased activation in the dorsal medial
subsystem, which is associated with social processes, scenar-
ios, meaning and comprehension. The default variability hy-
pothesis (Mills, Herrera-Bennett, Faber, & Christoff, 2018)
proposes that thoughts ceaselessly move from one topic to
the next, with heightened variability over time. The cease-
less flow serves to distinguish different memories while the
variability of content serves to provide a time buffer between
memories, improving episodic memory efficiency. In addi-
tion, heightened variability enables the extraction of com-
monalities and differences between memories and the even-
tual development of categorization and category boundaries.
Commonalities allow for the creation of meaning while dis-
similarities prevent the overlearning of categories. Thus, the
default content variability in MW increases the opportunities
for interleaved episodic to semantic transformations.

Regular oscillations between engagement with the external
environment and engagement in internal thoughts are nor-
mative to the human brain functioning (Mills et al., 2018).
However, patterns of oscillations are subject to a wide range
of individual differences, which vary according to the con-
text (Seli et al., 2018). In particular, low demand con-
texts (Smallwood & Andrews-Hanna, 2013), less task interest
(Unsworth & Mcmillan, 2012) and greater fatigue (Walker &
Trick, 2018) are related to more MW, to name a few possible
factors. In addition to these factors, we are interested in how a
person’s episodic memory performance is related to this pat-
tern of oscillations. Previous research has investigated mind
wandering during episodic memory tests (Riby, Smallwood,
& Gunn, 2008), finding that regardless of the amount of MW
reported in a retrospective questionnaire, participants per-
formed equally well on an episodic memory test. However,
Event-Related Potentials (ERP) analyses indicated that low
MW groups differed from high MW groups in their retrieval
strategy. Those who did not mind wander a lot used a pure
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recollection strategy1 for remembering words which they had
previously seen before and words which were new. How-
ever, those who mind wandered frequently were unable to
easily recollect stimuli; to compensate, they used additional
monitoring and strategic processes2 in order to aid episodic
remembering.

Decision making styles as indicators of MW
Are there decision making styles that are related to mind wan-
dering? Mind wandering content is dependent on what enters
into episodic memory. At the same time, there is variability
in the manner in which individuals select and sift through the
contents of episodic memory. For example, some individu-
als tend to become more stuck on particular memories, while
others have a greater tendency to quickly navigate from topic
to topic. Similarly, there is variability in the manner in which
individuals sift through information as they make decisions.
When making decisions, individuals must select relevant in-
formation to attend to and create meaning out of in order to
make a choice (Beach, 1993). Previous research has distin-
guished between two decision making styles, one which in-
volves a tendency to find the best possible alternative, or max-
imizing, and one which involves a tendency to find the option
that is good enough, or satisficing. Maximizers have more
difficulty in making decisions and tend to be less satisfied
with their choices, meanwhile satisficers tend to have an eas-
ier time making decisions and tend to be more satisfied with
their choices (Schwartz et al., 2002). Yet, what is it about
the nature of maximizing and satisficing that might be related
to mind wandering? We postulate that the rigid quality of
a maximizing decision making style may be related to greater
rumination (Paivandy, Bullock, Reardon, & Kelly, 2008), and
in turn manifest as type of MW which involves a tendency to
worry about performance on the task at hand (Dias da Silva,
Rusz, & Postma-Nilsenová, 2018), namely, task-related inter-
ference. We therefore would expect a tendency to maximize
to be related to more interfering thoughts about performance
on a task which inhibit actual performance of the task itself.

Computer mouse movements as indicators of MW
From an embodied cognition perspective, which assumes
cognition is evidenced in our bodily behaviors (Barsalou,
2008), as our minds are decoupled from the sensory envi-
ronment during MW, our minds seem to also disengage from
controlling behavioral motor outputs. Consequently, motor
performance becomes more automatic or degraded (Franklin,
Smallwood, & Schooler, 2011). Initial evidence for this
was found in a study by Kam et al. (2012), in which par-
ticipants were instructed to track a moving ball on a screen
with a joystick. Intermittently during the task, participants
were asked whether or not they were MW. In trials during
which participants were MW, they deviated further from the
correct path than in times during which they were focused.

1as indicated by a larger magnitude of the left-parietal ERP com-
ponent.

2as indicated by larger central negativity effects.

Additionally, Arapakis, Lalmas, and Valkanas (2014) found
that various mouse movement measures were able to predict
engagement− which is often contrasted with MW − in an
unsupervisied manner. It is thus plausible that MW in online
tasks can be inferred by hand reach movements which are
continuously updated by ongoing mental processes (Spivey &
Dale, 2006) and become more degraded and automatic during
MW (Kam et al., 2012), as attention decouples from the task
at hand.

Current Study
The primary goal of the present study is to investigate if
episodic memory, decision making style, mouse movements
and task interest can predict MW. Previous research consis-
tently indicates a strong negative relationship between MW
and task interest. However, little has been done in terms of the
relationship between performance on episodic memory tests,
mouse movements and MW. To our knowledge, no research
so far explored the relationship between mind wandering and
decision making styles. Therefore, the guiding questions in
this research are: 1) What is the relationship between episodic
memory performance, motor output, and mind wandering? 2)
How are task interest and decision making styles related to
MW? As our aim is to explore the relationship between vari-
ous measures, we do not propose directional hypotheses.

Methods
Participants and Procedure
In total, 274 participants between 17 and 41 years of age
M = 22.09), 180 female, performed this experiment and re-
ceived course credit for their participation. Three participants
were excluded due to a procedural error. The study was ap-
proved by the university’s Institutional Review Board. Before
beginning the experiment, participants signed a consent form.
Participants then answered questions about their demograph-
ics and choice making orientation. Next, they performed
episodic and associative memory tests, a working memory
test during which mind wandering was measured, and finally,
they filled out a questionnaire about their interest in the task
(see Figure 1). Note some of the data has been reported in
Dias da Silva and Postma-Nilsenová (2019)3 and, thus, the
current data and that data are not from independent samples.
Specifically, the MW responses from the current participants
are shared with Dias da Silva and Postma-Nilsenová (2019).
The purpose of that study was to examine relations between
mouse movements and MW probes during an operation span
task. In this study, we rather explore relationships between
various additional measures from episodic memory tests and
decision making styles with the overall MW frequency re-
ported during the OSPAN task.

Materials
Decision Making Decision-making orientation (Schwartz
et al., 2002) is an individual difference variable that differ-

3submitted for publication.
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entiates people according to how they make decisions. At
one extreme, maximizing involves a tendency to find the best
possible alternative, while at the other extreme, satisficing
involves a tendency to find the option that is good enough.
Decision-making orientation was assessed by the Maximiza-
tion Scale (Cronbach α = .64), consisting of 13 items as-
sessed on a 7-point Likert scale (1 = completely disagree to 7
= completely agree). Higher scores on the scale reflect a gen-
eral tendency to maximize, while lower scores on the scale
reflect a general tendency to satisfice.
Episodic Memory: 15-Word List Learning (WLLT) and
Recognition Tests (WRT) THE WLLT consisted of free
recall of 15 semantically unrelated words (concrete, imag-
inable nouns), in three trials. Words were selected from
SUBTLEX-NL, a database of Dutch word frequencies based
on 44 million words from film and television subtitles
(Keuleers, Brysbaert, & New, 2010). All words were bisyl-
labic, had 6 letters, and had a medium frequency (Range =
2.25− 3.45, M = 2.56, Mdn = 2.46) and a prevalence of
above 98%. Each word was presented on the screen for 2
seconds, in a random sequence. Between each set of words,
participants performed a 20-second Brown-Peterson distrac-
tion task4, which required them to count backwards from a
3-digit number presented on the screen. During the recall
phase, participants were asked to write down the words they
could recall. The score was the total number of words repro-
duced over three trials (0-45). Immediately after the WLLT,
participants were shown 30 words (15 distractor words were
presented in addition to the ones previously seen) in a random
order on a computer screen and were instructed to explicitly
recognize whether or not they had seen the word by clicking
on yes or no with the computer mouse on the screen. This
part was WRT. The score was the sum of true positive and
true negative answers (0-30).
Associative Memory: Paired-Associate Learning (PALT)
and Recognition Tests (PART) The PALT consisted of
cued recall of 12 semantically related word pairs, and 12 se-
mantically unrelated word pairs, constructed in the same for-
mat of the 15-word list learning test, with three trials, and a
Brown-Peterson distraction task. Words were selected from
SUBTLEX-NL (Keuleers et al., 2010). Word length varied
from 3 to 8. All words had a prevalence of above 98% and
had a medium frequency (Range : 1.56− 4.56, M = 3.04,
Mdn = 3.03). Semantic associations were made according
to De Deyne and Storms (2008)’s word association norms,
and semantic distance was additionally checked with Snaut
(Mandera, Keuleers, & Brysbaert, 2017). Each pair was pre-
sented on the screen for 2 seconds. Between each set of
24 pairs, participants performed a 20-second Brown-Peterson
distraction task. During the recall phase, participants were

4The Brown-Peterson distraction task was administered in or-
der to prevent the confounding of episodic memory with short-term
memory (as a result of recency effects which occur during learning
tests) (Spaan, 2016).

asked to write down the target word in response to each cue
word which was randomly presented on the screen. The
score was the sum of pairs reproduced over three trials (0-
72). The PALT was followed immediately by a recognition
test (PART), which involved forced choice of the target words
of the PALT in response to the presented cue words. In each
trial, three distractor words were simultaneously presented on
the screen together with the target and cue5. Each cue was al-
ways presented with 2 semantically related words, and 2 se-
mantically unrelated words. The score was the sum of correct
answers (0-24).
Mind Wandering Intermittent thought probes assessing
participant’s state of mind were presented during a work-
ing memory task (Operation Span task, (Conway, Cowan,
Bunting, Therriault, & Minkoff, 2002; Mrazek et al., 2012)).
MW was calculated as the percentage of thought probes dur-
ing which participants responded that they were either hav-
ing task-unrelated thought (TUT) or task-related interference
(TRI) (Stawarczyk, Majerus, & D’Argembeau, 2013). Fo-
cused attention (FA) was calculated as the percentage of
thought probes during which participants were focused on the
task.
Task-interest As a last part of the experiment, task interest
(TI) was assessed using a 5-point Likert scale with 4 ques-
tions (Cronbach α = .82): (a) Did you enjoy performing this
task? (b) Did you take interest in this task?; (c) Are you in-
terested in performing tasks like this?; and (d) Did you feel
pleasant while performing the task? The response categories
vary from 1 (not at all) to 5 (very much) (Van Yperen, 2003).
Instrumentation All questionnaires were presented online
via Qualtrics. The episodic and associative memory tasks
were programmed on OpenSesame 3.1.6 (Mathôt, Schreij,
& Theeuwes, 2012). The experiment was run on full screen
mode, with a resolution of 1024 by 768 pixels on a Windows
7 operating system. The desktop computer was placed on the
table so that participants had enough room to move the mouse
without running out of space. Mouse settings were left at their
default values (medium acceleration and medium speed). A
Dell USB3 Button Scrollwheel Optical Mouse was used to
record cursor coordinates during the memory tests. Mouse
movements were recorded both in the Recognition parts of
the Word List and Paired-Associates tests. In the WRT (Fig.
1a), once participants click on the start button (341 by 85 pix-
els), two words (a target and a distractor) were displayed to
them on the extreme top right and left corners of the screen
(192 by 128 pixels). Once participants determined which of
the words they had learned in the previous portion of the task,
they made a selection with the computer mouse. During the
PART (Fig. 1b), once the participants clicked the start but-
ton (341 by 85 pixels), they viewed a cue at the center of

5There were always 2 semantically related and two non-
semantically related words presented on the screen (i.e.: If the target
was semantically related to the cue, one distractor would also be
semantically related to the cue and the other two would not).
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the screen, along with 1 target and 3 distractors (192 by 128
pixels) distributed along the 4 extreme corners of the screen.
Once they determined which word was associated with the
cue, they made a selection with the computer mouse.

Figure 1: Illustration of the a)WRT and b)PART tests.

Data processing Participants’ individual raw data files
were merged and read into R version 3.4.1(R Core Team,
n.d.). Mouse tracking data were imported and processed us-
ing the library mousetrap (Kieslich & Henninger, 2017). Tra-
jectories were recorded from the moment the start button was
clicked on, to the moment a target or distractor was selected
in both the WRT and the PART tests. All trajectories aligned
to a common starting position and were remapped onto one
side. Various features such as total distance and maximum
velocity6 were calculated based on the mouse trajectories and
aggregated per participant (see Supplementary Information).

Results
Data were analyzed for 271 participants. Descriptives for the
WLLT, WRT, PALT, PART memory measures, decision mak-
ing and task interest questionnaires can be found in Table 1.
Ceiling effects were observed in the Word Learning Recog-
nition Test (WRT) and in the Paired Associates Recognition
Test (PART), as a majority participants had either perfect or
near perfect scores on these tests. Therefore, they were not
used further for statistical testing. As mouse movement co-
ordinates were recorded during the tests, they were used for
statistical testing instead.

Memory, computer mouse movements, and MW
Correlations In order to examine how both memory re-
call measures and mouse movements during the recognition
tests7 predict MW during a subsequent task, we first exam-
ined which variables were correlated with TUT, TRI, and
FA. TUT frequency was found to be significantly correlated
with mouse measures in the WRT, namely; maximum x-
position (r(269) = 0.17, p = .01) and total distance travelled
(r(269) = 0.13, p = .04). TRI frequency was positively cor-
related with various measures in the PART, namely; reaction
time (r(269) = 0.21, p < .000), idle time (r(269) = 0.18,
p < .000), time to maximum deviation towards the alterna-
tive response (r(269) = 0.16, p = .01), time to maximum

628 mouse features for the WRT and 28 for the PART.
7Mouse movements were recorded during the WRT and PART.

Table 1: Descriptives of Task Interest (TI), Maximizing,
Word List Learning Test (WLT), Word Recognition Test
(WRT), Paired Associates Learning Test (PALT), Paied Asso-
ciates Recognition Test (PART), frequency of Task-unrelated
Thoughts (TUT%), Task-Related Interference (TRI%), and
Focused Attention (FA%).

Measure Mean SD 95% CI

TI (1-5) 3.31 0.84 3.21 - 3.41
Age 22.07 3.26 21.68 - 22.46
Maximizing (1-7) 4.38 0.70 4.30 - 4.46
WLLT 0.60 0.14 0.59 - 0.62
WRT 0.99 0.03 0.98 - 0.99
PALT 0.75 0.15 0.73 - 0.76
PALT s. 0.86 0.13 0.84 - 0.87
PALT n.s. 0.63 0.20 0.61 - 0.66
PART 0.97 0.09 0.96 - 0.98
PART s. 0.98 0.05 0.98 - 0.99
PART n.s 0.95 0.14 0.93 - 0.97
TUT(%) 8.51 13.46 6.91 - 10.11
TRI(%) 22.58 21.48 20.03 - 25.14
FA(%) 68.91 26.27 65.78 - 72.03

Note: s. = semantic; n.s. = nonsemantic

deviation below the ideal path towards the selected response
(r(269) = 0.13, p = .03), time to maximum deviation from
the ideal path overall (r(269) = 0.15, p = .01), time to max-
imum acceleration (r(269) = 0.19, p < .000), time to max-
imum velocity (r(269) = 0.18, p < .000), and time to mini-
mum acceleration (r(269)= 0.19, p< .000). In addition, TRI
was negatively correlated with performance on non-semantic
items in the paired recall test (r(269) = −0.13, p = .03).
Lastly, FA was inversely correlated with the same measures
that were positively correlated with TRI.

Dimensionality reduction Pearson’s correlations between
the mouse-tracking features indicate that some features may
be measuring nearly identical underlying constructs (e.g.:
time to reach maximum velocity (WRT) and time to reach min-
imum acceleration (WRT), r = 0.98). Therefore, PCA (with
oblimin rotation) was used to reduce the dimensionality of
the data separately for the WRT and PART features, remov-
ing any multicollinearity. We used Kaiser’s Criterion in order
to determine the number of principal components in the WRT
and in the PART separately. Five components were used that
cumulatively accounted for 29% 57% 70% 77% and 85% of
the variance in the mouse-tracking data in the WRT test, re-
spectively. For the PART, 4 components were used that cumu-
latively accounted for 33% 61% 76% and 86% of the variance
in the mouse-tracking data.

Regressions Subsequently, we performed two separate re-
gressions, one with TRI percentage as the dependent variable
and one with FA percentage as the dependent variable. As
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input for the regressions, we included the PCA components
which significantly correlated with MW frequency. Note that
no PCA components were significantly correlated with TUT.
The second component (temporal) from the PART was sig-
nificantly correlated with TRI and FA frequency (r = 0.18
for TRI and r =−0.17 for FA).

Results of the regression indicate that percentage of TRI
was significantly predicted by the temporal principal com-
ponent (R = .17, adjusted-R2 = 0.03, F(1,269) = 8.56, p =
.004). Regression coefficients are shown in Table 2.

Table 2: Temporal Principal Component as a predictor of
Task-related Interference.

B SE(B) t p

(Intercept) 22.68 1.29 17.57 < .000
PART TC2 (temporal) 3.78 1.29 2.93 .004

Adjusted R2 = 0.03, p = .004

Similarly, percentage of FA was also significantly pre-
dicted by the temporal principal component (R = .17,
adjusted-R2 = 0.03, F(1,269) = 8.23, p = .004). Regression
coefficients are shown in Table 3.

Table 3: Temporal Principal Component as a predictor of Fo-
cused Attention.

B SE(B) t p

(Intercept) 68.81 1.58 43.55 < .000
PART TC2 (temporal) -4.54 1.58 -2.87 .004

Adjusted R2 = 0.03, p = .004

Task Interest, Decision Making Style, and MW
In order to investigate the relationship between task inter-
est, decision making style, and MW, we observed corre-
lations between the variables. In line with previous find-
ings (Unsworth & Mcmillan, 2012), task interest was posi-
tively correlated with FA (r = 0.18) and negatively correlated
with TUT (r = −0.24). Interestingly, and novel to this re-
search, we found that maximizing was positively related to
TRI (r = 0.12) and negatively correlated to FA (r = −0.12).
2).

Discussion
In accordance with previous literature (Unsworth & Mcmil-
lan, 2012), we found that MW is negatively correlated with
task interest. Interestingly, we found a maximizing decision-
making style to be be positively related to TRI and negatively
related to FA. Novel to our research, we discovered that TRI
percentage is related to more maximizing, while FA percent-
age is related to more satisficing. That is, the need to select
the best possible option is reflected in the amount of TRI in a

Figure 2: Relationship between TRI and Maximizing (r =
0.12) and FA and Maximizing (r =−0.12)

task, while satisfaction with selecting the good enough alter-
native is more related to FA during a task. This relationship
has important implications, as it may be that a maximizing
trait could potentially influence, through rumination, a ten-
dency for having task-related interference, leading to poorer
performance in tasks. Although this relationship was not di-
rectly tested in this study, future research could investigate
the relationship between maximizing, rumination, and task-
related interference further.

Moreover, we found a negative correlation between perfor-
mance on non-semantic items in the Paired Recall task and
TRI; however, we found no effect of any of the other memory
tests on the proportion of TUT or TRI. This may be explained
by two reasons. First, it may be that the tests were too easy,
as reflected by the particularly high scores on the recognition
tests. Second, it is likely that the scores on the episodic and
associative memory tests do not accurately represent the as-
pects of episodic memory that are related to MW, i.e., aspects
that are most likely contextually dependent and vary from in-
dividual to individual. Finally, if we observe the distribution
of MW scores, over half of the participants never reported
having TUT during the working memory task. This indicates
that the OSPAN task was too engaging and demanding, leav-
ing little room for TUT.

According to the default variability hypothesis (Mills et
al., 2018), mind wandering serves the purpose of (episodic)
memory consolidation. The results found by Riby et al.
(2008) demonstrate that performance on episodic memory
tests is unaffected by the proportion of mind wandering.
However, low mind wanderers used a pure recollection strat-
egy while high mind wanderers used additional monitoring
strategies. Thus, it may be that mind wandering about the
items in the episodic memory task helped consolidate memo-
ries of high mind wanderers during the task. However, some-
thing that neither Riby et al. (2008) nor our study did was
assess the content of MW thoughts during the task. In or-
der for us to verify the default variability hypothesis in the
short term, as measured by episodic memory tests, it is also
necessary that we consider the contents of mind wandering
thoughts. For instance, MW about the items in the episodic
memory task versus MW about something completely unre-
lated would likely have differential effects on memory con-

2596



solidation.
Despite the ceiling effects we found in the recognition

tests, we did find that mouse movements recorded during both
episodic and associative forced choice recognition tests are
related (albeit weakly) to MW in a subsequent working mem-
ory task. Therefore, it may be that a greater proportion of
MW during a task is related to a general tendency to mind
wander and, thereby, be detectable in specific overall mo-
tor behaviors beyond the task during which a person is mind
wandering. In this study, mouse movements during episodic
and associative memory tasks served to predict task-related
interference (albeit weakly) and focused attention during a
subsequent task. The most important feature in predicting
task-related interference and focused attention was a tempo-
ral principal component, which contains information about
the evolution of trajectories over time. This is consistent with
the highly significant correlations that emerged between TRI
and the various time-related mouse measures (RT, idle time,
time to reach maximum deviation, time to reach maximum ve-
locity, etc.) Such features characterize the degree of commit-
ment towards a response during mind wandering, such that
negative correlations (with FA) represent quicker and more
automatic decisions, while positive correlations (with TRI)
represent a delay in the commitment towards a response.

Returning to Riby et al. (2008)’s findings, high mind wan-
derers differed from low mind wanderers in their use of addi-
tional monitoring and strategic processing to compensate for
mind wandering. Linking their findings to ours, it may be
that monitoring and strategic processing are indicated differ-
ently by general mouse movement features according to the
type of MW thought. Our findings indicate that some mouse
movement features correlated with TUT in one task, and other
mouse movements correlated with and predicted TRI and FA
in another task. This may be explained by the differences in
the two tasks (WRT & PART). The WRT only had 2 alterna-
tives, while the PART had 4 alternatives. Moreover, the tests
recruited different parts of memory differentially - the WRT
only involved recognition of previously seen words during the
WLLT, while the PART required the recruitment of associa-
tive memory8 for remembering associations between words.

Finally, in order to better understand how MW may be re-
lated to decision making as well as performance on episodic
memory tasks and overall motor behaviors, it would be rel-
evant to assess trait differences in MW in addition to state
differences. Moreover, it would be interesting to see if the
relationship between trait MW and motor movements gener-
alize to different types of computer mouse-based tasks.

Conclusion
The relationship between episodic memory and MW is a
complex one, and it is likely that the episodic and associa-
tive memory tests which we used were unable to capture this
relationship fully. This may be either due to the tests demands

8In addition, the PART requires inhibition of previously learned
semantic associations learned in different contexts.

being too low and hence not able to capture individual differ-
ences in terms of accuracy, or because the tests did not cap-
ture the aspects of episodic memory that vary according to the
context and to the individual. Interestingly though, we have
found evidence for a relationship between specific computer
mouse movements and MW, which warrant further investiga-
tion. In particular, future research should see if our findings
generalize to unseen data. Lastly, we have found a novel re-
lationship between MW and maximizing, in that maximizing
was related to an increased frequency of TRI and less FA. Our
aim in this study was to explore an encompassing model of
mind wandering starting from its inputs, determined by what
enters into episodic memory and ending with behavioral out-
puts, which are visible in mouse movement patterns. We be-
lieve we have taken a small step for a better understanding of
how our minds wander and navigate this world.

Supplementary Information
Experiment Materials All materials used in the task are
available at https://osf.io/dse3k/
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Abstract

Creating effective educational interventions that correct
people’s misconceptions is difficult. This has led many
researchers to conclude that people do not properly attend to
new information in a way that they should. However, even if a
scientifically-grounded intervention fails, it is still possible
that other interventions would be effective. Yet, it is not
practically feasible to systematically explore and test the
entire hypothesis space of possible interventions. Here, we
examined whether researchers could use online arguments to
develop effective educational interventions, in effect,
narrowing the intervention hypothesis space. Across two
experiments (N = 1,816), we found that arguments
crowdsourced from Reddit’s Change My View were as
effective or more effective at changing beliefs than
interventions developed by academics and published in
top-tier scientific journals. These results suggest that
researchers can build on successful crowdsourced arguments
to develop effective educational interventions likely to correct
people’s misconceptions in more naturalistic settings.
Keywords: belief change; crowdsourcing; crowd work

Introduction
It can be difficult to find common ground with people we
disagree with. People’s beliefs about polarizing issues are
often deeply entrenched and evidence that counters these
beliefs generally does not lead people to change their minds.
This intransigence comes at a cost: Polarization is a growing
problem in the United States (Pew Research Center, 2014)
and widespread misinformation and misconceptions about,
for example, climate change only exacerbate polarization,
posing considerable challenges to society. What’s more,
even in situations when very few people hold a misinformed
belief–––such as believing that vaccines cause autism–––the
consequences can still have a widespread negative effect in
society; this is evident from the recent resurgence of measles
borne from parents refusing to vaccinate their children,
citing fears that vaccines cause autism (Center for Disease
Control, 2019).

To effectively educate the public, researchers have
attempted to confront belief polarization and resistance to
evidence by experimentally testing whether educational
interventions can induce rational belief updating (e.g.,
Horne, Powell, Hummel, & Holyoak, 2015; Lai et al., 2014;
Nyhan & Reifler, 2015; Nyhan, Reifler, Richey, & Freed,
2014; Turetsky & Sanderson, 2018). Ideally, people would
always properly update their beliefs in accordance with the
evidence. However, many interventions developed by
scientists are ineffective (e.g., Nyhan et al., 2014), leading

researchers to conclude that people cannot change their
beliefs about issues such as climate change, vaccination, or
immigration.

There are several psychological explanations that might
explain why educational interventions are often ineffective.
First, people interpret evidence to confirm their
previously-held beliefs (Klayman, 1995; Nickerson, 1998),
and our strongly-held beliefs–––such as political and moral
beliefs–––are deeply rooted in our views of ourselves (e.g.,
Strohminger & Nichols, 2014; Carney, Jost, Gosling, &
Potter, 2008), and thus are particularly resistant to change
(Kahan, Peters, Wittlin, Slovic, & Ouellette, 2012). Second,
even when people assimilate evidence, they do so
imperfectly, requiring much more evidence than seems
epistemically warranted (e.g., Priniski & Horne, 2018). Even
massive education campaigns seem to yield only minor
changes in public opinion and behavior (e.g., Fiore et al.,
1990). Together, these results have led many researchers to
either conclude that meaningful belief change is, in a
practical sense, infeasible or that something other than
education and evidence is needed to overcome strongly-held
beliefs.

However, when an educational intervention fails to change
people’s misconceptions, this does not entail that other
educational interventions (even similar interventions) would
fail as well. It is an empirical question whether an untested
intervention would turn out to be efficacious. Indeed,
researchers have successfully developed effective
educational interventions. For instance, Lewandowsky,
Gignac, & Vaughan (2013) found that making people aware
of the scientific consensus surrounding climate change using
icon arrays positively affected people’s beliefs. More
recently, researchers have found that educational
interventions can change vaccine intentions (Horne et al.,
2015), correct mental health misperceptions (Turetsky &
Sanderson, 2017), and address implicit racial biases, though
these changes may be transient (Lai et al., 2014). However,
beyond combing the academic literature, researchers have
little to go on in predicting whether a given untested
intervention will succeed or fail. Moreover, educational
interventions are rarely tested outside of the lab, which
allows for the possibility that effective educational
interventions developed in the lab will fail to generalize
beyond tightly controlled settings (Priniski & Horne, 2018).
To complicate matters further, the hypothesis space of
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possible interventions is very large (read, infinite).
Consequently, it is not feasible for any given lab or even a
group of labs to systematically explore the entire hypothesis
space of educational interventions to determine whether a
possible intervention could change people’s beliefs about a
given topic. A methodological advance is needed to avoid a
protracted search through the intervention hypothesis space.

We propose a new method for developing educational
interventions: Using successful persuasive arguments culled
from online discussions (for example, from the Reddit forum
Change My View). We propose that developing
interventions based on existing arguments that have proven
to be effective in naturalistic environments provides a
compelling starting place for the development of effective
educational interventions.

Change My View
Change My View is a popular Reddit forum where users post
their views on issues ranging from gun control to opinions
about movies. Redditors posting in this community
understand that others will attempt to change their view by
providing arguments opposing their beliefs (see Table S1 in
Supplemental Materials, found at https://osf.io/v54ut/). As
one would expect, some arguments are more persuasive than
others and thus the variance in argument quality found on
the forum provides a naturalistic resource for examining the
features of effective arguments.

As a naturalistic data source, Change My View has
provided several insights into how belief change occurs
outside of the lab. For example, Priniski and Horne (2018)
found that arguments containing more statistical language
and links to news or scientific articles were more likely to
change other users’ strongly-held beliefs—evidence can
change people’s minds. Other researchers have examined the
logical qualities of effective arguments on the forum (e.g.,
use of classical modes of persuasion: ethos, logos, pathos,
Hidey, Musi, Hwang, Muresan, & McKeown, 2018).
Research on Change My View has extended beyond social
psychology. Computer scientists have developed
computational models that extract features of argumentation,
such as predicting the probability an argument is effective
given linguistic features (Tan, Niculae,
Danescu-Niculescu-Mizil, & Lee, 2016) or machine
classifying “parts” of beliefs most amenable to change (Jo
et. al, 2018).

While many researchers have examined the factors that
predict belief change among Change My View users, it is
unknown whether effective arguments taken from this forum
would be equally effective in more controlled contexts or
among a population not seeking arguments opposing their
beliefs. In fact, there are several reasons why belief revision
may look different on Change My View than it does in the
lab. These reasons pose concern for the generalizability of
effective arguments found on Change My View and need to
be experimentally addressed before Change My View can be
recommended as a crowdsourcing platform for effective

educational interventions.
For one, people who discuss certain topics–—and

particularly users on Reddit’s Change My View–––may be
more willing to change their minds and consider evidence
for an opposing argument. This may not be true for the
public at large, limiting the generalizability of these prior
findings. Second, people engaged in a debate on a particular
topic may be more motivated to deliberate on the topics
they’re discussing. This fact may make online communities
such as Change My View an ideal population to study
central rather than peripheral routes to persuasion (Petty &
Cacioppo, 1986). However, it may also make online
communities unrepresentative of the general population who
may not be so ready to entertain evidence that is contrary to
their beliefs.

Altogether, controlled laboratory research is necessary to
understand if the persuasive tactics deployed online can
generalize to other populations and, in turn, serve as a
starting place for developing educational interventions.

Present Experiments
In the present experiments, we identified successful
arguments on Change My View and performed a
head-to-head comparison to interventions reported in
academic psychology, public policy, political science,
communications, and behavioral economics
articles––adopting a methodological approach most
analogous to a strategy relied on in clinical trials (e.g.,
Leuch, et al., 2013). Namely, we compared crowdsourced
arguments to academic arguments that have been shown to
be somewhat effective at changing people’s beliefs (or at a
minimum, exert the same task demands on participants).
Performing this comparison allowed us to predict whether
effective educational interventions can be culled from online
communities and used as effective interventions in
controlled laboratory settings.

It is worth highlighting how this experimental strategy
diverges from comparing the performance of an intervention
to an inactive control condition. As opposed to controlling
for features of naturalistic interventions to uncover what
makes them effective, the paradigm we are proposing first
identifies the interventions that yield desirable consequences
(e.g., a reduction in misconceptions surrounding structural
racism), at which point we can subsequently uncover the
mechanisms that realize these positive effects. As a
consequence, academic and crowdsourced interventions will
differ along many unknown dimensions (including length,
the task performed, the information presented, and so on).
However, we do have prior evidence (either from empirical
studies or from data mined from discussion forums) that
signal the efficacy of each of the interventions being
compared. Ultimately, researchers aim to develop
interventions that can effectively educate the public, making
this dimension–––efficacy–––the most central on which to
assess an educational intervention.
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With this goal in mind, in Experiment 1 we compared the
efficacy of crowdsourced and academic interventions at
changing beliefs across four hotly-debated topics.
Experiment 2 was an extension of Experiment 1, where we
further examined whether crowdsourced arguments would be
as effective as academic intervention across four new topics.

Experiment 1

Preregistration The projected sample size, predictions,
and analysis scripts were preregistered through Open
Science Framework. Experimental scripts, analyses, scales,
and Supplemental Materials are available at
https://osf.io/v54ut/.

Participants We recruited 916 participants through
Amazon’s Mechanical Turk to be 80% powered to detect a
Cohen’s d of .1 in a within-subjects design. Of the
participants recruited, 816 passed attention checks and were
included in the analysis of this study (333 men, 476 women,
4 non-binary, 4 preferred not to say; the median age of
participants was 35 years old).

Interventions Participants received four separate
interventions that focused on either (a) reducing racist
beliefs, (b) increasing support for vaccines, (c) increasing
support for gun control, and (d) reducing xenophobic
attitudes directed at immigrants. Participants received two
crowdsourced interventions and two academic interventions
(intervention type: within-subjects) with one intervention for
each topic. Therefore, we tested the efficacy of eight
interventions in total. Crowdsourced interventions were
copied-and-pasted comments that were awarded a “delta” in
a Change My View discussion—a signification that the
argument changed the view of at least one user on the forum.
We selected discussion comments from Change My View as
crowdsourced interventions if they met the following three
criteria. First, the comment was related to a topic that
psychologists have traditionally studied in the lab (e.g.,
climate change, gun control, xenophobia, etc.). Second, the
comment had been awarded a delta. Third, the content of the
comments could be developed into an intervention with
little-to-no editing, content change, or manipulation. Many
comments on Change My View satisfy these criteria and
could have been empirically tested, but the aim of the
present studies is to consider how several representative
crowdsourced examples could be developed into effective
educational interventions. (Detailed information about the
interventions can be found at https://osf.io/v54ut/).

Pretest and Posttest Measures We examined how
participants’ beliefs about four controversial topics changed
as a function of exposure to one of two educational
interventions (crowdsourced or academic) for a given topic.
Prior to completing the main portion of the study,
participants answered four questions assessing their pretest
beliefs about each topic. For instance, participants rated their
agreement with the assertion, “Gun control in America is

ineffective at reducing overall violence and crime”, which
was taken from a Change My View post (in this case, a post
about gun control). After responding to these four assertions,
participants proceeded to the intervention and post-test
portion of the experiment.

We developed four separate scales to measure people’s
beliefs about racism, vaccines, gun control, and xenophobia
directed at immigrants. Each scale was composed of five
items (with two items reverse coded). Items in a topic’s
posttest scale were created by rewording or expanding on a
pretest assertion. For example, an item in the posttest gun
control scale stated, “Societies with strict gun control have
similar crime rates as societies with little to no gun control.”
See the Supplemental Materials for more details on pretest
and posttest measures.

Procedure The experiment proceeded as follows: First,
participants rated their agreement with items measuring their
pretest beliefs towards all four topics. Next, participants
were randomly assigned either an academic or a
crowdsourced intervention for a given topic. After
completing this intervention (e.g., after reading information
about gun control), participants responded to that topic’s
posttest scale. After completing the posttest scale for a given
topic, participants advanced to a new topic and the procedure
was reiterated until they finished reading and responding to
questions about all four topics. The ordering and exposure to
a given intervention type was counterbalanced and
randomized.

Results and Discussion
Analytic Approach To test our hypotheses, we performed
Bayesian mixed effects modeling using the R package brms
(Burkner, 2018). We set regularizing priors for all population-
level effects in our models, which we detail below. These
priors are recommended because they provide conservative
effect size estimates and reduce the likelihood of overfitting
(Gelman, Lee, & Guo, 2015; McElreath, 2016). Following
the recommendations of Liddell & Kruschke (2018), Likert
data were modeled with a cumulative probability distribution.
The cumulative distribution is recommended for Likert scale
data because it assumes that ordered responses represent a
continuous latent construct.

We tested our hypothesis by fitting an ordinal
mixed-effects model predicting posttest beliefs based on the
interaction between condition (Reference = Academic
condition) and topic (Reference = Guns). This model
controlled for participants’ responses to the pretest
statement, which we treated as a monotonic effect. This
model included group-level effects of Subject and Topic and
allowed for heterogeneity in the slopes of the effects of
Condition and Topic on participants’ responses. Our model
is specified below in brms syntax (Bürkner, 2018):

Response ∼ Condition*Topic + mo(PreTest)
+ (1 + Topic + Condition | Subject)
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Figure 1: Posttest responses for each intervention tested in
Experiment 1 (1 = Strongly disagree; 7 = Strongly agree).
Relative effectiveness of a crowdsourced intervention can be
seen by comparing the leftward shift of responses across
interventions for a topic. Figures S5 through S8 in the
Supplemental Materials show posttest responses grouped by
pretest response for each intervention tested in tested in
Experiment 1.

Bayesian analyses formulate model parameters as
probability distributions wherein the posterior distribution
for a parameter θ is computed via the prior and likelihood of
θ. To model the joint probability distribution of participants’
responses, we specified priors over the possible effects each
parameter could have on our response variable:

βIntercept[1] ∼N (2.19,1)
βIntercept[2] ∼N (2.94,1)
βIntercept[3] ∼N (3.17,1)
βIntercept[4] ∼N (3.47,1)
βIntercept[5] ∼N (3.89,1)
βIntercept[6] ∼N (4.59,1)
βCondition ∼N (0, .5)
βPretest Belie f s ∼N (4,2)
βTopics ∼N (0,3)
βTopic × Condition Interactions ∼N (0, .5)

Ωk ∼ LKJ(1) where Ωk is a correlation matrix of
group-level parameter
Group-level parameters ∼N (1,2)

These analyses revealed that the crowdsourced interventions
countering racist (b = −.58, 95% CI [−.80, −.37]) and
anti-immigrant beliefs (b = −.40, 95% CI [−.60, −.18]) were
credibly more effective than an academic intervention;
interventions on vaccines and gun control were equally
effective (see Figure 1). These results suggest that there are
arguments being developed in online communities that are
comparably effective to interventions behavioral scientists
have developed. And considering crowdsourced arguments
have the additional virtue of being shown to be effective in a
naturalistic setting free from task demands, this may give
additional motivation for beginning development of
educational interventions on the basis of crowdsourced
arguments.

However, given that the present design lacks a completely
neutral control condition, it is important to be clear on what
these results do not show. First, these results do not
demonstrate the true magnitude of the effect of a given
intervention. Second, there is a large amount of variance in
intervention quality and effectiveness for any intervention
type, and there is no reason to think that all crowdsourced
arguments will always be as effective or more effective than
academic interventions. Rather, one should interpret the
results of Experiment 1 as suggesting that crowdsourced
arguments can provide a starting place for developing
educational interventions and doing so has the additional
virtue of giving us a priori reason to think they will
generalize to comparatively more naturalistic settings.

Experiment 2
Experiment 2 was a preregistered extension of Experiment 1.
The registration for this project can be found at
https://osf.io/v54ut/. This experiment followed an identical
procedure but tested the efficacy of academic and
crowdsourced interventions on four new topics: (a) reducing
sexist beliefs, (b) reducing transphobic beliefs, (c) reducing
denial in the negative effects of climate change, and (d)
reducing favor for capital punishment.

Participants We recruited 900 participants through
Amazon’s Mechanical Turk to be 80% powered to detect a
Cohen’s d of .1 in a within-subjects design. Of the
participants recruited, 745 passed attention checks and were
included in the analysis of this study (325 men, 416 women,
3 non-binary, 1 preferred not to say; the median age of
participants was 33 years old).

Results and Discussion
Like Experiment 1, we predicted that crowdsourced
interventions would be as effective or more effective than
academic interventions for the four new topics. We fit the
same ordinal regression model with the same priors as
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Figure 2: Posttest responses for each intervention tested in
Experiment 2 (1 = Strongly disagree; 7 = Strongly agree).
Relative effectiveness of a crowdsourced intervention can be
seen by comparing the leftward shift of responses across
interventions for a topic. Figures S9 through S12 in the
Supplemental Materials show posttest responses grouped by
pretest response for each intervention tested in tested in
Experiment 2.

Experiment 1.
In Experiment 2, we found that crowdsourced

interventions were equally effective as academic
interventions across three topics; the academic intervention
aimed at shifting people’s beliefs about climate change was
more effective than the crowdsourced intervention, b = .24,
95% CI [.00, .40].

Discussion
People’s beliefs about topics like science and morality are
stubbornly resistant to new information. Developing
educational interventions to correct these beliefs is a difficult
task that often results in fruitless outcomes. It is also often
unknown whether an intervention that manages to
successfully shift beliefs in the lab will be similarly effective
in a more naturalistic setting. The present studies suggest

that researchers can use crowdsourced arguments to better
predict and develop effective educational interventions.
Furthermore, crowdsourcing effective arguments can impact
the study of belief revision directly by elucidating which
types of information are most effective at changing strongly
held beliefs: a topic of interest to many researchers studying
higher-level cognitive processes. In two experiments, we
tested whether arguments crowdsourced from the Reddit
forum Change My View could be used to such an end. In
Experiments 1 and 2, we compared arguments crowdsourced
from Change My View to interventions taken from academic
research in psychology, communications, political science,
behavioral economics, and public policy. In Experiment 1,
we found that across four topics, crowdsourced arguments
were as effective or more effective at changing beliefs
compared to previously published or tested educational
interventions developed by academics. Experiment 2
followed the same procedure, finding that crowdsourced
interventions were as effective at changing beliefs in three of
four topics. In only one case did an academic intervention
perform better at correcting scientific misconceptions than a
crowdsourced intervention.

In light of these results, we propose that arguments mined
from online communities can be used to develop educational
interventions. How might this process work? Consider the
results in Experiment 2: We observed that an academic
intervention containing an icon array (Lewandowski, et al.,
2013) was more persuasive than a similar crowdsourced
intervention that did not contain data visualization. This
finding is consistent with a large body of research
demonstrating that data visualizations can effectively
communicate complex information (e.g., Fernandes, Walls,
Munson, Hullman, & Kay, 2018). In future research, we
propose that researchers could begin to develop an
educational intervention by first turning to crowdsourced
interventions that appear effective and then extending them
based on well-established theoretical considerations. For
instance, we found that a crowdsourced intervention about
the repercussions of structural racism was much more
effective than an academic intervention aimed at shifting
people’s implicit racial biases (Lai et al., 2014). One
possibility, then, is that we could further improve the
efficacy of this crowdsourced intervention by augmenting it
with compelling visualizations. In this way, researchers
would be able to develop interventions that have the twin
virtues of demonstrating prior success in naturalistic
environments and having strong empirical support from
controlled laboratory studies.

However, the present experiments have some clear
limitations. By design, both experiments lacked a true
control condition, leaving an important question
unanswered: Exactly how effective are these interventions at
changing beliefs? The present studies compared the relative
effectiveness of crowdsourced interventions to academic
interventions, and didn’t demonstrate how effective they are
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with respect to a neutral control condition. Future work
should compare interventions to a true control condition in
order to make explicit how effective a given intervention is at
changing beliefs.

Change My View is also not the only place researchers
could crowdsource effective arguments; a web application
could also assist in mining, for example, Facebook and
Twitter for effective arguments. The tool we are proposing
could take queries (e.g., topics for an intervention) and
return effective arguments filtered by the searched terms.
Such a system could allow researchers to not only
crowdsource educational interventions more effectively, but
also gain an understanding of how arguments are
communicated and received among members of online
communities.

A cursory look on Reddit, Twitter, and Facebook
demonstrates that people naturally engage in (sometimes)
persuasive argumentation. Here, we proposed that
psychologists can mine this information to efficiently create
educational interventions that are more likely to persuade
people than the methods researchers currently
use—crowdsourced interventions have the advantage of
being vetted, so to speak, in naturalistic contexts. Two
experiments provide support for this proposal. We observed
that crowdsourced arguments were more effective or often as
effective as academic interventions aimed at correcting
misconceptions about several societally important topics.
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Abstract 

Curiously, people assign less punishment to a person who 
attempts and fails to harm somebody if their intended victim 
happens to suffer the harm for coincidental reasons. This 
“blame blocking” effect provides an important evidence in 
support of the two-process model of moral judgment 
(Cushman, 2008).  Yet, recent proposals suggest that it might 
be due to an unintended interpretation of the dependent 
measure in cases of coincidental harm (Prochownik, 2017; also 
Malle, Guglielmo, & Monroe, 2014). If so, this would deprive 
the two-process model of an important source of empirical 
support. We report and discuss results that speak against this 
alternative account. 

Keywords: blame blocking; two-process model; punishment; 
outcomes; actions; pragmatics  

Introduction 

Imagine that two runners compete in a championship race. 

One of the runners is a frequent winner, and so another racer 

decides to kill him and exclude him from the competition. He 

mistakenly believes that his rival is fatally allergic to poppy 

seeds, and so he sprinkles some on his rival’s food at the 

banquet. The champion is not allergic to poppy seeds at all, 

however, but instead to hazelnuts. What’s more, completely 

by coincidence, the chef happens to have served a hazelnut 

salad, and the champion dies as a result of consuming it.  

The “blame blocking” phenomenon, first reported in the set 

of studies by Cushman (2008), is that people will tend to 

reduce blame and punishment assigned to the attempted 

harmdoer because of the coincidental harm caused by the 

salad.  In other words, if the salad has no hazelnuts and the 

intended victim survives, the attempted harmdoer is blamed 

and punished more. This effect is notably large.  Specifically, 

in the study based on the above story Cushman (2008) found 

that about half as many subjects assigned no punishment to 

the runner where no harm occurred compared with the case 

in which the rival coincidentally died (p. 374). That is, the 

coincidental death of the rival made participants twice as 

likely to let the runner off the hook.  

One explanation of this puzzling effect posits two 

processes of moral judgment that render moral judgments 

separately on the basis of (1) causal responsibility for harm, 

or (2) a culpable mental state, such as intent to harm 

(Cushman, 2008). According to the model, then, when there 

was no causal input in the story (i.e., no coincidental harm 

occurs), the “mental state process” dominates and 

punishment judgments are therefore based on the evaluation 

of the agent’s mental states alone. Because the relevant 

mental state was severe intentional harm, this tends to result 

in non-zero levels of punishment. On the other hand, when 

causal inputs are present (i.e., a coincidental harm occurs) but 

the runner himself is non-causal, the process of moral 

judgment predicated on causal responsibility competitively 

dominates (or “blocks”) the evaluation of his mental states. 

The causal responsibility process assigns no punishment to 

the runner (who, of course, has no causal responsibility for 

the harm). Stated more generally, a two-process model of 

moral judgment can accommodate the pattern of results 

because it posits competition between a causal process 

seeking full exculpation (no punishment) and a mental state 

process seeking full inculpation (punishment) in cases of 

failed attempts to harm with independently caused harm, 

while the relative influence of the causal process is 

minimized in cases of pure failed attempts.  

The two-process model is compatible with theories of 

moral judgments that identify intentional and causal 

evaluations as primary contributors to blame and punishment 

(e.g., Alicke, 2000; Alicke & Rose, 2012; Carlsmith & 

Darley, 2008; Darley & Shultz, 1990; Fincham & Jaspers, 

1979; Shultz, Schleifer, & Altman, 1981; Shultz, Wright, & 

Schleifer, 1986; Weiner, 1995; Guglielmo, Monroe, & Malle, 

2009; Malle, Guglielmo, & Monroe, 2014; Piaget, 

1932/1965). It departs from most of these theories, however, 

in the assumption that causal and mental state evaluations 

proceed separately and compete during moral judgments of 

blame and punishment, rather than being combined and 

integrated in a single process.  

 In addition to the blame blocking phenomenon, some 

independent evidence provides support for the two-process 

model. Young, Cushman, Hauser, and Saxe (2007) found 

neurological signature of conflict for adult judgments of 

accidental harms in which intentional and causal evaluations 

point in different directions. Several studies show that 

punishment judgments are especially strongly influenced by 

the causal process in ordinary cases of harm (Martin & 

Cushman, 2015, 2016), and developmental evidence suggests 

that this pattern is a vestige of an early-emerging “causal” 

process of moral judgment augmented by a later-emerging 
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“mental state” process (Cushman, Sheketoff, Wharton, & 

Carey, 2013). 

Here, we consider another explanation of the blame 

blocking effect—one that depends on assumptions about how 

people interpret the pragmatics of the dependent measure 

used to trigger this effect. Specifically, the question “How 

much prison time does [agent] deserve?” used by Cushman 

(2008) might be interpreted by participants differently across 

conditions: as implicitly referring to punishment for behavior 

(how much should the runner be punished for trying to kill 

his rival with poppy seeds) in the “no harm” condition, but as 

implicitly referring to punishment for a harmful outcome 

(how much should the runner be punished for the victim’s 

death by the hazelnuts) in the coincidental harm condition 

(see also Prochownik, 2017). If the agent in two scenarios 

were evaluated against these very different standards in each 

case it would explain the blame blocking effect without 

appeal to two processes of moral judgment. We call this 

alternative “pragmatics account” because it relies on an 

assumption that people take a broad context into account 

when deciding what for to punish others (cf. Prochownik, 

2017).1 

In this paper we examined this alternative hypothesis by 

conducting two experiments. In Experiment 1, we 

manipulated the question about punishment to ensure that it 

is interpreted with a wide scope, encompassing not only what 

the agent caused (or did not), but also what he intended. Next, 

in Experiment 2, we used the original dependent measure that 

was previously used to elicit the blame blocking effect, and 

then asked participants a series of questions designed to 

clarify how they understood it.  

 Collectively, the results of these experiments suggest that 

unintended interpretations of the dependent measure are not 

sufficient to explain the full blame blocking effect.  

Experiment 1 

The goal of Experiment 1 was to test whether a more precise 

phrasing of the dependent measure would eliminate the 

previously observed blame blocking effect.  In the baseline 

condition (“unspecified”) we left the question identical to 

previous experiments by Cushman (2008): “In your opinion, 

how much prison time does X deserve?” In the novel 

condition (“specified”) we modified the question so that it 

more clearly pointed at the agent’s total set of behaviors as 

the target of punishment, thus diminishing the chance that it 

would be interpreted in terms of outcome alone (following in 

this respect Prochownik, 2017): “Suppose that X were 

apprehended by the police and put on trial.  Given the 

complete set of behaviors and facts, in your opinion how 

much prison time does he deserve?”  

                                                           
1 The importance of pragmatic considerations for participants´ 

(re)interpretations of research stimuli has been also raised by some 

recent studies (e.g., Guglielmo & Malle, 2010; Samland & 

Waldmann, 2016; Wiegmann, Samland, & Waldmann, 2016; Hagan 

& Rozyman, 2017). 
2 The “unspecified” punishment question was taken from 

Cushman (2008): Experiment 4. However, the scale differed from 

The language that we used in the “specified” condition was 

borrowed from earlier research. In particular, Prochownik 

(2017) found that people with legal education tended to 

manifest the blame blocking effect only when the punishment 

question was unspecified, but the effect disappeared when it 

was specified, suggesting a key role for pragmatics in this 

group of respondents. However, Prochownik & Unterhuber 

(2018) did not replicate this finding in their comparative 

study including both lay people and legal experts. In 

Experiment 1 we use the same version of the “specified 

punishment question” as these researchers, but we focus 

exclusively on lay people in a well-powered study, and also 

examine it more systematically (across sixteen scenario 

contexts instead of just two or three as in these previous 

studies). 

Methods 

We tested 20 participants in each of 64 cells of a 2 (harm vs. 

no harm) x 2 (specified vs. unspecified) x 16 (scenario 

context) design, for a total sample of 1280. Participants were 

recruited on MTurk in the US. After consenting to participate 

in a short study for small compensation ($0.30), they filled an 

online Qualtrics survey comprised of one scenario, a 

punishment probe, and demographic questions (age, gender, 

nationality, exposure to moral philosophy, religiosity, etc.). 

Participants marked their answers on a scale with 11 

anchored options: “None”, “1 week”, “1 month”, “3 months”, 

“6 months”, “1 year”, “2 years”, “4 years”, “8 years”, “16 

years”, “32 years”.2 

The total set of 16 scenarios varied along several 

dimensions. Most notably, half of them involved physical 

harm (burning, cutting, stabbing, etc.) while the remaining 

half involved property harm (arson, defacement, etc.). The 

full text of all study scenarios is available online as 

Supplementary Materials: 

 https://osf.io/9w4ke/. 

Results 

As summarized in Figure 1, we observed the basic blame 

blocking effect in both the “specified” and “unspecified” 

conditions.  Indeed, if anything, the blame blocking effect 

was slightly larger in the new “specified” condition.  In order 

to analyze the data more fully we conducted a linear mixed 

effect analysis. First, we constructed a null model without 

fixed effects for harm or punishment question type, but 

including a random effect for scenario. We then found that 

this model was significantly improved by modelling the harm 

factor, χ2 (3) = 61.49, p < .001. Next, we found that this “harm 

only” model was not significantly improved by modelling the 

punishment question type factor χ2 (4) = 1.17, p = .8826, or 

the 9-points scale used by Cushman in his study as for the majority 

of scenario contexts we did not use attempted murders but attempts 

of less severe crimes (including bodily injuries and damages to 

property) for which we needed a greater range of less severe 

sentences. As a result, we could also examine if the previous 

findings replicate when a different scale of punishment ratings is 

used.  
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by modelling both this factor and its interaction with harm         

χ2 (9) = 4.1, p = .9047. In summary, then, the best-fitting 

model included only harm as a factor. In other words, we 

observe a significant effect for the harm vs. no harm factor, 

but no significant effect for the specified vs. unspecified 

factor, or for its interaction with harm.   

We next assessed whether there are significant differences 

between scenarios in the magnitude of the blame blocking 

effect that they induce by testing whether random intercepts 

(i.e., an interaction between scenario context and the effect of 

the “harm” variable) contribute significantly to the model. 

They do, χ2 (2) = 20.9, p < .001, indicating meaningful 

variability between vignettes. We next tested whether the 

model was improved by adding a fixed effect for “physical” 

versus “property” harms, but it was not χ2 (9) = 7.94, p = .54. 

The precise nature of the relevant differences between 

scenarios therefore remains an important topic for further 

research. 

Discussion  

Experiment 1 shows that the blame blocking effect is not 

diminished by an alternative phrasing of the dependent 

measure designed to clarify that punishment could apply to 

any aspect of an attempted harmdoer’s conduct—including, 

most importantly, the attempted harm. 

These results speak against the alternative interpretation of 

that effect in terms of the pragmatic constraint on the way 

ordinary people assign punishment, and instead support the 

two-process model of moral judgment.  

 

However, one limitation to this experiment is that by 

asking participants to consider the entire event when making 

their punishment judgments, we cannot completely exclude 

the possibility that some participants interpreted the question 

as referring to the outcome alone. If so, it is still possible that 

people who interpreted the question as referring to the 

outcome were driving the blame blocking effect. To address 

this problem we conducted an additional experiment which 

faithfully replicated the original “runners study” by Cushman 

(2008) but differed in one important element: participants in 

the “Harm” condition were presented with an additional 

question about how they understood the question about 

punishment (i.e., what they thought the punishment was 

meant to be for). 

Experiment 2 

In this experiment we replicated Cushman`s Experiment 4 

(2008) but we presented participants in the “Harm” condition 

with an additional question about how they understood the 

punishment question after they have responded to it.  

Specifically, we asked explicitly whether they understood the 

question “how much punishment does X deserve?” to refer to 

“punishment for the actual harm” (e.g., death of a runner) in 

the coincidental harm condition. Such an interpretation, 

which is consistent with the pragmatics account, would 

explain away the purported “blame blocking effect.”  

We offered participants two alternatives to this 

interpretation of the question: First, that “punishment” 

referred only to the attempted harm (e.g., the sprinkling of 

poppy seeds on a salad with intent to cause an allergic    

reaction) and, second, that it referred to both the attempted 

Figure 1: The blame blocking effect was replicated both in the “unspecified” condition, which directly matches the original 

demonstration (Cushman, 2008) and in the “specified” condition, which was designed to eliminate the alternative 

explanation of the effect in terms of pragmatics. 

 

2608



and actual harm.  The blame blocking model is agnostic with 

respect to these alternatives—crucially, both of them entail 

sensitivity to the attempted harm, and thus the null prediction 

would be equal punishment across the no harm and 

coincidental harm conditions, both of which involve this 

attempted harm.  The two-process model attempts to explain 

why participants who interpret the punishment question to 

include this key shared element—the attempted harm—

would nevertheless be more likely to fully exonerate the 

attempted harmdoer in the coincidental harm case. 

Study hypotheses, methods of analyses, sample size 

calculation and exclusion criteria were preregistered (the 

OSF preregistration document can be viewed at 

https://osf.io/pf574). 

Methods 

1007 complete responses were collected via TurkPrime in the 

US using Qualtrics anonymous link (we intended to recruit 

500 participants per each of the study conditions). 

Participants were payed $0.50 for taking part in the survey.   

Participants were asked to imagine that they are in a jury in 

a case of a defendant named Brown. In following, they were 

presented with a story of two runners named Brown and 

Smith competing in a championship race. One group of 

participants saw the variant of the story where Brown tries to 

kill Smith by sprinkling the poppy seeds on his food, but no 

harm results (“No Harm” condition). Another group of 

participants was presented with the story in which Smith dies 

because of the hazelnuts in the salad that he is served, 

completely independently of Brown´s actions (“Harm” 

condition). After reading the story all participants were 

asked: “How much prison time does Brown deserve?”, and 

chose between the nine following options: “None”, “6 

months”, “1 year”, “2 years”, “4 years”, “8 years”, “16 

years”, “32 years”, “Life” (Cushman, 2008). 

On the next page of the survey, participants in the “Harm” 

condition were presented with the following “Harm 

Understanding Question”:  

“On the last screen you were asked to decide how much 

prison time Brown deserved. Which of the following did you 

think was meant by that:  

1. How much prison time for sprinkling poppy seeds 

on Smith’s food?  

2. How much prison time for the death of Smith?  

3. How much prison time for both sprinkling poppy 

seeds on Smith ́s food and the death of Smith?”3 

Participants who chose the third option (“for both”) were 

additionally asked two questions about punishment for the 

action alone and for the outcome alone to enable the 

researchers better understand their previous answers: “How 

much prison time does Brown deserve only for the death of 

                                                           
3 This and two following questions were omitted in the “No 

Harm” condition as no death of Smith resulted in this story.  
4 In the first multi-choice comprehension question participants 

could choose from the following responses: “Because he thought the 

poppy seeds would make Smith sick for a couple of days”, “Because 

he thought Smith liked poppy seeds”; “Because he wanted to kill 

Smith?” and “How much prison time does Brown deserve 

only for sprinkling poppy seeds on Smith ́s food?”.  Answers 

to both questions were marked on the same 9-points scale as 

above.  

Finally, all participants were asked two comprehension 

questions about the story they read: “Why did Brown sprinkle 

poppy seeds on Smith ́s food?” (multi-choice question) and 

“Did Smith die as a result of Brown sprinkling poppy seeds 

on his salad?” (two-choice question).4  

Participants were excluded from the analysis if they 

answered incorrectly to any of the two comprehension 

questions (i.e., if to the first question they provided any 

answer other than “Because he wanted to kill Smith” and/or 

if they answered “Yes” to the second question). This resulted 

in 840 responses included in the analysis (NHarm = 420, 

NNoHarm = 420). 

Results 

Percentages of different responses to the “Harm 

Understanding Question” (n = 420, 100%) were as follows: 

56.4% (n = 237) respondents understood the punishment 

question as being for sprinkling poppy seeds on Smith´s food, 

19.3% (n = 81) as being for the death of Smith, and 24.3%          

(n = 102) as being for both sprinkling poppy seeds on Smith´s 

food and the death of Smith. 

Consistent with our preregistered plan, and following the 

key analysis by Cushman (2008), we recoded the responses 

to the main punishment question to a binary variable with the 

following values: “No punishment” (all “None” responses) 

and “Any punishment” (all the responses assigning some 

punishment from “6 months” to “Life”). Subsequently, to test 

the main hypothesis we performed two chi-square tests 

comparing the frequencies of “No punishment” vs. “Any 

punishment” responses across two study conditions “Harm” 

and “No Harm”: (1) a chi-square test with the overall sample 

(analysis repeating Cushman, 2008, Experiment 4), and (2) a 

chi-square test excluding people in the “Harm” condition 

who in the “Harm Understanding Question” replied that they 

understood the punishment question as referring to the 

outcome alone (i.e., the death of Smith).  

Overall, 35% people assigned “No punishment” in the 

“Harm” condition, while in the “No Harm” condition barely 

half as many (18%) of people did so.5 The difference was 

statistically significant, χ² (1, N = 840) 31.740, p < .001. 

Critically, this result held even after excluding participants 

who indicated that they thought the punishment question 

referred to punishment for the outcome only: among the 

remaining participants, 28% assigned “No punishment” in 

the “Harm” condition comparing to 18% in the “No Harm” 

condition. The difference was statistically significant,                    

χ² (1, n = 759) 11.763, p = .001 (Figure 2).   

Smith”, “Because he wanted Smith to go to the bathroom”. In the 

second question they could choose between two options: “Yes” or 

“No”.  
5 Note that in Cushman (2008) the numbers were very similar, 

with 34.5% participants in the “Harm” and 19.5% in the “No Harm” 

case deciding not to punish Brown at all (p. 374).   
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In addition to the main analyses reported above, we also 

assessed whether the result is driven by remaining 

participants who understood the punishment question to refer 

to the attempted harm only, or by those who understood it to 

refer to both the attempted harm and the outcome.  We found 

that the effect was maintained among those who understood 

the question to refer to both the attempted harm and the 

outcome: 43% people decided not to punish in this group 

comparing to 18% in the no harm group, χ² (1, n = 522) 

29.801, p < .001. It was not significant, however, among 

those who understood the question to refer to the attempted 

harm only; among this group, 22% people assigned “No 

punishment” in the “Harm” condition, comparing to 18% in 

the “No Harm” condition, χ² (1, n = 657) 1.620, p = .203.6 

 

 
 

Figure 2: Percentage of punishment responses in different 

study conditions: overall sample and sample without people 

who referred to the outcome alone (error bars indicate 

standard error). 

Discussion  

Experiment 2 demonstrated that the blame blocking effect 

persists even after excluding participants who interpreted the 

punishment question as referring to the outcome alone. This 

suggests that the “pragmatics account” is insufficient to fully 

explain the effect. 

                                                           
6 We focused on the binarized results because these were the key 

analyses to report the blame blocking effect in the original study 

(Cushman, 2008). However, for the sake of transparency we also 

report the analyses with the full range of responses. Following the 

original study we ran Mann Whitney Ranked Sums tests for three 

groups of participants: (1) in the overall sample participants 

assigned more punishment in the “No Harm” case than in the 

“Harm” case (MdnH = 3, MdnNH = 4). The difference was statistically 

significant,  Z(840) = 3.372, p = .001; (2) in the analysis without 

people who referred to the outcome alone, the difference was 

marginally statistically significant (MdnH = 4, MdnNH = 4), Z(759) = 

1.897, p = .058, (3) in the analysis without people who referred to 

the outcome alone and both outcome and action, the difference was 

not statistically significant (MdnH = 4, MdnNH = 4), Z(657) = 0.565, 

p = .572. Note that for these supplementary analyses Cushman 

Notably, however, the effect is driven by participants who 

say that they interpreted the punishment question to refer to 

“both” the attempted harm (sprinkling poppy seeds) and the 

coincidental harm (death by hazelnuts). It is weak, and 

perhaps entirely absent, among participants who say they 

interpreted the punishment question instead to refer 

exclusively to the attempted harm. 

On the one hand, this data is consistent with a natural 

interpretation of the two-process model, according to which 

some attention to the harm (in the coincidental harm case) is 

necessary to produce the competitive interaction between the 

causal process and the mental state process. After all, 

according to the two-process model, it is precisely the 

attention paid to (the absence of) causal responsibility for the 

coincidental harm that competitively blocks assessment of 

the culpable mental state of the attempted harmdoer in the 

coincidental harm case.  

On the other hand, this data is also consistent with an 

alternative explanation that we have not yet considered.  A 

variant of this alternative is proposed by Malle, Guglielmo, 

and Monroe (2014)7, who argue that blame in the 

coincidental harm case is the average of a high level of blame 

for the attempted harm and a low level of blame for the 

coincidental harm, whereas the blame in the no harm case is 

simply the high level for the attempted harm.  In other words, 

when people interpret the punishment question as “both” 

about the attempted harm and the coincidental harm, they 

may therefore assign amount intermediate between these two 

values.8  

We are in a good position to evaluate this alternative by 

analyzing an additional element of our data. Recall that, 

among people who said they interpreted punishment to refer 

to “both” the harm and the attempt, we then asked them to 

assign a specific amount of punishment to just the harm 

(presumably zero, as the harm was coincidental), and a 

specific amount of punishment to just the attempt.  Thus, we 

can ask whether the total amount of punishment assigned 

was, on average, lower than the amount of punishment 

assigned to the attempt alone.  This would be necessarily true 

on Malle and colleagues’ hypothesis, since they assume that 

the total amount of punishment will be intermediate between 

the amount of punishment assigned to each of the two 

elements individually.  Contrary to this prediction, however,  

(2008) reported marginally significant results with p = .11 (cf. p. 

374).  
7 Malle et al. (2014) apply this reasoning to judgments of blame, 

but they point out that there exists a similar pattern for judgments of 

criminal liability (p. 169). Since in the paper we focus on judgments 

of punishment, we consider their proposal in relation to this class of 

moral judgments.   
8 This proposal is similar to the account examined above as it 

assumes that people in different conditions may be judging the 

perpetrator for two different events. However, while the former 

would perceive the blame blocking effect as a result of people 

interpreting the dependent measure in terms of outcome alone, 

Malle and colleagues` account would explain it in terms of people 

judging the perpetrator for the conjunction of attempt and outcome.  
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the mean punishment for the “composite” event (M = 3.57, 

SD = 3) was not lower than the mean punishment for the 

attempt alone (M = 3.29, SD = 2.73).9 Similarly, 43%               

(n = 44) of these participants assigned “no punishment” to the 

composite event, while 40% (n = 41) assigned no punishment 

to the attempt alone (consistent with the principle “no harm, 

no foul”).  This suggests that people did not, for instance, feel 

that the attempt was punishable and yet assign no punishment 

for the composite event because one cannot be punished at all 

for something they did do and something they did not. 

Collectively, these data further speak against pragmatic 

interpretations of the blame blocking effect. Even among 

people who say that they judged the coincidental harm case 

in part by assigning punishment to the attempted harm—and 

even when asked to make a punishment judgment strictly 

about that attempted harm—the blame blocking effect 

persists.  

General Discussion 

Recent proposals have advanced a potential alternative 

explanation of the blame blocking effect that does not invoke 

two independent processes of moral evaluation. According to 

the “pragmatics alternative” people could have interpreted 

the pragmatics of punishment question differently across 

versions of the story with and without harm that were used to 

trigger this effect in studies by Cushman (2008). In order to 

address this alternative we conducted two experiments.             

In Experiment 1 we used two different versions of the 

punishment question in order to test if the blame blocking 

would remain after we specify the question as more clearly 

referring to the total set of the agent´s behaviors as the target 

of punishment (developing previous research by Prochownik, 

2017 and Prochownik & Unterhuber, 2018). The results 

indicated that the blame blocking effect occurs regardless of 

the phrasing of the dependent measure. However, a potential 

limitation of this study was that it did not completely exclude 

the possibility that some participants could have still 

interpreted the punishment question (even when specified) as 

referring to the outcome alone. To address this problem, we 

conducted another experiment. In Experiment 2 we replicated 

one of the original studies by Cushman (2008) with one 

modification: after assigning a specific amount of 

punishment to the defendant, participants in the “Harm” 

condition indicated what they thought the punishment was 

meant to be for (for the attempt, for the outcome or for both 

the attempt and the outcome). The blame blocking effect was 

present in the overall sample and also after excluding 

participants who indicated they thought the punishment was 

for the outcome alone. Taken together, these two experiments 

suggest that the blame blocking effect cannot be accounted 

for in terms of people´s presumed tendency to interpret the 

punishment question in terms of outcomes rather than 

actions.  

                                                           
9 Because the mean might not be well suited to the ordinal scale 

like the one we used, we also calculated medians and modes for the 

two punishment questions. The results did not differ, as the medians 

In addition, Experiment 2 speaks against a slightly 

different proposal by Malle, Guglielmo, and Monroe (2014). 

According to these researchers, people´s judgements are for 

the agent´s attempt alone in the “No Harm” case, while they 

result from the average of the punishment for the attempt and 

the outcome in the “Harm” case. Yet, in contrast to this 

prediction, our results suggest that people judge the 

“composite” event of the attempt and outcome almost the 

same as they judge the attempt alone. Therefore, the blame 

blocking effect is not likely to occur due to averaging.  

Experiment 1 also recommends some further 

developments of the two-process model itself. In its original 

formulation, the model remained open regarding what type of 

consequences trigger the causal process of moral evaluation, 

and can eventually lead to the blame blocking effect. 

Scenarios used by Cushman (2008) featured harms to humans 

and presented coincidental harms that were roughly the same 

as the harms intended and attempted by the perpetrators         

(e.g., the same victim dies, and by similar means to those 

originally intended). The presence of the blame blocking 

effect across different scenario contexts in our first 

experiment suggests that this effect is robust across different 

types of harms including both severe bodily injuries and gross 

harms to property, as well as coincidental harms that are 

somewhat different than originally intended. This suggests a 

modification to the two-process model such that the blame 

blocking effect can be triggered by a wide variety of harmful 

events. However, more research in this direction would help 

to delineate the scope of the blame blocking phenomenon and 

the specific conditions under which it occurs.  

Finally, although, our experiments suggest that the blame 

blocking effect cannot be accounted for simply in terms of 

people interpreting the dependent measure as referring to the 

outcomes and not the actions (thus outcomes do not speak 

louder than actions!), future research must test additional 

possible alternative explanations of blame blocking. Two 

stand out. First, it might be that people diminish the 

punishment in the “Harm” case comparing to the “No Harm” 

case because they think the harmful outcome would have 

occurred regardless of the agent’s attempt to harm                  

(e.g., because Smith would have been killed by the chef 

anyway people may perceive Brown´s attempted homicide as 

redundant and release him from responsibility). Second, the 

“Harm” case is more complex and contains more information 

than the “No Harm” case that may distract participants         

(e.g., that Smith ends up being killed by the chef may be an 

extra element drawing people´s attention away from Brown´s 

attempted homicide). Finally, in addition to testing these 

alternatives, the two-process model would benefit from more 

thorough research on how exactly the two processes of moral 

analyses operate and interact in everyday moral decision 

making.  

(2=“6 months”) and modes (1=“No punishment”) were the same for 

both the main punishment rating and the punishment for the attempt 

alone (n = 102).  
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Abstract

Over the last 20 years, causal-model theory has produced much
knowledge about causal-based categorization. However, per-
sistent violations to the normative causal-model theory are
prevalent. In particular, violations to the Markov condition
have been repeatedly found. These violations have received
different explanations. Here, we develop a model that starts
from generally accepted cognitive phenomena (e.g., process-
ing limitations, the relevance of inference in cognitive process-
ing) and assumes that people are not fully causal nor fully asso-
ciative when performing causal-based categorization, offering
a new explanation for Markov violations.
Keywords: causal-based categorization; causal-model theory;
causal inference; Markov condition

Introduction
Causal-model theory has taught us much about causal cogni-
tion (see Rehder, 2017; Sloman & Lagnado, 2015). However,
problematic violations of the theory’s predictions persist. The
most important violation is that of the Markov condition. This
condition states that when the state of a variable’s immediate
causes is known, then that variable is rendered conditionally
independent of all its non-descendants (Pearl, 2000). Illustra-
tive examples of violations are found in Rehder and Burnett
(2005), and in Puebla and Chaigneau (2014). There, partici-
pants needing to infer the state of an unknown variable used
information about other properties, even if those properties
were conditionally independent from the unknown variable.

Some authors explain these violations by arguing that they
are only apparent, because subjects do not necessarily use the
same causal model specified by experimenters (Park & Slo-
man, 2013). Other authors argue that people may resort to
associationist thinking and interpret directed causal links as
bidirectional associations (Rehder, 2014). In contrast, here
we hypothesize that violations occur because people may
combine a partial understanding of causality with underly-
ing similarity-based processing. In what follows, we present
a process model of causal categorization, use it to make spe-
cific predictions about properties’ conceptual weights, and fit
it to empirical data.

Informed probabilities influence property-weights
Prior research consistently reports that when people need to
infer a central property for categorization (i.e., because they
lack information about the state of that property), properties
that are causally related to the absent property increase their

relevance for categorization proportionately to their informa-
tiveness about the missing property (Chaigneau, Barsalou, &
Sloman, 2004; Puebla & Chaigneau, 2014; Rehder & Kim,
2009). In the current work we extend these findings to condi-
tions in which the central property’s state is explicitly known.

We hypothesize that even if a central property’s state is
made explicit, there may still remain some uncertainty re-
garding the property’s true state. Thus, other causally related
properties may acquire their weight depending on their con-
tribution to decreasing that uncertainty. This idea is discussed
in Rehder and Burnett (2005), and preliminary evidence for
it can be found in Chaigneau et al. (2004, Exp. 7). In causal-
model research, information about a property’s inferential
contribution is generally provided in the form of probabilities
of effects given causes (i.e., p(effect|cause)). Consequently,
we assume that when cues indicate that a given property is
central, other causally linked conceptual properties acquire
their weight as a function of how informative they are of the
central property. In particular, in our Exp. 1 we used a causal
chain model (A→B→C; with an additional D property which
was not causally linked to other variables), and told partic-
ipants that property C was central (i.e., it gave the category
its name), with the expectation that its directly linked proper-
ties (i.e., B) would acquire their weight proportional to their
p(effect|cause), and that its indirectly linked properties (i.e.,
A) would be weighted proportional to their probabilistic con-
tribution to the central property’s direct causes (i.e., B). Note
here that we are assuming that people are intransitive when
using causal models to categorize (Johnson & Ahn, 2015).

Making the last property in a causal chain the central prop-
erty is representative of many categories that are defined by
their functions. For artifacts (Carrara & Mingardo, 2013;
Chaigneau et al., 2004) and for functionally conceptualized
natural kinds (e.g., Barsalou, Sloman, & Chaigneau, 2005;
Lombrozo & Rehder, 2012), the goals that they achieve in
their normal settings are central for their classification (e.g.,
an artificial heart is believed to belong to the heart category
depending on it being able to pump blood to a greater extent
than on it using any particular physical mechanism to achieve
that goal).

Cognitive limitations
In typical causal classification experiments participants need
to integrate several pieces of information, e.g., information
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about the direct causal links and their associated probabilities
(p(effect|cause)), the indirect causal links (two-way relations
that are mediated by other properties), and also the particu-
lars of the materials provided. Researchers generally assume
that people are able to integrate all this information. In fact,
as discussed in (Rehder, 2003a), the causal-model theory as-
sumes that people classify entities as category members to
the extent that the entity’s distribution of properties would be
expected from the category’s ideal causal model.

In contrast, in our model we hypothesize that people sim-
plify their task by analyzing information in a piecemeal fash-
ion (thus, we call it the Piecemeal Strategy Model or PSM).
In particular, we assume that they only evaluate pairs of di-
rectly connected properties, and that unconnected properties
are considered in isolation (e.g., in the causal chain model
A→B→C, with D as an isolated property, subjects would sep-
arately evaluate A→B, B→C and D). Regarding the type of
computation subjects perform, we assume that they consider
each directly connected pair (and each isolated property) in
the ideal model presented to them, as a separate prototype
with which to compare the particular instances they need to
judge. To implement these ideas, we used Nosofsky (1992)
Multiplicative Prototype model (MPM). This implies com-
puting a distance, as given by,

δXY =
Y

∑
i=X

( pi

pX + pY

)
|xi−Mi| (1)

where X and Y are two directly connected properties in the
causal model, pi is the inferential contribution of a property,
xi corresponds to the state of the ith property in the currently
considered instance, and Mi corresponds to the ideal state of
the ith property in the causal model (i.e., the prototype). Note
that the denominator inside the parenthesis allows Eq. 1 to
comply with the MPM requirement that the weights (pi) in
the distance computation all add to one. For isolated prop-
erties (D in our scenarios), the corresponding distance is de-
fined to be,

δD = pD|xD−MD| (2)

where pD is a free parameter estimated from the data, re-
flecting the inferential weight of the isolated property (0 ≤
pD ≤ 1), xD is the state of the D property in the currently
considered instance, and MD corresponds to the ideal state of
the D property in the causal model (i.e., the prototype).

Distances cannot be considered by themselves, because
they are linear. Similarity, in general, behaves like a gener-
alization gradient (Shepard, 1987). For this reason, distances
in Eqs. 1 and 2 need to be transformed into similarities by,

SXY = e−b(δXY ) (3)

where sXY is similarity, and b is a sensibility parameter that
determines the rate at which similarity falls with distance. In
our model fitting, we fixed b = 1 (i.e., b was not estimated

from the data). To compute the similarity sD for the isolated
D property, δXY is substituted by δD in Eq. 3.

Finally, we assume that the similarities from all the par-
tial models under consideration are averaged to obtain an es-
timate of the overall similarity of the instance being judged
relative to the prototype (i.e., the received causal model) by,

So =
1
n

n

∑
i=1

si (4)

where so is the overall similarity of the instance being
judged, n is the total number of separate pieces of information
being considered (A→B, B→C, D), and si is the similarity ac-
cording to Eq. 3. Because the PSM implies considering some
properties twice (property B in the causal chain model), for
modeling purposes we introduced an adjustment to pi simply
by dividing it by 2 to reflect that those properties were being
taken into account twice.

In summary, we propose that pairs of features that are
causally related (and any features that are causally unrelated)
are treated as features in separate multiplicative similarity
prototype models, with classification ratings being a func-
tion of the averaged similarity of those feature pairs to their
corresponding prototypes. A closely related model was pro-
posed and tested by (Rehder, 2003a), but he concluded that
the model failed to account for the data. In the Discussion
section we will consider possible explanations for why our
results suggest a different conclusion.

Experiments
Participants were trained on a causal model representing a
given category, until they were able to answer correctly a set
of 9 conditional and counterfactual questions. They then re-
ceived the set of all possible combinations of present and ab-
sent properties involved in the causal model and were asked to
rate how representative each combination was of the trained
category.

Ratings were analyzed using the regression method
(Rehder & Hastie, 2001). In this method, participants provide
category membership ratings for all possible combinations of
m properties in two possible states (present or absent), pro-
ducing a total of 2m combinations. For each combination,
subjects provided a categorization rating on a 1 to 7 scale.
When present and absent properties are coded respectively as
1 and -1 (i.e., effect coding), these values can be entered into
individualized regression equations to predict a participant’s
categorization ratings. Furthermore, 2-way and higher-order
interaction terms can be computed by entering the product
of the corresponding property coded values as predictors into
the equations. The corresponding regression coefficients can
then be used as individual data points reflecting, across par-
ticipants, the contribution of each predictor variable to the
ratings.

Subjects were randomly assigned to one of two between-
subjects conditions (domain: living things, artifacts) and pro-
vided data for two within-subjects conditions (information:
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complete, incomplete). In the complete information condi-
tion, subjects received descriptions containing information
about all properties (A, B, C, and D). In the incomplete infor-
mation condition, subjects received descriptions lacking in-
formation about property C. Because prior research suggests
that, in the context of causal classification the incomplete in-
formation condition promotes using other properties to infer
the state of the unknown property (e.g., Puebla & Chaigneau,
2014), this design allowed us to compare conceptual proper-
ties’ regression weights across the within-subjects condition.
An increase in regression weights in the incomplete infor-
mation relative to the complete information condition, would
show that participants used a given property to infer the state
of the unknown property C.

Predictions
The PSM makes the following predictions. Due to the piece-
meal strategy, we predicted higher regression coefficients for
directly connected properties interaction terms than for not
directly connected properties. Furthermore, Eq. 3 predicts
the type of interaction that we will find. People will prefer in-
stances where properties X and Y are both in the same state as
in the received model (e.g., X = 1, Y = 1), and any deviation
(e.g., X = 1, Y = -1) will produce a large decrease in similarity
(due to the b parameter). Note that all this means small inter-
action coefficients (i.e., smaller than main effect coefficients).
This contrasts with predictions from the causal-model theory,
where people are predicted to produce large interaction terms
that are as large as main effects.

The PSM predicts that independent properties in our causal
models will not interact. This is the same result that the
causal-model theory would lead us to expect (i.e., properties
A and C in the causal chain are independent conditional on
the state of B). However, the PSM predicts this pattern of
interactions, not because people conform to conditional inde-
pendence principles, but because of the piecemeal simplifi-
cation strategy. Thus, we expect our data from the complete
information condition to only mimic adherence to the causal
Markov condition. This should become evident in partici-
pants’ performance in the incomplete information condition.
When comparing regression weights across the information
factor, the lack of information about the central C property
should produce an increase in the regression weights of the
independent properties (A and D in the causal chain) due to
those properties being associated to the unknown property C.
This is a violation of the Markov condition because only di-
rect causes are normatively relevant to predict the state of the
unknown property C. Thus, we predict an apparent adherence
to Markov in the complete information condition, and a fail-
ure to adhere in the incomplete information condition.

Regarding the main effects, the PSM predicts that proper-
ties’ conceptual weights will follow their inferentially derived
weights (pi). For the chain model in Exp. 1, we predict that
regression coefficients for C will be greater than the average
of A and B; D will be smaller than the average of A, B and C;
and A will not be different from B.

Experiment 1

Design and Participants Exp. 1 followed a mixed fac-
torial 2 (domain: living things, artifacts) x 2 (information:
complete, incomplete) design, with the last being a within-
subjects factor. Property D served as an inbuilt control condi-
tion for each subject and provided a baseline regression coef-
ficient to which properties in the causal model could be com-
pared. Also, D’s interaction with other properties (AD, BD
and CD) also provided a baseline for interaction terms’ re-
gression coefficients. Subjects (N = 66) were Adolfo Ibáñez
University undergraduates (N = 41, males = 16) who partic-
ipated for course credit, and undergraduate volunteers from
other local universities (N = 25, males = 7).

Materials and Procedures The materials were verbal and
graphical descriptions of two categories characterized by a
chain causal structure. In the living things condition, materi-
als described the structure of a fictional biological cell. In the
artifacts condition, materials described the structure of a fic-
tional particle accelerator. Stimuli were presented on screen
by means of a locally programed software.

In the learning phase, participants were trained in the
causal chain graph. Subjects learned that causes produced
their effects with a 0.75 probability. Regarding property D,
participants were informed that it occurred in category mem-
bers with a probability of 0.75. Thus, property D was pre-
dictive of the category, but not causally related to the other
properties. By keeping property D’s probability equal to the
conditional probabilities for the other properties, we kept ev-
erything other than belonging or not to the causal model con-
stant for property D as compared to properties A, B and C.
Importantly, subjects learned that property C gave the cate-
gory its name (i.e., C was the central property).

In the classification phase, subjects had the causal graph
in full view. In the complete information condition, partici-
pants received descriptions containing information about all
properties either present or absent (16 combinations). In the
incomplete information condition, participants received de-
scriptions which lacked information about the state of the
central property C (8 combinations). In total, participants
classified 24 descriptions, presented in random order. For
each description, subjects had to respond whether it was or
not a member of the focal category using a 6-point rating
scale.

Results Effect coding variables representing 10 variables
per subject (4 main factors and 6 interactions, see Fig. 1)
were entered as predictors in individualized regression equa-
tions with rating as dependent variable. The resulting indi-
vidualized regression coefficients were submitted to a mixed
2 (domain: living things, artifacts) × 10 (coefficients) mixed
ANOVA. The mixed ANOVA showed there was no effect of
the domain factor (F(1, 64)=1.37, MSe=.04, p=.25, ηp2=.02,
power=.21) and it did not interact with the coefficients fac-
tor (F(9, 576)=1.02, MSe=.16, p=.39, ηp2=.02, power=.30).
Consequently, we collapsed this factor.
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Figure 1: Regression weights for individual features and in-
teractions of Exp. 1. Fits for the PSM (blue) and the GM
(red) are superimposed on the data. Error bars are standard
errors.

In accordance with our predictions for the main effects, or-
thogonal planned comparisons showed that the average co-
efficient for C was significantly greater than the average of
coefficients for A and B (F(1, 65)=40.19, MSe=.98, p<.001,
ηp2=.38, power>.99); the average coefficient for D was sig-
nificantly lower than the average of coefficients for A, B and
C (F(1, 65)=74.87, MSe=.21, p<.001, ηp2=.54, power>.99);
and there was no difference between coefficients for A and B
(F<1). This pattern of results for main effects suggests that
subjects did indeed take information about p(effect|cause) as
cue to properties inferential value, and that being in a causal
structure increases inferential value beyond that of probabilis-
tically related variables (property D).

Regarding the interaction coefficients, our predictions for
the causal chain model were that the average of the AC in-
teraction coefficients would be lower than the average of the
AB and BC interaction coefficients (A and C are not directly
connected in the causal graph); and that the average of the
AB and BC interaction coefficients (directly connected prop-
erties) would be greater than the average of the AD, BD,
and CD coefficients (i.e., our baseline conditions). As pre-
dicted, two non-orthogonal planned comparisons showed that
the AC interaction was significantly smaller than the aver-
age of the AB and BC interactions (F(1, 65)=4.8, MSe=.10,
p=.03, ηp2=.07, power=.58), and that the average of AB and
BC interactions was significantly greater than the average of
the AD, BD, and CD interactions (F(1, 65)=30.1, MSe=1.81,
p<.001, ηp2=.32, power>.99).

Note that the low AC coefficient (which in fact was
not significantly different from the interactions found for
AD, BD and CD; F(1, 65)=3.8, MSe=.07, p=.06, ηp2=.06,
power=.48), could be interpreted as participants complying
with the Markov condition. However, analysis of the incom-
plete information condition reveals a different story. Under
this condition, participants did not comply with Markov, us-
ing information about the state of property A (the screened-
off property) and of property B (C’s direct cause) to make
inferences about the state of the missing C central property.
Paired samples t tests revealed coefficients for properties A
and B increased significantly when comparing the complete

information condition with the incomplete information condi-
tion (respectively, complete information mean=0.60, incom-
plete information mean=0.79; t(65)=3.09, p=.003; complete
information mean=0.55, incomplete information mean=1.16;
t(65)=7.43, p<.001). In contrast, property D did not show
evidence of being used to perform inferences about the state
of property C (complete information mean=0.3485, incom-
plete information mean=0.3447; t(65)=.07, p=.94). Thus,
data supported our hypothesis that subjects’ performance in
the complete information condition would mimic adherence
to Markov.

Model fitting We fit the PSM to the classification ratings
of Exp. 1. For comparison, we also fit the generative model
(GM) of causal-based categorization (Rehder, 2003a; Rehder
& Kim, 2009) (see Fig. 1). In the GM representation, a cate-
gory k establishes a set of causal mechanisms. Each mecha-
nism relates a feature j with its parent i operating with prob-
ability mi j when i is present. Other background causes of
j operate collectively with probability b j. When j’s parents
operate independently, j’s parents and the background causes
produce j in members of category k conditional on the state
of j’s parents with probability,

pk( fi | Pak( f j)) = 1− (1−b j) ∏
fi∈Pak( fi)

(1−mi j)
ind( fi) (5)

where ind(i) is an indicator variable that evaluates to 1
when i is present and 0 otherwise. The model assumes that
root causes are independent of one another and the probabil-
ity of each is represented with its own parameter c j. The GM
predicts that categorization judgments are a monotonic func-
tion of the joint distribution associated with the category’s
causal model,

pk( fk,i, . . . , fk,N) = ∏
j=1...N

pk( fi | pak( fi)) (6)

Participants ratings were predicted as follows:

ratingPSM(oi) = sk(oi; pA, pB, pC, pD)/β

ratingGM(oi) = 6pk(oi;cA,bB,bC,bD,mAB,mBC)
γ

where β and γ are free parameters. We fit both models by
searching for the parameter values that minimized the squared
difference between the predicted ratings and the empirical
ones. In the complete information condition both models
achieved a high correlation with the ratings: rPSM = .85, rGM
= .90. We used the Akaikes information criterion (AIC1) to
compare the degree of fit of both models controlling for the
different number of parameters. The bigger AIC for the GM
(15.2) in comparison to the PSM (12.1) indicates that, in fact,
the PSM provides a slightly better characterization of the data

1AIC = ln(SEE/n)+2(p+1) where SSE is the sum of squared
error for a participant, n is number of data points fit, and p is the
model’s number of parameters.
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in this condition. The best-fitting parameters for the PSM
were: pA = 0.325, pB = 0.243, pC = 0.775, pD = 0.238, β =
0.094 and for the GM: cA = 0.871, bB = 0.802, bC = 0.951,
bD = 0.765, mAB = 0.558, mBC = 0.327, γ = 0.565. Note that
while both models achieve a similar level of fit to the data,
the GM achieves this by assigning values to the causal re-
lation parameters lower than participants were taught during
training (0.75).

In the incomplete information condition (see Fig. 2), we
adjusted both the PSM and the GM to take into account the
unknown state of C. We did this by inferring the probability
of C being present given the state of its parent B using the
GM equations: p(E = 1 | C = 1) = 1− (1−mCE)(1− bE)
and p(E = 1 |C = 0) = bE . We treated this probability as the
state of C and then proceeded as before for both models. In
this condition the models achieved a high correlation with the
ratings: rPSM = .89, rGM = .92. Again, we obtained a bigger
AIC for the GM (15.0) in comparison to the PSM (12.7). The
best-fitting parameters for the PSM were: pA = 0.347, pB =
0.297, pD = 0.264, bC = 0.463, mBC = 0.392, β = 0.083 and for
the GM: cA = 0.865, bB = 0.884, bC = 0.933, bD = 0.687, mAB
= 0.552, mBC = 0.617, γ = 0.505. Note that the causal relation
parameter for the relation between B and C was higher in this
condition.

B, C -B, C B, -C -B, -C
0

1

2

3

4

5

6
Empirical
GM
PS

Figure 2: Average ratings for objects with different combina-
tions of states (present or absent) for features B and C in Exp.
1, complete information condition. Fits for the PSM (blue)
and the GM (red) are superimposed on the data. Error bars
are standard errors.

Two things are noteworthy from these results. First, as
shown in Fig. 1, the GM consistently overestimates the mag-
nitude of the coherence effect (i.e., the 2-way interactions),
while the PSM shows clearly better fits. Additionally, as
shown in Fig. 2, the PSM is better able to predict the con-
sequences of inconsistent information on participants ratings,
as compared to the GM. This relates to similarity gradients
implied by eq. (3).

Experiment 2
Because results like those of Exp. 1 are difficult to recon-
cile with causal-model theory, in particular the lack of a co-
herence effect, Rehder (2017) proposed that small property
interactions in results like those of Exp. 1, occur because in-
structions and materials emphasized a single almost defining
property (property C in Exp. 1). Had traditional category la-
bels been used (i.e., a category name, such as “dog”), large

interactions would emerge, as expected by causal-model the-
ory. To test Rehder’s (2017) hypothesis, in Exp. 2 we used the
causal chain model, but subjects were not told that there was
a central property that gave the category its name. Instead, an
arbitrary category label was provided.

As there should be no inferential processes in this task, we
predicted that all properties in the causal model would show
about the same weight, and on average they would produce
a greater regression weight than the isolated property D. Re-
garding the interactions, the PSM predicts that, because of the
piecemeal strategy, directly connected properties (AB, BC)
would exhibit a larger regression weight than the indirectly
connected properties (AC), and that the AB and BC terms
would show a higher regression weight than the interactions
of not connected properties (AD, BD, CD).

Design and Participants Exp. 2’s design was identical to
that of Exp. 1. Subjects (N = 64) were Adolfo Ibáñez Univer-
sity undergraduates (males = 21) who participated for course
credit.

Materials and Procedures Materials were identical to
those used in Exp. 1. However, arbitrary names were used
to label categories, and no property was described as central
or described the category’s function. Except for the arbitrary
category name, procedures were identical to Exp. 1.

Results Results Individualized regression coefficients were
submitted to a mixed 2 (domain: living things, artifacts) ×
10 (coefficients) mixed ANOVA (see Fig. 3). The mixed
ANOVA showed there was no effect of the domain factor
(F<1) and it did not interact with the coefficients factor
(F<1). Consequently, for all subsequent analyses we col-
lapsed this factor.

a b c d ab ac bc ad bd cd
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Figure 3: Regression weights for Exp. 2’s individual features
and interactions. Fits for the PSM (blue) and the GM (red)
are superimposed on the data. Error bars are standard errors.

As predicted by the PSM, orthogonal planned comparisons
showed that the average coefficient for D was significantly
lower than the average of coefficients for A, B and C (F(1,
63)=44.72, MSe=.19, p<.001, ηp2=.42, power>.99); but that
there were no significant differences between C versus A and
B (F(1, 63)=3.46, MSe=.24, p=.068, ηp2=.05, power=.45),
or A versus B (F<1). This pattern of results for main effects
suggests that our subjects did indeed judge all properties to
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be about equally central. This result contrasts with Exp. 1,
where inference induced differential property weights. How-
ever, as in Exp. 1, property D was judged to be less central
than properties belonging to the causal model. Again, this
shows that participants are sensitive to causal information and
are not disregarding it by using a pure associative strategy.

As predicted by the PSM, two non-orthogonal planned
comparisons showed that the AC interaction was significantly
smaller than the average of the AB and BC interactions (F(1,
63)=7.02, MSe=.42, p=.01, ηp2=.10, power=.74), and that
the average of AB and BC interactions was significantly
greater than the average of the AD, BD, and CD interactions
(F(1, 63)=15.05, MSe=2.52, p<.001, ηp2=.19, power=.97).

As in Exp. 1, the low AC coefficient suggests that par-
ticipants are complying with the causal Markov condition.
At odds with Exp. 1, participants did not use property A
(the screened-off property) to infer the state of property C
(complete information mean=0.82, incomplete information
mean=0.89; t(63)=1.2, p=.24), but used property B (Cs di-
rect cause) (complete information mean=0.79, incomplete in-
formation mean=1.0; t(63)=3.95, p<.001). Furthermore, in
the incomplete information condition, participants relied less
on the isolated property D to make inferences (complete in-
formation mean=0.38, incomplete information mean=0.25;
t(63)=2.16, p=.04). These results are broadly consistent with
the hypothesis that using an arbitrary category label would
promote causal classification.

Model fitting We fit the PSM and the GM to the classifica-
tion ratings of Exp. 2 in the same ways as in Exp. 1 (Fig. 3).
In the complete information condition both models achieved
a high correlation with the ratings: rPSM = 0.83, rGM = 0.84.
The bigger AIC for the GM (15.8) in comparison to the PSM
(11.9) indicates that the PSM provides a slightly better char-
acterization of the data in this condition. The best-fitting pa-
rameters for the PSM were: pA = 0.529, pB = 0.455, pC =
0.577, pD = .293, β = 0.096 and for the GM: cA = 0.921, bB
= 0.925, bC = 0.887, bD = 0.801, mAB = 0.537, mBC = 0.158,
γ = 0.908. As in Exp. 1, while fits for both models are sim-
ilar, the GM achieves this by assigning values to the causal
relation parameters lower than participants were taught.

For the incomplete information condition, we adjusted the
PSM and the GM as in Exp. 1. The models achieved a high
correlation with the ratings: rPSM = 0.88, rGM = 0.90. Again,
we obtained a bigger AIC for the GM (14.6) in comparison
to the PSM (13.0). The best-fitting parameters for the PSM
were: pA = 0.316, pB = 0.204, pD = 0.236, bC = 0.527, mBC
= 0.312, β = 0.230 and for the GM: cA = 0.889, bB = 0.847,
bC = 0.937, bD = 0.640, mAB = 0.439, mBC = 0.592, γ = 0.431.
Note that, as in Exp. 1, the causal relation parameter for the
relation between B and C was higher in this condition.

Just as for Exp. 1, in Exp. 2 the GM consistently overes-
timates the magnitude of the coherence effect (i.e., the 2-way
interactions in Fig. 3, particularly in Panel A), while the PSM
shows clearly better fits. Finally, as shown in Fig. 4, the PSM
is better able to predict the consequences of inconsistent in-

formation on participants ratings, as compared to the GM.
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Figure 4: Average ratings for objects with different combina-
tions of states (present or absent) for features B and C in Exp.
2. Fits for the PSM (blue) and the GM (red) are superimposed
on the data. Error bars are standard errors.

General Discussion
In our experiments, the PSM was able to predict the pattern of
results for main effects and interactions. Importantly, in both
experiments the size of interaction coefficients remained low,
and were not as high as those of main effects, as predicted
by the GM. Furthermore, as would be expected if subjects
were using associative mechanisms, the PSM was better able
to predict ratings for objects with inconsistent information
(Figs. 2 and 4). However, our results were not as clear re-
garding the mimicking Markov hypothesis. Exp. 1 produced
data that is consistent with it, but Exp. 2 did not. In this
latter experiment, participants appear to have complied with
Markov both in the complete (i.e., low interaction coefficient
for conditionally independent features) and in the incomplete
information condition (i.e., appropriate screening-off of the
conditionally independent distal cause). This pattern of re-
sults is consistent with the hypothesis that using an arbitrary
category label enhances causal classification (Rehder, 2017).
However, as in neither experiment did we obtain coherence
effects, evidence for this hypothesis is mixed.

Prior research has found coherence effects in conditions
similar to ours (e.g., in Rehder, 2003b, Fig. 4). The ques-
tion then arises of how to account for these different results.
In our experiments, we strove to use procedures as close as
possible to those used by other researchers, so we tend to be-
lieve that differences do not lie in materials and procedures.
Instead, we think it is possible that there are differences in
how different populations handle causal information for cate-
gorization as well as for other tasks. Recently, using a causal
inference task, (Rehder, 2018) found substantial variability
in how individuals perform inferences (i.e., a single model
was not able to account for the pattern of inferences of all
participants, with a substantial minority behaving close to the
predictions of an associative model). In a similar vein, we be-
lieve that no current model of causal cognition comfortably
handles this variability and that future research should look
to identify parameters that characterize tasks, individuals and
populations in such a way that they are able to account for
differences in causal categorization, and causal cognition in
general.
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Abstract

Humans can learn and reason about abstract concepts quickly,
flexibly, and often from very little data. Here, we study how
people learn novel concepts within a binary grid domain, and
find that even this minimal task nonetheless necessitates the
inference of highly structured parts as well as their compo-
sitional relationships. Furthermore, by changing the presen-
tation condition of the learning examples, we reveal different
approaches involved in learning such visual concepts: given
the same images, human generalizations differ between rapid
and static presentation conditions. We investigate this differ-
ence by developing several computational models that vary in
their use of structured primitives and composition. We find that
learning in the rapid presentation condition is best described as
inference in simple models, while learning in the static presen-
tation condition is best described as inference in a more struc-
tured space of graphics programs.
Keywords: Bayesian inference; concept learning; few-shot
learning; program induction

Introduction
Human concept learning can involve remarkably fast and
flexible abstraction. When we see a bridge or appreciate a
sculpture, we not only perceive a set of objects, but also the
underlying parts and their relationships. With such intuitive
understanding of how the parts make the whole structure, hu-
man can productively compose learned primitives, generalize
to new kinds of objects, and imagine new scenes.

We wish to study the compositional structure that underlies
the richness of human visual concept learning by comparing
computationally explicit models with human behavior. Prior
work in cognitive psychology has built compositional mod-
els to describe human visual concept learning, typically by
presupposing relevant, symbolically represented parts as in-
puts to the model, rather than operating directly on images
(Shepard, Hovland, & Jenkins, 1961; Rehder & Hoffman,
2005; Goodman, Tenenbaum, Feldman, & Griffiths, 2008).
These models are limited to a small stimulus space generated
from the conjunction of the few predetermined features. In
contrast, machine vision models successfully perform classi-
fication from arbitrary natural images (Krizhevsky, Sutskever,
& Hinton, 2012), but recent work has found that these mod-
els lack the compositional structure necessary to recapitu-
late human visual concept learning in specific domains (Lake,
Salakhutdinov, & Tenenbaum, 2015).

Here, we add to this literature by introducing a new min-
imal domain to incorporate both of these necessary ingre-

“two same objects”

“a Z-shape object”

“a 2×2 square and a Z-shape”

“two connected lines”

Figure 1: Abstract visual concepts represented by sets of im-
ages on a 5×5 binary grid.

dients: the inference of primitive parts directly from im-
ages, and the discovery of compositional structure that relates
them. The domain we choose is 5×5 images with binary pix-
els. Despite the simplicity of this setup, Figure 1 shows that
the visual concepts implied by these images can be complex
and compositionally structured. In comparison to existing
datasets that also occupy this space, our dataset focuses on
occlusion and spatial juxtaposition that makes the basic parts
particularly ambiguous, as well as concepts that lack proto-
typical images.

Based on these images we develop a few-shot learning
task to be presented under either static or rapid viewing
conditions. Participants are asked to perform a 9-way
classification, for which we compare several computational
models that vary in their degree of compositionality and type
of structured primitives present. We include a hierarchical
Bayesian program learning model, and several additional
Bayesian models with alternative primitives. We evaluate
these models by quantitatively comparing how the model
predictions match human judgments in few-shot generaliza-
tion. Across the several Bayesian models tested, we find
that the ability to jointly infer parts and compose them is
critical to explain human generalizations in even this minimal
domain, so long as participants are given sufficient time to
view the stimulus. However, for rapid viewing conditions,
participants’ judgements are better explained as inference in
a much simpler model with less rich compositional structure.
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Figure 2: Visual stimuli and task paradigm used in the behavioral experiments. 60 images (rows A-C) are used for learning
concepts and 60 (rows D-F) for testing generalization.

Learning grid concepts
We manually design 20 sets of binary images in the 5×5 grid,
covering object occlusion, repetitive structures, and other in-
teresting visual patterns. Each column in Figure 2a is a set
of images representing a certain concept. For each concept,
three examples (A-C) are designated for learning and a fur-
ther three (D-F) for testing generalization behaviors. We have
60 different test trials in total.

We use a classification task to compare how humans and
models generalize from three examples. The basic task is to
learn the underlying concept from the 3 provided examples,
and then to select from 9 novel query images the one that most
likely displays the same concept. To create each trial, we
sample one query image from the same visual concept as the
three observed examples, and 8 from distinct other concepts
which are drawn uniformly at random (See Fig 2b, 2a col. 8).

To collect human judgements, 216 participants were re-
cruited via Amazon Mechanical Turk to participate in a few-
shot classification task, each completing 20 trials: Partici-
pants were instructed to observe interesting objects on the vi-
sual scenes in the grid world. Subjects were presented with
three example images, and then asked to choose one of the
new query images that most likely displays the same concept,
as is illustrated in Figure 2b.

Each participant was assigned either to the ‘rapid’ or
‘static’ viewing condition. In the ‘static’ condition, subjects
could see all three of the example images simultaneously, for
as long as required to make a judgement. However, in the
‘rapid’ condition, subjects instead watched only a video con-
taining the stimuli in quick succession, with an interval be-
tween stimulus onsets of 72ms. At the end of the video, a
5×5 grey noise patch was displayed for backward masking.

Bayesian models
Concept learning, from the computational perspective,
is fundamentally linked to the generalization problem
P(e′|e1,e2, . . . ,ek). Consider a set of k observed examples
e1,e2, . . . ,ek, and a new observation e′. A concept c natu-
rally plays a role when we factorize the conditional probabil-

ity P(e′|e1,e2, . . . ,ek) as ∑c∈C P(e′|c)P(c|e1, . . . ,ek).
In the Bayesian framework of concept learning, we have

the following according to Bayes rule and assuming condi-
tional independence of observations given the concept c:

P(c|e1, . . . ,ek) =
P(e1, . . . ,ek,c)

∑c∈C P(e1, . . . ,ek,c)
∝

k

∏
i=1

P(ei|c)P(c)

(1)

The key component is about the structure of
P(e1, . . . ,ek,c), or more specifically P(e|c) and P(c).
Here we construct four different models P(e1, . . . ,ek,c) with
various assumptions, levels of abstraction, and types of
structured representation.

Independent Pixel Model This model assumes that the la-
tent concept c ∈ C is a 25-element list of Bernoulli distribu-
tion parameters [p1, p2, . . . , p25], each of which corresponds
to one of the pixels in the grid and is sampled independently
from a prior distribution Beta(0.2,0.2). An image instance e
is generated from the concept c by sampling the binary state
of each pixel in the grid according to its Bernoulli distribu-
tion parameter, as is shown in Figure 3a. This model lacks
compositionality and complex structured representation, as
the primitive available is just a single independent pixel.

Patch Model This model assumes that the latent concept
c ∈ C is a list of patches drawn from a patch inventory of
three different sizes (1×1, 2×2, 3×3), as is shown in Figure
3b. Specifically, c consists of the total number of patches as
well as the size of each patches. To generate an image e from
the concept c, the model first randomly localizes each patch
on the grid and independently samples the Bernoulli distri-
bution parameter for each pixel within the patches. Then an
image instance is generated by sampling the binary state of
each pixel within each localized patch according to the corre-
sponding Bernoulli distribution parameter. The pixels out of
the localized patches will always be turned off. This model
has limited compositional structure, as it abstracts an image
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Figure 3: Generative process of a concept and a image for different models.

as composition of several patches. However, the model lacks
explicit structure within a patch, as the Bernoulli distribution
parameters of the pixels within a certain patch are not shared
at the concept level across multiple generated images.

Chunk Model This model assumes that the latent concept
c ∈ C is a list of n chunks that are uniformly drawn from an
inventory of line primitives (e.g. lines of various sizes and
directions), as is shown in Figure 3c. An image e is generated
by randomly placing on the grid the list of chunks from the
concept c. The locations of the chunks are sampled during
the image generation process and not shared at the concept
level. While the built-in inventory of basic chunk primitives
supports explicit structured representation, the model, how-
ever, lacks the mechanism to compose chunks into complex
objects during the generative process.

Full Program Model Drawing inspiration from Lake et al.
(2015), we design a model in which images are generated
from a sequence of consecutive drawing actions. In the full
program model, each concept c ∈ C takes the form of a prob-
abilistic action program {a,θ}, where a refers to the action
type and θ refers to the parameters of each action. Once a
concept c is generated, a binary image e is sampled from the
concept by executing each action in the program step by step.
Figure 3d illustrates how an example image is generated from
the concept ‘GROW(d,3)→ JUMP(dl,1)→ GROW(l,3)’.

To generate a concept, namely an action program in this
model, the length of the program n is first sampled from an
exponential distribution over all the possible program lengths
ranging from 1 to 5 (P(n) ∝ λn, where λ = 0.9), with pref-
erence to short programs. After that, a sequence of n ac-
tions, a, is sampled step by step from the plausible action
primitives to construct the template of the program, under
the constraints of the action transition grammar specified in
Figure3d. For each action, the plausible transitions to other

actions are uniformly distributed. The action primitives in-
clude GROW (adding pixels in a certain direction), JUMP
(skipping over pixels in a certain direction), COPY (making
copies of the current drawing trace and placing them ran-
domly on the grid), ADD (generating a square patch of certain
size and placing it randomly on the grid.), and START (plac-
ing currently generated trace on the grid and initializing a new
trace).

After sampling the program template, the parameters θi of
each action ai in the program a (e.g. the direction and size of
GROW) is uniformly sampled from the plausible values that a
certain parameter type can take. There are eight basic values
for the direction parameter, u (up), d (down), l (left), r (right),
ul (upleft), ur (upright), dl (downleft), and dr (downright).
The size parameter can take a number that is smaller or equal
to the grid width size for GROW and JUMP actions, and a
number less than 3 for COPY action. Both the direction and
size parameter can also take a special parameter value ‘any’,
which refers to randomly sampling one of the basic directions
or plausible size values during the image generation process.

Regarding the execution of an action program, the initial
empty trace starts at the reference point (0,0) on the tem-
porary canvas. Following the action instructions, we draw
pixels or move to other location on the canvas consecutively.
The trace generated on the temporary canvas will be placed at
a random place on the 5× 5 grid once we encounter the end
of the program or a START action. It is worth noticing here
that the mechanism of composing action traces and starting
new traces gives rise to the model’s ability of utilizing more
relational and object-like compositional structure. Therefore,
Bayesian program learning model has more expressive com-
positionality and explicitly structured representation.

Few-Shot Classification and Generation
In order to evaluate each model against our collected human
data, we must perform inference. However, this is computa-
tionally challenging to do exactly, and so we perform approx-
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H static H rapid M1 M2 M3 M4

Human static - 36 51 35 15 10
Human rapid 36 - 36 25 11 10

Program [M1] 51 36 - 35 15 9
Chunk [M2] 35 25 35 - 14 6
Patch [M3] 15 11 15 14 - 8
Pixel [M4] 10 10 9 6 8 -

Table 1: Proportion of the same choices between model pre-
dictions and human judgements for 60 trials.

Model Static presentation Rapid presentation
Program 0.39 0.49

Chunk 0.43 0.47
Patch 0.52 0.44
Pixel 0.78 0.78

Uniform 0.56 0.46

Table 2: Hellinger distance averaged across 60 trials for each
model compared to human data under each presentation con-
dition (lower is better)

imate inference using a neural network trained for amortized
few-shot classification in each model.

For each model, we train a separate network with a shared
architecture, comprising a single convolutional layer and two
fully connected layers with 200 hidden units. Each network
was trained on model-generated data to produce a distribu-
tion of responses for 9-way classification of novel images.
Specifically, we generate synthetic training data by sampling
9 concepts from each model’s prior, drawing one image from
each concept as the query examples, and a further 3 images
from one concept as the observed examples. We optimise the
network to classify the correct query example given the ob-
served examples.

We then evaluate each of these trained networks on the
same stimuli as presented to human subjects. Thus, regarding
the behavioral task, each model’s inference network is used
to select the most likely query image from the 9 options.

For few-shot generation, we approximate the posterior
P(c|e1, . . . ,ek) using Markov Chain Monte Carlo (MCMC)
implemented in WebPPL (Goodman & Stuhlmüller, 2014).
Then we are able to produce novel instances from the inferred
concepts.

Results
We are particularly interested in how human and the models
proposed in this work make generalizations from few exam-
ples. We evaluate model predictions with respect to human
judgments on 60 trials in the behavioral task, in each presen-
tation condition.

Evaluation results of the models are listed in Table 1. We
compute the proportion of choosing the same test images as
the top choice for each pair between different models and hu-
man judgments. It is shown that the predictions of Bayesian

program learning model largely matches the most popular
(top 1) choice of human judgments in the static condition.

We compare the probability distribution of model’s predic-
tion to the distribution of human judgments over 9 test images
for each trial in the experiment. We normalize human judg-
ments to get a distribution of choice over the 9 test items, and
similarly calculate P(e′i|e1,e2,e3) over the 9 test items for
each model. For each of 60 trials, we compute the Hellinger
distance (Hellinger, 1909) between the distribution of model
prediction and human judgement to quantify the distance be-
tween human and model responses. The average Hellinger
distances are shown in Table 2, highlighting a difference be-
tween the two presentation conditions. For static presenta-
tions of the stimulus, the highly structured Bayesian program
model is by far closest to human judgments in terms of the
distribution of the choice in each trials. However, for rapid
presentations of the stimulus, the program model suffers from
overconfidence while the less structured ‘chunk’ model pro-
vides the best prediction of human judgements. Figure 4 visu-
alizes the distribution of human judgments and models’ pre-
dictions for several trials.

Regarding the question of what type of compositional
structure supports human concept learning, the differences
among the proportions of matched choices between human
and four Bayesian models of different level of abstraction
provide some interesting insights. As is discussed before,
these Bayesian models can be summarized briefly with how
much abstraction and what level of abstraction is built into
the architecture: The pixel model does not have any compo-
sitional structures, while the patch model composes a scene
by combining several patches. However, neither of these
match human judgements well: the compositional ability of
the patch model is largely limited due to the lack of explic-
itly structured primitives in its representation, as the patch
only vaguely specify a pattern instead of clearly defining the
structure of the pattern. With more structured primitives, the
chunk model achieves significantly stronger results.

While the lack of structured representation makes it hard
for the patch model to take the advantage of compositional
structure in learning concepts, comparison between chunk
and program models further suggest that hierarchical compo-
sitional structures are important in capturing human few-shot
learning of simple visual concepts.

One final advantage of a Bayesian generative model is its
generative process. Table 3 lists three of the inferred con-
cepts by Bayesian program learning model, the approximate
log posterior probabilities of these concepts, and the posterior
samples for several sets of binary images used in the classifi-
cation experiment. We can see that Bayesian program learn-
ing model successfully inferred the program and generated
reasonable novel images of the same concept.

Discussion
Our work is an advanced investigation of similarity and gen-
eralization, along the line of research of classic Bayesian
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Figure 4: Fine-grained comparison of model responses to human responses.

concept learning (Tenenbaum, 2000; Tenenbaum & Griffiths,
2001; Kemp, Bernstein, & Tenenbaum, 2005; Goodman et
al., 2008; Stuhlmuller, Tenenbaum, & Goodman, 2010) in
computational cognitive science. We investigated visual con-
cepts with more abstract, relational, compositional, hierarchi-
cal and object-like structure.

Compared to previous work (Orbán, Fiser, Aslin, &
Lengyel, 2008) that studied learning visual scenes in a grid
world composed of simple chunks (i.e. the statistical de-
pendencies are simple associations between adjacent objects),
this work explores more complex scenes that allow for more
abstract (non-statistical) relations between objects in a scene.
Further, objects in the visual scenes might occlude each other,
which propose yet another challenge for learners, both model
and humans, in identifying the latent structure.

Other important related works are Bayesian program learn-

ing of hand-written characters (Lake et al., 2015) and abstract
visual concepts (Overlan, Jacobs, & Piantadosi, 2017). Our
study introduces a richer grid concept domain, and devel-
ops computational account of different levels of abstraction.
Although Lake et al. (2015) presents a Bayesian program
learning model for few-shot learning of hand-written char-
acters, which are images on a larger grid than what we use
here, some interesting differences are worth mentioning here.
Human might have a lot of practical experience with hand-
written characters in daily life. There could be reasonably
good prototype for hand-written characters as they are often
standardized for communication purpose. People might rely
on inferring a single visual prototype and generalize through
similarity matching to the prototypical image. In our case, in
contrast, it is hard to infer a single visual prototype for many
of our concepts, even though there are only a small number

2624



Examples log(P) Concepts Posterior samples

-1.41 GROW(dl,2)→ GROW(u,2)→ GROW(ur,2)→ START→ ADD(2×2)

-1.41 GROW(dl,2)→ JUMP(d,1)→ GROW(ur, 2)→ START→ ADD(2×2)

-7.65 GROW(any,2)→ JUMP(u,1)→ GROW(ur,2)→ START→ ADD(2×2)

-1.47 GROW(ur,2)→ JUMP(l,2)→ GROW(dl,2)→ COPY(1)

-6.43 GROW(dl,2)→ JUMP(r,3)→ JUMP(u,1)→ GROW(dl,2)→ COPY(2)

-12.66 GROW(dl,2)→ JUMP(r,any)→ JUMP(u,1)→ GROW(dl,2)→ COPY(any)

-2.12 GROW(dr,3)→ START→ GROW(dl,3)

-6.28 GROW(dr,any)→ START→ GROW(ur,3)

-8.35 GROW(dl,3)→ START→ GROW(any,3)

-0.42 ADD(2×2)→ START→ ADD(2×2)

-3.07 ADD(2×2)→ JUMP(any,any)→ ADD(2×2)

-23.04 ADD(2×2)→ START→ GROW(r,2)→ COPY(2)

Table 3: Programs found by MCMC for several test concepts, with corresponding posterior-predictive samples of new images.

of observations to choose and generalize from.
This work also shows that compositionality is not the

only important aspect behind human few-shot learning, in
line with previous work (Schulz, Tenenbaum, Duvenaud,
Speekenbrink, & Gershman, 2016) that demonstrates hu-
man’s preferences of compositional pattern in function learn-
ing domain. The level of abstraction in the representation
also plays an important role in building models that can better
match the generalization behaviors observed in human con-
cept learning.

We believe that our visual concept learning task contributes
to an understanding of how humans learn and reason about
novel visual concepts, addressing two questions: (1) what
kinds of representation and architecture support flexible infer-
ence of underlying abstract structure, and the impressive gen-
eralizations that humans achieve from often minimal data?
(2) Is this same architecture necessary, and is it sufficient, to
explain the kind of rapid inferences humans are able to make
given only a short glimpse of a concept? Comparisons among
several Bayesian models with different degrees of abstraction
demonstrate that, even in this minimal domain, humans can
infer concepts with a rich compositional structure, but that
the extent of this structure is dependent on the condition of
presentation.
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Abstract 

The answers people give when asked to “think of the 
unexpected” for everyday event scenarios appear to be more 
expected than unexpected. There are expected unexpected 
outcomes that closely adhere to the given information in a 
scenario, based on familiar disruptions and common plan-
failures. There are also unexpected unexpected outcomes that 
are more inventive, that depart from given information, adding 
new concepts/actions. However, people seem to tend to  
conceive of the unexpected as the former more than the latter. 
Study 1 tests these proposals by analysing the object-concepts 
people mention in their reports of the unexpected and the 
agreement between their answers. Study 2 shows that object-
choices are weakly influenced by recency, that is, the order of 
sentences in the scenario. The implications of these results for 
ideas in philosophy, psychology and computing are discussed.  

Keywords: expectation; explanation; cognitive; judgments 

 

 As we know, there are known knowns; there are things that 
we know that we know. We also know there are known 
unknowns; that is to say we know there are some things we 
do not know. But there are also unknown unknowns, the ones 
we don't know we don't know. 
Donald Rumsfeld, Feb 2002, US Secretary of Defence 

1. Introduction 
In an uncertain and contingent world, our ability to deal with 
the unexpected often gives us safe passage through the Siren-
like obstacles of everyday life (see e.g., Weiner, 1985a).  The 
Cognitive Sciences have often concerned themselves with 
how people think about the unexpected.  However, most of 
this research relies on theory-driven definitions of the 
unexpected (e.g., low probability events), rather than simply 
asking people to “think of the unexpected” and see how they 
respond1.  In the present paper, we report two studies that ask 
people to generate unexpected events for everyday scenarios 
and then analyse their responses.  As the title of the paper 
suggests, our main finding is that people’s conception of the 
unexpected is not really that unexpected at all. 

In Cognitive Psychology, unexpectedness is often used as 
a dependent variable in studies of human thinking and 
decision making. For example, in reasoning research, the 
unexpected has often been proposed to elicit counterfactual 
thinking (Kahneman & Miller, 1986; McEleney & Byrne, 
                                                        
1 Khemlani et al.’s (2011) Expt. 3 is a notable, but rare, exception 
though it focusses on the issue of latent scope. 

2006).  In attribution research, the unexpected has been cast 
as non-normative behavior in others, that elicits spontaneous 
causal thinking (Hastie, 1984; Weiner, 1985b). And, 
surprising events are often defined in terms of their 
unexpectedness (Meyer et al., 1997; Maguire et al., 2011).  

However, most of these studies do not actually ask people 
to report unexpected outcomes; rather they adopt a priori 
operational definitions of unexpectedness based on the 
experimenter’s theoretical stance.  The unexpected is 
commonly operationalized as (i) an event rated as having a 
low subjective probability (Maguire et al., 2011; Teigen & 
Keren, 2003), or (ii) profiles of people with inconsistent traits 
(Hastie, 1984), or (iii) events that are simply asserted to be 
unexpected to the actors in a narrative (McEleney & Byrne, 
2006). In contrast, we do not use a priori definitions but 
rather, simply, ask people to tell us what they consider the 
unexpected to be. This sort of behaviour was observed by 
Foster & Keane (2015, 2019), in studies on surprise, in the 
form of familiar surprises (“I am surprised my wallet is 
missing from my trouser pocket, but I am guessing it was 
robbed”) and unfamiliar surprises ( “I am surprise my belt is 
missing from my trousers but have no idea how that could 
have happened”; see also Maguire & Keane, 2006). 

1.1 Thinking About the Unexpected 
Consider the simple task used in the current experiments to 
elicit unexpected events from people.   Imagine being told a 
story about a woman, called Louise, who is going shopping 
at her favourite clothes store, in which she draws money from 
an ATM and heads into town on the bus.  Now imagine you 
are told “Something unexpected occurred. What do you think 
happened?”   One could respond with one of the following 
unexpected events, saying that: 

1) Louise lost the money she drew from the ATM. 
2) Louise was delayed in traffic, arrived late and the 

shop was shut. 

However, one could also validly say: 

3) The bus stopped at a charity bus-wash and Louise got 
covered in suds. 

4) Louise pulled a gun on the driver and robbed him to 
raise more money for her shopping spree. 

Intuitively, as unexpected outcomes, the first two answers (1-
2) are quite conservative and mundane and less unexpected 
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than the latter two responses (3-4) which are more inventive 
and a lot more unexpected.   We call the former answers the 
expected unexpected and gloss the latter as the unexpected 
unexpected.   

Expected unexpected outcomes tend to maintain the 
original goal of the story scenario (i.e., shopping) and the 
stated object-concepts associated with the story’s goal; these 
goal concepts tend to be re-used in the unexpected event (i.e., 
bus, ATM, money, store) and few new objects are added (e.g., 
traffic).  Furthermore, these events are often “common 
failures” that are familiar to people; losing one’s money or 
being delayed are common reasons for failed plans and goals.  
     Unexpected unexpected outcomes, in contrast, may 
establish new goals for the story scenario (e.g., attending a 
charity event) and, though goal objects may be used (i.e., bus, 
money), often “new” object-concepts not present in the 
original story are introduced (e.g., guns, suds).  Also, these 
unexpected events are quite unfamiliar to the scenario: 
getting involved in a charity bus-wash is not a common 
everyday event for most people who are going shopping.  In 
previous work on surprise using these everyday scenarios 
(Foster & Keane, 2015), we noticed that people typically 
produced expected unexpected answers rather than 
unexpected unexpected ones.  But, why?  
     Why do people minimally perturb the stated scenario, 
keeping its goals and goal-concepts in these expected-
unexpected events that they seem to prefer to generate?  One 
possibility is that when people are thinking about the 
unexpected, they are essentially trying to explain how current 
goals might fail; so, unexpected events tend to describe 
disruptions to a current plan or undoings of assumed facts that 
enable current goals. Being delayed in traffic disrupts 
Louise’s shopping plan, undoing the assumption that the bus 
gets her to the shop on time. Losing one’s money is an 
unexpected event that explains how any shopping-goal might 
fail. From an adaptive perspective, it makes sense to 
minimally change the current situation when projecting such 
unexpected futures. In contrast, more creative unexpected-
unexpected events, that depart significantly from the current 
scenario, may never occur and, therefore, seem not to be 
considered.   In short, the former probably have higher 
predictive value than the latter. Across the Cognitive 
Sciences, many researchers have highlighted this minimalist 
stance in people when they encounter the unexpected.   

1.2 The Minimalism of the Unexpected 
In Philosophy, when reasoning about inconsistencies (such as 
new, unexpected facts), it has been repeatedly proposed that 
any change to stated propositions or prior beliefs should be 
as minimal as possible; observing the “maxim of minimal 
mutilation” (Quine, 1992, p.14), or the “principle of 
conservativism” (Harman, 1986, p.46).  Similarly, in 
considering counterfactual situations (of which unexpected 
situations could be a subclass), Lewis (1986), taking a 
possible-world perspective, talks of finding the maximally-
similar world to the current one.   

                                                        
2 Note, both Leake and Schank maintain that not all situations can 
be handled by these pre-canned explanation-patterns; explaining the 

    In Psychology, related ideas arise in considering the 
minimal-mutability of counterfactual scenarios (Kahneman 
& Miller, 1986).  Also, in the psychology of explanation, 
several researchers have noted how explanations of the 
unexpected maintain aspects of the original scenario; they 
preserve the level-of-abstraction of the original scenario 
rather than identifying new or more specific information (see 
e.g., Johnson & Keil, 2014) or they favor explanations with a 
narrow, latent scope (Khemlani et al., 2011).   
    In Artificial Intelligence, theories of understanding and 
explanation directly predict minimalism and show how the 
“expected unexpected” might arise (see Leake, 1991, 1992; 
Schank, 1986; Schank, Kass & Riesbeck, 1994).  David 
Leake’s (1992) computational account of understanding 
gives the most comprehensive account of what people might 
be doing when asked to “think of the unexpected” (see also 
Schank, 1986).  Leake argues that people store explanation 

patterns to handle plan failures and anomalies encountered in 
everyday life.  These explanation patterns can be thought of 
as “script-like” structures (Schank & Abelson, 1977), at 
varying degrees of abstraction, that can account for 
difficulties that arise in plans; for instance, in considering 
how a planned shopping-expedition might be disrupted, a 
number of standard disruption-events suggest themselves 
from pre-stored explanation patterns (e.g., that I might be 
mugged, or that I might lose my money or that I might be 
delayed).  To handle a contingent world, it is proposed that 
we store these pre-canned explanations and retrieve them to 
quickly explain unexpected happenings2.  Although these 
ideas have been referenced in the psychological literature 
(e.g., Hastie, 1984), they have not been worked up into a 
psychological model or specifically tested.  Here, we propose 
an initial psychological account, that we then test this model 
in two experiments. 

1.3 Minimal Retrieval Model 
Our psychological account for the generating unexpected 
events is called the Minimal Retrieval Model (MRM). 
According to this model, when people are asked for 
unexpected outcomes to everyday scenarios, they retrieve 
explanation patterns and adapt them to the situation in hand.  
Specifically, that people build a cue frame using the given 
information in the scenario (e.g., the goals, actors, actions and 
objects mentioned) to search memory for suitable 
explanation patterns.  For example, when people are told 
Louise had the goal of going shopping, took money from the 
ATM and then went to town, it is assumed that memory is 
searched for explanation patterns involving shopping-goals, 
female-shoppers, buses, money, and ATMs. Accordingly, 
unexpected events such as Louise losing her money, having 
problems with the ATM, or being delayed will tend to be 
found in memory and returned as responses, rather than more 
inventive answers.   
     Minimal Retrieval Model makes several predictions about 
the nature of the unexpected outcomes reported by people; 
specifically, it is predicted that (i) reported unexpected events 
should tend to use the stated object-concepts in the original 

unexpected may sometimes involve much more creative uses of 
prior knowledge, such as analogical explanations. 
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scenario because memory will be cued with these concepts 
and the retrieved explanation patterns will instantiate these 
objects, (ii) goal-related objects will be preferred in reported 
events, over non-goal objects, (iii) people will tend to agree 
on the reported unexpected events because they are using 
familiar plan-failures (i.e., explanation patterns).   Note, the 
first two of these predictions basically propose that 
minimalism is a side-effect of the retrieval process and the 
third prediction basically says that answers will be expected-
unexpected events rather than unexpected-unexpected ones. 

Table 1: Louise-Shopping Story & Answer Categories                               
 
Sentence Order Used in Study 1 & 2 (Normal Condition) 

Goal         (S1) Louise wants to shop at an expensive 
clothes store. 

Non-Goal (S2) She is wearing her favourite dress and 
matching shoes. 

Goal Step  (S3) Louise draws money from the ATM. 
 

Sentence Order Used in Study 2 (Reversed Condition) 

Goal         (S1) Louise wants to shop at an expensive 
clothes store. 

Goal Step  (S2) Louise draws money from the ATM. 
Non-Goal  (S3) She is wearing her favourite dress and 

matching shoes. 
 
Answer Categories for Unexpected Events 

ls_neg_ans1 She has insufficient money to buy 
ls_neg_ans2 She has problems with the ATM 
ls_neg_ans3 She is robbed or loses money/card/id. 
ls_neg_ans4 Clothes issues (dress rips, shoe snaps). 
ls_neg_ans5 The shop is closed. 
ls_pos_ans1 She finds or ATM gives more money. 
ls_pos_ans2 She has more money than she thought. 
ls_pos_ans3 Good events involving shoes and dress. 
ls_pos_ans4 Sale is on at the shop. 
ls_other e.g.; ATM speaks,gives money to charity. 

Preference for Stated Object-Concepts. If memory is being 
searched with the stated goals and object-concepts given in 
the scenario then the explanation patterns retrieved should 
reflect these objects/entities and minimally introduce new 
objects (e.g., ones that mention money, ATMs, buses).   This 
process thus delivers unexpected events that remain close to 
the original scenario, with perhaps better predictive value.  In 
Quine’s terms, the reported unexpected event will minimally 

mutilate the original scenario.  In the present studies, we 
measure this minimalism by recording the frequency of stated 
objects versus new objects in the reported unexpected 

                                                        
3 Though, obviously, it could be made goal-critical with additional 
conditions (e.g., if one said “she wanted to be able to match the 
clothes she was wearing with those in the shop”). 

outcomes (excluding references to Louise who as the main 
actor will always tend to be mentioned).  

Preference for Goal Objects. Within the preference for 
stated objects, MRM also predicts that goal-related objects 
will be preferred over less goal-related objects (which we will 
call non-goal objects).   For example, if the scenario mentions 
that “Louise was wearing her favorite dress and matching 
shoes” (see Table 1), these objects dress and shoes are less 
goal-critical.   People need money to go shopping but what 
they wear is less critical to the shopping goal 3.  Although, it 
is feasible to generate unexpected events from these non-goal 
objects (e.g., “when Louise got on the bus, everyone was 
wearing the same dress and shoes”), explanation patterns 
based on non-goal objects are less likely to be retrieved 
because they are not goal-critical.  In the present studies, we 
check for this preference by recording the frequency of stated 
goals-objects versus non-goal objects in the reported 
unexpected outcomes (obviously, again, excluding 
references to Louise who as the main actor will tend to be 
mentioned anyway). 

Agreement. By definition, explanation patterns are 
explanations for commonly-occurring disruptions to 
everyday plan-goal sequences; it makes more sense for the 
cognitive system to assume that disruptions that happened 
repeatedly in the past will happen again.  As such, they should 
be familiar to people, they should be expected-unexpected 
events.  Hence, there should be a high level of agreement 
between people in the unexpected outcomes they propose. 
This means that most answers should fall into a small set of 
common answer-categories; for instance, we should see 
many people using answers that describe “Louise losing her 
money” or “the shop being shut” (see Table 1).  In the present 
studies, we test this prediction by classifying people’s 
responses into answer-categories and recording the 
proportion of answers that fall into these categories.  In the 
remainder of this paper, we report two experiments designed 
to test these predictions. To the best of our knowledge, these 
tests are new, as are the measures used to assess what people 
report as the unexpected.  

2. Study 1: How Unexpected? 
The study presented participants with scenarios describing 
everyday events such as going shopping, doing exams, going 
on trips and attending business meetings (adapted from 
Foster & Keane, 2015). Each story was followed by an 
instruction to think of the unexpected.  The unexpected 
outcomes reported for each scenario were categorized by 
three judges in terms of object-concepts (i.e., goal-objects, 
non-goal-objects, both goal- and non-goal-objects and 
neither of the stated objects) and answer-categories used. 

2629



Fig 1. Frequencies for Answer Categories in Louise Story (see Table 1 for Meaning of Answer Code)

2.1 Method 

Participants & Design.  The study involved 127 participants 
and was run on the crowdsourcing platform, prolific.com4.  
Participants were native English speakers from 
Ireland/UK/USA and had not participated in previous studies 
by the group.   

Procedure & Materials.  All participants received the same 
20 scenarios (randomly re-ordered for each participant), after 
first being shown two practice materials (these items were not 
flagged as practice items and not included in the analysis).   
Participants were presented with a series of web pages, 
explaining the task and then presented with one scenario after 
the other, each on its own page. Each material was presented 
along with the associated instruction to think of unexpected 
outcomes to the scenario (material lists available on request). 
      Each scenario was described in three sentences: a setting 
goal-sentence (S1; Louise going shopping), one giving 
additional information that was not on the critical path of the 
plan for the goal (S2; Louise wearing her favourite dress and 
shoes) and a final one describing some further action taken to 
achieve the goal (S3: Louise drawing money, see Table 1).  
Two comprehension questions were asked about the scenario, 
as a test micro-task, to ensure participants had carefully read 
and understood the scenario.  The instruction to think of the 
unexpected followed these questions.  Participants wrote 
their responses in a text-field with no upper limit.  

Measures & Judgements.  In total the study yielded 2,540 
responses (127 participants x 20 materials) each of which 
were judged by three raters (i.e., the three authors) for 
answer-type and the use of goal-related and non-goal-related  
objects (the main actor of the scenario was always excluded 
from this object judgement).  Every response was categorized 
into answer categories specific to the material (e.g., in Louise 
scenario, answers about losing money, being delayed, the 

                                                        
4 The original experiment was divided into four conditions that used 
variants on the main instruction: asking for “something 
unexpected”, “something good and unexpected”, “something bad 

shop being shut).  The classification of answers by the three 
judges revealed high levels of agreement: pairwise 
comparisons between judgements revealed Cohen’s Kappas 
from K=0.82 to K=0.89. The classification of objects in the 
answers (as goal, non-goal, both, neither stated object) by the 
three judges had lower, but acceptable, levels of agreement. 
Agreement between Judge-1 and Judge-3 was lower 
(K=0.56) as object classifications were re-defined more 
tightly for Judge-2 and 3, who agreed more often (K=0.74). 
The final classifications chosen for all judgements was based 
on a majority vote from the three judges. Three-way splits 
(which were rare, N<20) were resolved by discussion. 

2.2 Results & Discussion 
Overall, the results confirm the predictions made from the 
Minimal Retrieval Model; the unexpected is really not that 
unexpected.  People tend to (i) stick to the stated objects in 
the scenario rather than  use new objects, (ii) they show a 
strong preference for given goal-objects over non-goal 
objects, (iii) they agree on the unexpected events reported, as 
a few answer-categories cover most responses made.    

Preference for Stated Objects. As predicted, people tend to 
stick to the object-concepts given in the scenario (e.g., the 
money, buses, shoes of the Louise story), rather than 
introducing new objects into their answers.  Of the 2,540 
unexpected outcomes reported by participants, 78% 
(N=1891) relied on the given objects, while only 22% 
(N = 649) of answers mentioned none of the stated objects 
(i.e., “Louise met her best friend”).  Most unexpected 
outcomes assert a new relation between the given objects 
(e.g., “The ATM showed Louise had more money”).    

Preference for Goal over Non-Goal Objects. Furthermore, 
of the 78% (N=1,891) of unexpected outcomes that used the 
given objects from the scenario, the majority used only goal-
objects (80%; N=1,518) with a minority using the non-goal 

and unexpected”, or “what would happen if the goal failed”.  For 
brevity, this manipulation is not reported here, as the same pattern 
of responding is seen across all these four conditions. 
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objects (14%; N=261) and a few using both stated object-
types (6%; N=112). Chi2 tests performed on frequencies of 
the four object-types (df=3) for each material were all 
statistically significant at p < 0.01. Also, a by-materials 
analysis, using Wilcoxen’s test, revealed a statistically 
significant difference in the proportions of goal versus non-
goal objects chosen, z = 3.00, p < .001. 
     Of course, one could argue that this result is not surprising, 
as two sentences mentioned goal-objects (S1 and S3) and 
only one mentions non-goal objects (S2, see e.g. Table 1)5. 
However, even if examine goal and non-goal object choices 
at the sentence level, the preference for goal-objects remains: 
on average, goal-objects are chosen from S1 (M=27%) and 
S3 (M=44%) more often than the non-goal-objects from S2 
(M=13%; see Table 2).  Chi2 tests performed on 40 pairwise 
comparisons of choices, for S1xS2 and S2xS3, found that 
only 5 comparisons were non-significant (most are p <  .001).   
However, it is clear that there is a preference for goal-objects 
from the final sentence in the scenario (S3 at 44%), 
suggesting a recency effect, that we explore in Study 2.  
    Thus far, the evidence suggests that people respond in a 
minimalist way, sticking close to the original scenario’s 
objects, with a strong preference for stated goal-related 
objects over stated non-goal objects. 

Agreement in Answer Categories. Apart from analysing the 
object-concepts used in the unexpected outcome, we also 
categorised responses and noted their frequency of 
occurrence (e.g. see Table 2 and Fig.1). On average, materials 
were found to involve 10 answer categories (M=10.68, 
SD=1.7); Min=6 (lucy_loan) and a Max=13 (robert_essay; 
see Table 2).  Figure 1 shows a typical distribution of 
responses across answer-categories for the Louise story; note, 
the top-3 most-frequently-used answer-categories of 10 
categories tend to cover most responses (63%) followed by a 
long tail of lower-frequencies for other categories.   Note, one 
answer-category was used as a residual one (the other 
category), and it typically also has a low count.   
     Table 2 shows the percentage of responses that fall into 
the top-3 most-used answer-categories for each material. In 
the most extreme case, lucy_loan, 89% of responses are 
covered by the top-3 answer-categories, with the lowest being 
49% (for bill_holiday).  This pattern of responding shows that 
there are very high levels of agreement between people with 
respect to the unexpected events they propose. For example, 
in the louise_shopping scenario, 29% of people proposed that 
Louise had money problems such as spending too much or 
not having enough money for the clothes (ls_neg_ans1), 25% 
proposed that she lost her money in some way (ls_neg_ans3) 

and 9% said that the ATM told her she had more money than 
she thought (ls_pos_ans2).  None of these unexpected events 
are particularly “unexpected”; they are rather, typical 
disruptions that occur in everyday plans to achieve mundane 

                                                        
5 Also, note the sentences themselves in the original scenarios 
mentioned equivalent numbers of objects (by-materials, paired t-
tests on the object counts in S1, S2 and S3 revealed no differences, 
all ps > 0.10).   
6 The original experiment had 6 conditions that used (i) the three 
instructional variants used in Study 1 (“unexpected”, “good and 

goals. They are expected unexpected events. Indeed, more 
inventive answers -- the unexpected unexpected -- are quite 
rare and typically found in the other category. For instance, 
in the Louise story, the other category (ls_other, N=8) 
includes responses about (i) Louise deciding to give her 
money to a charity instead, (ii) Louise being approached by a 
film director who says she is beautiful and wants to make her 
a star and, (iii) the wonderful “The ATM opens, and Louise 
realizes it is a portal to her happiest childhood memory”.   
These sorts of answers are the unexpected unexpected, truly 
unusual possible outcomes but, notably, are rare too. 

3.  Study 2: The Recently Unexpected? 
Study 1 supports the minimalist predictions that people will 
stick closely to the original scenario, introduce few “new” 
objects and agree with others when proposing unexpected 
events for everyday scenarios. However, with respect to the 
object-concept analyses, the preference for goal-objects 
(especially, objects from the final sentence, S3) and lack-of-
preference for non-goal objects could be due, in part, to a 
recency effect.  That is, maybe people follow on from the last 
sentence in the story and, hence, use its goal-objects.  For 
example, in the Louise story people do not mention her shoes 
and dress (the non-goal objects from S2) but rather follow on 
from the mention of ATMs and money (from S3) in proposing 
their unexpected outcome.  If this were true then people’s 
object-choices perhaps hinge less on their goal or non-goal 
status but more on order of mention.  In this study, we put the 
non-goal sentence last (S3) to check if this changes the 
object-choices made (see Table 1 for a sample material).  

3.1 Method 
Participants and Design.  The study involved 258 
participants on the prolific.com crowdsourcing platform5,6.  
All were native English speakers from Ireland/UK/USA and 
had not taken part in our previous studies.   

Procedure & Materials.  All participants received the 20 
scenarios used in Study 1, using the same procedure.  There 
were two main conditions of interest: Normal (N = 126) and 
Reversed conditions (N = 132).  Participants in the Normal 
condition received the same materials as those used in 
Study 1. Participants in the Reversed condition received 
variants of these materials, in which the non-goal sentence 
was moved to the last position in the story (S3; see example 
in Table 1).   

Measures & Judgements.  In total the study yielded 5,160 
responses (258 participants x 20 materials).  Given the very 
large number of responses in this experiment, we automated 
the object-judgement process  (program and data will be 
made available on email request). A program, called 
ObjJudge was developed using the NLTK, Pandas and SciPy 
python packages to process the answers and identify whether 

unexpected”, “bad and unexpected”), crossed with (ii) a variant to 
think of “bizarre” events.  Initial, analyses suggested that these 
variables do not impact the pattern of responding for object choices 
and, for brevity, are not reported here. 
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they mentioned goal-objects, non-goal-objects, both object-
types or neither.  The program was trained on responses and 
their respective judgments from Study 1.  Using lists of the 
object-entities (i.e.; object words given in the scenarios and 
synonyms provided in responses from Study 1), ObjJudge 
sorts the responses given in Study 2 into goal-object, non-
goal object, both, or neither categories. 

Stated simply, this program matches object-entities in the 
response-string against object-lists for each material 
(including common synonyms that people used in Study 1 
answers).   With this program, we achieved a high accuracy 
over all materials comparing its object-judgements against 
the human-judgments from Study 1 (M=93%; Min=90%, 
Max = 97%; Cohen’s Kappa was K=1).  In all other respects, 
the object-judgement measures were as detailed in Study 1. 

3.2 Results & Discussion 
The results replicate the findings of Study 1 that people (i) 
stick to the stated objects in the scenario rather than using 
new objects, (ii) they show a strong preference for the given 
goal-objects over non-goal objects.  However, it also shows 
that here is a slight recency effect, in the Reversed condition, 
where the choice of non-goal objects increased by about 9% 
relative to the Normal condition. 

Preference for Stated Objects. As we saw in Study 1, 
people tend to stick to the object-concepts given in the 
scenario (e.g., the money, shoes of the Louise story), rather 
than introducing new objects into their answers (e.g., guns, 

suds). Of the 5,160 unexpected outcomes reported by 
participants, 79% (N=4,098) made use of objects stated in the 
scenario, while only 21% (N = 1,062) of answers mentioned 
none of the given objects  Most of the unexpected outcomes 
reported created a new relation between the given objects 
(e.g., “The ATM showed Louise had more money”).    

Preference for Goal over Non-Goal Objects. In a similar 
vein, of the 4,098 (79% of 5,160) unexpected outcomes that 
used objects from the original scenario, the majority 
mentioned only goal-objects (56%; N=2,869) whereas a 
minority mentioned only non-goal objects (13%; N=688), 
with some responses mentioning both goal and non-goal 
objects (10%; N=541).  Chi2 tests performed on frequencies 
of object-types reported for each material were all significant 
at p < 0.05 (df=3, with corrections for low-valued cells).  
     However, these analyses collapse across the Normal-
Reversed manipulation designed to test for recency.    When 
these conditions are broken out there is a small but 
statistically-significant increase in the use of the non-goal 
objects (roughly 9%, with a corresponding reduction in goal-
object choices).  The following are the relative percentages, 
for each choice category, Chi2(3) = 76.9, p < 0.001: 

Cond. Goal Non-Goal Both Neither 
Normal 61% 10% 9% 20% 
Reversed 51% 16% 12% 21% 

In short, when the sentence with the non-goal objects is last 
in the story, people prefer to use the non-goal objects 
somewhat more often; showing that they are sensitive, to 
some degree, to the order in which  information is given, 

though the dominance of goal-object choice still remains. 

4. Conclusions   
To the best of our knowledge, the current study is the only 
one simply asking people to “think of the unexpected” when 
presented with everyday scenarios.    Our view is that when 
people are asked to do this, they tend to recall characteristic 
explanation patterns that account for common disruptions to 
everyday plans and goals (e.g., losing a resource, being 
delayed in executing a plan step).  Accordingly, people report 
unexpected events are not really that unexpected; the 
expected unexpected.  This work shows that these are a class 
of unexpected events --  things that commonly go wrong –	
that	are to be distinguished from “truly unexpected” events 
(as Foster & Keane, 2015, found for surprising events). These 
findings should prompt a re-assessment of what we mean by 
the “unexpected” as a dependent variable in exploring aspects 
of human thought. It also raises the interesting prospect, that 
there is a lot more to be discovered about what people 
conceive the unexpected to be.   
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Table 2: Percentages of  Responses Made for Various Measures, by Material, in Study 1  (N=127 responses per material) 

 
Material 

% Top-3 
Answer 

Cats. 

No. of 
Answer 

Cats. 

% Goal 
Obj. 

 

% Non-
Goal 
Obj. 

% Both 
Obj. 

% 
Neither

Obj. 
 

% S1 
Goal 
Objs 

% S2 
Non-Goal 

Objs 

% S3 
Goal 
Objs 

alan_plane 55% 12 64% 7% 6% 24% 38% 11% 29% 
anna_interview 74% 10 71% 6% 9% 15% 33% 12% 43% 
belinda_meeting 58% 11 37% 28% 20% 15% 21% 32% 37% 
bill_holiday 49% 12 48% 9% 2% 40% 23% 19% 58% 
bob_job 81% 8 78% 0% 0% 22% 19% 0% 63% 
edith_exam 50% 11 44% 20% 11% 25% 31% 20% 33% 
john_party 67% 12 62% 1% 0% 37% 34% 1% 34% 
karen_bus 57% 10 81% 2% 0% 17% 31% 1% 54% 
mary_food 69% 8 80% 6% 2% 13% 64% 1% 29% 
katie_kitten 50% 11 91% 1% 7% 1% 16% 11% 66% 
louise_shopping 63% 10 64% 7% 6% 24% 21% 2% 68% 
lucy_loan 89% 6 87% 0% 2% 11% 3% 7% 77% 
michael_tea 56% 12 34% 35% 6% 24% 9% 38% 30% 
peter_college 56% 12 59% 2% 1% 38% 37% 3% 27% 
rebecca_swimming 54% 12 46% 6% 6% 43% 36% 8% 25% 
robert_essay 54% 13 27% 41% 9% 23% 18% 38% 27% 
sally_wine 54% 12 62% 9% 8% 21% 35% 13% 36% 
sean_call 65% 10 61% 10% 6% 24% 31% 9% 44% 
sam_driving 61% 11 64% 5% 9% 23% 31% 14% 35% 
steve_gardening 55% 11 59% 9% 13% 18% 8% 20% 63% 
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Abstract 

Converging evidence suggests that children’s linguistic and 
theory of mind (ToM) development are linked. Specifically, 
learning the sentential complement grammatical structure has 
been shown to play a causal role in the development of some 
false belief reasoning skills. Here, we extend this line of work 
to examine this relationship in the wild by means of a corpus 
analysis of children’s speech during the typical period of ToM 
development. We show that children’s use of the sentential 
complement grammatical structure increases immediately 
preceding the ToM development period and plateaus shortly 
thereafter. Furthermore, we find that parents’ child-directed 
speech follows a similar pattern. 

Keywords: theory of mind; corpus analysis; sentential 
complement 

Introduction 

Most researchers agree that humans’ ability to reason about 

mental states, or their theory of mind (ToM), develops 

throughout early childhood, with the biggest increases seen 

during the preschool years, roughly age 3 to 5 (Wellman & 

Liu, 2004). Other developmental milestones during this time 

period, such as working memory capacity (Davis & Pratt, 

1995), executive control (Perner & Lang, 1999), and 

language development (de Villiers & Pyers, 1997), have 

been linked as leading to the apparent improved ToM 

reasoning ability, either causally or as a side effect. Of 

these, perhaps the most studied is the role that children’s 

developing language comprehension and production skills 

play in the development of their ToM (see Milligan, 

Astington & Dack, 2007). 

While some researchers argue that improved language 

skills merely allow children to express previously-existing 

ToM concepts (e.g., He, Bolz, & Baillargeon, 2011), it is 

widely accepted that some interaction between language 

abilities and performance on ToM tasks exists. In fact, 

converging evidence suggests that the connection is causal: 

learning certain linguistic constructions, specifically the 

sentential complement, is instrumental in children becoming 

able to perform aspects of ToM reasoning that they were 

previously unable to perform (de Villiers & Pyers, 1997). 

This evidence has taken multiple forms, including (1) a 

longitudinal study correlating sentential complement use 

with ToM reasoning ability (de Villiers & Pyers, 2002), (2) 

training studies that showed children who were trained on 

sentential complements improved performance on ToM 

tasks (Lohmann & Tomasello, 2003; Hale & Tager-

Flusberg, 2003; Mo et al., 2014), and (3) a computational 

model of the mechanisms by which children learn ToM 

from sentential complements (Rabkina, McFate & Forbus, 

2018).  

Taken together, these studies provide evidence that 

understanding the sentential complement construction 

supports ToM development. If this is true, then children’s 

understanding of the sentential complement should precede 

their ability to pass ToM tests. At a population level, this 

means that children’s use of the sentential complement 

should begin to increase prior to the ToM development 

period and plateau by the end. However, prior research has 

focused on the relationship between children’s ToM 

development and their sentential complement proficiency in 

a laboratory setting.  

Here, we perform a corpus analysis of children’s 

conversational speech (CHILDES; MacWhinney, 2000) to 

show that the hypothesized pattern exists in the wild. We 

find that the expected pattern emerges: children’s sentential 

complement use begins just prior to 2 years of age and 

plateaus around 3 years—just as the ToM development 

period begins. Furthermore, child-directed speech follows a 

similar trajectory during the same time period; that is, 

parents increase their sentential complement use in tandem 

with their children. These findings support the argument 

that learning the sentential complement grammatical 

construction plays an important role in developing ToM 

reasoning abilities.  

We begin with a review of prior work linking ToM 

development and sentential complement use. We then 

describe our approach to the corpus analysis and present our 

findings. We conclude by situating these findings in the 

context of prior work and outlining steps for future 

investigation. 

Background 

A sentence contains a sentential complement if a verb in 

that sentence takes a full clause as its argument. For 

example, in the sentence, “Sarah thought the Earth was 

flat,” the clause “the Earth was flat” is an argument to the 

verb “thought.” Crucially, the truth value of the clause is 

independent of the truth value of the sentence as a whole—

the Earth not being flat does not change the fact that Sarah 

thought it was. De Villiers and colleagues (e.g. de Villiers & 

Pyers, 1997; de Villiers & de Villiers, 2003) have argued 

that learning the sentential complement, and the potential 
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difference in implied truth values between the statement and 

the embedded clause, is key to ToM development.  

Converging evidence supports such a conclusion. In a 

longitudinal study, de Villiers & Pyers (2002) found a 

strong correlation between children’s performance on a task 

that measured understanding of sentential complements and 

their performance on three classic ToM tasks. A hierarchical 

regression analysis further showed that performance on the 

understanding of complements task accounted for a 

significant amount of variance in the ToM tasks, regardless 

of the order in which variables were presented in the 

regression. Importantly, this finding was not bidirectional—

ToM performance did not predict performance on the 

sentential complements task. 

Intervention studies suggest that the relationship found by 

de Villiers and Pyers (2002) is causal. Lohmann and 

Tomasello (2003), Hale and Tager-Flusberg (2003), and Mo 

et al. (2014) found that sentential complement training leads 

to improved performance on ToM post-tests in children who 

failed both sentential complements and ToM pre-tests. 

Furthermore, Hale and Tager-Flusberg (2003) found that 

ToM training did not affect performance on sentential 

complements post-tests, which provides additional evidence 

that the effect is causal and unidirectional.  

Rabkina et al. (2018) proposed a process-level 

computational model of the effect of sentential complement 

training on ToM understanding. They argued that, in 

learning to interpret the sentential complement grammatical 

structure, children learned a representation that allowed 

them to separate the truth value of beliefs from reality, 

analogously to separating the truth value of the sentential 

complement and the overall statement. 

The combination of these studies tells a compelling story 

of the relationship between ToM development and the 

sentential complement. However, while the connection has 

been shown in the laboratory, the story may be different in 

an everyday setting. Previous work (Koder, 2016) has 

looked at the developmental trajectory of verbs for reported 

speech as they appear in children’s natural language 

production in Dutch and German. Others (Gordon & Nair, 

2004) have examined more general language use during the 

ToM development period via corpus analysis. However, to 

the best of our knowledge, no previous work has addressed 

the question of sentential complement use in naturally 

occurring speech. 

Here, we perform a corpus analysis of child-directed and 

child-produced sentential complement use during and 

immediately preceding the ToM development period. Our 

results provide further evidence of a link between learning 

the sentential complement grammatical structure and ToM 

development. 

Approach 

If learning the sentential complement grammatical structure 

bootstraps the development of ToM reasoning skills, then 

this pattern should hold outside of the laboratory. That is, 

children’s use of the sentential complement in everyday 

speech should anticipate the developmental trajectory of 

ToM. Because significant improvements in children’s ToM 

occur between approximately 3 and 5 years of age 

(Wellman & Liu, 2004), we expect sentential complement 

use to reach a critical threshold immediately preceding this 

age range. 

To test whether this relationship holds, we performed a 

corpus analysis of children’s use of the sentential 

complement between 12 and 90 months of age. We also 

analyzed sentential complement use in child-directed speech 

(produced by mothers) during the same timeframe. 

All data were extracted from the CHILDES project 

(MacWhinney, 2000), which contains over 130 corpora of 

child-directed and child-produced speech. A corpus was 

included in our analysis if it contained speech by a typically 

developing North American English-speaking child between 

the ages of 12 months and 90 months. For consistency, only 

corpora with an available transcript and dependency parse 

data (Sagae et al., 2007) were included in the analysis. This 

resulted in a total of 32 corpora, leading to 3982 individual 

data points1. 

Each corpus included one or more conversations between 

a child and one or more adults. All conversation transcripts 

provided the child’s age in months and relationship to the 

adult interlocutor(s) (i.e., mother and/or experimenter). 

We extracted sentential complements from the children’s 

speech using the “COMP” (finite verb complement) and 

“XCOMP” (other verb complement) dependency parse tags. 

Sagae et al. (2007) report overall parse accuracy for 

children’s utterances between 72.7% and 92.3% on varying 

corpora within CHILDES. Table 1 shows reported 

precision, recall, and F-score for the “COMP” and 

“XCOMP” tags in the Eve corpus (Brown, 1973). Overall 

parse accuracy for the Eve corpus is 92.0%. Note that these 

analyses include both child and adult utterances. 

Because a causal relationship between learning the 

sentential complement and developing ToM reasoning 

abilities has been proposed (e.g., de Villier & Pyers, 1997), 

we expected children’s use of the sentential complement to 

lead their ToM development. To examine this effect, we 

computed the average number of sentential complements 

produced per sentence at each age in months. If learning the 

sentential complement bootstraps ToM reasoning, then 

children should show an increase in sentential complement 

use leading into the ToM development period. Moreover, 

the increase should be specific to this timeframe; that is, 

children should achieve sentential complement proficiency 

prior to finishing ToM development.  

                                                           
1 For longitudinal studies, a new data point was included for each 

recorded age in months. 

Table 1: Statistics for COMP and XCOMP tags  

(Sagae et al., 2007) 

 

 Precision Recall F-score 

COMP 0.83 0.86 0.84 

XCOMP 0.86 0.87 0.87 

 

Results 

 

Discussion and Future Work 

Acknowledgements 
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Results 

Our results indicate a concentrated growth period for 

children’s sentential complement use that begins to plateau 

at the beginning of the ToM development period, suggesting 

a causal relationship between the two. Furthermore, this 

period of increasing sentential complement use coincides 

with a similar period found in parents’ child-directed 

speech, which suggests a critical role for parents in 

children’s acquisition of this grammatical structure. 

Figure 1 shows the total number of sentences in our 

corpus of child-produced speech at each age in months 

along with the corresponding counts of sentential 

complement use. The corpus contains the most data in the 

range from 25 to 60 months. Note that this is an artifact of 

the data available and does not necessarily represent an 

increase in overall speech production during this age range. 

Figure 2 shows children’s sentential complement 

production as a proportion of overall sentences produced at 

a given age. The graph shows a linear increase from 

approximately 20 months to approximately 40 months of 

age, with a plateau beginning shortly thereafter. Once this 

baseline level of sentential complement production is 

reached, variance visibly increases. However, this variance 

is likely a byproduct of noise due to lower total sentence 

counts at later ages (Figure 1).  

To determine the period of most concentrated sentential 

complement development, we isolated the interval with the 

strongest linear correlation between age and proportion of 

sentential complements (Figure 3, left). We fixed the 

starting point at 22 months, the first instance of appreciable 

sentential complement use (>1%). An endpoint of 38 

months produced the strongest correlation, r2=0.9217, 

p<0.001. Beginning at 39 months, the distribution plateaus 

with a slope of approximately 0 (Figure 3, right).   

Child-directed adult-produced speech follows a similar 

pattern (Figure 4). Following a period of linear increase 

from child’s age 12 months to 38 months (r2=0.8603, 

p<0.001, Figure 5), sentential complement use peaks and 

begins to gradually decline. Notably, the absolute 

proportion of sentential complements per sentence produced 

by adults is higher than the proportion produced by children 

at almost all ages.  

As a potential contrast to the sentential complement, we 

also examined the use of another complex grammatical 

structure that has been argued to influence ToM acquisition, 

the relative clause (e.g., Smith, Apperly & White, 2003). 

However, we found negligible use of the relative clause in 

both child-produced and child-directed speech. This is 

consistent with a prior analysis of longitudinal data (Diessel 

& Tomasello, 2000) which found that children use the 

relative clause in less than 0.5% of utterances.  Absent a 

direct increase in the use of another such structure in child-

produced speech during this period, the sentential 

complement stands out as the best candidate for a syntactic 

aid to ToM development. 

Discussion 

As predicted, children reach a critical threshold of sentential 

complement use prior to entering the major period of ToM 

development, typically regarded as 3 to 5 years of age. By 

        
 

Figure 1: Counts for total sentences (left) and total sentential complements (right) in our corpus at each age in months. 

Note that one outlier (57 months) was removed from each graph. 

        
 

Figure 2: Average number of sentential complements 

per sentences produced by children at each age in 

months. No outliers were excluded. 
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36 months children use sentential complements in an 

average of 6.5% of sentences (Figure 1). Their sentential 

complement use begins to plateau shortly thereafter, at 38 

months and 8.4%. 

It is important to note that both the ToM development 

period and the beginning of the observed plateau in 

sentential complement use are not hard boundaries. In fact, 

sentential complement use continues to increase after the 

onset of the plateau (between 39 and 58 months; r2=0.3581, 

p=0.005; Figure 3, right), albeit at a much reduced rate. 

However, weak correlation and high variance make it 

difficult to draw firm conclusions about trends within the 

plateau. 

What is clear is that the most concentrated growth occurs 

before children make significant strides in their ToM 

development. Previous work has shown that training 

children to understand the sentential complement leads to 

improved ToM reasoning skills in a laboratory setting 

(Lohmann & Tomasello, 2003; Hale & Tager-Flusberg, 

2003; Mo et al., 2014). Our results suggest that the same 

effect occurs outside of the laboratory. Taken together, these 

findings support the hypothesis that mastery of basic 

sentential complement use sparks ToM development.  

Another finding of note is that child-directed sentential 

complement use shows a similar pattern of increase to child-

produced sentential complement use. Specifically, adult 

sentential complement use increases from 7.0% at child’s 12 

months to 16.0% at child’s 38 months. This period 

subsumes the interval of greatest sentential complement 

development in children and gives way to a period of 

decline as children’s use plateaus. Parents seem to adjust 

their sentential complement use according to the child’s 

level of proficiency. Moreover, parents’ sentential 

complement use seems to promote sentential complement 

production in children, as parents consistently overproduce 

compared to children at a given age.  

Several explanations could account for the observed 

behavior. First, it is possible that parents mirror their 

children’s speech patterns: as the child increases her 

sentential complement use, so does the parent. Under this 

hypothesis, other grammatical constructions should follow a 

similar trajectory. Alternatively, the causality could flow in 

        
 

Figure 3: Proportion of sentential complement use by children at each age, zoomed to period of growth (left) and 

stabilization (right). 

 
 

Figure 4: Average number of sentential complements 

per sentence produced by mothers at child’s age in 

months. No outliers were excluded.  

 
 

Figure 5: Average number of sentential complements 

per sentence produced by mothers at child’s age in 

months, zoomed to period of increase.  

2637



the opposite direction, with children mirroring their parents. 

This explanation follows more directly from the present 

data, since the parents’ sentential complement use precedes 

the children’s, but it does not explain why the parents’ use 

increases. Yet another explanation could be a mutual 

influence effect between children and their parents. As 

children begin to use the sentential complement, the parents 

increase their usage of the grammatical form, pacing their 

children’s learning. Identifying the exact relationship at play 

will require data that can clarify the interaction between 

children’s language use and their parents’. 

Overall, our findings paint a picture of parental influence 

on children’s sentential complement development, leading 

to children’s acquisition of ToM. While the corpus analysis 

is not stand-alone proof of a relationship between sentential 

complement proficiency and ToM development, it is 

consistent with prior laboratory evidence of a causal link 

between the two. This is a step toward showing that such a 

link exists in the wild. 

Limitations  

One goal of this paper is to provide evidence in support of 

the hypothesis that sentential complement acquisition 

causally drives ToM development. While the evidence 

presented here supports such a relationship, it is not 

sufficient to establish causality for two reasons. First, as a 

correlational study, this can only point to likely interactions 

and cannot confirm their directionality or factor out 

potential confounds. Second, our analysis takes the ToM 

development period as a given and does not examine ToM 

effects directly. 

These limitations mean that our findings cannot be used 

to draw broad conclusions about the interaction between 

language and cognition. The observed patterns could arise 

from effects that contradict the linguistic determinism 

hypothesis but are not accounted for in the available data. In 

particular, the lack of explicit ToM performance data means 

that any conclusions about ToM drawn from this dataset 

must be based on independently motivated developmental 

theories. For example, some researchers have found 

evidence that infants exhibit behaviors consistent with some 

understanding of ToM (e.g., Baillargeon, Scott & He, 2010). 

It is unclear how to reconcile such findings with the patterns 

observed here.  

Another caveat to our findings is the potential for noise in 

the dependency parses we use. Though the analysis in Sagae 

et al. (2007) shows adequate performance of their parses on 

the CHILDES dataset (see Approach section for detailed 

overview), manual inspection showed instances where the 

dependency parse was inaccurate. It remains to be seen how 

the overall performance of the parser relates to the specific 

corpora used in our analysis. 

Future Work  

This paper considered the relationship between children’s 

sentential complement use and their ToM development. 

However, evidence exists that a more granular view of the 

sentential complement might be appropriate. For example, 

Mo et al. (2014) found that, on ToM post-tests, children 

trained with sentential complements involving 

communication verbs outperformed children who were 

trained with mental state verbs. They note that this may be 

an artifact of the language used in the study, Mandarin, 

rather than a more general effect. On the other hand, Hale 

and Tager-Flusberg (2003) included only communication 

verbs in their training study of English-speaking children 

because of the potential confounding factor of the semantics 

carried by mental state verbs. A deeper analysis of the types 

of verbs used by children as they learn the sentential 

complement could shed some light on this question. 

Because the effects of sentential complement training on 

ToM performance have been observed cross-linguistically, 

it is worth examining whether the patterns found in the 

present study are consistent across languages as well. Shatz 

et al. (2003) showed that 3- and 4-year-old speakers of 

languages with explicit false belief markings outperformed 

speakers of languages without such markings on some ToM 

tests. This suggests that other linguistic effects may be at 

play, and that the sentential complement may not be the sole 

way ToM is encoded in linguistic structure. For such 

languages, it is possible that the pattern of sentential 

complement use found in English may be less strong or 

entirely nonexistent.  

Another question that merits further investigation is the 

nature of the plateau observed in Figure 2 and Figure 3 

(right). A cursory analysis shows a period of continued 

increase from 39 months to 58 months before a period of 

mild decrease lasting through the end of the included data. 

The variance in the available data at this age range 

precludes a more concrete analysis, but the coincidence of 

the period of sustained increase in sentential complement 

use and the period of ToM development points to a tighter 

connection than can be shown at present. 

Current data also does not fully illuminate the relationship 

between children’s sentential complement use and that of 

their parents. It is curious that the adult-produced speech so 

closely parallels the patterns observed in children’s speech. 

However, identifying the exact mechanism by which this 

arises would require paired data to more closely track 

changes in sentential complement use. 

Finally, the questions raised in this paper tie into a 

broader debate about ToM acquisition as a whole. Although 

we provide evidence that is consistent with the hypothesis 

that sentential complement proficiency facilitates ToM 

development, strict causality has yet to be proven. Further 

research is required to fully explore this connection. 
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Abstract

When does a reasoner respond that ”no valid conclusion” (NVC)
follows in a syllogistic reasoning task? Cognitive theories aim to
trace it back to theory specific inference processes. In contrast,
systemic theories explain it by depleted cognitive resources among
others. This paper investigates possible theories to explain NVC
responses in an experiment with 139 participants. Using mixed
models we analyze the association of NVC responses with reaction
times, the validity as well as the entropy of a syllogism, and how
NVC responses change over time. As expected, the number of
NVC responses is lower than logically expected, participants
respond NVC more often for invalid syllogisms, and the likelihood
to respond NVC increases over the time-course of the experiment.
Surprisingly, however, only for valid syllogisms, are the entropy
and the RTs associated with NVC responses. Consequently,
for invalid syllogisms, NVC responses seem to be generated
differently as compared to valid ones.
Keywords: Reasoning; NVC; cognitive theories; logic; valid;
invalid

Introduction
The psychology of reasoning investigates when and which
conclusion is derived from given information. This includes the
case when no conclusion can be drawn because the information
is insufficient or it is too difficult to make an inference. The
domain of syllogistic reasoning is probably the best researched
domain with most published theories (for an overview see
Khemlani & Johnson-Laird, 2012). A syllogism consists of two
quantified statements. Each statement is formed using one of
four quantifiers: All (A), Some (I), Some . . . not (O), or None
(E). Consider the following syllogistic reasoning problem:

(AA4) All beekeepers are architects.
All beekeepers are chemists.
What, if anything, follows?

The task is to generate a quantified answer using one of the
quantifiers A, I, O, E about the two terms architects (A) and
chemists (C, in any direction) or to conclude that no logically
valid conclusion (NVC for short) can be made. Four different
arrangements of the terms in the premises, called figures, are
possible. The example above, for instance, is a type 4 figure (B-A,
B-C). The four quantifiers for each of the two premises times
four figures sum up to 64 possible syllogistic problems. Each
syllogism can be encoded by a string, describing the quantifiers
of the two premises as well as the relation of the used items in
a figure. Hence, the syllogism above can be succinctly written
as AA4. For the problem (AA4) most of the participants (49%
in Khemlani & Johnson-Laird, 2012) infer that All architects are
chemists and only 16% give one of the logical correct answer that
Some architects are chemists or that Some chemists are architects.
However, about 22% of the participants in the metaanalysis

*Both authors contributed equally to this manuscript.

(Khemlani & Johnson-Laird, 2012) respond that NVC follows.
A logically valid problem is one where by applying a logical
calculus such as first-order logic allows to infer a conclusion (such
as the syllogistic example AA4 above where Some architects
are beekeepers is one). If this cannot be inferred then it is called
invalid problem (and the only logical correct answer is NVC). Past
research both from a statistical and from a modeling perspective
has strongly focused on the case when an inference can be drawn
(Oaksford & Chater, 2007; Johnson-Laird, 2006; Costa, Saldanha,
Hölldobler, & Ragni, 2017) but less on the case when no logically
valid conclusion can be inferred. Yet, it is exactly this response
that stands out from the rest: Not only is the response NVC a
different class of response, namely stating that no other conclusion
follows, but it is the NVC response, that is the most frequently
observed response in experiments (Khemlani & Johnson-Laird,
2012). In the current work, we aim to fill the gap of investigations
on NVC responses by systematically investigating when people
respond NVC. In particular, we compare different approaches
to explain NVC responses by analyzing experimental data.

When is an NVC response given?
Syllogistic theories have been categorized as heuristic, rule-based,
and model-based approaches (Khemlani & Johnson-Laird, 2012):
Only few cognitive theories in syllogistic reasoning predict the
NVC conclusion at all (e.g., Mental Model Theory, Verbal, Con-
version). If a theory does so, it often implies that individuals give
NVC as a last-resort, when the inference process yields nothing
else (e.g., Mental Logic; Rips, 1994). Most of the heuristic
theories do not predict NVC responses, with a rare exception
in the case of Conversion and the probabilistic heuristic model
(PHM, Oaksford & Chater, 2007, but see Copeland, 2006) that
can be extended to predict NVC. The Atmosphere (Woodworth &
Sells, 1935) and Matching (Wetherick & Gilhooly, 1995) theories
derive only the quantifier in the response from the premise
quantifiers. Hence, they do not consider and cannot explain NVC
responses. This is remarkable as in the case of syllogisms there
are 37 invalid problems (58% of all syllogisms) that would require
from a normative logical perspective NVC as the correct response.

In sum, while there are at least twelve cognitive theories about
syllogistic reasoning (Khemlani & Johnson-Laird, 2012), there is
no explicit cognitive reasoning theory beyond explaining it by a
search through the theory specific inference mechanism (e.g., by
applying all inference rules or the generation of all models). Be-
yond explaining NVC by cognitive reasoning theories, systemic
theories can provide alternative accounts emphasizing the role
of behavioral response tendencies within experiments. Among
others these systemic hypotheses include phenomena such as
mental depletion (i.e., with each syllogism the cognitive resources
are depleted (e.g., Schmeichel & Vohs, 2018) or cognitive load
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(e.g., Sweller, 1994), which lead an individual to stop reasoning as
soon as the problem becomes too difficult, or a general aversion to
respond NVC (e.g., NVC is interpreted as ”giving-up”). These hy-
potheses including their assumed, underlying cognitive processes
are briefly summarized in Table 1. The aim of the current paper
is to investigate such cognitive and systemic hypotheses in ex-
plaining why a NVC response is given. For the above-mentioned
differences in the ability to predict NVC within heuristic theories,
we focus on the MMT and mental logic theory in the current
paper. Thereby, we aim to provide novel and much needed
insights into when participants respond no valid conclusion.

Theories, predictions, and hypotheses
We have identified distinctive cognitive theories and systemic
hypotheses that can explain when a reasoner responds NVC. In
this section, we briefly outline these theories as well as hypotheses
and draw implications on five observable patterns of NVC: first,
the response time (RT) and the frequency of NVC response.
Furthermore, we investigate the influence of valid and invalid
syllogisms (validity) and the problem’s entropy. The entropy mea-
sure (Shannon & Weaver, 1963) has been applied to measure the
response diversity of each syllogism (Khemlani & Johnson-Laird,
2012). For each syllogism per study, the authors computed the
probability with which each conclusion was drawn and aggre-
gated the probabilities using Shannon’s measure. The response
diversity demonstrates an uncertainty of reasoners about which
conclusion has to be drawn. Last, we analyze how the likelihood
to respond NVC changes over the course of 64 syllogisms.

Theory of Mental Models (MMT). The MMT (e.g.,
Johnson-Laird, 2006) postulates a two-stage process based on the
generation of an initial model and a flesh-out process that tests
a putative conclusion formed on the initial model by a search for
counter-examples (e.g., Bucciarelli & Johnson-Laird, 1999). If
the flesh-out process does not yield a conclusion, the reasoner re-
sponds NVC. The latest implementation, mReasoner1, contains a
specific parameter that guides the generation of counter-examples.
MMT makes the following predictions. RT of NVC: On average,
the MMT predicts the NVC response at the end of the inference
process, hence, responding NVC requires more cognitive steps
and thus more time (especially, in the case of multiple model
problems, i.e., problems that are invalid). Frequency of NVC: The
inference process described before, however, can sometimes fail
or be stopped early. As a result, not in all cases counter-examples
are searched for and putative conclusions are drawn, even in cases
where NVC hold. Consequently, less NVC responses are given
as required by formal logic. Entropy and NVC: In indeterminate
cases, the flesh-out process becomes relevant, hence, the more
difficult a problem is or the more uncertainty it causes (measured
by the entropy), the more NVC responses will be generated. Time-
course of NVC: The more syllogisms are solved, participants enter
more likely the flesh-out process (reasoners become more logical,
as it has been recently modeled in mReasoner; Ragni, Riesterer,
Khemlani, & Johnson-Laird, 2018). Consequently, participants
are more likely to respond NVC for invalid syllogisms over time.

1https://mentalmodels.princeton.edu/models/mreasoner/

Theory of Mental Logic (ML). The theory of ML (Rips,
1994) is based on the application of first-order formal inference
rules together with the inclusion of Gricean implicature to
capture differences between a formal and an everyday language
understanding of existential quantifiers. As it is based on formal
logic rules, the conclusions are valid and no erroneous results
will be predicted. The theory proposes that the erroneous
responses generated by human reasoners are due to problems in
the recognition, retrieval, or application of the formal rules (Rips,
1994). Following predictions can be derived: RT of NVC: ML
predicts NVC, if the full application of the inference mechanism
does not yield a conclusion. This takes longer than the application
of some inference rule in the valid case. Frequency of NVC: An
NVC response is found in the invalid cases and not in the valid
cases. Entropy and NVC: A connection has not been reported and
so we do not assume a predicted difference. Time-course of NVC:
The mental logic does not assume a change across time.

Predictions of Mental Depletion. Theories of resource
depletion (e.g., Schmeichel & Vohs, 2018) assume that mental
activities such as reasoning can deplete cognitive resources.
This results in an increase in NVC responses over time due to
depletion. This increase appears for valid and invalid syllogisms -
due to the depleted cognitive resources. A simple depletion model
makes no distinction between logically valid and invalid problems.
While combinations with cognitive theory can be thought of, we
solely focus on the case where more NVC responses are given
over time. Predictions: RT of NVC: No effect of NVC-responses
on RTs is expected. Depletion processes may result in either
generally higher or lower RTs over the course of an experiment,
but regardless of an NVC response. Frequency of NVC: There are
no concrete predictions. Entropy and NVC: Entropy has no impli-
cations on NVC, but instead generally enhance mental depletion.
Time-course of NVC: Mental depletion is assumed to strengthen
throughout an experiment. Thus, NVC responses should increase
across the course of solving the 64 problems, respectively.

Predictions of Early Stoppers. Some syllogisms are more
difficult than others and thus require additional cognitive
resources. For some syllogisms, reasoners may stop the reasoning
process early avoiding the mental effort required by analytic
processes by responding NVC. While the application of heuristics
would not result in an NVC answer, the early stopping process
does (NVC as a last resort). Early stoppers do not necessarily
make a distinction between valid and invalid problems as for
both types problems with a high entropy exists. Following
predictions are derived: RT of NVC: An early stopper does not
need longer for an NVC response. Frequency of NVC: Both valid
and invalid problems can be difficult to solve. Therefore, the
early stopper hypothesis predicts generally more NVCs as there
are logically correct NVC responses. Entropy and NVC: Higher
entropy resembles a higher uncertainty with the problem at hand,
which may lead to more NVC responses the higher the entropy.
Time-course of NVC: The time-course has no effect.

Predictions of NVC aversion. Logically naive reasoners may
interpret responding NVC as “giving up” (similar to the last-resort
option as it is assumed in many theories). While participants may
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even fear to be regarded as less intelligent or ignorant, they may
(at least in the beginning) tend to avoid this answer. The following
predictions can be made: RT of NVC: NVC aversion leads to
higher RTs for NVC responses as the deliberation processes to
exclude all other response is time-consuming. Frequency of NVC:
As NVC is avoided, fewer NVC responses as there are logically
correct ones are made. Entropy and NVC: It is unclear whether
Entropy may have an effect. Time-course of NVC: The aversion
for NVC may diminish over time due to exposition to invalid syllo-
gisms or because the reasoner learns that some syllogisms do not
have a valid response. Hence, NVC responses increase over time.

Hypotheses
The introduced theories and hypotheses differ on predictions for
response times, frequency of NVC answers, entropy, and the
time-course of NVC. Based on these predictions, we will derive
five general hypotheses. The presented cognitive theories and
hypotheses do explain an NVC response in one of two ways:
by the application of the complete inference mechanism that
does not yield any valid conclusion or by a model-based search
that yields counter-examples to any putative valid conclusion.
This implies, however, that more steps are necessary to infer
that nothing follows than to infer that something follows. More
cognitive steps, however, require more time. This leads to our first
hypothesis: Hypothesis 1: The RTs significantly increase in trials
where a NVC response is given as compared to non-NVC trials.

Cognitive reasoning theories assume that NVC is a response
typically generated after the application of inference rules or
through the search through all counter-examples. This process
is not necessarily always entered resulting in the miss of NVC
responses. Thus: Hypothesis 2: The number of NVC responses
is lower than the number of logically correct NVC responses.

Since validity is a logical concept, cognitive theories that are
closer to logic make a difference between them. Hence, we get
as a corollary hypothesis: Hypothesis 3: The number of NVC
responses is lower in the case of valid problems than in the case
of invalid problems.

Moreover, if it is more likely for a reasoner to respond
NVC, if there is greater uncertainty operationalized by entropy.
Hypothesis 4: The higher the entropy of a syllogism the higher
the likelihood of an NVC response.

A fifth hypothesis is that across an experiment participants may
increasingly respond NVC, which can depend both on cognitive
(e.g., MMT) and systemic hypotheses (e.g., mental depletion):
Hypothesis 5: There is an increase in NVC responses across
solving more problems.

The different predictions of the cognitive reasoning theories
and systemic hypotheses are summarized in Table 1. In the next
section we report experimental data and the analysis.

Experiment
Method
The experiment tested 204 participants (125 female and 79 male)
on Amazon’s Mechanical Turk2. They received a nominal fee

2https://www.mturk.com

Table 1: The hypotheses and predictions of the cognitive
theories and the systemic factors.

Theories Prediction
RT NVC Validity Entropy Time
H1 H2 H3 H4 H5

Mental Model y y y y y

Mental Logic y n y n n

Mental Depletion n ? n n y

Early Stopper n n n y n

NVC aversive y y n ? y

Explanation of the abbreviation y = the theory predicts yes; ? = the
theory does neither predict yes nor no; n = the theory predicts no.

for their participation. Participants or trials were excluded based
on the following criteria: First, in order to identify non-compliers,
data from participants that are at or below guessing level were
discarded. The cutoff point of 18.8% (n = 64) is calculated
as the cumulative binomial probabilities of 1/9 (for 9 possible
conclusions) for 64 correct responses. That results in twelve
problems correct for the α-value of .05 according to the binomial
distribution. Second, trials with exceptionally long response
times (RT) were excluded from the analyses: RTs exceeding
10 minutes (n = 1) and RTs deviating more than 3 standard
deviations (SDs) from the individual mean RT separated for valid
vs invalid syllogisms (n = 147, 1.7% of remaining trials). Last,
the first four trials of the experiment were excluded as the four
first trials always consisted of the same syllogisms for practice
purposes (n = 546). Thus, 139 participants and 8202 observations
were included in the following analyses.

Each participant had to select a conclusion from all possible
nine response options for all 64 syllogisms (selection task). The
order of the problems was randomized for each participant, ex-
cept that the problems, AA1, AI2, EA3 and IA4, were always
presented first in a randomized order, so that participants can fa-
miliarize themselves with the experiment. In addition, four single-
premise syllogisms (of the four different possible quantifiers) were
used as practice trials. Participants received two assertions similar
to problem AA4 above. Content was randomly assigned to all
64 syllogisms (thus, valid and invalid problems received the same
content with similar premise lengths of the resulting premises).
For each set they had to determine which eight possible conclu-
sions logically follow from the assertions by pressing one of the
eight keys: 1-4 (the respective quantifier with the conclusion di-
rection A-C) and 7-0 (the respective quantifer with the conclusion
direction C-A). If no logical conclusion could be found, partici-
pants had to press the space bar. There were eight presentation or-
ders of the conclusion quantifiers to reduce the presentation order
effect. Each participant received the same response option order
throughout the whole experiment. They could take as much time
as they needed, but responses within a second were prohibited.
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Results
The overall percentage of logically correct responses per
participant was 38.7% (SD = 19.0%), for the 27 syllogisms
with valid conclusion(s) 42.1% (SD = 15.3%) and for the 37
syllogisms without a valid conclusion (NVC syllogisms) 36.5%
(SD = 27.1%). On average, for valid syllogisms, participants gave
16.9% NVC responses (SD = 16.6%) and 36.5% (SD = 27.1%)
for invalid syllogisms.

Analysis. Participants’ frequency of NVC-responses differed
between individuals (M = 29.0%, SD = 21.4%). In fact, there
were a few participants that did not give any (n = 8) or less
than 10 (n = 48) NVC responses. In the following analyses we
used (generalized) linear mixed models (short (G)LMM; for an
overview see Baayen, Davidson, & Bates, 2008; Judd, Westfall, &
Kenny, 2012) as they can handle incomplete and unbalanced data
and can account for the multi-level structure of the designs (e.g.,
multiple measures per participant). GLMMs were analyzed using
the lme4 package (Bates, Mächler, Bolker, & Walker, 2015, Ver-
sion 1.1.19) in the R environment. Models were fit via maximum
likelihood (ML). Effect coding was used for all dichotomous
fixed effects. Denominator degrees of freedom and p-values were
estimated via Satterthwaite corrections implemented via lmerTest
(Kuznetsova, Brockhoff, & Christensen, 2017, Version 3.0.1).
Furthermore, the significance of fixed effect on the model fit was
obtained by step-wise removing a fixed effect from the full model
and testing whether the exclusion of the variable resulted in a
significant loss of the goodness of fit as indicated by likelihood
ratio tests and by comparing the Bayesian information criterion
(BIC) and the Akaike information criterion (AIC). The reported
tables (Table 2 and 3) show the results for the best models.

The analysis of reaction times. For the analysis of RTs, there
is currently a debate about whether or not dependent variables
should be transformed (Lo & Andrews, 2015). It has been
suggested to use GLMMs on the raw RTs to analyze non-normal
data that involve random effects (Lo & Andrews, 2015). Here,
were use Inverse Gaussian distributions to account for the distinct
positive skewed distribution of the continuous, raw RTs (for an
overview of this approach, see Lo & Andrews, 2015). However,
this approach resulted in a significantly worse fit (χ2 = 156020,
p<.001) than the standard logarithmic approach using LMMs
(where RTs were logarithmically transformed prior to analyses).
As we report only the best-fit models, we therefore only display
the LMMs on the logarithmically transformed RTs. However,
results were similar both in the transformed and the untransformed
analysis. The RTs were analyzed using LMMs with the factors
validity (invalid = -1 vs. valid = 1), the ”NVC” response (No
NVC = -1, NVC = 1), and the corresponding interaction as
fixed factors (1). We implemented the maximal random-effects
structure justified by the design (as suggested by Barr, Levy,
Scheepers, & Tily, 2013): Participants (including by-participant
random slopes for Validity, NVC, and their interaction) and the
different syllogism problems were treated as a random factors
(2). The trial ”sequence” (4-64) was added as covariate since it

correlated with the NVC response capturing effects due to fatigue
or learning (1). All continuous predictor variables were centered
and scaled. The full model was specified as follows:

log(RT)=NVC∗Validity+Sequence (1)
+(NVC∗Validity|Participant)+(1|Syllogism) (2)

The results of the best-fit model can be taken from Table 2.

Table 2: Fixed-Effect Parameter Statistics for the full/ best-fit
Reaction Time model.

Predictors Estimates SE t p
Intercept 9.43 0.05 176.76 <.001
NVC (yes = 1) -0.02 0.02 -1.12 .270
Validity(valid = 1) 0.06 0.02 3.51 .001
Sequence -0.13 0.01 -22.30 <.001
NVC:Validity 0.05 0.01 4.80 <.001

Hypothesis 1: Other than expected, there was no main effect
of NVC on the RT as the RTs did not significantly increase
in trials where a NVC response was given as compared to
non-NVC trials. However, there was a significant interaction
between NVC responses and the validity of the syllogism: the
RTs were significantly associated with the occurrence of a NVC
responses for valid syllogisms. In trials with NVC responses, the
RT increased, but only for valid syllogisms. Any reduction of a
parameter (e.g., of the interaction) resulted in a significantly worse
model fit as compared to the full model reported. The interaction
was also apparent in the mean RTs: For valid syllogisms, the
RTs were higher for NVC responses (M = 20.17, SD = 17.37) as
compared to other conclusions (M = 16.55, SD = 7.64). However,
there was no difference for invalid syllogisms (NVC: M = 16.42,
SD = 11.26, Other conclusions: M = 16.56, SD = 8.30).

The analysis of the likelihood to give a NVC responses. The
occurrence of NVC-responses as a bivariate dependent variable
was analyzed using GLMMs (NVC response = 1, no NVC
response = 0). GLMM estimates were computed with a logit
link, binomially distributed residuals using the bobyqa optimizer
with 200 000 iterations. Odds ratios (ORs) of the fixed effects
coefficients of the full model are reported as effect sizes.

The occurrence of a NVC response was analyzed with the
factors Validity (invalid = -1 vs. valid = 1), the Entropy of each
syllogism (using the entropy measures computed by Khemlani
& Johnson-Laird, 2012), as well as the corresponding interaction
and the trial sequence (4-64) as fixed factors (3). We again
implemented the maximal random-effects structure justified
by the design: Participants (including by-participant random
slopes for the factors Validity, NVC, and their interaction) and the
syllogism problems (random intercept) were treated as a random
factors (4). The entropy variable was centered prior to analysis.
The full model of was specified as follows:

NVC=Validity∗Entropy+Sequence (3)
+(Validity∗Entropy|Participant)+(1|Syllogism) (4)
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Table 3: Fixed-Effect Parameter Statistics for the best-fit
NVC model.

Predictors Estimates SE z OR p

Intercept 1.77 0.19 -9.23 0.17 <.001
Validity(valid = 1) -0.77 0.15 -5.20 0.46 <.001
Entropy 0.41 0.35 1.15 1.5 .249
Sequence 0.18 0.03 5.62 1.19 <.001
Validity:Entropy 1.08 0.35 3.05 2.94 = .002

Note. OR indicates Odds Ratios.

The results of the best-fit model can be taken from Table 3.
Hypothesis 2. In 53% of the syllogisms a NVC response is the

logically conclusion. As hypothesized, in the current experiment,
participants gave 28.99% NVC responses (SD = 21.40%) on
average which is significantly less than 58% (V = 382, p<.001;
a paired Wilcoxon signed tank test was used due to a deviation
from normality). Thus, we can confirm that the number of NVC
responses was lower than the number of logically correct invalid
syllogisms.

Hypothesis 3. As hypothesized, the occurrence of a NVC
response was significantly associated with the validity of the
syllogism. NVC responses were more likely to occur for
invalid than for valid syllogisms. Excluding this factor from the
full model resulted in a significant reduction of the overall fit
(χ2 = 189.56, p<.001).

Hypothesis 4. We expected that the higher the entropy of
a syllogism was the higher the likelihood of a NVC response
would be. Other than hypothesized, there was no significant
main effect for entropy on the likelihood to give a NVC response.
However, there was a significant interaction between validity
and entropy (see Figure 1 for an illustration): Entropy impacted
the likelihood to respond NVC, but only for valid syllogisms.
Excluding this interaction as well as the entropy factor from the
full model resulted in a significant reduction of the overall fit
(χ2 = 57.07, p<.001). A post-hoc analysis for the number of
NVC responses and entropy also revealed a strong association
between entropy and the relative frequency of NVC responses for
each syllogisms for valid (rρ = .69, p<.001) but not for invalid
syllogisms (rρ = -.27, p= .112).

Hypothesis 5. The effect of the trial sequence on the relative
frequency of NVC responses separated for valid and invalid
syllogisms is illustrated in Figure 2. The plot highlights that
NVC responses do not stay constant over the time-course of the
experiment. As expected, there was also a significant main effect
of the sequence on the likelihood to give a NVC response in the
mixed model (see 3). Excluding the sequence factor from the
full model resulted in a significant reduction of the overall fit
(χ2 = 30.63, p<.001). Since NVC is a logically sound conclusion
only for invalid syllogisms, a simultaneous increase for invalid
and decrease for valid syllogisms would indicate a trend towards
a support for the theory that reasoners become more logical in the
experiment. However, the increase in NVC response probability
does not differentiate between valid and invalid syllogisms.
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Figure 1: The relationship between the frequency of NVC
responses and entropy. Linear regression lines are plotted
separately for valid and invalid syllogisms.
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Figure 2: Mean number of NVC responses on valid and invalid
syllogisms for the experimental sequence of 64 syllogisms.

An upwards trend can be observed for both. Furthermore, in
follow-up analyses the inclusion of an interaction effect for the
sequence and the validity of a syllogisms did not result in a fit
improvement to the reported best-fit model χ2 = 0.65, p= .420.

Discussion
On which factors does the likelihood to respond NVC depend
and how are NVC responses associated with differences in RTs?
First, the RTs seem to increase in NVC trials as compared to trials
where another conclusion was given - but only (and other than
expected) for valid syllogisms. There are various explanations
why RTs did not increase for NVC responses in invalid syllogisms.
For instance, NVC responses are the “logical” correct response
option for invalid syllogisms. Thus, on average, NVC responses
for these problems could occur for both logical reasoning and
as a consequence of other processes (e.g., guessing, giving-up,
etc.). As a consequence, responding NVC may not only be a “last
resort” after elaborate reasoning (thus, higher RTs), but also stem
from logically correct reasoning. Also, providing any response
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other than NVC for invalid syllogisms is logically incorrect and
may therefore include deviating processes (possibly leading to
prolonged RTs). Therefore, for invalid syllogisms, such effects
may mask the effect of NVC responses. Second, while we found
a significant main effect of validity on NVC, entropy was associ-
ated with NVC responses only for valid syllogisms. The reported
interaction between validity and entropy on the frequency of NVC
responses is however only logical. As theorized, the frequency
of NVC responses seems to be higher for high entropy problems
as compared to low entropy problems for valid syllogisms. The
opposite relationship observed for invalid problems is logical as
naturally for easy invalid syllogisms (reflected in a low entropy),
participants should most frequently respond “NVC”. The harder
an invalid syllogism becomes (possibly reflected by a high en-
tropy), the more the responses spread, and the less often a NVC re-
sponse is given. Future analyses should investigate whether NVC
responses are selected more frequently for high entropy problems
in addition to the general benefit or drawback NVC responses
receive by a higher variance in responses. Third, as hypothesized,
the likelihood to respond NVC increases with the trial sequences
during the time-course of the experiment. Surprisingly, this asso-
ciation seems to be apparent for both valid and invalid syllogisms.
The effect of trial sequence on NVC responses can thus not be
explained by participants becoming more logical. On the contrary,
the results point towards other systemic processes taking place dur-
ing the course of the experiment. Note, that this study used a selec-
tion task. It remains an open question how our results relate to ten-
tative studies on generation tasks (for an overview of differences
of response formats see Hardman & Payne, 1995). Moreover,
variations of the classic syllogism task, such as the countermodel/
”Harry”-task (see Achourioti, Fugard, & Stenning, 2014), would
certainly provide additional insights on the questions when par-
ticipants conclude that “nothing follows” in other test situations.

General Discussion

When does a reasoner respond “nothing follows”? To answer that
question we have investigated implications of the mental model
(e.g., Johnson-Laird, 2006) and mental logic theory (Rips, 1994)
as well as adapted alternative systemic hypothesizes such as the
role of mental depletion. First, reasoners seem to take longer when
responding NVC only for valid and not for invalid syllogisms.
With regard to the proposed theories and systemic hypotheses
of interest, this finding poses a challenging novel perspective
on NVC responses as this distinction is not yet predicted by
cognitive theories: giving a NVC response generally takes longer
due to the requirement of more cognitive steps, e.g., by generating
all inferences or searching for counterexamples (Khemlani &
Johnson-Laird, 2012). So, the time needed to respond “nothing
follows” is expected to be independent of the validity of a
problem. Moreover, the Early Stopper hypothesis contradicts this
empirical finding: An Early Stopper would not need more time
for responding NVC. In sum, our assumptions holds true only
for valid syllogisms. This raises the question whether invalid and
valid syllogisms are processed differently and influenced by other
processes such as mental depletion or a NVC aversion. Second,

the likelihood to respond NVC increases for both valid and invalid
syllogisms over time indicating that these differences cannot be
explained by participants becoming more logical within the same
experiment. While the Early Stopper hypothesis cannot account
for this finding, the results can be well explained by the NVC
aversion hypothesis. Participants may have an early aversion to
respond NVC. If the NVC response is assigned a meaning of “I
give up”, participants might need to encounter some of the invalid
syllogisms to gain confidence in stating that no conclusion may
follow from the premises. It is possible that a reasoner may for
instance learn across solving syllogistic problems that for some
types of problems a valid conclusion cannot be found. Hence, the
reasoner can start to assume that the probability of NVC problems
is high (with each such observation). The aversion may however
also diminish over time due to depletion or fatigue effects.

What can we conclude regarding our proposed theories and
systemic hypotheses based on these findings? We see that
cognitive theories seems to be able to provide correct predictions
in terms of RTs for NVC responses for valid but does not for
invalid syllogisms. The systemic hypotheses proposing an early
NVC aversion and a later mental depletion seem to be able to
explain why cognitive theories sometimes fail to predict NVC
responses correctly: Yet, cognitive theories do not yet take
such processes into account. It is noteworthy however, that the
systemic hypotheses are unable to explain some of the results
found in the present study. Whereas the cognitive theories do
at least predict an effect of NVC-responses on the RTs, two of
the systemic hypotheses do not necessarily propose higher RTs
for such trials. Additionally, one of the systemic hypotheses
predicted the main effect of validity on NVC responses.

In summary, with regard to the proposed theories, we see that
the cognitive theories seem to be able to provide correct predic-
tions of NVC responses for valid but sometimes not for invalid
syllogisms. The strong dependencies on the validity of a syllo-
gism as well as differences over the time-course of an experiment
suggest that there are also some other cognitive processes taking
place within the individual. The systemic hypotheses can account
for some of these effects complementing the cognitive theories.
We can conclude that there may indeed be an initial bias against an
NVC response, which highly differs between individuals. Hence,
more analysis are necessary to analyze the interplay between exist-
ing cognitive reasoning theories and possible systemic hypotheses
to increase the correct prediction rate of when people answer NVC.
Indeed, in parallel to this work, we were able to demonstrate that
by attaching heuristic rules for predicting NVC to cognitive mod-
els of syllogistic reasoning, their performance can increase up to
20 % on average (Riesterer, Brandt, Dames, & Ragni, in press).
Last, the results also highlight that logical correctness need to be
used with caution when analyzing syllogistic reasoning data due
to the unproportional weight of NVC responses: Such analyses
should always consider the validity of the problems.
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Abstract 
In the present study, we examine whether the design of the 
learning environment can impact causal inference in very 
young children. Specifically, we assess whether the physical 
features of a novel toy can facilitate children’s recognition of 
an abstract, relational hypothesis (same-different) that they 
typically fail to discover. Three-year-olds were presented with 
an identical pattern of evidence that was consistent with a 
relational hypothesis (i.e., pairs of same or different blocks 
cause a toy to activate) using one of two causal toys. In the 
standard condition, blocks were placed in pairs on top of the 
toy, while in the relational condition, each block was placed 
inside one of two transparent openings on either side of the 
toy. The physical design of the latter toy was intended to 
highlight the relationship between pairs of blocks. Results 
suggest that even 3-year-olds’ causal inferences are sensitive 
to design, with children in the relational condition more likely 
to infer the abstract relation than those in the standard case. 
These results provide strong evidence that design serves as a 
constraint on causal inference in early childhood. Findings are 
discussed in terms of their implications for creating intuitive 
learning environments for young children. 

Keywords: cognitive development; causal inference; relational 
reasoning; learning environments; design 

Introduction 
When reasoning about novel causal relationships, learners 
must select the most likely hypothesis from a range of 
underdetermined possibilities. For example, to activate a 
novel appliance, you might consider several possible 
interventions: the ‘on/off’ switch might have to be flipped, 
the reset button on the circuit interrupter might have to be 
depressed, or perhaps both the switch and the button 
together activate the device. Depending on your prior belief 
in the likelihood of each candidate cause and your 
subsequent observations, you then select the most likely 
action. If, for example, the switch is in the ‘on’ position and 
the appliance does not activate, it provides evidence that it 
must be activated in conjunction with the interrupter reset.   
However, one could also imagine a seemingly infinite 
number of alternative ways the causal system may work. 
Perhaps the appliance is voice activated, or the buttons need 
to be pushed in a particular repeating order, or there is an 
additional hidden switch somewhere else on the device.  
   To solve the infinite hypothesis search problem, recent 
work emphasizing the psychological processes underlying  
inductive inference has proposed that learners likely 
“sample” from this vast space of hypotheses, based on prior 
knowledge (e.g., Bonawitz, Denison, Griffiths, & Gopnik, 
2014; Ullman, Goodman, & Tenenbaum, 2012; Tenenbaum, 

Griffiths & Kemp, 2006). Thus, instead of considering all 
possible hypotheses and weighing each against the observed 
evidence, learners may only generate a subset of the most 
likely candidates to evaluate (Bonawitz & Griffiths, 2010). 
Critically, the specific subset of hypotheses that is generated 
for a particular learning problem may depend on a variety of 
factors, including their prior probability, their relevance to 
the current problem, priming, and so forth (e.g., Dougherty 
& Hunter 2003; Flin, Slaven & Stewart, 1996; Klein, 1993; 
Weber et al., 1993; Schunn & Klahr, 1993; Koehler, 1994). 
In fact, even young children are sensitive to input that 
constrains the hypotheses they consider, including 
information about the problem they are trying to solve, how 
the data were sampled, who generated the evidence, and 
why (e.g., Buchsbaum, Gopnik, Griffiths, & Shafto, 2011; 
Butler & Markman, 2012; Gergely, Bekkering & Kiraly, 
2002; Walker, Lombrozo, Legare, & Gopnik, 2014).  

Accordingly, any input that changes a learner’s prior 
expectations about the most likely causal structure can 
influence the hypotheses they privilege, and ultimately 
apply. Here, we consider a specific environmental cue that, 
to our knowledge, has not yet been examined: the visible 
design of the object itself. If children use information about 
an object’s design to constrain the hypotheses they generate, 
changes in the physical features of the learning context 
might influence causal learning and discovery. That is, the 
design of a causal system may serve to increase or decrease 
the salience of some hypotheses over others. 

Effects of Design on Behavior 
Although object design has not been specifically examined 
in the context of causal learning, there are several reasons to 
expect that the physical features of the learning context may 
influence children’s causal inference. Indeed, nearly all of 
the objects we interact with include some element of design, 
and we often use these cues to infer information about an 
object’s function. For example, if a door has no handle, the 
only way to enter is to push. While this action seems 
intuitive, the design is intentional. The creator constructed 
the door so that its physical features would constrain the 
permissible actions. Norman (1988) includes such 
constraints as one of several principles of good design, 
recognizing that design impacts reasoning about object 
function. A large body of literature has also explored the 
ways in which subtle environmental influences, or 
“nudges,” have disproportional effects on human choice 
(Thaler & Sunstein, 2008), impacting hygiene (Holland, 
Hendriks, & Aarts, 2005), energy use, (Allcott & 
Mullainathan, 2010), and health (Thorndike, Sonnenberg, 
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Riis, Barraclough, & Levy, 2012; van Nieuw-Amerongen, 
Kremers, De Vries, & Kok, 2011), among others.  

Other applied research has also begun to examine whether 
environmental design can change the way we learn in select 
educational contexts. For example, museum designers have 
used exhibit access, visibility, and object affordances to 
encourage visitor exploration, engagement, and 
understanding (e.g., adding a knob to a display suggests that 
an object can be moved, adding a glass window on the side 
of a machine encourages visitors to view the internal 
mechanism; see Allen, 2004; Wineman & Peponis, 2010; 
Shin, Park & Kim, 2014). Here, we go beyond this past 
applied work to consider whether similar cues can influence 
the salience of certain concepts or reasoning strategies in the 
context of causal learning. That is, we test whether elements 
of design influence a learner’s prior beliefs about the 
likelihood of a particular causal hypothesis, given some 
pattern of evidence.  

To illustrate how the design of an object might impact a 
learner’s beliefs about its function, we return to our novel 
appliance. If you are familiar with electronic machines, you 
might believe that before you can turn something on, you 
must connect its cord to a power source. Once learned, this 
general principle can be widely applied to novel cases, even 
before observing any evidence about how a particular 
appliance functions. However, now consider a situation in 
which you are confronted with an appliance that has two 
cords. In this case, your prior belief that a single power cord 
must be plugged in to turn on the machine seems less 
probable. You might instead form a hypothesis that the two 
cords must both be connected before the machine will turn 
on. This demonstrates an even more general assumption that 
the features of an object are relevant to its function. This 
sort of abstract causal principle, or “overhypothesis,” is a 
belief about the kinds of hypotheses that are most likely to 
be true (Goodman, 1955; Kemp, Perfors, Tenenbaum, 
2007). Based on the learner’s prior experience, it might 
seem unlikely to observe a second power cord that is 
unnecessary for the machine’s operation (without an 
alternative explanation for the presence of the second cord). 
In this way, the visible features of an object serve as critical 
design cues that constrain the hypotheses that are generated 
about its causal structure (Norman, 1988).  

Some existing support for the proposal that an object’s 
design serves to constrain inferences about causal structure 
can be found in the literature examining human reasoning 
about artifacts (i.e., human-made objects). That is, both 
children and adults view features of artifacts as reflective of 
that object’s function and intended use (Keil, 1992; 
Keleman, 1999; Keleman, Seston, & Saint Georges, 2012). 
For example, Kelemen and colleagues (2012) showed 
preschool-aged children two objects that were equally 
optimal for performing a particular function (i.e., both 
objects featured a flat surface that could be used to crush 
popcorn), but one of them had additional salient features 
that suggested it could also be used for an additional 
purpose (i.e., spikes along the object’s handle). When asked 

which object was designed for the target purpose (crushing 
popcorn), 3- and 4-year-old children privileged the object 
with a more efficient design. 

Magid and colleagues (2015) also provide evidence that 
children relate an object’s design to its function. The authors 
argue that young learners represent the abstract criteria for 
solving a problem, before arriving at a precise solution. 
These criteria are based on how well a particular hypothesis 
matches the abstract “form” of the problem to be solved. 
Specifically, 4 and 5-year-olds mapped the type of effect 
produced (a discrete vs. continuous visual effect) to the type 
of mechanism that produced it (a binary “on/off” switch vs. 
a dial), providing evidence that children relate the physical 
structure of an object’s causal mechanism to its effect. 
Additionally, 4- and 5-year-olds have also been shown to 
map the quantity and diversity of object functions (e.g., 
making cupcakes vs. making cupcakes and wrapping 
presents) to make inferences about the complexity of the 
design of its internal mechanism (Ahl & Keil, 2016). 

The Current Approach 
In the prior work reviewed above, learners made inferences 
about the design of objects, given information about 
possible functions. Here, we ask whether children can 
perform a more challenging task -- whether they will be 
more likely to generate a particular causal hypothesis, given 
the object’s design. In particular, we present a conceptual 
case in which 3-year-olds typically fail to discover a 
relational hypothesis. We then assess whether the object’s 
design influences learning by observing whether subtle 
changes to the physical structure of the causal system leads 
to the successful identification of the abstract relational 
cause.  

Specifically, we present 3-year-olds with a relational 
reasoning problem that they systematically fail at this age 
(Walker, Bridgers & Gopnik, 2016). In this task, children 
are introduced to a novel toy that plays music for some 
objects and not for others (i.e., a “blicket detector,” Gopnik 
& Sobel, 2000). They then observe pairs of blocks being 
placed on top of the toy. When 3-year-olds are provided 
with evidence that the toy’s activation is caused by the 
relation between the two blocks in each pair (i.e., whether 
the blocks are the same or different), rather than by 
individual object kinds (i.e., blocks of a particular shape and 
color), they failed to make the correct causal inference at 
test (see Figure 1).  

Notably, younger children (18 to 30-month-olds) 
successfully infer same-different relations in this task, 
suggesting that later failures are due to a difference in 
tendency, not a lack of relational competence (Walker et al, 
2016; Walker & Gopnik, 2017; Walker, Walker, & Gopnik, 
under review). In other words, these developmental data 
provide evidence that older children are capable of inferring 
such relations, even if they do not spontaneously generate 
them in most learning scenarios. Critically, this proposal 
contrasts with decades of research suggesting that 
preschoolers were simply unable to reason on the basis of 
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these abstract relations (e.g., Christie & Gentner, 2010; 
2014).  

Based on these findings, it has been proposed that 3-year-
olds’ long-documented failure to infer same-different 
relations results from a learned bias in the form of an 
overhypothesis that privileges the role of individual objects 
over the relations between them (Walker et al., 2016; 
Carstensen & Walker, 2017). Walker and colleagues (2016, 
Exp 3) provide additional support for this idea, 
demonstrating that prompting children to explain during 
training trials significantly increases their tendency to 
endorse the relational hypothesis at test. The authors 
propose that explanation likely serves as an internal 
constraint on hypothesis search, leading learners to privilege 
more abstract solutions. This domain therefore provides a 
promising case study to explore the proposal that an 
external constraint, namely the design of an object, can also 
influence hypothesis generation in causal learning. 

In order to assess whether the tendency to discover the 
relational hypothesis may be sensitive to constraints 
imposed by physical design, we made one small 
modification to the standard causal relational task: Rather 
than placing pairs of blocks on top of the toy on a single, 
large platform, the blocks were inserted on either side of the 
toy, into two transparent openings (see Figure 2). By adding 
these two intentionally designed openings, a learner who 
treats object design as relevant to their causal inferences 
might consider why the causal system included these 
features. These two openings therefore not only draw 
attention to the presence of two objects, but also suggest a 
particular affordance: that the machine activates by 
combining the two. As a result, this may raise the possibility 
that the relation between the blocks—rather than the 
identity of the blocks themselves—is relevant to the causal 
structure, leading to the discovery of the relational 
hypothesis. We return to consider the implications of this 
particular design choice in the discussion. 

Alternatively, it may be the case that the design of the 
causal system has no effect on 3-year-olds’ endorsement of 
the relational hypothesis.  As noted, children at this age 
repeatedly fail to spontaneously privilege relational 
information (Christie & Gentner, 2010; 2014; Walker et al., 
2016), suggesting a strong prior for hypotheses based on 
individual object kinds. To correctly infer the relational 
hypothesis in this case, children must integrate information 
about the object’s design with their prior beliefs about likely 
causes, taking into account why object design is relevant, 
and weighing this information more heavily than their prior 
commitment to the object-based hypothesis. That said, if 
children’s failure to infer abstract relations indeed results 
from a difference in tendency, rather than a lack of 
competence (as has been suggested), and they are sensitive 
to the design of the learning context, then we might 
reasonably expect them to successfully infer the abstract 
relational hypothesis, even following such a minor 
modification to the standard task. 

Methods 

Participants  
A total of 152 3-year-olds participated in the study, with 76 
children randomly assigned to either the standard toy (M = 
41.9 months; 36 female) or relational toy (M = 41.6 months; 
37 female) conditions. Within each condition, half of the 
children observed evidence consistent with the same relation 
and half observed evidence consistent with the different 
relation. Sample size satisfies a power analysis with power 
> .8, given an alpha of .05 and an effect size of .3 (medium). 
An additional 9 participants were excluded due to 
experimenter error (3), failure to complete the study (4), 
parent interference (1), or interference by another child (1). 
Children were recruited and tested in the lab, at preschools, 
and at museums. All participants were tested in a quiet, 
private room with the experimenter. 
 

 
 

Figure 1. Schematic illustration of evidence presented 
during training and test trials in the standard condition 
(reprinted from Walker et al., 2016, Exp. 1). Identical pairs 
and outcomes were presented in the relational condition, 
using the relational toy (see Fig. 2). 
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Figure 2. Standard and relational toys 

Materials and Procedure  
The materials and procedure for the standard toy condition 
replicate those used by Walker et al. (2016, Exp. 1; see Fig. 
1). Children were seated at a table across from the 
experimenter. The experimenter began by placing an opaque 
cardboard box on the table, saying “This is my toy! 
Sometimes when I put things on top, the toy will play 
music, and other times it does not. Should we try some and 
see how it works?” As in previous research, the toy 
appeared to activate and play a novel melody in response to 
certain combinations of blocks. In fact, the experimenter 
activated a wireless doorbell inside the box by 
surreptitiously pressing a button.  
   A total of 4 pairs of same and different painted wooden 
blocks (2 pairs of same and 2 pairs of different) were used 
during the training trials. After introducing the toy, the 
experimenter produced two blocks in either the same or 
different relation (depending upon the condition), and said, 
“Let’s try!,” and put both blocks on top of the toy, 
simultaneously. The toy played music and the experimenter 
said, “Music! My toy played music!” The experimenter then 
picked up the blocks and set them back on the toy, which 
again played music, saying “Music! These ones made my 
toy play music!” She then repeated this procedure with a 
new pair of blocks in the opposite relation. The new pair did 
not make the toy play music, and the experimenter 
responded to the first try with, “No music! Do you hear 
anything? I don’t hear anything,” and after the second try, 
said “No music. These ones did not make my toy play 
music.” This pattern was repeated with two additional pairs 
of blocks, one in each relation. The experimenter always 
began with a causal pair (identical blocks in the same 
condition and blocks of unique colors and shapes in the 
different condition), and then alternated inert, causal, inert, 
using novel blocks in each new pair, and randomizing the 
specific blocks between participants.  
   After the four training trials, the experimenter said “Now 
that you’ve seen how my toy works, I need your help 
finding the things that will make it play music. I have two 
choices for you.” The experimenter presented the child with 

two new pairs composed of novel blocks, one “same” pair 
and one “different” pair. Each pair was presented on a 
plastic tray, which the experimenter held up, saying, “I have 
these, and I have these (directing the child’s attention to 
each pair). Only one of these trays has the things that will 
make my toy play music. Can you point to the tray that has 
the things that will make it play?” The trays were then 
placed out of the child’s reach, on either side of the toy, 
with each pair set an equal distance from the child. The 
order and side of presentation of the correct pair 
counterbalanced between participants. The experimenter 
recorded the child’s first point or reach, scoring the response 
as correct (1) if the child chose the test pair (same or 
different) that corresponded to her training, and incorrect (0) 
for the opposite pair. 

The materials and procedures for the relational toy 
condition were identical to those in the standard toy 
condition with one critical difference: The design of the toy 
was modified to include two transparent openings located 
on either side (see Fig. 2). The openings were constructed 
using clear, 2” x 2” hard plastic boxes. When children 
observed each of the training trials described above, pairs of 
blocks were inserted into the two openings (one block on 
either side), rather than placed on top of the toy. This was 
the only difference between the two conditions. 

 

 
Figure 3. Mean proportion of correct relations by condition. 
Error bars indicate +/- 1 SEM. Chance performance is 
indicated by the dotted line. 

Results 
Replicating previous work (Walker et al., 2016), 3-year-old 
children in the standard toy condition responded at chance 
(46%), p = .57 (two-tailed, exact binomial), with no 
difference in performance between same (53%) and 
different (40%) training trials, p = .35 (two-tailed, Fisher’s 
exact). In contrast, 3-year-olds in the relational toy 
condition succeeded in selecting the test pair that was 
consistent with their training (66%), p = .008 (two-tailed 
exact binomial), performing identically in same and 
different training trials (p = 1, two-tailed, Fisher’s exact). 
Comparing performance across conditions, children in the 
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relational toy condition significantly outperformed those in 
the standard condition (p = .022, two-tailed, Fisher’s exact) 
in inferring same-different relations. 

Discussion 
In the current study, we present findings demonstrating that 
children are indeed sensitive to the physical design of the 
learning context when reasoning about causal relationships. 
Although 3-year-olds in the standard toy condition failed to 
recognize the relational hypothesis (replicating prior work), 
increasing the salience of this hypothesis through the 
application of a relatively subtle design cue significantly 
increased their tendency to engage in relational reasoning in 
this task. In addition to providing evidence for the role of 
design in constraining causal inference, these data provide 
additional support for the proposal that children’s failure on 
relational reasoning tasks results from a difference in 
tendency, not a lack of competence (e.g., Walker & Gopnik, 
2014; Walker et al., 2016; Carstensen & Walker, 2017; 
Walker & Gopnik, 2017).  
    These results are particularly striking given that 3-year-
olds have repeatedly failed to spontaneously privilege 
relational information (Christie & Gentner, 2010; 2014), 
suggesting a very strong prior to prefer individual object 
kinds. In order to use the design of the learning context to 
override this tendency and privilege the relational 
hypothesis, these very young children had to make a 
particularly sophisticated inference: They must have noticed 
this subtle design cue, inferred its relevance to the system’s 
causal structure (i.e., that an object’s design is relevant for 
its function), and weighed this information more heavily 
than their (strong) prior commitment to the object-based 
hypothesis.  

These surprising findings therefore suggest that relatively 
minor elements of design can radically change the 
distribution of a learner’s prior expectations, constrain the 
type of hypotheses that are generated, influence learning 
outcomes, and even facilitate the early discovery of new 
causal beliefs. Our results join prior research suggesting that 
hypothesis generation can be influenced by a variety of 
cognitive factors (e.g., Dougherty & Hunter 2003; Flin, 
Slaven & Stewart, 1996; Klein, 1993; Weber et al., 1993; 
Schunn & Klahr, 1993; Koehler, 1994), prompts (Walker et 
al., 2014, 2016; Williams & Lombrozo, 2010) and social 
inferences (Butler & Markman, 2012; Buchsbaun et al., 
2011; Gergely, Bekkering, & Kiraly, 2002), and extends this 
work to include the structure of the learning environment 
itself. Ongoing work examines whether and how design 
influences even more entrenched causal beliefs and biases  
(e.g., in adults; Walker, Rett, & Bonawitz, in prep), and 
considers how design may interact with other constraints, 
such as pedagogical cues or prompts to explain. For 
instance, in some contexts, children privilege an object’s 
visible affordances over an actor’s intentional behavior 
when reasoning about how an artifact is intended to be used 
(e.g., DiYanni & Keleman, 2008). Future work will explore 
to what extent learners may be reasoning about the 

intentions of the designer (as a social agent) when making 
inferences based on these environmental cues.  

There are also open questions surrounding how the 
particular design modifications used in this experiment 
influence children’s reasoning. One possibility is that the 
addition of exactly two transparent openings on either side 
of the toy directly primed the relational hypothesis. Another 
possibility is that this design cue simply served to disrupt 
children’s initial intuitions about the likely causal 
mechanism, leading them to consider alternatives more 
broadly. If so, this may have made it more likely for 
children to discover the relational hypothesis, albeit 
indirectly. Future work is needed to address these important 
questions.  

Finally, these results have clear practical implications for 
early science education, and in particular, the design of 
formal and informal learning environments intended for 
children. Our findings dovetail with literature in education 
pointing to the importance of “mise en place” or setting the 
stage for learning (Weisberg, Hirsh-Pasek, Golinkoff, & 
McCandliss, 2014). As demonstrated here, children are 
sensitive to relatively subtle physical cues in the learning 
environment when they are engaged in causal reasoning. 
This simple manipulation led children to consider a 
relational hypothesis that they typically fail to 
spontaneously produce. Our findings therefore highlight the 
importance of careful design when aiming to teach children 
specific concepts, given that the visible features of objects 
may increase or decrease the salience of the available 
evidence, and change the learner’s interpretation of their 
observations. It is impossible to create artifacts without also 
making specific design choices, so being aware of how 
these features might be used to facilitate reasoning can have 
major consequences for learning and instruction. These 
findings therefore open up new avenues for future work 
examining how the design of learning environments can be 
used to support belief revision and guide early learning and 
discovery.  
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Abstract
The complex judgments we make about the innumerable ob-
jects in the world are made on the basis of our representa-
tion of those objects. Thus a model of judgment should spec-
ify (a) our representation of the many objects in the world,
and (b) how we use this knowledge for making judgments.
Here we show that word embeddings, vector representations
for words derived from statistics of word use in corpora, proxy
this knowledge, and that accurate models of judgment can be
trained by regressing human judgment ratings (e.g., femininity
of traits) directly on word embeddings. This method achieves
higher out-of-sample accuracy than a vector similarity-based
baseline and compares favorably to human inter-rater relia-
bility. Word embeddings can also identify the concepts most
associated with observed judgments, and can thus shed light
on the psychological substrates of judgment. Overall, we pro-
vide new methods and insights for predicting and understand-
ing high-level human judgment.
Keywords: judgment; semantic memory; machine learning;
word embeddings

Introduction
People are constantly perceiving, judging and evaluating en-
tities in the world, on the qualities that these entities possess.
They may consider, for example, whether a food item is nu-
tritious, whether a political candidate is competent, whether a
consumer brand is exciting, or whether the work of an occu-
pation is significant. Such judgments influence every sphere
of life, determining the social, professional, consumer, and
health outcomes of individuals, as well as the political and
economic makeup of our societies. It is thus of critical impor-
tance to cognitive and behavioral scientists to develop predic-
tive and explanatory models of human judgment. To have
good empirical coverage and practical utility, such models
must apply to naturalistic objects and concepts, i.e., the vast
range of entities people encounter every day and have rich
knowledge about. They should be able to quantify what peo-
ple know about these entities, and specify how people map
this knowledge onto the diverse array of complex judgments
they make on a day-to-day basis.

To date, building such models has been elusive, as it has
been difficult to represent the detailed knowledge people have
about the millions of entities in the world that they judge.
Traditional psychometric methods of formally specifying ob-
ject knowledge – multidimensional scaling or simply asking
people to rate objects on dimensions theorized to be core to
a domain – are costly and typically yield sparse representa-
tions. Thus, a technique is needed which cheaply delivers

rich, high-dimensional knowledge representations for a large
number of objects and concepts, which can then be used to
model judgments. Fortunately, such a technique can be found
in word embeddings, real-valued vector representations of
word meaning derived from the statistics of word use in lan-
guage corpora, such that words that occur in similar linguistic
contexts yield similar vectors (see Lenci (2018) for a review).
Word embeddings are a useful tool for many practical nat-
ural language processing and artificial intelligence applica-
tions. However, they also mimic aspects of human seman-
tic cognition: they can be used to predict judgments of word
similarity and relatedness, patterns of free word association,
strength of semantic priming, and semantic search (Hill, Re-
ichart, & Korhonen, 2015; Hofmann et al., 2018; Hills, Jones,
& Todd, 2012; Jones, Kintsch, & Mewhort, 2006). Most rele-
vant, researchers have also found that word embeddings pre-
dict certain association-based probability judgments, social
judgments, and consumer judgments (Bhatia, 2017, 2018;
Caliskan, Bryson, & Narayanan, 2017)

In this paper we show that the structure of knowledge cap-
tured by word embeddings can be used to model a very wide
range of complex human judgments, including judgments
that are not easily captured by association-based measures of
vector similarity. More specifically, we find that with some
training data in the form of human judgments about a set of
words or phrases, it is possible to learn a mapping from these
entities word embeddings to the judgment dimension in con-
sideration, and subsequently make accurate predictions for
nearly any entity in that domain. In other words, we use word
embeddings as feature vectors for supervised machine learn-
ing models and predict out-of-sample judgment ratings with
high accuracy. We also show that these learnt mappings can
be used to identify the concepts that are most related to each
judgment, and thus understand the most important psycho-
logical factors underlying judgments.

Method
To illustrate the broad applicability of our method, we use
study fourteen types of judgment across seven different do-
mains of mental and behavioral life: masculinity and fem-
ininity of traits (Bem, 1974), dread and unknowability of
potential risk sources (Slovic, 1987), warmth and compe-
tence of people (Rosenberg, Nelson, & Vivekananthan, 1968;
Cuddy, Fiske, Glick, & Xu, 2002), taste and nutrition of
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foods (Raghunathan, Naylor, & Hoyer, 2006), significance
and autonomy of occupations (Hackman & Oldham, 1976),
sincerity and excitement of consumer brands (Aaker, 1997),
and hedonic and utilitarian value of consumer goods (Batra
& Ahtola, 1990). The judgment dimensions, items, partici-
pant instructions, and various implementation details for this
study and for the resulting analysis, have been pre-registered
on OSF here and here.

Experimental Details

We recruited 354 participants (mean age = 31.89 years,
46.19% female) through Prolific Academic. We limited our
data collection to participants who were from the U.S. and
had an approval rate above 80%. Participants were only al-
lowed to participate once, and they were paid $4.40 each. Us-
ing a between-subjects design, we randomly assigned each
participant to one of the seven judgment domains brands (N
= 54), consumer goods (N = 51), traits (N = 46), foods (N
= 55), occupations (N = 49), risk sources (N = 49), people
(N = 51). These domains were chosen to span a diverse range
of cognitive and behavioral sciences. Additional details about
the generation of these items and other methodological details
can be found on this project’s OSF page and especially sup-
plemental information here. After being randomly assigned
to one judgment domain, participants were instructed to rate
200 items (e.g., occupations) on two dimensions from -100
(e.g. not at all significant) to 100 (e.g. extremely significant),
one item at a time.

Word Embeddings

For our primary analyses, we used a pre-trained word embed-
ding model, word2vec, obtained using the skip-gram tech-
nique (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013)1,
applied to a very large dataset of Google News articles. This
space has vectors for 3 million words and short phrases, with
each vector being defined on 300 dimensions. Although there
are other training methods as well as other pre-trained seman-
tic spaces, we base our analysis on the Google News space be-
cause of its rich vocabulary, which includes all of the natural-
istic entities used in our study (including multiword entities,
such as famous people and various consumer brands, which
are often absent from other spaces). This pre-trained space
has also been shown to accurately capture human ratings on
linguistic and semantic judgment tasks (Pereira, Gershman,
Ritter, & Botvinick, 2016).

1This technique relies on a multilayer feedforward neural net-
work that slides over windows of text in a large corpus, and attempts
to predict the words in the periphery of the window, given the word
in the center of the window. By learning to predict context words
in this way, the weight matrix of the network gradually learns to en-
code information about the relationships between words, such that
semantically related words have similar (weight) vectors. The rows
of the weight matrix from the input layer to the hidden layer are
precisely the word embeddings we use.

Results
Predictive Accuracy of Mapping Approach
We first evaluated the predictive accuracy of our mapping
method for average participant judgments (i.e. averages
of the ratings made on each the fourteen judgment dimen-
sions). We tested the ability of a variety of (regularized)
regression techniques (ridge and lasso regressions, k-nearest
neighbor regression, and support vector regressions with ra-
dial basis function, linear, and polynomial kernels), across a
range of hyperparameters, to map our word embeddings to
judgments in a pre-registered cross-validation exercise (see
pre-registration form for more details). A range of models
performed well, but we focus here on our best-performing
model, a ridge regression with regularization hyperparame-
ter λ set to 10, which achieved an average r-squared of .54
and an average RMSE of 21. Figure 1 shows, for each judg-
ment dimension, scatterplots of actual judgments and pre-
dicted judgments, along with Pearson correlation coefficients,
for this method. Each predicted judgment in the scatterplot
was obtained by leave-one-out cross-validation (LOOCV):
we trained our ridge regression model on the vectors for all
but one judgment target, and then used the trained model
to predict the rating for the left-out judgment target based
on the target’s vector. As can be seen in Figure 1, our ap-
proach was able to predict participant judgments with a high
degree of accuracy, with an average correlation rate of .77
across the fourteen judgment dimensions, and all fourteen
judgments yielding statistically significant positive correla-
tions (all p < 10−20). Our approach can also be applied to
individual-level judgments, thereby accommodating partici-
pant heterogeneity. We obtain average correlations of .52 for
predicted vs. observed judgments, for the individual partici-
pants in each of our fourteen tests. These accuracy rates are
lower than those obtained on the aggregate level, likely due to
the fact that averaging participant ratings reduces variability
in data.

Comparison to Model and Human Baselines
We then compared the vector mapping approach with a sim-
pler, baseline approach that relies only on the relative similar-
ity of a judgment target to words denoting high vs. low ends
of a particular judgment dimension (Grand, Blank, Pereira, &
Fedorenko, 2018). This method works as follows: First, we
select words reflective of high and low ends of some judgment
dimension. For example, the occupation significance dimen-
sion was represented by the words significant, meaningful,
important and insignificant, meaningless, unimportant, point-
less. Where possible, we chose words used in previous liter-
ature to define the dimensions. Then, for each judgment di-
mension, the average pairwise vector difference between each
possible pair of high and low words is computed to obtain a
single vector d representing that dimension. Last, to obtain a
score for a judgment target entity on that dimension, we com-
pute the dot product between the target entity’s embedding xi
and the dimension embedding, d ∗xi. This method essentially
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Figure 1: Scatterplots of actual judgments and predicted judg-
ments using leave-one-out cross-validation for each judgment
dimension.

computes the similarity of a judgment target (e.g., surgeon)
to words high (significant, meaningful, important) relative
to words low (insignificant, meaningless, unimportant, point-
less) along the dimension of interest. Last, to transform these
relative similarities to the range of our human judgment data,
we trained OLS models predicting the human judgments from
the measures of relative vector similarity, in a leave-one-out
cross validation procedure. We found that the average corre-
lation using this method was .30, which is much lower than
that obtained using the vector mapping method. Additionally,
the similarity method yields significant (p < .05) correlations
for only eleven out of the fourteen tests. The baseline ap-
proach also performs worse on individual-level judgments,
for which it generates average correlations of .21. As the
baseline approach uses the same distances on the semantic
space, for all participants, it cannot substantively accommo-
date participant heterogeneity (though this approach does al-
low for different participants to map vector similarities onto
responses in different ways).2

We also compared the predictive accuracy of our mapping
method with human inter-rater reliability, as human inter-
rater reliability is often thought to place an upper bound on
machine performance (Hill et al., 2015; Grand et al., 2018).
To asses models predicting average models, we computed re-
liability two ways. First, we computed the inter-subject cor-
relation (IS-r, (Grand et al., 2018)), which is the average cor-
relation between one participants ratings and the average of
the rest (Hill et al., 2015). This is a commonly used met-
ric in assessing word embeddings’ ability to model semantic
judgments (e.g., Grand et al., 2018) and is sometimes taken
to place an upper bound on machine performance (Pilehvar
& Camacho-Collados, 2018). This correlation came out to
0.60, whereas our main model surpassed this with an aver-
age correlation of 0.77 across judgments. However, given
that our main model is predicting an average judgment rating
with word embeddings that more or less constitute the av-
erage of human knowledge reflected in word use, it may be
more sensible to compare our models’ performance to split-
half reliability, or the correlation between the average of half
the participants with the average of the other half of the par-
ticipants. Thus, for each judgment dimension, we split par-
ticipants into two sets, averaged judgment ratings within each
set, computed the correlation between the averages, and re-
peated this process 100 times. The resulting split-half re-
liability in our judgments averaged across all judgment di-
mensions is .88, ranging from .69 for taste judgments to .97
for dread-inducing judgments. To assess the individual-level
models relative to inter-rater reliability, we again computed
reliability two ways. First, we computed the average pairwise
correlation between raters (Hill et al., 2015). This correlation

2It is perhaps unsurprising that our baseline approach, an unsu-
pervised method, is not as accurate as the mapping method, which
is supervised. However, we maintain that this approach is the appro-
priate baseline to the extent that most previous applications of word
embeddings in cognitive science rely on simple relative similarities
like our baseline approach does.
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came out to 0.34, whereas our individual-level model predic-
tions correlated with actual judgments at an average correla-
tion of 0.53. We can also compare individual-level model ac-
curacy with IS-r rates, since IS-r reflects the ability to predict
an individual judgment from the mean of other judgments.
As stated above, mean IS-r was .60, somewhat above our av-
erage individual-level model accuracy of .53. Overall, for
both average- and individual-level judgments, our model per-
forms favorably in comparison to human inter-rater reliabil-
ity, either exceeding inter-rater reliability or approaching it,
depending on choice of inter-rater reliability metric.

Amount of Information Required for Prediction
A natural question for the present work is how much infor-
mation in the 300-dimensional embeddings is actually re-
quired to represent our judgment targets, and hence predict
our participants judgments. To this end, we measured predic-
tive accuracy through leave-one-out cross-validation with our
primary ridge model (λ = 10) after reducing the embedding
spaces with principal components analysis. Specifically, for
each domain, we fit a PCA on the training data design matrix
(approximately 199 items, by 300 word2vec dimensions), ap-
plied the learned transformation to both the training and held-
out data, discarded all but a certain number of initial princi-
pal components, and then tested how our ridge model trained
on these dimension-reduced matrices predicted the held-out
judgment. We emphasize that this approach obtains a *differ-
ent* reduced space for every domain (cf. retraining word2vec
models *for the entire vocabulary* at lower dimensional hid-
den layers). Figure 2 has predicted vs. actual Pearson corre-
lations for every judgment dimension and number of retained
principal components we tested. As can be seen, the 300-
dimensional word embeddings can be compressed drastically
to < 10% of their initial dimensionality while preserving pre-
dictive performance, with only, on average, a 3-point drop in
correlation strength when retaining only the first 25 PCs, and
a 7-point drop when retaining only the first 10 PCs. This sug-
gests that, within a domain, the representational space needed
to predict the present kinds of judgments is much sparser than
the space provided by word2vec. Theoretically, this shows
that people may only be evaluating a relative handful of (la-
tent) dimensions when making the kinds of judgments stud-
ied here. At the same time, that much of the information
relevant to making these judgments is present in the initial
principal components further validates previous claims that
these 14 dimensions are core dimensions along which we rep-
resent objects in these seven domains (Bem, 1974; Slovic,
1987; Rosenberg et al., 1968; Cuddy et al., 2002; Raghu-
nathan et al., 2006; Hackman & Oldham, 1976; Aaker, 1997;
Batra & Ahtola, 1990). Practically, these results indicate that
future applications of the tested method need not utilize all
300 dimensions, and that successful predictions can be ob-
tained using standard, non-regularized regression methods in
the behavioral sciences applied to 10- or 25-dimensional tar-
get spaces. What kinds of information the individual princi-
pal components represent is an important question for future

research, but we believe these dimension-reduced spaces are
a step towards more interpretable yet highly predictive mod-
els of judgment, as a modeler now has far fewer dimensions
(10 to 25, vs 300) to examine or relate to interpretable psy-
chological quantities (by, for example, extracting the words
that project onto high and low ends of the principal compo-
nent’s).

Psychological Substrates of Judgment
The ridge regression approach used in most of the above tests
involves learning a (regularized) linear mapping from the se-
mantic space to the judgment dimension. The best-fit weights
for this mapping have the same dimensionality as the seman-
tic space, and can thus be seen as representing a vector in this
space. Judgment items whose vectors project strongly onto
the weight vector (typically judgment items whose vectors
are highly similar to the weight vector) will be predicted to
have the highest judgment ratings. Given this interpretation,
we can ask what other objects and concepts (that may not nec-
essarily be judgment targets themselves) project strongly onto
the weight vector. Intuitively, these would be the objects and
concepts that are most related to the judgment, and may cor-
respond to the judgment-relevant qualities that people evalu-
ate when generating their responses. Thus, we took the 5000
most frequent words in the Corpus of Contemporary Ameri-
can English that were not also judgment targets, and fed their
word2vec embeddings through our trained ridge regressions
to determine their association with our 14 judgment dimen-
sions. We then computed the difference between a words
predicted association with one dimension (e.g., masculinity)
and its predicted association with the complementary dimen-
sion (e.g., femininity), to find the words most strongly asso-
ciated with one dimension relative to the other. Figure 3 has
word clouds of these words, sized according to the strength
of their association with one dimension relative to the other.
These word clouds conform with expectations of the bases of
these judgments. For example, traits seem to be masculine to
the extent they suggest aggression, and feminine to the extent
they suggest pro-sociality. A degree of artistry in a job may
contribute to perceptions of autonomy, while directly guiding
or helping others especially in a medical setting makes for
perceptions of significance. Perceived brand sincerity may
depend on brand proximity to food, family, and home; per-
ceived brand excitement may depend on brand proximity to
science, technology, and the arts.

Discussion
Despite the ubiquity of human judgment, until now we have
had limited ability to predict arbitrary human judgments of
objects and concepts, as capturing the rich knowledge used
to make predictions has been difficult or impossible. Here
we demonstrated in a pre-registered study that word embed-
dings, vector representations for words and concepts based on
statistics of language use, proxy this knowledge and can pre-
dict 14 diverse judgments across the behavioral sciences with
a high degree of accuracy. Our approach to judgment pre-
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Figure 2: Pearson correlations between predicted and actual judgments for every judgment dimension and varying numbers
of retained principal components. Judgment domains (brands, goods, traits, etc.) can be compressed to 5 to 25 principal
components while preserving judgment prediction accuracy.

diction learning a (linear) mapping directly from word em-
beddings to judgment ratings surpassed a similarity-based
baseline and compared favorably to human inter-rater reli-
ability. We also showed that, despite our word embedding
space (word2vec) being very rich (300 dimensions), predic-
tive accuracy barely dropped when reducing this space to 25,
10, or even fewer dimensions, suggesting that people may
only be evaluating a relative handful of pieces of informa-
tion when making the present kinds of judgments. Finally,
we showed that the learned mapping from word embeddings
to judgments can also be used to explore the conceptual un-
derpinnings of judgments, by mapping non-judgment target
entities onto the judgment dimension.

We view the present approach as a modern extension to
classical psychometric approaches used to uncover the under-
lying representations used for making judgments (Shepard,
1980; Slovic, 1987). However, the present approach offers
several advantages over classical techniques. First, the only
human data that our approach requires is a (relatively) small
number of judgment ratings to train a predictive model. Once
a satisfactory model has been trained, no new human psycho-
metric data is required to predict judgments for new entities.
Second, word embeddings capture more knowledge about
judgment targets than can realistically be collected from hu-
man participants, especially when the relevant knowledge
used to make a particular judgment is not already theoret-
ically well-understood and thus surveyed from human par-
ticipants. Capturing a great degree of knowledge leads to

the high predictive accuracy we have achieved here, which
we suggest may be high enough for applications in down-
stream behavioral sciences and technologies. For example,
marketers could use predicted hedonic and utilitarian values
for consumer goods to optimally advertise each of their hun-
dreds or thousands of products, while health policy designers
could use predicted risk and food perceptions to guide risk
education or nutrition intervention campaigns tailored to in-
dividual perceptions.

The present research can be extended in many directions.
Besides simply modeling new judgment dimensions for ad-
ditional domains and entities, one promising avenue is to
attempt to model different subpopulations judgments. One
way to do this is simply training different regression models
for different subpopulations of participants (e.g., Democrats
and Republicans), but another is training word embeddings
on different corpora more reflective of one population than
another (e.g., MSNBC vs. Fox News articles). Under this
approach, words and concepts that have somewhat different
meanings and associations for different subpopulations, like
the word immigrant may for Democrats and Republicans, will
be located in different parts of the word embedding spaces for
the corresponding representative corpora. Thus, differences
in judgments about, say, the warmth and competence of im-
migrants, elicited from Democrats and Republicans could be
predicted from their different word embeddings.

Despite the strength of our approach, it is not without lim-
itations. Cognitive scientists, who are accustomed to inter-
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Figure 3: Non-judgment target words with strong associa-
tion with one judgment relative to its within-domain comple-
ment. These suggest potential conceptual underpinnings of
judgments.

pretable models, may be most concerned that the dimensions
of the most common word embedding techniques includ-
ing word2vec, which we use here are not themselves in-
terpretable. We attempted to mitigate this problem by using
our learnt mappings to predict judgment associations for non-
judgment targets, and we suggested that our PCA results were
a step towards interpretable models, insofar as they reduced
the number of dimensions a modeler would need to examine
and relate to psychologically meaningful quantities. Another
approach is to train models that predict interpretable psycho-
logical qualities that are theorized to subserve different judg-
ments. For example, the unknowability of a potential risk
source is theorized to be a composition of its observability,
knowledge to the exposed, the delay of their effects, and other
specific factors. Thus, one could train a model to predict these
quantities from word embeddings, and then train a model
predict unknowability from these predicted quantities. It is
also worth pointing out that classic psychometric techniques
do not always avoid this problem; multi-dimensional scal-
ing is not guaranteed to uncover dimensions corresponding
to meaningful psychological qualities. Thus, word embed-
dings are not always a step down in interpretability relative
to other empirical methods of quantifying conceptual knowl-
edge. Finally, cognitive scientists have traditionally focused
on interpretable, explanatory models, at the expense of mod-
els that make accurate out-of-sample predictions (Yarkoni &
Westfall, 2017). Of course, this is undesirable to the extent
that we think a good model requires external validity; having
statistically significant, interpretable model coefficients is ul-
timately of limited use if a model cant predict new behavior
with any accuracy. Thus, our work can be seen as part of the
trend to rebalance the concerns of prediction and explanation
in cognitive science.

References

Aaker, J. L. (1997). Dimensions of brand personality. Journal
of Marketing Research, 347–356.

Batra, R., & Ahtola, O. (1990). Sources of the hedonic and
utilitarian measuring attitudes consumer. Consumer Atti-
tudes, 2(2), 159–170.

Bem, S. L. (1974). The measurement of psychological an-
drogyny. Journal of Consulting and Clinical Psychology,
42(2), 155–162.

Bhatia, S. (2017). Associative judgment and vector space
semantics. Psychological Review, 124(1), 1–20.

Bhatia, S. (2018). Semantic processes in preferential decision
making. Journal of Experimental Psychology. Learning,
Memory, and Cognition.

Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Seman-
tics derived automatically from language corpora contain
human-like biases. Science, 356(6334), 183–186.

Cuddy, A. J., Fiske, S. T., Glick, P., & Xu, J. (2002). A
model of (often mixed) stereotype content: Competence
and warmth respectively follow from perceived status and

2659



competition. Journal of Personality and Social Psychology,
82(6), 878–902.

Grand, G., Blank, I. A., Pereira, F., & Fedorenko, E. (2018).
Semantic projection: recovering human knowledge of mul-
tiple, distinct object features from word embeddings. arXiv
preprint arXiv:1802.01241.

Hackman, J. R., & Oldham, G. R. (1976). Motivation through
the design of work: Test of a theory. Organizational Behav-
ior and Human Performance, 16(2), 250–279.

Hill, F., Reichart, R., & Korhonen, A. (2015). Simlex-999:
Evaluating semantic models with (genuine) similarity esti-
mation. Computational Linguistics, 41(4), 665–695.

Hills, T. T., Jones, M. N., & Todd, P. M. (2012). Optimal for-
aging in semantic memory. Psychological Review, 119(2),
431–440.

Hofmann, M. J., Biemann, C., Westbury, C., Murusidze, M.,
Conrad, M., & Jacobs, A. M. (2018). Simple co-occurrence
statistics reproducibly predict association ratings. Cogni-
tive Science, 42(7), 2287–2312.

Jones, M. N., Kintsch, W., & Mewhort, D. J. (2006). High-
dimensional semantic space accounts of priming. Journal
of Memory and Language, 55(4), 534–552.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean,
J. (2013). Distributed representations of words and phrases
and their compositionality. In Advances in neural informa-
tion processing systems (pp. 3111–3119).

Pereira, F., Gershman, S., Ritter, S., & Botvinick, M. (2016).
A comparative evaluation of off-the-shelf distributed se-
mantic representations for modelling behavioural data.
Cognitive Neuropsychology, 33(3-4), 175–190.

Pilehvar, M. T., & Camacho-Collados, J. (2018). Wic:
10, 000 example pairs for evaluating context-sensitive rep-
resentations. CoRR, abs/1808.09121. Retrieved from
http://arxiv.org/abs/1808.09121

Raghunathan, R., Naylor, R. W., & Hoyer, W. D. (2006).
The unhealthy= tasty intuition and its effects on taste infer-
ences, enjoyment, and choice of food products. Journal of
Marketing, 70(4), 170–184.

Rosenberg, S., Nelson, C., & Vivekananthan, P. (1968). A
multidimensional approach to the structure of personality
impressions. Journal of Personality and Social Psychology,
9(4), 283–294.

Shepard, R. N. (1980). Multidimensional scaling, tree-fitting,
and clustering. Science, 210(4468), 390–398.

Slovic, P. (1987). Perception of risk. Science, 236(4799),
280–285.

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over
explanation in psychology: Lessons from machine learn-
ing. Perspectives on Psychological Science, 12(6), 1100–
1122.

2660

http://arxiv.org/abs/1808.09121


Agency Drives Category Structure in Instrumental Events  
 

Lilia Rissman (l.rissman@let.ru.nl) 
Center for Language Studies, Erasmusplein 1 

Nijmegen, the Netherlands 6525 HT 
 

Asifa Majid (asifa.majid@york.ac.uk) 
Department of Psychology 

York, UK YO10 5DD 
 
 

Abstract 
Thematic roles such as Agent and Instrument have a long-
standing place in theories of event representation. Nonetheless, 
the structure of these categories has been difficult to determine. 
We investigated how instrumental events, such as someone 
slicing bread with a knife, are categorized in English. Speakers 
described a variety of typical and atypical instrumental events, 
and we determined the similarity structure of their descriptions 
using correspondence analysis. We found that events where the 
instrument is an extension of an intentional agent were most 
likely to elicit similar language, highlighting the importance of 
agency in structuring instrumental categories. 

Keywords: thematic roles; events; categorization; tools; 
language production; English 

Introduction 
Events have event participants – an eating event, for example, 
involves someone who eats and something that gets eaten. 
There is extensive evidence that such event participants are 
represented in terms of abstract event participant categories, 
sometimes called "thematic roles" (Hafri, Trueswell & 
Strickland, 2018; Kako, 2006; Lakusta, Spinelli & Garcia, 
2017). The category Agent, for example, contains not only 
the person who eats in an eating event but also the person who 
cooks in a cooking event and the person who builds in a 
building event. Thematic roles have been argued to be cross-
culturally universal and part of innate knowledge (Carey, 
2009; Fillmore, 1968; Strickland, 2016). At the same time, 
thematic roles have been persistently difficult to define in 
terms of necessary and sufficient conditions (Cruse, 1973; 
Dowty, 1991; Levin & Rappaport-Hovav, 2005). For 
example, the person who sees in a seeing event has fewer 
agentive properties than the person who eats. The upshot of 
this prior research is that although humans represent event 
participants in terms of abstract categories, the structure of 
these categories is not well understood. 

A prominent proposal is that thematic roles have prototype 
structure (Ackerman & Moore, 2001; Dowty, 1991; Lakoff 
& Johnson, 1980). Dowty (1991), for example, explains how 
the arguments of English verbs appear in Subject vs. Object 
position in terms of Proto-Role properties. The argument 
with the most Proto-Agent properties (e.g., being sentient, 
having intention, being a causer) surfaces as Subject, whereas 
the argument with the most Proto-Patient properties (e.g., 
undergoing a change of state, being causally affected) 
surfaces as Object. Ackerman and Moore (2001) argue that 

being a bounded entity is another Proto-Patient property. 
Given these properties, the person who sees is a less 
prototypical Agent than the person who eats because it is 
sentient but not also a causer. While these proposals have 
made significant progress in understanding thematic role 
structure, they are limited in several ways. To fully 
understand how event participant categories are represented, 
we first need to investigate a more diverse set of categories 
beyond Agent and Patient, which have received the most 
attention.  We also need to draw on more diverse forms of 
evidence, e.g. online psycholinguistic data. The present study 
achieves both of these goals: we investigate the structure of 
the English thematic role category Instrument, as in Marnie 
sliced the bread with a knife, using a language production 
task in which adult speakers described live action videos. We 
submitted this language description data to correspondence 
analysis (Greenacre, 2007), allowing us to identify similarity 
structure within a diverse set of instrumental events. 

Within linguistics, thematic roles are often understood to 
be linguistic objects whose theoretical function is to explain 
linguistic behavior, such as argument realization. In this 
paper, we assume that while there may be such domain-
specific role representations, there are also domain-general 
event participant categories that are relevant to both the 
syntax~semantics interface and non-linguistic event 
cognition. We take the more conservative position that 
speakers' descriptions of instrumental events reflect domain-
general thematic roles. 

Instrument as a Thematic Role 
The Instrument role appears frequently in lists of thematic 
roles, dating back to the ancient Sanskrit grammarian Pāṇini. 
Like the roles Agent and Patient, Instrument has been 
characterized as having prototype structure. For example, 
Luraghi (2001: 388) characterizes a prototypical instrument 
as "an inanimate manipulable entity which occurs in a 
controlled state of affairs, where an agent acts intentionally." 
The prevalence of the Instrument role in linguistic analyses 
perhaps reflects the importance of tool use for building 
human culture. In the literature on how tool use differs across 
human and non-human animals (Plotnik & Clayton, 2015; 
Seed & Byrne, 2010; Vaesen, 2012), a tool is typically 
defined as a physical object distinct from the body, that an 
individual wields intentionally, causing a change in another 
object or person. We adopt this definition of tool use in the 
present study. Tools are important because they allow us to 

2661



extend the capabilities of our own body, allowing us to solve 
problems “for which evolution has not provided a rigid 
morphological or behavioral adaptation” (Seed & Byrne, 
2010: R1032).  

This definition of tool use does not directly correspond, 
however, to the event participant categories carved out by 
human language (Koenig, Mauner, Bienvenue & Conklin, 
2008; Lakoff, 1968; Rissman & Rawlins, 2017). English, for 
example, has two primary morphosyntactic devices for 
talking about instruments: prepositional with (Remi cut the 
cake with a knife) and periphrastic use (Remi used a knife to 
cut the cake). In these examples, the knife is an example of a 
tool. When an object is being used as a tool, both with and 
use are appropriate to describe its role. Neither with nor use, 
however, is restricted to only the set of tools. With is possible 
for unintentional events (e.g., Remi tripped and cut her dress 
with the scissors). In addition, use is possible for instruments 
that play only a causally indirect role (e.g., Remi used a 
stepladder to paint the ceiling). Both with and use are also 
possible for body parts, where no external object extends the 
reach of the human body (Remi was eating with her hands; 
Remi was using her hands to eat). Rissman and Rawlins 
(2017) ultimately do not use the role Instrument in their 
analysis of the meanings of with and use. Thus the boundaries 
and structure of the Instrument category have been difficult 
to identify, as with other thematic roles. There is also little 
empirical evidence that the notion of a tool, as defined above, 
is a central reference point within this category. 
 
Event Categories and Instruments 
Neither with nor use map onto the category of a tool, and 
current analyses of the meanings of these words suggest that 
Instrument is not part of the grammar of English. 

Nonetheless, there may still be an instrumental category that 
speakers represent when viewing actual events in the world, 
and tools may be prototypical members of that category. 
Events can be construed in multiple ways (DeLancey, 1991). 
An event of someone pouring orange juice into a glass, for 
example, can be construed as a caused change of the orange 
juice from one location to another, or as a caused change to 
the glass by means of the orange juice. Language provides a 
window into the construal that is chosen by a speaker at a 
particular time: the description Tito poured the orange juice 
emphasizes the change of location of the juice. By contrast, 
Tito filled the glass with orange juice emphasizes the change 
of state of the glass and the causal role of the juice. These two 
descriptions reflect different ways of construing the event and 
thus different ways of categorizing the event participants. In 
this study, we take advantage of this variability to investigate 
semantic similarity across different types of instrumental 
participants. To the extent that speakers favor a particular 
construal of an event, as evidenced through their language, 
this indicates a dominant way of categorizing the participants 
in the event. To the extent that speakers use similar language 
for tools and quasi-tool participants (such as body parts), this 
suggests that tools and quasi-tools are represented as 
relatively similar semantically, and may be part of a single 
event participant category. 

We showed adult English speakers videos of tool use as 
well as seven types of events in which one of the participants 
shares some but not all of the properties of a tool. These event 
conditions are displayed in Table 1. For each video, there was 
a Target participant: we compared linguistic encoding of the 
Target across all conditions. The Target participants for the 
example videos are underlined in Table 1. In the No State 
Change condition, the patient is minimally affected – this 
contrasts with tool use, where tools bring about a specific 

 
Table 1: Experimental conditions. Target participants are underlined. 

 

  Condition Description of example video 

 Tool A woman slices a baguette with a knife 

Quasi-tool 
actions 

No State Change A woman hits a box with a pen 
Body Part A man knocks over a music stand with his hand 

Accidental Agent A woman sweeps the floor with a broom, accidentally knocking 
over a bottle 

Causally Indirect  A woman climbs a ladder to open a window  
Locatum A woman fills a glass with orange juice 

Means of Transit A trip on Google Maps from Rome to Moscow by plane 

Inanimate Agent A train rolls down a track, which bumps a red car, which moves a 
truck 

Non-tool 
actions 

Put Theme A man puts a box on a shelf 
Give Theme A woman gives a mug to another person 
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change in an object. In the Body Part condition, the Target is 
not external to the agent's body. As described above, 
Accidental Agent events can be described with with but not 
use, and Causally Indirect events, where the Target is 
peripheral to the force exerted on the patient, can be described 
with use but not with. 

Locatum events are of theoretical interest because some 
researchers have analyzed such events (e.g., filling a glass 
with orange juice) in terms of a schema where a substance 
crosses space, rather than a tool use schema (Jackendoff, 
1990). By contrast, Koenig et al. (2008) analyze such events 
as instrumental, as both a locatum (the orange juice) and a 
tool are used by an agent to achieve a goal. Similarly, Means 
of Transit, such as taking a trip by plane, are used by an agent 
to achieve a goal but are not physically manipulated. Finally, 
the property of being a causal intermediary has been argued 
to be essential to instrumentality (Croft, 1991; Talmy, 1976). 
In Inanimate Agent events, the Target is a causal 
intermediary but is not manipulated by an animate agent. 

We also tested two non-tool-use conditions. In Put Theme 
events, an agent moved an object to an inanimate location, 
and in Give Theme events, an agent transferred a physical 
object to another agent. The Target in both of these events 
was the theme: themes are intermediary between a source and 
goal and therefore provide a parallel with tools, which are 
intermediary between an agent and a patient. Nonetheless, 
based on prior research on thematic roles (Jackendoff, 1990) 
we did not expect that participants would use instrumental 
language to describe the themes in these events. 

Method  
Participants  
43 native speakers of British English participated. An 
additional four participants were tested but excluded for 
being native speakers of American English. Participants were 
tested at Radboud University in the Netherlands and at the 
University of York in the UK and received either course 
credit or £5/€5. 
 
Design and Materials  
Participants described five videos from each of 10 conditions 
In Table 1. Each participant saw these 50 videos in a unique 
random order. The events were live-action videos each 
lasting 4-5 seconds, with the exception of Means of Transit 
events. For this condition, we asked participants to describe 
events in which the mode of transit (e.g., train, bicycle) was 
construed as a means of getting from one place to another. 
This construal is difficult to access if participants only see a 
live-action event of someone riding on a train, for example. 
We therefore showed a video of someone planning a trip on 
Google Maps, with a screen capture showing someone typing 
in a starting point, then a destination, then a means of travel 
(e.g., walking, driving). 

Pilot studies showed that when speakers describe 
instrumental events, they often omit the instrument from their 
descriptions (e.g., an event of a man cutting bread with a 
knife would simply be described as a man was cutting some 

bread). Given this tendency, we highlighted the event 
participants that we wanted speakers to mention by drawing 
red circles around them. Circles were drawn around the 
Target as well as around the agent and patient (or source and 
goal, as appropriate). A still image of the red circles appeared 
for two seconds prior to the beginning of the event, as in 
Figure 1. The circles disappeared as the video began. Means 
of Transit events did not include red circles. 
 

Procedure  
Participants viewed each of the 50 events on a computer 
screen and described the events out loud. We gave 
participants four practice videos to familiarize them with the 
red circles and Means of Transit events. Speakers were told 
they could describe the videos in any way they liked, but they 
needed to mention the three objects in red circles. If a 
participant failed to mention one of the circled objects during 
a practice video, they were corrected and given another 
opportunity to describe the video. Participants were not 
corrected in the experimental trials. For the Means of Transit 
events, participants were told that they would see someone 
planning a trip on Google Maps, and they should describe the 
trip as if they took it themselves, as if it actually happened. 
The task itself took about 15 minutes. 

 
Coding  
We transcribed speakers' utterances and coded how speakers 
described the Target in each video (what "term" was used). 
In syntactic terminology, we coded the lexical item that the 
Target DP was a complement of. Example terms are shown 
in (1); these sentences are actual recorded descriptions. The 
Targets are underlined, terms are noted in boldface and 
Condition in parentheses.  If a speaker described the Target 
in multiple ways, as in (1f), each of these terms was included. 
We included all terms to avoid making a priori assumptions 
about which linguistic devices would be relevant for 
categorizing instrumental events. As we describe below, low-
frequency terms were excluded from analysis. 

 
 

Figure 1: Initial still image from a video of a woman 
slicing bread (Tool condition) 
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(1)  a. The lady smashed the plate with a hammer. (Tool) 
b. Unfortunately the man placed his cup onto the 

cupcake. (Accidental Agent) 
c. A sitting man passes a scarf over to a nearby lady 

using his foot. (Body Part) 
d. A woman used a toy stick to tap a cat on the head.   

(No State Change) 
e. A lady wrapped the baby in the cloth. (Locatum) 
f. A man is holding a cardboard box. He lifts it onto a 

shelf at about head height and places it on that shelf. 
(Put Theme) 

 
We did not code tense and aspect markings on the verb (e.g. 
1b and 1f both included the term place). We coded verb and 
verb-particle constructions as having the same term (e.g., 
for both the man held the scarf and the man held out the 
scarf, the coded term was hold).  

We excluded trials in which the participant did not 
mention the Target (e.g., saying the woman chopped up the 
carrot when the Target was the cutting board). We also 
excluded trials in which the Target was only mentioned as 
the subject of a clause (e.g., saying the woman juggled and 
the ball fell and knocked over the bottle when the Target was 
the ball). A total of 4% of all trials were excluded for these 
reasons.  

Results  
Descriptive statistics 
Across all remaining trials, participants produced 2426 term 
tokens and 108 term types. Given the high number of term 
types produced, and the resulting complexity of 
correspondence analysis models of these data, we focus on 
only the most frequently produced terms here. We selected 
the top 16 terms: this was the smallest number of terms 
needed to ensure that data from all 50 videos were included 
in the analysis. These top 16 terms constituted 72% of all 
tokens produced. The 16 most frequent terms were, from 
most to least frequent: with, use, put, pick-up, on, take, place, 
hit, using, knock, drop, in, throw, pass, by and into. 
 
Dimensions of variation 
We used correspondence analysis (Greenacre, 2007) to 
analyze semantic similarity across the descriptions of the 50 
videos. We constructed a 16 × 50 matrix in which each cell 
of the matrix contained a count of how often a particular term 
was used to describe a particular video. From this high-
dimensional space, correspondence analysis extracts 
dimensions such that the majority of the variance in the data 
set can be captured using a relatively small number of 
dimensions. We used the FactoMineR package for R (Lê, 
Josse, & Husson, 2008; R Core Team, 2017). Figure 2 shows 
the eigenvalues of each of the dimensions in the 
correspondence analysis, as well as the cumulative variance 
accounted for with each dimension. Dimensions with higher 
eigenvalues are more important in interpreting the structure 
in the semantic space. Drawing on Figure 2, we interpreted 

the first eight dimensions of the model, which collectively 
accounted for 86% of the variance. 

We explored how videos in the Tool condition were 
distinguished in this model from the other conditions. The 
first dimension distinguished Inanimate Agent videos from 
the other conditions. The most common terms for Inanimate 
Agent videos were knock, hit and into, terms which were 
rarely used for other videos. The second dimension 
distinguished videos involving ballistic motion, labeled with 
the terms throw and drop, from other videos. These ballistic 
motion videos came from the Put Theme and Give Theme 
conditions, as well as the Accidental Agent condition. In one 
accidental video, for example, a woman tries to juggle three 
balls but she accidentally drops one of them, knocking over a 
plastic bottle. 

The third dimension grouped Give Theme and Means of 
Transit videos together, distinguishing them from other 
videos. The terms distinguished by this third dimension were 
take (e.g., take a soda can from a woman but also take a train 
to Edinburgh), by (e.g., go to Paris by car) and throw (e.g., 
throw an apple to the man).  The fourth dimension 
distinguished two conditions from the others, but at opposite 
ends of the axis: Give Theme videos on one end (labeled by 
the term pass) and Causally Indirect videos on the other 
(labeled by the term on, as in a woman chops a carrot on a 
cutting board). Summarizing the first four dimensions, we 
see that Inanimate Agent videos are most distinct from Tool 
videos, followed by Give Theme, Accidental Agent and 
Means of Transit videos, followed by Causally Indirect 
videos. 

The fifth dimension distinguished the terms put and place 
from other terms. These terms were used most often in the 
Put Theme condition, but also in the Locatum condition (e.g., 
place groceries into a basket) and for one of the Accidental 
Agent videos, as in (1b).  Figure 3 shows a map of the spatial 

 
 

Figure 2: Eigenvalues (blue) and cumulative variance 
explained (green) for each of the dimensions in the 

analysis. The y-axis is the same for both values. 
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arrangement of videos as plotted on the fourth and fifth 
dimensions of the correspondence analysis. 

Through five dimensions, all conditions have been 
distinguished from the Tool condition except for No State 
Change and Body Part. These two conditions are not, 
however, distinguished by Dimensions 6-8. Dimension 6 
separated transfer events in the Give Theme condition from 
Means of Transit events. Dimension 7 distinguished a single 
video in the Causally Indirect condition, where the most 
frequent term was in (e.g., someone washed spinach in a 
colander). Dimension 8 distinguished throw from drop. The 
correspondence analysis therefore indicates that No State 
Change and Body Part events have high semantic similarity 
to Tool events. 

 
Focus on Tools  
We further test this interpretation by analyzing in detail the 
data from Tool, No State Change and Body Part events taking 
into consideration the data which was omitted in the above 
analysis. As described above, 28% of the data was excluded 
in the correspondence analysis, and these data may reveal that 
English speakers do in fact categorize the Target in divergent 
ways across these three events. We calculated how often each 
term was used in each of these three conditions, as shown in 
Figure 4. For purposes of visualization, only the 16 most 
frequent terms are displayed, comprising 93% of all tokens 

for these three conditions. Black boxes indicate those terms 
which were not part of the correspondence analysis.  

Figure 4 shows that the distribution of terms is similar 
across Tool, No State Change and Body Part conditions, the 
most frequent terms being with, use and using. Smaller 
differences are also apparent: pick-up was relatively common 
in the Tool and No State Change conditions, but not the Body 
Part condition. Over, against and elbow were used for Body 
Part events but not the other two types of events.  Despite 
these differences, the data in Figure 4 suggest that the 
similarity across these three conditions observed in the 
correspondence analysis is not an artefact of 28% of tokens 
being excluded. 
 

Discussion and Conclusion 
In this study, we investigated the structure of thematic roles, 
focusing on participants that have been classified as 
Instruments in previous linguistic analysis. We showed live 
action videos to English speakers, and inferred how 
participants categorized the events based on the language 
they used in their descriptions. Correspondence analysis 
revealed which types of Target participants were described in 
similar ways to Tools, and which were most distinct. 
Inanimate Agent events were least similar to Tool events. By 
contrast, Causally Indirect events were more similar to Tools, 

 
 

Figure 3: Individual videos plotted on Dimensions 4 and 5 of the correspondence analysis 
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distinguished only by the fourth dimension in the 
correspondence analysis. Although being a causal 
intermediary has been argued to be definitive for the 
Instrument category (Croft, 1991; Talmy, 1976), these results 
suggest that this property in fact plays a relatively weak role 
in shaping the categories formed by English speakers. 

The results also showed that Put Theme events were more 
similar to Tools than Give Theme events were to Tools, 
although neither type of event was predicted to elicit 
instrumental language. This suggests a relationship between 
a change of location schema and a tool use schema. In an 
event of an agent breaking a plate with a hammer, the agent 
moves the hammer to the location of the plate. And although 
Tool events were predominantly described with use and with, 
not with the locative terms put and place, Locatum events 
formed a semantic bridge between Tool events and Put 
Theme events. Locatum events, such as someone putting a 
towel over a baby, alternated between locative encodings 
(e.g., A woman picked up a towel and placed it onto a toy 
doll) and Tool encodings (e.g., The woman covered the baby 
with the blanket).  This semantic relationship between 
Instruments and Themes has been documented cross-
linguistically (Bickel, Zakharko, Bierkandt & Witzlack-
Makarevich, 2014), but has not been clearly noted for English 
before. 

Previous studies of English have more often emphasized 
that an Instrument is an extension of an Agent (Rissman & 
Rawlins, 2017), and we see clear evidence for this 
relationship in our data. Surprisingly, the terms used for Body 
Part events were highly similar to the terms used for Tool 

events. The idea that tools are external to our body, and can 
therefore extend our reach, is crucial to the role of tools in 
the development of human culture. A priori, we therefore 
expected that Tool and Body Part events would be 
categorized in different ways. We did not find a strong 
distinction between these events, however, suggesting the 
importance of conceptualizing Instruments as an extension 
of the Agent. The fact that No State Change events were also 
similar to Tool events supports this conclusion: the intention 
and actions of the Agent are more important than the actual 
outcome. To the extent that tools are prototypical instances 
of instrumental events, the instruments in Body Part and No 
State Change events are no less prototypical. 

In the video stimuli in this study, we circled the Target 
participants, in addition to agents, patients, sources and 
goals, in order to prompt speakers to mention these 
participants. This likely did affect speakers’ construal of the 
events – in fact, it was our goal to direct speakers to a 
construal where the Target had high prominence, high 
enough to be mentioned. We do make the assumption that 
the descriptions we elicited using these circles would not 
differ significantly from descriptions where speakers 
mention the Targets spontaneously, without prompting. 

In conclusion, we find that agency plays a prominent role 
in determining similarity across instrumental events. These 
conclusions, however, only extend as far as English, and 
how English speakers conceptualize events. Future research        

can determine the extent to which similar principles guide 
categorization in other languages and other cultures. 
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Abstract 
The current study used an eye tracker to examine how auditory 
input affects the latency of visual fixations and speeded responses 
on a Serial Response Time Task (SRTT). In Experiment 1, 
participants viewed a sequence of visual stimuli that appeared in 
different locations on a computer monitor and the same sequence 
repeated throughout the experiment. The visual sequence was 
either presented in silence or paired with uncorrelated sounds 
(i.e., sounds did not predict visual target location). Participants 
made more fixations and were more likely to fixate on the visual 
stimuli when visual sequences were presented in silence than 
when paired with sounds. Participants in Experiment 2 were 
presented with the same sequences, but they also had to determine 
if each visual stimulus was red or blue. The presence of auditory 
stimuli had no effect on accuracy (red vs. blue), however, there 
was some evidence that auditory stimuli delayed the latency of 
first fixations to the visual stimuli and discriminating the images 
as red or blue was also slower relative to the unimodal visual 
baseline. While visual stimuli often dominate auditory processing 
on spatial tasks, the current findings show that auditory stimuli 
can also slow down visual detection on a task that is better suited 
for the visual modality. These findings are consistent with a 
potential mechanism underlying auditory dominance effects, 
which posits that auditory stimuli may attenuate and/or delay the 
encoding of visual information. 
 
Keywords: Attention, Multisensory Processing, Auditory 

Dominance 

Introduction 
Over the last 40 years, there has been a considerable amount 
of research examining how individuals process and integrate 
multisensory information (see Bahrick, Lickliter, & Flom, 
2004; Calvert, Spence & Stein, 2004; Robinson & Sloutsky, 
2010; Spence, Parise, & Chen, 2012; Stein & Meredith, 1993, 
for reviews). Much of this research focuses on multisensory 
integration where information from different sensory 
modalities is quickly, if not automatically, bound into a 
multisensory percept in which processing and responding to 
these multisensory percepts is often faster and more efficient 
than responding to the unisensory information (Bahrick, 
Flom, & Lickliter, 2002; Fort, Delpuech, Pernier, & Giard, 
2002; Giard & Peronnet, 1999; Miller, 1982). For example, 
localizing a visual stimulus paired with a sound is often faster 
than localizing a visual stimulus presented in silence.  

However, there are also many situations where 
multisensory information is arbitrary in nature and 

information presented to one sensory modality is unrelated to 
the information presented to the other sensory modality (e.g., 
listening to music while visually navigating traffic). Under 
these situations, multisensory presentation can sometimes 
disrupt encoding, learning, and/or responding, with one 
sensory modality dominating processing of the other sensory 
modality. For example, modality dominance research in 
adults often shows that when auditory and visual stimuli are 
presented simultaneously, visual input often dominates 
processing of auditory information (Colavita, 1974; Sinnett, 
Spence, & Soto-Faraco, 2007; see also Spence et al., 2012, 
for a review). 

There is recent evidence of auditory dominance in adults 
(Barnhart, Rivera, & Robinson, 2018; Dunifon, Rivera, & 
Robinson, 2016; Robinson,   Moore, & Crook, 2018), 
however, research pointing to auditory dominance in adult 
populations typically relies on temporal tasks (e.g., Parker & 
Robinson, 2018; Robinson & Sloutsky, 2013; Shams et al., 
2000; 2002). More specifically, while the auditory modality 
can sometimes dominate visual processing on temporal tasks, 
the visual modality typically dominates auditory processing 
on spatial tasks (Welch & Warren, 1980). These findings 
suggest that modality dominance effects are flexible in nature 
and vary as a function of response demands (Robinson, 
Chandra, & Sinnett, 2016), nature of the task (Welch & 
Warren, 1980), and signal strength (Alias & Burr, 2004). 

Given that auditory dominance effects are less prevalent 
in the adult literature, the primary goal of the current paper 
was to focus on these effects. One potential mechanism 
underlying auditory dominance is that sensory modalities 
might be competing for attention (Robinson & Sloutsky, 
2010; see also Duncan, Martens, & Ward, 1997; Eimer & 
Driver, 2000; Sinnett et al., 2007; Wickens, 1984, for related 
discussions). Moreover, because auditory stimuli are often 
dynamic and transient in nature, it would be adaptive to first 
allocate attention to this information before it disappears. 
Attentional resources automatically deployed to the auditory 
modality might come with a cost - disrupted or delayed visual 
processing. There is some support for this claim from studies 
using temporal and recognition tasks (Barnhart et al., 2018; 
Dunifon et al., 2016; Parker & Robinson, 2018; Robinson et 
al., 2018, Robinson & Sloutsky, 2013; Shams et al., 2000; 
2002), however, a stronger test of this proposed mechanism 
would be to examine if auditory stimuli also delay visual 
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processing on a visuospatial task, a task better suited for the 
visual modality. 

A recent study presented adults with a SRTT, which was 
administered on a touch screen computer (Robinson & 
Parker, 2016). As in previous research using variations of this 
paradigm (e.g., Dennis, Howard, & Howard, 2006; Nissen & 
Bullemer, 1987; Song, Howard, & Howard, 2008), Robinson 
and Parker (2016) presented visual information to spatially 
distinct locations, and participants had to quickly respond to 
this information (i.e., they had to touch each stimulus when it 
appeared on the touch screen monitor). Unbeknownst to 
participants, the visual sequences were structured and 
followed the same sequence throughout the experiment. 
Motor responses sped up over the time suggesting that, at 
some level, participants were learning the sequences. More 
relevant to the current study, motor responses to the visual 
stimuli were slower when the visual stimuli were paired with 
uncorrelated sounds (i.e., sounds that did not 
predict/correspond with location of the visual stimulus). 

The current study expands on this research by using 
variations of a SRTT administered on an eye tracker to 
examine patterns of visual fixations over time. In both 
reported experiments, participants were shown two visual 
sequences of 12 stimuli, and the same sequences repeated 
throughout the experiment. In one condition, the sequence 
was presented in silence (unimodal condition) and in the 
other condition, the visual sequence was paired with sounds 
that were not correlated with the spatial location of the visual 
stimuli (cross-modal condition). Participants either counted 
the number of visual stimuli (Experiment 1) or they 
responded to each stimulus by quickly making a distinction 
on whether visual stimulus was red or blue (Experiment 2). 
If auditory stimuli are disrupting visual detection/encoding, 
then latency of first fixations to the visual stimuli should also 
be delayed. However, if auditory stimuli are disrupting later 
stages of visual processing (e.g., response/decision phase), 
then auditory interference should only be found in 
Experiment 2 when participants are making explicit 
responses to each stimulus. 
 

Experiment 1 
 

Method 
Participants Forty undergraduate students (M = 19.41 years, 
SD = 1.61 years, 22 Females, one person did not disclose 
gender or age information) from The Ohio State University 
at Newark participated in the experiment for course credit. 
Data from 11 other participants were excluded from the study 
due to technical difficulties such as poor calibration, software 
crashes, etc. 
 
Apparatus Participants were centrally positioned and seated 
approximately 65 cm in front of an EyeLink 1000 Plus eye 
tracker with desktop mount and remote camera. The eye 
tracker computed eye movements at a rate of 500 Hz, and 
Experiment Builder 1.10.165 controlled the timing of 

stimulus presentations. Visual stimuli were presented on a 
BenQ XL2420 24” 1920 x 1080 monitor and auditory stimuli 
were presented via Kensington 33137 headphones. Eye 
tracking data were collected and stored on a Dell Optiplex 
7010 computer. Gaze fixation positions, Areas Of Interest 
(AOIs), and fixations were identified by the EyeLink system 
and data were exported using Data Viewer. The eye tracker, 
stimulus presentation computer, and eye tracking computer 
were stationed in a quiet testing room and a trained 
experimenter oversaw the entire duration of each 
participant’s study. 
 
Materials and Design Visual stimuli were solid red and blue 
circles (100 pixels in diameter) and were presented on a white 
background. Visual stimuli were presented for 700 ms and 
were presented one right after another with no interstimulus 
interval. Auditory stimuli were 6 sine waves (500 - 3000 Hz, 
each stimulus increasing by 500 Hz) and 6 sawtooth waves 
(250 - 2750 Hz, each increasing by 500 Hz) Auditory stimuli 
were created in Audacity and were presented via headphones 
at a comfortable level - approximately 65 dB. Auditory 
stimuli were presented for 500 ms, and the auditory and 
visual stimuli shared the same onset.  

The experiment consisted of two within-subjects 
conditions: a unimodal condition and a cross-modal 
condition. We presented two visual sequences of 12 distinct 
circle locations that repeated 20 times (see Figure 1 for 
sequences). In the unimodal condition, the sequence was 
presented in silence, and in the cross-modal condition, the 
visual sequence was paired with sounds. The color of the 
circles in both conditions was random (not correlated with the 
location of the circle), as were the sounds in the cross-modal 
condition. The order of the two sequences and the sequence-
condition pairings were counterbalanced across participants. 
 
Procedure Participants were told that they would see red and 
blue circles appear one at a time in different locations across 
the screen. They were instructed to look at the circles as they 
appear and respond by pressing a USB button placed in front 
of them after every 10 circles that they saw. Participants were 
not told that the circles would appear in the same sequence of 
12 locations, however, they were informed that the study was 
split into two parts, a silent condition and a sound condition. 
Participants were given a consent form and demographics 
form to fill out before the study began.  

After completing the consent and demographic forms, 
participants were calibrated on the eye tracker. Drift 
correction occurred every 50 stimuli (approximately 40 s), 
and we recalibrated the eye tracker every 100 stimuli 
(approximately 80 s). When the experiment concluded, the 
participants were given a three-question survey. On each 
item, they had to determine if they thought the order of the 
visual sequence, the order of the visual sequence paired with 
the sounds, and the order of the auditory sequence, was 
random or followed a pattern which repeated throughout the 
experiment. Question order was counterbalanced across 
participants (e.g., participants who received the unimodal 

2669



 

 

condition first were first asked about the unimodal sequence 
and vice versa).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Order of the two visual sequences.  

 
Results 
We examined three different eye tracking variables which 
might be affected by the presence of auditory stimuli. First, 
we examined the latency of first fixations, which are 
sometimes slowed down on recognition tasks when visual 
stimuli are paired with sounds or words (Barnhart et al., 2018; 
Dunifon et al., 2016). Second, we examined the proportion of 
stimuli where participants made a fixation to the target 
location. If auditory stimuli disrupt visual encoding, there 
should be fewer fixations to the visual targets in the sound 
condition. Finally, we examined the number of fixations on 
each trial, however, these predictions are less clear. For 
example, attention automatically deployed to the auditory 
modality (or away from the visual modality) could reduce the 
overall number of fixations or it could make the visual task 
more challenging and require more fixations before detecting 
the visual target.  

Each participant reported in the final sample completed 
the unimodal condition and the cross-modal condition, and in 

each condition, participants were presented with an ordered 
sequence of 12 visual stimuli, which repeated 20 times. Each 
sequence of 12 stimuli was considered as a trial, and to reduce 
noise, we created four blocks by averaging across five trials 
(60 stimuli). Thus, each condition consisted of four blocks of 
five trials, with 60 stimuli per block (e.g., Block 1 = first 60 
stimuli, Block 2 = 61 - 120, etc.). 

Every 700 ms a visual stimulus appeared in one of 12 pre-
specified locations on the monitor and we recorded the 
latency first fixation to the visual stimulus (timestamp of first 
fixation to AOI - timestamp of stimulus onset).  AOIs were 
created in Data Viewer and were 300 x 300 pixel squares 
centered around each visual stimulus. We submitted the mean 
latency of first fixations to a 2 (condition: unimodal, cross-
modal) x 4 (block: blocks 1-4) repeated measures ANOVA. 
Mean latency of first fixations across condition and time 
ranged from 256 - 261 ms. There were no significant effects 
and the interaction did not reach significance, ps > .31. 

We also examined the proportion of stimuli where 
participants made a fixation to the AOIs. If a participant made 
a fixation to the location of the target from stimulus onset to 
stimulus offset, then we coded that stimulus as a 1. If a 
participant did not make a fixation to the AOI during this time 
window, then we coded that stimulus as a 0. Proportions of 
fixations to the AOIs were averaged within each block and 
we submitted these values to a 2 (condition: unimodal, cross-
modal) x 4 (block: blocks 1-4) repeated measures ANOVA.  
The analyses only revealed a marginally significant effect of 
condition, F (1, 39) = 3.95, p = .054, ƞp2 = .092, with 
participants making a higher proportion of fixations to the 
AOIs in the unimodal condition (M = .94, SE = .01) than in 
the cross-modal condition (M = .92, SE = .02). 

The number of fixations from stimulus onset to stimulus 
offset (to any location on the monitor) was collected and we 
submitted these values to a 2 (condition: unimodal, cross-
modal) x 4 (block: blocks 1-4) repeated measures ANOVA. 
The analysis only revealed an effect of condition, F (1, 39) = 
5.66, p = .022, ƞp2 = .127, with participants making more 
fixations in the unimodal condition (M = 2.42, SE = .03) than 
in the cross-modal condition (M = 2.39, SE = .03).  
 Finally, at the end of the experiment, participants 
completed a three-item questionnaire. Random and Patterned 
responses for the unimodal and cross-modal conditions were 
analyzed using a McNemar's Chi-square. The McNemar Chi-
square was significant (N = 40), p = .049, and one sample 
binomial tests compared to chance revealed that a majority of 
the participants thought the unimodal visual sequences were 
random (M = 68% reported random, p = .04), whereas, only 
45% of the participants indicated that the visual sequences 
paired with sounds were random, which did not differ from 
chance, p = .64. Forty-five percent of participants also 
reported that the order of the auditory sequence was random. 
 In summary, while previous research demonstrated that 
auditory stimuli can slow down first fixations on recognition 
tasks (Barnhart et al., 2018; Dunifon et al., 2016) and slow 
down motor responses on a touch screen SRTT (Robinson & 
Parker, 2016), the current study found only weak support for 
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auditory interference. More specifically, participants in the 
current study were slightly less likely to make a fixation to 
the visual stimulus when it was paired with a sound and they 
also made fewer fixations (to any location on the monitor). 
However, unlike Robinson and Parker (2016), there was no 
evidence that participants learned the visual sequences. 
Recall that latency of first fixations to the target locations did 
not speed up across training, whereas, motor responses sped 
up in Parker and Robinson (2016). Finally, while a majority 
of participants thought the unimodal visual sequences were 
random, participant responses did not differ from chance 
when sequences were paired with sounds. It is unclear if the 
uncorrelated sounds increased the perceived structure of 
visual input or if the sounds simply increased chance 
responding. However, if the sounds did increase the 
perceived structure of visual sequences, it did not result in 
faster or more fixations to the visual targets. 
 

Experiment 2 
 
The primary aim of the Experiment 2 was to further examine 
possible effects of auditory stimuli on visual sequence 
learning. Are interference effects restricted to tasks that 
require an explicit response? To address this aim, we 
presented participants with structured visual sequences in 
silence or paired with sounds, however, in contrast to 
Experiment 1, participants were required to make a response 
to each visual stimulus (i.e., indicate if the visual target was 
red or blue). If auditory stimuli interfere with visual 
processing during the decision/response phase, as opposed to 
disrupting encoding, then response times should slow down 
in the cross-modal condition in Experiment 2 while having 
no negative effect on the latency of first fixations. However, 
slowed response times and delayed first fixations would be 
consistent with the claim that auditory stimuli are disrupting 
visual encoding (Robinson & Sloutsky, 2010a).  

Experiment 2 was not originally designed to examine the 
effects of engagement on sequence learning, however, 
requiring participants to make an explicit response to each 
stimulus should make the task more engaging. Thus, it is also 
possible to examine if poor engagement could account for the 
lack of learning in Experiment 1. While visual sequence 
learning on SRTT and statistical learning tasks are often 
thought to be implicit in nature and not dependent on 
attention (e.g., Nissen & Bullemer, 1987; Saffran, Newport, 
Aslin, & Tunick, 1997), it is possible that learning would be 
more robust if participants were more engaged throughout 
testing. Requiring participants to indicate if each visual 
stimulus is red or blue should make the task more engaging, 
which could result in better learning (i.e., faster response 
times and/or fixations across time). 
 
Method 

Participants, Materials, Design, and Procedure Thirty 
undergraduate students (M = 20.19 years, SD = 2.51 years, 20 
Females) from The Ohio State University at Newark 

participated in the experiment for course credit. Data from 
eight other participants were excluded from the study due to 
technical difficulties, such as software/system crashes, 
computer lagging, or poor calibrations. 

The procedure and design of Experiment 2 were identical 
to Experiment 1, except that in Experiment 2, a choice 
response task paradigm was used. Participants were required 
to make a color distinction with each stimulus by responding 
with one of two external USB buttons, labeled “RED” and 
“BLUE” respectively. Participants were instructed to respond 
as fast and as accurate as possible. The left-right locations of 
the buttons were counterbalanced across participants.  
 
Results 

As in Experiment 1, we examined the latency of first 
fixations, the proportion of stimuli where participants made a 
fixation to the visual target, and the number of fixations 
between stimulus onset and stimulus offset, however, we also 
examined response times and accuracies on the primary task.  

First, as in Experiment 1, we submitted the mean latency 
of first fixations to a 2 (condition: unimodal, cross-modal) x 
4 (block: blocks 1-4) repeated measures ANOVA. The 
analyses revealed a marginally significant effect of condition, 
F (1, 29) = 3.62, p = .067, ƞp2 = .111, and a significant time x 
condition interaction, F (3, 87) = 3.28, p = .025, ƞp2 = .102. 
While latency of first fixations were numerically faster across 
all blocks in the unimodal condition, simple effects with 
Bonferroni adjustments revealed that the difference between 
unimodal and cross-modal means only reached significance 
in block 3, p = .012 (see Figure 2). 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

Figure 2. Latency of First Fixations (ms) across condition 
and time. Error bars denote Standard Errors. 

 
Response times were also submitted to a 2 (condition: 

unimodal, cross-modal) x 4 (block: blocks 1-4) repeated 
measures ANOVA. The analysis revealed an effect of 
condition F (1, 29) = 5.90, p = .022, ƞp2 = .169, with response 
times being faster in the unimodal condition (M = 584 ms, SE 
= 19.85) than in the cross-modal condition (M = 624 ms, SE 
= 28.56). The analysis also revealed an effect of time, F (3, 
87) = 16.04, p < .001, ƞp2 = .356. See Figure 2 for response 
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times across condition and time. Pairwise comparisons with 
Bonferroni adjustments revealed that mean response times on 
Block 1 (M = 637 ms, SE = 27.92) were significantly slower 
than Block 2 (M = 600 ms, SE = 24.18), Block 3 (M = 592 
ms, SE = 22.72), and Block 4 (M = 587 ms, SE = 19.48), ps 
< .001. Blocks 2-4 did not differ, ps > .56. Also note that 
accuracies (i.e., discriminating red vs. blue stimuli) exceeded 
.96 across all conditions with no significant effects or 
interactions, ps > .22. 
 

 
 

Figure 3. Response times (ms) across condition and time. 
Error bars denote Standard Errors. 

 
The proportion of stimuli where participants made a 

fixation to the AOI were submitted to a 2 (condition: 
unimodal, cross-modal) x 4 (block: blocks 1-4) repeated 
measures ANOVA. Mean proportion of fixating to the visual 
stimuli ranged from .93 - .97, and the analysis revealed no 
significant effects or interactions, ps > .32.  

The mean number of fixations between stimulus onset 
and offset were submitted to a 2 (condition: unimodal, cross-
modal) x 4 (block: blocks 1-4) repeated measures ANOVA. 
The analysis only revealed a marginally significant effect of 
time, F (3, 87) = 2.62, p = .056, ƞp2 = .083. Pairwise 
comparisons with Bonferonni adjustments revealed that 
participants made more fixations on block 1 (M = 2.24, SE = 
.05) than on block 2 (M = 2.18, SE = .05), p = .023. Block 1 
did not differ from block 3 (M = 2.20, SE = .05) or block 4 
(M = 2.19, SE = .05), and blocks 2-4 did not differ, ps > .323. 

Finally, we also examined responses on the three-item 
questionnaire, which was administered at the end of the 
study. Two participants did not complete the questionnaire. 
Patterned responses for the unimodal visual and visual 
sequence paired with sounds were analyzed using a 
McNemar's Chi-square. The McNemar Chi-square was not 
significant (N = 28), p > .99, Binomial tests compared to 
chance revealed that 78% of the participants thought the order 
of the unimodal visual sequence was random, different from 
chance, p = .004, and 82% of the participants reported that 
the order of the visual sequence paired with sounds was also 
random, different from chance, p = .001. 

 

General Discussion 
In both reported experiments, participants were shown two 
visual sequences, and each sequence repeated 20 times over 
the course of the experiment. One sequence was presented in 
silence, whereas, the other sequence was paired with sounds, 
which were not correlated with the location of the visual 
stimulus. In Experiment 1, participants simply counted the 
number of visual stimuli, pressed a button after every 10 
stimuli, and we examined visual fixations throughout the 
procedure. Experiment 2 was more engaging, as participants 
were required to quickly determine if each visual stimulus 
was red or blue. 

Auditory interference effects were found in both 
experiments. More specifically, in Experiment 1 when 
participants counted the number of visual stimuli, 
participants were more inclined to fixate on the visual stimuli 
in the unimodal condition and also made more overall 
fixations in the unimodal condition. When participants had to 
determine if each visual stimulus was red or blue, both 
latency measures showed some evidence of a 
slowdown/delay in the cross-modal condition. More 
specifically, latency of first fixations to the visual stimuli was 
slower in the cross-modal condition compared to the 
unimodal baseline, especially in block 3 (see Figure 2). In 
addition, overall response times were also slower in the cross-
modal condition than in the unimodal condition. 

The current study contributes to modality dominance 
research in the following ways. First, most research 
examining modality dominance in adults often points to 
visual dominance, with the visual modality dominating 
auditory processing (Spence, 2009; Spence et al., 2012, for 
reviews). While the current study did not examine the effects 
of visual input on auditory processing, the findings provide 
support for auditory dominance with auditory stimuli slowing 
down visual fixations and responding. These findings are 
remarkable given that spatial tasks are typically better suited 
for the visual modality (Welch & Warren, 1980). Moreover, 
the current study examined latency of first fixations as well 
as response times. If sounds were simply interfering during 
the response/decision phase, then only response times should 
have been slowed down. Finding evidence that first fixations 
to the stimuli were also delayed suggests that interference 
effects are happening early in the course of visual processing 
(i.e., during the detection phase). 

While these findings shed light on the dynamics of 
multisensory processing, there are some limitations to the 
current study. First, while response times sped up in 
Experiment 2, there was no evidence in the eye tracking data 
that participants were learning the sequences. There are 
several reasons why learning may have not occurred. First, in 
both reported experiments, the color of the visual stimuli 
added noise to the sequences and the sounds in the cross-
modal conditions also added additional noise (i.e., 
participants may have focused on these irrelevant variables 
and failed to learn the sequences). However, this additional 
information should not have affected sequence learning if the 
task is assessing implicit learning. It is also possible that 

2672



 

 

participants were learning the sequences, but we failed to 
capture this learning because we primarily focused on 
participants’ responses to visual stimuli and not on their 
anticipations (fixations before stimulus onset). These 
possibilities need to be addressed in future research. 

In summary, the current study demonstrates that sounds 
can disrupt visual stimulus detection and response times. 
These effects have implications on tasks that require 
processing of multisensory information and shed light on 
possible mechanisms underlying auditory dominance effects. 
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Abstract 
Creative ideas emerge from a meshwork of dynamic elements. 

Resources internal and external to the agent configure a cognitive 
ecosystem that scaffolds performance. In addition, capitalizing on 
fortuitous external cues may trigger new ideas. We examined these 
elements to determine how they come into play during a simple 
word production task. Participants were video recorded as they 
generated new words from 7 letter tiles in three different 
environments (i) high interactivity where the titles could be moved 
at will (ii) low interactivity where they could not, and (iii) low 
interactivity where the order of the tiles could be shuffled but once 
shuffled no additional actions were allowed. Overall, interactivity 
had a marginally positive impact on performance, while 
independent measures of participants’ verbal fluency were strong 
predictors of performance in all environments. Based on a detailed 
coding of the video data, a finer-grained analysis of behaviour in the 
high interactivity condition revealed that the time participants spent  
manipulating the tiles was a significant predictor of performance. 
The video data also allowed us to measure the average latency to the 
production of a new word after shuffling the letters in the low 
interactivity condition as an index of how ‘lucky’ the reset was: 
Shorter average latencies were a significant predictor of overall 
word production. These data indicate that interactivity, serendipity, 
and internal cognitive resources determine problem-solving 
performance in this task. 

Keywords: Creativity; interactivity; serendipity; cognitive eco 
system. 

Introduction 
Problem solving is an activity that takes shape in a dynamic 
meshwork of resources and processes, configured from 
internal mental resources, embodied actions and 
environmental affordances. To better appreciate the role of 
interactivity in problem solving it is important to contrast 
problem solving performance in task ecologies that differ in 
the degree to which a problem solver can ‘think’ through the 
manipulation of a physical model of the problem. In a low 
interactivity task environment, the problem solver is 
decoupled from her immediate environment: She is invited to 
solve a problem without using her hands to support thinking 
either through gesture or rearranging the physical elements 
that configure a model of the problem (such task 
environments are often the default procedure employed in 
problem solving research, Vallée-Tourangeau & March, 
2019). In other words, problem solving proceeds from mental 
simulations of possible solutions. In contrast, a high 
interactivity task environment places no such constraints on 
her: Participants are presented with physical elements of the 
problem that can be manipulated to arrive at a solution. In 

such environments, proto solutions are boundary objects of 
sorts (Fiore & Wiltshire, 2016) that are physically 
constructed and perceived, unveiling action affordances and 
guiding attention in ways that are simply not possible in low 
interactivity conditions. Creative problem solving in a task 
ecology that favours interacting with the physical elements of 
a problem, is driven by three factors: the internal resources of 
the problem solver, her embodied behaviour and the 
environmental affordances that unfold dynamically as the 
physical model of the problem is modified. A full account of 
these aspects helps better appreciate their transactional 
nature.  

Interactivity in the Word Production Task 
The game of Scrabble has been modified to assess whether 
manipulating the letter array supports word production (see 
Maglio, Matlock, Raphaely, Chernicky & Kirsh, 1999; Webb 
& Vallée-Tourangeau, 2009; Vallée-Tourangeau & 
Wrightman, 2010; Kirsh, 2014; Fleming & Maglio, 2015). In 
this modified task participants are given 7 letters and invited 
to generate words. With an open problem of this sort, the 
dependent measure offers a more nuanced measure of the 
benefit or otherwise of interactivity. Additionally, letter set 
difficulty can be manipulated by selecting sets of letters that 
generate more or fewer words. 

There are clear theoretical reasons to suppose that 
interactivity would benefit solvers in a word production task 
of this kind. By extending the mental workspace outside of 
the head, the internal letter representations are reified and are 
easily manipulated freeing up and scaffolding participants’ 
internal resources (Gavurin, 1967; Webb & Vallée-
Tourangeau, 2009; Vallée-Tourangeau & Wrightman, 2010). 
Furthermore, interactivity allows the solvers to move with 
less effort through the problem space and even to jump to new 
places with, at times, unplanned moves (Maglio et al., 1999). 
Thus, the tiles may either be recruited strategically or, more 
serendipitously, non-strategic moves may yield lucky 
combinations of letters.  

Empirically, however, the data are less clear than may be 
imagined. The only study that demonstrates an unequivocal 
benefit is Flemming and Maglio (2015) where interactivity 
not only led to an increase in word production but also to rarer 
(less frequent) words being produced. While Maglio et al. 
(1999) documented a small overall benefit for interactivity, 
when this was broken down into the two different letter sets 
used, interactivity led participants to produce more words 
with one letter set but fewer words with another, easier, letter 
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set. With an easy letter set, participants are more capable of 
generating words without help so the added cost of 
manipulating tiles may actually slow down word generation. 
In addition, the serendipitous jumps proposed by Maglio et 
al. (1999) are less likely to occur when a participant can 
easily produce words.  

Individual Differences 
Where the participants have been profiled, the existing data 
show a clear interaction between the individual resources of 
the problem solver and the effect of interactivity. Vallée-
Tourangeau and Wrightman (2010) found that there was a 
statistically significant benefit in the high interactivity 
condition for participants categorised in the low verbal 
fluency group while the benefit for those in the high verbal 
fluency group was negligible. This mixed story is echoed by 
Webb and Vallée-Tourangeau (2009) who manipulated the 
difficulty of level sets across two groups, children with and 
without developmental dyslexia. Here the number of words 
produced by each group depended on the difficulty of the 
letter set: Interactivity only benefitted the control group with 
the harder letter set and the children with developmental 
dyslexia only benefitted from interactivity with the easy set. 
The evidence to date suggests that interactivity scaffolds the 
performance of those who have lower verbal fluency or 
working memory and acts as an additional, reciprocal and 
non-linear processing loop (Vallée-Tourangeau & Vallée-
Tourangeau, 2017) but it appears to confer little benefit when 
the task is within the capability of the participants either 
because of their skills or the nature of the letter set employed.  

Environmental Affordances 
For Maglio et al. (1999) the benefit of high interactivity was 
in no small part due to the introduction of randomness that 
seeds intelligent behaviour. Randomness is generated by the 
external environment and interactivity research explores the 
way problem solvers both recruit and are entangled with this 
environment (Ingold, 2017). Kirsh (2014) explicitly 
examined this role of randomness in the word production 
task. The participants were invited to take part in a task on a 
computer with an additional shuffle condition where one 
click shuffled the letters randomly. He found that the shuffle 
condition encouraged the production of a significantly higher 
number of words (M = 18.9) than both the static (M = 16.6) 
and the interactive (M = 17.7) conditions.  

If we consider the constraints in place across Kirsh’s three 
conditions, this becomes a more surprising result. As there 
were no reported constraints in the high interactivity 
condition, it theoretically provides the widest range of 
possible strategies. Participants are not prevented from 
shuffling the tiles randomly, just such shuffling would have 
to be self-generated. In practice, it seems unlikely that 
participants could have fully used the range of possibilities of 
the high interactivity version. Indeed, the number of shuffles 
described by Kirsh—the best performing third shuffled once 
every 3.7 seconds, the worst performing third once every 1.9 
seconds—demonstrate the incredibly low cost of shuffling to 

generate hints in this task environment. In practice, it would 
be impossible to mimic this strategy with the high 
interactivity version in the same time.  

Just as the skills of the problem solver are important when 
we consider the ways cognition arises from the interplay 
between person and external artefacts, so too are the 
affordances for action offered by the artefacts. Taking the 
cognitive ecology of this task seriously, requires taking the 
affordances of the external environment seriously. Rather 
than making the implicit assumption that the problem solver 
imposes her will on an inert and indifferent environment, we 
suggest that the nature of the artefacts selected will determine 
to some extent the actions undertaken (Steffensen, Vallée-
Tourangeau & Vallée-Tourangeau, 2017).  

It is our hypothesis that in Kirsh (2014) the low cost of 
shuffling the tiles with one click on a computer compared to 
the relatively high cost of moving tiles with a mouse, meant 
that shuffling functioned as an epistemic action (Kirsh & 
Maglio, 1994) more closely resembling the actions of a Tetris 
player who chooses a tretromino drop location based on what 
she sees after multiple physical rotations rather than a true 
test of luck. Indeed, Kirsh (2014, p. 19) acknowledges this: 
“the cost in time and mental effort must be sufficiently low 
that it pays to keep fishing for hints”. The benefits of 
interactivity are only useful when they outweigh the costs of 
that interactivity (Maglio et al, 1999) and the shuffle 
condition reported in Kirsh (2014) is incredibly low in 
cognitive cost. Thus, while environmental randomness was 
examined it remains to be seen to what extent its benefit 
resulted from the low cost involved in monitoring the 
usefulness of a change in the letter array rather than having 
to take the time or make the mental effort to produce different 
arrays.  

Participant Behaviour  
The manipulation of chance by Kirsh (2014) also highlights 
differences in participants’ behaviour. The number of 
shuffles varied across shufflers. Indeed, the better word 
generators shuffled “about 50% less” (p.18) than those who 
produced the fewest words. So, while the shuffle condition 
produced a higher overall mean of words, when the behaviour 
of the participants is taken into account, a more nuanced and 
accurate account of the role of chance is possible. Shuffling 
did not confer an indiscriminate benefit across all 
participants. 

This difference in the behaviour of the participants is also 
acknowledged in a footnote in Maglio et al. (1999, footnote 
2, p. 330): roughly a third of the participants did not consider 
it worth using their hands to structure their thoughts in an 
ostensibly high interactivity environment. This footnote 
requires us to consider to what extent the participants in this 
experimental condition could be said to be using interactivity; 
rather the condition might be more aptly renamed potential 
for high interactivity. 

In various experiments investigating the role of 
interactivity in problem solving (e.g., Vallée-Tourangeau, 
Sirota & Vallée-Tourangeau, 2016), the low interactivity 
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condition is invariably tightly controlled, and participants’ 
movements are constrained with them often being requested 
to lay their hands flat on the work surface. However, there are 
few controls and rarely any consideration of the manner in 
which participants recruit resources in a task environment 
labelled as high interactivity. Only Fleming and Maglio 
(2015) have taken a closer look at the behaviour of 
participants in a high interactivity condition.   In contrast to 
Maglio et al. (1999), they suggest that all their participants 
moved the tiles. However, as the focus of their paper was 
strategy selection rather than the time spent interacting, the 
detailed analysis required restricted their coding to the 
behaviour of 8 participants in the final block with a specific 
aim of looking for and coding word production strategies. If 
we are to profile the whole system (Vallée-Tourangeau & 
Vallée-Tourangeau, 2017) then the level of interaction 
becomes important each time the participants encounter the 
tiles as a measure in itself rather than solely as an indication 
of strategy, especially if the different levels of interactivity 
designed in these environments do not result in differences in 
participants’ behaviour. 

It is further unclear how much participants’ behaviour 
differs as a function of their individual differences. It is 
plausible that those who do not need the help of the tiles 
recruit them less. Research on expert Tetris players suggests 
an inverted U shape relationship of action and expertise with 
complementary actions decreasing as expertise increases 
(Destefano, Lindstedt & Gray, 2011). It is not unreasonable 
to expect a similar relationship in this task.  

The Current Experiment 
We examined the role of interactivity and chance in a word 
production task as well as the moderating properties of 
participants’ verbal fluency. Rather than a computer and 
mouse we employed physical letter tiles. These artefacts 
more naturally invite interaction in the high interactivity 
condition and conversely increase the cost of movement in 
the shuffle condition testing if the benefits of shuffling hold 
when the nature of the artefacts are taken into consideration. 
We video recorded participants to undertake a more granular 
analysis of their behaviour in the high interactivity condition. 
This allowed us to assess the number of participants in the 
high interactivity condition who actually chose to move the 
letter tiles and determine the amount of time they actually 
interacted with the tiles. In this way, we can begin to 
disentangle some of the complexities that underlie the 
reported aggregated means in the high interactivity and the 
shuffle conditions.  

We hypothesised that the increased time and cognitive cost 
of shuffling would lead to a reduction in the average number 
of shuffles and so, contrary to Kirsh’s findings, we further 
hypothesised that the high interactivity condition would yield 
the most words followed by the shuffle condition reflecting 
the relative cognitive and time costs of each condition. 

                                                           
1 Frequencies taken from Zipf scores presented in the SUBTLEX-

UK database (Van Heuven, Mandera & Keuleers (2014).  

Further, that video data would reveal a range of engagement 
with the tiles and capture the participants who do not avail 
themselves of the affordances for creativity in a high 
interactivity task environment. In line with the data reported 
for shuffling in Kirsh (2014), we expected an optimum level 
of interactivity beyond which there would be no further 
benefit. We hypothesised that verbal fluency would 
significantly moderate not only the total word count but 
participant behaviour, that is that high verbal fluency 
participants might not interact with the letter tiles to the same 
degree as low verbal fluency participants.  

Method 

Participants 
Forty-two participants took part in the experiment in 
exchange for course credits. Two participants did not consent 
to be filmed and still received credit but as their behaviour 
could not be coded, their data were excluded. This left data 
for 40 participants (32 females, Mage = 25.65, SD = 7.17). 

Design  
The experiment used a repeated measures design with the 
order of the three experimental conditions counterbalanced 
across participants. The three conditions were high 
interactivity, low interactivity, and low interactivity + 
shuffle. 

Materials and Measures 
Three sets of 7 letters (COTFAED, NDRBEOE and 
TVAERWI) were created with similar average number of 
possible words of similar frequencies1 piloted in a prior 
norming task. In each condition, the participants were given 
5 minutes to call out as many words as they could from a set 
of 7 letter tiles (2cm * 2cm) initially presented in a straight 
line with the following constraints (i) the words must be at 
least three letters long and (ii) proper names and acronyms 
were not allowed. In the high interactivity condition, 
participants were invited to move the tiles as they saw fit. In 
the low interactivity condition, they were asked to not move 
or interact with the tiles in any way. Finally, in the shuffle 
condition, they were invited “whenever you want to and as 
many times as you want to” to collect all the tiles up, shake 
them in closed hands and lay the tiles out again in the new, 
randomly generated order. In the shuffle condition, when not 
shuffling the tiles, participants’ movements were constrained 
in the same way as in the low interactivity condition. The 
dependent variable was the number of words generated by the 
participants in the three task environments. 

Participants were also profiled along three further 
measures. First, performance on a modified version of the 
Thurstone (1938) test, which involves writing as many words 
with the letter S in five minutes and then as many words with 
the letter C in four minutes, was used to index participants’ 
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verbal fluency. Second, participants were invited to complete 
12 5-letter anagrams taken from a larger set in Webb, Little 
and Cropper (2016) to assess their skills at anagramming. 
Finally, their levels of openness to experience was measured 
using the relevant items from the scale used in Lee and 
Ashton (2004);  although there is little firm evidence on the 
role of personality traits and luck, this trait has been 
previously linked to a propensity to experience luck (McCay-
Peet, Toms & Kelloway, 2015) and was added as an 
exploratory measure to assess if participants high on this trait 
would leverage the luck or otherwise of the shuffle condition. 

Procedure 
The anagram and verbal fluency tests were used as warm up 
tasks before the three main experimental conditions. The 
measure of extraversion was placed at the end of the study 
producing the following order:  

 

Figure 1: The order of the tasks.  
 
 
The order of the conditions was counterbalanced across 
participants as was the set of letter tiles associated with each 
condition.  

Qualitative Coding 
In the high interactivity condition, the amount of time 
participants spent moving the tiles was coded using ELAN. 
The total time interacting with the tiles was assessed from 
when a participant touched a tile to when he or she stopped 
touching it. As there were many moments when a participant 
touched a tile but did not move it, this was further split into 
neutral moves (which did nothing to alter the array) and 
active moves (which changed the array in some way, either 
deliberate or random). Active moves were considered a 
reflection of interactivity. In the shuffle condition the number 
and timing of the shuffles was also recorded in ELAN. The 
timing of the shuffle was calculated from the moment 
participants touched the tiles until they had re-laid the array. 
In some instances, participants generated a word while 
relaying the tiles after the shuffle and therefore before the end 
of the full shuffle process; in these cases, the shuffle-new 
word latencies were negative.  

Results 
There was broadly similar performance in each experimental 
condition. Participants produced the highest number of words 
in the high interactivity condition (M = 18.4, SD = 8.5). There 
was virtually no difference between the performance in the 
low interactivity (M = 17.0, SD = 6.2) and shuffle (M = 17.2, 
SD = 6.2). While there was a slight benefit of interactivity, a 
one-way repeated measures analysis of variance revealed this 
to be non-significant, F(2, 78) = 1.97, p = .146, ŋp² = .048.  

Correlations among measures of verbal fluency, anagram 
performance, openness and word production in the three 
experimental conditions are reported in Table 1 (df = 38). As 
expected, verbal fluency significantly correlated with 
performance in the high condition, r = .717, p < .001, the low 
condition, r =.734, p <.001 and the shuffle condition, r = .745, 
p <.001. Anagram skill also correlated highly with 
performance in the high, r = .601, p < .001, low, r = .679, p 
<.001 and shuffle conditions, r = .630, p < .001. There were 
no significant correlations between the measure of openness 
to experience and performance in any of the conditions. 

Performance in the High Interactivity Condition  
The video data enabled us to examine and analyse in finer 
detail the behaviour of the participants in the high 
interactivity condition. As we reviewed in the introduction, 
not all participants avail themselves of the opportunity to 
interact with the external environment. It is insufficient to 
analyse group level performance to determine the benefits of 
interactivity in the absence of a more detailed analysis of 
individual behaviour and performance. As expected, the 
video data revealed large differences in the behaviour of the 
participants in the high interactivity task environment. Active 
moves constituted 86% of the total time spent touching the 
tiles. Two participants opted not to interact with the tiles at 
all. The range of the time spent actually interacting with the 
letter tiles was 2.9 seconds to 226.9 seconds with a mean time 
of 106.4 seconds (SD = 65.10). The relationship between time 
interacting and the number of words produced is displayed in 
Figure 2. As the scatterplot reveals, the longer the participants 
interacted with the tiles the more words they produced. This 
relationship was significant, r(38) = .329, p = .038 and indeed 
becomes stronger when the effects of anagram skills and 
verbal fluency are partialled out, r(38) =.439, p = .006 
offering a more direct measure of the impact of interactivity 
on word production. Contrary to our prediction and the 
observed shuffling behaviour in Kirsh (2014), interactivity 
conferred a steady benefit with no tailing off.  

Figure 2: Number of words produced in the high interactivity 
condition as a function of the time (in seconds) spent 
interacting with the letter tiles. 
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Table 1: Descriptive statistics for and correlations among measures of verbal fluency, anagram performance, openness, and 
word production performance in the three experimental conditions. 

 
Finally, in contrast to our prediction, the extent to which a 

participant recruited the letters to aid thinking did not 
significantly correlate with either verbal fluency, r(38) = 
.111, p = .481, or anagram skills, r(38) = -.032, p = .844.  

Performance in the Shuffle Condition 
Participants shuffled an average of 1.58 times; there was, 
however, a wide variation in the number of shuffles. Twenty 
five percent of the participants opted not to shuffle at all, 
17.5% of participants opted to shuffle once, 30% twice and a 
further 27.5% opted to shuffle 3 times.  

As predicted, there was a large time cost to shuffling. The 
average shuffle took 17.51 seconds (SD = 3.51) with the 
fastest shuffle being 10.22 seconds and the slowest taking 
24.64 seconds. Overall, shuffling appeared to be an unhelpful 
strategy. Participants’ word production performance did not 
differ among those who did not shuffle (M = 17.81, SD = 
6.58), shuffled once (M = 17.12, SD = 5.02), twice (M = 
16.58, SD = 7.35) or three times (M  = 16.81, SD = 6.30), F 
< 1. 

Figure 3: Number of words produced in the shuffle condition 
as a function of the average time (in seconds) before a word 
is produced after shuffling the letter tiles. 

 
The effect of the shuffles also varied widely. The average 

time after the end of shuffling to generate a word was 11.69 
seconds (SD = 13.77). The minimum time after shuffling to 
produce a word was -5.05 seconds (producing a word while 

relaying the tiles after the shuffle) whereas the maximum 
time after the shuffling had ended to producing another word 
was over a minute (61.72 seconds). Only one participant did 
not produce any words after her first shuffle and went on to 
shuffle again.  

It seems likely that a word produced directly after a shuffle 
has been stimulated by that shuffle whether that shuffle 
directly yielded the word or whether the act of shuffling and 
laying out of the tiles stimulates further thought. We thus 
measured how long after a shuffle a word was produced as a 
proxy measure of the luckiness of the shuffle – the faster a 
word was produced the luckier the shuffle. The relationship 
between this time (averaged out for those participants who 
had more than one shuffle) and the total number of words 
produced overall in the shuffle condition is illustrated in 
Figure 3. The correlation was significant, r(27) = -.520, p = 
.004 even when controlling for verbal fluency and anagram 
skill, r(27) = .422, p = .028, suggesting that the nature of the 
array produced by the shuffle and the words it stimulated was 
important to the overall number of words produced in that 
condition.  

Discussion 
This experiment was designed to trace the influence of 
interactivity, serendipity and verbal fluency in a word 
production task. These three elements create a dynamic 
meshwork from which word production skills are enacted. 
The differences in the mean number of words produced in the 
three experimental conditions were marginal albeit showing 
a general trend in line with past findings favouring high 
interactivity. When performance is viewed through the lens 
of a condition’s mean score with individual variation in 
behaviour and cognitive skills flattened, the benefits of 
interactivity in this task are not clearly revealed. While there 
has been some examination of cognitive profiles which 
benefit from interactivity, the implicit assumption in previous 
research has been that there has been no difference in 
participant behaviour in the high interactivity condition.  

However, by subjecting participant behaviour to a finer 
granularity of analysis, we can start to disentangle how that 
behaviour affects the numbers of words produced and isolate 
a purer effect of interactivity. Given that two participants did 
not interact with the letter tiles at all, it is illogical to attribute 
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their scores in both the low and high interactivity conditions 
to different factors (in effect, despite our best efforts to 
change the task ecology, these participants approached the 
high and low interactivity conditions in the same manner). 
Again, those participants who chose not to shuffle essentially 
participated in an additional low interactivity experimental 
condition. It is meaningless to assign one score to low and 
one to shuffle unless we are measuring the effect of 
experimental instructions.  

When the behaviour of the participants is taken into 
account, there was a significant correlation between the time 
spent interacting with the letter tiles and the number of words 
produced in that condition even when controlling for verbal 
fluency skills. This suggests that interactivity boosts word 
production only when a participant fully engages in that 
condition. Measuring participants’ behaviour is important 
and designing a high interactivity task environment does not 
guarantee that the affordances inherent to a dynamic 
problem-solving environment will be perceived and 
exploited to boost performance. Contrary to expectation, 
there was no relationship between verbal fluency and the time 
spent interacting. This is in contrast to prior observations on 
the different effect of interactivity on different individual 
difference profiles: interacting with the tiles helped everyone.  

Further, there was failure to replicate Kirsh’s (2014) 
observation that engineered randomness boosts performance. 
However, the nature of the current experiment increased the 
impact of an unlucky shuffle by increasing the time and 
cognitive cost of shuffling as the materials were moved from 
a digital to a material environment. This led to a predicted 
decrease in the number of participants who opted to shuffle 
and the number of times they shuffled along with a much 
higher investment in the array produced by the shuffle than 
that reported by Kirsh. The inherent contingent and 
transactional nature of luck in this task was partly captured 
by the latency to first word produced after a random re-
arrangement. These average latencies were significant 
predictors of how many total words would be produced in this 
otherwise low interactivity environment. It would be 
interesting to couple the luck and high interactivity 
manipulation in future research.  

The current results suggest that previous research into 
interactivity may have underestimated its benefit by failing to 
subject behaviour to a sufficiently granular analysis which 
can only be done with detailed video coding of behaviour (see 
also Steffensen, Vallée-Tourangeau, & Vallée-Tourangeau, 
2016). A problem solver’s trajectory is unique and the 
interaction with a richer set of environmental resources will 
trigger more complex behaviours. Thus, it behoves us to take 
a closer look at what is actually happening in a task 
environment that fosters interactivity. Interactivity is 
contingent and messy: its study must take into account the 
behaviour of the participant and the nature of the materials 
being used to more accurately capture the factors that drive 
creative problem solving.  
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Abstract 
A number of recent models of semantics combine linguistic 
information, derived from text corpora, and visual information, 
derived from image collections, demonstrating that the 
resulting multimodal models are better than either of their 
unimodal counterparts, in accounting for behavioural data. 
However, first, while linguistic models have been extensively 
tested for their fit to behavioural semantic ratings, this is not 
the case for visual models which are also far more limited in 
their coverage. More broadly, empirical work on semantic 
processing has shown that emotion also plays an important role 
especially for abstract concepts, however, models integrating 
emotion along with linguistic and visual information are 
lacking. Here, we first improve on visual representations by 
choosing a visual model that best fit semantic data and 
extending its coverage. Crucially then, we assess whether 
adding affective representations (obtained from a neural 
network model designed to predict emojis from co-occurring 
text) improves model’s ability to fit semantic 
similarity/relatedness judgements from a purely linguistic and 
linguistic-visual model. We find that adding both visual and 
affective representations improve performance, with visual 
representations providing an improvement especially for more 
concrete words and affective representations improving 
especially fit for more abstract words.  

Keywords: language; vision; emotion; distributional models; 
multimodal models; similarity/relatedness; concreteness. 

 

Introduction 
Despite the success of distributional, linguistic models in 
accounting for behavioural effects in a variety of semantic 
tasks, all these models suffer from the symbol grounding 
problem (Harnad, 1990). As a solution to this problem, 
embodied theories of semantics (e.g., Glenberg, Graesser, & 
de Vega, 2008) have argued that the sensory-motor 
representations generated by our experiences with the world 
play an important role in determining word meaning. Recent 
computational models of semantics reconcile distributional 
and embodied theories, by combining linguistic and 
perceptual (i.e., visual) representations. The fact that 
language and vision provide complementary sources of 
information is best illustrated by the finding that multimodal, 
linguistic-visual models outperform both purely linguistic 

and purely visual models, in a wide range of tasks (see Bruni, 
Tran, & Baroni, 2011; 2014; Kiela, Verő, & Clark, 2016). 

However, empirical work has shown that semantic 
representations are not only grounded in sensory-motor 
experience but also in emotion. A vast literature supports the 
finding that emotion plays a significant and pervasive role in 
human cognition (for a review, see Dolan, 2002). Emotion is 
an important factor in memory (Blaney, 1986; Eich, 
Macaulay, & Ryan, 1994), and in processing words (e.g., 
Kousta, Vinson, & Vigliocco, 2009). Kousta et al. (2011) 
found that a much larger number of abstract than concrete 
concepts are valenced (have positive or negative emotional 
associations) and by virtue of being valenced, they are 
processed faster than neutral matched words. Vigliocco et al. 
(2014) further showed that because of their greater affective 
associations, abstract words processing engages the limbic 
emotional system and Ponari, Norbury, and Vigliocco (2018) 
showed that emotionally valenced words are learnt earlier 
and better recognized by children up to 9 years of age. Within 
a general embodiment framework, the hypothesis is that 
semantic representations do not only embed sensorimotor 
properties but also emotional properties. Emotional 
properties may be especially important for abstract concepts 
(e.g., religion, society, idea), however, emotional 
associations are not limited to abstract words and therefore, 
we argue, they play a general role in semantic representation.  

While many models have integrated linguistic and visual 
information, only one previous study has considered 
emotional information along with visual and linguistic 
information (De Deyne, Navarro, Collell, & Perfors, 2018). 
De Deyne et al. examined the change in performance for 
distributional models of semantics, when adding visual and 
emotional information. They tested the assumption that 
external language models (i.e., distributional models, trained 
on word corpora) are relatively poor at representing visual 
and affective information, in comparison to internal language 
models (i.e., models based on free association norms). They 
found that adding visual and emotional information led to 
little or no improvement for internal language models, but a 
moderate positive effect for external language models. Here, 
we develop a quite different multimodal model of semantics 
that incorporates linguistic, visual and emotional information 
from corpora of text, images and emoticons, and test the 
multimodal model against existing datasets of ratings of 

2681

mailto:armand.rotaru.14@ucl.ac.uk
mailto:g.vigliocco@ucl.ac.uk


semantic similarity/relatedness of words. We use a 
state-of-the-art emotion model (DeepMoji) and we improve 
the coverage of the visual model we use. While state-of-the 
art distributional language models (Pereira et al. 2016) have 
large coverage of words and have been widely tested for their 
ability to fit human semantic similarity/relatedness data, this 
is not the case for visual models. Thus, before being able to 
develop models that embed linguistic, visual and emotional 
information, we extend the coverage of existing visual 
models and carry out their evaluation in order to decide which 
one to use for our multimodal models. We expect that the 
integrated model will outperform a purely linguistic, as well 
as models that combine linguistic-visual and linguistic-
emotional information. In addition, we expect that adding 
visual or emotional representations will especially be 
beneficial for more concrete concepts whereas emotional 
information will especially be beneficial for more abstract 
concepts, in line with the empirical evidence reviewed above 
(and with initial findings from De Deyne et al, 2018). 

Methods 
Datasets of behavioural data 
We use four datasets of similarity/relatedness ratings to carry 
out evaluation of the models. The datasets are: SimLex999 
(999 pairs of nouns, verbs, and adjectives; Hill, Reichart, & 
Korhonen, 2015), SimVerb3500 (3500 pairs of verbs; Gerz 
et al., 2016), MEN (3000 pairs of nouns, verbs, and 
adjectives; Bruni, Tran, & Baroni, 2014), and SL (7576 pairs 
of nouns; Silberer & Lapata, 2014). We chose these norms 
mainly because they are some of the largest datasets currently 
available, but also because the word pairs they contain cover 
are very diverse in terms of concreteness and valence, as well 
as parts of speech. In terms of word pair concreteness, 
SimLex999 (M = 3.62, SD = 1.07) and SimVerb3500 (M = 
3.1, SD = 0.7) cover a broad range of values, whereas MEN 
(M = 4.4, SD = 0.49) and SL (M = 4.83, SD = 0.14) consist 
predominantly of concrete words.   
 
Model choice 
 Language Model. Our language model of choice is GloVe 
(Pennington, Socher, & Manning, 2014), trained on a corpus 
of 6 billion words, using 300-dimensional representations. 
GloVe has been shown to have a performance better than, or 
equal to, several other state-of-the-art distributional models 
(Pereira, Gershman, Ritter, & Botvinick, 2016), which makes 
it one of the best linguistic models available.   

 Emotion Model. The emotion model that we use is 
DeepMoji (Felbo et al., 2017), trained on 1.2 billion tweets. 
This model has been shown to obtain state-of-the-art 
performance in tasks involving emotion and sentiment 
analysis, as well as sarcasm detection. DeepMoji is similar to 
a number of recent approaches, which employ emotional 
expressions co-occurring with text fragments, such as 
positive/negative emoticons (Deriu et al., 2016), hashtags 
(e.g., #anger, #joy; Mohammad, 2012), or mood tags 
(Mishne, 2005). This model is very different from the one by 

De Deyne et al. (2018), which was constructed by 
concatenating valence, arousal, and potency ratings, for men 
and women separately (i.e., 6 dimensions), from the study by 
Warriner, Kuperman, and Brysbaert (2013), with valence, 
arousal, and dominance ratings, from the study by 
Mohammad (2018). DeepMoji provides better represetations 
for our purposes than ratings because firstly, a model trained 
over a corpus of tweets, rather than subjective ratings, makes 
the emotion model more comparable to the linguistic and 
visual models, both trained over corpora. Secondly, 
DeepMoji covers 50,000 words, whereas the combined 
affective norms cover less than 14,000 words. Finally, the 
model operates with 256-dimensional vector representations, 
and is trained to predict the occurrence of 64 types of 
emoticons, and thus it is able to represent complex patterns 
of word similarity, driven by richer emotional information 
than that captured by subjective norms.  

  Visual Model. To select the best model, we compared five 
models, based on their performance in predicting subjective 
similarity/relatedness ratings. The first model (K&B) is the 
convolutional model employed by Kiela and Bottou (2014; 
6144 dimensions), trained on the ESP Game dataset (Von 
Ahn & Dabbish, 2004), using the mean of the feature vectors 
per each word. The second, third, and fourth models are 
AlexNet (Krizhevsky, Sutskever, & Hinton, 2012; 4096 
dimensions), GoogLeNet (Szegedy et al., 2015; 1024 
dimensions), and VGG-19 (Simonyan & Zisserman, 2014; 
4096 dimensions), trained on images obtained from Google 
Image Search, following the approach used by Kiela, Verő, 
and Clark (2016). The fifth model uses SIFT descriptors 
(Lowe, 2004), computed over the NUS-WIDE dataset (Chua 
et al., 2009; 500 dimensions). The models were tested on 
similarity/relatedness ratings for 7611 word pairs, covered by 
all models and obtained by merging the four sets of ratings. 
Before merging, the scores in each set were linearly rescaled 
to fall in the interval [0,1], to make them comparable across 
datasets. The performance of the models was evaluated using 
the Spearman correlation between the cosine similarity of the 
model representations, and the similarity/relatedness ratings 
from the norms. The results are shown in Fig. 1.   

 
Figure 1. Spearman correlations between model cosine 
similarities and subjective similarity/relatedness ratings. 
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All the correlations are significant1 (p < .001), suggesting 
that model-based similarities are reliable predictors of 
subjective similarity/relatedness ratings. Since we want to 
find the best model, we apply the Fisher Z-Transformation 
and then run two-tailed Z-tests for all the 10 possible pairings 
of models. All the differences are significant (p < .004), and 
they reveal that GoogLeNet has the highest performance, 
followed by Alexnet, VGG-19, K&B, and SIFT. Thus, we 
use GoogLeNet. 

Results 
We tested whether linguistic-visual and linguistic-emotional 
models are indeed better than a purely linguistic one, as well 
as whether it is the case that linguistic-visual-emotional 
models are better than linguistic-visual, linguistic-emotional 
and purely linguistic ones. We also examined whether the 
models behave differently for concrete and abstract word 
pairs. 
 
Linguistic-visual and linguistic-emotional models vs 
purely linguistic model.  
To evaluate the change in goodness of fit associated with 
adding a visual component to the purely linguistic model, we 
began by normalizing the linguistic and the visual 
representations to unit length. Next, we concatenated the 
linguistic representations with the visual ones, assigning a 
weight of 1 to the linguistic components, and weights from 
0.2 to 2, in steps of 0.2, to the visual components. Both here 
and in our further analyses, we tested various weights, since 
it was not clear which weight would produce optimal results. 
Finally, for each of the four similarity/relatedness datasets, 
we compared the 10 resulting linguistic-visual models with 
the purely linguistic model, by normalizing the correlations 
and using two-tailed Z-tests. The same type of analyses were 
run for the linguistic-emotional models. Results are in Fig. 2. 

 

 
 

                                                           
1 The Bonferroni correction was applied when assessing the 
statistical significance of all the results presented in this study. 

 
 

 
 

 
Figure 2. Model performance for the linguistic-visual and 
linguistic-emotional models. The weights assigned to the 
visual/emotional component vary from 0.2 to 2, in steps of 
0.2 
 

The tests indicate that adding visual information has a 
significant positive effect only for the SL dataset (p < .001), 
for weights ranging from 0.6 to 1.2, and a significant negative 
effect for the MEN dataset (p < .001), for weights between 
1.6 and 2. These results seem to be at odds with previous 
studies showing that linguistic-visual models always perform 
slightly better than purely linguistic ones. However, firstly, 
in almost all the other studies, the authors either weigh the 
linguistic and visual representations equally, by default (e.g., 
Kiela, Hill, Korhonen, & Clark, 2014; Silberer, Ferrari, & 
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Lapata, 2013), or they only employ the weight that gives the 
best results for the integration (e.g., Bruni, Tran, & Baroni, 
2014; Bruni, Uijlings, et al., 2012), which leaves room for 
null or detrimental results of linguistic-visual integration, 
when employing sub-optimal weights. Secondly, we use a 
linguistic model that is trained over a corpus of 6 billion 
words, whereas other studies (e.g., Hill & Korhonen, 2014; 
Kiela & Bottou, 2014; Silberer & Lapata, 2012) typically 
employ considerably smaller corpora (i.e., containing 
between 80 and 800 million words). Since smaller corpora 
lead to a poorer performance of the linguistic model, this 
leaves more room for a beneficial effect of adding visual 
information in the other studies, as compared to our study.  

Adding emotional information is significantly beneficial 
only for the SimVerb3500 dataset (p < .00125), for weights 
ranging from 1.2 to 1.6, while it is significantly detrimental 
for the MEN dataset (p < .001), for weights between 1.4 and 
2, and for the SL dataset (p < .001), for weights between 0.6 
and 2. The SimVerb3500 dataset is different from all the 
others in that it is the only one including only verbs (which 
are not highly represented in any other dataset). As verbs 
(words referring to events) are considered to be more 
abstract, this finding is in line with the view that emotional 
information is especially important for abstract words 
(Kousta et al., 2011). 
 
Linguistic-visual-emotional model vs linguistic-visual, 
linguistic-emotional, and purely linguistic models.  
In order to compare the trimodal model with the bimodal and 
unimodal ones, we again start by normalizing the linguistic, 
visual, and emotional representations, to unit length. We then 
construct trimodal models by assigning a weight of 1 to the 
linguistic components, and weights from 0.2 to 2, in steps of 
0.2, to the visual and emotional components, in all pairwise 
combinations for the last two components. Next, for each 
dataset, we select the best five and worst five trimodal 
models, in terms of performance, and compare them to their 
corresponding linguistic-visual models (i.e., obtained by 
removing the emotional component), linguistic-emotional 
models (i.e., obtained by removing the visual component), 
and purely linguistic model (i.e., obtained by removing both 
the visual and emotional components). The results are shown 
in Fig. 3. 
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Figure 3. Model performance for the linguistic-visual-
emotional model. The weights assigned to the 
visual/emotional component vary from 0.2 to 2, in steps of 
0.2 
 

When comparing the performance of the trimodal models 
to that of their corresponding linguistic-visual models, the 
addition of an emotional component has a significant positive 
effect for the best models on the SimVerb3500 dataset (p < 
.0016), and a significant negative effect for the worst models 
on the MEN and SL datasets (p < .001). These results are very 
similar to those found when comparing the linguistic-
emotional models to the purely linguistic one, and might be 
explained by the fact that verbs, such as those that make up 
the SimVerb3500 norms, are relatively abstract. In contrast, 
for concrete nouns, which form the majority of pairs from the 
MEN and SL norms, emotion should not have a positive 
effect (the finding of a detrimental effect is unexpected but 
potentially interesting as may indicate that adding affective 
information may reduce the separation between different 
types of words).   

The comparison between the trimodal models and their 
corresponding linguistic-emotional models reveals that 
including a visual component is significantly beneficial for 
the best models on the SL dataset (p < .001), but significantly 
detrimental for two of the worst models on the SimVerb3500 
datasets (p < .001). Again, SL consists only of concrete 
nouns, for which visual information is very salient, while 
SimVerb3500 consists only of verbs, the semantics of which 
is likely not to be properly captured in a few tens of images 
per word, due to its complexity. 

Finally, contrasting the trimodal models with the purely 
linguistic one, we find that bringing in both visual and 
emotional information significantly increases performance 
for the best models on the SimVerb3500, MEN, and SL 
datasets (p < .0016), while it significantly decreases 
performance for the worst models on the MEN and SL 
datasets (p < .001). These results are a combination of the 
partial results regarding the effects of appending visual and 
emotional components to the purely linguistic and bimodal 

models, which indicates little overlap between vision and 
emotional representation. 

 
Comparing the models for concrete and abstract words 
In order to test whether visual content is more important for 
more concrete words, while emotional content for more 
abstract words, we first combined the SimLex999 and 
SimVerb3500 datasets, as they cover a broader range of 
concreteness ratings than MEN and SL. Then, we divided the 
merged dataset into a low and a high concreteness subset. 
More specifically, we selected the bottom 25% and the top 
25% of pairs, based on the mean concreteness of each word 
pair covered by the concreteness norms of Brysbaert, 
Warriner, and Kuperman (2014). We then tested the 
performance of the emotional and visual models, the two 
bimodal models, and the trimodal models, setting all the 
weights set to 1. The results are displayed in Fig. 4. 

 

 
Figure 3. Model performance for low and high concreteness 
word pairs. 
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we found that the performance of the visual model is higher 
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models. Also, the emotional model has a better performance 
for the more abstract pairs, as opposed to the less abstract 
ones. Non-significant results were obtained for the linguistic-
emotional and trimodal models. These results seem to 
suggest that the positive effect of adding visual information 
should be greatest for datasets consisting mainly of more 
concrete words, such as MEN and SL, while the beneficial 
effect of including emotional information should be largest 
for datasets made up mainly of more abstract words, such as 
SimLex999 and SimVerb3500.   

Discussion  
A first goal of this paper was to present an evaluation of 
visual models in order to identify the model(s) better fitting 
behavioural semantic data. We found that convolutional 
neural networks models (i.e., K&B, Alexnet, GoogLeNet, 
VGG-19) have a better performance than a classical, bag-of-
visual-words model (i.e., SIFT), when tested over a large 
dataset of similarity/relatedness ratings. Among the 
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convolutional models, GoogLeNet gave the best results, 
followed by AlexNet, VGG-19, and K&B.   

The second, and main goal was to develop models that 
integrate linguistic, visual and emotional information and to 
assess their performance against purely linguistic models and 
models that only include either visual or emotional features. 
We chose the DeepMoji model for a number of reasons, 
namely: its state-of-the-art performance in a number of 
emotional tasks; its distributional nature, since it predicts the 
occurrence of an emoticon based on its immediate linguistic 
context; its capacity to use rich emotional information, as it 
is trained on tweets containing 64 types of emoticons; its high 
dimensionality, which allows it to encode complex patterns 
of emotion-based word similarity. 

In order to better understand the relative importance of each 
visual and emotional component, we carried out comparisons 
in which we parametrically varied the weight of visual and/or 
emotional information. In this manner, we can see when 
adding this information leads to better or worse performance. 
In general, we found that including non-linguistic 
information has a positive impact. However, first, this impact 
is modulated by whether the dataset includes predominantly 
concrete or abstract words. As expected on the basis of 
previous literature (e.g., Kousta et al., 2011) we see that 
including visual information is particularly beneficial to more 
concrete concepts whereas including emotional information 
is particularly beneficial to more abstract concepts. This is 
clearly visible when we assess model performance separately 
for more concrete and abstract words (see Fig 4). It is also 
clear from the comparison between MEN (only concrete 
words) and SimVerb3500 (only verbs, hence more abstract): 
across comparisons, we see that indeed visual information 
brings more benefit to the former, whereas emotional 
information brings more benefit to the latter.  

Second, the effect is modulated by the weights attributed to 
the different types of information. While the theoretical 
interpretation of the differences we found related to weights 
is not immediate, this finding may have practical value for 
future modelling.  

As mentioned in the introduction, a previous study (De 
Deyne et al., 2018) also examined the change in performance 
for distributional models of semantics, when adding 
experiential (i.e., visual and emotional) information. They 
found that adding experiential information led to little or no 
improvement for internal language models, but had a 
moderate positive effect for external language models. 
Moreover, they also found that adding visual information had 
the greatest effect for concrete words, while introducing 
affective information had the largest impact for abstract 
words. This finding mirrors our own, when comparing the 
linguistic-visual and linguistic-emotional models to the 
purely linguistic model. 

However, there are a number of key differences between 
their approach and ours. Firstly, we avoided the potentially 
controversial distinction between external and internal 
language models, focusing on an objective corpus-based 
approach. Secondly, in a similar vein, we decided to use an 

emotional model that learns affective information indirectly, 
by predicting the co-occurrence of emojis and text in a 
corpus, rather than using emotional representations derived 
directly from valence, arousal and dominance norms 
(Mohammad, 2018; Warriner, Kuperman, & Brysbaert, 
2013). This also increases the coverage of our model. Finally, 
since the resulting representations in our model are high-
dimensional, they might provide more fine-grained 
information than representations with only three dimensions.  
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Abstract

Models of visual saliency normally belong to one of two
camps: models such as Experience Guided Search (E-GS),
which emphasize top-down guidance based on task features,
and models such as Attention as Information Maximisation
(AIM), which emphasize the role of bottom-up saliency. In
this paper, we show that E-GS and AIM are structurally simi-
lar and can be unified to create a general model of visual search
which includes a generic prior over potential non-task related
objects. We demonstrate that this model displays inattentional
blindness, and that blindness can be modulated by adjusting
the relative precisions of several terms within the model. At
the same time, our model correctly accounts for a series of
classical visual search results.

Keywords: Inattentional Blindness; Conjunction Search; Vi-
sual Attention; Bayesian Modelling; Predictive Processing

Introduction
Visual search, where agents search for a target amongst dis-
tractors, is an important paradigm in the study of human at-
tention (Wolfe, 1994) (see Figure 1 for an example trial).
Inattentional blindness, where unexpected objects fail to cap-
ture attention, provides a useful insight into how constraints
of processing and access lead to failures in the visual system
(Simons, 2000). The literature on the two domains is distinct;
in this paper we show that extending a model of visual search
by adding an environmental prior produces a model that can
reproduce empirical results from both domains.

The motivation for our extension hinges on the idea that
the brain, due to the pressures of an ever changing environ-
ment, never solely models a task; it must always additionally
maintain what are effectively generic, non-task-specific prior
expectations about possible interesting states of the world.
For example, in conjunction search (Nakayama & Silverman,
1986), where participants search for a target amongst distrac-
tors, a simple model of the search environment should in-
clude both “targets” and “distractors” (the statistics of which
are learned during training), and “non-task entities” (which
are unrelated to the task), as possible kinds. Ignoring non-
task entities allows the brain to attend to (and successfully
perform) a task, at the expense of potentially missing useful
information about the world.

The contributions of this work are threefold. We demon-
strate a successful joint model of visual search and inatten-
tional blindness in which search is driven by saliency, gen-
erated using precision-weighted error terms. We show the

Figure 1: Example trial taken from Task 5 (see Results, be-
low). Task is to find red vertical target amongst green vertical
and red titled distractors.

structural equality of two distinct models of saliency, one
top-down, and the other bottom-up. Finally, by constructing
a model where both task relevant and task irrelevant stimuli
contribute to saliency, we shed light on what it means to per-
form a task – namely, for an agent to have high confidence in
its model of those stimuli that constitute the task, compared
with its model of other possible stimuli.

Related Work
Conjunction Search
Empirically, we can distinguish between five forms of guid-
ance in visual search (Wolfe & Horowitz, 2017). The two of
interest to this work are bottom-up (where visual properties of
aspects of a scene attract more attention than others, Koehler,
Guo, Zhang, & Eckstein, 2014), and top-down (where execu-
tive control drives attention towards desired targets, Maunsell
& Treue, 2006).

The majority of the many models of top-down visual search
(Itti, Koch, & Niebur, 1998; Torralba, Oliva, Castelhano, &
Henderson, 2006; Navalpakkam & Itti, 2006; Cave, 1999;
Choi, Torralba, & Willsky, 2012)1 share the basic structure of

1We cite Itti and Koch’s work here, as well as in the section on
bottom-up drivers of saliency, because whilst their work focusses on
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Guided Search (GS; Wolfe, 1994): primitive visual features
are detected across the retina by feature maps, which repre-
sent features via a coarse (i.e., highly overlapping) encoding.
These feature maps are then passed through a local differenc-
ing operator, which enhances local contrasts, and the feature
maps are combined using a top-down, task specific weighting
to produce a saliency map. A Bayesian treatment of GS called
Experience-Guided Search has been proposed by Mozer and
Baldwin (2007).

There is also a body of work that focuses specifically on
the bottom-up drivers of saliency (Koehler et al., 2014; Itti &
Koch, 2001), an example of which is Attention as Information
Maximisation (AIM), proposed by Bruce and Tsotsos (2009).
These authors argue that the self-information of a location
in an image, estimated on its surrounding context, is a good
measure of its visual saliency.

Bottom-up models can be thought of as mapping the
saliency of a task-neutral environment; but they provide no
account of the relationship between this base saliency and the
task at hand. Top-down models provide a qualitative account
of various phenomena in visual search (see Results for a de-
tailed discussion of relevant phenomena). However, a limita-
tion of these models is that they do not attempt to model tasks
as situated in a wider environment containing task-irrelevant
stimuli, or competing tasks. A paradigm where modelling the
relative saliency of task-relevant and task-irrelevant items be-
comes important is that of inattentional blindness (IB; Mack
& Rock, 1998).

Inattentional Blindness
To model IB in the context of visual search, we use an “ad-
ditional singleton” approach (see, e.g., Simons, 2000), where
an unexpected single item has a distinctive unique feature,
and that item is never the target item. There are several fac-
tors which have been shown to affect the rate of unexpected
object detection when performing a task: increased cogni-
tive load increases blindness (Kreitz, Furley, Memmert, & Si-
mons, 2016), the similarity of the unexpected object to task-
relevant objects increases the probability that the unexpected
object will capture attention (Most et al., 2001; Simons &
Chabris, 1999), as do shared features between task relevant
objects and unexpected objects (Koivisto & Revonsuo, 2009).

Models of the causes of inattentional blindness range from
claims of inattentional amnesia (we see the object, but fail to
report it after the trial, Wolfe, 1999), to arguments that we are
blind to objects we do not expect to see (Braun, 2001). More
recent accounts have focused on the relationship between
bottom-up saliency (which drives transient attentional cap-
ture) and a top-down attentional set, which governs whether
transient attention is sufficient to generate sustained attention,
and subsequent awareness (Most, Scholl, Clifford, & Simons,
2005). In spirit, our approach falls under this latter umbrella,

saliency maps, they assume that these maps are combined accord-
ing to top-down attentional drivers, which makes them less purely
bottom-up than AIM, for example. See the section on bottom-up
visual attention, below.

but we show that blindness can be explicitly thought of as a
result of a ratio of precisions in a mathematical model that
extends the conjunction search literature (and is also able to
replicate standard results in that domain).

Model
Our starting point is Experience-Guided Search (E-GS;
Mozer & Baldwin, 2007), a Bayesian treatment of GS devel-
oped to overcome a shortcomings of GS (Wolfe, 1994; Wolfe
& Horowitz, 2017), namely that GS produces better than hu-
man performance without the addition of noise or regularis-
ing constraints on the top-down weighting of features. Mozer
and Baldwin’s premise is that a location in the visual field is
salient if a target is likely to be at that location. They define
P(Tx = 1|FFFx) as a measure of saliency computed using statis-
tics obtained from recent experience performing the task:

P(Tx|FFFx,ρρρ) =
P(Tx)

∏
i P(Fxi|Tx,ρρρi)∑1

t=0 P(Tx = t)
∏

i P(Fxi|Tx = t,ρρρi)
(1)

Here, FFFx is the feature activity vector at retinal location x, Tx
is the binary indicator of targethood, ρρρ parameterises the stim-
ulus environment, and Fxi is the feature vector corresponding
to feature i.

Whilst we lack the space to give a full treatment here,
by assuming a generative model with Fxi|{Tx = t,ρρρ} ∼
Binomial(n,ρit), where ρit is the parameterising spike rate as-
sociated with feature i for target and non-target items (t =

1, t = 0), in the limit of reasonably large n we can approx-
imate P(Fxi| . . . ) as Gaussian, with mean nρit and variance
nρit(1− ρit). This allows the authors to derive a measure of
saliency, S EGS, as:

S EGS =
∑

i

[
Λρi0( fxi−nρi0)2−Λρi1( fxi−nρi1)2

]
(2)

Where Λρit denotes the precision (inverse variance) of the
model’s current estimate of ρit.2

This is a sum of terms, two for each feature i, which cap-
ture how surprising the activation corresponding to that fea-
ture, fxi, is with respect to the target or not-target cases, the
model’s beliefs about which are parameterised by ρi1 and ρi0
respectively. The saliency of feature i increases if the ob-
served activation is distant from the mean activity observed
in the past in the absence of a target. It decreases if the ob-
served behaviour is distant from the mean activity observed
its presence. This surprisal is weighted by observed preci-
sions: high variance features contribute less to saliency.

This remains a strictly task-based model, however. To ex-
pand it, we need to consider how the saliency of a feature
changes under a generic, non-task specific prior. To do this,
we turn to the literature on bottom-up measures of saliency,

2A difference between this presentation and that in Mozer and
Baldwin is that we have not ignored the scaling n; whilst in E-GS
only the relative magnitude of the terms in (2) is relevant, here we
do care about how much data the model has seen.
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in particular AIM (Bruce & Tsotsos, 2009). In doing so, we
note the structural similarity between AIM and E-GS.

The premise of AIM is that those areas of an image that
contain the most Shannon self-information are those that con-
tain content of interest. Hence visual saliency is driven by
surprise with respect just to visual input. First, “a sparse spa-
tiochromatic basis” is generated in an unsupervised fashion
using ICA, such that every image patch can be expressed as
a vector of coefficient contributions (if projected back into
image space, the coefficients, not incidentally, look a lot like
Gabor filters and colour opposition patches3).

For each location x we can characterise the content of the
local neighbourhood Cx by a vector αααx. For each of the
i features, the p.d.f of the surround is estimated by mak-
ing a histogram of all αi values for every nearby patch.
Then αxi’s likelihood P(αxi) can be estimated from the his-
togram and thus its Shannon information content computed
by log(1/P(αxi)). Adding the Shannon information from each
coefficient inαααx gives us an estimate of the Shannon informa-
tion contained in patch x, and hence the saliency of that patch:

S AIM = −
∑

i

log P(αxi) (3)

We then approximate the histogram P(αxi) as Gaussian dis-
tributed with mean ᾱi and variance σ2

αi, which are the statis-
tical mean and unbiased variance computed from the activa-
tions of surrounding patches for feature i.

This means we can rewrite (3) as:

S AIM =
∑

i

[
1
σ2
αi

(αxi− ᾱi)2
]

(4)

Comparing to (2), we can see that if we make the same as-
sumptions about the form of the likelihood of our incom-
ing data, the measures of saliency used by E-GS and AIM
are both sums of precision-weighted errors. The main differ-
ence is that AIM learns its model statistics from surrounding,
synchronic activations, whereas E-GS learns its statistics di-
achronically, and with respect to the pertinent categories of a
task oriented model.

Our final step is to argue that true saliency is a combination
of many such terms, driven by the pressure to balance atten-
tion between task-driven stimuli and the world in which a task
takes place. We therefore propose the following measure of
saliency of location x, Sx:

Sx =
∑

i

[
−Λi,1( fi −µi,1)2 +Λi,0( fi −µi,0)2 +Λi,α( fi −µi,α)2

]
(5)

Where for clarity we have simplified the learned means to µ,
and the learned precisions to Λ, for target, 1, distractors, 0,
and non-task foils, α.

3AIM uses ICA to find a roughly orthogonal basis which the au-
thors argue can be usefully compared to sparse coding in early visual
cortex. E-GS uses the handcrafted sparse basis from GS. Both can
summarised as: response activity is computed in parallel for multi-
ple features. Activity which is surprising on a feature is salient.

We might think of the third term in (5) as constant: in the
absence of any task, this is likely the term that dominates
saliency. However, once I have a particular task, then the
other terms will contribute to my estimate of the saliency.
Rather nicely, we can also see how expertise might play a
role: if a task has been repeated many times, then the preci-
sions associated with those task-relevant features will be high,
and so will dominate the saliency computation.

It is easy to see how this formulation could give rise to
inattentional blindness: if a surprising object is neutral with
respect to a task, then whether it affects the overall saliency
measure will depend on the relative precision weighting of
the first two terms and the third (if it is extremely surpris-
ing because it is blue, for example, but our task is clear-cut
so the precisions associated with the top-down terms is high,
then it still might not be that salient overall – if it is the only
blue object we have seen, then its associated precision may
be quite low). In a free viewing paradigm, the search task-
relevant terms would be absent, the model would collapse to
AIM, and unexpected objects would be salient. If the object
possesses some task relevant features, then the first and sec-
ond terms will contribute to its saliency, and it is more likely
to be attended.

The leveraging of precision weighted errors to produce dif-
ferent effects can also be related to the predictive coding work
of Friston and colleagues (Friston, Adams, Perrint, & Break-
spear, 2012), where a free-energy minimising agent passes
precision-weighted surprisals up a processing hierarchy, and
expectations down. Indeed, Friston has explicitly claimed
that (covert) attention can be thought of as precision weight-
ing (Feldman & Friston, 2010), which our simple model cer-
tainly aligns with.

Methods
To test our model in a conjunction search paradigm, we sim-
ulated image environments of distractor and target objects
on a 5× 5 grid with a white background (See Figure 1 for
an example trial). We represented images both at the ob-
ject level and the pixel level (see Feature Spaces, below);
in either case, at test time a vector valued representation Fx
scaled to [0,1] was passed to a learned model, which re-
turned the saliency score for each location x by computing
Eρ[Sx], where we assume Beta priors over the expected ac-
tivations, such that ρi,t ∼ Beta(αi,t,βi,t), ρi,d ∼ Beta(αi,d,βi,d)
and ρi,nt ∼ Beta(αi,nt,βi,nt). We used a Beta prior as the model
assumes fxi are rate activations, and hence fall in [0,1].
Eρ[Sx] is the sum of the expected value of each of the terms

in (5). For the ith feature of the kth term at location x, this is:

Eρk
[
Λi,k( fxi−µi,k)2

]
= nk

[
f 2
xi

(αik +βik −1)(αik +βik −2)
(αik −1)(βik −1)

− fxi
2(αik +βik −1)

βik −1
+

αik

βik −1

] (6)

In the case of an object-level representation, x corresponds to
an object in the image. In the case of the pixel-level represen-
tation, we computed saliency for every second pixel, which
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gave reasonable results and was less costly than computing
for every pixel.

For each task, the posterior beliefs of the model were
learned from 100 labelled example trials. The learned model
was then used to generate saliency maps for 1000 unlabelled
trials, where, for object-level saliency maps, rank order of
objects by saliency was taken to be directly proportional to
response time (RT).

When pixel-level saliency maps were generated, we explic-
itly “saccade” through the most salient pixels in order, and
introduce inhibition of return, which depresses the saliency S
at pixel i at step t according to:

S i,t = S i,t − (S i,t ·Ri,t−1)

Ri,t−1 = G(S i,t) +
1
2

Ri,t−2
(7)

where G(S i,t) is a Gaussian function, with a standard devia-
tion 1/16 the size of the image, of the distance of i from the
target of the tth saccade. The sequence of response times to
any particular object is then taken to be proportional to the
value of t when a pixel of that object is first visited.

Feature Spaces
Our saliency measure relies on the assumption that we have
access to a sparse, independent feature representation of the
visual space; either at the object level or at the pixel level.
In principle, both should perform similarly, and so we tested
our hypotheses (see Results) against both a variant of Guided
Search’s handcrafted approach to generating activations from
features (Wolfe, 1994), and AIM’s unsupervised approach
(Bruce & Tsotsos, 2009), which uses ICA to generate a vector
of activations from an image patch.

Guided Search has an eight-dimensional feature space:
four activations correspond to colour, four to orientation. The
four orientation dimensions are given by:

Steep: cos(2x)0.25, −45 < x < 45
Shallow: |cos(2x)|0.25, −90 < x < −45 and 45 < x < 90
Left: |sin(2x)|0.25, −90 < x < 0
Right: sin(2x)0.25, 0 < x < 90

The four colour receptors are red, yellow, green, and blue,
described as the “quite arbitrary . . . third root of triangluar
functions” (Wolfe, 1994) that have peaks at positions evenly
spaced at their ordinal positions in the spectrum. These acti-
vations are then passed through a local differencing operator
to yield a bottom-up activation.

For unsupervised extraction of a sparse basis, we sampled
250,000 image patches of size 21× 21 from a dataset of nat-
ural images (Hodosh & Hockenmaier, 2013), and used Jade-
ICA (Cardoso, 1999), preserving 90% variance to extract an
independent basis (27 dimensions were retained). ICA infers
the mixing matrix, B, between the independent causes and
the perceived data (the patches). We then use B−1 to produce
a vector of activations for any new patch.

Both approaches are claimed to produce activations corre-
sponding to neuronal activity; Wolfe (1994) chose the eight
features of Guided Search accordingly, and Bruce and Tsot-
sos (2009) argue that the roughly orthogonal basis learned by
ICA can be usefully compared to sparse coding in early visual
cortex. Hence it should be the case that our model produces
similar performance from both forms of preprocessing.

Learning
The posteriors are computed using:

ρk |Fxk ∼ Beta
(
λα0

k + (1−λ)
[
αk +

∑
x∈Xk

fxk
]
,

λβ0
k + (1−λ)

[
βk +

∑
x∈Xk

1− fxk
]) (8)

where Xk denotes the set of points labelled k in the training
examples. This, as in Mozer and Baldwin (2007), interpolates
between the prior distribution ∼ Beta(α0

k ,β
0
k) and the empiri-

cal posterior. This interpolation regularises the model’s fit to
the data, and improves its performance.

For all experiments, α0
id = β0

jt = 10, α0
it = β0

jd = 25, for all i
and j, α0

int = β0
int = 10, and λ = 0.3. These parameter values

are mostly taken from Mozer and Baldwin (2007), as there
was no reason to change them.

Results
We tested two hypotheses: that our model would reproduce a
range of standard effects in visual search, and that our model
could reproduce two standard results from the inattentional
blindness literature.

Visual Search
To evaluate the performance of the model in the visual search
paradigm, we followed Wolfe (1994) and Mozer and Baldwin
(2007), and tested our model against six search tasks used to
evaluate the original guided search model. These tasks are as
follows. All graphs shown are using the eight simple features
of guided search. Standard error bars are included.

1. Vertical target among homogeneous distractors (Figure 2):
As the angle of the distractors increases from 0–55 degrees
(where 0 is vertical), time to target should become constant
with respect to the number of distractors (i.e., pop-out oc-
curs).

2. Categorical search (Figure 3): Target among two types of
distractors defined with respect to a single feature (angle of
orientation). Distractors are 100 degrees apart, and target is
40/60 degrees from the distractors in two cases, but in the
third case it is the only near vertical item, allowing pop-out.

3. Target-distractor similarity (Figure 4): Search efficiency
for target among heterogeneous distractors. There are two
target orientations, and two degrees of target similarity. For
each orientation, search should be more efficient when tar-
get and distractors are dissimilar.
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Figure 2: (Task 1) Horizontal; distractor orientation (de-
grees). Vertical; Gradient of time-to-target against number
of distractors. Pop-out clearly occurs at around 20 degrees
from the vertical.

Figure 3: (Task 2) Horizontal; total number of distractors.
Vertical; response time/time-to-target (in fixations, t). Blue;
target at 10, distractors at −30 and 70 degrees. Orange; target
at 20, distractors at −20 and 80 degrees. Green; corresponds
to case where distractor is the only near-vertical item. Target
at 10, distractors at −50 and 50 degrees.

4. Feature search asymmetry (Figure 5): It is more efficient
to find a tilted bar among verticals than a vertical among
tilted. This is because tilted items activate features that
make them more discriminable; for example in the 8 di-
mensional feature space described above, one feature acti-
vates when presented with vertical objects, but two activate
when presented with objects at 20 degrees.

5. Conjunction search – distractor confusability (Figure 6):
Red vertical target among green vertical and red tilted dis-
tractors. Red tilt can be 90 or 40 degrees: both are ineffi-
cient, but should vary in relative difficulty.

6. Distractor ratio effect (Figure 7): Response times for red
vertical target amongst red tilted and yellow vertical dis-
tractors, as a function of ratio of distractor types. Search
should be most efficient in the extremes, where there are a
minimum of distractors of one particular type.

Figure 4: (Task 3) Horizontal; total number of distractors.
Vertical; response time/time-to-target (in fixations, t). Blue
and Orange; target at 0, distractors at −20 and 20 degrees,
and −40 and 40 degrees respectively. Green and Red; target
at 20, distractors at 0 and 40 degrees, and −20 and 60 degrees,
respectively.

Figure 5: (Task 4) Horizontal; total number of distractors.
Vertical; response time/time-to-target (in fixations, t). Blue;
Target at 0, distractors at 20, orange; target at 20, distractors
at 0.

Inattentional Blindness
We aimed to test two basic results in the inattention blindness
literature. First, that performing a task reduces the probability
of fixating or reporting unexpected objects, when compared
to a task-free control (Simons & Chabris, 1999).

With reference to Equation (5), we assume that Λi,1 ≈

Λi,0 = ΛT ,∀i (i.e., the two task-specific confidences are sim-
ilar), the relative magnitude of ΛT to Λα should be central
to the relationship between performing a task, and corre-
sponding inattentional blindness. This is because if ΛT is
much larger than Λα then the task-specific terms dominate the
saliency score, and objects which are surprising in features
that are not task specific have lower probability of detection.

In free viewing, however, where Λα is larger than, or equal
to ΛT (the task does not dominate attention), the context-
dependent surprisals should contribute to the overall saliency,
and generically unexpected objects (persons in gorilla suits,
for example), are more likely to capture attention.
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Figure 6: (Task 5) Horizontal; total number of distractors.
Vertical; response time/time-to-target (in fixations, t). Red
targets at 0 degrees, one set of green distractors at 0 degrees.
Blue; second set of red distractors at 40 degrees. Orange;
second set of red distractors at 90 degrees.

Figure 7: (Task 6) Horizontal; number of red tilted distractors
(of a total 35 distractors). Vertical; response time/time-to-
target (in fixations, t). Distractors were yellow vertical, and
red 60 degrees. Target was red vertical.

To test this we introduced critical trials into our normal ex-
periment. On a critical trial an unexpected (blue, left-leaning)
object (see Figure 8a for an example) is also present along
with the normal distractors and target. We varied the ratio
nT /nα between 0.005 and 20. Figures 8b and 8c show a clear
transition between the scenario in which the α term dom-
inates the saliency computation – in which the unexpected
item pops out amidst the red task-relevant objects – and that
in which the T terms dominate – where the same object does
not pop out of the target and distractors, even though it is
clearly surprising to an outside observer.

Second, we checked that if an unexpected object possesses
features that are also task relevant, it is more likely to be fix-
ated or reported (Most et al., 2001). We modified Task 2 (see
Visual Search, above), as here the target and distractors are
defined with respect to only one feature dimension. For a
critical trial with a red target at 10 degrees, and red distrac-
tors at 30 and 70 degrees, we added an unexpected blue sin-
gleton at −70 or 15 degrees. Average number of fixations to

target for the singleton at a task-relevant angle (70 degrees)
was 13.99± 0.002. For the singleton at a task-irrelevant an-
gle it was 2.0±0.001. This was for a constant 12 distractors,
and the ratio nT /nα was set to 100. This is quite a substantial
difference (probably because the experimental set-up was as
simple as possible), but it bears out our hypothesis.

Conclusion and Future Work
A weakness of this work is that as it is intended as a theoret-
ical starting point, our analysis is primarily qualitative, and
we have not compared the original predictions of our model
to data from human participants. We will focus on these defi-
ciencies in upcoming work via two main avenues.

The first approach is to test human participants to show that
modulating the relative model precisions of (i.e., confidences
in) targets specifically affects the probability that unexpected
objects might be detected. If, for example, participants were
initially provided only with a verbal descriptions of a visual
target, we would expect probability of inattention to a non-
target singleton to increase over the course of several trials,
as participants became more confident in the target of their
search task. We would also expect probability of inattention
to be greater for a comparable task where participants are pro-
vided with a visual example of their target.

Our second approach, which lies solely in the conjunction
search paradigm, would be to include distractors in a con-
junction search task that shared no features with the target.
We hypothesise that both overt indications of attention (fix-
ations) and covert indications of attention (average time to
target) to these non task-relevant objects would decrease over
the course of several trials.

We have made three distinct contributions; we have pre-
sented a model of visual search that exhibits inattentional
blindness, we have shown the equivalency of AIM and E-GS
under certain assumptions, and we have argued that an inter-
pretation of what it is to “perform a task” should be grounded
on the relative precisions of parts of the brain’s generative
model.

We conclude that modelling task-based behaviour as ex-
plicitly located in a wider context can bear explanatory fruit.
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Abstract 

In software development, deliverables in an upstream process 
are reviewed to ensure their quality and to reduce error 
propagation to the downstream process. Methods are 
available for evaluating the review quality. In this study, we 
considered the defect detection process in a review of 
Requirement Definition Documents and tested a potential 
relationship between the gaze patterns and review quality. 
Specifically, we analyzed the relationship between the gaze 
patterns, with a primary focus on the blink rate, in a review of 
RDDs and detection accuracy. A significant nonlinear 
correlation between the blink rate and the detection accuracy 
was observed; moreover, the subsequent regression analysis 
also verified the blink rate as the best predictor of the review 
quality, notwithstanding the use of other gaze patterns. This 
result indicates that the blink rate is a major predictor of a 
type of review performance. 

Keywords: gaze; blink rate; document review; review 
quality; signal detection theory; machine learning; 

Introduction 

In software development, it is important to ensure the 

quality of the specification and design document in the 

upstream process because they affect the quality of the 

deliverables in the downstream process. It is five to 200 

times more expensive to correct defects in the downstream 

process than in the upstream process when we correct a low-

quality deliverable affected by an ineffective specification 

(Boehm, 1981). Thus, it is preferable to maximize the defect 

detection in the upstream process. 
In order to remove potential defects, it is common to 

review a document in an upstream process; moreover, 

numerous review methods have been used. However, 

individual differences in the review performance are likely 

to influence the review quality to a higher degree than the 

differences among the review methods (Uwano, Nakamura, 

Monden, & Matsumoto, 2007). A reviewer’s performance 

also depends on the time limit for the task and the degree of 

the reviewer’s concentration. Furthermore, although the 

defect detection rate based on the items indicated and the 

review rate are used for quantitatively evaluating the review 

quality, these indices by themselves are not adequate for 
accurately evaluating the review quality. First, the defect 

detection rate, for example, depends both on the quality of 

the reviewer and the quality of the document reviewed. As a 

result, we cannot assess whether a low detection rate implies 

low quality of the reviewer or high quality of the document. 

Second, these available indicators do not capture the 

different types of defects, such as simple typos, missing 

information, ambiguity, and misleading sentences. 
Accordingly, in this study, we explored a new indicator of 

the review quality, which characterizes the reviewer’s 

performance and the potential types of defects. As a 

potential candidate for this indicator, we studied the gaze 

behavior in the document review task. 

Recently, gaze data have been studied in software 

engineering (SE) to elucidate the cognitive process in 

various SE tasks such as code review (Sharafi, Shaffer, 

Sharif, & Gueheneuc, 2015). In SE, there are numerous 

studies targeting the review of a source code in the 

downstream process or review of “box and arrow” diagram 
such as Unified Modeling Language (UML). However, 

there are few studies on the review of documents in the 

upstream process (Sharafi, Guéhéneuc, & Soh, 2015). In 

fields other than SE, there has been studies on reading and 

understanding of narratives using gaze data (Augereau, 

Kunze, Fujiyoshi, & Kise, 2016; Campbell & Maglio, 2001; 

Okoso et al., 2015); however, there are few studies on the 

review process for detecting defects in a document.  

Uwano et al., (2007) have defined the review process:  “In 

the software review, a reviewer reads the document, 

understands the structure and/or functions of the system, 

then detects and fixes defects if any.” They classified it into 
the three sub-processes: (1) reading, (2) understanding of 

the structure, and (3) detection/correction of defects.  

Relevant to the three sub-processes above, past literature 

has reported the three major characteristics of eye blink as 

follows: 

(A) An adult subject typically exhibits 20 eye blinks per 

minute (Bentivoglio et al., 1997). 

(B) A task requiring certain external information such as 

reading tends to enhance external attention and 

reduce the number of eye blinks per unit time (Cho, 

Sheng, Chan, Lee, & Tam, 2000; Karson et al., 1981). 
(C) A task requiring internal attention, such as mental 

arithmetic and association, increases the number of 

eye blinks per unit time (Cho et al., 2000; Karson et 

al., 1981). 

In light of these observations, we hypothesize that the 

three sub-processes in the review process are related to the 

eye gaze patterns as follows: Process (1) is supposed to be 

associated with observation (B), wherein the rate of eye 

blinks would be reduced as it requires external information. 
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Processes (2) and (3) are supposed to be associated with 

observation (C), wherein the rate of eye blinks would be 

increased as it requires internal attention. Moreover, we 

suppose that both effective and ineffective reviewers are 

largely similar in the sub-process of reading (1); however, 
they would be different in the sub-processes of 

understanding (2) and detection (3). More specifically, we 

suppose that an effective reviewer would utilize more 

cognitive resources for the two sub-processes (2) and (3) 

than an ineffective one; as a result, a better reviewer would 

exhibit a higher rate of eye blinks per time. 

Therefore, in this study, we executed an experiment that 

simulated a review process of a set of Requirement 

Definition Documents (RDD) and measured the reviewer’s 

gaze patterns during the experiment. Then, we tested our 

above hypothesis by analyzing the relationship between the 

eye blinks and the review quality. In this experiment, we 
prepared a RDD material, to which we introduce defects; 

moreover, the review quality was defined based on whether 

these presumed defects were detected or not. 

Our analysis of the review quality by using the gaze data 

revealed that the blinks were the most important component 

of the gaze data; a significant nonlinear correlation between 

the blink rate and the detection accuracy was apparent. 

Experiment 

In the experiment, each of the participants underwent two 

sessions: the review session and post-review session. In 

each trial in the review session, they were asked to review 

one page of the three types of the RDDs and then to mark 

the sentences with defects. After finishing 11 trials of the 

review session, they were asked to fill the demographic 

questionnaire. 

Participants 

We recruited 19 Japanese adults as the participants (16 male 

and three female) and the average age of them was 42.2 

years (SD = 9.1), with nine of them in their 30s, four in their 
40s, and six in their 50s. All of them were system engineer 

and nine of them had no RDD review experience. All of 

them had normal (corrected) vision.  

Material 

The set of original documents used in the review session 

were based on three types of RDDs that were in actual use 

at Nihon Unisys, Ltd. Each of the original RDDs was re-

arranged such that each document had three pages of 

summary, three pages of functional requirement, three pages 

of non-functional requirement, and two additional sample 

documents—eleven pages in total. They were all in 
Japanese. On each page of a re-arranged RDD, we 

introduced a defect that was absent in the original document. 

In this study, the type of defects was the “omission” of 

certain necessary piece of information for requirement 

definition. A part of an original sentence was removed, 

which made the original definition ambiguous. In order to 

simulate a natural review process, we did not add more than 

a defect per page. As a result, we limited the number of 

sentences, including the one with a defect, to two per page; 

there were 17 sentences, including those with the defects, in 

the 11 pages. The demographic questionnaire included 

questions on age, gender, RDD review experience, 
document review experience, degree of concentration during 

review, and degree of comprehension to documents for 

review.  

Procedure and Apparatus 

In each trial, one page of the documents to be reviewed was 

presented on a computer screen; the participant’s gaze 

patterns were measured by an eye tracker device during the 

document review. The eye tracker used in this experiment 

was gazepoint GP3HD eye tracker (Figure 1). The 

participants could spend as much time as they considered 

necessary for this review process. 
After the review of each page, the participants were 

instructed to mark the sentences to be improved, on a 

printed document with the reviewed content; they were not 

informed about the type of defects introduced. This trial was 

repeated for 11 pages and the order of page was the same 

for all participants. The participants were not provided any 

break during the review trial. Moreover, they were 

instructed to maintain their head still as much as feasible in 

order to ensure accurate eye tracking. 

After the review session, each of the participants was 

asked to answer the demographic questionnaire.  

 

  
 

Figure 1: (left) Experimental situation, (right) eye tracker 
(set up at the bottom of the monitor) 

Results  

In the review session, the average, minimum, and maximum 

review times of the 19 subjects were 21, eight, and 40 min, 

respectively. In order to exclude the data with large numbers 

of eye tracking error, we performed the Smirnov–Grubbs 

test (Grubbs, 1969) to detect pages with valid fixation points 

less than 60% (Figure 2). Based on this test, we excluded 

data worth four pages (out of the total 209 pages—11 pages 
for each of the 19 subjects) from the rest of our analysis. We 

performed the subsequent analysis on the 205 pages of data 

with a sufficiently large rate of fixation. 
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Figure 2: Histogram of valid fixation ratio each page 

Review quality 

In this study, we defined the correct review report for each 

unit of document based on the match between the 

participant’s marked sentence and the sentence with a defect. 

Thus, the defect detection task was formulated as signal 
detection—the participant report a defect as either being 

detected or not, given a sentence with defect (signal in the 

ground truth) or otherwise (noise in the ground truth). We 

employed the signal detection theory (SDT) (Green & Swets, 

1966) and treated the d-prime as an indicator of the 

accuracy of defect detection or the review quality. In the 

SDT, the respond bias and the sensitivity (d-prime) are 

distinguished from the rates of correct rating (the rate of 

defect detected marked to a sentence with defect) and false 

alarm (the rate of detect detected marked to a sentence 

without defect). The d-prime represents the deviation of the 
signal and noise distribution from the noise distribution as 

defined by 

d‐ prime =
𝑀𝑆𝑁 − 𝑀𝑁

𝜎𝑁

, (1) 

where 𝑀𝑆𝑁 is the mean of the signal and noise distribution, 

𝑀𝑁  is the mean of the noise distribution, and 𝜎𝑁  is the 

standard deviation of the noise distribution. The d-prime is 

an indicator of the review quality; it can circumvent the 

effect of the potential response bias (the behavioral 

tendency to report detection regardless of the signal). 

Analysis 

In order to test our hypothesis, we analyzed the relationship 

between the blink rate and the review quality measured by 

the d-prime, in Analysis 1. In Analysis 2, we performed a 

model-based analysis of the relationship between the review 

quality and the gaze pattern not just the blink rate but also 

the other types of measurements such as fixation and 

saccade. The statistical analyses reported here were 

conducted with the free software R language (R version 

3.4.1). 

Analysis 1: Is the blink rate related to the review 

quality? 

According to our hypothesis discussed in the introduction, 

the key sub-process in the review would require internal 

attention; thus, it would increase the blink rate. In order to 

verify this relationship between the blink rate and the review 

quality, the scatter plot of the blink rate and d-prime are 

shown in Figure 3. The corresponding correlation 

coefficient and other statistics are listed in Table 1. The 

maximal information coefficient (MIC) is a correlation 

coefficient calculated using mutual information; its 

application is feasible even with a nonlinear relationship. 

MIC-ρ2 is an index of nonlinearity, and the maximal 

asymmetry score (MAS) is an index of non-monotonicity 
(Reshef et al., 2011). These results are summarized as 

follows: 

• d-primes across the trials of the participants were 

distributed from - 1 to + 1. 

• When d-prime was approximately zero, the blink 

rate was reduced from the mean blink rate and 

increased at non-zero d-prime values. 

• The Pearson correlation coefficient between the d-

prime and the blink rate was significant, although 

weakly negative. 

• Both MIC and MIC-ρ2 were large, and these 
together exhibited significant nonlinearity. 

From the above facts, it was determined that the 

relationship between the blink rate and d-prime was a U-

shaped or V-shaped nonlinear correlation, in which the blink 

rate was the smallest for d-primes near zero.  

This result, both positive and negative d-primes across the 

trials, indicates the presence of two distinct groups of 

participants: One group detected the type of defects  

incorporated to a few sentences in the experimental 

manipulation; the other group detected the other type of 

defect (rather than only random sentences), which were not 

regulated explicitly in this experiment. Although we 
incorporated defects to a few sentences in the document, the 

original document (a RDD in use for some other purpose) is 

likely to have had certain other type of defects prior to this 

experimental manipulation. If so, the positive d-prime 

indicates the sensitivity to the expected type of defects 

incorporated in this experiment, whereas the negative d-

prime indicates the sensitivity to certain unexpected type of 

defects originally in the RDDs. 

Figure 4 shows the relationship between the d-prime and 

the response to noise in all the trials for each participant. We 

observed the general trend in these individual differences 
wherein those who exhibited a negative d-prime tended to 

detect “noise” as a “signal” (which may be interpreted as a 

defect by these participants) rather than the signal defined 

by the pre-experimental manipulation of the RDD. Thus, 

owing to the ambiguity of definition of the type of defects in 

the instruction, these participants were likely to detect the 

other types of defects (which were classified as “noise” by 

our definition).  
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Figure 3: Scatter plot of d-prime and blink rate (blue line: 

mean blink rate in normal) 

 

Table 1: Correlation coefficient between d-prime and blink 
rate 

 

Blink rate

Pearson correlation -.393

p-value .000

MIC .865

MIC-ρ
2 .711

MAS .450

d-prime

 
 

 
 

Figure 4: Scatter plot of d-prime and responses to noise 

 
With respect to this interpretation of positive and negative 

d-primes, both positive and negative (non-zero) d-prime 

indicate higher sensitivity to certain types of defects; 

moreover, the blink rate was adequately correlated to the 

review quality of the potentially mixed types of defects. 

This result appears to be evidence supporting for our 

hypothesis. However, it is likely that this result is caused by 

a spurious correlation owing to certain other features of gaze 

patterns, which are also correlated to the blink rate. 

Accordingly, in Analysis 2, we analyzed the d-primes, the 

indicator of review quality, with a collection of the other 

types of gaze features as well as the blink rate. Thereby, we 
evaluated the significance of the blink rate in the prediction 

of the d-primes, relative to the other types of gaze features 

such as fixation and saccade.  

Analysis 2: Model-based analysis of review quality 

In Analysis2, we constructed a model that predicts the type 

of detected defects measured by the positivity of the d-prime. 
Specifically, we employed a machine learning algorithm, 

random forest (RF) (Breiman, 2001) to predict the d-prime 

using the blink rate and other gaze patterns as the predictor. 

First, the set of features were calculated from the gaze 

patterns. Second, an RF regressor was constructed using the 

gaze features as a predictor of the d-primes in each trial. 

Then, we determined which gaze features is more 

informative for predicting the d-primes. 

Extraction of features We extracted a set of 47 gaze 

features from the four fundamental gaze components: 

fixation, saccade, blink, and pupil (below). Forty six of 
these 47 features were originally defined by Bixler & 

D’Mello (2015); the blink rate was added to the list of 

features for the purpose of this study. 

1. fixation: gazing on a single location 

2. saccade: quick eye movement between fixation  

3. blink: presence or absence of blink 

4. pupil: size of the pupil 

For each trial, the gaze pattern was characterized by these 

47 features, and it was used to train the RF. As the RF 

calculated the importance of each feature simultaneously, 

the feature with low importance (with negligible 

significance for predicting the d-prime) could be removed. 
We employed a sequential forward feature selection 

procedure using the RF as follows. First, the importance of 

each feature was calculated by RF using all the gaze 

patterns. Then, the root mean square error (RMSE) was 

calculated by RF using the highest importance feature. 

RMSE is the error from the actual value and is defined as  

RMSE =  √
1

𝑛
∑(𝑦𝑘 − �̂�𝑘)2

𝑛

𝑘=1

, (2) 

where n is the number of pages, 𝑦𝑘 is the specified d-prime 

of the kth page, and �̂�𝑘  is the d-prime predicted by the 

model. Second, RF was executed by adding the feature with 

the next highest importance, and the RMSE was similarly 

calculated. Third, the above process was repeated until the 

RMSE was the smallest, and the features effective for the 

review quality were extracted. 

As a result, we obtained the 15 most important features 

extracted by RF, which are listed in Table 2. The blink rate 

was observed to be the most important. This indicates that 
the blink rate was the feature that was the most predictive of 

the d-prime. 
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Table 2: Features and their importance as extracted by RF  

 

Rank Features Importance

1 blink rate 2.23

2 kurtosis of sccade duration 2.09

3 fixation duration / saccade duration ratio 1.93

4 number of blinks 1.93

5 max of saccade duration 1.88

6 range of saccade duration 1.80

7 kurtosis of pupil diameter 1.77

8 min of fixation duration 1.56

9 proportion of time spent blinking 1.50

10 mean of saccade duration 1.31

11 standard deviation of saccade duration 1.30

12 skew of saccade duration 1.27

13 proportion of horizontal saccade 1.14

14 median of saccade distance 1.08

15 median of fixation duration 1.01  
 

Review quality prediction model Using the selected 15 

features in Table 2, decision tree (DT), support vector 

regression (SVR), and multiple linear regression (MLR) 

models were constructed to predict the d-prime.  
For validating these regression models, we performed a 

10-fold cross validation (random split all trials) using their 

mean square errors (MAEs) and RMSEs. The MAE is 

defined as 

MAE =  
1

𝑛
∑|𝑦𝑘 − �̂�𝑘|

𝑛

𝑘=1

. (3) 

The results calculated for each algorithm by constructing 

the review quality prediction model are listed in Table 3. 

SVM exhibited the lowest MAE and RMSE, whereas the 

RF exhibited the second lowest ones. To determine how 

effectively the model predicts the d-prime, we present the 

scatter plot of the d-prime of the data and the one predicted 

by SVM in Figure 5 and the corresponding correlation 

coefficient in Table 4.  

To summarize the above results, 15 out of the 47 gaze 
features are significantly important for predicting the review 

quality measured by the d-prime. Among these significant 

features, the blink rate was observed to be the most 

important. This result of the model-based analysis is 

consistent with the observation in Analysis 1: The blink rate 

has a higher predictability than the other types of gaze 

features; thus, it is unlikely that the relationship between the 

blink rate and the review quality is the result of a spurious 

correlation. 

 

Table 3: Review quality prediction model 
 

RF DT SVR MLR

MAE 0.224 0.323 0.214 0.283

RMSE 0.304 0.451 0.289 0.361
d-prime

 
 

Table 4: Correlation coefficient between actual and 

predicted d-prime 

 

d-prime (actual)

Pearson correlation .750

p-value .000

d-prime

(predicted)  
 

 
 

Figure 5: Scatter plot of actual d-prime and predicted d-

prime 

 
d-prime positive/negative classification model It is also 

intriguing whether we can classify the type of defects, 

which may be reflected as the positivity of the d-primes. 

Therefore, we next construct a classifier of the positivity of 

the d-prime by using the selected 15 gaze features. The 

algorithms adopted in this study were RF and support vector 

machine (SVM), which had exhibited a high prediction 

performance of d-prime in the experiment described in the 

previous section. Unlike the previous model-based analysis, 

we used the positivity of the d-prime as a class label rather 

than the d-prime value. 
The classification accuracy is the coincidence rate 

between the predicted class and the specified class defined 

by 

Accuracy  =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
, (4) 

where TP, TN, FP, and FN are the elements in the confusion 

matrix presented in Table 5. 
 

Table 5: Confusion matrix 

 

positive negative

positive TP FP

negative FN TN

Actual values

Predict

values  
 

The classification accuracy for each algorithm is 
presented in Table 6. This result indicates that a classifier 

constructed upon the gaze features can predict the two 

potential types of defect detection with reasonably high 

accuracy 84%. 

 

2699



Table 6: Accuracy of d-prime positive/negative 

classification model 

 

RF SVM

Accuracy 83.83% 84.38%  

General Discussion 

Blink rate and review quality 

In prior study of SE, the gaze data has been used to 
elucidate cognitive process, however, the fixation and the 

saccade are often focused on and the blink rate is hardly 

taken consideration (Sharafi, Shaffer, et al., 2015). And it is 

also same trend in the study on reading and understanding 

of narratives (Augereau et al., 2016; Campbell & Maglio, 

2001; Okoso et al., 2015). In this study, we focused the 

blink rate associated with each sub-process in the review 

and analyzed the relationship between the blink rate and the 

review quality. 

In Analysis 1, we determined a nonlinear relationship 

between the blink rate and d-prime and that the blink rate 

was a U-shaped function of the d-prime estimated in each 
trial. This result is consistent with our hypothesis that the 

review quality (measured by d-prime) is related to the 

internal attention (measured by the blink rate). In Analysis 2, 

we tested the potential possibility that the relationship 

between the blink rate and d-prime is a spurious correlation 

owing to other confounding gaze features. We performed 

the regression analysis on the blink rate as well as the 46 

other gaze patterns extracted from fixation, saccade, blink, 

and pupil. This analysis revealed that the blink rate was the 

most predictive of the d-prime; moreover, it indicated the 

blink rate to be a major gaze feature of the degree of review 
quality. 

Limitations 

It should be remarked that the result of Analysis 1, both 

positive and negative d-primes determined, was an 

indication of the likely presence of two potential groups of 

subjects detecting different types of defects owing to the 

ambiguity of the instruction for the review session. 

Considering this limitation of the experiment, it is feasible 

to have a few remarkable reviewers who detect both types 

of defects (the type defined and the other types not 

adequately defined in this study); such a reviewer may be 
evaluated near zero d-prime because he/she would detect 

both “signal” and “noise” according to our definition. Thus, 

in future works, an improved experimental design should 

have a list of defects covering most types of defects in the 

RDD material in order to prevent the problem of multiple 

types of defects. 

Although we could not exhaustively classify all the types 

of defects using only the blink rate, Analysis 2 revealed that 

the positivity of the d-prime, indicating whether the detected 

defect was pre-defined or not, is classifiable with the blink 

rate and the other gaze features. There were numerous 

features on saccade duration in the 15 features. In general, 

these saccadic features capture gaze trajectory, and the 

saccade duration reveals the time of this trajectory. Thus, 

this result is likely to indicate the reading style such as 

reading order; moreover, the speed depends on the type of 
defects detected. 

 The set of RDDs used in this study was used for our 

customer’s system development; its quality was supposed to 

be at least a specified level. However, it was likely that an 

immature RDD exhibited certain different types of potential 

defects than the defects introduced in this study. We cannot 

exclude the possibility that a reviewer’s gaze pattern is 

affected by these mixed types of defects. This fact also 

necessitates a reconsideration of the experimental design 

that regulates the types of defects and investigates the 

relationship between the detection accuracy and the gaze 

patterns for each targeted defects. 
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Abstract

This article used an empirical experiment and a computational
model to test the hypothesis that humans rely on the visual
system to solve the traveling salesperson problem (TSP). We
tested two consequences of this hypothesis: (1) humans should
perform better on Euclidean TSP than not–Euclidean TSP; (2)
a model of the visual system should account for performance in
Euclidean TSP. Participants were asked to solve Euclidean or
not–Euclidean TSP, and a pyramid model of the visual system
was used to solve the same tours as the humans. The results
show that deviations from the optimal tour were smaller in Eu-
clidean problems than in not–Euclidean problems, and the fit
of the pyramid model to human performance was worse on
not–Euclidean problems then on Euclidean problems. These
results suggest that participants solve Euclidean problems with
the visual system, but that other mechanisms are needed to suc-
cesfully solve non–visual problems.
Keywords:
Problem Solving; Visual Processing; Traveling Salesperson
Problem; Pyramid Model

Introduction
A problem is a situation in which an agent seeks to attain
a given goal without knowing how to achieve it. Humans
solve problems every day. Example problems include win-
ning at tic–tac–toe or winning a battle, air traffic control, con-
trol of an uninhabited vehicle, getting to checkmate in chess,
visually–guided navigation, proving a logic theorem, solv-
ing math and physics problems, cracking the enigma code,
or formulating a new scientific theory. Some problems are
more visual, such as planning a tour around a grocery store,
while others are more abstract, such as proving a theorem us-
ing predicate logic. In this conference article, we focus on
the Traveling Salesperson Problem (TSP), a well–known op-
timization problem. In the TSP, a set of points is presented to
participants. Each point represents a city, and the goal is to
find the shortest possible route that visits all the cities exactly
once, and returning to the starting city. We refer to this route
as a TSP tour. The TSP has high relevance since it (1) has
an important visual component (i.e., cities or points are spa-
tially laid out on a map) and (2) it has important real–life ap-
plication in many areas such as logistics, transportation, and
shipping.

TSP has been studied extensively by cognitive scientists
to reveal the underlying processes in human problem solv-
ing (van Rooij et al., 2006; Chronicle et al., 2008; Dry et al.,
2006; MacGregor, 2013). One reason that makes the TSP an
interesting problem for cognitive scientists is that the prob-
lem space of the TSP is very large. Even for solving a 16
city TSP, there are 6×1011 possible solutions, which is more
than the number of neurons in the human brain (Azevedo et
al., 2009). Also, the TSP is proven to be computationally
NP–hard, meaning that there is no algorithm that can find an
exact optimal solution for the TSP in polynomial time (Pizlo
& Stefanov, 2013).

Human working memory can only store and manipulate a
few items at a time and cannot make more than a few compar-
isons at a time (Pizlo & Stefanov, 2013). Yet, even with these
severe limitations in memory and processing power, humans
are able to solve the TSP near optimally in approximately lin-
ear time (MacGregor & Chu, 2011; Pizlo et al., 2006). How
can humans with these limitations be able to solve the TSP
fast and near optimally? What cognitive systems and pro-
cesses have evolved to solve the TSP in the human brain?

Goals and Hypotheses
Pizlo and colleagues have argued that the TSP is solved by
parallel processes in a pyramid–like hierarchical architecture
of the visual system (Graham et al., 2000; Pizlo et al., 2006;
Pizlo & Stefanov, 2013). The assumption that humans solve
the TSP visually has important implications on the types of
problems that can be solved. The human visual system has
evolved in Euclidean space, so the visual system likely as-
sumes a Euclidean cost function when solving optimization
problems. As a result, performance in optimization prob-
lems with not–Euclidean or non–metric cost functions might
be impaired.

To test this hypothesis, we designed a TSP experiment
where participants solved either a regular (Euclidean) or not–
Euclidean TSP. The participant’s data was then compared
with tours produced by a well–known computational model
of the visual system, namely the pyramid model (Adelson et
al., 1984; Pizlo et al., 1995). According to our hypothesis,
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human participants should perform well in the Euclidean ver-
sion of the TSP but not in the not–Euclidean version of the
TSP. Further, the pyramid model should provide a good ac-
count of participant TSP tours in the Euclidean TSP but not
in the not–Euclidean TSP. These results would support the
hypothesis that participants are solving the regular TSP us-
ing the visual system, but not the not–Euclidean TSP. Further,
the compensatory mechanisms used to solve the not–Eucliean
TSP are not as efficient as the visual system at solving opti-
mization problems.

Method
The first aim of this study was to explore how humans per-
form in different conditions of the TSP (i.e., Euclidean and
not–Euclidean). The second aim was to explore how human
performance is compatible with the visual pyramid model.
The experiment and model are described in turns.

Participants
Ninety–one Purdue undergraduate students participated in the
experiment for course credit. Participants were randomly as-
signed to one of three conditions: Single–color (n = 36),
Colored–with–no–switch–cost (n = 28), and Colored–with–
switch–cost (n = 27).

Apparatus and Stimuli
The stimuli were 30 maps each generated by putting 50 ran-
domly scattered cities (points) in a 900px× 900px display.
The minimum distance between two cities was set to 50px to
prevent overlapping points. The resulting set of 30 maps was
used to create two different stimulus sets. In the first stimulus
set, all cities were colored red. This stimulus set is referred as
containing single–color maps (See Figure 1a). In the second
stimulus set, half of the cities (points) were randomly selected
and colored red. The remaining cities (points) were colored
blue. This stimulus set is referred as containing colored maps
(See Figure 1b).

The experiment was run on a regular PC. Stimuli were dis-
played in a 21–inch monitor (1,920 × 1,080 resolution). Par-
ticipants responded by clicking on the city (point) that they
wanted to visit next using a regular computer mouse. After
each mouse click, a dark blue edge was drawn between the
last visited city and the city that was clicked in the current
trial. The order of the city visited was recorded.

Procedure
Each participant solved all 30 maps in one of three condi-
tions. (1) Single–color (Euclidean): This was a typical TSP
experiment. The first stimulus set was used (i.e., single–
color maps). Participants were asked to find the shortest TSP
tour on each map, one map at a time. The cost between
cities was Euclidean (i.e., the distance on the screen). No
feedback was provided. (2) Colored–with–switch–cost (not–
Euclidean): The second set of stimuli was used (i.e., colored
maps). In this condition, the cost between two points was not
always Euclidean. Specifically, when travelling from a blue

city to a red city (or vice–versa), the calculated distance (cost)
was twice the distance on the screen. Otherwise, when trav-
elling between two cities of the same color, the distance was
as seen on the screen. Note that this arrangement can break
the triangle inequality and make the cost non–metric. (3)
Colored–with–no–switch–cost (control): Similar to (2), this
condition used the second set of stimuli (i.e., colored maps).
However, the distance between two points was always the dis-
tance on the screen, so the colors could be ignored. This con-
dition was designed to control for possible grouping effects
that could be created by having cities of two different colors.
In all conditions the experimenter explained the cost structure
to the participants (as described above) and instructed them to
find the tour with the smallest cost for each map.

Pyramid Model
A pyramidal architecture refers to multiple representations of
the input data, with different representations having different
scales and resolutions. In vision, the input data is the retinal
image and the first layer is represented by the retinal ganglion
cells. Each ganglion cell receives information from a partic-
ular region of the retina called the cell’s receptive field. Re-
ceptive fields of different cells partially overlap. In the second
layer of the pyramid, each “parent” cell receives input from
several “child” cells. In the third layer, each “grandparent”
cell receives input from several of its children. This process
continues until a single cell on the top of the pyramid can
“see” the entire image. Cells at lower layers can see small
parts of the retinal image but they can process the informa-
tion with high spatial resolution. Cells in higher layers can
see larger parts of the retinal image but with lower resolution.
More generally, cells in higher layers can handle only some
statistical information about their receptive fields. The mean
value of some property, like intensity, speed, contrast and so
on, is the simplest example.

We implemented a Pyramid model adapted from Pizlo et
al. (2006). The algorithm is presented in Figure 2. We used
Python for our implementation. Inputs to the model were the
maps that the participants in the experiment had solved. Be-
cause we hypothesized that the visual system evolved in a
Euclidean world, the distances between the cities were con-
sidered Euclidean in all three conditions. This corresponds
to the visual system not being able to process not–Euclidean
distances.

Finding Optimal Tours
We used NEOS server of Concorde TSP solver to find
the optimal TSP tours for each map. Concorde is
one of the best exact TSP solvers currently available.
It is available freely for academic use: https://neos-
server.org/neos/solvers/co:concorde/TSP.html.

Results
One participant in the Single–color condition had tours that
were three standard deviations longer then the condition
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(a) Single–color map (b) Colored map

Figure 1: Example maps used in the experiment.

mean. All tours produced by this participants were not in-
cluded in the following analyses.

Human Performance
Figure 3 shows typical example solutions produced by par-
ticipants in each condition. As can be seen, the colored–
with–switch–cost tour was qualitatively different from those
obtained with the single–color and with colored–with–no–
switch–cost conditions. Specifically, the not–Euclidean con-
dition included a number of path crossings, which would be
suboptimal in Euclidean space (but could be optimal in not–
Euclidean space). These crossings were not observed when
colors were present without a switch cost.

To quantify the participant performances, the error (i.e., de-
viation from optimal) was calculated for each map:

error ji =
(S ji−Oi)

Oi
(1)

where error ji is the error or participant j on map i, S ji is the
length of the tour produced by participant j on map i, and Oi
represents the length of the optimal tour for map i .

Table 1 presents the mean error in each condition. As can
be seen, the single–color error was 12.6% and the colored–
with–no–switch–cost (Euclidean) error was 12.7%, which is
almost half of the error observed in the colored–with–switch–
cost (not–Euclidean) TSP condition. This shows that partic-
ipants perform well in Euclidean space but struggle in not–
Euclidean space. Also, participants were able to ignore the
irrelevant color and the longer tours obtained in the not–
Euclidean condition were not caused by a perceptual effect
of the city colors. Hence, larger errors for the not–Euclidean
condition were not the result of unwanted color grouping ef-
fects.

To investigate if the observed differences were statistically
significant, we performed Holm–corrected pairwise compar-
isons t–tests for all three conditions. Error in the not–
Euclidean condition significantly differed from error in the
single–color (t(60) = 6.10, p < .0001) and error in the color–
with–no–switch–cost (t(53) = 5.63, p < .0001) conditions.
The two Euclidean conditions did not differ from each other
(t(61)< 1,n.s.).

Table 1: Mean participant error in each condition

Condition Error
Single–color 12.6%
Colored–with–no–switch–cost 12.7%
Colored–with–switch–cost 20.7%

The results show that the errors for the single–color and
control conditions were not statistically different. How-
ever, the colored–with–switch–cost condition differed from
the other two conditions. These statistical differences clearly
show that participants’ performances were highly dependent
on the problem being Euclidean or not–Euclidean, and sup-
port the hypothesis that the visual system may assume a Eu-
clidean cost function in solving the TSP.

The performance of the Pyramid model

In Table 2, we compared the Pyramid model generated tours
with optimal tours. As can be seen, the error is 14.2% for
both Euclidean conditions (single and color), and it increased
to 34.5% for the not–Euclidean condition. As expected, the
model error was similar to humans in the Euclidean condi-
tions. The RMSD was 4.6% in the single–color condition
and 4.5% in the color–with–no–switch–cost condition. How-
ever, the model provided a poor fit of human performance
in the not–Euclidean condition (RMSD = 15.0%). Assum-
ing that the Pyramid model is an adequate model of human
vision, this result suggest that participants solving the Eu-
clidean TSP used the visual system (good model fit), but not
the not–Euclidean TSP (poor model fit). Since the partici-
pants were doing better than the model in the not–Euclidean
condition, this result also suggest that participants may have
access to a separate (compensatory) mechanism to attempt
to solve not–Euclidean TSP. The pyramid model, in contrast,
was purely a model of the visual system and could only deal
with Euclidean spaces.
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Figure 2: A representation of the Pyramid model. The top row shows the input as it gets partitioned into k clusters (by using
a clustering algorithm, such as k–means). In this example, k = 3. Next, the pyramid is built. The root of the Pyramid (0–1) is
the TSP solution for the centers of the clusters for the partitioned input. The solution for this TSP at the root is trivial because
there are only three points and all three points are connected to each other. In the next level of the pyramid (level 1), each
cluster is considered separately and recursively repeats the clustering until there is only one point (or city) in each cluster. For
example, (1–1) shows the partition of the top–left cluster into k clusters (if the number of points is smaller than k, then k−1 is
used, here k = 2), and a TSP solution for this cluster is found. Since, there were only two points, the solution is trivial, and the
two points were connected to each other. Then by brute–force (considering all possibilities), the incoming and outgoing edges
are connected to this cluster to obtain the shortest edges. The model then moves to the next cluster (1–2) and repeats the same
procedure, until there is no non–visited cluster.
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(a) single–color (b) colored–with–no–switch–cost (c) colored–with–switch–cost

Figure 3: Sample tours produced by participants in each condition.

Table 2: The error of the Pyramid model.

Condition Error
Single–color 14.2%
Colored–with–no–switch–cost 14.2%
Colored–with–switch–cost 34.5%

Discussion
This article used an empirical experiment and a computa-
tional model to test the hypothesis that humans solve the TSP
by assuming an Euclidean cost function. This assumption
follows from the TSP being solved visually, and the visual
system having evolved in an Euclidean world. We specifi-
cally tested two consequences of this hypothesis, namely that
humans would perform better on Euclidean TSP than not–
Euclidean TSP and that a model of the visual system could
account for performance in Euclidean TSP. Participants were
asked to solve the TSP in three conditions, two Euclidean
and one not–Euclidean. A pyramid model of the visual sys-
tem was used to solve the same tours as humans. The results
show that the deviations from the optimnal tours were almost
twice as small in Euclidean problems than in not–Euclidean
problems, and the fit of the pyramid model to human per-
formance was three times worse on not–Euclidean problems
than on Euclidean problems.

Relevance for Problem Solving Research
Some problems are visual, like TSP on a Euclidean plane or
visual navigation, but other problems may not have an ob-
vious visual representation. Algebra problems, first order
logic, and chess are examples. Logic is not visual, but set
theory, with Venn diagrams, provides a visual version for at
least some logical problems. However, not all problems are
amenable to a useful visual representation. In these cases, the
massively parallel nature of the visual system is no longer suf-
ficient: problems need to be solved sequentially. One possi-
bility is to use reinforcement learning (Sutton & Barto, 1998).
In this framework, the agent is a sequential decision–making

system and the environment is another system evaluating the
distance between the current problem state and the goal state
(Dandurand et al., 2012). In visual cases, the environment
could be the visual system with geodesic estimates. In more
abstract cases, the environment could be a meta–cognitive
system used to evaluate states and rewards. Regardless of
how the environment is implemented, actions are selected in
each state by using a policy. The policy numerically describes
the desirability of each action in each state. The goal of rein-
forcement learning is to find a policy that maximizes the re-
turn, which is the sum of all future rewards, until the problem
is solved. However, any sequential system attempting to solve
a NP–hard problem, such as the TSP, will quickly be over-
whelmed by complexity. This could explain why human par-
ticipants did better than the pyramid model in not–Euclidean
TSP but did not do as well as in the Euclidean problems.

Future Work and Limitations

Future work can be directed in two ways. First, we can fur-
ther test the theory of the engagement of the visual system in
solving the TSP. It can be done by studying whether human
performance is compatible with other characteristics of the
visual system such as its limited ability to learn. The second
direction is proposing a more complete model of human prob-
lem solving. Implementing a dual–system model of problem
solving, including both a parallel visual module and a sequen-
tial decision–making module can be a promising direction.
Tentatively, using a reinforcement learning agent for sequen-
tial decision–making would allow for learning in problems
that cannot be solved visually. This possible dissociation in
learning ability for visual and non–visual problems may al-
low for optimizing the way we represent and solve problems.
Future work should be devoted to implementing and testing
such a model.
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Abstract 

While there is substantial evidence showing that assistance 
provided to students during problem-solving activities 
influences learning outcomes, it is not yet clear how to best 
design educational technologies to maximize learning through 
various types of assistance. One common type of assistance 
corresponds to hints delivered by an educational technology. 
To date, however, there is little research on the impact of 
different types of hints, including high-level hints vs. specific 
bottom-out hints. Our research takes a step in filling this gap, 
through an experimental study with an intelligent tutoring 
system we implemented in the domain of algebra (N = 50). 
We did not find evidence that the type of hint, high level vs. 
bottom out, influenced learning, with both types of hints 
producing similar outcomes. We did, however, find support 
for the conclusion that the number of hints accessed interacted 
with the type of hint to influence learning, and specifically, 
that accessing more hints was correlated with learning but 
only in the high-level hint condition.  

Keywords: Intelligent Tutoring Systems; high-level and 
bottom-out hints 

Introduction 
There is established evidence that instructional feedback and 
assistance, such as hints and explanations during 
instructional activities, influence student learning (Shute, 
2008). An open question, however, is how explicit should 
this assistance be to facilitate learning?  

Prior research suggests that students learn best when 
they engage in constructive behaviors as compared to ones 
that are merely active or passive. This is a key prediction 
made and confirmed by Chi’s (2009) ICAP framework that 
distinguishes levels of student engagement during 
instructional activities. To illustrate in the context of human 
tutoring, when a tutor prompts their student with general 
suggestions and/or questions, this encourages the student to 
generate substantive contributions, namely domain-related 
utterances that are positively associated with learning (Chi, 
Roy, & Hausmann, 2008). As another example, Ferreira, 
Moore, and Mellish (2007) compared two common 
strategies human tutors used to respond to student errors and 
misconceptions, namely giving-answer assistance and 
prompting-answer assistance. They found that giving-

answer type of assistance occurred more often, but 
prompting-answer type of assistance was more effective for 
learning. Thus, in the context of human tutoring, tutors 
don’t encourage constructive student processing because 
they provide the answer instead of eliciting it from the 
student. When students are working on their own without a 
tutor, they also default to passive strategies. For instance, 
VanLehn (1991, 1998) showed that when students were 
given access to worked-out examples during paper and 
pencil problem-solving activities, they commonly missed 
learning opportunities because they copied from the 
examples rather than trying to generate the problem solution 
without the help of the example.  

The findings on learning from human tutoring and 
related activities have influenced the design of educational 
technologies, including that of tutoring systems. These 
technologies rely on artificial intelligence techniques to 
personalize instruction, in some cases approaching the 
effectiveness of human tutors (Vanlehn, 2011). Based on 
research that students benefit from active processing and 
that reduced assistance may promote it, some work has  
examined the effects of manipulating assistance in computer 
tutors. For instance, in separate experiments, Borracci, 
Gauthier, Jennings, Sale, and Muldner (2019) and Lee, 
Betts, and  Anderson (2015) found that students learn better 
from tutoring systems that provide reduced assistance as 
compared to high assistance. In these studies, assistance was 
operationalized through examples that aided problem 
solving, with the level of similarity between an example and 
its corresponding problem determining how much assistance 
the example provided (high similarity resulted in high 
assistance, low similarity in reduced assistance). We next 
review tutoring systems that provide assistance through 
hints. 

A common way to integrate hints into tutoring systems 
is to use a specific progression of assistance, one that starts 
off general with hints that provide high-level suggestions, 
but that become more specific as students ask for more help 
(Arroyo, Mehranian, & Woolf, 2010; Roll, Aleven, 
McLaren, Ryu, Baker, & Koedinger 2006; Vanlehn, Lynch, 
Schulze, Shapiro, Shelby, Taylor, Treacy, Weinstein, & 
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Wintersgill, 2005). The final hint in the progression is 
commonly referred to as a bottom-out hint, and this type of 
hint essentially provides the answer (e.g., the solution step 
the student needs to produce to make progress in solving the 
problem). To illustrate, Figure 1 shows an example of such 
a hint progression from two established tutoring systems: 
(1) the Andes tutor in the domain of physics (Vanlehn et al., 
2005) and (2) the Cognitive Geometry tutor (Aleven, 
McLaren, Roll, & Koedinger, 2006).  

The rationale behind using a hint progression that starts 
with high-level hints is to encourage students to be 
constructive and so generate the answer with minimal 
assistance from the high-level hint; if students continue 
asking for help, they are given more specific assistance. 
While this type of design mirrors what expert human tutors 
do (i.e., start off more general in their assistance and only 
provide the answer if students are truly stuck), in the context 
of tutoring systems students often abuse help functionalities 
(Aleven et al., 2006; Muldner, Burleson, Van de Sande, & 
VanLehn, 2011; Peters, Arroyo, Burleson, Woolf, & 
Muldner, 2018), a behavior referred to as gaming (Baker, 
Corbett, Koedinger, & Wagner, 2004). In the context of 
systems that make hints available, students who “game” 
tend to quickly and repeatedly ask the tutoring system for a 
hint, without reading the high-level hints, until they reach 
the bottom-out hint in the hint progression, at which point 
they copy the answer the hint provides into the problem they 
are working on.  

Skipping high-level hints in tutoring systems is a well-
documented event (e.g., Arroyo et al., 2010, Muldner et al., 
2011). How does this behavior impact learning? Some argue 
that students still learn because they use the bottom-out 
hints as worked examples, which may promote learning in 
ways that abstract hints do not (Shih, Koedinger & 
Scheines, 2011). This conclusion was reached through a 
data mining analysis. Others have found more mixed 
findings on the utility of either type of hint. To illustrate, 
Muldner et al. (2011) used exploratory methods 
corresponding to Bayesian parameter machine learning to 
investigate the utility of high-level and bottom-out hints. 
Specifically, to model learning from hints, a knowledge-

tracing Bayesian network was used that included nodes 
representing student actions, knowledge of domain 
principles (rules), and hints. The network  encoded the 
probability that students will learn a rule given that they saw 
a certain type of hint (high-level vs. bottom-out). To obtain 
those probabilities, machine learning was applied to learn 
the parameters from data corresponding to students 
interacting with the Andes tutoring system. The findings 
showed that neither type of hint was very effective at 
promoting learning and there was little difference between 
the two types of hints. Specifically, the probability of a rule 
being learned was only at about 25% when a hint was used 
and this value was similar for both bottom-out and high-
level hints.  

The work cited above used exploratory methods to 
investigate the utility of different types of hints. The 
motivation for the present study is that to date there is very 
little experimental work comparing the effect of different 
types of hints on student learning. One exception is the 
study by Chi et al. (2001), albeit this work involves human 
rather than artificial tutors. Specifically, Chi et al. (2001) 
manipulated the type of hint human tutors were allowed to 
give: high-level prompts only vs. detailed hints. The results 
indicated a lack of a difference in learning between the two 
conditions, with similar posttest scores. In contrast to this 
study, our work investigates the effect of different types of 
hints provided by a computer tutor, as we now describe. 

The Present Study 
To test how different types of hints influence learning from 
a tutoring system, we created a computer tutor using the 
Cognitive Tutor Authoring Tools (CTAT) framework 
(Aleven, McLaren, Sewall, & Koedinger, 2006). CTAT 
facilitates the construction of tutoring systems by providing 
tools that a human author uses to create the tutor interface 
and specify the tutor’s behavior. For the latter, a human 
author creates a behavior graph for each problem that 
specifies the tutor’s behavior for that problem (e.g., what 
kinds of hints to show, what feedback to provide on solution 
entries, what to do if a student wants to move on to the next 
problem).  

 
Level 1: Check your trigonometry  
Level 2: If you are trying to calculate the component of a 
vector along an axis, here is a general formula that will 
always work: Let qV be the angle as you move 
counterclockwise from the horizontal to the vector. Let qx be 
the rotation of the x- axis from the horizontal. (qV and qx 
appear in the Variables window.) Then: V_x = V*cos(qV-qx) 
and V_y = V*sin(qV-qx). 
Level 3: (bottom-out hint) Replace cos(20o) with sin(20o) 
 

 
Level 1: Enter the value of the radius of circle A 

Level 2: How can you calculate the value of the radius of 
circle A given the value of the �diameter of circle A? 

Level 3: The radius of a circle is half �of the diameter � 

Level 4: (bottom out hint): The radius of circle A 1⁄4 46.5 � 

 

Figure 1. The hint progression sequence in two established tutoring systems: Andes (left) and the Cognitive Geometry tutor 
(right)  
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The algebra hint tutor 
Our tutor provided students with problems to solve in the 

target domain of algebra (see Figure 2). The problem format 
was adopted from prior work and used variables instead of 
numeric constants (e.g., similar to the approach used by 
Cooper and Sweller, 1987). 

 All problems in the tutor required three to four solution 
steps for the final solution; each step was produced by 
applying algebraic manipulations (i.e., rules) to the prior 
step (or specification if the current step was the first one). A 
single algebraic manipulation corresponded to moving a 
variable from one side of the equation to the other. For 
example, given the equation y = (a+x)b, a manipulation 
required to solve the problem for the variable x involves 
moving the b variable to the other side of the equation, 
resulting in the equation y/b = a+x. Each solution step had 
its own input box in the tutor’s interface that the student 
could type into. The tutor provided two forms of support: 
(1) feedback for correctness and (2) on-demand hints.  

Feedback for correctness was realized by having the tutor 
color a student’s entry as red (incorrect entry) or green 
(correct entry) directly after students indicated they were 
done with the entry by hitting the return key. The tutor was 
flexible in terms of accepting various forms of solutions, 
e.g., recognized x = yab as equivalent to x = a *y(b). This 
flexibility was accomplished through functionality we added 
to the tutor following the algorithm proposed by Shapiro 
(2005). This algorithm involves using mathematical 
calculations to check for equivalence without pre-storing all 
possible versions of a solution, thus saving significant 
development effort as well as computational cost of 
evaluating student solutions. To further scaffold the solution 
entry process, the solution steps had to be entered in the 
order required by the algebraic process and steps could not 

be skipped. Once a problem was done (all steps were 
correctly generated), students clicked the Done button (see 
Figure 1) to move on to the next problem. 

As they were solving problems, students could ask for a 
hint, done by clicking on the Hint button in the interface 
(see Figure 1). We created two different versions of the 
tutor: one version provided only bottom-out hints and the 
other provided only high-level hints. To design the wording 
of the hints, we consulted existing tutoring systems as well 
as online educational sites specific to algebra. To check the 
wording of the hints was appropriate, we conducted several 
rounds of pilots.  

Bottom out hints Bottom-out hints told students the exact 
equation they had to enter (see row 1, Table 1), and thus 
provided high assistance to problem solving. These hints 
were context specific, meaning that if the student entered a 
part of the solution and then asked for a hint, the hint would 
correspond to the next step they had to enter.  

High-level hints High-level hints provided reduced 
assistance because they only prompted the student without 
giving the answer away. There were two levels of this type 
of hint: level 1 prompted the student about the next goal 
they needed to fulfill, but in contrast to a bottom-out hint 
did not specify exactly how to do that (see row 2, Table 1). 
If the student wanted further help, they could click the hint 
button again to access a level 2 hint. This type of hint 
specified the required operation and the variable that would 
be moved as a result (see row 3, Table 1).  

Like the bottom-out hints, the high-level hints were 
context specific, and tailored to the student’s problem-
solving progress. For example, if the next step that had to be 
entered corresponded to the equation y-a = (x+b)/c, the hint 
would tell the student to move the variable c over to the 
other side of the equation using multiplication. In instances 
where two different manipulations were possible, the tutor 
would pick one at random (students could enter the steps in 
whichever order they wished). To avoid the hints sounding 
repetitive, we created several variations of each and the 
tutor cycled randomly through these variations. We chose to 
have the high level hints include prompts for both the 
variable and the operation because both were integral to the 
solving the problem.  

 

 

Figure 2. A problem in the algebra tutor 

 

Table 1 
Examples of hints used in the algebra tutor 

Hint Type Example 

Bottom-out Hint Enter ya=(x/z)+b into the highlighted field. 

High-Level Hint 
(Level 1) 

x isn’t isolated (alone on one side of the 
equal sign). So we must reverse the 
operations acting on the variable(s), starting 
with the outermost ones (i.e. a in y=xa) 

High-Level Hint 
(Level 2) 

For this step, you need to move b to the 
opposite side of the question using addition. 
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We did not include bottom-out hints in the high-level hint 
tutor version because we wanted to investigate whether 
general prompts alone would be sufficient to foster learning.  

Each of the two versions of the algebra tutor were 
populated with the same 12 algebra problems (all required 
3-4 steps for their solutions, of the type shown in Figure 2). 
Both tutor versions logged all student actions in the tutor. 
We used a basic python script to extract the salient 
information from the log files (e.g., number of hints, 
number of errors). 

Participants 
The participants (N = 50) were undergraduate students at a 
Canadian University recruited via Sona and compensated 
with course credit. To be eligible for the study, participants 
could not have taken or be currently enrolled in any 
university-level math courses. 

Materials 
To assess algebra knowledge, we used a paper and pencil 
algebra pretest and posttest from our prior research that 
included 11 questions (Borracci et al., 2019). The tests were 
equivalent (only variable names were changed between 
them). The tests were scored out of 40, with the points for a 
given question corresponding to the number of rule 
applications needed for the question’s canonical solution. 
For instance, if a question required three rule applications 
for its solution, its point value was three. This scoring 
method is more sensitive than marking a question as correct 
or incorrect, given that each question required multiple rule 
applications. 

Several other questionnaires were used in the study to 
measure personality traits but we do not describe them as 
we do not include analysis from their data here. 

Design 
We used a between-subjects design with two conditions: 
high-level hints (participants used the version of the alebra 
tutor that included only high-level hints) and bottom-out 
hints (participants used the version of the tutor that included 
only bottom-out hints). As noted above, the problems solved 
in both conditions were identical, and the only difference 
between the two conditions was the type of hint available in 
the tutor. 

Procedure 
Each session was conducted individually and lasted 
approximately 90 minutes (the duration varied slightly 
based upon the amount of time participants spent on the 
various components). The procedure for the two conditions 
was the same. 

Participants first completed the algebra pretest (they had 
up to 20 minutes to do so). They then filled in a 
demographics questionnaire and were assigned to their 
condition. Participants initially were assigned to a given 
condition in a round robin fashion; after about 10 

participants, we began using a matching procedure based on 
pretest score with the goal of equalizing pretest scores 
between the two conditions, while maintaining similar 
sample size between the two conditions1. The experimenter 
then introduced participants to the algebra tutor, and 
explained its various features (e.g., that feedback for 
correctness was provided, and that all solution steps had to 
be correctly generated for a given problem before moving 
on to the next problem). Participants were told to treat this 
part of the study as if it were a homework situation: they 
had some problems to solve and were doing so to prepare 
for an upcoming test. Once participants confirmed they 
understand how to use the tutor, they were given 40 minutes 
to complete the 12 problems in their respective tutor 
version. Participants then completed the algebra posttest (20 
minutes), and the personality questionnaire (10 minutes). 

Results 
The analysis is based on 47 participants. We excluded 

from the analysis three participants who were at ceiling on 
pretest, i.e., 95% or higher.  

Does type of hint influence learning? 
The descriptives for the pretest and posttest are in Table 1. 
Before checking if the type of hints influenced how much 
students learned from pretest to posttest, we verified there 
was no significant difference in pretest scores between the 
two conditions – this was the case (p = .24).  

A between-subjects ANCOVA with pretest as the 
covariate, posttest as the dependent variable, and condition 
(high-level hints, bottom-out hints) as the independent 
variable did not find a significant effect of condition, F(1, 
44) = .1, p = .75 and the effect size was very small, ηp

2 < 
.01. As shown in Figure 3, the mean posttest scores adjusted 
by the pretest through the ANCOVA were very similar in 
the two conditions. There was also no significant effect of 
condition on performance as measured by the number of 
errors made during problem solving (we extracted this 
information from the log files). Specifically, as expected on 
average participants made more errors with high-level hints, 
M = 29.2, SD = 20.1, as compared to with bottom-out hints, 
M = 23.0, SD = 15.7, but this difference was not significant, 
t(45) = 1.2, p = .25. 

Thus, we did not find evidence that the type of hint 
provided influenced either learning from the algebra tutor or 
overall performance. However, it may be the case that that 
the number of hints participants accessed influenced 
learning differently depending on the condition. The next 
analysis investigates this possibility.  

                                                             
1 The pretests were graded during the experimental session but 

in a separate room to avoid making participants uncomfortable. To 
save time, we used a coarser grading scheme than for the present 
analysis (where each question was assigned one point it was fully 
correct and zero points otherwise). 
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What is the relationship between number of hints 
accessed and learning in each condition? 

On average, participants requested more hints in the 
bottom-out hint condition (M = 15.6, SD = 17.5) than in the 
high-level condition (M = 13.4, SD = 15.1). This finding is 
not surprising given that the bottom-out hints facilitated 
problem solving by telling the students precisely what to do. 
To get a preliminary view of how the number of hints 
accessed influenced learning in each condition 
(operationalized as posttest score – pretest score), we plotted 
the relationship between these two variables for each 
condition. As shown in Figure 4, the relationship between 
the number of hints accessed and learning in the high-level 
hint condition is positive: the more participants accessed the 
high-level hints, the more they learned. In contrast, the slope 
of the line characterizing this relationship in the bottom-out 
hint condition is almost flat, suggesting there is little 
association between learning and number of bottom-out 
hints accessed.  

We formalized this analysis by conducting a regression. 
In preparation, we dummy coded the condition variable so 
that the bottom-out hint condition was assigned the value 0 
and the high-level hint condition the value 1 (the choice of 
which variable to assign the value 1 is arbitrary and does not 
impact the results). We proceeded with the regression by 
entering posttest as the outcome variable, and the following 
four predictors: pretest, condition, number-of-hints 
requested, and number-of-hints requested x condition.  

The overall model we obtained, shown in Table 2, was 
significant, F(4, 42) = 11.3, p < .001, R2 = .52. Of primary 
interest is the interaction term (i.e., number-of-hints x 
condition), which informs on whether condition influenced 
the impact of number of hints requested on posttest score. 
Since the interpretation of the other coefficients is affected 
by the interaction term (Braumoeller, 2004), which 
essentially renders them “baseline” slopes (Grace-Martin, 
2000), they are not discussed here. The interaction is modest 
but significant and indicates that overall, the number of 
hints accessed had a stronger positive relationship with 
posttest for high-level hints, as compared bottom-out hints. 
This conclusion is based on the fact that the coefficient for 
the interaction term is positive, indicating that when 
students were given high-level hints (recall this was 
dummy-coded as 1), their posttest score increased by the 
corresponding amount, controlling for the influence of the 
other predictors. 

 
Table 2 
Linear regression coefficients  

Predictors B β t p 
# hints x condition  .34 .4 2.3 .022 
# hints -.37 -.57 3.6 .001 
condition -5.4 -.26 1.7 .091 
pretest .32 .43 3.2 .003 

B = Unstandardized Coefficients 
β = Standardized Coefficients 

 

Do high-level hints promote more active processing 
than bottom-out hints? 
High-level hints offer reduced assistance because they don’t 
tell the student the answer directly. Thus, these types of 
hints should promote more constructive processing on the 
part of the student. One way to check this is to analyze the 
amount of time students spent on a solution entry after they 
saw a high-level hint and compare that to the other 

Table 1 
Descriptive statistics for each condition 

 Bottom-out hints  
(n = 24)  

High-level hints  
(n = 23) 

 M SD M SD 

Pretest (/40) 10.8 14.2 15.7 14.3 

Posttest (/40) 26.2 11.3 28.1 9.5 

     
  

 

 
Figure 3. Posttest scores in the two conditions (adjusted 
by the pretest covariate); posttest was out of 40 
 
 

 
Figure 4. Relationship between number of hints accessed 
and learning for each condition 
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condition in which students only saw bottom-out hints. 
Students spent longer generating a solution entry after 
seeing a hint in the high-level hint condition (M = 18.0 sec, 
SD = 6.1) than after seeing a hint in the bottom-out hint 
condition (M = 21.2 sec, SD = 7.1). This trend did not reach 
significance but approached it after controlling for pretest 
score, F(2, 34) = 2.8, p = .1, ηp

2 = .08. While this result is 
somewhat expected as the high-level hints provided less 
information, it does open up the possibility that students in 
the bottom-out condition were not actively processing the 
contents of the hint before asking the tutor to check their 
answer (i.e., by pressing the enter button as soon as they 
finished entering the solution step).  

Another way to check if hints are influencing student 
processing is to analyze how long students waited after 
entering a solution step (and receiving feedback on it)  
before pressing the hint button. If there are differences 
between conditions, this may suggest different levels of 
processing taking place for each group. Note that the 
alternative action after entering a solution step is to enter 
another solution step – here we focus on the subset of 
actions after a solution entry pertaining to hints only 
because are interested in conditional effects of hints. When 
students requested a hint after generating a solution entry, 
they waited significantly longer to do so in the high-level 
condition (M = 17.6 sec, SD = 23.9) as compared to the 
bottom-out condition (M = 6.3 sec, SD = 3.5), F (2, 37) = 
5.2, p = .029, ηp

2 = .12 (controlling for pretest does not 
affect this result). The large standard deviation in the high-
level condition implies there is a lot of variability in this 
condition. To ensure extreme values were not affecting the 
result, we removed 3 outliers flagged by SPSS and re-ran 
the analysis. The results remained significant and so the 
outliers were not influential.  

Discussion 
The present study investigated the utility of two types of 
hints in the context of a tutoring system: bottom-out hints 
that told students exactly what step was needed to proceed 
with problem solving, versus high-level abstract hints that 
merely suggested at what was needed to generate the 
corresponding problem solution step. Thus, the two types of 
hints provided high vs. reduced assistance to problem 
solving, respectively. We did not find evidence that either 
type of hint had a differential impact on learning and in fact 
the learning outcomes were very similar between the two 
conditions. While we recognize that conclusions can not be 
drawn from non-significant results, these findings echo prior 
experimental results (e.g., Chi et al., 2011). Our findings 
also echo exploratory studies using machine learning to 
investigate student learning from different types of hints 
(Muldner et al., 2011) - this latter work also did not find a 
difference in learning from the two types of hints.  

If high-level hints are not more effective for learning, 
are they a less efficient instructional tool because they take 
longer to process and thus increase time on task? When we 
checked total time spent in each condition, we did find a 

trend that students overall took longer in the high-level hint 
condition (while this did not reach significance, that may be 
due to lack of power given the high variability). If high-
level hints do not produce more learning than bottom out-
hints but are less efficient, then that is an argument for not 
using them. Our subsequent analysis, however, suggested a 
more nuanced view of each type of hint’s impact, where the 
number of hints students accessed interacted with the type 
of hint available to influence learning. It may be that 
students benefited from both types of hints, but that if they 
accessed too many bottom-out hints, they failed to learn 
effectively because they could not resist passively copying 
from the hints. Prior research in example-based learning 
found this type of pattern, with students copying 
indiscriminately from examples (VanLehn, 1998). In 
contrast to bottom-out hints that promote more passive 
cognitive processing, high-level hints in general may 
encourage learning because they promote active processing 
of the hint content, needed to infer the additional 
information not provided by the hint. While we did not find 
strong evidence in this regard, we found some indications: 
(1) the number of hints accessed was positively associated 
with learning in the high-level hint condition, and (2) 
students waited longer in the high-level condition to request 
a hint, suggesting they were less reliant on assistance 
provided by the tutoring system and thus more constructive.  
Promoting constructive processing is generally important, 
but may be especially challenging to realize when students 
are interacting with tutoring systems rather than human 
tutors due to accountability (i.e., students may feel less 
accountable with technologies than humans), although this 
conjecture awaits validation through future studies.  

A limitation of our study is that we only measured short-
term learning. High-level hints require students to process 
the material, possibly using common-sense or overly 
general reasoning to infer new rules (Vanlehn, 1991). The 
benefit of these types of hints may not show up until some 
time has passed, and so a delayed post-test would be 
beneficial to include in future studies to measure retention in 
each condition. Another limitation is the modest sample 
size, highlighting the need for replication. In general, given 
the relatively little research on what types of hints best 
promote learning in tutoring systems, more work is needed 
to validate and extend our findings.  
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Abstract 

It is often assumed that cross-linguistically more prevalent 
distinctions are easier to learn (Typological Prevalence 
Hypothesis - TPH). Prior work supports this hypothesis in 
phonology, morphology and syntax but has not addressed 
semantics. Using an Artificial Language Learning paradigm, 
we explore the learnability of semantic distinctions within the 
domain of evidentiality (i.e. the linguistic encoding of 
information sources). Our results support the TPH, since the 
most prevalent evidential system was learned best while the 
most rare evidentiality system yielded the worst learnability 
results. Furthermore, our results indicate that, cross-
linguistically, indirect information sources seem to be marked 
preferentially (and acquired more easily) compared to direct 
sources. We explain this pattern in terms of the pragmatic need 
to mark indirect, potentially more unreliable sources over 
direct sources of information. 

Keywords: evidentiality; artificial language learning; 
learnability; semantics; information sources 

Learnability and the Typological Prevalence 

Hypothesis (TPH) 

It is often assumed in the literature that linguistic 

distinctions that are encountered more frequently across 

different languages share some characteristics that make 

them easier to learn than others (Jacobson, 1971; Rosch, 

1972; Clark, 1976; Pinker, 1984). This idea has been captured 

effectively by Gentner and Bowerman’s (2009, p.467) 

Typological Prevalence Hypothesis (TPH): “All else being 
equal, within a given domain, the more frequently a given 

way of categorizing is found in the languages of the world, 

the more natural it is for human cognizers, hence the easier it 

will be for children to learn”. Gentner and Bowerman (2009) 

tested this hypothesis within the spatial domain, comparing 

how English-speaking and Dutch-speaking children acquire 

their native language’s support prepositions. English and 

Dutch differ in the number of prepositions they use to express 

spatial support: Dutch utilizes three different prepositions 

(op, aan, om) to express the same meanings that English 

encodes with the single preposition on. Importantly, these 

two support systems differ in their typological prevalence, 

with the English preposition system being more typologically 

common. The TPH therefore predicts that the English 

preposition system should be more easily learned than the 

Dutch system. Gentner and Bowerman’s results support this 

prediction. One issue with this conclusion, however, is that 

the slower acquisition rate could be due to the increased 
number of subcategories found in Dutch compared to English 

as opposed to an inherent learnability asymmetry of semantic 

categories per se. This language asymmetry complicates the 

interpretation of Gentner and Bowerman’s results and hence 

the evidence in favor of TPH. 

In this paper, we offer a new test of TPH using an Artificial 

Language Learning Paradigm. This type of experimental 

design often requires participants to learn different versions 

of a target language that differ minimally from each other in 

terms of a grammatical or lexical feature (see Folia, Uddén, 

de Vries, Forkstam, & Petersson, 2010 for a review). 

Typically, this design includes an initial learning phase in 
which learners are exposed to the grammar/lexicon of the 

artificial language, usually with the help of visual stimuli. 

The learning phase is followed by a test phase in which the 

extent to which participants learned the linguistic target is 

assessed. This paradigm offers a unique opportunity to 

explore the participants’ learning process in relation to a 

specific linguistic feature of interest (Fedzechkina, Newport 

& Jaeger, 2016). By having participants learn minimally 

different versions of the same artificial language, one can 

bypass the role of frequency in the learnability of attested 

systems in individual languages, such that any learnability 
pattern that surfaces can be more directly tied to the inherent 

characteristics of the cross-linguistic distinction that is being 

explored. Moreover, it is possible to have adults learn the 

target artificial language which in turn eliminates the 

possibility that any learnability patterns observed could be 

due to cognitive-developmental limitations in the learners 

themselves. 

Previous studies using an Artificial Language Learning 

paradigm have confirmed that cross-linguistically common 

distinctions are learned more easily than less common ones 

in the domains of syntax, phonology and morphology 
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(Newport & Aslin, 2004; Wonnacott, Newport, & Tanenhaus 

2008; Merkx, Rastle, & Davis, 2011; Culbertson, 2012; 

Tabullo, Arismendi, Wainselboim, Primero, Vernis, Segura, 

Zanutto & Yorio., 2012; Culbertson & Newport, 2015; ). 

Nevertheless, within the domain of semantics (which was the 
main focus of TPH), this hypothesis remains to be tested 

systematically. Here we address this open issue. We focus on 

a semantic domain that is not grammaticalized in English and 

can be taught to adults within an Artificial Language 

Learning paradigm without native language interference: the 

domain of evidentiality, i.e., the linguistic encoding of 

information source.  

Evidentiality and TPH  

Languages differ in the way they encode evidentiality: some 

languages like English make use of lexical means such as 

verbs (e.g., see, hear, infer) or adverbs (e.g., allegedly, 
reportedly) to mark information sources. Other languages use 

a set of grammatical morphemes to indicate information 

sources in an utterance. There are three common types of 

evidential morphemes depending on which information 

source is marked: Visual (firsthand/perceptual evidence), 

Inferential (inference based on evidence), and Reportative 

(hearsay) (Willett, 1988; Papafragou, Li, Choi & Han, 2007; 

deHaan, 2013b; Aikhenvald, 2018). In the Wanka Quechua 

examples below, -mi in (1) marks the speaker’s direct visual 

experience of the event, -chr- in (2) marks an inference drawn 

by the speaker and –shi in (3) marks another person’s report 
about what happened (Aikhenvald, 2004):  

 

(1) Chay-chruu-mi  achka wamla-pis walashr-pis alma-ku-

lkaa-ña. 

    this-LOC-DIR.EV many girl-TOO boy-TOO bathe-

REEL-IMPF.PL-NARR.PAST. 

   ‘Many girls and boys were swimming’ (I saw them). 

 

(2) Daañu pawa-shra-si ka-ya-n-chr-ari. 

    Field finish-PART-EVEN  be-IMPF-3-INFR-EMPH. 

   ‘It (the field) might be completely destroyed’ (I infer). 

 
(3) Ancha-p-shi wa’a-chi-nki wamla-a-ta. 

     too.much-GEN-REP cry-CAUS-2 girl-1P-ACC. 

 ‘You make my daughter cry too much’ (they tell me). 

 

Across languages that grammatically mark only one type 

of information, evidential systems that involve only 

Reportative morphemes are the most widespread ones; 

systems that use an indirect morpheme to mark inference or 

reports are less frequent (Papafragou et al., 2007; deHaan, 

2013a; Aikhenvald, 2004, 2018; Ünal & Papafragou, 2018;). 

Evidential systems that only have Visual morphemes are rare  
(Aikhenvald, 2018). The reasons for this asymmetry have not 

been discussed extensively but might be connected to the 

pragmatic need to mark indirect, probably unreliable sources 

but not direct/perceptual, and hence more reliable, experience 

(Dancy, 1985; and discussion below). 

Here we used an Artificial Language Learning paradigm to 

compare the learnability of three evidential systems (see 

Table 1): 1) a system in which a grammatical morpheme is 

used only when the speaker has full direct visual access to 

what happened (Visual System), 2) a system where a 
grammatical morpheme is used only when the speaker infers 

what happened based on some visual cues (Inferential  

System), and 3) a system in which a grammatical morpheme 

is used only when the speaker obtains information by another 

person (Reportative System). Based on the typological 

frequency patterns for evidential systems reviewed earlier, 

the TPH predicts that the Reportative system should be the 

most learnable and the Visual system the least learnable (with 

the Inferential system falling somewhere in-between). The 

experiment that follows tested these predictions.  

 

Table 1: Evidential Systems. 

Experiment 

Our experiment consisted of two phases following the 

general Artificial Language Learning experimental design: a 
Training Phase and a Testing Phase.  In the Training Phase, 

participants were exposed to one of the three evidentiality 

systems in Table 1 and had to figure out when the evidential 

marker was used. In the Testing Phase participants were 

evaluated on how well they had learned the target 

evidentiality system through a Production and a 

Comprehension Task.  

 

Participants. We recruited 101 participants between the ages 

of 18 and 22. All participants were undergraduate students at 

the University of Delaware and were enrolled in an 

Introductory Psychology course that awarded credit for their 
participation. 

 

Stimuli and Procedure. For the Training Phase, we filmed 

21 videos in three versions each, with each version 

corresponding to a type of information access (Visual 

Perception, Inference, Report). In each video there were three 

characters; across videos, they were played by the same three 

female undergraduate research assistants. The roles of these 

characters were consistent across the videos: one of the 

characters (henceforth the “Agent”) performed an event 

using some materials and then put these materials away. The 
second character accessed the event in one of several ways 

and would later describe the event (henceforth the 

“Speaker”). A third character manipulated the Speaker’s 

access to the event (e.g., either allowed the Speaker to watch

Evidential 

System 
Speaker’s Information Access 

 
Visual 

Perception 
Inference  Report 

Visual morpheme   

Inferential  morpheme  

Reportative   morpheme 
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Figure 1: Sample screenshots from one Training Phase video shown in 3 versions corresponding to Access types: (A) Visual 

Perception, (B) Inference, (C) Report. Across Access types the video ended with the Speaker producing a sentence (Panel 5) 

that either included or omitted an evidential (e.g., “She drawing copiedga”, “She drawing copied”). 

 

the event or blocked her visual access for the complete 

duration or part of the event). The setting was identical for all 

the videos: the Agent and the Speaker were sitting on 

different sides of a table while the third character stood 

behind them in full view of the table. Each video was 

approximately 15 seconds long. At the end, the Speaker 

turned to the camera and described what happened. At that 
point, the video stopped and a speech bubble appeared with 

an artificial language sentence, and stayed there for 7 seconds 

before the next video began. 

Figure 1 shows a sample event in which the Agent copied 

a drawing (the Speaker is pictured in a blue shirt). In the 

Visual Perception version (series A), the Speaker had 

continuous direct visual access to the event (A1 began with 

occluded access to ensure that the hands-over-eyes would not 

be an easy-to-detect difference among access types, but the 

hands are removed from the Speaker’s face immediately). In 

the Inference version (series B), the Speaker had visual 
access only for the beginning and the end of the event (panels 

1 and 4), but her access was blocked for the middle portion 

(panels 2 and 3); therefore, she could infer what happened 

from the last stage of the event. In the Report version (series 

C), the Speaker’s visual access was blocked throughout the 

event (panels 1-3); later (panel 4), the Speaker got a report  

about what had happened from the third character. All videos 

ended by displaying the Speaker’s artificial-language 

description of what happened within a speech bubble (panel 

5). The artificial language shared the same vocabulary with 

English (for simplicity’s sake) but had a different syntactic 

structure (Subject-Object-Verb) and lacked function words. 
A novel verb-final morpheme, ga, appeared when 

appropriate as a marker for evidentiality. 

We designed 3 evidential systems to be acquired (Visual, 

Inferential, Reportative) by having the Speaker describe only 

one type of Access with an evidentially marked sentence (e,g, 

She drawing copiedga, as in Figure 1) and include no marker 

for the other two Access types. For instance, for the Visual 

System, only the sentences in the Visual access versions 

included -ga. Then for each evidential system, we created 3 

basic lists for the Training Phase (for a total of 9 lists): each 

basic list contained 21 videos, with 7 videos per Access type. 

Across lists, the videos rotated through each Access type. For 

instance, if the video in Figure 1 was shown in the Visual 

Perception version for list 1, then the same video was shown 

in the Inference version for list 2 and the Report version for 

list 3. The presentation order of the videos was randomized 
across lists.  

We randomly assigned participants to one of 3 conditions 

depending on the System they were exposed to (n = 34 for 

the Inferential and Reportative System, and n=33 for the 

Visual System). Each participant was given one of the 9 

stimulus lists. We tested participants in small groups, in a 

dimly lit, quiet room. Participants were told that they would 

watch some videos and one character would describe the 

videos in an “alien language”. This language would share 

some words with English but would be different in several 

ways and would contain a special marker, ga. Their task was 
to pay attention to when ga appeared in order to try and figure 

out what it meant. 

When the Training Phase was over, the Testing Phase 

began. Participants had to complete both a Production and a 

Comprehension task. For these tasks, we filmed new videos 

that were similar to those for the Training Phase (except for 

some features of the language in the event descriptions – see 

below).  

For the Production task, we used 12 new videos, each 

filmed in 3 different versions corresponding to the 3 Access 

types. We arranged these stimuli into 3 basic lists, with each 

list containing 12 videos, 4 per Access type. As in the 
Training Phase, the lists were created by rotating each video 

through the three different Access types. For each basic list, 

three randomized presentation orders were created, resulting 

in 9 presentation lists in total. Within each condition, 

participants were assigned to one of these lists. As mentioned 

already, the structure of the videos in the Production task was 

identical to the Training Phase but when the speech bubble 

appeared at the end, the evidential marker was replaced by a 

gap next to the verb.  Using an answer sheet, participants had
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Figure 2. Accuracy Means Across Systems. The composite score represents a combined Production/Comprehension score. 

Error bars represent ± 1 S.E. 
 

to write down the verb either with or without ga depending 

on whether they thought it was needed to correctly complete 

the character’s phrase. 

    For the Comprehension task, we used 36 new videos, each 

filmed in 3 different versions corresponding to the 3 Access 

types. We arranged these stimuli into 3 basic lists, with each 

list containing 36 videos (12 per Access type) using the 

rotation method described above. Similarly to the Production 

task, for each of these basic lists, 3 lists with a unique 

randomized presentation order were created (9 lists in total). 

In half of the videos within each list (and within each Access 
type), the Speaker erroneously used the marker ga: she either 

failed to use the marker when she should have or used it for 

the wrong types of Access. In the remaining videos, the use 

of the marker was correct. Within each condition, participants 

were assigned to one of the presentation lists. The 

participants’ task was to write ‘yes’ or ‘no’ in their response 

sheet to indicate whether or not they thought the character 

was using the marker correctly. At the end of the experiment, 

we asked participants to write down what they thought that 

the marker ga meant and when it was/was not used. 

Results 

Participants’ responses were coded for accuracy. We 

calculated the accuracy means for each System. In addition, 

we averaged each participant’s Production and 

Comprehension score yielding a Composite accuracy mean 

across tasks. We subsequently calculated a Composite Mean 

per System. The results can be seen in Figure 2. 

For the Production task, a one-way ANOVA with System 

as a factor revealed a main effect of System (F(2,98)= 4.771, 

p<0.05). Pairwise comparisons using Bonferroni corrections 

revealed a significant advantage of the Reportative over the 

Visual System (p=.014) but no significant difference between 
either the Inferential and the Visual System (p=1.0), or the 

Inferential and the Reported System (p=.058).  

For the Comprehension task, the same ANOVA revealed a 

main effect of System (F(2,98)=6.509, p<0.01). Pairwise 

comparisons (Bonferroni corrections) showed an advantage  

 

of the Reportative System over both the Inferential (p=0.01) 

and the Visual System (p=.005). However, there was no  

statistically significant difference between the Visual and 

Inferential System (p=1.0).  

    Lastly, a one-way ANOVA conducted on composite 

Production and Comprehension means revealed an effect of 

System (F(2,98)=6.535, p<0.01). Pairwise comparisons 

(Bonferroni corrections) revealed again a significant 

advantage of the Reportative System over both the Visual 

(p=.004) and the Inferential System (p=0.01). 

Participants’ answers about the meaning of the marker reflect 
the results’ pattern: out of the 34 participants exposed to the 

Reportative System, 21 correctly associated the marker with 

reportative access, specifically alluding to the speaker’s 

mental state by mentioning that she “was told” about the 

event. Of the 33 participants of the Visual system, only 12 

associated the marker with speaker’s direct visual experience 

of the event. only Similarly, only 9 out of the 34 participants 

exposed to the Inferential System correctly associated the 

marker with the character inferring the action. Across 

systems, participants that did not identify the correct marker 

meaning, associated the marker with some type of 
grammatical distinction (e.g., singular/plural forms, past or 

completed actions, articles such as the/a) or associated it with 

the incorrect type of access. Overall, these responses show 

that participants associated evidential meanings with the 

marker, but they did so much more consistently for the 

Reportative System. 

Discussion 

Our goal was to test the assumption that the frequency of 

cross-linguistic semantic patterns is related to the inherent 

learnability of these patterns, an assumption captured in 

Gentner and Bowerman’s (2009) TPH. Using an Artificial 
Language Learning paradigm, we set out to compare the 

learnability of evidential semantic systems, focusing on those 

that encode a single type of information source (Table 1). The 

most typologically common evidential system within this 

group (and also the single most prevalent type of evidential 

system in general; Aikhenvald, 2018) is the Reportative 

system in which a marker is used only for the least direct type 
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of access to information – namely, the cases when the speaker 

conveys information reported by another person. The least 

common system is the Visual system in which only direct 

visual access to an event is marked morphologically. In our 

study, as predicted by TPH, the Reportative system was 
learned more easily by our participants compared to the 

Visual system. Our experiment offers strong evidence for the 

conclusion that highly frequent semantic distinctions are 

more learnable than less frequent ones. Furthermore, it adds 

to previous studies that have studied learnability with the 

same methodological paradigm within the domains of syntax, 

phonology and morphology. 

Not all aspects of our data are compatible with the 

predictions of TPH. Specifically, even though exclusive 

encoding of visual evidentials is rare, and there is a broad 

preference to mark non-visual/indirect over visual/direct 

sources cross-linguistically (Aikhenvald, 2018), the 
Inferential and Visual systems were equally learnable in our 

data. A possible explanation for this outcome lies with the 

fact that our Inference videos contained strong visual clues to 

what happened, bringing this type of information access 

closer to a direct perceptual experience than to an indirect 

inference on the speaker’s part. This explanation is in line 

with several findings from a recent study by Ünal, Pinto, 

Bunger and Papafragou (2016). In that study, when English 

speakers had to state how they had found out about an event, 

they stated having seen events that they had experienced in 

their entirety. However, when they had only seen the 
beginning and aftermath of an event and had to “fill in” the 

event from these visual cues, their statements varied. Closer 

inspection suggested that, when the visual cues were 

indeterminate, participants consistently stated that they had 

inferred the event; but when the visual cues were more 

determinate and highly constrained the inference, 

participants were equally likely to say that they had seen vs. 

inferred the event. The authors proposed that there are several 

varieties of inference, and that stronger, more constrained 

(and thus more secure) inferences from visual cues might be 

difficult to distinguish from purely perceptual experience. 

These varieties of inference had implications for evidential 
language: Ünal et al. (2016) found that these different types 

of inference impacted the use of evidential morphology by 

speakers of Turkish, a language that grammaticalizes 

evidentiality. Furthermore, inference types had effects on 

memory: building on classic studies showing that people 

often have a false memory of having actually experienced 

events that they have only inferred (Johnson, Hashtroudi, & 

Lindsay, 1993; Hannigan & Reinitz, 2001; cf. Strickland & 

Keil, 2011), Ünal et al. (2016) found that, across English and 

Turkish speakers, such misattributions to perception were 

more common when inferences were strongly constrained by 
visual cues and thus harder to distinguish from pure 

perception. This line of reasoning leads to the prediction that 

replacing Inference scenarios in our paradigm with less direct 

cases of inference from visual cues (e.g., footsteps on snow) 

should allow the learnability difference between the Visual 

and Inferential systems to emerge. 

On a broader level, our results raise questions about the 

origins of the typological generalizations in the domain of 

evidentiality. According to the basic observation motivating 

the present work, across languages, the least formally marked 

source of information is visual, or direct access (Aikhenvald, 
2018, a.o.). Why should this be so? One possibility is that 

“the tendency to mark direct, or visual, or sensory evidentials 

less than others may reflect the primacy of vision as an 

information source” (Aikhenvald, 2018, p.16). Direct 

perceptual experience of an event is regarded as a very 

reliable source because it is assumed to correspond to reality 

(Dancy, 1985). Additionally, developmental research 

suggests that children draw the connection between seeing 

and knowing from early on (Pillow, 1989; Pratt & Bryant, 

1990; Ozturk & Papafragou, 2016), which highlights the the 

primacy of visual perception as an information source. 

Relatedly, indirect sources of information such as inference 
or reports are deemed more peripheral and less reliable in the 

sense that the former may be based on incomplete premises 

while the latter depends on the informant’s reliability (Dancy, 

1985; Koring & De Mulder, 2014; Papafragou et al., 2007; 

Matsui & Fitneva, 2009; McCready, 2015;   Aikhenvald, 

2018; Wiemer, 2018; ). This has been found to be true even 

for languages that do express information access through 

perception verbs and not through obligatory grammatical 

morphemes (Lesage, Ramlakhan, Toivonen & Wildman, 

2015). According to some researchers (Sperber, Clement, 

Heintz, Mascaro, Mercier, Origgi & Wilson, 2010), human 
cognition uses epistemic vigilance as a mechanism to avoid 

unreliable sources and the risk of being misinformed. 

However, exercising epistemic vigilance could entail an 

additional processing cost: listeners would have to give up 

the assumption that the communicative exchange they are 

engaged in offers truthful, informative contributions and 

would need to evaluate not only the actual information they 

receive but also their interlocutor’s reliability and intentions. 

Thus, pragmatic pressures to mark sources of information 

would affect indirect and probably unreliable sources more 

than direct/perceptual, and hence more reliable, experience. 

If this perspective is on the right track, our results would 
support a more nuanced version of TPH. Recall that, on 

Gentner and Bowerman’s original proposal, the roots of TPH 

lie in the cognitive naturalness of the semantic classes that 

the learner acquires. Here we have proposed a broadened 

notion of naturalness that also includes pragmatic (and not 

only conceptual) factors. In our studies, adult learners 

acquired semantic systems of varying cross-linguistic 

frequency but both the frequency patterns and the learnability 

outcomes were pragmatically (not conceptually) motivated.  

If the frequency patterns for linguistic evidentiality 

systems reflect the pragmatic need for information source 
marking, as we have suggested, a further prediction follows: 

it might be possible to obtain similar learnability patterns 

even if we used a non-linguistic marker to encode 

information source (e.g., a pictorial symbol). We are 

currently pursuing this possibility in ongoing work. 
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Not All Exceptions Are the Same: Different Memory Demands for Differentiation, 

Isolation and Odd-ball Exceptions  
 
 

Abstract 

There is an influential body of research arguing that category 
exceptions have a special status in memory compared to 
regular category members. However, the memory advantage 
for category exceptions has typically been demonstrated using 
one very specific category structure (Differentiation). Here we 
present a study examining whether the reported memory 
advantage is specific to this particular structure or whether it 
can be generalized to other kinds of exceptions (Isolation and 
Odd-ball). We compare three different types of category 
exceptions that have varying memory demands due to 
different levels of feature binding required for accurate 
categorization. The results suggest that only those exceptions 
that require binding together multiple features are 
remembered better than regular, rule-following items. The 
present work clarifies that the memory advantage for 
exceptions characterizes certain kinds of exceptions rather 
than exceptions in general.  
 
Keywords: category exceptions; rule-plus-exception; binding 
requirement 

Introduction 

Whales are mammals. Penguins are birds. Tomatoes are 

fruit. Many categories include items that look different, 

behave differently, or lack important qualities that define the 

majority of members of the category. We refer to these 

items as exceptions, because they violate our expectations 

about the category.  

Since the goal of categorization is to encode key aspects 

about the members of the category, it is reasonable to ask: 

How are exceptions, items that violate those key aspects, 

learned and represented? 

Memory Advantage for Exceptions  

There is an influential body of research arguing that 

category exceptions have a special status in memory. 

Palmeri and Nosofsky (1995) demonstrated that exceptions 

to a category rule are remembered better than the items that 

follow that rule. This initial finding of a memory advantage 

for category exceptions is supported by a number of 

subsequent category learning studies (Sakamoto & Love, 

2004, 2006; Davis, Love & Preston, 2012) and found to be 

in accordance with the predictions of several influential 

models of category learning: RULEX (Nosofsky, Palmeri & 

McKinley, 1994) and SUSTAIN (Love, Medin, & Gureckis, 

2004).  

Work on this topic in the categorization literature was 

preceded by studies in memory (Von Restorff, 1933) and 

schema research (e.g. Rojahn & Pettigrew, 1992; Stangor & 

McMillan, 1992), where an advantage in memory for 

exception items has long been established. Although the 

approach (both in terms of methodology and primary 

research questions) differed between the memory and 

categorization literatures, the fact that these findings 

paralleled each other further strengthen the view that there is 

a general advantage in memory for information that does 

not fit in with salient knowledge structures.  

What Makes (Some) Category Exceptions 

Memorable? 

Although a memory advantage for category exceptions 

seems to be well established, the nature of the effect is not 

well understood. One obstacle to understanding what makes 

category exceptions more memorable is that previous 

studies focused on one very specific type of category 

structure. We refer here to this structure as the 

Differentiation case (see Figure 1).  

Although exceptions are not limited to the Differentiation 

case, the vast majority of influential work on this topic 

(Palmeri & Nosofsky, 1995; Sakamoto & Love, 2004; 

Davis, et al., 2012) has studied this kind of exception. One 

reason the Differentiation structure has received so much 

attention is that it presented an interesting challenge for 

models of category learning to explain. And so, researchers 

often selected structures with the purpose of evaluating or 

comparing models of categorization, and were not 

necessarily concerned with representing all types of 

exceptions. 

Thus, it remains unclear whether the reported memory 

advantage for category exceptions is specific to this 

particular structure or whether it can be generalized to other 

kinds of structures. In what follows, we describe how the 

difference in category structures may affect memory 

demands.  

Different Memory Demands for Differentiation, 

Isolation and Odd-ball Exceptions 

Figure 1 illustrates three different structures of exception 

items: Differentiation, Isolation and Odd-ball exceptions. 

All three types of exceptions (a) violate the category rule 

and (b) are dissimilar to other items in their own category. 

However, they differ in how much they share with the 

contrasting category members.  

Differentiation exceptions, the most commonly used 

structure, are highly similar to items of the contrasting 

category. Not only do they follow the contrasting category 

rule, but they also share other features with items of the 

contrasting category. Due to its specific structure, this kind 

of exception cannot be categorized correctly on the basis of 

any one individual feature.  

Since it is not enough to remember one or even multiple 

isolated features, Differentiation exception features have to 

be bound together and committed to memory. This is 

because each feature of the exception (in our case, the color, 

the size and the shape) has a competitor in the contrasting 
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category, thus making only the whole configuration (but not 

individual features) sufficient. For example, the past tense 

of the irregular verb teach (taught) is very different from 

that of similar sounding regular verbs (reach, breach, or 

preach), but is similar to that of a phonetically different verb 

(e.g., think).  

 

 
 

Figure 1: Three different types of exception items for 

categories of blue circles and orange squares. Exceptions 

vary in how similar they are to the contrasting category and 

therefore in the amount of feature binding and memory 

demands required for accurate categorization. 

 

Although the Differentiation structure is commonly used 

in experimental studies, this kind of exception is likely quite 

rare in the real world. Most exceptions found outside of the 

lab, even the most commonly cited examples (e.g. bats as 

exceptions to category of mammals), in addition to shared 

features also have some distinctive features. Figure 1 

illustrates two types of such exceptions: Isolation and Odd-

ball.  

Isolation exceptions follow the contrasting category rule, 

just like Differentiation exceptions, but, crucially, they also 

have distinctive features. The distinctive features make 

Isolation exceptions less similar to items of the contrasting 

category. As fewer features are shared, less complex 

binding is required, which reduces memory demands. In the 

example shown in Figure 1, the green square has the same 

shape (rule dimension) as members of the contrasting 

category. However, its unique color (different from both its 

own and the contrasting category) allows for the 

categorization problem to be solved based on binding of 

only two dimensions: color and shape. Analogous to this 

example, bats are flying creatures (characteristic of the 

contrasting category of birds) with membranous wings (a 

distinctive feature), and therefore could be represented as 

exceptional mammals by binding these two features: flying 

and membrane wings.  

The third kind of exceptions shown in Figure 1 is the 

Oddball exception. Odd-ball exceptions do not share any 

features with members of contrasting category. Since all of 

their features are distinctive, no binding is required, and 

categorization can be made on the basis of any single 

feature. Critically, in case of the Odd-ball structure, 

representation of exceptions can be as simple as 

representation of regular items. The pink triangle in Figure 1 

violates both shape and color of the category of blue circles. 

However, since there is no overlap on these dimensions with 

any items in category B, accurate categorization can be 

based on either its pink color or triangular shape alone. One 

example of such an oddball is an hourglass as an 

exceptional member of the category of time-keeping 

devices. 

Present Experiments 

Although all three of the different structures presented in 

Figure 1 represent rule-violating exceptions, they have 

different memory demands. Since the categorization 

literature has focused almost exclusively on the 

Differentiation case, it remains unclear whether in previous 

studies exceptions were remembered better (a) because they 

violated a salient knowledge structure (von Restorff, 1933; 

Hunt & Lamb, 2001; Busey & Tunnicliff, 1999; Nairne, 

2006), or (b) because of the additional binding requirement 

resulting from the high overlap with the contrasting 

category (Sakamoto & Love, 2006).  

In support for the latter possibility, Sakamoto and Love 

(2006) demonstrated that exceptions that are more similar to 

the contrasting category (i.e., Differentiation) are 

remembered better than exceptions that are more distinctive 

(i.e., Isolation). The stimuli in Sakamoto and Love (2006) 

were lines that varied in color and size and the focus of this 

study was on comparing different exceptions to each other. 

Thus, memory advantage for both kinds of exceptions over 

regular items was assumed although not directly tested due 

to the limitations of the stimuli design.   

The present experiments were designed to tease apart the 

roles of (a) violation of a salient knowledge structure (i.e. 

similarity of an exception to its own category) and (b) 

differences in binding requirement (i.e. similarity of an 

exception to the contrasting category).  

Three experiments were conducted. Experiment 1 was set 

as a replication of previous studies that examined 

recognition memory for Differentiation structure. The 

category structure completely follows the one reported by 

Davis, Love, & Preston (2012) and uses the same 

experimental tasks and procedures. Experiment 2 and 

Experiment 3 build on Experiment 1 by employing the same 

experimental design, procedures and materials to examine 

memory for Isolation (Experiment 2) and Odd-ball 

(Experiment 3) exceptions.  

If the memory advantage for category exceptions results 

from violation of a salient knowledge structure, exceptions 

should be remembered better than regular items across the 

three experiments. However, if the advantage for exceptions 
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is dependent on differences in binding requirements, 

Differentiation (and potentially Isolation exceptions) should 

be remembered better, while there should be no advantage 

for Odd-ball exceptions. 

Experiment 1: Differentiation 

Methods 

Participants Participants were 38 undergraduate students 

from a Midwestern university who received course credit 

for their participation. Two additional participants were 

excluded due to the failure to finish the experiment. 

 

Materials The stimuli were schematic clown-like faces that 

varied along four (feature) dimensions. Items were 

accompanied by two novel category labels: Zuzu and Tati. 

As it can be seen in Figure 2, the four feature dimensions 

were hair, eyes, mouth and side whiskers. Side whiskers 

were selected as a rule dimension and the three other 

features varied between the two categories.  

 

The category structure Table 1 shows an abstract 

representation of the category structure used in Experiment 

1 (as well as ones used in Experiments 2 and 3). Each of the 

two categories had three Regular, rule-following items and 

one Exception.  

Rule-following items could be categorized accurately 

based on the value of a single rule-dimension (side 

whiskers). The rule dimension was held constant across 

participants. The other three dimension varied between the 

categories, with exactly the same combinations of the three 

features used for constructing items of category A and 

category B (see Table 1). The Exceptions appeared to 

belong to the opposing category based on their value on the 

rule-relevant dimension. Additionally, the two exceptions 

had the same values on the three other dimensions, and thus 

could be categorized accurately only based on the 

representation that captures the combination of the rule and 

(at least) 2 other features. 

Based on the items presented in Table 1 that were used 

during training, we constructed foils for memory test. The 

foils had the same feature values as training items, but in 

novel combinations. There was a total of 8 foils constructed 

for memory test in Experiment 1. 

 

Table 1: The category structure used in Experiments 1-3 

 

 Category A Category B 

Regular items   

same set across the three 

experiments 

1  334 2  334 

1  343 2  343 

1  433 2  433 

Exceptions   

Exp 1: Differentiation 2  444 1  444 

Exp 2: Isolation 2  555 1  555 

Exp 3: Odd-ball 8  888  9  999 

Note. 1 = rule of category A; 2 = rule of category B; 3 = 

probabilistic; 4 = probabilistic; 5 = novel non-diagnostic; 8 

= unique for exception A; 9 = unique for exception B.   

 

 

 

Figure 2: Complete set of stimuli used in the training 

(Experiments 1–3). Regular items were the same across the 

experiments. 

Procedure 

The experiments consisted of three phases: training, 

memory test and categorization test.  

 

Training During training participants were presented with 

the exemplars of the two categories and were asked to 

classify each exemplar.  

Following the procedure of previous studies, participants 

were given explicit instructions indicating the rule feature. 

They were encouraged to use this feature during 

categorization and to memorize items that violate this rule 

(Davis, Love, & Preston, 2012). 

Items were presented individually, and corrective 

feedback was provided after each response. There was a 

total of 64 trials presented during training, 48 rule-following 

items and 16 exceptions (i.e. each of the 6 Regular and 2 

Exception items presented 8 times in random order).  

 

Memory test Following training, participants were 

introduced to the memory test. In the memory test, 

participants saw two items at a time: one training item and 

one foil (item that had the same features as the training 

items, but in a novel combination). Their task was to say 

which of the two items was old (presented during the 

training). There was no feedback given during memory test. 

The test had 48 trials presented in a random order. 
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Categorization test In the categorization test participants 

were presented with Regular and Exception items they saw 

during the training. The procedure was exactly the same as 

in the training session with the only difference being that 

during the categorization test, participants were not 

provided with feedback. There were 16 categorization test 

trials, 8 Regular items and 8 Exceptions. 

Results 

Figure 3 shows participants’ recognition memory and 

categorization accuracy (panel a). 

Participants were less accurate at categorizing Exceptions 

(M = 0.49, SD = 0.37) than Regular items (M = 0.82, SD = 

0.24), t(37) = 5.06, p < 0.001, d = 0.82. However, they had 

better recognition memory for Exception items (M = 0.63, 

SD = 0.19) than for Regular, rule-following items (M = 

0.47, SD = 0.12), t(37) = 3.77, p < 0.01, d = 0.61. 

Both of these results, memory advantage for Exceptions 

and better categorization accuracy for Regulars, are in 

accordance with previously reported findings (Palmeri & 

Nosofsky 1995; Sakamoto & Love, 2004, 2006). 

It is important to note that here, as in the previously 

reported studies, the advantage in memory for rule-violating 

exceptions results from optimization in memory for Regular 

items. Since participants categorized Regular items relying 

on the category rule, the rule feature is the only feature they 

needed to represent and thus they had no need to remember 

individual exemplars representing the category. On the other 

hand, in order to learn Exceptions, they had to bind in 

memory information about a minimum of three features (the 

rule and two other features). 

Experiment 2: Isolation 

The goal of Experiment 2 was to test the robustness of the 

memory advantage for Exceptions, when rule-violating 

items are Isolation Exceptions. Isolation Exceptions have 

lower memory demands than Differentiation Exceptions, 

but they still require binding of information about the rule 

and (at least) one more feature. 

Methods were identical to Experiment 1, except for the 

type of Exception participants needed to learn (See Table 1). 

Foil items for the memory test were designed accordingly to 

include features of Isolation Exceptions, which resulted in 

19 foil items in total. Twenty-three undergraduates from a 

Midwestern university participated for course credit.   

Results 

The pattern of results in Experiment 2 closely replicated 

the one observed in Experiment 1 (Figure 3). 

Although participants were more accurate when 

categorizing Regular (M = 0.85, SD = 0.18) than Exception 

items (M = 0.65, SD = 0.36), t(22) = 2.41, p < 0.05, d = 

0.50, they remembered Exception items (M = 0.67, SD = 

0.26) more accurately than Regular, rule-following items (M 

= 0.51, SD = 0.09) , t(22) = 2.91, p < 0.01, d = 0.61. 

Experiment 3: Odd-ball 

The critical difference between Experiment 3 and 

Experiments 1-2, was that learning of rule-violating items in 

Experiment 3 did not require forming of a complex binding 

structure. Both Regular and Exception items could be 

categorized based on a single, individual feature. Thus, any 

differences in recognition memory between Regular items 

and Odd-ball Exceptions could be solely due to effects of 

rule violation. 

 

a. Experiment 1: Differentiation 

 

b. Experiment 2: Isolation 

 

c. Experiment 3: Odd-ball 

 

Figure 3: Recognition memory and categorization 

accuracy across the three experiments. Error bars represent 

standard errors of mean. 
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Methods were identical to the ones used in Experiment 1-

2, except that Experiment 3 used Odd-ball Exceptions as the 

rule-violating items (See Table 1). Foil items for the 

memory test were constructed following the logic of 

Experiment 1 and 2. There was a total of 21 foil items used 

for the memory test. Forty undergraduate students from a 

Midwestern university participated for course credit.   

Results 

In Experiment 3, participants were equally accurate when 

categorizing Exceptions (M = 0.76, SD = 0.25) and Regular 

items (M = 0.84, SD = 0.28), t(39) = -1.30, p = .203, d = 

0.20. 

Critically, we observed no difference in recognition 

memory between the two item types, t(39) = 0.18, p = .858, 

d = 0.03. Participant had no memory for exemplars of either 

Regular (M = 0.53, SD = 0.10), or Exception items (M = 

0.53, SD = 0.11). One sample t-tests against chance were 

approaching significance for both Regulars (t(39) = 1.79, p 

= .081) and Exceptions (t(39) = 1.78, p = .084).   

Discussion 

The presented work aimed to clarify whether category 

exceptions merit a special memory representation because 

they violate a salient knowledge structure, as it has been 

previously assumed (e.g., von Restorff, 1933; Hunt & 

Lamb, 2001; Busey & Tunnicliff, 1999; Nairne, 2006), or is 

it only those exceptions that have high binding requirements 

that have the special memory status. This is a critical 

question, as in the latter case, the special memory status 

characterizes certain kinds of exceptions rather than 

exceptions in general. Consequently, the generalizations 

often present in the categorization literature when discussing 

exceptions would be unjustified. 

The recognition memory comparisons across the three 

experiments revealed that participants had better recognition 

memory for exceptions that required binding of two or more 

features to be accurately categorized. However, when 

memory demands for regular and exception items were 

equal, there was no memory advantage for exceptions. In 

other words, when category structure does not require 

feature binding for successful categorization and both item 

types can be classified based on the individual features, 

exception items are treated as any other regular item. 

Participants may optimize their memory when learning 

exceptions in the same manner as they do when they learn 

regular items, and thus have poor exemplar memory for 

both regulars and exceptions.  

Model Predictions 

The results of previous studies on recognition memory for 

categories with exceptions were found to generally conform 

to the predictions of RULEX and SUSTAIN (Palmeri & 

Nosofsky, 1995; Sakamoto & Love, 2004, 2006). Pure 

exemplar storage models, such as the context model (Medin 

& Schaffer, 1978), have also been considered and found to 

be inadequate at simultaneously predicting categorization 

accuracy and recognition memory for categories with 

exceptions (Palmeri & Nosofsky, 1995). Our results 

replicate this failure of exemplar models. Exemplar models 

have difficultly predicting good categorization, but bad 

memory, for regulars since categorization relies directly on 

memory storage. Similarly, they struggle with good 

memory, but poor categorization, of exceptions. In general, 

exemplar models would tend to predict that both 

categorization and memory would be better (or possibly 

both worse) for exceptions than regulars, but they would not 

predict opposite patterns for categorization and memory.  

RULEX provides good predictions for the patterns that 

were found in the Differentiation and Isolation structures, 

correctly predicting better categorization of rule-following 

items, but poorer memory for those items since they are not 

represented independently in memory. Memory is predicted 

to be better for exceptions since they need to be stored 

individually in memory. It is unclear, though, what RULEX 

would predict for the Oddball structure.  

Versions of RULEX have been formulated for binary-

valued discrete dimensions, and continuous-valued 

dimensions (Nosofsky & Palmeri, 1998), but (to our 

knowledge) not for discrete dimensions with more than two 

possible values. While there are straightforward ways in 

which to extend RULEX to accommodate this type of 

stimulus structure, there are several alternative formulations 

that would provide opposite predictions.  

Existing versions of RULEX first try simple 

unidimensional rules. If perfect rules fail, it then attempts 

unidimensional rules with exceptions stored in memory. If 

those representations are inadequate, it moves to 

considering more complex rules. Our Oddball category 

structure could theoretically be solved with a disjunctive 

rule on a single dimension (i.e. value 1 or 8 on dimension 

one is Category A, 2 or 9 is category B; see Table 1). It is 

unclear whether RULEX would attempt to use this type of 

rule prior to or after it attempts to store exceptions in 

memory (considering that the rule is technically 

unidimensional but also somewhat complex). If it tries 

storing exemplars first, it would predict similar behavior as 

in the Isolation structure (and therefore, fail to predict our 

results). If it tries the disjunctive rule first, then it would not 

need to store any exemplars in memory, and could match 

participants’ data well. So, RULEX could predict all of our 

results in theory, but it depends on exactly how it is 

formulated to handle this type of stimulus representation. 

SUSTAIN (Love, Medin, & Gureckis, 2004), on the other 

hand, can naturally process the stimulus structures used in 

our study without needing modification, but its predictions 

are somewhat less intuitive. Like RULEX, the predictions 

depend on whether it stores exceptions separately (by 

creating additional clusters) or together with regulars. In 

theory it can do either depending on the exact parameter 

settings and the order in which it encounters the exemplars. 

To test whether SUSTAIN would create different numbers 

of clusters for the three different stimulus structure, we 
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performed simulations of the model. We first fit the model 

to each participants’ training data using maximum-

likelihood estimation in order to obtain reasonable 

parameter estimates. Then we simulated the model using 

each parameter combination on all three stimulus structures 

(1000 simulations per parameter combination, per 

structure).  

Results of the simulations generally match the behavioral 

results: better categorization for regulars than exceptions in 

all structures, but better memory for exceptions than 

regulars—except in the Oddball structure where memory 

performance was roughly equivalent between regulars and 

exceptions. Additionally, the number of clusters formed was 

found to be highest for the Differentiation structure 

(median: 6 clusters; mode: 4 clusters), slightly lower for the 

Isolation structure (median: 4 clusters; mode: 4 clusters) and 

lowest for the Oddball structure (median: 3 clusters; mode: 

3 clusters). Importantly, that there were typically fewer than 

4 clusters in the Oddball structure indicates that exceptions 

were not represented completely independently of the 

regulars, which is consistent with worse memory for 

exceptions compared to the other two structures. 

In summary, both RULEX and SUSTAIN can potentially 

account for our results by representing exceptions separately 

from regulars in the Differentiation and Isolation structures, 

but not in the Oddball condition. SUSTAIN produces this 

pattern as a normal result of its category learning process, 

while RULEX produces this result under one of several 

possible instantiations of its decision process. In both 

models the separate representations of exceptions are 

consistent with increased feature binding for those items 

compared to regulars, though they may not have been 

described in terms of feature binding in previous work. 

Conclusions 

Taken together, our findings suggest that the previously 

reported advantage for memory exceptions reflects elevated 

memory demands of specific kind of exception which does 

not generalize to other kinds of exceptions.  

This work further adds to our understanding of what 

makes some category exceptions more memorable, by 

focusing on the critical role of competition between the 

exception and contrasting category members.  
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Rapid Semantic Integration of Novel Words Following Exposure to Distributional 

Regularities 
 

 

Abstract 

Our knowledge of words consists of a lexico-semantic 

network in which different words and their meanings 

are connected by relations, such as similarity in 

meaning. This research investigated the integration of 

new words into lexico-semantic networks. 

Specifically, we investigated whether new words can 

rapidly become linked with familiar words given 

exposure to distributional regularities that are 

ubiquitous in real-world language input, in which 

familiar and new words either: (1) directly co-occur in 

sentences, or (2) never co-occur, but instead share 

each other’s patterns of co-occurrence with another 

word. We observed that, immediately after sentence 

reading, familiar words came to be primed not only by 

new words with which they co-occurred in sentences, 

but also by new words with which they shared co-

occurrence. This finding represents a novel 

demonstration that new words can be rapidly 

integrated into lexico-semantic networks from 

exposure to distributional regularities.  

 

Keywords: word learning; semantic priming; 

distributional semantics; semantic integration 

Introduction 

Starting early in development and continuing through 

adulthood, we amass sizable vocabularies commonly 

estimated to contain tens of thousands of words (Schmitt & 

McCarthy, 1997). Beyond the size of the resulting 

vocabulary, word learning is remarkable both because 

much of it unfolds merely by encountering words in 

linguistic contexts without explicit instruction, and because 

it leads to the formation of an organized lexico-semantic 

network in which different words and their meanings are 

linked by relations. For example, our lexico-semantic 

networks contain links both between words that can be 

combined to form meaningful utterances (e.g., eat and 

apple), and words similar in meaning (e.g., apple and 

grape) (Jones, Willits, Dennis, & Jones, 2015). These links 

are a fundamental facet of our lexico-semantic knowledge 

that influence behavior even without awareness, reasoning, 

or recall of relevant information from episodic memory (as 

is evident from phenomena such as priming). How do the 

new words we encounter become integrated into our 

lexico-semantic networks? 

The purpose of the present research is to investigate the 

rapid integration of new words into existing lexico-

semantic networks purely on the basis of regularities with 

they are distributed with other words in linguistic input. As 

demonstrated by the seminal work of Landauer and 

Dumais (1997) and many subsequent modeling efforts 

(Frermann & Lapata, 2015; Huebner & Willits, 2018; 

Jones & Mewhort, 2007; Rohde, Gonnerman, & Plaut, 

2004), sensitivity to distributional regularities may 

represent a powerful mechanism for building lexico-

semantic networks. First, links between words that can be 

combined to form meaningful utterances such as eat and 

apple can be formed from the regularity with which they 

co-occur in language. Critically, although words similar in 

meaning such as apple and grape may not reliably co-

occur, links between them can also be formed from the 

regularity with which they share each other’s patterns of 

co-occurrence (e.g., apple and grape  may not reliably co-

occur, but do share each other’s co-occurrence with eat, 

juicy, etc.). These distributional regularities are sufficiently 

abundant in language that mechanistic models that form 

representations of words purely on the basis of these 

regularities capture the majority of links present in human 

lexico-semantic networks (Jones et al., 2015). 

In spite of the extensive evidence from modeling 

research supporting the potential contributions of 

sensitivity to distributional regularities, we know little 

about whether exposure to these regularities actually drives 

the integration of new words into lexico-semantic networks 

in human learners. Accordingly, the present research was 

designed to assess whether adults semantically integrate 

novel words with familiar words after reading sentences 

rich in distributional regularities. Specifically, we 

investigated whether familiar words came to be 

semantically primed not only by novel words with which 

they co-occurred, but also by novel words with which they 

never co-occurred, and instead shared patterns of co-

occurrence with another word.  

In what follows, we first review existing evidence about 

human learner’s sensitivity to distributional regularities. In 

this review, we highlight the paucity of prior research that 

is informative about the role of distributional regularities 

abundant in language in building human lexico-semantic 

networks. We then present an experiment designed to 

illuminate this role. 

Human Sensitivity to Distributional Regularities 

in Language 

Extensive evidence from statistical learning research 

suggests that humans are sensitive to some forms of 

distributional regularities in some modalities. Specifically, 

numerous studies have revealed that we are sensitive to the 

regularity with which items such as speech sounds or 

shapes co-occur, either simultaneously, sequentially, or 

separated by some number of other items (Conway & 

Christiansen, 2005; Fiser & Aslin, 2002; Gomez, 2002; 

Saffran, Johnson, Aslin, & Newport, 1999).  
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However, this evidence cannot directly illuminate 

whether distributional regularities of words in language 

can drive lexico-semantic integration for two reasons. 

First, very little statistical learning research conducted to 

date has investigated whether we form links between items 

that never occur together, and instead share each other’s 

patterns of co-occurrence with other items (to our 

knowledge, only one study visual domain, Schapiro, 

Rogers, Cordova, Turk-Browne, & Botvinick, 2013, is 

suggestive of this form of learning). However, this process 

is a critical facet of the potential importance of sensitivity 

to distributional regularities for building lexico-semantic 

networks, because many words similar in meaning do not 

reliably co-occur, and can instead only be linked based on 

their shared patterns of co-occurrence (Jones et al., 2015). 

Second, statistical learning research has focused on 

learning links between items in domains that intentionally 

do not carry meaning, such as speech sounds, acoustic 

sounds, and shapes, and tactile stimuli. Because statistical 

learning phenomena vary even across these studied 

domains (Conway & Christiansen, 2005), it is unclear 

whether they generalize to the formation of semantic links 

between novel and familiar words in language. 

To our knowledge, the only evidence relevant to the role 

of distributional regularities in semantic integration comes 

from a handful of studies conducted by McNeill (McNeill, 

1963, 1966). In these studies, novel words were organized 

into triads, in which one novel word A co-occurred in 

sentences with either of two other novel words, B and C. 

Accordingly, the distributional regularities consisted of 

both the direct co-occurrence of A- B and A-C, and the 

shared co-occurrence of B-C (which never actually co-

occurred, but both co-occurred with A). By administering 

a free association task at multiple points during sentence 

reading in which participants were asked to produce the 

first novel word that came to mind when prompted with 

another, McNeill observed that participants first formed 

links between novel words that directly co-occurred (i.e., 

A-B and A-C), and then between those that shared co-

occurrence (i.e., B-C). This finding provides evidence that 

people can learn the distributional regularities of words in 

sentences online, as they are experienced. These 

regularities therefore represent a viable candidate for 

drivers of semantic integration. However, these studies 

were not designed to investigate the semantic integration 

of novel words into existing lexico-semantic networks, 

because novel words only ever shared distributional 

regularities with each other, and not with familiar words. 

Moreover, the use of a free association task to assess 

learning leaves open the possibility that these links 

participants apparently formed were based on retrieving 

the episodic experiences of reading the sentences from 

memory, rather than on the formation of automatically-

activated semantic links. The role of distributional 

regularities in lexico-semantic integration therefore formed 

the focus of the present experiments. 

Present Experiments 

The present experiments were designed to investigate 

whether distributional regularities can drive the rapid 

integration of new words into existing lexico-semantic 

networks. Specifically, participants read sentences in 

which were embedded triads of words that consisted of a 

novel pseudoword (e.g., foobly) that regularly preceded a 

familiar word (e.g., apple) in some sentences, and another 

novel pseudoword (e.g., mipp) in other sentences. 

Accordingly, the sentences contained distributional 

regularities with which a familiar word (e.g., apple) both 

directly co-occurred with one novel psuedoword (foobly), 

and shared this pattern of co-occurrence with another 

(mipp) (Fig. 1). The sentences otherwise contained no 

information from which the meanings of the novel 

pseudowords could be derived. For example, participants 

might read “My sister loves to see a foobly apple” and “I 

saw a foobly mipp on vacation”.  

Immediately following a short session of sentence 

reading, we then assessed lexico-semantic integration by 

testing whether the familiar word came to be primed by 

both the novel pseudoword with which it co-occurred, and 

the novel pseudoword with which it shared this pattern of 

co-occurrence. To show both patterns of priming, 

participants must: (1) Learn the novel word forms, (2) 

Form links between novel and familiar words that directly 

co-occur, and (3) Derive links between novel and familiar 

words that never co-occur, but instead share each other’s 

patterns of co-occurrence.  

Method  

Participants 

Participants were 45 undergraduate students from a 

Midwestern university who received course credit. An 

additional five participants were excluded due to failure to 

complete the experiment. 

Stimuli and Design 

Training. The training stimuli were two triads of words (1: 

foobly-apple-mipp; 2: dodish-horse-geck) that each 

consisted of a pseudoadjective (e.g., foobly) that 

consistently preceded one familiar noun (e.g., apple) and 

one pseudonoun (e.g., mipp) in different sentences. Each 

word pair from these triads (foobly-apple, foobly-mipp, 

dodish-horse, dodish-geck) was embedded in 10 unique 

sentence frames, for a total of 40 training sentences. These 

sentences therefore conveyed both direct co-occurrences 

between words in the same pair from the same triad, and 

shared co-occurrences between familiar and pseudonouns 

from the same triad. The sentences did not convey any 

other cues to pseudoword meaning (Figure 1).  

Test. For testing purposes, we added two new 

pseudowords (nuppical; boff) and 2 pictures: One of an 

apple and one of a horse.  
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Using these stimuli, we generated five types of Prime-

Target word pairs. Primes were always novel 

pseudowords, and Targets were always one of the two 

familiar nouns used during training (apple or horse). First, 

we generated two types of Related pairs that were 

consistent with the training triads: Related Direct, in which 

a pseudoadjective preceded the familiar noun that it had 

preceded during training (e.g., foobly-apple), and Related 

Shared, in which a pseudonoun preceded the familiar noun 

with which it had shared co-occurrence during training 

(e.g., mipp-apple). Second, we generated corresponding 

Unrelated Direct and Unrelated Shared pairs in which the 

Primes from Related pairs were switched, such that they 

violated the regularities present during training (e.g., 

foobly-horse). Finally, we generated  Neutral pairs, in 

which the new pseudowords that were only present during 

Test (nuppical; boff) preceded each familiar noun. 

Procedure 

The experiment had 2 phases: Training and Test. 

                                                           
1 The full pattern of effects on reaction time have also been 

replicated with two samples (Ns= 25 and 28) of participants 

Training. The Training consisted of three blocks. In each 

block, participants first read all of the 40 training sentences 

in a random order at their own pace. To check whether 

participants were attending to the sentences, three control 

questions appeared following random sentences in which 

participants were prompted to type the novel words from 

the last sentence they had read. The reading component of 

each block was followed by a free association task in which 

participants were asked to respond with the first novel 

(pseudo) word they could think of when prompted with 

each of the pseudowords from the training sentences. Each 

of the pseudowords (foobly, dodish, mipp, geck) was 

presented 3 times in a randomized order. 

Test. For the test phase, participants performed a primed 

visual search task (see Figure 2 for timing of events in 

trials). At the start of each trial, participants saw a fixation 

cross followed by two images, one on either side of the 

screen: A horse, and an apple. Two words (a Prime and 

Target) were then consecutively presented as text on the 

top of the screen. Participants’ task was to read both words, 

but choose the image labeled by the second (i.e., Target) 

word using the mouse. During a practice phase consisting 

of 8 trials, the two words consisted of Neutral word pairs 

(i.e., a new pseudoword followed by apple or horse). 

During the actual task consisting of 144 trials, the two 

words consisted of Related Direct, Related Shared, 

Unrelated Direct, Unrelated Shared, and Neutral pairs.  

Participants were given an unlimited time to make their 

responses, but were prompted to respond quickly and were 

shown a message saying that they were too slow if their 

response time on a trial was > 800ms.  

Results and Discussion 

Preliminary analyses: Free association 

To test whether participants were attending to the 

sentences, we analyzed participants’ responses on the free 

association task. Participants responded as instructed by 

responding with one of the training pseudowords on an 

average 90.6% of all free association trials. Participants 

tended to respond with training pseudowords that had 

directly co-occurred with the prompt pseudoword: 88% of 

all responses to pseudoadjective prompts were with the 

noun that followed the pseudoadjective during training, 

and 77% of responses to pseudonoun prompts were the 

pseudoadjective that preceded it during training. Only 

2.5% of all responses to pseudonouns were based on shared 

co-occurrence. This confirmed that participants read the 

sentences and learned the word forms. 

Main analyses: Priming1 

The purpose of the main analyses was to investigate 

whether the novel pseudowords were semantically 

recruited from Amazon Mechanical Turk: Once as an exact 

replication, and once as a conceptual replication in which 

 
Figure 1: Illustration of training sentence structure. 

 

 
Figure 2: Timing of events during the primed visual 

search task used in the Test phase. 
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integrated with familiar words with which they shared 

distributional regularities (i.e., direct or shared co-

occurrence) in training sentences. We accomplished this 

investigation by measuring whether the novel pseudowords 

affected the speed and accuracy of processing familiar 

words in the priming task used during the Test phase. 

Specifically, we compared the speed and accuracy with 

which participants identified whether the Target word was 

apple or horse when it was preceded by a novel 

pseudoword in the Related Direct, Related Shared, 

Unrelated Direct, Unrelated Shared, and Neutral 

conditions. Related pseudowords were expected to   

facilitate Target word identification, whereas Unrelated 

pseudowords were expected to inhibit identification. 

Moreover, these facilitation and inhibition effects may be 

greater for Direct versus Shared co-occurrences.  

Prior to conducting this analysis, we first eliminated data 

from 8 participants with extremely short reaction times 

(more than 2/3rds of RTs < 100ms), leaving a sample size 

of 38 participants. Accuracies and Reaction Times are 

presented in Figure 3.  

Accuracy. We analyzed effects on accuracy using a linear 

mixed effects regression model in which Relatedness 

(Related vs Unrelated) and Type (Direct vs Shared) were 

fixed effects, and Participant was a random effect. This 

model revealed no effect of either Relatedness or Type on 

accuracy (Relatedness: B = - 0.004, SE = 0.008, t = - 0.55, 

p = .59, d = 0.004, Type: B = - 0.012, SE = 0.008, t = - 1.48, 

p = .15, d = 0.012).  

Reaction Time. For analyses of reaction time, we removed 

data from incorrect trials, and trials with extremely short 

                                                           

the pseudoadjectives were changed from foobly/dodish to 

foobing/doding.  

(<100 ms) and extremely long response latencies (>1500 

ms), resulting in removal of 8.1 % of trials.  

We then generated a linear mixed-effects model with 

Relatedness (related; unrelated) and Type (direct; shared) 

as fixed effect factors and Participants as a random effect. 

This model revealed no significant effect of Type (neither 

as a main effect nor in interaction with Relatedness). Thus, 

Type was excluded from the final model. A log-likelihood 

ratio test indicated that the best fitting random effects 

structure included only a random intercept for participants. 

Thus, the final model included Relatedness as a fixed effect 

factor and a random intercept for participants. This model 

revealed a significant effect of Relatedness on reaction 

times, B = 14.82, SE = 5.10, t = 2.91, p < .01, d = 0.096 

(see Brysbaert & Stevens, 2018 for effect size estimate 

approach). Participants were 14.9 ms faster in related than 

in unrelated conditions (Figure 3, right panel). The model 

explained 16% of total variance (R-squared based on 

Nakagawa & Schielzeth, 2013). 

The follow-up analyses compared Related and Unrelated 

conditions to the Neutral condition. A linear mixed-effects 

model with Condition (Neutral; Related Direct, Related 

Shared, Unrelated Direct, Unrelated Shared) as a fixed 

effect factor and a random intercept for Participants 

revealed that only Related conditions were significantly 

different than the Neutral (Related Direct: B = - 16.11, SE 

= 6.30, t = - 2.56, p = .01, d = .104; Related Shared: B =      

-16.56, SE = 6.32, t = - 2.62, p < .01, d = .104). There was 

no significant difference in RT between the Neutral 

condition and Unrelated conditions. In other words, 

participants were faster to respond when the Target was 

preceded by a pseudoword that either directly co-occurred 

with the Target (Related Direct) or shared the pattern of co-

  
Figure 3: Mean accuracy (left) and reaction times (right) across five conditions. Dark gray bars represent Related (Direct 

and Shared) conditions, and light gray bars represent Unrelated (Direct and Shared) conditions. The Neutral condition 

(new pseudoword) is presented in white. Error bars indicate the standard errors of the means. 
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occurrence (Related Shared) than when it was preceded by 

a new pseudoword that only appeared in the Test and not 

the Training phase. Primes that were incongruent with the 

regularities presented during the training (Unrelated 

Direct, Unrelated Shared) did not affect speed. 

General Discussion 

The present experiment provides a novel demonstration 

that new words can be rapidly integrated into existing 

lexico-semantic networks based on the distributional 

regularities of words in sentences. Specifically, 

immediately following a short session of sentence reading, 

familiar words came to be primed by both novel words with 

which they co-occurred in sentences, and novel words with 

which they never co-occurred, but instead shared a pattern 

of co-occurrence with another novel word. Given that these 

distributional co-occurrence regularities are ubiquitous in 

language (Jones et al., 2015), the present results provide 

evidence that sensitivity to these regularities may represent 

a critical way in which new words are rapidly integrated 

into lexico-semantic knowledge.  

Implications for Lexico-Semantic Integration 

The present findings build upon prior research in two key 

ways. First, prior evidence about the potentially powerful 

contributions of distributional regularities to building 

lexico-semantic networks comes primarily from modeling 

research. The present findings therefore substantially 

underline this potential by demonstrating that new words 

can be added to actual human lexico-semantic networks 

through mere exposure to distributional regularities.  

Second, this evidence also adds to our understanding of 

how rapidly new words can be integrated into our existing 

lexico-semantic networks. Specifically, extensive prior 

research has investigated the lexico-semantic integration of 

novel words through different kinds of input, such as 

studying definitions of novel words, or repeatedly 

observing words co-occurring with images of specific 

familiar objects (Breitenstein, Zwitserlood, de Vries et al., 

2007; Clay, Bowers, Davis, & Hanley, 2007; Dagenbach, 

Horst, & Carr, 1990; Dobel, Junghöfer, Breitenstein et al., 

2010; Tamminen & Gaskell, 2013). Much of this research 

has suggested that newly learned words are only gradually 

integrated into existing lexico-semantic networks, 

following at least one day and up to several weeks of 

consolidation. In contrast, a handful of recent findings 

(Borovsky, Elman, & Kutas, 2012; Mestres-Missé, 

Rodriguez-Fornells, & Münte, 2006; Zhang, Ding, Li, & 

Yang, 2019) have suggested that lexico-semantic 

integration of novel words can occur more rapidly when 

learning is driven by reading sentences in which novel 

words appear in a position typically occupied by a specific, 

familiar word (e.g., “It was a windy day, so Peter went to 

the park to fly his dax”). The present findings  add to this 

evidence that novel words can be integrated into existing 

lexico-semantic networks very rapidly, immediately 

following an initial learning experience.  

Future Directions 

The evidence provided by the present experiment 

highlights a new avenue for future research to investigate 

how distributional regularities foster semantic integration. 

For example, do direct co-occurrences foster integration 

more rapidly than shared co-occurrences, or do these 

processes unfold in parallel? This question could be 

addressed by measuring integration (e.g., using the priming 

approach taken in the present experiment) at multiple 

points throughout training. Moreover, addressing this and 

related questions could help to generate and arbitrate 

between different potential mechanistic accounts of 

distributional regularity-driven semantic integration.  

Summary 

Throughout our lives, we amass a sizable and 

interconnected body of knowledge of words and their 

meanings. The present research highlights how the 

formation of these lexico-semantic networks may be 

critically facilitated by the rapid integration of new words 

via sensitivity to the regularities with which words occur 

with other words in linguistic input.  
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Abstract
The aim of this study is to refine a cognitive model for
the takeover in highly automated driving. The focus lies
on the impact of objective complexity on the takeover
and resulting outcomes. Complexity consists of various
aspects. In this study, objective complexities are di-
vided into the complexity of the non-driving-related task
(no-task, listening, playing, reading, searching) and the
traffic complexity (relevant vehicles in the driving envi-
ronment). The impact of a non-driving related tasks’
complexity on the takeover is evaluated in empirical
data. Following, the cognitive model is run through sit-
uations of different traffic complexities and compared to
empirical results. The model can account for empirical
data in most of the objective complexities. Additionally,
model predictions are tested on significant variations in
different complexities until the action decision is made.
In more complex traffic conditions, the model predicts
longer times on different processing steps. Altogether,
the model can be used to explain cognitive mechanisms
in differently complex traffic situations.
Keywords: highly automated driving; HAD; cognitive
modeling; ACT-R; takeover; conditional automation;
NDRT; non-driving related tasks; real vehicle study;
Objective complexity; traffic complexity; Complexity of
NDRT; cognitive model predictions;

Introduction
In the field of Highly Automated Driving, the develop-
ment of technological innovations is growing rapidly. It
is not only necessary to develop working technology, but
to understand human cognition, enhance the human-
machine interaction (HMI) and improve safety and com-
fort (Sun et al., 2017). Approaching the next SAE Level
of automation (Level 3, conditional automation), where
the driver still has to take over the driving task if re-
quested (SAE, 2014), the state of the driver plays an
important role. Here, the state is determined as the
awareness of the surrounding traffic and necessary ac-
tion decisions. It depends highly on the situation and
its complexity in which the driver has to take over. Dif-
ferent approaches of defining situation complexity exist
(Baumann and Krems, 2007; Haerem and Rau, 2007;
Schlindwein and Ison, 2004). A key factor concerning the
driver is the expectation about the future development
of a situation, that is activated when a type of situation
occurs (Baumann & Krems, 2007). These types of situ-
ations can be distinguished in various ways. They could

for example be a traffic situation (congestion, construc-
tion zone, intense or low traffic etc.), a type of traffic
environment (city, highway etc.), a weather condition or
further differentiations.

Figure 1: Outline of the Assumed Dependencies, leading
to the Approached Hypotheses concerning the Impacts
of Objective- and Subjective Complexity on the Takeover
Performance. Dark Grey Variables and Interactions are
Focus in this Study (Source: own figure).

Due to Schlindwein and Ison, 2004, complexity can
be understood as a result of a particular perception of
a situation of complexity or resulting from a distinction
between expectation and situation development. As we
live embedded in situations of complexity, it is important
to distinguish between descriptive (objective) and per-
ceived complexity. The perception, that is made by an
observer and individually variable, can be determined as
perceived complexity (Schlindwein & Ison, 2004). Objec-
tive complexity on the other hand describes the complex-
ity a certain traffic situation has. For the first modeling
approach presented in this paper, the objective complex-
ity will be the focus of the cognitive model. The impact
of the objective complexity on the takeover is analyzed
and displayed in the model. According to Paxion, Galy,
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and Berthelon (2015), the objective complexity of a sit-
uation in driving can vary with road geometry (rectilin-
ear vs. curvilinear), the roadside environments (quantity
and variability of traffic signs, variability of scenery) and
traffic density (low vs. high). Thus, the role played by
objective characteristics is very important (Haerem &
Rau, 2007) for the takeover task and will be addressed
here. The focus is set on understanding the impact of
objective complexity on cognitive mechanisms during a
takeover on a highway with varying traffic density in the
relevant areas of interest. Thus, an explanation of how
the visual perception and the resulting cognitive process-
ing is provided and differences that occur due to different
complexities can be displayed. To provide a safe and cog-
nitive adequate takeover, it is necessary to understand
which cognitive mechanisms influence different behavior
of the driver. Based on such a comprehension of the
situation the development of a useful HMI in highly au-
tomated driving is possible. It can thus incorporate the
current situation and adapt and support the driver ac-
cordingly to enable a safe and comfortable takeover.

In this study links between objective complexity and
the impact on the takeover are assumed and visualized in
(Figure 1). Objective complexity is based on the amount
of relevant vehicles in the traffic environment as well as
the complexity of the non-driving related task (NDRT)
in the in-vehicle environment. The subjective complex-
ity on the other hand is assumed to be influenced by the
objective complexity as well as by the individual percep-
tion of the objective complexity and management abili-
ties. Both complexity versions should have an impact on
cognitive mechanisms and the processing stages during
the takeover and the resulting action decision. Neverthe-
less, as mentioned earlier, in the current context, the fo-
cus is set on understanding the impact of objective com-
plexity before approaching subjective complexity. This
is important, as the subjective complexity can only be
measured, if an understanding about the impact of the
objective complexity on the takeover already exists.

In order to perceive different stimuli in a complex en-
vironment, awareness of the situation has to be reached
and sensory information understood (Plavsic, 2010). In
driving, the most important human sense is the visual
perception, involving several sub-processes. These are
seeing, detection and recognition (Plavsic, 2010). To
comprehend the impact of complexity on the takeover in
highly automated driving, cognitive processes during a
takeover and the influence of objective complexity have
to be understood. This can be captured and simulated
by a cognitive model. Further resulting behavior can be
predicted based on the model.

Cognitive modeling is used to understand more pre-
cisely, how complexity emerges and subsequently affects
the takeover. Thus, the exploitation of the resources in
different complexity combinations can be revealed. For

the implementation of the cognitive model, the ACT-
R (Adaptive Control of Thought-Rational) cognitive ar-
chitecture (Anderson et al., 2004) was used. It pro-
vides a more accurate representation of human abilities
than standard programming languages (Salvucci, Boer,
& Liu, 2001). Several cognitive patterns can be mod-
eled and clearly distinguished between the different re-
sources. The architecture provides different modules for
each resource that can act simultaneously and interact
with each other. Especially the visual module is able to
illustrate precisely the above mentioned sub-processes of
the visual perception. In conclusion, cognitive model-
ing is used, as it is a valid and useful method to depict
human cognition very detailed with respect to the dif-
ferent resources (visual, haptic, auditory). The ACT-
R cognitive architecture is chosen, as it is an architec-
ture that incorporates all relevant mechanisms for the
takeover task and enables the modeling of the whole task
with respect to the different resources and their interac-
tions. To understand underlying cognitive mechanisms
as a function of the objective complexity, the cognitive
model is established based on empirical data of a pre-
vious study (project KoHAF) and run through different
levels of objective complexity. As task performance is re-
liant on the availability of resources (Kahneman, 1973)
and auditory perception uses different resources than vi-
sual perception does (multiple resource theory; Wick-
ens, 2008), traffic density has a strong influence on the
takeover quality in highly automated driving Radlmayr,
Gold, Lorenz, Farid, and Bengler (2014). The developed
cognitive model gives an understanding about the under-
lying cognitive mechanisms. This is necessary for future
development of the HMI in highly automated driving.
In order to test, whether the model correctly depicts
the cognitive processes, the following questions are ad-
dressed in the examination of this paper:

• Is the cognitive model able to validly display differ-
ences in objective complexity that are found in empir-
ical data?

• Is the cognitive model able to generate predictions
that significantly vary with different objective com-
plexities in the traffic environment?

Methods
In this paper, the impact of the complexity of a NDRT
and the traffic environment is addressed. As non-driving
related tasks (NDRT) play an important role when it
comes to taking over the driving task (Radlmayr et al.,
2014), the impact of tasks with different complexities is
investigated. To validate the cognitive model, data of a
previous study (KoHAF) was used. In a first step (Step
1) the influence of NDRT-Complexity on takeover stages
in empirical data is evaluated. Further, an ACT-R cog-
nitive model for the takeover task per se, that displays
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underlying cognitive mechanisms during a takeover is de-
veloped. The model is run through scenarios of different
objective complexities and resulting predictions are com-
pared to empirical data (Step 2). The predictions of the
model in environments of different complexities are then
tested significant differences in prediction times.

Data Acquisition
The data that is evaluated in this paper comes from a
previous study in the project KoHAF. As it includes all
the relevant information, necessary for the model, it sup-
ports the assumptions, that are addressed in this paper.
For the realization of a takeover in a real scenario rather
than an simulator, a Wizard of Oz vehicle is used. It
allows the passenger to drive the vehicle covertly via a
hidden control. Thus, a takeover in a real driving en-
vironment is possible, simulating a Level 3 automation.
Due to that, participants feel like driving an automated
vehicle in real traffic (Ko-HAF, 2017) and can engage
into secondary tasks during the mock-automation.

The study was held in 2017 in the area of Stuttgart.
Overall data of N = 14 participants is evaluated.
Takeover requests (TOR) after five different NDRTs are
covered. A first evaluation of empirical data shows, that
NDRTs have a significant influence on the takeover. Due
to this, the complexity of the different NDRTs is rated on
a ten point likert-scale by three experts based on resource
capacities that are needed to solve the tasks. Conditions
without NDRT are rated as lowest complex with one
point (1P.). A bit more complex, listening to an audio-
book (3P.) is valued as it occupies the auditory channel.
This is followed by playing Tetris (6P.). Reading a news-
paper (7P.) as well as searching something in the back
of the vehicle (7P.) is assessed as most complex, each
with seven points. Tetris was rated as less complex than
reading a newspaper or searching something in the back,
as the tablet was mounted to the center console and par-
ticipants did not need to hold it. Thus, it is assumed as
less resource-demanding with regard to the task of tak-
ing over. The data was evaluated by two independent
raters concerning the different steps of the takeover and
the objective complexity of the scenery (amount of vis-
ible vehicles on the road and their position). The over-
all objective complexity thus consists of the scenery and
the traffic conditions and of the driving situation. The
scenery has a high influence on the objective complexity
of a situation (Rommerskirchen, Helmbrecht, & Bengler,
2013), including possible distraction sources from the in-
vehicle driver’s point of view (e.g. NDRT’s).

Cognitive Model
As the most important factor in driving is the visual
perception, the focus of the cognitive model to update
situation awareness (SA) during the takeover task lies
on modeling the perception behavior. Overall longer
takeover times are found in a more complex scenery

(Radlmayr et al., 2014). This is realized in the model
with the focus on visual perception mechanisms of the
relevant objects in the traffic environment. The model
interacts with a graphical user interface in Lisp. It rep-
resents the ego-vehicle on the center lane of a three lane
highway. The surrounding traffic is inserted at random,
varying between zero and five vehicles in the environ-
ment.

Besides visual perception patterns, the cognitive
model for the takeover task incorporates motoric and
cognitive retrieval patterns. In the following, the steps,
that are undertaken until control is regained during a
takeover are defined as well as the realization in the cog-
nitive model (Figure 2). While engaging into a secondary
task, the driver is alert on whether a takeover request
(TOR) appears. This is due to the drivers awareness of
situation and task. As soon, as a TOR is detected (0),
the NDRT is interrupted (2) and the gaze oriented to
the TOR message (1). The model reacts to a stimulus
in the visual or aural module, that fits the condition of
a TOR message. The meaning of the TOR message is
retrieved from the declarative memory and the TOR vi-
sually attended, fixated and processed. Then, the visual
resource is oriented to the road center and the front lane
(near and far area; Salvucci, 2006) is perceived (4). First
sensory-motoric patterns (hands to steering wheel, feet
to pedals) are automatically applied (3), resting on auto-
mated reactions rather than intentionally directed move-
ments. The visual resource further attends and processes
the left and right lane (5), storing the status (car or no
car) of the attended areas in chunks. In the data, this
is followed by the deactivation of automation (6). This
is not implemented in the model though, as deactiva-
tion modalities vary and there is no common mechanism
yet. The model thus completes the perception phase (7),
and forms characteristics of current status. The current
status of the environment is compared to the task ((8)
status-task-mapping) and a decision made based on that
(9). Finally, the motoric module performs the selected
action ((10) sensory-motoric intervention patterns) that
are either to follow, change the lane to the left or right.
The vehicle is then stabilized (11). This final step is not
explicitly included in the model though.

The cognitive model incorporates these steps and dis-
plays the cognitive processes that occur during each one
(Figure 2).

Results
Statistical analysis is used, to show, that the cognitive
model is able to depict differences that occur due to ob-
jective complexity. The two objective complexity mea-
surements (complexity of NDRT and amount of objects
in traffic environment) are evaluated separately. The im-
pact of complexity of the NDRT is evaluated in empirical
data. NDRT complexities are then scaled and compared
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Figure 2: Representation of Main Productions, the Cognitive Model Resolves to Display Cognitive Processes During
the Takeover in Highlay Automated Driving (Source: own figure).

to the cognitive model to show, that cognitive model pre-
dictions are able to account for empirical data. Based
on these results, the model itself is further run through
conditions of different traffic complexities and tested on
significant variations between those conditions.

The influence of the NDRTs on takeover patterns
is tested first using ANOVA for statistical evaluation.
Based on that, regression analysis is used to measure
the impact of the complexity of the NDRT on the perfor-
mance of the takeover in empirical data (Step 1). Fur-
ther, it is examined, whether predictions of the model
correlate with the results found in empirical data (Step
2). Finally, model predictions of action decisions are
tested on the influence of objective complexity variations
(Step 3).

Step 1: Influence of NDRT-Complexity on
Takeover Times in Empirical Data
ANOVAs show significant results for the takeover pat-
terns one to four ((1) visual re-orientation and fixation
of takeover request (TOR) message, (2) interruption of
NDRT, (3) first sensory-motoric patterns, (4) visual ori-
entation to road center). The time until the gaze gaze
is directed to the TOR differed statistically significant
for the different NDRTs (F (4,65) = 3.088,p < .05). The
same applies for the time until the NDRT is stopped
(F (4,65) = 4.221,p < .01), the time until the hands are
moved to the steering wheel (F (4,65) = 12,p < .001)
and the time until the gaze is directed to the road
(F (4,65) = 5.808,p < .001). Due to this, the impact
of complexity on takeover patterns is evaluated, using
regression analysis. Based on the regression equation
y = xβ+ ε, the impact of the Complexity of the NDRT

(CNDRT ) is tested on significance to reject the null hy-
pothesis. Further, the amount of variance that can be
explained by the regression (multiple determination co-
efficient R2) is evaluated. Regression analysis is tested
on normal distribution of residuals, heteroscedasticity,
non-linearity and multi-collinearity by plots (Liborius,
2015; Ligges, 2007). Analysis of empirical data (N =
14) on CNDRT on the takeover shows significant effects
for all takeover processes (Figure 3).

The time until the Gaze is directed to the TOR sig-
nificantly rises with higher CNDRT (β = .004,p < .01).
The complexity of the NDRT explains 11.3% percent of
variance (R2 = .113, t(68) = 2.943,p < .01).

The effect of CNDRT on the time until the NDRT is
stopped (β = .0005,p < .001), explains 16.4% of variance
(R2 = .164, t(68) = 3.652,p < .001). Variance in time un-
til the hands are moved to the steering wheel can be ex-
plained with 29,07% (R2 = .2907, t(68) = 5.297,p < .001).
The time increases significantly (β = 1.47e−06,p < .001)
with more complex NDRTs. CNDRT also influences
the time until the gaze is moved to the road (β =
3.05e− 05,p < .001). 22.7% of variance can be resolved
(R2 = .227, t(68) = 4.469,p < .001). The results show,
that the complexity of the NDRT has a significant im-
pact on all four steps of the takeover that were measured
empirically (Figure 3). The more complex the NDRT
that is performed before the takeover, the longer do
drivers need to perform the takeover steps. This shows,
that more cognitive occupation during the NDRT oc-
cupies relevant resources that need to be freed in order
to attend and process objects, that are relevant for the
takeover. The more complex a non-driving related task
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Figure 3: Regressions of the Influence the Complexity of
the Non-Driving-Related Task (CNDRT) has on Times
of Takeover Patterns (Significance codes: 0 ’***’ .001
’**’ .01 ’*’ .05 ’.’ .1; Source: own figure).

is, the longer do drivers need to complete the outlined
steps for taking over the driving.

Step 2: Correlation between Model
Predictions and Empirical Results of
Different Objective Complexities
Further, model predictions under different complex traf-
fic conditions are tested against the results found in
empirical data (N = 14), that are described above.
The comparison of empirical takeover times with differ-
ent surrounding traffic conditions and model predictions
shows, that model predictions correlate with the empiri-
cal data for almost all situations of objective complexity
(amount of vehicles) significantly (Figure 4). Empiri-
cal data (gray) was evaluated for situations with zero to
five vehicles in the surrounding traffic. Mean (pink) and
median median (red) courses for empirical data are eval-
uated and median courses correlated with model predic-
tions (green-dotted). For each traffic conditions, model
predictions correlate with median values of empirical
data. Especially with one, three and four vehicles in
the environment, model predictions are in line with em-
pirical data.

Step 3: Test whether Model Predictions of
different Complex Traffic Environments
show Significant Differences
Finally, predictions of the action decision (9, see sec-
tion Cognitive Model) of the model are evaluated based
on objective complexity measures. In the interaction of
the model with different driving situations, it can be
shown, that the time for an action decision increases
with a more complex driving environment. Overall the
model is run through 17 different complexity situations
(N = 17), varying between zero to five vehicles in the

driving environment. The time until an action deci-
sion is executed ranges from 1.37s to 4.86s (M = 1.74).
Regression analysis results in significant regressions for
the overall amount of vehicles in the environment (β =
0.04,p < .05). The parameter resolves 24.91% of variance
(R2 = .25, t(15) = 2.23,p < .05). Regarding the vehicle
distributon in detail, it can be shown that the amount of
vehicles on the right lane has a significant impact on the
time until an action decision (β = 0.04,p < .05). 18.87%
of variance (adj.R2 = .19, t(14) = 2.3,p < .05) can be ex-
plained. Also the amount of vehicles on the left lane has
a small impact on the time until an action decision is
made (β = 0.09,p < .1), explaining 12.13% of variance
(adj.R2 = .12, t(14) = 1.83,p < .1). Neither for the vehi-
cle in the front of the ego vehicle a significant impact
can be shown. Nor the speed (faster/slower) in relation
to the own position has an impact. This shows, that the
perception of left and right lane (5), the completion of
the perception phase (7) and the formation of character-
istics and recognition of the current status (8) need more
time in more complex driving environments and lead to
a delay of the action decision (9).

Discussion

The results show, that the complexity of the NDRT has
a significant impact on the time of takeover patterns in
empirical data. It can thus be concluded, that more
complex tasks that are done during the automated drive
lead to longer takeover times. Portraying the processing
patterns that are undergone during the takeover with a
cognitive model, similar time trajectories can be shown.
This is very important, as results show, that not only
the overall time, but also processing steps can be iden-
tified and displayed in the model. Further, the model
is run through situations with differently complex traffic
situations (amount of relevant vehicles). Results show
longer times for the processing patterns in more com-
plex environments. The predicted time-lines of the cog-
nitive model are compared to results in empirical data
with respect to the traffic complexity. Model predic-
tions correlate with empirically gathered trajectories in
differently complex traffic environments. In addition,
predictions of the cognitive model are tested on signifi-
cance in differences between traffic complexities. It can
be shown, that the traffic complexity (amount of relevant
vehicles) has a significant impact on the time until an ac-
tion decision is made. These results indicate, that the
objective complexity of the NDRT as well as of the traf-
fic situation play an important role concerning process-
ing steps during a takeover in highly automated driving.
The takeover behavior as well as the time until an action
decision is made, show significant influences of complex-
ity measures (NDRT and traffic environment). Still, the
model is slightly faster in the overall performance ( 0.5
seconds). Since the difference already occurs at the first
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Figure 4: Correlations between Empirical Values and Model Predictions in Different Complex Traffic Situations
(Significance codes: 0 ’***’ .001 ’**’ .01 ’*’ .05 ’.’ .1; Source: own figure).

processing step (Gaze to TOR), it is assumed, that cog-
nitive processes before the gaze is directed to the TOR
already have an influence. In the remaining sequence
no noticeable time differences are observed. Thus, cog-
nitive processes before the gaze is directed to the TOR
have to be included into the model. Further, more as-
pects of the objective complexity have to be incorporated
(e.g. notifications in the HMI, relevance of colors). It is
though necessary to investigate on complexity measures
concerning the takeover and incorporate further aspects
of objective complexity. For an efficient development of
interaction devices and estimates in highly automated
driving cognitive models are important. They uncover
underlying processes and should guide the development
of highly automated driving. In this study, empirical
data was collected in real traffic. The advantage of this
is the creation of a more realistic scenario. However,
traffic situations were not controllable and action deci-
sion patterns could hence not be evaluated. A simula-
tor study in which the traffic conditions at the moment
of the takeover request are controllable will thus be ex-
ecuted. This enables the collection of action decision

parameters. The action decision is unequal to the ac-
tion execution, as the decision may take place before
the execution is possible due to the traffic environment.
Thus, model predictions of the action decision in dif-
ferent complex situations can be validated by empirical
data. In further investigations it will also be important
to focus on subjective complexity in addition to objec-
tive complexity measures to include the individual into
predictions. This is a very important factor, as only the
consideration of individual differences enables a suitable,
adaptable and safe development of the human machine
interface. In order to focus on subjective complexity
measures validly, it is though necessary to completely
understand and control the objective complexity to sepa-
rately carry out result analysis for subjective complexity
measures.

Conclusion
Results of this study provide a first understanding of the
impact of objective complexity on the takeover task. In
a next step, action decision mechanisms in dependance
of the objective complexity will be gathered. These will
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be incorporated to further investigate in the subjective
complexity of participants during a takeover. Addition-
ally, steps that are undertaken during the takeover will
be differentiated more detailed. Patterns like action de-
cision, action execution and the quality of the takeover
and of the action execution should be included. Later,
subjective complexity measures will be addressed, to ad-
ditionally select model predictions based on the individ-
ual.
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Abstract

Cognitive enrichment for captive animals is the idea that cog-
nitive stimulation can improve animal welfare. In zoos, cog-
nitive enrichment not only helps the animals themselves but
also contributes to zoo missions of educating the public, sup-
porting research, and more. Technology-based cognitive en-
richment tools are increasingly popular for a variety of rea-
sons, though they also present unique challenges for design
and deployment. In this paper, we present a short review of
technology-based cognitive enrichment programs in zoo set-
tings, and then describe the design and development process
we used to create a new, touchscreen-based enrichment app
for a group of orangutans at Zoo Atlanta. We discuss initial
observations about the orangutans’ use of this app, as well as
lessons learned by our research team.
Keywords: animal-computer interaction (ACI); comparative
cognition; interactive technology; user-centered design.

Introduction
Zoos worldwide, which welcome nearly 200 million visitors
annually, provide important scientific, economic, and edu-
cational benefits to the public through their captive animal
care and management programs (Zoo & Aquarium Statistics,
2018). These programs are increasingly paying attention to
the cognitive health of captive animals, in addition to their
physical health, as a critical dimension of animal well-being.

In nature, animals experience many cognitive challenges
requiring attention, search, memory, etc., often in situations
directly related to their survival. Examples include forag-
ing, reasoning about social dominance relationships, detect-
ing predators/prey, and so on. Many animals in captivity do
not experience the same kinds of challenges, since they are
guaranteed food, water, territory, safety, and a social group.

Cognitive enrichment for captive animals is the idea that
cognitive stimulation can improve animal welfare (Meehan
& Mench, 2007), not just in zoos but in other settings as
well, such as farm/livestock facilities (Manteuffel, Langbein,
& Puppe, 2009). In zoos, cognitive enrichment programs
can provide additional benefits beyond those for the animals
themselves. Zoos generally have a mission of educating the
public about animals, and cognitive enrichment can be both
a point of connection with visitors as well as a topic for in-
formal science education, for instance to engage the public
around issues of cognitive health, the role of play and chal-
lenge in mental development, and more. In addition, zoos
are often sites for important research in comparative psychol-
ogy and anthropology, and cognitive enrichment both helps

Figure 1: An orangutan uses the video activity in our app on
a touchscreen at Zoo Atlanta.

to maintain a healthy animal population for researchers and
also provides platforms for conducting cognitive research.

Cognitive enrichment approaches that use technology are
becoming increasingly popular in zoos, and have both ad-
vantages and disadvantages. Technology-based enrichment
programs often require significant up-front investments in
hardware acquisition and software development, especially
when compared to non-technology-based enrichment tools
like physical toys. However, if designed properly, these
technologies can be reusable and extensible for continued
enrichment activities, and furthermore, hardware costs for
consumer-grade devices are continually decreasing. On the
other hand, hardware can often be damaged by animals,
technology-based activities may not be “realistic” to animals,
and, just as with people, there may be harmful effects from
animals spending too much time using screens.

Parallels can be drawn between studying technology us-
ability for animals and for humans. The emerging field of
animal-computer interaction (ACI), like human-computer in-
teraction (HCI), emphasizes the development of systematic,
user-centered design and evaluation practices for interactive
technology applications (Mancini, 2011).

In this paper, we briefly review technology-based cognitive
enrichment in zoos, and then describe the design process we
used to create a new, touchscreen-based enrichment app for
a group of orangutans at Zoo Atlanta. We discuss initial ob-
servations about the orangutans’ use of this app, as well as
lessons learned by our research team.
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Cognitive Enrichment Using Touchscreens
In this section, we review and discuss a sampling of previ-
ous studies that used technology-based approaches for cog-
nitive enrichment for captive zoo animals, with a focus on
touchscreen-based applications.

Cognitive Enrichment Versus Cognitive Research
Many interactive technologies used with captive animals in-
volve applications designed for research purposes. For exam-
ple, many of the orangutans in our case study in Zoo Atlanta
already have experience using touchscreens through cognitive
psychology experiments that have studied capabilities like
conspecific face recognition, working memory, etc. Often,
the goal of a research application is to answer a specific cog-
nitive science question, but the goal of cognitive enrichment
is to provide enrichment. Secondarily, enrichment applica-
tions may, of course, also provide data that are interesting for
cognitive research, but that is not the primary goal.

Thus, while the design of cognitive enrichment applica-
tions may be motivated by cognitive observations about a
species, the applications themselves may be more open-ended
or complex than those developed for research. Training ani-
mals to perform a task may also be less important in enrich-
ment, as tasks are often designed to draw upon an animal’s
intrinsic curiosity and motivation. In this vein, cognitive en-
richment applications do not always require the use of food
rewards to motivate animals (though some do). Instead, en-
richment can provide animals with entertainment, challenges,
and a sense of control over their environment.

Research on the effectiveness of cognitive enrichment ap-
plications is critical (Weed & ONeill-Wagner, 2015), which
brings up questions about how to measure the degree to which
an animal is “enriched” by engaging in a set of activities. Us-
age or participation in the activity is one measure, but gener-
ally, the goal for enrichment is to provide benefits of a more
holistic kind. Studies have used both qualitative and quan-
titative measures of observed animal behaviors to estimate
different aspects of the overall “well-being” of an animal,
such as, for example, reducing stereotypies or aggression, or
increasing play behaviors, exploration, or social interaction
(Alligood & Leighty, 2015).

Enrichment and Animal Welfare
Negative effects of typical zoo animal environments can stem
from limitations in physical space, diversity of activities, lack
of problem solving challenges, and even the withdrawal of
rewards from previously entrenched reward-based activities.
Minor mental challenges like puzzle-solving can therefore be
positive for animal welfare, especially if the challenges are at
an appropriate difficulty level. Benefits can include reduced
anxiety, increased learning abilities, improved physical con-
dition, more resistant immune systems, faster recovery from
illness, and less fearfulness in new scenarios.

Although enrichment benefits animals the most when they
are provided it from birth, it appears to have measurable ben-
efits even if introduced later (Millar, 2013). Given the limited

flexibility of many enrichment strategies, their utility is of-
ten limited by a lack of challenge or the inability to provide
a lasting sense of control for animals, making them prone to
habituation or frustration. Thus, what is needed is not just
the introduction of one-off, ad hoc enrichment activities, but
rather the development of flexible tools that support continu-
ally evolving, diverse enrichment programs.

Touchscreens and other technology-based applications
have often been examined with respect to their effects on an-
imal welfare outcomes. In some studies, technology-based
enrichment approaches were found to have some aversive ef-
fects on animals (Ritvo & MacDonald, 2016; Tarou, Kuhar,
Adcock, Bloomsmith, & Maple, 2004; Elder & Menzel,
2001). However, many other studies have found beneficial ef-
fects such as reduced negative behaviors like frustration, and
more (see examples in Table 1).

Touchscreen applications have several practical advan-
tages. Because digital enrichment can be dynamic and flex-
ible, it can provide a breadth of activities and be customized
to the needs of individual animals or groups of animals (Kim-
McCormack, Smith, & Behie, 2016; Boostrom, 2013). This
makes this technology more resistant to habituation when
compared to traditional enrichment. This form of enrichment
may also require little-to-no training for the animals. Touch-
screen applications can also be useful in situations when
animals are unable to be on exhibit because of inclement
weather, injury, or group management.

Designing Applications for Non-Human Animals
When considering the design of an application for a differ-
ent species, the consensus has been to begin with a user-
centered approach (Wirman, 2013; Kim-McCormack et al.,
2016; Wirman, 2014; Boostrom, 2013; Péron et al., 2012;
Dolins, Schweller, & Milne, 2017). In the case of ani-
mal users who cannot directly provide input or feedback,
zookeepers and other domain experts are critical resources
for informing the design of new applications.

Studies have shown that applications with auditory and vi-
sual components along with frequent opportunities for touch
interaction have been seen to have the highest interaction
times overall, and in terms of content in the application, con-
tent displaying photorealistic images has been preferred over
2D graphics (Boostrom, 2013; Wirman, 2014). Having an
application that provides immediate response to physical ac-
tion can be rewarding because of the sense of control (Kim-
McCormack et al., 2016). When creating graphics that en-
courage interaction from primates, designers of applications
for primates have heavily focused on small details, such as
thickness of borders around content, decisions about colors
that will stand out against a background, the sizes of graph-
ics, and more (Péron et al., 2012; Dolins et al., 2017; Wirman,
2013, 2014). One such program that focused on graphics pre-
sented to four chimpanzees a simple training regimen with
thick, wide green borders along the four sides of a square
against a black background (Dolins et al., 2017).

Designers have also considered the touchscreen itself, in-
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Table 1: A sampling of the literature on technology-based cognitive enrichment for captive animals.

Reference Species # Individuals Technology Frequency/Duration General Findings

Boostrom,
2013

Orangutans 16 iPad 5 min sessions at least
twice per month per in-
dividual, over a span of
6 months.

There was varying interest in the iPad among
the groups, with all groups showing a prefer-
ence for brightly colored applications that also
provided auditory stimulation.

Elder &
Menzel, 2001

Orangutans 1 Computer with
joystick

33 test days over a total
study period of 90 days.

Extended periods of delay between trials in-
duced signs of frustration, but stress was not in-
duced by task performance.

Gray et al.,
2018

Gorillas 7 Objects with
IoT

Two 60-minute ses-
sions.

Technology can help us learn about and tailor
playful experiences for gorillas.

Martin &
Shumaker,
2018

Orangutans 12 Touchscreen Single 20 min session. The versatility and programmability of com-
puters tasks makes them an ideal platform for
achieving functionally naturalistic outcomes for
great apes.

Millar, 2013 Pigeons,
dogs

16, 58 iPad 10-min sessions for 10
days (pigeons). Various
number of 10-min ses-
sions (dogs).

Both cognitive and physical enrichment were
found to reduce agonistic behaviour and in-
crease alertness.

Mueller-Paul et
al., 2014

Tortoises 4 Touchscreen Tested five days a week
from 9 am to 5 pm.

Red-footed tortoises could operate a touch-
screen and solve a spatial task.

Perdue et al.,
2012

Orangutans 4 Touchscreen Random 30-minute ob-
servation periods.

Touchscreen technology had no negative effects
on the animals.

Péron et al.,
2012

Parrots 3 Touchscreen Always available; each
piece of music lasted 90
seconds when played.

Music can be used as an environmental enrich-
ment for captive parrots, and musical prefer-
ences seemed to be influenced by personality.

Ritvo &
MacDonald,
2016

Orangutans 3 Touchscreen 30-60 min sessions,
once per day for 3-4
days per week.

Musical stimuli were not reinforcing; use of
music as enrichment may be more aversive than
enriching for some species.

Scheel, 2018 Orangutans 11 Touchscreen There were 10 random
observations sessions.

Overall, the orangutans appeared to have en-
joyed the touchscreen.

Schmitt, 2018 Gorillas,
chimps,

orangutans

5, 4, 4 Touchscreen Available about 45 min-
utes per day, 3 to 5
times per week.

The ZACI system proved to be highly applica-
ble for work with zoo-housed primates.

Tarou et al.,
2004,
Mallavarapu et
al., 2013

Orangutans 8 Computer with
joystick

1 hour sessions, for a
total of 240 hours.

Behavioral changes associated with the com-
puter included increases in aggressive behav-
ior and more. The lack of habituation by
frequent users indicates that computer-assisted
tasks may be useful environmental enrichment
for orangutans.

Wirman, 2012,
2013, 2014

Orangutans 2 Tablet-based
touchscreen

Random, short dura-
tions of play with the
touchscreen.

Digital play allows a form of communication
that eliminates some obstacles and creates new
ways for togetherness in play.

cluding viewing angle, software and hardware specs, and in-
put mechanisms (Wirman, 2014), as well as expected phys-
ical usage. For example, orangutans often sit in an upright
position to use a touchscreen, similar to human behavior.

Just as with the design of technologies for people, de-
sign for non-human animals requires significant creativity
and imagination on the designers’ part. Furthermore, non-
human animals may interact with applications in unexpected
ways, despite a designer’s best-laid plans. Thus, early proto-
typing and “user testing” is key.

Our Case Study
We developed an enrichment application intended for use by
the eleven orangutans (age 3-48 years) at Zoo Atlanta in At-
lanta, GA, USA.

The zoo that our team worked with has an existing, some-
what unique technology installation in one of their open-air

orangutan enclosures: an artificial “tree” (fiberglass, etc.) that
has a touch-screen monitor built into one face, and houses a
desktop computer inside (see Figure 2). The intent of this in-
stallation was to provide a platform for cognitive enrichment
for the orangutans that could be used in a relatively unstruc-
tured way. The tree had previously been loaded with applica-
tions designed for comparative psychology research.

In conversations with our team, zookeepers stated their de-
sire for a new “app” for the tree that would: 1) be easy enough
for the orangutans to use without oversight from staff mem-
bers; and 2) be engaging enough for the orangutans that they
might choose to use it without extrinsic rewards (e.g., food).

In addition to these criteria, we added two more from
the software development side: 3) be easily extensible by
zookeepers to add/modify content to individual app activi-
ties; and 4) be modular and thus easily extensible by future
developers to add/modify individual activities within the app.
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Figure 2: “Learning Tree” touchscreen installation.

App Design and Development
Through many discussions with four zookeepers over a pe-
riod of two and a half years, we designed a cognitive enrich-
ment application that consisted of an “activity chooser” home
screen, from which the orangutans would be able to select in-
dividual activities to engage in. Initially, we designed three
modular activities to populate the system: 1) a video player
activity, 2) a visual puzzle activity, and 3) a musical instru-
ments activity.

A primary concern throughout the design process was aim-
ing to ensure that the interface and individual activities would
be simple enough for use by the orangutans. Often, such
enrichment app designs overestimate the level of complex-
ity that animals can understand in terms of interface and task
design. In conversations with other zoos that attempted simi-
lar technology-based enrichment efforts with non-human pri-
mates, we learned that simplicity of the interface and famil-
iarity of the elements presented to animals were both impor-
tant design factors to keep in mind (McAuliffe, 2017).

Home screen. As illustrated in Figure 3 (left), the applica-
tion’s home screen holds an array of orangutan images, and
a vertical green home button. Contrary to many common
formats of reward-based applications, where the orangutans
have to figure out where to press or what to do in order
to get food, this design seeks to draw the animal’s atten-
tion by showing them images they will recognize: famil-
iar orangutans from their own social group. Research has
shown that orangutans, while not among the most social
of non-human primates, still do show fairly robust conspe-
cific (e.g. within-species) visual recognition of familiar faces
(Hanazuka et al., 2013; Talbot et al., 2015). Each cell with an
orangutan image leads to one of three different activities.

The home button appears on all screens of the app and will
always return the orangutan to the original home screen. The
button appearance was not designed arbitrarily; the green gra-
dient was featured in the home buttons of other reward-based

applications that the orangutans had already been using. As
a result, the familiar pattern attempts to give the orangutans
visual clues about the button’s function.

Video player activity. The first of the activities is illus-
trated in Figure 3 (right side, top row). Pressing any of four
brightly colored boxes triggers a short video clip (15-30 sec-
onds) of one of the zoo’s orangutans, taken from the zoo’s ex-
isting store of videos. The layout was designed to be simple
and visually distinguishable from the other screens. Again,
zookeepers thought that showing videos of individuals famil-
iar to the orangutans would be engaging.

Visual puzzle activity. The second activity is the sim-
ple visual puzzle illustrated in Figure 3 (right side, middle
row). We wanted to create an activity a bit more challenging
than the passive-viewing video player activity, but also sim-
ple enough to be solvable by most of the orangutans fairly
quickly, especially in their initial exposure to the app.

Thus, we created a design in which puzzle “pieces” of an
image are shown around the perimeter of the screen, with a
target grid in the middle. Pressing any of the puzzle pieces
prompts the piece to move on its own to the correct grid loca-
tion, greatly reducing the difficulty of the task while also pro-
viding some visual interest. Once all four pieces have been
pressed and are in position, the completed image then plays
as a video (puzzle images are taken from the first frames of
video clips), providing a type of “visual reward” for com-
pleting the puzzle. As with the previous screens, images
were chosen from the zoo’s stock of photographs of their own
orangutans, to facilitate interest through familiarity.

Musical instruments activity. Finally, as illustrated in
Figure 3 (right side, bottom row), we created an activity that
displays an array of eight different musical instruments which
play an audio clip (1-30 sec) of their corresponding sound
when pressed. While the recording is playing, the selected
instrument icon also oscillates in place to emphasize the con-
nection between the button and the sound.

Previously cited research suggests that musical stimuli is
not reinforcing as orangutan enrichment, but we believed that
research on musical enrichment is minimal enough to explore
further. Additional cited research proposes that orangutans
tend to be more interested in photorealistic images than
graphics, but through conversations with zoo researchers, we
concluded that this information is not as essential for images
of instruments as it is for images and videos of orangutans
contained in the other activities.

Modularity of design. Though our design choices pri-
marily strive to achieve simplicity of use, it is also im-
portant to keep activities somewhat novel when designing
for orangutans in order to prevent boredom and frustration
(Wirman, 2013). Therefore, one important aspect of modu-
lar design in our app relates to the video content used for the
video player activity and for the visual puzzle activity. Videos
are drawn from a specific folder, and zookeepers can eas-
ily change the available videos by adding or removing video
files from the library. In addition, the image/video used for
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Figure 3: Flow diagram of the touchscreen-based application we designed to provide cognitive enrichment for orangutans.

the puzzle activity is randomly chosen from this store, to add
some novelty to that activity over repeated sessions.

Because some orangutans become familiar with touch-
screen activities faster than others, the goal was to design ac-
tivities that were, on average, challenging, but not frustrating.
Thus, an expectation was that some orangutans would learn
activities more quickly than others, and that many orangutans
would continue to perceive activities as novel for a substantial
amount of time.

One other modular design choice is that each individual
activity resides in its own “container.” Thus, activities can be
added or swapped in a relatively straightforward fashion. In
conversations with zookeepers, one common issue with en-
richment apps seems to be the lack of ease of extensibility,
especially given that it is often difficult to access software de-
velopers to work on extensions or modifications.

Finally, log files are saved from each session and hold a
timestamped record of every activity performed in the app.
The information in these logs is valuable for understanding
orangutan usage patterns, and perhaps inferring measures of
orangutan amusement and satisfaction, as potentially impor-
tant components of overall cognitive enrichment.

Ideally, additional data would be collected to establish a
durable record of which individual orangutans were using
the app at various times. For example, we discussed with
zookeepers the potential value of having a webcam-like setup
that would record video of the orangutan user every time the
app was activated. Such a video would provide not only iden-
tifying information about users but potentially also informa-
tion on the user’s affect and engagement levels. However,
due to logistical constraints, we were not able to deploy such
a setup. As a result, our log files record usage but not which
individual or individuals were using the app.

Observations and Lessons Learned

Initial deployment of the app with the group of orangutans
at the zoo seems to show many positive signs. Based on
our team’s qualitative observations of the orangutans, they
seemed curious and interested in what was happening on the
touch screen, often rushing over in a group to see what was
happening when zookeepers opened the app on the learning
tree computer. Several individual orangutans were also ob-
served at various times interacting with the app for moder-
ately lengthy durations.

Figure 4 shows ten examples of orangutan interactions with
the app, as recorded in the system logs. These ten sessions,
shown on the y-axis in no particular order, were chosen from
the full set of log data to show a sampling of interaction pat-
terns that were observed. The x-axis shows time across a
duration of about 24 minutes, measured from the first touch
screen press that was recorded by the app during a given ses-
sion.

Clearly, there is a lot of variability in usage. Sometimes
(e.g., logs 2, 8, and 9), there is some initial activity that
quickly tails off within a minute or two. Other sessions show
much more sustained activity. The orangutans seem to have
accessed each of the app’s activities more than once, though
the extent to which they are purposefully navigating through
the app, versus just pushing various buttons, is an open ques-
tion. More detailed analyses of such log files will be an im-
portant part of our future work.

In addition to the log data, we also discuss, in qualitative
terms, two episodes of interaction that were particularly note-
worthy. First, one of the most interesting moments occurred
when Madu, a female orangutan in her 30s, was viewing
videos through the video player activity. (The image in Fig-
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Figure 4: Sampling of app log data from 10 different interaction sessions (y-axis) across time, as measured from first touch
screen press (x-axis).

ure 1 is a still from this episode.) She encounters a video of
Alan, an older male orangutan who had passed away nearly
four years earlier. Madu is visibly transfixed for 20 long sec-
onds, and then tries to interact further by touching his figure
in the video several times. Of course, we do not know for
sure what was going on in Madu’s mind at the time, but at
least to the zookeepers who know her best, it seemed like
she was remembering her old habitat neighbor. Note that we
did not include videos of Alan on purpose; we were simply
pulling from the zoo’s stock of orangutan videos. However,
this incident does seem to support the idea that familiar stim-
uli can be uniquely engaging to orangutans, even (or perhaps
especially) in the case of dearly departed old friends.

Another time, one of the orangutans was interacting with
the app and seemed to be searching for a food reward, looking
up at the feeder mechanism on the tree (used in other, reward-
based applications), tapping on the tree, and even banging on
the touchscreen with a fist. The orangutan appeared to be
quite frustrated at the absence of a food reward! Despite this
episode, however, several of the orangutans at other times did
find the app interesting enough to be worth engagement, even
without food rewards. This raises interesting questions about
the longer-term impacts on learning and motivation of using
food rewards to stimulate certain behaviors.

We conclude with three takeaway lessons from our case
study of cognitive enrichment for captive orangutans.

Familiarity of stimuli. The use of photos and videos of
familiar orangutans did seem to support interest and engage-
ment in the orangutans using our app. Further evaluations of
this principle would be extremely valuable for cognitive en-

richment programs in general, including at other zoos, with
other species, and in a variety of enrichment activities.

Modularity in design. The modular design that we im-
plemented, especially in terms of enabling zookeepers to eas-
ily swap out image/video content without requiring any pro-
gramming skills, seems to be a promising approach to en-
able technology-based enrichment activities to be modifiable.
Studies of orangutan engagement over time will be informa-
tive, and we expect that the ability to regularly change app
content will keep the novelty factor up.

Engagement with the public. There is continued debate
on the pros and cons of adding technology to the daily expe-
riences of zoo animals, not only with respect to the animals
themselves but also with respect to the public education mis-
sions that most zoos have. Is it really teaching the public the
right ideas about wildlife to show orangutans playing “video
games?” There is no easy answer to this question, but Zoo
Atlanta has aimed to strike a balance by establishing a “nat-
uralistic” setting for their technology-based enrichment—the
learning tree shown in Figure 2.

These applications can also serve to teach the public about
the cognitive health of captive animals, and to showcase joint
efforts by zookeepers and researchers to ensure that animals
have a stimulating cognitive environment. The “coolness”
factor of technology-based interventions may provide posi-
tive benefits for engaging the public (Perdue et al., 2012);
for example, the video of the Madu-Alan episode described
above was viewed on the zoo’s social media page over 15
thousand times. In addition to media influence, zoo visi-
tors can participate in weekly zookeeper-led showcases of
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the orangutans using the touchscreen in their exhibit, through
which they have the opportunity to ask questions about
orangutan behavior with the touchscreen and view real-time
touchscreen interactions on an additional screen display that
is located just outside the enclosure.

In summary, while non-technological cognitive enrichment
activities also have their place, we expect that technology-
based interventions will continue to provide valuable contri-
butions for the study and care of captive zoo animals, as well
as for basic research in cognitive science.
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Abstract 
We investigated the application of non-linear analysis 
techniques for capturing stability of neural oscillatory activity 
within and across brains. Recurrence Quantification Analysis 
(RQA), a technique that has been applied to detect stability 
and flexibility of motor performance, was extended to observe 
and quantify changes in patterns of non-linear neural activity. 
Participants synchronized their finger-tapping with a 
confederate partner who tapped at two different rhythms 
while neural activity was recorded from both partners using 
electroencephalography (EEG). Auto-recurrence (intra-brain) 
and cross-recurrence (inter-brain) of EEG activity were able 
to distinguish differences across tapping rhythms in stability 
of neural oscillatory activity. We also demonstrated the 
efficacy of RQA to capture how both period and phase 
changes in neural dynamics evolve over time. 

Keywords: joint action; neural dynamics; 
electroencephalography; recurrence quantification analysis 

Introduction 
Researchers have become increasingly interested in 
capturing complex oscillatory signals common to human 
behaviors, and which often show non-linearities that evolve 
over time. This can be seen in individual motor behaviors 
like postural sway and finger-tapping (Schmit, Regis & 
Riley, 2005; Schmit, Riley, Dalvi, Sahay, Shear, Shockley, 
& Pun, 2006; Scheurich, Zamm, & Palmer, 2018), and in 
joint motor behaviors like conversational speech and music 
performance (Dale & Spivey, 2006; Demos, Chaffin, & 
Kant, 2014). One way in which these complex signals can 
be represented is through Recurrence Plots (RPs), which 
display the points in time at which an individual returns to 
previous behavioral states (i.e., self-similarity), or the points 
in time at which two individuals visit the same behavioral 
state (i.e., similarity between individuals; Eckmann, 
Kamphorst, & Ruelle, 1987). RPs are useful tools for 
observing transitions between states in a system and can be 

further quantified using Recurrence Quantification Analysis 
(RQA). These quantifications give insights into the 
behavioral dynamics of one or more systems over time 
through measures such as recurrence rate: how often a 
system returns to previous states or two systems visit the 
same state; and mean diagonal line length: the time over 
which one or more systems are stable (Marwan, Romano, 
Thiel, & Kurths, 2007; Marwan & Webber, 2015). One 
advantage of RQA is that it can be applied both within 
individuals during solo tasks (i.e., auto-recurrence) and 
between individuals during joint tasks (i.e., cross-
recurrence; Marwan, Romano, Thiel, & Kurths, 2007; 
Marwan & Webber, 2015). Thus, these tools have been 
useful for characterizing dynamics of motor behaviors over 
time both within and across individuals during a variety of 
solo and joint behaviors (e.g., Schmit, Regis, & Riley, 2005; 
Schmit, Riley, Dalvi, Sahay, Shear, Shockley, & Pun, 2006; 
Romero, Fitzpatrick, Schmidt, & Richardson, 2016; Demos 
& Chaffin, 2017; Scheurich, Zamm, & Palmer, 2018).  

 Complex oscillatory signals are not unique to behavior, 
but are also observed in human brain activity. This can be 
seen, for example, in the oscillatory neural activity that 
underlies rhythmic auditory-motor behaviors (e.g., 
Nozaradan, Zerouali, Peretz, & Mouraux, 2013; Nozaradan, 
2014; Morillon & Baillet, 2017; Zamm, Debener, Bauer, 
Bleichner, Demos, & Palmer, 2018). However, common 
methods for examining oscillatory neural activity supporting 
these kinds of behaviors often do not measure dynamics 
over time, but instead assume stationarity of the signal. 
RQA has been applied to oscillatory neural activity, as 
measured through electroencephalography (EEG), in a 
limited scope. This has been primarily in clinical settings, in 
which outcomes such as recurrence rate and mean diagonal 
line length, which provide information about the stability of 
neural activity, have been used successfully to classify 
periods of epileptics’ EEG activity as normal, pre-ictal, and 
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ictal activity (Acharya, Sree, Chattopadhyay, Yu, & Ang, 
2011). Furthermore, RQA outcomes have been applied for 
monitoring consciousness of patients undergoing anesthesia 
(Becker, Schneider, Eder, Ranft, Kochs, Zieglgänsberger, & 
Dodt, 2010). In addition to its clinical applications, 
researchers have proposed RQA as a method for studying 
event-related potentials (ERPs). Although traditional 
methods of studying ERPs require averaging over many 
trials to obtain a clear waveform, RQA allows for the use of 
single trials to identify changes in ERP components, as 
demonstrated in an auditory perception experiment using the 
auditory oddball paradigm (Marwan & Meinke, 2004). No 
research, to our knowledge, has yet applied RQA to capture 
oscillatory neural activity that distinguishes different 
rhythmic auditory-motor behaviors. 

The current study applies RQA to capture the dynamics of 
oscillatory neural activity during a 2-person rhythmic 
tapping task. Participants tapped at two different rhythms 
with a confederate partner while EEG was recorded from 
each partner. In one rhythm condition, the confederate 
tapped at twice the frequency of the participant. In the 
second rhythm condition, the confederate tapped at half the 
frequency of the participant. The neural activity at the 
participant’s (constant) tapping frequency was compared 
across rhythm conditions. Only activity at the constant 
frequency was examined to identify changes in oscillatory 
neural activity related to changes in tapping ratios between 
partners as opposed to changes in absolute frequency. Auto- 
(intra-brain) and cross-recurrence (inter-brain) analyses of 
EEG activity were expected to reveal greater stability of 
oscillatory neural activity when the participants’ tapping 
frequency was the dominant frequency (i.e., more auditory 
feedback at that frequency).  

Methods 

Participants 
Data from eight adult musicians aged 18-30 years old with 
at least 6 years of private music instruction on an instrument 
other than percussion were taken from a larger study. Their 
duet tapping trials met a performance cut-off of at least 75% 
error-free trials (i.e., no missed taps) for each condition in 
which partners performed live together. Other conditions 
included in the larger study in which participants performed 
with pre-recordings of their partner were not examined in 
the current paper. A single confederate experimenter (more 
than 6 years of piano instruction) tapped with each 
participant to maintain consistent timing properties of live 
and pre-recorded conditions as well as social presence 
across participants. All participants and the confederate 
were right-handed and had normal hearing (< 30 dB HL 
threshold, 125 – 750 Hz) as determined by an audiometry 
screening. Participants and the confederate reported no 
current psychiatric or neurological conditions and were not 
taking medication affecting the central nervous system at 
the time of testing. 
 

Equipment and Materials 
Participants’ hearing was assessed with a Maico MA40 
audiometer. Participants tapped on a Roland A500s MIDI 
keyboard and the confederate tapped on a Yamaha PSR 
500m MIDI keyboard. Auditory feedback was delivered in a 
sine tone timbre generated by a Roland Sound Canvas, 
amplified to a comfortable listening level using a Behringer 
Headphone Amplifier, through EEG-compatible earphones 
(Etymotic ER-1, Etymotic Research Inc.). Participants’ 
auditory feedback was presented at pitch G4 (392.00 Hz), 
and the confederate’s auditory feedback at pitch E5 (659.25 
Hz). MIDI data were collected using FTAP software 
(Finney, 2001). FTAP was modified to integrate Lab 
Streaming Layer (LSL; Kothe, 2014) similar to Zamm, 
Palmer, Bauer, Bleichner, Demos, & Debener, 2017. This 
modification allowed for keystroke, metronome, and time 
triggers from FTAP on a Dell computer running Linux to be 
sent over the local area network and received by a second 
Dell computer running Windows 7, where LSL 
synchronized the keystroke and EEG data collection from 
both partners (Zamm et al., 2017). 
 
EEG Data Recording 
EEG data were recorded from each partner at a 512 Hz 
sampling rate via two separate but synchronized 64-channel 
BioSemi Active-Two systems (BioSemi, Inc.). Electrodes 
were positioned according to the 10-20 system. Data were 
recorded using a common mode sense (CMS) active 
electrode and driven right leg (DRL) passive electrode 
which formed the reference 
(http://www.biosemi.com/faq/cms&drl.htm). External 
electrodes were placed above and below the right eye to 
detect eyeblinks, on the outer corner of each eye to detect 
lateral eye movements, and on the mastoids to detect muscle 
artefacts. 
 
Stimulus Materials and Design 
Each stimulus was constructed of an approximately 40-
second series of taps generated by the Participant and 
Confederate. Each pair (Participant and Confederate) 
completed the joint tapping tasks in a within-subjects design 
with 2 rhythm conditions: 1-2 (Confederate-Participant) and 
4-2 (Confederate-Participant). In the 1-2 condition, the 
confederate tapped at half the rate (~0.95 Hz) of the 
Participant (~1.89 Hz). In the 4-2 condition, the Confederate 
tapped at twice the rate (~3.78 Hz) of the Participant (~1.89 
Hz). Thus, the Participants’ tapping frequency was constant 
across conditions. Each pair completed one practice trial and 
12 experimental trials in each rhythm condition. Rhythm 
was blocked within pair, and blocks were counterbalanced 
across pairs. The dependent variables were auto- (intra-
brain) and cross-recurrence (inter-brain) outcomes of 
Recurrence Rate, describing how much of the RP is 
occupied by recurrent points (how often a single system 
returns to previous states in auto-recurrence, or two systems 
visit similar states in cross-recurrence), and Meanline, 
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describing the average diagonal line length (the 
mathematical stability of the system(s); see RQA 
Application to EEG). 
 
Procedure 
After giving informed consent upon arrival to the lab, 
participants completed an audiometry screening. Then both 
the participant and the confederate were outfitted with EEG 
caps and electrodes. The participant and confederate were 
taken to the testing room where the confederate was 
introduced to participants as an experimenter who served as 
the partner in each pair to maintain consistency of 
interactions across pairs. The participant and the confederate 
were seated at two separate keyboards across from one 
another with a barrier placed between the keyboards such 
that the partners could only see one another above the 
shoulder.  

The participant and confederate then completed the two 
tapping tasks together at the two different rhythmic ratios. 
They were instructed to tap with the index finger of their 
right hands on a single key of the keyboard while 
minimizing eyeblinks and eye movements. The participant 
and confederate were first presented with separate recorded 
examples of each tapping part in isolation, and then they 
were presented with a recorded example of how the two 
parts sounded together. After listening to the examples, the 
participant and confederate were instructed that they would 
hear a four-beat metronome cue sounded at the participant’s 
prescribed rate at the beginning of each trial, and they were 
presented with a recorded example of how their parts 
sounded together with the metronome cue. The participants 
were instructed that they should synchronize with the 
confederate’s tapping while maintaining the rate cued by the 
metronome, and the confederate was instructed to maintain 
a steady pulse. After completing a practice trial, pairs 
completed 12 experimental trials. This procedure was 
repeated for each rhythm condition. After completion of the 
tasks, participants were debriefed and received a small 
compensation.  The whole experiment lasted approximately 
three hours. 
 
EEG Preprocessing 
EEG data were preprocessed in EEGLAB (Delorme & 
Makeig, 2004). Data were first prepared for artefact 
correction with Independent Component Analysis (ICA), 
using a procedure adapted from Zamm et al. (2017). Data 
were concatenated across all trials in all experimental 
tapping tasks, and re-referenced to the common average 
across electrodes. Electrodes reflecting poor signal quality 
were identified by visually inspecting electrode distributions 
of deviations from mean activity for each subject. 
Electrodes with very large deviations from mean activity 
were identified as noisy, and electrodes with no deviation 
from mean activity were identified as flat. These electrodes 
were removed, and data were subsequently filtered between 
1 Hz and 40 Hz using a Hanning windowed sinc FIR filter 
(high and low pass filter order = 1000). Filtered data were 

then segmented into 1-second epochs, pruned for non-
stereotypical artefacts, and submitted to extended infomax 
ICA. ICA components representing eyeblinks and lateral 
eye movements were visually identified and removed from 
the unfiltered data. After removing bad components, 
previously rejected electrodes with poor signal quality were 
spherically interpolated. 
 
RQA Application to EEG 
Power Spectral Density (PSD) estimates of ICA-corrected 
EEG activity were then computed similar to Zamm et al. 
(2017). PSD gives the amount of power present in the EEG 
signal at component frequencies. Preprocessed EEG data 
were high then low pass filtered using a Hanning windowed 
sinc FIR filter (high pass filter order = 1000, cutoff = 0.1 
Hz; low pass filter order = 1000, cutoff = 20 Hz) and 
segmented into 3 10.56-second epochs (to control for 
tapping frequency drift). PSD was estimated for each 
electrode and epoch, and then was log-transformed before 
averaging across epochs and then trials. The electrode with 
maximal power on average across conditions, tapping 
frequencies, and participants was identified as electrode C1 
(central and left-lateralized). This electrode is commonly 
identified as showing maximal activity in auditory-motor 
behaviors (e.g., Nozaradan, Zerouali, Peretz, & Mouraux, 
2013; Nozaradan, 2014). Data from this electrode were used 
as input to auto- and cross-recurrence analyses. 

ICA-corrected data from electrode C1 for participants and 
the confederate were then prepared for auto- and cross-
recurrence analyses. First, the data were filtered at the 
participants’ observed tapping frequencies. The filter 
frequency cutoffs were tailored per participant and 
confederate pair and rhythm condition to account for any 
deviations in expected tapping frequency. The data were 
high then low pass filtered using a Hanning windowed sinc 
FIR filter (high and low pass filter orders = 1000) with 
cutoff frequencies ± 2 standard deviations around the 
observed participant tapping frequency. Data were then 
segmented into 3 10.56-second epochs (for computational 
tractability) and z-scored per epoch.  

Auto- and cross-recurrence analyses were run using the 
Cross Recurrence Plot Toolbox (Marwan, Romano, Thiel, & 
Kurths, 2007). Optimal auto- and cross-recurrence 
parameters were determined per epoch; final selected 
parameters were determined by examining the distribution 
of parameters across epochs. The optimal delay parameter 
was determined by computing Average Mutual Information 
(AMI). AMI gives the amount of information a time series 
shares with itself at different time delays, with the delays at 
which it shares least information with itself being optimal 
for RQA. The first delay at which shared information of the 
C1 time series with itself reached a minima was selected 
(selected delay = 68 samples, corresponding to 1/4 cycle of 
the participant tapping frequency). The optimal number of 
embedding dimensions was determined by computing False 
Nearest Neighbors (FNN). FNN gives the amount of false 
neighbors in phase space as a function of the number of 
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embedding dimensions (copies of the time series at the 
specified delay). The number of embedding dimensions at 
which number of false nearest neighbors was minimized and 
adding more dimensions no longer reduced number of false 
nearest neighbors was selected (selected embedding 
dimensions = 4). Finally, the maximum phase space 
diameter, corresponding to the standard deviation of the 
time series, was computed using the selected delay and 
embedding dimensions. The optimal threshold for which 
points in phase space are considered recurrent was 
determined by computing 10% of this value (selected 
threshold = 0.49; Schinkel, Dimigen, & Marwan, 2008). For 
auto-recurrence, the Thieler window, minimum diagonal 
line length, and minimum vertical line length were set to 34 
samples (corresponding to 1/8 cycle of the participant 
tapping frequency). For cross-recurrence, the Thieler 
window was set to 0 samples and the minimum diagonal 
and vertical line lengths were set to 34 samples. 

Results 

Auto-recurrence Outcomes 
We first investigated how auto-recurrence (intra-brain) 
outcomes changed with Rhythm, and whether these patterns 
held or changed across Partners within each pair. Separate 
two-way ANOVAs were run on Recurrence Rate and 
Meanline with Rhythm (1-2 and 4-2) and Partner 
(Participant and Confederate) as factors and pair as random 
variable. Results are summarized in Table 1 and sample RPs 
are shown in Figure 1. There was a significant main effect 
of Rhythm on Recurrence Rate:  Recurrence Rate was 
higher for the 1-2 Rhythm (in which the participant tapped 
at twice the rate of the confederate) than for the 4-2 
Rhythm. There was no significant main effect of Partner, 
F(1, 7) = 0.012, p = 0.92, or significant interaction between 
Rhythm and Partner, F(1,7) = 0.415, p = 0.54, on 
Recurrence Rate. There was also a significant main effect of 
Rhythm on Meanline: Meanline was higher for the 1-2 
Rhythm than for the 4-2 Rhythm. Again, there was no 
significant main effect of Partner, F(1,7) = 0.017, p = 0.90, 
or  significant interaction between Rhythm and Partner, F(1, 
7) = 0.582, p = 0.47, on Meanline. These effects were 
replicated with mixed models in which random effects of 
Partner and Rhythm were allowed to vary as a function of 
the pair. 

To ensure that the main effect of Rhythm on Meanline 
was not a function of differences in Recurrence Rate across 
Rhythms, we also examined the outcome of Meanline when 
Recurrence Rate was fixed to 10% across Rhythms during 
the process of computing the RQA. A two-way ANOVA 
was run on Meanline with Rhythm and Partner as factors 
and pair as random variable. The main effect of Meanline 
held when Recurrence Rate was fixed across Rhythms, F(1, 
7) = 17.577, p = 0.004. Meanline was higher for the 1-2 
Rhythm than for the 4-2 Rhythm. There was no significant 
main effect of Partner, F(1, 7) = 0.001, p = 0.97, or 

significant interaction between Rhythm and Partner, F(1, 7) 
= 0.579, p = 0.47. 
 

Table 1: Auto-recurrence main effects of Rhythm. 
 

Outcome 1-2 4-2 F η2 p 
Recurrence 

Rate 
3.06% 2.59% 23.03 0.79 0.002 

Meanline 136.26 126.44 20.32 0.77 0.003 
 

Figure 1 shows RPs for an example epoch from one 
participant for each Rhythm. As can be seen in these 
examples, there are more recurrent points and longer 
diagonal lines in the 1-2 RP (when the participant’s tapping 
frequency is the dominant performance frequency) than the 
4-2 RP. The white space between the diagonal lines on each 
plot corresponds approximately to the participant tapping 
frequency (1.89 Hz or approximately 271 samples). 
 
Cross-recurrence Outcomes 
Separate one-way ANOVAs were conducted on the same 
outcome measures (Recurrence Rate and Meanline) from 
cross-recurrence quantification analysis with Rhythm as 
factor and pair as random variable. Results are summarized 
in Table 2 and sample RPs are shown in Figure 2. There 
was a significant main effect of Rhythm on Recurrence 
Rate: Recurrence Rate was higher for the 1-2 Rhythm than 
for the 4-2 Rhythm. There was also a significant main effect 
of Rhythm on Meanline: Meanline was higher for the 1-2 
Rhythm than for the 4-2 Rhythm. These effects were 
replicated with mixed models in which random effects of 
Rhythm were allowed to vary as a function of the pair. 

To again ensure that the main effect of Rhythm on 
Meanline was not a function of differences in Recurrence 
Rate across Rhythms, we also examined the outcome of 
Meanline when Recurrence Rate was fixed to 10% across 
Rhythms during the process of computing the RQA. A one-
way ANOVA was run on Meanline with Rhythm as factor 
and pair as random variable. The main effect of Meanline 
held when Recurrence Rate was fixed across Rhythms, F(1, 
7) = 14.264, p = 0.007. Again, Meanline was higher for the 
1-2 Rhythm than for the 4-2 Rhythm. 
 

Table 2: Cross-recurrence main effects of Rhythm. 
 

Outcome 1-2 4-2 F η2 p 
Recurrence 

Rate 
2.93% 2.53% 16.84 0.74 0.005 

Meanline 131.22 122.78 16.81 0.74 0.005 
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Figure 1: Time series and RPs with samples as a unit of time for one epoch from one participant for Rhythms 1-2 and 4-2. 
The time series shows the z-scored preprocessed signal from electrode C1.
 

Figure 2 shows example cross-recurrence plots (CRPs) 
for a single epoch from one pair for Rhythms 1-2 and 4-2 
for the same trials shown in Figure 1. As can be seen in 
these examples, the 1-2 CRP is more densely occupied by 
recurrent points than the 4-2 CRP; these points also form 
longer diagonal lines than those in the 4-2 CRP. This 
indicates that the two signals overlap more often and for 
longer periods in phase space during the 1-2 Rhythm than 
the 4-2 Rhythm, indicating greater inter-brain stability. 
Furthermore, the white space between diagonal lines 
indicates the period at which the two neural signals recur 
with one another, and this period corresponds approximately 
to the participant tapping frequency (1.89 Hz or 
approximately 271 samples). Phase shifts between the two 
signals over time can also be observed by the degree of 
curvature in the diagonal lines in each CRP. 

Discussion 
The current experiment examined the application of RQA to 
neurophysiological data collected during a rhythmic tapping 
task between partners. Both auto- and cross-recurrence 
measures were sensitive to changes in stability of neural 
oscillations across tasks. Stability of neural oscillations at 
the participant tapping frequency was greater both within 
and across brains, as shown by larger recurrence rate and 
meanline outcomes from auto- and cross-recurrence,  

 
respectively, when there was more auditory feedback for 
both partners at the participants’ tapping frequency. 

We showed intra- and inter-brain recurrence that 
corresponded approximately to the participant tapping 
frequency. We also showed phase shifts in time as observed 
by the degree of curvature of the diagonal lines. Future work 
can further examine the time delay in recurrent points 
between two signals using quantifications such as the 
diagonal recurrence profile (e.g., Richardson & Dale, 2005; 
Dale, Kirkham, & Richardson, 2011), and subsequently 
relate this to behavioral performance. In contrast to other 
inter-brain metrics such as phase coherence, one advantage 
of cross-recurrence is the ability to show and subsequently 
quantify inter-brain dynamics when neural signals occupy 
the same phase space. 

One limitation of the current experiment is that we only 
examined neural activity filtered at the participant tapping 
frequency. Future work can extend this technique to look at 
other stimulus frequencies to further examine the time 
evolution of neural dynamics in a joint motor task. We were 
also limited in our analyses by a small sample size. With 
more pairs, it could be possible to apply more sophisticated 
analysis methods to RQA outcomes such as an Actor-
Partner Interdependence Model to examine how partners 
influence one another (Kenny, Kashy, & Cook, 2006). We 
also used PSD estimates for selecting a single electrode 
whose data were used for auto- and cross-recurrence  
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Figure 2: Time series and CRPs with samples as a unit of time for one epoch from one pair for Rhythms 1-2 and 4-2. Time 
series show the z-scored preprocessed signal from electrode C1 for the participant (in black) and the confederate (in red).
 
analyses. Future work can also extend this technique to 
identify regions of interest (i.e., multiple EEG electrodes) on 
which Multidimensional Recurrence Quantification 
Analysis (MdRQA) could potentially be applied (Wallot, 
Roepstorff, & Mønster, 2016). 

In sum, recurrence quantification techniques were 
sensitive to changes in the dynamics of oscillatory neural 
activity that occurred during a joint rhythmic task. This is 
the first demonstration, to our knowledge, of RQA 
techniques to show consistent intra- and inter-brain 
differences in a joint auditory-motor task. These findings 
suggest that the sensitivity of RQA to stability of oscillatory 
neural activity might lend the technique to more fine-
grained characterization of non-linearities in neural 
dynamics in a variety of behaviors and participant 
populations. 
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Abstract 

Despite constantly using energy and having extensive interactions 

with household appliances, people consistently mis-estimate the 

amount of energy that is used by home appliances. This poses 

major problems for conservation efforts, while also presenting an 

interesting case study in human perception. Since many forms of 

energy used are not directly perceptible, and since the amount of 

energy that is being used by an appliance is often difficult to infer 

from appearances alone, people often rely on cues. Some of these 

cues are more reliable than others and previous literature has 

investigated which of these cues people rely on. However, past 

literature has always studied these proximal cues in isolation—

despite the fact that, during real-world perception, people are 

always integrating a variety of cues. Here, we investigate how 

people rely on a variety of cues, and how individual differences 

in the reliance on those cues predicts the ability to estimate home 

energy use.  

Keywords: energy; perception; estimation; home appliances; 

multi-dimensional scaling  

 

Introduction 

Despite its importance in the face of catastrophic climate 

change, energy and energy use are not well or widely 

understood by the public. For many home appliances, we 

have only indirect access to the appliances’ energy use and 

energy units are difficult to understand. However, people 

frequently make choices as energy consumers: When should 

I turn off the lights? For how long should I take a hot shower? 

To what temperature should I set the thermostat? These daily 

decisions all depend on a perception of energy use. Given 

people’s poor understanding of energy use and the difficulty 

of perceiving energy use, how do people make these daily 

decisions about using energy? 

In some contexts, people have access to explicit 

information about appliances’ energy use. For instance, some 

smart meters are digital devices that indicate, in real time, 

how much energy is being used by an appliance; other 

appliances may have labels indicating their average energy 

use (e.g., “Energy Star” labels on efficient appliances). 

However, explicit information about energy use is the 

exception, not the rule.  

In the absence of direct, explicit information about energy 

use, people must rely on indirect indices of energy use. (For 

reference on similar work done in the HCI community see 

He, Greenberg, and Huang, 2010 and Heller, Konstantinos, 

Borchers, 2013.) 

Vacuums are noisy. Lightbulbs are luminous and sometimes 

hot. It is these observable features that are typically available 

to individuals when they are making decisions about their 

energy use. Some of these cues, however, are more reliable 

than others. For instance, generating and extracting heat 

requires a lot of energy; mechanical movement, while 

perhaps more perceptually salient, can be accomplished with 

far less energy. Good judgements and decisions about energy 

use, therefore, requires a good sense of which proximal cues 

to rely on, and which to ignore. Understanding and improving 

these judgments can translate to energy conservation, as 

illustrated by the conservation benefits of in-home smart 

devices that give real-time feedback on energy-use (Darby, 

2006; Delmas, Fischlein, & Asensio, 2013), although these 

energy technologies may be years away from becoming 

mainstream. 
Past work on situated perception and decision making has 

advocated for similar approaches to understanding how 

people make judgments about entities that cannot be 

perceived directly. For instance, Brunswick (1956) proposed 

a “lens model” of perception, in which people must integrate 

across proximal cues in order to decide whether some target 

entity or property exists in the world; on this account, 

learning to perceive correctly involves learning how best to 

weight these different cues, so that more reliable cues (i.e., 

those that most often co-occur with the target phenomenon) 

are weighted more. A similar perspective has been advocated 

by researchers in the Judgement and Decision Making world, 

who have argued that, for many difficult decisions, people 

deploy ‘replacement heuristics’ — relying on some simpler 

or more easily perceived property or feature to make 

decisions about some target phenomenon that is more 

complex or difficult to perceive (Kahneman & Frederick, 

2002).  On all these approaches, understanding how people 

make complex perceptual judgments about ‘invisible’ 

entities, such as energy use, requires understanding the 

proximal cues or features they are relying on. 

A number of past studies have tried to do exactly that. 

Previously, in the energy literature, different replacement 

heuristics have been studied. Past work has suggested that novices 

base their estimates of home energy use on perceptions of 

appliances’ size (Cowen & Gatersleben, 2017), frequency of use 

(Schley & DeKay, 2015), effect on temperature (heating or 

cooling) (Attari, DeKay, Davidson, & de Bruin, 2010), and type 

of appliance (Lesic, Bruin, Davis, Krishnamurti, & Azevedo, 

2018). But these past studies have focused on a single dimension 
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of experience (e.g., size), in isolation from the many other 

features which that dimension may be correlated (e.g., 

frequency of use). As a result, we still do not know how 

people weight the range of features to which they have 

access, or whether there is one or a subset of features that are 

driving most of people’s energy estimates. 

Moreover, all these approaches share the prediction that 

better judgements will involve better weighting of proximal 

cues. How do individual differences in weighting these 

features relate to individual differences in estimation ability? 

Here, we attempt to answer these three outstanding 

questions: Which features are people relying on to make 

energy estimates? How do individual differences in cue-

weighting relate to estimation skill? And how can we capture 

people’s feature representation of appliances in a way that 

accounts for correlations among features? 

In the following studies, we first surveyed participants for 

the most important or relevant features of energy in home 

appliances. We then took the most frequently cited features 

and used them to create feature rating scales for participants 

to rate multiple home appliances along. A multiple regression 

was performed on a few theoretically-driven features to 

determine how they competed with one another. Multi-

dimensional scaling (MDS) was performed on all the features 

to capture the structure in how people perceive appliances 

and their energy use. 

By performing these analyses on multiple features at once, 

we can establish which features matter most in the larger 

context of available appliance features. We also hope to paint 

a more clear and nuanced — and thus complete — picture of 

how these features are combined with one another. MDS 

affords us a look at categories of appliances that emerge and 

have implications for why some categories matter. These 

targeted analyses in concert with the larger picture of 

appliance feature perception, will hopefully inform future 

projects on how to help people better understand and use 

energy (Marghetis, Attari, and Landy, under review).  

 

Methods 

Participants 

We recruited adults (N = 299) from the United States through 

Amazon Mechanical Turk, an online labor market that has 

been used previously for online studies. Each subject 

participated in return for $5. Only the data from those 

participants who completed the entire study were analyzed (N 

= 261). We also removed participants who repeated the exact 

same response for their estimates of all appliances (n = 1), 

giving us a final sample of N = 260. 

 

Feature Selection 
Participants rated features that were selected based on a 

previous study with different participants (N = 17) in which 

people were asked to list all features that they would use to 

estimate an appliance’s energy use. On the basis of these free 

response features, we compiled a list of features that were 

most frequently cited and most widely applicable to our list of 

home appliances (N =13, see Appendix). 

 

Procedure 
Participants first completed a feature rating task, in which they 

were presented with typical home appliances (N = 36) and 

asked to judge each appliance in terms of a set of perceptual or 

experiential features (e.g., brightness, loudness). They were 

first instructed “For each question, [to] please imagine a typical 

version of that appliance while it is in use and answer 

accordingly.” The survey was organized by feature. For each 

feature, e.g. “How loud is each appliance?”, participants were 

given a Likert scale from 1-10 as well as a Not Applicable box 

for each appliance. Both appliances and features were presented 

in a random order. Participants supplied ratings for the 

following features: how frequently the appliance is used, how 

big the appliance is, how long the appliance is used, how much 

light the appliance produces, how much the appliance heats 

itself/its environment, how much sound it makes, how much 

water it uses, how much it cools itself/its environment, how big 

its motor is, how much it heats water, how complex its software 

is, how complex its internal electronic components are, how 

complex its internal mechanical components are, how much 

movement it generates in itself/environment. Each participant 

rated each appliance along each feature dimension, totaling 36 
x 13 ratings for each participant. 

After the feature rating task, participants were asked to make 

energy estimates for each appliance. They were given a point 

of reference: “A 100-watt incandescent light bulb uses 100 

units of energy in one hour.” Then they were asked to make an 

estimate for each appliance, “How many units of energy do 

you think each of the following devices typically uses in one 

hour?” Appliances were presented in a random order. This task 

has been used in prior studies to investigate and elicit accuracy 

in energy perceptions (e.g., Attari et al., 2010).  

 

Analysis 
A multiple regressions analysis was run on features that have 

been identified in past research as important for energy 

estimation use (Cowen & Gatersleben, 2017; Schley & 

DeKay, 2015; Marghetis, Attari, and Landy, under review), 

namely: size, how “electronic” the appliance is, frequency of 

use, and how much the appliance changes the temperature (i.e., 

the maximum of the heating and cooling ratings). Feature 

ratings were z-scored across participants. In a mixed effects 

model, there were fixed slopes for the interaction of features 

and feature ratings of every participant, random intercepts on 

every appliance, and random slopes on feature ratings by 

participant. The random slopes for every participant’s ratings 

were extracted and used to investigate individual differences 

in energy estimating accuracy.  
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Results 

What proximal cues do people use to estimate 

appliances’ energy use?  
We first zoomed in on those features that have been 

identified, in past literature, as playing a role in novice’s 

judgements of home energy use. These included how 

frequently the appliance is used, how “electronic” the 

appliance is, how much the appliance changes the 

temperature (the max of the ‘heat’ and ‘cool’ ratings), and 

how large the appliance is. Using a linear mixed effects 

model, we predicted participants’ energy estimates (log 

transformed) using these four features, with random 

intercepts and slopes for participants, and random intercepts 

for appliances. Feature ratings were z-scored within each 

participant. See Figure 1 for coefficient estimates of reliance 

on these proximal cues.  

Participants’ estimates of appliances’ energy use were 

driven almost entirely by how large they judged the appliance 

to be (b = 0.10 ± 0.01 SEM, p<.001). Most variance in 

estimates is accounted for by differences in size. By contrast, 

people’s judgments of how much the appliance changed the 

temperature and of how “electronic” an appliance was also 

had much smaller relations to their energy estimates (b = 0.04 

± 0.01 SEM, p<.001, b = 0.05 ± 0.01 SEM, p<.001). 

Critically, we found no relation between judgments of how 

often an appliance is used and estimates of how much energy 

it uses — despite past work that has argued that frequency-

of-use is used as a ‘replacement heuristic’ for energy 

estimation (Schley & DeKay, 2015). Note that people’s 

estimates of energy use were explained primarily by 

judgments of the appliance’s size rather than by how much 

the appliance changed the temperature, even though heat is a 

more reliable cue to energy use, because heating and cooling 

use a lot of energy.  

 

Individual differences in the use of proximal 

cues to estimate home energy use  
We next investigated individual differences in the features 

that were associated with energy estimates — that is, we 

asked whether some people relied more on some proximal 

cues (e.g., size) than on others (e.g., temperature change).  

 

 

 

 

 

To capture these individual differences, we used the random by-

participant slopes from our mixed effects model of energy 

estimates; for each participant, therefore, we had four random 

slopes, one for each feature (size, frequency-of-use, 

temperature change, and electronic-ness). Positive values of 

these random slopes indicate that a participant relies on that 

feature more than the group average; negative values indicate 

that they rely on that feature less than average.  

In general, there was considerable variability in how strongly 

these features were associated with individuals’ energy 

estimates (Fig. 2, panels A, B, C, and D). Some individuals’ 

energy estimates were explained primarily by their judgments 

of the frequency of an appliance’s use, despite the fact that 

frequency of use is a poor proxy for energy use. Others, 

however, appeared to ignore frequency and instead relied on 

temperature change, a reliable cue to energy use. Indeed, 

participants who relied more on temperature change tended to 

rely less on frequency of use (R = -0.60).  Size and temperature 

change, both fairly good proxies for energy use, were highly 

correlated (R = 0.95), suggesting that people who use one 

feature to evaluate appliances’ energy use are also likely to use 

the other.  

All this together suggests that individual difference in the 

reliance on proximal cues might be associated with variability 

in how good people were at estimate home energy use. To 

quantify individual differences in estimation ability, we 

calculated, for each individual, the correlation between their 

estimates and the true energy used by each appliance. As 

predicted, participants who relied more on how much an 

appliance changed the temperature were also, overall, 

significantly better at estimating home energy use (b = 1.97 ± 

0.27 SEM, p<.001); the same held for participants who relied 

more on the appliance’s size, though to a lesser degree. Indeed, 

past work has found that lay people reliably underestimate the 

energy used by large appliances that heat or cool (Attari et al, 

2010); here, our results suggest that there may be important 

variability in people’s sensitivity to appliances’ size and 

temperature change (Fig. 2A, 2B). By contrast, participants 

 Size Electronic Frequency 

of use 

Temperature 

Change 

Size 1.00 0.183  

 

0.066  0.215 

Elect.  1.00 0.103  

 

-0.131 

Freq.   1.00 0.023 

 

Temp.    1.00 

Table 1: Correlation matrix of key features 

Figure 1: Reliance on proximal cues to estimate energy use. 

Points indicate coefficient estimates from a mixed-effects 

model of energy estimates. Error lines indicate standard 

errors. 
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who relied more on electronic-ness and frequency-of-use 

were overall worse at estimating home energy use (b = -

0.51 ± 0.24 SEM, p<.05, b = -2.96 ± 0.43 SEM, p<.001). 

We also ran a correlation on the participants’ reliance on 

each of these four features (Table 1).  We found reliance on 

frequency of use and electronic-ness to be positively 

correlated, while frequency of use and temperature change 

were negatively correlated.  

 

Characterizing the complex structure of the full 

appliance space 
Finally, we combined ratings of all thirteen features (e.g., 

size, brightness, movement, etc.) to characterize lay 

perception of home appliances. To do so, we used multi-

dimensional scaling (MDS). This technique takes the 

similarity between paired appliances and uses that to 

generate a reduced dimensional representation that 

captures how similar or different appliances are to each 

other. This approach gets at the rich structure that exists in 

how people perceive appliances as varying along multiple 

dimensions, many of which covary with each other. This 

approach is also necessary, because when dimensions are 

treated as independent, classic approaches like multiple 

regression do not account for collinearity of dimensions.  

The two-dimensional MDS solution is illustrated in 

Figure 3. Note the rich structure that emerges bottom-up 

from this approach, with some appliances clumping 

together into meaningful groups, with related appliances 

clustering together into meaningful categories. We used 

k-means clustering (k=8) to capture these categories (Fig. 

2). For example, all the light-bulb appliances (i.e. 

incandescent lightbulbs, Compact Fluorescent Light bulb, and 

LED bulb) group together because people rated those 

appliances very similarly. 

While this MDS solution can characterize people’s mental 

representations of appliances, it is blind to people’s estimates 

of the appliances’ energy use. However, when we regressed 

the MDS dimensions onto estimation ability, we found both 

MDS axes were related significantly to energy estimates 

increase (dimension 1: b = 146.88 ± 67.5 SEM, p<.05; 

dimension 2: b = -254.68 ± 104.0 SEM, p<.05). This was true 

despite the fact that these MDS dimensions combine multiple 

experiential features in complex, non-linear ways. Thus, lay 

people have structured perceptions of appliances, and these 

perceptions seem to relate systematically to their perceptions 

— and misperceptions — of their energy use. Future work 

should try to leverage this to improve energy decisions and 

behaviors.  

 

Discussion 
We began by asking how it is that people are able to estimate 

the energy used by appliances, when that energy use is often 

hidden. We found that estimates of appliances’ size accounted 

for most of the variance in people’s energy estimates. People 

relied, to a lesser extent on temperature change and how 

“electronic” an appliance, but they did not rely on frequency 

of use as a cue. Previous literature has claimed that all these 

features matter. Our results put those findings in a new light 

because we found that size is the primary driver of energy 

estimates. Since these replacement cues correlate, previous 

findings such as ‘people use frequency of use as a replacement 

Figure 2: Energy estimation ability as predicted by reliance on select features 
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heuristic’ might indicate that people tend to use bigger 

appliances more often. Interestingly, people relied  

more on size than heat, despite heat being a better 

indication of energy use. Heating (and cooling) both take 

a lot of energy but are perhaps not as obvious to people 

because the energy used to heat (and cool) are often used 

to achieve homeostasis. Your heating bill is high in the 

winter because so much energy has to be exerted to 

maintain your home at a constant temperature.  

When we examined individual differences in the 

reliance on these cues, we found that the degree to which 

people relied on certain features predicted how good their 

energy estimates were. People who relied more on 

temperature change had better energy estimates than 

people who relied more on size, or any of the other theory-

driven features used in our model. The more participants 

relied on how “electronic” an appliance was or on 

frequency of use, the worse their energy estimation ability 

was. When we ran a correlation on individual differences 

of reliance, we found that reliance on frequency is 

negatively correlated with reliance on temperature 

change. We also found that reliance on frequency is 

positively correlated with reliance on electronic-ness. 

This suggests that teaching people to use these more 

reliable cues may have benefits for energy judgments and 

decisions (Marghetis et al., under review).  

Using multi-dimensional scaling, we also sought to 

characterize the public’s mental representation of home  

appliances. This bottom-up approach found significant 

structure in people’s perceptions of appliances; moreover, this 

two-dimensional representation was related systematically to 

people’s energy estimates. In Fig. 3, the upper-left quadrant of 

the graph seems to include all the appliances that heat water, 

while the lower-left quadrant includes the appliances that heat 

without water. This suggests that this two-dimensional MDS 

solution has picked out heat as a notable component of one of 

its major axes. The appliances near the top of Fig. 3 are quite 

small and increase in size as you go down the MDS 2 axis, 

suggesting that this MDS solution has picked out size as a 

major component of its other axis. It is quite notable that even 

just a two-dimensional solution has, in a bottom-up way, 

picked out the two most useful and frequently used 

replacement heuristics. The clustering as shown in Fig. 3, also 

created through the bottom-up k-means algorithm, is quite 

remarkable as well. Kitchen appliances that heat water have 

clustered together on the left (blue); devices that are electronic 

or involved in entertainment have clustered together on the 

right (pink and green); appliances that heat or cool and move 

air around have also clustered together in the middle of the 

figure (purple). These clusters suggest that this MDS solution 

is a fruitful way to access the internal structure of people’s 

complex perceptions.  

Figure 3: Two-dimensional MDS solution for home appliance space 
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Conclusion 
We set out to answer three main questions. The first was 

‘Which features are people relying on to make energy 

estimates?’ The answer to this is not simple. Our MDS 

solution shows that people rely on a complex and 

correlated set of proximal features. However, when 

comparing a smaller set of theoretically important 

features, size far outstrips any of them. Among the 

features we examined, people seem to rely most on size, 

even though it is not the best indicator of energy use. The 

best indicator of energy use was heat or temperature 

change.  

We also set out to answer how individual differences in 

cue-weighting relate to estimation skill. Fig. 2A shows 

that as people rely on heat as a cue, their estimation skill 

improves. This is true to a lesser extent of size as well 

(Fig. 2B). As people rely on how electronic an appliance 

is, or how frequently it is used, their estimation skill 

decreases (Figs. 2C, 2D).  

Finally, we set out to capture people’s feature 

representation of appliances in a way that accounts for 

correlations among features. With an MDS solution, we 

found that meaningful clusters of appliances emerge, even 

from bottom-up clustering methods, and that the 

dimensions of this representation were related 

systematically to estimates of energy use.  

This study speaks to previous energy literature that has 

attempted to identify the most predictive cue of people’s 

energy estimates. By looking at several cues at once while 

accounting for correlations, we can say with confidence 

that despite the many, many features to choose from, the 

size of an appliance matters to people.  

People do rely on the superficial cues about energy that 

they have access to. It is important to understand which of 

these people most rely on, so that we can more deeply 

understand how people understand and choose to use 

energy. Good energy choices can be encouraged in a 

variety of way, including but not limited to top-down 

policies, market-based incentives, extensive educational 

programs, home energy audits, and new home 

technologies. For example, in-home smart devices that 

give real-time feedback on energy-use can encourage 

energy conservation (Darby, 2006; Delmas et al., 2013). 

But implementing effective climate policies is politically 

difficult (Dietz, Ostrom, & Stern, 2003), home audits 

require time and resources that make scaling up nearly 

impossible, and new in-home energy technologies may be 

years away from mainstream use. 

By understanding, and eventually changing either the 

cues people have access to, or their perceptions, we hope 

to encourage better ways of communicating energy 

information and making possible good and widely usable 

energy consumption habits.  
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Appendix: Features 

 
1. How big is each appliance? 

2. How long is each appliance typically used? 

3. How much light does each appliance produce? 

4. How much does each appliance heat itself or its 

environment? 

5. How loud is each appliance? 

6. How much water does each appliance use? 

7. How much does each appliance cool itself or its 

environment? 

8. How big is the motor of each appliance? 

9. How much does each appliance heat water? 

10. How complex is the software each appliance runs? 

11. How electronic is each appliance? 

12. How mechanical is each appliance? 

13. How much does each appliance move itself or its 

environment? 

14. How frequently do you use each appliance? 
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Abstract

What drives people’s exploration in complex scenarios where
they have to actively acquire information? How do people
adapt their selection of queries to the environment? We explore
these questions using Entropy Mastermind, a novel variant
of the Mastermind code-breaking game, in which participants
have to guess a secret code by making useful queries. Partici-
pants solved games more efficiently if the entropy of the game
environment was low; moreover, people adapted their initial
queries to the scenario they were in. We also investigated
whether it would be possible to predict participants’ queries
within the generalized Sharma-Mittal information-theoretic
framework. Although predicting individual queries was dif-
ficult, the modeling framework offered important insights on
human behavior. Entropy Mastermind opens up rich possibili-
ties for modeling and behavioral research.
Keywords: Curiosity; Active Learning; Exploration; Entropy

Introduction
Humans are curious animals. From learning how to speak
to launching rockets into space, exploration drives mankind’s
progress small and large. Human exploration has been stud-
ied in self-directed learning paradigms in adults and chil-
dren, in domains including causal learning (Bramley, Dayan,
Griffiths, & Lagnado, 2017), categorization (Meder & Nel-
son, 2012), control (Osman & Speekenbrink, 2012), and
explore-exploit tasks (Wu, Schulz, Speekenbrink, Nelson, &
Meder, 2018). Some experiments have used games includ-
ing Battleship (Gureckis & Markant, 2009) and 20 ques-
tions (Nelson, Divjak, Gudmundsdottir, Martignon, & Meder,
2014). Self-directed learning can lead to improved per-
formance (Gureckis & Markant, 2012; Markant, Ruggeri,
Gureckis, & Xu, 2016). For instance, participants actively in-
tervening on a causal system made better inferences about the
underlying causal structure than subjects who received iden-
tical information passively (Lagnado & Sloman, 2004).

Recent conceptual work (Coenen, Nelson, & Gureckis,
2018; Gureckis & Markant, 2012; Schulz & Gershman,
2019) is underpinned by the assumption that behavior is goal-
directed and that people select observations based on a met-
ric of usefulness (Settles, 2009). What metric best predicts
how people evaluate the usefulness of possible queries? Past
work has focused on the expected reduction of uncertainty,
the extent of predictions’ improvement, or the maximization
of future rewards (Nelson, 2005). One study optimized exper-
imental materials to maximally distinguish between different
measures in an experience-based probabilistic classification
task (Nelson, McKenzie, Cottrell, & Sejnowski, 2010). Re-
sults showed that participants were better described by prob-

ability gain than by information gain or other measures.
Markant and Gureckis (2012) tested whether participants

maximize payoffs or information gain in a game of “battle-
ships” (Gureckis & Markant, 2009), where each query cost
money and an attempt to maximize utility would lead to dif-
ferent queries than information-gain based strategies. Sur-
prisingly, participants’ sampling behavior was nonetheless
best matched by information gain. The authors argued that
using information gain would lead to more knowledge about
the underlying structure and therefore can be an effective
strategy, no matter what the final task will be. Similar results
have been obtained in an active causal learning task (Bramley,
Lagnado, & Speekenbrink, 2015).

Exploiting the characteristics of the Entropy Mastermind
game, we investigate people’s sensitivity to the information
structure of their environment (mathematical entropy or psy-
chological uncertainty) and adaptive strategy selection when
facing different levels of probabilistic uncertainty. In particu-
lar, we focus on what information metrics best predict how
people evaluate the usefulness of possible queries, and on
what initial-guess strategies people use.

A quintessential game of exploration
In the Mastermind code-breaking game, both information
search and exploitation are essential for breaking the code.
Thus, Mastermind offers a potential platform for bringing to-
gether pure information models (like expected information
gain) and reinforcement learning models. In the classic two-
player version of the game one player generates a secret
colour code (e.g. blue, red, green) and the other player has
to guess the secret code by repeatedly testing codes (mak-
ing queries) and receiving feedback about the correctness of
items in the guessed code. Although Mastermind has been
extensively studied in computer science (for references see
Berghman, Goossens, & Leus, 2009; Knuth, 1976), compar-
atively less work has been done in cognitive science (but see
Laughlin, Lange, & Adamopoulos, 1982; Zhao, van de Pol,
Raijmakers, & Szymanik, 2018).

We introduce the game “Entropy Mastermind” for studying
exploration-driven problem solving and uncertainty reduction
(Fig. 1). Key attributes of Entropy Mastermind, which distin-
guishes it from the classic game, are that Entropy Mastermind
is a single-player app-based game in which hidden codes
are drawn from known, and typically nonuniform, probabil-
ity distributions. The probability distribution from which the
hidden fruit code is drawn is depicted as a “fruit bowl” icon
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array. The player is informed that the items are mixed before
each draw, and drawn with replacement to form the hidden
fruit code. Thus, Entropy Mastermind makes it possible to
research how the level of entropy affects people’s strategies
and efficiency in game play.

As a first step toward modeling behavior in a probabilistic
framework, we use a model that values both maximizing the
probability of a correct query and a curiosity bonus, similar to
recent work on human reinforcement learning (Schulz, Kon-
stantinidis, & Speekenbrink, 2018; Wu et al., 2018). The cu-
riosity bonus can be defined as information gain in the space
of possible hypotheses (hidden codes). Whereas information
gain has traditionally been thought of as reduction in Shan-
non entropy, any entropy metric could be used. We use the
Sharma-Mittal space of entropy measures (Sharma & Mittal,
1977), which provides a framework within which many dif-
ferent kinds of entropy measures arise. According to the set-
ting of two parameters, known as the order and degree, this
entropy space can recover Shannon entropy, Bayes’s error,
and entropies from the Arimoto, Rényi and Tsallis families
of entropy measures, among others (Crupi, Nelson, Meder,
Cevolani, & Tentori, 2018). One of our research questions is
whether Entropy Mastermind can help identify which model
of uncertainty best predicts exploratory behavior.

In what follows, we formally define the Sharma-Mittal
space as a unifying framework for information gain measures.
We then report a preliminary study assessing and modeling
human behavior in Fruit Salad Mastermind, a version of En-
tropy Mastermind in which the code jar is a fruit bowl and
items are different kinds of fruits. First results show that par-
ticipants adapted their queries to the level of entropy in the
environment, solving games in less entropic environments
more efficiently than in more entropic environments. Thus,
basic assumptions for using Entropy Mastermind as a model
of an information environment varying in entropy were met.
Both the exploration and exploitation parts of the model were
important to account for human behavior. However, distin-
guishing between different parts of the Sharma-Mittal space
turned out to be difficult. Future research could work towards
designing tasks that are optimized for the purpose of discrim-
inating among specific entropy models.

Mapping the space of exploration
In Mastermind both learning about the true code and guess-
ing the true code are important. To make this intuitive, sup-
pose that there are two possible codes, given everything that
has been learned to date, and that one of these codes has 90%
probability of being the correct code. The same information,
namely which code is correct, will be gleaned from testing
either code; thus, the queries have equal value irrespective
of which model of information gain is used. But clearly it is
sensible to test the code that has 90% probability of being cor-
rect, thus having 90%, rather than 10%, probability of ending
the game after the next query. We implement this idea via
a softmax response rule on a value function which is based

Figure 1: Fruit Salad Mastermind: High Entropy Condition.
Top: Icon array presenting an example fruit bowl that generated
the secret code. Probability distributions follow one of four entropy
recipes, resulting in low, medium low, medium high and high en-
tropy levels. Fruit types are apples, oranges, blueberries, grapes,
pears, and pineapples for all possible versions of the fruit bowl.
Codes are generated by randomly sampling fruits with replacement.
Duplicates are allowed, so it is possible that the same fruit could
appear in all positions of the hidden code. Players have to guess
which fruit is in which position of the three slots of the secret code,
by clicking on the position they want to change. Each position is
initially blank; clicking cycles through the possible fruits. Once par-
ticipants are satisfied with the proposed code, they can click on a
“Check” button (not shown), and then receive feedback. Bottom:
History of game play illustrating feedback. In the first guess, the
player guessed 3 grape items. The feedback (one smiling face fol-
lowed by two frowning faces) conveys that exactly one of the items
is correct in type of fruit and in location. However, the player does
not know which of their guesses is correct. There is no correspon-
dence between the position of the guess and the position of the feed-
back: happy faces always come first, then neutral and lastly frown-
ing faces. In the second guess, the player tested grape in the first
position, and apple in each of the other two positions. The feedback
(smiling face, neutral face, frowning face) indicates that one of the
items is the correct type of fruit in the correct location, another item
is in the code but needs to be moved to a new location, and another
item is not in the code at all. As before, the guesser has to figure
out which feedback face corresponds to which item in the code. The
third guess of pear, grape, apple obtains two smiling faces and one
frowning face. At this point the guesser can infer that the middle
position is grape, and the final position is apple; the guesser must
still figure out the first item.

on the probability of each query being the correct code in the
immediate time step, as well as a curiosity-driven exploration
bonus1:

P(action = ai) ∝ P(success|ai)+β× curiosity bonus(ai)
(1)

How promising a code seems is determined by its current
probability of being correct P(success|ai). This probability is
always the same given a specific history of queries and feed-
back. The curiosity bonus(ai) is weighted by a free parameter

1Note that the parts of Eq. 1 are additive. Thus, even a query
that has a probability of 0 of being the true code can still be chosen
if it offers enough informational value.
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Figure 2: Sharma-Mittal space. The Sharma-Mittal family of en-
tropy measures is represented in a Cartesian quadrant with values of
the order parameter r and of the degree parameter t. The order pa-
rameter captures how much minor hypotheses are disregarded (e.g.
that grapes may be contained in the code when the fruit bowl con-
tains only a small proportion of grapes) and the degree parameter
captures how prominent the goal of getting as close as possible to
the state of certainty is (i.e. how much one strives to falsify exist-
ing hypotheses, e.g. that grapes are contained at all in the code).
Each point in the quadrant corresponds to a specific entropy mea-
sure, each line corresponds to a distinct one-parameter generalized
entropy function. Several special cases are highlighted.

β and can be defined as how much an action promises to re-
duce uncertainty over the space of possible hypotheses (i.e.,
how much it reduces uncertainty about possible codes).

The uncertainty in a discrete random variable K =
k1,k2, ...kn can be measured by its entropy. We use the gener-
alized Sharma-Mittal space of entropy measures, that unifies
multiple past proposals (Crupi et al., 2018), and can be de-
fined as:

entropy(K) =
1

t−1

1−

(
n

∑
i=1

P(ki)
r

) t−1
r−1
 , (2)

where r is the order and t the degree of the entropy measure.
Note that limits, which exist, are used for points where the
above equation is undefined. Although the above equation
may not be immediately intuitive, there are a number of ways
to build understanding about this space. All of the Sharma-
Mittal entropy measures can be thought of as quantifying the
average surprise that would be experienced if the value of the
random variable K was learned. In the case of Mastermind,
this is the average surprise that would be experienced if one
were to immediately learn the true hidden code.

The degree parameter t governs which kind of surprise
is averaged. If t = 1, then surprise(ki) = ln(1/P(ki)), as
in Shannon and all of the Rényi entropies. If t = 2, then
surprise(ki) = 1− P(ki), as in the cases of Quadratic en-
tropy and Bayes’s error. If t > 1, a test is more useful if it

is conclusive than if it is not. If t < 1, a test is always less
useful if it is conclusive than if it is not. The order parame-
ter r determines what kind of averaging function is used. It
can be thought of as an index of the imbalance of the en-
tropy function, which indicates how much the entropy mea-
sure discounts minor (low probability) hypotheses. For exam-
ple, when r = 0, entropy becomes an increasing function of
the mere number of the possible options. When r goes to in-
finity, entropy becomes a decreasing function of the probabil-
ity of a single most likely hypothesis. For further discussion
and examples see (Crupi et al., 2018).

Several special cases exist within the Sharma-Mittal space,
as Figure 2 illustrates. For example, Shannon entropy is the
result of setting r = t = 1, and probability gain (also called
error entropy) is the result of setting t = 2 and letting r→ ∞.
One of the goals of the present research is to investigate
whether people’s striving for information (the curiosity goal)
can be represented well as a generalized information gain
metric, where information is defined as the expected reduc-
tion in one of the Sharma-Mittal entropy functions over the
probability distribution of the possible codes.

Methods

Participants and Design Forty-seven first-year undergrad-
uate students (38 female, Mage=19.04; SD=1.04; range: 18 to
23) at University of Surrey participated in our study as part of
a cognitive psychology class. Participants gave informed con-
sent in accordance with the University’s procedures and the
Helsinki Declaration. They were introduced to the rules and
interface of the game and completed a pretest. Participants
then played Fruit Salad Mastermind, spending an average of
10.5 minutes on the task.

Materials and Procedure Participants were required to
correctly answer four comprehension questions before game
play began. These questions tested participants’ understand-
ing of the goal of the game and the interpretation of feedback
(i.e. making sure that they understood that the position of
the faces did not correspond to the position of items in the
entered code). Participants were instructed to figure out the
secret code using as few guesses as possible. Since the ex-
periment was self-paced, the number of rounds played varied
between participants.

Entropy conditions In each game, one of the four entropy
conditions was chosen at random and the six fruits were ran-
domly assigned to the six proportions of that condition. The
resulting generating “fruit bowl” was presented to partici-
pants as an icon array above the current game. A “hidden
fruit code” was generated from that distribution. In the very
high entropy condition, the secret code was sampled based
on the proportions (5,5,5,5,6,6). This means, for example,
that there could be 5 pineapples, 5 apples, 5 pears, 5 blueber-
ries, 6 grapes, and 6 oranges, out of a total of 32 items, from
which three fruits were sampled with replacement to generate
the secret code. In the high entropy condition, the secret code
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was sampled based on the proportions (1,1,5,5,5,15). In the
low entropy condition, the secret code was sampled based on
the proportions (1,1,1,4,4,21). Finally, in the very low en-
tropy condition, the secret code was sampled based on the
proportions (1,1,1,1,1,27).
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Figure 3: Behavioral results. a: Number of queries required to
solve a game by entropy condition (ordered from lowest to highest).
b: Time spent thinking (measured in log-ms per guess) by entropy
condition (ordered from lowest to highest). c: Proportion of correct
guesses in dependency of number of past guesses by entropy con-
dition. d: Mean proportional feedback after first guess by entropy
condition. Points represent mean per participant. Error bars indicate
the standard error of the mean.

Behavioral results
We analyzed behavioral results using both frequentist and
Bayesian statistics. For testing hypotheses regarding the
behavioral data and the model comparison, we used the
default two-sided Bayesian t-test for independent samples
with a Jeffreys-Zellner-Siow prior with its scale set to

√
2/2

(Rouder, Speckman, Sun, Morey, & Iverson, 2009).
We first analyzed the number of required guesses to solve

a game as a function of the entropy condition (Fig. 3a).
This revealed a positive average rank correlation between
how much entropy a condition contained and the number
of queries participants required to solve a game (Kendall’s
τ = 0.48, t(46) = 12.44, d = 1.81, BF > 100). More specif-
ically, participants required fewer queries on average for the
very low entropy games as compared to low entropy games
(t(46) = −5.69, p < .001, d = 0.83, BF > 100). They also
required fewer queries for the low entropy games than for
the high entropy games (t(46) =−3.16, p = .002, d = 0.46,
BF = 11.8). Finally, participants needed fewer queries for
the high entropy games than for the very high entropy games
(t(46) =−3.96, p < .001, d = 0.58, BF = 97.2).

Next, we analyzed how much time participants spent think-
ing to enter a guess by entropy condition (Fig. 3b). Thus, we
assessed their mean time to submit a query measured in log-
milliseconds. There was a positive average rank-correlation
between a game’s entropy and participants’ average time
spent thinking, Kendall’s τ = 0.48, t(46) = 12.44, d = 1.68,
BF > 100. More specifically, participants spent less time
thinking during the very low entropy games than during the
low entropy games (t(46) =−4.07, p< .001, d = 0.59, BF =
97.2). They also spent less time thinking in the low entropy
than in the high entropy games (t(46) = −3.68, p < .001,
d = 0.54, BF = 45.5). Finally, they spent less time in the high
entropy than in the very high entropy games (t(46) =−4.05,
p < .001, d = 0.59, B > 100).

We also analyzed the proportion of solved games as a func-
tion of the number of past guesses, again comparing the dif-
ferent entropy conditions (Fig. 3c). We thus estimated a
Bayesian logistic regression of number of past guesses onto
the proportion of correct guesses for each of the entropy
conditions, using Metropolis-Hastings Markov chain Monte
Carlo sampling (implemented in MCMCpack, Martin, Quinn,
Park, & Park, 2018). The resulting posterior estimate for
the effect of number of past guesses onto the probability of
guessing correctly was smallest for the very high entropy
condition (β̂ = 0.15, 95%HDI=[0.14, 0.16]). The same es-
timate was higher for the high entropy condition (β̂ = 0.19,
95%HDI=[0.18, 0.20]), which did not differ meaningfully
from the low entropy condition (β̂ = 0.18, 95%HDI=[0.17,
0.20]). The very low entropy condition showed the highest
estimated effect (β̂ = 0.30, 95%HDI=[0.28, 0.33]). Thus,
participants’ solution rates differed meaningfully between en-
tropy conditions, with lower entropy leading to faster rates.

In our last behavioral analysis, we looked at the very first
query participants submitted as well as the feedback they re-
ceived for that query (Fig. 3d). The number of smiling faces
received on the very first guess was negatively rank-correlated
with entropy condition, τ =−0.51, t(41) =−9.80, p < .001,
d = 1.51, BF > 100, whereas the number of frowning faces
showed a positive rank-correlation, τ = 0.30, t(30) = 6.00,
p < .001, d = 1.06, BF > 100. Interestingly, participants
adapted their first queries to the entropy condition, leading
to a positive rank correlation between the set size of their
first query (the number of unique kinds of fruit contained
in the query) and the entropy of the generating distribution,
τ = 0.40, t(46) = 9.00, p < .001, d = 1.31, BF > 100. Put
differently, if the generating distribution was higher in en-
tropy, then participants tested a larger number of different
fruits as part of their first query.

Computational modeling
We now turn to a model-based analysis of participants’ ex-
ploration strategies. For this, we first need a formal account
of intelligent Mastermind play. Logically, all combinations
that are still consistent in round i based on the feedback re-
ceived so far are part of a feasible set Fi. Note that in Entropy
Mastermind, not only the feasible codes but also their prob-
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abilities (which are not in general equal) are relevant. Code
combinations ruled out by prior feedback have zero proba-
bility. The remaining items’ probability mass is proportional
to the probability of obtaining the item via sampling from
the code jar. The effective size of the feasible set is the total
number of all non-zero probability codes left in the set. Let
the probability that ci is the hidden code given the current fea-
sible set be denoted P(ci). The feasible set is guaranteed to
shrink after each round unless a guess ci is repeated. A gen-
eral playing strategy consists of (i) identifying the set of fea-
sible combinations Fi (with F0 = E), where prior feedback
is used to determine which combinations are still viable; and
(ii) picking a combination ci for the next guess. Let us denote
the informational usefulness of playing combination c in the
current round with u(c), with

u(c) = entropy(Fi)−
R

∑
r

P( f ) · entropy(F̂c, f ), (3)

i.e. the difference in entropy (under a particular Sharma Mit-
tal entropy measure with specified order and degree) between
the current feasible set and the expected entropy when play-
ing code c. To compute expected entropy, for each possible
feedback f ∈ R , we compute the product of the probabil-
ity of receiving that feedback P( f ) times the entropy of the
updated feasible set F̂c,r when playing combination c and re-
ceiving feedback r. To compute P( f ) for a given c, we look
at all the combinations c j ∈ Fi, that lead to feedback f . To
this end, we define a feedback function h(c,c j) = f that re-
turns the feedback f obtained from checking code c against
code c j. The probability of feedback f for code c can then be
calculated as follows:

P( f ) =
∑

F
c j

P(c j) ·1h(c,c j)= f

∑
F
c j ∑

F
ck

P(ck) ·1h(c j ,ck)= f
.

The indicator function 1h(c,c j)= f ensures that we only sum
over codes c j that generate the required feedback f . The
probability of any combination of fruits c = m1m2...mn can
be computed as

P(c = m1m2...mn) = P(m1) ·P(m2) · ... ·P(mn) (4)

where each P(m) represents the probability of sampling the
corresponding fruit item from the fruit jar. The other term
of Equation 3, entropy(F̂c, f ), requires us to compute hypo-
thetical feasible sets F̂c,r. Given the current feasible set Fi,
a combination c we want to evaluate, and hypothetical feed-
back f , we need to exclude all combinations c j ∈Fi for which
h(c,c j) 6= f ; that is, all combinations c j that are not consistent
with obtaining feedback f .

Lastly, one has to assign a utility to a feasible set F . For
this, we use the Sharma-Mittal entropy framework to com-
pute the entropy of a probability distribution defined over set
F , PF (c). For each combination c ∈ F

PF (c) =
P(c)

∑
F
c j

P(c j)
,

where the nominator P(c) is computed according to Equation
4 and the denominator is a normalization term.

We assess how well the combination of an entropy-based
exploration bonus and the probability of making a correct
guess describes players’ guesses over time. For this, we ana-
lyzed the last five games of the 34 participants who played at
least five games in total. We restricted our analysis to the last
five games as our goal was to study strategies used rather than
early learning. Next, we calculated the expected information
gain for all of the 6× 6× 6 possible fruit combinations that
a participant could enter on every trial for each participant,
given the participant-specific history of queries in a game.
We calculated this information gain for every combination of
order r = [1/16,1/8,1/4,1/2,1,2,4,8,16,32,64] and degree
t = [1/16,1/8,1/4,1/2,1,2,4,8,16,32,64], i.e. 121 models
per participant in total. We then combined the probability of
a guess being correct with the information gain assessed by
the specific entropy measure following Equation 2 to arrive
at a value of an action’s usefulness V (at), which we put in a
softmax function to calculate choice probabilities:

P(x) =
exp(V (at(x))/τ)

∑
N
j=1 exp(V (at(x))/τ)

(5)

where τ is a free temperature parameter. We followed pre-
vious work (Wu et al., 2018; Parpart, Schulz, Speeken-
brink, & Love, 2017) and calculated each model’s AIC(M )=
−2log(L(M )) + 2k and standardized it using a pseudo-
R2 measure as an indicator for goodness of fit, compar-
ing each model Mk to a random model: Mrand, R2 = 1−
AIC(Mk)/AIC(Mrand).
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Figure 4: Modeling results. a: Averaged r2 for different Sharma-
Mittal parameters. b: Estimated exploration bonus β for different
Sharma-Mittal parameters.

The results of this analysis revealed a mean pseudo-R2 of
0.041 over all orders and degrees, which was low but signifi-
cantly better than chance (t(33) = 20.52, p < 0.001 d = 1.86,
BF > 100). Moreover, the estimated median temperature pa-
rameter was τ = 1.02, indicating a relatively wide spread of
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predictions. There was a significant negative rank-correlation
between the degree parameter and model fit, τ = −0.37,
z =−5.84, p < .001, BF > 100, whereas this correlation was
not significant for the order parameter, τ = 0.04, z = 0.60,
p = .54, BF = 0.3. Thus, even though entropies with smaller
degree parameters seemed to generally work better at mod-
eling participants’ queries, there was no meaningful effect of
the different order parameters.

The range of pseudo-R2 values, 0.038−0.045, also shows
that most of the entropy measures led to similar performance.
We also assessed the magnitude of the estimated exploration
bonus β (Fig. 4b), which had a mean of β̂ = 27.81, and there-
fore differed significantly from 0, t(33) = 115.47, p < .001,
d = 10.9, BF > 100. This means that the final model of par-
ticipants’ game play had to incorporate both a code’s proba-
bility of being correct as well as its potential information gain.
Interestingly, areas of the Sharma-Mittal space with higher r2

also tended to have higher β estimates.

Figure 5: Number of times the most likely fruit was chosen in the
first query by simulated entropy models across entropy condi-
tions.

Finally, we compared how often participants put the most
likely fruit into their first query with how often simulated
models of different order and degree parameters chose the
same fruit in their first query, for each entropy condition (see
Fig. 5). The higher degree models chose the most likely fruit
more often than people did. Specifically, participants put on
average 2.14 of the most likely fruit in their first query in the
very low entropy condition, 1.60 in the low entropy condi-
tion, 1.26 in the high entropy condition and 0.48 in the very
high entropy condition. This analysis therefore corroborated
our previous finding that the lower degree entropies better
matched participants’ queries. In relation to previous work
modeling behavior with the Sharma-Mittal framework, En-
tropy Mastermind appears to be more similar to experience-
based than to description-based probabilistic classification
tasks (see Crupi et al., 2018, Fig. 7).

Discussion and conclusion
We introduced Entropy Mastermind as a game for researching
human curiosity and exploration in complex environments.
More specifically, we suggest this game as a paradigm for
the study of how people select queries to reduce uncertainty
under different levels of initial entropy. The complexity of
the game resembles aspects of scientific inference (Strom
& Barolo, 2011) and life. For instance, in life and in sci-
ence, it can be a challenge to fully assimilate feedback that
we get when we make queries. Entropy Mastermind thus
complements existing games, such as Battleship (Gureckis
& Markant, 2009), 20-questions (Nelson et al., 2014), or
explore-exploit (Wu et al., 2018) tasks.

We found that participants required fewer queries, spent
less time thinking about queries and showed faster learn-
ing rates if the distribution generating the secret code had
lower entropy. They also adapted their queries to the code-
generating distribution, and did so in sensible ways. In par-
ticular, many of the informational models (Figure 5) used
greater proportions of the most-probable fruit in the first
guess in lower-entropy conditions; participants also followed
this pattern. Thus, one may conclude that people are gener-
ally sensitive to different levels of entropy, which is a pre-
requisite for a research agenda modeling human exploratory
behavior within the Sharma-Mittal space.

Our modeling results paralleled earlier findings from other
tasks (Crupi et al., 2018) suggesting that it is easier to identify
the value of the degree parameter than of the order parame-
ter in the Sharma-Mittal space. Interestingly, to identify the
order parameter a different type of question could be asked,
translating higher entropy into difficulty of game play in the
sense of the number of queries required to guess the secret
code (for the underlying mathematical result see Crupi et al.,
2018). Participants could be directly asked which of two code
jars would be harder to play Mastermind with (Figure 6).

Figure 6: Identifying the order parameter. Which distribution
is harder for playing Entropy Mastermind? Shannon entropy (or-
der=1) deems the 50:50 distribution higher entropy, but lower-order
entropies deem the 95:1:1:1:1:1 distribution higher entropy.

The general predictive performance of many models was
relatively similar and rather low. This might be due to the
overall complexity of choices, since there were 216 possible
options on every trial, making it difficult to compare among
candidate models (also see Parpart et al., 2017).

The difficulty of modeling could also be due to partic-
ipants using cognitive shortcuts, as has been observed in
other domains of active learning (Bramley et al., 2017). Fur-
thermore, it is unlikely that participants evaluate the use-
fulness of all possible queries at each time point. Instead,
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they might approximate a query’s usefulness by sampling and
reusing past hypotheses, as has been shown in other domains
of human reasoning and hypothesis evaluation (Dasgupta,
Schulz, & Gershman, 2017; Dasgupta, Schulz, Goodman, &
Gershman, 2018; Lieder, Griffiths, & Hsu, 2018). Future
studies should therefore investigate both heuristic strategies
(Gigerenzer & Gaissmaier, 2011) and boundedly rational ap-
proaches (Griffiths, Lieder, & Goodman, 2015). Adaptive ex-
perimental designs (Cavagnaro, Myung, Pitt, & Kujala, 2010)
could also be used to maximally discriminate among models.

Summing up, we propose Entropy Mastermind as a
promising paradigm for investigating human exploration be-
havior in complex hypothesis testing scenarios. In related re-
search we are assessing whether Entropy Mastermind can be
used as an educational tool for primary or secondary school
students, and for studying the effects of emotional states on
strategies used and information search efficiency. Although
our current modeling framework did not fully map out the
space of exploration behavior, we believe that combining the
Sharma-Mittal space of entropy measures with an enjoyable
game rich in scientific history can further inform our theories
of self-directed learning. We will keep exploring.
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Abstract

Speakers exhibit variability in their choice between uncertainty
expressions such as might and probably. Recent work has
found that listeners cope with such variability by updating their
expectations about how a specific speaker uses uncertainty ex-
pressions when interacting with a single speaker. However, it
is still unclear to what extent listeners form speaker-specific
expectations for multiple speakers and to what extent listeners
are adapting to a situation independent of the speakers. Here,
we take a first step towards answering these questions. In Ex-
periment 1, listeners formed speaker-specific expectations af-
ter being exposed to two speakers whose use of uncertainty
expressions differed. In Experiment 2, listeners who were ex-
posed to two speakers with identical use of uncertainty expres-
sions formed considerably stronger expectations than in Exper-
iment 1. This suggests that listeners form both speaker-specific
and situation-specific expectations. We discuss the implica-
tions of these results for theories of adaptation.

Keywords: psycholinguistics; semantics; pragmatics; adapta-
tion; uncertainty expressions

Introduction
Speakers exhibit considerable production variability at all
levels of linguistic representation (e.g., Liberman, Cooper,
Shankweiler, & Studdert-Kennedy, 1967; Weiner & Labov,
1983; Finegan & Biber, 2001). This includes variation in lex-
ical choice to describe a world state. For example, Yildirim,
Degen, Tanenhaus, and Jaeger (2016) found that when asked
to describe a scene with a candy bowl in which approxi-
mately half of the candies were green and half of the candies
were blue, some participants judged “Some of the candies
are green” to be the more appropriate utterance to describe
the scene than “Many of the candies are green”, while others
displayed the opposite pattern.

Schuster and Degen (2018) found that participants exhibit
similar production variability when describing an event with
an objective event probability of 60%: Some participants
judged the event to be best described with a sentence con-
taining the uncertainty expression might (“You might get a
blue gumball”) whereas others judged a sentence with proba-
bly (“You’ll probably get a blue gumball”) more appropriate.

Such variability poses a challenge to a listener who aims
to know what the world is like that the speaker is describing.
When confronted with two speakers who use the same expres-
sion to convey different states of the world or who use differ-
ent expressions to convey the same state of the world, listen-
ers are doomed to draw the wrong inferences about the actual

state of the world unless they track how individual speakers
use language. Recent work suggests that listeners deal with
this kind of variability by adapting to it (e.g., Norris, Mc-
Queen, & Cutler, 2003; Kraljic & Samuel, 2007; Bradlow
& Bent, 2008; Kamide, 2012; Kleinschmidt & Jaeger, 2015;
Fine & Jaeger, 2016; Roettger & Franke, submitted) and that
in interaction, they learn how speakers choose among alter-
native utterances. In the domain of quantifiers, Yildirim et al.
(2016) showed that listeners update their expectations about
how a specific speaker uses the quantifiers some or many af-
ter being briefly exposed to a specific speaker. In line with
their results, Schuster and Degen (2018) found that listeners
update their expectations of how a specific speaker uses the
uncertainty expressions might and probably to describe dif-
ferent event probabilities after a brief exposure phase. Partic-
ipants who were exposed to a “confident” speaker, who used
probably to describe the 60% probability event, expected the
use of probably with a wider range of probabilities; partici-
pants who were exposed to a “cautious” speaker, who used
might to describe the 60% probability event, expected the use
of might with a wider range of probabilities.

The processes that lead listeners to update their expecta-
tions during semantic adaptation are poorly understood. In
particular, it remains a largely open question to what extent
listeners form speaker-specific expectations when interacting
with multiple speakers. Some evidence for speaker-specific
adaptation comes from the referring expressions literature.
Metzing and Brennan (2003) found that participants exhib-
ited a slowdown in resolving referring expressions when a
confederate started referring to an object with a new expres-
sion after establishing a conceptual pact, but did not find such
a slowdown when a new confederate was using a different
referring expression than the original confederate.

Most closely related to our work, Yildirim et al. (2016)
found that listeners form speaker-specific production expec-
tations after being exposed to two speakers who used differ-
ent quantifiers to describe a scene with a candy bowl in which
half of the candies were green. While this suggests that listen-
ers should also form speaker-specific expectations about the
use of uncertainty expressions, there is evidence from other
linguistic domains that speaker-specific adaptation is limited
to specific items. For example, Kraljic and Samuel (2007)
found that listeners adjust their phonemic representations for
the fricatives /s/ and /sh/ to multiple speakers whereas lis-
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teners adjusted their phonetic representations for stop conso-
nants such as /d/ and /t/ only to the most recent conversational
partner. It could therefore be that speaker-specific adaptation
in other linguistic domains is also limited to specific items
and that listeners do not form speaker-specific expectations
for the use of uncertainty expressions.

Further, Yildirim et al. (2016) observed that the adapta-
tion effect was considerably smaller when they exposed par-
ticipants to two speakers with opposing biases as compared
to only exposing participants to one speaker and compar-
ing the adaptation effect between groups. There seem to be
two likely explanations for this observation. First, it could
be that due to memory limitations, listeners were unable to
keep track of the exact statistics of each speaker’s utterances.
Since everything about the context except the speaker iden-
tity stayed constant throughout the experiment, it could be
that listeners had difficulty separating their experiences with
the two speakers in memory (see Horton and Gerrig (2005)
for a similar account of memory limitations affecting audi-
ence design). Second, it could be that listeners were tracking
the statistics of the individual speakers as well as the overall
statistics in the experimental situation and their post-exposure
expectations were a combination of their speaker-specific ex-
pectations as well as their expectations about the situation.

In this work, we build on the recent work by Schuster and
Degen (2018) on adaptation to variable use of uncertainty ex-
pressions and take a first step towards investigating the nature
of semantic adaptation in response to multiple speakers. In
particular, we aim to answer the following two questions:

1. Do listeners form speaker-specific production expectations
when they are exposed to speakers whose use of uncer-
tainty expressions differ?

2. Do listeners form situation-specific production expecta-
tions independent of speaker identity?

In Experiment 1, we address question 1 by exposing lis-
teners to two speakers whose use of uncertainty expressions
differs. In Experiment 2, we expose listeners to two speak-
ers whose use of uncertainty expressions is the same. We
compare adaptation effect sizes across experiments to address
question 2.

Experimental paradigm
In both of our experiments, we build upon the semantic adap-
tation paradigm used in Schuster and Degen (2018), which
we briefly review here. This paradigm is a classic exposure-
and-test paradigm which has been used to study adaptation
across several linguistic domains (e.g., Norris et al., 2003;
Kleinschmidt & Jaeger, 2015; Yildirim et al., 2016). As
shown in Figure 1, each trial shows an adult sitting behind a
table with a gumball machine on it. The gumball machine is
filled with orange and blue gumballs. Next to the table, there
is a child who is requesting a blue or an orange gumball with
the utterance “I want a blue/an orange one”. Participants are
told that the gumball machine is too high up for the child to

Figure 1: Example post-exposure test trial. On exposure trials
the rating scales were absent, and the image of a speaker was
replaced by a video of a speaker producing an utterance.

see and that only the adult can see the contents of the gumball
machine.

On each exposure trial, participants watch a short video
clip in which the adult responds to the child with an utterance
like “You might get a blue one”. Across trials, the proportion
of gumballs as well as the response by the adult vary.

On each test trial (Fig. 1), participants are shown a static
scene in which they only see a picture of the speaker from
the exposure trials. On these trials, participants are asked to
provide ratings of how likely they think it is that the speaker
would use the two provided utterances or some other utter-
ance. Across trials, the proportion of blue and orange gum-
balls as well as the color of the gumball that the child is re-
questing (the target color) varies.

Experiment 1: Different speaker types

In Experiment 1, we exposed participants to two different
speakers who use the uncertainty expressions might and prob-
ably differently. The primary purpose of this experiment
was to test whether listeners form speaker-specific utterance
choice expectations. Procedure, materials, analyses and ex-
clusions were pre-registered on OSF (https://osf.io/qnspg).

Methods

Participants We recruited 104 participants on Amazon
Mechanical Turk. Participants had to have a US-based IP ad-
dress and a minimal approval rating of 95%, and they were
paid $4.75 (approximately $12–$15/hr).

2770



MIGHT PROBABLY BARE
n p n p n p

cautious 10 60% 5 90% 5 100%
confident 5 25% 10 60% 5 100%

Table 1: Number of exposure trials (n) per utterance (MIGHT,
PROBABLY, BARE) and associated proportion of target gum-
balls (p) in the cautious vs. confident speaker block. Critical
trials bolded.

Materials and procedure In the first part of the experi-
ment, participants saw 40 exposure trials in two blocks. As
mentioned above, each trial showed a child requesting a blue
or orange gumball, a gumball machine with blue and orange
gumballs, and a video of an adult male or female speaker. The
speaker always produced one of the following six utterances:

• You’ll get a blue/orange one (BARE)

• You might get a blue/orange one (MIGHT)

• You’ll probably get a blue/orange one (PROBABLY)

The number of trials with each of these utterances as well
as the gumball proportions varied across the two blocks (see
Table 1 for an overview). Filler trials with the bare form
were included to provide evidence that the speaker is gener-
ally cooperative. One of the blocks always showed a female
speaker and the other block always showed a male speaker.
Both speakers were from the East Coast and native speakers
of American English. The order of blocks and the speaker as-
signment to blocks was counterbalanced across participants.

Participants were instructed to watch what the speaker had
to say to the child. The video started automatically after a
400ms delay and participants had the option to replay the
video as often as they wanted. To advance, participants had to
press a button which was disabled until the video had ended.

After the two exposure blocks, participants went through
two test blocks. In each of the blocks they saw a picture of
one of the two speakers with a gumball machine next to it,
and again, a child requesting a blue or an orange gumball. On
each trial, participants were asked how likely they thought it
was that the adult would respond with MIGHT, PROBABLY or
a blanket something else option. Participants indicated their
expectations by distributing 100 points across these three op-
tions using sliders. In each block, participants provided rat-
ings for scenes with 9 different gumball machines ranging
from 0% to 100% blue gumballs. For each machine, partici-
pants provided four ratings in total, resulting in 36 trials per
block. The order of blocks was counterbalanced such that half
of the participants saw them in the same order as the exposure
blocks whereas the other half saw them in opposite order.
Attention checks To verify that participants were paying at-
tention to the video and the scenes, we included 14 atten-
tion checks: after 14 of the exposure trials, participants were

shown two different gumball machines and were asked to
choose the one they saw on the previous trial.
Exclusions We excluded participants who provided correct
responses to fewer than 11 attention checks. Based on this
criterion, we excluded 31 participants. We further excluded
participants whose utterance ratings for the different event
probabilities strongly correlated (R2 > 0.75) with their mean
utterance ratings across all event probabilities. This suggests
that they provided approximately the same ratings indepen-
dent of the observed scenes and indicates that they did not
pay attention. This led to one additional exclusion. None of
the results discussed below depend on these exclusions.
Analysis and predictions Intuitively, a more confident
speaker uses PROBABLY for a larger and MIGHT for a smaller
range of gumball proportions than a more cautious speaker.
Therefore, if participants track these different uses, we expect
their ratings of what they think a specific speaker is likely
to say to depend on how that speaker used uncertainty ex-
pressions during the exposure phase. Following Yildirim et
al. (2016) and Schuster and Degen (2018), we quantify this
prediction by fitting a spline with four knots for each expres-
sion and each participant and computing the area under the
curve (AUC) for the splines corresponding to each expres-
sion, block and participant. The area under the curve is pro-
portional to how highly and for how large of a range of gum-
ball proportions participants rate an utterance, so if an utter-
ance is rated highly for a larger range of gumball proportions,
the AUC will also be larger. We therefore test whether lis-
teners update their expectations by computing the difference
between the AUC of the spline for MIGHT and of the spline
for PROBABLY for each test block for each participant.

Based on the results of the adaptation experiment with mul-
tiple speakers by Yildirim et al. (2016), we expect speaker-
specific adaptation effects. We thus predict that the mean
AUC difference will be bigger for the cautious speaker test
blocks than for the confident speaker test blocks.

As a secondary analysis, we also investigate whether the
order of exposure blocks (confident or cautious first), the
assignment of speaker to speaker type (whether the male
speaker was the cautious speaker or vice versa), or the or-
der of the test blocks (same as exposure or reverse) has an
effect on adaptation. We do not expect any of these factors to
have an effect on adaptation.

Results and discussion
Figure 2 shows the mean utterance ratings of participants
grouped by the two post-exposure test blocks. As this plot
shows, participants expected the confident speaker to be more
likely to use probably for lower event probabilities than the
cautious speaker. This is also reflected in the AUC differ-
ences between the splines for MIGHT and of the splines for
PROBABLY: As predicted, this difference was greater for the
cautious speaker ratings than for the confident speaker ratings
(t(142) = 2.92, p < 0.01).

For our secondary analysis, we fit a linear regression model
to predict the AUC difference with speaker type, exposure

2771



●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●

●●

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

event probability

m
ea

n 
ra

tin
gs

Expr. ● ●might probably Speaker cautious confident

Figure 2: Mean utterance ratings for scenes with different
event probabilities in Experiment 1. Error bars indicate boot-
strapped 95% confidence intervals.

block order, speaker assignment, and test block order as pre-
dictors. Only speaker type is a significant predictor in this
model (exposure block order: β = 5.72, t(139) = 1.30, n.s.;
speaker assignment: β = 1.21, t(139) = 0.28, n.s.; test block
order: β = 2.28, t(139) = 0.52, n.s.). Further, a model that
includes these four predictors does not explain significantly
more variance than a model that only includes speaker type
as a predictor (F(3,139) = 0.67, n.s.).

The results of this experiment suggest that listeners form
speaker-specific expectations of how different speakers use
uncertainty expressions after brief exposure. At the same
time, the results provide concrete evidence against two other
accounts. First, they provide evidence against an account ac-
cording to which participants only adapt to the experimental
situation: If participants had only updated their expectations
of what a generic speaker would say in the scenes presented
in the experiment, we would not have expected to see differ-
ences in ratings between speakers. Second, they also provide
evidence against a pure priming account according to which
listeners update their expectations to the most recent expo-
sure. Note that the adaptation effect was independent of the
order of presentation and the order of test blocks. If partici-
pants had been primed by the most recent exposure speaker,
we would have expected that participants’ post-exposure rat-
ings were primarily influenced by the behavior of the second
exposure speaker.

The results of this experiment also replicate the finding by
Yildirim et al. (2016) of differing effect sizes between the
single-speaker and two-speaker experiments: The adaptation
effect was considerably smaller in this two-speaker experi-
ment (Cohen’s d: 0.486) than in the single-speaker adapta-
tion experiment by Schuster and Degen (2018) (Cohen’s d:
1.263).

As suggested by a reviewer, one reason for the smaller ef-
fect size in the two-speaker experiment could be some form
of self-priming and that participants’ responses in the first test
block influenced their responses in the second block. We
evaluated this hypothesis in a post-hoc analysis of the re-
sponses from the first test block. We compared the responses
of participants who were first tested on the cautious speaker
to the responses of participants who were first tested on the
confident speaker. If responses in the first test block influ-
enced responses in the second test block, we would expect a
larger effect size if we only consider the data from the first
block. We did indeed find a larger effect size in the first block
(Cohen’s d: 0.723), which suggests that participants exhib-
ited some form of self-priming.

However, even if we only consider the first block of re-
sponses, the adaptation effect remains smaller in the two-
speaker experiment (Cohen’s d: 0.723) than in the one-
speaker experiment (Cohen’s d: 1.263). This could be either
a result of memory limitations or a result of listeners jointly
tracking the statistics of each speaker as well as of the overall
experimental situation (situation-specific statistics). We fur-
ther investigate these possibilities in the next experiment.

Experiment 2: Identical speaker types
In Exp. 1, we found that the adaptation effect was smaller
than it was in the single-speaker version of the experiment,
which could have either been a result of memory limitations
or joint speaker-specific and situation-specific adaptation. In
this experiment, we investigate whether there is evidence for
one of these two accounts. We exposed listeners to two speak-
ers of the same type.1 If the smaller effect in Exp. 1 was
caused by listeners’ inability to separate their experiences
with the two speakers in memory, i.e, some experiences might
have been attributed to the incorrect speaker, we would ex-
pect the adaptation effect in this experiment to be on average
the same as in the one-speaker experiment. This is because
even if listeners cannot perfectly separate their experiences
with each speaker, they would on average still have the same
number of experiences with each of the two speakers as lis-
teners had with the one speaker in the single-speaker experi-
ment. If, on the other hand, the smaller effect in the previous
experiment was a result of listeners jointly tracking speaker-
specific and situation-specific statistics, we would expect the
adaptation effect to be larger here than in the single-speaker
experiment. This is based on the assumption that more ex-
posures lead to a larger adaptation effect and thus listeners’
should adapt more to the situation if they are exposed to two

1In the spirit of open science, we note that the data from this ex-
periment comes from a faulty version of Experiment 1. A scripting
error led to participants always being exposed to the same speaker
type instead of two different speaker types. Because of this error,
the pre-registered analysis (https://osf.io/3cw79) deviates from the
analysis that we report here. The reported analyses here are the
only additional analyses we performed on the data. The reason for
not discarding the data from this experiment but rather including it
here is that it provides an informative data point for the question of
whether listeners track situation-specific expectations.
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speakers and hence also twice the number of interactions.

Methods
Participants We recruited 104 participants on Amazon Me-
chanical Turk. Participants had to have a US-based IP address
and a minimal approval rating of 95%, and they were paid $5
(approximately $12–$15/hr).
Materials and procedure The materials and procedures
were the same as in Exp. 1 except for the following two mod-
ifications. First, the speaker types for each participant were
identical across the two exposure blocks: both speakers were
either confident or cautious speakers. Second, the number of
trials with PROBABLY and the number of trials with MIGHT
were the same (10 trials per utterance and block) whereas
in Experiment 1, the confident speaker produced only 5 in-
stances of MIGHT and the cautious speaker produced only 5
instances of PROBABLY.2 Assignment of speaker types was
counterbalanced across participants, which means this exper-
iment had a between-subjects manipulation.

As in Experiment 1, we excluded participants who pro-
vided correct responses to less than 11 of the attention checks
as well as participants who seemed to provide random re-
sponses as defined above. In total, we excluded 11 partic-
ipants because of the attention check criterion and 1 more
participant because of random responses.
Analysis and predictions As the primary analysis, we com-
pare the AUC differences between the splines for MIGHT and
of the splines for PROBABLY between participants in the two
conditions. Analogous to Experiment 1, we predict that the
mean AUC difference will be bigger in the cautious speaker
condition than in the confident speaker condition.

We again also investigate whether the assignment of
speaker to speaker type or the order of the test blocks have
an effect on the AUC difference. We do not expect either of
these factors to affect adaptation.

Lastly, we compute the effect size measured by Cohen’s d.
As explained above, we expect the effect size either to be the
same as in the single-speaker experiment or to be larger.

Results and discussion
Figure 3 shows the mean utterance ratings of participants for
the two conditions. We again observe listener adaptation, re-
sulting in a greater AUC difference in the cautious speaker
condition than in the confident speaker condition (t(89) =
8.01, p < 0.001). Further, no factors other than speaker type
are significant predictors of the AUC difference (speaker as-
signment: β =−1.32, t(87) =−0.398, n.s.; test block order:
β = 4.28, t(139) = 1.30, n.s.).

Lastly, the effect size (Cohen’s d: 1.68) was larger in this
experiment than in Experiment 1 and the single-speaker ex-
periment by Schuster and Degen (2018). While it would be
premature to definitively conclude from these three experi-
ments that listeners’ expectations are jointly influenced by in-

2The reason for the second modification is the above mentioned
scripting error. See below for a discussion of potential implications.
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Figure 3: Mean utterance ratings for scenes with different
event probabilities in Experiment 2. Error bars indicate boot-
strapped 95% confidence intervals.

dividual speaker’s productions as well as all the productions
in the experiment, our results point in this direction.

There is a potential confound in this experiment because
participants saw 5 additional filler trials during each expo-
sure block which could have led to the larger effect size as
compared to the single-speaker experiment. However, this
explanation seems unlikely considering previous work.3

General discussion and conclusion
In two experiments, we found that listeners form speaker-
specific production expectations of uncertainty expressions
after brief exposure to two speakers. This shows that the re-
sults by Yildirim et al. (2016) also extend to lexical items
other than quantifiers.

At the same time, however, we found that the adaptation
effect size varied depending on whether the two speakers had
the same or divergent bias during the exposure phase. When
listeners were exposed to two different speaker types, the
adaptation effect was smaller and their expectations seemed
to have been shaped by their experiences with the two speak-
ers as well as all the experiences encountered in the experi-
ment. When both speakers behaved the same, on the other
hand, the adaptation effect was much more pronounced and
even greater than in the single-speaker experiment from pre-
vious work.

3Yildirim et al. (2016) used a very similar paradigm to study
semantic adaptation to the use of the quantifiers some and many.
Analagous to our confident and cautious speakers, they had a some-
biased and a many-biased speaker. They report two versions of their
experiment: one in which there were no filler trials with the other
quantifier and another version in which there was a balanced num-
ber of exposure trials with both quantifiers in both conditions. They
found that the adaptation effect was smaller when there were more
filler trials, so we would expect that if the additional fillers affected
the size of the adaptation effect, the effect would be even larger had
we not presented the extra fillers to participants.
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One likely explanation for these observations is that apart
from tracking speaker-specific statistics, listeners also track
the situation-specific statistics of all interactions in the ex-
periment and their expectations are guided by both of these
factors. In the case of speakers with different uses of un-
certainty expressions, speaker-specific adaptation is attenu-
ated since the overall statistics guide listeners towards an “av-
erage” speaker whose use falls somewhere in between the
cautious and the confident speaker. When listeners are ex-
posed to two speakers of the same type, on the other hand,
the situation-specific statistics reinforce the speaker-specific
statistics and hence listeners adapt more to the two speakers.

An account based on “faulty” memory, according to which
listeners have trouble keeping the speaker-specific experi-
ences separate, does not predict the larger adaptation effect
when listeners are exposed to two speakers of the same type.
If every experience is encoded as an episode in memory but
some with the incorrect speaker information, on average, the
number of experiences with each speaker should still be the
same as in the one-speaker condition and therefore it is un-
clear why listeners adapt more in the two-speaker experiment
than in the one-speaker experiment.

Our findings also have implications for current models
of semantic adaptation. Following the recent successes in
modeling phonetic adaptation as an instance of Bayesian be-
lief updating (Kleinschmidt & Jaeger, 2015), Schuster and
Degen (2018) propose a computational model of semantic
adaptation. According to this model, when interacting with
a speaker Sp, listeners update their beliefs about a set of
speaker-specific parameters ΘSp, which govern the speaker’s
lexicon and preferences.4 Their model predicted the results
of the single-speaker experiment well, but without modifica-
tions, it does not predict the differences in effect size.

We consider two promising extensions of this model. First,
the model could be cast as a hierarchical model. Hierarchi-
cal models have been argued to explain many cognitive and
perceptual phenomena (see e.g., Clark, 2013, for a review),
including phonetic adaptation (Kleinschmidt, 2019), and also
seem applicable here. In a hierarchical version of the adap-
tation model, we would assume that the speaker-specific pa-
rameters ΘSp are not only shaped by the listener’s prior be-
liefs and the observed interactions by a speaker Sp but rather
also depend on a distribution reflecting the situation-specific
expectations. Figure 4 shows a sketch of a potential hierar-
chical model. Such a model would explain the differences in
effect size: When listeners are exposed to different speaker
types, the situation-specific parameter distribution would be
influenced by two speaker types that essentially cancel each
other out, which in turn would lead to less extreme speaker-
specific distributions. On the other hand, when both of the
speakers are of the same type, the situation-specific param-
eter distribution would be more strongly shifted towards the
observed distributions which in turn would lead to more ex-

4See also Hawkins, Frank, and Goodman (2017) for a similar
model of the formation of conceptual pacts.

Prior

Situation-specific
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P(ΘSit)
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Figure 4: Hierarchical model of semantic adaptation.
Situation-specific parameters P(ΘSit) depend on prior beliefs
P(ΘP) and speaker-specific parameters P(ΘSp) depend on the
situation-specific parameters.
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Figure 5: Mixture model of semantic adaptation. Over-
all production parameters P(Θ) are a weighted combination
of situation-specific parameters P(ΘSit) and speaker-specific
parameters P(ΘSp) .

treme speaker-specific distributions.
A second possibility would be to cast the model as a

mixture model in which overall production parameters are
a weighted combination of situation-specific and speaker-
specific parameters (and potentially other factors). Figure 5
shows a sketch of a potential mixture model. According to
such a model, listeners would form both situation-specific
and speaker-specific expectations as a result of adaptation and
then combine these expectations to their overall expectations.
Such a model would also predict the smaller effect size in Ex-
periment 1 since it would predict that the overall production
expectations are influenced by the speaker-specific statistics
as well as the situation-specific statistics and the latter drive
the production expectations to be more similar to an “aver-
age” speaker. When listeners are exposed to two identical
speakers, on the other hand, the situation-specific expecta-
tions (which are in line with the speaker type of both exposure
speakers) would reinforce the speaker-specific expectations
and therefore lead to a larger adaptation effect. Future exper-
imental work should adjudicate between the hierarchical and
the mixture model account.

In conclusion, we presented new experimental results from
the domain of uncertainty expressions which suggest that
speaker-specific semantic adaptation is a product of forming
speaker-specific expectations and forming expectations about
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the situation independent of the speaker. These results raise
a number of interesting questions, most pressingly regarding
transfer effects to novel speakers, which have been observed
in other linguistic domains (e.g., Bradlow & Bent, 2008; Xie,
Earle, & Myers, 2018). In our experiments, the exposure and
test speakers did not differ. This raises the question about
whether and to what extent updated expectations transfer to
novel speakers whose similarity to the exposure speaker(s)
varies. Both models sketched above lend themselves well to
capturing such transfer effects. In addition, participants saw
very similar visual scenes on each trial. Another potential di-
rection would be to study the extent of speaker-specific adap-
tation when listeners encounter more novel scenes during the
test phase to investigate to what extent listeners form speaker-
specific expectations independent of other contextual factors.
Answering these questions will help disentangle the differ-
ent adaptation processes and give us a better understanding
of how listeners infer meanings in context.
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Abstract 

Mentalization is an important ability to acquire for children, 
as it allows humans to understand the mental state of others or 
oneself, that underlies overt behavior (Fonagy & Target, 
1996). In the current study we examined the relationship 
between development of mentalization ability in children and 
their experience of playing with a doll by observing child-
mother interaction and by using functional near-infrared 
spectroscopy (fNIRS). 44 dyads of children aged 2 to 3 and 
their mothers were divided into two groups (high and low) 
depending on the frequency of doll-play experience. We 
examined mother-speech interaction during the doll play. We 
also used fNIRS system to measure cerebral hemodynamic 
activation in the frontal and temporal regions during the 
observation of video clips showing hindering and helping 
behaviors. The results showed that a mother’s proxy talk was 
related to a child’s doll directed speech in the high group, but 
not in the low group. fNRIS data showed that cerebral 
activation in the helping condition was more increased in the 
low group than the high group. This suggests that doll-play 
experience facilitates the development of mentalization, 
which enables children to be aware of and understand other's 
psychological states.  
 

Keywords: doll play; social understanding; mentalizing, 
young children; fNIRS. 

    
This study investigated the relationship between children’s 
experience in playing with dolls and the development of 
mentalization by using behavioral and neuroimaging 
measures. Mentalization refers to an ability to speculate and 
to understand other’s psychological states (e.g., needs, 
desires, feelings, beliefs, goals, and reasons) based on their 
behavior (Fonagy, Gergely, & Target, 2007). Development 
of mentalization is important for children, as they need to 
interact with others by assuming other’s mental sates in their 
socialization process. Fonagy and Target (1996) have 
suggested that play provides an intermediate area for the 
acquisition of symbolic thinking which is crucial for 
mentalization. Given this, it is important to see the 
relationship between play and the development of 
mentalization.      
     Children around age 1 begin to play by using an object as 
if it were something else or by pretending as if he or she was 
doing an actual action without the visible object. This kind 
of play is called “pretend play’. Pretend play is defined as a 
play expressing internal images by using actions, words, or 
objects, such as pretending to drink water by moving an 

empty cup to her mouth or feeding a doll by moving an 
empty toy fork to a doll’s mouth (Lillard, Lerner, Hopkins, 
Dore, Smith, & Palmquist, 2013). Research has investigated 
pretend play because it indicates the emergence of mental 
representation in children in the sense that they enact an 
event or represent an invisible object by using their own 
body or different objects during play.  
Pretend play normally peaks around preschool years when 
children start interacting with other children and gain access 
to more toys and resources for play (Lindsey & Colwell, 
2013). Pretend play during preschool age is particularly 
important as it is related to the development of language 
(e.g., Orr & Geva, 2015), executive function (e.g., Carlson, 
White, & Davis-Unger, 2014), and social understanding 
including theory of mind (e.g., Lillard & Kavanaugh, 2014). 
Theory of mind refers to the ability to attribute mental states 
to others in order to understand and predict social behavior. 
The difference between mentalization and theory of mind is 
that mentalization mainly concerns the reflection of 
affective mental states, whereas, theory of mind focuses on 
epistemic states such as beliefs, intentions and persuasions 
(Wyle, 2014). 
However few studies have shown the relationship between 
children’s experience in pretend play and the development 
of mentalization. The current study addressed this issue.    
     Sachet and Mottweiler (2013) emphasized the distinction 
between two types of pretend play; Role-play and Object 
Substitution. Role play refers to pretend play that involves 
the mental representation of social or interpersonal content 
(e.g., pretending that a doll likes to eat sweets), whereas 
object substitution refers to pretend play that involves the 
mental representation of nonsocial content (e.g., pretending 
that a block is a chocolate). Both types of pretend play can 
provide opportunities for children to practice social skills or 
events happenings in the real world. Role-play has a special 
significance in the development of social understanding, 
because it provides opportunities for simulating social 
interaction (Harris, 2000). In fact, this was demonstrated by 
Wolf, Rygh, and Altshuler (1984). They visited children’s 
houses from ages 1 to 7 and recorded their play with replica 
toys. They found that by the age of four, children can 
ascribe complicated psychological states including 
perceptions, sensations, emotions, and thinking to figures 
with which they are playing (Wolf et al., 1984). However 
there are three limitations in the previous studies on pretend 
play.  
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     First, little research has been conducted to address how 
doll play affects social development such as mentalization, 
sympathy or prosocial behavior. Most studies have focused 
on object substitution and how it is related to social or 
cognitive development. Given that doll play provides 
opportunities for simulating social interaction (Harris, 2000), 
playing with a doll may foster children’s social 
understanding. Brownell, Svetlova, Anderson, Nichols, and 
Drummond (2013) observed an interaction between toddlers 
and caregivers while reading a picture book in relation to 
toddlers’ prosocial behavior. They found that children who 
helped and shared more tended to have parents who more 
often asked them to label and explain the emotions depicted 
in the books. This result suggests that caregiver’s inputs that 
direct children’s attention to inner thoughts or feelings of 
themselves or others assist the development of children’s 
social understanding including mentalization.  
     Second, it is not clear how children’s ability to ascribe 
the psychological states to dolls develops up until 4 years 
old. Lillard (2017) suggested that parent’s input in pretend 
play is a crucial factor to develop children’s social 
understanding because children need to learn how to pretend 
by properly interpreting social signals that parents send (e.g., 
strong eye contact or smile) as a cue of pretend play. Thus, 
it is worth investigating both children’s and parent’s 
behaviors during doll play to see how it affects the 
development of social understanding by the age of 4 years 
old.       
     Third, as Lillard (1993) pointed out, pretend play has 
been mostly analyzed by behavioral measures. There is no 
neuroimaging work on pretend play in children, although 
there are a few that have been done with adults (German et 
al., 2004; Whitehead et al., 2009). To see whether an 
experience in doll play affects the development of 
mentalization, the present study used functional near-
infrared spectroscopy (fNIRS). Compared with other 
neuroimaging techniques, fNIRS imposes less physical 
constraints on the participant and it is relatively unaffected 
by motion artifact. Thus it can be applied in a natural setting 
even in young children (Nagamitsu, Yamashita, Tanaka, & 
Matsuishi, 2012). Previous studies have shown that medial 
prefrontal cortex (mPFC) and temporoparietal junction 
(TPJ) are involved in the mentalization process (Frith & 
Frith, 2006; Minagawa Xu, & Morimoto, 2018). Particularly 
mPFC is responsive when making social judgments about 
dissimilar others (Mitchell et al., 2005), whereas TPJ is 
activated more in response to theory of mind tasks (Mahy, 
Moses, & Pfeifer, 2014). Thus, if a doll-play experience 
facilitates the development of mentalization ability in 
children, these brain regions would be activated more in 
children having more experience in doll play than those who 
have less experience.  
     To address these three limitations, the current study 
aimed to reveal the relationship between doll-play 
experience and development of mentalization in children 
aged 2 to 3 by observing mother-child interaction and 
measuring fNIRS. We predicated that fNIRS data would 

show that brain areas involving the mentalizing process 
would be more activated in children having more doll-play 
than children having less experience when they see 
someone’s helping/hindering behavior. We also predicted 
that mother-child interaction would be qualitatively 
different depending on children’s doll-play experience. 

Methods 
Participants 44 female children aged 2 to 3 and their 
mothers participated in this study. They were divided into 
two groups in terms of frequency of doll play; high and low 
group. The playtime with a doll was taken via a 
questionnaire for mothers before the experiment. Each 
group included 22 children. Children in the High group play 
with a doll more than one hour per week, and children in the 
low group play with a doll fewer than 20 minutes per week. 
The mean age in months and the standard deviation for each 
group were as follows; Low group, M = 35.4, SD = 2.5, and 
High group M  = 36.7, SD = 3.3. There was no significant 
difference in the average age between the two groups. All 
the participants were native monolingual Japanese speakers 
from middle-class families, and the children attended 
nursery schools in Tokyo, Japan.  
Material and Apparatus The test consisted of two 
sessions; a doll play session and a fNIRS session. In the doll 
play session, the child-mother dyad participated in a 7-
minute doll play session. We encouraged the child-mother 
dyad to play with a set of toys including a doll and replica 
of house items, as shown in the left panel in Figure 1. 
Experimenters recorded the child-mother interactions but 
did not participate in their play.  
     For fNIRS session, we created audiovisual video clips. 
Each video clip lasted 17sec (30 fps), presenting two girls 
making an event as shown in Figure 2. In total, we created 
nine clips (stories). After presenting a still picture for 0.5 
second, each clip starts with the introduction phase (8.5sec) 
where one girl (girl A) is in need and the other girl (girl B) 
notices the trouble (e.g., girl A is looking for a pencil, and 
girl B notices it). Then each story ends with the ending 
phase (8sec), which has two types of endings; hindering vs. 
helping ending. In the hindering condition, girl B obstructs 
girl A’s need (e.g., throwing the pencil away), whereas in 
the helping condition, girl B assists girl A’s need (e.g., 
passing the pencil to girl A).  

  
Figure 1. Toys used in doll play session (left panel) and a 
screenshot of data coding with ELAN (right panel).  
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Procedure 
The experiments were conducted in a test room with a 
sound-attenuated cabin for fNIRS in Keio University in 
Tokyo, Japan. First, each child-mother pair was instructed to 
play with a doll and some house items, shown in Figure 1, 
for seven minutes. They were encouraged to play in the 
same way as they do in their home. After the doll play 
session, they had a short break and moved to a booth with 
the fNIRS device. In the booth, mothers were instructed to 
hold their children on their laps and not interact with them 
during the fNIRS data collection. Children were instructed 
to watch the video clips on the monitor in front of them. The 
whole session was recorded using the mini-DV camcorder 
on a tripod. We counterbalanced the number of ending types 
that children were presented with, the locations of girl A and 
B, and the role of girls (e.g., one child watched the girl A 
helping in the pencil story, but other child watched the girl 
B helping in same story). 
 
Analysis 
Doll play data All narratives were verbatim transcribed. 
From the transcriptions, the mean number of utterances was 
then calculated. In this study an utterance was defined as a 
breath group. A breath group refers to a stretch of speech 
between two interword pauses, lasting 200ms or longer. We 
excluded an utterance from this study when it consisted of 
only fillers or meaningless exclamations such as “ah” or 
“um”. 
     We counted the number of the following three speech 
types (Desires, Emotion labels, and other internal state talk) 
by using coding software ELAN (Lausberg & Sloetjes, 
2009) (right panel in Figure 1). These categories were 
borrowed from a study by Brownell et al. (2013). Desires 
are references to wanting, or needing something concrete 
such as “he wants to eat an apple” or “she needs to go to 
bed”. Emotion labels are defined as an utterance naming 
emotional feelings or behaviors without expansion or 
elaboration such as “the doll is happy” or “she likes 
vegetables”. Other internal state talk is references to other 
internal states that are not affect- or mental state-related 

(e.g., physiological states) such as “she is thirsty” or “the 
doll is tired”.   
     To see the psychological distance between participants 
and the doll, we also counted the number of instances of 
proxy talk and of doll directed speech. Proxy talk refers to 
an utterance when the speaker says something from doll’s 
perspective, just like a ventriloquist, as if she or he is the 
doll (e.g., “oh I am so hungry, can you make a meal for 
me?”). In addition to the content of the utterance, if the pitch 
of the speaker’s voice heightens higher than their usual pitch 
and/or he or she produced the utterance while operating the 
doll, it was counted as proxy talk. Doll directed speech 
refers to an utterance that directly addresses to the doll (e.g.,  
“I will cook something for you”). 
 

fNIRS data We measured changes in concentrations of 
oxy-hemoglobin (oxy-Hb) and deoxy-hemoglobin (deoxy-
Hb) in the frontal and temporal regions during the 
observation of video clips, using the NIRS system (ETG-
7000, Hitachi). The NIRS system measures temporal 
changes in concentrations of oxy-Hb and deoxy-Hb in the 
cerebral cortex resulting from an increase in local cerebral 
blood flow by emitting and detecting two wavelengths of 
near-infrared light (780 nm and 830 nm). We used a 2 x 11 
optode array, containing 27 measurement channels. The 
center optode in low row was placed on Fpz in the 
international 10-20 system to cover the frontal and temporal 
regions (Figure 5). The distance between each emitter and 
the corresponding detector was set at 2.5 cm. 
     Data was preprocessed using a platform for optical 
topography analysis tools (POTATo) developed by 
Research and Development Group, Hitachi, Ltd, within 
MATLAB2012 (Mathworks, Natwick, MA, USA). Pulse-
related signal changes for head motion and overall trends 
were eliminated by high-pass (0.02 HZ) and low-pass (1 
Hz) filtering. We defined 3.5 seconds before the onset of the 
ending phase as a baseline period and compared the relative 
change in oxy-Hb during a time analysis window (between 
5 s and 8 s after the onset of the ending phrase) with the 
baseline period using a t-test. It is controversial which 
chromophore, namely oxy-Hb or deoxy-Hb best represents 

Figure 2. An example of video audio stimulus and the time line for fNIRS experiment. Each clip has two 
different endings; Hindering (top) and helping ending (bottom) in the Ending phase. 
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BOLD (blood oxygen level dependent) signal. However, 
oxy-Hb has been dominantly used in previous fNIRS studies 
(Lloyd-Fox et al., 2010) and it has been pointed out that 
signal-to-noise ratio is higher for oxy-Hb rather than deoxy-
Hb (Strangman et al. 2002). Thus, we decided to analyse 
only oxy-HB in this study. 
 
Reliability 
The first author coded the entire data set. To ensure the 
reliability of the gesture coding, about 50% of the data was 
re-analysed by a trained and independent native Japanese-
speaking student. Ten children and mothers from each group 
(40 participants in total) were randomly selected and re-
coded by the second coder. Point-to-point percentage 
agreement was calculated. The two coders agreed on the 
number of utterances 98% of the time for children, 97% of 
the time for mothers in the low group, and 98% of the time 
for children, 98% of the time for mothers in the high group. 
We calculated the percentage agreement for each speech 
category by collapsing groups. The two coders agreed on 
the number of doll directed speech 90% of the time in the 
low group and 93 % of the time in the high group, and on 
the number of proxy talk 93% of the time in the low group 
and 88% of the time in the high group. The Cohen’s kappa 
statistic was used to assess inter-rater reliability for coding 
with more than two categories. Agreements between the two 
independent coders were overall high; for the low group, for 
desire speech kappa=.91; for emotion label kappa=.89; for 
other internal state talk kappa=.93, and for the high group, 
for  desire speech kappa=.94; for emotion label kappa=.96; 
for other internal state talk kappa=.95. Any coding 
disagreements were resolved through discussion and 
subsequent consensus. 

Results 

1.1. Doll play analysis 
The number of utterances We first calculated the number 
of utterances that children and mothers produced for each 
group. Children produced 46.3 (SD = 19.6) utterances in the 
low group, and 57.2 (SD= 26.9) in the high group. Mothers 
produced 121.3 utterances (SD = 26.3) in the low group, 
and 115.5 (SD = 26.8) in the high group. We conducted 
independent-sample t-tests and did not find a significant 

difference between the two groups, t(42) = 1.53, p = 0.13, 
for children, and t(42) = 0.73, p = 0.47, for mothers. This 
result showed that children and mothers in both groups 
produced same amount of utterances during the doll play. 
 
Proxy talk and doll directed speech We first counted the 
number of instances of proxy talk and doll directed speech 
that were produced by children and mothers during the 
session. Then we divided them by the total number of 
utterances for each participant to calculate the proportion. 
The proportions of proxy talk were 0.00 (0.01) in children in 
the low group, 0.02 (0.02) in children in the high group, 
0.13 (0.11) in mothers in the low group, and 0.37 (0.19) in 
mothers in the high group. To see whether there was a 
difference in the proportion of proxy talk between the low 
and high groups, after arcsine transformation of the 
proportion data, independent-sample t-tests were conducted 
for children and mothers. A significant difference was found 
in children, t(42) = 3.39, p < .01, d = 1.02, and in mothers, 
t(42) = 5.00, p < 0.01, d = 1.51. This result indicated that 
mothers and children in the high group produced proxy talk 
more frequently than those in the low group. The 
proportions of doll directed speech were 0.06 (0.09) in 
children in the low group, 0.23 (0.17) in children in the high 
group, 0.00 (0.00) in mothers in the low group, and 0.00 
(0.01) in mothers in the high group. Independent-sample t-
tests were conducted, and a significant difference was found 
only in children, t(42) = 3.39, p < .01, d = 1.59. This result 
indicated that children in the high group produced doll 
directed speech more frequently than children in the low 
group.  
 
Correlation between proxy talk and doll directed speech  
To see whether there was a relationship between mother’s 
and children’s statements, Pearson’s correlation coefficient 
was calculated between the proportion of proxy talk and of 
doll directed speech made by mothers and children for each 
group. The result revealed that in the low group, there are no 
correlations between them, but in the high group, there is a 
significant correlation between mother’s proxy talk and 
children’s, r = .69, p < .001 (two-tailed). This indicated that 
when mothers produce proxy talk, their children produce 
doll directed speech during their play in the high group.   
 

Figure 5. Arrangement of the near-infrared spectroscopy (NIRS) channels. The channels with a red circle 
indicate the channels showing the significant differences between the low and the high groups.  
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Proportion of speech type in children and mothers 
Proportions of each speech type were calculated by dividing 
the number of each speech type by the total number of 
utterances for children (Figure 3) and mothers (Figure 4). 
After arcsine transformation of the proportion data, paired t-
tests were conducted for each speech type between two 
groups in children and mothers. A significant difference was 
found only in Emotion labels in adults, t(42) = 2.43, p < .05, 
d = 0.73. This indicates that mothers in the high group 
produced Emotion labels more frequently than those in low 
group.  
 

 
Figure 3. Proportion of each speech type in children 
 

 
Figure 4. Proportion of each speech type in adults 

2. 1. fNIRS analysis  
We conducted paired t-tests on the difference in oxy-Hb 
change during the ending phase between two groups (the 
high vs. low group) for each channel, and for each condition 
(hindering and helping condition) 

The result showed that there were no significant 
differences between two groups in the hindering condition, 
but the oxy-Hb concentration in the helping condition was 
significantly more increased in the low group than the high 
group for the measurement channel 8, t(27)= 3.05, p < .01, 

 

 

 

d = 1.12, the channel 12, t(29)=3.58, p < .001, d = 1.29, the 
channel 26, t(30)= 3.28, p < .01 , d = 1.16. The channel 8 
and 12 cover TPJ (temporoparietal junction) region, and the 
channel 26 covers mPFC (medial prefrontal cortex) region. 
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Figure 6. The time course of signal changes in oxy-Hb at 
TPJ (Ch8 and 12) and mPFC (Ch26) channels during the 
ending phase. The x-axis represents time units of 0.1 
second. The dot line indicates the onset of the ending 
phase. We analysed the last 3 seconds of the ending 
phase, which is time windows from 85 to 115 on x-axis.   
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Taking TPJ’s and mPFC’s functional roles into account, 
these results suggested that children in the low group are 
more sensitive to other's helping behaviors and feelings than 
those in the high group. We conducted the correlation 
analysis between behavioral data (child/mother speech) and 
the three channels showing the significant differences 
between groups. However, any statically significant 
correlations between them were not found.   

Discussion 
The current study examined the relationship between doll-
play experience and development of mentalization in 
children aged 2 to 3 by observing mother-child interaction 
and measuring brain activation by fNIRS. We found three 
main results. The first finding is that mother’s talk differs 
depending on children’s experience in playing with dolls. 
Mothers who have children with more experience in doll-
play tended to produce more proxy talk and emotion labels 
during doll-play than mothers in the low doll-play 
experience group. The second finding is that children who 
have more experience in doll-play produced doll directed 
speech more frequently than children who have less 
experience in doll-play.  
     These findings indicate that mentioning a doll’s internal 
feelings or talking to children by using the doll’s voice 
direct children’s attention to a doll’s inner psychological 
states, which may lead children to the development of 
mentalization. In turn, children tend to talk to the doll as if 
the doll is an animate entity by using doll directed speech. 
This interpretation is consistent with previous research 
showing that mother’s inputs are important to develop 
children’s social understanding (e.g., Brownell et al., 2013; 
Lillard. 2017; Nakamachi, 2015). For example, Nakamachi  
(2015) found that mothers’ pretend behaviors when toddlers 
were at 18 months predicted toddlers’ understanding of a 
stranger’s pretense 6 months later. Our data added new 
insight to this line of research. That is, as the result of 
correlation analysis shows, mother’s proxy talk was 
significantly correlated to children’s doll directed speech in 
the high doll-play experience group. Although it is difficult 
to determine the cause-effect relationship from our data set, 
we can speculate that mother’s proxy talk makes children 
aware of a doll’s inner feelings. In turn, children address 
their talk to the doll. This caregiver-child interaction 
through a doll may lead children to facilitate the 
development of mentalization.  
   The third finding is that in the measurement channel 
above TPJ (temporoparietal junction) and mPFC (medial 
prefrontal cortex) regions, the oxy-Hb concentration in the 
helping condition was more increased in the low group than 
the high group. This finding tells us that children in the low 
group are more sensitive to other's helping behaviors and 
feelings than the high group. It can be interpreted that 
children in the high group have seen a variety of helping 
scenes in doll-play. In contrast, children in the low group 
may not be as familiar. As the helping condition requires 
children in the low group to mentalize others feelings, the 

oxy-Hb concentration was more increased in TPJ and mPFC 
than children in the high group. 
     Contrary to our expectation, we did not find any 
difference in the oxy-Hb concentration in the hindering 
condition. This may be because it is too hard for children 
aged 2 to 3 to understand the situation in video clips as a 
hindering situation. Also, unlike the helping condition, the 
stories of the hindering condition do not have clear ending 
in the sense that the issue of the hindered person still 
remains. Thus, different time windows to measures brain 
activity may need for hindering and helping conditions 
respectively.      
     In conclusion, the current study showed that the 
experience in playing with a doll is related to the 
development of mentalization, and that maternal inputs 
toward her child and child’s response toward a doll play 
important roles in the development of mentalization.  
     There are three directions of future studies. First, the 
current study used only audiovisual stimuli presenting 
helping/hindering behaviors to see the relationship between 
mentalization and doll play. But role-play is comprised of 
different elements such as verbal and nonverbal interaction, 
theory of mind, mentalization, sharing and reading 
intention, and object manipulation (Lillard, 2017). Thus, as 
a future task, it is important to examine whether and how 
doll play affects other social, linguistic, or cognitive process 
by using other stimuli that are sensitive to those domains. 
The second future task would be conducting longitudinal 
studies. Sachet and Mottweiler (2013) pointed out that it has 
remained unclear whether engaging in role-play enhances 
children’s social understanding or the other way around. To 
make the cause-effect relationship between doll-play and 
social understanding clear, we need to longitudinally 
examine the developmental path of social understanding 
including mentalization and how caregiver’s input and other 
environmental resources affect children’s behaviors. Finally, 
given that play is a culturally constructed activity (Gaskins, 
2013), it is important to examine whether findings in the 
current study holds true for populations with other 
demographics (e.g., different social-economic status, people 
with non-Japanese backgrounds, mother-son or father-child 
dyads). 
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Abstract 

The rise of ubiquitous computing has cemented ubiquitous 
reproduction (UR) as a defining feature of contemporary 
human environments. UR is most obvious on our televisions 
and smartphones but has homogenised most material aspects 
of our lives. Emerging technologies such as 3D printing and 
robotics will ensure that this trend intensifies. UR is an issue 
of global scale that is relatively intractable to qualitative 
treatment. This paper introduces a novel quantitative 
approach to cognitive science and to analysis of UR. The 
approach uses the finiteness of cognition to establish a 
minimal ontology with which to model cognitive diversity 
under UR. It demonstrates that, despite widespread 
valorisation of diversity, cognitive diversity must be declining 
at a global level. The implications of this for creativity are 
that the arc for creative impact is growing shorter as the need 
to be immediately intelligible promotes the formulaic at the 
expense of the interpretable. 

Keywords: ubiquitous computing; ubiquitous reproduction; 
cognitive diversity; creativity; intelligibility 

Introduction 

Ubiquitous reproduction (UR), a feature of contemporary 

society accelerating under ubiquitous computing, has 

brought an unprecedented rise in the homogeneity of human 

environments. Our attention is increasingly occupied by 

images and sounds reproduced synchronously and 

asynchronously in millions of widely dispersed locations – 

on mega-screens that tower over us in cityscapes (as in 

Figure 1); on televisions and monitors in our homes; and on 

smart devices in our pockets and on our wrists. Within the 

cocoon of our digital habits we are now as likely to be glued 

to our favourite online resources and entertainments walking 

through a Bangkok market as a Finnish airport. 

The material effects of UR are far from straightforward or 

short term. The digital reproduction of images and sounds 

has provided the scaffold for broader standardization of our 

physical world. Human environments are now measured, 

planned, designed, manufactured, distributed, and assessed 

with digital assistance. Our experience, derived from objects 

on computer screens in environments of computational 

origin, is becoming more and more homogenous. 

Everything from our first appearance in utero on ultrasound 

screens, to the digital curricula of the schools we attend, to 

the 3D printed artefacts we use, to the temperature and 

humidity of the air we breathe is melding into a common 

background. 

 
 

Figure 1. Ubiquitous reproduction (UR) is occurring in 

many forms and on many scales in human environments. 

 

The identical representations information technology 

makes possible are certainly a boon for productivity. They 

are also often touted as a godsend for creativity. Indeed, the 

ease with which digital amateurs can create and disseminate 

images and sounds has progressed to the level of “deep 

fakes” that threaten to undermine, as Baudrillard 

(1981/1994) foresaw, trust in reality itself. Thanks to UR 

there have appeared many new and popular activities to 

stock the digital repository. Entire new genres such as 

emoji, gifs and memes have emerged, and as technology 

progresses no doubt these will be joined by other 

technologically defined creative – if similarly pastiche-

based – categories. 

Alloyed to claims that UR promotes creativity is the 

promise (often promoted in marketing of new technology) 

that UR is a breakthrough for cognitive diversity. The 

argument is that UR allows us to learn about (or even 

virtually experience) other viewpoints, expand our cognitive 

degrees of freedom, and so overcome the ignorance that 

engenders bigotry. This meshes well with the conjointly 

valorised idea that creativity necessarily involves an 

increase in cognitive diversity. Afterall, if nothing new and 

hence expansive of diversity appears, how can creativity 

have taken place? In terms of cognition under UR, however, 

a worthy question is whether rising environmental 

homogeneity carries broader, unrecognized structural 

contractions actually inimical to global cognitive diversity. 

This paper introduces a quantitative view, based simply on 

the finiteness of cognition, that localized and anecdotal 

creative benefits of UR disguise a broader pattern of 
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reduced cognitive diversity and an inflection point in what 

is possible in, or even meant by, creativity. 

Quantitative cognitive analysis 

A common difficulty in cognitive science, and one 

perhaps retarding analysis of UR at present, is achieving 

ontological agreement. Cognitive science often ignores 

thorny philosophical dilemmas to concern itself almost 

entirely with qualitative aspects of cognition, which are 

typically treated as self-evident. It is, however, specious to 

claim that we know or can infer what a particular individual 

or group of individuals is thinking, or that any symbolic 

representation of cognition is meaningful outside symbolic 

systems, which rely themselves, after all, upon cognition. 

Well over sixty years ago, Quine (1951), as part of his 

critique of “modern empiricism”, pointed out the circularity 

of assuming cognitive synonymy. Yet such assumptions 

continue to underpin psychology and cognitive science and 

are rarely challenged. 

Historically, however, qualitative enquiry is not the sole – 

or even foundational – charter of either psychology or 

cognitive science. James (1890/2012, p. 9), for example, 

defined psychology as “the science of finite individual 

minds” [emphasis added]. This underexplored distinction 

has been examined recently by Shackell (2018, 2019, in 

press) in an attempt to bring clarity to information age 

challenges in semiotics. The bootstrapping move is to first 

treat questions of cognition quantitatively in order to derive 

a minimally committed and hence maximally surefooted 

ontology of cognition. For the present analysis, this 

“quantitative cognitive science” approach can be 

summarized in three axioms that can be confirmed from 

common experience: 

1. Cognition is finite (i.e., we do not know 

everything; what we never think we never know) 

2. Cognition can be similar or at least closely related 

(e.g., communication is possible) 

3. Over time, common environments produce 

similarly structured cognition and behaviour in a population 

(e.g., many people in Paris speak French) 

Most crucially, from the first of these axioms the 

construct of a global human cognitive field can be derived, 

which is simply a space-time concept of cognition occurring 

at a species level. This simple construct, shown in Figure 2, 

is the blank slate for quantitative analysis of cognition. 

Further explicit ontological commitments can be carefully 

introduced to examine various phenomena, among which 

the rise and role of UR is our present focus. 

An attentional definition of environment 

Environments that humans create and customise for 

themselves are more complicated than their appearance at 

any one moment in time suggests. Human environments are 

cognitive, defined just as much by habits of attention as 

possible targets of attention. Habits of attention, in turn, are 

shaped by perceptual processes over time – largely by what 

changes or modulates in an environment. Many people who 

live in sight of some remarkable wonder such as the Grand 

Canyon, for example, may nonetheless currently devote 

much of their time to Facebook or Twitter. 

 

 
 

Figure 2. The cognitive field, a minimal construct 

facilitating careful quantitative analysis of cognition. Each 

circle represents a single agent’s thought at a point in space 

and time. Adapted from Shackell (2018). 

 

Our experience is a complex function of the attended and 

unattended stimuli we inhabit. UR brings determinative 

constraints to this function in ways that are difficult to 

perceive. An initial reaction to email in the 1990s, for 

example, may have been that it brings some incidental, 

standardising reproduction to our experience but ultimately 

is a source of extremely varied stimuli (e.g., words and 

images). However, if we examine the email of a large 

number of people today, will we find a rich and open-ended 

diversity of images, words, and most importantly, habits of 

interpretation? More likely we will find a quite clustered, 

reducible set of generic artefacts such as advertising, jokes, 

school news and so on. In fact, spam filters rely upon the 

very fact that email messages at a global level are not very 

diverse. 

The issue of material homogeneity interacting with 

attentional proclivities to determine cognition is a complex 

one. For example, a hotel room containing a large television 

that is switched off has a very high level of material 

homogeneity relative to other hotel rooms but nonetheless 

allows many degrees of freedom for cognition. An agent 

sitting in that room may be thinking about a passing car, the 

colour of the carpet, a memory from childhood, rice salad 

recipes et cetera, each with a low degree of predictability. In 

contrast, the same hotel room with the large television 

switched on is less materially homogenous – the light and 

sound emitting from the television are dynamic and change 

the environment constantly. Cognitively, however, it is less 

diverse as a large proportion of people in such a situation 

will be on very similar trajectories promoted by the 

modulating television (e.g., experiencing an episode of 

Seinfeld). Such attentional and focus dynamics have a 

historical or formative component and are in a sense nested 

within one another (the homogenous, generic hotel room 

nests the seemingly diverse television output, which is itself 

derived from a restricted content set e.g., Seinfeld episodes). 

Cognition, therefore, can be homogenised by dynamic as 
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much as static stimuli according to prevailing attentional 

habits. 

Pre-UR environments 

Natural, pre-modern environments provide a baseline (or at 

least a point of comparison) for homogeneity. UR is limited 

in nature. No two mountains are the same. Nor any two 

rivers or places in them. Moreover, in nature there is little 

opportunity to view things habitually from the same 

perspective, or to view the same event repeatedly1. 

Importantly, there is a close linkage in pre-modern 

environments between stimulus and response. In pre-

modern environments, if you saw a tiger you would think to 

run. Today you will likely just turn your head away and 

dismiss the vision as an advertisement for sneakers or a 

charity. Even in the nineteenth century, despite the rise of 

newspapers, museums and public libraries, it was relatively 

rare for large numbers of human beings to have encountered 

identical objects. Human cognition in the past likely 

exhibited a high level of idiosyncratic abstraction derived 

from variant stimuli. One person’s concept of a mountain or 

a steam engine may have been much different than another’s 

without ever causing economic or social friction. In other 

words, economic and social functions were performed 

despite quite a high degree of cognitive diversity. 

Formalising cognitive diversity 

To derive a formal model of cognitive diversity based on 

the axioms of finite cognition, we can begin by formalising 

the cognition of a population with n members over a chosen 

time period. Let P be the set of n contemporaneous thought 

sequences s in the population over the period: 

 

 
 

C can be defined as the set of distinct thoughts of s, a 

member of P, over the period. 

The total cognitive diversity of P can therefore be 

expressed as the union of all C: 

 

 
 

Conversely, the total cognitive commonality of P can be 

written as the intersection of all C: 

 

 
 

                                                           
1 This point is illustrated by the debate that raged for millennia 

as to whether, and at what point, all four of a horse’s hooves leave 

the ground while galloping. The debate was resolved by 

Muybridge’s 1878 Sallie Gardner at a Gallop photographs. 

A more meaningful measure of cognitive diversity for P, 

however, must include an awareness of the distribution of 

similar and different cognitive states among agents. A 

number of metrics are available in statistics for comparing 

set similarity. The Jaccard index, for example, is the size of 

the intersection of two sets divided by the size of the union. 

For P, a useful metric of similarity is the mean of the 

pairwise Jaccard indices of all C, which we can call that 

population’s cognitive similarity z: 

 

 
 

A z value of 1 would indicate a complete lack of cognitive 

diversity while a value of 0 would indicate complete 

cognitive diversity. While z can perhaps never be directly 

measured except in some future dystopia, it does give us a 

formal tool with which to reason about certain situations in 

which diversity is at issue, and more broadly the effects of 

phenomena such as UR. 

Modelling cognition in increasingly 

homogenous environments 

It would be difficult to sustain the argument that human 

beings living in environments that are increasing similar 

will not tend to think in increasingly similar or at least 

related ways. Even if thoughts do not circulate in an 

epidemiological manner, disparate reactions to common 

artefacts must lead to thoughts falling into finite patterns 

and hence concentrating within generic categories. For 

example, while everyone may not have positive emotions 

around the massively reproduced images of the last FIFA 

World Cup, large numbers of people will have some species 

of reaction such as disappointment, outrage, respect, 

indifference et cetera. Moreover, these reactions will be 

patterned in very broad ways, with people in the winning 

country, France, more likely to exhibit one of the more 

positive cognitive states. Such “made for television” events 

are often lauded, and indeed sought after, for bringing the 

world together and creating connection. 

A connected world or a homogenous world? 

In analyses of technological change, a common assertion 

is that cognition is changing because individuals are now 

highly “connected”. This idea of connection, however, 

despite having the appearance of explanatory power and 

finality, bears some deconstruction. If we probe a little 

deeper into the material nature of increased connectivity, we 

find that UR is the enabling mechanism. Connection is 

possible because a message on a device at one location can 

be reproduced at another. More subtly still, reproduction of 

any image at different locations creates a connection 

potential between individuals by synchronising their 

experience to some extent – that is, by honing their ability to 

receive a related image later. 
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When we draw connections as an edge on a social 

network graph (as is routinely done – see, for example, 

Baronchelli, Ferrer-i-Cancho, Pastor-Satorras, Chater, and 

Christiansen, 2013), we are abstracting a very complex 

structure of UR into a simple metaphor. In specific 

qualitative analysis this reduction is often not afforded 

enough scrutiny: the complexity of a single connection is 

enormous and drags with it an implicit micro-mechanics 

that has never really been made clear. In quantitative 

analysis, however, such edges can be given a very precise 

meaning at the systemic level as environmental 

commonalities occasioning synchronisation of thought. 

Edges with such a meaning can be assigned probabilities 

based on environmental commonalities and attentional 

factors (as indeed marketing and advertising already do in 

some situations e.g., Allenby and Rossi, 1998). 

Diversity in the cognitive field under rising UR 

Using the construct of the cognitive field and edges 

introduced above we can model the effects of UR by 

assigning discrete values of difference to cognition – that is, 

by marking cognitive states as different or similar without 

claiming to know anything qualitative about them. In 

Figure 3, the colour of circles in the field indicates the 

difference or similarity of cognition. The edges are 

indicators of common experience produced by UR. As per 

the discussion above, the edges do not necessarily “spread” 

a cognitive state but rather increase the tendency of other 

agents to assume some complementary state. 

 

 
 

Figure 3. A cognitive field under low UR. Different colours 

represent different cognitive states. Edges represent 

common experiences facilitated by UR. 

 

Figure 4 depicts a cognitive field under greater UR which 

facilitates more common cognition and hence less cognitive 

diversity. Notice that the “connections” between agents (the 

products of UR) are greater and hence the number of 

distinct states is lower than in Figure 3. The result is a move 

towards what is known as a “small world” graph. 

Figures 3 and 4 show that if we stipulate that increasingly 

homogenous stimuli tend to produce less diverse cognition, 

then under global UR we can assume a falling cognitive 

diversity in human populations. The next question we may 

ask is why such a movement is underway? 

 

 
 

Figure 4. A cognitive field in an environment with a high 

level of UR. Greater “connection” leads to lower diversity. 

The teleology of falling cognitive diversity 

Falling cognitive diversity has one obvious cause: 

economics. As new methods for production and distribution 

of material goods and information evolve, these are quickly 

disseminated and adopted around the world. For example, 

producers will not continue to smelt iron in an inefficient 

and idiosyncratic way if a better method is obviously 

available. The adoption of the new smelting method, 

however, will require remote peoples to synchronise some 

of their cognition with others already using the method. This 

will also likely bring larger flow-on material changes: 

altered city locations and landscapes with smokestacks of a 

certain shape, new jobs with similar duty descriptions, and, 

most broadly, societal changes to do with increased 

availability of iron. The pace of economic change in regard 

to information technology is many times greater. Such 

changes are economically optimal but operate by decreasing 

cognitive diversity globally. 

A counterintuitive view of diversity 

With the current valorisation of diversity in race, gender, 

politics and religion, the conversation around cognitive 

diversity – which if one believes in the mediation of reality 

by cognition is the root of all diversity – turns quite 

counterintuitive. To anyone with a positive notion of truth 

or a commitment to democratic philosophy as espoused, for 

example, by Dewey (1916/2012), diversity is a fundamental 

value and a cornerstone of contemporary UR-dominated 

society. In fact, however, in terms of the analysis of 

diversity presented above, the rise of discourses about 

diversity – as for all global discourses – must be viewed as a 

symptom of decreasing cognitive diversity. Whereas a 

broad and idiosyncratic range of cognition around diversity 

once obtained, UR has brought global templates for 

cognition to every agent. Recently, for example, the 

#MeToo movement set the issue of gender into a certain 

polarised structure around the world. Whether this one 

phenomenon has reduced or increased cognitive diversity is 
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a moot, qualitative point. Taken as a whole, however, 

discourses that dominate globally via UR must have the 

systemic effect of reducing cognitive diversity overall. 

Although it will not be traced here, it would seem 

possible to reconcile the teleology of declining cognitive 

diversity with the rise in global discourses about diversity. 

Put simply, the drive to economic and social optimality 

gives rise to discourses that efficiently allocate – or at least 

consume – cognition in support of it. 

Intelligibility 

The counterintuitive result above is that while technology 

is providing information in seeming abundance via UR, this 

leads to increased homogeneity of environments which must 

lead to a decrease in cognitive diversity. This decrease is 

disguised by a perceived increase in intelligibility whereby 

we expect, and have patience only for, stimuli that fit 

immediately into our cognition. The rise of the “random” as 

a term in popular culture might be regarded as a symptom of 

this increase in intelligibility: what is not immediately 

recognizable and intelligible is pushed from cognition as 

“random” as the mind seeks to navigate only those states on 

the homogenous, highly connected network. The term 

“stranger”, for example, has largely been replaced by 

“random guy/girl” in many idiolects. In such a context we 

must re-examine what creativity – once capable of 

generational, revolutionary effect – now means. 

Schematisation 

In work that is easily related to the rising trend to fast 

intelligibility, Stiegler (1994/1998) has criticised the role of 

technology in “schematicising” cognition – that is, 

patterning thought into generalisable routines, or, as Quine, 

his forerunner, defined it: “positing sharp boundaries where 

none can be drawn” (Quine, 1990, p.12). Schematisation 

leads to shortcuts in thought for activities as diverse as 

recognizing villains in a movie by their smoking habits; 

interacting with checkout staff in ways learned from 

vending machines; or calling one’s memory one’s “hard 

drive”. 

Via schematisation, UR impacts social relations by the 

spread of common experience. To navigate the common 

environment, one must learn and acquiesce to routines of 

thought and action or be nudged1 into line with other 

members by shared norms. The paradox of diversity applies: 

if one wishes to increase diversity in UR contexts one must 

commit acts of rebellion which will only be noticed if they 

in fact fit current schemas. As a rebel against UR one is in 

danger of creating a rebellious movement that can only 

thrive on the commonality supplied by technology, which 

under UR will quickly normalize it. 

A relevant metaphor for cognition in homogenous 

environments is the (integrally related, embodying) adaptive 

                                                           
1 It is perhaps no coincidence that, in recent years, governments 

have formally embraced the notion of using UR to shape behaviour 

using techniques such as “nudging” (Thaler, 2009). 

development of our bodies. When living in natural 

environments full of uneven and undulating surfaces, we 

can attain almost any position. We will of course begin to 

wear pathways, but these evolve with our activities and are 

not fully determinative. Our physiology adapts so that our 

feet retain degrees of freedom, develop callous from certain 

movements over rocks or sand, and our awareness of terrain 

is of a certain fluid kind. Consider, in contrast, a human 

built environment in which surfaces are generally flat and 

even and any obstacles are essentially vertical (such as the 

side of a building or house). Our movement becomes 

limited in absolute ways. If we wish to go to a certain place 

there are hard restrictions on what paths are possible. Our 

feet will adapt to walk on flat surfaces; our awareness of 

terrain will be of a more binary kind; and we will inhabit an 

area having experienced only a small fraction of its terrain 

or viewpoints (not many of us have seen inside all the 

houses or apartments within 100 metres of our own). The 

effects of UR on cognition are of a similar, schematicising 

kind, which has profound ramifications for creativity. 

Creativity under declining cognitive diversity 

Under the axioms of finite cognition introduced at the 

start of this paper, a very straightforward quantitative 

definition of creativity is possible. Creativity is the 

mechanism by which one agent induces, or more 

romantically inspires, new cognitive states in another agent. 

UR under this definition has obviously increased the 

creative potential of each individual enormously. Each agent 

has the means to offer images and sounds via 

telecommunications to billions of others and to create new 

cognitive possibilities for them. This is in stark contrast to 

the world prior to UR, when it was difficult to affect large 

numbers of people even over long periods. It may, for 

example, have taken centuries for any significant number of 

people to have heard of, or formed a view about, an 

enormous public creative work such as Chartres cathedral. 

We must pause to reflect, however, that, despite the new 

possibilities technology introduces, the total amount of 

cognition remains relatively constant. There are therefore 

two types of creativity that fit our quantitative definition. 

These roughly parallel Boden’s (1990) psychological or “p-

creativity”, and historical or “h-creativity” but are worth 

reframing for the quantitative approach. Firstly, the new 

cognition need not necessarily be new in a global sense – 

only to one or more individuals. Creativity, therefore, 

involves, most minimally, a local increase in cognitive 

diversity that does not increase overall diversity. We might 

call this “zero gain” creativity and note that it tends to 

increase the z metric proposed above (makes cognition more 

similar). At the other extreme, creativity may involve 

provoking a completely new cognition never before attained 

by any agent (for example, Archimedes’ eureka moment). 

We can call this “global increase” creativity and note that – 

at least initially – it tends to reduce z (makes cognition less 

similar). UR, by this distinction, overwhelmingly provokes 

a disproportionate amount of zero gain creativity. 
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Diffusion and interpretation 

A surfeit of zero gain creativity under UR has reduced the 

half-life of creative activity to very low levels. Anything 

new is quickly disseminated throughout the cognitive field. 

Novel thought is under pressure from (and likely to be 

displaced by) the next low gain stimulus. Moreover, the 

rapidity of dissemination discourages prolonged or novel 

interpretation of reproductions. Interpretation must be 

relatively shallow: the stimulus, as noted, must be 

immediately intelligible or will be simply ignored by the 

majority of receivers. It would seem absurd in the current 

context to spend years in careful interpretation of a single 

work of art to achieve something novel, but such activity 

was common and valorised in centuries past (as the long 

traditions of exegesis and hermeneutics attest). 

In terms of the quantitative definition of creativity, under 

UR there is much creativity. Afterall, UR provokes new 

cognitive states in unprecedented numbers of individuals. 

The ubiquity and speed of that creative reception, however, 

is not growing the broader diversity of cognition as rapidly 

as the pre-UR age, which ipso facto lacked the apparatus of 

cognitive synchronisation. 

Creativity, bending with the decrease in cognitive 

diversity, is becoming a short rather than long term 

possibility. Creative activity in homogenous environments 

is under pressure to be continuous and schematic or risk 

exclusion as “random”. This leads to the increasing 

dominance of formulaic creativity. In Figure 5, for example, 

a piece of graffiti attributed to the artist Banksy combines 

simple images and colours. The placement of the graffiti in 

a drab urban context (not shown) draws viewers to its 

intelligibility and achieves – almost formulaically – a flash 

of creativity while also providing a ready-made meme for 

UR. 

Should we limit environmental homogeneity? 

Future historians may refer to our era not as The 

Information Age but as The Great Synchronisation. There 

exists a danger that the growing ubiquity of human 

interaction with technology and the homogenizing 

reproduction it enables may lead to restricted “closed” 

paradigms that we are not in control of – paradigms that are 

instead defined by the affordances and economics of the 

technology itself. The end result may be a counterintuitive 

and potentially pernicious reduction in cognitive diversity 

occasioning a new sterile aesthetics – an air-conditioned 

Dark Age in which there are no wrong clocks. Creativity 

expansive of human thought (“global gain”) is at risk from 

creativity that is merely distributive (“zero gain”). We must 

beware that what is not instantly intelligible is not denied a 

place in the panoply of human cognition. A possible remedy 

that warrants further formalisation and research is the 

measurement and control of environmental homogeneity – 

something which must become a recognised parameter of 

our tolerance for ubiquitous computing. 

 
 

Figure 5. Graffiti art attributed to Banksy known as Girl 

with Balloon. The image can be seen as an example of the 

trend to intelligible, formulaic, meme-friendly creativity. 

Conclusion 

This paper examined the paradox of cognitive diversity as 

a lauded societal value in the increasingly homogenous 

environments created by ubiquitous computing and the 

ubiquitous reproduction it allows. If we value diversity in 

any form, we must value cognitive diversity, for by 

definition all diverse reality springs from diverse cognition. 

The paradox is that ultimately our drive to communicate 

using reproductive digital means cannot be other than a 

force for reducing cognitive diversity to some optimally 

oscillating set. 

The practical benefits of reduced cognitive diversity in the 

relation of humanity to its material needs – thriving in 

material terms with all resource exploitation and population 

itself optimized to maximum carrying rate – is 

unquestionable. Inefficient cognition leads to waste and 

error. We should question, however, whether we are ready 

to abandon some long-held commitments to our destiny as a 

species in order to embrace these benefits. For if creativity 

involves producing or inducing new types of cognition there 

can be only localized, short term creativity in a system that 

distributes stimuli and displaces existing diversity with 

superlative efficiency. We may in the process be 

condemning those who come after to lives of robotic 

absurdity, making them martyrs to our vainglorious and 

infinite conception of our very finite selves. 
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Abstract 

We traced the development of sensitivity to symmetric 
relational patterns by creating a symmetry match-to-sample 
task. Children saw a symmetric standard made up of two 
shapes and choose between two novel alternatives: a 
symmetric pair and an asymmetric pair. We found that young 
children chose randomly between the two alternatives. 
Children were not reliably above chance until 8-to 9 years of 
age. In a second study, we found that young children could 
succeed in making symmetric relational matches if the triads 
were designed to invite informative comparisons. These 
findings show that relational insight of symmetry develops 
relatively late. However, as with other relations, comparison 
processes can promote sensitivity to the symmetry relation. 

Keywords: symmetry; relational processing; comparison and 
contrast 

Introduction 

The acquisition and use of relational concepts are critical to 

higher-order cognition, and to learning in complex domains. 

Symmetry is arguably one of the most basic and ubiquitous 

relations in nature, evident in structures as small as molecules 

and as large as blue whales. Non-human animals are thought 

to show a preference for symmetrical over asymmetrical 

bodily features when choosing a mate, and there is evidence 

that humans rate symmetrical faces as more attractive than 

non-symmetrical ones (e.g., Grammer & Thornhill, 1994; 

Møller, & Thornhill, 1998).  Based on these patterns, some 

researchers have suggested that sensitivity to symmetry may 

be biologically endowed (e.g. Grammer & Thornhill, 1994).  

   Evidence in favor of this claim comes from three lines of 

research. First, symmetry is easily processed by the human 

visual system (e.g., Wagemans, 1997). Researchers have 

suggested that symmetry detection is  an automatic process 

that is rapid and robust to noise (Carmody, Nodine, & Locher, 

1977; Royer, 1981). Symmetry processing is also thought to 

be a fundamental component of perceptual organization, 

playing a crucial role in object representation (e.g., Driver, 

Baylis, & Rafal, 1992; Marshall & Halligan, 1994).  

   Second, symmetry processing is widespread across species. 

Dolphins, pigeons, bamboo sharks, and bees are all capable 

of learning to discriminate between symmetric and 

asymmetric objects (Delius & Nowak, 1982, Giurfa, 

Eichmann, & Menzel, 1996, Schluessel et al., 2014, von 

Fersen et al., 1992).  

   A third point is that sensitivity to symmetry is early to 

emerge in human infants. Human children are sensitive to 

symmetry from infancy, although vertical symmetry is 

typically more readily perceived than horizontal symmetry. 

For example, using a habituation-dishabituation paradigm, 

Fisher, Ferdinandsen, and Bornstein (1981) found that 4-

month-olds discriminated vertically symmetric single objects 

from those that were horizontally symmetric or asymmetric,  

but did not discriminate between horizontally symmetric and 

asymmetric objects. Other researchers have found 

converging results with older children (Bornstein and Stiles-

Davis, 1984; Chipman & Mendelson, 1979).  

   The findings reported above have all focused on within-

object symmetry. Taken together, they suggest that within-

object symmetry may be a low-level visual feature that is 

universally detected. However, symmetry is not confined to 

single objects—many scientific discoveries emerge from 

detecting symmetrical patterns between objects or events 

(e.g., Gross, 1996). We want to raise the possibility that 

discriminating within-object symmetry is quite different from 

detecting symmetry between two or more distinct objects; the 

latter requires symmetry to be construed as a relation while 

the former does not. Although previous research on 

symmetry processing has revealed much on how humans and 

non-human animals perceive symmetry within a single object 

(see Cattaneo, 2017; Giannouli, 2013; Treder, 2010; 

Wagemans, 1997 for reviews), comparatively little is known 

about the development of the ability to recognize and match 

symmetry between objects. This paper aims to shed light on 

the development of children’s insight of the between-object 

symmetry relation.  

Is Symmetry the Basis for Same/Different Detection? 

A secondary motivation for examining children’s ability to 

detect and match symmetry relations is to explore how 

symmetry pertains to other fundamental relational concepts, 

such as same and different.   

   If between-object symmetry is fluently processed, as a low-

level visual feature, even by very young children,  it is 

possible that symmetry detection may inflate children’s 

performance on same/different relational tasks. In an 

insightful analysis, Hochmann and colleagues (2017) 

discussed this possibility. They pointed out that in many 

same/different relational tasks, same pairs are also 

symmetrical (e.g., [O,O]), whereas different pairs are 

asymmetrical (e.g., [O,X]). Thus, participants could 

potentially pass such tasks by responding to symmetry.  

Walker and Gopnik (2017) reported evidence that runs 

against this contention. Using a relational causal paradigm 

(the “Blicket Detector”), they found that 18-to 30-month-olds 
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could learn to discriminate between different pairs (e.g., [A, 

B]) and same pairs (e.g., [Ͻ, C]). Note that, as discussed 

above, the different pair is asymmetrical and the same pair is 

symmetrical, leaving open the question of whether the 

children were relying on symmetry rather than sameness. 

However, when the objects were fused together to form either 

a single symmetrical object (made from two identical objects) 

or a single asymmetrical object (made from two different 

objects), the toddlers failed to learn the discrimination. These 

findings suggest that within-object symmetry is not the basis 

for the children’s performance on this same/different 

relational task. However, it does not address whether 

between-object symmetry detection influences 

same/different detection.  

Can Children Detect Symmetry Between Objects?  

One study that explicitly examined whether children can 

detect symmetry between objects was done by Kotovsky and 

Gentner (1996). They presented 4-, 6-, and 8-year-olds with 

a relational matching task in which children were given a 

standard composed of three figures and had to choose which 

of two alternatives was more like the standard. One of the 

alternatives matched the standard’s relation  and the other had 

the same objects in a nonmatching configuration (see Figure 

1). Within each trial, the two alternatives included the same 

objects. Children were given a random mixture of four trial 

types that differed across dimension and polarity.  

 

 
 

Figure 1: Schematics of stimuli used in Kotovsky and 

Gentner (1996).  

 

The 6-and 8-year-olds performed well on this task. In 

contrast, 4-year-olds performed above chance only on trials 

where the correct alternative and the standard shared a 

concrete relation—same dimension and same polarity 

(Figure 1 top left panel).  In these trials, the standard and the 

correct relational alternative share an overall shape (a low-

high-low or an inverted V pattern), so it is not clear whether 

the 4-year-olds were attending to the relational pattern that 

defines symmetry or were instead simply responding to the 

common low-high-low shape. 

The Kotovsky and Gentner (1996) study provides evidence 

that, at least by 6 years of age, children can perceive 

symmetry as a relation between objects, as well as make 

relational matches based on symmetry. Previous research has 

shown that children can make abstract same/different 

relational matches by 4 years of age without practice (e.g. 

Christie & Gentner, 2014), whereas the 4-year-olds in 

Kotovsky and Gentner’s study were only able to make 

concrete symmetry matches. Further, we cannot confidently 

extrapolate from Kotovsky and Gentner’s findings with 6- 

and 8-year-olds to the case of symmetric pairs like [Ͻ, C], 

because the figures in Kotovsky and Gentner’s study (1996) 

all involved three objects. Although these are  more complex 

than two-object figures, it could be that the larger patterns are 

easier to perceive.  

In the current work, we trace the trajectory of children’s 

ability to perceive and match symmetry in a task analogous 

to a classic same/different relational matching task in order to 

facilitate comparison of the developmental trajectories of 

these two relations. If we find that between-object symmetry 

matching is mastered earlier than same-different matching, 

this will leave open the possibility that same-different 

judgments could be drawing on symmetry perception. 

Current Studies 

The current work aims to (1) trace the development of human 

children’s ability to detect and use the symmetry relation; and 

(2) investigate the learning processes by which children gain 

insight into the symmetry relation. 

To do so, we created a Symmetry-Match-to-Sample task 

(SMTS) by analogy with the Relational-Match-to-Sample 

(RMTS) task (Christie & Gentner, 2014; Hochmann et al., 

2017; Premack, 1983, Thompson, Oden, & Boysen, 1997). 

The RMTS task assesses understanding of same and different 

relations. For example, to assess the ability to match the same 

relation, the RMTS triad is AA (standard), BB & CD 

(alternatives).  It is designed so that there is only one viable 

similarity match—the relational match based on the same 

relation.  Analogously, in the SMTS task, children are shown 

a symmetric standard and asked to choose which is more 

similar: another symmetric pair, or an asymmetric pair. The 

standard and alternatives did not share any common objects, 

so there was only one viable choice (See Figure 2a). 

Experiment 1 

Methods 

Participants One hundred 3-to 9-year-olds participated in 

this study: 19 3-year-olds (M = 42.8 months, SD = 2.3 

months, 11 females), 21 4-year-olds (M = 53.6 months, SD = 

3.4 months, 11 females), 20 5-year-olds (M = 68.4 months, 

SD = 1.6 months, 10 females), 20 6-year-olds (M = 80.4 

months, SD = 1.8 months, 11 females), and 20 8- to 9-year-

olds (M = 105.8 months, SD = 7.5 months, 9 females). An 

additional 11 children were tested but excluded from the final 

analysis, one child due to experimental error and ten children 
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due to failing to pass the catch trials described below (one 4-

year-old and nine 3-year-olds). The racial and economic 

composition of the sample reflected those of the local 

population (majority European-American, middle- and 

upper-middle-class). All children were recruited from the 

greater Chicago area and received a small gift for their 

participation. 

 

Materials and Procedure Children completed a Symmetry-

Match-to-Sample (SMTS) task. The SMTS included eight 

test trials and three catch trials. Each trial was composed of a 

standard card and two alternative match cards (see Figure 2). 

The child was  asked to choose the alternative that was most 

like the standard. In all test trials, the standard and correct 

match both depicted two identical shapes that were 

symmetric around the vertical axis; the incorrect match card 

showed two shapes that were in an asymmetric configuration 

(Figure 2a). Within a triad, each card was made up of unique 

shapes and colors. 

 

          a. Unique Objects                   b. Comparable Alternatives 

 

                                                                           

 

 

 

 

 

Figure 2: a. Sample test trial from Exp. 1: SMTS;  b. Sample  

test trial from Exp. 2: SMTS with Comparable Alternatives.  

 

After the test trials, there were three catch trials to 

determine whether the participants understood the task. 

These catch trials were literal similarity matches that did not 

require the child to judge relational similarity. For example, 

on one of the catch trials, children saw a red fish as the 

standard and had to choose between a blue fish (correct 

match) and a yellow cup. Children who failed any of the catch 

trials were not included in the analysis (n = 10).  
Children were tested individually by an experimenter in a 

quiet room in the child’s school or in a research laboratory. 

On each trial, the experimenter first presented the standard 

card and asked, “Do you see this one?” Then she placed the 

two alternative cards below the standard (as in Figure 1) and 

asked “Do you see these two? Which one of these two is more 

like this one?” Left/right placement of the alternatives was 

counterbalanced and no more than two subsequent trials had 

the correct match on the same side. Children were not given 

corrective feedback; only general encouragement (e.g., “You 

were so fast!”, “Alright!”) was provided.  

Results 

We measured the mean proportion of relational matches 

participants made in the eight test trials of the SMTS task. A 

one-way ANOVA revealed no difference in performance 

across the age groups, F(4,95) = 1.16, p = .33, η2 = 0.05. 

When we compared the means of each age group to chance 

(50%), we found that only the 8- to 9-year-olds (M = 0.69, 

SD = 0.27) selected relational matches significantly more 

than chance, t(19) = 3.17, p =.005. The younger groups 

scored at chance (6-year-olds [M = 0.57, SD = 0.29]; 5-year-

olds [M = 0.59, SD = 0.28]; 4-year-olds [M = 0.61, SD = 

0.26]; 3-year-  olds [M = 0.53, SD = 0.15]; all ps > .05]. 

Figure 3 shows the mean percentage of correct responses in 

each age group.  

To assess whether learning occurred across trials despite 

the absence of feedback, we compared the proportion of 

correct matches that children made in the first three trials with 

that of the last three. There were no differences between the 

 
Figure 3: Mean proportion of symmetrical matches selected by children in Experiment 1: SMTS and Experiment 2: SMTS 

with Comparable Alternatives. Error bars depict standard error. * p < .05; ** p < .01 
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two in any age group, all ps > .13. Thus, performance did not 

improve across the eight test trials.  

Discussion 

The SMTS task was surprisingly challenging for children. 

Children who were six years of age or younger performed at 

chance rates. Even the 8- to 9-year-olds, who chose the 

relational match at significantly above chance rates, were 

only correct 69% of the time. It is unlikely that the younger 

age groups’ poor performance was due to a failure to 

understand the task, since all participants were correct on the 

catch trials.  

Why did children perform so poorly on the SMTS task 

compared to the findings in Kotovsky and Gentner? 

Kotovsky and Gentner (1996) found that 6-and 8-year-olds, 

and even 4-year-olds to a lesser extent, were able to make 

relational matches based on between-object symmetry. We 

propose that a crucial difference between our Experiment 1 

and the Kotovsky and Gentner study was how much the 

experimental design scaffolded children’s detection of the 

target relation. 

Research has shown that an effective way to promote 

relational reasoning is by decreasing the salience of 

individual objects (Gentner & Rattermann, 1991; Goldstone 

& Son, 2005; Kaminski, Sloutsky, & Heckler, 2008). In 

similarity tasks, young children and novices tend to focus on 

objects rather than relations, and this can impede their 

relational processing (Gentner, 1988; Gentner & Toupin, 

1986; Richland, Morrison, & Holyoak, 2006). In many 

studies, object salience has been reduced by using simple and 

uniform objects (Gentner & Rattermann, 1981; Mix, 2008). 

Kotovsky and Gentner (1996) further reduced object salience 

by presenting children with triads in which the two 

alternatives shared the same objects and differed only in the 

relation between the objects.  

We hypothesize that using comparable alternatives 

promoted children’s symmetry matching for two reasons: (1) 

using the same objects in both alternatives invites 

spontaneous comparison between them, and this may call 

attention to the key relational difference—that one is 

symmetric and the other is not; and (2) using the same objects 

in the two alternative pairs allows the child to discount object 

matches in making their choice and focus instead on any 

relations they may have perceived. In Experiment 2, we test 

this hypothesis by presenting children with a version of the 

SMTS that utilized comparable alternatives. We focused on 

the two younger age groups—the 3-and 4-year-olds.   

Experiment 2: Comparable Alternatives 

Methods 

Participants Twenty 3-year-olds (M = 44.7 months, SD = 1.8 

months, 9 females) and twenty 4-year-olds (M = 53.1 months, 

SD = 3.2 months, 11 females) were recruited for this 

experiment using the same methods as Experiment 1. Six 

additional children (four 3-year-olds) participated in the 

study but were excluded from analysis due to failing at least 

one of the catch trials. 

 

Materials and Procedure As in Experiment 1, we created a 

relational matching task based on the symmetry relation. 

However, we modified the alternatives so that the two 

alternatives in a given trial consisted of the same objects, one 

in a symmetric configuration and the other in a non-

symmetric configuration (see Figure 2b). The catch trials and 

procedure were as in Experiment 1.  

Results 

The mean proportions of relational matches are shown in 

Figure 3. Two-tailed one sample t-tests revealed that both 3-

year-olds (M = 0.62, SD = 0.18) and 4-year-olds (M = 0.78, 

SD = 0.20) performed significantly better than chance, t(19) 

= 2.97, p = .008, and t(19) = 6.24, p < .001, respectively. 

However, the 4-year-olds made a significantly higher 

proportion of relational matches than the 3-year-olds, t(38) = 

2.63, p = .01. Children in both age groups performed equally 

well on the first three and last three trials ( all ps > .05). 

We next compared the performances of the 3-and 4-year-

olds in the current experiment (Comparable Alternatives 

condition) and those in Experiment 1. A two-way ANOVA 

revealed a significant main effect of age (3-year-olds vs. 4-

year-olds, F(1,76) = 7.19, p = .009) and a significant main 

effect of condition (Experiment 1 vs. Experiment 2, F(1,76) 

= 7.88, p = .006). The interaction between age and condition 

was not significant. In both experiments, 4-year-olds 

performed better than 3-year-olds. Both age groups 

performed better in Experiment 2 than Experiment 1.  

Discussion 

Consistent with our hypothesis, 3-and 4-year-olds performed 

well on the SMTS when presented with alternatives that were 

composed of the same objects, but in different relational 

configurations. Both age groups performed significantly 

better in Experiment 2 than in Experiment 1. In addition, both 

3-and 4-year-olds chose the symmetric match at above 

chance rates, whereas only the 8-and 9-year-olds in 

Experiment 1 were able to do so. 

The two alternatives in Experiment 2 were extremely 

similar— the same object was used to form the object pairs 

on both alternative cards, with the only difference being the 

symmetric or asymmetric configuration between the objects. 

As noted above, we hypothesized that this would have two 

advantages: first, common objects can invite comparison 

between the alternatives, and this may lead to noticing that 

the relational patterns differ; and, second, when the same 

objects are used in both alternatives, children should be less 

likely to rely on object matches to discriminate between 

them, thus inviting attention to the previously less salient 

relational information (e.g., Mix 2008).    

Consistent with this prediction, children performed 

markedly better in Experiment 2 than in Experiment 1.  When 

the relation depicted by each alternative card was more 

salient, the process of detecting and matching these relations 
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(comparison and contrast) seemed to be more fluent. Thus, 3-

and 4-year-olds who previously were not able to pass the 

SMTS were able to do so when presented with comparable 

alternatives.    

General Discussion 

Across two experiments, we explored children’s ability to 

perceive and match symmetry between two objects using a 

Symmetry-Match-to-Sample (SMTS) task. In Experiment 1, 

we found a long developmental course for between-object 

symmetry matching:  children did not pass the task until after 

6 years of age.  

   In Experiment 2, we explored the method of Comparable 

Alternatives in facilitating children’s relational insight. We 

presented children with a matching task in which the two 

alternatives were composed of the same objects. With 

Comparable Alternatives, even 3-and 4-year-olds chose the 

symmetric match at significantly above chance rates. We 

propose that there were two reasons for this improvement. 

First, the common objects promoted online comparison 

between the two alternatives, setting the stage for children to 

discover the crucial difference between them—whether or 

not the two objects in each alternative were symmetrical to 

each other. Second, using common objects in the two 

alternatives signaled to the children that object similarity 

could not be the basis for matching, thus allowing them to 

shift their attention to relations.  

Symmetry does not inform Same/Different Detection 

The present findings provide evidence against the claim 

that symmetry detection informs same/different detection. 

Researchers have consistently found that 4-and 5-year-olds 

can pass the standard Relational-Match-to-Sample (RMTS; 

with unique objects) task without any prior training, 

corrective feedback, or linguistic assistance   (Christie & 

Gentner, 2014; Hochmann et al., 2017, Hoyos, Shao, & 

Gentner, 2016).  However, children do not pass a similar 

Symmetry-Match-to-Sample (SMTS) task (Experiment 1) 

until after 6 years of age. Taken together, these findings 

suggest that children are not passing the RMTS by 

responding to symmetry. In fact, between-object symmetry 

matching appears to emerge later than same/different 

matching. 

Bootstrapping relational insight  

Because of the importance of comparison in acquiring 

relational insight, a number of techniques have been explored 

for promoting relational comparison.  One such technique is  

Progressive Alignment—the phenomenon whereby carrying 

out relatively concrete and easy-to-align matches promotes 

subsequent ability to match less surface-similar, more 

challenging pairs that instantiate the same relation (e.g., 

Gentner, Loewenstein, & Hung, 2007; Haryu, Imai & Okada, 

Kotovsky & Gentner, 1996; Loewenstein & Gentner, 2001).  

In Kotovsky and Gentner’s (1996) initial study, 4-year-olds 

only succeeded on trials that involved concrete matches, 

suggesting that they did not have an abstract representation 

of the symmetry relation. In a follow-up study, Kotovsky and 

Gentner (1996) presented a new group of 4-year-olds with the 

same trials as before, but in an order designed to promote 

progressive alignment. Children were first shown a block of 

concrete (within-dimension) trials and then progressed on to 

more abstract (across-dimension) trials. The 4-year-olds 

showed a gain in performance on the abstract trials.  

The technique used in Experiment 2—Comparable 

Alternatives—is another way to scaffold children’s relational 

insight. Here, the two alternatives share the same objects but 

instantiate different relations, only one of which matches the 

standard. This design not only promotes comparison between 

the two alternatives, potentially highlighting the relational 

difference, but also de-emphasizes the role of objects, 

signaling that objects are not the basis for matching.  

To our knowledge, the current study is the first to explicitly 

investigate whether the use of comparable alternatives is a 

way to promote relational insight. Prior studies have used 

alternatives that share common objects in relational matching 

tasks, but have not investigated whether this procedure 

promotes relational insight than using standard dissimilar 

alternatives (e.g., Kotovsky & Gentner, 1996; Mix, 2008). 

We are currently investigating whether presenting children 

with relatively easy comparable alternatives trials could serve 

to bootstrap later performance on the more abstract SMTS—

analogous to progressive alignment.  

Within-Object Versus Between-Object Symmetry 

   In this paper, we focused on a relatively overlooked aspect  

of children’s symmetry development—the ability to detect 

and match between-object symmetry. Our findings contrast 

with a large body of research on within-object symmetry 

detection that has viewed symmetry as a low-level visual 

feature. We found evidence suggesting that between-object 

symmetry—at least for 3- and 4-year-olds—can be perceived 

and processed as a relation. As with other relations, children’s 

initial relational representations may be quite concrete 

(Gentner, 2010); but further experience—notably experience 

in comparing examples (and nonexamples) of the relation—

can lead to more abstract, portable representations.  

   This leads to the question of whether the representations 

and mechanisms that support processing within-object 

symmetry are the same as those that support processing  

between-object symmetry.  For example as noted above, 

there is evidence that many animals can detect within-object 

symmetry. Can the same species detect between-object 

symmetry, and can they construe symmetry as an abstract 

relation? 

Although we do not have the answers to these questions, 

we propose that researchers may take inspiration from the 

existing rich literature on same/different processing. Premack 

(1983), among others, has proposed species graded 

differences in relational reasoning ability (see also Gentner, 

2003; 2010; and Penn, Povinelli & Holyoak, 2008). A 

substantial body of empirical findings supports this proposal.  

For example, there are more species that can learn to 
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discriminate between same and different pairs (e.g., rhesus 

macaques [Katz, Wright, & Bachevalier, 1984] than species 

that can learn to make relational matches based on 

same/different pairs, hence passing the Relational-Match-to-

Sample task (e.g., chimpanzees [Premack, 1983; Thompson, 

Oden, & Boysen, 1997]; and hooded crows [Smirnova, 

Zorina, Obozova, & Wasserman, 2015]). Does a similar 

distinction hold for symmetry? If so, we would expect to see 

a gradient between species that can detect symmetry and 

those that can pass a Symmetry-Match-to-Sample task, as 

investigated here.  

Conclusions 

The present work provides an initial exploration of the 

development of insight into the symmetry relation. Using a 

Symmetry-Match-to Sample task, we found that the ability to 

process relational matches based on symmetry emerges 

relatively late in development. However, as with other 

relations, insight into the symmetry relation can be scaffolded 

through comparison processes. The present work also 

explores a novel way of promoting relational insight—using 

comparable alternatives that share objects but not relations. 

These findings underline the importance of comparison in 

supporting children’s understanding of symmetry and other 

relations.   
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Abstract
Honorifics in Korean appear as verbal inflections and have
been considered as markers of politeness. This study inves-
tigates the pragmatic effects of honorifics, and suggests that
honorifics can contribute to the semantic interpretation of verb
phrases in complex ways. Native Korean speakers reported
different inferred meanings of “did very well” and “did very
poorly” based on the normative or non-normative honorific
forms. We found significant effects of non-normative hon-
orifics in positive assessments: over-polite honorifics brought
negative interpretations. This suggests that pragmatic listen-
ers interpret utterances based on the interaction between lit-
eral meanings, honorifics, and the normativity of the hon-
orifics within a relationship context, to obtain an estimate of
the speaker’s intended meaning. This is inconsistent with the
previous explanations of honorific usage as discernment or vo-
litional politeness. We suggest that non-literal meaning infer-
ences reflect listeners treating the honorifics as signals to po-
tential communicative goals.
Keywords: pragmatics; semantics; politeness; honorifics;
pragmatic inference; Korean

Introduction
Languages have many ways of expressing politeness. Some
languages explicitly mark politeness with honorifics: gram-
maticalized or lexicalized forms for politeness. Honorifics are
prevalent in languages such as Japanese, Javanese, Hindi, and
the subject of this investigation: Korean. Because appropriate
honorifics depend on the speaker-listener relationship, they
primarily function as a reflection of social norms (discern-
ment politeness). However, speakers may strategically devi-
ate from the normative form in certain contexts, such as when
making requests (volitional politeness, Hill et al., 1986).

In this paper, we investigate whether such deviations inte-
grate more generally into the pragmatic inference process that
listeners undertake when interpreting a message. Specifically,
we look at whether a speaker’s choice of honorific forms in-
fluences how a listener assesses the speaker’s true opinion.
We carry out judgment experiments to compile data on Ko-
rean listeners’ interpretations. Our result shows that the in-
ferred meaning of the message changes with honorifics in a
complex manner that cannot be adequately explained by ei-
ther strictly normative or strictly strategic use of honorifics.
Instead, honorifics could be used as pragmatic signals to the
meaning depending on the context.

Overall, this suggests that despite grammaticalized forms
seeming to be low in semantic content, they can still signif-
icantly influence the inferred meaning of the message. We
argue that a full understanding of honorific use will require
their incorporation into frameworks of pragmatic inference,
such as the Rational Speech Act framework (RSA, Frank &
Goodman, 2012; Goodman & Stuhlmüller, 2013).

Table 1: Honorific inflections of the past tense of “do” (ha-)
in Korean. Honorification decreases from top to bottom and
left to right. -ess is past tense suffix.

Speech Level Honorific Suffix -sy
Present Absent

DEF (deferential) ha-sy-ess-supnita ha-ess-supnita
POL (polite) ha-sy-ess-e-yo ha-ess-e-yo
INT (intimate) ha-sy-ess-e ha-ess-e
PLN (plain) ha-sy-ess-ta ha-ess-ta

Honorifics in Korean
Honorifics in Korean have two main realizations: honorific
lexical items and honorific inflections. This study focuses
on verbal honorific inflections, specifically speech levels and
the -sy suffix. Table 1 demonstrates some of the honorific
inflections that are available for the verb “do” (ha-). The
speech level appears at the end of the verb phrase, and re-
flects the relationship between the speaker and the addressee.
Four levels presented in Table 1 are tested in this study, and
their perceived honorification decreases from top to bottom.
The presence of honorific suffix -sy increases the honorifica-
tion toward a subject of a sentence or a referent of the verb.
This study examines cases where the subject of the sentence is
the addressee, thus both the suffix and the speech level refer
toward the listener. Honorific inflections, therefore, can be
generally defined as stylistic features reflecting the speaker
and listener’s position within a social hierarchy, not the truth-
conditional meanings (Sohn, 1999).

In colloquial Korean, speakers must choose some level of
honorific inflection to form valid verb phrases; there is no
default form or level. In most cases, the appropriate hon-
orifics can be determined by the speaker-listener relationship,
as honorifics were mentioned as relationship-acknowledging
devices (Matsumoto, 1988). Honorifics are grammaticalized
and conventionalized in relation to the speaker-listener re-
lationship. Speakers using appropriate honorific forms as-
signed by the relationship context will therefore stay aligned
with the normative use of honorifics. This type of honorific
use can be summarized as discernment politeness (Hill et al.,
1986; Ide, 1989; Koo, 1995).

Besides the normative use of honorifics, they can also be
used more strategically. Politeness Theory (Brown & Levin-
son, 1987) has explained strategic honorific use through neg-
ative politeness, a politeness strategy for minimizing threats
to the listener’s negative face—the desire not to be imposed

2797



upon.1 This form of politeness is distinguished from posi-
tive politeness, a strategy used to minimize threats to positive
face—the desire to be liked or approved. In the Politeness
Theory perspective, speakers use honorifics largely to miti-
gate the potential face threats existing in the utterance. This
type of honorific use can be summarized as volitional polite-
ness (Hill et al., 1986; Ide, 1989; Koo, 1995)

These explanations for honorifics’ uses are well-supported,
but such general politeness strategies may represent only a
subset of how honorifics are actually used. We argue that de-
viations from normative politeness levels can function as a
pragmatic signal to the listener about the intended meaning
of an utterance. We suggest that honorific use ties to a more
general pragmatic behavior than previously described, pro-
viding pragmatic information beyond mitigating face-threats
and potentially signaling a speaker’s communicative goals.

Hypotheses
Based on the above discussion, we consider three hypotheses
for the potential effects of honorifics on pragmatic inference.
These span from a null pragmatic effect (if honorifics mainly
express the speaker-listener relationship) to a monotonic rela-
tionship between inferred meaning and levels of honorifics (if
honorifics mainly manage face-threat) to a complex relation-
ship between honorifics and inferred meaning (if honorifics
provide cues about the speaker’s communicative goals).

To test this, we examined listeners’ inferences of values for
scalars: speakers’ statements that a listener had done “well”
or “poorly” on a test. We first described the speaker-listener
relationship, then provided assessment sentences with eight
honorific inflections from Table 1, and asked participants to
estimate the exam score based on the assessment. More de-
tails are in the next section, but our hypotheses and the pre-
dictions they make follow.

Hypothesis 1: Honorifics are primarily about discern-
ment politeness. Changes in levels of honorifics will
have no significant effects on pragmatic interpreta-
tion of scalars.

Under this hypothesis, the speaker-listener relationship de-
termines the appropriate honorifics, and forms that deviate
from the normative standard would be similar to errors of
subject-verb agreement—they could affect the perceived ac-
ceptability of a sentence, but not the meaning. If Hypothesis 1
is correct, we should not see differences in the listener’s inter-
pretations depending on the honorific forms used within the
relationship context. This hypothesis is consistent with tradi-
tional analyses of the Korean honorifics, as in Sohn (1999).

Hypothesis 2: Honorifics primarily serve to mitigate
face threat through volitional politeness. As the ut-
terance becomes more honorific, inferred values of
scalars will be monotonically decreased.

1Despite the term, negative politeness is still a way of being po-
lite; it is the “do no harm” counterpart to the “do good” sense of
positive politeness.

Under this hypothesis, speakers would use higher levels
of honorifics to offset the negativity of an honest assess-
ment. Therefore, we can expect to see a monotonic decrease
in listeners’ inferred values of scalars as the honorific level
increases, with the “poorly” condition possibly showing a
larger effect due to the more explicit face-threatening assess-
ment. Being over-polite or being under-polite (relative to nor-
mative forms) should show opposite effects on the inferred
meaning. This hypothesis is similar to the threat-management
account of Politeness Theory (Brown & Levinson, 1987),
or the social utility addition (Yoon et al., 2016) to the RSA
framework explaining listeners’ discounting of compliments
when they thought the speaker was being polite.

Hypothesis 3: Honorifics, in addition to their discern-
ment or volitional use, also can signal cues that influence
the listener’s interpretations in complex ways. Effects of
honorific levels will differ by the relationship context
and the literal meanings of the utterance.

Under this hypothesis, there will be a significant but non-
monotonic effect of honorific levels. Unlike Hypothesis 2,
here we do not necessarily expect under- versus over-polite
messages (again, relative to normative forms) to have dif-
ferent effects on the listener’s inference. Instead, deviations
from normative honorifics could signal that the speaker is
indicating different meanings or goals, for example, being
hyperbolic or sarcastic. This hypothesis is similar to the
QUD (Question Under Discussion) addition (Kao & Good-
man, 2015) to the RSA explaining ironic interpretations.2

Experiment 1: Literal interpretations
Method
Design The purpose of Experiment 1 was to establish the lit-
eral baseline interpretations of the phrases “did very well”
and “did very poorly”. Each question in the experiment
started with a vignette describing a conversation and a re-
lationship context: a speaker is asked to tell a listener how
the listener did on an exam, when the listener does not know
of his own exam score. The speaker’s assessments of the
listener’s exam score were then presented. Each participant
rated 8 assessment sentences: 2 valences (positive, negative)
in 4 relationship settings. Participants were asked to guess the
listener’s exam score in a number between 0 and 100.

Relationship settings were explicitly stated. In the Friend-
Friend setting, the speaker and the listener were defined
as friends who were in the same year at college. In the
Upperclass-Underclass setting, the speaker was a student se-
nior than the listener. In the Professor-Student setting, the
speaker was a professor and the listener a student. In the
Underclass-Upperclass setting, the speaker was a student ju-
nior than the listener. These four settings were chosen to
have normative honorifics that allowed for a range of under-

2More details on the hypotheses can be found in the Open Sci-
ence Foundation preregistration page: http://osf.io/s8nfu/reg
ister/5771ca429ad5a1020de2872e.
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and over-polite forms by varying the honorific forms. In all
settings, both the speaker and the listener had male Korean
names to keep gender differences from influencing the result.
Stimuli Participants saw the speaker’s description of the lis-
tener’s score presented as indirect quotes (i.e., [Speaker] said
[Listener] did very well/poorly on the exam), so that partic-
ipants would not see what honorific inflections the speaker
used and thus would respond with their baseline inference in
the absence of honorifics.
Participants Experiment 1 was posted on the online crowd-
sourcing website Dooit Survey (http://www.dooit.co.kr)
based in South Korea. A total of 67 adult native Korean
speakers completed the experiment for a small cash-value re-
ward.

Result
Baseline scores In Experiment 1, literal interpretations of
positive and negative phrases “did very well” and “did very
poorly” were measured within each relationship setting. The
mean of the scores in each condition were then treated as
baseline scores representing literal interpretations in further
analyses, since they represented the participants’ estimates in
the absence of honorifics. Baseline scores in each setting and
condition are presented by horizontal dashed line in Figure
1. Participants reported mean baseline scores of 85.60 for the
positive and 47.92 for the negative phrases. There was no
significant differences according to t-tests between the rela-
tionship settings within the positive or negative valence, sug-
gesting that participants viewed all four relationship settings
having similar expected literal meanings.

Experiment 2: Inferences from honorific use
Design Experiment 2 followed the same basic idea of Exper-
iment 1, but participants were asked to infer scores based on
direct quotes, with honorific inflections. Deviations between
the literal baselines from Experiment 1 and the inferences in
Experiment 2 should therefore reflect pragmatic interpreta-
tions guided by the honorifics. Each participant rated a total
of 16 sentences: 2 valences (positive, negative), each with 8
honorific inflections (4 speech levels× -sy present/ absent), in
one of the 4 relationship settings (Friend-Friend, Upperclass-
Underclass, Professor-Student, Underclass-Upperclass). Af-
ter presenting the relationship context and the speaker’s as-
sessment, participants were again asked to infer the listeners
exam score with a number between 0 and 100.
Stimuli Each assessment sentence was presented as a direct
quote (i.e., [Speaker] said the following sentence: “[Address
of the listener] did very well.”). The presence of a direct quote
meant that the sentence included one of the eight honorific
inflections from Table 1, and therefore could influence par-
ticipants’ inferences accordingly. A sample vocative address
of the listener by the speaker was included in these sentences
to reinforce the normative honorifics for each relationship. In
the Friend-Friend and Upperclass-Underclass setting, where
the speaker was in an equal or higher position to the listener,
the speaker addressed the listener with a plain “you”. In the

Underclass-Upperclass setting, the honorific addressee term
senbay-nim was used. In the Professor-Student setting, no ad-
dressee term was presented, because the speaker is on a much
higher social rank than the listener and could in principle use
any of the honorific inflections. Below shows the assessment
sentences given in the Friend-Friend setting, with -sy and the
deferential speech level3.

neo cham cal ha-sy-ess-supnita
You very well do.AH.PST.DEF
Positive: “You did very well.”

neo cham mos ha-sy-ess-supnita
You very poorly do.AH.PST.DEF
Negative: “You did very poorly.”

Participants Experiment 2 was also posted on Dooit survey.
Unlike Experiment 1, we asked each participant to answer for
only one relationship type, to avoid any confusion about the
speaker-listener relationships. 81 adult Korean participants
were collected in total, with 20 participants in three settings
and 21 participants in the Underclass-Upperclass setting. The
participants in Experiment 1 and 2 were recruited separately.

Results
Baseline scores vs. Normative scores The baseline scores
from Experiment 1 were then compared against the “norma-
tive” scores from Experiment 2. These normative scores are
the mean of the inferred scores in each setting obtained from
sentences with normative honorific forms established for that
setting. Normative scores are presented by black points in
Figure 1. For example, in the Friend-Friend setting, norma-
tive scores were calculated from the scores reported on sen-
tences with intimate or plain speech level without an hon-
orific suffix -sy (INT, PLN, black triangles in Figure 1). The
Professor-Student setting did not include a specific addressee
term to establish normative forms, because of the high social
position the speaker was in. To calculate the baseline scores,
we considered deferential and polite speech levels used as
teacher’s classroom register (Sohn, 1999). In Figure 1, nor-
mative forms (black points) aligned closely to the baseline
scores (dashed line), showing that participants treated utter-
ances with normative honorific forms similarly to the literal
interpretations. This is confirmed by the regression below.
Baseline scores vs. Non-normative scores Scores reported
on non-normative honorific forms are presented by the red
points in Figure 1. In the Friend-Friend setting, participants
reported the baseline score of 82.74 for the positive condi-
tion and 46.68 for the negative. When positive assessments
appeared with non-normative -sy (red circles), regardless of
the following speech levels, participants reported scores far
lower than the baseline score (sy+DEF: 54.25, −28.49 score
difference from the baseline score; sy+POL: 50.10, −32.64;
sy+INT: 46.00, −36.74; sy+PLN: 56.25, −26.49)4. This is

3AH: Addressee honorification, PST: Past tense suffix, DEF:
Deferential speech level

4We test for significance on these values in the following regres-
sion model.

2799



● ● ●
●

● ● ● ●

●
●

● ●

● ●
● ●

● ● ● ●

● ● ●
●

● ● ● ●

● ●
● ●

positive negative
friend−

friend
upper−

under
prof−

student
under−

upper

def pol int pln def pol int pln

20

40

60

80

20

40

60

80

20

40

60

80

20

40

60

80

speech level

in
fe

rr
ed

 s
co

re

 ● ●
non−normative
−sy present

non−normative
−sy absent

normative
−sy present

normative
−sy absent

Figure 1: Participants inferred exam scores under valence (positive, negative), honorific suffix -sy (-sy present, -sy absent), and
speech level (DEF, POL, INT, PLN) conditions in each relationship settings (friend-friend, upper-under, prof-student, under-
upper). Circles and triangles indicate the -sy suffix being present or absent. The colors show the normativity of the forms,
red being non-normative and black being normative. The dashed line in each condition shows baseline scores (from Expt 1).
Vertical lines in each score point show 95% confidence interval calculated from 5000 bootstrap samples.

our first piece of evidence that over-polite forms can induce
large pragmatic effects that substantially reduce the estimates
of the test scores.

In the Upperclass-Underclass setting (Upperclass speaker),
participants reported the baseline score of 86.49 for the posi-
tive condition and 49.05 for the negative. Normative forms
were defined as intimate or plaivel without the -sy suffix
(INT, PLN, black triangles). When positive utterances ap-
peared with the -sy suffix (red circles), participants reported
scores below the baseline score across the speech levels
(sy+DEF: 61.05, −25.44; sy+POL: 58.65, −27.84; sy+INT:
59.40, −27.09; sy+PLN: 62.65, −23.84). Again, over-polite
forms caused participants’ pragmatic inferences to substan-
tially drop.

Professor-Student setting showed the similar result. The
baseline score was 87.91 for the positive condition and 49.17
for the negative. Normative forms in this setting were the
deferential or polite speech level without the -sy suffix (DEF,
POL, black triangles). Participants reported lower scores

when the professor’s positive feedback were given with non-
normative -sy (sy+DEF: 75.75, −12.60; sy+POL: 66.50,
−21.41; sy+INT: 53.25, −34.66; sy+PLN: 59.00, −28.91).
Under-polite forms (the intimate/plain speech levels) do not
show any increase over the normative forms, as Hypothesis 2
would have predicted.

In the Underclass-Upperclass setting, the baseline score
was 85.26 for the positive condition and 46.76 for the neg-
ative. The normative forms were defined as deferential or po-
lite speech level with the -sy suffix (sy+DEF, sy+POL, black
circles). This relationship setting showed the least amount
of score variance among all settings. One explanation could
be that non-normative forms in this setting produced outright
socially unacceptable sentences. Not coincidentally, this is
the one setting where the speaker is of a lower social stand-
ing than the listener. Since a lower-standing speaker speaking
in under-polite forms violates social norms in a great degree,
participants might have been confused with those sentences
and have failed to properly reason on the meaning.
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Table 2: Estimated effect sizes in the linear regression
with random by-participant intercepts. Default values for
Valence, Speech Level and Setting are negative, deferential
and Underclass-Upperclass, respectively.

β

(Intercept) -0.29
Valence

Positive 3.15
Speech Level

Intimate -4.40
Plain -4.10
Polite 0.77

-sy suffix
Present -0.63

Setting
Friend-Friend -1.14
Professor-Student -13.39 ***
Upper-Under 3.12

Valence × Speech Level
Positive × Intimate 0.27
Positive × Plain 0.12
Positive × Polite -2.30

Valence × -sy suffix
positive × -sy present -15.88 ***

Valence × Setting
Positive × Friend-Friend -10.46 **
Positive × Professor-Student 6.67
Positive × Upper-Under -9.62 **

∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05

Overall, the presence of the over-polite and non-normative
honorific -sy suffix when talking to an equal or lower-standing
listener signaled participants that the positive feedback could
not be taken literally, and participants substantially reduced
their estimates of the test scores. This is strongly at odds
with Hypothesis 1. At the same time, non-normative scores
(red points) were mostly at or below the normative scores
(black points) in the positive valence cases, regardless of the
non-normative forms being over- or under-polite. This argues
against both Hypothesis 1 and Hypothesis 2.

Linear mixed-effect model

We fit a linear mixed-effect model predicting the score dif-
ferences (inferential score from Expt 2 minus the baseline
score from Expt 1) with random by-participant intercepts.
The fixed-effect variables were Valence × Speech level, Va-
lence× -sy suffix, Valence× Setting. Regression coefficients
(β) are reported in Table 2. The default values were set to
the scores obtained in the Under-Upper setting, from nega-
tive sentences with no -sy suffix and the deferential speech
level.

Starting from the top of Table 2, the intercept term con-
firmed that there were no significant differences between in-

ferred scores and baseline scores in the default setting of
the model. Among the main effects of the Setting, only
the Professor-Student setting showed significantly lowered
scores. This was because the default condition (no -sy suffix,
deferential speech level) of the model was a normative form
in the setting, thus brought literal (thus, more negative) mean-
ing. Overall, the main effects were largely small and non-
significant, with the exception of one setting. This confirmed
our initial anticipation that honorifics’ meanings should be
considered relative to the context, including the literal mean-
ings of the message and the speaker-listener relationship.

Moving onto the interaction terms, Valence × -sy suf-
fix had a large effect, lowering the inferred scores by 15.88
points from the baseline (p < 0.001). This shows that
positive sentences with the -sy suffix in the three settings
where the speaker was at least equal in social standing to
the listener (Friend-Friend, Professor-Student, Upperclass-
Underclass) showed lower scores than in the one where the
speaker was of higher social standing. Those three settings
shared the normativity context that the -sy suffix was an over-
polite form, and the inferred scores dropped as a result.

Valence × Setting term also reflected the result shown in
Figure 1. Friend-Friend and Upperclass-Underclass showed
lowered scores in positive sentences with deferential speech
level (this was default setting of the model, which was a non-
normative form in the relationship). The Professor-Student
setting did not show significant differences from Underclass-
Upperclass setting, again because the deferential speech level
was the normative form in the relationship. This showed that
the Friend-Friend and Upperclass-Underclass setting behaved
similarly, as higher honorifics became non-normative and
over-polite forms. We could see that Professor-Student and
Underclass-Upperclass behaved similarly as well. These two
settings shared deferential and polite speech levels (higher
honorifics) as normative forms.

In both the numeric values in Figure 1 and the regression
coefficients in Table 2, we see a few patterns. First, partici-
pants’ inferred scores varied substantially based on the hon-
orifics, contrary to Hypothesis 1, which considered the hon-
orifics to primarily serve as an agreement to the relationship.
This suggests that listeners assume that speakers have made
volitional choices in their honorific inflections when they de-
viate from normativity. Second, looking at the regression
model, we see strong evidence of an effect of the -sy suffix
in non-normative context, generally lowering the score dif-
ferences (inferred score − baseline score). But there is no
consistent effect with the speech levels. This runs counter to
the expectation of Hypothesis 2; there is no monotonic rela-
tionship between the honorific levels and the inferred scores.
Instead, we see a complex pattern that is driven largely by the
normativity of the forms, rather than their relative politeness.
In the next section, we discuss the implications of these re-
sults and sketch a possible explanation for the phenomenon.
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Discussion
The experiment results showed clear differences on listen-
ers’ interpretations, depending on the honorific inflections,
the speaker-listener relationship, and the valence of the verb
phrases. Contrary to Hypothesis 1, we saw significant ef-
fects of honorifics on the pragmatically-inferred values even
within a given relationship setting. Contrary to Hypothesis 2,
we did not see a monotonic effect of politeness levels; devi-
ation from the normative form generally decreased (or main-
tained) the inferred value of positive verb phrases regardless
of whether the non-normative form was more or less polite
than expected. Furthermore, in the negative valence, norma-
tive and non-normative forms showed no significant differ-
ence in their interpretation. These results suggest that while
there appears to be a volitional component to the speaker’s
choice of honorific forms, the choice extends beyond straight-
forward face-threat mitigation.

Hypothesis 3 therefore appears to be the best fit to our data,
though in some sense it reflects a less specific explanation at
present. How can we further expand our hypothesis to explain
the observed variance in pragmatic inferences? A promising
direction is to build on the Rational Speech Act (RSA, Frank
& Goodman, 2012; Goodman & Stuhlmüller, 2013) frame-
work. The core idea of the RSA is that speakers and listeners
each know that the other is trying to communicate in an ef-
ficient, rather than a literal, manner. The listener considers
the speaker’s choice of utterance as a rational decision over
the set of available alternatives. The speaker prefers utter-
ances that maximize the expected conversational utility (such
as maximizing the listener’s probability of inferring the in-
tended message). The listener then uses a recursive inference
process to determine the most likely meaning.

Two particular extensions of RSA inference may be rele-
vant for unravelling the inferences that result from honorifics.
Yoon et al. (2016) proposed that the speaker not only has a de-
sire to provide epistemic utility in their utterance (giving the
listener an accurate representation of the world) but also so-
cial utility (such as minimizing listener’s face-threats). Hon-
orifics, especially in the Politeness Theory (Brown & Levin-
son, 1987) framework, can supply social utility alongside the
epistemic utility of the message itself. This fits with, for
instance, speakers’ selective use of honorifics when making
requests. In our data, however, we see that the same hon-
orific forms lead to substantially different inferences based
on the setting. Even if we view social utility relative to the
speaker-listener relationship, with over-polite forms adding
social utility and under-polite forms reducing it, this would
still not be sufficient to explain the variation in Figure 1.

By combining the idea of social utility with a goal- or
QUD-based approach (Kao & Goodman, 2015) in RSA,
though, we may be able to capture the pragmatic effects of
honorifics. A Goal/QUD framework says that when a speaker
produces a message that seems to violate the listener’s expec-
tations, the listener may instead interpret the message with a
different goal in mind. For example, if a speaker complains

that they paid an unbelievably high cost for some object, the
listener may infer that the speaker’s epistemic utility is not
coming from conveying the literal cost but rather an affective
interpretation of the cost (i.e., hyperbole).

Building on these extensions to the RSA framework, we
suggest that Korean honorifics may be modelled as an inter-
action between the relationship context r, shared knowledge
of normative honorifics k, an intended meaning s, and a goal
g. The speaker’s choice of utterance can be broken down into
the semantic content of the word stem c and the honorific in-
flections m:

Pspeaker(c,m|s,r,k,g) (1)

This expresses the idea that a speaker chooses c and m
jointly to deliver their intended meaning s, conditioned on the
relationship context r and normativity k for the honorifics, as
well as their communicative goal or QUD g. If we assume
that the listener has no uncertainty about the relationship r or
normativity k, we can express the listener’s inference process
as Bayesian inference, marginalized over the potential goals
of the speaker:5

Plistener(s|c,m,r,k) ∝ ∑
g

Pspeaker(c,m|s,r,k,g)P(s)P(g) (2)

This joint distribution over c and m gives the model the
flexibility to capture the complex patterns in our results in a
way that a basic social utility term alone cannot. Being overly
polite may come from the speaker signalling their ironic in-
tentions by violating normative expectations of the honorific
inflections. When such a deviation from the norms is slight,
or consistent with a goal of mitigating face-threat, the listener
merely tweaks their interpretation. When the deviation from
the honorific norms is large (as when a student is overly polite
to their friend, or the professor talks to the student with the
honorific -sy suffix), the listener assumes the speaker’s goal
has changed. In this way, honorifics signal cues to the mean-
ing similar to the inferred product prices in Kao et al. (2014);
a small deviation from expectations retains an approximately
literal interpretation, while a large deviation triggers an ironic
interpretation. This argument could be verified by a follow-
up experiment measuring inferred goals.

Conclusion
We have examined honorific inflections and their effect on
pragmatic inference. Contrary to discernment or volitional
politeness accounts, we find complex interactions between
honorifics and a listener’s pragmatic interpretation. We pro-
pose that this result may be explained with an extended RSA
framework with jointly-distributed content and honorifics that
can both provide social utility and serve to signal a speaker’s
communicative goals.

5Of course, the listener may want to update their belief about
their relationship with the speaker based on the speaker’s choice of
honorifics! If so, the listener could marginalize over r and k.
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Abstract

Unscaffolded problem-solving before receiving instruction can
give students opportunities to entertain their exploratory hy-
potheses at the expense of experiencing initial failures. Prior
literature has argued for the efficacy of such Productive Fail-
ure (PF) activities in preparing students to “see” like an expert.
Despite growing understanding of the socio-cognitive mecha-
nisms that affect learning from PF, the necessity of success or
failure in initial problem-solving attempts is still unclear. Con-
sequently, we do not know yet whether some ways of succeed-
ing or failing are more efficacious than others. Here, we report
empirical evidence from a recently concluded classroom PF in-
tervention (N=221), where we designed scaffolds to explicitly
push student problem-solving towards success via structuring,
but also radically, towards failure via problematizing. Our ra-
tionale for explicit failure scaffolding was rooted in facilitating
problem-space exploration. We subsequently compared the
differential preparatory effects of success-driven and failure-
driven problem-solving on learning from subsequent instruc-
tion. Results suggested explicit failure scaffolding during ini-
tial problem-solving to have a higher impact on conceptual un-
derstanding, compared to explicit success scaffolding. This
trend was more salient for the task topic with greater difficulty.
Keywords: Classroom Study; Productive Failure; Scaffolding

Introduction
Substantial research has demonstrated the efficacy of learn-
ing approaches where problem-solving as a preparatory ac-
tivity precedes instruction (PS-I). PS-I includes (i) an initial
problem-solving phase where students explore solutions to
complex problems based on concepts they haven’t formally
learnt yet, and (ii) a subsequent explicit instruction phase
where a coach introduces formalisms of the targeted concepts
along with the canonical solution. Research suggests that PS-
I is an effective learning design that improves student’s con-
ceptual understanding and positively impacts how well they
transfer their knowledge to novel problem-solving contexts
(Loibl, Roll, & Rummel, 2017).

A particular variant of the PS-I design that embodies
learning from failure is Productive Failure (PF) (Kapur
& Bielaczyc, 2012). PF comprises rich problem design
that affords multiple representations and solution methods
(RSMs), and follow-up instruction that compares and con-
trasts student-generated solutions with the canonical one. The
positive benefits of approaches implemented based on the PS-
I design (e.g., PF, Invent with Contrasting Cases (Schwartz
& Martin, 2004)) have been attributed to different cognitive
mechanisms. These include intentional activation of relevant
prior knowledge, enhancement of students’ awareness of the
problem situation and own knowledge gaps, focused atten-
tion on search for deeper patterns rather than surface charac-
teristics, and effortful retrieval to resolve incongruity. Some
posited socio-emotional mechanisms include increased moti-
vation to learn targeted concepts and elicitation of curiosity
(Kapur & Bielaczyc, 2012; Loibl et al., 2017).

Research Gap
Despite PS-I designs often working better compared to tra-
ditional instructional approaches (usually direct instruction)
on the acquisition of conceptual knowledge and/or transfer,
there is a considerable variation in effect sizes (Cohen’s d
= 1.12± 0.54) (Loibl et al., 2017). This has spurred lines
of inquiry into systematically analyzing reasons for failure
of PS-I approaches (Sinha & Kapur, 2019), and developing
ways to improve overall effectiveness of the learning design.
One prominent area of focus has been the initial problem-
solving phase. Here, research has started to investigate the
impact of scaffolding student solutions on fostering concep-
tually sound and transferable learning (Kapur, 2011; Loibl &
Rummel, 2014). Despite growing research in the PS-I design
space, we don’t have conclusive evidence yet.

Templates of successful problem-solving usually aim at
pro-active error elimination, and directing student’s attention
to the task by providing immediate feedback. Such instruc-
tion has the advantage of helping students perform the correct
procedure. However, this may not always imply that students
engage in optimal reasoning or acquire high depth of under-
standing of domain principles. Evidence favoring success-
driven (SD) learning in PS-I suggests the presence of an
association between successful problem-solving during the
problem-solving phase and learning from instruction (e.g.,
Chin, Chi, and Schwartz (2016); Schwartz, Chase, Oppezzo,
and Chin (2011); Loibl and Rummel (2014); Schalk, Schu-
macher, Barth, and Stern (2017); Chase and Klahr (2017)).
However, attempts to scaffold such success, both cognitively
(e.g., Kapur (2011); Loibl and Rummel (2014)) and metacog-
nitively (e.g., Holmes, Day, Park, Bonn, and Roll (2014); Roll
et al. (2018)), have been largely unsuccessful.

Templates of exploratory or unsuccessful problem-solving,
on the other hand, hold the view that acquisition of solution
schema is not the solitary goal of learning through problem-
solving (Schwartz & Martin, 2004; Kapur & Bielaczyc,
2012). It is equally important to develop the cognitive and
socio-emotional prerequisites to prepare novice students to
see like an expert. Therefore, one should provide opportu-
nities that help students develop awareness and appreciation
for what is known and not known. Instructional attempts that
increase chances of failure during problem-solving have the
advantage of stimulating student’s initiative in gaining knowl-
edge. However, students may not spontaneously come back
to the right track if an incorrect problem representation is in-
voked and they continue to work on it. Evidence disfavoring
SD learning in PS-I suggests that a lack of success when the
problem-solving phase is implicitly scaffolded (e.g. Aleven
et al. (2017); Roelle and Berthold (2016); Mazziotti, Rum-
mel, and Deiglmayr (2016)) or left unscaffolded (e.g., Kapur
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and Bielaczyc (2012)) does not harm learning. Providing no
explicit cognitive or metacognitive support is imperative in
view of giving students complete agency in solution gener-
ation. A consequential side-effect is that the likelihood of
experiencing failures increases.

However, there is no PS-I research that looks at explicitly
scaffolding problem-solving phase towards failure. This sets
up the guiding question of whether and to what extent is suc-
cess or failure during initial problem-solving necessary for
learning from PS-I. How does increasing likelihood of stu-
dents experiencing success or failure differentially prepare
them to learn from the instruction at a deeper conceptual
level? Are some ways of succeeding or failing more effi-
cacious than others? To answer these questions, we design
SD or failure-driven (FD) scaffolds for the problem-solving
phase, as inputs into a classroom PS-I intervention. Evidence
for impact of these scaffolds on learning from PF is discussed.

Method
Participants and Task Domain
We conducted a classroom PS-I intervention with N=221 stu-
dents in an introductory data science course offered at a large
public university in Switzerland. Based on data from a pre-
vious course iteration, two topics Spurious Correlation (SC)
and Anscombe’s Quartet (AQ) were chosen to develop learn-
ing materials. Problem-solving based on these topics had
demonstrated different initial failure rates, and different lev-
els of improvement after students were presented with clues
pointing them to the correct answer (SC task, 40% → 23%;
AQ task, 81%→ 38%). The SC learning goal was to help stu-
dents tease apart the difference between strong versus mean-
ingful relationships among dataset variables. The AQ learn-
ing goal was to help students understand the complementary
importance of numerical and graphical representations in rea-
soning with data. Students worked individually in an online
problem-solving environment (Python Jupyter notebook) that
was dynamically executable, and helped in offloading proce-
dural or syntactical aspects of the computation required (for
task details, see www.tinyurl.com/CogSci2019Tasks).

Experimental Design and Scaffolding Rationale
A mixed experimental design was followed. Scaffolding in
initial problem-solving (SD, FD) was the between-subject
variable, and problem-solving topic (SC, AQ) was the within-
subject variable. Students were randomly assigned to exper-
imental conditions, and ordering of problem-solving topics
was counterbalanced within each condition. We had two con-
ditions representative of SD scaffolding with varying degrees
of specificity, and two conditions representative of FD scaf-
folding with varying levels of suboptimality. For all four con-
ditions, the instruction phase was kept constant. Student so-
lutions were compared and contrasted with the canonical one.

The rationale for the concrete design of scaffolding in our
research was inspired by mechanisms of structuring and prob-
lematizing student work (Reiser, 2004). Structuring scaf-
folds reduce degrees of freedom to lower task complexity,

help students maintain direction, and make problem-solving
tractable. Problematizing scaffolds increase degrees of free-
dom to challenge student’s current understanding, and high-
light discrepancies between what they might generate and
critical/canonical task features. We chose an initial set of
structuring and problematizing scaffolds in line with keeping
the generative characteristics of the problem-solving phase
intact, as well as explicitly increasing success or failure like-
lihood as the intended design rationale.

Figure 1: Experimental Design. SDa, SDb, FDa, FDb are two
instantiations of success-driven (SD) and failure-driven (FD)
scaffolding in the problem-solving phase respectively.

Structuring scaffolds included a combination of prompts,
hints and bottom-out hints for different task topics. Prompts
point students to the problem conditions that should likely re-
mind them of the knowledge component’s relevance. Very
little information is divulged, thus encouraging students to do
most of the thinking themselves. Our design of hints incor-
porates the idea of teaching students the knowledge compo-
nent that is actually relevant in the current problem-solving
context (what to do but not how). Finally, bottom-out hints
tell students precise (and potentially optimal) ways of mov-
ing ahead in the problem-solving task. Such a scaffolding
sequence mimics the behavior of expert human tutors, and is
almost universally used in tutoring systems (VanLehn, 2011).

Problematizing scaffolds included asking students to ex-
plicitly generate suboptimal RSMs to facilitate problem-
space exploration in a more comprehensive manner, rather
than following an isolated solution path. In essence, stu-
dents are led towards questionable decision-making by being
asked to consider a subset of conceptual domain factors (that
don’t lead to the canonical solution), and reason with those
partially-gained insights. No former PS-I work has looked di-
rectly into such “explicit” failure scaffolding. However, one
could view the classic PF design as providing “implicit” op-
portunities for students to create suboptimal RSMs (Kapur &
Bielaczyc, 2012). This is because rich problem design “inher-
ently” affords multiple RSM generation, and targets concepts
students haven’t learnt yet. Work on preparatory benefits of
vicarious failure activities before receiving instruction sug-
gests the evaluation of suboptimal or failed RSMs generated
by others as a significant predictor of learning (Kapur, 2014).

As a concrete example, when reasoning about the rela-
tionship between two variables, a prompt would give stu-
dents general information about statistical dependence be-
tween variables, a hint would provide explanation of the exact
phenomena under consideration (e.g., SC, AQ), and a bottom-
out hint might ask for reasoning with a scatterplot (optimal
graphical representation). Alternatively, reasoning with a 2-
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Table 1: Examples of constructive reasoning coding applied for the analyses of posttest reasoning/code
Category Sub-category Sub-sub-category Examples from data

Non-mathematical
elaboration

Graphical Complete
Thinking for a good distribution that fit with this theory we can imagine a bar in the middle and nothing around. That means that all the people have
the same degree of wealth. Looking at the plots we can already see that the distribution that seems what we have imagined is the normal distribution
for the scenario A. We can also look at the standard deviation that confirm this reasoning

Not Complete Taking into account histogram with 50 bins, a better idea of distribution of wealth between citizens is given

Numerical Complete By using a histplot, we see that for B there is no middle class, only rich and poor people =>not socialist.
Not Complete I add the values of each person and I divide by the number of person to find if the money is well distributed

Mathematical
elaboration

Graphical Complete
Datasets are almost identical specially in descriptive statistics but when we see plot of wealth distribution we can see that in B, there are more
people with less wealth distribution specially after median and with similar reasoning we can say that as C is upper than B and A in most cases,
it is the worst

Not Complete Linecharts show that C has the most wealth in the middle

Numerical Complete
Using the variance of each set, we can see that the values of dfA are much more centered around the mean (and thus a more egalitarian society).
Followed by C then B

Not Complete comparing the median values of the different datasets

D or 1-D histogram are examples of suboptimal RSMs. Here,
information is lost because of binning and/or the lack of di-
rectly perceivable information about co-variation in the data.

Analytical Procedures
Due to dropout at various stages of the study (12%-57%), we
applied standard multiple imputation (MI) procedures (n=5)
to fill missing dataset values (Van Buuren, 2018). Discarding
missing data may result in the complete cases being no longer
representative of the target population, and consequently, es-
timates derived from them being subject to non-response bias.
MI accounts for the process that created the missing data, and
preserves uncertainty among relations in the data. Logistic re-
gression and its variants (multinomial, ordered) were used for
binary, nominal (>2 categories) and ordinal data respectively.
Predictive mean matching was used to impute numeric data.
Density plots of observed and imputed values were visually
inspected for validity. Non-parametric statistics were used
to see differences in ordinal posttest scores (e.g., Kruskal-
Wallis tests, follow up Dunn tests). Multiple comparisons
were adjusted using the Benjamini-Hochberg method. For
non-significant results (p > 0.05), equivalence tests were per-
formed to provide evidence for absence of a meaningful effect
(Lakens, Scheel, & Isager, 2018). Here, the smallest effect
size of interest was set within Cohen’s d bounds of ± 0.2.

We also developed a coding scheme (Krippendorf’s α >
0.7) for qualitative analyses of student’s posttest reasoning
and code, based on prior work (Chi, 2009; Kapur & Kinzer,
2009). First, we identified if reasoning was constructive
(meaningful elaborations that went beyond what was pre-
sented). If yes, we identified if the elaborations were non-
mathematical or mathematical. The former refers to elab-
orations that explain inferences leading up to the results,
while the latter refers to elaborations that explicitly men-
tion mathematical formalisms in words and/or in the code
and base solution inferences on these formalisms. Next, for
each kind of elaboration, we further checked if the elabora-
tions comprised one or more graphical/numerical representa-
tion(s), meaning graphs, plots or other quantitative indices.
Finally, we checked if these representation(s) were complete.
Non-mathematical elaborations were coded as complete if all
variables were set in relation to each other, and the result
could be clearly derived from the elaboration. No information
was missing and the connection between evidence and claim
was fully explained using reasoning. Mathematical elabo-
rations were coded as complete if all necessary methods in

order to derive results were mentioned in words and/or pre-
sented in the code. Table 1 provides examples from the data.

Measures
Before the problem-solving phase, we collected student’s
prior knowledge using high school math scores as a proxy.
No explicit pretest was conducted to prevent redundancy with
the problem-solving phase. Based on prior literature on inter-
individual factors that characterize heterogeneity in student’s
approach to FD and SD learning, we also included question-
naires assessing incoming profile variables like effort regula-
tion (Pintrich et al., 1991), self-esteem (Jones, 1973), learning
goal orientation (LGO) (Dweck, 1992) and attitude towards
mistakes (ATM) (Leighton, Tang, & Guo, 2015). Effort reg-
ulation reflects a commitment to completing one’s goals de-
spite difficulties. High self-esteem triggers positive attribu-
tional style towards success and failure. An LGO disposition
affects whether students view failures as learning opportuni-
ties. Finally, ATM, which includes the utility of making mis-
takes and induced affective reactions, enhances or impedes
receptivity to failures. After the problem-solving phase, stu-
dents answered task experience questionnaires, in line with
PS-I preparatory mechanisms (Loibl et al., 2017).

These experiences included perceived awareness of knowl-
edge gaps at the current moment (Glogger-Frey, Gaus, &
Renkl, 2017), state curiosity about task actions and what they
would like to know (Naylor, 1981), germane and extraneous
cognitive load induced by problem-solving (Leppink, Paas,
Van Gog, van Der Vleuten, & Van Merrienboer, 2014), and
the experienced cognitive dissonance. Cognitive dissonance,
defined as a state of discomfort associated with detection of
conflicting concepts (Levin, Harriott, Paul, Zhang, & Adams,
2013), has not been studied in prior PS-I work because of lack
of work on problematizing. Consistency of both incoming
profile and task experience questionnaires was good for our
dataset (McDonald’s ω >0.7). After the instruction phase,
students solved an isomorphic and a non-isomorphic concep-
tual understanding posttest for each of the two task topics.

Results
Variable-centered Approach
We first performed variable-centered analyses to look at over-
all patterns of the impact of SD and FD preparatory activities
on conceptual understanding in PF (figure 2).
Task topic SC For the SC topic, we found a signifi-
cant omnibus effect of the experimental grouping on the
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Figure 2: Scaled posttest scores with inferential error bars
(L to R: SC non-isomorphic, SC isomorphic, AQ non-
isomorphic, AQ isomorphic). Significant differences marked.

non-isomorphic conceptual understanding posttest (χ2(3) =
11.73, p = 0.008, Cohen’s d = 0.409). The FD condition was
better than the SD condition that offered the more-specific
clue, in this case a hint describing the SC phenomena. How-
ever, the FD conditions were equivalent to the SD condition
that offered the less-specific clue, in this case a prompt de-
scribing what statistical dependence among variables is. The
two FD conditions here asked students to generate/reason
with a correlation table and scatterplot matrix respectively,
both of which reflect suboptimal numerical and graphical rep-
resentations respectively. This is because they don’t fully al-
low inferences on the nature of relationships (strength and/or
meaningfulness) between dataset variables. No significant
omnibus difference in scores on the isomorphic conceptual
understanding posttest was observed across the four exper-
imental conditions (χ2(3) = 1.37, p = 0.712, Cohen’s d =
0.174). Equivalence testing suggested that the observed effect
was neither statistically different from zero nor statistically
equivalent, indicating insufficient data to draw conclusions.

Qualitative analysis suggested that for the non-isomorphic
conceptual understanding posttest, the trend mirrored posttest
scores. Students in the FD conditions had higher percentage
of complete mathematical (32.1%, 38.7% >> 27.3%) and
non-mathematical elaborations (44.7%, 56.7% >> 27.3%),
compared to the SD condition with the more specific clue.
Additionally, completeness of reasoning was almost identical
between the FD condition and the SD condition with the less
specific clue. However, for the isomorphic conceptual under-
standing posttest, student reasoning was often dominant in
either complete mathematical or complete non-mathematical
elaborations across the experimental conditions. The SD con-
ditions had comparatively higher percentage of the former
(38.9%, 45.8% >> 32.4%, 25%), while the FD conditions
had comparatively higher percentage of the latter (33.3%,
48.8% >> 43.3%, 23.6%). This might be one reason why
we saw no posttest score differences.

Task topic AQ For the AQ topic, we found significant om-
nibus effects of the experimental grouping on both the non-
isomorphic (χ2(3) = 10.84, p = 0.012, Cohen’s d = 0.387)
and isomorphic (χ2(3) = 20.16, p = 0.0001, Cohen’s d =
0.586) conceptual understanding posttest. Follow up pairwise
comparisons suggested that scores for students in FD condi-
tion were greater than those in the SD condition with the more
specific clue, in this case a bottom-out hint asking for scatter-
plot generation. However, the difference did not reach signif-

icance when comparing the FD condition and SD condition
with the less specific clue, in this case a hint describing the
AQ phenomena. The two FD conditions here asked students
to generate/reason with a 2-D and 1-D histogram respectively.
Both reflect suboptimal graphical representations.

We separated the coding of numerical and graphical
representations to assess their independent usage in stu-
dent reasoning. Qualitative analysis suggested that for the
non-isomorphic conceptual understanding posttest involv-
ing graphical representations, students in the FD conditions
had higher percentage of complete mathematical (72.2%,
68.7% >> 33.3%, 40%) and non-mathematical elaborations
(44.4%, 37.5% >> 26.6%, 40%), compared to the SD condi-
tions. This also held true for complete mathematical (27.7%,
37.5% >> 20%, 0%) and non-mathematical elaborations
(27.7%, 31.2% >> 13.3%, 0%) involving numerical rep-
resentations. For the isomorphic conceptual understanding
posttest, a similar trend held for elaborations involving graph-
ical representations. We did not see clear trends in qualita-
tive differences in student reasoning for elaborations involv-
ing numerical representations, the less straightforward (and
dominant) approach for this isomorphic question. Taken to-
gether, despite no posttest score differences between students
who received FD scaffolds and the less-specific SD scaffold,
there were salient differences in reasoning quality.

Person-centered Approach
We performed complementary person-centered analyses to go
beyond an average FD or SD learning pattern (figure 3). The
rationale here was to factor in the interactions among incom-
ing student characteristics, in order to understand the impact
of this heterogeneity on learning. We used latent profile anal-
ysis to first cluster students based on incoming profile vari-
ables like prior knowledge, effort regulation, learning goal
orientation, self-esteem and attitude towards mistakes. This
approach provides an elegant way to discover subgroups by
“simultaneously” considering interactions among “more than
one” incoming cognitive and motivational student character-
istic. Non-parametric multivariate finite mixture models were
used (Hickendorff, Edelsbrunner, McMullen, Schneider, &
Trezise, 2017). A two-cluster solution (figure 4) reflected
parsimonious fit to the data (based on model fit (loglik =
530.41), mixture distributions and visual inspection of mix-
ture density plots when fitting more than two clusters).

Cluster assignments for students into these homogeneous
subgroups were based on posterior probability distributions.
These cluster assignments allowed us to then use this in-
formation for studying interaction effects (reported below).
Statistically, we found one of these clusters (henceforth,
Clusterhigh) to have significantly higher scores on all of
these incoming characteristics, compared to the other cluster
(Clusterlow). Clusterlow reported higher extraneous cognitive
load than Clusterhigh (W = 7319.5, p = 0.001) after problem-
solving. All other task experiences were statistically similar.

Task topic SC/AQ Not surprisingly, we did find that stu-
dents in Clusterhigh scored significantly higher than those in

2807



Figure 3: Scaled posttest scores with inferential error bars (L to R: SC non-isomorphic, SC isomorphic, AQ non-isomorphic,
AQ isomorphic). Significant differences marked. Low and High represent students from Clusterlow/high within a condition.

Figure 4: Mixture density distributions when clustering students based on incoming cognitive and motivational characteristics
(L to R: Prior knowledge, Learning goal orientation, Effort regulation, Self-esteem, Attitude towards mistakes)

Clusterlow on the non-isomorphic conceptual understanding
posttest. This trend held for both SC (W = 4885.5, p = 0.04)
and AQ task topics (W = 4811.5, p = 0.02). On the other
hand, both Clusterhigh and Clusterlow performed equally well
on posttests scores for the isomorphic conceptual understand-
ing question. Equivalence testing results were inconclusive.
Interaction We finally looked at impact of the interaction
between experimental grouping and incoming student profile
on posttest. Results suggested that the omnibus trend for dif-
ference in non-isomorphic conceptual understanding posttest
still held for the SC topic (χ2(7) = 17.16, p = 0.016, Cohen’s
d = 0.448). Descriptively, students in the FD sub-groupings
outperformed those in the SD sub-groupings. As before, the
omnibus effect was still not significant for the isomorphic
conceptual understanding posttest (χ2(7) = 11.5, p = 0.118,
Cohen’s d = 0.294). Equivalence testing showed 24/28 pair-
wise comparisons to be inconclusive.

For the more difficult topic AQ, again, as before, exposure
to failure-driven scaffolds benefited students on both the non-
isomorphic (χ2(7) = 16.91, p = 0.017, Cohen’s d = 0.442)
and isomorphic (χ2(7) = 27.16, p = 0.0003, Cohen’s d =
0.647) conceptual understanding posttest. Descriptive trends
for students in FD sub-groupings scoring higher than their
counterparts in the SD sub-groupings still held. This also sug-
gests that perhaps task difficulty and the extent to which stu-
dent reasoning requires manipulation and integration of mul-
tiple representations, might be an important factor when look-
ing at the relative efficacy of FD and SD scaffolds.

Underlying Mechanisms
We computed partial correlations between student’s task ex-
periences during the problem-solving phase and their posttest
scores, controlling for experimental grouping (SD, FD) and
incoming student profile (Clusterhigh/low). For the more dif-
ficult topic (AQ), we saw positive associations of both iso-
morphic and non-isomorphic posttest scores with awareness
of knowledge gaps (ρ = 0.112+, 0.172*) and germane cog-
nitive load (ρ = 0.114+, 0.120+). The correlation between
these task experiences and posttest scores was not signifi-

cant for the easier topic (SC). Experiencing higher state cu-
riosity (ρ = 0.158*, 0.184**) and cognitive dissonance (ρ =
0.193**, 0.187**) was positively associated with only with
non-isomorphic posttests, however for both SC and AQ top-
ics. Finally, experiencing greater extraneous cognitive load
was negatively associated with posttest scores for both SC
(ρ = -0.243**, -0.236**) and AQ (ρ = -0.185**, n.s.) topics.

Manipulation Check and Design Implications
Students in every experimental condition had the opportu-
nity to make two solution attempts (prior/post exposure to
the scaffold) during the problem-solving phase. This de-
sign allowed us to assess the percentage of students who im-
proved/degraded their solution across these two time points
within the initial problem-solving. We computed a summary
index S (ranging from -100 to 100) for each condition and
task topic, by subtracting (i)∆D, the percentage of students
who degraded (got the right answer pre-scaffold, but wrong
answer post-scaffold), from, (ii)∆I, the percentage that im-
proved (got the wrong answer pre-scaffold, but right answer
post-scaffold). For the two FD conditions, we found S to be
highly negative (∆D > ∆I) for the more difficult task topic
AQ (-72%, -47%), suggesting that the problematizing scaf-
fold indeed pushed students towards explicit failure. For the
easier task topic SC (-51%, -34%), S was still negative but
comparatively lower in absolute terms.

Interestingly, for the two SD conditions, S was not positive
or ∆I was ≯ than ∆D (as one might intuitively expect). Over-
all, despite S being lower in absolute terms compared to the
FD conditions, it was still negative for both the AQ (-52%,
-54%) and SC (-40%, -6%) task topics. This suggests that
although explicit structuring prior to instruction led to greater
net solution accuracy (compared to explicit problematizing),
it was still not enough to push majority of student solutions
to match the canonical answer. Taken together, these analyses
show that students may not necessarily be prepared to receive
explicit structuring during initial exploration, especially for
difficult topics. It also opens up questions about re-calibrating
the specificity of structuring scaffolds so that ∆I > ∆D.
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Discussion and Conclusion
Table 2: posttest differences across experimental grouping

Non-isomorphic conceptual
understanding posttest

Isomorphic conceptual
understanding posttest

Topic SC
(Variable-centered)

χ2(3) = 11.73, p = 0.008
Cohen’s d = 0.409

χ2(3) = 1.37, p = 0.712
Cohen’s d = 0.174

Topic SC
(Person-centered)

χ2(7) = 17.16, p = 0.016
Cohen’s d = 0.448

χ2(7) = 11.5, p = 0.118
Cohen’s d = 0.294

Topic AQ
(Variable-centered)

χ2(3) = 10.84, p = 0.012
Cohen’s d = 0.387

χ2(3) = 20.16, p = 0.0001
Cohen’s d = 0.586

Topic AQ
(Person-centered)

χ2(7) = 16.91, p = 0.017
Cohen’s d = 0.442

χ2(7) = 27.16, p = 0.0003
Cohen’s d = 0.647

To summarize, our results indicate the efficacy of FD over
SD preparatory activities on student’s conceptual understand-
ing. We go beyond prior PS-I work by performing stringent
comparisons between explicit ways of pushing students to-
wards success and failure in problem-solving prior to instruc-
tion, and investigating their impact on learning. Overall, we
found a significant main effect for experimental grouping on
the non-isomorphic conceptual understanding posttest, with
the FD conditions outperforming the SD condition with the
more-specific clue, but not the SD condition with the less-
specific clue. Posttest score similarity between the latter com-
parison indicates that FD and SD approaches might poten-
tially offer two distinct but effective paths to learning. Nudg-
ing students to make them realize by themselves the extent
to which their activated knowledge is (ir)relevant for solving
the problem (we can have both SD and FD ways towards this
end), is better than directing their activation of relevant prior
knowledge (via a highly specific SD scaffold).

However, we also found that a comparatively higher per-
centage of students who received FD scaffolds demonstrated
reasoning with complete mathematical or non-mathematical
elaborations, indicating better quality of reasoning than stu-
dents in the SD conditions. This result supports the idea that
focusing on the pragmatic goal of performing the correct pro-
cedure (in presence of SD scaffolding) without appropriately
articulating understanding (non-reflective work) can lead to
fragile conceptual gains (Jonassen, 2010). We also found a
significant main effect for the incoming student profile on the
non-isomorphic conceptual understanding posttest, with stu-
dents having high self-reported scores significantly perform-
ing better. There was no evidence for an interaction effect.
Exposure to FD scaffolds had a greater impact on posttest
scores for the more difficult topic (AQ). Finally, we found
mechanistic task experiences to be positively associated with
posttest scores (stronger associations for AQ task topic and
for non-isomorphic posttests), controlling for experimental
grouping and incoming profile.

What might explain the superiority of problematizing scaf-
folds over structuring scaffolds in the PS-I design? Although
scaffolding for success might push for speed/accuracy to fa-
cilitate fluency in knowledge application for one form of in-
dependent performance (Schwartz, Sears, & Chang, 2007),
both posttest scores and qualitative analysis of reasoning sug-
gest that it does not guarantee improved conceptual under-
standing. Correct performance of a procedure scaffolded via
structuring might stem from the lack of awareness and appre-

ciation of long-term sub-optimality of a solution that works
reasonably well in the short-term (Schwartz, Chase, & Brans-
ford, 2012). The resulting quick/easy success may be insuf-
ficiently disruptive to challenge existing thought processes,
and induce inattention when learning from instruction.

Existing meta-analysis of PS-I literature (Loibl et al., 2017)
also suggests that students need to be made aware of the lim-
itations to their knowledge (knowledge gaps). Further, we
must instill in them a strong desire to know more about the
canonical solution to fill these knowledge gaps. Finally, the
learning design needs to facilitate understanding of which
solutions don’t work and why. In line with these vital pre-
instructional goals, the suboptimal RSM generation strategy
triggers “effortful activation” of prior knowledge conceptu-
ally relevant to the targeted learning concept.

By exposing students to additional exploration of the
problem-space structure that doesn’t necessarily lead to the
canonical solution, suboptimal RSM generation provides sup-
port for meaningful variation in reasoning (Soderstrom &
Bjork, 2015), which aids in improved conceptual understand-
ing. Further, the uncertainty induced about consequences
of partially-gained insights during solution revision is likely
to trigger momentary curiosity driven by student’s problem-
solving experiences. One’s own failed attempt is also likely
to better prepare students for acquisition of negative knowl-
edge regarding applicability conditions of solution strate-
gies during instruction. Finally, at a methodological level,
we see an improvement in effect sizes compared to a tra-
ditional variable-centered approach for both task topics (ta-
ble 2). Complementary person-centered analyses provide a
more accurate assessment of the impact of our PF interven-
tion, since they factor in the differential benefits arising due
to individual differences in SD and FD learning.

The scaffolding implemented in this work can be embed-
ded into metacognitive tutors (Joyner & Goel, 2015) that de-
ploy computer agents to imitate functional roles of teachers -
“guides” to offer structuring, and “critiques” to problematize
exploration. Limitations of this work stem primarily from the
classroom time constraints. This was reflected, for e.g., in
choice of datasets we used. For future work, we will design
rich(er) datasets (that allow greater scope of inferences). The
allocated time budget also led us to design one-step SD or
FD scaffolds, and collect single task experience questionnaire
after students finished solving problems on both topics (SC,
AQ). Finally, optional university attendance resulted in con-
siderable student dropout over the two study weeks, despite
our efforts to mitigate this threat via participation reminders.
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Abstract
Productive Failure (PF) is a learning design that intentionally
designs for and uses failure in preparatory problem-solving for
learning. Over the past decade, there has been growing ev-
idence supporting the effectiveness of learning from PF. The
purpose of this paper, however, is to critically examine evi-
dence for when PF fails. We analyze 95 experimental compar-
isons from 57 studies reported in 44 articles into the extent to
which they conform to PF design criteria. These criteria, as
outlined in the original PF work, span the problem-solving ac-
tivity, the participation structures, and the social surround. Re-
sults suggest lack of design fidelity as a critical factor for when
PF fails to outperform alternative instructional approaches on
conceptual knowledge and/or transfer.
Keywords: Direct Instruction; Productive Failure; Scaffolding

Introduction
The past decade has seen a growing body of evidence for the
efficacy of Productive Failure (PF) for developing concep-
tual knowledge and transfer (for a review, see Kapur (2016);
Loibl, Roll, and Rummel (2017)). PF comprises an initial
problem-solving phase where learners generate and explore
representations and solution methods (RSMs) to complex
problems based on concepts they have not formally learnt
yet, followed by an instruction phase where an expert or a
teacher builds upon student-generated solutions to teach them
the targeted concepts. According to PF, generating solutions
to novel problems prior to instruction can help students learn
better from the instruction, even if students fail to generate the
correct solution in the problem-solving phase (Kapur, 2016).
Thus conceived, PF can be seen as a subset of a general class
of designs where problem-solving precedes instruction (or
PS-I). It must be noted that not all PS-I designs are PF, but
only those in which students generate multiple solutions but
fail to generate the correct one.

In experimental comparisons, PF is typically compared
with a design where students are initially given instruction on
the targeted concepts, followed by problem-solving practice.
Loibl et al. (2017) referred to this design as an Instruction-
followed-by-Problem-Solving (I-PS) design. Findings in sup-
port of PF suggest that both PF and I-PS are similar in
the development of procedural knowledge, but PF signif-
icantly outperforms I-PS in conceptual understanding and
transfer (Kapur, 2016). Evidence comes not only from quasi-
experimental studies conducted in the real ecologies of class-
rooms (e.g., Kapur (2012); Kapur and Toh (2013); Schwartz
and Bransford (1998); Schwartz and Martin (2004)), but also
from controlled experimental studies (e.g., M. S. DeCaro
and Rittle-Johnson (2012); Kapur (2014); Loibl and Rummel
(2014a); Roll, Aleven, and Koedinger (2011); Schmidt and
Bjork (1992); Schwartz, Chase, Oppezzo, and Chin (2011)).

Although we now have substantial empirical evidence for
when PF succeeds (Loibl et al., 2017), we argue it is equally

important, if not more, to examine evidence when PF fails
and delineate boundary conditions for how, when and why
PF works. By success of PF, here we mean experimental
comparisons in which PF significantly outperforms alterna-
tive instructional approaches (usually instruction followed by
problem-solving (I-PS), but also scaffolded problem-solving
followed by instruction (+PS-I), or a different preparatory ac-
tivity followed by instruction (!PS-I)1). By failure of PF, here
we mean experimental comparisons between PF and I-PS, PF
and +PS-I, PF and !PS-I, where I-PS, +PS-I, !PS-I conditions
significantly outperform PF on measures of either conceptual
understanding or transfer.

At the same time, we also examine experimental compar-
isons with null results, that is, when there was no significant
difference between PF and these three alternate experimen-
tal conditions. Although attribution of null effects to causal
factors is not always straightforward, examining null effects
may nevertheless shed light on the critical factors that conflu-
ence efficacy of PF. Bridging the gap between instructional
decision-making and the science of learning from failure ne-
cessitates prescribing conditions under which positive or neg-
ative failure effects emerge and how to foster them.

Search Criteria
Our search process and the criteria for including and ex-
cluding comparisons for this analysis included articles in the
Google Scholar databases that (i) cited either of the two sem-
inal PF articles (Kapur, 2008; Kapur & Bielaczyc, 2012),
and those that cited other key follow-up PF articles (Kapur,
2014, 2015, 2016), and (ii) reported experimental or quasi-
experimental comparison between PF and I-PS, or between
PF and +PS-I, or between PF and !PS-I; and (iii) assessed
conceptual knowledge and/or transfer. Criteria i resulted in
close to 700 articles as of 29th June 2018. Of these, 44 ar-
ticles met criteria ii and iii. These 44 articles reported 57
studies and comprised 95 experimental comparisons2. Ta-
ble 1 presents a breakdown of their demographic character-
istics, with majority of the studies spanning Europe, North
America and Asia, and covering mathematics concepts for
6th-10th graders. We also see evidence for PS-I work grad-
ually expanding to different student populations at the post-
graduate and professional levels within other STEM domains
like physics, chemistry, biology, as well as within non-STEM
domains like psychology and medicine.

Using a two-phase workflow, we now report key findings
synthesized from these experimental comparisons. The first
phase comprised a fidelity check for examining conformity of

1Exclamation (!) denotes [(NOT) Problem-solving], e.g., [Read-
ing worked examples], [Problem posing], [Explanation generation]

2https://tinyurl.com/WhenPFfails
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Table 1: Demographic characteristics of articles included in the review (Number of comparisons = 95)
Variable of Interest # of Comparisons (%)

1. Geographical
distribution

Europe (Germany, Switzerland, UK) 30 (31.6%)
North America (USA, Canada) 31 (32.6%)
Asia (Singapore, Taiwan, India, Hong Kong, Saudi Arabia) 27 (28.4%)
Australia 7 (7.4%)

2. Learner
grade

6th - 10th graders 59 (62.1%)
2nd - 5th graders 17 (17.9%)
Undergraduates 16 (16.9%)
Others (Postgraduates, Professionals) 3 (3.1%)

3. Targeted
concept

Math (equivalence, geometry, fractions, variance, linear functions, central tendencies,
least squares fitting, weighted averages, z-scores, statistics process control)

63 (66.3%)

Physics (average speed, density, collision, electricity, mechanics) 16 (17%)
Medical (dental hygiene, dental surgery) 4 (4.2%)
Chemistry (solutions, atomic structure) 3 (3.1%)
Psychology (memory) 2 (2.1%)
Domain general skill (control of variables strategy) 2 (2.1%)
Biology (genetics) 2 (2.1%)

PS-I implementations to PF design criteria (for detailed crite-
ria definition, refer Kapur and Bielaczyc (2012)). A detailed
breakdown of these PF fidelity check criteria for the current
analyses is shown in table 2. Looking vertically across the
table (from comparisons with positive results for PF to those
with null and negative results for PF), the decrease in fidelity
along many of the PF design criteria is striking. This sug-
gests that our evidence base comprises a mixture of the orig-
inal PF design as well as its low-fidelity versions. In the sec-
ond phase, we explored additional reasons that could not be
convincingly explained by fidelity check parameters alone.
The rest of the article focuses on 44 of these 73 comparisons,
54.6% of which had significant negative (p<0.05) or null re-
sults (p>0.05) with I-PS as the comparison condition, 25% of
which had negative or null results with +PS-I as the compar-
ison condition, and remaining 20.4% of which had negative
or null results with !PS-I as the comparison condition.

Negative Results for PF (compared to I-PS)
PF fidelity check revealed that most of the 7 experimental
comparisons in this cluster (Loehr, Fyfe, & Rittle-Johnson,
2014; D. A. DeCaro, DeCaro, & Rittle-Johnson, 2015;
Schalk, Schumacher, Barth, & Stern, 2017; Marei, Donkers,
Al-Eraky, & van Merrienboer, 2017) considered affective
draw of the problem (5/7), and provided evidence for multi-
ple RSM generation during the initial problem-solving phase
(5/7). However, what is striking is that in none of the com-
parisons did follow-up instruction build on failed or subopti-
mal learner generated solutions, or include group work as the
participation structure. Since such consolidation and knowl-
edge assembly is often a key component of PF (Kapur &
Bielaczyc, 2012), we would not necessarily expect these low
fidelity PF implementations to be better than I-PS compari-
son conditions. Other salient factors influencing results from
these comparisons are described below.

First, learners with high performance orientation, who pri-
marily seek to demonstrate ability, may view challenging task
situations as a threat to this goal and withdraw their effort.
Such learners are less likely than those with a learning-goal
orientation disposition to focus on viewing failures as oppor-
tunities to learn, processing negative feedback as ways to im-
prove performance, and experiencing positive emotions fol-

lowing failure (Dweck, 1992; Tulis & Ainley, 2011). Thus,
there is no reason to believe that challenging exploratory
problem-solving phase of PF might benefit them more so than
an instruction-first approach (D. A. DeCaro et al., 2015).

Second, the presence of additional problem-solving prac-
tice following the PS-I routine allows learners to use the
taught information immediately and integrate it with prior
knowledge. Thus, PF can be expected to fail when the over-
all learning design lacks this practice activity, or, when the
overall learning design includes this activity, but such an ac-
tivity invokes application of procedural knowledge to solve
problems and correct errors to a greater extent, rather than in-
fluencing processing and development of conceptual knowl-
edge. Empirical evidence suggests that these negative effects
were mitigated to some extent in a follow-up study (although
not fully) when learners self-checked initial solutions imme-
diately after instruction (Loehr et al., 2014).

Third, implementation-level details of preparatory
problem-solving activities are important. PF can be expected
to fail when the problem-solving phase comprises too loosely
anchored instruction (e.g., an idealized contrasting case that
represents a principle in an abstract and generic fashion,
followed by self-explanation prompts). PF can, however
also fail with relatively more anchored instruction (e.g.,
a grounded contrasting case that situates a principle in a
specific context but also potentially contains (irr)relevant
details, followed by self-explanation prompts).

In Schalk et al. (2017) for instance, idealized contrast-
ing cases were operationalized by providing no labels for
the axes of coordinate systems when introducing the concept
of linear slopes in mathematics, while grounded cases had
axes labeled with meaningful concepts (e.g., filling level in
a rain barrel on the y-axis, and time in hours on the x-axis).
Schalk et al. (2017) conjecture that although self-explanation
prompts can help learners to abstract from the context pro-
vided in the grounded cases (Chi, De Leeuw, Chiu, & La-
Vancher, 1994), contextual details from the learning materials
are likely to be preserved in the encoded knowledge represen-
tation (De Bock, Deprez, Van Dooren, Roelens, & Verschaf-
fel, 2011). This can hamper transfer.

The detrimental effect of grounded cases might exist even
if self-explanation prompts in the problem-solving phase are
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Table 2: PF fidelity check criteria for the PS-I design, with 60 I-PS and 13 +PS-I and 22 !PS-I experimental comparisons.
Results separated by positive, null and negative effects for PF. Table values show number (percentage) of comparisons. We
describe an analyses of experimental comparisons with null and negative effects for PF in this paper.

Comparison
condition

Effects for PF Problems
affording
multiple RSMs

Evidence for
multiple RSM
generation

Affective
draw of
the problem

Group work as
the participation
structure

Building on
learner solutions
in Instruction

1. I-PS
Positive 36 (100%) 29 (80.5%) 32 (88.9%) 25 (69.4%) 23 (63.8%)
Null 17 (100%) 8 (47%) 13 (76.4%) 9 (52.9%) 6 (35.3%)
Negative 7 (100%) 5 (71.4%) 5 (71.4%) 0 (0%) 0 (0%)

2. +PS-I
Positive 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%)
Null 7 (100%) 7 (100%) 7 (100%) 3 (42.8%) 1 (14.2%)
Negative 4 (100%) 2 (50%) 4 (100%) 2 (50%) 2 (50%)

3. !PS-I
Positive 11 (100%) 6 (54.5%) 11 (100%) 5 (45.4%) 4 (36.3%)
Null 5 (71.4%) 2 (28.5%) 5 (71.4%) 2 (28.5%) 2 (28.5%)
Negative 4 (100%) 3 (75%) 4 (100%) 1 (25%) 2 (50%)

replaced by explicit invention prompts. From an instructivist
point of view, the need to come up with unifying functional
relations already makes the invention prompt inherently chal-
lenging. Addition of grounded cases can further overburden
learners with unnecessary details. Experiencing increased ex-
traneous load can negatively affect invention quality and sub-
sequently transfer, placing learners in the PF condition at a
disadvantage. More work is needed, however to understand
relative efficacy of concrete or abstract preparatory activities.

Null Results for PF (compared to I-PS)
PF fidelity check revealed that most of the 17 experimental
comparisons in this cluster (Schwartz & Martin, 2004; Be-
lenky & Nokes-Malach, 2012; Matlen & Klahr, 2013; Loehr
et al., 2014; Loibl & Rummel, 2014b; Fyfe, DeCaro, &
Rittle-Johnson, 2014; D. A. DeCaro et al., 2015; Hsu, Ka-
lyuga, & Sweller, 2015; Mazziotti, Loibl, & Rummel, 2015;
Chase & Klahr, 2017; Tam, 2017; Marei et al., 2017; New-
man & DeCaro, 2018) considered affective draw of the prob-
lem (13/17), about half of them provided evidence for multi-
ple RSM generation during the initial problem-solving phase
(8/17), while about one third of the comparisons included
follow-up instruction building on learner generated solutions
(6/17). This suggests moderate conformity to the PF design
criteria, and calls for a nuanced understanding of the results.

While young learners (e.g., 2nd - 5th graders) may have in-
sufficient prior knowledge about cognitive and metacognitive
learning strategies to generate RSMs on their own (Mazziotti
et al., 2015), adult learners with very high incoming mastery-
approach orientation are likely to transfer regardless of the
type of instruction. This is because the inventing activity in
and of itself provides motivational impetus to learn the tar-
geted concepts (Belenky & Nokes-Malach, 2012). These null
results suggest that learners with such incoming cognitive or
motivational profiles may not necessarily benefit from PF.

The nature of problem-solving task is an important factor
as well. Tasks with high element interactivity (Sweller, 1988)
have high expected error rate. As Loibl and Leuders (2018)
suggest, revision of mental models following instruction for
such tasks is contingent on whether or not learners sponta-
neously elaborate on erroneous solutions generated during
initial problem-solving. As long as learners are prompted
to explicitly compare and contrast their suboptimal solutions
with the canonical solutions, they are likely to integrate neg-

ative knowledge in their repertoire of future problem-solving
strategies. Consequently, there is no reason to suppose that
such learners will benefit from problem-solving first (Hsu et
al., 2015; Loibl & Leuders, 2018). While the sole impact
of solution generation on the efficacy of PF is not yet clear,
what is clearer is that the form of instruction matters (Loibl
& Rummel, 2014b). Without instruction that compares and
contrasts learner solutions with a canonical solution, PF can
be expected to fail. Further, impact of the ordering of such
instruction (before or after problem-solving) is less clear.

PF can also be expected to fail when the task provides no
explicit feedback regarding what problem-solving actions are
actually failures. Consequently, learners might not be in a po-
sition to use their awareness of knowledge gaps to consolidate
information during the instruction phase (Matlen & Klahr,
2013). Finally, as Chase and Klahr (2017) suggest, when
learning domain-general skills, the problem-solving phase in
and of itself is less likely to provide implicit feedback about
what goals to adopt during the inquiry process (that strongly
impacts learning). For instance, learner’s goals in pursuing
inquiry might be scientific (finding out whether a variable im-
pacts an outcome) or engineering-oriented (guarantying some
desired outcome). In such situations, aligning learner’s goals
to a scientific one takes precedence over the relative ordering
of the instruction phase in which this might happen.

Shifting focus to learner solutions, a key recurring factor
for failure of PF is lack of evidence for learning to learn, i.e.,
spontaneous internalization of skills needed for application of
domain-knowledge in novel situations. Gaining knowledge
of how to perform a correct procedure after the consolidation
phase of PF does not necessarily mean gaining high depth
of understanding of the domain principle (Vollmeyer, Burns,
& Holyoak, 1996; Schwartz, Chase, & Bransford, 2012;
Soderstrom & Bjork, 2015). Self-regulated reasoning strate-
gies (e.g., solution evaluation, unprompted self-explanation)
require sufficient practice opportunities to get internalized
(Schwartz & Martin, 2004; Tam, 2017). Finally, with respect
to the overall learning design, PF is expected to fail or pro-
duce comparable effects to an I-PS design when the pretest
targets concepts similar to the invention activity. Engaging
learners in important exploratory learning processes such as
prior knowledge activation, attention to knowledge gaps etc
create redundancy with initial problem-solving phase of the
PS-I setting, thus diluting effects (Newman & DeCaro, 2018).
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Negative/Null Results for PF
(compared to +PS-I)

PF fidelity check revealed that all the 11 experimental com-
parisons in this cluster (Kapur & Bielczyc, 2011; Holmes,
Day, Park, Bonn, & Roll, 2014; Kim, Pathak, Jacobson,
Zhang, & Gobert, 2015; Roelle & Berthold, 2016; Kuo &
Wieman, 2016; Loibl & Leuders, 2018) considered affec-
tive draw of the problem, most of them provided evidence for
multiple RSM generation during the initial problem-solving
phase (9/11). However, about half of the comparisons used
group work as the participation structure (5/11), and even
fewer included follow-up instruction building on learner gen-
erated solutions (3/11). This suggests moderate conformity
to the PF design criteria.

Evidence suggests that the extent to which activated prior
knowledge is conceptually related to the targeted learning
concept affects whether the failure resulting from it is pro-
ductive. This can impact whether and when PF outperforms
a scaffolded PS-I condition. If learners are scaffolded to de-
tect high number of relevant similarities and differences in
the contrasting cases during an initial problem-solving phase,
this can lead them to focused elaboration/explanation regard-
ing deep features of the problem after the instruction phase,
resulting in improved conceptual understanding (Roelle &
Berthold, 2016). Goal specificity research also suggests that
the benefits of preparatory activities with low to medium goal
specificity (as in the PS-I design) are contingent on afford-
ing opportunities for relevant prior knowledge activation, e.g.,
by guiding learners towards strategies that facilitate reason-
ing with the deep problem structure (Vollmeyer et al., 1996),
or, by illustrating desirable sub-goals along a solution path
that requires learners to focus on relevant task relationships
(Miller, Lehman, & Koedinger, 1999). We describe such
forms of scaffolded problem-solving in more detail below.

In the study by (Vollmeyer et al., 1996) for instance, ex-
plicit instruction in a systematic strategy (varying a single fac-
tor while holding other factors constant at zero) during the ini-
tial exploratory task fostered acquisition of the casual struc-
ture of a biological system. This was based on the premise
that despite the presence of a nonspecific goal during the ex-
ploratory task, learners might not spontaneously make full
use of effective rule-induction strategies. In the study by
(Miller et al., 1999) where learners had to work in an ex-
ploratory micro-world to understand interactions of electri-
cally charged particles, specializing the learning goal assisted
learners in activating relevant prior knowledge. Illustrating a
particular path and asking learners to arrange charged parti-
cles so that the moving charges would follow the illustrated
path as closely as possible achieved this.

Richland and Simms (2015), more generally, have docu-
mented the importance of scaffolding exploratory problem-
solving through a series of studies on induction within (non-)
STEM domains. They emphasize explicit support in notic-
ing the relevance of relational thinking, providing adequate
processing resources to mentally hold and manipulate rela-

tions, and facilitating recognition of both similarities and dif-
ferences when drawing analogies between systems of rela-
tionships. This is because learners may not spontaneously
search for a common deep structure across problem instances.

Similar findings have been echoed in prior PS-I work
(Schwartz et al., 2011; Kapur, 2015), which suggest that the
benefits of prior knowledge activation such as noticing incon-
sistencies across multiple problem instances, encoding criti-
cal features from instruction etc are contingent on relevance
of the activation. For instance, in an invention with contrast-
ing cases study on the topic of density (Schwartz et al., 2011),
students who recalled the deep structure of ratio from their in-
vention activity were the ones who ultimately benefited from
activating their prior knowledge on assessments of transfer.
Scaffolding initial problem-solving as part of the PS-I design
might then be one means to help learners activate relevant
prior knowledge before receiving instruction.

Prior research on the mechanisms of errorful generation
suggests that benefits are more likely when learners gener-
ate information semantically related to relevant task concepts
and/or when subsequent feedback is related to these concepts
(Clark, 2016). For e.g., in word-pair generation tasks, gener-
ations based on word stems or rhyming are unlikely to pro-
duce as much semantic activation, and do not show the bene-
ficial effects of generation. Conceptual processing (guesses)
afforded by error generation facilitate richer memory trace
through ordered relations between errors and targets (leading
to better recall and problem-solving performance), compared
to, non-conceptual processing (lexical guesses) that is more
likely to create retrieval noise without effortful semantic elab-
oration on part of the learner (Cyr & Anderson, 2015). Taken
together, we can say that in absence of spontaneous task rea-
soning with relevant induction criteria (that can potentially be
scaffolded within a +PS-I design), PF can fail.

However sometimes, even if task reasoning comprises rel-
evant induction criteria, PF can be expected to fail if such
task reasoning is then followed explicit instructions to come
up with a unifying functional relation (how variables inter-
act to produce a single quantitative result). Finding a very
high number of similarities and differences in the contrast-
ing cases (as part of initial task reasoning) can actually hurt
posttest performance. Inventing can be expected to decrease
learner’s willingness to deeply process subsequent instruction
because of clinging on to these self-generated suboptimal in-
ventions (Johnson & Seifert, 1994), and valuing self-made
products highly (Norton, Mochon, & Ariely, 2012). This can
result in failure to recognize deficiency in problem-solving
performance. Often, learner inventions fail to consider all
factors necessary for developing the canonical solution, but
focus only on subsets of these contrasting cases. In +PS-I
work by Roelle and Berthold (2016), such detrimental effects
increased as a function of the number of detected similarities
and differences for which learners had generated inventions.

PF can fail if the delay caused in reaching an appropriate
solution makes learners less interested and less self-efficient.
As Glogger-Frey, Gaus, and Renkl (2017) found in their
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work, this invoked feelings of knowledge insufficiency dur-
ing preparation and consequently low confidence. With re-
peated failures, it becomes harder to perceive the value of en-
gaging in good inquiry behaviors during the problem-solving
phase because of lowered expectations and increased self-
doubt (Ilgen & Hamstra, 1972), acceptance of absence of
control (Mikulincer, 2013), susceptibility to demotivation and
negative emotions like stress (LePine, LePine, & Jackson,
2004), and increased stability of future failure expectancies
(Weiner, 1974). In +PS-I research conducted by Lee (2017)
in physics, task failure in the form of circuit explosion (entire
electrical circuit goes up in flames and a restart is required)
was found to be negatively related to learning outcomes, per-
haps because learners were not able to meaningfully grapple
with the task complexity and lacked understanding of basic
task elements. Prompts for metacognitive reflection did not
help learners address these recurring failures.

Further, the temporal distance between the problem-
solving and instruction phase matters. PF can be expected to
fail if the instruction phase is temporally detached from all the
conceptual exploration and reflection, compared to multiple
smaller cycles of problem-solving and instruction happening
closely together (Kim et al., 2015). The latter offers differen-
tiated and redundant scaffolding opportunities (Tabak, 2004)
to address the magnitude/diversity of knowledge assembly
that learners need for understanding different conceptual task
elements during the consolidation phase. Finally, PF can be
expected to perform as well as +PS-I when cognitive sup-
port offered in the initial problem-solving phase is focused
on principle-based guidance (covering definitions, conditions
of applicability, relevant equations etc), as opposed to, be-
ing focused on clarifications and hints regarding correct so-
lution steps, accuracy feedback etc. When learners have no
or little relevant prior knowledge related to the target learning
content, providing principle-based guidance during their ini-
tial problem-solving reduces extraneous cognitive load and in
turn facilitates attention to critical task concepts.

Negative/Null Results for PF
(compared to !PS-I)

PF fidelity check revealed that most of the 11 experimen-
tal comparisons in this cluster (Aleven, Koedinger, & Roll,
2009; Roll et al., 2011; Glogger-Frey, Fleischer, Grüny, Kap-
pich, & Renkl, 2015; Kapur, 2015; Likourezos & Kalyuga,
2017; Newman & DeCaro, 2018) considered affective draw
of the problem (9/11). However, about only half of these
comparisons provided evidence for multiple RSM genera-
tion during the initial problem-solving phase (5/11). Fur-
ther, only one third comparisons included follow-up instruc-
tion building on learner generated solutions (4/11) and used
group work as the participation structure (3/11). This sug-
gests low conformity to the PF design criteria. Compari-
son of such low fidelity versions of PF with !PS-I imple-
mentations indicates relatively lower extraneous load in !PS-
I conditions as a key factor for the pattern of results. The
!PS-I conditions usually include worked example followed

by instruction, but sometimes also preparatory activities such
as evaluating pre-designed solutions, problem-posing, read-
ing/summarizing text etc followed by instruction.

One way to interpret the null results across these compar-
isons is by considering the relative contribution of different
instructional activities and the socio-cognitive processes they
trigger. As Kalyuga and Singh (2016) suggest, high(er) extra-
neous load for the PS-I condition is compensated by increase
in intrinsic load (because of the diversity of instructional
goals in the problem-solving phase such as prior knowledge
activation, deep feature identification etc, as opposed to a
solitary goal of solution schema acquisition). Also, PF learn-
ers experience motivational effects (acceptance of challenge,
resolving conflict etc) that are different from those experi-
enced by learners in a !PS-I condition (belief of success prob-
ability etc). Thus, one might conjecture the relative efficacy
of PF over !PS-I implementations to depend on the balance
between extraneous load and intrinsic load triggered by se-
quences of instructional tasks (that individually achieve dif-
ferent sub-goals). More research is needed along these lines.

Summary and Conclusion
We articulated factors representative of learner’s situated-
ness relative to their problem-solving experiences to examine
boundary conditions for failure of PF. PF (or more generally,
PS-I) was compared with three alternate experimental condi-
tions, (i) I-PS (instruction followed by problem-solving), (ii)
+PS-I (scaffolded problem-solving followed by instruction),
(iii) !PS-I (preparatory activity other than problem-solving
followed by instruction). To summarize, our current analy-
ses suggested low design fidelity (weak conformity to PF de-
sign criteria) as the starting point for when PF fails. However,
deeper exploration into experimental comparisons with nega-
tive and null results for PF highlighted four important factors.

First, incoming cognitive and motivational characteris-
tics (e.g., mastery orientation, self-regulation skills, inquiry
goals) influence whether learners can be expected to bene-
fit from PF. Second, nature of the problem-solving task (e.g.,
task difficulty/calibration to prior knowledge, triggered socio-
cognitive processes, domain specificity, implicit task feed-
back) sheds further light into when PF can be expected to
fail. Prior knowledge activation is a key cognitive mecha-
nism that explains the beneficial effects of problem-solving
based preparatory activities within the learning design of PS-
I (Loibl et al., 2017). The boundary conditions explored in
this work open up new research opportunities for developing
variants of PF, or combining PF with other cognitively acti-
vating instructional methods (Hofer, Schumacher, Rubin, &
Stern, 2018) for achieving stronger and more sustainable re-
sults. Such methods, which focus on learner’s naı̈ve concepts
and beliefs as the starting point for knowledge construction
and reorganization (Schneider & Stern, 2010) can include
self-explanations, metacognitive questioning etc.

Third, learner solutions during the problem-solving phase
(e.g., usage of relevant induction criteria, evidence for in-
ternalization, behavior rigidity) and the extent to which they
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are scaffolded impacts learning from PF. Finally, nuances re-
lated to the overall PS-I learning design (e.g., redundancy
of pretest, anchoring of initial problem-solving tasks, feed-
back in instruction phase, additional practice activities after
instruction) matter for efficacy of PF activities over alternate
designs. Although not exhaustive, these factors synthesized
from studies around PF (and more broadly the PS-I litera-
ture) provide evidence-driven rationale for more careful de-
sign/labeling of future implementations. We hope this will
spur lines of inquiry (e.g., see Sinha et al. (2019)) that design
for balancing the incommensurable goals of learning versus
performance (Soderstrom & Bjork, 2015), given the differen-
tial relationship of failure to these goals (Kapur, 2016).
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Abstract

Effective problem solving requires both exploration and ex-
ploitation. We analyze data from a group problem-solving task
to gain insight into how people use information from past expe-
riences and from others to achieve explore-exploit trade-offs in
complex environments. The behavior we observe is consistent
with the use of simple, reinforcement-based heuristics. Partic-
ipants increase exploration immediately after experiencing a
low payoff, and decrease exploration immediately after expe-
riencing a high or improved payoff. We suggest that whether
an outcome is perceived as “high” or “low” is a dynamic func-
tion of the outcome information available to participants. The
degree to which the distribution of observed information re-
flects the true range of possible outcomes plays an important
role in determining whether or not this heuristic is adaptive in
a given environment.
Keywords: exploration; exploitation; networks; social learn-
ing

Introduction
Search—a dynamic maximization problem where outcomes
depend on the agent’s location in the problem space—is a
fundamental part of our cognitive experience (Hills et al.,
2015). When in a new city, we sample from different restau-
rants in order to find the best places to eat (Mehlhorn et al.,
2015). When coming up with a new idea for a research
project, the amount of intellectual and social “reward” we ex-
pect to experience is a function of whether the point in con-
ceptual space we’re interested in is novel and appreciated by
others.

Effective search requires both exploration, or sampling
from the space of outcomes to gain information about what’s
available, and exploitation, or taking advantage of the infor-
mation available and resampling from places known to pro-
duce good outcomes. Should the traveller stick with the first
decent restaurant she finds, or keep exploring her options?
Should the scientist stick with her current line of work, or
branch out into unchartered intellectual territory?

We analyze data from a group problem-solving task to gain
insight into how participants use information from past ex-
periences and from others to achieve explore-exploit trade-
offs in rugged, networked environments. When the world is
uncertain, complex and interconnected, the optimal trade-off

between exploration and exploitation depends on the degree
of complexity, on the extent of interconnectedness—and on
the strategies individuals adopt to process and act on the in-
formation they encounter (Barkoczi, Analytis, & Wu, 2016;
Barkoczi & Galesic, 2016; Toyokawa, Whalen, & Laland,
2019). In some cases, we may adapt our exploration level
to the environment we’re in, even when the shape of the envi-
ronment is unknown to us (Mason & Watts, 2012).

We add to existing work that has looked at behavioral pat-
terns of exploration in different environments, and examine
the mechanisms that lead to the individual- and group-level
patterns we observe. Our contributions are both method-
ological and theoretical. From a methodological perspec-
tive, we specify a generalization gradient and propose it as a
useful measure of both individual- and group-level exploita-
tion in smooth search spaces. From a theoretical perspec-
tive, we document exploration patterns and systematic behav-
ioral responses to outcome information. We find that context-
dependent explore-exploit trade-offs emerge even when par-
ticipants are not told what kind of environment they’re in, and
speculate that differences in exploration patterns can be ex-
plained by differences in the outcome information available
to participants.

Methods
Experimental paradigm
We analyzed data from the group search task designed and
implemented by Mason, Jones, and Goldstone (2008). Each
participant guessed numbers between 0 and 100 and a com-
puter revealed to them how many points were obtained from
the guess by consulting a hidden fitness function1 that trans-
lates a guess into a number of points. Random noise was
added to these points so that repeated sampling was neces-
sary to accurately determine the underlying function relating
guesses to scores. On each trial, a group of participants was
assigned to one of several conditions (discussed below). Tri-
als consisted of 15 rounds, over which each member of the

1We will use the terms “fitness function” and “fitness landscape”
interchangeably.
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group tried to maximize their total number of earned points.
Importantly, on each round, participants got feedback not
only on how well their own guess fared, but also had access
to information about the actions and outcomes of their neigh-
bors.

Two aspects of the environment were experimentally ma-
nipulated: the social network (the network topology that de-
termines who counts as neighbors) and the complexity of the
task (the shape of the fitness function that converted guesses
to earned points). These are discussed in the sections below.

Figure 1: The network structures and fitness functions used
in Mason et al. (2008). Reproduced from Goldstone et al.
(2013) with permission of the authors.

Social network structure Neighborhoods of participants
were created to reflect random, regular lattice, small world,
or fully connected networks. Examples of the graph topolo-
gies for groups of 10 participants are shown in Figure 1. In
the random graph, connections are randomly created under
the constraint that the resulting graph is connected. Partic-
ipants in random graphs tend to be connected to others via
relatively short paths.

The regular lattice configures a group with an inherent spa-
tial ordering such that people are connected to each other if
and only if they are close to one other. The regular lattice
also captures the notion of social “cliques”: If there is no
short path from A to Z, then there will be no direct connec-
tion from any of A’s neighbors to any of Z’s neighbors. The
paths connecting people are much longer, on average, in lat-
tice than in random graphs.

“Small world networks” have both cliques and a short aver-
age path length (Watts & Strogatz, 1998). From an informa-
tion processing perspective, small-world networks are attrac-
tive because the spatial structure of the networks allows in-
formation search to proceed systematically, and the short-cut
paths allow the search to proceed quickly (Kleinberg, 2000).

A fourth network, a fully connected graph, allowed every
participant to see the guesses and outcomes of every other

Full Small Random Lattice Total
world

Unimodal 11 11 19 11 52
Trimodal 9 12 20 11 52
Needle 28 27 18 28 101

Total 48 50 57 50 205

Table 1: Number of trials of each condition in our data.

participant.

Environmental complexity Three hidden fitness functions
for converting guessed numbers to points were tested across
two experiments. The unimodal function has a single best
solution that can eventually be found with a hill-climbing
method. The trimodal function increased the difficulty of the
search by introducing local maxima. A local maximum is a
solution that is better than all of its immediate neighboring
solutions, yet is not the best solution possible. Thus, a simple
hill-climbing search might not find the best possible solution.
Finally, the needle function has one very broad local max-
imum, and one hard-to-find global maximum.2 The height
and variance of the global maximum in the unimodal condi-
tions, global maximum in the trimodal conditions, and local
maximum in the needle conditions are all equal (the height
of these peaks is 50, while the height of the needle’s global
maximum is 70).

After excluding some trials due to apparently incomplete
data, we used 205 trials in total for our analyses. The number
of trials in each conditions is reported in Table 1. The number
of players in each trial ranged from 5 to 19, with a mean of
11.89 (SD = 4.05).3

Measuring exploration
To measure the degree to which a sequence of guesses ex-
ploited a location of the search space (or, conversely, didn’t
explore the space), we developed a similarity metric (here-
after referred to as similarity) that captures the average degree
of closeness of all pairwise combinations of the elements of a
set of guesses along a generalization gradient4 adapted to the
specific problem space:

similarity(Gi,G j) = e−(
Gi−G j

c )2

2Mason et al. (2008) collected data on variations of the needle
function in two separate experiments. In our analyses, when refer-
ring to the needle conditions we pooled data from the two experi-
ments.

3Each group of participants was assigned to several conditions
in sequence (for more details on the experimental procedure, see
Mason et al. (2008)). We consider a “trial” to be uniquely specified
by a combination of a group and a condition. In other words, if a
group completed the task in n conditions, this is recorded in Table 1
as n distinct observations.

4A generalization gradient is a function that transforms distance
in some space to distance in another—usually more psychologically
interesting—space.
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where c = .07 was set to reflect the variance of the global
maxima on the unimodal and trimodal landscapes, and the
local maxima on the needle landscapes. The total average
similarity of a group of guesses G is

similarity(G) =
∑i, j similarity(Gi,G j)−n

n2−n

where n = |G|. We use 1− similarity(G) as our measure
of the degree to which G spans—or explores—the problem
space.

While other measures, such as variance or the average
volatility measure developed by Mason et al. (2008), capture
the average distance between guesses, they do not directly
capture the idea of the extent to which a set of guesses spans
the problem space. Consider a participant A who alternates
between guessing 0 and 100, and a participant B who guesses
a number at every multiple of 10. We’d like to say that B is
the better explorer, because their guesses are spread across
the landscape. However, the variance and average volatility
of participant A’s guesses are much higher than the variance
and volatility of B’s guesses. By taking the average of all
pairwise combinations of guesses, our similarity metric cap-
tures the spread of guesses, rather than simply the extent of
their range.

In addition, our metric captures the intuition that similarity
drops off steeply with the distance between two nearby solu-
tions, but quickly flattens out (see Figure 2). The choices to
jump 99 or 100 units away from where one is are considered
effectively identical, while the choices to jump 0 or 1 unit
away are much less similar.5

Figure 2: The shape of the generalization gradient underlying
the similarity metric.

Some evidence suggests that a gradient of this form is a
good approximation of how people make inferences about un-

5The Gaussian shape of the fitness functions is compatible with
the Gaussian similarity drop-off gradient we used. While this cap-
tures many of the same intuitions, it differs from the well-known
exponential similarity function (Shepard, 1987). All our results are
robust to the use of an exponential similarity function.

seen locations in spatial search tasks (Wu, Schulz, Speeken-
brink, Nelson, & Meder, 2018). However, here we invoke
similarity only to operationalize the degree of “exploratory-
ness” of a set of guesses, not to model participants’ infer-
ences.

Exploration patterns
Individual exploration
Figure 3 shows the heterogeneity in the amount of exploration
between participants. Higher density on the right side of the
histograms indicates that participants in that condition tended
to distribute their guesses more evenly across the problem
space.

Figure 3: Histogram of participant-level exploration levels.
A participant i who makes a sequence of guesses Gi has an
exploration level equal to 1− similarity(Gi). The green lines
indicate the global mean and standard error of exploration
levels across participants in all conditions (.408 (SE = .004)).
The red lines indicate the mean and standard error of explo-
ration levels across all participants within the respective con-
dition. If a person participated in several conditions, they are
treated as a separate participant in each condition.

Individuals tend to explore less than average on the uni-
modal landscapes, which were explicitly constructed so that
their global maxima were easy to find. When the best solu-
tion can be found with very little exploration, more extensive
search may just lead to foregone payoffs rather than valuable
information. We tested this intuition by looking at the corre-
lation between participants’ exploration levels and their av-
erage payoffs. As expected, this correlation is much lower
on the unimodal landscapes than on the more complex land-
scapes.
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Exploration levels tend to be lower than average in one
other condition: the fully-connected network on the needle
landscape. Mason et al. (2008) found that when confronted
with the difficulty of the needle landscape, participants tended
to do better when in the sparsely-connected lattice network
(see Figure 1). They speculated that this was because dis-
tributing social information hindered bandwagoning, or col-
lective convergence on the tempting local maximum. Our re-
sults corroborate this speculation: While participants in the
fully-connected networks explore the needle landscape less
than average, the mean exploration level in the lattice net-
works is higher than the global average.

Collective exploration
The similarity metric allows us to calculate the “exploratory-
ness” of an arbitrary sequence of guesses. In particular, we
can also use it to measure group-level, or collective, explo-
ration.

Figure 4 shows the evolution of collective exploration over
rounds, alongside the proportion of participants who were
within one standard deviation of the global maximum on each
round. Collective exploration declines quickly on the uni-
modal and needle landscapes. While this coincides with more
participants finding the global maximum on the unimodal
landscape, the proportion of participants who find the global
maximum in the needle condition remains relatively low.
These patterns reflect dynamics analogous to the individual-
level patterns we discussed in the previous section: The group
explores less when there is a salient local maximum, and es-
pecially so when outcome information is rapidly broadcast
throughout the network.

The consequences of early exploration
Our explanations for many of the results in the previous sec-
tions depend on our assumption that exploration is more im-
portant in some cases than in others. In some environments,
low exploration may cause high payoffs; quick convergence
on promising areas of the landscape may cause the average
payoff to rise. In others, maintaining a high amount of explo-
ration and broadly surveying the problem space could lead to
subsequently higher payoffs. This section further unpacks the
sequentially contingent relationship between exploration and
expected reward in the different conditions.

Figure 5 plots the cross-correlations between average pay-
offs and the collective exploration level within a round. It’s
unsurprising that all the correlations are below zero; as shown
Figure 4, collective exploration subsides while payoffs in-
crease over time. More informative for our purposes is the
difference between the correlation of early exploration with
later payoffs, and the correlation of early payoffs with later
exploration. An interpretation that exploration causes higher
downstream payoffs would require that the former be higher
than the latter. The insets of the plots shows this difference
for each condition. When the blue line is above zero, this in-
dicates that exploration now is more highly correlated with
payoffs later, than payoffs now are with exploration later.

Figure 4: Collective exploration levels (blue) and propor-
tion of players within one standard deviation of the global
maximum (red) over rounds. Each dot represents one trial.
On round t, group k has an exploration level equal to 1−
similarity(Gk,t) where Gk,t is the set of all guesses the mem-
bers of group k made on that round. The blue line plots the
mean exploration level across trials, and the red line plots the
proportion of all players across trials who were within one
standard deviation of the fitness function’s global maximum.

The positive trend in the inset is most consistent across
the needle and regular lattice conditions. When connectiv-
ity is low and finding the global maximum is especially diffi-
cult, group-level exploration leads to higher downstream pay-
offs. While this pattern is also consistent with an account that
higher payoffs cause quicker collective convergence, the “ex-
ploration leads to downstream payoffs” account has the ad-
vantage that it predicts the particularly strong positive trend
for the needle landscape, which is explicitly designed so that
the global maximum is hard to find without considerable ex-
ploration.

WSLS: Win-shift-less, lose-shift-more
Win-stay, lose-shift (WSLS) is a heuristic applicable to
search tasks by adaptive biological and artificial systems. The
rule is simple: When you’re successful, stay close to where
you currently are. When you’re unsuccessful, move further
away (Bonawitz, Denison, Gopnik, & Griffiths, 2014; Nowak
& Sigmund, 1993; Robbins, 1952).

WSLS is usually applied in contexts with discrete binary
outcomes that can be easily dichotomized into wins and
losses. However, the problem space facing the currently con-
sidered participants, like many real-world problem spaces,
is both smooth—similarity of actions predicts similarity of
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Figure 5: Cross-correlations between group exploration level
and payoffs. On round t, group k has an exploration level
equal to 1 − similarity(Gk,t) where Gk,t is the set of all
guesses the members of group k made on that round. Payoff
observations are the average payoff participants experienced
on round t. A lag of i on the x-axis indicates the correla-
tion between group exploration level at time t and average
payoffs at time t + i. Each dot corresponds to the correlation
using the data from one trial. The red lines plot the corre-
lations across trials. Insets show the difference between the
cross-correlation coefficients at lag i and lag−i for 0≤ i≤ 7.

outcomes—and continuous. In this section, we show that par-
ticipant behavior is consistent with a generalization of WSLS:
The degree to which participants stray from promising loca-
tions varies with both the absolute and relative amount of re-
ward they’ve experienced there. Participants shift less when
they win, and shift more when they lose.

In many situations, WSLS or close variants can lead to ap-
proximately optimal search behavior on intractable problem
spaces (Bonawitz et al., 2014; Robbins, 1952). To the par-
ticipants facing the task at hand, the range of possible out-
comes is unknown. We suggest that they dynamically in-
corporate outcome information into their understanding of
what’s a “win” and what’s a “loss”. When good outcomes
are easy to find, the outcome information participants accu-
mulate accurately reflects the range of attainable payoffs. In
these cases, the application of WSLS-like rules may lead to
adaptive explore-exploit trade-offs. But when the best out-
comes are difficult to find, participants do not get full out-
come information about the range of possible payoffs. They
fail to appropriately calibrate their “shift-more” and “shift-
less” responses. On the needle landscape, WSLS-like rules
may lead participants to prematurely converge on the local

maximum. In short, when good outcomes are hard to find,
information flow is reduced, and individuals cannot appropri-
ately tune their behavior to the relevant search space, result-
ing in suboptimal individual- and group-level outcomes.

Absolute “wins”: Responses to high payoffs

Figure 6 shows how the similarities between participants’
preceding guesses (blue) and subsequent guesses (red) co-
vary with the payoffs they experience. Recall that the sim-
ilarity of two guesses is a measure of the closeness of the
guesses. If a participant’s guesses on round t and round t +1
are more similar than their guesses on round t and round t−1,
we say they are exploiting more on round t +1 than on round
t.

In all conditions, there is some payoff value above which
participants tend to exploit more than explore. The blue ver-
tical lines mark the normalized payoff values where the trend
in participants’ future level of convergence dips below their
past level of convergence—participants begin to shift more
(explore). The red vertical lines indicate payoff values where
the reverse switch occurs—participants begin to shift less (ex-
ploit). In general, participants shift more when payoffs are
low, and shift less when payoffs are high.

Where this switch occurs varies by landscape. We spec-
ulate that these differences are a direct effect of differences
in the outcome information available to participants, and how
they adjust their beliefs about the range of possible payoffs
based on their observations (Parducci, 1965). In the trimodal
conditions, the “switch point” is shifted to the right (partic-
ipants wait for relatively high payoffs before they begin to
settle down), but so is the density of payoff observations. As
shown in Figure 1, payoffs on the trimodal landscape remain
relatively high even when participants stray from the global
maximum. When they observe that locations that lead to
“wins” are distributed widely across the landscape, partici-
pants are more reluctant to settle down.

By contrast, in the needle conditions, both the switch point
and the bulk of the density is shifted towards the left side of
the plot. Few participants stumble upon the narrow global
maximum, and most experienced payoffs are a smaller pro-
portion of the highest possible payoff. The emergent patterns
resemble those in the unimodal conditions because most par-
ticipants do not have outcome information to suggest that they
are not on a well-behaved landscape with a similar payoff dis-
tribution.

Relative “wins”: Responses to improving payoffs

Figure 7 shows how the similarity of participants’ guesses
changes as a function of the difference between their most re-
cently experienced payoffs. Points to the right of the y-axis
correspond to instances where a player had just experienced
an immediate increase in payoff. Points above the x-axis cor-
respond to instances where the player’s round-to-round ex-
ploration level decreased. In general, immediate gains lead to
convergence, and losses lead to continued exploration.

2822



Figure 6: Experienced payoffs against similarity of guesses.
p(t) denotes the payoff a player experienced at time t (nor-
malized by the height of the global maximum in each con-
dition), and similarity(g(t),g(t ′)) denotes the similarity be-
tween a guess made at time t and a guess made at time t ′.
Each dash corresponds to one experienced outcome. Solid
lines show the estimated Gaussian kernel regressions. Ver-
tical lines mark shifts between exploitation and exploration
(see text).

Note the inverted U-shaped trend recovered by the kernel
regression across the needle landscapes. Participants who
have just experienced an exceptionally large improvement
tend to shift more than those who have just experienced a
moderate improvement. This is consistent with our under-
standing of WSLS as a dynamic process: Participants who
stumble upon the global maximum dynamically adjust their
understanding of the range of possible payoffs, and are less
willing than before to settle with what they have.

Discussion
We argued that the behavioral patterns we observe are con-
sistent with the application of a dynamic, continuous vari-
ant of win-stay, lose-shift. While participants tend to “stay”
in areas where they’ve experienced both high and improving
payoffs, they use information from themselves and others to
adapt their willingness to “stay” and “shift” to their environ-
ment.

One phenomenon we have only briefly addressed is Mason
et al. (2008)’s finding that participants in the lattice network
were more likely than participants on other networks to find
the needle landscapes’ global maxima. Our central claim is
that reduced information flow can lead to suboptimal out-
comes when participants do not have full information about

Figure 7: Differences in experienced payoffs against differ-
ences in similarity of guesses. Notation is the same as in Fig-
ure 6. Each dash corresponds to one experienced outcome.
Solid lines show the estimated Gaussian kernel regressions.

the range of possible payoff values. Why would the net-
work that restricted information flow the most perform the
best when the search task is especially hard?

Visual inspection of Figure 6 suggests that the payoff val-
ues at which participants switch from exploration to exploita-
tion do not vary much as a function of the network structure,
but depend more on the underlying fitness function. The lat-
tice network’s structural restriction of information flow could
mean that it takes participants even longer to reach their
threshold value or “switch point”. Participants may search
longer for “wins”, resulting in more exploration where it mat-
ters the most.

While our analyses were motivated by our desire to under-
stand the relationship between individual- and group-level ex-
ploration dynamics, we did not assume that participants make
this trade-off explicitly. Rather, we suggested that partici-
pants may be using simple heuristics from which an appar-
ent trade-off emerges. We adopted an information processing
framework (Oppenheimer & Kelso, 2015): The environment
affects behavior and outcomes via its effect on the informa-
tion group members receive and broadcast to others. By an-
alyzing participant behavior through the lens of information
flow, we can come closer to understanding what determines
the search conditions under which we do well, and the condi-
tions under which we could do much better.
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Abstract 

Previous research on adjective ordering in linguistics and 
psychology has focused primarily on the unmarked or default 
order of adjectives, as in large blue car. Inverted word order, 
as in blue large car, which violates the proposed semantic 
constraints on adjective placement, received relatively little 
attention. In two studies we show that the inverted order is not 
as limited in scope as previous researchers have argued. We 
propose that the inverted word order reflects the subjective 
distance principle: the attribute that is psychologically closer 
to the speaker is mentioned first. Our explanation draws on 
research on word order in binomials, thus connecting two 
previously unrelated research traditions on word order in 
linguistics and cognitive psychology.  

Keywords: adjective ordering; binomials; context-
dependency; semantics; pragmatics; subjective distance 

Introduction 
Why does Itsy bitsy teeny weeny yellow polka dot bikini 
sound so good to the ear? One possible factor is the choice 
of adjectives and their artful arrangement. What factors 
determine the ‘right’ order of adjectival modifiers in a 
phrase has been a topic of active inquiry in linguistics and 
psychology (Cinque, 2014; Danks & Glucksberg, 1971; 
Kotowski & Härtl, 2019; Martin, 1969; Scontras, Degen, & 
Goodman, 2017; Truswell, 2009; Wulff, 2003). According 
to the semantic approach, the order of adjectival modifiers is 
dependent on their semantic class, such as e.g. Color and 
Size. The underlying assumption is that semantic classes 
form a scale with respect to some psychological property, 
such as subjectivity. If class Size precedes class Color on 
the subjectivity scale, we expect that adjectives denoting 
size (e.g., teeny weeny) will precede adjectives denoting 
color (e.g., yellow)(cf. Dixon, 1982; Hetzron, 1978; Whorf, 
1945). 
    Most of the research in the semantic tradition aims to 
explain the unmarked or default adjective order, as in large 
blue car. While many authors acknowledge that in some 
communicative situations the default, semantically 
determined word order can be overridden, the mechanisms 

that give rise to the inverted word order, as in blue large 
car, have received relatively little attention in the literature. 
One exception is a series of studies by Danks and co-authors 
in the early 70s (Danks & Glucksberg, 1971; Danks & 
Schwenk, 1972). These authors advocate a pragmatic 
approach and propose that the order of adjectives depends 
on how well they differentiate among salient contextual 
alternatives: the most discriminative adjective is mentioned 
first. For example, in a context in which two large cars, one 
red and one blue, are equally salient, color would be more 
discriminative than size, and would give rise to the inverted 
word order: blue large car. In this approach the 
communicative goals of conversation participants rather 
than semantic classes of adjectives and their properties 
determine adjective ordering. 
   One of the limitations of the pragmatic approach proposed 
by Danks and co-authors is that it only applies to cases in 
which the set of potential discourse referents and their 
attributes (the two cars in the example above) have already 
been established. Our two experimental studies demonstrate 
that the inverted adjective ordering is also attested in 
contexts without previously established referents. Such 
cases cannot be explained by reference to discriminative 
attributes, because there are no alternatives that need to be 
differentiated. Our explanation of the inverted word order in 
such contexts is based on research on flexible word order in 
binomials, i.e. constructions with two conjoined nouns or 
adjectives, as in Democrats and Republicans (Iliev & 
Smirnova, 2016; see also Cooper & Ross, 1975). 
Specifically, we propose that the inverted adjective order 
reflects the same psychological principle that was proposed 
to explain word order in binomials – the subjective distance 
principle. According to this principle, the attribute that is 
psychologically closer to the speaker is mentioned first. Our 
paper offers a principled explanation for inverted word 
order and uncovers parallels between two previously 
unrelated domains of research: word order in binomials and 
word order in adjectival modifiers.  
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Two Approaches to Adjective Ordering 

The Semantic Approach 
According to the semantic approach, the meaning of 
adjectives is responsible for the observed word order 
(Martin, 1969; Scontras et al., 2017). Several semantic 
features have been proposed in the literature as determinants 
of adjective ordering, including definiteness of denotation, 
inherentness (also referred to as intrinsicalness, 
substantiveness, and closeness to the noun in meaning), and 
subjectivity.1 An adjective’s definiteness of denotation is 
determined both by the number of nouns it can modify and 
by the number of senses an adjective may have in different 
contexts (Martin, 1969; Wulff, 2003). Adjectives which are 
relatively limited in the number of nouns they may modify, 
and whose denotations remain constant across varying 
contexts, are said to be more definite, and are positioned 
nearer to the noun (Martin, 1969). Thus, old embroidered 
pillow sounds more natural than embroidered old pillow, 
because the more definite adjective, embroidered, is 
positioned closer to the noun.  

In one of the first psychological studies on adjective 
ordering, Martin (1969) contrasted different semantic 
features of adjectives and found that definiteness of 
denotation is the most reliable predictor of an adjective’s 
position in a phrase (cf. Wulff, 2003). Martin proposed that 
the definiteness of denotation is directly related to an 
adjective’s accessibility, which in turn determines the 
placement of adjectives. Definite adjectives are accessed 
faster than indefinite ones, because their meaning does not 
vary depending on the noun they modify. Therefore, less 
time is needed to scan the meaning of the definite adjective 
and to establish the relation between the property denoted 
by this adjective and the meaning of the modified noun. In 
this approach, the adjectives that are accessed faster – 
definite adjectives – appear closer to the noun. In 
production, the adjectives that were accessed first come last 
in a sequence of adjectives.  

An adjective’s inherentness is defined as the extent to 
which its intrinsic, essential properties reflect the properties 
of the noun it modifies. Adjectives denoting color, material, 
breed, nationality, and function are considered to be more 
inherent than adjectives denoting size, shape or similarly 
non-intrinsic qualities (Martin, 1969). More inherent 
adjectives are positioned closer to the noun. The scale in (1) 
ranks different semantic classes in terms of their 
inherentness.  

 
(1) Personal judgment < Size < Color < Place of origin         Noun 
 
less inherent             more inherent 

                                                             
1 Other possible determinants of adjective ordering are 

morphological weight, as well as various semantic considerations, 
including whether the adjectives refer to temporary or permanent 
properties, whether adjectives are subsective or intersective 
(Truswell, 2009), etc. See Scontras et al. (2017) and Kotowski and 
Härtl (2019) for evaluation of these models’ predictions. 

According to the scale in (1), based on the adjective 
classification in Danks and Glucksberg (1971), adjectives 
denoting size will be placed before adjectives denoting 
color, because the latter are more inherent and should be 
positioned closer to the nominal head (Noun).  

Besides definiteness of denotation and inherentness, 
which dominated research on adjectives in the 60s and 70s, 
another semantic feature – subjectivity – came to the 
attention of psychologists and linguists (Hetzron, 1978; 
Quirk et al., 1985; Scontras et al., 2017). According to 
Quirk et al. (1985: 1341), there is “one principle accounting 
for all premodifiers: a subjective / objective polarity. That 
is, modifiers relating to properties which are […] visually 
observable, and objectively recognizable or assessible, will 
tend to be placed nearer to the head and be preceded by 
modifiers concerned with what is relatively a matter of 
opinion, imposed on the head by the observer, not visually 
observed, and only subjectively assessible.”  

Scontras et al. (2017) conducted the first experimental 
studies probing the effect of subjectivity on adjective 
ordering. The authors first measured ordering preference by 
eliciting naturalness ratings for adjective-adjective-noun 
sequences. Experimental participants were asked to indicate 
which ordering sounded more natural, e.g. big blue box or 
blue big box. Once ordering preferences were established, 
the authors tested adjective subjectivity by asking 
participants to indicate the subjectivity of the same 
adjectives on a sliding scale, ranging from “complete 
subjectivity” to “complete objectivity”. Results indicated 
that adjective subjectivity indeed predicts ordering 
preference, where the higher an adjective’s subjectivity is, 
the farther it is placed from the noun it modifies. The 
authors concluded that subjectivity alone was more reliably 
predictive of adjective ordering than other semantic 
features, including the adjectives’ inherentness.  

A common feature of all semantic accounts is that they 
are designed to explain the unmarked / default adjective 
ordering. While most authors working in this tradition 
acknowledge that the unmarked order can be violated, little 
is known about the mechanisms that regulate the ordering of 
adjectives in such cases. The exception is a series of work 
by Danks and colleagues, to which we turn next. 

The Pragmatic Approach 
According to the pragmatic approach, communicative goals 
of conversation participants affect how adjectives are 
positioned in a noun phrase (Danks & Glucksberg, 1971; 
Danks & Schwenk, 1972). Specifically, more discriminative 
or informative adjectives tend to be mentioned first. In 
different communicative contexts, different features will be 
more informative, which explains variation in adjective 
ordering. In the experimental paradigm employed by Danks 
and co-authors, participants were presented with a set of 
objects, and were asked to choose the description of the 
target object (or referent) that would help the listener to 
distinguish it from non-referents. For example, if the set of 
objects consists of two cars, which have the same size, 
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large, but differ in color, one is blue and another one is red, 
the color is the most informative feature, and is predicted to 
be mentioned first. Thus, if the target object in question is 
the blue car, the participants are expected to describe it as 
the blue large car, mentioning the color attribute first, and 
violating the default word order (e.g., the large blue car), 
where size precedes color, as predicted by (1). The results of 
experimental studies confirmed this prediction in both 
comprehension and production tasks. Danks and Schwenk 
(1972) found that when color is the discriminative feature, it 
is mentioned first in 57 % of the cases. In the control 
condition, the normal word order, i.e. size before color, was 
preferred in 85% of cases.  

Danks and co-authors argue that the pragmatic rule is 
more general and that the semantic rule based on 
inherentness, which explains the default adjective ordering, 
is in fact “the most frequent case of the more general 
pragmatic rule” (Danks & Glucksberg, 1971). That is, since 
more intrinsic adjectives tend to be less informative, they 
are less likely to discriminate between referents and non-
referents, and, therefore, are less likely to appear first in a 
sequence of adjectives.  

The pragmatic approach proposed by Danks and co-
authors was criticized by the advocates of the semantic 
approach. For example, Martin and Ferb (1973) observe that 
the unmarked and marked adjective orders have different 
phonological and syntactic properties. The unmarked word 
order is characterized by constant stress on all adjectives (or 
by increasing stress) and by the lack of juncture (pause) 
between the adjectives, e.g. large blue car. Syntactically 
these phrases are argued to have a flat, multiple-branching 
structure. On the other hand, the contextually-determined 
order shows contrastive stress on the discriminating 
adjective, and a juncture, e.g. BLUE, large car  
Syntactically these constructions have a right-branching 
structure (see Kotowski & Härtl, 2019; Scott 2002; Sproat 
and Shih, 1988 for discussion). Since the unmarked and 
marked structures have different properties, they cannot be 
accounted for by the same rule, i.e. the general pragmatic 
principle proposed by Danks and co-authors.  

Martin and Ferb (1973) and Richards (1975) further argue 
that while communicative demands can sometimes trigger 
the inverted word order observed in Danks and Schwenk’s 
(1972) experiments (BLUE large car), the same effect can 
be achieved by preserving the unmarked order but stressing 
the informative adjective, as in large BLUE car. Richards 
(1975) argues that in the paradigm adopted by Danks and 
Schwenk (1972), the color adjective must be stressed to 
produce preference for the inverted word order. Another 
weakness of Danks and Schwenk’s studies is that they only 
take into consideration two classes of adjectives: color and 
size. Based on these observations, Richards (1975: 213) 
concludes that “the speakers are reluctant to give up their a 
priori preference for normal order and will do so only under 
highly specialized circumstances.” From this perspective, 
the inverted order is seen as an optional, limited in scope 

phenomenon, which is peripheral to the study of adjective 
ordering in general.  

While some of the criticism against the pragmatic 
approach might be justified, neither Martin and Ferb (1973), 
nor a more recent study by Scontras et al. (2017) offer a 
principled explanation of contextually-induced order. In 
what follows, we (i) present the results of two experimental 
studies which show that the inverted order of adjectives is 
more common and appears in a larger number of contexts 
than what was previously assumed, and (ii) propose that 
some cases of the inverted order can be explained by the 
subjective distance principle, which was proposed to explain 
word order in binomials (Iliev & Smirnova, 2016).2 In the 
next section we compare the two phenomena and formulate 
our hypothesis about the effect of the subjective distance 
principle on inverted adjective ordering. 

The Subjective Distance Principle in Binomials 
Binomials are constructions with two conjoined elements 
belonging to the same lexical class, such as Democrats and 
Republicans (two nouns are conjoined) or good and bad 
(two adjectives are conjoined). While research on adjective 
ordering and word order in binomials has developed 
independently, there are surprising parallels between the 
two phenomena. First, word order in both domains is rather 
flexible, unlike word order in English in general. For 
example, while reversing the position of the subject and the 
verb results in purely ungrammatical constructions (*Slept 
John), adjectives and binomials show more flexibility, 
despite the fact that there is often a clearly preferred word 
order. Thus, while the binomial men and women is more 
frequent, women and men is also possible (Iliev & 
Smirnova, 2016).3 Similarly, in the domain of adjectives, 
large blue car sounds more natural than blue large car, but 
the latter is also possible.  

Second, in both domains phonological factors might 
affect word order to some extent. For example, in binomials 
and adjectives, word length and the number of syllables 
appear to affect word order: the shorter word and the word 
with a lesser number of syllables tends to be mentioned 
first. This explains bread and butter and boots and saddles 
in binomials (Cooper & Ross, 1975: 79), and the order of 
adjectives in the long intelligent book (Wulff, 2003). 
Importantly, however, the phonological rule explains some 
of the data, but reference to semantic and pragmatic 
constraints, which in turn are seen as a reflection of deeper 
psychological principles, is needed in both domains. 

One explanation for the word order in binomials is the 
subjective distance principle proposed by Iliev and 
Smirnova (2016). According to this principle, the attributes 
that are psychologically closer to the speaker – more 

                                                             
2 Not to be confused with subjectivity in Scontras et al. (2017), 

discussed in the previous section. 
3 Binomials with relatively flexible word order, such as men and 

women, should be distinguished from the so-called freezes, where 
the order is fixed, as in here and there (cf. the ungrammatical 
*there and here). 
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desirable, more familiar, or closer to the identity of the 
speaker more generally – will tend to be mentioned first in 
binomials (cf. Cooper & Ross, 1975). A series of studies 
confirmed this prediction in the domain of consumer 
preferences, political orientation, religion, gender, race, and 
geographic locations. For example, the analysis of the 
corpus of senate speeches showed that in the domain of 
political orientation, liberals are more likely to use 
Democrats and Republicans, thus mentioning their own 
political party first, while conservatives prefer the reversed 
word order: Republicans and Democrats. In another study, 
Iliev and Smirnova (2016) analyzed the distribution of 
gender words in binomials, looking at the literary work of 
more than 6000 authors. They found that female authors, 
when compared to male authors, tended to mention words 
referring to females first, as in sister and brother, women 
and men, and daughter and son. The distribution of gender 
words in binomials is particularly illuminating as it shows 
how the subjective properties of the speakers can override 
the default or more common word order, such as men and 
women.  

We hypothesize that the subjective distance principle can 
also explain some cases of inverted word order in adjectival 
sequences. Specifically, we predict that the attribute that 
refers to a more desirable property according to the speaker 
would be mentioned first. The two studies below test this 
hypothesis for written and spoken modality.  

Experimental Studies 

Study 1: Adjective Order in Written Language 
 
Participants Twenty-one participants were recruited from 
Amazon Mechanical Turk web service. All participants 
indicated that they were native speakers of English. The 
average age was 38 years old (the youngest 19, and the 
oldest 69). 48% were male, and 52% were female. The 
participants were compensated for their participation.  

 
Stimuli Each stimulus consisted of two adjectives followed 
by a noun. All nouns referred to common objects: shoes, 
table, scarf, bike, watch, cat, and restaurant. The adjectives 
within the same nominal phrase belonged to different 
semantic classes, e.g. color and material in the case of 
brown suede shoes. We intentionally avoided modifiers 
belonging to the same semantic class within a query, since it 
has been observed that members the same semantic class are 
not ordered with respect to each other. For example, both 
clever brave man and brave clever man are possible, where 
brave and clever belong to the same semantic class – human 
propensity (Dixon, 1982). Moreover, unlike Danks and 
Schwenk (1972), who used only color and size adjectives, 
we included adjectives belonged to different semantic 
classes, including color, material, size, origin, and 
composition. 
 

Design and Procedure At the beginning of the study, the 
participants read a short story introducing the main 
protagonist, Jim. Jim was looking for an object or place 
online, and needed help formulating his search queries.  

Next, participants saw 7 questions, each dedicated to a 
particular item that Jim was looking for. The seven items 
were Shoes, Table, Scarf, Bike, Watch, Cat, and Restaurant. 
Each item had two attributes, e.g. color and material for 
shoes. For each item, there were two conditions. In one 
condition (Condition A), the context of the story specified 
that one attribute was more important than another. In 
another condition (Condition B), the importance of the 
attributes was reversed. For example, in condition A for 
Shoes, the participants learned that the color (brown) is very 
important to Jim, but material (suede) is less important. In 
condition B for the same item, the material (suede) was very 
important and the color (brown) was negotiable. (See the 
Appendix for the exact formulations.) 

The participants then saw two alternative formulations of 
a query. Each formulation mentioned the two attributes but 
in a different order, e.g. brown suede shoes and suede 
brown shoes. The participants were asked to choose the 
formulation that is more appropriate given the context. Each 
participant saw only one condition per item (between-
subject design). The conditions and the choice of the order 
in which two alternative queries were presented were 
randomized. Table 1 shows the list of stimuli and the two 
alternative formulations for each query. 

 
Table 1: List of stimuli and the default word order 

predicted by semantic theories. 
 

Items Two alternative formulations of 
a search query 

Default 
order 

Shoes brown suede shoes  ✓ 
 suede brown shoes  
Table large oak table  ✓ 
 oak large table   
Scarf long wool scarf  ✓ 
 wool long scarf   
Bike red aluminum bike  ✓ 
 aluminum red bike   
Watch silver quartz watch ✓ 
 quartz silver watch  
Cat short-haired white cat ✓ 
 white short-haired cat  
Restaurant Indian vegetarian restaurant  ✓ 
 vegetarian Indian restaurant  

 
Results To analyze whether the order of adjectives 
depended on the importance of a particular attribute to the 
speaker, we used the following coding scheme: When the 
participants chose the query in which the most important 
attribute in a given context was mentioned first, their answer 
was coded as 1. The answer in which the less important 
attribute was mentioned first was coded as 0. For example, 
if the context specified that the color of the shoes was more 
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important than their material, and the participant chose the 
query in which the color preceded the material (brown suede 
shoes), the answer was coded as 1. If in the same context the 
participants chose the reverse order (suede brown shoes), 
the answer was coded as 0. 

If adjective ordering is not dependent on the subjective 
importance of the attribute, and the same (default) word 
order is preferred across different conditions, then the 
participants’ answers will be at the chance level. 
Specifically, if a participant in Condition A chose brown 
suede shoes, her answer is coded as 1; and if the participant 
in the B condition chose the same query, her answer is 
coded as 0. The mean of the two answers is 0.5. If, however, 
adjective ordering is affected by the subjective importance 
of the attribute, then the answers for each condition will be 
higher than the chance level. 
     Collapsing across items, there was a strong tendency for 
mentioning the most important attribute first (m=.80, 
SD=.21). The choices were significantly higher than the 
chance level, which was .5 (t(20)=6.63, p < .001, one-
tailed). The results are shown in Figure 1. These results 
support our hypothesis that adjective order is dependent on 
the subjective preferences of the speaker.4 
 

 

Figure 1: The proportion of times word order preferences 
are driven by the subjective importance of attributes in 
written language (typed queries). Higher numbers on the y-
axis show greater association between adjectival order and 
the subjective distance. Values at the chance level would 
show that participants disregard subjective importance and 
chose the same word order in both conditions. Error bars 
represent +/-1SE. 

 

                                                             
4 A reviewer raised the point that the inclusion of the congruent 

condition (canonical order and importance) is not informative. In 
our design, the congruent condition serves as a control for the 
incongruent condition. It might be the case that the canonical order 
expected by the researcher is incorrect, or that there is a substantial 
variance in the preference for canonical order among subjects. By 
averaging across the congruent and incongruent choices we control 
for that risk, so that the deviation of mean choices higher than .5 
could safely be interpreted as importance preference, and mean 
choices lower than .5 would indicate reversed importance 
preference. 

While the results from Study 1 provide support for the 
hypothesis that the subjective preferences of the speakers 
affect word order of adjectives, they are limited to a 
particular modality – written language. In Study 2 we test 
whether the same principle holds for spoken language. This 
question becomes particularly important in light of the 
criticism of the early pragmatic approaches about the role of 
intonation.  

Study 2: Adjective Order in Spoken Language 
 
Participants Thirty participants were recruited from 
Amazon Mechanical Turk web service. All participants 
indicated that they were native speakers of English. The 
average age was 32 years old (the youngest 23, and the 
oldest 53). 67% were male, and 33% were female. The 
participants were compensated for their participation. 
 
Stimuli We used the same adjectives and nouns as in Study 
1. Unlike Study 1, all stimuli were presented in audio 
format. The stimuli were read by a male native speaker of 
English. Each attribute within a query was read with even 
intonation, and there were no contrastive stress or juncture 
between attributes. This design intentionally separates 
intonation from word order, and thus can help us to assess 
the criticism that the inverted word order alone is not 
sufficient to convey the importance of the attribute in a 
given context (Richards, 1975).  
 
Design and Procedure The study had the same design as 
Study 1, except that this time participants had to click on a 
button to hear a search query. As in Study 1, the order of the 
conditions and the order of the stimuli were randomized. 
Each participant saw only one condition per item.  
 
Results We used the same coding scheme as in Study 1: all 
answers in which the order of the attributes matched the 
context, i.e. the most important attribute in a given context 
was mentioned first, were coded as 1. The answers in which 
the most important attribute was mentioned second were 
coded as 0. As in Study 1, we found strong preference for 
the most important attribute to be mentioned first (m=.68, 
SD=.35). The answers differed significantly from the chance 
level (t(29)=2.77, p=.004). The results of Study 2 are shown 
in Figure 2. 
   The results of Study 2 confirmed our findings in Study 1. 
We controlled for intonation and prosodic features and 
found that word order of adjectival modifiers reflects 
subjective preferences of the speaker, which is seen as 
manifestation of the subjective distance principle. The 
subjective distance principle extends to both written and 
spoken domains.  
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Figure 2: The proportion of times word order preferences 
are driven by the subjective importance of attributes in 
spoken stimuli. Error bars represent +/-1SE. 
 

General Discussion 
Our paper makes empirical and theoretical contributions to 
research on adjectival word order, and inverted order, 
specifically. First, our study shows that inverted word order 
is not limited to contexts with previously established salient 
referents, as in the original studies by Danks and co-authors. 
Second, we demonstrate that the inverted word order is 
manifested in both spoken and written domains. Our 
experimental design in Study 2 divorces intonation from 
word order, and we find that word order alone is meaningful 
and can convey the value of a particular attribute to the 
speaker, contra Richards (1975). Third, we propose that the 
inverted word order can be accounted for by the same 
psychological principle that explains word order in 
binomials. If a particular attribute, e.g. material, is more 
important to the speaker than color, this attribute would be 
mentioned first and would be positioned further away from 
the noun. Our explanation connects two previously 
unrelated research domains: binomials and adjectival 
modifiers. 

One important question raised by a reviewer pertains to 
the applicability of the subjective distance principle to 
languages with post-nominal adjectives. It is worth to point 
out that the default ordering preferences based on a semantic 
principle are reversed in such languages. Specifically, the 
adjectives that tend to be mentioned first in languages with 
pre-nominal modifiers are usually mentioned last in 
languages with post-nominal modifiers. Despite the 
differences in word order, the distance between the head 
noun and the adjectival modifier remains more or less the 
same (Hetzron 1989; Scontras et al. 2017). Whether the 
subjective distance principle is also reversed in languages 
with post-nominal adjectives, is a question for future 
research. 

Unlike Danks and his co-authors, we do not assume that 
the default and inverted word order should be explained by 
the same principle. It is plausible that the default word order 
can be explained with the semantic principle, such as 
adjective’s subjectivity, as Scontras et al. (2017) argue. On 

the other hand, the inverted word order, at least in some 
cases, can be explained by the subjective distance principle, 
and the importance of a particular attribute to the speaker, 
specifically, as we show here. That the default and inverted 
word orders are explained by different principles is not 
surprising and is consistent with a more general observation 
in the literature that one principle, phonological, semantic, 
or pragmatic, is not sufficient to explain word order 
phenomena (Benor & Levy, 2006; Cooper & Ross, 1975 on 
binomials, Wulff, 2003 on adjective ordering).  
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Appendix: Stimuli 

Study 1: General Instructions 
Jim has just moved to a new city and is now in the process 
of settling down. He looks to buy several items online, and 
he also plans to use online information to find certain places 
in his new hometown. However, Jim is not sure how exactly 
to formulate his queries, and he needs your help deciding 
which query would be more effective. In what follows, you 
will see the description of the items that Jim is looking for. 
You need to help him choose which of two alternative 
queries he should use.  

Specific Instructions: Shoes – Condition A 
Jim is looking for a pair of shoes. He would prefer a pair 
that is made of suede and is brown. He is firm about the 
material – he wants suede and not leather – but he can 
compromise on the color. If he finds a pair he likes, and it's 
in black instead of brown, he might still take it. If he can 
enter only one query in the search box, which query should 
he choose? (The participants were then presented with two 
alternative formulations of a query). 

Specific Instructions: Shoes – Condition B 
Jim is looking for a pair of shoes. He would prefer a pair 
that is made of suede and is brown. He is firm about the 
color – he wants brown and not black shoes – but he can 
compromise on the material. If he finds a pair he likes, and 
it’s in leather instead of suede, he might still take it. If he 
can enter only one query in the search box, which query 
should he choose? (The participants were then presented 
with two alternative formulations of a query). 
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Abstract 

The mnemonic benefits of animate (e.g., Tiger) over inanimate 
(e.g., Table) stimuli have been demonstrated across several 
different memory paradigms. Given the ubiquity of inanimate, 
computer-generated voices we investigated if the animacy of a 
presentation source confers mnemonic benefits. We asked: is 
information delivered by a human voice better remembered 
than information presented by a computer-generated voice? 
Word-lists were presented auditorily by either a human or a 
computer-generated voice and memory was measured using a 
free recall assessment. In Experiment 1, words presented in a 
human voice were better remembered than words presented in 
a computer voice. Experiment 2 demonstrated that beliefs 
about the animacy of a computer-generated voice were not 
sufficient for any benefits to accrue, suggesting a possible 
boundary condition for the effect. Both experiments replicated 
the mnemonic benefits of animate words and demonstrated 
further extensions of the effect to spoken word presentation.  

Keywords: Animacy; Recall; Memory 

Introduction 

Evolutionary psychologists have long argued that our minds 

have been adapted through the forces of natural selection 

(Cosmides & Tooby, 1994). Extending this evolutionary 

logic, it is further argued that our memory system has been 

adapted to serve the purposes of surviving in our distant 

ancestral environments. A recent example of this work would 

be the effect of “survival processing” by which mnemonic 

benefits are observed for stimuli experienced in 

evolutionarily salient contexts (Nairne, Thompson, & 

Pandeirada, 2007). Another example of adaptive memory is 

the finding of superior memory for animate compared to 

inanimate stimuli (Bonin, Gelin, & Bugaiska, 2014; Nairne, 

VanArsdall, Pandeirada, Cogdill, & LeBreton, 2013; 

VanArsdall, Nairne, Pandeirada, & Cogdill, 2015).  
The animacy effect (henceforth item-animacy) has been 

observed in several memory paradigms such as free recall 

(Nairne et al., 2013), paired-associate recall (VanArsdall et 

al., 2015), and recognition (Bonin et al., 2014). Nairne and 

colleagues (2013) posit that our memories would be better 

attuned to animate entities in the environment for several 

evolutionary reasons. These include the special threat that 

living entities can pose, the sustenance that they can provide, 

and their broad social utility given that interactions with other 

animate entities (e.g. humans) were crucial for survival and 

reproduction.  
It is this last reason relating to human sociality that drives 

the current investigation. The central question considered 

here is: does the animacy of the source of information matter 

for memory performance? In our modern computer-age, we 

are constantly interacting with voices generated by 

computers. How does the perceived humanness of such 

voices affect our cognition? Could it be that information 

delivered by Siri would be remembered differently than 

information provided by an actual person? It’s possible that 

the findings regarding the animacy effect might bear on such 

questions. To the extent that such computer voices are 

perceived as inanimate (or at least less animate), there is a 

possibility that our memories might be worse for the 

information produced by a computer voice. 
This ostensible source-animacy effect might emerge due to 

possible animacy contamination mechanisms (Cogdill, 

Nairne, & Pandeirada, 2016; as cited in Nairne, VanArsdall, 

& Cogdill, 2017). For example, Nairne and colleagues (2017) 

had participants read sentences in which two objects come in 

contact with each other. Target inanimate words in these 

sentences are “touched” by either animate (“The mouse is 

touching the sled.”) or inanimate (“The lamp is touching the 

bottle.”) stimuli. They found superior recall performance for 

inanimate target words when they were “touched” by the 

animate stimuli as compared to inanimate ones. Nairne and 

colleagues suggested that the “law of contamination” (Rozin, 

Millman, & Nemeroff, 1986) may account for such effects, 

with the property of animacy being conferred contagiously to 

inanimate words. Therefore, it may be the case that words 

spoken by the human voice are “contaminated” by the 

animacy of the voice, thus conferring a benefit for their recall. 
Another account points to the importance of the voice 

itself. The quality of humanness in auditory perception might 

be especially well-processed. Evidence suggests that, from 

infancy, there is a predilection for human speech over non-

speech analogues (Vouloumanos & Werker, 2007). There is 

also precedent in the music literature regarding the 

importance of human vocality for memory. For example, 

melodies sung by humans are better remembered than 

instrumental melodies (Weiss, Trehub, & Schellenberg, 

2012). The authors proposed that we are especially attuned to 

human timbres because of their biological significance. 
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Due to the paucity of research on the subject and the 

implications for our interactions with machines in daily life, 

the current study was undertaken. The present experiments 

employed a free recall test on stimuli delivered through the 

auditory modality. The central manipulation involved the 

animacy of the voice delivering the word lists to be recalled 

(human vs. computer-generated). There were three main 

objectives: 1) To examine the influence of animate vs. 

inanimate sources on recall, 2) To provide a direct 

reproduction of the standard item-animacy effect in an 

auditory modality with a free recall assessment (see Aslan & 

John, 2016 for a paired-associate animacy effect using the 

auditory modality; see Stori, Zaar, Cooke, & Mattys, 2018 for 

a recognition memory assessment), and 3) To explore 

whether there would be an interaction between item-animacy 

and source-animacy. Following the evolutionary reasoning of 

Nairne and colleagues (2013), superior recall should be 

evidenced for words delivered by the human (animate) voice.  

Experiment 1 

The aim of Experiment 1 was to extend the classical item-

animacy effect to an auditory source paradigm. Past research 

exploring animacy has typically consisted of the visual 

presentation of word lists that included animate and 

inanimate words (Nairne et al., 2013).The key departure from 

many past studies is that these lists are presented aurally 

through two different voices to manipulate source-animacy 

(cf. Aslan & John, 2016) along with a free recall assessment 

(cf. Stori et al., 2018). One of these voices was human and 

the other was computer-generated. Based on the animacy and 

evolutionary literature, memory should be superior for those 

words presented by the human-voiced (animate) compared to 

the computer-voiced (inanimate) source. Furthermore, this 

paradigm should replicate the standard item-animacy effect.  

Method 

Participants Binghamton University undergraduates (N = 

51) participated in this study. An additional participant did 

not complete the entire experiment and was excluded. 

 

Materials and Design Thirty-six English words were used in 

this experiment (18 animate, 18 inanimate). Thirty-two of 

these words (17 animate, 15 inanimate) were selected from 

word lists used in Nairne and colleagues (2013) and 

VanArsdall and colleagues (2015). An additional 1 animate 

and 3 inanimate words were obtained from the MRC database 

(Wilson, 1988) to supplement the lists. Following Nairne and 

colleagues (2013), all words were concrete nouns and 

matched on several dimensions: age of acquisition (19 words 

were missing data), number of letters, familiarity, 

imageability, concreteness, Kučera and Francis written 

frequency and number of categories, and mean Colorado 

meaningfulness. 

Two versions of each word were recorded using version 

2.1.3 of Audacity® (Audacity, 2014). The human spoken 

words were recorded by an experimenter that read each word 

aloud into the built-in microphone of an Apple Macbook 

laptop computer. A second Macbook computer was used to 

recreate the same set of words voiced by a computer using 

the voice-over accessibility function that comes standard 

with Apple computers and recorded via the built-in 

microphone of the first Macbook. The result of each 

recording was a continuous WAV file for each human- and 

computer-voiced word list. These continuous files were 

edited into discrete WAV files in Audacity for all of the 

words in both human- and computer-voiced presentations. 

All words were adjusted to have comparable volumes in both 

the human- and computer-voiced conditions (range: 9-15 

dB). As a pilot test for clarity in the presentation of the words, 

a research assistant listened to both human- and computer-

voiced presentations of all words and wrote them down. All 

words used in the present study were clearly perceptible to 

the research assistant, however, an additional four words 

were unclear and instead used as buffer words.  
Two lists of intermixed animate and inanimate words were 

used for each experiment session and randomly assigned to 

either human- or computer-voiced conditions. Words were 

assigned to each list such that both human- and computer-

voiced conditions were balanced on the aforementioned item-

level variables. Two fixed buffer words were presented at the 

beginning of the first list and the end of the second list. Recall 

for these words were not coded nor included in the final 

analyses. PsychoPy psychophysics software version 1.8.3 

(Peirce, 2007) was used to randomly select the word-to-list 

assignment, and to present each list in a randomly determined 

order.  
Recall packets were printed on paper and included a maze 

(distractor task), a blank recall sheet, and a four-item 

questionnaire to assess the clarity and pleasantness of each 

word list using 7-point Likert scales. 
 

Procedure For each session, between one and five 

participants were seated in a quiet room and told that they 

were participating in a memory experiment. The experiment 

was displayed on a 48 in. LCD television. Participants were 

presented with instructions both verbally and on-screen. They 

were instructed to face forward during presentation of the 

word lists and to focus on a black fixation cross on a white 

background. The words were not presented visually on the 

screen, but the display helped ensure that all participants were 

attending to the list presentation. Additionally, they were 

instructed to listen carefully and to expect a recall test later in 

the experiment. 

Participants were then presented with the two word lists via 

speakers on the television. Each list was either presented 

using the human- or computer-voiced recordings in their 

entirety, with the alternative list being subsequently 

presented. Counterbalancing, which occurred across 

sessions, determined what source they heard first (human- or 

computer-voiced). The presentation of the first and the 

second list was separated by a 30 second break. Following 

the presentation of the second list, participants were handed 

a recall packet and directed to begin the maze distractor task. 

After one minute, participants were instructed to flip the page 

2833



and recall as many words as they could from both word lists. 

Participants were given an unlimited amount of time for 

recall but were told that they could turn the page if they could 

not remember any more words. On the final page of the 

packet, participants were asked to indicate the level of clarity 

and pleasantness of each source-animacy condition. 
The following criteria were used to score a participant 

response as a correct recollection: correctly spelled target 

words (e.g., ‘rabbit’); incorrectly spelled, but closely 

approximated target words (e.g., ‘rabit’); different forms (i.e., 

tense, plurality) of target words (e.g., ‘rabbits’). Responses 

that were confusable with a non-target word (e.g., ‘rabid’) 

were not counted as a correct recollection. 

Results and Discussion 

There were two main predictions about recall. First, that the 

animacy effect would be replicated with an auditory 

presentation of word lists and free recall assessment. 

Specifically, recall performance would be higher for animate 

words than inanimate words. Second, it was predicted that 

presentations voiced by a human should lead to better recall 

than presentations from a computer. A repeated measures 

ANOVA that contained item-animacy and source-animacy 

tested these predictions. There was a main effect of item-

animacy such that animate words (M = .298, SD = .180) were 

recalled at a higher rate than inanimate words (M = .192, SD 

= .159), F(1, 49) = 13.557, p < .001, ηp
2 = .217. There was 

also an effect of source-animacy, where human-voiced words 

(M = .288, SD = .158) were recalled at a higher rate than 

computer-voiced words (M = .203, SD = .186), F(1, 49) = 

21.401, p  < .001, ηp
2 = .304. There was no significant 

interaction between item- and source-animacy (F < 1). (See 

Figure 1). 

Figure 1: Proportion of words recalled in Experiment 1. The 

left panel presents both animate and inanimate words in the 

computer-voiced source animacy condition while the right 

panel reflects the human-voiced condition. Each point 

represents a participant’s proportion of words recalled. 

Diamonds represent the overall mean for each condition. 

 

Cumulative-link regression models were used to assess if 

human-voiced words were perceived as clearer and more 

pleasant than computer-voiced words. Each model predicted 

the rating of interest with source-animacy, the presentation 

order of human- and computer-voiced sources, and their 

interaction. Human-voiced words were rated as clearer than 

computer-voiced words (β = 1.873, SE = 0.525, Wald Z = 

3.569, p < .001). There was no significant difference in 

ratings based on the order in which human- and computer-

voiced sources were presented (β = -0.585, SE = 0.513, Wald 

Z = -1.140, p = .254) and no significant interaction (β = 0. 

432, SE = 0. 713, Wald Z = 0.606, p = .544). Likewise, the 

human-voiced source received significantly higher 

pleasantness ratings than the computer-voiced source (β = 

2.399, SE = 0.548, Wald Z = 4.378, p < .001). Again, there 

were no significant differences in ratings based on the order 

in which human- and computer-voiced sources were 

presented (β = 0.852, SE = 0.537, Wald Z = 1.587, p = .112), 

and no significant interaction (β = -0.871, SE = 0.727, Wald 

Z = -1.198, p = .321). (See Figure 2). 

Figure 2: Clarity (left) and pleasantness (right) ratings for 

each source-animacy condition. Each point represents an 

individual participants’ rating. The shading of each point 

reflects that participant’s proportion of successfully recalled 

words within each condition. While both clarity and 

pleasantness ratings differed between source-animacy 

conditions there was no relationship between ratings and 

recall. 

 

Mixed-effects logistic regression models that predicted 

recall success of each word tested if a series of control 

variables could account for either animacy effect. The 

baseline model included participants as random intercepts, 

source-animacy as random slopes, and source-animacy, item-

animacy, and their interaction as fixed effects. Control 

variables were individually entered into the baseline model 

as an additional fixed effect.  Clarity ratings (β = -0.075, SE 

= 0.050, Wald Z = -1.507, p = .132), pleasantness ratings (β 

= -0.058, SE = 0.055, Wald Z = -1.07, p = .287), the list 

participants received (β = 0 .035, SE = 0.171, Wald Z = 0.203, 

p = .839), and counterbalance order of source-animacy 

conditions (β = -0.105, SE = 0.167, Wald Z = -0.630, p = .529) 

were not predictive of recall successes. None of these 

variables altered the significance of item- and source-
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animacy effects, or significantly improved the model’s ability 

to account for variance in recall (all ps > .14). 
Experiment 1 replicated and extended the standard item-

animacy effect by demonstrating that animate words were 

better recalled than inanimate words when using auditorily 

presented stimuli. Animacy effects were not just observed for 

items, but also for the sources that presented items. This is 

reflected by the source-animacy effect: words presented by 

an animate, human voice were better remembered than items 

presented by an inanimate, computer-generated voice. The 

human-voiced source was rated as clearer and more pleasant 

than the computer-voiced source, however, follow-up 

analyses revealed that differences in ratings between the 

presentation source conditions could not account for the 

source-animacy effect. Taken together, these results provide 

evidence of the systemic effects of animacy on human 

memory.  

Experiment 2 

A potential limitation of the previous experiment was that 

there may have been differences between the human and 

computer voice that were not controlled for and that are not 

related to animacy or evolutionary mechanisms. One such 

difference was the human-voiced source being rated as 

clearer than the computer-voiced source (although clarity 

was not found to be predictive of recall success). The 

difficulty in controlling human and computer voices across 

relevant dimensions such as familiarity, tonality, and 

articulation (which may all contribute to clarity) raised the 

question of whether the source-animacy effect is contingent 

upon these differences (i.e. it is due to intrinsic qualities of 

the human voice) or participants’ beliefs about the animacy 

of the source. To address this question, Experiment 2 

circumvented the issue of auditory differences entirely. 

Instead of two different voices, the words in Experiment 2 are 

all delivered by one computer-generated voice. While the 

source (i.e. the voice) was held constant for both conditions, 

the belief regarding the animacy of the source was 

manipulated between conditions. Those in the stated-

computer condition were told that the voice is computer-

generated, while those in the stated-human condition were 

told that the voice is human.  

Instead of serving as a direct replication of Experiment 1, 

the present experiment tested two hypotheses about the 

source-animacy effect. The belief-based hypothesis states 

that the source-animacy effect is determined by participants’ 

belief about animacy independent of the auditory signal. This 

hypothesis predicts that when participants are presented with 

a computer-voiced source and their belief in the animacy of 

the source is manipulated, a source-animacy effect will be 

observed between the stated-human and stated-computer 

conditions. The intrinsic qualities hypothesis states that the 

source-animacy effect is determined by intrinsic qualities of 

the source. This hypothesis predicts that when presented with 

                                                           
1 Navigate to https://www.naturalreaders.com/online/ to access 

the text-to-speech tool. The voice used was Peter at -1 speed. 

a computer-voiced source, no differences between the stated-

human and stated-computer conditions will emerge as they 

are listening to the same computer-generated auditory signal.  

Method 

Participants Binghamton University undergraduates (N = 

95) participated in this experiment. Two additional 

participants were dropped due to technical problems. 

 

Materials and Design The word stimuli were the same as 

those used in Experiment 1 except that the buffer words were 

omitted. The audio was produced using Natural Readers 

online software, a text-to-speech tool1. All words recorded 

for this experiment were produced using a single computer 

voice from this software, which resembled a British-accented 

male. The procedure used to convert each word into an audio 

file was identical to Experiment 1, except that a human voice 

was not also recorded.   
The WAV files for each word were presented through 

PsychoPy software in a random order to each participant. A 

between-subjects presentation of the words was used, such 

that all 36 words were presented to each participant through 

the one computer voice—the only difference being whether 

the participant was told that the voice was human or a 

computer program. In this way, all participants heard the 

same audio, ensuring that there were no aural or linguistic 

confounds between the animate and inanimate conditions. 
 

Procedure Participants were randomly assigned to either the 

stated-computer or stated-human condition. In the stated-

computer condition, the participants were told that each word 

was produced by a computer and in the stated-human 

condition, they were told that the words were produced by a 

human.  
Each participant was brought individually into a room and 

told that they would be participating in an experiment that 

would require them to judge the clarity of a series of words 

that were to be used as part of a later experiment, which they 

would not be participating in on that day. These clarity 

judgments served as an incidental encoding task that was 

followed by a surprise free recall test that immediately 

followed the clarity judgment task. Participants were 

provided with closed ear headphones to listen to the words.  
Each word of the study list was presented aurally through 

the headphones in a randomized order across the 36 trials. 

During each trial, a fixation cross appeared on the screen to 

focus their attention while the words were presented. A 

clarity rating scale replaced the fixation cross at the onset of 

each word. The participant would render their clarity rating 

on a 5-point Likert scale, with the wording being different 

according to the condition they were in (“Please rate how 

clear this human/computer produced word is”, 1= not at all 

clear, 5 = extremely clear). Selecting a rating on the scale 

would begin the next trial (i.e. the following word).  
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At the end of the clarity judgment phase, participants were 

asked to recall as many words as possible from the list they 

just heard. They were given an unlimited amount of time to 

type their responses into an array of boxes that appeared on 

the screen. Once they completed this recall session, 

participants were asked how much they believed in the story 

they were told in the beginning of the experiment as a 

manipulation check. Those in the stated-computer condition 

were asked the extent to which they believed the voice they 

heard came from a computer, while those in the stated-human 

condition were asked how much they believed the voice to be 

from a human. Participants were probed about their beliefs 

on a 5-point scale. The criteria for a correct recollection were 

the same as in Experiment 1. 

Results and Discussion 

Data were first analyzed using a two-way ANOVA, with 

item-animacy as a within-subjects factor and source-animacy 

as a between-subjects factor. In line with our predictions, the 

standard animacy effect was replicated in this analysis as a 

main effect for item-animacy, F(1, 93) = 52.008, p < .001, ηp
2 

= .359, with a greater proportion of animate words (M = 0.25, 

SD = .10) recalled than inanimate words (M = 0.16, SD = .10). 

However, there was no main effect found for source-animacy 

(F < 1). No interaction was found between item- and source-

animacy (F < 1). (See Figure 3). Given the lack of an effect 

of source-animacy and the intrinsic qualities hypothesis’s 

prediction of a null result, the stated-computer (M = .202, SD 

=.129) and stated-human (M = .216, SD =.107) conditions 

were analyzed with a Bayesian independent samples t-test.  

The Bayes Factor indicated substantial support (Jefferies, 

1961) for the null hypothesis, (i.e., no differences between 

conditions), BF01 = 4.425. 

 

 
Figure 3: Proportion of words recalled in Experiment 2. The 

left panel presents both animate and inanimate words in the 

stated-computer source animacy condition while the right 

panel reflects the stated-human condition. Each point 

represents a participant’s proportion of words recalled. 

Diamonds represent the overall mean for each condition. 

 

Cumulative-link regression was used to test if clarity 

ratings differed as a function of both item- and source-

animacy. Animate words were judged as clearer than 

inanimate words (β = 0.338, SE = 0.063, Wald Z = 5.363, p < 

.001). Despite both source conditions receiving identical 

stimuli, there was a significant difference in perceived clarity 

across the two source conditions, such that participants in the 

stated-computer condition judged the words they heard as 

clearer than those in the stated-human condition (β = 0.297, 

SE = 0.063, Wald Z = 4.714, p < .001). Regarding the 

manipulation check, the analyses revealed no significant 

differences between source-animacy conditions in the extent 

that participants believed the cover story (β = 0, SE = 0.2637, 

Wald Z = 0, p = .999).  Participants who were told that the 

items were produced by a computer accepted this story to a 

similar degree as those who were told the voice was human. 

The median belief across conditions (Mdn = 3) suggests a 

moderate belief in the manipulation, with perhaps some 

degree of uncertainty.  

Mixed-effects logistic regression models that predicted 

recall success of each word were used to test if any control 

variables could account for the observed item-animacy effect. 

The baseline model included participants as random 

intercepts and source-animacy, item-animacy, and their 

interaction as fixed effects. Source-animacy was not allowed 

to vary as random slopes, as in Experiment 1, because it was 

not a significant predictor of recall and did not alter the 

subsequent pattern of results.  Control variables were 

individually entered into the baseline model as a fixed 

effect.  Clarity ratings for each item (β = 0.268, SE = 0.046, 

Wald Z = 5.794, p < .001) were a significant predictor of 

recall success, such that recall was more likely for items with 

higher clarity ratings. While including clarity ratings into the 

model did not alter the observed item-animacy effect, the 

model did account for significantly more variance in recall 

than the baseline model, χ2(1, N = 1) = 36.615, p < .001. 

Participants’ belief in the cover story (β = 0.063, SE = 0.05, 

Wald Z = 1.233, p = .217) was not a significant predictor of 

recall, did not alter the significance of the item-animacy 

effect, and did not significantly improved the model’s ability 

to account for variance in recall, χ2(1, N = 1) = 1.506, p = .22. 
The present experiment failed to find evidence of a source-

animacy effect. It is important to note that participants were 

not actually exposed to an animate source, and instead those 

in the stated-human condition were told an inanimate source 

was animate. This result provides support for the hypothesis 

that some intrinsic qualities of the auditory signal are 

necessary for a source-animacy effect to accrue and suggests 

a boundary condition for the source-animacy effect: beliefs 

about the animacy of sources alone do not confer mnemonic 

benefits. This appears congruent with the evolutionary 

argument that the human voice has a special status in 

information processing, which may have been selected for by 

similar evolutionary forces that gave rise to the item-animacy 

effect. The present experiment provided an additional 

replication of the item-animacy effect within both an auditory 

presentation modality and an incidental encoding task. 
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General Discussion 

The key finding of Experiment 1 was that words presented by 

the human-voiced source were better remembered than words 

presented by the computer-voiced source. This novel result 

suggests that the animacy of the source, and not only of the 

word presented, influences recall. The item-animacy effect 

was also replicated in an auditory modality. While prior work 

has explored auditory presentation of nonwords paired with 

animate or inanimate characteristics (Aslan & John, 2016) or 

auditory presentation of items followed by a recognition 

memory test (Stori et al., 2018), the present extension of the 

item-animacy effect demonstrated that it can also be observed 

with auditorily presented words and a free recall assessment, 

which is consistent with the evolutionary explanation of the 

animacy effect (Bonin et al., 2014; Nairne et al., 2013), as 

human speech emerged before written communication.  
Experiment 1 demonstrated that animacy not only 

influences the memorability of items, but also the 

memorability of items presented by an animate source. One 

possible explanation of this source-animacy effect may be a 

contagion mechanism (Rozin et al., 1986), where the animacy 

of the source confers a mnemonic benefit to the information 

presented by it through association. A second possible 

explanation is that the human voice holds a special status in 

memory (Weiss et al., 2012), which may have been conferred 

through natural selection and may possibly extend to other 

animate sources. While the present experiments were not 

intended to disambiguate between these two explanations, 

future work should attempt to uncover its underlying 

mechanism.  

Though not a direct replication of Experiment 1, 

Experiment 2 also examined source-animacy using an 

auditory modality. This experiment explored whether the 

mnemonic benefit of animate sources is determined by belief 

about animacy independent of the auditory signal or if it is 

determined by intrinsic qualities of the auditory signal itself. 

To this end, participants were presented with a single voice 

and their belief about whether it was from a human-voiced or 

computer-voiced source was manipulated. No differences in 

recall were found under these conditions, which provides 

support for the intrinsic qualities hypothesis: the human voice 

may be necessary for the source-animacy effect to emerge 

and that belief about the source’s animacy is not sufficient for 

the effect to emerge. The necessity of the human voice may 

arise from either perceptual expertise with human voices or a 

particular biological significance. Under this hypothesis, the 

computer-generated voice in Experiment 2 would be treated 

fundamentally differently than a human voice regardless of 

what participants are told, or believe, about the source. One 

possible alternative explanation to this is that the suggestion 

was not strong enough for participants in the stated-human 

condition to treat the computer-generated voice in the same 

way they would a human voice. A stronger suggestion could 

be provided to increase belief in the manipulation and 

possibly give rise to a source-animacy effect. With this 

alternative explanation in mind, future research is warranted 

to further disambiguate these possible accounts. 

Both experiments included additional analyses to mitigate 

possible alternative explanations. While pleasantness and 

clarity differed between source-animacy conditions, they 

were not related to recall performance and could not explain 

either of the observed item- or source-animacy effects. The 

divergence in clarity ratings between source-animacy 

conditions were not related to recall, which is theoretically 

interesting. There is some research suggesting a desirable 

difficulty effect in memory such that difficult-to-perceive 

words are better remembered (Rosner, Davis, & Milliken, 

2015). Besken and Mulligan (2014) provided evidence 

supporting the benefits of desirable difficulties by 

demonstrating that aurally-distorted words were better 

remembered on a free recall assessment than non-distorted 

words. Experiment 1 results showed, however, that although 

the computer-voiced words were judged as less clear, they 

were not better recalled, inconsistent with a desirable 

difficulty effect. It is possible that the source-animacy effect 

overwhelmed any benefits of perceptual dis-fluency. 
The results of Experiment 2 further complicate the role of 

perceptual clarity. Participants in the stated-computer 

condition rated the words they heard as significantly clearer 

than those in the stated-human condition. This is despite that 

the voices used were identical in both conditions. Though the 

results of Experiment 2 suggest that while beliefs might play 

a negligible role in a possible source-animacy effect, they 

may influence how people judge perceptual clarity. Whatever 

the case, the results suggest that clarity differences between 

the voices cannot account for the mnemonic benefit of 

human-spoken words. 

Despite the noteworthy finding of the source-animacy 

effect and the replication of the item-animacy effect in 

Experiment 1, it is necessary to consider some important 

limitations. First, the materials were recorded using a limited 

number of voices. In order to ensure that these findings are 

generalizable, future studies must use a wider variety of 

voices, both computer-generated and human. Second, 

Experiment 1 rested on an experimenter-defined source-

animacy manipulation without testing whether participants 

viewed the human-voiced source as more animate than the 

computer-voiced source. Third, while the stimuli were tested 

for perceptibility by a single research assistant, it is possible 

that participants may have had more difficulty in perceiving 

each word. Future work would benefit from more robust 

norming of the animacy and perceptibility of the auditory 

sources. Fourth, as Experiment 2 was a between-subject 

manipulation, participants may have anchored their clarity 

ratings differently based on whether they were told it was 

from a computer or human, which may have biased the clarity 

ratings and obscured a potential relationship between clarity 

and source-animacy condition. To address this concern, 

future work should provide a fixed reference for participants 

to evaluate clarity with respect to. Finally, though clarity and 

pleasantness were found not to affect the main findings, there 

may have been other potentially nontrivial differences in 

vocal variables (e.g. tempo, pitch) that were not recorded or 

analyzed in the present experiments. 
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Abstract 

The goal of the present study was to demonstrate the potential 
application of Item Response Theory (IRT) outside its 
traditional use in assessing questionnaires by applying it to 
data from behavioural task. We did this by validating a 
perspective taking task called the Director Task used to assess 
Theory of Mind (ToM) abilities in young adults. IRT and 
convergent validity analyses indicated that, contrary to our 
hypotheses, the Director Task had an unduly narrow range of 
responding for measuring ToM. Furthermore, the Director 
Task did not correlate with other established measures of 
ToM. Our results suggest that the task should be used with 
caution when assessing a young adult population. 
Furthermore, since convergent validity was not established, it 
is uncertain what specifically the task measures. Overall, we 
show how IRT may serve as a useful tool in evaluating 
behavioural measures. 

Keywords: Theory of Mind, Item Response Theory, Director 
Task 

Introduction 
Item Response Theory is an approach to assessing the 

psychometric properties of measures designed to measure 

psychological constructs such as attitudes. Modern test 

construction methodology suggests that simply having a 

range of scores on a measure is not a sufficient determinant 

of the psychometric properties of a test. In the current 

research article, we extend the use of Item Response Theory 

(IRT) methodology from its traditional application of 

evaluating personality scales and achievement to validate 

the effectiveness of a behavioural task, specifically, a 

Theory of Mind task called the Director Task.  

IRT provides sample invariant information for each item 

at varying levels of the underlying traits or ability 

(Embretson & Reise, 2000; Thissen & Wainer, 2001). The 

simplest IRT model is the dichotomous Rasch (1960) model 

which is applied to tests, or other tasks, where each trial can 

be classified as correct or incorrect. The Rasch model allows 

us to calculate the difficulty of each item (1PL), its 

discriminatory power (2PL), as well as account for the effect 

of guessing (3PL). By calculating the probability of 

answering each question correctly based on assumed trait 

levels, IRT can supply researchers with information about 

the suitability of individual test items, as well as the test in 

general. IRT provides a number of advantages over classical 

test construction methods, such as allowing for 

identification of sensitivity and difficulty of individual items 

(Embretson, 1996; Hambleton & Swaminathan, 2013). Most 

crucially, IRT allows researchers to empirically assess the 

suitability of the test at varying levels of the trait of interest. 

This information allows researchers to determine the 

effective range of discrimination for the tool.  

IRT models make four major assumptions: 

unidimensionality, local independence, monotonicity, and a 

normally distributed latent trait. Unidimensionality of the 

trait and local independence are generally assumed to 

coexist. Unidimensionality is the assumption that there is 

only one latent trait being measured, whereas local 

independence is the assumption that each response is 

independent and only conditional on the latent trait. 

Monotonicity is the assumption that as the latent trait 

increases, so does the probability of correctly responding to 

each trial. Finally, the assumption of a normally distributed 

latent trait is common to many parametric tests used in 

psychology research. To our knowledge, IRT has never been 

applied to data from a behavioural task. However, there are, 

in principle, no conceptual restrictions that would restrict the 

use of IRT for the assessment of a behavioural measure. 

Theory of Mind (ToM) is a cognitive ability that allows 

individuals to mentalize about other’s minds (Heider, 1958). 

ToM is believed to be an important component of empathy 

which, along with emotion empathy, allows individuals to 

accurately recognize and understand other’s emotional 

states (Smith, 2006). Disruptions in ToM abilities can lead 

to impairments in adult functioning where individuals are 

less able to interpret the beliefs and intentions of others 

(Perner, Frith, Leslie, & Leekam, 1989). Theory of Mind 

deficiencies are closely associated with Autism Spectrum 

Disorders (Baron-Cohen, Leslie, & Frith, 1985).  

Unlike emotion perception, which is largely an inborn 

ability and therefore, develops extremely early (Grossmann, 

2010), ToM abilities continue to develop beyond childhood. 

For example, infants can discriminate emotional faces at 3.5 

months (Montague & Walker-Andrews, 2002), or possibly 

earlier, and at 6.5 months are able to differentiate between 

emotional postures of adults (Zieber, Kangas, Hock, & 

Bhatt, 2014a, 2014b). In contrast, ToM skills develop much 

later in life (Calero, Salles, Semelman, & Sigman, 2013; 

Frith & Frith, 2001). ToM development is even believed to 

stretch into early adulthood (Dumontheil, Apperly, & 

Blakemore, 2010), as evidenced by the continued 

neurodevelopment of brain regions responsible for ToM 

such as the medial frontal gyrus, the anterior paracingulate, 

and the right temporoparietal junction (Kana, Keller, 

Cherkassky, Minshew, & Just, 2009) into late adolescence 

and early adulthood (Shaw et al., 2008).  
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From a practical point of view, the assessment of ToM 

abilities poses a particular difficulty for clinicians and 

researchers. Many tasks that measure the development of 

ToM abilities, such as the presence of false beliefs or 

perspective taking, have ceiling effects since these abilities 

are well developed by the age of 5 (Wellman, Cross, & 

Watson, 2001). Other measures, such as the Reading the 

Mind in the Eyes Task (Baron-Cohen, Wheelwright, Hill, 

Raste, & Plumb, 2001), are confounded by the emotion 

perception aspect of the task. However, some perspective 

taking tasks, such as the Director Task (Keysar, Barr, Balin, 

& Brauner, 2000) have been shown to discriminate ToM 

abilities later into adolescence, and even early adulthood 

(Keysar, Lin, & Barr, 2003).  

The Director Task is a perspective taking task where the 

participant is instructed to follow directions of a confederate 

who has a different view of a 4 x 4 grid. The grid contains 

various items that the participant must manipulate based on 

the director’s instructions. Some of the grids are closed to 

the view of the director, but not the participant (see Figure 

1). During the experimental trials of the task, the director 

gives an ambiguous instruction to the participant to move an 

item (e.g.: “Move the bottom block”). In this example, there 

would be two distractor blocks, one of which is the lower 

most from an egocentric perspective, but is closed off (i.e., 

unable to be seen) from the view of the director, and 

therefore is not the target. If participants select the lower-

most block that is visible to them, they would not have taken 

the director’s perspective into account, and would thus 

commit an error.  

 

 
Figure 1. Instruction examples given to participants to 

demonstrate the director’s perspective.  

 

In previous studies, the Director Task showed that even 

adults have a natural tendency for the egocentric perspective 

(Keysar et al., 2003), and that the task reliably differentiates 

between youth and young adults (Dumontheil et al., 2010). 

These findings indicate that the Director Task may be a 

useful tool to differentiate between Theory of Mind abilities 

within the young adult/ adult population. If it is true that the 

task can reliably differentiate between young adults on ToM 

abilities, this would allow for the study of ToM perspective 

taking using convenience samples, making ToM research 

more accessible.  

Present Study  
The purpose of the present study was to assess the 

Director Task using IRT. Specifically, would the Director 

Task prove suitable for use with the young adult population 

as a tool for discriminating between individuals who are low 

and those who are high in Theory of Mind abilities? We 

hypothesize that a modified, computer based, version of the 

Director Task would allow for the discrimination across a 

sample of young adults on the basis of ToM abilities, and the 

results would show convergent reliability with more 

established measures of ToM. Although the Director task 

has already been shown to differentiate between age groups 

(Dumontheil et al., 2010), this finding does not 

automatically extend to within group differentiation.  

With regard to convergent validity, two established ToM 

tasks were selected, the Reading the Mind in the Eyes Task 

(“Eyes Task”) (Baron-Cohen et al., 2001) and the 40-item 

Empathy Quotient (EQ 40) (Baron-Cohen & Wheelwright, 

2004). Although these tasks are sufficiently different from 

the Director Task, we predicted that a weak, but significant 

positive correlation would be observed between these tasks 

and the Dirtector Task.  

 

Method 

Participants 
94 Carleton University undergraduate students (20 male) 

with a mean age of 19.8 (SD = 4.3) volunteered to participate 

in exchange for course credit. All participants self-identified 

as right-handed.  

 

Measures 

As part of a larger study participants completed the Eyes 

Task (Baron-Cohen et al., 2001), as well as the 40 item 

Empathy Quotient  (Baron-Cohen & Wheelwright, 2004). 

The Director Task (Keysar et al., 2000) used was kindly 

provided by Dumontheil et al. (2010) and modified for use 

with PsychoPy software (Peirce, 2007). The Director Task 

was modified to exclude the non-director items, allowing a 

doubling of the number of Director trials to 95. Altogether, 

16 trials were experimental trials, 16 trials were control 

trials, and the rest of the trials were filler trials. If our 

hypothesis is correct, by increasing the number of 

experimental trials, a grater range of scores will be observed, 

and with it, a finer discrimination of individuals along the 

latent trait associated with ToM.  

 

Procedure 
After providing informed consent, participants were 

tested individually in a sound-attenuated booth. Instructions, 

stimuli, and questionnaires were presented on a PC using 

PsychoPy software (Peirce, 2007). The task was presented 

to participants as a static image with verbal instructions 

played over computer speakers. For each trial the target item 

was overlaid by a 3 cm2 invisible square which would record 

mouse button presses. All mouse presses outside of the 

target square were scored as incorrect; trials with no mouse 

button presses were discarded. Each Director Task 

maximum trial length was set to 5 seconds from the onset of 

audio instructions. Trials in the Director Task were 

presented to participants in a predetermined order. Next, 

participants completed the Eyes Task and the EQ 40 task. 
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Trials in these latter tasks were randomized. The study 

required approximately 45 minutes to complete. Participants 

were debriefed as to the purpose of the experiment after they 

completed the EQ 40 task. 

 

Results 
Responses were tallied and scored using custom Visual 

Basic scripts. Outliers were identified based on deviations 

from predicted Mahalanobis distance using the R package 

“careless” (Yentes & Wilhelm, 2018). One case was 

identified as unusual and removed leaving 93 participants 

(see Figure 2). Descriptive statistics are presented in Table 

1. Scores from the Director Task appeared to take on a bi-

modal distribution, with upper and lower scores trending 

towards extremes (see Figure 3).  

 
Figure 2. q-q plot of actual vs predicted Mahalanobis 

distance 

 

Table 1. Overall descriptive statistics for each measure. 

 M SD 

EQ 40 Score 68.21 7.80 

Eyes Task 26.80% 5.39% 

Director Task 53.14% 35.74% 

 

 

 
Figure 3. Histogram showing the distribution of accuracy 

scores on the Director Task 

 

A paired samples t-test showed a significant decrease in 

accuracy when comparing the control trials with the 

experimental trials (t (92) = -9.05, p < .01) but not reaction 

times (t (92) = -1.14, ns). This suggests that performance on 

the task deteriorated as expected due to the increased 

difficulty of the experimental trials compared to the control 

trials.  

 

IRT  

 The IRT analysis was performed using the ltm 

(Rizopoulos, 2006) package in the R environment (R Core 

Team, 2013). A constrained One-Parameter Logistic Model 

(1PL) and unconstrained Two-Parameter Logistic Model 

(2PL) dichotomous models was run to determine which 

created a better fit. The constrained model assumes that each 

item on the unidimensional scale is equally good at 

discriminating between individuals with varying trait levels 

whereas the unconstrained model does not make this 

assumption. Since the two models are nested, a χ2 difference 

test was performed to assess model fit.  

Significant model fit improvement was observed when 

the model was unrestricted from constrained to the 

unconstrained discrimination parameters (χ2 (14) = 27.97, p 

= 0.014). As such, a 2PL model was selected for the analysis 

of the Director Task. A 3PL model was not used because the 

Director Task is not strictly a forced choice multiple choice 

test, and therefore it is improbable that participants would 

attempt to randomly select their answers.    

Results of the individual item difficulty and 

discrimination, under the 2PL model, are presented in Table 

2. Figure 4 contains the Item Information Curves (IIC) and 

Figure 5 Shows Total Test Information Function relative to 

Standard Error of measurement. Standard errors were 

estimated using the delta method.  

The results from the model suggest that, congruent with 

our hypothesis, all the experimental trials of the Director 

Task have good discriminatory power. However, contrary to 

our hypothesis, the difficulty of the items appears quite low 

with only half of the items showing a significant deviation 

from 0.  

 

Table 2. Difficulty and discrimination of the 

experimental items of the Director Task 

Trial Difficulty (b) Discrimination (a) 

4 -0.33 1.40** 

14 -0.03 1.16** 

20 -0.18 2.43** 

26 -0.06 2.52** 

30 -0.27* 2.66** 

36 -0.34** 3.10** 

40 -0.07 4.00** 

49 -0.026 3.62** 

59 -0.61** 2.22** 
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65 -0.40** 3.32** 

70 0.17 2.25** 

74 -0.67** 1.66** 

78 -0.36** 3.72** 

84 -0.18 2.21** 

88 -0.44** 2.38** 

Note: * p < .05; ** p < .01  

  
The IIC plot visually confirms that, although the 

information content of many trials is very high, the range of 

ToM ability that they represent is poor.  

 
Figure 4. Item Information Curves for the experimental 

items of the Director Task 

 

Finally, Figure 5 shows that the information content of 

the Director Task as a whole is very large, with an area under 

the curve of 38.66. However, 55% (20.75) of this 

information content falls within 0.5 standard deviations of 

the mean, and 82.5% (31.89) within 1 standard deviation. 

This once again reaffirms that the Director Task is poor at 

discriminating between individuals of different ToM 

abilities.  

 
Figure 5. Total Test Information Function relative to 

Standard Error of Measurement.  

 

Convergent Validity  
Convergent validity for the Director Task were assessed 

using a self-report measure of ToM, the EQ 40, as well as a 

behavioural discrimination task, the Eyes Task. The results 

are presented in Table 3.  
 

Table 3. Correlation matrix for the Director and other 

convergent validity tasks 

 1 2 

EQ 40 -  

The Eyes Task -0.102 - 

The Director Task 0.065 0.114 

 

Contrary to our hypothesis, we did not find any 

significant correlations between the Director Task, or any of 

the other two popular tasks for assessing ToM abilities.  

 

Discussion 
Our findings did not support the hypothesis that the 

Director Task is good at discriminating between Theory of 

Mind abilities in a sample of young adults. Our findings are 

surprising in light of previous findings with the same 

(Dumontheil et al., 2010) or similar (Keysar et al., 2003) 

tasks allowing for discrimination in the young adult 

population.  

Our sample showed significant variability in the range of 

scores on this task, which under normal circumstances 

would be an encouraging finding. However, IRT analysis 

showed that despite strong information content of the 

individual trials (discrimination), the Director Task does not 

measure well different levels of the ToM trait (difficulty). 

We interpret these findings as a strong indication that the 

Director Task is able to differentiate participants as either 

good or bad at TOM abilities, with little useful information 

beyond that. This interpretation is supported by both the 

poor difficulty gradient of the trials, as well as the tendency 

for participant scores to conform to a bimodal distribution.  

Beyond the poor psychometric properties of the task, we 

failed to observe convergent validity between the Director 

Task and other established ToM tasks. This finding brings 

into question what trait or state the Director Task actually is 

measuring. One possible explanation for the lack of 

relationship between the three ToM Tasks examined in this 

study is that there is a sufficiently large distinction between 

the perspective taking ToM component, and emotion 

perception ToM component. However, this would not 

explain the lack of relationship between the Eyes Task and 

the EQ scores. Another possible explanation is that the 

Director Task is measuring some other quality, such as 

selective-attention to the task (Rubio-Fernández, 2017).  

Regardless, we would caution researchers using the 

Director Task in its present form. Specifically, the task 

suffers from overly homogenous difficulty of trials. 

Nonetheless, there is potential for a modified version of this 
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task to be more successful. If the task is modified such that 

there is a greater range of experimental trial difficulty, with 

some being more difficult, while others being easier, the 

likely utility of the task will greatly improve. Finally, it is 

possible that by assessing other behavioural measures 

beyond the accuracy of answers, such as mouse-tracking or 

eye-tracking (Symeonidou, Dumontheil, Chow, & Breheny, 

2016) we could use the extra sources of information to 

supplement our inferences about participants’ ToM abilities.  

Regarding the more general goal of extending IRT to 

assess the results of a behavioural task by validating the 

Director Task, the present results suggest that IRT can 

provide useful information about the relationship between 

participants’ responses and the construction of tasks.  IRT is 

often associated with pen and paper test construction, 

however, the underlying probability models are agnostic to 

the source of the data. With many available statistical 

packages, and a well developed literature, IRT is easily 

accessible to all researchers. We encourage the use of IRT 

as a readily available tool to aid the validation of measures.  

 

Conclusion 

In this study we used Item Response Theory to validate 

the Director Task (Keysar et al., 2000) as a tool in studying 

Theory of Mind abilities in young adults. Contrary to our 

hypotheses, we found that the task performed poorly in 

discriminating between levels of the latent trait. 

Furthermore, a convergent validity measure brought into 

question what latent trait is being measured using the 

Director Task. Overall, the present study provided a novel 

demonstration of how an Item Response Theory analysis can 

be profitably extended to assess behavioural measures.  
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Abstract

We employ a scenario-sentence-verification paradigm to inves-
tigate the role of scenario-given alternatives for the process-
ing of affirmative and negative sentences. We show that for
both affirmative and negative sentences the N400 amplitude is
larger if the context model provides multiple alternatives for
a true sentence continuation relative to the case when it pro-
vides only a unique referent. Additionally, we observe a late
positivity effect for negative relative to affirmative sentences,
independent of the context model.
Keywords: Negation; alternatives; N400; P600

Introduction
Negation occurs in every human language and is essential
for communication. Nevertheless, negative sentences seem
to require elevated processing resources when compared to
affirmative ones and negation has posed a challenge to psy-
cholinguistic theories. Language comprehension is generally
considered to happen incrementally, i.e. as the linguistic in-
put unfolds in real time; yet, empirical evidence suggests that
negation is not compatible with this view, and it is argued that
negation may be integrated into sentence meaning only at a
later stage of the comprehension process. Furthermore, lan-
guage processing is considered to be predictive, meaning that
we not only process incoming linguistic information but also
anticipate upcoming content (cf. DeLong et al., 2005; Pick-
ering & Garrod, 2007; Van Petten & Luka, 2012; Kuperberg
& Jaeger, 2015). However, despite of the large amount of ex-
perimental literature on prediction, it remains an open ques-
tion to what extent and at which processing stage the number
of contextually available alternatives for an upcoming word
modulates the prediction of that word during sentence com-
prehension. Furthermore, as it is unknown at which stage
negation becomes a part of compositional meaning, it is also
not clear whether and how negation modulates predictive pro-
cessing.

In the psycholinguistic literature emphasis has been put on
providing a model of negation processing and experimental
work has focused on investigating the cognitive costs related
to the processing of sentences with negation. Since negative
sentences are structurally more complex, they are expected to
involve more cognitive resources than their affirmative coun-
terparts. From a semantic point of view, the potential need
to suppress positive information is also likely to result in an

increase of processing costs. Early on it has been shown that
negative sentences are associated with higher error rates as
well as longer response and reading times than affirmative
sentences (Just & Carpenter, 1971; Clark & Chase, 1972;
Lüdtke & Kaup, 2006; Dale & Duran, 2011).

Early electroencephalography (EEG) studies on negation
processing further suggested that the integration of negation
into the compositional sentence meaning is delayed. For in-
stance, many studies (Fischler et al., 1983; Dudschig et al.,
2019) found no effect of negation on the N400 event-related
potential (ERP) component. The N400 is a negative shift in
the ERP waveform, of a latency between 200 and 600 ms
post-stimulus onset and maximal over centro-parietal scalp
sites. Its amplitude tends to be larger for words that are (se-
mantically) less expected given the background context, or
world-knowledge, as well as for words of lower corpus-based
frequency (see Kutas & Federmeier (2011) for an overview).
The N400 has furthermore been shown to be inversely cor-
related with the triggering word’s cloze probability, i.e. the
percentage of individuals who would continue a given sen-
tence fragment with that word (Federmeier et al., 2007). Var-
ious theories interpret the N400 as a marker of (i) lexical
retrieval (Brouwer & Hoeks, 2013), (ii) integration into the
prior context (Hagoort et al., 2004), (iii) predictive preactiva-
tion (DeLong et al., 2005), or even (iv) meaning-related prob-
abilistic prediction (Lau et al., 2013; Kuperberg & Jaeger,
2015; Rabovsky et al., 2018). According to a recent account
(Rabovsky et al., 2018), the N400 reflects meaning-related
prediction error, where prediction is understood in a non-
intentional sense, as an implicit state of the system that is
tuned to anticipate the upcoming input in a graded manner.

In the first ERP study on negation by Fischler et al. (1983),
the N400 was only modulated by the lexical-semantic rela-
tion of the predicate to the main noun and it was larger for
the sentence-final predicates when this relation was weak, as
for instance in A robin is/is not a truck relative to the case
when the relation was strong, as in A robin is/is not a bird, in-
dependently of the presence of negation in a sentence, which
reversed the sentence truth-value. This result is usually inter-
preted as evidence that negation is not processed incremen-
tally and thus is not immediately integrated into the composi-
tional sentence meaning. This interpretation was further sup-
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ported by an EEG-study employing a sentence-picture veri-
fication paradigm that revealed a delayed integration of the
negation in the sentence meaning (Lüdtke et al., 2008). In
their experiment, affirmative and negative sentences, such as
In front of the tower there is a/no ghost, were followed by
matching or mismatching pictures, e.g. a tower with a lion or
a tower with a ghost, after a short (250ms) or a long (1500ms)
delay. Note that in the case of the affirmative sentences, the
matching pictures are explicitly mentioned and thus primed
by the sentences, but the negative sentences primed the mis-
matching pictures. In the short-delay condition, the N400
ERPs reflected a priming effect, namely, for the affirmative
sentences the mismatching pictures were associated with a
larger N400 than the matching pictures, whereas for the neg-
ative sentences the effect was opposite. An effect of negation
was only reflected by a late positivity effect that was identi-
fied as the P600 effect. In contrast, for the long-delay con-
dition, main effects of truth-value and negation in addition to
the priming effect were already observed in the N400 time-
window. This result was taken as evidence that integrating
negation into the sentence meaning required additional time
after the sentence was read. The P600 effect observed in re-
sponse to the use of negation is an especially noteworthy re-
sult. The P600 is a slow, late (around 500-800 ms post-onset)
positive shift in the ERP waveform that is maximal over pos-
terior scalp sites. It is often observed for structural violations,
grammatical errors or syntactically more complex sentences
(Hagoort et al., 1993) but also for some pragmatic and se-
mantic anomalies (Kuperberg et al., 2003). It has been ar-
gued to reflect combinatorial aspects of linguistic processing
(Kuperberg, 2007) or even semantic integration mechanisms
(Brouwer et al., 2012). In the case of negative sentences it
may be taken as a marker of the increased processing de-
mands related to integrating the negation into sentence mean-
ing.

However, the comprehension of negated sentences is fa-
cilitated if they are embedded into context. Nieuwland &
Kuperberg (2008) showed that pragmatically licensed nega-
tive sentences such as for example With proper equipment,
scuba diving isn’t very safe/dangerous... did not lead to ele-
vated N400-components for true compared to false sentences.
Instead, without pragmatic licensing, e.g. Bulletproof vests
aren’t very safe/dangerous... the true negated sentences led
to higher N400s than the false sentences, in line with Fischler
et al. (1983). Tian et al. (2016) furthermore showed that for
cleft-structures which narrow the scope of the negation and
therefore the potential alternatives such as in, e.g. It is John
who hasn’t ironed his shirt, incremental comprehension of
negated sentences is facilitated as well.

The role of alternatives for the processing of both nega-
tive and affirmative sentences was directly studied in an eye-
tracking experiment by Orenes et al. (2014). They inves-
tigated whether the presence of multiple alternatives in the
context has an effect on the processing of negative and af-
firmative sentences. An auditory context sentence was intro-

duced that either indicated that all objects are possible choices
(multary condition: The figure could be red, green, blue, or
yellow), or restricted the choice to only two objects (binary
condition: The figure could be red or green). Then, the vi-
sual context appeared, which always included four different
objects, e.g. circles of different colors. The target sentence
The figure is red/not red was presented auditorily while the
four figures were shown on the screen and eye-movements
were monitored. For affirmative target sentences subjects fix-
ated the target object (red circle) in both context conditions.
In contrast, for negative sentences, subjects fixated the target
object (green circle) only in the binary condition, whereas
in the multary condition they fixated the object that had the
mentioned, negated feature (red circle). The interpretation of
these results is problematic, since the affirmative and nega-
tive conditions were not logically comparable. Whereas af-
firmative sentences directly mentioned the target object, for
negative ones the identification of the target was only possi-
ble in the binary condition, where one could infer the color
of the target object from the pair of the context and the tar-
get sentence. In the multary condition the target object was
not identifiable: The intended figure that was described as not
red, could be blue, yellow, or green.

It is not surprising that in the case when the referent can-
not be identified, the processing of a sentence differs relative
to the case when the referent can be uniquely established in
the context. However, the question arises whether this effect
has anything specifically to do with negation. In our current
experiment we aimed at directly comparing the processing of
affirmative and negative sentences in situations when the con-
text scenario provides multiple or unique potential true sen-
tence continuations. Suppose that Julia is dealt three cards
(ace, king, queen) and the game is to choose some of these
cards, while rejecting the rest of them at the same time. If Ju-
lia selects one card (e.g. ace), one can describe her choice by
saying that Julia selected the ace. There is only one card that
can be mentioned in a true affirmative sentence. Additionally,
about each of the remaining two cards one can say that it was
not selected, e.g. Julia did not select the king/queen. In this
case there are two potential true sentence continuations. The
situation is exactly opposite if Julia had selected two cards,
while rejecting only one. By manipulating a game situation
of this type we can create unique and multiple contexts equiv-
alent for negative and affirmative descriptions. It has previ-
ously been suggested that the N400 amplitude elicited by a
given word seems to be directly dependent on the number
of contextually given alternatives to this word. Spychalska
et al. (2016) showed that, for sentences such as Some pic-
tures contain X, if the context scenario provided additional
objects Y that could be mentioned instead of X, the N400 was
larger when Y would complete a true sentence (thus was a
true alternative to X) relative to the case when Y would com-
plete a false sentence (and was not a true alternative to X).
Since the N400 is known to inversely correlate with the cloze
probability of the triggering word, one can hypothesize that
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if the context scenario provides alternative referents for a true
sentence condition, the N400 should be larger relative to the
case when the context allows to uniquely predict the referent.
By contrasting negative and affirmative sentences in logically
equivalent conditions, the design allows us to directly mea-
sure the effect of negation on the processing of a referent in
the context with multiple alternatives.

Method
The experimental design used a scenario-sentence verifica-
tion paradigm. Participants were informed that they follow a
player’s moves in a game. In each target trial the player (in-
troduced in the form of a clipart-like image) was dealt three
cards, each depicting a different object, which were presented
on the screen. Then, the player selected or rejected one or two
of the cards. Subjects were informed that this action leads
to an exhaustive divide of the set of cards. Selection was
marked by framing the selected cards green, which implied
that the unframed cards are rejected. Rejection was marked
by framing the rejected cards red, which implied that the un-
framed cards are selected. After the cards were marked, the
scene disappeared and a sentence (in German) was presented
phrase-by-phrase. At the end of the trial, participants were
asked whether the sentence is a true description of the action
taken by the player. The target sentences were either of the
form 1a (affirmative conditions) or of form 1b (negative con-
ditions), where X is a proper name referring to the player and
Y denotes the critical noun.

(1) a. X hat den/die/das Y ausgewählt.
X has chosen Y.

b. X hat nicht den/die/das Y ausgewählt.
X has not chosen Y.

In each target scenario there was only one object of the
given type, thus a definite article was used in the sentence.
All objects presented in a given trial were of the same gram-
matical gender to rule out that the noun in the sentence could
be predicted based on the article. We ran two experiments: In
Experiment I, all target sentences referred to one of the un-
framed objects. Thus, negative sentences followed scenarios
with green frames, whereas affirmative sentences followed
scenarios with red frames. In this way, both the affirmative
and negative conditions required the participant to make an
inference about the unmarked cards from the information pro-
vided visually (i.e. the marked set of cards). In the unique
conditions, two out of three cards were framed, which left
only one possible and therefore unique referent (unframed
picture) to be named in the target sentence, whereas in the
multiple conditions only one card was framed leaving two
and hence multiple possible referents (unframed pictures) to
be potentially named in the target sentence. In Experiment
II, all target sentences referred to one of the framed cards.
Thus, negative sentences followed scenarios with red frames,
whereas affirmative sentences followed scenarios with green
frames. In this experiment both negative and affirmative tar-
get sentences directly described the player’s action and did
not involve any inferential step. Both experiments used a

Table 1: Example for the conditions in Experiment 1 (top) and Ex-
periment 2 (bottom)

2x2 design with the factors (i) Alternatives (unique/multiple);
and (ii) Polarity (affirmative/negative), resulting in four con-
ditions as shown in Table 1. 1

Our main hypothesis was that the N400 recorded for the
nouns referring to the target objects should be larger for
the multiple relative to the unique context. This effect was
in principle expected both for negative and affirmative sen-
tences; however, we also hypothesized a possible interac-
tion effect between Polarity and Alternatives, indicating that
the processing of negative and affirmative sentences involves
non-overlapping processes especially in the context where
multiple alternatives are available. Furthermore, based on
prior studies (Lüdtke et al., 2008), we hypothesized that the
main effect of negation may occur in the late (P600) time-
window.

Materials We created a list of 240 German nouns that are
depictable and concrete. They were all mono- or bi-syllabic,
moderately frequent2, had a length between three to nine
characters and were used in their singular form. The words
were combined into 240 unique triples 〈N1,N2,N3〉, i.e. each
word was used with each other word only once. These triples
were used to generate scenarios presenting three different ob-
jects, assigned pseudo-randomly to experimental conditions,
in such a way that each word was a critical noun only once.
This resulted in 60 trials per condition, 240 target trials in to-
tal. To balance out the overall truth-value ratio and to make
the material more variable we added 240 filler trials: 200 false
and 40 true3, based on a list of 84 new nouns and with affirma-
tive and negative sentences evenly distributed. To rule out the
possibility of creating expectations for negative or affirmative
sentences based on the color of the frames, the framing of the
filler’s pictures exploited all possible options cross-balanced,
so that affirmative/negative filler sentences followed red or
green frames the same number of times.

Procedure Upon arrival participants signed an informed
consent of participation. They were given a written instruc-
tion including few examples and completed an exercise ses-

1The framing was realized as a between-subject factor in order
to have a sufficient number of trials per condition (60 in the current
design) without inflating the length of the experiment. In addition,
false filler sentences were needed to balance the materials (see be-
low).

2The logarithmic frequency of all stimuli words was controlled
with the use of Leipzig Wortschatz http://wortschatz.uni-leipzig.de/

3Overall, 41.6% of the trials in the experiment were false.
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sion consisting of eight trials. Feedback was provided for
the exercise to make sure that participants understood the
task, especially the meaning of the framing and the exhaus-
tive divide of the set of cards. The experiment comprised of
eight blocks lasting approximately 10 minutes, with optional
breaks in between.4 The whole experiment lasted approxi-
mately 90 minutes. Each trial started with the presentation of
three pictures in the center of the screen. The pictures were
first shown without any frame. Subsequently, one or two of
the objects were framed green or red, followed by the sen-
tence that was displayed phrase-by-phrase on the screen (see
Figure 1). The main ERP trigger was the noun referring to
(one of) the selected or rejected target object(s). After each
sentence, subjects had to respond to a truth-value judgment
task by pressing a left- or a right-hand button on a response
pad. The buttons were assigned pseudo-randomly by display-
ing ”TRUE” and ”FALSE” on the screen sides.

Figure 1: The time course of an example trial with presentation
times. The main ERP trigger is the word Pflaume (plum).

EEG recording and data preprocessing The EEG was
recorded with a BrainAmp acticap 64 channel recording sys-
tem. Electrode position AFz was used as ground and FCz as
physical reference. The electro-oculogram (EOG) was mea-
sured with four electrodes (PO09, PO10, FT9, FT10), which
were reprogrammed and placed above and below the right eye
and on both temples. Electrode impedances were kept below
5kΩ. The EEG was recorded with a sampling rate of 500Hz,
a 10 sec low cut-off filter and an anti-aliasing hardware fil-
ter. The EEG-data was analyzed in the BrainVision Ana-
lyzer 2.0 software. We applied a 0.1-30 Hz off-line bandpass
filter. All trials with an absolute amplitude difference over
200µV/200ms or with an activity lower than 0.5µV in inter-
vals of at least 100ms were automatically rejected. The max-
imal voltage step that was allowed was 50µV/200ms. Eye-
blinks were corrected by means of an independent component
analysis. The data was re-referenced to the averaged mastoids
(TP9, TP10). The baseline-correction was done based on the
200ms pre-onset interval of the stimulus. Segments with any
remaining physical artifacts (lower than -90µV or higher than
90µV ) were removed before averaging. At least 50% of seg-
ments in each condition were preserved.

4For each block a player was introduced. In total, four different
players (two female) appeared during one experiment, each assigned
to two of the eight blocks.

Statistical analysis of the ERPs following the onset of the
critical noun For the analysis of the ERPs we used a re-
peated measures ANOVA with the factors Polarity (nega-
tive/affirmative), Alternatives (multiple/unique) and Region
(anterior/posterior).5 The anterior ROI covered frontal, an-
terior frontal, frontal parietal, frontal temporal as well as
frontal central regions of both hemispheres. The posterior
ROI reached across temporal posterior, central posterior, pos-
terior, posterior occipital and occipital regions of both hemi-
spheres. The electrodes from the horizontal midline (central
electrodes) were analyzed separately. We analyzed the aver-
aged subjects’ ERPs in two time-windows: 250-550 ms post-
stimulus onset for the N400 effect and 550-850 ms post-onset
for the P600. The assumptions of parametric data (e.g. nor-
mal distribution) were met.

Results
Twenty-five volunteers participated in Experiment 1 (nine
male; mean age 25.2 (SD = 4.42, range 18− 33). In Exper-
iment II we measured twenty-five new (not participating in
Experiment I) volunteers (nine male; mean age 23.88 years
(SD 3.94), age range 18-33). We excluded one subject per
experiment from the analyses due to excessive artifacts in the
EEG-data.
Behavioral results. Accuracy was at ceiling level in all con-
ditions, indicating that the task was not too difficult for the
subjects (see Table 2). Although minor differences are ob-
served across conditions, due to space limitations, the statis-
tical analysis of the behavioral data is omitted in the paper.

Unique Multiple
Experiment I Affirmative 97.22(3.25) 94.17(7.17)

Negative 95.63(5.83) 95.42(4.12)

Experiment II Affirmative 97.01(2.82) 95.26(5.00)
Negative 95.34(4.14) 95.27(4.74)

Table 2: Mean accuracy in Experiment I and II, in percentages, and
the standard deviation (µ(σ)) for all conditions

Polarity independent modulation of the N400 by alterna-
tives. The visual inspection of the grand averages revealed
that critical nouns in the multiple conditions elicited clearly
larger N400 ERPs than critical nouns in the unique condi-
tions for both sentence polarities and in both experiments.
The ANOVA for the time-window 250-550 ms for Exper-
iment I, revealed a main effect of Alternatives (F(1,23) =
30.040, p<.001, η2 = .566), with the mean difference be-
tween the multiple and unique conditions of −2.157µV
(Mmult = −.59µV , Munq = 1.567µV ). There was also a main
effect of Polarity (F(1,23) = 10.854, p = .003, η2 = .321),
namely, the negative sentences showed more positive ERPs
compared to the affirmative sentences (∆Neg,A f f = .919µV ),

5The regions were chosen based on the visual inspection of
the effect’s topography that suggested clear anterior-posterior dif-
ferences, but no clear lateralization differences. Since we had no
specific hypotheses regarding potential lateralization effects, we de-
cided to include only AP as a factor in order to keep the analysis
more transparent.
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as well as an effect of Region (F(1,23) = 67.535, p<.001,
η2 = .746, ∆Post,Front = 3.411µV ). The interaction Alterna-
tives×Region was significant (F(1,23) = 11.401, p = .003.
η2 = .331), which can be attributed to a larger multiple vs.
unique N400 effect in the posterior (∆Mult,Unq = −2.558µV )
relative to the frontal regions (∆Mult,Unq =−1.756µV ). Given
that the three-way Polarity×Alternatives×Region interaction
was also significant (F(1,23) = 9.712, p = .005, η2 =
.297), we broke down this interaction by Region. For the
frontal region, there was a significant effect of Alterna-
tives (F(1,23) = 18.357, p < .001, η2 = .444, ∆Mult,Unq =
−1.756µV ), Polarity (F(1,23) = 16.947, p < .001, η2 =
.424, ∆Neg,A f f = 1.232µV ) and the Polarity×Alternatives in-
teraction (F(1,23) = 5.288, p = .031, η2 = .187): The
unique vs. multiple effect was larger for the affirmative
sentences ∆Mult,Unq = −2.4µV than for the negative sen-
tences ∆Mult,Unq = −1.112µV . However, for the poste-
rior region only the main effect of Alternatives was signif-
icant (F(1,23) = 38.511, p < .001, η2 = .626, ∆Mult,Unq =
−2.557µV ). For the midline electrodes the effects were
similar, i.e. there was a significant effect of Alterna-
tives (F(1,23) = 33.788, p < .001, η2 = .595, ∆Mult,Unq =
−2.473µV ), as well as of Polarity (F(1,23) = 8.58, p = .008,
η2 = .272, ∆Neg,A f f = .943µV ), but no interaction.

The results of Experiment II were in line with the
first experiment. There was a main effect of Alternatives
(F(1,23) = 21.045, p<.001, η2 = .478), i.e. the multiple
conditions showed larger negativity than the unique condi-
tions (∆Mult,Unq = −.972µV ), as well as Region (F(1,23) =
36.042, p<.001, η2 = .610, ∆Post,Front = 3.109µV ). No
main effect of Polarity was observed. Unlike in the first
experiment, there were no significant interactions. For the
midline electrodes only a main effect of Alternatives was
found (F(1,23) = 24.920, p < .001, η2 = .520, ∆Mult,Unq =
−1.160µV ).

Alternatives independent Late Positivity for negated sen-
tences. The visual inspection of grand averages revealed a
late positivity effect for the negative relative to affirmative
conditions, that was apparent for both alternatives condi-
tions and both experiments. The analysis in the late time-
window 550-850 ms for Experiment I revealed a main effect
of Polarity (F(1,23) = 25.714, p<.001, η2 = .528), driven
by the negative sentences showing more positive average
amplitudes than affirmative sentences (∆Neg,A f f = 1.177µV ),
as well as a main effect of Region (F(1,23) = 108.986,
p<.001, η2 = .826, ∆Post,Front = 2.58µV ). No effect of
Alternatives was observed; however, there was a signif-
icant Alternatives×Region interaction (F(1,23) = 19.308,
p < .001, η2 = .456): The mean amplitude difference be-
tween multiple and unique conditions was more negative
in the frontal (∆Mult,Unq = −1.028µV ) than in the poste-
rior region (∆Mult,Unq = .172µV ). There was also a sig-
nificant three-way interaction Polarity×Alternatives×Region
(F(1,23) = 9.430, p = .005, η2 = .291), which we broke
down by Region. In the frontal region, we found a signif-

icant effect of Polarity (F(1,23) = 16.387, p < .001, η2 =
.416, ∆Neg,A f f = 1.192µV ), Alternatives (F(1,23) = 11.088,
p = .003, η2 = .325, ∆Mult,Unq =−1.028µV ), as well as sig-
nificant Polarity×Alternatives interaction (F(1,23) = 6.867,
p= .015, η2 = .230): the mean amplitude difference between
the negative and affirmative sentences was larger for the mul-
tiple (∆Neg,A f f = 1.894µV ) than for the unique (∆Neg,A f f =
0.49µV ) condition. In the posterior region only the effect
of Polarity was significant (F(1,23) = 23.064, p < .001,
η2 = .501, ∆Neg,A f f = 1.161µV ). For the midline electrodes,
we found an effect of Polarity (F(1,23) = 29.341, p < .001,
η2 = .561, ∆Neg,A f f = 1.32µV ), but no effect of Alternatives,
and no Polarity×Alternatives interaction.

The results for Experiment II were again generally con-
sistent with Experiment I. There was a main effect of Po-
larity (F(1,23) = 15.269, p = .001, η2 = .399) driven by
the negative sentences showing more positive ERPs than
the affirmative sentences (∆Neg,A f f = .883µV ), and a main
effect of Region (F(1,23) = 45.121, p<.001, η2 = .662,
∆Post,Front = 2.234µV ), but there was no main effect of Al-
ternatives. The interaction Polarity×Region was significant
(F(1,23) = 9.915, p = .004, η2 = .301): The difference
between negative and affirmative conditions was larger in
the posterior (∆Neg,A f f = 1.373µV ) than in the frontal re-
gions (∆Post,Front = .393µV ). Additionally, and similar to
the first experiment, the interaction Alternatives×Region was
significant (F(1,23) = 10.739, p = .003, η2 = .318, frontal
∆Mult,Unq =−.214µV and posterior ∆Mult,Unq = .688µV ). The
interaction Polarity×Alternatives was not significant and nei-
ther was the three-way interaction. For the midline elec-
trodes, again we only found an effect of Polarity (F(1,23) =
17.516, p < .001, η2 = .432, ∆Neg,A f f = 1.066µV ).

Comparison across experiments. Although both experi-
ments showed similar main effects, some differences between
the two framing variants were observed, in particular, some
interactions showed significant in one experiment and not in
the other. As the experiments were otherwise identical, as a
meta-analysis we conducted a full-factorial ANOVA with Po-
larity, Alternatives and Region as within-subject factors and
Experiment as a between-subject factor.

This analysis in the early time window 250-550 ms,
showed no main effect of Experiment; however, the interac-
tion Alternatives × Experiment was significant (F(1,46) =
7.029, p = .011, η2 = .133): the multiple vs. unique N400
effect was larger in Experiment I than in Experiment II. There
was also a significant Polarity × Region × Experiment in-
teraction (F(1,46) = 5.311, p = .026, η2 = .104).6 For the
midline electrodes there was again no effect of Experiment,
but the Alternatives×Experiment interaction was significant
(F(1,46) = 7.338, p = .009, η2 = .138).

No main effect of Experiment was found for the time-
window of 550-850 ms, but the interaction between Alterna-
tives and Experiment was significant both in the main analysis

6See the experiment-specific analyses reported above for the rel-
evant mean differences.
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Figure 2: The comparison of grand averages at the critical word in
all four conditions at the electrode CPz and the topographical distri-
bution of the effects in Experiment I.

(F(1,46)= 4.808, p= .033, η2 = .095, ∆Mult,Unq =−.428µV
in Experiment 1, and ∆Mult,Unq = .237µV in Experiment 2),
as well as for the midline electrodes (F(1,23) = 4.603, p =
0.037, η2 = .091, ∆Mult,Unq =−.443µV in Experiment 1 and
∆Mult,Unq = .305µV in Experiment 2).

Discussion
In two experiments we compared the processing of affirma-
tive and negative sentences in two contexts: (i) a unique con-
text, that allows to make a specific prediction of the critical
noun to be mentioned in a true sentence, (ii) a multiple con-
text, where two alternatives can potentially be mentioned in a
true sentence. In our design the affirmative and negative con-
ditions were fully comparable: In both cases, sentence ver-
ification either required inferring the status of the unframed
cards from the status of the marked set of cards (Experiment
1), or no inference was involved, since the sentence directly
referred to the marked cards (Experiment 2).

It is generally accepted that the N400 reflects meaning-
related expectancy of the stimulus. What this means pre-
cisely remains debated and the theories vary between taking
the N400 to be a marker of lexical retrieval, lexical predic-
tive preactivation or even meaning-related probabilistic pre-
diction. We hypothesized that the presence of multiple al-
ternatives, where the processor cannot uniquely predict the
referent, should lead to a higher N400 relative to the case of
a unique referent. This hypothesis was supported, as we ob-
served a larger N400 effect for multiple vs. unique conditions
independent of the sentence polarity. Although it is well-
established that the N400 is correlated with expectancy and
cloze probability, no prior experiments focused directly on
the relation between the N400 and the availability of equally
predictable alternatives in the scenario. Furthermore, our

Figure 3: The comparison of grand averages at the critical word in
all four conditions at the electrode CPz and topographical distribu-
tion of the effects in Experiment II.

study is the first that directly compares how the scenario-
based cloze probability of the upcoming word affects the pro-
cessing of that word in affirmative and negative sentences.
As the main result we show that the effect of alternatives is
similar for both sentence polarities, thus, the possibility of
predicting a unique true sentence continuation facilitates the
processing also under the scope of negation.

In addition we also showed that, for both alternatives con-
ditions, the presence of the negative particle led to a late pos-
itivity effect at the sentence critical noun occurring after the
negation, i.e. when the noun’s expectancy was related to the
prior use of negation in the sentence. This effect forms a
clear and large P600 effect in both experiments, although in
the first experiment some modulation is already observed in
the early time-window. Under the assumption that the P600
amplitude reflects integration of the lexical information into
the semantic representation of the sentence (see Brouwer &
Hoeks, 2013), this effect may be taken to indicate that in the
case of negative sentences the construction of the semantic
representation was more effortful.

Although the main pattern of effects was the same in both
experiments, the type of framing made a significant contri-
bution to the size of the effects, namely, the N400 effect for
multiple vs. unique alternatives turned out to be significantly
larger in Experiment 1 than in Experiment 2, as shown by
the Alternatives*Experiment interaction. Furthermore, only
in Experiment I we observe an interaction between Polarity
and Alternatives by Region in both time-windows, specifi-
cally, in the posterior region the effect of alternatives was
similar for both sentence polarities, but in the frontal region
it was larger for affirmative sentences. This interaction re-
sult indicates that, in Experiment 1, affirmative and negative
sentences possibly engaged slightly different processes in the
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two alternatives conditions. These between-experiment dif-
ferences may be explained in terms of different task demands.
Although from a logical perspective the two tasks were equiv-
alent, cognitively they differ in an important manner. In Ex-
periment 1, all target sentences referred to the unframed ob-
jects, whose status (chosen vs. unchosen) could only be in-
ferentially determined based on the status of the framed ob-
jects and the assumed exhaustivity of the set divide. Thus, to
determine the status of the unframed objects one had to in-
clude the so-called closed world assumption, which basically
means that what is not known to be true is false. Given this
assumption, in the negative condition, one could infer that if
A was chosen (framed green), then B & C were not (or if A &
B were chosen, then C was not). Similarly, in the affirmative
condition, one could infer that if A was not chosen (framed
red), then B & C were chosen (or if A & B were not chosen,
hence C was). This inferential process is slightly different in
the two conditions as it either goes from a negative premise
to a positive conclusion, or the other way round. In contrast,
in Experiment 2, all target sentences mentioned the framed,
highlighted objects and hence there was no need to reason
about the status of the remaining cards.

In sum, we showed that if the scenario allows to uniquely
predict the upcoming word in a true sentence continuation,
the processing of that word is significantly facilitated both
in the case of affirmative and negative sentences, which is
observed in the form of a reduced N400 component for the
uniquely predicted words. The (higher) cognitive cost of pro-
cessing the negative particle is observed in the form of a late
positivity effect. Finally, the task demands, i.e. whether the
status of the referent is directly marked or has to be inferen-
tially determined, make a significant contribution to the size
of the effects and appear to differently affect the negative and
affirmative sentences. Further research should explore how
the N400 is modulated by a larger number of alternatives pro-
vided and how the effect depends on the sentence truth-value.
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Lüdtke, J., Friedrich, C. K., De Filippi, M., & Kaup, B. (2008).
Event-related potential correlates of negation in a sentence-
picture verification paradigm. Journal of Cognitive Neuroscience,
20(8), 1355-1370.
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Abstract

The classic drift diffusion model of the 2AFC choice process
assumes that observers select evidence accumulation thresh-
olds to optimize some desired level of accuracy across the ex-
periment. We argue that it is more ecologically natural to as-
sume that decision-makers set this threshold adaptively, using
information from recent trials to adjust it for upcoming ones.
To test this hypothesis, we designed and conducted a pair of
random dot motion discrimination experiment where the co-
herence parameter that controls task difficulty varies across tri-
als in a predictable manner. To analyze data from these exper-
iments, we also designed a hierarchical drift diffusion model
that allows decision-makers to adapt their evidence threshold
based on the trend of difficulty of previous trials. Our results
suggest that observers rationally integrate cross-trial informa-
tion about trial difficulty into perceptual decision-making by
adjusting their internal evidence thresholds. We briefly discuss
the implications of the existence of such trial-level effort infer-
ence on contemporary models of the choice process.

Keywords: drift diffusion model; ideal observer model;
Bayesian modelling; cognitive effort; rational inference

Introduction
The drift diffusion model (DDM) is a very successful se-
quential sampling model of the choice process (Ratcliff &
McKoon, 2008). Particularly when applied to perceptual
decision-making tasks, where the stream of evidence is trans-
parent to the experimenter, this model has shown excel-
lent fits to choice and response time data from a wide va-
riety of experimental paradigms, even generalizing across
organisms (Brunton, Botvinick, & Brody, 2013). While
it shares several components, including parallel accumula-
tion and race-to-a-threshold with other competing paradigms
such as leaky competing accumulation (Usher & McClelland,
2001) and decision field theory (Busemeyer & Townsend,
1993), its stochastic specification of important components
of the choice process - rate of accumulation of evidence, re-
sponse bias, and variability in the evidence accumulation rate
- gives it excellent flexibility and interpretability in modelling
the summary statistics seen in perceptual decision-making ex-
periments.

While on the one hand, its mathematical construction
makes the DDM an excellent descriptive model of the choice
process, it simultaneously makes it challenging to associate
its optimality criterion with the goals and costs faced by
real decision-makers. Specifically, the drift diffusion model
is known to implement the sequential probability ratio test
(SPRT) (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006),
which is statistically optimal in the sense that for any choice
of the decision threshold, using the DDM criterion for choice
will yield the highest possible accuracy (Wald & Wolfowitz,
1948).

The relationship between the SPRT and DDM imbues it
with a normative sense of optimality - observers are being
statistically optimal in the SPRT-sense if we show that the
DDM model fits their behavior well. But the underlying as-
sumptions of SPRT - perfect evidence integration, approx-
imately linear evidence accumulation rates, race to a fixed
evidence threshold - are not good fits for the information
and processing limitations that organisms face in real-world
decision-making scenarios. In recent years, objections to
these premises have been raised on both computational and
empirical grounds. Deneve has documented how the con-
ventional drift diffusion paradigm fails to accommodate sit-
uations where sensory inputs are unreliable (Deneve, 2012).
Thura and colleagues have shown how reaction time distri-
butions in perceptual decision-making tasks may be better
described by evidence accumulation terminated by breach-
ing a time-collapsing threshold responsive to an increasing
’urgency’ signal than classic accumulation to a fixed thresh-
old (Thura, Beauregard-Racine, Fradet, & Cisek, 2012).
Glaze et al have demonstrated how perfect evidence integra-
tion - a fundamental assumption of drift diffusion models -
is sub-optimal in the face of unsignalled context shifts in the
decision-making environment (Glaze, Kable, & Gold, 2015).
Thus, using DDM as a normative baseline, research is in-
creasingly focusing on identifying aspects of the environment
that constrain real-world decision-making.

Threshold adaptation as effort inference
We propose to revise the premise that decision-makers accu-
mulate evidence up to a fixed threshold. Whereas such pro-
posals have been made previously (Thura et al., 2012), they
have focused on incorporating the opportunity cost of contin-
ued sampling in the form of a threshold that decreases over
time (Drugowitsch, Moreno-Bote, Churchland, Shadlen, &
Pouget, 2012). We focus on a different aspect of the threshold
determination process - that decision-makers are likely to use
information from previous trials to set decision thresholds for
upcoming trials. Here again, it is well-documented that pat-
terns of responding can introduce response biases in experi-
ments (Ratcliff & McKoon, 2008). The drift diffusion model
allows such biases to be modeled explicitly using changes in
diffusion start-point parameters.

We consider a different normative possibility: we propose
to model the threshold parameter used in drift diffusion mod-
eling as a proxy for the amount of effort the observer be-
lieves is necessary for adequate performance, and we intend
to investigate whether human observers can infers the effort
needed for upcoming trials using effort observations in recent
trials. Grounding this hypothesis in a perceptual decision-
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Figure 1: Schematic illustrating the experiment design. (A) On each experiment trial, participants saw a set of dots in Brownian
motion, with a horizontal drift added to some fraction of the dots. Participants had to discriminate motion direction using key
presses on a computer keyboard, and were incentivized to emphasize accuracy. (B) The sequence of trials each participant saw
possessed a higher-order structure, with the difficulty of successive trials increasing and decreasing in a cyclic manner.

making task, we model behavior on this task using a hierar-
chical ideal Bayesian observer that performs 2AFC random
dot motion (RDM) discrimination. The lower level of this
hierarchical model simulates individual RDM trials using a
classic drift diffusion setup. The higher level of this model
uses a reinforcement learning-inspired controller to set ap-
propriate values of the evidence threshold for each trial.

To test this hypothesis, we designed a specific variation of
the standard RDM task. In the standard task, trial difficulty
is either blocked or randomized across trials. We instead de-
signed a sequence of trial presentation that introduced a pre-
dictable trend in the coherence parameter across trials. If peo-
ple are adaptively tracking the amount of effort they are hav-
ing to expend on individual trials, we expect such inference
to inform their effort allocation on upcoming trials. A hierar-
chical extension of the drift diffusion model, with a top-down
controller setting the evidence threshold adaptively across tri-
als, would potentially fit choice and RT data gathered from
such an experiment design better than a simple DDM that as-
sumes a fixed evidence threshold.

Experiment 1
RDM with higher-order structure
Participants saw a screen with moving dots designed accord-
ing to the following algorithm. Random motion of the dots
was provided by allowing Brownian motion in the vertical di-
rection, i.e. all the dots drifted vertically about their mean po-
sition by a distance chosen from a normal distribution. Hori-
zontal motion was either randomly selected from a bidirec-
tional (left/right) uniform distribution (for incoherent dots)
or from a unidirectional uniform distribution (for coherent
dots). The selection of dots as coherent or incoherent was

determined at the beginning of each experimental trial using
Bernoulli trials controlled by the coherence parameter c.

As in all RDM discrimination experiments, the critical ma-
nipulation of task difficulty was governed entirely by the co-
herence parameter c. We selected a range of values of the co-
herence parameter by running a calibration pilot with 5 partic-
ipants, performing 280 trials of the discrimination task under
accuracy emphasis. We picked a range of coherence values
that permitted 65% accuracy at the low end of the range and
95% accuracy at the high end of the range.

Participants had to indicate the direction of motion of the
overall dot pattern on each trial, as illustrated in Figure 1A.
They were allowed to take as much time as they wanted to
respond to each trial, and as much time as they wanted to
rest between the trials. Each correct response fetched points.
The scoring system was such that a correct response fetches
10 points; the score of each correct response doubled on re-
sponding correctly to three successive trials, and reset to 10
points in case the streak was broken. We further encour-
aged accuracy emphasis by promising a reward to the highest
scorer.

The specific higher-order structure introduced in our exper-
iment was a cyclic shift across the 5 specific values of the co-
herence parameter used in the experiment {0.1, 0.175, 0.25,
0.325, 0.4}. For example, a participant starting the experi-
ment with a trial with coherence 0.1 would next see a trial
with coherence 0.175, then one with 0.25, up to the max-
imum coherence level of 0.4, beyond which the coherence
would begin dropping down to 0.325, then to 0.25 etc. Each
such phase cycle from one coherence value through the other
4 and back to the original takes 8 trials, given we use 5 unique
coherence values. Participants completed 20 such phase cy-

2853



cles for a total of 161 trials per participant, as illustrated in
Figure 1B.

Task
The task was administered via a web-based interface. Partic-
ipants indicated responses with keyboard button presses, and
were allowed to take as long as they liked before pressing the
space bar to begin the next trial. Distance from the screen
was not fixed, but the display size was selected such that the
display was well within the foveal range (20 degrees visual
angle) of normally sighted observers.

Participants
52 undergraduate and postgraduate students participated in
the experiment for course credit (4 female, mean age 20.5±
1.57 SD). All participants had normal or normal-corrected vi-
sion. Since the experiment was conducted without personal
supervision, some participants showed significant guessing
behavior. Post-task, we excluded the data for 18 participants
who had less than 85% accuracy on the highest coherence
trials.

Results
We expected that an observer tracking the cross-trial varia-
tions in difficulty would end up tracking the repeated ramp-
like movement of the coherence parameter, and take longer
on an upcoming trial if the cross-trial coherence was trend-
ing downward (i.e. the trials were becoming more difficult)
than if it was trending upward (i.e. the trials were becoming
easier).

However, even observers insensitive to cross trial informa-
tion are expected to show the same pattern globally in our
data, because upcoming trials aren’t just expected to be eas-
ier/harder on up/down ramps, they actually are easier/harder
too. Therefore, the critical test for whether information from
previous trials are affecting the current trial is to see whether
trials of the same difficulty (coherence) level have longer RTs
when they occur within a down coherence ramp (sequence of
decreasing coherence, increasing trial difficulty) than when
they occur within an up coherence ramp (sequence of increas-
ing coherence, decreasing trial difficulty).

In Figure 2, we plot RTs stratified by coherence level of the
immediate trial for the three intermediate coherence values in
our experiment across all participants, separating out trials
occurring during up and down ramps. For each of the three
coherence levels, the difference between down ramp RTs and
up ramp RTs is directionally in the predicted direction. While
the data is noisy, the large sample size of our experiment
(34 participants × 20 cycles = 680 data points per coherence
level per ramp) allows us to assert statistical significance at
Bonferroni-corrected p < 0.01 for two of the levels (0.175
and 0.325) in two-sample t-tests. The third comparison (for
coherence level 0.25) does not yield a statistically significant
difference in such a test.

These summative statistical results, while conceptually
congruent with our hypothesis, are inadequate to draw strong

inferences. The large standard deviations evident in Figure
2 reflect considerable inter-participant heterogeneity in re-
sponse times. We therefore sought to test our hypothesis at
a trial-by-trial level by developing a generative model of the
information accumulation process involved in a 2AFC per-
ceptual learning task that accommodates such adaptive con-
trol over the evidence threshold, and comparing its ability to
explain our data vis-a-vis a fixed threshold evidence accumu-
lation model.

A hierarchical drift diffusion model
The DDM, in its standard form is a Wiener diffusion process
with drift,

dy = vdt + sdW, (1)

where y is the diffusion state, v is the drift, s determines the
amount of diffusion and dW represents the standard Wiener
process. The model accumulates normally distributed pieces
of evidence for either alternative until a bound on the cumu-
lative evidence is crossed, and then emits the winning option
as the choice.

We developed a hierarchical model of the choice pro-
cess using a recently proposed Bayesian version of the
DDM (Bitzer, Park, Blankenburg, & Kiebel, 2014). This
takes the form of a sequential Bayesian update model that
maps noisy stimuli observations to latent Gaussian represen-
tations

xt ∼ N(µi,σ
2), (2)

constructs a generative model of the likelihood of seeing cer-
tain latent feature values for each stimulus alternative,

p(xt |Ai) = N(µ̂, σ̂2), (3)

and updates beliefs about the correctness of a decision alter-
native given these noisy observations

p(Ai|X1:t) =
p(xt |Ai)p(Ai|X1t−1)

∑
M
j=1 p(xt |Ai)p(A j|X1t−1)

, (4)

where xt are noisy observations from stimuli belonging to cat-
egory i, with true prototypical values µi and measurement
noise σ, estimated prototypical values µ̂ and internal gener-
ative variability σ̂, Ai as possible alternatives and M as the
number of considered alternatives. Bitzer et al show that this
intuitive ideal observer model is formally identical to the drift
diffusion model given certain assumptions about the relation-
ship between parameters of the model.

We augmented this model with a metalearner that esti-
mates the expected sampling effort needed for upcoming tri-
als based on effort allocation on previous trials. We assume a
very simple model for this metalearner. It simply updates the
effort estimate λ as

λt = λt−1 + γ∆t , (5)

where
∆t = z(RTt−1)− z(RTt−2), (6)
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(red bars). Higher RTs seen for trials of equal difficulty, when coherence is trending downwards, i.e. trials are getting harder, is
evidence for adaptive changes in the evidence threshold responsive to past trials. Error bars represent 1 S.D.

γ is a free scaling parameter, z(RT ) is the normalized z-score
of RT at time t with respect to the RT distribution and λt
serves as the threshold for the DDM for the tth trial. This
model is not meant to be comprehensive. We have designed
it purely to simulate our expectation of the role of predictable
up and down changes in dot motion coherence on observer
behavior. We expect that observers will be sensitized to these
trends and extrapolate from them to set decision thresholds
for upcoming trials. Increasing effort on recent trials should
yield a larger threshold for the upcoming trial and vice versa.
Normalization is used to induce a natural scale on the size of
the change in the threshold; the RT distribution is admittedly
non-Gaussian so this assumption could be further refined in
future work. Also, to avoid over-fitting, we have used the
global RT distribution to normalize the RTs, whereas a more
realistic model may use sequential summary statistics within
participants. Indeed, a filtering-based model might capture
the basic intuition of the metalearner more elegantly, but we
wished to compare the augmented model with a complicated
baseline using only choice and RT data, necessitating parsi-
mony in parameter extension. The version of the meta-learner
we have proposed has just one additional free parameter be-
yond the baseline.

As in (Bitzer et al., 2014), we reduced the set of estimated
parameters of the Bayesian model from seven to three by as-
suming equal amount of drift for both stimuli. In practice we
did this by setting µ = µ̂ = ±1 for the 2AFC case. Parame-
ter fitting for the 3 parameters to be estimated θ = {σ, σ̂, tnd}
also followed the procedure outlined in (Bitzer et al., 2014).
We defined the log likelihood of the data given all parameters

as

log p(Acc,RT|θ) = log p(Acc|θ)+ log p(RT |θ)
∝−wacc (Acc−Acc(θ))2

−
1

∑
e=0

7

∑
i=1

wqe,i (qe,i−qe,i(θ)
2,

where qe,i is the ith of seven quantiles
(0.02,0.05,0.1,0.3,0.5,0.7,0.9) for either correct or
error responses as indicated by e.

To evaluate the log likelihood function, again following the
procedure in (Bitzer et al., 2014), we simulated our experi-
ment with the Bayesian observer model for different parame-
ter values, averaging the accuracy and RT quantiles obtained
across 30 model runs per parameter tuple θ and setting the
likelihood weights w to the inverse variance over these repe-
titions. We scaled each iteration in our simulation to 125 ms.
However, we found the MCMC approach advised in (Bitzer
et al., 2014) to be too slow (on the order of days) for fitting
our hierarchical model that used different threshold values
for each trial. Therefore, we used a two-stage grid-search
of the parameter space (logarithmic exploration in one stage
followed by linear refinement in the second) to optimize the
negative log likelihood. In practice, we found that the grid
search yields comparable mean parameter values for the base-
line DDM model as the MCMC procedure implemented in
(Bitzer et al., 2014).

Since we don’t use MCMC to obtain a posterior distribu-
tion over the parameters, it is useful to average over multi-
ple runs of the likelihood computation at the optimal param-
eter values to obtain representative likelihood values. After
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Model AIC BIC
Simple DDM 16.5 (2.7) 36.3 (2.7)

Hierarchical DDM 8.9 (1.5) 28.5 (1.5)

Table 1: Model comparison. Standard deviation across 20
model runs are given in parentheses.

Block 1 2 3 4
∆ BIC 12.4 -3.0 -0.07 -0.78

Table 2: Model comparison across four sequential blocks of
40 trials each from all participants. Block 1 contains the first
40 trials from each participant, etc.

finding optimal parameters via grid search for both models,
we calculate model likelihood as the average likelihood ob-
tained from 20 runs of the model for the optimal parameter
values. The results from our model comparison using these
average likelihood values are presented in Table 1. ∆BIC
measures difference between baseline DDM and hierarchi-
cal DDM BIC. Positive values support the hierarchical DDM,
negative values support the baseline model. ∆BIC values with
magnitudes smaller than 2 imply insignificant differences be-
tween models; values larger than 10 constitute very strong
support for a model. Using this measure, the hierarchical
DDM is clearly preferable to the simple DDM, across data
from all 34 participants (∆BIC = 7.8 from Table 1).

We additionally ran a block-wise analysis, dividing each
participant’s trials into 4 sequential blocks of 40 trials and cal-
culating model complexity statistics on the likelihoods emit-
ted by the model for the best fitting parameter values of the
overall model (σ = 11, σ̂ = 8, tnd = 250ms). We anticipated
that any evidence of gradual adoption or relinquishment of
threshold metareasoning would show up in the relative model
complexity tracked across these four blocks.

As the results in Table 2 show, the hierarchical model is
heavily preferred over the simpler model during the first quar-
ter of trials, measured across all participants. For later tri-
als, both models are evenly matched, with the simpler model
slightly preferred.

Experiment 2

The block-wise analysis of our data revealed an interest-
ing property: participants behaved as if they were tracking
higher-order structure at the beginning of the experiment, but
appeared to switch away to behaving more like conventional
DDM decision-makers later on. We thought this was because
participants tried to use the higher-order structure between tri-
als, but then shifted away from it, since doing so does not of-
fer any material advantage. To falsify such an explanation, we
conducted a followup experiment where tracking the higher-
order structure would confer a material advantage.

RDM with helpful higher-order structure
This experiment design was equivalent to the first one, with
an alteration only in score-keeping. Recall that the first ex-
periment used scoring with a multiplicative boost for main-
taining accuracy streaks. Score per correct response would
double for every three consecutive correct responses, and re-
set to the default value on each error.

For this second experiment, we transformed the incentive
system into an optional ‘auto boost’ mechanism, such that
accurately responding on three consecutive trials would fill up
a booster bar, and optionally selecting the booster bar would
allow a participant to buy out any one trial of their choice.
The bought out trial would be assumed to have been answered
correctly, would not be displayed on screen, and would not
count towards win streak counts.

Participants
31 undergraduate students (age = 20.6±1.3 years, 8F) volun-
teered to participate in this experiment; none having partici-
pated in the first one. These participants performed the exper-
iment under supervision using the same web-based interface
as before. All other experimental protocols were identical to
the first experiment. Post-task, we excluded the data for 5
participants who had less than 85% accuracy on the highest
coherence trials.

Results
The primary difference between the two experimental tasks
was that tracking higher-order structure could not help par-
ticipants in the first one, but potentially could in the sec-
ond one. Specifically, in this second experiment participants
could hold on to filled up booster bars for what they predicted
to be the hardest trials, considerably reducing their overall er-
ror and effort.

Block 1 2 3 4
∆ BIC 9.7 8.4 8.9 3.2

Table 3: Model comparison across four sequential blocks of
40 trials each (counting bought out trials) from all participants
for Experiment 2. Block 1 contains the first 40 trials from
each participant, etc.

A direct measure of whether participants did deploy such
a strategy in this task is the relative distribution of trials on
which participants used boosts across coherence levels. Ran-
dom use of boosts would indicate no use of the optimal strat-
egy outlined above, whereas exclusive concentration of boost
use in the lowest coherence level would indicate perfect ad-
herence to this strategy.

Empirically, we found that 45.5% of all boosts were used
for the lowest coherence trials (chance 12.5%, p < 0.005),
and 78.6% of all boosts were concentrated within the two
lowest coherence levels (chance 37.5%), suggesting strong
utilization of the optimal strategy.
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As a secondary measure of strategy adherence, we fit both
classic and hierarchical DDM to these participants’ data fol-
lowing the same methodology as for the first experiment.
Boosted trials were assigned correct responses and subject-
specific mean RT for the corresponding coherence level dur-
ing the simulations. For lack of space, we only present the
difference in BIC values betwe en hierarchical and classic
DDM fits for this data. Contrasting these ∆BIC results tab-
ulated in Table 3 with those from the original experiment (see
Table 2) strongly suggest that the manipulation of the incen-
tive system does affect participants’ behavior on the task in
the predicted direction.

Discussion
With increases in computational power and experimental
methods, behavioral researchers are increasingly able to track
behavior with greater granularity, which makes hypothe-
ses about intermediate computations underlying behavior
tractable to investigation. This development is making the
study of algorithmic aspects of the decision-making process
increasingly more feasible. Not only does such research char-
acterize biological observers’ decision-making processes, it
also provides constraints on the nature of the cost func-
tions that computational theorists can reasonably set up for
decision-making agents.

As part of this paradigm shift, recent work has begun
to question the classic drift diffusion model’s assumption
of a fixed evidence threshold in recent years, basing these
arguments on the temporal opportunity costs of continued
sampling (Thura et al., 2012). In this work, we asked
the same question from a different standpoint. We asked
whether observers might be sensitive to higher-order statis-
tics in decision-making tasks and adaptively adjust evidence
thresholds on upcoming trials to use them efficiently.

To see if this can happen, we created a novel variation of
the classic random dot motion discrimination task, introduc-
ing an up-and-down ramp in difficulty across trials (Gold &
Shadlen, 2000). We predicted that observers would be sen-
sitive to this variation. We designed an extension of the drift
diffusion model that incorporates metacognitive adaptation of
the evidence threshold based on the trend of difficulty of re-
cent trials, and found that it offers a better explanation of par-
ticipants’ behavior in our experiment than a simple drift dif-
fusion model. A followup experiment further demonstrated
that participants’ tracking of higher-order structure in this
task was intentional - they shifted away from tracking when
it offered no advantage and continued tracking when it did.

Our results support a shift in interpretation of the evidence
threshold from its SPRT-driven association with accuracy, to-
wards a more general view of it as an effort parameter influ-
enced by a variety of information sources. Such an interpreta-
tion also makes it easier to generate normative accounts of de-
cisions from memory using DDM-like models, building upon
its descriptive success in modeling retrieval success and RT
distributions in this domain (Krajbich & Rangel, 2011). Un-

like in perceptual decisions where the evidence presentation
rates are fixed, and decisions receive immediate feedback,
decisions from memory are made with evidence streams of
unknown provenance and without feedback. The empirical
success of DDM in explaining data from such experiments
warrants a broader interpretation of the normative principles
of the framework, along lines proposed in this work.
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Abstract 
This paper provides empirical evidence that human decision-
makers use prospective regret minimization as their dominant 
decision strategy when regret calculations are cognitively 
easier to perform, and use expected utility maximization when 
they aren't. We designed a simple decision problem wherein 
utility maximization and expected regret minimization yield 
distinctly difference choices, and manipulated the cognitive 
effort involved in making regret calculations across 
respondent samples to arrive at our results. While previous 
research has associated ecological considerations like sense of 
responsibility and familiarity with this difference, we show 
that, at least in experimental settings, cognitive calculability 
in regret space appears to predominantly drive this difference. 
We also show that this preference for regret minimization can 
be countermanded by changing the distribution of options 
presented to the respondent, posing a challenge to simple 
sequential accounts of strategy selection learning which 
sequence strategy selection and application in order.   

Keywords: decision-making; cognitive heuristics; cognitive 
effort; regret minimization; utility maximization 

Introduction 
Regret is an important variable in humans' decision-making. 
Empirical investigations spanning psychology (Zeelenberg 
1999; Connolly & Reb, 2005), neuroscience (Coricelli et al., 
2005) and economics (Loomes & Sugden, 1982; Sarver, 
2008) have demonstrated that in several decision contexts, 
humans behave as if they are trying to minimize prospective 
regret, rather than minimize prospective expected utility.  

This distinction is of great significance for choice models 
that wish to track consequential human decisions. For 
instance, Chorus and colleagues have published a series of 
papers showing that a discrete choice model designed 
assuming regret minimization as the underlying choice 
strategy outperforms conventional random utility models 
(RUM) style discrete choice models in predicting future 
travel demand (Thiene, Boeri & Chorus, 2012). 

At the same time, conventional RUM models, assuming 
implicit utility maximization have proved their value in 
modeling human choices in a large array of applications 
(Small & Rosen, 1981), suggesting that utility maximization 
is a useful approximation for peoples' intentions in such 
situations. Consequently, it is important to attempt to 
characterize situations wherein decision-makers are likely to 
prefer either of these decision-making strategies. Zeelenberg 
& Pieters (2007) have suggested, on theoretical grounds, 
that regret-minimization is more likely to be used:  

(a) when choices are perceived to be important and 
difficult,  

(b) when the decision-maker expects to be held 
accountable for their choice and  

(c) when the decision-maker anticipates receiving 
feedback about options in the near future.  

There is also some empirical evidence supporting the 
basic premise that domain unfamiliarity may drive the use 
of regret minimization strategies, a mechanism that is 
substantially congruent with the theoretical factors 
identified by Zeelenberg & Pieters (2007). Boeri, Scarpa & 
Chorus (2014) have showed using discrete choice modeling 
on a transport choice dataset that the behavior of 
respondents unfamiliar with the choice context was better 
explained by regret minimizing models.  

A common thread between such theoretical and empirical 
observations is the notion that regret is explicitly calculated 
by the respondent (Zeelenberg & Pieters, 2007). It is 
because of this commitment to explicit psychological 
calculation that the role of prospective feedback and 
accountability etc. become important in predicting the use 
of regret minimization as a strategy. Since regret is arrived 
at via comparison with alternative outcomes, no possibility 
of feedback would imply no possibility of experiencing 
regret, which could shift respondents' behaviors towards 
other strategies.  

This commitment to explicit psychological calculation 
differentiates regret from utility, for which no such 
commitments are necessary. It is common to observer 
proposals suggesting direct reward encoding in human 
observers' brains (Padoa-Schioppa & Assad, 2006). At a 
minimum, the idea that utilities may be constructed is not 
yet consensual in the corresponding literature at the 
interface between psychology and economics (Slovic, 1995; 
Srivastava & Schrater, 2015).  

The centrality of explicit calculation for regret is the focus 
of the work we report in this paper, wherein we sought to 
characterize the effect of cognitive ease of calculation of 
regret on decision-makers' meta-decision to use it as a 
choice strategy. Our hypothesis was that observers would 
switch away from use of a regret minimization strategy as 
the cognitive costs of calculating regret increased. To test 
this hypothesis, we designed a simple choice task wherein 
expected regret minimization and expected utility 
maximization yield clearly divergent choice behaviors, and 
manipulated the choice stimuli to make explicit comparison 
of items in regret space easier or harder. 

We obtained empirical results substantially supporting our 
hypothesis. Specifically, we found that participants 
preferred regret minimizing choices when the choice set was 
a set of monetary labels, but preferred utility maximizing 
choices when it was a set of product photos, albeit 
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associated with money labels. A chronometric assessment of 
difficulty in judging valuation differences between stimuli 
of the same category was used to establish that regret 
calculations for the former stimuli category were relatively 
easier than for the latter. Challenging simple sequential 
accounts of strategy selection in decision-making, a final 
experiment demonstrated that decision-makers' stimulus-
category specific bias could be countermanded by changes 
in the distribution of stimulus valence at the time of 
presentation. We conclude with a discussion contextualizing 
our findings within existing formal accounts of strategy 
selection in decision-making. 

Discriminating between choice strategies 
Some econometric research in the past has sought to 

discriminate between the use of utility maximization and 
regret minimization strategies by fitting different varieties 
of discrete choice models to data (Thiene, Boeri & Chorus, 
2012). However, such models have several free parameters 
and idiosyncrasies in estimation procedures, and their result 
interpretations are frequently susceptible to validity 
challenges. To avoid such complications, we sought to 
design a simple experimental task in which utility 
maximization and regret minimization would predict clearly 
divergent choices.  

This took the form of a choice problem where 
respondents are told that the correct choice is one of N 
positive integer-valued options, that each of the options has 
an equal chance of winning, and that if they guess the 
correct option, they get the amount of money, or a product 
of equivalent cost, indicated by the integer value indexing 
that option1.  

Our interest was to contrast the relative performance of 
utility maximization and regret minimization strategies in 
this setup. Formally, given a set of alternatives X, and some 
estimate or direct measurement of the utility of alternatives 
a utility maximizer would select according to the choice rule  

                                                           
1  The inspiration for this problem design is drawn from an 

unpublished draft by Oleg Urminsky & Adele Yang, which in turn 
derived this problem from a common radio station contest - the 
jackpot guessing game. 

 

 
 

It is trivial to see that the expected utility maximizing 
choice in this problem is to always select the option with the 
highest integer value. 

A regret minimizer, on the other hand would calculate the 
potential regret for choosing each one of the outcomes  

 
 

 
where U* is some counterfactual comparative benchmark 

utility, and then use the choice rule  
 

 
 

The choice of benchmark utility differentiates regret 
calculations into different categories. Minimax regret 
computations take the benchmark utility to be the utility 
from the best possible outcome (Savage, 1951), and is 
commonly used in game-theoretic settings to model 
behavior. Such a criterion is reasonable for when the 
decision-maker is expected to know the correct option, a 
common premise in game-theoretic settings. For decision-
makers operating with little domain knowledge, average or 
expected utility is frequently selected as the benchmark 
utility, as is common in reinforcement learning settings 
(Kaelbling, 1996). Since our task falls in the latter category, 
we use expected utility to perform our regret calculations.   

Assuming a linear relationship between utility and regret 
as defined in Equation (3), we see that the regret minimizing 
choice in this problem is to pick the option in the middle of 
the range of available options, calculating U(x) as the 
prospective utility of x should it win and treating U(.) as a 
logarithmic map of x,  a classic micro-economic 
assumption. This pattern is, in fact, inevitable since the 
benchmark expected utility occurs in the middle of the value 
range given equi-probable outcomes and draws the regret 
minimum towards itself. Figure 1 illustrates this intuition 
quantitatively, showing that prospective regret is lowest 
when selecting in the middle of the range.  

 
Thus, this simple decision problem potentially gives us a 

straightforward way of empirically differentiating the use of 
utility maximizing versus regret minimizing strategies. 
Assuming even spacing of choice set options, respondents 
selecting options towards the extreme large values of the 
offered range are expected utility maximizers, while 
respondents selecting options in the middle of the offered 
range are expected regret minimizers. 

Given this premise, we next designed a simple experiment 
to test it. We designed two sets of choice stimuli, one for 
which regret calculation should be easy, and one for which 
it should be hard, and asked two different set of respondents 
to choose between them using the paradigm described 
above.  

 
Figure 1: Expected utility (left) and expected regret (right) 
for nominal x values plotted on the x-axis.  A logarithmic 
form is assumed for the utility function. 
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Experiment: easy money and hard pens 
Our basic prediction is that decision-makers prefer a 

regret minimization strategy for option sets wherein 
comparing the value of options is relatively easy, and prefer 
utility maximization (or other strategies) when such 
comparisons are hard. To test this, we designed a between 
participants' experiment, with one cohort making decisions 
using a stimuli set that permits easy regret calculations and 
the other using a stimuli set that does not.  As a precursor to 
this, we ran another study to quantitatively identify which 
stimuli categories are, respectively, easy and hard for 
respondents to calculate regret.  

Precursor study 
Regardless of whether comparisons are utility function-
wise, feature-wise or heuristic-based, it appears natural that 
the presence of more features should make regret 
calculations harder. Therefore, we designed choice option 
sets to have either just one feature (a money amount) or 
multiple features (money amounts plus other features), 
corresponding to easy and hard regret calculation settings. 
 
Design. Specifically, we selected two categories of stimuli 
to test for relative difficulty vis-à-vis a baseline of simple 
numerical comparisons. These were  

(A) two-digit money amounts, and  
(B) images of pens, presented alongside their actual 

market price.  
Each participant completed two blocks of 35 trials each 

for either category of stimulus, with the block presentation 
order (ABAB/BABA) counter-balanced across participants. 
Within a block all participants saw a stream of 36 stimuli 
from a single category (ITI = 500ms), and had to 
successively respond to the cue, "Is this one much better or 
worse than the last one?" prompting 1-back comparisons 
with the stimulus currently on the screen. The sequence of 
stimuli presentation was pseudo-randomly generated in each 
category using sampling with replacement from a set of 7 
unique stimuli (described in the main experiment for both 
categories), with the constraint that the new stimulus had to 
be different from the previous two stimuli in the sequence.  
"Yes" and "no" responses were coded to the "left" and 
"right" arrows of a regular QWERTY keyboard. Responses 
were disabled for the first stimulus in each block since it 
had no valid comparison. Participants were asked to take as 
much time as needed to respond, and the trial number within 
the block was shown alongside the total number of trials in 
the block on the screen.   

Before these four stimuli-specific blocks were presented, 
participants' response time baselines for numeric distance 
calculations were established by presenting them with a 
stream of 36 three digit numbers (ITI = 500ms) sampled 
from a uniform distribution on [10,99], successively asking 
the question, "Is this number much larger or smaller  than 
the last one?" The presentation and response interface used 
for this block was identical to the one used for the 
subsequent stimuli-based blocks.  

 
Sample and analysis. For this precursor study, we recruited 
10 volunteers (2F, age = 24 +/- 2.3 years, 0 left-handed) 
using convenience sampling.   

The regret calculation conditions (easy vs. hard), in the 
form of different stimuli sets, were empirically validated on 
the premise that the critical step in regret calculation is the 
utilitarian comparison of the outcome received with an 
alternative. Adopting a mental chronometric approach, the 
relative time taken in performing this calculation for 
different categories of stimuli was used to operationalize our 
sense of relative difficulty of regret calculations. For all our 
calculations we report below, we excluded outlier RTs (> 
2S.D. from category mean). These constituted 1.5% of all 
trials (21 out of 1400 total trials), but occurred primarily in 
the pens category trials. The exclusion of these outliers in 
fact deflates the size of primary result we report below. 
Therefore, we do not report results including them.  

 
Figure 2: Mean Response times for pair-wise difference 
judgments within different categories of stimuli for all 10 
participants of the precursor study. Errors bars represent +\- 
1 S.D. 
 
Results. Figure 2 displays average response times category-
wise, combining trials across participants and category 
blocks. Clearly, respondents found the monetary 
comparisons of value approximately as easy as numeric 
comparisons of magnitude (Cohen's d = 0.40), 
demonstrating the intuitive mapping of number to value in 
the monetary domain. Equally clearly, respondents took 
longer to respond to comparisons involving images of pens 
alongside their prices (Cohen's d = 1.39), implicating multi-
dimensional considerations in estimating the value of these 
objects.  

Thus the precursor study objectively established that 
respondents take longer to assess whether two pens offered 
at different price points are significantly different from each 
other than to assess this for just two money amounts. 
Granted the chronometric assumption that RT predicts task 
difficulty, this result validates our consideration of choice 
stimuli drawn from the former category as harder than the 
latter. This distinction, in turn, permits the design and 
conduct of our main experiment.  
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Main study 
Design. Volunteers for the main experiment were recruited 
from the general university population. However, 
participants from our precursor study were excluded. All 
consenting volunteers were randomly assigned to easy (N = 
54, age 20.4 +/- 1.4 years, 31 F) and hard (N = 53, age 19.8 
+/- 1.0 years, 25 F) regret calculation conditions 
respectively. 

Both sets of respondents participated in the experiment in 
a classroom setting separated spatially from each other, 
transmitting their responses via text messages. The easy 
group respondents were presented with the following 
instructions, "Consider this hypothetical scenario. I have a 
bowl of seven paper tokens, each one with one of the first 
seven multiples of five written on them. Every number is 
written on at least one token, and no token has more than 
one number on it. At the end of the class, I will draw a token 
and whoever can text me (response number) the number on 
the token I will draw will win the amount of money written 
on that token."  

 
Figure 3: Choice stimuli presented to respondents in the 
hard condition. Numbers in parentheses represent pen 
codes. Money amounts are true prices of the corresponding 
pens. Pens are arranged in randomized order with respect to 
money amounts to prevent positional bias in responses 
 

The hard group respondents were presented with the 
visual display shown in Figure 3 accompanied by the 
instructions, "Consider this hypothetical scenario. I have a 
bowl of seven paper tokens, each one with a number 
between 1 and 7 written on it. Every number is written on at 
least one token, and no token has more than one number on 
it. At the end of the class, I will draw a token and whoever 
can text me (response number) the number on the token I 
will draw will win a pen of the type listed under that number 
on this display."  

 
Analysis and results. Figure 3 summarizes the responses 
from both groups of respondents as a histogram of the 
number of respondents that selected each response option. 
The difference between the response patterns is visually 
apparent in the modes of the two distributions in Figure 3, 

and a two-sample T-test of the individual responses from 
the two cohorts also indicates a  significant difference (t105 = 
2.18, p = 0.03). An effect size calculation yielded a Cohen's 
d of 0.41, again consistent with a significant difference 
between the two response patterns.  

A comparison with the predictions from Figure 1 clearly 
suggests that respondents from the easy group, who  were 
significantly biased towards responding in the middle of the 
proffered range, were likely using a regret minimization 
strategy, whereas respondents from the hard group, who 
preferred the pricier pens, were likely using a utility 
maximization strategy.  
 

 
Figure 4: Histogram of respondents' selections for choices 
where regret calculation is designed to be (left) easy and 
(right) hard. 
 

This finding is not easily explicable by alternative 
hypotheses. Previous theoretical proposals have suggested 
that respondents prefer to decide based on prospective regret 
when choices are difficult or consequential (Zeelenberg & 
Pieters, 2007). If anything, it appears intuitive that choosing 
in pen space is more difficult than choosing in money space. 
Results from our precursor study establish, at the very least, 
that estimating value differences between pens in our 
display is harder than estimating value differences between 
money amounts. If the pens are harder to choose from, then 
Zeelenberg & Pieters (2007) would predict the opposite 
pattern of results than what is seen. Similarly, arguments 
explaining regret minimization being preferred in unfamiliar 
domains should also predict it being used when selecting 
between pens than between money amounts, since choosing 
between money amounts is unlikely to be more unfamiliar 
than choosing between idiosyncratic stimuli like pens. Thus, 
this result appears to clearly favor an ease of calculation 
explanation for preferring a prospective regret minimization 
strategy.   

Input or enabler? 
While the difference in responding elicited by our 
manipulation does suggest a role for the ease of regret 
calculation entering into respondents' decision about which 
strategy to use, it does not clarify how this variable enters 
this reasoning.  

We conducted a variant of the original experiment to 
differentiate between two potential roles for this cognitive 
effort variable: (i) as an input to hierarchical decision 

2861



process, where the strategy is selected first, then 
implemented, followed further by assimilation of feedback, 
or (ii) as a mechanistic enabler, in the sense that quicker 
regret calculation makes results from the use of a regret 
minimization strategy available sooner to participants, and 
hence more likely to be used.     

As we discuss further below, the first possibility would fit 
this cognitive effort variable within formal hierarchical 
models of strategy selection and learning, such as Rieskamp 
& Otto's influential SSL model (Rieskamp & Otto, 2006). 
The latter would be more compatible with heuristic accounts 
of the effect of availability and accessibility on decision-
making (Carroll, 1978), which are yet to be successfully 
formalized to the same extent (Gigerenzer & Gaissmaier, 
2011). 

 
Design. If strategy selection precedes outcome evaluation, 
then we would expect changes in the range of outcomes 
used for our decision problem to not affect the choice of 
decision strategy. Conversely, if changing the range of 
outcomes for the decision problem reveals differences in the 
pattern of responding, it is clear that some aspects of 
outcome evaluation must precede the decision of which 
strategy to use.  

To test this hypothesis, we again used a between-subjects 
design. The decision problem and setup was identical to the 
one used in the easy condition of the main experiment, with 
two different groups of respondents making choices using 
two different sets of money amounts. The first set used the 
same stimuli as the original experiment. The second set used 
the stimulus set {5,10,15,20,25,30,105}, replacing the 
largest stimulus in the original set with a much larger value. 
All participants received the same instructions as in the 
main experiment's easy condition in a classroom setting, and 
transmitted their selections using text messaging as before.    

 
Sample. Volunteers for the experiment were recruited from 
the general university population. We screened the recruited 
sample for previous participation in either our precursor 
study or the main experiment. A total of 90 participants 
(23F, Age = 20.3 +\- 1.8 years) were finally selected for 
participation in the experiment, and randomly assigned to 
two equally-sized groups for this study.  

 
Figure 5: Histogram of responses for groups responding to 
(left)  original stimuli set and (right) changed stimuli set 
 

Analysis and results. As is evident from Figure 5, the 
response patterns in both groups were starkly different. A 
two sample T-test for the individual responses returned 
strongly statistically significant t88 = 6.00, p < 10-6 and an 
effect size calculation yielded a large effect (Cohen's d = 
1.08). Further, the response pattern elicited from the 45 
participants who were presented with the same stimuli as in 
the easy condition in the main experiment were not 
statistically different from the 54 participants' responses 
obtained during the former experiment (two sample t-test p 
= 0.40), suggesting that the original result was robust.   

This result shows that changing the set of choice options 
by adding an extremely valuable alternative makes 
respondents substantially more likely to prefer the expected 
utility maximizing strategy, suggesting that a sequential 
view of strategy selection followed by application cannot 
faithfully reflect how participants use information available 
from the choice set before making their decision. Thus, the 
present evidence suggests that the expected different costs 
of regret computation for different stimuli sets does not 
enter explicitly into participants' strategy-selection 
calculations, but rather enables regret-based determinations 
to be emitted preferentially by virtue of being generated 
quicker, in line with the bag of heuristics view of decision-
making strategies (Gigerenzer & Gaissmaier, 2011). 
However, we discuss below how our findings could 
potentially be reconciled with a hierarchical view of strategy 
selection further below.  

Discussion 
Summary of results. In this paper, we have proposed a 
novel characterization of when human decision-makers are 
likely to prefer minimizing prospective regret over 
alternative decision-making strategies like expected utility 
maximization. Our proposal is that decision-makers prefer 
to minimize regret when the cognitive cost of calculating 
regret is low, and switch to alternative decision strategies 
when this cost is high.  

To test this hypothesis, we designed a simple decision 
problem which permits a clear empirical differentiation 
between the use of either of these two decision-making 
strategies. We conducted a chronometric assessment of two 
stimuli sets, for which relative value judgments had 
distinctly different difficulty levels. Although other 
measures of effort have been proposed in the literature, 
drawing upon information-theoretic considerations (Huber, 
1980), the validity of these measures is ultimately assessed 
using reaction time data (Johnson & Payne, 1985). Thus, 
while alternative operationalizations of effort are certainly 
possible, our response time-based definition appears 
reasonable.  

Using this observation to establish the relative difficulty of 
regret calculations using options selected from these two 
stimuli sets, we asked two separate groups of participants to 
make decisions that were formally identical, except for the 
stimuli identity difference. We found that the pattern of 
responses for choices made using stimuli that were hard to 
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evaluate comparatively was more consistent with the use of 
an expected utility maximization strategy, whereas for 
stimuli that were easier to compare, the pattern of responses 
was more consistent with the use of an expected regret 
minimization strategy. It is, of course, impossible to verify 
that these were the only two strategies possible for 
participants to use in the choice problem. Ad hoc heuristic 
approaches such as 'bias towards the middle of the range' etc 
could, in principle, be potentially confounded with the 
regret minimizing  predictions for this choice problem. Such 
ad hoc proposals, however, are not parsimonious, in the 
sense that they fail to explain the shift to expected utility 
maximization for the same choice problem using different 
stimuli, whereas the cost of calculation explanation does.  

A more significant question is how well the result 
demonstrated in this somewhat arbitrary choice problem 
generalize to richer experimental settings and real-world 
decisions. We consider this an important consideration for 
future work.  

 
Related work. There is a large literature on strategy 
selection, anchored in contemporary times by Rieskamp & 
Otto's powerful SSL theory (Rieskamp & Otto, 2006). The 
basic outline of this theory is that observers select a strategy 
to tackle each instance of a decision problem stochastically, 
guided by their preference for each of the possible 
strategies. This strategy-preference in SSL has three 
components, (i) the maximum reward possible in a trial, (ii) 
an initial strategy-specific preference, and (iii) a learning-
based association of strategy to the choice problem, based 
on the long-run trend of the use of that strategy resulting in 
a higher reward. The basic intuition underpinning SSL is 
that observers adapt to choice contexts by gradually learning 
to prefer strategies that prove more rewarding in them. 
Notably, Rieskamp & Otto (2006) explicitly consider the 
possibility that the cognitive costs of applying a strategy 
may enter observers' calculations for strategy preference. 
However, how such strategy-specific costs would enter their 
model's calculation has remained an open question.  

The results in this paper provide useful constraints on the 
potential development of such a cost-sensitive model. Our 
main experiment strongly suggests a role for cognitive cost 
of applying a strategy in determining observers' preference 
for it. A naïve approach might be to subtract some notional 
cost of calculation from the reward term in the SSL prior on 
strategy preference. However, our follow-up experiment 
demonstrates that strategy preference can be affected by 
complex informational aspects of the choice problem, such 
as the distribution of options in value space.  

Such a complex interaction does not appear to be possible 
in the baseline two-step algorithmic specification of SSL, 
wherein first the strategy is selected based on existing 
strategy preferences, and then information from the current 
trial updates the strategy preferences.  We conjecture that a 
drift-diffusion based (Ratcliff & McKoon, 2008) extension 
of the SSL model, wherein the evidence for the utility of 
options accumulates competitively and becomes available to 

assist in strategy evaluation depending on how soon this 
competition terminates, could accommodate our results.  
 

References  
Boeri, M., Scarpa, R., & Chorus, C. G. (2014). Stated choices and 

benefit estimates in the context of traffic calming schemes: 
Utility maximization, regret minimization, or both?. 
Transportation research part A: policy and practice, 61, 121-
135. 

Carroll, J. S. (1978). The effect of imagining an event on 
expectations for the event: An interpretation in terms of the 
availability heuristic. Journal of experimental social psychology, 
14(1), 88-96. 

Connolly, T., & Reb, J. (2005). Regret in cancer-related decisions. 
Health Psychology, 24(4S), S29. 

Coricelli, G., Critchley, H. D., Joffily, M., O'Doherty, J. P., Sirigu, 
A., & Dolan, R. J. (2005). Regret and its avoidance: a 
neuroimaging study of choice behavior. Nature neuroscience, 
8(9), 1255. 

Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision 
making. Annual review of psychology, 62, 451-482. 

Huber, O. (1980). The influence of some task variables on 
cognitive operations in an information-processing decision 
model. Acta Psychologica, 45(1-3), 187-196. 

Johnson, E. J., & Payne, J. W. (1985). Effort and accuracy in 
choice. Management science, 31(4), 395-414. 

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). 
Reinforcement learning: A survey. Journal of artificial 
intelligence research, 4, 237-285. 

Loomes, G., & Sugden, R. (1982). Regret theory: An alternative 
theory of rational choice under uncertainty. The economic 
journal, 92(368), 805-824. 

Padoa-Schioppa, C., & Assad, J. A. (2006). Neurons in the 
orbitofrontal cortex encode economic value. Nature, 441(7090), 
223. 

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: 
theory and data for two-choice decision tasks. Neural 
computation, 20(4), 873-922. 

Rieskamp, J., & Otto, P. E. (2006). SSL: a theory of how people 
learn to select strategies. Journal of Experimental Psychology: 
General, 135(2), 207. 

Sarver, T. (2008). Anticipating regret: Why fewer options may be 
better. Econometrica, 76(2), 263-305. 

Savage, L. J. (1951). The theory of statistical decision. Journal of 
the American Statistical association, 46(253), 55-67. 

Slovic, P. (1995). The construction of preference. American 
psychologist, 50(5), 364. 

Small, K. A., & Rosen, H. S. (1981). Applied welfare economics 
with discrete choice models. Econometrica: Journal of the 
Econometric Society, 105-130. 

Srivastava, N., & Schrater, P. (2015). Learning what to want: 
context-sensitive preference learning. PloS One, 10(10), 
e0141129. 

Thiene, M., Boeri, M., & Chorus, C. G. (2012). Random regret 
minimization: exploration of a new choice model for 
environmental and resource economics. Environmental and 
resource economics, 51(3), 413-429. 

Zeelenberg, M. (1999). Anticipated regret, expected feedback and 
behavioral decision making. Journal of behavioral decision 
making, 12(2), 93-106. 

Zeelenberg, M., & Pieters, R. (2007). A theory of regret regulation 
1.0. Journal of Consumer psychology, 17(1), 3-18. 

2863



To Teach Better, Learn First

Oana Stanciu (Stanciu Oana@phd.ceu.edu)1
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Abstract

There has been little cross-fertilization between research on ac-
tive learning and teaching, despite extensive conceptual simi-
larities. The current study aims to bridge the gap by show-
ing that engaging in active learning can influence subsequent
teaching performance. In a one-dimensional boundary teach-
ing task, participants who first took the role of an active learner
went on to become better teachers than participants who did
not. In order to disentangle the effect of active selection of
samples from their information content, the performance of
active learners was compared to that of yoked passive learn-
ers. While prior passive learning also significantly boosted
teaching performance, it did so to a lesser extent. However, in
paired comparisons, teachers with active learning experience
did not differ significantly from their yoked-passive learning
counterparts. Based on the current results we cannot argue
for a teaching benefit specific to active learning as opposed to
a more general improvement caused by experiencing the task
from the learner’s perspective. However, we suggest that this
is a promising line of inquiry using more complex learning and
teaching tasks.

Keywords: teaching; active learning; evidence selection

Introduction

Perhaps the most enduring debate in the education litera-

ture, as well as around kindergartens and classrooms, con-

cerns the virtues of exploratory play in contrast to the canon-

ical, largely passive mode of teacher-led instruction (Bruner,

1961; Mayer, 2004). The discussion has been naturally

phrased in terms of the relative benefits and disadvantages

that the learner incurs when learning from self-guided discov-

ery compared to direct instruction. However, the complemen-

tary, and equally important, link between efficient self-guided

learning and good teaching has remained largely unexplored.

The common thread running between teaching and active

learning is easy to identify when comparing their formal de-

scriptions. Recent rational-agent models have conceptual-

ized teaching as a recursive process in which the teacher and

the learner reason about each other. Specifically, the teacher

selects training samples for the learner such that, given the

learner’s prior knowledge and inference making mechanisms,

these samples would lead the learner to the desired conclu-

sion efficiently, i.e. by requiring the smallest number of sam-

ples (Shafto, Goodman, & Griffiths, 2014). Conversely, the

learner interprets the observed samples assuming they were

generated by this pedagogical process (as opposed to ran-

domly). Similarly, an ideal active learner will also sample the

environment strategically. However, they will do so by di-

recting their information gathering (e.g. by moving their eyes

to explore a visual scene or choosing interventions on the en-

vironment) in order to maximize their expected information

gain (Yang, Wolpert, & Lengyel, 2018). There are two ways

in which active learning can be advantageous. First, obser-

vations collected in a strategic way will be more informative

for any learner (not just the one sampling information); for in-

stance, by avoiding irrelevant or redundant evidence. Second,

and more importantly, there is an added advantage specific to

the active learner stemming from the fact that they sample in-

formation in light of their prior knowledge and the hypotheses

that they wish to test. This effect was demonstrated in exper-

iments in which the data selected by an active learner was

also presented to a yoked ”passive” learner, and, despite the

observations being matched, active learners performed better

than their yoked passive counterparts (Markant & Gureckis,

2014).

Thus, both being a good teacher and a good active learner

rest on the same general ability to evaluate the potential value

of a new piece of evidence relative to a current state of knowl-

edge and a task. Nonetheless, there are important differences.

First, teaching brings the added complexity of selecting data

for the use of another agent, who might differ widely from

the teacher in their state of knowledge and inference mak-

ing. In line with this, Bass, Shafto, and Gopnik (2017) have

linked Theory of Mind (ToM) development to children’s ped-

agogical sampling ability. Second, the active learner does not

have access to the target hypothesis, and thus can only select

data that minimize uncertainty. However, Yang, Vong, Yu,

and Shafto (2019) recently proposed a reconceptualization of

active learning as self-teaching by envisioning a learner who

simulates an uninformed teacher whose task is limited to pro-

viding queries. In this framework, the self-teacher does not

optimize for expected information gain, although this will of-

ten be the collateral result. Thus, despite differences, it is still

feasible to think about teaching and active learning as two

highly related cognitive processes.

Given the computational similarity of teaching and active

learning, is it possible that they are also integrated through

linked processes in human behavior? In other words, would

it be possible to hone teaching skills through active learning?
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Figure 1: Example image array from the teaching task. In this trial, food items were sorted from left to right in ascending

order of their vitamin B content. The black vertical bar represents the daily recommended dose of vitamin B, which is the

boundary the participant had to teach. In this case, the participant clicked on the two images closest to the boundary, which

were automatically labelled.

Intuitively, taking the perspective of the learner prior to

teaching should be a useful experience. It could allow the

teacher to better understand, even if implicitly, how a learner

would make inferences to solve the task at hand based on the

data provided, which in turn would help refine the data selec-

tion process.

Taking this reasoning one step further, having the experi-

ence of being an active learner prior to teaching should gen-

erate robust insights about how to select good examples for

teaching in similar tasks. Additionally, if both tasks rely on

a core ability to sample environmental data efficiently, the

transfer could occur automatically during learning, without

the knowledge or expectation that the acquired information

will need to be used for teaching in the future. Furthermore,

active learning should improve teaching performance beyond

passive learning (even when the same information content is

acquired) if the active selection of data was the crucial driver

of the learning effect, rather than the benefit of familiarity

with the teaching task or taking the perspective of a learner.

Experiment

In order to test the hypothesis that active learning improves

teaching performance, we designed a simple task in which

participants were required to both learn a one-dimensional

categorization boundary, and teach it, in counterbalanced or-

der. Thus, there were two independent groups of participants

in our design, those who learned actively first and then taught,

and those who first taught and then performed active learning.

In addition, to probe whether the effect learning on teaching

performance was specific to active learning, a yoked control

group performed the same teaching task after learning pas-

sively from watching the active learners labeled queries.

Method

Participants Eighty-eight participants (54 female, Mage =

24 years, range = 18 - 42 years old) were recruited from the

local population through the university online research par-

ticipation system and the student union. Ethical approval was

obtained from the United Ethical Review Committee for Re-

search in Psychology (EPKEB) in Hungary.

Tasks All tasks (active learning, passive learning, and

teaching) consisted of three trials. In each trial, participants

were shown eight images in a horizontal array such as the

one displayed in Figure 1. Participants were told that the

images were sorted left-to-right according to a given ”key”

feature. For instance, animals were sorted according to their

speed relative to body size or the average amount of time they

sleep, or foods were sorted by their carbon footprint or their

vitamin content. Images belonged to one of two categories

(which were clearly marked at the extremes of the image

array) according to whether their key feature was below or

above a “boundary” (threshold value) which lied between two

adjacent images (i.e. at one of seven possible locations). Un-

known to the participants, the true boundary locations which

dictated the category membership of the images were uni-

formly sampled in each trial from all the possible locations.
1

The categories used for the learning and teaching tasks

were randomly selected for each participant. Images and cat-

egory cover stories were only presented once throughout the

entire experiment.

In active learning trials, participants first saw the im-

age array alongside the description of the categories and the

boundary, following which they were told that their task was

to find the boundary by querying two images. An image could

be queried by clicking on it, which immediately revealed its

category membership through the color of the frame drawn

around it. After the second query, participants were asked to

pinpoint where they thought the boundary was located, again

by clicking on one of the seven possible boundaries. Partic-

ipants received feedback on whether they were correct, un-

1Participants were provided with a description of a seemingly
objective classification boundary (e.g. that slow and fast animals
were separated by the speed of the average human scaled by size).
These descriptions were intentionally chosen such that the partici-
pants were unlikely to have any strong priors about the location of
the boundary. Knowing the participants’ prior was essential because
it determined the optimal query choice in active learning. The six
categories and boundary descriptions used in the experiment were
chosen based on a pilot in which participants were asked to select
the boundary location by relying merely on their prior knowledge.
The distribution of chosen boundaries (across participants) for the
items included in the current experiment was not significantly dif-
ferent from the uniform distribution.
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lucky (they selected a boundary compatible with the labelled

images that was not the true boundary) or incorrect (selected

an incompatible boundary).

The passive learning trials had the same structure, except

that the labels of two images were sequentially revealed to the

participants before they had to make their decision about the

location of the boundary. Crucially, for each passive learning

participant, the images labelled corresponded to the queries

of a previous active learning participant.

In teaching trials, participants were shown the boundary

separating the two categories and were asked to teach it to

another participant who they were told would take part in the

experiment at a later time. It was made explicit that the other

participant would be presented with the same set of sorted

images. The participant only needed to click on an image

to mark it as an example, and it was automatically labelled.

Mirroring the learning tasks, participants were only allowed

to provide two examples, which is the number of examples

sufficient to fully specify the correct boundary. Intuitively,

selecting two adjacent images with different labels is suffi-

cient to identify the boundary in this task.

Materials All the images were selected from the MultiPic

databank of standardized color drawings of concrete concepts

(Duabeitia et al., 2018).

Procedure Participants were pseudo-randomly assigned to

one of three groups: active learning followed by teaching (N

= 29), passive learning followed by teaching (N = 29), and

teaching followed by active learning (N = 30). The experi-

ment was presented on a 27inch screen in a quiet room and

lasted for an average of 20 minutes (unspeeded). Following

the experiment, participants completed an open-ended ques-

tionnaire about the strategies that they used to solve the tasks.

Quantifying performance Teaching performance was

measured by the information gain, IGteach, which is the

amount of entropy by which the teacher reduced the imag-

ined learner’s prior entropy H(b) by labelling two images:

IGteach =H(b)−H(b|s1,s2, l1, l2)

where s, l, and b respectively denote image stimuli, category

labels, and potential boundary locations. H is the Shannon

entropy over the possible hypotheses, the prior entropy is

H(b) =−∑b∈B P(b) log2
1

P(b) , where P(b), the learner’s prior

over the boundary locations, is assumed to be uniform. The

optimal teaching strategy is to label the examples immedi-

ately preceding and following the boundary as this will elim-

inate any uncertainty about the location of the boundary, thus

reducing all of the original entropy. On the other hand, se-

lecting an example set that will leave the learner uncertain

about the true hypothesis because many potential boundaries

compatible with the example set will translate into a lower

information gain.

Using the observed information gain to evaluate active

learning performance would introduce arbitrariness since it

cannot distinguish a learner’s well-planned query from a

lucky one. An ideal learner should choose a query in light of

their uncertainty about the labels that will be observed. First,

learners should compute the expected information gain of the

queries by weighing the posterior entropy by the probability

of observing the given labels for the query made and then

choose the query that maximizes the expected gain. There-

fore, EIGlearn, the sum of the expected information gain of

the first and second queries, was used instead of observed in-

formation gain. The expected information gain of the first

query is:

EIGlearn(s1) =H(b)− ∑
l1∈L

H(b|s1, l1) · ∑
b∈B

P(l1|s1,b)P(b)

After observing the first label, the prior over the boundary lo-

cations is updated, and the expected information gain is com-

puted again relative to the entropy remaining after the first

labelled sample:

EIGlearn(s2|s1) =

=H(b|s1, l1)− ∑
l2∈L

H(b|s2, l2,s1, l1) · ∑
b∈B

P(l2|s2,s1, l1,b)P(b)

Unless otherwise specified, statistical analyses of partici-

pants’ responses were performed based on the average mea-

sures of IGteach and EIGlearn in the three trials of each task.

Decisions about the boundary location In learning trials,

after observing two labelled stimuli, participants marked the

location of the categorization boundary. Their choice could

be assessed based on whether or not the selected bound-

ary was compatible with the labelled images they had seen.

However, simply using the proportion of compatible answers

(across the three trials) to assess their performance ignores the

fact that trials differed in the number of remaining compatible

boundaries. To control for this and characterize performance

appropriately, we fitted a model that captured the intuition

that participants behaved optimally and selected (randomly)

from among the remaining compatible boundary locations in

some r fraction of trials, while in the rest of the trials they

“lapsed” and selected a boundary randomly among all loca-

tions:

P(choice = bi|s1,s2, l1, l2) =

= r ·1{bi ∈ B
(i)
compatible} ·

1
∣

∣

∣
B

(i)
compatible

∣

∣

∣

+(1− r) ·
1

|B|

Thus, r = 1 indicates optimal behavior, while r = 0 indicates

chance performance. We estimated r for each participant by

maximum likelihood (under the assumption that trials were

i.i.d).

Data analysis Predictions were tested using planned inde-

pendent t-tests to compare the teaching information gain in

the teaching first and learning first conditions. Paired com-

parisons were used for the two groups who experienced being

learners first, the active learners and passive learners.
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Post-hoc analyses were conducted to ensure that variables

extraneous to the predictions did not have a meaningful im-

pact on performance or modulate the reported effects. The de-

sign of the experiment lends itself naturally to mixed model

analysis, since it allows fitting trial level data (without ag-

gregation) and can describe variation arising from the exper-

imental design. Starting from a baseline fixed effects only

model with the experimental condition as a predictor of teach-

ing performance, we sequentially fitted and compared mod-

els using two additional fixed factors, learning performance

and trial number (and their interactions with the condition),

as well as random intercepts for participant and trial identity

(i.e. dimension used for classification of the objects). Fixed

effects were tested using log-likelihood ratio tests for nested

models with the same random effects structure. Non-nested

models were compared using the Bayesian Information Cri-

terion (BIC) and Aikaike Information Criterion (AIC). Sim-

ilarly, random effects (fitted via maximum likelihood) were

tested using log-likelihood ratio tests while keeping the fixed

effects model identical. Given that the mixed-effects analysis

confirmed the results of the planned comparisons on the ag-

gregated trial data, we will focus on these comparisons in the

Results section for brevity and clarity.

Results

Descriptives Despite the surface level simplicity of the

teaching task, a large proportion of participants (≈ 60 %) did

not perform it optimally (i.e. did not choose the two images

on either side of the boundary as the teaching samples). How-

ever, prior active learning made it easier to gain insight into

the optimal solution for teaching. More than half of active

learners, 17 out of 29 participants, performed at ceiling level

by consistently providing example sets compatible with only

one categorization boundary. In contrast, only 11 of 29 par-

ticipants in the yoked passive learning group, and 7 out of

30 of the participants who did not complete a learning task

before teaching managed to select the optimal example sets.

Teaching performance across conditions As predicted,

participants who were active learners before being teachers

outperformed those who started directly with teaching, on av-

erage providing .63 bits, 95% CI [.22, 1.05], of additional

information to their (fictitious) learners (see Figure 2). The

group difference was highly significant in an independent t-

test, t(57) = 3.04, p = .01, Bayes Factor (BF) 2 = 10.81 in

favor of the alternative hypothesis.

Learning passively before teaching conferred a smaller, but

still significant, benefit relative to foregoing learning. Passive

learning increased teaching information gain by an average of

.45 bits, 95% CI [.05, .85], t(57) = 2.26, p = .03, BF = 2.16 in

favor of the alternative.

While we found strong evidence in support of the differ-

2Bayes Factors were calculated for a null model that assumes a
zero standardized difference between groups, and a Cauchy alter-
native with a prior scaled to an effect size of .7, following Rouder,
Speckman, Sun, Morey, and Iverson (2009).

Figure 2: Teaching and learning performance across the three

conditions. Each dot represents the information gain for

one participant, averaged across the three trials of each task.

Crosses represent the 95% confidence intervals for the group

means. Dotted lines represent the expected mean informa-

tion gain from teaching as a function of expected information

gain. The maximum information gain for the task is 2.81 bits.

The asterisks mark significance levels in independent t-tests

(* p <.05, ** p <.01).

ences between the groups completing the learning and teach-

ing tasks in different orders, a possible concern was that these

differences were not induced by the experimental manipula-

tion per se. Specifically, if there are prior differences in learn-

ing performance favoring the group that completed the ac-

tive learning task first, and learning performance is correlated

with teaching performance, then the condition effect could be

just an artifact. In order to eliminate this possibility, a re-

gression was performed on teaching performance with both

the group (active learning before / after teaching3), learning

performance, and their interaction as predictors. The group

difference remained significant, β = .62, p = .01, when con-

trolling for expected information gain in learning, which was

not a significant predictor of teaching ability, β = .08, p = .81,

nor did it interact with the group effect, β = .68, p =.3. Figure

2 shows, for each condition, the estimated (non-significant)

slopes for information gain from teaching as predicted by ex-

3The same pattern of results was found for the difference be-
tween the group learning passively and then teaching, and the one
teaching before active learning.
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Figure 3: Teaching performance for the active-passive learn-

ing dyads. Each dot represents the information gain from

teaching for one dyad. In dyads situated under the diago-

nal identity line, the active learner was the better teacher. A

small Gaussian scatter was applied to make overlapping dots

visible.

pected information gain for learning. Coupled with the fact

that the difference in active learning performance between

the two groups was not significant, t(57) = 1.77, p = .08, BF

= 1.28 in favor of the null hypothesis, this suggests that the

effect of the manipulation was not mediated by prior differ-

ences in active learning performance. To investigate this issue

further, the two groups were repeatedly resampled with re-

placement such that the learning performance between groups

could be matched and fixed at different levels. Comparing

the teaching performance across these resampled groups con-

firmed the advantage of those who completed the learning

tasks prior to the teaching task (the 95% CI of the mean of

the resampled groups’ differences did not include a null ef-

fect).

The second prediction of the study was that active learners

would gain a larger benefit from learning before teaching than

the yoked passive controls. Active learners fared on aver-

age only slightly better in the teaching task than their passive

learning counterparts who were shown the same labelled data,

with an average difference of .18 bits, 95% CI [-.11,.47]. The

dyads’ performance is illustrated in Figure 3. The difference

was not significant in a paired t-test, t(28) = 1.29 , p = .21, BF

= 2.39 in favor of the null. It should be noted though that the

paired comparison was underpowered (post-hoc power = .24)

given the magnitude of the effect size observed.

While there was no significant difference in teaching per-

formance in the planned, marginal comparison between the

dyads, Figure 2 suggests that differences may potentially be

present conditional on learning performance. There was no

interaction between the three-level condition and learning

performance, however, this analysis does not account for the

dependence in the active learning and passive learning dyad

data. As pairs of active and yoked passive learners had, by

design, the same expected learning information gain, we re-

gressed the within dyad difference in teaching performance

against learning expected information gain. Learning per-

formance was not a significant regressor of the difference in

teaching, β = -.86, p = .07. On the one hand, the predicted

within-dyad difference, conditioned on low values of learn-

ing performance, was significant (see Figure 4). For instance,

the predicted within-dyad teaching difference was .60 bits,

p=.03, at a one bit expected learning entropy. On the other

hand, there was no discernible difference for dyads with high

expected information gain. While this is not a strong result,

given the low number of dyads and the small effect, it might

suggest a potential modulation of the relative benefit of active

learning.

Mixed effects analysis The best-fitting model contained

the condition, F(2,85) = 4.30, p = .02, and trial number,

F(2,174) = 6.93, p = .01, as fixed effects, alongside a partic-

ipant level random intercept (SD = .70). The addition of the

random intercept was judged meaningful based on the mag-

nitude of the variance at the participant level (SD =.70). It

also led to a reduction in BIC, from 796.6 for the fixed effects

only model to 749.7.

The previous results regarding the condition effect hold,

with a significant estimated difference of .63 bits, se = .22,

t(85) = 2.94, p = .01, between the active learning first and

teaching first conditions. Similarly, no significant difference

was found between active and passive learners, estimated dif-

ference of .32 bits, se = .22, t(85) = 2.94, p = .01. Addition-

ally, teaching performance improved from the first to the third

trial by an estimated .38 bits, se = .11, t(174) = 3.30, p = .01.

However, performance improvement from the first to the sec-

ond trial was not significant, .02 bits, se = .11, t(174) = .17,

p= .87.

Decisions about the boundary location In the active

learning first condition, the mean of the best-fit individual

r values was .79 (SD = .35), whereas for those complet-

ing the active learning following teaching it was lower, .58

(SD = .42). Yoked controls has the smallest average r, .51

(SD = .38). Active learners made better inferences about the

boundary location than their matched controls as the aver-

age within-dyad difference in estimated probability r was .28,

t(28) = 2.99 , p = .01, BF = 7.29. The order of the active

learning task led to marginally significant differences in an

independent t-test, t(57) = 2, p = .05, BF = 1.37 in favour of

the alternative.

The difference in r within active-passive learning pairs did

not correlate significantly with differences in teaching perfor-

mance, r(26) = -.28, p = .13.
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Figure 4: The difference in teaching information gain within

dyads of active and passive learners as a function of the ex-

pected information gain for (active) learning. The fitted OLS

regression line is shown alongside its 95% confidence bound.

Discussion

It has been proposed that humans have a likely innate sensitiv-

ity to pedagogical guidance (Csibra & Gergely, 2009) and a

propensity for teaching others. From a normative standpoint,

the prevalence of teaching in social groups is to be expected

given that learning from others who are knowledgeable, well-

intentioned and attuned to the learner is more efficient than

self-guided learning. Experimental evidence is also accumu-

lating to suggest that, at least in constrained laboratory set-

tings, the behavior of human teachers matches the predictions

of normative models (Shafto et al., 2014). However, while we

know that humans are effective and keen teachers, we don’t

know much about the underlying abilities enabling teaching

and how it relates to performance in other tasks, specifically

active learning.

In the current study we observed an improvement in teach-

ing performance for participants who engaged in active learn-

ing prior to teaching. Three active learning trials, using differ-

ent stimulus sets than those used for teaching, were sufficient

for the majority of participants to gain insight into the optimal

solution of the teaching problem on the first attempt. Further-

more, they were able to draw on their experience as learners

even though at the time of learning they had not been aware

that the teaching task would follow.

The poor performance of participants with no learning ex-

perience resonates with previous findings of Khan, Zhu, and

Mutlu(2017), who used a boundary teaching task as well, but

did not constrain the example set size by their design. It

seems that simply asking teachers to generate the minimally

sufficient number of examples for optimal teaching was not

enough to solicit the optimal solution.

The fact that the active learning benefit, relative to teach-

ing first, was not modulated by the initial active learning per-

formance suggests that active learning can improve teach-

ing across the board, for poor and good active learners alike.

However, prior active learning performance may play a role

in differentiating teachers in a more complex teaching sce-

narios. Indeed, the surprising lack of a significant correlation

between active learning performance and subsequent teach-

ing performance can be explained by ceiling effects.

The impact of passive learning on teaching, relative to the

baseline teaching first group, was smaller than that observed

for active learning. However, we did not find a significant

effect in the matched comparison between active and yoked

passive learners. It is important to note here that the current

task can be thought of as an insight problem, which means

that there was less scope for observing gradual differences

in performance. Further, once insight was achieved in the

learning task, the solution was easy to verbalize, allowing the

optimal strategy to be explicitly transferred to the teaching

task.

On the other hand, for poor performing learning dyads, we

observed a difference in the predicted direction. This sug-

gests that in a more complex and ecological task in which the

learning is more gradual, and the optimal solution is explicitly

unknown to participants, active and yoked passive learners

are likely to diverge more in terms of teaching performance.

This would provide evidence for a more automatic, implicit

link between active learning and teaching. In such a future

teaching task it would also be interesting to examine whether

the differences between active and passive learners, matched

for information content, are moderated by the quality of the

queries they both observe. Specifically, it should be tested

whether the negative linear trend we observed generalizes to

non-insight tasks.

Lastly, it is surprising that those who performed the teach-

ing task prior to the active learning task did not differ in their

expected information gain in the learning task, and, if any-

thing, performed poorer than their counterparts who started

by active learning. This resonates with previous experimen-

tal evidence from the developmental literature that has also

highlighted more subtle ways in which being taught can hin-

der learning, for instance by limiting subsequent exploration

(Bonawitz et al., 2011). It is an intriguing idea that, perhaps,

not just the experience of being taught, but also teaching it-

self, can have an effect on exploration. Alternatively, if we

assume that the teaching task is more cognitively demanding

as it has a meta-cognitive component engaged in reasoning

about the learner’s knowledge and inference making, results

can be explained by the known effect that an easier-to-harder

progression of tasks is beneficial for learning, while the op-

posite order does not provide an appropriate stepping stone

for active learning. On the other hand, Yang et al. argue that

active learning can be re-formalized to also include a meta-

cognitive aspect, reasoning that is applied reflexively to one’s

own reasoning.

To conclude, active learning proved to be a reliable inter-

vention to improve teaching performance. It is important to

investigate if the effect of active learning generalizes to more
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complex and more ecologically valid tasks, or even between

different learning and teaching tasks. If it does, it will open

the way for quantitative inquires about whether successful

teaching benefits from the ability of taking the perspective of

an active learner and as such can be improved by prior active

learning.
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References

Bass, I., Shafto, P., & Gopnik, A. (2017). I know what you

need to know: Childrens developing theory of mind and

pedagogical evidence selection. In Proceedings of the 39th

annual conference of the cognitive science society (p. 6).

Bonawitz, E., Shafto, P., Gweon, H., Goodman, N. D.,

Spelke, E., & Schulz, L. (2011). The double-edged sword

of pedagogy: Instruction limits spontaneous exploration

and discovery. Cognition, 120(3), 322–330.

Bruner, S., J. (1961). The act of discovery. Harvard Educa-

tional Review, 31, 21-32.

Csibra, G., & Gergely, G. (2009). Natural pedagogy. Trends

in Cognitive Sciences, 13(4), 148–153.

Duabeitia, J. A., Crepaldi, D., Meyer, A. S., New, B., Pliat-

sikas, C., Smolka, E., & Brysbaert, M. (2018). MultiPic:

A standardized set of 750 drawings with norms for six Eu-

ropean languages. Quarterly Journal of Experimental Psy-

chology, 71(4), 808–816.

Khan, F., Zhu, X., & Mutlu, B. (2017). How do humans

teach: On curriculum learning and teaching dimension. Ad-

vances in Neural Information Processing Systems 30 (NIPS

2017).

Markant, D. B., & Gureckis, T. M. (2014). Is it better to se-

lect or to receive? Learning via active and passive hypothe-

sis testing. Journal of Experimental Psychology: General,

143(1), 94–122.

Mayer, R. E. (2004). Should there be a three-strikes rule

against pure discovery learning? American Psychologist,

59(1), 14-19.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., &

Iverson, G. (2009). Bayesian t tests for accepting and re-

jecting the null hypothesis. Psychonomic Bulletin & Re-

view, 16(2), 225–237.

Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A ra-

tional account of pedagogical reasoning: Teaching by, and

learning from, examples. Cognitive Psychology, 71, 55–

89.

Yang, S. C.-H., & Shafto, P. (2017). Teaching Versus Ac-

tive Learning: A Computational Analysis of Conditions

that Affect Learning. In Proceedings of the 39th annual

conference of the cognitive science society.

Yang, S. C.-H., Vong, W. K., Yu, Y., & Shafto, P. (2019). A

unifying computational framework for teaching and active

learning. Topics in Cognitive Science.

Yang, S. C.-H., Wolpert, D. M., & Lengyel, M. (2018). The-

oretical perspectives on active sensing. Current Opinions

in Behavioural Science, 11, 100–108.

2870



Children’s Generalization of Novel Object Names in Comparison Contexts:  

An eye tracking analysis 

 
Ella Stansbury, Arnaud Witt and Jean-Pierre Thibaut  

(ellastansbury@gmail.com; arnaud.witt@u-bourgogne.fr; jean-pierre.thibaut@u-bourgogne.fr) 
LEAD-CNRS, UMR 5022, Université de Bourgogne Franche-Comté,  

Pôle AAFE – Esplanade Erasme, 21065 Dijon, France 

 

Abstract 

A common result is that comparison settings (i.e., several 

stimuli introduced simultaneously) favor conceptualization 

and generalization. In a comparison setting, we manipulated 

the semantic distance between the two training items (e.g., 

two bracelets versus a bracelet and a watch), and the semantic 

distance between the training items and the test items (e.g., a 

pendant versus a bow tie). We tested 5- and 8-year-old 

children’s generalization of novel names for objects. This 

study is the first one to study the temporal dynamics of 

comparison in a generalization task with eye-tracking data. 

The eye movement data revealed clear patterns of exploration 

in which participants first focused on the training items and 

compared them with each of the choice options. We also 

compared the search profiles for correct answers and errors. 

The results show that participants first found commonalities 

in the learning items, which they compared with each items 

in the solution set. This pattern is consistent with an alignment 

view of generalization. 

Key words: comparisons; conceptual distance; 

generalization; strategies; eye tracking measures 

Introduction 

Children usually learn the reference of novel words with a 

limited number of stimuli which are associated with these 

words. Which learning stimuli lead to accurate 

generalizations and which mode of presentation would be 

optimal to achieve this goal are crucial issues for concept 

learning. A large set of recent studies have shown that 

comparison settings lead to better generalization results 

than no-comparison learning conditions. In the latter case, 

young children tend to generalize novel words to objects 

that are perceptually similar to the learning items rather than 

to conceptually related ones (Imai, Gentner, & Uchida, 

1994). By contrast, comparison settings favor conceptually 

based generalizations because they enable children to 

neglect irrelevant perceptual dimensions and highlight non-

obvious properties that need to be identified to choose a 

taxonomic match (e.g.,(Augier & Thibaut, 2013; Gentner & 

Namy, 1999; Namy & Gentner, 2002).  

However, still little is known of the solving strategies 

used to process comparison settings and generalize novel 

words, or of the steps that lead to generalization. In the 

present study we use eye tracking data to identify these 

strategies and get a better understanding of the cognitive 

processes that undergo comparison and generalization 

during learning.  

 

Comparison and generalization  

A large body of research demonstrates the benefits of 

comparison settings for learning novel object names (e.g., 

(Graham, Namy, Gentner, & Meagher, 2010), adjectives 

(e.g., Waxman & Klibanoff, 2000), action verbs (e.g., 

(Childers & Paik, 2009), objects (Thibaut, 1991; 1995) 

relational nouns (Gentner, Anggoro, & Klibanoff, 2011; 

Thibaut & Witt, 2015; see (Alfieri, Nokes-Malach, & 

Schunn, 2013). For example, Gentner and Namy (1999) 

presented 4-year olds with familiar objects with an 

imaginary name and asked them to extend the name. 

Children had to choose between two pictures, a taxonomic 

match and a perceptual match. Results showed that children 

preferred the perceptual match when they had only seen one 

object during the learning phase but preferred the 

taxonomic match when they had the opportunity to compare 

two objects with the same name, introduced simultaneously 

during the learning phase. The conditions under which 

comparisons lead to better learning and generalization have 

received much attention in recent years.  

One crucial point is that comparisons generate cognitive 

costs (e.g., Richland, Morrison, & Holyoak, 2006; Thibaut, 

French, & Vezneva, 2010b) in the field of analogical 

reasoning). The hypothesis is that comparing multiple 

items, and choosing a match, while neglecting irrelevant 

dimensions including salient dimensions such as perceptual 

similarities may generate cognitive coasts because of the 

inhibition, decision making and flexibility involved in the 

task. For example, Augier and Thibaut (2013) studied 

conceptualization of unfamiliar objects in a comparison 

paradigm and manipulated the number of exemplars shown 

during the comparison phase. They tested 4- and 6-year olds 

and compared a no comparison condition, a 2-item 

comparison condition and a 4-item comparison condition. 

Interestingly, all children benefited from the comparison 

conditions compared to the no-comparison conditions. 

However only older children benefited from the four-item 

comparisons compared to the two-item comparisons. This 

suggests that cognitive control is necessary to succeed the 

task as suggested by contributions in numerous domains 

involving comparisons and integration of multiple 

information (see (Wiebe & Karbach, 2018). 

The semantic distance between the compared items might 

contribute to increase the cognitive costs of comparison. 

For example, Green, Kraemer, Fugelsang, Gray, and 

Dunbar (2010) have shown that analogies based on distant 

domains were more difficult than equivalent analogies 

connecting closer domains because distant analogies 

involved more creativity, which was related to the central 

role of the prefrontal cortex in cognitive control. In 

children, Thibaut, French, and Vezneva, (2010a) have 

shown that semantic analogies based on weakly associated 
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relations are more difficult than those based on strongly 

associated relations.  The authors interpreted this result in 

terms of the necessity to inhibit strongly associated but 

irrelevant items in the context at hand or in terms of the 

necessity to generate new candidate relations, which 

requires cognitive flexibility in the case of distant semantic 

domains.  

In this cognitive control framework, it is argued that 

aligning semantically distant training items might involve 

deeper conceptual encoding. Indeed, for semantically close 

items, perceptual similarities are aligned with conceptual 

similarities (e.g. two apples) whereas for semantically more 

distant items alignable perceptual similarities are less 

synonymous of conceptually alignable similarities: aligning 

surface similarities does not entail an alignment of 

conceptual similarities or surface similarities are less 

correlated with conceptual similarities (e.g. a bracelet might 

look like a watch, but the nature of a watch is strongly 

connected with a devise giving the time, which can have a 

low saliency). On the other hand, if alignable perceptual 

similarities are well correlated with deep similarities for 

close learning items, the fact that these deeper similarities 

are embedded in perceptual similarities might prevent them 

from being easily aligned with conceptually important 

features when the generalization items are perceptually 

dissimilar. In that case, generating conceptual similarities 

might be difficult because the conceptual space cannot be 

grounded on perception and thus requires more extensive 

conceptual analysis. 

 

Exploring children’s strategies with eye tracking 

movements in a learning-generalization task  

The present study’s aim is to analyze the temporal dynamics 

of a comparison task, from the study of learning items to 

the selection of a candidate generalization stimulus, which, 

to the best of our knowledge has never been done. We will 

use materials by Thibaut and Witt (2017). They 

manipulated the semantic distance between the learning 

items (e.g., two bracelets versus a bracelet and a watch), and 

the semantic distance between the learning items and the 

generalization items (e.g., a jewel, near distance, versus a 

bow tie, far distance), and analyzed which combination of 

conditions would lead to more taxonomic choices. Four-

year-old children made less taxonomic choices in the far 

generalization condition than the close generalization 

condition whatever the learning distance, whereas only six-

year-old children got better results in the far learning 

distance, a condition in which participants had to coordinate 

information coming from very different domains. In the 

above cognitive control context, the authors argued that, as 

executive functions develop, children are able to compare 

stimuli from remote conceptual spaces more systematically. 

Indeed, the common features between two items may be 

found more easily with semantically close items than with 

semantically distant items. In the latter case, these features 

might be less salient and require more comparisons to be 

noticed. Also, in a broader conceptual space, the set of 

irrelevant properties to inhibit is likely to be larger than in 

a close domain.   

   Recent eye-tracking research on analogical reasoning 

tasks (another generalization task) have shown that during 

development younger children’s solving strategies differ 

from older children’s and adults’ strategies (J.-P. Thibaut & 

French, 2016). They confronted two main hypotheses to the 

data, the projection first and the alignment first strategies. 

Projection-first refers to an initial analysis of the learning 

domain, in search of a relation connecting A and B. Once a 

relation is found it is projected on the generalization domain 

(which generalization item goes with C with the same 

relation). The alignment-first strategy refers to the 

alignment of equivalent stimuli (i.e., that play the same 

role) in the learning and the generalization domains (A with 

C, and B with D in a A:B::C:D proportional analogy). The 

authors showed that adults and children followed different 

search strategies.  

In the type of comparison task we use, successful 

learning requires the learning items (L1 and L2) to be 

compared and conceptually aligned. Generalization 

requires switches (witnessing comparisons) between L1-L2 

and the Ta(xonomic) target. How one reaches the 

taxonomic solution (or fails to) will be reflected in the 

transitions between L1-L2 and the set of the available 

options (taxonomic, thematic, and perceptual). The set of 

transitions and the time spent on each item will illustrate the 

search-construction of a solution.  

Among the potential strategies, the projection-first 

strategy predicts early L1-L2 transitions (finding 

commonalities between L1 and L2), followed by 

comparisons between the three generalization options in 

terms of the features they actually share (either thematic, or 

perceptual, or taxonomic) with the common feature they 

have discovered for L1 and L2. The alignment-first 

hypothesis predicts early comparisons between learning 

items but also between the learning items and the 

generalization items, in order to find conceptually 

analogous items in the transfer set. One additional 

prediction is that participants compare each learning 

stimulus with each of the options 

Another strategy contrast exists between constructive 

matching or response elimination (Bethell-Fox, Lohman, & 

Snow, 1984). Constructive matching predicts early L1-L2 

comparisons followed by comparisons between 

generalization items that may reveal a careful construction 

of a solution and the application of the solution to the 

generalization set. This hypothesis makes similar 

predictions to those from the projection-first hypothesis. 

Response elimination predicts L1-L2 comparisons 

followed by back and forth switches between L1-L2 items 

and generalization options that may reveal a systematic 

response elimination strategy until a final choice is made. 

A difference between alignment first and response 

elimination, is that alignment-first predicts a progressive 

convergence towards the solution whereas the response 

elimination predicts no systematic search pattern.  

The present study’s main goal is to describe the strategies 

used by children to generalize correctly in a comparison 

setting, by analyzing eye movement data from two groups 

of children (5- and 8-year olds). We selected these two age 
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groups because previous research has shown that 

participants eye-tracking methods can be used with 

complex tasks with 5-year olds. Also, (J.-P. Thibaut et al., 

2010b) showed that five-year olds might adapt their search 

strategy to the difficulty of the task in a less systematical 

way than 8-year olds. Thus, a priori, these two age groups 

were good candidates for studying strategy differences (if 

any exist). Also Thibaut and French (2016) showed that 

reliable results could be obtained with 5-year olds in an eye-

tracking task.   

We will confront our data with the strategies mentioned 

above. One hypothesis is that age matters: younger 

participants should use the response elimination strategy 

more often than the older group because it is cognitively 

less demanding: participants compare each transfer with the 

learning items, one by one, rather than store the found 

dimensions in working memory and compare all the 

transfer items in a row. They should also produce less 

systematic search patterns. For example, correct trials 

should start with L1L2 transitions less often for young 

children. There should also be differences depending on the 

difficulty of the task: easier conditions should elicit less 

transitions than difficult ones. Far generalization should be 

more difficult and should result in a larger proportion of 

comparisons between the options compared to the learning 

items.   

 Of particular interest are the differences, if any, between 

correct and error trials. Do strategy differences between 

errors and correct trials appear at the onset of the trial (thus, 

with significant differences in the first slices) or do they 

result from a wrong decision at the end of the trial (i.e. 

differences in the last slice), once all the options have been 

considered. 

 

Methods 
Participants 109 French speaking children were tested 

individually in a quiet room at their school. Two age groups 

were tested, five year olds, and eight year olds. Forty-nine 

younger children were recruited (mean age = 5;3; range: 

4;11 to 5;9), and 60 children for the older age group (mean 

age = 8;4; range: 7;11 to 9;4). Informed consent was 

obtained from their school and their parents. 

 

Materials Fourteen experimental sets of pictures were 

built, plus three warm-up trials. Each set was associated 

with a category (e.g., clothing, food, tools, accessories, 

animals), and was composed of 7 pictures. Two learning 

objects, either from the same basic level category (close 

learning, L1 and L2C) or from the same superordinate 

category (far learning, L1 and L2F) (see Figure 1). The test 

pictures subsets were composed of three pictures: a 

taxonomically related generalization object (Ta), either 

near TaN, or distant, TaD, see Figure 1), an object 

perceptually similar to the initial learning object (P) and an 

object thematically related to the category (Th) (see Figure 

1). This design worked as follows. For each object category 

(e.g., clothing accessories), the close learning objects (L1, 

L2C) were composed of perceptually and semantically close 

items (e.g., a bracelet - a curb chain), while the far pairs (L1, 

L2F) were composed of perceptually similar but 

conceptually more distant items (e.g., a bracelet – a watch). 

The three test pictures consisted of three objects in both the 

near and the distant generalization conditions. The 

perceptual match (P) was perceptually similar but 

semantically unrelated to the two training items (e.g., a tire 

in our bracelet case), the taxonomic choice (Ta) was 

perceptually dissimilar but taxonomically related to the 

learning objects and a thematically related object that was 

not perceptually related but thematically related (Th, e.g., a 

hand). Depending on the generalization condition, near or 

distant, the taxonomic choice was semantically near (TaN) 

or more distant (TaD) to the learning items (e.g., a jewel 

pendant in the near generalization case, or a bow tie in the 

distant generalization case). See Figure 1 for the "clothing 

accessories" category. Thus, a trial was composed of 5 

pictures, L1, L2 ( L2C or L2F) , Th, Ta (TaN or TaD) and P, 

resulting in four possibilities (Close learning - Near or 

Distant generalization; Far learning - Near of Distant 

generalization.  

Independent similarity ratings were obtained from fifty-

four university undergraduate students. They are described 

in Thibaut and Witt (2017). They revealed that the close 

learning objects in a pair were conceptually closer one to 

the other than the objects composing the far learning pairs 

(p < .01, see Thibaut & Witt, 2017, for details) and that 

close generalization stimuli were semantically more similar 

to the two learning stimuli than far generalization stimuli 

were (see Thibaut & Witt for details p < .01). The same is 

true for perceptual similarity ratings which also revealed 

that the perceptual choices were more perceptually similar 

to the learning material than the objects used to instantiate 

taxonomic choices, (p < .01). For example, for the 

accessories category, a jewel pendant (near generalization 

object) or a bow tie (distant generalization object) 

 

 

Figure 1: Example of a stimulus set and instructions 

adapted for the fourteen experimental conditions resulting 

from crossing Learning distance (Close vs. Far 

comparison) and Generalization distance (Near vs. Distant 

generalization) factors. 

 

We forged 14 different bisyllabic labels (pseudo-words) 

which are, as shown by Gathercole and Baddeley (1993), 

easier to remember than monosyllabic pseudo-words (e.g., 

buxi, dajo, zatu, xanto, vira). Syllables were of the CV type 

which is the dominant word structure in French (from 

Lexique.org, New, Pallier, Brysbaert, & Ferrand, 2004).  

The pictures were displayed on a Tobii T120 eye-tracker 

device with a 1024x768 screen resolution. The five pictures 
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of a trial were displayed simultaneously until the answer 

was chosen. Between each trial a standard fixation cross 

was shown for 3 seconds. Each experimental session started 

with a standard calibration phase, after the three warm-up 

trials. The experiment was run with E-prime®. 

  The five areas of interest (AOI, L1, L2 , Ta, Th or P) of 

a trial had a size of 500 by 500 pixels regardless of the 

object size inside the frame. The frame was chosen as the 

AOI’s outline instead of the picture’s outline, to standardize 

the AOI size. 

 

Procedure The learning pair was displayed at the top of the 

screen and the test objects at the bottom. First the 

experimenter introduced the experiment as a game, using 

the following instructions. “Hello, we are going to play 

together, and we are going to play with a bear called 

Sammy. Look, this is Sammy, he lives far away from here 

and speaks a different language, we are going to learn his 

language” Then the children saw all three warm-up sets, 

with the trial instruction, which were followed by eye-

tracking calibration. The experimenter then showed the 

fourteen trials, with the following instructions: “See 

Sammy’s mummy says this is a buxi. And this is a buxi too. 

Sammy must find another buxi. Can you show which one is 

also a buxi, to help Sammy? Can you point to the other 

buxi?”. Children chose one of the three test objects by 

pointing to it on the screen and the experimenter selected it 

with the mouse.  

  The presentation order of the fourteen experimental trials, 

the learning pair objects’ position and the generalization 

objects’ position were randomly assigned by the program 

(e.g., L1 L2, left right or right left, on the top of the screen; 

Th Ta P, Ta Th P for generalization objects). The names 

were assigned randomly to each trial. Participants were 

supposed to know the items. Indeed, these items were 

calibrated for knowledge by Thibaut and Witt (2017) and, 

in their experiment, were used with younger children. In 

their case, the percentage of unknown items was very low.  

 

Design:  Five and eight-year-old children were compared. 

Children were randomly assigned to one of the two 

experimental conditions (close comparison, 55 children or 

far comparison, 54 children). Age was crossed with 

Learning distance (close vs. far comparison, between-

subject factor) and Generalization distance (near vs. 

distant, within-subject factor).  

 

Results 

Our first point of interest was the strategies used by the 

participants to compare and generalize the novel word to 

the taxonomic item.  

Performance data We ran a three-way ANOVA on the 

percentage of correct taxonomic answers with Age (5, 8 

years), Learning distance (close, far) as a between factor, 

Generalization distance (Near, Distant) as a within factor. 

This ANOVA revealed a significant main effect of Age 

F(1,101) = 29.41, p < .01, 𝜂 𝑃
2  = .23 (5-y-o., M = 70.91%; 

SD = 3.31; 8-y-o, M = 44.37%; SD = 3.61). The main effect 

of the Generalization Distance was significant, F(1,101) = 

31.04, p < .01, 𝜂 𝑃
2  = .24. Age and Generalization Distance 

interacted, F(1,102) = 6.61, p < .05, 𝜂 𝑃
2  = .06 (Figure 2). A 

posteriori Tukey analyses showed that both generalization 

levels did not differ significantly in the younger group (p 

=.18 MNear = 45.9% MDistant = 38.9%) whereas 8-year olds 

had better results for near generalization stimuli (p<.001 

MNear = 76.1%; MDistant = 58.6%). Both age groups answered 

significantly above chance (5-year olds, p < .001; 8-year 

olds, p < .001).  

  A one sample t-test revealed that the majority of errors 

were perceptual matches, (5-year olds: t = 5.18 p < .001 MP 

= 5.7 MTh = 2.42; 8-year olds: t=2.81 p < .01 MP = 3.12 MTh 

= 1.49)  

 

 
 

Figure 2: Percentage of taxonomic choices as a function 

of Age (5 and 8 years) and Generalization Distance (Near, 

Distant). Error bars are SEM.  

 

  We ran the same 3-way ANOVA on reaction times for the 

items that were correctly answered (see Thibaut & French, 

2016). This ANOVA revealed the effect of Age, F(1,101) 

= 13.35, p <. 01, 𝜂 𝑃
2 =.12, the older children made faster 

choices (M = 9539.83 ms) than the younger children (M = 

11 618 ms). Age interacted with Learning distance F(1,101) 

= 4.01, p < .05, 𝜂 𝑃
2 = .04 (Figure 3), and with 

Generalization distance F(1,101) = 9.62, p < .01, 𝜂 𝑃
2 = .09 

(Figure 4). As shown by Figures 3 and 4, the interactions 

resulted from an opposite pattern in the two age groups, 

longer RTs in the close and near conditions for the 

 

 
 

Figure 3: Reaction times (in ms) as a function of Age (5 

or 8 years) and Learning Distance (Close or Far). Error 

bars are SEM. 

younger group, and the opposite in the older group.   

One interpretation of this pattern of results is that 8-year 

olds had a high level of performance in all conditions, but 

that the distant generalization condition was more difficult 

than the near generalization condition. The higher RTs 

reflect this higher level of difficulty. For younger children, 
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Figure 4: Reaction times (in ms) as a function of Age (5 

or 8 years) and Generalization Distance (Near or Distant). 

Error bars are SEM. 

 

the level of performance was close to chance, and lower 

RTs might reflect a tendency to answer quickly when the 

answer was difficult to find, or was less obvious, resulting 

in shorter RTs 

Eight-year-olds had a higher level of performance in both 

conditions compared to 5-year-olds. Younger children’s 

RTs are lower than the 8 year-old’s RTs. However, the 

younger group does not significantly differ from chance. 

Chance performance might reflect a tendency to answer too 

quickly whereas the 8-year-olds RTs are likely to reflect the 

time necessary for the children to perform a more 

systematic analysis of a trial before giving an answer.  

 

Eye tracking analyses on transitions (saccades) 

The design of the analysis is complex. Since we focus on 

the temporal dynamic of the search for a solution, 

interactions involving transitions and time slices are central. 

A transition (or switch) was defined as a saccade between 

two stimuli. Each trial was decomposed into 3 time slices 

(S1-beginning, S2-middle, S3-end) of equal size. We ran a 

five-way analysis of variance (ANOVA) on the proportions 

of transitions for correct answers, with Age (5 and 8 years), 

Learning Distance (Close, Far) as between factors, 

Generalization distance (Near, Distant), slice (S1, S2, S3), 

and Transition type (L1L2, L1L2-Ta, L1L2-P, L1L2-Th, 

Ta-P-Th) as within factors. There was a main effect of the 

Transition type factor, F(8,640) = 111, p < .01, 𝜂 𝑃
2  = .58. 

Transition type and Slice interacted, F(8,640) = 22,  p < .01, 

𝜂 𝑃
2  = .21. The ANOVA revealed two three-way 

interactions. The most interesting was the interaction 

between Slice, Transition type, and Age: F(8,640) = 2.19, p 

<. 05, 𝜂 𝑃
2  = .03 (see Figure 5).  Slice, Transition type, 

Learning distance also interacted: F(8,640) = 2.41, p < .05, 

𝜂 𝑃
2  = .03, an interaction that we will not analyze here.  

Figure 5 shows that all the transition types appeared in the 

first slice, at the same level, except transitions Th-Ta-P (i.e., 

between Thematic, Taxonomic and Perceptual 

generalization items) which are virtually absent in the 

threeslices. This absence of between-solution transitions is 

important because it shows that the alignment hypothesis is 

confirmed (ie. back and forth transitions between learning 

and generalization items). Second, overall, the general 

search profile was similar in both age groups. They 

compared L1 with L2 and each option with L1 and L2 in  

 

Figure 5: Proportion of transitions as a function of the 

Slice (S1, S2 or S3) and the Transition type (L1L2, L1L2-

Th, L1L12-Ta, L1L2-P, ThTaP) for correct trials. 

Note: L1L2 are transitions between Learning1 and 

Learning2; L1L2-Th, between L1 or L2 and Thematic; 

L1L2-Ta, between L1 or L2 and Taxonomic; L1L2-P, 

between L1 or L2 and Perceptual; ThTaP, between Th, Ta 

and P) (Error bars are SEM) 

 

the first slice and then progressively converged on the 

correct solution. The large proportion of saccades between 

L1-L2 and each option is a bit unexpected, since we 

expected more L1-L2 transitions than any other type. 

However, it might mean either that from the onset of the 

trial participants actually looked at all the options at the 

same rate or that participants looked at L1 and L2 first, and 

very slightly later transitioned between generalization 

options and L1-L2 during the first time slice.  

In order to disentangle these two possibilities, we ran an 

ANOVA on the fixation times towards the five AOIs in the 

first time slice, for correct trials. The analysis revealed a 

significant effect of AOI, F(4, 388) = 28.864, p <  .0001, 

𝜂 𝑃
2  = .22, M = L1 = 27%, L2 = 27%, Th = 15 %, Ta = 

15,5%, P = 16%. Tukey HSD revealed that L1 and L2 

looking times were significantly larger than the other three 

AOIs. These results show that children gazed more at L1 

and L2 than at the other stimuli at the beginning of the trial, 

but switched to the options quite early in the trial. 

 

Correct answers and errors profile A last analysis 

compared the search profiles for correct answers and errors 

in the younger group only (5-year olds), because the 

number of errors was low for 8-year olds. An error was 

either a thematic or a perceptual choice. Two options are 

possible. First, errors and correct answers have similar 

search profiles: errors would be the result of a correct 

search, but followed by a wrong decision. Second, errors 

might result from different search patterns, which would 

differ from the onset of the trial. We ran a five-way 

ANOVA with Learning distance (Close, Far) as a between 

factor, and Accuracy (Correct, False), Generalization 

Distance (Near, Distant), Slice (S1, S2, S3), Transition type 

(L1L2, L1L2-Th, L1L12-Ta, L1L2-P) as within factors. 

Time slices were defined as the 1st, 2nd, and 3rd thirds of a 

trial. We excluded the transition Th-Ta-P from the analysis, 

because its frequency was close to 0. The ANOVA revealed 

a main effect of Transition type F(6,162) = 19, p <. 01, 𝜂 𝑃
2  

= .41; an interaction between Accuracy and Transition type 

F(6,162) = 6.64, p < .01, 𝜂 𝑃
2  = .19; an interaction between 

Generalization distance, Slice and Learning distance, 
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F(6,162) = 3.65, p < .05, 𝜂 𝑃
2  =.12. The main result was the 

interaction between Accuracy, Slice and Transition type: 

F(6,162) = 6.70, p <. 0001, 𝜂 𝑃
2  = .19 (Figure 6). It shows 

that the main difference between errors and correct answers 

takes place during the third slice of the trial, participants 

focusing on the selected option, error or correct. Note that 

there were two peaks for errors, on Th and P. This can be 

related to the predominance of perceptual errors, in the 3rd 

slice. This suggests that participants studied both incorrect 

options but, eventually, went for the most salient one. 

Another interesting feature of this interaction is that the first 

two slices of the error trials had a flatter pattern than the 

 

 
Figure 5: Proportion of transitions as a function of 

Accuracy (Correct, False), Transition type (L1L2, L1L2-

Th, L1L12-Ta, L1L2-P) and Slice (S1, S2, S3). Error bars 

are SEM 

correct answers. This might suggest that errors take hold in 

the 1st and 2nd slice, that is earlier than at the decisional 

stage. A priori contrasts between correct answers and errors 

revealed significantly more L1L2-Th transitions in error 

patterns rather than in correct trials in slice 1 and 

significantly more L1L2-Th and L1L2-P for error than for 

correct trials in slice 3, and significantly more L1L2-Ta in 

correct than in errors.    
Discussion  

First, we assessed which learning and generalization 

conditions would give the best generalization results as a 

function of conceptual distance between learning items and 

between learning items and generalization items. Second, 

we characterized the temporal dynamics of a solution, as a 

function of age and learning and generalization conditions 

with eye tracking movements. Generalization was better for 

near items than for distant items, with a larger difference in 

older children. This was confirmed by the higher RTs in the 

distant generalization case, in the 8-year-old group 

(younger participants results are difficult to interpret since 

they were at chance). These results might seem 

straightforward, at first glance. However, we predicted that 

the difference between near and distant trials should 

decrease for older children, because they should have a 

deeper conceptual understanding in the far learning case. 

Older children’s performance significantly differed from 

chance in the two generalization conditions whereas 

younger children were at chance in the four conditions. This 

pattern of results suggests that some of the younger children 

encountered difficulties to integrate the information 

resulting from the comparisons, but does not mean that 

younger children answered randomly, as shown by the 

difference between error-correct gaze patterns. 
The other main contribution, the eye-tracking analysis, 

revealed a consistent pattern of results across ages. All the 

comparisons were between learning items (L1-L2) and each 

of the three types of options, with virtually no comparison 

of the three options (i.e., no Th-Ta-P transitions). In the 1st 

slice, the remaining four transitions were equally 

distributed.  However, the looking times on each of the five 

AOIs in the 1st slice showed that both age groups spent 

significantly more time on the training items than on the 

three generalization items, which is consistent with an 

initial search of commonalities between the learning items 

before considering the options. 

Overall, in terms of the compared solving strategies, the 

results are consistent with an alignment view rather than 

with a projection view: participants first compare the 

learning stimuli, that is align each one with the other. Then 

comparisons between the learning pair and each option 

show that participants align commonalities found in L1-L2 

with each of the options. A projection interpretation would 

be compatible with a high number of Th-Ta-P transitions, 

with participants comparing the three solution options one 

with the other in terms of the commonalities initially 

extracted from L1-L2, which occurred very rarely. In a 

similar way, results are not compatible with a constructive 

matching strategy. Indeed, as Figure 4 and 5 show, and the 

discussion above suggests, participants keep on looking at 

L1-L2 during the entire trial, while testing each option, the 

latter occurring very early.   

There was no interaction between generalization distance 

and the transitions and slices. The significant interaction 

between learning distance, transitions and slices, though 

significant had a small effect size, and seemed to result from 

small differences, essentially in slice 1. This seems to 

suggest that generalization distance did not affect the search 

strategy in a systematic way. 

The anatomy of errors Do search patterns for correct 

answers differ from those for errors? Much of the triple 

interaction between accuracy, slice and transitions seems to 

be explained by the distribution of taxonomic, thematic and 

perceptual choices in correct trials and errors in the 3rd slice 

(see Figure 5). This pattern would mostly reflect decisional 

processes at the end of the trial rather than early differences. 

However, the flatter profile in slice 1 for errors together 

with the significant difference between errors and correct 

trials for thematic answers suggest that errors might be 

prepared early on. This would be consistent with Thibaut 

and French (2016) who, in their eye-tracking study of 

analogical reasoning, showed that children’s errors differed 

from correct answers in significant respects even at the 

onset of the trials. 

In sum, younger children had difficulties across 

conditions whereas the older group could reliably extract 

the relation in most conditions, especially in the close 

generalization cases. The eye-tracking measures revealed 

similar search patterns in both groups of children, with early 

transitions between L1 and L2 and L1-L2 towards each 

solution option. Errors seemed to result from an incorrect 

decision but seemed to be prepared early on, maybe by a 

less systematic analysis of the taxonomic choice. A more 

extensive analysis of AOIs looking times and of the order 
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of the initial gazes should give us a more refined picture of 

early search steps. We might also analyze the response 

evaluation processes, for example with an analysis of the 

distribution of the backward transitions from the options 

towards L1-L2 separately. These transitions might reflect 

evaluation of participants’ choices.  
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Abstract 
Computational models of visual working memory (VWM) 
generally fall into two categories: slots-based models and 
resources-based models. Slots-based models theorise that the 
capacity of memory is defined by a finite number of items. 
Each slot can only contain one item and once an item is in 
memory it is remembered accurately. If an item is not in 
memory, however, there is no memory of the item at all. By 
contrast, resources-based models claim that all items, rather 
than just a few enter memory. However, unlike the slots model 
they are not necessarily remembered accurately. On the 
surface, these models appear to make distinct predictions. 
However, as these models have been developed and expanded 
to capture empirical data, they have begun to mimic each other. 
Further complicating matters, Donkin, Kary, Tahir and Taylor 
(2016) proposed that observers were capable of using either 
slot- or resource-based encoding strategies. In the current 
experiment, we aimed to test the claim that observers adapt 
their encoding strategies depending on the task environment by 
observing how participants move their eyes in a VWM 
experiment. We ran participants on a standard colour recall task 
(Zhang and Luck, 2008) while tracking their eye movements. 
All participants were asked to remember either 3 or 6 items in 
a given trial, and we manipulated whether the number of items 
was held constant for a block of trials, or varied randomly. We 
expected to see participants use more resource-like encoding 
when the number of items to remember was predictable. 
Contrary to these expectations, we observed no difference 
between blocked and unblocked conditions. Further, the eye 
gaze data was only very weakly related to behaviour in the task. 
We conclude that caution should be taken in interpreting eye 
gaze data in VWM experiments. 

Keywords: visual working memory; eye gaze; hierarchical 
modelling 

Introduction 
In recent years, there have been a number of attempts to 
describe visual working memory (VWM) using 
computational models. These models attempt to address 
fundamental questions such as whether VWM has a strict 
capacity limit and how likely a stimulus is to be remembered. 
Broadly speaking, these models fall into two categories: 
slots-based and resources-based models. 

Slots-based models propose that memory functions like a 
finite set of slots with each slot able to hold one item. The 
slots-based model proposed by Luck and Vogel (1997) is the 
prototypical account of this type. If an item is in a slot then it 
will be remembered. Critically, this account states that if an 
item is in a memory slot it will be remembered with a very 
high precision. If it is not in memory, no information is 

retained about the item. Therefore, if asked to recall an item 
that is not in memory, a slots-based account assumes that 
person – having no information about the item – will be 
forced to guess. Zhang and Luck (2008) expanded on this 
basic model to create their slots plus averaging model that 
makes the additional assumption that when the observer has 
more slots than items to remember, then items are stored in 
multiple slots. The information in multiple slots can then be 
combined to produce a more accurate response, thus leading 
to better performance when set sizes are small. 

The resources-based model, on the other hand, 
conceptualises memory as being more flexible than does the 
slots model. Memory is described as a resource that is 
allocated to different items. This memory resource 
determines the quality of the memories. The more memory 
resource an item is allocated, the more precise the memory. 
According to the standard resources model (Frick, 1988) 
memory is divided equally between all items in the display. 
Since the amount of memory resource is constant, the more 
objects there are in a display, the less memory each item is 
allocated. Unlike the slots model, all items are remembered 
however, they are remembered with less accuracy as the 
number of items increases. Beyond the standard model, a 
variety of resources-based models exist that allow resources 
to be distributed more flexibly, or models that favour 
selecting a few items to focus most resources on (Alvarez & 
Cavanagh, 2004; Bays & Husain, 2008). 

The mimicry problem 
Zhang and Luck (2008) compared their slots-plus-

averaging model to a slots model and a resources model and 
found that their model provided a better account of the data 
in a colour recall task. They concluded that the slots-plus-
averaging model provided a favourable account of their 
VWM data. However, this model was challenged by Van den 
Berg et al. (2012), who developed the resources-based, 
variable-precision model. Unlike the standard resources 
model, the variable-precision model assumed that memory 
resources could be distributed unequally between items in 
memory. Van den Berg et al. (2012) compared the resources, 
slots-plus-averaging and variable-precision models and 
found that the variable-precision model had a better account 
of the data. Furthermore, in a large scale study, Van den Berg, 
Awh, and Ma (2014) tested a host of computational models 
of VWM against the variable-precision model. Using data 
from multiple experiments across multiple sites it was found 
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that versions of the variable-precision model tended to 
provide the best account of the data. 

Due to its flexible allocation of memory, the variable-
precision model can produce many memory states that 
closely resemble what is predicted by a slot based model. For 
example, it is possible that in a 6 items display the mnemonic 
resource could be allocated equally between four items with 
no memory resource allocated to the other two. The result of 
such a memory state would be that four items are 
remembered with high precision and two are remembered 
with very low precision. If these very low precision memories 
are probed, the predictions of the model are indistinguishable 
from guessing. Such a memory state appears very much like 
a slots model. On the one hand, such overlap between models 
is problematic, due to model mimicry. Despite making the 
same predictions, the interpretations from the slots and 
resource models are very different. The variable-precision 
model states that “random” responses are caused by 
extremely low precision memories, while a slots model says 
that such responses are not based on memory. At our current 
level of understanding it is not possible to distinguish 
between these models. On the other hand, it could be that the 
mimicry between models represents what is actually shown 
in individuals. That is, perhaps observers do alternate 
between slot- and resource-like encoding of VWM displays.  

A slot and resource model of encoding in VWM 
A recent finding from Donkin, Kary, Tahir, and Taylor 
(2016) suggested that participants may be able to change their 
memory “strategy” in VWM tasks. Specifically, they argued 
that if people know how many items they will be required to 
remember, they are more likely to use a  resource-like 
encoding, attempting to remember information about all 
items in the display, compared to if they don’t know the set 
size of the next trial.  

In their study, Donkin et al. (2016) analysed data from old 
and two new experiments with a model that used a mixture 
of slots-based and resources-based memory processes. The 
experiments were change detection experiments in which 
participants were tasked with recalling 2, 4, 6 or 8 items. In 
one experiment, set size varied from trial to trial, with an 
equal number of each size in each block of trials (the 
‘unblocked’ condition). In the other experiment, set size was 
constant within each of four one-hour sessions (the ‘blocked’ 
condition). Compared to the experiments with unblocked set 
size, participants in the blocked experiment appeared more 
likely to use resource-like encoding (Figure 1). By contrast, 
participants in the unblocked condition were better accounted 
for by a slot-like encoding.  

The authors suggest that VWM may be more flexibly 
applied than previously thought. It is possible that the task 
environment affects how people apply their memory. Perhaps 
if people know the number of items presented in a trial they 
will attempt to remember all items instead of focusing on a 
few. This would increase the chance of an item being in 
memory, but lower precision on blocked trials relative to 
unblocked trials and thus following a more resources-like 

pattern. While the behavioural data in a change detection task 
appear consistent with this suggestion (when analysed with 
these particular models), such a claim warrants more 
evidence to its support.  

Here, we present data from a continuous production task in 
which participants were presented with items in either a 
blocked or unblocked conditions. To replicate the general 
results in Donkin et al. (2016), we expect that the number of 
items remembered should increase in the blocked compared 
to the unblocked condition (with a corresponding decrease in 
the precision of memory). As a further test of this prediction, 
we also use eye tracking to see whether eye movements differ 
between blocked and unblocked trials, thus suggesting 
endogenous attention is able to change the strategy used in 
VWM. We expect that participants in the blocked condition 
would move their eyes to more items in the display, 
presumably spending less time fixating on any given item.  

 
Figure 1: Results from Donkin et al. (2016) depicting the 
likelihood that participants used slots-like compared to 
resources-like encoding in the blocked and unblocked (new) 
experiments. 

The current experiment 
This experiment aimed to examine Donkin et al.’s (2016) 
claims that participants may be able to change their memory 
strategy depending on task environment. We wanted to 
determine whether 1) flexible memory allocation could be 
seen in a continuous report task, and 2) eye gaze could 
provide evidence of a change in memory strategy. 

The task used was an adaptation of the colour recall task 
used by Zhang and Luck (2008), with the addition of eye 
tracking as well as a between-subjects condition of blocked 
or unblocked trials. The colour stimuli used in the standard 
production experiments are very simple to encode (Eng, 
Chen, & Jiang, 2005). As a result, a participant may be able 
to encode items quickly. We thought that more complex 
stimuli would encourage longer fixations and thus provide 
more data to assist our analysis. While more complex stimuli 
were desirable, it was also necessary to have stimuli that 
could be reproduced from a continuous range (the key benefit 
of colour stimuli). To this end, we used a “ring” set of stimuli. 
Shown in Figure 2a, these stimuli consisted of a coloured ring 
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with a “bead” placed randomly on the ring’s circumference. 
Participants were asked to place the bead on the ring as it 
appeared during study (Figure 2b). The stimuli were 
presented in set sizes of N = 3 or 6 for 1000ms. 

By introducing eye gaze to this task, we hope to observe 
some differences in attention between our blocked and 
unblocked conditions. In tasks in which participants can 
move their eyes freely – such as a visual search task – there 
is little evidence that participants utilise peripheral attention 
(Findlay & Gilchrist, 2001; Rayner, 2009). As such, where 
participants fixate their gaze provides a proxy for what they 
are attending. If participants are able to change their memory 
strategy it seems likely that there would be differences in 
attention allocation as well. In order to see every item on a 
trial, a participant must move their eyes faster for a 6-item 
trial than for a 3-item trial. In the blocked condition the 
participant knows the set size of the next item. With this 
knowledge, it is possible that they prepare to move their eyes 
more quickly in the 6-item blocks. In the unblocked 
condition, participants are unsure of the set size on the next 
trial. While they might encode set sizes of 3 fairly easily, 
without additional preparation they may not able to see every 
item when the set size is 6. 

 
Figure 2: a) An example of the stimuli used. Stimuli varied 

in colour and location of the bead. b) The trial sequence. 3 or 
6 stimuli were presented on a grey background for 1000ms 
followed by a retention interval (mask then blank screen) of 
700ms. Participants were presented with a ring at the study 
location and were asked to place the bead on the ring as it 
appeared during study. 

It was predicted that 1) similar to Donkin et al.’s (2016) 
results, we would find an increased probability resources-like 
encoding in the blocked condition of this experiment. This 
would be measured by higher chances on an item being in 
memory and lower precisions when compared to an 
unblocked condition. 2) We predicted we would see eye gaze 
data that supported more resources like encoding in the 
blocked condition. Specifically, more fixations but lower 
fixation durations compared to the unblocked condition. 

Method 
Participants 40 participants were recruited from the 

UNSW sign-up system SONA to complete a single one-hour 
session. Participants received $15 in exchange for 
participating. 

Apparatus A Tobii TX300 eye-tracker, with 300 Hz 
temporal and 0.15° spatial resolution, mounted on a 23-inch 
widescreen monitor (1920 x 1080 resolution, refresh rate 60 
Hz) was used. Participants’ heads were positioned in a 
chinrest 60 cm from the screen. 

Stimuli The stimuli (Figure 2a) were coloured rings with a 
filled circle placed on the ring’s circumference. They could 
be one of eight distinct colours (red, yellow, green, cyan, 
blue, magenta, brown or salmon pink) and were presented on 
a grey background. All rings had a fixed diameter of 120 
pixels (visual angle = 3.03°) and a thickness of 2 pixels 
(visual angle = 0.05°). Beads had a fixed diameter of 20 
pixels (visual angle = 0.51°). Stimuli were presented 
randomly around the circumference of an invisible circle at 
the centre of the screen (diameter 600 pixels, visual angle = 
15.1°). The angle between items was equal. Beads were 
randomly placed on the ring for each item, on each trial. The 
target was indicated by presenting just the ring of the stimulus 
in the location it had appeared in during study. 

Design This recall task followed Zhang and Luck’s (2008) 
design. 420 trials were divided into 14 blocks of 30 trials. 
Either N = 3 or 6 items were presented on each trial. In the 
unblocked condition, presentation was randomised per block 
with an equal number of 3 or 6 item displays per block. In the 
blocked condition, the first half of the experiment consisted 
of trials of all one set size and the second half consisted of 
only the other set size (counter balanced between 
participants). 

Procedure A fixation cross was presented for 500ms at the 
start of each trial, followed by a blank screen for 400ms. The 
study array of N rings were presented for 1000ms. This was 
followed by a mask for 200ms then a blank screen for 500ms. 
The participant was then presented with a ring they saw at 
study (same location and colour) and was asked to place a 
bead on the ring where it appeared during the trial. The 
participant indicated where they believed the bead was with 
the mouse and confirmed their selection with the spacebar. 
Participants received feedback on their selection for 1000ms. 
Their deviation from the correct bead location was given in 
degrees alongside verbal feedback (“OUTSTANDING!” for 
deviations less than 10°, “Very good!” between 10° and 20°, 
“Good” between 20° and 35°, “OK” between 35° and 45° and 
deviations greater than 45° were labelled “Poor”). Figure 2b 
depicts the trial sequence. After each block, participants were 
given a break for a minimum of 20s before continuing. 

Model procedure We used a model to allow us to compare 
the probability of an item being in memory (Pm) and the 
precision of memories (Prec) between the blocked and 
unblocked conditions. The model was a Bayesian 
hierarchical version of the Zhang and Luck (2008) mixture 
model (Oberauer, Stoneking, Wabersich, & Lin, 2017). The 
model assumed that the deviation between given response 
and the correct response either came from memory or from a 
separate guessing process. Responses based on memory were 
associated with Von Mises distributions with a mean that was 
centred on the correct response and a precision that varied 
depending on condition (blocked and unblocked), set size (3 
and 6) and individual participant. Responses based on 
guessing were uniformly distributed around the circle for all 
conditions and all participants. The model allocated 
responses to either memory or guessing process by taking a 
value from a Bernoulli distribution with a probability of using 
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memory equal to Pm. The parameters Pm, like Prec, also 
varied with condition, set size and individual participant. 
Thus, four values were estimated for each participant, Pm and 
Prec for set sizes 3 and 6 (remembering that blocked and 
unblocked conditions are between subjects). Rather than 
estimating parameters separately for each participant, we 
instead constrained individual-participant level parameters 
such that they came from their own population-level Normal 
distributions (i.e., one for each parameter in each set size and 
blocked/unblocked condition). We focus our analysis on the 
population-level posterior distributions of Pm and Prec across 
the four conditions of our experiment. 

Results 
Prior to analysis, trials with no eye gaze data collected were 
removed (544 trials or 3.24% of trial data). Trials with more 
than 10 fixations during the presentation window were also 
removed (964 trials, 5.74% of the data) as were trials where 
the average fixation duration was less than 125ms (2703 
trials, 16.09% of the data). 

Behavioural results For each trial, the deviation between 
the participant’s answer and the true bead location was 
recorded. Since the range of answers varied around the 
circumference of the circle, the deviation was expressed in 
radians (π radians = 180 degrees). Figure 3 shows the 
frequency distribution of deviations for set sizes 3 and 6 
(green and red lines respectively) for unblocked and blocked 
set sizes. Both conditions displayed the typical response 
pattern for this task (e.g. Zhang and Luck, 2008) with most 
responses clustered around the correct response for both set 
sizes but with more accurate responses for set size 3. 

Modelling results Figure 4 shows plots of the population-
level posterior distribution for Pm and Prec across condition 
and set size. There was no visible difference in Pm values for 
set size 3 between the blocked and unblocked conditions. 
There was a slight indication of a difference between the 
unblocked and blocked conditions for set size 6, with smaller 
Pm values in the blocked compared to the unblocked 
condition. Note that this pattern is the opposite of what we 
expected. Prec values appear to differ across set size, with 
higher precision in set size 3 compared to 6. However, there 
was no observable difference between the blocked and 
unblocked conditions. 

The differences in Pm and Prec values between conditions 
for set size 6 only are presented in Figure 5. The difference 
between the posterior distributions for Prec centres on zero, 
suggesting no difference between conditions in precision for 
set size 6. The plot of Pm difference shows higher values for 
Pm in the unblocked condition compared to the blocked 
condition. However, this difference is small. Since an 
appreciable mass of the posterior distribution surrounds zero, 
there is little evidence of a difference between the conditions. 

 
Figure 3: The frequency of responses by deviation from 

actual bead location for the unblocked and blocked 
conditions. The green line represents set size 3 the red line 
represents set size 6. 

 
Figure 4: Posterior distribution for Pm and Prec parameters 
in blocked and unblocked conditions for both set size 3 and 
6. Horizontal lines show the mean of the distributions. 

Eye gaze results We now compare unblocked and blocked 
conditions using the average fixation duration per trial and 
the average number of fixations for each set size. The mean 
values of each measure in each condition are plotted in Figure 
6. On average, the unblocked condition had more fixations 
and less fixation duration compared to the blocked condition. 
Again, the qualitative pattern, if present, is in the opposite 
direction of what was expected.  

An analysis of variance (ANOVA) on average number of 
fixations and average fixation duration yielded no significant 
effect of condition (F(1,37) = 1.441, p = 0.238; F(1,37) = 
1.443, p = 0.237 respectively) or set size (F(1,37) = 0.337, p 
= 0.543; F(1,37) = 0.170, p = 0.682 respectively) on either 
measure. We find no strong evidence for a difference 
between the average number of fixations or average fixation 
duration between trials of different set size or condition. 
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Figure 5: Difference in the posterior distributions of Pm and 
Prec between the unblocked and blocked conditions (set size 
6 only). 

 
Figure 6: Average number of fixations and average fixation 
duration per trial for blocked and unblocked conditions for 
set sizes 3 and 6. Error bars indicate the standard deviations.  

Discussion 
The behavioural results for both the blocked and unblocked 
conditions were similar. The modelling results indicated very 
little difference in the memory strategies between conditions. 
For each condition, similar values for the probability of an 
item being in memory and for precision were found. 
Similarly, there was little difference in eye gaze patterns. 
There was a suggestion that there was a higher probability of 
an item being in memory in the unblocked condition. 
However, there were more fixations with lower durations in 
this condition as well. This trend is counter to our prediction, 
that the blocked condition would have a higher probability of 
items in memory, more fixations and lower average fixation 
duration.  

Overall, these results are not consistent with what we 
expected based on Donkin et al.’s (2016) finding that 
memory can be flexibly allocated based on task environment. 
There were a number of differences in the experimental 
design between the Donkin et al. experiments and those 
reported here. The largest difference seems to be that here we 
used a continuous production task. It may be that participants 
are less able or willing to adapt their mnemonic resources in 
production tasks. On the face of it, production tasks require a 
more precise response than in a recognition/change detection 

task (in which there are only two responses). In the change 
detection experiments reported in Donkin et al., it was the 
blocked condition that was unlike previous experiments. It 
may have been that participants in our blocked condition did 
not spread their resources more diffusely in an attempt to 
remember more items because of the resultant cost to the 
precision of their memories. Future experiments could 
encourage participants to accept more error in their response, 
giving positive feedback whenever a response falls within a 
particular region around the correct response. Perhaps 
participants would adjust their mnemonic allocation in 
blocked conditions (where the number of items to remember 
is predictable) in such lenient environments. That said, such 
an explanation is obviously post-hoc, and so we do interpret 
this data as problematic for a model of VWM that proposes 
that mnemonic allocation is flexible and under strategic 
control.  

In future work, we aim to connect the eye gaze data and the 
behaviour of individuals on individual trials. We have 
conducted preliminary analyses in which we see a weak 
correlation between fixation duration and the deviation 
between the correct response and the response given by the 
participant. We also see that whether an item was fixated 
during study is a weak predictor of deviation accuracy. These 
results were much weaker than we had anticipated, and so we 
will follow up these analyses with more refined methods. In 
particular, we will use summary statistics from eye gaze data 
as predictors for the parameters of the Zhang and Luck (2008) 
mixture model. For example, we might expect that an item 
not fixated during study would be more likely to come from 
a guessing process in the mixture model. We would also 
expect the fixation duration to affect the precision parameter 
of the memory process in the model. We have carried out 
versions of these analyses that we are not yet confident 
enough to report here, but were again very surprised by the 
lack of relationship between the eye gaze data and the 
behaviour of participants in the task.  

Some of the flaws in the current design need to be 
addressed to convincingly link eye gaze and memory in this 
task. For example, one of the problems with the eye gaze data 
is perhaps that there is not enough distinction in where people 
are looking (their fixation locations) and their fixation 
durations. In this task, we suspect it is possible for 
participants to encode more than one stimulus in a single 
fixation as these relatively simple stimuli can be encoded 
quickly. We anticipate that either spatially separating items 
or more complex stimuli would therefore help distinguish 
which items a participant has looked at and thus attended and 
encoded. 

Conclusions 
Given participants did not move their eyes as much as 
anticipated, this seems to have impacted the collection of eye 
gaze information. In turn, the value of using eye gaze as our 
proxy for attention was thus diminished. As a result, we did 
not observe the difference in memory strategy between 
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unblocked and blocked conditions as seen by Donkin and 
colleagues (2016). 

Logically, vision must be helpful in encoding visual items 
into memory. The lack of a connection between memory and 
eye gaze in this study is likely due to methodological reasons. 
As mentioned, it might be necessary to make items more 
complex or make the display array more separated. However, 
to what extent alterations need to be made in order to observe 
an effect of eye gaze on memory remains to be seen. Future 
experiments could include gaze contingent presentations. 
Such a paradigm could require participants to fixate on a 
stimuli for a set period of time within a study array. As a 
result, there would be more certainty in what participants 
have looked at and perhaps encoded. 

Presently, the current experiment serves as a caution to 
those interested in investigating VWM tasks using eye gaze.  
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Abstract 

Choice blindness is a cognitive phenomenon describing that 
when people receive false feedback about a choice they just 
made, they often accept the outcome as their own. Little is 
known about what predisposes people to correct 
manipulations they are subjected to in choice blindness 
studies. In this study, 118 participants answered a political 
attitude survey and were then asked to explain some of their 
responses out of which three had been manipulated to indicate 
an opposite position. Just over half (58.4%) of the 
manipulations were corrected. We measured extremity, 
centrality and commitment for each attitude, and one week 
prior to the experiment we assessed participants’ preference 
for consistency, need for cognition and political awareness. 
Only extremity was able to predict correction. The results 
highlight the elusiveness of choice blindness and speak 
against dissonance and lack of motivation to engage in 
cognitively demanding tasks as explanations why the effect 
occurs. 

Keywords: choice blindness; attitude change; attitude 
strength; need for cognition; preference for consistency; 
political awareness.  

Introduction 

Choice blindness (CB) is a cognitive phenomenon 

indicating a dissociation between making a choice and its 

later justification. It highlights the limitations of our 

introspective capacity when reasoning about past choices. 

CB occurs when people receive false feedback about a 

choice they just made accepting the outcome as their own 

and reporting seemingly introspective (albeit confabulated) 

reasons for having made that choice (see Johansson et al., 

2005 for details). CB has been reported for many domains 

and modalities, ranging from taste and smell preferences 

(Hall, Johansson, Tärning, Sikström & Deutgen, 2010) to 

eye-witness testimony (Cochran, Greenspan, Bogart & 

Loftus, 2018), and has been shown to affect both later 

memories and preferences (e.g. Strandberg, Sivén, Hall, 

Johansson & Pärnamets, 2018; Pärnamets, Hall & 

Johansson, 2015; Johansson, Hall, Tärning, Sikström & 

Chater, 2014). CB has also been applied to the study of 

attitudes and attitude change, an area of research where 

deliberation and introspection are often seen as important 

ingredients. In Hall, Johansson and Strandberg (2012) about 

60% of manipulations to a survey on moral dilemmas were 

accepted by the participants’ as being their own attitudes. 

Hall et al., (2013) reported similar findings for salient 

political issues in the run up for a Swedish general election. 

In that study participants not only changed their attitudes on 

political issues, but their actual voting intention was also 

affected in the direction of the false feedback. Notably, 

Strandberg and colleagues (2018) found that when 

participants accepted the manipulations to political attitudes, 

these shifted congruently with the false feedback when re-

elicited one week later. Although CB is ubiquitous, and 

undeniably relevant for the study of attitudes and decisions, 

little is known about what factors that predisposes people to 

correct the manipulated responses. So far, only a few studies 

have attempted to establish CB mediators, and thereby link 

the effect to other psychological constructs (e.g. Strandberg 

et al., 2018). However, no studies have focused purely on 

why people correct the false feedback. In this study, we aim 

to explore several factors that we have identified as 

meaningful for understanding why correction in the CB 

paradigm occurs, particularly in the domain of attitudes. 

 

Subjective experience of attitude strength 
One possible key to CB susceptibility could be in the 

relationship between the individual and the attitude itself. 

This is supported by the literature describing strong attitudes 

as “resistant to change, persuasion, and contextual 

influence” and weak attitudes as “unpredictable, malleable, 

and created in the moment” (Krosnick & Petty, 1995). 

Given this definition, it seems reasonable that correction of 

manipulations to attitudes should correlate with attitude 

strength. Here we tested three self-report measures adopted 

from Bassili’s (1996) seminal work on attitude strength: 

extremity, centrality and commitment. Extremity directly 

estimates how strongly a person agrees with an issue on a 

bipolar scale. Extremity, which is basically just the response 

to the survey item, is what Bassili calls an operative 

measure based on first order cognitive processing. 

Extremity is operative because, for example, the 
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experienced valence of the extremity could be directly 

retrieved from memory and not the product of inference. 

Centrality and commitment, on the other hand, are so called 

meta-attitudes. These are second order impressions of 

attitudes that rely on people to report on psychological 

properties not necessarily represented in long-term memory. 

As such, meta-attitudes are often inferred from sources more 

or less relevant to the strength of which the attitude is held. 

Centrality is described as tapping into the importance of an 

attitude and how it relates to personal values. Studies show 

that central attitudes are often more memorable and resistant 

to persuasion and contextual influence compared to 

peripheral attitudes (Holland, 2003; Pomerantz et al., 1995). 

Commitment is described as tapping into the confidence in 

an attitude: the conviction that the attitude is correct and 

valid. Commitment has been shown to moderate self-

perception and contextual influence in attitudes (Holland, 

2003; Pomerantz et al., 1995). Since these measures are 

meant to capture attitude strength – with strong attitudes 

being defined by their “resistance to change, persuasion, and 

contextual influence” – they should also correlate with 

correction of CB manipulations. 

 

Variation in cognitive style 
Another possibility is that aspects of the CB task might be 

experienced as rather cognitively demanding, such that 

some individuals may be more susceptible to CB than others 

due to being less motivated to perform them. Previous 

studies have shown that individuals with a larger set of 

general analytic skill are more prone to correct the 

manipulations (Strandberg et al., 2018). Hence, measures 

capturing peoples’ motivation to engage in cognitively 

demanding task, such as the Need for Cognition (NC; 

Cacioppo, Petty & Kao, 1984; Cacioppo, Petty, Feinstein & 

Jarvis, 1996) might also correlate with correction. NC is 

commonly used in attitude change research, where studies 

have shown that people with high NC tend to form attitudes 

that are more resistant to persuasion compared to people 

with low NC (Haugtvedt & Petty, 1992). CB could also be 

affected by a consistency motive, which is the case for 

dissonance phenomena such as cognitive dissonance, 

cognitive balance, foot-in-the-door etc. These phenomena 

show that people often change either their behavior or their 

attitudes to appear consistent (cf. Festinger, 1957). One 

measure for estimating peoples’ need to have consistent 

cognitions is Preference for Consistency (PFC; Cialdini, 

Trost & Newsom, 1995). Further, PFC has also been shown 

to predict if people change their attitudes due to social 

pressure or external demand (Bator & Cialdini, 2006). Thus, 

if CB share properties with cognitive dissonance 

phenomena; or if participants accept manipulations due to 

demand from the experimental situation, correction may 

correlate with the PFC score. 

 

Variation in political awareness 
We would also like to consider variation in political 

awareness, since much research in political science 

highlights political awareness as one of the most important 

factors when forming strong and resilient political attitudes 

(Zaller, 1992). Interestingly, recent CB studies involving 

political attitudes have yielded mixed results. In Hall et al. 

(2012) politically involved participants were more likely to 

correct the manipulations, and this was not found in 

Strandberg et al. (2018). However, since political awareness 

is supposed to determine how people select, interpret and 

internalize political information (Sidanius, 1988; Lusk & 

Judd, 1988) we continue to explore the relationship between 

various measures of political awareness and participants’ 

behavior in a CB study involving political issues. 

 

Thus, we set out to test if susceptibility to correct 

manipulated responses in CB could be predicted by any of 

the attitude strength measures, variation in cognitive style, 

or political awareness described above. 

 

Method 

Participants 
A total of 128 (70 female) participants, with ages ranging 

from 18 to 64 years (M = 23.5, SD = 16.8), were recruited to 

answer a political survey. Sample size was predetermined 

based on previous CB studies (e.g. Johansson et al. 2005). 

Ten participants were excluded due to malfunctions with the 

experimental equipment. Thus, 118 participants remained 

for the final analysis. The participants were recruited 

through posters and flyers distributed at the university 

campuses of Lund and Malmö and compensated with a 

cinema voucher. At the start of the experiment, we 

described the general purpose of the study, but without 

telling the participants that some of their answers would be 

manipulated. Participants were informed that they could quit 

the experiment at any time, request their data to be erased, 

and still receive the cinema voucher. Participants were fully 

debriefed at the end of the experiment, before consenting to 

their anonymized data to be used by signing a consent form. 

All but six participants allowed their interviews to be 

recorded (leaving a total of 112 verbal recordings to be 

analyzed). The study was approved by the Lund University 

Ethics board, D.nr. 2008–2435. 

 

Materials and design 

 
Pre-test One week before the main experiment, participants 

completed an online questionnaire assessing their 

demographics, political awareness, PFC and NC. PFC was 

assessed using the abbreviated 9-item version (Cialdini et 

al., 1995) with scales ranging from 1 (low consistency) to 9 

(high consistency). The PFC questionnaire assessed the 

participants’ internal and external consistency and included 

items such as: “It is important to me that my actions are 

consistent with my beliefs”. For NC, we used the 18-item 

version (Cacioppo, Petty & Kao, 1984) with scales ranging 

from 1 to 9 where a nine gave four points and a one 

subtracted four points (five gave zero points, and so on). 
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The NC questionnaire assessed the participants’ attitudes 

towards effortful thinking, and contained items such as: “I 

usually end up deliberating about issues even when they do 

not affect me personally”. Further, political awareness was 

established by assessing the participants’ political interest 

with a scale ranging from extremely uninterested (1) to 

extremely interested (9), and whether they were involved in 

any political party or organization (yes/no). Visit 

https://osf.io/zsy47/ for a list of all measures and items. 

 

Main experiment After the pre-test, participants scheduled 

to partake in the main experiment being held one week later. 

It consisted of a questionnaire running on a tablet with a 

touch-based interface that the participants interacted with 

using a tablet pen. The experiment consisted of two parts: 

(1) responding to political issues, (2) explaining the 

responses, and ended with a full debriefing. 

 

Procedure 

 
Part 1 – responding to political issues During the first 

part, participants responded to 12 sets of political issues 

with each set containing a political statement and   

corresponding six meta-attitudes; three centrality, such as 

“how important is this issue to you?”, and three 

commitment, such as “how confident are you about your 

attitude towards this issue?” (visit https://osf.io/zsy47/ to see 

all centrality and commitment items). The political issues 

were selected together with leading political scientists, and 

represented 12 of the most salient and important issues in 

Sweden at the time of the study (Table 1). As such, we 

believe that the vast majority of our participants were 

familiar with them. This was also confirmed by the verbal 

reports: most participants were able to intelligibly and 

knowingly discuss the various issues. Below each item were 

visual analog scales with endpoints at 0 and 100 (completely 

disagree to completely agree for the political statements and 

for example extremely unimportant to extremely important 

for the centrality item “importance”). The participants were 

instructed respond to each item by drawing a mark using the 

pen. They could change their responses as many times as 

they wanted by clicking a change icon located to the left of 

each scale, as well as toggle freely between the 12 sets of 

issues. The participants were left to complete the 

questionnaire at own, and told to inform the experimenter 

when finished. 

 

False feedback and correction When going over and 

explaining the responses, participants had received false 

feedback on three of the six trials. Trials 2, 4 and 6 had been 

manipulated by the tablet application to indicate a position 

opposite to the original (Figure 1). Trials 1, 3 and 5 were 

non-manipulated controls. The manipulation had two rules: 

move the participants’ rating across the midline of the scale 

(with a minimum of 5 mm from the middle, i.e. ratings 45 or 

55), and then randomly positioned on the opposite axis. If 

participants in any way indicated that their responses did not 

correspond with their views, or indicated that something 

was wrong, the experimenter would tell them that they 

could change their response if they wanted to, after which 

they could base their explanation on that response instead. 

Correction was operationalized when change was clicked 

and a new response drawn. 

 

 
 

Figure 1: To respond, participants drew an X on a scale 

going from completely disagree to completely agree (A). On 

manipulated trials, participant’s X was surreptitiously 

moved from one side of the scale and then randomly placed 

on the other side (B). Participants could change their X as 

many times as they wanted by clicking ‘change’ (A-B). 

 

Table 1: The political issue statements. 

 

1. The gas tax should be increased 

2. A wealth tax should be reinstated  

3. The labor taxes should be lowered  

4. The monarchy should be abolished  

5. The government should run all elementary schools 

6. The punishment for violent crimes should be stricter 

7. The subsidized service for homework assistance should be abolished 

8. High schools should offer more applied and fewer theoretical courses 

9. Women should be recruited to company boards through affirmative action 

10. Private health care companies should be allowed to make profits in the welfare sector 

11. Copyright protected material from internet should be free to download for personal use 

12. The government should be allowed to monitor telephone conversations and internet traffic 
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Analysis 

Consistent with Bassili (1996) extremity was calculated by 

taking the absolute value of the deviation between a rating 

on the 100 point scale and the midpoint. All other variables 

are reported using their averages. Since attitude extremity, 

and the difference between the original rating and the 

manipulated rating, labeled ‘manipulation length’, are core 

features in CB studies using rating scales; we first tested 

how well these would predict correction. In our dataset, 

extremity and manipulation length were highly correlated, r 

= .73, t(333) = 19.6, p = 2.2*10
-16

. To address this we 

performed our analyses using decorrelated variables by 

transforming manipulation length to be the distance on the 

scale the manipulated attitude was moved beyond the 

midpoint. The resulting variables were independent, r = -

.028, t(333) = -0.52, p = .61. We then used these two variables 

to fit a baseline for the other predictor variables (i.e. meta-

attitudes and cognitive style). We analyzed our data using 

mixed regression models including by participant varying 

intercepts and slopes. Models were estimated in a Bayesian 

framework using the brms package in R (Bürkner, 2016). 

Weakly regularizing priors were used for all parameters.   

 

Results 
 

On average participants were moderately interested in 

politics (M = 6.0, SD = 2.1) and about one fifth identified as 

politically involved (M = 22.9, SD = 42.2). As we can see in 

Table 2, extremity, centrality and commitment was rated 

fairly strong, averaging between 60 to 65 points of 100. The 

PFC score in our sample was similar to the 48.9 (SD = 10.7) 

that Cialdini et al. (1995) reported, and the NC score was 

similar to that reported in a recent meta-analysis of the NC 

scale (M = 33.2, SD = 10.2 (de Holanda & Wolf, 2018)). 

 

Table 2: Means and SD for the main predictor variables. 

 

Predictor Mean SD 

Extremity 29.2 13.9 

Centrality 63.9 18.2 

Commitment 65.0 20.1 

NC 29.1 17.8 

PFC 44.8 12.6 

 

False feedback correction 
Participants corrected 58.4% of the total 347 manipulations. 

Each participant was exposed to three manipulations and the 

average correction rate was 1.66 (SD = 0.98), with 15 

participants accepting all manipulations and 27 participants 

correcting all. After correcting a manipulation participants 

were instructed to replace it with a new response. This 

corrected rating was on average placed within 9.43 points 

(SD = 11.7) of their original rating; or -4.45 points (SD = 

14.4) when taking the direction of the corrected rating into 

account (defining a weakened new rating as a negative 

quantity and a strengthened new rating as a positive 

quantity). As in previous CB studies, correction did not vary 

as a function of sex, gender, age, or political party. 

 

Predictors of correction 
To test for predictors of correction we conducted mixed-

effects logistic regression analyses using standardized 

variables. We first fit a baseline model consisting of 

extremity and manipulation length. This model (LOO = 

402.77, SE  = 14.86) indicated a large effect of extremity on 

correction (β = 1.77, SD = 0.32, 95% CI = [1.17, 2.43], BF10 

> 1.0*10^5), but only a smaller, uncertain effect of 

manipulation length (β = 0.53, SD = 0.28, 95% CI = [-

0.0043, 1.09], BF10 = 1.67), with the intercept estimated as β 

= 0.46 (SD = 0.19, 95% CI = [0.10, 0.84]). See Figure 2 for 

the marginal posterior predictions of the attitude extremity 

and manipulation length. 

 

 
 

Figure 2: Marginal posterior predictions from the baseline 

model. Predictions assume other variable held at its average 

value (0 for standardized predictors). X-axes renormalized 

to increase interpretability. Shaded regions indicate 95% 

posterior intervals. 

 

We next fit a full model with all our candidate predictors: 

extremity, centrality, commitment, preference for 

consistency (PFC), need for cognition (NC), political 

involvement, political interest and manipulation length 

(LOO = 401.65, SE = 17.03). The estimated coefficients, 

their credible intervals and associated Bayes Factors can be 

found in Table 3. Marginal posterior predictions are 

depicted in Figure 3. Notably, when comparing the baseline 

and full model using LOO we found that the baseline model 

and the full model did not differ, with a difference of 1.12 

(SE = 6.23), this is also mirrored in the estimates where 

there is little evidence that any of the added predictors are 

particularly successful at estimating correction. 

 

Predictors of correction types 
On an exploratory note, we tried to better capture 

participants’ subjective experience of correcting a 

manipulation. We conducted a simple classification of the 

reasons participants reported for wanting to correct. 
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Table 3: Estimates and Bayes Factors from the full model. 

 

Predictor Est (β) SD 95% CI BF10 

(Intercept) 0.51 0.21 [0.12, 0,94] - 

Extremity 1.34 0.38 [0.06, 2.10] 333.69 

Centrality 0.44 0.39 [-0.31, 1.23] 0.71 

Commitment 0.69 0.39 [-0.06, 1.46] 1.78 

NC -0.07 0.40 [-0.86, 0.72] 0.40 

PFC -0.12 0.37 [-0.85, 0.59] 0.38 

Pol.Involvement 0.71 0.47 [-0.21, 1.62] 1.45 

Pol.Interest -0.22 0.43 [-1.06, 0.65] 0.49 

Manip.Length 0.59 0.31 [-0.0013, 1.20] 1.94 

 

 
 

Figure 3: Marginal posterior predictions from the full model 

presented with the same properties as Figure 2. 

 

One independent rater listened to all the 112 recorded 

interviews and coded the different reasons participants gave 

when correcting a manipulation. We identified three distinct 

types distributed evenly among the corrections: internal 

attribution (36.8%), when participants claimed to have 

misinterpreted the question, the scale, or something in the 

task; external attribution (33.9%), when participants blamed 

the experimental equipment; and change (29.2%), when 

participants felt they had spontaneously changed their minds 

about the issue. Only for a few trials did participants report 

suspicion that their responses had been manipulated; these 

were categorized as external attribution. A second rater then 

classified a subset of 40 interviews; the raters agreed on 

90% of the classifications. To test for determinants of the 

correction types we conducted a hierarchical multinomial 

logistic regression analysis using correction type as 

dependent variable and the predictors used in previous 

analyses. Since we were mainly interested in whether people 

attributed the wish to correct internally or externally, the 

change category was used as the reference level in the 

analysis. Consistent with previous findings, most variables 

were unable to predict whether participants would attribute 

correction internally (e.g. feeling that they had made a 

mistake) or externally (e.g. blaming the experimental 

equipment). However, we did find that the larger absolute 

difference between the original response and the 

manipulated response the more likely participants were to 

attribute correction internally (β = 2.40, SD = 0.57, 95% CI 

= [1.03, 3.57], BF10 = 1017.52). We also found a small 

negative effect of political involvement, meaning that 

participants that were uninvolved politically were more 

likely to attribute correction externally (β = -1.15, SD = 

0.77, 95% CI = [-2.63, 0.37], BF10 = 2.36). However, the 

effect size of this latter finding was very small, but could 

potentially be a subject for future research. 

 

Discussion 

To summarize, we first assessed participants’ preference for 

consistency, need for cognition, and political awareness; and 

one week later measured attitude extremity, centrality and 

commitment on a questionnaire containing 12 political 

issues. Participants were then asked to explain their 

responses to six of these issues out of which three had been 

manipulated to indicate the opposite position using the 

Choice Blindness Paradigm. Just over half of the 

manipulations were corrected by the participants, meaning 

that the remaining was accepted by the participants as being 

their own attitudes. This is similar to previous CB studies on 

political attitudes (Strandberg et al. 2018; Hall et al. 2012).  

 

Attitude strength 
In this study we were particularly interested in testing 

potential underlying factors that predisposes participants to 

correct the manipulations. We found that correction was 

mainly predicted by attitude extremity; meaning that the 

stronger participants agreed with an issue on the bipolar 

scale, the more likely they were to correct it. That attitude 

extremity correlates with correction is also in line with 

previous CB research (Strandberg et al. 2018; Hall et al. 

2012; 2013) and corresponds with for example Bassili’s 

(1996) findings on the relationship between extremity and 

attitude stability. However, surprisingly, the two meta-

attitudes centrality and commitment did not contribute to the 

correction prediction. One possible explanation to this could 

be that operative measures of attitude strength, such as 

extremity, are more relevant to the task compared to second 

order impressions such as centrality and commitment. 

Bassili (1996) suggested that extremity is closely associated 

with the cognitive processing involved in attitude formation 

and retrieval which is two main components in a CB task. 

Centrality and commitment on the other hand rather tap into 

more abstract concepts of the attitude structure (Holland, 

2003) not necessarily relevant for scrutinizing one’s own 

survey responses. It could also be that higher extremity is 

the product of deeper and more involved elaboration, 
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making those responses more salient and memorable (Petty 

& Cacioppo, 1986). These results highlight the difficulties 

in assuming an attitude’s strength and stability based on 

seemingly relevant self-report measures. 

 

Individual difference and cognitive style 
The two measures of cognitive style, preference for 

consistency and need for cognition, were also not able to 

predict correction.  

 

Preference for consistency In the case of PFC (Cialdini, 

Trost & Newsom, 1995), we interpret this as an indicator 

that the correction of CB manipulations is not based on 

consistency motives or social influence. Further, PFC is 

mainly about people self-monitoring and being aware about 

their own consistency; whereas CB corrections tend to occur 

outside of the participants’ awareness. This could be seen in 

the reasons people reported when wanting to correct: they 

were almost exclusively about having made a mistake, 

detected a glitch in the survey application, or having 

spontaneously changed their minds. Importantly this result 

also distinguishes CB from cognitive dissonance (Festinger, 

1957) and other consistency phenomena that are typically 

highly correlated with PFC. This is useful when discussing 

CB and its consequences in a larger theoretical context. 

 

Need for cognition NC (Cacioppo, Petty & Kao, 1984) is 

often used in social psychology research for its supposed 

implications to people’s attitudes, judgments and decisions. 

In this literature, NC is described as associated to peoples’ 

tendency to process information and form elaborated and 

coherent attitudes. Because of this, attitudes of individuals 

high in NC should be more resilient to change, persuasion, 

and context effects (e.g. Haugtvedt & Petty, 1992). This is 

not what we found in this study. However, while individuals 

high in NC tend to be more resistant to various biases, 

previous research argue that even these individuals can be 

influenced if the bias is very subtle (Cacioppo, Petty, 

Feinstein & Jarvis, 1996). The subtlety factor might help 

explain why NC and CB correction did not correlate. 

Further, people with low NC can perform at a comparable 

level to those with high NC given enough external 

motivators. One such motivator could be the perception of 

what participants believe to be their own survey response.  

 

Political awareness The two political awareness measures 

(political interest and involvement) also did not correlate 

with correction. While there is nothing uniquely special to 

political awareness per se, the awareness part addresses a 

domain specific aspect that could determine the participants’ 

understanding, knowledge, and vested interest about the 

current CB theme (Zaller, 1992). For example, one previous 

CB study did find that political involvement correlated with 

correction (Hall, Johansson & Strandberg, 2012), and in this 

study we found a tendency (albeit small) that politically 

involved participants were more likely to attribute the 

correction externally (e.g. believing that there was some 

error with the equipment). This tendency at least indicates 

that politically involved participants experienced the false 

feedback differently from the uninvolved. It could simply be 

that politically involved individuals have stronger 

convictions in the politically attitudes; so when they notice a 

discrepancy between their original and present response, 

their main explanation is that software application 

malfunctioned. 

 

Limitations and future studies 
The main limitation of this study was the small number of 

participants. While we only found a relationship between 

correction and attitude extremity, the lack of relationship 

between the other variables might at least be partially 

explained by the small sample size. Thus, one interesting 

avenue of future research would be to more systematically, 

and with more participants, test how a variety of attitude, 

personality, and performance measures affect correction 

rates and correction types. This would also allow us to 

examine subgroups within our sample; for example: what is 

it that makes some participants correct all the manipulations 

and some accept all? Importantly, while we found no 

relationship between correction and any of the two 

motivated cognition measures (NC and PFC), other more 

performance based variables might be relevant to CB and 

worth exploring. For example, in Strandberg et al. (2018) 

the Cognitive Reflection Test (CRT) correlated with 

correction, with participants having higher CRT score also 

being more likely to correct the manipulations. CRT is a 

performance based cognitive processing measure that 

captures peoples’ ability to use reflective and deliberative 

thinking instead of gut feelings (Frederick, 2005). Thus, 

future research could try to link CB to performance based 

measures that taps into working memory, attention, or 

perhaps factual knowledge. Another potential shortcoming 

of this study was that the majority of the participants were 

students. Although we have no reason to believe, given 

previous studies, that a phenomenon such as CB would 

drastically differ between different demographics, it is 

always important to establish whether the experimental 

findings generalize across the public. However, similar 

levels of correction have been found in experiments with a 

more diverse and representative sample (Strandberg, 

Olsson, Hall, Woods & Johansson, in preparation). 

 

Conclusion 
Choice blindness is a cognitive phenomenon powerful 

enough to influence peoples’ opinions and reasoning in 

important political issues. Still, it is difficult to pinpoint 

what disposes people to accept or correct the manipulations. 

It seems that the CB manipulation is so surreptitious that it 

sometimes flies under the radar even for people with strong 

convictions and motivations to engage in political 

reasoning. This study contributes to the understanding of 

CB, serving as both a backdrop for future research, and an 

important piece of a broader theoretical puzzle. 
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Abstract 

The current study investigates how children act on a standard                   
exploreexploit bandit task relative to adults. In Experiment 1,                 
we used childfriendly versions of the bandit task and found                   
that children did not play in a way that maximized payout.                     
However, children were able to identify the machines that                 
had the highest level of payout and overwhelmingly preferred                 
it. We also show that children’s exploration is not random. For                     
example, children selected the bandits from left to right                 
multiple times. In Experiment 2, we had adults complete the                   
task in Experiment 1 with different sets of instructions. When                   
told to maximize learning, adults explored the task in much                   
the same way that children did. Together, these results suggest                   
that children are more interested in exploring than exploiting,                 
and a potential explanation for this is that children are trying                     
to learn as much about the environment as they can.  
 Keywords:  cognitive development; exploreexploit; decision           
making 

Introduction 
Imagine that it is your second day at a new job. You are                         
standing at the coffee cart outside your office building,                 
considering the unfamiliar menu. Yesterday you had a               
cappuccino and enjoyed it; today you must decide whether                 
to get the cappuccino again like yesterday , or try the matcha                     
green tea latte, which you might not like. This is known as                       
an explore/exploit problem ,  because you must choose             
between exploiting a familiar option (the cappuccino) or               
exploiting a new one (the matcha latte). Such problems                   
arise all the time: Do you buy the same brand of hiking                       
boots you just wore out, or try a new style? Make the same                         
old macaroni and cheese that you know your kids will eat,                     
or gamble on  pasta puttanesca ? Rewatch that Netflix               
movie that you enjoyed before, or try a new one? 

Researchers studying the explore/exploit problem in             
adults have traditionally defined a good decision as one that                   
maximizes payout and minimizes cost. The problem is               
commonly operationalized in bandit tasks named after the               
‘onearmed bandits’ (i.e., slot machines) found in casinos. In                 
a bandit task, participants decide between two or more                 
bandits, each of which has an unknown rate of reward. The                     
goal of the task is to maximize return by using a                     

combination of exploration and exploitation. Formally, the             
optimal strategy is to explore the different bandits just long                   
enough to learn which one pays out best, and then switch to                       
exploiting that one  (Mehlhorn et al., 2015) . Indeed, that’s                 
what most adults do. The exploreexploit problem has been                 
widely investigated in many different contexts, including             
reinforcement learning  (Daw, O’doherty, Dayan, Seymour,           
& Dolan, 2006; Wilson, Geana, White, Ludvig, & Cohen,                 
2014) , psychiatric populations  (Addicott, Pearson, Sweitzer,           
Barack, & Platt, 2017) , and animal behavior  (Beachly,               
Stephens, & Toyer, 1995; Chen et al., 2016; SnellRood,                 
Davidowitz, & Papaj, 2011) . The present studies asked,               
What about children?  
Very few studies have investigated how children approach               

exploreexploit tasks, and if they approach these tasks with                 
similar strategies as adults do. A large number of studies                   
suggests that children, and even infants, possess intuitive               
statistics and a basic understanding of probability  (Xu &                 
Kushnir, 2013) . Further, there is substantial evidence             
suggesting that children are better at maximizing statistics in                 
scenarios whereas adults are drawn towards probability             
matching  (Derks & Paclisanu, 1967; Hudson Kam &               
Newport, 2005) . Taken together, this suggests that children               
would indeed maximize reward on this type of task, perhaps                   
at an even faster rate than adults would. However, Blanco &                     
Sloutsky (2018) had children complete a 4armed bandit               
task on a tablet. They found that children do not maximize                     
payout as adults typically do. Instead, they visit each bandit                   
equally across 100 trials.  
The key question in this study is that in a bandit task,                       

in its most simplistic form, will children follow similar                 
strategies to adults and attempt to maximize payout. If                 
we find that children do not maximize payout, what are                   
the reasons for their suboptimal performance? Are             
children viewing the task in the same way as adults?   
In Experiment 1, we conduct a simplified version of                 

the bandit task with 159 children. Critically, we designed                 
this task to be simplistic and minimize the memory                 
constraints which other bandit tasks possess. In             
Experiment 2, we conducted the same bandit task used in                   
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Experiment 1 with adults and give different motives: to                 
learn or to win.  

Experiment 1 
One explanation for children’s overexploring in Blanco &               
Sloutsky (2018) could be that they simply cannot figure out                   
which bandit pays out better. In this task, we made it easy                       
for children to see the payouts. To do this, we showed                     
children all of the previous results from each bandit.  
We also changed the task structure so that there were three                     

machines: One that paid off every time, one that paid off                     
half the time, and one that never paid off.   

Methods 
Participants.  We tested 159 children between the ages of 3                   
and 9 (mean 5 years, 7 months; range 2 years, 11 months to                         
8 years, 11 months). Of those, 69 were girls, 90 were boys.                       
Children were recruited from science museums and             
preschools in an urban area. An additional 11 participants                 
were tested but excluded because they did not answer both                   
control questions correctly. Participants were given a small               
toy upon signup (e.g., a plastic slinky). 
 
Procedure. Participants were presented with three “Mystery             
Machines,” each with a different proportion of winning               
(green) and losing (red) balls (see Figure 1). One box                   
dispensed only winning balls, one dispensed only losing               
balls, and one alternated between winning and losing. The                 
machines associated with different payoffs were           
counterbalanced across participants. Green balls contained a             
sticker that the child was allowed to take home; red balls                     
contained no sticker.   
 

 
 

Figure 1: An illustration of the machines at the end of the 
study for a participant who chooses each machine equally. 
Green balls have stickers inside, red balls are empty. The 

tubes are empty at the beginning of the task.  
 
Children were told, “These are Mystery Machines. When               

you put a coin in the orange box, a ball rolls down the                         
orange slide. When you put a coin in the blue box, a ball                         

rolls down the blue slide. When you put a coin in the yellow                         
box, a ball rolls down the yellow slide. Balls can be green or                         
red. A green ball, like this one, [shows green ball] has a                       
prize that you can take home inside. See? [Opens ball and                     
shows sticker] A red ball, like this one, [shows red ball] has                       
no sticker in it. See? [Opens ball and shows inside.] Some                     
machines have more green balls, some machines have more                 
red balls.”  
Afterward, children were asked whether they would win               

any stickers if they received one green ball and one red ball.                       
Those who were unable to correctly answer this question                 
were excluded. Children were then given fifteen coins to put                   
in the coin slots corresponding to the machines of their                   
choosing. When the child put a coin in one of the three coin                         
slots, a machine sound played, and a ball rolled down the                     
slide of the machine corresponding to the coin slot that the                     
child chose. Before the experiment started, a machine               
operator hid underneath the table at which the children were                   
tested and crawled out from under the table once the child                     
was seated on the other side of the table and thus could not                         
see this person.  
The machine operator used a noise maker to make the                   

machine noise and rolled a ball down the slide each time the                       
participant made a selection by dropping a coin in a coin                     
slot. Empty balls were placed in the tube corresponding to                   
the machine that they came from, in order to reduce the                     
number of things that the participant needs to keep track of.                     
This clearly showed the distribution of wins and losses that                   
the participant encountered from each machine (See Figure               
3). 
After participants completed the task, they were asked the                   

following questions: 1) Which machine was your favorite?               
2) Why was the “xxx” colored machine your favorite? 3)                   
Which machine has the most green balls? And 4) How do                     
the machines work?  
 
Results 
Few children maximize, many explore each box equally.  
Children on average pick the winning box 44.72% of the                   
time, a value a Wilcoxonsigned rank test finds as                 
significantly above chance (V = 6338.5,  p < 2.2e16).                 
However, this value is still significantly below what               
maximizing would look like (V = 297,  p < 2.2e16). Figure                     
2B shows each individual child’s choice.   
 
Children’s behavior is neither random nor optimal.  To               
better understand children’s behavior, we simulated two             
different strategies: a random strategy where the boxes were                 
chosen from a uniform distribution and the optimal policy                 
(from Steyvers, Lee, & Wagenmakers, 2009). We sampled               
1000 instances from each strategy so we could compare how                   
children acted to these datasets (See Figure 2 and Figure 3).  
Children often explored the machine in a Left to Right                   

pattern as if they were reading a book (see Figure 4) and                       
therefore deviated from a pure random strategy of picking a                   
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Figure 2: The proportion of choices for each box.  The dotted red line indicates chance (.3333 and .6666). Orange 
indicates the proportion of time choosing the 100% win box, yellow indicates the proportion of time choosing the 

50% win box, and blue indicates the proportion of time choosing the 0% win box. Adults in the control, reward, and 
the optimal policy data chose the winning box significantly more than children.  Child data was collected as part of 
Experiment 1. The adult data were collected as part of Experiment 2. Optimal Policy data was simulated following 

the optimal policy in Steyvers, Lee, & Wagenmakers (2009). (A-F) Each line is a participant or simulated data point 
from a particular group. The red dotted line indicates chance (.3333) and (.666). Participants are ordered in 

increasing levels of picking the winning box.  (G-H) Each line represents the proportion of participants that choose 
each box on a given trial.  
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machine at chance regardless of the previous machine               
chosen. For example, they would choose the orange               
machine, the yellow machine, and then the blue machine.                 
Some children continued with this strategy throughout the               
entire task. A chisquare test of independence was               
performed to examine the relationship between the             
frequency of children going from left to right, and the                   
frequency of this occurring in our randomly generated data                 
set. This relationship was significant. X 2 (5, N = 1159) =                   
105.52, p = < 2.2e16. This suggests that children moving                   
from left to right between boxes would not be plausible                   
under random chance. Children could be acting in this way                   
to strategically explore their environment, and are not               
necessarily acting purely randomly.  
 

 
Figure 3: The proportion of times choosing each box. The 
dotted red line indicates chance (.3333). The error bars 
indicate 95% confidence intervals. Adults in the control, 
reward, and the optimal policy data chose the winning box 
significantly more than children.  Child data was collected 
as part of Experiment 1. The adult data were collected as 
part of Experiment 2. Optimal Policy data was simulated 

following the optimal policy in Steyvers, Lee, & 
Wagenmakers (2009).  

 
 

 
 

Figure 4: Histogram comparing the LefttoRight instances 
made by children (purple columns) and the data set we 
generated where the choice of machine was random 

(redoutlined columns).  

Children prefer the 100% win box.  128 children (83%)                 
said their favorite box was the one that had 100% winning                     
balls. 15 children (9.7%) prefer the box which alternated                 
between winning and losing balls, 8 children (5.2%)               
preferred the box that always dispensed losing balls, 5                 
children (3.2%) said they liked all of the boxes, 2 children                     
(1.3%) said they liked two of the boxes, and 1 child (.06%)                       
said they didn’t like any of the boxes (see Figure 5). We                       
performed a proportion test to see if this number was                   
significantly above chance (.3333). We found that this was                 
unlikely due to chance  X 2 (1, N = 159) = 159.2,  p < 2.2e16.                         
Of the 128 children who said their favorite box was the one                       
that had the highest payout, we asked the children why the                     
box they chose was their favorite, 105 children (97.2%) said                   
it was because it gave the most green balls. The other                     
explanations included that they liked the color of the box, or                     
they gave an unrelated answer such as, “because rainbow.”  
 

   
Figure 5: Children’s responses to, “Which box is your 

favorite?” 
 

Age is not related to the proportion of max choices. We                     
looked for a correlation between age and number of max                   
choices made. We found that age and number of times                   
choosing the max box were not correlated. We found                 
evidence in favor of the null (r(159) = .086, BF 01  = 5.17). 
 

 
Experiment 2 

In Experiment 1, most children did not maximize stickers.                   
However, at the end of the task, 83% of the participants                     
stated that their favorite machine was the one that always                   
won. This suggests that perhaps children knew, and               
preferred the winning machine, but chose to explore               
anyways. Additionally, we found that children were making               
their choices in a sequential pattern that would not be                   
predicted by chance. While it is plausible that children have                   
not learned the distributions yet and that is why they are                     
exploring more, in Experiment 1, children were able to                 
identify the machine or side that had the highest payout.                   
Children might be approaching this task with a different                 
motive than adults.  
As adults, we have more experiences with gaming and                   

decision making. We have learned that often times, the best                   
thing to do is maximize reward. Maybe children, who have                   
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less experience with decisionmaking tasks of this nature,               
could just be trying to pick up as much information about                     
the environment as possible. This would mean exploring               
even when you are fairly confident about the stability of an                     
environment. Perhaps this difference in goals is what can                 
account for differences in behavior.  
To test this hypothesis, we had adults complete the                 

protocol outlined in Experiment 1 with one of three sets of                     
instructions: a control scenario, a reward scenario, and a                 
learning scenario. In the control scenario, adults were told                 
exactly what the children were told. In the reward scenario,                   
adults were told that they would be evaluated on how many                     
stickers they won. In the learning scenario, adults were told                   
they would be evaluated based on how well they learned the                     
different distributions of the three machines.  

Methods 
Participants.  We recruited and tested 72 adults from the                 
University of California, Irvine SONA system. Our             
participants were primarily female (55 females, 17 males)               
and between the ages of 1821 (57). 15 other participants                   
were between the ages of 2230. Participants were               
compensated with course credit. 
 

Procedure.  We followed the procedure outlined in             
Experiment 1. Adults were randomly assigned to one of                 
three scenarios: Control, Reward, or Learning. In the               
Control scenario, adults were told exactly what the children                 
were told in Experiment 1. In the Reward scenario, adults                   
were told that they would be evaluated on how many                   
stickers they won. In the Learning scenario, adults were told                   
they would be evaluated based on how well they learned the                     
different distributions of the three machines.  
 

Results 
Comparing adult data to children’s data  Adults in the                 
Control & Reward conditions picked the winning box               
significantly more than the children and the adults in the                   
Learn condition (See Figure 2, Figure 3, & Table 1).   
Using an ANOVA, we found that there was a significant                   

relationship between the instruction condition and the             
number of times the winning box was chosen (F(3,229) =                   
15.41, p < .001, � = .168). When comparing the children                     
data, adult data, random strategy, and optimal policy, using                 
an ANOVA there is an even larger effect and a significant                     
relationship between condition and number of times the               
winning box was chosen (F(5, 2227) = 1570 p < .001, � =                         
.779). We found that children picked the winning box                 
significantly less than adults in the Control condition &                 
Reward condition, but not the Learning condition.  
 

Table 1: Pairwise Comparison using ttests with pooled 
standard deviation. tvalue (pvalue) 

  Control  Children  Learn 

Children  4.274 
(1.0e04)  
 

   

Learn  1.652  
(0.197) 
 

2.09 
( 0.109) 

 

Reward  10.519  5.273  2.409 
  (0.449)  (8.7e07)  (0.064) 
 
Children switch between boxes more than adults do.  A                 
way of quantifying exploration is through looking at the                 
proportion of switch trials participants made. If a participant                 
is exploring, they would have a high proportion of switch                   
trials. A participant who never makes the same choice twice                   
in a row would have a switch proportion of 1. A participant                       
who always chooses the same box would have a switch                   
proportion of 0. On average, child participants had a switch                   
proportion of .8051, whereas adults had an average switch                 
proportion of 0.5962. Conditions that adults were in did not                   
influence their switching behavior. A Wilcoxon rank sum               
test with continuity correction showed that children             
switched significantly more than adults did (W = 2400, p =                     
1.527e12).  
 
Trial level analysis. When looking at the data at the trial                     
level (See Fig 2GL), children and adults do choose the                   
winning box more frequently near the end of the task. We                     
did a logistic regression looking at trials as a predictor of                     
choosing the winning box. For children, we found that trial                   
number was an indicator of choosing the winning box ( β =                     
0.094,  p <2e16). However, for adults, the coefficient was                 
higher (β = 0.181,  p <2e16).  This shows that while                   
children are more likely to chose the maximal option as the                     
task goes on, the change at a much slower rate than adults.  

Discussion 

In this paper, we presented two bandit experiments had no                   
memory constraints. The first was with children, who did                 
not play in a way that maximized payout and explored more                     
than would be optimal. Uniquely, our paper showed that                 
children were able to identify the machines that had the                   
highest level of payout and overwhelmingly preferred the               
bandit with the highest payout. We also show that children’s                   
exploration is not random. For example, children moved               
across the bandits from left to right over and over again, as                       
if they were reading a book.  
In Experiment 2, we instructed adults to either maximize                 

payout or learn the distributions of the 3armedbandit task.                 
Experiment 2 showed that adults maximized payout, but               
when they are asked to maximize learning, they explore                 
more  like children.  
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Together, these results suggest that children are more               
interested in exploring than exploiting, and a potential               
explanation for this is that children are trying to learn as                     
much about the environment as they can. There are several                   
possible explanations for our findings.  

Explanation 1: Children don’t maximize payout because             
they don’t know which machine pays out the best.  One                   
potential explanation for our data is that children spend                 
longer than adults exploring the environment of the game                 
because it takes children longer to figure out which machine                   
has the best payout. This is plausible, given that children                   
have much poorer working memory than adults do               
(Gathercole, Pickering, Ambridge, & Wearing, 2004) , as             
well as less experience with this type of task. 
But the children in our study did know which machine                   

gave the most stickers  at least, they knew this by the time                         
they finished playing. And children overwhelmingly           
preferred the machine with the best payout. 
Moreover, despite their poorer working memory, there are               

some domains of learning where children come to the                 
correct answer faster than adults do. In language learning,                 
for example, 6yearold children outperform adults by             
maximizing probability whereas adults tend to match             
probability  (Hudson Kam & Newport, 2005 ). Children also               
outperform adults in a simple probability guessing game               
( Derks & Paclisanu, 1967) .   
  

Explanation 2: Children don’t maximize payout because             
they would rather explore the game environment.  In any                 
explore/exploit task, participants must explore to find the               
resources before they can shift to exploiting those resources.                 
But it is possible that the shift from exploring to exploiting                     
is not only seen over the course of an individual task, but                       
over many timescales. Just as all participants explore in the                   
early stages of a task, perhaps people explore more (in                   
general, across domains) in the early years of life  that is,                       
in childhood. the time scale of one human life. Perhaps                   
children are more ‘exploring’ than adults in general,               
meaning that they seek information about the environment               
in a broad sense rather than in just the narrow sense needed                       
to maximize immediate payout (in this case, stickers).  
According to this explanation, children sacrifice payout in               

order to get more information. But presumably, if children                 
could get that information, either way, they would still want                   
to maximize payout. And indeed, in bandit tasks where                 
children are given all of the information that they would                   
have gained from each of the different choices, they do                   
maximize payout  (Plate, Fulvio, Shutts, Green, & Pollak,               
2018; Starling, Reeder, & Aslin, 2018) . 
We hypothesize that the optimal time to shift from                 

exploring to exploiting depends on (A) how well you know                   
the environment, and (B) how likely it is that the                   
environment will change. When you don’t know the               
environment well and/or the environment is likely to               

change, then more exploring is beneficial because it               
provides more information about all aspects of the               
environment (addressing Problem A) and it provides             
information that may be helpful if something in the                 
environment changes (Problem B.) We hypothesize that             
children typically are in a situation where (A) is low and (B)                       
is high, so they naturally explore, whereas adults know the                   
environment better and also have fewer years left ahead of                   
them, meaning that the amount of change they must prepare                   
for is lower.  
Our results are consistent with the idea that children                 

develop flexible knowledge through exploration and broader             
search  (Gopnik et al., 2017) . From a child’s point of view,                     
the world is constantly changing. It makes sense to prioritize                   
gathering data rather than maximizing immediate payouts.             
As our Experiment 2 showed, adults do the same when they                     
are told to focus on learning, rather than on immediate                   
rewards.  
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Abstract

Slang is a common device for expressivity in natural lan-
guage. While slang has been studied extensively as a social
phenomenon, its cognitive bases are not well understood. We
formulate the processes of slang generation as a categoriza-
tion problem. We explore a set of cognitive models of catego-
rization that recommend slang words based on intended refer-
ents of the speaker beyond the existing senses of words. We
test these models against a large repertoire of slang sense def-
initions from the Online Slang Dictionary and show that the
categorization models predict slang word choices substantially
better than chance, without explicit consideration of external
social factors. We also show that words similar in existing
senses tend to extend to similar novel slang senses, reflecting a
process of parallel semantic change. Our work helps to ground
theories of slang in cognitive models of categorization and pro-
vides the potential for machine processing of informal natural
language.

Keywords: informal language; slang; generative model; cate-
gorization; language and cognition

Introduction
Slangs—a representative form of informal language—are
ubiquitous in natural language, making up approximately
52% of words in all English books written in the past two
centuries (Michel et al., 2011). Slang is a common device for
enhancing expressivity in human language, allowing us to ex-
press a multitude of ideas beyond the standard lexicon. Slang
also adds stylistic richness to language, often allowing the
identification of social groups (Millhauser, 1952). Although
slangs are prevalent and accountable for language expressiv-
ity, the cognitive processes that give rise to slangs are not well
understood.

Previous work has characterized slang as a social phe-
nomenon. For instance, Labov (1972, 2006) studied how in-
formal language emerges as a result of differing ethnicity and
social-economic status. More recent work has also suggested
how slang might be influenced by multiple social factors in-
cluding ethnicity (Blodgett, Green, & O’Connor, 2016), gen-
der (Bamman, Eisenstein, & Schnoebelen, 2014), and ge-
ography (Eisenstein, O’Connor, Smith, & Xing, 2010). Al-
though it is undeniable that slang is a social phenomenon, re-
cent work on social media analysis has suggested that slangs

Figure 1: Illustration of the slang generation problem.

are more likely to catch on if they are also linguistically ap-
propriate (Stewart & Eisenstein, 2018). We extend these work
by exploring the bases of slang from a cognitive perspective,
complementary to the social factors that could influence slang
formation.

Recent work in cognitive science has explored related top-
ics in the context of non-literal language, particularly the
comprehension of metaphors (Kao, Wu, Bergen, & Good-
man, 2014; Kao, Bergen, & Goodman, 2014). While slangs
can often emerge from metaphorical relations, there exist
many cases suggesting otherwise. For example, the slang
word sick has the existing sense “ill” while its slang sense
refers to “awesomeness”. In this case, the link between the
slang and existing senses are not metaphorical, but instead ac-
counts to a polarity shift in sentiment from the existing sense.

Here we consider the general problem of slang gener-
ation by asking what cognitive processes can give rise to
slang word choices for novel senses. Specifically, given a
new intended slang referent one wishes to convey, how does
the speaker choose an appropriate word for expressing that
sense? Figure 1 illustrates this problem of slang generation.
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(a) One Nearest Neighbor (1NN) (b) Exemplar (c) Prototype

Figure 2: Illustration of categorization models for slang generation. Red (bottom-left) dot denotes novel slang sense. Blue dots
denote existing senses of a candidate word. Green dot denotes prototype (or mean) of the existing senses.

Given a slang sense such as “awesome/nice”, we wish to pre-
dict the word choice made by the speaker among possible
alternative candidate words. In the illustrated case, the tar-
get word sick might be chosen if its existing senses relate to
the novel slang sense, and words similar to the target word
sick such as wicked might also have a good chance of being
chosen. We formalize these intuitive notions of slang gener-
ation in terms of lexical choice via categorization, where we
consider each candidate word as a category of existing word
sense definitions. For this study, we focus on the problem of
slang generation from words that are part of the existing lex-
icon, so we do not consider out-of-vocabulary or novel word
forms for slang (e.g., Kulkarni & Wang, 2018).

We explore slang generation based on two key ideas from
recent work on lexical semantic change, particularly histor-
ical word sense extension: 1) Words that bear closely re-
lated senses to a novel sense are likely to be extended to ex-
press that novel sense, a process known as semantic chain-
ing (Lakoff, 1987; Malt, Sloman, Gennari, Shi, & Wang,
1999; Ramiro, Srinivasan, Malt, & Xu, 2018); 2) Words
that begin with similar senses tend to extend to similar novel
senses, a process also known as the law of parallel seman-
tic change (Lehrer, 1985; Xu & Kemp, 2015). We formalize
these ideas along with classic proposals of categorization in a
simple computational framework and test them against a large
online dictionary of slang.

To preview our findings, we show that cognitive models of
categorization predict slang word choices substantially better
than chance, and these models can be enriched by a mech-
anism of collaborative filtering that accounts for parallel se-
mantic change.

Computational formulation
Models of categorization
We formulate slang generation as a categorization problem.
Given a set of candidate words as categories {w1,w2, · · · ,wN}
with sets of existing senses as exemplars {E1,E2, · · · ,EN} as-
sociated with those words, we wish to find the word ws that is
most appropriate for expressing a novel slang sense s, where
we represent word senses by embedding their dictionary def-
initions into a high-dimensional vector space (see details in
the next section). For a given slang sense s, a categoriza-
tion model specifies a distribution over the space of candidate
words based on similarities between s and existing senses of

the candidate word w j in E j.
We recommend a slang word choice based on the probabil-

ity distribution p(w j|s) via Bayes’ rule:

p(w j|s) ∝ p(s|w j)p(w j) (1)

Here p(s|w j) is the likelihood of the novel slang sense s
given the word w j or equivalently the collective set of its
existing senses E j, and p(w j) is the prior on the candidate
word. Because we constrained our analyses to words with
slang senses, we used a uniform prior on the set of candidate
words. We thus estimate p(w j|s) using the maximum likeli-
hood formulation:

p(w j|s) ∝ p(s|w j) = p(s|E j) (2)

We specify the likelihood by considering similarity re-
lations between existing senses of the word w j in E j and
the slang sense s. Given a set of existing senses E j =
{e1,e2, · · ·eM}, we compute its similarity with the slang sense
s by considering how individual exemplars in E j are similar
to s:

p(s|E j) = f (s,E j) = f ({sim(s,ei);ei ∈ E j}) (3)

We consider the specific forms of the similarity function
based on three existing models of categorization: One Near-
est Neighbor (1NN), Exemplar, and Prototype. We illustrate
these models in Figure 2.

One Nearest Neighbor (1NN) model. Motivated by work
on semantic chaining (Ramiro et al., 2018), this model pre-
dicts that a novel word sense is attached to an existing sense
of a word that is closest in semantic space. We test this hy-
pothesis in slang generation by postulating that a novel slang
sense would be attached to the most similar existing sense of
a word:

f (s,E j) = max
ei∈E j

sim(s,ei) (4)

Exemplar model. Motivated by the exemplar theory
(Nosofsky, 1986), this model evaluates similarities between
the novel sense s and all existing senses of a word. Here we
postulate that slang choice depends on the aggregated simi-
larities of existing senses of a word to the slang sense:
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f (s,E j) = ∑
ei∈E j

sim(s,ei) (5)

Prototype model. Motivated by the prototype theory
(Rosch, 1975), this model predicts that category membership
is established by similarity between the slang sense and a rep-
resentative or prototypical existing sense:

f (s,E j) = sim(s,E prototype
j ) (6)

Because we do not have an accurate estimate of sense fre-
quencies, we consider the simple version of this model where
the prototypical sense is taken as the average of the existing
senses, i.e., by assuming senses are equally frequent:

E prototype
j =

1
M ∑

ei∈E j

ei (7)

Where M is the set size of E j.

Similarity. To estimate individual similarities between s
and ei, we consider vector-based embeddings that transform
word sense definitions into a high-dimensional vector space.
We then compute the similarity as follows:

sim(s,ei) = exp(−d(s,ei)
2

hs
) (8)

Here d(s,ei) is the Euclidean distance between the vector
representations of senses and hs is a parameter controlling the
degree of sense specificity that we fit to data.

Collaborative filtering
We consider an enriched version of the categorization mod-
els by taking into account parallel semantic change, cast as
a variant form of collaborative filtering (Goldberg, Nichols,
Oki, & Terry, 1992) that is commonly used in recommenda-
tion systems. The rationale is that words similar in existing
senses may extend to label similar novel slang senses. For
example, massive and stellar both refer to large in their ex-
isting senses, but both of them can refer to impressiveness in
the slang context. We capture parallel semantic change by
considering the influence of neighboring words to candidate
words w j’s by nested likelihoods:

p(w j|s) ∝ ∑
w′∈L(w j)

p(w j,w′|s) = ∑
w′∈L(w j)

p(w j|w′)p(w′|s)

(9)
Here L(w j) indicates a small neighborhood around the

word w j in word embedding space. We estimate p(w j|w′) by
computing similarity between w j and its neighboring words:

p(w j|w′) ∝ sim(w j,w′) = exp(−
d(w j,w′)2

hw
) (10)

For the word itself, sim(w j,w j) = 1. hw is a free param-
eter that controls the strength of influence from the neigh-
bors. This nested model estimates p(w′|s) using the same

likelihood functions described in the previous section. The
resulting collaborative filtering model effectively provides a
weighted average of the likelihoods corresponding to words
in the neighborhood L(w j).

Materials and methods
We collected lexical data from the freely

available Online Slang Dictionary (OSD;
http://onlineslangdictionary.com) and WordNet
(Miller, 1998) for novel slang and existing word sense defini-
tions respectively. In OSD, we considered all available slang
word forms with at least one available example usage. We
removed words that do not exist in WordNet and extracted
all word-definition pairs from the remaining words, resulting
in 4,805 slang definitions from 2,357 distinct slang words.
We also extracted existing definitions from WordNet by
first querying the slang word and then extracting definition
sentences from all retrieved synsets, resulting in 11,780
existing definitions. On Average, each candidate word in
our dataset has 2.00 slang definitions (SD: 1.74) and 5.54
existing definitions (SD: 6.82).

We excluded acronyms because they do not extend to new
senses. We removed all slang definitions containing the word
‘acronym’ and words that have fully capitalized spellings.
Finally, we excluded slang definitions that are already part
of WordNet by performing two pre-processing steps: 1) Re-
move a slang definition if one of the corresponding existing
definitions in WordNet has at least 50% overlap in the set of
content words. 2) Remove WordNet definitions that contain
the token ‘slang’ and remove slang words that no longer have
corresponding WordNet definitions. We performed a manual
sanity check on 100 randomly sampled slang definitions and
only 6 of them have close definitions in WordNet. After pre-
processing, there are N = 4,256 slang definitions from V =
2,128 slang words. We used these words as the vocabulary
for candidate slang words. We partitioned the data of sense
definitions by randomly splitting into a 90% training set and
a 10% test set for model evaluation.

To represent the sense definitions in a vector space,
we used distributed word embeddings from fastText
(Bojanowski, Grave, Joulin, & Mikolov, 2017) pretrained
with subword information on 600 billion tokens from Com-
mon Crawl (http://commoncrawl.org). To obtain a fixed
dimensional representation for the definition sentence, we
take the average word embedding of all content words within
the definition sentence (Landauer, Laham, & Rehder, 1997).
The average pooling scheme has been shown to be a competi-
tive sentence encoder in machine learning literature (Wieting
& Kiela, 2019) and has consistently achieved better results
in our experiments compared to pre-trained deep sentence
encoders. We apply the same encoding method to both ex-
isting and slang definitions with no distinction. We esti-
mated the free model parameters (hs, hw) using L-BFGS-B
(Byrd, Lu, Nocedal, & Zhu, 1995), a quasi-newton method
for bound constrained optimization, to minimize negative
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(a) ROC Curve - Train (b) ROC Curve - Test

(c) Expected Rank - Train (d) Expected Rank - Test

Figure 3: Top row: ROC-type curve for rank retrieval. Bottom Row: Expected Rank with respect to the number of existing
senses. Ranks are computed amongst all candidate words. Whiskers denote 95% confidence intervals.

log-likelihood of the posterior:

min(− logL) = min(−∑
s

log p(ws|s)) (11)

Here ws is the ground truth word corresponding to the slang
sense s. We estimate the free parameters on the training set
while keeping them fixed in testing. For all analyzed models,
we set the initial h values to 1 with bounds [10−2,102]. For
the collaborative filtering models, both free parameters were
jointly optimized.

Results
We evaluate our approach by first examining prediction of
slang word choices from the three categorization models:
1NN, Exemplar, and Prototype. We then examine how col-
laborative filtering influences these basic categorization mod-
els on the same predictive task.

Evaluation of models of categorization
We assessed our models by ranking all candidate words ac-
cording to the posterior distribution p(w j|s) from the cate-
gorization models that we described. For each slang sense
definition s in the dataset, we assigned a rank to all candidate
words in the vocabulary for a given model.

We first present receiver-operater curves (ROC) of model
accuracy: How probable is each model to predict the correct
target slang word in the first n guesses? We computed the
standard Area-Under-Curve (AUC) statistics to compare cu-
mulative precision of the models. The top row of Figure 3
shows both the ROC curves and AUC statistics of the three
categorization models. All three models perform substan-
tially better than chance. In particular, 1NN and Prototype
perform better than exemplar on average in both training and
testing data, which suggests that slangs are unlikely to be gen-
erated based on aggregate similarities between the existing
senses and the slang sense.

Differing from previous findings on historical word sense
extension where the 1NN model outperforms Prototype
(Ramiro et al., 2018), we observed no substantial difference
between the two models in predicting slang choices. We also
considered a k-nearest-neighbor extension of the 1NN model,
but we did not find any improvement in performance. We
observed little difference between training and testing perfor-
mances from all models, which suggests that the models did
not overfit to free parameters.

For the same set of models, we also computed the expected
rank of the ground-truth target words over all slang defini-
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(a) Expected Rank (b) AUC of ROC curve

Figure 4: Summary statistics of collaborative filtering models. a): Expected Rank, b): Area-Under-Curve of ROC curves (AUC)

Table 1: Expected ranks from the categorization models.

Model E[Rank] - Train E[Rank] - Test
Random 1064.0 1064.0
1NN 710.89 741.29
Exemplar 815.54 839.71
Prototype 677.44 711.30

tions, based on both training and testing data. A lower ex-
pected rank indicates better predictive power. Table 1 sum-
marizes the results. We observed similar findings with results
based on AUC: All three models perform better than chance,
while 1NN and Prototype models both perform better than
the Exemplar model. Although these models perform above
chance, the predicted expected ranks are quite high. Although
some predicted words differ from the ground truth word, they
may still be valid candidates for slang given sufficient social
popularity. How to improve and better evaluate these model
predictions will be topics of future research.

The bottom row of Figure 3 visualize the expected ranks
via binning the slang definitions by degree of polysemy of
their respective ground-truth candidate words ws. We ob-
served that all three categorization models generally perform
better on more polysemous words. In particular, all three
models perform better than chance when the target word has
at least three existing senses. This behavior is the most promi-
nent on the Exemplar model. Although the Exemplar model
performs worse than the other two models on average, it tends
to perform better on highly polysemous words. However, the
Exemplar model has a natural tendency to favor those words
by construction because it computes a sum of similarities in-
stead of averaging. Both 1NN and Prototype also perform
better as the number of existing senses increases. With more
existing senses, it is more likely for one of them to have a
close match with the slang sense, thus the improvement on
1NN. The prototypical senses would also become more accu-
rate due to a larger sample for estimation. Compared to 1NN,
the Prototype model performs slightly worse when the target

word has few senses, but it outperforms 1NN as the degree of
polysemy increases.

In sum, these results show that slang word choices are pre-
dictable without considering external social factors and pro-
vide evidence that simple models of categorization can cap-
ture non-arbitrariness in the generative processes of slang.

We provide examples of model success and failure in Ta-
ble 2. In the wicked example, our models captured polar-
ity shift in slang generation, indicated by low expected ranks
from all models. The second example shows how our model
can have limited predictability when the slang and existing
senses are cognitively distant. In both examples, the Exem-
plar model consistently gave low ranks to candidate words
broken, play, and cut because they are some of the most pol-
ysemous words in our vocabulary with more than 50 existing
senses each.

Evaluation of collaborative filtering
We next examined the influence of collaborative filtering on
each of the three categorization models. For each model, we
considered variants of these models with up to five neighbor-
ing words.

Figure 4 summarizes the results. All collaboratively fil-
tered models achieve better AUC and expected rank on both
the training set and testing set compared to their respec-
tive basic categorization models. The improvement is most
prominent on the test set, lowering expected rank by more
than 50 and improving AUC by over two percent for all three
models. In particular, collaborative filtering improved model
prediction most substantially when two closest neighboring
words were considered. Consideration of more neighbors did
not improve model prediction further, suggesting that infor-
mation about slang word choice is sufficiently encapsulated
in a small set of neighboring words.

Table 3 illustrates collaborative filtering with two exam-
ples. In both cases, the basic categorization models perform
poorly because existing senses of the ground-truth words do
not have strong similarity with the slang senses. The neigh-
boring words however, contain senses that are more rele-
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Ground truth target word [w]: wicked
Slang sense in OSD [s]: impressive.
Corresponding WordNet senses [E]: (1) morally bad in principle or practice; (2) having committed unrighteous acts; (3) intensely or ex-

tremely bad or unpleasant in degree or quality; (4) naughtily or annoyingly playful; (5) highly offensive;
arousing aversion or disgust.

Model expected rankings [E(Rank)]: (1NN): 93/2128; (Exemplar): 369/2128; (Prototype): 33/2128
Top ranked words: (1NN): bonzer, spot, point, tall, grand; (Exemplar): broken, play, cut, point, heavy;

(Prototype): bonzer, good, tall, grand, hot
Ground truth target word [w]: breezy
Slang sense in OSD [s]: an unimportant girlfriend or girlfriend on the side.
Corresponding WordNet senses [E]: (1) fresh and animated; (2) abounding in or exposed to the wind or breezes.
Model expected rankings [E(Rank)]: (1NN): 1977/2128; (Exemplar): 1829/2128; (Prototype): 1762/2128
Top ranked words: (1NN): man, buddy, pal, beard, associate; (Exemplar): broken, play, cut, run, line;

(Prototype): front, mate, face, joker, associate

Table 2: Examples of model success and failure.

Ground truth target word [w]: icky
Slang sense in OSD [s]: gross, unappealing.
Corresponding WordNet senses [E]: (1) very bad; (2) soft and sticky.
5 neighboring words used in collaborative filtering [L(w)]: yucky, nasty, stinky, freaky, dirty
Ground truth target word [w]: scary
Slang sense in OSD [s]: ugly, weird.
Corresponding WordNet senses [E]: provoking fear terror.
5 neighboring words used in collaborative filtering [L(w)]: freaky, crazy, nightmare, awesome, stupid

Table 3: Examples that illustrate how collaborative filtering helps predicting slang word choice.

vant to the probe slang sense, hence informing the model
better about the ground-truth words. We also observed that
the neighboring words used in collaborative filtering have
strong semantic correlations, which explains the diminishing
effect in performance when introducing additional neighbor-
ing words.

Conclusion
We have presented slang generation as a categorization prob-
lem. Our formulation relies on few free parameters and sheds
light on the cognitive processes that give rise to slang word
choice. Although the full slang generation processes are be-
yond the models we have explored, our framework was able
to capture substantial predictability without explicitly model-
ing external social variables. Furthermore, we incorporated
parallel semantic change in slang generation using collabora-
tive filtering and found that it improves slang prediction be-
yond the basic categorization models. Future work should
explore richer semantic representations of slang and extend
the current framework to novel slang word forms.

Acknowledgments
We thank members of the Language, Cognition, and Com-
putation (LCC) Group at the University of Toronto for their
thoughtful feedback, particularly Suzanne Stevenson, Barend
Beekhuizen, and Renato Ferreira Pinto Junior. This research
is supported by an NSERC DG grant and a Connaught New
Researcher Award to YX.

References
Bamman, D., Eisenstein, J., & Schnoebelen, T. (2014). Gen-

der identity and lexical variation in social media. Journal
of Sociolinguistics, 18, 135–160.

Blodgett, S. L., Green, L., & O’Connor, B. (2016). Demo-
graphic dialectal variation in social media: A case study
of african-american english. In Proceedings of the 2016
conference on empirical methods in natural language pro-
cessing (pp. 1119–1130). Association for Computational
Linguistics.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017).
Enriching word vectors with subword information. Trans-
actions of the Association for Computational Linguistics,
5, 135–146.

Byrd, R., Lu, P., Nocedal, J., & Zhu, C. (1995). A lim-
ited memory algorithm for bound constrained optimization.
SIAM Journal on Scientific Computing, 16, 1190-1208.

Eisenstein, J., O’Connor, B., Smith, N. A., & Xing, E. P.
(2010). A latent variable model for geographic lexical vari-
ation. In Proceedings of the 2010 conference on empirical
methods in natural language processing (pp. 1277–1287).
Association for Computational Linguistics.

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992).
Using collaborative filtering to weave an information
tapestry. Commun. ACM, 35, 61–70.

Kao, J. T., Bergen, L., & Goodman, N. D. (2014). Formaliz-
ing the pragmatics of metaphor understanding. In Proceed-
ings of the 36th annual conference of the cognitive science
society (pp. 719–724). Cognitive Science Society.

Kao, J. T., Wu, J. Y., Bergen, L., & Goodman, N. D. (2014).
Nonliteral understanding of number words. Proceedings of
the National Academy of Sciences, 111, 12002–12007.

Kulkarni, V., & Wang, W. Y. (2018). Simple models for word

2903



formation in slang. In Proceedings of the 2018 conference
of the north american chapter of the association for com-
putational linguistics: Human language technologies (pp.
1424–1434). ACL.

Labov, W. (1972). Language in the inner city: Studies in
the black english vernacular. University of Pennsylvania
Press.

Labov, W. (2006). The social stratification of english in new
york city. Cambridge University Press.

Lakoff, G. (1987). Women, fire, and dangerous things: what
categories reveal about the mind. University of Chicago
Press.

Landauer, T., Laham, D., & Rehder, R. (1997). How well
can passage meaning be derived without using word order?
a comparison of latent semantic analysis and humans. In
Proceedings of the 19th annual conference of the cognitive
science society (pp. 412–417). Cognitive Science Society.

Lehrer, A. (1985). The influence of semantic fields on seman-
tic change. Historical Semantics: Historical Word Forma-
tion, 29, 283–296.

Malt, B. C., Sloman, S. A., Gennari, S., Shi, M., & Wang,
Y. (1999). Knowing versus naming: Similarity and the
linguistic categorization of artifacts. Journal of Memory
and Language, 40, 230–262.

Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray,
M. K., Pickett, J. P., . . . Aiden, E. L. (2011). Quantita-
tive analysis of culture using millions of digitized books.
Science, 331, 176–182.

Miller, G. (1998). Wordnet: An electronic lexical database.
MIT press.

Millhauser, M. (1952). The case against slang. The English
Journal, 41, 306–309.

Nosofsky, R. M. (1986). Attention, similarity, and the
identification-categorization relationship. Journal of Ex-
perimental Psychology: General, 115, 39–57.

Ramiro, C., Srinivasan, M., Malt, B. C., & Xu, Y. (2018). Al-
gorithms in the historical emergence of word senses. Pro-
ceedings of the National Academy of Sciences, 115, 2323–
2328.

Rosch, E. (1975). Cognitive representations of semantic cate-
gories. Journal of Experimental Psychology: General, 104,
192–233.

Stewart, I., & Eisenstein, J. (2018). Making ”fetch” happen:
The influence of social and linguistic context on nonstan-
dard word growth and decline. In Proceedings of the 2018
conference on empirical methods in natural language pro-
cessing (pp. 4360–4370). Association for Computational
Linguistics.

Wieting, J., & Kiela, D. (2019). No training required: Ex-
ploring random encoders for sentence classification. In In-
ternational conference on learning representations.

Xu, Y., & Kemp, C. (2015). A computational evaluation
of two laws of semantic change. In Proceedings of the
37th annual conference of the cognitive science society (pp.
2703–2708). Cognitive Science Society.

2904



A generalization becomes suppressed over time in the context of exceptions 
 

Karina Tachihara (tachihara@princeton.edu) 
Department of Psychology, Princeton University, Princeton NJ 08544 USA 

Kenneth A. Norman (knorman@princeton.edu) 
Department of Psychology, Princeton University, Princeton NJ 08544 USA 

Nicholas Turk-Browne (nicholas.turk-browne@yale.edu) 
Department of Psychology, Yale University, New Haven, CT 06520 USA 

Adele E. Goldberg (adele@princeton.edu) 
Department of Psychology, Princeton University, Princeton NJ 08544 USA 

 
 

Abstract  
There has been a great deal of interest in how 
generalizations and exceptions are learned, with 
particular interest in how speakers learn to avoid 
overgeneralizations. Do overgeneralizations disappear 
only because exceptions become more strongly 
represented or does the generalization itself become 
suppressed? Novel labels were constructed by 
combining 56 syllables with one of two prefixes, and 
each label was assigned a unique image. Most labels with 
the first prefix were paired with images from a 
generalization category, whereas exceptional labels were 
paired with images from a different semantic category. 
All labels with the second prefix appeared with a third 
category (“baseline”). Participants used a computer 
mouse to choose one of two images for each label. 
Mouse-tracking results show that the generalization 
itself became suppressed over time in the context of 
exceptional labels. A post-test demonstrated that 
exceptions were learned with item-specific precision.  
 
Keywords: language acquisition, generalization, 
exceptions, overgeneralization, mouse-tracking  
 

Introduction  
In order to speak a language fluently, it is critical to 
learn subclasses of exceptions within otherwise broad 
generalizations. For instance, in Spanish, words 
ending –a are generally grammatically feminine, but 
roughly half of the words that end in –ma are 
masculine (e.g., el drama). The present work 
investigates how these sorts of generalizations and 
exceptional subclasses interact with one another 
during the learning process. In particular, we 
investigate whether competition between a 
generalization and a subclass of exceptions persists to 
the same degree throughout learning.  

Competition between generalizations and 
exceptions is widely recognized to affect language 
processing (Bates & MacWhinney 1987; Christiansen 
& Chater 1999;  McClelland, &  Rumelhart 1986; 

Goldberg 2019). However, less attention has been 
focused on how the process of learning exceptions 
might affect memory for the generalization. One 
possibility is that the generalization and exceptions are 
represented independently, and learning the 
exceptions has no effect on memory for the 
generalization. According to this perspective, the 
generalization and exceptions may operate in parallel 
and race to provide the correct form during production 
(Pinker 1999), or they may operate as sequential rules 
(Yang 2016). Both of these proposals are consistent 
with the idea that speakers learn to avoid 
overgeneralizations because exceptions become more 
strongly represented. No change in the representation 
of the generalization is required. 

A third possibility we investigate here is that the 
generalization becomes suppressed in the context of 
exceptions. Support for this hypothesis comes from 
the literature on how competition between memories 
drives learning. Numerous studies have found that, 
when memories (semantic or episodic) compete, the 
“losing” memories (i.e., memories that are partially 
activated, but less than the memory that is fully 
retrieved) become harder to subsequently access, 
compared to memories that do not undergo 
competition. (Anderson et al., 1994; Anderson et al., 
2000; Bäuml, 1998; Bäuml 2002; Johnson & 
Anderson, 2004; Levy et al., 2007; Murayama et al., 
2014; Lewis-Peacock & Norman 2014; Kim et al., 
2014).  

For example, in Anderson et al. (1994), participants 
memorized a set of word pairs, some of which shared 
a semantic category (fruit: orange; fruit: apple) while 
other items were part of an unrelated category (tool: 
hammer). During the retrieval practice phase, 
participants were given a semantic cue and asked to 
recall a subset of the items (fruit: ap___). Note that the 
semantic category fruit can be expected to activate 
orange, but orange would lose in competition to apple 
because it is inconsistent with the partial cue “ap___”.  
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That is, the cue ensures that apple wins in a 
competition with orange (and other prototypical 
fruits). At the final test phase, unsurprisingly, 
participants recalled practiced items (apple) best. 
Critically, items in the same category which were not 
themselves practiced (e.g., fruit: orange), had a lower 
recall rate than unrelated baseline items (tool: 
hammer), an effect known as retrieval-induced 
forgetting (RIF).  

Anderson et al., (2000) emphasized the role of 
competition during retrieval in RIF. They  found that 
simply repeating an item (e.g., apple) without the 
semantic cue (fruit: ap____) that could be expected to 
partially activate competitors such as orange, did not 
result in the subsequent suppression of orange. In this 
case where there was no competition-inducing cue, the 
repeated item (i.e., apple) was strengthened but the 
other word from the same category (i.e., orange) was 
not less likely to be recalled than words from other 
categories (like, hammer). These results demonstrate 
that it is not merely the strengthening of the more 
activated memory that resolves the competition. 
Rather, competition also leads to suppression of the 
less activated memory.   

In the domain of language learning, we hypothesize 
that exceptions serve to delimit the domain of a 
generalization, suppressing its activation and carving 
out a space of their own so that the generalization and 
exceptions become more differentiated over the course 
of learning. The alternative hypothesis is that 
exception learning is the strengthening of the 
exception alone, with no change to the generalization. 
We aim to evaluate these hypotheses by exposing 
participants to a mini-artificial language that contained 
a generalization and a subclass of exceptions. We then 
used a mouse-tracking design, as it provides a 
sensitive way to detect competition between two 
alternatives in a forced choice task.  

The mini-artificial language consisted of two 
prefixes and 56 syllables and images. One prefix 
appeared with 40 syllables paired with images of one 
semantic category (the generalization) and 8 other 
syllables paired with a second semantic category (the 
exceptions). The second prefix consistently appeared 
with 8 instances of a third semantic category and 
served as a baseline. For example, as presented in 
Figure 1, a subset of participants witnessed the prefix, 
abber, paired with 40 unique syllables and unique 
faces and 8 different syllables and unique scenes. The 
other prefix, belling, was then paired with 8 unique 
syllables and unique objects. The combination of 
semantic category (faces, scenes, objects) and prefix 
(abber, belling) was counterbalanced across 
participants, and additionally, the pairing of each 
syllable and image was randomized for each 
participant. However, for ease of description, we refer 

to the assignment of categories and prefixes 
represented in Figure 1 throughout the paper. 

Participants were first exposed to all 56 <prefix+ 
syllable> pairs (hereafter, labels) and images. In the 
main task, participants heard each label and decided 
which of two images on the screen matched that label 
(vs. the other “lure” image) by using a computer 
mouse to move from the bottom of the screen to the 
chosen image (Spivey, Grosjean, & Knoblich, 2005; 
Spivey & Dale, 2006). These mouse-tracking trials 
were repeated over 8 blocks in order to investigate 
learning over time. Only correct trials are included in 
the main analysis. But the dependent measure used 
was deviation toward the distractor image (the “lure”), 
weighted by time, which captures the degree to which 

participants were lured by the incorrect category 
(Figure 2).  

Specifically, the distance between the cursor’s 
position and a straight line to the correct response was 
measured at 30 millisecond intervals. To the extent 
that participants drew a relatively straight line from the 
start to the correct target, the deviation measure was 
low, indicating that the lure was not active in their 
minds. On the other hand, if participants drew an arc 
that trended toward the lure, we can conclude that the 
lure was activated by the label to some degree 

Since our interest was in the relationship between a 
generalization and a subclass of exceptions, it might 
be tempting to focus on trials that included both an 
image from the generalization category and an image 
from the exception category. However, it would be 
impossible to determine in that case whether the 
trajectory was due to being lured by one image or by 
avoidance of the other. Specifically, an 
overgeneralization may be captured by a strong pull 
towards the generalization lure image or a lack of pull 
towards the correct exception image.  

Therefore, in order to investigate how generalization 
activation changes without contamination from the 
lure of an exception image, a second trial type was 
introduced, “Scrambled-Image” trials (Figure 3). On 
these trials, participants were told to always select the 
scrambled image, regardless of what label was heard 
or which other image was available. For these 

Figure 2: Example 
mouse-tracking 
trajectory sampled 
every 30 ms to 
determine the 
strength of the lure 
category (here, the 
face image).  
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scrambled-image trials, the trajectory indicated how 
much participants activated the lure image category 
without the confound of preference toward the chosen 
image, since this was held constant across all 
scrambled-image trials. In order to avoid over-learning 
of the scrambled-image task (i.e., participants 
becoming good at going straight to the scrambled 
image without consideration of the lure), this type of 
trial was only included in blocks 3 and 8.  

 Blocks with two intact-image trials (blocks 1,2, & 
4-7) each had 80 trials per block. Blocks 3 and 8 had 
two intact-image trials intermixed with scrambled-
image trials for a total of 120 trials (Figure 3). Thus, 
in total, there were 720 trials, 11.11% of which were 
scrambled-image trials. Participants were not given 
any indication of the block structure of the task, except 
that they were given a rest after block 4, half way 
through the experiment.  

By comparing performance on scrambled-image 
trials in blocks 3 and 8, the activation of lures over the 
course of learning can be detected. See Figure 3 for 
experimental design. 

The scrambled-image trials, along with the mouse-
tracking measure, allowed us to home in on the 
activation of a particular category for a particular 
label and how it changed over the course of learning. 
This enabled us to test the following hypothesis: a 
generalization becomes suppressed over time in the 
context of exception labels.  
 

Method  
The sample size and the main analysis were 
preregistered on Aspredicted.org, prior to data 
collection. 

 
Participants  
 

42 undergraduate students from Princeton University 
were compensated with course credit and up to an 
additional $5, depending on task performance. 

 

Stimuli  
 

The 2 prefixes (abber and belling) and 56 syllables 
(e.g., zip, ber, and za) were all phonotactically regular. 
The labels (prefix + syllable) were presented auditorily 
without pauses between the prefix and the syllable, 
and each lasted approximately 800 ms. Each 
scrambled image was created by scrambling the pixel 
locations of the lure image used in the same trial. 
 
Procedure  
 

Participants were given general instructions at the 
beginning as well as 6 practice trials for the 2AFC 
mouse-tracking task. They were told to pay attention 
to the pairing of the labels and images, but were not 
told about the structure of the stimuli (i.e., that the 
labels were a combination of a prefix and a syllable, 
nor the general distribution of categories). They were 
instructed to make their choices as quickly as possible 
and to move the cursor as directly to the target as 
possible while trying to avoid errors. The entire 
experiment lasted 1.5-2 hours, including a short rest 
period.  
 
Initial exposure phase: Each label-image pair was 
presented once, for a total of 56 trials (40 
generalization items + 8 exception items + 8 baseline 
items), with order of presentation randomized for each 
participant. 
 
Mouse tracking task: Blocks 1-8: Participants were 
instructed to choose the image that matched the label 
they heard, except on scrambled-image trials in which 
they were instructed to always choose the scrambled 
image. For the intact-image trials, the two images 
always came from different categories, so participants 
could perform at ceiling by recognizing which 
category each label belonged to, without necessarily 
learning which face, scene or object each label 
corresponded to. For the scrambled-image trials, one 
of the images was created by scrambling the pixel 

Figure 3: Exposure 
phase, followed by 8 
blocks of 2AFC 
trials. Blocks 3 and 8 
also contained 
scrambled-image 
trials in order to 
measure the strength 
of lures as directly as 
possible. Lastly, 
there was an item-
knowledge task. 
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location of the other intact image. All other procedures 
were equal between intact image trials and scrambled-
image trials.  

The label was played through headphones. Once it 
was finished, participants could click the white button 
at the bottom of the screen, causing 2 images to be 
displayed. Participants then moved their cursor to the 
image that was associated with the label and clicked 
on the blue button underneath that image. In order to 
encourage participants to respond as quickly as 
possible, a score appeared on the center of the screen, 
calculated according to the trajectory of the mouse and 
speed of response. When the score was displayed, the 
incorrect image would disappear, leaving the correct 
image only. If participants had chosen incorrectly, 
they had to move their cursor to the correct image and 
click, before continuing to the next trial. After block 4, 
participants were given a mandatory 5-10-minute 
break before continuing with block 5. 
 
Item-knowledge task: After the 8 blocks of the 
2AFC task, participants performed a short task 
designed to test whether they had incidentally learned 
to associate particular exception labels with particular 
images within that category. The 2 images in this task 
were both instances of the exception category (e.g., 2 
different scenes), requiring participants to identify the 
item-specific association of label and image. 
Participants were unaware they would be tested on 
item-specific knowledge for this task. 
 

Results  
All 42 participants exceeded the preregistered 
threshold of 75% accuracy on the mouse-tracking task 
(M = 87.14, SD = 0.0085), and none were excluded (N 
= 42). 3.25% of all trials were excluded because 
participants took > 2 seconds to click the start button 
or > 5 seconds to make a choice between images.  
 
Accuracy on intact image trials 
 

For trials in which participants decided which one of 
the two intact images matched the label they had heard, 
we can look at their accuracy against chance (50%) to 
see how well they knew the label-image pairings. 
Participants were above chance on all trial types in the 
first block after exposure (t = 22.95, p < 0.0001, M = 
0.89), except for exception-label trials. On exception-
label trials, participants heard an exception label and 
had to choose between an image from the exception 
category (e.g., scene, the correct choice) and the 
generalization category (e.g., face, the incorrect 
choice). Initially, accuracy on exception-label trials 
was significantly below chance (block 1), indicating 
that participants were systematically choosing the 
generalization image (t = -2.13, p = 0.039, M = 0.43). 

Accuracy for exception-label trials quickly rose, 
however, becoming significantly above chance in 
block 2 (t = 2.43, p = 0.020, M = 0.59). By block 8, 
accuracy for exception-label trials was as high as that 
for other trial types (t = 1.30, p = 0.20, M = 0.93 for 
exception trials, M = 0.96 for other trials).  
 
Trajectory toward lure 
 

The dependent measure for each trial was the area 
underneath the trajectory weighted by reaction time 
(area x RT). To calculate the area x RT, we compared 
the trajectory against the most direct, straight line 
connecting the starting point and the end point. The 
starting point was the position the participant had to 
click at the start of the trial and the end point was 
where the participant clicked when they made a choice 
(one of two blue circles). We measured points on the 
actual trajectory every 30 ms and calculated the 
distance between each of these points from the straight 
line. The sum of these distances is the area x RT. Note 
that the farther participants moved their cursor away 
from the straight line and the longer it stayed there, the 
higher the area x RT was. We had preregistered the 
dependent measure to be the maximum distance from 
the straight trajectory, and the result of the 
preregistered main analysis does not qualitatively 
differ when the maximum distance is used. However, 
after preregistering, we decided that area x RT was 
more appropriate and sensitive, allowing us to take 
both speed and deviation into account.  

We report the results from the trajectory of the 
scrambled-image trials because it is the most direct 
measure of the activation of a category (i.e., the lure 
image category) given a label. For all analyses we used 
a maximal multilevel model with trial type or an 
interaction of trial type and block as the fixed effects 
and random intercepts and slopes for subjects and 
items where convergence would allow (Barr, Levy, 
Scheepers, & Tily 2013), using the lmerTest library (R 
Development Core Team 2008). 

First, to confirm that highly activated lure images 
would indeed yield greater deviation and thus higher 
area x RT measures, we compared trials in which the 
label matched the lure image (e.g., the label was paired 
during the training phase with a specific scene and the 
lure image is that specific scene) and trials in which 
the label did not match the lure image or its category 
(e.g., the label was paired with a scene and the lure 
image is a face). As expected, we found that matched 
trials had a higher area x RT than unmatched trials (β 
= -0.69, t = -11.06, p < 0.0001).  

Recall our hypothesis: that generalization activation 
(e.g., face image activation) would decrease over time 
for exception items (e.g., for labels that are paired with 
scenes). Thus, the critical preregistered comparison 
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was the change of activation of the lure from block 3 
to block 8 on trials when an exception-label was heard. 
We compared trials in which the lure image was the 
generalization (e.g., the label was paired with scene 
and the lure was a face image) against the baseline 
(e.g., the label was paired with a scene and the lure was 
an object image). The model found a significant 
interaction of trial type and block (β = 0.23, t = 2.66, 
p = 0.010). In other words, for exception items, the 
generalization activation became suppressed over time, 
more so than did baseline activation. In Figure 4, the 
far-most left panel shows the key generalization 
suppression from block 3 (light purple) to block 8 
(dark purple). There is no suppression over blocks for 
baseline activation (green). Thus, generalization 
suppression cannot be attributed to general 
improvement over time or to general improvement on 
scrambled image trials. 

Another critical part of the hypothesis is that the 
generalization was suppressed due to competition 
from learned exceptions. For exceptions to compete 
with the generalization, exceptions must be activated 
to some degree. In other words, exception-labels must 
be identified as exceptions and activate the correct 
exceptional category (scene) for competition to occur. 
Results additionally provide evidence that, as early as 
block 3, participants had learned which labels were 
exceptional. In particular, when an exception-label 
was heard, the matched exception image (scene) 
exerted a strong pull away from the scrambled image 
(third panel, light orange bar). In fact, the area x RT 
for matched exceptional images was higher than that 
for generalization images (face images) at block 3 (β 
= 0.42, t = 2.10, p =0.038). This means that the 
generalization suppression we observe occurred after 
participants had already learned the exceptions to 
some degree.  

An alternative explanation for generalization 
suppression over time for exception-label trials could 
be that the generalization (e.g., face images) became 
less of a lure across the board, for exception items as 
well as baseline items. To investigate this possibility, 
we compared area x RT towards generalization lure 
images for exception-label trials against baseline-label 
trials. If (as hypothesized) generalization suppression 
is unique to exception labels (because of the 
competition from sharing a prefix), there should be no 
generalization suppression for baseline labels (where 
a prefix was never shared, and thus no competition 
took place). We again found a significant interaction 
of trial type and block (β = 0.19, t = 2.37, p = 0.018). 
In other words, generalization suppression over time 
was evident only in the context of exception items, not 
baseline items. In Figure 4, the far-most right panel 
shows no change of generalization activation over 
time for baseline items (purple bars). This also rules 
out the possibility that generalization suppression for 
exception items was specific to an image category 
(e.g., generally disliking faces over time).  
 
Item-knowledge task 
 

Despite high accuracy in the main task being 
achievable based purely on recognition that certain 
labels were exceptional (i.e., were associated with the 
non-dominant category for the prefix), the final task 
demonstrated that participants nevertheless learned 
with near-ceiling level accuracy which specific scene 
was paired with which specific label (M = .9494; t = 
29.19, p < 0.0001).  

 
Discussion and Conclusion  

This experiment assessed how the activation of a 
generalization changed in the context of exceptions 

Figure 4: Deviation measure 
toward lure in block 3 (lighter 
color) and block 8 (darker 
shade), for exception-label 
trials with generalization 
image lures (left purple), 
exception-label trials with 
baseline lures (green), 
exception-label trials with 
exception lures (orange), and 
baseline-label trials with 
generalization lures (right 
purple). The correct choice in 
all cases was a scrambled 
image.  
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over the course of learning. By using mouse-tracking 
to measure lure activation, we were able to isolate the 
activation of the generalization from the activation of 
the exception for a given label. Results demonstrate 
that the competing probabilistic generalization was a 
strong lure for the exceptions early on, but the 
generalization became suppressed over time in the 
context of exceptions. That is, the suppression of the 
generalization over time was evident only for 
exception labels. Because accuracy on exceptions was 
already high and exception lures were already even 
stronger lures early on, we suggest that the suppression 
was caused by competition from learned exceptions. 
Results of a post-test demonstrated that exceptions 
were learned with item-specific precision even though 
ceiling performance was possible by reliance on 
category membership only.  

Importantly, our claim is not that learning 
eliminated all competition between generalizations 
and exceptions in this study. We know that 
comprehension is incremental, so we fully expect that 
listeners activated multiple options that were 
consistent with the input they witnessed until the point 
of disambiguation (Jurafsky, 1996; McQueen, 2007; 
Rayner & Clifton, 2009; Swinney, Prather, & Love, 
2000); hearing abber should trigger a competition 
between exceptional items (e.g., abber zip) and other 
items that begin with the same prefix (e.g., abber fep), 
even after learning takes place. Rather, our main 
hypothesis pertains to what happens after the 
disambiguating syllable (zip) is heard: Would learning 
of exceptions affect the activation of the generalization, 
specifically in the case of exceptions like abber zip? 
We found that it did: the generalization became a less 
powerful lure as exceptions became more easily 
identified.  

This work was motivated, in part, by the effects of 
competition on memory observed during studies of 
retrieval-induced forgetting (RIF). Consistent with 
RIF findings in the memory literature, the linguistic 
generalization became suppressed (“forgotten”) in the 
context of exceptions. At the same time, it is important 
to point out a key difference between our study and the 
way RIF is usually tested. Most RIF studies look at 
final recall to measure memory performance. Our 
study, on the other hand, considered the change in 
activation over the course of learning. This difference 
led us to use a different baseline for determining 
whether suppression occurred. In standard RIF studies, 
suppression is measured by how much lower the 
memory for competing items is, compared to baseline 
items which had not been in competition with the 
practiced items. In our studies, suppression was 
measured by how much lower the activation for the 
generalization became over time. We found that 
generalization activation significantly decreased over 

time for exception items, much more than it did for 
baseline items. However, we did not find that 
activation levels of the generalization fell below 
baseline activation; as such, we did not find RIF in the 
classic sense. Nonetheless, our results are consistent 
with the idea that competition leads to suppression of 
the less activated memory.  

We selected the “prefix plus syllable” structure for 
the labels to allow for prediction of the category given 
the prefix. The prefix plays the role of a classifier (i.e., 
a grammatical element that selects for nouns of certain 
semantic categories; Dixon 1986) As noted in the 
introduction, linguistic categories, including classifier 
categories, often have subclasses of exceptions, as in 
the present experiment. However, the finding in this 
study is not, in principle, specific to words. For 
example, similar competitive mechanisms may serve 
to suppress grammatical overgeneralizations through 
what has been called statistical preemption (e.g., 
Goldberg, 2019; Perek & Goldberg 2017; Robenalt & 
Goldberg, 2015). Future work will build on these 
results to explore how generalizations and exceptions 
compete in other domains, how the underlying neural 
representations change, and how these competition-
driven changes relate to behavior.  
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Abstract 

The presence of redundant marking in languages raises 
interesting questions about the balance of different pressures 
in language learning and use. Speakers tend to avoid 
redundant elements in production: omitting (or reducing) 
more predictable elements. At the same time, languages 
maintain different types of redundant marking, such as 
encoding thematic assignment by both word order and case 
marking. Why is redundancy found in languages even though 
speakers seem to avoid it? Here, we propose that redundant 
cues can facilitate learning. We test this hypothesis in an 
artificial language learning study with children, where either 
word order alone or both word order and case marking serve 
as cues for thematic assignment in a novel construction. 
Results show that children learned the redundant language 
better despite having to learn an additional morpheme. We 
discuss implications for the effect of different cognitive 
pressures on language change.  

Keywords: redundancy; artificial language learning; 
language acquisition; language evolution 

Introduction 

It has long been claimed that languages exhibit an optimal 

trade-off between two competing pressures: minimizing 

effort and maximizing understandability (Givón, 1991; 

Haspelmath, 2008; Jäger, 2007; Jaeger & Buz, 2017; 

Piantadosi, Tily, & Gibson, 2012; Zipf, 1949). Under this 

view, redundant cues will be dispreferred in language use 

(because they increase effort without increasing 

understandability), eventually leading to their reduction in 

language structure (Fedzechkina, Newport, & Jaeger, 2016; 

Gibson, Piantadosi, et al., 2013; Givón, 1991; Jaeger, 2013). 

In line with this view, speakers seem to avoid redundant 

marking in production: more predictable messages are more 

likely to be omitted or reduced (Aylett & Turk, 2004; Cohen 

Priva, 2015; Frank & Jaeger, 2008; Jaeger, 2010; Kurumada 

& Jaeger, 2015; Levy & Jaeger, 2007). For example, 

speakers tend to omit optional case marking when the 

meaning it encodes is more predictable from context 

(Kurumada & Jaeger, 2015; Lee & Kim, 2012).  

At the same time, redundant marking is attested, in 

different forms, in multiple language systems. For instance, 

a number of typologically diverse languages are 

documented as redundantly marking a single meaning using 

multiple morphological markers (defined as multiple 

exponence, Caballero & Harris, 2012; Harris, 2017). In 

Choguita Rarámuri, for example, words containing an inner 

derivational marker for causatives and applicatives can have 

a second, optional marker suffixed to the noun (Caballero & 

Kapatsinski, 2015). Languages can also redundantly mark 

the same grammatical information by more than one means: 

one such example is the encoding of thematic assignment 

(who is doing what to whom) by both word order and case 

marking (e.g., Icelandic, see Siewierska, 1998). That is, 

morpho-syntactic redundancy—where two linguistic cues 

are used to mark the same function—is found across 

language systems.  

How can we reconcile the presence of redundancy in 

language structure with speakers’ tendency to avoid it in 

production? One way is to examine the possible functions of 

redundancy: why does it come about in the first place and 

what advantage can it confer? Here, we propose that the 

answer may lie in the impact of redundancy on learning. In 

particular, we suggest that (a) redundancy can facilitate 

learning under certain conditions, and (b) if this is so, 

speakers may increase (or maintain) the use of redundant 

cues when conversing with learners, supporting their 

continued presence in language. This proposal is compatible 

with the principles of efficient communication: the balance 

between effort and understandability can change depending 

on the comprehension ease or difficulty within a 

conversation (Gibson, Bergen, & Piantadosi, 2013; 

Kurumada & Jaeger, 2015; Levy & Jaeger, 2007). Speakers 

may allow (or even prefer) more redundancy when the 

listener is seen as having more difficulty in comprehension, 

as in the case of learners. The two predictions—the 

facilitative effect of redundancy on learning and its 

increased use with learners—are related, but theoretically 

independent. In the present study, we focus on the first 

prediction: Does redundancy facilitate language learning? 

Our focus here is on morpho-syntactic redundancy: cases in 

which different morpho-syntactic cues encode the same 

information. In line with previous work, we treat the 

omission and reduction of linguistic material as reducing 

redundancy (Aylett & Turk, 2004; Jaeger, 2010; Kurumada 

& Jaeger, 2015). 

The advantage of multiple cues in learning has been 

demonstrated for different domains, such as vision 

(Sloutsky & Robinson, 2013) and category formation 
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(Yoshida & Smith, 2011). Recent computational evidence 

suggests that multiple cues can also facilitate language 

learning (Monaghan, 2017). Monaghan (2017) examined 

learning new mappings between forms and meanings with 

multiple cues. The cues were probabilistic in the learning 

phase (appeared only some of the time), and were absent 

during testing (where only the labels appeared). In line with 

our prediction, the computational model showed that words 

were learned better from multiple cues (pointing, prosody, 

and distributional cues) compared to single cues. 

Importantly for the present research question, the multiple 

cues used in these studies involved the combination of 

linguistic and non-linguistic cues (e.g., pointing) where the 

non-linguistic cues did not have to be learned in and of 

themselves (they did not carry information beyond 

increasing attention to the label). Here, we go beyond this 

work to ask whether redundant linguistic cues can also 

facilitate language learning. If redundant morphological 

marking is facilitative, we should see improved learning 

despite the added complexity of having to learn an 

additional cue. We focus on the morpho-syntactic 

redundancy of word order and case marking and use the 

transitive construction as a test case. 

The Transitive Construction 

Languages use different cues to indicate who-did-what-to-

whom in the transitive construction. Two prominent cues 

are word order and case marking
1
: looking at learning when 

both cues are used lets us examine the possible advantage of 

redundant marking. The contribution of different cues to 

sentence interpretation has been studied extensively within 

The Competition Model (MacWhinney, 1987). Stemming 

from this theoretical framework, studies in various 

languages have tested how children utilize these two cues to 

comprehend transitive constructions. Dittmar, Abbot-Smith, 

Lieven and Tomasello (2008) examined the relative reliance 

of German-speaking toddlers on word order and case 

marking. They found that 2;6-year-olds could comprehend 

transitive sentences only when there was redundant marking 

of agent and patient (both cues were used). These findings 

were replicated across several languages (Cantonese: Chan, 

Lieven, & Tomasello, 2009; Japanese: Matsuo, Kita, 

Shinya, Wood, & Naigles, 2012; Warlpiri: O’Shannessy, 

2010), and are in line with the predictions of The 

Competition Model, according to which a convergence of 

cues should facilitate comprehension of thematic 

assignment (Bates, McNew, MacWhinney, Devescovi, & 

Smith, 1982; Bates & MacWhinney, 1989; Ibbotson & 

Tomasello, 2009). However, in many of these cases, the 

redundant form is also the prototypical and the most 

frequent form in child-directed speech (Dittmar et al., 2008; 

Ibbotson & Tomasello, 2009). Therefore, it is not clear 

whether comprehension was facilitated because of the 

                                                           
1 There is typological and historical debate about the relation 

between those two cues (with many languages showing a trade-off 

between the two), we return to this in the discussion. 

redundant cues, or because of the greater frequency of the 

prototypical structures (which happened to also have 

redundant cues). These explanations are hard to tease apart 

using natural language data, since individual cues are often 

correlated with one another (Ibbotson & Tomasello, 2008), 

and confounded with frequency. 

The Current Study 

In the current study, we use an artificial language to assess 

the impact of redundant morpho-syntactic cues on children’s 

learning of a novel language. We compare the learnability 

of transitive constructions in two artificial languages: one 

with fixed OSV word order and no additional cues to 

thematic assignment (the non-redundant language), and the 

other with the same fixed OSV word order but with 

additional redundant case marking on objects (the redundant 

language). We used OSV word order because it differs from 

the dominant word order of Hebrew (SVO) - the language 

of the children in our study. Following exposure, we tested 

both comprehension and production of sentences in the 

novel language. Although the language without the case 

marking is simpler, in the sense of having fewer elements to 

learn, we predict that the redundant language will lead to 

better comprehension of thematic assignment because it 

contains redundant cues to indicate who-did-what-to-whom. 

Our prediction about the effect of redundancy on prediction 

is less clear-cut. On the one hand, if redundant markers 

indeed facilitate learning in general, this could aid 

production as well. Alternatively, the need to produce an 

additional element could make the sentences harder to 

produce. Such a dissociation between comprehension and 

production pressures is documented in other linguistic 

domains (e.g., Harmon & Kapatsinski, 2017).  

Method 

Participants 

60 children participated in the experiment (age range: 7;0-

9;0y, mean age: 7.10y, 41 boys and 19 girls). All children 

were visitors at the Bloomfield Science Museum in 

Jerusalem. They were recruited for this study as part of their 

 

 
 

Figure 1: A trial example in the Sentence comprehension 

test phase. 

"Leyzanig zayarig naga"  
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visit to the Israeli Living Lab in exchange for a small 

reward. Parental consent was obtained for all children. All 

children were native Hebrew speakers, and none of them 

had known language or learning disabilities.  

Materials 

In both language conditions, participants were exposed to 

the same lexicon, which was composed of 6 semi-artificial 

Hebrew nouns (Hebrew nouns with nonce suffixes) and two 

Hebrew verbs. All nouns corresponded to masculine human 

characters, that were differentiated by their profession (e.g., 

clown, chef). The verbs were the Hebrew translations of 

"kick" and "touch". The constituent order of the language in 

both conditions was the non-Hebrew like OSV. In the 

redundant language (henceforth R-language) a nonce case 

marking ("patz") followed all objects, while in the control 

language (C-language) there was no such case marking. 

This cue was also non-native-like: Hebrew doesn’t have 

post-nominal case-marking on objects. Participants saw and 

described the exact same drawings in both conditions
2
.  

Procedure 

Participants were told they were going to meet some aliens 

who "say  things  differently  from  us" and  that they  would 

learn to speak like these aliens. Children were randomally 

assignmed to one of the two language conditions. Children 

sat with headphones in front of a computer next to a 

research assitant that provided them with verbal 

instructions. They saw drawings and heard recorded 

descriptions of these drawings in the alien-language 

(concatenated from recordings of the individual words 

spoken by a female Hebrew speaker). The experiment had 

several stages. First, a noun exposure phase, in which 

children saw each character, heard its name in the alien 

language, and had to repeat each name outloud (6 trials, one 

per noun). In both conditions, only the noun label was 

presented (without case marking). This was followed by a 

noun comprehension test (12 trials, two per noun) where 

participants saw two drawings, heard one label and had to 

match the label to the correct drawing. Feedback was 

provided after each trial. The following phase was sentence 

exposure  (12  trials)  where  children  saw  a  drawing  of  a  

                                                           
2 The drawings were drawn by Sara Rolando from the 

University of Edinburgh, courtesy of Kenny Smith and Jennifer 

Culbertson 

 

 

 

 

 

 

 

 

 

 

 

transitive action (involving two of the characters, all 

characters could appear as agents and patients), heard a 

transitive sentence, and had to repeat it. The position of the 

agent and the patient in the drawing (left vs. right) was 

counterbalanced. The next stage was a sentence 

comprehension test (12 trials) where children saw two 

drawings of events, heard a sentence, and had to match the 

sentence to the correct drawing (see Figure 1). All the 

sentences here involved previously unheard combinations of 

agents and patients. The children had to use the mouse to 

choose the matching drawing. No feedback was given. The 

next phase was sentence production (12 trials) where 

chlidren saw previously unseen drawings of a transitive 

actions and had to describe them in the alien-language. 

Children's descriptions were recorded. Children in the R-

language condition had one additional sentence forced-

choice phase (12 trials) where they saw a previously unseen 

drawing, heard two descriptions of it, and had to choose the 

correct one. One option had case marking (like the 

sentences they heard before) and one was without case 

marking (as in the C-language). Children had to say which 

was a better way to describe the drawing by pressing on "1" 

or "2", corresponding to the order in which the options were 

presented. This phase was added to ensure that children in 

the R-language condition noticed the case marking cue.  

Results 

Comprehension  

Children successfully learned the language (better than 

chance) in both conditions (C-language: M=65%, SD= 26%, 

t-test (29) = 3.1, p=0.004; R-language: M=91%, SD= 12%, 

t-test (29) = 26.8, p<0.0001). We used a mixed-effect 

logistic regression model to examine the effect of language 

condition on sentence comprehension (using the glmer 

function in R software, Bates, Maechler, Bolker, & Walker, 

2015), and the maximum random effect structure justified 

by the data that converged, Barr, Levy, Scheepers, & Tily, 

2013). The dependent variable was accuracy on each trial 

(as a binary variable). The model included fixed effects for 

condition (R-language vs. C-language, effect coded), age 

and trial number as centered continuous factors, and random 

intercepts for participants (see Table 1 for full model). As 

predicted, children showed better learning in the R-language 

condition (91% vs. 65%, β=1.04, SE=0.2, p<0.0001, Figure 

2).  Importantly, the  difference  in  sentence comprehension 

Table 1: regression model for comprehension scores 

 Estimate Std. Error z -value p-value 

(Intercept) 1.80068     0.21181    8.501   <0.0001 *** 

Condition (R-language) 1.03624     0.20390    5.082 <0.0001 *** 

Trial number 0.03324     0.03046    1.091     0.275     

Age -0.36756     0.32724   -1.123     0.261     
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Figure 2: Accuracy scores by language condition. The 

dashed line indicates the chance level; error bars indicate 

confidence intervals; individual points indicate by-

participant means. 

 

did not stem from differential learning of the lexicon, both 

groups learned the nouns equally well (99% vs. 97%, 

t(58)=0.88, p=0.38).  
 

Production  

Children's productions were transcribed and coded for word 

order and vocabulary accuracy. Both measures were binary, 

and were scored by a research assistant blind to the 

condition and the experimental hypothesis. We used a 

mixed-effect logistic regression model to examine the effect 

of language condition on these production measures. The 

dependent variable was word-order accuracy on each trial 

(as a binary variable). The model included fixed effects for 

condition (R-language vs. C-language, effect coded), age 

and trial number as centered continuous factors, and random 

intercepts for participants. We found no significant 

difference in word order accuracy between the two 

conditions, although the trend was in favor of the R-

language (82% vs. 69%, β=0.42, SE=0.86, p>0.6). We used 

the exact same model with lexical errors as the predicted 

variable and found no effect of condition here as well (0.1% 

vs. 0.07%, β=0.2, SE=0.18, p>0.2). Production did not seem 

to be facilitated in the R-language condition.  

To further look at the possible facilitative effect of the 

redundant case marking, we looked only at the productions 

of children in the R-language condition (since only learners 

of  the  R-language  had  the  potential  to  use  both  cues  in  

 
 

Figure 3: Production of correct word order (OSV) by 

production of case marking for children in the R-language 

condition.  

 

production). We noticed several interesting patterns. First, 

children produced case marking in the majority of their 

productions (M=85%, SD=35%), indicating that they treated 

the cue as an inherent part of the system, despite its 

redundancy and the additional effort involved in producing 

it. Second, children produced the correct word order in most 

of the sentences (M=82%, SD=32%), indicating they 

managed to learn the non-Hebrew order. Interestingly, word 

order accuracy was impacted by the production of case 

marking: word order was more accurate when case marking 

was produced (291 correct utterances vs. 13 incorrect 

utterances) and was less accurate when it was not produced 

(only 1 correct utterance vs. 51 incorrect ones). To quantify 

this effect, we ran an additional model in which word-order 

accuracy on each trial was the dependent variable. The 

model included fixed effects for case marking on each trial 

(presence or absence, effect coded), age and trial number as 

centered continuous factors, and random intercepts for 

participants (see Table 2 for full model). In line  with  our 

hypothesis, case-marking had a significant effect on word 

order accuracy β=10.35, SE=2.7, p=0.0001, Figure 3).  

Finally, we looked at participants' responses in the forced- 

choice part to sentences with and without case marking 

(note that only participants that learned the R-language had 

this additional part). Participants generally preferred the 

sentences with the case marking (M=88%, SD=19%), 

indicating, again, that they noticed the cue and learned it as 

part of their language.  

Table 2: regression model for production scores in the R-language condition 

 Estimate Std. Error z -value p-value 

(Intercept) 0.0826 1.8311 0.045 0.964019 

Case 10.3504 2.7000 3.833 0.0001 *** 

Age 0.8787 2.5566 0.344 0.731079 

Trial number 1.0889 0.7204 1.512 0.130652 

0.65 
0.91 
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Discussion 

The presence of redundancy in languages is puzzling: if 

speakers are driven by a bias for efficient communication 

(Aylett & Turk, 2004; Cohen Priva, 2015; Jaeger, 2010; 

Kurumada & Jaeger, 2015; Levy & Jaeger, 2007), why do 

languages use more than one cue to convey the same 

information? Our study set out to test the prediction that 

redundant marking could be facilitative in learning 

circumstances. Our results show that having a redundant 

morpheme facilitates children’s learning of thematic 

assignments. Although the R-language was more complex 

than the C-language, since it contained an additional cue to 

attend to and learn, children learned a non-native like word 

order better in this condition. The redundant morpheme 

benefited not only comprehension, but also production of 

the correct word order: despite the additional effort involved 

in producing it, word order was more accurate when case 

marking was produced. Taken together, these findings 

suggest  that  redundancy  can  be  functional  in  learning 

circumstances. This is in line with previous work on the 

effect of learning from multiple cues (Monaghan, 2017; 

Sloutsky & Robinson, 2013; Yoshida & Smith, 2011). It 

further suggests that redundant cues can help language 

learning even when these cues need to be learned 

themselves.  

These findings are of relevance for a recent influential 

proposal about the impact of different kinds of learners on 

the morphological complexity of a language. The Linguistic 

Niche hypothesis (Lupyan & Dale, 2010) proposes a causal 

link between the proportion of L2 speakers in a community 

and the degree of morphological complexity of the 

language. The prediction is that languages with more L2 

speakers will have less complex morphology, a prediction 

that is supported by a large-scale study of over 2000 

languages. Importantly, the proposed mechanism rests on 

the assumption that children and adults differ in the impact 

of redundancy on learning: whereas child learners benefit 

from redundant cues (leading to their existence in language), 

adult learners do not (leading to their simplification). While 

intuitively appealing, there is no direct evidence that 

children and adults differ in their response to redundant cues 

in learning. Building on the current findings, we are 

currently running a version of this study on adults to see if 

they indeed differ from children in the impact of redundant 

cues on learning. The Linguistic Niche hypothesis predicts 

that adult learning should be less facilitated by redundant 

cues. On the other hand, adult learners benefit from 

repetition (e.g., Jensen & Vinther, 2003; Onnis, Waterfall, 

& Edelman, 2008), and therefore may benefit from 

redundant cues as well. 

Our findings document an effect of morpho-syntactic 

redundancy on learning, but they need to be extended in 

several ways. First, children in the R-language were 

exposed to the redundant morphome in both exposure and 

test. We are currently running additional versions of the 

study to better understand the impact of  the redundant cue 

on exposure/testing. Second, we want to know if similar 

faciliatitve effects can be found for other linguistic domains 

beyond the learning of thematic assigment. Finally, the 

current study did not examine the prediction that 

redundancy is found more when conversing with learners. In 

an additional line of work, we investigate whether learning 

interactions are in fact characterized by more redundant 

marking, and whether this, in combination with their 

facilitative role can give rise to patterns of redundant 

marking in language.  

Finally, the current findings are informative for our 

understanding of how languages are shaped by different 

cognitive pressures. Although in many languages the input 

children hear contains multiple cues for thematic assignment 

(Dittmar et al., 2008; Ibbotson & Tomasello, 2009), 

different typological studies suggest languages tend to trade 

off between these cues. In particular, languages that rely on 

word order to encode thematic assignment often lack 

productive case marking (Blake, 2001; Koplenig, Meyer, 

Wolfer, & Mu, 2017; Siewierska, 1998). Furthermore, 

several historical studies document this trade-off overtime in 

some Latin languages (e.g., Old English, Marchand, 1951, 

though see Detges, 2009; Pintzuk, 2002 for challenges to 

this claim). Recent experimental work suggests that this 

trade-off reflects speakers' bias for efficient communication 

(Fedzechkina et al., 2016; Roberts & Fedzechkina, 2018): 

When participants learned a novel language with fixed word 

order and optional case marking, they tended to decrease the 

use of case marking relative to their input. On the surface, 

these findings seem to contrast with our own: learners 

reduced the use of a redundant morpheme. However, this 

highlights the differential impact various pressures can have 

on language. First, case marking was deterministic in our 

design (case marking in the R-language was present on 

100% of the objects), therefore, it is likely that participants 

were trying to faithfully reproduce it (see discussion in 

Fedzechkina et al., 2016). More importantly, we saw 

facilitation in comprehension: the impact of communicative 

and learnability pressures may differ for production and 

comprehension (e.g., Harmon & Kapatsinski, 2017). While 

redundancy may facilitate comprehension, it is costly in 

production (Zipf, 1949). These competing pressures (ease of 

production vs. understanding) may be weighted differently 

depending on the conversational situation: learning 

circumstances (or conversing with learners) may benefit 

from redundancy while other situations will not, leading to 

the observed trade-off between case-marking and word 

order seen in languages. 

In sum, we have shown that children learn thematic 

assignment better from a language that has both word order 

and case marking, despite having to learn an additional 

morpheme. The present study serves as an important first 

step for understanding the functionality of having both cues. 
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Abstract

People act upon their desires, but often, also act in adherence
to implicit social norms. How do people infer these unstated
social norms from others’ behavior, especially in novel so-
cial contexts? We propose that laypeople have intuitive the-
ories of social norms as behavioral constraints shared across
different agents in the same social context. We formalize in-
ference of norms using a Bayesian Theory of Mind approach,
and show that this computational approach provides excellent
predictions of how people infer norms in two scenarios. Our
results suggest that people separate the influence of norms and
individual desires on others’ actions, and have implications for
modelling generalizations of hidden causes of behavior.
Keywords: Social Norms; Social Cognition; Bayesian Theory
of Mind; Intuitive Theories

Introduction
Imagine entering a cafeteria in a foreign country that you
know little about. There are but a handful of individuals in
the cafeteria; you notice a tray-return receptacle at the far end,
but you do not notice any signage on the walls detailing the
expectations governing tray returns. If you observe someone
carry their tray to the far end in order to return it, what in-
ferences might you make? Does that person like returning
trays, incurring the cost of walking across the room to do so?
Or, is there an implicit social norm at play? A second person
leaves without returning their tray. What might you now in-
fer about them or about the potential social norm? Lastly, a
third person approaches the second and loudly chastises them
for not returning their tray, what would you then infer about
everybody’s preferences and the social factors at play?

Social norms are ubiquitous features of human societies,
and as the example above suggests, we are able to rapidly in-
fer their presence in novel situations. Children as young as
three (Schmidt, Butler, Heinz, & Tomasello, 2016) demon-
strate the ability to learn and generalize these rules of social
behavior (Rakoczy & Schmidt, 2013). Not surprisingly, this
ability continues into adulthood, allowing us, for example,
to travel to new countries and then learn through observing
others whether one is obliged to tip at restaurants, what the
appropriate manner of greeting is, or what topics of conver-
sation are considered impolite. In other words, we seem to
possess not just an intuitive Theory of Mind (ToM) which al-
lows us to infer the beliefs and desires of individuals, but also
a corresponding ability to efficiently make inferences about
shared norms that drive behavior across individuals. Further-

more, we appear naturally capable of disentangling the in-
fluence of social norms and individual desires: when we see
someone picking up trash on the sidewalk, we infer that this
is more likely due to an obligation to keep the streets clean
rather than enjoyment of the act itself.

Despite (or perhaps because of) its ubiquity, how people
infer social normativity is relatively understudied. The philo-
sophical literature on social norms has generally focused on
characterizing the precise nature of such norms—whether
they are best understood as social practices, preferences con-
ditioned upon shared expectations of behavior, or commonly-
held normative attitudes (Bicchieri, 2005; Brennan, Eriks-
son, Goodin, & Southwood, 2013). Across philosophy, eco-
nomics and psychology, there has also been an emphasis upon
understanding the conditions and mechanisms for the emer-
gence of norms (Hawkins, Goodman, & Goldstone, 2018)—
whether they arise, for example, as Nash equilibria (Axelrod,
1986; Young, 2015), correlated equilibria (Gintis, 2010),
or through maximization of cultural values (Bölöni, Bhatia,
Khan, Streater, & Fiore, 2018). Other studies investigate how
norms influence decision making (Chang & Sanfey, 2011),
and how they are enforced (Fehr & Fischbacher, 2004). How-
ever, apart from a few simulation-based studies (Savarimuthu,
Cranefield, Purvis, & Purvis, 2010; Cranefield, Meneguzzi,
Oren, & Savarimuthu, 2016), research into how social norms
are inferred remains scarce.

How then to explain our ability to infer social norms?
In recent years, Bayesian models of cognition have begun
to establish a computational basis for how people make so-
cial inferences. The Bayesian Theory of Mind (BToM) ap-
proach is perhaps the most prominent example, allowing re-
searchers to formalize how people make graded judgments
about unobservable mental states by observing the actions
of others (Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017).
This approach to social cognition has been extended to model
reasoning about others’ emotions (Ong, Zaki, & Goodman,
2015), inferring others’ beliefs and desires from observed ac-
tions and emotional expressions (Wu, Baker, Tenenbaum, &
Schulz, 2018), reasoning about how others balance costs and
rewards in deciding how to act (Jara-Ettinger, Gweon, Schulz,
& Tenenbaum, 2016), learning how people value the welfare
of others (Kleiman-Weiner, Saxe, & Tenenbaum, 2017), and
inferring the presence of co-operation or competition from
the behavior of multiple individuals (Shum, Kleiman-Weiner,
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Littman, & Tenenbaum, 2019). Related work modelling hu-
man concept learning as Bayesian rule inference (Goodman,
Tenenbaum, Feldman, & Griffiths, 2008) has also been used
to develop theories of why people tend to learn act-based
moral rules rather than outcome-based ones (Nichols, Kumar,
Lopez, Ayars, & Chan, 2016).

We build upon this tradition of computational cognitive
modelling, and hypothesize that people intuitively understand
social norms as factors of behavioral influence which are
shared across agents in a particular social context. These
shared norms influence behavior alongside the individual de-
sires of agents, and can generally be understood as injunc-
tions or constraints on behavior, i.e., they prescribe, recom-
mend, or prohibit certain kinds of actions1. We propose that
people include these norms in their lay theories of social be-
havior, and we model these theories as Bayesian networks
which include both norms and desires as possible causes of
action. Judgments about the presence of a norm can thus
be modelled using Bayesian inference conditioned upon ob-
served actions, which can be made alongside desire infer-
ences. Furthermore, since social norms are shared, inferences
about them can be made from observations of multiple agents,
unlike those for desires. We discuss several of these models,
each of which captures a plausible intuitive theory of how
norms influence both desires and actions. We then describe
an experiment to test which model provides the best explana-
tion of lay people’s judgments in two social scenarios.

Computational Models
In order to study how people make inferences about social
norms given observations of behavior, we choose to model
situations where norm-driven actions are likely to be salient.
In such situations, agents can take the role of actors, who are
in the position to comply with a potentially applicable norm,
or they can take the role of judges, who are in the position to
enforce that norm after observing non-compliance. For sim-
plicity, we restrict ourselves to the smallest multi-agent set-
ting, with only one actor and one judge. The actor takes an ac-
tion A1, which corresponds to compliance or non-compliance
with a potential norm. We also assume that the actor has some
latent (binary) desire D1 over action A1 and its associated out-
come. If the actor decides not to comply with the norm, the
judge may take an action A2, which corresponds to enforce-
ment or non-enforcement of the potential norm. The judge
also has a (binary) desire D2 over the space of outcomes of
A1 (note however that D2 is conditionally independent of A1,
since the judge’s desires exist whether or not A1 is taken).
D2 influences the enforcement action A2 because A2 can rec-
tify the outcome produced by A1. We denote the norm by N,
which either exists (N = 1) or does not (N = 0) in the mod-
elled situation.

1Here we are not interested in modelling descriptive norms—
statistical regularities—since they can be directly learned through
observation, though it is an interesting but separate research question
as to how people might infer injunctive norms from descriptive ones.
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Figure 1: Possible intuitive causal models of how social
norms influence behavior. We consider two agents, an Actor
(on the left of each model, with nodes in yellow) and a Judge
(on the right, with nodes in green). In Model FC, norms in-
fluence desires, and both norms and desires jointly influence
actions. In Model JE, desires are independent of norms, while
in Model DM, desires are the sole mediators of norms upon
behavior.

We consider three plausible models of laypeople’s intu-
itive theories of norm-driven behavior (Fig. 1). In the Fully
Connected (FC) model, we posit that social norms influence
the desires of each agent, reflecting the idea that norms can
be (partly) internalized, such that norm compliance becomes
part of one’s desire. We also assume that norms and desires
jointly affect an agent’s actions. This corresponds to the no-
tion that whether or not a norm is internalized, it continues to
directly influence actions, whether by imposing an expected
social cost to non-compliance, or simply by having a norma-
tive force that is separate of individual desire.

In our second candidate model, the Joint Effect (JE)
model, desires and norms still jointly influence actions, but
agent desires are independent of norms. That is, lay people’s
notions of what agents ‘want’ to do are separate from what
they ‘should’ do, mapping roughly to the Kantian distinction
between desire and duty. Lastly, the Desire Mediation (DM)
model assumes that norms do not influence actions directly,
but only when mediated by desires. This assumption corre-
sponds to the Humean notion that desires are the sole motives
for action—that ‘shoulds’ cannot influence action unless they
also become ‘wants’—a notion which might plausibly feature
in lay intuitions about norms. In addition to these three ‘com-
plete’ models, we also tested two lesioned models: a desire-
only model (D-only) and a norm-only model (N-only).

It is worth emphasizing that in proposing these models, we
are not attempting to give a rigorous philosophical account
of the relationship between norms, desires, and actions, nor
are we attempting to argue that social norms cannot be ex-
plained in terms of desires, or for that matter, other cognitive
variables such as shared beliefs or expectations. Rather, our
intention is to propose models of how people intuitively un-
derstand norms and norm-driven behavior.
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Experiment
We conducted an experiment through Amazon’s Mechanical
Turk (AMT) to elicit lay people’s likelihood judgments about
norms, desires and actions in two different social scenar-
ios: one involving an obligative norm—the norm that people
should return their trays after eating—and another involving
a prohibitive norm—the norm that people should not litter.
Given widespread intuitive acceptance of the act-omission
distinction (Kahneman & Sunstein, 2005), we expected that
people might also respond differently to obligations and pro-
hibitions. We also chose common, but not universal, social
norms, so that we could better observe how people adjusted
their certainty about the existence of each norm.

Methods
We provide a sample of our experiment, our data, and analysis
code at https://github.com/ztangent/norms-cogsci19.

Scenario Structure. Both scenarios were identical in
structure—participants were introduced to an actor in a posi-
tion to comply with a potentially applicable norm, and asked
to make various likelihood judgments. They were then shown
the actor not complying with the potential norm, introduced
to a judge who (unknown to the actor) had observed the ac-
tor’s action, and made another round of judgments.

Experimental Conditions. To measure how well our pro-
posed models predict lay people’s inferences, as well as deter-
mine which model best captures intuitions about norms, we
divided each each scenario into five conditions, each querying
for different sets of likelihood judgments:

A. Norm and desire priors, and desires given norms:
P(N), P(D1), P(D2), P(D1|N), P(D2|N).

B. Actions conditioned on desires only: P(A1|D1), P(A2|D2).
C. Actions conditioned on norms only: P(A1|N), P(A2|N).
D. Actions conditioned on both: P(A1|D1,N), P(A2|D2,N).
E. Norm and desire posteriors:

P(D1|A1), P(D2|A1,A2), P(N|A1), P(N|A1,A2)

Data from conditions A–D were used both to calibrate the
models and to investigate people’s intuitions about the rela-
tionship between norms, desires and actions, e.g., by com-
paring P(D1|N) (condition B) to P(D1) (condition A) to see
if people judge desires to be dependent upon norms. After
calibrating the models, data from condition E was compared
against the models’ posterior inferences to see if they pre-
dicted participants’ inferences about norms and desires.

Participants. We recruited 200 US participants (mean age
35.6, SD 11.2; 104 male, 95 female, 1 unreported) via AMT,
restricting to those with a HIT approval rate of 99% and
above. All participants went through both scenarios in ran-
dom order, and each participant was randomly assigned to a
different condition within each scenario (i.e. assigned condi-
tions for Scenario 1 and 2 were independent). For Scenario 1,
conditions 1A through 1E, sample sizes were n =51, 24, 25,
51 and 49 respectively. For Scenario 2, conditions 2A through

2E, sample sizes were n =49, 25, 25, 50 and 51 respectively.
Assuming a large effect size (Cohen’s f = 0.5), these sam-
ple sizes give > 93% power for one-way ANOVA between
sub-conditions at the 5% significance level (e.g. comparing
P(A1|N=1) and P(A1|N=0) in condition C).

Scenario 1: An Obligative Norm

Bailey

Return tray

Leave

?

(a) Actor’s choices

Bailey
Casey

? Ask Bailey to
return tray

Say nothing

(b) Judge’s choices

Figure 2: Returning one’s tray as an obligative social norm.

Details. Participants were presented with a vignette with
two phases, with text descriptions accompanied by illustra-
tions. In the first phase (Figure 2(a)), Bailey, the actor, has
finished a meal served on a tray in a restaurant. The restau-
rant has a tray return station, and Bailey can choose to either
return (A1 =1) or leave (A1 =0) the tray. Since the norm at
play was obligative (’People should return their trays after
eating.’), A1=1 corresponds to compliance with the norm (if
it exists, i.e, if N =1). In the second phase, participants are
told that Bailey decides to leave the tray, and are introduced to
Casey, who, unknown to Bailey, has watched this occur (Fig-
ure 2(b)). Casey now has the option of either asking Bailey
to return the tray (A2 =1) or saying nothing (A2 =0), where
A2=1 corresponds to enforcement of the potential norm.

Questions were presented after each phase was introduced,
asking participants to make judgments depending on the con-
dition they were assigned. When queried for priors (condition
A), participants were directly asked how likely they thought
a certain state of affairs was true (e.g. ”How likely do you
think Casey wants the tray to be returned?” for P(D2), ”How
likely do you think the following norm exists?” for P(N)).
When queried for conditional likelihoods, including the pos-
teriors, participants were first asked to suppose a certain state
of affairs (e.g. ”If you saw Casey ask Bailey to return the
tray,” for P(·|A1=0,A2=1) or ”Suppose that Bailey does not
want to return the tray.” for P(·|D1 = 0)), and then asked to
give likelihood judgments given those suppositions. To make
these counterfactuals more concrete in the case of the poste-
rior inferences (condition E), we also provided corresponding
illustrations of the counterfactual actions.

Results. To determine if participants intuitively judged de-
sires to be independent of norms, we first analyzed the data
from condition A to see if P(Di), P(Di|N=1) and P(Di|N=
0) (i ∈ {1,2}) exhibited significant differences. As can be
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Figure 3: Scenario 1 Results. (a) Empirical norm and desire judgments from condition 1A. (b) Empirical action likelihoods,
from condition 1D. (c) Comparing empirical posteriors from condition 1E with posterior judgments from our proposed models.

seen in 3(a), this was indeed the case, with one-way ANOVA
giving F(2,150) = 55.13, p < 0.001, for the actor’s condi-
tional and prior desires (D1), and F(2,150) = 66.95, p <
0.001, for the judge’s (D2) conditional and prior desires. This
provides evidence against Model JE, which assumes that de-
sires are independent of norms.

Next, to determine if desires and norms jointly influence
behavior, we analyzed the conditional action likelihoods from
condition D. As Figure 3(b) shows, given a fixed value of de-
sire, there were significant differences between action like-
lihoods when the norm was either absent or present (all ts
> 5.77, all ps < 0.001, df= 50, paired test). That is, re-
gardless of whether the agent wanted to act, the presence
of the tray-return norm (N = 1) led people to judge both
norm compliance (A1 = 1) and norm enforcement (A2 = 1)
as more likely. This provides evidence against Model DM,
which assumes norms have no direct effect on actions. (For
brevity, we omit comparisons between P(Ai|Di,N), P(Ai|Di)
and P(Ai|N), i ∈ {1,2} using the data from conditions B and
C, but these display significant differences as well.)

Finally, we computed the desire and norm posteriors un-
der the FC, JE and DM models, then compared them against
participants’ posterior judgements, as shown in Figure 3(c).
All three models displayed high correlation with the empiri-
cal data (FC: r=0.944, JE: r=0.974, DM: r=0.981). The
correlations of the lesioned models were worse by compar-
ison (D-only: r = 0.944, N-only: r = 0.384). Both norm
and desire posteriors increased when compliance (A1 =1) or
enforcement (A2 = 1) were observed, and decreased other-
wise. The three models also captured people’s ability to in-
tegrate information across multiple agents to infer the pres-
ence of norms—when non-compliance by the actor (A1 =0)
is observed, the likelihood of the norm’s existence decreases

(P(N) > P(N|A1 = 0)), but when enforcement by the judge
(A2) is subsequently observed, the likelihood of the norm in-
creases again (P(N|A1=0)< P(N|A1= 0,A2=1)).

Despite the desire and action likelihoods providing strong
evidence against the JE and DM models, these models
were surprisingly more correlated with participants’ posterior
judgements than the FC model. The results for Scenario 1 are
thus hard to interpret conclusively. Plausibly, this was due
the high degree of inter-subject variance in likelihood ratings,
suggesting that people’s intuitive models of social normativ-
ity have substantial heterogeneity.

Scenario 2: A Prohibitive Norm

Avery

Hold on and
keep walking

Toss on
the ground

?

(a) Actor’s choices

Darcy
Continue
walking

Ask Avery
to pick it up

?

Avery

(b) Judge’s choices

Figure 4: Not littering as a prohibitive social norm.

Details. As in Scenario 1, participants were presented with
a two-phase vignette. In the first phase (Figure 4(a)), Avery,
the actor, is walking along a city street while holding on to
some crumpled paper. Avery can choose to either toss the pa-
per (A1 =1) or continue holding on (A1 =0). Since the norm
at play was prohibitive (’People should not discard their be-
longings on the ground.’), A1 =1 corresponds to violation of
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Figure 5: Scenario 2 Results. Figure is similar to Fig. 3 except for the fact that Scenario 2 involved a prohibitive norm, where
A1 = 1 (littering) contravenes the norm. This explains the different patterns for the likelihood of Actor variables (D1, A1).

the norm, unlike in Scenario 1. In the second phase, partici-
pants are told that Avery decides to toss the crumpled paper
on the ground, and are introduced to Darcy, who, unknown
to Avery, has watched this occur (Figure 4(b)). Darcy now
has the option of either asking Avery to pick up the crumpled
paper (A2=1) or saying nothing (A2=0), where again A2=1
corresponds to enforcement of the potential norm. After each
phase was introduced, participants were asked to make like-
lihood judgments depending on the condition they were as-
signed, using the same question formats as in Scenario 1.

Results. First, we analyzed the data from condition A to see
if participants judged desires to be norm-dependent. As 5(a)
shows, this was once more the case, with one-way ANOVA
giving F(2,144) = 18.02, p < 0.001, for the actor’s condi-
tional and prior desires (D1), and F(2,144) = 35.86, p <
0.001, for the judge’s (D2) conditional and prior desires. We
then analyzed the conditional action likelihoods from condi-
tion D, and found similarly that there were significant dif-
ferences when the norm was either absent or present (all ts
> 3.10, all ps < 0.005, df=49, paired test). To be clear, the
influence of the norm here was in the opposite direction—
N=1 led to littering (A1=1) being less likely.

Lastly, we computed the desire and norm posteriors under
the various models and compared against the empirical data,
as shown in Figure 5(c). Compared to Scenario 1, more pro-
nounced differences could be observed between models. In
particular, Model DM significantly over-estimates the norm’s
likelihood when a norm-violating or non-enforcing action is
taken (see Figure 5(c) P(N|A1 = 1), P(N|A1 = 1,A2 = 0)),
because it attributes the cause of the action primarily to the
desire not to comply with or enforce the norm. In contrast,
Model FC better predicts that the norm’s likelihood should

decrease when norm violation is observed. This is because
there are multiple causal pathways that lead from the norm
to the actions in Model FC—norm-violating actions directly
imply that the norm is unlikely to exist, but they also im-
ply that the desire for the norm-violating action exists, which
indirectly implies the non-existence of the norm. Model JE
over-estimates the norm’s likelihood slightly less than Model
DM, but still more than Model FC, because it has only one
causal pathway from the norm to the action.

Nonetheless, all three models still correlated highly with
the data (FC: r = 0.934, JE: r = 0.887, DM: r = 0.828),
and the lesioned models again performed worse (D-only:
r = 0.772, N-only: r = 0.461). Both norm and desire like-
lihoods increased when compliance (A1 =0) or enforcement
(A2 =1) were observed, and decreased otherwise. We simi-
larly observed that people integrated information from multi-
ple agents: the likelihood of the norm decreases after observ-
ing norm violation (P(N|A1=1)< P(N)), but increases again
after subsequently observing enforcement (P(N|A1 = 1,A2 =
1)> P(N|A1=1)).

Unlike in Scenario 1, Model FC displayed the highest de-
gree of correlation out of our three proposed models. This,
combined with the analysis showing that both actions and de-
sires are directly norm-dependent, provide strong evidence
for model FC over the other two models. One reason this
might have been the case for Scenario 2 is that a prohibitive
norm tends to conflict with the direction of desire—people are
more likely to act how they believe they should, whatever they
happen to want for themselves. This would disfavor Model
DM (hence its over-estimation of the norm’s likelihood) but
favor Model FC, because it betters captures the restraining
effect of norms on both desires and actions.
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General Discussion
We experimentally investigated how laypeople infer norms
from behavior, and showed that a Bayesian model provides
excellent predictions of people’s posterior inferences of both
obligative and prohibitive norms. We tested several plausible
theories, and found strong evidence that people understand
norms to directly influence both desires and actions. This
suggested that the JE and DM models should be ruled out,
leaving the FC model. While our analysis of the model’s pos-
terior inferences in Scenario 1 did not unambiguously sup-
port this conclusion, the corresponding analysis for Scenario
2 did so, with the FC model showing the highest correla-
tion when averaged across both scenarios (FC: r=0.939, JE:
r = 0.931, DM: r = 0.905). Furthermore, comparison with
lesioned models showed that accurate inferences cannot be
made by omitting either desires on norms.

Our results lend support to our hypothesis that people un-
derstand social norms as behavioral constraints shared across
agents, in contrast to preferences that are idiosyncratic to in-
dividual agents. In this way, people are able to observe dif-
ferent actions made by individuals in different roles, integrat-
ing that information and allowing them to rapidly make infer-
ences about the presence of social norms in a given context.
This ability is highly useful, for it allows us navigate unfamil-
iar social environments without deducing the preferences of
every stranger about how one should act.

Of course, not all environments are unfamiliar—people
spend their whole lives with a familiar set of norms. Thus,
one might expect a person to bring strong expectations to bear
when making inferences about norms in a new, but familiar,
situation. Indeed, this was the case for many participants in
our experiment—while we constructed scenarios with com-
mon but not universal norms, participants were often certain
that the norm in question was present, even before observing
any actions. These priors made it harder for our experiment
to detect whether people deemed a norm more likely to exist
after observing norm compliance, but made it easier to detect
when people deemed a norm less likely to exist after observ-
ing a norm violation. Future experiments should introduce
participants to a more alien environment where they have no
sense of what the norms might be, and see if they can infer
the presence of a norm through a few observations.

Participants not only came in with varied priors, but also
varied likelihood judgements, with some participants giving
more weight to the influence of norms than others. This het-
erogeneity may help explain why our results for Scenario
1 were not conclusive—participants’ internal models might
have diverse parameters, and some might even have different
model structures altogether. As such, while the results clearly
showed that the models predicted average judgments with
high correlation, the ability to distinguish the exact model
type may have been lost. Still, it is interesting that even with
such diversity, people are still able to rapidly learn and con-
verge upon the same set of norms. How exactly this conver-
gence occurs is a topic worth exploring further.

In conclusion, we have demonstrated a principled, compu-
tational framework for how people infer the shared drivers of
behavior that we call social norms. In addition, our results
give us insight into people’s intuitive theories of norms as in-
fluencing both our desires and our actions. This builds upon
previously studied models that infer the beliefs, desires, and
intentions of single agents, extending their inferential capac-
ity to large groups of agents constrained by shared context.
By laying the groundwork for how we make these inferences,
our work elucidates one way in which we make sense of the
full richness of social life—and how we ought to live it.
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Abstract 

Exposure to Inconsistent message has been demonstrated as a 
useful method to alleviate belief in false rumor. However, the 
data from previous research included unexplained variation in 
response to inconsistent message. Existing research also 
included the possibility that participants skipped out on 
reading and therefore they were not exposed to a message. 
We used an eye tracker to eliminate the possibility. Eye 
tracking data revealed that participants not only did not skip 
but they paid more visual attention to inconsistent messages 
comparing with consistent messages. Despite the overall 
effectiveness of inconsistent message, some responses 
showed continued belief in rumors even after the exposure. 
Eye-tracking analyses demonstrated that when participants 
had positive pre-belief for a rumor, more visual attention to 
inconsistent message predicted strengthened the belief. We 
discuss when exposure to inconsistent message does not work 
well as a way for harnessing belief in false rumor. 

Keywords: rumor; belief change; eye tracking; social media 

Introduction 
The recent exponential growth of social media, such as 
Twitter and Facebook, has been affecting how rumors 
spread. Once a rumor is posted on social media, it can be 
shared widely in a very short time. In this sense, social 
media can be a salient rumor mill. Additionally, while prior 
eras included the spread of rumors by word of mouth, online 
rumors never go away completely online. Accumulation of 
rumors can increase the risk of misunderstanding, 
miscommunication, and potential social problems.  

Several researchers have provided definitions for rumors. 
One popular definition is, “public communications that are 
infused with private hypotheses about how the world 
works” (Rosnow, 1991). Although other definitions 
emphasize aspects that include circulation in contexts of 
ambiguity, danger, or potential threat (e.g., DiFonzo & 
Bordia, 2007), we should not ignore the risk of spreading 
rumors within normal everyday interactions. As 
misinformation, propaganda, and “fake news” are diffused 

every day under the semblance of rumors, the risk for rumor 
belief should be acknowledged more broadly.  

How we handle rumors in the digital age? Past studies 
have demonstrated that exposure to inconsistent messages, 
including denial, rebuttal, and criticism, was effective to 
mitigate belief in various types of rumors, such as an alleged 
misdemeanor (Koller, 1993), organizational rumors 
(DiFonzo & Bordia, 2000), disaster related rumors (Tanaka, 
Sakamoto, & Matsuka, 2013), ill effects of smoking (Iyer & 
Debevec, 1991), and a computer virus (Bordia, DiFonzo, 
Haines, & Chaseling, 2005). Bordia et al. (2000) revealed 
that exposure to a denial message mitigated belief in a 
rumor. In reality, recent studies have reported that while 
many people spread rumors through social media, others try 
to stop the spread of false rumors by posting inconsistent 
messages(Mendoza & Poblete, 2010; Starbird et al., 2016). 

Despite the overall effectiveness of inconsistent message 
exposure, previous studies have shown the variation in the 
effect. For example, an experiment reported by Bordia et al. 
(2005) showed that an average belief in a rumor was 
reduced from 5.10 to 3.60 (1 = not at all believable to 7 = 
totally believable) after inconsistent message exposure. 
Although this is a significant belief reduction the result 
indicates that participants evaluate the rumor as moderately 
believable even after exposure to an inconsistent message. 
The same patterns emerged in another study by Tanaka et al. 
(2013) where some participants did not change their belief 
in rumor after they were exposed to an inconsistent message 
and even decided to spread the rumor. To consider the 
practical application of rumor control to real life, it is 
necessary to understand the responses of continual believing 
rumor despite inconsistent messages.  

The present study examined the mixed effectiveness of 
inconsistent message exposure on belief change in rumors. 
We measured eye movements of participants when they 
were exposed to an inconsistent message with a rumor. The 
reason for this is to check whether participants are genuinely 
exposed to an inconsistent message. Even if a participant 
was asked to read an inconsistent message on a traditional 
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questionnaire or a computer screen, the possibility that he or 
she skipped reading the message still remains. Recent eye-
tracking research demonstrated that people tend to skip 
reading posts on social media when they look uninteresting 
(Bode, Vraga, & Troller-Renfree, 2017). Thus, to examine 
the effect of inconsistent message exposure, it is important 
to eliminate the possibility of participants skipping out on 
reading and not actually being exposed to the message.  

We focus on fixation duration and fixation frequency as 
eye movements. Fixation is defined as the periods when an 
eye is close to immobile and distinguished from rapid 
movement termed saccades (Rayner, Pollatsek, Ashby, & 
Clifton, 2012, p.91). A reader extracts printed visual 
information during fixation. Fixation duration tends to be 
longer when text becomes conceptually difficult (Rayner, 
1998) and unpredictable (Ehrlich & Rayner, 1981; Rayner, 
Slattery, Drieghe, & Liversedge, 2011).  

Based on earlier research, we hypothesize that exposure 
to an inconsistent message with a targeted rumor will cause 
belief change in the rumor by reducing pre-belief when 
compared with the control response to a targeted filler after 
consistent message exposure (Hypothesis 1). If an effect 
was found, eye movement record can help determine 
whether it was caused by exposure to, or skipping an 
inconsistent message. We expect that eye movement record 
will show that participants were exposed to an inconsistent 
message because belief change would not occur if they are 
skipping the inconsistent message (Hypothesis 2). As for 
eye movements, we expect that fixation duration will be 
longer when participants are reading an inconsistent 
message because the inconsistent message is not predictable 
based on prior experience of reading a rumor (Hypothesis 3). 
Predictability effect was observed not only in alphabetic 
scripts such as English but also in a logographic script 
(Rayner, Juhasz, & Yan, 2005), therefore, it is reasonable to 
apply this hypothesis to Japanese which uses logographic 
characters. This kind of research has implications for 
understanding what makes people stop believing or keep 
believing rumors.  

Method 

Participants 
The participants were 46 college undergraduate and 
graduate students in Japan (32 males, 14 females, Mage = 
20.8, SDage = 1.89). They received 1,000 Japanese yen 
(about 9.00 USD) for their participation in an approximately 
50-minute session. They all reported having Japanese as 
their native language and 72% reported attending a 
psychology class. 

Materials 
Stimuli For rumor tweets, 12 false rumors related to popular 
psychology topics were selected from the Japanese 
translation of Lilienfeld, Lynn, Ruscio, & Beyerstein (2010), 
including topics such as “Subliminal messages can persuade 
people to purchase products” and “People use only 10 % of 

their brain power” (see Appendix for stimulus materials). 
All rumors were written in Japanese horizontally and the 
number of characters was controlled to fall within the range 
of 46 to 48. Each rumor was transformed into a Twitter 
PNG image tweet. The user name associated with each 
tweet was randomly generated. 

For each rumor, an inconsistent message with the rumor 
was developed based on the criticisms against the rumors 
(Lilienfeld et al., 2010). An inconsistent message was 
operationally defined as a message including inconsistent or 
contradictory information against a target rumor. For 
example, an inconsistent message for the rumor regarding 
“subliminal messages” mentioned above was “An analysis 
of research from a Canadian television station revealed that 
the subliminal message ‘please telephone us right away’ 
was aired 352 times. However, there was no increase in the 
incoming telephone calls. Likewise, people cannot be made 
to buy things in this manner”. For each of the 12 false 
rumors, an inconsistent tweet was developed. The number 
of characters was controlled to fall within the range of 70 to 
75. 

In order to prevent the participants learning the 
characteristics of the inconsistent message stimuli and 
acting strategically, filler stimuli were added. Twelve tweets 
were created from psychological knowledge based on 
textbooks and made into filler stimuli. For each filler, a 
consistent message was developed. There were no 
significant differences in the number of characters between 
rumor and filler tweets, and inconsistent and consistent 
messages. 

 
 

 
Figure 1. A slide image on the eye-tracking computer. It 
presents a set of a rumor tweet (target: upper left) and its 
inconsistent message (bottom-left). 

 

Apparatus 
Eye movements were recorded only in the following 
inconsistent message exposure phase by a Tobii Pro Nano, 
which samples eye position at 60 Hz. All images were 
presented on a 17.3-inch display with a screen resolution of 
1920 × 1080 pixels. Participants were seated ~60cm from 
the display. For each participant, the system was calibrated 
before the experiment using a set of 5 calibration points 
covering the whole screen area. Informed written consents 
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from participants were obtained. A 23.8-inch display was 
used except in the eye-tracking phase. 

Procedure 
Each participant was tested individually. Participants were 
told that the experiment concerned understanding students’ 
knowledge about psychology, and it was not revealed that 
the research was interested in false rumors and the 
inconsistent message exposure until the debriefing period at 
the end of the experiment. The experiment was administered 
in the following order. 
1. Pre-belief measurement  The rumor tweets and the filler 
tweets were presented one at a time on a computer screen. 
Presentation of the stimuli was randomized for each 
participant. Participants were not informed that some stimuli 
were false. They were asked to answer the following three 
questions about each tweet: (1) Familiarity – How much do 
you know about this information? (Well, Slightly, Not at 
all); (2) Accuracy – How accurate do you think this 
information is? (1 Not at all, 5 Highly accurate); (3) 
Importance – How important do you think this information 
is? (1 Not at all, 5 Highly important).  
2. Inconsistent/consistent message exposure Inconsistent 
message was a message including inconsistent or 
contradicting information. For example, the inconsistent 
message for the “subliminal messages” rumor refers to 
research which showed that the subliminal effect was not 
observed. On the other hand, consistent messages for fillers 
mentioned supportive examples and did not include any 
inconsistent or contradict information (see Appendix). After 
a five-point calibration for each participant using Tobii Pro 
Lab software (Tobii Technology), the 12 sets of a rumor 
tweet and an inconsistent message were presented one at a 
time mixing with the 12 sets of a filler tweet and a 
consistent message. The order of presenting the 24 sets was 
counterbalanced. Figure 1 shows a slide which presents one 
of the sets. Participants were instructed that each message 
was referring to the message of the target tweet. They were 
asked to read each set of tweets silently at their own pace 
and to judge the message interesting or not interesting. They 
were required to press 4 on the numeric keypad if the 
message was not interesting and 6 if the message was 
interesting.  
3. Post-belief measurement The same set of target tweets 
from the pre-belief session were shown a second time. 
Participants evaluated accuracy and importance for each 
tweet.  

After completing all tasks, participants were debriefed as 
to the purpose of the study. It was emphasized that some 
tweets were false. Participants provided another informed 
consent. 

Data analyses 
Eye-movement type and eye coordinates were recorded per 
millisecond (ms) with Tobii Pro Lab software throughout 
the message exposure phase. Direct visual attention 
(fixated) was extracted from the raw eye-tracking data using 

a minimum fixation duration of 100ms. To identify visual 
attention per tweet, we calculated fixation duration for target 
and message regions respectively. For each region, fixation 
frequency and total fixation duration were calculated. As the 
number of characters in each tweet was different between 
target tweets and messages, fixation duration rate was 
calculated per tweet, for both target tweet and message, by 
dividing the total fixation duration by the number of 
characters. We also calculated fixation frequency rate by 
dividing the total frequency of each tweet by the number of 
characters. 

Results 
Table 1 shows the means and standard deviations for pre-

belief and post-belief. For pre-belief, there was a significant 
difference in accuracy perception between rumor and filler 
tweets. The accuracy perception for rumor tweets was lower 
than filler tweets, whereas there were no significant 
differences in importance between rumor and filler tweets. 

 
Table 1. Pre- and post-beliefs for target tweets 

 

Target  
Tweet 

Accuracy  Importance 
Pre-

belief 
Post-
belief 

 Pre-
belief 

Post-
belief 

Rumor  3.14 
(0.47) 

2.67 
(0.50) 

 3.52 
(0.49) 

3.23 
(0.57) 

Filler  3.53 
(0.44) 

3.46 
(0.46) 

 3.56 
(0.47) 

3.57 
(0.51) 

Note. The numbers in parentheses are standard deviations. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Means and standard errors for belief change after 
message exposure. Participants were exposed to inconsistent 

message for rumor and to consistent message for filler.  
 
 

To test the effects of inconsistent message exposure, 
belief change after inconsistent message exposure was 
compared with the responses after the filler consistent 
message exposure. An analysis of variance (ANOVA) test 
with message type (inconsistent vs. consistent) was 
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conducted on belief change in accuracy of target tweets. The 
main effect of message type was significant, F (1, 45) = 
24.28, p < .001, η2G = .22. The belief change in accuracy for 
rumor tweets exposure was bigger (M = -0.47, SD = 0.98) 
than that for filler tweets (M = -0.06, SD = 0.99) (Figure 2). 
We also performed a one-way ANOVA with message type 
on belief change in importance. Result showed a significant 
effect of message type, F (1, 45) = 12.26, p < .005, η2G = .11. 
The belief change in importance for rumor tweets exposure 
was bigger (M = -0.29, SD = 1.00) than that for filler tweets 
(M = 0.01, SD = 0.94) (Figure 2). 

To examine eye movement, we performed a one-way 
ANOVA with message type on fixation duration rate on 
target tweets and messages, respectively. There were no 
significant differences in fixation duration rates between 
rumor and filler target tweets. However, the result of a one-
way ANOVA on fixation duration rates on the message 
region showed that the main effect of message type was 
significant, F (1, 45) = 38.77, p < .001, η2G = .04. The 
fixation duration per character on inconsistent message (M = 
85.76, SD = 64.14) was longer than consistent message (M 
= 71.30, SD = 50.40)(Figure 3, left figure). The same 
pattern emerged for fixation frequency rate. There was no 
significant difference between rumor and filler target tweets, 
whereas the result of a one-way ANOVA revealed a 
significant main effect of message type, F (1, 45) = 33.67, p 
< .001, η2G = .04. The fixation frequency rate on 
inconsistent message (M = 0.34, SD = 0.21)  was higher 
than consistent message (M = 0.29, SD = 0.18) (Figure 3, 
right figure).  

 

 
 

Figure 3. Means and standard errors of fixation duration rate 
and fixation frequency rate (per character). 

 
 
To examine the relationship between eye-tracking data 

and belief, we used ‘lme4’ package (Bates, Maechler, 
Bolker, & Walker, 2015) in R (R Core Team, 2012). As 
fixed effects, we entered tweet type (inconsistent vs. 
consistent), pre-belief on accuracy and importance into the 
model. As random effects, subjects and multiple stimuli for 
each tweet type were added into the model.  

We constructed a generalized linear mixed model 
(GLMM) of fixation duration rate. The inconsistent message 
affected fixation duration rate (χ2(1) = 31.36, p < .001), 

increasing it by about 14.5 ms ± 2.56 (standard errors)[95% 
CI: 9.44, 19.48]. Pre-belief and post-belief in a target tweet 
were not related to fixation duration rate on the message. As 
for fixation frequency rate, a GLMM revealed the same 
pattern. The inconsistent message affected it (χ2(1) = 34.15, 
p < .001), increasing it by about 0.05 ± 0.01 (standard 
errors) [95% CI: 0.04, 0.07]. There were no other factors 
related to fixation frequency rate. 
 

 
 
Figure 4. Belief change after exposure to inconsistent 
message associated with rumor tweets. The circle size 
represents the number of data points. Belief changes on 
rumor tweets in accuracy (A) and importance (B) after 
inconsistent message exposure. Belief changes on filler 
tweets in accuracy (C) and importance (D). 
 

 
Figure 4 shows the distributions of the relationship 

between pre-belief and post-belief in rumors and fillers. 
Comparing with pre-belief in fillers that tended to be stable 
after consistent message exposure (Fig.C and D), pre-belief 
in rumors tended to be weakened after inconsistent message 
exposure (Figure A and B). However, the distributions of 
rumor tweets include not a few responses that did not 
change their belief and kept believing rumors after 
inconsistent messages.We examined predictor of the 
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difference in responses after inconsistent message exposure. 
As our focus here was especially on the belief change in the 
responses which had positive pre-belief (rated 3, 4, or 5) for 
rumor tweets, other responses which had negative pre-belief 
(rated 1 or 2) were excluded from the following analysis. 
This is an attempt to avoid a floor effect. That is, there is 
very little or no room to show a decrease in belief after 
inconsistent message exposure for the responses which had 
negative belief towards the bottom of the graph. Among all 
552 responses associated with rumors (46 participants × 12 
rumor tweets), 396 (71.7%) and 439 (79.5%) responses 
were analyzed in terms of accuracy and importance, 
respectively. 

We constructed a GLMM to predict belief change (pre – 
post) in accuracy on the rumor with the responses with 
positive pre-belief. Fixation duration rate on inconsistent 
message increased belief change of accuracy positively 
(χ2(1) = 4.91, p = .03), that is, strengthening pre-belief of 
accuracy by about 0.002± 0.001 (standard errors) [95% CI: 
0.0002, 0.003]. Fixation frequency rate on inconsistent 
tweet also affected belief change in accuracy (χ2(1) = 3.85, p 
= .05), strengthening pre-belief of accuracy by about 0.47± 
0.23 (standard errors) [95% CI: 0.005, 0.92]. A GLMM to 
predict belief change of importance for rumor tweet 
revealed no significant relationship between eye movements 
and belief change. 

Discussion 
The present study investigated the effects of inconsistent 
message exposure on belief change in rumor and 
relationship between the belief change and eye movement. 

First, we examined whether inconsistent message 
exposure changes the belief in rumor target message. 
Results showed that inconsistent message exposure tends to 
reduce pre-belief associated with rumors. Both perceived 
accuracy and importance associated with rumors were 
significantly reduced after inconsistent message exposure, 
whereas pre-belief of filler target did not significantly 
change after consistent message exposure. Thus, Hypothesis 
1 was supported. These results support previous findings on 
the exposure of readers to denial messages being helpful to 
mitigate their false belief in rumors (Bordia et al., 2005; 
Bordia, DiFonzo, & Schulz, 2000; Koller, 1993).  

Eye tracking data demonstrated that participants paid 
more visual attention to inconsistent messages associated 
with rumors than consistent message associated with fillers. 
Both fixation duration rate and fixation frequency rate 
associated with inconsistent messages were higher than 
consistent messages. This result provides support for 
Hypothesis 2, eliminating the possibility that participants 
skipped reading an inconsistent message. This result 
indicates that the inconsistency of the message attracted 
visual attention. These results provide support for the 
literature indicating that fixation duration becomes longer 
when text becomes more unpredictable (Rayner et al., 2011) 
and when it includes inconsistency (Rayner, Chace, Slattery, 
& Ashby, 2006). When people encounter inconsistent 

message, they need to consider the relationship between pre-
belief and the inconsistent message and to update the pre-
belief if needed. This cognitive procedure could result in 
longer visual attention. Taken together with a rumor study 
which demonstrated that people tend to spread false rumors 
because of novelty (Vosoughi, Roy, Aral, 2018), one 
explanation is that inconsistent messages were unpredictable 
and novel,  thus, resulting in a relatively decrease in the 
novelty of rumors. This explanation is corroborated by the 
result that there were no significant differences in visual 
attention to the target tweets between rumor and filler. 
Participants have read the target tweets prior to eye 
measurement, that is, both types of target tweets were 
predictable. This prior experience resulted in no significant 
differences in eye movements between rumor and filler.  

Next, we focused on the variation in the effect of 
inconsistent message exposure. Although the exposure to 
inconsistent message tends to devalue the accuracy and 
importance of rumor, the distribution of the relationship 
between pre- and post-belief in rumor showed that some 
responses showed a continued belief in rumors even after 
the exposure to inconsistent messages. Further examination 
focusing on the belief change of the responses with positive 
pre-belief in rumor tweets demonstrated that the belief 
change of accuracy was predicted by eye movement. Longer 
fixation duration and higher fixation frequency on 
inconsistent message predicted that the accuracy of rumors 
would be strengthened. These results can be interpreted in 
line with the previous findings (Espino, Santamaria, & 
Garcia-Madruga, 2000; Masson, 1983; Rayner et al., 2006): 
that the difficulty of text can lead a longer reading duration. 
Our findings indicate that the effect of inconsistent message 
exposure became limited for the participants having positive 
pre-belief in a rumor when they did not fully comprehend 
the inconsistent message.  

There are some limitations in the current study. This study 
did not measure the level of comprehension of inconsistent 
messages. It is unclear whether longer fixation was related 
directly to low comprehension. Additionally, fixation 
predicted belief change in accuracy but it was not related to 
belief change in importance. Further research is needed to 
clarify these relationships. 

In conclusion, the current study demonstrated the overall 
effect of exposure to inconsistent messages to reduce false 
belief in rumors, supporting previous research on rumor 
control. Our findings demonstrated the relationship between 
eye movement and belief change after inconsistent message 
exposure. The effectiveness of inconsistent message 
exposure was limited when the inconsistent message was 
difficult to process, resulting in as slightly strengthened pre-
belief. 
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Appendix 
Example of stimulus set (translated from Japanese into 
English). The numbers in brackets under each rumor or 
filler are means and standard deviations for pre- and post-
belief of accuracy. 
 
Rumor #1 The brain weighs approximately 1.2-1.5 kg, but 
in actual fact, most of us use only 10% of that. [Mpre = 3.41 
(0.96), Mpost = 2.85 (1.19)] 
 
Inconsistent message for Rumor #1 When even a part of 
the brain is damaged by an accident or illness, it affects 
physical exercise, perception, language, and thought.  These 
kinds of effects would be strange if 90% of the brain was 
not being used. 
 
Rumor #2 People can be broadly divided into left-brained 
and right-brained, where left-brained people are logical and 
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analytical, while right-brained people are artistic. [Mpre = 
3.30 (1.05), Mpost = 3.07 (1.10)] 
 
Inconsistent message for Rumor #2 Language is necessary 
for both logical and artistic activities, but both sides of the 
brain are working when language is used. The left side of 
the brain is superior in producing grammar and vocabulary, 
and the right side of the brain, responsible for intonation. 
 
Rumor #3 Because one’s personality appears in their 
handwriting, experts can understand a person’s character by 
judging their letters and lines. [Mpre = 3.35 (1.06), Mpost = 
2.63 (1.01)] 
 
Inconsistent message for Rumor #3 Handwritten 
application documents include information like one’s work 
experience and criminal record in addition to just 
handwriting. When these indirect clues were regulated, 
handwriting analysts’ predictive abilities were at 
coincidental levels. 
 
Filler #1 Comics are funnier read when holding a pencil 
between your teeth so as not to touch your lips than when 
holding a pencil between puckered lips. [Mpre = 2.70 (1.11), 
Mpost = 3.15 (1.23)] 
 
Consistent message for Filler #1 When you hold a pencil 
in your teeth without touching your lips, your mouth spreads 
from side to side and makes an expression like when 
laughing. The laughing expression influences the way you 
read or perceive the comics. 
 
Filler #2 When people repeatedly experience that their 
situation does not improve whether they work hard or resist, 
they learn the feeling of powerlessness. [Mpre = 3.96 (1.07), 
Mpost = 3.96 (0.99)] 
 
Consistent message for Filler #2 People must be tormented 
by feelings of powerlessness in companies where they are 
scolded “not to do whatever they feel like” if they 
independently think and take action, but scolded “not to be 
passive and to think for themselves” if they wait for 
instructions. 
 
Filler #3 As in the case of things studied at home being 
easier to remember at home than in the classroom, 
circumstances influence memory. [Mpre = 4.07 (0.93), Mpost 
= 3.80 (1.07)] 
 
Consistent message for Filler #3 I have heard the same 
kind of thing about feelings — it is apparently easier to 
remember sad events when feeling sad and easier to 
remember happy events when feeling happy. 
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Abstract

Creativity is an essential factor in successful advertising where
catchy and memorable media is produced to persuade the au-
dience. The creative elements in the visual design and in the
slogan of an advertisement elevate the overall appeal providing
a perceptually grounded attractive message. In this study, we
propose the exploitation of creativity cues in textual and visual
information for the appreciation prediction of multimodal ad-
vertising prints. Moreover, as a novel dimension space of mul-
timodality, we propose using the human sense (i.e., sight, hear-
ing, taste, and smell) information embedded in the language.
Our findings show that sensorial information is an invaluable
indication of whether the advertisement is appreciated or not.
Furthermore, combining linguistic and visual models signif-
icantly improves the unimodal appreciation detection perfor-
mances.

Keywords: advertising creativity; human senses; multimodal
creativity

Introduction
Creativity in advertising is an entangled, multi-dimensional
phenomenon that reflects the complex structure of human cre-
ativity. A catchy and memorable advertisement is coherent
and captivating. It is carefully designed with a diverse range
of approaches including the ways of visualizing concepts,
the use of rhetorical devices, such as exaggeration, paradox,
metaphor and analogy, and taking advantage of shock tactics
and humour (Pricken, 2008). In case of the advertising prints,
visual and textual contents are designed to have a comple-
mentary and coordinated meaning. Advertising makes use of
sensory and linguistic sensorial information heavily in order
to reach the customers and persuade them. Elder and Krishna
(2009) propose that multi-sensory ads induce higher taste per-
ceptions than ads focusing on taste alone. They also state that
using multiple senses in slogan increases the positive thought
about the advertised food product. As a way of improving
advertising communication, Percy (1982) suggests the use of
concrete and high imageary words and concepts to stimulate
better recall, better comprehension of the advertised message
leading to an easier and more accurate understanding of the
ad. Another creativity infusion strategy in ad production is
using sensory words especially generating linguistic synaes-
thesia as an imagination boosting tool (Pricken, 2008). The
slogans ‘The taste of a paradise’ (Bounty bar commercial),
where the sense of sight is combined with taste, and ‘Hear
the big picture’(CBC Radio One commercial), where sight
and hearing are merged, can be considered as the examples
of linguistic synaesthesia.

As a topic being on the rise in computational linguistics,
multimodality is mostly exploited by adding other modali-
ties on top of the linguistic models to perceptually ground the
current tasks. For instance, semantic representations bene-
fit from the reinforcement of linguistic modality with visual
(Bruni, Tran, & Baroni, 2014) and auditory (Kiela & Clark,
2015) modalities. In the same manner, we propose devis-
ing visual modality in collaboration with linguistic modality
in the appreciation detection task. To our knowledge, this
is the first study aiming to identify multimodal appreciation
in a computational manner. Moreover, the multimodality of
the dataset stands out amongst the others since the linguis-
tic channel of an ad is complementary to the visual channel
instead of being a scene description or an image label. This
study focuses on the appreciation of the advertising print by
the advertising professionals and communities instead of the
appreciation by the audience/customer of the advertised prod-
uct.

In this paper, we investigate the appreciation level of multi-
modal advertising prints focusing on the creativity cues in the
slogan and in the corresponding image. We use a set of fun-
damentally creative artworks; an advertising dataset which is
composed of 4265 images and corresponding slogans. The
objective of this paper is twofold: i) to capture the potency
of sensorial dimension of semantics as a creativity cue in the
language along with various creative properties both in visual
and linguistic modalities, ii) to develop a multimodal appre-
ciation detection model. We utilize a random forest model
trained on a dense feature set extracted from the slogans, ad
categories and product types for the linguistic modality. For
the visual modality, we employ a fine-tuned convolutional
neural network model and a random forest model trained on
the observable features of the images to determine whether
the appreciated images display common visual characteris-
tics and whether these characteristics have a distinctive effect
on the overall appreciation of a multimodal ad.

Related Work
Considering that the essential focus of this study is computa-
tional creativity and multimodality, we summarize the most
relevant studies conducted on these topics. Elgammal and
Saleh (2015) quantify the creativity in paintings within the
context of historical creativity where creative paintings ade-
quately differ from the antecedent paintings and influence the
subsequent. They present a computational framework that is
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based on a creativity implication network.
Regarding the linguistic creativity, Özbal, Pighin, and

Strapparava (2013) present a creative sentence generation
framework, BRAINSUP, on which several semantic aspects
of the output sentence can be calibrated. The syntactic in-
formation and a huge solution space are utilized to produce
catchy, memorable and successful sentences. Kuznetsova,
Chen, and Choi (2013) focus on identifying creativity in lex-
ical compositions. They consider two computational strate-
gies, first investigating the information theoretic measures
and the connotation of words to find the correlates of per-
ceived creativity and then employing supervised learning
with distributional semantic vectors. Alnajjar, Kundi, Toivo-
nen, et al. (2018) propose a methodology to automatically
create slogans for a target concept and its adjectival prop-
erty by first generating metaphors, based on a metaphor in-
terpretation model. They produce a semantic space with the
generated metaphors and use the semantic space to fill the
slogan skeletons extracted from the existing slogans. They
evaluate the slogans through crowd-sourcing with respect to
the relatedness of the slogan to the concept and property, the
correctness of the language, the metaphoricity, the catchiness,
attractiveness and memorability, and the overall appropriation
of the expression as a slogan.

Concerning the multimodality, Bruni, Boleda, Baroni, and
Tran (2012) analyze the affect of different types of visual fea-
tures such as SIFT and LAB on semantic relatedness task,
and present a comparison of unimodal and multimodal mod-
els. Sartori et al. (2015) experiment on a complementary
multimodal dataset similar to ours. They explore the influ-
ence of the metadata (i.e., titles, description and artists state-
ment) of an abstract painting for the computational sentiment
detection task. For the combination of modalities, they pro-
pose a novel joint flexible Schatten p-norm model exploit-
ing the common patterns shared across visual and textual in-
formation. Shutova, Kiela, and Maillard (2016) exploit vi-
sual modality to improve the metaphor detection performance
while Zadeh, Chen, Poria, Cambria, and Morency (2017) ap-
ply multimodal input to sentiment analysis.

Creativity in Advertising Prints
The creativity elements and dimensions in advertising have
been investigated thoroughly. Ang and Low (2000) explore
the influence of dimensions of creativity such as novelty (ex-
pectancy), meaningfulness (relevancy), and emotion (valence
of feelings) to the effectiveness of the advertisement. While
novelty could be identified as the unexpectedness and out-
of-box degree of an advertisement, meaningfulness is the
relevancy of the advertisement to the message aimed to be
conveyed. The third dimension, emotional content, focuses
on the feelings awakened in the audience. These three di-
mensions should manifest themselves in a creative advertis-
ing media. Smith, MacKenzie, Yang, Buchholz, and Darley
(2007), on the other hand, elaborate on the divergence, which
is the encapsulation of novel, different, or unusual elements,
in ads proposing that the most significant characteristic of

creative ads is their divergence. In addition to the above-
mentioned general dimensions of advertising creativity, we
specifically focus on the sensorial elements and their effect in
the objective creativity level. Sensorial language makes use
of multiple senses to induce higher taste perceptions (Elder &
Krishna, 2009). Multiple senses in the advertising text trigger
the positive thinking in the audience. Using highly image-
able, in other words highly sensory words, helps to convey
the advertised message better and easily. Finally, linguistic
synaesthetia is a specific but a very significant way of effec-
tive advertising. Furthermore, for visual creativity in adver-
tising, we focus on capturing the divergence factors through
a transfer learning mechanism built on top of a deep learn-
ing image classification model and artistic values by taking
advantage of the observable visual features in the image.

Multimodal Advertising Creativity Dataset
To investigate the appreciation of a multimodal advertising
print, we first need to identify a dataset that reflects relatively
upper and lower levels of appreciation from human subjects.
To this respect, we chose AdsOfTheWorld1, which has a wide
range of coverage of ads considering its characteristic of be-
ing a social network that aims to inspire the advertising pro-
fessionals. The members of the website can share their adver-
tisement artwork, rate and discuss the ads created by others.
The published advertising prints are diverse in terms of the
level of creativity and ratings such that some ads are award-
winning while some are highly disfavored by the community.
We collected the ad images, their slogans and meta-data from
AdsOfTheWorld2. The meta-data of an ad includes the aver-
age user rating, which is an integer within the range from 1 to
10, the number of raters, brand name and category.

While constituting the appreciated and unappreciated
classes, namely AP and UNAP, we considered the opposite
endings of the rate scale to distinguish the appreciation lev-
els of advertisements as much as possible. We also paid re-
gard to the number of instances that we obtained after fil-
tering in order to have sufficient data for generalization of
the AP and UNAP classes for training a classifier. In order
to avoid feeding noise to our models, we empirically deter-
mined a minimum number of votes to postulate an average
rating as reliable. To this end,we incorporated an ad into our
final dataset if it is voted by at least 20 users and if it has an
average rating in the range from 1 to 4 for UNAP class, or in
the range from 7 to 10 for AP class. Finally, we eliminated
the improper image styles, such as photographs of the bill-
boards or images containing only textual content, from the
dataset so that we can guarantee each image and its respec-
tive slogan contribute to the targeted message. From the final
dataset that contains 4265 images-slogans, we sampled 3265
instances for training, 100 instances for development and 900
instances for testing. While the development and test sets are
perfectly balanced for both classes, the training set includes

1http://adsoftheworld.com
2AdsOfTheWorld has recently changed its interface, no more

showing the user ratings.
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1470 UNAP and 1795 AP instances. During the sampling, we
paid attention to putting the ads from the same brand into the
same set since a slogan for a brand can be paired with var-
ious visual designs leading to more than one instance with
the same linguistic input. As an additional meta-data, we
collected the type of the products since category labels are
considerably high-level. For instance, the category House,
Garden includes a great variety of product types, such as fur-
niture, laundry detergent, or insect killer. Utilizing product
type and category labels as reference points allows us to ap-
praise the meaningfulness of a slogan which affects its appre-
ciation level notably. Advertisement 13 and Advertisement 24

exemplify highly appreciated and highly unappreciated sam-
ples in the final dataset, respectively. Although these adver-
tising images seem to be very similar at the first glance with
an object in the middle of the frame and in front of a blurred
background, the subtle and creative details in the pictures,
such as perplexing design of an octopus and sailboat made of
pages of a book in Advertising 1 aims to immediately draw
the attention of the audience. It holds an average rating of
10, which is the highest appreciation score, and is rated by
23 users. On the other hand, the obvious irrelevance of the
main object in the image to the advertised message is a sign
of an unappreciated design. Advertisement 2 with the slogan
“Can’t sleep?” promotes a tea brand that helps with sleeping
problems by using a clearly irrelevant main object in the im-
age. It has an average rating of 1 and its unappreciated label
is trusted considering that it is rated by 171 users.

Appreciation Prediction Experiments
We design the appreciation prediction experiment of multi-
modal advertising prints exploiting the creativity dimension
cues in the slogan and in the corresponding image, consider-
ing the studies done on the dimensions of creativity (Smith
et al., 2007; Ang & Low, 2000; Elder & Krishna, 2009). To
be more precise, we intend to capture surprisal, novel, mean-
ingful, emotional, unusual and perceptual properties in an ad-
vertising slogan. Moreover, we aim to extract artistic com-
ponents in the visual elements along with the latent visual
descriptions and patterns.

Appreciation Detection on Slogans
For the textual model, we hypothesize that the creativity el-
ements in the ad slogan can be mapped to features that are
useful to detect the appreciation of an advertisement.
Surprisal (Self Information), as contributing to nov-
elty/expectancy (Ang & Low, 2000) and surprisal(Smith et
al., 2007) dimensions of creativity, can be interpreted as the
information load of a specific outcome of an event. We
calculate the self-information s of a bigram B by s(B) =
−log(p(B)) exploiting the conditional probability distribu-
tion of bigram model trained on the corpus. We obtain the

3http://www.adsoftheworld.com/media/print/
anagram sea

4http://www.adsoftheworld.com/media/print/
gryphon slippers

slogan self information as the average s of the bigrams ex-
tracted from the sentence.
Domain Relatedness features for the slogan are generated
to address the meaningfulness (relevance) dimension (Ang &
Low, 2000) of creativity. We expect that a meaningful slogan
could contain words that are mapped to the same semantic
domain with the product type and product category. On the
other hand, a surprising effect could be achieved by inject-
ing words from different domains. The ads dataset contains
24 categories, such as fashion or food. We obtain the do-
main information for each category as a noun, from WordNet
Domains (Magnini, Strapparava, Pezzulo, & Gliozzo, 2002).
Similarly, for each lemma-POS in the slogan and for the prod-
uct type, we collected the related domains. The categories,
product types and lemma-POS pairs are associated with the
first sense from WordNet. In addition, we exploit a smaller set
of domains that is constructed by normalization with respect
to the middle level of WordNet hierarchy. The normalization
of the domains provides a higher level of abstraction (Ozbal,
Strapparava, Tekiroğlu, & Pighin, 2016) and could allow us
to capture whether indirect concepts or ideas are employed
for expressing the targeted message.
Semantic Similarity features also allow us to capture the
meaningfulness dimension (Ang & Low, 2000) of ad creativ-
ity. We exploit ad category and the product type to calcu-
late similarity scores with respect to the lemmas in the sen-
tence. We employ 300 dimensional word representation vec-
tors from GloVe (Pennington, Socher, & Manning, 2014) pre-
trained embeddings trained on Wikipedia 2014 articles and
English GigaWord 5 (LDC). The similarity scores between
a category/product type and a lemma are obtained by calcu-
lating the cosine similarity of their embedding vectors. The
average score of a slogan is encoded as a real valued feature
for category and another for product type.
Emotion as a creativity dimension focuses on the feelings
awakened in the audience(Ang & Low, 2000). We also gener-
ated the emotion features as suggested by Özbal et al. (2013).
Sentiment scores are estimated and used as a part of the
emotion(Ang & Low, 2000) dimension features. A word with
a highly negative or positive sentiment can induce a positive
or negative feeling and might alter the effectiveness and ap-
preciation of the sentence. For instance, an environmental
awareness slogan would intend to evoke negative sentiment
intensifying the feeling of danger in order to be more striking.
Thus, we determined the highest values of positive and neg-
ative sentiments in the slogan by checking each lemma-POS
and encode them as real valued features. We use the senti-
ment scores of SentiWordNet (Esuli & Sebastiani, 2007).
Unusual Words contribute to the creativity as the unusual el-
ements dimension suggested by Smith et al. (2007), also as a
suprisal factor. We generated unusual words features follow-
ing the study by Özbal et al. (2013).
Variety can be mapped to the flexibility dimension (Smith et
al., 2007). We employ variety scores to detect whether cre-
ative and appreciated language displays a particularly differ-
ent word variety than a less-creative and unappreciated lan-
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guage in a similar way with Özbal et al. (2013).
Phonetic scores can be considered as contributing to the artis-
tic value dimension (Elgammal & Saleh, 2015; Smith et al.,
2007; Fichner-Rathus, 2011). The exploitation of phonetic
features in creative and persuasive sentence analysis has been
deeply explored by Özbal et al. (2013). Following them, we
explore the alliteration, rhyme and plosive scores generated
by using the HLT Phonetic Scorer5.
Sensorial features are created regarding the sensory dimen-
sion of ad creativity (Elder & Krishna, 2009). A slogan aims
to trigger a sensory activation in the mind of the audience.
For instance, to evoke the sense of taste for an ad in the food
category, certain sensorial information, such as the ‘warm-
ness’ of a soup or the ‘sweet aroma’ of a cake, should be
transmitted through the language. To identify the sensorial
load of the sentences, we obtain the word-sense associations
from Sensicon (Tekiroğlu, Özbal, & Strapparava, 2014) and
Voted Norms, which we generated as a new set of sensory
modality association norms through a voting mechanism and
labeling the words with the senses that receive the majority of
the votes from 4 different sensorial lexicons (Lievers & Win-
ter, 2017; Tekiroğlu et al., 2014; Lynott & Connell, 2009,
2013; Winter, 2016). Sensicon embodies 22,684 and Voted
Norms Lexicon includes 3890 English lemmas together with
their part-of-speech (POS) information that have been linked
to one or more of the five senses. For each sensory modality,
we encode the average sensorial associations of the lemma-
pos tuples in the slogan. In addition, we explore how the
sensorial trait of a product interacts with the sensorial infor-
mation in the slogan. Therefore, we create a binary feature
indicating whether the sensorial modalities with the highest
value of the product type and the slogan are identical. We also
add the sensorial association relation of the product type and
the slogan as a feature set by taking the mean of the slogan
associations and product associations with respect to Sensi-
con and the Voted Norms. As another hypothesis, we expect
that sensory experience ratings (Juhasz, Yap, Dicke, Taylor,
& Gullick, 2011) can provide a second channel of sensorial
information since SER resource estimates the sensory expe-
rience triggered in human mind instead of the sensorial in-
formation that one word carries. We extracted sensory expe-
rience ratings by averaging the SER values of the words in
the slogan. Based on the category and sensorial modality cor-
relations provided by Tekiroğlu et al. (2014), we propose a
set of sensorial features encoding whether the sensorial infor-
mation in the slogan conforms to the predetermined sensorial
structure of its category.

We generated category conformity scores utilizing Voted
Norms. For each sense, we set a binary flag indicating if
the average association value of the slogan and the sensorial
value of the category are both positive. As an example, the
feature set of an ad from the food category contains the bi-
nary features conforms taste=1 and conforms hearing=1 if
the average sensorial association value of the slogan for these

5hlt-nlp.fbk.eu/technologies/hlt-phonetic-scorer

Model # Feat Training F1 Testing F1

L 62 0.573 0.577
L\Sensorial 34 ∗0.542 ?0.496
L\V ∪U ∪SI 62 0.585 0.558
L\Similarity 61 0.573 0.560
L\Domain 55 0.580 ∗0.548
L\Phonetic 59 0.573 0.561
L\Emotion∪Sentiment 45 0.568 #0.552

Table 1: The linguistic modality ablation study results. ? de-
notes p < 0.001, ∗ denotes p < 0.01, # denotes p < 0.05 for
the McNemar significance test between L and ablated models.

modalities are over 0.0. In addition, we checked the senso-
rial association peak of the slogan which shows the modality
of the highest sensorial association among the lemma-POS
tuples in the slogan. We created a binary feature if the peak
modality of the slogan and its category are identical. Contrary
to our hypothetical assumption, the peak sensorial conformity
is observed to be an indicator of a lower level of appreciation
(Mann-Whitney p < 0.001) in the training set. A possible
explanation for this can be that the unexpected sensorial ele-
vation contributes to the appreciation level of a slogan and a
less-appreciated slogan is associated to the senses in a more
conventional manner. For instance, a less-appreciated tooth-
paste slogan “For brighter smiles”6, which is from the health
category, has the sensorial peak conformity since both the
sensorial peak, i.e. brighter, and the ad category are asso-
ciated with the sense of sight. Using an overly well-known
effect of the product to describe a stereotypical metonymic
replacement, i.e. brighter smile for whiter teeth, might be
one of the causes of a lower level of appreciation of the ad.

Linguistic Experiment Results
We investigated the performances of linguistic features with
a classification task employing Random Forest algorithm im-
plemented within the scikit-learn package. To fine tune the
hyper-parameters of the classifier, we perform a grid search
over the number of the generated trees (between 100 and 500,
with a step size of 100), the maximum depth of the tree (as
[5, 10, 20]) using 10-fold cross validation on the training data.
To guarantee the same slogan being only in the training folds
or only in the validation fold, we divided the training set into
10 folds by taking into consideration the brand information.
Since the training data is unbalanced, we selected the best
model by using the weighted average of F1 values.

The results of the full model with all the implemented fea-
tures and the ablation study are summarized in Table 1. The
first row labeled ‘L’ shows the micro F1 scores for the cross
validation and test phases using all the linguistic features.
Each row in the rest of the table shows the ablation of the
indicated feature. We marked statistical significance in terms
of the drop of the performance during ablation in comparison
to all features L according to McNemar’s test.

In the linguistic experiment, we found out that all the fea-

6http://www.adsoftheworld.com/media/print/
colgate hide and seek

2936

hlt-nlp.fbk.eu/technologies/hlt-phonetic-scorer
http://www.adsoftheworld.com/media/print/colgate_hide_and_seek
http://www.adsoftheworld.com/media/print/colgate_hide_and_seek


tures contribute to the performance of the final linguistic
model even if they cause a slight increase in the F1 scores. By
utilizing all the features, we obtain an average training cross-
validation F1 score of 0.573 and testing F1 score of 0.577.
The linguistic model without Sensorial Information yields an
F1 test score of 0.496 that is significantly lower (p < 0.001)
than the model L. We obtain a significantly lower (p < 0.01)
F1 score of 0.548 on the absence of Domain features in the
linguistic feature set. Removing the Emotion and Sentiment
features from the model decreases the score down to 0.552
on the test set causing a statistically significant loss of perfor-
mance (p < 0.05). The contributions of the strongest features
point out that the relevance of a slogan to the product cate-
gory and type, the positive or the negative feeling that a slo-
gan induces and most importantly the sensorial structure of
the slogan and its sensory impact in the audience are indeed
essential for a creative and AP slogan which is in line with the
creativity dimension analysis.

Appreciation Detection on Images
The message of an advertising print is conveyed through both
linguistic and visual channels. In this experiment,we utilize
the raw sensory input in the form of embedded representa-
tions of the image and visual surface features.

Transfer Learning (CNN) Deep learning approaches are
proven to be successful in multimodality tasks yielding the
state of the art performances on Computer Vision studies such
as image classification (Krizhevsky et al., 2012) or object de-
tection (Ren et al., 2015). Considering the promising strength
of the convolutional neural networks in image recognition, we
hypothesize that certain characteristics of an image, such as
objects and patterns, can tamper with its appreciation level
as a creative artwork. For instance, marketing images mostly
encode cultural and historical stereotypes of masculinity and
femininity in order to invoke the feeling of gender identity
in the customers (Schroeder & Zwick, 2004). We conjecture
that such patterns can be utilized to predict the appreciation
level of an ad image if we can capture them automatically.

Since our dataset is not large enough to train a deep net-
work from scratch, we employ transfer learning where we
fine-tune Inception V3 image recognition model(Szegedy et
al., 2016) as an appreciation predictor. Inception V3 is a deep
convolutional neural network that significantly improves the
state of the art ILSVRC 2012 1000-class ImageNet classifi-
cation benchmark. It is trained using stochastic gradient on
Tensorflow. Although, the object classification on ImageNet
and the appreciation classification task on carefully designed
ads are fundamentally dissimilar, Yosinski et al. (2014) state
that transferring features from a distant task is still better than
randomly initialized variables. Therefore, it would be feasi-
ble to boost a network by transferring deeply trained features
to overcome the scarcity of the advertising data.

While conducting a transfer learning on Inception V3, first,
we only retrained the top 2 layers, labeled as Inception-
V3/Logits and Inception-V3/AuxLogits, and kept the earlier
layers frozen. In this phase, we obtained a checkpoint after

1000 steps. We exploited Tensorflow Slim7 implementation
to train the new layers and we set the learning rate to 0.01.
The last layer of the network is a softmax layer that provides
posterior probabilities as normalized prediction values for AP
and UNAP classes. In the second phase, we fine-tune all train-
able weights in the whole network only for 500 steps and with
a learning rate of 0.001. We keep the learning rate small in
order to protect the powerful weights of the original Incep-
tion V3 model from changing too quickly and loosing their
representation ability.

Observable Visual Features (OVF) Together with the im-
plicit properties and patterns belonging to AP and UNAP
classes, we also utilize the explicit elements such as lines and
their properties found in the images. In addition, we seek the
impact of the color information per se in the creativity de-
tection by encoding the dominant colors as another feature.
These features are mostly related to the artistic dimension of
the creativity. We extract top 10 dominant colors in the im-
ages by k-means clustering on the color values of the pixels
and map the center values of the clusters to 16 colors. In ad-
dition, we extracted lines in an image through Hough Trans-
form (Duda & Hart, 1972). This feature set contains the nor-
malized length of the longest line and average line length; 3
binary flags indicating whether the longest line is horizontal,
vertical or diagonal. We also encoded an interpretation of the
“Rule of Thirds”, which is a well-known rule of photographic
composition8 and mainly states that the center of interest in
images should be on the intersection points or along the lines
when an image is divided into 9 equal sections by 2 horizon-
tal and 2 vertical lines. We generated a binary feature indicat-
ing if the longest line in the image starts from an outer area
and crosses over only 2 sections horizontally and/or 2 sec-
tions vertically. Our intuition is that cutting the continuum of
the line close to “Rule of Thirds” interest areas can guide the
eye of the viewer to the center of focus and contribute to the
message and aesthetic value of the image.

Visual Modality Experiment Results
We trained the CNN models on 3265 images from the train-
ing set. Using the trained models, we performed the test-
ing on 900 images from the test set. At the end of the test
phase, we obtained AP and UNAP scores for each test image.
We employed a straightforward decision process with a 0.5
cut-off where the labeling is conducted by finding the higher
value among the AP and UNAP scores. The performances of
the CNN models are summarized in Table 2. The validation
accuracy shown in the table is calculated by evaluating the
model over the randomly sampled 265 images as the valida-
tion set during the training phase. We observe that fine-tuning
all the network after the retraining the last 2 layers provide a
clear boost to the classifier performance of CNN-1K. The F1
score on the test set significantly (p < 0.05) increases from
0.561 to 0.596.

7http://github.com/tensorflow/models/tree/master/
slim

8http://en.wikipedia.org/wiki/Rule of thirds
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Visual Model Validation Acc Testing F1

CNN-1K 0.608 0.561
CNN-1K+500 0.626 #0.596

Table 2: The CNN visual modality experiment results. # de-
notes p< 0.05 for the McNemar significance test between the
models.

Model #Features Training F1 Testing F1

OVF 22 0.547 0.560
Colors 17 ?0.517 ∗.0.515
Lines 5 0.533 # 0.508

Table 3: The OVF model visual modality experiment results.
? denotes p < 0.001, ∗ denotes p < 0.01, # denotes p < 0.05
for the McNemar significance test between OV F and Colors
or Lines.

For the OVF model, we performed the same training strat-
egy that we employed in the linguistic experiment. The
model yields relatively poor training (F1:0.547) and testing
(F1:0.560) results as they are shown in Table 3. During the
ablation study, we observed that a significant performance
change occurred when we removed the Lines (F1:0.517, p <
0.001) for the training cross-validation results. Through the
analysis on testing results, we found out that both Colors
(F1:0.515, pval < 0.05) and Lines (F1:0.508, p < 0.01) con-
tribute to the final model significantly. Although the results
of the whole OVF model suggest that these aesthetic features
are indeed indicating factors of image creativity, we can im-
ply that the overall visual appreciation of an ad is affected
by more subtle properties to be discovered than the aesthetic
features that we implemented.

Multimodal Fusion
We embraced the late fusion (score level) strategy (Kiela &
Clark, 2015) to obtain the multimodal appreciation score. To
combine the scores from each model for a class by soft voting
approach, we employed Equation 1 where sn denotes the ap-
preciation score for the ad x by the model mk and αn denotes
the weight for the model mk.

ms(x) = ∑
n:mk

αn× sn (1)

We obtained the peak points for α values by running a grid
search on the multimodal fusion of model outputs for devel-
opment set. In this search, all α values are positive and their
sum equals to 1.0. After calculating the multimodal appreci-
ation scores, namely ms, we labeled the instance a by finding
the maximum value among the class scores. We evaluate the
multimodal experiment results by averaging (Equal α) and
soft voting in terms of the F1 scores on the test set and we
present the results in Table 4. The α values that we employ
during the fusion are shown in the last column. While cal-
culating the multimodal fusion results, we employ the uni-
modal models; L, OVF and CNN-1K+500. We chose to use
the model CNN-1K+500 since it yields the highest validation
accuracy and has a significant improvement for the testing

Model Eq. α F1 Soft α F1 α values

ALL 0.620 0.625 L:0.18,C:0.24,O:0.58
L∪OV F 0.587 ∗0.573 L:0.11, O:0.89
L∪CNN 0.605 0.606 L:0.74, C:0.26
OV F ∪CNN 0.618 0.612 C:0.25, O:0.75

CNN 0.596 0.596 C:1.0
OV F ∗ 0.560 ?0.560 O:1.0
L #0.577 #0.577 L:1.0

Table 4: Multimodal fusion results and comparisons to the
uni-modal experiments. ? denotes p < 0.001, ∗ denotes p <
0.01, # denotes p < 0.05 for the McNemar significance test
between L and ablated models.

in comparison to its predecessor. Regarding the uni-modal
results of linguistic and visual models, the lowest perfor-
mance is obtained by using OVF while the highest F1 score
is yielded by the CNN model. As shown in Table 4, the ALL
model significantly outperforms the linguistic and observable
visual features models. ALL model surpasses CNN, which is
the best unimodal model, by increasing the performance from
0.596 to 0.625 for the soft fusion and to 0.620 for the equal α

fusion. This outcome can be considered as conforming with
our initial anticipation that the different modalities play com-
plementary roles in expressing the creativity and appeal of
an advertising print. The highest contributor of the complete
model ALL is the CNN model and when we remove it from
the fusion, the Equal α F1 score drops to 0.587.

Discussion and Conclusion
For the example in www.adsoftheworld.com/media/
print/act tv numbers insects vs frog, which is an AP
sample resolved by the model ALL but not by the visual mod-
els, although the visual channel is highly expressive too, the
lack of straight lines and dull color palette decreases the pre-
diction performance of OVF model. CNN model also misla-
bels the image with a very low confidence since it possibly
fails to recognize the peculiar focus elements. Therefore, a
wider range of training samples for advertising images would
be necessary to identify the style marks of creative and appre-
ciated compositions.

Our quantitative results show that the sensorial structure
of the relation between the slogan, and the product cate-
gory/type is a strong indicator of the creativity appreciation
level. When we analyze the feature importance of the fi-
nal model L, we detected that especially the sensorial rela-
tion features between the product type and slogan become
prominent among the implemented sensorial features. To
better illustrate the contribution of the sensorial informa-
tion to the final model, we fused the visual models with
the model L \ Sensorial in which we removed all sensorial
features from the linguistic model. The Equal-α F1 score
of the fusion model decreases to 0.594 without the senso-
rial features. In the ad www.adsoftheworld.com/media/
print/febreze french fries, we show an AP test sam-
ple resolved by the contribution of sensorial features. In fact,
the example epitomizes the usage of the olfactory disadvan-
tage of the language as a creativity inducing tool. We believe

2938

www.adsoftheworld.com/media/print/act_tv_numbers_insects_vs_frog
www.adsoftheworld.com/media/print/act_tv_numbers_insects_vs_frog
www.adsoftheworld.com/media/print/febreze_french_fries
www.adsoftheworld.com/media/print/febreze_french_fries


that smell related words, such as the word “odor” in the ex-
ample, possibly contributes to the surprisal dimension of the
creative and AP advertising since olfactory words tend to be
less expected by the audience. Indeed, our analysis on the
training set reveals that the smell association of the words
are inclined to be higher in the AP samples in comparison to
the UNAP samples (Mann-Whitney p < 0.001). On the other
hand, taste association tends to denote the opposite behaviour
in our training set (Mann-Whitney p < 0.001) while we can-
not observe any significant difference for the other senses
w.r.t. the Sensicon association values.

Although the automatic assessment of the appreciation
level of advertising is a substantially compelling challenge,
our findings suggest that sensorial information along with the
other linguistic, semantic, cognitive and, finally visual as-
pects establish a starting point to tackle its complexity.
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Abstract 
In everyday life, people see, describe and remember motion 
events. We tested whether the type of motion event 
information (path or manner) encoded in speech and gesture 
predicts which information is remembered and if this varies 
across speakers of typologically different languages. We focus 
on intransitive motion events (e.g., a woman running to a tree) 
that are described differently in speech and co-speech gesture 
across languages, based on how these languages typologically 
encode manner and path information (Kita & Özyürek, 2003; 
Talmy, 1985). Speakers of Dutch (n = 19) and Turkish (n = 22) 
watched and described motion events. With a surprise (i.e. 
unexpected) recognition memory task, memory for manner and 
path components of these events was measured. Neither Dutch 
nor Turkish speakers’ memory for manner went above chance 
levels. However, we found a positive relation between path 
speech and path change detection: participants who described 
the path during encoding were more accurate at detecting 
changes to the path of an event during the memory task. In 
addition, the relation between path speech and path memory 
changed with native language: for Dutch speakers encoding 
path in speech was related to improved path memory, but for 
Turkish speakers no such relation existed. For both languages, 
co-speech gesture did not predict memory speakers. We 
discuss the implications of these findings for our understanding 
of the relations between speech, gesture, type of encoding in 
language and memory.  

Keywords: Motion events; Memory; Cross-linguistic 
differences; Co-speech gesture 

Introduction 
People frequently perceive, remember and communicate 
about events. The relations between these different cognitive 
processes are not well-understood. In this study, we ask 
whether the way a visually perceived event is described 
relates to how it is remembered. How exactly an event is 
described, varies across typologically different languages. In 
addition, within languages there is also variation: two 

speakers of the same language may perceive the same event, 
but describe it differently. Importantly, in describing events 
people not only use speech but also co-speech gestures that 
describe main components of events. These gestures also 
vary both across and within languages. How does the way 
one speaks and gestures about events predict one’s memory 
for various aspects of events?  

Many of the events people see in their daily lives involve 
motion, because the world around us is constantly moving.  
Two crucial components of motion events are the manner of 
motion (e.g., running) and the path that the motion follows 
(e.g., to the tree). Whether people mention the manner or path 
during a motion event description is strongly affected by the 
language they speak. Verb-framed languages (e.g., Turkish, 
Greek, Spanish) typically encode path in the main verb and 
can optionally add manner of motion, for example in 
subordinate verbs or in adverbial phrases (see example 
sentence (1) from Turkish below; Talmy, 2000). By contrast, 
satellite-framed languages (e.g., Dutch, English, Russian) 
typically encode manner in the main verb and path in a 
variety of other structures, such as prepositional phrases (see 
example sentence (2) from Dutch below). A crucial 
difference between verb-framed and satellite-framed 
languages is that speakers of satellite-framed languages 
typically mention both path and manner information, while 
speakers of verb-framed languages regularly omit manner 
information (Slobin, 2003).  
 

(1)    
Kadın (koş-arak) ağac-a yaklaş-ıyor 

Woman (run-
Connective) tree-Dative approach-

Present 
Noun 
phrase (Verb) Noun 

phrase Verb 

Figure (Manner) Ground Path 
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(2)    

De vrouw rent naar de boom 
The 
woman runs to  the tree 

Noun 
phrase Verb Preposition Noun phrase 

Figure Manner Path Ground 
 

If speakers of different languages describe the same motion 
event differently, do they also remember the event 
differently? Prior work found no cross-linguistic differences 
in how speakers of verb-framed and satellite-framed 
languages remember manner and path (Engemann et al., 
2015; Gennari et al., 2002; Papafragou et al., 2002; 
Papafragou, Hulbert, & Trueswell, 2008, but see Filipović, 
2011 for differences using complex motion events). 
However, these studies simply compared speakers of verb-
framed and satellite-framed languages at the group level, 
without considering the variation within languages in terms 
of which motion event information is described. It remains 
unknown whether which information a speaker mentions in a 
particular motion event description may predict their later 
memory for that information, regardless of their native 
language. For example, if a speaker described the path of a 
motion event, do they remember that path better? In addition, 
how these specific descriptions might interact with native 
language to predict memory also remains unclear. For 
example, does describing path have a different effect on path 
memory for speakers of verb-framed languages compared to 
speakers of satellite-framed languages? 

It is plausible that the information encoded in linguistic 
descriptions predicts memory performance for two reasons. 
First, it could be that the description is a window into the 
mental representation of the event: if a speaker describes the 
path, this might indicate that the speaker has mentally 
represented the path of the event. Therefore, the speaker may 
be more likely to remember the path (Papafragou et al., 
2002). Second, it could be that the verbal description 
functions as an additional format in which the event is 
encoded in memory. This way, the description itself might be 
remembered and thus aid memory for the components 
encoded in the description (Papafragou et al., 2002). Indeed, 
it appears that what exactly is said in a motion event 
description is important for memory: speakers who described 
a path of motion later remembered this path better (Billman, 
Swilley, & Krych, 2000).  

When investigating the link between descriptions and 
memory, it is important to keep in mind that language is 
multimodal (Vigliocco, Perniss, & Vinson, 2014). In fact, 
descriptions of events are often accompanied by iconic co-
speech gestures. For example, while saying “The woman ran 
to the tree”, a speaker might wiggle one’s index and middle 
fingers in an inverted V-shape across space from left to right. 
Co-speech gestures can represent path, manner, or both in one 

gesture (Figure 1). Importantly, co-speech gestures 
accompanying motion event descriptions differ both across 
and within languages. In terms of cross-linguistic differences, 
the form of motion event co-speech gestures differs between 
speakers of verb-framed and satellite-framed languages (Kita 
& Özyürek, 2003). However, it is yet unknown whether there 
are cross-linguistic differences between speakers of verb-
framed and satellite-framed languages in terms of how often 
they gesture about path and manner, and whether this relates 
to their memory for path and manner. In addition, co-speech 
gesture production also differs within languages. Within 
speakers of a language, one element of motion might be 
gestured more often than another element for different events. 
Therefore, both speech and co-speech gesture need to be 
taken into account to see how differences within and across 
languages in motion event descriptions relate to motion event 
memory. 

 

  
 

Figure 1: Gestures can represent only path (A), only manner 
(B) or both manner and path (C)  

 
Indeed, prior work shows that gestures are related to event 

memory. For example, producing co-speech gestures when 
describing motion and action events leads to better memory 
for these events (Cook, Yip, & Goldin-Meadow, 2010). In 
addition, the specific action event information conveyed in 
gesture predicts the information later remembered (Koranda 
& MacDonald, 2015). These results are in line with research 
on the enactment effect, which shows that reading 
descriptions of action events and performing these actions 
leads to better memory for the descriptions that does only 
reading (for review, see e.g., Cohen, 1989). The involvement 
of the motor system could lead to richer memory 
representations, or to stronger memory representations 
(Madan & Singhal, 2012). These studies point to the 
importance of taking co-speech gestures into account when 
investigating the relation between motion event descriptions 
and memory.  

The Present Study 
The main aim of the present study was to investigate whether 
the speech and co-speech gestures that speakers use to 
describe motion events predict their memory, and whether 
cross-linguistic differences in speech and gesture lead to 
cross-linguistic differences in memory. To test these 
questions, Dutch and Turkish speakers watched and 
described motion events, after which their surprise 
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recognition memory for manner and path was tested. We had 
the following predictions:  

(a) In general, we expected that encoding a motion 
event component in speech would predict better 
memory for that component. 

(b) Similarly, we expected that encoding a motion event 
component in gesture would predict better memory 
for that component.  

(c) Cross-linguistically, we expected Dutch speakers to 
encode manner more often in speech and gesture 
than Turkish speakers, due to the optional encoding 
of manner in Turkish. As a result, we expected 
Dutch speakers to have better memory for manner. 

Method 
Participants. Data were collected from 19 adult native 
speakers of Dutch (15 females, Mage = 23) and 22 adult native 
speakers of Turkish (16 females, Mage = 21). Dutch speakers 
received monetary compensation for their participation. 
Turkish speakers received course credit for their 
participation. 
Materials. Target events presented in the study phase 
consisted of 16 silent video clips that depicted a female actor 
moving with respect to a landmark object along a particular 
path with a particular manner (e.g., a woman hopped to a 
cactus). Each clip was 2500ms long. Each clip was created 
by combining four spontaneous manners of motion (run, hop, 
twirl, tiptoe) with four motion paths (to, into, from, out of). 
Sixteen additional video clips of transitive events served as 
fillers (e.g., a woman biting an apple). 

In the memory phase, half of the events had a change to 
either the manner (e.g., a woman tiptoed instead of hopped to 
a cactus) or the path (e.g., a woman hopped from instead of 
to a cactus) of motion (Figure 2). The other half of the events 
remained the same. Of the 15 filler events, half remained the 
same and half involved an object change (e.g., a woman 
biting a banana). 
Procedure. Each participant was tested in a quiet room at 
their university campus in their native language by a native 
speaker together with a confederate who served as an 
addressee.  

In the study phase, participants saw 16 target and 16 filler 
events. Each trial started with a fixation screen of 1000ms, 
followed by the event shown for 2500ms. Then a gray screen 
appeared, during which participants described “what 
happened in the video” to the addressee. Participants’ speech 
and gestures were videotaped for later coding. The memory 
task was presented immediately after the study phase. The 
memory task was a surprise for the participants, because this 
way the prospect of the memory task could not affect the 
production results. During the memory task, participants saw 
another set of events and for each event indicated whether 
they had seen this exact video before by pressing a button. In 
both study and memory phases, each participant saw the 
events in different randomized order.  

   

  
 

Figure 2: Example of a manner change (hop became tiptoe; 
left panel) and a path change (to became from; right panel) 

 
Coding. Descriptions of target events were coded for the 
presence of path and manner information in speech and 
gesture using ELAN software (Lausberg & Sloetjes, 2009) by 
a native speaker of the relevant language. In speech, manner 
information was coded as present if how the motion was 
performed was encoded with a manner verb (e.g., rennen; 
running – mostly in Dutch) or a manner verb subordinated to 
a path verb via a connective (e.g., koşarak; run-Connective – 
mostly in Turkish). Path information was coded as present if 
the change of location with respect to something was encoded 
with prepositions or spatial/directional nouns (e.g., naar (to), 
içine (inside)) or path verbs (e.g., gir (enter), yaklaş 
(approach)).  

In gesture, manner information was coded as present if 
speakers produced a gesture representing the motion in a non-
linear way. Gestures could represent the manner from a third 
person perspective (e.g., for twirling, a manner gesture could 
involve the index finger turning in circles) or could be an 
enactment of the figure’s posture during the movement (e.g., 
for running, a manner gesture could involve moving the arms 
up and down). Path information was coded as present if 
speakers deliberately traced the change of location with a 
body part chosen to represent the figure. Path gestures could 
trace the change of location in the lateral axis (either with a 
correct or incorrect direction) or in the sagittal axis (moving 
towards or away from the body). Points to the location of the 
landmark were not coded as path gestures. Gestures could 
either include one motion element (manner-only or path-
only) or a combination of both elements. 

Results 
Data were analyzed with generalized binomial linear mixed 
effects modelling (glmer) with crossed random intercepts for 
Subjects and Items using lme4 package (Bates et al., 2015) in 
R (R Core Team, 2018). This mixed effects approach allowed 
us to take into account the random variability that is due to 
having different participants and different items. 
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Speech and gesture production 
First, we tested whether there were cross-linguistic 

differences in how often path and manner components of 
motion events were mentioned in speech (Figure 3). We 
excluded three trials (two Dutch) in which the addressee 
talked and affected the speaker’s speech production. A glmer 
model that tested the effects of Language (Turkish, Dutch) 
and Component (Path, Manner) on binary values for mention 
in speech (0 = no, 1 = yes) at the item level revealed only a 
main effect of Component (β = 3.41, SE = 1.50, z = 2.28, p = 
.02). Speakers mentioned Manner (M = 0.97) more often than 
Path (M = 0.72). No other effects or interactions were 
significant. Furthermore, the proportion of mention of path 
and manner components in speech by Turkish and Dutch 
speakers were similar per specific types of path or manner 
(Table 1).  
 

 
 

Figure 3: Event components encoded in speech. Error bars 
represent the standard error around the mean proportion of 
trials in which a component is mentioned per participant.  
 

Table 1: Proportions of event components encoded in 
speech for each manner and path type, separated by 

language. 
 

    Language 
    Turkish Dutch 

Manner 

hop 0.99 0.98 
run 0.99 1.00 
tiptoe 0.91 1.00 
twirl 0.95 0.96 

Path 

to 0.67 0.56 
from 0.61 0.51 
into  0.95 0.90 
out of 0.80 0.73 

 
Next, we tested whether there were cross-linguistic 

differences in how often speakers gestured about path and 
manner components while describing motion events (Figure 
4). We excluded the same three trials that were excluded from 
the speech data analyses. A glmer model that tested the 
effects of Language (Turkish, Dutch), Component (Path, 

Manner) and their interaction on binary values for whether a 
component was encoded in gesture in an event description (0 
= no, 1 = yes) revealed only a main effect of Language (β = -
1.59, SE = 0.49, z = -3.24, p < .01). Turkish speakers (M = 
0.48) gestured more often about both elements than Dutch 
speakers (M = 0.28). No other effects or interactions were 
significant. These patterns were replicated in a follow-up 
analysis that selected only the trials in which speakers 
gestured, and thus eliminated the possibility that differences 
in gesture rates hide cross-linguistic differences in what 
speakers of Dutch and Turkish prefer to gesture about. 

 

 
 

Figure 4: Event components encoded in gesture. Error bars 
represent the standard error around the mean proportion of 

trials in which a component is gestured per participant.  

Memory performance 
Beginning with filler events, Dutch (M = 0.99) and Turkish 
(M = 0.95) speakers had similar memory accuracy, indicating 
that the language groups were comparable in general memory 
performance. Furthermore, collapsed across language 
groups, memory for No change items (M = 0.78, SD = 0.15, 
t(40) = 11.98, p < 0.001) and Path changes (M = 0.68, SD = 
0.26, t(40) = 4.29, p < 0.001) were significantly higher than 
chance level. However, memory for Manner changes (M = 
0.40, SD = 0.26, t(40) = -2.39, p = 0.99) did not differ from 
chance level. This suggests that the participants may have 
simply been guessing when there was a Manner change. In 
addition, looking at the distribution of Manner change 
detection accuracy, it was clear that almost all participants 
had poor manner memory. It was thus not the case that some 
participants’ memory was very poor, while other 
participants’ memory was good. Therefore, we did not further 
attempt to predict manner memory using speech, gesture and 
language, because we did not want to predict guessing 
behavior.  

For predicting path memory, path mentions in speech that 
only used unspecific verbs (e.g., to advance) that do not 
indicate or imply the spatial relation between the figure and 
the landmark were analyzed together with no mention trials 
and were contrasted to path mentions with prepositions, 
spatial/directional nouns or path verbs. Because these 
unspecific path verbs could be used regardless of the 
trajectory of motion we reasoned that they would not aid 
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memory. Following a similar reasoning for gestures, we 
analyzed path gestures in the sagittal axis together with no 
gesture trials and contrasted them to path gestures in the 
lateral axis with the correct direction. Path gestures in the 
lateral axis with the incorrect direction were excluded from 
the analyses because they might even hinder memory.  

A glmer model tested the effects of Path in speech (0 = no 
mention, 1 = mention), Path in gesture (0 = no gesture, 1 = 
path gesture), Language (Turkish, Dutch) and Condition (No 
change, Path change) on binary values for whether an item 
was remembered (0 = no, 1 = yes). The best-fitting model 
revealed a main effect of Condition as well as an interaction 
between Condition and Path in speech (β = 1.26, SE = 0.51, z 
= 2.46, p = .01): for No change items, speakers had similar 
accuracy regardless of whether Path was mentioned in 
speech; for Path changes accuracy was higher if Path was 
mentioned in speech than if it was not. There was also an 
interaction between Path in speech and Language (β = 1.57, 
SE = 0.58, z = 2.71, p < .01): Dutch and Turkish speakers had 
similar accuracy when they did not mention Path in speech, 
but Dutch speakers had higher accuracy than Turkish 
speakers when they mentioned Path in speech (Figure 5). No 
other main effects or interactions were significant. Notably, 
there were no effects or interactions involving the factor Path 
in gesture. Thus, contrary to our expectations, gesturing about 
path did not predict better memory for path of motion. We 
turn to the significance of these findings below.  

 

 
Figure 5: Interaction between Path in speech and Language 
for path memory accuracy, as predicted by the glmer model 

Discussion 
We tested whether the speech and gesture used to describe a 
particular motion event predicts memory for that motion 
event, looking at variation across and within languages. Our 
study has five key findings. First, speakers of Turkish did not 
omit the manner more often than speakers of Dutch. Second, 
speakers of both Dutch and Turkish had chance level memory 
for manner of motion. Third, speakers who mentioned path 
in their speech were later more accurate at detecting changes 
to this path. Fourth, path mention in speech was positively 
related to path memory for Dutch speakers, but not for 
Turkish speakers. Finally, we found that speaking but not 
gesturing predicts memory for path information.  

Regarding the production results, we did not replicate the 
classic typological finding that speakers of verb-framed 
languages omit the manner more often than speakers of 
satellite-framed languages (Slobin, 2003). Instead, we found 
that speakers of both Dutch and Turkish almost always 
mentioned the manner of motion. A possible explanation can 
be found in the stimuli used in the present study. In an attempt 
to increase manner memory, we used manners that were 
rather salient (tiptoe, twirl, hop, run). It is plausible that 
because these manners were so salient, speakers of Turkish 
deemed it important to mention them. This interpretation is 
in accordance with the finding that speakers of Greek, a verb-
framed language, mention the manner of motion much more 
often when it is not inferable for the listener compared to 
when it is inferable (Papafragou, Massey, & Gleitman, 2006). 
Although the cross-linguistic difference in manner omission 
has been reported many times, our findings show that within-
language encoding flexibility makes it possible that under 
certain conditions (e.g., for some events), such cross-
linguistic differences can be diminished.  

Our study was the first to directly compare memory for 
manners and paths, where the path and manner changes did 
not involve object changes, but manner and path changes for 
intransitive events (unlike e.g., Bunger, Trueswell, & 
Papafragou, 2012 investigating instrumental motion). The 
finding that path is remembered better than manner is in 
accordance with a previously reported developmental path 
bias in terms of categorization (Konishi et al, 2016; Pruden et 
al., 2012, 2013). It is possible that path is remembered better 
than manner because it is related more to intentionality or 
goal-directedness of the motion (Pourcel, 2004). Such a 
relation between intentionality and memory of motion is also 
found when comparing memory for goal paths (e.g., to) 
versus source paths (e.g., from). Goals are remembered better 
than sources, possibly because they are more informative 
about the figure’s intentions (Lakusta & Landau, 2012; 
Papafragou, 2010). Notably, this goal-source asymmetry 
exists only for animate figures, who can have intentions 
(Lakusta & Landau, 2012).  

Interestingly, while speakers were not successful at 
remembering the manner, they did almost always describe the 
manner. This dissociation indicates that in terms of manner, 
there is no strong correspondence between speech and 
memory. However, this overall comparison is based on data 
that is averaged across different participants, items, and 
languages. It is still possible that when these factors are taken 
into account, one might find a subtle relation between 
mentioning manner in speech and remembering manner. In 
future research, this can be tested if manner memory accuracy 
is increased to above chance level. Nevertheless, this overall 
dissociation between manner mention in speech and manner 
memory is still quite striking. This suggests that there are at 
least partly different criteria for which motion event 
information is important to describe to another person and for 
which motion event information is important to remember. 
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For describing motion events to another person, manner of 
motion may be important when it is salient and not inferable. 
By contrast, for remembering motion events, path of motion 
may be important because it relates to the intentions of the 
figure. 

In terms of the relation between descriptions and memory, 
we found that speakers who described a path in speech were 
more accurate at detecting changes to that path. This is 
consistent with a previous finding that speaking about path 
predicts better memory for path (Billman et al., 2000). It is 
also consistent with prior findings from other domains, 
demonstrating relations between how speakers describe and 
remember visual stimuli (e.g., eye-witness memory, Marsh, 
Tversky, & Hutson, 2005; picture recognition, Zormpa et al., 
2018). Whether this relation between path speech and path 
change detection is causal is a question for further research.  

In addition, the relation between path speech and path 
memory differed cross-linguistically: for Dutch speakers 
only, speaking about path predicted better memory for path. 
For Turkish speakers, path memory was similar regardless of 
whether path had been mentioned. This result might be due 
to cross-linguistic differences in how path was mentioned. 
For example, while Dutch speakers mentioned path in 
prepositions, Turkish speakers mentioned path mainly in 
verbs. Perhaps these are differentially related to memory. 
Another cross-linguistic encoding difference is that while 
Dutch speakers almost always used path prepositions that 
indicate the spatial relation between the figure and the 
landmark, Turkish speakers sometimes used unspecific verbs 
(e.g., to advance) to describe the path. Thus, if a Turkish 
speaker wants to mention path, specifically mentioning the 
relation to the landmark is optional. This greater optionality 
may have resulted in a weaker link between linguistically 
encoding the relation to the landmark in speech and 
remembering it. Further research is necessary to investigate 
these speculations. Either way, this interaction indicates that 
when linking typological differences to cognition, it is 
important to move from studying main effects of native 
language to investigating more subtle interactions of native 
language and descriptions.  

Finally, we found no relation between co-speech gesture 
and memory. Importantly, path gestures typically co-occur 
with path speech. Therefore, this lack of a relation between 
gesture and memory can be interpreted to mean that path 
memory is equally accurate for speakers who speak and 
gesture about path, compared to speakers who only speak 
about path. The lack of a relation between path gesture and 
memory was surprising, given that previous research has 
shown a link between gesture production and event memory 
(Cook et al., 2010; Koranda & MacDonald, 2015). However, 
these studies differ from ours in one important respect: while 
we used motion events only, they either collapsed motion 
events with actions (Cook et al., 2010) or used actions only 
(Koranda & MacDonald, 2015). Perhaps the different 
memory results can be attributed to the differences between 

iconic co-speech gestures that describe actions versus 
gestures that describe paths of motion events. For example, 
action gestures might involve motor simulation more 
strongly than tracing path gestures (Hostetter & Alibali, 
2008).  

Either way, it appears that for the path of motion events, 
speech but not co-speech gesture predicts memory. There are 
two potential explanations of this finding. One possibility is 
that speech planning affects attention more than does co-
speech gesture planning. Speech planning affects attention: 
while watching motion events to prepare for description, 
people look at the events in such a way that they can describe 
it later (Bunger et al., 2012; Flecken et al., 2015; Flecken, von 
Stutterheim, & Carroll, 2014; Papafragou et al., 2008; 
Trueswell & Papafragou, 2010). By contrast, because 
gestures do not follow such a strict system, their planning 
might have less of an impact on attention, and in turn have 
less of an impact on memory. Another possible explanation 
for why speech but not gesture predicts memory concerns the 
nature of speech and gesture representations. While speech is 
categorical and relies on discrete units, gesture is analogue 
and allows information to be conveyed imagistically (Cook, 
Yip, & Goldin-Meadow, 2012). Therefore, the verbal 
representation is an easier, more simplified version of the real 
event, compared to the gestural representation, and thus 
might be more useful as a memory cue.  

In conclusion, the present study reveals differential 
contributions of speech and gesture in predicting motion 
event memory. Our findings underline that the relation 
between language and event memory is intricate and is 
influenced by subtle variations in how motion events are 
described within and across speakers of different languages. 
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Abstract

In real world contexts of reasoning about evidence, that evi-
dence frequently arrives sequentially. Moreover, we often can-
not anticipate in advance what kinds of evidence we will even-
tually encounter. This raises the question of what we do to our
existing models when we encounter new variables to consider.
The standard normative framework for probabilistic reasoning
yields the same ultimate outcome whether multiple pieces of
evidence are acquired in sequence or all at once, and it is in-
sensitive to the order in which that evidence is acquired. This
equivalence, however, holds only if all potential evidence is
incorporated in a single model from the outset. Hence little is
known about what happens when evidence sets are expanded
incrementally. Here, we examine this contrast formally and re-
port the results of the first study, to date, that examines how
people navigate such expansions.
Keywords: sequential diagnostic reasoning; sequential causal
structure learning; causal Bayesian networks; order effects.

Introduction
Tom wakes up one morning and notices a rash on his skin. He
does not think the rash is a big deal, but after a couple of days
the rash is still present so he decides to see a doctor. Before
he visits a doctor he thinks that the rash is either caused by
a bacterial or a viral infection or, perhaps, both. The doctor
agrees with him that the rash could be caused by a bacterial
and/or a viral infection. However, she additionally informs
Tom that he also has a swelling he didn’t notice, which can
also be caused by a bacterial and/or a viral infection. Fur-
thermore, she tells him that either type of infection is more
likely to cause the swelling than the rash. How do (should)
Tom and the doctor revise their beliefs about multiple inde-
pendent causes given multiple pieces of evidence of different
diagnosticity?

From a normative standpoint, many would argue that the
answer is encoded in the causal Bayesian networks (CBNs):
directed acyclic graphs with nodes representing variables
(causes and effects) and arrows representing probabilistic
and causal relations between the nodes (Pearl, 2009, 1988;
Neapolitan, 2003). Here one would build a 4-node CBN with
2 common effects and 2 independent causes.1 For instance,
the CBN in Figure 1 would model the situation we described
above: C1 = viral infection, C2 = bacterial infection, E1 =
rash, and E2 = swelling.

To fully parameterize CBN from Figure 1, one needs to
specify the following probabilities:

P1pC1q “ c1 , P1pC2q “ c2

P1pE1 | C1,C2q “ α1 , P1pE1 | C1, C2q “ β1

C1

E1 E2

C2

Figure 1: CBN with 2 independent causes and 2 common
effects.

P1pE1 |  C1,C2q “ γ1 , P1pE1 |  C1, C2q “ δ1 (1)
P1pE2 | C1,C2q “ α2 , P1pE2 | C1, C2q “ β2

P1pE2 |  C1,C2q “ γ2 , P1pE2 |  C1, C2q “ δ2

P1pC1q and P1pC2q are usually referred to as the prior prob-
ability of the two causes and the remaining probabilities as
being part of the conditional probabilities tables (CPTs) for
the two effects. The doctor then could use this CBN to up-
date her beliefs about the probability that Tom has a viral
infection after learning that Tom has a rash by calculating
P1pC1 | E1q. After additionally learning that Tom also has
swelling the doctor could further update her probability of
Tom having a viral infection by calculating P1pC1 | E1,E2q

(similarly for the bacterial infection).
However, it is somewhat accidental that Tom first noticed

the rash and not the swelling. He could have plausibly first
seen the swelling and gone to the doctor and then noticed
the rash. Would the CBN calculation be different in this sce-
nario? It depends. If the rash and the swelling are not equally
diagnostic of the two causes as is suggested by the example,
then it is possible that P1pC1 | E1q ‰ P1pC1 | E2q, in which
case the doctor’s degrees of belief about a viral infection af-
ter first learning that Tom has swelling would not be equal
to those where she first leaned about the rash. However, after
learning the second effect the order in which the effect appear
no longer matters: that is, P1pC1 | E1,E2q is always equal to
P1pC1 | E2,E1).

It is then empirically interesting to investigate whether
people are sensitive to these different orders of effects and
whether they update the causes differently depending on the
order in which the effects appear. Studies on sequential di-

1Hayes, Hawkins, Newell, Pasqualino, and Rehder (2014) have used
a dynamic CBN to model these kinds of situations. However, in this
paper we employ static CBNs as there are no significant differences
in the formalism in this case.
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agnostic reasoning have sought to tackle exactly these is-
sues (see Meder & Mayrhofer, 2017b; Hogarth & Einhorn,
1992). They presented participants with a sequence of effects
and asked them to reason from multiple effects to causes ei-
ther with each effect they learned (step-by-step procedure)
or after they learned about the whole sequence of effects
(end-of-sequence procedure) (see Hogarth & Einhorn, 1992;
Rebitschek, Bocklisch, Scholz, Krems, & Jahn, 2015). Their
studies were primarily interested in investigating primacy
effects (most of the evidential weight is given to the first
piece of evidence) and recency effects (most of the eviden-
tial weight is given to the most recent pieces of evidence).
Meder and Mayrhofer (2017a) investigated sequential diag-
nostic reasoning by providing participants with verbal in-
formation regarding the strengths of the causes instead of
a more quantitative information (like the CPTs) and found
that participants are remarkably accurate in their judgements.
However, all these studies investigated only situations where
the causes were mutually exclusive and exhaustive causes
(which would be modeled as one node for all causes). Hayes
et al. (2014) investigated a scenario where two symptoms
could be produced by two independent causes. However,
in their study both effects had exactly the same diagnostic-
ity (i.e. the same CPT) and for that reason there are no order
effects, i.e. it does not matter whether we learn first E1 or E2,
P1pC1 | E1q “ P1pC1 | E2q.

One of the goals of this paper is to empirically investigate
people’s ability to reason diagnostically from multiple effects
with different diagnosticities (CPTs) to multiple independent
causes. More specifically, we aim to test how people’s judge-
ments compare to the normative answer from CBNs such as
the one in Figure 1 by manipulating the way in which multi-
ple pieces of the evidence of different diagnosticity are pre-
sented (in a particular order or at the same time) and the way
judgements about the causes are elicited from the participants
(step-by-step (SbS) or all-at-once (AaO)).

Another interesting issue emerges when reasoning with in-
dependent causes. Not only can we learn the evidence se-
quentially, but we can sequentially learn about new variables
that may influence our beliefs about the causes. In technical
parlance, we may need to expand the algebra. Consider Tom
from our example. Initially Tom only knew about his rash
and, based on that knowledge, he updated his probabilities of
the two causes. Unlike the doctor, Tom did not even know
that the two types of infection could also cause swelling. It
is only after he visited his doctor that he learned about the
another potential effect and the occurrence of that effect. At
the time he only knew about the rash he updated the proba-
bilities of the two causes on the basis of a CBN model with
only three nodes: two independent causes and one common
effect while the doctor always had in mind the CBN from Fig-
ure 1. Despite operating with two different CBNs, both Tom
and the doctor would arrive at the same probabilities (assum-
ing the same priors and CPTs for the effect) at this first step.
The next step is, however, crucial. After learning about the

swelling, the doctor would simply learn the new piece of evi-
dence and update the probabilities of the causes based on the
CBNs from Figure 1. Tom, by contrast, might do one of two
things: (1) forget about his original 3-node network and cre-
ate a new 4-node one like the one in Figure 1 in which case he
would arrive at the same estimates as the doctor; or (2) take
his (and doctors) previous estimates of the two causes based
on only one piece of evidence and take them as new priors in
his new 3-node network with the second piece of evidence as
a common effect (see Figure 2). In the latter case he would be
‘splitting’ the CBNs from Figure 1 into two 3-node networks.

C1 E1 C2

C˚1 E2 C˚2

Figure 2: ‘Split’ CBN from E1 to E2

P1pC1q “ e1 , P1pC2q “ e2

P2pC˚1 q “ P1pC1 | E1q , P2pC˚2 q “ P1pC2 | E1q

P1pE1 | C1,C2q “ α1 , P1pE1 | C1, C2q “ β1

P1pE1 |  C1,C2q “ γ1 , P1pE1 |  C1, C2q “ δ1 (2)
P2pE2 | C˚1 ,C

˚
2 q “ α2 , P2pE2 | C˚1 , C˚2 q “ β2

P2pE2 |  C˚1 ,C
˚
2 q “ γ2 , P2pE2 |  C˚1 , C˚2 q “ δ2

Eq. (2) specify the priors and the CPTs of the two net-
works. Although one might intuitively think that Tom will
arrive at the same probabilities as the doctor even in the case
where he models the situation as in Figure 2, that turns out to
be true only under very specific conditions, some of which
may violate common assumptions in causal Bayesian rea-
soning (see Appendix A). Less technically, this is because
once one learns evidence (E1) and updates the probabilities
of the two causes (C1 and C2) in a common-effect CBN, the
two previously independent causes become dependent: al-
though P1pC1 | C2q “ P1pC1q, generally P1pC1 | C2,E1q ‰

P1pC1 | E1q. This dependency is preserved in the full CBN
network in Figure 1 even before one learns the second piece
of evidence (E2) and again updates the probabilities of the
two causes. However, in the lower 3-node CBN in Figure 2
the dependency is lost since it is assumed that C˚1 and C˚2 are
independent before observing E2. Therefore, the final prob-
ability estimates of the two causes, i.e. their estimates after
learning both pieces of evidence, will most likely diverge on
the two different modeling strategies. More specifically, the
final estimates of the two causes will always be higher accord-
ing to the ‘split’ CBN in Figure 2 than those according to the
full one in Figure 1 precisely because the full one accounts
for the above-mentioned dependency and the ‘split’ one does
not. Moreover, when the diagnosticity of the two pieces of
evidence is different (as is the case in this study), the height
of the final estimates in the ‘split’ CBN will depend on the or-
der the evidence is observed: learning E1 then E2 will result
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in the final estimates of the causes that are different to those
that result from learning E2 then E1 (as previously mentioned,
whether we learn E1 first then E2 or vice versa does not affect
the final probability estimates of the causes in the full CBN).
It is also worth pointing out that this divergence only happens
when the causes are independent. If the causes are mutually
exclusive and exhaustive, one can safely ‘split’ the full net-
work into multiple ones without worrying about ending up
with different estimates (see Appendix B).

To the best of our knowledge no study has yet investigated
sequential diagnostic reasoning with sequentially learning the
algebra. In the literature mentioned above participants were
presented with all the variables and the causal/probabilistic
information related to them before they started making judge-
ments about the causes. Even in such contexts, it is worth
looking at order effects because it has long been recognized
that order effects may be particularly diagnostic with re-
spect to the processes underlying the formation of a judg-
ment. Specifically, there is a long literature concerned
with order effects in contexts such as impression formation
(Anderson, 1965) or numerical estimation (Jacowitz & Kah-
neman, 1995). However, our concerns in this paper go be-
yond this. We are interested in examining how reasoners
fare in probabilistic reasoning contexts where they are faced
with entirely new variables. This issue has, to the best of
our knowledge, not been explored. In many scientific and ev-
eryday situations we must make judgements about potential
causes given effects without being aware of other potential
effects that could also inform our judgements. The main aim
of this study was to examine how people reason with multiple
pieces of evidence when they successively learn not just that
some piece of evidence obtains, but also that there is another
potential piece of evidence not known before. We compared
participants’ estimates to both the full network’s predictions
(Figure 1) and the ‘split’ networks’ predictions (Figure 2).

Experiment overview
In the present experiment we investigated the influ-
ence of manipulating algebra and evidence learning on
probabilistic judgements of the two independent causes.
Participants were prompted to reason with either the full
4-node model (Figure 1) from the outset or they learned
in stages that there is another possible effect of the two
causes. Further, participants either observed the effects
in one of the two sequences or they observed both effects
at once. The prior probabilities of the cases and CPTs
of the effects were the same in all conditions: PpC1q “

PpC2q “ 0.15; PpE1 | C1,C2q “ 0.99, PpE1 | C1, C2q “

PpE1 |  C1,C2q “ 0.7, PpE1 |  C1, C2q “ 0;
PpE2 | C1,C2q “ 0.6, PpE2 | C1, C2q “ PpE2 |  C1,C2q “

0.2, PpE2 |  C1, C2q “ 0. For simplicity the priors of the
causes were the same and the CPTs of the effects reflected
different diagnosticities of the two effects.

Methods
Participants and design
A total of 271 participants (NMALE = 101, MAGE = 32.1 years;
one participant identified as neither male nor female) were
recruited from Prolific Academic (www.prolific.ac). All
participants were native English speakers who gave informed
consent and were paid £1.25 for partaking in the present
study, which took on average 13.9 minutes to complete. Par-
ticipants were randomly assigned to one of the 2 (algebra:
full or sequential) ˆ 3 (evidence learning: all-at-once (AaO),
step-by-step from E1 to E2 (SbS1), or step-by-step from E2 to
E1 (SbS2)) = 6 between-participants groups (one group with
44 participants, 3 groups with 45 participants, and 2 groups
with 46 participants).

Materials
All participants were given the same cover story wherein rain
(C1) and a lawn sprinkler (C2) (two binary and independent
variables) could cause a wet lawn (E1) and/or a wet exterior
house wall (E2) (a version of the cover story can be found in
Pearl, 1988). The participants in AaO condition completed an
online inference questionnaire comprising of 10 comprehen-
sion questions (2 about the priors of the causes and 8 about
the CPTs) and 2 test questions (one relating to PpC1 | E1,E2q

and one to PpC2 | E1,E2q). Everyone else completed the same
10 comprehension questions and 4 test questions (relating to
PpC1 | Eiq, PpC2 | Eiq, PpC1 | Ei,Ejq, and PpC2 | Ei,Ejq).

Procedure
In the full algebra condition, the participants were initially
presented with a causal cover story (both in a textual and a
visual form) which explained the relations between variables
and probabilistic information relating to the priors of both
causes (priors were textually communicated as a percentage
chance). They were then asked 2 priors comprehension ques-
tions. Following that, participants were told the CPTs of
the two pieces of evidence (also textually communicated as
a percentage chance) and subsequently asked 8 comprehen-
sion questions regarding the CPTs (in a random order). Af-
ter completing the comprehension questions, participants in
the AaO condition learned that both pieces of evidence oc-
curred and were prompted to answer 2 test questions (one for
each cause) presented in the same order. Participants in the
SbS conditions first learned about one piece of evidence and
answered 2 test questions relating to the 2 causes and then
learned that the second piece of evidence occurred and asked
final 2 questions. When answering the test questions partici-
pants were reminded of the priors of the causes and the CPTs
of each piece of evidence, as well as their previous estimates
of the two causes (in the SbS conditions).

Participants in the sequential algebra condition were ini-
tially told a cover story (both in a textual and a visual form)
including only two causes and one effect. As in the full al-
gebra condition, they were told the priors of the causes (per-
centage chance) and asked 2 priors comprehension questions.
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In contrast to the full algebra contention, they were then told
CPTs (percentage chance) regarding only one piece of evi-
dence and completed 4 comprehension questions related to
CPTs (in both the AaO and the SbS conditions). This was
followed by 2 test questions relating to the probability of the
causes given that one piece of evidence was observed (only
in the SbS conditions). Participants then additionally learned
that there is another piece of evidence potentially relevant to
the probability estimates of the two causes. They learned the
CPTs for the second piece of evidence and completed 4 com-
prehension questions followed by 2 test questions prompt-
ing them to estimate their confidence in the causes happen-
ing given the additional piece of evidence obtained. Again,
participants were reminded of the priors of the causes, CPTs
(but only for the current piece of evidence), and their previ-
ous estimates of the two causes (in the SbS conditions). In
the AaO, after completing the first 4 comprehension ques-
tions participants were not told that the evidence obtained.
Rather, they went on to learn that there is another potentially
relevant piece of evidence, completed additional 4 compre-
hension questions, and subsequently told that both pieces of
evidence obtained. After that, participants were reminded of
the priors, CPTs (for the both pieces of evidence) and com-
pleted 2 test questions regarding the probabilities of the two
causes.

In all conditions the test questions prompted participants to
provide percentage confidence (0–100%) of Ci given one or
two effects. For example, after learning that E1 occurred, they
were asked (in SbS1 condition) a diagnostic reasoning ques-
tions: “How confident are you that it rained overnight now
that you know that the lawn is wet?” After additionally learn-
ing E2 occurred they were asked: “How confident are you that
it rained overnight now that you know that both the lawn and
the house wall are wet?” (the full algebra condition) or “How
confident are you that it rained overnight now that you know
that the house wall is also wet?” (the sequential algebra con-
dition). All participants provided explanations for each an-
swer to the test questions.

Results
All the participants’ responses to the test questions are plot-
ted in Figure 3. To test the effect of the algebra and the ev-
idence learning conditions on participants estimates on the
test questions, we built a linear mixed effects model using
the lme4 package (Bates, Mächler, Bolker, & Walker, 2014).
The model had two fixed effects, Algebra and Evidence learn-
ing, with a random intercept for each participant (there was
no random slope for participant since algebra and evidence
learning conditions vary between participants). We found a
main effect of Evidence learning but no main effect of Alge-
bra (see Table 1). We also found no interaction between Al-
gebra or Evidence learning. However, likelihood ratio tests
showed that including the predictors in the model does not
improve model fit compared to just having an intercept as a
predictor (χ2p3q “ 6.11, p “ 0.11). That is, the data grand

mean fits the data no worse than the model which includes
both predictors.

Table 1: Linear mixed effect model results

A=Algebra; EL=Evidence learning

Estimate 95% CI t-value p
A -6.51 [-17.76, 4.73] -1.13 0.26
EL -0.53 [-1.03, -0.03] -2.1 0.04*
Aˆ EL 3.28 [-17.76, 4.73] 1.29 0.2

A finer grained analyses on the data within each group
showed a significant difference between PpC1 |Eiq and PpC1 |

Ei,Ejq in the full algebra SbS1 condition (tp44q “´4.04, p“
0.0002); in the full algebra SbS2 condition both between
PpC1 | Eiq and PpC1 | Ei,Ejq (tp45q “ ´4.87pă 0.0001) and
PpC2 | Eiq and PpC2 | Ei,Ejq (tp45q “ ´2.98, p “ 0.005); as
well as in the sequential algebra SbS2 condition between
PpC1 | Eiq and PpC1 | Ei,Ejq (tp45q “´5.57, pă 0.0001) and
between PpC2 | Eiq and PpC2 | Ei,Ejq (tp45q “ ´6.13, p ă
0.0001). No significant differences in the sequential SbS1
condition.

Further analyses showed that none of the PpC1 | Ei,Ejq and
PpC2 |Ei,Ejq are significantly different across the levels of the
evidential learning condition whereas some PpC2 | Eiq are:
in the full algebra condition PpC2 | Eiq in SbS2 and SbS1
are statistically different, tp89q “ ´2.09, p “ 0.04, as well
as PpC2 | Eiq in the sequential algebra condition SbS2 and
SbS1 tp88.5q “ ´2.51, p “ 0.014, with those in SbS1 hav-
ing higher means. Combining these results from those above
regarding participants estimates withing each group suggests
that (i) people are sensitive to the different orders the pieces
of evidence of different diagonsticity were presented and (ii)
that their estimates go against both the full CBN and the
‘split’ CBNs (qualitative) predictions since the differences
PpC1 | Ei,Ejq´PpC1 | Eiq and PpC2 | Ei,Ejq´PpC2 | Eiq are
larger in SbS2 condition than in SbS1 condition whereas the
full CBN and the ‘split’ CBN predict exactly the opposite (see
Figure 3).

A closer look at the data distributions in Figure 3 reveals
the driving force of the results; namely, that participants’ re-
sponses are highly clustered. Three clustering points (‘20%’,
‘60%’, and ‘70%’) seem to correspond to the probability val-
ues one finds in the CPTs for the effects. One clustering point
corresponds to the priors of the causes (‘15%’). The largest
clustering point seems to be around the ‘50%’ mark. Table 3
shows a frequency of responses around (˘2%) the clustering
points. The data captured in Table 3 amounts to « 67% of all
data.

Finally, to assess the fit of each model to the data, we calcu-
lated mean squared errors (MSEs) for each model across the
two algebra conditions.2 Given the above-mentioned cluster-

2Note that the ‘split’ CBN does not have a unique prediction for AaO
condition (see Figure 3). In calculating the MSE for that model we
included the prediction that has the lower MSE.
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ing around particularly the ‘50%’ mark, we additionally cal-
culated the MSEs for a simple model that included the cor-
rect priors (same as in both the full CBN and the ‘split’ CBN
modeling), but has 50% as a response to all test questions.
The results are presented in Table 2.

Table 2: MSEs for the full CBN, ‘split’ CBN, and ‘50%’
model in the full and sequential algebra conditions

Full algebra Sequential algebra
Full CBN 621.18 536.94
‘Split’ CBN 778.93 701.97
‘50%’ model 573.73 496.65

The best fitting model of the three was the simple ‘50%’
model, further confirming the clustering effect around the
‘50%’ mark and the results of the linear mixed effect model.
The full CBN model was a better fit than the ‘split’ CBN
model of both the full algebra condition data and sequential
algebra condition data. All three models fit better the sequen-
tial algebra condition data than the full algebra condition data
suggesting a difference between the two conditions. How-
ever, according to the linear mixed effect model that differ-
ence is not statistically significant.

Discussion
The general goal of the paper was twofold. First, we sought
to explore new avenues in sequential diagnostic reasoning by
investigating peoples causal judgements with multiple inde-
pendent causes and multiple pieces of evidence of different
diagnosticity. To this effect we found that people are sen-
sitive to the order of presentation of the different pieces of
evidence. However, although there was a trend in increasing
the probabilities of the causes after finding out that the second
piece of evidence obtained (in accordance with both the full
and the ‘split’ CBN model), the (qualitative) predictions of
both models regarding the amount of increase in each order
go against the participants’ mean estimates.

Second, we introduced the issue of the novel variables in
sequential reasoning and the practical challenge it presents.
In the first empirical study on this issue, we found that people
update almost identically when they are presented with the
full algebra and when the algebra is expanded sequentially. In
principle, this lack of difference could mean either that people
are very good at this expansion, or that they inappropriately
treat the full model in a sequential, local fashion. The MSE
analysis showed that the full CBN model is a better fit than the
‘split’ CBN model across board supporting the latter option.
However, the significant clustering in our data and the fact
that the ‘50%’ model fitted the data better then either the full
or the ‘split’ CBN model suggest that participants employed
different strategies in answering our test questions. Some
of these seem indicative of well-established errors in human
causal/probabilistic reasoning such as ‘the inversion fallacy’
where people confuse PpA |  Bq with PpB | Aq (Nance &
Morris, 2002) or more recently identified errors such as ‘the

zero-sum fallacy’ where people treat evidence as a zero-sum
game in which alternative independent hypotheses compete
for evidential support which may lead to splitting the prob-
ability space between the hypotheses (Pilditch, Fenton, &
Lagnado, 2019). The prevalence of such errors may mask
other differences that would emerge across those contexts. In
particular, systematic differences may yet be found in more
naturalistic scenarios where there are no explicit numbers for
people to hold on to. This should be pursued in future work.
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Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fit-
ting linear mixed-effects models using lme4. arXiv preprint
arXiv:1406.5823.

Hayes, B. K., Hawkins, G. E., Newell, B. R., Pasqualino, M.,
& Rehder, B. (2014). The role of causal models in multiple
judgments under uncertainty. Cognition, 133(3), 611–620.

Hogarth, R. M., & Einhorn, H. J. (1992). Order effects in
belief updating: The belief-adjustment model. Cognitive
psychology, 24(1), 1–55.

Jacowitz, K. E., & Kahneman, D. (1995). Measures of an-
choring in estimation tasks. Personality and Social Psy-
chology Bulletin, 21(11), 1161–1166.

Meder, B., & Mayrhofer, R. (2017a). Diagnostic causal rea-
soning with verbal information. Cognitive psychology, 96,
54–84.

Meder, B., & Mayrhofer, R. (2017b). Diagnostic reasoning.
In M. R. Waldmann (Ed.), Oxford handbook of causal rea-
soning (pp. 433–458). Oxford University Press New York.

Nance, D. A., & Morris, S. B. (2002). An empirical as-
sessment of presentation formats for trace evidence with a
relatively large and quantifiable random match probability.
Jurimetrics, 42, 403–448.

Neapolitan, R. E. (2003). Learning bayesian networks. Pear-
son Prentice Hall Upper Saddle River, NJ.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems: Networks of plausible inference. San Francisco, CA:
Morgan Kauffman.

Pearl, J. (2009). Causality. Cambridge university press.
Pilditch, T. D., Fenton, N., & Lagnado, D.

(2019). The zero-sum fallacy in evidence eval-
uation. Psychological Science. Retrieved from
https://doi.org/10.1177/0956797618818484

Rebitschek, F. G., Bocklisch, F., Scholz, A., Krems, J. F., &
Jahn, G. (2015). Biased processing of ambiguous symp-
toms favors the initially leading hypothesis in sequential di-
agnostic reasoning. Experimental psychology, 62(5), 287–
305.

2951



●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●● ●● ●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

● ●●●

●

●

● ●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●
●

●

●●●●

●

●

●●

● ●
●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Full algebra Sequential algebra

A
aO

S
bS

1
S

bS
2

P
(C

1
 | 

E i)

P
(C

2
 | 

E i)

P
(C

1
 | 

E i, 
E j)

P
(C

2
 | 

E i, 
E j)

P
(C

1
 | 

E i)

P
(C

2
 | 

E i)

P
(C

1
 | 

E i, 
E j)

P
(C

2
 | 

E i, 
E j)

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

P
ro

ba
bi

lit
y 

(%
)

Empirical Full BN Split BN from E1 to E2 Split BN from E2 to E1

Figure 3: Distributions of participants’ responses to the test questions. Error bars are 95% confidence intervals.

Appendix A
We adopt the following convention: a“ 1´a.

Theorem 1. P1pC1 | E1,E2q “ P2pC˚1 | E2q if and only if (i)
α1 δ1 “ β1 γ1 or (ii) α2 “ β2 and γ2 “ δ2.

Proof.

P1pC1 | E1,E2q “
P1pC1,E1,E2q

P1pE1,E2q

“
P1pC1q

ř

C2
P1pE1 | C1,C2qP1pE2 | C1,C2qP1pC2q

ř

C1,C2
P1pE1 |C1,C2qP1pE2 |C1,C2qP1pC1qP1pC2q

“
A1

A1`A2

A1 :“ c1 pα2 α1 c2`β2 β1 c2q

A2 :“ c1 pγ2 γ1 c2`δ2 δ1 c2q

P2pC˚1 | E2q “
P2pC˚1 ,E2q

P2pE2q

“
P2pC˚1 q

ř

C2
P2pE2 | C˚1 ,C

˚
2 qP1pC˚2 q

ř

C˚1 ,C˚2
P2pE2 |C˚1 ,C

˚
2 qP2pC˚1 qP2pC˚2 q

“
P1pC1 | E1q

ř

C2
P1pE2 | C1,C2qP1pC2 | E1q

ř

C1,C2
P1pE2 |C1,C2qP1pC1 | E1qP1pC2 | E1q

“
B1

B1`B2

B1 :“ c1 pα1 c2`β1 c2q¨

¨ rα2 c2 pα1 c1` γ1 c1q`β2 c2 pβ1 c1`δ1 c1qs

B2 :“ c1 pγ1 c2`δ1 c2q¨

¨ rγ2 c2 pα1 c1` γ1 c1q`δ2 c2 pβ1 c1`δ1 c1qs

Let ∆1 :“ P1pC1 | E1,E2q´P2pC˚1 | E2q. Then

∆1 “
A1 pB1`B2q´B1 pA1`A2q

pA1`A2qpB1`B2q

“
A1 B1`A1 B2´A1 B1´A2 B1

P1pE1,E2qP2pE2q
“

A1 B2´A2 B1

P1pE1,E2qP2pE2q

“
c1 c1 c2 c2 pα1 δ1´β1 γ1q rG1`G2s

P1pE1,E2qP2pE2q
¨

G1 :“ pγ2´δ2qc1 pα2 α1 c2`β2 β1 c2q

G2 :“ pα2´β2qc1 pγ2 γ1 c2`δ2 δ1 c2q

�
Using a similar proof strategy one can show that: (a)

P1pC2 | E1,E2q “ P2pC˚2 | E2q if and only if α1 δ1 “ β1 γ1 or
(ii) α2 “ γ2 and β2 “ δ2; (b) P1pC1 | E1,E2q “ P3pC˚1 | E1q if
and only if (i) α2 δ2“ β2 γ2 or (ii) α1“ β1 and γ1“ δ1; and (c)
P1pC2 | E1,E2q “ P3pC˚2 | E1q if and only if (i) α2 δ2 “ β2 γ2
or (ii) α1 “ γ1 and β1 “ δ1 (proofs omitted).

It follows then that P1pC1 | E1,E2q“P2pC˚1 |E2q“ P3pC˚1 |
E1q if (1) α1 δ1 “ β1 γ1 and α2 δ2 “ β2 γ2, or (2) α1 “

2952



Table 3: Frequency of participants’ reposes around five focal points

Full algebra Sequential algebra
PpC1 | Eiq PpC2 | Ejq PpC1 | Ei,Ejq PpC2 | Ei,Ejq PpC1 | Eiq PpC2 | Ejq PpC1 | Ei,Ejq PpC2 | Ei,Ejq

AaO
‘15%’ 0 2 3 3
‘20%’ 2 6 2 0
‘50%’ 14 13 11 14
‘60%’ 4 3 2 5
‘70%’ 3 3 5 5
SbS1
‘15%’ 5 3 0 1 1 2 0 1
‘20%’ 0 3 0 2 0 0 5 5
‘50%’ 15 19 14 14 23 22 13 18
‘60%’ 3 0 4 3 3 1 9 7
‘70%’ 8 4 5 4 5 6 3 6
SbS2
‘15%’ 4 9 4 7 3 4 1 1
‘20%’ 10 11 2 4 9 9 0 1
‘50%’ 15 12 12 13 17 20 13 17
‘60%’ 2 3 3 3 5 4 1 0
‘70%’ 5 3 10 4 0 0 15 12

β1 and γ1 “ δ1, or (3) α2 “ β2 and γ2 “ δ2. Similarly,
P1pC2 | E1,E2q “ P2pC˚2 | E2q “ P3pC˚2 | E1q if (1) α1 δ1 “

β1 γ1 and α2 δ2 “ β2 γ2, or (2) α1 “ γ1 and β1 “ δ1, or (3)
α2 “ γ2 and β2 “ δ2. Therefore, the order is not important
and one can decompose a full CBN in smaller ones while pre-
serving the same probability distributions if (1) α1 δ1 “ β1 γ1
and α2 δ2 “ β2 γ2; or (2) α1 “ β1, γ1 “ δ1, α2 “ γ2, and
β2 “ δ2; or (3) α2 “ β2, γ2 “ δ2, α1 “ γ1, and β1 “ δ1; or
(4) α1 “ β1 “ γ1 “ δ1; or (5) α2 “ β2 “ γ2 “ δ2. (4) and (5)
make E1 and E2 respectively fully undiagnostic with respect
to C1 and C2, which violates the faithfulness condition (see
Neapolitan, 2003). (1) implies that C1 and C2 are condition-
ally independent given E1 and that they are also conditionally
independent given E2, that is, learning E1 makes C1 and C2
independent and learning E1 makes C1 and C2 independent.
(2) and (3) both entail (1) and are more specific versions of
(1).

Appendix B
Here we show that there are no order effects when the causes
are mutually exclusive and exhaustive, i.e. when PpC1,C2q “

0 and PpC1q`PpC2q “ 1. We model mutually exclusive and
exhaustive causes with one node, C, that has two values: C1
and C2.

E1 C E2

Figure 4: CBN with mutually exclusive and exhaustive causes

P4pC “ C1q “ c , P4pC “ C2q “ c

P4pE1 | C1q “ α1 , P4pE1 | C2q “ β1 (3)
P4pE2 | C1q “ α2 , P4pE2 | C2q “ β2

Splitting the CBN from Figure 4 we get two CBNs:

P5pC “ C1q “ c , P5pC “ C2q “ c

C E1

C˚ E2

Figure 5: ‘Split’ CBN from E1 to E2

P5pC˚ “ C˚1 q “ P4pC1 | E1q , P5pC˚ “ C˚2 q “ P4pC2 | E1q

P5pE1 | C1q “ α1 , P5pE1 | C2q “ β1 (4)
P5pE2 | C˚1 q “ α2 , P5pE2 | C˚2 q “ β2

Theorem 2. P4pC1 | E1,E2q “ P5pC˚1 | E2q when
P4,5pC

p˚q

1 ,Cp˚q2 q “ 0 and P4,5pC
p˚q

1 q`P4,5pC
p˚q

2 q “ 1.

Proof.

P4pC1 | E1,E2q “
P4pC1qP4pE1 | C1qP4pE2 | C1q
ř

C P4pCqP4pE1 |CqP4pE2 |Cq

“
cα1 α2

cα1 α2` cβ1 β2

P5pC˚1 | E2q “
P5pC˚1 qP5pE2 | C˚1 q

ř

C˚ P5pC˚qP5pE2 |C˚q

“
P4pC | E1qP4pE2 | Cq

ř

C P4pC| E1qP4pE2 |Cq

“
J α2

J α2`p1´ Jqβ2

J :“
cα1

cα1` cβ1

Let ∆2 :“ P4pC1 | E1,E2q´P5pC˚1 | E2q. Then

∆2 “
cα1 α2 β2

”

1´ cα1`cβ1
cα1`cβ1

ı

pcα1 α2` cβ1 β2qpJ α2`p1´ Jqβ2q
“ 0

�
Since P4pC2 | E1,E2q “ 1´ P4pC1 | E1,E2q and P5pC˚2 |

E2q “ 1 ´ P5pC˚1 | E2q, then given Theorem 2 it also
true that P4pC2 | E1,E2q “ P5pC˚2 | E2q. Similarly we get
that P4pC1 | E1,E2q´P6pC˚1 | E1q “ 0 and P4pC2 | E1,E2q´

P6pC˚2 | E1q “ 0 (proofs omitted).
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Abstract
Generic statements convey generalizations about categories,
but how generic predications combine is unclear. “Elephants
live in Africa and Asia” does not mean that individual ele-
phants live on both continents. In addition, such conjunc-
tive generics pose interesting questions for theories of incre-
mental processing because the meaning of the sentence can
change part-way through: “Elephants live in Africa” would im-
ply most or all do, but “Africa and Asia” implies some live in
each. We extend a recently proposed computational model of
generic language understanding with an incremental process-
ing mechanism that can begin to interpret an utterance before
a speaker has finished their sentence. This model makes novel
predictions about partial interpretations of conjunctive generic
sentences, which we test in two behavioral experiments. The
results support a strong view of incrementality, wherein lis-
teners continuously update their beliefs based on expectations
about where a speaker will go next with their utterance.
Keywords: semantics; pragmatics; incremental processing;
generics; psycholinguistics

Introduction
Much of what we come to learn about the world comes not
from direct experience but from knowledge conveyed to us
from others, often in the form of linguistic utterances. “Ele-
phants eat 300 pounds of a food in a day” succinctly con-
veys information extending beyond any particular moment in
time or space: It could apply to any elephant, on any day of
the week. Utterances that communicate generalizations are
called generic utterances (Carlson, 1977; Carlson & Pelletier,
1995), and they are the foremost case study of rich, abstract
knowledge conveyed in simple utterances (Gelman, 2009).

Generics are rife with philosophical puzzles that make it
difficult to develop a unified, formal theory of their meaning
(for useful reviews: Carlson & Pelletier, 1995; Nickel, 2016).
One largely understudied puzzle concerns how generic pred-
ications combine. Consider the null hypothesis that generics
convey information about the percentage of the category with
the property—the prevalence—in a way analogous to how
majority quantifiers (e.g., most, all) work (e.g., “Most ele-
phants eat 300 pounds of food in day”). How can such an ac-
count treat a generic involving a conjunctive predication like
“Elephants live in Africa and Asia”? No elephant actually
lives on both continents; instead, the sentence should be un-
derstood as (generically) elephants live in Africa and (gener-
ically) elephants live in Asia, but this is impossible if each
individual generic sentence means that the majority holds the
property (i.e., it is impossible for more than half of elephants

to live in Africa and more than half of elephants to live in
Asia; Nickel, 2008). The prevalence implied by a generic
involving a conjunctive, mutually-exclusive predicate seems
more lax than if only one of conjuncts were mentioned: If a
speaker said “Elephants live in Africa”, you might think they
all do.

The puzzle of understanding conjunctive generic sentences
deepens when one considers that linguistic input is pro-
cessed incrementally (e.g., Altmann & Kamide, 1999): Lis-
teners ubiquitously form expectations about the intended
meaning of a sentence before the speaker finishes it (e.g.,
Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995).
For conjunctive generics about mutually exclusive proper-
ties, strongly incremental language understanding might pro-
duce non-monotonic belief updates: after the sentence prefix
“Elephants live in Africa. . . ”, a comprehender might infer a
higher prevalence than after hearing the sentence completion
“. . . and Asia”. If such non-monotonic updates occur, what
types of linguistic input trigger them?

In this paper we show that a recently proposed model of
generic language can accommodate these complex inferen-
tial patterns and we empirically test two predictions about
generic interpretation that address these puzzles. The model
of Tessler and Goodman (2019) treats generics as a kind of
vague quantifier: interpretation of a generic depends on prior
beliefs about properties. First, we show how when properties
are likely to be mutually incompatible (as in live in Africa
and Asia), listeners infer lower prevalences of each prop-
erty following a conjunctive generic sentence than when the
properties are compatible. Second, we show how the above
model, when integrated with expectation-based probabilistic
theories of syntactic processing (Hale, 2001; Levy, 2008),
predicts that comprehenders update their beliefs about prop-
erty prevalence not just when encountering a second, con-
joined property, but immediately upon encountering evidence
that a second, conjoined property is likely to be forthcoming.
We test these predictions in two behavioral experiments that
probe listeners’ understanding of conjunctive generic sen-
tences at different points mid-sentence, analogous to gating
paradigms in psycholinguistics (Grosjean, 1980). Our em-
pirical data confirm both predictions, suggesting that generic
language interpretation interacts jointly with world knowl-
edge and strongly incremental syntactic processing according
to principles of probabilistic inference under uncertainty.
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Figure 1: Model’s sequential interpretation of “Elephants live in Africa. . . and Asia.” A: Correlated priors reflected in the joint
probability distribution over two features result in a mutual exclusivity inference. When the model hears only “. . . live in Africa”,
it believes that probably all live in Africa (middle facet); when it hears they live in Asia as well, the model non-monotonically
updates its beliefs about how many live in Africa. B: The mutual exclusivity inference holds for priors of different shapes
and never holds if the prior knowledge about the two features is uncorrelated. Points show means of distributions. U-shaped
priors were Beta(0.1, 1); multimodal priors were an equal mixture of a Beta(1, 100) and a Beta(25, 1). Correlated priors were
created by adding an additional factor that decreased the probability of a prevalence-level if the sum of the prevalence of the
two features exceeded 100%.

Computational Model
We extend a model for interpreting generics to incorporate an
incremental processing mechanism that allows a listener to
understand partial utterances. The original model of Tessler
and Goodman (2019) interprets a generic utterance predicat-
ing a property of a category (“Elephants eat 300 pounds of
food in a day”) as meaning that the prevalence (or probabil-
ity) x of the property given the category—P(eats 300 lb. of
food in a day| is an elephant)—is greater than an a priori un-
certain threshold θ. The literal meaning of the generic—an
uncertain threshold function, with uniform uncertainty over
the threshold P(θ)—combines with a listener’s prior knowl-
edge about the prevalence of the feature P(x) within a relevant
set of alternative categories (e.g., other animals) to compute
a posterior distribution over prevalence x:

P(x | u) =
∫

θ

P(x,θ | u)dθ ∝ P(x) ·P(θ) ·δ [[u]](x,θ) (1)

where δ [[u]](x,θ) is the Kronecker delta function assigning a
value of 1 for utterances that are literally true (in the case of
a generic: where x > θ) and 0 for utterances that are false.

To interpret a generic with a conjunctive predicate
such as “Elephants live in Africa and Asia”, we as-
sume the semantic representation contains a conjunction of
two generic statements: [Gen(elephant)(live in Africa)] ∧
[Gen(elephant)(live in Asia)], where the Gen operator acts
according to the belief-updating rule of Eq. 1 (see Nickel
(2008) for supporting arguments of this semantic parse). A
listener starts with a joint prior over the prevalence of the
two properties (we denote variables associated with living in
Africa with subscript r and Asia with s): P(x) = P(xr,xs),

which is incrementally updated with each successive generic.
The model can then interpret multiple generics in succes-
sion, using the posterior distribution over prevalence P(x | u)
(Eq. 1) as the prior for the next utterance.

P(x | ur,us) ∝

∫
θs

∫
θr

P(x,θ | ur) ·δ [[us]](xs,θs)
dθrdθs (2)

where P(x,θ | ur) is the posterior that results from hearing
“Elephants live in Africa” given by Eq. 1.

The predictions for a sequential understanding of “Ele-
phants live in Africa and Asia” are shown in Fig. 1. Upon
hearing the first part of the utterance, the model believes that
almost all elephants live in Africa (simulations assuming a
uniform prior shown in Fig. 1A). What happens next depends
upon the correlational structure of the prevalence prior: If the
listener has prior knowledge suggesting the properties (living
in Africa, living in Asia) are mutually exclusive (Fig. 1A top),
they interpret the next part of the utterance (“...and Asia”) as
indicating that some (perhaps half) of elephants live in Africa
and other ones live in Asia. Without this correlation in the
prior, the model ends up believing that most or all elephants
live both in Africa and in Asia (Fig. 1A bottom). These infer-
ences are robust to a variety of different prevalence prior dis-
tributions, so long as the prior has the necessary correlational
structure (Fig. 1B shows predictions assuming a uniform, U-
shape Beta, and mixture-of-Beta distributions).

When processing a conjunctive phrase, listeners may form
expectations about the complete utterance even before the
sentence is over. For example, when a speaker reaches the
word Africa in “Elephants live in Africa”, she has many syn-
tactically distinct options available to her to complete the sen-
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Figure 2: Incremental parse trees and syntactic expectations
for upcoming conjunct properties in generic predication. The
string prefix “Elephants live in Africa. . . ” is compatible with
a variety of continuations, including the four listed above.
The next word, “and”, rules out the continuations in the top
row (depicted in gray) and sharpens expectations around a
conjunct at potentially different structural levels (light green).
Probabilistic renormalization implies that an upcoming con-
junct mutually exclusive with the first conjunct becomes more
likely when “and” is encountered, driving the strong incre-
mental predictions depicted in Fig. 3.

tence (Fig. 2 shows four possibilities). One such possibility
is that she continues with a NP-coordination that includes a
mutually exclusive property (e.g., and Asia; bottom-left tree).
When the listener encounters the word and in “Elephants live
in Africa and”, he knows he is entering into a coordination
and the relative probability of a forthcoming mutually exclu-
sive property increases. Such a continuation would yield a
different inference about the prevalence of elephants in Africa
than a continuation with a non-mutually exclusive property
(e.g., with a verb phase such as “and eat bugs”).1 If listeners
parse and interpret utterances incrementally at the level of in-
dividual words, then we would expect their inferences about
the prevalence of elephants in Africa to represent a mixture of
the inferences derived from different possible continuations,
which can be represented by conditional probabilities of the
full utterance u′ given the sentence fragment heard f :

P(x | f ) = ∑
u′

P(x | u′)P(u′ | f ) (3)

If, however, listeners do not derive incremental interpreta-

1For illustrative purposes, we assume a correlation between
NP vs. VP coordination and mutually exclusive vs. non-mutually ex-
clusive predicates. Of course, it is possible to continue with a verb
phrase about a mutually exclusive property such as “. . . live in Africa
and live in Asia” as well as continue with a noun phrase about a non-
mutually exclusive property (e.g., “. . . eat figs and nuts”). The cru-
cial fact is that the probability of a forthcoming mutually-exclusive
property increases when the comprehender encounters the word and.
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Figure 3: A model that incorporates syntactic expectations
at the level of individual words (strong incremental) predicts
intermediate mutual-exclusivity inferences part-way through
the conjunction (at “and”), whereas a model that waits for
content-words (weak incremental) does not show a difference
in expected prevalence at the word “and.”

tions at each moment, but instead wait for meaningful pieces
of an utterance (e.g., content words like Asia) to compute in-
terpretations, then we would not expect such an intermediate
degree of interpretation: “Elephants live in Africa and. . . ”
should mean the same thing as “Elephants live in Africa. . . ”
(Fig. 3). We test this prediction in Expt. 2 using a gating
paradigm in the spirit of Grosjean (1980).

Experiments
We design two experiments to test the mutual exclusiv-
ity (ME) and incremental predictions. Expt. 1 tests the
ME prediction that “Elephants live in Africa and Asia”
means roughly that half live in Africa and half live in Asia;
this experiment also serves to validate the gating proce-
dure we employ in the second experiment. Expt. 2 is a
pre-registered study that uses the gating paradigm to test
the fine-grained incremental predictions of the model. The
experiments and a full list of materials can be viewed at
tinyurl.com/elephants-cogsci.

Experiment 1: Mutual exclusivity inference
Participants We recruited 27 participants through Ama-
zon’s Mechanical Turk. Participants were restricted to those
with verified U.S. IP addresses and at least a 95% work ap-
proval rating. The study took about 10 minutes and partici-
pants were compensated $1.50.

Materials Participants read a storybook with chapters
about creatures on a faraway planet. Each chapter contained
a short paragraph presented across 2–4 screens, with a button
to “turn the page” (Fig. 4A). A chapter introduced one or a
few novel categories (e.g., wugs) and semi-novel properties
(e.g., live on the continent of Caro). Critical trial chapters
ended with a generic sentence about conjunctive properties,
which differed only in whether the second property was mu-
tually exclusive with the first (conjunct type): “Glippets live
on the continent of Caro and on the continent of Este (ME) /
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Experiment 1 [-?-]

INTERRUPTED ME    [Wugs…] [Wugs live in Africa] [-?-] [and eat bugs.] 1. % Africa  2. % Asia

INTERRUPTED NME    [Wugs…] [Wugs live in Africa] [-?-] [and drink water.] 1. % Africa  2. % eat bugs

UNINTERRUPTED ME    [Wugs…] [Wugs live in Africa and Asia.] [-?-] 1. % Africa  2. % Asia

UNINTERRUPTED NME    [Wugs…] [Wugs live in Africa and eat bugs.] [-?-] 1. % Africa  2. % eat bugs

Experiment 2

INTERRUPTED A   [Wugs…] [Wugs live in Africa] [-?-] [and eat bugs.] 1. % Africa  2. % Other Continent

INTERRUPTED A&   [Wugs…] [Wugs live in Africa and] [-?-] [eat bugs.] 1. % Africa  2. % Other Continent

INTERRUPTED A&B   [Wugs…] [Wugs live in Africa and Asia] [-?-] [which are warm.] 1. % Africa  2. % Other Continent

UNINTERRUPTED A&B   [Wugs…] [Wugs live in Africa and Asia.] [-?-] 1. % Africa  2. % Other Continent

Chapter 3: Wugs

Wugs   are   large   creatures, 
quite      intelligent,       with      

1 of 3

a  lifespan  of  about   
sixty  years.  They 
live   in   Africa   and  

2 of 3

What percentage of wugs do you 
think live in Africa?

What percentage of wugs do you 
think live in Asia?

[-?-]            2 of 3

eat bugs.

3 of 3

100%0%

100%0%

A

B

Figure 4: Overview of experiments. A: Example book chapter from Expt. 2, depicting the Interrupted A& condition. “Africa
and Asia” property is shown for illustration; actual stimuli used novel names for properties (“Caro and Este”). B: Overview of
conditions for Expts. 1 and 2. [-?-] denotes point in the sentence at which the question appeared. Highlighting shows which
properties were mentioned before the question, and what was asked about. See main text for full description of conditions.

enjoy the sunshine there (not ME: NME).”
The earlier content of the chapter supported the mutually

exclusive interpretation of the properties when the properties
were not ipso facto mutually exclusive. For example:

Krens are a tribe of the aliens that live on the continent of
Benli. Animals like stups, four-legged creatures with large
antlers, are a resource for the Krens. Stups roam all over the
windy highlands of Benli, far from the oceans. Krens are stup-
herders and (fishermen / incorporate stups into their religion).

Conjunct type (ME vs. NME) was manipulated within partic-
ipants and items. There were 14 filler chapters with content
similar to the critical chapters but using explicit quantifiers
(most, all, none) to describe the properties of categories.

Procedure Participants were told they would be reading a
storybook with a question in each chapter. Questions were all
of the same type, an implied prevalence question (Gelman,
Star, & Flukes, 2002; Cimpian, Brandone, & Gelman, 2010):
“What percentage of Ks do you think F?”, where K repre-
sents a category and F a feature. Responses were recorded
using a slider with endpoints labeled 0% and 100%, with the
exact value selected appearing above the slider. Participants
were familiarized with the response variable in a practice
trial, where they were asked to report how many dogs bark,
birds are male, cats get cancer, and lions lay eggs. These
questions encouraged participants to use the full range of the
response scale as well as served as a comprehension check.

In each critical chapter of the storybook, two questions ap-
peared either at the end of the chapter (Uninterrupted condi-

tions) or interrupting the chapter right before the final page
(Interrupted conditions; Fig. 4). In the Interrupted con-
ditions, the question came in the middle of a conjunctive
generic sentence, but before the conjunction so the reader
was unaware the sentence would continue with a conjunc-
tion. The questions asked about the mentioned property (e.g.,
Africa) and either a mutually exclusive property (Asia; ME
conditions) or a nonmutually exclusive property (e.g., eats
bugs; NME conditions); the chapter then concluded with a
conjunction about an unmentioned, nonmutually exclusive
property (Fig. 4B), so as to not give the impression that the
participant was being tricked by being asked about a prop-
erty that we would eventually reveal. In the critical trials, the
second question was asked about the second property men-
tioned (ME vs. NME). Filler trials asked about two proper-
ties described in the chapter using quantifiers (i.e., all, most,
or none). The order in which the two questions appeared on
the screen was randomized on each trial.

Each participant read a total of 21 chapters, which included
8 ME conjunctions, 4 NME conjunctions, and 6 quantifier
fillers; for each of these categories, equal numbers of inter-
rupted and uninterrupted were used. The experiment began
with a chapter with no questions and 2 filler trials; the remain-
ing trials were presented in a random order such that no two
critical trials were presented back-to-back. Subjectively, the
task is very difficult as participants learn about many different
animals with lots of new names; in practice, however, partici-
pants only need to recall information from the previously en-

2957



countered sentence to answer the trial questions. Following
the storybook, participants completed a memory check where
they had to select all the facts they had learned from a list of
10 (5 real, 5 distractor); in addition, participants were asked
to explain what the experiment was about in broad terms.

Results 11 participants were excluded for failing to respond
accurately to all of the practice trials or failing to respond ac-
curately to at least 7 of the 10 memory check prompts (same
exclusion criteria for Expt. 2). We describe the results using
the running example of “Elephants live in Africa and Asia”,
but the experimental stimuli used novel categories and rela-
tively novel properties.

Mutually Exclusive Non Mutually Exclusive

"...A
frica"

"...A
frica and Asia"

"...A
frica"

"...A
frica and eat bugs"

0.0

0.5

1.0

Im
pl

ie
d 

pr
ev

al
en

ce
 r

at
in

g

Question % Africa % Asia / bugs

Figure 5: Experiment 1 results. Participants rate prevalence
for mentioned property (% live in Africa) and either the mutu-
ally exclusive property (left facet) or non-mutually exclusive
property (right facet), mid sentence (“Africa”) or after the
sentence finishes (“Africa and X”). Error-bars denote boot-
strapped 95% confidence intervals.

The results are visually apparent in Fig. 5. Reading only
“Elephants live in Africa. . . ” led listeners to believe, on av-
erage, that all elephants lived in Africa and that none lived
in Asia, whereas if the sentence finished “. . . and Asia”, lis-
teners inferred that roughly half live in Africa and half live
in Asia. This inference is not categorical, however; there are
a number of responses to ME conjunctive generics wherein
participants infer that all or almost all have both properties
(recall that many of our items are unfamiliar properties). A
different pattern was observed for the NME properties, where
hearing about the second property (“eat bugs”) only increased
participants’ degree of belief in each property applying. Fur-
ther, when answering about unmentioned properties, partic-
ipants rated the prevalence of ME properties close to 0%
whereas NME properties were rated as somewhat prevalent
(green bars, “Africa”). The results replicate intuitions about
how “Elephants live in Africa” should be interpreted in a con-
text where the sentence is interrupted. The comparison with
the non-mutually exclusive condition shows that the results
cannot be attributed to the very act of being asked about two
properties mentioned in a conjunctive generic sentence.

Experiment 2: Strong incrementality
In Expt. 1, we demonstrated that the mutually exclusive in-
ference effects can be measured using a gating paradigm
wherein participants are queried for their beliefs part-way
through a sentence. Here, we exploit this paradigm to test
the strong incremental processing predictions of the model,
where syntactic expectations can modulate the interpretations
of generic sentences in a fine-grained manner. Sample size,
participant exclusion criteria, and analyses for this experi-
ment were pre-registered on OSF osf.io/pjt9c.

Participants We recruited 108 participants through Ama-
zon’s Mechanical Turk. Participants were restricted to those
with verified U.S. IP addresses and at least a 95% work ap-
proval rating. The study took about 10 minutes and partici-
pants were compensated $1.50.

Materials and procedure The materials and procedure fol-
lowed those of Expt. 1 with the following exceptions. We
modified the critical conjunctive generics to primarily involve
the conjunction of two noun phrases (e.g., ascribe to Caboo-
ism and Daithism) in order to strength the correlation between
the NP-conjunction and mutual exclusivity.2 The fillers were
modified to introduce page breaks immediately before and
immediately after conjunctions (“and”) in order to raise par-
ticipants’ expectations that a sentence might be broken at a
conjunction. We used additional examples of the Uninter-
rupted ME condition of Expt. 1 (“live in Africa and Asia.”)
as fillers to raise participants’ expectations about ME contin-
uations. Half of the filler trials had page breaks immediately
before the “and” and half immediately after.

On critical trials, questions always interrupted the chapter
right before the last page. On the question screen, the page
number of the penultimate page remained on the screen to
provide an additional cue that the chapter was not complete
(Fig. 4A). There were three conditions corresponding to the
point in the sentence at which the page break and prevalence
questions occurred: “Elephants live in Africa and Asia ”
(where denotes the page-break). In the two conditions
where participants did not see the full conjunctive property
before the question (INT A and A&), the sentence continued
with a non-mutually exclusive property (e.g., eat bugs).

Finally, we changed the question about the second property
(% live in Asia) to ask about “some other X”, where X was the
kind of property that was mentioned in the first conjunct (e.g.,
live on some other continent). This change was introduced to
raise the plausibility that a second, ME property was possi-
ble while not naming one explicitly, which would be prag-
matically odd given that the property is unmentioned in the
INT A and A& conditions. Participants saw 18 chapters. The
story started with a chapter with no questions, then partici-
pants saw 4 fillers: 2 quantifiers with interrupting questions

2Of the 13 items in this experiment, 9 of them were NP-
coordinated (the others used coordination of prepositional phrases
and adjectives). In both experiments, critical conjunctive generics
always involved conjunctions of the same syntactic types (e.g., as-
cribe to the Caboo religion and the Daith religion).
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and 2 uninterrupted ME fillers, in a random order. Finally,
participants saw 2 of each kind of critical trial with 4 uninter-
rupted ME fillers and 3 quantifier fillers interleaved to avoid
back-to-back critical trials.
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Figure 6: Experiment 2 results. Participants are interrupted at
various stages of the sentence (after Africa, and, or Asia) to
be asked about the prevalence of living in Africa and living in
some other place, or asked at the end of the sentence (right-
most bars). When participants are interrupted before the
second conjunct (Asia), the sentence continues with a non-
mutually exclusive property. Error-bars denote bootstrapped
95% confidence intervals.

Results 28 participants were excluded for failing at least
one of the two attention checks.3 To test our main prediction,
we constructed a Bayesian mixed-effects regression model
predicting implied prevalence ratings for the first conjunct
(e.g., % Africa) as a function of the point in the sentence in
which participants were queried. We included by-item and
by-participant random intercepts and slopes.4 The regression
model was created in Stan (http://mc-stan.org/) accessed with
the brms package using default priors (Bürkner, 2017).

Replicating the findings of Expt. 1, when participants only
read that “Elephants live in Africa”, they tended to infer that
almost all lived in Africa. When they read that “Africa and
Asia”, they tended to infer that the distribution was close
to 50%-50%. Finally, as predicted by a strong version of
incremental processing, participants began to anticipate a
mutually-exclusive conjunct when only the word “and” was
mentioned, as evidenced by their implied prevalence ratings
being substantially less for the “..live in Africa and ” condi-
tion than the “live in Africa” condition (posterior mean esti-
mate and 95% credible interval: β = −0.08 (-0.13, -0.04)).
In addition, these ratings were substantially higher than when
the full conjunctive predicate was present “..live in Africa and
Asia” (β = 0.17 (0.12, 0.23); Fig. 6). Thus, we find that par-
ticipants’ implied prevalence ratings of how many elephants

36 failed slider check; 9 failed memory check; 13 failed both.
4model: rating∼ cond+(1+cond | subj)+(1+cond | item)

live in Africa monotonically decreased as a function of how
many words of the conjunctive predicate they were allowed to
see. These results suggest that listeners begin to draw prag-
matic interpretations of generics before the end of the sen-
tence and even in the absence of additional content words.

It is notable that in the “Africa and Asia” conditions, partic-
ipants on average infer greater than 50% prevalence for Africa
and lower than 50% for Asia, a departure from the results of
Expt. 1. This deviation may be due to participants forgetting
what they have read and/or not making the inference that the
second conjunct stands in a subset relation to the category in
the second question (e.g., that Asia is a kind of “some other
continent”). Explicitly asking about the conjuncts alleviates
memory demands by allowing participants to merely recog-
nize, rather than recall, that they have seen this conjunct men-
tioned. Asking about some other continent (Expt. 2) requires
participants’ to recall the second conjunct and could lead to
lower prevalence ratings in response to this question.

Discussion
Generic sentences exhibit extreme sensitivity to context that
make it difficult to precisely define what a single generic con-
veys. “Elephants live in Africa and Asia” means neither that
most elephants live in (both) Africa and Asia nor that most
elephants live in Africa, and most live in Asia. Here, we em-
pirically measured interpretations of generics about conjunc-
tive predicates, building on the observation of Nickel (2008)
of the range of troubling examples for quantificational views
of generics. Notably, the uncertain threshold model of Tessler
and Goodman (2019) accounts for such conjunctive generics
seamlessly: An underspecified threshold can be updated as
more information comes in and is sensitive to prior beliefs
regarding compatibility of the conjunct properties.

We extended that model to include syntactic expectations
and found evidence for the strongest form of incremental
syntactic processing, wherein beliefs are continually updated
based on expectations of how a sentence will continue. The
fact that generic language understanding can be modulated
simultaneously by correlations in background knowledge and
by syntactic expectations calls for a tighter coupling between
models of syntactic processing (Levy, 2008), pragmatic lan-
guage understanding (Goodman & Frank, 2016), and intuitive
theories (Tenenbaum, Kemp, Griffiths, & Goodman, 2011).

It remains an open question, however, how specific the
effects observed in this paper are to generics rather than to
quantification more generally. For example, it appears that,
in some contexts, one can use most to convey similar mutu-
ally exclusive conjunctions: “Elephants are the largest land
animal on Earth and are one of the gentlest creatures. Most
live in Africa and Asia but are brought to other places for the
entertainment of humans.”5 Further work is needed to deter-
mine the felicity and interpretation of such utterances.

Data, code, and links to experiments are available at
https://github.com/mhtess/elephants

5Example from theodysseyonline.com/want-to-ride-an-elephant
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Abstract 

Imagining the future and remembering the past both involve 
mental time travel. This commonality could indicate shared 
mental processes, as held by the Constructive Episodic 
Simulation Hypothesis (Schacter & Addis, 2008), or else 
interactive processes that complement one another, a 
possibility we call the Complementarity Hypothesis. 
According to the Complementarity Hypothesis, future thoughts 
are constructed from schemas making them episodically poor, 
whereas past thoughts are constructed from schemas and direct 
retrieval of memory traces, making them relatively 
episodically rich. We tested these hypotheses using machine 
learning to data mine mental operations in language, much as 
a geologist can recover physical processes from the geological 
record. People’s natural, unprompted talk on web blogs was 
automatically analyzed for past, present, and future references 
using a temporal orientation classifier. In Study 1, we found 
that perceptual details were mentioned more often in past than 
future talk, implying greater use of episodic processing in past 
than future thinking. In Study 2, a neural network using 
schemas generated from Latent Dirichlet Allocation better 
predicted the content of references to the future than the past, 
implying that constructive processes are more common in 
future than past thinking. In Study 3, we used the results from 
the two prior studies to construct an episodic-by-constructive 
process space. We adapted techniques from fMRI analysis to 
analyze this space for clusters of activity, as if the frequency of 
past and future thinking were BOLD responses in cortical 
space. We found that past and future thinking occupy highly 
separable regions of processing space, supporting the 
Complementarity Hypothesis.  

Keywords: Prospection; Memory; Future Thinking; Big 
Data; Naturally Occurring Datasets  

Introduction 

Memory is not just used to remember the past. It also helps 

people predict and plan for the future (Schacter & Addis, 

2007; Klein, Robertson, & Delton, 2010). At a minimum, 

then, the cognitive process used to think about the future must 

be able to connect with those used to remember the past. Such 

a connection would be facilitated by overlap in the processes 

used to think about the future and past. According to the 

Constructive Episodic Simulations Hypothesis (Schacter & 

Addis, 2008) the overlap in these processes is considerable. 

An alternative possibility is that the thought processes used 
to think about the past and the future are largely unique and 

non-overlapping, but connect with each other in manner that 

complements the other. We will refer to this later possibility 

as the Complementarity Hypothesis. In this research, we seek 

to test between these two competing proposals using 

information afforded by machine learning and big data 

analytics. 

   The idea that thinking about the future and the past might 

involve similar kinds of process has received significant 

empirical support. Viard et al (2011) found that past and 

future thinking engage several common brain regions 

including the hippocampus, precuneus, prefrontal cortex, and 

posterior cingulate cortex. Addis, Wong, & Schacter (2007) 

found that past and future thinking both engage the left 

hippocampus, a region known to be involved in episodic 

memory. Meta-analyses suggest that the overlap between 

past and future thinking is robust and involves a broad set of 

regions in the brain’s default network (Benoit & Schacter, 

2015; Spreng, Mar, & Kim, 2009). 

    The evidence for common processes is not, however, 
uniform. Irish, Addis, Hodges, and Piguet (2012) found that 

conceptual knowledge impairments in semantic dementia 

were more severe in future thinking than past thinking. 

Craver, Kwan, Seindam, and Rosenbaum (2014) found that 

people who lost the ability to remember the past due to 

hippocampal amnesia often retained some ability to think 

about the future. Such patients make normal future-oriented 

decisions in delay discounting and score normally on surveys 

of future orientation. Findings such as these suggest that past 

and future thinking may rely on different cognitive processes.  

    The conflicting findings from past research are associated 

with different kinds of methodology. Studies supporting 
shared process have been those using brain imaging, while 

those indicating differences have been based on 

neuropsychological research investigating the effects of brain 

damage (although see Klein, Loftus, & Kihlstrom, 2002 for 

neuropsychological evidence for similar processing). Both 

kinds of research have their limitations. One of the challenges 

in neuroimaging work is the problem of how to elicit thoughts 

about the past and the future without bias to the results. 

Typically, temporal thoughts are elicited by explicit 

instructions to do so. The problem is that these instructions 

may alter the cognitive processes involved. For example, to 
image the future, participants are often instructed to imagine 

specific events that are highly likely to occur (e.g., Addis, 

Wong, & Schacter, 2007). These instructions might bias 

people to use their memory of the past to imagine future 

events because it requests that they offer specific details, a 

process that may not necessarily be associated with future 

thinking. Neuropsychological research investigating brain 

damage is limited by the (fortunately) relatively small 

numbers of participants. Most importantly, the research using 

both kinds of methodology has focused on people’s ability to 

remember or imagine scenes with significant perceptual 
detail, but not all thoughts about the future and past are 

necessarily high in episodic detail. Certain thoughts about the 

future and past might be driven by abstract conceptual 

knowledge, possibly by schemas. Some research has 

investigated the role of cultural life scripts on future thinking 

(Bernsten & Bohn, 2010), but life scripts are only a small 
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portion of people’s abstract conceptual knowledge. In sum, 

prior research has been limited in its ability to study the 

potential impact of abstract knowledge and schemas on 

people’s thoughts about the past and the future for lack of an 

inventory of the generic abstract knowledge structures that 
people are likely to possess. 

The limitations of prior work can be addressed using big 

data methods. Big data methods involve mining large-scale 

naturally occurring behavior to provide insight into human 

cognition (Goldstone & Lupyan, 2016; Thorstad & Wolff, 

2018a). In the case of mental time travel, people talk 

regularly about the past, such as what they did yesterday, and 

the future, such as what they plan to do tomorrow. This talk 

can be mined to understand the cognitive processes of 

memory and future thinking. These big data methods address 

some of the challenges of prior work. Big data methods avoid 

the explicit prompting in prior work by studying natural, 
unprompted talk about time. Big data methods also allow 

investigation of a much wider set of conceptual knowledge 

by learning the relevant concepts from the data. 

Here, we examine people’s temporal talk in a large web 

blog corpus. This corpus is ideal for studying mental time 

travel because people write without prompting about topics 

of their choosing. Once the sentences in the corpus are 

analyzed for their temporal orientation, we can investigate the 

cognitive processes associated with this talk to test between 

the Constructive Episodic Simulation and Complementarity 

hypotheses. 

Study 1: What is the Content of Past and 

Future Thinking? 

The view that past and future thinking share common 

cognitive processes makes a strong prediction about the 
content of people’s temporal talk. Past and future thinking 

have been argued to rely on shared episodic processes 

(Schacter & Addis, 2008), and these episodic processes have 

characteristic types of representation that can be identified in 

text. Episodic thoughts are highly concrete and perceptual, 

with episodic future thinking typically described as a kind of 

pre-experiencing (Atance & O’Neil, 2001) or simulation 

(Schacter & Addis, 2008). Episodic thoughts also involve a 

spatial location (Tulving, 1993), as also reflected in work 

using spatial relations as a marker of episodic future thinking 

(Russell, Alexis, & Clayton, 2010). We measured these 
episodic representations in people’s talk about the past, 

present, and future, based on psychometric dictionaries. If 

past and future thinking rely on common episodic processes 

as predicted by the Constructive Episodic Simulation 

Hypothesis, then we should observe similar amounts of 

episodic processing in past and future talk. By contrast, if past 

and future thinking rely on different processes as predicted 

by the Complementarity Hypothesis, then we should observe 

more episodic processing in talk about the past than the 

future. Such a pattern could occur if thoughts about the future 

are more  constructed than  thoughts about the past. 

 
Fig. 1. Analyzing Episodic Language in Blog Posts. We 

extracted three episodic language indicators from a corpus 

of blog posts: concreteness, the amount of perceptual words, 

and the presence of spatial relation words. 

Methods 

All procedures were approved by the Emory University IRB. 

 

Materials The analyses used the Blog Authorship Corpus 

(Schler, Koppel, Argamon, & Pennebaker, 2006). The corpus 

is demographically diverse, including 19,320 bloggers (50% 
female) from 40 different occupational categories and a wide 

range of ages (13-17y: N=8,240, 23-27y: N=8,086, 30-47y: 

N=2,994). 

Procedures Several preprocessing steps were taken to clean 

the corpus. Special characters, emoticons and URLs were 

removed. Misspellings were automatically corrected using a 

dictionary from Han, Cook, & Baldwin (2012). Extremely 

short posts with less than 10 words were dropped. Non-

English sentences were removed using the Python library 

langdetect. 

    We extracted temporal talk from the corpus by 
automatically classifying the sentences using a temporal 

orientation classifier. As a first step, the sentences in the 

corpus were syntactically parsed using the Stanford Parser 

(Chen & Manning, 2014). These parses could then be used to 

determine temporal orientation using a set of 121 syntactic 

and lexical rules written in the regular expression-like 

language Tregex (Levy & Andrew, 2006). References to the 

past were flagged using rules like “VP>VG>have” and 

references to the future by rules like “MD>will” (Copley & 

Wolff, in prep.)  

   Before running the classifier on the corpus, the 
performance of the classifier was verified in a separate rating 

study where we recruited 30 human raters via Amazon 

Mechanical Turk. We obtained 3 ratings for each of 1,000 

randomly drawn sentences from the blog corpus (100 

ratings/participants), as to whether the sentences referred to 

the past, present, future, atemporal, or unintelligible. 

Participant quality was ensured using unmarked attention 

checks and by requiring participants to have completed 100 

previous MTurk tasks with 95% approval rating. We found 

that the performance of the classifier, as indicated by the F 

statistic (Raschka, 2015), F = 0.61, where chance = 0.33, 

approached human-level accuracy, F = 0.67. We also 
compared the classifier to other classifiers based on the 

Linguistic Inquiry and Word Count psychometric dictionary 

(Pennebaker et al, 2015), a decision-tree model based on a 

variety of language features (Schwartz et al, 2015), and a 
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regular-expression pattern-based temporal classifier known 

as SUTime (Chang & Manning, 2012). Our temporal 

orientation classifier outperformed these other temporal 

orientation classifiers, specifically SUTime, F = 0.25, 

decision trees, F = 0.33, and the Linguistic Inquiry and Word 

Count psychometric dictionary, F = 0.56. 

    Once applied to the blog corpus, the classifier was able to 

identify which sentences referred to the past (2,134,357 
sentences, 39.5%), present (1,428,626 sentences, 26.5%), or 

future (1,834,206 sentences, 34.0%). 

   As shown in Fig. 1, we measured the episodic processing 

in each sentence in the blog corpus using three measures. We 

analyzed concrete language based on averaging the 

concreteness of the words in each sentence using 

concreteness ratings of 40,000 English lemmas from 

Byrsbaert et al (2014). We analyzed the perceptual and 

spatial language in each sentence by calculating the 

proportion of words in the sentence matching predefined lists 

from the Linguistic Inquiry and Word Count psychometric 
dictionary (Pennebaker et al., 2015). 

Results and Discussion 

We found that past thoughts involved more of all three types 

of episodic representations than future thoughts. In all three 

cases, past thoughts were more similar to present thoughts, 

which do not require mental time travel, than to future 

thoughts. As shown in Fig. 2, references to the past were rated 

as more spatial, t(18,808) = 48.34, p < 0.001, perceptual, t(18,808) 

= 23.27, p < 0.001, and concrete, t(18,806) = 46.65, p < 0.001, 

than references to the future. As also shown in Fig. 2, 

references to the past are as perceptually rich as references to 
the present. Together, the results suggest that past thinking is 

more episodic than future thinking, a result that is fully 

consistent with the Complementarity Hypothesis. 

Study 2: What Processes are used for Future 

Thinking? 

Study 1 suggests that past thoughts are more episodic than 

future thoughts. These results raise the question of what 

processes are used to think about the future. An intuitive 

possibility is that because the past has happened but the future 

has not, future thoughts may be more constructed than past 

thoughts. This construction could be performed by relying on 

stored knowledge structures known as schemas. While the 

possibility that future thoughts rely more on schemas is 

intuitive, it is broadly agreed that memory also relies on 

schemas (Bransford & Johnson, 1972), and so one could also 

predict that past and future thoughts rely equally on schemas. 

In Study 2, we therefore asked whether future thoughts rely 

more on schemas than past thoughts. 

   There are two challenges to quantifying the influence of 

schemas on temporal thoughts. First, it is difficult to know in 

advance which schemas people use to mentally time travel. It 
seems likely that the most important schemas may be used in 

everyday talk. With a large enough sample of everyday talk, 

it should be possible, then, to extract these schemas. To do 

this, we analyzed 1 month of posts from the social media 

website Reddit (307 million words). We extracted the 500 

most common schemas using a machine learning model 

known as a topic model (Blei, Ng, & Jordan, 2003). As shown 

in Fig. 3, a topic model works by inferring the latent topics 

that organize people’s choices of which words to write in 

certain documents, or Reddit posts. These topics can thought 

of as probability distributions over words. While these topics 
do not share every feature of schemas (for example they are 

not hierarchical), they share some of the essential features, 

such as the fact that the important words represent slots that 

can be filled by words, which are conceptually similar, but 

not necessarily semantically related.  

   The second important challenge is that the mere presence 

of a schema does not necessarily imply a cognitive process. 

It is necessary to ask whether an author used a schema to 

guide their writing or merely invoked the schema 

incidentally. To make this leap from describing schemas to 

cognitive processes, we capitalized on a key cognitive 
function of schemas: schemas are thought to fill in missing 

information. For example, if a person goes to a restaurant, 

they can use their schemas to know that there will be a waiter 

even before they have seen a waiter. We created an analogue 

of this prediction in text by asking whether, if only a part of 

a sentence is provided, the rest of the sentence can be filled 

in based on knowledge of the schema. We did this by training 

a neural network to use the schemas evident in people’s blog 

posts to predict the words they wrote next. We performed this 

prediction separately for sentences about the past, present, 

and future, thus allowing us to investigate whether schemas 

are more involved in filling in missing information for the 
past, present, or future.  
    If past and future thinking rely on common cognitive 

processes as predicted by the Constructive Episodic 

Simulation Hypothesis, then we would expect schemas to be 

Fig. 2. Amount of episodic processing (+/- 95% CI) in sentences about past, present, and future. 
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equally useful for predicting the content of people’s past and 

future talk. By contrast, if past and future thinking rely on 

different cognitive processes as predicted by the 

Complementarity Hypothesis, then we would expect schemas 

to be more useful for predicting the content of people’s past 
talk than future talk. 

 

 

 
 

 

Fig. 3. Learning and Identifying Schemas in Temporal 

References. (Top) We identified the most prevalent 

schemas in a large social media corpus using Latent 

Dirichlet Allocation, which learns the 500 most common 

topics across many social media posts. (Bottom) For a 

particular blog post, we identified the schemas implicit in 

the post, and then trained a neural network to use those 

schemas to predict words in the unseen last sentence of the 

post. We conducted this prediction separately for sentences 

referring to the past, present, and future, allowing us to ask 

whether schemas were more useful for filling information 

for particular kinds of temporal references. 

Methods 

Schema Identification As shown in the top row of Fig. 3, we 

identified common schemas in a large corpus based on every 

post to the social media website Reddit in the month of 
January 2017 (307 million words). As shown in the top row 

of Fig. 3, we identified schemas in the posts by training a type 

of topic model known as Latent Dirichlet Allocation (Blei, 

Ng, & Jordan, 2003). The model was trained using the Python 

library gensim with the parameters α = 0.002, η = 0.002, 

number of topics = 500, using 100 training iterations. 
Using Schemas to Fill in Information As shown in the 

bottom row of Fig. 3, for every post in the blog corpus, we 

used the LDA model to identify the schemas in the post based 

on every sentence except the last sentence in the post. Next, 

we created a dataset where the input was the schema of the 

post, and the output was a randomly selected word from the 

unseen last sentence in the post, restricting to the 5,000 most 

common words in the corpus. We then trained a neural 

network model to use the schema to predict the unseen word 
(out of 5,000 possible words). The model had a relatively 

simple architecture, with a single hidden layer with 500 units 

and a relu activation function, and was trained to minimize 

cross-entropy loss with Adam optimization, based on 25,000 

training batches with a minibatch size of 100. The model was 

evaluated using unseen test data (10%). As described in the 

main text, we also trained a scrambled version of the model 

using the same procedure but randomly assigning words to 

Reddit posts. 

 

Fig. 4. Schema Usage. (A) The schemas learned by our 

model could predicted unseen words better than random 

schemas, replicating a key property of schemas. (B) These 
schemas were more useful for filling in unseen words for 

future references than past or present references. 

Results and Discussion 

We found that our model learned semantically coherent 

schemas from social media. We also found that future 

thoughts drew more on these schemas than did past thoughts, 

consistent with the Complementarity Hypothesis. 

We first asked whether our topic model learned 

semantically coherent schemas. Several of the schemas are 

shown in Table 1. The schemas are highly coherent on visual 

inspection. For example, the model learned a schema about 

feelings including the words feeling, feels, felt, pain, worse, 

and bad. We quantified this semantic coherence by training a 

second model but ablating the semantic information by 
randomly assigning words to documents in the Reddit corpus. 

We asked human raters to judge which model generated more 

semantically coherent topics. Raters judged the topics from 

the real model as more semantically coherent than the 

Table 1. Schemas learned by the topic model. 

a b 
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semantically ablated model, t(22) = 11.68, p < 0.001, a 

difference that was observed in every individual rater (23/23 

raters).  

We next asked whether these schemas fill in missing 

information in a sentence. We trained a neural network to 
predict the words in people’s talk in the blog corpus based on 

either the real schemas, or based on ablating schema 

knowledge using randomly generated schemas. As shown in 

Fig. 4A, we found that the model based on real schemas 

outperformed the model based on scrambled schemas, 

t(220,174) = 174.26, p < 0.001, suggesting that these schemas do 

indeed fill in missing information.  

Finally, we asked whether these schemas fill in more 

information for references to the past, present, or future. We 

found that past references drew on schemas, evidenced by 

increased prediction performance for past relative to present 

thoughts, t(110,952) = 4.60, p < 0.001 (Fig. 4B). However, we 
found that future references drew more on schemas than did 

past references, t(175,248) = 18.53, p < 0.001 (Fig. 4B). This 

increased prediction for future thoughts relative to past 

thoughts suggest that thoughts about the future rely more on 

schemas than thought about the past. This result is consistent 

with the predictions of the Complementarity Hypothesis. 

Study 3: Are these Findings the Result of 

Different Processes? 

Studies 1-2 suggest differences in the cognitive processes 

used for past and future thinking. However, these results are 

also open to an alternative interpretation, which we may call 

the Difference-in-Amount view. On this account, past and 

future thinking rely on the same basic cognitive processes, 

but to different extents.  

   Testing between the Difference-in-Amount and 
Complementarity Hypothesis requires an analysis for 

determining whether two operations reflect different 

underlying cognitive processes. Our key idea is that such a 

procedure exists in cognitive neuroscience, and can be 

adapted to big data. In fMRI studies, it is widely accepted that 

there are different cognitive processes if the two processes 

activate non-overlapping patterns of voxels in the brain. 

Indeed, the spatial overlap between past and future thinking 

in the brain has been taken as evidence for common 

processing. While this analysis is based on a brain space, a 

similar logic should hold for operations projected into what 
we will call a cognitive process space. As shown in Fig. 5, a 

process space can be created by projecting the candidate 

operations into a space composed by two or more cognitive 

processes. Evidence for a single process would be largely 

overlapping representations in process space (Fig. 5A), while 

evidence for multiple processes would be largely non-

overlapping representations in process space (Fig. 5B). To 

evaluate the Difference-in-Amount and Complementarity 

Hypotheses, we pooled the data from Studies 1 and 2 to create 

a cognitive process space defined by constructive and 

episodic processing. We projected both past and future 

thinking into the process space, and quantified the amount of 
overlap between the processes. We asked whether this 

overlap was better explained by the Difference-in-Amount 

view or the Complementarity view. 

Methods 

Materials We combined the data from Studies 1-2. We 

created an aggregate measure of episodic processing by 
separately z-scoring the concreteness, spatial relation, and 

perceptual measures and then averaging the resulting z-scores 

for each sentence. 

Process Space Creation We created a 10x10 cognitive 

process space using the episodic and constructive processing 

scores. For each measure we calculated 10 deciles. For 

example the bottom-left corner represents 0-10% episodic 

processing and 0-10% constructive processing. We then 

calculated the proportion of past and future thoughts falling 

in each region of process space. We stored the difference 

score (future - past) for each region and retained only scores 
larger than 0.25 in magnitude to avoid false positives. 

Cluster Permutation Test We next tested how large a 

cluster would be obtained in the process space by chance. We 

did this by creating 10,000 permutations of the data by 

shuffling the past and future labels. In each permutation we 

repeated the cognitive process analysis and stored the size of 

the largest cluster, again retaining only scores large than 0.25 

in magnitude. We used these cluster sizes to create a chance 

distribution (Fig. 5D, green distribution). 

 

 
Fig. 5. Cognitive Process Space. (a-b) Hypothetical results 

in cognitive process space that would indicate reliance on 
the same or different processes. (c) Past thinking (blue) and 

future thinking (red) projected into cognitive process space. 

(d) Chance distribution of clusters in process space (green) 

compared to observed cluster sizes (vertical dotted lines). 

Results and Discussion 

We found that past and future thinking occupied largely non-

overlapping clusters of the process space, supporting the 

predictions of the Complementarity hypothesis. 
    As shown in Fig. 5C, when past and future thinking were 

projected into cognitive process space, they occupied largely 

non-overlapping regions of the space. As shown in Fig. 5D, 
we quantified whether this pattern would be expected due to 

chance. We did this by creating 10,000 random permutations 

of the data, and recording the largest cluster size observed in 

each permutation (Fig. 5D, green distribution). We found that 

both the past thinking cluster (red dotted line) and the future 

thinking cluster (blue dotted line) were larger than those 
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observed in any of the 10,000 permutations, suggesting 

dissociable cognitive processes that would not be likely 

observed due to chance (e.g. p < 0.0001). This result suggests 

that past and future thinking rely on different cognitive 

processes, consistent with the Complementarity Hypothesis. 

General Discussion 

There is growing consensus that memory is not just for 

remembering the past, but also for imagining the future. Here, 

we considered a strong version of this idea that past and 

future thinking could rely on largely similar cognitive 

processes. In a series of three studies based on people’s 

natural talk about time, we found support for the alternative 

hypothesis that past and future thinking rely on different 

cognitive processes. In Study 1, we found that thoughts about 
the past were more episodic than thoughts about the future, 

as revealed by the increased presence of concrete words, 

perceptual words, and spatial relation words. In Study 2, we 

found that thoughts about the past were less constructed than 

thoughts about the future, as revealed by the decreased ability 

of a machine learning model to use the topics of people’s 

writing to predict the contents of future references compared 

to past references. Finally, in Study 3 we found that these 

findings were better explained by differences in cognitive 

processing than by a Difference-in-Amount view, a 

conclusion supported by projecting the data into cognitive 
process space. 

    While we believe that the schemas learned by our model 

are quite general, a limitation of the current analysis is that 

the schemas are only derived from a single social media 

corpus. The social media corpus spans a broad range of topics 

and covers millions of posts, but it may be limited in some 

ways; for example, social media users may be younger than 

or more likely to be male than the general population 

(Duggan & Brener, 2013). Future work should address 

whether similar schemas would be discovered in other kinds 

of corpora.  
    Beyond future thinking, our results have implications for 
the role of big data in psychology. It has previously been 

shown that big data can predict many psychological traits, 

including personality (Youyou, Kosinski, & Stillwell, 2015), 

mental illness (Thorstad & Wolff, 2018b), and decision-

making (Thorstad & Wolff, 2018a). However, psychologists 

are often interested in going beyond prediction to make 

inferences about the underlying cognitive processes. It is not 

obvious that cognitive processes are recoverable from big 

data, since in written text the cognitive processes that 

generated the text have already occurred. Our findings 

suggest that big data can in fact recover cognitive processes, 
in two ways. First, big data can be used to look for 

characteristic representations of a cognitive process, such as 

the episodic language markers in Study 1. Second, big data 

can be used to train a model to mimic the cognitive process 

used to generate the text, as in the schema-based prediction 

model in Study 2. Both of these techniques suggest that big 

data may be useful not just for predicting human psychology, 

but also for understanding cognitive processes, a kind of data 

mining the mind.  
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Abstract 

Causal and temporal reasoning are fundamentally linked, but        
few studies have directly examined how the ability to make          
causal inferences about the past vs. the future develops. We used           
a counterfactual reasoning task to explore 4- to 6-year-old         
children’s understanding of the causal relationships among past,        
present, and future events. Like adults, even 4-year-olds judged         
that future, but not past, events could be altered by interventions           
in the present. This early sensitivity to the causal asymmetry          
between the past and future became more pronounced with age.          
We also found that children and adults selectively and         
appropriately use evidence about the present to make inferences         
about past events. Implications for theoretical accounts of the         
development of causal reasoning and abstract concepts of time         
are discussed.  

Keywords: cognitive development; temporal cognition; causal      
inference; counterfactual reasoning 

Introduction 
You can change the future, but you can’t change the past.           
This fundamental distinction between the past and future is         
central to an abstract, linear concept of time, and has          
profound effects on adults’ everyday behavior. Although       
philosophers and physicists have argued about the ultimate        
reality of the past/future asymmetry, many of us find it          
difficult, if not impossible, to conceive of a world without it.           
Is the past/future distinction a “built in” feature of human          
cognition? If it isn’t, when and how does it develop? While           
we know that children’s reasoning about both temporal and         
causal relationships improves during the preschool years,       
few studies have directly explored the relationship between        
children’s reasoning about causality and their knowledge of        
the ontological distinction between past and future (see        
McCormack & Hoerl, 2017). Here, we use a counterfactual         1

reasoning task to explore how children use information        
about present events to make causal inferences about the         
past and future. 

1The precise definition of counterfactual reasoning, and       
thus the age at which children are first capable of it, is the             
subject of much debate (e.g., Beck, 2016; Weisberg &         
Gopnik, 2013). In the present paper, we take a broad view           
of counterfactual reasoning, which incompasses     
hypothetical questions about the past, present, and future, as         
well as conditionals. 

Despite the central role of the past/future distinction in         
expliciting temporal reasoning, it remains unclear to what        
extent young children possess this understanding. While it is         
difficult to test this in preverbal infants, researchers have         
looked to children’s earliest production of temporal       
language for clues. The past-tense verb marking -ed is one          
of the first grammatical inflections English-speaking      
children produce, usually at or before age 2 (Brown, 1973),          
which has been taken as evidence that understanding of the          
past/future status of events relative to the present develops         
early. However, there is debate in the language acquisition         
literature over how accurate and generalizable children’s       
early uses of tense are, and particularly whether they may          
indicate perfective aspect, rather than event time (Anderson        
& Shirai, 1996). Deictic time words like “tomorrow” and         
“yesterday” are also early to appear in the child’s lexicon,          
though children don’t use them reliably for several years         
(e.g., Tillman et al, 2017). Nonetheless, while these studies         
suggest early onset and prolonged development of       
past-future reasoning, it remains possible that children’s       
understanding the causal asymmetry of the past and the         
future develops prior to the ability to express these         
differences in language.  

When do children understand how causality operates over        
time? Suggesting that even infants intuitively understand the        
relationship between temporal order and causality,      
4-month-olds look longer when presented with impossible       
causal chains of events, including those with apparent        
breaks in temporal continuity (Cohen et al., 1998).        
Nevertheless, recognizing the temporal-causal structure of a       
simple event, like one ball striking another, does not imply          
that infants have a concept of the past or the future. Later in             
development, when asked which of two possible events        
caused another event to happen, 3-year-olds chose the prior         
rather than the subsequent one (Bullock and Gelman, 1979).         
Four-year-olds recognize that past, but not future, events        
determine present mental states and states of the world         
(Busby Grant & Suddendorf, 2010). However, 4-year-olds       
struggle to use information about the relative ordering of         
multiple past events to make inferences about the present,         
and fail to solve temporal reasoning tasks in which the order           
they receive information about events doesn’t match the        
order in which those events occurred (e.g., McCormack &         
Hoerl, 2007), suggesting that young children lack flexible        
temporal perspective-taking. 
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Figure 1: Example storyboards and intervention/negation cards. The experimenter (E) recited the story on the front of the 
card, then flipped it to reveal three empty boxes. At test, E placed either an intervention or negation card in the center square 
(B)  before posing counterfactual questions about its effects on past (A) and future (C) events.  

 
Critically, none of these prior studies directly test whether         

children understand that the future is alterable in the present,          
but the past is not. Instead, a separate literature has explored           
the development of children’s causal reasoning skills (see        
Gopnik & Wellman, 2012 for a review), and, despite the          
related subject matter, this literature has developed largely        
independently from the work on the development of        
temporal cognition discussed above. Within the causal       
reasoning literature, some accounts suggest that causal       
relationships are defined in terms of their counterfactual        
dependency. That is, if event A causes event B, then an           
intervention on A will lead to a change in B (Pearl, 2000).            
Relevant to this, researchers have examined children’s       
understanding of this link between causal and counterfactual        
reasoning. For example, in early work, Harris, German, and         
Mills (1996) conducted a series of studies in which 3- and           
4-year-olds were presented with scenarios in which they        
were asked to reason about a short causal sequence (e.g., a           
character walks across the floor with muddy boots [A],         
making a mess [B]). When asked conditional questions        
about what would have happened had A not occurred (e.g.,          
“What if Carol had taken her shoes off? Would the floor be            
dirty?”), children made accurate judgements about effects       
on B. 

If children have a unidirectional view of causality, given a          
3-step causal chain of events, A → B → C , they should             
judge that an intervention at B can alter future event C, as            
previous studies have found. Importantly, however, they       

should also judge that the intervention will not alter past          
event A (Sloman & Lagnado, 2005). 

Consider the following scenario (Figure 1): When Sally        
flips the lightswitch, then the light turns on, so she can see            
to find her toy. If told that another character, John, turned           
off the light (at B), adults may reasonably predict that          2

Sally will no longer be able to see (at C). However, they            
should not infer that Sally never turned the light on in the            
first place (at A), because John’s actions at time B can’t           
change what happened in the past, at time A. Here we test            
whether 4- to 6-year-old children make the same inferences.  

Retrospective reasoning  
Despite understanding time itself to be linear, under some         
circumstances, adults use information about the present to        
reason “back in time” and make inferences about what         
already happened in the past. For example, if an expected          
event does not occur—and no other explanation for this is          

2 Note that under some definitions of counterfactual        
reasoning, our use of the simple past tense here, rather than           
pluperfect subjunctives such as “What if John had turned off          
the light?” or (in the negation condition) “What if the light           
hadn’t turned on?”, indicates that these statements are        
hypothetical rather than counterfactual per se (see Lucas &         
Kemp, 2015). We chose simpler language primarily to make         
the task more comprehensible to young children, but are         
currently exploring whether this tense modification impacts       
performance on our task. 
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given—an adult might reasonably infer that the event’s        
usual cause must not have occurred. For example, when         
simply told that the light didn’t turn on (at B; see footnote            
2), an adult might indeed conclude that Sally never flipped          
the lightswitch (at A). Here, we presented children and         
adults with stories involving 3-step causal chains, and then         
asked them to consider scenarios in which the second step          
(B) was different. Importantly, we asked both about the         
effects of the “present” change on the future (C) and on the            
past (A).  

Given prior work showing that adults generate different        
causal predictions following passive observation (e.g.,      
observing that B did not occur) than they do following          
interventions (e.g. acting on B to prevent it from occurring;          
Sloman & Lagnado, 2005; Waldmann and Hagmeyer,       
2005), we also varied this feature in the current study. In the            
intervention condition, an external agent (e.g., another       
character) caused the “present” change. We hypothesized       
that participants with a linear concept of time would judge          
that the future event would also change, but not the past           
event. In the negation condition, however, no explanation        
for the present change was given. Here we hypothesized,         
again, that participants with a linear concept of time would          
judge that the future would change. If participants also         
engage in retrospective causal reasoning, we hypothesized       
that, unlike in the intervention condition, they would also         
systematically judge that the past event (A) had changed         
(e.g., Sloman & Lagnado, 2005). In contrast, if participants         
do not reason retrospectively, we predicted that they would         
perform similarly in the two conditions. 

Method 

Participants 
A total of 258 subjects participated, including 65        
4-year-olds (Mage = 4.5 years, range = 4.0-5.0 years), 70          
5-year-olds (Mage = 5.5 years, range = 5.0-6.0 years), 63          
6-year-olds (Mage = 6.4 years, range = 6.0-7.0 years) and 60           
adult controls (Mage = 21.6 years, range = 18.2-31.1 years).          
Participants were pseudo-randomly assigned to either the       
Intervention or Negation condition. An additional 43       
children participated, but were not included in analyses due         
to being outside the target age range (n = 3), experimenter           
or technical error ( n = 5), failure to complete the task (n =             
4), developmental delay (n = 2), insufficient fluency in         
English (n = 1), incomplete age information (n = 2), or           
failing more than one control trial, as described below (n =           
26). 

Materials 
Study materials included eight 3-panel storyboards      
illustrating sequences of events from left-to-right. Two       
examples are shown in Fig 1. Each panel was 2.8 in. × 2.8             
in. Single images corresponding to event B in each story          

were also used in testing, which represented either identical         
pictures (control stories), interventions, or negations,      
depending on condition. Each individual image was square        
with a black outline, and on the reverse side of each           
storyboard were three empty black squares positioned like        
the filled images on the front of the card.  

Procedure 
Children were tested one-on-one, in a quiet room with the          
experimenter. The experimenter began the session by       
placing the first storyboard in front of the participant, saying          
“I’m going to tell you some stories. There are three things           
that happen in each story, see?” She then pointed to each           
image in the story while reciting the corresponding part of          
the narrative, in this case, “When [A] Julie opens the door,           
then [B] her dog runs outside, so [C] he smashes up all the             
flowers in the garden”. 

The experimenter then flipped over the storyboard,       
revealing the 3 empty boxes, and initiated a demonstration         
control trial. While placing a duplicate of the center image          
from the front of the card in the empty center square, she            
asked the child “tell me, just like in that story, if [the dog             
ran outside]...,” and then pointed to the empty third [event          
C; future] box while completing the question with a forced          
choice: “will [he smash all the flowers in the garden] or not            
[smash the flowers in the garden]?” After receiving a verbal          
response from the participant, the experimenter repeated the        
procedure again, instead pointing to the first [event A; past]          
box and asking, “did [Julie open the door] or not [open the            
door]?”  

Next, the experimenter flipped the card back over,        
repeated the original story, and explained that she would         
now be asking the participant to think about what would          
happen in the story if something had been different. In this           
demonstration critical trial, the experimenter placed a       
modified image B in the empty center square on the back of            
the card. This image showed either the intervention, “What         
if the dog were on a leash and couldn’t get out?”, or the             
negation, “What if the dog didn’t run outside?”, according         
to condition. The test concluded with the past and future test           
questions, as above. No feedback was given on either the          
control or critical trials using the demonstration story.  

After this demonstration phase, the experimenter told the        
participant that she would tell some other stories, sometimes         
asking if things had been the same (control stories), and          
sometimes asking if things had been different (critical        
stories), and sometimes asking about the first part or the          
story, and sometimes about the last part. The remainder of          
the task included 7 new stories, 5 of which were used on            
critical trials (see examples in Fig. 1) and 2 were control           
stories. The ordering of the stories (other than the         
demonstration story), the past and future questions about        
each story, and the positive and negative response options in          
each question were counterbalanced across participants. The       
third and sixth stories were always control stories.        
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Procedures used in the intervention and negation conditions        
were identical, apart from the different counterfactual       
questions and corresponding images used during test.  

Data from children who responded incorrectly more than        
one control trials, i.e., by denying that an event from the           
story they had just heard had occurred in that story, were           
excluded due to suspected incomprehension of the task. This         
exclusion criterion was particularly important because the       
predicted “adult-like” response pattern in the negation       
condition was one in which the participant judges that none          
of the events in either past or future critical trials had           
occurred. We therefore wanted to minimize the chances of         
potentially confusing a “no bias” in children who did not          
comprehend the task at all with adult-like conditional        
reasoning.  

Coding  
During testing, the experimenter recorded whether the       
participant affirmed or denied that each past or future event          
would occur. Yes responses were coded as 1, no responses          
as 0. These were later reverse-coded as described below.         
Participants who answered more than one of the four control          
questions incorrectly (i.e., by responding that the event did         
not occur; n = 26) were excluded from further analysis. Data           
from the demonstration story were not included in analysis.         
All analyses were conducted in R, using the lme4 package          
for mixed-effects modeling. 

Results 
We began with two primary questions about our dataset: (1)          
Do participants differentiate past from future in the        
intervention condition? and (2) Do participants ever reason        
retrospectively (i.e., “back in time”) when answering       
questions about the past in the negation condition? 

Before addressing these, we asked whether children’s       
performance differed between the two conditions. Because       
our DV was a binary choice (either an event would occur or            
not), we conducted a mixed-effects logistic regression. For        
ease of exposition, the data were reverse-coded, such that         
answers indicating that events would not occur in the         
counterfactual scenario were considered “changes” (1),      
while answers indicating that events would still occur were         
considered non-changes (0). We modeled the likelihood that        
a child would say an event changed as a function of their            3

age (continuous; between-subjects), condition (intervention     
vs. negation; between-subjects), and event time (past vs.        
future; within-subjects). We also included an interaction       
between event time and condition in this model, and random          
intercepts for subjects and stories. Results of this analysis         
revealed significant main effects of age (β = 0.5, p = 0.004)            
and event time (β = -3.4, p < 0.001) as well as a significant              
interaction between event time and condition (β = 2.3, p <           
0.001). Given the evidence that children’s behavior differed        

3 Adult controls were not included in this analysis. 

between conditions, we proceeded to analyze the data from         
the two conditions separately.  

 

 
Figure 2: Distributions of responses to past (blue) and future          
(red) counterfactual questions, in the intervention (left) and        
negation (right) conditions. Height of shaded areas indicates        
the density of responses at each level of consistency, e.g.,          
80% = 4 of 5 events changed. Vertical lines = medians.           
Density calculation bandwidth = 8. 

Intervention condition  
Our goal in the intervention condition was to test whether          
participants differentiate the effects of present interventions       
on past vs. future events. In other words, do they know that            
you can change the future, but not the past? The          
distributions of responses to past- and future- questions, i.e.,         
the percentage of target events that changed, for each age          
group are shown in the left column of Figure 2, with           
medians represented by vertical lines. As expected, and in         
line with prior work, adults strongly distinguished past from         
future: the median percentage of past events they said would          
change as a result of the intervention was 0%, 95% CI           
[0%-0%], while the median percentage of future events that         
would change was 100% [80%-100%].  
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Figure 3: Proportion of subjects in each age group who demonstrated each of 4 response patterns across stories, in the                    
intervention (top) and negation (bottom) conditions. “Linear” (green) = future events consistently judged to change, past                
events to stay the same. “Both change” (red) = both past and future events judged to change. No-changes (blue) = both past                      
and future events were judged to stay the same. Mixed (purple) = inconsistent responses.  
 

Considering the developmental data, a logistic      
regression of the children’s likelihood of saying that an         
event changed revealed significant effects of age (β = 0.7, p           
< 0.001) and event time (β = 2.5, p = 0.03) as well as a               
significant interaction (β = -1.1, p < 0.001). As shown in           
Fig. 2, children were more likely to judge that interventions          
would change the future than the past, and this effect          
increased with age. Wilcoxon signed-rank tests confirmed       
that the past vs. future effect was significant even in          
4-year-olds, who reported that 80% [60%-80%] of future        
events changed, but only 20% [0%-20%] of past events did          
(W = 400, p < 0.001). 
Interestingly, the three groups of children did not differ in           

their likelihood of judging that past events changed        
(Wilcoxon rank-sum tests, 4’s vs 6’s, W = 567, p = 0.6),            
though even 6-year-olds were significantly more likely to do         
so than were adults (W = 306, p = 0.006). On future            
questions, 4- and 5-year-olds were significantly less likely        
to say that events changed than were 6-year-olds and adults          
(5’s vs 6’s, W = 731, p = 0.04), though neither of these pairs              
differed (4’s vs 5’s W = 456, p = 0.09; 6’s vs adults W =               
489, p = 0.9).  

In addition to overall performance on past vs future         
questions, we were interested in the patterns of responses         
provided by individual subjects. For instance, did children        
who said the past wouldn’t change also say the future would           
change, as a linear model of time would predict? For the           
purpose of this analysis, we operationalized a “linear”        
pattern as one in which the participant judged that at least 4            
out of 5 future events would change after intervention, and          
that at least 4 of the 5 past events would not. As shown in              

Figure 3 (top panel, green line), we found that 83%          
[65%-94%] of adults conformed to this pattern, as did 72%          
[53%-86%] of 6-year-olds, 36% [21%-54%] of 5-year-olds,       
and 27% [13%-46%] of 4-year-olds. Subjects who didn’t        
follow a linear pattern typically reported fewer than 4         
changes to future questions, resulting in a mixed pattern.         
Patterns in which either both events or neither event         
changed were rare in all age groups.  
 
Negation condition  
In the negation condition we assessed whether participants        
would reason retrospectively, making the inference that an        
observed, unexplained change in the present was caused by         
a prior change in the past. As shown in Fig 2 (right column),             
we found strong retrospective reasoning in adults: when        
simply told that the present event “didn’t” occur, they         
judged that the future effect would not occur on a median of            
100%, 95% CI [100%-100%], of trials, and, in contrast to          
the intervention condition, that the past had changed on         
100% [80%-100%] of trials, in line with prior adult work          
(e.g., Waldmann & Hagmeyer, 2005).  

Next we considered the developmental data. A logistic         
regression model of the children’s data in the negation         
condition, with the same effects structure as the one used in           
the intervention condition, revealed only a main effect of         
age (β = 1.1, p = 0.04). Older children were more likely than             
younger children to judge that events changed. However,        
unlike in the intervention condition, there was no significant         
effect of event time (β = 0.35, p = 0.8), and no interaction (β              
= -0.29, p = 0.24). In other words, we did not detect            
evidence that children were treating past and future events         
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differently in this condition. Examining the age effects        
further, we found that 5-year-olds were less likely to judge          
that past events had changed than 6-year-olds and adults         
(5’s vs 6’s, W = 302, p = 0.002), but no other age-group             
comparisons reached significance. On future questions, 4-       
and 5-year-olds could not be distinguished, but 6-year-olds        
were significantly more likely to say that future events         
changed than were 5-year-olds (W = 677, p = 0.04), and           
adults were more likely to do so than were 6-year-olds (W =            
660, p < 0.001).  

Importantly, retrospective reasoning about the     
implications of the present on the past, when combined with          
knowledge of how the present influences the future (i.e.,         
future “prospective” reasoning), predicts not only that the        
past and future will not be differentiated, as we found          
above, but also that both will be judged to have changed.           
This pattern was less common across the 4- and 5-year-old          
groups, as can be seen in the flatter distributions (broader          
confidence intervals) in Fig 2. For example, the median         
percentage of past events that 4-year-olds judged to have         
changed was 60% [40%-80%], and for 5-year-olds was 40%         
[20%-60%]. In contrast, the median percentage for both        
6-year-olds and adults was 100%. In our individual-subjects        
analysis, a consistent retrospective/prospective reasoning     
pattern was operationalized as one in which at least 4 or 5            
past events and 4 of 5 future events changed. As shown in            
Fig 3, we found that 41% [24%-59%] of 4-year-olds, 24%          
[11%-41%] of 5-year-olds, 65% [45%-81%] of 6-year-olds,       
and 87% [69%-96%] of adults displayed this pattern, while         
linear response patterns were very rare in this condition.         
Interestingly, among children who did not show this pattern,         
particularly 5-year-olds (who were surprisingly less      
adult-like than 4-year-olds), a larger proportion said that        
neither event changed (Fig. 3, blue lines) than we observed          
in the intervention condition. We discuss this further below.  

Discussion 
In the current study, we explored the development of         
children’s reasoning about causal relationships among      
events in the past, present, and future. We discovered that          
children as young as 4 already distinguish the past and          
future: they are more likely to judge that an intervention in           
the present will change a future event than a past one. To            
our knowledge, this is the strongest evidence to date that          
pre-school children appreciate the causal asymmetry      
between the past and future (see McCormack & Hoerl,         
2017). Moreover, children treated counterfactual scenarios      
with an explicit causal agent differently from those in which          
the cause must be inferred. In the latter case, children did           
not distinguish past from future, and by age 6, 65% of           
children consistently demonstrated both prospective and      
retrospective causal reasoning.  

To test their reasoning about past and future events, we          
told participants 3-step stories, and then asked them to         
consider counterfactual cases in which an outside agent        

disrupted the middle step. We found that even 4-year-olds         
very rarely judged that the past event would retroactively         
change. This finding extends previous literature showing       
that 4-year-olds understand that past (but not future) events         
can cause present ones (e.g., Busby & Suddendorf, 2010),         
and suggests that the understanding that time is irreversible         
is strong and early-developing. However, despite the high        
overall rate of denials that the past would change, we only           
found a consistently “linear” response pattern in about a         
quarter of 4-year-olds. This was because, compared to older         
children, younger children were less likely to judge that         
future events would change after intervention. 

Finding more adult-like behavior from children on past        
than future trials is somewhat surprising in light of previous          
studies showing that 3-year-olds are capable of prospective        
(“forward”) conditional reasoning (e.g., Harris et al., 1996).        
In fact, it has been proposed that future conditionals are          
easier than past counterfactuals for children, because they        
do not require them to hold both the real world, i.e., how            
things actually occurred, and the possible world, i.e., how         
things could have been otherwise, in mind simultaneously        
(e.g., Beck, 2016; Beck & Riggs, 2014; Raefsteder et al.          
2010). Perhaps, however, children in our task were more          
variable in their predictions about the future than the past          
simply because the future is intrinsically more open-ended.        
In linear time, a given intervention may or may not be           
effective at generating a particular outcome, but will never         
change what has already occurred.  

Although children consistently denied that the past would        
change in the intervention condition, their judgments about        
past events were not rigid. In the negation condition,         
children’s responses to past questions were more mixed, and         
like adults, they were more likely to say that the past had            
changed than that it hadn’t. Given the minimal changes to          
the task across conditions, our finding that children are         
already sensitive to the precise nature of the conditional         
statement, and to the increased ambiguity of negations        
relative to explicit interventions (with respect to the past) is          
striking. Given children’s high performance in the       
intervention condition, and the lack of a bell curve centered          
around random responding in the negation condition, we do         
not believe these results can be attributed to confusion about          
the nature of the task. Instead, these findings may suggest          
that some children (but not others) are already able to reason           
backward in time. 

One intriguing possibility is that children who perform        
like adults in the negation condition are deploying what the          
adult counterfactual reasoning literature has termed      
“backtracking” (i.e., engaging in a special type of        
counterfactual reasoning that involves inference about      
upstream causal variables; Gerstenberg, Bechlivanidis, &      
Lagnado, 2013; Rips, 2010; Rips & Edwards, 2013; Sloman         
& Lagnado, 2005). Although there has been substantial        
debate over what types of counterfactuals lead to        
backtracking inferences in adults (e.g., Han et al., 2014),         
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these investigations have not yet been extended to children.         
The tendency to engage in backtracking (or not) has         
important implications for interventionist accounts for      
causal reasoning. Specifically, because evaluating the      
effects of an intervention on a given variable requires         
“cutting off” that variable from its upstream causal        
antecedents, backtracking should not be possible (Pearl,       
2000; see Lucas & Kemp, 2015). While our negation         
condition is similar to certain backtracking tasks previously        
used with adults (e.g., Han et al., 2014; Lucas & Kemp,           
2015), given the methodological differences (e.g., using       
child-friendly events that operate over time; presenting       
interventions/negations in past vs. pluperfect tense),      
additional work will be required to explore this potential         
developmental link.  

In sum, the current study brings together the literatures on          
the development of causal reasoning and temporal       
cognition, by leveraging a counterfactual reasoning task to        
explore children’s understanding of the past and the future.         
We found that children are able to recognize the causal          
asymmetry between past and future prior to the age of 4,           
reflecting the early development of a linear view of time. 

Interestingly, it has been hypothesized that counterfactual       
reasoning itself may hinge on the development of an         
abstract, event-independent concept of time (McCormack &       
Hoerl, 2017). To consider different possible worlds, one        
must separate the time-point at which an event occurred         
from the event itself. Linear time thus provides a framework          
in which events can be organized and even mentally         
“switched out,” so that their causal consequences can be         
considered. By studying these phenomena in tandem, future        
studies may uncover new insights about how time and         
causality are mentally represented.  
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Abstract 

A large body of research in the cognitive sciences relies on 
examining statistical differences. While the approach of 
examining differences can aid in explaining behavior, it does 
not necessarily mean that these differences have predictive 
power. Yet, understanding behavior both involves explaining 
and predicting behavior. As a point in case, the current study 
used a naturalistic email dataset to examine statistical 
differences and predictive power in fraudulent activities. 
Differences between 1st and 3rd person pronoun use in liars and 
people telling the truth are widely reported in the literature. The 
current study aimed to test for the effect of fraudulent events 
on pronoun use in emails using the Enron corpus and 
additionally applied a machine learning approach to estimate 
whether pronoun use predicts fraud. While the ratio between 
1st and 3rd person pronoun use was related to fraud, this 
construct did not have predictive power. The current study 
highlights an important conclusion for the cognitive sciences: 
The importance of not only testing for differences, but of also 
applying predictive models. In this way it can be determined 
whether effects of a construct on an outcome can also predict 
the outcome. 

Keywords: corpus linguistics; machine learning; deception; 
pronouns  

 

Introduction 

Many studies in the cognitive sciences rely on examining 

statistical differences. This approach provides us with 

important knowledge about differences in for example 

behavior between extroverts and introverts (Lu & Hsiao, 

2010), clinical populations and non-clinical ones (Garnefski 

et al., 2002) and males and females (Bleidorn et al., 2016). 

While examining differences can aid in explaining behavior, 

it does not necessarily mean these differences have predictive 

power. Understanding behavior both involves explaining and 

predicting behavior (Rosenberg et al., 2018). A model 

focused on explanation could be appealing theoretically, but 

could be very limited in predicting actual human behavior 

(Yarkoni & Westfall, 2017).  

One field of study in which differences have been widely 

examined is that of deception, in which comparisons are 

made between when people are lying and when they are 

telling the truth (DePaulo et al., 2003). Lying is cognitively 

more complex than telling the truth. To make a lie convincing 

we have to exert a lot of cognitive control, which might 

paradoxically be reflected in cues that betray our deception 

(Zuckerman et al., 1981), both verbally and non-verbally 

(DePaulo et al., 2003).  

Several studies have examined these cues to deception 

using experimental manipulations, for example by asking 

participants to lie or to tell the truth, testing for a statistical 

difference between the manipulations. These studies 

demonstrated that there is a difference between liars and 

people that tell the truth: Liars provide fewer details and tell 

fewer compelling stories, as they are uncertain and less 

engaged (DePaulo et al., 2003). Liars apparently try to 

distance themselves from the content of the communication, 

with content increasing in abstractness (Louwerse et al., 

2010). Abstractness in communication may be reflected in 

pronoun use (Hancock et al., 2008; Humpherys et al., 2011; 

Louwerse et al., 2010; Newman et al., 2003), with a decrease 

in self-references and an increase in other-references 

reflecting increasing abstractness. Even though experienced 

liars may be avoiding tainted words that reveal their 

intentions, pronoun use is outside of conscious control of 

speakers and writers and therefore a useful measure to 

determine whether statements are truthful or not 

(Pennebaker, 2011). 

Newman et al. (2003) examined 1st person pronouns (self-

references) and 3rd person pronouns (other-references) when 

participants were instructed to produce a story on abortion 

which matched their opinion or not. They demonstrated that 

participants who wrote a story they did not agree with used 

fewer 1st person singular and fewer 3rd person pronouns than 

participants that agreed with their story. Similarly, Hancock 

et al. (2008) asked participants to either write a truthful or 

untruthful story on several different topics. The participants 

that were untruthful used fewer 1st person pronouns and more 

3rd person pronouns than truthful participants. A meta-

analysis on 116 studies on lying and deceptive cues by 

DePaulo et al. (2003) also demonstrated that there is an effect 

of being truthful on pronoun use, with fewer self-references 

and more other-references showing up in liars. However, 
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Louwerse et al. (2010) found that fraudulent events were 

associated mostly with an increase in 1st person pronouns. 

In sum, statistical differences between pronoun use in liars 

and people that are truthful have been established in the 

existing literature, although the direction of these effects 

varied across studies. Perhaps this is not entirely surprising, 

as the context and the ecological validity of these studies also 

differ. Most studies on pronoun use and deception induced 

lying with an experimental manipulation, by for instance 

asking participants to write about an opinion opposite to what 

they truly belief. These cases are considered to be deception 

(Newman et al., 2003), except that there is no consequence to 

participants’ ‘lying’. Such laboratory studies provide 

excellent insights in linguistic deceptive cues but lack 

ecological validity.  

To use a case where the stakes of deception were higher 

than a manipulated laboratory setting, Louwerse et al. (2010), 

used an email dataset (Klimt & Yang, 2004), which contained 

517,431 emails from about 150 Enron executives and 

employees from 1999 to 2001. The Enron Cooperation was 

one of the world’s leading gas, electricity, and 

communication companies and is most famous for the 

elaborate and systematic way in which accounting fraud 

spread throughout the organization, which led to declaration 

of bankruptcy in 2001. The advantage of using this corpus is 

that, besides its ecological validity, it covers a relatively large 

time span and it has detailed information available on the 

company and its fraudulent activities (Diesner et al., 2005). 

The disadvantage of using a naturalistic corpus, however, is 

that it is very difficult to determine which emails actually 

contain deception and which ones do not. Louwerse et al. 

(2010) operationalized deception by identifying the periods 

during which fraudulent events took place, capitalizing on the 

sheer number of emails in these different time frames.  

Although statistical differences show up between liars and 

non-liars in pronoun use and although this difference is 

theoretically making sense, it is not clear whether pronoun 

use allows for predicting deception, and if so, to what extent. 

The current study uses Louwerse et al. (2010) as an 

illustration. We used the Enron email dataset, but rather than 

only investigating whether there is an effect of fraudulent 

emails on linguistic variables as in Louwerse et al. (2010), we 

additionally applied a machine learning approach to estimate 

whether linguistic variables also predicted fraud. Moreover, 

rather than taking a large number of linguistic variables, we 

applied the principle of parsimony and only focused on 

pronoun use.

 

 

Table 1: Overview of events within the Enron Cooperation from 2000-2001. Marked events are considered fraudulent. 

Adapted from Louwerse et al. (2010) p. 964. 

 

Event Description of event Date (month-year) 

- Layoffs Employees within Enron Corporation were laid off. 12-01 

- CEO Indicating involvement of the CEO within any coded event. 3-00, 08-00, 11-00, 01-01, 

04-01, 08-01, 10-01, 11-01 

- Fraudulent paperwork 

filled signed 

Filing and/or signing of fraudulent paperwork (by the CEO or 

COO). 

03-00, 08-00 

- Fraudulent comments Enron made fraudulent comments, to the employees and/or 

investors. 

01-01, 09-01 

- Discussion of ethics A discussion of ethics occurred between Enron executives or 

between the CEO and employees. 

07-00, 03-01, 05-01, 08-01, 

09-01, 10-01  
- Selling Enron shares Selling of Enron stock by high-level executives occurs. 11-00, 05-01, 06-01, 07-01, 

08-01, 09-01  
- Rolling blackouts 

initiated 

Intentional initiation of rolling blackouts in California. 01-01 

- Meetings with national 

political figures 

High-level Enron executives met with national political figures 

including the Secr. of the Treasury and the Secr. of Commerce. 

02-01, 03-01, 04-01, 08-01, 

10-01, 11-01 

- Financial support of 

political candidate 

High-level Enron executives (CEO & President) provided 

financial support for a newly elected national political figure. 

01-01 

- Profit announced Profits were announced for the quarter. 04-01 

- Loss announced Losses were announced for the quarter. 10-01 

- SEC inquiry 

developments 

Beginning of the SEC inquiry and the point at which the SEC 

inquiry became a formal investigation. 

10-01 

- Shredding occurs Shredding of Enron documents in Enron and/or Arthur 

Andersen accounting firm. 

10-01 

Shredding stopped Shredding of Enron documents stopped in Enron and/or Arthur 

Andersen. 

10-01, 11-01 

- Fraud announced Enron admitted to having overstated the company’s profits. 11-01 

- Bankruptcy filed Bankruptcy was filed. 12-01 
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Methods 

Selection and Classification of Data 

Only emails sent by Enron employees were selected to filter 

the data from noise, such as advertisements, promotions, and 

other junk mail. Accordingly, we excluded duplicate emails 

and emails from other organizations (number of emails 

excluded in this step: 486,272). Next, we used the 

Interquartile Range rule for outlier removal: emails that had 

length above 1.5 times the Interquartile Range were excluded 

(number of emails excluded in this step: 2,157). This was 

necessary as some emails included the quoted replies from 

previous emails, thus providing redundancy. Finally, since 

our objective was to explore pronoun use, specifically the 

relationship between the use of different types of pronouns, 

we excluded emails that did not have at least one 1st person 

pronoun and one 3rd person pronoun (number of emails 

excluded in this step: 19,523). In summary, out of the 

517,431 emails in the Enron dataset, 9,479 emails (1.83%) 

were included for further analyses.  

Based on Louwerse et al. (2010), 16 types of events within 

the Enron Corporation from 2000-2001 were identified based 

on the timeline of the Enron case (Table 1). The event types 

‘fraudulent paperwork filed signed’, ‘fraudulent comments’, 

‘rolling blackouts initiated’ and ‘shredding of documents’ 

were identified as clearly fraudulent. Additionally, as Enron 

admitted to having overstated the company’s profit, the 

events of ‘profit announced’ and ‘loss announced’ were also 

considered fraudulent. All events considered fraudulent are 

marked in gray in Table 1.  

The dataset primarily consisted of emails from higher 

executives, increasing the probability that the content of the 

emails involved decision-making processes related to the 

fraudulent events. Emails sent during those activities that 

were sent in periods of fraudulent events were labeled as 

fraudulent. All other emails were labeled as non-fraudulent. 

Obviously, this is an overgeneralization, but a useful one 

given the illustrative purposes of the current study examining 

significant differences and predictive power. 

A total of 28.1% (N = 2,664) of the 9,479 included emails 

was classified as being related to fraudulent events 

(compared to 71.9% [N = 6,815] being not related to 

fraudulent events). An overview of the distribution of 

normalized 1st and 3rd person pronouns in fraudulent and non-

fraudulent emails is depicted in Figure 1.

 

 

 

 
 

Figure 1: Distribution of normalized 1st and 3rd person pronouns in fraudulent (dark gray) and non-fraudulent (light gray) 

emails. 
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Feature Extraction 

The number of occurrences of 1st person and 3rd person 

pronouns were computed for each of the 9,479 emails (see 

Table 2 for an overview of included pronouns). These 

occurrences were then normalized by the number of word 

tokens in each email.  

 

Table 2: Included 1st and 3rd person pronouns. 

 

Type of pronouns Included pronouns 

1st person I, me, my, mine, myself, we, us, 

our, ours, ourselves 

3rd person he, she, him, her, his, hers, himself, 

herself, they, them, their, theirs, 

themselves 

 

Data Analysis  

Relationship Pronoun Use and Fraudulent Events The 

relationship between 1st person and 3rd person pronoun use 

frequency and fraudulent events was examined by computing 

two logistic regression models. 

In Model 1, we used the (normalized) frequency of 1st 

person pronouns and the (normalized) frequency of 3rd person 

pronouns as independent variables, and the class label 

(fraudulent/non-fraudulent) as dependent variable. In Model 

2, we computed whether the ratio between 1st person and 3rd 

person pronoun use had any relationship to the class label. 

Both models were fitted using a maximum likelihood 

estimator, using the Python package StatsModels.  

 

Predicting Fraudulent Events Through Pronoun Use In 

order to predict whether an email was related to fraudulent 

events, we used two logistic regression classifiers. The 

classifiers were fitted using the same features as the logistic 

regression models; specifically, Classifier 1 was trained on 

the (normalized) frequency of 1st person pronouns and 

(normalized) frequency of 3rd person pronouns, while 

Classifier 2 was trained on the ratio between 1st person and 

3rd person pronouns. In order to deal with imbalanced data in 

the training phase, class weight was set to “balanced”. In this 

way, the classifier penalizes mistakes in each class with a 

weight inversely proportional to the frequency of that class, 

in order to avoid favoring only the overrepresented class. 

Both classifiers were evaluated on accuracy, precision, recall, 

and F1. We also plotted the ROC curve to facilitate the 

visualization of the relationship between precision and recall. 

The performance scores were calculated using 10 x stratified 

10-fold cross validation, and we report the mean value of all 

100 individual scores. For the implementation, we used the 

LogisticRegression class from the Python library Scikit-

learn, with all default parameters (except for class_weight, 

set to “balanced” to deal with the imbalance over the classes). 

 

 

 

Results and Discussion 

Relationship Pronoun Use and Fraudulent Events Model 

1, which uses normalized 1st and 3rd person pronouns as 

separate independent variables, did not show a significant 

relationship between pronoun use and fraudulent events, p = 

.108 (Table 3). 

 

Table 3: Logistic regression results for Model 1 (normalized 

1st and 3rd person pronoun frequency). 

 

 p 

Model likelihood .108 

  

Variable β S.E. p 

Intercept -0.95 0.04 <.001 

1st person pronouns 1.38 0.97 .155 

3rd person pronouns -2.61 1.34 .051 

 

Table 4: Logistic regression results for Model 2 (ratio 

between 1st and 3rd person pronoun frequency). 

 

 p 

Model likelihood .023 

  

Variable β S.E. p 

Intercept -0.99 0.03 <.001 

1st/3rd person pronouns 0.01 0.01 .022 

 

Model 2, which uses the ratio between 1st and 3rd person 

pronouns, did show a significant relationship between 

pronoun use and fraudulent events, p = .023 (Table 4). The 

results demonstrated that 1st and 3rd person pronoun use were 

not individually related to fraudulent events, but that the ratio 

between the two was. The average ratio for emails that were 

and were not related to fraudulent events was 3.93 and 3.74 

respectively, demonstrating that during times of fraudulent 

events the use of 1st person pronouns relative to the use of 3rd 

person pronouns increased. This relationship conflicts with 

the notion that people try to distance themselves from the 

information they are conveying when they are being 

untruthful by increasing abstractness by reducing self-

references and increasing other-references in their 

communication. Yet, these findings are in line with the study 

of Louwerse et al. (2010) which also did not find support for 

pronouns reflecting increased abstractness during fraud, but 

did find support for abstractness in verbs. 

As it is important not only to examine the relationship 

between a construct and an outcome, but also to examine 

whether the construct has predictive power, we also report the 

results of the logistic regression classifiers, to predict whether 

or not an email is related to fraudulent events based on 1st and 

3rd person pronoun use. 
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Table 5: Average results from the 10 x 10-fold cross 

validation for Classifier 1 (normalized 1st and 3rd person 

pronoun frequency). 

 

 Accuracy Precision Recall F1 

Predicting 

fraud 

48.24% 28.40% 55.39% 37.51% 

Predicting 

non-fraud 

48.24% 72.29% 45.44% 55.71% 

 

 
 

Figure 2: ROC curve for Classifier 1 (normalized 1st and 3rd 

person pronoun frequency). 

 

Predicting Fraudulent Events Through Pronoun Use The 

evaluation scores from the 10 x 10-fold cross validation of 

Classifier 1 (trained on the normalized frequency of 1st person 

and 3rd person pronouns) are presented in Table 5 and the 

model’s ROC curve is depicted in Figure 2.  

As can be seen in Table 5 and in Figure 2, Classifier 1 did 

not perform above chance level (accuracy = 48.24%). F1 

scores were also relatively low, reaching a maximum of 

55.71% for predicting non-fraud. Precision scores were 

considerably higher for predicting non-fraud than for 

predicting fraud, indicating that the model favored the more 

common class. The evaluation scores and the ROC curve thus 

demonstrated the classifier based on the normalized 

individual frequencies has limited predictive power. This 

finding is in line with the absence of a significant relationship 

between these individual frequencies and fraudulent events. 

The evaluation scores from the 10 x 10-fold cross 

validation for Classifier 2 (ratio between 1st and 3rd person 

pronoun use) are presented in Table 6 and the model’s ROC 

curve is depicted in Figure 3. As can be seen in Table 6 and 

in Figure 3, the model using the ratio between 1st and 3rd 

person pronouns performed slightly above chance level 

(accuracy = 57.37%). F1 scores were again relatively low, 

reaching a maximum of 68.80%. As was the case for the 

classifier using the normalized individual frequencies, 

precision scores were a lot higher for the most common class. 

Considering all evaluation scores and the ROC curve, the 

model using the ratio between different pronouns also had 

limited predictive power. 

Table 6: Average results from the 10 x 10-fold cross 

validation for Classifier 2 (ratio between 1st and 3rd person 

pronoun frequency). 

 

 Accuracy Precision Recall F1 

Predicting 

fraud 

57.37% 29.35% 36.79% 32.64% 

Predicting 

non-fraud 

57.37% 72.59% 65.41% 68.80% 

 

 
 

Figure 3: ROC curve for Classifier 2 (ratio between 1st and 

3rd person pronoun frequency). 

 

The mean ROC AUC of 0.511 indicates that this classifier 

is not able to classify deception any better than chance level. 

In conclusion, even though there was a significant 

relationship between pronoun use ratio and fraud, this 

construct had relatively little predictive power. 

General Discussion 

In the cognitive sciences many studies focus on examining 

statistical differences. This approach in which differences are 

examined provides us with valuable insights to explain 

behavior. Yet, it does not necessarily mean that these 

differences have predictive power. Understanding behavior 

both involves explaining and predicting behavior.  

As a point in case, the current study examined the 

relationship between 1st and 3rd person pronoun use in emails 

sent by Enron employees and fraudulent activities. 

Additionally, we attempted to predict fraudulent events using 

1st and 3rd person pronoun use in the emails.  

Previous research demonstrated statistical differences 

between pronoun use in liars and people that are truthful, but 

the direction of the effects varied across studies. These 

studies generally examined the separate effects of 1st and 3rd 

person pronoun use. The current study demonstrated that the 

ratio between 1st and 3rd person pronouns was related to 

fraudulent events. This relationship indicated that the use of 

1st person pronouns relative to 3rd person pronouns increased 

during times of fraudulent activities.  
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Differences in pronoun use between fraudulent and non-

fraudulent communication do not necessarily imply that this 

construct has any predictive power. In our attempt to predict 

fraudulent events through pronoun use in emails, 

classification models scored relatively low on all evaluation 

measures. These models are therefore limited in their 

predictive power, not being able to classify deception any 

better than chance level.  

The finding of the current study that differences in 1st and 

3rd person pronoun use had no predictive power warrants 

reported differences in pronoun use between truthful and 

deceptive communication to not be interpreted as providing a 

meaningful tool for predicting fraud.  

Possibly, classification models were limited in their 

predictive power in the current study due to the way in which 

the data were labeled. Whether an email was considered 

fraudulent or not was based on a general timeline, which 

might add extra noise to the data. One cannot be sure about 

the number of emails containing deception and the amount of 

emails containing no deception that was correctly labeled. 

However, this issue is inherent in using a naturalistic dataset. 

The fact remains that it is of utmost importance when one 

wants to gain a comprehensive insight to not only examine 

constructs in the laboratory, but also in settings that are of 

higher ecological validity.  

Although effects of deception on 1st and 3rd person pronoun 

use in communication are widely reported and have been 

demonstrated in the current study, this construct seems to 

lack in predictive power. The current study highlights an 

important conclusion for the cognitive sciences: The 

importance of not only testing for differences, but of also 

applying predictive models in order to determine whether 

effects of a construct on an outcome are also meaningful in 

predicting the outcome. 
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Abstract 

Using a novel adaptation of the visual world eye-tracking 
paradigm we investigated children’s and adults’ online 
processing of reference in a naturalistic language context. 
Participants listened to a 5-minute long storybook while 
wearing eye-tracking glasses. The gaze data were analyzed 
relative to the onset of referring expressions (i.e., full noun 
phrases (NPs) and pronouns) that were mentioned 
throughout the story. We found that following the mention 
of a referring expression there was an increase in the 
proportion of looks to the intended referent for both children 
and adults. However, this effect was only found early on in 
the story. As the story progressed, the likelihood that 
participants directed their eye gaze towards the intended 
referent decreased. We also found differences in the eye gaze 
patterns between NPs and pronouns, as well as between 
children and adults. Overall these findings demonstrate that 
the mapping between linguistic input and corresponding eye 
movements is heavily influenced by discourse context.  

Keywords: visual world paradigm; eye-tracking; reference 
processing; discourse 

Introduction 
During spoken communication, we use different types of 
referring expressions in order to specify people, places and 
things. These include both full noun phrases (NPs) (e.g., 
‘Sarah’, ‘the bear’) and pronouns (e.g., ‘she’, ‘it’). In order 
for communication to be successful, speakers must choose 
appropriate referring expressions and listeners must rapidly 
map those referring expressions onto the intended 
referents. One method that has been used to investigate the 
online comprehension of reference is the visual world eye-
tracking paradigm (VWP) (Cooper, 1974; Tanenhaus, 
Spivey-Knowlton, Eberhard, & Sedivy, 1995). In the 

VWP, an individual’s eye movements are monitored as 
they receive spoken language input and view a visual 
scene. The eye gaze response relative to the spoken 
language input is taken to reflect underlying processes 
involved in online language comprehension. 

In a seminal paper, Cooper (1974) found that when 
people were simultaneously presented with spoken 
language input and a visual scene, they naturally directed 
their eye gaze towards entities in the visual scene that are 
semantically related to the language being heard. For 
example, when participants heard phrases such as 
‘suddenly I noticed a hungry lion’ they fixated on a lion 
present in the visual scene ~200 milliseconds (ms) after 
hearing ‘lion’. Cooper proposed that the relationship 
between spoken language input and eye gaze fixations 
could be viewed as an active online process, and as such 
could be used to investigate online language processing. 
Tanenhaus and colleagues (1995) further investigated the 
influence of the visual scene on spoken language 
comprehension. They recorded participants’ eye 
movements as participants followed spoken instructions 
and manipulated real objects visible in front of them. They 
found that participants fixated on target objects ~250 ms 
after hearing the word that uniquely identified the target. 
For example, when participants heard instructions such as 
‘touch the starred yellow square’, they fixated on the target 
250 ms after hearing ‘starred’ when there was only one 
starred object. However, if participants were given the 
same instruction and there were two starred objects, they 
did not fixate on the target until 250 ms after hearing 
‘yellow’, highlighting the high temporal resolution 
between linguistic input and corresponding eye 
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movements. Both these studies were instrumental in the 
development of the VWP as a tool for investigating online 
language processing. 

The mapping between linguistic input and corresponding 
eye movements has also been utilized to investigate 
language processing that relies on inference, as is the case 
in online pronoun resolution (e.g., Arnold, Eisenband, 
Brown-Schmidt, & Trueswell, 2000; Järvikivi, Van 
Gompel, Hyönä, & Bertram, 2005). Typically in these 
studies, participants view scenes with two (or more) 
referents while listening to passages that contain an 
ambiguous pronoun. Because pronouns do not have a fixed 
meaning, there is not a direct association between the 
linguistic input (i.e., ‘he’) and a corresponding referent in 
the visual scene. Thus, listeners must infer which referent 
the pronoun refers to and eye gaze is taken to reflect this 
process. For example, VWP studies have reported that 
following the mention of an ambiguous third person 
singular pronoun (i.e., ‘he’), there is an increase in the 
proportion of looks to the grammatical subject of the 
preceding sentence/clause (e.g., Järvikivi, et al., 2005; 
Kaiser & Trueswell, 2008). This increase in the proportion 
of looks has been taken to suggest that participants 
interpreted the pronoun as co-referring with the preceding 
subject, providing further evidence for what is known as 
the subject bias (e.g., Crawley, Stevenson, & Kleinman, 
1990; Frederiksen, 1981).  

In addition to high temporal resolution, another 
advantage of the VWP is that it does not require 
participants to read or carry out demanding tasks, and 
therefore can be used to investigate online language 
processing in young children. This allows for direct 
comparisons between children and adults without the 
potential confounds introduced by response requirements. 
For example, VWP studies have reported that children as 
young as 2.5 to 4 years old appear to be sensitive to the 
subject bias (e.g., Hartshorne, Nappa, & Snedeker, 2015, 
for an overview; Järvikivi, Pyykkönen-Klauck, Schimke, 
& Hemforth, 2014; Pyykkönen, Matthews, & Järvikivi 
2010; Song & Fisher 2005; 2007). However, the increase 
in the proportion of looks to the grammatical subject 
usually did not occur until relatively late (i.e., 1200 ms) 
after the pronoun onset, suggesting there is still a difference 
between children and adults.  

Another advantage that has been attributed to the VWP 
is that it can be used to investigate language processing 
under relatively realistic conditions. This is primarily 
because the comprehension processes can proceed 
uninterrupted by response requirements. However, the 
majority of previous VWP studies have used carefully 
designed tasks that often encourage participants to 
carefully look at the visual scene. Furthermore, participants 
were usually presented with a series of isolated 
experimental items, where each item was no more than 2-
3 sentences, and thus lacked any sort of rich context. This 

means that each item introduced a new situation or topic, 
for which participants had no context. In sum, previous 
applications of the VWP may not accurately reflect 
naturalistic language processing.  

To date, only a single study has used the VWP to 
investigate reference processing in a continuous discourse. 
Engelen, Bouwmeester, de Brain and Zwaan (2014) had 
children listen to a 7-minute long story while viewing a 
display containing four black and white animal line 
drawings. They analyzed eye gaze data for both full NPs 
(e.g., ‘rabbit’) and pronouns (e.g., ‘he’) and found that 
following the onset of a referring expression there was an 
increase in proportion of looks to the target. However, they 
also found that overall target fixations (following an NP or 
pronoun) decreased as the story unfolded over time. 
However, given that participants viewed the same simple 
display for the entire 7-minutes, it is possible that the 
overall decrease was an artifact of fatigue or boredom. To 
date no study has used the VWP to investigate reference 
processing in a context where both the language input and 
visual scene reflect a natural language setting. 

Present Study 
The present study applied a novel adaptation of the visual 
world eye-tracking paradigm (VWP) in order to explore 
online reference processing in a naturalistic language 
setting. Children and adults listened to a 5-minute story 
containing multiple animal characters while wearing eye-
tracking glasses (ETG). We opted to use ETG over a more 
traditional table-mounted eye tracker because we wanted 
to keep the language processing context as naturalistic as 
possible. The ETG are akin to normal reading glasses and 
allow for participants to move more freely throughout the 
duration of the experiment. We analyzed eye gaze patterns 
with respect to the onset of referring expressions (full NPs 
and pronouns) mentioned throughout the story. Given the 
novelty of the methodological application it was important 
to be able to compare the eye gaze patterns between the two 
types of referring expressions, as well as between children 
and adults. Our primary goal was to explore language 
mediated eye movements outside the context of a carefully 
designed VWP task. We were interested in what eye gaze 
patterns could tell us about the processing of continuous 
discourse in a naturalistic language setting.  

Method 

Participants 
Thirty-five native English-speaking children recruited 
from preschools and daycares in Edmonton, Alberta, 
participated in the study. Written parental consent was 
obtained prior to participation and children received 
stickers and a t-shirt in exchange for their participation. 
Despite the fact that the ETG were supposed to be child-
friendly, during the analysis it became evident that there 
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was large amount of gaze loss across participants. This was 
because the angle between the cameras on the ETG and 
children’s pupils was too large, meaning that the ETG were 
too big to accurately keep track of eye gaze for some 
children. This resulted in 17 children being excluded from 
the analysis. An additional 3 children were excluded 
because they did not fit the age range (> 6 years old). This 
resulted in 15 children (7 female; mean age = 4.8 years; 
range 4.2-5.6) being included in the final analysis. All 
children had normal vision and hearing based on parental-
report. 

Sixteen native English speaking adults also participated 
in the study to serve as a control group. All adults were 
undergraduate students from the University of Alberta and 
received partial course credit for their participation. 
Written consent was obtained prior to participation. Four 
adults were excluded from the analysis due to technical 
issues with the ETG. This resulted in 12 adults (10 female; 
mean age = 20 years; range 18.2-22) being included in the 
final analysis. All adults had normal vision and hearing 
based on self-report. 
Materials  
A 22-page electronic storybook was constructed to be 
similar in style to an everyday storybook that would be read 
to children. The story was about a group of animal friends 
helping a duckling find his father. It contained multiple 
referring expressions in the linguistic discourse, with 
corresponding referents in the illustrations. The story 
began with a single character and after every 3-5 pages a 
new character was introduced so that it ended with 5 
characters in total. All characters were referred to using the 
masculine pronoun ‘he’ to ensure ambiguity. The 
storybook illustrations were created using images from 
freepik.com. The audio was recorded by a female native 
speaker of English in a sound-attenuated booth. The 
illustrations and audio were then pieced together into a 5 
minute and 26 second long .mp4 video, where the pages 
flipped as if it were a real book. An example illustration 
and associated dialogue can be seen Figure 1 below. 

 
 
 
 
 
 
 
 

 
 

Critical Items 
Thirty-six full NPs (i.e., character names) and 10 
ambiguous pronouns (i.e., he) were selected as 
experimental items. These items were selected with the 
criteria that they did not overlap with other referring 
expressions, meaning that another referring expression 
could not occur within the ~1200 ms window following 
their onset. Furthermore, pronouns had to follow a clause 
where both the grammatical subject and object were animal 
characters. Because this was a natural story, there was 
variation in the input that both preceded and followed the 
critical pronouns. However, it should be noted that at 
pronoun onset (and for a period of time afterwards), all 
critical pronouns were ambiguous. Two examples can be 
seen below and the full set can be found in the 
supplementary materials1.   

1) Fox thanked Bear. He wanted to play a different game. 
2) Bear told Fox to go and hide. He started counting to five. 

Procedure  
All children were tested individually at their preschool or 
daycare. The children sat approximately 50 cm in front of 
a Lenovo laptop and were first familiarized to the animal 
characters by being shown each animal individually and 
then being asked to name the animal. In the event that the 
child misnamed the animal they were corrected. The 
children were then told they would listen to a short story 
about the animals while wearing special ETG. The ETG 
were placed on the child’s head and secured using an 
adjustable strap. The children completed a 3-point 
calibration and then listened to the electronic storybook. 
The eye gaze data were collected with SensoMotoric 
Instruments (SMI) ETG wireless 2 eye-tracking glasses, 
which included a built-in high-definition scene camera that 
recorded all audio and video. Registration was binocular 
with a sampling rate of 60 Hz (16.6ms/frame). After 
listening to the storybook children were asked a series of 
five comprehension questions in order to ensure that they 
had been paying attention. Children had to answer at least 
four questions correctly in order to be included in the 
analysis. All children met this criterion.  

All adults were tested at The Centre for Comparative 
Psycholinguistics at the University of Alberta following a 
similar procedure.  
Gaze coding 
 The gaze data were coded frame-by-frame using Noldus 
ObserverXT software (Noldus Information Technology, 
2012). The areas of interest were each of the five animal 
characters. Eye gaze that fell outside of interest areas (IAs) 
was coded as ‘elsewhere’ or in the case of trackloss was 
coded as ‘NA’. This resulted in a data frame in which each 
IA had a separate column and every row represented a 
single frame (~16.7 ms of time). For each frame the IA 
columns either had a value of 0 (gaze not within IA) or 1  

‘But before anyone could start looking, Duckling spotted Daddy Duck across the 
pond! He flapped his wings with excitement. Daddy Duck looked up and saw 

Duckling. He sighed with relief and started swimming across the pond.’ 

Figure 1: Example illustration and associated dialogue 1The supplementary materials can be found at: 
https://git.lwp.rug.nl/a.g.toth/VWP- discourse 
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(gaze within IA). The gaze data were then binned into 5-
frame time bins each representing ~83 ms so that the values 
in the IA columns could have values between 0 and 5.We 
were interested in analyzing looks to the target referent 
(versus looks elsewhere), which in the case of pronouns 
was coded as the subject of the preceding clause. The time 
window we were interested in was 2 bins before the 
referring expression onset up until 14 bins after the 
referring expression onset (~1415 ms in total). 

Figure 2: Average proportion of target looks across the 
time bin analysis window (~1415 ms) 

Figure 3: Average proportion of target looks across story 
duration 

Results 
Average proportion of looks 
Figure 2 shows the average proportion of looks to the target 
referent across Time Bin, where the zero line indicates the 
referring expression onset and each time bin represents ~83 
ms of time. The proportion of looks were averaged over 
age group (children versus adults separately) and items 
(NPs versus pronouns separately). For the NPs (left panel) 
you can see that the proportion of looks to the target 
increased following referring expression onset and more so 
for the children (dashed line) compared to adults (solid 
line). For the pronouns (right panel) the relationship is less 
clear. However, it should be noted that there were many 
fewer pronouns than NPs, which can also be seen in the 
relative smoothness of the lines. Figure 3 shows the 

average proportion of looks to the target across the duration 
of the story (Story Position), averaged over age group and 
time bin. For both NPs (left panel) and pronouns (right 
panel), as well as children (triangles) and adults (circles) 
there is a clear downward linear trend, meaning that the 
overall proportion of looks to the target decreased as the 
story progressed over time.  
Analysis 
The gaze data were analyzed in R (version 3.1.2; R Core 
Team 2014) using Generalized Additive Mixed Modeling 
(GAMM, Wood 2006, mgcv R-package). GAMM is a 
nonlinear regression method that allows for the modeling 
of both linear and nonlinear random effects. We opted to 
use GAMMs over more standardized linear modeling 
because GAMMs are specifically designed to model 
nonlinear data and like most time series data, eye-tracking 
data is almost always nonlinear (Porretta, Kyröläinen, van 
Rij, & Järvikivi, 2018). The nonlinear relationship between 
the dependent variable and the predictors is modeled as a 
smooth function, which is a weighted sum of a set of base 
functions that each have a different shape. Using logistic 
GAMMs, we analyzed the counts (looks to the target vs. 
looks elsewhere) for each time bin (see Porretta et al. for 
discussion of binomial GAMMs for eye tracking data). 

To determine the best-fitting model we did not perform 
a model comparison procedure, as model comparisons are 
not very reliable for binomial data (Wood, 2017). Instead, 
we included binary predictors (which model the difference 
between conditions) so that we could use summary 
statistics provided by the mgcv package to determine the 
significance of the smooth terms. In addition, we used 
visualization methods to interpret and verify the 
contribution of the smooth terms (cf van Rij, Hollebrandse, 
& Hendriks, 2016; van Rij, Hendriks, van Rijn, Baayen, & 
Wood, in press).   
GAMM model of target looks 
In order to investigate the eye gaze patterns between the 
four experimental conditions (adult NPs, child NPs, adult 
pronouns and child pronouns), we created three binary 
predictors. IsChild, which models the difference between 
adults (reference level) and children, IsPronoun, which 
models the difference between noun phrases (reference 
level) and pronouns, and IsChildPronoun, which models 
the additive interaction effect between IsChild and 
IsPronoun. We then included the predictor Time Bin, in 
order to analyze looks to the target referent across the time 
bin analysis window (where time bin 0 was the referring 
expression onset). We also included the predictor Story Pos 
(i.e., how far into the story the referring expression 
occurred), in order to test whether looks to the target 
referent changed as the story progressed. All predictors 
were allowed to interact. The smooth functions (s()) model 
the nonlinear regression lines for Time Bin and Story Pos 
interacting with the four experimental conditions. The 
nonlinear tensor product interactions (ti()) model the 
nonlinear interaction surface between Time Bin and Story 
Pos and the four experimental conditions, allowing us to 
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investigate whether the gaze patterns relative to hearing the 
referring expression change over the course of the story. To 
account for individual variation between participants, we 
included nonlinear random by-Subject factor smooths for 
Time Bin and Story Pos, as well as a random intercept for 
Event (unique Subject-Item combination). To account for 
autocorrelation in the residuals, an AR1 model was 
included by specifying the rho parameter and starting point 
for each time series (cf. Baayen, van Rij, de Cat, & Wood, 
2018; van Rij et al., in press). The full analysis can be found 
in the supplementary materials and the final model 
summary is presented in Table 1. 

Table 1: Summary of the partial effects in GAMM 
fitted to count data (looks to target vs. looks elsewhere) 

For the reference level (adult NPs) there was a significant 
nonlinear interaction between Time Bin and Story Pos 
(Chi.sq(14.429)=130.82; p<.001), meaning that target 
looks relative to hearing an NP changed as the story 
progressed over time. The interaction between Time Bin 
and Story Pos was also significant for each binary 
predictor: IsChild (Chi.sq(14.153)=126.29; p<.001), 
IsPronoun (Chi.sq(14.677)=182.72; p<.001) and 
IsChildPronoun (Chi.sq(14.448)=153.73; p<.001). Thus, 
we can conclude that all four experimental conditions have 
unique interaction surfaces. In order to interpret the 
interactions, we must use visualization. The contour plots 
in Figure 4 show how target looks relative to hearing an NP 
changed as the story progressed over time for both adults 
and children. The plots can be read like a topographic map 
with peaks and valleys, where pink indicates more looks to 
the target and green indicates more looks elsewhere. Both 
adults’ and children’s target looks increased after hearing 
an NP; however, this likelihood decreased in a nonlinear 
fashion as the story progressed over time. For example, 
approximately 30 seconds into the story (y-axis), it can be 
seen that the color changes from green to pink, moving 
from left to right (x-axis), indicating that target looks began 
increasing around time bin 3 (~250 ms after NP onset). 
However, 250 seconds into the story (y-axis), it can be seen 
that there is relatively solid green, moving from left to right 
(x-axis), indicating that there was almost no effect of Time 
Bin later on in the story. It can also be seen that the peak is 
steeper for children as compared to adults. The contour 

plots in Figure 5 show how target looks relative to hearing 
a pronoun changed as the story progressed over time for 
both adults and children. The white bands indicate the 
places throughout the story where there are no data, and 
thus should not be taken into consideration when 
interpreting the interaction surface. Similar to the NPs, 
both adults’ and children’s target looks increased after 
hearing a pronoun, but again the likelihood decreased in a 
nonlinear fashion as the story progressed over time. 
Reflected by the overall color becoming greener as you 
move from the bottom to the top of the plots (y-axis). It 
also appears that earlier on in the story (~30 seconds on the 
y-axis) the increase in target looks happens sooner for 
adults than it does for children; around time bins 3 (~250 
ms) and 8 (~667 ms) respectively. However, because there 
were a lot less data for the pronouns we need to be careful 
to avoid over-interpretation.  

 
 

 
Figure 4: NP contour plots of the interaction between Time Bin 
and Story Position for adults and children. Pink indicates more 

target looks and dark green indicates fewer target looks. 
 

Figure 5: Pronoun contour plots of the interaction between 
Time Bin and Story Position for adults and children. Pink 
indicates more target looks and dark green indicates fewer 

target looks. 
 

Discussion 
The current study applied a novel adaptation of the visual 
world eye-tracking paradigm (VWP) in order to investigate 
the online comprehension of reference in a naturalistic 
language setting.  
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Overall, we found that eye gaze patterns relative to the 
onset of referring expressions (full NPs and pronouns) 
were largely influenced by when in the story the referring 
expressions occurred. When participants (both children 
and adults) heard a referring expression earlier on in the 
story, there was an increase in looks to the target referent. 
However, when participants heard a referring expression 
later on in the story there was no increase in looks to the 
target referent. This finding is in line with that of Engelen 
et al. (2014), who also found that overall target fixations 
following a referring expression decreased across a 
continuous discourse. They suggested that the visual scene 
may be particularly useful when first building a mental 
representation of the discourse, such that listeners search 
for appropriate referents in the visual scene, which results 
in eye movements being closely time-locked with the 
unfolding linguistic input. However, once a mental 
representation is well established, the visual scene does not 
provide any additional information and therefore eye 
movements are not closely time-locked. The argument for 
the visual scene not providing any additional information 
may be particularly relevant in the case of Engelen et al. 
(2014), given that the same visual scene was on display for 
their entire 7-minute discourse. As such, we originally 
proposed that their findings may be an artifact of fatigue or 
boredom. Interestingly, we found the same pattern despite 
using 22 different visual scenes throughout a 5-minute 
discourse. Based on the similarity of findings, we no longer 
believe that it is the type of visual scene (simple versus 
more complex) that causes the downward trend, but more 
likely a difference in the role that the visual scene plays 
throughout continuous discourse processing.  

Although the visual context in the present study differed 
from that of Engelen and colleagues (2014), in both studies 
only a single mental representation of the linguistic 
discourse was required. This differs from more traditional 
VWP studies, in which items are presented in isolation and 
therefore participants must build a new mental 
representation for each item. In these studies, the eye gaze 
patterns associated with each item reflect the same type of 
processing that is, trying to understand who is doing what 
to whom (i.e., constructing a mental representation). But, 
because there is no additional linguistic context, the visual 
scene becomes particularly important for extracting 
information. This results in a close time-locking between 
linguistic input (i.e., the mention of a referring expression) 
and corresponding eye movements in the visual scene (i.e., 
looking at the referent almost immediately after it being 
mentioned). In our study, we also saw this for items that 
occurred earlier on in the discourse. So why did we not see 
it for items that occurred later on? Perhaps it is simply 
because later on in the discourse participants already know 
who the referents are and generally what is going on. In 
other words, participants already have an established 
mental representation of the discourse. Therefore, they do 
not rely on the visual scene for information to the same 
extent as they do at the beginning of the discourse (or in 

the more traditional VWP experiments that use 
thematically mutually unrelated 1-3 sentence stimuli).  
This results in eye movements not being closely time-
locked with the linguistic input in the same way that they 
are at the beginning of the discourse and in more traditional 
VWP studies.  It is not that eye gaze patterns later on in the 
discourse are arbitrary (or unmeaningful), but rather that 
they may reflect a type of processing for which the timing 
between the linguistic input and the corresponding eye 
movements and gaze location is not yet well understood. 
One possibility is that, as the discourse status of a referent 
changes due to repeated mentions and due to the 
continuous story context, participants engage in inspecting 
other aspects of the visual scene to refine their discourse 
representation, instead of looking at the referent each time 
it is mentioned.   

In addition to looking at overall eye gaze patterns, we 
also compared the eye gaze patterns between full NPs and 
pronouns, as well as between children and adults. 
Following the mention of an NP, we found that earlier on 
in the story there was a greater increase in the proportion 
of looks to the target referent for children compared to 
adults. However, as the story unfolded children became 
less likely to fixate on the target compared to adults (i.e., 
there was a stronger effect of story position for children). 
Following the mention of a pronoun, we found that earlier 
on in the story children and adults showed a similar 
increase in the proportion of looks to the target referent, but 
this happened sooner for adults than children (~250 versus 
~667 ms after pronoun onset, respectively). However, 
given that the dataset was relatively limited, these findings 
are preliminary and invite further research.  

Given the novelty of the present study there were several 
challenges, the primary one being the technical issues with 
the eye-tracking glasses, which resulted in >50% of the 
children being excluded from the analysis. Furthermore, 
we ended up having a lot fewer referring expressions to 
analyze than we would have liked (especially in the case of 
pronouns). This was because our primary goal was to keep 
the story as natural-sounding as possible and including an 
excessive amount of referring expressions would have 
been counterproductive to this goal. Together, these two 
factors resulted in there being a relatively small dataset, 
which always runs the risk of lacking statistical power. 
Nonetheless, the findings from the current study build upon 
those reported by Engelen et al. (2014) and provide 
convincing evidence that the relationship between 
linguistic input and gaze behavior is heavily influenced by 
context. They further suggest that this relationship is 
affected by the discourse status of the referent, which 
changes over the course of a normal continuous story. 
Furthermore, the findings demonstrate the importance of 
investigating language processing under naturalistic 
conditions. Future research is needed to better understand 
the link between linguistic input and corresponding eye 
movements. 
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Abstract 
Language processing depends on the integration of bottom-up 
information with top-down cues from several different 
sources—primarily our knowledge of the real world, of 
discourse contexts, and of how language works. Previous 
studies have shown that factors pertaining to both the sender 
and the receiver of the message affect the relative weighting of 
such information. Here, we suggest another factor that may 
change our processing strategies: perceptual noise. We 
hypothesize that listeners weight different sources of top-down 
information more in situations of perceptual noise than in 
noise-free situations. Using a sentence-picture matching 
experiment with four forced-choice alternatives, we show that 
degrading the speech input with noise compels the listeners to 
rely more on top-down information in processing. We discuss 
our results in light of previous findings in the literature, 
highlighting the need for a unified model of spoken language 
comprehension in different ecologically valid situations, 
including under noisy conditions. 

Keywords: sentence processing; perceptual noise; pragmatic 
context; real-world semantics; rational inference. 

Introduction 
Language processing is based on the integration of bottom-
up and top-down information (Marslen-Wilson, 1987; 
McClelland & Elman, 1986). As we process language, the 
incoming input is integrated with our existing knowledge—
of the local discourse contexts, of the world, and of 
language—and creates a frame of reference for what comes 
next (Ferreira & Chantavarin, 2018). This integration 
happens rapidly (Christiansen & Chater, 2016) and entails 
that the available evidence must be promptly weighted 
against prior information, in an effort to determine the 
likelihood of different specific interpretations of the 
perceived input (e.g., Gibson, Bergen, & Piantadosi, 2013; 
Levy, 2008). Success in processing is therefore dependent on 
the availability of reliable (probabilistic) cues to correct 
sentence interpretation (Martin, 2016). 

  At least three sources of information seem to concurrently 
constrain this inferential process (Venhuizen, Crocker, & 
Brouwer, 2019). At a local level, the syntactic structure of the 
language input affects the interpretation of the content of a 
given linguistic input. An example hereof is that the meaning 
of syntactically complex sentences is more likely to be 
misconstrued than that of their less complex counterparts: for 
instance, listeners more often fail to identify semantic roles 
in passive sentences than in active sentences (Ferreira, 2003). 
It has also been shown that listeners tend to take the content 
of semantically implausible sentences at face value when 
their syntactic structure is relatively straightforward (e.g., 
prepositional datives: The mother gave the daughter to the 
candle), but prefer more semantically plausible 
interpretations when the syntactic structure of the sentences 
is more complex (e.g., the double-object dative The mother 
gave the candle the daughter is misread as The mother gave 
the candle to the daughter)—even if the semantic content of 
the two sentences is identical (Gibson et al., 2013). 
   Lexical-semantic information rooted in our ‘real-world’ 
knowledge also points toward specific interpretations of the 
linguistic input and can even overrule syntactic information 
(see e.g., MacDonald, Pearlmutter, & Seidenberg, 1994). 
Semantic properties of the constituents of a sentence, such as 
animacy, have been shown to affect the inferential process: 
for instance, listeners tend to interpret animate characters as 
agents in who-did-what-to-whom sentences, independently of 
syntax (e.g., Larsen & Johansson, 2008; Szewczyk & 
Schriefers, 2011). This animate-agency bias is consistent 
with the suggestion that our semantic knowledge may largely 
originate from sensorimotor representations (see e.g., 
situation model theories of sentence processing; e.g., Zwaan, 
2016), which drives listeners toward interpretations of the 
input that fit with their knowledge of state of affairs in the 
real world (e.g., Fillenbaum, 1974). 
   Lastly, the broader discourse context in which a given 
linguistic input is embedded can affect (and even overrule) 
our interpretation of semantic and syntactic cues. 
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Referential/pragmatic contexts and lexical semantics seem to 
have an additive influence on processing, with (linguistic and 
extralinguistic) contextual information playing a central role 
in disambiguating syntactical ambiguities (e.g., the sentence 
put the apple on the napkin in the box, in which the listener 
can disambiguate whether on the napkin modifies the apple 
or in the box only by relying on the informativeness of, e.g., 
elements in the visual world; Snedeker & Trueswell, 2004; 
see also Spivey, Tanenhaus, Eberhard, & Sedivy, 2002). 
Pragmatic/contextual expectations can even override our 
semantic preference for animate agents, for instance through 
the introduction of a discourse context in which an inanimate 
object is presented as the agent: Nieuwland and Van Berkum 
(2006) showed that animacy violations (e.g., The peanut was 
in love), which normally elicit clear N400 effects in ERP 
experiments, do not do so when the sentences are presented 
in a context that justifies the violation (e.g., A woman saw a 
dancing peanut who had a big smile on his face. […] The 
peanut was in love). In these semantically implausible 
contexts, the more canonical sentences (e.g., The peanut was 
salted) suddenly become the violation to the 
pragmatic/contextual expectations. 

All three information sources—pragmatic/contextual 
information, real-world semantics, and syntax—converge 
ideally to determine one unequivocal interpretation of the 
input (cf. Bates & MacWhinney, 1989). However, the 
relative weighting of each of these information sources in 
different processing situations seems to be affected by 
properties of the language input, as well as of the language 
users. For instance, Dąbrowska and Street (2006) showed that 
demographic factors such as years of formal education 
predicted the listeners’ ability to interpret semantically 
implausible sentences when these were presented in passive 
constructions (e.g., The soldier was protected by the boy). 
Less educated listeners tended to disregard syntactic cues and 
focus more on semantic and pragmatic/contextual cues (e.g., 
interpreting the sentence as the more plausible The soldier 
protected the boy). Similar observations have been made in 
relation to language spoken by non-native speakers: for 
instance, Gibson et al. (2017) showed that English speakers 
were more likely to accept literal interpretations of 
semantically implausible sentences, if these were produced 
by native English speakers, than if the speakers talked with a 
foreign accent (thus giving foreigners the benefit of the 
doubt). Likewise, both children and adults have been shown 
to adjust their weighting of cues based on the apparent 
reliability of cues in the input, for instance by being more 
willing to accept implausible sentences from speakers who 
previously have produced more implausible utterances 
(Yurovsky, Case, & Frank, 2017; see also Gibson et al., 
2013).  

In this study, we suggest that factors pertaining to the 
communicative environment—e.g., the presence of 
perceptual noise—are also likely to affect the dynamic 
weighting of different information sources. The aim of the 
present study is therefore two-fold: First, we devise a novel 
experimental paradigm that allows us to individuate and 

access the relative weight given to different sources of 
information (pragmatic context, semantics, and syntax) in 
language processing. Second, we investigate how these 
weights are dynamically shifted relative to each other as a 
function of extra-linguistic conditions that can hinder speech 
communication—in this case, acoustic noise in the speech 
signal.  

Language processing in the real world is prone to be 
affected by noise (Shannon, 1948): conversations in crowded 
places or phone calls with bad reception are but a few 
examples of how noise commonly affects language use in 
everyday situations (see Mattys, Davis, Bradlow, & Scott, 
2012). In these situations, listeners have been shown to 
devote more cognitive effort to compensate for the reduced 
informativeness of the signal (Peelle, 2018). Here, we 
propose that, in order to compensate for less informative 
bottom-up input, listeners dynamically shift how they weight 
different information sources: in situations of noise, we are 
more likely to rely less on bottom-up information and 
implicitly adopt a more top-down-guided processing style. 
To test this hypothesis, we used a simple sentence-picture 
matching task to probe for comprehension. Participants 
listened to eight short stories; after each story, the participants 
were presented with four pictures in a four-alternative forced-
choice (4AFC) test and instructed to select the picture that 
matched the central event of the story. In each 4AFC test, 
only one picture matched the actual language input; the three 
remaining pictures corresponded to different potential 
misinterpretations of the language input, and they were 
specifically designed to reveal processing biases driven by 
one or more of the three information sources under scrutiny. 
Half of the participants listened to the short stories in a 
baseline condition without noise; the other half was presented 
with the same stories under conditions of perceptual noise. 

Method 
Participants 
167 native Norwegian-speaking (56% female; age: M = 23.4, 
SD = 3.03), right-handed undergraduate and graduate 
students from the University of Bergen (Bergen, Norway) 
participated in exchange for monetary compensation. 
Participants were pre-screened for previous or current 
neurological and/or psychiatric diagnoses, dyslexia, and 
hearing impairments. The participants were randomly 
assigned to two experimental conditions: Noise and No-noise 
(Nnoise = 89, Nno-noise = 78). 

Materials 
Speech stimuli  The language stimuli were eight aurally-
presented short stories. All stories had an identical narrative 
structure consisting of four sentences, as in the following 
example (approximate translation from Norwegian): 
 
S1: The boy walked into the pet store. 
S2:  His younger sister had been wanting a goldfish for a 

long time, and now it was time for her to get one.  
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S3:  Everybody thought it was adorable that 
the boy bought a goldfish for his sister. 

S4:  As expected, his sister was very happy. 
 
S1 and S2 provided the pragmatic context of the story; S3 
was the target sentence and contained the central event of the 
story (underlined in the example), which was to be matched 
to the relevant image; and S4 served as a wrap-up sentence. 
All stories comprised three characters: an agent (e.g., the 
boy), an object (e.g., the goldfish), and a recipient (e.g., the 
sister). By switching roles between agent and object, we 
created different versions of each story, in which both the 
pragmatic context (S1+S2) and the central event of the story 
(S3) could be either plausible or implausible in relation to 
real-world semantics (e.g., S1: the boy walked into the pet 
store vs. the goldfish walked into the pet store; S3: […] the 
boy bought a goldfish for his sister vs. the goldfish bought a 
boy for its sister). Additionally, we manipulated the 
markedness of the syntactic structure of the target sentence in 
S3, so that the main event was expressed either using a 
prepositional dative (unmarked, e.g., the boy bought a 
goldfish for his sister) or a double object construction 
(marked, e.g., the boy bought his sister a goldfish). Together, 
these 2´2´2 manipulations (pragmatic context semantics ´ 
central event semantics ´ syntactic markedness) resulted in 
eight possible versions of each story, as shown in Table 1. 
Participants were tested on all eight story structures. Each 
story structure-type was randomly assigned to a specific 
story-token for each participant, so that participants only 
heard one version of each of the eight stories (e.g., Participant 
1 heard Story 1 version A, Story 2 version B, etc.; Participant 
2 heard Story 1 version B, Story 2 version C, etc.). The eight 
stories were interspersed with eight stories from another 
experiment (with an identical procedure), which served as 
filler trials. 

 
Table 1: The eight possible narrative structures of Story 1 

 
 S1+S2: 

Plausible 
S1+S2: 
Implausible 

 

S3: Unmarked 
syntax 

Story 1a Story 1b S3: Plausible 
Story 1c Story 1d S3: Implausible 

 
S3: Marked 
syntax 

Story 1e Story 1f S3: Plausible 
Story 1g Story 1h S3: Implausible 

 
The 64 sound files (8 stories × 8 story structures) were 
recorded in a soundproof booth by a male native speaker of 
Norwegian from the Stavanger area, using an Audio-
Technica AT2020 Cardioid Condenser USB microphone and 
Audacity version 2.2.2 for Mac. For the participants in the 
Noise group, Brownian noise with a signal-to-noise ratio of 
-19 was added to the sound files using the MixSpeechNoise 
function from the praat-semiauto-master package 
(https://github.com/drammock/praat-semiauto) in Praat 
version 6.0.31 (Boersma, 2001). 
 

Visual stimuli  For each story, four digital color images 
depicted the three story characters in four different agent-
object-recipient relations to each other (Fig. 1). Each image 
featured an arrow intended to make the direction of the action 
(e.g., who gave what to whom) more explicit. For each 
version of each story, only one image corresponded to the 
central event described in the story and was therefore the 
correct choice. For instance, the correct match for the target 
sentence (S3) the boy bought a goldfish for his sister would 
be the top-right image in Fig. 1. The three remaining pictures 
were foils corresponding to possible misinterpretations of the 
narrative. These foils were designed to depict 
misinterpretations that were likely to be elicited by three 
different processing biases: 
 
(i) Pragmatic context bias: an incorrect interpretation of the 

target sentence driven by the expectations set in the 
pragmatic context of the story (S1+S2). For instance, 
given the following pragmatic context: The goldfish 
walked into the pet store. His younger sister had been 
wanting a boy for a long time, and now it was time for 
her to get one, and the following target sentence: The boy 
bought a goldfish for his sister, a pragmatic-context bias 
would be indicated by the participant picking the bottom-
left image in Fig. 1, instead of the correct picture match 
(the top-right image); 

(ii) Real-world semantics bias: an incorrect interpretation of 
the narrative in which the target sentence is 
misinterpreted to match what is plausible in the real 
world. For instance, given the target sentence The 
goldfish bought a boy for his sister, choosing the top-
right image in Fig. 1 (instead of the correct bottom-left 
image) would indicate a real-world semantic plausibility 
bias; 

(iii) Syntactic bias: an incorrect interpretation of the narrative 
in which marked target-sentence syntax is misinterpreted 
as unmarked syntax (e.g., the double object construction 
is misread as prepositional object one), or vice versa. For 
instance, misinterpreting the target sentence The boy 

Fig. 1. The visual stimuli in the 4AFC test. 
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bought the sister the goldfish as The boy bought the sister 
for the goldfish (through the accidental insertion of the 
preposition for) would result in the participant 
mistakenly clicking on the incorrect top-left image, 
instead of the correct top-right image. 

 
Given the different narrative structure of each story, a one-to-
one mapping between the three picture foils and the three 
processing biases under scrutiny was not achievable in every 
trial. However, we estimated that the chances of identifying 
the three biases in incorrect choices would be equally high 
when looking across all trials from each participant. 

Procedure 
Participants sat in front of a computer screen and wore 
headphones for the entire procedure. Responses in the 4AFC  
tests were given with a mouse click. Instructions were 
presented on screen in Norwegian Bokmål and were identical 
for all participants; however, the participants in the Noise 
group were advised orally about the presence of noise in the 
stimuli. The experiment was programmed in PsychoPy2 
version 1.90.3 (Peirce & MacAskill, 2018) and began with a 
practice story (with plausible pragmatic context, plausible 
target-sentence semantics, and unmarked target-sentence 
syntax) intended to familiarize the participants with the 
procedure. After familiarization, the eight stories were 
presented in fully randomized order. Each story was 
introduced by a 3 s countdown on screen, after which the 
sound file was played and a drawing of the three characters 
of the story were shown on screen (order of presentation for 
the three characters was fully randomized across 
participants). After the end of the story, four pictures were 
presented at the four corners of the screen (as shown in Fig. 
1), and the participants were instructed to click at the picture 
corresponding to what they thought to be the main event in 
the story. Mouse cursor position was reset at the center of the 
screen for each 4AFC test. 

Data analysis 
Accuracy and response time (RT) data were recorded by the 
experiment script. All possible types of incorrect responses 
were manually coded as being either due to a pragmatic 
context bias, a real-world semantics bias, a syntactic bias, or 
to a combination of two or more biases (for cases in which 
the incorrect choices were likely to be due to multiple biases). 
Data pre-processing and statistical analyses were run using R 
version 3.5.0 (R Core Team, 2018) in RStudio 1.2.1186. 
Linear mixed-effects models were run using the package 
lme4 version 1.1-19 (Bates, Maechler, Bolker, & Walker, 
2015) and lmerTest 3.0-1 (Kuznetsova, Brockhoff, & 
Christensen, 2017). All accuracy (correct vs. incorrect) 
models were logistic mixed-effects models fit through 
maximum likelihood (Laplace Approximation) with a 
BOBYQA-optimizer. In addition to accuracy, we analyzed 
RTs for accurate answers using linear mixed-effects models 
with log-rescaled outcome variable. All models included 
random intercepts for subjects and items (random slopes were 

omitted for model convergence reasons). In the case of null 
results, we ran Bayes Factor analyses to get indication of 
whether there was evidence in favor of the null hypothesis, 
using the brms package (Bürkner, 2017) in R. All Bayesian 
models had weakly conservative priors for intercept 
(normal[µ=0, σ=1]), beta estimates (normal[µ=0, σ=1]), 
SDs of random effects (normal[µ=0, σ=.2]), as well as for 
correlation coefficients in interaction models (lkj[η=5]). 

Results 

Accuracy and RTs 
To map the relative weight of pragmatic, semantic, and 
syntactic information sources in noisy and noise-free 
conditions, we looked at accuracy, response time (RT), and 
rate and types of errors. For both the No-noise group and the 
Noise group, overall accuracy on the 4AFC test was high. 
The average proportion of trials in which participants clicked 
on the correct picture was 0.78 (within-subject SD = 0.25) in 
the No-noise group, and 0.69 (within-subject SD = 0.21) in 
the Noise group. This difference was statistically significant 
(Correct ~ Noise + ɛ: β = -0.92, SD = 0.41, z = -2.25, p = 
.024), suggesting an overall detrimental effect of perceptual 
noise on comprehension. No statistically significant 
difference in RTs was found across conditions (RTs ~ Noise 
+ ɛ: β = 0.38, SE = 0.69, t = 0.55, p = .58). We found no 
cumulative main effect of semantic plausibility and syntactic 
markedness on accuracy (Correct ~ Plausibility/Markedness 
+ ɛ: β = -0.53, SD = 0.14, z = -0.38, p = .7) and RTs (RT ~ 
Plausibility/Markedness + ɛ: β = 0.01, SE = 0.32, t = 0.45, p 
= .65). A Bayes Factor analysis indicated substantial 
evidence for the null hypothesis (BF = 28.51, Post.Prob. = 
0.97), suggesting that the concurrence of semantic 
implausibility and syntactic markedness did not consistently 
result in worse performance, compared to stories with 
plausible content and unmarked syntax. However, when 
looking at the three information sources individually, a 
significant main effect of syntactic markedness was found on 
accuracy (β = -1.5, SD = 0.36, z = -4.14, p < .001), revealing 
ca. 18% lower accuracy for target sentences with marked 
syntactic structures (i.e., double-object). We also found a 
statistically significant main effect of story-internal 
congruence on accuracy (Correct ~ Congruence + ɛ: β = 
-3.45, SD = 0.56, z = -6.11, p < .001) and RTs (RTs ~ 
Congruence + ɛ: β = 0.29, SE = 0.06, t = 4.74, p < .0001): 
accuracy was higher and RTs faster for stories in which the 
events described in S1+S2 and S3 were congruent with each 
other, and irrespective of whether the two cues were both 
plausible or implausible (Correct ~ Congruence × 
Plausibility + ɛ: β = 0.04, SD = 0.45, z = 0.09, p = .92) and 
RTs (RTs ~ Congruence × Plausibility + ɛ: β = 1.1, SE = 
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0.61, t = 1.79, p = .076).1 Moreover, the effect of congruence 
was independent of the main effect of syntactic markedness 
observed above (accuracy, Correct ~ Congruence × Syntax 
+ ɛ: β = -0.04, SD = 1.62, z = -0.07, p = .94; RTs, RTs ~ 
Congruence × Syntax + ɛ: β = 0.15, SE = 0.82, t = -0.18, p = 
.85). However, a Bayes Factor analysis did not provide 
substantial evidence for the null hypothesis in this case, 
suggesting that additional data is needed (BF = 1.11, 
Post.Prob. = 0.52). 

Error analysis 
In order to individuate how the three information sources 
were weighted during processing, and how they might be 
driving comprehension errors, we performed an error 
analysis. For this purpose, we looked at incorrect responses 
in situations of story-internal incongruence only, since 
pragmatic and semantic bias can only be fully distinguished 
in this case. Distribution of errors is presented in Fig. 2. 
Across conditions, pragmatics-biased errors accounted for 
54% of all errors (No-noise = 22% (42 errors), Noise = 32% 
(97 errors)); semantics-biased errors accounted for 26% (No-
noise = 8% (14 errors), Noise = 18% (55 errors)); and syntax-
biased errors accounted for 20% (No-Noise = 8% (15 errors), 
Noise = 12% (36 errors)). Both semantic bias (β = 0.94, SE = 
0.04, t = 2.02, p = .043) and pragmatic bias (β = 0.46, SE = 
0.04, t = 9.9, p < .001) drove significantly more incorrect 
responses than syntactic bias; syntactic bias was in turn 
significantly different from zero (β = 0.26, SE = 0.034, t = 
7.79, p < .001, model structure: Response ~ Bias + ɛ). We 
found no significant two-way interactions between the three 
sources of bias taken individually (i.e., pragmatics, 
semantics, and syntax) and noise, suggesting that the role of 
these information sources in eliciting incorrect responses was 
not affected selectively by the presence of noise. However, 
Fig. 3 indicates an evident increase in responses due to a 

                                                        
1 In the models, plausibility was coded as -1 (S1+S2 and S3 = implausible), 1 (S1+S2 = plausible, S3 = implausible), 2 (S1+S2 = 

implausible, S3 = plausible), and 3 (S1+S2 and S3 = plausible). 

semantic bias, when noise was added to the input, although 
this interaction was not significant: β = 0.16, SE = 0.1, t = 1.6, 
p = .11. A Bayes Factor analysis did not provide robust 
evidence for this null result (Noise × Semantics + ɛ: BF = 
1.63, Post.Prob. = 0.62), suggesting that further investigation 
is needed. 

Discussion 
In this initial study, we investigated how three sources of 
information commonly acknowledged in the literature on 
linguistic processing (i.e., pragmatic/contextual expectations, 
real-world semantics, and syntactic structure) might 
contribute differently and dynamically to listeners’ 
comprehension of spoken language input in noisy vs. no-
noise conditions. Participants were presented with short 
stories, in which the three information sources under scrutiny 
either pointed unequivocally to the same interpretation of the 
narrative or toward conflicting interpretations. This allowed 
us to assess the relative weight listeners allocated to the 
different kinds of information in their interpretation of the 
linguistic input. Half of the participants listened to stories in 
the presence of Brownian noise. We hypothesized that 
listeners would change their processing strategy by generally 
weighting top-down information more in situations of 
perceptual noise than in noise-free situations. Moreover, we 
asked whether the relative weight given to the individual 
information sources would change when noise was added. 

The results provided initial support for our hypothesis by 
showing that listeners relied more on top-down information 
in noisy contexts, compared to noise-free ones. In general, 
accuracy was lower for the Noise group, reflecting the fact 
that the presence of perceptual noise impedes processing. In 
both Noise and No-noise groups, listeners made incorrect 
responses that reflected processing biases driven by either the 
pragmatic, semantic, or syntactic information in the input—

Fig. 2. Distribution of information source biases in incorrect 
responses (incongruent trials only) 

Fig. 3. Predicted values for the model Response ~ Bias × 
Noise + e 
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though this happened almost twice as often in the Noise 
group compared to the No-noise group. Moreover, we found 
indications that the relative weighting of the different 
information cues may change when noise is added, with real-
world semantics gaining more weight. A number of 
computational models of language comprehension (e.g., 
Frank, Koppen, Noordman, & Vonk, 2003, 2008; Venhuizen 
et al., 2019) have shown that integrating knowledge about the 
world with lower-level representations of the linguistic input 
leads to more accurate inferences about the intended meaning 
of the input. It is possible that the presence of perceptual 
noise in the signal pressures the processing system and makes 
it harder for the listener to establish solid representations of 
the incoming input (e.g., of its syntactic structure and of its 
pragmatic/contextual information): this may push the listener 
to rely more on knowledge that is stable over time (i.e., 
semantic knowledge of the world; see e.g., Kintsch, Patel, & 
Ericsson, 1999). This mechanism would explain the increase 
in errors driven by a real-world semantics bias in conditions 
of noisy signal, but not of those driven by syntax and 
pragmatics (which are more dependent on establishing 
representations of the incoming input on the fly). However, 
this result is only tentative and will need further investigation 
with more statistical power. Note also that our experimental 
design only allowed to test comprehension offline (by 
allowing the participants to make a choice after the end of the 
story), therefore increasing memory pressure. A more online 
version of the paradigm (e.g., one that uses mouse 
tracking/eye tracking) may provide further insights into this 
issue. 
   Other interesting results emerged from the study. First, we 
found a significant main effect of congruence between the 
pragmatic context of the story and the semantics of the target 
sentence, with both noisy and non-noisy stimuli. This can be 
explained in terms of the previously observed mutual 
influence between story-internal coherence and semantics-
based inferences in language comprehension (see e.g., Frank 
et al., 2003). Second, we found that whenever the pragmatic 
context of the story and the target-sentence semantics were 
incongruent (e.g., the boy walked into the pet store ® the 
goldfish bought a boy for its sister), the pragmatic context 
“attracted” the listeners’ incorrect interpretations to a 
significantly larger extent than real-world semantics. This 
evidence is in line with, for instance, previous ERP evidence 
from Nieuwland and Van Berkum (2006), who showed that 
listeners’ natural tendency to assume animate characters (in 
our case, human-animate vs. nonhuman-animate) as being 
agents in stories can be overruled by counterfactual discourse 
contexts. Third, we found a significant main effect of syntax 
markedness in the target sentence (S3), in both noisy and 
noise-free situations, revealing that sentences with a double-
object structure are consistently associated with lower 
accuracy, than sentences with prepositional dative structure. 
This finding adds to previous psycholinguistic literature 
documenting the effects of syntactic markedness on language 
processing (Dabrowska & Street, 2006), and nicely replicates 
the results from Gibson et al. (2013) and Gibson et al. (2017), 

in which prepositional dative sentences were shown to lead 
to literal (although semantically implausible) readings of the 
sentences more often compared to double-object sentences. 

Existing models of language processing under conditions 
of acoustic challenge (e.g., in hearing-impaired populations) 
propose that listeners compensate for degraded input by 
increasing their cognitive effort in terms of memory, 
attention-based performance monitoring, and allocation of 
(extralinguistic) neurocognitive resources (e.g., Eckert, 
Teubner-Rhodes, & Vaden, 2016; Peelle, 2018). However, 
these compensatory top-down mechanisms have traditionally 
been thought to only become relevant as a “last resort”, when 
all bottom-up information fails. Instead, our results may 
suggest that top-down information critically contributes to 
language processing by default—and more so when the 
signal itself becomes degraded and therefore less 
informative. Moreover, our findings hint at a hierarchical 
weighting of information sources that is flexibly changed in 
noisy processing situations—at least when the language input 
is internally incongruent (see e.g., Yurovsky et al., 2017). 
Reliance on top-down pragmatic context and real-world 
semantics is largely increased when the language input is 
degraded by perceptual noise: listeners may rely more 
heavily on top-down strategies to compensate for the reduced 
informativeness of the bottom-up cues. Priorities for future 
studies using the sentence-picture matching design presented 
here include focusing on languages other than Norwegian, as 
well as on cross-linguistic differences in the weighting of top-
down information. Moreover, it may be important to move 
away from a binary noise vs. no-noise manipulation and 
toward a more continuous variation of the amount of noise 
added to the signal. This may not only lead to stronger 
patterns of results but also give rise to interesting non-
linearities in the data. 

Conclusions 
Successful language processing depends on the seamless and 
rapid integration of bottom-up and top-down information. 
When the bottom-up signal is degraded by noise (as it 
happens in many everyday situations), listeners become more 
reliant on top-down information sources. This study presents 
a novel methodological framework within which to 
investigate the simultaneous contribution and dynamic 
weighting of three top-down information sources—
pragmatic context, real-world semantics, and sentence 
syntax—to language processing in the presence of perceptual 
noise. Our results nicely dovetail with previous findings, 
while highlighting the need for a unified model of the relative 
weighting of bottom-up and top-down information in spoken 
language processing in noisy situations.  
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Abstract 
Expert face recognition has been marked by holistic processing 
and left-side bias/right hemisphere involvement. Hence 
recognition for Chinese characters, sharing many visual 
perceptual properties with face perception, was thought to 
induce stronger holistic processing and left-side bias effect. 
However, Hsiao & Cottrell (2009) showed that expertise in 
Chinese character recognition involved reduced holistic 
processing, while Tso, Au & Hsiao (2014) suggested this effect 
may be modulated by writing experiences; in contrast, left-side 
bias was found to be a consistent expertise marker regardless 
of writing experiences. Here we examine holistic processing 
and left-side bias effect of Chinese character recognition 
between adolescents with and without dyslexia. Students with 
dyslexia were found to recognize Chinese characters with a 
stronger holistic processing effect than the typical controls. 
However, compared with the controls, dyslexics showed a 
more reduced left-side bias in processing mirror-symmetric 
Chinese characters. The theoretical and educational 
implications of these results were discussed. 

Keywords: Reading, Dyslexia, Left-side bias, Holistic 
Processing, Perceptual Expertise 

Introduction 
Holistic Processing   
Holistic processing is the tendency to process separable 
features of an object as a single whole unit. This concept was 
originally derived from Gestalt psychology, which postulates 
that the perception of an object as a whole that is a qualitative 
difference from the sum of its individual parts (Köhler, 1929; 
see also Wagemans, Elder, et al., 2012; Wagemans, Feldman, 
et al.,2012). Holistic processing has been a perceptual 
phenomenon commonly observed in face perception in which 
all facial parts are integrated and viewed as a whole (Piepers 
& Robbins, 2012). Holistic processing in face recognition can 
be demonstrated with the composite paradigm in which it 
induces the composite face illusion: the two identical top 
halves of a pair of faces are judged as different when the 
bottom halves of the two faces are from different faces (see 
Rossion, 2013). This illusion suggests a failure of selectively 
attending to facial parts as a result of people obligatorily 
attending to all facial features as a whole (i.e. holistic 
processing, see Figure 1; Richler, Wong, & Gauthier, 2011). 
The holistic processing assessed in the above paradigm 
demonstrates the second type of configural processing as 

suggested by Maurer, Le Grand, and Mondloch (2002), 
which is the inclination to perceive a stimulus as a Gestalt 
(Pomerantz & Portillo, 2011). Beyond face perception, some 
studies have posited that expertise-level recognition for 
subordinate-level objects requires holistic processing 
(Bukach et al., 2006; though some has suggested limited to 
face recognition, c.f. Mckone, Kanwisher, & Duchaine, 
2007).     
 

 
Figure 1. Complete composite paradigm to measure 
holistic processing for face stimuli. In each trial, 
participants are cued to attend to top or bottom half of 
each stimulus pair and judged whether the attended 
halves are the same or different (attended halves 
encircled in the figure). Holistic processing is 
demonstrated by the interference of the irrelevant 
halves (adapted from Hsiao & Galmar, 2016) 

Holistic processing in Chinese character 
recognition 
At first glance, Chinese characters may seem to be a separate 
class of visual stimuli to that of faces. For example, while the 
single features (such as eyes and mouth) of each individual 
face differ but appear in the same positions, the same radicals 
and strokes can appear in different positions in a character. 
While faces are always in a symmetrical top-bottom 
configuration, Chinese characters can appear in more than 10 
types of configurations including top-bottom and left-right 
(Shu, 2003). However, Chinese characters also share many 
visual properties with faces: They have a homogenous, 
square configuration—with each character a grapheme 
mapping onto a morpheme (Shu, 2003). Moreover, strokes 
are the basic units which combine to form more than 200 

2995



basic Chinese character patterns (Hsiao & Shillcock, 2006), 
which in turn form the Chinese characters. Faces also have 
homogenous configurations, with facial features combining 
to form endless different individual faces. A person can 
differentiate and recognize different faces regardless of their 
facial expression, similar to a literate typically needing to 
recognize over 3000 characters regardless of fonts (Hsiao & 
Cottrell 2009; Wong & Gauthier, 2007). The process of 
individualizing different faces seems to be comparable with 
that of naming individual Chinese characters. Hence, 
theoretically Chinese characters should induce a similar 
perceptual expertise effect as faces (McCleery et al., 2008).    

However, using the complete composite paradigm, Hsiao 
and Cottrell (2009) found that expert Chinese readers had a 
reduced holistic processing effect (i.e. more analytic) 
compared with novices. Tso, Au, and Hsiao (2014) showed 
that the reduced holistic effect of the expert readers in Hsiao 
and Cottrell’s (2009) study may be explained by writing 
experiences. They showed that compared with novices, 
expert readers with limited writing performances (Limited-
writers) showed increased holistic processing, while expert 
readers with typical writing abilities (Writers) showed a 
reduced holistic effect (Tso, Au, & Hsiao, 2014). These 
findings hint a modulating role of writing abilities on holistic 
processing: the typical Chinese-reading experts flexibly 
employ holistic or analytic processing to read and write 
Chinese characters. It seems that the use of holistic or part-
based processing may depend on how readers allocate 
attention for task relevant information (Chung, Leung, Wong, 
& Hsiao, 2018).   

Holistic processing in the population with special 
needs   
There has been accounts of perceptual differences in 
processing visual stimuli in populations with a cognitive 
disability compared with typical controls. For example, 
reduced holistic processing in has been associated with face-
recognition difficulties in patients with prosopagnosia 
(Avidan, Tanzer, & Behrmann, 2001). Reduced holistic 
processing also marks a cognitive deficit in people with 
autism, who were often tested to have poorer abilities in face 
and facial expression recognition than the general population 
(Tanaka, Wolf, & Schultz, 2010).  

People with dyslexia in the Chinese language is also 
shown to be characterized by a visuospatial deficit (e.g. 
visual-orthography processing and visual-spatial attention 
skills; see Liu et al, 2017), while English dyslexia is generally 
associated with core deficits in phonological skills. Indeed, 
developmental dyslexia in an alphabetic script and in the 
Chinese writing system is characterized by different brain 
abnormalities (e.g. Siok et al., 2004; Siok et al., 2009): while 
dyslexia in alphabetic languages is characterized by 
neurological deficits related to phonological skills (e.g. left 
temporoparietal regions), dyslexia in Chinese is more 
associated with abnormalities in regions that are responsible 
for orthography or visuospatial processing (e.g. middle 
frontal regions). Chinese-word reading has indeed a strong 

basis in visual-orthographic processing demonstrated by 
writing and copying abilities (Tan et al., 2005). Children with 
reading difficulties are often observed to have a marked 
discrepancy between reading and writing abilities due to 
writing in Chinese being a more resource-intensive process 
than writing in alphabetic languages (Chung & Ho, 2010). As 
expert reading and writing in Chinese depends on one’s 
ability to analyze local components within a Chinese 
character (Chung et al, 2018; Hsiao & Cottrell, 2009), people 
with dyslexia – who generally have backward reading and 
writing attainments – may fail to employ analytic processing 
as the components and radicals in a Chinese character may 
look inseparable to them (Ho, Ng, & Ng, 2003).   

Left-side bias   
Left-side bias is another visual-perceptual phenomenon 
commonly reported in face recognition (Burt & Perrett). This 
effect has also been demonstrated in Chinese character 
recognition and is suggested to be associated with right-
hemisphere involvement (Hsiao & Cottrell, 2009). Left-side 
bias effect is usually demonstrated using chimeric faces, that 
is, people often judge faces that composed of two left halves 
to be more similar to the original face than faces composed 
of two right halves (Brady, Campbell, & Flaherty, 2005). 

Though left-side bias or right-hemisphere lateralization 
have been thought to correlate with increase in holistic 
processing in visual object recognition (Gauthier & Tarr, 
2002), left-side bias was found to be a consistent behavioral 
marker of Chinese character recognition regardless of writing 
experiences, whereas holistic processing could be affected by 
writing experiences (Tso, Au, & Hsiao, 2014). This effect is 
consistent with studies that showed right-hemisphere 
involvement in processing the Chinese orthography (Hsiao, 
Shillcock, & Lee, 2007; Yang & Cheng, 1999). However, 
compared with typically developing students, stronger left 
fusiform and weaker right hemisphere activities have been 
found in dyslexic children during Chinese character 
recognition (Siok et al, 2004; Xue et al., 2005). Hence 
students with dyslexia in this study may display reduced left-
side bias compared with the controls. 

The present study   
This paper hence investigates the role of holistic processing 
in Chinese recognition by examining how Chinese readers in 
secondary school with and without a diagnosis of dyslexia 
process Chinese characters. Reduced holistic processing 
marks expert Chinese character recognition in Chinese 
readers with both typical reading and writing abilities. As 
developmental dyslexia in Chinese in characterized by 
difficulties in literacy, predominantly in writing 
performances, students with dyslexia are predicted to 
processing Chinese characters more holistically than their 
typical counterpart. Left-side bias of mirror-symmetric 
Chinese characters was also examined, and this effect was 
compared between students with and without dyslexia, in 
relations to holistic processing.   
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Materials and procedures   
Chinese literacy 
Dictation performance and Chinese word reading in both 
timed and untimed context were measured as a reference for 
their literacy performance. The stimuli were adopted from 
HKT-P(III). As the purpose of the study was not to yield 
diagnostic results, we used stimuli from HPT-P(III) for 
research purposes only to compare the literacy performance 
between students with and without dyslexia.   
i) The untimed Chinese word reading task assessed 
students’ Chinese word reading accuracy. Students read 
aloud from a set of 150 two-character Chinese words listed in 
ascending order of difficulty. A participant scored one point 
for pronouncing both characters of a word correctly.   
ii) The Chinese one-minute word reading task assessed 
students’ Chinese word reading fluency. Ninety simple two-
character Chinese words were displayed in 9 rows containing 
10 words each. Students read aloud as many words as they 
could in one minute, earning one point every time they read 
both characters of a word correctly, and the total number of 
points gave the score.   
iii) The Chinese dictation task assessed children’s Chinese 
word writing ability. Students wrote out 45 two-character 
Chinese words, read out by the examiner in ascending order 
of difficulty. A student scored one point for writing each 
character correctly.   

Non-verbal Intelligence 
To control for the effect of IQ on reading, nonverbal 
intelligence was assessed using the 9-item subset of Raven’s 
standard progressing matrices (Raven, Court, & Raven, 1996; 
see Bilker et al., 2012, for its psychometric properties).   

Holistic processing 
One hundred and sixty pairs of medium to high frequency 
Chinese characters in Ming font were used as the character 
stimuli—half of the pairs in top-bottom configuration while 
the other half in left-right configuration (See Figure 2). 40 
pairs were presented in each of the four conditions – same-
congruent trials, different-congruent trials, same-incongruent 
trials and different-incongruent trials. In the congruent trials, 
the attended halves and the irrelevant halves always led to the 
same response (i.e. both the attended part and the irrelevant 
part were the same or different). In the incongruent trials, the 
attended halves and the irrelevant halves led to different 
responses – in same incongruent trials, the attended halves 
were the same while the irrelevant halves were different; 
whereas in different incongruent trials, the attended halves 
were different while the irrelevant halves were the same 
(Figure 3a).   

 
Figure 2. Examples of Chinese characters with a left-
right configuration (left) and a top-bottom 
configuration (right). 

 
The participants’ performance in each condition (congruent 
vs incongruent) is measured by discrimination sensitivity A' 
as:      

 
(H and F are the hit and false alarm rate respective)  A' is used 
to measure sensitivity due to its bias-free nonparametric 
property (Stanislaw & Todorov, 1999). Hence the degree of 
HP is measured as the A' difference between the congruent 
trials and the incongruent trials—the larger the discrepancy, 
the larger the holistic effect. The discrepancy in response 
time between congruent and incongruent trials was also 
measured to demonstrate holistic processing. In addition, a 
misaligned condition was included to tease out the possibility 
of composite effects due to inhibition abilities, such that if the 
holistic-processing effect in students with dyslexia is indeed 
due to interference from the irrelevant halves, misalignment 
should reduce this effect. See Figure 3.   

3(a)  3(c)  
 

3(b)  
Figure 3. (a) Illustration of stimulus pairs in the 
complete composite paradigm (b) Trial sequences. (c) 
character in aligned (left) and misaligned conditions 
(right). 

Left-side bias.  
To test for left-side-bias effect, procedures from Tso, Au, & 
Hsiao (2014) were adopted. Eighty high-frequency mirror-
symmetric Chinese characters were selected. Each character 
was presented once in Ming font. For each character, half of 
the trials displayed the originals were used on half of the 
trials, whereas in the other half of the trials displayed 
chimeric characters constructed from half of the original 
character and its mirror image, and this was counter-balanced 
across participants.  

For each character stimuli, two left halves constructed the 
left chimeric character while two right halves formed the 
right chimeric character (Figure 4a). Each character spanned 
a visual angle of about 6.7° from a 55 cm viewing distance. 
After 500 ms of a central fixation cross in each trial, the 
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original character was displayed either on the left or right side 
of the screen randomly, at about 7.2° of visual angle away 
from the center. Each trial displayed the left and right 
chimeric characters such that one was above and one below 
an arrow at the screen center which pointed to the original 
character image. Each chimeric character image subdued 
about 3°of visual angle away from the center. All image 
stimuli were displayed on the screen until participants 
responded to judge which of the two chimeric characters 
looked more similar to the original one by pressing one of 
two buttons on the response box. Left-side bias was measured 
as the percentage of trials in which participants selected 
chimeric characters composed of two left halves (Figure 4b).   

 
Figure 4. (a) Examples of the stimuli, and (b) the test 
sequence in the LSB experiment (note that the 
chimeric characters are still legal Chinese characters).  

Results   
Literacy abilities and non-verbal intelligence  
Separate one-way analyses of variance (ANOVAs) were 
carried out to examine the effect of group (Dyslexics vs 
Control) on each literacy test. We found that participants in 
the control condition had a marginally better performance 
than participants with dyslexia in Chinese word-reading F(1, 
39) = 3.076, p = .087, but their performance in the one-minute 
word-reading task did not differ, F(1, 39) = 1.551, p = .219, 
suggesting that both groups having similar performance in 
word recognition and fluency in naming over-learned 
Chinese characters. However, participants in the control 
condition had significantly better performance in the Chinese 
word dictation task, F(1, 39) = 7.229, p = .01, suggesting the 
students with dyslexia had persistent difficulties in writing 
Chinese characters even when in high-school grades. The 
scores are summarized in Table 1.   

Table 1. Summary of the scores of Chinese word-
reading, Chinese one-minute word reading, Chinese 
dictation and non-verbal IQ (9-item Raven’s) in high-
school students with and without dyslexia. 
 Control 

Mean (SE) 
Dyslexics 
Mean (SE) 

Chinese Word-reading 102 (1.82) 99.96 (3.41) 
One-minute word reading 93.43 (4.62) 85.91 (3.95) 
Chinese dictation 59.73 (13.14) 47.52 (17.35) 
Non-verbal IQ  3.91 (1.74) 3.96 (1.34) 

Holistic processing   
We next examined the ability to holistically process Chinese 
characters in participants with and without dyslexia. We first 

conducted a 2 (congruency: congruent vs. incongruent) × 2 
(group: dyslexics vs. control) repeated measures ANOVA on 
A', which showed a main effect of congruency, F(1, 38) = 
27.35, p = .000006, ηp2 = .419, but no interaction between 
congruency and group, F(1, 38) = 1.354, p = .252, or main 
effect of group, F(1, 38) = 1.342, p = .254, was found. We 
then conducted a 2 (congruency: congruent vs. incongruent) 
× 2 (group: dyslexics vs. control) repeated measures ANOVA 
on response time. We found a significant interaction between 
congruency and group, F(1, 38) = 5.854, p = .02, ηp2 = .133, 
and a main effect of group, F(1, 38) = 5.306, p = .027, ηp2 = 
.123, but no main effect of congruency, F(1, 38) = 2.254, p = 
.150. Post-hoc ANOVA showed that students with dyslexia 
responded more slowly in incongruent than in congruent 
trials, F(19) = 34.3, p < .000012, ηp2 = .644, whereas 
response times in congruent and incongruent trials were 
similar in typically developing students, F(19) = 0.254, p = 
.620. See Figure 5.   

5a)  

5b)  
Figure 5. The composite effect in character 
perception was significant among dyslexics (a), but 
not the typically developing readers (b). 
Misalignments significantly reduced the effect in the 
dyslexics. 

 
The results also showed that misalignment significantly 

reduced the congruency effect demonstrated by response 
time among students with dyslexia: a significant interaction 
between congruency and misalignment (aligned vs. 
misaligned), F(1, 19) = 5.662, p = .029, ηp2 = .239; there was 
no misalignment effect among typically developing students. 
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Together, these results suggest that participants with dyslexia 
perceived Chinese characters more holistically than controls. 

Left-side Bias  
Finally, the results on left-side bias suggests that typical 
readers have a stronger left-side bias than students with 
dyslexia, F (1,38) = 6.439, p = .015, ηp2 = .145. It seems that 
although the participants with dyslexia were more holistic 
than typical readers in Chinese character recognition, they 
revealed weaker left-side bias (Figure 6).   
 

 
Figure 6. Preference for left chimeric characters in 
participants with and without dyslexia. 

Discussions 
This study investigated how high-school students with and 
without dyslexia differed in how they processed Chinese 
characters by examining two perceptual expertise 
phenomena: holistic processing and left-side bias. Our results 
show that high-school participants with dyslexia 
demonstrated a stronger holistic processing effect in Chinese 
character recognition compared with the typically developing 
controls. This study is consistent with Hsiao and Cottrell’s 
(2009) study in which they showed that reduced HP is 
associated with expert Chinese character recognition 
compared with novices, though our study compared between 
typically developing expert readers and dyslexics in which 
the dyslexic participants were not completely novices but had 
relatively weaker Chinese literacy abilities. Our result is also 
comparable with Tso et al. (2014)’s study that suggested a 
modulating role of writing abilities on holistic processing: 
While the students with dyslexia in this study had marginally 
comparable reading performance to that of typical controls, 
they recalled and wrote fewer words. Unlike everyday face 
recognition in which one is not required to recall and draw 
faces, a typical Chinese reader is fluent in both Chinese 
character recognition and writing. Indeed, Zhou, et al. (2012) 
demonstrated reduced HP in artists with face-drawing 
experience compared with ordinary face-observers. Stronger 
holistic processing in students with dyslexia than in the 
typical controls, then, may indicate a perceptual difference 
between poor and proficient writers.  

According to Maurer et al. (2002), holistic processing is 
a second-order configural processing in which both featural 
and spatial-distal information within an object are integrated 
and processed. Hence, the stronger holistic processing effect 
of the dyslexic students in the present study may also suggest 
that they recognized characters with an over-dependence on 
their visuo-spatial information of components, which may 
hinder developing literacy expertise, particularly in writing. 
It seems that students with dyslexia demonstrated persistent 
perceptual abnormalities even when they are in secondary 
school, which hinders them to selectively attend to individual 
character components. This in turn hindered Chinese 
character recognition as it is an ability facilitated by 
sensitivity to the specific positions of components radicals 
and structures within a character (Ho, Ng, & Ng, 2003).  This 
speculation warrants future follow-up studies.   

This study also echoed with Hsiao and Cottrell’s (2009) 
and Tso, Au and Hsiao’s (2014) findings demonstrating that 
left-side bias was a consistent expertise marker of Chinese 
character recognition: The dyslexic readers showed reduced 
left-side bias of Chinese characters than typically developing 
readers. Our result is also consistent with previous studies 
that suggested a stronger left-hemisphere but weaker right-
hemisphere involvement for Chinese character recognition in 
readers with dyslexia (Siok et al, 2004; Xue et al., 2005). 
These effects suggest that dyslexics employ a strategy to 
process Chinese characters which may be both perceptually 
and neurologically different from typical readers. Similar to 
face perceptual processes which involves RH/LSB, our 
results are consistent with that in prosopagnosic patients who 
had a reduced left-side bias in facial perception—suggesting 
a reduced RH involvement in face recognition (Malaspina, 
Albonic, & Daini, 2016).   

However, while HP was previously thought to associate 
with RH activation as demonstrated in face and subordinate 
visual-object recognition, the results of this study echoed 
Hsiao and Cottrell’s (2009) study, demonstrating that 
increased LSB but reduced HP as expertise markers of 
Chinese character recognition. Holistic processing effect 
brought about by the composite-face illusion is due to 
obligatory attention directed to all facial parts, resulting in 
failure to selectively attending to parts (Hole, 1994; Richler, 
Tanaka, Brown, & Gauthier, 2008; Richler, Wong, & 
Gauthier, 2011). Therefore, one reason why Chinese 
character recognition is different from that of face perception 
may be because the spacing information between typical 
Chinese character components may be unimportant to typical 
Chinese readers (Hsiao & Cottrell, 2009), while spatial 
information is important in typical face recognition processes 
(i.e. small changes in spacing between features typically 
change the face identity; see Farah, et al., 1998). Hence, the 
relationship between holistic processing and right 
hemisphere lateralization may be modulated by whether 
spatial information is used during recognition of visual 
stimuli. To test above speculations, Hsiao and Galmar (2016) 
demonstrated through a computational simulation a positive 
relationship between holistic processing and RH 
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lateralization when a face recognition task relied purely on 
spatial information (i.e., all faces stimuli differ only spacing 
among the same features). On the other hand, when the task 
recognized faces based purely on features (i.e., all faces 
differed in features but the same spacing between them), 
holistic processing correlated negatively with RH 
lateralization (see also Chung et al., 2018). Therefore, 
whether the RH engages holistic processing in a recognition 
task may depend on the type of information used for its 
processing. Indeed, Chinese character recognition is 
facilitated by sensitivity to components radicals at specific 
positions within a character (Ho, Ng, & Ng, 2003), not the 
spatial distances between components. Hence left-side bias in 
Chinese character recognition is perhaps related to sensitivity 
to first-order relations in configural processing, i.e. the 
relative spatial locations of individual components within a 
character (Maurer et al., 2002).    

To conclude, this study is the first to report the perceptual 
difference between typically developing and dyslexic 
students in high school by investigating holistic processing 
and left-side bias of Chinese character recognition. It has 
demonstrated preliminary evidence for the link between 
inability to reduce holistic processing and difficulties in 
Chinese literacy: dyslexic Chinese are less readily to engage 
in analytic processing to attend to character components. 
Finally, the reduced left-side bias of Chinese characters in the 
dyslexics may be related to deficits in forming first order 
relationship between components. This study suggested that 
high-school students with dyslexia in Chinese may still 
encounter difficulties in reading and writing due to persistent 
deficits in their literacy-related cognitive abilities, and they 
may require further supports in their learning to enhance 
attention to Chinese character components or radicals.  
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Abstract 
 

Prior studies have reported that bilingualism enhances 
cognitive ability due to the regular conflict management of 
two language systems (Bialystok, 2015). Here, we explore 
whether infant bilingualism improves cognitive ability at 9.5 
months. Twenty-four monolingual English and 23 bilingual 
French-English infants were first trained to predict a reward 
on the right based on a set of tone-shape rule structure (AAB 
pattern). Infants were later trained to predict a different 
reward on the left based on another set of new rule structure 
(ABB pattern). Correct anticipation of reward locations 
indicates successful learning. If bilingualism improves 
infants’ cognitive skills, bilingual infants would be better at 
learning a new pattern-reward association. However, we did 
not find evidence that bilinguals looked at the correct location 
more than monolinguals or learned the new pattern-reward 
association faster. Thus, our results suggest bilingualism may 
not enhance cognitive ability at 9.5 months, as least using the 
current paradigm.  
 
Keywords: infant bilingualism; cognitive ability; bilingual 
advantage 

Introduction 
Bilingual infants face key language learning challenges. 

For example, as their time listening to language input is 
divided between the two languages, they therefore hear less 
input from each language. In addition, bilingual infants 
often learn their languages in a more variable environment 
than monolinguals. It is not rare for bilingual infants to 
listen to parents mixing languages in one conversation 
(Byers-Heinlein, 2013) or to hear words form speakers with 
non-native accents (Bosch & Ramon-Casas, 2011). Yet, 
bilingual infants reach basic language milestones at similar 
age as monolinguals, such as sensitivity to native sounds 
(Ferjan Ramìrez et al., 2017) and basic word learning (for a 
review, see Fennell, Tsui, & Hudon, 2016). This raises the 
possibility that bilingual infants may have better cognitive 
control processes because they are remarkably efficient in 
managing two different language systems.  

A number of studies have suggested that bilingual 
experiences may enhance individuals’ executive 
functioning (see Bialystok, Craik, & Luk, 2012 for a 
review). Executive functioning is an umbrella term 
describing a set of cognitive abilities, including inhibition 
of dominant responses, shifting between tasks or mental 

sets, as well as updating and monitoring working memory 
(Miyake et al., 2000). As bilinguals activate both languages 
even they only speak in one language at a time (e.g., Thierry 
& Wu, 2007), they must selectively attend to the correct 
language while inhibiting the other competing language for 
effective communication in daily life. Earlier theories, such 
as Green (1998), have proposed that bilinguals’ routine of 
inhibiting the irrelevant language during production can 
improve their inhibitory ability in non-verbal domains. For 
example, a number of studies have shown that bilinguals 
outperform monolinguals in a number of non-verbal 
conflict tasks, including the flanker task (Costa, Hernández, 
Sebastián-Gallés, 2008), the Simon task (Bialystok et al., 
2004), and the Spatial-Stroop task (Bialystok, 2006).  

Subsequent studies have extended research to other 
aspects of executive control components aside from 
inhibition. A major reason for this move was that 
researchers (e.g., Bialystok, 2006; Costa et al., 2008) not 
only found a bilingual advantage in the incongruent trials of 
the above conflict tasks, which require inhibitory control, 
but also in the congruent trials that do not require inhibition. 
Hence, researchers suggested bilinguals’ cognitive 
advantage is not limited to inhibition ability, but is instead 
related to an enhancement in executive attention (Bialystok, 
2017). Executive attention is the ability to control ones’ 
attention, including ones’ ability to maintain attention to the 
relevant part of the task and avoid directing attention to 
distractors. Bialystok (2017) has suggested that bilingual 
experience improves learners’ attention systems as 
bilinguals regularly need to control their attention to 
accommodate two different language systems. For example, 
they need to differentiate between the two languages, switch 
attention between the two, and allocate their attention to the 
relevant language. Importantly, Bialystok (2015) has 
highlighted that bilingual experience not only enhances 
learners’ executive function processing when they are 
selectively producing one of their languages, but also when 
they are selectively processing the two languages during 
comprehension. As such, infant bilinguals, who possess 
richer language comprehension than production, may also 
enjoy a cognitive advantage before the onset of a large 
productive vocabulary.  

Indeed, some infant studies demonstrate that infant 
bilingualism may improve executive functioning. In a 
pioneering study, Kovacs and Mehler (2009a) examined 
whether Italian monolingual and Italian-other bilingual 7-
month-olds differ in cognitive control. Infants were 
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conditioned to associations between a set of rules and visual 
rewards. These sets of rules could be conveyed auditorily or 
visually. For example, two rule structures were composed 
of three syllables, one with an AAB pattern (e.g. la-la-ga) 
and one with an ABA pattern (e.g. la-ga-la). In the 
experiment, infants were first trained to look at a toy (e.g., 
puppy A) at a particular visual location (e.g., right-side) 
after hearing one rule structure (e.g., AAB) and later were 
required to learn a new association (e.g., look at the puppy 
B on the left when hearing ABA). This task thus required 
infants to inhibit an earlier learned response and flexibly 
switch to a new reward response. Across three experiments 
that used either syllable or visual geometric shape rule 
patterns, the authors consistently found only bilingual 
infants successfully learned the new associations. In a 
similar study, Kovacs and Mehler (2009b) tested whether 
monolinguals and bilinguals of 12 months were able to 
simultaneously learn two different tri-syllabic structure 
rules: AAB and ABA. They again associated each rule to a 
visual toy at a particular position on the screen (e.g. AAB-
object A-left side; ABA-object B-right side). At test, the 
researchers presented new tri-syllabic auditory stimuli that 
conveyed either an AAB or ABA structure. They then 
measured whether infants looked to the correct position 
after hearing the new auditory stimuli (e.g. AAB structure 
provokes looks to the left side). If infants looked at the 
correct corresponding position, it means they learned the 
corresponding structure rule. The researchers found that 
bilinguals were able to learn both rules, but monolinguals 
learned only one of the rule patterns (AAB but not ABA). 
To summarize, the two studies have suggested that bilingual 
infants may be better able to control interference and switch 
between two rule structures.  

Over the past decade, however, only a few studies have 
attempted to replicate the studies in Kovacs and Mehler 
(2009a). For example, Ibánez-Lillo, Pons, Costa, & 
Sebastián-Gallés (2010) discovered that both monolingual 
and bilingual infants of 8 months could inhibit the 
previously learned cue-reward pairing and successfully 
learn a new cue-reward pairing, suggesting no early 
bilingual advantage in cognition. In contrast, Pourllyaei and 
Byers-Heinlein (2018) found that 7-month-old bilinguals, 
but not monolinguals, were able to inhibit a previously 
learned cues’ position and anticipate a newly learned cues’ 
position. They specifically presented infants with a visual-
auditory cue (e.g., a colorful butterfly paired with a whistle 
sound) for the first 9 trials on one side of the screen (e.g., 
left) and then switched the position (e.g., right) of the 
visual-auditory cue for the next 9 trials. Further, Comishen, 
Bialystok and Adler (2019) also found that 6-month-old 
bilingual infants outperformed monolingual infants in a 
visual expectation cueing paradigm in which infants needed 
to change their anticipatory looks in response to the varying 
positions of the rewards. Together, the current evidence of 
bilingual infants’ cognitive advantage is somewhat mixed 
and the literature is quite limited. 

The current paper aims to address this research gap by 
attempting to replicate Kovacs and Mehler (2009a) in a 
different population of bilingual infants. Studying whether 
bilingual infants may have enhanced cognitive skills is a 
key research question, as it can inform researchers how a 
variety of language inputs in the early language 
environment (i.e., processing two language systems) may 
alter learners’ cognitive and/or attention systems. However, 
we were not able to answer this question based on the 
current literature as there were only a few studies (n = 3, 
two of which are unpublished) that have tried to replicate 
Kovacs and Mehler (2009a) and the limited findings are 
somewhat mixed. Given that a number of studies have 
failed to replicate bilingual cognitive advantages in adult 
participants (e.g., Kousaie & Philips, 2012; Paap & 
Greenberg, 2013), it is possible that the infant bilingual 
cognitive advantage is similarly not robust.  Replication is 
a central focus in the current scientific community, with 
recent specific concerns about replicability in psychological 
science (Open Science Collaboration, 2015). Infant 
research is particularly vulnerable to the replication crisis as 
recruiting and testing infants is difficult, and researchers 
therefore normally report findings and draw conclusions 
from small samples (Frank et al., 2017). As such, the current 
paper contributes to the literature by testing whether 
bilingual infants would outperform monolingual infants in 
an experimental paradigm modified from Kovacs and 
Mehler (2009a) Experiment 3. The current experiment used 
geometric shapes to convey the abstract rule patterns. This 
would be a key test of the bilingual cognitive advantage, as 
researchers have argued that bilinguals’ enhanced attention 
system should transfer to non-verbal cognitive tasks that 
require attention control (Bialystok, 2017).  

There were several methodological differences between 
our experiment and those reported in Kovacs and Mehler 
(2009a). First, we tested 9.5-month-old infants, who were 
slightly older than those reported in Kovacs and Mehler 
(2009a). As mentioned above, Kovacs and Mehler (2009a) 
tested infants with abstract rule patterns (i.e., AAB/ABB 
structures) and paired these structures with different visual 
rewards at different locations of the screen. Some 
researchers have raised concerns of testing infants with 
abstract rules patterns (i.e., extracting patterns from stimuli) 
as this may quite challenging to participants this young 
(Comishen et al., 2019). Given that 7-month-old infants can 
learn some abstract rule patterns (Marcus et al., 1999) and 
Ibánez-Lillo et al (2010) reported that both monolingual and 
bilingual infants at 8 months can switch their responses 
when the cue-reward pairings had changed, we decided to 
test 9.5-month-old infants, who are a bit older than 8-
months, to ensure that the infants were sufficiently mature 
to handle the task demands. Furthermore, these slightly 
older infants would have even more bilingual experience, 
perhaps enhancing any effect of dual language exposure. 
Second, our abstract rule patterns were conveyed using both 
visual and auditory (non-linguistic) cues, as presenting 
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information bimodally should facilitate infant abstract rule 
learning (Frank et al., 2009). Lastly, we reduced the number 
of trials during pre-switch and post-switch phases from nine 
to six. Our decision was based on pilot data (not included in 
this paper) that revealed 9.5-month-old infants lost interest 
in the screen after six to seven trials presenting the same 
abstract rule patterns during the pre-switch phase. 
Moreover, Kovacs and Mehler (2009a) have shown that 7-
month-old bilingual infants began switching their responses 
during post-switch phase from the fourth trial in Experiment 
3. As we were testing older infants, we expected that older 
infants could switch their responses earlier in the post-
switch phase. Thus, we set the number of trials in pre-switch 
and post-switch phases to six.  

Methods 
This experiment involved an anticipatory eye movement 

paradigm, modified from Experiment 3 in Kovács and 
Mehler (2009a). Infants were trained to predict the locations 
of visual rewards based on the structures of tone-shape 
sequences. The key manipulation was that the structure of 
the tone-shape sequence would change in the middle of the 
experiment. Successful learners must inhibit the previously 
learned tone-shape sequence and then learn the new one. 
Similar to others, we argue that this task measures infants’ 
general cognitive skills, including working memory, 
attention and inhibitory control. First, infants need to use 
their working memory to process and track the information 
in the tone-shape sequences. Next, infants need to pay 
attention to the common structures across tone-shape 
sequences and the association between those structures and 
the locations of visual rewards. Lastly, as mentioned above, 
infants must rapidly inhibit the previously learned tone-
shape sequence structure in order to learn new tone-shape 
sequence structure during the post-switch phase.  

Participants  
Twenty-four monolingual English infants and 23 French-

English bilingual infants of 9.5 months were tested (Mean 
= 9.49 months; S.D. = 0.64 months), 22 female). All 
participants were living in a French-English city in an 
officially bilingual (French-English) country.  

We used the Language Exposure Questionnaire (Bosch & 
Sebástian-Gallés, 1997) to measure infants’ language 
exposure to English and French. Infants were categorized as 
monolinguals if they had 90% or greater exposure to 
English. Infants were categorized as bilinguals if they had a 
minimum of 20% exposure to one language and a maximum 
of 80% exposure to the other language (Mean English 
exposure = 54.96%, SD = 15.64%; Mean French exposure 
= 44.71%, SD = 15.77%). An additional four infants (2 
monolinguals, 2 bilinguals) were tested but not included in 
the final analysis because of crying or fussiness.  

Stimuli  

Figure 1 illustrates sample stimuli and the procedure of 
the study. All stimuli were organized into 3 tone-shape 
sequences of two structures: AAB or ABB. For AAB 
sequences, the first two tones and geometric shapes in the 
sequence were identical and the final pairing differed (e.g., 
circle-tone C, circle-tone C, star-tone F). By contrast, for 
ABB sequence, the last two shape-tone pairings were 
identical and the first pairing differed (e.g., star-tone F, 
circle-tone C, circle-tone C).  

 
Figure 1. Sample visual stimuli and the procedure of the 
anticipatory eye movement paradigm. 

 
The visual stimuli comprised six AAB shape sequences 

and six ABB sequences. Following the methodology in 
Kovács and Mehler (2009a), specific geometric shapes 
were used to generate the sequences. Three geometric 
shapes (arrow, circle, pentagon) were used for position A of 
the AAB and ABB sequences, whereas three other 
geometric shapes (moon, 5-pointed star, triangle) were used 
for position B. Each shape was presented in a different 
colour. For symmetrical geometric shapes (i.e., circle, 
pentagon, 5-pointed star and triangle), the size of each shape 
was 32cm X 32cm. For asymmetric geometric shapes (i.e., 
arrow and moon), the size of each shape was 34cm X 32cm. 
The shape sequences appeared on screen in the following 
manner. The first shape of the sequences was presented on 
the left side of the screen alone. Next, the second shape was 
added in the middle of the screen while the first remained 
onscreen. Finally, the third shape was added on the right 
side of the screen so that all three shapes appeared 
simultaneously on the screen for 3 sec. All shape sequences 
were displayed against a black background.  

The audio stimuli were sequences of three musical tones. 
Two tone structures (i.e., AAB and ABB) were constructed 
to pair with the corresponding visual shape sequences. 
Three musical tones (A, D, E) could be paired with objects 
in position A, whereas three other musical tones (C, F, G) 
could be paired with objects in position B.  

The tone-shape sequence would be followed by a visual 
presentation of two white squares and the visual reward (see 
procedure for more details). The two white squares were 
presented side by side on the screen (each was 52.5cm to 
53.5cm in size) for 1.5 sec. For the visual reward, one of 
two puppets (i.e., a giraffe or hippopotamus toy) appeared 
inside one of the two white squares on the left or right side 
of the screen. The puppet loomed from 20cm X 30cm to 
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28cm X 49cm in size for 2 sec. The presentation of puppets 
was accompanied by a chime sound.  

Apparatus and procedure  
Infants were seated on a parent’s lap during the 

experiment. The parent wore headphones playing music 
with vocals to mask the sounds. The parent was instructed 
not to turn his/her head to the left-hand side or right-hand 
side. Instead, parent could either look at the infant or look 
at the center of the screen in order to minimize their 
influence of infants’ attention to a particular side of the 
screen. At the beginning of each trial, we presented infants 
with attention-getting stimuli (e.g., an image of a baby and 
audio of a baby giggle). Once infants oriented their attention 
to the screen, the experimenter pressed a key to present the 
orientation stimuli to the infants. For the first trial, infants 
saw a video where a rotating ball changed its position from 
the left side to the right side of the screen. The ball first 
appeared on the left side and remained onscreen for 3.3 sec. 
The ball then reappeared on the right side of the screen for 
another 3.3 sec. The trial served to accustom infants with 
the experiment procedure where they would be trained to 
look at the left and right side of the screen to predict 
different visual rewards based on the tone-shape sequences.  

After this orientation trial, there were two phases in the 
experiment: pre-switch and post-switch (see Figure 1). Each 
phase consisted of 6 trials. In the pre-switch phase, infants 
were trained that one tone-shape sequence structure (either 
AAB or ABB) predicted a visual reward in a particular 
location (i.e., on the right or left of the screen). On each trial, 
infants were first presented with a tone-shape sequence 
(e.g., AAB) for 3 sec. The tone-shape sequence would then 
be replaced by two white squares on the screen for 1.5 sec. 
During this window of time, infants could make an 
anticipatory eye movement by directing their eye gaze to 
the square where the object would appear (anticipatory 
window period). Finally, a looming puppet (e.g., giraffe) 
would appear on one side of the screen (e.g., right side) for 
2 sec. After presenting infants with 6 pre-switch trials, 
infants then entered a post-switch phase where a new 
structure of tone-shape sequences (e.g., ABB structure) 
predicted a different reward (e.g., hippopotamus) on a 
different location (e.g., left side). The procedure and length 
were identical to the pre-switch phase, aside from the 
differences above (i.e., sequence structure, visual reward 
type and location). 

Coding  
Following Kovács and Mehler (2009a), we coded infants’ 

eye gaze during the anticipatory window period (1.5 sec) 
for the dependent variable (DV). We coded infants’ eye 
gazes to the right and left positions. We only counted eye 
gazes to the appropriate reward location as correct 
responses. Eye gazes to the opposite side of the reward 
location were all counted as incorrect. Videos were coded 

frame by frame (30 frames per second). Two trained 
undergraduate coders coded all trials independently and the 
reliability between their coding was high (r = 0.90, p < 
0.0001). To obtain the proportion of correct anticipatory 
looks, we divided the number of frames looking at the 
correct location by the sum of total frames that infants 
looked at the correct and incorrect positions during 
anticipatory window period. For example, on a test trial, an 
infant looked at the correct position for a total of 20 frames 
and looked at the incorrect position for a total of 10 frames. 
The proportion of correct anticipatory looks would be 0.67 
for this infant on this particular trial.  

Data analysis  
The DV was infants’ proportion of correct anticipatory 

looks in each trial. Further, we expected that infants would 
increase the proportion of correct anticipatory looks over 
time, thus we tested whether the relationship between the 
DV and the number of trials (i.e., DV-trial slope) was 
positive or not. We also tested whether infants’ language 
background would influence the DV-trial slope. For 
example, bilingual infants may have faster rate of learning 
the association between tone-shape sequence and the 
corresponding visual rewards. This would be reflected by a 
steeper DV-trial slope in the bilingual infant group. To 
model the variations of the DV and the DV-trial slopes in 
the experiment, we employed hierarchical linear modeling 
in our analyses. Because we have different hypotheses 
about infants’ performance in the pre-switch and the post-
switch phases. We ran two separate hierarchical linear 
models, one examined infants’ performance in the pre-
switch phase (pre-switch model) and the other examined 
infants’ performance in the post-switch phase (post-switch 
model). We predicted that infants’ inhibitory control ability 
would only be reflected in their performance during the 
post-switch phase. As such, we expected that monolingual 
and bilingual infants would have similar proportion of 
correct anticipatory looks and DV-trial slopes during the 
pre-switch phase. By contrast, monolingual and bilingual 
infants would differ in terms of their proportion of correct 
anticipatory looks and DV-trial slopes during the post-
switch phase. We used the lme4 package in R (Bates et al., 
2015) to perform the hierarchical linear regression models. 
The regression models were fit by the restricted maximum 
likelihood approach and the p values in the models were 
estimated by Satterthwaite approximations in the lmerTest 
package (Kuznetsova, Brockhoff, & Christensen, 2016). 
The model was specified as follow: DV ~ trial*language 
background + (1+trial|Subject) in the lme4 package.  

Results 
See Figure 2 for infants’ performance across trials during 

the pre-switch and post-switch phases. In the pre-switch 
model, infants’ language background [β = 0.047, S.E. = 
0.066 p = 0.47] was not a significant predictor. We also 
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found that the interaction between infants’ language 
background and DV-trial slopes was not significant [β = 
0.020, S.E. = 0.011, p = 0.997], suggesting that the learning 
rate between monolingual and bilingual infants were similar 
in the pre-switch phase. The average DV-trial slope was 
significantly higher than zero across all participants [β = 
0.020, S.E. = 0.076, p = 0.012], suggesting that infants made 
more correct anticipatory looks over time. Finally, a one-
tailed t test revealed that the average proportion of correct 
anticipatory looks in the pre-switch phase was significantly 
greater than the chance level [M = 0.59, t(276) = 4.909, p < 
0.001]. 

In the post-switch model, we also did not find a 
significant effect of infants’ language background [β = -
0.015, S.E. = 0.063, p = 0.82]. The interaction between 
infants’ language background and DV-trial slopes was not 
significant [β = -0.004, S.E. = 0.023, p = 0.878]. This again 
indicates that the learning rate between monolingual and 
bilingual infants were similar in the post-switch phase. The 
average DV-trial slope was significantly higher than zero 
across all participants [β = 0.031, S.E. = 0.012, p = 0.009], 
suggesting that infants also showed a trend of improving 
their proportion of correct anticipatory looks over time 
during the post-switch phase. Finally, a one-tailed t test 
revealed that the average proportion of correct anticipatory 
looks in the post-switch phase was not significantly greater 
than the chance level [M = 0.45, t(268) = -2.63, p > 0.99].  

  
 
Figure 2. Infants’ average proportion of correct anticipatory 
looks across trials during pre-switch and post-switch 
phases. Error bars indicate the 95% confidence intervals.  
 

We did some follow up hierarchical linear regression 
models to further explore whether the degree of bilingual 
experience influences infants’ performance. One aspect of 
bilingual experience is whether the bilingual infant has 
balanced exposure to the two languages. The degree of 
bilingualism was determined by the difference of 
percentage exposure between dominant language and non-
dominant language. For example, an infant with 60% 
exposure to English and 40% exposure to French would get 
a score of 20, while an infant with 50% exposure to English 

and French would get a score of 0. Here, a smaller value in 
the degree of bilingualism reflected that the infant received 
a more balanced language exposure to French and English. 
The degree of bilingualism can be treated as a proxy for the 
variation of bilingual experience among our bilingual 
infants. In the following analyses, we only focused on 
bilingual infants and measured whether the degree of 
bilingualism contributes to the difference in infants’ 
average proportion of correct anticipatory look during pre-
switch and post-switch phases. We specified two separate 
models for the pre-switch and post-switch phases. Each 
model was specified as DV~ trial*infants’ degree of 
bilingualism + (1+trial|Subject) in the lme4 package. 
Across two models, we did not find any significant main 
effects and interaction between trials and bilingual infants’ 
degree of bilingualism (ps > 0.30). This suggested that 
bilingual experience (whether they hear more or less 
balanced exposure in daily environments) did not predict 
infants’ performance in our cognitive task. 

Finally, we also computed one-tailed t tests to examine 
whether infants’ average proportion of correct anticipatory 
look in the last two trials during post-switch phase was 
significantly greater than chance level. The t test results 
were both non-significant in trial 11 [M = 0.45, t(40) = -
0.95, p = 0.827] and in trial 12 [M = 0.54, t(44) = 0.79, p = 
0.217], suggesting that infants’ performance across the last 
two trials did not significantly differ from the chance level.  

General Discussion 
Our goal was to replicate Kovacs and Mehler (2009a) 

study and examine the potential positive effects of early 
bilingualism to infants’ cognitive ability. We found that 
both monolingual and bilingual infants could extract the 
abstract rule patterns and associate the patterns to particular 
reward locations. Their performance generally improved as 
they made more correct anticipatory looks based on the 
abstract rule patterns over-time. However, we did not find 
evidence supporting that early bilingualism improves 
infants’ inhibitory control, at least for the experiment tested 
here. In our study, we tested slightly older infants, who 
would have even more bilingual experience, and attempted 
to maximize the learning effects by presenting infants with 
bimodal visual-audio stimuli. Despite using these 
manipulations that may enhance any effect of bilingualism, 
we still found a null effect. Thus, our findings are consistent 
to recent studies (e.g., Kousaie & Philips, 2012; Paap & 
Greenberg, 2013) that bilingualism may not have a robust 
effect on learners’ cognition. 

 Notwithstanding our efforts to maximize the learning 
effects in the current paradigm, it is important to note that 
infants’ average proportion of correct anticipatory looks 
during the post-switch phase was not significantly above 
chance. This implies that infants generally found learning 
the associations between the tone-shape structure and the 
visual rewards in the post-switch phase more difficult than 
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those in the pre-switch phase. Although 7-month-olds were 
previously reported to succeed in learning using this 
paradigm (Kovacs & Mehler, 2009a), our results suggest 
that it may still be cognitively challenging for 9.5-month-
olds to learn the new association within the six trials of the 
post-switch phase. Future work is perhaps needed to explore 
a range of age-appropriate and simplified cognitive tasks to 
fully address the question of a correlation between cognitive 
ability and bilingualism in infancy. 

Another possibility is that our null findings may be 
related to the language contexts in the bilingual infants’ 
home/community. Byers-Heinlein, Morin-Lessard and 
Lew-Williams (2017) have suggested that bilingual infants’ 
enhanced cognitive ability may be driven by exposure to 
language mixing contexts in their environments. Language 
mixing is prevalent in early bilingual environments where 
one/both parent(s) switch between two languages when 
speaking to their infants. Byers-Heinlein et al., (2017) have 
discovered that bilingual French-English infants 
demonstrated a switching processing cost when hearing 
sentences that alternated between two languages. The 
switching costs suggest that bilingual infants need to 
monitor and control their two languages when listening to 
speech that mixes languages. Thus, bilingual infants’ 

enhanced cognitive skills may be a result of listening to 
mixed speech on a daily basis. Although the local area is 
quite bilingual, perhaps the specific bilingual infants in our 
study were not living in a home language environment 
where parents often mix their languages, thus minimizing 
their need of monitoring and switching between two 
language systems regularly. In the current paper, we did not 
collect relevant data to examine this possibility. Future 
work should explore how the degree of language mixing in 
early bilingual environment affects infants’ cognitive 
ability.  

In conclusion, we did not find support for bilingual 
cognitive advantages at 9.5 months, suggesting that 
advantages may not be robustly seen across different 
bilingual populations or different ages. However, we made 
note of other possible accounts for the replication failure, 
including how the bilingual environments and task demands 
of the current experiment matter. It is our hope that future 
work can address the existing research gap to further 
understanding of the effects of early bilingualism on 
infants’ cognitive ability.   
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Abstract

Humans have an intuitive understanding of physics. They can
predict how a physical scene will unfold, and reason about how
it came to be. Adults may rely on such a physical representa-
tion for visual reasoning and recognition, going beyond visual
features and capturing objects in terms of their physical prop-
erties. Recently, the use of draped objects in recognition was
used to examine adult object representations in the absence of
many common visual features. In this paper we examine young
children’s reasoning about draped objects in order to examine
the develop of physical object representation. In addition, we
argue that a better understanding of the development of the
concept of cloth as a physical entity is worthwhile in and of
itself, as it may form a basic ontological category in intuitive
physical reasoning akin to liquids and solids. We use two ex-
periments to investigate young children’s (ages 3–5) reasoning
about cloth-covered objects, and find that they perform signif-
icantly above chance (though far from perfectly) indicating a
representation of physical objects that can interact dynamically
with the world. Children’s success and failure pattern is similar
across the two experiments, and we compare it to adult behav-
ior. We find a small effect, which suggests the specific features
that make reasoning about certain objects more difficult may
carry into adulthood.

Keywords: intuitive physics, cloth, cognitive development,
object recognition, analysis-by-synthesis

Introduction
Imagine draping an elephant. What shape do you see? Prob-
ably not an exact silhouette, but a rough outline with a coarse
bottom (Figure 1). This mental image also likely changes as
you imagine draping an elephant placed on its side, or turned
upside down. This simple feat of the imagination is quite re-
markable. Imagining an elephant on its own may involve re-
activating a learned representation or a visual memory of an
elephant, but imagining an elephant draped by a cloth means
‘seeing’ a new object (the reader with extensive experience
of draped elephants is free to imagine some other animal
here). How do we come to this new image? One possible
account is that we run a mental simulation and examine the
outcome under noisy dynamic laws. But such a simulation
requires object representations that go beyond representing
image patches. Under this account, objects are represented as
three-dimensional bodies, and the mental simulation is able to
imagine the transformation and variation of the object under
different processes. By examining people’s ability to reason
about the outcome of draping or to perceive draped object,
we examine people’s ability to reason visually without most

of the traditional visual features that are assumed to play a
part in recognition (Yildrim et al., 2016).

Recently, Yildrim, Siegel, and Tenenbaum (Yildrim et al.,
2016) have investigated adult reasoning about cloth-covered
objects as part of a larger examination of people’s object rep-
resentation as physical entities with the properties necessary
for physical interaction. These studies showed that adults
can reliably reason about the identity of covered objects in
a match-to-sample task, even when the distractor object is
within the same category type as the target object. Adult re-
sponses were best captured by a model based on a physics
and graphics engine, which formalize the proposal that adults
base their recognition and reasoning in part on a physical
model of objects and a causal dynamical model of their in-
teractions with the world.

More broadly, the Mental Physics Engine proposal sug-
gests that the representations underlying much commonsense
physical and visual reasoning are similar to those of modern
game engines, software that is useful for quickly rendering an
approximate simulation of a physical environment (see e.g.
Battaglia et al., 2013; Gerstenberg et al., 2012; Smith & Vul,
2013; Hamrick et al., 2016; Ullman et al., 2017). Such game
engines have also been proposed as an essential part of ma-
chine intelligence for commonsense reasoning (see e.g. Wu
et al., 2015; Lake et al., 2017; Chang et al., 2017). While
such a physics engine proposal predicts adult recognition and
perception better than neural-network models based on vi-
sual image features, it is possible that adults come to this so-
phisticated understanding of objects and physics over time.
Much less is known about children’s representation of objects
as physical objects for recognition. Here, we propose to ex-
amine young children’s reasoning about draped objects as a
way of examining the development of understanding objects
as physical bodies, and of the causal processes that determine
the behavior of objects.

Beyond this, we suggest that examining the development
of intuitions about cloth is of interest in and of itself. This is
because cloth (in the sense of a mesh or sheet of connected
point masses, which can capture entities such as blankets,
towels, and clothes) may be a basic ontological category in
intuitive physical reasoning, akin to rigid body or fluid. At a
high level, game engines separate physical entities into sev-
eral broad classes based on their expected behavior, and the
computational resources necessary to simulate them. This
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high-level division is limited to only a few classes, and one
of the common classes in modern engines is cloth, required
specialized modular simulation Gregory (2009), and suggest-
ing this may form a basic mental category as well. So, while
it may initially seem that there are a large number of intuitive
physical categories that can be investigated, of which cloth
forms only a small subset, the success of the game engine ap-
proach to mental reasoning motivates us to focus on the small
number of broad categories that have proven useful for engi-
neers.

While cloth exists as a separate category in modern game
engines, it is not obvious that an understanding of cloth has
its origin in childhood. On one hand, by their first year
many children have extensive experience with clothes, blan-
kets, towels, tissues, and so on. A general mental physics
engine with the right computational primitives may use this
experience to generate the cloth category. On the other hand,
our core knowledge physical reasoning is shared with many
other animals and is believed to have a long evolutionary past
(Spelke & Kinzler, 2007). Cloth, unlike liquids and rigid bod-
ies, is a relatively recent category, and early human ancestors
would not have needed to reason about it on a daily basis.
Thus the mental physics engine may lack the right primitives
to quickly construct this category.

Figure 1: “My drawing was not a picture of a hat. It was
a picture of a boa constrictor digesting an elephant. Then,
I drew the inside of the boa constrictor, so that the grown-
ups could see it clearly. They always need to have things
explained.” The Little Prince, by Antoine de Saint Exupéry.

In this paper, we probe young children’s ability to reason
about cloth using two basic tasks: reasoning from an uncov-
ered object to a covered image (Experiment 1), and reasoning
from a covered object to an uncovered image (Experiment 2).
These tasks do not span the full space of the possible behavior
of cloth, but they are meant to establish the existence (or lack)
of basic competency. We consider an age range of 3–5 years,
when children have for the most part not started a formal ed-
ucation, yet possess a sufficiently large vocabulary to under-
stand the language used in the task. We find that children

perform above chance in both tasks, and use an adult com-
parison to examine their patterns of success and failures. In
the General Discussion, we consider the implication for gen-
erative vs. feature-based models, and the extension of cloth
studies to infants.

Experiment 1: Uncovered→ Covered
Participants
Sixteen individuals (N = 16, 5 female, median age 3.9 years,
range 3.2-4.8) were recruited at the [City] Children’s Mu-
seum. The size of the sample was pre-specified, based on a
pilot study which indicated medium-to-large effect sizes can
be expected.

Materials and methods
Participants were tested in a designated area in the [City]
Children’s Museum. Parents gave their informed consent, and
advised not to encourage responses from their child.

Participants were presented with a touch-screen device
(iPad), and told that they were going to play a game. Partic-
ipants first played two warm-up rounds, in which they were
shown a test-object on top of the screen (e.g. a bird), and
asked to match it with one of two possible objects below (e.g.
a bird and a horse). The warm-up round was meant to famil-
iarize the participants with making a forced choice between
two items based on a target item. By the second warm-up all
participants correctly selected the matching object.

During test, participants saw 6 trials in succession, in ran-
dom order (see Figure 2, top). Each trial contained a pair of
objects, for example a mug and a bench. One object in the
pair was randomly selected as the test object. The test ob-
ject was shown at the top of the screen, uncovered. Below
the test object were the pair of objects, covered in cloth. Par-
ticipants were told to imagine that the test object had been
covered by a blanket, and asked to indicate what the result-
ing image would be. Participant choices were automatically
stored. Participants were given general encouragement, but
no indication of whether their choice was correct.

All the stimuli pairs used in the experiments are shown in
Figure 3. Uncovered and covered stimuli images were created
in Blender (Blender, 2015). Covered objects were created by
draping the uncovered objects using a physical cloth simu-
lation. Objects were chosen from a collection of available
objects previously used in experiments with adults (Yildrim
et al., 2016). The size of the objects was scaled such that they
took up approximately the same amount of visual space when
covered.

Results and analysis
Participants’ responses were summed across the object pairs,
and are shown in Figure 4 (left). The summation resulted in a
labeling score going from 0 (no objects correctly identified) to
6 (all objects correctly identified), with chance performance
at 3. On average, participants correctly labeled 4.14 objects
(95% CI 3.54–4.68, bootstrapped with 10,000 samples). The
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Figure 2: Schematic of example test trials in Experiments 1
and 2. At the top of a touchscreen is the target object (Uncov-
ered in Experiment 1, covered in Experiment 2). Participants
were asked to match the target object to one of the pair of
objects at the bottom of the screen (Covered in Experiment 1,
uncovered in Experiment 2).

confidence intervals are clearly above chance performance,
and a standard two-sided T-test also indicates this result is
statistically significant (t(15) = 3.09, p < 0.01).

We did not predict nor find a significant effect of age on
participant performance. A logistic regression of labeling
score on age was not significant, and neither was a median
split comparison. Given the small sample size, however, we
do not take this to strongly indicate the non-existence of an
age effect, but simply the lack evidence for it.

Considering the stimuli by pair, we found that the iden-
tity of the objects in a given pair had an effect on partici-
pants’ labeling. That is, some pairs were harder to discern
than others. Specifically, using a standard two-sided binomial
test at the p < 0.05 level, participants correctly distinguished
mug/bench, headphones/bus, and laptop/bowl (Figure 3 a, b,

Figure 3: All stimuli pairs used in Experiments 1 and 2, un-
covered and covered. In Experiment 1 participants saw one of
the objects in the top row as the target, and matched it to the
two items in the bottom row. In Experiment 2, participants
saw one of the objects in the bottom row as the target, and
matched it to one of the items in the top row.

c). Participants were unable to distinguish mailbox/train, pi-
ano/airplane, and chair/camera (Figure 3 d, e, f). The exact
number of participants correctly labeling the objects by pair
is shown in Figure 5.

Experiment 2: Covered→ Uncovered
We took the results of Experiment 1 to indicate pre-school
children have a general ability to match objects to their cloth-
covered representations, though they may have been using
one of several different strategies to do so. We next exam-
ine whether children were able to go in the inverse direction,
inferring the identity of an object hidden under cloth.

Participants
Seventeen individuals (N = 16, 5 female, median age 4.0
years, range 3.0-5.0) were recruited at the [City] Children’s
Museum. The size of the sample was pre-specified at 16 to
match Experiment 1.

Materials and methods
Participants were tested in a designated area in the [City]
Children’s Museum. Parents gave their informed consent, and
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Figure 4: Left: Results of Experiment 1, seeing uncovered
object and matching to cloth-covered image. Right: Results
of Experiment 2, seeing cloth-covered image and matching
to uncovered object. Score ranges from 0 (no trials correct)
to 6 (all trials correct). Bold lines indicate mean score, and
shaded colored area indicates 95% CI. Dashed red line indi-
cates chance performance. Each dot indicates the response of
one participant, jittered for visibility.

Figure 5: Results of Experiments 1 and 2 by object pair. The
number of participants who correctly identified the target ob-
ject is shown against specific object pairs. Black lines indi-
cate 95% CI, dashed red line indicates chance performance.
Children performed at chance or above chance levels for the
same object pairs in both experiments.

advised not to encourage responses from their child.
Prior to the touch-screen part of the experiment, partici-

pants were shown 6 images of covered items in succession
(printed on paper), and asked what they thought was under
the cloth covering. That is, participants provided a free-form
verbal response. The experimenter did not provide feedback
on whether the response was correct or incorrect.

The touch-screen part of the experiment was similar to Ex-
periment 1. Participants were shown an iPad, and told that
they were going to play a game. As in Experiment 1, partici-
pants first engaged in two warm-up trials, and by the second
trial all participants correctly labeled the matching object.

The test phase was also similar to Experiment 1: partici-
pants saw 6 trials in succession, in random order. Each trial

contained a pair of objects, using the same pairs as in Ex-
periment 1. However, in this experiment, the test object in a
pair was covered by cloth, and the two objects below it were
uncovered (see Figure 2). Participants were asked to indi-
cate which of the two objects was under the cloth. Participant
choices were automatically stored. As before, participants
were given general encouragement, but were not told whether
their choice was correct.

Results and analysis
The verbal response of participants to the first part of the task
(freeform response when prompted to guess what is under a
cloth) is summarized in Table 1. We did not predict that par-
ticipants would correctly guess what was under a cloth, rather
we used this task to examine the range of possible guesses.
Note that many of the participants responded ‘table’ as this
was a salient object mentioned by the experimenter.

Participants’ responses to the forced-choice part of the
task were summed across the object pairs, and are shown
in Figure 4 (right). The summation resulted in a score go-
ing from 0 (no objects correctly identified) to 6 (all objects
correctly identified), with chance performance at 3. On aver-
age, participants correctly labeled 4.26 objects (95% CI 3.66–
4.74, bootstrapped with 10,000 samples). The confidence in-
tervals are above chance performance, and a standard two-
sided T-test also indicates this result is statistically significant
(t(15) = 3.87, p < 0.01).

As in Experiment 1, a logistic regression of labeling score
on age was not significant, and neither was a comparison
which split participants by median age. We again stress that
while we did not expect an age effect, we also do not be-
lieve these results necessarily indicate a ‘true null’ (the non-
existence of an age effect), merely a lack evidence for it.

The identity of the objects in a given pair again had an
effect on participant labeling. Interestingly, the exact same
pattern emerged when using a standard two-sided binomial
test at the p < 0.05 level. That is, in Experiment 2 partic-
ipants correctly distinguished mug/bench, headphones/bus,
and laptop/bowl, but did not distinguish mailbox/train, pi-
ano/airplane, and chair/camera. Figure 5 shows the perfor-
mance of participants by pair.

We considered two hypotheses regarding the observation
of the same pattern of successes and failures in both experi-
ments:

• H1: Children’s performance on both tasks is unrelated

• H2: Children’s cloth-related reasoning is affected by object
properties due to underlying object features.

We captured hypothesis H1 by assuming children’s re-
sponse is the result of informed inference (a biased coin with
weight θ = 0.8) or a random guess (θ = 0.5), and that there
are 3 weighted coins and 3 random coins per each experi-
ment, but they are unrelated across experiments. The value
of the weighted coin reflects an average of participant per-
formance across the two experiments. We captured hypoth-
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Covered object Verbal description

Chair table (5), box (3), chair (2), monster (1)
Camera table (3), box (1), present (1)
Bench table (3), square box (2), tall present (1)
Mug table (3), chair (2), box (1), mountain (1),

couch (1), squiggle strips (1), circle (1)
Laptop table (3), square table (1), box(1), dot (1),

rectangle (1), square (1), bridge (1)
Bowl table (3), round table (1), circle (1),

chair (1)
Mailbox table (2), box (1), ghost (1), cat (1),

blaster (1), ice-cube (1), gate (1), boat (1)
Train box (1), chair (1), fence (1),

stepstool (1),
Airplane table (2), present (1), cowboy (1),

vacuum cleaner (1), surfboard (1)
Piano house (3), box (2), ladder (1), table (1),

chair or table (1)
Headphones rainbow machine (1), dog (1), ball (1),

mountain (1), band-aid (1), diamond (1),
front of crib (1), chair (1),
jelly-fish (1), table (1)

Bus box (1), square (1), fountain (1)

Table 1: Verbal responses of participants in Experiment 2.
Numbers in brackets indicate the number of participants giv-
ing the preceding response. Numbers do not add up to the
total number of participants as not all participants replied in
all trials.

esis H2 by assuming the same set-up as hypothesis H1, but
with the additional assumption that the weighted coins are
matched with the same object pairs in both experiments. As-
suming an uninformed uniform prior over both hypotheses,
we can assess K, the Bayes factor of the two hypotheses, by
estimating the ratio of the likelihood of the data under each
hypothesis: K = P(H2|D)

P(H1|D) . The data under consideration is
passing 3 binomial tests for each experiment, for the same
object pairs. Using a bootstrap analysis in which 16 simu-
lated participants have their behavior sampled from the coins
described for H1 and H2, using 10,000 samples, we find a
Bayes factor of K = 21, indicating strong evidence in favor
of H2. Put briefly, the ‘suspicious coincidence’ that children
are able to distinguish the same 3 pairs in both experiments
is indicative of underlying features of the objects interacting
with cloth-based reasoning.

Experiment 3: Adult comparison
While pre-school children were able to overall correctly rea-
son about cloth-covered objects, they also made characteris-
tic mistakes, indicating an underlying difficulty in reasoning
about how particular objects will interact with cloth. Such
difficulties may be due to simple lower-level feature interac-
tion (for example, covering the mailbox and train both result
in elongated rectangular shapes), or due to the end-result of
a coarse draping simulation resulting in similar images, or a
different reason altogether. Whatever the source of the dif-
ficulty, we wanted to examine whether it carried into adult-
hood. In the next experiment we examined the targeted pre-
diction that adults would overall do worse on the trials that
children failed.

Participants
One-hundred and twenty (N=120) participants were recruited
online via Amazon Mechanical Turk. Eleven participants
were discarded after failing to answer a catch question, and
the remaining participants (N=109) are considered in the
analysis below (Medianage = 33 years, age range 20–70, 48
self-identified as female). We anticipated the task would be
easy for adults, and based the number of participants on the
expectation of small effect sizes.

Materials and methods
Participants were shown 6 trials, similar to Experiment 1. For
each trial, participants were shown a target object and asked
to imagine it covered with cloth. On a following page, par-
ticipants were asked to select which of two covered objects
matched the target object. The object pairs were the same as
those used in Experiment 1. The order of presentation, the
right/left location of the covered objects, and the identity of
the target object were all randomized. Participants were asked
to respond as quickly as possible. At the end of the 6 trials
participants were asked to describe their task was in the study,
and irrelevant answers (e.g. ‘opinion’, ’work’, ’0’) led to dis-
carding their data prior to analysis. Participants were also
asked to provide information regarding their age and gender.
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Results and analysis
Participants responded within about a second of presentation,
with a median response of 1.1 seconds (95% CI 1.04–1.16)
per trial. Participants also found the task relatively simple,
with an average success rate of 98% (95% CI 96%–99%) per
trial.

We considered the average correct response rate for the
objects children found easier (‘Children pass’) and harder
(‘Children fail’). The average correct response rate by adults
for the ‘Children pass’ trials was 99% (95% CI 98%–100%),
whereas the correct response rate for the ‘Children fail’ trails
was 96% (95% CI 94%–98%). The bootstrapped distribution
over these variables and the response rate per object pair is
shown in Figure 6.

The average correct response rate of adults per trial appears
higher for the pairs that children found easier in Experiments
1 and 2, but this effect is very small as adults are nearly at
ceiling.

Figure 6: Results of Experiment 3. Left: bootstrap posterior
distribution over the correct response rate aggregated by trial
type (‘Children pass’ and ‘Children fail’), 10,000 samples.
Right: Correct response rate for each object pair, sorted by
trial type.

General Discussion
People can reason intuitively about how things drape, wrap,
envelop, sag, and droop. Recent experiments (Yildrim et al.,
2016) have shown that adults perform well in a task that re-
quires matching a covered and uncovered object, and that
this ability can be captured by a physics and graphics en-
gine which approximately simulates the draping of an object.
Motivated by this work, as well as by the general category
of ‘cloth’ in current game engines, we examined whether
pre-schoolers can also reason about the interaction of cloth
and rigid objects, and found their performance to be above
chance in two such tasks. Children’s pattern of failure and
success was similar across the tasks, and a comparative task
with adults found a small effect, suggesting that they too find
the same object pairs hard or easy.

The current studies warrant tentative conclusions regard-
ing object representation and the use of dynamic mental sim-
ulation in children. Previous studies with adults (Yildrim et
al., 2016) rotated the objects, in a way that prevented sim-
ple feature-matching and meant in part to examine whether

the adults were relying on a generative model reconstructions
of the object. We did not use such a rotation in our studies,
and we see them as a first step to examine whether children
have any competence with cloth-based reasoning. It is pos-
sible that children’s abilities rely on relatively simple feature
matching, while adult reasoning is based more on reconstruct-
ing a mental representation of the 3D object shape It is also
unclear which of several proposals for a generative model of
3D objects (whether for children or adults) is the right one
(and see for example Soltani et al. 2017, for a comparison of
several such methods for recovered objects from silhouettes).
Further studies will need to use object rotations and a wider
array of object pairs to examine this question.

The dynamics of cloth go beyond draping objects. For ex-
ample, cloth sags when objects are placed on top of it, to a de-
gree dependent on internal parameters related to its stiff and
stretch. Can children reason about the likely sag of a piece
of fabric, based on seeing its motion and knowing an object’s
felt weight? Are children sensitive to the weight of cloth, or
will they reason about it as a weightless 2 dimensional mani-
fold that only interacts geometrically with objects?

Even if both adults and young children rely on similar rep-
resentations for reasoning about cloth, it is possible that these
representations develop late compared to the basic expecta-
tions that infants have about rigid bodies (which innate or ex-
tremely early developing) and about liquids (which develop
over the first year of life). Looking time experiments with
infants could test this possibility by familiarizing infants to
either cloth or a rigid body of similar proportions and texture,
followed by an interaction in which the cloth and rigid body
collide with or drape rigid objects.

To wrap up, while many issues remain hanging, this work
begins to uncover the origin of cloth-based reasoning, which
may form a separate ontological category within intuitive
physical reasoning. It opens the door to future research prob-
ing the richness and origins of children’s reasoning about a
human invention that is ubiquitous in human cultures, and
that occupies an interesting middle ground between rigid ob-
jects and amorphous stuff.
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Abstract

Despite wide variation among natural languages, there are lin-
guistic properties universal to all (or nearly all) languages. An
important challenge is to explain why these linguistic universals
hold. One explanation employs a learnability argument: seman-
tic universals hold because expressions that satisfy them are
easier to learn than those that do not. In an exploratory study
we investigate the relation between learnability and complexity
and whether the presence of semantic universals for quantifiers
can also be explained by differences in complexity. We develop
a novel application of (approximate) Kolmogorov complexity
to measure fine-grained distinctions in complexity between dif-
ferent quantifiers. Our results indicate that the monotonicity
universal can be explained by complexity while the conserva-
tivity universal cannot. For quantity we did not find a robust
result. We also found that learnability and complexity pattern
together in the monotonicity and conservativity cases that we
consider, while that pattern is less robust in the quantity cases.

Keywords: semantic universals; generalized quantifiers; Kol-
mogorov complexity; learnability

Introduction
Even though there is huge variability between natural lan-
guages, they still share many common features. Such univer-
sal linguistic properties have been found at many levels of
analysis: phonology (Hyman, 2008), syntax (Chomsky, 1965;
Newmeyer, 2008), and semantics (Barwise & Cooper, 1981).
Confronted with attested linguistic universals, the question
naturally arises: why these properties? What explains the pres-
ence of the particular observed universals across languages?

In search of an explanation in terms of the interaction be-
tween linguistics and the specifics of human cognition, several
theories have presented some form of learnability as an ex-
planation of the presence of semantic universals (see, e.g.,
Barwise & Cooper, 1981; Keenan & Stavi, 1986; Szabolcsi,
2010). Recently, Steinert-Threlkeld and Szymanik (in press,
henceforth ST&S) provided evidence for a version of this
learnability hypothesis by using recurrent neural networks as
a model for learning and applying this to several different
semantic universals.

In this paper, we ask whether these semantic universals
could also be explained by some measure of complexity, and
whether this provides similar results as using a measure of
learnability. It is a common expectation that there will be
a connection between learnability and complexity and many
theories of learning are built around such a connection (Tiede,
1999; Hsu, Chater, & Vitányi, 2013). At the same time, there

are few examples that provide evidence for this expectation in
concrete cognitive tasks. In particular, it remains open whether
a connection between learnability and complexity exists for
independently motivated measures of each of these factors in
specific domains. In the present work, we study the meaning
of generalized quantifiers and compare their complexity (in
a sense to be made precise) with the learnability results of
ST&S.

The complexity of generalized quantifiers has been inten-
sively studied using methods from logic, automata theory, and
computational complexity.1 However, as we will explain
in more detail in a later section, none of these theories have
developed a notion of complexity that applies to all quantifiers
and can capture the difference between those that are attested
and non-attested in natural language. To overcome these lim-
itations, in this paper we propose to evaluate the complexity
of quantifiers from an information-theoretic perspective. This
perspective has already proven fruitful as an explanatory de-
vice in linguistics (Gibson et al., 2019). More specifically, we
suggest to adopt (approximate) Kolmogorov complexity (Li &
Vitányi, 2008) as a measure for the complexity of quantifiers.
Kolmogorov complexity roughly measures how much regu-
larity exists in a string, which enables it to be described by
a shorter program that generates it. It is not implausible that
universals will have the function of creating “patterns” that
enable such compression.

The paper is structured as follows. In the next section, we
present generalized quantifier theory and the semantic univer-
sals that we will discuss. We also discuss a recent explanation
of semantic universals in terms of learnability and previous
approaches to measuring the complexity of quantifiers and
their limitations with respect to the current study. Following
that, we introduce Kolmogorov complexity and a tractable ap-
proximation to it, and we explain how we apply this measure
to binary encodings of quantifiers. In the section after that, we
apply this complexity measure to the same pairs of quantifiers
as in the recent learnability study to see (i) whether—in addi-
tion to learnability—some of the attested semantic universals
can be explained by differences in complexity and (ii) whether
complexity and learnability pattern together. We conclude by
discussing the results and outlining future work.

1See Szymanik (2016) for an overview.
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Figure 1: An example of a quantifier model M = 〈M,A,B〉
with 10 objects, shown as a vendiagram. This model verifies
quantifiers some and most, but does not varify all

.

Quantifiers and their universal properties
Quantifiers are the semantic objects that are expressed by
determiners, such as some, most, or all. Determiners are
expressions that can combine with common nouns and a verb
phrase in simple sentences of the form Det N VP, like “some
houses are blue”. We assume a distinction of the determiners
into the grammatically simple (e.g. some, few, many) and the
grammatically complex (e.g. at least 6 or at most 2,
an even number of).

We use the framework of generalized quantifiers to repre-
sent the meaning of quantifiers as sets of sets. In particular,
determiners denote type 〈1,1〉 generalized quantifiers, which
are sets of models of the form M = 〈M,A,B〉, where M is the
domain of the model, and A,B are two unary predicates (that
is: A,B ⊆M).2 See Figure 1 for an illustration. This is an
extensional representation of meaning, in which a quantifier is
defined as the class of all models satisfying a given property
(corresponding to the situations in which a simple sentence
with that quantifier would be true). For a given model, M , and
quantifier Q we write Q ∈M if and only if: M |= Q(A,B).
For example, the meaning of the quantifiers some, most, and
every can then be represented as follows:

JsomeK = {〈M,A,B〉 : |A∩B| 6= /0} ,
JmostK = {〈M,A,B〉 : |A∩B|> |A\B|} ,

JeveryK = {〈M,A,B〉 : A⊆ B} .

The semantic universals that we consider build on specific
properties of generalized quantifiers, namely monotonicity,
quantity, and conservativity. Let Q be a generalized quantifier.
Then we call Q monotone if it is either upward or downward
monotone, which is defined as follows. Q is upward monotone
:= if 〈M,A,B〉 ∈ Q and B ⊆ B′, then 〈M,A,B′〉 ∈ Q. Q is
downward monotone := if 〈M,A,B〉 ∈ Q and B ⊇ B′, then
〈M,A,B′〉 ∈ Q. Barwise and Cooper (1981) formulate and
defend the following semantic universal:

MONOTONICITY UNIVERSAL: All simple determiners
are monotone.
2For a textbook treatment of generalized quantifiers see Peters

and Westerståhl (2006).

The property of quantity intuitively expresses that the meaning
of a determiner only depends on the sizes; i.e., the quantity, of
the relevant sets and not on the way those sets are presented
or on the particular identity of the objects in those sets. Q is
quantitative := if 〈M,A,B〉 ∈ Q, and A∩B, A\B, B\A, and
M \ (A∪B) have the same cardinality (size) as their primed-
counterparts, then 〈M′,A′,B′〉 ∈ Q. Keenan and Stavi (1986)
formulate and defend the following semantic universal3 :

QUANTITY UNIVERSAL: All simple determiners are
quantitative.

The property of conservativity intuitively expresses that a noun
phrase of the form Det N VP is genuinely about the N and
not about the VP. That is, to verify a quantifier in a quantifier
model only the A’s that are B’s are relevant, not the B’s that
are not A’s. Q is conservative := 〈M,A,B〉 ∈ Q if and only if
〈M,A,A∩B〉 ∈ Q. Barwise and Cooper (1981) formulate and
defend the following semantic universal:

CONSERVATIVITY UNIVERSAL: All simple determiners
are conservative.

Explaining semantic universals via learnability
The question naturally arises: can a unified explanation be
given for these universals? ST&S develop the following learn-
ability hypothesis: expressions satisfying semantic universals
are easier to learn than those that do not.4 To anthropo-
morphize: as languages are developing, they choose to attach
lexical items to easy-to-learn meanings, and rely on complex
grammatical constructions and compositional interpretation
thereof to express hard-to-learn meanings.

The hypothesis immediately raises a challenge: to provide
a model of learning on which it’s true. ST&S train recurrent
neural networks to learn minimal pairs of quantifiers, one
satisfying the universal and one that does not.

Figure 2 shows an example learnability result from ST&S:
an upward montone quantifier (in blue: at least 4) was ro-
bustly easier to learn for a neural network than a non-monotone
quantifier (in red: at least 6 or at most 2). Similar pat-
terns were observed for downward monotone and quantitative
quantifiers, while conservative ones were found to be no easier
to learn than non-conservative ones (but were argued to arise
from a different source than learnability).

These computational results provide strong support for the
learnability hypothesis. The approach has also worked well
in explaining universals in disparate linguistic domains: color
terms (Steinert-Threlkeld & Szymanik, 2019) and responsive
predicates (Steinert-Threlkeld, in press).

Previous approaches to the complexity of quantifiers
In the literature on generalized quantifiers one can find several
approaches to measuring complexity. Although these mea-
sures can capture some of the cognitive difficulty of quantifier

3See also Peters and Westerståhl (2006), van Benthem (1984),
and ST&S.

4Hints of this hypothesis may be found in (van Benthem, 1987;
Peters & Westerståhl, 2006; Magri, 2015).
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Figure 2: Learning curves on a neural network for the mono-
tone at least 4 (blue) versus at least 6 or at most 2 (red). This
was Figure 4 in ST&S.

processing,5 we will see that they are not fine-grained enough
to explain the presence of semantic universals.

The earliest approach uses logic, analyzing which quan-
tifiers are definable in progressively more expressive logics.
Many natural language quantifiers can be expressed in ele-
mentary (i.e. first-order) logic, e.g. some or at least 4. The
seminal result here is that proportional quantifiers cannot be
defined in elementary logic: one needs a stronger logical sys-
tem, like second-order logic, to uniformly express the meaning
of, e.g., most.6 This definability criterion cannot, however,
distinguish between the complexity of the quantifiers satisfy-
ing and not satisfying the universals we study. For example,
all and only can be defined with elementary formulas of
exactly the same form (and therefore the same complexity):

All(A, B) := ∀x(A(x) =⇒ B(x))

Only(A, B) := ∀x(B(x) =⇒ A(x))

Also, both monotone and non-monotone quantifiers can be
defined by formulas of the same complexity.

Johan van Benthem (1984) has proposed to study minimal
computational devices (automata) corresponding to general-
ized quantifiers. Under this approach, some quantifiers can be
associated with canonical minimal finite automata. One can
then use the size of such an automaton (i.e., the number of
states) as a measure of quantifier complexity. For example, the
automaton for all has two states while the automaton for at
least 3 has four states. Other quantifiers—for example, pro-
portional quantifiers—must be associated with more complex
computational devices, like push-down automata. This mea-
sure of complexity can explain some variance in the cognitive
difficulty of quantified sentence verification against pictures
(Szymanik & Zajenkowski, 2010). It is, however, not suitable
for our purposes. One can easily construct a minimal quantifier
pair that cannot be distinguished by this complexity measure.

5See Szymanik (2016) for an overview.
6See Peters and Westerståhl (2006) for an overview.

For instance, both all and only have minimal automata with
two states. One can also easily construct a family of quan-
tifiers with the same automaton complexity containing both
quantifiers satisfying and not satisfying quantitity (at least
4, first 3) and monotone and non-monotone quantifiers (at
least 4, at least 3 or at most 2). An extra problem
for this approach is that for push-down automata correspond-
ing to proportional quantifiers, there is no accepted complexity
measure because they do not have a definition of a minimal
automaton. So the measure does not apply to all quantifiers,
including ones expressed in natural language.7

Another well-studied approach to identify the complexity
of generalized quantifiers uses the toolbox of computational
complexity theory (Szymanik, 2016). It measures quantifier
complexity in terms of the asymptotic growth of the com-
putational resources needed to recognize their meaning. The
problem is that computational complexity distinctions are even
more crude than the previously described alternatives. Even
though computational complexity distinctions have been used
to theoretically delimit the borders of natural language ex-
pressivity (Ristad, 1993; Kontinen & Szymanik, 2008), these
borders include both quantifiers satisfying and not satisfying
the semantic universals that we are interested in.

Kolmogorov complexity of quantifiers
To investigate whether the aforementioned semantic universals
can be explained by differences in complexity, we need a
measure of complexity that is suited for that task. As discussed
in the previous subsection, setting up the right framework for
this is a non-trivial challenge, as many well-know complexity
measures are limited in their ability to distinguish between
quantifiers with and without the universal properties under
consideration.

Therefore, in this study, we use (approximate) Kolmogorov
complexity—a finer-grained measure that has not yet been
explored in this domain, and we investigate its potential to
explain semantic universals. Because Kolmogorov complexity
is more fine-grained than the previously discussed complexity
measures, it has greater promise in capturing differences in
complexity between the quantifiers that we consider. It makes
intuitive sense that humans would be sensitive to Kolmogorov
complexity, because it is a mathematical operationalization of
the notion of compressibility and various aspects of cognition
can plausibly be understood in terms of data compression:
storing data compactly in a way that it can be (partially) re-
covered. Kolomogorov complexity has been shown useful
in modelling a cognitive bias towards simplicity in a variety
of cognitive domains (see Chater & Vitányi, 2003; Feldman,
2016).

Kolmogorov complexity (K) measures how much an in-
dividual sequence of symbols can be compressed. When a
sequence contains regularities, these regularities can be ex-
ploited to produce a shorter description of that sequence. K(x)

7This approach has also inspired learnability models
(Gierasimczuk, 2005; Clark, 2010).
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Figure 3: Encoding of some over models of size 1.

of a sequence x is defined as the length of the shortest program
p that outputs x (see Li & Vitányi, 2008).8

The drawback is that K has been formally proven to be
uncomputable. This means that there exists no algorithm that
outputs K(x), given x (Li & Vitányi, 2008). For this reason, we
use a well-established and tractable approximation to K, that is
based on the Lempel-Ziv algorithm for lossless data compres-
sion (Lempel & Ziv, 1976). The Lempel-Ziv algorithm parses
a sequence x from left to right, and cuts up the sequence into
subsequences. At each point it chooses the longest possible
subsequence that is identical to an earlier part of the sequence,
thereby identifying the number of unique subpatterns in x. The
Lempel-Ziv complexity LZ(x) is the number of these unique
subpatterns of x. For approximate Kolmogorov complexity K̃,
we use CLZ(x), which is defined as log2(len(x)) ·LZ(x).9 Ziv
and Lempel (1978) show that CLZ(x) approximates K(x) in
the limit; i.e, when len(x) approaches infinity.Vitányi (2013)
shows that, in practice, lossless compression methods give
adequate results also for finite sequences. Furthermore, CLZ is
considered particularly adequate as a measure for K̃ for shorter
strings (Lesne, Blanc, & Pezard, 2009).10

To determine the approximate Kolmogorov complexity K̃ of
a quantifier we need to represent it as a sequence of symbols.
We encode a quantifier as a binary sequence, representing the
quantifier as a distribution of truth values over all models (up
to a certain size). First, we enumerate all possible models.
Then, given such an enumeration, we represent a quantifier
by placing a 1 in the sequence for every model that verifies
the quantifier and placing a 0 for every model that does not
verify the quantifier. See Figure 3 for an example. Given a
sequence of models, this gives a unique binary representation
for every possible quantifier. Then, for a given sequence of
models up to a certain maximum model size, we can determine
the complexity of a quantifier Q by computing K̃(xQ) over the
binary representation xQ of Q.

8Formally, K is defined given a particular universal Turing ma-
chine (UTM), but, by the Invariance Theorem, K given UTM V or
given UTM W will not differ more than some constant c.

9In particular, we use the same version of CLZ as used by Dingle,
Camargo, and Louis (2018), which uses the average between LZ(x)
and LZ(reverse(x)) to obtain an even more fine-grained complexity
measure.

10There are also other popular lossless compression methods that
can be used as approximations to K, such as gzip (based on LZ com-
pression), and bzip2 (a block-sorting compressor). Graphs comparing
the LZ and gzip2 complexity of the quantifiers that we considered
can be found at https://tinyurl.com/quantifierLZ.

This framework allows us to compare the complexity of
different quantifiers and investigate whether semantic univer-
sals might be explained by differences in complexity. In doing
this, we are not interested in the absolute complexity values of
the quantifiers but in the difference in complexity between a
quantifier that satisfies a universal and its minimally differing
counterpart that does not satisfy that universal. To make any
such comparison across quantifiers, we need to fix an enumer-
ation over quantifier models and use that as the base for our
quantifier representations.

One way of doing that would be to take a random enumer-
ation over quantifier models. Unfortunately, for our purpose,
this is not a suitable method. For a random sequence, the com-
plexity of a quantifier is mainly determined by the uniformity
of that quantifier (defined by the ratio of 1’s versus 0’s in the
quantifier representation).11 When the uniformity of a quan-
tifier is the main determiner for its complexity, differences
between the complexity of two quantifiers might not reflect
differences due to the presence or absence of a particular uni-
versal property.

For our purpose, choosing a structured sequence over mod-
els is more suitable than taking a random sequence. The
intuition behind this can be understood as follows. If a quan-
tifier that satisfies a universal has lower K̃ complexity than
its minimally differing counterpart, then this will be because
the universal property causes a regularity in the distribution of
truth values across quantifier models. This difference in reg-
ularity between quantifiers could disappear when evaluating
quantifiers over a random sequence of models, but it might
be visible when evaluating those quantifiers over a structured
and well-behaved sequence. For this reason, we evaluate our
quantifiers over the lexicographic sequence of models, which
is standardly used in the literature on generalized quantifiers.
For robustness, we look at all 12 uniquely different possible
lexicographical orderings, arising from the different ways of
ordering the symbols for the four sets A∩B, A\B, B\A, and
M \ (A∪B).12

Results
With this framework in place we can now turn to our main
question. To test whether approximate Kolmogorov complex-
ity can explain the three proposed semantic universals, we

11This can be understood from the fact that among all different
strings of a given uniformity there are only few strings of low com-
plexity. This is because when a string x of length n has a low com-
plexity, this means that x can be compressed to a shorter string x′ of
length n′ < n, and there are only few strings of length n′ compared
to the amount of strings of length n. Therefore, when taking two
quantifier representations with the same uniformity, over a random
sequence of models, they are likely to both have complexity values
that are close to the maximum complexity for that uniformity (which
are thus similar).

12In fact, there are in total 24 different lexicographic enumerations
over the quantifier models that we use, but only 12 of them are
unique, and the other 12 are the reverse of one of those 12 unique
sequences. As mentioned earlier, we use a measure that takes the
average between the complexity over a sequence and the complexity
of the reverse of that sequence. So this leaves 12 lexicographical
sequences over which we can compute this measure.
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look at minimally differing pairs of quantifiers in which one
satisfies the universal and the other does not. To compare our
complexity results with the learnability results of ST&S, we
test the same pairs of quantifiers. Let xi,Q be the binary repre-
sentation of quantifier Q, based on a sequence of all models
up to size i. For each quantifier Q, and for each model size
i from 1 to 10, we computed CLZ(xi,Q). We repeated this for
all 12 lexicographical model sequences. For each pair we
plotted the mean complexity against the maximum model size
(with confidence intervals), and we compared the differences
in complexity between the two quantifiers at each maximum
model size and model sequence. The code that we used for
generating these data and the data themselves can be found at
https://tinyurl.com/quantifierLZ.

Monotonicity
To test the MONOTONICITY UNIVERSAL, we looked at
two quantifier pairs, one with a downward- and one with
an upward-monotone quantifier. First, we compared the
downward-monotone quantifier at most 3, meaning |A∩
B| ≤ 3, with the non-monotone quantifier at least 6 or
at most 2, meaning |A∩B| ≥ 6 or |A∩B| ≤ 2. The mean
complexity values over all 12 lexicographical model sequences
and a 95% confidence interval are plotted in Figure 4. The
descriptive statistics show that for all model sizes larger
than 2, monotone at least 4 has a lower complexity than
non-monotone at least 6 or at most 2 (for model size
1 and 2 the differences are 0). This holds for each of the
12 different model sequences. The 12 individual plots for
this pair and all the other quantifier pairs can be found at
https://tinyurl.com/quantifierLZ.

Second, we compared the upward-monotone quantifier at
least 4, meaning |A∩B| ≥ 4, with the non-monotone quan-
tifier at least 6 or at most 2, meaning |A∩B| ≥ 6 or
|A∩B| ≤ 2. The mean complexity values over all 12 model
sequences and a 95% confidence interval are plotted in Figure
4. Exactly like for the downward-monotone quantifiers, the
descriptive statistics show that that for all model sizes larger
than 2, monotone at most 3 has a lower complexity than
non-monotone at least 6 or at most 2 (for model size
1 and 2 the differences are 0). Again, this holds for each of the
12 different model sequences.

These complexity results show the same patterns as the
learnability results of ST&S. This supports the hypothesis
that, in addition to learnability, the MONOTONICITY UNIVER-
SAL might be explained by differences in complexity, with
monotone quantifiers being less complex than non-monotone
quantifiers.

Quantity
To test the QUANTITY UNIVERSAL, we looked at two quan-
tifier pairs with a quantitative and a non-quantitative quanti-
fier. First, we compared the quantitative quantifier at least
3, with the non-quantitative quantifier first 3. The mean
complexity values over all 12 model sequences and a 95%
confidence interval are plotted in Figure 5. For model size 1,

Figure 4: Complexity values for at most 3 and at least
6 or at most 2, and for at least 4 and at least 6 or
at most 2. Mean values with 95% confidence interval over
all 12 lexicographic model sequences

2, and 3, the differences are 0, and for model sizes 4 to 10 the
descriptive statistics show that at least 3 is less complex in
59.5% of the cases, and more complex in 33.3% of the cases.

Second, we compared the quantitative quantifier at least
3, with the non-quantitative quantifier last 3. The main
complexity values over all 12 model sequences and a 95%
confidence interval are plotted in Figure 5. Again, for model
size 1, 2, and 3, the differences are 0, while for model sizes 4
to 10 the descriptive statistics show that at least 3 is less
complex in 52.4% of the cases and more complex in 42.9% of
the cases.

These complexity results do not show a robust pattern. How-
ever, they do show a tendency towards the quantitative quanti-
fiers being less complex than the non-quantitative quantifiers.
In the learnability results of ST&S, the quantitative quantifiers
were significantly easier to learn than the non-quantitative ones.
These findings neither confirm nor disconfirm the hypothesis
that, in addition to learnability, the QUANTITY UNIVERSAL
could be explained by differences in complexity.

Conservativity
To test the CONSERVATIVITY UNIVERSAL, we looked at two
quantifier pairs with a conservative and a non-conservative
quantifier. First, we compared the conservative quantifier
most, meaning |A∩B| > |A \B|, with the non-conservative
quantifier M, meaning |A|> |B|. The mean complexity values
over all 12 model sequences and a 95% confidence interval are
plotted in Figure 6. The descriptive statistics show that that
for all model sizes and for all model sequences, conservative
most has exactly the same complexity as non-conservative M.
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Figure 5: Complexity values for at least 3 and first 3,
and for at least 3 and last 3.

Second, we compared the conservative quantifier not all,
meaning A 6⊆ B, with the non-conservative quantifier not
only, meaning B 6⊆ A. Again, the mean complexity values
over all 12 model sequences and a 95% confidence interval
are plotted in Figure 6. For model size 1 to 10 descriptive
statistics show that not all is more complex in 55.9% of the
cases and less complex in 40.8% of the cases.

These results do not support the hypothesis that the CON-
SERVATIVITY UNIVERSAL can be explained by differences in
complexity. However, these complexity results do show the
same patterns as the learnability results of ST&S, as in their
results the conservative quantifiers were of similar learnability
as the non-conservative ones. This, however, does not consti-
tute a counterexample to the explanation of the universals via
learnability. As explained by ST&S one should not expect the
difference between conservative and non-conservative quanti-
fiers under their framework. This universal should rather be
explained in terms of the syntax-semantics interface.13

Discussion
Let us take stock. We have applied tools from algorithmic in-
formation theory—in particular, approximate Kolmogorov
complexity—to measure the complexity of quantifiers ex-
pressed in natural language. We did this in order to see whether
the complexity of a quantifier can explain the presence of
semantic universals for quantifiers, and whether these com-
plexity results show the same patterns as existing learnability
results. We found that monotone quantifiers are robustly less
complex than non-monotone quantifiers, and that conservative

13See Romoli (2015). Hunter and Lidz (2013) observe a difference
in children learning conservative vs. non-conservative quantifiers.
This result, if replicated, could be due to a bias acquired by the
children in earlier exposure to only conservative determiners.

Figure 6: Complexity values for most and M , and for not all
and not only.

and non-conservative quantifiers have equal or similar com-
plexity. For quantitative quantifiers we found a slight tendency
towards being less complex, but this pattern was not robust.
The results for monotonicity and conservativity agree with
an existing explanation in terms of learnability due to ST&S,
while the results on quantitativity hint in the same direction,
but not robustly so.

The results of the exploratory study that we undertook are
not decisive. Nevertheless, the results show substantial simi-
larity between the complexity and learnability of quantifiers
in the explanation of semantic universals. Our results for
monotonicity show that approximate Kolmogorov complexity
can indeed capture differences in complexity between quanti-
fiers that could not be captured with the complexity measures
from the previous approaches that we discussed. That nei-
ther complexity nor learnability distinguishes conservative
from non-conservative quantifiers provides further evidence
that conservativity has a different source than the other two
universals, as suggested by ST&S.

Much work remains to be done. To corroborate our results,
one would like to scale up beyond maximum model size of
n = 10; how to make this computationally efficient is not a
simple task. One would also like to expand the experiments
beyond the minimal pair methodology employed here. In order
to compare with existing results, it would be good to measure
the complexity of many quantifiers and see which semantic
properties best explain the complexities. The methods here
could also be applied to semantic universals in other domains,
to test the connection between complexity and learnability in
a more general setting. Finally, one can also look at other
measures of complexity: for instance, minimal derivation
length in a Lanuage of Thought for generating expressions
for quantifier meanings (Piantadosi, Tenenbaum, & Goodman,
2012; Goodman, Tenenbaum, & Gerstenberg, 2015).
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Abstract 

Preschool children’s preference for knowledgeable agents over 

ignorant and inaccurate agents (Sabbagh & Baldwin, 2001; 

Koenig & Harris, 2005; Rakoczy et al., 2015), is generally 

interpreted as epistemic vigilance. However, Kushnir and 

Koenig (2017) recently found that without a contrasting 

accurate agent, preschoolers will learn new information from 

an agent who professed ignorance, but not from one who was 

inaccurate. Employing a two-speaker design contrasting an 

agent who professed ignorance about familiar object labels 

with a speaker whose knowledge state was not revealed, we 

found that preschoolers (N = 41; 3.50-4.89 years, M = 4.08 

years) avoided requesting and endorsing novel information 

from the ignorant agent in the same domain as her previous 

ignorance (i.e., labels). In different domains, however, (i.e. 

novel function learning, resource sharing, etc.) they were at 

chance in choosing the ignorant agent.  This suggests that 

preschoolers’ view of ignorance is situational, rather than 

uniformly negative.  

Keywords: learning; testimony; social cognition; credibility; 

cognitive development; epistemic trust; accuracy; epistemic 

vigilance 

Background 

Numerous studies show an overwhelming preference in early 

childhood for a competent, confident, accurate, or 

knowledgeable agent over an agent who was inaccurate, 

ignorant, or uncertain (Birch, Vauthier, & Bloom, 2008; 

Brosseau-Liard & Birch, 2010, Brosseau-Liard, Cassels, & 

Birch, 2014; Fusaro, Corriveau, & Harris, 2011; Harris & 

Corriveau, 2011; Koenig & Harris, 2005; Koenig & 

Woodward, 2010; Pasquini et al., 2007; Rakoczy et al., 2015; 

Sabbagh & Shafman, 2009; Scofield et al., 2013; Tenney et 

al., 2011; Tummeltshammer et al., 2014; For review, see 

Harris et al., 2018).  There may be many reasons for this 

preference--including assessments based on vigilance or 

trust—but in any case, there seems to be a general negative 

assessment of all uninformative agents by preschool age.   

Recent findings suggest that children do not treat all 

uninformative agents as equally untrustworthy. Kushnir & 

Koenig (2017) measured preschoolers’ evaluations of either 

an agent who professed ignorance about familiar object labels 

or one who was inaccurate.  In one condition, 3- and 4-year-

old children viewed an agent who professed ignorance about 

the names of familiar objects. In another, children viewed an 

agent who was inaccurate in naming the same objects. 

Kushnir & Koenig found that children were willing to learn 

new things from the previously ignorant agent, but not from 

the inaccurate one.  This study suggests that children’s 

evaluations of uninformative agents are not uniformly 

negative or vigilant. Specifically, that they don’t see 

ignorance about some things as a sign to mistrust or avoid 

learning other things.  

We can infer from Kushnir and Koenig (2017) that children 

respond more negatively to inaccurate agents than ignorant 

agents, but it remains unclear what these results imply about 

their evaluations of professed ignorance.  It could be that by 

the presence of a preferred accurate agent overrode 

information from an ignorant agent in previous studies (e.g., 

Koenig & Harris, 2005), and that this single-speaker design 

revealed children’s true ignorance evaluations.  However, it 

could be that children were simply agnostic toward the 

previously ignorant agents, and were willing to learn from 

them when no alternatives were available. 

What is the nature of children’s stance on professed 

ignorance? We suggest that there are at least three possible 

answers. One is that children view ignorance as situation-

specific. Broadly, this means children could discount past 

ignorance when learning new things (as in the above 

example) or they might treat an agent’s claims of ignorance 

as specific to one domain of expertise and not another (e.g. 

Lutz & Keil, 2002; Kushnir, Vredenburgh & Schneider, 

2013).  The second possibility is that children look favorably 

on ignorant agents when they make new claims because they 

will admit what they don’t know (i.e. they are “well 

calibrated” or even “virtuous” e.g. Kominsky, Langthorne, & 

Keil, 2016; Tenney et al., 2011). This suggests that children 

could show a preference for those who admit ignorance 

regardless of domain or situation because. A third possibility 

is that children only prefer previously ignorant agents when 

no other agents are available to provide information. This 

suggests that if any other reasonable (i.e. not inaccurate) 

source of information was present, children would avoid 

learning from an ignorant agent. Of course, these need not 

necessarily be mutually exclusive and could represent 

contributing factors in a nuanced assessment. We investigate 

the roles of these three possible interpretations in the current 

study. 
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We used a modified version the two-speaker design from 

Koenig & Harris (2005) which contrasts an ignorant with an 

accurate speaker to examine these three possibilities. The 

modification was to contrast an agent who admitted to not 

knowing the names of familiar objects with a neutral agent 

whose knowledge state has not been disclosed. To explore the 

specificity of children’s ignorance evaluations, we measured 

children’s willingness to learn from the ignorant agent about 

novel objects in two domains: labels and functions. To 

explore the depth of children’s evaluations, we measured 

children’s choices of the ignorant agent for requesting 

information and for endorsing new claims within both 

domains.  

If children’s evaluations of ignorance are situation-

specific, we expect children to differ in their willingness to 

learn new information about object labels versus functions 

from a source who was ignorant about labels. If they instead 

view ignorance as a virtue or signal of calibration, we expect 

children to show willingness to learn from the ignorant agent 

in all cases. Finally, if children show overall vigilance, we 

expect them to avoid learning new information from the 

ignorant agent in all cases.  

In addition to the learning tasks, we included three different 

measures of children’s ignorant speaker evaluations in non-

learning situations. To capture whether they had a preference 

or general positive regard for the ignorant agent, we 

measured how often children shared more stickers with her 

than with the neutral agent across three resource-sharing 

trials (see Chernyak & Sobel, 2015; Kanngiesser & 

Warneken, 2013; Moore, 2009). Toward testing for general 

dislike or mistrust, we controlled for agent knowledge state 

by measuring children’s endorsements of claims about the 

location of a hidden object that both agents could see. 

Further, to determine whether evaluations permeated 

children’s explicit understanding of agent knowledge, we 

asked children which of the two agents knows more. 

Together, these measures can provide evidence about the 

extent of overall positive or negative evaluations of the 

ignorant agent. 

Method 

Participants 

We tested 41 preschool age children (16 girls) between 3.50 

and 4.89 years old (M = 4.08 yrs., SD = 0.42 yrs.) from a large 

midwestern city.  In addition, one child was excluded for 

experimenter error, and one child was excluded for ending 

the study early. Participants were predominately from white, 

upper-middle class families. 

History Phase 

Children were shown an image of the two agents and were 

told they were going to watch some videos of these two 

friends and then play a game. They then watched alternating 

videos of the ignorant (I) agent (3) and neutral (N) agent (3). 

For each video, the agent sat at a table with a confederate, 

who initiated a brief exchange with the agent.  In order to 

control for features outside of demonstrated knowledge state, 

both agents responded to the confederate in a conventional 

way (e.g., returning a greeting or responding to a question) 

and were on screen for approximately equal periods of time. 

Agent who spoke first (I vs. N; speaker order was constant 

across all trials within subjects) and actor who was the 

ignorant agent (blue shirt vs. red shirt), were counterbalanced 

between subjects. 

Ignorant Agent Videos The confederate handed a familiar 

object (ball, cup, shoe) to the ignorant agent, asking “Look 

what I have! Can you tell me what that is called?” (see 

Kushnir & Koenig, 2017).  Each time, agent I  held the item 

with both hands, shook her head, and responded “I don’t 

know what that is called”. All professions of ignorance 

concerned labels for familiar objects. 

Neutral Agent Videos The confederate and the neutral agent 

both sat at the table using their cell phones with none of the 

familiar objects from the Ignorant condition present.  The 

confederate briefly looked up and initiated a common, 

familiar interaction with agent N. (“Hi,” “Good morning,” 

and “How are you?”) before looking back at her phone.  The 

neutral agent then looked up briefly and responded with an 

appropriate but non-informative answer (“Hi,” “Good 

morning,” and “Fine”). 

 

Test Phase 

The test phase consisted of 9 trials. The first 6 were two 

blocks of 3 trials: one novel label and one novel function trial 

(counterbalanced) followed by a resource sharing trial. The 

last three trials were (in this order): locations trial, final 

resource sharing trial, and knowledge attribution. Of the four 

novel objects, two were always used for label trials and two 

were always used for function trials. Each trial type is 

described below:  

Novel Label Requests For each novel label trial, the 

experimenter (E) first displayed an image of the novel object 

on the screen and prompted the child by saying “Look at that 

thing! I’ve never seen one of those before! I wonder what it’s 

called. I bet one of our friends can tell us!”  E then showed 

the paused opening scene of the novel object video, in which 

the confederate is standing between the two agents and 

holding the object, and asked the child, “Who do you want to 

ask what that is called?” If the child did not reply, E prompted 

once more with “Which friend do you want to ask?” The 

child’s first choice was recorded, and E responded with “Ok. 

Let’s see!” regardless of the response. 

Novel Label Endorsements E then played a video in which 

the confederate said “Look what I have!” and turned to each 

agent (order counterbalanced between subjects) and asked 

“Can you tell me what this is called?”  Each agent gave a 

different label (e.g., danu or koba, counterbalanced). After 

each video, the child was shown a still image of the two 

agents with the item between them. E pointed to each agent 

in the order in which they spoke, saying, “So she said it’s a 

danu, and she said it’s a koba. What do you think it’s called?”  
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Children’s first response was recorded.  If the child said “I 

don’t know,” E followed up with “do you think they could 

both be right or both be wrong?” Otherwise, no feedback was 

given. 

Novel Function Requests The procedure for novel function 

requests was identical to that of the novel label requests, 

except that E said “I wonder what it’s used for!” and “Who 

do you want to ask what it’s used for?” instead of “I wonder 

what it’s called…Who do you want to ask what it’s called?” 

The objects used for function trials each had features that 

made both functional claims feasible. 

Novel Function Endorsements Endorsement measures for 

novel functions were also the same as the label endorsement 

trials, except the confederate asked the agents what the object 

was for, and they named and demonstrated different functions 

(e.g., in Figure 1, for looking or for stacking).  

Resource Sharing At each sharing trial, the experimenter 

placed two cups, each with a picture of one of the two agents 

taped to it, in front of the child.  The child was then given five 

identical stickers and was told that for each sticker, they could 

share with whichever friend they want by putting the sticker 

in that agent’s cup.  

Location Endorsement Children watched a video in which 

the agents had two boxes (equal in size, varying in color) 

between them. In the video, the confederate showed a small 

toy, held up a barrier blocking the boxes from the child’s 

view, and then made a motion of placing the toy somewhere 

behind the barrier while both agents followed the motion with 

their gaze to indicate they were watching. The confederate 

then asked where the toy was, and each agent made a 

different claim about which box it was in (counterbalanced).  

Children were then asked to endorse one of the locations. 

Knowledge Attribution After all the test videos, children 

were shown the still image of the two agents one more time 

and were asked, “Who do you think knows more?”  First 

response was recorded, and children were asked “why do you 

think she knows more?” as a follow-up. 

 

 

Figure 1: Examples of novel function 

(left) and novel label (right) stimuli. 

 

Coding 

We coded four categories of responses to our request and 

endorsement questions. The majority of responses (77.32%) 

were selections of a single agent (ignorant agent or the neutral 

agent). The second most frequent response (15.12%) was 

expressing uncertainty about the choice (e.g. “I don’t know”). 

A small percentage of children (2.44%) picked both agents. 

On endorse trials, a small percentage of children (5.12%) 

made up their own label or function (see below). 

Requests For each request question (2 label, 2 function), 

children were given 1 point for each time they asked the 

ignorant agent (singly or by responding “both”) and 0 points 

for each time they did not (by picking the neutral agent or 

saying “I don’t know”).  

Endorsements For each endorsement (2 label, 2 function, 1 

location) Similar to coding for requests, we gave children 1 

point for each time they endorsed the ignorant agent and 0 

points for each time they did not.  In cases where children 

used an alternative name or function, we coded their response 

as a 0. In cases where children responded with uncertainty, 

we followed up with “Do you think they could both be right 

or both be wrong?” and assigned 1 point if they selected “both 

right” and 0 points if they selected “both wrong”. (See Table 

2 for responses before follow up question). 

Resource Sharing For each of the three sticker sharing trials, 

we coded two measures. Children were given a score of 1 for 

each time they gave more stickers to the ignorant agent and a 

score of 0 each time they gave fewer stickers to the ignorant 

agent, and we added these scores across the three trials for a 

possible score of 0-3.  We also recorded the number of 

stickers (0-5) shared with the ignorant agent on each trial and 

calculated each child’s average number of stickers shared 

with Agent I across all three trials. 

Knowledge Attribution Children were given a score of 1 if 

they indicated that the ignorant agent knew more and 0 if they 

did not. 

Results 

McNemar’s tests indicated that there were no significant 

differences in the proportion of Ignorant agent choices in 

Trial 1 and Trial 2 for label requests (p = 1.00), label 

endorsements (p = 0.344), function requests (p = 0.146), or 

function endorsements (p = 0.238).  Therefore, we summed 
across both trials of each of the four questions types, creating 

four variables with possible scores of 0-2. Pearson’s 

correlations indicated that age in months was not 

significantly related to ignorant agent choice in any question 

type or domain (see Table 1), so we did not include age as a 

covariate in further analyses. 
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Table 1: Mean choices of ignorant agent and age 

correlations by task. 

Main Effect of Domain and Question Type 

A 2 x 2 repeated-measure ANOVA of domain (label vs. 

function) by question type (request vs. endorse) revealed a 

main effect of the domain of the novel information on 

children’s choices of the ignorant agent.  Specifically, 

children were significantly less willing to choose to learn 

from the ignorant agent in the label domain than in the 

function domain; F(1) = 7.895, p <.01, 95% CI[-.587, -.096]  

(see Table 1 for M and SD). There was no main effect of 

question type (F = 0.196) and no domain by question type 

interaction (F = 0.170). 

Figure 2: Mean selections of the ignorant agent across 

domains & question types. Dashed line refers to chance 

responding. 

 

Domain & Question Type Differences  

To further explain this domain effect, we tested choice of 

ignorant agent against chance for each task and the difference 

in ignorant agent choices between domains for each question 

type (e.g. label requests vs. function requests). See Figure 2 

for a visualization of these results. 

Children’s selections of the ignorant agent were 

significantly below chance for both requests and 

endorsement questions in the label domain; t(40) = -2.933, p 

< .01, 95% CI [-0.62, -0.11].  In the function domain, children 

were at chance for choices of the ignorant agent for both 

function requests (t(40) = -.552, p = .58, 95% CI [-0.34, 

0.19]) and function endorsements; t(40) = .206, p = .84, 95% 

CI [-0.21, 0.26].  

Follow up paired-samples t-tests revealed that the domain 

effect was stronger for endorsements than requests: there was 

no significant difference between domains on children’s 

requests alone (t(40)  = -1.524; p = .153), but children were 

significantly less  likely to endorse the ignorant agent for 

novel labels than for novel functions (t(40) = -2.72, p = .01, 

95% CI[-0.68, -0.10].  

To further examine which alternative responses children 

made when they did not endorse the ignorant agent, we  

looked descriptively at the counts and percentages of all 

response categories for each task (see Figure 3). While the 

percentage of Ignorant Agent choices were noticeably higher 

in the novel function domain than in the novel label domain, 

the percentage of choices of the Neutral agent remained 

similar across all tasks except the novel label requests. The  

distribution of responses shows that when children were not 

endorsing the Ignorant agent’s label, they were expressing 

uncertainty or making up their own alternative label as often 

as they were endorsing the neutral agent’s label.  

 

Figure 3: Percentage of raw response types by domain & 

question type.  

Location, Knowledge Attribution, & Sharing 

Binomial tests revealed that children were at chance for 

endorsement of the ignorant agent’s hidden object location 

claim (54% ignorant agent endorsement, p = 0.76) and for  

 attribution of knowledge to the ignorant agent (56%, p = 

0.53). 

 

Task M  SD r with Age 

Novel Labels    

Requests  0.63 0.799 0.23 

Endorsements  0.634 0.799 -0.14 

Novel Functions    

Requests 0.927 0.848 -0.14 

Endorsements 1.024 0.758 0.24 

 

Note. For all tasks, N = 41. Range (0-2).  For all 

correlations, p > .05 

*

0

1

2

Requests Endorsements

M
Ig

n
o

ra
n

t 
A

ge
n

t 
C

h
o

ic
es

Question Type

Label

Function

* *

3025



Children were also at chance (M = 1.49, SD = .952) for the 

number of times (0- 3) they shared more stickers with the 

ignorant agent; t (40) = -.082, p = .935, 95% CI[-0.31, 0.39], 

and for the average number of stickers (0-5) they shared with 

the ignorant agent across trials (M = 2.54, SD = 0.774); t (40) 

= 0.303, p = .764, 95% CI[-0.21, 0.28].  
We conducted 2-tailed Pearson correlations to explore the 

relation of these measures to all the other outcome variables. 

Agent choices on location endorsement, knowledge 

attribution, and resource sharing were not related to agent 

choices on any of the novel label or function questions. 

  However, ignorant agent choices were strongly correlated 

between several of these three non-novel object tasks (Table 

2). Notably, the number of trials in which children shared 

more stickers with the ignorant agent than with the neutral 

agent and the average number of stickers they shared with the 

ignorant agent were positively related to their attribution of 

more knowledge to the ignorant agent.  

 Discussion  

When preschool children monitor agents’ informativeness as 

evidence about their reliability, they often show an 

overwhelming social and learning preference for an agent 

who demonstrates knowledge, certainty, and accuracy over 

one who is lacking in any of these criteria. By contrasting an 

ignorant agent with a neutral agent, we tested three possible 

stances from which children could be considering professed 

ignorance. We found that children’s responses to a previously 

ignorant agent are more nuanced than a uniform negative or 

positive judgment. 

 If children view professed ignorance as specific to the 

situation or domain in which they have seen evidence of her 

ignorance—in this case, object labels, we would expect them 

to respond to her further claims about object labels differently 

than her claims in another domain. In support of this 

explanation, we found that children avoided both requesting 

and endorsing novel labels from the ignorant agent but did 

not demonstrate this vigilance against her when learning 

novel object functions. This result suggests that there is a 

situational constraint of preschooler’s pessimism about 

ignorant agents. 

If children look favorably on agents who profess 

ignorance, perhaps seeing it as evidence of virtue, we would 

expect them to show a preference for the ignorant agent in 

their overall learning, perhaps in their resource sharing, and 

possibly even in their explicit judgments of agent knowledge. 

Our novel label and novel function data suggest that they 

avoided learning labels from, or were agnostic toward 

learning functions from the ignorant agent rather than 

preferring her over the neutral agent. On sticker sharing trials, 

which are often used to measure judgment of virtue or general 

liking of an agent (Chernyak & Sobel, 2015; Kanngiesser & 

Warneken, 2013; Moore, 2009), our results show no relation 

between children’s learning from and willingness to share 

with an agent.  Therefore, we did not find that children had a 

general positive regard toward the ignorant agent based on 

the sharing data, and having positive regard for the ignorant 

agent did not predict learning from her. However, children 

who explicitly stated that the ignorant agent knows more also 

shared more with her. Together, these results suggest that 

preschoolers do not think of professed ignorance as virtuous, 

but they may think of knowledge as a virtue. 

If children avoid learning from ignorant agents unless no 

reasonable alternative is available, we would expect 

preschoolers not to request or endorse new information from 

the ignorant agent on any novel label or function trials.  If 

children’s avoidance of the ignorant agent expanded beyond 

epistemic vigilance and into mistrust, we would also expect 

children to share fewer resources with the ignorant agent and 

reject her claim about the location of a hidden object. Because 

children were at chance in responding to the ignorant agent 

across all trials outside of the label domain, we did not find 

evidence that children are generally pessimistic toward 

people profess ignorance.  

Overall, we propose an explanation that combines elements 

of two of our three possibilities. Children’s stance on 

professed ignorance is situation-specific—they show 

epistemic vigilance against new information from an agent 

only in situations similar to those in which she was ignorant 

before (e.g., the label domain). However, the extent of their 

vigilance is influenced by whether there is another reasonable 

option from whom to learn. When children saw only an 

familiar-label-ignorant agent in Kushnir & Koenig (2017), 

they were above chance in endorsing her later novel label and 

function claims, but when we presented a neutral agent as a 

contrast, children’s domain-specific vigilance emerged, and 

their willingness to learn from the ignorant in a new domain 

was reduced to chance. This situational specificity is not 

apparent in studies contrasting an ignorant and accurate agent 

(e.g., Koenig & Harris, 2005), which suggests that preschool 

children are agnostic in their evaluations of ignorant agents 

outside of the specific situation in which they professed 

ignorance, treating them similarly to an agent whose 

knowledge state is unknown. Future studies should include 

professed ignorance in other, non-linguistic domains in order 

Table 2: Pearson correlations for Ignorant Agent choices 

in tasks without novel object 
 

  

Attribute 

Knowledge                        

Share 

Freq. 

Share 

Avg. 

Label   

Total 

Function 

Total 

Endorse 

Location  

          

.262 
.378* .162 .127  -.236 

Attribute 

Knowledge 

               

1 
.564** .364* .117 .165 

Share Freq. 
            

- 
1 .755** .145  .211  

Share Avg. 
             

- 
- 1  -.006 .106  

Note. "Share Freq." is frequency of sharing more with agent I 

(0-3). "Share Avg" is the avg. amount shared with agent I (0-5). 

"Label total" and "Function Total" are the sum of agent I 

choices across all novel label trials and all novel function trials, 

respectively; *p < .05, **p < .01 
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to determine whether these situation-specific evaluations are 

actually specific to ignorance about labels.  

The situational nuances in preschoolers’ evaluations of 

agents who profess ignorance aligns with the extant literature 

on the development of children’s understanding of 

knowledge and expertise. Our findings highlight 

preschoolers’ stance on professed ignorance as part of a 

greater developmental trajectory for epistemic trust and 

social learning (as in Kushnir & Koenig, 2017). By 4 years 

old, children have begun to distinguish ignorant agents from 

both accurate and inaccurate agents, distinguish agents by 

their demonstrated domains of expertise (e.g., labels or causal 

functions), and use these distinctions to inform learning from 

those agents (Kushnir et al., 2013, see also Brosseau-Liard & 

Birch, 2011 and Sobel & Corriveau, 2010). This corresponds 

with our finding that children also evaluate an agent’s 

ignorance—which could be considered the opposite of 

expertise—based on the domain in which it is demonstrated. 

However, in alignment with other studies showing that 

children do not successfully use an agent’s calibration of 

certainty as a sign of epistemic virtue until the end of middle 

childhood (Tenney et al., 2011; Kominsky et al., 2016; 

Brosseau-Liard et al., 2014), we found that preschoolers did 

not show a significant preference of or deference to the 

ignorant agent on any trials.  

Because we only considered one, specific kind of 

ignorance—familiar object labels—it would be useful to test 

children’s responses to an ignorant versus neutral agent when 

the ignorance is professed in different domains, such as 

familiar object functions and causal knowledge (e.g., 

Bridgers et al., 2016) or with information that is unfamiliar to 

the child. Further, we are limited in our knowledge of how 

children evaluate the neutral agent and what exactly makes 

an agent “neutral” as a source of information, so future 

studies should explore different presentations of an agents 

whose knowledge states are not revealed.  

In order to draw more detailed, concrete conclusions about 

children’s understanding of knowledge and the development 

of their epistemic trust, future work should continue to 

unpack the different ways children respond after evidence of 

ignorance. We focused on children’s willingness to choose 

the ignorant agent in different situations, but the variety of 

responses from children who did not choose her suggest that 

professing ignorance may be influencing children’s behavior 

outside of signaling someone’s reliability as a source of 

information. Because our study showed the ignorant agent 

later assigning names to unfamiliar objects, the combination 

of these factors could have given children license to find an 

answer on their own.  In that case, the number of responses 

where children made up their own answer rather than 

endorsing either agent could be related to children’s 

increased exploration in the absence of pedagogical cues 

(Bonawitz et al., 2011). Future studies should consider 

individual differences in children’s responses and in other 

sensitive developmental areas for preschool-aged children, 

such as social cognition (e.g., Sabbagh & Baldwin, 2003). 
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Abstract 

An important question is whether speakers consider listeners’ 
expectations when choosing whether to use a pronoun. It has 
been suggested that certain thematic roles are more expected 
to be mentioned again, and are therefore more likely to be 
pronominalized. In the present study, we aim to disentangle 
predictability effects on pronoun use from thematic-role ef-
fects. To this end, we conducted two web-based continuation 
experiments in Dutch, in which the next-mention biases asso-
ciated with Source-Goal and Agent-Patient verbs were ma-
nipulated to create a shift in the bias. Experiment 1 confirmed 
that the manipulations changed the biases. Experiment 2 
showed that while thematic role mainly influenced demon-
strative and full pronoun use for non-subjects, next-mention 
biases played a role in the choice between reduced and full 
pronouns and between pronouns and full NPs, irrespective of 
thematic role or grammatical function. Thus, thematic role 
and predictability seem to affect pronoun use in different 
ways. 

Keywords: Dutch; next-mention biases; predictability; pro-
nouns; referring expressions; thematic role 

Introduction 
Listeners’ expectations about whom or what the speaker 
will mention next influence their interpretation of pronouns. 
For example, in the sentence Anna hurt Meryl so she... the 
pronoun she most likely refers to Meryl (e.g. so she got mad 
at her), while in Anna recognized Meryl so she... the pro-
noun is more likely to refer to Anna (e.g. so she walked up 
to her to greet her). An important question is whether 
speakers take such expectations into account when choosing 
to use a pronoun or not. A logical hypothesis would be that 
speakers use a pronoun when its interpretation is in line with 
the semantic bias, i.e. when it refers to the person that the 
listener expects to be mentioned next. If the speaker instead 
wants to continue with the person that is not expected to be 
mentioned next, she will signal this by repeating the name.  

This is exactly what certain accounts of reference produc-
tion predict (e.g. Arnold, 2001, 2008; Givón, 1983): Speak-
ers use pronouns for referents that they believe the listener 
is already expecting to be mentioned, and they use more 
elaborate referring expressions when the referent is thought 
to be not very predictable. However, several researchers 
have found that the choice for a pronoun is not influenced 
by how predictable the referent is (Fukumura & Van Gom-
pel, 2010; Rohde & Kehler, 2014; Stevenson, Crawley, & 
Kleinman, 1994). Recently, it has been suggested that 
whether predictability plays a role in pronoun use may de-
pend on the verb in the preceding clause (Rosa & Arnold, 
2017). For example, whereas Fukumura and Van Gompel 
(2010) did not find a predictability effect on pronoun use in 
implicit causality contexts with Stimulus-Experiencer verbs, 

Arnold (2001) and Rosa and Arnold (2017) found in trans-
fer-of-possession verbs that Goal referents were more often 
pronominalized than Source referents, with the assumption 
that Goal referents are more predictable than Source refer-
ents. However, they did not test the effect of predictability 
directly (cf. Pickering & Majid, 2007; Kehler & Rohde, 
2013). While it may be true that Goals are more likely to be 
pronominalized because they are more predictable, it may 
also be the case that this thematic role is more salient for 
other reasons, for instance because it is often an obligatory 
argument of the verb (cf. Fukumura & Van Gompel, 2010). 

The first aim of this study is therefore to disentangle pre-
dictability effects on pronoun use from thematic-role ef-
fects. The second aim is to explore whether predictability 
and thematic role also play a role in the choice of referring 
expression in Dutch. So far, almost all psycholinguistic 
studies on this topic have been done on English (but see 
Bott, Solstad, & Pryslopska, 2018 for a study on German). 
Dutch is an interesting language to investigate, because it 
offers more referential options than English. First, Dutch, 
like German, has a set of demonstrative pronouns that can 
refer anaphorically to humans as well as inanimates. Se-
cond, most personal pronouns in Dutch have two variants: a 
full form (e.g. zij ‘shefull’) and a reduced form (e.g. ze 
‘shereduced’; see e.g. Kaiser, 2011).1 It is an open question 
how the different factors that are argued to play a role in 
referring expression selection affect speakers’ choices be-
tween these multiple possible referential forms. 

We conducted two web-based written continuation exper-
iments in which participants were presented with a context 
sentence for which they needed to type a suitable continua-
tion, starting with the connective vervolgens ‘subsequently’. 
To be able to generalize across different thematic roles, the 
context sentences contained either a Source-Goal verb, such 
as geven ‘give’, or an Agent-Patient verb, such as bellen 
‘call’. All verbs had a default next-mention bias to the se-
cond NP (NP2) when combined with either a forward tem-
poral or a consequence coherence relation, as established by 
previous research (Commandeur, 2010; Koornneef & Sand-
ers, 2012)2. That is, when the continuation of a sentence 
fragment expresses a consecutive event or a consequence of 
the event expressed by the verb, people tend to interpret a 
subject pronoun in the continuation as referring to the NP2. 

                                                             
1 The masculine 3rd person reduced pronoun ie ‘he’ is different 

from the feminine reduced pronoun in that it mostly occurs in spo-
ken language. It also behaves differently syntactically in that it 
cannot appear sentence-initially. 

2 We could not find data on next-mention biases for Dutch 
Source-Goal verbs, so we took these from translations of the Eng-
lish verbs in Rosa and Arnold (2017). Also, some Agent-Patient 
verbs were translations from English verbs used in Cheng (2016). 
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We then manipulated these next-mention biases, such that 
they would shift to the first NP (NP1), which is normally 
less likely to be mentioned next. We did this in two ways: 
For some sentences we varied the social status of the refer-
ents. When combining social roles with a high or low status 
with verbs such as ‘criticize’ or ‘mock’, the person with low 
status is expected to be more likely to feature in the contin-
uation of the event (cf. Garvey, Caramazza, & Yates, 1974). 
Table 1A presents examples for this manipulation, with the 
expected effect on the next-mention bias. For other sentenc-
es we included either a neutral adverb such as meteen ‘right 
away’, an adverb expressing unintentionality such as per 
ongeluk ‘by accident’, or the adverb eerst ‘first’. In combi-
nation with the connective vervolgens ‘subsequently’, the 
latter is expected to create a strong expectation for a subject 
continuation, because it induces a parallel coherence rela-
tion (cf. Kehler, Kertz, Rohde, & Elman, 2008). For the 
unintentionality adverbs, we expected a tendency to shift the 
next-mention bias more to the Source/Agent character (cf. 
Cheng, 2016). Table 1B presents sample sentences for the 
adverb manipulation. 

In Experiment 1, participants were free to continue the 
context sentences in any way they wanted, as long as they 
started with the connective vervolgens ‘subsequently’. The 
goal of this experiment was to test whether the manipula-
tions indeed affected the next-mention bias. That is, we pre-
dicted that participants would be more likely to continue 
with the NP1 when it refers to a low-status character, or is 
accompanied by one of the critical adverbs (see Table 1). In 
Experiment 2, either NP1 or NP2 was underlined, and par-

ticipants had to refer to this NP as the subject of their con-
tinuation. The goal of this experiment was to test whether 
participants’ choice of referring expression would depend 
on whether they had to refer to a referent that was consistent 
or inconsistent with the next-mention bias. Here, we pre-
dicted that participants choose a more reduced type of refer-
ring expression for referents that are more likely to be men-
tioned next, and a more elaborate expression for less-
expected referents. If the thematic-role effect found in pre-
vious research is a predictability effect, thematic role should 
not play a role in referring expression choice. Alternatively, 
if thematic role has a separate effect, it should affect refer-
ring expression choice irrespective of next-mention bias. 

Experiment 1 

Methods 
Participants. Seventy-four Dutch-speaking participants 
were recruited via social media and email. We discarded the 
data from participants who did not complete the experiment, 
leaving 48 participants. Of these, 33 were women, 13 were 
men, and 2 did not make a choice. Mean age was 27.7 years 
(range 18-60). Participants were not paid. 

 
Materials. We created 30 Dutch context sentences contain-
ing verbs identified as having an NP2 next-mention bias. Of 
these, 15 were Source-Goal verbs, and 15 were Agent-
Patient verbs. For all items, the bias was manipulated either 
by varying the social status of the characters in the sentence 

Table 1. Sample sentences for the social-status (A) and adverb (B) manipulations, by verb type. The rightmost column 
shows the expected next-mention bias for each condition. Unintent. = Unintentionality adverb. 

 
A. Social-status manipulation Expected bias 
Source-
Goal 

High-Low De moeder gaf een uitbrander aan haar dochter. Vervolgens ... 
‘The mother gave a scolding to her daughter. Next ...’ 

NP2 (default) 

Low-High De dochter gaf een uitbrander aan haar moeder. Vervolgens ... 
‘The daughter gave a scolding to her mother. Next ...’ 

NP1 

Agent-
Patient 

High-Low De bazin bekritiseerde de assistente. Vervolgens … 
‘The bossfemale criticized the assistantfemale. Next …’ 

NP2 (default) 

Low-High De assistente bekritiseerde de bazin. Vervolgens … 
‘The assistantfemale criticized the bossfemale. Next …’ 

NP1 

B. Adverb manipulation  
Source-
Goal 

Neutral De gravin gaf op het feest de halsketting aan de meid. Vervolgens ... 
‘The countess gave the necklace to the maid at the party. Next ...’ 

NP2 (default) 

Unintent. De gravin gaf per ongeluk de halsketting aan de meid. Vervolgens ... 
‘The countess gave the necklace to the maid by accident. Next ...’ 

NP1~NP2 

First De gravin gaf eerst de halsketting aan de meid. Vervolgens ... 
‘The countess first gave the necklace to the maid. Next ...’ 

NP1 

Agent-
Patient 

Neutral De boerin belde meteen de vroedvrouw. Vervolgens … 
‘The farmer’s wife called the midwife right away. Next …’ 

NP2 (default) 

Unintent. De boerin belde per ongeluk de vroedvrouw. Vervolgens … 
‘The farmer’s wife called the midwife by accident. Next …’ 

NP1~NP2 

First De boerin belde eerst de vroedvrouw. Vervolgens … 
‘The farmer’s wife first called the midwife. Next …’ 

NP1 
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(e.g. bazin–assistente ‘bossfemale’–‘assistantfemale’; 12 items: 
9 Agent-Patient and 3 Source-Goal verbs) or by varying the 
adverb in the sentence (18 items: 6 Agent-Patient and 12 
Source-Goal verbs). The adverb was either neutral (e.g. 
meteen ‘right away’), an unintentionality adverb (e.g. per 
ongeluk ‘by accident’), or the adverb eerst ‘first’. To dis-
courage participants to only use pronouns, character pairs 
were always same-gender (although sometimes they were 
gender-ambiguous, such as ‘officer’–‘soldier’), and they did 
not include proper names. To control for grammatical func-
tion, we also created Goal-Source and passive Patient-Agent 
variants of each item (e.g. De dochter kreeg een uitbrander 
van haar moeder ‘The daughter got a scolding from her 
mother’; De vroedvrouw werd eerst door de boerin gebeld 
‘The midwife was first called by the farmer’s wife’). The 
first word of the participant’s continuation was given, and 
was always the connective vervolgens ‘subsequently’.  

In addition, we created 36 filler items using a variety of 
syntactic structures, and including proper names, animals 
and NP conjunctions. The connective was also varied. The 
items were presented in a pseudo-random order, inter-
spersed with the filler items, such that no two experimental 
items followed each other directly. 
 
Procedure. The experiment was distributed via the online 
survey software Qualtrics. Upon clicking on the link, partic-
ipants received an instruction screen, saying that they would 
see a series of sentences, for which they had to type a con-
tinuation (starting with a pre-given connective) in the text-
entry bar, using their first intuition. There was no time limit. 
After about every 10th trial, a cute animal picture appeared 
on the screen, and participants were allowed to take a short 
break. The experiment took about 30 minutes to complete. 
 
Design and analysis. Varying thematic role order 
(Goal/Patient=NP2, Goal/Patient=NP1) and either social 
status of the Goal/Patient (low, high) or adverb (neutral, 
unintentional, first) as within-items factors resulted in a 2x2 
or 2x3 design, depending on the manipulation. Given this 
design, the items were distributed over 6 lists, such that each 
item occurred only once on a list. Since social status had 
only two levels, lists 5 and 6 repeated conditions from lists 1 
and 2 for this variable. Verb type (Source-Goal, Agent-
Patient) was varied between items. 

We analyzed the proportion of Goal/Patient references out 
of all references, in separate analyses for the social-status 
and the adverb manipulation. The binary predictors were 
centered. The predictor adverb was contrast coded with neu-
tral adverb as the reference level. Logit mixed-effects anal-
yses including all main effects and second-order interactions 
with either social status or adverb were run. We aimed for a 
maximal random-effects structure, but removed random 
slopes step-by-step in case of non-convergence (see Bates, 
Kliegl, Vasishth, & Baayen, 2015). We furthermore tested 
for the inclusion of random slopes and the fixed effects of 
the control variables verb type and thematic role order using 
Likelihood Ratio tests. 

Results 
We excluded trials in which participants did not refer to 
NP1 or NP2 as the subject of their continuation (298 cases), 
used a plural expression (47 cases), selected the wrong gen-
der (15 cases), did not produce a completion (9 cases) or did 
not use verb second word order (4 cases), as well as trials in 
which three annotators could not reach agreement on the 
referent (68 cases). This resulted in the removal of 30.6% of 
the data, leaving 999 cases for analysis. 

We found clear effects of both the social-status and the 
adverb manipulation on the choice of referent. In the social-
status analysis, there were significant main effects of social 
status (β = -1.49, SE = 0.26, p < .001) and thematic role 
order (β = 0.89, SE = 0.24, p < .001): When the Goal/Patient 
had a higher social status than the Source/Agent, partici-
pants were less likely to continue with the Goal/Patient, and 
in the canonical (Source-Goal, Agent-Patient) orders even 
showed a Source/Agent-bias (see Figure 1). In the non-
canonical (Goal-Source, Patient-Agent) orders, there was an 
overall stronger Goal/Patient-bias, suggesting an additional 
subject-bias. The main effect of verb type was not signifi-
cant (p = .10), and there were no interactions (ps > .1). 

For the adverb manipulation, there was a significant dif-
ference between the adverb ‘first’ and neutral adverbs (β = -
1.73, SE = 0.47, p < .001), a significant main effect of the-

 
 

Figure 1: The proportion of Goal/Patient references after 
Source-Goal and Agent-Patient verbs, including their re-

versed orders, by the social status of the Goal/Patient. 
 

 
 

Figure 2: The proportion of Goal/Patient references after 
Source-Goal and Agent-Patient verbs, including their re-

versed orders, by type of adverb. 
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matic role order (β = 2.26, SE = 0.25, p < .001), and an in-
teraction between the two predictors (β = 1.55, SE = 0.67, p 
< .05): In the canonical (Source-Goal, Agent-Patient) or-
ders, participants were less likely to continue with the 
Goal/Patient when the context sentence contained the ad-
verb ‘first’, and even showed a Source/Agent-bias (see Fig-
ure 2). In the non-canonical (Goal-Source, Patient-Agent) 
orders, there was again an overall stronger Goal/Patient-
bias, and a weaker effect of adverb.3 The difference between 
unintentionality and neutral adverbs was not significant (p = 
.55), and neither was the main effect of verb type (p = .13). 

Discussion 
The results of Experiment 1 confirm that the next-mention 
bias of Source-Goal and Agent-Patient verbs can be influ-
enced by manipulating the social status of the referents and 
by adding certain adverbs. For the canonical thematic role 
orders, the original Goal/Patient bias even shifted to a 
Source/Agent bias. In the non-canonical orders, the effect 
was smaller, probably due to an added bias to refer to the 
first-mentioned NP (e.g. Gernsbacher & Hargreaves, 1988). 

In Experiment 2, we subsequently tested whether manipu-
lating the next-mention bias also affects the choice of refer-
ring expression, predicting more pronouns for referents that 
are consistent with the bias.4 We used the same method as in 
Experiment 1, except that one referent in the context sen-
tence was underlined, and participants were asked to start 
their continuation with this referent. 

Experiment 2 

Methods 
Participants. Ninety-eight Dutch-speaking participants 
were recruited via social media and email. None had partic-
ipated in Experiment 1. We removed 44 participants who 
did not complete the experiment, and 2 participants who 
were not native Dutch speakers, leaving 52 participants. Of 
these, 40 were women and 12 were men. Mean age was 37.0 
years (range 16-75). Participants were not paid. 

 
Materials. In order to shorten the experiment duration, we 
selected 16 items from Experiment 1 that showed the largest 
effect of the next-mention-bias manipulations: 8 from the 
social-status manipulation (5 Agent-Patient and 3 Source-
Goal verbs) and 8 from the adverb manipulation (2 Agent-
Patient and 6 Source-Goal verbs). Because the unintention-

                                                             
3 Contrary to expectation, in the non-canonical orders the prefer-

ence to refer to the subject was weaker after ‘first’ than after a 
neutral adverb, suggesting a bias towards the Source/Agent rather 
than the subject. We henceforth consider Source/Agent referents in 
a sentence with ‘first’ as consistent with the manipulated bias. 

4 We designed a new experiment to test this question rather than 
coding the results of Experiment 1 for choice of referring expres-
sion because the biases in that experiment would yield a very un-
balanced design, i.e. there would be many more references to ex-
pected than to unexpected referents. 

ality adverb condition was not significantly different from 
the neutral adverb condition, we dropped the former. 

We manipulated which referent had to be referred to in 
the continuations (either NP1 or NP2) by underlining this 
referent in the context sentences. The referent had either a 
Source/Agent or a Goal/Patient role. Furthermore, in the 
social status manipulation the referent had either low or 
high social status. In the adverb manipulation, it was either 
combined with a neutral adverb or with eerst ‘first’. The 
items were distributed over 6 lists, and interspersed with 24 
fillers, in the same way as in Experiment 1. 

 
Procedure. The procedure was identical to Experiment 1, 
except for the fact that participants were now instructed to 
start their continuation with the referent that was underlined. 
The experiment took about 20 minutes to complete. 

 
Design and analysis. We performed separate analyses test-
ing the effect of our next-mention-bias manipulations on 
three dependent variables: the proportion of pronouns in-
cluding demonstratives out of all references, the proportion 
of pronouns excluding demonstratives out of all references, 
and the proportion of reduced pronouns out of all pronouns. 
In all analyses, we included the next-mention-bias manipu-
lation (high/low social status; neutral adverb/first), as well 
as the referent’s grammatical function (Subject (NP1), Non-
Subject (NP2)) and thematic role (Source/Agent, 
Goal/Patient) as predictors, resulting in a 2x2x2 within-
items design. Since the effect of verb type was not signifi-
cant in Experiment 1, we collapsed over Source and Agent, 
and over Goal and Patient. All predictors were centered. 
Logit mixed-effects analyses including all main effects and 
second-order interactions with the bias manipulation were 
run in the same way as in Experiment 1. 

Next, we also tested whether Goal referents were more 
likely to be pronominalized than Source referents. For this, 
we ran separate logit mixed-effects analysis on the two verb 
types (Source-Goal, Agent-Patient), with the referent’s the-
matic role (Goal, Source; Agent, Patient) and grammatical 
function (Subject (NP1), Non-Subject (NP2)) as predictors, 
and the proportion of pronouns (including demonstratives) 
as the dependent variable. 

Results 
We excluded 61 cases where participants did not refer to the 
correct referent, 18 cases in which reference was unclear, 
and 1 case of self-correction, leading to the removal of 9.6% 
of the data and leaving 752 cases for analysis. 

In the social-status analysis, we found a significant main 
effect of social status on the proportion of reduced pronouns 
out of all pronouns (β = -1.40, SE = 0.65, p < .05), with 
more reduced pronouns when the referent had lower social 
status (see Figure 3)5, as well as a main effect of gramma-

                                                             
5 The data included only one occurrence of the masculine 3rd 

person reduced pronoun ie ‘he’. The effect reported here is there-
fore entirely driven by the feminine reduced pronoun ze ‘she’. 
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tical function (β = -2.05, SE = 0.80, p < .05), with more re-
duced pronouns for subjects than for non-subjects. No sig-
nificant effect of social status was found on the proportion 
of pronouns out of all references, both including (p = .25) 
and excluding (p = .26) demonstrative pronouns.  

In the adverb analysis, we found a significant interaction 
between adverb and thematic role on the proportion of pro-
nouns (including demonstratives) out of all references (β = -
1.73, SE = 0.80, p < .05), with more pronouns for 
Source/Agent and fewer pronouns for Goal/Patient referents 
in sentences with ‘first’ than with a neutral adverb (see Fig-
ure 4). This interaction effect was stronger when excluding 
demonstratives (β = -2.29, SE = 0.83, p < .01), suggesting 
that it is primarily driven by the use of personal rather than 
demonstrative pronouns. In both analyses, the main effect of 
grammatical function was also significant (β = -3.47, SE = 
0.57, p < .001 and β = -5.11, SE = 0.78, p < .001, respec-
tively), with more pronouns for subjects than for non-
subjects. Although Figure 4 suggests an interaction between 
adverb and thematic role on the proportion of reduced pro-
nouns out of all pronouns, this was not significant (p = .18). 

Finally, Figure 5 shows that, irrespective of next-mention 
bias, pronouns were more frequent for Goal than for Source 
non-subjects, although the interaction did not reach signifi-
cance (p = .06). In addition, the difference seems to be 
largely due to an increase in demonstrative and full pro-
nouns.6 For Agent-Patient verbs, pronouns seem to be more 
frequent for Agent than for Patient non-subjects, but the 
interaction was not significant (p = .95). 

Discussion 
The results of Experiment 2 showed effects of the next-
mention-bias manipulations on pronoun use: more reduced 
pronouns for low-status than for high-status referents, and 
more personal pronouns for Source/Agent referents (as well 
as fewer pronouns for Goal/Patient referents) in contexts 
including the adverb eerst ‘first’.  

In addition, thematic role seemed to have an effect on the 
choice of referring expression beyond these next-mention-
bias manipulations. Consistent with Rosa and Arnold 
(2017), Goal non-subjects were more likely to be pronomi-
nalized than Source non-subjects, although not reliably. 
Moreover, this difference seemed to be due to a larger num-
ber of full and demonstrative pronouns for Goal referents. 
Since full pronouns in Dutch are canonically used for con-
trastive referents, and demonstrative pronouns for less sali-
ent (non-topical) referents (e.g. Kaiser, 2011), this might 
suggest that Goals are not as salient as subject referents, but 
salient enough to not be referred to with a full definite NP.  

                                                             
6 Post-hoc analyses supported this: When excluding demonstra-

tives, the trend for an interaction between thematic role and gram-
matical function disappeared (p = .69); An analysis on the propor-
tion of reduced pronouns out of all pronouns showed a significant 
interaction between thematic role and grammatical function (β = -
2.05, SE = 0.91, p < .05). Paired comparisons showed a significant 
increase in reduced pronouns for Goal vs. Source non-subjects (p < 
.01), but not for subjects (p = .20). 

Thus, assuming that next-mention bias is an accurate 
measure of predictability, the results of Experiment 2 sug-
gest that thematic role and predictability affect referential 
choices in different ways: Goals stand out among the the-
matic roles because they attract more demonstrative and full 
pronoun references, while predictable referents are more 
likely to be referred to with reduced forms (reduced vs. full 
pronouns or personal pronouns vs. full NPs). 

 
 

Figure 3. Choice of referring expression in the social status 
manipulation of Experiment 2, by the referent’s social sta-

tus, grammatical function, and thematic role. 
 

 
 
Figure 4. Choice of referring expression in the adverb ma-
nipulation of Experiment 2, by adverb and the referent’s 

grammatical function and thematic role. 
 

 
 

Figure 5. Choice of referring expression in Experiment 2, 
by the referent’s thematic role and grammatical function. 
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General discussion 
In this paper, we investigated whether expectations about 
what will be mentioned next influence the choice of refer-
ring expression. The first aim was to disentangle predicta-
bility effects on pronoun use from effects of thematic role. 
We did this by manipulating the next-mention bias in sen-
tences with Source-Goal and Agent-Patient verbs. For some 
sentences, we varied the social status of the characters, hy-
pothesizing that the lower-status character would be more 
likely to be mentioned next. For other sentences, we varied 
the type of adverb, hypothesizing a stronger Source/Agent 
bias with unintentionality adverbs and a stronger subject 
bias with the adverb eerst ‘first’. The second aim was to 
explore predictability effects on reference production in 
Dutch, which has a rich spectrum of anaphoric expressions. 

The results of Experiment 1 confirmed that the manipula-
tions affected next-mention biases, especially in sentences 
in which the Goal or Patient was the second NP, where the 
bias shifted from the NP2 to the NP1. Sentences including 
‘first’ showed increased references to the Source/Agent ra-
ther than to the subject, suggesting that the induced parallel 
coherence relation was semantic rather than syntactic. The 
effect of the unintentionality adverb was not as strong (cf. 
Cheng, 2016), and we therefore removed this condition 
from Experiment 2. 

Experiment 2 showed that the shifts in next-mention bias 
also affected the choice of referring expression: When the 
referent had a relatively low social status, participants were 
more likely to mention it in their continuations (Experiment 
1), and they also produced more reduced pronouns as com-
pared to full pronouns, irrespective of grammatical function 
or thematic role (Experiment 2). This finding is consistent 
with information-theoretic accounts of language production, 
which propose that more predictable linguistic material is 
reduced (e.g. Levy & Jaeger, 2007). It is also in line with a 
contrastive interpretation of full pronouns (Kaiser, 2011), in 
which use of the full form pragmatically implicates that it 
refers to something else than the predictable referent.  

When the context sentence anticipated a parallel coher-
ence relation (in the form of ‘first…next…’), participants 
were more likely to mention the Source/Agent referent in 
their continuations (Experiment 1), and they were also more 
likely to use a personal pronoun compared to a full NP to 
refer to these referents. Conversely, they were less likely to 
pronominalize the Goal/Patient character (Experiment 2). 
This suggests that next-mention biases may also affect the 
choice between a pronoun and a full NP in Dutch. Whether 
there is a fundamental difference between referential biases 
stemming from the social-status and the adverb manipula-
tions is unclear. The current experiment may simply have 
lacked the power to detect all the effects. 

Irrespective of next-mention bias, thematic role also 
seemed to have an effect on the choice of referring expres-
sion: Goals tended to be more likely to be pronominalized 
than Sources, at least for non-subjects, in line with Rosa and 
Arnold (2017). However, this preference was largely driven 
by the use of demonstrative and full pronouns as opposed to 

reduced forms. Demonstrative pronouns in Dutch are con-
sidered to be used mainly for non-topical referents (e.g. 
Kaiser, 2011). Indeed, in our study these forms exclusively 
occurred with non-subjects (see Figures 3-5). The choice of 
a full over a reduced pronoun is often driven by some form 
of contrast (Kaiser, 2011). The use of these ‘stronger’ pro-
nominal forms to refer to Goal non-subjects might suggest 
that such referents are intermediately salient: They are more 
salient than other non-subjects, warranting the use of pro-
nouns over full NPs, but not as salient as the average subject 
to allow for the use of a reduced pronoun. 

Taken together, the results of this study have implications 
for current theories of reference. One line of research argues 
that what drives referential choices is how likely the referent 
is to be mentioned next (e.g. Arnold, 2008; Tily & Pian-
tadosi, 2009). If a referent is highly predictable, a pronoun 
will be used; if it is unexpected, the speaker will signal this 
by using a full NP. The main evidence for this claim comes 
from the finding that Goal referents are more likely to be 
pronominalized than Source referents (Arnold, 2001; Rosa 
& Arnold, 2017). However, other researchers have argued 
that what makes a referent predictable is not necessarily its 
thematic role, but the specific event structure and coherence 
relation that links two references (Kehler & Rohde, 2013; 
Pickering & Majid, 2007). The present results point to the 
possibility that both thematic role and predictability based 
on event structure affect the choice of referring expression, 
but in different ways. Although it may still be the case that 
Goal referents are more likely to be mentioned next, the 
increase in pronoun use for Goals may also have a different 
origin. It has been noted, for example, that Goal non-
subjects are often an obligatory argument of the verb (indi-
rect object), whereas Source non-subjects are mostly op-
tional (Fukumura & Van Gompel, 2010). This may make 
Goals more salient. Our results are therefore consistent with 
a form-specific multiple-constraints approach to reference, 
in which different referential forms are sensitive to different 
aspects of the referent (Kaiser & Trueswell, 2008). 

A second line of research argues that there is an asym-
metry between production and interpretation of referring 
expressions (e.g. Fukumura & Van Gompel, 2010; Rohde & 
Kehler, 2014): While reference resolution may be influ-
enced by next-mention biases, reference production is driv-
en only by grammatical or information structural factors. 
The present results suggest that next-mention biases may in 
fact influence reference production, at least in Dutch. So far, 
most studies on this topic have been on English, and inves-
tigating referential choices in a language with a richer set of 
referring expression types, such as Dutch, may reveal pat-
terns that otherwise remain hidden. 

Finally, effects of predictability may become more mani-
fest in more engaging communicative settings that involve 
an actual addressee (cf. Rosa & Arnold, 2017). Since the 
effects we are seeking are probably small and tend to be 
overridden by stronger factors, the logical next step is to 
replicate the current findings in a larger-scale study in a 
more naturalistic, but still controlled, context. 
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Abstract 

This paper investigates which cognitive abilities predict the 
interpretation of complex sentences by older adults. 
Participants performed a picture-selection task after hearing 
complex and simpler sentences, as well as a broad test 
battery of cognitive tests. The results show that different 
cognitive factors serve as predictors for the interpretation of 
complex sentences compared to simpler sentences. For 
complex sentences, verbal intelligence, cognitive flexibility, 
and working memory capacity are strong predictors. Our 
study thus shows that older adults' interpretation of sentences 
of varying complexity is influenced by different cognitive 
abilities, and stresses the need to take such individual 
differences into account when studying language processing. 
 
Keywords: language processing; cognitive factors, complex 
sentences; syntactic structure; age; individual variation 

Introduction 
It is well-known in cognitive-linguistic research that 
syntactically complex sentences can be difficult to process 
(a.o. Bahlmann, Rodriguez-Fornells, Rotte, & Münte, 
2007 (object-first sentences); Tun, Benichov, & 
Wingfield, 2010 (object relative clauses), Bader & Meng, 
1999 (embedded clauses)). Especially older adults show 
difficulties with the processing and interpretation of 
complex sentences (e.g., Emery, 1985). These difficulties 
could partially be caused by cognitive abilities, as 
language processing has long been suggested to be 
influenced by (working) memory capacity (e.g., King & 
Just, 1991). In reading research, it has been found that 
working memory capacity and reading experience (but not 
vocabulary) can mediate older adults' reading times on 
temporarily ambiguous sentences (Payne et al., 2014). 
Contrary, in sentence processing in adverse listening 

conditions, vocabulary was found to influence older 
adults' performance, as was cognitive flexibility (also 
described as mental flexibility; McAuliffe, Gibson, Kerr, 
Anderson, & LaShell, 2013; Rosemann et al., 2017). 
 So, several cognitive factors have been suggested to 
influence older adults' language processing performance. 
Nevertheless, no consensus has been reached about which 
cognitive factors exactly influence complex sentence 
processing in older adults, and little is known about 
influence of cognitive abilities on the processing and 
interpretation of complex in comparison to simpler 
sentences. We therefore ran a broad test battery to 
examine which cognitive abilities predict the 
interpretation of complex sentences by older adults.  

Object-first sentences are a common example of 
complex sentences. In German, canonical word order in a 
main clause is subject-verb-object (Zwart, 1997). 
However, the language allows for structurally more 
complex object-before-subject sentences, for example: 
 
 (1) DenACC Jungen  wäscht derNOM Vater  
    TheACC boy   washes theNOM Father 
    'The father washes the boy' 
 
In (1), case on the determiners indicates which noun 
phrase is the object (den Jungen) and which is the subject 
(der Vater). Although unambiguous, such object-first 
sentences have been found to elicit longer reading times 
(Hemforth, 1993) and more interpretation errors (Carroll, 
Uslar, Brand, & Ruigendijk, 2016) compared to subject-
first sentences in German. Alternatively, an adjunct can be 
added at the beginning of the sentence to create a structure 
in which all information about the protagonists follows 
the verb, such as in (2). 
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 (2) Am Montag  wäscht  denACC Jungen derNOM Vater 
    On Monday  washes theACC  boy    theNOM Father  
    'On Monday the father washes the boy' 
 
In this paper, we describe an auditory sentence-processing 
paradigm followed by a picture-selection task. Two types 
of syntactic manipulations are used, namely subject-object 
order and adjunct position. We measured performance of 
our older participants on several cognitive factors that 
have been argued to be related to sentence 
comprehension: age, years of education, working memory 
capacity, subjective memory complaints, vocabulary, 
cognitive flexibility, and a composite measure of 
cognitive performance, which is widely used as screening 
for cognitive impairment. 
 Overall, we expect structurally more complex object-
before-subject sentences to be more difficult to interpret 
than subject-before-object sentences (in line with Carroll 
et al., 2016). We additionally expect adjunct-first 
sentences to be more difficult to interpret than adjunct-
third sentences, as adjunct-first sentences also violate 
canonical word order (i.e. verb-subject-object rather than 
subject-verb-object). Moreover, we expect considerable 
variation in both the interpretation of complex sentences 
(cf. Vos, Gunter, Schriefers, & Friederici, 2001) and the 
performance on the cognitive tasks. We expect the 
performance on several cognitive factors to influence the 
interpretation of complex sentences, such as age 
(Rosemann et al., 2017), working memory (Payne et al., 
2014; Vos et al., 2001), and vocabulary and cognitive 
flexibility (McAuliffe et al., 2013; Rosemann et al., 2017). 
It will then be investigated which of these cognitive tasks 
best accounts for the interpretation of complex sentences 
by older adults.  

Methods 

Participants 
20 older adults (age 51-70, mean age 60; 15 females) 
participated in the study. All participants had age-normal 
hearing as tested before the experiment and normal or 
corrected-to-normal vision. The participants were all 
monolingual native speakers of German and reported no 
language impairments and no psychiatric or neurological 
issues. The ethics committee of the University of 
Oldenburg approved of the study (reference number Drs. 

28/2017) and written informed consent was obtained from 
all participants. 
 

            
Figure 1: Example pictures corresponding to the sentences 

in Table 1. 
 

Main Linguistic Task 
The linguistic task used auditorily presented German 
sentences based on the OLACS corpus (Uslar et al., 
2013), each followed by two pictures for a picture-
selection task. Each sentence consisted of a Subject (S), a 
transitive Verb (V), an Adjunct (A), and an Object (O). 
Four different sentence conditions were used (see Table 
1): SVAO sentences with canonical word order, OVAS 
sentences in which the object is placed sentence-initially, 
adjunct-initial AVSO sentences, in which the verb is 
placed before its arguments, and adjunct-initial AVOS 
sentences, in which the subject-object order is additionally 
manipulated. The task was performed in an fMRI scanner, 
which inherently creates noise. Therefore, a pre-task was 
used to control for the loudness of presentation of the 
stimuli1. 
 After each sentence, two pictures (modified from 
Wendt, Brand, & Kollmeier, 2014) were displayed. These 
presented both characters mentioned in the sentence 
performing the mentioned action (the adjunct was not 
displayed in the pictures, see example pictures 
corresponding to the sentences in Table 1 in Figure 1). 
Participants could indicate the picture that best fit the 
sentence with a response box: the left button for the left 
picture and the right button for the right picture. The 
location of the target picture on the screen (left or right) 
was counterbalanced across trials.  
                                                
1 The loudness was adjusted for each participant individually to 
80% intelligibility with the Oldenburg Matrix Sentence Test 
(OLSA; Wagener, Kühnel, & Kollmeier, 1999). The average 
adjusted loudness of stimuli presentation was 71.5dB (SD = 6.8). 

 Subject-object order Adjunct 
position 

Condition Example sentence  

 subject-before-object 3 SVAO Der Igel berührt am Montag den Hasen  

 object-before-subject 3 OVAS Den Hasen berührt am Montag der Igel  

 subject-before-object 1 AVSO Am Montag berührt der Igel den Hasen   

 object-before-subject 1 AVOS Am Montag berührt den Hasen der Igel  

    On Monday theNOM hedgehog touches theACC hare  
     

Table 1: Examples of the four experimental conditions. Note that although the conditions use different word orders, 
their meaning remains the same. 
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 The experiment used 24 sentences per condition, so 96 
trials in total. The trials were distributed over two 
sessions. Two lists with pseudo-randomized presentation 
orders were created. 

Cognitive Tasks 
In addition, several cognitive tests were applied: A 
standard backwards Digit Span task (Tewes, 1991) as a 
measure of simple working memory capacity, the 
Comprehensive Trail Making test (Reynolds, 2002) as a 
measure of cognitive flexibility, a German Vocabulary 
test called ‘Wortschatztest’ (Schmidt & Metzler, 1992) as 
an index of verbal intelligence, the Montreal Cognitive 
Assessment (MoCA; Nasreddine et al., 2005)2 as a concise 
screening tool for mild cognitive impairment, and a 
German version of the self-reported age-related Memory 
Assessment Clinics Questionnaire (Crook, Feher, & 
Larrabee, 1992) as an index of subjective memory 
complaints. Finally, participants' Age and years of formal 
Education (from primary school up to high 
school/university/PhD) were assessed through a 
questionnaire. Of the Trail Making task, following 
Rosemann et al. (2017), only trail 1 (connecting numbers 
in order: 1-2-3...) and trail 5 (connecting numbers and 
letters alternatingly in order: 1-A-2-B-3-C...) were used 
and participants' score was calculated as the difference in 
completion time between trail 5 and trail 1. 

Procedure 
Participants were tested individually at the University of 
Oldenburg. First, participants were asked to fill out a 
questionnaire asking for age and years of education, as 
well as the self-reported Memory Assessment 
questionnaire. Second, pure-tone audiogram 
measurements were taken in a soundproof booth. Then, 
the Trail Making, MoCA, and Digit Span tasks were 
conducted. After two practice rounds of 6 sentences with 
the same conditions as in the main experiment, the main 
linguistic experiment started. The pre-task controlling for 
the loudness of the stimuli and the main linguistic 
experiment took place in an MRI scanner; the fMRI 
results will be published in a separate paper. Participants 
used headphones during all tasks in the MRI scanner. 
After the first session of the main experiment, participants 
came out of the scanner and performed the Vocabulary 
task, before going back into the scanner for the second 
session of the experiment and some structural scans. The 
total testing time was about 3 hours. 

Analyses and Results 
One participant's Trail Making task was not performed in 
line with the experiment protocol and therefore excluded 
from the analysis (the participant took off their glasses 
halfway through the task). All other participants 
completed all the tasks.  
 
                                                
2 Approval for the use of this test was obtained from the MoCA 
Clinic & Institute. 
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Figure 2: Percentages of correct responses and distribution 
of these responses on the linguistic task per condition. 
Each dot indicates the mean score of a participant on a 

condition. Overall means per condition are SVAO: 89%, 
OVAS: 69%, AVSO: 86%, and AVOS: 63%. 

Main Linguistic Task 
We first analyzed the correct responses per condition on 
the picture-selection task (Figure 2) with generalized 
linear mixed-effects models (lme4, Bates, Maechler, 
Bolker, & Walker, 2014). Based on the experimental 
design, the fixed effects of subject-object order and 
adjunct position as well as their interaction were included 
in the model. Based on model comparisons, random 
intercepts for subjects and items, as well as random slopes 
for subject-object order per subject and for subject-object 
order and adjunct position per item were included as 
random factors in the model. Subject-before-object and 
adjunct-third were used as the baseline. 
 The model results (Table 2) show lower performance on 
object-before-subject sentences (OVAS and AVOS) than 
on subject-before-object sentences (SVAO and AVSO). 
This confirms our expectation that object-before-subject 
sentences are more complex and more difficult to interpret 
than subject-before-object sentences. No significant effect 
of adjunct position or interaction between subject-object 
order and adjunct position was found. 
 
Table 2: Statistical comparison of response accuracies in 
the linguistic task (corrected for multiple comparisons). 

 
Factor ß z-score p-value 

Subject-object order -1.38 -4.32 < 0.001 

Adjunct position  -0.30 -2.09  0.07 

Subject-object order* 
Adjunct position 

-0.04 -0.16     0.87 

 
As can be seen in Figure 2, on both of the more complex 
object-before-subject conditions, OVAS and AVOS, 
participants show very large individual variation; on the 
subject-before-object conditions participants show less 
variation. We will now look at whether this individual 
variation can be explained by the participants' cognitive 
abilities.  
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Cognitive Tasks 
We will perform two sets of analyses investigating the 
relation between the tested cognitive factors and 
performance on the linguistic task. First, we will examine 
the influence of each single cognitive factor by running 
generalized linear mixed-effect models with each factor 
separately. This analysis will show which cognitive 
factors influence the processing of simple and complex 
sentences. Additionally, we will examine the influence of 
the cognitive factors in combination with each other on 
the linguistic task by means of an inference tree. This will 
show which combination of cognitive factors has the 
strongest predictive power when it comes to interpreting 
sentences of different complexities and which are thus 
most useful to take into account when investigating 
(complex) sentence processing. 
 Linear mixed-effects models (lme4, Bates, Maechler, 
Bolker, & Walker, 2014) were developed for each 
cognitive task separately. The same model was used as for 
the analysis of the linguistic task, including the fixed 
effects of subject-object order and adjunct position as well 
as their interaction, but this time adding the cognitive 
tasks as co-variates. All significant effects are reported in 
the text, but only the most interesting effects will be 
elaborated upon. The results show, after correcting for 
multiple comparisons, no effects of MoCA, Age, and 
Education on the responses on the linguistic task (all p's > 
0.05). A main effect of Memory Assessment was found (ß 
= 0.08; z = 2.89; p < 0.01), indicating that people with 
more memory complaints actually performed better on the 
linguistic task. 
 For Digit Span, a significant main effect (ß = 0.22; z = 
3.38; p < 0.001) as well as an interaction with subject-
object order (ß = 0.38; z = 4.08; p < 0.001) were found. In 
Figure 3 (left panel), the relation between participants' 
scores on the Digit Span task and on the linguistic task per 
condition is plotted. The figure shows that participants 
with higher scores on the Digit Span task (indicating 
better working memory capacity) perform much better on 
the object-before-subject conditions than participants with 
lower scores. Conversely, no clear effect of working 

memory capacity is observed in the subject-before-object 
order, suggesting that processing the object-before-subject 
sentences requires additional working memory capacity 
compared to subject-before-object word order. 
 For Trail Making, also an interaction with subject-
object order (ß = -0.04; z = -2.86; p < 0.001) was found. 
Figure 3 (middle panel) shows the relation between 
participants' scores on the Trail Making task and on the 
linguistic task per condition. A higher trail making score 
reflects worse performance on the Trail Making test. 
Hence, subjects with worse scores on the Trail Making 
task perform worse on the linguistic task with object-
before-subject sentences. 
 Finally, for Vocabulary, a significant main effect (ß = 
0.21; z = 3.59; p < 0.001) as well as an interaction with 
subject-object order (ß = 0.33; z = 4.04; p < 0.001) were 
found. In Figure 3 (right panel) the relation between 
participants' scores on the Vocabulary task and on the 
linguistic task per condition is shown, making it clear that 
participants with higher verbal intelligence performed 
better on the object-before-subject conditions than 
participants with lower verbal intelligence. 
 All three interactions occur with object-before-subject 
sentences, indicating that interpretation of complex 
object-before-subject but not simpler subject-before-
object sentences is influenced by these factors. Thus, it 
appears that processing more complex sentences draws on 
additional cognitive resources, whereas processing the 
simpler subject-before-object sentences requires less 
resources, presumably because they do not require 
additional analysis.  

Best Predictors 
One could argue that performance on Digit Span, Trail 
Making, and Vocabulary could be intercorrelated, and 
therefore these tasks may all explain the same effects in 
the data. Therefore, we will now investigate which 
cognitive factors in combination form the best predictors 
for the interpretation of sentences with different 
complexities and thus which are most useful to take into 
account in future investigations. Because investigating all 
factors within one mixed-effects model creates difficulties 
due to the large amount of variables, we favor conditional 
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Figure 3: The relation between the performance on the linguistic task and on the Digit Span task (left), indicating working 
memory capacity, on the Trail Making task (middle), indicating cognitive flexibility, and on the Vocabulary task (right), 

indicating verbal intelligence. 
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inference trees (ctree from the party package, Hothorn, 
Hornik, & Zeileis, 2006), which are a type of decision 
tree. These provide non-parametric tree-based regression 
models and can handle large numbers of variables.  
 This method uses a significance test procedure in order 
to select the variables (cognitive factors) that best predict 
the response accuracy on the linguistic task. Notably, our 
two linguistic conditions, subject-object order and adjunct 
position, are entered as possible predictor variables as 
well. Using this method, we can investigate which 
variables most strongly predict the accuracy on our 
picture-selection task; stronger predictors are higher up in 
the tree. Variables that are not significant predictors do 
not occur in the tree at all. Besides showing which 
variables are predictors of response accuracy, the tree also 
shows how well individual performance can be predicted 
given these variables. The results of the analysis are 
shown in Figure 4 (including p-values per variable). Each 
branch of the tree represents the trials in certain conditions 
for participants with certain cognitive scores.  
 The results show that subject-object order is the 
strongest predictor for the performance on the picture-
selection task, as it is highest up in the tree. For subject-
before-object sentences, subjective Memory Assessment is 
the strongest predictor, followed by Trail Making score 
lower in the tree. In the gray boxes, the number of trials 
(n) and the mean proportion of correct responses (y), are 
displayed for each branch. For example, the 252 trials in 
the leftmost branch, in the simpler subject-before-object 
conditions responded to by people with a Memory 
Assessment score equal to or smaller than 19, were 
answered correctly 76.2% of the time. 

 For more complex object-before-subject sentences, 
Vocabulary is the strongest predictor of performance on 
the linguistic task, followed by Digit Span and MoCA for 
participants with a lower Vocabulary score, and Trail 
Making and Digit Span for participants with a higher 
Vocabulary score. Notably, MoCA is a significant 
predictor only for people with a lower Vocabulary score 
and a higher digit span score; this explains why there was 
no main effect of MoCA in the linear mixed-effects 
models. Interestingly, for participants with a lower 
Vocabulary score, a higher Digit Span score and a lower 
MoCA score, adjunct position is a significant predictor of 
performance on the linguistic task, whereas for other 
participants no influence of adjunct position is found. 
 Importantly, Vocabulary, Digit Span, Trail Making (and 
MoCA) all appear in the decision tree, indicating that they 
explain different parts of the data, i.e. they are 
complementary, and therefore that taking all these tests 
into account is useful when examining complex sentence 
interpretation. 

 Discussion 
In this paper, we aimed to identify cognitive abilities that 
can predict the interpretation of complex sentences by 
older adults. We will focus on the most clear and 
convincing results here. As predicted, complex object-
before-subject sentences were more difficult for older 
adults to interpret than subject-before-object sentences. 
Contrary to our predictions, adjunct-first sentences were 
only more difficult to interpret than adjunct-third 
sentences for part of the participants. Regarding cognitive 
abilities, we found that working memory capacity (Digit 

Figure 4: A conditional inference tree showing which of the tested predictors (Subject-object order, Adjunct position, 
Digit Span, Trail Making, Vocabulary, MoCA, Memory Assessment, Age, and Education) are the best predictors of 

response accuracy. The gray boxes indicate the number of trials (n) and proportion of correct responses (y) per branch. 
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Span), cognitive flexibility (Trail Making), and verbal 
intelligence (Vocabulary) are not only correlated with 
complex sentence processing as single factors, but also 
when they are combined. The analysis of all factors 
combined showed an additional effect of general cognitive 
performance (MoCA) for participants with lower verbal 
intelligence. Interestingly, age and years of education did 
not influence participants' performance (compare Stine-
Morrow, Ryan, & Leonard, 2000). 
 The strong predictive power of verbal intelligence is 
striking. This does not reflect familiarity with the words in 
the linguistic task, since all conditions, simple and 
complex, used the same words. Rather, it could indicate 
that people with a broader and deeper vocabulary are able 
to access and process words more easily, thereby freeing 
up capacity for higher-level processing (in line with 
evidence from speech recognition, McAuliffe et al., 2013, 
but contra Ramscar, Hendrix, Shaoul, Milin, & Baayen, 
2014). Moreover, verbal intelligence could be related to 
general intelligence or language (e.g., reading) experience 
(cf. Payne et al., 2014), which may increase familiarity 
with and aid the processing of complex structures. 
 Overall, our linguistic picture-selection task was quite 
challenging, which is reflected in the large amount of 
individual variation. Some participants showed around 
chance performance on object-before-subject sentences, 
suggesting that (1) their working memory capacity was 
insufficient to keep and manipulate all information in 
memory (cf. Just & Carpenter, 1992), (2) their verbal 
intelligence was insufficient to access their lexicon 
efficiently (cf. McAuliffe et al., 2013), (3) their cognitive 
flexibility was insufficient to process sentences with non-
typical word order, and/or (4) their general cognitive 
performance was insufficient to process complex 
sentences. Conversely, simpler subject-before-object 
sentences do not seem to require high working memory 
capacity or verbal intelligence. This dissociation is in line 
with the idea that processing syntactically simpler 
constructions loads general cognitive resources less than 
processing syntactically more complex constructions. 
 One could argue that all cognitive factors that were 
found to affect complex sentence processing actually all 
belong to one latent factor. Ramscar et al. (2014), for 
example, suggest that a larger and more experienced 
lexicon has more complex representations, which require 
more demanding searches to be accessed, causing delays 
and decreased performance on linguistic and other 
psychometric tests. Our analyses show, however, that the 
different cognitive factors have a complementary effect; 
they explain different parts of the data, suggesting that the 
tasks tap into different underlying mechanisms. 

Conclusion 
Our study identified several cognitive factors that can 
serve as predictors of the interpretation of complex 
sentences by older adults, which differ from the factors 
that predict the interpretation of simpler sentences. The 
investigation thus highlights the complementary influence 
of different cognitive abilities on language processing, 
and emphasizes the need to consider not only working 
memory capacity, but also factors such as verbal 

intelligence and cognitive flexibility when investigating 
complex sentence processing. 
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Social dilemmas conceptually suggest distinguishing direct 
individual and group-level effects (also involving indirect 
effects on others). Furthermore, the success of organizations 
appears to rely on identifying not only individual excellence 
but positive impact on others as well. In ‘Two-Level 
Personnel Evaluation Tasks’ (T-PETs) participants as human 
resource managers evaluate employees when individual and 
group contributions are dissociated. Von Sydow, Braus, & 
Hahn (2018) have suggested a potential ‘Tragedy of 
Personnel Evaluation’: A group-serving employee with the 
smallest individual contribution but by far the greatest po-
sitive effect on the group’s overall earnings was often rated 
the most negatively. Here we investigate, in two experiments 
with conflicting information, whether emphasizing the group 
can avert the ‘tragic’ outcome. Our results suggest that the 
tragedy is not as complete as suggested, and that contextual 
information can mitigate the tragedy. Nonetheless, the results 
also corroborate the stability of underestimating the impact of 
team players.  

Keywords: Co-variation Detection; Inner-Individual Dilemma; 
Co-operation; Multi-Level Approach Simpsons Paradox 

Individual versus Group Utility 
Co-operation between individuals – over and above direct 
individual benefit – is essential for the common good of 
organisations, companies, and society on the whole. 
Successful co-operation often involves setting personal 
interests aside and devoting oneself, at least partly, to the 
success of an organization or team. Thus when evaluating 
behaviour one must distinguish direct individual utility from 
group utility.  

In evolutionary biology, multi-level selection-approaches 
stress the differences between behaviour benefiting either 
the individual or the group; and these models allow for the 
rise of altruism (Sober & Wilson, 1999; Nowak & Sigmund, 
2005; Wilson & Wilson, 2007).  

Likewise, social-dilemma situations can be interpreted as 
conflicts of individual and group interests; and it has been 
argued that purely self-interested, economically ‘rational’ 
behaviour may inevitably lead to the depletion of public and 
natural resources. This has become associated with the label 
‘Tragedy of the Commons’ (Hardin, 1968). Research in 
game-theory, behavioural economics and psychology (e.g., 
on ultimatum games, dictator games and public-good 
games) has revealed strategies for solving social-dilemma 
situations, and that many people do not act in a purely self-
interested manner, but rather demonstrate at least some 
preference for distributing goods justly or behaving in a 
group-serving  manner (Engel, 2011; Hendrich et al., 2005, 

Fehr & Gächter, 2002, Gollwitzer, Rothmund, Pfeiffer, & 
Ensenbach, 2009; Melis, Hare, & Tomasello, 2016).  

In Organisational and Social Psychology, the importance 
of the team-level has been increasingly acknowledged, 
emphasizing that teams may be  greater than the sum of 
their parts (Haslam, Steffens, Peters, Boyce, Mallett, & 
Fransen, 2017; Mathieu, Maynard, Rapp, & Gilson, 2008; 
Memmert, Plessner, Hüttermann, Froese, Peterhänsel, & 
Unkelbach, 2015). Likewise, the role of pro-social or 
altruistic role or extra-role behaviours in teams has been 
identified as central to the success of companies and 
organizations (Brief & Motowidlo, 1986; Li, Kirkman, & 
Porter, 2014; Nielsen, Hrivnak, & Shaw, 2009; Organ, 
1997; Podsakoff, Whiting, Podsakoff, & Mishra, 2010). 

A crucial question, however, is the extent to which people 
recognize those who clearly serve the overall good at the 
team level. This question should be particularly pressing for 
human-resource managers who must evaluate or select 
employees and must often only base their judgment on 
abstract performance data (sales numbers, etc.).  

Tragedy of Personnel Evaluation 
For human-resource management, it seems crucial to 

address the potential dissociation of employees’ individual 
and collective impact on team performance. While 
underlining this, recent research has also provided some 
first evidence that such behaviour is sometimes rewarded – 
particularly when managers have direct acquaintance with 
the processes and persons involved (Organ, 1997; Scotter, 
Cross, & Motowidlo, 2000; cf. Grant & Patil, 2012, 562). 
However, personnel managers must increasingly evaluate 
without first-hand experience, often based on abstract 
performance numbers (Brandl, 2002).  

We have begun to study evaluation situations from an 
experimental perspective as well, using well specified Two-
level Personnel-Evaluation Tasks (T-PETs; von Sydow & 
Braus, 2016, 2017; von Sydow, Braus, & Hahn, 2017, 
2018). In these T-PETs, participants obtained information 
about employees’ earnings on individual as well as overall 
group levels. The T-PET used involves strongly conflicting 
information at both levels. The group-serving person A is 
characterized by lowest individual earnings yet has a con-
sistent, strongly positive impact on the overall team 
earnings by substantially increasing the earnings of the other 
employees. This group-serving person is here called 
‘altruist’. Although (behavioural) altruism in biology and 
economics seem to be associated with this kind of indi-
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vidual and group impact, it should be 
noted that such patterns do not imply 
motivational altruism (only ‘prosocial’ 
behaviour). For simplicity, however, we 
call the group-serving person, team-player 
or positive interactor simply ‘altruist’ (A).  

In previous work on T-PETs, 
participants evaluated the ‘altruist’ who 
was best for the team and company as 
worst, and they tended to ostracize the 
altruist in selection tasks. These results led 
to the suggestion of a potential ‘tragedy of 
personnel selection’: Personnel managers 
may neglect or underestimate group 
impact with substantial damage to person-
nel and ultimately companies and organi-
sations (von Sydow & Braus, 2016; von 
Sydow et al., 2018). This occurred despite 
the strong correlations between group membership and team 
performance (von Sydow et al., 2018). Further studies 
showed that, although negative group-interaction or ‘egoist’ 
detection (egoism here again defined behaviourally only) 
differed slightly from ‘altruist’ detection, they both 
demonstrated a broadly similar tragedy of ignorance 
regarding overall group-level effects (von Sydow & Braus, 
2017). Another study already has investigated the role of 
group size in T-PETs. Holding the effects of A on single 
other individualy constant, the small group demonstrated no 
considerable advantage (von Sydow, Braus, & Hahn, 2017). 

The current personnel-evaluation experiments again 
involve similar scenarios with conflicting information at the 
individual and group levels (T-PETs). However, they 
investigate whether a shift in the known importance or 
salience of the group level, by either varying cover-stories 
(Exp. 1) or selective information presented (Exp. 2), yields 
improvement. Experiment 2 additionally examines ratings 
distinguishing explicitly direct impact, impact on others, 
and overall impact on a team.  

Experiment 1: Story-Induced Focus 
We used a straightforward manipulation, providing partici-
pants with texts stressing either the role of the individual or 
the team as central for personnel management. The 
experiment had four conditions, with stories focusing on 
different levels (C1 individual; C2 global; C3 individual & 
global; C4 control, no focus and no additional text). 
Additionally, the order of the dependent variables in all four 
learning phases was counterbalanced (evaluation → 
selection vs. selection → evaluation).  

Method 
Participants The experiment was conducted via MTURK 
with participants from the US. 121 participants passed the 
two selection-criteria (time spent on the first page, and the 
correct choice of a rephrasing of the instructions) and 
finished the experiment. The participants obtained a 
compensation of $1.50. 49% were male; the mean age was 

36; 55% had a Bachelor’s or Master’s degree and 30% a 
high school degree as their highest level of education.  
Procedure and material The computer experiment 
resembled previous T-PETs (von Sydow et al., 2018) and 
was implemented using SociSurvey.  

Participants first obtained general instructions that their 
role as personnel manager was to evaluate the employees of 
a particular shop. Daily they would obtain information 
about individual and total earnings of the team working that 
day. Overall there were five staff members working in the 
shop, in day-shifts of four people.  

On the next slide, participants read that the retired founder 
of the company had delivered a talk, mentioning the 
essential role of the personnel management to a company’s 
success. As space precludes exhaustive citation here, we 
present only the first and fourth of five paragraphs of C1 
and C2: 

 

C1: “What is a company? A company is composed of individual 
employees working on their tasks, and it rises and falls with their 
performance. Thus a company needs to incentivize the performance of 
each individual employee. […] This alone will do justice to those 
individuals who do a good job over those who do a bad job. In particular, 
you need to detect those employees who individually perform best and 
worst.”   

C2: “What is a company? A company is more than just the sum of its 
employees; it is a whole, a finely attuned organism. It is made up of teams 
in which employees need to interact in a positive way. Thus, a company 
needs to incentivize team performance. […]. This alone will do justice to 
those teams with positive interaction and to good over bad team 
players. In particular, you need to detect the members of the group who 
support and those who exploit the group” (bold print added).  

C3 analogously emphasized the importance of monitoring both 
individual AND group effects of employees.  

 

In the main part, participants sequentially obtained for 
each day transparent overview information about the 
individual earnings of each of the four employees (presented 
by a picture) working on the shift that day, as well as 
information on overall earnings (see Figure 1). The structure 
of the earnings is shown in Table 1 (we added some noise to 
each value; a normal distribution with SD = 600 €). On the 
level of individual earnings there were relatively small mean 
differences (400 €) between the four non-interacting normal 
workers Nx and the altruist A: N1 > N2 > N3 > N4 > A. 

 
Figure 1: Example of shown earnings at the individual and group levels on 

a particular day.  
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Figure 2: Mean ratings of the employees over test rounds in the four 

story conditions. 
 
 

Apart from the lowest individual earnings of the ‘altruist’, 
his/her presence had by far the most positive impact on the 
group earnings – when A is present, the earnings of all co-
workers increase by 1000 €, leading to an overall average 
increase of 2500 € (normally exceeding the salient mark of 
10,000 €).  

 
Table 1: Mean earnings of normal workers (Nx) and 

altruist; and mean overall earnings. 
 With Altruist Without Altruist 
N1 3,600 € 2,600 € 
N2 3,200 € 2,200 € 
N3 2,800 € 1,800 € 
N4 2,400 € 1,400 € 
Altruist 1,500 € - 
Total  10,500 € 8,000 € 

 
The presence of this worker correlated with r = .99 with 

the overall outcome – a correlation easily detectible by 
machine-learning algorithms.  

Overall, 80 panels (Table 1) were sequentially shown and 
participants could view the overview panels for each day as 
long as required, with a minimum of four seconds. The role 
of the altruist (team player) was randomly assigned to one 
of the five persons of which four are working in a particular 
shift. He or she appeared randomly 50% of the days (shifts) 
in the overview panels (Table 1); the four normal workers 
appeared randomly. We further counterbalanced the pre-
sentation-order of the four employees working in each shift.  

In four test phases, after the 20, 40, 60 and 80 rounds, the 
‘personnel managers’ evaluated all employees in an 
evaluation task and a selection task. The order of these tasks 
was counterbalanced. In the evaluation task, participants 
rated the contribution of all employees to the overall 
earnings of the company, on a scale of one to ten. 
In the personnel selection task they had to answer 
which four of the five workers they chose to work 
another day “to optimise the overall profit for the 
company”. At the end of the fourth test phase, we 
added a total utility task: “Which person is of the 
greatest/lowest total utility for your business?” and 
assessed participants’ preference for narrow self-
interest and pro-social behaviour, using the social-
value orientation scale (Murphy, Ackermann, & 
Handgraaf, 2011). Finally, they provided 
comments and demographic data. 

Results 
Figure 2 shows the average evaluation ratings by 
person in the four test rounds for the four 
conditions. First, Figure 2 
 reveals that the average ratings, in all conditions, 
mainly reflects the average individual earnings of 
the employee, with the ratings of the altruist, A, 
always being lower than all (or at least most) 
normal workers, N. A repeated-measures ANOVA 
with factors Person (N1 to N4, A) and Phase (R1 to 

R4) as within-subject factors, and the condition Story (C1 to 
C4) as between-subject factors, revealed a significant main 
effect of Person only, F(2,257) = 216,20, p < .001, η2 = .65, 
but no significant main effects of Condition or Phase.  

Second, the ratings reveal that the order of the mean ra-
tings of the normal workers is always (even in Phase 1) in 
line with the actual (small) differences observed, resulting 
overall in order (N1 > N2 > N3 > N4 > A), with significant 
post-hoc tests for all four comparisons (each p < .001).  

Figure 3 shows the percentage of group-based answers in 
the selection task (selections of A), the rating task (all N ≥ 
A) through time, and the final comments (coding some 
insight into the difference between individual and group 
performance). Selection, comments, and in the beginning 
rating as well, seem to reveal a similar pattern: a slight 
advantage for the conditions with global stories (C2 and 
C3). Comparing these two conditions with those without 
global stories (C1 and C4), this predicted effect in Phase 4 
reaches significance for selection: χ2(df=1, N=121) = 4.30, 
p < .05. For ratings there seems only an effect for the global 
condition, not the individual and global condition. This dif-
ference between selection and rating perhaps becomes un-
derstandable if one bears in mind that correct rating here in-
volved a stricter test criterion than selection (not only jud-
ging A higher than one other worker, but all other workers).   

Discussion Experiment 1 
First, the results of Experiment 1 overall corroborate the 
postulated stability of the Tragedy of Personnel Evaluation 
with no strong impact of the story. The average ratings of 
the altruist, who actually very consistently causes strong im-
provements in group performance, are lowest; and at least 
50% of the participants seem not to detect the effects of the 
presence of the ‘altruist’. However, the results also suggest 
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some small effects of the story, and that thinking about the 
group level can reduce the Tragedy of Personnel Evaluation 
at least with regard to some participants.  

Experiment 2 – Selective Information 
Presentation 

Experiment 2 varies what information (group versus indi-
vidual versus both) is presented and at what time. It also 
increases the number of test phases, to explore the temporal 
dynamics in more detail and what people could learn even 
after ten trials. Finally, it tests the ability of participants to 
detect group-level (and individual-level) effects, also using 
ratings explicitly differentiating between individual effects, 
effects on others and overall team effects.  

With regard to selective information presentation, there is 
a condition focusing participants on group-level information 
alone (G) in order to investigate whether and how quickly 
the ‘altruist’ could be detected (now using eight test phases). 
Presenting only individual-level information (I), provides 
the other extreme base-line condition. Always presenting 
both – individual and a team’s overall earnings (B) – 
replicates Experiment 1 but can now be compared to both 
benchmark conditions. Moreover, we added several further 
‘mixed conditions, where the three information formats (G, 
I, B) changed over time (e.g., GIGIGIGI).  

The increased number of test phases may allow 
participants more easily to realize the tension between 
individual-level success and overall group-level effects.  
The contrast to both extreme base-line conditions (only  I or 
only  G), should serve as controls for the level of 
performance in the intermediate conditions, that ‘only B’ or 
the mixed conditions. In a number of mixed conditions the 
shown information is varied over time (e.g., GIGIGIGI). We 
explore whether they may be adventitious in contrasting the 
global and individual level. 

Method 
Participants (recruited by Prolific Academic) came from 
English-speaking countries (i.e. the UK 52%, the US 32%, 
Ireland, Australia etc.). 172 participants passed all selection 
criteria and finished the experiment (cf. Exp. 1). Each 
participant obtained a compensation of £1.80. The mean age 
was 32 (59% male, 41% female). Regarding education, all 
participants had at least high school degree or A levels. 

Procedure and material The materials and procedure apart 
from some differences strongly resembled the T-PET of 
Experiment 1. We used a similar, neutral introduction, but 
without stories. In the main part, participants again ob-
tained, sequentially for each day, overview information 
(Figure 1) based on the same average earnings as before 
(Table 1). Thus, on the individual level, the rank-order of 
earnings for the normal (non-interacting) (Ni) workers and 
the altruist (A) worker was N1 > N2 > N3 > N4 > A, with 
small differences (400 €). The altruist impact on the other 
workers in a shift was larger, increasing each of their 
average earnings by 1000 € and the average earnings of the 
team by 2500 €, resulting in a reversed rank order: A > N1 > 
N2 > N3 > N4.  

Participants in the role of personnel managers were again 
shown information on four employees’ earning (out of five 
employees overall) for 80 shifts (days). We again 
counterbalanced presentation-order of persons shown (see 
Exp. 1). Participants could study the overview panels as 
long as required, but with a minimum of four seconds. 

 
Table 2: Information in phases (Px) and conditions (Cx). 

 P1 P2 P3 P4 P5 P6 P7 P8 
C1 G G G G G G G G 
C2 B B B B B B B B 
C3 G G G G B B B B 
C4 G B G B G B G B 
C5 G G B B G G B B 
C6 G I G I G I G I 
C7 I I I I I I I I 

Note: B = both individual & group; G = group only; I = 
individual only; Cx = condition; Rx = round 
 

In contrast to Experiment 1, Experiment 2 uses eight 
(instead of four) test rounds and eight preceding learning 
phases, each composed of ten days. Moreover, we varied the 
information formats. In a learning phase 10 information 
panels (10 days, one for each shift) are shown, with in-
formation either only on the individual earnings (I; see 
Figure 1 without last row), on the group earnings (G; Figure 
1 without middle row) or, finally, on both individual and 
group earnings (B; cf. Figure 1).   Table 2 presents the 
information formats in different conditions and phases.   

 
Figure 3: Percentage of group-based selections, evaluations (rating A > all N), and comments by conditions in 

Experiment 1. 
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In each test round, we administered rating scales and then 
a personnel selection task. At the end, participants should 
again provide ratings for all five workers but now explicitly 
using three rating scales differentiating between individual 
impact, impact on others and overall contribution. Finally, 

participants had to choose the employee with greatest or 
lowest utility and comment on their own behavior.   

Results 
Figure 4 presents the main results of Experiment 2. Panel A 
shows the participants’ mean ratings of the five workers’ 

 
Figure 4: Panel A shows participants’ mean ratings for the ‘altruist’ worker (A) and the four non-interacting normal workers 
(N) for the seven conditions and eight learning phases. Panel B presents the mean of the final ratings, differentiating between 

workers’ individual earnings, effect on others and resulting overall effect (global). For these ratings, Panel C shows  the 
percentage of participants who had no sense of individual differences between normal workers (‘No Order’; N1+N2 > 

N3+N4). For those who detected this basic individual order (‘Order’), we show the percentage, rating the altruist higher then 
none of the Ns (‘+ 0’), then one to three Ns (‘+1 to 3’), and then all four Ns (‘+ 4’). Panel D shows the percentage of 

participants attributing the overall highest utility for the company to the ‘altrust’ or a particular normal worker.  
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contributions in the eight phases. These results show that (a) 
even after ten presentations (Phase 1) participants’ mean 
judgments suggest a high altruist-detection tendency (at the 
expense of less clear individual differences between the 
normal workers); (b) between the phases there was a strong 
variation of the mean ratings of the mixed middle con-
ditions, suggesting that at least in the beginning participants 
had difficulties in integrating the results and were strongly 
influenced by the recent phase; and (c) at the end (Phase 8), 
however, all middle conditions (C2 to C6) show a middle 
result between the benchmarks (C1 and C7), and there is no 
large difference between the middle conditions. Despite  
still underestimating the altruist, participants clearly do not 
focus only on individual-level information.  

Panel B shows the results of the final ratings differentia-
ting between workers’ individual earnings, their impact on 
others, and the overall impact. (a) Participants in the middle 
conditions (C2 to C6) clearly differentiate between these 
ratings. (In the two extreme conditions this was unlikely, 
but there is even a small effect in C7.) In the middle 
conditions the individual ratings show A < Ns, but the 
‘other-ratings’ show that A is, on average, rated higher than 
N4, and similarly high as N3 and N2. The global rating may 
be a mixture that seems even more strongly to resemble the 
‘other-ratings’ (but note the incommensurability of the 
other-rating that used a bipolar scale). In any case, the 
global rating in the middle conditions clearly does not reach 
the C1 benchmark, suggesting a remaining tragedy. (b) 
Comparing the final ratings with the ones in Phase 8 
suggests that participants do interpret the latter largely as 
global ratings (with a small individual influence). (c) Given 
that the impact-on-others rating would correctly be 
answered following A>N1=N2=N3=N4, there is not only a 
correct A>Ns, but also an incorrect impact of the individual 
order N1>N2>N3>N4. This suggests the heuristic ‘(s)he who 
is good individually also helps others’. 

Panel C investigates the individual differences of the final 
ratings. (a) Only few participants demonstrate no sense of 
individual differences (‘No Order’; not N1+N2 > N3+N4). 
Though the individual condition C7 does have advantages 
here, also all other conditions fare reasonably well.  

(b) Looking at the others who detected the basic order 
between the Ns, the individual and the group condition (C7 
and C1) show highly similar results for the three ratings, 
suggesting a transfer in both directions. In contrast, the  
middle conditions (C2 to C6) differentiate between the 
conditions: In the individual ratings, most participants here 
detect correctly that A < Ns (Order + 0); and in the ‘others-
ratings’ they rate A higher than one, two, three (Order + 1 to 
3) or even all four Ns (Order + 4). The ‘others-ratings’ and 
global-ratings make clear that the results of the middle con-
ditions lie between both extreme conditions. Thus it is clear-
ly wrong to claim that all participants completely ignore the 
group effect; but it is also apparent that only a few rate the 
altruist as high as would be appropriate based on A’s overall 
(direct and indirect) impact on overall earnings. Panel D, 
finally, shows who the participants judge to be of highest 

overall utility for the company. (a) C1 shows that, with a 
focus on group-information, all participants learned the 
foremost utility of A, whereas none learned it in the 
individual C7. (b) Despite the cited positive effects in the 
middle conditions, the dependent variable shows that the 
altruist is still underrated. Nonetheless, a considerable 
minority also in ‘C2 to C6’, and more than in C7 (p < .001), 
rates altruist as high as would be appropriate based on A’s 
(direct and indirect) impact on overall earnings (A > all Ns). 

General Discussion 
Experiment 1 documents the stability of the Tragedy of 
Personnel Evaluation. The altruist’s or team-player’s 
outstandingly positive overall effects on a team were 
ignored or inadequately acknowledged by most participants; 
providing a context emphasizing the group had no large 
effect. However, Experiment 1 suggests that the postulated 
tragedy could – at least for some participants – be mitigated 
by contextual cues enhancing focus on the group-level.    

Experiment 2 varied the information presented (individual 
information, group information, or both), used several test-
phases, and at the end used rating-scales differentiating 
between individual earnings, effect on others, and overall 
impact on group earnings. The results show that participants 
in principle can learn the overall advantage of A as early as 
in Phase 1 (even after 10 ‘days’) if forced to focus on the 
global information alone (C1). Second, toggling what 
information is presented over time did not provide the 
strong boost we hoped for. Third, and this seems important, 
the base-line conditions reveal that the tragedy is not at all a 
total one (at least here after 8 test phases). That is, 
participants’ judgements in all middle conditions (including 
the only B condition) did differ also from an individual-
focus condition. Nonetheless, the average ratings, the 
percentage of correct ratings, and the highest utility judg-
ments show that most participants still substantially under-
estimate the overall impact of the ‘altruist’ team player.  

Overall, the results are two-fold. They show that the 
postulated tragedy is neither completely immune to 
improvement (Exp. 1) nor as radical (Exp. 2) as perhaps 
originally suggested. However, despite using strong group-
level effects, the results obviously do not allow for acquittal 
but rather corroborate a remaining (but reduced) tragedy. 
Even though this provides some first evidence for a means 
to mitigate the tragic, it also continues to underline the 
danger of potentially similar tragedies in the real world.  

Future avenues of research should explore theoretical 
implications, mediating mechanisms, applications, and 
boundary conditions of these findings also in real-life 
settings. Although we here used highly educated 
participants and strict selection criteria, it would for instance 
be important to explore the stability of our findings with real 
personnel managers as well, with or without a number-
based task (cf. von Sydow et al., 2018). 

Moreover, this research may well be connected to several 
lines of more theoretically inspired research. For instance, 
our social-cognition two-level personnel evaluation tasks 
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may be understood more generally as studies of Simpson’s 
paradox (Waldmann & Hagmayer, 2001; Fiedler et al., 
2003; cf. von Sydow, Hagmayer, & Meder, 2016).   

Second, we have suggested some rational basis for the 
apparently irrational reluctance to check for large 
correlations with a high overall outcome (the sum effect of 
many causal effects). We have suggested that this may be 
due to a concern with local causal relations rather than 
ephemeral overall outcomes (von Sydow et al., 2018; cf. 
Lagnado, Waldmann, Hagmayer, & Sloman, 2006; Sloman 
& Hagmayer, 2006; Hagmayer & Meder, 2013).  Thus other 
interaction patterns may be more easily detected. For 
instance, it is known that people are well able to see some 
logical or causal interaction-patterns if focusing on two or 
three variables only (e.g., von Sydow, 2016).  

In any case, the phenomenon seems of high importance, 
and the current research warns us that people, at least in the 
setting of number-based evaluations and perhaps beyond, 
may well tend to ignore or underestimate the strong overall 
group effects of team players in contrast to their individual 
effects.  
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Abstract 

Research on the acquisition of morphology commonly predicts 
that agglutinating systems should be easier to learn than 
fusional systems. This is argued to be due to compositional 
transparency: the mapping between morphemes and meanings 
is one-to-one in agglutinating systems, but not in fusional 
systems. This is supported by findings in first and second 
language learning (Goldschneider & DeKeyser 2001, Slobin 
1973), typology (Dressler 2003, Haspelmath & Michaelis 
2017), and language evolution (Brighton 2002). We present 
findings from a series of artificial language learning 
experiments which complicate this picture. First, we show that 
when only two features (e.g., NOUN CLASS and NUMBER) are 
morphologically encoded, the learnability of fusional and 
agglutinating systems does not differ significantly. This 
finding holds when learners are given an additional cue to 
morpheme segmentation–which in principle should make the 
agglutinating system easier. However, the error patterns of the 
two groups provide some evidence that learners might have a 
bias for transparent structures. Our results suggest that the 
advantages of agglutinating over fusional systems may be 
overstated, particularly when a small number of features are 
encoded. Since agglutinating systems likely bear additional 
costs (e.g., segmentation, longer word length, and the online 
cost of mapping between morphemes and meanings), such 
systems do not guarantee learning ease under all 
circumstances. 

Keywords: language acquisition; morphology; agglutinating; 
fusional; artificial language learning; transparency  

Introduction 

Classification of languages into morphological types is a 

commonly used parameter in language typology. 

Morphological type structures vary within and between 

languages, and they change over time. One key distinction is 

between fusional and agglutinating types. The distinction 

between these two is based on the ratio of morphemes to 

meaning, where a morpheme is defined as “the smallest 

meaning-bearing unit of language” (Kortmann, 2005). In 

fusional languages, morphemes typically express more than 

one meaning. For example, the German verb spielst (‘you 

play’) has the suffix –st, which together expresses present 

tense, second person, and singular number. In comparison, 

morphemes in agglutinating languages typically only carry a 

single meaning. For example, the Turkish verb 

konuşuyorsunuz (‘you speak’) has three suffixes, -yor, -sun, 

and -uz individually expressing the same pieces of 

information (present tense, second person, plural number). 

While both morphological types are well attested among 

the languages of the world, it has been proposed that fusional 

and agglutinating systems may differ in terms of learnability. 

In particular, it has been claimed that the more meanings a 

single morpheme carries, the less transparent it is, and 

therefore the more difficult it is to learn (e.g., Goldschneider 

& DeKeyser, 2001; Don, 2017; Haspelmath & Michaelis, 

2017). For the purpose of this study, we use transparency to 

mean one-to-one correspondence between a form and its 

meaning (Don, 2017). Because agglutinating morphology is 

by definition more transparent, agglutinating systems should 

be easier to acquire, while fusional systems where a single 

morpheme encodes multiple meanings should be more 

difficult.  

Support for this idea comes from research on both first and 

second language acquisition. In first language acquisition, a 

number of classic studies on morpheme order of acquisition 

in children have implicated transparency as part of the 

explanation for why certain English morphemes are acquired 

earlier than others (Brown, 1973; de Villiers & de Villiers, 

1973; Dulay & Bert, 1974). For example, –s as in plays 

(which expresses 3rd person, singular, and present tense) is 

learned later than –ing (progressive). These studies build on 

more general claims relating transparency to ease of 

acquisition in children (e.g., Slobin, 1973) 

More recent work has extended these findings to a number 

of other languages. For example, Sultana, Stokes, Klee, and 

Fletcher (2016) argue that the level of transparency of 

morphological forms predicts the order of acquisition in 

Bengali. Hengeveld and Leufkens (2018) point out that 

Turkish children generally master the agglutinating 

morphology of their language by the age of 3, whereas Dutch 

children have not yet acquired the fusional verbal system of 

their language at that age. This is in line with Dressler (2003), 

who reports earlier acquisition of morphology by children in 

Turkish than in English.  

 Second language acquisition research has echoed the role 

of transparency in morphological learning. In a meta-analysis 
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of 14 studies on L2 acquisition of English, Goldschneider and 

DeKeyser (2001) show that transparency correlates with 

earlier acquisition. For example, L2 learners, like children, 

acquire the English morpheme –s relatively late.   

Finally, there is a clear relationship between agglutinating 

systems and the more general feature of compositionality. In 

compositional systems, complex signals are formed by 

combining meaning-bearing parts, with the meaning of the 

whole being a function of the meaning of the parts; this can 

be contrasted with holistic systems in which such re-

combinable subparts do not exist, the relationship being 

between whole meanings and unanalyzable signals. A large 

body of research on the evolution of compositionality in 

language connects it to learnability (Brighton, 2002; Kirby, 

Cornish & Smith, 2008; Kirby, Tamariz, Cornish & Smith 

2015, a.o.): compositional systems are simpler in that they 

have a shorter encoding length and are more compressible, 

making them simpler in a cognitively-relevant sense and 

therefore easier to learn; compositional systems also permit 

generalization to unseen meanings and signals. These same 

characteristics hold for agglutinating systems, suggesting that 

they too should be easier to learn. 

To summarize, various lines of evidence suggest that 

agglutinating languages should be easier to learn than 

fusional languages. The inherent transparency and regularity 

of agglutinating forms, the higher frequency of a given 

morpheme in the system, and the possibility to generalize all 

point to a learnability advantage of these systems. However, 

in many cases, it is difficult to disentangle transparency from 

other features of the system. Most obviously, agglutinating 

systems often use more morphology overall, which could in 

principle also serve to obscure this advantage. However, 

Dressler (2003) argues that the systematic use of morphology 

in agglutinating languages relative to fusional ones may in 

fact serve to clue learners into its importance, triggering 

earlier learning. In this paper, we report a series of artificial 

language learning experiments which allows us to test the 

above claims by directly comparing agglutinating to fusional 

systems, while controlling for systematicity of morpheme 

use, and number of morphemes across conditions. 

Experiment 1  
 
We tested whether learners are faster at acquiring 

agglutinating systems compared to fusional systems by 

exposing participants to nouns encoding two binary features, 

one for NUMBER (singular/plural) and one for CLASS 

(animate/inanimate). Crucially, we held the number of 

morphemes to be learned constant across both conditions.  

 

Methods 

Participants. 80 participants were recruited on Amazon 

Mechanical Turk, all self-reported as English native 

speakers. They were paid $4 for their time. Participants were 

randomly assigned to one of the conditions described below 

(38 in the fusional and 42 in the agglutinating condition). 

Materials. The language consisted of 96 nouns, referring to 

objects, and four suffixes, encoding NOUN CLASS (animate 

and inanimate) and NUMBER (singular and plural). Animate 

entities were always animals and inanimate entities were 

everyday objects such as household items and pieces of 

clothing. All stems were monosyllabic and adhered to 

English phonotactics. Morphemes used for both languages 

were identical: -mu, -ka, -pi, -lo. In the fusional condition, 

each of the four morphemes expressed one value for both 

features: animate+singular, animate+plural, 

inanimate+singular, inanimate+plural. For example, in 

Figure 1, spur is the noun stem, and -ka indicates 

animate+singular. In the agglutinating condition, the four 

morphemes each expressed a single value of NUMBER or 

CLASS. For example, in Figure 2, foog is the stem, –ka 

indicates inanimate, and –mu indicates plural. Note that the 

stem was directly followed by the CLASS morpheme, which 

was followed by the NUMBER morpheme. Mappings between 

morphemes and meanings were randomized across 

participants. Note that because we use the same set of 

morphemes in both languages, the words are longer in the 

agglutinating condition (by one syllable). This is a general 

characteristic of agglutinating languages, where words tend 

to be longer than in fusional languages. 

 

Procedure. Participants were instructed that they would be 

learning part of a new language. On each trial (Figures 1, 2), 

participants saw an image and were given a choice of four 

words that could describe it. The four choices always 

represented the same stem with four possible grammatical 

combinations of affixes. Participants were instructed to click 

on the word that they thought correctly described the picture. 

Immediate feedback was given in every trial: the correct 

answer was highlighted with color, and the audio of the 

correct word was played aloud. The study consisted of 96 

trials each of which displayed a unique picture. Therefore, no 

image or stem was ever repeated (and participants were not 

required to learn the mappings between images and stems). 

Each combination of grammatical meanings occurred as the 

correct choice 24 times in total. At the end, participants 

completed a short questionnaire. 

 

Results. The design of our experiment aimed to compare 

performance across conditions over time. Since participants 

were necessarily guessing at the beginning, we expect 

performance in both conditions to be similar early on, but to 

potentially diverge over trials as they learned. Figure 3 shows 

mean accuracy across conditions by trial. As expected, 

participants generally improved over trials. However, 

performance appears to improve at a similar rate across 

conditions. Mean accuracy across all trials for the 

agglutinating condition was 0.65 (SD=0.24), for the fusional 

condition 0.60 (SD=0.24). To test whether the rate of 

improvement differed between conditions we fit a logistic 

mixed-effects regression model, predicting correct answer by 
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condition, trial (coded 0-95), and their interaction.1 Condition 

was dummy-coded, with agglutinating as the reference level. 

The by-item intercept was removed because the model failed 

to converge. The model revealed a significant effect of trial 

number (b=0.04, SE=0.01, p<0.001), indicating that 

participants improved their accuracy over the course of the 

experiment, but no effect of condition (b=0.14, SE=0.18, 

p=0.42) and most importantly, no condition by trial number 

interaction (b=-0.01, SE=0.01, p=0.20). The latter would 

have indicated a difference in the rate of learning in one or 

the other condition, indicating a learnability advantage.  

 

 
 

Figure 1: Example trial in Experiment 1, fusional condition. 

This trial shows an animate, singular object.  

 

 
 

Figure 2: Example trial in Experiment 1, agglutinating 

condition. This trial shows an inanimate, plural object. 

 

  We conducted an exploratory analysis of participants’ 

errors to investigate whether the highly similar overall 

performance masked a difference in error type between the 

two conditions. As described above, each of the four choices 

given in every trial constituted a different combination of 

grammatical meanings. Incorrect responses could either 

reflect the participant selecting a marker which was 

                                                           
1 All models were run using the package lme4 in R (Bates 2010). 

Unless otherwise noted, models included random by-participant and 

appropriate to the CLASS of the noun (e.g. selecting a 

morpheme marking animacy for an animate referent) but the 

wrong NUMBER (e.g. selecting a plural morpheme for a 

singular noun), selecting the wrong CLASS but the correct 

NUMBER, or selecting a morpheme which was incorrect for 

both CLASS and NUMBER. The rates for these three classes of 

error (correct CLASS only, correct NUMBER only, neither 

correct) are shown in Figure 4. The proportion of errors 

reflecting correct CLASS appears to be greater in the fusional 

condition. This impression is confirmed by a logistic mixed-

effects regression model testing whether the proportion of 

CLASS correct only responses was significantly different 

between conditions. We ran the model predicting correct 

CLASS in the subset of the data with incorrect answers, 

including fixed effects of condition, trial number and their 

interaction. The by-item intercept was removed due to 

convergence errors. The model revealed a significant effect 

of trial (b=0.02, SE=0.01, p=0.003) no significant effect of 

condition (b=-0.02, SE=0.23, p=0.92), and a significant 

interaction between condition and trial (b=0.02, SE=0.01, 

p=0.04).  

 

 
 

Figure 3: Mean accuracy by trial by condition in Experiment 

1. 

 

 
 

Figure 4: Classification of incorrect choices by correct 

feature (CLASS correct NUMBER wrong, NUMBER correct 

CLASS wrong, or neither correct) by trial block by condition 

by-item (picture) intercepts, and by-participants slopes for the effect 

of trial. 
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in Experiment 1. Trial number is binned for readability. Note 

that the y-axis range does not display the full range.  

 

This suggests that participants in the fusional condition and 

agglutinating condition diverged over time in their tendency 

to choose an answer in which only the CLASS morpheme was 

correct–while such errors decline in the agglutinating 

condition, they remain at a fairly constant level in the fusional 

condition. One possibility is that this reflects a bias for 

transparency: participants in the fusional condition may have 

been searching for a single feature with four values, rather 

than two binary features. While NUMBER is unambiguously 

binary (one vs. two), the stimuli could in principle encode 

more fine-grained distinctions of CLASS. In the post-test 

questionnaire, some participants indeed reported such a 

strategy, for instance, distinguishing land vs. sea animals and 

household items vs. clothing. They subsequently tried to map 

each of these four CLASS values onto one morpheme, ignoring 

NUMBER altogether. However, this analysis was performed 

post-hoc since the given distribution of answer types was 

unexpected. We therefore replicated the experiment.  

 

Experiment 2 

Methods 

Participants. 100 participants were recruited on Amazon 

Mechanical Turk, all self-reported as English native 

speakers. They were paid $4 for their time. Participants were 

randomly assigned to one of the two conditions (48 in the 

fusional and 52 in the agglutinating condition). 

 

Materials. Stimuli were identical to those of the previous 

experiment. 

 

Procedure. The procedure was identical to Experiment 1. 

 

Results. Figure 5 shows mean accuracy by trial across 

conditions. As in Experiment 1, participants generally 

improved from the start to the end as expected, and overall 

performance appears to be similar across conditions 

(agglutinating M=0.64, SD=0.26; fusional M=0.68, 

SD=0.25). We ran a model predicting correct answer by 

condition, trial (coded 0-95), and their interaction. Condition 

was dummy-coded, with agglutinating as the reference level. 

The model revealed a significant effect of trial number 

(b=0.04, SE=0.01, p<0.001), indicating that participants 

improved their accuracy over the course of the experiment, 

but no effect of condition (b=-0.10, SE=0.17, p=0.57) and no 

condition by trial number interaction (b=0.01, SE=0.01, 

p=0.25). Again, the latter would have indicated a more rapid 

improvement in one or the other condition, and thus a 

learnability advantage. 

We repeated our analysis of error types across conditions 

(Figure 6). In this case, the model revealed a significant effect 

of trial (b=0.02, SE=0.01, p<0.001), no significant effect of 

condition (b=-0.02, SE=0.20, p=0.93), and no significant 

interaction between condition and trial (b=-0.004, SE=0.01, 

p=0.63).  This suggests that the apparent difference in CLASS 

-based errors across conditions seen in Experiment 1 may 

have been spurious.  

 The strong expectation from previous research was that, all 

things equal, an agglutinating system should be easier to learn 

than a fusional system. This advantage was not borne out in 

Experiments 1 and 2. However, we are exploring the early 

stages of learning these systems, and thus one possibility is 

that participants in the agglutinating condition were not 

segmenting the morphemes–i.e., they may have been treating 

the string of two morphemes as a single morpheme, encoding 

both NUMBER and CLASS. If so, then we would not expect any 

difference between conditions. Indeed, the post-test 

questionnaire reveals that at least some participants failed to 

segment the stems and morphemes. In Experiment 3 we test 

whether an advantage for the agglutinating system is revealed 

if we provide a visual cue to aid segmentation.  

 

 
 

Figure 5: Mean accuracy by trial by condition in Experiment 

2. 

 

 
 

Figure 6: Classification of incorrect choices by correct 

feature (CLASS correct NUMBER wrong, NUMBER correct 

CLASS wrong, or neither correct) by trial block by condition 

in Experiment 2. Trial number is binned for readability. Note 

that the y-axis range does not display the full range.  

 

Experiment 3 
Methods 

Participants. 100 participants were recruited on Amazon 

Mechanical Turk, all self-reported as English native 
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speakers. They were paid $4 for their time. Participants were 

randomly assigned to one of the conditions (51 in the fusional 

and 49 in the agglutinating condition). 

 

Materials. The language was identical to Experiments 1 and 

2, however, a visual cue to the segmentation of words and 

morphemes was provided. In each trial, morphemes were 

highlighted with color (Figure 7). In the agglutinating 

condition, the CLASS morpheme was highlighted in one color 

and the NUMBER morpheme in another. Participants were 

randomly assigned to see either CLASS in orange and NUMBER 

in blue, or vice versa. In the fusional condition, all four 

morphemes were randomly assigned a single color so that a 

participant would either see all morphemes across all 96 trials 

in orange or all morphemes in blue.  

 

 
 

Figure 7: Example trial in Experiment 3, agglutinating 

condition. This trial shows an inanimate, plural object. 

 

Procedure. The procedure was identical to Experiments 1 

and 2. 

 

Results. Figure 8 shows mean accuracy in correct answers 

across conditions. As in Experiments 1 and 2, participants 

generally improved from the start to the end as expected, and 

overall performance appears to be similar across conditions 

(agglutinating M=0.59, SD=0.25; fusional M=0.59, 

SD=0.23). We ran a model predicting correct answer by 

condition, trial (coded 0-95), and their interaction. Condition 

was dummy-coded, with agglutinating as the reference level. 

The model revealed a significant effect of trial number 

(b=0.03, SE=0.005, p<0.001), indicating that participants 

improved their accuracy over the course of the experiment, 

but no effect of condition (b=0.23, SE=0.18, p=0.21) and no 

condition by trial number interaction (b=-0.003, SE=0.01, 

p=0.64). The latter interaction would have indicated a more 

rapid improvement in one or the other condition indicating a 

learnability advantage for one type. 

 

 
 

Figure 8: Mean accuracy by trial by condition in Experiment 

3. 

 

 
 

Figure 9: Classification of incorrect choices by correct 

feature (CLASS correct NUMBER wrong, NUMBER correct 

CLASS wrong, or neither correct) by trial block by condition 

in Experiment 3. Trial number is binned for readability. Note 

that the y-axis range does not display the full range.  

 

We repeated our analysis of error types across conditions 

(Figure 9). In this case, the model revealed a significant effect 

of trial (b=0.01, SE=0.004, p=0.03), no significant effect of 

condition (b=0.29, SE=0.20, p=0.14), and a significant 

interaction between condition and trial (b=0.02, SE=0.01, 

p=0.01). Thus, as in Experiment 1, but not 2, participants in 

the fusional condition were significantly more likely to 

choose an answer in which only CLASS was correct.  

Discussion 
 
It has been claimed that agglutinating systems should be 

easier to learn because of their inherent transparency: there is 

a one-to-one mapping between morphemes and meanings in 

these systems. Here, we directly contrasted a fusional with an 

agglutinating system, holding the number of morphemes to 

be learnt constant. We found no clear learnability advantage 

for agglutinating systems across three experiments. In two of 

our three experiments, we found a difference in the error 

patterns between conditions: participants in the fusional 

condition were more likely to make errors involving NUMBER 

than CLASS. This error pattern could reflect a bias for 
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transparency. Participants may have been inferring a single 

four-way distinction, which was possible for CLASS but not 

NUMBER. However, this effect was not strong enough to result 

in an overall advantage for the agglutinating system, and it 

failed to replicate in one experiment. Our results are 

surprising, given the general and wide-ranging claims in the 

literature concerning relative ease of learning of 

agglutinating systems. It may be that an apparent advantage 

for agglutinating systems reported in the literature is due to 

confounding differences between the systems in question. 

However, below we discuss alternative explanations for our 

failure to uncover the advantage here.  

 One possibility is that the paradigms we are testing are too 

small to result in a discernable difference in learnability. It 

has been noted that compositionality (and therefore 

transparency) is increasingly beneficial the larger the 

paradigm is. This was explored computationally by Brighton 

(2002), who shows that a compositional system for 

expressing a few features is hardly more learnable than a 

holistic system covering the same semantic space; the 

learnability advantage of compositional systems is 

maximized when each meaning is composed of many binary 

features. However, the paradigms we used were intentionally 

small, consisting of just two features, allowing us to test for 

a learning advantage arising purely from transparency in the 

absence of benefits associated with increased 

generalizability. It is therefore possible that the advantages of 

agglutinating systems derive purely from the fact that they 

facilitate more rapid generalization, in which case we would 

not expect to see that advantage in our paradigm. 

 Another possibility is that agglutinating systems bear 

additional costs which have not been much discussed in the 

literature. One such cost is clearly segmentation. Learners 

can only profit from compositionality if they are able to 

segment a word into morphemes, but this process might be 

costly. To eliminate this issue, we used color highlighting in 

Experiment 3. However, the null effect of condition on 

overall accuracy was replicated, suggesting that 

segmentation alone will not suffice to explain why learners 

did not have an easier time acquiring the agglutinating 

system. 

 Compositional structure typically means more material to 

process for each word: for example, as is typical cross-

linguistically, words were longer in our agglutinating 

condition than in our fusional condition.  It is therefore 

possible that word length (perhaps combined with 

segmentation cost) has a detrimental effect on the learnability 

of the agglutinating system. 

Finally, seeing a word and its referent (here, an image) in 

an agglutinating system does not illustrate the meaning of 

each individual morpheme. Learners of compositional 

systems need a set of examples to compare and pin down 

which morpheme expresses which meaning; learning an 

agglutinating system therefore potentially poses a cross-

situational learning problem (similar to that explored by e.g. 

Yu & Smith, 2007, where multiple words are simultaneously 

mapped to multiple referents and the precise word-to-referent 

mapping can only be disambiguated across trials) that is less 

pronounced for fusional systems. It is possible that this cost, 

which is often overlooked, together with the length of words 

and the small size of the paradigm, did not provide a 

condition under which an agglutinating system becomes 

easier to learn than a fusional system. 

Conclusion 
 
In this paper, we investigated the frequently-made claim that 

agglutinating systems are easier to learn than fusional 

systems due to their inherent transparency. Results from three 

artificial learning experiments did not show the predicted 

effect. This held even when a visual cue to segmentation was 

added to help participants discover morpheme boundaries in 

the agglutinating condition. While some weak evidence for a 

possible bias for transparent structures was found in 

participants’ error patterns, this did not lead to an overall 

difference in learning.  We argue that this may be due to the 

small size of the paradigms, which narrow the extent of the 

benefit for transparency. Some natural language paradigms 

are of course larger, and these might provide conditions under 

which the costs of agglutinating systems outweigh those of 

fusional systems. Setting aside paradigm size, we also argue 

that agglutinating systems may present additional costs in 

processing which have not yet been fully explored. 
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Abstract 

The purpose of these studies was to investigate the role of 

distributed cognition in defusing the impact of evaluative 

pressure caused by performance-approach goals on mental 

arithmetic performance. Performance-approach goals can 

generate worrying thoughts that can deplete working memory 

resources. However, some of these working memory 

limitations can be compensated by off-loading the internal 

cognitive process to the external environment. We tested this 

prediction in two experiments. Participants carried out modular 

arithmetic tasks in a performance-approach goal or mastery-

approach goal condition crossed with interactivity or no 

interactivity. Performance-approach goal manipulation 

hampered cognitive performance (accuracies), (Experiment 1). 

However, these negative effects were defused with the help of 

interactivity (Experiment 2). Interestingly, the mastery-focused 

individuals had a performance drop in the interactive condition 

(Experiment 1 and Experiment 2). Finally, experiment 2 

reported higher maths anxiety levels for the performance-

focused individuals. Reasons for the findings and future 

implications will be discussed. 

Keywords: achievement goals; working memory, mental 
arithmetic; distributed cognition; interactivity 

Introduction 

Achievement goals are said to reflect the aim of an 

individual’s achievement pursuits. They are frameworks that 

can help to understand how individuals react to various 

achievement situations (Poortvliet & Darnon, 2010). There is 

a wealth of research on achievement goals and their effects 

on academic performance. But much less is known about the 

cognitive processes of these goals and particularly the effects 

on the working memory and whether distributed cognition 

could be used to reduce the negative effects of performance 

goals on academic performance.  

 

Achievement goals 
Individuals pursuing performance-approach goals are good at 

knowing the material that is essential for the task in hand 

(Elliott, Shell, Henry, & Maier, 2005). They listen to the cues 

about the future assignments and adjust learning based on 

these cues. Students perform better when they focus on topics 

that the teacher deems important and that are tested 

(Broekkamp, Hout-Wolters, & Van Hout-Wolters, 2007). 

Performance-focused students concentrate on memorizing 

rather than elaboration and knowledge construction 

(Entwistle, 1988). This can lead to surface learning and rote 

learning (Harackiewicz & Linnenbrink, 2005). Mastery-

focused students are freer to pursue their own agenda guided 

by their own personal interests and curiosity of the current 

topic. Hence, mastery-approach goals predict the use of 

adaptive cognitive strategies that lead to deeper processing. 

This kind of approach might benefit the students in the long 

run as it promotes deeper learning but might not help in 

gaining the highest grades as it is based on personal interests 

rather than the areas that might be tested. When people pursue 

performance-approach goals, their focus is on the outcome of 

the task and therefore the individuals might not be fully 

engaged with the process. On the contrary, mastery-focused 

individuals focus on the process rather than the activity of 

outperforming others. Mastery-focused individuals focus on 

learning and their personal improvement, and therefore have 

a focus on the task that allows them to explore both intrinsic 

and utility value (Hulleman, Durik, Schweigert, & 

Harackiewicz, 2008). 

 

The Effects of Performance-approach Goals on 

Working Memory 
The pressure of outperforming others can generate concerns 

that deplete available working memory resources. 

(Crouzevialle & Butera, 2013). When high working memory 

load tasks were utilized, there was a performance drop in the 

high evaluative pressure condition (Beilock, Holt, Kulp, & 

Carr, 2004). Additionally, Avery and Smillie (2013) 

examined the influence of achievement goal pursuits on 

working memory capacity when varying levels of executive 

load were used. Under the high executive load, there was 

poorer working memory processing during the performance-

approach goal than when mastery-approach goal or no-goal 

control were used (Avery & Smillie, 2013). 

 

Distributed Cognition 
Some of the possible working memory limitations can be 

compensated by off-loading the cognitive process to the 
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external environment (e.g., by using pen and paper), (Neth & 

Payne, 2011). According to Kirsh (2010), cognitive processes 

go to wherever it is easier to perform them. It might be easier 

to understand a particular sentence by drawing a picture of it 

rather than just thinking internally. Therefore, with the help 

of drawing the overall cognitive cost of sense making can be 

reduced (Kirsh, 2010). Kirsh (1995) conducted a simple coin 

counting experiment where he observed that complementary 

strategies could enhance performance (Kirsh, 1995). Neth 

and Payne (2011) asked participants to add coins on a 

computer screen in move versus look conditions. Accuracy 

increased with interactivity but not the speed. Both accuracy 

and speed were increased with the help of using hands (in the 

pointing condition) when counting arrays of items (simple 

arithmetic task), (Carlson, Avraamides, Cary, & Strasberg, 

2007). Interactivity enhanced performance, and in particular, 

accuracy and efficiency for longer sums involving 11 single-

digit numbers (Vallée-Tourangeau, 2013).    Additionally, 

interactivity allows the agent to extend their working memory 

resources when there is a need for it.  Dyslexic children (aged 

between 9 – 11 years) benefited the most form rearranging 

the letter tiles (interactive condition) in a word production 

task. By reshaping the physical presentation of the letters, 

their less efficient working memory capabilities could be 

compensated. The control group (typically developing 

children) did not benefit from externalizing the process. In 

fact, their performance was poorer (with easy set of letters) 

when they manipulated the letter tiles to produce words 

(Webb & Vallée-Tourangeau
 

Maths anxiety 
Maths anxiety is a multidimensional construct, and a full list 

of the causes is still undetermined. Maths anxiety can be 

defined as a feeling of apprehension and tension in a 

mathematical setting which can also affect overall 

mathematics performance. The highly maths-anxious 

individuals avoid mathematics as a topic and choose fewer 

elective mathematics courses in secondary school and 

university (Ashcraft, 2002).  The maths-anxious individual is 

pre-occupied with the maths fears and the overall capacity of 

working memory gets affected. This pre-occupation 

functions as a secondary task that is heavily working memory 

resource demanding (Ashcraft & Krause, 2007). Maths 

anxiety causes a transitory disruption of working memory. 

The lower working memory capacity of high maths-anxious 

individuals is partially responsible for the maths performance 

decrements. This reduced working memory capacity is on-

line effect that disrupts information processing in maths tasks 

(Ashcraft & Kirk, 2001). Finally, maths anxiety is higher 

among women than men (Ashcraft & Faust, 1994; 

Luttenberger, Wimmer, & Paechter, 2018). To increase the 

chances of selecting maths-anxious individuals, we included 

women only in the sample. 

 

 

 

 

Experiment 1 

 
The aim of the current study was to understand how mastery-

approach goal and performance-approach goal engage 

working memory resources and whether interactivity could 

be used to reduce any of the negative effects of performance-

approach goals on maths performance. If the working 

memory is loaded due to outcome related worry then there is 

additional taxation on the working memory (Crouzevialle & 

Butera, 2013). And together with the horizontally presented 

maths problems (modular arithmetic tasks) there can be 

maths performance decrements when in the performance-

approach goal condition (Beilock, 2008). We reasoned that, 

if worries of outperforming others lead to poor maths 

performance, then giving students the opportunity to 

externalize the internal cognitive process would enhance this 

performance.  

 

 

Method 
Participants 

 
Forty-one female undergraduate psychology students (M = 

21.88 SD = 3.90) participated in this study for exchange of 

credits. After consenting to participate in the study, subjects 

were randomly assigned to one of the experimental 

conditions (performance-approach goal or mastery-approach 

goal crossed with interactivity or no interactivity). The 

participants were tested individually (15 minutes) in a 

psychology lab. 

 

Material and Measures 

Arithmetic task There were two blocks of 24 modular 

arithmetic tasks that relied heavily on working memory 

resources, adapted from Beilock and Carr (2005). The 

purpose of the tasks is to judge the validity of maths problems 

like 61 ≡ 18 (mod 4). The middle number is subtracted from 

the first number (i.e. 61-18) and then the difference is divided 

by 4. If the answer is a whole number the maths problem is 

true (Beilock & Carr, 2005). Modular arithmetic tasks as 

laboratory tasks are advantageous as most students have not 

seen them before and therefore previous task experience is 

controlled.  

High-demand problems (e.g. 42 ≡ 27 (mod 3)) requiring a 

double-digit subtraction operation were used as they required 

borrowing, resulting in using more working memory 

resources. Half of the maths problems required a true 

response by the participant.  The order of the questions was 

randomized and each question was asked only once. The 

original questions used by Beilock and Carr (2005) were a 

mixture of high demand problems (two-digit numbers 

requiring borrowing) and low-load questions (single-digit 

numbers, without borrowing). The current study used the 

high-demand problems only because of limited benefits of 

using interactivity with low-demand tasks.  
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The modular arithmetic tasks were presented in a horizontal 

format as opposed to a vertical format (also called column 

subtraction). The horizontal presentation of the maths 

problems is more reliant on phonological resources (the 

verbal resources) because individuals maintain the required 

problem steps in their memory verbally (DeStefano & 

LeFevre, 2004). The possible worries of performing better 

than others places much heavier demands on working 

memory (phonological loop, in particular).  

Experimental manipulations Participants were informed 

after completing the baseline block of modular arithmetic 

tasks (24) that they required to complete a second block (24) 

of modular arithmetic tasks, and this time their performance 

would be recorded. The participants in the performance-

approach goal condition read the following instructions 

before starting the task that were aimed at activating 

performance-approach goals (Darnon, Harackiewicz, Butera, 

Mugny, & Quiamzade, 2007):  

“During the recorded part of the task, the experimenters will 

assess your performance. It is important for you to be 

proficient, to perform well and obtain a high score, in order 

to demonstrate your competence. You should know that a lot 

of students will do this task. You are asked to keep in mind 

that you should try to distinguish yourself positively, that is, 

to perform better than majority of students. In other words, 

what we ask you here is to show your competencies, your 

abilities.” 

The participants in the mastery-approach goal condition read 

instructions that were designed to activate mastery-approach 

goals. There is no social comparison being made and the 

instructions are aimed to create task interest, use for everyday 

life, and there is no mention about scores or task performance 

(Crouzevialle, Smeding, & Butera, 2015). 

“In previous research, we have observed that practice of the 

arithmetic task you are solving right now benefits to cognitive 

functioning and leads to a progressive improvement of 

mental processes. Hence, this task solving can proved to be 

beneficial on the long-term. It is however necessary that you 

focus your attention on calculation mastery, so as to quickly 

and accurately solve each problem, in order to experience 

these benefits. Try to master this task as much as you can; 

keep in mind its practice can be beneficial to you.” 

Interactivity The participants in the interactive condition 

were allowed to use pen and paper. The participants in the 

non-interactive condition were not allowed to use any 

external artefacts to complete the task. 

Procedure 

After consenting to participate in the study, the participants 

were randomly assigned to one of the experimental 

conditions. There was a short training session before starting 

the first block. The first block of questions (24) functioned as 

a base-line. The participants were told that it was a training 

block, and that their performance was not recorded to avoid 

any achievement goal activation. The second block of 

questions was done under the experimental conditions. The 

participants were told that their performance was recorded 

this time. 

 

Results 

Accuracy  

Before the actual statistical analysis was conducted, it was 

concluded that there were no group differences between the 

participants in the mastery-approach goal condition and 

performance-approach goal condition on the baseline 

modular arithmetic performance (block 1), F(1, 37) = .08, p 

= .78, ŋp
2 = .002, confirming that the groups did not differ in 

their ability to complete the modular arithmetic tasks. Our 

main performance measure was accuracy of the high working 

memory load tasks. Accuracy difference score was calculated 

by subtracting the modular arithmetic performance of block 

1 from block 2.  Furthermore, a difference score in latencies 

was used as a covariate in order to avoid any speed-accuracy 

trade-off of the participants. A 2 (instruction: performance-

approach goal or mastery-approach goal) x 2 (level of 

interactivity: interactivity or control) between-groups 

analysis of covariance (ANCOVA) was conducted. The 

covariate, difference score in latencies, was significantly 

related to the modular arithmetic accuracy, F(1, 36) = 5.76, p 

=.02, ŋp
2 = .14. There was a significant two-way 

interaction of interactivity (interactivity or control) and 

instruction (performance-approach goal or mastery-approach 

goal), F(1, 36) = 4.39, p = .043, ŋp
2 = .11. As expected, 

performance-focused participants had lower maths 

performance in the non-interactive condition (M = -7.43, SE 

= 2.50) than the mastery-approach goal individuals (M = 

5.44, SE = 2.38), (Figure 1).  The post hoc tests confirmed 

this finding, F(1, 18) = 11.1, p = .004, ŋp
2  = .38. However, 

mastery-focused individuals had a performance drop in the 

interactive condition (M = -2.37, SE = 2.50) compared with 

their performance in the non-interactive condition (M = 5.44, 

SE = 2.38), (Figure 1). Post hoc tests confirmed this finding, 

F(1, 18) = 4.90, p = .04, ŋp
2  = .21. Additionally, there was a 

main effect of instruction (mastery-approach goal or 

performance-approach goal), F(1, 36) = 9.72, p = .004, ŋp
2 = 

.21 . The modular arithmetic performance of the mastery-

approach goal participants was enhanced from block 1 to 

block 2 (M = 1.53, SE = 1.72). As predicted, there was 

reduced modular arithmetic performance of the performance-

approach goal participants (M = -6.16, SE = 1.76). Finally, 

interactivity did not improve modular arithmetic 

performance, F(1, 36) = 1.13, p = .30, ŋp
2 = .03. 
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Figure 1: Mean difference in modular arithmetic 

performance (%) as a function of experimental condition 

(Experiment 1). 

Discussion 

We found that when the performance-approach goal was 

made salient, there was a drop in the mental arithmetic 

performance compared with the mastery-approach goal 

participants. Additionally, an interesting finding was made in 

relation to mastery-focused individuals, their modular 

arithmetic performance was reduced when the participants 

were allowed to interact with external resources (with the use 

of pen and paper). 

Experiment 2 

It was clear from Experiment 1 that the mental arithmetic 

performance of the performance-focused participants was 

depleted compared to the mastery-goal individuals. We 

therefore argued that it would be the performance-focused 

individuals that would show higher levels of maths anxiety 

due to the worrying thoughts of outperforming others, in a 

mathematical domain.  Experiment 2 therefore measures 

maths anxiety of the participants both before the experiment 

(trait maths anxiety) and after (state maths anxiety). If maths 

anxiety is elevated when performance-approach goal is made 

salient then there should be more benefits of externalizing the 

internal cognitive process to the outside world (interactivity) 

for the performance-focused individual.  

 

Method 
Participants 

 
Seventy-eight female undergraduate psychology students (M 

= 19.12, SD = 1.60) participated in this study for exchange of 

credits. This study only included females due to their higher 

levels of maths anxiety. After consenting to participate in the 

study, the participants were randomly assigned to one of the 

experimental conditions. The participants were tested 

individually in a psychology lab (40 minutes). 

 

Material and Measures 

 
Mathematics anxiety (trait) Maths anxiety was measured 

with the 23-item Mathematics Anxiety Scale (MAS-UK) by 

Hunt, Clark-Carter, and Sheffield (2011). The test comprises 

statements that relate to everyday situations that have a 

mathematics component (e.g., adding up a pile of change). 

The participants are expected to respond by confirming the 

level of anxiety that they feel on a 5-point Likert-type scale.  

Basic arithmetic skills Basic arithmetic skill (BAS) was 

measured with the help of 45 simple expressions in a 60-

second period (e.g. 10-5).  

Computation span (Working memory) Working memory 

capacity was measured with the help of a computation-based 

span test. The participants were asked to read a simple 

arithmetic expression (e.g. 5 + 2 = ?, 9 – 6 = ?) and announce 

their answer aloud to the researcher (7, 3). Additionally, the 

participants were asked to remember the second number of 

each equation to be recalled later (2, 6). The sequences of the 

simple arithmetic tasks varied from 1 to 7 tasks. The 

computation span task requires both on-line processing for 

the problem solution which is simultaneous with storage and 

maintenance of information in working memory for serial 

recall. People with maths anxiety have smaller working 

memory spans. This smaller span can lead to increased 

reaction times and errors when mental mathematics is 

completed at the same time as a memory load task (Ashcraft 

& Kirk, 2001). 

Arithmetic task The mental arithmetic task consisted of 

modular arithmetic tasks (two blocks of 24 questions) that 

relied heavily on working memory resources, adapted from 

Beilock and Carr (2005). The arithmetic task was identical to 

Experiment 1. 

Mathematics anxiety (state) Maths anxiety was measured 

with the 23-item Mathematics Anxiety Scale (MAS-UK) by 

Hunt, Clark-Carter, and Sheffield (2011). This test was the 

same as the trait measurement used earlier during the 

experiment but this time referring to present time (now). 

Experimental manipulations Participants were informed 

that after completing the baseline block of modular arithmetic 

tasks (24) that they required to complete a second block (24) 

of modular arithmetic tasks, and this time their performance 

would be recorded. The actual priming instructions were 

identical with the experiment 1. 

Interactivity As before the participants in the interactive 

condition were allowed to use pen and paper to come to the 

solution. The participants in the non-interactive condition 

were not allowed to use any external artefacts. 

Procedure 

 
After consenting to participate in the current study, the 

participants started with the trait maths anxiety questionnaire. 

This was then followed by the timed basic arithmetic skills 
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test. Before commencing with the modular arithmetic tasks in 

primed conditions, computation span (working memory 

capacity) was assessed. There was a short training session (2 

questions) before starting the first block of the modular 

arithmetic problems (24). Only high-demand problems 

requiring a double-digit subtraction operation (e.g. 42 ≡ 27 

(mod 3)) were used as they required more of the working 

memory resources compared to low-demand problems 

(single-digit operation, and no carrying required) (Ashcraft & 

Kirk, 2001). After the baseline the participants were primed 

to either performance-approach goal condition or mastery-

approach goal condition. If in the interactive condition, the 

use of pen and paper was allowed. After completing the 

second block of arithmetic tasks in primed conditions, the 

participants were asked to complete the state maths anxiety 

questionnaire.  

 

Results 
Accuracy  

 
There were no group differences between the participants in 

the two achievement goal groups on the baseline modular 

arithmetic performance (block 1), F(1, 74) = 1.77, p = .19, ŋp
2 

= .02, confirming that the groups did not differ in their ability 

to complete the modular arithmetic tasks. Additionally, there 

were no group differences in working memory capacity, F(1 

,74) = 1.17, p = .28, ŋp
2  = .02, confirming the fact that the two 

achievement goal groups did not differ in their level of 

working memory capacity as a baseline measure.  To test the 

hypotheses, accuracy difference in percentage score (block 2 

- block 1) of the modular arithmetic tasks was examined. A 2 

(level of interactivity: interactivity or control) x 2 

(instruction: performance-approach goal or mastery-

approach goal) between-groups analysis of covariance 

(ANCOVA) was conducted. There was a significant two-way 

interaction of interactivity (interactivity or control) and 

instruction (mastery-approach goal or performance-approach 

goal) after controlling for a difference score in latencies, F(1, 

73) = 10.04, p = .002, ŋp
2 = .12. The performance-focused 

participants benefited from the use of interactivity (M = 3.70, 

SE = 1.80) unlike the mastery-focused individuals whose 

performance was depleted with interactivity (M = -3.30, SE = 

1.90), (Figure 2). The post-hoc test confirmed this finding, 

F(1, 36) = 10.67, p = .002, ŋp
2 = .23. The accuracy of the 

mastery-approach goal participants was reduced in the 

interactive condition (M = -3.30, SE = 1.90) compared with 

the non-interactive condition (M = 5.40, SE = 1.80) (Figure 

2). This finding was confirmed with a post-hoc test, F(1, 36) 

= 6.82, p = .01, ŋp
2 = .16. The two main effects (interactivity 

or instruction) did not reach statistical significance. There 

was no significant difference in accuracy between the 

participants in the interactive condition and the participants 

in the non-interactive condition, F(1, 73) = 2.35, p = .13, ŋp
2 

= .03. Additionally, the main effect of instruction (mastery-

approach goal or performance-approach goal) did not reach 

statistical significance (F < 1). 

 

Figure 2: Mean difference in modular arithmetic 

performance (%) as a function of experimental condition 

(Experiment 2). 

Maths anxiety (state) 
A two-way between groups analysis of covariance 

(ANCOVA) was conducted to compare the effects of 

interactivity on two levels of instructions that were given to 

the participants (mastery-approach goals or performance-

approach goals) when completing the modular arithmetic 

tasks. Participants’ scores on maths anxiety (trait) were used 

as the covariate in this analysis. After adjusting for pre-

existing maths anxiety levels (trait maths anxiety), there was 

a significant main effect of instruction (mastery-approach 

goal or performance-approach goal) on state maths anxiety, 

F(1, 73) = 6.07, p = .02, ŋp
2 = .08. The performance-focused 

individuals showed higher levels of maths anxiety after 

completing the experiment in primed conditions (M = 56.0, 

SE = 1.98) than the mastery goal participants (M = 49.1, SE 

= 1.98) confirming the hypothesis set in the beginning. The 

main effect of interactivity did not reach statistical 

significance, F < 1, as did not the two-way interaction of 

instruction and interactivity either. 

 

General discussion 

 
The purpose of this study was to see whether the adverse 

effects of performance-approach goals on mental arithmetic 

performance could be alleviated with the use of distributed 

cognition. This investigation reported a performance drop in 

mental arithmetic performance for the performance-focused 

individuals in the non-interactive condition compared with 

the mastery-approach goal individuals (Experiment 1). 

However, interactivity mitigated the negative effects of 

performance-approach goal instructions on maths 

performance (Experiment 2). Additionally, we found that 

performance-focused participants felt higher levels of state 

maths anxiety, after completing the maths tasks (Experiment 
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2). Clearly, the priming instructions of performance-

approach goals had strong carry-on effects on maths anxiety 

as they were still felt after completing the mental arithmetic 

tasks. However, it was evident that there were no carry-on 

effects of interactivity at the end of the experiment. An 

interesting finding was made as there was reduced maths 

performance for the mastery-focused individual in the 

interactive condition (Experiment 1 and Experiment 2). It 

was clear that distributed cognition hindered maths 

performance for the mastery-focused individual who was less 

maths anxious after the experiment but allowed the more 

maths-anxious individual (the participants in the 

performance-approach goal) to improve mental arithmetic 

performance. Similar findings have been made by Webb and 

Vallée-Tourangeau (2009) who concluded that when the 

agent had the required cognitive resources to complete the 

word production task, interactivity hampered the 

performance. If working memory resources are not 

compromised from increased maths anxiety levels (like in the 

mastery-approach goal environment), then there are little 

benefits of externalising the internal cognitive process to the 

outside world. 

 

Conclusion 

 
To allow for a successful distributed cognition outcome it is 

of importance to understand how individuals are affected by 

the different achievement goals. Clearly, the effective 

manipulation of the physical problem space is relative to the 

level of the task difficulty (e.g., modular arithmetic tasks) as 

well as the cognitive abilities (working memory resources in 

particular) of the individual. Finally, it is important to 

consider the implications of these studies on a practical level. 

Future mathematics education should take into consideration 

the findings of these two experiments in a way to make the 

learning experience more interactive for the more maths-

anxious individuals (performance-focused individuals). The 

maths-anxious individual should be given the opportunity to 

reshape the presentation of the mathematical problems to 

extend their cognitive systems. By doing this, the working 

memory capacity can be augmented and as a consequence, 

the maths performance enhanced.  
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Abstract 

Human adults share the ability to approximate large quantities 
without counting with newborn infants and non-human species. 
This ability is supported by the Approximate Number System 
(ANS) - a primitive and domain-specific cognitive system that 
supports noisy numerical decisions. How does the ANS support 
active exploratory decisions? Using a numerical comparison 
task, we found that the amount of active information seeking 
does not simply increase as the decision becomes more difficult. 
Instead, there seems to be an inverted U-shaped relationship 
between trial difficulty and how much one chooses to seek 
information. Additionally, this effect is not modulated by 
participants’ performance, suggesting that participants’ 
exploratory decisions based on ANS representations are driven 
by the utility of information seeking actions. 

 

 Keywords: Information Seeking; Active Learning; 
Approximate Number System; Decision Making 

 

Introduction 
How the mind processes sensory data and interprets the 

physical world is the hallmark question in cognitive science. 
However, the data we receive from the physical world is not 
readily interpretable. Rather than passively absorb all the 
information that is available, humans and animals actively 
explore and selectively attend to aspects of the world 
(Gottlieb, Oudeyer, Lopes, & Baranes, 2013). This kind of 
active exploration and selective attention is essential to 
effective learning and proper cognitive functioning. What 
determines when we want to explore and to what we choose 
to attend? 

It has been widely demonstrated that observers, humans 
and animals alike, are drawn to novel and surprising events, 
which is often explained by a motivation to decrease errors 
in prediction (Loewenstein, 1994; Schultz & Dickinson, 
2000). According to Loewenstein, an observer’s desire to 
learn about a specific topic is driven by a discrepancy 
between the observer’s existing knowledge and what they 
would like to know. Consistent with this account, infants as 
young as 10 months old can form expectations about object 
behavior, and explore more when these expectations are 
violated (Stahl & Feigenson, 2015). Relatedly, school-age 
and preschool children prefer to play with toys whose 
functionality are ambiguous or unexpected (Bonawitz, van 
Schijndel, Friel, & Schulz, 2012; Schulz & Bonawitz, 
2007). This kind of prediction errors cannot only be 

mathematically defined, but has also been decoded from 
neuronal activities (Bromberg-Martin & Hikosaka, 2011).  

In addition to novelty and surprise, humans and animals 
are also drawn to more complex stimuli or more difficult 
situations (Berlyne, 1966). For example, when confined in a 
minimally-stimulated space, adults prefer to produce light 
patterns that are the most diverse and unpredictable (Jones, 
Wilkinson, Braden, 1961). In another experiment, when 
probed about their curiosity about facts related to different 
animal species, adult participants were more curious about 
facts that they knew less about (Berlyne, 1954). These 
phenomena, that exploration is driven by novelty, surprise, 
and complexity, are consistent with the information 
processing account that defines information gain by 
uncertainty (Berlyne, 1960). 

However, this tendency to be drawn to situations with 
maximum uncertainty (and to reduce it through learning 
actions) seems counterproductive in many cases. In 
particular, when the gap between one’s current epistemic 
state and the information provided by the environment is too 
big, actions of learning and exploration can yield little 
benefit. For example, no matter how much effort a reader 
puts into staring at some foreign words without knowing the 
language or having access to a dictionary, the reader would 
still have no clue what the words mean.  

Instead of linearly increasing exploratory actions as 
uncertainty increases, numerous studies have demonstrated 
a trade-off between the cost and benefit of information 
seeking actions (Coenen, Nelson, & Gureckis, 2018). When 
reading and rating contentful questions, such as “what 
instrument was invented to sound like human singing,” 
adult participants’ rated level of curiosity was the highest 
for questions that they had intermediate levels of 
confidence, and their level of curiosity was the lowest for 
questions in which they either had extremely low 
confidence or extremely high confidence (Kang et al., 
2009). In a different exploratory situation, where each task 
option was initially hidden from participants, participants’ 
exploratory decisions also followed a similar U-shaped 
pattern - they explored the most when the task was 
moderately difficulty, and explored less when the task was 
either too easy or too hard (Baranes, Oudeyer, & Gottlieb, 
2014).   

Consistent with these results, the field of developmental 
robotics suggests that exploration is based on dynamic 
changes in the rate of learning (Gottlieb, Oudeyer, Lopes, & 
Baranes, 2013; Oudeyer, Kaplan, & Hafner, 2007). Robots 
with this rate-based learning system can efficiently learn 
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skills in high dimensions without being distracted by 
activities that are either well learnt or unlearnable (Baranes 
& Oudeyer, 2013; Pape et al., 2012). Exploration increases 
as the rate of information increases. In cases when there is 
very low certainty (or high uncertainty), any particular 
action may produce new information, but if the problem 
space is complex enough, then additional information may 
not produce significant shifts in belief weights -- thus highly 
complex environments may not produce information that 
supports learning rates. Instead, learning rate may be highest 
in the Goldilock’s spot (Kidd, Piantadosi, & Aslin, 2012), in 
which any particular action produces information to support 
a steeper learning rate. This predicts that, rather than a direct 
linear relationship, exploration should be lowest at both 
extremely low and extremely high levels of uncertainty, and 
exploration should be the highest at an intermediate levels, 
where information has the highest rate of return.  

Results from infants’ preference for object complexity are 
consistent with this account. Seven- and 8-month-old 
infants’ probability of looking at an event was the lowest 
when looking at either highly predictable or highly 
surprising content (Kidd, Piantadosi, & Aslin, 2012; 2014; 
Piantadosi, Kidd, & Aslin,  2014; see also Pelz & Kidd, in 
prep). These results suggest that infants are able to direct 
their attention to maintain an intermediate rate of 
information absorption. It is possible that this kind of 
attentional mechanism is in place to prevent infants, who 
arguably have the most to learn and the least resources, from 
wasting cognitive resources on either overly predictable or 
overly unpredictable information.  

One open question is whether adults reveal such trade-
offs in active exploratory decision making situations.  It is 
possible that this kind of balance between cognitive 
resource and exploration is unique to childhood. Another 
open question is whether such trade-offs are unique to novel 
learning environments or tasks that require higher-level 
conceptual reasoning, such as deciding what questions to 
ask or which route to take in a novel environment. When 
performing familiar activities using acquired skills, one may 
not need to adjust exploration based on uncertainty. 
Alternatively, the expected information gain from 
exploratory actions may explain information seeking 
behavior beyond these contexts.  

To address these questions, the current study uses adults’ 
exploratory decisions using a primitive cognitive system as 
a case study to test the relationship between problem 
difficulty and adults’ exploratory decisions. Upon seeing 20 
dots and 10 dots, without counting, we can immediately tell 
which array has more dots. This ability to automatically and 
effortlessly discriminate large numerosities is supported by 
the Approximate Number System (ANS;  Dehaene, 1997), 
which produces noisy and ratio-dependent representations in 

human adults (Halberda, Ly, Wilmer, Naiman, & Germine, 
2012), newborn infants (Izard, Sann, Spelke, & Streri, 
2009), as well as non-human species (Cantlon, Platt, & 
Brannon, 2009; Dehaene, Dehaene-Lambertz, & Cohen, 
1998). With ANS representations, discriminating 20 dots 
from 10 is just as easy as discriminating 40 from 20 (a ratio 
of 2), but both are easier than discriminating 15 from 10 (a 
ratio of 1.5). The discriminability of numerosities is 
determined by the numerical ratio, instead of set size, non-
numerical dimensions (such as size of individual dots). In 
other words, the Approximate Number System strictly 
obeys Weber’s Law (Dehaene, 2003). This well-established 
law allows us clean control over the difficulty and 
uncertainty of the trials - the less discriminable the trials 
(the closer the ratio), the more uncertainty. Additionally, 
infants and adults are able to maintain multiple numerical 
representations at once (Feigenson, 2008; Zosh, Halberda, 
& Feigenson, 2011).  

This intuitive and automatic cognitive system provides a 
case study for testing the scope of the expected information 
gain account - whether adults’ decision making using the 
intuitive and automatic numerical representations also 
demonstrate a cost and benefit trade-off of information 
seeking actions. It has been recently suggested that adults 
and children are sensitive to their internal confidence in 
numerical decisions (Baer, Gill, & Odic, 2018; Halberda & 
Odic, 2015), and numerical precision can be influenced by 
the order of trial difficulty (Odic, Hock, & Halberda, 2014; 
Wang, Libertus, & Feigenson, 2018; Wang, Odic, Halberda, 
& Feigenson, 2016). It is possible that this sensitivity to 
internal confidence or uncertainty drives adults’ exploratory 
decisions in a way that balances the cost and benefit of 
information seeking actions. On the other hand, 
neuroimaging studies revealed that the encoding of ANS 
signals are extremely rapid - as fast as 180ms in the bilateral 
occipital-parietal sites (Hyde & Spelke, 2009; Park, 
DeWind, Wordoff, & Brannon, 2015). It is possible that this 
automatic encoding of numerical information leaves little 
room for improvement from exploratory actions, and hence 
adults may show no cost-benefit tradeoff in their 
exploratory decisions in a numerical task. 

 To test this, we designed a nonverbal numerical 
comparison task with four alternative forced choices. This 
design ensures that the numerical representations can be 
maintained in adults’ working memory (i.e., about four 
items; Epelboim & Suppes, 2001; Luck & Vogel, 1997). On 
the other hand, a four-alternative-forced-choice paradigm 
lowers the chance level to 25%, which increases the 
performance gap between random guessing and effortful 
performance by 25% compared to two-alternative-forced 
choice tasks (which has a 50% chance level), potentially 
providing more utility for information seeking actions. 
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Figure 1: Schematic of the experimental procedure. 
 
 
To further reduce random guessing, we also offered 

participants a small reward bonus depending on their 
performance. Participants can choose to see any one of 
four large arrays of dots, each for only 200ms which is 
too brief a window to count the dots. The key difference 
from traditional numerical comparison tasks is that 
participants are given the option to re-explore each array 
as many times as they would like before deciding the 
largest array.  Participants then decide when they are 
ready to choose the array with the largest numerosity. 
Numerical comparison tasks allow us to systematically 
quantify and vary uncertainty and the difficulty of the task 
by changing the ratio between the numerosities.  

If exploration is driven by the utility of information 
seeking actions, we would expect to see an inverted U-
shaped relation between trial difficulty and the amount of 
exploratory actions. Alternatively, if exploration is driven 
by performance or error rate, then we should expect 
participants to explore most in trials in which the 
difficulty of the trials is the highest. Such an account 
would reveal information seeking to be linearly related to 
trial difficulty. Finally, if adults are not sensitive to the 
uncertainty of the trials, then exploration should not vary 
with the complexity of the trials. 

 

Method 
Participants Forty-two adults were recruited online 
through Amazon Mechanical Turk. 

 
Stimuli Stimuli consisted of series of arrays containing 
collections of blue, red, yellow, and cyan dots on a grey 
background. During all the trials, three of the four arrays 
always contained the same number of dots (in different 
layout and configuration), and the fourth array differed 
from the remaining three with variable ratios. Difficulty 
was manipulated by changing the ratio between the 
largest number and the remaining number. Ratios varied 
between 1 (i.e., all four arrays were the same; the correct 
answer was pre-determined and randomly generated) and 
2 (i.e., the larger number was twofold the smaller 
number), with at least 6 trials of each ratio. There were a 
total of 128 trials a participant could possibly complete.  

 
Procedure After reading the instructions, each participant 
received an untimed practice session with eight practice 
trials. Participants then completed a timed test session 
where they had five minutes to complete as many trials 
correctly as possible. Participants were compensated 
based on how many trials they answered correctly during 
the test trials. Each trial started with four empty boxes 
outlined with distinct colors and paired with a reminding 
message about which key to press to “flip” the box and 
reveal the dots.  

200ms

200ms

… …

Flipping phase

200ms

200ms

Decision phase

Correct!

press spacebar
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Figure 2: Average accuracy as a function of ratio (larger/ smaller). Error bars represent confidence interval of the mean.  
 

After each keypress, dots appear for 200ms in the chosen 
box. For example, pressing the “R” key showed blue dots 
in the blue box, and pressing “U” showed red dots in the 
red box (Figure 1). During the flipping phase, the 
participant could press the spacebar to indicate that they 
were ready to move onto the decision phase at any point. 
Once the participant had moved to the decision phase, 
they were prompted to press a key to indicate which box 
contained the most dots. Feedback was provided after 
each trial. Participants on average completed 37.67 test 
trials (SD = 21.80).   

Results 
We first examined participants’ accuracy in the 

decision phase. On average, participants performed 
correctly 62% of the time, well above chance (25%; 
binomial exact test p< .001).  

We then averaged each participants’ performance for 
each ratio to analyze the effect of ratio on accuracy. If 
participants used the ANS to solve the task, their 
performance should show the ratio-dependent signature of 

the ANS. Alternatively, it is possible that participants 
were able to count or maintain more precise 
representation of the numerical arrays after seeing them 
multiple times. As shown in Figure 2, participants’ 
accuracy increases significantly as the ratio becomes 
easier. A log-linear regression model predicting accuracy 
using ratio explains over 72% of the variance, beta 
= .86,  t = 6.54, p < .001, suggesting that participants 
primarily relied on ANS representations in the current 
numerical comparison task, even when they could receive 
additional information about the numerical stimuli. 
Consistent with previous research on adults’ ANS 
precision, participants’ accuracy on the task plateaued at 
about 1.5 ratio (Halberda & Feigenson, 2008).  

The central question of the current study is how the 
difficulty of numerical decisions impacts people’s 
information seeking. To test this, we examined the 
relationship between ratio and the number of boxes 
participants flipped before the decision phase.  

.
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Figure 3: Average number of boxes flipped before decision as a function of ratio (larger/ smaller). Error bars represent 
confidence interval of the mean.  
 

 
Figure 4: Average number of boxes flipped before decision as a function of accuracy. Error bars represent confidence 

interval of the mean.  
 
 

 
 
As shown in Figure 3, overall, participants sought more 

additional information when the trials were more difficult. 
However, instead of a simple linear increase in number of 
flips as the ratio decreases, there is an inverted U-shaped 
relationship between ratio and flips when the ratio was 
between 1 and 1.25. Indeed, it is precisely in this range 
that participants steeply shift from near chance 
performance to near ceiling performance. This supports 

the claim that exploration is driven by expected 
information gain.  

To test for a quadratic trend of ratio on number of flips, 
or an inverted U-shaped relationship between exploration 
and numerical ratio, we ran a model using both linear and 
quadratic ratio terms. This revealed a significant effect for 
both ratio (beta = -1.08, t = -3.49, p < .001) and ratio-
squared (beta = .91,  t = 2.91, p = .004). However, we 
found no relationship between average accuracy and the 
number of boxes flipped before decision (Figure 4). This 
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suggests that, rather than perceived performance or 
general motivation, participants’ expected information 
gain drives their information seeking. 

Conclusions 
The current study investigated the relationship between 

the difficulty of numerical decisions and exploratory 
decisions. We found that adults’ active search for 
additional information was the highest for trials with 
intermediate difficulty, and the lowest when the trials 
were either too easy or impossibly hard. Moreover, 
exploration has no clear relationship with numerical 
performance. These results suggest that numerical 
difficulty drives adults’ exploratory decisions, showing a 
trade-off between cost of exploratory action and expected 
benefit from exploration.  

Previous research has shown that infants seem to prefer 
an intermediate flow of information when exploring the 
environment (Kidd et al., 2012), and adults in novel or 
complex exploratory tasks explore the most when the task 
is at intermediate level of uncertainty (Kang et al., 2009; 
Baranes et al., 2014). These results have been taken to 
suggest that in learning and exploration, the observer have 
a tendency to optimize the cost of action and the gained 
information (Coenen et al., 2018). The current results 
extends this literature by suggesting that adults remain 
motivated to show such trade-off in their exploratory 
decisions even when using the primitive Approximate 
Number representations that have been active since 
infancy. 

These results are consistent with both the idea that 
adults can balance the cost and benefit of exploratory 
actions, and that the rate of information gain drives 
exploratory behavior adults’ numerical decision making. 
One possibility is that adults were making immediate 
decisions about whether to explore more solely based on 
the difficulty of each trial. Alternatively, it is possible that 
adults were dynamically adapting their exploratory 
decisions based on observed performance change, or their 
observed rate of learning, from previous explorations. 
Future research exploring the benefit of the exploratory 
actions, such as performance change with and without 
exploration, will help clarify the mechanisms by which 
adults make their exploratory decisions. 

Where does this ability to dynamically adapt 
exploration to our own uncertainty come from? The 
similar U-shaped pattern in infants’ attention suggests that 
infants are able to respond to probabilistic uncertainty in 
the environment (e.g. Kidd et al., 2012). However, it is 
possible that the ability to monitor the uncertainty in 
one’s cognitive representations, such as numerical 
precision, may require more advanced metacognitive 
skills. Alternatively, infants may already come equipped 
with implicit representations of their uncertainty in 
numerical decisions. Recent work suggests that infants as 
young as 6 months old perform differently in a numerical 
change detection task as as the order of trial difficulty 

changes (Wang, Libertus, & Feigenson, 2018). It remains 
to be tested whether infants can adapt their exploratory 
behavior when using Approximate Number 
representations, and whether their exploration has the 
same kind of relationship with trial difficulty. 

Another important question raised by the current study 
is whether active information seeking boosts numerical 
precision. In general, we found no relationship between 
overall accuracy and information seeking. It is possible 
that seeing the dot arrays more does not actually 
significantly impact people’s accuracy at making 
numerical decisions. On the other hand, it remains 
possible that more complex interactions exist between 
information seeking and numerical precision. Future work 
examining the difference between people’s numerical 
accuracy with and without information seeking will help 
test these possibilities. 
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Abstract
We present a novel statistical analysis of color categorization
using a standard method from semantic typology. Our ap-
proach shows that crosslinguistic color naming data exhibits
latent dimensions whose order of relative importance matches
the evolutionary ordering of emergence of those distinctions.
Moreover, we show that the importance ordering of these di-
mensions holds even when controlling for frequency of the dis-
tinctions by looking at languages within each stage of evolu-
tion. Additionally, we find that the extreme points of the latent
color dimensions correspond well to a small set of “univer-
sal” focal colors. Thus we show that a simple mathematical
method simultaneously derives a consistent match both to the
evolutionary stages and to the universal foci.
Keywords: semantic universals; color naming; color evolu-
tion.

Introduction
Much work in cognitive science seeks to uncover the basis
of human categorization of the world. Semantic typology
in particular aims to discover crosslinguistic constraints and
tendencies in the ways that lexical semantic systems parcel
concepts into named categories. Research across a number
of diverse domains – from color to spatial relations to cut-
ting and breaking events (e.g., Berlin & Kay, 1969; Levinson
et al., 2003; Majid et al., 2008) – have revealed seemingly
universal dimensions that underlie the organization of such
lexical categories. For example, there is substantial evidence
that color lexicons are organized around a universal set of ba-
sic color categories, whose best exemplars – focal colors, or
foci – are clustered within small areas of the perceptual color
space (e.g., Berlin & Kay, 1969; Regier et al., 2005; though
see, e.g., Roberson et al., 2000, for an alternative view).

The domain of color has been particularly fruitful in re-
vealing such crosslinguistic commonalities. Indeed, research
on color is unusual (if not unique) in semantic typology in
having revealed another kind of universal as well – that of
evolutionary stages of a domain-specific lexicon. Berlin &
Kay (1969) proposed that, as the number of basic color terms
increase in a language, the named color distinctions emerge
in one of a small set of constrained orders; for example, sep-
arate terms for yellow and red appear in a language before
green is split off from blue. This line of work has been ex-
tended to cover a broad range of data from many languages,
and the specific proposal refined and adapted. While some
counterexamples have been identified, and it has been recog-
nized that some languages do not exhaustively partition the

Figure 1: Evolutionary chart from Kay et al. (2009).
W=white, R=red, Y=yellow, Bk=black, G=green, Bu=Blue.

color spectrum, most extant languages largely follow a suc-
cessive partitioning of the color space according to universal
principles (see Kay et al., 2009, for a review).

Most evolutionary proposals focus on a core set of basic
color categories, corresponding to the English terms white,
red, yellow, black, green, and blue, because these ‘primary
colors’ follow a consistent evolutionary path (Kay et al.,
2009). Fig. 1 illustrates an influential proposal regarding the
evolutionary sequence of languages, which we follow here.
This diagram says that languages with only two color terms
(Stage I) allocate those to the distinction between warm col-
ors (White/Red/Yellow) and cool colors (Black/Green/Blue),
while languages with three colors (Stage II) further dis-
tinguish White from Red/Yellow. Languages at Stages III
through V can follow multiple pathways, depending on the
further splits of Red, Yellow, Black, Green, and Blue.

Although modeling of crosslinguistic color data has re-
vealed evidence of the various stages in Fig. 1 (e.g., Regier
et al., 2007; Lindsey & Brown, 2009; Jäger, 2012), to our
knowledge such work has not (yet) shown how the ordering
of such stages could be derived from synchronic color nam-
ing data alone. Moreover, work on the evolutionary stages
has typically focused on the partitioning of the space, and has
not linked those stages to the nature and role of focal colors.
That is, we know of no single model or method of analysis
over the crosslinguistic color data that has derived both a con-
sistent match to the evolutionary stages and to the universal
focal areas, showing if or how these two concepts are linked.

Here we show that a standard analysis method from seman-
tic typology, which has been used in work on color as well as
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Figure 2: Munsell chart; universal foci (Regier et al., 2005)

in various other semantic domains, can simultaneously derive
both the ordering of the evolutionary stages and the universal
focal colors, revealing the latter as the drivers of the evolu-
tionary distinctions. To preview our results, we use a simple
statistical method to identify the important dimensions of the
semantic space of color as represented by the crosslinguis-
tic data. We find that the extremes of the identified dimen-
sions correspond to focal areas of color, and, crucially, that
the importance ordering of the dimensions corresponds to the
evolutionary ordering of color distinctions. In addition, we
perform the first analysis of subsets of languages at different
evolutionary stages, and show that this importance ordering is
not simply a by-product of the frequency of color distinctions
in a mixed set of languages. We thus provide quantitative
confirmation that synchronic color naming patterns reveal an
underlying semantic space whose dimensional salience mir-
rors the evolutionary stages, with “anchors” in focal colors.

Color Data, Foci, and Evolutionary Stages
The World Color Survey (WCS; Kay et al., 2009,
http://www.icsi.berkeley.edu/wcs/data.html) is a rich data set,
along with a comprehensive qualitative analysis, that under-
lies much crosslinguistic analysis of color categories. Speak-
ers of 110 diverse languages were surveyed, and languages
were manually assigned to an evolutionary stage or transition
between stages (cf. Fig. 1). The WCS contains two types of
data. First, naming data was gathered by asking speakers to
provide a single color term for each of the 330 color chips
in the Munsell chart (see Fig. 2). Second, focal data was
collected by asking speakers to select the most representative
example, or focal color, of each term.

Both the focal and naming data of the WCS have played
a prominent role in semantic typological analyses of color,
which seek to derive semantic universals from crosslinguistic
usage data. In particular, a body of work has attempted to
go beyond qualitative analyses to provide precise mathemat-
ical underpinnings for such universals. Our work is in this
vein, and we review related research below. Other quantita-
tive analyses have attempted to link the semantic universals
apparent from the WCS data to perceptual and/or commu-
nicative aspects of cognition. This is not the goal of our work
here, but we refer to such research where relevant.

It is a striking finding that the distributions of the focal col-
ors across all of the WCS languages cluster in small areas of
the color space, corresponding to the six basic English focal
colors, white, red, yellow, black, green, and blue (MacLaury,
1997; Regier et al., 2005; Lindsey & Brown, 2006, see Fig. 2).
Some claim that these “universal” focal colors are cognitively
privileged areas of the mental representation of color (Heider,

1972; Regier et al., 2005), which play a crucial role in the evo-
lution of color systems (Berlin & Kay, 1969); others propose
that they are only epiphenomena of the desired placement of
color category boundaries (Roberson et al., 2000).

In their perceptual account, Jameson & D’Andrade (1997)
suggest a middle ground in which the focal colors arise
due to the nature of categorization in an irregular perceptual
space. Abbott et al. (2012) operationalize this approach using
Bayesian inference over perceptual color categories whose
extents are determined by the WCS naming data. They find
a good match between the representative members of these
named color categories and the WCS focal data. This sug-
gests that foci may be derivative from color categories whose
optimal boundaries are driven by universal properties of the
perceptual space (e.g., Jameson & D’Andrade, 1997; Regier
et al., 2007). However, the relation of such foci to the evolu-
tionary distinctions among colors is not clear.

The WCS data has also been explored as a source of in-
sight into the evolutionary stages of color term systems, as
exemplified in Fig. 1. Lindsey & Brown (2006, 2009) apply
clustering techniques over naming patterns to reveal univer-
sal constraints over color categories, as well as color nam-
ing “motifs” (ways of partitioning the color space), some
of which correspond to stages in the evolutionary hierarchy.
Jäger (2012) takes a complex, multi-step approach to apply-
ing PCA to the WCS naming data, after transforming it in
various ways. He derives partitionings of the six basic col-
ors, many (but not all) of which match those of the evolu-
tionary stages. While these approaches use quantitative anal-
yses of the WCS to derive aspects of the evolutionary parti-
tions, none of them derives an ordering over the partitions.
(Indeed, Lindsey & Brown (2006) explicitly note that their
work should not be interpreted as evidence of evolutionary
sequencing from synchronic data.)

By contrast, Zaslavsky et al. (2018) combine WCS naming
data with a perceptual semantics to derive an order over the
emergence of color categories. They assume that color cate-
gories are created to optimally balance lexical accuracy with
the size of the lexicon. As more color categories are added,
their emergence roughly reflects the ordering of categories in
color evolution. However, the reliance on perceptual salience
leads to some mismatches with the evolutionary stages (over-
estimating the prominence of yellow), and the method does
not address the role of focal colors in the ordering.

The wealth of research analyzing the WCS motivates our
exploration of whether this rich synchronic color naming data
can directly reveal patterns of evolutionary development, and
shed light on the role of focal colors in those stages. We
aim for a mathematical method of analysis that is simple
and straightforward, with the intention that such an approach
would be readily applicable to other semantic domains.

Our Approach
The approach we take in this work complements and seeks to
fill in some of the gaps noted in the above body of research.
Our goal is to derive the evolutionary sequence from WCS
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data using a simple mathematical method – Principal Com-
ponent Analysis (PCA) – that (along with other dimension-
ality reduction techniques) has been widely deployed in se-
mantic typology, in diverse semantic domains including color
(e.g., Majid et al., 2008; Jäger, 2012; Beekhuizen et al., 2014;
Beekhuizen & Stevenson, 2018).

The novelty of our approach is two-fold. First, we extract
latent dimensions of the WCS data in order of importance,
yielding the first quantitative evidence of the evolutionary
progression of color naming from the synchronic data. Sec-
ond, we propose a natural interpretation of the “extremes”
of the extracted dimensions as focal areas of color, which in-
deed show a strong match to empirical foci. Thus, we achieve
a simultaneous match of the evolutionary ordering and the fo-
cal colors, which has not been shown before. Moreover, we
do so with a very simple and straightforward use of PCA, in
contrast to other methods that require much more involved
mathematical transformations of the data (as in Jäger, 2012).

Our motivation is as follows. If most languages have
followed a consistent and small set of orderings in the
diachronic emergence of colors, those orderings must be
determined by the relative importance of various per-
ceptual/behavioral/cultural/communicative influences (e.g.,
Jameson & D’Andrade, 1997; Kay et al., 2009; Gibson et al.,
2017; Holmes & Regier, 2017; Zaslavsky et al., 2018). Re-
gardless of the source of these influences, if they play a role in
the evolution of color systems, they may impact synchronic
use of color terminology, and with the same relative impor-
tance. Note that this is not necessarily the case; for example,
just because a language at Stage V has gone through Stages I
through IV does not mean that the current color naming pat-
terns of that language will reflect that a distinction made in an
earlier stage (e.g., of Red vs. Yellow) is more important than
a final distinction made in Stage V (e.g., of Green vs. Blue).
That is, it is an open question whether the factors that exert
evolutionary pressure to create new terms play a role in how
terms are deployed in synchronic naming.

Experimental studies suggest that it may indeed be the case
that evolutionary factors play a role in cognitive processing
of colors by individuals. For example, Holmes & Regier
(2017) found that English speakers show a categorical per-
ception effect for the warm–cool distinction of Stage I, even
though “warm” and “cool” are not basic color terms in En-
glish. Moreover, when English speakers group colors into K
categories, the divisions they make roughly follow the evo-
lutionary splits – i.e., with K = 2, they select a warm–cool
separation, as in Stage I of evolution, with K = 3 they add a
further distinction of white as in Stage II, etc. (Boster, 1986;
Xu et al., 2013). Thus, English speakers are apparently sen-
sitive to the evolutionary factors – and their relative ordering
of importance – in color category processing.

Our goal here is to see whether actual color naming behav-
ior, across the many diverse languages of the WCS, show this
synchronic realization of the evolutionary influences. Specif-
ically, given a suitable representation of the semantic space of

synchronic color naming patterns, we use PCA over this data
to extract dimensions of the data in order of importance, and
examine whether those dimensions and their relative impor-
tance match the evolutionary stages proposed in the literature.

As a suitable representation of the color naming data, we
follow a straightforward and standard practice in semantic ty-
pology. Specifically, we create a color chip by color term ma-
trix using the color naming data from the WCS (Beekhuizen
& Stevenson, 2018). Intuitively, such a matrix forms a se-
mantic space over color, where each row can be viewed as a
vector representation of the meaning of a color chip, as deter-
mined by the aggregate naming patterns in the data.

Applying PCA to such a matrix finds the latent dimen-
sions characterizing the semantics of color across languages.
Moreover, we take advantage of the interpretability of PCA
dimensions, which means that points with a minimum or
maximum value for a dimension are the most “extreme” ex-
ample of the property that that dimension captures. Such
points represent the “corners” of the data in the space (cf.
Fig. 3), which are an indication of the key distinction each
dimension is enforcing. We can thus examine these extremes
to see if they correspond to the focal colors that have been
proposed to “anchor” color categories (Regier et al., 2005).

Methods
Data matrices and PCA. We first create a color chip by
term matrix over the naming data. Each cell records the (nor-
malized) number of speakers in a language that used that term
for that chip. This matrix compiles the naming data from all
or selected subsets of languages in the WCS (as noted below).
Thus we create matrices with 330 rows (one per chip in the
Munsell chart) and up to 2223 columns (the number of color
terms across all WCS languages).

We apply PCA to the resulting matrices to extract the most
important dimensions. PCA identifies dimensions in the or-
der along which the data shows the most variance, so the
amount of variance accounted for represents the importance
of that dimension. As we are looking for important dimen-
sions that could relate to evolutionary development, we only
consider dimensions that account for at least 5% of the vari-
ance in the data. (In almost all cases, this corresponded to a
natural dropping off point in the accounted-for variance.)

For the first three such dimensions, we can plot the data for
visualization purposes; i.e., we can plot the 330 color chips
as represented by the first dimension of the PCA, by the first
two, or by the first three. As shown in Fig. 3, such plots reveal
the structure in the data that the PCA finds.
Determining the extreme points. To better understand the
dimensions extracted by the PCA, we want to identify the ex-
treme points of each. Conceptually, these are the maximally
distinguishable points in the data on that dimension; in our
visualizations in Fig. 3, these correspond to the endpoints or
“corners” of the plotted data. In Fig. 3, the extreme points in
1D correspond to the minimum and maximum values on the
x axis; the extreme points in 2D correspond to the corners of
a triangle; the extreme points in 3D are the top of the pyramid
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and the corners of its triangular base. As we will see in the
results, such points generally correspond to focal colors.

We first collect the minimum and maximum points per di-
mension. However, because points can be tightly clustered at
a “corner” of the space, we can end up with multiple extreme
points when there is really only one “corner”. For example, in
the 2D plot in Fig. 3 (middle panel), the bottom right corner
of the triangle is near the maximum for the x dimension and
the minimum for the y dimension, so we might find two dis-
tinct points in that same small area. To avoid this, we consider
all pairwise combinations of extreme points and merge those
that are likely referring to the same “corners” of the space.
Extreme points are considered to refer to the same “corner”
if there is overlap in their n = 15 nearest neighbors, based on
Euclidean distance. (We tried other values of n, which made
little difference in the pattern of results.)

Figure 3: Plots of the 330 color chips in the 1D, 2D, and 3D
PCA subspaces of the full WCS.
Visualizations of results. The results of our PCA analy-
sis are a sequence of semantic subspaces defined by the ex-
tracted dimensions – the first (1D), the first+the second (2D),
the first+the second+the third (3D), etc. – and the points that
indicate the extreme “corners” of each subspace. To visually
show the results, we plot the extreme points of each subspace
(as triangles; or as diamonds for the merged points) in a Mun-
sell chart, along with their closest neighbors (as circles whose
size reflects their distance from the extreme point). These
extreme point areas show the important color prototypes for
each of the components of the PCA.

In addition, we visualize the extreme points as partition-
ing the PCA subspace, such that every color chip is allocated

to the region of the space of its nearest extreme point. This
yields a partitioned Munsell chart, with the number of par-
titions equal to the number of (merged) extreme points, or
“corners”, in the space. We label these partitions by the fo-
cal colors (green squares in the charts) occurring within them,
whether they are extreme points or not. Thus each of the six
focal colors is allocated to the region of its nearest extreme
point, and we label a region by the focal colors it includes.

Fig. 4 shows examples of this visualization. For example,
the White, Red, and Green extreme points shown in Fig. 4b
for 2D correspond to the white, red, and green “corners” of
the PCA plot for 2D shown in Fig. 3. The labels W, R/Y, and
Bk/G/Bu correspond to the focal colors within each region as
partitioned by the extreme points.

Analysis Over All WCS Languages
Using the methods above, our goal is to see whether a simple
and straightforward application of PCA over the WCS nam-
ing data can simultaneously derive both the ordering of the
evolutionary stages, as in Fig. 1, and the location of the uni-
versal foci, as in Fig. 2.
Results. We first apply our method over the full WCS color
naming data. The first five extracted dimensions each account
for more than 5% of the variance in the data; the results on
the corresponding 1D–5D subspaces are in Fig. 4(a–e).

First, note that all of the primary extreme points for all di-
mensions of the PCA occur very close to the universal focal
points of the 6 basic colors; see the triangles in Fig. 4. The
extreme points corresponding to White, Black, and Green oc-
cur at the focus, Yellow and Blue adjacent to the focus, and
Red two away from the focus. Fig. 4(f) shows the close match
between our predicted focal colors and those of Abbott et al.
(2012), who draw on both the color naming data and a rep-
resentation of the named categories in perceptual space. It is
important to emphasize that (as in Abbott et al., 2012) our re-
sults do not make use of the WCS focal color data, but only
naming data. Given evidence for the universality of the fo-
cal colors as “anchors” for language-dependent naming of
color regions, our results suggest that the extreme points of
our PCA space are indeed meaningful in reflecting the im-
portant dimensions of color term systems in the WCS.

Second, and crucially, the importance ranking of dimen-
sions in this all-languages data set shows a very strong match
to the ordering of the evolutionary stages of Fig. 1, as indi-
cated in the caption below each chart in Fig. 4(a–e). This
is the first mathematical demonstration that synchronic color
naming patterns reflect the relative importance of latent color
dimensions that also underlie their evolutionary emergence.
Discussion. We have shown that a straightforward appli-
cation of PCA over the WCS yields dimensions of the color
naming data whose maximal/minimal values correspond to
focal regions of color. That is, the universal foci appear to
organize the dimensions along which the data shows the most
variance. Moreover, these dimensions are extracted in the
order of importance of the evolutionary distinctions among
color terms, confirming that naming patterns in the WCS col-
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(a) 1D: W/R/Y, Bk/G/Bu (Stage I)

(b) 2D: W, R/Y, Bk/G/Bu (Stage II)

(c) 3D: W, R, Y, Bk/G/Bu (Stage III-Bk/G/Bu)

(d) 4D: W, R, Y, Bk, G/Bu (Stage IV-G/Bu)

(e) 5D: W, R, Y, Bk, G, Bu (Stage V)

(f) Foci at 5D compared to those of Abbott et al. (2012)

Figure 4: Focal colors and associated regions from a PCA
over all WCS data. (a–e) Results over each subspace for
the first n dimensions; triangles = extreme points, circles =
nearest neighbors, diamonds = merged extreme points, green
borders = universal foci. Color labels below each chart cor-
respond to the focal colors in each region, with the matching
evolutionary stage indicated. (f) Foci in 5D, with our extreme
points shown as triangles and the predicted foci of Abbott et
al. (2012) as large circles.

lectively exhibit the synchronic influence of the evolutionary
factors that shape the progression of color systems.

A legitimate question is whether our finding is simply the
expected result of doing PCA over language data that in-
cludes languages at all the stages. Specifically, is it a sim-
ple frequency effect? That is, if languages at different stages
are simply successively partitioning the data (rather than re-

organizing colors in a way that changes earlier boundaries),
then all languages have some boundary between warm and
cool colors, all but Stage I languages have an additional
boundary between white and the other warm colors, all but
Stage I and II languages have another boundary between two
more colors, etc. Thus, the PCA may be finding boundaries
based on their frequency across languages at the different
stages, rather than based on a true importance ordering.

A crucial observation that argues against this view is that
the WCS contains no Stage I languages, and yet the warm–
cool split of Stage I emerges as the first dimension in impor-
tance. That is: Although all languages in the WCS make
both the warm–cool distinction of Stage I and the White–
Red/Yellow distinction of Stage II, the warm–cool distinction
emerges first in the PCA. This suggests that there is a de-
tectable signal in the naming patterns that reveals the relative
importance of an evolutionarily-earlier boundary over a later
boundary, independently of their frequency in the data. To
test this more directly, and across more stages, we next look
at subsets of the languages of the WCS grouped by stage.

Analysis Over WCS Languages By Stage
We hypothesize that languages at each stage will show the
same importance ranking of dimensions as found in the evo-
lutionary progression, up to and including that stage. The
set up here ensures that if we find that languages show
evolutionarily-earlier distinctions as more important than
later ones, this cannot be explained away as the data including
languages at those earlier stages, thus skewing the frequen-
cies toward the earlier distinctions.
Set up. In this analysis, we separately consider subsets of
languages of the WCS that are in a single one of the identified
evolutionary stages (Kay et al., 2009), yielding 7, 7, 41, and
14 languages at Stages II, III, IV, and V, respectively. (There
are few documented Stage I languages, and none in the WCS.
Also, we omit languages transitioning between stages, since
they can show blends of behavior.) We perform the same PCA
analysis as above, once over each of the four naming matrices
limited to each stage, with the goal of seeing whether there
is a match between the successive dimensions of each PCA
analysis and the evolutionary stages.
Results. Tab. 1 presents the sequences of evolutionary
stages revealed in the analysis of the subsets of languages by
stage (omitting Stage V for space reasons). The table sum-
marizes the color partitions in each subspace using the focal
colors in each (we omit Munsell charts due to space reasons),
and shows the best-matching stage from Fig. 1. (All and only
dimensions accounting for > 5% of variance shown.)

Overall, the results confirm our hypothesis above: we find
a very good match between the PCA analysis and the evolu-
tionary diagram from all sets of languages, except those in
Stage V. It is also the case that the majority of extreme points
found in all the relevant dimensions of the four PCA analyses
are at or very near focal colors. To summarize:
• All of Stages II, III, and IV show a very strong match to
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Table 1: Sequences of focal colors in the Stages data.

the evolutionary stages.
• Stage III has, in addition to predicted extreme colors, a

rainbow-like extreme area along the warm–cool boundary.
• Stage IV mostly matches the evolutionary stages, but with

Yellow and Black connected through Brown in earlier di-
mensions. At 4D, there is a precise match to Stage IV.

• Stage V does not yield an ordering of dimensions that
match the evolutionary stages. At 6D, all basic focal colors
plus Purple have emerged as extreme regions.
Stage III data include languages from different sub-stages

(column III in Fig. 1). Follow-up experiments with various
subsets of Stage III languages reveal that the observed bound-
ary color appears due to varying ways the different sub-stages
divide up the G/Bu/Y region of color, in combination with the
fact that one of the languages has an unusual basic color term
for this warm–cool boundary region (Kay et al., 2009).

Stage V is a heterogeneous group, with languages having
the 6 basic colors plus some number of other derived colors
(13 of 14 have at least one derived color). We hypothesized
that the variety in naming patterns for the non-basic colors
may be swamping the signal from the basic colors. This may
indicate a limitation of our method in dealing with a larger
number of dimensions of color distinction. To test this, we
performed the same PCA analysis over the 8 languages de-
noted as approaching Stage V (which have fewer derived col-
ors). Here, the dimensions of the data emerged in order of the
evolutionary stages, including the final stage at which Blue is
distinguished from Green.
Discussion. To our knowledge, we are the first to apply a
quantitative typological analysis to the languages of the WCS
at the various evolutionary stages, as manually analyzed in
Kay et al. (2009). Our findings provide strong support for
the hypothesis that data from later stage languages can have
structure that matches the evolutionary order of earlier stages.
By separately analyzing languages at each specific evolution-
ary stage, we control for the potential frequency explanation
of our results on the full WCS data set.

Further work will be required to determine the underly-
ing causes of the cases of mismatches to the stages. Others
have found, using more complex procedures, that the WCS
data yield color groupings that largely, but not always, corre-
spond to the manually derived partitionings of the color space
(Lindsey & Brown, 2009; Jäger, 2012). Our method may be
picking up on idiosyncratic patterns of naming, especially on
smaller data sets. Regarding the Stage V data in particular,
a possible shortcoming of our method is that it may not be
sensitive enough to capture regularities beyond the six basic
focal colors, which would be necessary to analyze this het-
erogeneous set of languages.

Conclusions

We present the first statistical analysis of color naming data
that both shows a match between the evolutionary ordering
of color systems and the importance ordering of informative
dimensions of the data, and derives the focal colors from the
extremes of those component dimensions. These results arise
from a simple and straightforward application of PCA, a stan-
dard method from semantic typology for extracting salient di-
mensions from crosslinguistic naming patterns.

First, our approach reveals a quantitative importance or-
dering of latent dimensions of color semantics that strongly
matches qualitative analyses of the evolutionary stages of
color lexicons (e.g., Berlin & Kay, 1969; Kay et al., 2009).
Specifically, we find that the color distinctions captured by
each successive extracted dimension of the data largely cor-
respond to the distinctions made in successive stages of color
term evolution. Moreover, we show that the importance or-
dering of these dimensions holds even when considering lan-
guages at individual evolutionary stages, thus controlling for
frequency of earlier vs. later distinctions in the data. Our
work thus lends further evidence that speakers are sensitive
to evolutionarily-important color distinctions that are not ex-
pressed directly by basic terms in their own language (cf.
Boster, 1986; Xu et al., 2013; Gibson et al., 2017; Holmes
& Regier, 2017).

Second, we find that the extreme points of the identified
color dimensions correspond to a small set of focal color
regions shown to occur across languages (e.g., MacLaury,
1997). Our work thus reinforces a growing body of research
showing that focal colors are important dimensions of color
space that serve as “anchors” for color categories (e.g., Regier
et al., 2005). It has been proposed that focal colors arise at
points of an irregularly-shaped perceptual space that maxi-
mize the distance between them (e.g., Jameson & D’Andrade,
1997; Regier et al., 2007). Although our method is agnostic
as to the source of the latent dimensions (whether percep-
tual, and/or salience, as in Gibson et al., 2017, and/or com-
municative pressures, as in Zaslavsky et al., 2018), our re-
sults, like those of Abbott et al. (2012), show that the nam-
ing patterns of languages reflect the universal foci. Our ap-
proach further sheds light on the focal colors as extremes in
the evolutionarily-important dimensions of color semantics.
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Abstract 

This study explores how the vocabulary growth trajectories of 
typically developing and late-talker children change in relation 
to their word learning biases. Forty late talkers and 44 typically 
developing toddlers visited the lab once a month for one year 
starting at about 18 months of age. Word-learning trajectories 
were tracked using a parent-reported vocabulary measure, and 
shape and material bias measures were collected using the 
novel noun generalization task each month. A two-level 
hierarchical linear model was utilized for the longitudinal 
analyses. Results indicate that, at the first visit, a stronger shape 
bias was significantly associated with a larger vocabulary in 
typically developing talkers. In late talkers, however, a stronger 
initial shape bias was associated with a smaller vocabulary. 
Over the course of the study, for every additional visit, stronger 
shape biases were associated with larger vocabularies in late 
talkers, but not in typically developing toddlers. Results for the 
material bias mirrored the shape bias results. These findings 
suggest different possible underlying mechanisms for the two 
groups of children, as well as avenues for the design of 
language interventions that might support young late talkers. 

Keywords: vocabulary acquisition; word-learning bias; late 
talker; word learning 

Vocabulary Acquisition 

There is enormous variability in the vocabularies of young 

children just beginning to speak. By two years of age, an 

otherwise typically developing toddler may know as few as 

ten words or well over 300 (Fenson, 1993). These early 

differences in vocabulary size may lead to long term 

differences in learning and language skills (Rescorla, 2000). 

Understanding the mechanisms behind language 

development that give rise to these different trajectories is 

vital for informing further research and developing 

identification and interventions for those children who show 

delayed word learning. 

As children learn words, they also learn important features 

of the objects represented by these words and how these 

features relate to word use in general. Children must learn the 

regularities in their world, such as all balls are round, and all 

toothpaste is, well, thick and pasty. Children’s noun learning 

progresses from slow and laborious to fast and seemingly 

effortless. This may be due in part to understanding and 

taking advantage of the way languages organize categories in 

the world. For example, by their third year of life, children 

seem to know to generalize names for solid objects by shape, 

but names for nonsolid substances by material (Landau, 

Smith & Jones, 1988). These word learning biases are 

typically assessed using the novel noun generalization 

(NNG) task; the child is taught a novel name for a novel item 

and then asked which other items, matching the exemplar on 

one or more features, have the same name (Landau et al., 

1988). These biases develop in tandem with vocabulary 

growth, such that when children accrue between 50 and 150 

nouns, the tendency to attend to shape for solid objects 

emerges and becomes robust (Gershkoff-Stowe & Smith, 

2004).  

Late talkers are children who lag in their vocabulary size 

compared to their same-aged peers in the absence of any 

known developmental disorders. Although the label of “late 

talker” is not a clinical diagnosis in of itself, this group is 

often defined by being in the lower 25th percentile on 

productive vocabulary, which is typically measured by the 

MacArthur-Bates Communicative Inventory (CDI) (Fenson, 

1993). However, different researchers use different cut-off 

points when classifying children as late talkers, ranging from 

the 10th to 30th percentile.  

Evidence suggests that late talkers and typically 

developing children differ not only in their vocabulary size, 

but also in the way they learn new words. Thirty-month-old 

late talkers, when defined as falling at or below the 30th 

percentile on the CDI, show no or even opposite word 

learning biases compared to typically developing 30-month-

olds do (Jones, 2003). Further, 30-month-old late talkers 

under the 10th percentile struggle learning new words through 

fast mapping (Weismer, Venker, Evans & Moyle, 2013). 

Even before they turn two, children in the top 25th percentile 

on productive vocabulary show different word learning 

biases than children in the bottom 25th percentile (Colunga & 

Sims, 2017). Specifically, these early talkers showed as 

strong a shape bias for solids as a material bias for nonsolids, 

whereas late talkers showed a robust shape bias for solids that 

might be overgeneralized to nonsolids. The fact that late 

talkers differ from typically developing children in their 

word-learning biases in the lab may mean that these children 

acquire language through different mechanisms.  

The differences between late talkers and their typically 

developing peers have long-term impacts, with some late 

talkers showing persistent deficits in measures such as 

reading, writing, and oral language skills throughout 

elementary and middle school (Rescorla, 2000). Although 
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many of the children labeled late talkers as toddlers do “catch 

up” to their typically-developing peers, there is a clear need 

to better understand how late-talker trajectories develop over 

time, as well as the factors that may influence this 

development (Heilmann, Weismer, Evans & Hollar, 2005). 

However, it is unknown exactly how word-learning biases 

relate to vocabulary growth throughout development, as 

previous work has investigated these relationships cross-

sectionally. For example, the finding that 18-month-old late 

talkers have a shape bias (Colunga & Sims, 2017) but 30-

month-old late talkers do not (Jones, 2003), could be a result 

of the different task demands of the different novel noun 

generalization tasks used with these different age groups, or 

it may suggest something interesting about the different 

developmental trajectories of children who catch up versus 

children who remain late talkers between 18 and 30 months 

of age.  

To understand word learning in typically developing and 

late talkers, word learning biases and vocabulary size need to 

be examined longitudinally. For example, are late talkers who 

show stronger word learning biases at 18 months more likely 

to make greater gains over time? Is the positive relationship 

between word learning biases and vocabulary size in 

typically developing children suggested by cross-sectional 

work also present longitudinally? Further, is that relationship 

similar among late talkers? By investigating the relationship 

between vocabulary size as well as both the shape and 

material biases during the course of development, we can 

begin to understand the mechanisms that may give rise to the 

different developmental trajectories. The present study will 

investigate vocabulary growth trajectories of children over a 

12-month period and their relations to word learning biases.   

Current Study 

The overarching goal of this project is to understand how the 

vocabulary growth trajectories of typically developing and 

late-talker children develop vis-à-vis their word learning 

biases. To accomplish this, we track both the vocabulary and 

the word learning biases of toddlers over a period in which 

rapid vocabulary growth is typically observed, 16 to 30 

months of age, on a monthly basis for a year. Late talkers 

were oversampled to account for their expected increased 

variability. To the extent that there exists a feedback loop 

between word learning biases and words learned, we would 

expect a positive relationship between these two measures. 

This relationship might change throughout development, 

such that the shape bias for solids is stronger and more 

strongly related to vocabulary growth early on, and the 

material bias for non-solids shows a different pattern of 

development in relation to vocabulary size. Furthermore, if 

typically developing and late-talker children differ in their 

learning mechanisms, not just on their vocabulary size, these 

relationships between word learning biases and words known 

may differ between the two groups of children.  

This study is the first attempt to track, longitudinally, the 

relationship between word learning biases and vocabulary 

size in late talkers and typically developing children. Though 

previous work has documented the relationship between the 

shape bias and vocabulary composition cross-sectionally 

(Perry & Kucker, 2019) and longitudinally (Gershkoff‐Stowe 

& Smith, 2004) in typically developing children, and other 

work had looked at vocabulary growth longitudinally in late 

talkers (Heilmann et al., 2005) and at the relationship 

between shape bias and vocabulary cross-sectionally in late 

talkers (Jones, 2003), this is the first attempt to document the 

development of both the shape and material biases, 

longitudinally, in both late talkers and typically developing 

children. 

Method 

Participants 

One hundred and twelve children were recruited for this 

study; children were 16-18 months of age at the first visit (M 

= 17.69, SD = 0.93). Twenty-eight children growing up in 

bilingual households were excluded for the present analyses, 

as previous research suggests early differences in the 

developmental trajectories of vocabulary growth of 

monolingual vs. bilingual children (e.g., Thordardottir, 

2011). Toddlers visited the lab once a month for 12 

consecutive months. Seventy-nine of the 84 children attended 

at least 10 of the expected 12 visits. Forty monolingual 

children scored below the 25th percentile on the CDI at their 

first visit, and for the present analyses, these children will 

constitute the late talker group (CDI percentile M = 11.65, 

SD = 12.26). The typically developing group consisted of the  

remaining 44 children (CDI percentile M = 59.14, SD = 

21.44). Participating children were screened for known 

sensory or cognitive developmental disabilities or disorders. 

Late talkers and their typically developing peers did not differ 

in their ages at visit 1 or on average throughout the study; 

t(82) = 0.71, p = 0.48, t(82) = 0.73, p = 0.47, respectively.  

Materials 

Children participated in the novel noun generalization task to 

assess both the shape and material biases at each visit. The 

stimuli consisted of a warm-up set made out of common 

objects, a novel solid test set, and a novel nonsolid test set. 

The warm-up set had an exemplar, a red plastic ball, two 

other balls (a tennis ball and a green and blue rubber ball), a 

plastic spoon, a toy carrot, and a toy cat. 

Each solid set consisted of an exemplar and five novel 

choices; two that matched the exemplar in shape but differed 

in color and material, one that matched in color, one that 

matched in material, and another that matched in both color 

and material. The nonsolid set was analogous, consisting of 

an exemplar and five choices; two items matching the 

exemplar’s material but differing in shape and color, a color 

match, a shape match, and a color and shape match.  

There were three sets structured in the way described 

above. The three sets rotated through the study, visit 1 – set 

A, visit 2 – set B, visit 3 – set C, visit 4 – set A, such that  

each set was used every 3 months and a total of 4 times over 
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the 12 visits that encompassed the study. 

The Macarthur-Bates Communicative Development 

Inventory Words and Sentences  (CDI) was completed by 

parents on each visit. The CDI consists of a 680-word 

checklist asking parents to indicate which words their child 

says. Although the CDI is a parent report measure it has been 

shown to be reliable and related to performance on child-

based vocabulary measures (Fenson, 1993).  

Procedure 

Children visited the lab once a month for 12 months. At each 

visit parents filled out a CDI form measuring their child’s 

productive vocabulary. Upon consent, children participated 

in one rotation of the NNG task measuring their shape bias 

for solid objects and their material bias for nonsolids. The 

procedure was modeled after Gershkoff-Stowe and Smith 

(2004). In the warm-up phase, the experimenter presented all 

six toys to the child and allowed him or her to look at them 

and handle and touch them for 30s before removing them 

outside of the child’s reach. The child was then shown the 

exemplar ball and told, “look at this ball.” Then, each child 

was asked to “get a ball” or get “another ball.” If the child 

failed to retrieve a ball, the child was asked one more time, 

and finally was told “here’s another ball,” handed the ball, 

and was instructed to get it one more time. If the child got one 

of the nonball distracter items, he or she was told, “that’s not 
a ball, that’s a ____”, then the distracter was replaced on the 

tray, and the child was asked again, “is there another ball?” 

The goal of the warm-up phase was to familiarize toddlers 

with the procedure and the idea that the display might have 

multiple things that were or were not in the category. 

The procedure during the test phase with the solid and 

nonsolid novel sets was the same, except without feedback. 

Children were shown the exemplar and told, “look at this 

dax” and then asked to “get a dax” or “get another dax” for 

the solid set or “get more dax” or “get some dax” in the 

nonsolid set. Children were asked to get another (or more) 

until they indicated that there were no more, allowing 

children to accept or reject as few or as many items as they 

desired. The solid set was presented before the nonsolid set, 

and a five-minute break and change in testing rooms took 

place in between the two tests to minimize carry-over effects. 

Bias scores were coded by noting the order in which 

children chose items as members of the queried category. The 

first choice got three points, second choice two points, and so 

on. For the solid set, the weighted scores for the items not 

matching in shape were subtracted from the weighted scores 

for the two shape-matching objects, yielding a score from -5 

to 5. Similarly, the material bias score for the nonsolid set 

was calculated by subtracting the weighted scores for the two 

items matching the nonsolid exemplar in shape from the 

scores for the items matching the exemplar in material.  

Data Analysis 

We employed a two-level hierarchical linear model to 

investigate our longitudinal data. We are able to quantify 

longitudinal growth trends and explore the variation in these 

trends across individuals. The “level 1” analysis estimates 

parameters within child, which in turn become the dependent 

variable for the “level 2” analysis assessing between-child 

variables. Number of words known, taken from the CDI, was 

the main outcome of interest across the analyses. Level 1 

consisted of each visit within child, whereas level 2 

quantified individual characteristics across children (e.g. 

talker type). We first graphed the trajectories of all children 

in the study to help visualize the data (Figure 1). we elected 

to use a linear growth description. The graph also indicates 

great variability in both the initial and ending vocabulary 

sizes of the children, as well as their trajectories throughout 

the study. Because of this, we will investigate not only fixed 

effects but the variance of the modeled growth curves. 
 

 
 

Figure 1: The raw data vocabulary trajectories for our full 

sample, color-coded by talker type. The x-axis is visit 

number, and the y-axis is the number of words the children 

produce from the CDI. 

 

Model 1 Our first analysis seeks to describe the linear 

trajectories for all children in our sample, in order to establish 

a baseline for comparison. We centered Visit around visit one 

and allowed coefficients to vary at level 2. Figure 2 represents 

model 1 using the hierarchical linear modeling framework.  

 

 
 

Figure 2: a representation of model 1 using the hierarchical 

linear modeling framework. This same structure will be used 

for analyses 2 and 3 as well, with added variables at level 1 

and 2. For simplicity, we only present the general structure 

here. 
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Model 2 Our second analysis further investigates differences 

in growth trajectories between those children who were 

initially classified as late talkers (CDI < 25%) and those who 

were initially classified as typical talkers ( CDI >25%). In our 

analysis, we examined the interaction between this talker type 

variable and both initial vocabulary size and linear growth. 

To do this, talker type status was placed at level 2 of the 

analysis as a between subjects variable, in order to predict the 

coefficients in our level 1 equation. Level 1 remained the 

same as in model 1. We centered our talker type variable to 

test the significance of both late and typical talker slopes 

separately.  

 

Model 3a and b Our third analyses examine how the two 

word-learning biases of interest, shape and material, impact 

the number of words known by children both at visit one and 

over time. Here we investigate each bias separately. Further, 

we examine how these biases differentially impact the word 

learning trajectory for late talkers as compared to typical 

talkers. To do so, we add the bias score and the bias score by 

visit interaction to level 1 of our model. Level 2 remains 

similar to model 2, with talker type status predicting the 

intercept and visit coefficients. In addition, talker type is also 

placed in the level 2 equations for bias and the bias by visit 

interaction. Model 3a investigates the relationship between 

the shape bias for solid objects and vocabulary size at visit 

one and over the course of the study, whereas Model 3b does 

the same for the material bias toward nonsolid substances. A 

model including both shape and material bias, along with 

their interactions with each other and over visit, did not 

account for any more within-child variability in growth than 

models with either bias alone. Therefore, results will not be 

reported for such an analysis. 

Results 

Fixed affects for each model are presented in Table 1 and 

variance components in Table 2. 

Model 1 

Results from model 1 indicate that, on average, children in 

our study had 63.27 words in their vocabularies at the first 

visit, or when 18 months old. For every month of the study, 

children, on average, accrued 47.05 new words, t(83)=28.51, 

p<.001. As expected, all children learned new vocabulary 

words as they aged. There was significant variability in both 

initial vocabulary size and visit slope; χ2 (82, N=84) = 

1554.80, p<.001, χ2 (82, N=84) = 712.73, p<.001 

respectively.  

Model 2 

Analysis 2 investigates differences in the word learning 

trajectories between late talkers and their typically 

developing peers (Figure 3). Typical talkers are predicted to 

have, significantly more words in their vocabularies at the 

first visit than late talkers; t(82)=8.99, p<.001. Both groups 

made significant vocabulary gains over time. Typical talkers 

were expected to add 48.19 words each visit, whereas late 

talkers were predicted to gain 45.53 words each month; 

t(82)=22.79, p<.001, t(82)=17.67, p<.001 respectively. In 

fact, vocabulary growth was not significantly different 

between the two talker types; t(82)=0.80, p=.427.  

 

 
 

Figure 3: Predicted average vocabulary trajectory for typical 

and late talkers from model 2. Word-learning trajectories for 

both talker groups run parallel to each other 

 

There is still significant variability in initial vocabulary 

size and linear growth; χ2 (81, N=84) = 793.62, p<.001, χ2 

(81, N=84) = 710.86, p<.001 respectively. Knowing which 

talker type group a child belonged to did account for 51.85% 

of the variance between children’s initial vocabulary sizes 

when compared to the first analysis. However, there was no 

appreciable difference in the variance of vocabulary growth 

from model 1 to model 2.  

Model 3a – Shape Bias 

Model 3a investigates how shape bias predicts both 

vocabulary size at visit one and over the course of the study 

(Figure 4). At the first visit, late talkers did not differ from 

their typically developing peers in shape bias scores; 

t(82)=1.61, p=.11. Controlling for shape bias score and its 

change over time, both late and typical talkers still, as in 

model 2, know significantly more words at each new visit. 

Typical talkers learn an average of 51.77 words a month and 

late talkers learn 41.84 words monthly on average; 

t(82)=21.18, p<.001, t(82)=16.75, p<.001. However, late 

talkers make significantly smaller gains in vocabulary size 

than their typical counterparts once shape bias and its changes 

over time were accounted for; t(82)=2.82, p<.01.  

At the first visit, for every one-point increase in shape bias 

score, typical talkers were expected to know 6.05 more 

words, indicating that a stronger shape bias is significantly 

associated with a larger vocabulary in typically-learning 

talkers at the beginning of the study; t(82)=3.368, p<.001. In 

contrast, for every one-point increase in shape bias score, late 

talkers were predicted to initially know 7.44 fewer words -- 

for late talkers, a stronger initial shape bias was associated 

with a smaller vocabulary. This difference between shape 
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bias and vocabulary size was significantly different for the 

two groups at their first visit; t(82)=6.069, p<.001.  

For every additional visit, a one-point increase in shape 

bias score predicted a significant 1.39 word decrease in 

vocabulary size for typical talkers; t(82)=-4.885, p<.001. 

However, by the 10th visit, 43% of typical talkers already 

knew at least 90% of the words on the CDI, indicating 

possible ceiling effects in the typical talker group. Late 

talkers, on the other hand, showed a significantly more 

positive relationship between shape bias scores and 

vocabulary size over the 12-month study period; t(82)=7.216, 

p<.001. For each visit and one-point increase in shape bias 

score, late talkers were expected to know 1.61 more words; 

t(82)=5.31, p<.001. 

 

 
 

Figure 4: Predicted average vocabulary trajectory for typical 

and late talkers from model 3a. The words learning 

trajectories differ between late and typical talkers. 

 

The inclusion of shape bias, its change over time, and how 

these variables differ between late and typical talkers in the 

model accounted for 8.7% of the within-child variability in 

vocabulary. However, there is significant variability in initial 

vocabulary size and growth; χ2 (81, N=84) =455.60, p<.001, 

χ2 (81, N=84)=475.46, p<.001 respectively.  

Model 3b – Material Bias 

Model 3b examines how the strength of a child’s material 

bias predicts their vocabulary size at visit one and over the 

12-month study period (Figure 5). At the first visit, late 

talkers did not differ from their typically developing peers in 

material bias scores; t(82)=1.02, p=.31. For a child with an 

average material bias strength at visit one and over time, both 

typical and late talkers are predicted to know significantly 

more words every month of the study, gaining 48.55 and 

45.03 words, respectively; t(82)=23.07, p<.001, t(82)=17.50, 

p<.001. Further, these gains are not significantly different  

between the two groups; t(82)=1.06, p=0.291. This differs 

from when shape bias was controlled for, where late talkers 

did make significantly less gains in word knowledge than 

typical talkers.  

At the first visit, for every one-point increase in material 

bias score, typical talkers are expected to know 4.32 more 

words, indicating a significant positive relationship between 

material bias and vocabulary size; t(82)=2.22, p<.05. The 

relationship between words known and material bias is 

significantly more negative for late talkers however; 

t(82)=3.54, p<.001. Late talkers are expected to know 

significantly less words (5.3) for every one-point increase in 

material bias; t(82)=-2.8, p<.01. This directly mirrors the 

results for shape bias.  

The material bias by visit interaction also follows the same 

pattern as that for the shape bias. For every month aged, a 

one-point increase in material bias predicts a significant 

reduction in vocabulary size, by 0.95 words; t(82)=-3.06, 

p<.01. To note, this reduction in vocabulary size is not as 

large as the one for the shape bias, at a decrease of 1.39 

words. Further, this relationship is significantly more positive 

for late talkers, as it was for the shape bias; t(82)=4.07, 

p<.001). For each month aged and a one-point increase in 

material bias score, late talkers are expected to know 0.92 

more words; t(82)=2.72, p<.01. As the year goes by, a 

stronger material bias predicts more vocabulary gains for late 

talkers, but fewer gains for typical talkers. 

 

 
 

Figure 5: Predicted average vocabulary trajectory for typical 

and late talkers from model 2. The word-learning trajectories 

between late and typical talkers do not differ. 

 

Including the material bias and its relationship with visit in 

the model accounts for about 5.9% of the variance at level 

one (as compared to 8.7% when shape bias was used). 

Variability in initial vocabulary size and linear growth are 

both significant χ2 (81, N=84) =713.21, p<.001, χ2 (81, 

N=84)=588.33, p<.001 respectively. 
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Table 1: Final estimation of fixed effects for the three analyses. Each intercept is the estimate for typical talkers. We indicate 

the coefficient for each variable followed by the significance (indicated *** p<.001, **p<.01, *p<.05). In parentheses are 

standard errors. 

 

Fixed Effects Model 1 Model 2 Model 3a Model 3b 

For Initial Vocabulary Size, 𝜋0𝑖     

       Initial Vocabulary Size, 𝛽00 63.27(14.6)*** 150.93(18.5)*** 132.24(18.3)*** 148.26(18.2)*** 

       Late talker, 𝛽01  -189.11(19.6)*** -153.02(19.2)*** -187.70(19.6)*** 

For Visit slope, 𝜋1𝑖      

       Visit slope, 𝛽10 47.05(1.7)*** 48.19(2.1)*** 51.77(2.4)*** 48.56(2.1)*** 

        Late talker, 𝛽11  -2.66(3.3) -9.93(3.5)** -3.53(3.3) 

For Bias slope, 𝜋2𝑖     

        Bias, 𝛽20   6.05(1.8)*** 4.32(2.0)* 

        Late talker, 𝛽21   -13.49(2.2)*** -9.62(2.7)*** 

For Visit*Bias slope, 𝜋3𝑖     

       Visit*Bias, 𝛽30   -1.39(0.29)*** -0.95(0.31)** 

       Late talker, 𝛽31   3.01(0.4)*** 1.87(0.89*** 

 

 

Table 2: Final estimation of variance components for the three analyses. We indicate the variance component for each variable 

followed by the significance (indicated *** p<.001, **p<.01, *p<.05). In parentheses are standard deviations. 

 

Variance Components Model 1 Model 2 Model 3a Model 3b 

Initial Vocabulary Size,  𝑟0𝑖  17128(130.9)*** 

 

8246.53(90.8)*** 

 

7360.89(85.8)*** 

 

8139.87(90.2)*** 

 

Visit, 𝑟1𝑖 199.09(14.1)*** 199.35(14.1)*** 208.06(14.4)*** 194.99(14.0)*** 

Bias,  𝑟2𝑖   14.24(3.8) 27.98(5.3)* 

Visit*Bias,  𝑟3𝑖   0.63(0.8)* 0.79(0.9)* 

Level-1, 𝑒𝑡𝑖 3165.89(56.3) 3166.61(56.3) 2887.73(53.7) 2979.37(54.6) 

Discussion 

The work presented here looks at the differential 

contributions of word learning biases to the developmental 

trajectories of typically developing children and late 

talkers, and in doing so provides important novel insights. 

First, word learning biases may not be equally 

advantageous to all children. At the beginning of the study, 

typically developing talkers show the expected positive 

relationship between shape bias score and vocabulary size, 

suggesting that a shape bias facilitates word learning, in 

line with decades of work by Linda Smith and colleagues 

(e.g., Smith, 2000). However, the relationship between 

word learning biases and vocabulary size among late 

talkers presents a different pattern.   
It is important to note that late talkers and their typically 

developing peers do not differ in their initial shape bias 

scores. Although this may seem to contradict Jones’ (2003) 

finding that 30-month-old late talkers do not show a 

consistent shape bias, that is not the case. Rather, these 

results complement Jones’ by documenting a different 

point in the developmental timeline; participants in our 

study were at least a year younger at the beginning of our 

study. In addition, we used an age-appropriate novel noun 

generalization task different from that in Jones (2003).   

In contrast to the documented positive relationship 

between the shape bias and vocabulary size in typically 

developing children, among late talkers there is a negative 

relationship between the strength of their shape bias and 

their vocabulary size at the beginning of the study. This 

intriguing finding suggests our measure of the shape bias 

might not be distinguishing different underlying 

mechanisms that these two groups of children might be 

using. For example, it is possible, given the specific novel 

noun generalization task we used, that late talkers are 

exhibiting a generalized shape bias that is not linked to 

learning new words, but instead simply to attending to 

shape more generally. The fact that this same pattern of 

results held also for the material bias, however, suggests 

that this is not the case, and that at the very least they can 

shift their attention depending on the physical 

characteristics of the objects in front of them. Another 

possible reason our specific shape bias measure might not 

be detecting different underlying mechanisms is that we do 

not test retention. It is possible that in the short term, late 

and typical talkers generalize novel nouns in the same way 

(though there are documented differences in their fast 

mapping abilities; Weismer et al., 2013), but typically 

developing children have an easier time remembering the 
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word-shape association over time, which would result in 

different rates of word learning in the real world.  

Second, the relationship between word learning biases 

and vocabulary growth over time in the two groups of 

children might offer further clues. As the year goes by, we 

observe that among late talkers, increases in shape bias 

score is related to vocabulary gains. That is, the 18-month-

olds who started as late talkers and grew up to have a robust 

shape bias by 30 months of age were likely not late talkers 

at all by that point. Here it is important to note that by the 

end of the study only seven out of the 39 children who 

started as late talkers, or about one in five, remained under 

the 25th percentile; about half of them were above the 50th 

percentile at the last visit. This could just be a function of 

the regular course of development, as it is well known that 

one of the difficulties of dealing with late talkers is that 

many of them will catch up without the help of any 

intervention as others will continue to struggle into their 

school years and beyond. In fact, Heilmann et al. (2005) 

suggest that the CDI can help identify children with low 

language skills up to the 11th percentile from children with 

normal language skills above the 49th percentile. Given that 

the majority of the late talkers in or sample (27/39) started 

the study under the 11th percentile mark, our rate of late 

talker recovery seems higher than expected. Is it possible 

that participating in this study helped late talkers acquire 

an effective shape bias? Whether that is the case or not, 

these findings suggest possible avenues for the design of 

language interventions that might support young late 

talkers.  

On the other hand, for typically developing children, as 

the year goes by, increases in shape bias score are related 

to smaller vocabulary sizes. This unexpected finding is 

likely an artifact of typically developing children reaching 

ceiling performance in both the CDI and their word 

learning bias scores before the end of the study. Because 

the CDI is a finite set of about 700 words, the vocabulary 

curves of typical talkers artificially asymptote towards the 

end of the study, when in fact their vocabularies continue 

to grow as they acquire words beyond those listed in the 

CDI. One way to deal with this is to use open-ended diaries 

rather than vocabulary inventories to measure vocabulary. 

In addition, this would allow us to capture idiosyncratic 

differences in vocabulary composition in late talkers as 

well. 

The present study, with the use of hierarchical analysis, 

sheds light on the differences in language acquisition 

between those who lag behind in vocabulary size, late 

talkers, and those that are developing typically. Although 

the present analyses are just a first step in understanding 

these trajectories, they suggest interesting targets for future 

work. With this knowledge, earlier identification of 

children at risk for delayed vocabulary acquisition, as well 

as the development of more targeted interventions for such 

children, might be possible.  
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Abstract 

We contrast three views of how words contribute to a listener’s 

understanding of a sentence and compare corresponding 

quantitative models of how the listener’s probabilistic prediction on 

sentence completion is affected in online comprehension. The 

Semantic Similarity Model presupposes that the predictor of a word 

given a preceding discourse is their semantic similarity. The 

Relevance Model maintains that utterances are chosen to maximize 

relevance. The Bayesian Pragmatic Model assumes a relevance-

guided modulation of a word’s lexical meaning that can be regarded 

as a Bayesian update of statistical regularities stored in memory. In 

addition to a Cloze test, we perform an EEG study, recording the 

event-related potential on the predicted word and take the N400 

component to be inversely correlated with the word’s predictive 

probability. In a multiple regression analysis, we compare the three 

models with regard to Cloze values and N400 amplitudes. The 

Bayesian Pragmatic Model best explains the data. 

Keywords: Bayesian Pragmatics, EEG, N400, Cloze Test, Semantic 
Similarity, Relevance, Generative Lexicon, Probabilistic Prediction, 

Online Comprehension, Modulation, Predictive Completion Task 

Introduction 

A preceding discourse can influence the way words 

contribute to a listener’s understanding of a sentence 

(Recanati, 2012). This contextual influence also affects a 

listener’s implicit probabilistic predictions on the completion 

of a discourse in the process of online comprehension. The 

listener’s implicit task of predicting the next word 𝑤𝑛+1 

following a discourse that consists of the word sequence 

𝑤1 … 𝑤𝑛 can be described by a predictive probability of the 

following form: 

(1) 𝑃(𝑤𝑛+1|𝑤1 … 𝑤𝑛). 

In an EEG study, Nieuwland and Van Berkum (2006) showed 

that discourse contexts can interact with the lexical animacy 

feature of concrete nouns. A preceding context with a peanut 

being fictitiously described as dancing and singing can, e.g., 

invert comparative predictive probabilities such that the 

predicate (was) in love now has a higher probability for the 

listener than the otherwise more likely predicate (was) salted. 

                                                           
§ MW and MU contributed equally. 
1 A problem for this interpretation of the N400 are so-called 

semantic illusions, where zero-Cloze cases do not yield an 

increase in the N400 amplitude (cf. Kuperberg, 2007; Bornkessel-

Schlesewsky & Schlesewsky, 2008; Brouwer, Fitz, & Hoeks, 

2012). 
2 Existing accounts in Distributional Semantics base semantic 

similarity values merely on co-occurrences of syntactically 

The inversion of comparative predictive probabilities was 

revealed by a crossing-over of the N400 components between 

the two conditions measured on the critical predicates. The 

N400 component is defined as a negatively-going deflection 

of the event related potential over centro-parietal electrodes 

occurring around 400ms after stimulus onset (Kutas & 

Federmeier, 2011). As reviewed by Kuperberg and Jaeger 

(2016), the N400 component measured on a word is typically 

inversely correlated with its conditional probability given the 

preceding context.1 There are two dominant interpretations of 

the underlying neuro-cognitive functions reflected in the 

N400 component: the semantic integration (e.g., Hagoort, 

Baggio, Willems, 2009) and the lexical retrieval view (e.g., 

Brouwer, Crocker, Venhuizen, & Hoeks, 2017). On these 

views, a negative increase of the N400 amplitude reflects 

higher processing demands associated with either (a) the 

integration of the target word’s meaning into the 

compositional meaning of a sentence, or, respectively, (b) the 

retrieval of the target word’s lexical meaning from memory. 

Neural network models of the N400’s underlying neural 

mechanisms have been proposed (e.g., Brouwer et al., 2017), 

some of which take the correlation of the N400 component 

with its predictive probability as a key explanandum 

(Rabovsky, Hansen, & McCelland, 2018; Fitz and Chang, to 

appear). 

What has remained unclear in the peanut study is which 

factors of the context are responsible for the crossing over of 

the N400 components. The Semantic Similarity View 

maintains that the contextual influence is due to the degree of 

the semantic similarity between parts of the discourse context 

and the words in the target sentence (Otten & Van Berkum, 

2008). The semantic similarity between two expressions can 

be determined by statistical regularities on co-occurrences in 

large corpora, as described in Distributional Semantics. In the 

above example the expression in love, e.g., has a greater 

semantic similarity to words in the context story (e.g., 

dancing, singing) than salted.2 

The Relevance View, in contrast, holds that the crossing-

over and the associated changes in the listeners’ predictions 

unstructured lexical primitives and have problems coping, 

especially, with certain logical contexts such as negation or 

negative quantifiers. It would thus not be surprising if semantic 

similarity values attained by existing Distributional Semantics 

accounts had problems predicting the N400 in those contexts 

(e.g., Urbach & Kutas, 2010; Nieuwland, 2016). However, 

ongoing research in Distributional Semantics attempts to also 

capture complex logical contexts. 
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are only due to relevance considerations, regarding the 

relation between the context and the target expression. In the 

process of comprehension, the listener may assume that the 

speaker has chosen a particular combination of words in the 

discourse to maximize relevance (Sperber & Wilson, 1996). 

In the above example, the preceding fictitious story appears 

to be more relevant if the noun peanut is interpreted as 

animate. Consequently, a completion with the predicate in 

love should be more probable than one with salted. The 

Relevance View might also be associated with the view that 

there are no identifiable word meanings in the mental lexicon, 

at all (Elman, 2004). Consequently, the notion of semantic 

similarities between lexical meanings would be void. 

Both, the Semantic Similarity and the Relevance View 

contrast with the Bayesian Pragmatic View. The latter 

accounts for the rational cooperation between speaker and 

listener by Bayes's Theorem. The predictive probability is 

identified with the posterior probability of a word, which 

results from updating its prior probability with its likelihood. 

The prior is simply a function of the semantic similarity 

(reflecting overall statistical co-occurrences) between the 

target word and the words in the preceding context. By being 

able to update the prior, listeners can incorporate pragmatic 

considerations on speakers’ intentions, such as the thrive for 

relevance, into to their interpretation and, consequently, 

adjust their predictions about speakers’ continuation of a 

sentence. Bayesian pragmatics has been successfully used to 

explain results in behavioral experiments on simple 

referential games (Frank & Goodman, 2012), scalar 

implicatures (Degen, Tessler, & Goodman, 2015; Goodman 

& Stuhlmüller, 2013), gradable adjectives (Lassiter & 

Goodman, 2013; Qing & Franke, 2014), modal expressions 

(Lassiter & Goodman, 2015), and figurative meaning (Kao, 

Wu, Bergen, & Goodman, 2014). It has so far only been 

validated in EEG by Werning & Cosentino (2017). 

In this paper, we test and compare the empirical adequacy 

of the three different views. For each of the views, a 

quantitative model of the listener’s predictive probability of 

a word given a preceding discourse is developed. To feed the 

model with data, values for semantic similarity and relevance 

are attained. As a measure of semantic similarity, we use 

GloVe values (see below), a computer linguistic measure in 

the framework of Distributional Semantics. Values for 

relevance are collected via relevance ratings in an online 

questionnaire. To determine listeners’ predictive 

probabilities, we perform two experiments with the same 

stimulus material: a forced-choice Cloze study employing an 

online questionnaire and an N400 study in EEG. In a multiple 

linear regression analysis, finally, the proportions of variance 

explained by each of the three models are compared with 

regard to both experiments. 

Models 

To design the experiment, we build on Pustejovsky’s (1995) 

Generative Lexicon Theory, according to which the lexical 

entry of a concrete noun (e.g. cake) contains a “Qualia 

Structure”, which, among others, specifies an Agentive 

component (e.g. bake). The Agentive component represents 

the typical way of bringing about the denoted object – it 

contrasts with the Telic component that relates to a typical 

purpose or function, e.g., cake-eat (Cosentino, Baggio, 

Kontinen, & Werning, 2017). Triggered by verbs like begin 

and finish, the Agentive component of a noun co-composes 

with the noun in sentence meaning composition (Werning, 

2004, 2005). This explains why sentences such as (a) and (c) 

are typically understood as having the meaning of (b) and, 

respectively, (d): 

(a) Granny finished the cake. 

(b) Granny finished baking the cake. 

(c) The artist began the statue. 

(d) The artist began sculpturing the statue. 

Since nouns often co-occur with verbs expressing their 

Agentive component – so-called Agentive verbs – the 

semantic similarity of a noun and the respective Agentive 

verb is usually high. For our stimuli, the high semantic 

similarity was explicitly confirmed by GloVe values (see 

below). 

Each quadruple of our 2 × 2 experimental design 
{+ALex, −ALex} × {AStdCtx, ANewCtx} (see Table 1) was 

built around a fixed concrete noun 𝑛 (cream). In condition 

+ALex as [opposed to −ALex] the critical word was chosen 

as a verb (whip [draw]) that expressed [did not express] the 

 +ALex −ALex 

 

AStdCtx 

Maria richtet ein Kuchenbuffet her, das ihre Freunde 
beeindrucken soll, und bereitet alles Notwendige dafür vor. 

Maria prepares a cake buffet to impress her friends and makes 

ready everything necessary for it. 

Sie ist schon dabei Sahne zu schlagen. 

She is already about cream to whip. 

 

Maria richtet ein Kuchenbuffet her, das ihre Freunde beeindrucken 
soll, und bereitet alles Notwendige dafür vor. 

Maria prepares a cake buffet to impress her friends and makes 

ready everything necessary for it. 

Sie ist schon dabei Sahne zu zeichnen. 

She is already about cream to draw. 

 

ANewCtx 

Maria übt für ein Bild von einem Kuchenbuffet und benutzt ihr 
Notizbuch für ihre Vorstudie. 

Maria practices for a picture of a cake buffet and uses her 

notebook for her preliminary study.  

Sie ist schon dabei Sahne zu schlagen.] 

She is already about cream to whip. 

 

Maria übt für ein Bild von einem Kuchenbuffet und benutzt ihr 
Notizbuch für ihre Vorstudie. 

Maria practices for a picture of a cake buffet and uses her notebook 

for her preliminary study.  

Sie ist schon dabei Sahne zu zeichnen. 

She is already about cream to draw. 

 
Table 1. Example of stimuli with English translation (Experiments 1 & 2). In the 2 × 2 design, Agentive (+Alex) and Non-Agentive 

(– Alex) verbs are combined with a standard (AStdCtx) or a new context (ANewCtx). The word order of the target sentence in the English 

translation is adjusted to the German original. 
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Agentive component in the lexical entry of the preceding 

noun 𝑛 and had a high [low] semantic similarity to it. In 

condition AStdCtx, a standard context preceded the target 

sentence, whereas in condition ANewCtx the preceding 

discourse sentence suggested a new way of bringing about 

the object. The semantic similarity between the verbs and 

each of the context sentences was held invariant over all four 

combinations of conditions. 

The Semantic Similarity Model presupposes that the 

only predictor for the verb given its preceding discourse is 

the semantic similarity of the former to the latter (word 

frequency held constant). The predictive probability 𝑃𝑛(𝑣|𝑐) 

of the verb 𝑣 following the noun 𝑛 given the preceding 

context sentence 𝑐 is a monotonously increasing function 𝑓𝑛
+ 

of the semantic similarity 𝑆(𝑣, 𝑛) between the verb and the 

noun and the (however invariant) semantic similarity 𝑆(𝑣, 𝑐) 

between the verb and the context sentence 𝑐. Accordingly, 

the listener’s predictive probability 𝑃𝑛(𝑣|𝑐) hence comes to: 

(2) 𝑃𝑛(𝑣|𝑐) = 𝑓𝑛
+ (𝑆(𝑣, 𝑛)). 

The Relevance Model, in contrast, maintains that listeners 

assume that speakers aim at maximizing relevance by 

choosing their utterances. The sole predictor is the relevance 

of the situation expressed by the context sentence 𝑐 for the 

action (expressed by the verb 𝑣) to be performed on the object 

(denoted by the noun 𝑛): 

(3) 𝑃𝑛(𝑣|𝑐) = 𝑔𝑛
+ (𝑅𝑒𝑙𝑛(𝑐, 𝑣)). 

The Bayesian Pragmatic Model allows listeners to update 

their priors regarding the verb following the noun with 

pragmatic considerations on speakers’ intentions, thus, 

arriving at probabilistic predictions of the verb. The prior, 

i.e., 𝑃𝑛(𝑣), strictly increases with the semantic similarity 

between the verb 𝑣 and the noun 𝑛. The update as described 

by the likelihood, i.e., 𝑃𝑛(𝑐|𝑣), is modelled as the conditional 

probability of speakers’ choice of a context 𝑐 given their 

communicative intentions, namely, their intentions to 

attribute, to a protagonist, an action (denoted by the verb 𝑣) 

to be performed on a given object (denoted by the noun 𝑛). 

The speaker, in other words, has to choose a preceding 

context sentence (c) to let this action appear relevant such that 

the choice of c given 𝑣 strictly increases with the relevance 

of 𝑐 for 𝑣. This leads to the following identifications: 

𝑃(𝑐|𝑣) = 𝑔𝑛
+ (𝑅𝑒𝑙𝑛(𝑐, 𝑣)), 𝑃𝑛(𝑣) = 𝑓𝑛

+ (𝑆(𝑣, 𝑛)), and by 

Bayes Theorem we get: 

(4) 𝑃𝑛(𝑣|𝑐) = 𝐾 ∙ 𝑃𝑛(𝑐|𝑣) 𝑃𝑛(𝑣) 

= 𝐾 ∙ 𝑔𝑛
+ (𝑅𝑒𝑙𝑛(𝑐, 𝑣)) ∙ 𝑓𝑛

+ (𝑆(𝑣, 𝑛)). 

The Bayesian update of the semantic similarity can be 
regarded as reflecting a relevance-guided modulation of 
the Agentive component in the lexical entry of the noun 
(Recanati, 2012). 

Model Predictions. Both, Cloze values and the amplitude 

of the N400 component, can be assumed to correlate with the 

predictive probability 𝑃𝑛(𝑣|𝑐). To model the two variables, 

we assume monotonous functional relations between 𝑃𝑛(𝑣|𝑐) 

and the values of the Cloze test and, respectively, the N400 

amplitude measured on 𝑣. 

Logarithmization and subsequent linear approximation of 

the model predictions (2), (3) and (4) lead to the linear 

parametric model predictions described in Table 2. The 

negative logarithm of the predictive probability of a word has 

been interpreted as word surprisal and is directly correlated 

with the amplitude of the N400, measured on the word 

(Frank, Otten, Galli, & Vigliocco, 2015). 

Experiment 1: Cloze Test 

Method 

Participants: Cloze Test. Forty German native speakers 

were recruited via Prolific. Three participants, who failed to 

have a high-school degree, and two further ones, who 

answered the test in below four minutes (estimated time: ten 

minutes), were excluded. Of the remaining thirty-five 

participants, 57.1% were male, 42.9% female. The average 

age was 30.20 years (SD=10.86). 

Participants: Relevance Rating. Forty participants were 

recruited via Prolific. Of those, thirty-eight people were 

included which satisfied the requirement of being German 

native speakers and having attained a high school diploma.  

General Material. For the forced-choice Cloze test and 

the relevance ratings, forty quadruples of the 2 × 2 design 

were generated in German (Table 1). Regarding the Cloze 

test, we used a forced-choice format to ensure that only 

Agentive verbs were available for comparison. The critical 

verbs did neither repeat, nor occur in context sentences. 

〈+ALex, −ALex〉-verb pairs. For each noun (e.g., cream), 

an +ALex verb (whip) and an −ALex verb (draw) were 

chosen so that the semantic similarity of the +ALex verb to 

the noun was .15 higher than that of the −ALex verb. 
〈+ALex, −ALex〉-pairs did not differ significantly in 

frequency class (https://wortschatz.uni-leipzig.de/), nor in 

character length. 

Context sentences. For each quadruple, a standard context 

was chosen (AStdCtx) that was highly relevant for the 
〈n, +ALex〉 combination and less relevant for 〈n, −ALex〉. 

The new contexts (ANewCtx) were designed to reverse this 

order of relevance. The semantic similarity of 
〈Context, Verb〉-pairs was not allowed to differ significantly 

over all four conditions. The character length of contexts 

AStdCtx and ANewCtx did not differ significantly either. 

Fillers. Twenty filler discourses with congruent and 

twenty with incongruent 〈Noun, Verb〉-pairs were generated 

and had the same structure as the test material. The frequency 

Account Model 

Bayesian Pragmatic View  𝑎 𝑅𝑒𝑙𝑛(𝑐, 𝑣) + 𝑏 𝑆(𝑣, 𝑛) + 𝑘 

Relevance View  𝑎 𝑅𝑒𝑙𝑛(𝑐, 𝑣) + 𝑘 

Semantic Similarity View  𝑏 𝑆(𝑣, 𝑛) + 𝑘 

Table 2. Linear parametric model predictions for Cloze values 

and the amplitude of the N400 component measured on the 

critical verb. 
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class and the length of the verbs did not differ significantly 

from the critical verbs of the test stimuli. Nor did the 

character length of the respective contexts differ 

significantly. Semantic Similarity was measured by an 

implementation of GloVe (Global Vectors, Pennington, 

Socher, & Manning, 2014) based on all articles from German 

Wikipedia and ca. three million news articles from Leipzig 

Corpora Collection (Goldhahn, Eckart, & Quasthoff, 2012). 

Material and Design (Cloze Test). For the forced-choice 

Cloze test, the stimulus material was randomly distributed 

over four questionnaires in a counterbalanced way to avoid 

repetition. Context sentence and target sentence were 

presented as described in Table 1, with a blank instead of the 

critical verb. Subjects were instructed to choose the best fit 

among six alternative verbs. The alternatives always included 

the +ALex and −ALex verbs, as well as four alternative, 

agentive verbs drawn from the stimulus material not used in 

the questionnaire. 

Material and Design (Relevance Ratings). The stimulus 

material including fillers was randomly distributed over four 

questionnaires in a counterbalanced way to avoid repetition. 

For each of the vignettes the context sentence surrounded by 

a box and marked as “A” was shown above the target 

sentence marked as “B”, with the critical verb underlined. 

Participants were instructed to rate relevance on a 7-point 

Likert scale by answering the question: How plausible is the 

situation described in box A, given the action in sentence B.  

Procedure. The Cloze test and relevance ratings were 

done using online questionnaires, via Qualtrics. The 

relevance ratings were preceded by two practice items. 

Results and Discussion 

Mean Cloze probabilities are summarized in Figure 1. The 

following results ensued: (1) 〈+ALex, AStdCtx〉 and 

〈−ALex, AStdCtx〉 (𝑝 < .0001, 𝑑 = 9.01), (2) 

〈−ALex, ANewCtx〉 and 〈−ALex, AStdCtx〉 (𝑝 < .0001, 𝑑 =
2.65), (3) 〈+ALex, AStdCtx〉 and 〈+ALex, ANewCtx〉 (𝑝 <
.0001, 𝑑 = 3.88), and (4) 〈−ALex, ANewCtx〉 

and 〈+ALex, ANewCtx〉 (𝑝 < .0001, 𝑑 = 1.31). To compare 

the Semantic Similarity, the Relevance and the Bayesian 

Pragmatic Models, we performed multiple regression 

analyses of Cloze data (see Table 3). The correlation between 

relevance ratings and corresponding similarity values was 

very small (𝑟 = .10). 

The Bayesian Pragmatic Model was the clear winner 

according to BIC and AIC values, which take the unequal 

number of predictors into account. Within this model, the 

relevance values ( = 1.01, p < .001) and semantic 

similarity values ( = .31, p < .01) were significant 

predictors (for the scatterplot see Figure 1). 

Experiment 2: EEG Study 

Method 

Participants. Twenty-eight participants were recruited. Two 

participants were excluded due to noisy EEG data and pain 

medication prior to the experiment. Of the resulting twenty-

six participants, 30.8% were male, 69.2% female. The 

average age was 24.23 years (SD=3.40). 

Design and Material. The stimulus material and fillers 

described in Experiment 1 were used. One of eight three-

word phrases succeeded each target sentence (e.g., und ist 

fröhlich [and is happy]) to avoid the critical word being 

sentence final. Half of those appended phrases expressed 

positive and, respectively, negative emotional states, 

randomly chosen for each quadruple in a counterbalanced 

way. 

The stimulus material was randomly split in two parts so 

that every context sentence and every critical verb appeared 

only once in each part. The two parts were administered to 

participants in two separate sessions, at least two weeks apart, 

to avoid carry-over and contrast effects. All participants had 

been presented with the entire stimulus material plus fillers. 

The order was counterbalanced. The complete set of fillers 

described in Experiment 1 was used in each session, resulting 

in eighty vignette (twenty per condition) and forty fillers 

(twenty congruent and twenty incongruent). The order was 

randomized.  

Procedure. Each trial started with a fixation cross 

(1300ms) followed by the presentation of the context 

sentences. The context sentences were split up in roughly 

equal-sized chunks (character lengths: M = 17.91, SD = 

a) b) 

  
 

Figure 1. (a) Forced-choice Cloze probabilities. (b) Scatterplot for predictions of the Bayesian Pragmatic Model. 
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3.41). Each chunk was presented for 1300ms with a random 

interval of 200–400ms. 

The target sentence, including the three-word phrase, was 

then presented word by word. In order to allow for a 

sufficiently long time interval for measuring ERP 

components, the target word was always presented for 450ms 

followed by an inter-stimulus interval of 450ms. All other 

words in the target sentence were presented for either 400 or 

450ms, with a random inter-stimulus interval of 250–450ms. 

700ms after the vignette’s last word, participants had to 

judge, on a keypad, whether the complete vignette – 

consisting of context and target sentence (including the three-

word phrase) – was plausible. The left-right orientation was 

randomized. The plausibility judgment should ensure that 

participants read the stimulus material carefully. Three 

examples with clearly congruent and incongruent 

〈Noun, Verb〉-pairs served as practice material, prior to the 

testing phase. 

Electroencephalogram recording and data processing. 

A BrainAmp Acticap system was used to record the 

electroencephalogram (EEG) from 66 active electrodes 

including four electro-oculogram electrodes for monitoring 

horizontal and vertical eye movements. The Brain Vision 

Analyzer 2.0 was employed to filter the data, correct for eye 

movements via independent component analysis (ICA). We 

used automatic artifact rejection to remove an episode per 

electrode if the change in currency exceeded 150μV in a 

150ms interval. In case more than 10 electrodes were 

affected, or the trial had been interrupted before the critical 

word occurred, the whole episode was removed. 

ERP data on the critical word (for each participant and 

trial) was exported to Matlab and individual trials were sorted 

and averaged across participants for each of the 160 

vignettes, based on the Fieldtrip format for EEG data. 

Results and Discussion 

Mean amplitudes in the interval 370–500ms for posterior-

central electrodes (CP1, CPz, CP2, P1, Pz, P2) across the four 

conditions are described in Figure 2. Bonferroni-corrected t-

tests revealed significant differences between (1) 

〈+ALex, AStdCtx〉 and 〈−ALex, AStdCtx〉 (𝑝 < .01, 𝑑 =
1.80), (2) 〈−ALex, ANewCtx〉 and 〈−ALex, AStdCtx〉 (𝑝 <
.01, 𝑑 = 1.13), and (3) 〈+ALex, AStdCtx〉 and 〈+ALex,
ANewCtx〉 (𝑝 < .05, 𝑑 = .61). However, no significant 

difference was found for (4) 〈−ALex, ANewCtx〉 and 
〈+ALex, ANewCtx〉 (𝑑 =  .17). For the respective ERP 

results as measured on the CPz see Figure 3. 

To compare the Semantic Similarity, the Relevance and 

the Bayesian Pragmatic Models, we performed multiple 

regression analyses of the mean, baseline-corrected ERP in 

Predicted Variable: Cloze Probabilities (Experiment 1) 

Account Model N df RMSE r radj BIC BIC AIC AICc 

Bayesian Pragmatic Model Y~A+B+1 160 157 .22 .850* .848* -16.40 – -25.64 -25.47 

Relevance Model Y~A+1 160 158 .23 .839* .838* -11.12 +5.30 -17.27 -17.19 

Semantic Similarity Model Y~B+1 160 158 .40 .223* .209* 175.54 +191.93 169.38 169.46 

Predicted Variable: EEG Amplitude (370–500ms, Experiment 2) 

Bayesian Pragmatic Model Y~A+B+1 160 157 1.90 .489* .479* 671.06 – 661.84 661.99 

Relevance Model Y~A+1 160 158 1.96 .426* .419* 677.71 +6.64 671.56 671.63 

Semantic Similarity Model Y~B+1 160 158 2.08 .283* .273* 696.26 +25.20 690.11 690.19 

Table 3. Model comparisons for the regression analysis of Cloze probabilities (Experiment 1) and EEG amplitudes (370–500ms, 

Experiment 2). The EEG Amplitude was averaged across electrodes CP1, CPz, CP2, P1, Pz and P2. AICc = Aikaike Information Criterion 

corrected for sample size. *p<.001. 

a) b) 

  
 

Figure 2. (a) EEG amplitudes (370–500ms, µV) for the pooled central-posterior electrodes (CP1, CPz, CP2, P1, Pz, and P2) after 

baseline correction. (b) Scatterplot for predictions of the Bayesian Pragmatic Model. 
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the interval 370–500ms of the pooled posterior-central 

electrodes (see Table 3). Again, the Bayesian Pragmatic 

Model turned out as the clear winner according to BIC and 

AIC. Within this model, the relevance values ( = 2.54, p <
.0001) as well as the semantic similarity values ( =
2.81, p < .001) were significant predictors. See Figure 2 for 

the scatterplot of the averaged N400 amplitudes and the 

values predicted by the Bayesian Pragmatic Model. 

General Discussion 

We contrasted three views of how words contribute to a 

listener’s understanding of a sentence and compared three 

corresponding quantitative models of how the listener’s 

implicit probabilistic predictions on the completion of a 

discourse is affected in online comprehension. The Semantic 

Similarity Model presupposes that the only predictor for a 

word given a preceding discourse is the semantic similarity 

between the two. The Relevance Model maintains that 

listeners assume that speakers aim at maximizing relevance 

by choosing their utterances. The Bayesian Pragmatic Model 

assumes a relevance-guided modulation of a word’s lexical 

meaning that can be regarded as a Bayesian update of learnt 

statistical regularities stored in semantic memory. 

To compare the explanatory power of the three models 

with regard to our Cloze and EEG data, we used the BIC and 

AIC criteria. Unlike 𝑟2, BIC and AIC penalize for the 

unequal number of predictors. The clear winner in the 

comparisons, regarding both, the Cloze and EEG data, was 

the Bayesian Pragmatic Model. The Bayesian Pragmatic 

Model is not merely a combination of relevance and semantic 

similarity, but relates the two as the relevance-guided 

Bayesian update of a similarity-based prior probability. 

Interestingly, the two factors, relevance and similarity, did 

not contribute equally to the success of the Bayesian 

Pragmatic Model. Relevance outperformed semantic 

similarity, as indicated by the relative success of the 

Relevance over the Semantic Similarity Model. With regard 

to the EEG data, relevance explains 2.27 times as much 

variance as semantic similarity does. With regard to the Cloze 

data, however, this ratio is dramatically higher and equals 

14.16. This pattern is also evidenced by comparing the EEG 

and the Cloze data with respect to the relative differences in 

BIC and AIC values of the three models. At first sight, this 

suggests that relevance is the dominant factor for the 

predictive probability of a word. A closer look reveals that 

semantic similarity still plays a larger role in truly 

incremental online comprehension, as observed in EEG, than 

in the Cloze test, which allows for backward-looking and 

untimed deliberation. 

The lack of a significant difference of the ERPs in the 

time window of the N400 (370–500ms) for the comparison 

of the conditions 〈+ALex, ANewCtx〉 and 〈−ALex,
ANewCtx〉 – with an effect size of only 𝑑 = .17 – indicates 

that a greater semantic similarity value can compensate for a 

lower relevance value. This qualitatively illustrates the still 

prevalent importance of semantic similarity and thus the 

superiority of the Bayesian Pragmatic Model over the 

Relevance Model. 

Our results also have clear implications for both the 

retrieval and the integration account of the N400. In light of 

our results, both approaches have to be modified to explicitly 

address the relevance-guided modulation of lexical meaning, 

described as updating by the Bayesian Pragmatic Model. 

Following the retrieval account, it will be the modulated 

lexical meaning of a preceding word that facilitates or 

impedes the retrieval of a subsequent word’s meaning. 

Within the integration account, it is the modulated lexical 

meaning that determines the ease of integrating a subsequent 

word’s meaning into the compositional meaning of the 

sentence. 
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Abstract 
Learning about novel objects not only involves noticing 
information that makes the object unique, but also what makes 
objects the same. Yet, these two levels of learning involve 
different pieces of information, meaning that learning one well 
could come at the cost of the other. Moreover, children may 
categorize in a fundamentally different way, resulting in these 
levels of learning interacting differently. To investigate this, 
we had adults and children perform a categorization task 
followed by an item recognition test. We found that adults 
showed a trade-off, such that the ability to categorize items 
came at the cost of memory for those items. Using a subset of 
more unique lures, children’s memory trended towards a trade-
off with category learning. However, this was only observed 
among the older children. This suggests that adults’ efficient 
learning comes at a cost, and this trade-off may start to appear 
in the elementary school years. 
 

Keywords: cognitive development; category learning; 
abstraction; generalization; memory; selective attention 

Background 
Learning about objects goes beyond simply identifying 
unique features. We also learn abstract information, picking 
up on consistencies across objects. These different levels of 
abstraction are each informative in different ways, as the 
former provides details specific to an individual object while 
the latter facilitates categorization and generalization across 
objects. Given the discrepancy in the information learned, it 
seems likely that learning information really well at one level 
of abstraction might impede learning at the other, resulting in 
a trade-off in learning. 

In fact, we know that categorical knowledge can impact 
memory in important ways. For instance, the Deese-
Roediger-McDermott (DRM) paradigm has been found to 
show memory distortions in adults for words on a list when 
the presented words are categorically related. In this case, the 
category-level information that connects the words on the list 
causes memory distortions, a loss of memory of the specific 
words themselves (item-level information) and false memory 
for words that did not occur. This memory distortion is not 
seen when the word list is not categorical, suggesting that it 
is the abstraction of the category that is obscuring the details 
and producing distortions (see Brainerd, Reyna, & Ceci, 
2008). 

In addition, Sloutsky and Fisher (2004) found a drop in 
adults’ memory for specific animals after participants sorted 
them categorically. When left uncategorized, memory for the 
individual animals was good, however following an 
induction task that required sorting the animals into species, 
memory for the individuals dropped to chance levels. 

One possible explanation for this pattern of behaviour is 
the longstanding fuzzy-trace theory, in which abstraction 
necessarily involves a distillation of information to a vague, 
detail-free, gist representation (Brainerd & Reyna, 1990). In 
other words, abstraction is facilitated by a lack of detailed, 
item-level information. Similarly, the schema literature 
would suggest a comparable process in the organization of 
our knowledge, as schemas are abstract representations of 
something (be it a place, animal, social interaction) 
accumulated through experience that create expectations for 
the future (Mandler, 1984). Details from specific experiences 
are filtered out and consistencies are used to create a generic 
representation. Again, it is the loss of detailed information 
that makes a schema so generalizable. 

Given this previous work and theory, there could be a 
trade-off in learning item-level and category-level 
information. Yet, work exploring this relationship has to date 
only included pre-existing categories and hasn’t tackled 
whether a trade-off might occur during or in the service of 
category learning. It remains unclear how novel category 
learning would affect the interaction of item- and category-
level information.  

An eye-tracking study that assessed attention during a 
novel category learning task may provide some insight into 
this question (Rehder & Hoffman, 2005). In this study, as 
participants were learning to categorize the stimuli, they were 
found to fixate on all features of a stimulus. However, once 
they had successfully learned to categorize, they were found 
to fixate only on the diagnostic feature. This narrowing of 
focus would likely result in better categorization behavior, 
likely at the expense of learning about non-category relevant 
features of the objects, thereby producing a trade-off in object 
and category learning.  

In contrast, when it comes to category learning, an abstract 
representation could still be formed not by ignoring irrelevant 
features of objects, but by learning all of the features of 
objects—both relevant and irrelevant—well. After all, 
abstracting to learn a category only necessitates learning the 
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relevant information for that category and not necessarily 
ignoring what is irrelevant. This approach to category 
learning would of course result in a different relationship with 
item memory: there would not be a trade-off.   

There is some research suggesting that children may not 
demonstrate a trade-off in item-level and category-level 
information. For instance, in the DRM paradigm discussed 
above, adults consistently fall prey to false memories when 
the word lists are thematic. Interestingly, children do not 
succumb to the same memory distortions. In fact, this 
paradigm finds that young children have few false memories, 
with that number steadily increasing across the elementary 
school years and peaking in adulthood (Brainerd et al., 2008). 
In this case, children seem to have no thematic intrusions and 
remember the item-level information despite their category 
membership, resulting in no trade-off.  

A similar result was found by Sloutsky and Fisher (2004), 
discussed above. Whereas the adults’ memory for individual 
animals dropped after categorization, children’s memory 
remained consistent. Here again, children maintained 
memory for the item information despite categorization. 
Given these findings, it is likely that children will similarly 
not show a trade-off during category learning, although the 
answer to this question is as yet unknown.  

Along these lines, it has been suggested that instead of 
utilizing only the diagnostic dimensions, children categorize 
by including all item-level information  (Sloutsky, 2010). 
Indeed, support for a holistic approach to categorization was 
found in children but not adults; adults were found to use only 
diagnostic features to categorize, while children were found 
to use the entirety of the item, basing their categorization on 
overall similarity (Smith & Kemler, 1977). This difference 
may reflect children’s developing ability to selectively 
attend, as they are less successful at suppressing irrelevant 
information (Rueda, Posner, & Rothbart, 2005). 

Furthermore, these differences in attention are likely to 
impact memory. For instance, during change detection and 
search tasks, children have also been found to have superior 
memory for task-irrelevant information compared to adults, 
suggesting that children’s distributed attention facilitates 
memory for task-irrelevant information (Plebanek & 
Sloutsky, 2017). Together, these findings raise a final 
question. If children are attending to all available information 
when learning to categorize, will they retain item-level 
information despite successfully learning to categorize? In 
other words, might children be immune to the trade-off in 
item-level and category-level learning that we expect to see 
in adults?  

To answer these questions, two experiments were 
performed, one with adults and one with children. In each, 
participants performed an A/B categorization task to measure 
category learning and a recognition memory test to measure 
item memory. To assess how specifically the items were 
remembered, half of the recognition foils were similar to the 
categorization stimuli along an orthogonal (not categorically-
diagnostic) dimension, and half were dissimilar.  

Experiment One 
Methods 
Participants Participants included 60 undergraduate 
students from the University of Toronto participating for 
course credit (M = 19.73 years, 76% female). 
 
Materials and Procedure The category learning task 
consisted of 60 trial-unique trials of a feedback driven A/B 
sort task. Participants were instructed to sort “amoebas” into 
one of two categories based on the feedback given. They were 
not told what features defined category membership. Each 
stimulus was presented for 1.5 seconds or until a response 
was given, and stimulus presentation order was randomized 
between participants. The task was conducted on an Apple 
desktop computer using PsychoPy (Peirce, 2008). 

The stimuli were designed to vary categorically along one 
dimension and orthogonally along two dimensions. Category 
membership was defined by distortions of two prototypical 
dot patterns shown below (Fried & Holyoak, 1984; Seger et 
al., 2000; Figure 1a). The 84 exemplars were generated by 
allowing dots a 7% chance of differing from the original. No 
exemplars were repeated across stimuli. 

The orthogonal dimensions included colour and shape. 
Unique colours were randomly assigned, and shapes were 
created by making two extremely different shapes—
generated from images of paint splatter—and morphing them 
together to varying degrees to create a series of related shapes 
(Figure 1b). All three dimensions were combined by placing 
the dot pattern in black on the coloured shape to create a total 
of eighty-four unique items (Figure 1d). 

The item memory task consisted of a surprise item 
recognition test that always took place after the 
categorization task. In this recognition task, participants were 
asked if stimuli were present in the categorization task (old) 
or were new. Of the 48 stimuli presented at test, 24 were old, 
12 were novel-shape lures, and 12 were same-shape lures. 
Same-shape lures were generated from the morphing 
procedure that was used to generate the categorization 
stimuli, but all twelve were unique and had not occurred 
during the categorization phase. Novel shape lures were 
created outside of the shape space used to generate the 
categorization stimuli, but were likewise generated from 
paint splatter images (see Figure 1c for examples). Order of 
presentation was randomized, and there was no time limit for 
response. 
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Figure 1: a) Diagnostic features defining category 
membership, b) Two shapes were morphed together to create 
a shape space, c) Novel-shape lures: Shapes were created 
outside of the shape space, d) An example of a complete 
stimulus: unique colours, shapes, and dot patterns were 
combined to create a set of completely unique stimuli. 

 
Statistical Analysis We conducted all statistical analyses 

in R (R Core Team, 2017). Categorization accuracy was 
operationalized by calculating percentage correct in the 
category learning task. Item memory was calculated using d’ 
(Z(hit rate) – Z(false alarm rate)), and scores were compared 
with chance using an independent-samples t-test. The general 
linear model was applied to all basic correlations, and general 
linear mixed-effects models were applied for analyses 
involving trial number using the lme4 package in R (Bates, 
Mächler, Bolker, & Walker, 2015). The fixed effects were 
categorization trial number and accuracy. Models contained 
random intercepts and slopes grouped by stimulus. 

 
Results  
Participants demonstrated learning in the categorization task, 
with accuracy increasing across trial number (ß = 0.025, z = 
9.793, p <.001) and an average overall accuracy of 76% (SD 
= 16.827). Similarly, participants demonstrated memory for 
the items at test, successfully distinguishing old items from 
new at a rate significantly different from 0 (M = 0.268, SD = 
0.374; t(59) = 5.558, p <.001). As predicted, a tradeoff was 
also observed such that participants’ categorization scores 
were negatively related to their recognition scores (F(1,58) = 
14.31,  p <.001, Figure 2). Thus, individuals who performed 
the categorization task better, had worse memory for 
exemplars.  

To determine if memory was different for items that were 
categorized accurately from those that were not, we 
performed a t-test comparing the memory (d’) for correctly 
and incorrectly categorized items. Memory was equivalent 
across correctly and incorrectly categorized items (t(495.18) 
= 0.463, p = 0.644). However, this relationship shifted over 
time, such that there was an interaction between memory for 
correctly and incorrectly categorized items and trial number 
(ß = -0.016, z = -2.062, p = 0.039) such that memory for 
incorrectly categorized items moderately increased with an 
increasing number of trials (ß = 0.001, z = 1.873, p = 0.061), 

and memory for correct trials moderately decreased with an 
increasing number of trials (ß = -0.006, z = -1.648, p = 0.099).  

To determine how specifically items were remembered, 
item memory was analyzed separately for novel-shape and 
same-shape lures by calculating d’ using each as a unique 
false alarm score. A paired sample t-test determined that the 
two sets of scores were significantly different (t(59) = -7.643, 
p < .001). Using novel-shape lures, memory was significantly 
different from 0 (M = 0.7272, SD = 0.627; t(59) = 8.986, p 
<.001). Using same-shape lures, however, memory did not 
differ from 0 (M = -0.103, SD = 0.538; t(59) = -1.488, p = 
0.142). Relating this to categorization performance across 
individuals, d’ calculated using novel-shape lures was 
negatively correlated with categorization scores (F(1,58) = 
25.7, p <.001), while d’ calculated using same-shape lures 
was not (F(1,58) = 0.57, p = 0.453). Thus, the trade-off is 
only observed when using the novel-shape lures, for which 
there is evidence of memory.  

 

 
Figure 2: Item memory (d’) by category accuracy (%). Each 
dot is an individual, the line signifies the slope and shading 
indicates standard error of the mean. 

 
Discussion 
As a group, participants successfully learned to categorize 
and remembered the items at post-test. Individual difference 
scores showed a trade-off between levels of learning such that 
those who performed well at the categorization task, 
performed more poorly at the item recognition task. 

Participants failed to exhibit memory in comparison to the 
same-shape lures, but they did demonstrate memory when the 
lures were more distinct. Taken together, these data show that 
for adults, learning to categorize well impedes memory for 
items. 

Experiment Two 
Methods 
Participants Participants included 61 children between the 
ages of 5- and 8- years old (M = 6.42 years, 48% female) 
recruited at a science museum. Exclusion criteria included 
lack of English skills to understand instructions, with one 
child meeting exclusion criteria. 

 
Materials and Procedure The same two tasks were 
completed as in Experiment One, with a different, age-
appropriate cover task. For the category learning task, 
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participants were told to sort two alien families onto their 
correct spaceship. Stimuli were presented for 3 seconds or 
until the participant responded. For the item memory test, 32 
stimuli were presented randomly. Again, half were 
previously seen and half were new. Of the new, half were 
novel-shape lures and half were same-shape lures. Children 
were asked to verbally confirm their response after each 
button press. Tasks were completed on an Apple laptop using 
PsychoPy (Peirce, 2008). 

 
Statistical Analysis We conducted the same analyses as 
Experiment One, as well as independent samples t-tests 
comparing adult and child scores. 

 
Results  
Children demonstrated learning in the categorization task, 
with accuracy increasing across trial number (ß = 0.015, z = 
6.619, p <.001). However, accuracy was significantly lower 
than adults (M = 65.889, SD = 17.664; ß = -0.073, t = -3.399, 
p <.001, Figure 3). Children’s item memory was poor: d’ did 
not differ from 0 (M = 0.065, SD = 0.515; t(59) = 0.984, p = 
.329). Their item memory (d’) was also significantly worse 
than adults (t(110) = 2.743, p = .007, Figure 4). 
 

 
Figure 3: Category accuracy (%) by trial number and age 
group. The lines signify average group accuracy by trial. The 
dark blue line signifies the adult group, and the light blue line 
signifies the child group. 
 

 
Figure 4: Item memory (d’) by age group. d’ is plotted 
separately for adults (dark blue) and children (light blue). The 
boxes signify the interquartile range and the whiskers signify 
the first quartile and below and the third quartile and above, 
respectively. The dotted line signifies chance, or no evidence 
of memory, and individual dots represent participants. 

No trade-off was found between children’s categorization 
accuracy and item memory (d’) (F(1,58) = 1.766, p = .1891, 
Figure 5). Moreover, children’s age was not found to interact 
with this relationship (F(3,56) = 0.647, p = 0.5885). 

To determine if memory was different for items that were 
categorized accurately from those that were not, we 
performed a t-test comparing memory (d’) for correctly and 
incorrectly categorized items. While not significant, we 
found a marginal difference in memory for correctly and 
incorrectly categorized items (t(690.2) = 1.950, p = .052), 
such that incorrectly categorized items were remembered 
moderately better. In addition, this relationship showed a 
trend toward shifting over time, with a trending interaction 
between time and accuracy (ß = 0.013, z = 1.660, p = .097). 
Incorrectly categorized items were moderately better 
remembered at the beginning of the task, and correctly 
categorized items at the end of the task. While not significant, 
it is important to note that this relationship is the opposite 
pattern of that observed in adults. 

 

 
Figure 5: Child item memory (d’) by category accuracy (%). 
Each dot is an individual, the line signifies the slope and 
shading indicates standard error of the mean.  

 
To determine how specifically items were remembered, d’ 

was calculated twice, once with each type of lure. Using a 
paired sample t-test, the two sets of scores were found to be 
significantly different (t(59) = -3.302, p = 0.002). When 
calculated with only novel-shape lures, memory was 
significantly different from 0 (M = 0.2701, SD = 0.822; t(59) 
=  2.547, p = 0.013), but memory did not differ from 0 when 
calculated with only the same-shape lures (M = -0.092, SD = 
0.526; t(59) = -1.361, p = .179). While this is a similar pattern 
to that found in the adults, when compared to adults, the 
former was significantly lower (t(110.22) = 3.43, p <.001, 
Figure 6). Thus, children did show memory, but needed more 
distinct lures to demonstrate it, and it was poorer than that 
observed in the adults.  
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Figure 6: Item memory (d’) calculated with novel- and same-
shape lures across age group. The boxes signify the 
interquartile range and the whiskers signify the first quartile 
and below and the third quartile and above, respectively. The 
dotted line signifies chance, or no evidence of memory, and 
individual dots represent participants. The two left-hand 
boxes signify scores calculated with same-shape lures and 
those on the right signify scores calculated with novel-shape 
lures.  

 
Looking at individual differences, d’ calculated using 

novel-shape lures was not significant but had a moderate 
effect trending towards a trade-off with categorization 
accuracy, as more successful category learners had worse 
memory (F(1,58) = 3.504, p = .0663). No relationship was 
found between d’ calculated with same-shape lures and 
categorization accuracy (F(1,58) = 0.07289, p =.788). The 
trade-off did not interact with children’s age for d’ calculated 
with the novel-shape lures (F(3,56) = 1.618, p = 0.196) or 
same-shape lures (F(3,56) = 0.591, p = 0.623). Nonetheless, 
to further assess the impact of children’s age on the trade-off, 
we broke the children into two age groups: 35 5- and 6-year 
old children (young) and 25 7- and 8-year old children (old). 
Upon analyzing the trade-off in each group, the moderate 
effect found in the novel-shape lures continued in the old 
children (F(1,23) = 3.303, p = 0.082), but disappeared in the 
younger children (F(1,33) = 0.790, p = 0.380, Figure 7). No 
relationship between categorization accuracy and d’ 
calculated with the same-shape lures was found in the old 
(F(1,23) = 0.094, p = 0.762) or young children (F(1,33) = 
0.182, p = 0.672). 

 

 
Figure 7: Item memory (d’) by category accuracy (%) across 
adults, 7-8 year olds (“Old”), and 5-6 year olds (“Young”). 
Each dot is an individual, and the lines signify the slope. 
Adults are represented in dark blue, older children in teal, and 
young children in light blue. 
 
Discussion 

Although children learned to categorize, their memory for 
items was very poor overall. Like adults, children had no 
memory when compared to the same-shape lures but 
demonstrated memory when compared to the novel-shape 
lures, suggesting that they could only distinguish new and old 
items when the lures were distinctive.   

Item memory did not significantly predict category 
learning, which is not surprising given how low children’s 
memory was. However, a moderate effect was observed 
when d’ was calculated with only the novel-shape lures, such 
that category learning scores were negatively correlated with 
memory (d’). Finally, this trend was only present in the older, 
7- and 8-year old children but was not found in the younger, 
5- and 6-year old children.   

 
General Discussion 

Building off of prior research showing a trade-off in pre-
existing category knowledge and item memory, we found that 
a trade-off also occurs during the process of learning new 
categorical structures. For the adults, there was a cost to 
category learning, as those who performed well at the 
category learning task demonstrated worse memory for the 
items at post-test. This effect was driven by the more distinct 
lures, as memory for the similar lures was overall quite poor. 
In comparison, the children did not show a trade-off in 
category learning and item learning. However, when d’ was 
calculated using only the distinct lures, a moderate effect was 
observed. This effect was found to be driven by the older, 7- 
and 8-year old children. When divided into two age groups, 
the moderate trade-off was observed in the older children, but 
there was no trade-off found in the younger, 5- and 6-year 
olds. These data may point to adults and young children 
approaching categorization in different ways.		 

While the mechanism at play remains unclear, a selective 
attention account provides an explanation for the pattern of 
data observed in adults. Selective attention is a top-down 
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process that not only directs attention to relevant information, 
but also suppresses irrelevant information (Pashler, Johnston, 
& Ruthruff, 2001). In a categorization task, the relevant 
information is the diagnostic feature, while the remaining 
information is irrelevant. Indeed, as discussed above, upon 
learning what defines a category, learners have been shown 
to fixate their gaze on the diagnostic feature (Rehder & 
Hoffman, 2005). In the current task, successful category 
learners likely fixated on the dot pattern while suppressing 
the irrelevant, item-level information. Given that unattended 
information is not remembered well (Simons, 2000), this 
could explain the successful learners’ poor memory 
performance. Conversely, the poor category learners may 
have failed to learn which feature was diagnostic, thereby 
never selectively attending to it and, thereby continuing to 
attend to item-level information. 

In comparison, it is less clear what mechanism best 
accounts for the children’s pattern of behaviour, as they 
displayed only a moderate trade-off and, more specifically, 
only in the older children when calculating memory using the 
most distinctive lures. One possibility is that the younger 
children are utilizing a holistic, similarity-based 
categorization style, leading to a lack of trade-off. In 
comparison, the older children may be beginning to shift 
from this categorization style towards a more adult-like style 
focused on a diagnostic feature. A developmental shift in this 
age group would account for the moderate trade-off observed. 

Prior research suggests that young children may categorize 
based on overall item similarity (Smith & Kemler, 1977), and 
if this were the case, children would attend to all features 
equally instead of selectively attending to a single feature. As 
such, their item memory would not drop upon categorization. 
Interestingly, Smith and Kemler (1977) found that this 
approach to categorization was consistently used among 5-
year olds, but results were more ambiguous among 8-year 
olds. Perhaps the ambiguity reflects the beginning of adult-
like categorization, and explains the moderate trade-off that 
we see here.  

Indeed, a shift away from holistic processing would reflect 
the developmental course of selective attention, as the ability 
to filter irrelevant information has been found to improve 
across the elementary school years (Enns & Akhtar, 1989). 
An increase in selective attention would facilitate a more 
adult-like approach and result in a trade-off between category 
learning and item memory. Future research assessing the role 
of selective attention and its developmental course on the 
trade-off would help clarify the mechanism behind the 
patterns of behaviour observed in each age group.  

Interestingly, children’s memory was quite poor overall, 
which is not aligned with a holistic processing approach. 
Prior studies found children to have superior memory to 
adults for item-level information since they processed more 
information overall (e.g., Sloutsky & Fisher, 2004; Plebanek 
& Sloutsky, 2017). However, it is also well established that 
children have poor memory compared to adults (Ghetti, 
Angelini, & Annunzio, 2008; Rubin, 2000), and the adult 
group’s item memory was not particularly strong either. It 

may be the case that children learned to categorize in a 
different way than the adult group but did not have the 
memory capacity to demonstrate it.  

Alternatively, children’s poor memory may not reflect poor 
memory overall, but may be symptomatic of poor pattern 
separation. Work by Ngo, Newcombe, & Olson (2018) found 
that 4-year olds were significantly worse than 6-year olds and 
adults at distinguishing old items from very similar items, 
irrespective of overall memory scores. Due to the similarity 
across items in the current study, it is possible that the 
younger children were disproportionately unable to 
discriminate the items. While unclear at this time, boosting 
children’s memory in the future by increasing 
discriminability between items would help us to better 
understand how category learning and item memory interact 
across development. 

The different patterns of learning across categorization 
trials in the adult and child groups suggest that the groups 
could be using different learning strategies. First, adults 
remembered incorrectly categorized items better towards the 
end of the task, while children remembered them better 
towards the beginning and moderately better overall than 
correctly categorized items. It may be the case that with 
increased learning across trials, errors became rare and 
surprising to adults and were, thus, remembered better. In 
comparison, children’s heightened memory for errors 
throughout may reflect their tendency to respond more 
reactively than adults (Chatham, Frank, & Munakata, 2009), 
the surprise of which could have a memory boosting effect 
throughout.  

Second, adults remembered correctly categorized items 
better towards the beginning of the task while children 
remembered them better towards the end. Given our assertion 
of increased selective attention with category learning in the 
adult group, it follows that correctly categorized items would 
be remembered more poorly towards the end of the task after 
learning had occurred and irrelevant information became 
unattended. Since children showed the reverse pattern in 
memory, this may provide further support for a more holistic 
approach to categorization than one of selective attention. 
This pattern would suggest that children maintain distributed 
attention throughout the task, as their memory for task-
irrelevant information does not drop. The boost in memory 
observed towards the end may be a simple recency effect. 
Whatever the explanation, these divergent patterns of 
learning show that adults’ and children’s online 
categorization performance impacts memory. 

Across the lifespan, our approach to learning changes as 
our needs change. Children are still figuring out what 
information is important, so it makes sense that they would 
attend to much of the information available. On the other 
hand, adults have a good sense of what information to 
prioritize and so attend to only what they deem informative. 
Inevitably, this means that a certain amount of information is 
always going to be missed. These findings make clear that we 
are always only seeing a piece of the picture, but perhaps we 
did not all start out that way. 
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Abstract

This paper examines the interaction between prior beliefs and
pragmatic inferences, focusing on exhaustivity effects. We
present three experiments that tests how prior beliefs influence
both interpretation and production of language, and compare
the results with the predictions of the Rational Speech Act
model, a Bayesian model of linguistic interpretation. We find
that prior beliefs about conditional probabilities have no affect
on language production, but do affect interpretation, producing
anti-exhaustivity effects. We find that the RSA model achieves
a relatively good fit both for the human production and inter-
pretation data, but only for highly-implausible utterance costs.

Keywords: Pragmatics, Rational Speech Act model, Exhaus-
tivity.

Introduction

The interpretation of linguistic utterances in context depends

on the prior beliefs of speakers and hearers. For instance, if

someone says “Mary visited a cardiologist today”, one will

infer that Mary is more likely than a random person to have a

heart-related medical condition. It is easy to account for such

inferences as a probabilistic inference: the hearer starts with a

prior probability distribution over possible world states, and

then conditionalizes this distribution with the new informa-

tion that Mary visited a cardiologist today. Typically, though,

pragmatic inferences go well beyond what can be predicted

with such a simple model of linguistic interpretation. They

also involve, for instance, reasoning about other sentences

that the speaker could have uttered given some assumptions

about their communicative goals (Grice, 1975). For instance,

if I’m asked a question such as Among Peter, Mary and Sue,

who attended the show today?, an answer such as Mary did

tends to trigger the inference that the others did not, even if

there is no expectation that what any of them does depends

on what the others do. Such exhaustivity effects are typically

accounted for in terms of Grice’s maxim of quantity: if in fact

both Peter and Mary had attended the show, a knowledgeable

speaker would say that rather than just talking about Mary.

Now, in some situations these two types of effects (effect

of prior beliefs, exhaustivity effects) are pitted against each

other. For instance, we might know that Peter and Mary are

a couple, who usually go out together, so that, upon learning

that Mary attended the show, one would assign a high prob-

ability to the possibility that Peter did too, which would go

against the exhaustivity effect just mentioned.

The Rational Speech Act Model (RSA) is a model of prag-

matic reasoning which integrates both the role of prior beliefs

and that of pragmatic reasoning about alternative utterances

(Frank & Goodman, 2012). It can in principle make very

precise predictions about their interactions. The RSA model

views the speaker as being engaged in a trade-off between two

goals: maximizing informational content and minimizing the

cognitive cost of an utterance. As we will see shortly, in the

baseline RSA model, this trade-off is affected in a drastic way

by the prior beliefs shared by listeners and speakers, to the ex-

tent that, in some situations, an anti-exhaustivity effect is pre-

dicted: in some cases, the utterance Mary did, in the above

context, is expected to be the best message to use to convey

that both Mary and Peter attended the show, and thus to be

interpreted in this way. However, because an RSA model has

several free parameters, it is difficult to assess a) whether it

is compatible with a given set of data, and b) whether it pro-

vides an explanatory account of the data. The goal of this pa-

per is to gather data about the effect of priors on exhaustivity

effects, both for interpretation and production, and to assess

how well the baseline RSA model can account for these data

in a principled way.

Degen et al. have already tested the effect of priors on prag-

matic interpretation within the RSA framework, focusing on

a similar but different type of inference, namely the inference

from some to not all (Degen, Tessler, & Goodman, 2015). We

will discuss the relationship between our study and Degen et

al. (2015) in the next section.

The Rational Speech Act Framework and

exhaustivity effects

In the basic RSA model, we start from a literal listener

L0 who has a prior probability distribution over worlds and

knows the literal meanings of sentences. When hearing an

utterance u, L0 updates her prior distribution by conditional-

izing it with the proposition expressed by the literal meaning

of u. Then we define a speaker S1 who wants to communicate

her beliefs to L0 and knows how L0 interprets sentences. S1

is characterized by a utility function U1 such that the utility

of a message u if S1 believes w is increasing with the proba-

bility that L0 assigns to w after updating her distribution with

u, and decreasing with the cost of u. A rationality parame-

ter α determines the extent to which S1 maximizes her utility.

Next, we define a more sophisticated listener, L1, who, when

receiving a message u, uses Bayes’s rule to update her prior

distribution on worlds, under the assumption that the author

of u is S1. A speaker S2 is then defined exactly like S1, except

that now S2 assumes that she talks to L1, not L0. And so on.1.

1See Bergen, Levy, and Goodman (2016) for the mathematical
description of the model.
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Now consider a case where world states are individuated

by the truth-values of two propositions A and B (for instance

Mary attended and Peter attended), and where the available

utterances are A, B, A and not B, B and not B and A and B.

Consider a situation where the speaker wants to communicate

the world state {A} (where A is true and B is false) . She can

choose between the two messages A and A and not B. While

A is less informative than A and not B, it has nevertheless a

significant probability of use, because it is less costly. Upon

hearing A, the first-level pragmatic listener L1 will reason as

follows, if the priors are sufficiently uniform across world

states. The message is only compatible with two world states,

namely {A} And {A,B}. But the the speaker is more likely to

mean {A} than to mean {A,B}. If she wanted to communi-

cate {A,B}, there were two other possible messages, namely

B and A and B. B is furthermore no more costly than A, and

A and B is costly but also more informative. In contrast with

this, if she wanted to communicate {A}, there was only one

other possible message, namely A and not B, and furthermore

this message, while more informative, is very costly (more

than A and B). As a result, it is likely that the intended mean-

ing was in fact {A}, and the exhaustivity effect is derived.

However, things can change drastically with non-uniform

priors. Imagine now a speaker who wants to communicate

{A,B}. She has a choice between using the messages A, B, A

and B. While the latter message is the most informative, it is

also more costly than the two others. Suppose further that the

prior conditional probability of B given A is very high. The

literal listener L0, upon hearing A, will assign a high proba-

bility to the world state {A,B}. In this case, A may turn out

to have a higher utility than A and B for S1: it is quite good at

communicating the world state {A,B} (given the priors), and

it is less costly than A and B. Furthermore, with such non-

uniform priors, a speaker who would want to communicate

{A} might be very unlikely to use the message A: despite the

fact that A is less costly than A and not B, it is so poor at con-

veying the intended world state (due to the priors), that the

speaker now has an extra incentive to use the costly sentence

A and not B. Now, upon hearing A, the pragmatic listener L1

will reason as follows. The intended world state is either {A}
or {A,B}. If the latter, S1 was in fact quite likely to use A. If

the former, the speaker was more likely to use A and not B.

So the intended world state is probably {A,B}. This time an

anti-exhaustivity effect is derived (Roni Katzir, p.c.). How-

ever, this prediction is highly sensitive to the values of the

free parameters of the model (rationality, costs).

Degen et al. (2015) discuss a related case. The RSA model,

under a broad range of values for the free parameters, pre-

dicts that when the conditional probability of an all-statement

given the truth of the corresponding some-statement is very

high, some is going to be used to convey all and to be so un-

derstood. Degen et al. consider a discourse such as: Max

threw fifteen marbles in the water. Some of the marbles sank.

Because we expect all marbles to sink, this is a case where

the prior probability of ∀ (the world where all marble sank)

is very high, and where the basic RSA model predicts that

the sentence will in fact convey that all marbles sank. But

the experimental results show that actual listeners typically

derive a some but not all-reading. In Degen et al.’s model,

unlike in the basic RSA model, the pragmatic listener is un-

certain about the speaker’s beliefs about the listener’s priors.

Even if ∀ has a very high prior probability for the listener, the

pragmatic listener L1 assigns a substantial probability to the

possibility that the speaker believes that the literal listener L0

is in fact entertaining uniform priors over world states. So

the pragmatic listener L1 has a higher-order prior probability

distribution over the set of first-order prior distributions (over

world-states) that the speaker might attribute to the literal lis-

tener L0. When processing a sentence, this listener updates

both her probability distribution over worlds and her higher-

order probability distribution over the set of priors that the

speaker is considering. The proposed model is such that when

hearing some, the listener concludes that the speaker proba-

bly believes that the listener is using uniform priors, and as a

result some ends up conveying ∃¬∀. Simulations show that

in order to obtain this result, the pragmatic listener L1 must

view the speaker (S1) as believing that there is a high prob-

ability that the literal listener’s prior distribution over world

states is uniform. For the range of values that are typically

used in RSA models for α (somewhere between 1 and 10),

this probability must be substantial (Degen et al. report that it

has to be equal to .5 to achieve the best fit with experimental

data). Given this, a conceptual limitation of this account is

that it models the listener as believing that the speaker views

the listener as likely to be unaware that marbles typically sink

when thrown into water (despite the fact that the priors over

world states that Degen et al. collected show that people do in

fact expect that when marbles are thrown into water, they will

all sink). But no empirical evidence is provided to support

these assumptions, and so it is not clear that much is gained

compared to a model that would simply ignore the actual pri-

ors and take as input relatively uniform priors.

Now, in the case of exhaustivity effects, the situation is

even more extreme. In the some-all case, the all sentence is

no more costly than the some-sentence. Because of this, even

with extremely biased priors, a fully rational speaker would

always choose all to convey all, since it is still more infor-

mative than some, and would never use some (some but not

all would be used to convey ∃¬∀). For this reason, with very

high values for α (corresponding to a very rational speaker),

a correct result is derived in Degen et al.’s model, even if the

probability that the speaker assigns to the possibility that the

listener does not expect all marbles to sink is very low (but

still positive). In the exhaustivity case, avoiding the anti-

exhaustivity effect is harder, because the message A and B is

more costly than the message A, and so will not necessarily be

the message used by a fully rational speaker who believes A

and B, if the prior conditional probability of B given A is very

high (the gain in informativity provided by A and B compared

to A might be too small to justify the extra cost). Even with
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a fully rational speaker, for a broad range of reasonable cost

values, there exist contexts where the speaker is predicted to

use A to mean A and B. In this paper, we will compare

the predictions of the baseline RSA model with experimental

data pertaining to exhaustivity and anti-exhaustivity effects.

Independently of this theoretical goal, our contribution is

to provide experimental data pertaining to cases where priors

are biased against the exhaustive reading of a sentence A in

the context of Which of A and B is true?.

Human Judgement Experiments

To test the effect of priors on human linguistic judgements,

we conducted three online experiments. Each experiment in-

volved a simple scenario in which a character was moving

furniture from her apartment onto the street, and questions

were asked about what the character was able to move or

how she was likely to report the progress of her moving to

a friend. Experiments were hosted on IbexFarm. Participants

were recruited on Amazon Mechanical Turk.2

Experiment 1: Priors

As this work aims to test the effect of priors on human lin-

guistic judgements, our first experiment gathered prior prob-

abilities for two scenarios, which were used in later experi-

ments. In the priors experiment subjects were shown a sce-

nario in which a character is moving her apartment and tests

the weight of two furniture items. The character picks up one

item, at which point respondents were asked whether they

thought she could pick up the second item as well. Input

format were forced-choice, yes/no radio buttons. The ex-

periment was divided into two conditions: In the first, High

Conditional Probability condition, the character was shown

picking up a chair and asked whether she could also pick up

a footstool, which was visually about half the size. In the

second, Low Conditional Probability condition participants

saw the character picking up the footstool and asked if they

thought she could also pick up the chair. Participants were

asked two simple comprehension questions at the end of the

experiment, and only responses from participants who an-

swered both correctly were used. We collected 60 responses,

of which 57 (95%) were usable. The proportion of respon-

dents who selected yes in each condition was taken as the

population-level prior on conditional probability in each case.

The results can be seen in Fig. 1, on the left-hand panel.

Error bars represent binomial 95% confidence intervals using

the binconf function in R on default settings (Wilson method).

A Fishers Exact Test indicates that participants were signifi-

cantly less likely to endorse the yes response in the Low Con-

ditional Probability condition (p=0.02225).

Experiment 2: Elicitation

We conducted a second experiment to test the effect of priors

on the elicitation of simple conjunctives. If humans subjects

2Experiments were pre-registered online at
http://aspredicted.org/blind.php?x=7qm9pz

incorporate priors in their utterance and endorsement of sim-

ple conjunctives, then we expect the relative rate of the con-

joined utterance (“A and B”) to be lower in high-conditional

probability contexts, where P(B‖A) is very high (because in

this case the utterance A is quite good at communicating the

A ∧ B world state (which we will denote by {A,B} hence-

forth). Furthermore, we also expect that, if they want to com-

municate the world A∧¬B (which we will now notate{A}),

there will be less likely to use the message A in the high-

probability condition, and more likely to use A and not B.

In this setup, participants were shown the same ‘moving’

scenario from the previous experiment, involving a chair, a

footstool and a character who tells a friend that she would

move ‘everything I can’ down to the curb. In the subsequent

panel participants were shown the character with the furniture

she was able to move depending on the condition to which

the participant was assigned, which are enumerated in Ta-

ble 1, along with the condition name and a tag, with which

we refer to the condition in charts and figures. Participants

are asked to endorse an utterance that they think the charac-

ter would use to describe the situation to a friend, who has

prior familiarity with the items, over the telephone. Input

were force-choice radio buttons with six possible utterances:

‘I moved the chair’, ‘I moved the footstool’, ‘I moved the

chair but not the footstool’, ‘I moved the footstool but not the

chair’, ’I moved the chair and the footstool’ and ‘ I moved the

footstool and the chair.’

Experimental Stimuli Tag Condition Name

Chair + Footstool {A,B} [BOTH, HIGH PROB]

Chair {A} [SINGLE, HIGH PROB]

Footstool + Chair {A,B} [BOTH, LOW PROB]

Footstool {A} [SINGLE, LOW PROB]

Table 1: Elicitation Experimental Conditions

Following the critical question, we asked two simple com-

prehension questions and whether the participant was a na-

tive speaker of English. Only data from those respondents

who answered both correctly and identified as a native En-

glish speaker were used. The experiment was given to 174

subjects, of which 126 (72.4%) answered the follow-up ques-

tions satisfactorily. A further 33 subjects were filtered as re-

peat subjects from one of our other experiments, bringing the

total number of responses to 93.

The results from this experiment can be seen in Figure 1, in

the middle panel, with world state on the x-axis and the pro-

portion of “A and B” responses on the y-axis. Red dots repre-

sent proportion of “A and B” responses in the high probability

condition, blue dots the low probability condition; error bars

represent 95% confidence intervals. Endorsements of the “A

and B” utterance were near floor in the {A} world (m=0.02,

m=0.11 in the High Probability and Low Probability condi-

tions, respectively). However, the endorsements were not at

ceiling in the {A,B} world state (m=0.68, m=0.84 in the High

Prob and Low Prob conditions, respectively).
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Figure 1: Human Judgements from the Online Study

To test whether priors on conditional probability had an ef-

fect on utterance endorsement, we fit a linear model to the

data using the proportion of ‘A and B’ responses as our de-

pendent measure, and experimental conditions as predictors,

which were coded using 1/-1. We found a main effect of

WORLD STATE, whereby participants were less likely to en-

dorse “A and B” in the {A} world (p<0.001), as expected.

However, we found no interaction between world state and

prior conditional probability (p=0.507), which is visually ev-

ident from the fact that both prior probability conditions fall

within each other’s confidence intervals. In fact, the relative

rate of “A and B” endorsement in the high and low condi-

tional probability conditions, ran counter to our expectations,

with respondents marginally less likely to endorse the rele-

vant utterance in the high conditional probability condition.

Note that while the subjects in this study were willing to use

‘A’ to endorse the {A,B} world, their rates of endorsement

in both conditions (between 15-32%) were well below their

expectation of P({A,B}|{A}) (between 65-95%).

In addition to our pre-registered analyses, we conducted a

follow-up analysis to assess whether the priors on conditional

probability affected the rate of endorsements for the exhaus-

tified utterances, ‘A but not B.’, in order to communicate the

world {A} The results for all utterance endorsements can be

seen in Fig. 1, on the far right panel. As the conditional prob-

ability increases, we might expect the rate of endorsements

for the exhaustified utterance (the blue bar) to increase in the

SINGLE condition, given that the bare utterance, ‘A’ might be

quite bad at communicating A∧¬B. Our pre-registered anal-

ysis, which examines only the rate of endorsement for the ‘A

and B’ utterance, would not capture these dynamics.

In order to assess the impact of conditional probability pri-

ors on the rate of the exhaustified utterance we fit a linear

regression model using the proportion of exhaustified (‘A but

not B’) utterance endorsements as our dependent variable and

utterance types as our predictors. We found a main effect of

world state (p < 0.001) whereby exhaustified utterances were

less likely to be endorsed in the BOTH condition (as fully ex-

pected), but no significant interaction between world state and

conditional probability (p = 0.515).

Experiment 3: Interpretation

Experimental Stimuli Tag Condition Name

“The chair and
the footstool”

‘A and B’ [BOTH, HIGH PROB]

“The footstool
and the chair”

‘A and B’ [BOTH, LOW PROB]

‘The chair but
not the footstool”

‘A but not B’ [ONLY, HIGH PROB]

“The footstool but
not the chair”

‘A but not B’ [ONLY, LOW PROB]

“The chair” ‘A [SINGLE, HIGH PROB]

“The footstool ‘A’ [SINGLE, LOW PROB]

Table 2: Interpretation Experimental Items

The third experiment aimed to test the effects of prior con-

ditional probability on utterance interpretation. The RSA

model predicts that human subjects will be more likely to in-

terpret the utterance ‘A’ as referring to an {A,B} world in

cases where P(B|A) is higher.

For this experiment, participants were shown the same

‘moving’ scene as in the others. A character commits to mov-

ing ‘what I can lift’ down to the curb, and tells a friend what

she is capable of lifting depending on the condition to which

the subject was assigned. There were six conditions, corre-

sponding to six possible utterances: ‘I can lift the chair and

the footstool’,‘I can lift the footstool and the chair’, ‘I can lift

the chair but not the footstool’, ‘I can lift the footstool but not

the chair’, ‘I can lift the chair’, ‘I can lift the footstool’(cf.

Table 2).

In the subsequent slide, participants see the character by

the curb, with a grayed-out area where the furniture would

be, are told that the character ‘has moved all the items she

can lift down the curb’, and are asked to select which items

they believe have been moved down. They are provided with

a visual reference of the furniture items, scaled to size, at the

bottom of the screen. The input form was a check box, and
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in the instructions to the experiment participants were told

that they could check as many or as few of the boxes as they

wished.

Following the critical question, participants were asked

two comprehension questions and whether or not they were a

native speaker of English. The survey was given to 475 par-

ticipants of which 338 (71%) answered the follow-up ques-

tions satisfactorily. Another 77 were filtered out, as they were

repeat responders from the previous experiment, leaving the

total number of responses analyzed to 261.

The results from this experiment can be seen in 1, on

the right-hand panel. The utterance types are on the x-axis,

with the proportion of respondents who checked both boxes

(thereby endorsing the {A,B} world) on the y-axis. Red dots

indicate responses for the high conditional probability condi-

tion, blue for the low conditional probability condition. Er-

ror bars indicate 95% confidence intervals. The proportion

of {A,B} world endorsements is at floor when respondents

heard the “A but not B” utterance, as predicted. However,

when respondents heard the “A and B” utterance, endorse-

ments of the {A,B} were relatively low (m=0.6, m=0.66 in

the high and low probability conditions, respectively). This

means that when respondents read “I will move what I can

lift down to the curb” followed “I can lift the chair and the

footstool down”, and are then told that the character moved

all the furniture he could lift, they are willing to endorse a

world where only one had been moved (the footstool in 72%

of the cases). We believe this behavior is partly due to the

experimental setup: subjects may expect the character to do

as little work as possible without the help of her friend, who

they were told would assist in the moving process later on.

We had initially thought that the commitment to ‘move what

I can lift’ would ensure that modalized sentence of the form

‘I can do X’ would be interpreted as implying that the char-

acter did X, but this result suggests that this was not always

the case.

To test whether the conditional probability had an effect on

the rate of {A,B} world endorsements, we fit a linear regres-

sion model using experimental conditions as predictors. We

found a significant main effect of ONLY utterances and SIN-

GLE utterances (p<0.001 for both), whereby subjects were

less likely to endorse the {A,B} world for these two con-

ditions. In addition, we found an interaction between the

prior probability and the SINGLE utterance types (p=0.0144),

whereby participants were more likely to endorse the {A,B}
world in the high conditional probability after hearing the non

exhaustified utterance. Overall these results indicate that gra-

dient prior probabilities gradiently affect utterance interpre-

tation, raising the question why we did not observe a similar

gradience in the elicitation experiment.

Model Fit

We fit the vanilla Recursive Speech act Model presented in

(Frank & Goodman, 2012) to the human data we collected,

with one level of recursion depth (that is, we fit S1 and L1).

Figure 2: RSA Model fit with fixed cost (green triangles) and

free cost ratios (blue squares) to human judgements (red cir-

cles).

The model has three possible world states: {A}, {B} and

{A,B}. World {A} had a prior of 0.32, world {B} had a

prior of 0.14 and world {A,B} had a prior of 0.54, rendering

P({A,B} | {A}) = 0.8, close to the human high conditional

probability prior, and P({A,B} | {B}) = 0.63, close to the

human low conditional probability prior. The model includes

seven messages: ‘A’, ‘B’, ‘A but not B’, ‘B but not A’, ‘A and

B’ and ‘null’, which is defined as true in every situation, and

was assigned a fixed cost of 100. ‘A’ and ‘B’ were assigned a

cost of 0.3 The costs of ‘A and B’ (c1) and ‘A but not B’ (c2)

were free parameters, as was the rationality parameter, α.

In order to assess how well the RSA model captured the

human judgements, we conducted four fits, which are sum-

marized in Table 3. Each fit was made by iterating through

a wide range of alphas and cost parameters (0-20 for each).

This technique guarantees that we found a locally optimal

fit within the range of cost and optimally parameters typi-

cally seen in the rest of the Recursive Speech Act literature

(Scontras, Tessler, & Franke, 2017). In the fixed cost ratio

fits, the cost for “A but not B” must be greater than but could

not be more than 2 times that of “A and B”. This constraint

makes sense if we view cost as reflecting, for instance, the

number of logical operators in a sentence, or the number of

words used. Thus, we wanted to see if an fit existed with

cognitively plausible relative costs between these two types

of utterances. But we also relaxed this constraint in the ‘free

cost’ fit, where the only constraint that the the cost of “A but

not B” is higher than that of “A and B”.

The results for the listener-only fit can be seen in Figure 2.

Here, the x-axis is the possible utterances, and the x-axis is

the proportion of respondents who endorsed the {A,B} world

(in the human case) or the posterior distribution on the {A,B}
world (in the model case). The left panel represents the high

3In the RSA model, it is the difference between relative costs that
matters: adding a fixed constant to each cost value has no effect.
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Figure 3: RSA Model fit with fixed-cost ratios (green) and free cost ratios (blue) to human judgements (red).

Name Layers Restrictions α c1 c2 MSE

Fit 1 L1 c2 < 2∗ c1 9.19 1.57 3.17 0.097
Fit 2 L1 c1 < c2 5.52 0.010 8.42 0.068
Fit 3 L1, S1 c2 < 2∗ c1 0.01 0.27 0.54 0.092
Fit 4 L1, S1 c1 < c2 7.97 0.01 1.59 0.059

Table 3: Summary of The Four Fits and Optimal Parameters

conditional probability condition and the right panel the low

conditional probability condition. The vanilla RSA’s mean-

ing function constrains the listener’s posterior for utterances

‘A and B’ and ‘A but not B’ such that all probability is as-

signed to the {A,B} world and the {A} world, respectively.

Therefore, it is entirely the model’s posterior on the ‘A’ utter-

ance that determines the relative goodness of the fit. For the

restricted cost ratio fit (green triangles) the best model is able

to match human behavior in the low conditional probability

condition, but favors the {A,B} much more greatly than do

human respondents in the high conditional probability con-

dition (the green triangle is well above the red error bars),

resulting in a mean squared error of 0.097. When the restric-

tion on relative costs is relaxed (blue squares) the model is

able to achieve a very precise fit, with a mean squared error

of 0.0678. The reason why the free-cost fit is able to perform

significantly better than the fixed cost fit is that it can assign

much higher relative cost to “A but not B” than to “A and B”.

For example, in Fit 2 the utterance “A but not B” is 840

times more costly than the utterance “A and B”. This results

in strong model performance because high relative cost of

the exhaustified utterance counterbalances its informativity at

communicating the {A} world. This renders the ‘A’ utter-

ance a good choice to communicate the {A} world, despite

the strong priors on the {A,B}. Furthermore, the low cost of

“A and B” ensures that it will be chosen often in the {A,B}
world, even in the high-probability condition.

The results for Fits 3 and 4, which fit both the speaker and

listener layers, can be seen in Figure 3, with the listener layer

graphed at left and the speaker layer graphed in the center

and right images. For the listener layer, the x-axis shows ut-

terances, and the y-axis posterior probability endorsements

for the {A,B} world. For the speaker layer, the facets rep-

resent the different worlds conditions and the x-axis shows

the possible utterances, with the relative proportion assigned

to each utterance (for the RSA models) or proportion of en-

dorsements (for the human) on the y-axis.

As to performance of the model: in the restricted cost ra-

tio fit (the green bars) the performs only moderately well. For

the ten critical conditions where the posterior distributions are

not constrained to either 100% of 0%, the best fit falls outside

of the human judgements’ 95% confidence intervals 6 times,

resulting in a mean squared error of 0.092. For the free cost

model (blue bars) the model is able to perform slightly bet-

ter, falling outside of the human judgements’ 95% confidence

intervals only twice (both in the {A} world, low probability

condition). This fit gives an MSE of 0.059. Two remarks

are in order. First, in the free cost model, “A but not B” is

158 times more costly than the utterance “A and B”. Second,

the best model achieves a good fit for the listener and for the

speaker in the high-probability condition, but drastically un-

derestimates the rate of endorsement of “A but not B” in the

low probability condition as a way to express the {A}-world.

Discussion

The results of the interpretation experiment establishes that

prior probabilities modulate exhaustivity effects, as is ex-

pected under the RSA approach. In our data, they do so for

interpretation, but not for production. The RSA model can

achieve a good fit with our experimental data for the interpre-

tation experiment only with implausible parameters. With the

kind of cost values that are typically assumed (cf. fixed cost

fit), it overestimates the effect of prior probabilities. When

we relax constraints on costs, an excellent fit is achieved, but

the cost of “A but not B” has to be 832 times that of “A and

B”. When we want to fit both interpretation and production,

the best model drastically underestimates the use of sentences

such as “A but not B” - precisely because it assigns it an ex-

tremely prohibitive cost. Note that we are only evaluating the

baseline RSA model. More sophisticated models have been

proposed within the RSA framework, and we are not evaluat-

ing those. What our results suggest is that a key ingredient of

the baseline RSA model, namely the tradeoff between infor-
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mativity and cost, which predicts a huge influence of priors on

interpretation and production, might make it hard to capture

both interpretation and production data. On the interpretation

side, the model needs to assign a very high cost to A but not

B, but then on the production side, the model predicts that A

but not B is not usable.

That being said, this conclusion is provisional, as caution

is in order when interpreting the results we present here. We

only tested two different conditions, in one type of scenario,

and the data are somewhat noisy (cf. the high rate of rejec-

tion of {A,B} after hearing “I can do A and B”). The fact

that we used modal sentences when we collected priors and

in the interpretation task is a limitation of this study.4 Future

work is needed to a) gather additional and less noisy data so

as to reach more reliable conclusions, b) construct alterna-

tive models, including refined versions of the baseline RSA

model, which could then be compared to it.
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Abstract

The Prosodic Bootstrapping Theory (PBT) states that prosodic and phonetic cues assist infant language learners to segment
the speech stream into words and assemble those words into phrase structures. However, many of the studies demonstrating
a link between prosody and syntax were conducted on small data sets and on a narrow range of syntactic structures.
This work uses a state-of-the-art parser to syntactically annotate the BU Radio News Corpus of around 16,000 diverse
sentences, which are prosodically tagged and annotated. A decision tree classifier was fit, using six prosodic features and
achieving 87% accuracy at differentiating words internal to major syntactic phrases vs. words that mark phrase boundaries.
However, the models tested are unable to differentiate between phrasal categories based on prosodic information alone.
These results provide new evidence in support of the Prosodic Bootstrapping Theory, suggesting it is possible to identify
phrasal boundaries based on prosodic information alone.
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Abstract 

Humans often rely on past experiences stored in long-term 
memory to predict the outcome of an event. In traditional lab-
based experiments (e.g., causal learning, probability learning, 
etc.), these observations are compressed into a successive 
series of learning trials. The rapid nature of this paradigm 
means that completing the task relies on working memory. In 
contrast, real-world events are typically spread out over longer 
periods of time, and therefore long-term memory must be used. 
We conducted a 24 day smartphone study to assess how well 
people can learn causal relationships in extended timeframes. 
Surprisingly, we found few differences in causal learning when 
subjects observed events in a traditional rapid series of 24 trials 
as opposed to one trial per day for 24 days. Specifically, 
subjects were able to detect causality for generative and 
preventive datasets and also exhibited illusory correlations in 
both the short-term and long-term designs. We discuss 
theoretical implications of this work. 

Keywords: causal learning; probability learning; illusory 
correlation; long-term memory; smartphone 

Introduction 
Every day we use our experiences to make inferences. For 
example, is your new medication improving an ailment or 
causing a negative side-effect? Does meditating have a 
positive impact on your mental health? If we can accurately 
predict the outcomes of our experiences and actions, we can 
use this information to behave adaptively in the world. 

Trial-by-trial learning paradigms, in which cue-outcome 
pairs are presented to subjects sequentially, are used 
extensively to study learning across many different fields 
including causal learning, probability learning, fear learning, 
stereotype formation, associative learning with non-human 
animals, and others. The trial-by-trial paradigm is supposed 
to simulate an important aspect of the world: most of our 
experiences occur sequentially over time, rather than in a 
summarized form. Typically the ‘inter-trial-interval’, the 
time between trials, is a couple seconds. However, we 
contend that there are few real-world learning situations that 
involve experiencing repeated cue-outcome pairs separated 
by seconds, perhaps with a few exceptions (e.g., flipping 
through records rather than first-hand experiences).  

The goal of the current study is to compare trial-by-trial 
learning in the normal rapid format vs. trial-by-trial learning 
in which the trials are spaced out once per day. Day-by-day 
learning simulates many natural processes (e.g., does a 
medicine have an influence on a health outcome, does 
exercising have an influence on sleep, etc.). Importantly, 
whereas working memory is believed to support learning in 
short timeframes, long-term memory must take over when 
learning occurs over many days. In the current study we 

investigated how effectively people are able to learn cue-
outcome relations across multiple days. 

Trial-by-Trial Causal Learning 
Prior research has evaluated how people detect causation 
from data shown over a successive series of trials. In a typical 
experiment, participants observe data in which the putative 
cause and the outcome are either present or absent. This 
information can be organized into a 2x2 table where each cell 
A-D represents the number of times that the cause/outcome 
combination occurs for a particular dataset (see Figure 1). 
Most often, participants are shown the data rapidly, for 
example two or three seconds per trial. After observing the 
entire dataset, subjects judge the degree to which the cause 
influences the outcome. 

 
 

Figure 1: A 2x2 table depicting the four possible types of 
data in a traditional binary design. 

 
One normative model of causation is the DP rule, a measure 

of contingency that suggests an optimal way to infer 
causation is by comparing the probability of the outcome in 
the presence of the cause and the probability of the outcome 
in the absence of the cause: DP = A/(A+B) – C/(C+D). When 
DP is positive, the causal relationship is generative. When DP 
is negative, the causal relationship is preventive. 

Although prior research suggests that people are able to 
discriminate generative vs. preventive causation (Shaklee & 
Mims, 1982), individuals sometimes exhibit biases in causal 
reasoning. One such bias, “illusory correlation” or “illusory 
causation”, occurs when people inaccurately infer causation 
when no causal relationship exists. 

An “A-cell bias” is when individuals believe that a causal 
relation exists merely because of a high number of A-cell 
trials (e.g., Kao & Wasserman, 1993). In the A-cell bias 
condition in Table 1, even though there is zero relation 
between the cue and outcome (the outcome occurs with a 
chance of .625 regardless of whether the cue is present or 
absent, so DP = 0), people tend to infer that they are positively 
correlated. An “outcome density bias” is when people 
incorrectly assign causation to a dataset in which the overall 
probability of the outcome is high (Table 1), even though the 
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probability of the outcome is the same (.75) whether the cause 
is present or absent, so DP = 0 (e.g., Jenkins & Ward, 1965).  

 
Table 1: Cell Frequencies for the 4 Datasets 

 
Dataset A B C D DP 
Generative 9 3 3 9 0.5 
Preventive 3 9 9 3 -0.5 
Outcome-Density 9 3 9 3 0 
A-cell 10 6 5 3 0 

Causal Learning and Memory 
Many causal learning experiments use rapidly successive 
trial-by-trial paradigms. In the real world, however, you 
would not experience each data point in rapid succession. 
This raises a number of challenges for long term memory. For 
example, imagine learning whether going to yoga improves 
your mood; some days you do yoga and other days you do 
not. After a few weeks, would you be able to remember the 
days you did or did not do yoga? Could you remember your 
mood on those days? How might your memories for these 
events impact your ability to detect causation? Would you be 
more susceptible to biases such as illusory correlations? 
Currently, there is no research on how well people can learn 
causal relations over long timespans.  

One basis for making hypotheses about causal learning in 
long timeframes is research on short timeframes that has 
increased working memory (WM) demands. Studies have 
found stronger illusory correlations in a rapid trial-by-trial 
paradigm (higher WM demands) than in a “summary” 
paradigm (lower WM demands) in which all the trials are 
presented simultaneously (Kao & Wasserman, 1993). Adding 
a distractor task on top of the trial-by-trial paradigm leads to 
less accurate judgments (Shaklee & Mims, 1982), and older 
adults with lower WM have less accurate causal learning 
(Mutter & Pliske, 1996). If causal learning is worse when 
WM is taxed, we expected learning to get even worse when 
long-term memory must be used to assess causation. Still, 
people are often able to navigate the world successfully, 
suggesting a reasonable causal-learning ability when relying 
on long-term memories to make inferences. This raises the 
question: how well can we learn causal relations across many 
days?   

Summary of Current Study 
In the current study, we investigated the implications of 

learning a cause-effect relationship quickly from a rapid 
sequence of trials vs. learning the same relationship over an 
extended period of time – one trial per day for 24 days. We 
investigated how subjects learned about four causal relations 
using different datasets: generative, preventative, ‘outcome-
density’, and ‘A-cell’ (Table 1). 

The motivation for studying the generative and preventive 
datasets was  to determine whether or not participants were 
capable of detecting a causal relationship or if learning is 
hampered when the experiences occur spread out in time. 
Because memories might be noisier in the long-term 
condition, we predicted that participants’ judgments might be 
closer to zero, implying a weaker causal relationship.  

For the A-cell and outcome density datasets, we wanted to 
assess the effect of long-term memory on illusory 
correlations. Prior research mainly found exaggerated 
illusory correlations with increased WM demand, so one 
hypothesis was that illusory correlations would be 
exaggerated in the long-term condition. Another hypothesis 
was that, if memories of the experiences are weaker in the 
long timeframe condition, then the judgments might actually 
be closer to zero – more accurate.  

Methods 

Participants 
There were 476 participants. The main requirements were 
owning a smartphone and intending to complete the entire 
study; however, we mainly targeted college students to have 
a similar sample to most other causal learning studies and 
since they frequently use smartphones.  Participants were 
paid $30 if they successfully completed the entire study. 

Our goal was to have around 400 participants, 100 for each 
of the 4 datasets in the long timeframe condition. The large 
number was used because the four datasets need to be 
analyzed separately, and to have power to detect small 
effects. The final data analyses included 409 participants after 
dropping 13 participants who admitted to writing down data 
during the study, 1 who was not trying during the task, 39 due 
to a programming error, and 14 who skipped too many days 
of the long timeframe task.  

Datasets 
Participants learned about five datasets: four short-timeframe 
(generative, preventative, A-cell, and outcome density) and 
one long-timeframe (one of the four from the short-timeframe 
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condition). This design allowed for a within-subjects 
comparison of one of the four datasets across the long vs. 
short conditions (see Table 2 for an example). By having 
subjects learn all four datasets in the short timeframe 
condition, it also reduces the likelihood that subjects were 
aware that one of the short timeframe datasets was the same 
as the long timeframe dataset. Each dataset consisted of 24 
trials ordered randomly. The two illusory correlation datasets 
were previously used by Kao and Wasserman (1993). 

Procedure 
Participants completed the entire study on their own 
smartphones by logging into our website created with our 
PsychCloud.org framework. The procedure for the short-term 
and long-term tasks were identical, except that subjects 
observed one trial per day in the long timeframe condition, 
and they did trials back-to-back in the short timeframe 
condition. On Day 1 of the study, participants completed two 
short-term tasks and began Day 1 of the long-term task.  

On Days 2 – 24, participants received automated text-
message reminders at 10am, 3pm, and 8pm to complete their 
daily trial for the long-term task and stopped receiving 
reminders if they had already participated that day. They 
returned to the lab on Day 25 to complete the remaining 
short-term tasks and receive payment. The order of the short-
term tasks was randomized so that participants completed the 
short version of the long-term task either on Day 1 or on Day 
25 - before or after the long-term task. 

 
Within a Trial Each task consisted of 24 trials in which 
participants were told whether or not the putative cause was 
present or absent. A number of procedures were taken to 
facilitate encoding, including asking subjects to verify the 
state of the cause and effect (rather than just observe them), 
and to spend extra time to look each image. Each trial 
proceeded as described in the following example, which uses 
the ‘Facebook’ cover story – other cover stories are explained 
below. In the Facebook cover story, subjects were asked to 
judge whether using Facebook during their lunch break 
improves or worsens or has no influence on their mood, based 
on the hypothetical dataset.  

At the beginning of each trial, subjects were shown a 
contextual image. These images allowed us to ask a number 
of episodic memory questions that are not analyzed in this 
report. In the Facebook cover story, they saw an image from 
the inside of a restaurant and were told “This is the scene from 
your lunch break.” After three seconds, an icon and text were 
superimposed over the contextual image to show the presence 
or absence of the cause (e.g., whether they used or did not use 
Facebook during their lunch break). They pressed a radio 
button to confirm the state of the cause and could not move 
on until selecting the correct button (e.g., Facebook vs. No 
Facebook). Next, they pressed a radio button to predict the 
effect as present or absent (e.g., Very Sad Mood vs. Normal 
Mood). They received text feedback for whether their 
prediction was correct or incorrect and an icon representing 
the effect was superimposed on the image. After clicking the 

correct radio button to verify the state of the effect, subjects 
were instructed to “Take a couple of seconds to imagine this 
scene”, which was displayed for an additional four seconds. 

At the end of a trial in the short timeframe condition, 
subjects were permitted to move on to the next trial. In the 
long timeframe condition, subjects were told that their task 
was over and to come back to the website the following day. 
Once a trial was over, the website did not allow subjects to 
see the data for that trial or prior trials, not even by clicking 
the back button on their web browser. 

 
Figure 2. Screenshot of the end of a trial. 

 
After Trial 24 (either immediately afterwards for the short 

timeframe condition, or on Day 25 in the long timeframe 
condition), participants judged the strength of the causal 
relationship. First, they answered whether the cause 
(Facebook) “improves or worsens or has no influence” on the 
effect (mood). If participants said the cause had no influence, 
they were assigned a causal judgment of 0. If they responded 
“improve” or “worsen”, they answered “How strongly does 
[the cause] [improve/worsen] [the effect]?” on a scale of 1 
(very weak) to 10 (very strong), which produced a scale from 
-10 to +10. In this report we only discuss the judgments after 
Trial 24, though subjects also made similar judgments before 
Trial 9 and before Trial 17. 

In addition to the causal strength judgments, participants 
also made a number of other judgments, for example, 
memories of the number of experienced cells of types A, B, 
C, and D (before Trials 5, 13, 21, and after Trial 24), as well 
as a number of judgments about the memories for the 
contextual images after Trial 24. These measures will not be 
analyzed in the current report due to space. 
 
Cover Stories Since subjects learned about five cause-effect 
relations, we created the following five authentic ‘contexts’, 
randomly assigned to the five tasks so that each was viewed 
as a separate learning task: the relation between using 
Facebook during lunch in a restaurant and mood, eating a 
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healthy dinner in a friend’s house and having an upset 
stomach, using notecards to study in a library and grades on 
a daily quiz, biking to work on city streets and productivity 
at work, and bringing your dog on a walk in a park and stress.  
The five stories were chosen so that it would be plausible for 
the cause to either improve or worsen the outcome; the 
influence of prior beliefs will be analyzed in other reports. 

Because this study is the first to use a long timeframe 
paradigm, is unlikely to be replicated, and is focused on 
external validity, we conducted two manipulations of the 
cover stories. Specifically, we manipulated the “authenticity” 
and “valence” of the cover stories. If subjects in the long 
timeframe condition exhibited very poor learning, we wanted 
to rule out some potential explanations and to know how to 
best design future studies. Although we will explain the 
manipulations here, they are not of primary importance and 
will not be analyzed in this report. 

First, though it is typical in causal learning studies to use 
entirely novel and abstract cover stories to minimize the 
influence of prior beliefs, we worried that abstract stimuli 
could be hard to remember in a long timeframe condition.1 
For this reason, we manipulated the ‘authenticity’ of the 
cover stories. The ‘authentic’ cover stories were the five 
stories mentioned previously. In the ‘novel’ cover stories, we 
used the same effects but replaced the causes with a 
hypothetical vitamin that a subject took on some days but not 
others (e.g., does the vitamin have an influence on mood, 
upset stomach, etc.). The matched short-term and long-term 
datasets were assigned to different contexts but were matched 
on authenticity. Of the four short timeframe conditions, two 
were assigned to ‘novel’ vitamin cover stories and two were 
assigned to authentic cover stories (Table 2). 

Second, we manipulated the ‘valence’ of the effect; 
whether the presence of the effect is good or bad.2 The 
absence of the effect was always described as normal (e.g., 
normal mood, normal grade on a quiz, etc.). The presence of 
the effect was described as either very good or very bad (e.g., 
very happy or very sad; very good grade or very bad grade, 
etc.). For participants in the negative valence condition, we 
reverse coded their causal strength judgments, so positive 
causal strength means “improved” for the positive valence 
condition and “worsened” for the negative valence condition. 
The matched short-term and long-term datasets were 
assigned the same valence. Of the four short-term conditions, 
two had positive and two had negative valence (see Table 2). 
Authenticity and valence are not analyzed due to space. 

                                                        
1 For example, we suspect that in short learning tasks using novel 
stimuli, subjects might use other cues such as the position of stimuli 
on the screen rather than the semantic meanings of the cues. Such 
alternative methods of learning might be less salient in the long 
timeframe condition. Instead, we thought that semantically 
meaningful cause-effect relations might be easier to remember and 
also have higher external validity. 
2 Most studies on causal learning use cues that are either present or 
absent. Presence/absence of the cause and the effect is theoretically 
important in some theories of causal learning (e.g., Cheng, 1997). 
Further, the definition of the cells as A-D only makes sense with 

Participation Before starting the experiment, participants 
were told that if they missed more than three days in the long 
timeframe task, the study would be terminated and that they 
would not be paid. 462 (97%) participants successfully 
completed the study. On any given day, 83% of subjects 
participated before the 3pm reminder, 96% before the 8pm 
reminder, and 99% by midnight. If a subject missed one, two, 
or three days, the subsequent days were automatically pushed 
back the appropriate number of days.  

The causal strength judgments and other measures for the 
long timeframe task occurred during the second in-lab testing 
session. We worked hard to have subjects come back to the 
lab for the second in-lab testing session on Day 25, one day 
after the last trial in the long timeframe condition. Of the 409 
subjects in the final analyses, 83% returned to the lab on Day 
25. If they skipped one day of the long timeframe task, 
sometimes this session occurred on the same day as their 24th 
trial (13%). If the session had to be moved, sometimes it 
occurred two (3%) or three (1%) days after the last trial. 
Overall, the protocol was followed with high fidelity. 

Results 

Causal Strength Judgments 
In this paper, we only analyzed data from the matched short-
term and long-term conditions. We analyzed the generative 
(N = 98), preventive (N = 102), A-cell (N = 105), and outcome 
density (N = 104) conditions separately.  

Average causal strength judgments are presented in Figure 
3. Significance values above each column indicate whether 
the value was significantly different from zero. The 
significance value above the horizontal lines indicates 
whether the judgments in the short and long-term conditions 
were significantly different from each other. We calculated 
Bayes Factors (BF) for each t-test, where a BF > 1 is support 
for the alternative hypothesis and a BF < 1 is support for the 
null. Often BFs > 10 (or < 1/10) are considered “strong” 
evidence for the alternative (or null), BFs > 30 or < 1/30 are 
considered “very strong” and BFs >100 or < 1/100 are 
considered “extreme” (e.g., Lee & Wagenmakers, 2013). 
 
Generative and Preventive Conditions First, we wanted to 
assess whether participants were capable of detecting 
causation in the generative and preventive conditions. For 
the generative dataset, causal judgments were significantly 
different from zero in both the short-term condition, t(97) = 

cues that are present/absent (not “high”/“low” or “2”/“1”, etc.; see 
Figure 1). In order to stick close to prior studies and to be able to 
study the A-cell bias, we used present/absent cues. However, one 
consequence of using presence/absence is that most outcomes have 
an implicit valence of being good or bad. For example, many prior 
studies have used outcomes like the presence/absence of a headache 
(bad) or of a flower blooming (good). We did not want to arbitrarily 
use outcomes of one particular valence, or to confound valence with 
cover story. Furthermore, valence can influence the strength of 
illusory correlations (Mullen & Johnson, 1990). For all these 
reasons, we counterbalanced the valence of the cover story. 
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11.27, p < .001, d = 1.14, BF = 2.13 * 1016, and the long-
term condition, t(97) = 11.53, p < .001, d = 1.17, BF = 7.37 
* 1016. For the preventive dataset, judgments were less than 
zero in both the short-term, t(101) =   -9.03, p < .001, d = -
0.89, BF = 5.72 * 1011, and long-term condition, t(101) = -
7.13, p < .001, d = -0.71, BF = 6.05 * 107.  

We predicted that for both the generative and preventive 
datasets, causal judgments would be closer to zero in the 
long-term condition because participants’ memories would 
be noisier. However, paired t-tests revealed no significant 
differences between judgments in the short-term and long-
term conditions for either the generative, t(97) = -0.37, p = 
.707, d = -0.04, BF = 0.12, or preventive datasets, t(101) = -
0.33, p = .741, d = 0.03, BF = 0.12. Thus, participants were 
just as capable of detecting causation in the short and long 
timeframe conditions. 
 
Illusory Correlation Conditions In the outcome-density 
and A-cell datasets, an optimal causal judgment would be 
zero. In line with our predictions, we found significant 
illusory correlations for both datasets. For the A-cell dataset, 
causal judgments were significantly greater than zero in 
both the short-term, t(104) = 7.13, p < .001, d = 0.70, BF = 
6.75 * 107, and long-term, t(104) = 6.11, p < .001, d = 0.60, 
BF = 6.36 * 105, conditions. We found similar results for the 
outcome-density dataset; judgments were also positive and 
significantly different from zero in the short-term, t(103) = 
2.73, p = .008, d = 0.27, BF = 3.60, and long-term, t(103) = 
4.23, p < .001, d = 0.41, BF = 341.33, conditions. 

We hypothesized that the illusory correlations could be 
either exacerbated or diminished in the long timeframe 
condition. However, there were no differences between 
causal judgments in the short and long-term conditions for 
the A-cell dataset, t(105) = -0.67, p = .500, d = 0.07, BF = 
0.13. Illusory correlations appeared slightly stronger in the 
long-term condition for the outcome-density bias dataset, but 
this trend only approached significance, t(104) = -1.87, p = 
.065, BF = 0.45, with a small effect size of d = 0.18. These 
results suggest that illusory correlations in traditional trial-
by-trial experiments are similar to what we observe in a long 
timeframe task. 

 

Predictive Strength 
Another way to measure learning, aside from causal strength 
judgments, is through subjects’ predictions of whether the 
outcome was present or absent each day. To ensure that 
participants had observed enough experiences to make 
predictions, we analyzed the predictions from Trials 13 – 24.  

We transformed participants’ predictions into a measure of 
causal strength by subtracting the probability that they 
predicted that the outcome would be present given the 
absence of the cause from the probability that the outcome 
would be present given the presence of the cause. This 
measure of “predictive strength” is conceptually similar to 
ΔP. These results are displayed in Figure 4. 
 
Generative and Preventive We found very similar results 
using subjects’ predictions to assess learning as from their 
causal strength judgments. In the generative condition, 
predictive strength was significantly greater than zero for 
both the short-term, t(97) = 11.58,  p < .001, d = 1.17, BF =  
9.01 * 1016, and long-term conditions, t(97) = 12.47, p < .001, 
d = 1.26, BF = 6.32 * 1018. In the preventive condition, 
predictive strength was significantly less than zero in both the 
short-term, t(101) = -11.87, p < .001, d = -1.18, BF = 6.77 * 
1017, and long-term conditions, t(101) = -9.38, p < .001, d = -
0.93, BF = 3.12 * 1012. We found no difference in predictive 
strength between the short-term and long-term conditions for 
either the generative, t(97) = -0.36, p = .718, d = -0.04, BF = 
0.12, or preventive, t(101) = -0.49, p = .623, d = -0.05, BF = 
0.12, datasets. In sum, participants learned to accurately 
predict the effect, to the same extent, in both conditions. 

 
Illusory Correlation Conditions In the A-cell bias 
condition, we found a similar pattern of results to the strength 
judgments. Subjects did infer an illusory correlation; they 
were more likely to predict the effect as present when the 
cause was present in both the short-term, t(104) = 3.66, p < 
.001, d = 0.36, BF = 51.08, and long-term condition, t(104) = 
3.66, p < .001, d = 0.36, BF = 50.64. Furthermore, we found 
no difference between predictions in the short-term vs. long-
term conditions, t(104) = -0.66, p = .512, d = 0.06, BF = 0.13. 
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In the outcome-density condition, the predictions were 
significantly negative in the short-term condition, t(103) = -
2.24, p = .028, d = -0.22, BF = 1.17. However, they were 
significantly positive in the long-term, t(103) = 2.13, p = 
.036, d = 0.21, BF = 0.94, and the difference was statistically 
significant, t(103) = -3.60, p < .001, d = -0.35, BF = 42.20.  

This difference was only marginally significant for the 
causal strength analyses, and the causal strength judgments 
for the short timeframe were significantly positive, not 
negative. Because this is the only difference between the two 
conditions, and it was only found for predictive strength (not 
the causal strength judgments) in the outcome density 
condition (not the other illusory correlation condition), we do 
not want to over-interpret it. 

Discussion 
We sought to evaluate the external validity of traditional trial-
by-trial causal learning experiments by comparing trial-by-
trial learning when presented rapidly vs. one trial per day for 
24 days. Presumably the former relies on working memory,  
whereas the latter requires long term memory. Our findings 
suggest that people are capable of learning generative and 
preventive causal relationships and also exhibit illusory 
correlations when learning causal relations over 24 days. 
Critically, we found few differences between the short-term 
and long-term tasks, and in fact most of the Bayes factors 
were roughly 8 to 1 in favor of the null. 

From a practical perspective, this research provides an 
optimistic perspective on the validity of the trial-by-trial 
paradigm as a simulation of causal learning that occurs in the 
real world across longer periods of time. Assessing the 
external validity of this paradigm is important given that it 
has been used in hundreds of published studies on causal 
learning, and many thousands of studies when including 
studies of probability learning and other related topics. 

From a theoretical perspective, we find it striking that there 
are so few differences in learning across the short and long 
timeframe condition. We intentionally used large samples to 
have the power to detect small effects. The robust learning in 
the long timeframe condition is surprising considering that 
participants completed the long-term trials outside of the lab 

and likely participated with many distractors and 
interruptions, comparable to everyday causal learning. Still, 
we hypothesized that the learning in the long timeframe 
condition would be plagued by considerably worse learning 
due to noisy memories. The fact that we found few 
differences raises a number of questions.  

One question has to do with how learning occurs (e.g., 
Bornstein et al., 2017). Are subjects recording individual 
episodic memories and using them for causal learning? Or are 
they merely encoding them as generic events of the four cell 
types? Or are they using a process more similar to 
reinforcement learning in which an estimate of the strength 
of the relation between the cause and outcome gets updated 
as new evidence is experienced? Some of these questions can 
be addressed with our contextual image memory questions. 

Another question is how well long-term memory can 
support other types of learning. It is possible that a single 
cause-effect relation is simple enough for long-term memory 
to robustly support learning, but that long-term memory 
might not be able to support more complex cause-effect 
relations (e.g., with multiple causes or long delays). We are 
actively studying such questions. 

This research also has potential implications for whether 
learning and memory processes are fundamentally the same 
for shorter vs. longer timeframes. In associative learning, 
there is a debate about “timescale independence or 
invariance” (Gallistel & Gibbon, 2000), in which learning 
phenomena tend to replicate if the sequence is stretched or 
compressed. In memory, there are debates about the 
similarities and differences in short vs. long-term memory 
(e.g., Cowan, 2008) and whether memories across short and 
long timespans can be modeled with the same forgetting 
curves (e.g., Wixted & Ebbesen, 1991). Perhaps researchers 
invested in these debates may be able to use these results. 

More generally, we believe that the current research 
provides an important step towards generalizing current 
learning paradigms to more real-world settings. The current 
findings are optimistic in terms of how well the paradigm 
generalizes; however, future research may also reveal areas 
in which standard learning paradigms generalize poorly.  
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Abstract

Studies of human expertise suggest that experts and novices “see“ problems differently. Experts not only acquire a body
of domain-specific strategies and knowledge, but also learn to quickly identify when those concepts apply to problems
within the domain. We propose modeling these elements as an iterative process of domain-specific language (DSL)
learning, while jointly training a neural network to recognize when learned concepts apply to new problems. We show
that the algorithm solves problems more accurately and quickly than either a neural network alone, or a model that simply
acquires new concepts without learning when to use them. We also examine the implicit problem representations learned
by the neural network recognition model, and find that they increasingly come to reflect abstract relationships between
problems, rather than surface features, as the model acquires domain expertise. A full paper and additional details are
available at: https://sites.google.com/view/neurally-guided-expertise-mit
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Abstract 
Neuropsychological investigations with frontal patients 
have revealed selective deficits in selecting the relational 
answer to pictorial analogy problems when the correct 
option is embedded among foils that exhibit high 
semantic or visual similarity. In contrast, normal age-
matched controls solve the same problems with near-
perfect accuracy regardless of whether high-similarity 
foils are present (in the absence of speed pressure). 
Using more sensitive measures, the present study sought 
to determine whether or not normal young adults are 
subject to such interference. Experiment 1 used eye-
tracking while participants answered multiple-choice 4-
term pictorial analogies. Total looking time was longer 
for semantically similar foils relative to an irrelevant 
foil. Experiment 2 presented the same problems in a 
true/false format with emphasis on rapid responding and 
found that reaction time to correctly reject false 
analogies was greater (and errors rates higher) for those 
based on semantically or visually similar foils.  These 
findings demonstrate that healthy young adults are 
sensitive to both semantic and visual similarity when 
solving pictorial analogy problems. Results are 
interpreted in relation to neurocomputational models of 
relational processing. 

Keywords: Analogy, semantics, perception, 
interference, eye-tracking, reaction time 

Introduction 
Relational reasoning—inferential processes 

constrained by the relational roles that entities play 
rather than the specific features of those entities—is a 
hallmark of human cognition. The basic components 
of relational processing have been investigated using 
a wide variety of analogy tasks. The simplest format 
for analogies involves four terms, expressed as either 
words or pictures, in the form A:B::C:?, where the 
task is to complete the analogy by selecting the best 
D term from a small set of options. By varying the 
alternative options, it is possible to assess the degree 

to which analogical reasoning is influenced by foils 
that pit semantic and/or visual similarity of individual 

 
Figure 1. Example of a 4-term pictorial analogy with 
four alternatives, used in the present experiments 
(from Krawzcyk et al., 2008).  
 
concepts or objects against relational similarity 
between pairs of concepts or objects. In the example 
shown in Figure 1, the task is to select the analogical 
option (fish bowl, based on the relation “lives in” that 
matches the A:B relation) from among a semantic 
distractor similar to the C term (fish hook), a visual 
distractor (rocket) and an unrelated option (camera). 
 Krawczyk et al. (2008) administered a set of 
picture analogies (from which the example shown in 
Figure 1 is drawn) to neuropsychological patients 
suffering from frontotemporal lobar degeneration 
(FTLD) and age-matched neurotypical controls 
(mean age approximately 60 years). Some of these 
problems were adapted from an earlier set created by 
Goranson (2002), and hence are dubbed the 
Goranson Analogy Test (GAT). In the study by 
Krawczyk et al., problems were administered one at a 
time, without speed pressure. In one problem set the 
options included distractors as in Figure 1; in an 
alternative set the semantic and perceptual distractors 
were replaced by two additional unrelated options. 
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 For the set with similar distractors, patients with 
frontal-variant FTLD were correct on only 49% of 
the problems, rising to 84% correct for the set 
without similar distractors. An additional group of 
patients with temporal-variant FTLD showed a 
similar level of impairment regardless of whether 
similar foils were present, suggesting a general 
semantic deficit (see also Morrison et al., 2004). 
When similar distractors were present the patients 
with frontal damage selected similar distractors 
(mainly semantic, but also visual) more often than 
control participants. Indeed, the control group 
achieved near-perfect accuracy (98% correct). Thus, 
frontal damage appeared to selectively impair the 
ability to inhibit responding to pictorial analogy 
problems on the basis of superficial object similarity. 
 The near-perfect performance of the control 
participants in solving pictorial analogies even in the 
presence of similar distractors raises the question of 
whether and how cognitively unimpaired adults 
screen out object similarity (both semantic and 
visual) so as to focus on similarity of relations. 
Adults sometimes respond on the basis of object 
similarity when comparing more complex visual 
scenes (Markman & Gentner, 1993; Walz et al., 
2000); however, the simple format of four-term 
pictorial analogies may allow non-relational 
information to be filtered out at a very early 
processing stage, so that choice of the analogical 
solution is not influenced by the presence of similar 
but non-relational foils. Alternatively, more sensitive 
measures may reveal evidence of response 
competition based on different varieties of similarity. 
 In two experiments, we investigated this question 
by administering versions of the GAT analogies used 
by Krawczyk et al. (2008) to healthy young adults. 
Eye-tracking methods provide one avenue for 
investigating online processing that occurs during 
analogical reasoning prior to making an overt 
decision (Gordon & Mozer, 2006; Glady, French, & 
Thibaut, 2016; Hayes, Petrov, & Sederberg, 2011; 
Vendetti et al., 2017).   Accordingly, in Experiment 1 
we collected data on gaze durations for the various 
response options while solving the GAT problems. 
 Another potentially more sensitive measure is 
reaction time (RT) to solve analogies under speed 
pressure. In Experiment 2 we changed the format of 
the GAT problems from four-alternative forced 
choice to true/false. For each of the original 
problems, each of the three foils was used to create a 
false picture analogy in the form A:B::C:D. In 
addition, participants were instructed to respond as 
quickly as possible. If semantic and/or visual 
similarity is screened out easily, then the various 
types of false analogies should take about the same 

length of time to reject. However, if college students 
are unable to avoid processing more superficial types 
of similarity, then decisions about false analogies in 
which the D term is similar (semantically or visually) 
to the C term may be relatively slow and error-prone. 

Experiment 1 
If superficial similarity intrudes into analogical 
reasoning for healthy adults, then they may spend 
more time looking at semantic and/or visual 
distractors than at an unrelated option. 
 
Method 
Participants. Participants were 32 undergraduates 
(24 female), mean age 20.4 years (range: 17–34) 
from the University of California, Los Angeles 
(UCLA), with normal or corrected to normal vision. 
They received course credit for participating.   
 
Materials. Picture analogies were based on the 18 
GAT problems used by Krawczyk et al. (2008). Two 
of these served as practice items, and 16 as 
experimental items. As in the Krawczyk et al. study, 
two sets of the 16 problems were created, one of 
which included similar foils and one of which 
replaced the semantic and visual foils with unrelated 
options.  
 
Procedure. Pictorial analogies were presented on a 
computer screen one at a time. The size of each 
individual image (framed by a gray box) was 128 x 
128 pixels (one-tenth of the screen width). A fixation 
cross was presented for 2 s, followed by the problem. 
The problem remained on until the participant 
pressed one of four response keys (corresponding to 
letters F, G, H, and J) to indicate which of the four 
alternatives was the correct analogical solution. 
When a response was made, the screen showed the 
reverse grayscale image for .25 s, after which the 
next trial began. Instructions did not emphasize speed 
of responding. During the experiment eye-tracking 
data were recorded using an Eyelink II gaze tracker 
(SR Research Ltd., Mississauga, Ontario, Canada), 
running under Eyelink Toolbox, PsychToolbox, and 
MATLAB on dual PCs. No feedback was provided. 
 For each participant, eight problems were included 
in the set with similar distractors (Distractor 
condition), and the other eight in the set with only 
unrelated foils (No-Distractor condition). Assignment 
of problems to set was counterbalanced across 
participants, as was the order of the four response 
options for each problem. Presentation order of the 
problems was randomized for each participant. 
 

3116



Results 
Data were missing for one participant, who was 
excluded from analyses. Accuracy overall was 92% 
correct and did not vary reliably across the Distractor 
and No-Distractor conditions.  
 To guide analyses of eye movements, an invisible 
square of size 192 x 192 pixels around each 
individual image was defined as the location of that 
image. Figure 2 presents an example of a pattern of 
eye movements for an individual analogy problem in 
the Distractor condition. 
 To provide evidence of a possible pre-decisional 
influence of superficial similarity, we focused on 
dwell time (i.e., total looking times summed across 
all fixations) for each response option. Figure 3 plots 
the mean dwell time for each option in both the 
Distractor and No-Distractor conditions.  
 Participants’ mean total time looking for each of 
the three foil images, in descending order, was: 
semantic foil (522 ms, SE = 38.2), visual foil (518 ms, 
SE = 54.9), and unrelated foil (404 ms, SE = 31.1). 
Overall, there was significant variation in dwell times 
depending on the foil condition, F(2,60) = 3.93, p = 
0.025, η2 = .12. Individual comparisons between 
conditions are reported with Bonferroni-corrected p-
values. Semantic foils had longer dwell times relative 
to unrelated foils, t(30) = 3.67, p < .001, 𝜂"#  = .31. 
 

 

Figure 2. Example of pattern of eye movements 
during solution of a picture analogy. The above boxes 
(not visible to participants) indicate regions around 
the four images in the problem (A, B, C, ?) and the 
four response options: semantically similar (S), 
visually similar (P), unrelated (U), and relational (R, 
the correct response). The D on each option label 
indicates this trial is from the Distractor condition. 
 
 

 
 
Figure 3. Total dwell time for each type of response 
image. The dwell time for Unrelated–ND is the mean 
across the three unrelated options provided in the No-
Distractor condition. Error bars indicate +/- 1 
standard error of the mean. 
 
Visual foils also tended to have longer dwell times 
relative to unrelated foils. However, due to greater 
error variance in the visual foil condition, the latter 
difference was not reliable after the Bonferroni 
correction, t(30) = 2.24, p = .098, 𝜂"#  = .14. Dwell 
times for the two types of similar foils did not differ, 
n.s. 
 The eye-tracking data from Experiment 1 provide 
clear evidence that healthy adults are influenced by 
the presence of semantic and possibly visual 
distractors. Although response accuracy was high 
even in the presence of distractors, participants 
looked longer at semantically similar foils than at an 
unrelated option, suggesting that participants were 
sensitive to superficial similarity prior to making a 
decision. 

Experiment 2 
Experiment 2 used the same basic GAT analogies as 
in Experiment 1 but changed the format from 4-
alternative forced choice to true/false. Instead of eye-
tracking, the main dependent measure was RT to 
evaluate the problems under speed pressure. 

 
Method 
Participants. A total of 60 UCLA undergraduates 
(83% female) participated in the experiment. Their 
mean age was 20.8 years (range: 18–28), with normal 
or corrected to normal vision. They received course 
credit for participating.   
 
Materials and Procedure. The experiment was 
conducted using a computer to display problems and 
record responses. The materials were based on the 
GAT problems used by Krawczyk et al. (2008). Each 
original problem was used to generate four true/false 
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problems, each showing four pictures. As shown in 
Figure 4, in each problem the A:B pair appeared at 
the top of the display and the C:D pair on the bottom. 
The D picture was either the correct analogical 
response (true), the semantic foil (false), the visual 
foil (false), or the unrelated option (false). Thus 25% 
of the problems were true analogies and 75% were 
false.  
 A set of four practice problems was created, using 
two of the GAT problems plus two additional 
problems taken from other sources. For the actual test 
trials, 16 analogy sets were created, one from each of 
the remaining 16 GAT problems. Figure 4 shows one 
of these sets. This procedure resulted in a total of 64 
analogy problems. Each participant solved all 64 
problems (i.e., a within-subjects design). To control 
for order effects the items were counterbalanced in 
the following way. The 16 sets were randomly 
assigned in equal numbers to Group A, B, C, or D. 
Thus, there were a total of 4 sets in each of the 
groups. Then, four test combinations were formed (I, 
II, III, IV). Combination I included only the items in 
Group A that had the analogical option, items in 
Group B that had the semantic foil option, items in 
Group C that had the visual foil option, and items in 
Group D that included the unrelated choice. 
Combinations II–IV were formed in the same basic 
manner, completing the counterbalancing of the four 
problems in each set. The presentation order of 
combinations I–IV was then counterbalanced across 
participants. Finally, the order of items within each 
combination was randomized for each participant.   
 
 

 
 
Figure 4. Example set of true/false picture analogies 
used in Experiment 2, created from the four 
alternatives of a single GAT problem. In each 
problem the A:B pair appears on top and the C:D pair 
on the bottom. The D term varies across problems. 
Panel A: Analogical (true); Panel B: semantic (false); 
Panel C: visual (false); Panel D: unrelated (false). 

 Participants were instructed to respond as quickly 
as possible while avoiding errors. They were told to 
press the v key to indicate “true” and the n key to 
indicate “false”. Before the actual test trials, 
participants completed the four practice items 
(illustrating each of the four basic problem types) and 
were given feedback after each one. The correct 
answer was presented for 3,000 ms. No feedback was 
provided after test trials. On each test trial, a fixation 
cross appeared in the center of the screen for 1,000 
ms before presentation of the analogy problem. The 
analogy problem remained visible until a response 
was made. The screen then went blank for 1,000 ms, 
after which the next fixation cross was presented.  

Results 
Both error rates and RTs for correct trials were 
analyzed. In Experiment 1, where the task was a four-
alternative forced choice without speed pressure, 
error rates were low. In Experiment 2, by contrast, 
the speeded true/false task led to a substantial error 
rate. The mean error rate was 25% for analogical 
(true) problems, 48% for the problems with a 
semantic foil (false), 16% for the problems with a 
visual foil (false), and 7% for the problems with an 
unrelated foil (false). For the three types of false 
problems, a one-way within-subjects ANOVA was 
highly significant, F(2, 118) = 150.31, p < .001, η2 

= .72. Error rates were higher for the semantic foils 
than the unrelated foils, t(59)=13.63, p < .001, 𝜂"#  
= .76. Error rates were also higher for the visual foils 
than the unrelated foils, t(59)=5.42, p < .001, 𝜂"#  
= .33. Finally, semantic foils produced more errors 
than visual foils, t(59)=12.66, p < .001, 𝜂"#  = .73. 
 Figure 5 presents the mean correct RTs for each 
problem type. On average, participants took 3,047 ms 
to correctly verify problems with the analogical 
completion, 3,396 ms to correctly reject problems 
with the semantic foil, 2917 ms to reject those with 
the visual foil, and 2,518 ms to reject those with the 
unrelated foil. A within-subjects one-way ANOVA 
provided strong evidence for variation in RTs among 
the three types of false analogies, F(2, 58) = 34.98, p 
<   .001, η2 = .37. A Bonferroni correction was again 
applied to pairwise comparisons between foil 
conditions. False problems with semantic foils took 
longer to reject than those with unrelated foils, t(59) 
= 6.62, p < .001, 𝜂"#  = 0.43. Those with visual foils 
also yielded longer RTs compared with unrelated 
foils, t(59) = 6.27, p < .001, 𝜂"#  = .40. Finally, 
problems with semantic foils produced longer RTs 
than those with visual foils, t(59) = 4.46, p < .001, 𝜂"#  
= .77.   
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Figure 5. Mean correct RT for each type of picture 
analogy problem (Experiment 2). Error bars indicate 
+/- 1 standard error of the mean.  
 

Discussion 
The goal of the present study was to assess whether 
or not healthy young adults are influenced by 
semantic and/or visual similarity of distractors when 
solving four-term picture analogy problems. Previous 
work had indicated that in the absence of speed 
pressure, healthy older adults show little if any 
tendency to actually choose similar distractors over 
the correct, analogical option (Krawczyk et al., 2008). 
One possibility is that for reasoners with a fully 
functional frontal cortex, any tendency to select 
similar distractors is successfully inhibited (Morrison 
et al., 2004; Knowlton et al., 2012). But an 
alternative possibility is that healthy adults are able to 
reason by analogy without evoking a more superficial 
strategy based on comparing the similarity of C and 
D terms, so that superficial similarity simply does not 
enter into the analogical decision process. 
 Employing two different methods, the present 
study found evidence that college students are in fact 
influenced by both semantic and visual similarity 
when solving picture analogies. Using a four-
alternative forced choice paradigm, in Experiment 1 
we tracked eye movements while college students 
solved picture analogies in the absence of speed 
pressure. We found that dwell time (total looking 
time) was elevated for semantic (and possibly visual) 
foils during the period prior to selection of a response, 
even though the presence of similar distractors had 
little impact on the final choice. This finding suggests 
that similar distractors tended to draw extra attention, 
even though they were almost always rejected in 
favor of the analogical solution. 
 Experiment 2 examined solutions of the same basic 
picture analogies after they were recast in a true/false 
format and administered with instructions that 

emphasized speed of responding. In this situation, the 
similar distractors (especially the semantic foil) 
strongly influenced performance by college students. 
False analogies containing a semantic distractor as 
the D term were often erroneously judged to be true 
and took longer to correctly reject than any other 
condition. False analogies based on visual distractors 
also yielded higher error rates and higher correct RTs 
than did false analogies based on unrelated D terms. 
 The much more salient impact of similar distractors 
in Experiment 2 may be related to two ways in which 
its design differed from that used in both Experiment 
1 and in the previous neuropsychological study by 
Krawczyk et al. (2008). First, speed pressure may be 
critical. When pressed to respond quickly, as in 
Experiment 2, there may not be time for inhibitory 
processes to effectively suppress a tendency to base 
decisions on superficial similarity. 
 Second, the true/false format used in Experiment 2 
may also have played a role. In the four-alternative 
forced choice set-up, all options are simultaneously 
available for comparison, and a common criterion 
can be applied on an individual trial to determine the 
“best” alternative (e.g., Lu, Wu, & Holyoak, 2019; 
Lu, Liu, Ichien, Yuille, & Holyoak, 2019). In the 
true/false set-up, by contrast, each option has to be 
evaluated in isolation, and a criterion must be set on 
each trial to decide whether the analogy is “good 
enough” to respond “true”. Since feedback was never 
given in our experiments, participants may have been 
uncertain about the appropriate criterion (especially 
since the ratio of true and false analogies was 
unbalanced). Given that the analogies were best 
solved on the basis of semantic relations, problems 
including a semantic lure (i.e., those in which the C 
term is semantically related to the D term, but not in 
the same way that A is related to B) may have often 
passed the subjective decision criterion, resulting in 
errors. 
 Taken together, the present findings seem to rule 
out the hypothesis that superficial similarity plays no 
role in analogical reasoning for healthy adults. 
Depending on test conditions, semantic and visual 
lures may have relatively subtle effects (a tendency to 
attract visual attention) or extremely salient effects 
(generating either errors or slow correct responses). 
 It would seem, therefore, that our results favor the 
standard view that analogical reasoning is susceptible 
to interference from a non-analogical strategy of 
simply evaluating the similarity of the C and D terms, 
without reference to the A:B relation. However, 
another alternative deserves consideration. The 
analogy “game” bases the correct answer on the most 
specific possible relation(s) in common across A:B 
and C:D (e.g., for the analogy shown in Figure 1, the 
specific relation “lives in” links squirrel to tree and 
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also fish to fishbowl). But suppose relations emerge 
in a gradual fashion during the reasoning process, 
rather than simply being retrieved in an all-or-none 
fashion. Then the A:B and C:D relations may at first 
be vague or incomplete, and only over time reach full 
specificity. Early in this process of relation encoding, 
the active relation between A:B may be something 
very general (e.g., a squirrel is somehow related, 
either semantically or visually, to a tree). At this 
point, one or both of the foils may match the crude 
A:B relation about equally well as the analogical 
answer (e.g., a fish is associated with a fishbowl, and 
similar visually to the pictured rocket). Under this 
view, speed pressure may force the reasoner to 
choose the “best” answer before the relations are 
fully encoded, at a point in time when the analogical 
answer and the similar foils may be comparable in 
their degree of match to the partially-encoded A:B 
relation. 
 This alternative account of interference implies its 
source may not be a rival non-analogical strategy 
(e.g., simply comparing C and D while ignoring A:B). 
Rather, interference may emanate from the analogy 
process itself, if a fast decision is required when 
relations are as yet poorly encoded. Future research 
should attempt to test these alterative accounts of 
how superficial similarity can infiltrate a process that 
aims to focus on relations. 
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Abstract

Perseveration, or stickiness parameters have been added to reinforcement-learning (RL) models to capture autocorrelation
in choices. Here, we systematically examined whether perseveration terms simply improve a models ability to fit noise
in the data, thereby making them overly flexible. We simulated data with basic versions of a Delta and Prediction-Error
Decay model with no perseveration terms added, and for half of the simulated data sets we added random noise to expected
RL values on each trial. We then performed cross-fitting analyses where the simulated data sets were fit by the basic
data-generating models as well as extended models with perseveration terms added. The addition of perseveration terms
improved model fit, particularly when noise was added to the simulation process. Parameter recovery was generally poorer
for the extended models. These results suggest simpler models may be more useful for prediction and generalization to
novel environments, as well as for theory development.
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Abstract
From social networks to public transportation, graph structures
are a ubiquitous feature of life. How do humans learn functions
on graphs, where relationships are defined by the connectiv-
ity structure? We adapt a Bayesian framework for function
learning to graph structures, and propose that people perform
generalization by assuming that the observed function values
diffuse across the graph. We evaluate this model by asking
participants to make predictions about passenger volume in a
virtual subway network. The model captures both generaliza-
tion and confidence judgments, and provides a quantitatively
superior account relative to several heuristic models. Our work
suggests that people exploit graph structure to make general-
izations about functions in complex discrete spaces.
Keywords: Function Learning, Graph structures, Gaussian
Process, Generalization, Successor Representation

Introduction
Most of function learning research has focused on how peo-
ple learn a relationship between two continuous variables
(Mcdaniel & Busemeyer, 2005; Lucas, Griffiths, Williams,
& Kalish, 2015; DeLosh, Busemeyer, & McDaniel, 1997).
How much hot sauce should I add to enhance my meal? How
hard should I push a child on a swing? While function learn-
ing on continuous spaces is ubiquitous, many other relation-
ships in the world are defined by functions on discrete spaces.
For example, navigating a subway network and constructing
a bookshelf both require representation of functions mapping
discrete inputs (subway stops and configurations of compo-
nents) to continuous outputs (passenger volume and proba-
bility of success). Likewise, language, commerce, and social
networks are all defined partly by discrete relationships. How
do people learn functions on discrete graph structures?

We propose that a diffusion kernel provides a suitable sim-
ilarity metric based on the transition structure of a graph.
When combined with the Gaussian Process (GP) regression
framework, we arrive at a model of how humans learn func-
tions and perform inference on graph structures. Using a
virtual subway network prediction task, we pit this model
against heuristic alternatives, which perform inference with
lower computation demands, but are unable to capture human
inference and confidence judgments. We also show that the
diffusion kernel can be related to prominent models in contin-
uous function learning and models of structure learning. This
opens up a rich set of theoretical connections across theories
of human learning and generalization.

Computational Models of Function Learning
Based on a limited set of observations, how can you inter-
polate or extrapolate to predict unobserved data? This ques-

tion has been the focus of human function learning research,
which has traditionally studied predictions in continuous
spaces (e.g., the relationship between two variables; Buse-
meyer, Byun, DeLosh, & McDaniel, 1997). Function learn-
ing research has revealed how inductive biases guide learning
(Kwantes & Neal, 2006; Kalish, Griffiths, & Lewandowsky,
2007; Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Ger-
shman, 2017) and which types of functions are easier or
harder to learn (Schulz, Tenenbaum, Reshef, Speekenbrink,
& Gershman, 2015).

Several theories have been proposed to account for how
humans learn functions. Earlier approaches used rule-based
models that assumed a specific parametric family of functions
(e.g., linear or exponential; Brehmer, 1974; Carroll, 1963;
Koh & Meyer, 1991). However, the rigidity of rule-based
learning struggled to account for order-of-difficulty effects
in interpolation tasks (Mcdaniel & Busemeyer, 2005), and
could not capture the biases displayed in extrapolation tasks
(DeLosh et al., 1997).

An alternative approach relied on similarity-based learn-
ing, using connectionist networks to associate observed in-
puts and outputs (DeLosh et al., 1997; Kalish, Lewandowsky,
& Kruschke, 2004; Mcdaniel & Busemeyer, 2005). The
similarity-based approach is able to capture how people in-
terpolate, but fails to account for some of the inductive biases
displayed in extrapolation and in the partitioning of the input
space. In some cases, hybrid architectures were developed to
incorporate rule-based functions in a associative framework
(e.g., Kalish et al., 2004; Mcdaniel & Busemeyer, 2005) in an
attempt to gain the best of both worlds.

More recently, a theory of function learning based on GP
regression was proposed to unite both accounts (Lucas et al.,
2015), because of its inherent duality as both a rule-based and
a similarity-based model. GP regression is a non-parametric
method for performing Bayesian function learning (Schulz,
Speekenbrink, & Krause, 2018), has successfully described
human behavior across a range of traditional function learn-
ing paradigms (Lucas et al., 2015), and can account for com-
positional inductive biases (e.g., combining periodic and long
range trends; Schulz et al., 2017).

While the majority of function learning research has stud-
ied continuous spaces, many real-world problems are discrete
(Kemp & Tenenbaum, 2008). In a completely unstructured
discrete space, the task of function learning is basically hope-
less, because there is no basis for generalization across in-
puts. Fortunately, most real-world problems have structure
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(Tenenbaum, Kemp, Griffiths, & Goodman, 2011), which
we can often represent as a connectivity graph that encodes
how inputs (nodes) relate to each other (see Kemp & Tenen-
baum, 2008, for a similar argument). By assuming that func-
tions vary smoothly across the graph (a notion we formalize
below), functions can be generalized to unobserved inputs.
Although this idea has been studied extensively in machine
learning, it has not yet fully permeated into studies of human
function learning.

Goals and Scope
We describe a model of learning graph-structured functions
using a diffusion kernel. The diffusion kernel specifies the
covariance between function values at different nodes of a
graph based on its connectivity structure. When combined
with the GP framework, it allows us to make Bayesian pre-
dictions about unobserved nodes. Even though previous work
has investigated how people learn the relational structure of a
graph (Kemp & Tenenbaum, 2008; Kemp, Tenenbaum, Grif-
fiths, Yamada, & Ueda, 2006; Tomov, Yagati, Kumar, Yang,
& Gershman, 2018), or infer properties of unobserved inputs
(Kemp & Tenenbaum, 2009; Kemp, Shafto, & Tenenbaum,
2012), less is known about how people learn functions in dis-
crete spaces with real-valued outputs.

We present an experiment where participants are shown a
series of randomly generated subway maps and asked to pre-
dict the number of passengers at unobserved stations to test
our model of function learning on graphs. In addition, we col-
lected confidence judgments from participants. We compared
the GP diffusion kernel model to heuristic models based on
nearest-neighbor interpolation.

Function Learning on Graphs
We can specify a graph G = (N ,E) with nodes ni ∈ N and
edges ei ∈ E to represent a structured state space (Fig. 1a).
Nodes represent states and edges represent connections. For
now, we assume that all edges are undirected (i.e., if x→ y
then y→ x).

The diffusion kernel (Kondor & Lafferty, 2002) defines a
similarity metric k(s,s′) between any two nodes on a graph
based on the matrix exponentiation of the graph Laplacian:

k(s,s′) = eαL, (1)

where L is the graph Laplacian:

L = D−A, (2)

with the adjacency matrix A and the degree matrix D. Each
element ai j is 1 when nodes i and j are connected, and 0 oth-
erwise, while the diagonals of D describe the number of con-
nections of each node. The graph Laplacian can also describe
graphs with weighted edges, where D becomes the weighted
degree matrix and A becomes the weighted adjacency matrix.

Intuitively, the diffusion kernel assumes that function val-
ues diffuse along the edges similar to a heat diffusion pro-
cess (i.e., the continuous limit of a random walk). The free
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Figure 1: Graph-structured function learning. a) An example
of a graph structure, where nodes represent states and edges
indicate the transition structure. b) A diffusion kernel is a
similarity metric between nodes on a graph, allowing us to
generalize to unobserved nodes based on the assumption that
the correlation between function values decays as an expo-
nential function of the distance between two nodes. The dif-
fusion parameter (α) governs the rate of decay. c) Given some
observations on the graph (colored nodes), we can use the dif-
fusion kernel combined with the Gaussian Process framework
to make predictions (d) about expected rewards (numbers in
grey nodes) and the underlying uncertainty (size of halo) for
each unobserved node.

parameter α governs the rate of diffusion, where α→ 0 as-
sumes complete independence between nodes, while α→ ∞

assumes all nodes are perfectly correlated.
From the similarity metric defined by the diffusion ker-

nel, we can use the GP regression framework (Rasmussen &
Williams, 2006) to perform Bayesian inference over graph-
structured functions. A GP defines a distribution over func-
tions f : S → Rn that map the input space S to real-valued
scalar outputs:

f ∼ GP (m,k) , (3)

where m(s) is a mean function specifying the expected out-
put of s, and k(s,s′) is the covariance function (kernel) that
encodes prior assumptions about the smoothness of underly-
ing function. Any finite set of function values drawn from a
GP is multivariate Gaussian distributed.

We use the diffusion kernel (Eq. 1) to represent the co-
variance k(s,s′) based on the connectivity structure of the
graph, and follow the convention of setting the mean func-
tion to zero, such that the GP prior is fully defined by the
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kernel.
Given some observations Dt = {yt ,st} of observed out-

puts yt at states st , we can compute the posterior distribution
p( f (s∗)|Dt) for any target state s∗. The posterior is a normal
distribution with mean and variance defined as:

m(s∗|Dt) = k>∗ (K+σ
2
εI)−1yt (4)

v(s∗|Dt) = k(s∗,s∗)−k>? (K+σ
2
εI)−1k∗ (5)

where K is the t× t covariance matrix evaluated at each pair
of observed inputs, and k∗ = [k(s1,s∗), . . . ,k(st ,s∗)] is the co-
variance between each observed input and the target input
s∗, and σ2

ε is the noise variance. Thus, for any node in the
graph, we can make Bayesian predictions (Fig. 1e) about the
expected function value m(s∗|Dt) and also the level of uncer-
tainty v(s∗|Dt).

The posterior mean function of a GP can be rewritten as:

m(s) =
t

∑
i=1

wik(si,s) (6)

where each si is a previously observed state and the weights
are collected in the vector w =

[
k(St ,St)+σ2

εI
]−1 yt . In-

tuitively, this means that GP regression is equivalent to a
linearly-weighted sum using basis functions k(si,s) to project
observed states onto a feature space (Schulz, Speekenbrink,
& Krause, 2018). To generate new predictions for an unob-
served state s, each output yt is weighted by the similarity
between observed states st and the target state s.

Connections to Function Learning On Continuous
Domains
The GP framework allows us to relate similarity-based func-
tion learning on graphs to theories of function learning in con-
tinuous domains. Consider the case of an infinitely fine lat-
tice graph (i.e., a grid-like graph with equal connections for
every node and with the number of nodes and connections ap-
proaching continuity). Following Kondor and Lafferty (2002)
and using the diffusion kernel defined by Eq. 1, this limit can
be expressed as

k(s,s′) =
1√
(4πα)

exp
(
−|s− s′|

4α

)
, (7)

which is equivalent to a Radial Basis Function (RBF) kernel.
Models similar to the RBF kernel are prominent in the litera-
ture on function learning in continuous domains (Busemeyer
et al., 1997; Lucas et al., 2015). The RBF kernel has also been
used to model how humans generalize about unobserved re-
wards in exploration tasks (Wu, Schulz, Speekenbrink, Nel-
son, & Meder, 2018). Thus, the RBF kernel can be under-
stood as a special case of the diffusion kernel, when the un-
derlying structure is symmetric and infinitely fine.

More broadly, both the RBF and diffusion kernel can be
understood as instantiations of Shepard’s (1987) “universal

law of generalization” in a function learning domain, by ex-
pressing generalization as an exponentially decaying function
of the distance between two stimuli. Shepard famously pro-
posed that the law of generalization should be the first law
of psychology, while recent work has further entrenched it in
fundamental properties of efficient coding (Sims, 2018) and
measurement invariance (Frank, 2018).

Heuristic Models
We compare the GP model to two heuristic strategies for
function learning on graphs, which make predictions about
the rewards of a target state s∗ based on a simple nearest
neighbors averaging rule. The k-Nearest Neighbors (kNN)
strategy averages the function values of the k closest states
(including all states with same shortest path distance as the
k-th closest), while the d-Nearest Neighbors (dNN) strategy
averages the function values of all states within path distance
d. Both kNN and dNN default to a prediction of 25 when
the set of neighbors are empty (i.e., the median value in the
experiment).

Both the dNN and kNN heuristics approximate the local
structure of a correlated graph structure with the intuition that
nearby states have similar function values. While they some-
times make the same predictions as the GP model and have
lower computational demands, they fail to capture the con-
nectivity structure of the graph and are unable to learn direc-
tional trends. Additionally, they only provide point-estimate
predictions, and thus do not capture the underlying uncer-
tainty of a prediction (which we use to model confidence
judgments).

Experiment: Subway Prediction Task
We used a “Subway Prediction Task” to study how people
perform function learning in graph-structured state spaces.
Participants were shown a series of graphs described as sub-
way maps, where nodes corresponded to stations and edges
indicated connections (Fig. 2). Participants were asked to pre-
dict the number of passengers (in a randomly selected train
car) at a target station, based on observations from other sta-
tions.

Methods and procedure
We recruited 100 participants (Mage = 32.7; SD = 8.4; 28 fe-
male) on Amazon MTurk to perform 30 rounds of a graph
prediction task. On each graph, numerical information was
provided about the number of passengers at 3, 5, or 7 other
stations (along with a color aid), from which participants
were asked to predict the number of passengers at a tar-
get station and provide a confidence judgment (Likert scale
from 1-11). The subway passenger cover story was used
to provide intuitions about graph correlated functions. Ad-
ditionally, participants observed 10 fully revealed graphs to
familiarize themselves with the task and completed a com-
prehension check before starting the task. Participants were
paid a base fee of $2.00 USD for participation with an addi-
tional performance contingent bonus of up to $3.00 USD. The
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Figure 2: Screenshot from the Subway Prediction Experi-
ment. Observed nodes (3, 5, or 7 randomly sampled nodes
depending on the information condition) are shown with a nu-
merical value and a corresponding color aid (darker indicates
larger values). The target node is indicated by the dashed
line, and dynamically changes color and displays a numeri-
cal value when participants move the top slider. Confidence
judgments were used to compute a weighted error (i.e., more
confident answers having a larger contribution), which was
used to determine the performance contingent bonus.

bonus payment was based on the mean absolute judgment
error weighted by confidence judgments: Rbonus = $3.00×
(25−∑i c̃iεi)/25 where c̃i is the normalized confidence judg-
ment c̃i =

ci
∑c j

and εi is the absolute error for judgment i.
On average, participants completed the task in 8.09 minutes
(SD = 3.7) and earned $3.87 USD (SD = $0.33).

In each of the 30 rounds, a different graph was sampled
without replacement. We used three different information
conditions (observations ∈ [3,5,7]; each used in 10 rounds
in randomly shuffled order) as a within-subject manipulation
determining the number of randomly sampled nodes with re-
vealed information. In each round, participants were asked to
predict the value of a target node, which was randomly sam-
pled from the remaining unobserved nodes.

All participants observed the same set of 40 graphs that
were sampled without replacement for the 10 fully revealed
examples in the familiarization phase and for the 30 graphs
in the prediction task. We generated the set of 40 graphs by
iteratively building 3× 3 lattice graphs (also known as mesh
or grid graphs), and then randomly pruning 2 out of the 12
edges. In order to generate the functions (i.e., number of pas-
sengers), we fit a diffusion kernel to the graph and then sam-
pled a single function from a GP prior, where the diffusion
parameter was set to α = 2.

Results
Figure 3 shows the behavioral and model-based results of
the experiment. We applied linear mixed-effects regression
to estimate the effect of the number of observed nodes on
participant prediction errors, with participants as a random
effect. Participants made systematically lower error predic-
tions as the number of observable nodes increased (β =−.11,
t(99) =−6.28, p < .001, BF > 1001; Fig. 3a). Repeating the
same analysis but using participant confidence judgments as
the dependent variable, we found that confidence increased
with the number of observable nodes (β = .16, t(99) = 11.3,
p < .001, BF > 100; Fig. 3b). Finally, participants were
also able to calibrate confidence judgments to the accuracy
of their predictions, with higher confidence predictions hav-
ing consistently lower error (β = −.19, t(99) = −9.0, p <
.001, BF > 100; Fig. 3c). There were no substantial effects
of learning over rounds (β = .01, t(99) = 0.47, p = .642,
BF = 0.2), suggesting the familiarization phase and cover
story were sufficient for providing intuitions about graph cor-
related structures.

Model comparison
We compare the predictive performance of the GP with the
dNN and kNN heuristic models. Using participant-wise
leave-one-out cross-validation, we estimate model parame-
ters for all but one judgment, and then make out-of-sample
predictions for the left-out judgment. We repeat this proce-
dure for all trials and compare predictive performance using
Root Mean Squared Error (RMSE) over all left-out trials.

Figure 3d shows that the GP made better predictions than
both the dNN (t(99) = −4.06, p < .001, d = 0.41, BF >
100) and kNN models (t(99) = −7.19, p < .001, d = 0.72,
BF > 100). Overall, 58 out of 100 participants were best pre-
dicted by the GP, 31 by the dNN, and 11 by the kNN. Figure
3e shows individual parameter estimates of each model. The
estimated diffusion parameter α was not substantially differ-
ent from the ground truth of α = 2 (t(99) = −0.66, p = .51,
d = 0.07, BF = 0.14), although the distribution appeared to
be bimodal, with participants often underestimating or over-
estimating the correlational structure. Estimates for d and k
were highly clustered around the lower limit of 1, suggest-
ing that averaging over larger portions of the graph were not
consistent with participant predictions.

Finally, an advantage of the GP is that it produces Bayesian
uncertainty estimates for each prediction. While the dNN and
kNN models make no predictions about confidence, the GP
uncertainty estimates correspond to participant confidence
judgments (β = −.10, t(99) = −3.39, p < .001, BF > 100;
linear mixed-effects model with participant as a random ef-
fect).

1β is the standardized effect size ∈ [−1,1] and we approximate
the Bayes Factor using bridge sampling (Gronau, Singmann, & Wa-
genmakers, 2017) to compare our model to an alternative intercept
only null model, where both models were hierarchical regressions
but only the alternative model contained the variable of interest as a
regressor.
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Figure 3: Results. a-b) Participant judgment errors and confidence estimates. Each dot is a single participant (averaged over
each number of observed nodes), with Tukey boxplots and diamonds indicating group means. The dotted line in a) is a random
baseline. c) Judgment error and confidence. Each colored dot is a participant (averaged over each confidence level), dashed line
is a linear regression, with black dots and error bars indicating group means and 95% CI. We report the mixed-effects regression
coefficient and Bayes Factor above. d) Cross-validated model comparison between the Gaussian Process with diffusion kernel
(GP), d-nearest neighbors (dNN), and k-nearest neighbors (kNN). Each point is a single participant with a Tukey boxplot
overlaid and diamonds indicating group means. Comparisons are for a Bayesian one-sample t-test, where the null hypothesis
posits no difference between models and assumes a Cauchy prior with the scale set to

√
2/2. e) Parameter estimates, where each

dot is the mean cross-validated estimate for each participant, with Tukey boxplots and diamonds indicating group means. f)
GP uncertainty estimates (rank ordered within participant) and participant confidence judgments (Likert scale). Dotted line is a
linear regression, with black dots and error bars indicating mean and 95% CI. We report the mixed-effects regression coefficient
and Bayes factor (see text for details).

Discussion
How do people learn about functions on structured discrete
spaces like graphs? We show how a GP with a diffusion ker-
nel can be used as a model of function learning that produces
Bayesian predictions about unobserved nodes. Our model in-
tegrates existing theories of human function learning in con-
tinuous spaces, where the RBF kernel (commonly used in
continuous domains) can be seen as a special limiting case
of the diffusion kernel. Using a virtual subway task, we show
that the GP was able to capture how people make judgments
about unobserved nodes and is also able to generate uncer-
tainty estimates that correspond to participant confidence rat-
ings.

Related work
Previous work has also investigated how people perform
inference over graphs (Kemp & Tenenbaum, 2009, 2008;
Shafto, Kemp, Baraff, Coley, & Tenenbaum, 2005; Tomov
et al., 2018). Whereas these studies were geared towards
probing how people inferred underlying structure (Kemp &
Tenenbaum, 2008) and how (implicit or explicit) represen-

tations of structure influenced causal property judgments
(Kemp & Tenenbaum, 2009; Shafto et al., 2005), the goal of
our Subway Prediction Task was to study how people perform
functional inference given explicit knowledge of a relational
structure. Thus, our study can be seen as a real-valued exten-
sion of the experiments presented in Kemp and Tenenbaum
(2009) and Shafto et al. (2005), where we explicitly present
the underlying structure and modeled both participants pre-
dictions and their confidence judgments simultaneously.

Our approach also has formal similarities to Kemp and
Tenenbaum (2008, 2009), who used a kernel defined as
k(s,s′) = (L+ I

σ2 )
−1 to generate feature vectors over struc-

tured representations, in order to approximate a prior over
properties distributed across the graph. This kernel is a re-
formulation of the regularized Laplacian kernel2 (Zhu, Laf-
ferty, & Ghahramani, 2003), which belongs to the same
broad framework of regularization operators (Smola & Kon-
dor, 2003) as the diffusion kernel (Eq. 1), with both providing
similar inductive biases of smoothness over the graph struc-

2k(s,s′) = (I +σ2L)−1
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ture.

Future Work and Limitations
Currently, we have only studied how people learn functions
on spatial representations of graph structures, where all nodes
and edges are visible simultaneously. However, people can
perform inferences over discrete structures that are more con-
ceptual such as social hierarchies (Lau, Pouncy, Gershman,
& Cikara, 2018) or causal connections (Rothe, Deverett,
Mayrhofer, & Kemp, 2018). Given that the GP framework
can be used to compare how people learn functions over dif-
ferent (i.e., spatial and conceptual) domains (Wu, Schulz,
Garvert, Meder, & Schuck, 2018), comparing functional in-
ference over conceptual and spatial graphs seems like promis-
ing extension for future studies.

Additionally, one could also assess the suitability of the
diffusion kernel as a model for more complex problems, such
as multi-armed bandit tasks with structured rewards (e.g.,
Schulz, Franklin, & Gershman, 2018) and in planning prob-
lems, where exploration plays a fundamental role. One ad-
vantage of the GP diffusion kernel model is that it makes pre-
diction with estimates of the underlying uncertainty. Whereas
many models of generalization only make point-estimates
about the value of a state, the GP framework offers opportuni-
ties for using uncertainty-guided exploration strategies (e.g.,
Auer, 2002).

One limitation of the diffusion kernel is that it assumes
a priori knowledge of the graph structure. While this may
be a reasonable assumption in problems such as navigating a
subway network where one can simply look at a map, this is
not always the case. In contrast, the SR can learn the graph
structure through experience (using prediction-error updat-
ing). Thus, the connection between the SR and the diffusion
kernel presents a promising avenue for incorporating a plau-
sible process model of structure learning.

Conclusion
We show that GP regression, together with a diffusion ker-
nel, captures how participants learn functions and make con-
fidence ratings on graph structures in a virtual subway predic-
tion task. Our model opens up a rich set of theoretical connec-
tions to theories of function learning on continuous domains
and models of structure learning and property induction.

Acknowledgements
CMW is supported by the International Max Planck Research
School on Adapting Behavior in a Fundamentally Uncertain World;
ES is supported by the Harvard Data Science Initiative

References
Auer, P. (2002). Using confidence bounds for exploitation-

exploration trade-offs. Journal of Machine Learning Research,
3, 397–422.

Brehmer, B. (1974). Hypotheses about relations between scaled
variables in the learning of probabilistic inference tasks. Organi-
zational Behavior and Human Performance, 11(1), 1–27.

Busemeyer, J. R., Byun, E., DeLosh, E. L., & McDaniel, M. A.
(1997). Learning functional relations based on experience with

input-output pairs by humans and artificial neural networks. In
K. Lamberts & D. Shanks (Eds.), Concepts and Categories
(p. 405-437). Cambridge: MIT Press.

Carroll, J. D. (1963). Functional learning: The learning of continu-
ous functional mappings relating stimulus and response continua.
ETS Research Bulletin Series, 1963(2), i–144.

DeLosh, E. L., Busemeyer, J. R., & McDaniel, M. A. (1997). Ex-
trapolation: The sine qua non for abstraction in function learn-
ing. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 23(4), 968.

Frank, S. A. (2018). Measurement invariance explains the univer-
sal law of generalization for psychological perception. Proceed-
ings of the National Academy of Sciences, 115(39), 9803–9806.
doi: 10.1073/pnas.1809787115

Gronau, Q. F., Singmann, H., & Wagenmakers, E.-J. (2017). Bridge-
sampling: An R package for estimating normalizing constants.
arXiv preprint arXiv:1710.08162.

Kalish, M. L., Griffiths, T. L., & Lewandowsky, S. (2007). Iter-
ated learning: Intergenerational knowledge transmission reveals
inductive biases. Psychonomic Bulletin & Review, 14(2), 288–
294.

Kalish, M. L., Lewandowsky, S., & Kruschke, J. K. (2004). Popula-
tion of linear experts: knowledge partitioning and function learn-
ing. Psychological Review, 111(4), 1072.

Kemp, C., Shafto, P., & Tenenbaum, J. B. (2012). An integrated
account of generalization across objects and features. Cognitive
Psychology, 64(1-2), 35–73.

Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural
form. Proceedings of the National Academy of Sciences, 105(31),
10687–10692.

Kemp, C., & Tenenbaum, J. B. (2009). Structured statistical models
of inductive reasoning. Psychological Review, 116(1), 20–58.

Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., & Ueda,
N. (2006). Learning systems of concepts with an infinite rela-
tional model. In AAAI (Vol. 3, p. 5).

Koh, K., & Meyer, D. E. (1991). Function learning: Induction of
continuous stimulus-response relations. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 17(5), 811–836.

Kondor, R. I., & Lafferty, J. (2002). Diffusion kernels on graphs and
other discrete structures. In Proceedings of the 19th International
Conference on Machine Learning (Vol. 2002, pp. 315–322).

Kwantes, P. J., & Neal, A. (2006). Why people underestimate y
when extrapolating in linear functions. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, 32(5), 1019–
1030.

Lau, T., Pouncy, H. T., Gershman, S. J., & Cikara, M. (2018). Dis-
covering social groups via latent structure learning. Journal of
Experimental Psychology: General, 147(12), 1881–1891.

Lucas, C. G., Griffiths, T. L., Williams, J. J., & Kalish, M. L. (2015).
A rational model of function learning. Psychonomic Bulletin &
Review, 22, 1193–1215.

Mcdaniel, M. A., & Busemeyer, J. R. (2005). The conceptual basis
of function learning and extrapolation: Comparison of rule-based
and associative-based models. Psychonomic Bulletin & Review,
12(1), 24–42.

Rasmussen, C., & Williams, C. (2006). Gaussian Processes for
Machine Learning. MIT Press.

Rothe, A., Deverett, B., Mayrhofer, R., & Kemp, C. (2018). Suc-
cessful structure learning from observational data. Cognition,
179, 266–297.

Schulz, E., Franklin, N. T., & Gershman, S. J. (2018). Finding
structure in multi-armed bandits. bioRxiv, 432534.

Schulz, E., Speekenbrink, M., & Krause, A. (2018). A tutorial on
gaussian process regression: Modelling, exploring, and exploiting
functions. Journal of Mathematical Psychology, 85, 1–16.

Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speekenbrink, M., &
Gershman, S. J. (2017). Compositional inductive biases in func-
tion learning. Cognitive Psychology, 99, 44–79.

Schulz, E., Tenenbaum, J. B., Reshef, D. N., Speekenbrink, M., &
Gershman, S. (2015). Assessing the perceived predictability of
functions. In Proceedings of the 37th Annual Meeting of the Cog-
nitive Science Society (p. 2116-2121). Cognitive Science Society.

Shafto, P., Kemp, C., Baraff, E., Coley, J., & Tenenbaum, J. (2005).
Context-sensitive induction. In Proceedings of the 27th Annual

3127



Conference of the Cognitive Science Society (pp. 2003–2008).
Austin, TX: Cognitive Science Society.

Shepard, R. N. (1987). Toward a universal law of generalization for
psychological science. Science, 237(4820), 1317–1323.

Sims, C. R. (2018). Efficient coding explains the universal law of
generalization in human perception. Science, 360(6389), 652–
656.

Smola, A. J., & Kondor, R. (2003). Kernels and regularization on
graphs. In Learning theory and kernel machines (pp. 144–158).
Springer.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D.
(2011). How to grow a mind: Statistics, structure, and abstraction.
Science, 331(6022), 1279–1285.

Tomov, M., Yagati, S., Kumar, A., Yang, W., & Gershman, S.
(2018). Discovery of hierarchical representations for efficient
planning. bioRxiv, 499418.

Wu, C. M., Schulz, E., Garvert, M. M., Meder, B., & Schuck, N. W.
(2018). Connecting conceptual and spatial search via a model of
generalization. In T. T. Rogers, M. Rau, X. Zhu, & C. W. Kalish
(Eds.), Proceedings of the 40th annual conference of the cognitive
science society (pp. 1183–1188). Austin, TX: Cognitive Science
Society.

Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D., &
Meder, B. (2018). Generalization guides human exploration
in vast decision spaces. Nature Human Behaviour, 2, 915-924.
doi: 10.1038/s41562-018-0467-4

Zhu, X., Lafferty, J. D., & Ghahramani, Z. (2003). Semi-supervised
learning: From gaussian fields to gaussian processes (Tech. Rep.
No. CMU-CS-03-175). Carnegie Mellon University.

3128



Detecting presupposition failure and accommodation with EEG
Alice Xia (alicexia@cmail.carleton.ca)

Institute of Cognitive Science, Carleton University, 1125 Colonel By Dr
Ottawa, ON K1S 5B6 Canada

Roxana M. Barbu (roxanamariabarbu@cmail.carleton.ca)
Institute of Cognitive Science, Carleton University, 1125 Colonel By Dr

Ottawa, ON K1S 5B6 Canada

Kathleen Van Benthem (kathy.vanbenthem@carleton.ca)
Institute of Cognitive Science, Carleton University, 1125 Colonel By Dr

Ottawa, ON K1S 5B6 Canada

Daniel A. Di Giovanni (daniel.digiovanni@mail.mcgill.ca)
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Abstract

Sentence comprehension in part involves introducing, stor-
ing, and retrieving information about individuals. Natural lan-
guages provide various means for performing this computa-
tional work. One popular idea is that indefinite noun phrases
provide instructions for updating the discourse model by
adding a new discourse referent, while definite noun phrases
presuppose the existence of a discourse referent available in
memory, as well as instructions for retrieving it. When no an-
tecedent is available, the definite’s presupposition fails to be
satisfied, resulting in the so-called ‘presupposition failure’ and
pragmatic infelicity. However, under certain conditions, def-
inite noun phrases can felicitously be used even when no an-
tecedent is available in memory. In such cases, a conversa-
tional repair strategy called ‘presupposition accommodation’
can rescue the discourse by adding the required referent. It
is natural to expect greater processing costs for adding a dis-
course referent with a definite than with an indefinite: although
both involve the process of adding a referent, definites go
through a stage of presupposition failure and a subsequent de-
cision to accommodate. The experimental challenge has been
to apply a method sensitive enough to detect expected costs
in discourse, even when the participant is unaware of the pre-
supposition failure and repairs it rapidly. The present study
addresses this challenge by using EEG to capture temporally
fine-grained processing differences between definite and indef-
inite noun phrases when both introduce new discourse refer-
ents in plausible and implausible contexts. Our main finding
is that definite noun phrases elicit the Left Anterior Negativ-
ity (LAN) effect, compared to indefinite noun phrases, both
in implausible contexts where there is a sense of oddness and
in perfectly coherent contexts. We take this as evidence of a
specific cognitive stage at which presupposition failure is de-
tected and when an accommodation decision occurs. This also
supports the idea that, when encountering a definite, the LAN

is tightly linked to working memory processes involving the
search for discourse elements that are presupposed to exist in
memory. When none are found, definites are subsequently ac-
commodated and bridged to other entities in the discourse.
Keywords: discourse; presuppositions; context; accommoda-
tion; EEG

Introduction
Presuppositions in natural language are commonly viewed as
pieces of information that impose constraints on the contexts
in which they are triggered. Just as pronouns like “she” re-
quire that the context furnish a (uniquely) salient female, pre-
suppositions require that the context entail them. For exam-
ple, consider a command like (1):

(1) # After you read this paper, go call the waiter.

The sentence in (1) is strange when uttered out of the blue. It
is strange for the same reason that go call her is strange when
there is no salient female in the context. The sentence has
been uttered in a context that is missing something that the
sentence needs - in this case, a uniquely salient waiter. We
refer to such cases as ‘presupposition failure’: the failure is
technical (i.e., the context does not entail the presupposition),
and this technical failure leads to a discourse failure. Note
that there is nothing inherently odd about the sentence in (1);
it is odd when the context in which it is uttered fails to provide
a waiter as antecedent for the definite phrase the waiter. If we
introduce a waiter into the prior context, meaning that there
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is no longer any technical presupposition failure, the oddness
disappears:

(2) A waiter and a cook came by and left a flyer. After you
read this paper, go call the waiter.

Note also that the oddness disappears when we change “the”
to “a”; since the latter has no presuppositions, there is no
threat of presupposition failure, and hence none of the odd-
ness that is experienced in (1).

(3) After you read this paper, go call a waiter.

You might not know why the speaker is telling you to call a
waiter, but nothing has gone wrong as far as language itself is
concerned.

This connection between presupposition and the prior con-
text is the centrepiece of the so-called “satisfaction theory” of
presupposition (e.g., Karttunen, 1974; Stalnaker, 1974; Heim,
1983). Its basic assumption is that a sentence S with presup-
position p, Sp, may be used in context c only if c ‘satisfies’
p, i.e., only if c ⊆ p. The satisfaction theory adds additional
auxiliary assumptions to deduce predictions about presuppo-
sition projection, that is, about the presuppositions of com-
plex sentences. For example, it predicts that ¬Sp presupposes
p but that if T then Sp presupposes A→ p (e.g., Heim, 1983).
We will limit our attention to atomic sentences here.

A prima facie challenge for the satisfaction theory comes
from the observation that it is often possible to felicitously use
Sp even when c does not satisfy p. In other words, there ap-
pear to be instances of technical presupposition failure with-
out any sense of a higher discourse failure. For example,
consider the following text (modified from Singh, Fedorenko,
Mahowald, & Gibson, 2016):

(4) I went to a restaurant last night. The waiter yelled at me.

In (4), the context in which the waiter is uttered does not
entail that there was a waiter. It is plausible, of course, that
there should be waiters in the restaurant, but this information
is not strictly entailed by the context. Nevertheless, there is
no hint of oddness here.1

The satisfaction theory explains the contrast between (4)
and (1) by appealing to what is called ‘presupposition ac-
commodation’ (Lewis, 1979). When addressees hear or read
a definite description like the waiter in a context that does
not furnish an antecedent, they face a choice: they can ei-
ther accommodate the required presupposition; that is, they

1A reviewer raises the question about the relative appropriateness
of “I went to a restaurant last night. The waiter yelled at me” and
“I went to a wedding. The bride talked to me.” Weddings typically
have one and only one bride, while there may be no waiters or many
waiters at a restaurant, and the reviewer suggests that these consid-
erations might lead to differences in appropriateness judgments. We
are not aware of work on this, and we hope to return to it in future
work. We intentionally designed contexts that would (i) allow multi-
ple referents, such as multiple waiters – this is that indefinites could
also be used in these contexts), with one being uniquely salient (e.g.,
the waiter who serves you).

can ‘quietly and without fuss’ (Von Fintel, 2008) adjust the
context by adding the missing presupposition, or they can let
the discourse come to a crashing halt. If the context is one
that makes it reasonable to accommodate, say if the presup-
position is unsurprising or uncontroversial, then cooperative
speakers will recognize that they should keep the discourse
running and will therefore simply accommodate.2 Viewed in
this light, accommodation is a repair mechanism that can fix a
context so that technical presupposition failure – the failure to
initially find the required antecedent – does not become prag-
matic presupposition failure. By ‘pragmatic presupposition
failure’ we mean that the context does not get amended and
the discourse is interrupted because the definite noun phrase
is unable to do its job. It is considered bad conversational
practice to rely on accommodation when the presupposition
is somehow noteworthy. If the addressee faces the choice of
having to either let the discourse crash because of pragmatic
presupposition failure, or accommodate a presupposition that
is surprising, controversial, or otherwise hard to incorporate
into the context, then the addressee would rightly feel that the
speaker is asking too much of them.

The appeal to accommodation has been controversial (e.g.,
Gazdar, 1979; Van der Sandt, 1992; Gauker, 1998; Abbott,
2006). The satisfaction theory predicts that the addressee has
passed through a stage of processing at which technical pre-
supposition failure was detected but was then overcome by
the accommodation repair. However, there is no trace of this
failure detection in our conscious awareness, and it would be
desirable to find a way to measure whether accommodation is
real and whether it is indeed triggered by a stage of technical
presupposition failure.

Previous psycholinguistic studies have found that Sp is eas-
ier to process in contexts that satisfy p than in contexts that do
not (e.g., Haviland & Clark, 1974; Crain & Steedman, 1985;
Burkhardt, 2006; Schwarz, 2007). This might be thought to
lend support to the satisfaction theory. However, this pro-
cessing difference may not be about presupposition accom-
modation itself; instead, it could have arisen from the fact
that in contexts in which p is not satisfied, there is an ex-
tra step of adding p to the context. This additional step may
have been responsible for the extra costs whether or not there
is any purported technical presupposition failure from which
the addressee may choose to recover using accommodation
(see Singh et al., 2016 for discussion).

To control for this, we would need a minimal pair that
would also involve adding p to the context, but through as-
sertion rather than presupposition accommodation. Indefinite
articles provide the required contrast:

(5) I went to a restaurant last night. A waiter yelled at me.

2Heim (1982) argued that with definites, there must be a prior
discourse referent that the definite can ‘bridge’ to (in the sense of
Clark, 1975). For example, in (4) the introduced waiter can ‘bridge’
to the restaurant mentioned in the first sentence, such that the waiter
is roughly understood as ‘the waiter at the restaurant’, and typically
with further identifying features (e.g., the waiter who served you at
the restaurant – see Note 1).
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In both (4) and (5), the existence of a waiter is added to the
discourse context (e.g., Heim, 1982). For example, suppose
with Heim (1982) that discourse referents can be thought of
as file cards that can be introduced, referred to, or taken out
of the ‘file’ that collects the discourse information as it accu-
mulates. An indefinite noun phrase such as a waiter simply
adds a new file card with ‘is a waiter’ on it. A definite like
the waiter scans the file to find a file card with ‘is a waiter’ on
it. If one exists, it refers to it; if it doesn’t, then either com-
munication fails, or the missing file card is accommodated.
This is what appears to happen in (4). Thus, the processing
of both (5) and (4) involves adding a file card corresponding
to a waiter, but only in (4) do you also go through a stage of
recognizing that something is wrong with the context (there
is no antecedent file card). The addition of a (file card cor-
responding to a) waiter is then an accommodation response
to this recognition; we will sometimes use ‘referents’ and
‘antecedents’ when we mean file cards, as they are probably
more familiar, but it is worth noting that file cards are the un-
derlying technical object that is being manipulated (see Heim,
1982). What we would like, then, is to test whether there is
indeed a stage at which the processing mechanism seeks but
fails to find an antecedent for the waiter, and then repairs for
this by accommodating one. The satisfaction theory predicts
that there should be such stages; presumably the performance
system executes these computations demanded by the com-
petence system, and if so, we might expect to find reflexes of
them during language processing.

Singh et al. (2016) performed an online incremental stops-
making-sense (SMS) task to examine participants’ appropri-
ateness judgments about indefinite and definite noun phrases
in plausible contexts like (4) and (5) as well as in implausible
contexts like the following:

(6) I went to a jail last night. {A/the} waiter yelled at me.

They found a main effect of plausibility, such that implausible
conditions had more and earlier SMS judgments. This was
unsurprising, given that implausible information is generally
harder to process than plausible information (e.g., Trueswell,
Tanenhaus, & Garnsey, 1994; Gibson & Perlmutter, 1998).
More interestingly, they found an interaction, such that im-
plausible definites had earlier and more SMS judgments than
implausible indefinites. This provides support for the claim
that accommodation is subject to stricter requirements than
assertion. In particular, it is inappropriate to force your ad-
dressee to accommodate implausible information as a pre-
supposition; such information is better expressed as an asser-
tion so that your addressee is at least given the opportunity to
challenge it (e.g., Soames, 1989; Heim, 1992; Beaver, 2001;
Von Fintel, 2008).

However, together with appropriate auxiliary assumptions
about how the competence theory is realized in performance
(see above), it is plausible that the satisfaction theory would
expect accommodation difficulty relative to indefinite con-
trols not only in implausible contexts but also in plausible

contexts (though cf. Stalnaker, 2002). There is technical
presupposition failure in both plausible and implausible con-
texts. Pragmatic presupposition failure of course is more
easily averted in plausible contexts than implausible ones.
Thus, the enhanced difficulty of implausible definites makes
sense. However, the predicted stage of technical failure in
plausible contexts did not reveal itself. Perhaps the method
was inappropriate for detecting such a stage, if there is one.
We have seen that accommodation is not sensed as odd or
costly when the presupposition is sufficiently supported in the
context. Thus, it is perhaps not surprising that participants’
SMS judgments did not differentiate between plausible defi-
nites and plausible indefinites. It remains an open question,
then, whether an empirical cognitive account can be found
for when the absence of an expected antecedent is noticed
and when we decide to accommodate in response.

We explored this question by means of an electroen-
cephalography (EEG) study using materials from Singh et
al. (2016). We give a comprehensive account of our mate-
rials and methods momentarily, but briefly our goal was to
compare definites and indefinites in contexts in which both
would have the effect of introducing a new discourse ref-
erent into the context. The relevant difference between the
two is that definites presuppose the existence of an object in
memory and aim to retrieve it while indefinites introduce a
new object into memory. Ideally, we want these objects to
be the same, or as close to that as possible. That way, any
detected difference between the two could be plausibly at-
tributed to the assumption that definites introduce the desired
object only when the search for it fails. We wanted to see if
we could find an EEG signature of this hypothesized failure
and repair. Previous EEG studies comparing definites and in-
definites did not isolate this difference between definites and
indefinites. Experiment 2 of Anderson and Holcomb (2005)
had a definite and indefinite condition but the definite in these
cases had an antecedent and the indefinite (as it does) intro-
duced a new discourse referent. Schumacher (2009), building
on Burkhardt (2006) (which investigated definites alone), in-
cluded a definite given condition and an indefinite given con-
dition (in which an indefinite NP in the second sentence has
a matching indefinite NP in the first sentence); but the lat-
ter texts are odd (for reasons we discuss shortly), and hence
the definite and indefinite are not properly matched, and in
any event, this ‘given’ condition breaks our desired symme-
try under which definites and indefinites both introduce a new
discourse referent in all conditions.

Methods

Participants

Thirty-four participants were recruited from Carleton Univer-
sity. As compensation for participating in the experiment, stu-
dents received 3% class credit towards a first-year cognitive
science course. All students were English speakers between
the ages of 18 and 24.
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Materials
We used shortened versions of all 128 sentence pairs from
Singh et al. (2016) as our experimental stimuli. The sen-
tence pairs were divided evenly into four blocks using a Latin
Square design as illustrated in Table (1):

Table 1: Sample stimuli

Indefinite Plausible:

Philip went to a pool on Tuesday evening.

A swim instructor insulted him there.

Definite Plausible:

Philip went to a pool on Tuesday evening.

The swim instructor insulted him there.

Indefinite Implausible:

Philip went to a laboratory on Tuesday evening.

A swim instructor insulted him there.

Definite Implausible:

Philip went to a laboratory on Tuesday evening.

The swim instructor insulted him there.

Procedure
Participants sat in a Faraday cage in front of a computer mon-
itor and were instructed to read all sentence stimuli for com-
prehension. Using PsychoPy, all stimuli were presented vi-
sually in the center of the monitor in white letters against a
grey background. A practice session consisting of four trials
was completed before beginning each session. The first sen-
tence in the sentence pair appeared in full for 3000 ms, fol-
lowed by 100 ms of a blank screen. Our critical noun phrase
(e.g., “the lion”) in the second sentence of the pair then ap-
peared on screen for 600 ms, followed by another 100 ms of
a blank screen. The remaining non-critical segments of the
second sentence, which had an average length of three words,
appeared for 400 ms. All participants saw all items in all con-
ditions, counterbalancing block orders.

EEG Recording
A 128-channel HydroCel Geodesic Net was used to record
continuous EEG signals against Cz as reference, at a sam-
pling rate of 250 Hz, with Net Station 4.3.1. Electrode
impedance was kept below 5 kOhms.

Data Analysis
Data from two participants were excluded due to excessive
noise during EEG recording. Four channels (E68, E73, E88,
E94) were removed prior to preprocessing as is common for
high-density electrode nets (to allow the plug-in of other ex-
ternal biometric devices). EEG recordings were re-referenced

offline to the average and digitally filtered with a low-pass
of 0.5 Hz and a high-pass of 30 Hz. Filtered data were then
epoched from 500 ms before to 1000 ms after the critical noun
phrase.

Subject data were preprocessed using a combination of
EEGLAB 14.1.2 (Delorme & Makeig, 2004) and custom-
written MATLAB scripts. Independent component analysis
(ICA) in EEGLAB was used to first remove eye-blinks and
other physiological noise. The CleanLine toolbox (Mullen,
2012) was used to reduce drift. Channels that were three
standard deviations away from the mean, based on a power
spectrum threshold, were removed. Lastly, an automatic com-
ponent rejection was performed using the MARA toolbox
(Winkler, Haufe, & Tangermann, 2011).

Following previous literature, two time windows were se-
lected for analysis: 300-500 ms and 500-700 ms after on-
set of the critical noun phrase. This allowed us to exam-
ine the N400/P600 complex (Burkhardt, 2006), as well as
the LAN effect (Kutas & Federmeier, 2007). Using the
EEGLAB Darbeliai extension, event-related potentials were
computed for the 1000 ms after stimulus onset relative to a
100 ms pre-stimulus baseline for each participant, for each
condition, from electrodes clustered in each of the follow-
ing four regions: left anterior (F3/F7/FC3/FT7), right anterior
(F4/F8/FC4/FT8), left posterior (P3/T5/CP5/T5), and right
posterior (P4/T6/CP6/T6).

For statistical analyses, mean amplitude data were submit-
ted to linear mixed-effects models using the lme4 package
(Bates, Mächler, Bolker, & Walker, 2014) in R (R Core Team,
2013). Significance testing was done using the lmerTest
package (Kuznetsova, Brockhoff, & Christensen, 2017). In
both time windows of interest, our models evaluated mean
amplitude as a function of a three-way interaction among
Plausibility (plausible, implausible), Definiteness (definite,
indefinite), and Electrode Region (left anterior, right ante-
rior, left posterior, right posterior). Participant was included
as a random factor. We performed planned comparisons be-
tween our four conditions (Definite Plausible, Indefinite Plau-
sible, Definite Implausible, Indefinite Implausible) if signifi-
cant interactions were found between region and definiteness
or plausibility. Pairwise contrasts were investigated using the
emmeans package in R (Lenth, 2018) and p-values were ad-
justed using the Bonferroni correction.

Results

300-500 ms time window: We found a significant inter-
action between Region and Definiteness (F(3, 1946) =
5.64, p < .001). In particular, the Definite - Indefinite
condition contrast in the group of left anterior electrodes
was significant (beta = -.37, t = -5.24, p < .001) (Figure 1).
This general determiner effect was further corroborated
by a scalp map of the same left anterior electrodes in the
300-500 ms time window, averaged across all participants
for each condition (Figure 2). We further found a significant
difference in the Definite Implausible - Indefinite Implausible
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contrast in the same region (beta = -.35, t = -3.59, p = .002),
which was reflected in greater negativity elicited by definite
noun phrases (e.g., “the lion”) compared to indefinite noun
phrases (e.g., “a lion”) (Figure 3). Similarly, in the plausible
context, the Definite Plausible - Indefinite Plausible contrast
revealed a significantly more negative deflection for def-
inite noun phrases (beta = -.37, t = -3.81, p < .001) (Figure 4).

500-700 ms time window: In the left anterior, we again
found a significant interaction between Region and Definite-
ness (F(1, 1946) = 22.17, p < .001). Contrast analyses were
significant for Definite - Indefinite (beta = -.22, t = -4.05, p <
.001) (Figure 1), as well as for Definite Implausible - Indefi-
nite Implausible (beta = -.30, t = -3.86, p < .001) (Figure 4).

Figure 1: Significant negative-going ERP elicited by the Def-
inite condition relative to Indefinite condition in the 300-500
ms time window in left anterior electrodes, reminiscent of the
Late Anterior Negativity (LAN). Significant divergence be-
tween the two conditions continues into the 500-700 ms time
window.

Figure 2: Scalp map of left anterior electrodes for Indefinite
(left) and Definite (right) conditions in the 300-500 ms time
window.

Discussion
Our study used EEG to explore the consequences of process-
ing definite and indefinite noun phrases in plausible and im-
plausible sentence contexts. Our goal was to test both types
of determiners together, to isolate the crucial stages of pre-
supposition failure and accommodation of a new discourse

Figure 3: Greater negativity elicited by the Definite Plausible
condition relative to the Indefinite Plausible condition in the
300-500 ms time window.

Figure 4: Greater negativity elicited by the Definite Implau-
sible condition relative to Indefinite Implausibl in the 300-
500 ms time window. Significant divergence between the two
conditions continues into the 500-700 ms time window.

referent (see our earlier discussion of Burkhardt, 2006 and
Schumacher, 2009; see also Hirotani & Schumacher, 2011).
While Schumacher (2009) also investigated definite and in-
definite phrases together, the pragmatic appropriateness of the
phrase pairs in that task was not stable across contexts. For
example, consider a given definite text like Peter has recently
visited a speaker in Munich. He said that the speaker had
been very nice. The text is coherent and there is no sense of
oddness. This cannot be said of the indefinite given coun-
terpart: Peter has recently visited a speaker in Munich. He
said that a speaker had been very nice. This text is decid-
edly odd, confirmed by offline data reported in Schumacher
(2009). Presumably, the oddness is due to so-called Maxi-
mize Presupposition! effects (e.g., Heim, 1991; Singh, 2011),
which essentially demand that the speaker use a presuppo-
sitional alternative (like a definite) when its presupposition
is satisfied instead of a non-presuppositional minimal vari-
ant (like an indefinite). Maximize Presupposition! has been
proposed to explain the oddness of sentences like A sun is

3133



shining; the definite variant is preferred because of Maximize
Presupposition! (see also Note 1). Similarly, in the case un-
der current consideration, the indefinite a speaker would be
ruled out in favour of the speaker (if the same speaker is in-
tended), or in favour of another speaker (if a different speaker
is intended).

In our study, the definite/indefinite pairs are both either ap-
propriate or both inappropriate in their given contexts (cf.
stimuli norming results in Singh et al., 2016). There is no
influence of Maximize Presupposition! because there is no
‘given’ context. All conditions required the addition of a new
discourse referent, and hence were expected to not differ with
respect to the P600 (given the findings in Burkhardt, 2006;
Schumacher, 2009). Somewhat to our surprise, our results
showed a greater positive deflection for indefinites than def-
inites in the implausible context during the 500-700ms win-
dow. This might suggest a P600, but we are not confident that
it is since the P600 is typically found over parietal lobes (e.g.,
Osterhout & Holcomb, 1992). Whatever this effect’s proper
classification, the difference does not replicate the finding in
Schumacher (2009) that definites and indefinites both gener-
ate a late positivity (a P600 in her studies) that indexes the
addition of a discourse referent. The difference here might
be teaching us that by this stage the accommodation for the
definite has already occurred, or that the introduction of ref-
erents via assertion is different than via accommodation, and
the late positivity we found for indefinites indexes only as-
sertive updates.

Here we tentatively suggest that by that late stage the ac-
commodation for the definite has already taken place. Ac-
cording to the satisfaction theory, assertions are updates to
the context, and the presuppositions in a context get updated
by the assertion. Thus, there is an implied temporality: pre-
suppositional matters are resolved prior to assertive updates
(hence the pre-). Thus, it is conceivable that the accommo-
dation step occurs early, right after the detection of the tech-
nical presupposition failure. Perhaps this bundle of compu-
tations is what our left-lateralized frontal negativity for def-
inite noun phrases in the 300-500ms window was indexing.
This Left Anterior Negativity (LAN) has been found in pre-
vious studies of (in-)definiteness (e.g., Anderson & Holcomb,
2005; Schumacher, 2009), but for reasons discussed earlier it
is hard to interpret such findings because the contrasts be-
tween definite and indefinite conditions were not quite mini-
mal. More generally, the LAN has been linked to processes
of working memory resources that involve ‘reactivating’ pre-
vious entities or forming dependencies between new and old
entities (see e.g., King & Kutas, 1995; Kirsten et al., 2014,
among others). We tentatively propose here that the detection
of presupposition failure and accommodation are among the
computations the LAN indexes. Note that definites involve
the search for entities in memory (‘reactivation’), and that ac-
commodation when no antecedent is found typically involves
‘bridging’ the new entity to a previous entity (e.g., linking
‘the waiter’ to the previously mentioned restaurant – see also

Note 2).
The design of our study was based on a previous stops-

making-sense task that investigated temporal decisions dur-
ing the silent reading of definite and indefinite phrases in con-
texts that varied in plausibility (Singh et al., 2016). Based
on the results of that study, we initially expected sentences
with implausible contexts to result in a semantic violation that
would be captured by the N400, relative to sentences with
plausible contexts. Our results did not support this expecta-
tion. There may be several reasons for this. First, our stim-
uli did not include traditional semantic violation phrases that
are used elsewhere in the N400 literature (e.g., He spread the
warm bread with socks, Kutas & Hillyard, 1984). The process
of reading an otherwise well-formed phrase in an implausible
context (e.g., “the lion” in the context of a restaurant) may
not map directly onto the process of reading semantic viola-
tion phrases, which typically are incoherent. Our implausible
texts are not incoherent like the traditionally studied ones;
they are merely implausible, and this distinction might be rel-
evant to the N400 component. Second, unlike our instruc-
tions, the stops-making-sense task used in Singh et al. (2016)
explicitly required participants to make judgments about non-
sense. This may have led participants to pay greater attention
to coherence and sensibility than our instructions. Third, it is
possible that there is a lag between the time at which the brain
first detects implausibility/incoherence and the time at which
our minds become consciously aware of this, and the N400
may be sensitive to the first and not necessarily the second.

Our results thus sharpen Schumacher’s finding that the
LAN appears to be associated with failure to find an appro-
priate antecedent when triggered by a uniqueness presuppo-
sition, i.e., the. By removing ‘given’ conditions, and the need
to compare context updates, we have isolated the cognitive
cost associated with technical presupposition failure and ac-
commodation: the brain registers it as a LAN effect. If this is
correct, we would expect the LAN to show up in other envi-
ronments that require accommodation but which are not odd.
For example, The psychology department is facing a crisis.
Both of their neuroscientists left should elicit a LAN relative
to The psychology department is facing a crisis. All of their
neuroscientists left.
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Abstract

There are plenty of opportunities for life-long learning but peo-
ple rarely seize them. Game elements are an increasingly pop-
ular tool to keep students engaged in learning. But gamifica-
tion only works when it is done properly. Here, we introduce
the first principled approach to gamifying learning environ-
ments. Our feedback mechanism rewards students’ efforts and
study choices according to how beneficial they are in the long
run. The rewards are conveyed by game elements that we call
“optimal brain points”. In our experiment, these optimal brain
points significantly increased the proportion of participants
who attempted to learn a difficult skill, persisted through fail-
ure, and succeeded to master it. Our method provides a princi-
pled approach to designing incentive structures and feedback
mechanisms for both educational games and online courses.
We are optimistic that this can help people overcome the moti-
vational obstacles to self-directed life-long learning.

Keywords: gamification; artificial intelligence in education;
persistence; educational games; incentive structures

Introduction
As the technological development accelerates, self-directed
life-long learning is becoming critically important. Massive
Open Online Courses (MOOCs) and other digital resources
provide unprecedented opportunities for life-long learning.
However, only about 15% of the students who enroll in a
MOOC actually finish it (Jordan, 2019). One of the rea-
sons might be that learning something new often requires
confronting one’s own incompetence and persisting through
several failed attempts to understand a new concept or do
something new. Many people tend to irrationally avoid such
hardships (Urdan & Midgley, 2001; Baker et al., 2008)
even though they are often necessary to master new skills
(Ericsson, Krampe, & Tesch-Römer, 1993). People who have
become experts in using an outdated tool by doing the same
work in the same way for many years may be especially resis-
tant to learning how to use a new tool because in the short-run
it is much more comfortable for them to exploit their outdated
expertise than to become a novice again.

When students are given choices in online courses or ed-
ucational software they sometimes procrastinate on learning
something new by repeatedly practicing skills they already
know (Baker, Corbett, & Koedinger, 2004; Mostow et al.,
2002).

To help student’s overcome such motivational obstacles,
educational software increasingly relies on game elements,

such as points, levels, and badges, to encourage continued en-
gagement with the learning materials (Kapp, 2012; Dicheva,
Dichev, Agre, & Angelova, 2015; Huang & Soman, 2013).
The trend of gamification has outpaced the development of
an adequate theoretical foundation, and it has been noted that
gamification is often ineffective and sometimes even harm-
ful (Toda, Valle, & Isotani, 2018). This raises the question
how the incentive structures of digital learning environments
such as educational games and online courses should be de-
signed to optimally incentivize good study choices and effec-
tive learning strategies.

The points students receive in educational games usually
convey performance feedback. But making performance
feedback more gameful does not address the fundamental
problem that – in the short run – performance feedback might
discourage trying to learn something new. Rather, by mak-
ing student’s failures more salient to them, gamified perfor-
mance feedback can have a negative effect on their study
choices – thereby making things worse rather than better
(Shute, 2008). O’Rourke, Haimovitz, Ballweber, Dweck, and
Popović (2014) argue that to address this problem, gamifi-
cation should give students “brain points” that reward effort
and persistence rather than performance. In support of this
view, they found that incentivizing students’ effort and learn-
ing strategies in an educational game significantly increased
their persistence and the total amount of time they spent in
the game. However, the hand-crafted incentive system was
imperfect and could be exploited by discovering easy ways to
earn brain points without doing the hard work of learning a
new skill (O’Rourke, Peach, Dweck, & Popovic, 2016). The
high prevalence of students “gaming the system” across many
intelligent tutoring systems (Baker et al., 2008) underlines
that designing good incentives by hand is hard and fallible.
This illustrates the deeper issue that we lack a principled the-
ory for designing reward structures in learning systems that
incentivize learning properly.

Recent work has begun to establish such principles in the
domain of decision-support (Lieder & Griffiths, 2016; Lieder,
Chen, Krueger, & Griffiths, 2019). There, the basic idea of
this approach is to align the immediate reward of each deci-
sion with its long-term value. This addresses the problem that
people’s decisions are usually overly swayed by the antici-
pated immediate outcomes (e.g., the unpleasantness of strug-
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gling with a difficult math problem vs. the fun of watching
a YouTube video) rather than their long-term consequences
(e.g., the benefits of a good education). This, so called,
present bias (O’Donoghue & Rabin, 1999) manifests in a
wide range of sub-optimal, short-sighted decisions and prob-
lems such as impulsivity and procrastiation that have been
explained in terms of hyperbolic discounting and temporal
motivation theory (Steel & König, 2006; Steel, 2007).

Considering people’s present bias, the real world is far
from being an optimal learning environment because the im-
mediate reward for practicing a new skill is usually failure and
negative feedback – when it should be something much more
positive, namely the value of learning. Conversely, neglecting
skill development in favor of exploiting existing skills is usu-
ally rewarded because it leads to higher immediate productiv-
ity. This suggests that the present bias could be one of the ma-
jor reasons why students often quit studying too soon or pro-
crastinate on learning a difficult skill – especially when this
requires persisting through a series of failed attempts. This
suggests that the optimal gamification approach developed by
Lieder et al. (2019) might also be applicable to support stu-
dents’ study choices in MOOCs and educational games.

Here, we leverage the framework of optimal gamification
(Lieder & Griffiths, 2016; Lieder et al., 2019) to develop a
formal mathematical theory of optimal incentives for self-
directed learning and an automatic method for computing
such incentives from basic assumptions about the skills to be
learned and the process of skill acquisition. To achieve this,
we develop a mathematical model of the value of practice and
apply optimal gamification to it. Our method can be used to
automatically compute optimal brain points that encourage
learning behaviors that are consistent with the growth mind-
set that the intervention by O’Rourke et al. (2014) was meant
to encourage. We postulate that optimal brain points can not
only increase the amount of time students invest into learn-
ing, as has been demonstrated for hand-designed brain points
(O’Rourke et al., 2014), but also their learning outcomes. We
test this prediction in a behavioral experiment that simulates
a scenario where people have to choose between exploiting
their old skill (Skill 1) or learning a new skill (Skill 2) that
would allow them to solve a recurring task more efficiently.

We found that participants incentivized with optimal brain
points were less likely to give up on trying to learn a new
skill, became more likely to master it, and consequently per-
formed better at their tasks. This suggests that our method
for computing optimal brain points can help us overcome the
pitfalls of incentivizing students study choices manually.

These findings suggest that our principled approach to in-
centivizing skill acquisition can help people overcome the
motivational challenges of self-directed learning and could be
used to make educational games and online courses more ef-
fective and to avoid the pitfalls of previous attempts to gamify
education. Optimal brain points are a principled way to incen-
tivize good study choice and might be able to help students
develop a growth mindset (Dweck, 2008).

The plan for this paper is as follows: We first derive the
long-term value of practicing a new skill using a simple
model of skill acquisition. Next, we translate the value of
practice into an optimal gamification method for encouraging
skill acquisition. We then evaluate the efficacy of this method
in a behavioral experiment mimicking the motivational obsta-
cles to life-long learning. We conclude with the implications
of our findings for designing educational games and direc-
tions for future work.

Quantifying the value of practice
When should you complete a task using the skills you already
have and when should you try to learn a better way to accom-
plish it? If you would like to invest into learning a new skill,
which one should you pick? And if trying to learn this skill
is proving difficult, then how long should you keep trying be-
fore you give up and do it in the old, familiar way? To help
people make these difficult choices, we derive the value of
practicing an unfamiliar skill.

The first step of our derivation postulates a simplistic but
general and tractable model of skill acquisition through trial
and error. If a task has k potential solutions – only one of
which is correct – then the probability of discovering the skill
in the first attempt is 1

k . Conversely, the probability that the
first attempt will fail is k−1

k . After a failure the probability of
success increases to 1

k−1 .
Based on this probabilistic model, we can describe skill

acquisition as a Markov Decision Process (Sutton & Barto,
1998)

Mskill = {S ×D,A ,γ,T,r} (1)

where A includes one action for each skill, S is the set of
all possible skill levels the learner could attain through prac-
tice and D ⊂ N0 denotes how much more work is required
to complete the current task. The learner’s skill level st ∈ S
reflects how close they are to having mastered each of n dif-
ferent skills at time t and how likely they are to succeed at
the task by using each of those skills in their next attempt.
We formalize it by the tuple (k1,k2, · · · ,kn) where ki is the
number of potential ways in which the ith skill might work
given what the learner knows so far. The transition matrix
T encodes that unsuccessfully attempting skill i decreases ki
by 1 and that discovering how it works sets ki equal to 1.
It also encodes how the successful application of each skill
would reduce the amount of work required to complete the
task and that unsuccessful attempts do not decrease it. The
reward function r ((st,dt),at ,(st+1,dt+1)) encodes the imme-
diate effort of using or attempting to learn a skill and the value
of completing the current task. For simplicity, we assume that
the cost of each action is −1 and add the value of completing
the current task when d changes to 0. Finally, 1− γ ∈ [0,1]
is the probability that the current type of task will become
obsolete in the next time step.

Abstracting away the details of how specific skills are ac-
quired makes this model very general and broadly applica-
ble. It can therefore be used to incentivize student effort in
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any learning context. Our model can either be applied out of
the box or tailored to specific learning contexts by measur-
ing how specific learning activities increase the probability
that the student will successfully learn a particular skill and
plugging the measured probabilities into the model’s transi-
tion matrix T .

Having modelled the process of skill acquisition as an
MDP allows us to leverage standard dynamic programming
methods (Sutton & Barto, 1998) to compute the value of prac-
tice. For instance, we can apply the value iteration algorithm
to compute V ?((s,d)) – which is the value of having the skill
set s when the current task has difficulty d – and Q?((s,d),a)
which is the value of choosing action a (e.g., trying out a new
tool versus reusing an old one). To work out under which
conditions it is worthwhile to invest in extending one’s skill
set, we can then translate these value functions into the value
of practice which we define as

VOP((s,d),a) = Q? ((s,d),a)−V πstop learning ((s,d)) , (2)

where V πstop learning is the expected return of the strategy that
always exploits existing skills without making any investment
into learning new skills.

The simplicity of our model allows us to derive the value
of practice analytically for the dilemma of choosing between
exploiting a mastered skill and attempting to learn a new skill
that would make you more effective. When the value of com-
pleting the task is g, the mastered skill achieves it in d time
steps, and the to be learned skill could achieve it in 1 time
step, then the value of practicing the second skill is

VOP((k2,d),a2) =
1
k2
· [(g− 1) + γ ·V ?(((1,1),d))]

+

(
1− 1

k2

)
· [γ ·V ?((1,k2 − 1),d)− 1]

−V πstop learning (((1,k2),d)) ,
(3)

and the value of ceasing to learn and exploiting Skill 1 is

(4)V πstop learning ((s,d)) = g · γd−1

1− γd −
1

1− γ
,

where γd−1

1−γd is the expected number of times one can complete

the task using only Skill 1, and − 1
1−γ

is the expected cumu-
lative cost of using the skill. This allows us to characterize
under which conditions it is valuable to invest in learning a
new skill and under which conditions it is better to exploit the
skills one already has.

As shown in Figure 1, we found that the value of prac-
tice decreases with the relative effectiveness of the skill one
has already mastered ( d2

d1
= 1

d if d1 and d2 are the number
of time steps it takes to complete the task with Skill 1 vs.
Skill 2 respectively in this example), but increases with the
expected number of times one will have to perform the task
in the future (i.e., 1

1−γ
). This means that learning a new skill
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Figure 1: The value of practice. Each square of this heat map
shows the difference between the value of attempting to learn
a new skill versus exploiting an old skill (colors and numbers)
depending on relative efficacy of the old skill (x-axis) and the
expected number of occasions on which either skill could be
used (y-axis; increasing from top to bottom).

becomes more valuable the more often it might be useful in
the future and becomes less worthwhile the more effective
the skill is that one has already mastered. By quantifying
these effects, the value of practice reveals under which con-
ditions it is worthwhile to learn something new (green-blue)
and under which conditions it is better to stick with what one
already knows (orange-red). Since the recommendations of
our mathematical framework appear to be intuitively correct,
we proceed to apply our model of the value of practice to au-
tomatically incentivize people’s study choices. Furthermore,
future work might leverage Equations 2–4 to assist people
with decisions about their personal or professional develop-
ment.

An optimal gamification method for
incentivizing skill acquisition

Optimal brain points. Having quantified the value of prac-
tice with the skill acquisition MDP defined above, we can
now use it to incentivize learning behaviors according to their
expected contributions to the learner’s competency. Formally,
the expected increase in the value of the learner’s skill set s
achieved by action a is

∆V (st,a) = γ ·E[V ∗(St+1)|st,a]−V ∗(st),

where the random variable St+1 denotes the learner’s skill set
after performing action a and V ? is the optimal value function
of the skill acquisition MDP defined above. The discount
factor γ accounts for the possibility that the practiced skill
might become obsolete.

The value of learning by doing is twofold: it increases the
value of the learner’s skill set (∆V ) and it produces potentially
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valuable outcomes (r(st,a)). Our optimal brain points capture
both sources of value, that is

BrainPoints(s,a) = ∆V (s,a)+ r(s,a). (5)

The way in which optimal brain points are constructed is
a direct application of the optimal gamification method de-
veloped by Lieder et al. (2019). It satisfies the necessary
and sufficient conditions of the shaping theorem (Ng, Harada,
& Russell, 1999) which thereby guarantees that the resulting
incentives do not encourage sub-optimal learning strategies.
Rather, by using the value of the learner’s skill set (V ?) as the
basis for constructing the brain points, they are making op-
timal study choices immediately rewarding. We predict that
they should therefore help learners overcome the present bias
and invest more in acquiring difficult skills that will benefit
them in the future. In the next section, we test this hypothesis
with a simple behavioral experiment.

Optimal brain points improve learning and
performance

To evaluate the potential of our approach to help people
overcome the motivational obstacles to learning new skills,
we conducted an online experiment where people repeatedly
solve a task and can choose to either solve it using a skill
that they already possess (Skill 1) or try to learn a new skill
that, once mastered, would allow them to solve the task more
efficiently (Skill 2). The experimental group received opti-
mal brain points for their choices between exploiting Skill 1
versus attempting to learn Skill 2 whereas the control con-
dition received no brain points. We predicted that a) most
participants in the control condition would neglect investing
the time and effort necessary to acquire the new skill – even
if their investment in learning would pay off in the long run,
and b) that optimal brain points can help them overcome this
irrational bias.

Methods
We ran our experiment using psiTurk (Gureckis et al., 2016).
We recruited a total of 450 participants from Amazon Me-
chanical Turk between 15:30 EST and 18:30 EST on January
19, 2019, and we restricted the worker region to the United
States of America. Participants received $0.75 for about 6±2
minutes of work and could earn a bonus of up to $1 (average
bonus $0.10, standard deviation $0.10) for their performance
in the task. Of our 450 participants, 226 were assigned to the
control condition and 224 were assigned to the experimen-
tal condition with optimal brain points according to psiTurk’s
counterbalancing method.

Experimental paradigm. We created the Spaceship Ad-
venture game shown in Figure 2 and used it to evaluate the
efficacy of optimal brain points. The game world is a board
with 6× 6 cells. The task for the participants is to control
the spaceship so as to move from its initial position (0, 0)

Figure 2: Screenshot of the spaceship game.

to its destination (5, 5). Participants play the game for sev-
eral rounds. After each time they arrive at the destination, the
game board is reset and the spaceship is returned to its initial
position.

The instructions inform participants that they will be play-
ing the game for multiple rounds. Participants are also in-
formed that there are two modes of moving the spaceship:
The spaceship can be moved one step at a time whereas an
unknown letter key could be used to teleport the spaceship di-
rectly to its final destination. Each step (using the arrow keys
or trying out a new letter key) incurs a cost of −1, whereas
reaching the destination earns a reward of +20. Following
each round there was a 6% chance that the game would end
and a 94% chance that it would continue (i.e., γ = 0.94) and
participants were informed about that.. The two skills in-
volved in the game are using the arrow key to move the space-
ship forward one square at a time (Skill 1) and teleporting
the spaceship directly to the destination using one of the 26
letter keys (Skill 2). For each participant the letter key that
would teleport their spaceship was independently selected at
random before they started their first round and remained the
same until the end of their last round.

In the control condition, the only points being shown were
the cost of controlling the spaceship and the reward for reach-
ing the goal. In the experimental condition, participants ad-
ditionally received the optimal brain points described above.
Brain points were given for each of the participant’s choices
between exploiting Skill 1 versus attempting to learn Skill
2. As illustrated in Figure 3, brain points were conveyed
using a color-coded score that was accompanied by the im-
age of a brain. The first time, the participant received brain
points, those were explained as conveying the value of learn-
ing a new skill. To make the brain points more rewarding, a
pleasant crystal sound, which is often used to convey a sense
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Figure 3: Screenshot illustrating the brain points a participant
would receive for trying Skill 2 in the first step.

of enlightenment when the players find something valuable
in a video game, was played when the number of brain points
increased, whereas an unpleasant sound, which could be intu-
itively perceived as something shrinking, was played when it
decreased. Additionally, in both conditions a cheerful sound
is played when the spaceship reaches its destination. The
brain points score was cumulative as is customary in com-
puter games.

Our code, the experiment, and the data are available on the
Open Science Framework at https://osf.io/k6wjp/.

Results
As predicted, we found that, when left to their own devices,
42% of the participants never even tried to learn Skill 2 and
relied exclusively on Skill 1, although learning Skill 2 could
have allowed them to reap higher rewards; that is always
attempting Skill 2 would have yielded 154 points on aver-
age whereas always exploiting Skill 1 yielded only 8 points
on average. This highlights that while there are some sit-
uations where people adequately invest into exploring new
things (Wilson, Geana, White, Ludvig, & Cohen, 2014), the
choice between solving a recurring task with a skill one has
already mastered versus using trial-and-error to learn a new
skill to be able to handle future occurrences of the task more
efficiently might not be one of them for many people.

Encouragingly, we found that optimal brain points signif-
icantly increased the proportion of people who attempted to
learn the difficult skill (i.e., teleportation, henceforth “Skill
2”) from 32% to 46% of participants who had not already
tried it in the first step (χ2(1) = 5.74, p = .0165)1.

As illustrated in Figure 4, optimal brain points also in-
creased the amount of effort people invested into acquiring

1We excluded the first action from this analysis because the con-
ditions are identical up until the first feedback is displayed after the
participant’s first action.
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Figure 4: Effect of brain points on practice, learning, and
performance. The left bar chart shows the average number of
times that people who tried to teleport (skill 2) at least once
attempted to figure out how it works until they discovered it
or gave up. The middle bar chart shows the proportion of
participants in either condition who succeeded to learn skill 2
by discovering which letter key would teleport their spaceship
to its target location (“Mastery”). The right bar chart shows
the average total score by condition. The error bars represent
the standard error of the mean for the bar charts on Practice
and Performance and the standard error of the proportion for
the Mastery bar chart.

Skill 2 from 2.8 to 3.9 attempts on average (t(448) = 2.52,
p = .006; the median number of attempts were 1 and 2 re-
spectively, Z = 2.59, p = .0048). Furthermore, our optimal
brain points also made the people who tried learning Skill
2 at least once more persistent, doubling their median num-
ber of additional attempts at learning Skill 2 from 2 to 4
(Z = 2.49, p = .0064; 4.1 vs. 5.3 on average, t(448) = 1.86,
p = .0323). As a consequence, the proportion of partic-
ipants who mastered Skill 2 increased from 15% to 24%
(χ2(1) = 3.77, p = .0523), and their average total score dou-
bled from 24 points to 48 points (t(448) = 1.74, p = .0414).

These findings suggest that optimal brain points success-
fully motivated our participants to learn the more difficult
skill and thereby improved their learning outcomes and per-
formance.

Conclusion
We derived the expected value of attempting to learn a new
skill and translated it into an optimal feedback mechanism
for encouraging students to persist in learning valuable skills.
Our results suggest that optimal brain points could be useful
for helping people overcome the motivational obstacles to-
wards life-long learning. Its basic idea is to reward people’s
efforts to learn a new skill according to the long-term value
of having mastered it and the expected progress towards mas-
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tery.
Our principled computational method for incentivizing

learning might become part of the theoretical foundation for
the gamification of digital learning environments such as
MOOCs or educational games. We hope that the approach il-
lustrated in this article will eventually help people overcome
the motivational obstacles that stand in the way of life-long
self-directed learning.

Our admittedly simplistic experiment was merely the first
step towards evaluating the potential of optimal brain points
for increasing student effort. Follow-up experiments should
use more naturalistic skill acquisition paradigms and evaluate
the proposed feedback mechanism against simpler, heuris-
tic approaches to the gamification of learning environments
(Huang & Soman, 2013; Dicheva et al., 2015; Kapp, 2012;
O’Rourke et al., 2014). Before we can make any practi-
cal recommendations randomized field experiments will have
to evaluate our intervention with real students learning real
skills.

Future work will evaluate the practical utility of our op-
timal feedback mechanisms for increasing the student reten-
tion rates of MOOCs, encouraging students to use educational
games and intelligent tutoring systems more effectively, and
building apps that facilitate deliberate practice. These appli-
cations may use our method as it is or refine its model of skill
acquisition with domain-specific learner models.

While there is a lot of value in being able to motivate stu-
dents to practice a specific skill inside a digital learning en-
vironment, it would be even more valuable if we could help
them internalize the value of learning new skills. Future work
will therefore investigate whether giving people optimal brain
points for their efforts to learn a new skill in one environment
can also improve their motivation to learn other skills in dif-
ferent environments and help them develop a growth mindset
(Dweck, 2008).
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Abstract

This paper presents an embodied conversational agent frame-
work as a controlled environment to test components of em-
pathy. We implement levels of emotional contagion which in-
cludes mimicry and affective matching along with necessary
communicational capabilities. We further demonstrate an ex-
amination of these foundational behaviors in isolation, to bet-
ter understand the effect of each level on the perception of em-
pathy in a social conversational scenario with a human actor.
We report three studies where the agent shows levels of emo-
tional contagion behavior during (1) the listening act in com-
parison with baseline backchanneling behavior (2) additional
verbal response matching simple emotional storyline (3) the
verbal response to the human actor performing complex emo-
tional behaviors. Results revealed that both mimicry and affec-
tive matching behaviors were perceived as more empathic than
the baseline listening behavior, where the difference between
these behaviors was only significant when the agent verbally
responded to complex emotional behaviors.
Empathy; Emotional Contagion; Mirroring; Affect
Matching; Affective Computing; Social Interaction; Em-
bodied Conversational Agents

Introduction
Empathy, as the capability to understand and react to the emo-
tions of another (Iacoboni, 2011; Coplan & Goldie, 2011), is
a complex behavior that arises from the interaction of these
basic affective mechanisms with higher-level cognitive func-
tions (de Waal & Preston, 2017). Emotional contagion is said
to be the foundation of empathic capacity, as it includes innate
and automatic synchronization of the motor and affective re-
sponses during an interaction (Hatfield, Cacioppo, & Rapson,
1994). Behaviors such as mimicry and affective matching are
levels of the emotional contagion that results from the innate
capability of resonating with the other during social interac-
tion.

The literature suggests the sustained act of mimicry results
in a feeling of the mimicked emotion and affective match-
ing through muscular feedback (Hatfield et al., 1994; Hat-
field, Bensman, Thornton, & Rapson, 2014), while categoriz-
ing both behaviors as emotional contagion. Others use affect
matching as a highly connected but distinct phenomenon to
the mimicry, pointing out the differences between the sub-
jective quality of experience in the emotional contagion and
the automatic matching of expressions in mimicry (Hess &
Fischer, 2014). However, both ideas converge on the foun-
dational role of mimicry and affect matching in empathic be-
havior. This notion is consistent with the Perception-Action-

Model (PAM) (Preston & De Waal, 2002) and the Russian
Doll model of empathy (de Waal, 2007), which integrates the
neuroscience studies on mirror neurons as a baseline for the
hierarchical levels of empathy mechanisms. However, it is
difficult to study the levels of emotional contagion in isola-
tion.

Research efforts often rely on behavioral experiments, neu-
roscientific techniques (EEG, fMRI) and pathology studies
conducted to understand the effects of emotional contagion
during social interactions (Hess & Fischer, 2014; Hatfield
et al., 2014). As an alternative, computational empathy
studies have recently gained attention in a way to simulat-
ing the empathy mechanism within the agent and examin-
ing empathic responses of the users towards the agent (Paiva,
Leite, Boukricha, & Wachsmuth, 2017; Yalçın & DiPaola,
2018). The perception of empathy in artificial agents is shown
to increase the length of the interaction (Leite, Castellano,
Pereira, Martinho, & Paiva, 2014), user performance (Partala
& Surakka, 2004), user satisfaction (Prendinger, Mori, &
Ishizuka, 2005), and lead to more trust (Brave, Nass, &
Hutchinson, 2005). These findings suggest that equipping
interactive systems with empathic capacity would not only
improve our understanding of the interaction between cogni-
tive and affective processes in the human mind but may also
help us enhance our interaction between artificial systems.

In this work, we use the simulation approach to study em-
pathic behavior in virtual agents and try to understand the
differences between the levels of emotional contagion behav-
ior and the perception of empathy during a conversation. We
examine the basic emotional contagion capabilities in an em-
bodied conversational agent (ECA) in order to evaluate the
perception of empathy during mimicry and affect matching
behaviors. We present an agent framework and implementa-
tion with necessary communicational capabilities as a base-
line. In the following section, we will present our implemen-
tation for an ECA that incorporates different levels of emo-
tional contagion as a foundation for empathic capacity. Next,
we will demonstrate three experiments that examine the effect
of these levels on the perception of empathy during a social
interaction scenario with a human actor. Our approach and
results show the potential of computational empathy studies
as a reliable alternative to test mechanisms for empathic be-
havior in isolation.
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Agent Behavior
Our empathy framework is implemented in an embodied con-
versational agent that is capable of responding to an emo-
tional conversation with the user using verbal and non-verbal
behaviors. Our socially situated 3D virtual character system
can perform a set of behavioral acts and context-specific dia-
logue in response to the speech and video input received from
the user (see (Yalçın, in press) for a detailed explanation of
the framework). Inputs are gathered using a standard web-
cam and a microphone. We use the Smartbody behavior real-
izer (Thiebaux, Marsella, Marshall, & Kallmann, 2008), that
can provide face and body gestures, gaze, and speech output
for virtual characters. We use the standard Behavior Markup
Language (BML) (Kopp et al., 2006) as the basis for the two
way connection between the framework and the behavor re-
alizer.

The implementation includes mimicry and affect match-
ing behaviors as the foundational capabilities of empathy in
combination with basic conversational capabilities such as
backchanneling. In order to achieve this, our system incor-
porates a perceptual module, a behavior controller and a be-
havior generation module. The visual and verbal input from
the user is processed through the perceptual module, reasoned
within the behavior controller according to the selected em-
pathy mechanism and prepared for a behavioral output in the
behavior manager before being displayed in the ECA.

Low-level empathic behaviors, such as mimicry and affec-
tive matching require a fast response to the emotional stim-
uli presented by the interaction partner. The fundamental
components of this first level of empathic behavior include
the perception of emotion, representation of emotion and
expressing emotion. This cycle is realized with Perceptual
Module and Controller and Behavior Generation modules of
our system.

Perceptual Module
The perceptual module is responsible for handling the input
received from the user and creating internal representations
of these inputs to be used by the controller. Currently, our
system is capable of handling audio, video and textual inputs
to be used in recognition systems. The audio input includes
verbal signals from the user to be recognized as speech and
pauses. The initiation, pauses and termination in the speech
signal are used to provide information about the dialogue
state as well as backchannel timing.

Emotion recognition is a sub-module within the perceptual
module that is specialized for emotion recognition and fusion
processes. Here, three types of modalities can be used for
further processing using the first level of recognition from the
perceptual module: facial emotion recognition, tone analysis
and speech emotion recognition. During listening, emotion
recognition is based on the facial gestures and tone analysis,
which is derived from the video and speech inputs for im-
mediate listening feedback. After the speech signal from the
user ended, the complete utterance is also being processed

in speech emotion recognizer for emotion detection based on
the textual output of the speech recognizer. Outputs from this
sub-module are used by the behavior controller depending
on the dialogue state as well as the selected empathy mecha-
nisms.

Behavior Controller

The behavior controller module is a central unit in the frame-
work which provides a link between inputs and the outputs.
It decides which input channel or information to be used de-
pending on the state of the conversation, required empathy
mechanisms and the behavioral capabilities of the agent. It
is also responsible for providing the information necessary
to the behavior manager module to prepare verbal and non-
verbal behavior. The Controller acts as a decision-making
component, which determines behavioral choices concerning
the percepts of the agent and its internal state. Currently, the
behavior controller provides a link between the perception-
action mechanisms as a key component in computational em-
pathy (de Waal, 2007). During a conversation, the agent
should decide which behavioral state it is in depending on the
user input: listening, thinking, speaking or waiting. Accord-
ing to the state of the interaction (listening, speaking, think-
ing and waiting) and the current emotional value (arousal, va-
lence and emotion category), the controller assigns the proper
behavior categories to the behavior generation component.

If the user is speaking, the agent should be in the listen-
ing mode. Here, the agent is expected to provide proper
backchanneling to the user as well as the emotional feedback
depending on the empathy mechanisms. After the speech of
the user is over, the speech signal should be sent to the dia-
logue manager component through the controller with the as-
signed emotional value. The agent will be in thinking mode
during the processing of this input by the dialogue manager
component. The prepared output sentence will then be sent
back to the controller to be sent to the behavior manager
which will prepare the output behaviors including face ges-
tures, body gestures and the verbal response to be presented
in the speaking mode. After the speech behavior of the agent
is done, the waiting or idle mode will be activated until the
user speaks again. This cycle can be interrupted via the con-
troller at any stage.

Behavior Generation

The behavior generation module is responsible for preparing
the output for the virtual character depending on the emo-
tion, dialogue state and speech information received from
the behavior controller. During listening behavior, this mod-
ule is relatively passive in preparing behaviors. It uses the
backchanneling signal to select an appropriate head nod for
the agent and a facial expression. When these behaviors are
sent and consumed by the behavior realizer, the behavior gen-
eration module receives a signal back that indicates the be-
havior was successfully generated by Smartbody system.
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Method
In this paper, we used the simulation approach to study low-
level empathic behavior in virtual agents to show the dif-
ferences between the levels of emotional contagion behav-
ior in the perception of empathy. We examined the effect of
mimicry and affect matching behavior on perceived empathy
during conversational interaction using three studies.

Participants
Participants for all three experiments were recruited using
Amazon’s Mechanical Turk platform and were paid for their
participation to the study. Because we were focusing on the
emotional expressions during verbal communication, we only
included participants who had English as their first language.
Additionally, users that participate with mobile devices and
tablets were excluded to ensure a consistency in the display
quality.

A total of 84 subjects participated in the studies. 36 partic-
ipants with ages ranging from 20 to 60 (M=37.6, SD=10.7)
completed the first study. 19 of the participants were male
and 16 of them female, while 1 participant defined themselves
as ’other’. 24 subjects participated in the second study with
ages ranging between 21 and 64 (M=36.17, SD=10.82). 10
of the participants were female and 13 of them male, while 1
participant defined themselves as ’non-binary’. The last study
included 24 participants with ages ranging between 23 and 59
(M=37.82, SD=10.64), 12 Male and 12 Female.

Procedure
Studies followed the same procedure, where the participants
are asked to evaluate the recorded interaction between the
agent and a human (see Figure 1). The interaction sce-
nario consists of a student/participant expressing an emo-
tional story to the agent. We have chosen three stories in-
spired by the work of Omdahl (Omdahl, 2014), that includes
three basic emotion categories: anger, joy and sadness. Other
basic emotions such as fear, surprise and disgust were not
considered for this study due to the involvement of facial ac-
tion units that controlled mouth movements during the ex-
pression of these emotions. Furthermore, we selected the
emotions that would be consistent with the facial emotions,
that would not provide an advantage to the affective match-
ing over mimicry.

All of the experiments were deployed in Amazon’s Me-
chanical Turk environment using scripts written in Python 3.6
with psiturk and jspych libraries. Each of the studies takes
about 10 minutes to complete. Participants were first shown a
test video and were asked to answer two questions about the
visual and verbal content of the video, to make sure they can
hear and see the videos that are displayed. This was required
for the workers to participate in the study.

Each participant is then displayed a short video clip of an
interaction, where the agent and a student are shown in a
video-conferencing scenario in different conditions (see Fig-
ure 1). During the interaction, the student in the video talks
about an emotional story in one of three basic emotions: joy,

sadness and anger. After displaying each video, the partici-
pant is asked to report what the story in the video was about,
and also the main emotion of the user and the virtual agent.
This is done to make sure the participants are paying atten-
tion to the video clips. The participants then evaluated the
perceived empathy of the agent towards the student. The per-
ceived empathy of the agent is evaluated by using a modified
version of the Toronto empathy questionnaire (Spreng, McK-
innon, Mar, & Levine, 2009) which is a 16-item survey that
originally is used as a self-report measure. Each item on the
questionnaire are scored in a 5-item likert scale (Never = 0;
Rarely = 1; Sometimes = 2; Often = 3; Always = 4), where
half of the items are worded negatively. Scores are summed
to derive total for the perceived empathy and can be varied
between -32 to +32. Similar evaluations were suggested by
Paiva and colleagues (Paiva et al., 2017), as a modification of
Davis’s Interpersonal Reactivity Index (Davis et al., 1980).

Figure 1: An image from the video chat between the student
and the avatar. Here, the student (left) converses with the
avatar.

We used repeated measures design, where each participant
is shown all levels of agent behavior in emotional contagion.
The type of the interaction study and the order of the condi-
tions are counterbalanced accordingly.

Experiment Conditions
Experiment conditions include three distinct agent behaviors
that signifies levels of emotional contagion mechanisms in the
empathy framework.

The baseline behavior of the agent is the backchanneling
behavior, which is activated depending on the pauses during
the speech signal from the audio input component in the per-
ceptual module. In the following subsections, we will pro-
vide a detailed examination of three different listening be-
haviors depending on the level of empathic behavior of the
agent: backchannel only, mimicry with backchannel, affec-
tive matching with backchannel.

Backchanneling as baseline behavior Listener behavior
in humans include backchannels such as head nods, fa-
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cial feedback, short vocalizations or a combination of them
(Yngve, 1970). These behaviors might show information
about listener agreement, acknowledgment, turn-taking or at-
titude (Schroder et al., 2012; Cassell, Bickmore, Campbell, &
Vilhjálmsson, 2000). Backchannel feedback can occur due to
change in pitch, disfluency or loudness of the speech signal,
as well as shifts in speaker’s posture, gaze and head move-
ments (Maatman, Gratch, & Marsella, 2005). In our cur-
rent implementation we included backchanneling based on
the pauses during speech, which is a form of disfluency in
the speech signal (Maatman et al., 2005). Information about
pauses are extracted from the perceptual module and sent to
the controller, which in turn is used to trigger backchanneling
as head nods. More advanced methods of adding backchannel
that are compatible with the valence of the interaction part-
ner or adding specific facial expressions such as smile, would
have interfere with the empathy mechanisms that we would
like to test. Therefore, we omitted these behaviors from the
baseline behavior.

Figure 2: Two paths for emotional contagion. Basic emo-
tional communication competence that results in low-level
empathic capabilities of mimicry and affective matching by
following distinct routes during the interaction process.

Mimicry Mechanism Mimicry is the lowest level of em-
pathy behavior in our empathy model. It is achieved by a
direct mapping between the gestures of the user to the ges-
tures of the agent without being assigned to any type of emo-
tional category. Facial mimicry behavior during listening is
a result of mapping the perceived facial action units (AUs)
extracted from the perceptual module, to the AUs of the em-
bodied agent in the behavior generation module. The amount,
duration and speed of these AUs match the perceived values
of the interaction partner without any regulations. In order to
avoid mimicking of the lip movements during the speaking of
the user, we removed direct mapping of AU18 (lip puckerer),
AU26 (jaw drop) and AU24 (lip pressor). As a side-effect
of this modification, certain emotions that requires these AUs

(fear, surprise and disgust) were not properly expressed. In
order to avoid bias, interactions that include these emotions
were not used during the evaluation of the system for this
study. However, this drawback should be noted for future
studies.

After the listening cycle, the agent will sustain the mimicry
behavior until it retrieves a response from the dialogue man-
ager. The dialogue manager will then retrieve an emotionally
neutral response, due to the lack of emotional representation
that is needed to be acquired during the interaction.

Affective Matching Another type of low-level or affective
empathy behavior is affective matching (de Waal & Preston,
2017). It is achieved by the emotion recognition and the emo-
tion expression cycle that is connected through emotion rep-
resentation. As it can be seen in Figure 2, the facial features
are mapped to the representation of the basic emotion cat-
egories which in turn triggers the facial expressions of the
agent that represents those emotions. The amount, duration
and speed of these expressions depend directly on the values
from the perceived emotions. In contrast to the mimicry be-
havior, this allows the agent to present and regulate emotions
that are better perceived by the users. Moreover, excluded
emotion categories in mimicry can be used without the dis-
turbance of the AUs that control mouth muscles as explained
in the previous section.

After the listening cycle, the agent will give an emotional
feedback that reflects the overall emotion of the interaction
partner until it retrieves a response from the dialogue man-
ager. In the affective matching condition, the dialogue man-
ager is able to use the representation of the interaction part-
ner’s emotions to pick an emotional response. Without the
effect of the higher level emotion regulation capabilities, the
agent will pick a response that reflects the emotion of the in-
teraction partner.

Study 1

In order to evaluate the perception of empathic behaviors we
compared the listening behavior of the agent in backchannel,
mimicry and affective matching conditions. For our study,
we used within subjects design where three conditions of
agent behavior are shown to the same subject for the evalua-
tion. The conditions are baseline backchanneling behavior,
mimicry with backchanneling and affective matching with
backchanneling during only the listening act. We used three
emotional stories told by the same person, which displays
three different emotions as the main theme: joy, sadness and
anger. Each video starts with a neutral remark, that is fol-
lowed by the emotional story.

The experiment counterbalanced on the order of the type
of interaction (backchannel, mimicry, affect matching), and
the order of type of emotional story (angry, sad, happy). 36
(6x6) different conditions presented to subjects.

Evaluation In the evaluation of the first study, Mauchly’s
Test of Sphericity indicated that sphericity had not been vio-
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lated, X2(2) = 1.748, p = .417. A one-way repeated measures
ANOVA was conducted to compare the effect of (IV) level
of emotional contagion behavior on (DV) the perception of
empathy in backchanneling, mimicry, and affective match-
ing conditions. The results showed that perceived empathy is
significantly effected by the type of listening feedback F(2,
70)= 16.721 p < .0001, 95%CI (see Figure 3). Pairwise
comparisons showed backchannel feedback only (M=-5.47,
SD=12.45) is perceived to have significantly lower empathy
than both mimicry (p < .001) and affective matching (p <
.0001). However, listening behavior with mimicry (M=5.16,
SD=10.64) and affective matching (M=8.22, SD=13.72) did
not have any significant difference (p = .18).

Figure 3: Results of our study showed significant differ-
ences in the perceived empathy levels between backchannel,
mimicry and affective matching behavior (95%CI).

Study 2 and Study 3
Following up the first study, we further examined the effect
of the verbal feedback produced by the dialogue manager in
both mimicry and affect matching conditions. Our hypoth-
esis is, due to the effect of emotional representation during
the affect matching mechanism, the verbal response behavior
of the avatar will be perceived as more empathic. However,
this result might show difference when the interaction partner
shows more complex emotions, where the context and infor-
mation about the overall emotion representation is required to
understand the semantics of the behavior. Therefore, we con-
duct two additional studies where one is focused on simple
emotions and the other examines the effect of complex emo-
tional behavior. For the following experiments, the partici-
pants were asked to evaluate the interaction stories, where the
agent listens to different types of emotional stories told by the
interaction partner and verbally reacts to it. As the first study
showed significant differences over the baseline backchannel-
ing behavior, the following studies did not compare the base-
line behavior to emotional contagion.

In both conditions the listening behaviors of the agent will
be the same as the first study, which showed no significant dif-

ference. The behavior of the agent between will differ from
the first study in terms of verbal feedback during the con-
versational cycle. In the mimicry condition, the agent will
produce an emotionally neutral feedback such as ”I under-
stand” or ”I know what you mean” while sustaining the re-
flective facial expression of the interaction partner. In the
affect matching condition, due to the additional information
the dialogue manager will receive from the emotional repre-
sentation of the interaction partner, the agent will produce an
emotionally charged sentence. The emotional category of this
sentence will be the same as the emotions of the interaction
partner. For example, a happy story will trigger a happy re-
mark such as ”That sounds wonderful”, an angry story will
trigger a response such as ”That is really frustrating”, and a
sad story will trigger a sad response such as ”I am sorry to
hear that”.

The third experiment focused on more complex emotional
stories, where the human actor will talk about two scenarios
mentioning a dog and a plant. In the dog scenario, the ac-
tor will go through excitement, disgust, worry and happiness
emotions while mentioning a story about their new pet dog.
In the plant scenario, the actor will go through neutral, sur-
prise, worry and happiness emotions while mentioning a story
about their friend’s plant. The listening behavior of the agent
will be matching the emotions both in mimicry and affective
matching conditions. Similar to the second study, mimicry
condition will result in a generic verbal response from the
agent while affective matching condition will give an emo-
tionally charged feedback due to emotional representation.

The second experiment counterbalanced on the order of the
type of interaction (mimicry, affect matching), and the order
of the type of emotional story (angry, sad, happy). 12 (2x6)
different conditions presented to subjects. The third experi-
ment is also counterbalanced on the order of the type of inter-
action (mimicry, affect matching), and the order of the type of
emotional story (dog, plant). 4 (2x2) different conditions pre-
sented to the subjects. Both experiments followed the same
procedure as the first study.

Evaluations In the second study, one-way repeated mea-
sures ANOVA was conducted to compare the effect of (IV)
level of emotional contagion behavior on (DV) the percep-
tion of empathy in mimicry, and affective matching condi-
tions. The results showed that perceived empathy is not sig-
nificantly different between mimicry (M=7.62, SD=11.66)
and affect matching (M=9.5, SD=8.03) conditions F(1, 23)
= 1.030, p = .321.

Following up these results, in the third study, one-way re-
peated measures ANOVA was conducted to compare the ef-
fect of (IV) level of emotional contagion behavior on (DV)
the perception of empathy in mimicry, and affective matching
conditions during the interaction with complex emotional be-
havior. The results showed that perceived empathy is signifi-
cantly different between mimicry (M=0.75, SD=10.45) and
affect matching (M=7.21, SD=9.98) conditions F(1, 23) =
7.731, p = .011 (see Figure 4).
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Figure 4: Results of the third study showed significant differ-
ences in the perceived empathy levels between mimicry and
affective matching behavior in complex emotional interaction
(95%CI).

Discussion
The results of the studies showed a significant difference in
the perception of empathy between the baseline backchan-
neling behavior and the emotional contagion behavior during
the listening act. As expected, the perceived empathy was
significantly higher in the emotional contagion behavior with
respect to the baseline behavior in the first study. However,
there was no significant difference between the different lev-
els of empathic behavior (mimicry and affective matching) in
this experiment. This result is a direct consequence of the
similarity in the expressions of these two conditions during
listening.

Even though mimicry and affect matching behaviors have
important differences in terms of processing of input informa-
tion, the real-time expressions of these behaviors during lis-
tening behavior show dramatic similarities. During the listen-
ing act, mimicry captures the facial expressions of the interac-
tion partner and reflects them using the same facial muscles.
In affective matching behavior, instead of copying the facial
muscles, the system copies the emotions perceived from these
facial expressions. As the emotions are expressed as a re-
sult of the facial muscles, these two behaviors are expected to
show very similar expressions.

One advantage of affective matching that it allows the ex-
pression of emotions that are more suitable to the virtual
agent, while any emotion will be expressed in terms of the vir-
tual agent’s repertoire instead of the expressions of the con-
versation partner. Moreover, affective matching allows pro-
cessing of other input channels to conclude the emotion of
the interaction partner, such as voice stress, the context of the
speech and body expressions. However, the first and second
studies only included simple emotions, and therefore such an
effect was not present.

Another distinction between mimicry and affect matching
conditions is present during the verbal response after the lis-

tening act is completed. This response is created by exam-
ining the overall emotion of the story told by the interaction
partner. As mimicry behavior does not provide the represen-
tation of the emotions of the interaction partner, the virtual
agent cannot generate a response that is aligned to that emo-
tion. In contrast, the verbal response for the affective match-
ing behavior can be generated from the emotion representa-
tion (see Figure 2 for a comparison of these two strategies).
Study 2 and 3 are designed to show this distinction.

Interestingly, Study 2 did not show a significant difference
between the mimicry and affect matching behaviors for sim-
ple emotional stories, where we see a significant difference
in Study 3. In these studies, there are two main differences
between mimicry and affective matching conditions: the con-
tent of the verbal response, and the facial emotions shown
during the verbal response. In mimicry condition, the ver-
bal response is generic where the affect matching condition
generates an emotionally appropriate response. The facial ex-
pressions in mimicry response are sustained regardless of the
overall emotions, where the affect matching condition gener-
ates facial expression based on the overall emotional repre-
sentation for the whole story. The difference between the two
studies was the emotional complexity of the overall story told
by the interaction partner.

We argue that the mimicry response for the simple emo-
tional stories in Study 2, did not show a significant difference
on the perception of empathy due to the match between the
overall emotion of the story and the sustained facial expres-
sion. Where in Study 3 the sustained emotion of the mimicry
response was contrasting the overall emotions of the story,
due to the complexity of the emotions presented by the inter-
action partner. We further examined the comments provided
by the participants on how they perceived the behavior of the
agent in response to the story told by the interaction partner.
The comments of the participants in Study 2 showed that the
mimicry condition is seen as “understanding” and “sympa-
thy”, where the affective matching behavior is seen as “con-
cerned” and “empathy”. In contrast, in Study 3, participant
comments on the behavior of the virtual agent included de-
scriptions such as “confused” and “indifferent”, where the af-
fect matching response was seen more as “attentive”, “under-
standing” and “empathy”. However, this distinction should
be examined more systematically before reaching to a con-
clusion.

Overall, these results show that low-level emotional conta-
gion behaviors of the agent during conversational interaction
lead to an increased perception of empathy. Additionally, the
results show that higher levels of emotional contagion behav-
ior are perceived as more empathic behavior when the inter-
action includes more complex emotional behaviors. The pro-
posed framework shows promise in providing a foundation to
examine the perception of higher levels of empathic behavior
during an interaction.
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Conclusion and Future Work

Artificial systems provide means to test the empathy theories
while allowing the manipulation of parameters in a controlled
and isolated way. In this work, we proposed an embodied
conversational agent framework to test empathy components
and demonstrated three studies that evaluate the foundational
empathy mechanisms along with basic communication be-
haviors. We found that during listening, mimicry and affec-
tive matching behaviors are perceived significantly more em-
pathetic compared to backchannel behavior. We also found
that the difference between the two levels of affective conta-
gion only significant while the interaction involves complex
emotional behaviors, where the context of the interaction is
crucial for producing matching behavior. Our framework and
the results of our initial study shows promising results that
allows for easy integration and testing of higher level compo-
nents of empathy. The suggested framework, study and eval-
uation methods shows the potential as a reliable alternative to
test mechanisms for empathic behavior in isolation.

Our contributions were to provide a framework, imple-
ment the baseline behavior for real-time interaction with a
highly realistic conversational avatar, and provide the first
study for testing the theoretical assumptions. We hope this
baseline for is useful the emerging community of researchers
that study empathy in artificial agents and that it can be ex-
panded through this framework and evaluation methods.
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Abstract 
Mouse-tracking is said to provide a real-time record of decision 
making in a conflict situation (Stillman, Shen, & Ferguson, 
2018); yet precise benefit of this method is unknown. Using 
two versions of the attention network task (ANT-R) (Fan et al., 
2009), we investigated the extent to which mouse movement 
measures capture cognitive conflicts created in flanker and 
Simon tasks. The movement measures collected in the 
augmented ANT-R (mouse movement condition) were 
responsive to both flanker and Simon incongruency but 
response time and accuracy measures in the regular ANT-R 
(key-press condition) were responsive primarily to flanker 
incongruency only. The mouse movement measures were also 
sensitive to interaction effects involving incongruency and 
gender, trial order and congruency sequence, while response 
time and accuracy in the regular ANT-R (key-press condition) 
were mostly insensitive to these interactions. These results 
suggest that mouse movement measures are more perceptive to 
cognitive conflicts. 

Keywords: mouse-cursor movement; cognitive conflict; 
cognitive control; flanker and Simon effect  

Introduction 
One of the major goals of cognitive science is to elucidate the 
mental mechanism of cognitive operations (i.e., reverse 
engineering, Marr, 1981), and developing analytic tools that 
aide this endeavor has been a main preoccupation in cognitive 
science. Nearly all theoretical debates in the field involve the 
assessment and interpretation of behavioral data that these 
tools provide. Bayesian cognitive models, linear mixed effect 
models, model-based and model-free experimental designs 
and tasks are geared to help inference of perceptual, 
cognitive, and affective mechanisms that enable complex 
human behavior (Barr, Levy, Scheepers, & Tily, 2013; Daw, 
Gershman, Seymour, Dayan, & Dolan, 2011; Lee & 
Wagenmakers, 2014). 

Ironically, these sophisticated theories and models are 
based on the age-old dependent measures—how fast and 
accurately the subject presses a computer key. Yet, it is 
unclear how reliable these measures are as analytic tools. The 
problem is that, until recently, cognitive science has had few 
other viable measures of human behavior.  

Using two versions of the attention network task (ANT-R, 
Fan et al., 2009)—one that primarily measures response time 
and accuracy through a key press and the other that uses 
mouse tracking, we compared the extent to which these 
measures capture cognitive conflicts created in flanker and 
Simon tasks.  

Detecting cognitive conflicts in motor behavior: 
Mouse-cursor tracking 
The theoretical foundation of the mouse-cursor motion 
research originated from Michael Spivey’s conceptualization 
of human cognitive processing (Spivey, 2007). Traditional 
theories suggest that cognitive functions such as reasoning, 
decision making, and problem solving result from symbol 
manipulations, and computational algorithms for perception, 
decision, and action are explained by procedures 
transforming one representational state to another (Marr, 
1981). Spivey conceptualizes cognitive functions as a fluid 
process where probabilistically weighted perceptual-
cognitive processing units interact continuously. 

Instrumental in Spivey’s continuous cognition theory is a 
series of experiments that measure goal-directed action and 
decision making (i.e., choice reaching). In a typical choice 
reaching task, two competing options are pitted against each 
other (2AFC) and participants are instructed to select one of 
the choices by clicking on a button by the computer mouse. 
Unlike a traditional 2AFC task where response time and 
accuracy are key dependent measures, a choice reaching task 
has the subject navigate the computer cursor to select a 
button. By analyzing the navigational path of the cursor from 
the initial starting position to the end position, researchers 
found that trajectory features such as AUC (area under the 
curve) and MAD (maximum absolute deviation) (the degree 
of deviations from the straight line connecting the starting 
position to the end position) reveal the subject’s perceptual, 
cognitive, and social conflicts in the decision process 
(Maldonado, Dunbar, & Chemla, 2019).  

The findings in support of this principle come from a broad 
range, including numerical judgment (Xiao & Yamauchi, 
2015), categorization (Dale, Kehoe, & Spivey, 2007), 
inductive reasoning (Yamauchi, Kohn, & Yu, 2007), 
linguistic judgment (Spivey, Grosjean, & Knoblich, 2005), 
racial and gender judgment of morphed face pictures ( 
Freeman & Ambady, 2009; Freeman, Pauker, Apfelbaum, & 
Ambady, 2009), attitudinal ambivalence toward certain 
topics (e.g., abortion) (Schneider et al., 2015; Wojnowicz, 
Ferguson, Dale, & Spivey, 2009), uncertainty in economic 
choices (Calluso, Committeri, Pezzulo, Lepora, & Tosoni, 
2015), and among others (see for review, Freeman, 2018; 
Stillman et al., 2018; Yamauchi, Leontyev, & Wolfe, 2017). 
Studies have shown that mouse movement measures can 
capture semantic incongruency that is processed subliminally 
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(Xiao & Yamauchi, 2014, 2015, 2017); they even allow 
automated recognition of emotion, gender and feelings of 
computer users (Yamauchi & Xiao, 2018; Yamauchi & 
Bowman, 2014). 

One critical question is exactly how well these  
“continuous” motor measures capture cognitive conflicts as 
compared to traditional response time and accuracy 
measures. Is there any advantage of assessing motor 
measures to study executive control? To address this 
question, we employed two versions of the attention network 
task (Fan et al., 2009) and compared the extent to which 
different dependent measures—traditional response time and 
accuracy measures and mouse-cursor movement measures—
capture flanker and Simon effects.  

Cognitive Conflicts in ANT-R 
Because attention plays a pivotal role in a wide range of 
perceptual, cognitive and affective behavior (Posner & 
Rothbart, 2007), the attention network task provides an ideal 
testbed to investigate how well cognitive conflicts are 
reflected in different dependent measures.  

The attention network theory (Petersen & Posner, 2012) 
posits that there are three separate but interactive functions of 
attention—alerting (being vigilant), orienting (selecting 
stimuli), and executive control (resolving conflict).  A revised 
version of the attention network task (ANT-R, Fan et al., 
2009) has been used widely to probe the interaction and 
integration of these attention functions, especially cognitive 
conflicts. The task combines the flanker task (Eriksen & 
Eriksen, 1974) and the Simon task (Simon & Berbaum, 1990) 
and creates different types of cognitive conflict (Figure 1). In 
a flanker task, conflicts are generated by surrounding arrows 
pointing opposite to the center (target) arrow. In a Simon 
task, conflicts are created by the stimulus location presented 
opposite to the center (target) arrow (Figure 1). In both cases, 
the task of the participant is to indicate the direction of the 
target (center) arrow.   

 
Figure 1: Illustration of flanker and Simon (location) tasks. 
Flanker congruent and flanker incongruent stimuli are 
shown in the two columns. Location congruent and 
location incongruent stimuli are shown in the four rows. 
The task is to identify the left-right direction of the target 
(center) arrow. 

 
We devised two versions of the attention network task—

traditional and augmented—and contrasted how well 
traditional response time and accuracy measures and mouse-

cursor movement measures can capture the flanker and 
Simon effects.  The traditional attention network task collects 
only response time and accuracy. Here the subject is to 
indicate their responses by pressing a designated computer 
key. The augmented version of the attention network task is 
identical to the traditional version, except that subjects 
indicate their response by clicking a button presented on the 
screen. For this, the subject has to navigate the mouse from 
the bottom of the screen and press the button. In the 
augmented version, the x-y coordinate location of the cursor 
is recorded every 15ms.   

 
(a) 

 

(b) 
 

 
Figure 2: (a) An illustration of an augmented ANT-R trial 
in the mouse movement condition. To indicate the left/right 
direction of the target (center) arrow, the participant moves 
the cursor from the center of the Next button to the final 
posisiton. The trajectory of the cursor is shown for 
illustrative purpose and were invisible to participants. (b) 
AUC (area under curve) is the area enclosed by the 
trajectory and the straight line connecting the starting 
position and the end position. MAD (maximum absolute 
deviation) is the signed maximum absoluite deviation from 
the direct path. Distance is the sum of Euclidean 
displacements of the cursor at each sampling point (dots). 

 
The critical question addressed here is how well these 

depend measures collected from the traditional and 
augmented ANT-R tasks can capture cognitive conflicts 
(Figure 1). Although researchers claim the advantage of 
mouse-cursor measures over traditional measures in 
extracting cognitive conflicts, this idea has never been 
explicitly tested. By contrasting the two types of the attention 
network task, the experiment described below investigate this 
question directly. 

Experiment 
The flanker and Simon effects are known to produce robust 
conflict effects (Eriksen & Eriksen, 1974; Stillman et al., 
2018). Although the traditional ANT-R is well suited for the 
assessment of a flanker-type conflict, the task fails to capture 
a Simon effect (Fan et al., 2009). Indeed, the Simon effect is 
particularly difficult to replicate unless the stimulus allows 
explicit spatial coding (Hommel, 2011). With its emphasis on 
spatial coding (Figure 1), we predict that the augmented 
ANT-R are suitable for the assessment of both flanker and 
Simon effects.  
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What is unknown is the nature of the effects. Both flanker 
and Simon effects are subject to contextual factors, such as 
gender and sequential modulation. The flanker and Simon 
effects are generally larger in women than men (Stoet, 2017); 
they are also subject to the trial order. For example, flanker 
and Simon effects are smaller when two incongruent stimuli 
are shown in sequence (Egner, 2017). The question addressed 
here is how well these contextual impacts are reflected in the 
four dependent measures. If mouse-cursor movement 
measures are more sensitive than traditional response time 
and accuracy measures, these interaction effects should be 
well captured by the mouse-cursor movement measures as 
compared to the response time and accuracy measures 
collected in the key-press condition. 

Method 
Participants Participants (N=261) were undergraduate 
students who enrolled in an introductory psychology course. 
Participants participated in the experiment for course credit. 
These participants were randomly assigned to one of two 
between-subjects conditions—the key-press or mouse 
movement conditions (key-press = 135, female = 105 male = 
30; mouse movement = 126, female = 92, male = 34).   
Procedure We employed a revised version of the attention 
network task (ANT-R, Fan et al., 2009). The ANT-R task is 
a combination of an arrow flanker (Eriksen & Eriksen, 
1974)(Eriksen & Eriksen 1974) and a Simon task (Simon & 
Berbaum, 1990). A stimulus consisted of five arrows—one 
center arrow sandwiched by four arrows (two arrows placed 
both sides). The task of the participant was to indicate the 
left-right direction of the center arrow (i.e., target arrow). 
Stimuli (five arrows) were shown either the left or right side 
of the monitor and the direction of the target arrow was either 
congruent or incongruent to side arrows (Figure 1).  

The key-press and the mouse movement conditions were 
identical except for one critical point. In the key-press 
condition, participants indicated the left-right direction of the 
center arrow by pressing the left or right arrow keys on the 
keyboard. In the mouse movement conditions, participants 
used the mouse to indicate the left-right direction of the 
center arrow. In this condition, two buttons were placed on 
top left or top right corner of the screen and participants had 
to navigate the cursor to press the button. (Figure 2a).  

ANT-R also incorporates different attention cues 
(rectangular boxes), which were shown before the 
presentation of the stimulus at (Figure 3). No cue, double cue, 
invalid cues, and valid cues were randomly assigned. 
Because no impacts of attention cues were observed in the 
present study, the procedure and results involving attention 
cues are not discussed further. 

Altogether each participant received 144 trials, which were 
divided into eight possible combinations of flanker 
congruency (congruent, incongruent) and location 
congruency (congruent, incongruent) and target direction 
(left, right) (18 trials for each condition and see Figure 1). 
Eight stimuli in each combination were shown 18 times (8 x 

18 = 144), comprising of 144 trials. The order of presenting 
individual stimuli was determined randomly.  

The schedule of stimulus presentation is illustrated in 
Figure 3. A blank screen with a square is shown; 500ms after 
the subject clicks the Next button, a fixation sign appears and 
remains on the screen between 2000ms to 12000ms. The 
duration between the offset of the target and the onset of the 
next trial (the cue is shown) varied (approximating an 
exponential distribution, 2000 to 12,000ms, mean 4000ms). 
A cue is shown for 100ms. Another fixation is shown for 0, 
400, or 800ms (uniform random). A target figure is shown for 
500ms. At the onset of the target frame, the cursor is placed 
at the center of the next button in the mouse movement 
condition. 

 

 
Figure 3: A trial sequence of an ANT-R trial. As the 
subject press the Next button, a fixation sign appears, 
followed by a cue, and another fixation sign. Soon after a 
target frame flashed for 500ms.  

 
Prior to the experiment, all participants received a 

minimum of 24 practice trials. In the practice trial, corrective 
feedback was provided after each trial. Practice trials ended 
when the accuracy was 90% or above in the last 24 trials or a 
maximum of 48 trials. In 24 practice trials, all possible 
combinations of flanker congruency, location congruency, 
and target directions. No cue, double cue, invalid cues, and 
valid cues were randomly assigned. 
Design The experiment had a 2(flanker; congruent, 
incongruent) x 2(location; congruent, incongruent) x 2 (block 
order; early, late) x 2 (gender; male, female) design. The key-
press and the mouse movement conditions were analyzed 
separately. Dependent measures in the key-press condition 
were response time and accuracy (error rate). Dependent 
measures in the mouse movement condition were AUC, 
MAD and distance. To analyze the impact of trial sequence, 
we introduced another factor, congruency sequence 
(cog_seq; congruent, incongruent), which indicate a 
congruent or incongruent condition of the stimulus given 
right before the current stimulus.   

To compare the efficacy of the dependent measures, we 
applied linier mixed-effects models (LMEMs), which are 
particularly suited to detect population-level systematic 
effects of manipulations while controlling random variations 
stemming from individual participants and stimuli. 
Following the suggestion by Barr et al. (2013), we applied a 
maximal random-effects structure that was allowed by the 
experimental design with four fixed factors with two levels; 
flanker (congruent, incongruent), location (congruent, 
incongruent), trial order (early, late), and gender (female, 
male) and two-way interactions among the factors combined 
with subject-specific random intercepts and item-specific 

cue targetfixation

Next

Press the next 
button to start fixation
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random intercepts. The first three factors, flanker, location, 
and trial order are within-subjects variables and gender is a 
between-subjects variable. 

Trials that took longer than and equal to 5000 milliseconds 
and trials shorter than and equal to 100ms were removed from 
our data analysis. Outliers were removed using the median-
based procedure suggested by Wilcox (p. 77, Wilcox, 2003) 
(9% of the trials were removed in the key-press condition and 
7% of the trials were removed in the mouse movement 
condition). To ensure that each dependent variable was 
approximately normally distributed in a similar degree, we 
transformed each dependent variable with ordered quantile 
transformation using R package bestNormalize. For all 
LMEM analyses, we used R packages lme4 and afex, and all 
dependent variables were rescaled to -1 to 1 (mean = 0). All 
trajectories were time-normalized using linear interpolation 
method (101 constant time steps, and see Spivey et al., 2005). 
We used R package mousetrap (Kieslich & Henninger, 2017) 
for time normalization and feature extraction (AUC, MAD, 
and distance). 

Result 
We first report the results from LMEM analysis followed 

by a direct comparison of effect sizes. Summaries of these 
results are shown in Table 1 and Figures 4-6. Following this 
analysis, we report the impact of congruency sequence.  

 
Table 1: p-values from LMEM ANOVA 

 
  RT Accuracy AUC MAD Dist. 

flanker **** **** **** **** **** 
location (**)  **** **** **** 

flanker x location (****) +  + **** 
flanker x 
blkOrder *  **** *** ** 

location x 
blkOrder 

  + ** **** 

flanker x gender   + *  

location x gender     * *   

Note. +p  < .10. *p < .05. **p < .01. ***p < .001. ****p < .0001. 
Dist. = Distance. (*) opposite direction (congruent > incongruent) 

 
Response time. The response time measure in the key-press 

condition was quite robust in capturing the flanker effect; 
F(1, 172.9) = 662.4, p<0.0001. However, this measure was 
ineffective for the Simon (location) effect. Although we 
found a significant main effect of location, the direction of 
the effect was opposite—participants took longer for 
location-congruent stimuli than location-incongruent stimuli; 
F(1, 172.5) = 7.6, p<0.01. A similar significant “opposite” 
Simon effect was reported in the Fan et al. (2009) study. The 
flanker-location interaction effect was significant; F(1, 
132.41) = 17.7, p<0.001.  

In general, response time was not very effective in 
capturing interaction effects. Except for the flanker by block 
order interaction (F(1, 17474.4)= 4.2, p<0.05), no other 

interaction effects were significant; location x block order, 
F(1, 17473.6)=1.5, p=0.22; flanker x gender, F<1.0; location 
x gender, F<1.0 (Figure 4). 

Accuracy (error rate) Accuracy (error-rate) was effective 
in capturing the flanker effect, but not the location (Simon) 
effect; flanker, F(1, 133) = 43.0, p<0.0001; location, F(1, 
133) = 1.4, p=0.24; flanker x location, F(1, 133) = 2.9, 
p=0.09. No other interaction effects were observed in 
accuracy; flanker x block order, F(1, 133) = 1.0, p=0.32; 
location x block order, F(1, 133) = 2.0, p=0.16; flanker x 
gender, F<1.0; location x gender, F<1.0 (Figure 4). 

AUC (Area under curve). AUC was effective in capturing 
both the flanker and location (Simon) effects very well. This 
measure was also sensitive to interaction effects involving 
gender and block order; flanker, F(1, 198.9) = 371.9, 
p<0.0001; location, F(1, 199.2) = 898.8, p<0.0001; flanker x 
location, F<1.0; flanker x block order, F(1, 16714.4) = 16.0, 
p<0.0001; location x block order, F(1, 16709.2) = 2.9, p= 
0.09, flanker x gender, F(1, 16567.9)=3.2, p=0.07; location x 
gender, F(1, 16570.9) = 6.3, p<0.05. 

 
Figure 5: Mean AUC and MAD with flanker 
(cg=congruent, incg=incongruent, left), location (center), 
and flanker by location (right) interactions. The arrows 
represent 95% CIs. 

 
Figure 4: Mean response time (RT) and error rate 
(accuracy) with flanker (cg=congruent, incg=incongruent, 
left), location (center), and flanker by location (right) 
interactions. The arrows represent 95% CI. 
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MAD (Maximum Absolute Deviation). MAD was sensitive 
to flanker and location (Simon) effects, as well as interactions 
between these terms and block orders; flanker, F(1, 209.9) = 
518.9, p<0.0001; location, F(1, 210.0)=885.5, p<0.0001; 
flanker x location, F(1, 209.8) = 3.3, p=0.07; flanker x block 
order, F(1, 17226.3)=12.1, p<0.0005; location x block order, 
F(1, 17218.3) = 6.8, p<0.01; flanker x gender, F(1, 17074.7) 
= 4.0, p=0.05; location x gender, F(1, 17075.8) = 4.3, p<0.05.  

Distance. Distance responded well to flanker and location 
effects; flanker, F(1, 215.3)=214.2, p<0.0001; location, F(1, 
215.3)=109.1, p<0.0001; flanker x location, F(1, 214.5) = 
17.6, p<0.0001. This measure was also sensitive to 
interactions between these terms and block order; flanker x 
block order, F(1, 15822.2) = 9.5, p<0.002; location x block 
order, F(1, 15818.9) = 22.7, p<0.0001, but not gender; 
flanker x gender, F(1, 15698.3) = 1.2, p=0.28; location x 
gender, F<1.0. 

 
Figure 6: Distance with flanker (cg=congruent, 
incg=incongruent, left), location (center), and flanker by 
location (right) interactions. The arrows represent 95% CI. 

 

 
Figure 7: Effect sizes (95% CIs) of flanker (left) and Simon 

(location) effects. Following Cumming (p. 290, 2012), effect 
sizes and their CIs for congruent and incongruent conditions 
were calculated as independent groups.  
 
Effect sizes We compared effect sizes of the flanker and 
location (Simon) effects captured by the five dependent 
measures (Figure 7). We observed a large effect size of the 
flanker effect in the response time measure, as compared to 
AUC, MAD, and distance; for all comparisons Z’s> 2.9, 
p’s<0.001. However, both response time and accuracy 
measures were ineffective for the location (Simon) effect. In 
contrast, the effect sizes obtained in the mouse-cursor 

movement measures were considerably above chance level 
(Figure 7).  
Congruency sequence effects Another important 
characteristic of cognitive conflict is congruency sequence 
effects. Flanker and Simon effects are generally smaller when 
two incongruent stimuli are shown in sequence (Egner, 
2017). We examined sequence effects with another factor, 
congruency sequence (cog_seq; congruent, incongruent), 
which informs whether preceding stimuli were congruent or 
incongruent (e.g., flanker (cog, incog) x seq(cog, incog)). 
This analysis shows that congruency sequence effects were 
well captured by AUC, MAD, and distance, but not response 
time and accuracy (Table 2); flanker x seq, RT and accuracy, 
F’s<1.0; AUC, MAD, distance, F’s>37.0, p’s<0.0001; 
location x seq, RT and accuracy, F’s<1.0; AUC, MAD, 
F’s<1.0; distance, F(1, 162.4)=4.2, p<0.05 (Table 2). 

 
Table 2: p-values for congruency sequence effects 

 
 RT Acc. AUC MAD Dist. 

flanker x seq   **** **** **** 
location x seq     * 

Note. +p  < .10. *p < .05. **p < .01. ***p < .001. ****p < .0001. 
Dist.=Distance, seq=congruency sequence, RT=response time, 
Acc.=accuracy (error rate) 

Discussion 
The cursor movement measures, AUC, MAD, and distance, 
collected in the mouse-movement condition were responsive 
to incongruency created in flanker and Simon (location) tasks 
but response time and accuracy measures in the key-press 
condition were primarily responsive to flanker incongruency 
but not location (Simon) incongruency. The mouse 
movement measures were also sensitive to interaction effects 
involving incongruency and gender, trial order and 
congruency sequence, while response time and accuracy in 
the key-press condition were mostly insensitive to these 
interactions. These results suggest that the mouse movement 
measures, as compared to traditional response time and 
accuracy measures, are more perceptive to flanker and Simon 
(location) effects.   

Researchers have advocated that mouse tracking measures 
are advantageous for the examination of cognitive conflicts 
(Freeman, 2018; Stillman et al., 2018). Our results provide 
empirical support for this idea: the mouse movement 
measures are statistically more sensitive to various aspects of 
cognitive conflicts than traditional response time and 
accuracy measures. 

Our results are also consistent with recent findings that 
performance-based behavior tests for cognitive control (e.g., 
go/No-go task and stop signal task) can be improved with 
augmentation of mouse movement measures. Although 
go/No-go and stop signal tests have been applied widely for 
the assessment of mental disorders (e.g., ADHD), these tests 
are ineffective in assessing sub-clinical populations (Toplak, 
West, & Stanovich, 2013). By augmenting regular go/No-go 
or stop signal tasks with mouse movement measures, 
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Leontyev et al. (Leontyev, Sun, Wolfe, & Yamauchi, 2018) 
demonstrated that these cognitive tests become more reliable 
in separating individuals with weak and strong symptoms of 
ADHD-related impulsivity. 

Given that the mouse motion measures allow more 
nuanced examination of cognitive conflict, mouse-tracking 
measure helps further our theoretical understanding of 
cognitive control. For example, determinants, boundary 
conditions, and neural correlates of the congruency sequence 
effect have been developed, revised and evaluated primarily 
on the basis of how well the theory accounts for response time 
and accuracy performance (Egner, 2007). Our results show 
that different dependent measures can produce different 
outcomes. In this vein, the validity of these theories (e.g., 
bottom-up associative theory and top-down control-based 
theory) can be reexamined with mouse-tracking measures.  

Conclusion 
For decades, scientific analysis of human behavior has been 
made mainly on the basis of how fast and accurately an 
individual responds to a task. Response time and accuracy 
has served as the primal dependent measures and formidable 
theories have been developed from these two measurements. 
The results from this study show that these traditional 
measures can be supplemented with motor measures, and the 
mouse-cursor motion analysis provides a viable analytic tool 
to probe cognitive conflict.  
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Abstract 
Why do people experience something as creative? We propose 
a perspective-change based account of creativity evaluation. 
Drawing upon structure mapping theory (Gentner, 1983), we 
show that people evaluate a simile to be creative when they 
spontaneously (Study 1) or are induced (Study 2) to experience 
a change in perspective. This account further predicts that 
people are unlikely to find a simile creative if they are unable 
to form a working perspective, as is in the case of anomalies. 
In addition, a simile is unlikely to be evaluated as creative when 
people’s initial perspectives are sufficient to interpret the 
simile, as in the case of literal statements. We further show that 
repeated use of the same perspective suppresses the experience 
of perspective change and thus reduces creativity perception 
(Study 3).  

Keywords: creativity evaluation; analogy; simile; perspective-
change; structure mapping theory 

Introduction 
Author J. K. Rowling apparently received many rejection 
letters for her first Harry Potter novel. Stories abound in 
academia about seminal, award-winning papers that were 
initially rejected by journals. Innovation requires more than 
just generating creative ideas—it also requires being able to 
evaluate ideas. Consequently, creativity evaluation is a 
critical and challenging step in the innovation process 
(Mueller, 2017). However, our knowledge of how lay people 
form creativity judgments is still limited (Zhou, Wang, 
Bavato, Tasselli, & Wu, 2019). This paper contributes by 
proposing and providing initial tests of a perspective-change 
based account of creativity evaluation.  

We focus on perspective change following a proposal that 
evaluating creative ideas is somewhat like generating 
creative ideas (Cronin & Loewenstein, 2018). There is a long 
tradition in creativity research emphasizing the key role of 
changing one’s perspective, discussed variably as, for 
example, the reorganization of cognitive structures 
(Mumford & Gustafson, 1988), breaking set (Boring, 1950), 
restructuration (Duncker & Lees, 1945), deviation from 
habitual use of knowledge (Luchins, 1960), and 
transformation (Boden, 2004). These ideas are related to 
work beyond the creativity literature on conceptual change 
(Chi, 2009) and re-representation (Gentner & Wolff, 2000). 
Following terminology from Page (2008) and Cronin and 
Loewenstein (2018), we describe it as perspective change. 
Briefly, as any mental representation is a partial rather than a 
complete account, it necessarily only provides a perspective 
on whatever is being represented. It follows then that 
adopting a particular mental representation of a situation 

leaves open the possibility of changing to an alternative 
mental representation that is both appropriate to the situation 
and incompatible with the first mental representation. The 
possibility pursued here, building on the argument by Cronin 
and Loewenstein (2018), is that if the process of generating 
creative ideas involves a change in perspective, then it might 
also be the case that when the process of forming an 
interpretation of an item leads us to change our perspective, 
we are likely to perceive the item to be creative. Thus, the 
proposal is that creativity evaluations rest at least in part on 
the process of forming interpretations, and that process 
echoing the process of generating creative ideas.  

To explore this perspective change account of creativity 
evaluation, we asked participants to evaluate similes: A is 
like B. Prior work has established that such statements can 
convey fresh analogies, anomalies, or mundane literal 
similarities or class inclusions (Bowdle & Gentner, 2005; 
Gentner, 1989). The perspective change account of creativity 
evaluation makes predictions about each case. Specifically, a 
simile is unlikely to be judged creative if people cannot form 
a coherent interpretation of it—that is, if it is an anomaly. A 
simile is unlikely to be judged creative if people’s initial, 
default interpretation is apt—that is, if it is a mundane literal 
similarity comparison or class inclusion. In contrast, a simile 
is likely to be judged creative if people’s initial, default 
interpretation is not apt but they are able to find an alternative 
interpretation that is appropriate—that is, it is experienced as 
a fresh analogy.  

To further examine the role of perspective change, we draw 
upon the habituation paradigm (Rankin et al., 2009) to show 
that repeated exposure to a perspective can lead to diminished 
perspective change and thus reduces creativity evaluation.     

Study 1: Spontaneous Perspective Change 

Method 

Participants This study involved 147 students from a mid-
west university who participated in the study for course 
credit (49% male, Meanage = 20.65, SDage = 2.11, 48.30% 
white, 5.44% black, 41.50% Asian, 4.68% other). No 
participant was excluded from the analysis. 
 
Materials and Design We generated five groups of similes, 
with each group using the same target and three different 
bases. The five targets were: diamond, crib, snowflake, pencil, 
and closet. Drawing upon the structure mapping framework 
for analogy (Gentner, 1983), we composed three types of 
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similes for each of the five targets: 1) anomaly, e.g., a crib is 
like seaweed; 2) literal similarity, e.g., a crib is like a bed; 3) 
analogy, e.g., a crib is like a cocoon. 

Participants saw the 15 similes twice. First, they rated them 
for creativity on a 7-point Likert scale (1=“highly uncreative”, 
7=“highly creative”). Next, they categorized each statement 
as: “nonsensical”, “a literal comparison”, “a metaphor”. 
Participants gave ratings of perspective change by being 
asked the extent to which the statement made them think 
differently about the target in the statement on a 5-point 
Likert scale (1 = “Not at all differently”, 5 = “Extremely 
differently”). Participants also wrote down their 
interpretations of the statements.  

 
Results and Discussion  
Table 1 provides descriptive data. Consistent with the 
materials design, most of the anomalies, literal similarity 
statements, and analogies were categorized by participants as 
such (“Nonsensical,” “Literal” and “Metaphor”; bold 
numbers in Table 1).  

Creativity evaluations and perspective-change scores are 
presented in the rows of Table 1. As expected, aggregating 
across items, we found that the analogy type (MeanAll3 = 4.84) 
was evaluated to be more creative than the anomaly type 
(MeanAll1 = 3.74), F (1, 1468) = 171.64, p < .00  as well as 
the literal type (MeanAll2 = 2.62), F (1, 1468) = 852.80, p < .00. 
The same pattern held for perspective-change scores.  The 
analogy type (MeanAll3 = 2.56) was rated as more 
perspective-changing than the anomaly type (MeanAll1 = 
1.77),  F (1, 1468) = 164.88, p < .00  as well as the literal type 
(MeanAll2 = 1.33), F (1, 1468) = 554.7, p < .00. 

We also analyzed creativity evaluations and perspective-
change scores for the similes by how participants categorized, 
and so presumably how they experienced, them (Table 1). 
Aggregating across items, planned contrasts showed that 
items categorized by participants as metaphors (M = 5.18, SD 
= 1.38) were evaluated to be more creative than items 
categorized as nonsensical (M = 3.36, SD = 1.62), F (1, 1320) 
= 400.07, p < .00, η2 = 0.23. They were also evaluated to be 
more creative than items categorized as literal (M = 2.72, SD 
= 1.51), F (1, 1320) = 842.3, p < .00, η2 = 0.39. A similar 
pattern held for the perspective change ratings. Similes that 
participants categorized as metaphors (M = 2.84, SD = 1.13) 
were rated as more perspective-changing than those 
categorized as nonsensical (M = 1.30, SD = 0.93), F (1, 1320) 
= 733.21, p < .00, η2 = 0.36 They were also rated as more 
perspective-changing than similes categorized as literal (M = 
1.46, SD = 0.82), F (1, 1320) = 627.07, p < .00, η2 = 0.32.  

The consistency in the patterns between creativity 
evaluations and perspective-change scores held not just in the 
aggregate but also at the level of individual items. The 
correlation between creativity evaluations and perspective 
change scores was high, r = 0.50, p < .00. 

Taken together, these findings are consistent with the 
possibility that people evaluate similes to be creative to the 
extent that they formed interpretations that differed from how 
they usually interpreted the target. 

Table 1: Categorizations, creativity evaluations, and 
perspective change scores in Study 1 

 
List Category (%) Creativity P-change 

Ns Lit Met Ns Lit Met Ns Lit Met 
All1 71 6 23 3.41 3.5 4.81 1.32 2.5 2.94 
All2 12 85 3 3.08 2.52 3.57 1.46 1.29 2.24 
All3 8 12 80 3.68 4.05 5.07 1.35 2.44 2.70 
Note: Ns-Nonsensical, Lit-Literal, Met-Metaphor; 1, 2, and 3 
denotes nonsensical, literal, and metaphor, respectively. Note 
that Ns, Lit, and Met denote participants’ categorizations, 
whereas 1, 2, and 3 denote the intended type of statement in 
the design of the materials. 
 

This was seen in the highest creativity evaluations being 
given to those similes intended as analogies as well as in the 
high correlation between creativity evaluations and 
perspective-change scores. But perhaps the most compelling 
aspect of the data is that it was not the similes themselves that 
mattered so much as participants’ own categorizations of the 
similes. The same simile could be and were categorized 
differently by different participants. What was perceived to 
be an anomaly by some was perceived to be a metaphor by 
others, and the perspective-change scores and creativity 
evaluations followed from those subjective interpretations.  

Taken together, the results of Study 1 found that a simile 
is likely to be evaluated as creative to the extent that people 
experience a change in perspective as they form an 
interpretation of the similarities between the target and the 
base. This is initial evidence consistent with a perspective-
change based account of creativity evaluation—that what 
drives creativity judgments is experiencing a perspective 
change in the course of forming an interpretation of the item 
one is evaluating. 

Study 2: Induced Perspective Change 
Study 2 builds on Study 1 by randomly assigning individuals 
to conditions that should encourage or discourage them from 
experiencing a change in perspective (cf., Day & Asmuth, 
2017). Specifically, before participants evaluated an 
anomalous simile, they first read a short paragraph. That 
paragraph contained information that was either relevant or 
irrelevant to comprehending the simile as an analogy. Thus, 
we sought to enable participants to form a coherent change in 
perspective or limit them from doing so, and as a result 
encourage or hinder them from perceiving the simile to be 
creative.  
 
Method 
 
Participants We recruited 237 participants from Mturk (45% 
male, Meanage = 37.59, SDage = 12.22, 78.90% white, 11.39% 
black, 7.17% Asian, 2.53% other). Participants qualified for 
the study if they were located in the United States and had an 
approval rate above 95% in previous ‘‘Human Intelligence 
Tasks” (HITs) on MTurk. None of the participants was 
excluded from the analysis. 
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Materials and Design Participants saw one of two similes: 
(1) Pigeons are like snowflakes, or (2) Seaweed is like a crib. 
Before reading the simile itself, they first read a paragraph 
that was either relevant or irrelevant to interpreting the target 
of the simile in a way that supports interpreting the simile as 
an analogy. 

Specifically, for participants assigned to evaluate the 
simile about pigeons, they read one of the two paragraphs: 

Pigeons often move together and descend to the ground, 
blanketing it and changing its color. At some times of year, 
out in the countryside it seems that the wind brings pigeons 
and covers the roofs with the feathered creatures. Or go to a 
town square at certain times of day or the year and soon you 
may find that pigeons gradually cover the entire square 
(relevant information condition). 

Pigeon is a French word that derives from the Latin pipio, 
for "peeping", based on the sounds the birds make. Pigeons 
are a common species. They are stout-bodied birds with short 
necks and slender bills. Pigeons primarily feed on seeds, 
fruits, and plants. Most pigeons lay one or two eggs at a time, 
and both the male and female pigeons care for the young 
(irrelevant information condition). 

For participants assigned to evaluate the simile about 
seaweed, they read one of the two paragraphs: 

Fish sometimes benefit from the protection provided by 
seaweed. The ribbons of seaweed extending upwards from 
the sea floor form a safe space in which fish can place their 
eggs. Seaweed provides a shelter for the baby fish. They can 
rest in the protected space that the seaweed provides. When 
baby fish outgrow their seaweed home, they can explore the 
open waters until they are ready to lay eggs of their own 
(relevant information condition). 

Seaweed is a popular snack. All seaweed food is low in 
calories and fat. Dried seaweed comes in various flavors and 
is sold in sheets, flakes, or handy snack packs. Fresh seaweed, 
on the other hand, is commonly sold as an ingredient in 
prepared foods like sushi or seaweed salad. Canned seaweed 
snacks are also becoming trendy now; you can easily find 
them in the refrigerated section of the supermarkets 
(irrelevant information condition). 

After reading these passages and rating them for how 
informative they were, participants then saw the target simile. 
Specifically, they rated how creative the simile was on a 5-
point Likert scale (1= “Not at all creative”, 5= “Highly 
creative”). They also categorized each simile (“nonsensical” 
or “metaphor”), provided perspective change ratings by 
indicating the extent to which the simile made them think 
differently about the target on a 5-point Likert scale (1 = “Not 
at all different”, 5 = “Extremely differently”), and wrote 
interpretations. 
 
Results and Discussion  
As predicted, the initial passages that participants read 
influenced their interpretations of the similes and their 
judgments of creativity. Specifically, for the simile about 
pigeons, participants assigned to the relevant information 
condition rated it as more creative than those in the irrelevant 
information condition (Meanrelevant = 3.08, SDrelevant = 1.21, 
Meanirrelevant = 2.34, SDirrelevant = 1.22, t = 3.33, p < .00, 

Cohen’s d = 0.61). In addition, a higher proportion of 
participants categorized the simile as a metaphor in the 
relevant information condition than in the irrelevant 
information condition (Metaphorrelevant = 68%, 
Metaphorirrelevant = 30%, 𝜒2 = 17.61, p < .00, φ = 0.38). Lastly, 
participants assigned to the relevant information condition 
also rated the simile as more perspective-changing than those 
in the irrelevant information condition (Meanrelevant = 2.59, 
SDrelevant = 1.12, Meanirrelevant = 1.97, SDirrelevant = 1.08, t = 3.12, 
p < .00, Cohen’s d = 0.57).  

The same pattern was found for the simile about seaweed. 
Specifically, compared to participants assigned to the 
irrelevant information condition, those assigned to the 
relevant information condition rated the simile as more 
creative (Meanrelevant = 3.26, SDrelevant = 1.17, Meanirrelevant = 
1.84, SDirrelevant = 1.20, t = 6.51, p < .00, Cohen’s d = 1.20), 
were more likely to categorize it as a metaphor rather than a 
nonsensical statement (Metaphorrelevant = 75%, 
Metaphorirrelevant = 12%, 𝜒2 = 46.47, p < .00, φ = 0.63), and 
rated it as more perspective-changing (Meanrelevant = 2.72, 
SDrelevant = 1.06, Meanirrelevant = 1.67, SDirrelevant = 1.16, t = 5.22, 
p < .00, Cohen’s d = 0.97). 

Study 2 found that providing participants with particular 
information about the target in a simile could encourage them 
to see a coherent, novel metaphor in what otherwise would 
likely have been an anomalous statement. This was likely to 
be experienced as a change in perspective and likely to have 
led to considering the simile to be creative.  Thus, in inducing 
a perspective-change and prompting evaluations of creativity, 
this study offers further support for perspective change 
playing a role in the process of forming creativity evaluations.  

Study 3: Suppressed Perspective Chang 
Study 3 tests whether minimizing a perspective change will 
lead to lower evaluations of creativity. If experiencing a 
change in perspective contributes to judging something to be 
creative, then continuing with an existing perspective could 
dampen judgments of creativity. For example, examining 
several items in a row could provide an opportunity to 
compare judgments of the same item when it is either distinct 
from what has come before and so a change in perspective, 
or in line with what has come before and so consistent with 
the existing perspective.  

A variety of research examines sequences of judgments of 
potentially similar and potentially different items, ranging 
from research using a habituation paradigm (Rankin et al., 
2009), to research on deviant items (Sakamoto & Love, 2004), 
to work on expectation violations (Loewenstein, 2019). We 
used work on repetition-break structures (Loewenstein & 
Heath, 2009; Loewenstein, Raghunathan & Heath, 2011) to 
design sequences of items. The repetition-break structure 
allows us to identify items that are likely to be experienced 
as a perspective change: the first item and the break item. It 
also allows us to identify items that are likely to be 
experienced as consistent with the existing perspective: the 
second and any subsequent items that are highly similar to 
the first one. Thus, we can use sequencing to lead to either a 
diminished perspective change and therefore diminished 
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creativity judgments, or a perspective change and therefore 
expected creativity judgments.  

The study uses sequences of similes, some of which are 
arranged using the repetition-break structure. For a given 
target in a simile, we generated two sets of bases 
incorporating two distinctive perspectives. We used three 
similar bases to establish an initial repetition pattern, and then 
broke this pattern by contrasting this set of three similes with 
a fourth simile that whose base drew from a different 
perspective. In this way, for each target we are able to create 
two distinctive interpretations of it. Thus, we expected an 
evaluation experience that can be described by the following 
process: initial exposure to perspective A à habituation to 
perspective A with the second and third exposures à initial 
exposure to a different perspective B. It is at the last stage of 
this evaluation process that we expect to observe the switch 
from perspective A to a second different perspective B, and 
so be experienced as a perspective change.  

If the experience of a perspective change underlies 
creativity evaluation as we proposed, we should expect to see 
the following patterns: First, the gradual habituation to a 
perspective will result in reduced ratings of creativity. 
Through repeated exposure to similar bases incorporating the 
same perspective, the initial perspective will be gradually 
assimilated into participants’ knowledge structure and thus 
should lose its freshness. Since it can no longer induce any 
departure from or change to participants already existing 
interpretations regarding the target, similes incorporating this 
perspective will be perceived as less creative. We therefore 
predict that there will be a decrease in creativity and 
perspective-change ratings over the course of encounters 
with the first, second, and third simile.  

Second, in the repetition break condition, given that the last 
simile conveys a second perspective of the target that is 
different from the first one, we should observe that 
comprehending the fourth simile will induce a change in 
perspective—switching from one way of interpreting the 
target to another way. As a result of this experienced 
perspective-change, we predict that there will be a jump in 
creativity and perspective-change ratings for the last simile. 
 
Method 
 
Participants We recruited 428 participants from Mturk. 
There were 14 participants who failed the attention check. 
They were excluded, leaving 414 in the final sample (44% 
male, Meanage = 36.91, SDage = 12.31, 78.83% white, 7.79% 
black, 6.81% Asian, 6.38% other). Unless otherwise noted, 
inclusion of the 14 participants did not change any of the 
results reported below substantially. Participants qualified for 
the study if they were located in the United States and had an 
approval rate above 95% in previous ‘‘Human Intelligence 
Tasks” (HITs) on MTurk. This sample size was determined 
using G*Power (Faul, Erdfelder, Lang, & Buchner, 2007), 
based on a priori power analysis by setting 80% statistical 
power with an effect size of 0.50, which was obtained 
through pilot studies. 
 
Materials and Design To generate similes that can be 
organized in the repetition break structure, we conducted 

several rounds of pretests. Our final materials included 
similes with two targets: (1) poverty and (2) marriage. For 
each target, we generated two sets of bases, with four bases 
in each set. Each set of bases are synonyms or phrases with 
similar meanings, such that they are centered around one 
specific interpretation of the target (i.e., a perspective). The 
two perspectives for interpreting poverty were that it is a 
destructive, spreading influence (i.e., poverty is like an 
infection/an illness/a disease/a virus) and that it is a barrier 
(i.e., poverty is like a fence/a barricade/a moat/a wall). The 
two perspectives for interpreting marriage were that it is a 
thrilling activity (i.e., marriage is like skydiving/bungee 
jumping/parachuting/hang gliding) and that it is a nurturing 
activity (i.e., marriage is like growing flowers/caring for your 
lawn/farming/gardening). 

We used a 3 (three structure conditions) by 2 (two targets) 
by 2 (two sets of bases) design. The first factor is structure, 
which has three conditions: repetition break, consistent, and 
baseline. Using “poverty is like a virus” as an example, this 
simile conveys the interpretation that poverty is destructive 
and contagious. In the repetition break condition, three 
similes conveying the other interpretation of poverty were 
presented in a sequence prior to it (i.e., poverty is like a 
fence/a barricade/a moat/a wall). This way, when appeared at 
the fourth position, the focal simile “poverty is like a virus” 
constituted a break from the initial perspective for poverty.  

In the consistent condition, the preceding three similes 
conveyed the same perspective (i.e., poverty is like an 
infection/an illness/a disease) as the ending simile, such that 
the focal simile “poverty is like a virus” is a continuance of 
rather than a break from the initial perspective. In this 
condition the focal simile in the fourth position is consistent 
with the preceding perspective. Lastly, in the baseline 
condition, the focal simile “poverty is like a virus” was 
presented on its own without any preceding similes about 
poverty.  

Across the three conditions, our focus is on comparing the 
creativity and perspective-change ratings for the focal 
simile— “poverty is like a virus”. We expect that: (1) the 
consistent condition will generate lower creativity and 
perspective-change ratings than the baseline condition; (2) 
the consistent condition will generate lower creativity and 
perspective-change ratings than the repetition break 
condition; and (3) given that the standing-alone condition 
provides us with a baseline level of how creative and 
perspective-changing the focal simile is, we expect to see that 
the repetition break condition will lead to a jump in perceived 
creativity and perspective-change of the focal simile such that 
the ratings are restored to a level comparable to that in the 
baseline condition.  

The second factor in our design was the target (i.e., poverty 
vs. marriage). We chose to use two rather than just one target 
in order to show that the pattern of creativity evaluation we 
predicted did not hinge on the idiosyncrasies of one specific 
simile target, and that the effect of perspective-change can be 
generalized to similes with various targets. 

In a similar spirit, for each target, we fully counterbalanced 
the position of the two perspectives, such that each 
perspective was placed as the opening one (i.e., the repetition 
stage) in one condition and the ending one (i.e., the break 
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stage) in another condition. Our intention is to show that the 
pattern of creativity evaluation we predicted did not rely on 
one specific perspective being in a specific position. 
Regardless of the specific content of a perspective, it is the 
cognitive experience of viewing it as either a continuance of 
or a break from the already existing perspective that predicts 
how creative people perceive it to be. 

In the current study we have four focal similes: poverty is 
like a virus/a wall, and marriage is like gardening/hang 
gliding. Each of the four focal simile is presented in three 
different structures: repetition break, consistent, and baseline. 
We thereby generated a total of 12 conditions. In each 
condition, participants were asked to rate one (i.e., the 
baseline condition) or four similes (i.e., consistent condition 
and repetition break condition) for creativity (1 = “not at all 
creative”, 5 = “extremely creative”) and perspective-change 
(1 = “not at all perspective-changing”, 5 = “extremely 
perspective-changing”).  

In the repetition break and the consistent conditions, the 
focal simile always appeared at the fourth position. Given 
that the focus of the current study is on examining the 
experience of switching from one coherent interpretation to 
another one, being able to understand a simile and form a 
perspective in the first place is therefore an important 
prerequisite. Thus, we gave participants the option of 
marking a simile as non-sensical if they failed to form an 
interpretation of it (“this simile doesn’t make sense to me”), 
in which case they were excluded from the analysis.  
 
Results and Discussion  
The creativity ratings showed that the consistent condition 
generated the lowest level of creativity (M = 2.07, SD = 0.95), 
lower than both the baseline condition (M = 2.70, SD = 1.07, 
t = 7.13, p = 0.000, Cohen’s d = 0.62) and the repetition break 
condition (M = 2.89, SD = 1.09, t = 9.06, p = 0.000, Cohen’s 
d = 0.80). Although we didn’t predict to see a significant 
difference across the repetition break condition and the 
baseline condition, results showed that while the difference 
was small in absolute magnitude (i.e., 0.19), it reached 
statistical significance level (t = 2.02, p = 0.04, Cohen’s d = 
0.18). These are overall effects of the structure condition; 
there were no reliable effects or interactions due to the 
particular targets or bases so we collapsed across them. 

Analysis of perspective-change ratings showed a similar 
pattern, such that the consistent condition generated the 
lowest level of perspective-change (M = 1.80, SD = 1.12), 
lower than both the baseline condition (M = 2.45, SD = 1.20, 
t = 5.43, p = 0.000, Cohen’s d = 0.47) and the repetition break 
condition (M = 2.50, SD = 1.33, t = 6.82, p = 0.000, Cohen’s 
d = 0.60). There was no difference across the repetition break 
condition and the baseline condition (t = 1.52, p = 0.13, 
Cohen’s d = 0.13)1.  

Figure 1 shows the ratings for similes in each of the four 
positions, and once again there were no effects or interactions 
due to the particular targets or bases. As we predicted, 
creativity and perspective-change ratings declined from 

                                                        
1 Inclusion of the 14 participants who failed the attention check 

yielded marginally significant difference in perspective-change 
across the repetition break condition (M = 2.68, SD = 1.19) and the 

position 1 to position 4 in the consistent condition. On the 
contrary, in the repetition break condition we observed a 
decline over the first three similes but a jump in the last one. 
Switching from the initial perspective to a different one 
restored the perceptions of creativity and perspective-change 
to a level comparable to that in the baseline condition. 

Taken together, Study 3 provided evidence largely in 
support of our predictions that repeated exposure to the same 
perspective will result in reduced creativity perception, 
whereas breaking from one perspective to another one (i.e., a 
perspective-change) will lead to an increase in creativity 
perception to the baseline level. This is evidence in support 
of the general proposition that the experience of a 
perspective-change underlies creativity evaluation.  

 

 
Figure 1: Results in Study 3 

General Discussion 
The proposal that some kind of change in perspective is 
involved in generating creativity has long drawn the attention 
of theorists, but there has been much less said about the 
process of evaluating creativity. We outlined and tested the 
beginnings of a perspective change account of creativity 
evaluation. Three studies found strong relationships between 
a simile prompting changes in perspective and evaluating the 
simile to be creative.  

Critical to the account was specifying that an item, such as 
a simile, is likely to be experienced as creative if in the 
process of comprehending it people experienced a change in 
perspective. We followed existing research on changes in 
representation within the cognitive science literature, 
particularly work on analogy and comparison, to provide 
plausible specifications of what a change in perspective 
might involve and what might make a change more and less 
compelling. Other approaches could also be useful. Our 
intent was not to delve into accounts of mental representation 

baseline condition (M = 2.51, SD = 1.20, t = 1.15, p = 0.09, Cohen’s 
d = 0.14). 
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but rather to emphasize why doing so could advance research 
on creativity evaluations.  

The current results offer initial support for the value in 
thinking about perspective change as a driver of creativity 
evaluations. Using both spontaneous (Study 1) and induced 
(Study 2) changes in perspective, we found consistent 
evidence that a simile is likely to be judged creative if it is 
experienced as a new way to interpret the target. Further, we 
also found (Study 3) that repeated use of the same perspective 
suppresses the experience of perspective change and thus 
reduces creativity perception. Taken together, these studies 
indicate that the process of forming an interpretation of an 
item, and the kind of interpretation we form, influences our 
evaluation of its creativity. 

Focusing on the cognitive process of forming and changing 
perspectives opens a new area for research on creativity 
evaluation. Most work has focused on whether an item is 
novel and useful for a community or domain (e.g., Amabile, 
1983, 1988, 1996; Cropley & Cropley, 2010; Oldham & Baer, 
2012; Runco & Jaeger, 2012; Shalley, Zhou, & Oldham, 2004; 
Sternberg & Lubart, 1999; Woodman, Sawyer, & Griffin, 
1993). The current work shifts the focus of creativity 
judgments from the product to the process—from the 
characteristics (i.e., novelty and usefulness) of the item to the 
work of making sense of the item and the perspective that 
results.  

In emphasizing the forming and changing of perspectives, 
this work opens up new ways to think about the role of 
expertise and culture in shaping creativity evaluations. There 
might be expertise needed to appreciate an item as creative, 
as absent that expertise on might not change perspective or 
perceive the change to have much potential. There might be 
cultural assumptions that resonate or impede the change in 
perspective. These are cognitive issues, and they also lead to 
considerations around attitudes and values. Creativity 
evaluations are, after all, judgments about worth.  

Developing an account of creativity evaluations resting on 
perspective change provides an opening. The considerable 
amount of research on knowledge and knowledge change in 
cognitive science is not always or even usually at the center 
of discussions about creativity. Yet it may hold significant 
potential to help advance such discussions. As researchers 
whose central task is innovation, we are aware of the 
imperfect evaluations generated by grant review panels, 
journals, and promotion review committees. It is clear that 
deepening our understanding of the creativity evaluation 
process is consequential. It is likely to be similarly 
consequential for all the other domains of innovation in our 
societies.   
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Race and gender are automatically encoded in visual working memory
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Abstract

Research has suggested that perceivers automatically categorize faces based on gender and race but gaps remain regarding
whether effects emerge at encoding or recall and the extent to which they are reducible to perceptual similarities (since
faces from the same category are generally more similar to each other). We address these limitations using change detection
paradigms adapted from visual working memory literature where one face from an array of faces changes to a face from
the same or a different gender or racial category. We show that individuals are considerably faster and more accurate to
identify changes that cross a category boundary, even when controlling for a range of perceptual differences and subjective
features of faces. Our results suggest that social category information is automatically encoded in visual working memory
in a format that is not reducible to lower-level perceptual features.
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Abstract 

Previous studies have shown that category learning affects 
subsequent recognition memory. However, questions remain 
as to how category learning affects discriminability during 
recognition. In this three-stage study, we employed sets of 
simulated flowers with category- and non-category-inclusion 
features appearing with equal probabilities. In the learning 
stage, participants were asked to categorize flowers by 
identifying the category-inclusion feature. Next, in the 
studying stage, participants memorized a new set of flowers, a 
third of which belonged to the learned category. Finally, in the 
testing stage, participants received a recognition test with old 
and new flowers, some from the learned category, some from 
a not-learned category, some from both categories, and some 
from neither category. We applied hierarchical Bayesian signal 
detection theory models to recognition performance and found 
that prior category learning affected both discriminability as 
well as criterion bias. That is, people that learned the category 
well, exhibited improved discriminability and a shifted bias 
toward flowers from the learned relative to the not learned 
category. 

Keywords: category learning; recognition memory; signal 
detection theory; Bayesian modeling 

Introduction 

Memory research has shown that prior learning experience 

affects recognition memory. It is often thought that prior 

learning is encoded into knowledge structures or schemas 

(Bartlett, 1932). In turn, schemas increase recognition of 

schema-inconsistent information compared to schema-

consistent information, while also increasing false alarms to 

schema-consistent lures compared to schema-inconsistent 

lures. Because schema acquisition takes time and learning 

experiences vary among people, most recognition memory 

tasks have employed either within-subject designs for pre-

acquired schemas (Graesser & Nakamura, 1982) or between-
subject designs for individuals with different expertise 

(Castel et al, 2007). As such, traditional experimental designs 

do not easily allow manipulation of schema acquisition in a 

way that enables us to assess their effect on recognition 

memory performance.   

A number of recent studies have unveiled strong 

connections between schematic and categorical knowledge, 

leading many researchers to postulate profound similarities 

in the cognitive processes underlying schematic and 

categorical learning (Sakamoto & Love, 2004). To contribute 

to the integration of schematic and categorical learning, and 

to further explore the effects of prior learning on recognition 

memory, De Brigard et al. (2017) recently employed a set of 

computer-generated stimuli (flowers) to explore how 

learning a novel category affects participants’ recognition 

memory for items from the learned category relative to items 

from a category they did not learn. However, the studies 

reported by De Brigard et al. (2017) left several unanswered 

questions.  In particular, the findings could not differentiate 

between discriminability changes for items from the learned 

category and a change in response bias because their 

experiments did not include foils of both learned and not-

learned categories, and thus could not provide measures of 

discriminability and bias for all options. In addition, De 

Brigard et al.’s (2017) findings did not discriminate between 

those who learned best and those who learned least during the 

category-learning phase, potentially obscuring effects on 

discriminability in recognition memory. 

To explore these issues, in the present study we used a 

modified version of De Brigard et al.’s (2017) paradigm in 

which flowers from learned and non-learned categories 

appeared in the learning and study phases with equal 

probability. Additionally, the current study included lures 

from both learned and not-learned categories during the 

recognition test. As such, we were able to implement full 

hierarchical Bayesian signal detection theory (SDT) models 

to data from all participants, as well as separate people by the 

strength of their learning. This modified experimental 

paradigm, and the SDT models with which the results are 

analyzed, enables us to further understand the effect of 

category learning on recognition memory. 

Category Learning and Recognition 

Experiment 

Participants 

113 individuals participated via Amazon Mechanical Turk 

(https://www.mturk.com) for monetary compensation. All 

participants were from the United States and had at least 100 

approved hits and overall hit rate ≥ 95%. Three participants 

were excluded because of failure to follow instructions or 

terminated the experiment in the middle, so data were 

analyzed with the remaining 110 individuals. All participants 
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were provided informed consent under a protocol approved 

by the Duke University IRB.  

Materials 

Stimulus consisted of MATLAB (2018b)-generated flowers 

from De Brigard et al. (2017). Flowers varied across five 

dimensions, with each dimension taking one of three possible 

values: number of petals (4, 6, or 8), color of petals (blue, 

green, or yellow), shape of center (circle, triangle, and 

square), color of center (orange, purple, or turquoise), and 

number of sepals (1, 2, or 3). Figure 1 illustrates three 

examples of flowers with different combinations of the 

features (see further details in De Brigard et al., 2017). 

Procedure  

We closely followed the procedure from the fourth 

experiment in De Brigard et al. (2017), with some 

modifications (see below). The experiment had three phases: 

learning, study, and test. At the beginning of each phase 

participants read the instructions for 90s. 

 

 
Figure 1. Examples of MATALB-generated flowers. From left 

to right: 4 blue petals- orange circle center -1 sepal; 6 green 
petals- purple triangle center-2 sepals; and 8 yellow petals- blue 

square center-3 sepals. See more in De Brigard et al., 2017. 

 

In the learning phase, participants were told they would see 

a flower on the screen and will have to determine whether or 

not it belonged to the species avlonia. Participants were told 

that avlonias differed from other flowers in one simple way 

(e.g., only avlonias have four petals), and their task was to 

find out what the simple way was. At the beginning of the 

learning phase, participants were informed of all five possible 

dimensions—number of petals, color of petals, etc.—across 

which flowers may vary and saw two example flowers for 

illustration. They then made binary choices “yes” or “no” on 

each trial to categorize each flower by pressing “y” or “n”, 

respectively, and there were 54 trials in total. Immediately 

after their responses, feedback with the word “Correct” or 

“Incorrect” was displayed. Participants were ensured that 

they could guess at the beginning but eventually they would 

find out the simple way that made a flower an avlonia. Each 

participant was assigned to a category-inclusion feature 

consisting of one possible value from one of the five 

dimensions. Additionally, participants were also assigned a 

“Not-learned” category, defined by a value of a different 

dimension, of which participants were never informed or 

given feedback. Both of these assignments were 

counterbalanced across participants. In all phases of the 

experiment, all values of all stimulus features did not differ 

in their statistical proporties, such that flowers having the 

learned feature (i.e., that were avlonias) appeared on one-

third of the trials, while the other two-thirds of the trials 

included flowers displaying the other two values of the 

Learned category-inclusion feature. Likewise, one-third of 

the trials presented flowers in the Not-learned category, while 

the other two-thirds of the trials included flowers with the 

other two values of the Not-learned category-inclusion 

feature. Importantly, the category-inclusion features for the 

Learned and Not-learned categories were independent, such 

that one-ninth of all flowers were in both the Learned and the 

Not-learned categories (Both condition), two-ninths of all 

flowers were in the Learned category but not the Not-Learned 

category (Learned condition), two-ninths of all flowers were 

in the Not-learned category but not the Learned category 

(Not-learned condition), and four-ninths of all flowers were 

in neither the Learned nor the Not-learned category (Neither 

condition). Table 1 summarizes the distribution of values for 

the Learned and Not-Learned category-inclusion features. 

In the study phase, participants were asked to memorize 18 

flowers. Each flower was shown alone for 5s followed by a 

1s blank. Of the 18 flowers, four were in the Learned category 

but not the Not-Learned category (Learned), four were in the 

Not-learned category but not the Learned category (Not-

Learned), two were in both categories (Both), and eight were 

members of neither category (Neither). To incentivize 

memorization, participants were told that they would receive 

an extra bonus for remembering above 85% of the stimuli. 

None of these 18 flowers were presented during the learning 

phase (Table 1). 

Finally, in the testing phase, participants were told that they 

would see 54 flowers, one on each trial, and that their task 

was to remember whether or not stimuli were shown before 

in the study phase by pressing “yes” or “no”. Of the 54 

flowers, 18 were old—i.e. were presented in the studying 

phase—while the remaining 36 were new. Of these new 

flowers, four were from the Learned category only, four  were 

from the Not-learned category only, two were from Both, and 

eight were from Neither. Of note, these new flowers were not 

shown during the study phase. All flowers were presented 

randomly and each trial was self-paced. 

In sum, there were four types of trials in these three phases. 

Table 1 illustrates some possible combinations of Learned 

and Not-learned features. For each subject, one-third of trials 

included the learned category inclusion feature, which was 

chosen randomly from the three possible values from one of 

the five dimensions. Orthogonally, one-third of the trials 

included a not-learned category inclusion feature, i.e., the 

value of a dimension that could define a category of which 

participants were not aware of. This not-learned category 

inclusion feature was chosen randomly from the values 

belonging to the remaining four dimensions different from 

the dimension with the learned category inclusion feature. 

Membership in the Learned and Not-learned categories was 

independent of one another. 

 
Table 1: Examples of possible combinations of Learned and 

Not-learned feature. Each row indicates one possible 

combination for one participant. 𝐴1, 𝐴2  and 𝐴3 indicate three 
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possible values (denoted by 1, 2, and 3) of one randomly selected 
dimension out of five dimensions (denoted by A, B, C, D, and 

E; here we use only A and B for illustration purpose) -- number 

of petals, color of petals, shape of center, color of center, and 

number of sepals. 𝐵1, 𝐵2 and 𝐵3  indicate three possible values 

of another randomly selected dimension out of the remaining 

four dimensions. Both condition has learned category inclusion 

feature and not-learned category inclusion feature features, 

and Neither condition does not have learned category inclusion 

feature or not-learned category inclusion feature features. The 

number of trials shown in the table is for learning and testing 
phases only. The number of trials for each feature during the 

study phase is 2 (not shown).  

 
Learned 

feature 

Not-learned 

feature 

Number of 

trials 
Probabilities 

𝐴1 𝐵1 6 1/9 

𝐴1 𝐵2  6 1/9 

𝐴1 𝐵3  6 1/9 

𝐴2 𝐵1 6 1/9 

𝐴2 𝐵2  6 1/9 

𝐴2 𝐵3  6 1/9 

𝐴3 𝐵1 6 1/9 

𝐴3 𝐵2  6 1/9 

𝐴3 𝐵3  6 1/9 

Results 

Learning. We measured the learning performance by 

calculating the percentage of correct responses in the learning 

phase (Figure 2). We found participants were, in general, able 

to detect the single feature that categorized avlonias. The 

overall accuracy rates for both stimuli during the last twenty 

trials were 82.3%. Note that because we do not inform 

participants of the feature in advance, they necessarily begin 

at 50% accuracy at the beginning of the learning phase. 

 

 
Figure 2. Learning performance during learning phase. 

 

Memory Accuracy. We analyzed hit and false alarm (FA) 

rates separately for flowers of each type (Figure 3). To 

examine the learning effects for the four conditions (i.e., 

flowers that belong to the Learned category, Not-learned 

category, Both categories, Neither category), we 

implemented a two-way Bayesian repeated measures 

ANOVA. People exhibited increased hit rates for stimuli 

containing learned features included in Learned (MHit = 0.65, 

SDHit = 0.28) and Both (MHit = 0.70, SDHit = 0.35) conditions 

during the testing phase, but not toward stimuli not including 

those features in Not-learned (MHit = 0.56, SDHit = 0.28) and 

Neither (MHit = 0.58, SDHit = 0.22) conditions (Figure 2 and 

Table 2). We followed up with Bayesian paired samples t-

tests which showed evidence supporting that hit rates in the 

Learned condition were higher than those in the Not-learned 

(BF10 = 2.15) and Neither conditions (BF10 = 1.70), but not in 

the Both condition (BF10 = 0.25) (See the scale of evidence 

in Jeffreys, 1998). Similarly, there was evidence indicating 

that hit rates for the Both condition were higher than those in 

the Not-learned (BF10 = 135.38) and Neither condition (BF10 

= 30.56). Hit rates in the Not-learned condition were not 

different from the Neither condition (BF10 = 0.14). Also, 

there was weak evidence for FA rates in the Learned 

condition (MFA = 0.59, SDFA = 0.24) being higher than for the 

Not-learnsed (MFA = 0.53, SDFA = 0.23; BF10 = 0.43) and 

Neither condition (MFA = 0.53, SDFA = 0.19; BF10 = 0.61). 

We found no evidence for differences in other pairs of 

conditions (Both condition: MFA = 0.57, SDFA = 0.30). 

 

 
 

Figure 3. Hit and false alarm rates during testing phase. Left 
panel: hit rates. Right panel: false alarm rates. Stimulus with the 

category-inclusion value appeared in the Learned and Both 

conditions, and not in the Neither and Not-Learned conditions. 
* BF10 > 1, *** BF10 > 10. 

 

Table 2: Bayesian repeated measures ANOVA 

 

Rates Best models BFModel BF10 

Hit Learned 11.02 6.93×103 

False Alarm Learned 13.93 32.35 

  BF: Bayes Factor.  

 

We followed up with Bayesian paired samples t-tests which 

showed evidence supporting that hit rates in the Learned 

condition were higher than those in the Not-learned (BF10 = 

2.15) and Neither conditions (BF10 = 1.70), but not in the 

Both condition (BF10 = 0.25) (See the scale of evidence in 

Jeffreys, 1998). Similarly, there was evidence indicating that 

hit rates for the Both condition were higher than those in the 

Not-learned (BF10 = 135.38) and Neither condition (BF10 = 

30.56). Hit rates in the Not-learned condition were not 

different from the Neither condition (BF10 = 0.14). Also, 

there was weak evidence for FA rates in the Learned 

condition (MFA = 0.59, SDFA = 0.24) being higher than for the 
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Not-learned (MFA = 0.53, SDFA = 0.23; BF10 = 0.43) and 

Neither condition (MFA = 0.53, SDFA = 0.19; BF10 = 0.61). 

We found no evidence for differences in other pairs of 

conditions (Both condition: MFA = 0.57, SDFA = 0.30). 

To explore the effect of category learning separately on 

response bias and discriminability (e.g., 𝑑′), we conducted a 

hierarchical Bayesian parameter estimation analysis within a 

SDT framework. To that end, we fit the accuracy data from 

three groups, i.e., (1) all participants (n = 110), (2) experts, 

i.e., participants whose accuracy of the last twenty learning 

trials was greater than or equal to 80% (n = 66), and (3) non-

experts, i.e., participants whose accuracy of the last twenty 

learning trials was less than 80% (n = 44), to a SDT model in 

which the parameters were estimated using a hierarchical 

Bayesian approach (Lee, 2008). As such, two parameters of 

discriminability were estimated: (1) the sensitivity, 𝑑′, that is 

measured by the distance between the signal and noise 

distributions indicating the discriminability of the signal 

trials from the noise trials; and (2) the criterion or bias, 𝑐, that 

is measured by the distance between the actual criterion used 

for responding and the unbiased criterion (i.e., 𝑑′/2).  

The hierarchical model of SDT is able to partially pool 

individual parameters by taking into account group-level 

distributions, thus yielding more reliable estimates than non-
hierarchical, full individual difference models. In this model, 

individual parameters are drawn from group-level (normal) 

distributions with estimated means and standard deviations. 

The model assumes that the estimated means quantify 

discriminability and criterion-bias for each of the four 

conditions, and precision quantifies the similarity among 

individual behavior. 

In this implementation, our SDT model has four 

parameters per condition, reflecting properties of the average 

subject and how the subjects vary: mean discriminability 𝜇𝑑, 

precision of discriminability 𝜏𝑑 , mean criterion 𝜇𝑐 , and 

precision of criterion 𝜏𝑐 . The prior on the mean 

discriminability was set to be very wide so as to be 

uninformative over the range of reasonable d' values (i.e., 0-

4), with only a slight pull toward 0, consistent with previous 

research. Specifically, individual 𝑑𝑖  was drawn from a 

normal distribution with mean and precision 

𝜇𝑑  ~ 𝑁(0, 0.001)  and 𝜏𝑑  ~ 𝐺𝑎𝑚𝑚𝑎(0.001, 0.001) , 

respectively. Individual 𝑐𝑖  was then drawn from the normal 

distribution with two group-level parameters 

𝜇𝑐 ~ 𝑁(0, 0.001)  and 𝜏𝑐~ 𝐺𝑎𝑚𝑚𝑎(0.001, 0.001) . We 

implemented the hierarchical SDT model in JAGS, a sampler 

that utilizes a version of the BUGS programming language 

(Version 3.3.0) called from MATLAB (The MathWorks, 

Inc., Natick, Massachusetts, United States). Posterior 

distributions were approximated by 3 Monte Carlo Markov 

Chain methods with 5000 samples from each chain, after a 

burn-in of 1000 samples. Convergence of chains was 

evaluated with the �̂� statistic.  

We first estimated the mean sensitivity and mean criterion-

bias for each condition by calculating the posterior 

distributions of hit and FA rates for all participants--group 

(1). We found that in the Learned condition, this was skewed 

toward 1 for both hit and false alarm rates, significantly above 

the other three conditions (Figure 4A), indicating the people 

had both more hits and more false alarms in this condition. 

Furthermore, for participants from group (2, expert-learners), 

hit and FA rates in both Learned and Both conditions were 

skewed toward 1, significantly above than those under Not-

learned and Neither conditions (Figure 4B), whereas for 

participants from group (3, non-expert-learners) there were 

no differences (Figure 4C), suggesting the main effect was 

driven by the expert-learners. 

 

 
Figure 4. Posterior distribution of hit and FA rates for each of 

the four conditions. 
 

To further investigate differences in discriminability/bias 

we performed a two-way Bayesian repeated measures 

ANOVA on estimated individual sensitivity and criterion-

bias measures from each group. For individual sensitivity/d' 

of all subjects (1), we found main effects for Learned and 

Not-learned categories as well as their interaction, while for 

criterion-biases, we only found a main effect for the Learned 

category. For group (2, expert-learners), we found a 

significant main effect for the Learned category and a 

significant interaction between the Learned and Not-learned 

categories for both sensitivity and criterion-bias measures. 

For individual sensitivity of group (3, non-expert-learners), 

we found main effects for Learned and Not-learned 

categories as well as their interaction, while for criterion-

biases we did not observe main effects of categories or their 

interaction (Table 3). These results indicate that participants 

who clearly excelled at learning the category during the 

learning stage—which we here operationalize as those 

participants whose accuracy for the last twenty trials was 

above 80%—were more sensitive to (i.e., increased 

discriminability/d') other flowers in this category and also 

and tended to say 'old' more often for these in general  (i.e., 
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Learned and Both conditions) compared to flowers not in the 

category (i.e., Not-learned and Neither conditions). 

Follow-up Bayesian paired sample t-tests on sensitivity 

and criterion-bias for participants from group (1)—i.e. all 

participants—showed decisive evidence supporting that the 

sensitivity 𝑑𝑖  for the Learned condition (𝑑𝐿𝑒𝑎𝑟𝑛𝑒𝑑 = 0.18 ±
0.05 ) was higher than for the other three conditions 

( 𝑑𝑁𝑜𝑡−𝑙𝑒𝑎𝑟𝑛𝑒𝑑 = 0.07 ± 0.11 , 𝑑𝑁𝑒𝑖𝑡ℎ𝑒𝑟 = 0.12 ± 0.03 , 

𝑑𝐵𝑜𝑡ℎ = 0.38 ± 0.18), while the sensitivity 𝑑𝑖  for Both was 

higher than the Not-learned and Neither conditions. As for 

the criterion-bias 𝑐𝑖 , the evidence was also decisive 

supporting that the bias 𝑐𝑖  for the Learned condition 

(𝑐𝐿𝑒𝑎𝑟𝑛𝑒𝑑 = −0.32 ± 0.38) was lower than for the other three 

conditions ( 𝑐𝑁𝑜𝑡−𝑙𝑒𝑎𝑟𝑛𝑒𝑑 = −0.12 ± 0.23 , 𝑐𝑁𝑒𝑖𝑡ℎ𝑒𝑟 =
−0.15 ± 0.34, 𝑐𝐵𝑜𝑡ℎ = −0.39 ± 0.28), while the criterion-

bias 𝑐𝑖  for Both was lower than the Not-learned and Neither 

conditions. No strong evidence supported any differences 

between Not-learned and Neither conditions for both 

sensitivity 𝑑𝑖  and bias 𝑐𝑖 . (Table 4A).  

For participants from group 2, this analysis revealed strong 

evidence that support differences in sensitivity 𝑑𝑖  

(𝑑𝐿𝑒𝑎𝑟𝑛𝑒𝑑 = 0.290 ± 0.048, 𝑑𝑁𝑜𝑡−𝑙𝑒𝑎𝑟𝑛𝑒𝑑 = 0.119 ± 0.107, 

𝑑𝑁𝑒𝑖𝑡ℎ𝑒𝑟 = 0.126 ± 0.084 , 𝑑𝐵𝑜𝑡ℎ = 0.339 ± 0.083) in 

almost all pairwise contrasts except Not-learned versus 

Neither. The same trend was also found in bias 𝑐𝑖  (𝑐𝐿𝑒𝑎𝑟𝑛𝑒𝑑 =
−0.360 ± 0.359 , 𝑐𝑁𝑜𝑡−𝑙𝑒𝑎𝑟𝑛𝑒𝑑 = −0.073 ± 0.262 , 

𝑐𝑁𝑒𝑖𝑡ℎ𝑒𝑟 = −0.161 ± 0.365, and 𝑐𝐵𝑜𝑡ℎ = −0.543 ± 0.191). 

These results suggest that participants who mastered the 

learned features well in the learning stage were overall more 

sensitive to flowers with those features.  

For participants from group 3, the sensitivity 𝑑𝑖  of Learned 

condition (𝑑𝐿𝑒𝑎𝑟𝑛𝑒𝑑 = 0.069 ± 0.077) was higher than those 

of Not-learned condition (𝑑𝑈𝑛𝑙𝑒𝑎𝑟𝑛𝑒𝑑 = 0.003 ± 0.080) and 

lower than those of Both condition (𝑑𝐵𝑜𝑡ℎ = 0.391 ± 0.413), 

but not different from those of Neither condition (𝑑𝑁𝑒𝑖𝑡ℎ𝑒𝑟 =
0.096 ± 0.019). The sensitivity 𝑑𝑖  of Both condition were 

higher than those of the other conditions, and the 𝑑𝑖  of Not-

learned condition were lower than those of Neither condition. 

As for biases 𝑐𝑖 , the Bayesian paired t test did not show strong 

evidence supporting any differences between pairs of 

conditions ( 𝑐𝐿𝑒𝑎𝑟𝑛𝑒𝑑 = −0.264 ± 0.415 , 𝑐𝑈𝑛𝑙𝑒𝑎𝑟𝑛𝑒𝑑 =
−0.183 ± 0.155, 𝑐𝑁𝑒𝑖𝑡ℎ𝑒𝑟 = −0.135 ± 0.294, and 𝑐𝐵𝑜𝑡ℎ =
−0.132 ± 0.176 ), except moderate evidence suggesting 

differences in 𝑐𝑖  between Learned and Neither conditions as 

well as Learned and Both conditions. 

Figure 5 illustrates the joint posterior distributions of 

discriminability and bias for each condition. The main panel 

shows 15000 samples form the joint posterior of the mean 𝜇𝑑 

and 𝜇𝑐 . The side panels show the marginal distribution for 

each of the group-level means. For all subjects, the group-

level sensitivity 𝑑𝑖  differed the most between Both and Not-

learned conditions, and the group-level biases 𝑐𝑖  were 

negative in Both and Learned conditions. That is, participants 

exhibited better sensitivity toward flowers with learned 

features and a tendency to overrespond "yes" in the 

recognition memory tasks (Figure 5A).

 
Table 3: Bayesian repeated measures ANOVA 

 

Datasets SDT parameters Best models BFModel BF10 

All subjects 
𝑑𝑖  Learned+Not-learned+Learned×Not-learned 5.39×1026 1.43×1073 

𝑐𝑖  Learned 12.04 4.17×1013 

Experts 
𝑑𝑖  Learned+Not-learned+Learned× Not-learned 25.97 1.27×1051 

𝑐𝑖  Learned+Not-learned+Learned× Not-learned 884.46 1.27×1019 

Non-Experts 
𝑑𝑖  Learned+Not-learned+Learned× Not-learned 1.40×108 1.19×1013 

𝑐𝑖  Null model 4.26 1.00 

𝑑𝑖  and 𝑐𝑖  are individual sensitivity and biases estimated by the hierarchical Bayesian parameter estimation. 

 
 

Table 4A: Bayesian paired sample t test for sensitivity and bias 
with all subjects. Numbers shown in the table indicate Bayes 

Factors. 

 

Category comparison Sensitivity 𝑑𝑖  Bias 𝑐𝑖  

Learned vs. Not-learned 4.19×1012 6.04×104 

Learned vs. Neither 1.73×1023 9.03×102 

Learned vs. Both 8.77×1016 0.773 

Not-learned vs. Neither 3.24×102 0.183 

Not-learned vs. Both 1.53×1027 3.87×1010 

Neither vs. Both 8.72×1025 2.03×106 

 

 

 
 

 

Table 4B: Bayesian paired sample t test for sensitivity and bias 
with only subjects whose accuracy of the last twenty learning 

trials was above or equal to 80% (i.e., experts). Numbers 

shown in the table indicate Bayes Factors. 
 
 

Category comparison Sensitivity 𝑑𝑖  Bias 𝑐𝑖 

Learned vs. Not-learned 2.37×1014 1.75×105 

Learned vs. Neither 7.29×1022 1.48×102 

Learned vs. Both 3.06×102 1.04×103 

Not-learned vs. Neither 0.154 0.810 

Not-learned vs. Both 8.56×1019 3.25×1018 

Neither vs. Both 3.48×1019 3.85×108 
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Table 4C: Bayesian paired sample t test for sensitivity and bias 
with only subjects whose accuracy of the last twenty learning 

trials was less than 80% (i.e., non-experts). Numbers shown in 

the table indicate Bayes Factors. 
 

Category comparison Sensitivity 𝑑𝑖  Bias 𝑐𝑖  

Learned vs. Not-learned 1.15×102 0.411 

Learned vs. Neither 1.35 1.63 

Learned vs. Both 2.64×103 1.24 

Not-learned vs. Neither 4.26×106 0.30 

Not-learned vs. Both 4.92×104 0.41 

Neither vs. Both 9.94×102 0.16 

 

For subjects whose accuracy in the last twenty learning trials 

was greater than or equal to 80%, the difference in the group-

level sensitivity 𝑑𝑖  between Learned and Both conditions was 

less but the difference between Learned and Not-learned or 

Neither were greater. The group-level biases 𝑐𝑖  in Learned 

and Both conditions were more negative than those in Not-

learned and Neither conditions (Figure 5B). The results 

suggested that participants who learned category-relevant 

features well had better discriminability and stronger biases 

toward flowers with learned features. For subjects whose 

accuracy in the last twenty learning trials was less than 80%, 

the group-level sensitivity 𝑑𝑖  differed the most between Both 

and Not-learned conditions, whereas the group-level biases 

𝑐𝑖  became closer to each other across conditions (Figure 5C). 

The results indicated that participants who did not learn the 

category-relevant features well had worse discriminability 

and little biases toward flowers with learned features. 

Discussion 

In this study we measured the extent to which learning novel 

categories influences recognition memory, and we focused 

on sensitivity and biases estimated in Bayesian SDT 

modeling. First, we corroborated previous findings that 

people exhibited biases toward stimuli within a learned 

category compared to stimuli not in the category, even when 

the relevant features are equally sampled during learning and 

study (De Brigard et al., 2017). That is, hit rates of stimuli 

with learned features (i.e., Learned and Both trials) were 

higher than stimuli with other values for that feature (i.e., 

Not-learned and Neither trials) (Figure 2). False alarm rates 
showed the same pattern. Going beyond this, we first fit full 

Bayesian SDT models and compared two measures of 

discriminability—sensitivity and criterion-bias—in four 

conditions. We observed that experts exhibited greater 

sensitivity and more negative criterion-bias than non-experts. 

We found greater discriminability for Learned and Both 

conditions than Not-learned and Neither conditions, which 

suggested people formed better memories of studied flowers 

with learned features. It is also clear that there was a response 

bias for Learned and Both conditions (Figure 4), indicating a 

tendency to overrespond "yes" (i.e., the flower was shown in 

the study stage) for these, in addition to the actual improved 

memory sensitivity. These results suggest that category 

learning affected recognition memory, improving 

discriminability as well as affecting response bias. 

 

 
Figure 5: the joint distribution of mean discriminability d and 

mean bias c. The side panels show the corresponding marginal 

distribution. 𝜇𝑑  and 𝜇𝑐  are the group-level means of 
discriminability and criterion.  

 

In the current study we employed a yes/no learning strategy 

to create new categories for novel stimuli and ask how they 

influence subsequent recognition memory. Our findings of 

the influence of category information on recognition memory 

are consistent with findings that show the influence of 

existing categories (Bae et al., 2015; Persaud & Hemmer, 

2016) as well as newly learned episodic information about a 

category (Brady et al., 2018) on continuous recall measures. 

This suggests more insight into the influence of newly 

learned categories on memory looking at the effect of novel 

category learning on recognition memory employing 
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continuous measures. In addition, future studies may 

investigate whether different learning strategies may elicit 

the same biases. For example, supervised (i.e., with explicit 

guidance on category-inclusion criteria) and unsupervised 

(i.e., without explicit guidance), or active (i.e., trying to learn 

category-inclusion criteria with instant feedback) and passive 

(i.e., merely observing stimuli and their corresponding 

categories) learning processes may largely change biases 

toward stimuli with learned features. 

It is worth noting that, in the current study, we used a 

somewhat arbitrary threshold to classify expert and non-

expert learners. Future studies may apply Bayesian analyses 

to explore individual differences in learning and compare 

estimates of individual learning rates to individual 

recognition memory effects. This could provide a better 

characterization of the data rather than a binary division. 

Previous studies have mainly focused on category learning 

and memory during the course of an experiment, but how 

these categories are acquired is also critical in this processing. 

In this study, we used a set of well controlled stimuli – 

computer simulated flowers – so that we can manipulate the 

degree of exposure of different features and reveal how the 

learning process affects recognition memory. In future work, 

it would be useful to adopt more naturalistic stimuli to 

examine the mechanisms of category learning in real world 

settings and how this varies as a function of context and with 

different age groups. 

We applied SDT models to measure the effect of category 

learning on recognition memory. This effect may also be 

related to different learning procedures: for example, explicit 

reasoning and the nature and timing of feedback, which may 

or may not be directly associated with the learned feature 

only (Ashby & Maddox, 2005). Other categorization models 

such as the generalized context model (GCM, Nosofsky, 

1986), the general recognition theory (GRT, Ashby & 

Townsend, 1986), or the deterministic exemplar model 

(DEM, Ashby & Maddox, 1993) will be worth exploring to 

make more refined quantitative accounts of the influence of 

category learning on recognition memory. 

Finally, it is important to note that in the current study, 

participants were given binary choices in the testing stage 

(old/new). While this allowed us to apply signal detection 

models to probe the effect of category learning on recognition 

memory, to do so we needed to assume an equal variance 

signal detection model. Adopting a confidence scale and 

ROC analysis based on confidence rating data would provide 

a refined gauge of discriminability in the recognition memory 

task and allow us to measure the memory signal accurately, 

even in the case of unequal variance (as is common in 

recognition memory experiments). This would allow us to be 

more certain we had separately measured  response bias and 

discriminability and address the nature of the memory signal 

more clearly (e.g., address whether unequal variance signal 

detection model, or a hybrid threshold and signal detection 

model is more applicable; Wixted, 2007). Broadly, however, 

our results show that participants discriminate more toward 

stimuli with learned features than those with not-learned 

features. These results contribute to our understanding of how 

prior category learning influences recognition memory.  
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Abstract 

The present study investigated how younger and expert artists 
create artwork, paying special attention to the modification of 
conditions in the art-making process. Here, “process 
modification” is the means by which artists generate new 
artistic ideas/concepts by modifying elements of one’s own 
previous artwork. To examine whether younger artists use 
such modifications in the same manner as experts, we 
interviewed 28 contemporary artists (including 14 experts). 
Results revealed that most of the younger artists modified 
their work unsystematically. Younger artists drastically 
changed the subject/motif, method, and concept for their new 
artwork. Experts, in contrast, actively used process 
modification to create a new technique and generated a new 
concept based on their creative vision. 

Keywords: artistic creation; creative process; art-making 
process; process modification 

Introduction 
How do people create artwork and become experts in this 
domain? Are there differences in the cognitive processes 
underlying artistic creation between younger artists and 
experts? The present study investigated potential 
experienced-related differences in artistic creation by 
analyzing retrospective interviews with artists during the 
early and progressive stage of an artistic creation. 

Artistic Creation as Problem-Solving 
Artistic creation can be regarded as a creative problem-
solving process (Simon, 1973). In such a process, people 
search for goals, tools, and ways to make art in ill-defined 
problem space(s). To do so, they need to explore new 
frames in a problem space or generate a new problem space 
itself (i.e., problem finding). In such cases, it is difficult to 
use algorism or well-known heuristics, because goals and 
methods are not known in advance. Therefore, exploration 
becomes an essential process in such an endeavor. This 
study tries to describe the detailed process of such 
explorations adopted by artists during their long-term 
artistic activities. 

Cognitive Process of Art-Making 
Several studies have been conducted on human creativity, 

especially within the artistic realm (e.g., Getzels & 
Csikszentmihalyi, 1976; Mace & Ward, 2002; Okada, 

Yokochi, Ishibashi, & Ueda, 2009; Patrick, 1937; Stokes, 
2014). For instance, Getzels and Csikszentmihalyi (1976) 
and Mace and Ward (2002) emphasized the importance of 
the “problem-finding process” within artistic creativity. In 
particular, Getzels and Csikszentmihalyi (1976) studied art 
majors’ constructions of still life drawings. Their results 
indicated that students whose drawings were evaluated as 
highly creative were more exploratory in their work both 
before and during their drawings (i.e., arranging still life 
objects or changing tools more frequently). The authors also 
observed that after graduating from art school, the students 
who participated more in problem-finding activities were 
more successful in their careers. Thus, problem-finding 
could be a key activity for quality artistic creation.  

Mace and Ward (2002) conducted interviews with artists 
to identify how they generated ideas during creation process. 
The authors developed a process model of art-making with 
the following four steps: “Artwork conception,” “Idea 
development,” “Making artwork and idea development,” 
and “Finishing the artwork.” While the process model is 
helpful, Mace and Ward could only describe these four 
steps; they did not assess potential underlying mechanism 
for progressing through these steps. 

Through the using of art historical biographies, Stokes 
(2014) analyzed the process of artistic creation as problem-
solving activity, revealing that paired constraints play an 
important role. Constraints have been regarded as having the 
function of both promotion and inhibition (e.g., Simon, 
1973). Applying this idea to the artistic creation process, 
Stokes argued that precluding a constraint on the creative 
process (e.g., realism) helps promote another aspect of the 
paired constraint (e.g., abstraction). Using this framework to 
describe the creation process of famous artists such as 
Mondrian, Klee, Monet, and Chuck Close, Stokes suggested 
that the creative process proceeds as a cascading cycle until 
a new artwork is created.  

Recently, Okada and colleagues have conducted research 
on the medium-term or long-term creative process of art-
making, including the process of making a series of artwork 
based on certain artistic styles or themes/concepts (Okada, 
Yokochi, Ishibashi, & Ueda, 2009; Takagi, Okada, & 
Yokochi, 2013, Takagi, Kawase, Yokochi, & Okada, 2015; 
Yokochi & Okada, 2006, 2007). Of specific focus is how an 
artistic theme/concept is formed in an artist’s mind or how 
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sub-themes/sub-concepts are derived from the main 
theme/concept from a cognitive psychological perspective 
(Okada, Yokochi, Ishibashi, & Ueda, 2009; Yokochi & 
Okada, 2006, 2007). 

Yokochi & Okada (2007) revealed that artists develop 
expertise through several phases over the years. For instance, 
artists often construct a main theme, “creative vision,” after 
about 12 years of practice post-art school. Creative vision is 
a somewhat abstract theme/concept, such as “life and death,” 
“viewing/seeing,” and “relationship with others,” and is 
formed through long-term practice. The authors claimed that 
creative vision guides the construction of an artwork series 
in a certain direction, giving the artwork the consistency as a 
common base. Based on this creative vision, an artist finds 
suitable motifs/subjects and generates new artistic methods 
and creative ideas. 

Okada et al. (2009) investigated the creation process of art 
concepts focusing on “analogical modification,” which 
refers to cognitive processes tasked with generating new 
artistic ideas/concepts by analogically modifying elements 
of the artists’ previous artwork. The authors claimed that 1) 
patterns of art concept formation gradually change as artists 
accumulate experiences; 2) artists use their creative vision 
for analogical modification of their art-making process; and 
3) analogical modification enables artists to generate various 
artwork series, which are mutually connected with each 
other under the same creative vision. Takagi et al. (2013) 
also discovered, through ten months of qualitative and 
quantitative analyses of interviews with an artist, that the 
artist generated a new art concept for a new series. Here, the 
artist modified his creative process in multiple ways, 
including the modification of perception and action. We 
refer to these modifications in art-making process, including 
analogical modification and modification of perception and 
action, as “process modification” throughout this paper. 

For the present study, we investigated how artists form 
their goals, art concepts, and creative vision, as well as how 
they develop methods for creating artwork series, paying 
special attention to “process modification.” In terms of the 
development of artistic creative expertise, a creative vision, 
which is formed through many years of creative activity and 
consists of long-term intentions or goals for creation, serves 
as a framework to guide the process of creation (Yokochi & 
Okada, 2007). Because of such a creative vision, experts’ 
creative process would be substantially different from young 
ones. Therefore, we also examined similarities and 
differences between younger and expert artists in terms of 
this concept formation process. 

Methods 
Participants: We interviewed 28 Japanese contemporary 
artists, comprising 14 younger artists, “YNG” (including 7 
art major graduate students; 7 women, age range = 20-30 
years, mean age = 28.3 years, mean work experience = 8.64 
years, SD = 4.19), and 14 expert artists, “EXP” (4 women, 
age range = 40-60 years, mean age = 44.9years, mean work 
experience = 23.14 years, SD = 7.84). These artists have 

created various art forms, including paintings, sculptures, 
installations, photographs, and so on. All artists have 
participated in solo or group exhibitions every year, 
especially the expert artists, who have exhibited their work 
worldwide (including the USA and Europe). Those who 
participated were recommended by their peers, and in the 
case of the graduate students, they were nominated by their 
advisers. 
Procedure (Portfolio-interview): The present study was 
conducted from 2005 to 2018. Because each artist’s whole 
body of work was large in size, we interviewed each artist 
individually several times, using a portfolio of his/her entire 
work, which we referred to as a “portfolio-interview.” The 
average interview time was 8 hours for YNG and 10 hours 
for EXP. This difference in interview time was because 
experts had a longer career and created more artwork than 
did younger artists. The portfolio-interview was conducted 
in a quiet room, which was either an art studio, home, or our 
university office. All conversations were recorded with IC 
recorder and a video camera. 

The portfolio-interview was conducted as follows; First, 
we asked artists to explain each of their artwork pieces (e.g., 
“when and how was the artworks made?” “What kind of 
materials was used?” and “What was the idea/concept for 
the artwork?”). Second, we asked artists to identify what 
aspects of their work were kept and which were changed 
from prior work (e.g., “What (element) was changed from 
previous work?” and “What was a new or additional idea of 
this artwork?”). Finally, after explaining all of their work by 
reflecting on their entire career, the artists were asked 
whether they had their main art concept/theme (i.e., creative 
vision); if so, they were asked to report when they had 
realized this vision (e.g., “What is your main art 
concept/theme?” “When did you recognize the theme?” and 
“When were the turning points in your own art career?”). 
Additionally, we conducted semi-structured interviews as 
follows to gather information on: 1) originality in making 
and evaluating artwork (e.g., “What do you think about 
originality in your artwork?” and “Do you think it is 
important to represent originality in your work?”), 2) 
general process of making art (e.g., “How long do you 
usually spend on making/thinking about your work each 
day?” and “When and how do new ideas come up?”), and 3) 
educational background and biography of the artists. 
Analysis procedure (Analysis of the process modification 
type and developmental trajectory of creation): 
We analyzed the words used by the artists during the 
portfolio-interview and the features of their artwork. The 
coding framework was both theory and data driven. The 
categories for process modification included the categories 
for analogical modification (Okada, et al., 2009), and were 
guided by related theories regarding creativity and 
education/expertise, such as exploration (Boden, 2004), and 
reflection (Schön, 1983; Zimmerman, 2006). Further, the 
categories were inductively derived from the transcripts of 
the portfolio interview data, using the KJ method, which 
consists of a set of systematic procedures that seek to derive 
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a common (affinity) feature of data and ideas (Kawakita, 
1967).  

First, we specified the “main art concept and related sub 
art concept,” “method and related methodology,” and “motif 
(subject)” of each of artwork, and identified how each was 
changed from previous artwork. Second, we refined the 
categories for analogical modification (Okada et al., 2009) 
reflected in the interview data and features of works. Finally, 
the categories for process modification included and defined 
eight codes reflected in the interview data (see Table 1).  

The interview data and all photographs of artwork were 
organized and stored using the computer package, 
MAXQDA, which is designed to organize unstructured data 
in qualitative and quantitative analyses. We developed the 
categories of process modification, and coded the portfolio 
interview data with the help of MAXQDA. 

Results and Discussion 
Following analyses based on the process modification 
categories, we examined distinctions between YNG and 
EXP artists, particularly comparing before finding a creative 
vision, “EXP_before,” and after finding a creative vision, 

“EXP_after.” Besides, we assessed how the artists generated 
new art concepts and series after realizing their creative 
vision. 

Group comparisons in process modification types 
Table 2 shows the number of artists who used each type of 
process modification, and the mean number of times YNG 
and EXP used each type (before and after realizing their 
creative vision), and artists who had their creative vision, 
“AwCV” (before and after realizing their creative vision), 
respectively. 

Table 2 shows that there is little difference between the 
number of types between YNG and EXP_before groups in 
terms of “Subject modification” (YNG 79% vs. EXP_before 
93%), “Structure modification” (29% vs. 36%), and 
“Concept modification” (14% vs. 0%). Although there is a 
subtle difference in “Unsystematic change” (57% vs. 64%), 
which refers to changing the art subject/motif, methods, and 
concepts from prior work, YNG tended to use “Searching 
for suitable subjects and methods” (86% vs. 50%) and 
“Subject modification with reconsideration of artistic 
methods” (73% vs. 43%) more often than the EXP_before 

Table 1. Types of process modifications and definitions 
 
Reference Frame for 

Modification Modification Type Definition 

None Type 0 
No modification Reproducing a previous work 

Idea 

Type 1_1 
Unsystematic change 

Changing both a previous motif, method, and concept without 
any specific goal (or sub-goal) 
 e.g., changing all based on a temporal (casual) idea 

Type 1_2 
Searching for suitable subjects and 
methods based on prior artistic ideas 

Changing both motifs/subjects and methods to make artwork 
more suitable for the prior idea 
 e.g., searching motifs and methods based on the idea for 

prior work 

Methodology 

Type 2_1 
Quantitative modification 

Changing size or material of previous work without changing 
subjects and concepts (becoming bigger/smaller size than 
previous work) 
 e.g., changing the size of Mobiles 

Type 2_2 
Subject modification 

Changing motifs/subjects to make a new artwork by using the 
same methodology as for prior artwork 
 e.g., applying Mobiles to various motifs 

Type 2_3 
Subject modification with 
reconsideration of methods 

Reconsidering the methodology while making new artwork 
by changing subjects and realizing availability/possibility of 
the methodology 
 e.g., reconsidering availability of Mobiles methodology 

Sub or Main 
art concept 

Type 3 
Structure modification 

Generating a new methodology, in line with a sub art concept 
or a main art concept of artwork series 
 e.g., generating "Mobiles" as a new methodology of 

sculpture 

Creative vision Type 4 
Concept modification 

Forming a main art concept and generating sub-concept 
(artwork series) according to a creative vision 
 e.g., generating "Constellations" series based on Calder’s 

main theme "Universe" 
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artists. Moreover, artists using “Subject modification” ended 
up in a stalemate/dead-end (21% vs. 43%).  

Comparing the YNG and EXP_after conditions, although 
both used “Subject modification” (YNG 79% vs. EXP_after 
100%), YNG tended to use more “Unsystematic change” 
(57% vs. 27%), “Searching for suitable subjects and 
methods” (86% vs. 8%). In contrast, EXP_after tended to 
use more  “Structure modification” (29% vs. 73%) and 
“Concept modification” (14% vs. 82%). Furthermore, the 
number of EXP_after artists who experienced dead-end was 
reduced (21% vs. 9%). 

A two-way factorial analysis of variance (mixed plan, 
factor 1: artists (3 levels, YNG, EXP_before, and 
EXP_after) × factor 2: types of process modification (8 
levels)) was conducted on the number of times each artist 
group used the various process modification types. First, 
Mauchly’s test of sphericity revealed a sphericity violation 
(p < .01); hence, a Greenhouse-Geisser correction was used 
to adjust the p-values and degrees of freedom for interaction 
and main effects; p-values for simple main effects and 
multiple comparisons were determined based on Benjamini 
and Hochberg (1995).  

The results revealed a significant interaction, F (6.48, 
116.61) = 2.868, p = .0372, η2 = .121, and a significant 
simple main effect of factor 1 at “Searching for suitable 

subjects and methods” and “Concept modification” (F (2, 
36) = 6.384, p = .0169, η2 = .262; F (2, 36) = 4.733, p 
= .0449, η 2 = .208, respectively). YNG used more 
“Searching for suitable subjects and methods” than 
EXP_after (p = .0032); in contrast EXP_after used more 
“Concept modification” than YNG and EXP_before (p 
= .0022, p = .0218, respectively). 

The results indicate that artists in their early careers 
changed their artwork unsystematically and searched for 
suitable subjects and methods based on their previous 
ideas/concepts. Unsystematic refers to taking “a big jump” 
in creation, whereby it is difficult to identify commonality 
between new and previous artwork. Seeking suitable 
subjects and methods, however, is a means by which artists 
make more suitable artwork while keeping a prior art 
idea/concept. In fact, after enacting unsystematic changes, 
36% (YGN 18%) of the artists searched for suitable subjects 
and methods. This suggests that the artists generated sub 
goals within their art-making process to find appropriate 
methods and motifs after taking “a big leap” in their creative 
activity. 

Comparison in process modification types within 
AwCV group 
To examine differences among usage types before and after 

Table 2.	 The number of artists using each type of process modification and the mean number of times each process was 
used 

 

  YNG (n=14) EXP 
_before vision (n=14) 

EXP 
_after vision (n=11) 

AwCV_before vision 
(n=14) 

AwCV_after vision 
(n=14) 

Process 
Modification Type 

No. of 
artists 

Mean no. of 
times (SD) 

No. of 
artists 

Mean no. of 
times (SD) 

No. of 
artists 

Mean no. 
of times 

(SD) 

No. of 
artists 

Mean no. of 
times (SD) 

No. of 
artists 

Mean no. of 
times (SD) 

Type 0 
No modification 1 0.1 (0.27) 0 0.0 (0.00) 0 0.0 (0.00) 0 0.0 (0.00) 0 0.0 (0.00) 

Type 1_1 
Unsystematic 
change 

8 1.1 (1.23) 9 1.9 (2.27) 3 0.5 (0.93) 8 1.6 (1.39) 3 0.4 (0.84) 

Type 1_2 
Searching for 
suitable subjects 
and methods 

12 1.3 (0.83) 7 0.7 (0.83) 1 0.2 (0.60) 6 0.9 (0.95) 0 0.1 (0.53) 

Type 2_1 
Quantitative 
modification 

1 0.2 (0.80) 2 1.4 (4.29) 2 0.5 (1.51) 1 1.1 (4.28) 2 0.4 (1.34) 

Type 2_2 
Subject 
modification 

11 2.6 (3.13) 13 5.4 (3.98) 11 5.9 (3.24) 11 4.8 (3.96) 12 5.1 (3.37) 

Type 2_3 
Subject 
modification with 
reconsideration of 
methods 

11 1.7 (1.82) 6 3.0 (5.82) 7 1.8 (2.23) 4 0.9 (2.37) 9 1.7 (2.02) 

Type 3 
Structure 
modification 

4 0.5 (0.85) 5 0.6 (1.01) 8 3.5 (6.71) 2 0.4 (0.76) 6 2.9 (6.05) 

Type 4 
Concept 
modification 

2 0.4 (1.34) 0 0.0 (0.00) 9 4.3 (6.90) 0 0.0 (0.00) 10 3.8 (6.22) 

Dead end 3 0.2 (0.43) 6 0.5 (0.65) 1 0.1 (0.30) 2 0.4 (0.65) 0 0.1 (0.27) 
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finding a creative vision, we focused on AwCV (artists with 
creative vision) and compared the number of artists using 
each type of process modification from before to after 
realizing this vision (see Table 3). McNemar’s test was used 
for the matrix. The results indicate that the number of artists 
using “Concept modification” increased significantly after 
finding a creative vision (Holm’s adjusted p = .008). 

Next, we summed the number of times artists used each 
type of process modification before and after finding their 
creative vision and then conducted a two-way factorial 
analysis of variance (within-subjects, factor 1: types of 
process modification (8 levels) × factor 2: before and after 
finding creative vision (2 levels)). Mauchly’s test of 
sphericity revealed a sphericity violation (p < .01). 
Therefore, the Greenhouse-Geisser correction and 
Benjamini-Hochberg adjustment were employed. 

The results indicated a significant interaction, F (2.06, 
26.77) = 3.902, p = .0315, η2 = .231, and a significant 
simple main effect of types of process modification before 
and after finding a creative vision  (respectively, F (2.58, 
33.61)= 7.036, p = .0014, η2 = .351; F (1.67, 21.73)= 5.048, 
p = .0201, η2 = .280). AwCV before finding a creative 
vision used more “Unsystematic change” and “Searching for 
suitable subjects and methods” than after finding a vision. 
Conversely, AwCV after finding a vision used more 
“Concept modification” than before (respectively, F (1, 
13)= 6.421, p = .0249, η2 = .331; F (1, 13)= 4.924, p = .0449, 
η2 = .275; F (1, 13)= 5.192, p = .0402, η2 = .285). 
Additionally, “Subject modification” was used more 
frequently than all of other types of process modification 
before realizing a creative vision (p < .05), and more 
frequently than “Quantitative modification,” “Unsystematic 
change,” “Searching for suitable subjects and methods,” and 
“Subject modification with reconsideration of artistic 
methods” after realizing a creative vision (p < .05).  

These results suggest that artists who have not yet found 
their creative vision tended to change their artwork 

unsystematic or search for suitable subjects and methods to 
produce satisfactory work. After finding a creative vision, 
the artists typically generate new ideas/concepts and are 
productive based on this vision. For example, Figure 1 
shows the developmental trajectory of EXP_SG, who is one 
of our expert artists. He realized his creative vision on “How 
to See” eight years after beginning his career as a 
contemporary artist. During his first artwork series, called 
“Inside Outside,” the size of artwork became increasingly 
large; thus the series reached a deadlock. Because of his 
creative vision, he was able to generate new art concept, 
called “Institute of Intimate Museums (IIM)”, which aims to 
encourage viewers/visitors of his work to create their own 
private museums in spaghetti boxes. This “IIM” concept has 
helped him develop many series, referred to as  “museums 
in …” (e.g., windowed envelopes, garments, and toy boxes). 
Additionally, he generated new related ideas, including 
“Director in museum,” “Viewer in museum,” and so on. 
Other artists showed a similar pattern of development. We 
calculated z-scores on the mean number of artwork series 
before and after finding a creative vision (before: 14.69 vs. 
after: 23.39). This result suggests that the number of series 
increased after artists found their creative vision.  

General Discussion 
Several features of younger artists and experts (or artists 
before and after finding a creative vision) can be reviewed 
in terms of art-making process, specifically in terms of how 
artists engaged in process modification. 

Overall, the results suggest that younger artists and artists 
before finding a creative vision create successful work 
through the following processes: 

1) Using the same process modification, such as “Subject 
modification,” as experts. 

2) Using different types of process modification from 
experts, including “Unsystematic change” and “Searching 

Table 3. Number of artists (AwCV) using each type of process modification before and after finding a creative vision 
 
    After vision       After vision 

Type 0 No modification Absence Presence   Type 2_3 Reconsider Absence Presence 

Before vision Absence 14 0   Before vision Absence 5 4 
Presence 0 0   Presence 0 5 

                  

Type 1_1 Unsystematic Absence Presence   Type 3 Structure Absence Presence 

Before vision Absence 2 2   Before vision Absence 5 5 
Presence 9 1   Presence 0 4 

                  

Type 1_2 Search Absence Presence   Type 4 Concept ** Absence Presence 

Before vision Absence 5 1   Before vision Absence 3 11 
Presence 8 0   Presence 0 0 

                 

Type 2_1 Quantitative Absence Presence   Dead end Absence Presence 

Before vision Absence 12 1   Before vision Absence 8 5 
Presence 0 1   Presence 1 0 

       

Type 2_2 Subject Absence Presence  * p < .05，** p < .01 

Before vision Absence 1 1   n = 14, including 3 YNGs 
Presence 0 12     
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for suitable subjects and methods.” 
Conversely, expert artists and artists after finding a 

creative vision create their work by: 
3) Using “Concept modification” based on their creative 

vision. 
4) Generating new art concepts and producing more 

artwork series than before finding a creative vision. 
Half of the younger artists and artists in the early career 

stage tend to use Unsystematic change, which refers to 
changing the art subjects, methods, and concepts while 
creating artwork. As these artists are yet to clearly realize 
their superordinate concepts (or main theme/creative vision), 
they are unable to use Structure and Concept modification 
effectively. These younger artists, however, make new 
artwork while seeking suitable subjects and methods, which 
are based on concepts from prior work. This helps the 
younger artists form (or recognize) their own art-making 
theme. 

After realizing a creative vision, artists create their work 
by implementing Structure and Concept modification. A 
creative vision, which is formed through many years of 
activity and consists of long-term intentions or goals for 
creation, plays a vital role in guiding the use of process 
modification. Thus, artists who have found their creative 
vision are able to work more productively and creatively. 

Our results are consistent with the claim that artistic 
creation does not derive from “irrational and random 
thoughts/ideas” in creative writing (e.g., Oatley & Djikic, 
2017), while several researchers claim that creativity 
depends on blind variation and random retention (e.g., 

Campbell, 1960). Creative writing studies indicate that 
writers continue to explore the same theme (or related 
themes) in their literary work (e.g., Patrick, 1937; Oatley & 
Djikic, 2017). Although previous studies described the 
exploration in the creation of poetry, literature, and fine art 
(e.g., Boden, 2010), they have not revealed how the 
exploration occurs or what kind of exploration contributes 
to longitudinal creative work. 

Regarding these questions, using in-depth analysis of 
dancers’ practice, Shimizu and Okada (2018) revealed that 
expert breakdancers engaged in “exploratory practice” to 
generate new and original skills. They claimed that “The 
dancers practiced with multiple goals, that is, not only to 
improve the quality of the skills but also to develop original 
and flexible skills that fit well into a performance by 
varying aspects of domain skills and by combining those 
domain skills with other domain skills” (Shimizu & Okada, 
2018, p. 2392).  

Artistic creation is also a process of exploring for a theme, 
concept, method, and motif to achieve one’s goal as an artist. 
The present study reveals extensive explorations in artistic 
creation via process modification. A creative vision guides 
artists’ creation and enables them to give consistency to 
their work. The formation of a creative vision seems to 
correlate with reconsiderations of the methods, subjects, and 
ideas for artwork series while reflecting on art-making 
processes and experiences. Thus, the process modification 
framework is useful when analyzing the details of the 
development of artwork series and creative expertise.  

 
 

Figure 1. The developmental trajectory of artwork series created by EXP_SG 
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Abstract

As adults, we use polite speech on a daily basis. What do chil-
dren understand about polite speech? Looking at children’s po-
lite speech comprehension can help examine children’s prag-
matic understanding more generally, and can be informative
for caregivers who want to teach children what it means to be
polite. Even though children start to produce polite speech
from early on, there is little known about whether they under-
stand intentions behind polite language. Here we show that by
3 years, English-speaking preschool children understand that it
is more polite and nicer (and less rude and mean) to use polite-
ness markers such as “please” when making requests, and by
4 years, they understand that the use of these politeness mark-
ers indicates that the speaker is more socially likeable and is
more likely to gain compliance from their conversational part-
ners. This work can help lay the foundation for future work on
children’s understanding of polite speech and pragmatic devel-
opment more generally.

Keywords: Politeness, pragmatic development, online experi-
ment

Introduction
We use and hear polite speech on a daily basis: polite utter-
ances range from simple words of apology (“sorry”) or grat-
itude (“thanks”) to compliments (“I love your dress!”) and
requests (“Can you please open the window?”). Yet polite
utterances are seemingly inefficient and even misinformative:
speakers say “Can you please . . . ” when it should suffice
to say, “Open the window.” These facts are a mystery for
frameworks which describe communication in terms of effi-
cient information transfer (e.g., Buhler, 1934; Goodman &
Stuhlmuller, 2013; Shannon, 1948): If language is a tool for
transferring information, speakers should be as efficient as
possible in their communication to prioritize informativity.
Nonetheless, everyday politeness is ubiquitous in everyday
language use, and adults tend to use strategies to be polite
even while arguing (Holtgraves, 1997).

So why do people speak politely? Linguistic theories as-
sume that people’s utterance choices are motivated by so-
cial concerns, framed as either maxims (Leech, 1983), social
norms (Ide, 1989), or listener’s and/or speaker’s public iden-
tity (face; Brown & Levinson, 1987). For example, Brown &
Levinson (1987)’s theory predicts that if a speaker’s intended
meaning contains a threat to the listener’s face or self-image,
the speaker’s utterance will be less direct and less informa-
tive. For example, if a speaker considered that saying “Open
the window” will give the impression that she is in a position

to give orders to the listener, she could instead say “Can you
please open the window?”, using a more indirect form of re-
quest to give the other person a sense of autonomy or freedom
from imposition (Clark & Schunk, 1980). Thus, while it may
hinder the goal of efficient information transfer, using polite
speech can help the speaker save the listener’s face while si-
multaneously communicating her own positive social goals
(Yoon, Tessler, Goodman, & Frank, 2017).

Do children speak politely, and if so, what do they un-
derstand about polite speech? Previous research shows that
children begin producing polite speech early on; They pro-
duce “please” at 2.5 years (Read & Cherry, 1978), and re-
quest forms increase in their variety and frequency with age
(Bates, 1976; Bates & Silvern, 1977; Bock & Hornsby,
1981; Ervin-Tripp, 1982; Nippold, Leonard, & Anastopou-
los, 1982). Young children learn to produce different forms of
requests depending on context: For example, by three years
children are able to vary their utterances based on whether
they are instructed to “tell” versus “ask” an addressee to given
them a puzzle piece (Bock & Hornsby, 1981). And even at
two years, children are able to modify their requests to make
them more polite (“ask in the nicest way possible”; Bates &
Silvern, 1977). Hence, children’s production of polite speech
seems to parallel adult speakers’ desires to produce utterances
with appropriate levels of face-saving.

While children appear to produce polite speech from an
early age, less is known about whether they understand po-
lite speech. Examining children’s comprehension of polite
speech is important for a number of reasons. First, children’s
polite speech understanding can reveal their inferential abili-
ties underlying more general pragmatic understanding: going
beyond what was literally said to infer what was intended.
For example, children need to understand that, in saying “can
you open the window?” the speaker does not literally ques-
tion the listener’s ability to open the window but rather wants
to make a polite request. Thus, understanding what children
comprehend about polite speech can help see how children
are able to infer speaker’s intentions behind utterances.

Second, understanding polite speech can have practical im-
plications for education, as caregivers often care about teach-
ing their children to be more polite. Indeed, from very early
on, parents teach children to follow normative rituals to say
“please”, “thank you”, “hello” and “good-bye” (Gleason,
Perlmann, & Greif, 1984). It can be enlightening to know
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whether and when children understand positive implications
of following these norms.

Third, examining children’s comprehension of polite
speech as compared to their production is meaningful, in that
children’s comprehension can reveal more abstract represen-
tations and inferences about language than their productivity
(e.g., Fisher, 2002): Children’s ability to say “please” early
on does not necessarily indicate that they understand saying
“please” is more polite, nicer and socially apt, as children
may simply obey or imitate what their caregivers tell them to
say without understanding its meaning.

Research on children’s comprehension of polite speech has
received less focus than research on their production of polite
speech. Moreover, the few studies that did examine children’s
understanding of polite speech have been largely inconclu-
sive. Though there was some initial evidence to suggest that
producing a request with “please” is judged to be polite by
three years of age (Bates, 1976; Bates & Silvern, 1977), in
a later study, the judgment of “please” as being polite was
only replicated starting at five years of age, but not younger
(Nippold et al., 1982). These initial studies also lacked statis-
tical tests to assess each age group’s performance, and did not
systematically manipulate cues other than linguistic markers
(e.g., prosody or facial expressions).

In addition to children’s recognition of politeness markers,
there are also many open questions about their abilities to rec-
ognize the intentions underlying polite speech. For example,
do children know that the word “polite” should be associated
with politeness rules people abide by (e.g., saying “please”)?
Relatedly, do children recognize polite speech as being pos-
itively valenced, such that they think it is better and nicer to
say polite things? Do children understand the social implica-
tions of speaking politely? For example, polite people may
be more likely to get their wishes granted (“I will pour him
more water because he was nice”) and may be better social
play partners compared to those who are impolite. Finally,
what cues to politeness do children recognize? Do they rec-
ognize linguistic politeness markers such as “please,” or “can
you,” or both? Or do they rely on prosodic cues that make ut-
terances sound more respectful, or on facial expressions that
make a person look kind?

In this current work, we sought to answer these questions,
and test what 2- to 4-year-old children understand about re-
quests using politeness markers. Across three experiments,
we presented stories about speakers who decided to speak
politely (e.g., “Please pour me more water”) or impolitely
(“Pour me more water”) and asked child participants to make
judgments between the two speakers. We examined in each
experiment whether: (1) children are able to reason about
speakers using polite speech as being relatively more “po-
lite” and “nice” and less “rude” or “mean” than speakers not
using polite speech; (2) they can reason about social implica-
tions of using polite speech (e.g., politeness as a sign of a nice
play partner, or greater likelihood of compliance from the ad-
dressee); and (3) they show improvement with age for these

lines of reasoning. We also examined whether children need
additional cues to politeness such as facial expressions (Expt
1) or prosodic cues (Expt 2), or they can make use of lin-
guistic politeness markers alone (Expt 3) to make appropriate
inferences about speakers.

Experiment 1
In Experiment 1, we tested whether 3- to 4-year-old children
were able to understand the implications of using simple po-
liteness markers, based on linguistic cues of interest (whether
the speaker says “please,” “can you”) and other cues (facial
expressions and prosodic cues) that make polite speech more
salient and naturalistic.

Methods
Participants 3-year-old (n = 20; 12 F, Mage = 3.61 years,
SDage = 0.22) and 4-year-old children (n = 18; 6 F, Mage
= 4.38 years, SDage = 0.25) were recruited from a local
preschool. An additional 3 children were tested but excluded
due to failure on the practice questions (n = 2) or completion
of fewer than half of the test trials (n = 1).

Stimuli and design We designed a picture book (see Fig-
ure 1) with twelve stories in which a protagonist is ap-
proached by two speakers, one of whom makes a request by
producing an utterance with a politeness marker (e.g., “Please
pour me more water”), and the other produces an utterance
without (“Pour me more water”). There were three types of
politeness marker that could be used: “please” (as in “Please
pour me more water”), “can you” (“Can you pour me more
water”), and “can you please” (“Can you please pour me more
water”).

We designed six question types to ask participants follow-
ing the presentation of the stories: four speaker attribute
questions (polite: “Which one was more polite?”; rude:
“Which one was more rude?”; nice: “Which one was nicer?”;
mean: “Which one was meaner?”) and two social implica-
tion questions (play partner: “Which one would you rather
play with?”; compliance: “Which one will [get what they
want]?”). Each participant would be asked one of the four
speaker attribute questions, followed by one of the two social
implication questions.

In Experiment 1, all utterances were produced live by the
experimeter, with appropriate proodic cues and facial expres-
sions for each request: Utterances with politeness markers
were produced by kind voice and facial expression, whereas
utterances lacking politeness marker were produced with an-
gry voice and facial cues.

Procedure The experimenter presented to the child a sto-
rybook with a total of thirteen stories about different charac-
ters. In the practice phase, the child heard a story with one
clearly mean character (Drew kicked Carol) and one clearly
nice character (Graham gave Carol a gift). After a reminder
of what each character did, the experimenter asked the par-
ticipant: Which one was being meaner? and Which one was
being nicer? If the child answered the question wrong the first
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Figure 1: Example story.

time, the experimenter read the story one more time, saying,
“Let’s think about the story one more time.” Only children
who correctly answered both questions in the first or second
attempt were included in the analyses.

In the test phase, the child heard twelve stories, in each
of which they saw one speaker who decided to speak po-
litely (Jean wanted more water in her cup. Jean said to
Fred, “Please pour me more water”) and another speaker
who spoke impolitely (Suzy also wanted more water in her
cup. Suzy said to Fred, “Pour me more water.”). Af-
ter a reminder about what each speaker said, the child was
asked a total of two questions. For the first question, the
experimenter asked one out of four possible questions for
speaker attribute: “Which one was being more polite [more
rude/nicer/meaner]?” For the second, social implication
question, the experimenter either asked about play partner
(Which one would you rather play with?) or likelihood of
compliance (e.g., Which one will Fred give water to?). The
order of story types and question types was counterbalanced.

Results and Discussion
We looked at the proportion of correct responses to various
questions comparing speakers who used a politeness marker
and spoke kindly, and speakers who did not use a politeness
marker and spoke meanly (Figure 2, top row). A mixed-
effects logistic regression predicting accuracy based on age,
question type and politeness marker type1 showed there was
an improvement with age (β = 0.2, p = .026). The regression
model also revealed that children seemed to find some ques-
tion types easier than others: Responses to nice and mean
questions were more accurate than to polite and rude ques-
tions (β = 0.8, p = .002), whereas social implication ques-
tions (play partner and compliance) were overall more dif-
ficult compared to speaker attribute questions (polite, rude,
nice, and mean; β = -0.33, p = .006).

1for Experiments 1 and 2, we use this model structure with a
maximal random effect structure that converges: accuracy ˜ age
x question type x politeness marker type + (1 | item),
where age is continuous, centered and scaled. All categorical
variables were deviation coded, with specified contrasts of interest
for the question type. Significance was calculated using the standard
normal approximation to the t distribution (Barr, Levy, Scheepers,
& Tily, 2013).

Looking more closely at responses for each of the ques-
tion types, children from both age groups tended to accu-
rately answer the polite, nice, mean, rude, and play partner
questions overall (3-year-olds’ mean accuracy range: 0.58 -
0.88; 4-year-olds’ mean accuracy range: 0.68 - 0.9), indicat-
ing correctly that the speaker who used a politeness marker
was more polite and nicer, and less mean and rude, and was
likely a better play partner. For the compliance question,
4-year-olds overall answered correctly that the speaker who
used politeness marker will likely get what they want from
the listener (M4y = 0.75, p < .01), but 3-year-olds did not
perform above chance (M3y = 0.58). As for the different po-
liteness marker types, both age groups overall tended to give
correct answers based on all three markers, but especially
“can you please” (3-year-olds: Mplease = 0.66, Mcanyou = 0.72,
Mcanyouplease = 0.74; 4-year-olds: Mplease = 0.73, Mcanyou =
0.77, Mcanyouplease = 0.84).

In sum, in this first experiment, we saw preliminary evi-
dence that children pay attention to some cues to politeness
and are able to use these cues to infer whether speakers are
relatively polite, rude, nice or mean, and whether speakers
are good play partners and are likely to get what they wanted
from their addressees. 4-year-olds answered questions accu-
rately more often compared to 3-year-olds, especially for the
question about addressee’s compliance with the speaker’s re-
quest. In general, however, both age groups tended to be ac-
curate when all the possible cues were used to signal that one
speaker was polite (used “can you please”, spoke with a kind
tone and face) and the other speaker wasn’t (did not use a
politeness marker, spoke with an angry tone and face).

There were a number of remaining issues from Experiment
1. Children may not have used the linguistic politeness mark-
ers (e.g., “please”) per se, and rather prosodic and facial cues
that accompany these markers. That is, children may have
relied on the speaker’s kind voice and face rather than their
use of “please” to evaluate their niceness or likeability as a
play partner. Similarly, greater accuracy for some questions
over others (e.g., nice > polite) may have been due to greater
association between some of the words and prosodic and fa-
cial cues (e.g., a kind face may be seen to signal niceness
more than politeness), not due to greater understanding for
those words or concepts. Another concern is that the ex-
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Figure 2: Experiment 1 and 2 results. Proportion of correct responses to questions comparing between a speaker who used a
politeness marker (where blue indicates ”please”, yellow ”can you”, and red ”can you please”) versus a speaker who did not.
Data are binned into one-year age groups. Each row represents data from a different Experiment. Columns represent different
questions asked. Dashed line represents chance level at 50% (i.e., if participant were guessing at random).

perimenter was aware of the manipulations (i.e., they knew
which speaker was supposed to be “polite”) and thus could
have affected the presentation of these speakers in ways that
are not consistent across all participants. In our next two ex-
periments, we sought to remove these potential confounds.

Experiment 2
In Experiment 1, we saw initial evidence that children can
use some combinations of linguistic, prosodic, and facial
cues to politeness. In Experiment 2, we examined whether
children can make similar judgments using linguistic and
prosodic cues only, without facial expressions. For this, we
conducted a preregistered experiment where we used pre-
recorded voiceovers to present speaker utterances, so that (1)
we could look at children’s judgments based on linguistic
markers and prosodic cues only, and (2) we could remove the
role of the experimenter in presentation of these utterances.

Methods
Participants 3-year-old (n = 16; 8 F, Mage = 3.56 years,
SDage = 0.29) and 4-year-old children (n = 22; 13 F, Mage
= 4.5 years, SDage = 0.32) were recruited from a local
preschool. An additional 5 children were tested but excluded
due to failure on the practice questions.

Stimuli and design The design was identical to Experi-
ment 1. Stimuli were the same as Experiment 1 except two
changes: (1) Instead of a picture book, we presented the sto-
ries on a tablet; (2) the speakers’ utterances were now pre-
sented as recorded voiceovers. The voiceovers were recorded
by native English speakers, and contained prosodic cues that

matched the presence/absence of a politeness marker (e.g.,
the speakers were instructed to record “Please pour me more
water” with a “kind voice”” and “pour me more water” with
an “angry voice”).

Procedure The procedure was identical to Experiment 1,
except for the following change: The participants now had to
tap on a speaker on tablet in order either to hear them speak,
or to choose an answer to the questions asked.

Results and Discussion
Overall we saw similar patterns of results in Experiment 2
(Figure 2, bottom row) compared to Exp. 1. A mixed-effects
logistic regression predicting accuracy based on age, ques-
tion type and politeness marker type showed that accuracy
improved with age (β = 0.25, p = .002), and children made
accurate judgments more often when the politeness marker
was “can you please” than when the marker was “please” or
“can you” (β = 0.33, p = .019). There was no main effect of
question type, but there was an interaction between age and
question type such that performance for nice and mean ques-
tions saw greater improvement with age than for polite and
rude questions (β = 0.57, p = .011).

For children’s responses to different question types, 3-year-
olds’ accuracy did not differ from chance level for nice, mean,
and play partner questions, but their means numerically ex-
ceeded 50% for all question types, and 4-year-olds accurately
answered questions of all types (3-year-olds’ mean accuracy
range: 0.6 - 0.88; 4-year-olds’ mean accuracy range: 0.66 -
0.9). For politeness marker types, 3-year-olds’ performance
did not differ from chance for “please” and “can you”, but
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both age groups tended to answer questions about different
politeness markers accurately overall (3-year-olds: Mplease
= 0.63, Mcanyou = 0.61, Mcanyouplease = 0.72; 4-year-olds:
Mplease = 0.7, Mcanyou = 0.72, Mcanyouplease = 0.8).

In sum, across Experiments 1 and 2, we saw that children
tend to make accurate judgments about speakers given their
use of politeness markers, especially “can you please,” to-
gether with prosodic cues, and children get better with age
in their use of politeness cues to respond to questions about
speaker attributes and social implications.

Experiment 3
We conducted a third, preregistered experiment to see
whether children are able to evaluate speakers based on lin-
guistic markers only, without any other supporting cues such
as prosodic cues or facial expressions.

Methods
Participants We recruited two samples of participants: one
from the same local nursery school as Experiments 1 and 2,
and the other from Lookit (https://lookit.mit.edu/), an
online platform for child research participation, in which par-
ents and their children can participate together. The nursery
school sample consisted of 3-year-old (n = 24; 11 F, Mage =
3.65 years, SDage = 0.26) and 4-year-old children (n = 25; 13
F, Mage = 4.48 years, SDage = 0.28). An additional 3 children
were tested but excluded due to failure on the practice ques-
tions. The online sample consisted of 2-year-old (n = 23; 12
F, Mage = 2.48 years, SDage = 0.29), 3-year-old (n = 31; 15
F, Mage = 3.59 years, SDage = 0.27) and 4-year-old children
(n = 27; 12 F, Mage = 4.46 years, SDage = 0.29). An addi-
tional 28 children were tested but excluded due to failure on
the practice questions (n = 19) or completion of fewer than
half of the test trials (n = 9).

Stimuli For the nursery school sample, stimuli were iden-
tical to Experiment 2 except that the voiceovers for all ut-
terances had the same prosody: All utterances ended with a
rising intonation. For the online sample, stimuli were iden-
tical to what the nursery school participants saw except that
the story narrations (other than speaker utterances) were also
pre-recorded such that parents did not need to read the stories
aloud to their children.

Procedure For the nursery school sample, the procedure
was identical to Experiment 2. For the online sample, the
procedure was similar except that parents and children par-
ticipated together at home and there was no experimenter
present. Parents accessed the webpage for the study and gave
their consent for participation, and then read instructions to
proceed through the different stories, which specifically asked
the parents to not tell their children correct answers for the
questions.

Results and Discussion
Experiment 3 For Experiment 3, we were able to look at
how children answered the polite and rude questions given

the same three politeness marker types as in Experiments 1
and 2, with three age groups including 2-year-olds. (Fig. 3).

A mixed-effects logistic regression controlling for the ef-
fect of sample2 showed improvement with age (β = 0.19, p =
.033) as well as better performance for “can you please” than
“please” and “can you” together (β = 0.42, p = .002), consis-
tent with Experiment 2 results. Performance for “please” was
also better than for “can you please” and “can you” together
(β = .3, p= .027), which may be surprising given that we pre-
viously did not see the same effect in Experiments 1 and 2.
One possible explanation is that controlling for prosodic cues
in Experiment 3 actually made it easier to use “please” as a
politeness cue. Because we had stripped all the other vari-
ations, it may have made the contrast between the presence
and absence of the marker “please” more salient.

Additionally, children were better with the polite questions
than rude overall (β = -0.19, p = .04), but especially given
“please” (β = .42, p = .002). Finally, children showed a
greater improvement with age for “can you please” compared
to “please” and “can you” together (β = 0.38, p = .004).

All experiments Did children perform better given facial
and/or prosodic cues, or were linguistic politeness mark-
ers sufficient? To see any potential effect of experiment on
children’s performance, we conducted an exploratory mixed-
effects logistic regression on all three experiments together3.
The regression model showed no significant main effect of
experiment, suggesting that children did not perform more
poorly when facial and prosodic cues were removed, and they
were able to make accurate judgments based on linguistic
cues alone. The model also showed that children improved
with increasing age (β = 0.33, p < .001) and that children
were more accurate with “can you please” than “please” and
“can you” (β = 0.25, p = .011), confirming results from each
individual experiment. Additionally, the model showed that
children became better at judging the politeness marker “can
you please” with age (β = 0.73, p = .005), and that children
answered polite questions better than rude questions about
the marker “please” (β = 0.26, p = .006)

General Discussion
What do young children understand about polite speech? In
three experiments, we looked at how 2- to 4-year-old chil-
dren reason about making requests with or without simple
politeness markers such as “please”, “can you” and “can you
please.” By 3 years, children pay attention to the use of polite-
ness markers to accurately judge whether that speaker is rela-
tively more polite, rude, nicer or meaner compared to another
speaker. By 4 years, children reliably infer that a speaker
who uses a politeness marker is a better play partner and more
likely to get what they want. Across all three experiments, we
saw a clear developmental trend such that children improved

2Model structure: accuracy ˜ sample + age x question
type x politeness marker type + (1 | item)

3Model structure: accuracy ˜ sample + experiment + age
x question type x politeness marker type + (1 | item)
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Figure 3: Experiment 3 results. Conventions are identical to Figure 2.

in their reasoning about polite speech with increasing age. We
observed no large experiment effects as we eliminated facial
and prosodic cues; instead, all these inferences appeared to
be supported by linguistic markers alone.

Even though children have been shown to produce polite
speech such as “please,” evidence has been sparse and incon-
clusive for whether young children below 5 years compre-
hend speaker attributes and intentions based on polite speech.
Here, we found that children are sensitive to the use of polite-
ness markers in speech, and are able to use these markers to
infer the speaker’s attributes (e.g., niceness) by 3 years, and
consequent social implications by 4 years. These ages are
closer to the age of first reliable production of polite speech
than have been suggested by earlier work.

Children in the US are often explicitly taught and prompted
to use politeness markers such as “please” in their requests
from early on (e.g., “What’s the magic word?”; Gleason et
al., 1984), thus they may quickly learn to use these markers
as a rule in order to get what they want. They also might
hear other remarks that pair politeness markers with positive
words (e.g., “You should be nice and say please”), which may
help them learn the association between polite speech and
positive attributes. Gradually, children may recognize more
subtle social processes that are related to polite speech pro-
duction: Adults may praise and reward children who spoke
politely, and children themselves may like peers who ask for

permission to play with their toys rather than take the toys
away without asking. Future work with corpus data analysis
looking at these interactions between children and others may
reveal important conversational patterns that help children ac-
quire social meanings of polite speech.

There are limitations to the current work that present other
opportunities for future research. Because this work looked
only at the behaviors of English-speaking children with a rel-
atively high socioeconomic status in the US, it is an open
question how children with different language and cultural
background may develop understanding of polite speech.
Cross-cultural investigation of what markers are present in
other languages, cultures and backgrounds, as well as how
those markers are acquired, will be informative.

Also, we did not manipulate the social status of speakers
or addressees. Though not explicitly stated, the visual depic-
tion and narration used for the current work suggested that
speakers were communicating with their peers only. How-
ever, one key prediction from politeness theory is that speak-
ers will adjust their utterances based on the status of the ad-
dressees (Brown & Levinson, 1987). Indeed children adjust
own their speech based on the listener status and age: Even
at two years, children use a polite form of request (“Can I
have. . . ”) to an adult but an imperative form (“Give me. . . ”)
to a peer (Shatz & Gelman, 1973). Thus, future work should
examine how children use cues to politeness to judge speaker
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intentions in different contexts, including varied status differ-
ences between speakers and listeners.

In sum, the current work showed that young children un-
derstand implications of using simple politeness markers in
requests. A broader understanding of the emergence of po-
liteness may offer insights into how children become profi-
cient users of language across the wide range of social situa-
tions that they encounter.

All experiments, data, and analysis code are
available in the public repository for the project:

(link will be available upon acceptance)
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Abstract
Previous studies including Ramani and Siegler (2008) have
shown that playing a number board game improved students
performance on several numerical tasks, including numeral
identification, magnitude comparison, counting and number
line estimation. However, the computational mechanism
underlying such number sense acquisition remains unclear.
Here, we aim to fill this gap by building a model that
simulates play of the game as well as the basic numerical
tasks. We hypothesize that cognitive components that are
used in the basic tasks are recruited to work together when
children play the game, so that the learning induced by
playing the game also manifests itself in those tasks. We
reproduced the empirical findings with a neural network model
implementing our hypothesis. This computational approach
demonstrates how a single model that coordinates components
of number processing in different modalities (visual, language
and spatially-guided action) can explain the number sense
acquisition in number board game playing.
Keywords: Numerical Cognition; Mathematical Education;
Neural Networks; Board Games

Introduction
Mathematical concepts are notoriously hard to learn, perhaps
because they often involve a range of distinct properties.
Even the seemingly simple mathematical concepts, such
as the natural numbers, may have diverse properties and
multiple representations. For instance, the concept of “five”
can be grounded as the cardinality of a set; as a position
on a line; as a distance in space; or as a number of
events in a temporal sequence. In fact, researchers have
summarized these observations and proposed that humans use
several grounding metaphors to understand numbers (Lakoff
& Núñez, 2000), including arithmetic as object collection,
arithmetic as the use of a measuring stick and arithmetic as
motion along a path.

Given these diverse groundings, the perceptual variance
of natural numbers may be much larger than that of many
ordinary concepts. For example, “five dogs”, “five houses”,
and the position in a row between 4 and 6 are perceptually
very different, yet they can all instantiate the number “five”.
How do children learn to link different representations of
numbers, particularly non-symbolic ones, such as cardinality
and distance in space, to symbols such as verbal number
words and written Arabic numerals? This problem is called
the symbol grounding problem (Harnad, 1990), thought to be
equivalent to the problem of determining how we assign a
meaning to a symbol (in our case, a number word).

Many researchers have attempted to provide an answer
to this problem. One popular account, the approximate
number system (ANS) mapping account, assumes that a
symbol acquires its numerical meaning by being mapped
on a non-verbal and innate ANS. Evidence supporting this
hypothesis includes longitudinal studies in developmental

psychology. For instance, there is a large body of
literature showing a correlation between non-symbolic
number processing and symbolic math (Halberda, Mazzocco,
& Feigenson, 2008; Libertus, Feigenson, & Halberda, 2011)
and arguing for a causal link between the two (Park &
Brannon, 2014).

Whatever the origin of non-symbolic number may be,
the question remains, what is the process whereby the
many diverse aspects of non-symbolic number and symbolic
numbers are acquired, to support skills such as number-space
mapping and numerical magnitude comparison? In the
current paper, we begin to address this question. Particularly,
we will focus on a number board game that has been used
in several studies to provide a rich learning environment that
grounds various aspects of numerical processing and links
them to the printed and spoken symbols for numbers. In
the seminal paper by Ramani and Siegler (2008), the authors
showed that playing this number board game for roughly
an hour spaced over several sessions increased low-income
preschoolers’ proficiency on four diverse numerical tasks:
numerical magnitude comparison, number line estimation,
counting (defined as reciting the count list from 1 to 10) and
numeral identification. Below we describe the details of their
intervention study.

In the board game, the board includes 10 horizontally
arranged squares of the same size, with the word “Start”
at the left end and “End” at the right end. There are two
conditions in the study. In the experimental condition, the
board the squares are numbered consecutively from 1 to 10
in order from left to right. In the control condition, the
squares only have alternating colors. In addition, in the
experimental condition, the game has an associated spinner
with a “1” half and a “2” half, whereas in the color board
version it has a spinner with colors that correspond to the
colors of the squares on the board. Before playing the game,
the participants were tested on 4 numerical tasks: numeral
identification, magnitude comparison between two numbers,
counting and number line estimation.

In the game, children chose an animal token and used it to
mark their progress on the board. Children were instructed
to take turns spinning the spinner and were told that the
one who reaches the end first wins the game. Children in
the experimental condition were told that on each turn, they
would move their token the number of spaces indicated on the
spinner. Also, they were required to say the number that they
spun and the numbers on each of the squares they reached as
they moved. For instance, if they were on 5 and they spun
a “2”, they would first say “two” then say “six”, “seven” as
they moved. In the control condition, children were told that
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they would move their token to the next square with the color
that matched the one they spun. Similar to the experimental
group, they need to say the color they spun and the colors on
the squares they reached as they moved.

After the participants played the game several times in each
of four short sessions over the course of several weeks, they
were tested a second time on the 4 numerical tasks mentioned
previously. The experimental group demonstrated significant
improvement, whereas the control group did not. The gains
remained 9 weeks later in a follow-up session, in which the
same tasks were tested a third time.

Here we propose a mechanistic account for the
enhancement of numerical processing skills that was induced
by playing the game. We hypothesize that multiple cognitive
components (visual, language and spatially-guided action)
are recruited and coordinated in the game environment.
Particularly, the process of moving the token incrementally
along the number board (motor) is coordinated with saying
the next number word through the count list (verbal) as well
as naming the printed numeral on each square tile on the
board (visual). We suggest that the various components
engaged in this process are also engaged in the basic
numerical tasks, allowing learning occurring in the game to
transfer to the basic tasks.

Another motivation for the current paper is that we want
to address one of the common shortcomings of neural
network models, which is their lack of flexibility in multi-task
learning scenarios. In the current paper, we would like to
show that as long as the model is composed of meaningful
cognitive components that are also used in other tasks, it
will be possible to demonstrate that training on one task
could result in improvement on other tasks. The idea of
constructing neural networks with multiple components that
are responsible for different sub-tasks aligns with some
recent advance in machine learning, e.g., neural networks
composed of distinct modules have been used to solve
language grounding problems (Andreas, Rohrbach, Darrell,
& Klein, 2016; Johnson et al., 2017).

Below we first describe the architecture of our model,
followed by the experiments we ran to simulate the learning
in the number board game and the resulting learning effect.
Finally, we present the implications of our results, some
limitations of the current work and some future directions.

Model Architecture
There are three neural network modules in our model: the
Visual component, the Language component (Figure 1) and
the Action component (Figure 2).

Visual Component
The Visual component is composed of a pre-trained neural
network named the ResNet (He, Zhang, Ren, & Sun, 2016)
and two fully-connected readout layers. The ResNet is a deep
neural network trained to recognize objects in ImageNet, a
large image database of natural images with hand-annotated
labels (Deng et al., 2009). The ResNet consists of stacked

Figure 1: Illustration of the Visual component (left) and the
Language component (right).

Figure 2: Illustration of the link between the number
word output of the Visual component (left) and the Action
component (right).

convolutional layers with non-linear activation functions and
identity shortcut connections that skip one or more layers
(see He et al. for details). We use the ResNet to process
each image in our dataset and use the hidden activation of
the last hidden layer as the feature vector of the image, i.e.,
as the image embedding. We then apply two fully-connected
readout layers to the image embeddings, one number word
readout layer and one magnitude readout layer. All of the
images in our dataset are images of Arabic numerals ranging
from 1 to 10 (see the Experiment Section for details). The
number word readout layer is used to decode the numbers in
the images. It outputs a probability distribution over the ten
possible number words (one to ten). The magnitude layer is
used to decode the magnitude of the number represented as a
scalar, thought to be provided as a target for learning by the
perceived distance of the number’s location on the number
line from zero. When simulating the number board game,
we make the assumption that children attend to the board in
two frames of reference, a global one and a local one: in
the local frame of reference, they attend to and recognize the
digit printed on the current square. In the global frame of
reference, they keep track of how far their token has traveled
from the “Start” point. These two processes are implemented
by the number word readout layer and the magnitude readout
layer, respectively. In the simulation of the number board
game playing, these two layers were trained simultaneously.
During the training we did not update the weights of the
ResNet and only the connection weights of the two readout
layers were updated. The equations of the Visual component
can be written as follows:
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ei = ResNet(I)
P(number word) = φ(Wnwei +bnw)

m = ReLU(Wmei +bm)

(1)

where I ∈R28×28×3 is the raw pixels of the image, ei ∈R512 is
the image embedding, Wnw ∈ R512×10 (Wm ∈ R512×1) are the
connection weights from the embedding layer to the number
word (magnitude) readout layer, bnw ∈ R10 (bm ∈ R1) are
the biases of the number word (magnitude) readout layer.
The softmax function φ(xxx)i =

exi

∑
n
j=1 ex j is used to normalize

the logits of the number word readout layer in order to
get the probabilities over number classes. The prediction
is thus the one with the highest probability. The ReLU
activation function is used to restrict the magnitude output
to be non-negative, i.e., ReLU(x) = max(0,x).

Language Component
This component learns the successor function in counting,
i.e., it predicts the next number in a count list given the current
number (Figure 1, right). Particularly, during training, we
use (current-number, next-number) pairs as data, e.g., (“five”,
“six”), and the model takes the current-number as input and
predict the next-number. During testing, we iterate from zero,
and the score is coded as correct up to the point of the first
error. The number words are represented as one-hot vectors
and they are fed to a fully-connected layer with rectifier
activation function (ReLU), which is followed by a fully
connected output layer with the softmax activation function.
The mathematical formula for this module can be written as:

hl = ReLU(Wlew +bl)

P(next word) = φ(Wnhl +bn)
(2)

where ew ∈ R10 are the word embeddings for the stimuli
(one-hot vector), Wl ∈ R10×10 are the connection weights
from the input embedding layer to the hidden layer. We use
the softmax function φ(x) to normalize the logits to get the
probabilities over the possible number words.

Action Component
The Action component is a recurrent network that learns
to output a sequence of “MOVE” actions before it outputs
a “STOP” action (Figure 2, right). We use the Visual
component described above to read the spinner, which shows
either “1” or “2”, to generate a probability distribution over
all possible number words. This serves as the initial hidden
state of the Action recurrent network. The Action network
then takes the initial hidden state h0 and the initial action a0 to
predict the next action, which is either “MOVE” or “STOP”1,
and the new hidden state and the predicted action are used
in the next time step t. The mathematical formulae can be
written as:

ht = ht−1 +ReLU(Waea)

Ot = φ(Wmht +bm)
(3)

1In this board game the first action is always “MOVE”, so there’s
no need to make a prediction for the first action.

Figure 3: Digits stimuli used in the current task. 1 - 9 are
randomly selected from the MNIST dataset and the 10s are
generated by randomly selecting 1s and 0s from the dataset
and combine them (LeCun et al., 2010).

where ea ∈ R5 are the embedding of the action, Wa ∈ R5×10

are the connection weights from the embedding layer to the
hidden layer. We use the softmax function to normalize the
logits of the output layer to get the probabilities over the two
possible actions (“MOVE” or “STOP”).

Experiments
We use digit images from the MNIST database (LeCun,
Cortes, & Burges, 2010), a dataset of handwritten digits with
labels. We use a randomly selected subset of the original
training data to construct our training dataset, which contains
10,000 samples (Figure 3), and our test dataset contains
10,000 samples that do not overlap with our training data.

Our simulations have two conditions that correspond to the
experimental condition and the control condition in Ramani
and Siegler’s empirical study. In the experimental condition,
there are three phases: the pre-test training, the number
board game training and the post-test training. For simplicity,
and because no numbers were used in Ramani and Siegler’s
control condition, the simulation control condition included
only the pre-test training and the post-test training. In the
pre-test training phase, the number word readout layer of the
Visual component is trained on the numeral identification task
for 34 batches, the magnitude readout layer is trained on the
number line estimation task for 46 batches and the Language
component is trained on the counting task for 16 batches. The
numbers of batches for each task are chosen to produce the
pre-test accuracies that approximate the ones in Ramani and
Siegler’s original paper.

Each batch contained 100 trials. The numerals were
equally distributed in trials of each task. In counting, each
trial involved a single transition from a “current-number” to
the “next-number”. We used backpropogation to train the
network. In the board game training phase the models were
trained on board game trials corresponding to individual turns
in the game for 50 batches. We next describe in detail how
all the cognitive components work together in a single trial.
Assuming that the agent’s token is at square “3” and the
spinner yields “2”, the modules will perform the following
sequence of computations:

1. The Visual component reads the spinner (“2”) and feeds
the computed P(number word) to the Action component as
its initial hidden state.
2a. The agent moves one step forward. The Visual
component takes the image of the square where the agent’s
token is currently located (“4”) and recognizes the number
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printed on it, i.e., “four”.
2b. The magnitude readout layer of the Visual component
predicts the distance between the token’s current location
to zero, i.e., 4.0, as the supervision signal is available in the
game.
3. The Action component takes the initial hidden state and
the embedding of the initial action “MOVE” to predict the
next action “MOVE”.
4a. The agent moves one step forward. The Visual
component takes the image of the square where the agent’s
token is currently located (“5”) and recognizes the number,
i.e., “five”.
4b. The magnitude readout layer of the Visual component
predicts the distance between the token’s current location
and the “Start” point, i.e., 5.0.
4c. The Language module takes the number that the Visual
module recognized in the last time step (“four”) to predict
the current number, i.e., “five”.
5. The Action component takes the last hidden state and
the last action “MOVE” to output the next action “STOP”.

To summarize, in this single trial, the Visual component
needs to map the image of “4” to (“four”, 4.0) and “5” to
(“five”, 5.0); the Language component needs to map “four”
to “five” and the Action component needs to map the image
of “2” (the spinner’s output) to the action sequence “MOVE
(given), MOVE, STOP”. On trials where the spinner’s output
is 1, then only the steps 1, 2, 5 will be performed.

Finally, in the post-test training phase, in both conditions
the neural modules are trained on one batch to simulate the
learning experience gained during the 9 weeks between the
immediate post-test and the follow-up test. This is termed as
the “1-batch post-test training” simulation. This amount of
training yields changes in performance that are comparable
to the change from the post-test to the follow-up test in the
control condition of Ramani and Siegler’s experiment. To
get a comprehensive understanding of the advantage of the
experimental group, we also simulate another scenario in
which we train the neural modules with the same number of
batches as in the pre-test training phase (“n-batch post-test
training” simulation). This gives us a sense of how the model
will continue evolving if we train it on more than one batch,
although it is unlikely that participants actually got that much
training during the 9-week period of time in Ramani and
Siegler’s experiment.

When measuring the model performance on each
numerical processing task, the Visual component is used to
perform the numeral identification task and the number line
estimation task using randomly selected digit images not
used in training, and the Language component is used to
perform the counting task, starting from 0, until an error is
made or the whole count list is completed. To measure the
performance of the number line estimation, we report the
linearity of the estimation (measured by the square of the
coefficient of correlation R2 between the models prediction
and the target) and the slope of number line estimation. These

are the same dependent variables as measured in (Ramani
& Siegler, 2008). A perfect number line estimate should
yield a R2 equal to 1.0 and a slope equal to 1.0. For the
magnitude comparison task, we randomly select images of
two different numbers from 1 to 10 and feed them to the
Visual component separately. We then use the output of its
magnitude readout layer to determine a response, i.e., the
one with larger magnitude output is determined to be the
“bigger number”. The training and the testing were simulated
20 times with different random initialization of the network
parameters and random sampling of the data.

Results
Accuracies of the Cognitive Components across the
Training
We find consistent patterns in results across all the tasks that
were tested (numeral identification, number line estimation,
counting and magnitude comparison). As expected, up to the
point when number board game was introduced, accuracy did
not differ between the experimental condition and the control
condition were. However, after the number board game
was introduced, across all tasks the experimental condition
demonstrated better performance than the control condition.
Figure 4 shows the learning curves of different tasks in the
“n-batch post-test training” simulation.
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Figure 4: (a) Accuracy of the Visual component on the
numeral identification task. (b) Mean Square Error of the
Visual component on the number line estimation task. (c)
Accuracy of the Language component on the counting task.
(d) Accuracy of the magnitude comparison task. The vertical
blue lines indicate the time points when number board game
is introduced in the experimental condition.

Pre-test, Post-test and Follow-up Test
To compare our results with the results in Ramani and
Siegler (2008), particularly their Figure 2, we also plot the
pre-test scores, the post-test scores and the follow-up scores
in the “1-batch post-test training” simulation. We run several
paired t-tests to compare the pre-test scores and the post-test
scores, as well as the pre-test scores and the follow-up
test scores. In the control condition, as expected because

3189



there is no training between the pre- and post-tests, the
post-test scores are not significantly different than the pre-test
scores. However, in the experimental condition, across all
tasks the post-test scores are significantly higher than the
pre-test scores (Table 1). The same results hold true for the
comparison between the follow-up measures and the pre-test.

●
●

●

0.5

0.6

0.7

0.8

Pre Post Follow−up
N batches

A
cc

ur
ac

y Condition
● control
experimental

Figure 5: The model performance at the pre-test, the post-test,
and the follow-up measures on the numeral identification
task.

● ●

●

0.70

0.74

0.78

0.82

Pre Post Follow−up
N batches

A
cc

ur
ac

y Condition
● control
experimental

Figure 6: The model performance at the pre-test, the post-test,
and the follow-up measures on the magnitude comparison
task.
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Figure 7: The performance of the Language component at
the pre-test, the post-test, and the follow-up measures on the
counting task.

As shown in Table 1, in the experimental condition, after
the model is trained on the number board game, the numeral
identification accuracy increases from 52% to 73%, the
magnitude comparison accuracy increases from 68% to 80%,
the counting performance increases from 73% to 85%, the
square of the coefficient of correlation between the model’s
prediction and the target in number line estimation improves
from 0.29 to 0.62, and the slope increases from 0.12 to 0.47.
No improvement is observed in the control condition.

Pre Post FU Post - Pre t1 FU - Pre t2
Experimental Condition
Numeral Identification 0.52 0.73 0.77 0.21*** 5.91 0.26*** 7.65
Magnitude Comparison 0.68 0.80 0.81 0.12*** 12.66 0.13*** 11.46
Counting 0.73 0.85 0.85 0.12* 2.25 0.12* 2.25
Number Line Linearity 0.29 0.62 0.64 0.33*** 4.81 0.36*** 5.99
Number Line Slope 0.12 0.47 0.46 0.35*** 11.31 0.34*** 13.97
Control Condition
Numeral Identification 0.52 0.50 0.56 -0.01 -0.94 0.05* 2.41
Magnitude Comparison 0.68 0.68 0.72 0 -0.03 0.03*** 3.56
Counting 0.73 0.73 0.76 0 0.03 1.75
Number Line Linearity 0.29 0.30 0.41 0.01 0.20 0.12 1.95
Number Line Slope 0.12 0.10 0.18 -0.01 -0.61 0.07* 2.99

*p < .05, **p < .01, ***p < .001.

Table 1: Mean scores of the different tasks at the
pre-test (Pre, 1st column), the post-test (Post, 2nd
column) and the follow-up test (FU, 3rd column);
Differences of the scores between the post/follow-up test
and the pre-test(Post-Pre/FU-Pre, 4th/6th column) and the
corresponding t statistics (t1/t2, 5th/7th column) in the paired
t-test (df=20).

Viewed from a different perspective of the data, we also
show that although the performances in the two conditions
do not differ at the pre-test, there is a significant difference
between the two conditions at the post-test (Table 2) across
all tasks. Such gap remains significant in all the follow-up
measures except for the counting task.

Post t3 FU t4
Experimental - Control
Numeral Identification 0.23*** 6.06 0.21*** 7.05
Magnitude Comparison 0.12*** 10.09 0.09*** 8.30
Counting 0.12* 2.25 0.09 1.90
Number Line Linearity 0.31*** 4.34 0.23*** 4.24
Number Line Slope 0.36*** 11.56 0.28*** 8.88

*p < .05, **p < .01, ***p < .001.

Table 2: Differences of scores between the experimental
condition and the control condition at the post-test (Post, 1st
column) and the follow-up test (FU, 3rd column) with their
corresponding t statistics (the 2nd and the 4th column).

Linearity of the Number Line Estimation

One of the major motivations of Ramani and Siegler’s work
was to test whether playing the number board game could
improve the linearity of children’s number line estimation.
As can be seen in Table 1 and Figure 8, in the experimental
condition, both the linearity (measured by the square of
the coefficient of correlation between the models prediction
and the target) and the slope of number line estimation
significantly increase after playing the number board game,
and these learning outcomes are still significant at the
follow-up test (Table 1).
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Figure 8: The linearity (a) and the slope (b) of the model
performance in the number line estimation task evaluated at
different stages.

Discussion
In the current study, we created a neural network model
to provide a mechanistic account for the enhancement of
numerical processing skills that was induced by playing a
number board game (Ramani & Siegler, 2008; Ramani,
Siegler, & Hitti, 2012). We hypothesized that various parts of
the number board game actually train different components of
the player that could later be used to perform other numerical
tasks, such as numeral identification, magnitude comparison,
counting and number line estimation. We reproduced the
empirical learning effect in our computational model that
implemented our hypothesis.

In our model, different cognitive components need to
coordinate with each other to perform the task. For instance,
as the Action component outputs the right actions, the agent
constantly gets good teaching signals from the external
environment which can be used by the Visual component
and the Language component. As the Visual component
recognizes the identities of the digits on the board, it further
provides the language component with the proper inputs
needed to predict the next number word. At the same
time, as the agent’s token moves along the board, the Visual
component learns to associate the symbolic numeral with
distance along the number line and the Visual and Language
components jointly determine the number word to be uttered.

One limitation of the current paper is that we did not
explicitly train the model’s attention, e.g., we feed the Visual
component with images of the current digits treating the
“MOVE” action as simultaneously moving the player’s token
and shifting the focus of attention. We assume that the
participants could allocate their attention to different parts
of the environment and deploy their cognitive components
in a synergistic way. Coordination of these processes
to actually play the game requires executive control and
working memory (Barnes et al., 2016). In future work we
will explore how the selective attention and the executive
control ability of the model can also be learned through
training. This is a promising direction since recent advances
in language grounding research in the artificial intelligence
field have shown that neural network models can learn to
attend different parts of an image in order to answer questions
about the image (Yang, He, Gao, Deng, & Smola, 2016).

Another limitation is that we did not fully model the color

board game control condition in Ramani and Siegler’s work,
i.e., we only modeled the aspect that participants did not
receive any number-related training during the color board
game playing, but we did not simulate the color-related
training. In future work, we will fully model this color
board game control condition. In addition to this control
condition, in later studies researchers also compared the
count-on procedure (reciting the number words for each new
tile reached) used in Ramani and Siegler’s study with the
standard count-from-1 procedure (reciting the number words
corresponding to the number of onward steps), and found
that playing the same game using the standard procedure
led to considerably less transfer to the other tasks (Laski
& Siegler, 2014). This might occur because participants’
attention was not directed either to the token position on the
board or to the numerals on each square, as the task can be
performed without this information. Also, the count-from-1
procedure provides no practice counting beyond the number
two. It would be interesting to see whether modeling those
control conditions within a network that learns to deploy its
attention could provide a mechanistic account for why one of
the interventions worked while the others did not.

In summary, the current work is a first step towards
building a comprehensive computational model for numerical
cognition that coordinates different modalities and integrates
various training stimuli and paradigms. Our approach allows
us to simulate the acquisition of number concepts as a process
through which a set of component skills are assembled in
different configurations in diverse task settings, promoting
transfer across tasks that share components.
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Lakoff, G., & Núñez, R. (2000). Where mathematics comes
from: How the embodied mind brings mathematics into
being. Basic Books.

Laski, E. V., & Siegler, R. S. (2014). Learning from number
board games: You learn what you encode. Developmental
Psychology, 50(3), 853.

LeCun, Y., Cortes, C., & Burges, C. (2010). MNIST
handwritten digit database. AT&T Labs [Online].
Available: http://yann. lecun. com/exdb/mnist, 2.

Libertus, M. E., Feigenson, L., & Halberda, J. (2011).
Preschool acuity of the approximate number system
correlates with school math ability. Developmental
Science, 14(6), 1292–1300.

Park, J., & Brannon, E. M. (2014). Improving arithmetic
performance with number sense training: An investigation
of underlying mechanism. Cognition, 133(1), 188–200.

Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and
stable improvements in low-income childrens numerical
knowledge through playing number board games. Child
Development, 79(2), 375–394.

Ramani, G. B., Siegler, R. S., & Hitti, A. (2012). Taking it
to the classroom: Number board games as a small group
learning activity. Journal of Educational Psychology,
104(3), 661.

Yang, Z., He, X., Gao, J., Deng, L., & Smola, A. (2016).
Stacked attention networks for image question answering.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 21–29).

3192



Crossmodal Spatial Mappings as a Function of Online Relational Analyses? 
 

Yordanka Zafirova (jovasileva@abv.bg) 
Department of Cognitive Science and Psychology, New Bulgarian University, 

21 Montevideo Street, 1618 Sofia, Bulgaria 

 

Yolina Petrova
 
(yolina.petrovaa@gmail.com) 

Central and East European Center of Cognitive Science, 

Department of Cognitive Science and Psychology, New Bulgarian University, 

21 Montevideo Street, Sofia 1618, Bulgaria 

 

Georgi Petkov (gpetkov@nbu.cogs.bg) 
Central and East European Center of Cognitive Science, 

Department of Cognitive Science and Psychology, New Bulgarian University, 

21 Montevideo Street, Sofia 1618, Bulgaria 

 

 

 

 

Abstract 

Crossmodal correspondences are innate, language-based and 
statistically derived. They occur across all sensory systems 
and in different cultures. Despite their multiformity, they are 
exhibited analogously, mainly through robust congruency 
effects. One plausible explanation is that they rely on a 
common underlying mechanism, reflecting the fundamental 
ability to transfer relational patterns across different domains. 
We investigated the pitch-height correspondence in a bimodal 
sound-discrimination task, where the context of one relative 
sound pitch was changed online. The intermediate sound 
frequency was presented in successive blocks with lower or 
higher equidistant sounds and two squares at fixed up and 
down vertical positions. Congruency effects were transferred 
across sound contexts with ease. The results supported the 
assumption about the relational basis of the crossmodal 
associations. In addition, vertical congruency depended 
critically on the horizontal spatial representations of sound. 

Keywords: crossmodal associations; relational mapping; 
pitch-height correspondence; SMARC effect 

 

Introduction 

Multidimensional information is integrated not only within 

the neural frame of one sensory system (e.g. Garner, 1974), 

but also across different modalities. Thus, certain features 

extracted from one perceptual realm interact with other, 

modality-specific attributes, and create coherent multimodal 

percepts, or intersensory Gestalts (for a review, see Spence, 

2015). During the process of integration, particular aspects 

of the polysensory flow may modulate one another (like in 

McGurk & MacDonald, 1976, where visual stimuli 

modified auditory content, creating perceptual illusion), or 

bind together in bistable crossmodal entities with 

corresponding features. Examples of such corresponding 

features for pitch are shape (Melara & O'Brien, 1987; 

Walker et al., 2010); brightness (Marks, 1974; Martino 

&Marks, 1999; Melara, 1989); hue (Simpson, Quinn, 

Ausubel, 1956); smell (Belkin, Martin, Kemp, & Gilbert, 

1997); size (Evans & Treisman, 2009; Mondloch & Maurer, 

2004; Parise & Spence, 2012); height (Ben-Artzi & Marks, 

1995; Chiou & Rich, 2012; Mudd, 1963; Patching & 

Quinlan, 2002; Rusconi, Kwan, Giordano, Umilta, & 

Butterworth, 2006) etc. 

Apparently, invariable crossmodal associations might 

occur across all sensory systems. Examples of such 

associations are observed in different cultures (e.g. Bremner 

et al., 2013; Levitan et al., 2014; Parkinson, Kohler, Sievers, 

Wheatley, 2012; Wan et al., 2014) and are more or less 

implicit (Chen, Tanaka, Namatame, & Watanabe, 2016; 

Evans & Treisman, 2009; Parise & Spence, 2012). Given 

the broad scale and the diversity of the correspondence 

effect, at least three assumptions come to mind. First, these 

mappings should be nonrandom and in some way 

meaningful for perception. Second, they might comprise 

different processes and originate in different perceptual and 

cognitive networks. Third, they might be related to a 

common underlying mechanism, reflecting more general, 

inherent adaptive framework.  

It was demonstrated that 4-month-olds are already 

sensitive to the associations between pitch and height, and 

pitch and sharpness (Walker et al., 2010). Lewkowicz and 

Turkewitz (1980) found evidence for mappings between 

brightness and loudness in infants 21 to 31 days of age. 

Along with that, crossmodal couplings are reported in 

nonhuman animals (see Ratcliffe, Taylor, & Reby, 2016, for 

a recent review). These findings are critical for the validity 

of the notion that multisensory associations are semantically 

mediated. It seems that they emerge on a lower, perceptual 

level and congruency effects are dependent on available 

attentional resources. More specifically, “attention is likely 

to play an important role in cross-modal perceptual 

organization” (Spence, 2015, p. 12). At the same time, it 

might be argued that even newborns have enough 

experience with environment, given the fact that they are 
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extremely sensitive to certain statistical frequencies. In fact, 

6-month-olds were better than adults in extracting implicit 

crossmodal information from the context (Rohlf, Habets, 

von Frieling, & Röder, 2017). Additionally, it was 

suggested that human perceptual system might foster the 

development of language by auxiliary crossmodal mappings 

of speech sounds to other percepts, for example shapes 

(Ozturk, Krehm, & Vouloumanos, 2013). The opposite is 

also true – linguistic experience systematically promotes 

progressive coupling of nonlinguistic dimensions (Martino 

& Marks, 1999). In short, the importance of language in 

crossmodal perception is undeniable. However, not all data 

can be explained with semantics (consider the animal 

studies). By all appearances, perceptual constraints, 

environment and language contribute synchronously to the 

establishment of stable crossmodal links. According to 

Spence (2011) certain structural correspondences might be 

innate, while statistical and semantic ones are evidently 

learned, and all are a function of environment. 

A basic tool for exploring the nature and the strength of 

crossmodal associations is the speeded discrimination task, 

developed by Garner (1974), where participants respond to 

one task-relevant dimension while ignoring another, task-

irrelevant dimension. Corresponding dimensions are 

integrated and trigger congruency effects that influence 

selective attention and performance. Apart from that, 

particular dimensions might interact on different levels. 

There is evidence that certain crossmodal couplings might 

actually prompt perceptual change (e.g. Evans & Treisman, 

2009; McGurk & MacDonald, 1976). Others communicate 

on decisional level (e.g. Melara, 1989; Rusconi et al., 2006) 

or result from semantic inconsistencies (e.g. Martino & 

Marks, 1999). Notably, they can be correlated directly – for 

instance, psychophysical dimensions, like pitch and height 

usually covary in magnitude. On the other hand, it is 

generally accepted that these mappings are relative – one 

level of the first dimension can be mapped on different 

levels of the second dimension, depending on the context 

(for a review, see Spence, 2011). However, the mechanisms 

behind these relative mappings remain unclear.  

In short, crossmodal correspondences engage all sensory 

systems, they are universal, innate, automatic, can be 

learned and assist learning, and interact on lower, bottom-up 

and higher, top-down levels. Considering the relative nature 

of the mappings, it is plausible to assume that they recruit 

the mechanisms of another, major cognitive process, 

reflecting the ability to build and compare relations. What is 

more, “the ability to pick out patterns, to identify 

recurrences of these patterns despite variation in the 

elements that compose them, to form concepts that abstract 

and reify these patterns, and to express these concepts in 

language” is considered a fundamental core of cognition 

(Holyoak, Gentner, & Kokinov, 2001, p. 2). Besides, 

relational analyses can be performed online and 

automatically, with or without utilizing attentional 

resources. Evidence is piling up that relations can be 

retrieved unconsciously and transferred across 

corresponding sets of data (Hristova, 2017; Li, Li, Zhang, 

Shi, & He, 2018). That being said, the capacity to construct 

and compare associations across modalities is one possible 

explanation for the pervasiveness of crossmodal 

correspondences. Thus, perceptual dimensions are 

represented not in their absolute values but as correlated 

dyads. To check this hypothesis, we investigated the 

congruency effects between one sound frequency and two 

vertical spatial positions – higher and lower. In other words, 

we measured the interaction between pitch and height in a 

speeded sound-discrimination task. Crucially, the context of 

the sound was changed during the task – it was presented 

with either higher or lower pitch, so that it was perceived as 

relatively lower or higher than the other sound. Previous 

studies demonstrated that pitch and height were positively 

correlated – higher frequencies were consistently associated 

with higher vertical positions (e.g. Ben-Artzi & Marks, 

1995; Evans & Treisman, 2009; Rusconi et al., 2006 etc.). If 

crossmodal correspondences are indeed represented as 

relations, are we should expect comparable congruency 

effects in both contexts – i.e., one and the same sound 

should be mapped to different vertical positions in 

accordance with its relative frequency. Importantly, this 

shift should be effortless and almost instantaneous. 

Experiment: Sound-Discrimination Task 

Method 

Participants 24 students (7 males) with mean age 23.8 

years (standard deviation SD=6.3) from the Psychology 

Department were recruited for the task, after approval from 

the Cognitive Science and Psychology Ethics Committee. 

All signed the informed consent form and reported no 

problems performing the task. 

Stimuli and design The stimuli were three sinusoidal sound 

waves with different frequencies, and a black square 

presented at two vertical positions. The sounds were 

generated on Audacity at 600 Hz, 900Hz and 1200Hz; 16 

bits, mono, on an amplitude level of -2.5 dBFS (decibels 

relative to full scale) and duration 1000 ms. The square was 

solid black, 100x100 pixels (px) JPEG image. Participants 

had to perform a sound-discrimination task with bimodal 

presentation of the stimuli – i.e. the values of the task-

relevant (sound pitch) and task-irrelevant (square height) 

dimensions were coupled randomly for each trial and 

presented simultaneously in both visual and auditory 

modalities. 

Procedure The experiment was conducted in the presence 

of the experimenter in one of the booths of the Experimental 

Psychology Laboratory. Presentation and timing were 

controlled by the E-prime software (Schneider, Eschman, & 

Zuccolotto, 2012) and the multifunctional USB-based 

stimuli and response device Chronos which recorded 

accuracy and response times (RTs) with 1 ms resolution 
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(Chronos operator manual, 2015). The sounds in the 

experiment were presented via Chronos accessory headset. 

The experiment started with onscreen instruction about 

the task requirements. Participants were asked to keep their 

eyes on the screen (as cued by the fixation cross) and to 

respond by pressing one button for the thick sound and 

another button for the squeaky sound, with the index finger 

of their dominant hand. The buttons of the response box (the 

first and the third, with the finger resting on the middle one 

between trials) were counterbalanced across participants. 

The words low and high were avoided in the instruction 

because of possible semantic priming. The sounds were 

presented in pairs – 600/900 Hz or 900/1200 Hz, in two 

continuous blocks with a pair change in between. Crucially, 

participants were informed that at one point the sounds 

would be changed but they should continue performing the 

same task. The experimenter urged the participants to look 

at the screen and monitored the execution of the task.  

Each trial started with 500 ms fixation cross (Consolas, 22 

pt, black, on a white background). Then participants heard 

one of two sounds – lower or higher, presented 

pseudorandomly, no more than four of the same pitch 

successively (to avoid motor fluency). The sounds were 

randomly coupled with a black square, presented on a white 

background below or above fixation – at 20% or 80% along 

the vertical midline of a 24-inch monitor with 60 Hz refresh 

rate and resolution 1920x1080 px (at 7.5 cm below or above 

the center of the display). Each pitch was accompanied by 

an equal number of high and low squares. As the viewing 

distance was approximately 60 cm, the side of the square 

corresponded to 2.5°-3° horizontal visual angle. The sound 

and the square were presented simultaneously (bimodally) 

for 1000 ms or until response, and were followed by 1500 

ms intertrial interval (white screen). The sequence of one 

trial is represented in Figure 1. 

 

 
 

Figure 1: Schematic representation of one trial, not to 

scale. 

 

For all participants the experiment started with one sound 

pair in the first block and ended with another sound pair in 

the second block, in counterbalanced order. There were 216 

experimental trials. During the first 104 trials some 

participants responded to 600/900 Hz, and other – to 

900/1200 Hz, and vice versa for the rest of the trials. The 

first 8 trials after the sound change were treated as practice 

and were analyzed separately. That way, the two blocks 

consisted of 104 trials each. Additionally, there were 8 

practice trials before the experimental part, always with the 

sound pair of the following block. These trials were 

excluded from the analyses. Thus, there were 224 trials 

overall – 8 practice trials separated with a break from the 

experimental part, and 216 experimental trials (104 before 

the sound change, 8 practice trials after the sound change 

and 104 trials with the second sound pair) with no break. 

The experiment lasted about ten minutes. 

Results  

First, the overall accuracy was assessed (.94, range .83-1). 

No participant was excluded on that account. As 900 Hz 

was the pitch of interest, only responses to that pitch were 

considered in the subsequent analyses. Then, accuracy and 

RT were aggregated by trial in order to examine the nature 

of transition between the two contexts. The progress of the 

values over time is visualized on Figure 2. 

 

 

 
 

Figure 2: Accuracy and RT around context change, 

responses to relative pitch only (900 Hz), by trial. 

The red line indicates the point of change. The blue line 

marks the end of the online practice trials. 

 

  

As participants had eight trials of practice before the 

experimental part, the first eight trials after the context 

change were also considered as practice and disregarded. 

Accuracy was analyzed as a function of experimental block 

and pitch-height congruency. There was no main effect of 

congruency – no difference in accuracy for congruent and 

incongruent responses (F(1,23)=2.32, p=.142; ƞ
2
p=.092). 

However, there was main effect of experimental block 

(F(1,23)=8.12, p=.009; ƞ
2
p=.261), i.e. more accurate 

responses in the first block; and an interaction between 

experimental block and congruency (F(1,23)=5.24, p=.032; 

ƞ
2
p=.185). Newman-Keuls post-hoc revealed difference 

between the incongruent trials of the second block and the 

congruent and incongruent trials of the first block (p<.001), 

between the congruent trials of the first block and the 

second block (p=.045) and between the congruent and 

incongruent trials of the second block (p=.008). That is, 

participants made more mistakes in the second part of the 

experiment, especially in the incongruent trials. 
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There were a total of 5.6% errors in the experimental 

trials (.08% with no RT) which were also excluded. The 

data were then trimmed with 2.5 SDs from the subject 

means per condition (another 2.8%). Only trimmed data 

from the experimental blocks, concerning the correct 

responses to the relative pitch (900 Hz) were examined for 

differences in response times. The analyses were again 

performed with experimental block and pitch-height 

congruency as within factors. Means and standard 

deviations per condition are presented in Table 1. 

 

Table 1: Descriptive statistics: mean RT (SD) per 

condition 

 

First block Second block 

Congruent Incongruent Congruent Incongruent 

512 (110) 529 (119) 497 (96) 522 (83) 

 

  

There was no main effect of experimental block 

(F(1,23)=.761, p=.392; ƞ
2

p=.032). At the same time, in 

accordance with the presumed crossmodal interaction 

between pitch and height, there was a substantial 

congruency effect (F(1,23)=5.65, p=.026; ƞ
2

p=.197). 

Crucially for our hypothesis, there was no interaction 

between congruency and experimental block (F(1,23)=.533, 

p=.473; ƞ
2
p=.023) – in other words, congruent responses 

were faster regardless of the relative sound context. Mind 

that only the context of the 900 Hz sound was changed 

between the blocks. And yet, in the presence of the higher 

pitch (1200 Hz) it was mapped to the lower vertical 

position, and subsequently to the higher vertical position in 

the presence of the lower pitch (600 Hz). Figure 3 illustrates 

the remapping of the sound across the two experimental 

blocks. 

 

 
  

Figure 3: Transfer of vertical congruency effects across 

different sound contexts in the experimental blocks. Vertical 

bars denote .95 confidence intervals.  

 

Due to the nature of the experiment, additional analyses 

were performed to account for alternative explanations. In 

the bimodal sound-discrimination task, sound pitch is 

coupled with visual stimuli presented along the vertical 

dimension. However, crossmodal correspondences were 

already demonstrated between pitch and the horizontal 

space (e.g. Rusconi et al., 2006). More specifically, lower 

pitch was mapped more readily to the left, and higher pitch 

was mapped more readily to the right. Our participants 

responded by pressing a left or a right button for the lower 

or higher pitch, in counterbalanced order. That is, for one 

half of the participants the sounds were horizontally 

congruent (they always pressed the left button for the lower 

pitch), while the other responded in horizontally 

incongruent manner. 

To estimate the possible interaction between horizontal 

and vertical congruency, the mapping of the response was 

added as a categorical predictor in the above analyses. There 

was an interaction between horizontal and vertical 

congruency for accuracy (F(1,22)=5.75, p=.025; ƞ
2

p=.207) 

and for RT (F(1,22)=25.13, p<.001; ƞ
2

p=.533) (Figure 4). 

  

 

 
 

 

Figure 4: Interaction between horizontal and vertical 

congruency for accuracy (up) and RT (down). Vertical bars 

denote .95 confidence intervals. 

* p<.05; *** p<.001 

 

Newman-Keuls post-hoc revealed difference between the 

vertically congruent and incongruent trials (p=.041 for 

accuracy; and p<.001 for RT), but only when the responses 

were horizontally congruent. Remarkably, there was no 

difference when responses were mapped incongruently. 
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Discussion 

On the whole, we did find the typical pitch-height 

congruency effects (Ben-Artzi & Marks, 1995; Chiou & 

Rich, 2012; Evans & Treisman, 2009; Patching & Quinlan, 

2002; Rusconi et al., 2006 etc.). That way, we supported 

experimentally one of the major claims in the field – that the 

mappings between two dimensions are relative. For 

example, Gallace and Spence (2006) reported similar effects 

in a bimodal size-discrimination task with task-irrelevant 

sound frequencies, relatively mapped to the values of the 

visual stimuli. In another study, Smith, Grabowecky and 

Suzuki (2007) presented participants with the same visual 

stimuli (androgynous faces) accompanied by a sound in the 

male or female frequency speaking range, and found 

differences in perception of gender. Here, we demonstrated 

online remapping of one intermediate pitch to lower and 

higher vertical spatial positions in a speeded sound-

discrimination task. Note that the intermediate pitch was 

presented throughout the whole experiment, but in a 

different context – with equidistant lower and subsequently 

higher pitch for one half of the participants, and the other 

way around for the other half of the participants. As follows, 

participants had to change their response as well – those 

who responded to the lower pitch with the thick button had 

to remap the same sound to the squeaky button, and vice 

versa. Moreover, in accordance with the expected 

congruency effects, responses to the same pitch were faster 

and more accurate when it was coupled with a square in the 

lower or higher visual field and perceived as thick or 

squeaky, respectively. 

Crucially, the crossmodal correspondence between pitch 

and vertical space depended on the correspondence between 

pitch and horizontal space. Rusconi and colleagues (2006) 

provided conclusive evidence for explicit and implicit 

vertical and horizontal spatial mappings of pitch (but see 

Pitteri, Marchetti, Priftis, & Grassi, 2017). In their 

experiments responses were gathered vertically and 

horizontally, and participants performed the tasks with 

crossed and uncrossed hands. Higher pitch was mapped to 

upper and right buttons, and lower pitch was mapped to 

lower and left buttons (the so-called SMARC effect), even 

when responses did not require explicit processing of pitch, 

as in a wind vs. percussion sounds discrimination task. This 

implies that pitch-height correspondences are not solely 

semantically modulated, as horizontal mapping of sound is 

not linguistically promoted. Crossmodal correspondences 

depend mostly on failures in selective attention, especially 

within the speeded discrimination task (Spence 2011, 2015). 

When the task-irrelevant dimension is visuospatial, we 

might expect interaction between generated spatial and 

response codes (see Lu & Proctor, 1995, for a review of 

Simon and spatial Stroop effects). Interaction was reported 

also for mental representations and responses in horizontal 

space (Dehaene, Bossini, & Giraux, 1993). In our task, 

responses were gathered horizontally, while visual stimuli 

were presented along the vertical axis. And yet, we found 

substantial interaction between horizontal mental 

representation of sound and response side (unlike Pitteri et 

al., 2017, who reported the same effect for pitch and 

brightness, but only for musicians). It can be speculated that 

sound is represented both horizontally and vertically. That 

way, mentally generated horizontal and vertical spatial 

codes interact with stimuli-generated vertical spatial codes 

and modulate the crossmodal congruency effect. As a result, 

horizontal congruency emerged as an essential prerequisite 

for vertical congruency effects. 

In addition, it seems that crossmodal mappings happen 

automatically and effortlessly.  Our results are in line with 

previous findings, demonstrating that relations can be 

retrieved unconsciously and transferred across domains. 

(Hristova, 2017; Li, Li, Zhang, Shi, & He, 2018) Thus, as 

Holyoak, Gentner and Kokinov (2001) pointed out, the 

ability to manipulate relations might be basic for cognition. 

That being said, the experiment is a beginning of a larger 

experimental work within the field of crossmodal 

correspondences. The hypothesis about the online relational 

analyses should be explored further. Additional 

experimental settings should investigate whether similar 

associations exist among isolated features, or are integrated 

in larger cognitive frameworks. Another major challenge 

would be to outline the dissimilarities between given 

crossmodal mappings and relating them to other forms of 

associations. 
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Abstract 
Sometimes we incur a high psychological cost (for example, 
forgo something we really like) in order to fulfill social or 
moral obligations. How would the information of incurring 
psychological costs influence children’s social evaluations? 
Prior work suggests that children do not recognize the virtue 
of resolving inner conflicts until age 8. In two studies, we de-
confounded costs from inner conflicts and found that when 
the difficulty was not explicitly stated as having conflicting 
desires (a self-interested desire and a moral desire) at once, 
most 8- to 9-year-olds and some 6 to 7-year-olds gave adult-
like favorable evaluations of the character who overcame 
psychological or physical difficulty to act morally. Moreover, 
neither adults nor children inferred conflicting moral and 
personal desires spontaneously. These together suggest that 
children’s evaluation of moral virtue depends on 
understanding of cost rather than conflict: Physical cost is 
incorporated early in development, and psychological cost 
later. 

Keywords: cognitive development, social cognition, moral 
development, moral cognition, costs 

Introduction 
Suppose that you ask two of your friends to help you with 

a paper you have to finish tonight; at the same time there is a 
really good show on tv. One of your friends really likes this 
show. The other friend does not have any interest in the show 
at all. If each one of these friends offered to help you with 
your paper, would you evaluate their actions towards you 
differently? Even if both friends ended up helping you, the 
one who gave up watching her favorite show incurred a 
higher psychological cost to do so, and intuitively this might 
lead us to evaluate her as nicer, kinder, perhaps a better 
friend. The costliness of her choice to help seems to weigh 
heavily in our evaluation. We investigate children and adults’ 
intuitions about psychological cost as it relates to moral status 
in the current studies. 

The ability to make social evaluations about others 
develops early in childhood (Hamlin, Wynn, & Bloom, 2007; 
Hamlin, Wynn, Bloom, & Mahajan，  2011; Burns & 
Sommerville, 2014; Geraci & Surian, 2011; Sloane, 
Baillargeon, & Premack, 2012; Olson & Spelke, 2008). Even 
infants and young children prefer someone who helps another 
person fulfill a goal (e.g., climbing a mountain or opening a 
box) over someone who hinders another person from goal 
completion (e.g., Hamlin et al., 2007) and prefer someone 
who shares equally with others over someone who does not 
share equally (e.g., Olson & Spelke, 2008). This research has 
mainly focused on comparing actions that bring about 
different outcomes (usually a positive outcome vs. a negative 
outcome). By preschool age, children consistently consider 

the intention behind an action even when it is inconsistent 
with its outcome (e.g., attempted or innocent harm; see Baird 
& Astington, 2004; Cushman, Sheketoff, Wharton, & Carey, 
2013; Killen, Mulvey, Richardson, Jampol, & Woodward, 
2011). Prior work suggests a link between the development 
of intent-based social evaluation and theory of mind (Killen 
et al., 2011; Smetana et al., 2012).  

Previous research has examined young children’s 
consideration of costs in their inferences of individual’s goals 
and preferences.  For example, infants consider the cost that 
someone expends to achieve a goal when making inferences 
on how much the agent values the goal. After seeing someone 
achieve two goals one at a larger cost than the other (e.g. has 
to jump over a higher barrier), infants expect her to value the 
goal that incurs a larger cost more than the other goal (Liu, 
Ullman, Tenenbaum, & Spelke, 2017).  Similarly, toddlers 
are more likely to exonerate a non-helper for whom helping 
would have been hard than someone for whom helping would 
have been easy (Jara-Ettinger, Tenenbaum, & Schulz, 2015). 
Preschoolers even consider the cost they themselves incur to 
share with others in interpreting if their own actions are 
prosocial (Chernyak & Kushnir, 2013, 2018).  

To date, studies of young children’s evaluation of agents’ 
psychological or moral status based on cost have focused on 
tangible goods - physical obstacles such as distance or 
barriers or valuable resources such as toys or stickers. Our 
initial example of the friend who gives up her favorite tv 
show is both like and unlike these cases. It is like resource 
sharing because the tv show can be thought of as having 
value, like stickers or toys.  However, it is unlike resource 
sharing in that the value is intangible rather than tangible, a 
mental state rather than an object. Less is known about how 
children’s understanding of this, more psychological, type of 
cost plays a role in their social evaluations.  

Several pieces of evidence suggest that understanding 
psychological cost may be challenging for young children. 
First, one recent study (Starmans & Bloom, 2016) looked at 
children’s evaluation of inner moral conflicts. In this study, 
children of 3 to 8 years old and adults were asked to compare 
two characters who both ultimately acted morally, but one 
acted morally without experiencing inner conflict, while the 
other resolved an inner conflict between a self-interested 
desire and a moral desire in order to act morally. Starmans & 
Bloom (2016) found that although adults evaluated the 
conflicted character more favorably than the unconflicted 
character, children of 3 to 8 years old showed the opposite 
evaluation. This result shows that children do not recognize 
the moral virtue of resolving inner conflicts until after age 8. 
However, it leaves open the question of whether the conflict 
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itself was difficult for children to understand (having both a 
moral and selfish desire at once), or the psychological cost 
was difficult to understand (forgoing something one likes in 
order to act morally).  

Second, much recent evidence has shown that during early 
and middle childhood children increasingly recognize the 
possibility and positivity of overcoming immediate self-
interested desires. For example, between 4 and 7, children 
increasingly believe that one can choose to act contrary to 
personal desires (e.g., Kushnir et al., 2015). Children also 
increasingly predict that individuals will act against personal 
desires (e.g. play) to comply with moral rules (e.g. help 
brother) and would feel good about it (Lagattuta, 2005; 
Lagattuta, Nucci, & Bosacki, 2010). Similarly, they also 
increasingly predict that an individual will act towards 
higher-order goals (e.g. doing homework) rather than 
succumbing to immediate desires (e.g. watching cartoons) 
(Yang & Fyre, 2018) Therefore, it is likely that, during early 
and middle childhood, as children view forgoing immediate 
self-interested desires to be possible and positive, they may 
increasingly favorably evaluate someone who endures high 
psychological cost to do the right thing.  

In two studies, we investigate how information about 
psychological costs affects children's social evaluations. Our 
first research question was, at what age can children evaluate 
someone who incurs higher psychological costs to fulfill 
social or moral obligations as more virtuous? In Study 1, we 
asked children and adults to compare two characters who 
ultimately did the right thing, but one incurred a larger 
psychological cost (i.e., forewent something she really likes) 
in order to do the right thing, while the other incurred a 
smaller psychological cost (i.e., forwent something she does 
not like). We closely followed the procedure of Starmans & 
Bloom (2016) but, importantly, we removed expressions of 
inner conflict from the procedure by mentioning moral 
actions without stating moral desires. We focused on children 
of 4 to 9 years old. Our second research question was how 
children make inferences on the agents’ moral desires based 
on the information on psychological costs incurred to 
perform the moral action. Thus, after asking children to make 
evaluations, we also asked children to make inferences about 
the unstated moral desires of each character. Our final 
question was whether children’s social evaluations may 
differ by the types of costs. Thus, in Study 2, we tested how 
children’s evaluation of incurring psychological cost 
compare to their understanding of incurring physical cost. 

Study 1 

Method 
Seventy-six 4- to 9-year-olds (4.02- 7.98, M = 5.80, SD = 
1.06, 41 boys) from Ithaca, New York were recruited for this 
study. Mirroring the procedure in Starmans & Bloom (2016), 
we divided the children into three age groups: 4- to 5-year-
olds, 6- to 7-year-olds, 8- to 9-year-olds. Specifically, 39 4- 
to 5-year-olds (4.02- 5.85, M = 4.99, SD = .52, 21 boys), 37 
6- to 7-year-olds (6.00 - 7.98, M = 6.94, SD = .64, 17 boys) 

and 24 8- to 9-year-olds (8.03 – 9.65, M = 8.84, SD = .55, 11 
boys) were included in the analyses. In addition, 92 adults 
were recruited from Amazon Mechanical Turk. 

Each child was read four pairs of stories and shown 
accompanying pictures adapted from Starmans & Bloom 
(2016). See Figure 1 for an example of the stories. Each pair 
of stories described two characters who both performed a 
good action (e.g. helping her brother). One character (i.e., the 
“high psychological cost” character) incurred a higher 
psychological cost and forewent something she really liked 
in order to perform the good action. The other character (i.e., 
the “low psychological cost” character) incurred a lower 
psychological cost and forewent something she did not really 
like. Two story items (one Helping Story about helping 
siblings, one Honesty Story about telling truth to mom) were 
adapted from Starmans & Bloom (2017) and concerned 
moral obligations. We added two other pairs of stories about 
following rules (one Dishes Story about cleaning up dishes 
as mom asks, one Toys Story about playing the toy mom asks 
to play).  

 
Figure 1 Example of the images and scripts in Study 1. 

All the characters were the same gender as the participants. 
The order of presenting the four stories was counterbalanced 
across participants. The order of presenting the high 
psychological cost character and the low psychological cost 
character was counterbalanced across story items for each 
participant. After hearing each pair of stories, the child was 
asked two remember check questions: “Who found it easy to 
do something good?” and “Who found it hard to do 
something good?” Children answered 95% of the trials 
correctly. We only included those trials where both remember 
check questions were answered correctly. Including those 
trials where the remember check questions were answered 
incorrectly did not change the pattern or significance of 
results reported here.  

Following each story, we asked children two social 
evaluation questions. The first was (i.e., Prize question) 
“Which of the two characters would you give a prize to?” 
This was followed by a second question (i.e., Nicer question), 
“which one do you think is nicer?”  

We then asked children a moral desire rating question for 
each character in each pair of stories: “How much do you 
think she (the “high cost” character) wants to do the right 
thing?” and “How much do you think she (the “low cost” 
character) wants to do the right thing?” For each question, 
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children were asked to use a 3-point rating scale (“a lot”, “a 
little bit”, “not at all”) to infer the degree of moral desire. 

The adults received identical stimuli and questions, but 
read through these materials themselves online, and the 
characters were not matched to adult participants’ gender. 

Results 
Social Evaluation First, we examined our first research 

question that at what age can children evaluate someone who 
incurs higher psychological costs to fulfill social or moral 
obligations as more virtuous. See Figure 3.2 for results on 
children and adults’ responses to the social evaluation 
questions. We conducted a binary logistic regression, with 
their responses (“low cost” character = 1, “high cost” 
character =  0) as the dependent variable and age group (4- to 
5-year-olds, 6- to 7-year-olds, 8- to 9-year-olds, adults) as a 
between-subjects factor, and story item (helping, honesty, 
toys, dishes) and question (prize, nicer) as within-subjects 
factors. We found a significant main effect of age group 
(Wald c2(3, N = 192) = 71.08, p < .001). Specifically, adults 
were more likely to choose the “high cost” character than 
either 6- to 7-year-olds Wald c2(1, N = 129) = 17.83, p <.001, 
or the 4- to 5-year-olds, Wald c2(1, N = 131) = 62.65, p < 
.001. The 8- to 9-year-olds were not significantly different 
from the adults, p = .84, and were more likely to choose “high 
cost” character than were either the 6- to 7-year-olds Wald 
c2(1, N = 61) = 8.79, p = .003, or the 4- to 5-year-olds, Wald 
c2(1, N = 63) = 27.14, p < .001. The 6- to 7-year-olds were 
also more likely to choose the character who incurred a 
higher psychological cost than the 4- to 5-year-olds, Wald 
c2(1, N = 76) = 6.94, p = .008. No effects of questions or 
story item were found (p’s > .06). 

 
Figure 2. Children’s and adults’ mean preference for the 

“low cost” character in Study 1. Error bars represent 95% 
confidence intervals. Asterisks indicate significance of two-

tailed t-tests. (**) p < .01, (***) p < .001. 
 

Since no significant effects of question or story item were 
found, we averaged participants’ responses in two 
dependent measure questions across four story items and ran 
two-tailed one-sample t-tests to compare to chance (0.5) for 
each age group. Adults significantly favored the “high cost” 
character (M = .25), t(91) = - 6.87, p < .001, 95% CI = [-.32, 

-.17]. In contrast, the 4-to 5-year-olds significantly favored 
the “low cost” character (M = .73), t(38) = 5.43, d = , 95% 
CI = [.14, .31]. Responses of the 6- to 7-year-olds did not 
differ from chance (M = .55), t(36) = .83, p = .41, 95% CI = 
[-.07, .18]. The 8- to 9-year-olds significantly favored the 
“high cost” character (M = .28), t(23) = .-3.06, p = .006, 
95% CI = [-.37, -.07]. 
Moral Desire Ratings We then examined participants’ 
ratings of the characters’ moral desires (see Figure 3). We ran 
an ordinal GEE with age group (4-to 5-year-olds, 6-to 7-year-
olds, 8- to 9-year-olds, adults) as a between-subject factor, 
character (“low cost” character, “high cost” character) and 
story item as within-subject factors. We found a significant 
main effect of character (Wald c2(1, N = 192) = 221.45, p < 
.001) that participants’ ratings of moral desire were higher for 
the “low cost” character than the “high cost” character. We 
also found a significant main effect of story item (Wald c2(3, 
N = 192) = 47.18, p < .001). Specifically, participants’ ratings 
of moral desire were lower for the Dishes story than the three 
other stories (p’s < .004). No significant differences were 
found among other stories. We found no significant main 
effect of age group (p = .08) but found a significant 
interaction between age group and character (Wald c2(3, N 
= 192) = 24.57, p < .001). To further investigate the 
interaction, for each age group, we ran an ordinal GEE with 
character (“low cost” character, “high cost” character) and 
story item as within-subject factors. We found that although 
participants in all age groups rated higher moral desire for the 
“low cost” character than the “high cost” character (4- to 5-
year-olds: Wald c2(1, N = 39) = 31.93, p < .001; 6- to 7-year-
olds: Wald c2(1, N = 37) = 73.61, p < .001; 8- to 9-year-olds: 
Wald c2(1, N = 24) = 44.70, p < .001; adults: Wald c2(1, N 
= 92) = 58.03, p < .001), the difference were strongest among 
the 6- to 7-year-olds. 

 
Figure 3. Mean moral desire ratings split by character and 
age group in Study 1. Error bars represent 95% confidence 

intervals. 
 

Discussion 
In Study 1, adults considered a person who incurred a higher 
psychological cost to do the right thing (e.g., help brother) 
more favorably than a person who incurred a lower 
psychological cost to do the same thing. We found a 
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developmental change in this evaluation among children. 
Four- to five-year-olds showed completely opposite 
evaluation from adults. With age, children increasingly 
showed a preference for the character who incurred a higher 
psychological cost to help.  

Our results clarify age differences found in Starmans and 
Bloom (2016) in a few ways. First, in contrast to this prior 
study, when the difficulty was not explicitly stated as having 
conflicting desires (a self-interested desire and a moral 
desire) at once, 8- to 9-year old children gave adult-like 
favorable evaluations of the character who overcame the 
difficulty to act morally. Moreover, 6- and 7-year-olds were 
at chance, rather than favoring the easy action. The reversal 
from the adult pattern only appeared in the youngest group.  

Both children and adults inferred that the person who 
incurred a lower psychological cost had stronger desire to do 
the right thing than the person who incurs a higher 
psychological cost. This suggests that neither children nor 
adults intuitively inferred coexistence of two conflicting 
desires (e.g., a self-interested desire and a moral desire).  

Although ideally a direct replication and comparison to 
Starmans & Bloom (2016) would be more informative, we 
speculate that our results so far may together rule out moral 
conflict as the central understanding driving children’s and 
adults’ social evaluations. Instead, our findings suggest the 
importance of developing understanding the virtue of 
incurring costs to do the right thing in children’s evaluations. 
To further investigate this developmental change, in Study 2, 
we look at how children’s consideration of psychological 
costs may compare to their consideration of physical costs in 
social evaluations. We focused on the youngest children from 
study 1, 4- to 7-year-olds, since we found that their 
evaluations were significantly different from adults. We 
tested a group of adults as a reference group. 

Study 2 

Method 
Data collection is still ongoing. We set our sample size as 36 
children per age group (4- to 5-year-olds and 6- to 7-year-
olds). So far, sixty-one 4- to 7-year-olds (4.00- 7.99, M = 
5.32, SD = 1.17, 28 boys) from Ithaca, NY were recruited for 
this study. We divided the children into a younger group (4- 
to 5-year-olds) and an older group (6- to 7-year-olds). 
Specifically, 37 4- to 5-year-olds (4.00- 5.95, M = 4.89, SD 
= .58, 21 boys), 24 6- to 7-year-olds (M = 7.07, SD = .56, 
6.03 - 7.99, 7 boys) were included in the preliminary 
analyses. addition, 101 adults took part in this study and were 
included in the analyses.  

Participants were told four pairs of stories with 
accompanying pictures, each contrasting a “high cost” 
character (who incurred a high physical or psychological cost 
to do the right thing) with a “low cost” character (who 
incurred a low cost to do the right thing). Two pairs of the 
stories featured psychological costs and were the same as the 
Helping Story and the Dishes story in Study 1. The other two 
pairs of stories featured physical cost (see Figure 4). For 

example, in the Helping Story, the “high cost” character 
climbed up the stairs to picked up the ball for her brother, 
while the “low cost” character walked behind the sofa next to 
her and picked up the ball. 

 
Figure 4 Example of the images and scripts featuring 

physical cost presented in Study 2. 
 
All the characters were the same gender as the participants. 

The order of presenting the stories about psychological cost 
and stories about physical cost were counterbalanced across 
participants. The order of the high psychological cost 
character and the low psychological cost character were 
counterbalanced across stories for each participant. After 
hearing each pair of stories, the child was asked two 
remember check questions: “Who found it easy to do 
something good?” and “Who found it hard to do something 
good?” Children answered 93% of the trials correctly. We 
only included those trials where both remember check 
questions were answered correctly. Including those trials 
where the remember check questions were answered 
incorrectly did not change the pattern or significance of 
results reported here. 

Following each story, children were asked the same two 
social evaluation questions (order counterbalanced) as in 
Study 1. One was (i.e., Prize question) “Which of the two 
characters would you give a prize to?” The other question 
(i.e., Nicer question) was “which one do you think is nicer?” 
We then asked children one moral desire rating question for 
each character using the same measures as Study 1. 

The adults received identical stimuli and questions, but 
read through these materials themselves online, and the 
characters were not matched to adult participants’ gender. 

Results 
Social Evaluations First, we examined participants’ 

evaluation of the two characters (See Figure 5). We ran a 
binary logistic regression, with their responses (“low cost” 
character = 1, “high cost” character = 0) as the dependent 
variable and age group (4- to 5-year-olds, 6- to 7-year-olds, 
adults) as a between-subjects factor, and cost type 
(psychological vs. physical), story item (helping, dishes) and 
questions (prize, nicer) as within-subjects factors. We found 
a significant main effect of age group (Wald c2(2, N = 162) 
= 93.69, p < .001). Specifically, adults were more likely to 
choose the “high cost” character than either the 6- to 7-year-
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olds (Wald c2(1, N = 137) = 11.62, p = .001), or the 4- to 5-
year-olds (Wald c2(1, N = 125) = 83.69, p < .001). The 6- to 
7-year-olds were also more likely to choose the “high cost” 
character than the 4- to 5-year-olds (Wald c2(1, N = 61) = 
25.06, p < .001).  We also found a significant main effect of 
cost type (Wald c2(1, N = 61) = 8.44, p = .004). Specifically, 
participants were more likely to choose the “high cost” 
character in the physical stories than in the psychological 
stories. Interestingly, we also found a significant interaction 
between age group and cost type, Wald c2(2, N = 61) = 8.99, 
p = .011. To further investigate the interaction, for each age 
group, we ran a binary logistic regression with responses 
(“low cost” character = 1, “high cost” character = 0) as the 
dependent variable and cost type (psychological vs. 
physical), story item (helping, dishes) and question (prize, 
nicer) as within-subjects factors. We found a marginal effect 
of cost type for 4- to 5-year-olds (Wald c2(1, N = 37) = 3.32, 
p = .068), a significant main effect of cost type for 6- to 7-
year-olds (Wald c2(1, N = 24) = 8.25, p = .004), and no main 
effect of cost type for adults (p = .66). No significant effects 
question type or story item were found (p’s > .25). 

Since no significant effects of question type or story item 
were found, we averaged participants’ responses in two 
dependent measure questions across two story items for each 
type of cost. We then ran one-sample t-tests to compare 
participants’ responses in each type of story to chance (0.5) 
for each age group. Adults significantly favored the “high 
cost” character both for psychological stories (M = .20, t(93) 
= -8.75, p < .001, 95% CI = [-.36, -.23]) and physical stories 
(M = .13, t(95) = -13.42, p < .001, 95% CI = [-.43, -.32]). In 
contrast, the 4-to 5-year-olds significantly favored the “low 
cost” character both for physical costs (M = .64, t(35) = 2.28, 
p = .029, 95% CI = [.02, .26]) and psychological costs (M = 
.75, t(36) = 5.16, p < .001, 95% CI = [.15, .35]). The 6- to 7-
year-olds significantly favored the “high cost” character for 
the physical stories (M = .23, t(22) = -4.81, p < .001, 95% CI 
= [-.39, -.15]) but their responses did not differ from chance 
for the psychological stories (M = .40, t(22) = -1.18, p =.25, 
95% CI = [-.27, .07]).  

 
Figure 5. Children’s and adults’ mean preference for the 

“low cost” character in Study 2. Error bars represent 95% 
confidence intervals. Asterisks indicate significance of two-

tailed t-tests. (**) p < .01, (***) p < .001. 
 

Moral Desire Ratings We then examined participants’ 
moral desire ratings for the characters (see Figure 6). We 
ran an ordinal GEE with age group (4-to 5-year-olds, 6-to 7-
year-olds, adults) as a between-subject factor and character 
(“low cost” character, “high cost” character), cost type 
(psychological, physical) and story item (Helping, Dishes) 
as within-subject factors. We found a significant main effect 
of character (Wald c2(1, N = 158) = 88.03, p < .001) that 
participants’ moral desire ratings are higher for the “low 
cost” character than the “high cost” character. We also 
found a significant main effect of cost type (Wald c2(1, N = 
158) = 4.98, p =.026), that participants’ moral desire ratings 
for the characters are higher in the psychological stories 
than the physical stories. We also found a significant main 
effect of story item (Wald c2(1, N = 158) = 32.74, p < .001), 
that the moral desire ratings for the characters are higher in 
the Helping stories than the Dishes stories. Interestingly, we 
also found a significant interaction between character and 
cost type (Wald c2(1, N = 158) = 28.08, p < .001). Follow-
up analyses showed that participants rated stronger moral 
desire for the “low cost” character than the “high cost” 
character for both psychological cost (Wald c2(1, N = 158) 
= 78.21, p < .001) and physical cost (Wald c2(1, N = 158) = 
23.71, p < .001), but the difference is stronger for 
psychological cost than for physical cost. We also found a 
significant interaction between age group and character 
(Wald c2(1, N = 158) = 28.08, p < .001). Follow-up 
analyses showed that participants in all age groups rated 
stronger moral desire for the “low cost” character than the 
“high cost” character (4- to 5-year-olds: Wald c2(1, N = 37) 
= 33.25, p < .001; 6- to 7-year-olds: Wald c2(1, N = 23) = 
36.58, p < .001; Wald c2(1, N = 98) = 15.67, p < .001), but 
the difference is stronger among children than adults. Also, 
we found no significant main effect of age group (p = .53). 

 
Figure 6. Mean moral desire ratings split by character, cost 

type and age group in Study 2. Error bars represent 95% 
confidence intervals. 

 

Discussion 
In Study 2, we looked at how children’s considerations of 

psychological costs compare to their considerations of 
physical costs in social evaluations. Adults consistently 
demonstrated a favorable evaluation for someone who 
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incurred a high psychological or physical cost to do the right 
thing. Preschool-age children (4- to 5-year-olds) 
demonstrated an opposite evaluation from adults, favoring 
the person who incurred a lower psychological cost or 
physical cost. Most six- and seven-year-olds recognize the 
virtue of acting at a physical cost. Some of them also 
recognize the virtue of acting at a psychological cost. These 
results further support the idea that children’s evaluation of 
moral virtue depends on their understanding of cost rather 
than conflict: Physical cost is incorporated early in 
development, and psychological cost later.  

General Discussion 
In this paper, we investigated children’s consideration of 

costs in their social and moral evaluations. Prior studies have 
mostly focused on children’s understanding of physical costs 
including physical obstacles or valuable resources. Across 
two studies, we show that young children may start out with 
an intuitive preference for individuals who find it easy to do 
something good, and that they gradually transition to an 
adult-like understanding that incurring costs to do something 
good is positive, praiseworthy and morally virtuous. 
Importantly, neither adults nor children inferred conflicting 
moral and personal desires spontaneously. This helps clear 
the findings in our study and findings in Starmans &Bloom 
(2016). It seems that children recognize the virtue of 
incurring costs before recognizing the virtue of resolving 
conflicting desires. Moreover, children’s recognition of the 
positivity of incurring costs to do the right thing seems to 
develop in two stages: They first recognize the positivity of 
overcoming physical obstacles at around 6 to 7 years old, and 
then understanding the positivity of overcoming 
psychological obstacles at around 8 to 9 years old. 

The difference we found between children’s consideration 
of the psychological costs and physical costs add to prior 
work on children’s understanding about costs. Understanding 
psychological costs is similar to understanding physical costs 
in that they both involve recognizing the possibility and 
positivity of making efforts and overcoming some kind of 
difficulty. However, they are also different in that 
understanding psychological costs relies on understanding 
that people may have different desires and that they need to 
make mental efforts to overcome the psychological obstacles, 
which may be part of higher-order theory-of-mind 
understanding (Lagattuta et al. 2015). Exploring interactions 
of understanding of costs and children’s mental state 
understanding is an important direction for future work. 

What underlies the development between ages 4 and 9? 
There are at least three possible explanations for this 
developmental change. First, it is possible that, as children 
age, they increasingly experience situations where they need 
to incur physical or psychological costs (for example, giving 
up something they really like) in order to achieve certain 
social or moral goals. Through such experience of they may 
gradually recognize the effort one needs to put in this 
process, and thus understand the virtue of incurring costs to 
do the right thing. Second, it is also possible that as children 

get older, they may be increasingly praised and encouraged 
for making efforts to overcome some physical or 
psychological difficulties to achieve certain goals by 
caregivers or teachers. The final possibility is that younger 
children may have a bias that someone who incurs a lower 
cost simply has higher competence, while only later they 
gradually understand that easiness is not necessarily the 
indicator for competence. This possibility is consistent with 
prior work in children’s reasoning about ability showing 
that 4-year-olds judge someone who finds a task easy to be 
smarter than one who find the same task hard (Heyman, 
Gee, & Giles, 2003). These possibilities are certainly not 
mutually exclusive. It might be that children’s first-person 
experience, the linguistic input they receive, and their 
increasingly mature understanding of competence together 
guide their development of an understanding of the virtue of 
incurring costs to do the right thing.  
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Abstract

We explored the impact of three types of decision granularity,
problem level (Prob), step level (Step), and both problem and
step levels (Both), on student learning. We first conducted an
empirical study to directly compare the three conditions and
then three subsequent studies to evaluate one or two of the
three conditions. Overall our empirical results showed there
was no significant difference among the three conditions. We
further split students into different groups based on their per-
formances on the single-principle and the multiple-principle
problems in the pre-test. Solving the single-principle problems
only involves one step while solving the multiple-principle
ones involves generating multiple steps in a logic order. We
define High students as those who were correct on all single-
principle problems and at least one multiple-principle ones in
the pre-test, Low students as those who were correct on some
or all single-principle problems but no multiple-principle ones,
and the rest are in the Medium group. Our empirical results
showed that for Low students, Both can be better than Step.
For the Medium and High students, no clear conclusions could
be drawn because of small sample sizes. As a result, in a
post-hoc analysis all students were combined by their assigned
conditions. Overall, while no significant difference was found
among the three conditions, we found that the impact of three
types of granularity, Prob, Step, and Both differs significantly
for High vs. Low students: Both,Step > Prob for the High
students and Both,Prob > Step for the Low students. No clear
conclusions could be drawn for the Medium group due to its
small sample sizes. In short, while Prob could be effective for
Low students but ineffective for High ones and Step could be
effective for High students but ineffective for Low ones, Both
seemed to be effective for both High and Low students.
Keywords: granularity, worked example, problem solving,
student competence

Introduction
In STEM domains like math, probability and science, solv-
ing a problem often requires producing an argument, proof
or derivation consisting of one or more inference steps, and
each step is the result of applying a domain principle, opera-
tor or rule. For instance, an algebraic equation 2x+5=21 can
be solved via two steps: 1) subtract the same term 5 from
both sides of the equation; and 2) divide both sides by the
non-zero term 2. As a result, tutoring in such domains is of-
ten structured as a two-loop procedure. An outer loop selects
the problem or task the student should work on next, while
the inner loop governs step level decisions such as whether or
not to give a hint (Vanlehn, 2006).

In this paper, we directly explored the impact of three
types of decision granularity on student learning by compar-
ing three conditions: problem level (Prob), step level (Step),

and both problem and step levels (Both). In the Prob condi-
tion, the tutor randomly decides whether the next problem is
worked example (WE) or problem solving (PS). In WE, stu-
dents observe how the tutor solves a problem, while in PS the
students solve the problem themselves. In the Step condition,
a random decision is made on whether the next step should
be WE or PS. To differentiate it from the problem level PS
and WE, we refer to such step level interleaving as Faded
Worked Example (FWE). Finally, the Both condition involves
both levels of decisions: at the problem level, it randomly de-
cides whether the next problem should be WE, PS or FWE; if
FWE is selected, step level decisions will be randomly made.

A series of studies were conducted to evaluate the three
types of decision granularity in the domain of probability
using an Intelligent Tutoring System (ITS) named Pyrenees
from 2014-2017. Pyrenees allowed us to rigorously control
the content and vary only the types of decision granularity.
In Fall 2014 (Fall’14), all three conditions were empirically
compared; for the subsequent studies, only one or two con-
ditions were examined.1 In a post-hoc comparison, students
from all studies were combined by their conditions because
all conditions across different years went through the same
standard 4-phase procedure: textbook, pre-test, training on
ITS, and post-test, and all materials in each of the four phases
were kept to be identical across different years. Overall, our
results showed that there was no significant difference among
the three conditions either in Fall’14 (Zhou, Price, Lynch,
Barnes, & Chi, 2015) or in the post-hoc analysis.

On the other hand, the aptitude-treatment interaction (ATI)
effect states that some instructional interventions can be more
or less effective for particular students depending upon their
specific abilities or knowledge (Cronbach & Snow, 1977;
Snow, 1991). Here we argue that WE, PS, and FWE involve
different learning mechanisms. More specifically, in WEs,
students learn by observing how the tutor solves a problem;
in PSs, students learn by doing – solving the problem with the
tutor’s assistance; in FWEs, students learn by collaboratively
constructing the solution with the tutor. As a result, we argue
that in the Prob condition students switched between learn-
ing by observing (WE) and learning by doing (PS); in the

1Please note that another purpose of the subsequent studies was
to compare reinforcement learning induced policies with random
policies. Due to participant limit, we were not able to compare the
three conditions again.
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Step condition, students learn by collaboratively construct-
ing answers for (FWEs) with the tutor; in the Both condition,
students experienced all three types of learning mechanisms.
Therefore, we expect that Prob, Step, and Both can be more
or less effective for different students.

To investigate whether there is indeed an ATI effect, we
split students into High, Medium and Low groups based on
their incoming competence measured by their performances
on six single-principle and four multiple-principle problems
in the pre-test. Solving the single-principle problems only
involves one step while solving the multiple-principle ones
involves generating multiple steps in a logic order. We define
High students as those who were correct on all six single-
principle problems and at least one multiple-principle ones in
the pre-test, Low students as those who were correct on some
or all single-principle problems but no multiple-principle
ones, and the rest are in the Medium group. Our results from
Fall’14 showed that for the Low students, both levels of the
granularity (Both) is significantly more effective than the step
level decisions (Step); for the Medium and High students, no
clear conclusions could be drawn because of small sample
sizes. In the post-hoc analysis, no clear conclusions could be
drawn for the Medium group due to its small sample sizes
and for the other two groups, we have: Both,Step > Prob
for the High students and Both,Prob > Step for the Low stu-
dents. In short, our post-hoc analysis suggested that the prob-
lem level decisions (Prob) could be effective for Low students
but ineffective for High ones; on the other hand, the step level
decisions (Step) could be effective for High students but inef-
fective for Low ones; finally, the both level decisions (Both)
seemed to be effective for both High and Low students.

Background and Related Work
The Impact of Granularity Involving WE, PS, FWE
Much of prior research has investigated the effectiveness of
WE, PS, FWE, and their various combinations (Sweller &
Cooper, 1985; McLaren, Lim, & Koedinger, 2008; McLaren
& Isotani, 2011; McLaren, van Gog, Ganoe, Yaron, & Kara-
binos, 2014; Van Gog, Kester, & Paas, 2011; Renkl, Atkin-
son, Maier, & Staley, 2002; Schwonke et al., 2009; Najar,
Mitrovic, & McLaren, 2014; Salden, Aleven, Schwonke, &
Renkl, 2010; Zhou et al., 2015; Zhou, Lynch, Price, Barnes,
& Chi, 2016; Zhou & Chi, 2017; Zhou, Wang, Lynch, & Chi,
2017; Zhou, Azizsoltani, Ausin, Barnes, & Chi, 2019). Here
we only include those that involved any of the three types
of granularity. At the problem level granularity, for example,
McLaren et al. (2008) found no significant difference in learn-
ing performance between Prob (WE-PS pairs) and PS-only,
but the former spent significantly less time than the latter. In
a subsequent study, McLaren and Isotani (2011) compared
three conditions: WE-only, PS-only, and Prob (WE-PS pairs).
Similarly, no significant differences were found among them
in terms of learning gains, but the WE condition spent signif-
icantly less time than the other two; and no significant time
on task difference was found between the PS and the Prob

(WE-PS pairs) condition.
A series of studies compared the Step level and the Both

level granularity with PS only (Schwonke et al., 2009; Salden
et al., 2010). Results showed that the former two can be more
effective than the latter. For example, Salden et al. compared
three conditions: Both (WE-FWE-PS), Step (FWE), and PS-
only (Salden et al., 2010). Their results showed that Step out-
performed Both, which in turn outperformed PS-only, and no
significant time on task difference was found among the three
conditions. Note that in this study, the order of WE, FWE,
and PS was fixed in Both; while in Step, the tutor used an
adaptive pedagogical policy, expert rules combined with data-
driven student models, to determine whether the next step
should be WE or PS. Therefore, it is was not clear whether
it was the adaption or the granularity that made the Step con-
dition more effective than the other two conditions. In our
studies, we factored out the impact of adaption by employing
random policies.

While the studies described above mainly used PS-only as
baselines, several studies directly compared different types
of granularity. Overall, results suggested that the Both level
granularity could be more effective than the Prob level (Renkl
et al., 2002; Najar et al., 2014). For example, Renkl et al.
(2002) compared Both (WE-FWE-PS) with Prob (WE-PS
pairs) and the former significantly outperformed the latter on
student learning performance while no significant difference
was found between them on time on task. Similarly, Najar et
al. (2014) compared Both (adaptive WE/FWE/PS) with Prob
(WE-PS pairs). They found that the former significantly out-
performed the latter in terms of learning outcomes and the
former also spent significantly less time on task. Here, an
adaptive pedagogical policy was also employed to make both
the problem and step level decisions. Thus, it is quite pos-
sible that the superiority of Both over Prob stemmed from
the adaption rather than from the granularity. In sum, while
different decision granularities were involved in prior stud-
ies, the WEs and PSs were provided following some fixed or
adaptive pedagogical policies. In this work, we factor out the
impact of pedagogical policies by employing a random policy
for all three types of granularity.

The ATI Effect of WE, PS, FWE
Some prior studies have also investigated the ATI effect of
WE, PS, FWE, and their combinations (Kalyuga, Chandler,
Tuovinen, & Sweller, 2001; Najar & Mitrovic, 2013; Najar,
Mitrovic, & McLaren, 2016). For example, Najar and Mitro-
vic (2013) compared three conditions: 1) WE-only, 2) PS-
only and 3) Prob (WE-PS pairs) in the domain of Structured
Query Language and students were split into High vs. Low
groups based on their pre-test scores. The results showed
that for the High students: Prob, PS-only > WE-only; while
for their Low peers: Prob > PS-only, WE-only. In a sub-
sequent study, Najar et al. (2016) compared Both (adaptive
WE/FWE/PS) with Prob (WE-PS pairs) and students were
divided into High and Low groups by a median split on pre-
test scores. Results showed that for the High students, Both
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Table 1: Single-principle Problem vs. Multiple-principle Problem

Type Single-principle Problem Multiple-principle Problem
Question If p(A∩B) = 0.2 and p(B) = 0.5, find P(A|B). If p(B) = 0.06, p(∼ A ∩ ∼ B) = 0.87 and p(A∩B) = 0.03, find p(A).

Answer
Apply the definition of conditional probability: 1) Apply the complement theorem: p(∼ B ∩ ∼ A)+ p(∼ (∼ B ∩ ∼ A)) = 1

p(A|B) = p(A∩B)/p(B) = 0.2/0.5 = 0.4 2) Apply the de morgan’s law: p(A∪B) = p(∼ (∼ B ∩ ∼ A)) = 1−0.87 = 0.13

3) Apply the addition theorem: p(A∪B) = p(A)+ p(B)− p(A∩B), p(A) = 0.13+0.03−0.06 = 0.1.

is more effective than Prob; while for the Low students, no
significant difference was found.

In short, prior research investigating the ATI effect of WE,
PS, FWE, and their combinations showed that for Low stu-
dents, Prob could be more effective than doing WE and PS
only; but for High students, Both can be more effective than
Prob. While much of prior ATI research involved one or two
types of granularity, to the best of our knowledge, no prior
study has investigated the ATI effect when comparing the
three types of granularity directly.

High, Medium, vs. Low Students
To investigate the ATI effect, we need to first distinguish stu-
dents based on some specific abilities or knowledge. Learn-
ing in STEM domains such as math and science often in-
volves acquiring two types of knowledge: declarative and
procedural (Anderson, 1993). Declarative knowledge in-
cludes facts that we know and that can be described to others,
for example, ”the probability of TRUE is always 1”. Proce-
dural knowledge specifies how to retrieve and use declarative
knowledge to solve problems. It is a type of knowledge that
display with behaviors and often times cannot be explicitly
described. Procedural knowledge often requires the interplay
of many cognitive factors including but not limited to the fol-
lowing five ones in order of occurrence: 1) acquisition of
declarative knowledge, 2) identification and retrieval of the
proper declarative knowledge, 3) application of declarative
knowledge, 4) organization and production of solution plans;
5) execution of solution plans and evaluation of answers.

Similar to previous research, we used pre-test to measure
students’ incoming competence. Our pre-test contains single-
principle problems which involve applying one domain prin-
ciple once and multiple-principle problems which involve ap-
plying multiple domain principles and for some principles
more than once. Table 1 shows an example for each of them.
The second column shows the question and answer for a
single-principle problem. As we can see, the problem can be
solved by directly applying a single-principle. The third col-
umn shows a multiple-principle problem. Solving the prob-
lem needs to not only apply three algebraic principles but also
organize them in a logical order.

Based on the five cognitive factors described above, we
argue that solving single-principle problems mainly involves
factors 1-3, while solving multiple-principle ones involves all
five of them. Thus, students must be able to solve single-
principle problems before they can solve multiple-principle
problems. Our data supported this point, showing that stu-

dents who could solve multiple-principle problems always
had the perfect score on all single-principle problems in the
pre-test. Therefore, in the following we refer to students who
could solve at least one multiple-principle problem correctly
as High students, those who could only solve some or all of
the six single-principle problems correctly as Low students,
and the rest as the Medium students.

Methods
Participants
Four studies were conducted in each of the Fall semesters
from 2014-2017 to evaluate the three conditions: Prob, Step,
and Both using an ITS named Pyrenees in the undergraduate-
level Discrete Mathematics course at North Carolina State
University. They were assigned to students as one of their
regular homework assignments and the completion of the tu-
tor was required for full credit. Students were told that the
assignment will be graded based on their demonstrated effort
rather than performance. In different studies, different con-
ditions were evaluated and in each study, students were ran-
domly assigned to each condition. In Fall’14, all three con-
ditions were empirically compared while for the subsequent
three studies, only one or two conditions were examined and
in the post-hoc analysis, students from all studies across the
four years were combined by their conditions.

Table 2 shows an overview of participants in the four stud-
ies and the post-hoc analysis: the first two columns show
the semester of the study and its corresponding conditions;
columns 3 and 4 list the number of students initially assigned
and finally completed in each condition. Overall, Pearsons
Chi-squared test showed that there was no significant differ-
ence among the three conditions on their completion of study:
χ2(2) = 1.13,p = 0.57 for Fall’14 and χ2(2) = 0.65,p = 0.72
for the post-hoc analysis. Here we only focus on Fall’14 and
the post-hoc analysis because all three conditions are present.

Finally, students with perfect pre-test scores were excluded
because we could not measure the improvement they made
through training. The last column in Table 2 shows the num-
ber of students included in the following analysis.

Probability Tutor
Pyrenees is a web-based tutor that teaches students a general
problem solving strategy and 10 major probability principles,
such as the Complement Theorem and Bayes’ Rule. It pro-
vides students with step-by-step instruction, immediate feed-
back, and on-demand help. Specifically, the help is provided
via a sequence of increasingly specific hints. The last hint in
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Table 2: Participants for E ach Study and Condition

Study Cond Distributed Completed Included

Fall’14
Prob 58 38 37
Step 59 39 37
Both 59 34 34

Fall’15 Prob 47 38 38
Step 47 35 34

Fall’16 Prob 40 32 31
Step 41 35 35

Fall’17 Both 70 57 56

Post-hoc
Prob 145 108 106
Step 147 109 106
Both 129 91 90

the sequence, i.e., the bottom-out hint, tells student exactly
what to do. The ITS has three basic modes. In the WE mode,
all the steps in a problem were solved by the tutor while in
the PS mode, they were solved by the student. In the FWE
mode, each step has a 50% chance to be solved by the tutor
and 50% chance by the student. Except for the decision gran-
ularity, the remaining components of the tutor, including the
GUI interface, the training problems and the tutorial support
were identical for all students.

Procedure
All four studies include the four identical phases: 1) textbook,
2) pre-test, 3) training, and 4) post-test. The only difference
among the three conditions was the decision granularity level,
problem level for Prob; step level for Step; and both the prob-
lem and the step level for Both.

During textbook, all students studied the domain principles
through a probability textbook. They read a general descrip-
tion of each principle, reviewed some examples of it, and
solved some single- and multiple-principle problems. After
solving each problem, the student’s answer was marked in
green if it was correct and red if incorrect. They were also
shown an expert solution at the same time. If the students
failed to solve a single-principle problem, then they were
asked to solve an isomorphic one. This process was repeated
until they either failed three times or succeeded once. The
students had only one chance to solve each multiple-principle
problem and were not asked to solve an isomorphic problem
if their answer was incorrect.

The students then took a pre-test which contained 10 prob-
lems. They were not given feedback on their answers, nor
were allowed to go back to earlier questions (this was also
true for the post-test).

During training, students in all three conditions received
the same 12 problems in the same order. Each main domain
principle was applied at least twice. The minimal number
of steps needed to solve each training problem ranged from
20 to 50. Such steps included variable definitions, principle
applications, and equation solving. The number of domain
principles required to solve each problem ranged from 3 to
11. The problems were given as WE, PS, or FWE, based
upon the students’ experimental condition. All students could

access the textbook.
Finally, all students took the post-test which contained 16

problems in total. 10 of the problems were isomorphic to the
pre-test problems given in phase 2. The remainder were non-
isomorphic multiple-principle problems.

Grading criteria
The pre- and post-test problems required students to derive
an answer by writing and solving one or more equations. We
used three scoring rubrics: binary, partial credit, and one-
point-per-principle. Under the binary rubric, a solution was
worth 1 point if it was completely correct or 0 if not. Un-
der the partial credit rubric, each problem score was defined
by the proportion of correct principle applications evident in
the solution. A student who correctly applied 4 of 5 possi-
ble principles would get a score of 0.8. The One-point-per-
principle rubric in turn gave a point for each correct principle
application. All of the tests were graded in a double-blind
manner by a single experienced grader. The results presented
below were based upon the partial-credit rubric but the same
results hold for the other two. For comparison purposes, all
test scores were normalized to the range of [0,1].

Results
The three conditions were compared on test scores. For the
Fall’14 study, a One-way ANOVA analysis on the pre-test
score showed no significant difference among the three con-
dition: F(2,105) = 1.12, p = 0.33, η = 0.021. A One-way
ANCOVA analyses on the post-test score using the pre-test
score as a covariate also showed no significant difference:
F(2,104) = 1.70, p = 0.19, η = 0.021. Similar insignificant
results were found in the host-hoc analysis: F(2,299) = 0.68,
p = 0.51, η = 0.005 for the pre-test and F(2,298) = 0.98,
p= 0.38, η= 0.004 for the post-test. In terms of time on task,
contrast analysis revealed that Prob spent significantly less
time than Step in both Fall’14: t(105) = −2.62, p = 0.010,
d = 0.61 and post-hoc: t(299) =−3.00, p = 0.003, d = 0.40.

To evaluate the ATI effect, we split students based on their
pre-test scores. Our pre-test included six single-principle and
four multiple-principle problems. Following our splitting cri-
teria discussed above, we refer to students who could solve
at least one multiple-principle problem correctly (pre ≥ 0.7)
as High students 2; those who could only solve some or all
of the six single-principle problems correctly (pre ≤ 0.6) as
Low students, and the rest as Medium ones. As expected, in
the pre-test the High group scored significantly higher than
the Medium group: t(105) = 6.94, p < 0.0001, d = 3.16
in Fall’14 and t(299) = 9.71, p < 0.0001, d = 2.37 in post-
hoc; the Medium group significantly outperformed the Low
group: t(105) = 8.41, p < 0.0001, d = 2.14 in Fall’14 and
t(299) = 11.82, p < 0.0001, d = 2.08 in post-hoc.

Incoming competence combined with three conditions par-
titioned the students into nine groups for both Fall’14 and

2Note that in our grading rubrics, all problems were weighted
equally in both pre- and post-tests.
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Table 3: Students Performance and Time (minutes) on Fall’14 Empirical Study and Post-hoc Analysis

Cond Fall’14 Empirical Study Post-hoc Analysis
N Pre Iso Post Time N Pre Iso Post Time

ProbH 12 .857(.065) .817(.125) .700(.169) 85.5(19.9) 56 .822(.086) .844(.138) .740(.178) 111.1(42.5)
StepH 8 .800(.080) .868(.156) .769(.154) 125.2(40.0) 47 .827(.077) .908(.089) .819(.126) 128.2(29.4)
BothH 13 .826(.064) .863(.136) .767(.160) 113.2(30.1) 46 .818(.073) .902(.110) .821(.156) 106.6(29.3)

ProbM 5 .636(.017) .728(.134) .598(.168) 96.8(17.4) 10 .652(.021) .813(.148) .688(.173) 101.1(24.8)
StepM 6 .647(.017) .687(.187) .559(.124) 124.1(22.2) 12 .649(.022) .818(.190) .715(.191) 125.7(28.5)
BothM 6 .653(.028) .740(.163) .618(.189) 111.5(25.8) 11 .652(.025) .736(.216) .616(.216) 113.1(26.3)

ProbL 20 .453(.117) .657(.190) .528(.205) 95.8(29.3) 40 .455(.117) .703(.234) .596(.244) 98.7(35.7)
StepL 23 .441(.103) .592(.192) .458(.153) 104.2(38.1) 47 .439(.110) .628(.219) .500(.190) 109.8(34.6)
BothL 15 .414(.110) .703(.170) .550(.154) 105.1(37.4) 33 .415(.119) .707(.208) .565(.185) 110.3(36.3)

post-hoc. The number of students in each group is listed in
the “N” column for Fall’14 in Table 3 (Left) and for post-hoc
in Table 3 (Right). Fortunately, random assignment balanced
the three conditions for ability, and this balance persisted even
after the groups were subdivided into High, Medium, and
Low. No significant difference was found on pre-test among
the three High groups, the three Medium groups, or the three
Low groups in both Fall’14 and post-hoc.

Empirical Fall’14 Study
In Table 3, the first column shows the condition-competence
group and then followed by a section presenting the learning
performance and time on task (in minutes) for Fall’14. Here
it shows the number of students (N) and the mean and SD of
pre-test score (Pre), isomorphic post-test score (Iso), overall
post-test score (Post) and time on task (Time). A Chi-square
test showed that there was no significant relation between
condition and incoming competence χ2(4) = 2.94,p = 0.57.

To measure student learning improvement, we compared
their isomorphic post-test scores with their pre-test scores.
A repeated measures analysis using test type (pre-test vs.
isomorphic post-test) as a factor and test score as the de-
pendent measure showed that there is a main effect for test
type: F(1,107) = 50.82, p < 0.0001, η = 0.322 in that they
scored significantly higher on the isomorphic post-test prob-
lems than pre-test. Thus, our tutor is indeed effective on im-
proving student learning. More specifically, all three condi-
tions scored significantly higher in the isomorphic post-test
than in the pre-test: F(1,36) = 13.56, p = 0.0008, η = 0.274
for Prob, F(1,36) = 16.26, p = 0.0003, η = 0.311 for Step,
and F(1,33) = 20.92, p< 0.0001, η= 0.388 for Both respec-
tively. This showed that the basic practices and problems, do-
main exposure, and interactivity of our ITS might be effective
to help students acquire knowledge.

Finally, to obtain a comprehensive evaluation of students’
final performance, analyses were performed on the overall
post-test which contains six additional multiple-principles. A
two-way ANCOVA analysis on the factors of granularity and
incoming competence using the pre-test score as a covariate
showed no significant interaction or main effect. A subse-

quent pairwise contrast analysis revealed that for Low stu-
dents, the BothL group scored significantly higher than the
StepL group: t(98) = −2.01, p = 0.047. The results sug-
gested that the Both levels of decisions can be more effective
than the step level decisions for the Low students.

In terms of time on task, a two-way ANOVA analysis on
granularity and incoming competence showed a main effect
on granularity: F(2,99) = 3.97, p = 0.02, η = 0.071 in that
the Prob condition spent significantly less time than the Step
condition t(105) = −2.62, p = 0.01, d = 0.61 and the Both
condition t(105) =−2.22, p = 0.029, d = 0.58 . Subsequent
contrast analyses showed that such difference mainly came
from the High students in that: ProbH spent significantly less
time than StepH and BothH : t(99) = −2.72, p = 0.008, d =
1.35 and t(99) =−2.17, p = 0.03, d = 1.08 respectively; no
significant difference was found among the three Low groups.

Overall, Fall’14 results showed that on learning perfor-
mance, Both was better than Step for the Low students; while
on time on task, Prob spent less time than the other two for
the High students. Note that since some of the groups are in
small size, the absence of significant differences might be due
to insufficient statistical power.

Post-hoc Analysis
The right section of Table 3 presents the post-hoc analysis
results. Numbers in the “N” column revealed that the three
High and the three Low groups are in reasonable size while
the three Medium groups remain small. A Chi-square test
showed no significant relation between condition and incom-
ing competence: χ2(4) = 2.11,p = 0.72.

A repeated measures analysis using test type (pre-test vs.
isomorphic post-test) as a factor and test score as the depen-
dent measure showed that there was a main effect for test type
F(1,301) = 177.38, p < 0.0001, η = 0.371 in that students
scored significant higher in the isomorphic post-test than in
the pre-test. Similarly, for each of the three conditions, stu-
dents scored significantly higher in the isomorphic post-test
than in the pre-test: F(1,105)= 42.79, p< 0.0001, η= 0.290
for Prob; F(1,105) = 72.27, p < 0.0001, η = 0.408 for Step
and F(1,89) = 67.46, p < 0.0001, η = 0.431 for Both. The
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results confirmed that our tutor is effective over the years.
For the overall post-test scores, a two-way ANCOVA anal-

ysis on the factors of granularity and incoming competence
using the pre-test score as a covariate showed a significant
interaction effect: F(4,292) = 3.66, p = 0.006, η = 0.029.
Subsequent contrast analyses showed that for High students,
the StepH group and the BothH group scored significantly
higher than the ProbH group: t(292) = 2.25, p = 0.03 and
t(292) = −2.50, p = 0.01 respectively. For Low students,
the ProbL group and the BothL group scored significantly
higher than the StepL group: t(292) = 2.29, p = 0.02 and
t(292) = 2.19, p = 0.03 respectively. The results suggest that
for High students, the Step level decisions and the Both level
decisions are more effective than the Prob level while for Low
students, the Prob level decisions and the Both level decisions
are more effective than the Step level.

For time on task, a two-way ANOVA analysis on granu-
larity and incoming competence showed a significant main
effect on granularity: F(2,293) = 4.98, p = 0.007, η = 0.032
in that the Step condition spent more time than the Prob con-
dition: t(299) = 3.00, p = 0.003, d = 0.40 and the Both
condition: t(299) = 2.22, p = 0.027, d = 0.34. Subsequent
contrast analysis revealed that for High students: the StepH
group spent longer time than the ProbH group: t(293) = 2.51,
p = 0.01, d = 0.46 and the BothH group: t(293) = 3.03,
p= 0.003, d = 0.74. No such significant difference was found
among the three Low groups.

Overall, the results suggest that on learning performance,
the problem level decisions can be effective for Low stu-
dents but ineffective for High students, the step level deci-
sions could be effective for High students but ineffective for
Low students, while Both level decisions seem to be effec-
tive for both High and Low students. For time on task, the
High students, the StepH group can spend more time than the
ProbH and the BothH groups while no significant difference
was found among the three Low groups.

Conclusion & Discussion
In this paper, we explored the impact of three types of deci-
sion granularity on student learning by comparing three con-
ditions: Prob involving WE and PS, Step involving FWE
only, and Both involving all WE, PS and FWE. Overall, while
no significant difference was found among the three condi-
tions on learning performance, a significant difference was
found among them on time on task in that Prob spent signifi-
cantly less time than Step for both Fall’14 and the post-hoc.

We hypothesized that different learning mechanisms are in-
volved in WE, PS and FWE and thus there may exist an ATI
effect. Students were then split into High, Medium and Low
groups based on their pre-test performance. Results from
Fall’14 show that on learning performance, for Low students
Both is more effective than Step; on time on task, for High
students Prob would spend less time than Step. Overall be-
cause of small sample sizes, more general conclusions cannot
be drawn here. Furthermore, our post-hoc results suggest that

on learning performance, Prob can be effective for Low stu-
dents but ineffective for High ones on the other hand, Step
could be effective for High students but ineffective for Low
ones; finally, Both seemed to be effective for both High and
Low students; as for time on task, while no significant differ-
ence was found among the three Low groups either in Fall’14
or post-hoc, significant difference was found among the three
High groups in that ProbH spent significantly less time than
StepH in both Fall’14 and post-hoc.

Our results showed a difference between the Prob and Step
granularity. In terms of time on task, students spent less time
when learning with Prob than with Step. For learning perfor-
mance, each of them can be effective for some students but
ineffective for some other students, depending on students’
knowledge level. This suggests that the granularity can have
an impact on student learning. Additionally, results for the
Both granularity suggest that mixing this two types of granu-
larity together has the potential to get a more robust instruc-
tional intervention. The Prob granularity can be ineffective
for the High students and the Step granularity can be ineffec-
tive for Low students, but our results suggest that Both can be
effective for both High and Low students.

One possible explanation for our results is that different
cognitive load were involved in the three conditions. At the
problem level, students pay attention to either the tutor’s so-
lution in WE or their own solution in PS; while at the step
level, they need to pay attention to both the tutor’s solution
and their own solution and integrate them. Compared with
PSs, in FWEs the tutor may solve certain steps for students
but on the other hand, students need to devote extra effort to
understand and to integrate their answers with the tutor’s an-
swers. Thus, we hypothesized that in terms of cognitive load,
WE <PS <FWE. This explains why the Step condition spent
more time than the Prob condition (in both Fall’14 and post-
hoc) despite that students in these two condition completed
the same amount of work (as measured by the number of PS
steps in our subsequent log analysis). Assuming that FWEs
are more challenging than WEs or PSs, the results that Step
benefits the High students more than Prob while Prob ben-
efits the Low ones more than Step can be explained by the
conjecture that High students have more prior knowledge and
learning capacity than the Low ones. However, this is only
our hypothesis and much more research is needed to fully
understand it. More importantly, more research is needed to
explain why the Both levels of granularity benefits both High
and Low students.

Lots of prior research has shown that studying WEs help
students learn. However, questions about how and when WEs
should be presented remain open. Our findings inform re-
searchers that the granularity can have an impact on student
learning and the impact of granularity can differ for students
at distinct knowledge levels. Thus, it urges researchers to
consider the impact of granularity when designing instruc-
tions and adapt the instruction based on students’ knowledge
level.
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Abstract

Most objects in the visual world are partially occluded, but
humans can recognize them without difficulty. However, it re-
mains unknown whether object recognition models like convo-
lutional neural networks (CNNs) can handle real-world occlu-
sion. It is also a question whether efforts to make these models
robust to constant mask occlusion are effective for real-world
occlusion. We test both humans and the above-mentioned
computational models in a challenging task of object recogni-
tion under extreme occlusion, where target objects are heavily
occluded by irrelevant real objects in real backgrounds. Our
results show that human vision is very robust to extreme oc-
clusion while CNNs are not, even with modifications to han-
dle constant mask occlusion. This implies that the ability to
handle constant mask occlusion does not entail robustness to
real-world occlusion. As a comparison, we propose another
computational model that utilizes object parts/subparts in a
compositional manner to build robustness to occlusion. This
performs significantly better than CNN-based models on our
task with error patterns similar to humans. These findings sug-
gest that testing under extreme occlusion can better reveal the
robustness of visual recognition, and that the principle of com-
position can encourage such robustness.
Keywords: visual recognition; occlusion; computational
model; neural network; psychophysics

Introduction
Objects in the visual world are occluded much more than ob-
jects in typical visual science experiments. The ability to han-
dle occlusion is essential for survival and everyday activities.
For instance, in order to safely drive on the road, one must
be able to swiftly detect other vehicles and pedestrians in ad-
vance even when they are only partially visible. However,
both humans and object recognition models are rarely tested
on the level of occlusion we encounter in the real world. Sev-
eral studies have addressed this important issue by investi-
gating real-world object recognition under occlusion (Tang et
al., 2018; Rajaei, Mohsenzadeh, Ebrahimpour, & Khaligh-
Razavi, 2018). These authors successfully developed models
that could handle constant mask occlusion as shown in Fig-
ure 1 (a), and produced results consistent with human per-
formance. In this paper, we take a step further and propose
a more challenging task of object recognition under extreme
occlusion to test humans and object recognition models.

We designed our task using a public occlusion image
dataset from the computer vision community (Wang et al.,
2017). In the proposed task, target objects are heavily oc-
cluded by several superimposed irrelevant real-world objects
(occluders) with an average target occlusion ratio above 0.6,

see Figure 1 (b). The biggest difference from previous studies
is that both targets and occluders are real objects in real back-
grounds. This task provides new insights in two ways. First,
compared to testing in an occlusion-free domain, it challenges
both humans and object recognition models and better tests
the robustness of visual recognition. Second, it provides a
way to check whether the ability to handle constant mask oc-
clusion can entail robustness to real-world occlusion.

To begin with, we experimentally measured human perfor-
mance on our task. Figure 1 (c) provides an example stimulus
used in the behavioral experiments. Humans were very good
at recognizing such extremely occluded objects and showed
great robustness to occlusion. The results also suggest that
our task is feasible and that an ideal object recognition model
should be able to accomplish it.

Therefore, we subsequently tested several recent object
recognition models on our task. The first model tested is the
hierarchically feed-forward model, represented by convolu-
tional neural networks (CNNs) (LeCun, Bengio, & Hinton,
2015). These models mimic the feed-forward process in bio-
logical vision. They achieve impressive performance and can
explain some human data in several non-challenging visual
tasks (DiCarlo & Cox, 2007; Yamins et al., 2014). However,
there is still considerable variability in human neural and be-
havioral data at the individual image level that CNNs cannot
explain (Rajalingham et al., 2018; Schrimpf et al., 2018). Our
experiments show that CNNs perform very well without oc-
clusion but their performance is not very good under extreme
occlusion, suggesting that they lack robustness to occlusion.

The second model is a hybrid model that combines CNNs
with models of recurrent computations. In biological vision,
recurrent computations are essential for recognition under
occlusion (Lamme & Roelfsema, 2000; Lamme, Zipser, &
Spekreijse, 2002; Tang et al., 2018; Rajaei et al., 2018; Wy-
atte, Curran, & O’Reilly, 2012). Tang et al. (2018) modelled
recurrent computations as lateral connections realized by a
Hopfield network, which acted as a content addressable mem-
ory (Hopfield, 1982). They used Hopfield networks to store
CNN activations of occlusion-free objects and later recover
activations of occluded objects. This model improved CNN
performance for recognition under constant mask occlusion,
but we did not observe improvements under extreme occlu-
sion, implying that the ability to handle constant mask occlu-
sion does not entail robustness to real-world occlusion.
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(a) (b) (c)

Figure 1: Examples of different types of occlusion (on car
images). (a) An image of constant mask occlusion used in
(Tang et al., 2018). (b) An image of extreme occlusion used
to test computational models in our paper. (c) An image of
extreme occlusion used in our behavioral experiments.

As a comparison to the models above, we propose a third
model designed with the principle of composition. Through-
out this paper, we use the term “composition” in its traditional
sense meaning the process where smaller parts are composed
together to form larger parts. This principle is not inherently
addressed by CNNs (Stone et al., 2017), but it is supported
by biological evidence showing that populations of neurons
in macaque V4 and IT areas represent complete shapes with
aggregates of shape fragments (Brincat & Connor, 2006; Pa-
supathy & Connor, 2002; Yamane, Carlson, Bowman, Wang,
& Connor, 2008). Our model uses two stages to recognize
objects from parts/subparts in a compositional manner. In the
first stage, we consider spatial relations among subparts and
detect parts. In the second stage, we consider spatial rela-
tions among detected parts and compose them into objects.
Both stages are designed to be robust to occlusion. This two-
stage model can handle missing parts under occlusion as long
as the visible parts conform to reasonable spatial constraints.
Our model performed better than the other two models un-
der extreme occlusion with similar error patterns to humans,
demonstrating a way to build robustness to occlusion by ex-
ploiting object compositional structures.

Task and Dataset
Recognition Under Extreme Occlusion Task
Object recognition under occlusion involves recognizing tar-
gets occluded by other entities (called occluders). Depending
on task specifics, targets could be as simple as letters, digits,
and symbols, or as complex as objects in real scenes. Occlud-
ers can also vary substantially. There are simple occluders
like constant masks and also complex ones like real objects.

Simple occlusion by constant masks and complex occlu-
sion by real objects are actually treated differently during
recognition. For instance, in CNNs, neurons tuned to fur tex-
tures may fire on the presence of cats as occluders and distort
the CNN activation of the target. However, fewer misguiding
neurons are likely to fire on constant masks without textures.
Thus, real objects as occluders are more likely to distort target
object recognition by providing irrelevant context.

To test the robustness of visual recognition to real-world
occlusion, we propose a difficult task of object recognition
under extreme occlusion. Specifically, it involves recognizing

vehicles occluded by other irrelevant real occluders, includ-
ing animals, furniture and other objects, in real backgrounds
(see Figure 1 (b)). This task is challenging because occlud-
ers are irrelevant real objects and the occlusion ratio is high,
which discourages the use of context during recognition.

Training and Testing Dataset
For the purpose of training computational models to perform
our task, we propose that only occlusion-free images should
be used. A single object can be occluded in an exponen-
tial number of ways and it is unlikely for a limited training
set to cover all occluder appearances, positions and so on.
Therefore, we used 4049 occlusion-free training images cov-
ering five types of vehicles, including aeroplane, bicycle, bus,
car and motorbike from VehicleSemanticPart dataset (Wang
et al., 2017). 113 different types of object parts, such as car
wheels, bicycle pedals and jet engines, are annotated with part
identities and bounding box positions.

For testing purposes, we built an occlusion testing set using
another 500 images from VehicleOcclusion dataset (Wang et
al., 2017). To our knowledge, this is the only public occlusion
dataset with accurate occlusion annotations of parts and ob-
jects. In each image, 2-4 randomly-positioned real occluders
are placed onto the single target object (see Figure 1 (b)). The
target occlusion ratio is constrained. 77% of the images have
an occlusion ratio of 0.6-0.8; 18.4% of the images have an oc-
clusion ratio of 0.4-0.6; 4.6% of the images have an occlusion
ratio of 0.2-0.4. Furthermore, we also created an occlusion-
free testing set by collecting the corresponding 500 clean im-
ages before occluders were placed. Neither these clean im-
ages nor superimposed occluders are met in the training set.

For evaluation metrics, we evaluated human and model
performance both quantitatively by recognition accuracy and
qualitatively by confusion matrices and representational dis-
similarity matrices (Kriegeskorte, Mur, & Bandettini, 2008).

Behavior Experiments
Participants
We designed a survey on Amazon Mechanical Turk to col-
lect human responses for the task of object recognition under
extreme occlusion. 25 human subjects completed our survey.

Procedure
We had 1,250 human intelligence tasks (HITs) with 20 stim-
uli in each, so that there were 50 repetitions of the occlusion
testing set (500 stimuli). In each HIT, subjects were given
unlimited time to observe and respond to 20 stimuli one at a
time. The stimuli had red bounding boxes around the targets
(see Figure 1 (c)). Subjects were asked to type the names of
the objects in the bounding boxes without knowing that they
should belong to the aforementioned five categories.

Data Processing and Exclusions
We collected 25,000 typed strings as subject responses. There
were 785 different strings from the responses and we man-
ually assigned them to the five vehicle categories. We first
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Figure 2: The overall framework of our two-stage model. The input image (a) contains a car whose back trunk is occluded. In
the first stage, we detect several parts, including tail lights (green) and the license plate (yellow), and output part maps (b). In
the second stage, we apply spatial pyramid pooling (SPP) to part maps and obtain SPP maps (c) (4×4 scale shown here). We
consider spatial constraints over parts and aggregate part confidence scores at different scales to determine the object identity.

excluded 300 responses whose corresponding images were
oversized for computational models. We further excluded
5,359 responses assigned to either none or more than one cat-
egory. The rest of 19,341 responses with valid reported and
ground-truth category labels were used for data analysis.

Computational Models
CNNs: AlexNet, ResNet and VGG16
Recently, CNNs achieved impressive performance in object
recognition. They use stacked convolutional layers and pool-
ing layers to extract image features for classification. We used
AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), ResNet
(He, Zhang, Ren, & Sun, 2016) and VGG16 (Simonyan &
Zisserman, 2014) as three representative CNN-based object
recognition models and modified them to get the best possi-
ble performance. In AlexNet, we substituted fully-connected
layers fc6 and fc7 with two equivalent convolutional layers
with kernel size 6×6 and 1×1, followed by a global average
pooling layer. In VGG16, we also made similar modifications
to the fully-connected layers. In ResNet, we used ResNet-18
and substituted the last average pooling layer with a global
average pooling layer. These modifications enable the net-
works to handle inputs of variable sizes. The classification
layers were also changed to fit our five object categories.

Training and Testing The training and testing images were
resized so that the short object edge had 224 pixels. During
the training phase, we froze weights in earlier layers and fine-
tuned ImageNet pre-trained models. In AlexNet, we froze
weights in the first two convolutional layers. In ResNet, we
froze weights in the first two residual stages. In VGG16,
we froze weights in the first two convolutional stages. The
training inputs were randomly cropped image patches of size
224×224 containing at least part of the target objects. During
the testing phase, inputs were full-sized images.

Hybrid Model: AlexNet+Hopfield Network
Tang et al. (2018) proposed a hybrid model of CNNs with
Hopfield networks that improved object recognition under
constant mask occlusion and produced results consistent

with human performance. Concretely, they adopted a fully-
connected Hopfield network with binary threshold nodes. It
can store patterns as local minima and later recover incom-
plete patterns by iteratively processing them until conver-
gence. The capacity of a Hopfield network with N nodes is
only about 0.15N memories. When the number of patterns to
store increases, local minima are more likely to be spurious
minima. We followed the experimental settings from Tang et
al. (2018) and used 4096-dimensional features from the fc7
layer in ImageNet-trained AlexNet as patterns to store and
recover in the Hopfield network.

Training and Testing During the training phase, we fed
a random subset of 500 resized images (224 × 224) to
ImageNet-trained AlexNet. Following Tang et al. (2018), we
extracted fc7 features, binarized them with a threshold of 0
and used them to train a Hopfield network with 4096 nodes
(implemented in MATLAB’s newhop function) and a linear
multiclass Support Vector Machine (SVM). We used a small
training set due to the limited capacity of the Hopfield net-
work. During the testing phase, we fed images to AlexNet,
binarized fc7 features and used them to initialize the Hopfield
network. Each node in the network receives weighted inputs
from connected nodes and updates its binary state accord-
ingly and synchronously. Converged outputs (timestep=256)
are classified using the SVM.

Ours: Two-stage Voting Model
Motivation Object appearance and context can change
drastically under occlusion yet spatial constraints over objects
and parts are largely preserved. With a few parts missing, an
occluded object can be recognized as long as the positions of
visible parts make sense, that is, if they conform to reasonable
spatial constraints. This motivates us to exploit object compo-
sitional structures for object recognition under occlusion. We
developed a two-stage object recognition model that could
utilize these spatial constraints (Figure 2). Specifically, in the
first stage, we detected different object parts in the images.
In the second stage, we considered spatial constraints over
objects and parts and used those detected parts to determine
object identities. In both stages, we utilized deep networks
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to capture these spatial constraints via spatial voting mecha-
nisms. The core idea of spatial voting is to detect larger parts
by considering spatial relations of smaller parts and gathering
their votes, which are confidence scores for their presence.
We now elaborate our two stages in more details.

Stage 1: Part Detection In the first stage, we want to ro-
bustly detect object parts. Zhang, Xie, Wang, Xie, and Yuille
(2018) developed a robust voting model to detect semantic
parts under occlusion. We adopted their method and pro-
duced part maps as shown in Figure 2 (b), which contained
confidence scores for the presence of different object parts
at different locations. Following Zhang et al. (2018), we
first obtained subparts by clustering corresponding CNN in-
termediate activations at the pool-4 layer from a VGG net-
work (Simonyan & Zisserman, 2014). We subsequently im-
plemented the spatial voting mechanism as a convolutional
layer with kernel size 15×15 on top of the subparts to capture
spatial constraints over subparts and parts in a larger spatial
region. The intuition for this voting stage is that a partially
occluded object part could be robustly detected as long as
it gathered enough votes from a set of subparts which con-
formed to certain spatial constraints in a spatial region.

Stage 2: Object Recognition In this stage, we used part
maps as inputs and designed another voting method to ag-
gregate parts to form objects. There are two challenges for
our voting method. First, it needs to capture spatial con-
straints over parts and produce fixed-length vectors for clas-
sification. Second, it needs to tolerate within-category varia-
tion so that the learned spatial constraints are generalized for
most objects in a category. To this end, we applied spatial
pyramid pooling (SPP) (Lazebnik, Schmid, & Ponce, 2006)
at three different scales (4× 4, 2× 2, 1× 1) to the normal-
ized part maps and obtained three SPP maps as shown in
Figure 2 (c). This method maintained some spatial informa-
tion and was different from the sliding window pooling of
deep networks. Concretely, we evenly divided part maps into
n× n local spatial bins (n = 4,2,1) and applied max pool-
ing to each bin. SPP maps contained maximum confidence
scores for the presence of parts in each spatial bin. Later,
we concatenated SPP maps and appended a dropout layer
(dropout ratio 0.1) and a fully-connected layer. The dropout
layer randomly dropped a subset of part votes during training
and improved the robustness of our model under occlusion.
The fully-connected layer aggregated part votes and learned
spatial constraints over parts at different scales to determine
the object identities. The learned weights of this layer are
referred to as object-part spatial heatmaps (visualized in Fig-
ure 3). Both stages in our model were robust to occlusion due
to the use of spatial voting and dropout mechanisms, which
allowed larger parts to be detected using only a subset of
smaller parts under certain spatial constraints.

Training and Testing Training and testing images were re-
sized so that the short object edge had 224 pixels. Two stages
were trained separately. When training the first stage, inputs

Wheel License plateSide windows

Windshield

Light

Figure 3: Visualization of object-part spatial heatmaps at
the 4× 4 scale for the bus category. Each heatmap shows
the learned spatial constraints between the bus and the part.
Brighter regions indicate higher voting weights. For instance,
a license plate in the lower region of a image often casts a
highly weighted vote in favor of the presence of a bus.

were randomly cropped image patches of size 224×224 con-
taining at least part of target objects. More details are avail-
able in (Zhang et al., 2018). When training the second stage,
inputs were parts maps obtained by feeding training images to
the first stage. During testing, inputs were full-sized images.

Results and Discussions
Testing without Occlusion
First, we test three computational models on the task of recog-
nizing occlusion-free vehicles. Human subjects are not tested
for this task because it is very easy for humans when they are
given unlimited time to recognize vehicles without occlusion.

Both CNNs and our model perform reasonably well on
this task (Table 1). Our model has a comparable accuracy
(92.9%), showing that spatial constraints over parts/subparts
are useful information for the recognition of occlusion-free
objects. However, these results tell little about the robustness
of different models given their similar performances.

The hybrid model of AlexNet and Hopfield networks gets
a relatively lower accuracy without occlusion. When we use
SVM to directly classify binarized fc7 features without us-
ing the Hopfield network, the accuracy increases from 77.7%
to 85.4%. This implies that the relatively lower accuracy may
be caused by the Hopfield network. In order to check whether
the Hopfield network setting was implemented correctly, we
followed Tang et al. (2018) and tested the hybrid model on
mask occlusion images from five categories with an average
occlusion ratio above 0.7; see Figure 1 (a) for an example
testing image. The use of the Hopfield network increased the
accuracy from 40.9% to 46.8%, which was qualitatively sim-
ilar to the improvement reported in Tang et al. (2018). This
shows that the Hopfield network was implemented correctly
and improved object recognition performance under constant
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Figure 4: Category-level confusion matrices under extreme occlusion. The Pearson correlation coefficients between the human
confusion matrix and each model confusion matrix are listed below the matrices.

Table 1: Testing Accuracy under No/Extreme Occlusion.

Humans/Models w/o occlusion w/ occlusion
Humans - 93.3%
AlexNet 89.8% 50.0%
ResNet 90.1% 54.0%
VGG16 94.7% 62.6%

AlexNet+Hopfield 77.7% 46.0%
Two-stage Voting (Ours) 92.9% 67.0%

Ablation 1 91.2% 47.5%
Ablation 2 89.9% 58.9%

mask occlusion. We will further discuss the possible causes
of the relatively low accuracy of the hybrid model on our task
later with testing results under extreme occlusion.

Testing under Extreme Occlusion
We further test humans and these models on recognizing ob-
jects under extreme occlusion with our occlusion testing set.

Table 1 shows that humans have very high accuracy at rec-
ognizing occluded vehicles and are robust to extreme occlu-
sion. It also confirms that our task of object recognition under
extreme occlusion is feasible and the information in these oc-
clusion images is sufficient to determine object identities.

For CNNs, the accuracy is relatively low (Table 1). Despite
their good performance without occlusion, CNNs do not man-
ifest robustness under extreme occlusion as humans do. Our
results support previous findings that CNN activation is not
inherently compositional and cannot explicitly address con-
textual and non-contextual information (Stone et al., 2017).

For the hybrid model, we do not observe performance gains
compared to CNNs under extreme occlusion. If we use SVM
to classify binarized fc7 features without using Hopfield net-
works, the accuracy rises from 46.0% to 48.6%. This result
together with previous ones shows that the Hopfield network
did not improve performance on our task, either without oc-
clusion or under extreme occlusion, although it improved per-
formance under constant mask occlusion. There are two pos-
sible reasons. First, it may require more representative train-
ing features because our dataset is more complex than the one
from Tang et al. (2018). However, given the limited capacity
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Figure 5: Image-level representational dissimilarity matrices
(RDMs) under extreme occlusion. Each testing image is char-
acterized by a 5-dimensional categorical distribution obtained
from either human response frequencies for five vehicle cat-
egories on that image or the Softmax output in the final layer
of each model. The dissimilarity between two images is mea-
sured as the Euclidean distance between two vectors repre-
senting the associated categorical distributions. The Pearson
correlation coefficients between the human RDM and each
model RDM are listed below the matrices.

of Hopfield networks, too many training features may result
in more spurious minima. Second, mask occlusion may only
suppress some neurons in CNNs while real occluders can ac-
tivate additional misguiding neurons, making it hard for pat-
tern recovery. Thus, the ability to handle constant mask oc-
clusion does not entail robustness to real-world occlusion.

Our model outperforms other models under extreme oc-
clusion in terms of accuracy. We further compare the per-
formance of humans and different models by analyzing their
category-level confusion matrices (Figure 4) and image-level
representational dissimilarity matrices (RDMs) (Figure 5).
These provide a better way to qualitatively compare the ro-
bustness of human vision and these computational models.
Although the accuracy of our model is still lower than hu-
mans, it shows greater robustness than other models and pro-
duces the most similar results to humans. Figure 6 also
shows some representative improvements and errors from our
model. The performance of our model suggests that spatial
constraints over parts are important cues for object recogni-
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Figure 6: Representative improvements (top two) and errors (bottom two) from our model. In the top two cases, our model
produced correct object labels by exploiting spatial relations among detected object parts. In the bottom left case, our model
misclassified the race car as an aeroplane partly because they are similar in the aerodynamic design. In the bottom right case,
our model incorrectly detected bus parts and was subsequently misled by these false part detection results.

tion under occlusion, and that the principle of composition is
a promising solution for bridging the gap between the robust-
ness of human vision and these computational models.

Ablation Experiments
Finally, we show the effectiveness of each voting stage in our
model. We substituted each stage respectively with alterna-
tive models to do the same task with the same supervision.

In the first experiment (Ablation 1 in Table 1), we sub-
stituted the first voting stage with Faster-RCNN (Ren, He,
Girshick, & Sun, 2015), a state-of-the-art object detection
model. We trained Faster-RCNN to detect parts and obtained
SPP maps. Later, we trained our second stage and tested the
whole model. The accuracy changed little without occlusion
but dropped from 67.0% to 47.5% under extreme occlusion.
As Zhang et al. (2018) pointed out, it is difficult for proposal-
based detection methods including Faster-RCNN to extract
good proposals under occlusion and even with correct pro-
posals, the classifier may still go wrong due to the presence
of occluders. This result further confirmed the robustness of
the first stage model on detecting parts under occlusion.

In the second experiment (Ablation 2 in Table 1), we sub-
stituted the second stage with a bag-of-words module where
all spatial relations were discarded by a global max pooling
layer. We concatenated the highest confidence score in each
part map into a vector and appended a dropout layer and a
fully-connected layer. We trained the bag-of-words module
and tested the whole model. The accuracy changed little with-
out occlusion but dropped from 67.0% to 58.9% under ex-

treme occlusion, implying the effectiveness of spatial voting
under occlusion. Figure 3 also shows that the learned spatial
constraints are meaningful. Wheels and windshields often ap-
pear in lower and higher regions of bus images respectively.

Together, the results suggest that the higher accuracy of our
model is not purely a result of additional part-level supervi-
sion but also due to the use of object compositional structures.

Conclusion

Occlusion is often present in everyday visual tasks yet hu-
mans and models are rarely tested under real-world occlu-
sion. We proposed a task of object recognition under extreme
occlusion and tested humans and models, including CNNs, a
hybrid model of CNNs with Hopfield networks and our two-
stage voting model. Our findings lead us to three conclusions.

First, testing under extreme occlusion can better reveal the
robustness of visual recognition than testing without occlu-
sion. Object recognition models that can compete with hu-
mans in the occlusion-free domain may not show the same
robustness under extreme occlusion as humans do.

Second, the ability to handle constant mask occlusion does
not entail robustness to real-world occlusion. Different types
of occlusion may alter context differently yet object inherent
structures could still be exploited for recognition purposes.

Third, the performance of our model is better and more cor-
related with human results under occlusion, suggesting that
the principle of composition is a possible solution for build-
ing robustness to occlusion as demonstrated by human vision.
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Abstract
The judgments that people make are not independent –
initial decisions can bias later perception. This has been
shown in tasks in which participants first decide whether
the direction of moving dots is to one side or the other
of a reference line: their subsequent estimates are biased
away from this reference line. This interesting bias has been
explained in past work as either a consequence of weighting
sensory neurons, or as a consequence of participants adjusting
their estimate to match their decision. We propose a
new explanation: that people sequentially sample evidence
to make their decision, and reuse these samples to make
their estimate (i.e., amortised inference). Because optimal
stopping leads to samples that strongly favor one or another
decision alternative, the subsequent estimates are also biased
away from the reference line. We introduce a sequential
sampling model for posterior samples that does not assume
constant thresholds, and provide evidence for our explanation
in a new experiment that generalizes the perceptual bias to a
new domain.

Keywords: decision biases, adaptive sampling, amortised
inference.

Introduction
Experiments in motion perception show that making
a perceptual decision biases subsequent perception.
As illustrated in Figure 1A, participants in these
random-dot-motion experiments are first asked whether
the motion was clockwise (CW) or counter-clockwise
(CCW) of a decision boundary. After making this decision,
participants are then asked to estimate the direction of
motion. While participants’ estimates are unsurprisingly
consistent with their decision, these estimates also show
a surprising perceptual bias: estimates are biased away
from the decision boundary (Jazayeri & Movshon, 2007;
Luu & Stocker, 2018; Zamboni, Ledgeway, McGraw, &
Schluppeck, 2016).

Two main theories have been proposed to explain this
perceptual bias: (a) the optimal weighting of outputs of
orientation-tuned neurons used in the decision task is also
used in the estimation task (Jazayeri & Movshon, 2007),
or (b) people employ self-consistent reasoning by only
considering hypotheses consistent with their initial decision
when making an estimate (Luu & Stocker, 2018). Existing

Did you see 25 or 
fewer dots?

F=25 or fewer
J=26 or more

How many dots 
did you see?

Did you see 25 or 
fewer dots?

F=25 or fewer
J=26 or more

Distribute 100 tokens 
according to how 
likely you think the 
number of dots is

21 22 …… 29

B1
Did you see 25 or 

fewer dots?

F=25 or fewer
J=26 or more

Correct

B2

B3

A

CW or CCW?

30

Figure 1: Illustration of experimental tasks. (A)
Decision-estimation (D-E) task for random-dot-motion. (B)
Numerosity experiment. (B1) Decision with feedback (D-F)
task. (B2) D-E task. (B3) Decision-histogram (D-H) task.

comparisons favor the self-consistency account (Luu &
Stocker, 2018; Zamboni et al., 2016).

However, it may be that self-consistency is unnecessary to
explain the perceptual bias. We take a sequential sampling
approach to modelling this task, following a long history
of models in human decision making that sequentially draw
perceptual or posterior samples and optimally accumulate
evidence (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;
Vul, Goodman, Griffiths, & Tenenbaum, 2014). We introduce
a sequential sampling model that optimally accumulates
posterior samples, and then demonstrate that the perceptual
bias in estimation is produced by simply averaging samples
that were optimally accumulated for the initial decision. The
intuition for why the bias is produced is simple: because
sequential sampling models stop when the samples favor one
of the alternatives, the estimate (i.e., the average) also favors
one of the alternative. Interestingly, similar Bayesian analysis
have arisen in a different experimental domain: the studies
of probability estimation from sequential samples, where
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optimal stopping has shown to predict a distorting effects on
subsequent judgments (Coenen & Gureckis, 2016). However,
when the sampling process is external, such distortion did not
receive empirical supports (Coenen & Gureckis, 2016).

To discriminate between these accounts, we first show that
weighted decoding, self-consistency, and sequential sampling
make qualitatively different predictions about the perceptual
beliefs that people will have about individual stimuli. We then
test these predictions in a new experiment which generalizes
the perceptual bias from a simple random-dot-motion task
to a perceptually more complex numerosity task (see
Figure 1B), finding that the perceptual bias is best explained
by sequential sampling.

Computational Models
In this section, we introduce and compare computational
models of the perceptual bias.

Weighted Decoding
The Weighted Decoding (WD) model argues that
post-decision bias is a result of optimally tuning
the sensory representation to boost responses for the
initial decision (Jazayeri & Movshon, 2007; Zamboni
et al., 2016). For example, to discriminate whether
a random-dot-motion stimulus is coherently moving
clock-wise or counter-clockwise of a reference line, the
neurons that respond maximally to motion directions that
are slightly different from the reference line are the most
informative. This leads to a optimal weighting profile that is
bimodal: emphasizing directions that are slightly away from
the reference line.

WD assumes this weighting profile is also used in the
estimation task, and that the mode of the weighted sensory
distribution is taken as the estimate. As a result, a
post-decision bias naturally emerges (Figure 2A).

Self-Consistency
To predict the post-decision bias, WD must assume that the
selective read-out of sensory information in the decision task
is carried over to the subsequent estimation task. However,
more recent work has demonstrated that the perceptual bias
is actually a late decision-related bias, rather than a sensory
bias (Luu & Stocker, 2018; Zamboni et al., 2016).

The Self-Consistency (SC) model is a Bayesian model
that makes the initial decision according to which option has
highest posterior probability, given noisy sensory evidence.
However, because the estimate is made after the decision,
this model assumes that the quality of the sensory evidence
has decayed by the time participants are asked to make
an estimate. Instead of relying on the low-quality sensory
evidence alone, SC assumes that the participant treats their
initial decision (which was made with high-quality sensory
evidence) as information as well (cf. Fleming & Daw,
2017), only considering hypotheses that are consistent with
the initial decision. SC’s estimate is then the mean of the
posterior distribution over hypotheses consistent with the

initial choice. As shown in Figure 2B1, SC also produces
estimates that are biased away from the decision boundary.

Our implementation of SC also predicts a bias toward the
decision boundary for true stimuli that are far away from the
boundary. This is for an uninteresting reason: in the task we
will describe below the response range was restricted, and so
we also truncated the posterior at the edges of the allowable
response range – this leads presentations of extreme values to
be biased toward the center of the range.

Simple Amortised Sampling
Because perfectly storing and representing probability
distributions can easily become computationally daunting,
sample-based approximations have been proposed as a way
for the brain to approximate Bayesian inference (Sanborn &
Chater, 2016; Zhu, Sanborn, & Chater, 2018). On each trial,
the Simple Amortised Sampling (SAS) model generates a set
of N samples from the posterior distribution:

xi
i.i.d∼ P(X |S), i = 1,2, ...,N (1)

where P(X |S) is the posterior sensory representation of
number of dots given the stimulus. For the decision task,
SAS chooses the alternative that attracts the larger number
of samples, which introduces a natural stochasticity into the
decision.

In the later estimation task, it makes little sense to
draw a new set of samples, as an average of the samples
drawn to make the decision can serve as the estimate.
This effort-saving strategy is a form of amortised inference
(Gershman & Goodman, 2014). Reusing samples in this way
ensures a high degree of consistency between the decision
and the estimate SAS make. However, SAS will not produce
a perceptual bias away from the decision boundary – the
average of a fixed number of samples is unbiased (Figure
2C3), and it only shows a bias toward the center for extreme
stimuli. Thus, this model is not actually a candidate for
explaining the perceptual bias, but instead serves to illustrate
why the following model does.

Bayesian Amortised Sequential Sampling
If samples are drawn sequentially and require effort to
generate, it often makes no sense to continue sampling until a
fixed number are obtained. Instead, it is more efficient to stop
sampling when it is no longer worthwhile.

Many different kinds of sequential sampling models have
been proposed, including those that accumulate sensory
information (Bogacz et al., 2006), and those that accumulate
the kind of posterior samples similar to SAS (Vul et al., 2014).
We take as a starting point the sequential model introduced
in Vul et al. (2014), which accumulates samples until there
are a threshold T more in favor of one alternative than the
other. This scheme has the advantages of producing a fixed
probability of choosing the better alternative regardless of
the number of samples, and it is possible to find the optimal
threshold for maximizing utility.
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Figure 2: A comparison of model mechanisms and predictions for the numerosity task. For illustrative purposes, we assume
a Gaussian likelihood of dot numbers. Then, the posterior distribution combines this likelihood with the prior (i.e., a uniform
distribution from 21 to 30). A posterior distribution with its mean at 24 dots (dashed blue line) is shown for each model. (A)
Schematic illustration of the WD model (Jazayeri & Movshon, 2007). The sensory representation is reweighted according to
the optimal bimodal weighting profile. The initial decision is based on the relative probability above and below the decision
boundary. The estimate is then the mode of this same reweighted sensory representation. (B) Schematic illustration of the SC
model (Luu & Stocker, 2018). The initial decision is based on whether there is more probability above or below the decision
boundary. The estimate is the mean of the portion of the posterior distribution that is consistent with the initial decision.
(C) Schematic illustration of the SAS model. A fixed number of posterior samples are drawn and the alternative that attracts
the larger number of samples is chosen in the initial decision. The average of these samples is the estimate. (D) Schematic
illustration of the BASS model. Samples are sequentially drawn from the posterior distribution until it is no longer worthwhile
to continue. The alternative that attracts the larger number of samples is chosen in the initial decision. The average of these
samples is the estimate.

However, it is possible to sequentially draw samples from
a posterior distribution even more efficiently by allowing a

non-constant threshold and determining before every sample
whether it is better to continue or stop sampling. We term this

3222



scheme Bayesian Amortised Sequential Sampling (BASS).
The problem of finding for the optimal changing threshold
was solved by Wald (1950) for deciding when to stop drawing
binomial samples from an external source, and a similar
approach to external samples was investigated empirically
by Coenen and Gureckis (2016). We simply adopt Walds
approach to optimally drawing internal posterior samples.

The posterior probability p that one decision alternative is
true is assumed to be unknown, but we assume that binomial
samples can be sequentially drawn with probability p. We
perform Bayesian inference using the obtained samples, by
first placing a prior distribution over p and assume a fixed cost
c of drawing a sample, reflecting the time and effort of doing
so. After drawing j samples in favor of a decision alternative
and i against, we denote pi j as the posterior probability of
a decision alternative given those samples, with p00 being
the prior probability. The binary decision task essentially
becomes a sequential test on whether pi j < 1/2 and the
optimal stopping rule for this test can then be derived from
the following using dynamic programming:

F(i, j) = min

{
F0(i, j),
c+ pi jF(i, j+1)+(1± pi j)F(i+1, j).

(2)
where F(i, j) and F0(i, j) are respectively the expected cost

of sampling and expected cost of termination after i samples
against and j in favor have been observed. The sampling
process should terminate whenever F(i, j)≥ F0(i, j).

Because F0(i, j) represents the expected cost of stopping
the sampling process when the posterior probability of an
alternative is pi j, if the punishment for an incorrect decision
is one unit of utility and thus,

F0(i, j) = min

{
i/(i+ j),
j/(i+ j).

(3)

This is the expected cost of incorrectly choosing an
alternative when the posterior probability of that alternative
is pi j = Beta(i, j).

The expected cost of drawing another sample is the sum of
(a) the cost of generating one sample c, (b) the expected cost
if the new sample turns out to be in favor pi jF(i, j+ 1), and
(c) the expected cost if the new sample turns out to be against
(1± pi j)F(i+1, j).

While the exact solution of the Bayesian optimal stopping
problem is difficult to obtain, once computed it can also
be reused across different cognitive tasks. For illustrative
purpose, we set cost of collecting one sample c = 0.006 and
prior probability to Beta(1,1). This leads to the termination
conditions for sequential sampling in Figure 2D1, which
shows a collapsing threshold.

We assume that BASS is performing amortised inference,
and because the decision and estimation tasks are so similar,
the samples drawn for decision are simply averaged to
produce the estimate. Like SAS, BASS produces a high

Table 1: Summary of model predictions on empirical effects

Effects WD SC
Decision bias yes yes
Self consistency low high
Belief distribution bimodal one-sided

SAS BASS
Decision bias no yes
Self consistency high high
Belief distribution undistorted favors one side

Note. WD=Weighted Decoding, SC=Self-Consistency,
SAS=Simple Amortised Sampling, BASS=Bayesian
Amortised Sequential Sampling.

degree of consistency between decision and estimate and a
biased toward the decision boundary for extreme stimuli.
However, unlike SAS, BASS produces estimates that are
biased away from the decision boundary for central stimuli
(Figure 2D3). The reason for the model’s behavior can be
seen in the termination conditions shown in Figure 2D1. The
sampling process is very unlikely to stop when there are an
equal number of samples in favor of the two alternatives,
instead waiting until there are more samples in favor of one of
the alternatives. Then, after averaging the resulting samples
to produce an estimate, these estimates are unlikely to be
close to the decision boundary.

Comparing the Models

As seen across Figure 2, qualitatively similar patterns of
decision and estimation bias are predicted by the WD, SC,
and BASS models. What distinguishes the models are the
beliefs about the probability of each possible response in the
estimation task. WD predicts that the optimal weighting will
result in a bimodal belief distribution. SC predicts a one-sided
belief distribution: that only estimates consistent with the
decision will be considered. In contrast, BASS predicts
that people will believe that several estimates are possible,
including a low probability of those that are not consistent
with the decision (see Table 1 for a summary).

We now test these predictions in a new experiment that
includes a new type of trial that is used to elicit participants’
belief distributions over possible estimates. We use a
numerosity task in this experiment both to generalize the
results, and because the discrete responses required in a
numerosity experiment make it easier to elicit a belief
distribution.

Experiment

Participants

Twenty-four participants (12 Males, ages between 18 and
35) were recruited through SONA system, University of
Warwick. They received £4 for completing the experiment.
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Materials
Participants were shown a briefly appearing number of dots
(0.5 sec) on computer screen in a series of trials. The true
number of dots was uniformly distributed between 21 and 30,
and participants were explicitly told this at the beginning of
the experiment. To generate a stimulus, dots were randomly
positioned within a circular field subject to a minimum
spacing between any two dots of four times the dot size.
To encourage reliance on numerosity, rather than low-level
visual features, the dot sizes varied uniformly between 3 and
9 pixels, and the radius of the dot field also varies uniformly
between 150 and 450 pixels.

There were three different trial types (Figure 1B). For
all trial types, participants made an initial decision as to
whether there were 25 or fewer or 26 or more dots, so that
the trials were identical until after this point. Following the
decision, participants either immediately received feedback
(D-F trials), were immediately asked to estimate the number
of dots (D-E trials), or were immediately asked to state their
beliefs about the number of dots using a histogram (D-H
trials). When given a histogram, participants were asked to
distribute 100 tokens among all of the possible numbers of
dots according to how likely they believed these numbers
were on that particular trial.

Procedure
Before the main experiment, participants received one
practice example for each of the D-F, D-E, and D-H trials
(Figure 1B). Participants additionally received feedback
during practice, to introduce them to the point system used
in the experiment that was used to encourage them to engage
with the more demanding histogram trials. Correct decisions
and estimates were both worth one point, while the number
of points assigned to a histograms was R = 100× [(1±
Ti/100)2], where Ti was the number of tokens placed on the
correct response. This formula is based on the Brier score,
which incentivizes accurately reporting a belief distribution.
Participants were also told, “If you had placed all the tokens
on the correct number of dots, you would have scored 100
points. But if you had placed no tokens on the correct
number of dots, you would have scored 0 points.” Points were
tallied throughout the experiment, but were only displayed to
participants at the end of the experiment.

Results and Discussion
Decisions As shown in Figure 3A, participants were more
likely than not to pick the correct answer for each true number
of dots, but were never perfect.

Estimates Figure 3B shows the results of the estimates
from the D-E trials for each true number of dots. True
numbers that were close to the edge of the range showed an
average bias towards the decision boundary, as participants
tended not to respond outside the allowable range, and these
responses outside the allowable range were excluded from
further analysis (7.32%).
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Figure 3: Behavioural data from the decision-estimation
trials. (A) The psychometric curve describing the relationship
between the true number of dots displayed and the average
proportions of times participants judged the number of dots
to be 26 or more. (B) The estimated number of dots (solid
white line) systematically deviates from the true number of
dots (dashed white line), constituting a perceptual bias.

For true numbers of dots near the decision boundary,
particularly for numbers 25 and 26, participants were biased
away from the decision boundary, in line with past work
on the perceptual bias. When true number of dots was
25, estimates were on average smaller than 25, t(23) =
±14.97, p < .001. When true number of dots was 26,
estimates were on average larger than 26, t(23) = 6.37, p <
.001. This estimation bias is, as expected, further qualitative
evidence against the SAS model.

Histograms Figure 4A shows the average belief histogram
following a decision of 25 or fewer, and the average belief
histogram following a decision of 26 or more. These
average histograms show greater mass on the side of the
boundary consistent with the decision, indicating that overall
participants engaged with these trials. They also show no
evidence of bimodality as WD predicts, nor is the mass
completely on one side of the boundary as SC predicts.
Instead qualitatively these average histograms are most
consistent with BASS.

To quantitatively test for whether there were the kind
of bimodal histograms that WD predicts, we computed the
average proportions, for each participant, that the mean token
mass on the boundary numbers (i.e., 25 and 26) would be
lower than either the mean token mass on 21-24 or the mean
token mass on 27-30 (Figure 4B). If responses were random,
we expect a 1/3 chance that the mean token mass on 25
and 26 would be smallest. However, there were very few
histograms that were bimodal, fewer than would be predicted
by random responding, t(23) =±7.68, p < .001.

We then quantitatively tested whether all of the belief
mass was on one side of the boundary, as SC predicts.
We first estimated how much true responding there was, by
calculating the proportion of trials on which a participant’s
histogram was consistent with their decision. Per participant,
we calculated the proportion of trials on which the majority
of token mass matched the decision. Next, we calculated,
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Figure 4: Results from the belief distributions reported in
decision-histogram trials. (A) Average histograms when
people chose “25 or fewer” (left) and when people chose
“26 or more” (right). (B) The proportion of times when
the token mass on central boundary numbers (25 and 26)
is smallest. Error bar indicates 95% confidence interval
across participants. (C) The proportion of times when
preponderance of tokens matches the choice (left) and
the percentages of token mass consistent with the choice
(right). Error bars indicate 95% confidence interval across
participants.

per participant, the proportion of tokens on the same side
of boundary as the decision, as a measure of whether
inconsistent estimates were considered. These two quantities,
shown in Figure 4C, were different, t(23) = 3.46, p = .002,
showing that tokens were certainly placed on numbers that
disagreed with the decision, a number that exceeded what was
expected from our estimate of noisy responding.

The results of the histogram trials are in line with the
predictions of BASS, in which samples from both sides of
the boundary are expected to be reused for the estimate.
According to BASS, the amount of tokens placed on the
opposite side of choice is a consequence of stochastic samples
from the posterior distribution. Due to the termination
conditions, there are always more samples that match the
decision than those that mismatch the decision, but there are
often samples on both sides of the boundary.

Conclusions
We proposed a new explanation for the decision bias in
perception. To make a decision, we assume that participants
sequentially sample hypotheses about the true nature of
the environment, and stop when they have strong enough
evidence in favor of one alternative over the other. As
an application of amortised inference, we assumed that
participants then reuse the samples to save cognitive effort,

averaging them to produce their estimate. The bias in the
estimate occurs because the samples that were sequentially
obtained are never balanced between the options, and so
estimates tend to be biased away from the decision boundary.

We generalized the bias from orientation tasks to a
numerosity task, showing that it also occurs when participants
give discrete responses to these perceptually complex stimuli.
Using a novel type of trial in which we elicited participants’
beliefs about which numbers were likely on a single trial,
we found evidence for sequential sampling over other
explanations of the decision bias in perception.

The sequential sampling model we evaluated here, BASS,
is a novel application of the work of Wald (1950) for
optimally deciding when to stop sampling from a binomial
distribution with unknown probability. Of course it is almost
certain that other sequential sampling approaches, such as
those by Vul et al. (2014) and Bogacz et al. (2006), would
predict the same qualitative results. Discriminating between
these sequential sampling approaches will likely require
quantitative comparisons, which is an interesting avenue for
future work.

Additionally, a soft version of the self-consistency model,
which relaxes the assumption that self-consistent estimates
are made by every participant on every trial, could
reproduce the qualitative results here. To distinguish the
BASS model from a soft self-consistency account, we
could test whether the belief distributions are a mixture
of self-consistent sensory representations and unmodified
sensory representations. However, to properly answer this
question, we will need a further experiment that characterizes
unmodified sensory representations for comparison.

Another avenue for future work is to explore the extent
to which amortised inference and sequential sampling
can explain other psychological biases. One interesting
possibility is the anchoring bias (Tversky & Kahneman,
1974). In anchoring, participants are first asked to make
a decision about whether a number, such as the percentage
African countries in the UN, is smaller or larger than an often
transparently irrelevant number, such as a number that results
from the spin of wheel of fortune. Then participants are asked
to make their estimate. While the task participants engage in
is almost identical to the one that we used here, the effect
that is found is the opposite: participants estimates are biased
toward the anchor (Tversky & Kahneman, 1974). A unified
explanation of these similar perceptual and cognitive biases
will need to account for both the push and pull that decisions
can exert on subsequent estimates.
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Abstract

We quantitatively modeled and compared two types of errors
in numerical estimation for naturalistic judgment targets: map-
ping errors and knowledge errors. Mapping errors occur when
people make mistakes reporting their beliefs about a particular
numerical quantity (e.g. by inflating small numbers), whereas
knowledge errors occur when people make mistakes using
their knowledge about the judgment target to form their be-
liefs (e.g. by overweighting or underweighting cues). In two
studies, involving estimates of the calories of common food
items and estimates of infant mortality rates in various coun-
tries, we found that knowledge error models predicted partic-
ipant estimates with very high out-of-sample accuracy rates,
significantly outperforming the predictions of mapping error
models. The knowledge error models were also able to iden-
tify the objects and concepts most associated with incorrect
estimates, shedding light on the psychological underpinnings
of numerical judgment.

Keywords: judgment errors; numerical estimation; word em-
beddings; word vectors; knowledge representation; cognitive
model

Introduction
Decades of research on judgment and decision making has
established that people make systematic errors when estimat-
ing numerical quantities, such as the frequencies of lethal
events, proportions of demographic groups, or the calories
of food items (Chernev & Chandon, 2011; Landy, Guay,
& Marghetis, 2017; Lichtenstein et al., 1978). Researchers
studying these judgment errors have identified a number of
factors responsible for numerical mis-estimation, such as the
use of non-linear weighting functions (e.g. Gonzalez & Wu,
1999; Hollands & Dyre, 2000; Landy et al., 2017; Tversky
& Kahneman, 1992) or the use of heuristic cue-aggregation
rules (Brown & Siegler, 1993; von Helversen & Rieskamp,
2008).

These factors can be understood in terms of two types of
errors – mapping errors and knowledge errors. Mapping er-
rors occur when people make mistakes reporting their beliefs
about a particular numerical quantity. In other words, peo-
ple may have the correct belief about the numerical quan-
tity but incorrectly map this belief into a response. For ex-
ample, prior literature on numerical estimation has found an
inverse-S-shape pattern when plotting participant estimations
against objective statistics, with overestimation of small val-
ues and underestimation of large values (e.g. Erlick, 1964;
Hollands & Dyre, 2000; Landy et al., 2017; Varey, Mellers,

& Birnbaum, 1990). Such patterns have typically been mod-
eled using non-linear functions, e.g. power functions and
their variants (Curtis, Attmeave, & Harrington, 1968; Hol-
lands & Dyre, 2000), log-odds transformations (Shepard,
1981; Zhang & Maloney, 2012), and probability weighting
functions (Fennell & Baddeley, 2012; Tversky & Kahneman,
1992). These models all assume that a systematic distortion
takes place when transforming correct internal beliefs into an
explicit numerical response.

In contrast, knowledge errors occur when people make
mistakes using their knowledge about the judgment target
to form their beliefs. These can lead to the formation of
incorrect beliefs (e.g. through the biased use of memory
cues), though people may still be able to accurately report
these beliefs. For example, Chernev and Chandon (2011)
have documented halo biases in food calorie estimation, ac-
cording to which health-related cues are given an incorrectly
high weight, which can then lead to the underestimation
of food calories. Media coverage or word frequency has
also been shown to be used as a cue in probability estima-
tion (Dougherty, Franco-Watkins, & Thomas, 2008; Tver-
sky & Kahneman, 1974) and frequency estimation (Hertwig,
Pachur, & Kurzenhäuser, 2005; Lichtenstein et al., 1978),
which can lead to the overestimation of the size of minor-
ity groups (Gallagher, 2003; Herda, 2013). More generally,
many researchers in cognitive psychology have proposed that
people use heuristics to weigh and aggregate judgment cues,
which can, at times, lead to systematic errors in numerical
estimation. These heuristics simplify the decision process
by ignoring certain cues (and thus assigning them incorrectly
low weights), or by using equal weights for all cues (and thus
over-weighting irrelevant cues and under-weighting relevant
cues) (see Hertwig, Hoffrage, & Martignon, 1999; Juslin,
Olsson, & Olsson, 2003; von Helversen & Rieskamp, 2008).
Our division of numerical judgment errors into mapping and
knowledge errors has precedent. For example, Lichtenstein
et al. (1978) suggested that there are two types of biases in
frequency estimation – a primary bias (i.e. overestimation
of small numbers and underestimation of large numbers) and
a secondary bias (which may due to media bias, dispropor-
tionate exposure, imaginability, etc.). Likewise, Brown and
Siegler (1993) argued that there are two types of knowledge
that come into play in quantitative estimation – metric knowl-
edge (e.g. statistical induction) and mapping knowledge (e.g.
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heuristics). Von Helversen and Rieskamp (2008) extended
this work by showing that people are likely to sample objects
that are similar to the judgment target (where knowledge er-
rors may occur) and make estimation based on some transfor-
mation of the sampled objects’ values (where mapping errors
may occur). Finally, Landy et al. (2017) showed the presence
of two features that lead to errors in demographic estimation
– domain-general bias (i.e. a log-odds mental representation
of proportion) and domain-specific bias (e.g. media bias and
xenophobia).

Although this work has greatly expanded our understand-
ing of numerical estimation, most of it pertains to estimates
of simple frequencies, rather than more general (and com-
plex) numerical quantities. Additionally, experiments that
do examine such complex numerical estimates, typically use
artificial experimental stimuli – such as toxicity of fictional
bugs (Juslin et al., 2003), percentage of dots in a mixture of
black and white dots (Varey et al., 1990) and proportion of
letters (e.g. ”A”) in a random letter string (Erlick, 1964) –
and/or experimenter-generated cues that provide only an ab-
stract representations of the rich knowledge present in the hu-
man mind (Brown, 2002; Juslin et al., 2003; von Helversen &
Rieskamp, 2008). Although artificial stimuli and simplified
knowledge representations help establish theoretical founda-
tions, it is also necessary to model how people make quanti-
tative estimates in the real world where they usually possess
rich and complex knowledge and apply it at their discretion.

Our goal in this paper is to address these issues by for-
malizing, fitting, and comparing mapping and knowledge er-
ror models of numerical estimation with policy-relevant con-
sequences. We consider two domains: estimates of food
calories and estimates of infant mortality rates in countries.
For the mapping error model, we drew insights from prior
work and fit various non-linear functions to predict partici-
pant estimates from correct answers. For the knowledge error
model, we used word embeddings – models trained on large
text corpora that preserve semantic knowledge of words and
phrases in high-dimensional vectors – to obtain rich quantita-
tive representations for food items and countries, and then at-
tempted to predict participant estimates from these represen-
tations by implicitly learning cue weights on semantic knowl-
edge. Word embeddings have been shown to mimic represen-
tations at play in human cognition, such as associative judg-
ment (Bhatia, 2017; Caliskan, Bryson, & Narayanan, 2017),
free recall in memory (Manning & Kahana, 2012; Steyvers,
Shiffrin, & Nelson, 2004), priming (Günther, Dudschig, &
Kaup, 2016), and stereotypes (Garg, Schiebinger, Jurafsky,
& Zou, 2018). Thus these representations are likely to cap-
ture common knowledge about the judgment targets that may
hinder or facilitate numerical estimation. More importantly,
these representations will offer insights into the psychologi-
cal qualities and cues that most contribute to over- and under-
estimation.

Experimental Methods
Participants
We recruited a total of 101 participants – 50 participants
(mean age = 30 years, 52% were female) in Study 1 and 51
participants (mean age = 31.4 years, 60.78% were female) in
Study 2 from Prolific Academic, an online experiment plat-
form. All participants were from the U.S. and had an approval
rate of 80% or above. They were paid at a rate of approxi-
mately $6.50 per hour.

Stimuli
For Study 1, we obtained 200 food items and their true calo-
rie amounts from a United States Department of Agriculture
(USDA) database. Sample items include lamb, butter, mint,
etc. For Study 2, we obtained the infant mortality rates of
200 countries from the Central Intelligence Agency (CIA)1.
These countries include Denmark, Nepal, Estonia, etc.

Procedure
In Study 1, participants were asked to estimate how many
calories (in kcal) there are in 100 grams of a particular food
item; in Study 2, they were asked to estimate the infant (child
under 1 year old) mortality rate in number of deaths per 1,000
live births in a particular country. Each participant estimated
all 200 stimuli and saw only one item on each screen. The
order of the 200 stimuli was randomized and there was a
30-second break after every 50 stimuli. After completing all
questions, participants were asked for their age and gender.

Predicting Estimates
Computational Methods
For each target i (e.g. peanuts), we obtained both the average
participant estimate yi (e.g. estimated calories in peanuts) and
the correct answer zi (e.g. actual calories in peanuts). To
quantitatively study mapping explanations for these errors,
we fit three different mapping models that transformed cor-
rect answers into participant responses. Formally, our map-
ping error models predicted yi as some function (linear or
nonlinear) of zi. The first function we used was a simple lin-
ear function (Eq.1); the second function was a third-degree
polynomial (Eq.2); and the third function was a power func-
tion with a constant term (Eq.3)2. Parameters were estimated
by minimizing the residual sum of squares.

yi = β0 +β1zi (1)

yi = az3
i +bz2

i + czi +d (2)

1There are 224 countries and regions in CIA database. We ex-
cluded the ones that do not have a vector representation in our word
embedding model (see the computational methods in the next sec-
tion) and those whose public data are limited (e.g. no electricity
usage data, no literacy rates, etc.)

2Although linear pattern was rarely found in previous literature,
we included the linear model here as a baseline. A third-degree poly-
nomial served to model any potential S-shape or inverse-S-shape
pattern. We incorporated a power function due to its prevalence in
prior work.
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Figure 1: Scatterplots of average participant estimates vs.
correct answers for Study 1 (top) and Study 2 (bottom). The
green dotted lines indicate perfect calibration where partic-
ipant estimates are equal to the correct answers. The red
curves represent the best fitting mapping error models – third-
degree polynomial (Eq.2) for Study 1 and power function
(Eq.3) for Study 2.

yi = λzδ
i + γ (3)

To examine knowledge errors, we used pretrained
Word2Vec word embeddings (Mikolov et al., 2013) to ob-
tain rich quantitative representations for food items and coun-
tries. These gave us a 300-dimensional vector xi for each
target i. Our knowledge error model involved fitting a (reg-
ularized) linear function with a 300-dimensional weight vec-
tor w (w1 for Study 1 and w2 for Study 2), to predict yi us-
ing w ∗ xi

3. The weight vectors (300-dimensional) transform
semantic knowledge represented in a 300-dimensional space
to an one-dimensional numerical estimation line. Intuitively,
each dimension of xi can be seen as a semantic cue that partic-
ipants might rely on to facilitate estimation and these weight

3Specifically, we implemented a ridge regression in the Scikit-
Learn Python machine learning library (Pedregosa et al., 2011).
There was a set of hyperparameters in this library. To avoid ma-
nipulating the hyperparameters to improve model performance, we
took the default values of all these hyperparameters. We focused on
ridge regression because previous results (e.g. Bhatia, 2019; Richie,
Zou, & Bhatia, 2018, Dec) suggested that compared to other models
such as lasso and support vector regression, ridge regression often
works best in predicting human judgments from word embeddings.

(a)

(b)

Figure 2: Scatterplots of predicted estimates using leave-one-
out cross-validation (LOOCV) vs. actual participant esti-
mates for (a) Study 1 and (b) Study 2, along with Pearson
correlations.

vectors can be seen as capturing cue weights on semantic
knowledge. We compared mapping and knowledge error
models through leave-one-out cross-validation (LOOCV)4,
on both the aggregate and the individual level.

Results
Study 1 and 2 elicited a total of 40,400 participant estimates
for 400 distinct naturalistic entities in two domains calories

4For each domain, we trained our models on 199 judgment tar-
gets and then used the trained model to predict participant estimates
of the left-out target. This procedure was repeated for each judgment
target to get LOOCV predictions

3229



Table 1: Aggregate level predictive accuracy of the three mapping error models – linear (Eq.1), polynomial (Eq.2), power
(Eq.3), and knowledge error model (ridge) using leave-one-out cross-validation (LOOCV) for Study 1 and Study 2.

Study 1 Study 2
Correlation R2 RMSE Correlation R2 RMSE

Linear 0.48 0.23 4609.04 0.68 0.46 348.72
Polynomial 0.61 0.37 3772.07 0.74 0.55 291.82

Power 0.59 0.35 3902.78 0.78 0.60 258.64
Ridge 0.83 0.68 1924.11 0.83 0.68 208.10

of 200 common food items and infant mortality rates of 200
countries. Consistent with prior work, we found that partic-
ipants made substantial errors. The average absolute differ-
ences between the average participant estimate, yi, and the
correct answer, zi, for food calories and infant mortality rates
were -45.28kcal per 100g (se = 10.8) and 53.44 deaths per
1,000 live births (se = 3.78) respectively, indicating an over-
all underestimation of food calories and overestimation of in-
fant mortality rates. Figure 1 reflects some overestimation of
low calories, significant underestimation of high calories, and
overall overestimation of infant mortality rates.

Table 1 summarizes the aggregate level performance of
the three mapping error models and one knowledge error
model. We evaluated model performance using the Pear-
son correlation between observed yi and predicted yi, R2,
and root mean square error (RMSE), in the out-of-sample
tests. Figure 2 shows scatterplots of predicted estimates using
LOOCV and average participant estimates, along with Pear-
son correlations. We found that the knowledge error model
was able to predict average participant estimates fairly ac-
curately, with out-of-sample correlation rates of .83 for both
domains on the aggregate level. In contrast, the best map-
ping error models were only able to achieve aggregate-level
out-of-sample correlation rates of .61 for foods and .78 for
countries (all p < 10−22). We obtained similar results on the
individual level. The best mapping error model achieved av-
erage individual-level out-of-sample correlation rates of .37
for foods and .43 for countries, while the knowledge error
model achieved .51 for food and 0.47 for countries. Our re-
sults showed statistically significant improvements in predic-
tive accuracy when using the knowledge error model com-
pared to the mapping error models on both the aggregate and
the individual level.

Traces of Judgment Errors
Computational Methods
In the previous section, we showed that the word-embedding-
based vector representations could be used to predict esti-
mates of food calories and infant mortality rates by multiply-
ing xi (the vector representations for the foods and countries)
with different weight vectors w1 (Study 1) and w2 (Study 2).
As mentioned in computational methods of last section, these
weight vectors can be seen as capturing cue weights on se-

mantic knowledge. In this section, we hope to better under-
stand the psychological substrates of the judgment errors that
these weights generate. What are the features that lead to the
overestimation or underestimation of food calories and infant
mortality rates?

To address this, we took the 5,000 most frequent
words from the corpus of contemporary American English
(http://corpus.byu.edu/coca/) that were not judgment
targets and for each word j, we also obtained a 300-
dimensional vector, s j, from the Word2Vec model. Intu-
itively, the weight vector w in the previous section could be
seen as a function that projects the semantic knowledge rep-
resented by xi onto a numerical estimation line yi. By mul-
tiplying s j by the weight vector w, we got a vector represen-
tation e j for these 5,000 words in the numerical estimation
line. Similarly, we also trained a weight vector w′ to predict
the correct answer, zi, using w′∗xi. Multiplying s j by this new
weight vector w′ would give us a vector t j that pinpoints the
location of the 5000 words in a line of correct answers. The
difference between e j and t j then informs us of what words
and concepts might be overweighted (or underweighted) in
the estimation process. In other words, this difference would
offer a quantitative measure of how much any given word
contributes to overestimation (or underestimation).

Results

Figure 3 has word clouds of 50 words5 that greatly contribute
to over- and under- estimation for both domains. These words
reveal potential conceptual underpinnings of judgment biases
that match our intuition. For example, words related to din-
ing out (e.g. restaurant, menu, chef, wine) bias toward over-
estimation of calories; words appearing to be small in por-
tion (e.g. flour, candy, powder, dust) bias toward underes-
timation of calories; developing-country-related words (e.g.
Iraqi, Cuban, Palestinian, Arab) contribute to overestimation
of infant mortality rates; and European-country-related words
(e.g. Dutch, German, French, European) contribute to under-
estimation of infant mortality rates.

5We included 50 words because that was the maximum number
of legible words that could be fit into the graphs.
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Figure 3: Word clouds of words that greatly contribute to
overestimation and underestimation of (a) food calories and
(b) infant mortality rates. Font reflects the magnitude of over-
and under-estimation. Color has no meanings.

Discussion
We built computational models to compare two types of er-
rors in numerical estimation: mapping errors and knowledge
errors. We applied these models to study naturalistic numer-
ical estimates in two studies involving judgments of calories
of food items and judgments of infant mortality rates of coun-
tries. Consistent with previous findings, the best fitting map-
ping error models in both studies were not linear and dras-
tically outperformed simple linear regression (baseline). We
found the common inverse-S-shape pattern in food calorie es-
timation but not in the infant mortality domain. Although al-
most all countries’ infant mortality rates were overestimated,
the magnitude of overestimation appeared to be larger for

countries with low infant mortality than for countries with
high infant mortality.

Although our mapping error models were able to provide
a good account of our data, we obtained even higher predic-
tive accuracy rates from our knowledge error models. This
indicates that we can predict participant estimates better if
we assume some flexible (potentially incorrect) use of mem-
ory cues instead of some flexible (potentially incorrect) use of
correct beliefs, and that judgment errors appear to stem pri-
marily from the incorrect use of knowledge, rather than the
incorrect mapping of the true quantities. Here it is also useful
to note that our knowledge error models, unlike our mapping
error models, did not know the correct responses. Rather they
were able to predict participant estimates merely by proxying
the rich semantic knowledge that participants used in their
own judgments. This showcases both the descriptive power
of the models as well as their domain-general applications:
We can use these models to predict participant estimates even
when we (the researchers) do not know the correct answers.

So far, we’ve only studied mapping errors and knowledge
errors separately. It is likely that these two types of errors
take place simultaneously as suggested by prior work (e.g.
Brown & Siegler, 1993; von Helversen & Rieskamp, 2008).
Future work should investigate the interaction between the
two types of errors and also the interplay between error type
and judgment domain – how do people balance between these
two types of errors to minimize overall errors and in which
domains are people more likely to make one type of errors
than the other?

For our knowledge error model, we used semantic knowl-
edge which was captured by word embeddings to predict par-
ticipant estimates. Building upon recent successful applica-
tions of such models in naturalistic judgments (e.g. Bhatia,
2019; Richie et al., 2018, Dec), we showed how a single
knowledge representation derived from natural language data
was able to predict participant numerical estimation with high
out-of-sample accuracy. We acknowledge that due to its
high dimensionality, word-embedding-based representations
are likely to contain more knowledge about judgment targets
than what people actually use to estimate numerical quanti-
ties, and due to its generality, they also don’t account for in-
dividual differences, such as personal experience and level of
expertise. One way to address this may involve training dif-
ferent word embeddings for different populations, which is a
potential topic for future work.

Although our mapping error models and knowledge error
models lack some interpretability in terms of cognitive pro-
cess underlying numerical estimation, the different non-linear
mapping error models for food calories and infant mortality
rates suggest different transformations from internal beliefs
to external responses. Likewise, the words generated from
the knowledge error models reveal intuitive conceptual bases
of judgment errors, e.g. a misuse of food size associations in
food judgment and a misuse of poverty associations in infant
mortality judgment. These results show that our knowledge
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error model has explanatory value, and can shed light on the
types of associations that contribute to judgment errors across
different domains.

Finally, we would like to emphasize the naturalism of the
two domains examined in this paper. Our approach is unique
in that it can be applied to numerical estimates for arbi-
trary natural entities, such as food items and countries. This
opens up new avenues for applying cognitive science theory
to policy-relevant applications, such as those pertaining to
health-related and humanitarian issues. We look forward to
future work that extends our approach to model the types of
errors at play in the many important judgments that people
make on a day-to-day basis.
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Abstract

People use speech and gesture together when describing an event or action, where both modalities have different expressive
opportunities (Kendon, 2004). One question is how the two modalities are semantically coordinated, i.e. how meaning is
distributed across speech and accompanying gestures. While this has been studied only for adult speakers so far, here, we
present a study on how young children (4 years of age) semantically coordinate speech and gesture, and how this relates
to their cognitive and (indirectly) their verbal skills. Results indicate significant positive correlations between cognitive
skills of the children and gesture-speech coordination. In addition, high cognitive skills correlate with the number of
semantically relevant child descriptions revealing a link between verbal and cognitive skills.
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Abstract

We present an auto-encoder version of gated networks for learning visuomotor transformations for reaching targets and
representating the location of the robot arm. Gated networks use multiplicative neurons to bind correlated images from
each others and to learn their relative changes. Using the encoder network, motor neurons categorize the induced visual
displacements of the robot arm when applying their corresponding motor commands.Using the decoder network, it is
possible to infer back the visual motion and location of the robot arm from the activity of the motor units, aka body
image.Using both networks at the same time, near targets can simulate a fictious visual displacement of the robot arm
and induce the activation of the most probable motor command for tracking it. Results show the effectiveness of our
approach for 2 degree of freedom and 3 degree of freedom robot arms. We discuss then about the network and its use for
reaching task and body representation, future works and its relevance for modeling the so-called gain-field neurons in the
parieto-motor cortices for learning visuomotor transformation.
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Abstract

Current evidence supports the idea that time is mentally represented by unidimensional spaces. One main question is
whether the language modality grounds differences on using these spaces when signers and speakers share the cultural
framing of time (e.g., by clocks, calendars, etc.). We tested whether past and future events are represented along a Left-Past
Right-Future and a Behind-Past Ahead-Future mental timeline in two language modalities. In Experiments 1 and 2 deaf
signers of Uruguayan Sign Language (LSU) categorized the temporal reference of LSU sentences by pressing a directional
key. The congruency effect was registered for the Left-Past Right-Future trials and for hand setting counterbalanced
Behind-Past Ahead-Future trials. Experiments 3 and 4 replicated the congruency effect for Spanish speakers. The findings
answered the research question in line with the suggestion that when signers and speakers share the cultural framing of
time the tested space-time mappings activates on the same fashion.
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Abstract

This paper proposes that the shape and parameter fits of existing probability weighting functions can be explained with
sensitivity to uncertainty (as measured by information entropy) and the utility carried by reductions in uncertainty. Build-
ing on applications of information theoretic principles to models of perceptual and inferential processes, I suggest that
probabilities are evaluated relative to the distribution of maximum entropy (the uniform distribution) and that the per-
ceived distance between a probability and uniformity is influenced by the shape (relative entropy) of the distribution that
the probability is embedded in. These intuitions are formalized in a novel probability weighting function, VWD(p), which
is simpler and has less free parameters than existing probability weighting functions. VWD(p) captures characteristic
features of existing probability weighting functions, introduces novel predictions, and provides a parsimonious account of
findings in probability and frequency estimation related tasks.
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Abstract

Prior research on a possible role of regulatory focus orientation (Higgins, 1998) in financial decision-making has focused
on description-based tasks in which people receive explicit information about the characteristics of a decision problem a
priori. However, relatively few real-world decisions resemble this type of laboratory task. Here, we examine how regu-
latory focus orientation influences peoples decision behavior in an experience-based sampling paradigm (Hertwig et al.,
2004), where people learn about the characteristics of a decision problem only through experience. We investigated if
individuals chronic regulatory focus orientation (promotion-focus or prevention-focus) predicts process (sampling) and
outcomes (risky versus sure-thing choices) in a sampling paradigm task. Regulatory focus did not predict sampling behav-
ior, nor the number of risky choices in the gain domain, but promotion focus orientation was correlated with the prevalence
of risky choices in the loss domain. Also, the big-5 personality trait of Openness was found to be related to number of
sampled outcomes for losses and to risky choices for gains.
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Abstract

During the perinatal period, psychosocial health risks, including depression and intimate partner violence, are associated
with serious adverse health outcomes for both parent and child. To appropriately intervene, healthcare professionals must
first identify those at risk, yet stigma often prevents people from disclosing the information needed to prompt an assess-
ment. We use techniques from natural language processing to indirectly identify psychosocial risks in the perinatal period.
We apply latent Dirichlet allocation (LDA) and latent semantic indexing (LSI) to categorize themes from brief diary entries
by pregnant and postpartum women and apply sentiment analysis to characterize affect, then perform regularized regres-
sion to predict diagnostic measures of depression and emotional intimate partner violence. Journal text entries quantified
through sentiment analysis and topic models show promise for improved identification of depression and intimate partner
violence, both stigmatized risks. Such methods may serve as an initial or complementary screening approach.
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Abstract

Here we investigate the performance of two models in predicting human gaze behavior in cross situational word learning.
Previous work has developed two diverging accounts of potential mechanisms that might serve this learning ability. The
first, associative learning, relies on the integration of contextual statistics across time. The second, hypothesis testing of
the ”propose-but-verify” sort, suggests that learners do not track co-occurrence statistics, instead only tracking a single
label-object mapping at a time. To adjudicate between these two mechanisms, we examine real time selective attention
behavior as a window into learning processes. We demonstrate systematic biasing in gaze allocation as a function of the
associative evidence accumulated for a label-object pairing over time, favoring the associative learning account. Moreover,
we predict learning outcomes with model parameters controlling sensitivity and noise in memory encoding. This is novel
evidence supporting associative learning and highlights the unique role of memory in cross-situational learning.
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Abstract

Inquiry-based modeling plays an important role in science; Science makes progress through formulating and evaluating
questions, hypothesis, and arguments. The inquiry-based modeling approach also enhances learning about science. How-
ever, engaging in modeling requires domain knowledge as well as quantitative skills. The Virtual Ecological Research
Assistant (VERA) is an interactive learning environment that supports inquiry-based modeling for citizen and student
scientists. VERA provides a visual language for conceptual modeling in the domain of ecology and an AI compiler for
automatic generation of agent-based simulations in the process of constructing, evaluating, and revising the models. We
conducted a pilot study with college-level biology students (N=15) using VERA for modeling ecological phenomena. The
2-hour pre- and post-test study demonstrates gains in the learning of ecological content knowledge. We also found that the
use of the Encyclopedia of Life as a source of domain knowledge helped students create more complex models.
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Abstract

A sentence such as ”We finished the paper” is indeterminate regarding what we finished doing with the paper. These
sentences constitute a test case for two major issues regarding the nature of language comprehension: (1) whether or
not semantic composition is simple (classical) or enriched with intended or implicit constituents; and (2) the nature of
the linguistic and cognitive resources that help us interpret the event the sentence conveys. We conducted an eye-tracking
study to investigate whether indeterminate sentences embedded within biasing contexts would trigger event interpretations,
using a long-term memory paradigm. In each trial, participants were presented with one of three recognition probe types
for reading while having their eyes monitored. Recognition probes were presented 0 seconds (s) after having read the
indeterminate sentence, or following an additional 25s of neutral discourse. Results suggest that abductive processes,
relying on the propositional content of supporting context, drive indeterminate sentence interpretation.
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Abstract

We investigated the contribution of sensorimotor and linguistic distributional information in a semantic category produc-
tion task, hypothesizing that the task would rely on both but particularly on linguistic distributional information, which
may provide a shortcut for conceptual processing. In a pre-registered study, we asked participants to name members of
semantic categories and tested whether responses were predicted by a novel measure of sensorimotor proximity (based on
an 11-dimension representation of sensorimotor experience) and linguistic proximity (based on word co-occurrence de-
rived from a large subtitle corpus). Both proximity measures predicted the order and frequency of responses and, critically,
linguistic proximity had an effect above and beyond sensorimotor proximity. Our findings support linguistic-sensorimotor
accounts of the conceptual system and suggest that category production is based on both the similarity of sensorimotor ex-
perience between the category and member concepts, and on the linguistic distributional relationship between the category
and member labels.
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Abstract

People often face referential ambiguity; one cue to resolve it is adjectival description. Beyond narrowing potential referents
to those that match a descriptor, listeners may infer that a described object is one that contrasts with other present objects
of the same type (tall cup contrasts with another, shorter cup). This contrastive inference guides the visual identification
of a familiar referent as an utterance progresses (Sedivy et al., 1999). We extend this work, asking whether listeners use
this type of inference to guide explicit referent choice when reference is ambiguous, and whether this varies with adjective
type. We find that participants consistently use size adjectives contrastively, but not color adjectives (Experiment 1)even
when color is described with more relative language (Experiment 2) or emphasized with prosodic stress (Experiment 3).
Listeners can use adjective contrast to disambiguate a novel words referent, but do not treat all adjective types as equally
contrastive.
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Abstract

In this work we compare the acquisition of knowledge in humans and machines. Research from the area of developmental
psychology indicates, that human-employed hypothesis are initially guided by simple rules, before evolving into more
complex theories. This observation is shared across many tasks and domains. We investigate whether the stages of
development in artificial learning systems are based on similar characteristics. We operationalize developmental stages as
the size of the data-set on which the artificial system is trained. For our analysis we look at the developmental progress
of Bayesian Neural Networks on three different data-sets, including occlusion, support and quantity comparison tasks.
We compare the results with prior research from the developmental psychology literature and find agreement between
the family of optimized models and pattern of development observed in infants and children on all three tasks, indicating
common principles for the acquisition of knowledge.
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Abstract

In three experiments, we demonstrated that the self can act as a cognitive reference point, producing an egocentric asym-
metry effect on distance judgments such that targets are judged as closer to the viewer than the viewer is to the target.
Egocentric asymmetry was observed even when there was a fixed reference object that people could use to anchor distance
estimates across trials (Experiment 2). Further, egocentric asymmetry was greater to a non-human artifact than to a human
avatar (Experiment 3). In addition, distances from a mailbox to a human avatar were estimated as shorter than distances
from an avatar to a mailbox, suggesting that the special status of the self may extend to other people when compared to
non-human objects even in allocentric distance judgments (Experiment 2).
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Abstract

Is it reasonable to draw temporal conclusions from omissive causal assertions? For example, if you learn that not charging
your phone caused it to die, is it sensible to infer that your failure to charge your phone occurred before it died? The
conclusion seems intuitive, but no theory of causal reasoning explains how reasoners make the inference other than a recent
proposal by Khemlani and colleagues (2018a). We present that theory and describe its consequences. If people conceive
of omissions as non-events, i.e., events unmoored in space and time, they might refrain from drawing conclusions when
asked whether an omissive cause precedes its effect. Two experiments speak against these predictions of the non-event
view and in favor of a view that omissive causation imposes temporal constraints on events and their effects. We conclude
by considering whether drawing a temporal conclusion from an omissive cause constitutes a reasoning error.
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Abstract

Language temporally unfolds, with relevant cues arriving at different moments in time. For comprehension to be optimal,
listeners must maintain gradient representations of cues in order to integrate with later-arriving cues. Several studies have
established during speech perception listeners integrate cues that occur far apart in time. There are several proposals
about how restricted this is, but there’s little rigorous work establishing and testing models of long-distance cue integration
strategies. We take a first step at addressing this gap by formalizing four different models of how listeners use cue
information during real-time processing, testing them on two perception experiments. In one experiment, we find support
for optimal integration of cues. In another, more attention-taxing experiment, we find evidence in favor of a strategy that
avoids maintaining detailed representations of cues in memory. These results represent a first step toward understanding
how listeners change their cue integration strategies across contexts.
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Abstract

Classic theories of multi-attribute choice typically assume that preferences are an additive function of attribute values.
However recent work (Evers et al.) demonstrates a preference for simplicity that can violate the most basic assumptions
and predictions of conventional models. For example, a set of 7 colored pencils that are all unique colors are preferred over
a set of 8 colored pencils with one redundant color. This preferential choice, however, cannot be explained by the utility
of consumption itself. Does this preference emerge as a result of adults substantial experience with such sets in the world
(e.g., through shopping or organizing ones possessions), or is this preference present much earlier? Does the preference for
simplicity, in fact, facilitate cognitive encoding? We investigate these questions through a series of experiments conducted
with children in an effort to understand the emergence of this simplicity bias, and its connection to the development of
working memory.
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Abstract

Recent studies have linked the Stroop Effect with social priming, suggesting that social concept priming tends to trigger
automatic behaviour aligned with the primed concept (Augustinova & Ferrand, 2014; Goldfarb, Aisenberg, & Henik,
2011). This study attempts to test the efficacy of social priming on alcohol attentional bias, integrating a social priming
interference task into an alcohol-Stroop test to measure Stroop interference before and after participants have been socially
primed. Results show no significant interaction between stimulus category (alcohol and neutral), experiment block, and
social priming condition (alcohol addiction, alcohol preoccupation and control) to indicate that social priming had trig-
gered expedited, automatic behaviour. Our results do show a significant interaction between experiment block and social
priming condition (F(6, 426) = 2.166, p = .045), suggesting the alcohol social priming tasks may have induced a greater
general interference for participants in those conditions, than for participants receiving the neutral interference task.
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Abstract

Visual-spatial attention has been shown to influence literacy development, yet studies investigating its influence on reading
in non-alphabetic scripts such as Chinese are scarce, despite recent studies demonstrating orthographic and visuo-spatial
skills to be key deficits in people with dyslexia in Chinese. Here, we investigate visual-spatial processing skills in Chi-
nese adolescents by measuring their 1) exogenous and endogenous attentional orienting, and 2) holistic processinga phe-
nomenon typically demonstrated in face perceptionin Chinese character recognition. Compared with typically developing
students, Chinese high-school students with dyslexia showed deficits in both endogenous and exogenous visual-spatial
attention. Dyslexics also perceived characters more holistically than the controls, suggesting that they selectively attended
to individual components within Chinese characters less readily. These results demonstrated irregularities in visual-spatial
processing skills in students in dyslexia. This study provides implications for reading intervention programs in order to
facilitate selective attention to character components to enhance literacy.
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Abstract

We present a framework to assess the relative cognitive cost of alternative representational systems for problem solving.
The framework consists of 19 cognitive properties of representational systems, which are distributed across 4 dimensions
(registration, semantic encoding, inference, and solution) and three scales of granularity (symbol, expression, and sub-
representations). It examines components and processes spanning the internal mental representation and external physical
display, and also addresses heterogenous representations of problems. We provide functions to evaluate the cost of each
cognitive property by examining, for example, types of matches between display symbols and concepts, the arity of
relations, or the depth of solution trees. The cognitive costs for each property are combined to estimate the overall
cognitive cost, and hence the relative effectiveness, of a representation. The frameworks development is motivated by
our goal of engineering an automated system that will select representations suited to specific classes of problems for
individual users.
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Abstract

How do people tell the difference between random and nonrandom events? What affects peoples understanding of ran-
domness? In two experiments, we investigated the role of two characteristics of a sequencealternation rate and number
of occurrencein peoples perception of randomness. We presented participants with a pair of binary sequences of length 6
(e.g., OXOXXO vs. XOXXXX) and asked them to evaluate which of the two was more likely to occur. In Experiment
1, we examined how participants randomness perception changed as the difference in alternation rate and the difference
in the number of occurrence changed. In Experiment 2, we further examined whether participants exhibited differential
reliance on alternation rate and number of outcomes. Results suggest that people exhibit differential reliance on alternation
rate and number of occurrence. When the two characteristics are in conflict, people tend to rely more on the alternation
rate in their randomness judgement.
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Abstract

The initial performance of individuals is often difficult for models of learning and retention to predict. One such model
is the predictive performance equation (PPE) a mathematical model of learning and retention that uses regularities seen
in human learning to predict future performance.To generate predictions, PPEs free parameters must be calibrated to a
minimum amount of historical performance data, preventing valid predictions for initial learning events.Prior research
(Collins, Gluck, Walsh, Krusmark & Gunzelmann, 2016; Collins, Gluck, & Walsh, 2017), has shown that the generaliza-
tion of best fitting parameters from prior data can improve initial performance predictions.Here we build on that research,
using Bayesian hierarchical modeling to estimate free parameters from various sources of prior data. Bayesian hierarchal
modeling allows an opportunity to improve and add structure to the parameters used by PPE, improving its application to
cognitive technology in education and training.
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Abstract

When faced with a complex problem, people naturally break it up into several simpler problems. This hierarchical decom-
position of an ultimate goal into sub-goals facilitates planning by reducing the number of factors that must be considered
at one time. However, it can also lead to suboptimal decision-making, obscuring opportunities to make progress towards
multiple subgoals with a single action. Is it possible to take advantage of the hierarchical structure of problems without
sacrificing opportunities to kill two birds with one stone? We propose that people are able to do this by representing and
pursuing multiple subgoals at once. We present a formal model of planning with compositional goals, and show that it
explains human behavior better than the standard ”one-at-a-time” subgoal model as well as non-hierarchical limited-depth
search models. Our results suggest that people are capable of representing and pursuing multiple subgoals at once; how-
ever, there are limitations on how many subgoals one can pursue concurrently. We find that these limitations vary by
individual.
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Abstract

The article addresses the issues of extending a category and updating a lexical concept, and determining its reference. We
try to answer the questions: how can an object seen for the first time extend a category or update a concept? How is it
possible to determine the reference of a concept that represents a behaviour? Firstly, we discuss the learning of inferential
linguistic competence used to update a concept through an approach based on prototype theory. Secondly, we discuss the
learning of referential linguistic competence used to determine the reference of a concept through an approach based on
embodied cognition. Finally, on the basis of the dual dimension of the praxis of rule-following, we show how it is possible
to combine the two approaches into a single model that deals with both the extension of a category and the updating of a
concept, and the determination of the reference.
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Abstract

Previous studies examining the mental representations of fractions have focused on fractions with magnitudes less than
one (e.g., 2/3). In the current study, we examine the mental representations of fractions with magnitudes greater than one,
specifically those of improper fractions. Participants were asked to make magnitude comparisons of these improper frac-
tions to a reference that was in an improper fraction, a mixed fraction, or a decimal format. Results show that magnitudes
of improper fractions were more accurately accessed when they were compared to mixed fractions and decimals. This
suggests that the reinterpretation of these improper fractions benefited magnitude processing. Distance effects on error
rate and response time were observed for all three reference formats and more consistently took the form of a Welford
function, which predicts worse performance above rather than below the reference. Possible explanations of these results
are discussed.
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Abstract

The present study examines whether peoples mental representation of discounted prices, which have a part-whole relation-
ship of the current price to the original price, is similar to that of fractions. Participants performed a fraction comparison
task and a deal comparison task on the same set of fractional magnitudes. In two experiments, we observed worse perfor-
mance (error rate, RT of correct trials) on the deal comparison task. The distance effect, where magnitude comparisons are
made more slowly and less accurately the closer two magnitudes are, observed in the two tasks was best modeled using
logarithmic distance between the fractional magnitudes as a predictor of performance.
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Abstract

People encounter improper fractions in real life contexts on a regular basis. One such example is with bundling at the
grocery store (2/$4 or two for $4). The present study seeks to understand how people process these bundle prices compared
to improper fractions. Participants completed a magnitude comparison task with different bundling formats (2/$4 vs. $4/2)
and their fractional equivalents. We found a reliable difference between the bundle format (2/$4) seen in grocery stores
and the most visually similar fraction (2/4). This difference shows that participants are not using a heuristic (larger fraction
means cheaper per item) when comparing these bundle deals and instead do need to process them like improper fractions.
Overall, we found that participants were better at comparing fractional magnitudes in a math context than in a financial
context and that this effect of context also depended on format (2/4 vs. 4/2).
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Abstract

Numerous studies have found category-specific semantic deficits in Alzheimers disease (AD). Thus far, however, only a
small number of studies have investigated how semantic categories lexicalized by verbs are represented, and how these
categories might be impaired in AD. We investigated the representation and breakdown of verb knowledge employing
different syntactic and semantic classes of verbs in a group of probable AD patients (N=10) and matched controls. In
our main task, we employed movies of events and states depicting verbs belonging to three different classes: causatives,
perception/psychological, and movement verbs. These verbs differ with regards to their argument structure, the thematic
roles they assign, and their hypothetical semantic templates. Patients had more difficult employing verbs of the percep-
tion/psychological class. We suggest that thematic roles play the most important role in verb semantic representations. We
further suggest that verbs are not represented by decompositional semantic templates.
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Abstract

Some people can mix two languages within the same sentence: this is known as intra-sentential code-switching. The
majority of computational models on language comprehension are dedicated to one language. Some bilingual models
have also been developed, but very few have explored the code-switching case. We collected data from human subjects
that were required to mix pairs of given sentences in French and English. Truly bilingual subjects produced more switches
within the same sentence. The corpus obtained have some very complex mixed sentences: there can be until eleven
language switches within the same sentence. Then, we trained ResPars, a Reservoir-based sentence Parsing model, with
the collected corpus. This Recurrent Neural Network model processes sentences incrementally, word by word, and outputs
the sentence meaning (i.e. thematic roles). Surprisingly the model is able to learn and generalize on the mixed corpus with
performances nearly as good as the unmixed French-English corpus.

3261



Assessment of Cognitive Load in the Context of Neurosurgery
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Abstract

The work presented in this paper explores the amount of effort, defined by cognitive load, needed to understand depth
visualization while navigating a virtual space in the context of planning for image guided surgery. In this context, cognitive
load is evaluated by measuring brain activity through event-related electroencephalography (EEG). We found a significant
difference between dynamic depth cue renders versus statically rendered cues. The work presented here demonstrates the
usefulness of EEG as an acceptable and efficient method to inspect brain activity for future user studies in the operating
room, and that cognitive load can serve as an objective measure of visualization effectiveness.
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Abstract

Skill acquisition studies have generally focused on individual tasks, such as language learning, learning how to use a text
editor or how to play video games. Here we present a study that investigates how subjects learn to work in a team in a
dynamic collaborative task. The task - Coop Space Fortress - is a modification of a computer game used extensively in
research, in which subjects fly space ships in a frictionless environment and coordinate to destroy a space fortress. When
learning to play this computer game, subjects not only master the game controls, but also typically settle on team roles to
more efficiently achieve their goal, despite not being allowed to communicate.
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Abstract

The current study utilizes dynamical systems and embodiment theory to better understand how movement dynamics impact
deception detection. While research has consistently revealed humans are often no better than chance at discriminating
a truth from a lie, individuals may reveal more than they know through the dynamic movement of the face and the body
beyond discrete gestures traditionally examined in deception detection research (e.g., rise of a brow). As expected, the
present study found that the dynamic stabilities of facial and body movements were significantly influenced by deceptive
intent such that untruthful statements elicited less stability in both the face and upper body. Moreover, despite detection
levels no greater than chance, the accuracy of observers to detect deceptive intent covaried with these dynamic stabilities.
The research presented provides another piece to the illusive puzzle of deception detection, affording researchers and
practitioners a possible tool to tap into deceptive intent.
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Abstract

Deep reinforcement learning (RL) algorithms have recently achieved impressive results on a range of video games, learning
to play them at or beyond a human level just from raw pixel inputs. However, do they leverage visual information in the
same manner as humans do? Our investigations suggest that they do not: given a static game, we find that a state-of-the-art
deep RL algorithm solves that game faster without visual input (only the agent location was provided to the algorithm).
We posit that this is because deep RL attacks each problem tabula rasa, i.e. without any prior knowledge, as also suggested
by other recent work. We further propose that in certain settings, an agent is better off having no visual input compared
to having no visual priors. To demonstrate this, we conduct an experiment with human participants and find that people
solve a game that hid all visual input (except agent location) much faster than a game that prevented the use of various
visual priors. These results highlight the importance of prior knowledge and provide a compelling demonstration of how
the lack of prior knowledge leads to deep RL algorithms approaching a problem very differently from humans.
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Abstract

Studies with older children and adults have found that physically engaging video games (i.e., Exergames) that promote
both cognitive control and physical activity improve executive function (EF) skills; yet, children below school age remain
understudied with regard to the impact of Exergames on EF. Additionally, research on the extent of the impact of Ex-
ergames resulting in prolonged changes, and whether training generalizes to EF-related behaviors in a real-world context
remains scarce. This study examined the short- and long-term changes in EF of 4- to 5-year-olds after participation in two
20-minute Exergame sessions. Results indicate that Exergame training improved performance on EF tasks and resulted
in higher teacher ratings of EF in the classroom compared to a sex-/classroom-/age-matched control group. The improve-
ments in EF persisted over a one-month period. This study provides novel insights into the short-term and long-term
effects of Exergame training on executive function in preschool-aged children.
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Abstract

Why do children learn some words before others? Understanding individual variability across children and also variability
across words, may be informative of the learning processes that underlie language learning. We investigated item-based
variability in vocabulary development using lexical properties of distributional statistics derived from a large corpus of
child-directed speech. Unlike previous analyses, we predicted word trajectories cross-sectionally, shedding light on trends
in vocabulary development that may not have been evident at a single time point. We also show that whether one looks
at a single age group or across ages as a whole, the best distributional predictor is whether a child knows a word is the
number of other known words with which that that word tends to co-occur.
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Abstract

Concerns about moral contamination shape peoples attitudes towards the objects they encounter in daily life. For example,
money seems less desirable when it comes from a robbery (Tasimi & Gelman, 2017). Drawing on the theory of dyadic
morality, we hypothesized that increasing an individuals sense of agency would reduce the salience of moral contagion
and make people feel less vulnerable to moral contamination. Across two experiments, we adapted the study design of
Tasimi and Gelman (2017), asking participants how much they desired a $1 (Experiment 1) or $100 (Experiment 2) bill
associated with different negative moral histories. We modified the stimulus language so that participants were framed as
either the moral agent or patient for all scenarios. As predicted, participants in the agent language condition expressed
nearly the same level of desire regardless of the bills moral history, highlighting the role that feelings of agency play in
moral decision-making.
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Abstract

How do children decide what speech to tune into and learn from? We extend the idea that learners preferentially attend to
stimuli at an intermediate level of complexity to the domain of spoken language. Preschoolers (2.5-6.5 years in Exp.1 and
3.5-5.5 years in Exp. 2) watched two speakers alternate narrating pages of a textless picture book, before selecting who
they wanted to hear finish the story. We manipulated the complexity of the narrators speech, such that the SIMPLE speaker
used earlier-acquired words than the COMPLEX speaker. In Experiment 1, both speakers introduced rare target words
that children were later tested on. While children learned an impressive number of them, the inclusion of these rare words
may have made both speech streams too complex for children to show a systematic preference for one over the other.
In Experiment 2, we narrowed our age range, and amplified the contrast in complexity between the two speech streams.
Preliminary results suggest that children discriminated between the two levels of complexity, systematically selecting the
simpler speaker to finish the story. These results suggest that preschoolers can track the relative complexity of different
linguistic inputs, opening the possibility that they may actively direct their attention toward linguistic input that is more
appropriate for them.
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Abstract

Authors (2017) examined decision-making processes together with graph comprehension and in particular the influence
of bottom-up and top-down processing on them. Using an altered procedure, this study examined bottom-up and top-
down processing relative to graph comprehension where a decision is made first, followed by graph comprehension. We
compared the results of the two studies. Some of the results observed in the previous study were not observed in this
study, suggesting that the influence of impressions provisionally formed on graph comprehension was mitigated to justify
the declared decision in advance. Attitude s that individuals have in a daily life were observed to have an influence in the
decision in both the previous and current studies, showing that it strongly influences decision making regardless of the
degree to which the graph is comprehended.
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Abstract

Background. Proximity data is a notion that indicates the degree of psychological closeness of concepts. It includes,
among others, judgments of similarity, relatedness and cause-effect. Obtaining proximity data is challenging because it
involves experts, corpora and people. On the other hand, dictionaries are fair representations made by experts (and thus,
good proxies) of the lexicon and linguistic heritage of people.

Methods. We present a method to automatically obtain proximity data from dictionaries. We construct a network represen-
tation of a dictionary; exploit classical techniques on networks to build a similarity matrix; extract parameterized clouds
of lexical proximity; test them with native speakers.

Results. Preliminary evaluations show that the method captures word associations significant to humans. Although the
research was done in Spanish, the methods are easily reproducible in other languages.

Conclusions. Dictionaries are good sources of proximity data. We conjecture that dictionary networks are good proxies to
human mind semantic associations.
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Abstract

We describe and analyze the performance of metric learning systems, including deep neural networks (DNNs), on a
new dataset of human similarity judgments of Fribbles, naturalistic, part-based objects. Metrics trained using pixel-
based or DNN-based representations fail to explain our experimental data, but a metric trained with a viewpoint-invariant,
part-based representation produces a good fit. We also find that although neural networks can learn to extract the part-
based representation—and therefore should be capable of learning to model our data—networks trained with a triplet loss
function based on similarity judgments do not perform well. We analyze this failure, providing a mathematical description
of the relationship between the metric learning objective function and the triplet loss function. The comparatively poor
performance of neural networks appears to be due to the nonconvexity of the optimization problem in network weight
space. We discuss the implications for neural network research as a whole.
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Abstract

The acquisition of new knowledge relies on our ability to connect old information to new information using semantic
networks. This process can be referred to as memory integration. In this study, we investigated how such integration
may aid memory reactivation, defined as the retrieval of previously encoded information. In addition, we were interested
in whether congruency (or semantic similarity) between two separately learned associations (AB-AC) enhances memory
integration. University students learned congruent and incongruent AB-AC associations in an fMRI scanner and reported
subjective reactivation. In addition to a behavioral score, we measured the degree of neural activity in the PPA to test for
potential effects of reinstatement (neural reactivation) using the multivoxel pattern analysis (MVPA) technique. Our anal-
yses revealed a robust effect of memory reactivation (behaviorally) and reinstatement (neurally). An effect of congruency
was also found behaviorally, but was not evident in the PPA.
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Abstract

Massive Open Online Courses (MOOCs) once offered the promise of accessibility and affordability. However, MOOCs
typically lack expert feedback and social interaction, and have low student engagement and retention. Thus, alternative
programs for online education have emerged including an online graduate program in computer science at a major public
university in USA. This program is considered a success with over 9000 students now enrolled in the program. We adopt
the perspective of cognitive science to answer the question why do only some online educational courses succeed? We
measure learner motivation and self-regulation in one course in the program, specifically a course on artificial intelligence
(AI). Surveys of students indicate that students self-reported assessments of self-efficacy, cognitive strategy use, and
intrinsic value of the course are not only fairly high, but also generally increase over the course of learning. This data
suggests that the online AI course might be a success because the students have high self-efficacy and the class fosters
self-regulated learning.
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Abstract

In this paper we present a novel neural network architecture that aims to combine the highly popular and successful
convolutional neural network architecture with the learning mechanism of an unsupervised self-organizing map. The con-
volutional self-organizing map (ConvSOM) is a hierarchical network consisting of several independent self-organizing
maps. It incorporates features associated with convolutional networks, such as weight sharing, spatial pooling, and hierar-
chical abstraction, with the unsupervised, topographically organized self-organizing map. We will show that the resulting
architecture performs poorly on the MNIST data set, but offers interesting avenues for further research.
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Abstract

Semantic organization of knowledge has a long history in theories of creativity. Flexibility of thinking and distant connec-
tions are indispensable elements of a creative network. Simultaneously, convergence of thoughts and evaluation of ideas are
essential at many stages of the creative process. The current study evaluates these complementary aspects through the lens
of an exploratory concept known as mental boundaries. Correlation analyses are used to compare flexible and rigid ten-
dencies of organizing the world, the concepts of intellect, schizotypy, perfectionism, divergent thinking and self-perceived
creativity. Results (n = 316) reveal an interesting contrasting pattern where divergent thinking is significantly related to
flexible internal and external organizations, whereas self-perceived creativity is significantly related to rigid external and
non-significantly related to rigid internal organizations. The present findings have implications for the measurement of
creativity and the identification of factors that facilitate the creative process.
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Abstract

One of the key features that make human cognition so successful is its social basis. The fact that we can exchange
information with others is integral to the knowledge humans have collectively built up over centuries. One place where
this can readily be seen is in the aggregation of judgments. As is well documented, aggregates of individual judgments
are often considerably more accurate than the individual judgments themselves, giving rise to so-called wisdom of the
crowd effects. A key determinant of the benefits of aggregation is the degree of dependency between judgments. Here, we
probed experimentally lay peoples understanding both of the value of aggregation and informational dependency, using a
numerical prediction task. We found only an equivocal trend in people’s understanding of the value of aggregation, and
no clear evidence of people’s understanding of the accuracy benefit of diversity.
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Abstract

Bayesian models that optimally integrate prior probabilities with observations have successfully explained many aspects of
human cognition. Research on decision-making under risk, however, is usually done through laboratory tasks that attempt
to remove the effect of prior knowledge on choice. To test the effects of manipulating prior probabilities on participants’
choices, we ran a large online experiment in which risky options paid out according to the distribution of Democratic and
Republican voters in unknown congressional districts in known US states. This setup allows us to directly manipulate prior
probabilities while holding observations constant and to compare people’s choices with the options’ true posterior values.
We find that people’s choices are appropriately influenced by prior probabilities, and discuss how the study of risky choice
can be integrated into the Bayesian approach to studying cognition.
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Abstract

In the mammalian brain, a newly acquired memory depends on the hippocampus for maintenance and recall, but over time
the neocortex takes over these functions, rendering the memory hippocampus-independent. The process responsible for
this transformation is called systems memory consolidation. Interestingly, retrieval of a well-consolidated memory can
trigger a temporary return to a hippocampus-dependent state, a phenomenon known as systems memory reconsolidation.
The neural mechanisms underlying systems memory consolidation and reconsolidation are not well understood. Here,
we propose a neural model based on well-documented mechanisms of synaptic plasticity and stability and describe a
computational implementation that demonstrates the models ability to account for a range of findings from the systems
consolidation and reconsolidation literature. Based on the computational model, we derive a number of predictions and
suggest experiments that may put them to the test.
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Abstract

Statistical Learning (SL), the ability to extract probabilistic information from the environment, is a subject of much debate.
It appears intuitive that such a profound mechanism of learning should carry predictive power towards general cognitive
ability. Yet, previous attempts have struggled to link SL ability to measures of general cognitive function, suffering from
low correlations and mediocre test-retest reliability. Here, we deploy a new continuous auditory SL task that achieves high
test-retest reliability ( r = .8) and shows that SL ability does significantly correlate with general cognitive function (up to
r =. 56). Results are discussed in light of i) the theoretical implications of the high test-retest reliability of our novel SL
task, ii) SL ability as a marker of general cognitive function, and iii) future methodological considerations.
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Abstract

The current studies investigated whether speakers can prepare to swear the same way they prepare non-taboo words.
Swearing, when produced reflexively, has greater right hemisphere activation than normal production suggesting that
swearing is a different linguistic process. We used a form preparation paradigm to consider phonological preparation for
non-reflexive swearing. Participants were given two types of lists; homogeneous - all words shared phonological onset
(e.g. /f/ - feet, fork, film, fuck), and heterogeneous nothing shared (e.g. film, shit, dock, poll). Results indicated the
taboo words did not contravene preparation for homogeneous sets, and taboo words were facilitated similarly to non-
taboo words. Next, we tested variable homogeneous sets (taboo item was inconsistent with majority onset, e.g. shit, film,
fork, feet) to understand whether increased attention to taboo items would disable preparation. Results showed reduced
preparation for items sharing the majority onset in variable sets, but preparation was still significant.
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Abstract

Two perspectives on human cognition are contrasted: the computational mind and the phenomenological mind. The com-
putational mind derives from the cognitivist hypothesis and is based on representation, computation and realism. While
useful for cognitive modelling, it is limited as it cannot cater for a cognitive agents experience. The phenomenological
mind foregrounds experience by drawing on the concept of the enactive mind. The phenomenological mind refers to a
view of cognition that is not predicated on the pre-existing mental representation of an objective world, and so is cog-
nitively anti-realist and non-representational. Quantum cognition offers the prospect for cognitive modelers to step out
of the computational mind but still have tools to rigorously and formally explore the anti-realism inherent to the phe-
nomenological mind. The concept of contextuality from quantum cognition is proposed as a signature of experience in the
phenomenological mind.
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Abstract

Here we combined the Eye Movement analysis with Hidden Markov Models (EMHMM) method with the data mining
technique co-clustering to discover participant groups with consistent eye movement patterns across stimuli during scene
perception. We discovered explorative (switching between foreground and background information) and focused (mainly
on foreground) eye movement strategy groups among Asian participants. In contrast to previous research suggesting a
cultural difference where Asians adopted explorative and Caucasians used focused eye movement strategies, we found
that explorative patterns were associated with better foreground object recognition performance whereas focused patterns
were associated with better feature integration in the flanker task and higher preference rating of the scenes. In addition,
images with a salient foreground object relative to the background induced larger individual differences in eye movements.
Thus, eye movements in scene perception not only contribute to scene recognition performance, but also reflects individual
differences in cognitive ability and scene preference.
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Abstract

We investigated whether semantic diversity (SemD) influences immediate serial recall for words. SemD was calculated
using LSA to quantify semantic similarity across contexts in large corpus. We examined the effects of SemD and im-
ageability, a classic semantic variable. Participants saw and recalled the 6-word list by typing out the words in correct
serial order. Experiment 1 was conducted in the laboratory (N=40). There was no main effect of SemD or imageability
but exploratory analyses showed that SemD was modulated by list position and imageability. Among high-imageability
words, low-SemD words were better recalled in latter positions (4 & 5) of the list. Experiment 2 conducted online (N=44)
replicated the results, showing better recall of low-SemD words in the high-imageability condition at Position 5. These
findings suggest that the availability of more semantic connections induces more competition between items, which im-
pacts on performance later on in serial recall.
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Abstract

Natural language processing (NLP) provides an innovative avenue to understand and explore human language content,
yet minimal research has utilized it to classify students literacy, cognition, or motivation. This study investigated the
association between grade 4-6 students (n = 143) writing and their cognitive-motivational profiles (CMPs) based on their
self-regulated learning, locus of control, writing self-efficacy, and goal-orientation. LPA (Mplus 7.4) results indicated a
two-class CMP solution with predominantly positive or negative CMPs. Using NLP, 404 lexico-syntactic writing features
were extracted from students writing. Random forest with 10-fold cross-validation was implemented in Weka 3.8 (with
SMOTE to equate class instances) to accurately (93%) classify students CMPs (class 1 True Positive Rate (TPR) = .942;
class 2 TPR = .925) based on the NLP-processed lexico-syntactic writing features. These results highlight the potential
for machine learning to analyze students writing and accurately classify learner profiles to provide formative feedback and
customized interventions.
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Abstract

Through art appreciation, viewers are sometimes inspired to express or implement creative ideas. Such an experience
is thought to be important for art learning. In this study, we conduct a questionnaire to examine how art appreciation
promotes creative inspiration in non-experts. We hypothesize that: (a) individual experience of art-related activities and
self-evaluation of artistic expression affect creative inspiration, mediated by the method of appreciation of artworks; and
(b) the type of artworks affects creative inspiration, mediated by the method of appreciation of artworks. The participants
were 373 adults, who were not art professionals (179 women, age: M = 45.02, SD = 13.45, range: 20-69 years). The
data are analyzed using structured equation modeling for the two hypotheses. The two hypotheses are mostly supported,
suggesting that self-evaluation of artistic expression and the type of artworks (especially classic works of art) influence
creative inspiration, mediated by the method of appreciation of artworks. However, experience of art-related activities has
no significant direct effect on inspiration for artistic creation.
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Abstract

Perspective taking, a cognitive process of understanding information from the others viewpoint, is essential for forming
communication skills. Whereas this process is considered to involve detachment of the reference frame from the own eye
and attachment of it to the others eye, we instead hypothesized here that it is mediated by representing the others intrinsic
(i.e., proprioceptive) coordinate frame, since our cognitive abilities often rely on the physical presence. To examine
this possibility, we asked the participants to learn to control avatars motion in the virtual reality space from the third-
person perspective and sought interaction between the ability to represent avatars intrinsic coordinate systems via motor
adaptation and the ability to take avatars spatial perspective. We found significant facilitation of perspective taking ability
by the motor adaptation experience, which supports our hypothesis that the perspective taking encompasses a process of
representing the others intrinsic coordinate frame. We suggest that the perspective taking is an embodied cognitive process
which underpins theory of mind and empathy.
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Abstract

Spatial updating during self-motion can be effortless, however, in virtual reality if there are inconsistent cues about self-
motion, spatial updating of egocentric representations of object locations usually relies on perceived scene motion or
imagery of a spatial situation model. Strong presence and illusory self-motion with a quick onset are presumed necessary
for effortless spatial updating if self-motion is signaled visually only. In the reported experiment, participants performed
spatial updating compensating for visually signaled forward self-motion in a virtual scene presented in a head-mounted
display. Higher visual detail in the scene improved performance only slightly. Overall, the result pattern suggests that
participants did not experience illusory self-motion that could support effortless updating despite more favorable conditions
than in a previous study. Several modifications to the experiment are discussed as further tests of conditions fostering
effortless updating in virtual reality.
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Abstract

Emergence has been a fundamental part of physics, chemistry, and biology since the turn of the century. The sub-
disciplines of cognitive science have all adopted emergentist approaches in many areas within their field, yet cognitive
science as a whole lacks an overarching theory between the sub-disciplines. Therefore, I propose that emergence is a
valuable conceptual tool for unifying the sub-disciplines of cognitive science, as it will facilitate communication via a
shared emergentist framework. Although there are several definitions of emergence, cognitive science can benefit from an
overarching view that regardless of discipline, reductionistic approaches are unable to describe cognition from the macro
to the micro without invoking emergent stages of explanation. The reluctance to adopt an emergent paradigm surrounds
the issue that emergent phenomena cannot be predicted from their component parts, which challenges the way experiments
in cognitive science are designed and conducted, and how cognition is modeled computationally.
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Abstract

Visual scene understanding often requires the processing of human-object interactions. Here we seek to explore if and
how well Deep Neural Network (DNN) models capture features similar to the brain’s representation of humans, objects,
and their interactions. We investigate brain regions which process human-, object-, or interaction-specific information, and
establish correspondences between them and DNN features. Our results suggest that we can infer the selectivity of these
regions to particular visual stimuli using DNN representations. We also map features from the DNN to the regions, thus
linking the DNN representations to those found in specific parts of the visual cortex. In particular, our results suggest that
a typical DNN representation contains encoding of compositional information for human-object interactions which goes
beyond a linear combination of the encodings for the two components, thus suggesting that DNNs may be able to model
this important property of biological vision.
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Abstract

Classroom and lab-based research have shown the advantages of exposing students to a variety of problems with format
differences between them, compared to giving students problem sets with a single problem format. The rapid development
of technologies such as intelligent tutoring systems (ITS) in education affords the opportunity to automatically generate
and adapt problem content for practice and assessment purposes. In this paper, we investigate whether this approach can
be effectively deployed to an ITS, conducting a randomized controlled trial to compare students who practiced problems
based on a single template and those who were exposed to problems based on multiple templates, both in the same ITS.
Results show no statistically significant difference in the two conditions on students post-test performance and hint request
behavior. However, students who saw multiple templates spent more time to answer the practice items compared to
students who solved problems of a single structure.
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Abstract

Morphological paradigms differ widely across languages in their size and number of contrasts they mark. Recent work on
morphological complexity has argued that certain features of even very large paradigms make them easy to learn and use.
Specifically, Ackerman & Malouf, 2013 propose an information-theoretic measure, i-complexity, which captures the extent
to which forms in the paradigm predict each other, and show that languages which differ widely in surface complexity
exhibit similar i-complexity; in other words, paradigms with many contrasts reduce the learnability challenge for learners
by having predictive relationships between inflections. We present three artificial language learning experiments testing
whether i-complexity in fact predicts learnability of nominal paradigms where nouns inflect for class and number. Our
results reveal only weak evidence that paradigms with low i-complexity are easier to learn than paradigms with high
i-complexity. We suggest that alternative aspects of complexity may have a larger impact on learning.

3292



Elicitation and Assessment of Emotion in Computational Rationality
Jussi Jokinen

Aalto University, Helsinki, Finland

Viet Ba Hirvola
Aalto University, Espoo, Finland

Abstract

Computational modelling of human emotion has a promising outlook within the approach of computational rationality,
which formalises adaptive behaviour as a bounded optimisation problem. However, testing different hypothetical emotion
models under this approach is hindered by lack of structured data, that have been collected in experimentation coherent
with the underlying formal assumptions. Here, we design an interactive task that is used to elicit and assess emotion,
and aligns with the problem solving formalism of a partially observable Markov decision problem. From the literature
on emotion modelling, we derive hypotheses about what affects emotional responses, and use the collected data to test
the hypotheses. We demonstrate how emotion can be assessed in a semi-continuous manner throughout the trials of the
experiment, and in a way that can be used to test computational rationality models of emotion.
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Abstract

Cognitive scientists have discovered much about the acquisition, consolidation, and retrieval of episodic memories; how-
ever, much less is known about how memories of our daily experiences are organized, nor how this organization may
change as memories become consolidated. Here, we apply computational network science methodologies to quantify the
organization of recent (within the past year) and remote (5 10 years ago) autobiographical memories and quantitatively
examine how these networks change over time. We found that remote memories exhibited higher global connectivity
relative to recent memories, and that this increased connectivity is coupled with lower subjective ratings of vividness. Our
results demonstrate how such cognitive features of episodic memory can be quantitatively examined and shed novel light
on the organization and reconfiguration of episodic memories over time.
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Abstract

Although young learners often express overconfidence, research has demonstrated that 3- to 4-year-old children may
be able to use a confidence scale to discriminate between their correct and incorrect responses. The current research
introduces a novel paradigm to facilitate childrens reflection and reporting of confidence, based on the presentation of
disconfirming evidence. This paradigm presents 3-, 4- and 5-year-olds with windows of varying occlusion (none, partial,
and full). Children used a 3-point scale to assess their confidence that a target shape was behind each window. In four
conditions, we varied when and whether children received disconfirming evidence. Results suggest that violating childrens
expectations about the presence of the target shape on the first trial results in improves confidence calibration on future
trials. Results also suggest that baseline confidence scale use improves with age. We discuss theoretical implications for
development of uncertainty monitoring and potential applications of this novel paradigm.
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Abstract

Measuring selective sustained attention (SSA) development in preschool-aged children has been difficult due to challenges
in designing age-appropriate measurement paradigms. The TrackIt task, together with eye-tracking and a recently pro-
posed Bayesian-model based eye-tracking analysis method, creates opportunity for fine-grained measurement of SSA in
young children. The current study 1) provides the first rigorous validation of this method by comparing model judgments
with human video-coding of the data, and 2) further explores potential uses of this method for providing nuanced measures
of SSA. More specifically, we use the analysis method to explore different ways of characterizing SSA based on eye-gaze
data obtained during TrackIt with 3- to 6-year old children. We look at patterns of in-trial eye-gazing across age and across
time.
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Abstract

Language can be thought of as a code: A system for packaging a speakers thoughts into a signal that a listener must
decode to recover some intended meaning. If language is a near-optimal code, then speakers should structure information
in their utterances to minimizes the impact of errors in production or comprehension. To examine the distribution of
information within utterances, we apply information-theoretic methods to a diverse set of languages in various spoken and
written corpora. We find reliably non-uniform and cross-linguistically variable information distributions across languages.
These distributions are consistent across contexts, and are predictable from typological features, most notably canonical
word order. However, when we include even a small amount of predictive context (bigrams or trigrams), the language-
specific shapes disappear, and all languages are characterized by uniform information distribution. Despite cross-linguistic
variability in communicative codes, speakers structure their utterances to preserve uniform information distribution and
support successful communication.
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Abstract

The purpose of this study is to confirm whether monaural auditory displays that indicate leftward and rightward directions
to users can be used together with speech sounds in order to convey positional information to users. We conducted two
experiments; experiment 1 was for investigating how a speech sound followed by auditory displays can convey three
positions, right, center, and left, to participants, and experiment 2 was for exploring the effects of the durations of these
auditory displays on how users interpreted these pieces of positional information. As a result of experiment 1, a speech
sound followed by monaural auditory displays with durations of 0.25, 0.50, and 0.75 sec succeeded in conveying the three
pieces of positional information to users. As a result of experiment 2, the speech sound followed by monaural auditory
displays with durations of 0.25, 0.50, 0.75 or 1.00 sec was interpreted by users correctly.
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Abstract

Axioms are pervasive in mathematics and formulating the axioms for a particular discipline has often been an important
step in the development of mathematics. One way mathematicians arrive at axioms is by characterizing a given domain
that consists of objects (e.g., numbers or points and lines) and relations between them. We present a software system that,
given a set of objects and relations as input, determines, first, a set of first-order formulas that are satisfied in that domain,
and, second, a set of axioms from which all of these formulas can be derived. Several domains are used to illustrate our
program. By comparing the axioms for different domains, analogies between these domains can be expressed, such as
structural and invariance properties. From the complexities of the implementation and the discussion of various examples,
conclusions are drawn about the process of axiomatization in mathematical practice.
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Abstract

How do people make transformative decisions (the outcomes of which are hard to imagine, and which might change
one’s self in lasting ways)? We investigate social psychological factors that contribute to making transformative decisions
in contrast to ordinary decisions (with easily imaginable outcomes). We show that transformative decisions are uniquely
predicted by a desire for self-improvement and forming new social bonds. However, contrary to our expectations, epistemic
curiosity did not play a role in making transformative decisions. In contrast, ordinary decisions are uniquely predicted by
the preferences of the community, and younger age. We identify important differences that point to separate cognitive
mechanisms used to evaluate transformative decisions.
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Abstract

Two leading analogical reasoning paradigms: A:B::C:D task and scene analogies, to date studied in isolation, were applied
to the same 61 participants. The former task included 3 types of distracting response options (relational, semantic, and
perceptual); the latter task imposed cross-mapping (response options that suggested a wrong structure to be mapped). First,
relational and semantic, but not perceptual, distractors were similarly frequently selected, but their choices were weakly
correlated. These choices were unrelated to cross-mapping in the other task, either. So, various sources of distraction can
play a role in the analogical reasoning process.
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Abstract

Hierarchical control theories of perception-action conceptualize action as control of input, occurring simultaneously at
multiple levels. These levels differ in terms spatio-temporal proximity of the perception controlled. However, it is not clear
how this interaction between different levels in a control hierarchy can be measured from the behavior of the organism.
We propose that Long Range Temporal Correlations (LRTC) in RT data can be used as a measure of coupling between
different control levels within such complex system. Participants perform the task of controlling a hierarchical stimulus
either at global level or at local level in a noisy presentation, while the level of control and noise are manipulated. The
results suggest that LRTC in control task is higher for global level of control compared to local level of control in the no
noise condition. We discuss implications of the results for understanding of perception-action interactions as a complex
dynamic system.
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Abstract

Acceptability Rating Data for Japanese (ARDJ) is a project that explores the true nature of acceptability judgement based
on a large-scale survey using theoretically unbiased stimuli. Its main survey was carried out in 2018 in two phases with
carefully constructed 300 stimulus sentences: Phrase 1 was a smaller scale experiment with roughly 300 college students;
Phase 2 was a large scale web survey with over 1,600 participants.

This paper reports on phase 2 and provides two results: Analysis 1 brought us a good typology of 300 sentences; Analysis
2 implements explicit modeling of acceptability judgement using Semi-supervised local Fisher discriminant analysis.

The results, if combined, suggest that i) acceptability is not a simple dichotomous partitioning of stimuli; ii) acceptability
is a complex property that emerges through an interplay among the three factors: 1) degree or strength of deviance, 2)
syntactic and/or semantic complexity of stimulus, and 3) localizability of deviance.
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Abstract

It has been suggested that the detection of statistical regularities in language a skill fundamental to language acquisition
is supported by brain areas that are also involved in implicit motor skill learning. The present study is one of the first
to explore this claim in an artificial language learning experiment. We used continuous theta-burst transcranial magnetic
stimulation (cTBS) to temporarily inhibit functioning of the left dorsolateral prefrontal cortex (DLPFC) or the primary
motor cortex (M1) in healthy adults. We hypothesized that the left DLPFC plays a role in adults detection of nonadjacent
dependencies (NADs) and therefore that learning should be disrupted in the group of adults receiving cTBS to this area.
Our results provide no evidence for (or against) this claim, however. An interesting exploratory result is that learning of
NADs may be enhanced in adults who received cTBS to the M1 as compared to participants who received sham cTBS.
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Abstract

Anchoring bias describes the tendency to base an estimate around a previously given value, the anchor. Herein, a cohort
of 124 medical providers and trainees, from medical students to practicing physicians, were shown to display anchoring
bias when faced with medical scenarios including an anchoring value in the form of a prior assessment. Anchoring
bias did not vary significantly with participants level of training although tolerance to risk did. However, they showed
increased reliance on the anchor when its source had greater expertise. Analyses showed no correlation between anchoring
susceptibility and participants preference for Rationality or Intuition as measured by the Decision Styles Scale. The results
suggest that medical decisions can be vulnerable to anchoring effects, particularly when the anchor is sourced from an
authoritative source. Given that authoritative sources should be more knowledgeable, this is reasonable, but will hold true
regardless of the accuracy of the anchoring value.
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Abstract

In order to make accurate inferences and judgments, one needs to not only be able to aptly evaluate and integrate informa-
tion, but be able to seek and acquire the right information in the first place. The present work explored human information
acquisition and evaluation in a novel probability context and utilising a more naturalistic criminal investigation scenario.
Focus was placed on exploring the relationship between searching for information, evaluating it and integrating it within
ones belief model in order to make a causal judgement. Results indicated that although participants search choices ap-
proximated those of informed Bayesian OED models, belief updating accuracy systematically decreased throughout the
task. Findings suggested a dichotomy between information evaluation and belief integration, questioning the descriptive
abilities of OED principles to account for these processes. The implications of these finding in relation to the psychological
literature of human inquiry are discussed.
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Abstract

Advanced technologies used in games allow players to behave freely in the game world. Like in the real world, there may
be complex motives for a behavior. Although how a player behaves in a game is afforded by the games rules, motives
may differ depending on the type of player. For example, a player who regards the game as mere rule-based play may
behave differently as compared to a player who perceives the game as another reality with its own rules and sociality.
This study focuses on understanding players prosocial behavior in games and empathy as their motive. A survey was
conducted to look at the relationships between prosocial behavior, empathy, and different types of players (depending on
their interpretation of gameplay). The results showed that the type of player did not affect their levels of empathy, but it
moderated the effect of empathy on prosocial behavior toward other characters.
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Abstract

Xu and Tenenbaum (2007a, 2007b) applied the Bayesian model to explain the impact of differences in exemplification on
words learning, and they achieved milestones. It remains unexplored if there are differences when native language and
culture are changed. Taking the same method as the original research, we added test after a long time interval, and use
between-subject design to eliminate the practice effect. The results of Chinese adults and children show that: (1) The
Bayesian model has stability over time and culture. (2) When the objects in the same category differ greatly from each
other, the Bayesian model’s predictive power on children’s results is significantly reduced. (3) Since the low-level words
in Chinese vocabulary are often composed of high-level words and adjectives, Chinese easier to generalize. (4) Results of
Chinese subjects reflect more instinct rather than logical reasoning stylewhich is differ from westerners.
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Abstract

People spontaneously gesture when studying spatial descriptions. Doing so improves comprehension and learning. Their
gestures create spatial models of the described environments. Here, we address two questions in two experiments: will
people gesture to study descriptions that are not inherently spatial, and will people gesture when information is presented
visually rather than text. The answers to both questions are yes. Together, the results suggest that gestures facilitate
comprehension and learning by creating spatial-motor representations that directly reflect meaning.
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Abstract

Humans primarily communicate through words and gestures. In some cases, however, humans also communicate indirectly
through objects, such as trafc cones or stanchion ropes. How does the human mind generate and interpret the social
meaning of objects? Here we show that a computational model that uses commonsense physics and Theory of Mind
spontaneously gives rise to the ability to communicate through objects. As predicted by our model, we show that people
can infer the communicative meaning of novel objects by reasoning about the costs they impose, even in the absence of
a pre-existing convention. Moreover, we show that people store the meaning of an object after a single exposure and
recognize it in subsequent encounters. Our model sheds light on how humans bootstrap cognitive capacities that we share
with other animals to give rise to uniquely-human cognition.
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Abstract

Face-to-face communication provides access to visual information that can support language processing. But do listeners
automatically seek social information without regard to the language processing task? Here, we present two eye-tracking
studies that ask whether listeners’ knowledge of word-object links changes how they actively gather a social cue to refer-
ence (eye gaze) during real-time language processing. First, when processing familiar words, children and adults did not
delay their gaze shifts to seek a disambiguating gaze cue. When processing novel words, however, children and adults
fixated longer on a speaker who provided a gaze cue, which led to an increase in looking to the named object and less
looking to the other objects in the scene. These results suggest that listeners use their knowledge of object labels when
deciding how to allocate visual attention to social partners, which in turn changes the visual input to language processing
mechanisms.
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Abstract

Dynamic models, such as agent-based models (ABMs), are becoming an increasingly common modelling tool in cognitive
sciences. They enable cognitive scientists to explore how computational, analytic models scale up when placed in complex,
interactive, and dynamic environments where agents can sequentially interact over time and in space. Frequently, ABMs
are built to yield a particular behaviour (riots, echo chamber emergence, etc.). As such, some models may bake in the
desired behaviour. However, many models may yield this behaviour, making it difficult to discriminate between the
adequacies of each computational model. The paper directly addresses this methodological challenge. We explore a case
study (fisheries). Agents make decisions in this dynamic and complex environment. Given a rich data set against which
to calibrate and validate model predictions, we compare and contrast statistical, adaptive, and perfect agents. We show
that adaptive computational agents equal statistical agents in calibration and outperform them for validation. In addition,
we show that perfect and random agents fare poorly. This provides a method for using dynamic, agent-based models to
choose between computational models
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Abstract

Recent research on numerical cognition has begun to systematically detail the ability to perceive the magnitudes of sym-
bolic fractions and non-symbolic ratios. The current study extended this line of research by investigating spatial represen-
tations of symbolic fractions and nonsymbolic ratios with two behavioral measures: the Spatial-Numerical Association
of Response Codes (SNARC) effect and number line estimation. The two research questions were: 1) what are the simi-
larities and differences of spatial representations between symbolic fractions and nonsymbolic ratios? 2) do mechanisms
driving the SNARC effect and performance on number line estimation rely on a shared cognitive mechanism? Participants
completed four tasks: magnitude comparison with symbolic fractions, magnitude comparison with nonsymbolic ratios,
number line estimation with symbolic fractions, and number line estimation with nonsymbolic ratios. Results suggested
the existence of both shared and specific spatial representations of symbolic fractions and nonsymbolic ratios. Moreover,
individual participants SNARC effects and number line estimation performances were not correlated with each other.
Findings further elucidate the relations between different spatial representations for symbolic fractions and nonsymbolic
ratios and cast doubt on the prospect of their sharing common cognitive mechanisms.
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Abstract

Many educational approaches assume that making the learner active leads to better learning although this improvement in
learning has not be firmly quantified experimentally. The goal of this paper is to articulate a model of agency in cooperative
learning based on a predictive cognitive architecture and to explore methodological strategies as well as theoretical and
applied implications of agency in the study of cooperative learning, in this case with data on emotional processing. Results
from 27 dyads (1 player and 1 watcher) who played a serious game for learning physics for 120 minutes show that agency
has no effect on the overall quantity of emotional processing, but that the emotional processing of a watcher and player
is synchronized. A watchers emotional processing may precede or be delayed from the players. The cornerstone of this
framework is the notion of predictions, which unites top-down and bottom-up influences as modulated by the possibility
for action (agency). The model presented is the foundation for process-oriented studies of cooperative learning from an
educational neuroscience perspective.
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Abstract

Why do languages change? One possibility is they evolve in response to two competing pressures: (1) to be easily learned,
and (2) to be effective for communication. In a number of domains, variation in the worlds natural languages appears to
be accounted for by different but near-optimal tradeoffs between these pressures. Models of these evolutionary processes
have used transmission chain paradigms in which errors of learning by one agent become the input for the subsequent
generation. However, a critical feature of human language is that children do not learn in isolation. Rather, they learn in
communicative interactions with caregivers who draw inferences from their errorful productions to their intended interests.
In a set of iterated reproduction experiments, we show that this supportive context can have a powerful stabilizing role in
the development of artificial patterned systems, allowing them to achieve higher levels of complexity than they would by
vertical transmission alone while retaining equivalent transmission accuracies.

3315



The Role of Sketch Quality and Visuo-Spatial Working Memory in Science
Accuracy

Dana Miller-Cotto
University of Pittsburgh, Pittsburgh, Pennsylvania, United States

Nicole Hallinen
Temple University, Philadelphia, Pennsylvania, United States

Julie Booth Ph.D.
Temple University, Philadelphia, Pennsylvania, United States

Abstract

Sketching is often a helpful strategy for solving science problems. We examined the role of visuo-spatial working memory
and sketching in predicting science problem solving accuracy. Sketches were coded for quality based on whether they
included elements and relationships in the sketches. Regression analyses were done regressing working memory on
to science problem solving. A mediation analysis was also conducted to determine whether sketch quality mediated the
relationship between working memory and science accuracy. Findings are discussed in terms off implications for education
and classroom instruction.
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Abstract

In this study, we investigated the reinterpretation process of a non-art object. It is often said that a unique perspective
different from daily life arises in the cognitive process of an art activity. We assumed that such a unique viewpoint can
also be applied to non-art objects and people will discover new aspects of objects and/or their own viewpoints through
the reinterpretation of non-art objects. We conducted a between-subjects experiment to investigate the process in detail.
We expected the artistic context of the participant to influence the interpretation. We conducted two types of interventions
to manipulate participants artistic context. The result of the experiment suggests that the artistic context influenced the
interpretation process of non-art objects.
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Abstract

The first language of a person has been shown to influence the processing of words when they learn a new language. This
has been previously researched in behavioral studies, as well as by using lexical distributions or co-occurrence counts
between word combinations to detect errors. In this paper we follow the findings of two recent studies and test their
hypotheses within the framework of two different word embedding models, based on their representation of the erroneous
usage of concent words. Using an error-annotated corpus of essays written by learnings bellowing to 16 different first
languages, we compare incorrect words and their correct replacements as vectors in English and the learners first language.
The results are consistent with previous findings that the first language has an influence on errors in the second language.
The relationships between typologically similar languages differed between the models of embedding, suggesting an
avenue for future explorations.
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Abstract

Recent research has identified intertemporal impulsivity as a critical cognitive variable for explaining the autocatalytic
nature of socioeconomic status (SES). But how exactly this relationship transpires has not been clearly identified. We
present results from a novel experimental study, demonstrating that decision-makers’ time preference becomes more
present-focused when they experience budgetary overruns in a sequential decision-making task. On the basis of these
results, we hypothesize that steep intertemporal discounting in low SES individuals may arise as a rational metacognitive
adaptation to persistently experiencing planning and control failures in long-term plans. Consilient evidence in support of
this hypothesis and downstream policy implications are briefly discussed.
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Abstract

In complex tasks, high performers often have better strategies than low performers even with similar practice. Relatively
little research has examined how people form and modify strategies in tasks that permit a large set of possible strategies.
One challenge with such research is determining strategies based on behavior. Three algorithms were developed to track
the task features people employ in their strategies while performing a complex task. An ACT-R model that performs the
task was created to collect simulated data with a range of known strategies. The performance of the three algorithms is
compared, and a decision tree classification algorithm yielded the best performance across the test cases. Summary data
from applying the algorithms to human data on the tasks is also presented and highlights potential challenges for future
work. However, this approach to tracking strategy exploration may enable further development of theories about how
people search for good strategies.
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Abstract

In classroom settings, young children are frequently off-task, which may be due in part to childrens still-maturing at-
tentional system. Lapses in attention may impede academic success by reducing the amount of time spent engaged in
instructional activities. One popular strategy to increase on-task behavior is to provide brief physical activity (PA) breaks
in between instructional tasks. Though PA breaks are hypothesized to increase on-task behavior, much is unknown re-
garding the effectiveness of breaks and their underlying mechanism(s). The present study systematically investigated the
effectiveness of PA breaks, using direct measures of attention and learning. Break type (PA vs. Sedentary control) was
manipulated within-subjects. Preliminary results indicate PA breaks benefit learning compared to the sedentary control
(p=.03, Cohens d=.389). A marginally significant increase in on-task behavior was also found following the PA break.
These results provide tentative support for the benefit of PA breaks for childrens attention and learning.

3321



Gradations in task engagement emerge from metacognitive priority control
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Abstract

Engagement is a critical motivational factor that has broad effects on learning, productivity, performance, and even satis-
faction and happiness. However, it can also be impacted by a myriad of factors which have made it difficult to model and
design interventions. Here we address this problem by developing an integrated metacognitive framework for understand-
ing task engagement. We treat engagement as resulting from a unified metacognitive decision process where the gradient
of engagement results from a common priority calculation. Priority signals are computed relative to a set of available
tasks and updated across time and environmental changes. We propose a metacognitive controller makes decisions about
both task switching (when to quit, next task) and cognitive resourcing (working memory, attention, etc) using the graded
priority signals. By simultaneously choosing the task and allocating resources using the same graded signals, we capture
the complex dependencies of engagement with task errors, performance, and time allocation.
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Abstract

Previous work has found that the contingencies experienced at UK traffic lights can affect drivers behavior potentially
leading to risky driving. However, these studies did not account for the sequences experienced at traffic lights. This
experiment seeks to rectify this. As with previous research we used an incidental go/no-go task in which colored shapes
were stochastically predictive of whether a response was required. The stimuli encoded the contingencies of traffic lights
and their appropriate response, for example, stimuli G was a go cue, mimicking the response to a green light. Crucially,
cues were displayed in the sequences experienced at traffic lights. Supporting earlier work, the 50/50 cue that mimicked
amber traffic lights was experienced as a go cue, and the stop cue that represented red lights was responded to as a neutral
cue. The sequences seemed to enhance this pattern of learning with much larger effect sizes than previously found.
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Abstract

Standard self-monitoring devices provide real-time daily feedback. This may not help users learn the long-term future
cumulative effects of their behaviour because it orientates attention on the now. We test the hypothesis that future oriented
feedback is more effective than real-time feedback in increasing users propensity to exercise. We asked 54 female treadmill
users in a gym to report the feedback they got from the machine (calories burnt, time spent running and distance covered)
upon finishing their workout and were then provided with additional feedback which varied in format across three between-
subject conditions: day only feedback (no additional feedback), monthly feedback (additional projection of the future
cumulative effect of the activity repeated daily after one month), and all times feedback (additional projection of the future
cumulative effect of the activity repeated daily after one month and after one year). All participants were then asked about
the extent to which they felt their own running workout affected their weight loss, as well the extent to which running
leads to weight loss in general. They also all answered two questions aimed at measuring their time perspective after
being exposed to the various feedbacks. In comparison to participants who had been exposed to the standard real time
feedback, participants who had been exposed to the future oriented feedbacks perceived the causal connection between
their own running workout and their weight loss as significantly higher, and reported a significantly more future oriented
time perspective. The results highlight the need to consider time orientation as an important dimension to aid decisions
through technologies.
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Abstract

Language experience influences cognition. Using behavioral and ERP measures, the present study examines whether
experience with multiple languages can change how we form associations between concepts. Four experiments comparing
bilingual and monolingual groups on semantic relatedness judgments indicate that highly proficient bilinguals perceive
concepts as more related to one another than monolinguals. Results suggest that bilinguals denser lexical and phonological
connections across their two languages may shorten semantic distances between concepts. This finding is consistent with
connectionist models of language and suggests that the structure of the lexical and phonological systems may influence
conceptual level associations. We conclude that bilingualism has consequences for the structure of the language system at
the level of lexical-semantic connections.
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Abstract

Investigations into human decision-making have led to the discovery of numerous cognitive biases and fallacies, with new
ones continually emerging, leading to a state of affairs which can fairly be characterized as the cognitive fallacy zoo! In this
work, we formally present a principled way to bring order to this zoo. We introduce the idea of establishing implication
relationships (IRs) between cognitive fallacies, formally characterizing how one fallacy implies another. IR is analogous
to, and partly inspired by, the concept of reduction in computational complexity theory. We present several examples of IRs
involving experimentally well-documented fallacies: base-rate neglect, availability bias, conjunction fallacy, decoy effect,
framing effect, and Allais paradox. We conclude by discussing how our work: (i) allows for identifying those pivotal
cognitive fallacies whose investigation would be the most rewarding research agenda, and (ii) permits a systematized,
guided research program on cognitive fallacies, motivating influential theoretical as well as experimental avenues of future
research.
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Abstract

Human rationality is predominantly evaluated by the extent to which the mind respects the tenets of normative formalisms
like logic and probability theory, and is often invoked by appealing to the notion of optimality. Drawing on bounded ratio-
nality, there has been a surge in the understanding of human rationality with respect to the mind’s limited computational
and cognitive resources. In this work, we focus on a fairly underappreciated, yet crucial, facet of rationality, robustness:
insensitivity of a model’s performance to miscalculations of its parameters. We argue that an integrative pursuit of three
facets (optimality, efficient use of limited resources, and robustness) would be a fruitful approach to understanding human
rationality. We present several novel formalizations of robustness and discuss a recently proposed metacognitively-rational
model of risky choice (Nobandegani et al., 2018) which is surprisingly robust to under- and over-estimation of its focal
parameter, nicely accounting for well-known framing effects in human decision-making under risk.
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Abstract

A wealth of experimental evidence shows that, contrary to normative models of choice, people’s preferences are markedly
swayed by the context in which options are presented. In this work, we present the first resource-rational, mechanistic
account of the decoy effect—a major contextual effect in risky decision making. Our model additionally explains a related,
well-known behavioral departure from expected utility theory: violation of betweenness. We demonstrate that, contrary to
widely held views, these effects can be accounted for by a variant of normative expected-utility maximization—sample-
based expected utility model (SbEU; Nobandegani et al., 2018)—which acknowledges cognitive limitations. Our work is
consistent with two empirically well-supported hypotheses: (i) In probabilistic reasoning and judgment, a cognitive sys-
tem accumulates information through sampling, and (ii) People engage in pairwise comparisons when choosing between
multiple alternatives.
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Abstract

The primary numerical activities in kindergarten through third grade are aimed at developing an understanding of the
structure of base-ten numbers and learning to add and subtract with increasingly larger numbers. Many students in the
U.S. continue to find this difficult. Thus, the most common instructional tools intended to support childrens learning of
these ideas should be analyzed for their cognitive alignment and, if needed, redesigned for optimal learning. This study
reports the findings from a study examining the cognitive alignment of a standard hundred board for the more difficult
subtraction operation. Additionally, we investigate whether redesigning the hundred board such that addition goes up and
subtraction goes down is more optimal for subtraction.
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Abstract

Previous experiments have demonstrated that Japanese children can use the number of arguments and the case markers to
learn novel verbs. However, these cues are mostly omitted in child-directed speech. We revisit this gap between the ability
of children to use syntactic cues and the deficiency of such input by examining a different mode of input in the form of
picture books. We built a Japanese picture book predicate-argument structure corpus containing annotations of predicate-
argument structure and non-linguistic information. The analyses show that Japanese picture books contain more overt
arguments and accusative case markers, and that these cues have significant influence on the prediction of verb transitivity.
In addition, this study demonstrates that non-linguistic information (animacy and the numbers of potential referents) could
help predict transitivity if learners are able to use these cues to infer the presence of null arguments.
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Abstract

Poetry is one of the most creative uses of language. Yet the influence of poetry on creativity has received little attention.
The present research aimed to determine how the reception of different types of poetry affect creativity levels. In two
experimental studies, participants were assigned to two conditions: poetry reading and non-poetic text reading. Partici-
pants read poems (Study 1 = narrative/open metaphors; Study 2 = descriptive/conventional metaphors) or control pieces of
non-poetic text. Before and after the reading manipulation, participants were given a test to determine levels of divergent
thinking. In Study 1 (N = 107), participants showed increased fluency and flexibility after reading a narrative poem. In
Study 2 (N = 131) reception of conventional, closed metaphorization significantly lowered fluency and flexibility (com-
pared to reading non-poetic text). The most critical finding was that poetry exposure could either increase or decrease
creativity level depending on the type of poetic metaphors.
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Abstract

Many researchers claim that negative emotions inhibit creativity. However, describing emotions in a safe environment has
beneficial effects: it allows for the restructuring of difficult experiences, as a result, we discover the world again, which
can influence creativity. The classic method of writing about emotions is long-term one. The hereby study was an attempt
to verify, if one session of expressive writing improves creative thinking. This hypothesis was tested in an experimental
study by exposing participants (N = 60) to emotionally laden content. Participants viewed unpleasant images. The first
group wrote about their emotions in connection with the images. The second described their typical day. At the end all
participants solved creativity measure (Alternative Uses Task). After each stage, emotions of respondents were measured.
The conducted analyses had shown that, performance was better in the unpleasant emotions describing condition. At the
same time, negative emotions persistence has been observed.
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Abstract

We tested three fundamental properties of Bayesian Decision Theoryaccuracy, additivity, and sufficiency. In Experiment
1, observers were shown a sample of dots from a bivariate Gaussian and estimate the probability that an additional sample
would fall into specified regions. There were three types of regions: symmetric around the mean (S), the upper and
lower halves of the symmetric region (SU and SL). In Experiment 2, the same observers were asked to maximize the
expected rewards based on jointly sufficient statistics for given the sample (herein, mean and covariance of a Gaussian).
In Experiment 1, We found that the observers estimates of symmetric region P[S] were close to accurate. However, they
showed a highly patterned super-additivity: the sum of P[SU] + P[SL] ¿ P[S]. In Experiment 2, the observers violated
sufficiency by assigning too much weight to a feature of the sample rather than jointly sufficient statistics.
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Abstract

Domestic dogs excel at understanding human social-communicative gestures. The present study explores whether dogs
can use peoples past accuracy when deciding who to trust. In Experiment 1, dogs watched an informant hide a treat under
one of two containers and then point at one of them. Dogs were more likely to follow an accurate (pointed correctly)
vs. the inaccurate (pointed incorrectly) informants point. In Experiment 2, dogs interacted separately with an accurate
and inaccurate informant and again were more likely to follow an accurate point. In test trials, dogs did not witness
hiding of the treat and saw the same two informants simultaneously point at different locations. Here, they chose between
the locations at chance-level. Dogs inability to selectively follow a previously accurate informant when presented with
conflicting information suggests that, unlike children, they may not be able to use past informant accuracy when choosing
whose information to use.
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Abstract

Inversion is an essential operation, for instance in math (negatives) and action (to move in an opposite direction). Even
though humans can invert is unclear how is implemented. There are two alternative hypotheses. The first possibility (H1)
is that only positives are represented and negatives (inverses) are implemented as either a response (e.g. left to right) or
task demand flip (e.g. ¿ to ¡). The second possibility (H2) is that both positives and negatives (inverses) are encoded.
To disambiguate them, we ran two experiments where participants had to apply the inverse while implicitly reporting
confidence. If inverting modifies encoding of otherwise identical stimulation then confidence should differ. We found that
confidence was lower in inverse trials than direct/positive trials. This suggests that the inverse is not a simple response
strategy or modification of task demands (H1), rather inverting modulates how cognitive information is encoded and used
in the brain (H2).
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Abstract

Much research has focused on phonological representation in verbal short-term memory (STM), with less attention paid
to semantic representations despite evidence of linguistic long-term memory (LTM) effects. We investigate when phono-
logical and semantic representations are activated in verbal STM: does it occur during retrieval (redintegration account)
or there is direct access to language knowledge stored in LTM (language-based account). A probe recognition paradigm
was used to test phonological and semantic encoding in verbal STM. Participants studied a list of words and then judged
whether a probe word presented after the list rhymed or was synonymous to any item in the word list. Probe recognition
was better was semantically processed words than the phonological task, suggesting that semantic encoding was evident
at first exposure during encoding rather than a redintegration effect. It appears that semantic knowledge, in addition to and
separate from phonological knowledge, is actively maintained in verbal STM.
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Abstract

Effective communication is a crucial factor contributing to successful collaborative problem solving (CPS) teams. Re-
search in cognitive science has long shown evidence of linguistic alignment, or convergence in ways of speaking, but its
functional role, if any, during CPS is unknown. Based on recent theorizing, we expected that both goal-oriented dialogue
and non-goal-oriented dialogue should exhibit alignment. However, if linguistic alignment contributes to effective CPS,
then conversations in this context should exhibit higher levels of alignment. In this study, we compared levels of syntactic
and lexical alignment between a corpus of CPS dialogue and a corpus of spontaneous dialogue. Contrary to our predic-
tion, we observed that the mean lexical alignment level was lower in the CPS corpus than in the Switchboard corpus.
Implications for future research into linguistic alignment in CPS are discussed.
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Abstract

Past research has shown that prior knowledge can support our episodic memory for recently encountered associations
(Chalfonte & St-Giles, 1996; Naveh-Benjamin, 2000). Badham, Estes and Maylor (2012) for example, showed that
integrative relationships between words help associative memory, even if the relationships are highly unfamiliar. A pair of
words is integrative if the words make sense when considered together (e.g. monkey-foot). We extend this phenomenon
to sound-symbolism associations; here, the latter refer to relationships between phonemes and object characteristics–
relationships that participants readily find natural, even without prior knowledge of the items. For instance, the non-word
maluma is much more readily associated with a random shape with rounded contours than with a shape that has sharp
angles (Khler, 1929, 1947). In our study, 70 participants completed paired-associate memory tests after studying lists of
three shape / non-word pairs. The sound-shape pairs that relied on known sound-symbolism links facilitated associative
memory.
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Abstract

The advent of broad-coverage computational models of human sentence processing has made it possible to derive quantita-
tive predictions for empirical phenomena of longstanding interest in psycholinguistics; one such case is the disambiguation
difficulty in temporarily ambiguous sentences (garden-path sentences). Adequate evaluation of the accuracy of such quan-
titative predictions requires going beyond the classic binary distinction between ”hard” and ”easy” garden path sentences
and obtaining precise quantitative measurements of processing difficulty. We report on a self-paced reading study designed
to estimate the magnitude of the disambiguation difficulty in two temporarily ambiguous sentence types (NP/Z and NP/S
ambiguities). Disambiguation was more than twice as hard in NP/Z sentences as in NP/S sentences. This contrasts with
the predictions of surprisal estimates derived from current broad-coverage language models, which lead us to expect a
smaller difference between the two.
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Abstract

Mental spatial transformation processes are often modeled by assuming imaginal processes, highly task-specific assump-
tions, or both. We propose the existence of a dedicated, unified cognitive system for the simulation of spatial processes,
and show ways to model this system, including an ACT-R implementation that is currently in development. Results of
spatial cognition and brain-imaging research support this proposal. Operations of this system are proposed to be influenced
by their complexity, which we assume to be a product of the extent and amount of necessary transformation steps. This
complexity is further assumed to be limited in its extent, possibly explaining decision time effects between task difficul-
ties in a mental folding task as being caused by cognitive re-encoding processes. A model for the mental folding task
lacking such a spatial system is presented, serving as a baseline to demonstrate the need of a system dedicated to mental
transformations.
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Abstract

How do individuals learn a complex task? Averaging performance over a group of individuals implicitly assumes that only
one set of methods exists for accomplishing the task and that all learners acquire those methods in the same sequence.
Rather than profiling a mythical “average subject”, we focus on individuals using SpotLight – a tool for analyzing changes
in individual performance as a complex task is learned. Specifically, we investigate 9 individuals who spent 31 hours
learning the task of Space Fortress (SF). The SpotLight enables us to uncover the evolution of strategies and the iterative
efforts of individuals to explore and devise new ways to improve performance. To our surprise, these players seem to
have followed a common ‘design for the weakest link’ rule, in which after the current weakest link of performance is
strengthened, an individual’s attention turns to the next weakest link.
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Abstract

Young children can generalize properties to novel stimuli, but the mechanism underlying these early inductions is still
debated. Some researchers argue that from an early age induction relies on category information and undergoes little
development, while others believe that early induction is similarity-based, and the use of categories emerges over time.
This present study brings new evidence to the debate by exploring the kinds of features 4-year-old children and adults (N
= 123) rely on in their induction. Our results indicate that induction undergoes dramatic development: young children
tend to rely on salient features when performing induction, whereas adults rely primarily on category information. We
argue that the reported findings present evidence challenging category-based accounts of early induction, while supporting
similarity-based accounts.
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Abstract

Despite having sophisticated causal reasoning skills, there are a variety of cases in which adult learners consistently ignore
the available evidence and make an incorrect inference. Here, we focus on a specific case in which adults fail to infer
and apply a conjunctive causal rule (Lucas et al., 2014), and examine two explanations for this failure. In Experiment
1, we manipulate information about the probabilistic nature of the events to test whether adults failure results from an
endorsement of noisy relations. In Experiment 2, we manipulate the physical design of the causal system to test an
alternative account: that this phenomenon is due to a failure to consider the correct, conjunctive hypothesis. Taken
together, our results suggest that failures to learn the conjunctive rule may not be entirely due to a noisy prior that affords
discounting of the evidence, but instead results from a failure to generate the relevant hypothesis.
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Abstract

The two dominant theories on the nature of emotions are feeling theories (e.g., Prinz 2004) and cognitive theories (e.g.,
Lazarus 1991). The former take feelings to be the essential core aspect of emotions. The latter argue that emotions are
based on judgements or some other conceptual states in order to account for the datum that emotions always seem to be
directed towards events or objects. In this paper we argue that the controversy between feeling theories and cognitive
theories rests on the false assumption that people do not distinguish emotional feelings from emotional judgements, i.e.,
that expressions of the form I feel x and I am x are largely intersubstitutable (Bennett & Hacker 2003). We present new
empirical evidence from both corpus studies and a vignette study showing that feeling happy (sad/angry) and being happy
(sad/angry) are two separate states that people are able to conceptually and linguistically distinguish.
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Abstract

People make sense of each others behavior by assuming that beliefs and desires vary across agents. We propose that
people are more conservative when it comes to risk: when an agent takes an extreme risk, we assume they have privileged
information rather than high risk tolerance. Participants watched an agent choose either to obtain three guaranteed tokens,
or guess which box from a set had four tokens. After watching the agents choice, participants played the game themselves.
In Study 1, participants were quicker to imitate an agent who immediately made extremely risky bets than one who
started out making low-risk bets that became progressively riskier, suggesting that they inferred that risk-seeking agents
were knowledgeable. In Study 2, participants ceased taking risky bets when the anonymous agent did, suggesting that
participants choices depend on mental state inferences rather than contagious but mind-blind risk-seeking behavior.
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Abstract

The present study was designed to examine actions people take in everyday life to prevent potential memory errors.
Many past studies focus on the nature of forgetting, and additional studies have assessed cognitive interventions for those
with varying degrees of impairment from aging or injury. However, there are a limited number of studies examining
everyday remembering for healthy, functioning adults. In this study, across two experiments (n1=136; n2=85), participants
completed a self-reported questionnaire regarding various types of daily prospective memory actions. We hypothesized
that people would report using external memory aids (ex. technology) rather than internal aids (ex. mnemonics) and
participants would report lower forget scores when using external aids. Results showed that participants overwhelmingly
used external memory aids to prevent future memory errors for all tasks analyzed. Results also showed that levels of self-
reported forgetting were not associated with particular types of preventative actions. Thus, the results imply that people
tend to use what they perceive to work.
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Abstract

Many dichotomies from across the cognitive sciences can be reduced to one of two fundamental distinctions (a)symmetry
and (non)monotonicity of processing simplifying greatly the space of dichotomies needed to structure this broad interdis-
ciplinary discipline. Taking the cross-product of these two dichotomies then yields a 2x2 structure of cells that in its turn
yields a deeper understanding of two key trichotomies based on control and content hierarchies with each mapping to
three out of the four cells. This cross-product and its four cells further provide a deeper understanding of the structure of
the Common Model of Cognition an attempt to develop a community consensus concerning the processes and structures
implicated in human-like minds as well as cognitive architectures that map onto it, such as ACT-R, Sigma and Soar and
even AlphaZero with results that bear on the structure of integrative architectures, models and systems; and on their
commonalities, differences and gaps.
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Abstract

Humans have developed complex rule-based systems to explain and exploit the world around them. When a learner has
already mastered a system’s core dynamicsidentifying its primitives and their interrelationsfurther learning can be effec-
tively modeled as discovering useful compositions of these primitives. It nevertheless remains unclear how the dynamics
themselves might initially be acquired. Composing primitives is no longer a viable strategy, as the primitives themselves
are what must be explained. To explore this problem, we introduce and assess a novel concept learning paradigm in which
participants use a two-alternative forced-choice task to learn an unfamiliar rule-based conceptual system: the MUI system
(Hofstadter, 1980). We show that participants reliably learn this system given a few dozen examples of the systems rules,
leaving open the mechanism by which novel conceptual systems are acquired but providing a useful paradigm for further
study.
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Abstract

Axonal growth and pruning is the brains primary method of controlling the structured sparsity of its neural circuits, as
without long distance axon branches connecting distal neurons no direct communication is possible. Further, artificial
neural networks have almost entirely ignored axonal growth and pruning instead relying on implicit assumptions that
prioritize dendritic/synaptic learning above all other concerns. This project proposes a new model called the Axon Game,
which allows the incorporation of biologically inspired axonal plasticity dynamics into most artificial neural network
models with computational efficiency. We will explore the qualities of receptive windows grown under this methodology
and discuss how they can integrate with neural network simulations.
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Abstract

The productivity and compositionality of language and thought have often been taken as evidence that higher cognition
is a form of information processing on systems of symbols with combinatorial syntax and semantics. We present a
non-symbolic neural dynamic architecture that can ground combinatorial concepts in perception, i.e., establish a link
between a combinatorial concept and an object in the perceptual array. The components of a combinatorial concept tree
are sequentially grounded from the leaves to the root, while the output of each grounding step is passed on to the next
grounding step by means of a mental map. This way, compositionality is an emergent property of the neural dynamics and
does not require any form of symbolic information processing. We discuss how this process account contrasts with other
neural accounts of compositionality and conclude with implications for the modeling of higher cognition.
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Abstract

On mental models theories, reasoners create mental representations of information which they manipulate in order to
derive new conclusions. These theories have been uniquely successful at explaining a class of attractive fallacies involving
disjunctions. The original theories have appealed to low-level matching mechanisms (Walsh & Johnson-Laird, 2004;
Koralus & Mascarenhas, 2013) to compare the models of the premises and the models of the conclusion and predict an
answer. In three experiments, we show that the check for overlap in content involved in these accounts must take place at
a high level of cognition in order to incorporate complex world knowledge. We introduce variants of illusory inferences
from disjunction whose acceptance is accurately predicted by independant measures of confidence in causal connections.
We conclude that the Revised Mental Model Theory of Khemlani et al. (2018) holds promise, but cannot account for our
data out of the box.
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Abstract

Traditionally, linguists have treated ambiguity as a bug in the communication system, something to be avoided or ex-
plained away. More recent research has taken notice of the efficiency ambiguity affords us. The current work identifies an
additional benefit of using ambiguous language: the extra information we gain from observing how our listeners resolve
ambiguity. We propose that language users learn about each others private knowledge by observing how they resolve
ambiguity. If language does not do the job of specifying the information necessary for full interpretation, then listeners
are left to draw on their private knowledgeopinions, beliefs, and preferencesto fill in the gaps; by observing how listeners
fill those gaps in, speakers learn about the private knowledge of their listeners. We implement this hypothesis as a com-
putational model within the Rational Speech Act framework. We then test our hypothesis by using the model to predict
behavioral data from naive participants.
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Abstract

This paper first synthesizes research showing that (a) people reciprocate smiles, (b) smiling and being smiled at elevates
mood, and (c) elevated mood is associated with proclivity to smile. Collectively, these findings suggest that smiling is
contagious, i.e., smiles diffuse through a social network. The paper then presents experiments carried out to investigate
how various factors affect the contagiousness of smiling using an agent-based model in which smiling affects a mood
variable, which in turn affected proclivity to smile. The society consistently stabilized on a proportion of smilers, the
magnitude of which was a function of social connectivity. Using previous data on the effect of weather and cultural
differences on smile reciprocity, we simulated how these factors affect smile diffusion. Smile diffusion was greater in the
sunny condition than the cloudy condition, and in the American condition than the Japanese condition, and both effects
were magnified by increased social connectivity.
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Abstract

We propose a computational model to account for the regularization behaviour that characterizes language learning and
that has emerged from experimental studies, specifically from concurrent multiple frequency learning tasks (Ferdinand,
2015). These experiments show that learners regularize the input frequencies they observe, suggesting that domain-general
factors might underlie regularization behaviour. Standard models have failed to capture this pattern, so we explore the
consequences of adding a production bias that follows the learning stage in a probabilistic model of frequency learning.
We simulate and fit to experimental data a beta-binomial Bayesian sampler model, which allows an explicit quantification
of both the learning and the production bias. Our results reveal that adding a production component to the model leads
to a better fit to data. Given our results, we hypothesize that linguistic regularization may result from general-domain
constraints on learning combined to biases in production, which need not to be considered innate.
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Abstract

We present a new version of the Syntagmatic-Paradigmatic model (SP; Dennis, 2005) as a representational substrate for
encoding meaning from textual input. We depart from the earlier SP model in three ways. Instead of two multi-trace
memory stores, we adopt an auto-associative network. Instead of treating a sentence as the unit of representation, we go
down a scale to the level of words. Finally, we specify all stages of processing within a single architecture. We show
how the model is capable of forming representations of words that are independent of the surface-form through some
question-answering examples. We end with a discussion of how the current model can provide a mechanistic account of
elaborative and inferential processes during comprehension.
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Abstract

Propositional accounts of organization in memory have dominated theory in compositional semantics, but it is an open
question whether their adoption has been necessitated by the data. We present data from a narrative comprehension
experiment, designed to distinguish between a propositional account of semantic representation and an associative account
based on the Syntagmatic-Paradigmatic (Dennis, 2005; SP) model. We manipulated expected propositional-interference
by including distractor sentences that shared a verb with a target sentence. We manipulated paradigmatic-interference
by including two distractor sentences, one of which contained a name from a target sentence. That is, we increased the
second-order co-occurrence between a name in a target sentence and a distractor. Contrary to the propositional assumption,
our results show that subjects are sensitive to second-order co-occurrence, hence favouring the associative account.
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Abstract

Consider an uncertain situation where an artificial intelligence (AI) system is called upon to determine a human action or
activity in an image or scene. The AI system has not been previously trained to recognize any human action or activity,
and has no prior information on pose, parts, spatial layout of the object in an image. In such a situation, what is the
AI system supposed to do? Its options are limited, and it must determine the action or activity with the aid of the most
probable inanimate object (other than the human actor) that it can detect in the image. The AI system needs to formulate
two hypotheses to infer the action or activity in a zero-shot manner; first, that the most probable inanimate object detected
in the image is one that is involved in the action or activity, and second, that the most likely action or activity associated
with this object in the real world is the one actually occurring in the image. To what extent are these hypotheses valid?
We propose that correct detection of the highly probable object and use of natural language word embeddings obtained
via training on a general text corpus such as Wikipedia could enable the AI system to determine the underlying human
action or activity in an image with reasonable classification accuracy. We conducted studies on the HICO dataset, which
is a challenging dataset containing many rare human action/activity categories. Our experimental results show that if the
AI system can reliably detect the most probable inanimate object in the image and then infer the corresponding verb in
a zero-shot manner using language models trained on general text corpora, then it has a reasonable chance of correctly
guessing the underlying action/activity in an image.
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Abstract

Work is an integral and meaningful part of many peoples lives. Research has shown that the consequences of MCI and
dementia (MCI/dem) before the age of sixty-five can profoundly affect a persons vocational situation. Technology plays
a significant role in supporting different abilities for people with MCI/dem at communities and home; however, there is
little research to investigate the role of technology and address the technological requirements of people with MCI/dem
at work who are employed. We propose a new systematic human factors model to study peoples tasks, activities, and
requirements derived from in-depth interviews with six people living with MCI/dem and one caregiver. By characterizing
the barriers or problems faced by people with MCI/dem in the context of cognitive work, we organized individual barriers
of the participants in terms of macrocognitive activities and cognitive support requirements.
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Abstract

What makes an explanation better than another explanation? Previous studies have suspected that explanatory virtues,
such as Simplicity and Scope, affect individuals’ evaluation of the explanatory goodness. Although almost all of these
studies have focused on the situation that some explanations are presented simultaneously, we do not always obtain some
explanations in daily life. In this research, we conducted an experiment to investigate the preference change in causal
explanation between Joint and Separate Evaluations. The results showed that Latent scope has a large effect as a criterion
for evaluating explanatory goodness regardless of Joint and Separate Evaluation. Furthermore, Simplicity affects the
evaluation of explanatory goodness differently between these situations of evaluation; however, the effect of comparison
was observed only by online reflection in which evaluation is performed for two explanations simultaneously and not by
offline reflection in which evaluation is re-performed after ending all evaluations.
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Abstract

Humans build novel tools, external knowledge structures (markers, maps etc.), and internal structures (analogies, mental
models etc.) to facilitate cognition. Humans also recombine these building strategies to suit any task. Other organisms
generate such structures as well, but they use them to optimize single tasks. This suggests that the human species’ cognitive
advantage stems from the capability to recombine built structures, and the resulting extended mind. Chandrasekharan
& Stewart (2007) hypothesized that this capacity could emerge from reinforcement learning. We tested this proposal,
by studying three foraging models, which examined whether novel recombinations of building (external and internal
navigation structures) emerged in reactive agents, from just reinforcement learning. Results showed that recombination
does not emerge with just reinforcement. This was because the building of external structures provided a very high reward
profile, including free riding, thus acting as an attractor, blocking the recombination strategy. We discuss the implications
of these results.
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Abstract

Recently, nudging approaches wherein peoples decisions are altered in a predictable direction have attracted attention.
Conversely, many embodied cognition approaches that relate peoples mind with their body have been studied in cognitive
science. Based on these approaches, we investigated whether a forward posture (defined by leaning forward in a chair)
generated by the environment can enhance a particular decision. We also evaluated the types of decisions that are likely
to be enhanced by the forward posture. Behavioral experiments via a forward or normal chair where the seat allows little
or no lean revealed that a forward posture can affect the decision making, particularly participants willingness to change
their own attitude. We discuss the possible applications of leading predictable decisions from the environment and setting
the decision environment in the real world.
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Abstract

Human scene understanding involves not just localizing objects, but also inferring the latent causal properties that give
rise to the scene for instance, how heavy those objects are. These properties can be guessed based on visual features
(e.g., material texture), but we can also infer them from how they impact the dynamics of the scene. Furthermore, these
inferences are performed rapidly in response to dynamic, ongoing information. Here we propose a computational frame-
work for understanding these inferences, and three models that instantiate this framework. We compare these models to
the evolution of human beliefs about object masses. We find that while peoples judgments are generally consistent with
Bayesian inference over these latent parameters, the models that best explain human judgments are approximations to this
inference that hold and dynamically update beliefs. An earlier version of this work was published in the proceedings of
CCN 2018 at https://ccneuro.org/2018/proceedings/1091.pdf.
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Abstract

We describe a method for determining feature salience of action decisions in intelligent agents based on cognitively-
inspired salience. Salience is defined as the degree of influence that a factor has on a given decision. This is generated
by having a cognitive model using instance-based learning theory to mirror the actions of an intelligent agent, and then
determining which features most uniquely contributed to the actions of the agent. We present three examples of this
salience techniques, including reinforcement learning agents based in the StarCraft II and autonomous drone domains, as
well as part of a risk assessment model. A benefit of our method is that it does not rely on a specific implementation of
an agent, it only requires the underlying decision feature-space. It is also capable of utilizing features at different levels of
abstraction
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Abstract

We apply an attractor neural-network model to experiments on monkeys who decided which direction tokens are moving,
while firing rates of large numbers of neurons in premotor cortex are being recorded. Using pools of artificial excitatory
and inhibitory neurons, our network model accurately simulates the neural activity and decision behavior of the monkeys.
Among the simulated phenomena are decision time and accuracy, commitment, patterns of neural activity in trials of vary-
ing difficulty, and an urgency signal that builds over time and resets at the moment of decision. Predictive simulations
of decision change are also presented, suggesting gradual passing through an uncertain region on the way to a new deci-
sion. The model shows that committed decisions need not involve any explicit threshold detection mechanism. Instead,
competition, suppression, decision, and commitment naturally emerge from the dynamics of the system.
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Abstract

Measuring cognitive workload is a persistent challenge in cog-nitive science. Cognitive architectures may offer a prin-
cipledway to measure, define, and understand workload and its be-havioral and physiological consequences in terms of
under-lying cognitive dynamics. Previous research has shown thatmodel-based workload relates to subjective workload
judg-ments in simple tasks. Our goal was to further validate model-based workload measurement with known physiolog-
ical work-load indicators in a complex task characterized by varying de-grees of workload levels. Participants completed
an unmannedvehicle management task while their physiology was recorded.Correlations between model-based workload
and physiologi-cal metrics generally trended in the predicted direction, andthe engagement index showed the strongest and
most consis-tent relationship to model workload. The results provide pre-liminary validation for model-based workload
measurement.
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Abstract

Feedback alignment has been proposed as a biologically plausible alternative to error backpropagation in multi-layer per-
ceptrons. However, feedback alignment currently has not been demonstrated to scale beyond relatively shallow network
topologies, or to solve cognitively interesting tasks such as high-resolution image classification. In this paper, we provide
an overview of feedback alignment and review suggested mappings of feedback alignment onto biological neural net-
works. We then discuss a novel geometric interpretation of the feedback alignment algorithm that can be used to analyze
its limitations. Finally, we discuss a series of experiments in which we compare the performance of backpropagation
and feedback alignment. We hope that these insights can be used to systematically improve feedback alignment under
biological constraints, which may allow us to build better models of learning in cognitive systems.
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Abstract

When producing a new series of artworks, an artist may engage in a variety of activities in the formation of an art concept.
In a specific instance, a contemporary artist was demonstrated first to draw his ideas on paper, as an initial phase of
developing his art concept. This paper utilizes data from a previous study to analyze the drawings and interviews conducted
during this drawing phase. The results show that the artist used various types of modification of his art-making process. By
changing his own creative activity, the artist often reflected upon his creative process, asking himself what he really wanted
to do, and explored new images in response to unexpected findings and the feeling of confusion at his own drawings.
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What Factors of Background Music Disrupt Task Performance? Influence of
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Abstract

Task-irrelevant background speech or sounds are known to have detrimental effects on task performance which are called
irrelevant-speech/sound effects (ISEs). In this study, we have investigated the contributing factor responsible for magnitude
of ISE focusing on the meaningfulness of the background noise and working memory capacity (WMC). Participants were
asked to perform reading comprehension task (Exp. 1), serial recall task (Exp 2), and match-to-sample task (Exp.3)
with or without task-irrelevant instrumental music and lyrics, and their WMC was measured with the Reading Span
Test. The results revealed that the irrelevant sounds with lyrics, but not instrumental music disrupted the performance
of the participants in both the reading comprehension and serial recall tasks , while that in match-to-sample task was not
interfered by either sound types. The moderating effect of WMC was not observed in any experiments. The results implied
that ISEs were observed when phonological loop was used to conduct these tasks. Based on these results, the function of
a learners WMC in the ISE is discussed.
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Abstract

When children perform fraction arithmetic, they generate a variety of solutions. In this study, we extended this research to
adults. We report that adults performance is best for addition and subtraction, worse for division, and is susceptible to the
same kinds of strategy errors observed in 6th grade children. Specifically, solvers common strategy errors involved main-
taining the values of fractions with common denominators even when that strategy was not appropriate. We also present
two other findings that were not observed in children. First, adults applied an incorrect division algorithm; they incorrectly
inverted the first, rather than the second operand in fraction division problems. Second, adults applied reduction proce-
dures for fraction multiplication and division in order to simplify numerator-denominator pairs during fraction arithmetic.
Our results suggest that strategy selection was cued by identifying common fraction components within problems.
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Abstract

We use formal proof techniques from artificial intelligence and mathematical logic to analyse human reasoning in problem
solving. We focus on the Deductive Mastermind game, as implemented in the Dutch massive online learning system for
children, Math Garden. The game is formalised in propositional logic and the game-playing procedure is given a form of a
logical proof. We use Resolution and Natural Deduction proof methods (implemented in JAVA). The difficulty of a partic-
ular logical reasoning step is associated with the computationally obtained parameters of the proofs, which are compared
with each other, and against the empirical difficulty of the game. We show, among others, that the complexity parame-
ters derived from Natural Deduction agree with the Analytical Tableaux parameters, and with the empirical difficulty as
experienced by human subjects.

(Nina Gierasimczuk is supported by NCN OPUS Grant 2015/19/B/HS1/03292.)
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Abstract

In two behavioral experiments, we demonstrated that human observers can extract average body size from a group of
individuals. In Experiment 1, we asked 38 participants to estimate the average body size from a group of 5, 10 or 15
bodies that were presented in various angles of view (Profile, Three-Quarter, Frontal, and Mixed). Participants were able
to extract the average body size, but they systematically overestimated thinner body groups, and underestimated larger
body groups. Biases were generally reduced for smaller sets sizes and when bodies were shown in profile view, but the
trend was reversed for sets with larger bodies. In Experiment 2, we tested 37 participants and showed that the accuracy
of their estimates was modulated by presentation time: Accuracy was poorest when groups were presented for 1s, but
significantly improved for 3s and 5s presentations. Implications of these finding are discussed.
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Be timely: when gaps are more than symptoms
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Abstract

Recently, turn-taking gaps, or unfilled pauses, have been viewed as a symptom or by-product of predictive planning
mechanisms in speech production (Levinson & Torreria, 2015). Other works has shown that gaps can take signaling
functions and that this is governed by politeness (Bgels, Kendrick, & Levinson, 2015). Two mouse-tracking experiments
examined when gaps are interpreted as a symptom of processing or as a signal. This was tested by examining how gaps
are interpreted in tandem to scalar implicatures (Bonneferon, Dahl, & Holtgraves, 2015). Experiment 1 found that longer
gaps slightly reduce implicature rates at longer gaps and these longer gaps do not lead to faster implicature responses.
Experiment 2 found that filled and unfilled pauses (gaps) both signal hesitation, though filled pauses signaled hesitation at
short gaps. Overall, these experiments show that gaps lengths can have signaling functions beyond politeness and question
bias.
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Abstract

Do individual sounds carry meaning? The relationship between sound and meaning in human languages is typically
assumed to be arbitrary, though recent research provides evidence for the existence of both iconicity and systematicity
between word forms and their meaning. However, this research has not asked whether individual sounds in a language
covary in systematic ways with aspects of meaning. In two analyses, we find evidence for more systematicity between
the initial phones of words and those words concreteness ratings than one would expect in a truly arbitrary lexicon. This
suggests that initial phones may act as cues to aspects of word meaning, and raises questions about whether language
learners detect and exploit these cues.
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Abstract

In the present study, we explored the effect of a scaffolding exercise designed to make salient the importance of within-
group variance on participants informal reasoning during a subsequent intuitive analysis of variance task. Participants
were first presented with several datasets that varied with respect to within-group differences and were asked to provide
examples of extraneous factors that could be the source of the variance. Afterwards, participants were given additional
datasets that differed with respect to both within and/or between-group variability, and were asked to rate the strength
of evidence provided by the dataset in support of a hypothetical theory. Consistent with prior research, the majority of
participants tended to place a strong emphasis on between-group variability while minimizing the importance of within-
group variation. However, the results indicate that for a subset of participants (n=6), the scaffolding exercise was effective
in highlighting the significance of within-group variation. We found that all participants who reasoned normatively on the
scaffolding exercise were able to successfully complete the analysis of variance task in a normative manner.
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Abstract

The allocation of scarce resources is a ubiquitous process in human societies, yet it is challenging to aggregate peoples
diverse distributive viewpoints into group consensus. We investigate whether such heterogeneity in preferences may be
reduced when people participate in group discussion in a distribution task. In two interactive experiments, we found
that after group discussion, participants became less inequity-averse and preferred the maximin allocation. Analyses of
participants conversations and information-search behaviors showed that such shifts toward the maximin allocation were
facilitated by a strong concern for the worst-off recipient during group discussion. These results suggest that a maximin
concern exhibited in discussion helped participants to understand the difference between the inequity-aversion principle
and the maximin principle, which are often confounded in individual judgments. These results provide empirical insight
into how social interaction can help to aggregate peoples diverse distributive preference into a social consensus.
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Abstract

The basic-level advantage is one of the best-known effects in human categorisation. Traditional accounts argue that basic-
level categories present a maximally informative or entry-level into a taxonomic organisation of concepts in semantic
memory. However, these explanations are not fully compatible with most recent views on the structure of the concep-
tual system, which emphasise the role of sensorimotor (i.e., perception-action experience of the world) and linguistic
information (i.e., statistical distribution of words in language) in conceptual processing. In a pre-registered wordpicture
categorisation study, we hypothesised that our novel measures of sensorimotor and linguistic distance would contribute to
categorical decision making, and would outperform traditional taxonomic levels (i.e., subordinate, basic, superordinate)
in predicting the basic-level advantage. Results showed that, overall, our measures predicted the basic-level advantage at
least as well as taxonomic level. Sensorimotor information best explained processing speed, whereas taxonomic level best
explained participants choices.
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Abstract

Analytic reasoning differences, as gauged from intelligence metrics, in students engaged in streams requiring a predom-
inantly divergent (arts) or convergent thinking (science and engineering) is a topic of interest. In this paper we have
examined this difference by a modified sequence of two sections (D & E) of the Standard Ravens Progressive matrices
(RPM). The scan path gaze behavior was analyzed with an eye tracker. The 30 engineering students (half of them are
also trained in fine arts) scored higher than the 15 fine arts students. In the former cohort, the artistic and the non-artistic
set show no difference in performance but the scan path, fixation count and time taken indicate possible differences in
visual strategies for pattern identification. From the detailed analysis, we argue that intelligence as measured by RPM is
enhanced by training in reasoning and logic as in engineering streams and might not reflect an innate ability.
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Abstract

This paper presents results from an experiment to determine brain activation differences between problem-solving and
designing of industrial designers. The study adopted and extended the tasks described in a previous fMRI study of design
cognition and measured brain activation using EEG. The experiment consists of 4 tasks: problem-solving, basic design
and open design tasks using a tangible interface and sketching. By taking advantage of EEG’s temporal resolution we
focus on time-related neural responses during problem-solving compared to design tasks. Statistical analyses indicate
increased activation when designing compared to problem-solving. Results of time-related neural responses connected to
Brodmann areas cognitive functions, contribute to a better understanding of industrial designers’ cognition. The study is
part of a research project whose goal is to correlate design cognition with brain behavior across design domains. Bring-
ing neuroscience methods to design research is contributing to a better understanding of the emergent field of design
neurocognition.
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Abstract

The ability to learn from others is central to our species. At the same time, we are more than able to independently learn
from our own experience. Investigating how these pathways function in concert, past research has looked at how we inte-
grate what can be learned from others with our own observations. To do so, social information is typically operationalized
as observed behavior. However, social information often comes in the form of normative advice. Humans have been shown
to value decisional freedom and reject constraints to it. Some forms of social information, such as normative advice, plau-
sibly comprise potential for both social learning and perceived constraint. Past research on decisional constraints posed by
social information has been of limited granularity. We present an experimental framework to study behavior in the face of
normative social information and explore data from two experiments using computational modeling.
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Abstract

We start with the distinction of outcome- and belief-based Bayesian models of the sequential update of agents beliefs and
subjective reliability of sources (trust). We then focus on discussing the influential Bayesian model of belief-based trust
update by Eric Olsson, which models dichotomic events and explicitly represents anti-reliability. After sketching some
disastrous recent results for this perhaps most promising model of belief update, we show new simulation results for the
temporal dynamics of learning belief with and without trust update and with and without communication. The results
seem to shed at least a somewhat more positive light on the communicating-and-trust-updating agents. This may be a light
at the end of the tunnel of belief-based models of trust updating, but the interpretation of the clear findings is much less
clear.
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Abstract

We investigate the cognitive micro-foundations of individual search. The aim of this study is to identify important cog-
nitive antecedents of the heterogeneity of individual level search behavior. We introduce a problem-solving task that not
only requires a binary trade-off between either exploration or exploitation, but solicits the individual to understand the
underlying problem structure in order to be able to optimize the search. Combining data collected from individuals solv-
ing this experimental task (N = 407) with a quantitative survey of cognitive styles as well as a neuropsychological test
of cognitive ability (g-factor) we explain how different cognitive micro-foundations translate into substantial variation in
search behaviors.
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Abstract

In a now classic experiment Ross, Amabile & Steinmetz (1977) showed that observers think that a participant who is
randomly assigned to invent questions has more general knowledge than a participant assigned to answer these questions.
This is taken to be an error arising from a reasoning process in which observers ignore social roles, and instead rely on
surface behavior to make social judgments. Here we test two potential explanations for this observation: (1) observers are
using a flawed reasoning process in which they do not consider the advantages and disadvantages that different social roles
may confer, or (2) observers are using an unbiased reasoning process in which they do consider the influence of social
role, but they are simply operating with an imperfect estimate of the advantage afforded the questioner. In a series of five
studies, we show that not only is reasoning in this task consistent with an unbiased inference account, but, that observers
are also surprisingly well calibrated to the influence of the social roles used in this paradigm.
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Abstract

There have been several demonstrations of constructive influences from choice paradigms, for example, when a decision
maker has to commit to one of the available options and abandon the rest. In such cases, an expectation of constructive
influences, whereby the preference for the chosen option increases, while the preference for the abandoned ones decreases,
is perhaps reasonable (e.g., as a way to reduce cognitive dissonance). However, this reasoning is harder to translate
to situations such that there is a simple evaluation. We employ an organizational questionnaire to show that a simple
evaluation of an earlier statement can lead to systematic influences on a later one. Our results generalize our understanding
for when constructive influences may occur. We outline a technical framework for predicting this bias (which we label
evaluation bias), based on quantum theory. Quantum theory is an appropriate framework for modelling constructive
influences, because the theory involves a fundamental process of state change when a measurement (evaluation) is made.
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Abstract

Some English nouns occur in gender-marked pairs, which fall into two classes: In the Superordinate class, the unmarked
(masculine) form is available to refer to female referents (”Allison Janey is a good actor”), whereas in the specific class
it is not (*”Diana is a good prince”). Two theories account for this alternation: The Featural Theory proposes that the
unmarked are unspecified for gender features. The second, Frequency Theory proposes relative frequency of the marked
vs. unmarked forms are responsible (Haspelmath, 2006). This work provides evidence against the frequency theory by
employing a self-paced reading study that tests relative processing times of anaphoric pronouns referring to gendered
nouns. If noun pairs are split along Specific/Superordinate class lines, a processing slowdown is found for processing
processing pronoun gender mismatches, except for nouns like ’actor’, as expected. However, when the noun pairs are split
by relative frequency the effect disappears.
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Abstract

There is a large body of evidence showing that comparison leads to better conceptualization and generalization of novel
names than no-comparison settings in typically developing (TD) children (e.g., Gentner, 2010). So far, comparison situa-
tions have not been studied with children with intellectual disabilities (ID) (Chapman & Kay-Raining Bird, 2012). In the
present research children with ID and TD children matched on mental age with the Ravens coloured progressive matrices
RCPM (Raven, 1965) were tested in several comparison conditions. We manipulated the conceptual distance between
stimuli in the learning phase and between the learning phase stimuli and the generalization phase stimuli for object and
relational nouns. Results showed that overall both populations had rather similar performance profile when matched on
their cognitive skills (low vs. high functioning). Unexpectedly, ID childrens performance was equivalent or better than
their TD peers. We discuss our results in terms of the role of conceptual distance on participants conceptual generalization
as a function of their intellectual abilities and cognitive functioning.
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Abstract

Research in diverse disciplines suggests that agents own prediction errors enhance their learning. Yet, human learners also
possess powerful capacities to learn from others. Here we ask whether infants can use others expressions of surprise as
vicarious prediction error signals to infer hidden states of the world. First, we conceptually replicated Xu & Garcia (2008),
showing that infants (12.0-17.9 months) looked longer at improbable than probable sampling outcomes (Experiment 1).
Then we added emotional cues to the design (Experiment 2). Before revealing an outcome to an infant, the experimenter
looked at the outcome and expressed either happiness or surprise. While infants still looked longer at the improbable than
the probable outcome following the experimenters happy expression, this trend was reversed when the experimenter had
expressed surprise at the outcome. Such early-emerging ability to use others surprise as vicarious prediction error may
guide infants own learning about the world. Preprint:https://psyarxiv.com/8whuv
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Abstract

We propose an augmented word embedding model that better incorporates subword information with additional parameters
that characterize the semantic weights of characters in composing words. Our model can reveal some interesting patterns
of long-term change in Chinese language, which provides novel evidence and methodology that enriches existing theories
in evolutionary linguistics. The resulting word vectors also has decent performance in NLP-related tasks.
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Abstract

Conveying referential intention is essentially important to cooperate with others. It is reported that even adults some-
times take ego-centric perspective (i.e., perspective that is based on one’s own perspective ignoring other’s perspective) in
comprehending others utterances. In the present study we used a modified version of Keysars paradigm of 4x4 grid, and
examined whether the interpretation of the instruction by the addressee was affected by the directors use of two social-
pragmatics aspects; demonstratives and gestures. Results showed if the director did not use a demonstrative and hand
pointing, the addressees interpreted the object from ego-centric perspective. In contrast, if the director used a demon-
strative and hand pointing, the addressees correctly interpreted the referred object showing their use of the directors
perspective. The result suggested that demonstratives and hand pointing may promote the addressees interpretation based
on the directors perspectives.
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Abstract

A wealth of statistical learning research has provided evidence that regularities in which items co-occur (referred to here
as syntagmatic) can be learned implicitly. However, it is not known whether higher-order relations can also be learned
implicitly. Here we present two experiments that investigate whether regularities, where items do not co-occur but instead
share co-occurrence with each other (referred to here as paradigmatic), can be learned implicitly. In Experiment 1, we
used a traditional auditory statistical learning paradigm where participants passively listened to an auditory stream con-
taining syntagmatic and paradigmatic regularities and found evidence only of syntagmatic learning. In Experiment 2, we
instructed participants to attend to items during the training session and found evidence of learning paradigmatic relations
in participants who demonstrated high-level of syntagmatic learning. The results are discussed in terms of the limits of
implicit learning and the role of attentional mechanisms in learning higher-order statistical regularities.
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Abstract

We examined how people remember ’where’ a certain event happened given the time and date of the event (i.e., memory
for where). We especially focused on the kinds of information people use when trying to retrieve their memory for where.
In order to increase ecological validity, we used experience sampling technology. In the task, participants watched a video
that depicted a 3rd person’s life for a month period, which was generated by using the 3rd person’s experience sampling
data. Then, participants were cued with a certain time and were asked where the person was at that time as well as how
confident they were with their response. Using a conditional logit model, we found that, temporal and spatial distances
were the main predictors of participants’ choice. We also found that generic knowledge about one’s life and repeating
events (or locations) also affect participants retrieval of memory for where.
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Abstract

When purchasing products online, often two products may have similar mean ratings and numbers of reviews, but such
apparent similarities may hide important differences. Sometimes, the distribution of star ratings is also available to decision
makers in addition to these two attributes. Will the decision still be as undifferentiated as before or will the distributions
of stars engender a preference towards one of the products? To answer this question, the current study manipulated the
displayed variability of ratings for choices with the same average rating. The behavioral studies showed that participants
exhibited distinctive choice patterns when the distribution of ratings was provided even when the average rating and
total number of reviews were the same between two compared products. A utility-based cognitive model was therefore
developed to identify the underlying mechanism as to why people chose the way they did.
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Abstract

Humans are not mere observers, passively receiving the information provided by their environment; they deliberately
engage with their environment, actively participating in the information acquisition stage to improve their learning per-
formance. Despite being a hallmark of human cognition, the computational underpinnings of this active (or self-directed)
mode of learning have remained largely unexplored. Drawing on recent advances in machine learning, we present a
neural-network model simulating the process of learning how to actively learn. To our knowledge, our work is the first
neural-network model of learning to actively learn. Extensive simulations demonstrate the efficacy of our model, partic-
ularly in handling high dimensional domains. Notably, our work serves as the first computational account of the recent
experimental finding by MacDonald and Frank (2016) showing that prior passive learning improves subsequent active
learning. Our work exemplifies how a synergistic interaction between machine learning and cognitive science helps de-
velop effective, human-like artificial intelligence.
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Abstract

Previous research has demonstrated a relationship between quantity of language input and childrens rate of language
development: Children who hear more words learn faster. This work takes on two mutually-constraining questions:
(1) How should we define quality, and (2) what is the relationship between input quality and language development?
We analyzed a longitudinal corpus of interactions between 50 children and their parents using four measures of lexical
diversity: Type Token Ratio (TTR), Moving Average TTR, and two more recent measuresvocd-D and MTLD. We found
that only MTLD gave a prima-facie correct characterization of childrens development, and parents MTLD was correlated
with childrens over development. Results of simulations showed that MTLD was distinct from the other measures in its
sensitivity to both lexical diversity and word order, suggesting that quality should be defined not just by diversity of words,
but also by the variability of sentence structures in which they occur.
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Abstract

Rational constructivism believes children are active learners, they are able to learn causal rules through free play. Empir-
ical evidence has demonstrated that 2- and 3-year-old children successfully identified causality and acquired higher-order
generalizations using self-generated evidence during free play, and their performances were same as in didactic learn-
ing(Sim & Xu, 2017). However, if this conclusion is true across cultures? In the current study, we used the same methods
and found that 2.5- to 4-year-old Chinese children could also acquire higher-order generalizations under two different
learning conditions, but their performances were better in the didactic condition than that in the free play condition. One
of the reasons affected childrens learning is parenting styles, but only in the free play condition: children with authoritative
parents performed significantly better than children with authoritarian parents.

Key words: free play, active learning, higher-order generalization, parents cultural belief systems, parenting style
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Abstract

Causal knowledge is key to making effective decisions, yet little is known about how we combine new causal informa-
tion with what we already know. This scenario, with a mix of prior beliefs and new information is common to many
settings, and is pervasive in health decisions. We specifically examine how decision-making with causal models differs in
abstract decisions versus those more reminiscent of daily life, and how new information interacts with people’s perceived
knowledge about the decision-making domains. We found that while people can successfully use causal models to answer
abstract questions, causal models can lead to worse choices in everyday decisions, especially when people believe they
know a lot about the domain (Experiment 1). We then used an IOED task to determine if showing people how little they
actually understand about a domain may improve the use of causal models in decision-making (Experiment 2).
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Metaphors change through time in different cultures, languages and across generations. 

This research aimed to test the change and social distribution of some metaphors in 

Uruguayan Spanish. This study tested figurative expressions for the metaphors BEING IN 

THE OVEN IS DIFFICULTIES / HAZARDNESS, BANKING SOMETHING OR SOMEBODY 

IS BEARING IT and TO BE FLYING IS DOING SOMETHING WELL. On a multiple choice 

online questionnaire 267 Uruguayan female chose the meaning and the frequency that they 

believe they use previous metaphors. By using Multiple Correspondence Analysis (MCA) as 

a visual exploratory statistical tool, the study suggested Cultural Immersion and Metaphorical

Proficiency as dimensions for explaining the social distribution of the aforementioned 

metaphors. But even though MCA seems to be a useful tool for understanding the 

metaphors’ vitality, the short percentage of the variance explained by the dimensions 

suggests introducing additional categories for obtaining an adequate proportion of this 

variance.

3396



Modulation of mood on eye movement pattern and performance in face
recognition

Jeehye An
University of Hong Kong, Hong Kong, Hong Kong

Janet Hsiao
University of Hong Kong, Hong Kong, Hong Kong

Abstract

Research has suggested negative mood facilitates local attention while positive mood facilitates global attention. In face
recognition, looking at the eyes has been associated with engagement of local attention as well as better recognition
performance. Accordingly, negative mood changes may lead to more eyes-focused eye movements and consequently
enhance recognition performance. We tested this hypothesis using mood induction. Through Eye Movement analysis with
Hidden Markov Models (EMHMM), we discovered eyes-focused and nose-focused strategies. Although negative mood
changes predicted increased eye movement pattern similarity to the eyes-focused strategy, it did not predict changes in
recognition performance. Furthermore, most participants did not switch between eyes-focused and nose-focused strategies
despite changes in mood. We conclude that mood changes lead to eye movement pattern changes that are not sufficient
to modulate recognition performance as individuals may have preferred eye movement strategies impervious to transitory
mood changes.
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Abstract

Violating infants expectations about solid objects (e.g., a ball passing through a wall) leads to increased exploration and
learning about the objects properties (Stahl & Feigenson, 2015). How limited is this type of learning? Infants can anticipate
how non-solid substances behave and interact (Hespos et al., 2009; 2016), but the non-cohesive nature of substances means
that they have less predictable shapes and boundaries. Across four trials, we presented 12- to 14-month-olds with items
that looked solid or liquid. For half the trials, the items behavior was consistent with its appearance, so, for example, it
looked solid and remained cohesive. For the other half, the behavior was inconsistent. Infants spent significantly more
time exploring the inconsistent items, whether solid or non-solid, F(1, 57) = 24.00, p = .001, p =.29. These results suggest
that infants preference for learning from violations might be a general mechanism responsible for new knowledge.
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Abstract

A large body of evidence suggests that motor sequencing skills can be trained either implicitly or explicitly. That is,
participants can learn implicitly outside of conscious awareness or they can be explicitly told and/or cued to existence
of repeating sequences. Although explicit learning often coincides with faster skill acquisition, the role of conscious
awareness in skill learning is still debated. Some recent work has suggested that the benefits seen from explicit learning
are not due to added conscious knowledge per se, but rather an increase in intrinsic motivation. Here we show that although
performance-contingent monetary incentives lead to improved performance in all subjects, this effect is larger for explicitly
trained subjects. This suggests that intrinsic motivation alone cannot explain the superior performance in explicitly trained
tasks and that explicit knowledge can confer an additional benefit in that it can allow individuals to better contextually
modulate their behavior.
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Abstract

Research has documented childrens difficulty reconciling observations of the sky (Earth-based perspective) with scientific
models of the solar system (space-based perspective) (e.g., Vosniadou & Brewer, 1994). We developed a coding rubric
to capture childrens explanations before and after instruction that emphasized relational learningmapping the spatial,
temporal, and causal relations inherent in the day-night cycle. We focused on several key dimensions including the
perspective of the child and their causal attributions, focusing primarily on their mental model (e.g., Sun goes up/down).
We coded pre- and post-test videos from 3rd graders from two experiments (N=205) using the rubric. Results suggest
that (a) consistent with prior findings, children who received the instruction demonstrated fewer unscientific conceptions
about Sun motion at posttest, and (b) these conceptions were more pronounced in modeling than in verbal responses. We
conclude that topics that require integration between Earth- and space-based perspectives are particularly challenging for
young children.
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Abstract

Morphosyntactic agreement refers to a head-dependent relation where similar features are shared between syntactic con-
stituents. Several grammatical features are expressed in agreement relations through different manifestations of exponence
(e.g. separative and cumulative). Whereas prior research has largely examined features in separative exponence (e.g. gen-
der and number), this study investigates differences in the on-line processing of features in cumulative exponence. Using
eye tracking, we investigated differences between second language (L2) learner processing of person, number, and tense
features in Spanish verbal agreement. We also examined the effect of working memory capacity (WMC) on learners
on-line processing of these same features. The results of our linear mixed effects model indicated learners had greater
perturbation in processing person and tense agreement violations compared to number agreement violations. The results
also revealed that learners with higher WMC demonstrated less perturbation to agreement violations of each feature type
than learners with lower WMC.
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Abstract

Computer-based educational assessments often include questions with a drag-and-drop response. Logged data obtained
from drag-and-drop responses allow us to go beyond scores, investigating the response strategies test-takers use to reach
an answer. There is no previously published research on strategies used by test-takers in answering drag-and-drop ques-
tions. We tested 476 MTurk participants under five conditions where key design features of mathematics questions were
manipulated. Regardless of the design manipulations, participants mostly used one of the two possible systematic response
strategies. Using PRIMs cognitive architecture (Taatgen, 2013), we constructed computational cognitive models to sim-
ulate the differences between these two strategies. The models were able to capture participants reaction time patterns.
Our conclusion based on the models is that most participants apply a cognitively less demanding strategy by offloading
cognition on action, which is in line with the idea of strategy selection as rational metareasoning (Falk & Griffiths, 2017).
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Abstract

When talking about abstract relations like better and worse, people often use gestures arrayed in space to get their point
across. But are these analogical gestures solely communicative props that make abstract content more accessible for listen-
ers, or do they also reflect an integral part of reasoning? To address this question, we investigated whether people would
produce analogical gestures outside of a communicative context. In a linear syllogism task, participants spontaneously
gestured on 52.4% of trials on average; most participants (87.5%) gestured on at least one trial. Trials involving spatial
relational terms prompted more gestures per trial than those with non-spatial terms (spatial: M = 2.87; non-spatial: M =
2.29; F(1, 23) = 7.62, p = .011). Analogical gestures thus do occur outside of communicative contexts, suggesting that
they serve to aid the reasoning process itself. An in-progress follow-up study replicates and extends these findings.
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Abstract

Participants were divided into three groups. One group played Call of Duty: Black Ops Multiplayer in a variety of maps
for 9 hours over 2 weeks, another played in the just one map for 9 hours over 2 weeks, and the last did not play any video
games for the duration of the study. All groups took three measures of visual attention skill at the start and close of the
study: Useful Field of View (UFOV), Multiple Object Tracking (MOT) and Attentional Blink (AB). Results indicate that
those who played Call of Duty did not improve more than those who did not from pretest to posttest, regardless of group.

3404



Embodied Measurements of Ideological Positioning
Brandon Batzloff

University of California Merced, Merced, California, United States

Michael Spivey
UC Merced, Merced, California, United States

Abstract

Prior studies have shown tests for scales used to describe an individuals ideological position are not replicable. We
examined ideological positioning of individuals through two mouse tracking tasks. First, participants were asked to select
from six ideologies, mixed with distractors, they believed described them. They were then shown ten defined traits of
these ideologies. Next, participants were asked to choose between pairs of compared traits and assign them to a displayed
ideology. The first task was to determine which ideologies participants were most closely associated with, while the second
was used to determine how each individual defined ideologies. In this way, we were able to gain insight into how people
define themselves when completing discrete tasks, such as answering political questionnaires. Results show differences in
individual ideological definitions. We have begun grouping statistically similar responses. It is our hope that this data will
help develop realistic scales of ideological positioning.
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Abstract

We aim to apply cognitive neuroscience insights to vocabulary learning practice. Towards this end, we review current
educational methods in relation to important characteristics of the mental lexicon, such as similarity-coding. This shows
that methods relate poorly to the mental lexicon, and that especially contrasting - explicitly distinguishing similarities -
receives little attention. To remedy this, we run experiments to put these findings into practice. First, we ask participants to
learn artificial vocabulary using retrieval practice multiple-choice, manipulating the orthographic and semantic similarity
of distractors. The prediction is that learning will be harder but more effective depending on similarity and translation
direction. Second, we test whether participants show indications of gradient descent learning when guessing in recall
retrieval practice. Thirdly, we use cognitive neuroscience and large scale word learning data to model the mental lexicon.
Combined, these studies potentially offer relevant scientific and societal insights, applicable to school settings.
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Abstract

In verbal creative problems like compound remote associates (CRAs), the solution is semantically distant and there is no
predefined path to the solution. Therefore, people first search through the space of possible solutions before retrieving the
correct semantic content by extending their search space. We assume that search and solution are both part of a semantic
control process which involves the inferior frontal gyrus (IFG). Furthermore, the degree of the IFG involvement depends
on how much the search space needs to be extended, i.e. how semantically distant the solution is. To demonstrate this,
we created a modified CRA paradigm which systematically modulates the semantic distance from the first target word
to the solution via priming. We show that brain areas (left inferior frontal gyrus and middle temporal gyrus) associated
with semantic control are already recruited during search. In addition, we found a linear correlation between the BOLD
activation of the IFG (pars orbitalis and triangularis) and the search space extension. However, this linear relationship
could only be observed during and shortly before the correct solution but not during search. We discuss the role of the IFG
in accessing semantically distant information during verbal creative problem solving.
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Abstract

Pareidolia refers to the perception of recognizable forms in noisy or ambiguous stimuli. It has mostly been studied in the
context of pathologies such as schizophrenia and dementia. However, pareidolic perception occurs in general population
without associated psychotic symptoms. This phenomenon is conceived as a compensatory perceptual mechanism that
enables the brain to deal with ambiguous information. It has been hypothesized that pareidolia would be related to the
emergence of creative ideation. In this study, we investigated the effect of fractal dimension on pareidolic perception by
asking participants to perceive as many recognizable forms as possible in a set of Fractional Brownian Motion images
with varying fractal dimensions. In addition, we further investigated, using questionnaires, whether creativity, openness
personality trait and schizotypy are linked to pareidolic perception. Results show that creativity facilitates pareidolic
perceptions and that this effect interacts significantly with the state of flow.
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Abstract

For Tetris, clearing 4 lines at once (a ”Tetris”) results in 7.5 times as many points as clearing one line four times. Getting
a Tetris requires a solid block of filled cells, 9 columns wide and 4 rows high. That block leaves vacant one column. If an
I-beam appears, all 4 rows can be cleared. Finalists at the Classic Tetris World Championships have an explicit subgoal
structure not seen in lesser players. Among the 32 competitors, the 4 finalists are those who are most adept at maintaining
or preparing the board for a Tetris by executing one of these subgoals, as needed. We present a video-based analysis which
compares the proportion of time spent on each activity between those eliminated on the first tournament round and those
who survive to the final round.
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Abstract

In this research project, a novel app-based version of the code breaking game Mastermind, Entropy Mastermind, was
introduced and evaluated as a learning medium in undergraduate cognitive psychology and in primary mathematics ed-
ucation. In a quasi-experimental pre- and posttest design we investigated a) the role of individual differences in game
play and learning, b) the effectiveness of Entropy Mastermind for giving students of different age groups experientially
grounded access to the fundamental concepts of proportions and mathematical entropy, and c) effects of game play on
students academic emotions, motivation and attitudes. Data analyses revealed significant associations between cognitive
variables, emotional-motivational factors and game play parameters. We present computational modeling results of stu-
dents search strategies and entropy intuitions within a unified framework of entropy measures, the Sharma-Mittal space.
Potential applications in digitalized learning environments at the interface between mathematics and computer science will
be discussed.
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Abstract

Previous studies have shown that, under specific conditions, pointed-to arrays can be recognized better than arrays that are
only visually observed. In the present study we investigated whether this memory advantage is due to movement per se
or to attention to the movement. In two experiments we modulated the amount of attention devoted to the execution of
pointing movements by comparing the effects of passive and active pointing in a visuo-spatial working memory (VSWM)
task. In Experiment 1, participants were instructed that their hands would be moved by the experimenter (passive pointing);
in Experiment 2, participants performed active and passive pointing movements in random alternation. Results showed
that passive movements benefitted VSWM only when they were alternated with active movements. This finding suggests
that the key factor underlying the positive effect of pointing on VSWM is the increased attention devoted to them in the
mixed pointing conditions of Experiment 2.
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Abstract

There is a rising interest in determining the most effective (i.e., the most conducive for learning) way to present online
lecture information. The cognitive load model of multimedia learning suggests that learners are capacity limited. Lecture
graphics that are interesting but extraneous to the content (e.g., a celebrity), have been shown to impair comprehension of
the material (i.e., the seductive detail effect). The seductive detail effect likely results from a lack of cognitive resources
available to maintain attention. Across 2 experiments, the use of graphics was manipulated in a psychology online video
lecture. We demonstrate no differences across conditions (i.e., no images, relevant images, and seductive images) in overall
comprehension and limited differences mind wandering behaviour.
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Abstract

Drawings and diagrams have long been researched as supporting design thinking in many domains. However, real-world
design that deals with, in, and about time as part of the process and outcome is less studied. How do designers in authentic
practices use static drawings to think about time in different frames of reference? With a view of situated, mediated
cognition as in Activity Theory, this presentation is a case study of an expert animator at the National Film Board of
Canada. It focuses on the use of static drawings in finding temporal problems in the key frames of references used in
creating narrative animation. The study suggests that the icons forming the basis of his drawings are used strategically, as
indices to his design process, the fictive motion, and the sequence and duration of actions that must be seen at 24 frames
per second.
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Abstract

Recent studies have established that students knowledge about fractions is predictive of their readiness, performance, and
learning in Algebra (Booth & Newton, 2012; Booth, Newton, & Twiss-Garrity, 2013). However, it is yet unknown whether
the relationship between fractions and algebra is causal; that is, would improving students’ knowledge of fractions cause
improvements in their ability to perform in and learn Algebra? The present study examines the impact of improving
fraction computation and fraction magnitude knowledge in real world classrooms on middle school students’ learning
of key concepts and problem-solving techniques in Algebra. Individual differences in the impact of improved fraction
knowledge will also be investigated and discussed.
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Abstract

Individual differences are a central characteristic of child language, and a conceptual issue in language and developmental
science is stability. Language was evaluated at 6 months and annually through 15 years in 5167 (50.2% girls) white,
monolingual singletons: 4111 typically developing children; 435 moderate-late and 51 very preterm children; 322 children
with dyslexia; 89 children with autism; and 221 children who had mild and/or moderate hearing impairment. Structural
equation modelling showed both typical and atypically developing childrens language skills had medium to large average
stabilities between successive waves over the span of 15 years, even accounting for child nonverbal intelligence and
sociability and maternal age and education. The strong stability of child language skill from early in development across
typical and at-risk groups points to a highly conserved and robust individual-differences characteristic and underscores
the importance of identifying lagging language skills and promoting childrens language environment well before formal
schooling.
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Abstract

Cognitive psychologists have hypothesized that episodic recall is caused by the recovery of a gradually-changing state of
spatiotemporal context. Little is known about the processes that cause successful recovery of this temporal context. Recent
behavioral evidence suggests that in continuous recognition tasks, the retrieval time necessary to recover a previous context
depends on the recency of the memory. Previous work has found that the non-decision time to retrieve a memory goes up
with the logarithm of its recency. This suggests retrieval of temporal context proceeds via scanning along a compressed
timeline but also contradicts earlier work suggesting that recency affects the drift rate of retrieval more than the non-
decision time. Here we explore the effect of multiple repetitions on this counterintuitive result in continuous recognition.
Our results find that while repeating items speeds up the time to access a memory, the recency effect persists out to at least
five repetitions.
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Abstract

Darwins /Origin/ doesn’t discuss the evolution of the human mind. He saved treatment of this topic for the subsequent
/Descent of Man/, in which he advanced two claims: (C1) If the cognitive powers of nonhuman animals are discontinuous
with those possessed by humans, then the human mind isnt the product of evolution by mutation and natural selection. (C2)
The cognitive powers of nonhuman animals, including specifically reasoning powers, are continuous with those enjoyed
by humans; continuity is established. Penn, Holyoak, and Povinelli (2008) have in /BBS/ written “Darwin’s Mistake,” in
which they purport to refute C2 by establishing discontinuity (they don’t affirm C1). Many vehemently disagree with PHP,
and the debate remains intense, and unresolved. Yet, (1) the hitherto informal concept of continuity can be formalized,
and (2) that formalization, applied to the debate, settles it. We provide the formalization, and with it settle the debate (in
favor of PHP).

3417



Using Graph Theory to Understand the Structure of Event Knowledge in Memory
Kevin Brown

Oregon State University, Corvallis, Oregon, United States

Nickolas Christidis
University of Western Ontario, London, Ontario, Canada

Jeffrey Elman
University of California, San Diego, California, United States

Ken McRae
University of Western Ontario, London, Ontario, Canada

Abstract

There are several competing theories regarding how event knowledge is represented in the mind, ranging from a strictly
temporally ordered list of activities to sets of connected scenes which may themselves consist of ordered activities. We
employed a network science approach to provide data-driven insight into event structure. We converted sets of human
generated activity sequences, in which roughly 25 participants list up to 12 activities for 81 different events (making a
sandwich, cleaning the house, taking money out of an ATM, etc.), into directed, weighted networks. Analyses of the event
networks revealed a complex and varied temporal structure to events. In addition, we were able to identify scenes within
events, and use graph theory to understand activity centrality, popularity, and influence, as well as the coupling between
these activity characteristics. In the aggregate, we find that network science makes multiple data-driven, empirically
testable predictions about event structure.
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Abstract

Child-directed speech (CDS) shows similar characteristics across many languages, but is known to vary across cultural and
demographic groups (Lieven, 1994). Is CDS consistently discriminable from adult-directed speech (ADS) despite these
differences? Perhaps: adults listening to scripted female CDS can discriminate ADS-vs-CDS in a language they dont
speak (Bryant et al., 2012). We build on this finding by asking North American English speakers to classify utterances
from the natural language input of 10 Tseltal Mayan children as ADS or CDS (n = 1836 utterances). Binomial mixed-
effects regressions of accuracy show that listeners are more accurate on utterances from females (mFemale = .81, mMale =
.67) and adults (mAdult = .82, mChild = .72), with a larger gender effect for child speakers (m: Girl-Boy = 0.31, Woman-
Man = 0.09). This suggests that (a) ADS-CDS discrimination of natural speech in an unrelated, non-familiar language is
reliable (mAll = 0.78) and also (b) modulated by speaker type.
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Abstract

Previous research has shown that job candidates are rated significantly higher if evaluators are allowed to listen to their
pitches rather than just reading the transcript (Schroeder & Epley, 2015). That research did not find any additional benefit
from seeing the candidate on video, but did not examine whether watching a video interview was different from watching
an interview in-person. Our experiment had 50 participants watch a mock interview in-person while 50 other participants
watched the same interviews ostensibly through a live video feed in another room. Those who watched through video rated
the job applicant significantly lower on all measured dimensions including agency, hireability, and intellect. These findings
indicate that job applicants who are interviewed through a video-conference service or whose interviews are recorded and
watched later are at a significant disadvantage to those who can be observed live. Potential causes and ameliorations of
these effects are discussed.
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Abstract

Judgments of relative direction (JRD) have been frequently used to understand peoples mental representation of outdoor
and indoor spaces. In JRD experiments, experimenters need to identify a signal within the trial-by-trial and participant-
by-participant variability. However, it is not well understood how characteristics of the task and differences between
individuals contributes to performance variability. In this paper, I investigated task characteristics (i.e., reference frames
used in instructions, orienting and target headings, and distances between headings) and individual differences (i.e., gen-
der, sense-of-direction, familiarity, and strategy use) to provide insights into the factors that influence JRD accuracy and
variability. Using the findings of this study, I make recommendations for best-practices in JRD methods and analyses.
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Abstract

Pointing tasks have been used for decades to investigate peoples understanding of environmental-scale spaces. Most of
this research has used the variability of pointing estimates to provide insights into peoples cognitive maps. In pointing
experiments, experimenters need to identify a signal within the trial-by-trial and participant-by-participant variability.
However, it is not well understood how characteristics of the task and differences between individuals contribute to pointing
variability. In this paper, I investigated characteristics of pointing tasks and individual differences (i.e., gender, sense-
of-direction, familiarity, and strategy use) to provide insights into the factors that influence pointing accuracy and its
variability. Using the findings of this study, I make recommendations for best-practices in pointing task methods and
analyses.
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Abstract

Two studies investigated how political attitudes affect causal learning. Participants were tasked with testing economic
policies to maximize the economic output of an imaginary country. Based on their political attitudes, participants were
either strongly in favor or strongly against the policies (Study 1), or could also have neutral attitudes (Study 2). Some
policies had fairly clear positive or negative effects. But some were more ambiguous; they initially had positive effects but
eventually had negative effects on the economy, or vice versa. After testing the policies, participants falsely believed that
the policies that fit with their political attitudes were more effective, and this bias was exacerbated for the policies that had
different short vs. long-term effects. This research shows the power of motivated reasoning and provides a well-controlled
method to study the effects of motivated reasoning on causal learning in explore-exploit situations.
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Abstract

Our Dynamic Neural Field (DNF) model aims to simulate audiovisual integration in speech perception, including the
well-known McGurk effect (McGurk & MacDonald, 1976). The classic McGurk effect is characterized by a fusion ef-
fect, whereby incongruent audio and visual stimuli are fused into a single percept, however other interesting audiovisual
effects are present in the extant literature. Our DNF model uses the same architecture and parameters across stimu-
lus combinations to simulate a host of audiovisual illusory effects as well as audiovisually congruent, auditory-only,
and visual-only controls. Our simulation results replicate rates of visual-dominant percepts, audiovisual fusion percepts,
auditory-dominant percepts, and auditory dichotic fusion found in the extant literature, and illustrate how a complex pattern
of responses across different stimuli configurations can arise from common neural dynamics involved in binding informa-
tion across sensory modalities. We are currently exploring how hemodynamic response predictions generated through our
neural simulations relate to real-time behavior.
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Abstract

Why do people use space to talk about time, and to think about time, more than vice versa? On one proposal, this space-
time asymmetry arises from the greater perceptual availability of space. Alternatively, a space-time asymmetry in language
could give rise to the space-time asymmetry in thought during early language acquisition. If this language-first view is
correct, then parents should use space-time words (e.g., long) more often in their spatial senses than in their temporal
senses, imparting to children the primacy of the spatial senses. More generally, childrens space-time word use should
reflect the statistics of parental input. Results of a corpus analysis contradict both predictions: English speaking adults
used polysemous words more often in their temporal senses than in their spatial senses, whereas young children showed
the opposite pattern, in the same conversations. Asymmetries between space and time appear to precede and guide the
acquisition of spatio-temporal language.
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Abstract

Theory of Mind (ToM) refers to the ability of individuals to understand beliefs, desires, and emotions of others. Our
study is based on the expert-novice paradigm and aims to investigate the operations of ToM of table tennis novices and
experts by the patterns of eye movement. Stimuli integrated cognitive and affective ToM dimensions analogical to the
table tennis situations and recorded response by eye-tracking technique. Reaction time, accuracy and eye movement data
were analysis indexes. Study results revealed that experts could predict the shot actions and emotional states of opponents
more quickly and accurately than novices, also there were differences in eye trajectory traces. The findings clearly show
that eye-tracking technique can be used to illustrate table tennis expert-novice differences in ToM and provide suggestions
for the development of table tennis training programs in use of eye tracker facilities.
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Abstract

There are no spaces between words in Chinese texts and this can present a challenge in reading for learners of Chinese
as a second/foreign language (CSL) and native Chinese alike. We designed a self-paced reading computer platform on
which individual words were shown or highlighted successively as participants pressed the spacebar to read a text without
word spaces. CSL learners could read faster in this way than the traditional way where the entirety of the unspaced text
appeared as a whole. Native Chinese readers did not show such a beneficiary effect. The results support the Processing
Cost Hypothesis which states that word segmentation when reading unspaced texts consumes processing resources and
therefore saving the resources by providing segmentation cues could benefit readers only when processing resources are
overtaxed under certain circumstances, e.g., reading difficult texts, under time pressure, for beginner readers, and for
foreign learners.
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Abstract

The study investigated whether providing instruction on the stroke sequence would facilitate the learning of writing Chi-
nese characters in children with developmental coordination disorder (DCD) and typically developing (TD) children. The
children wrote six characters, three with stroke sequence instruction and three without. Each character was repeated 40
times. Trajectory, speed, on-paper time, in-air time, and number of changes in velocity direction per stroke (NCV) were
measured with Wacom Intuos 5 digitizing writing tablet. The results showed a significant group effect, time (practice)
effect and instruction effect but no interaction effects. Both groups of children showed a similar trend of improvement
over practice with decreasing trajectory, increasing speed, decreasing on-paper time and in-air time. With stroke sequence
instruction, both groups of children learned at a similar rate on most of the writing parameters. Instruction on stroke
sequences helped the character writing of both the DCD children and the TD children.
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Abstract

The Aha! experience has mainly been studied in the context of insightful problem solving, but less work has investigated
Aha! experiences that can occur during learning. In these studies, participants were asked to self-report Aha! moments
when learning about principles in Biology, such as symbiosis or mimicry, from sets of three divergent examples. In the
problem-oriented condition, participants saw the examples and were asked to generate their common principle. In the
direct instruction condition, participants were told the principle directly. Participants were significantly more likely to
report Aha! moments in the problem-oriented condition. Although having an Aha! experience did not always lead to
better learning, the likelihood of having an Aha! moment was positively correlated with several student characteristics,
particularly in the problem-oriented condition. These studies offer another perspective on the potential benefits of learning
from invention activities.
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Abstract

In previous work, young children avoided associating with a wrongdoer, despite incurring a personal cost. Such aversion
to wrongdoers, arguably a reflection of moral development, weakens when the cost becomes very large (Tasimi & Wynn,
2016). We model this moral decision-making process using the nave utility calculus (Jara-Ettinger et al., 2016), assuming
utility maximization amidst uncertainty using Bayesian framework. The cost is defined as the number of stickers forgone
by choosing a nice persons smaller offer over a mean persons larger one, following the ratios of 1:2, 1:4, 1:8, and 1:16. Our
model aims to explain previous findings, and test predictions for new ratios. Compared to a baseline condition where no
background information is available, children are predicted to choose the nice person when the cost is low, but reverse their
preference when the cost becomes increasingly high, which would suggest a utility account for moral decision making.
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Abstract

How do people reason about mathematical concepts like addition and subtraction? According to one proposal, mathemat-
ical thinking is supported in part by the approximate number system (ANS), a primitive cognitive system for estimating
the numerosity of a set, without counting. Here we tested this proposal in the Tsiman, a culture of farmer-foragers in
the Bolivian Amazon. Compared to industrialized societies like the US, the Tsiman have high variability in their level of
education and number knowledge. In a large sample of Tsiman adults, math ability was positively correlated with ANS
performance, consistent with previous findings. However, this correlation disappeared when controlling for participants
education, and when controlling for their ability to sustain attention. These findings challenge the claim that the ANS
supports math ability. Rather, performance on ANS tasks and math tasks may both be shaped by non-numerical abilities
practiced (or selected for) in educational settings.
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Abstract

This study examined the acquisition of Korean stop sounds /t/(), /t/() and /th/() by Chinese learners of Korean using ERP
focusing on the role of L2 proficiency. A total of 28 learners (16 advanced and 11 intermediate) and 18 native controls
participated in the experiment with four conditions: (i) standard /ta/ vs. deviant /tha/, (ii) standard /ta/ vs. deviant /t/, (iii)
standard /tha/ vs. deviant /ta/, and (iv) standard /ta/ vs. deviant /ta/. The results of the AX discrimination task found no
significant differences between groups showing high accuracy rates from 73% to 84%. However, their brain responses
were different: P3 was found only for the intermediate group in condition (iii) although MMN was elicited in both groups
in the other three conditions. The results indicate that learners sensitivity to the differences of stop sounds develops as
their general proficiency improves. Still, their sensitivity is weaker than native speakers.

3432



Comparing the social judgements between American and Taiwanese cultures
Yun Chuang

National Cheng Kung University, Tainan, Taiwan

Jon-Fan Hu
National Cheng Kung University, Tainan, Taiwan

Abstract

While observing others in the society, people make explanations and judgements about others’ behaviors. However, there
should be cultural differences in affecting behavior judgments. The aim of the present study is to examine whether there are
cognitive or emotional differences between Eastern and Western cultures while judging other peoples behaviors. Vignettes
stimuli and the questions developed by Knutson et al. (2010) were used to measure how Taiwanese participants think
and react while making behavior judgements. Factor analysis is conducted to compare the results with the original study
completed in the US. The results revealed that for the Taiwanese participants, emotional aversion was more related to
the norm violation, while for the American participants, according to the original study, aversion was more related to the
social affect. The results of this comparison have demonstrated cultural differences between Taiwan and the US in how
aversion could be evoked by observing others behaviors.
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Abstract

Many theories of semantic memory assume that categories spontaneously emerge from commonalities in the way we per-
ceive and interact with the world around us. However, efforts to test this assumption computationally have been hampered
by use of abstracted features without clear sensorimotor grounding and over-reliance on small samples of concepts from a
limited number of categories. Taking a radically different approach, we examined whether categorical structure emerges
spontaneously from the latent structure of sensorimotor experience by creating a fully-grounded multidimensional senso-
rimotor space at the scale of a full-size human conceptual system (i.e., 11 sensorimotor dimensions x 40,000 concepts).
We found evidence for (a) a high-level separation of abstract and concrete categories (which was not enhanced by the
inclusion of affective information); (b) a hierarchical structure of concrete concepts that separated categories commonly
impaired in double dissociations, such as fruit/vegetables, animals, tools, and musical instruments; and (c) a flatter hi-
erarchy of abstract concepts that separated categories such as negative emotions, units of time, social relationships, and
political systems. These findings demonstrate that grounded sensorimotor information is fundamental to the representation
of all conceptual knowledge.
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Abstract

Metacognitive research is integral to understanding cognition, but a problem persists metacognition remains poorly defined
and its basic terminology contested. To address this problem, we propose a new philosophical method for understanding
metacognition in a bottom up, computational way. We follow John Andersons principle that complex problems become
systematic when analyzed within a cognitive model. Researchers agree that metacognition is cognition acting upon itself.
Accepting this, we first define the fundamental units of cognition and then define how these units act upon themselves.
We ground this within human cognition by using the Standard Model of Cognition (Laird et at. 2017, also known as
the Common Model). This model defines the mechanisms common to all computational architectures modeling human
cognition. Our model is then compared to metacognitive theories within psychology, philosophy, and neuroscience. This
method clarifies metacognition by grounding it both within a computational cognitive architecture and present research
literature.
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Audio-Visual Integration: Point Light Gestures Influence Listeners Behavior
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Abstract

Listeners are influenced by speakers hand gestures. However, it is not clear what processes support gesture processing.
We investigated listeners behavior after observing speech with videotaped gestures or with point light gesture trajectories
in the Tower of Hanoi task. Listeners were influenced by the synchrony of the visual and auditory information but not the
nature of the information both videotaped and point light gestures reliably influenced behavior. Thus, visual information
that is not perceived as produced by the speaker nonetheless reliably influences listeners behavior, so long as information
is synchronized across modalities. Thus, observers do not appear to rely on functional or biological links between speech
and hand gesture but rather on more general processes of multimodal integration. The principles underlying integration
of auditory language with visual information from hand gestures appear to different from those underlying integration of
auditory language and visual speech.
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Abstract

We experience our soundscape in terms of physical events; for instance, a friend sweeping up after a plate crashed on
the floor. The underlying perceptual inferences are typically ill-posed: without constraints, there are infinite possible
causes of the observed sound. Thus, a core task for cognitive science is specifying the variables we perceive along with
the constraints that allow them to be estimated. We identified sustained contact sounds (e.g., hands rubbing together,
scraping a pan) as a rich domain with which to explore perceptual constraints. We developed a simple physics-based
sound-synthesis model that can generate a diverse set of realistic scraping sounds. We find that listeners perceive the
generative physical variables from scraping sounds, including velocity, motion trajectory, and surface roughness. Further
experiments and acoustic analyses will address whether perception is constrained by a holistic generative model of sound
or by invariant features that specify each perceived variable.
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Abstract

When native and non-native English speakers inflect novel verb forms for the past tense, non-natives are more likely to
produce irregular (non -ed) forms than natives (Cuskley et al., 2015). We test whether participants can reverse-engineer
the correct present tense stem from regular and irregular past tense forms of novel verbs. All participants are better able to
identify the stem of regularly inflected forms than irregular forms, but we find no difference between native and non-native
speakers. Phonological similarity to existing irregulars interferes with recognition of regularly inflected non-verbs (e.g.,
proximity of sleened to sling/slung makes it more difficult than drocked). While non-natives are more likely to produce
irregular past tense forms, they are not better than native speakers at interpreting them. Non-native over-production of
irregulars may reflect statistical patterns in their more limited input, but these factors do not seem to affect the process of
inferring stems.
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Abstract

Despite recent interest in pupillometry as a psychophysiological measure, it remains unclear what construct the physio-
logical measure is assessing in cognitive control tasks: task load or mental exertion. This debate is of particular interest
as cognitive effort remains an elusive construct partly due to the difficulty in empirically quantifying mental exertion.
The current research aims to differentiate these disparate accounts by leveraging rewards as motivation for effort exertion.
Using an individual differences approach, a sample of 80 undergraduate students performed a cognitive control taskTask
switching. Critically, monetary incentives were used to motivate participants to exercise cognitive control, and found to
improve overall performance. Pupillary responses were found to increase in response to trials requiring more cognitive
control, and relate to performance improvements in the rewarded conditions. The present findings provide some support
for the effort account, and suggest that pupillometry may be a viable index of cognitive effort.
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Abstract

A wealth of experimental evidence shows that, contrary to normative models of choice, peoples preferences are markedly
swayed by the context in which options are presented. Particularly, there exist a well-known triad of effects, dubbed the
contextual effects, which consistently show that preferences change depending on the availability of other options: the
attraction effect, the similarity effect, and the compromise effect. In this work, we present the first resource-rational,
process-level account of these three contextual effects by extending Nobandegani et al.’s (2018) sample-based expected
utility model to the realm of multi-attribute value-based decision-making. Importantly, our work is consisted with two
empirically well-supported findings: (1) People tend to draw only a few samples in their probabilistic judgment and
decision-making, and (2) People tend to overestimate the probability of extreme events in their judgment.
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Abstract

World Economic Forum report predicts that 35% of the skills needed to navigate the world of work will have changed by
2020. By 2020, creativity will be the third most sought-after skill, behind complex problem solving and critical thinking.
Creative skills are future-proof, in that they cannot be Automated. Art and creativity are essentially what makes us human
and this is being backed up by research. (Elaine Rumbol) How do you hone creativity? This seems to be an open question.
The present study aims to build an architecture for AI agent(life-coach) that incorporates the latest research on creativity
and guides the user based on the users personality traits, context, emotions, mood and cognitive load. The agent will detect
the users emotional valance & Motivational Intensity which in turn will influence the attention focus (Broaden the mind
(for free floating ideas) or result in narrow focus (linear, step by step goal attainment)). Toward this aim, we plan to run a
series of tests for gathering user feedback. Design of the tests are underway.

3441



The Jig-saw of Part-task Training in Dynamic Task Environments
Ropafadzo Denga

Rensselaer Polytechnic Institute, Troy, New York, United States

Wayne Gray
Rensselaer Polytechnic Institute, Troy, New York, United States

Abstract

Part-task training is a technique which involves separating the target task into parts and presenting them during training.
This approach has been used to train users to perform optimally in dynamic task environments. The present study investi-
gated the effects of fractionation, a part-task training approach, versus whole-task training to improve performance in the
video game Tetris by focusing on an important sub-task element of the game. Seventy-eight young adults were trained on
Tetris with one of three training regimens: 1) Part-task training with feedback, 2) Part-task training with no feedback, and
3) Whole-task training in which participants practiced the whole game to obtain the highest overall score. Results show
that baseline performance influences training gains and feedback may not be helpful for learning. Training gains from
the different training regimens show that tasks with highly interdependent components may benefit most from whole-task
training.
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Abstract

Does hearing a story about performing an action activate corresponding motor representations? If so, can linguistically-
activated motor representations affect our visual experience of the world? The present study tested whether hearing a story
about performing power or precision grasps would cause people to perceive an ambiguous object in a grasp-congruent
manner. Participants listened to a story in which they tossed water balloons either (1) without touching their knots (power
grasp condition) or (2) by only touching their knots (precision grasp condition). Afterward, participants interpreted an
object that could either be seen as an apple (power grasp) or cherry (precision grasp). To further manipulate participants
availability for subsequent action in the story, participants either (1) had just grasped, (2) prepared to grasp, or (3) had
repeatedly grasped the water balloons before the ambiguous image appeared. People perceived the object in a grasp-
congruent manner only when their hands were available for action.
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Abstract

Learning causal relationships is critical in our daily lives. To learn these causal relationships, one strategy we may use is the
positive testing strategy (PTS), in which we attempt to confirm a hypothesis about the causal relationship. Also, we may
use the expected information gain (EIG) strategy to distinguish between multiple hypotheses. Here we use an experimental
paradigm in which subjects decide which of two causal patterns underlies a four-node causal system (Coenen, Rehder, &
Gureckis, 2015) and fit the Linear Ballistic Accumulator (LBA) model to our data to investigate the precise mechanisms
of different age groups using these strategies. We find that children and the elderly use PTS more than other groups.
Yet, comparing drift rate and relative threshold parameters, we find no evidence for biases in strategy selection across age
groups, but find that the elderly are more cautious when choosing a strategy.
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Abstract

It is commonly agreed that, in most scenarios, deception involves cognitive demands. Prime amongst these demands
is competition between a default true response and an alternative false response. What is less understood are issues
surrounding the mechanistic underpinnings of how and when this competition enacts its influence during responding. In
previous work (Duran, Dale, & McNamara, 2011), we have used an action dynamics paradigm to capture millisecond-
timing information in how people use their mouse movements to respond yes or no to autobiographical information. In
the current study, we employed a similar paradigm to collect response data from hundreds of anonymous participants,
who freely used an interactive touchscreen exhibit at a public science museum exhibit, aiming to replicate and extend
our previous findings. As expected, during false responding, the truth appears to be initially activated and dissipates
continuously over the course of the response.
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Abstract

Zhu (2017) used the implicit association test (IAT) to assess metaphorical alignment between concepts such as black and
white and good and evil. Here we asked whether self-identified Black people have similar metaphoric alignments as those
who identify as White. In an initial experiment, we tested pairwise metaphoric associations between black and white, dirty
and clean, and good and evil. Measured strength of the 3 alignment pairings for these 3 sets of concepts was statistically the
same among Black participants as that measured by Zhu for white participants. In a follow-up experiment, we compared
self-identified Black and White participants IAT-scores for race (i.e., faces) and for color (i.e., chess pieces) IATs. For
White participants, mean strength of white-positive alignment was identical for race and color; Black participants showed
only slight white-positive bias for race IATs, and an intermediate level of white-positive bias for color IATs.
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Abstract

The role of affect and sentence processing is an understudied topic. In an event-related potential (ERP) language experi-
ment, we investigated modulation of the P300 ERP component by dispositional affect. Using our previous ERP paradigm,
we employed a 3x2 design where 32 participants read sentences presented in 1- and 2-word chunks (Berent et al., 2005;
Patson & Warren, 2010). Sentences started with subject nouns that were either universally quantified or not, and continued
with a direct object which was either indefinite, definite singular, or plural e.g., (i) Every kid climbed a tree/the tree/the
trees vs. (ii) The kid climbed a tree/the tree/the trees. Number judgments were required at tree(s), which was always pre-
sented alone (and never final). Reduced P300 amplitudes were observed for the plural condition indicating interference;
furthermore, low positive affect individuals showed responses sensitive to local high probability features associated with
the control singular condition.
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Do Humans Look Where Deep Convolutional Neural Networks “Attend”?
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Abstract

Convolutional Neural Networks (CNNs) have recently begun
to exhibit human level performance on some visual percep-
tion tasks. Performance remains relatively poor on vision tasks
like object detection. We hypothesized that this gap is largely
due to the fact that humans exhibit selective attention, while
most object detection CNNs have no corresponding mecha-
nism. We investigated some well-known attention mechanisms
in the deep learning literature, identifying their weaknesses
and leading us to propose a novel CNN approach to object
detection: the Densely Connected Attention Model. We then
measured human spatial attention, in the form of eye tracking
data, during the performance of an analogous object detection
task. By comparing the learned representations produced by
various CNNs with that exhibited by human viewers, we iden-
tified some relative strengths and weaknesses of the examined
attention mechanisms. The resulting comparisons provide in-
sights into the relationship between CNN object detection sys-
tems and the human visual system.
Keywords: Visual Spatial Attention; Computer Vision; Con-
volutional Neural Networks; Densely Connected Attention
Maps; Class Activation Maps; Sensitivity Analysis
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Abstract

Symbolic associations in human children and adults are based on forming equivalence classes which include three main
relations between the tokens. 1) A = A (Reflexivity), if 2) A –¿ B and B –¿ C then A –¿ C (Transitivity) and 3) if A –¿
B then B –¿ A or Symmetry (1). Extensive studies on non-human primates have demonstrated success in Reflexivity and
Transitivity in several species but a consistent failure in Symmetry in any given association. Comprehension of symmetry
of an association can be a key contribution to linking abstract words to their corresponding tokens and later on in coupling
writing forms of words to their spoken form (2). However to our knowledge it hasnt been investigated whether infants are
capable of spontaneously reversing the direction of an association to any extent. In two EEG studies we investigated if
4.5-month-old infants are capable of applying symmetry in the context of word-learning.

In the first study we trained 2 groups of 25 infants, to two pairs of word-categories (bird or vehicle). At each trial infants
were presented with a word and an image. The critical consideration was to introduce a 1 s of SOA between the two stimuli.
In one group infants were trained on words always preceding the images (Word-Image group) and in the other group infants
were trained on the opposite direction (Image-Word group). In the test blocks 70% of trials were as in the training and
the other 30% were either with the incongruent trials in the original direction or the congruent and incongruent trials in
the reversed direction. We observed significant cluster of electrodes, mainly in the right temporal, in both the trained and
reversed directions while contrasting the congruent and incongruent conditions, with the word-image group showing a
stronger effect.

In a 2nd experiment, designed as a comparative study between infants, adult humans and adult macaques, we sought to
train each participant on 4 pairs of word-images, 2 pairs following a word-image direction and the other 2 an image-word
direction, with a 1s SOA between the two stimuli similar to experiment 1. In this experiment the infants attended the
training phase at home prior to the experiment through three YouTube videos on three consecutive days and on the test
day, they were being tested either on the trained or the reversed direction of each single pair in a similar ERP design as in
study 1. The results in a group of 54 4.5-month-old infants follow the pattern of results in study 1 that infants show an early
as well as a late surprise effect relative to the onset of the second stimulus of the trial, while contrasting the incongruent
versus congruent trials in both directions. Furthermore we utilized frequency tagging in both studies as an extra measure
to compare the conditions of interest. The overall results suggest that contrary to the consistent failure of non-human
animals, infants can readily learn an association in a bi-directional manner, which can be suggestive of an early access to
their symbolic system.

1. Sidman and Tailby 1982 2. T. Medam, et al, Anim Cogn, 2016,
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Abstract

Research on emotion suggests that the attentional preference observed toward the negative stimuli in young adults tends
to disappear in normal aging and, sometimes, to shifts towards a preference for positive stimuli. However, this age-related
effect called the positivity effect may be modulated by several factors, such as the arousal level of stimuli. The present
study investigated visual exploration of natural scenes of different emotional valence in three age groups (young, middle-
aged and older adults) depending on arousal level of scenes using an eye-tracking paradigm. Participants visualized pairs
of emotional scenes either in low or high arousal condition. In contrast with the literature, the preliminary results revealed
a reduction in prevalence of negative stimuli relative to other ones in older adults regardless of the arousal conditions. No
difference between young adults and middle aged adults was observed.
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Abstract

Intuitive physical concepts help humans navigate the world. One such concept, object containment, has been studied
extensively in infants and nonhuman primates. Evidence indicates objects hidden inside of containers are more difficult
to find than covered or occluded objects, possibly due to the prerequisite understanding that containers are hollow. Dogs
encounter containers in daily life, and canine studies commonly require subjects to locate hidden treats. The present
research provides the first test of the hypothesis that dogs, like primates, find it harder to make inferences about containment
compared to other hiding events. To address this hypothesis, across 24 trials dogs (N=90) searched between 2 possible
locations, one of which concealed a treat. They watched 3 different methods of hiding: i) inside containers, ii) behind
containers, and iii) under containers. As predicted, dogs were less likely to locate treats inside containers. Results will be
discussed in a comparative context.
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Abstract

Creativity is an elusive construct that is difficult to measure in children, and divergent thinking tasks have been overused
and may be unreliable as measures of creativity (Baer, 2011). This study examines creative process and achievement in
children using a problem-solving task (Daehler & Chen, 1993). Children (N=98) ages 4 to 6 tried removing a ball from a
jar using common objects. Success with retrieving the ball was a measure of creative achievement. Creative process was
assessed by coding creative behaviors such as object exploration, combinations, manipulation, and ball retrieval attempts.
Results suggest differences in creative behaviors between successful and unsuccessful children. Successful participants
created more unique object combinations (p=0.02), spent more time manipulating (p=0.05), and spent less time attempting
to retrieve the ball (p=0.02) than unsuccessful children. Results suggest that this task moves beyond divergent thinking
assessments by measuring both creative process and achievement in children.
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Abstract

Social value processing has been shown to recruit specific neural systems, yet how they are associated with person-specific
information, such as facial identity, processed in separate regions remains to be established. The present study examined
changes in neural representations in face-selective visual areas due to social value learning. Over four days, participants
learned combinations of social (generosity) and reward (point) values orthogonally assigned to naturalistic face images.
We found that after learning, activity similarity (measured with fMRI) in the fusiform face area evoked by viewing the
faces was related to social value as well as a measure of future social preferences, but was not related to reward value. This
shows how learned social values can influence representations in face-selective brain regions thought to primarily encode
visual information, and provides a potential neural mechanism for the association of social and visual information relevant
to propensities in future social behavior.
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Abstract

Unpredictable variation is widely used to investigate how cognitive and communicative biases impact on language evo-
lution and change. Learning, interactive and cultural biases all contribute to universal linguistic patterns. We explored
the effects of social cues using a miniature artificial language exhibiting unpredictable lexical variation distributed either
within or between multiple speakers. We compared the effects of testing modality (spoken vs. forced-choice), experimen-
tal population (students vs. online workers) and setting (laboratory vs. online). Learners were sensitive to social cues,
but reliable differences only emerged in the laboratory. In an online setting, students were much more likely to regularise
across conditions. In addition, task difficulty increased rates of regularisation but only online. Online workers showed
high levels of regularisation throughout. Our experiments suggest that the conditions in which learning and recall take
place have a large impact on the biases which shape language and our ability to measure them.
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Abstract

Improvisational theater is defined broadly as a theatrical setting in which, process and product co-occur (Sowden, Clements,
Redlich, & Lewis, 2015). Therefore, practicing improvisational theater involves embracing uncertainty (Napier, 2004). In
this context, individuals may learn to tolerate uncertainty with greater comfort, a common treatment outcome across many
psychological disorders (e.g. Boswell et al., 2013). The current study employs a lab-based paradigm linking brief impro-
visational theater experience to increased divergent thinking outcomes (Lewis & Lovatt, 2013). We set out to replicate
and extend this finding by including an explicit measure of uncertainty tolerance. Across two studies, our results show
increased uncertainty tolerance for people who improvised, significantly more than people who participated in a social
interaction control with limited uncertainty. Additionally, the improvising condition predicted relative improvement on a
subset of divergent thinking measures, offering partial support for the Lewis and Lovatt (2013) finding that improvisational
theater exercises can improve creativity.
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Abstract

Although understood that time perception is subjective, the underlying cognitive mechanisms are not well described. Event
segmentation theories propose that spatial information serves to segment experienced information in discrete units which
then can be used to estimate time. Based on this theory, we explored whether subjective time perception is influenced by
the amount of perceived spatial information. A group of young participants viewed short videos of episodes that included
a spatial change (e.g., moving through doorways) or no spatial change. In one experiment, participants were asked to
estimate a given time duration while viewing the video and in a second experiment, participants estimated the time of the
video after viewing. Across experiments, videos with spatial change were associated with more accurate time perception
estimates than those without spatial changes. These results highlight the important role of spatial processing in directing
the experience of time.
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Abstract 

Neural mechanisms behind noun and verb processing are ubiquitously separate, yet it remains controversial which factor, syntax 

or semantics, is behind such separation. We conducted an ERP study using Chinese sentences with a specific construction, noun 

phrase + mei (“not/no”) + noun/verb/noun-verb-ambiguous-word, and excluding other grammatical or syntactic factors that 

could hint at the target words’ part-of-speech. Results showed significantly distinct P200, N400 and P600 between noun and 

verb processing in native speakers, indicating that semantic factors are essential for the differentiated neural mechanisms behind 

noun and verb processing. Similar results were also found between noun-verb-ambiguous-word and noun processing, but not 

between noun-verb-ambiguous-word and verb processing, suggesting that lacking clues on part-of-speech makes the dynamic 

properties of the ambiguous words more salient than the static ones, thus causing interpretation of such words more likely as 

verbs. This further elaborates the crucial role of semantic factors in noun and verb processing. 
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Abstract

How do category systems reflect the information content of their environments? One basic kind of information in a lin-
guistic environment is the frequency of objects or meanings: some things are just spoken about more often than others. A
great deal is known about frequency effects on the evolution of lexical items (e.g. Lieberman et al, 2007); however anal-
ogous effects on category systems are not understood. Two theories point in opposite directions: the generalized context
model (Nosofsky, 2011) predicts that categories containing high-frequency items will expand over time, while information
theory (Cover & Thomas, 2012) predicts tighter boundaries around high-frequency items. We explore the impact of fre-
quency on the evolution of category systems over time in an iterated category learning experiment that manipulates object
frequency. How does this manipulation affect category boundaries? Does the result change if transmission is between
different individuals or within the same person over time?

Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. John Wiley & Sons.

Lieberman, E., Michel, J. B., Jackson, J., Tang, T., & Nowak, M. A. (2007). Quantifying the evolutionary dynamics of
language. Nature, 449(7163), 713.

Nosofsky, R. M. (2011). The generalized context model: An exemplar model of classification. Formal approaches in
categorization, 18-39.
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Abstract

Crimes typically involve a perpetrator and a victim, but alleged perpetrators are often cast as the true victim, as happened
recently in the case of U.S. Supreme Court nominee Brett Kavanaugh. Across two experiments, we investigated the
efficacy of this type of victim framing. Participants read a brief report about an alleged college campus sexual assault
and expressed their support for the male and female protagonists. The report either framed the woman as the victim (of
sexual assault), the man as the victim (of false accusations), or was relatively neutral about victimhood (baseline control).
Relative to baseline, the framing manipulation was effective at eliciting more support for the character described as a
victim, regardless of participants gender or political affiliation. These findings suggest that the language of victimhood, or
its co-opting to cast alleged perpetrators in a more favorable light, can shape public opinion about a politically polarized
issue.
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Abstract

People’s social and linguistic environment changes over the course of their life: infants learn language from a small set
of caregivers; children and adolescents practice language skills with their peers; adults speak to other adults and also pass
on their language to the next generation (Kerswill, 1996, Sankoff 2018). Population models of language change have
explored network effects but neglected changing networks as a function of agent age. We model a population of Bayesian
agents that go through life phases of initial learning, subsequent peer interactions, and transmission to the next generation.
We find these age-dependent networks to be more stable than other network architectures. This stability counters previous
Bayesian modelling results in which languages reliably and rapidly change, converging to the learners prior, suggesting
that languages spoken in populations in which interactions are organised assortatively by age may only weakly reflect
human priors on language learning.
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Abstract

Cognitive science often views human learning as rational. Why then do false beliefs arise, and why are they resistant
to change? False beliefs might arise when people (1) lack knowledge in some domain, (2) adopt beliefs aligning with
implicit causal theories, or (3) encounter, through media or social networks, sets of beliefs that strongly covary. To test
these hypotheses we composed a survey assessing beliefs about matters of fact across a wide range of knowledge domains
and collected responses from 500 MTurkers. We then conducted a factor analysis to determine which false beliefs co-
vary together, clustered respondents to find groups that adopt comparable false belief sets, and used regression to identify
sociodemographic and media-consumption features that predict susceptibility to different kinds of false beliefs. The results
suggest that some kinds of false belief may arise and persist merely from covariance in the opinions learners encounter in
social life.
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Abstract

Norm violations have been shown to influence causal judgments. Icard, Kominsky, and Knobe (2017) explained the
influence of norms by appeal to a model of norm-weighted sampling of counterfactual possibilities. This model explains
two well-known effects (among others): When two agents must act to bring about an outcome (i.e. both actions are
necessary), if an agent S violates a norm, they are judged more causal than when they do not violate a norm (abnormal
inflation), and the other agent B is judged to be less causal than when S does not violate a norm (causal supersession).
In the present study (N = 1008), we find empirical support for two untested further predictions of this sampling model
of causal strength judgments: Abnormal inflation of S is greater when B violates a norm (inflation increase), and causal
supersession of B is smaller when S violates a norm (supersession decrease).
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Abstract

When individuals provide magnitude estimates using numeric scales, they may be influenced by spatio-numeric biases.
In Western, English-speaking cultures smaller magnitudes are associated with the left side of space and larger with the
right. We demonstrated the impact of spatial-numeric associations on judgments of causal strength in two trial-by-trial
causal learning experiments. Causes appeared on either the left or right side of a computer screen. In Experiment 1,
participants made casual judgments using a number line either increasing in magnitude from left to right or decreasing
in magnitude from left to right. In Experiment 2, participants made judgments using a non-linear circular target with the
depth of hue saturation representing causal strength. In Experiment 1, participants gave higher causal ratings to causes
appearing in the space associated with larger numbers on the number line. These influences disappeared when the linearity
of spatial-numeric associations was removed in Experiment 2.

3463



Can children develop novel tools to solve problems via analogical generalization?
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Abstract

Recent research has examined whether children can modify tools to solve novel problems. For example, when children
are given a pipe cleaner with the goal to retrieve a little bucket at the bottom of a tube, will they realize that bending the
pipe cleaner into a hook will solve the problem? Children younger than 7 almost all fail at this task, and children under
10 are far from ceiling. Because problem solving is often helped via generalization from analogous problems, the current
study examined whether children in this task could take advantage of being read a story (with pictures) about fishing,
emphasising the importance of hooks. Interesting we found an interaction wherein preschool children were helped by
the analogy, while school-aged children were not, who also solved the task at much higher rates overall (but still below
ceiling).
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Abstract

Process data (e.g., logs of actions, keystrokes, times, or eye tracks) recording students interactions with digital assessments
are available in many digital educational assessments. They have become the primary focus of cognitive scientists to
detect and analyze students strategies during problem solving. This study developed a Sankey diagram-based method
to visualize process data of multiple-choice items. Such diagram has been widely adopted in industry and ecology to
trace flow of information, energy, or resource. Using released items from the 2017 National Assessment of Educational
Progress Mathematics Tests, we illustrated how to use such a diagram to elucidate frequent answer formulation patterns
of students, their common mistakes, and estimated probabilities of reaching correct/wrong answers at various answering
stages. These help reveal the problem solving strategies adopted by students and their underlying cognitive processes.
Assessment developers, teachers, and students could use such insights to improve assessments and learning outcomes for
confusing concepts.
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Abstract

Compositionality makes linguistic creativity possible. By combining words, we can express uncountably many thoughts;
by learning new words, we can extend the system and express a vast number of new thoughts. Recently, a number
of studies have questioned the ability of neural networks to generalize compositionally (Dasgupta, Guo, Gershman &
Goodman, 2018). We extend this line of work by systematically investigating the way in which these systems generalize
novel words.

In the setting of a simple system for natural language inference, natural logic (McCartney & Manning, 2007), we systemat-
ically explore the generalization capabilities of various neural network architectures. We identify several key properties of
a compositional system, and develop metrics to test them. We show that these architectures do not generalize in human-like
ways, lacking inductive leaps characteristic of human learning.
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Abstract

The studys objective was to measure the somatic state response (skin conductance and heart rate) and understand the
decision making processes in a two-player Centipede game, an extensive form game, with a modified payoff. The experi-
ment included fixed and random termination for analyzing the effect of players mutual trust on risk-taking behavior. The
behavioral results reveal that trust controls the game rounds (that is, the number of pass decisions) in known or random
termination game conditions, though the exit points were higher in the former compared to the latter condition. Higher
skin conductance and heart rate during the game-play is noticed as compared to the baseline data showing anxiety during
the gameplay and interestingly opponents action induced higher skin conductance amplitude than during self-play for the
same decision. The data provides strong preliminary evidence of trust influencing cooperative gameplay.
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Abstract

Effective categorisation should be simple, to minimise cognitive load, and informative, to maximise communicative effi-
ciency. Nominal classification systems (gender, classifiers) are a functional means of categorisation that vary enormously
across languages, revealing a trade-off between simplicity and informativeness. Closely related Oceanic languages of
Melanesia show staggering variation in their number and type of classifiers. How does the Iaai language carve up nouns
into 23 semantic groups whilst the Merei language uses only two; and what implications do these vastly different systems
have for the cognitive representations of their related concepts? We combined typological enquiry and psycholinguistic
experimentation (free listing, card sorting, video vignettes, possessive labelling, eye tracking, storyboards, category train-
ing) comparing nominal classification systems in six Oceanic languages of Vanuatu and New Caledonia. We discuss how
these experiments uncover the nature of nominal classification systems, comparing objective data across languages and
experimental contexts to reveal a model for optimal categorisation.
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Abstract

In experimental research, large numbers of participants are used to average out individual differences in the data. However,
differences in task performance may be largely due to two factors; lack of task training, and different micro-strategies. We
implement a methodology that removes the effect of these factors, requires only 23 participants, and still produces large
amounts of data. Other studies have been published using a similar methodology (Cousineau & Shiffrin, 2004; Gray &
Boehm-Davis, 2000). Our study is a revision of previous research using a mobile game (West et al., 2018). Participants are
trained extensively on the game to ensure they are experts. The study includes a predictive cognitive model and the game-
design is based on an apparent micro-strategy. We hypothesize that the same micro-strategies under identical conditions,
should produce identical results across participants and the model. Suggesting the model may exist in the mind of human
experts.
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Abstract

Children and animals successfully reason by elimination: if a reward is hidden in A or B, and they see A empty, they
search in B (Call, 2004; Hill et al., 2012). Twenty-seven-month-olds also solve similar tasks when emptiness is conveyed
verbally, through negation (The toy is not in the box, Feiman et al., 2017). However, it is unclear whether participants
solved these tasks with the disjunctive syllogism (A OR B, NOT A, THEREFORE B); in a 4-cup paradigm requiring
disjunctive reasoning only 3-5-year-olds but not 2.5-year-olds succeeded (Mody & Carey, 2016). We used a linguistic
version of the 4-cup task to examine childrens ability to reason disjunctively using verbal negation. We found that 3- and
2.5-year-olds performed significantly above chance (58.1%, 54.2%, respectively, ps¡.05). Thus, presenting the negative
premise verbally facilitated 2.5-year-olds deductions. We conclude that older 2-year-olds have a robust understanding of
negation, which they apply in abstract reasoning.
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Abstract

With the recent advances in EEG technology and the popularization of low-cost mobile EEG devices, brain-computer
interface (BCI) systems and neurofeedback tools have become more accessible. Real-time EEG signal processing is
increasingly popular in the context of digital arts projects powered by a neuroaesthetic approach. CoCo Brain Channel
is one such project : designed to use real-time processing of EEG signal in order to generate a musical environment, it
provides the user with a means to hear and control his own brain activity. This is achieved by hooking-up a commercial
mobile EEG device to a music generation algorithm built in PureData. The generative algorithm uses features from
EEG signals to modulate harmonic and rhythmic structures of multiple oscillators. The result is a continuous musical
soundscape reflecting the evolution of EEG signals. Improvements and possible applications for basic research will be
discussed.
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Abstract

Language is frequently ambiguous, with the same sentence having several possibleinterpretations. One prevalent example
is third-person pronouns. Hartshorne, Gerstenberg, & Tenenbaum (2014) HGT2014 model pronoun interpretation as
an inference over a generative model of the speaker. An advantage of the generative intuitive theory approach is that
it incorporates a flexible, quantitative model of world knowledge rather than a list of facts and heuristics. The authors
formalized this world knowledge as inference over a generative model of the world. We directly test this flexibility
by changing the rules of the world (e.g., through scenarios that reverse the normal relationship between strength and
probability of winning tug-of-war), which according to HGT2014 should directly affect pronoun interpretation. We find
that model predictions and participant judgments align well in such scenarios, supporting HGT2014 and challenging other
theories of pronoun resolution. We discuss this work in the context of recent work on intuitive theories.
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Abstract

In the dual-solution paradigm (DSP), people learn a route through a virtual environment. After learning, people are asked to
navigate to locations in the environment. Individuals vary in the degree to which they rely on the learned route (response
strategy) versus a shortcut (place strategy). The present study characterizes trial-level features such as relative target
locations, Euclidean distance and number of turns or intersections between locations, and uses a Rasch Model to investigate
how spatial attributes of these trials influence participants strategy-choice. Additionally, a post-task questionnaire shows a
partial disassociation between navigation behaviors in the virtual environment and navigation in daily life. It is proposed
that this dissociation can be explained by differences in environment features. This study has unique potential to advance
understanding of factors that affect navigation strategy choice, and to inform ecological validity of the Dual Solution
Paradigm and other navigation paradigms.
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Abstract

In categorical explanation a category label is used to explain an associated property. We show that label entrenchment,
whether a label is commonly used by ones community, affects the judged quality of a categorical explanation whether
the explanation offers substantive information or not. In Experiments 1 and 2, explanations using unentrenched labels are
rated as less comprehensive and less natural independent of causal or featural information, even when the label is merely a
name for the explanandum. Experiments 3 and 4 replicate the effect with unentrenched labels coined by groups of expert
discoverers and rule out explanations like familiarity and communicative principles. Most participants in Experiments
3 and 4 could not report the impact of entrenchment on their judgments. We argue that reliance on entrenchment arose
because the community often has useful information. Common use of labels as conduits for this knowledge induces
reliance on community cues even when uninformative.
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Abstract

Framing issues as matters of non-negotiable values can increase the perceived intractability of debates. Focusing on the
concrete consequences of policies instead can facilitate conflict resolution. Using a topic model of Reddit comments
from January 2006 to September 2017, we show that the contribution of certain topics concerned with protected val-
ues to the debate increased prior to the emergence of a public consensus in support of same-sex marriage and declined
afterwards. These topics related to religious arguments and freedom of opinion. In contrast, discussion of certain con-
crete consequences (the impact of politicians stances and policy implications) showed the opposite pattern, their increased
prominence coinciding with improved public support for same-sex marriage after 2012. Our results reinforce the mean-
ingfulness of protected values and consequentialism as relevant dimensions for describing public discourse and highlight
the usefulness of unsupervised machine learning methods in tackling questions about social attitude change.
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Abstract

Emotion and music are intrinsically connected, and researchers have had limited success in employing computational
models to predict perceived emotion in music. Here, we use computational dimension reduction techniques to discover
meaningful representations of music. For static emotion prediction, i.e., predicting one valence/arousal value for each 45s
musical excerpt, we explore the use of triplet neural networks for discovering a representation that differentiates emotions
more effectively. This reduced representation is then used in a classification model, which outperforms the original model
trained on raw audio. For dynamic emotion prediction, i.e., predicting one valence/arousal value every 500ms, we examine
how meaningful representations can be learned through a variational autoencoder (a state-of-the-art architecture effective
in untangling information-rich structures in noisy signals). Although vastly reduced in dimensionality, our model achieves
state-of-the-art performance for emotion prediction accuracy. This approach enables us to identify which features underlie
emotion content in music.
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Abstract

We present a generative model of how observers think about the emotions experienced by players in a socially-charged
game: a public, high-stakes, one-shot Prisoner’s Dilemma. The model extends inverse planning frameworks to capture
observers’ judgments about players’ reactions to hypothetical events. Observers attribute different beliefs and values to
players based on what decisions the players make. We model how observers’ noisy inferences of players’ mental contents
bias emotion predictions. Incorporation of non-monetary features into forward planning enables us to model emotions that
reflect complex social concerns (e.g. Embarrassment depends on how much players think others will infer that they tried to
take advantage of their opponents). In addition to matching the intensities of twenty attributed emotions, the model reflects
how observers’ emotion judgments covary within single stimuli, indicating that the model captures important aspects of
the generative process underlying humans’ emotion attributions in this game.
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Abstract

Individual’s judgment on the appropriateness of social norm includes perceiving others mental states (theory of mind), but
it might differ with the intervention aspects in real social contexts. Therefore, in this study we mainly focus on evaluating
whether affective and cognitive theory of mind would affect social norm violation judgments and investigate whether
the timing of mentalization involves the judgments. As a result, preconceived intention intervention (both affective and
cognitive theory of mind) significantly affected the judgments of the appropriateness. However, only cognitive theory of
mind in attributing violation intentions after encountering the social norm statement was found to affect in the judgments
of the appropriateness of norm violations. In summary, theory of mind plays an important role on the judgment of
appropriateness for social norm violation, but the timing of intervention matters significantly.
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Abstract

SPACY is a well-known package for NLP analysis for delineating the Verb phrases and Direct Objects in English by
applying the default structures to define noun phrase. However, SPACY lacks a function to include the status of adjectives
and vast amount of noun phrase structures for identifying the relationship between Verbs and Nouns efficiently. The
present study develops a SPACY-based program to customize practical noun phrase structures written in industrial SOPs
for machine operations. It performs better at merging overlapping structures, for example, a sentence An important thing
of NLP is hard to define can be processed to be An important thing, NLP, thing of NLP; and then automatically merged
into one noun phrase An important thing of NLP. The capacity of the program can abstract the core concepts of sentences
and recognize the co-occurrences of noun phrases and their associated verbs from the corpus for research and application
purposes.
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Abstract

Cognitive neuroscience studies of creativity typically employ divergent thinking tasks that prioritize bottom-up processes
to generate novel responses. However, real-world creative problem solving is guided by top-down thinking that puts an
emphasis on the goal to be achieved. Here, we introduce the Alternative Objects Task (AOT)a novel task that incorpo-
rates both bottom-up and down-down thought during problem solving. Guided by functional neuroimaging findings, we
employed transcranial direct current stimulation (tDCS) over frontopolar cortex to investigate causally the impact of tran-
sient changes in activity in this region for problem solving performance on the AOT. Participants were presented with a
series of goals and generated either a common or an uncommon object that could satisfy each, while undergoing either
excitatory (anodal) or sham tDCS. Analyses of accuracy, reaction times, and semantic distance highlight the importance
of goal-orientation during creative problem solving and its reliance on prefrontal cortex.
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Abstract

How do children acquire semantic knowledge? In this work, we explore an old answer to this question: Semantic de-
velopment is a hybrid of two distinct processes. The first process involves unsupervised learning of relations between
objects, providing a representation of objects that is useful for a wide range of possible goals. The second process involves
explicitly learning to put objects and their relations into categories. Critically, this second process uses the representations
of the first process as its starting point. Here, we demonstrate this using a two-process model, where the first process is a
distributional semantic model (e.g. HAL, Word2Vec, RNN), and the second process is a transformation of representations
learned during process 1 into a task-specific target space. This approach improves performance on multiple semantic tasks,
compared to using the representations learned by process 1 directly. We believe this model demonstrates that a task- or
goal-oriented perspective of semantic cognition has promise for furthering our understanding of semantic development.
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Abstract

There is a debate in the literature as to whether inhibitory control improves or hinders creativity. Alternatively, we propose
that flexible alterations between these two states would actually benefit creativity best. Therefore, the purpose of the current
study was to resolve the debate by inducing inhibited/disinhibited/flexible states of mind and subsequently examine the
influence on creative performance. To do so, the Stop-Signal task (SST) was deployed through the use of differential task
instructions. Afterwards, participants completed two creativity tasks: a free association task (FAT) and the alternate uses
task (AUT). Results indicated that while the inhibited group scored higher in the FAT, the flexible group scored higher in
the AUT. Based on the results, we propose that there is an inverted U-shaped relationship between inhibitory control and
creativity: while some cognitive control is needed to generate original ideas; excessive control might hinder creativity as
it may lead to premature closure of ideas that could otherwise be further developed.
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Abstract

Theories of embodied cognition have suggested that motor activity may influence the consolidation of conceptual knowl-
edge. In line with this prediction, behavioral studies have shown retrieval interference effects of a manual motor task for
manipulable object concepts. On the other hand, research investigating such effects for abstract concepts is limited. Here,
we examined in a behavioral experiment potential effects of the recruitment of the motor system for the consolidation of
different kinds of abstract concepts. Participants were presented auditorily and asked to memorize abstract concepts with
movement referents (e.g., fluidity), abstract concepts without movement referents (e.g., theory), and concrete concepts
(e.g., microscope) while engaging in a full-body motor task. All concepts were specific to Science Technology Engineer-
ing and Mathematics (STEM) disciplines. Analysis of free recall and recognition performance suggests influence of motor
engagement for certain types of STEM concepts during memory encoding and subsequent retrieval.
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Abstract

Early math instruction often prioritizes rapid retrieval of mathematical facts, (e.g. 4 + 6 = ; 10), an approach that
promotes quick recall of sums but with limited transfer to unstudied problems. We consider how this pattern changes
when the learning scenario highlights the quantities that underlie symbols. Adult participants learned a novel base 8
addition task using alphabetic symbols to indicate quantities (e.g. AG + AF = ). They practiced with symbols only
or with symbols grounded in quantitative representations. When tested in the same format as participants were trained,
studied problems were learned equally well but symbol-only learners transferred only to identical-elements problems (e.g.
AG + AF transferred to AF + AG). Grounded learners showed better transfer to problems involving novel quantities.
The results suggest, in contradiction to some other recent findings, that arithmetic transfer is boosted when the learning
scenario highlights quantitative meaning denoted by number symbols.
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Abstract

The semantic property of boundedness characterizes the presence of well-defined spatio-temporal boundaries for events
or objects in language (Bach, 1986; Frawly, 1992; Jackendoff, 1991). Little research has tested whether this property
actually characterizes event and object cognition (but see Wellwood, Hespos, & Rips, 2018). We showed participants
videos of bounded events where a salient change in state of the affected object(s) occurred (e.g., dressing a teddy bear)
and unbounded events that lacked a salient change (e.g., waving a handkerchief). Participants decided whether a video
matched with a picture of a single novel object or a picture of a novel substance (object/substance pictures were adopted
from Li, Dunham, & Carey, (2009)). Participants tended to pair a bounded event with an object and an unbounded event
with a substance, and were in fact better at establishing the former connection. We conclude that boundedness underlies
the cognitive representation of both events and objects.
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Abstract

Pupillometry uses pupil diameter as a physiological measure of cognitive effort and load. In static tasks, pupillometry has
revealed that cognitive effort varies with expertise, and, combined with gaze analysis, shows that experts can exert effort to
focus on non-salient visual input. Much real-life expertise is practiced in dynamic tasks, and expert effort in dynamic tasks
remains unstudied. Using tetris as a dynamic task environment, we collected pupil and gameplay data from individuals of
varying expertise levels. We then use collected data and examine cognitive workload differences across levels of expertise.
Consistent with studies of image saliency and gaze, our results indicate that experts and novices engage differently with
the task and do not experience the same cognitive workload. Further inspection will likely reveal strategy-level sources of
these differences.
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Abstract

A growing body of research investigates equanimity as an outcome of mediation practices. Equanimity has been defined
as a stable and impartial mental state or trait, regardless the affective valence of stimuli or situations (Desbordes et al.,
2015). Few experimental studies focused on its understanding. After created and validated an equanimity questionnaire
(EQUA-S, N = 265), we conducted a laboratory study (N = 38) to examine the effect of equanimity on both approach-
avoidance motor-behavior with positive and negative stimuli (Rougier et al., 2018) and evaluative conditioning. While
classical approach/avoidance and evaluative conditioning effects were significantly reproduced with evidence in favor of
H1 among the participants with a low level of equanimity (N = 17), evidence in favor of H0 was found among those with
a high level of equanimity. Thus, equanimity seems to moderate automatic cognitive responses toward valenced stimuli.
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Abstract

In conversation, speakers are expected to offer as much information as required by the purposes of the exchange. (Grice,
1975). Classic theories of communication assume that the principle of informativeness extends beyond linguistic inter-
actions (Grice, 1989; Sperber & Wilson, 1986), but relevant evidence so far is limited. We replicated the paradigm of a
referent selection study in which preschool-aged children successfully apply the principle of informativeness to linguistic
exchanges (Stiller et al., 2015) and added a matched non-linguistic condition in which the referent choice was commu-
nicated through pictures instead of verbal descriptions. Children between the ages of 3.5 to 5 performed significantly
better in both the linguistic and non-linguistic conditions compared to a control condition, and there were no significant
differences between linguistic and non-linguistic conditions for 3-year-olds, 4-year-olds, or 5-year-olds. We conclude that
preschool-aged children apply pragmatic principles to pictures as well as words.
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Abstract

Gestures help us understand language (e.g., Hostetter, 2011). However, less is known about how good gestures must be
to facilitate word learning. Turkish-speaking preschoolers learned five English verbs with corresponding iconic gestures,
varying in the verb-gesture match (i.e., how well the gesture represented the verb), in a one-on-one lesson led by either a
human adult or the humanoid robot NAO. Our preliminary results (N = 43) suggest that the verb-gesture match predicts
word learning, and this match might even be more important when the robot was the tutor (though the interaction was not
statistically significant). In addition, while both tutors were effective in teaching verbs, preschoolers learned better with
the robot than with the human. This study not only makes a theoretical contribution by demonstrating the effects of the
match between words and iconic gestures, but also provides practical implications for designing of robot- and human-led
L2 lessons.
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Abstract

When gathering information, different sources typically have distinct levels of informativeness. Therefore, it is optimal
to actively select the source of information to learn from (i.e., perform active learning). It has been debated whether
humans optimize task performance in active learning or use a simple heuristic of seeking information that confirms their
beliefs. Critically, depending on ones subjective beliefs, confirmation bias can in fact be optimal. Thus, without measuring
subjective beliefs, previous approaches were unable to distinguish between these alternatives. Using a perceptual decision-
making task, we measured participants subjective beliefs before and after a new piece of information was presented.
We then characterized confirmation-based and performance optimizing strategies with respect to these subjective beliefs.
We found that participants strategy was dominated by confirmation bias, modulated only weakly by the performance
optimization. We discuss potential reasons that may limit performance optimization in active learning.
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Abstract

We demonstrate that the key components of cognitive architectures - declarative and procedural memory - and their key
capabilities - learning, memory retrieval, judgement, and decision-making - can be implemented as algebraic operations
on vectors in a high-dimensional space. Modern machine learning techniques have an impressive ability to process data
to find patterns, but typically do not model high-level cognition. Traditional, symbolic cognitive architectures can capture
the complexities of high-level cognition, but have limited ability to detect patterns or learn. Vector-symbolic architec-
tures, where symbols are represented as vectors, bridge the gap between these two approaches. Our vector-space model
accounts for primacy and recency effects in free recall, the fan effect in recognition, human probability judgements, and
human performance on an iterated decision task. Our model provides a flexible, scalable alternative to symbolic cognitive
architectures at a level of description that bridges symbolic, quantum, and neural models of cognition.
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Abstract

Despite the long history and pervasiveness of cognitive offloading as a memory strategy, the memorial fate of offloaded in-
formation is not well understood. Recent work has suggested that offloading information may engage similar mechanisms
as instructions to forget (directed forgetting). Presently, we test this prediction by examining the serial position effect
for offloaded information. Previous research has demonstrated that forget instructions can eliminate the primacy effect
while leaving an intact recency effect. Across two experiments, participants completed multiple free recall trials using an
external aid and then a final recall trial without the external aid. We compared a group that was expecting to use the aid for
the final trial (offloading) with a group that was not (no offloading). We found a memory impairment for offloaded items
that was characterized by a reduced primacy effect but intact recency effect, similar to what has been reported in research
on directed forgetting.
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Abstract

The P300-based Complex Trial Protocol (CTP), developed by Rosenfeld et al. (2008), is known to compensate for accuracy
degradation and countermeasure issues of the Concealed Information Test. Although a myriad of CTP studies using
electroencephalogram has been investigated, the lack of crime-related details and the complexity of the previously used
countermeasures have revealed the necessity of in-depth experiment. In the present study, fifty participants were divided
into three groups: guilty, innocent, and guilty-countermeasure. Participants engaged in a mock-crime scenario and only
the guilty-countermeasure group performed ecologically validated countermeasures during the CTP. Participants reaction
time and the amplitude of P300 components of event-related potential were analyzed and there was a significant difference
(p¡0.05). Moreover, using the bootstrapping method, participants were correctly classified as guilty or innocent, regardless
of the use of countermeasure, with accuracy above 80%. The results support the possibility of the on-site usage of the
CTP.
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Abstract

There are emerging innovative educational interventions through automated computational analytics so-called learning
analytics (LA) to utilize a large amount of student participation. However, LA is a relatively unexplored area in Early
Childhood Education (ECE). To respond to this gap, LA is defined as a tool for co-designing pedagogical documentation
practices with ECE teachers to visualize student design cognition. Drawing upon a Multiliteracies pedagogy framework,
this qualitative study investigates how two kindergarten teachers co-designed pedagogical documentation practices using
a digital portfolio app (Seesaw) to leverage 25 young childrens design cognition in multiple modes and technologies.
Using the constant comparison method, two themes were emerged from multiple data sources (e.g., digital portfolios
on Seesaw, teacher assessment, fieldnotes, interviews): teachers-as-(Co)Designers of LA Interventions; and Portfolio of
Student Learning Progression, not Portfolio of Student Work. Our findings suggest the need for effective pedagogical
supports for young childrens design cognition and their teachers LA interventions.
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Abstract

Cumulative culture ultimately depends on the fidelity of learning between successive generations. When humans learn
from others in addition to observing inputs and outputs we often observe the process which led to that output. For
instance, when preparing a meal we don’t just observe a pile of vegetables and then a ratatouille. Instead, we observe a
causal process by which those ingredients are transformed. Here we use programs to represent a cultural process and show
that the observation of an execution trace speeds up program induction even when learning from only a single example.
This mechanism could account for (1) the high fidelity of social learning which leads to cumulative culture in humans
(2) unify the role of emulation and imitation in social learning and (3) account for aspects of moral learning such as
ritualization.
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Abstract

Children are naturally curious, and now even reinforcement learning models within machine learning are channeling this
child-like curiosity. Pathak et-al (2017) created the ICM (Intrinsic Curiosity Model) in which curiosity serves as an
intrinsic reward signal to enable the agent to explore its environment and learn skills, in this case a maze game called
Doom. We study this inherent ability in children by having them explore mazes, with and without goals built using
DeepMind software. In our pilot data we found that kids are adept at exploring the maze, readily and without prompt. We
suggest a relationship between exploration and performance on a maze task, such that performance in the curiosity driven
maze exploration task, is correlated with finding a goal in a second separate maze, even when the initial path to the goal is
blocked. We also show side-by-side comparisons of the ICM vs. children exploring on our mazes.
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Abstract

F2 syntactic parser is a part of F2 emotional robot, designed to support natural emotional communication with the help
of gestures, facial expressions and speech. The parser constructs syntactic and semantic representations (frame networks)
of an input text, saves them to memory (database) and selects a communicative reaction for the robot in BML (behavior
markup language) format. The model of reactions and inferences is based on scripts if-then operators, competing for the
processing of semantics. In particular, scripts detect emotionally relevant meanings: when it is declared, that somebody
threatens the robot, does not care about it, behaves inadequately 13 negative scripts, and also when the robot is superior,
attracts attention, etc 21 positive scripts. Parser may run in a standalone mode, daily processing sentences from news and
blogs. Balancing of scripts allows us to tune the understanding and reproduce different emotional profiles for the robot.
(Research is supported by RSF, project No 17-78-30029).
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Abstract

At dawn of cognitive science, it was hypothesized that performance on diverse sensorimotor tasks is rooted in unitary
sensory discrimination ability that shares the same neural resource with complex cognition. A century of research yielded
inconclusive evidence. We modelled the factor structure for 33 diverse visual sensorimotor, memory, and reasoning tasks,
completed by 234 young adults. Covariance structure models indicated two considerably correlated, yet statistically sepa-
rate, sensorimotor abilities reflecting temporal vs. non-temporal processing. However, initially moderate relationships of
each simple ability with reasoning disappeared when mediated by working memory, suggesting that sensory discrimination
plays no explanatory role for complex cognition. These results were replicated in another study of 255 young adults, who
additionally attempted auditory sensorimotor tasks. The latter appeared to be separate from temporal and visual abilities.
Overall, sensory discrimination does not constitute unitary ability. Moreover, individual differences in complex cognition
cannot be reduced to sensory discrimination.
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Abstract

Relational reasoning is central to much of human-unique cognition including artistic metaphor, scientific analogy. While
much research has addressed the process of relational reasoning, the conditions under which relational reasoning is en-
gaged in at all remains under-explored.

This work examines the relationship between dimensions on which stimuli vary and the likelihood that these stimuli will
be processed relationally by adults. We use a modified relational-match-to-sample paradigm: One of the two choices
contains a relational match with the target, the other contains a partial object match. Changing dimensions on which the
stimuli vary dramatically effects the likelihood that adults process them relationally (i.e. make relational matches) - from
56% when stimuli vary on shape and color to 98% when stimuli vary on size alone. This is despite the relational content
of the task remaining identical throughout.

We discuss implications of these results for designing stimuli, and for theories of relational reasoning generally.
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Abstract

Physical scene understanding requires not only detecting the current state of the world, but also predicting how the future
will unfold. The need for such prediction is especially salient in the context of physical instability as when an object is
teetering, about to fall off a surface. Here we asked whether such scenes automatically capture attention, such that the
mere presence of instability will impair performance on a central attention-demanding task. Observers viewed scenes
in which an object (e.g. an open laptop) was either sitting stably, or was about to fall off a table. Observers simply
completed a central Multiple Object Tracking (MOT) task (e.g which could appear on the screen of the depicted laptop).
MOT Performance was indeed worse in the presence of physical instability, despite its task irrelevance, and even when
observers failed to notice the physical stability vs. instability in the first place.
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Abstract

In insight problem solving solutions with AHA! experience have been assumed to be the consequence of restructuring of
a problem which usually takes place shortly before the solution. However, evidence from priming studies suggests that
solutions with AHA! are not spontaneously generated during the solution process but already relate to prior subliminal
processing. We test this hypothesis by conducting an fMRI study using a modified compound remote associates paradigm
which incorporates semantic priming. We observe stronger brain activity in bilateral anterior insulae already shortly after
trial onset in problems that were later solved with than without AHA!. This early activity was independent of semantic
priming but may be related to other lexical properties of attended words helping to reduce the amount of solutions to look
for. In contrast, there was more brain activity in bilateral anterior insulae during solutions that were solved without than
with AHA!. This timing (after trial start / during solution) x solution experience (with / without AHA!) interaction was
significant. The results suggest that a) solutions accompanied with AHA! relate to early solution-relevant processing and
b) both solution experiences differ in timing when solution-relevant processing takes place. In this context, we discuss the
potential role of the anterior insula as part of the salience network involved in problem-solving by allocating attentional
resources.
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Abstract

The present study integrates four primary social cognition processes Joint Attention(JA), Intention Detection(ID), Per-
spective Taking(PT), and Social Reference(SR) into lively comic scenarios in order to disentangle their relationships and
possible one-to-one connections. By using eye-tracking technique, gaze patterns in terms of Total Fixation Duration
were considered as indexes to examine the hypotheses. It is found that PT is positively correlated with JA, ID, and SR
whereas JA is positively correlated with ID and PT. As a criteria-related validation, the scores of Geneva Social Cognition
Scale(GeSoCS) were used to delineate the gaze performance. Participants with higher score in GeSoCS showed different
eye-movement patterns to those with lower score, indicating the pattern of eye movements could be a reliable indicator
of social cognition status. Moreover, the correlations revealed in the present study suggest that close connections exist
between social cognition processes and eye gaze scanning toward pictorial scenarios.
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Abstract

Behavioral experiments are often feed-forward: they begin with designing the experiment, and proceed by collecting
the data, analyzing it, and drawing inferences from the results. Active learning is an alternative approach where partial
experimental data is used to iteratively design subsequent data collection. Here, we study experimental application of
Bayesian Active Model Selection (BAMS), which designs trials to discriminate between a set of candidate models. We
consider a model set defined by a generative grammar of Gaussian Process kernels that can model both simple functions
and complex compositions of them. To validate the method experimentally, we use BAMS to discover how factors such
as contrast and number affect numerosity judgements. We compare the rate of convergence of the active-learning method
to a baseline passive-learning strategy that selects trials at random. Active learning over a structured model space may
increase the efficiency and robustness of behavioral data acquisition and modeling.
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Abstract

When individuals engage in social interactions, they coordinate their nonverbal movements. Atypical movement coordi-
nation may contribute to social difficulties in autism. Further, distinct gender differences have been found in autism: males
show reduced socio-communicative behaviours relative to females. Here, we explored whether interpersonal movement
coordination differs between males and females with autism, compared to neurotypical (NT) adults. Thirteen adults with
autism participated. Twenty-six NT controls are currently being tested. Participants complete a semi-structured interview
while being video-recorded. Coordination between participant and examiner is measured using a video-based movement
analysis. Females with autism demonstrated significantly greater movement coordination with their conversational partner,
within a smaller range, than males. Given past findings, we expect that coordination differences between autistic and NT
males will be greater than between autistic and NT females. These preliminary results suggest that investigating movement
coordination during interaction may provide a tool for better understanding gender differences in ASD.
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Abstract

Labeling objects enhances fundamental cognitive capacities like categorization, individuation, and memory in young chil-
dren. However, the mechanism by which labels support these cognitive processes remains unknown. One possibility is
that providing a label for an object changes childrens online visual processing of that object. To address this, we consid-
ered several indices of visual attention, asking whether 2-year-old children attend to an object differently if it is labeled
(Look at the dax) than if it is paired with a non-labeling phrase (Look at that). We find that 2-year-old childrens visual
fixations are longer when objects are paired with a labeling phrase, rather than a non-labeling phrase. Indeed, after hearing
a label, children showed a sustained increase in fixation duration. However, the number of fixations children made did not
change as a function of labeling. This illustrates an attentional mechanism by which language might enhance learning in
2-year-old children.
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Abstract

What is it to represent a single world as having alternative, mutually inconsistent possible futures? A large literature
explores this question from philosophical and linguistic perspectives, along with a growing literature in developmental
psychology. Recent findings suggest that 36 month olds (Redshaw and Suddendorf 2016) or even 14 month olds (Cesana-
Arlotti et al. 2018) prepare for multiple alternative possibile futures. These experiments did not require participants to
contrast the possible with the impossible. We replicated Redshaw and Suddendorf (2016), and added conditions that
required participants to contrast the possible with the impossible. 36 month olds now failed, as did many 48 month olds,
suggesting that their representations do not capture the structure of possibilities. 48 month olds tended to pass our test,
but their understanding of possibilities was still fragile. These data converge with other results suggesting that concepts of
possibility and impossibility are constructed in the late preschool years.
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Abstract

Spatial coincidences allow us to infer the presence of latent causes in the world. For instance, an unusually large cluster
of ants allows us to infer the presence of a food source. The leading cognitive model for such inferences is Bayesian,
but the Bayesian algorithm is computationally taxing. Humans likely employ a more efficient, approximative algorithm.
To characterize the cognitive algorithms used, we had subjects judge whether a set of dots was drawn from a uniform
distribution or from a mixture of a uniform and a gaussian source (tending to produce clusters). Responses systematically
deviate from Bayesian optimality: as the number of dots increase, subjects more often report a latent cause where none
exists. The bias is accounted for by a Bayesian clustering algorithm that cumulatively considers the next-nearest dot to a
putative source. This finding helps characterize our tendency to perceive causal patterns where none exist.
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Abstract

This study investigated Korean adolescents behavioral and neural responses to the semantic and syntactic anomalies in
Korean compared with adults, focusing on the case marking mismatches. EEG data were collected from 16 Korean ado-
lescents (12 males, aged 12-14 years) using a picture sentence verification task regarding (A) verbal mismatch [AGENT-
NOM + Verb/*Verb] (e.g., - /*; Brother-ka catches/*bites) and (B) case marker mismatch [AGENT-NOM/*ACC + Verb]
(e.g., -/*- ; Brother-ka/*-lul catches). The behavioral results showed 95% accuracy of their judgment regardless of condi-
tions.The ERP data revealed differences between the conditions: N400 was elicited for verbal mismatches as well as for
case marker mismatches. The results are different from data collected from Korean adults, where the syntactic anomalies
elicited early negativity at the case marker in addition to the N400 at the verb. The different ERP responses between adults
and adolescents to the syntactic anomalies provide evidence for the continuous development of human brains.
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Abstract

Hart and Risley (1995) found evidence of a 30-million-word gap by the age of three between children experiencing the most
and the least spoken input. In the present study, we investigated the magnitude of differences in amount of linguistic input
in environments of a clinical population: children with cochlear implants. We identified a 30 million word gap over three
years between children who received the most and the least spoken language input in their home environments. Further,
we identified a 22 million word gap in numbers of infant-directed spoken words experienced by children hearing the most
and the least input. Together, the results suggest that some children with cochlear implants may be doubly disadvantaged
in acquiring spoken language, due to the degradation of the speech signal associated with electronic hearing, and due to
the dearth of quality linguistic input in sufficient quantity in their language environments.
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Abstract

In Bayesian categorization, exactly computing likelihoods and posteriors might be hard for humans. We propose an
approximate inference framework inspired by Bayesian quadrature and Thompson sampling. An agent can pay a fixed
cost to make a noisy measurement of the likelihood of one category. By sequentially making measurements, the agent
refines their beliefs over the likelihoods. When the agent stops measuring and chooses a category, they get rewarded for
being correct; the agent chooses the category that maximizes probability correct. To decide whether to make another
measurement, the agent simulates one measurement for each category. If any of the gains in expected reward exceeds
the cost, they make a real measurement corresponding to the simulation with the largest gain. We find that the average
number of measurements grows approximately logarithmically with the number of categories, reminiscent of Hicks law.
Furthermore, our model makes predictions for decision confidence among multiple alternatives.
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Do children really have a trust bias? Preschoolers reject labels from previously
inaccurate robots but not inaccurate humans
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Abstract

Past research suggests that young children have a bias to believe what they are told so that they often trust an informant
regardless of the informants previous accuracy. With the ubiquity of new technology, children regularly come in contact
with non-human agents such as robots, yet little is known how children are trusting and thus willing to learn from these
artificial beings. In our study, 3.5- to 5.5-year-old children (N=120) watched a single informant (either a robot NAO or
a human adult) name familiar objects either accurately or inaccurately. The same informant subsequently tested children
on their willingness to accept novel labels for novel objects provided. While children trusted the accurate robot and the
accurate human to the same extent, they were less likely to accept information from the inaccurate robot than the inaccurate
human. This suggests that preschoolers may not readily extend their trust bias to robots as informants.
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Abstract

We study human sequential decision-making in large state spaces using a puzzle game called Rush Hour. A puzzle consists
of a dense configuration of rectangular cars on a 6x6 grid. Each car moves only horizontally or vertically. The goal is
to move a target car to an exit. In a given state (board position), a subject (n=86) could move a car, restart the puzzle,
or surrender. A move is correct if it reduces the distance (number of moves) to the goal. Using mixed-effects logistic
regression modeling, we find that the probabilities of an error, a restart, and a surrender are higher with a longer distance
to goal, higher mobility, and when the previous move was an error. The effects of distance to goal and mobility are
consistent with tree search. As a next step, we plan to investigate the heuristics that people might use for such tree search.
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Abstract

Research in science is usually built uponcomplex background knowledge and assumptions, making it difficult to organize
and overview. We propose using question network to dynamically maintain scientific knowledge, with each nodes being
either a question or an answer, linked with relations such as specification, contrast and so on. Publications can then be fitted
into nodes of the network. By constructing example networks around cognitive concepts, we observed a big question (e.g.
What is curiosity?) being answered with theoretical speculation initially, then specified into the operationalized definition
(How to measure curiosity as a personality?) and computational algorithms. Similar patterns are repeated in different
branches of the network. We also compare research topics starting with similar questions yet develop differently.
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Abstract

Are simple explanations better? Research has shown that people favor simple explanations (defined as number of unex-
plained causes; Lombrozo, 2007; Pacer & Lombrozo, 2017), but new findings suggest that under some conditions, com-
plexity is preferred (Johnson et al., in press; Zemla et al., 2017). We explore three features that could affect preferences:
causal structure, baserates, and likelihoods. Adults (N=544) read one simple and one complex explanation following one
of three causal structures. Simplicity preferences were strongest for one vs. two causes explaining two independent ef-
fects, modest for one vs. two jointly sufficient causes explaining one effect, and reversed (to favor complexity) for one vs.
two independently sufficient causes explaining one effect. When baserates and likelihoods were specified and matched,
simplicity preferences were attenuated, while complexity preferences were sometimes reversed. These findings suggest
that simplicity preferences are moderated by several factors and point to a more unified account of explanatory reasoning.
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Abstract

Analogical reasoning allows humans to make inferences about novel experiences and transfer learning across contexts.
There is substantial literature on how analogical reasoning develops, but less is known about how children understand a
common use of analogyargument by analogy. Considering the importance argument by analogy plays in politics and the
law, we examined the developmental trajectory of the ability to understand arguments by analogy. We measured childrens
(N = 128, ages 3-12 years old) performance on a commonly used analogical reasoning task (i.e., a picture-mapping task;
see Richland et al., 2006) and their understanding of arguments by analogy. We found that at age 4, children have as
much difficulty understanding arguments by analogy as they do performing a picture-mapping task. However, by age five,
childrens performance improves more rapidly in an argument by analogy task compared to a picture-mapping task.
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Abstract

In skill-learning tasks, reaction times (RTs) typically decrease with practice. For example, in alphabet arithmetic tasks
(e.g. J + 7 = ?), learners respond correctly (e.g. Q) faster on later than on earlier trials. A number of mathematical
models have been proposed to account for the functional form of practice-related RT speedup. We aim to evaluate which
of two candidates better fits observed speedup data for individual learners across several tasks. In particular, we compare
a process-shift account in which learners initially execute an algorithm in constant time, but as trials accumulate, exhibit
power-law speedup as they directly retrieve a memorized solution to a delayed exponential model in which RTs decrease
exponentially after learners eventually achieve insight into a task-appropriate strategy. Using hierarchical Bayesian models
of each account (which can flexibly model learning in individual subjects), we show that the process-shift model better
predicts out-of-sample data than the delayed-exponential model.

3516



The Effects of Contextual Cues on the Learning of Prepositions
Michelle Luna

University of California, Los Angeles, Los Angeles, California, United States

Catherine Sandhofer
University of California, Los Angeles, Los Angeles, California, United States

Abstract

Language has the power to shape the way people organize their thoughts and concepts. Some concepts, like spatial
words, are categorized differently cross-linguistically. Conflicting language-to-concept mappings, such as the Spanish
en translating to both in and on, may pose difficulty to Spanish speakers learning English. This study investigated how
contextual cues can help children learn prepositions. Three-year-olds were read preposition books that were arranged in
one of two conditions: separation or control. The separation condition had each instance of in appear in one visual context
(e.g., Bear put the apple in the box, blue page) and each instance of on appear in a separate context (e.g., Penguin put the
ball on the grass, green page). The control condition eliminated the contextual cues by presenting instances of in and on
in both contexts. This study informs our understanding of strategies to improve the learning of spatial words in everyday
adult-child interactions.
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How does temperature affect behaviour? A meta-analysis of effects in
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Abstract

The surrounding environment has a profound impact on human behaviour. Historically, studies have shown that higher
temperatures are associated with increases in antisocial behaviours (aggression, violence). More recently, studies have
linked higher temperature experiences to increases in prosocial behaviours (altruism, co-operation). Such contrasting
patterns leave the status of temperature-behaviour links unclear. Here we conduct a series of meta-analyses of laboratory-
based empirical studies that measure either prosocial (monetary reward, gift giving, helping) or antisocial (retaliation,
horn honking, sabotage) outcomes, with temperature as an independent variable. Overall, we found that there was no
reliable effect of temperature on the behavioural outcomes measured. In follow-up analyses, there was no reliable effect
of temperature on prosocial or antisocial outcomes when analysed separately. We consider why the evidence to support
temperature-behaviour links from laboratory-based studies is weak, assess potential moderators, and examine how future
studies can attempt to reconcile seemingly contradictory patterns in the literature.
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Measuring Creativity in the Classroom: Linking Group Patterns with Individual
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Abstract

Although creativity has traditionally been measured as an individual trait (Runco & Jaeger, 2012), contemporary research
on workplace innovation (Kelley & Littman, 2001; Nonaka, 2008) suggests that creativity is a collaborative process of
working with ideas (Amabile & Pratt, 2016). Furthermore, organizational creativity can be measured using social network
analysis (Gloor, 2006) the more emergent leaders, the more creative the outcome (Gloor et al., 2016). Gloor’s creativity
measure was adapted in a grade 1 class (n=22) to explore whether leaders would emerge when students engaged in creative
problem-solving through online discussions in Knowledge Forum (Scardamalia, 2017). Social network analysis reveals
that 13 students emerged as leaders, and content analysis of the discussion indicates that leaders proposed new ideas that
helped deepen the progression of ideas. Additional analyses are underway to explore correlations between leadership and
creativity scores. Educational implications for developing the creative potential of young students are discussed.
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Abstract

Cardiopulmonary resuscitation (CPR), a basic life-saving skill, requires a combination of procedural and declarative
knowledge. CPR proficiency was assessed and re-trained to criterion across four sessions (spaced weeks to months apart).
In addition, three laboratory tasks were administered: continuation tapping, paired-associate learning, and Raven ma-
trices. These served as proxies for procedural learning, declarative learning, and general cognitive ability, respectively.
Even though a computational model (Predictive Performance Equation, Walsh et al., 2018) predicted long-term CPR per-
formance, none of the lab tasks correlated with any aspect of CPR performance (initial performance, (re-)learning, or
retention of CPR; see https://osf.io/m8bxe/ for details). These results highlight the challenges faced when translating lab
results into real-world domains and can serve as a benchmark for applying computational models to real-life learning and
forgetting.
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Abstract

Introduction: Controlling Automobiles during unconsciousness of the driver using Brainwaves. Brainwave based accident
avoidance system is an effective way to prevent accident caused due to drowsy driving. Every year number of road
mishaps are caused by drowsy driving. The proposed idea brainwave based accident avoidance system is to avoid this kind
of accident using Electroencephalography (EEG) of human brain and speed control in automobiles. Human brain consists
of millions of interconnected neurons. The patterns of interaction between these neurons are represented as thoughts and
emotional states. According to the human thoughts, this pattern will be changing which in turn produce different electrical
waves. A muscle contraction will also generate a unique electrical signal. All these electrical waves will be sensed by
the brain wave sensor and it will convert the data into packets and transmit through Bluetooth medium. Level analyzer
unit (LAU) will receive the brainwave raw data and it will extract and process the signal using MATLAB platform. Then
the control commands will be transmitted to the motor to process. With this entire system, we can control / stop the
vehicle according to human thoughts. Electroencephalography (EEG) is the fundamental idea utilized as a part of this
framework. Neurosky mind wave sensor is utilized as primitive segment to examine the Brainwave signals. In this way
by controlling vehicles it can spare numerous mishaps and can spare numerous lives. Among these bands, theta and alpha
are the signals which represent drowsiness to relaxed sleep. Methods: In a brain controlled vehicle, controller is based on
Brain Computer Interface (BCI). BCIs are systems that can bypass conventional channels of communication to provide
direct communication and control between the human brain and physical devices by translating different patterns of brain
activity into commands in real time. With these commands a vehicle can be controlled. The intention of this work is
to design and develop a system that can assist the person during their unhealthy condition to avoid the accident on the
road. Results: Brainwave based accident avoidance system for unhealthy condition of the drivers which predict the signals
and system in engaging with processing of signals to alert the drivers unconscious situation. The biggest challenge about
the system is that to determine the signal from the headset. Proper identification is needed for the signals so that wrong
signal does not trigger the routine even when driver is not unconscious. Every person is different and every person has
different thoughts and emotions so they might have slightly different brainwave signals. So before adapting this system,
the interface should be configured according to the brain activity of the driver. Discussion: The research and development
of brainwave controlled vehicle during unconsciousness of the driver has received a great deal of attention because they
can help to avoid the accident on the road. Improving the BCI system performance to make brainwave controlled vehicles
usable in real-world situations. Keywords: Brain Computer Interface (BCI), Brain Wave Sensor, EEG, Bluetooth
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Abstract

Research within the dual-process framework have repeatedly suggested that individuals thinking style can predict their
performance on reasoning, judgment, decision making, and acceptance of religious and paranormal statements. However,
some studies also suggested that the link between analytical thinking and epistemically unwarranted beliefs was peculiar to
so-called WEIRD societies. The present study aimed to explore the possible cultural (Western and Eastern) difference on
the relationship between performance and style of our thinking. Participants were presented with various tasks including
belief bias, denominator neglect bias, numeracy, temporal discounting, risk preference, and paranormal belief. They were
also presented with tasks measuring their thinking styles (CRT and Rational-Experiential Inventory). Results showed
that the effects of thinking style on heuristics-bias and decision-making tasks were almost similar between two cultures,
however we find a significant style-culture interaction in paranormal beliefs. This may suggest a cultural difference of the
role of analytical thinking on belief-based response.
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Abstract

People overestimate the conjunctive probability of independent events (Bar Hillel, 1973). We examined conjunctive per-
formance in a task involving motor uncertainty and binomial sampling. Human probabilistic judgment is typically near-
optimal with either of these sources of uncertainty alone. Four subjects attempted to earn rewards by reaching to circular
targets. They chose between a single smaller target and one of N larger targets. Hitting the single target always earned a
reward but only one on the N larger targets was rewarded: they chose between P[Smaller] and the conjunctive probability
(1/N)*P[Larger] as we varied N and the sizes of the targets. The ideal observer should be indifferent when P[Smaller] =
(1/N)*P[Larger]. We also asked observers to estimate the probability of hitting targets of different sizes to verify that they
could do so accurately. Remarkably, three out of four observers ignored numerosity N in their preferences.
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Abstract

We approach some decisions (e.g., choosing an investment plan) by deliberating about our options, and others (e.g.,
choosing dessert) by relying on intuition. In a study with 259 participants evaluating hypothetical decisions, we investigate
factors that predict whether deliberation and/or intuition is judged appropriate. We find that participants are more inclined
to endorse deliberation, and less inclined to endorse intuition, when they believe the means and ends involved in a decision
can be objectively evaluated (consistent with Inbar, Cone, & Gilovich, 2010). We also find that violations of coherence
(i.e., endorsing contradictory beliefs about a decision) predict higher ratings for intuition, as does belief that a given
decision reflects ones identity. These findings hold after adjusting for perceived effort, importance, and stakes. We suggest
that deliberation is judged appropriate when people believe that norms governing rational action apply, and we consider
the implications for real-world decision-making.

3524



Forming Action-Effect Contingencies through Observation of a Dot-Control Task
Jasmine Mason

Illinois State University, Normal, Illinois, United States

J. Scott Jordan
Illinois State University, Normal, Illinois, United States

Abstract

Previous research suggests the possibility that observers have access to action plans of others (Jordan & Hommel, 2008).
To examine this we design three experiments. The first examines action-plan coding in participants performing the task
(controllers) using a Hommel-like ’compatibility’ test measuring reaction times (Hommel, 1996). We manipulated the
inclusion of task irrelevant auditory tones during the dot-control game. The second experiment utilized the same design
to examine observer’s action-plans after watching the experimenter play the dot control game. Experiment 3 allows us to
examine the additional effects of the controller’s skill level and observer’s level of access to the task. So far the results
support the hypothesis that participants can learn action plans by observing the distal effects of another’s actions. Further
research will help unearth the factors mediating observer’s action plan coding and the differences between how controllers
and observer’s encode actions and their different effects.
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Abstract

We need to be flexible to adapt to dynamically changing circumstances. A probabilistic reversal learning task is one of
the experimental paradigms to characterize flexibility of a subject. In recent studies, it is hypothesized that a subject may
utilize not only a reward history but also a cognitive map representing a latent structure of the task. In this study, we
conducted an experiment using the task toward understanding a process of learning a latent structure of the task. We found
subjects choose a rewarding option with relatively high frequency in a later phase of the task. Analyzing the subjects
decision making, it is suggested that they make decision based on their own estimation about the latent structure. A
statistical model selection suggested that a reinforcement learning model with state representations fit behavioral data in
the later phase. These results suggest the subjects learn the latent structure during the task.
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Abstract

Humans are creative tool users. We investigated whether body posture and environmental context influence creative output
in the divergent thinking task. Participants adopted either flexion or extension body postures and were shown images of
kitchen utensils or work tools. Each image was primed with an image of either a congruent environment or an incongruent
environment. Results show that body posture, specifically extension, results in faster generation of responses, especially
when the object is primed by a congruent environment, and that extension increases sensitivity to environmental primes,
increasing fluency overall. Our results shed light on the cognitive mechanisms of generating creative object uses.
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Abstract

Grasping relational concepts is facilitated by comparing their representations. Previously, Matlen et al (2014; under
review) found that for simple visual figures, the comparison process was optimized when the visuals were placed in direct
spatial alignment, such that the main axes of the visuals run perpendicular to their placement (e.g., horizontal figures placed
vertically), relative to impeded spatial alignment, when the axes run parallel to their placement. In the present work,
we tested this spatial alignment effect using complex naturalistic stimuli, consisting of skeletal structures. Participants
identified anomalous bones by comparing a correct skeleton with a skeleton that had an incorrect bone. Participants were
more accurate when skeletal structures were placed in direct (M=.90) relative to impeded (M=.84) alignment (p¡.01).
Given the relevance of these findings to education, we are formally coding visuals in middle-school science textbooks
based on their spatial alignment and will present these results at the conference.
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Abstract

Promoting STEM knowledge early in development helps prepare children for school success. Exposing children to STEM
books may be a simple and effective means for promoting early STEM knowledge. However, whether preschool-aged
childrens STEM books are optimally designed is unknown. Children and adults learn new information more effectively
when there is support for encoding and demand for active processing. We have conducted a textual analysis of 50 STEM
books designed for preschool-aged children. The books are coded for (a) support for encoding (narratively cohesive and
topic maintaining), and (b) demand of active processing (posing questions and including interactive prompts). Preliminary
data shows that on average the books include limited support for encoding and demand for active processing. This suggests
that these books are not fulling their potential of promoting early STEM knowledge. Next steps in this research involve
identifying means for enhancing STEM childrens books efficacy.
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Abstract

Conditionals are statements of the form ”If P, Then Q”. Reasoning about conditionals is a core component of human
cognition. However, studies of how adults and children interpret and use conditionals have highlighted discrepancies be-
tween human reasoning and logic inference rules. Recently, Douven and Verbrugge (2010) have found that a classification
of conditionals based on the type of inferential connection between the antecedent and the consequent (e.g., deductive,
inductive and abductive conditionals) allowed for a finer analysis of adult conditional reasoning. Do these findings ex-
tend to child conditional reasoning? We report a study (N=200, ages 4 to 11) that examines how performance in modus
ponens and modus tollens tasks depends on the type of conditional embedded in the argument. These results will shed
light on how the development of conditional reasoning in children is sensitive to the nature of the inferential relationship
of conditionals.
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Abstract

We examined the physiological changes brought on by the sight of foods in people with high eating disorder tendencies rel-
ative to normal controls. Graduate students were assessed for eating disorder tendencies using a questionnaire. Functional
near-infrared spectroscopy was used to observe participants when five pictures were presented, in five categories: popular
food (fried chicken), non-popular food (Japanese simmered dishes), inedible object (screw), comfortable animal (rabbit),
and uncomfortable animal (cockroach). Most participants oxyhemoglobin density was found to be different in response to
two pictures (fried chicken and cockroach). This indicates that this level of cerebral blood flow corresponds to unpleasant
feelings. However, students with higher eating disorder tendencies showed high-level oxyhemoglobin density in the same
channel, indicating discomfort, in response to popular food, neutral objects, and the uncomfortable animal. Our study
implies the attitudes toward foods totally differ at cognition in people with high eating disorder tendencies compared with
healthy people.
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Abstract

Cognitive modeling, approximation of human cognitive functions in a computational system, is a traditional methodology
in the field of cognitive science. Usually this methodology has been used as a tool for scientific understanding of human
mind, and evaluated by fitting to human data. In this presentation, the author proposes a framework of interactive cognitive
modeling as an application of the above methodology for understanding and supporting individual human cognition. The
framework consists of cognitive architecture, visualization of the model behavior, knowledge database of personal user
and sensing devices to include the users reaction. This presentation shows two systems of interactive cognitive modeling
in the field of web browsing and photo browsing.
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Abstract

We present an experimental study that examines how lexical iconicity (i.e. onomatopoeia) affects early word learning,
across learning contexts. Children aged 24-36 months (N=37) were first trained on labels that are either iconic or neutral
with respect to the referent event, and then tested using a forced-choice task to select the correct referent given a label. We
assessed learning across two contexts: situated, where label and referent co-occur, and displaced, where children learn the
label following the referent event. We predicted that iconicity would aid word learning, and would have a more facilitatory
effect in the displaced condition, helping the child to associate label and referent. Our findings demonstrate that children
learn iconic labels in the experiment better than they do neutral labels. However, we find no difference across learning
contextsiconicity facilitates word learning in both situated and displaced learning scenarios.
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Abstract

Assessing the likelihood that a counterfactual event would have happened involves contrasting a factual outcome with
the counterfactual alternative. In many situations, the number of alternatives will influence the perceived closeness of a
particular alternative. For example, losers of a game in which participants guess which door conceals a prize will likely
believe they were closer to winning when there were three doors compared to six. This reflects accurate probabilistic
reasoning because more doors will be associated with a lower probability of winning. However, we test whether the
number of alternatives has a unique influence on beliefs about counterfactual closeness. Experiments 1 and 2 show that,
even when probability is held fixed, people believe counterfactual closeness decreases when there are more alternatives.

3534



On falsification and Optimal Experimental Design approaches to the value of
information

Jonathan D. Nelson
University of Surrey, Guildford, United Kingdom

Vincenzo Crupi
University of Turin, Torino, Italy

Flavia Filimon
University of Surrey, Guildford, Surrey, United Kingdom

Garrison Cottrell
UCSD, La Jolla, California, United States

Abstract

There is a great deal of discussion about whether people intuitively seek to falsify their working hypothesis. But there
has been little consideration of the relationships between falsificationist and probabilistic Optimal Experimental Design
(OED) approaches to evaluating the usefulness of possible experiments. Recent work has shown that a variety of important
OED and heuristic models can be derived as special cases of the generalized Sharma-Mittal framework of information gain
measures. We show how falsification-like behavior can also derive from a quasi-information gain model, based on high-
degree Tsallis entropies. Our analysis shows that falsificationist and probabilistic approaches are not as far apart as the
east and the west. Rather, they can be built out of virtually the same set of ingredients, within a probabilistic framework.
We report simulation studies showing how important falsificationist, OED, and hybrid models could be differentiated as
possible descriptive accounts of information-seeking behavior.
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Abstract

Conversion from an initial representation for gaining insight has mainly been studied in experimental settings where
solution through that initial representation is impossible.Many studies of insight problem solving have shown that an
implicit process engage in conversion from an inadequate initial representation. However, few studies exist about such
conversion in a situation in which solution by the initial representation is possible. A typical situation is conversion
from a sub-optimal to an optimal solution. In such a situation, solution by the initial representation is inefficient, but
possible. Therefore, participants received no negative feedback that the solution is impossible.In this study, by measuring
eye movement, we investigated the hypothesis that the implicit process also emerges in such a situation. We found that the
implicit process related to relaxation of fixedness on the sub-optional solution was observed prior to conscious finding of
the optimal solution.
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Abstract

It is known that perspective-taking helps humans recognize anothers emotional state on an individual basis. Here, we
investigated how perspectives influence emotional sharing, namely the act of understanding mood, or a relationship be-
tween other people in a multiparty conversation. In order to capture the effects of perspectives on sensitivity and bias
in responses, we introduced condition-specific parameters in a Bayesian item response model. The model revealed that
interlocutors are more sensitive and biased to emotional incongruency when they give ratings for a pair including them-
selves than that excluding them. This relationship holds for observers who did not participate in the conversation and took
the respective perspectives. The findings support the assimilating effects of perspective-taking through which people can
perceive mood as the target does.
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Abstract

The capacity to continually exert self control appears to become temporarily depleted over time, leading to mental fatigue
and self-control failures. Some researchers have proposed that self control requires limited resources which must be
periodically replenished, but no direct evidence supports this theory. An alternative explanation is that mental fatigue is
an evolutionarily-adaptive feature for managing motivations, serving to temporarily disincentivize the present course (or
type) of action, thereby redirecting behavior towards other goals that may better serve an individuals evolutionary fitness.
Since self control is typically associated with delayed gratification and self-control failures with immediate gratification,
mental fatigue may generally encourage immediately-gratifying behavior by temporarily increasing the extent to which
individuals devalue all future rewards (delay discounting). To test this hypothesis, the present study examines whether
delay discounting increases for participants who have recently completed a fatiguing task.
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Abstract

Recent findings suggest that when solving problems involving cognitive flexibility (CF), individuals who approach a
learning task using reinforcement learning (RL), outperform those who approach the task using supervised learning (SL).
Based on these data, we hypothesized that CF is a function of individual differences in learning preference and task
demands. Healthy native English speakers were administered three CF tasks that incorporated (i) shifting, (ii) divergent
thinking, or (iii) both shifting and divergent thinking elements. Participants response selection history on a reward-based
learning task, which could be approached either through SL or RL, was used to determine each participants learning style
and predict CF performance. Results showed that different CF task components (i.e., whether the task involved divergent
thinking) interacted with participants learning preferences as measured by the independent learning task. We discuss how
learning preferences might capture individual differences in CF.
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Abstract

Language acquisition is a significant developmental process children undertake automatically but is only partially un-
derstood. Though researchers have long debated the influence of internal knowledge and external stimuli in language
acquisition, both features are required for this process. External stimuli are dominated by child-directed speech for the
first few years of life. Accordingly, the role of child-directed speech (CDS) in early language acquisition continues to
attract cognitive and developmental researchers. Here, we use statistical and computational tools from Automatic Speech
Recognition (ASR) and Network Science to explore the statistical nature of CDS. In particular, we examine CDS using
two complementary computational approaches: a bottom-up approach using ASR as a representation of auditory process-
ing, and a top-down approach using networks to represent semantic and syntactic knowledge. Exploring CDS with both
methods offers the unique opportunity to model the role of CDS in language acquisition from a more holistic perspective.
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Abstract

Prior research indicates that the physical context in which a word is spoken can influence how well young children learn
the word. Yet, it is unclear how variability in social contexts (e.g. emotion) may impact word learning. To assess this,
the present study used a novel noun generalization task with 2-year-old children. Participants were randomly assigned to
one of four emotional labeling conditions: consistently angry, consistently happy, consistently sad, or variable (one label
in each emotional tone per trial). We investigated whether the number of correct responses out of eight trials varied by
emotional condition. Preliminary data from 28 (14 female) participants suggests that the percentage of correct responses
in the sad (59.4%) and happy (64.3%) conditions may be lower than in the angry (70.8%) or variable (69.6%) conditions.
These results hold implications for how emotional contexts may influence childrens ability to learn new words.
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Abstract

Informal teaching is a ubiquitous social behavior with a rich evolutionary history. We model teaching as the decision
making problem of planning a sequence of actions to convey information to a naive learner. We compare humans intuitive
teaching actions in a simple collaborative game to the optimal solution of a Partially Observable Markov Decision Process
(POMDP). In a teaching POMDP, the current state is the latent, unobservable knowledge of the student and pedagogical
actions may yield changes in that knowledge or provide partial information about the students state. In our experiment,
human teachers balance assessment and instruction while incorporating prior information about student knowledge. View-
ing teaching as a POMDP suggests specific predictions for when different teaching actions (e.g., testing versus instruction)
should be preferred under different conditions. Improving our understanding of the decision making strategies that underlie
intuitive teaching has a range of implications from education to clinical rehabilitation.
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Abstract

Prior work examining executive control during the Simon task has focused on global congruency alone and/or has primarily
contrasted bilinguals with monolinguals. This is problematic for two reasons: (1) prior trial experience on current trial
performance is unaccounted for (Grundy et al., 2017) and (2) bilinguals are not a homogeneous group. Here, we examined
the interaction between prior and current trial congruency in the Simon Task for 65 bilingual young adults who varied
continuously in bilingual experience. Generally, current trial congruency effects were larger when the prior trial was
congruent vs. incongruent. However, as non-L1 experience increased, this interaction diminished; the overall prior trial
effect was reduced independently of age of acquisition. Crucially, neither non-L1 experience nor age of acquisition
influenced current trial congruency alone. Although preliminary, these results suggest that both congruency effects and
bilingual experience influence performance on a non-linguistic executive control task.
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Abstract

Different visualizations of texts have been studies within dyslexia and significant effect of font attributes have been proved.
However, the newest studies show that dyslexia is not only a matter of visual or phonological deficit and could be con-
nected to blue cone area spots. We present a study that was designed on the basis of previous published articles and
recommendations. Participants were splitted into two groups of dyslexic and nondyslexic readers. We measured reading
time, comprehension and personal preferences of font types. The results show that the fastest reading time does not cor-
respond with highest preference. Moreover, we have an interesting observation concerning preferences and reading time
of participants with computer science background. This article brings new insights which could serve for further research
and new design of effect of font type studies and can support blue cone theory and critical role that different languages
play in dyslexia.
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Abstract

Research has shown that 1D category representations acquired through supervision change after unsupervised exposures
that suggest a different boundary. However, it is unclear whether this effect generalizes to categories in which multiple
dimensions are relevant. To address this question, we trained participants on a 2D information integration structure (a
diagonal boundary) under supervision. Participants then classified unsupervised items that implied either a steeper or
flatter boundary than that established by supervision creating a conflict region where items should switch membership.
Participants classified a grid of the stimulus space both immediately before (pretest) and after (posttest) unsupervised
learning to assess for differences. We found that conflict-region items were more likely to be classified as members of
the opposite class on the posttest, relative to pretest in a manner consistent with the unsupervised learning condition.
Implications of these findings for semi-supervised learning research and theories of category learning are discussed.
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Abstract

Compositionality supposedly explains structure-sensitive features of cognition, such as productivity and systematicity.
However, the nature of compositionality is still controversial: e.g., symbolic versus subsymbolic. Category theory—
a formal theory of structure—provides an explanation for systematicity in terms of universal morphisms: the optimal
factorization of cognitive components (Phillips & Wilson, 2010). We survey five aspects of compositionality as they relate
to formal properties of universal morphisms. The emerging view is a unified (universal) principle for compositionality.
This category theoretical view affords a novel perspective on the emergence of symbol systems, i.e. as the construction of
universal morphisms, which is illustrated in regard to some empirical data.

Reference: Phillips & Wilson (2010). Categorial compositionality: A category theory explanation for the systematicity of
human cognition. PLoS Computational Biology, 6(7), e1000858. doi:10.1371/journal.pcbi.1000858
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Abstract

Many domains involve gathering evidence, from forensic investigations and medical diagnosis, to everyday life. How
should one order this collection, given the costs involved (e.g. time, financial, information)? Scheduling theory offers
optimal solutions, but requires clear metrics. Evidence can have many influences on it, which affect prioritization, e.g.
degradation, contamination, etc. However, to date there has been no clear way to bring this into a unified metric, and
thus optimal scheduling has remained out of reach. We propose a new information-based measure, KL, as a way of
encapsulating these information costs, and present maximum KL preservation as a clear rule & metric for scheduling. We
go on to test several heuristic rules for scheduling evidence collection, based on optimally derived algorithms, providing
novel formal backing for a dominant heuristic strategy for scheduling information gathering.
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Abstract

This paper illustrates the neural mechanisms underlying language processing. Based on evidence from neuroscience, the
Neural Theory of Language supports the idea that, to fully understand an utterance, one should be able to imagine the
scene evoked by that utterance. To achieve that, brain regions responsible for the action associated with that utterance
are activated in order to mentally simulate the action that is being described. In this report, I propose four activities that
implement these findings to language teaching in order to boost the learning process and provide meaningful content, not
only about language itself but also about the processes behind.
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Abstract

People implicitly map numbers onto space, but what aspect of numbers do people spatialize? When cardinality (i.e. mag-
nitude; 5 objects) is pitted against ordinality (i.e., sequential position; the 5th object), people show an implicit ordinality
mapping, at least in lateral space. We hypothesized that if people spatialize numerical magnitude at all, they should do so
on the vertical axis, according to the way they talk about numbers (i.e. low, high). Participants memorized sequences of
randomized numbers (e.g. 85913) and then classified them (as small or large) using two response keys, oriented either lat-
erally or vertically. Participants showed reliable ordinality mappings on both axes; they were faster to press the left/upper
key for numbers earlier in the memorized sequence and the right/bottom key for later numbers, regardless of numbers
magnitudes. People map exact numbers onto both lateral and vertical space according to their ordinality.
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Abstract

Note-taking in college courses is prevalent yet often ineffective. One potential reason is a disconnect between the infor-
mation in lectures and that recorded in notes. Whereas science-based lectures frequently include diagrams, students notes
often fail to include them. This disconnect likely inhibits learning and may be exacerbated by digital note-taking. We in-
vestigated students note-taking during two mini neuroscience lectures and its relation to recall. Students were assigned to
diagram presence (diagram embedded in notes for first or second lecture) and note-taking method (typed or handwritten)
conditions. Students recalled more in the diagram first condition. There was no recall difference based on note-taking
method. Including diagrams in notes for the first lecture likely primed participants to attend to diagrams in the subsequent
lecture, helping them realize the importance of the diagram. The lack of a note-taking method effect is inconsistent with
past research, but may reflect increasing use of digital note-taking.
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Abstract

Sometimes parents use comparison in speech to children and sometimes they do not. Comparison has been shown to have
multiple benefits for learning. This study investigates what types of situations afford and engender parent comparison talk
to 12 children 20 to 24 months of age in a free form picture book context. Each page contained three pictures that varied
on color and/or object. Parent speech was analyzed for color, object, question/statement use, and comparison/contrast use.
Childrens color comprehension and MCDI score were also measured. The results indicated a quadratic relationship where
parents used comparison and contrast more often when their children knew few or many color words. Parents also used
comparison more when the page had one dimension held constant across pictures. The results of this study inform existing
understanding of comparison and demonstrate how this speech correlates with childrens understanding of language, and
specifically color words.
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Abstract

Representations formed during language comprehension do not always accurately reflect the linguistic input, but are
sometimes just good enough (Ferreira et al., 2003). Here, we examined the electrophysiological correlates of such heuristic
processing. Participants were presented with passive sentences where the plausibility of the fillers of the agent and patient
thematic roles was manipulated. As expected, they made more errors in the interpretation of implausible sentences (e.g.,
The doctor was treated by the patient). Intriguingly, N400 amplitudes patterned with (mis)interpretation, with increased
amplitudes to the second noun in correctly processed implausible sentences, and equally small amplitudes in plausible
sentences and in incorrectly interpreted implausible sentences. These results are in line with the view that N400 amplitudes
reflect the change in an initial heuristic representation of sentence meaning (Rabovsky et al., 2018), but seem difficult to
explain by accounts suggesting that the N400 reflects lexical retrieval (Brouwer et al., 2017).
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Abstract

Recent work suggests that strategy differences may play an important role on gF tasks and are related to WMC. The
present study utilized eye tracking to assess the consistency of strategy use across tasks, focusing on constructive matching
(CM) and response elimination (RE) strategies. Across two gF tasks (the Raven Matrices and a figural analogies task),
participants were highly consistent in their strategy use, regardless of WMC. However, high-WMC individuals were more
likely to utilize the CM strategy, though this was influenced by task order. Those who utilized RE were more likely
to have their attention captured by salient, incorrect responses in the response bank and time on those responses was
negatively related to accuracy. However, on select items where the response bank was necessary to make a response, these
relationships disappeared. Results are discussed in terms of the implications of strategy differences on our understanding
of WMC and gF.
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Abstract

Fraction arithmetic is a challenging topic for students. Past work has found that many errors can be accounted for by a
limited number of malrules, reflecting both execution errors and incorrect strategies (Braithwaite, Pyke, and Siegler 2017).
We develop an inverse planning model for fraction arithmetic that computes students’ affinity for particular malrules
based on their problem solutions. Inverse planning models people’s choices when solving problems, and has been used to
model data from solving algebraic equations and playing educational games. The output of the fraction arithmetic inverse
planning model gives a more detailed assessment of a student’s knowledge than the number of problems she answers
correctly, and does not require human interpretation of students’ solutions. Applying the model to the two datasets in
Braithwaite et al. (2017) and inferring tendencies to use two specific malrules shows that its output is consistent with
manual annotations of students’ strategies.
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Abstract

The majority of undergraduate students fail to achieve a basic understanding of fundamental concepts in science, tech-
nology, engineering, and mathematics (Bao et al., 2009). A major barrier may be spatial reasoning (Wai, Lubinski, &
Benbow, 2009). Spatial reasoning is the ability to mentally manipulate the 2D and 3D relations within and between ob-
jects. The current study examines the casual relation between spatial reasoning and performance in an undergraduate
introductory physics course. All students enrolled in the course took tests of mental rotation, hidden figures, form board,
and perspective-taking at the beginning of the semester and again at the end of the semester. Post-test scores were sig-
nificantly higher compared to pre-test scores, ts(38) ¡ 10.82, ps¡.02. Growth in spatial reasoning is predictive of exam
performance, with performance on individual spatial reasoning tests being correlated with specific kinds of exam items.
This suggests individual spatial reasoning skills differentially support different physics understanding.
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Abstract

The role of Topological Neighborhood (TN) in SOM cognitive modeling has biological and computational implications.
The modeling significance of the TN width function (epoch) is associated with the initial TN width parameter 0. Further-
more, 0 is decisive in determining the geometric area under the TN-width function curve through the epochs of SOM
training; measures training ”opportunity”. From this perspective, what is considered narrow (or wide) TN during SOM
formation is a function of the TN width area covered.

In computer simulations of standard-TN SOM and of our previously proposed oscillating-TN SOM models, we calculated
the area using the Riemann integral of the corresponding (epoch) function (standard, oscillating) and epoch-interval. The
results show: a) for the same 0 and epoch-interval, the value remains unchanged irrespective of the (epoch) function used;
b) when reducing 0, it reduces and directly affects the SOM representation of the input space.
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Abstract

The feedback-related negativity (FRN) is an event-related potential that differentiates between positive and negative feed-
back, occurring most prominently at frontocentral electrodes 200-300ms after delivery of feedback. The FRN seems to
be reflective of a reward prediction error, as the magnitude of the ERP component has been related to the magnitude of
prediction error estimated through reinforcement learning (RL) models. We aim to further understanding of the FRN
and its relationship to behavior by replicating the study of Reinhart & Woodman (2014), replacing tDCS with focal, tar-
geted transcranial magnetic stimulation (TMS) over the frontocentral region. Preliminary data shows that our participants
reliably generate a FRN when presented with incorrect feedback, and that single-trial estimates of theta power are signifi-
cantly correlated with RL-derived single-trial estimates of prediction error for correct trials. We will examine the effect of
stimulation both on participant behavior as well as on RL parameter estimates.
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Abstract

Cognitive penetrability describes cognition and perception as interconnected, with cognition impacting the process of
perception rather than just the interpretation. The current study addresses this claim in the domain of language, asking
if language helps people detect nearly-invisible stimuli. Two experiments were adapted from Lupyan and Spivey (2010),
where auditory cues were found to be more beneficial than visual cues in recognizing letters. Participants reported the
presence of a target letter that was either preceded by an auditory or visual cue (e.g., cues were either hearing emm or seeing
M, followed by a visual M as a target). Detection sensitivity was calculated and compared within cue presentation type.
Neither visual nor auditory cues helped participants recognize target letters more than the no-cue condition. These results
differ from previous work demonstrating linguistic facilitation and indicated that neither linguistic nor visual information
aid in perceiving a matching item.
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Abstract

Rhythm the organization of sounds in time is a universal feature of human music. Of the infinite ways of organizing
events in time, human rhythms are distributed categorically. We compared rhythms of classical piano playing and finger
tapping to rhythms of thrush nightingale songs. Across species, we found similar common rhythms, as relative durations
of intervals formed three categories: isochronous 1:1 rhythms, small integer ratio rhythms, and high ratio ornaments. In
both species, those categories were invariant within extended ranges of tempi, indicating natural classes. In all cases, the
number of rhythm categories decreased with higher tempi. Finally, in birdsong, high ratios (ornaments) were derived from
very fast rhythms containing inflexible (probably uncontrollable) interval ratios. These converging results indicate that
birds and humans similarly create simple rhythm categories from a continuous temporal space. Such natural categories
can promote cultural transmission of rhythmic sounds a feature that songbirds and humans share.
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Abstract

Child-directed speech (CDS), compared to speech between adults, shows a higher amount of repetitiveness, particularly
of sequences of utterances with self-repetitions. This phenomena, known as variation sets, has been found to be beneficial
for learning. Although previous findings indicated socio-economic status (SES) effects on the quantity of variation sets,
they were based on data from child-parent dyadic interactions in play situations. Given that SES comprises interrelated
factors affecting childrens quotidianity, here we examine SES effects on the use of variation sets in long recordings of
the family naturalistic environment of 30 low and middle SES Argentinian children (8 to 20 months). Variation sets were
automatically extracted from CDS provided by all the participants. Results demonstrated the effects of two factors related
to SES-differences: while parents education showed a positive relation to the quantity and extension of variation sets, the
number of people living in the household influenced it negatively.
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Abstract

Eye movements during decision making show systematic patterns such as increased fixations to the chosen option (i.e.
gaze cascades) and multiple gaze transitions between fixated options. Existing formalisms, such as multivariate decision
field theory, only provide limited scope for describing multiple reversals in the attentional focus and it is therefore unclear
how they can be applied to the underlying attentional dynamics. Here, we present an open systems dynamical model from
quantum theory to describe gaze transitions between choice options and the gaze cascade effect. Our model was tested on
a decision task, in which participants repeatedly decided among two complex options (i.e. that lacked easily quantifiable,
matched characteristics). The model can describe the gaze patterns on the individual trial level. It reveals structure in
the gaze dynamics that is predictive for choice behavior. The explanatory value of this account for studying attentional
dynamics during decision making will be discussed.
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Abstract

Many theories of discourse structure rely on the idea that the segments comprising the discourse are linked through inferred
relations such as causality and temporal contiguity. These theories often suggest that the information needed to determine
the relation can be found when the discourse is interpreted through the application of world knowledge. However, Sanders
(1997) found that the interpretation of ambiguous relations can be affected by the discourses genre. Similarly, Sagi (2006)
reported that participants were faster to interpret discourse relations when they were preceded by the same discourse
relation. The present study demonstrates that exposure to discourse relations such as result (e.g., John passed Mark in
a marathon. He won.) or explanation (e.g., John ... He was in great shape.) can affect the interpretation of subsequent
ambiguous relations encountered in an unrelated context. This result suggests that discourse relations are represented
independently of the context in which they appear.
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Abstract

We propose here a set of machine-learning algorithms to produce a generative low-dimensional and visually-understandable
space of the communicative repertoire of vocal species such as songbirds. As opposed to human speech, where individual
elements are well defined and grounded in principled ways, the methods for defining units of animal communication sys-
tems are often more varied and rely on human-centric heuristics. Using our method, we can automatically discover latent
structure in the vocal repertoire of individuals and use these to define-well principled categorical boundaries between vocal
elements in communicating species. Further, we can sample from latent representations to generate novel vocal units that
can be used to probe perceptual and physiological representations of communication. We demonstrate two use cases: (1)
automated labeling of songbird vocal repertoires showing novel structure in vocal communication, and (2) a perceptual
task demonstrating that behavioral and physiological representational spaces can be biased by contextual information.
GitHub.com/timsainb/AVGN
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Abstract

We identified smartphone usage patterns predicting overuse and developed an intervention to reduce these effects. In Study
1, 54 undergraduate students reported their daily screen time and the reasons for their smartphone use. A cluster analysis
revealed two usage patterns: as a tool (e.g., for directions), and to socialize or pass time. Only the latter pattern correlated
with daily phone use (r=.35). In Study 2, 28 pilot participants underwent a two-week-long behavioural intervention
involving disabling non-essential notifications and keeping their phone out of reach when not in use. All participants
complied with these guidelines, leading to a 1.2 hours/day reduction in usage (4h to 2.8h), a decrease in smartphone
addiction scores to normal levels, and a 30% decrease of scores on the Beck Depression Inventory-II (10.1 to 7). We
explore potential cognitive benefits of the intervention on memory and attention (measured by Operational Span and
Sustained Attention to Response tasks).
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Abstract

Prior work has shown that positively intentioned agents are held more responsible, causal, and blameworthy for subsequent
bad outcomes than negatively intentioned agents are held for good outcomes. Across a series of studies, we investigate
the underlying expectations that produce this asymmetry. We find that, in in the absence of explicit information about the
action performed, actions of positively intentioned agents who produce bad outcomes are inferred to be worse than actions
of negatively intentioned agents who produce good outcomes (Study 1). While both agents are judged to be incompetent
(Study 2), positively intentioned agents are attributed more control over subsequent negative outcomes (Study 3) and are
also considered more pivotal in bringing them about (Study 4). Together these results suggest that well-intentioned agents
are seen as having more control, perhaps because, we believe they are in a better position to modify their future behavior
to bring about positive outcomes.
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Abstract

When researchers carry out a null hypothesis significance test, it is tempting to assume that a statistically significant
result lowers Prob(H0), the probability of the null hypothesis being true. Technically, such a statement is meaningless for
various reasons: e.g., the null hypothesis does not have a probability associated with it. However, it is possible to relax
certain assumptions to compute the posterior probability Prob(H0) under repeated sampling. We show that the intuitively
appealing belief, that Prob(H0) falls when significant results have been obtained under repeated sampling, is in general
incorrect and depends greatly on: (a) the prior probability of the null being true; (b) Type I error, and (c) Type II error.
Through simulation we quantify uncertainty and find that uncertainty about the null hypothesis often remains high despite
a significant result. To help the reader develop intuitions about this common misconception, we provide a Shiny app
(https://danielschad.shinyapps.io/probnull/).
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Abstract

Word learning paradigms often teach children the name of a novel object and then immediately ask them to generalize the
label to another object. This study uses a new paradigm that affords the ability to determine how childrens generalization
changes over time. Participants (N=22, Mage=3.8 years) saw a novel object labeled by the experimenter (e.g., wug) and
then were shown five novel objects that each had an additional feature changed from the exemplar (i.e., the fifth object
had five changed features), either immediately after the exemplar or after a five minute delay. Category membership
endorsement of the five test objects was higher at immediate test than delayed test, suggesting that children represent
novel categories broadly at first but more narrowly over time. We propose that childrens forgetting of exemplars across
time leads to shifts in childrens generalization; as children forget exemplar features, category membership becomes more
specific.
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Abstract

Many everyday activities pose only weak constraints on the order, in which certain actions have to be performed. When
setting the table, for example, any order of putting the required items on the table will be fine as long as all necessary items
are on the table eventually. Despite the commonality of weakly constrained sequences in everyday activities, little is known
about how humans deal with such sequences. In this contribution, we argue that humans do not order weakly constrained
actions arbitrarily, but exhibit systematic patterns of orderings, which we term ordering preferences. Moreover, we argue
that the task environment’s spatial layout and its mental representation are key factors in determining such preferences.
An initial empirical study on table setting corroborates this reasoning by revealing ordering preferences that seem to be
based on a regionalization of space and the distances between the regions.
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Abstract

The number line placement task, in which individuals are presented with a target number and mark where it would be
located along a number line, has played an important role in the investigation of numerical cognition. However, recent
work suggests that different factors may influence performance on the task, making it a poor proxy for mental represen-
tation of number. In this study, adults completed a computer-based number line placement task with either standard or
non-standard endpoints. Consistent with previous research, responses in the standard condition were best fit by a linear
model, while responses in the non-standard condition were best fit by a logarithmic model. In addition, eye-tracking
data revealed different looking patterns between conditions, including greater fixations on and more frequent alternation
between endpoints in the non-standard condition and a leftward bias in the standard condition. This behavior may reflect
differences in number familiarity and strategy use.

3569



The Visual Representation of Abstract Verbs: Merging Verb Classification with
Iconicity in Sign Language

Simone Scicluna
University of Trento, Trento, Italy

Carlo Strapparava
FBK-Irst, Trento, Italy

Abstract

Theories like the picture superiority effect prove that visual information is vital in the acquisition of knowledge, such
as in language learning. Words can be graphically represented to illustrate the meaning of a message and facilitate its
understanding, but this rarely applies to abstract words. The current research turns to sign languages to explore the
common semantic elements that link abstract words to each other, pointing towards the possibility of creating clusters of
iconic meanings. By using sign language insight and VerbNets organisation of verb predicates, this study presents a novel
organisation of 500 English abstract verbs classified by visual shape. Graphic animation was used to visually represent 20
classes of abstract verbs (see on www.vroav.online). An online survey was created to achieve judgements on the graphic
visuals representativeness. Significant agreement between participants suggests a positive way forward for further research
and applications within multimodal communication and computer assisted learning.
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Abstract

The current study explored whether creative processes specifically incubation and the serial order effect extend to creativity
in mathematics, and if there is a relation to divergent thinking. A total of 155 postsecondary students completed an unusual
use task and a multiple-strategy math task. Participants were given 8 minutes to generate as many strategies as they could
for the math task, and then after a brief break, were given another problem with the same underlying structure for 4
minutes. We find evidence for a serial order effect in math, whereas across trials it became more difficult for participants
to generate a new strategy, but the strategies were rated as more creative. The brief break also provided some evidence of
incubation, as there was a boost in the number of overall strategies and creativity. We also found that divergent thinking
and mathematical creativity were significantly related.
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Abstract

Error detection and correction is a vital part of skill acquisition, but when training a complex, real time, dynamic task,
it can be difficult to isolate a true mistake in a sequence of decisions without clear correct choices. We use previously
developed high-performing, human-like models of the video game Tetris (Sibert et al., 2017) to analyze individual piece
placement decisions for players of high and low skill. In cases where the model’s choice differed from the human’s choice,
we examine the eye fixations made during the placement decision to determine if the disagreement is caused due to the
player performing at lower level than the model (i.e. not being aware of a better placement), the player performing at a
higher level than the model (i.e. deliberately making a suboptimal move in service of a long term strategy), or the player
making a true error.
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Abstract

The current research examines the degree to which thematic/referential music affects performance in Amabiles American
Haiku task. Thematic music conveys meaning to the listener by activating concepts associated with the music in semantic
memory. Ward (1994) demonstrated that generating novel exemplars is influenced by activated concepts in memory. Con-
sequently, participants listening to thematic music before writing a haiku should be more likely to incorporate thematic
elements into the haiku which increases the perceived creativity of the haiku. Participants specifically instructed to incor-
porate thematic elements into the haiku should include more thematic elements and write more creatively than participants
not instructed to include thematic elements and participants who wrote their haiku without having listened to thematic
music beforehand. 206 undergraduates listened to a 90 second sample of unfamiliar lullaby- or war-themed music. Partic-
ipants were instructed to write a haiku inspired by the music (Inspire), write a haiku after listening to the music (Neutral)
or write a haiku before listening to the music (Control). We found a significant main effect of the Inspire instruction on
incorporation of thematic elements into the haiku. Participants in the Inspire condition included significantly more the-
matic elements of the music into their haiku than participants in the Neutral condition or Control conditions. Participants
in the Inspired condition wrote haikus that were marginally more likely to be rated as more negatively valenced and were
more creative than the haikus written in the Neutral and Control conditions. Results suggest ways of increasing creativity
through use of thematic music.
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Abstract

Modeling cognitive processes is one of the major tasks of cognitive science. This work presents a computer model
of a study described in ”Flexible Strategy Use in Young Children’s Tic-Tac-Toe” (Crowley & Siegler, 1993) in which
authors made an attempt to characterize decision-making in a conflict-of-interests-like environment. In the experiments,
kindergarten/primary school children and an algorithm-based opponent played a series of games in Tic-Tac-Toe. The
outcomes seemed to indicate existence of a hierarchy of rules that is constructed with experience. Although already tested
algorithmically, the simulation detailed in the paper was applicable to a narrow class of problems only. The model shown
in this work was built using a cognitive architecture, i.e. computer-based structure mimicking general functioning of the
human mind. We used a rule-based system ACT-R that operates in mental rules paradigm and successfully replicated
results of the mentioned study.
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Abstract

How do individuals learn language when there are so many possible potential referents for each word? Prediction-based
theories of language learning propose that predictions enable individuals to learn from implicit negative evidence by
comparing the predictions to outcomes. However, the role of prediction errors for learning has yet to be established.
Traditionally, prediction errors have been believed to hinder learning. Recently though, prediction errors have been as-
sociated with improved novel word acquisition in cross situational learning. This present study used a cross-situational
word learning task to examine the relation between prediction error-based processes during word learning and vocabulary
size. The results showed that learners who switched their gaze more quickly from the non-target to the target image when
they had to detect and correct prediction errors had higher productive vocabularies. This research supports the theory that
productive vocabulary is strongly tied to predictive processes.
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Abstract

Numerous classifiers for machine learning are powerful and effectivean important path forward is decreasing the complex-
ity and increasing the transparency of the solutions achieved. RELIC (REcursive LInear Classifer) consists of recursively
applying a classifier to the training items not successfully accounted for in the previous iteration to find subsets within the
training data that yield simpler classification schemes. Chooser models are iteratively added and trained on item-to-subset
assignments to learn a mapping between input space and the classifier ensemble. Test examples are passed through the set
of choosers to select the appropriate subset-classifier pairing to generate a classification. While applicable to any classifier,
we begin by evaluating RELIC using logistic regression and linear SVM to determine whether they perform better under
the recursive approach and become competitive with non-linear classifiers. Application of this approach to non-linear
classifiers and potential implications for the broader science of learning are also addressed.
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Abstract

The mainstream approach in NLP is to train systems on large amounts of data. Such passive learning contrasts with the way
language is learnt by humans. Human language is acquired within communities, it is culturally transmitted and changes
dynamically. These evolutionary mechanisms have been extensively studied in the field of Language Evolution. Despite
limited prior interaction between fields, such mechanisms are now increasingly incorporated into NLP systems. Such
models have the potential to both study the evolution of language in multi-agent simulations with state-of-the-art (deep)
learning systems in more naturalistic settings and improve NLP systems by having language emerge organically. We
examine how findings from a model by Havrylov & Titov (2017) compare to those from traditional Language Evolution
models and quantify the emerging compositionality using an existing Language Evolution method (Tamariz, 2011). This
approach reveals novel insights into the generated data, the applied methodology and the nature of compositionality.
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Abstract

Previous research has suggested that numerosity judgements are based not just on perceptual data but also past experi-
ence, and so may be influenced by the form of this stored information. The representation of such experience is unclear,
however: numerical data can be represented by either continuous or discrete systems, each predicting different general-
isation effects. This study therefore contrasts discrete and continuous prior formats within numerical estimation using
both direct comparisons of computational models using these representations and empirical contrasts exploiting different
predicted reactions of these formats to uncertainty via Occam’s razor. Both computational and empirical results indicate
that numeroisty judgements rely on a continuous prior format, mirroring the analogue approximate number system, or
number sense. This implies a preference for the use of continuous numerical representations even where both stimuli and
responses are discrete, with learners seemingly relying on innate number systems rather than symbolic forms acquired in
later life.
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Abstract

Prior research has shown that greater EEG alpha power (8-13 Hz) is characteristic of greater creativity. This study investi-
gates the potential for machine learning to classify more and less creative brain states. Participants completed an alternate
use task, in which they thought of normal or uncommon (more demanding) uses for everyday objects (e.g., brick). We
hypothesized that alpha power and reaction time would be greater for uncommon uses, and that a trained machine learning
model would be able to reliably classify data from the two conditions. Participants responded much faster in the normal
condition, compared to uncommon; alpha was significantly greater for the uncommon condition; and 73.3% classifica-
tion accuracy was attained when a trained model was applied to new data. Future research will attempt to implement
neurofeedback training to maintain optimally creative states.

3579



Effects of Instructor Presence in Video Lectures: Rapport, Attention, and
Learning

Andrew Stull
University of California, Santa Barbara, Santa Barbara, California, United States

Logan Fiorella
University of Georgia, Athens, Georgia, United States

Rebecca Similuk
University of California, Santa Barbara, Santa Barbara, California, United States

Stevi Ibonie
University of California, Santa Barbara, Santa Barbara, California, United States

Richard Mayer
University of California, Santa Barbara, Goleta, California, United States

Abstract

Do students learn better from video lectures when an on-screen instructor is socially presentthat is, when students can see
the instructor’s face and eye gaze during the lecture? The present study explores how access to the instructors face and
eye gaze affects students feelings of social rapport, attention to the lesson, and learning outcomes. The study compares
a video lecture about the human kidney where students either have access to the instructors face and eye gaze during the
lecture or do not (i.e., the instructor does not face the camera). Students reported higher levels of engagement, directed
more eye fixations to the lecture material rather than the instructor (based on eye-tracking metrics), and performed better
on both retention and transfer posttests after viewing a video lecture with a socially present, on-screen instructor. Results
suggest that social cues play a role in guiding academic learning from instructional video.
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Abstract

Suddenly comprehending the solution to a vexing problem is often accompanied by an Aha! experience. The driving
mechanisms behind this experience are unclear. One way to address this, is to study Aha! under cognitive load. If Aha! is
the result of the same explicit process that we use to solve everyday problems, it should be influenced by cognitive load in
a similar way. However, if it constitutes a different, more implicit process, cognitive load might not affect it at all. Using
a dual-task paradigm where participants solved word puzzles under different memory loads, we found that word puzzles
solved with Aha! were more accurate and led to higher solution confidence. When memory load increased, only puzzles
without Aha! were solved more slowly. The fact that solution retrieval with Aha! was unaffected by memory load, implies
that Aha! experiences rely on a process that does not compete for limited cognitive resources.
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Abstract

Previous studies have suggested that, socially anxious individuals tend to avoid eye contact while looking toward faces.
The study designed an emotional faces task consisted of human and comic face stimuli with 6 different emotions (happy,
angry, sad, scared, stunned, confused), and recorded the eye movements to examine the hypotheses above. The results
revealed that high social anxiety (HSA), medium social anxiety (MSA) and low social anxiety (LSA) individuals have no
significant difference on total fixation duration of the eyes, nose, and mouth among 6 different emotions. However, while
focusing on the angry expression, LSA have significantly higher total fixation duration, visit count and area normalized
score on the nose. It shows that LSA tend to focus on the nose intentionally when a person shows an angry face. Further-
more, HSA show lower proportion of eyes to eyes, nose and mouth fixation duration than MSA in happy, sad and stun
faces.

Keywords: eye tracking, social anxiety, emotional faces
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Abstract

Age is a primary social category and, with little effort, we can quickly approximate it from photographs. Here, we analyze
1.5 million age judgments derived from a popular online website where participants estimate the age of a person depicted in
a photograph, with feedback. We find that median age judgments across participants are linear in the actual age, with little
bias. However, the slope is considerably less than one, such that the aggregate overestimates the age of younger people
and underestimates the age of older people. Age estimates are found to be unbiased at 37.5 years, which coincides with the
median age across all the depicted persons. These results are consistent with an account in which, over time, participants
learn to calibrate an analogue magnitude to the learned distribution of encountered ages, combining photographic evidence
with distributional information to arrive at an estimate that balances the two.
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Abstract

Hirose & Mazuka (2015 & 2017) demonstrate that Japanese speaking adults and first graders both show anticipatory
compound processing, using the language-specific compound accent rule (=CAR). That is, six- to seven-year-old children
can exploit compound prosody to disambiguate the structure and meaning of a given compound. However, we do not
know exactly when and how children start exploiting the CAR to properly comprehend compounds. Thus, we investi-
gated Japanese-speaking childrens acquisition of the CAR and their development of compound processing. We conducted
longitudinal experiments using compound comprehension tasks on 65 Japanese-speaking children aging from two- to four-
years. We found that childrens compound processing strategies changed after their acquiring the CAR. Before acquiring
it, children could not identify the compound head; instead they showed a language-general parsing preference for the
left-most part of a compound. Our results suggest that childrens acquisition of the language-specific CAR enables their
compound processing.
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Abstract 

The current study explored the unique linguistic characteristics 
of the self-conscious emotion shame. The data used for the 
analyses were part of two larger studies in which semi-
structured interview techniques were used that had learners 
describe shameful or frustrating experiences in the context of 
psychology and engineering courses. Results revealed when 
describing an experience of shame, learners use significantly 
more positive emotional words, significantly more words 
associated with anxiety, and significantly fewer words 
associated with anger. Additionally, learners use simpler 
syntax, more abstract words, and have less cohesive speech. 
Educational implications are discussed.  

Keywords: emotions; shame; learning centered emotions; 
cognition; computational linguistic analysis 

Objective 

A gap currently exists in the literature regarding a 

quantitative exploration of the self-conscious emotion of 

shame. Adding to the body of literature on negative emotions, 

this study explored the unique linguistic characteristics of 
shame and frustration with the hope that we can better 

understand students’ experiences of these emotions. 

Theoretical Framework 

Language is a powerful cognitive communicative 

process that has been the focus of research for centuries. 

Speaking and writing are expressive through the specific 

words chosen by individuals, as well as the frequency of 

specific words, and become one’s “style”. One’s linguistic 

style in speech and writing has been suggested to be 

indicative of individual differences and personality (Groom 

& Pennebaker, 2002). We explored differences with respect 

to descriptions of the emotions of shame and frustration to 

better understand cognitive aspects of these emotions through 

speech-analysis. 

Linguistic Analyses 

From the study of dead languages to the biological 

nature of language within the brain, researchers have sought 

to understand how humans possess complex language 

abilities, the impact of language on humans, and countless 

other aspects of human language-use. Human language is 

undeniably expressive in content and dialect, however, this 

does not account for the full expressive power of language. 
The style of which we speak and write is also critically 

expressive but is frequently unnoticed. Speaking and writing 

is expressive through the particular words chosen by 

individuals and the frequency of specific words; these 

linguistic styles in speech and writing have been suggested to 

be indicative of individual differences and personality 

(Groom & Pennebaker, 2002; Pennebaker & King, 1999). 

The study of linguistic style and content has 

numerous applications, but, until recently, conducting these 

analysis has been a difficult task that consisted of counting 

and organizing words with the use of individual judges 

(Pennebaker, Mehl, & Niederhoffer, 2002). However, an 
objective analysis of language patterns through word 

counting software has led to an increase in our understanding 

of what particular parts of speech contain a deeper level that 

is not naturally perceived (Pennebaker & Graybeal, 2001). 

We believe that using this type of analyses, we can gain 

insight into students’ experiences of emotions. 

Shame 

Although there are many ways to define shame, for 

the purposes of this study, shame is an acutely painful 

affective state that is brought on by a failure to meet internally 

set rules, ideals, goals, or standards (Turner, Husman, & 

Schallert, 2002). A gap currently exists in the literature 

regarding a quantitative exploration of shame. Of the research 

that has been conducted, much has been qualitative in nature 

and not focused on “academic” shame (i.e., shame affiliated 
with learning and education). One possible reason for the 

underdeveloped exploration of this construct is due to the 

difficulty in studying it. More specifically, research has 

shown that individuals may deny their feelings of shame, they 

tend to self-isolate when they feel shame, and they may be 

unwilling or unable to express themselves when they feel 

shame (citation needed). In fact, one’s difficulty in 

communicating a shameful experience may be a distinctive 

characteristic of shame (Turner, 2014; Babcock & Sabini, 

1990, Lunde, 1958).  

Although research has suggested the difficulties in 

studying shame, the difficulty does not detract from the 

importance of studying shame. Tangney and Dearing (2002) 

suggested that, “Guilt, and especially shame ... are powerful, 

ubiquitous emotions that come into play across most 
important areas of life.” (p. 8). Contemporary research has 

shown that experiences of shame can have a “negative impact 

on interpersonal behavior and functioning” (Tangney & 
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Dearing, 2002, p. 5). Within the context of education, a 

number of educational psychologists have asserted that 

feeling shame can interfere with motivation, and negatively 

impact students’ academic goals and achievement (Pekrun, 

Frenzel, Goetz, & Perry, 2007; Weiner, 1986). Indeed, once 
students experience shame, their ability to become 

cognitively engaged may be hindered, they may lose 

motivation for studying, and, they may feel reluctant to attend 

class (Turner, Husman, & Schallert, 2002). 

Given the importance of gaining a better 

understanding of this self-conscious emotion, the current 

study sought to compare the unique linguistic characteristics 

of shame with that of frustration. Our intent was to better 

understand the underlying composition of shame 

expressions.  

Data Sources, Evidence, Objects, or Materials 

Linguistic Inquiry and Word Count (LIWC)  

The present study used a program called Linguistic 

Inquiry and Word Count (LIWC) to analyze speech. LIWC 

allows researchers to efficiently enter text files into the 

program in order to obtain outputs that cover a number of 

language indices. For example, if we were to convert Of Mice 

and Men by John Steinbeck into a text file and enter it into 

LIWC we would obtain the exact word count, words per 

sentence, and a description of approximately 90 indices. 
These indices are extremely insightful in objectively 

understanding what a text consists of and the mental state of 

the author or speaker (Groom & Pennebaker, 2002). For the 

current study, we focused only on indices that were 

theoretically relevant: 1) Affective processes (e.g., happy, 

cried) 2) Positive emotion (e.g., love, nice, sweet) 3) 

Negative emotion (e.g., hurt, ugly, nasty) 4) Anxiety (e.g., 

worried, fearful) 5) Anger (e.g., hate, kill, annoyed) and 6) 

Sadness (e.g., crying, grief, sad).  

Coh-Metrix  

Coh-Metrix, is a system for computing 

computational cohesion and coherence for written and 

spoken texts. For the purpose of the current study, we 

explored five specific indices within a Coh-Metrix: 

Narrativity, Syntactic Simplicity, Word Concreteness, 

Referential Cohesion, and Deep Cohesion. Narrative text 
tells a story, with characters, events, places, and things that 

are familiar to the reader. Syntactic simplicity reflects the 

degree to which the sentences in the text contain fewer words 

and use simple, familiar syntactic structures, which are less 

challenging to process by the reader. Word concreteness 

refers to texts that contain content words that are concrete, 

meaningful, and evoke mental images. Texts high in 

referential cohesion contain words and ideas that overlap 

across sentences and the entire text. Deep cohesion reflects 

the degree to which the text contains causal, intentional, and 

temporal connectives (McNamara, Graesser, Cai, & 

Kulikowich, 2011). The theoretical purpose of focusing 

solely on these five indices is because previous research has 

found that dozens of measures funnel into these five major 
factors (Graesser, McNamara, Cai, Conley, Li, & 

Pennebaker, 2014).  

Methods 

The data used for analysis are subsets from two 

larger studies. As part of one study, participants were 
recruited from an upper-division psychology course at a 

midwestern R1 university. Five-weeks into the semester, 

after obtaining in-class feedback on their midterm exam, 

students completed a survey (Experiential Shame Scale, 

Turner, 2014, Cronbach’s alpha = .86) to determine the extent 

to which they perceived their grade was a failure and if they 

were experiencing the emotion of shame. Eight students, who 

indicated they experienced shame after their midterm exam, 

agreed to participate in semi-structured interviews two weeks 

before the final exam. All interviews were recorded and 

transcribed verbatim. 

We compared the shame interviews with that 

obtained in a second study, one that used an interpretative 

phenomenological analysis (IPA) of students’ experiences of 

frustration in the context of college-level science and 

engineering courses. The semi-structured interviews were 
conducted by an undergraduate student who had been 

extensively trained to conduct phenomenological 

interviewing. Select portions of these interviews comprised 

our frustration corpus (n = 5) (Huff & Clements, 2018).  

The interviews from both studies were approved by 

the IRB offices of each investigator for the respective studies. 

Additionally, the procedures of the present investigation were 

approved by  lead author’s institutional IRB. 

Results 

Results from our LIWC analysis indicated that 

students describing a shameful experience tended to use more 

positive emotional words than students describing a 

frustrating experience, t (11) = 1.629, p  = .06 (one-tailed), d  

= .92. Shame-describing students also used significantly 

more words associated with anxiety than students who 

described their frustration, t (11) = 2.644, p = .023, d = 1.50. 

Lastly, results showed that when describing a frustrating 

experience, students tended to use significantly more words 

associated with anger, t (4.409) = 2.623, p = .05, d = 1.49. 

See Figure 1. 
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Figure 1: Linguistic Inquiry and Word Count (LIWC) results. 

 

The results from the Coh-Metrix revealed that, when 

discussing an experience of shame, students tended to use 

significantly simpler syntax, t (11) = 6.616, p = .000, d = 3.77. 

They also used more abstract words, t (4.326) = -2.909, p = 

.04, d = 1.66, and had less referential cohesion, t (3.062) = 

.01, d = 1.75. See Figure 2. 

 

 
 

Figure 2: Coh-Metrix results. 

 

Scholarly Significance 

The results from the current study revealed that 

shame does in fact have a unique linguistic profile when 
compared to frustration. Surprisingly, learners who described 

an experience of shame tended to use significantly more 

positive emotional words (e.g., love, nice, sweet), along with 

more words associated with anxiety (e.g., worried, fearful). 

Additionally, students who described a shameful experience 

used significantly fewer words associated with anger 

compared to learners describing frustration. The Coh-Metrix 

results revealed that, when discussing a moment of shame, 

learners tended to use significantly simpler syntax, more 

abstract words, and demonstrated less referential cohesion.  

Our results supported the notion that, when 

individuals talk about shame shame-experiences, the use of 

language is difficult. Students spoke abstractly about their 

shame experiences, while they were more able to articulate 

their frustration experiences. Shame-experiencing students 

also used less linguistic complexity and their narrative had 

less cohesion than students describing frustration. A teacher 

could learn to pick up on these linguistic elements and use 

this information to help students bounce back from the 

debilitating effects of experiencing academic shame.   

Imagine a student who, after having failed an exam 

is staying after class to talk to the instructor about his/her 

performance. What if it could be determined, based on speech 

alone, whether these individuals are experiencing shame? 
What if a teacher was able to figure out which subset of 

students were actually experiencing shame and were able to 

be proactive to the potential  negative consequences? 

Mitigating shame-consequences by understanding linguistic 

components of the what- and how-indicators of shame 

experiences, could facilitate teachers’ ability to provide 

motivational interventions. Recognizing linguistic 

components of shame may be especially important given that 

individuals may deny their feelings, and may be unwilling or 

unable to express themselves, particularly if they self-isolate. 

In other words, as of now, we have no reliable way (other 
than perhaps self-report measures) to determine who is 

experiencing shame. Thus, intervention is near impossible 

without perceiving reliable indicators. 

We do note that this study is limited in making 
comparative claims between the two sets of interview 

transcript-data. While the two sets of transcripts used in this 

analysis did, indeed, focus on different constructs (i.e., 

frustration and shame), they also differed according to other 

characteristics, such as the overall study-design, the 

methodology driving the investigations, and the institutions 

in which the data collection occurred. Thus, we make our 

claims with sensitivity to the multiple ways in which the two 

interview datasets can be compared. Yet, even with these 

limitations considered, we maintain that the linguistic profile 

that accompanies students’ experiences of discussing shame 

provides compelling implications for educators. 
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Abstract

Event segmentation divides continuous experience into meaningful events and guides attention, memory, and learning.
Culture could impact event segmentation by emphasizing the importance of different aspects of experiences (attentional
focus), and by providing different exemplars of everyday activities (familiarity). In this study, Indian and US viewers iden-
tified large (coarse) and small (fine) events in videos of everyday activities recorded in Indian and US settings. Analyses
revealed that US viewers segmented the activities at a higher rate than Indian viewers. In addition, while the boundaries
identified by US viewers were more strongly associated with visual change, boundaries identified by Indian viewers were
more strongly associated with changes in actions and goals. However, there was no evidence that familiarity with an activ-
ity, as indicated by the match between a viewers culture and the activity setting, impacted segmentation. Culture appears
to affect how people define events during perception, independent of familiarity.
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Abstract

Internally focused attention, characterized by reduced sensory input, is often correlated with memory retrieval and the
ability to combine memories to generate new ideas. Accordingly, the attenuation of external distractors (e.g., via reduced
visual input) may be expected to enhance idea generation. We conducted a study requiring participants to perform an
alternative uses task, in either a well-lit or totally dark environment. We also measured eye movements, as they have been
linked with idea generation and attention. Departing from prior studies, our participants were not presented with visual
stimuli, but received auditory task instructions. Preliminary analyses replicated the eye behavior attributed to internal
attention in previous research, including more and shorter fixations and greater saccade amplitude in the dark. While these
results suggest a positive relationship between darkness and internal attention, task performance was not significantly
influenced by darkness manipulation. The findings and suggestions for future studies will be discussed.
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Abstract

A key challenge in language acquisition is learning morphological transforms relating word roots to derived forms. Unsu-
pervised learning algorithms can perform morphological segmentation by finding patterns in word strings (e.g. Goldsmith,
2001), but struggle to distinguish valid segmentations from spurious ones because they look only at sequences of characters
(or phonemes) and ignore meaning. For example, a system that correctly discovers ¡add -s¿ as a valid suffix from seeing
dog, dogs, cat, cats, etc, might incorrectly infer that ¡add -et¿ is also a valid suffix from seeing bull, bullet, mall, mallet, etc.
We propose that learners could avoid these errors with a simple semantic assumption: morphological transforms should
approximately preserve meaning. We extend an algorithm from Chan (2008) by integrating proximity in vector-space
word embeddings as a criterion for valid transforms. On the Brown CHILDES corpus, we achieve both higher accuracy
and broader coverage than the purely syntactic approach.
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Abstract

We investigated whether bilingualism affects non-verbal model-free vs. model-based reinforcement learning (RL). This
dual-systems theory posits independent valuation systems in controlling choices and may overlap with systems of bilingual
executive control. Forty-five bilingual adults completed a two-stage decision making task with transition and probability
of reward dynamically varying. First, we calculated a model-based index to measure how much participants integrate
environmental structure with reward when planning choices. Consistent with monolingual results, we found that bilinguals
display model-free and model-based RL to differing degrees. Next, we assessed whether individual differences in second
language (L2) age of acquisition (AoA) and language entropy interact with these RL systems. Bilinguals with earlier
L2 AoA and greater language entropy demonstrated model-free RL, whereas bilinguals with later L2 AoA and lower
language entropy demonstrated greater sensitivity to model-based reward frequencies. This suggests an interesting link
between bilingual experience and how reward shapes decision-making strategies.
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Abstract

Understanding the origins of linguistic compositionality is a fundamental challenge in evolutionary linguistics. Prior work
has explored this topic through dynamical computational modeling and experiments in iterated learning. We explore
these questions using RL agents tasked with developing cooperative communication strategies in a signaling game. We
analyze how various mechanisms (such as Bayesian pragmatic reasoning) and constraints (such as limited memory) may
affect compositionality and generalizability in the invented communication protocols. In particular, our preliminary results
suggest that incremental pragmatic reasoning induces a bias towards lexical compositionality. To evaluate the extensibility
of our model, we compare the behavior of the RL agents to the behavior of humans on the same task. That is, we ask
humans to coordinate in a reference game task by repeatedly composing non-linguistic symbols. We discuss ways in which
the resulting protocol mirrors and differs from that produced by the RL agents.
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Abstract

Attitudes concerning national identity (e.g., nationalism, patriotism) are known to correlate with various social behaviors
such as party preferences in voting. For instance, survey data indicates that Japanese citizens who are proud of being
Japanese (i.e., patriots) and those who are high in a right-wing tendency are more willing to vote for the conservative party
(Liberal Democratic Party). In this study, we employed an agent-based modeling approach to understand how national
identity affects individual voting intentions. The individual agents and the political party agents interacted with each other
by spreading their political attitudes (e.g., VAT should be increased to maintain the pension insurance system), and the
recipients of the messages changed their attitudes (e.g., persuasion). The simulation revealed that the effects of persuasive
messages were moderated by the strength of its own national identity attitudes, and the resultant individual agents voting
preferences simulated the human participants data more precisely.
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Abstract

Surgical error is the most frequent and costly type of medical error, posing a direct threat to patient safety. Surgical errors
have been described as a ’cognitive phenomenon’, as it is largely the shortcomings of the surgeons cognitive processing
that leads to error. In laparoscopic surgery, visuospatial processes are known to be crucial for skill acquisition, although it
remains unclear as to which exact processes are important, how these develop over time and intraoperatively, and how they
influence competency development. We will report interim spatial cognitive baseline results of 35 surgeons, 17 residents
and 18 specialists, taking part in an on-going longitudinal study at two major hospitals in Germany. Our results offer
new insight into the role of visuospatial cognition in domain-specific expertise, and shed new light on the malleability of
visuospatial processes in the skill acquisition process.
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Abstract

Large numbers play a significant role in personal and political financial choices and the understanding of exponential
growth. Large numbers are also often misjudged, showing a logarithmic number understanding. Small numbers are how-
ever represented in a linear fashion, due to direct experience on for example number lines. Earlier, it was shown that large
number comprehension can be trained, influencing societally relevant choices. We trained large number comprehension
using a serious game (RunTheLine): an infinite runner game where an avatar runs on a number line ranging till one billion.
Due to the game mechanics, the players walk the number line at both small and large numbers in small steps, making them
aware of the continuity of the number line. Pre-post test differences show a change in economic judgments compared to
a control group. This offers a scientific manipulation of behavioral and cortical number line representations and potential
educational applications.
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Abstract

Automatic model generation based on user-task interactions is of great use for behavioral predictions and understanding
of cognition. Mapping which environment features cause which actions seems like a classification problem suited for
Deep Learning (DL). Unfortunately, DL does not create an observable model, and is more suitable to making predictions
from billions of examples than from limited observations. There are, however, many tasks that lend themselves to symbolic
input, allowing an alternative approach - Symolic Deep Learning (SDL). Symbolic hierarchical representations have a long
history in Psychological literature, though some of these were integraged as models of memory without action-selection
(e.g. EPAM/CHREST), and some have run into computational limitations (e.g. configural-cue). SDL stands to benefit
from better model integration and modern growth in computational power and algorithmic efficiency, and promises to be
the right paradigm for automatic model generation from limited user observations.
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Abstract

This study examined whether embedding explanations in guided activities promotes conceptual change about a physical
science concept. One common misconception that children have is that heavy objects fall at a faster rate than light ones.
We used a pre-, post-, and delay test design to address this misconception. Forty 5-year-old children were assigned to one
of two conditions: a guided play activity that included an explanation about gravity, or the same guided play activity but
with no explanation provided. Childrens explanations improved immediately at post-test (p =.001, 95% CI [0.58, 2.33])
and after a one-week delay test (p ¡.001, 95% CI [1.23, 2.95]) when the explanation about gravity was embedded in the
activity. There was no improvement at post-test (p =.36) or delay-test (p =.93) when children completed the activity only.
This study shows that conceptually rich explanations are an effective pedagogical tool for promoting belief revision in
children.
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Abstract

Eye movement research reveals how people allocate visual attention when reading, scanning the environment around them
(Rayner, 2012). These cognitive processes come together when people view what sociolinguists refer to as, the linguistic
landscape, consisting of signage in the public space. Linguistic landscapes around the world are jointly determined by top-
down socio-legal provisions, and bottom-up capacities and attitudes of individual people (Leimgruber, Vingron, & Titone,
2019). In a preliminary study, we found that bilinguals differed in how they viewed naturally occurring linguistic landscape
images (Vingron et al., 2018). We are currently analyzing data from a follow-up study that investigated whether individual
differences in language experience among bilinguals modulate their eye movements to artificial linguistic landscape images
that systematically manipulate text language, position, and size, while controlling for linguistic content.

3599



Integrating stereotypes and individuating information based on informativeness
under cognitive load

Thalia Vrantsidis
University of Toronto, Toronto, Ontario, Canada

William Cunningham
University of Toronto, Toronto, Ontario, Canada

Abstract

When making inferences about another person (the target), perceivers often have to integrate multiple sources of informa-
tion. This can include stereotypes about the targets groups (e.g., age, race, occupation) as well as other information about
the target (individuating information). In simple situations, perceivers approximate ideal Bayesian information integra-
tion, relying more heavily on information that is more informative for the judgement. However under cognitive load with
cognitive resources taken up by other demands people may instead rely on simplifying heuristics. We investigate several
possible heuristics that people may use under load, including relying primarily on stereotypes rather than individuating
information, as suggested by previous research, and we test if and how these heuristics depend on how informative each
source of information is. By clarifying how stereotypes are used in less-than-ideal cognitive conditions, this work has
implications for when stereotypes will tend to be overused in real-world situations.
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Abstract

A growing body of research suggests that infants and children are sensitive to signals of information gain. However, the
value of a piece of information may also change as the learner knows more. How do changes that occur naturally in
childrens intuitive theories contribute to their subsequent learning? Here we tested whether children who are at different
stages of understanding an intuitive theory also differ in their interest in acquiring more information in the same domain.
We tested childrens performance in three distinct domains, including intuitive biology, psychology, and beliefs about psy-
chosomatic events. We found that children at earlier stages of their intuitive theories were more likely to seek information
in the related domain than children with mature knowledge. These results are the first to show the relationship between
natural changes in childrens existing knowledge and childrens future learning preferences.
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Abstract

We investigated whether Chinese readers learn to segment words automatically while reading unspaced sentences through
statistical learning. Experiment 1 replicated Saffran et al.s (1997) study using Chinese monosyllables presented auditorily
to foreign learners of Chinese. The learning outcome was .57 on a two-alternative forced-choice test, statistically better
than guessing (.5). Experiment 2 repeated Experiment 1 but presented the Chinese monosyllable string visually as a
character string. Experiment 3 repeated Experiment 2 but doubled the exposure. Experiment 4 repeated Experiment 2
with characters of fewer numbers of strokes. The learning outcomes were .53, .52, and .52., not significant when tested
individually, but was significant when the data were combined. At least 60% of the participants in each experiment showed
the effect. We conclude that visual statistical learning does contribute to automatic word segmentation in Chinese reading.
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Abstract

In a classic paper, Miller (1956) summarized findings showing that people can only identify a limited number of distinct
stimuli at a time. One puzzling aspect of this capacity limitation is that it is approximately invariant to range. That
is, the number of accurately identifiable stimuli is approximately the same regardless of how far apart the stimuli are
spaced. Models of this phenomenon have suggested that people operate in a context-coding mode when performing these
tasks, effectively carrying out a form of contextual normalization, but why such normalization might take place is unclear.
Here, we propose an explanation by appealing to a tradeoff with generalization. Specifically, we implement contextual
normalization in a recurrent neural network and show that this normalization enables stronger generalization in a relational
reasoning task, but also results in a perceptual capacity limitation which captures many of these classic phenomena.

3603



Wriggly, Squiffy, Lummox, and Boobs: What Makes Some Words Funny?
Chris Westbury

University of Alberta, Edmonton, Alberta, Canada

Geoff Hollis
University of Alberta, Edmonton, Alberta, Canada

Abstract

Theories of humor suffer from insufficient operationalization. We build on the Engelthaler & Hills (2017) humor rating
norms, by analyzing the semantic and word form factors that play a role in the judgments. Our model can predict the
original humor rating norms and ratings for previously unrated words with greater reliability than the split half reliability
in the original norms. The model is consistent with several theories of humor, while suggesting that those theories are too
narrow. In particular, it is consistent with incongruity theory, which suggests that experienced humor is proportional to
the degree to which expectations are violated. Words are judged funnier if they are less common and have an improbable
orthographic or phonological structure. We also describe and quantify the semantic attributes of funny words that are
judged funny and show that they are partly compatible with the superiority theory of humor, which focuses on humor as
scorn.
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Abstract

Children enrolled in language-immersion programmes may be required to learn math in the immersion language. Fol-
lowing the framework of the Pathways Model (LeFevre et al., 2010; Sowinski et al., 2014), the goal of the present study
was to understand how instructional language supports math learning by comparing patterns of performance of immersion
and non-immersion students. Participants included 182 grade 2 students (Mean age= 7.8 years): 108 students were en-
rolled in French immersion programs and were learning math in French (their second language) and 74 were enrolled in
non-immersion programs and were learning math in English (their home language). Participants were tested on a number
of general cognitive measures as well as math specific outcome measures. Results show that overall, across both immer-
sion and non-immersion students, linguistic, quantitative and working memory components contributed to math problem
solving. However, within the linguistic component there were differences between the direct and indirect pathways.
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Abstract

The goal of the study was to compare potential changes in architecture when different set sizes were manipulated as a
function of age difference and reading group difference in the Visual Search Task in Coglab. Based on the RT performance
of Chinese EFLs aged 11 15 years old in feature and conjunction search when target was absent/present across three
different set sizes (display size 4, 16 & 64), we conducted tests for architecture, stopping rule and dependency in visual
search between typical and poor readers. What we are interested in are as follows: First, how a parallel/serial mental
architecture in visual search might be predicted by both item features and person characteristics; and second, if stopping
rule in target absent search is self-terminating/ exhaustive in nature. The aim of the study was to find cognitive behaviour
that would accommodate developmental deficiency in EFL reading.
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Abstract

The co-occurrence of objects in visual scenes reflects the semantic structure of the world: cups are more likely to appear
in scenes with tables than airplanes, for example. Both human and machine vision use these co-occurrences to support
recognition of individual objects. A reasonable assumption is that these co-occurrences are ubiquitous and present for
all perceivers. However, the scenes observed by infants are highly dependent on their body postures and locations, both
of which change dramatically over the first year of post-natal life. To measure these changing co-occurrences in infant-
perspective scenes, we collected images from infants wearing head cameras in everyday home environments comparing
three age groups: 1-3, 6-8 and 11-12 months. Using graph theoretical analysis, we conclude that the semantic structure of
scenes in 6-8 months differs from whats in younger and older infants.
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Abstract Syntactic Knowledge or Limited-Scope Formulae: A Computational
Study of Childrens Early Utterances

Qihui Xu
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Virginia Valian
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Xiaomeng Ma
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Abstract

Do childrens early utterances reflect abstract syntactic knowledge or slot-filler formulae developed through word imita-
tion? This study compares development of part-of-speech (POS) sequences with word sequences using language models
(LMs) trained on mothers utterances (N=1,272,139) from CHILDES English corpora, in which POS tags are automatically
assigned by MOR and POST programs (MacWhinney, 2000). Word-based and POS-based LM probabilities for childrens
multi-word utterances in the Providence corpus (Brschinger et al., 2013, 15-36 months, Nchildren=6, Nutterances=50,717)
were calculated as a function of age. Word-based LM probability of childrens multi-word utterances first increases with
age and then levels off after 23 months. By contrast, POS-based probability remains high and stable across all ages. This
suggests children have adult-like syntactic knowledge even at a very early age when their word sequences are still not
adult-like. The pattern of results supports the abstract syntax view. Additional studies will use more accurate POS-taggers
and larger datasets.
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The effects of object motion observations on physical prediction
Moyuru Yamada
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Josh Tenenbaum
MIT, Cambridge, Massachusetts, United States

Abstract

People use knowledge about physical objects to predict and plan their actions, but this knowledge about objects can be
directly perceived or simply inferred. In this experiment, participants chose the direction to shoot computerized cannons
to hit targets. These cannons differed in how fast they shot the cannonball, but participants could learn this information
either from observing the full trajectory of a prior shot, or just observing the outcome. While the cannonballs initial speed
can be determined from the end state alone, additional information in the full trajectory might improve these estimates.
We find that performance is only worse in the end-state trials if these trials were tried first; if participants judged the full
trajectory trials first, their performance did not decline on the end-state trials. We explore this order effect using a model
of noisy physical inference that assumes learning from prior trial blocks.
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Commonality search shares processes with alternative categorization
Mayu Yamakawa
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Sachiko Kiyokawa
Nagoya University, Nagoya, Japan

Abstract

We investigated how people find commonalities between unrelated objects as a basis of generating creative ideas by ex-
amining the relationship between performances on commonality search and alternative categorization tasks. We predicted
a positive correlation between performances on the two tasks because one needs to focus on some obscure features of
objects to do both tasks well. Thirty-one undergraduates were asked to engage in both commonality search and alternative
categorization tasks. They were asked to list as many as commonalities between nine unrelated object pairs for 90 seconds
for each pair. They were then asked to list as many categories as possible that each of five objects belong to for 60 seconds
per object. The results showed a significant positive correlation between the performances on these tasks. We concluded
that commonality search and alternative categorization both focus on obscure features of objects.
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Minimal but meaningful: Probing the limits of randomly assigned social identities
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Yale University, New Haven, Connecticut, United States
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Abstract

The present studies (total n = 151) experimentally manipulated meaningfulness in novel social groups and measured any
resulting ingroup biases. Study 1 showed that even when groups were arbitrary and presumptively meaningless, 5- to
8-year-olds developed equally strong ingroup biases as did children in more meaningful groups. Study 2 explored the
lengths required to effectively reduce ingroup biases by stressing the arbitrariness of the grouping dimension. Even in this
case ingroup bias persisted in resource allocation behavior, though it was attenuated on preference and similarity measures.
These results suggested that one has to go to great lengths to counteract childrens tendency to imbue newly encountered
social groups with rich affiliative meaning.
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Corpus-based topic modeling for the cognitive study of the 21st century
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Abstract

The results were obtained in the course of a two-stage study. At the first stage (2018) linguists analyzed the conceptual
domain sociocultural challenges on the basis of purposely elaborated Russian language THREAT-corpus (10.4 m words)
and built a frame of the domain. At the second stage (2018-2019) the research was carried out with methods of automated
topic modeling for two Russian language corpora: THREAT-corpus and alternative corpus collected using WebBootCaT
tool in the SketchEngine corpus management system. Methods of topic modeling (PLSA, LDA, BigARTM et al.) allowed
eliciting thematic profiles for texts of both corpora. Comparison of two datasets was carried out by applying set theory,
graph theory, and probabilistic analysis. Combining topic modeling with linguistic frame analysis resulted in more pre-
cise configurations of cognitive models in the conceptual domain sociocultural challenges. Word frequency for lexemes
manifesting sociocultural challenges proved to be an important factor of conceptual structures representation.

3612



Communicative need and color naming
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Abstract

Color naming across languages has traditionally been held to reflect the structure of color perception. At the same time, it
has often, and increasingly, been suggested that color naming may be shaped by patterns of communicative need. However,
much remains unknown about the factors that drive communicative need, how need interacts with perception, and how this
interaction may shape color naming systems across languages. We engage these open questions by building on general
information-theoretic principles, and on a recent account of color naming that integrates the roles of need and perception.
On this basis, we present a systematic evaluation of several factors that may influence need, and that have been proposed in
the literature: capacity constraints, linguistic usage, and the visual environment. Our findings suggest that communicative
need and resulting patterns of color naming are shaped more by linguistic usage than they are by the visual environment
alone.
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Constructing a category prototype from statistical regularities under uncertainty
Haiyun Zeng
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Sharon Thompson-Schill
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Abstract

Learning the meaning of a word requires forming a semantic representation that characterizes the referential exemplars
encountered with that word. However, each learning instance is ambiguous in that the word may plausibly refer to mul-
tiple entities. To the extent that learners consider multiple referents under conditions of referential uncertainty, how do
these alternatives enter into learning word meaning? We employed a cross-situational word-learning paradigm with novel
creatures to investigate whether co-occurring exemplars that were considered but not selected as the words referent would
influence the category prototype. We contrasted a condition where all exemplars were labeled with a word and a condi-
tion where only some of the exemplars of a category were labeled with the word later in the learning phase. Preliminary
results are consistent with the prediction that referents that are considered but not selected contribute less to the semantic
representation of the word than do the selected referents.
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Interpretation of Generic Language is Dependent on Listener’s Background
Knowledge
Xiuyuan Zhang

University of Chicago, Chicago, Illinois, United States

Dan Yurovsky
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Abstract

Generic statements, like ”birds lay eggs” or ”dogs bark” are simple and ubiquitous in naturally produced speech. However,
the inherent vagueness of generics makes their interpretation highly context-dependent. Building on work by Tessler &
Goodman (in press) showing that generics can be thought of as inherently relative (i.e. more birds lay eggs than you
would expect), we explore the consequences of different implied comparison categories on the interpretation of novel
generics. In Experiments 1 and 2, we manipulated the set of categories salient to a listener by directly providing them
the comparison sets. In Experiments 3 and 4, we collected participants demographic information and used these naturally
occurring differences as a basis for differences in the participants’ comparison sets. Our results confirmed the hypothesis
that prevalence judgments of features in novel categories are sensitive to differences in their corresponding comparison
categories. These results suggest a possible source for well-intentioned miscommunications.
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Deep Learning of Chinese Characters
Xiaowei Zhao

Emmanuel College, Boston, Massachusetts, United States

Abstract

In this study, the printing forms (different fonts) of about 3000 common Chinese characters were sent into a Deep Neural
Network (DNN), along with their sounds. The network can successfully learn the association between the form and the
sound of these characters. It also develops certain generalizability when facing new characters. In addition, the internal
representations on different layers of the network show the emergence of basic writing structures of Chinese characters
(i.e. strokes, radicals, left-right, top-down structures ). The learning pattern of the network is further compared with that
of the elementary school students.
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Bayesian Inference Causes Incoherence in Human Probability Judgments
Jianqiao Zhu
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Adam Sanborn
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Abstract

Human probability judgements appear systematically biased, in apparent tension with Bayesian models of cognition. But
perhaps the brain does not represent probabilities explicitly, but approximates probabilistic calculations through a process
of sampling, as used in computational probabilistic models in statistics. The Bayesian sampling viewpoint provides a
simple rational model of probability judgements, which generates biases such as conservatism. The Bayesian sampler
provides a single framework for explaining phenomena associated with diverse biases and heuristics, including availability
and representativeness. The approach turns out to provide a rational reinterpretation of noise in an important recent model
of probability judgement, the probability theory plus noise model (Costello & Watts, 2014; 2016; 2017; Costello, Watts,
& Fisher, 2018), and captures the empirical data supporting this model.
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A resource-rational model of physical abstraction for efficient mental simulation
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Abstract

Physical simulation enables people to make intuitive predictions about physical scenes and interact flexibly with the objects
around them, from a stack of books balanced on a ledge to the turrets and moats of a sandcastle. We hypothesize that when
the number of possible objects makes simulation intractable, people use chunked abstractions that reduce the number of
objects they need to simulate while also minimizing simulation error. We tracked participants gaze while they viewed
complex towers of blocks and predicted whether the towers would remain stable under gravity. We developed a resource-
rational model of how people might optimally partition towers into chunks of blocks. Subsequently, we compared this
model to participants fixations over the scene. We explore how efficient, resource-rational chunkings of physical scenes
might underlie peoples ability to make rapid and robust inferences in this domain.
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Modeling of Complex Communicative Behavior for F-2 Companion Robot
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Abstract

We design F-2 companion robot, supporting natural multimodal communication. The robot is operated by a set of scripts,
triggered by input speech and generating behavioral patterns in BML format. To make robots behavior as close as possible
to humans, we extract natural communication patterns from the Russian Emotional Corpus REC (over 400.000 annota-
tions), reproduce key patterns in Blender 3D editor and export them to MySQL database (n = 220). For each generated
BML the software retrieves the corresponding movement from the database, joins compatible patterns and performs them
on the robot. Robot can also receive the coordinates of surrounding human faces and simulate direct gazes towards the
eyes of the addressee. It can also perform oriented (pointing) gestures: switch between directions or between several
interlocutors. This allows us to model complex robot behavior, as shown in our experiment, increasing human satisfaction
from robot-to-human interaction (Research is supported by the Russian Science Foundation, project No 19-18-00547).
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A Visual Remote Associates Test and its Initial Validation
Faheem Zunjani
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Abstract

The Remote Associates Test (RAT) is a test used for measuring creativity as relying on the power of making associations,
and it normally takes a linguistic form (i.e., given three words, a fourth word associated with all three is asked for). While
other visual creativity tests exist, no creativity test to date can be given in both a visual and linguistic form. Such a test
would allow the study of differences between various modalities, in the creativity domain. In this paper, a visual version of
the well known Remote Associates Test is constructed. This visual RAT is validated in relation to its linguistic counterpart
in a study with 42 participants. A significant correlation of 0.431 (p ¡ 0.01) between visual RAT scores and comRAT-G
scores was observed.
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